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Introduction

Materials, in the most expansive context, demonstrate a wide range of properties that
are contingent upon their intrinsic structure. These properties encompass mechanical
aspects (elastic limit), chemical attributes (corrosion resistance), thermal characteristics
(thermal expansion), electrical qualities (conductivity), etc. Designing and dimensioning
engineering components thus require precise material knowledge to ensure:

• the adequacy between material properties and in-situ conditions of the mechanical
structure,

• sufficient performance of the part in in-service applications,
• extended lifespan of the component.

From a mechanical point of view, knowledge about the material behaviour is gained
by experimental means, and then implemented in numerical simulations to predict the
mechanical response of a structure under complex loading conditions. Traditionally in
computational mechanics, the mechanical response of a material is approximated by a
mathematical function, named “constitutive model”. The continuous nature of this func-
tion simplifies the resolution of mechanical problems and centuries of research led to the
development of high-fidelity models for a wide range of materials. Nevertheless, this rep-
resentation, while straightforward for linear mechanical responses, reaches its limits when
dealing with complex behaviours due to nonlinearity and/or dependence on multiple para-
meters.

Alternatives to constitutive modelling arose during the last decades, brought about
by major breakthroughs in computer and data sciences. In particular, Data-Driven Com-
putational Mechanics (DDCM), newly introduced in 2016 by Kirchdoerfer and Ortiz, is a
model-free approach that completely bypasses the need for constitutive models. Solely
based on observed material data, this method intends to replace models in cases where
the latter prove to be inaccurate and challenging to calibrate.

In the data-driven paradigm, materials can be classified into two main categories
depending on their behaviour when subjected to external forces:

• elastic materials recover their original size and shape when the force they were
subjected to is removed,

• inelastic materials, whose mechanical response is irreversible and path-dependent.
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Introduction

DDCM was initially developed and extensively discussed for the first category, where the
material behaviour is encoded by a discrete data set, called material database and com-
posed of experimentally or numerically observed strain-stress pairs.

This description is not sufficient in inelasticity, since in that case loading history has to
be taken into account, and an efficient representation has to be developed that, following
the philosophy behind DDCM, stays closest to physical principles, and so without any
modelling assumption.

The present work therefore addresses the following problem:

How can history be enforced in the discrete representation of the ma-
terial response?

and the contingent question:

How can we formulate and solve inelastic data-driven problems?

To investigate this topic and answer these questions, we suggest encoding the inelastic
material behaviour with directed graphs. Graphs are mathematical structures used to
represent pairwise relationships between objects. In DDCM, a graph can thus provide a
structured material database which accounts for irreversibility.

This manuscript is divided into three main parts:

• The first one aims to explain in detail the context of this study and takes stock of
the state of the art in computational mechanics. We will recall the fundamental
principles of continuum thermomechanics for solids in Chapter I. Chapter II con-
siders the special case of elastoplastic materials and how elastoplasticity is treated
in constitutive modelling. The computational resolution of the mechanical problem
is also addressed, with particular attention paid to the one-dimensional case, which
will be studied in the following. Chapter III contextualises and motivates the use
of data-driven approaches, then Chapter IV concludes this part with a presentation
of DDCM and an overview of related works. The mathematical foundation for the
extension to inelastic behaviours is also recalled and will serve as a basis for the
next chapters.

• The second part addresses specific challenges arising in data-driven inelasticity, espe-
cially regarding the representation of history. Several paradigms are considered and
discussed in Chapter V, and the use of graphs is motivated. Chapter VI provides
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Introduction

basic elements of graph theory. Furthermore, the mathematical definitions and
principles for the representation of the material data set with a directed graph are
given, along with the new procedure for the resolution of the numerical data-driven
problem.

• The last part of this manuscript is dedicated to applying the approach in nu-
merical simulations that are performed and analysed for elastoplastic trusses. In
Chapter VII, we consider a single element problem and demonstrate the ability of
the method to handle history-dependent behaviours. Chapter VIII investigates a
truss problem exhibiting combinatorial complexity and provides an enhanced pro-
cedure to counteract the numerical effects leading to the failure of the original al-
gorithm. Finally, Chapter IX discusses the construction of the graph when dealing
with realistic material data.
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Part A, Chapter I – Basic principles of solid thermomechanics

1 Mechanical principles

In this section, we define the thermomechanical principles governing a Boundary Value
Problem (BVP) in continuum mechanics in the small strains range, to serve as a basis
throughout this document. Basic components are kinematics, equilibrium and laws of
thermodynamics. The content of this section is taken from the textbooks by De Souza
Neto et al. (2008 [21]), Lemaitre et al. (2009 [51]) and Simo et al. (1998 [71]).

Let Ω ∈ Rd be the reference configuration of a body, illustrated in Fig. I.1, where d is
the space dimension and let ∂Ω be the boundary of the domain in the current configuration
such that ΓN ∪ΓD = ∂Ω and ΓN ∩ΓD = ∅. The body undergoes the action of body forces
f per unit deformed volume, traction forces t per unit deformed area of the boundary ΓN
and a displacement field uD applied on the boundary ΓD. The latter boundary condition
is referred to as Dirichlet boundary condition and reads:

u(x) = uD, ∀x ∈ ΓD. (I.1)

Figure I.1: A general nonlinear continuum mechanics BVP, from Platzer (2020 [62])

In infinitesimal deformation theory, the displacement and its gradient are assumed to
be sufficiently small compared to the dimensions of the body, and the current configuration
can be assimilated to the reference one. The deformation of the body is then entirely
measured by the linearised infinitesimal strain tensor:

ε = 1
2
(
∇u+∇Tu

)
. (I.2)

The Cauchy stress tensor σ linearly relates the surface vector t to the outer normal
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1. Mechanical principles

vector n of a deformed unit area as:

t(x,n) = σ(x)n(x), ∀x ∈ ΓN . (I.3)

This equation, also called Neumann boundary condition, expresses the equilibrium on
the boundary of the body. By contrast, the translational equilibrium, derived from the
conservation of linear momentum inside the body, reads:

div (σ(x)) + f(x) = 0, ∀x ∈ Ω (I.4)

in the absence of inertial forces. The conservation of angular momentum yields the sym-
metry of the Cauchy stress tensor as:

σ = σT. (I.5)

In order to state the principles of thermodynamics, we introduce the scalar fields θ,
e, s and r which represent, respectively, the temperature, specific internal energy, specific
entropy and volumetric density of heat production. In addition, we define the vector field
q corresponding to heat flux. The density is denoted ρ.

The first principle of thermodynamics governs the conservation of energy during the
transformation of the body and is expressed by:

ρė = σ : ε̇+ r − div (q) , (I.6)

under small strains, with σ : ε̇ the stress power per unit volume. The second principle
defines the irreversibility of entropy production:

ρṡ+ div
(
q

θ

)
− r

θ
> 0 . (I.7)

The combination of Eqs. I.6 and I.7 leads to:

ρṡ+ div
(
q

θ

)
− 1
θ

(ρė− σ : ε̇+ div (q)) > 0 . (I.8)

Introducing the specific free energy ψ, or Helmholtz free energy per unit mass as:

ψ = e− θs , (I.9)
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Part A, Chapter I – Basic principles of solid thermomechanics

into the above inequality, we obtain the fundamental Clausius-Duhem inequality that
must be satisfied at each step of the process:

σ : ε̇− ρ
(
ψ̇ + sθ̇

)
− 1
θ
q · ∇θ > 0 , (I.10)

where the left term corresponds to the total dissipation per unit deformed volume. In the
case where the transformation is isothermal (θ̇ = 0,∇θ = 0) and adiabatic (r = 0, q = 0),
the expression of dissipation reduces to:

D = σ : ε̇− ρψ̇ . (I.11)

A non-dissipative transformation is said reversible, and irreversible if the dissipation is
strictly positive. The Clausius-Duhem inequality (Eq. I.10) ensures that negative dissip-
ation is not allowed.

2 Classes of material behaviours

The response of solid materials to characteristic experimental tests allows them to be
classified as elastic, viscous, plastic and perfectly plastic according to the dependence of
stress on strain and/or time (Lemaitre et al., 2009 [51]).

The most common characterisation tests are the uniaxial tension, creep and relaxation
tests. These are homogeneous tests, in which strain and stress states are (quasi-)uniform
in the region of interest of the sample.

• A uniaxial tension test is performed with prescribed strain, at a constant strain rate.
The material response shows the stress variation depending on strain and highlights
the work-hardening phenomenon, i.e. permanent deformation of the material sub-
jected to sufficiently high strains.

• During a creep test, the sample is subjected to a prescribed stress at a constant
stress rate and the evolution of strain over time characterises work-hardening and
viscosity.

• The relaxation test is dual to the previous one: the prescribed constant strain allows
to characterise the work-hardening and viscous response.

The mechanical response to the three tests is used in the following figures to define the
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2. Classes of material behaviours

different classes of material behaviours.

2.1 Elasticity

For elastic solids (Fig. I.2), deformation is reversible and instantaneous. The state of
stress and strain does not depend on the loading path followed.

Figure I.2: Elastic material response, from Lemaitre et al. (2009 [51])

2.2 Viscoelasticity

Viscoelasticity (Fig. I.3) refers to behaviours that exhibit both elastic and viscous proper-
ties under loading. The creep response under stress is time-dependent and the reversibility
of deformation only occurs after an infinite time.

Figure I.3: Viscoelastic material response, from Lemaitre et al. (2009 [51])
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Part A, Chapter I – Basic principles of solid thermomechanics

2.3 Plasticity

Plastic solids (Fig. I.4) are inelastic solids which, once the load has been removed, exhibit
instantaneously stable permanent deformations and which are in equilibrium under load.
Their behaviour does not explicitly depend on time. They can be perfectly elastic-plastic,
i.e. with linear elastic strain below an arbitrary stress threshold σ0 and independent
of the strain rate for this stress value (Saint Venant model, [68]). They can also be
work-hardening elastoplastic, in which case the total strain is the sum of a linear elastic
deformation and a permanent strain, equal to zero below the σ0 threshold.

(a) Elastic perfectly plastic

(b) Work-hardening elastoplastic

Figure I.4: Plastic material response, from Lemaitre et al. (2009 [51])

2.4 Viscoplasticity

Finally, viscoplastic solids (Fig. I.5) are those which, like plastic solids, exhibit permanent
deformation after stress has ceased, but which undergo a time-dependent creep flow under
stress. As with plastic solids, a distinction is made between perfectly viscoplastic solids,
which exhibit a permanent deformation rate as a function of stress, elastic perfectly visco-
plastic solids, which are similar but for which elasticity is no longer considered negligible,
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3. Thermomechanical problem

and finally work-hardening elasto-viscoplastic solids, which are more complex to model
since stress depends on the plastic strain rate and on the plastic strain itself or on another
work-hardening variable.

(a) Perfectly viscoplastic

(b) Elastic perfectly viscoplastic

(c) Work-hardening elasto-viscoplastic

Figure I.5: Viscoplastic material response, from Lemaitre et al. (2009 [51])

3 Thermomechanical problem

The BVP defined in Section 1 is a problem composed of linear equations that requires
additional information about the material behaviour to be solved. A common method,
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Part A, Chapter I – Basic principles of solid thermomechanics

known as constitutive modelling, consists in postulating a mathematical relation between
strains and stresses based on the characteristics of the material response as described in
Section 2 to close the problem.

In plain linear elasticity, the material behaviour is easily approximated with a linear
function and the solution is straightforward. For nonlinear behaviours however, con-
stitutive models rely on additional variables and multiple parameters while the problem
is solved with complex algorithms.
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Elastoplasticity and computational
elastoplasticity
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1. Phenomenological aspects of elastoplasticity

The present manuscript is concerned with the numerical prediction of inelasticity,
and in particular elastoplasticity, i.e. irreversible, nonlinear, rate-independent material
response.

This chapter recalls the most important concepts of the mathematical theory of elas-
toplasticity for solids subjected to infinitesimal deformations. Phenomenological aspects
that may occur during service of elastoplastic parts are first explained, followed by math-
ematical hypotheses and definitions. Some classical models are then presented. Finally,
the incremental problem is formulated and the return-mapping algorithm is detailed for
solving elastoplastic problems in a one-dimensional setting.

The following is widely inspired by the textbooks of Lubliner (2008 [54]) for phenomen-
ology and De Souza Neto et al. (2008 [21]) for mathematical methods.

1 Phenomenological aspects of elastoplasticity

A large number of engineering materials, such as metals, concrete, rocks, clays
and soils in general, may be modelled as plastic under a wide range of circum-
stances of practical interest. Lubliner (2008 [54])

Modern plasticity theory was primarily developed to describe the mechanical response
of ductile metals, where plastic deformation is a consequence of the movement of dislo-
cations, or slip, on crystallographic planes. However, various physical mechanisms are
responsible for this type of behaviour in other materials. For instance, plasticity of soils
is caused primarily by particles sliding over one another and strongly depends on the mi-
crostructure, chemical composition and water content. Alternatively, plasticity in brittle
materials like rocks and concrete foremost occurs due to the opening and closing of mi-
crocracks. Many approximations for metals may not hold for these materials; we will thus
restrict the present study to ductile solids.
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Part A, Chapter II – Elastoplasticity and computational elastoplasticity

Important phenomenological properties about plasticity can be inferred from the uni-
axial tensile test in Fig. II.1:

• elastic domains delimited by the yield stresses σy, corresponding to segments O0Y0

and Y1O1,
• plastic yielding, which occurs when the material at the yield stress is further loaded,

goes along with an evolution of plastic strains,
• hardening, which corresponds to the evolution of the yield stress between points Y0

and Y1.

Figure II.1: Uniaxial tension experiment. Mathematical model. From De Souza Neto et
al. (2008 [21])

In addition, most polycrystalline metals undergo a phenomenon known as Bauschinger
effect (Fig. II.2): when subjected to increasing compressive stress, the yield stress in
compression lowers if the material has previously been subjected to increasing tensile
stress and then unloaded.

The following sections provide basic features and algorithms for computational plas-
ticity. Widely applied in engineering, the approach is based on a continuous strain-stress
relation called constitutive model, which depends on multiple parameters and can take
different forms to accurately represent various materials.
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2. Mathematical theory of elastoplastic constitutive modelling

Figure II.2: Classical Bauschinger effect (from Lubliner (2008 [54]))

2 Mathematical theory of elastoplastic constitutive
modelling

2.1 Additive decomposition of the strain tensor

One of the principal hypotheses of the small strain theory of plasticity is the decomposition
of the strain tensor into the sum of a reversible elastic strain εe and a permanent plastic
strain εp,

ε = εe + εp, (II.1)

and its corresponding time-derivative form,

ε̇ = ε̇e + ε̇p. (II.2)

2.2 Free energy potential and elastic law

In plasticity theories, the free energy ψ introduced in Eq. I.9 is a function of the form:

ψ(ε, εp,α), (II.3)

where α is a set of internal variables describing the hardening phenomenon.
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Following this definition, the Clausius-Duhem inequality writes:

D =
(
σ − ρ ∂ψ

∂εe

)
: ε̇+ ρ

∂ψ

∂εp : ε̇p −A ∗ α̇ > 0, (II.4)

with ∗ symbolising the appropriate product depending on internal variables dimensions
and D the intrinsic dissipation. We have also introduced the hardening thermodynamical
force A as:

A = ρ
∂ψ

∂α
. (II.5)

The elastic law obtained from the above inequality is:

σ = ρ
∂ψ

∂εe = De : εe, (II.6)

where De = ∂2ψ/∂ε2 is the standard isotropic elastic tensor.

The condition of non-negative plastic dissipation then reduces to:

D(σ,A; ε̇p, α̇) = σ : ε̇p −A ∗ α̇ > 0. (II.7)

2.3 Yield surface

The occurrence of plastic flow is described by means of a non-positive scalar yield function
which depends on the stress tensor and the set of hardening thermodynamical forces A:

Φ(σ,A) 6 0. (II.8)

Plastic flow may occur when the yield function reaches zero, while only elastic deformation
is possible if it is negative. The elastic domain is defined as the set:

{σ | Φ(σ,A) < 0} , (II.9)

i.e. the set of stresses for which plastic yielding is not possible. On the opposite, the set
of stresses for which plastic yielding may occur, called yield locus, is the boundary of the
elastic domain:

{σ | Φ(σ,A) = 0} . (II.10)
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2. Mathematical theory of elastoplastic constitutive modelling

2.4 Plastic flow rule and hardening law

In order to completely characterise the plasticity model, the evolution laws for the plastic
strain tensor and the set α of hardening variables must be defined. The plastic flow rule
and hardening law are postulated as:

ε̇p = γ̇N (σ,A), (II.11a)
and

α̇ = γ̇H(σ,A), (II.11b)

where γ̇ is a plastic multiplier, N is the flow vector and H is the hardening modulus
which defines the evolution of the hardening variables. The loading/unloading conditions
complement these evolution equations by defining when evolution of plastic strains and
internal variables may occur:

Φ 6 0, γ̇ > 0, Φγ̇ = 0. (II.12)

The flow rule, and possibly the hardening law, may be defined in terms of a flow, or
plastic, potential Ψ(σ,A) from which derives the flow vector as

N = ∂Ψ
∂σ

, (II.13)

and the hardening law as
H = −∂Ψ

∂A
. (II.14)

In that case, the plastic potential Ψ is a non-negative convex function of σ and A,
such that

Ψ(0,0) = 0, (II.15)

to ensure that the dissipation inequality (Eq. II.7) is satisfied a priori by Eqs. II.11a
and II.11b, and thus takes the form:

D(σ,A; γ̇) = γ̇

(
σ
∂Ψ
∂σ

+A∂Ψ
∂A

)
> 0. (II.16)
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2.5 Plastic multiplier

The determination of the plastic multiplier γ̇ during plastic yielding was initially left
aside: Eq. II.12 only ensures that it vanishes during elastic straining while it may assume
any non-negative value during plastic flow. It should first be noted that the value of the
yield function remains constant whenever plastic yielding occurs,

Φ = 0. (II.17)

From this comes the additional complementary condition,

Φ̇γ̇ = 0, (II.18)

which implies that the rate of Φ vanishes during plastic yielding, i.e. when γ̇ 6= 0:

Φ̇ = 0. (II.19)

However it may assume any value during elastic straining, i.e. when γ̇ = 0. Eq. II.19 is
called consistency condition.

The combination of the additive split of the strain tensor II.1, the elastic law II.6 and
the plastic flow rule II.11a gives the stress rate:

σ̇ = De : (ε̇− ε̇p) = De : (ε̇− γ̇N ). (II.20)

Together with the definition of A as a function of the free-energy potential II.5 and the
evolution laws II.11, this gives the time-derivative of the yield function as:

Φ̇ = ∂Φ
∂σ

: De : (ε̇− ε̇p) + ∂Φ
∂A
∗ ρ∂

2ψ

∂α2 ∗ α̇

= ∂Φ
∂σ

: De : (ε̇− γ̇N ) + γ̇
∂Φ
∂A
∗ ρ∂

2ψ

∂α2 ∗H .

(II.21)

Finally, the expression for the plastic multiplier is obtained by combination with the
consistency condition II.19:

γ̇ = ∂Φ/∂σ : De : ε̇
∂Φ/∂σ : De : N − ∂Φ/∂A ∗ ρ∂2ψ/∂α2 ∗H

. (II.22)
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3. Overview of classical constitutive models

2.6 Rate form and elastoplastic tangent operator

The rate form of the constitutive equation in the elastic regime is simply obtained from
Eq. II.6 and reads:

σ̇ = De : ε̇. (II.23)

Under plastic yielding, the rate equation is of the form:

σ̇ = Dep : ε̇, (II.24)

where Dep is the elastoplastic tangent modulus obtained by combining Eqs. II.20 and II.22
and assuming the symmetry of the elasticity tensor.

3 Overview of classical constitutive models

3.1 Classical yield criteria, plastic flow rules and hardening laws

3.1.1 Yield criteria

A yield criterion commonly used in engineering practice to describe metals is the isotropic,
pressure-insensitive criterion of von Mises [56] that postulates plastic yielding begins when
the J2 stress deviator invariant reaches a critical value. The mathematical equation to
represent this condition is:

Φ = J2 −R(α), (II.25)

where R is the critical value assumed to be a function of the hardening internal variable
α. The stress deviator s and J2 invariant are defined as:

s = σ − 1
3(tr(σ))I, (II.26)

and
J2 = 1

2‖s‖
2, (II.27)

with I the identity matrix.

Tresca criterion is another common yield criterion for metals, while Mohr-Coulomb
and Drucker-Prager yield criteria, that consider pressure-sensitivity, are often used for
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soils, rocks and concrete.

3.1.2 Plastic flow rules

Plasticity models are classified as associative if the yield function is taken as a flow po-
tential, and non-associative otherwise. In associative plasticity, the evolution equations
defined in Eqs. II.11a and II.11b are written:

ε̇p = γ̇
∂Φ
∂σ

, (II.28a)
and

α̇ = −γ̇ ∂Φ
∂A

, (II.28b)

implying normality of the plastic strain rate tensor to the yield surface in stress space and
symmetry of the elastoplastic tangent operator.

A classical example of associative flow rule is the Prandtl-Reuss plasticity law that
assumes a flow potential equal to the von Mises yield function. The flow rule thus becomes:

ε̇p = γ̇
∂

∂σ

[√
3J2(s)

]
= γ̇

√
3
2
s

‖s‖
. (II.29)

The assumption of associative plastic flow is particularly suited to the description of
metals. Nevertheless, the use of non-associative laws is essential to predict the mechanical
response of soils and granular materials in general.

3.1.3 Hardening laws

The dependence of yield stress level upon the history of plastic straining is represented
by changes in the hardening thermodynamical force A during plastic yielding. These
changes generally affect the size, shape and orientation of the yield surface.

Isotropic hardening corresponds to a uniform, or isotropic, expansion of the initial
yield surface. Then, the set α of internal variables normally contains a single scalar
variable, which determines the size of the yield surface. A typical example is the von
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Mises accumulated plastic strain:

p =
t∫

0

√
2
3 ε̇

p : ε̇p dt =
t∫

0

√
2
3‖ε̇

p‖ dt. (II.30)

The corresponding rate evolution equation reads:

ṗ =
√

2
3 ε̇

p : ε̇p =
√

2
3‖ε̇

p‖, (II.31)

an equivalent formulation of which is given by the Prandtl-Reuss flow rule (Eq. II.29),

ṗ = γ̇. (II.32)

Kinematic hardening, alternatively, describes a translation of the yield surface in
stress space without change in shape and size, also called Bauschinger effect [5]. The
kinematically hardening von Mises yield function has the form,

Φ(σ,χ) =
√

3J2 [s(σ)− χ]− σy, (II.33)

where χ is the symmetric deviatoric back-stress tensor that represents the translation. A
common evolution equation is Prager’s linear kinematic hardening rule [65], where χ is
conjugated to the internal variable εp,

χ = 2
3Hε

p. (II.34)

Mixed isotropic-kinematic hardening enables a better reproducibility of real-life
phenomena by combining both hardening types: under plastic straining, the yield surface
deforms and translates simultaneously in stress space.

Summary of the one-dimensional elastoplastic constitutive model The general
model developed above can be simplified to a one-dimensional model, in which all values
are scalars. In particular, the isotropic elastic tensor De reduces to the Young’s modulus E
and σy,0 is the initial yield stress, i.e. before hardening occurred. The resulting equations
for linear kinematic hardening are summarised in Box II.1.
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1. Elastoplastic split of the axial strain

ε = εe + εp

2. Uniaxial elastic law

σ = Eεe

3. Yield function

Φ(σ, χ) = |σ − χ| − σy,0

4. Associated plastic flow rule

ε̇p = γ̇sign (σ − χ)

5. Kinematic hardening law

χ = χ(εp)

6. Loading/unloading conditions

Φ 6 0, γ̇ > 0, Φγ̇ = 0

7. Elastoplastic tangent modulus

Eep = EH

E +H

Box II.1: One-dimensional elastoplastic constitutive model with kinematic hardening

3.2 Other typical effects and constitutive models

Some phenomena that happen in plasticity cannot be accurately predicted by the classical
constitutive models summarised in Section 3.1. For instance, the mechanical response
under cyclic loading conditions exhibits additional specific effects, such as anisotropy and
ratcheting.

Anisotropy usually occurs even in initially isotropic materials due to the hardening
response on continued loading after yielding. The tensile yield strength is then different
in the loading direction and in the direction normal to it. As for ratcheting (see Fig. II.3),
which is an accumulation of plastic strain, it results in a change in mean strain during
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one loading cycle with respect to the value obtained during the preceding cycle (Hübel,
1996 [38]).

Figure II.3: Demonstration of the model with both isotropic and kinematic hardening.
(a) Cyclic response under symmetric strain bounds. (b) Ratcheting response under asym-
metric stress bounds. From Paranjape et al. (2018 [60])

In his review, Chaboche (2008 [11]) goes through different theories to account for
anisotropy and ratcheting. These include anisotropic yield surfaces, e.g. Hill (1948 [36]),
Barlat et al. (2003 [3]), combined with mixed isotropic and kinematic hardening laws,
as Frederick et al. (2007 [28]). Alternatives are also suggested, e.g. multi-surface models
introduced by Mróz (1967 [57]).

These models are continuously improved to better fit experiments (Paranjape et al.,
2018 [60]), account for additional phenomena (Mahan et al., 2011 [55]), etc., which also
results in higher complexity. Therefore, the more complex the models get, the more
powerful the computational methods have to be to run accurate numerical simulations.
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4 Elastoplastic problem resolution

4.1 Elastoplastic problem

4.1.1 Temporal and spatial discretisation

The resolution of the elastoplastic problem with the common Finite Element (FE) method
involves two major numerical approximations:

• a time discretisation1, which transforms time-continuum constitutive equations into
incremental counterparts,

• a FE discretisation of the original body into a mesh composed of finite elements
associated with shape functions.

The constitutive problem is then reduced to a set of incremental FE equations to be solved
incrementally at each time step.

4.1.2 Discretised mechanical equations

We now consider a body Ω ∈ Rd (with d the space dimension) and its FE discretisation
hΩ ∈ Rd composed of N nodes andM integration points, used for the numerical resolution
of the integral form of the BVP with Gaussian quadratures (see De Souza Neto et al.
(2008 [21]) for more details). Within a time-discrete setting, we seek to approximate
solutions of the elastoplastic problem at times {t0, . . . , tk, tk+1, . . . T}.

The discrete body hΩ undergoes displacements u = {ua}Na=1 and loads f = {fa}Na=1.
At time tk, the internal state of the discrete body is subjected to the discrete compatibility
and equilibrium constraints defined by Eqs. I.2 and I.4. With the spatio-temporal discret-
isation, these equations transform into an Incremental Boundary Value Problem (IBVP):


εe,k+1 = Beuk+1, ∀e = 1 . . .M , (II.35a)
M∑
e=1

weB
T
eσe,k+1 = fk+1, (II.35b)

with we the weights of the integration points. Be is the discrete symmetric gradient
operator matrix related to integration point e that encodes the derivatives of the shape

1. As we consider time-independent material behaviours only, t is a pseudo-time and is used here as
a convenient way to describe history.
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functions.

4.1.3 Constitutive incremental boundary value problem

In linear elasticity, the stress tensor is expressed as a linear function of the strain tensor
(Eq. II.6). The discrete BVP can be solved directly by substituting σ in the equilibrium
equation (Eq. II.35b).

In elastoplasticity however, the material nonlinearity combined with path-dependency
calls for adequate numerical resolution schemes for integration of the rate constitutive
equations, which cannot be solved analytically when complex paths are involved.

The solution to the incremental elastoplastic problem depends on the prescribed in-
cremental strain ∆ε for the time interval [tk, tk+1]. All quantities of interest can also be
expressed at time tk, initial values εe

k and αk being known. The constitutive IBVP thus
consists in finding εe

k+1, αk+1, ∆γ for the elastic strain, hardening internal variables set
and increment of plastic multiplier, such that the plastic flow rule (Eq. II.11a), hardening
law (Eq. II.11b) and loading/unloading conditions (Eq. II.12) are satisfied for [tk, tk+1].

4.2 Resolution of the incremental problem

The resolution of the IBVP within a time increment [tk, tk+1] requires two fundamental
operations:

• update σk+1 and αk+1, respectively stress and internal variables at time tk+1 such
that  σk+1 = σ̂(αk, εk+1),

αk+1 = α̂(αk, εk+1).

• compute the tangent operator D, used to solve the nonlinear FE equilibrium equa-
tions.

The first operation is performed with the so-called elastic predictor/plastic corrector, or
return-mapping algorithm, described in the following. The tangent operator,

D = ∂σ̂

∂εk+1
, (II.36)
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is the derivative of the implicit function defined by the return-mapping equations.

4.2.1 Return-mapping procedure

The return-mapping algorithm solving the IBVP is composed of three main steps, illus-
trated in Fig. II.4:

1. trial elastic state: compute the trial stress as if the behaviour was elastic during the
increment,

2. compute the yield function and check whether the loading/unloading conditions are
satisfied,

3. compute the effective stress and internal variables:
• elastic transition: the stress equals the trial stress,
• plastic yielding: project the trial stress onto the updated yield surface.

Figure II.4: The final stress is obtained by “returning” the trial stress to the yield surface
through a scaling, hence, the denomination return mapping. From Simo et al. (1998 [71])
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4.2.2 One-dimensional algorithm

This section presents the classical method for solving elastoplastic problems in a one-
dimensional setting, as will be used in the third part of this manuscript to compute
reference solutions. In this context, all quantities of interest are scalar.

The return-mapping algorithm procedure is provided in Alg. 1 for the constitutive
model with linear kinematic hardening detailed in Box II.1. For a linear hardening law
of the form

χ(εp) = Hεp, (II.37)

the free energy of this model writes:

ψ(ε, εp) = 1
2E(ε− εp)2 + 1

2H(εp)2. (II.38)

Finally, dissipation is given by:
D = σy,0|ε̇p|. (II.39)

Algorithm 1 Return-mapping algorithm for elastoplasticity with linear isotropic harden-
ing: compute response at step k + 1
Input: E,H, σy,0, εk, εp

k, Dk, εk+1.
1: σtrial = E(εk+1 − εkp) . Elastic trial stress
2: Φ = |σtrial −Hεkp| − σy,0 . Test for plastic yielding
3: if Φ 6 0 then . Elastic straining
4: εp

k+1 = εp
k

5: σk+1 = σtrial

6: else . Plastic yielding
7: ∆εp = sign

(
σtrial

) Φ
E +H

8: εp
k+1 = εp

k + ∆εp

9: σk+1 = E(εk+1 − εp
k+1)

10: Dk+1 = Dk + σy,0|∆εp|
11: end if
Output: σk+1, ε

p
k+1, Dk+1
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5 Summary

Plasticity is a complex phenomenon involved in the mechanical behaviour of a large num-
ber of engineering materials. Constitutive modelling of elastoplasticity was primarily
developed for metals, but because of the various physical mechanisms behind plastic de-
formation, many approximations may not hold for other materials. We restrict our study
to classical plasticity in the small strain framework.

Besides the additive decomposition of the strain tensor into an elastic and a plastic
part, the three main ingredients composing elastoplastic constitutive models are the yield
function, the plastic flow rule and the hardening law. The first one establishes the con-
ditions for the onset of plastic yielding, while the latter govern the evolution of the yield
function during plastic yielding.

Some classical models have been presented in the third section, which are yet too re-
strictive for many applications. For instance, cyclic plasticity involves additional effects,
as anisotropy and ratcheting, that cannot be predicted by these models. Ongoing re-
search still aims to improve them to better reflect experiments, coming along with higher
mathematical complexity of the related numerical methods.

The resolution of the FE incremental problem involves numerical methods to treat ma-
terial non linearities and path-dependency. In particular, the return-mapping algorithm
was detailed to solve incremental problems in a one-dimensional setting. It basically con-
sists in computing an elastic trial state, which can then be corrected if it exceeds the
elastic range by projection onto the yield surface. In a more general case, computing the
material tangent operator is one of the tedious operations required.
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During the last decades, major breakthroughs in data science have led to a turning
point in the way we create and use data in multiple domains, from medicine to economics,
and even our everyday life.

The field of computational mechanics has also greatly benefited from the development
of Machine Learning (ML), both to generate and handle data. The scientific community
has embraced these tools to develop new methods in solid mechanics, the advancements
of which are closely tied to progress in computer science. This field is therefore very active
and constantly evolving. Various approaches emerged, which can be classified into two
main trends: model-based and model-free methods.

1 Model-based methods

In these approaches, ML is used to discover or improve material models. The philosophy
is similar to that of constitutive modelling, but aims to overcome two central limiting
factors: the complexity of models and low computational efficiency of simulations.

Bock et al. (2019 [6]) published an overview of the application of ML in continuum
mechanics. Their work looks over various ML methods that have been employed in materi-
als research and classifies them by position in the process-structure-property-performance
chain. The most popular tools are Artificial Neural Networks (ANNs) and their derivat-
ives, Feedforward Neural Networks (FFNNs) and Recurrent Neural Networks (RNNs). The
term ANN refers to “a simple one-layer neural network and [is] used as a linear classifier”
[6]. Its simplest modern form is a FFNN, a unidirectional stack of layers, i.e. “in which
each neuron computes an output based on inputs from the previous layer” [6], while a
RNN is a bi-directional stack of ANNs.

More recently, a review by Dornheim et al. (2023 [24]) focussed solely on ANNs for learn-
ing constitutive behaviour. The authors went over about 200 papers, published between
1991 and 2022 except for a few posterior yet important contributions, presenting meth-
ods ranging from physical models to purely data-driven models. What results from this
study is the variety of approaches, making them difficult to compare against each other.
Furthermore, challenges remain regarding knowledge integration (e.g. from mechanical
equations), extrapolation and interpretability of ANN constitutive model predictions.

36



2. Model-free methods

2 Model-free methods

In parallel, Kirchdoerfer et al. (2016 [43]) proposed a new paradigm that completely by-
passes constitutive models and their inherent bias. In this original approach, the material
behaviour is encoded directly as a discrete set of data points, the “material database”.
Based on a FE discretisation, the model-free solver seeks to minimise the distance between
the latter and a set of mechanical constraints. The solution to the problem is thus twofold:
on the one side, mechanical fields fulfilling kinematic compatibility and equilibrium, and
on the other side, material fields, which belong to the material database.

Model-free methods divide into two branches: Data-Driven Computational Mechanics
(DDCM) and Data-Driven Identification (DDI).

• DDCM is a tool for structural analysis: the material database contains data points
lying in a constitutive space, e.g. the strain-stress space. The solver can predict the
mechanical response of a structure under various loading conditions in regions of the
constitutive space sampled by the material database, e.g. the strain range covered
by the material database in elasticity. The accuracy of the prediction depends on
the constitutive space sampling.

• DDI is an identification method that, from experimental full-field strain measure-
ments, aims to identify stresses. DDI has been introduced and investigated by Leygue
et al. (2018 [52]) and Dalémat et al. (2019 [20]), who first developed coupled ex-
perimental and numerical tools for elastic materials. Unlike DDCM, the problem
unknowns are mechanical and material stresses. In this method, material states are
obtained by clustering analysis and constitute a sampling of the mechanical response
evaluated by mechanical states. Besides, mechanical strains are measured by Digital
Image Correlation (DIC) (Grédiac et al., 2012 [31]) while stresses are estimated by
DDI.

2.1 Material data in model-free computational mechanics

Contrarily to model-based approaches, material data is neither inter- nor extrapolated in
DDCM and DDI. Therefore, appropriate data generation and constitutive space coverage
is a fundamental question. In practice, data can be of different types:

• Numerical data, e.g. obtained from microscopic constitutive models, which allows
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to summon data when, where and as densely as needed (see for instance Platzer
(2020 [62]), Karapiperis et al. (2021 [42]), Gorgogianni et al. (2023 [30])). These
adaptive/dynamic routines implemented into a multiscale setting provide an efficient
alternative to the very expensive multilevel finite element approach (FE2). While
the latter requires evaluations of both micro- and macroscopic elements at every
step, multiscale DDCM only invokes microscopic simulations when the regions of the
constitutive space which are called for the macroscopic problem are too sparsely
sampled.

• Experimental data obtained by DDI. An example is given by Stainier et al.
(2019 [72]), whose article details a procedure for generating the material database
with DDI and then solving a BVP with DDCM. Generating dense material databases
thus calls for new experiments to gain knowledge about the mechanical response
of the material under multiaxial loading conditions, as discussed in the thesis by
Costecalde (2023 [19]).

2.2 Fundamental philosophical differences with constitutive mod-
elling

A fundamental difference between model-based and model-free approaches emphasised
in the previous section is the absence of data inter- and extrapolation in the latter. In
addition, these approaches differ in the way various classes of material behaviours are
treated.

Model-based methods are based on classifications of material behaviours as described
in Chapter I and Chapter II. Constitutive models are designed for a given type of mech-
anical response. Solvers also adapt to and are designed for each category.

This is unnecessary in model-free approaches. For instance, as will be shown in the
following sections, the same algorithm can be used in linear or nonlinear elasticity. Fur-
thermore, there is no need to differentiate between history-dependent behaviours. We
will take advantage of this distinctive feature of DDCM, which motivates the graph-based
formulation for inelasticity developed in Chapter VI.
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3 Summary

Recent advances in data science led to major breakthroughs in computational mechanics.
Thanks to ML methods, simulations can be performed that involve complex models and
require high computing capacity. In this context, ANN-based tools are particularly wide-
spread for learning constitutive models and the variety of developed approaches reflects
their popularity.

In parallel, model-free approaches emerged, introduced by Kirchdoerfer et al. (2016 [43]),
which aim to replace constitutive models with a discrete “material database”. This
paradigm aims to bypass any inter-/extrapolation of the observed material behaviour.
Two methods are currently developed: DDI for material identification and DDCM for
structural analysis, which is the subject of this thesis.
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1 Data-Driven Computational Mechanics in elasti-
city

This section recalls the mathematical framework for data-driven elasticity introduced by
Kirchdoerfer et al. (2016 [43]) and consolidated by Conti et al. (2018 [16]). The first
subsection presents the FE discrete formulation and the numerical data-driven solver is
listed in the second one.

1.1 Mathematical framework

We consider an inelastic body Ω ∈ Rd and its discrete representation hΩ ∈ Rd composed
of N nodes and M integration points, which undergoes displacements u = {ua}Na=1 and
loads f = {fa}Na=1. The internal state of the discrete body is subjected to compatibility
and equilibrium constraints: 

εe = Beu ∀e = 1 . . .M , (IV.1a)
M∑
e=1

weB
T
eσe = f , (IV.1b)

with we the weights of the integration points and Be the discrete kinematic operator
matrix related to integration point e. Eqs. IV.1a and IV.1b correspond to the space-
discretised form of Eqs. (I.2) and (I.4).

A local state ze describing the internal condition of the system at each integration
point is defined as:

ze = (εe,σe) ∈ Ze, (IV.2)

with Ze the local constitutive space, such that Ze = Rme × Rme , and with me the di-
mension of the tensors at integration point e. In a three-dimensional setting me = 6 in
Voigt notation, while me = 1 for bar elements. The global state z = {(εe,σe)}Me=1 ∈ Z

represents the whole system in the global constitutive space Z =
M⊗
e=1
Ze, with

⊗ meaning
the tensor product of spaces.

The mechanical admissibility of a state is material-independent and given by Eqs. IV.1a
and IV.1b. A first subset E of the global constitutive space, the set of mechanical con-
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straints, can thus be defined as:

E = {z ∈ Z | Eqs. IV.1a and IV.1b} ⊂ Z. (IV.3)

In small strain elasticity, the system Eq. II.35a is usually solved using a constitutive
relation of the following type:

σ = σ̌(ε), (IV.4)

with σ̌ : Rme → Rme describing a potentially nonlinear relation between σ and ε and a
priori bijective.

In the data-driven approach, the formulation of a constitutive relation between stress
and strain is bypassed by reformulating the BVP into a minimisation problem. Instead of
a mathematical law, the material response is described by collections of states, obtained
for instance through experiments or numerical simulations at a finer material scale. These
local material databases write:

De = {yi = (εi,σi) ∈ Ze, i = 1 . . . N∗} ⊂ Ze, (IV.5)

with N∗ a finite number of strain-stress pairs. The resulting global material database is
D =

M⊗
e=1
De, second subset of Z.

We then associate a norm to the local constitutive space:

‖ze‖C =
[1
2(Ce : εe) : εe + 1

2(C−1
e : σe) : σe

]1/2
, (IV.6)

with the data-driven metric tensor Ce a positive-definite 4th-order tensors that is not
related to any material property and can be updated during the simulation. Hence the
squared distance between two states1 ze, ye ∈ Ze is:

d2
C(ze, ye) = ‖ze − ye‖2

C . (IV.7)

The extension to the global constitutive space Z gives the global distance, also called

1. For clarity and when applicable, we will keep the same notations throughout this manuscript for
mechanical states, denoted z, and states of the material database, denoted y.
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Figure IV.1: Functional spaces of the data-driven FE formulation. The mechanical state
ze (red circle) of the integration point can only move along the constraint set (red solid
line). The material state ye (light blue star) of the integration point is the closest material
data point selected from the material database De (dark blue stars), according to the local
distance ‖ze − ye‖C defined Eq. IV.14. From Platzer (2020 [62])

objective function of the DDCM problem:

d2
C(z, y) =

M∑
e=1

wed
2
C(ze, ye) . (IV.8)

Finally, the DDCM problem is formulated as a double minimisation problem, whose
solution is given by:

S = arg min
z∈E

min
y∈D

d2
C(z, y), (IV.9)

i.e. the pair (z, y) of states, respectively mechanically admissible and from the material
database, which are closest to each other with respect to distance dC. It is worth noting
that the algorithm remains unchanged for linear and nonlinear behaviours.

Fig. IV.1, taken from Platzer (2020 [62]) with adapted notations, illustrates the above
definitions and minimisation problem with a constitutive space schematic representation
in two dimensions. In the small strain regime and for loading conditions independent of
the motion, the constraint set E subject to linear compatibility and equilibrium equations
results in a linear manifold. The local material database De represents a nonlinear elastic
behaviour.
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1.2 Original algorithm

In this work, the DDCM solution is obtained by alternating minimisation over continuous
(z) and discrete (y) variables, as illustrated in Fig. IV.2. This algorithm consists in the
fixed-point iteration:

z(i+1) = PEPDz
(i) (IV.10)

with i the iteration number, y(i) = PDz
(i) the closest point projection onto D, which

consists in searching for the nearest neighbour of z(i) in D, and PEy(i) the projection of a
material state onto E . The latter operation is a constrained minimisation problem with a
quadratic function to be minimised and a linear constraint. From the nature of the metric
tensor C, similar to the elasticity tensor, yields a simple pseudo-elastic problem typically
solved with the method of Lagrange multipliers.

Figure IV.2: DDCM algorithm for elastic material response
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2 Extension to inelasticity

The characteristic of inelastic behaviours in the broadest sense is the irreversibility of the
material response. As opposed to elasticity, where the material response can be described
as a manifold that can be freely and entirely scanned to get the solution of the DDCM

problem, inelasticity implies a significant dependence on past history. Strain-stress pairs
are therefore not sufficient to unequivocally identify material points.

The original DDCM framework introduced in 2016 has been extended a few years later
by Eggersmann et al. (2019 [25]) to inelasticity, of which elastoplasticity is a special case.
Section 2.1 recalls the main outlines of their work, while Section 2.3 briefly presents
concurrent approaches.

2.1 Fundamental mathematical framework

In order to take into account the history of strains and stresses, we switch to a time-
discrete setting, where we seek to approximate solutions at times {t0, . . . , tk, tk+1, . . .}.

As described in Chapter II, time discretisation transforms Eqs. IV.1a and IV.1b into
Eqs. II.35a and II.35b, recalled here:

εe,k+1 = Beuk+1, ∀e = 1 . . .M,
M∑
e=1

weB
T
eσe,k+1 = fk+1.

They provide the instantaneous set of mechanical constraints:

Ek+1 = {z ∈ Z | Eqs. (II.35a) and (II.35b)} ⊂ Zk+1. (IV.11)

The local material database for a given element at a specific time step reads:

De,k+1 = {yi = (εi,σi) ∈ Ze,k+1, i = 1 . . . N∗ | past local history} ⊂ Ze,k+1. (IV.12)

Also, the norm, the squared local and global distances read respectively:

‖ze,k+1‖C =
[1
2(Ce,k+1 : εe,k+1) : εe,k+1 + 1

2(C−1
e,k+1 : σe,k+1) : σe,k+1

]1/2
, (IV.13)
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d2
C(ze,k+1, ye,k+1) = ‖ze,k+1 − ye,k+1‖2

C , (IV.14)

and
d2
C(zk+1, yk+1) =

M∑
e=1

wed
2
C(ze,k+1, ye,k+1) , (IV.15)

providing the new definition of the double minimisation problem,

S = arg min
zk+1∈Ek+1

min
yk+1∈Dk+1

d2
C(zk+1, yk+1). (IV.16)

The principal challenge hence lies in the selection of local material databases De,k+1

subject to past history.

2.2 History representation

Eggersmann et al. (2019 [25]) review different paradigms to represent history dependent
materials in continuum mechanics. The first one, called general materials with memory,
refers to materials that exhibit a relation between the state of stress and the history of
strain of the form:

σe,k+1 = σ̂e({εe,l}l6k+1) (IV.17)

with σe,k+1 the stress at given material point and time, {εe,l}l6k+1 the history of strain
(prior to tk+1) and σ̂e a discrete hereditary function. Local material databases then read:

De,k+1 = {(εe,k+1,σe,k+1) | {εe,l}l6k} (IV.18)

However, this implies to deal with long histories of strain, even in the case of fading
memories.

Differential representation, a second paradigm, uses limited histories of strain and
stress to represent material irreversibility. Local material data sets take the form:

De,k+1 = {(εe,k+1,σe,k+1) | ({εe,k−l}p−1
l=0 , {σe,k−l}

q−1
l=0 )}, (IV.19)

with {εe,k−l}p−1
l=0 and {σe,k−l}q−1

l=0 the first p and q time derivatives of strain and stress
respectively.

Finally, internal variables and history variables are additional variables used to char-
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acterise the state at a material point. They summarise its past history, reducing local
material databases to:

De,k+1 = {(εe,k+1,σe,k+1) | αe,k} (IV.20)

where αe,k is the array of variables at material point e and time tk. This explicit formalism
greatly simplifies the computation of data sets compared to the previous ones and has
been used in Chapter II for the description of elastoplastic constitutive modelling.

The distinction between the two latter representations lies in their interpretation:
while internal variables usually contain physical information that might not be observable
and result from modelling assumptions, history variables “simply record partial informa-
tion about the history of the material” [25].

2.3 Other approaches

The work by Eggersmann et al. (2019 [25]) provides a general framework for inelasti-
city but no practical implementation. Several authors also explored this topic and tried
different approaches and assumptions.

Instead of subjecting local databases to histories, Ciftci et al. (2022 [14]) chose to
extend the database with the tangent space information (Eggersmann et al., 2021 [27]). A
strain-stress pair may be associated with different tangent spaces, that can be classified as
elastic or plastic subsets and essentially determined by the elastic stiffness or the hardening
modulus respectively. A transition rule based on a yield function maps the modelling
points to the subsets. This method also enables interpolation in sparsely sampled regions
of the constitutive space. In a second publication [15], the same authors provided a guide
to compute the tangent space and the yield surface in the Haigh–Westergaard space
for elastoplasticity with isotropic hardening. Similarly to this approach and based on
the variational formulation of DDCM (Nguyen et al., 2020 [59]), Pham et al. (2023 [61])
developed an algorithm for J2-plasticity with isotropic hardening.

Alternatively, Bartel et al. (2023 [4]) chose to keep the same database for all loading
steps. However, they introduced a history surrogate, a quantity “that can be tapped along
a hypothetical load path and can represent the history dependence as accurately and
unambiguously as possible”, and a propagator, that updates the history surrogate at each
loading step. The former contains specific strain and stress values or quantities directly
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derived from them and recording load reversals. The latter replaces the constitutive
evolution equation and depends on the quantities chosen to define the history surrogate.
The definition of data-driven distance is also updated to take history into account. This
method, developed for one-dimensional elements, applies to several material classes of
inelastic phenomena and is absolutely model-free. However, the extension to two- and
three-dimensional problems is not straightforward, since the definition of history surrogate
is not universal and even material-dependent. Poelstra et al. (2022 [64]) followed the same
idea, but determined the appropriate history surrogate thanks to an ANN.

Finally, a preliminary study on the extension of DDI to elastoplastic behaviours with
differential representation has been conducted by Langlois (2023 [49]), but lots of open
questions still remain. Advances in DDCM, which constitute the subject of this thesis,
might also help solving issues for identification.

3 Overview of related works

The DDCM extensions listed below have been well described in Platzer’s PhD thesis
(Platzer, 2020 [62]). This section provides an up-to-date version of this work with some
of the latest publications on the topic.

3.1 Noisy data sets, insufficient data and uncertainty quantific-
ation

The alternated minimisation solver originally proposed by Kirchdoerfer et al. (2016 [43])
is still widely used in the community despite its major drawback: since the discrete
nature of the material database leads to high combinatorial complexity as the number
of integration points in the mesh M and the material database size N∗ increase, the
proportion of local minima rises too, which implies a greater probability that the solver
will converge towards local minima that are far from global minima. While this effect
is limited with noise-free data, it becomes of significant impact when dealing with noisy
data sets where the alternated minimisation solution can be dominated by outliers.

Kanno (2019 [41]) attempted to improve robustness of the solver with respect to
outliers by transforming the DDCM problem into a Mixed-Integer Quadratic Programming
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(MIQP) problem that can be solved globally with a standard algorithm. However, the main
drawback of this method is its computational cost that may become very large when the
size of the problem increases, since the number of unknowns is the product of M and N∗.

An enhanced entropy-maximising (max-ent) solver has been developed by Kirchdoer-
fer et al. (2017 [44]) to deal with noisy databases that “assign[s] data points a variable
relevance depending on distance to the solution and through maximum-entropy estima-
tion”. A simulated annealing schedule ensures that both criteria evolve reciprocally to
efficiently penalise outliers and achieve robustness.

Other approaches are based on the assumption of an underlying constitutive manifold
in the material data set, which comes down to coupling model-free DDCM and manifold
learning techniques. The mechanical solution is projected onto the constitutive manifold
to obtain the material solution. The manifold may be reconstructed with diverse methods
to smooth the optimisation problem and thus reduce the influence of noise. As an example,
Kanno (2018 [40]) used kernel regression, while He et al. (2020 [35]) performed on the fly
locally convex reconstruction of the manifold and Bahmani et al. (2023 [2]) introduced a
geometric autoencoder to recover and flatten the underlying manifold.

An additional advantage of these methods is their ability to counter the “curse of
dimensionality”, to which DDCM is highly sensitive. This expression refers to the difficulty
of sampling all the relevant regions of the constitutive space needed to achieve the good
convergence of the solver when the dimensionality of this space increases. Indeed, the
constitutive space for a general 1D mechanical problem is of dimension 2, which increases
to 12 for the 3D case. The contribution by Eggersmann et al. (2021 [27]) addresses this
issue in a different manner: the authors seek to minimise the distance to a tangent space
computed in an off-line step for each material point in the local data set. This method
enables interpolation in poorly sampled regions of the constitutive space and proved to
outperform the max-ent solver.

To handle noisy data and quantify uncertainties, other authors have preferred adopting
a statistical representation of the DDCM problem. As an example, Ayensa-Jiménez et
al. (2018 [1]) incorporated statistical uncertainty into the distance-minimising solver to
account for the random nature of data, while Korzeniowski et al. (2019 [46]) compared
stochastic and DDCM approaches. Alternatively, the concept of Uncertainty Analysis-
based DDCM (UA-DDCM) was developed by Guo et al. (2021 [33]), who, instead of looking
for a single solution, aims to find a solution set “induced by the uncertainty of the data
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point characterised by a bounding interval”. Huang et al. (2023 [37]) then improved the
numerical efficiency of this approach.

Recently, Weinberg et al. (2023 [76]) considered game theory to formulate a new im-
plementation of DDCM where strain and stress are players that may or may not cooperate
to pursue their respective objectives. In this setting, a non-cooperative data-driven game
replaces the prior cooperative strategy: “the objective of the stress player is to minimize
the discrepancy to a material data set that characterizes material behavior; the objective
of the strain player is to ensure the admissibility of the mechanical state, in the sense of
satisfying compatibility and equilibrium” [76]. Following the philosophy behind DDCM,
the connection between material data and resolution tool is direct, unsupervised and
model–free. The method can also be associated with the max-ent regularisation for noisy
data with outliers.

Finally, some studies focussed on improving efficiency, the point projection PD stage
being the weakest point as it requires to search the whole database. In particular, Eggers-
mann et al. (2021 [26]) compared different approximate nearest-neighbour algorithms and
Korzeniowski et al. (2021 [47]) tried a multi-level method that first provides an approx-
imation of the material state based on a coarse database subset, which is then adaptively
refined to improve the solution.

3.2 Extension to other classes of problems

Since 2016 and the first work on DDCM for elastic behaviours, the approach has been
extended to several classes of problems, a non-exhaustive overview of which is given in
Fig. IV.3. Each case requires adapted balance equation, while the mathematical frame-
work remains the same.
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4 Summary

The broad topic “model-free data-driven computational mechanics” gathers approaches
derived from the work by Kirchdoerfer et al. (2016 [43]). Contrary to constitutive model-
ling, the fundamental principle of this paradigm is a discrete representation of the material
behaviour, which prevents bias induced by inter- and/or extrapolation. The data-driven
solver seeks to minimise the distance between a discrete material database and continuous
mechanical constraints, i.e. kinematic compatibility and equilibrium. The BVP solution
is twofold:

• a material state field, belonging to the material database,
• a mechanical state field that verifies mechanical constraints.

The data-driven problem is a double minimisation problem and is usually solved with a
fixed-point algorithm.

The method, originally developed in elasticity, has since then been extended to various
classes of material behaviours. Additionally, improvements of the alternated minimisation
solver have been proposed, e.g. to speed up convergence or deal with noisy data and
outliers.

Regarding inelasticity, Eggersmann et al. (2019 [25]) laid the foundations for the data-
driven incremental BVP. The mathematical framework transforms the definition of local
material database to include path-dependency, which can be represented by a mathem-
atical relation encoding the history of strain, or summarised by internal/history variables
or differential representations.

54



Part B

Towards an incremental problem
formulation for model-free
data-driven inelasticity

55





Chapter V

Incremental problem formulation for
inelastic data-driven simulation

57



Part B, Chapter V – Incremental problem formulation for inelastic data-driven simulation

Contents
1 Challenges in model-free data-driven inelasticity . . . . . . . . . . . . 59

1.1 General materials with memory . . . . . . . . . . . . . . . . . 61

1.2 Differential representation, internal and history variables . . . 62

2 New problem formulation . . . . . . . . . . . . . . . . . . . . . . . . . 63

2.1 Structured material data . . . . . . . . . . . . . . . . . . . . . 63

2.1.1 From mechanics. . . . . . . . . . . . . . . . . . . . . 63

2.1.2 . . . to discrete mathematics . . . . . . . . . . . . . . 64

2.2 Pseudo-elastic problem . . . . . . . . . . . . . . . . . . . . . . 65

3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

58



1. Challenges in model-free data-driven inelasticity

1 Challenges in model-free data-driven inelasticity

As opposed to elasticity, characterised by the instantaneous reversibility of deformation,
inelasticity refers to all classes of material behaviours that exhibit a sensitivity to loading
path. Their mechanical response depends on time, plastic strain and/or other variables,
as presented in Chapter I. Moreover, the irreversibility of inelastic behaviours usually
goes hand in hand with a strongly nonlinear strain-stress relation, which makes these
types of material behaviours extremely difficult to model. As a consequence, the BVP

resolution is more complex and requires high-level numerical methods.

In the model-free DDCM framework, a discrete set of strain-stress pairs represents the
material response. For inelastic behaviours, where there is no unicity of stress for a given
strain, additional information about the history of deformation has to be considered to
solve the BVP.
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1

2

3

1

2
3

1 2 3

Figure V.1: Uniaxial loading applied to an elastoplastic material and graphical repres-
entation of the material response in strain-stress space with constitutive modelling and
DDCM. Red dots represent mechanically admissible solutions to corresponding loadings.
In constitutive modelling, they constitute the solution of the BVP and intersect the con-
tinuous material law. In model-free DDCM, the material states (dark blue stars) provide
a solution effectively observed.

Fig. V.1 gives evidence of the complexity of inelastic behaviours and the challenges
related to the resolution of the BVP. An elastoplastic material is subjected to elastoplastic
loading, elastic unloading and elastoplastic reloading. The upper graphic illustrates this
loading condition using an imposed strain ε̄ against pseudo-time τ . Three snapshots,
marked with red dots, are taken during different loading phases.

In the lower part of the figure, the graph on the left shows a mechanical constraint set
(red line, as in Fig. IV.1) and a continuous constitutive relation Ď with loading, unload-
ing and reloading (dark blue line). In constitutive modelling, the incremental problem
resolution allows to retrieve the exact solutions of the system consisting of mechanical
constraints and material model. Solutions at steps 1, 2 and 3, represented by red dots,
are retrieved naturally.

The bottom right graphic illustrates the DDCM approach with the same symbols as in

60



1. Challenges in model-free data-driven inelasticity

Fig. IV.1. The inelastic material response consists in a discrete set D of strain-stress pairs
(grey stars). In DDCM, although optimal mechanical and material solutions exist at every
marked step, they are not retrieved by the standard solver that selects the closest point
projection of the material database onto the constraint set1 (red dot and dark blue star).
Not only is this solution spurious for steps 1 and 3 but when loading step 3 is reached,
solution 2 is no longer admissible from a thermomechanical point of view because the
material underwent irreversible deformation.

This motivates the incremental approach suggested by Eggersmann et al. (2019 [25]),
where the local database is not only specific to integration point e but also to loading step
k (see Eq. IV.12), and is determined by the local history at previous steps. Consequently,
the point projection step of a mechanical state ze,k+1 onto the local material database
De,k+1 is modified. In an incremental setting, this operation writes:

y
(i)
e,k+1 = PDe,k+1z

(i)
e,k+1 (V.1)

with i the iteration number, and consists in searching for the nearest neighbour of z(i)
e,k+1

in De,k+1.

The authors of [25] reviewed a number of paradigms used to represent or summarise
history, detailed in Chapter IV, to propose new definitions of inelastic De,k+1. The prac-
tical application of these paradigms yet leads to major drawbacks that we discuss in the
following.

1.1 General materials with memory

When considering general materials with memory, the whole history of strain is stored
throughout the simulation and allows to distinguish between identical points of the con-
stitutive space. In a model-free setting, this means that not only point-wise distances
between states, but also distances between their histories must be compared: the defini-
tion of distance needs to be adapted.

A straightforward method would consist in interpolating between points of history.
The distance can then be inferred by integrating the difference between interpolated

1. For clarity purposes, in the example the same solution is reached at every step. However, as the
convergence of the alternating minimisation algorithm depends on multiple parameters, such as boundary
conditions and metric, the solver is likely to fall into different local minima.
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histories over time.

However, storing and handling whole histories is extremely expensive from a computa-
tional point of view and, as pointed out by Bartel et al. (2023 [4]), the choice of a realistic
interpolation is difficult and contradicts the objectives of the model-free approach.

Simplified representations, which take advantage of the fading memory property of
materials “whereby their instantaneous behavior is a function primarily of the recent
state history and is relatively insensitive to the distant past history” (Eggersmann et al.,
2019 [25]), are therefore of great interest.

1.2 Differential representation, internal and history variables

A few works studied representations encoding limited histories. In particular, Langlois et
al. (2022 [50]) implemented a differential representation based on first-order time deriv-
atives for elastoplastic stress field identification with DDI.

Bartel et al. (2023 [4]) explored the idea of storing memory in a history surrogate, a
quantity that “represents essential information on the history of the material behavior”.
The authors mention that internal variables are not suitable candidates as history surrog-
ate, since they cannot be computed by the model-free DDCM solver. Instead, they suggest
using a RNN to “gather essential information on the material behavior along a specific
load path”. This quantity can be considered a history variable and its dimension might
increase dramatically for the high-dimensional simulation of complex materials.

These paradigms should be used cautiously in high dimensions. In fact, a charac-
teristic of the curse of dimensionality is that in high-dimensional spaces, the notion of
similarity, or proximity, vanishes. When the constitutive space dimensionality increases,
possibly due to additional variables, the concept of distance becomes meaningless and
all points tend to be equidistant. As an example, in a uniformly sampled p-dimensional
hypercube, the pairwise-euclidean distances between points, illustrated in Fig. V.2 for
different dimensions, increase with p. Apart from the inherent difficulty to determine the
nature and level of accuracy of representative quantities necessary to encode history, the
risk of degrading the mathematical concept of distance with such representations is also
a major concern for the data-driven distance-minimising solver.
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Figure V.2: Histograms of pairwise-distances between n = 100 points sampled uniformly
in the hypercube [0, 1]p, from Delon (2017 [22])

2 New problem formulation

To keep the constitutive space dimensionality to its minimum, it is important to consider
a history representation paradigm that relies on few quantities, the latter being chosen
such that their dimension will not increase when simulating high-dimensional problems.
One way of doing this is to encode history directly in the data structure.

2.1 Structured material data

2.1.1 From mechanics. . .

In the model-free setting, material data is usually a discrete set of points, which samples
a constitutive space Z. We suggest augmenting this definition with an underlying data
structure that enforces relationships between points, establishing a hierarchy within the
material database.

Fundamentally, a state’s history is an ordered sequence of visited states, which can be
encoded as a predecessor list as in Fig. V.3a. However, the exact same states could be
obtained with a different loading path, as in Fig. V.3b. Whether a transition from one
state to another is possible or not depends on the class of material behaviour, possibly on
its history, and is characterised by the laws of mechanics and thermodynamics.

From a global perspective, a material database is also a collection of states related to
each other through thermodynamical constraints. For instance, in small strain elasticity,
all points in the material database are related because all transitions are thermodynamic-
ally admissible. The BVP can be solved at every loading step independently without the
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(a)

(b)

Figure V.3: Discrete history of a material loading point. The dark blue stars represent
material states at time steps ranging from 0 to 5 while arrows describe transitions from
one state to its successor. This history can be stored in an array where each item refers
to a state.

need for an incremental formulation. In inelasticity however, the laws of thermodynamics
establish which transitions are impossible. In particular, dissipation increments must be
non-negative.

2.1.2 . . . to discrete mathematics

As Harary et al. (1965 [34]) wrote, graph theory is a branch of discrete mathematics
that “is concerned with patterns of relationship among pairs of abstract elements”. It
provides precise vocabulary, theorems and computation techniques to gain knowledge on
the properties of a system.

A graph is an abstract structure amounting to a set of objects which are pairwise
related. Objects are called “vertices” or “nodes”, and relationships are “edges” or “arcs”.
This structure, illustrated in Fig. V.4, allows for simple graphic representation and is
perfectly suited to the application we target. As described in the previous section, a
material database is a collection of states linked to each other through thermodynamical
constraints. In the context of graph theory, material states can be seen as vertices, and
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(a) (b)

Figure V.4: A graph with 7 vertices and (a) 8 undirected edges, (b) 9 directed edges

thermodynamical links as edges. The original definition of material database D enriched
with thermodynamics allows to encode possible transitions.

The main goal of the data structure is to distinguish between reversible and irreversible
transitions between states, which in turn will make it possible to differentiate identical
states with different histories. Dissipation is a good candidate as it is defined as follows:

Di→j = 0 if transition from yi to yj is reversible,

Di→j > 0 otherwise.
(V.2)

Therefore, an irreversible or inelastic transition can be encoded with a single arc in the
direction of positive dissipation. Conversely, two arcs with opposite directions, as green
arcs in Fig. V.4b, represent a reversible or elastic transition.

2.2 Pseudo-elastic problem

In a structured version of the material database encoded with a graph, a state ye,k+1 comes
with a relative position in the structure allowing to retrieve its history and admissible
futures under the form of predecessors and possible successors. A new paradigm for local
database determination arises from this representation, based on searching for admissible
states given local history, rather than conditioning solutions to history.

This leads to a new formulation of the data-driven problem:

0. build the thermodynamical graph associated with the material database in an offline
step,

1. at each loading step, extract local databases from the graph,
2. solve step as a pseudo-elastic problem with the incremental fixed point solver.
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Local databases possibly contain inelastic transitions but are treated as elastic. Although
not necessarily unique, the solution is admissible in the sense of mechanics and thermo-
dynamics.

3 Summary

Inelastic behaviours are history-dependent and highly nonlinear. These characteristics
make them difficult to model; model-free methods are therefore promising alternatives.

The mathematical basis of model-free data-driven inelasticity developed by Eggers-
mann et al. (2019 [25]) transforms the elastic data-driven problem into an incremental
problem that requires local databases. The latter, element- and step-dependent, are
subjected to local history, which is usually represented by differential representations or
internal/history variables.

DDCM is based on a distance-minimising algorithm. It is thus of greatest importance
that the definition of data-driven distance remains valid in any context, i.e. regardless
the class of material behaviour and space dimensionality. Inelastic behaviours yet imply
a substantial increase of the constitutive space dimensionality, especially in 2D and 3D,
conditioned by the chosen history representation paradigm and the number of additional
variable that it requires.

In this work, we suggest augmenting the material database with an underlying struc-
ture, a directed graph encoding thermodynamical information that allows to differentiate
reversible and irreversible transitions between two states. Practically, material points are
the graph vertices, while directed arcs represent thermodynamical relations. History is
thus used to determine local databases as admissible futures of a state and the incremental
inelastic problem is solved as a pseudo-elastic problem.

66



Chapter VI

Graph-based representation of the
material database: mathematical

framework

67



Part B, Chapter VI – Graph-based representation of the material database: mathematical. . .

Contents
1 Elements of graph theory . . . . . . . . . . . . . . . . . . . . . . . . . 69

1.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

1.1.1 Graphs and directed graphs . . . . . . . . . . . . . . 69

1.1.2 Special families of digraphs . . . . . . . . . . . . . . 70

1.1.3 Paths and cycles . . . . . . . . . . . . . . . . . . . . 70

1.1.4 Trees . . . . . . . . . . . . . . . . . . . . . . . . . . 71

1.2 Numerical representation of a digraph . . . . . . . . . . . . . 71

1.3 Graph search . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

2 Digraph associated with the material database . . . . . . . . . . . . . 73

2.1 Representation of the discrete material behaviour with a ma-
terial digraph . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

2.2 Distinction between identical states in the constitutive space . 74

3 New definition of local database . . . . . . . . . . . . . . . . . . . . . 76

3.1 Local database selection . . . . . . . . . . . . . . . . . . . . . 76

3.2 Local database reduction . . . . . . . . . . . . . . . . . . . . . 77

4 Numerical implementation . . . . . . . . . . . . . . . . . . . . . . . . 78

4.1 Numerical representation of the material digraph . . . . . . . 78

4.2 Updated algorithm . . . . . . . . . . . . . . . . . . . . . . . . 79

5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

68



1. Elements of graph theory

1 Elements of graph theory

This section summarises the textbooks by Harary et al. (1965 [34]), Bondy et al. (2008 [7]),
Rigo (2016 [67]) and Charon et al. (2019 [12]) to give the basics of graph theory, from
encoding to graph search, which are relevant for the targeted application. Graphs can
be easily represented visually, thus helping understanding many of their properties and
illustrating newly introduced concepts.

1.1 Definitions

1.1.1 Graphs and directed graphs

A graph G consists of a pair (V (G), A(G)), or shortly, (V,A), with V a set of vertices
and A a set of arcs disjoint from V . An incidence function ψG links each arc to a pair of
vertices in V :

ψG : A 7→ (V, V )
a→ (uv)

(VI.1)

with u and v the ends of arc a, not necessarily distinct. If u = v, a is a loop. Arcs that
share the same ends are called parallel.

A directed graph (abbr. digraph), as for example in Fig. VI.11, is a graph whose arcs
are ordered pairs of vertices, such that u is the tail and v the head of a. A cost c(a) may
be assigned to each arc a ∈ A.

Figure VI.1: Example of digraph

1. Note that vertex positions are not significant in graph theory, the same graph can have different
representations.
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The number of vertices of G, denoted |V |2, is referred to as the order of G, and the
number of arcs, denoted |A|, the size of G. In this work, we will focus on finite (both
vertex and arc sets are finite), nontrivial (such that |V | > 1) digraphs. This condition is
implicit throughout the manuscript.

1.1.2 Special families of digraphs

Some atypical graphs with interesting properties are also defined and illustrated in Fig. VI.2:

(a) a strict digraph does not have any loop or parallel arc,
(b) a complete digraph or clique is a digraph in which every pair of vertices is joined by

exactly two arcs, one in each direction,
(c) a connected digraph is such that, for every partition of its vertex set into two non-

empty subsets X and Y , there is an arc with one end in X and the other in Y ;
otherwise, it is disconnected.

(a) Strict digraph (b) Clique (c) Disconnected digraph

Figure VI.2: Examples of special digraphs

1.1.3 Paths and cycles

A path is a special digraph made of an ordered sequence of arcs such that the tail of each
arc of the sequence coincides with the head of the preceding and where all the visited
vertices are pairwise distinct. A path with the same first and last vertices is called a
cycle. Conversely, an acyclic digraph does not contain any cycle.

We also introduce the concept of path cost defined as the sum of every arc’s cost:

c(p) =
∑

a∈A(p)
c(a), (VI.2)

2. The symbol | • | denotes the cardinality of a set.
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with p a specific path and A(p) the set of its arcs. A minimum cost path is the shortest
path with respect to cost c(•) and is denoted [u, v]c with u and v the tail and head vertices
respectively. Fig. VI.3 illustrates this definition.

Figure VI.3: A digraph with a cost assigned to each arc: the minimum cost path between
vertices A and F is A–B–E–D–F; the path D–E–D is a cycle.

1.1.4 Trees

A tree is a connected graph that contains no cycles. As for digraphs, trees can be written
in terms of coupled sets of arcs and vertices as T = (V (T ), A(T )). Starting from a root
r ∈ V (G), a tree T (r) contains all vertices of G that can be reached from r and the arcs
leading to them, as shown in Fig. VI.4. Hence a vertex v ∈ V (G) belongs to V (T ) if there
is a path in G leading from r to v.

Figure VI.4: A tree (yellow and dark blue vertices, yellow arcs) obtained by taking the
dark blue vertex as root

1.2 Numerical representation of a digraph

Drawings might be convenient for representing and understanding graphs, but they are not
suitable for storing in computers, nor studying their properties when their size increases.
A digraph is usually encoded by a matrix, which makes it easier to process.
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The adjacency matrix AG is a square matrix of dimension the order of the digraph that
represents adjacent vertices of the digraph. A component Auv usually equals the number
of arcs joining vertices u and v. In the present work, we encode the cost directly in the
adjacency matrix and set Auv = exp(c(uv)), as shown in Fig. VI.5b. The exponential
function allows to differentiate the absence of arc from a zero-cost arc.

(a)
(b)

A B C D E F G
A 0 e0 0 e2 0 0 0
B 0 0 e2 0 e1 0 0
C 0 0 0 0 0 0 0
D 0 0 0 0 e0 e2 0
E 0 0 0 e0 0 0 0
F 0 0 0 0 0 0 0
G 0 0 0 0 e1 e0 0

Figure VI.5: (a) A digraph and (b) the corresponding adjacency matrix

1.3 Graph search

Frequent problems in combinatorial optimisation are for instance finding the shortest (in
terms of cost or number of arcs) path between two vertices, determining whether a graph
is connected or computing a minimum spanning tree, i.e. a tree that connects all the
vertices together and with the minimum possible total arc cost. Graph search algorithms
handle these problems in different ways. This work does not aim to review existing solvers
or perform highly efficient computations. Nevertheless, the large variety of tools available
in the literature gives substantial potential for progress in these areas.

In this thesis, we will use Dijkstra’s algorithm [23], a common shortest path algorithm
that restricts to digraphs with positive costs and finds the shortest path from a root vertex
in the graph to every others. Different data structures exist for storing and querying
solutions, which are sorted by cost from the start. In SciPy’s implementation (Virtanen
et al., 2020 [75]), a Fibonacci heap is used, optimising the running time complexity to
O(|A|+ |V | × log(|V |)).
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2 Digraph associated with the material database

In this section, we use graph theory to generalise the material database to the concept of
material digraph.

2.1 Representation of the discrete material behaviour with a
material digraph

We note G = (V,A) the digraph encoding the material behaviour, illustrated in Fig. VI.6.
Its vertices are the material states and its arcs are thermomechanically consistent trans-
itions between these states such that G contains no isolated vertex. Given an arc (yiyj) ∈
A between vertices yi, yj ∈ V , the cost cD(yiyj) is the dissipative cost of the transition
from states yi to yj:

cD(yiyj) = Di→j, (VI.3)

withDi→j the dissipation level of the transition. In this way, a non-dissipative or reversible
transition is such that cD(yiyj) = 0 and is encoded with two symmetric arcs in the digraph,
i.e. (yiyj) and (yjyi), while an irreversible transition is represented with one arc directed
such that cD(yiyj) > 0.

Figure VI.6: A digraph G for an elastoplastic material response with loading and unload-
ing

We define a non-dissipative directed subgraph E = (V (E), A(E)) ⊆ G such that A(E)
is the set of non-dissipative arcs of A(G) and V (E) the set of vertices joined by arcs in
A(E). E might be disconnected and all the vertices belonging to the same connected
component can be linked together via zero-cost arcs only (see Fig. VI.7a). As a result,
each connected component is associated with an elastic domain, which fundamentally
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corresponds to a clique, i.e. a digraph in which every pair of vertices is joined by exactly
two arcs, one in each direction.

(a) (b)

Figure VI.7: Subgraphs of G (Fig. VI.6): (a) non-dissipative subgraph E, (b) dissipative
subgraph P

Furthermore, we define the dissipative directed subgraph P = (V (P ), A(P )) ⊆ G

such that A(P ) = A(G) \ A(E) and V (P ) has no isolated vertex. A(P ) thus contains
all thermodynamically irreversible transitions: all arcs in A(P ) have strictly positive
dissipative cost, as in Fig. VI.7b.

For a database representing a purely elastic material behaviour, the digraph G is a
clique and is equal to the non-dissipative subgraph E. Therefore, the local database
De,k+1 contains all material states.

From this point on, we will use the terms of computational mechanics and graph
theory interchangeably to refer to a state of the material database or the corresponding
vertex in the digraph and a thermomechanical transition or the equivalent arc. We also
call material digraph and write G the digraph associated with the material data set.

2.2 Distinction between identical states in the constitutive space

Let us now consider two identical states in the constitutive space yk = (ε,σ) and
yκ = (ε,σ) but with different histories of strain and stress, denoted {yl}l6k and {yλ}λ6κ

respectively.

Histories {yl}l6k and {yλ}λ6κ exist in the digraph as paths whose vertices are the states
of histories. Yet according to its definition, P is acyclic. Thus, if either {yl}l6k or {yλ}λ6κ

or both contain any arcs ak ∈ A(P ) and aκ ∈ A(P ) that belong to different connected
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components of P , then yk and yκ are different vertices of G (see Fig. VI.8). Otherwise,
yk and yκ belong to the same elastic domain and are strictly equal (same characteristics
in the constitutive space and same loading histories).

Figure VI.8: Identical states yk and yκ in constitutive space (ε,σ) but with different
histories

In conclusion, the digraph framework makes it possible to distinguish between states
with the same localisation in the constitutive space but different past histories and thus
to represent complete and repeated loading cycles with various loading directions without
any modification in the formalism. In that case, simulating the material response is only
achievable in the sampled areas of the constitutive space with adequate dissipation levels.
For example, to predict the mechanical behaviour for a loading-unloading-reloading cycle,
the material digraph must encode the material response for at least one cycle and for the
same strain range as implied by the applied loading.
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3 New definition of local database

3.1 Local database selection

The solution of the data-driven problem at time step k+1 and integration point e is given
by the pair (ze,k+1, ye,k+1) of respectively mechanical and material states computed with
Eq. IV.16. This first requires knowing the local material database De,k+1, which contains
all the admissible states in the data set given the history of e.

As shown in Section 2.1, the history of a state is encoded in the global material
database digraph. Therefore, selecting De,k+1 now comes down to searching for admissible
futures in the material database or equivalently to searching for existing paths in the
digraph. To tackle this problem, we use the concept of tree defined in Section 1.1.4.

Knowing that G encodes the thermodynamically admissible transitions between states
of material database D and given a root ye,k, we build a rooted tree from this vertex and
denote it T (ye,k). Finally, the local material database at k + 1, illustrated in Fig. VI.9,
contains the local states corresponding to the vertices of T (ye,k):

De,k+1 = {yi,∀yi ∈ V (T (ye,k))} . (VI.4)

(a) (b)

Figure VI.9: (a) Tree T (ye,k) built from G (Fig VI.6) and (b) material database, root ye,k
and local database De,k+1
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3.2 Local database reduction

The alternating minimisation solver used for elastic problems is highly sensitive to local
minima (Kirchdoerfer et al., 2017 [44]), the number of which increases in inelasticity. In
the incremental problem developed above, we usually consider small loading increments.
We therefore assume small increments of the material solution at a material point e both
in terms of distance in the constitutive space and dissipative cost of the transition.

To this end, we use the concept of path cost defined in Section 1.1.3. As a reminder,
a minimum cost path is the shortest path with respect to cost c(•) and is denoted [u, v]c
with u the tail and v the head of a. As part of an elastoplastic local database, u is always
a tree’s root and v is a vertex of T (u), which ensures that there is at least one path from
u to v.

Finally, three conditions on the states belonging to De,k+1 as defined in Eq. VI.4 are
applied to reduce local material databases:

1. squared data-driven distance:

d2
C(ye,k, yi) 6 TOL1, (VI.5)

where ye,k is the root of T (ye,k) and yi is any vertex of the tree,
2. cumulated squared data-driven distance along the path:

cC(p = [ye,k, yi]C) =
∑

a∈A(p)
cC(a) 6 TOL2, (VI.6)

with cC(a) = d2
C(tail(a), head(a)),

3. path dissipative cost:

cD(p = [ye,k, yi]D) =
∑

a∈A(p)
cD(a) 6 TOL3, (VI.7)

with cD(a) = Dhead(a)→tail(a).

It should be noted that the first two conditions involve algorithmic criteria while
the latter is a material criterion that adds entire elastic domains to the local database.
Furthermore, for any path from ye,k to yi, the data-driven distance is always smaller or
equal to the distance along the path used in condition 2.
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Fig. VI.10 illustrates conditions 2 and 3, the effect of these criteria and their combin-
ations will be discussed in more details in the next chapter.

(a) (b)

Figure VI.10: For G from Fig VI.6, reduced local databases with limited: (a) cC (condition
2, cumulated data-driven distance) (b) cD (condition 3, dissipation)

4 Numerical implementation

4.1 Numerical representation of the material digraph

In the present work, the numerical representation of the material digraph G is an N∗×N∗

adjacency matrix Aij = exp(c(yiyj)) where N∗ is the number of points in the data set and
c(yiyj) is the cost of arc (yiyj). We use two matrices to encode the costs defined in the
previous section:

• data-driven distance adjacency matrix: AC
ij = exp(cC(yiyj)),

• dissipative cost adjacency matrix: ADij = exp(cD(yiyj)).

Both matrices represent the same material digraph (same vertices and same arcs) but
with different arcs’ costs. Therefore they have the same sparsity pattern, which can be
stored only once.

As we will see in Chapter IX, it is to be noted that the material digraph should be
designed in such a way that it contains a sufficient number of arcs to provide enough
information about the material behaviour and thus improve the solver’s precision, and
yet as few arcs as possible to ensure adjacency matrices’ sparsity and speed up compu-
tations (e.g. graph search). In particular, cliques should not be fully encoded as such:
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4. Numerical implementation

a necessary and sufficient condition is that at least one path exists between all vertices
of the corresponding elastic domain. For instance, an enhanced representation of cliques
could be developed to speed up computations.

Finally, local databases can be obtained thanks to generic graph search or shortest-
path algorithms as discussed in Section 1.3. We implement the reduction criteria intro-
duced in Section 3.2 within the chosen routine as a boundary or limit of path cost.

4.2 Updated algorithm

The new data-driven procedure for the incremental inelastic problem is detailed in Fig. VI.11.
As stated by Eggersmann et al. (2019 [25]), the difference with the elastic case lies in the
definition of local databases while the following algorithmic steps remain the same.

Figure VI.11: DDCM algorithm for rate-independent elastoplastic material response at
loading step k + 1
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5 Summary

This chapter presents the mathematical background for a model-free representation of
history-dependent data sets with a material digraph G = (V (G), A(G)).

The material points correspond to vertices of the digraph, stored in the set V (G).
Their thermodynamical relationships, determined by the non-negativity of dissipation in-
crements, are symbolised by directed arcs in the direction of flow and stored in A(G).
Reversible, or non-dissipative, transitions are encoded by two arcs with opposite dir-
ections; two vertices linked by one arc only are related by irreversible, or dissipative,
transitions. This definition of the so-called material digraph ensures that similar points
in the strain-stress space can effectively be distinguished.

Local databases are the vertices of a rooted tree, built by searching the material
digraph. Thus, from a material state ye,k taken as the root, we follow one arc after the
other and store the traversed vertices in De,k+1. Depending on the material history, stored
here in the tree’s root, local databases may be extremely large. For instance, at first time
step, De,1 = V (G). We have therefore introduced reduction criteria, whose role is to
eliminate solutions that are highly unlikely because of their distance to the root, the term
“distance” referring here to the data-driven distance of a path from root to any searched
vertex, and/or dissipative cost of the path.

The material digraph is encoded in an off-line stage as an adjacency matrix, a compact
numerical representation that enables efficient graph algorithms to be used. Then, new
local databases are selected at each time step with a graph search tool and the incremental
problem is finally solved as a pseudo-elastic problem.
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1. Numerical example

In this chapter, we put aside the combinatorial issues arising from the alternating
minimisation solver by modelling the behaviour of a single element. We seek to demon-
strate the method’s potential for generating a suitable material database from the material
digraph to solve a simple problem.

The first section describes the spring-bar element system studied and brings some con-
siderations on the influence of the problem parameters. The second section provides the
numerical methods for elastoplastic data generation, construction of the associated ma-
terial digraph and evaluation of results independent of data sparsity. Finally, we present
qualitative and quantitative assessments of the data-driven solution to the numerical
problem.

1 Numerical example

1.1 Description of the BVP

The BVP, shown in Fig. VII.1, is composed of a bar with one integration point and a
spring in series subjected to an imposed strain ε̄. The equilibrium of the system writes:

K(ε̄− ε) = σ, (VII.1)

with K the spring stiffness and the strain-stress pair (ε, σ) describing the internal state
of the bar.

Figure VII.1: Spring-bar element system

1.2 Discussion on the influence of database density

As extensively discussed in Chapter IV, the data-driven alternated minimisation solver
is sensitive to the sparsity pattern of the material database. In elastoplasticity, gen-
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erating an adequate and regular sampling of the constitutive space to study numerical
convergence gets more complicated due to the diversity of possible loading paths. As the
choice of discretisation always influences the results, evaluating the impact of the new
representation, i.e. with a material digraph, would be extremely demanding.

In this section, we will momentarily come back to reversible behaviours and solve
the DDCM spring-bar problem in elasticity. Because of its simplicity, this example is
convenient to illustrate the solver’s accuracy for different data set densities, and the
influence of the data-driven metric on the results. To reproduce the challenges arising in
elastoplasticity in a reversible context, we will focus on material data sets mimicking an
elastoplastic response with linear hardening, i.e. with a strong slope discontinuity, which
we consider to be a worst-case scenario.

1.2.1 Elastic material data sets and parameters

Simulations are performed for a spring stiffness K = 2l0E, a bar length l0 = 1 m and
an applied strain ε̄ = 0 . . . 4 × 10−2 with increments ∆ε̄ = 1.2 × 10−3. The metric takes
values C = {E,E/10} and material data is generated synthetically up to ε = 5 × 10−2

using the piecewise linear function:

σ =


1 Eε if σ 6 σy,

2 E

E +H
(σy +Hε) otherwise,

(VII.2)

with parameters E = 1 Pa, H = E/200 and σy = E/100. For practical reasons, we
also call 1 and 2 the data set parts corresponding to each piece of the function. Two
different sampling increments are used for the data sets:

• ε-DB, with fixed strain increment ∆ε×
√
E = 10−5,

• σ-DB, with fixed stress increment ∆σ/
√
E = 10−5.

Therefore, the space discretisation is the same in zone 1 for both data sets, shown
on Fig. VII.2. Finally, the problem is solved incrementally: at every time step tk, the
material state is initialised with the state reached at tk−1 to ensure a good convergence
of the algorithm.
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(a) ε-DB (b) σ-DB

Figure VII.2: Material data sets for the elastic resolution of the spring-bar problem

1.2.2 Results

Fig. VII.3 gives the mechanical and material states, as well as the FE reference solution
obtained at every time step with metric C = E. While in part 1 all states seem to be
perfectly superimposed, in part 2 the data sparsity pattern has a major impact on the
results: sparse σ-DB provides a less accurate solution than dense ε-DB, as noticeable in
Fig. VII.3b.

(a) ε-DB, C = E (b) σ-DB, C = E

Figure VII.3: Mechanical and material solutions obtained for the elastic spring-bar prob-
lem
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A quantitative evaluation of the results is given by Fig. VII.4, which shows absolute
errors between DDCM mechanical states and FE reference solution, defined by:

errε = |εk − εref
k | ,

errσ = |σk − σref
k | .

(VII.3)

In part 1 , the lowest errors (of order 10−6) are reached when the metric is equal to
the slope factor E (Fig. VII.4a and Fig. VII.4b). In part 2 , the order of magnitude of
absolute errors is lower when C = E/10, i.e. closer to the actual slope factor: 10−10 for
ε-DB (Fig. VII.4c), 10−8 for σ-DB (Fig. VII.4d).

(a) ε-DB, C = E (b) σ-DB, C = E

(c) ε-DB, C = E/10 (d) σ-DB, C = E/10

Figure VII.4: Absolute errors between mechanical states and FE reference solution for
the elastic spring-bar problem, the black vertical line identifies the slope change
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1. Numerical example

1.2.3 Discussion and perspectives

Accuracy depends on multiple factors, among which data sparsity and metric play a
major role. Discretising an elastoplastic constitutive law to generate a regular database
requires to set at least an elastic strain increment ∆εe and a plastic strain increment ∆εp,
defined in Chapter II, which can vary on different parts of the database, as shown in
Fig. VII.5. In general, an appropriate elastoplastic database is dense in the “original”, or
non-hardened, elastic domain (part 1 ) and in the dissipative, or hardening, part (part
2 ). This condition is applied in Section 2.1.1.

Figure VII.5: Material data set from FE simulation with loading and unloading, ∆εe and
∆εp are lower in part 3 than in 1 and 2

The influence of data sparsity has to be taken into account when evaluating the results.
A proper convergence study should be conducted to clearly identify the impact of the
material representation and those of the alternating minimisation solver. However, as
pointed out previously, such a study would be very demanding. Additionally, convergence
could be improved by an enhanced solver, e.g. through game theory as suggested by
Weinberg et al. (2023 [76]).

This first work about material digraphs aims to demonstrate the ability of the new
graph-based approach to represent the mechanical solution independently of the conver-
gence study, which motivates the introduction of the sparsity-independent indicator in
Section 2.2.
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In the following, we made the choice to keep the metric constant and equal to the
Young’s modulus throughout the simulation. However, we showed this hypothesis is not
optimal when reaching the dissipative part of the data set. Different approaches, e.g. the
one developed by Pham et al. (2023 [61]), rely on multiple metrics and could be used in
the future to enhance our solver.

2 Pre- and post-processing

The following restricts to one-dimensional rate-independent elastoplastic behaviours. In
this context, all quantities of interest are scalar, which simplifies graphical representations
and constitutive space sampling. DDCM computations are performed with synthetic
regular data sets for which the material digraph construction is straightforward.

2.1 Material digraph and local database reduction

2.1.1 Material digraph construction

A synthetic database is generated thanks to an elastoplastic material model with linear
kinematic hardening. The yield function is given by:

f(σ, εp) = |σ −Hεp| − σy (VII.4)

with hardening modulus H, yield limit σy and plastic strain εp.

We build a regular data set representing the material response under elastoplastic
loading, elastic unloading and plastic reloading. The strain increment in the non-hardened
elastic domain and the first dissipative part is 0.01 %. Unloading and reloading paths are
generated with ∆εp = 0.2 % and ∆εe = 0.04 %.

The arcs of the material digraph are defined as follows:

• elastic domains, or sets of states that could be represented by cliques, are encoded
as minimum spanning subgraphs with respect to the data-driven distance, i.e. such
that all vertices are connected in both directions and with arcs that minimise the
total (data-driven) cost of each connected component,
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• elastic domains are linked together with dissipative arcs that encode irreversibility,
i.e. such that

t∫
0

|ε̇p|dt > 0.

We rely on the order of the generated sequence of material points and on the dissipation
level to determine the arcs’ direction and whether they should be encoded. The final
digraph is similar to the example presented in Fig. VI.6. According to the definition,
superimposed states in the (ε, σ) configuration (see Fig. VII.6a) might have different
histories and dissipation levels (see Fig. VII.6b) and are different vertices of the material
digraph.

(a)
(b)

Figure VII.6: Regular material data set under loading, unloading and reloading condi-
tions. The black solid line represents an example of history: strain and stress reach a
maximum before decreasing, while dissipation only increases. Colouring symbolises the
dissipation state. Representation in (a) strain-stress space and (b) strain-stress-dissipation
space

91



Part C, Chapter VII – Numerical implementation and investigation of a single element problem

2.1.2 Influence of local database reduction criteria

A local database contains potential states for a given loading increment. The criteria
defined in Chapter VI tighten eligibility conditions and therefore downsize the database.

• The data-driven distance criterion is implemented with sklearn’s Nearest Neighbor
algorithm and a maximum radius equal to TOL11. Since the original routine com-
putes the euclidean distance, the data-driven distance is recovered by feeding the
solver non-dimensional data, i.e. in space (ε

√
C, σ/

√
C).

• The path distance and cost conditions are computed with Dijkstra’s algorithm im-
plementation from Python library scipy.sparse.csgraph and graph adjacency
matrices AC and AD encoding respectively data-driven distance and transition dis-
sipation as arcs’ cost. Again, TOL2 and TOL3 represent the maximum admissible
path cost for the last node of the sequence to be in the local database.

Fig. VII.7 shows local databases for different reduction criteria in space (ε
√
E, σ/

√
E),

which has the same dimensions as the constitutive space. In this representation and
because we set the DDCM parameter C equal to Young’s modulus, data-driven and
euclidean distance are equivalent. Criterion 1 expresses a maximum data-driven radius
centred on the root and is represented by a circle in these coordinates (see Fig. VII.7b).

The second criterion limits the data-driven distance along the shortest path from the
root to any vertex in the local database (see Fig. VII.7c). Note that the notion of path
included in this definition excludes points corresponding to plastic unloading, contrarily
to the latter criterion. It is equivalent to a radius in the graph space and seems more
suitable to our study as it reflects the loading path effectively leading to a given state.

Finally, the dissipative criterion in Fig. VII.7d adds all vertices in elastic domains
obtained with dissipative increments lower than the chosen tolerance to the database. It
is used in the following simulations in association with the second criterion. Other criteria
could also be developed, for instance, to explicitly forbid non-monotonic increments (in
dissipation). This assumption is implicit in the classical return-mapping algorithm for
elastoplastic constitutive modelling.

1. We use relative tolerances taken with respect to the chosen metric C, such that TOL= TOL × C,
where TOL is a non-dimensional parameter.

92



2. Pre- and post-processing

(a)

(b)

(c) (d)

Figure VII.7: Material database (detail) and effect of reduction criteria on the local
database. (a) Material database. (b) Data-driven distance, TOL1=10−5 × C. (c) Cumu-
lated data-driven distance along the path, TOL2=10−2 × C. (d) Path dissipative cost,
TOL3=5 · 10−5 × C.

2.2 Evaluation of results quality

As discussed in Section 1.2.3, DDCM solution is strongly dependent on database sparsity,
especially when the metric C is not optimised. This is the case here as we choose a fixed
value for this parameter throughout the simulation despite slope discontinuities in the
material data.
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To decouple the influence of these parameters, we seek to limit the data set’s density
impact by filtering the FE reference solution with the data set. We therefore introduce
a new indicator: the data-driven projection of the reference solution onto the material
database. This value is computed in two steps:

1. projecting the FE solution zref onto the material database (reference material
states),

yref = PDz
ref ,

2. re-projecting the reference material states onto equilibrium (projected reference
mechanical states),

zproj = PEk+1y
ref.

Projected states represent the best solution achievable by a data-driven solver with
given data and chosen metric. As an example, Fig. VII.8 shows the DDCM solution
obtained in Section 1.2 with σ-DB and C = E, which gave errors up to 10−4. Yet when
compared to projected mechanical reference states, absolute errors are null except at time
step 32, where the solver reached a local minimum.

(a) (b)

Figure VII.8: Mechanical and material solutions obtained for the elastic spring-bar prob-
lem with σ-DB, C = E, in comparison with projected mechanical reference states

The distance between DDCM and projected reference solutions provides a neutral
indicator regarding data sparsity and is used in the following to evaluate the results
accuracy. It is yet noteworthy that this indicator is not completely independent of the
database density, since the convergence of the fixed point algorithm depends on this
density.
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3 Resolution of the elastoplastic problem

We illustrate the graph-based approach with the one-dimensional spring-bar element sys-
tem subjected to a strain ε̄ up to 15 % followed by elastic unloading and plastic reloading
in compression with ε̄ down to 10 % (see Fig. VII.9).
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Figure VII.9: Spring-bar element system: applied strain

As in Section 1.2, the spring stiffness is K = 2l0E and the bar length is l0 = 1 m. The
material data set is synthetically generated with constitutive model parameters E = 1 Pa,
H = E/200 and σy = E/100 and the material digraph built following Section 2.1.1. The
data-driven metric is set to C = E. Fig. VII.10 illustrates the FE solution of the problem
and the projected reference mechanical states.
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Figure VII.10: Material data set and (left) FE solution, (right) projected reference mech-
anical states
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(a)

(b)

Figure VII.11: (a) Mechanical and material solutions for the spring-bar element model
under loading, unloading and reloading. (b) Local material database, DDCM solution
(blue star and red point) and projected reference mechanical state (green point) at max-
imum loading

Fig. VII.11a shows the mechanical and material states obtained at all time steps. The
DDCM solver is able to retrieve a good approximation of the path shape even during
the unloading phase, where the material database does not contain points with the exact
reference dissipation level. The projected reference solution is well recovered except from
the onset of unloading (time step 188) until reloading (time step 225) where the distance
between DDCM mechanical states and projected reference mechanical states increases
(see Fig. VII.12).
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Figure VII.12: Errors between DDCM and projected reference mechanical states for the
spring-bar element model under loading, unloading and reloading

Fig. VII.11b provides detailed results at step 188: the dark blue star symbolises the
material state at step 187 and local database’s root, the mechanical (red dot) and material
(dark blue star) states look superimposed but ahead of the projected reference mechanical
state (green dot). This phenomenon is repeated during the whole unloading phase and
explains the high distance and absolute errors observed in Fig. VII.12. These errors are
taken with respect to projected reference mechanical states and computed as:

errε = |εk − εproj
k | ,

errσ = |σk − σproj
k | .

(VII.5)

4 Discussion about the efficiency of the solver

The current bottleneck in the proposed solver is the local database selection operation,
since it requires to search the whole digraph for connected vertices. This operation is
performed once for every point of the material digraph that is selected as a local material
state computed between the first and the second to last loading steps.

The local database represents every possible future states that are compatible with the
thermomechanical history. It therefore contains states that might be distant regarding
different criteria. A reduction of the local database has been proposed by filtering states
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according to three of those criteria. Additional conditions could also be introduced to filter
states obtained from dissipation-wise non-monotonic paths. This restriction, similar to
the hypothesis used by the classical return-mapping algorithm in constitutive modelling,
would ensure that the local database only contains states belonging either to the same
elastic domain as the root or to a linked dissipative part of the material database.

Furthermore, the efficiency of this selection operation can be improved with optimised
graph search algorithms. For instance, considering a worst case scenario for a loading
step where the local database selection operation has to be repeated at every integra-
tion point, Dijkstra’s algorithm (with Fibonacci heap) running time complexity is in
O(|A|+ |V | × log(|V |)). The reduction criteria yet restrict the graph search to the root’s
neighbourhood, decreasing time cost. Alternatively, a Breadth-First Search (BFS) al-
gorithm with a complexity in O(|A|+ |V |) could be used to explore the vertices from one
depth to the next, starting from the root (as opposed to Depth-First Search (DFS), which
explores a complete branch before moving to the next). The less flexible BFS Scipy routine
was not used in the current study because it did not permit a direct implementation of
the reduction criteria.

5 Summary

This chapter provides numerical results to illustrate the new graph-based material rep-
resentation and evaluate the accuracy of the associated data-driven procedure. A simple
problem consisting in a spring-bar element system, and thus involving no combinatorial
issues, has been investigated to dig up potential challenges.

A preliminary study of the BVP in elasticity highlighted the limits of the alternating
minimisation solver when material data exhibits slope discontinuities, as is the case in
elastoplasticity.

Furthermore, the impact of the reduction criteria for local databases, introduced in
the previous chapter, is illustrated for a regular elastoplastic material data set. The most
suitable criteria, based on data-driven distance and dissipation level of the path from root
to any vertex in the local database, are applied to the data-driven simulation.

The elastoplastic problem is solved under loading, unloading and plastic reloading
boundary conditions. The results are compared with a newly introduced indicator com-
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puted by projecting the reference FE solution onto the material database, and then again
onto equilibrium. The obtained projected reference mechanical field is used for comparison
and evaluation of the DDCM prediction.

The solver is able to predict the mechanical response of the structure with high accur-
acy. Even from the onset of unloading, where the constitutive space is sparsely sampled
and contains no data points with the dissipation level required to get the exact solution.
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1. Numerical problem and preliminary results

The simulation of a continuous body is a combinatorial problem that involves coupled
minimisations of mechanical and material states at every integration point. The DDCM
alternating minimisation solver ensures global convergence but is likely to fall into local
minima, which could lead to a completely unreliable solution both at local and global
scales.

This chapter aims to illustrate and address this challenge through the example of a
truss structure. First, a comparison of the DDCM solution in elasticity and elastoplasticity
allows to decouple the influence of the algorithm from that of the material behaviour.
Second, an enhanced solver is proposed to improve the results.

1 Numerical problem and preliminary results

1.1 Description of the BVP

The geometry is a square plate of side length 1 m with a hole of radius 0.5 m. The plate
discretisation with 1D elements provides a 2D truss, shown in Fig. VIII.1a and composed
of 102 nodes and 252 elements, subjected to displacement-driven boundary conditions.
The top and left boundaries are fixed while right and bottom nodes are subjected to the
same displacement up to 7 mm and back to 6 mm with 135 increments, as illustrated in
Fig. VIII.1b.
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Figure VIII.1: (a) Truss geometry and boundary conditions, (b) applied displacement
(unloading starts at time step 100)
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Regular material data sets are generated synthetically as described in Chapter VII
with constitutive model parameters E = 217.5 GPa, H = 1 GPa, σy = 250 MPa. These
parameters are representative of steel and close, in non-dimensional form, to those used
for the single element problem in the previous chapter. The data-driven metric is set to
C = E.

1.2 Data-driven results in elasticity

Like in the previous chapter, we start this numerical investigation with a nonlinear elastic
behaviour whose shape mimics an elastoplastic material response. Once again, this hy-
pothesis aims to emphasise accuracy issues and challenges arising from the combinatorial
complexity of DDCM, and later on, put the results obtained with the graph-based rep-
resentation into perspective.

The simulation is performed with an elastic material data set that samples the con-
stitutive space for strains ranging from -0.1 % to 5 % with constant steps of 0.001 %
computed as in Chapter VII.

The mechanical states obtained at all loading steps for two plastically deformed ele-
ments of the mesh are illustrated on Fig. VIII.2 for comparison with the projected ref-
erence mechanical states. In addition to visible stress overestimations, higher strains are
largely underestimated. Moreover, although the behaviour is reversible, the mechanical
state field at loading and unloading are not superimposed. As explained in Chapter VII,
this effect can be corrected by enriching the material database.

Besides, Fig. VIII.3a highlights the median of relative strain and stress errors, calcu-
lated as:

errε = |εe,k − εproj
e,k |/ε

proj
e,k ,

errσ = |σe,k − σproj
e,k |/σ

proj
e,k .

(VIII.1)

The difference in magnitude between strain and stress medians is consistent with the
strain and stress discretisation: with the data-driven distance, which transforms into the
euclidean distance in space (ε

√
E, σ/

√
E), the stress range is much lower than that of

strains, and stress discretisation is denser.

Fig. VIII.3b shows how relative errors are distributed in the mesh with elements sorted
by increasing strain. Given the bijective nature of the material response, strain and stress

104



1. Numerical problem and preliminary results

X

Y

Figure VIII.2: Evolution of DDCM mechanical states and projected reference mechanical
states for orange and blue elements during elastic loading

(a) (b)

Figure VIII.3: (a) Median relative errors between DDCM and projected reference mech-
anical states in elasticity. (b) Relative errors at time step 33 (black dotted line on plot (a))
between DDCM and projected reference mechanical states, the orange and blue dotted
lines refer to the elements highlighted on Fig. VIII.1a

should grow together. For some elements labelled in range 180-252 nonetheless, stress
levels are lower than expected, which corresponds to local underestimations as highlighted
in Fig. VIII.2 for the blue element. At this specific loading step, 12 % of the elements
have strain relative errors greater than 100 %, half of which reaching strain levels smaller
than 500 Pa1/2 ≈ 0.1 %.
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Conversely, combinatorial resolution optimises the global objective function to the
detriment of local behaviours. The macroscopic response, illustrated in Fig. VIII.4 by the
evolution of the resulting force along the truss right boundary as a function of the applied
displacement, is thereby close to the FE reference solution.

Figure VIII.4: Evolution of resulting force against displacement for the truss problem

1.3 Preliminary results in elastoplasticity

The material data set discretisation is defined with a strain increment of 0.001 % in the
non-hardened elastic domain and the first dissipative part, while unloading paths are
generated with ∆εp = 0.04 % and ∆εe = 0.006 %. The material database finally contains
10 478 points. The local database reduction tolerances are set to TOL2 = 5 × 103 × C

and TOL3 = 10−5 × C. These values are chosen to ensure that a large portion of elastic
domains are caught in the local database, while still considerably reducing its size (see
Fig. VIII.5).

DDCM mechanical and material states obtained at all loading steps for two plastically
deformed elements of the mesh are illustrated in Fig. VIII.6. Although prediction is
satisfactory for the orange element, the solution computed for the blue one does not match
the expected elastoplastic response. Strain “sliding” is observed for strains from 0 Pa1/2

to 6 × 103 Pa1/2 and DDCM underestimates maximum strain, even though the overall
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Figure VIII.5: Example of local database for the truss problem with TOL2 = 5× 103 ×C
and TOL3 = 10−5 × C

X

Y

Figure VIII.6: Evolution of DDCM mechanical, material states and projected reference
mechanical states for orange and blue elements during loading

path shape is consistent. These effects are related to the constitutive space discretisation
with finer strain increments along with a metric value that gives strains a higher weight
in the distance calculation.

As in Section 1.2, Fig. VIII.7a shows the median of relative strain and stress errors
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defined in Eq. VIII.1 and Fig. VIII.7b illustrates how relative errors are distributed in the
mesh with elements sorted by increasing strain. The plotted time step corresponds to the
loading phase, yet for elements in range 220-252 strain and stress levels are inconsistent.
This effect, already observed in elasticity, increased dramatically, and corresponds to local
stress underestimations as emphasised in Fig. VIII.6 for the blue element. Additionally,
at loading step 33, 19 % of the elements have strain relative errors greater than 100 %,
half of which reaching strain levels smaller than 500 Pa1/2 ≈ 0.1 %.

(a) (b)

Figure VIII.7: (a) Median relative errors between DDCM and projected reference mech-
anical states. (b) Relative errors at time step 33 (black dotted line on plot (a)) between
DDCM and projected reference mechanical states, the orange and blue dotted lines refer
to the elements highlighted on Fig. VIII.1a

Finally, the evolution of resulting force against applied displacement also exhibits the
consequence of local sliding for lower strains (see Fig. VIII.8). The DDCM maximum
force however is close to reference as local over- and underestimations of strains offset
each other.

Even though the laws of mechanics and thermodynamics are fulfilled, respectively
with the mechanical fields satisfying kinematic compatibility and equilibrium, and the
material fields satisfying the condition of non-negativity of dissipation, the lack of a unique
solution within local material databases combined with the sensitivity of the alternated
minimisation solver to local minima leads to defective results at local and global scales. We
therefore discuss in the following a possible improvement of the solver for combinatorial
elastoplastic problems.
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Figure VIII.8: Evolution of resulting force against displacement for the truss problem

2 Predictor-corrector algorithm

We investigated two numerical methods to improve the performance of the solver. The
first one is the predictor-corrector algorithm presented in this section. An alternative
based on numerical relaxation to slow down convergence and avoid remote local minima
has yet proven to be ineffective. We thus relegated detailed explanations to Appendix A.

2.1 Description of the enhanced algorithmic procedure

We suggest to implement a two-step non-dissipative predictor-dissipative corrector al-
gorithm inspired by resolution methods for constitutive models. This first requires to
define two types of local databases:

• a non-dissipative prediction local database Dpred
e,k+1 ⊂ De,k+1 that only contains states

such that the dissipative cost of any path from subgraph root ye,k to a state of the
local database is null, or equivalently, local databases only contain states belonging
to the same elastic domain as the roots,

• a dissipative correction local database Dcorr
e,k+1 = De,k+1 obtained as defined in

Chapter VI by taking the prediction’s material state ypred
e,k+1 as root.

Local databasesDpred
e,k+1 andDcorr

e,k+1 might also respect the reduction criteria based on cumu-
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lated data-driven distance along path and path dissipative cost, introduced in Chapter VI.
In practice, Dpred

e,k+1 is calculated by setting the tolerance on dissipative path cost TOL3 to
zero and the tolerance on path data-driven distance TOL2 for Dcorr

e,k+1 must be chosen such
that Dpred

e,k+1 ⊆ Dcorr
e,k+1 to allow permanent deformation of elements.

Figure VIII.9: Illustration of the predictor-corrector elastoplastic DDCM algorithm

A data-driven iteration is thus achieved in two steps as illustrated in Fig. VIII.9.
First, a non-dissipative step, called predictor, where the resolution is performed using
Dpred
e,k+1 with root ye,k until convergence. Then a dissipative computation or correction is

performed using Dcorr
e,k+1, equal to the local database defined in Chapter VI, obtained by

taking the predicted material state ypred
e,k+1 as root vertex. In addition, the material states

110



2. Predictor-corrector algorithm

in the correction stage are initialised with the predicted material states. The corrected
states are also the final solution of the loading increment. This modification of the DDCM
algorithm does not involve any additional hypothesis or parameter but is solely based on
physics.

2.2 Numerical results

The truss problem introduced above is now solved with the enhanced algorithm. The
DDCM solution for the orange element is shown on the left graphic in Fig. VIII.10 and is
mostly similar to the solution obtained in Fig. VIII.6, except in the unloading part where
it is slightly overestimated. The right graphic in Fig. VIII.10 shows the states obtained for
the blue element: the predicted solution improved significantly compared to Fig. VIII.6.
The material response is well predicted in the reversible part, although the solver still
tends to underestimate strains in the dissipative domain, leading to early unloading. This
results was also observed in Section 1.2 and is thus due to the nature of the problem itself.

X

Y

Figure VIII.10: Evolution of DDCM mechanical, material states and projected reference
mechanical states for orange and blue elements with predictor-corrector algorithm
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Fig. VIII.11 confirms that relative errors also improved compared to the previous
simulation. The median values were reduced down to 20 % of those in the previous
simulation. Additionally, at loading step 33, high relative errors mostly restrict to slightly
deformed elements: only 11 % of the elements exhibit strain relative errors greater than
100 %, half of which with strain levels smaller than 500 Pa1/2 ≈ 0.1 %. Finally, the
macroscopic response of the mesh, evaluated by the resulting force against displacement
curve on Fig. VIII.12, is recovered as well.

(a) (b)

Figure VIII.11: (a) Median relative errors between DDCM and projected reference mech-
anical states with predictor-corrector algorithm. (b) Relative errors at time step 33 (black
dotted line on plot (a)) between DDCM and projected reference mechanical states, the
orange and blue dotted lines refer to the elements highlighted on Fig. VIII.1a

Figure VIII.12: Evolution of resulting force against displacement for the truss problem
with predictor-corrector algorithm
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3 Summary

The standard DDCM solver is strongly affected by the combinatorial complexity of truss
problems and can reach spurious solutions. This is not specific to inelasticity, but also
occurs in elasticity as demonstrated in a preliminary study. For instance, the data-driven
mechanical response of an elastic truss is not necessarily reversible. In elastoplasticity,
the lack of a unique solution within local material databases aggravates this phenomenon
and the solver does not provide reasonable results at local nor at global scales.

Model-based computational mechanics usually circumvents such solutions by limiting
the material behaviour to a tangent space and controlling loading increments. Within
the DDCM framework, we take advantage of the material digraph to compute two local
databases: the thermomechanically admissible database, and a smaller iso-dissipation
database. The first one is called dissipative database, while the latter is non-dissipative.
An enhanced two-stage solver, composed of a prediction step with the non-dissipative
local database and a correction step with the dissipative database, has been developed
that exhibits promising results.

All simulations were conducted with material databases computed thanks to an elasto-
plastic constitutive model with linear kinematic hardening. However, neither the material
digraph nor the local databases used by the DDCM solver rely on any internal variable.
We thus believe that the method can handle any hardening type and possibly other in-
elastic behaviours, although the latter may require adapting the constitutive space. Cyclic
loading can be predicted as long as the constitutive space discretisation (i.e. the database)
covers the range of strain and dissipation that needs to be studied.
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Chapter IX

Material digraph construction:
challenges and perspectives
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1. Material data and challenges toward digraph construction

In the previous chapters, numerical simulations were performed with regular material
data sets that contained no redundant points. The material digraph could be built easily
using internal variables, in order to get the minimum amount of arcs required to ensure
connectivity and completeness of thermomechanical information. However, this method is
not efficient and even impossible to apply when dealing with realistic data. The following
aims to suggest and discuss possible approaches regarding the construction of the material
digraph.

1 Material data and challenges toward digraph con-
struction

1.1 Origin of material data

In practice, material data can be generated in two different ways. On the one hand,
numerical simulations, for example in the context of multiscale modelling (Karapiperis
et al., 2021 [42], Gorgogianni et al., 2023 [30]), provide comprehensive information about
the material behaviour. In this case, a constitutive model provides the necessary strain,
stress and dissipation fields to build the material digraph.

On the other hand, experimental tests can also be used to generate this data using a
full-field strain measurement technique coupled with DDI for strains and stresses. Dissip-
ation can be inferred from calorimetric measurements with assumptions on potential heat
exchanges, as studied by (Chrysochoos et al., 2010 [13], Seghir et al., 2013 [70], Vinel,
2022 [74]) for example. In this latter case, internal variables are unknown, which should
be taken into account when defining the construction method.
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1.2 Sparsity of adjacency matrix

Furthermore, as discussed in Chapter VI and Chapter VII, the running time complexity
of graph search algorithms, used to select local databases, depends on the amount of arcs
and vertices in the digraph. For instance, Dijkstra’s algorithm with Fibonacci heaps,
used in the previous chapters, runs in time O(|A|+ |V | × log(|V |))1. The BFS algorithm
is another more efficient option with a running time complexity in O(|A|+ |V |). The less
flexible BFS Scipy routine was not used in the current study because it did not permit a
direct implementation of the reduction criteria.

Therefore, time complexity depends on the sparsity of the adjacency matrix, given by
the ratio between the number of zero-valued entries (equal to |V |2 − |A|) and the total
number of elements (equal to |V |2). The vertices of the material digraph being the strain-
stress pairs (along with dissipation and potential internal variables) computed at every
integration point and loading step, the number of arcs must be minimised.

1.3 Towards material digraph construction

To build the material digraph, we suggest basing on local loading histories, i.e. strain-stress
pairs reached at an integration point at every loading step, to create histories’ digraphs.
This can be done easily since a loading history is an ordered sequence with dissipation
levels allowing to define reversible arcs. Then, we need to connect histories together: the
quality of the material digraph depends on the density of connections between different
histories.

A possible method to link histories’ digraphs would consist in defining adequate cri-
teria based on proximity (data-driven distance) and thermomechanical conditions (non-
negative dissipation, thermodynamic consistency). However, it is difficult to strike a
balance between setting adequate tolerances for these criteria and ensuring the sparsity
of the adjacency matrix. The following section thus presents another option based on
k-means clustering.

1. With |V | the number of vertices and |A| the number of arcs in the material digraph.
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2 Data clustering

k-means clustering aims to partition data into k groups with the nearest mean, the lat-
ter being the cluster centroid. We suggest clustering the material data set in space
(ε
√
E, σ/

√
E,D/

√
E). The material digraph can then be built by taking cluster centroids

as vertices and creating arc(s) between centroids containing data points belonging to the
same loading history.

A study has been conducted on a material data set stemming from a FE simulation
of the truss problem in Chapter VIII, with 252 loading histories (corresponding to each
integration point) and 201 loading steps producing loading, unloading and plastic reload-
ing (see Fig. IX.1). Different sampling rates, defined by the ratio between the number of
clusters and the number of data points, have been tested.

Since the data-driven metric C is usually set equal to E, data-driven and euclidean
distance are equivalent in non-dimensional space (ε

√
E, σ/

√
E,D/

√
E). Fig. IX.2 high-

lights cluster distribution for r = 2 %: largest clusters are located around the origin and
in the first elastic domain, while smallest clusters contain isolated data points belong-
ing to loading histories with high-dissipation levels and mostly situated in unloading and
reloading parts.
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Figure IX.1: Material data set for k-means clustering obtained by FE simulation (elasto-
plastic constitutive model with isotropic hardening)

Figure IX.2: Position of clusters in space (ε
√
E, σ/

√
E,D/

√
E) for sampling rate r = 2 %,

with marker size symbolising the number of points in a cluster
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2. Data clustering

We define several indicators to evaluate clustering quality:

• proportion of large clusters,
• point-to-centroid distance per cluster size,
• count of different loading histories per cluster.

The results are illustrated in Fig. IX.3 for sampling rates r = (2 %, 5 %, 10 %). The
proportion of one-point clusters is extremely high and increases with the sampling rate,
as shown by Fig. IX.3a.

(a)

(b) (c)

Figure IX.3: Evaluation and comparison of clustering quality for sampling rates
r = (2 %, 5 %, 10 %) in space (ε

√
E, σ/

√
E,D/

√
E)
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For coarse sampling (r = 2 %), Fig. IX.3b emphasises that point-to-centroid distance
can be very high even for small clusters, which are located in sparsely discretised areas
of the constitutive space. When the number of clusters increases, one-point clusters are
created and maximum distance decreases.

Fig. IX.3c illustrates the ratio between the count of different loading histories repres-
ented in one cluster and the size of the cluster. When this ratio is close to 1 (for cluster
size greater than 1), data clustering is able to connect different loading histories to create
a valuable material digraph. For r = 10 %, the larger number of clusters (compared to
lower sampling rates) tends to decrease their size. However, the variety of loading histories
is high even in small clusters.

3 Concluding remarks on digraph construction

Data clustering is a promising tool for material digraph construction, which could not
be completely accomplished during this PhD. The next stage consists in evaluating the
sparsity of the adjacency matrix obtained by connecting cluster centroids, and possibly
define a method for identifying and deleting insignificant arcs that could result from
bad cluster assignment (for instance in the case of points belonging to adjacent elastic
domains).

Furthermore, cluster centroids have no physical meaning. The clustered material di-
graph could yet be used as a macroscopic approximation of the “real” or “unfolded”
material digraph: the material field could first be approximated by minimising the dis-
tance between mechanical states and cluster centroids, and then a more accurate solution
could be computed by searching for the closest data point within the selected cluster.

This idea of a hierarchical structure of the material digraph could also be exploited in a
different manner. Indeed, cliques play an important role in the graph-based representation
of elastoplasticity, since they symbolise elastic domains. This could be taken advantage
of to improve the solver’s efficiency.

Finally, loading histories are sequences of points in chronological order. This char-
acteristic could also be directly exploited to detect similarities. For instance, Grossi et
al. (2020 [32]) proposed a method to retrieve similar trajectories considering both time
and place. Distance between points is combined with the time at which they have been
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traversed, allowing to find the topmost k trajectories having the highest similarity with
respect to a specific one.
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Conclusion and perspectives

Structural analysis is a constantly evolving field, particularly on account of advances in
numerical methods that allow for more efficient and accurate calculations, but also of
the improvement of experimental methods for material characterisation, bringing about a
thorough knowledge of phenomena and mechanisms involved in the mechanical response
of materials.

This thesis studies the extension of model-free DDCM to inelastic behaviours, with a
focus on the special case of elastoplastic behaviours. Although they have been extensively
studied during the last centuries, the diversity and complexity of the phenomena involved
in the latter, which brings about strongly nonlinear responses, still make them difficult to
simulate. By bypassing constitutive models, DDCM offers a generic alternative for a wide
range of materials.

The major contribution of this work is the mathematical background for the defin-
itions of material digraph and local databases. The first allows to account for history
to distinguish between identical states in strain-stress space, while the latter provides
input data for the data-driven calculation. This formulation ensures a low increase of the
dimensionality and thus guarantees the validity of the distance-minimising procedure.

Furthermore, an algorithm for solving elastoplastic truss problems has been developed.
The standard DDCM solver is strongly affected by the combinatorial complexity of such
problems and can reach a spurious solution. Constitutive modelling usually circumvents
such solutions by limiting the material behaviour to a tangent space and controlling
loading increments. Within the DDCM framework, we take advantage of the material
digraph to compute two local databases: the thermomechanically admissible database, as
defined above, and a smaller iso-dissipation database. The first one is called dissipative
database, while the latter is non-dissipative. An enhanced two-stage solver, composed of
a prediction step with the non-dissipative local database and a correction step with the
dissipative database, has been developed that exhibits promising results.

The construction of the material digraph has been briefly discussed and is still an open
challenge. k-means clustering seems an efficient tool to identify similar data points and
create arcs. Other methods, for instance for detecting trajectories similarity, could also
be tested.
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The presented numerical results were obtained for material databases computed with
an elastoplastic constitutive model with linear kinematic hardening. However, neither the
material digraph nor the local databases used by the DDCM solver rely on any internal
variable. We thus believe that the method can handle any hardening type and possibly
other inelastic behaviours, although the latter may require adapting the constitutive space.
Cyclic loading can be predicted as long as the constitutive space discretisation (i.e. the
data set) covers the range of strain and dissipation that needs to be studied.

Several perspectives naturally emerge from this work:

• Fundamentally, there is a priori no theoretical obstacle to the extension of the
method to full 3D elastoplasticity. However, the extension implies an increase of
the constitutive space dimensionality and a larger number of points is required to
accurately represent the material behaviour. This problem is not specific to inelastic
behaviours since it even arises in elasticity, and has been addressed, e.g. with
adaptive approaches. Additionally, the amount of possible dissipative paths will
increase even faster than dimensionality and the material digraph will necessarily
have to sample the possible transitions.

• The efficiency of the solver should be investigated, especially when considering high-
dimensional problems. Because of the amount of data and possible transitions,
an efficient description of the material digraph becomes necessary. Graph theory
provides a wide range of tools and algorithms that have not yet been explored in
detail. In particular, a hierarchical representation of the digraph based on cliques,
that play an important role in the approach, could be of use.

• A deeper analysis of the expected attributes of the material digraph should be
conducted to identify the constitutive space coverage and arcs density required to
solve data-driven problems. In particular, the following questions arise: what makes
a “good” material digraph? How can we enrich a material digraph, either with
another material digraph or with data points generated on-the-fly?

• These problems should be addressed to allow for the use of experimental data,
e.g. obtained by DDI, which would require coupling thermal and mechanical meas-
urements to identify strain, stress and dissipation values. The quality of the ob-
tained material digraph should then be assessed. Also, one of the major outlets of
model-free data-driven mechanics is multiscale modelling. The implementation of
the graph-based approach within any adaptive approach should be developed.

128



Appendices

129





Appendix A

Numerical relaxation for truss
problems

Discussions in Chapter VIII highlighted the need for an efficient algorithm to counteract
the alternating minimisation solver’s sensitivity to local minima. An attempt has been
made to implement numerical relaxation to slow down or speed up convergence and pre-
vent the solver from falling into distant, respectively close, local minima. This appendix
presents numerical results obtained for the truss problem presented in Chapter VIII.

1 DDCM algorithm with numerical relaxation

We re-write the data-driven fixed-point iteration in the following way to include numerical
relaxation to the computation of mechanical states:

z(i+1) = z(i) + α(z̃ − z(i)), (A.1)

with z a mechanical state, i the iteration number, 0 < α < 2 the relaxation parameter
and z̃ = PEk+1y

(i)
k+1. The updated solver is provided in Fig. A.1.

2 Sparse material data

We then decided to investigate the mechanical response in a worst-case scenario where the
constitutive space sampling is sparser than the one in Chapter VIII. A new material data-
base is generated with the same material parameters (E = 217.5 GPa,H = 1 GPa, σy =
250 MPa) and constitutive space discretisation in the non-hardened elastic domain and
first dissipative part (∆ε = 0.001 %), but with ∆εp = 0.2 % and ∆εe = 0.01 % for

131



Appendix A – Numerical relaxation for truss problems

Figure A.1: Data-driven fixed-point solver with numerical relaxation

unloading paths sampling. We set all parameters to the same values chosen previously:
C = E, TOL2 = 5× 103 × C, TOL3 = ×10−5 × C.

In combination with the predictor-corrector algorithm, we choose α = 0.5 for the non-
dissipative prediction to slow down convergence and α = 1.1 for the dissipative corrector
to accelerate it, since the solver usually tends to underestimate strains in this part.
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Median relative errors (defined by Eq. VIII.1) between DDCM and projected reference
mechanical states are provided in Fig. A.2 for the truss problem with predictor-corrector,
with and without numerical relaxation. Similar results are observed with and without
relaxation until the onset of unloading. From this point on, the new relaxed solution
slightly improves compared to previous results with the predictor-corrector algorithm
only, but is deteriorating again during unloading. The improvements allowed by numerical
relaxation did not seem clear enough to deserve further investigation.

(a) (b)

Figure A.2: Median relative errors between DDCM and projected reference mechanical
states (a) without relaxation, (b) with relaxation

Moreover, since the material database is very sparse, it seemed interesting to au-
thorise negative dissipation to recover material points normally not admissible because
they belong to an elastic domain with lower dissipation level. To this end, we set the
negative dissipation tolerance to 2 × 10−6 × C. Fig. A.3a shows that, while mostly sim-
ilar to previously computed results during loading, strain errors increase starting from
the onset of unloading. This is also highlighted by the force-displacement response in
Fig. A.3b, where strains are visually underestimated in a way similar to that observed in
Chapter VIII (algorithm without predictor-corrector).
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(a) (b)

Figure A.3: Numerical relaxation and negative dissipation tolerance: (a) median relat-
ive errors between DDCM and projected reference mechanical states (b) resulting force
against displacement
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Annexe B

Résumé étendu en français

Cette annexe répond à la demande de l’Ecole Doctorale Sciences de l’Ingénierie et des
Systèmes de fournir un résumé substantiel en français lorsque le manuscrit est rédigé en
anglais. Dans le but de faciliter la compréhension et les liens avec le reste du manuscrit,
cette partie respecte le même plan.

1 Principes fondamentaux de la thermomécanique
des solides

En mécanique des milieux continus, la transformation d’un corps solide soumis à des sol-
licitations extérieures est régie par un ensemble d’équations qui déterminent l’état ther-
momécanique du système. Les principes de base sont la compatibilité des déformations,
l’équilibre des efforts et les lois de la thermodynamique que sont la loi de conservation
de l’énergie et l’irréversibilité de la production d’entropie. Ces deux derniers principes
peuvent être combinés pour former l’équation de Clausius-Duhem, qui définit la condi-
tion de non-négativité de la dissipation au cours de la transformation.

D’autre part, l’état d’un système déformé dépend du comportement du matériau étu-
dié. Les différents types de matériaux peuvent être classés en 4 catégories, selon l’allure
de leur réponse mécanique. On distingue donc les comportements :

• élastiques, ou réversibles,
• viscoélastiques, dont la réponse dépend du temps,
• plastiques, pour lesquels des déformations permanentes subsistent après l’arrêt de

la sollicitation,
• viscoplastiques, qui présentent des caractéristiques plastiques et visqueuses.

Le problème aux conditions aux limites à résoudre pour prédire la réponse mécanique
d’un système est composé des équations thermomécaniques. En mécanique classique, le
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problème est fermé en postulant un modèle de comportement, c’est-à-dire une relation
mathématique entre déformations et contraintes.

Dans le cadre des petites déformations, les équations mécaniques sont linéaires. En
revanche, et à l’exception de l’élasticité linéaire, le comportement du matériau est non
linéaire. La définition de modèles de comportement adaptés nécessite alors un certain
nombre de variables additionnelles et de multiples paramètres, et la résolution du problème
aux conditions aux limites requiert des algorithmes complexes.

2 Elastoplasticité et élastoplasticité computationnelle

La plasticité est un phénomène complexe impliqué dans le comportement mécanique d’un
grand nombre de matériaux d’ingénierie. La modélisation constitutive de l’élastoplasté
a été principalement développée pour les métaux, mais en raison des divers mécanismes
physiques à l’origine de la déformation plastique, de nombreuses hypothèses peuvent ne
pas s’appliquer à d’autres matériaux. Nous limitons notre étude à la plasticité classique
dans le cadre des petites déformations.

Outre la décomposition additive du tenseur de déformation en une partie élastique et
une partie plastique, les trois principaux ingrédients des modèles constitutifs élastoplas-
tiques sont le critère de plasticité, la loi d’écoulement plastique et la loi d’écrouissage.
Le premier établit les conditions de l’entrée en plasticité, tandis que les deux dernières
régissent l’évolution de la surface de plasticité.

Certains modèles classiques ont été présentés, qui sont encore trop restrictifs pour de
nombreuses applications. Par exemple, la plasticité cyclique implique des effets supplé-
mentaires tels que l’anisotropie et le « ratcheting » qui ne peuvent pas être prédits par
ces modèles. La recherche en cours vise toujours à les améliorer pour mieux refléter les
essais expérimentaux, ce qui entraîne une plus grande complexité mathématique.

Enfin, l’algorithme de retour radial a été détaillé pour résoudre les problèmes incré-
mentaux dans un cadre unidimensionnel. Il consiste à calculer une prédiction élastique,
qui peut ensuite être corrigée, si elle excède la surface de plasticité, par projection sur la
surface de plasticité.
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3 Approches data-driven en mécanique numérique

Les avancées récentes en sciences des données ont conduit à des progrès majeurs en méca-
nique numérique. Grâce aux méthodes de machine learning, des simulations peuvent être
réalisées à partir de modèles complexes, ce qui nécessite une capacité de calcul importante.
Dans ce contexte, les outils basés sur les réseaux de neurones sont particulièrement répan-
dus pour l’apprentissage de modèles constitutifs, la diversité des approches développées
reflétant leur popularité.

En parallèle, des approches sans modèle ont émergé, introduites par Kirchdoerfer
et al. (2016 [43]), qui visent à remplacer les modèles constitutifs par une « base de don-
nées matériau » discrète. Deux méthodes sont actuellement développées : la DDI pour
l’identification et la DDCM pour le calcul de structure, qui est le sujet de cette thèse.

4 Mécanique numérique pilotée par les données

La mécanique numérique pilotée les données, ou data-driven rassemble des approches
dérivées de l’approche DDCM introduite par Kirchdoerfer et al. (2016 [43]). Contrai-
rement aux approches basées sur les modèles de comportement, le principe fondamental
de ce nouveau paradigme est une représentation discrète du comportement du matériau,
ce qui évite les biais induits par l’interpolation et/ou l’extrapolation. Le solveur data-
driven cherche à minimiser la distance entre une base de données matériau discrète et les
contraintes mécaniques continues que sont la compatibilité cinématique et l’équilibre. La
solution du problème aux conditions aux limites est double :

• un champ d’états matériau, appartenant à la base de données matériau,
• un champ d’états mécaniques qui vérifie les contraintes mécaniques.

La méthode, initialement développée en élasticité, a depuis été étendue à diverses
classes de comportements. De plus, des améliorations du solveur de minimisation alter-
née ont été proposées, par exemple pour accélérer la convergence ou traiter les données
bruitées.

En ce qui concerne l’inélasticité, Eggersmann et al. (2019 [25]) ont posé les bases
pour une résolution incrémentale du problème. Le cadre mathématique transforme la
définition de la base de données matériau locale pour inclure le concept d’histoire.
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5 Formulation incrémentale pour la résolution de pro-
blèmes anélastiques

Les comportements anélastiques dépendent de l’histoire de chargement et sont fortement
non linéaires. Ces caractéristiques les rendent difficiles à modéliser ; les méthodes data-
driven apparaissent donc comme des alternatives prometteuses.

Le cadre mathématique de la DDCM en anélasticité, développé par Eggersmann et
al. (2019 [25]), transforme le problème data-driven en un problème incrémental qui repose
sur la définition de bases de données locales. Ces dernières, calculées en chaque point
d’intégration et à chaque pas de chargement, sont soumises à l’histoire locale, généralement
encodée par des représentations différentielles ou des variables internes/d’histoire.

La DDCM repose sur un algorithme de minimisation de distance. Il est donc d’une im-
portance cruciale que la définition de la distance data-driven reste valable dans n’importe
quel contexte, c’est-à-dire indépendamment de la classe de comportement de matériau et
de la dimensionnalité de l’espace. Cependant, les comportements anélastiques impliquent
une augmentation substantielle de la dimensionnalité de l’espace constitutif, notamment
en 2D et 3D, conditionnée par le paradigme choisi de représentation de l’histoire et le
nombre de variables supplémentaires qu’il requiert.

Dans ce travail, nous suggérons d’augmenter la base de données matériau avec une
structure sous-jacente, un graphe orienté encodant des informations thermodynamiques
permettant de différencier les transitions réversibles et irréversibles entre deux états. En
pratique, les points matériau sont les nœuds du graphe, tandis que les arcs orientés re-
présentent les relations thermodynamiques. L’histoire est ainsi utilisée pour déterminer
les bases de données locales en tant que futurs admissibles d’un état, et le problème
anélastique incrémental est résolu comme un problème pseudo-élastique.

6 Représentation de la base de données matériau avec
un graphe : cadre mathématique

Au cours de ce travail, un cadre mathématique a été développé pour une représentation
data-driven de données matériau dépendant de l’histoire, par l’intermédiaire d’un graphe
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matériau G = (V (G), A(G)).

Les points matériau de la base de données correspondent aux sommets du graphe,
stockés dans le sous-ensemble V (G). Les relations thermodynamiques entre ces points,
déterminées par la non-négativité des incréments de dissipation, sont symbolisées par des
arcs dirigés dans le sens de l’écoulement et stockées dans A(G). Les transitions réversibles,
ou non dissipatives, sont encodées par deux arcs de directions opposées ; deux sommets liés
par un seul arc sont liés par des transitions irréversibles, ou dissipatives. Cette définition du
graphe matériau garantit que des points identiques dans l’espace déformation-contrainte
puissent être effectivement distingués.

Les bases de données locales sont les sommets d’un arbre, construit en parcourant le
graphe matériau à partir d’un nœud racine. Ainsi, en partant d’un état matériel ye,k pris
comme racine, nous suivons un arc après l’autre et stockons les sommets parcourus dans
De,k. En fonction de l’histoire matériau, stockée ici dans la racine de l’arbre, les bases
de données locales peuvent être extrêmement grandes. Par exemple, au premier pas de
temps, De,k = V (G). Nous avons donc en outre introduit des critères de réduction, dont
le rôle est d’éliminer les solutions très improbables en raison de leur « distance » par
rapport à la racine, le terme « distance » faisant référence à la distance data-driven d’un
chemin issu de la racine à n’importe quel nœud de la base de données locale, et/ou au
coût dissipatif due ce chemin.

Le graphe matériau est calculé dans une étape hors ligne et encodé sous la forme d’une
matrice d’adjacence, une représentation numérique compacte qui permet l’utilisation ef-
ficace d’algorithmes de graphes. Par la suite, de nouvelles bases de données locales sont
sélectionnées à chaque pas de temps avec un outil de parcours de graphe, et le problème
incrémental est finalement résolu comme un problème pseudo-élastique.

7 Implémentation numérique et étude d’un problème
à un seul élément

Une simulation numérique a permis d’illustrer la nouvelle représentation matériau basée
sur le graphe et d’évaluer la précision de la procédure associée. Un problème simple consis-
tant en un système élément-ressort, et ne présentant donc pas de problèmes combinatoires,
a été étudié pour identifier les éventuels difficultés.
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Une étude préliminaire du problème aux conditions aux limites (BVP) en élasticité
a souligné les limites du solveur de minimisation alternée lorsque les données matériau
présentent de forts changements de pente, comme c’est le cas en élastoplasticité.

De plus, l’effet des critères de réduction pour le calcul des bases de données locales,
qui ont été introduits dans le chapitre précédent, est illustré pour une base de données
matériau élastoplastique régulière. Les critères les plus appropriés, basés sur la distance
data-driven et le niveau de dissipation du chemin de la racine vers n’importe quel sommet
de la base de données locale, sont appliqués à la simulation data-driven.

Le problème élastoplastique est résolu en charge, décharge et recharge plastique. Les
résultats sont comparés à un indicateur nouvellement introduit, calculé en projetant la
solution éléments finis de référence sur la base de données matériau, puis de nouveau sur
l’équilibre. Le champ mécanique de référence obtenu par projection est utilisé pour la
comparaison et l’évaluation de la prédiction de la DDCM.

Le solveur est capable de prédire avec une grande précision la réponse mécanique de la
structure même au début de la phase de décharge, où l’espace constitutif est échantillonné
de manière éparse et ne contient aucun point ayant le niveau de dissipation nécessaire pour
obtenir la solution exacte.

8 Essais numériques sur un problème de treillis

Le solveur DDCM standard est fortement affecté par la complexité combinatoire des
problèmes de treillis et peut atteindre une solution fallacieuse. Ce phénomène n’est pas
spécifique à l’anélasticité, mais se produit également en élasticité. Par exemple, la réponse
mécanique d’un treillis élastique n’est pas nécessairement réversible. En élastoplasticité,
l’absence d’unicité de la solution dans les bases de données matériau locales aggrave ce
phénomène et le solveur ne peut fournir de résultats pertinents aux échelles locale et
globale.

La mécanique numérique basée sur les modèles évite généralement de telles solutions
en limitant le comportement admissible du matériau à un espace tangent et en contrôlant
les incréments de chargement. Dans le cadre de la DDCM, nous tirons parti du graphe
matériau pour calculer deux bases de données locales : la base de données thermoméca-
niquement admissible et une base de données plus petite, iso-dissipative. La première est
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appelée base de données dissipative, tandis que la seconde est non dissipative. Un solveur
amélioré en deux étapes, composé d’une étape de prédiction avec la base de données locale
non dissipative, suivie d’une étape de correction avec la base de données dissipative, a été
développé et présente des résultats prometteurs.

Toutes les simulations ont été réalisées avec des bases de données matériau calcu-
lées à l’aide d’un modèle constitutif élastoplastique avec écrouissage cinématique linéaire.
Cependant, ni le graphe matériau ni les bases de données locales utilisées par le solveur
DDCM ne reposent sur des variables internes. On suppose donc que la méthode peut gérer
n’importe quel type d’écrouissage et éventuellement d’autres comportements anélastiques,
bien que ces derniers puissent nécessiter une adaptation de l’espace constitutif. Les char-
gements cycliques peuvent être prédits tant que la discrétisation de l’espace constitutif
(c’est-à-dire la base de données) couvre la plage de déformation et de dissipation à étudier.

9 Construction du graphe matériau : défis et pers-
pectives

La construction du graphe matériau reste un défi à relever pour la mise en œuvre les
méthodes développées dans ce mémoire. En effet, pour assurer le bon fonctionnement de
l’algorithme de parcours utilisé pour sélectionner les bases de données locales, le graphe
doit contenir suffisamment d’arcs. D’autre part, l’efficacité de ce même algorithme est in-
versement proportionnelle au nombre d’arcs du graphe. Un compromis est donc nécessaire
entre perte d’information et augmentation du temps de calcul.

Une étude préliminaire a été menée pour identifier des points « proches » ou « si-
milaires » de la base de données par clustering. Cette méthode permet notamment de
relier des points appartenant à des histoires de chargement différentes (c’est-à-dire calcu-
lés en des points d’intégration différents). Cette caractéristique est primordiale, puisque
la construction du graphe matériau pour une histoire de chargement est triviale, mais que
le traitement d’une base de données entière est beaucoup plus complexe.

D’autres approches paraissent intéressantes, comme par exemple les algorithmes de
reconnaissance de trajectoires. Enfin, une représentation hiérarchique du graphe matériau
basée sur les cliques, qui jouent un rôle important puisqu’elles symbolisent des domaines
élastiques, pourrait sensiblement améliorer l’efficacité des algorithmes présentés.
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Titre : Une approche basée sur les graphes pour le calcul piloté par les données en anélasticité.
Application à l’élastoplasticité

Mot clés : Mécanique numérique, data-driven, anélasticité, élastoplasticité, théorie des graphes

Résumé : En calcul de structures, la réponse
mécanique d’un matériau est généralement ap-
proximée par un modèle de comportement, c’est-
à-dire une loi mathématique reliant déformations
et contraintes. Cette représentation entraîne de
nombreux biais, dûs non seulement au choix
du modèle lui-même, mais aussi à la perte
d’information qu’elle implique.
L’essor de la science des données et l’amé-
lioration des techniques expérimentales au
cours des dernières décennies ont conduit à
d’importants changements dans le domaine
de la mécanique numérique. En particulier,
l’approche dite « pilotée par les données »
introduite par Kirchdoerfer et Ortiz en 2016 utilise
une représentation discrète de la réponse du
matériau. Le problème mécanique se transforme

alors en problème de minimisation de la distance
entre deux champs, l’un étant mécaniquement
admissible et l’autre issu de la base de données
matériau.
Les présents travaux se concentrent sur l’exten-
sion de cette méthode, développée à l’origine en
élasticité, aux comportements anélastiques. Ces
derniers sont caractérisés par leur irréversibilité
et nécessitent de tenir compte de l’histoire
locale. A cette fin, la base de données matériau
discrète est augmentée par une information
thermodynamique sur les transitions entre états,
de manière à construire un graphe orienté ;
le problème incrémental est alors ramené à
une série de problèmes pseudo-élastiques.
L’algorithme qui en découle est appliqué à des
treillis en élastoplasticité.

Title: A graph-based model-free data-driven computing approach for inelasticity. Application to
elastoplasticity

Keywords: Computational mechanics, data-driven, inelasticity, elastoplasticity, graph theory

Abstract: In structural analysis, the mechanical
response of a material is usually approximated
with a constitutive model, i.e. a mathematical
relation between strains and stresses. This
representation introduces biases, arising not only
from the choice of the model itself but also from
the loss of information it involves.
Recent advances in data science and
experimental techniques have brought about
significant changes in the field of computational
mechanics. In particular, the Data-Driven
Computational Mechanics approach, introduced
by Kirchdoerfer and Ortiz in 2016, is based on a
discrete representation of the material response.
The mechanical problem then transforms into

a minimisation problem involving the distance
between two fields — one being mechanically
admissible and the other derived from the
material database.
This work focuses on extending this method,
originally developed in elasticity, to inelastic
behaviours, the latter being characterised by their
irreversibility. To take local history into account,
the discrete material database is augmented with
thermodynamic information on state transitions,
building a directed graph. The incremental
problem thus reduces to a series of pseudo-
elastic problems. The resulting algorithm is
applied to rate-independent elastoplastic trusses.
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