
HAL Id: tel-04695158
https://theses.hal.science/tel-04695158v1

Submitted on 12 Sep 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Advanced Structural and Semi-Formal Verification Flow
for Clock Domain Crossing (CDC) in Asynchronous

Multiclock Systems
Diana Kalel

To cite this version:
Diana Kalel. Advanced Structural and Semi-Formal Verification Flow for Clock Domain Crossing
(CDC) in Asynchronous Multiclock Systems. Micro and nanotechnologies/Microelectronics. Univer-
sité Grenoble Alpes [2020-..], 2024. English. �NNT : 2024GRALT038�. �tel-04695158�

https://theses.hal.science/tel-04695158v1
https://hal.archives-ouvertes.fr


THÈSE
Pour obtenir le grade de

DOCTEUR DE LA COMMUNAUTÉ UNIVERSITÉ
GRENOBLE ALPES
Spécialité : Nano Électronique et Nano Technologies

Arrêtée ministériel : 25 mai 2016

Présentée par

Diana KALEL (doctorante)

Thèse dirigée par Katell Morin-Allory et Laurent Fesquet
et coencadrée par Jean-Christophe Brignone

préparée au sein du Techniques de l’Informatique et de la Microélectronique
pour l’Architecture des systèmes intégrés (TIMA)
dans École Doctorale Électronique, Électrotechnique, Automatique et Traite-
ment du Signal (EEATS)

Advanced Structural and Semi-Formal Verifi-
cation Flow for Clock Domain Crossing (CDC)
in Asynchronous Multi-clock Systems

Thèse soutenue publiquement le 04 juin 2024,
devant le jury composé de :

Giorgio Di Natale
Directeur de recherche, CNRS délégation Alpes, Président

Ayman Wahba
Professeur, Université Ain Shams, Rapporteur

Sébastien Pillement
Professeur des universités, Ecole polytechnique de Nantes, Rapporteur

Matthieu Moy
Maître de conférences, Université Lyon 1, Examinateur

Michele Portolan
Maître de conférences, Grenoble INP, Examinateur

Jean-Christophe Brignone
Senior Staff ingénieur, STMicroelectronics, Co-Encadrant de thèse

Jerome Avezou
Senior Staff ingénieur, Synopsys, Invité





"Dedication"
To those who persevere in believing in themselves, defying the doubts and criticisms,

to those who maintain faith in the eventual fulfillment of their dreams,
to those who persist in their journey even when the light remains unseen,

and to the kind souls we encounter along our journey, whose presence makes the path
brighter and brings warmth and sweetness

this thesis is dedicated





Acknowledgements

Acknowledgements
I extend my deep gratitude to my thesis jury members, Giorgio Di Natale, Ayman

Wahba, Sébastien Pillement, Matthieu Moy, Michele Portolan for accepting this role
and for contributing their valued experience and comments to my thesis.

I want to thank my PhD supervising team at TIMA lab for their time and effort in
adding their valued scientific vision to this PhD.

I am also thankful to my industrial advisor, Jean-Christophe Brignone, for providing
me with the opportunity to dive into the CDC verification domain and teaching me a lot on
the technical and the personal level. Special thanks go to my teammates, Julian Massicot
and Lionel Picandet, for their joyful and kind presence. Working alongside you both was
truly enjoyable.

I am grateful for the enlightening technical discussions I had with Irene Serre, Se-
bastien Ferrousat, Christophe Chanet-Chene, Cyril Chevalier, Stephane Farrouch
and Nicolas Aubailly, which taught me a lot. A special acknowledgment is owed to our
functional verification expert, Massimo-angelo Calligaro, for his time and assistance in
bridging two activities that were never previously connected. Appreciation is also dedi-
cated to my hierarchical manager, Guy Durieu, for the time and support he dedicated to
me during this journey.

I feel fortunate to have had the opportunity to work with Jerome Avezou and to receive
technical support from him. Thank you for bringing such a joyful spirit and for fostering
positive and kind vibes.

I am grateful for meeting and being supported by Jumana Boussey, Olivier Rossetto
and Dominique Schneider. Their kindness and support were a major turning point in my
thesis journey.

On a personal level, I couldn’t have achieved any of this without the presence and
constant support of my parents, Joseph and Safaa. Despite the distance, your constant
support kept me going.

"if either of them falls down, one can help the other up". Thank you, Mark, for this
10 years valued and true friendship that never fails me and always has my back. Your
encouragement was what pushed me to the finish line.

The support of my friends was essential in overcoming the difficulties of this journey
and persevering until the end. Therefore, I want to extend my gratitude to Fadi for our
valuable discussions, and to Nihal for her support and the joyful moments we shared.
Thanks also to my dear friends, Sara, Kiro, Roshdy, and Awny, for your constant pres-
ence. And to my childhood friends, Sandra and Nada, I am forever grateful for having
you by my side.

i





Contents

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i

Table of contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

Introduction 1

1 Background and state-of-the-art 5
1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.1.1 Current circuits state . . . . . . . . . . . . . . . . . . . . . . . . 7
1.1.2 Asynchronous multi-clock systems . . . . . . . . . . . . . . . . 8
1.1.3 The global digital design flow . . . . . . . . . . . . . . . . . . . 12
1.1.4 The global digital verification flow . . . . . . . . . . . . . . . . . 15

1.2 Clock Domain Crossing (CDC) . . . . . . . . . . . . . . . . . . . . . . . 19
1.2.1 Problems related to CDC . . . . . . . . . . . . . . . . . . . . . . 20
1.2.2 CDC synchronization structures . . . . . . . . . . . . . . . . . . 22

1.3 CDC Verification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
1.3.1 CDC structural verification on RTL . . . . . . . . . . . . . . . . 26
1.3.2 CDC assertions based verification . . . . . . . . . . . . . . . . . 30

1.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2 CDC structural verification 37
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.1.1 Design modeling . . . . . . . . . . . . . . . . . . . . . . . . . . 39
2.1.2 Verification modeling . . . . . . . . . . . . . . . . . . . . . . . . 40

2.2 Flow rationalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
2.2.1 Deficiencies of the classic flow . . . . . . . . . . . . . . . . . . . 43
2.2.2 A new reference flow . . . . . . . . . . . . . . . . . . . . . . . . 47
2.2.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

2.3 UPF-Aware flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
2.3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
2.3.2 Challenges related to the insertion of the power management cells 54
2.3.3 UPF-aware CDC verification flow on RTL . . . . . . . . . . . . . 55
2.3.4 Application and results . . . . . . . . . . . . . . . . . . . . . . . 56
2.3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

2.4 Evaluation of the industrial tools . . . . . . . . . . . . . . . . . . . . . . 58
2.4.1 Previous comparative anaylsis . . . . . . . . . . . . . . . . . . . 58
2.4.2 Evaluation aspects . . . . . . . . . . . . . . . . . . . . . . . . . 59
2.4.3 Evaluation results . . . . . . . . . . . . . . . . . . . . . . . . . . 61

2.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

iii



Table of contents

3 CDC Semi-formal verification 65
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

3.1.1 CDC structural verification limitations . . . . . . . . . . . . . . . 67
3.1.2 Assertions-based verification . . . . . . . . . . . . . . . . . . . . 69
3.1.3 Formal and semi-formal verification . . . . . . . . . . . . . . . . 70

3.2 CDC semi-formal verification flow . . . . . . . . . . . . . . . . . . . . . 71
3.2.1 Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
3.2.2 Assessment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

3.3 Verification of protocol-based synchronizers . . . . . . . . . . . . . . . . 85
3.3.1 Protocol-based synchronizers . . . . . . . . . . . . . . . . . . . 85
3.3.2 The Universal Qualifier . . . . . . . . . . . . . . . . . . . . . . . 88
3.3.3 Generic CDC modeling for data stability verification . . . . . . . 88
3.3.4 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
3.3.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

3.4 Hybrid flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
3.4.1 Clock propagation and operating modes . . . . . . . . . . . . . . 92
3.4.2 Semi-formal assisted CDC setup generation . . . . . . . . . . . . 95
3.4.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
3.4.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

4 Metastability injection 103
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
4.2 Metastability simulation on analog level . . . . . . . . . . . . . . . . . . 105

4.2.1 Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
4.2.2 Building test bench . . . . . . . . . . . . . . . . . . . . . . . . . 106
4.2.3 Simulation results . . . . . . . . . . . . . . . . . . . . . . . . . 108
4.2.4 Conclusion and prespectives . . . . . . . . . . . . . . . . . . . . 110

4.3 Metastability modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
4.3.1 Stability and metastability . . . . . . . . . . . . . . . . . . . . . 111
4.3.2 CDC caused metastability . . . . . . . . . . . . . . . . . . . . . 114

4.4 Metastability injection . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
4.4.1 Metastability effect on digital level . . . . . . . . . . . . . . . . . 118
4.4.2 Metastability injection technologies . . . . . . . . . . . . . . . . 121
4.4.3 Metastability injection on asynchronous FIFO . . . . . . . . . . . 122

4.5 Perspectives and future work . . . . . . . . . . . . . . . . . . . . . . . . 129
4.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

General conclusion 133

Publications and Conferences 137

Bibliographie I

Table des figures IX

iv



Table of contents

Liste des tableaux XI

A Annex 1 : Design Rules XIV

B Annex 2 : CDC Rules XVIII

C Annex 3 : Constraints Assertions Examples XXII

D Annex 4 : Simulation Results XXIV

E Annex 6: Asynchronous FIFO XXVIII

v





Introduction

Introduction

Over the past half-century, there has been a remarkable evolution in electronic design,
driven by the evolution in the semi-conductors technologies, while the performance re-
quirements are becoming more challenging. Integrated circuits are embedded in most of
the devices we are using nowadays, starting from the the mobile phones we use in our
everyday life, to the supercomputers performing complex calculations and simulations at
unprecedented speed. As the time to market decreases with the extra-high demand, the
semiconductor industry now prefers to order pre-made IPs from external providers. Due
to various functionalities and power constraints, the different IPs sometimes operate with
several clocks. At system level, when different clock domains co-exist and communicate
together, data exchange between these different domains require a particular attention. In-
deed, Clock Domain Crossing (CDC) is the cause of many problems, which can be tricky
to resolve. For instance, in systems with interfaces between processor cores, memory
subsystems and peripherals operating at different clock frequencies, the signals crossing
these different clock domains can lead to metastability, data loss and other synchroniza-
tion issues. The digital designers over the years developed multiple solutions for solving
these CDC issues, such as CDC synchronization structures and protocols. Because it is
crucial to properly synchronize signals crossing the clock domains boundaries, the CDC
synchronizers ensure the integrity of the data being transferred. There exist several types
of CDC synchronizers that will be discussed later in Chapter 1

The CDC aspects require rigorous verification techniques to be applied to identify po-
tential CDC hazards, such metastability, missing synchronization, data coherency prob-
lems and others, at early stage of the design flow. Traditional STA (Static Timing Anal-
ysis), while effective on synchronous paths to identify timing violations, cannot be used
for the CDC verification. Facing the unpredictable timing relationships and its dynamic
characteristics on asynchronous paths, the STA lacks the comprehensive mechanisms to
verify the full range of the asynchronous scenarios. Therefore, the EDA (Electronic De-
sign Automation) tool companies offer specialized software for the CDC verification. The
CDC verification relies on: (1) the synchronizers detection, (2) the functional validation
of the detected synchronizers. The detection of synchronizers involves both semantic and
syntactic approaches. The syntactic approach is employed for the synchronizers detec-
tion, which usually relies on recognizing structural patterns in the code or the netlist. A
semantic approach can also be used for synchronizers detection by analyzing the use of
finite state machines or other behavioral characteristics associated with synchronizers.
The CDC structural verification is a static verification depending on patterns matching.
It is the most, and sometimes the only, used approach by most of the designers to verify
the asynchronous paths. The CDC structural verification, its deficiencies and our related
contribution are developed in Chapter 2. Once the synchronizers detection is fully done,
a functional validation can be performed usually by asserting the properties associated to
each detected synchronizer. The properties verification can be done with a formal engine
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Introduction

or in dynamic simulation. Associating the CDC assertions to dynamic simulations allows
to perform the CDC semi-formal verification. This is developed in Chapter 3. Finally, the
CDC verification can be complemented by a special type of errors injection mimicking
the metastability. The metastability injection is the subject of Chapter 4

The industrial CDC verification tools, despite of getting more mature in the last
decade, are still not 100% reliable. The verification flow still depends widely on human
effort and expertise for setting the tools and the design up. Setting the tools’ parameters
and the design constraints requires a good understanding of the design and the tools. Any
human error in this phase leads to sub-optimal results. In addition, the pre-coded patterns
which the tools try to match in order to detect the synchronizers do not work with custom
and complex synchronizers. The result is that the tools either oversimplify the structures
and report them as valid while they are not, or fail to converge the analysis and report
some valid synchronizers as absent. In both cases, the number of false positive and false
negative results are unacceptable. Indeed, the majority of the analyzed CDC violations
are either false negatives or false positives.

Finally, despite the fact that the technology for verifying the CDC paths exists since 20
years now, we still find post-silicon bugs due to CDC. The existing tools have multiple de-
ficiencies that must be taken into account. In addition, the verification flow existing today
is very prone to human errors. As the target of this thesis is to develop and improve the
CDC verification flow respecting the working frame constraints of STMicroelectronics,
we made our decision to tackle the following subjects respecting the following priority:

• Being the main verification signoff flow, the CDC structural verification flow needs
to be enhanced and standardized, overcoming the deficiencies exiting in the native
flow and minimizing the number of false results. The target was to make this new
flow available as soon as possible for projects. The idea is to have a robust imple-
mented flow, that can be used by the different teams and that does not necessitate a
deep expertise in the CDC verification domain.

• The CDC structural verification is a very important task to ensure the presence of
the necessary synchronizers, even though, it is not enough to ensure that they func-
tion correctly. Therefore, it must be complemented by a formal or a semi-formal
analysis. The industrial constraints and the complexity of the designs pushed more
toward the development of a semi-formal flow, as a trade-off between exhaustive-
ness and the time the verification process takes.

• As the metastability is the greatest risk of any asynchronous multi-clock system, its
effect should be taken into account in the verification flow. Several metastability
injection flows are studied and tested on our test case.

Thesis structure In this thesis, we embark on an exploration of a field that did not
grab the attention of a lot of researchers in the past. This explains the narrow literature
of the CDC verification we were relying on. The structure of this thesis is designed to
provide a progressive understanding of the CDC issues and the existing technologies to
verify them. As the main target of this thesis is to develop an optimized flow for the
CDC verification, the following chapters navigate through four distinct sections, each
contributing to a nuanced analysis of what exists already and a proposal to push the limits
of this field. The four sections are the following
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• Chapter 1 Background and state-of-the-art: presents the CDC aspects and pro-
vides a resume about the literature review and the efforts done in the domain.

• Chapter 2 CDC structural verification: explains the problems related to the CDC
structural verification flow and proposes a new enhanced and rationalized flow. A
comparative study between different tools is provided. We also tackle the inclusion
of low power logic structures and their effect on the CDC verification. In addition,
a new UPF-aware methodology to verify the CDC paths is presented.

• Chapter 3 CDC semi-formal verification: in this chapter we present the idea
of the semi-formal verification flow. As the verification of the CDC data-paths
synchronized by custom synchronizers has always been a challenge, we propose
a generic CDC modeling for the data stability verification. The implementation
of an universal qualifier detection algorithm to assist the CDC verification is also
presented in this chapter.

• Chapter 4 Metastability injection: the metastability, being an analog phenomenon,
cannot be inspected in a digital simulation. However, the effect of the metastabil-
ity can be mimicked and injected in a digital simulation. The formalization of the
metastability effect and a presentation of the different metastability injection ap-
proaches are presented in this chapter. Additionally, we present the first results we
obtained injecting metastability on a small CDC test case.

Test Case: The test case we have used for all our studies, evaluations and developments
is a commercialized design with a high level of maturity, developed at the CPU division
of STMicroelectronics. As shown in Figure 1, it is a CPU subsystem integrating a 64
bits dual-core CPU with two levels of cash memory. The CPU subsystem includes a PLL
and a clock divider to generate internal clocks and one reset generator. It is driven by 14
different clock domains, as color coded on Figure 1. The CPU subsystem includes several
blocks dedicated to the management of the asynchronism with the external world. Some
of them are standard bus interfaces which can be found around the subsystem to dialogue
with the logic outside. The unidirectional inputs are passed through synchronizers inside
the subsystem, while all unidirectional outputs are defined as asynchronous as it is the
responsibility of the receiving clock domain on SoC level to re-synchronize. Some other
asynchronous interfaces are for debug and power management purposes. In addition, the
design includes DFT (Design For Test) wrapper and a high speed BIST for memories. In
terms of power management, the design operates under two voltage domains and three
power domains.

Working in the CPU division in STMicroelectronics and given the number of clock
domains and of the standard asynchronous interfaces included in this CPU subsystem
and its maturity level, we made our choice to use it as test case for all our trials and
applications. Whenever a test case is mentioned in the next chapters, we will be referring
to this CPU subsystem, unless other test case is explicitly mentioned.
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Figure 1: Test Case
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Background and state-of-the-art

Distributing a global, low-skew clock in extensive System-on-
Chip (SoC) infrastructures remains a challenge for traditional
fully synchronous systems. To address time-to-market demands
and evolving design complexities, the integration of indepen-
dently clocked and powered IPs, known as Globally Asyn-
chronous Locally Synchronous (GALS) systems, is employed.
While this approach avoids large clock-tree designs, it suf-
fers from the absence of global synchronization, particularly
in data transmission between different blocks and Clock Do-
main Crossing (CDC). Despite exhaustive verification efforts
for multi-clock systems, focusing on well-designed and func-
tional asynchronous interfaces, the state of the art reveals gaps
in the CDC verification flows. There is a need for rationaliza-
tion and standardization, rectifying deficiencies in the existing
native flow. Furthermore, this thesis aims to delve into emerg-
ing verification aspects, such as semi-formal verification and
metastability injection, to enhance the verification of the asyn-
chronous multi-clock systems.

Contents
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1.1.1 Current circuits state . . . . . . . . . . . . . . . . . . . . . . . 7
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1.1. Background

1.1 Background

1.1.1 Current circuits state
Synchronous circuits are widely produced nowadays by the industry and their design
and verification flows have achieved a high level of maturity. In these circuits, a peri-
odically toggling signal, the clock signal, determines the timing of each operation. This
makes the behaviour of such systems predictable, prevents race conditions and makes the
design process easier. The timing closures are ensured to be met by the Static Timing
Analysis (STA). The design is broken into several timing paths with specific start and end
points to ensure that the setup/hold requirements (for data paths) and the recovery/removal
requirements (for reset/set paths) are met. Using the gates propagation timings defined in
the SDF files and the specified maximum and minimum delays (corresponding to the se-
tup/hold requirements respectively), the timing checks are done and the clock frequency
is adjusted. False paths and multi-cycle paths are also specified to be excluded from the
analysis [1]. Synchronous circuits dominated the silicon industry since the 1960s and
are seen as the safest and easiest approach regarding design reliability, performance, and
testing ease. The number of clock cycles needed to perform a task is an easy and reliable
metric to evaluate the performance. Although, they present many problems too. Syn-
chronous circuits lead to different types of deficiencies specially in large and fast designs.
While data is ready to be used, the system should wait for the next clock tick to sample
it and the tick must be long enough to avoid capturing corrupted data, which means a
time overhead. The clock signal itself cannot reach all the elements of a circuit at the
same time, so, special structures (clock trees) must be used to ensure a perfect alignment
between all the clocked elements, which means an area overhead. Finally, a periodically
toggling signal consumes power and produces heat, which means a power overhead. That
is why the research and the industry are trying to find alternatives.

Asynchronous clockless circuits In the last decade, designers began to revise an old
concept which was ignored for years, the asynchronous clockless circuits. They are self-
timed and do not use the periodically toggling signal usually used in synchronous circuits
to pace the results. Instead, they put them as soon as they are ready. The components
use local synchronization represented in specific communication protocols (such as the
handshake protocol). The functioning of the asynchronous clockless designs is described
to be event based, only the necessary components are active at a specific moment. In
general, clockless circuits are so advantageous in terms of power use. The absence of
a periodically toggling signal makes remarkable energy savings. In addition, the elec-
tromagnetic interference (EMI), that freaks out most of the designers, is extremely low.
These factors made the asynchronous clockless circuits recently an important and com-
petitive alternative. However, experts still have some concerns: the lack of development
tools and the difficulties they face integrating them with synchronous circuits. But still,
the advantages they present to the market are worth the research and the development to
normalize their use. More and more resources and tools are developed everyday to reach
that target [2] [3] [4].

Asynchronous multi-clock circuits It is the alternative to the globally synchronous
and the fully asynchronous clockless circuits. Each block in an asynchronous multi-
clock system runs at its nominal minimum speed and then a wrapper takes care of the
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Chapter 1. Background and state-of-the-art

communication with the other blocks (by disabling the clock or controlling the exchanged
data). The main applications are the large systems with one or more processors that
interface with shared peripherals or memories. For example, a CPU subsystem takes
advantage of the design on chip bus architecture and is connected with asynchronous
interfaces acting as bridges. These systems present a remarkable advantage regarding
power consumption and design ease. However, some other problems, due to clock, reset
and power domain crossing, start to appear and become the subject of different types of
exhaustive verification [5] [6] [7].

The asynchronous multi-clock systems are the major concern on this thesis and will
be discussed in more detail in the next section.

1.1.2 Asynchronous multi-clock systems
Building an extensive SoC infrastructure while avoiding the problems of distributing a
global, low-skew clock is not possible. The system complexity makes it difficult to main-
tain a reasonable clock skew over a large area and through millions of gates. This leads to
a huge clock-tree, which is power consuming, sensitive to process variations and difficult
to balance. The overhead, due to clocking, in terms of power consumption, has become
unacceptable [8] [9] [10] as more than one half of the power consumed in a system is due
to clocking (see Figure 1.1). To meet time-to-market requirements and to handle the evo-
lution of the design complexity, independently clocked and powered IPs are integrated
together. In other words, large synchronous systems are split into a set of small syn-
chronous sub-systems in order to implement more compact clock-trees. This alternative,
also known as Globally Asynchronous Locally Synchronous (GALS) systems, prevents
from designing large clock-trees but suffers from the loss of a global synchronization.

Figure 1.1: Power consumption distribution along design clusters

Definitions

Clock domains Two clock signals belong to the same domain if they are in phase, even
if they have different frequencies. Two clock signals can also be considered in the same
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domain if they have a constant phase shift and the setup/hold timing are adjusted during
the physical implementation. In Figure 1.2, "clk_A.1", "clk_A.2" and "clk_A.3" are in
phase. The three clock signals have neither the same frequency nor the same duty cycle,
however, they belong to the same clock domain "Clock domain A". While "clk_A.4" has
a constant phase shift with respect to "clk_A.3", it can also belong to the the same clock
domain "Clock domain A". In Figure 1.3a, "clk1" and "clk2" are issued from the same
source while "clk3" is sourced from a different PLL. Figure 1.3b shows that "clk1" and
"clk2" have a constant phase shift (phi1=phi1’=phi1”), so they belong to the same clock
domain. However, "clk3" has a dynamic phase shift with respect to "clk1" and "clk2"
(phi2 ̸= phi2′ ̸= phi2′′), so, it does not belong to their clock domain [11] .

Figure 1.2: Synchronous clock domains

(a) Structural view

(b) Waveform

Figure 1.3: Asynchronous clock domains
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Chapter 1. Background and state-of-the-art

Clock domains communication types A communication is called "synchronous" if the
two communicating blocks are driven by clock signals belonging to the same clock do-
main. On the other hand, it is called “asynchronous” if no timing relationship can be
defined between the communicating clock domains, in other words, the clock domains
are completely considered unrelated with a dynamic phase shift. There exists a third type
called “loosely synchronous”. In this case, there is a dependable, well-defined relation-
ship between the communicating clock domains. As shown in Figure 1.4, this dependable
relationship may be [6] [7] :

• Mesochronic: the 2 clock signals are of the same frequency with a constant phase
difference (due to the propagation delay) and the setup/hold timing are corrected.

• Plesiochronic: both clock signals operate at the same frequency but having some
slight mismatches. These mismatches may drift the phase for few parts per million.

• Heterochronic: the sender and the receiver operate completely at different frequen-
cies but are still related with a fixed relationship. A subset of this is the "rati-
ochronic" relationship, where the sender and the receiver are both multiple of each
other and derived from the same source.

Figure 1.4: Mesochronic, plesiochronic and heterochronic relationships

Locally synchronous globally asynchronous systems (GALS) : In order to meet
time-to-market constraint and to optimize the design process, functional blocks, locally
synchronous but asynchronous between them, are integrated together on SoCs (see Fig-
ure 1.5]. Clocking every block at its minimum speed makes the SoC achieve remarkable
power savings [7]. The inter-block exchanged data are meant to be synchronized on the

10
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entry of the receptor block. This approach achieving great power savings, has major prob-
lems related to CDC (Clock Domain Crossing) and the risk of metastability propagation.

Figure 1.5: GALS block diagram

Clock domain crossing (CDC) In synchronous systems, the data is registered at the
source and captured at the destination by the same clock, or with another but synchronous
clock, which guarantees a stable and synchronized communication. But if the source and
destination are clocked by two different asynchronous clock signals, there is no guaran-
tee that the data will be captured at the right moment (when it is stable) respecting the
setup/hold criteria. In Figure 1.6a, "clk1" and "clk2" are asynchronous. As Figure 1.6b il-
lustrates, the rising edge of "clk1" happens too close to the rising edge of "clk2" violating
the setup time which risks to propagate a metastability on "Q2" [12].

(a) Structural view (b) Waveform

Figure 1.6: Clock Domain Crossing (CDC)

Metastability It is a phenomenon that happens when a flip-flop or a latch enters an
unstable state and is unable to resolve to a logical value within an acceptable time that
guarantees a proper operation. In Figure 1.6b, "Q2" goes metastable due to the setup
timing violation happening because of the CDC present between "F1" and "F2".
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Reset Domain Crossing (RDC) It is the interface between two sequential elements
controlled by two different reset signals (see Figure 1.7a) [13] [14] [15]. In Figure 1.7b,
"Rst A" is asserted asynchronously on the falling edge "a" and the value of "Q1" drops
very close to the sampling clock edge. That is why a metastability is propagated on
"Q2". One of the solutions to avoid the RDC problems is to define a reset ordering. The
destination reset should be asserted before the source reset to block the metastability.
Other RDC synchronizer can be found in [16].

(a) Structural view (b) Waveform

Figure 1.7: Asynchronous clock domains

Power/voltage Domain Crossing The presence of “Power domains” is essential to re-
duce the power supply voltage to some parts of the circuit. Each block is powered by its
minimum required power. Crossing from one power domain to another requires special
logic (level shifters, isolation cells, etc.) to be inserted to ensure a safe data communi-
cation (see Figure 1.8). These structures are defined in the UPF file (Universal Power
Format) [17].

Figure 1.8: Voltage domain Crossing

1.1.3 The global digital design flow
An IC (integrated circuit) has typically two main sections, the analog part which generally
interacts with the outside real world using all levels of voltages (eg. RF receiver - sensors)
and the digital part which is responsible for data transfer and processing. In this section,
we will focus on the digital design flow to locate where exactly the CDC problems appear.

Specification to RTL (Figure 1.10 section 1)

The specification is the first step to start a digital project. It is a high level representation
of the system including many factors such as performance, functionality, the size of the
chip, the design techniques and the fabrication technology (transistor sizing). The design
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architecture is then done and implemented following three main steps. The first step is the
"Behavioural Design" where the top level function of the design is described. The second
step is the "RTL Design", which is the data flow between registers. Finally comes the
"Netlist Design" which concerns the direct instantiation of cells from libraries [1]. The
different parts of the design are described using a hardware language (VHDL or Verilog).
The same is done for each IP and then they are integrated together on a SoC (System on
Chip).

RTL integration (Figure 1.10 section 2)

Integrating different IPs -differently powered and clocked- will implicitly create many
asynchronous interfaces where the problems related to CDC, RDC and power and volatge
domain crossing start to appear. The instrumentation has a very important role to fix these
issues. Instrumenting RTL is to make it compliant with the design rules on the different
steps of the flow using either standard or customized cells or libraries . This includes the
insertion of the synchronizers on clock domains crossings and the insertion of the level
shifters on the power domains crossings for example. At this stage, we have a complete
description for the whole design needing to be standardized. A specific tool, depending on
each provider, gathers all the RTL files written in HDL and transform them to XML files
compliant with the IEEE standard IP-XACT. This standard was published in February
2010 by IEEE and its goal was to deliver compatible components from many vendors and
to exchange the data between different EDA (Electronic Design Automation) tools. The
IP-XACT format packages the IP’s :

• ports/interfaces to facilitate their integration to the rest of the design without parsing
all the system’s verilog files,

• hardware and software’s memory map describing the software interface with the IP
and creating some header files about the registers addresses and their fields,

• a file manifest identifying all the necessary design’s files, what they are and where
they do appear.

Synthesis (Figure 1.10 section 3)

Synthesis is the process of translation of the RTL to the implementable gate-level netlist.
The overall process goes on several steps and is based on specific constraints [18].

• Generic synthesis : The RTL is translated to a technology independent Boolean
representation. At this stage, a one-to-one correspondence can be done between
the RTL and the generated synthesis (that will not be anymore available after the
optimization). The GTECH (generic technology) netlist is the output of this phase
which can be reusable for any kind of technology [19]. In general, any design
structure can be optimized based on the "Major Design Optimization constraints".
This latter is tunable by the user on 3 major axis : Area, Power and performance
known as the PPA constraints. These optimizations can break the integrity of the
instrumented synchronizers; that is why CDC paths must be exhaustively checked
after synthesis.
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• Mapping : The generic netlist generated from the last step should be mapped to
a number of library cells guaranteeing maximum efficiency and re-usability of the
design [20]. DesignWare is a set of libraries that contain a number of high-level
functional modules such as adders,subtractors, shifters, FIFOs, counters, compara-
tors and decoders. All these modules are parametrizable, synthesizable and tech-
nology independent. The GTECH netlist is then mapped to these libraries ensuring
that the high-level optimization features, such as resource sharing and arithmetic
optimisation, are turned on [21]. The generated netlist can then be mapped to the
technology libraries which are a collection of gates associated to certain character-
istics and provided by a fabrication house (e.g. TSMC).

• Design for test (DFT) insertion : it means considering the testing aspects during
the design process itself. Testing is done after the fabrication using a mechanical
device called tester. Its pins get connected to some specific pins on the chip, they
inject a test pattern and read from specific pins dedicated for testing. Sometimes
some defects may be found in the fabricated devices (e.g.shorted or broken lines) .
As a DFT requirement, controllability and observability have to be considered early
in the design. But as a chip can not afford a pin at the input and the output of every
single gate, the Scan Chain is used. The scan chain connects all the flip-flops of the
design in series. Figure 1.9a represents a part of a normal design where the data
goes in all directions between the combinational and the sequential parts. In Figure
1.9b , all the flip-flops are replaced by a multiplexer and a flip-flop controlled by the
“SE” or “scan enable” signal and are connected in series. Any data put on “SI” may
be observed on the output of every flop after a specific number of clock cycles. For
example, any data on “SI” may be observed 4 clock cycles later on “SO”. The “scan
insertion” is done in a mechanical way and special clocking is done during the test
mode [1]. The functional clock signals are blocked and the testing clock signals
are propagated. This poses a new challenge regarding CDC. Propagating new clock
signals must be carefully done and checked in order to guarantee the correctness of
the new CDC paths.

(a) pre scan chain insertion (b) post scan chain insertion

Figure 1.9: Design For Test (DFT) insertion

• Timing optimization : Inserting the scan chain, a path that used to meet certain
timing constraints may violate them. The extra multiplexer inserted in front of each
flop will add additional delay to the data path which will increase the setup time
requirement on the destination flop. So, a timing analysis and optimization shall be
done after the DFT insertion.
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Placement and routing (Figure 1.10 section 4)

This is the last step before fabrication. Once the final netlist is ready, the floorplan can be
created. The tool calculates the area and the floor plan based on the core utilization factor
(area of the design / the core area). A basic floor plan is constituted of 2 main areas : the
core area is the central one containing all the cells and the ring area extended on all the
perimeter including the I/O and carrying the Vdd and the Gnd which are routed to provide
Vdd and Gnd to all the cells in the core area. After placing the standard cells, an evenly
distributed clock signals must be ensured. This is done by the clock tree synthesis process
whose goal is to ensure minimum clock skew and latency. Finally, based on the logical
connectivity, the different signals (power, clock and data) are routed physically and it is
ensured that the routes do not violate any timing criteria. Once done, the design is ready
to be fabricated.

1.1.4 The global digital verification flow
The verification "is the activity that determines the correctness of the design that is being
created. It ensures that the design does meet the specifications required of the product
and operates properly." [22] [23] The verification is not a one time thing but it starts
form the first day of a project and goes along side-by-side the design process. At each of
the previously explained design steps, a verification procedure is done to ensure a clean
output to the next step. Check the global verification flow in Figure 1.11. The verification
tasks are classified according to different criteria.

Static vs. Dynamic verification

A way to classify the different verification processes is the static-dynamic classification
which answers to the "How" question.

• Static verification :(green part on Figure 1.11)
The static verification is a patterns independent approach with no need to stimu-
late the design in any way. The static checks are done at the early stages of the
design and allows many bugs to be found. It’s more related to the analytical or
the structural techniques such as model checking and patterns matching. But, these
approaches are usually complicated and computationally complex [24].

– Lint checks : It is a static code analysis that checks that the RTL description
is conform with thousands of standard/custom rules based on the good coding
practice. This step ensures that we come with a clean RTL before proceeding
into synthesis and simulation which saves time. The presence of unintentional
latches, out of range indexing and combinational loops are some examples of
the violations linting aims to find.

– Low power checks : The UPF (Unified Power Format) file, where power and
voltage domains and their logic are described, is syntactically verified. The
static low power verification aims to ensure that the low power intent is com-
plete and that the design and the power description are aligned. It also looks
for the missing low power logic (isolation cells, level sifters, etc.) [25].

– Clock/Reset Domain Crossing (CDC-RDC) checks : it ensures that the signals
crossing clock and reset domains are received reliably. This is done by pattern
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matching the design to detect the different synchronization schemes and the
other problems related to CDC and RDC (re-convergences, glitches, etc.) [26]
[27] [28]. The CDC-RDC verification are the focus of this thesis.

– Static Timing Analysis (STA): The STA ensures that the timing closure is met.
It ensures that all data transitions occur before the defined setup time value and
that none of them arrive before the defined hold time value. Using the gates
propagation timings defined in the SDF files and the specified maximum and
minimum delays (corresponding to the setup/hold requirements respectively),
the timing checks are done and the clock frequency is adjusted [1].

• Dynamic verification : (violet part on Figure 1.11)
In the dynamic verification, Which is usually done by simulation, a pattern of stim-
ulus is intended to stimulate the different ports and pins of the design. This is why it
is called dynamic, as the different stimulus are propagated through the design’s in-
puts and then the outputs are inspected to ensure whether they respect the expected
outputs patterns or not. The target is to explore the complete design functionality
using case by case testing. In other words, the verification engineer must examine
the design on all the possible execution cases. The dynamic verification is qualified
as a non-exhaustive and non-fully-covering approach [29].

The Universal Verification Methodology (UVM) is a standard methodology built on
top of the SystemVerilog language to verify the digital systems in the industry. It
aims to create a modular and reusable testbench components to be easily integrated.
In a UVM testbench, the UVM test is instantiated along with the Design Under Test
(DUT) which is connected through interfaces (usually virtual interfaces). Every
UVM test exercises a custom scenario with a custom DUT configuration. Inside
each test, a UVM environment is instantiated, customized and configured using
the factory methods. The UVM Environment contains one or more UVM agents
which interact with and exercise a specific part of the DUT. The UVM Environment
also contains a UVM Scoreboard, responsible for evaluating the DUT performance.
Inside each UVM Agent there is a UVM monitor which samples the transactions
from the DUT through the interfaces. It also sends them to the scoreboard. In
addition, a UVM agent instantiates a UVM Sequencer that manages the sequences
and sends the sequence items to the Driver. If the agent is active, a UVM Driver
drives the sequence items received from the sequencer to the DUT through the
interface [30] [31].

Structural vs. Functional verification

Another way to classify the different verification processes is the structural-functional
classification which answers to the "What" question.

• Structural verification :
The structural verification ensures that the design structure is as expected based on
different aspects. It is interested in the presence or the absence of some structures
regardless of their functionality. For example, in CDC-RDC structural checks, the
tool looks mainly for the presence of proper synchronizers schemes that match the
pre-coded patterns in the different tools. The verification is considered passed if
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the structures in question are found. The structural verification is usually done
statically.

• Functional verification :
Functional verification is used to confirm that the implemented design achieves the
desired functionality and to explore all the functional corner cases of the design.
It conforms a design to its specification, insures the proper conversion of a spec-
ification document to the RTL code without any misinterpretations of the desired
specification [32]. It could be done dynamically where the design inputs are stim-
ulated with stimulus that propagate through the design until its outputs then com-
pared with the expected outputs from the specifications (The dynamic functional
verification that uses usually the UVM) [33]. It could also be done statically base
on mathematical procedures to search all the possible functional paths of the design
(the formal verification) [34].

Formal vs. Semi-Formal verification

A third way to classify the different verification processes is the Formal-Semi-Formal
classification which answers the "value versus cost" question.

• Formal verification :
Formal verification consists of two main classes: equivalence checking and model
checking. Equivalence checking compares two packages (RTL vs RTL – Netlist
vs Netlist – RTL vs Netlist) to make sure that the post-processing – scan chain
insertion, clock-tree synthesis or manual modification - of one of them did not affect
the desired functionality of the design. In Model checking, all the design state
spaces are explored statically and verified based on assertions [32].

• Semi-Formal Verification :
In order to avoid timeout and inconclusive results due to the exhaustive analytical
approach in the Formal verification, the semi-formal approach is giving a remark-
ably compromising approach in terms of the quality of results and the verification
required time. That is why we think that this field is worth the exploration and will
be explained in details in the next chapters. The semi-formal approach depends
mainly on the assertions being injected in a simulation environment, conversely to
the static formal approach, the properties are checked in a dynamic environment
using a reliable test bench with high functional and code coverage.

1.2 Clock Domain Crossing (CDC)

In a large SoC, where multiple processors share the same memory and peripherals, the
process of passing data between multiple different clock domains is not avoidable. The
term "CDC" corresponds to the process of passing data between two sequential elements
clocked by different and asynchronous clocks [26] [35].
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1.2.1 Problems related to CDC

Multiple problems arise due to CDC and pose a real challenge for the VLSI designers. In
this section, we will provide an overview of the major challenges related the Multi-clock
systems and CDCs [36] [28].

Metastability

Metastability occurs when a sequential element is put in an unstable equilibrium state
(not binary 0 nor binary 1) which breaks our standard Boolean abstraction. Violating the
setup/hold timings is able to put a flip flop in this unstable state. The CDC, by definition,
implies that the data can be captured on the destination side at any time with no guarantee
to respect the setup/hold timings [37] [38] [39] [40] [41] [42].

In Figure 1.12a, there is a CDC path between "F1" and "F2". If "Q1" changes too close
to the rising edge of "clk2", as illustrated in Figure 1.12b, the setup time is violated and
"Q2" goes metastable. The metastability takes a time, called the resolution time ”τres”, in
order to be resolved to a random boolean stable value.

What is so dangerous about metastability is that it can propagate and infect other logic.
If a metastable value is propagated through combinational logic, the system is considered
dead. Finding the source of the metastability after the fabrication is very difficult as the
industrial testers can not understand non-binary values.

(a) Structure

clk1

τ res

D1

Q1

clk2

Q2

(b) Waveform

Figure 1.12: Metastability due to CDC

Incoherency

The nondeterministic resolution time and value of the metastability can lead to inco-
herency problems. This happens if the crossing signals are the different bits of a data
bus or if they re-converge later in the fan-out of the design.

In Figure 1.13a , data_in[0] and data_in[1] are crossing the clock domain boundary
between clock domain clk1 and clk2 and then converge on an XOR gate. As illustrated in
Figure 1.13b, "Q1" and "Q3" change too close to the rising edge of clock "clk2" violating
the setup time which generates a metastability on "Q2" and "Q4". After a time ”τres”,
"Q2" is resolved to its correct expected value "1", but "Q4" is resolved to an incorrect
unexpected value "1". While waiting for the next clock cycle to re-sample the correct
value, the output of the XOR gate "I" will be unexpectedly "0" [43].
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(a) Structure

clk1

D1

Q1

D3

Q3

clk2

Q2

Q4

I

(b) Waveform

Figure 1.13: Incoherency due to CDC

Glitch

Glitches are very common in combinational logic. Due to the different propagation delays
of their operands, some gates may experience a transient value (glitch) on their outputs. In
synchronous paths, the STA ensures that this glitch is resolved within the clock period to
prevent sampling it. In a CDC path, as the data can be captured on the destination side at
any time, this glitch is more likely to be captured especially in the case of a Slow-to-Fast
crossing.

In Figure 1.14a, the propagation delays on "XOR_I1" and "XOR_I2" are not the same,
that is why a glitch appears on "XOR_O". The rising edge of "clk2" happens in the win-
dow where the glitch is not yet resolved the glitchy value appears "Q2" for one complete
clock cycle.

(a) Structure

Δ1

clk1

Q1

Q3

XOR_I1

XOR_I2

XOR_O

clk2

Q2

Δ2

Δ1

(b) Waveform

Figure 1.14: Captured glitch due to CDC

Dataloss

Dataloss is a common problem in both synchronous and asycnhronous systems. If the
data is crossing from a fast clock domain to a slower one (Fast-to-Slow), it can change
multiple times during a clock cycle of the destination clock. This data can be forever lost.
In case of a CDC, this problem may also arise even on the properly re-synchronized paths
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as most of the synchronization protocols are interested in stopping the propagation of the
metastability and few of them gives a solution to the dataloss problem.

1.2.2 CDC synchronization structures
There exist several techniques to synchronize a CDC signal [44] [45] [46] [47]. In order to
address the CDC problem and find a proper synchronization structure, the crossing signal
type must be identified.

Multi-Flop Synchronizers

Scalar control signals are usually synchronized using a Multi-Flop Synchronizer (MFS).
Multiple flip-flops (usually two or three) are cascaded together to delay a clock domain
crossing signal for several clock cycles (see Figure 1.15a). A multi-flop synchronizer
cannot prevent the appearance of the metastability; however, it decreases the probability
of a metastability to reach the destination flip-flop. It gives more time to the metastability
to be resolved before reaching the destination flip-flop [42].

The number of flip-flops in a MFS structure depends on the calculation of the Mean
Time Between Failures (MTBF) [11]. In Figure 1.16, the probability of a metastability
to enter a design is p(enter) = tw

tc
= tw.Fc. "tw" being "setup-hold" time window and "tc"

being the period of the sampling clock. In Figure 1.15a, assuming that "Q1" is changing
at a rate FD , the probability of the metastability becomes tw.Fc.FD. If a latch is metastable
at a time t = 0, the probability it will remain metastable at time t > 0 is p(exit) = e−t/τ .
A failure is the fact a flip-flop becomes metastable after the clock’s sampling edge, and
that it is still metastable for a time s after that [39] [11] [48] [40] [49] [50].

p( f ailure) = p(enter)× p(exit)

(tw×Fc×FD)× e−s/τ

The inverse of the failure rate is the mean time between failure :

MT BF =
es/τ

tw×Fc×FD

F1

D1 Q1 D2 Q2

F2

clk_1 clk_2

MFS
Df f ff ff

Q D Q

(a) Structure

Qf

clk1

D1

Q1

clk2

Qff

Q2

(b) Waveform

Figure 1.15: CDC synchronized by MFS

If the concerned signal is a bus control signal, it is still possible to use a MFS on
each bit but on a condition. As the metastability can resolve with different rates and to
different and unexpected values on each bit, some coherency problems will appear if they
re-converge later in the fan-out. Therefore, the Crossing bus must be gray coded or the
different bits must be exclusive if each bit is separately synchronized by MFS.
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τ res

tc tw
clk2

Q2

Figure 1.16: Metastability entering and resolution timings

Qualifier based Synchronizers

A qualifier is a control signal initiated in the source clock domain, synchronized by a MFS
and blocking the coming data on a blocking logical gate [6] [39] [51]. The most frequent
use of a simple qualifier is with a re-circulation mux. In Figure 1.17a, a data coming
from “src1” clocked by clk1 is crossing the clock boundary to “dest” clocked by “clk2”.
The re-circulation mux "mux_1" enables the new data when it is stable. Otherwise, it re-
circulates the old data and blocks the new one. The selection signal “s” is initiated in the
same clock domain of the crossing data and synchronized by a MFS driven by the same
clock domain as the destination [35]. In Figure 1.17b, following the red rectangle, the
rising edge of "clk1" and "clk2" happen almost at the same time while a new data is about
to be written on "Q1". The control signal at "Qff", equals to zero, blocks the new data
propagation and the old data is propagated. Then, following the green rectangle, once the
data is stabilized on "Q1", the control signal at "Qff" enables the propagation of the new
data.

src1

clk_1 clk_2ctrl

dest

mux_1

s

I0

I1D1 Q1
D2 Q2

MFS
Df f ff ff

Q D Q

(a) Structure

clk1

Q1

clk2

Qff

Q2

(b) Waveform

Figure 1.17: CDC synchronized by Qualifier

Handshaking

The handshake is a four-phase protocol used to synchronize data signals. It ensures the
data stability using a control signal “request” initiated in the source domain, and another
control signal “acknowledge” initiated in the destination domain. In Figure 1.18, the
request signal "req" is synchronized by "MFS2" and used with the acknowledge "ack" to
calculate the enable signal of the destination to propagate the data. On the other hand,
the acknowledge "ack" is synchronized by "MFS1" and used with the request "req" signal
to calculate the enable of the source flip-flop to capture the data [52]. The 4-phases
sequencing protocol is as follows :

• Phase 1 : If the data are transmitted by the source domain, request signal "req" is
sent to the destination domain through a MFS.
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• Phase 2 : Once "req" is received in the destination domain, the data read is enabled.
Then, it sends the acknowledge "ack" that must also be synchronized by MFS.

• Phase 3 : The acknowledge "ack", being asserted, deactivates the request "req" and
then data path is blocked.

• Phase 4 : Once "req" deactivated, "ack" becomes also deactivated and the protocol
waits for a new request once a new data is available.

The handshake protocol is robust and ensures that no metastability can happen on
the data path. Nevertheless, it is not adapted in the rapid applications as it deploys a
remarkable delay to read the data.
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req

MFS1 MFS2

dest

ack

EN_mux_dest
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EN_mux_src
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Figure 1.18: CDC synchronized by handshake protocol

Asynchronous FIFO

If the source clock is running faster than the destination clock, a special type of a first in
first out memory may be used to synchronize multiple CDC data paths in order to avoid
data loss and the probems related to Fast-to-Slow crossings. In Figure 1.19, the writing
is controlled by the writing address "wrt_add" initiated in the source clock domain, while
the reading is controlled by the reading address "rd_add" initiated in the destination clock
domain. The read address is gray coded and synchronized by MFS driven by the source
clock in order to be used alongside the write address to calculate the "full flag". On the
other hand, the write address is gray coded and synchronized by MFS driven by the desti-
nation clock in order to be used alongside the read address to calculate the "empty flag". In
other words, we can consider an asynchronous FIFO as a synchronization protocol/struc-
ture that contains four control signals: the read address and the empty flag to control the
data reading, and the write address and the full flag to control the data writing [6] [28].
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Figure 1.19: Asyncrhonous FIFO

1.3 CDC Verification

The multi-clock systems are the subject of many efforts and studies that aim to guar-
antee a safe communication between the different asynchronous blocks [53]. The CDC
problems are addressed at an early stage of the project’s life, starting by an effective de-
sign all the way down to the several exhaustive types of verification.

Among the design efforts, we found in [54] Andrei Ivanov proposes a new approach
for data encoding to avoid incoherency problems due to the metastability resolution in
multi-clock systems. As Gray code is known for allowing to transmit safely only adjacent
state transitions, he proposed a coding method that allows to transmit safely any counter
state jumps, limited by arbitrary predefined parameter.

Some other efforts were seen to make a CDC testable friendly designs. In [55], Nagh-
meh Karimi and Krishnendu Chakrabarty propose a methodology to locate CDC faults
and to ensure post-silicon recovery. They have used a series of HSpice simulations to
quantify the impact of process variations on timing closures. They have found high inci-
dence on the setup hold timings violation even on the paths synchronized by MFS. Then,
they proposed an approach to locate the faulty CDC by introducing some faulty patterns
and another approach to recover the timing violations by integrating external delay blocks
(buffers) to delay the clock signals by the amount of the setup timing violation. Their re-
sults show that the post-silicon CDC faults locating and tuning is effective. However,
they marked a 15% area overhead which is not negligible. A similar idea was discussed
in [56]. C. and Machado, P. and Bexiga, V. and Teixeira, J. P. and Teixeira, I. C. and Silva,
J. C. and Lousã, P. and Varela, J proposed a different methodology to test and diagnose
CDC post-silicon problems. They proposed embedding a CDC test and diagnosis struc-
ture in each locally synchronous domain using the local CDC Interface for accessing the
communication channels. The latter are executed in the test scenarios.

The problems related to CDC are the subject of many types of verification. CDC
are checked along the project’s lifetime, from RTL to post-silicon. In [57], Shubhyant
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Chaturvedi proposes a methodology to include the CDC analysis in the STA (being ini-
tially set to false path). The methodology is based on detecting all the CDC control paths,
set them into a pair of sets having the same launch and capture clocks and to calculate
the FIT (Failure In Time) to ensure that the depth of the instrumented MFS is sufficient.
This approach can be efficient if the resolution time and the number of synchronization
latches (participating in the calculation of the FIT) can be accurately and automatically
calculated or detected. This approach is also valid for the CDC control path, however, it
did not propose a similar solution for the CDC data paths. Instead, he proposed to place
uniquely named buffers, CDC marker cells, at the output of the flop launching such data
signals at the RTL stage itself. These CDC marker cells are then identified in downstream
STA runs to exclude CDC data paths.

In this thesis, we focus on the CDC verification on RTL as a standalone flow indepen-
dent of the STA. It aims to detect the CDC problems and structures early in the design
flow, even before synthesis [58] [59].

1.3.1 CDC structural verification on RTL

The CDC structural verification is a static verification that aims to detect all the CDC
paths, report whether properly synchronized or not, and finds other problems related to
CDC such as re-convergences and glitches. The three most famous EDA providers pro-
pose some effective solutions to perform this verification in an optimized way. Regard-
less to some difference in performance and logic, the different EDA tools follow almost
the same steps to perform the CDC structural verification on RTL as shown in Figure
1.24. [58] [60] [61] [26] [62].

RTL compilation and elaboration

The design comes in a Hardware Description Language (VHDL or Verilog). The compi-
lation step is the one responsible for reading the code and finding syntax and semantics
errors. Then, during elaboration, the design hierarchy is built, the parameters values are
computed and the hierarchical names are resolved.

Setup generation

The EDA tools are able to extract the important setup information and to generate a set
of constraints that guides the CDC verification later. Usually, the generated setup is not
accurate and needs some attention from the verification engineer. The constraints genera-
tion and elaboration step is one of the longest steps of the flow and is very prone to human
errors. Here are some examples of the primary constraint :

• Clock signals: all the clock signals must be properly defined as well as the different
clock domains and the relationship between these domains. Each clock signal must
be specified by a name and a source and must be associated to clock domain. All the
clock signals belonging to the same clock domain are, by definition, synchronous.
On the other hand, all the clocks belonging to different clock domains are, by de-
fault, asynchronous. The user should be able to customize the relationship between
the different clock domains.
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• Reset signals: all the reset signals must be properly defined and associated to their
respective reset domains specifying their active level. A reset ordering can also be
specified to avoid RDC problems.

• Constant configuration signals: they are the signals that must be set to a constant
value in order to put the design in a specific mode (functional or test mode). Their
job is to propagate or to block the the clock signals either on the clock multiplexers
or the enable signals of the clock gates. In Figure 1.20, if the configuration signal is
set to "0", "clk_1" will be propagated to "F2" and the data path will be synchronous.
But, if the configuration signal is set to "1", "clk_2" will be propagated to "F2" and
CDC path will appear between "F1" and "F2". The Configuration signals are a very
important element of the verification setup as they are able to add or to mask a
considerable number of CDC paths.

clk_2

clk_1

F2

mux_1

configuration signal

I0

I1

D2 Q2

F1

D1 Q1

Figure 1.20: Constraining a configuration signal

• Primary inputs/outputs: the input/output ports must be defined by their name and
clock domain. This step is very important to be able to expect the CDC paths that
happen on the boundaries of the different blocks.

• Black boxes: they are the cells with an unknown logic functionality (e.g analog
block). These cells are black boxed and only their inputs and outputs ports are
defined. Each port should be defined in terms of its type, name and associated
clock domain (see Figure 1.21).

clk_2

clk_1

data_in data_out

data_out2
Black
Box

Figure 1.21: Constraining a black box

The constraints set generated by the EDA tools and modified by the verification engineer
are usually written in a scripting language or in SDC (Synopsys Design Constraint) for-
mat. They are considered as the hypothesis of the CDC structural verification and they
restrict the behavior of the design in a specific way.

Setup verification

The setup verification aims to verify the constraints defined in the last step against some
pre-coded rules to ensure their validity. The target is to ensure that the design is :
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• Not under-constrained: the setup verification flags all the missing clocks and re-
sets definitions in case a sequential element is driven by an undefined clock or reset
signal. In addition, the setup verification flags an error in case of a unconstrained
clock mux or clock gate. In this case, a clock overlap error is flagged and a com-
posite clock, asynchronous to all the other clocks is propagated.

• Not over-constrained: the setup verification flags the contradictory multi-defined
signals. For example, if the selection pin of a clock is constrained twice to two
different values, an error is flagged and a composite clock, asynchronous to all the
other clocks is propagated. In addition, the unpropagated defined clock and reset
signals are also flagged.

A well defined setup is the key of a successful CDC verification. But, as the constraints
are very prone to human errors, the number of violations usually is unacceptable. The
number of violations can go to some hundreds of thousands for a medium size project.
The debug of these violations takes usually several months. The setup generation step is
revisited iteratively as long as there still are setup errors. Once the setup errors are all
fixed, the design and the setup are ready for the structural verification. In [63], Andrew
Cunningham and Ireneusz Sobanski propose an inter-tools methodology to reduce the
noisy results. They proposed to reuse the data (especially the clock definitions and the
configuration signals) coming from the physical implementation and the STA tools for
the CDC verification. They have shown that this method remarkably reduced the CDC
violations noise. The constraints re-usability may be a good idea to jump quickly to clean
results but its usage is always at risk. The STA constraints main focus is to propagate the
synchronous clocks in order to analyze a maximum of the synchronous paths, while the
target of a CDC verification is to propagate the asynchronous clocks in order to verify
a maximum of the asynchronous paths. Thus, the design configuration in both cases is
largely different.

Structural verification

The structural verification is based on pre-coded patterns matching to detect the CDC
models corresponding to the different synchronization schemes and CDC problems [64].
Once a CDC path is found, the different patterns are tried to be matched to find a proper
synchronizer. If no synchronizer is found, the path is reported as unsynchronized and
problematic. Here is some examples of what the structural verification is able to report as
information:

• Synchronized control paths : if a MFS is found on a control signal crossing two
defined clock domains, the path is reported as a well re-synchronized CDC path.

• Synchronized data paths : finding a synchronized data path is usually a challenge
that faces all the EDA tools. Each of them has its own approach to compromise the
difficulty of detecting a custom or a complicated sycnhronization protocol. Gen-
erally, the search is based on looking for a blocking gate, back-tracing its control
input till the first MFS. If a similar structure is found, the data path is reported well
or partially re-synchronize.

• Ignored CDC paths : Some CDC paths could be ignored due to specific constrain-
ing.
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The CDC structural verification is also meant to find all the problems related to CDC [65],
such as :

• Unsynchronized control paths : if no MFS is found on a control signal crossing
two defined clock domains, the path is reported as an unsynchronized control CDC
path.

• Unsynchronized data paths : if no pre-defined synchronization model is found
on a data signal crossing two defined clock domains, the path is reported as an
unsynchronized data CDC path.

• Re-convergence : The re-convergence of multiple signals re-synchronized each
with a MFS is reported as problematic. In Figure 1.22, as the metastability resolu-
tion time and value on "MFS_1" and "MFS_2" are unknown and may not be similar,
some coherency problems may appear as the synchronized signals re-converge later
in the fanout.

• Glitch : the combinational logic inside a CDC path is prohibited. The data should
be registered in the source domain before crossing the clock domain boundary.
In synchronous systems, the STA can ensure that a glitch is resolved before the
sampling clock edge. On the opposite side, in the case of a CDC path, no timing
check can ensure that the glitch will not be captured. In Figure 1.23, if "clk_2" is
faster than "clk_1", there will be a high risk to capture a glitch produced by the
combinational logic inserted inside the CDC path. A combinational logic inserted
inside a CDC path is considered a CDC design error that needs attention.

F1

D1
data_in[0]

data_in[1]

I

Q1

F3

D3 Q3

clk_1 clk_2

MFS_1
Df f ff ff

Q D Q

MFS_2

Df f ff ff
Q D Q

Figure 1.22: Problematic re-convergence

The detection of the different CDC data synchronizers was also discussed in [66]. M.
Kebaili, K. Morin-Allory, J.C. Brignone, and D. Borrione explain one of the limitations of
the static verification tools recognizing the custom data synchronizers. They propose an
approach able to verify a greater variety of synchronizers. They defined a set of properties
that only involve the enabling control signals, not the data, which reduces the cone of
influence considered for formal verification. This reduced remarkably the execution time
and prevents timeout and inconclusive results.

Secondary setup specification

Usually, some extra constraints are added progressively to fix some CDC errors based on
the design specification. Here are some examples of the secondary constraints set :
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Figure 1.23: Prohibited comb logic in a CDC path

• pseudo-static signals: they are the signals that never toggle except if the desti-
nation clock is blocked. In this case, even if the signal is coming from an asyn-
chronous clock domain, there is no risk a metastability can be generated. An unsy-
chronized CDC path can be just ignored if the crossing signal is constrained as
pseudo-static.

• Exclusive or Gray coded signals: to resolve the re-convergence problems, the
converging signals must be exclusive or gray coded. In Figure 1.22, if the bus
"data_in" is gray coded, even if the metastability is resolved to an incorrect value,
the data coherency will be guaranteed.

• Custom synchronizer specification: if the design includes a specific or a custom
synchronization structure that does not match any of the CDC models pre-coded in
the tools, a synchronizer can be explicitly specified. The EDA tools just skip any
check on these structures.

• False paths: the EDA tools just skip any check on any path constrained as "False
path".

The debug is a closed loop between the structural verification and the secondary con-
straints. The loop is then broken by either having no remaining CDC violations or by
waiving the irrelevant or the tolerated errors. In [67], Makam Manikya Rakshith and
Sujatha S Hiremath propose an effective pragmatic methodology for the CDC structural
verification using VC-SpyGlass. They focused on the verification three stages (setup,
integrity and structural) only on the functional mode. They have shown that their method-
ology remarkably reduced the number of false negatives in their CDC violations results.
However, excluding the test mode from the analysis risks reducing the CDC coverage.

1.3.2 CDC assertions based verification
The detection of all the synchronized and the unsynchronized paths is an essential and
relatively a non-costly task. Nowadays, due to time to market requirements, most of
the projects’ checklists require the structural verification and don’t require an exhaustive
functional verification for the asynchronous interfaces. However, just detecting the pres-
ence of the synchronization schemes doesn’t guarantee that they are really functional. The
structural verification is crucial and must be done very rigorously, but, still not enough.

The EDA tools propose a formal verification flow for all the synchronization protocols
detected by the structural verification. Every synchronizer is associated to a group of
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Figure 1.24: CDC Structural verification flow
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properties that tell if it is functioning correctly or not. These properties are intended to
be verified in a formal way using model checking, constrained by a set of assumptions
equivalent to the set of constraints used for the structural verification.

Signal stability

The data stability is the key to ensure that a CDC is safe. All the synchronization protocols
aim to guarantee the stability of the data when sampled in the destination domain.

Signals synchronized by a multi-flop synchronizer: if the destination clock is slower
than the source clock, the data can be lost. So, the data should be stable long enough for
the destination clock to be correctly sampled. In Figure 1.15a, if "clk_1" is faster than
"clk_2", "D1" should remain stable for nb_o f _cycles

nb_o f _cycles =
Tclk2

Tclk1
+1

mfs_stable : assert property
(@(posedge clk_2) disable iff (rst)
$changed (D1) |=> $stable(D1)[*nb_of_cycles]);

Signals synchronized by a qualifier based synchronizer: the qualifier should enable
the data only when stable. This implies the qualifier to be disabled every time the data
change value to ensure blocking the propagation of any metastable state. So, in Figure
1.17a, "Q1" should not change if "Qff" is enabling. This is described by the following
SVA :

dataqualifier_stable : assert property
(@(posedge clk_2) disable iff (rst)
ctrl |=> $stable(Q1));

In addition, the qualifier itself should remain stable for a certain number of clock
cycles being a signal synchronized by MFS to avoid dataloss. The number of clock cycles
nb_o f _cycles within which the qualifier should remain stable is calculated in function of
the frequencies of the source and the destiantion clocks. This is described by the following
SVA :

ctrlqualifier : assert property
(@(posedge clk_2) disable iff (rst)
$changed (ctrl) |=> $stable(ctrl)[*nb_of_cycles]);

Signals re-converging after synchronization: in Figure 1.22, the different bits of the
bus "data_in[0:n]" are synchronized separately by MFS and then re-converged on combi-
national logic. To ensure the coherency of the re-converging bits, the exclusivity of the
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different bits must be ensured. Only one bit or none of the bits should change at once.
This is described by the following SVA :

Exclusivity : assert property
(@(posedge clk_1) disable iff (rst)
$onehot0($past(data_in)^data_in));

Glitch due to combinational logic inside a CDC: In a CDC path, as the data can
be captured on the destination side at any time, glitches are more likely to be captured
especially in the case of a Slow-to-Fast crossing. The number of times the data should
toggle within a clock cycle should not exceed "1". This is described by the following SVA
:

always @(data) begin
toggle_count = toggle_count + 1;
end
always @(posedge clk_2)
toggle_count<=0;
end
glitch : assert (toggle_count<2)

In [68], Mohammad Kasim, Vrinda Gupta and Mohandas Jebin propose a structural-
formal flow to detect glitches on clock, reset and CDC paths. They generate SVA for
the paths that violate the CDC glitch static rule. The SVA is then verified by a formal
tool to confirm or to waive the violation. In [69], Ghaith Tarawneh, Andrey Mokhov and
Alex Yakovlev propose a new methodology for the CDC formal verification that models
metastability propagation. Their approach relies on substituting all the flip-flops that exist
on a CDC path by a new flip-flop model taking into account metastable and setup/hold
violation special outputs. The combinational logic inside the CDC is then doubled to test
whether it is prone to metastability propagation or not. A year later, Ghaith Tarawneh and
Andrey Mokhov published a new paper [70] where they explained their model checker
tool Xprova which was based on the CDC Formal verification using metastability mod-
eling. They have shown two concrete examples of a metastability propagation and a
potential glitch discovered verifying a test case using their new tool. We concluded that
the authors in both papers were trying to imitate as close as possible the metastability
propagation.

In the state of the art, we also found a lot of effort done in order to enhance the
CDC formal verification performance and make it more applicable in industry. In [43],
[71] and [72], the authors propose a "Counter-Example Guided Abstraction refinement
(CEGAR) where the user influences the algorithm based on information extracted from
intermediate abstract counterexamples. It is a semi-automatic verification process where
the user aids the verification process by classifying a sequence of automatically inferred
constraints. Despite of the promising results shown in the papers, this approach is still not
implemented in any verification tool and the time the iterations have taken on their test
case is still an open question that was not developed in the papers. In [73], [51] and [74],
the authors propose, what they called a "Meta-Model", enabling the extraction of a greater
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variety of synchronizers, and their associated set of properties which limit the design area
to be model checked and avoid state space explosion. The authors analyzing the root
cause of state space explosion, concluded that the properties concerning data signals are
a main cause for inconclusive results. As in CDC context the value of the data does not
matter and the toggling time is all that matters, the authors proposed a set of properties
relying only on control signals and that do not induce any check on data signals. In [75],
the authors propose a hybrid flow leveraging the formal verification as a first step for
verifying the CDC properties and passing only the remaining assertions, which could not
converge, in simulation. This approach, despite of being a good compromise, cannot be
always accepted in industry due to the unknown period the formal analysis can take to
conclude or not on large designs.

1.4 Conclusion
Synchronous circuits are widely produced nowadays by the industry and their design

and verification flows have achieved a high level of maturity. However, building an ex-
tensive SoC infrastructure while avoiding the problems of distributing a global, low-skew
clock is not possible. To meet time-to-market requirements and to handle the evolution
of the design complexity, independently clocked and powered IPs are integrated together.
This alternative, also known as Globally Asynchronous Locally Synchronous (GALS)
systems, prevents from designing large clock-trees but suffers from the loss of a global
synchronization. Therfore, data travelling from a block to another, from a clock domain
to another, is the major problem of GALS systems, what we call CDC (Clock Domain
Crossing). The multi-clock systems are the subject of several exhaustive types of verifi-
cation. The target is to ensure that asynchronous interfaces are well designed and function
correctly. The state of the art has shown that many efforts were done in the context of the
CDC design, verification and testing. However, we concluded that the CDC structural
verification flow needs to be rationalized and standardized, avoiding the deficiencies exit-
ing in the native flow. In addition, some new verification aspects, such as the semi-formal
verification and the metastability injection, will be the focus of this thesis.
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2
CDC structural verification

In this chapter, we present the improvements we developed in
order to optimize and to standardize the CDC structural veri-
fication flow. In addition, some new fields were visited, studied
and included to the reference flow such as the inclusion of the
low power logic to the RTL being verified. By the end of this
chapter, we also present a comparative analysis in order to
evaluate the most important EDA tools based on our newly de-
veloped flow and the priorities of the projects.
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2.1. Introduction

2.1 Introduction
For synchronous circuits, the STA (Static Timing Analysis) is an essential step to en-

sure that the timing closure is respected. However, in multi-clocks circuits, the STA can
not ensure the correctness of a clock domain crossing. A signal crossing a clock domain
may violate the setup/hold timings of the sampling clock in the destination domain, pro-
voking a metastability. The propagation of metastability, data loss and data corruption
or incoherency are the major consequences of an improperly synchronized CDC [76]. In
mixed signals systems, where analog and digital components co-exist, clock domains dif-
fer between the analog and the digital sections and an inaccurate analog-to-digital conver-
sion may happen due to an improper synchronization between the digital and the analog
domains. The multi-cores processors can also be an example of the systems vulnerable
to CDC problems. When each core is clocked by its own clock, an inefficient handling
of CDC in inter-core communication can lead to data incoherency impacting the parallel
processing capabilities. Generally speaking, if a metastability is generated in a system
and propagated through its combinational logic, the system is considered dead [77].

The CDC structural verification is the first safeguard against the hazards of the asyn-
chronous multi-clock systems. The static approach aims at detecting all the CDC paths
existing in a design and finding whether they are properly synchronized or not. The syn-
chronizers detection relies on synchronizers pre-coded patterns. The static tools try to
match these pre-coded patterns on each detected CDC path. If a synchronizer pattern is
matched, the CDC path is reported as properly synchronized. Otherwise, the CDC path is
reported as problematic. The structural verification cannot be done without specifying a
number of constraints, considered as the description of the critical signals and structures
of the design. In other words, the constraints files are the hypothesis of the structural
verification and have a huge impact on its results. In this chapter, we focus on enhancing
the CDC structural verification flow, so we can overcome the limitations of the existing
tools and flows and on the other hand optimizing the verification results and the time the
verification takes.

2.1.1 Design modeling
In order to understand how the design under verification is modeled by the static tools,
we can assume that the overall structural design model is defined using a directed graph
with labeled vertices G = (V,E, label), where:

• V is the set of vertices representing all the elements of the structural design

• E ⊆V ×V is the set of edges

• Label: is the labeling function, such that

Label : V → L
with L = {Lin,Lout ,Lzero,Lone,Lnot ,Land,Lor,Lseq}

where Lin labels a primary input, Lout labels a primary output, Lzero labels a constant
zero, Lone labels a constant one, Lnot labels the output of a NOT gate, Land labels
the output of an AND gate, Lor labels the output of an OR gate and Lseq labels the
output of a sequential element.
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A structural path Path(v1,v2) is a sequence of nodes representing the combinational logic
between v1 to v2.

Path(v1,v2) = (vi)i∈1...n | v1 = v1,vn = v2,∀1≤ i≤ n,(vi,vi+1) ∈ E

The CDC paths are defined using a directed sub-graph of G : Gcdc = ⟨Vseq,Ecdc,clock⟩,
where :

• Vseq ⊆V and Vseq = {v ∈V | Label(v) = Lseq} is the set of vertices representing all
the sequential elements of the design,

• Clock : is the clock domain labeling function, such that

Clock : Vseq→C
with C = {clk0,clk1, . . . ,clkn}

• Ecdc ⊆ Vseq×Vseq is the set of edges representing the existant connection between
two different sequential elements existing in two different clock domains (a CDC),
such that :

∀v1 ∈V,∀v2 ∈V,Ecdc = {(v1,v2) | Clock(v1) ̸= Clock(v2),Path(v1,v2) ̸= /0}

2.1.2 Verification modeling
The CDC verification CDCv is the process of finding all the CDC paths Gcdc and the
violated CDC properties Π∗cdc, by scanning the design G, and being guided by the design
specification Ds, the design rules Π and the CDC properties Πcdc.

CDCv : G×Ds×Π×Πcdc→ Gcdc×Π∗cdc

Assuming that A= {α1, . . . ,αn} is the set of signals of the design, the design specification
Ds is the set pairs where each signal of A is associated to a property p.

Ds = {α×{pi}i∈1...n | α ∈ A, pi ∈ {pclk, prst , pin, pout , panalog, pps, pex, pc_sync}}

where pclk is the property describing a clock signal, prst is the property describing a reset
signal, pin is the property describing a primary input, pout is the property describing a
primary output, panalog is the property describing an analog signal, pps is the property
describing a pseudo-static signal, pex is the property describing exclusive signals and
pc_sync is the property describing the CDC signals synchronized by custom synchronizers.
The set of rules Π is the set of rules that the design specification Ds should respect in order
to ensure the design integrity prior to the CDC structural verification. Some of the rules
are syntactically checked, such as the rules related the missing signals declarations. Some
other rules are semantically checked, such as the check for a potential glitch due to an
asynchronous clock enable signal. Some insights on the checked rules are given in Annex
A. The set of rules Πcdc = {π i} is the set of CDC properties that should be respected by
the different CDC synchronizers, such as gray coding for data bus synchronized by MFS.
Some insights on the set of CDC design rules are given in Annex B.

The CDC structural verification CDCv is the composition of three main functions:
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1. The Setup Specification SS: where the design specification Ds of design G is trans-
lated into a set of constraints κ understandable by the tools.

SS : G×Ds→ κ

The set of constraints κ is the union of two subsets of constraints κ = P∪S, where:

• Primary constraints P: is the set of constraints for the driving signals such as
clocks C, resets R, configuration signals N, black boxes B, primary inputs I
and primary outputs O.

P =C∪R∪N∪B∪ I∪ O
with C = {clk0,clk1, . . . ,clkn}

R = {rst0,rst1, . . . ,rstm}
N = {const0,const1, . . . ,consto}
B = {bbox0,bbox1, . . . ,bboxp}
I = {in0, in1, . . . , inq}
O = {out0,out1, . . . ,outr}

• Secondary constraints S: is the set of constraints for data signals involved
in a CDC path Ecdc and that have a specific behaviour (e.g. pseudo-static,
exclusive, etc.).

S = Ps∪Ex∪Cs

where "Ps" is the set of pseudo-static signals, "Ex" is the set of exclusive sig-
nals and "Cs"is the set of CDC signals synchronized by custom synchronizers.

2. The Setup Check SC: where the set of constraints κ is checked against the design
rules Π = {π i}. It returns Π∗ the set of violated rules and a new set of modified
constraints κ∗.

SC : G×Π×κ → κ∗,Π∗

3. The Structural verification SV : where the design G is scanned with the guidance
of the modified set of constraints κ∗, inheriting the violated setup rules Π∗ if not
corrected, and checked against the CDC design rules Πcdc. The target is to find all
the CDC paths Gcdc and the set of violated CDC rules Π∗cdc. Some insights on the
set of CDC design rules are given in Annex B.

SV : G×Πcdc×κ∗×Π∗→ Gcdc,Π
∗
cdc

To conclude, as shown in Figure 2.1, the CDC structural verification CDCv is the compo-
sition of three functions as follows:

CDCv : G×Ds×Π×Πcdc→ Gcdc,Π
∗
cdc

g,ds,π,πcdc 7→ SV (g,πcdc,SC(g,π,SS(g,ds))
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Figure 2.1: CDC structural verification process
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2.2 Flow rationalization
The CDC structural verification is the first approach adopted by the industry nowa-

days. Despite the fact that this technology is widely used and continuously improved, the
designers still suffer from the quality of its results. As seen in Chapter 1, the flow depends
to a great extent on human efforts, which makes it very prone to human errors. Optimiz-
ing and defining a reference CDC structural verification flow was the early priority of this
thesis.

2.2.1 Deficiencies of the classic flow
In order to optimize the flow, a study was made to locate the problems of the actual
classic CDC verification flow used by the CDC verification team at STMicroelectronics.
The major problem that appears with every new project was the required time for the
CDC static verification task. It could take weeks or even months to converge the number
of violations of the setup check and structural verification steps. Most of the violations
are either false negatives due to the inability of the tool to analyze a complex CDC, or
redundant violations that have the same root cause that was inherited by multiple rules
[78]. The located deficiencies of the classic flow can be summarized in the following
points.

Constraints inter-dependencies unrespected

There exists an inter-dependency between the different primary constraints P. As shown
in Figure 2.2, some constraints depend and are defined in terms of other constraints. The
only constraints that are completely independent are the clock signals C and the resets
signals R. The process of defining all the other primary constraints, such as configuration
signals N, the black boxes B and the primary inputs I and outputs O, depends on the
clocks and resets and sometimes on other constraints. For example, the primary ports
should be associated to their correspondent clock domains in order to detect the potential
CDC paths by imitating the outside conditions (clock domains). This will force the tool
to look for a synchronizer directly connected to the input port. Notice, in the following
pseudo-code, how the defined clock is used to define the primary input.

# define clock
define_clock –name [name] –source [source] –period [period]
–factor [mult./divide factor]

#define clock domain
define_clock_domain –name [name] –clocks [source]

#define input
define_input –name [input name] –port_clock [port clock
domain] –delay [associated delay]

Another example is the black boxes constraints. Each black box input/output is asso-
ciated to a propagated clock signal in order to detect the need of a synchronizer between
a source and the input of a black box, or the output of a black box and a destination. In
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Black Boxes
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reset signals

Figure 2.2: Constraints inter-dependencies

Figure 2.3, the set of constraints should be specified as follows to respect the interdepen-
dencies between the black boxes constraints and the other constraints :

# define clock_1 and its clock domain (1)
define_clock –name clk_1 –source clk_1 –period x
define_clock_domain –name clk_1 –clocks clk_1

# define clock_2 and its clock domain (2)
define_clock –name clk_2 –source clk_2 –period y
define_clock_domain –name clk_2 –clocks clk_2

#define configuration signal to propagate clk_1
define_constant –signal select –value 0

#define the black box inputs attributes (4)
define_bbox –data_input data_in –data_input_clock clk_1

As defining the black box input pin depends on the declaration and the propagation
of either clk_1 or clk_2, an error can be easily inherited if the clock signals are not well
defined or not correctly propagated (which can be the result of not constraining the select
signal of a clock propagation element).
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Figure 2.3: Black Box inter-dependent constraints

The native SS function of the industrial tools does not respect these interdependencies
and generates all the constraints simultaneously. To give a concrete example on that, let
us assume that the design specification of the design in Figure 2.4 indicates that "clk_1"
and "clk_4" belong to a same clock domain, while "clk_2" and "clk_3" belong to another.
If we apply the native SSfunction of the tool, it will generate all the constraints templates
one shot, as shown in the following pseudo-code :

# define clock signals and their clock domains
define_clock –name clk_1 –source clk_1 –period x1
define_clock –name clk_2 –source clk_2 –period x2
define_clock –name clk_3 –source clk_3 –period x3
define_clock –name clk_4 –source clk_4 –period x4

define_clock_domain –name clk_1 –clocks clk_1
define_clock_domain –name clk_2 –clocks clk_2
define_clock_domain –name clk_3 –clocks clk_3
define_clock_domain –name clk_4 –clocks clk_4

# define configuration
define_constant –signal sel –value 0/1

#define primary input
define_input –name In_1 –port_clock
{clk_1, clk_2, clk_3, clk_4}

#define black box attributes
define_bbox –data_input bb_in –data_input_clock
{clk_1, clk_2, clk_3,clk_4} –data_output bb_out1 bb_out2
–data_output_clock {clk_1, clk_2,clk_3, clk_4}

#define primary output
define_output –name Out_1 –port_clock
{clk_1, clk_2, clk_3, clk_4}
define_output –name Out_2 –port_clock
{clk_3, clk_4}

The previous native constraints template generated by the tool has considered that
all four clock signals are asynchronous (as they were declared each in a separate clock
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domain). In addition, the select signal "sel" was not properly constrained to a specific
value. This will have a huge impact on the violations count and its effect can be seen
in different aspects. First, a clock overlap violation will be flagged on the outputs of
"mux_1" and "mux_2" and two new composite asynchronous clocks (a mix of their input
clocks) will be propagated to the black box and "F2". Consequently, the input of the black
box "bb_in" will be automatically associated to these composite clocks, and the same is
applied to the two outputs "bb_out1" and "bb_out2". This will be inherited by the design
primary output "Out_1" as it will also be automatically associated to the composite clock.
Finally, as "bb_out2" is associated to the composite clock, a false CDC will be flagged
between "bb_out2" and "F2". We can conclude that one error in the declaration and the
propagation of the clock signals was inherited by the black box and all the downstream
logic. This single error was able to multiply one simple violation by two or three. All
these problems could have been avoided if the constraints were declared respecting the
interdependencies and the problems were corrected gradually.

F2
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clk_3

clk_4

bb_in bb_out1
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Out_1
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I1

mux_2sel
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Figure 2.4: Black Box inherited violations

For this reason, the CDC structural verification always suffers from the huge number
of violations to be analyzed. The CDC task for an average size design can take months
just to analyze hundreds of thousands of violations. From our experience with the differ-
ent projects, about 80% of the reported violations are always just false negatives. This
happens due to the one shot constraint generation.

Global synchronization parameters

The tool analysis is guided by some parameters that the user configures based on his de-
sign specification. The synchronization parameter is one of the configuration parameters,
responsible for specifying the minimum MFS (Multi-Flop Synchronizer) depth the tool
should accept to validate a CDC synchronizer (usually between 2 and 4). The synchro-
nization parameter relies on the MTBF calculation. Sometimes, just one global parameter
is not enough to reflect the reality of a design as the MTBF varies from one CDC path
to another based on the frequency of the source and destination clocks. Some paths may
require a deeper synchronizer than others. Specifying the minimal depth should have
been acceptable as a compromised solution except that it provokes a remarkable report-
ing problem for the deeper synchronizers. The extra flip-flop is just ignored and false
violations (such as sequential convergences) may appear.
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Exclusive, unrelated or gray coded signals detection

About 50% of the violations at structural checks stage is due to re-convergences. The
resolution time and value on each bit being unpredictable, may cause some coherency
problems if the signals are converging in their fanout. This type of violations can be
easily eliminated by constraining the converging signals as exclusive, unrelated or gray
coded. The analysis of thousands of re-converging signals and adding these constraints
one by one is a huge work that requires a huge amount of time. The tools today do not
auto-generate constraints candidates for exclusive, unrelated or gray coded signals.

The previous deficiencies accumulated degrade the quality of the results of the CDC
structural verification despite being a very expensive task in terms of time and effort.

2.2.2 A new reference flow
In the new reference verification flow, the target was to find solutions for the deficiencies
mentioned above and to implement an automated robust flow (a set of scripts under a kit)
that does not require a lot of knowledge from its user. The ease of use, the portability,
noise reduction and the quality of results were the main objectives of this work.

Primary constraints hierarchical prioritization

The first step to reduce the results noise and the huge number of false negatives was the
hierarchical prioritization of the specification of the different constraints. As shown in
Figure 2.2, some constraints depend or re-use others. The configuration signals usually
configure clock and reset multiplexers selection pins, clock gates enable signals or even
the primary ports driving a particular functional or test mode. The propagated reset and
clock signals are then associated to black boxes’ data pins and the design’s primary input
and output ports. We can set a general rule that states that constraints should be specified
starting by the physical fanin to the physical fanout of any design. The well defined
constraints on the fanin should not cause a problem if propagated or reused in the fanout.
For that we propose the new Primary Setup Specification function to generate only the
primary constraints in a pragmatic way that respects the interdependencies. "PSSnew" is
the composition of a number of sub-functions.

PSSnew : G×Ds → P

ConstraintClkRst : G×Ds→C×R×Ds
ConstraintCon f ig : G×Ds×C×R→ Ds×C×R×N

ConstraintBBox : G×Ds×C×R×N→ Ds×C×R×N×B
ConstraintInOut : G×Ds×C×R×N×B→ Ds×C×R×N×B× I×O

P =C
⋃

R
⋃

N
⋃

B
⋃

I
⋃

O

The function "ConstraintClkRst" is where the clock and the reset signals and domains
are extracted from the design specification and translated into a number of definitions
(constraints C and R) understandable by the tools.

As the configuration signals "N" are the constant signals responsible for propagating
the clock and the reset signals, "ConstraintCon f ig", where the configuration signals are
defined, should be executed after "ConstraintClkRst".
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The "ConstraintBBox" function defines the peripherals of black boxed logic (hidden
from the CDC analysis), such as the analog parts of a design. These peripherals are asso-
ciated to the different propagated clocks and resets by the constant configuration signals.
That explains the input parameters of "ConstraintBBox" to be "Ds,C,R,N".

Finally, as the different primary inputs "I" should also be associated to clock domains,
and as the different primary outputs "O" are affected by all the propagated signals, "I"
and "O" should be defined at the end of the process using all the previously generated
constraints as shown in function "ConstraintInOut".

Secondary constraints auto-generation

We separated the specification of the secondary constraints in a new function SSS. This
new function aims at explicitly constraining the synchronization cells in terms of their
source and destination flip-flops and to find easily exclusive, gray coded and unrelated
signals. The industrial tools nowadays does not have the capability to generate these
constraints automatically. However, with some workaround, they could be able to. If the
static verification tools are already able to detect CDC paths and re-convergences, they
may be able to propose the constraints to eliminate them by being re-fed the results they
provide. As the structural verification function SV returns the set of violated rules Π∗cdc
and the CDC paths Gcdc. SSS takes these latter as inputs and returns a set of synchronizers
Cs and the set of exclusive signals Ex able to empty Π∗cdc.

SSS : Gcdc×Π∗cdc→Cs×Ex

Including SSS in the verification flow, we were able to auto-generate constraints templates
to specify the CDC synchronizers and exclusive CDC signals.

• Automatic generation of the synchronization cell constraints: the idea was to
launch a first structural verification SV configuring the global synchronization pa-
rameter to a very large number (larger than four). This parameter specifies the
minimum synchronizer depth the tool should accept. Doing so and launching SV ,
the tool reports all the CDC paths as unsynchronized (SV returns a Π∗cdc full of
violated rules). These reports can be used or re-fed to SSS so that it proposes the
adequate constraints to eliminate these violations and returns. The adequate con-
straints in this case are the synchronization cell constraints Cs specified for each
CDC in terms of its source and destination flip-flop and their respective MFS depth
as follows :

cdc_sync_cell -name [name] -from [source] -to [destination]
-depth [MFS depth]

The latter constraint is then generated automatically and exhaustively for all the
CDC paths reported by the tool. The global synchronization parameter is then
reset to a normal value (typically between 2 and 4) to continue the verification
flow. These constraints can then help the user to detect and solve the sequential
re-convergence problems appearing on the deeper synchronizers.
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• Automatic generation of exclusive, unrelated and gray coded signals: the same
concept can be applied to auto-generate the exclusive, unrelated and gray coded sig-
nals constraints. The tool detecting all the re-convergence violations, can be re-fed
to generate candidates for the exclusive signals constraints Ex that may eliminate
them. In this case, the tool generates the following constraint for all the detected
re-convergences :

exclusive -signals [{converging signals set}]

The idea of the new flow is to generate the set of primary constraints P in a more
pragmatic way (procedure PSSnew) respecting the inter-dependencies between its different
constraints. And then, in order to eliminate the inherited problems that increases the
number of redundant violations, each set of generated constraints is verified against their
corresponding rules before generating the next set (see code below line 1-27). On the
other hand, procedure SSS (line 30) can overcome the limitation of the tool not being
able to generate automatically the secondary constraints set S. A structural verification
is performed and then the tool is re-fed its own reports in order to generate templates for
synchronizers and exclusive signals. The flow finally keeps the same shape with the four
main steps (line 42-62), performing each of them with more precision.

1 #New Primary Setup Specification PSSnew
2 procedure PSSnew(G, Ds, Π)
3 #Step 2.A.1 : clocks "C" and resets "R" generation
4 C,R ←− ConstraintClkRst(Ds)
5 #Step 2.A.2 : clocks and resets check and modification
6 C∗,R∗,Π∗C,R ←− SC(G, ΠC,R, C,R)
7 while (Π∗C,R ̸= φ )
8 C∗,R∗ ←− Modify_ConstraintClkRst(Ds,C∗,R∗,Π∗C,R)
9 C∗,R∗,Π∗C,R ←− SC(G,ΠC,R,C∗,R∗)

10 #Step 2.B.1 : configuration signals "N" generation
11 N ←− ConstraintConfig(Ds,C∗,R∗)
12 #Step 2.B.2 : configuration signals check and modification
13 N∗,Π∗C,R,N ←− SC(G,ΠC,R,N ,C∗,R∗,N)
14 while (Π∗C,R,N ̸= φ )
15 N∗ ←− Modify_ConstraintConfig(Ds,C∗,R∗,N∗)
16 N∗,Π∗C,R,N ←− SC(G,ΠC,R,N ,C∗,R∗,N∗)
17 #Step 2.C.1 : Black Boxes "B" generation
18 B ←− ConstraintBBox (Ds,C∗,R∗,N∗)
19 B∗,Π∗C,R,N,B ←− SC(G,ΠC,R,N,B,C∗,R∗,N∗,B)
20 #Step 2.C.2 : Black Boxes check and modification
21 while (Π∗C,R,N,B ̸= φ )
22 B∗ ←− Modify_ConstraintBBox(Ds,C∗,R∗,N∗,B∗)
23 B∗,Π∗C,R,N,B ←− SC(G,ΠC,R,N,B,C∗,R∗,N∗,B∗)
24 #Step 2.D.1 : Primary Inputs "I" and Outputs "O" generation
25 I, O ←− ConstraintInOut(Ds,C∗,R∗,N∗,B∗)
26 P = C∗

⋃
R∗

⋃
N∗

⋃
B∗

⋃
I
⋃

O
27 return P
28
29 #Secondary Setup Specification "SSS"
30 procedure SSS (Gcdc, Π∗cdc)
31 #check the type of the violated properties in Π∗cdc
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32 foreach p in Π∗cdc
33 #missing synchronizer
34 if (type(p)==pcdc)
35 Cs ←− propose_synchronizer(Gcdc)
36 #reconverging CDC paths
37 else if (type(p)==pconv)
38 Ex ←− propose_exclusive(Gcdc)
39 S = Cs

⋃
Ex

40
41
42 #NEW CDC STRCUTURAL VERIFICATION FLOW "CDCv_new"
43 procedure CDCv_new (G,Ds,Π,Πcdc)
44 #Step 1 : Design compilation and Elaboration
45 DesignRead (G)
46 #Step 2 : Primary constraints generation "PSSnew"
47 P = PSSnew(G,Ds,Π)
48 #Step 3 : Setup Check "SC"
49 k∗,Π∗ ←− SC(G,Π, P)
50 while (Π∗ ̸= φ )
51 k∗,Π∗ ←− SC(G,Π, k∗)
52 #Step 4 : Secondary Setup Generation "SSG"
53 #synchronizer depth parameter "sync_depth" configured to

number larger than 4
54 sync_depth = 100
55 #Structural verification : detection of CDC paths and re -

convergences
56 Gcdc, Π∗cdc ←− SV (G,Πcdc,k∗,Π∗)
57 S = SSS(Gcdc, Π∗cdc)
58 K∗ = K∗

⋃
S

59 #Step 5 : Global structural check
60 Gcdc, Π∗cdc ←− SV(G,Πcdc,k∗,Π∗)
61 return Gcdc

The chart in Figure 2.5 represents the different steps of the flow. The flow still keeps
its four main steps: compilation, constraints generation, constraints check and CDC struc-
tural check with more sub-steps for each of them. After step 1, where the design is com-
piled, the constraints generation is done following four sub-steps :

• Constraints generation #1 (step 2.A): clock and reset constraints are generated
(step 2.A.1). Then, a setup check, limited by the check rules that concern only the
clock and the reset signals is performed (step 2.A.2).

• Constraints generation #2 (step 2.B): once the clock and the reset signals are
validated by the reduced setup check done previously, a new set of constraints, that
concern the constant configuration signals is generated (step 2.B.1). Then, same as
before, the reduced setup check against the rules that concern the constant signals,
the clocks and the resets propagation is performed (step 2.B.2).

• Constraints generation #3 (step 2.C): Once the latter reduced setup check is done
and all the violations are eliminated by refining the concerned generated constraints,
the black boxes constraints are generated and associated to their corresponding
clock domains (step 2.C.1). Then, the reduced setup check is performed to check
the validity of the specified black boxes attributes (step 2.C.2).

• Constraints generation #3 (step 2.D): Once all the previously generated con-
straints are validated, in step (2.D.1), we generate the last set of primary constraints
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which is the input and output ports associated to their correspondent clock domains.

Finally, a global setup check across all the setup rules is performed to ensure the
harmony of all the specified constraints. Once the global setup check is done, the envi-
ronment is ready for a CDC structural check. In our new flow, the CDC structural check
is done following three sub-steps to assist the tool in the generation of the secondary
constraints.

• Structural check (4.A): In this step, we configure the global synchronization pa-
rameter to a very large number (larger than 4) then we run a structural check en-
abling only the rules to detect CDC paths. In this case, the tool reports all the CDC
paths regardless of being synchronized or not. The detected CDC paths are then fed
to a number of scripts that generate a constraints file that contains a detailed spec-
ification of the synchronizers of these CDC paths in terms of their depths, sources
and destinations. The generated constraints should be compared to the design spec-
ification to keep only the relevant ones.

• Structural check (4.B): The same concept is applied running a structural check,
but this time, enabling only the rules to detect re-convergences. Some scripts assist
the tool by analyzing these re-convergence violations and generating a constraints
files with all the exclusive, unrelated or gray coded constraints to eliminate these
violations. The generated constraints are then compared to the design specification
and only the relevant ones are kept.

• Structural check (4.C): the final structural check is done across all the CDC rules.

The last structural check can be iterated many times to solve the remaining violations with
extra secondary constraints (step 5) or by waiving others. The latter flow was developed
in a set of scripts integrated in a "STMicroelectronics Kit" that abstract the normal user
commands with a set of easy linux commands. The "Kit" is actually available to all the
verification engineers to be used for any of their projects.

2.2.3 Results

We applied the new flow to our CPU subsystem test case using one of the CDC static
verification tools. As shown in table 2.1, the number of setup violations we analyzed
using the new reference flow are about 14% of the number of setup violations we analyzed
using the classic flow. We also observe a remarkable reduction in the number of structural
analysis violations. About 75% of the noisy results disappeared using the new reference
flow. We can say that with the new flow we analyzed a total of 20% of the violations
we have analyzed using the classic flow to reach the same results. The verification time,
being directly proportional with the number of violations to be analyzed, was also divided
by four. As seen in the last column, both flows detected finally the exact same number of
CDC paths. This means that the new flow did not mask any true violation, otherwise, it
could not have detected the same number of CDC paths.
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Figure 2.5: New CDC verification flow
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Category #analyzed setup #analyzed structural #detected

violations violations CDC paths

#Classic flow 1780 6204 8365

#New Flow 250 1600 8365

Tab. 2.1: Classic flow vs. new flow results

2.3 UPF-Aware flow
The second aspect that needed attention to enhance the CDC structural verification

was the UPF-aware flow. A design that includes multiple power and voltage domains is
the subject of a dedicated static verification called "The Low Power Verification" [79] [80]
[81]. The main target of this verification is to check for architectural errors related to low
power design and violations related to the UPF specification [82]. The multi-voltage and
multi-power domains aspect can affect the CDC verification, and ignoring it risks to hide
a lot of CDC problems. In this section, we explain the relationship that exists between the
low power logic and the CDC problems and our approach to combine the CDC and the
low power verification [83].

2.3.1 Introduction
The UPF (Unified Power Format) is a standard format to describe all the power and volt-
age domains of a design [84] [85]. The UPF file is used to instrument the netlist with
the necessary low power components during the synthesis phase. The following is an
extracted example of the UPF file :

#Create power domains
create_power_domain pd_top -scope
create_power_domain pd_aon -elements {}

# Isolation strategy
set_isolation isol_clamp_sig
set_isolation_control isol_clamp_sig

# Level Shifter strategy
set_level_shifter LtoH_sig

Adding these components may result in functional errors and some of them are re-
lated to CDC [86]. An added low power component may corrupt an already synchronized
path or create a new CDC path. A UPF aware CDC verification on RTL can detect this
kind of problem at an early stage giving a higher quality and coverage [87]. The devel-
opment of a UPF-aware flow was one the first priorities of the CDC verification team at
STMicroelectronics. In this section, the CDC related problems due to the insertion of
the power management cells as well as the proposed verification flow to overcome these
problems are discussed. The results have shown that a number a CDC problems was

53



Chapter 2. CDC structural verification

masked applying a verification flow that ignores the power management. Ignoring the
power management control logic may introduce CDC bugs only detectable at Gate Level
Simulation.

2.3.2 Challenges related to the insertion of the power management
cells

The insertion of the power control logic is a challenge from a “CDC verification” point of
view. Problems, such as glitches, new CDC paths or corrupted synchronizers, are prone to
be masked when verifying CDC without considering the power management components.
We started by studying the interdependence between the power control logic and the CDC
verification. From what we have seen in the literature [88] [89] [90], we considered that
the following three are the major challenges that relate the CDC verification to the power
management.

• Level shifter inserted on a clock path :
A level shifter is used to change the voltage level of a signal crossing two different
voltage domains. The inserted level shifter can raise or reduce the voltage level of
that signal depending on the voltage level of the destination domain with respect to
the voltage level of the source domain [17]. The timing characterization of the level
shifter depends on the functional ambient conditions (temperature, voltage, etc.). If
inserted on some critical paths, the timing closure may not be satisfied due to the
non deterministic clock transitions as the limited characterization precision involves
a clock phase uncertainty. As the clock phase cannot be predicted and changes
dynamically, crossing a level shifer, the output clock can become asynchronous
to the input one. Figure 2.6 shows two flip-flops existing in two different voltage
domains and clocked by the same clock. A level shifter must be placed on the data
path as well as on the clock path. As the delays introduced by the level shifter on
the clock path depend on widely variable parameters, they cannot be fully expected
or covered during the static timing analysis (STA). This may lead to an unexpected
timing behavior that resembles the timing challenges on a CDC path (setup/hold
violation).

Figure 2.6: Level shifters placed on signals crossing power domains

• Isolation cell asynchronous enable signal :
Isolation cells are placed at the inputs of the activated power domains to prohibit
the logic coming from a shutdown power domain from driving active logic. The
insertion of an isolation cell enabled by an asynchronous clock may create a new
CDC path between the isolation cell enable signal and the destination flip-flop. In
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Figure 2.7, the AND gate is an isolation cell that blocks the data transferred by
“F1” when the power domain “PD_1” is off. The logic driving the isolation cell
should be placed in the active power domain. As the isolation cell enable signal
“EN” is driven by a different clock domain, a new CDC path will appear between
the isolation cell enable signal “EN” driven by “clk_2” and “F2” driven by “clk_1”.
The behaviour of the isolation cells enable signals is often described as pseudo-
static because usually the designers ensure that they never toggle if the destination
clock domain is active.

Figure 2.7: Isolation cell driven by an asynchronous enable signal

• Isolation cell inserted inside a CDC path :
An isolation cell inserted inside a synchronized CDC may be problematic. Addi-
tional combinational logic between a source flip-flop and a multi-flop synchronizer
is a high risk glitchy structure and can propagate unexpected values [91]. In Fig-
ure 2.8, the multiplexer acting as an isolation cell being inserted on a synchronized
CDC path should not be allowed.

Figure 2.8: Isolation cell inserted inside a CDC path

2.3.3 UPF-aware CDC verification flow on RTL
As the instrumentation process usually happens during the synthesis phase, all the pre-
viously discussed CDC problems related to the insertion of the power management logic
appears while verifying CDC on GLN (Gate Level Netlist). This requires modifying the
RTL, re-synthesizing and re-verifying the CDC aspects at gate level. This process is
costly in terms of time (number of iterations) and resources and can be avoided if the
UPF is considered in the CDC verification on RTL. The verification engineer should load
the UPF file during the design compilation/elaboration phase. The structural verification
tool can instrument the design with the necessary power logic cells. This additional logic
is then taken into consideration for the CDC structural verification. The problem is that
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the tools do not consider, by default, a level shifter placed on a clock path. Therefore,
the crossing shown in Figure 2.6 is considered synchronous by default even though the
UPF is loaded. To create a UPF aware CDC verification flow on RTL, we identified two
essential steps to be added to the original flow:

• The identification of the level shifters placed on clock paths :
Using an open Tcl tool, we developed a Tcl script to parse the design and list all the
level shifters placed on clock paths. Then, a custom tag “SETUP_LS_CLK_UNDEFINED”
is developed to warn the user about a potential missing new clock declaration at the
output of each of these level shifters. The severity of this custom tag is set to “er-
ror”.

• The identification of the enable signals of the isolation cells :
As illustrated previously, the asynchronous enable signals of the isolation cells may
add new CDC paths. Using an open Tcl tool, we developed a Tcl script to parse the
design and list all the enable signals of the isolation cells. This report is important
to identify the potential missing synchronizers or pseudo-static constraints related
to the insertion of the power management cells.

Figure 2.9 shows the new UPF-aware flow on RTL. The orange sections mark the new
added steps to the classic flow. In step "1", the UPF is read alongside the RTL in the com-
pilation elaboration phase so that the verification tool can instrument the design with the
low power logic based on the power and the voltage domains defined in the UPF. In step
"2", a number of Tcl scripts assists the constraints generation phase to detect the different
low power logic cells (Level sifters, isolation cells,. . . ) and proposes two new constraints
candidates files. The newly generated constraints concern the clock signals declaration at
the output of all the level shifters that are instrumented on clock paths (see Figure 2.6),
and the enable signals of the isolation cells that may contribute to some additional CDC
paths proposing to constrain them as pseudo-static signals (see Figure 2.7). Finally, in
step "3", the setup check takes into account the newly generated constraints and flags all
the missing clock declarations at the output of the level shifters placed on clock paths with
our new custom tag “SETUP_LS_CLK_UNDEFINED”.

2.3.4 Application and results

We applied our proposed flow to our CPU-subsystem test case. Our CPU-subsystem ver-
ification environment was built using a commercial CDC static verification tool. Loading
the UPF and adding our custom scripts to the verification environment, we found that
twelve level shifters were found on clock paths. The new custom error tag “SETUP_LS_C
LK_UNDEFINED” is flagged twelve times to warn the user about a potential missing new
clock declaration at the output of each of the detected level shifters. The structural veri-
fication differential results are shown in table 2.2. The “CDC_UNSYNC_NOSCHEME”
tag reports the unsynchronized CDC paths. The UPF-aware verification reports twenty-
two more unsynchronized CDC paths, which would have been missed if the UPF had not
been included in the verification flow.
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Figure 2.9: UPF-aware CDC verification flow
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Detected violation Classic flow UPF-aware flow

SETUP_LS_CLK_UNDEFINED 0 12

CDC_UNSYNC_NOSCHEME x x+22

Tab. 2.2: UPF-Aware CDC Verification Flow Results

2.3.5 Conclusion
Designers face challenges due to the impact of the insertion of the power management
cells on CDC paths. The CDC verification on RTL should be aware of such problems and
report them at an early stage in the design cycle. A UPF-aware CDC verification at RTL
guarantees higher QoR and coverage. Our test case proves that a lot of CDC issues would
have been masked if the power management was not considered for the CDC structural
verification on RTL.

2.4 Evaluation of the industrial tools
The EDA tools providers propose different technologies for the CDC verification.

This technology appeared twenty years ago, even though, we still see sometimes great
deficiencies in the proposed technologies. Therfore, we used our test case and the new
optimized flow to rigorously compare the performance of these technologies.

2.4.1 Previous comparative anaylsis
There was an attempt to make a comparative analysis in 2015 by a previous PhD student,
Mejid Kebaili, in the same domain [73]. His study was based on 6 criteria :

• Clock Check (CC): the detection of the clock signals and domains.

• Structural Check (SC): the detection of the different types of synchronizers.

• Formal Properties (FP): the formal properties the tools are able to generate.

• Formal Check (FC): the quality of the results performing the functional check
using the CDC tool.

• Tools Parameters (TP): the number of parameters to tune in each tool.

• Environment Setup (ES): the number of constraints to use to have acceptable re-
sults.

Table 2.3 shows the results obtained by Mejid Kebaili published in his thesis [73].
We can see that five tools participated to the evaluation. "Tool 1" and "Tool 2" are very
close in terms of total score, while the other three tools have a significant score gap. The
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evaluation of each criteria is given one of three grades: (OK) means that the criteria is
fully covered, (POK) means that the criteria is partially covered and (NOK) means that
the criteria is not covered. Mejid Kebaili concluded that all the tools still present some
deficiencies regarding the different CDC verification aspects, that tools 3,4 and 5 still need
a lot of improvement and that only tool 1 and 2 can be considered reliable [73].

1 2 3 4 5 6 7 8

tools CC SC FP FC TP ES Total

Tool 1 POK POK POK OK 51 58 109

Tool 2 POK POK POK OK 39 65 104

Tool 3 NOK NOK POK POK 20 63 83

Tool 4 NOK POK POK N.A. 27 N.A. 27

Tool 5 NOK POK POK POK. 17 63 80

Tab. 2.3: Previous tools evaluation results

2.4.2 Evaluation aspects
Between 2015 and 2021, the static verification tools have remarkably evolved and new
technologies were developed to assist the CDC verification flow. The inclusion of AI (Ar-
tificial Intelligence) to process the results and the possibility to verify the complex designs
in a hierarchical way are among the most noticeable improvements. We decided to revisit
the static tools evaluation with a new and exhaustive criteria list. The specified criteria
were added based on the main needs of the verification team at STMicroelectronics, the
new features proposed by the different tools providers and the new needs we encountered
developing our new verification flow.

Our new criteria list has a total of 114 criteria. The weight of each criteria depends
mainly on its location in the CDC verification flow, the number of its dependencies and its
importance to the verification team. The criteria are classified into the following twelve
categories:

1. Constraints Setup Generation (CSG): The ability of the tool to detect and gener-
ate the different setup constraints able to precisely describe the design. The granu-
larity of the different commands options is taken into account in this section. The
CSG category includes 12 criteria describing in detail how the tool should detect
and specify clock, reset and data signals.

2. Constraints Setup Specification (CSS): The different options the tool provides the
user to constrain his design. In other words, the constraints set the user can use to
precisely describe his design. The CSS category includes 39 criteria describing in
detail all the constraints that may be needed to describe the different signals and
synchronizers.

3. Constraints Check Verification (CCV): This includes the set of rules Π to be
checked in order to detect over-constraining and under-constraining, as well as the

59



Chapter 2. CDC structural verification

wrongly specified configurations such as clock and resets overlapping. The CCV
category includes 12 criteria.

4. Constraints Check Information (CCI): The reports the tool is able to provide
following a setup check. The CCI category includes 5 criteria including clock and
reset matrices.

5. Structural Checks Verification (SCV): This includes the set of rules Πcdc to be
checked to detect the unsychronized CDC control, data and reset paths. In addition,
the problems related to CDC such as re-convergences and glitches are taken into
account. The SCV category includes 7 criteria.

6. Structural Checks Information (SCI): The reports the tool is able to provide fol-
lowing a structural check. The CCI category includes 6 criteria including CDC
matrices and CDC paths ignored due to a constrained pseudo-static signal.

7. Formal Verification Verification (FVV): The ability of the tool to generate the
properties that correspond to the detected synchronized and unsychronized CDC
paths and the assumptions that correspond to the set of constraints targeted for the
formal verification. The FVV category includes 8 criteria that summarize the com-
plete set of properties and assumptions the tool should be able to generate.

8. Formal Verification Information (FVI): the 4 criteria in this category evaluate the
performance of the static tools formal engine and the quality of reporting it is able
to provide in case on an inconclusive result.

9. Semi-Formal Verification Verification (SFVV): The ability of the tool to gener-
ate the properties that correspond to the detected synchronized and unsychronized
CDC paths and the assumptions that correspond to a set of constraints targeted
for the semi-formal verification (dynamic simulation). In addition, the quality of
the generated metastability injectors and their coverage is taken into account. The
SFVV category includes 6 criteria that summarize the complete set of properties
and assumptions the tool should be able to generate.

10. Semi-Formal Verification Information (SFVI): the 4 criteria in this category eval-
uate the quality of reporting the generated assertions and their coverage.

11. Hierarchical Model Generation (HMG): The ability of the tool to generate a CDC
model for each subsystem. The HMG category includes 9 criteria that summarize
the set of attributes that a tool should provide to define a CDC model.

12. Hierarchical Model Verification (HMV): the 2 criteria in this category check
whether the tool is able to make a bottom-up or a top-down analysis. The bottom-
up hierarchical analysis starts by verifying each subsystem, then to generate a CDC
model for each of them and to integrate all the CDC models to have a CDC ab-
stracted view of the SoC top. On the other hand, the top-down starts by generating
the setup on SoC level and then associating it to the different subsystems.

The number of criteria per section is listed in Table 2.4 below.
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Category CSG CSS CCV CCI SCV SCI FVV FVI SFVV SFVI HMG HMV

#criteria 12 39 12 5 7 6 8 4 6 4 9 2

Tab. 2.4: List of criteria of the CDC static verification tools

2.4.3 Evaluation results

We decided to start our evaluation from where Mejid Kebaili has ended his. The decision
was taken to re-evaluate only the top three tools in this new evaluation. Unfortunately, we
succeeded to obtain only two tools’ licenses. This is why our evaluation was limited only
to the top 2 tools of the study of Mejid. The evaluation was done using the same test case
(our CPU-subsystem) and following the new structural verification flow explained early
in this chapter.

The different criteria were weighted based on the priorities and the needs at STMi-
croelectronics. As the structural verification is the main approach adopted for the CDC
verification, the different criteria in this category had a weight of four or three. The cri-
teria in the formal and the semi-formal categories had a weight of two or one because
both approaches are still rarely used for the CDC verification. the criteria of the hierarchi-
cal verification had a weight of two or three, as the approach strated to be used in many
organizations.

The results shown in Figure 2.10 show a very close score between both tools in many
categories. The only remarkable differences can be seen in the CSS, CCV and the SFVV
categories. Tool 1 outstands tool 2 in the structural categories. The constraints set pro-
vided by Tool 1 are more covering with respect to the different design aspects, compared
to Tool 2 which lacks some important specifications options. We also noted that Tool
1 had a better synchronizers detection approach than Tool 2 which wrongly clustered a
number of the synchronizers in our test case. On the other hand, Tool 2 outstands Tool 1
in the semi-formal category. Tool 2 had the ability to generate more reliable and covering
assertions, targeted for simulation, than Tool 1. Another break point is the compatibility
of the generated assertions with the third party simulation tool used by STMicroelectron-
ics. Using a third party simulator, we lose some paths coverage (the CDC tools cannot
create the hierarchical path of a generate block for a third-party tool). The assertions cov-
erage we lost using Tool 2 was less important than the coverage loss using Tool 1. This
aspect was given a heavy weight relative to its importance to the team.
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Figure 2.10: Tools evaluation results by category

The overall score shown in Figure 2.11 shows that in general Tool 1 meets more the
actual industrial expectations than Tool 2. While Tool 2 has the advance in the semi-
formal categories, the structural verification is still the lead approach used for the CDC
verification and the most important signoff method. Finally we can conclude that our
study and the one done in 2015 by Mejid Kebaili reached the same general conclusion,
with a slight precision from our side on the semi-formal aspect.

Figure 2.11: Tools evaluation overall results

2.5 Conclusion
For synchronous circuits, the STA (Static Timing Analysis) is an essential step to en-

sure that the timing closure is respected. However, in multi-clock circuits, the STA cannot
ensure the correctness of a clock domain crossing. The CDC structural verification is the
first safeguard against the hazards of asynchronous paths. It aims at detecting the CDC
paths of the verified design and to ensure the presence of proper synchronizers. Being the
most, and maybe the only, adopted approach by the industry for CDC verification, study-
ing and enhancing the structural verification flow was our priority. This chapter has three
main axis. The first axis was the development of a new structural verification flow able
to overcome the deficiencies existing in the original flow. Our proposed flow was based
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on respecting the interdependencies between the different constraints and to re-feed the
tool its own reports in order to automate some constraints generation. The new flow pre-
sented also a pragmatic approach verifying the different design and CDC rules in order
to enhance the tools’ violations reporting and to limit the number of false positives and
negatives. Applying our proposed flow to verify our test case, about 75% of the noisy
results disappeared. The second axis was the inclusion of the low power management
logic to the CDC verification flow. A design that includes multiple power and voltage
domains is the subject of a dedicated static verification called "The Low Power Verifica-
tion". The main target of this verification is to check for architectural errors related to low
power design and violations related to the UPF specification. Studying the effect of the
low power management logic on the CDC aspects, we concluded that it could corrupt an
already synchronized CDC or even create new ones, and ignoring it risks hiding a lot of
CDC problems. To address this problem, we developed the "UPF-Aware CDC verifica-
tion flow". The idea of this new flow is to include the UPF file to instrument the verified
design with the low power management logic. The focus was to update the tools to con-
sider new clock declarations on any level shifter inserted on a clock signal, and to detect
the potential asynchronous control signals controlling isolation cells. Applying this flow,
we were able to see more CDC paths than those detected applying the original flow. The
last axis was the evaluation of the different CDC static verification tools of the market.
The assessment has shown that the tools are still not able to cover all our expectations and
the requirements of the CDC verification.
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3
CDC Semi-formal verification

This chapter advocates enhancing Clock Domain Crossing
(CDC) verification by combining structural verification with
assertions-based approaches. The new approach, the CDC
semi-formal verification, aims at bridging both static CDC
verification and the dynamic functional verification in order
to enhance the CDC verification’s quality of results. The first
section explores CDC semi-formal verification, demonstrating
100% assertion coverage and the discovery of previously unde-
tected bugs. The second section proposes solutions to deficien-
cies in the semi-formal flow, including a generalized method
for verifying CDC data synchronizers using "The Universal
Qualifier." The third section introduces the "Hybrid Flow,"
leveraging semi-formal verification to both complement and
assist CDC structural verification during the setup phase. Re-
sults reveal the effectiveness of the hybrid approach and em-
phasize an iterative strategy for coherent clock propagation.
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3.1 Introduction
The nightmare of metastability is a direct implication of multi-clock designs. It was

a phenomenon discovered decades ago and if propagated can lead to what so-called dead
system. Synchronizer design and verification has a first target to ensure that metastabil-
ity can be properly blocked. The CDC structural verification, which aims to detect the
presence of these synchronizers, is an important and fast approach to reach this target.
However, the technology still holds a number of limitations that affects remarkably the
quality of the obtained results and that leaves a back-door for bugs to remain hidden till
the silicon stage.

In this chapter, we discuss the limitations of the CDC structural verification and revisit
the CDC assertions-based verification being a complementary analysis able to overcome
these limitations. We have chosen the semi-formal approach to verify these assertions
relying on high coverage functional verification environment. Our approach aims at con-
structing a bridge between the CDC verification and the dynamic functional verification,
two completely independent activities in the industry nowadays. We will show some ex-
amples of CDC bugs found by this new approach that could have not been discovered by
the structural verification alone. Assessing the first application of the semi-formal flow,
we identified two development areas. The first was the problem of detecting complex
synchronizers and generating reliable properties for them. For that, we propose a generic
model for the protocols-based synchronizers and the new concept of The Universal Qual-
ifier, which is able to verify all synchronizers regardless to their type. The second area
was the need to have a robust and a reliable flow to constraint the clock tree and to accel-
erate the setup phase of the structural verification. For that, we present the Hybrid Flow to
show how the CDC semi-formal verification can assist the structural verification in what
concerns it.

3.1.1 CDC structural verification limitations
The CDC structural verification, despite of being a very important step for detecting CDC
bugs, is not enough to ensure the validity of a design. The absence of a synchronizer
implies a strong probability that a metastability can be generated and propagated; while
the presence of these synchronizers does not necessarily implies the immunity of this
design against metastability propagation. Limiting the CDC verification to the structural
checks is simply taking a huge risk to miss a fatal bug. The limitations of the CDC
structural verification relies in the fact that the static checks are :

1. Constraints based static checks : The set of constraints specified at the beginning
of the structural verification flow is a very important dependency on which relies the
quality of the CDC structural checks. The clock signal propagation is a very simple
example that shows how critical a wrongly specified constraint can be. In Figure
3.1, the configuration signal must be constrained to either zero or one in order to
propagate either "clk_1" or "clk_2". If the configuration signal is constrained to
zero, "F2" will be clocked by "clk_1" and the path "F1" to "F2" will be reported
as synchronous. If the configuration signal was intended to be constrained to one
and it was constrained to zero, which means that "F2" is intended to be clocked by
"clk_2" and not "clk_1", the analysis of the "F1" to "F2" path, which is in this case
an asynchronous and unsynchronized path, will be skipped because it will be seen
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as a synchronous path. As the constraints generation and specification is a process
that mainly depends on the experience and the talent of the engineer writing them,
the flow can be very prone to human errors.

clk_2

clk_1

F2

mux_1

configuration signal

I0

I1

D2 Q2
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D1 Q1

(2)

(3)
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Figure 3.1: Constraining clock propagation control signals

Indeed, the constraints are taken blindly by the the static tools. Nowadays, it exists
no technology in order to double check these specified constraints with any pre-
defined reference. In order to imagine how critical this can be, look at Figure 3.2.
If the "F1/Q1" is constrained as pseudo-static, under the assumption that "clk_2"
is cut whenever "F1/Q1" is toggling, the CDC "F1" to "F2" is reported safe with
no check. The static tool is not able to verify if the constraints specified by user
are really valid, instead it takes them as hypothesis on which the quality of checks
completely relies.
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Gate
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Figure 3.2: Constraining pseudo-static signals

2. Rules based static checks : The second limitation relies in the fact that the struc-
tural verification is a static approach that depends mainly on pre-coded patterns
matching. Regarding the complexity and the customization of the wide variety of
CDC synchronizers, specially the data synchronizers, it is impossible to cover all of
them by pre-coded patterns. This means that the static tools, analyzing a complex
or a custom synchronizer, either oversimplify it and reports it as valid while it is
not, or the analysis does not succeed to converge (the tools do not succeed to detect
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and categorize the synchronizer) and reports it as problematic while it is not. That
explains the tens of thousands of false positives and negatives that we find usually
among the results that take weeks and even months to be analyzed and filtered.

In addition, detecting a synchronizer does not imply that the CDC path is safe or
immune to metastability. Each synchronizer is associated to a number of functional
properties that must be verified and that cannot be verified by a static approach.

The conclusion is that a new complementary approach should be adopted beside the
structural verification in order to overcome these limitations.

3.1.2 Assertions-based verification
The assertions based verification is the complement we are looking to overcome the limi-
tations of the structural flow. The current EDA tools generate SystemVerilog assumptions
and assertions based on the hypothesis and the results of the structural checks. This set of
assumptions and assertions, if correctly generated, is able to overcome the two limitations
related to the structural checks we talked about in the previous section.

1. Overcoming the constraints limitation : The constraints, being the hypothesis on
which relies completely the quality of the structural checks and the formal checks,
should be cross checked and qualified. The constraints responsible for clock prop-
agation control the number of clock domains and CDC paths the tool will be able
to see. On the other hand, the design constraints, that specify a signal as pseudo-
static or a group of signals as exclusive, are also responsible for the number of CDC
paths the tool will analyze. In order to validate the results of the structural checks,
both types of constraints should be double checked against a pre-defined reference.
The CDC verification EDA tools translate the set of constraints specified by the
user to a set of assumptions that can be double checked in simulation environment
or reused in a formal verification environment. Examples on CDC constraints and
their correspondant assertions are given in Annex C

2. Overcoming the functional limitation : As discussed before, the CDC synchro-
nizers can be classified into two main classes : control signals synchronizers and
data signals synchronizers. Each type of synchronizers is associated with a set of
functional properties that must be verified in order to ensure the safety of a CDC
path. The current EDA tools are also able to classify the detected synchronizers and
to associate a set of properties for each of them.

Control signals : Multi-Flop Synchronizers (MFS) Multi-flop Synchronizers
do not prevent metastability, but instead delay the signal giving the time to the
metastability to be resolved. They prevent the propagation of the metastability in
the downstream logic. The resolution value of the metastability is unknown. The
metastability can be resolved to a value or its opposite one on a completely random
basis (metastability will be discussed in details in the next chapter). For that, and in
order to avoid data loss, the data should be stable long enough for the destination
clock to be correctly sampled. This stability time is usually considered as three
edges of the destination clock. This is verified using the following assertion :
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mfs_stable : assert property
(@(posedge clk_2) disable iff (rst)
$changed (D1) |=> $stable(D1)[*nb_of_cycles]);

If the CDC signal, synchronized by MFS is a data bus, the "mutex" property (refer to
Annex C) is asserted to ensure the exclusivity of the different data bits and to check
the absence of coherency problems for the converging CDC paths as exaplined in
section 1.2.1.

Data signals : Enabler-based Synchronizers A qualifier is easily found by the
static tools. It is sufficient to detect a re-synchronized signal that blocks the data
on a blocking logic. The qualifier should enable the data only when it is stable.
This implies the qualifier to be disabled every time the data changes its value to
ensure blocking the propagation of any metastable state. This can be ensured by the
following assertion :

dataqualifier_stable : assert property
(@(posedge clk_2) disable iff (rst)
ctrl |=> $stable(Q2));

In addition, the qualifier itself should remain stable for a certain number of clock
cycles being a signal synchronized by MFS to avoid dataloss.

ctrlqualifier : assert property
(@(posedge clk_2) disable iff (rst)
$changed (ctrl) |=> $stable(ctrl)[*nb_of_cycles]);

Data signals : Complex protocols Complex protocols are very challenging to
be detected structurally due to the wide variety and the customization of the used
designs. However, the static tools providers still put a lot of effort to cover these
synchronizers. In case a complex protocol is structurally detected, a set of asser-
tions is directly associated to it. If we take the asynchronous FIFO as an example,
ensuring that the write/read addresses are gray encoded and stable with respect to
their MFS is sufficient as a protocol check for the static tools. The same concept is
applied to the other known protocols exaplined previously in section 1.2.2.

3.1.3 Formal and semi-formal verification
The generated CDC assertions can be verified in either formal or semi-formal approach.
In case the structural tools detect all the CDC synchronizers, generate their correspondent
functional assertions and the assertions are proven, the CDC paths can be considered as
safe.
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The formal verification is a functional static verification where mathematical tech-
niques are leveraged to explore the state machine model of the design for any property
violation. The advantage of formal verification is that it is an exhaustive approach, that
can have the final word in the proof of any functional property. However, this exhaus-
tiveness can also be the downside of this approach. Model checking may not achieve
a conclusive result, and sometimes no information is returned because of timeout. This
usually happens in large designs, due to state space explosion, where mainly the CDC
problems appear. In [72], the authors explained the problem of the inclusiveness in three
points :

• Design setup : in designs where multiple clocks can be propagated based on specific
configuration, the model checker will try to prove every potential configuration.
Sometimes, some configurations are unrealistic. In other words, some clocks can
be exclusive or not propagated at the same time. For that, and in order to control
the problem of the state space explosion, the design should be constrained and
configured only in realistic modes, so that the state space is reduced aand only
realistic behaviours can be inferred.

• Abstraction : the inability of the tools to efficiently abstract the related logic is a
major cause of state space explosion. In CDC properties, only local control has real
influence. That means that if an abstraction is done correctly, the formal engine can
achieve reliable results that are not costly in terms of effort and time.

• Secondary constraints : if the user is able to add more constraints as the analysis
progresses to assist the engine to converge the proof, that may have remarkable
effect of the conclusiveness of the results.

On the other hand, the CDC semi-formal verification comes as an option, never ex-
plored by the industry up to our knowledge, that can be very advantageous regarding the
quality of results and the time the iterations take. Our decision to explore a full CDC
semi-formal verification flow came from an industrial demand and belief that the semi-
formal verification can be a quick and exploitable solution, able to overcome the structural
verification limitations and compromise the exhausivity, the time and the quality of results
of the formal verification. In the next section, we will explain more our approach defining
the semi-formal verification flow, the application on our test case and our assessment for
the whole approach.

3.2 CDC semi-formal verification flow
The dynamic simulation is no longer a naive verification approach, that depends on

hand written stimulus unable to exhaustively and efficiently verify a design. In 2011,
Accelera released its UVM "Universal Verification Methodology" standard for building
simulation based verification environments. It is a class library based on SystemVerilog
that focuses on re-usability for stimulus generation and coverage modeling and checking.
The dynamic functional verification is always maintained by a whole team of engineers
ensuring high verification coverage. The UVM standard defines two coverage methods
[92] :
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• Explicit coverage : the user defines the coverage goals and completing these goals is
the metric used to determine the completion of the DUT verification. The functional
coverage is an example of such a metric. The functional coverage is a measure
of the percentage of the pre-defined functionalities and features exercised by the
different tests. The problem is that it depends mainly on what the user defines and
any missing goal is not taken into account defining the coverage.

• Implicit coverage : the coverage is done with automatic metrics driven by RTL.
The code coverage (whether block, expression, toggle or statement code coverage),
that ensures that all the code is exercised, and the FSM coverage that ensures that
all the states of the state and the state transitions were reached, are examples of the
implicit coverage. This coverage is also not complete as a 100% code coverage
does not guarantee a the absence of a functional hole.

Both coverage metrics together may achieve completeness. Starting by explicit coverage
representing the high-level verification goals and complementing it by implicit coverage
is always recommended. If the functional coverage is much higher than the code or FSM
coverage, it should be redefined and enhanced.

As the dynamic functional verification is mature enough and taken in charge by a large
team who ensures high functional, code and FSM coverage, we thought that we can take
advantage of such a mature verification environment to complement the CDC structural
verification and, at the same time, avoid the limitations related to the formal verification
verifying large designs. The CDC semi-formal verification is a trade-off between the
completeness of the formal approach and the rapidity of the dynamic simulation. If all
the functional goals are reached (100% functional coverage) and at the same time all the
code lines are exercised and all the FSM states are reached (100% code and FSM cover-
age), it can be a pity to not use such an environment in favor of the CDC verification. We
decided, collectively, to explore a CDC semi-formal verification without any idea about
the application challenges and the potential areas of development. Working in an indus-
trial context with a large design and with cross verification environments using multiple
tools coming from different tools providers were the main challenges we encountered ap-
plying this flow. As we progressed, the areas of potential developments started to appear
and were prioritized based on the industrial needs and the current projects requirements.
In the next section, the applied flow and the encountered challenges will be discussed in
more details. In addition, the two research subjects we have chosen to enhance the flow
are later developed in the chapter.

3.2.1 Application
As a first step, we applied the CDC semi-formal verification flow on our CPU-subsystem
test case, as it is proposed by the different tools, in order to have a first understanding
of the state-of-the-art, to make an assessment and to identify the potential development
areas.

The verification flow

The CDC semi-formal verification flow, as indicated in Figure 3.3, should start by a static
structure analysis in order to detect all the CDC paths and the synchronizers. The static
analysis inputs are the RTL design, the constraints files and the UPF. The reports of the
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structural verification should be analyzed and filtered from all the false positives and neg-
atives. The real design bugs, such as missing synchronizers or glitches due to combina-
tional logic inside CDC paths, are then reported to the design team to be fixed. This task is
iterated several times until no design bugs are detected. The second step is the generation
of the different sets of assertions. We can categorize the generated assertions into two
categories :

• Constraint assertions : These assertions are generated thanks to the specified con-
straints files. The target of these assertions is either to be used as assumptions for
the formal verification, or as assertions in the functional dynamic simulation in or-
der to be cross checked with the simulation patterns.

• Protocol assertions : These assertions are generated for each detected synchronizer
based on its type in order to verify the functional protocol behind the detected syn-
chronizer structure.

The generated assertions, being included in different modules, are then connected to the
top design using the SystemVerilog "bind" construct. The functional verification regres-
sion tests, which have already successfully passed in standalone, are then launched with
both sets of assertions. The key success element of the CDC semi-formal verification is
the quality and the coverage of the dynamic functional verification tests.

Test Case : Structural verification

The structural verification on our test case took several months to be accomplished. The
constraints specification phase was the longest, due to usual unavailability of a clear de-
sign specification till the late stages of any project. Yet, there exists no standard for the
designs specification able to shorten the setup phase. Table 3.1 shows the final set of con-
straints used for our CPU subsystem. We declared 105 clock signals and grouped them in
32 clock groups (clock domains). The design includes 47 reset signals, 400 pseudo-static
signals (signals that should not cause any CDC problem because they are changed either
when the destination is under reset or when its clock is deactivated), 59 exclusive signals
and 169 configuration signals that were set to constant values in order to propagate the
different clock signals such that the design is put in a worst case scenario.

Constraints Number

Clocks 105

Clock domains 32

Resets 47

Static signals 400

Exclusive Signals 59

Constant Signals 169

Tab. 3.1: Design constraints
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Figure 3.3: CDC semi-formal verification flow
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The structural verification was then performed using the set of constraints specified
above. Hundreds of thousands of violations were analyzed. The structural violations can
be categorized into two categories :

• Unsynchronized CDC paths : A CDC path without a proper synchronizer.

• Problems related to CDC : The other problems that can arise due to, even, the syn-
chronized CDC. For example, a detected combinational logic inside a CDC path
is considered as a high risky "glitchy" structure, specially for slow to fast cross-
ings where the glitch is more likely to be captured. Another example can be the
reconvergences where multiple signals synchronized by MFS re-converge in the
downstream logic. As the time resolution and value of the metastability on these
different signals may be different, coherency problems can appear in case of they
re-converge if they are not exclusive.

The final report of the structural verification is shown in table 3.2. With our constraints,
we managed to resolve all the clock overlaps and the constant clock violations. That
means that all the clocks configurations are resolved and all the sequential elements of
the design receive a clock signal. All the detected CDC paths were found with a proper
synchronizer and can be categorized into :

• Synchronized CDC control path : 302 scalar control signals were found synchro-
nized by MFS.

• Synchronized CDC data path : 115 data signals were found synchronized by quali-
fier or other complex synchronization protocols.

• CDC paths with static signals : 2781 CDC were skipped because of a pseudo-static
constraint on their crossing signal. These paths are usually found without synchro-
nizer and their synchronization depends on the fact that either the destination clock
is cut or the destination register is under reset when they toggle. The validity of
these paths depends mainly of the specified constraints, and at this stage, no double
check is done to ensure their trustworthiness.

Tag number

Clock Overlaps 0

Clock Constants 0

Unsynchronized CDC 0

Synchronized CDC control path 302

Synchronized CDC data path 115

Skipped CDC due to static signal 2781

Tab. 3.2: Structural verification final report
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Test Case : Assertions generation

Once all the structural violations are analyzed and corrected, we proceeded to the asser-
tions generation step. As shown in Table 3.3, the generated assertions covered 100% of
the constraints specified for the structural verification. On the other hand, we noticed a
limitation regarding the generated assertions for the detected synchronizers. 50% for the
CDC control paths synchronized by MFS and 20% for the CDC data paths synchronized
by qualifier or other protocols were not covered by the generated assertions. The reason
of this coverage limitation will be discussed later in the "Assessement" section 3.2.2.

#constraints/synchronizers #Assertions

Constraints

Static signals 400 400

Exclusive signals 59 59

Constant signals 169 169

Synchronizers protocols
Control signals synchronizers 302 150

Data signals synchronizers 115 90

Tab. 3.3: Generated assumptions and assertions

Test Case : Functional regression

The CPU subsystem functional verification plan was created by our functional verification
team at STMicroelectronics. The regression was constituted of 130 tests as indicated in
Table 3.4. The tests cover all the functionalities of the different sub-blocks of the design.
The functional tests converge as well as the code coverage achieved 100% by the end of
the development phase. The dynamic verification environment was mature enough (all the
tests had a "passed" status) by the time we started using it to apply the CDC semi-formal
verification flow. The functional regression was done using a third party tool, coming
from a tools’ provider other than the CDC static tool provider with which the structural
verification was performed.

Test Case : CDC semi-formal verification

To start the CDC semi-formal verification, and once we put in place the functional ver-
ification environment, we connected the generated assertions to the top of our test case
using a SystemVerilog "bind" construct. The number of exercised assertions depended on
the code coverage of the functional regression. In Figure 3.4 and 3.5, we can see how
the number of exercised assertions progressed with the progress of the code coverage.
Some assertions were fully exercised by 50% code coverage, such as the assertions of the
configuration constant signals (shown in grey in Figure 3.4). Some other constraints were
fully exercised with higher code coverage. This shows how the code and the functional
coverage of the dynamic verification play a very important role in the completeness and
the reliability of the CDC semi-formal verification results. The assertions coverage, ex-
pressing the number of exercised assertions with respect to each category of tests can be
found in Annex D. It was noticed that some tests exercised more synchronizers assertions,
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Test acronym Scope #tests Status

Test 1-21 Basic CPU and SubSystem functionality 21 Passed

Test 22 Memory integration 1 Passed

Test 23-38 Interrupts 15 Passed

Test 39-56 Debug and trace 23 Passed

Test 57-68 System performance and power 11 Passed

Test 69-73 Clock and reset management 4 Passed

Test 74-79 Register programming 5 Passed

Test 80-84 Connectivity 5 Passed

Test 85-92 Memory integration 8 Passed

Test 93-96 Register verification 4 Passed

Test 97-104 Interface verification 8 Passed

Test 105-107 Custom IP verification 4 Passed

Test 108-130 Power aware functionality 23 Passed

Tab. 3.4: Functional verification tests regression

or in other words involved more CDC paths, than other. For example, the the interface
verification tests exercised all the synchronizers assertions, which means that this group
of tests stimulated all the asynchronous paths detected by the structural verification. Fi-
nally we can conclude that the functional verification regression in its totality was able to
exercise 100% of the CDC constraints and synchronizers assertions as shown in Figures
3.4 and 3.5.

Test Case : Results

A number of the bound assertions failed while launching the functional regression. In
Table 3.5, the 400 pseudo-static assertions, corresponding to the estimated pseudo-static
signals, are passed. This can ensure that the implemented protocols really ensure the sta-
bility of the CDC signal. This can ensure that the CDC paths skipped during the structural
verification because of the static constraints are safe. In other words, the static assump-
tions or hypothesis we made for the static verification are valid. On the other hand, we
can see a number of failed assertions in all the other categories. Thirteen exclusive sig-
nals assertions failed, which means that some of estimated gray coded signals are not.
Twenty-four constant signals assertions failed. As the constant configuration signals are
the one responsible for propagating the clock and the reset signals, the failing assertions
can give an indication that the design was not configured the same way for the functional
regression and the CDC checks. Finally, some other assertions related to the protocols
of the detected control and data synchronizers failed. That can confirm that the fact of
detecting statically a synchronizer is not enough to ensure the validity of a CDC path.

In the next section 3.2.2, we analyze in details the detected violations. This will help
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Figure 3.4: Constraints assertions coverage progression wrt to code coverage

Figure 3.5: Protocols assertions coverage progression wrt to code coverage

#constraints/synchronizers #Assertions #passed #failed

Constraints

Static signals 400 400 400 0

Exclusive signals 59 59 46 13

Constant signals 169 169 145 24

Synchronizers protocols
Control signals synchronizers 302 150 146 4

Data signals synchronizers 115 90 61 29

Tab. 3.5: Results of the CDC semi-formal flow
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to assess the whole methodology and to identify the worthiness of applying this flow. The
detected violations were like the compass that oriented the research subject after that, and
clarified the potential development areas to push the limits of the semi-formal flow.

3.2.2 Assessment
The CDC semi-formal flow, being applied for the first time in STMicroelectronics, had to
be assessed. The assessment aimed at evaluating the worthiness of applying the flow given
the quality of its results and the added value versus the time it takes. This was expressed in
terms of the CDC bugs we were able to detect using the semi-formal verification flow, that
were not detected by the structural verification. The assessment also shows the challenges
we encountered applying the flow and clarifies the deficiencies of the actual semi-formal
flow. This led to identifying the potential development areas where we can push the
boundaries of this technology.

CDC violations analysis

Applying the semi-formal flow, a number of assertions in different categories have failed
as shown in Table 3.5. The failing assertions were not only about design bugs. Some
assertions failed due a deficiency in the verification flow itself. Some other assertions
failed due to inherited setup errors done for the structural verification.

1. Failing exclusive assertions : We can see in Table 3.5 that 13 assertions related to
the exclusive signals failed.

//Exclusive signals
property mutex (data, clk);

@(posedge clk)
$onehot0(data ^ $past(data));

endproperty

These failing assertions mean that some of the signals that meant to be exclusive,
either due to a constraint specified by the user, or a necessity to avoid coherency
problems, are changing at the same time. The failing CDC paths resembled all to
Figure 3.6. The data bus "src [N:0]" was categorised as a valid CDC synchronized
by MFS. This was justified by the cascade of two flip-flops ("dest1" and "dest2")
driven by the destination clock "clk_2" in the fanout of this crossing the structural
tool has seen. Consequently, and in order to avoid coherency problems, the "mu-
tex" property was asserted for these paths. Analyzing the waveform of the failing
assertions, we noticed that the data bus was not gray encoded. That could be a real
design bug if "src1" was really synchronized by MFS. But revisiting the CDC paths,
we noticed that the first destination flip-flop "dest1" is controlled by an enable sig-
nal "En". "En" is driven by a valid qualifier "ctrl", a control signal synchronized by
MFS. The whole control part (indicated by a grey box) was invisible by the tool,
which was tricked by the presence of a cascade of flip-flops. Instead of reporting
the path as synchronized by a qualifier, the tool reported the path as synchronized
by MFS and consequently asserted, wrongly, the "mutex" property for it. This has
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shown a huge deficiency regarding the priorities of the algorithm logic responsible
for analyzing the CDC structures.

Conclusion: The "mutex" property failed due to the wrong classification of CDC
paths as synchronized by MFS instead of a qualifier.

src[N:0]

MFS
Df f ff ff

Q D Q

src1

clk_1 clk_2ctrl

dest1

D1 Q1 D2

En

Q2 D2 Q2

dest2

Figure 3.6: Failing mutex assertions due to an undiscovered qualifier

2. Failing constant assertions : We can see in Table 3.5 that 24 assertions related to
the constant configuration signals failed.

//(1)constant assertion
always@*
begin
assert_cdc_constant_prop : assert (select === value)

The constant values associated to the configuration signals during the setup stage
of the static checks are not the same as the ones propagated for the functional dy-
namic regression. These configuration signals, being responsible for the clocks and
resets propagation, are critical and may be the cause of many undetected CDC paths
during the static checks.

Conclusion: The "cdc_constant_prop" property failed due to a misalignment be-
tween the configuration of the design for both the CDC structural verification and
the functional dynamic verification. This means that the design was not configured
in its correct functional mode when it was verified for CDC issues. This can risk
to either produce a lot of false negatives or to mask an important number of CDC
paths.

3. Failing stability assertions for CDC control:We can see in Table 3.5 that four
assertions related to the stability of the CDC signals synchronized by MFS failed.
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mfs_stable : assert property
(@(posedge clk_2) disable iff (rst)
$changed (D1) |=> $stable(D1)[*nb_of_cycles]);

The failing paths are normal CDC paths synchronized by MFS as shown in Figure
3.7. The metastability in a CDC synchronized by MFS is not avoidable, however,
the role of MFS is to delay the signal propagation so the metastability gets re-
solved before reaching the downstream logic. In the timing diagram in Figure 3.8,
a metastability appears on "Qf" in cycle 2 due to a setup violation on "Q1" and
"clk_2". In the same cycle, the metastability is resolved to zero, which does not
correspond to the correct value on "Q1". That is called a slow resolution. In the
case of a slow resolution, in order to avoid data loss, the signal at the source side
should remain stable so that it could be re-sampled on the next clock edge, as seen
on "Q1". "Q1" remains stable and is re-sampled in cycle 3 (on the edge "e" of
"clk_2"). If we imagine a source clock faster than the destination clock, so "Q1"
changes its value before cycle 3, the data risks to be completely lost in case of a
slow resolution. That is why the four "mfs_stable" assertions failed.

Conclusion: The four "mfs_stable" assertions being failed have shown a true risk
of data loss due to a fast to slow crossing while the data does not remain stable.
This is the first true CDC bug we found by the semi-formal verification and that
could not have been discovered by the structural verification alone.

F1

D1 Q1 D2 Q2

F2

clk_1 clk_2

MFS
Df f ff ff

Q D Q

Figure 3.7: Failing mfs stability assertion
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clk_2

Qf

Qff
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c d j

k

cycle 1 cycle 2 cycle 3 cycle 4

Figure 3.8: Metastability slow resolution

4. Failing CDC data signals assertions: We can see in Table 3.5 that 29 assertions
related to the stability of the CDC data signals synchronized by qualifier failed.
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dataqualifier_stable : assert property
(@(posedge clk_2) disable iff (rst)
ctrl |=> $stable(Q1));

The assertion above is generated for each CDC data path, under the hypothesis that
a CDC data signal should remain stable if its qualifier is enabling. Analyzing the 29
failing assertions, we noticed that the data have effectively toggled while the "ctrl"
signal in the assertion above was enabling. This should be a true design bug, except
that the case was way more complicated. All the concerned paths were not synchro-
nized by a qualifier. However, they were inside an asynchronous FIFO controlled by
a handshake protocol as shown in Figure 3.9. The static tools, trying to match very
specific patterns, usually fail to detect the complex synchronization protocols. The
compromise the tools usually do is that the algorithm back-traces the destination
flip-flop of a complex CDC path till the first MFS synchronizing a control signal
and report the latter as a qualifier. Consequently, this detected qualifier replaces
the "ctrl" signal in the "dataqualifier_stable" assertion. In our concrete example, as
shown in Figure 3.10, the tool failed to detect the synchronization protocol. Over-
simplifying the path, and back-tracing the destination "dest", the tool reports the
first MFS synchronizing the write address "wrt_add[n-1:0]" as the qualifier. Re-
placing the "ctrl" in the above assertion by the re-synchronized "wrt_add[n-1:0]",
the assertion fails each time the write address points to the highest address (when it
is all ones). But in fact this is a false failure, as the "wrt_add[n-1:0]" cannot replace
the "ctrl" in the above assertion. In other words, the assertion above is not suitable
for this CDC type which the tools failed to well categorize it.

Conclusion: The static tools, trying to match very specific patterns, fail to de-
tect the complex synchronizers. Instead, they oversimplify the CDC path detecting
wrong qualifiers. The 29 failures we got are false failures because of the wrong
qualifier specification in the "dataqualifier_stable" assertions.

clk_2clk_1

Asynchronous 
FIFO

Handshake

Figure 3.9: Asynchronous FIFO controlled by Handshake
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Figure 3.10: CDC path synchronized by asynchronous FIFO controlled by handshake

Overall assessment

The overall assessment of the complementary semi-formal verification for CDC shows the
importance of adopting this new verification methodology to complement the CDC struc-
tural verification, which is the only approach adopted as sign-off methodology nowadays.
Regarding the analysis of the violations detected on our test case, we concluded the fol-
lowing (see Table 3.6):

1. The analysis of the "mutex" failing assertions has shown that the structural tools
have a remarkable deficiency in clustering the different CDC paths by synchronizer
type. The structural tools were tricked by the presence of the two flip-flops in the
destination of the CDC paths and ignored analyzing the presence of a qualifier. The
result was the generation of the "mutex" assertions, which were not relevant.

2. The analysis of the "constant" assertions has shown a deficiency in the structural
verification flow, specially in the setup generation step. The setup, in terms of
configuration signals, not being aligned with the configuration of the design for the
functional verification, can be responsible for many false negatives or even hidden
CDC.

3. The analysis of the "mfs_stable" assertions has has shown a true CDC bug that
cannot be detected by the structural verification. Despite the presence of a valid
MFS, the CDC path can still suffer from data loss if the crossing is from a fast to a
slow clock domain.

4. The analysis of the "dataqualifier_stable" assertions has shown a deficiency in de-
tecting and analyzing the CDC data complex synchronizers. The tools, trying to
match very specific patters, fail to analyze the data syncrhonizers. The result was
the generation of irrelevant and wrong assertions that led to multiple false failures.

The work done above was the first step to push the limits of this new methodology. In
this context, and with a close collaboration with the EDA providers, the tools’ bugs were
reported and many enhancement were done on the market’s tools thanks to our study.
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Challenges: Cross-tools flow The application of this new methodology was not straight-
forward as it can seem to be. We faced a lot of challenges, specially in what concern the
industrial constraints we should respect working at STMircorelectronics. We have to
highlight that the CDC verification and the dynamic functional verification are two sepa-
rated and unrelated tasks in an industrial context. Merging both of them meant merging
different tools coming from different providers (as the company has already its own sign-
off tools). We had to deal with this and make the tools work together. This explains the
assertions coverage limitations shown in Table 3.6. The generated assertions did not cover
100% of the detected synchronizers. As the assertions were generated by the CDC tools,
some of the generated assertions were incompatible with the simulation tools due to the
hierarchical paths naming. The different EDA providers do not give the hierarchical paths
the same names. As Accellera members, we pushed this problem, in the context of the
CDC working group that aims to define a new IEEE standard for CDC model, in order
to standardize the hierarchical paths naming so they can be reusable across the different
tools.

Advantages: True CDC bugs detected Applying the semi-formal flow, we were able
to detect true CDC bugs that cannot be detected with the structural verification.

Development: research subjects We identified two areas that need to be developed to
push the limits of the semi-formal flow. The first subject is to overcome the tools limi-
tations analyzing a complex synchronizer. In order to succeed to analyze all the types of
synchronizers and to generate the relevant properties for them, we should be able to either
detect all the customizations of all the CDC synchronizers, or to develop one universal
method able to analyze all of them regardless of their type. This will be the subject of
section 3.3. The second development areas is the alignment of the design configuration
between the CDC structural verification and the dynamic functional verification. To adopt
the semi-formal flow, we have to be sure that the design is configured the same way as the
functional verification, in terms of operating mode and hence the propagated clocks and
resets. This is the hybrid flow developed in section 3.4.

#constraints/synchronizers #Assertions #passed #failed Conclusion

Constraints

Static signals 400 400 400 0 none

Exclusive signals 59 59 46 13 tools’ bug

Constant signals 169 169 145 24 flow bug

Synchronizers
Control signals synchronizers 302 150 146 4 CDC bug

Data signals synchronizers 115 90 61 29 tools’ bug

Tab. 3.6: Results and conclusions
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3.3 Verification of protocol-based synchronizers

The Multi-flop synchronizers (MFS), responsible mainly for synchronizing scalar
control signals, are easily detected by the static tools. However, the detection is more
problematic when it comes to data synchronizers. Static verification tools, trying to match
very specific patters, can detect standard configurations of the different data synchroniza-
tion protocols, but struggle with the minimum variation that makes it slightly different
to what was pre-coded. Consequently, either the tools fail completely to detect the syn-
chronizer producing a number of false negatives, or oversimplfy and partially detect the
synchronizer, which can produce a number of false positives. In both cases, the results of
the static tools regarding the data synchronizers are not reliable and we cannot count on
them to generate reliable properties. This problem manifested in the failure we had in the
"dataqualifier_stable" assertion, which was a false failure.

In this section, we propose the philosophy of the "Universal Qualifier", a new ap-
proach able to overcome the limitations of the rigid pre-coded patterns and to effectively
verify all the data synchronizers regardless of their types. Thanks to the "Universal Qual-
ifier", we will be able to generate reliable properties for CDC data paths without the
necessity of detecting specifically their synchronizers type.

3.3.1 Protocol-based synchronizers

The protocol-based synchronizers are, in general, all the synchronizers that depend on
a/multiple control signal to control the data crossing between the source and the destina-
tion [93] [76].

Recap on data synchronizers

• Simple qualifier: The simplest protocol is based on the use of a control sig-
nal called a qualifier. The sampling of the data in the destination domain is en-
abled thanks to the qualifier. When the data is not stable, the sampling is forbid-
den. Figure 3.11 illustrates this structure. A data coming from the register "R_s"
clocked by "clk_src" crosses the clock boundary to the destination domain clocked
by "clk_dest". The qualifier "ctrl" is initiated in the source clock domain, syn-
chronized by a multi-flop synchronizer "MFS" and stops the incoming data on a
blocking gate "MUX". The multiplexer "MUX" enables the sampling of a new data
when this latter is stable.

The absence of metastability is ensured by the property stab_simple:

stab_simple : assert property @(posedge clk_dest)
ctrl 7→ $stable(d_in_mux)

• Handshake: The previous protocol can be extended to a 4-phase protocol like
the handshake protocol. In this case, a second control signal is added from the
destination to the source domain to acknowledge the correct data reception. In
Figure 3.12, the request signal "req" is synchronized by "MFS2" and used with the
acknowledge "ack" to calculate the enable signal of the destination to propagate the
data. On the other hand, the acknowledge "ack" is synchronized by "MFS1" and
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Figure 3.11: CDC synchronized by a re-circulation mux

used with the request "req" signal to calculate the enable of the source flip-flop to
capture the data.
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Figure 3.12: CDC synchronized by handshake

• Asynchronous FIFO: The previous two protocols are very simple and are not in-
tended for designs where the source clock is running faster than the destination
clock. In this case, we prefer to use an asynchronous FIFO. Similar to a syn-
chronous FIFO, it is controlled by four control signals (see Figure 3.13): write,
full, read, empty. On the source domain side, the input signal "write" indicates that
a data "d_in" is ready to be written in the FIFO if signal "full" is not enabled. On
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the destination domain side, the input signal "read" indicates that a data "d_out"
is ready to be read from the FIFO if the signal "empty" is not enabled. Addresses
where the data must be read "rd_addr" or written "wt_addr" in the memory " MEM"
are Gray encoded. They are synchronized by multi-flop synchronizers and allow to
calculate the different control signals. The addresses are Gray encoded. The read
data is sent to the register "R_d" enabled by the control signal "empty_flag".

full_flag

wrt_add

rd_add_sync wrt_add_sync

rd_add

empty_flag

clk_src clk_dest

==

d_in d_outread emptywritefull

EN

en

MFS_src MFS_dest

MEMDEMUX MUX

R_dd_in_R_d

R_rR_w

mem[i]

Gray
counter

Gray
counter

Figure 3.13: CDC synchronized by Asynchronous FIFO

Problem statement

Static verification tools can detect standard configurations of the different synchronization
protocols based on the pre-coded patterns and generate a set of assertions for each of them.
However, the complex and the custom protocols are harder to detect. To compromise, the
tools partially detect the data synchronizers by back-tracing the destination register till the
first MFS. It reports its associated signal as a control path that is usually not equivalent
to the real Boolean expression that enables the data when stable and blocks it otherwise.
Table 3.7 shows the difference between what the static tools are reporting and what we
expect as qualifier control for some of the known synchronization protocols. For the
simple qualifier shown in Figure 3.11, the tools detect a CDC without MFS. To analyze
such a CDC, the tools back-trace the destination flip-flop "R_d" to the first MFS, which is
the signal "ctrl" in this case. "ctrl" is then reported as the control signal of the CDC path
between "R_s" and "R_d". The same concept is applied to any CDC without MFS that the
tools fail to categorize into a known synchronizer category. For the handshake protocol
in Figure 3.12, back-tracing the destination "R_d", the first encountered MFS is the re-
synchronized request signal "req_sync". The tools report "req_sync" as the control of the
CDC path between "R_s" and "R_d". The same concept is applied to the asynchronous
FIFO in Figure 3.13 and teh "wrt_add_sync" is reported as the control signal.
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Synchronizer Control reported by the tools Control able to blockenable the data

Simple qualifier ctrl ctrl

Handshake req_sync (req_sync).(¬ ack)

Async. FIFO wrt_add_sync (rd_add).(¬ emapty_flag)

Tab. 3.7: Tools’ detected qualifier vs. the true control expression

To conclude, a classic synchronization protocol with a slight change cannot be de-
tected and recognized as synchronizer by the commercial tools. The tools compromise
by back-tracing the destination flip-flop till the first MFS and reporting this latter as a
control.

3.3.2 The Universal Qualifier
If we look more openly to any CDC data synchronizer based on protocol, we can notice
that all of them are working with the same concept. Synchronization protocols involve a
number of control signals that work together in harmony to ensure that the asynchronous
data will never cross the source clock domain boundary unless it is stable. The number of
control signals and how they are harmonically working together may differ between one
protocol and another, but the concept remains the same.

For example, in the asynchronous FIFO, the tools select the signal "write_addr_sync"
connected to the output of the multiflop "MFS_dest" as a qualifier, but do not take into ac-
count the other control signals occurring on the data path (for example, the signal "rd_add"
that selects the data to be read). The properties generated by the different tools are not
satisfied in the simulation. In this section, we propose a generic method to automatically
detect the correct combinational expressions to be used as qualifiers.

3.3.3 Generic CDC modeling for data stability verification
Our method is based on the detection of all the control signals on the data path and the
construction of a combinational expression based on these control signals.

Design Modeling

The set of gates involved in a CDC is the set of gates present in the cone of influence of
the destination register cut on each branch at the first sequential elements. For example
in the Asynchronous FIFO, for R_d, the set of elements are {R_d, MUX, MEM, Equal,
MFS_dest, R_r}. It can be modeled by a directed graph T = (V,E) where V , the set of
vertices, represents the set of gates, and E ⊂V ×V , the set of edges represents the set of
wires connected to the gates. Figure 3.14b illustrates the CDC tree of register R_d. The
root is R_d and the leaves are R_r, MFS_dest, MEM. The node MUX_en corresponds to
the MUX associated with the port enable of the register R_d. We call CDC data path, a
path of T from the root to a leaf representing a register in the source domain. Other paths
are called CDC control path. For example, in the asynchronous FIFO (R_d, MUX_en,
MUX, MEM) is a CDC data path, and (R_d, MUX_en, EQUAL, MFS_dest) is a CDC
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Figure 3.14: CDC synchronized by Asynchronous FIFO

control path. We call internal node a node that is neither a root, nor a leaf. Focusing only
on CDC data paths (as CDC control paths are synchronized simply by MFS), the correct
synchronization of these paths depends on the presence of qualifiers. The only internal
nodes that are allowed on the data path are the four Boolean gates: NOT, OR, AND, and
MUX. Let p = (pn, . . . , p0) be a CDC data path of depth n > 1, where pn is the root of
the tree (a flip-flop in the destination domain), and p0 is a leaf (a flip-flop in the source
domain).

• 1-input Gate: the input of a gate pi is the edge (pi, pi−1), it is denoted d_inpi .

• 2-input Gate: One input is the edge (pi, pi−1). It is denoted d_inpi . The second one
is denoted ctrlpi since it is an edge of a CDC control path.

• 3-input Gate: This gate is a MUX. Two of its inputs are edges of a CDC data path.
The edge (pi, pi−1) is denoted d_in_1pi and the other one d_in_2pi (edge of an
other CDC data path). The last one is denoted ctrlpi because it is an edge of a CDC
control path. This can be extended to any multiplexer.

Extraction of the qualifier

The qualifier of the path p = (pn, . . . , p0) is a combinational expression of control signals
such that d_in_p1 (output of the source register) drives the value of d_in_pn (input of the
destination register) when it is asserted. Let αg be the absorbing value of a gate g. The
qualifier expression of this path of depth n+1 is given by

qualn =
∧

1<i≤n−1

(ctrlpi ̸= αi)

Proposition 3.3.1. If qualn is enabled, the signal d_in_pn ingoing the destination register
is driven by the signal d_inp1 outgoing the source register. Their values are equal.

Proof. The proof is done by induction on the depth of the path. Figure 3.15 illustrates
the base case with a unique combinational gate. In this case, the qualifier is defined
by ctrl_AND. If it is asserted, signal d_in_R_d is equal to d_in_AND. This can be
generalized to any gate, using the absorbing value.

Let us now assume that the proposition is true for any path of depth n. Let us prove it
for a path of depth n+1. The proof is very similar. If ctrlpn−1 ̸= αn−1 is asserted, d_inpn
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is driven by d_inpn−1 . Thus, if ctrlpn−1 ̸= αn−1 and qualn−1 are asserted, then d_inpn is
driven by d_inp1 . This concludes the proof.

R_s

R_c

R_d

AND

clk_src clk_dest

MFS_dest

d_in_AND

d_in_R_d

ctrl_AND

Figure 3.15: Logical AND as a CDC data blocking gate

Absence of metastability

To avoid the metastability in Rd , we must ensure that d_in_R_d is never sampled when
toggling, or in other words that it toggles outside the setup and hold window of Rd . For
this, we define for all CDC data paths p, a property that ensures the stability of the data
signal outgoing the source register when the qualifier is asserted.

stab_p : assert property @(posedge clk_dest)
qualp 7→ $stable(d_in_p1)

The absence of metastability in the destination register is given by the following proposi-
tion.

Proposition 3.3.2. Let P be the set of m CDC data paths {p0, . . . pm} that have a common
root denoted Rd (i.e., ∀i, pi

n = Rd). If all the properties stab_pi are satisfied, then register
Rd can not be metastable.

Proof. To avoid metastability, signal d_inpn (d_in_Rd in Figure 3.15) must not be sam-
pled when it toggles. Let us select a path pi and let us assume that qualpi is asserted.
Signal d_in_Rd is driven by d_in_p_AND (Proposition 3.3.1) which is stable by property
stab_pi. Signal d_in_Rd may toggle only on the rising edge of qualpi (ctrl_AND in Figure
3.15). Since qualpi is defined in the destination domain, it respects the timing constraints
and avoids hold and setup violation. Therefore, the toggling of d_in_Rd respects the tim-
ing constraints. The same reasoning applies on all paths. We conclude that d_in_Rd may
always be sampled in the destination domain.

3.3.4 Implementation
To avoid the metastability, it is sufficient to verify all the properties stab_pi. We have
implemented two algorithms that instantiate these properties. Algorithm COMPUTE_ALL

described in Figure 3.16 scans all the CDC paths in a design C , and extracts the CDC
data paths and their respective control signals. It returns a dictionary of qualifiers. This
latter then replaces qualp in the stab_p for all the CDC data paths in the design C .
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The procedure EXTRACT_QUALIFIER computes the qualifier expression of a given
path. It first initializes the qualifier, then depending on the gate type, iteratively performs
the conjunction with either the control signal or the negation of the control signal.

1: procedure EXTRACT_QUALIFIER(p)
2: qual = 1 ▷ Qualifier initialisation
3: n =| p | ▷ length of p
4: for 0 < i < n do
5: if pi ∈ internal node then ▷ pi: ith gate in p
6: if pi = OR then
7: qual = qual∧¬ctrlpi ▷ ctrlpi: control sig. of pi

8: else if pi = AND then
9: qual = qual∧ ctrlpi

10: else if pi = MUX then
11: if pi−1 = d_in_1pi then
12: qual = qual∧ ctrlpi

13: else ▷ second data input of MUX
14: qual = qual∧¬ctrlpi

return qual

15: procedure COMPUTE_ALL(C ) ▷ C is the design
16: P=extract_CDC_path(C ) ▷ P is the set of CDC paths in C
17: Pdata=extract_CDC_data_path(P)
18: for all p ∈Pdata do
19: qual[p] =EXTRACT_QUALIFIER(p)

return qual ▷ qual is an array of qualifiers

Figure 3.16: Algorithms to extract the universal qualifier

3.3.5 Results
We have applied our method to our commercial 64-bit dual-core CPU subsystem. This
subsystem has fourteen asynchronous clock domains, nine types of standard asynchronous
interfaces, and three power domains. Since the asynchronous interfaces are standard, they
have been fully formally verified stand alone. Furthermore, we dispose a set of 103 dif-
ferent high quality tests to perform the functional verification by simulation: they cover
100% of the code and 100% of the functionality of the design. The object of our study is
to compare the quality of the qualifiers generated by our method and those generated by
a commercial CDC verification tool. Both methods generate assertions, that are checked
in simulation. Since the design is correct, no assertions should fail. If an assertion fails,
it means that the assertion was not correct, or more accurately that the qualifier was not
correctly defined.

CDC data path extraction The CDC paths are extracted using the commercial tool.
It covers 100% of the CDC data paths present in the design. It reports 5.8k CDC data
paths: 4.2k are synchronized by a simple qualifier and 1.6k paths are synchronized by
other complex protocols.

Qualifier extraction On each CDC, we extract a qualifier, first with the commercial
tool, then with our generic method (extraction time is comparable and negligible in both
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methods). We instantiate Assertion stab with each set of qualifiers. We get two sets of
5.8k assertions, one from each method, that are bound to the design. Then, we run the
103 tests with all the assertions.

Table 3.8 shows the results we obtain. It compares the results obtained by the com-
mercial tool (tool_qual column) and our generic method (generic_qual column). We note
that with the commercial tool, 89 tests fail out of 103 (at least one assertion fails). In
contrast, our method never fails. The next question is what is the number of commercial
assertions that fail: only 1.6k fail at least once. These assertions all correspond to the
qualifiers generated for the complex protocols (handshake and asynchronous FIFO). The
assertions generated for simple protocols are satisfied (as expected). This shows that the
generation of qualifier proposed by the different commercial tools for complex protocols
is not correct.

Tab. 3.8: Results

# CDC path and assertions: 5.8k tool_qual generic_qual

# Failing test 89 0

# Failing assertions 1.6k 0

3.4 Hybrid flow
The hybrid flow is our proposal to solve the problem of misalignment between the

CDC verification and the dynamic functional verification developed in section 3.2.2.
While we were applying the CDC semi-formal flow for the first time, we noticed 24
assertions, related to the constant configuration signals, have failed in all of the tests of
the functional regression. This has shown that the functional verification and the CDC
verification are not aligned in what concerns the design operating mode. This can have
serious drawbacks on the quality of results of the CDC verification as it is reflected di-
rectly on the propagated clocks and the number of analyzed CDC paths. The hybrid flow
we propose in this section is about using the semi-formal verification, not only to com-
plement the CDC structural verification, but also to assist in the setup phase. The idea is
to include the constraints assertions early in the dynamic functional verification and the
CDC verification flow to reach at early stage a full alignment between both of them. In
the following section, we will justify the necessity of adopting this flow, explaining what
an operating mode is and how the constant configuration signals play an important role to
define it.

3.4.1 Clock propagation and operating modes
The idea of the hybrid flow has not only emerged following the failures we have found
applying the semi-formal flow for the first time. A number of other problems, related to
the clock signals specification and propagation, that we used to face earlier in the flow,
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can be solved applying this hybrid flow. The setup violations due to clock propagation are
usually counted in thousands and it could take weeks or even months to analyze them.

Clock configuration

The first step in any verification process is to setup the design. This helps the verification
tools to analyze the system in a realistic context. For a multi-clock design, in the context
of the CDC verification, providing a correct configuration of the clock signals is a crucial
setup factor. The primary clock signals in general are propagated from the primary ports
to the sequential elements of any design. Between these two, designers develop complex
control logic to manage the clocks propagation and the operating modes. The operating
mode depends on the required performance and the functionality provided by each mode.
The clock frequencies are then adjusted in an optimal way using, what so called, the
configuration and the transformation logic [94] [95]. On a clock tree, there exists four
common operations that can be done on clock signals [96] [97]:

• Selection: choosing between one clock and another ("clk mux." in Figure 3.17)

• Blending: merging two clock signals to generate a new one.

• Gating: enabling to stop the clock ("clk gt." in Figure 3.17)

• shaping: modifying the clock frequency or duty cycle ("clk div." in Figure 3.17)

clk 
div.

clk 
gt.

clk mux
D Q

F1

D1 Q2

clk_1

En

sel

clk_2

I0

I1

Figure 3.17: Clock network logic

A clock network is constituted of two main agents: clocks ("clk_1" and "clk_2" in Figure
3.17) and configuration signals ("En" and "sel" in Figure 3.17). Clocks are either "primary
clocks" when they come from a primary input of the design or the output of an analog
module (e.g. PLL seen as a black box), or "generated clocks" whenever they undergo
one of the four previous operations (selection, blending, gating or shaping). A "generated
clock" can be derived from a "primary clock" (e.g. the output of "clk div." or "clk gt."),
or it can be derived from another "generated clock" (e.g. the output of "clk mux"). The
configuration signals control the operations and the propagation of the clocks ("En" de-
termines whether "clk_2" will be propagated or not, "sel" chooses between "clk_1" and
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"clk_2" the clock that will drive "F1"). Let us assume that "clk_1" is a functional clock
and "clk_2" is a test clock. In this case, "sel" determines the operating mode in which
the system here will operate, whether a functional mode (in case "sel" is equal zero and
propagates "clk_1") or a test mode (in case "sel" is equal one and propagates "clk_2").
Thus, we define an operating mode being the set of configuration signals being set to
some constant values. An operating mode is simply a vector of configuration signals that
propagate some clocks and block others [98].

When undertaking CDC structural verification, engineers often have the choice be-
tween two distinct approaches: the multi-modal approach and the incremental multi-mode
approach. The multi-modal approach involves the concurrent propagation of all clocks,
while the incremental multi-mode strategy performs multiple CDC verifications for each
operating mode. The multi-modal approach concurrently propagates all clocks without
constraining configuration signals. This method, however, results in a design state that
is overly pessimistic and unrealistic, generating noise and false negatives in the returned
results. Despite these drawbacks, the advantage lies in achieving 100% coverage of all
CDC paths. On the contrary, the incremental multi-mode approach adopts a more real-
istic strategy by conducting multiple CDC verifications for each operating mode. Here,
each configuration of the configuration signals is treated as a scenario. Nevertheless, a
significant challenge arises from the absence of a robust design specification that would
enable engineers to precisely define these scenarios.

Lack of design specification

The operating modes and their correspondent clocks and configuration signals are de-
fined in each design specification. The CDC verification engineers should then rely on
this specification to setup the design and to verify it in a realistic mode. This is ideally
what should happen, but that usually does not. As the verification flow starts in parallel
with the design flow, and because of the reuse of modules with incompletely documented
legacy components, the design specification are usually not available. To address the ab-
sence of a comprehensive specification, CDC engineers often find themselves devising
workarounds. CDC static tools, proficient in detecting configuration signals, generate a
template for the engineers to utilize in defining the design operating mode. However, the
direct implementation of this template is hindered by the inherent lack of a detailed design
specification. Consequently, verification engineers opt for a third approach, meticulously
analyzing the clock tree on a case-by-case basis. This allows them to configure it in a
manner they perceive as the most pessimistic from a CDC perspective. The subsequent
section delves into the contemporary flow adopted for configuring the clock tree.

Method A: Manually defined configuration

Instead of modifying the configuration signals template, a setup check is run propagating
all the clocks at the same time. This is called a "multi-modal" run. Consequently, the tools
report thousands of "clock overlap" violations. This violation tag is reported whenever a
configuration signal is not defined. For example, in Figure 3.17, if "sel" is not set to a
constant value, the tools will report a "clock overlap" violation on the output of "clk mux"
and will propagate a composite clock asynchronous to both clocks on its inputs. The
violations are then analyzed one by one to configure the configuration signal related to
each of them (refer to Figure 3.18). The configuration signals are set as follows :
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1. The configuration signal should prioritize the functional clock in case of a choice
between a functional and a test clock.

2. The configuration signal should prioritize the faster clock in case of a choice be-
tween two functional clocks

This process puts the design in a pessimistic mixed-mode, where controls propagate the
clock signals incoherently and unrealistically. Considering the number of clock gating
structures in modern designs, along with complex clock switching, having this non de-
terminism of the propagated clocks can have serious consequences on the verification
results. Beside the number of false CDC violations we encounter usually due to this un-
realistic mode (results are very noisy), some configurations may be missed and can lead
to leaving behind critical CDC paths unanalyzed. In addition, the process of "trial and
error", where the violations are debugged and the configuration signals are defined one by
one, takes sometimes longer than accepted in the projects road-map. This can also have
a drawback if the constraints are re-used as assumptions for the CDC formal verification.
In this scope, we can quote from [43] the following:

“After writing the correct assertion, a model checker takes 13 seconds to guarantee
that the FIFO cannot overflow. We then remove the assumption on the clock-gate controls,
hence making them fully non-deterministic. Functionally, the clock can be enabled or
disabled at any time. The same overflow property now takes 192 seconds to be proven
(15 times more). The reason for this runtime increase is an explosion in the design state-
space.”

We can conclude that it is important to define the operating mode in which the design
is verified. Also, several configurations can be iteratively verified if the design operates in
several modes. Verifying the design in a mixed mode leads to noisy and unrealistic results
and can mask some other critical problems.

3.4.2 Semi-formal assisted CDC setup generation

In order to overcome the limitations mentioned above, we propose the hybrid flow where
the semi-formal verification can assist the setup generation phase for the structural ver-
ification. A closed feedback loop can be developed between the CDC verification and
the dynamic functional verification during all the project’s lifetime. This can ensure a
continuous alignment between both of them.

Noticing results on Table D.1, the constant configuration assertions are 100% covered
in every test of the functional regression. In addition, noticing the graph in Figure 3.4,
the constant assertions are 100% covered even at the lowest code coverage. This is not a
coincidence. If the design has one functional operating mode, every test in its functional
regression will be configuring the design in this unique functional mode (the case of our
CPU subsystem). On the other hand, if the design has multiple operating modes, each
test will give the full definition of at least one operating mode. This means that only one
test among the functional regression will be enough to define one operating mode for the
CDC verification, and thus defines the configuration signals for this mode. Therefore, we
can use the functional verification, even at its early stages, to assist the CDC verification
to configure the design and define some of the operation modes.
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Figure 3.18: Method A: Manually defined setup
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Method B: semi-formal assisted configuration

Our proposal is a fully automated flow that relies on generating the configuration sig-
nals assertions early in the CDC verification flow. Following the flow in Figure 3.19,
after the compilation of the RTL and the generation of the configuration signals template,
the configuration signals are all assigned to a same constant temporary value (to one for
example). This step is mandatory to generate the constant assertions with an assigned
value. The assertions are then bound on the design’s top and the functional regression
is launched. Launching the functional regression, some of the assertions will certainly
fail due to the random assignment done in the previous step. A failing assertion means
that the value assigned for the configuration signal in the context of the CDC verification
does not match the value assigned for the same signal in the functional verification, which
will lead consequently to a different clock propagation and hence to a different operating
mode. On the other hand, a passed assertion means that both values match. The simula-
tion log will then be post-processed to identify the correct and the incorrect configuration
signals. Our script will use this information to:

1. Eliminate the configuration signals constraints that correspond to the failing asser-
tions in the original "configuration signals template".

2. Create a new complementary constraints file "New configuration signals template"
that includes the configuration signal constraints that correspond to the failing as-
sertion, but this time with inverted values.

Now the two files together include the configuration signals values that configure the de-
sign in a pure functional mode, 100% conform with at least one functional mode as those
defined for the functional verification. Repeating the latter with the evolution of the func-
tional verification tests, multiple configurations may be detected translated into multiple
possible scenarios for the CDC structural verification. For each detected scenario, the
structural flow continues normally as explained in section 2.2.2.

3.4.3 Results
We applied this flow on our CPU subsystem test case. In our results, we focus on the
number of CDC paths the tool was able to see applying each flow. The number of CDC
paths reflects directly the verification coverage. The test case was already completely
verified using "Method A". This means that all the CDC issues were already fixed and
all the design secondary constraints were already in place. The results of this verification
are shown in Table 3.9. The native number of CDC detected applying "Method A" was in
total 3198 CDC paths. As a first application of the hybrid flow, we just eliminated the con-
figuration signals constraints and we regenerated them using the hybrid flow "Method B",
keeping all the other secondary constraints that were in place. Being aligned 100%with
the functional mode, the tool was able to detect 15901 CDC paths in total, which means
five times the number of CDC paths we were able to detect with "Method A". The dif-
ference represent the CDC paths we missed during our first analysis and reflects the low
verification coverage our first method held.

The second trial was to re-apply both methods after eliminating all the secondary de-
sign constraints. As the secondary constraints affect enormously the CDC paths detection,
we thought they should be eliminated in order to avoid any bias in the results. In Table
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Figure 3.19: Method B: semi-formal assisted configuration
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Violations Method A: Manual configuration Method B: semi-formal assisted

Clock Overlap 0 0

Clock Constant 0 0

Unsynchornized CDC data 0 47

Unsynchornized CDC control 0 1301

Info Method A: Manual configuration Method B: semi-formal assisted

synchornized CDC data 115 113

synchornized CDC control 302 216

CDC pseudo-static 2781 2513

Total CDC detected 3198 15901

Tab. 3.9: Method A vs. Method B keeping all the design constraints

3.10, we can notice that the number of CDC paths detected as pseudo-static drops to zero
in both method. This is the consequence of eliminating the secondary constraints (in-
cluding the pseudo-static constraints). Inspecting the number of CDC paths detected by
both methods, the conclusion remains the same. Applying "Method A", the tool detected
8536 CDC paths, while applying "Method B" 26759 CDC were detected (three times the
number of CDC detected by "Method A").

Violations Method A: Manual configuration Method B: semi-formal assisted

Clock Overlap 0 0

Clock Constant 0 0

Unsynchornized CDC data 78 97

Unsynchornized CDC control 7810 25880

Info Method A: Manual configuration Method B: semi-formal assisted

synchornized CDC data 26 95

synchornized CDC control 622 687

CDC pseudo-static 0 0

Total CDC detected 8536 26759

Tab. 3.10: Method A vs. Method B eliminating the secondary constraints

Finally, as a last trial, we decided to make a "multi-modal" run. In a "multi-modal"
run, all the design constraints are eliminated including the configuration signals and all
the clocks are propagated concurrently. The results of a "multi-modal" run are the most
pessimistic results that we can get. Despite of being full of false negatives, they include

99



Chapter 3. CDC Semi-formal verification

for sure 100% of the CDC paths that exist in a design. The idea was to compare the
number of CDC paths detected in Table 3.10 with the number of CDC paths detected by
the "multi-modal" run shown in Table 3.11. We can notice that the 28181 CDC paths
detected by the multi-modal run is a close number to the 26759 CDC paths detected
by method B. Being aligned with the functional mode was more pessimistic in terms of
detected CDC paths than the mixed-mode we verified the design in applying "Method A".
The number of missed CDC is huge when not aligned to the functional mode.

Violations Multi-modal: no constraints

Clock Overlap 40

Clock Constant 0

Unsynchornized CDC data 97

Unsynchornized CDC control 27676

Info Multi-modal: no constraints

synchornized CDC data 21

synchornized CDC control 987

CDC pseudo-static 0

Total CDC detected 28181

Tab. 3.11: Multi-modal run results

Finally, in terms of the time necessary for the specification and the number of used
constraints, "Method B" is also more advantageous. Table 3.12 shows that to converge
the number of "Clock Overlap" violations, using "Method A", the verification team spent
4 weeks to analyze the verification and to constrain the configuration signals one by one.
For that, a total of 169 local constant constraints were used. While using "Method B", it
took only 1 hour, thanks to the fully automated flow, to converge the number of "Clock
Overlap" violations to zero, using only 46 global constant constraints.

Time/constraints Method A: Manual configuration Method B: semi-formal assisted

Time 4 weeks 1 hour

# constant constraints 169 46

Tab. 3.12: Method A vs. Method B in terms of time and number of constant constraints

3.4.4 Conclusion
For a multi-clock design, in the context of the CDC verification, providing a correct con-
figuration of the clock signals and thus the operating mode is a crucial setup factor. Due
to the lack of design specification, this process is usually long and non deterministic and
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can result in putting the design in a pessimistic mixed-mode, where controls propagate
the clock signals incoherently and unrealistically. Considering the number of clock gat-
ing structures in modern designs, along with complex clock switching, having this non
determinism of the propagated clocks can have serious consequences on the verification
results. In this section we presented our proposal about "The Hybrid Flow". It is about
using the semi-formal verification, not only to complement the CDC structural verifica-
tion, but also to assist in the setup phase to be aligned with the operating modes defined
by the functional verification. Applying our fully automated new flow, the results has
shown a huge positive gap regarding the CDC coverage applying the new hybrid flow.
The new flow detected three times more CDC paths in remarkably less time and using
less constraints.

3.5 Conclusion
The CDC structural verification must be complemented by an assertions-based veri-

fication to ensure the validity of the setup and of the reported synchronizers. In the first
section of this chapter, we explored the CDC semi-formal verification where we took ad-
vantage of a mature dynamic functional verification to assert our CDC properties. The
semi-formal flow was applied for the first time in order to be assessed and to find the po-
tential development areas. We concluded that by applying our semi-formal, we could, not
only achieve 100% coverage of our CDC assertions, but also find new CDC bugs not seen
by the structural verification. Given the time the iterations took and the reached coverage,
the semi-formal approach for CDC verification can be more advantageous than the formal
approach.

In the second section, we presented some proposals to overcome the deficiencies we
noticed applying the semi-formal flow. In section 3.3, we propose a generalized method
to verify the CDC data synchronizers. Static verification tools can detect standard con-
figurations of the different synchronization protocols based on the pre-coded patterns and
generate a set of assertions for each of them. However, the complex and the custom proto-
cols are harder to detect. For that, we presented the concept of "The Universal Qualifier",
a generic method able to verify all the CDC synchronizers regardless of their types. The
results have shown that applying our method, we were able to generate more reliable
properties than the ones generated based on the native results of the industrial tools.

In third section, we presented the "Hybrid Flow" also to overcome one of the de-
ficiencies we noticed in the native flow. The hybrid flow we proposed in this section
is about using the semi-formal verification, not only to complement the CDC structural
verification, but also to assist it in the setup phase. This gives a solution for the mixed-
mode verification approach used due to the usual lack of design specification. The "Hy-
brid Flow" helped to assume one configuration mode (aligned with at least one of the
functional modes verified by the dynamic functional verification) in which the design is
verified in CDC. The results has shown a huge gap in the number of the detected CDC
paths by the hybrid flow and the mixed-mode flow. This has opened the door to adopt
an iterative approach, where several configurations are interatively checked, rather than a
"mixed-mode" approach where clocks are propagated incoherently an unrealistically.
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4
Metastability injection

This chapter synthesizes our exploration of metastability injec-
tion. Initial insights from analog simulations revealed a prop-
agation time prolongation impacting the output Q. Modeling
at analog and digital levels led to a conclusive abstraction,
interpreting metastability as a delay in the crossing signal. In-
jecting Metastability in simulations demonstrated its potential
to compromise synchronization protocols. Notably, RTL simu-
lations uncovered overlooked re-convergences as well. Despite
lacking optimal metrics, the work provides a promising foun-
dation for further exploration and a basis for a comprehensive
studies in metastability injection.
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4.1. Introduction

4.1 Introduction

Metastability is a critical issue in digital circuits that can occur when a flip-flop or
latch receives a signal that violates its setup or hold time requirements. This can lead to
an unpredictable output that can cause data errors and other issues in downstream logic.
In multi-clock designs, metastability is one of the most risky aspects, and it is essential to
understand how it happens and how to resolve it. In this chapter, we provide a comprehen-
sive presentation of the metastability phenomenon. We begin by exploring metastability
on an analog level, conducting analog simulations to gain insights into how it occurs and
resolves. We then explain it using a formal model, providing a step-by-step explanation
of how metastability is generated and propagated on CDC paths. Finally, we present the
concept of metastability injection on RTL and the benefits of applying such a methodol-
ogy on the quality of results of the CDC verification [99]. By understanding metastability
and its impact on digital circuits, designers can improve the reliability and performance
of their designs and minimize the risk of data errors and other issues.

4.2 Metastability simulation on analog level

4.2.1 Context

In the realm of the multi-clock systems, understanding and controlling metastability is
essential for ensuring the reliability and the stability of the system. Despite of being a
pure analog phenomenon that is completely abstracted on digital level, the metastability
is a concern that should be resolved at early stages. That explains the different efforts
we saw in the state-of-the-art to imitate the metastability effect on digital level. To tackle
this subject, our CDC verification team recognized the crucial significance of visualizing
metastability on the analog level of the cells used for our CPU subsystem. Witnessing
the phenomenon firsthand helped us to have unique insights on how to reproduce it on
digital level allowing for more comprehensive understanding of its behavior. Being a
digital team at STMicroelectronics, we made a strategic decision to hire a skilled third-
year apprentice to tackle the subject of reproducing metastability on analog level using
the analog simulations adapted tools and being in contact with the analog experts of the
company. This has proven instrumental in merging the analog and the digital aspects of
metastability enhancing the team’s ability to approach metastability on digital level with
a higher understanding.

The primary objective of this work was to force the generation of metastability on
the cells of the specific technology employed for our test case. Our test case integrates
TSMC library cells in 16nm FinFet. Normal flip-flops have to store data for multiple
clock cycles achieving cycle-to-cycle deterministic circuit operation. To fully ensure this,
the resulting circuit has relatively large metastability window (setup time plus hold time)
where the data are forbidden to change to avoid the propagation of transient state. On
the other hand, a synchronizer flip-flop is not the same as a normal data flip-flop. The
latter is better to have a narrow metastability window and a short metastability resolution
time to limit the probability of generating and propagating a metastability. Additionally,
the role of a synchronizer is to accept data arriving at arbitrary timing, but on the side it
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is no longer possible to maintain a cycle-to-cycle determinism. For this clear difference
between both types of flip-flops, a key focus was placed on comparing the behaviour
regrding metastability of the standard cells and the synchronization cells used to build
multi-flop synchronizers [100] [101] [102].

Beyond standard operating conditions, we were also interested to have insights of
their behaviour under extreme operating conditions, such as extreme temperatures. By
undertaking this, our goal was discern the distinctive response of the cells types across a
spectrum of operational scenarios.

4.2.2 Building test bench
The test bench was built using Virtuoso, a Cadence tool. We started with the development
of a dedicated library to encapsulate the essential components. Within this library, we
incorporated a DSPF (Design Specific Parameterized File) to capture the detailed specifi-
cations of the different cells (a standard and a sync TSMC in 16nm in our case). Further-
more, we had to create the schematic views for these cells. This was a notable challenge
as the provider does not furnish schematic views for the cells. We undertook the task
through the utilization of .spx files including the cells essential information and boolean
equation. Figure 4.1 shows the created cell instantiated in a test bench with the necessary
connections. A first test bench was created to simulate a real case of a CDC path. It had

Figure 4.1: Created schematic for TSMC 16nm standard flip-flop

two versions. In the first version we connected two standard cells clocking them with two
different clocks. In the second version, we replaced the standard cell in the destination by
a sync cell as shown in Figure 4.2.

To comprehensively assesses the behavior of each cell, a second test bench with each
cell in standalone was created as shown in Figure 4.3. This dedicated setup aimed at iso-
lating individual cells and inducing metastability by initiating a violation of the setup/hold
time by tuning the parameters of the pulse generator controlling the data pin. The param-
eters can be summarized in the rise and fall time of the data and the pulse width the
period. We aimed to inspect how effectively they resolved metastbility and assessed their
respective capabilities in preventing the propagation of metastable states. This approach
provided insights into the difference between the standard and the sync cell regarding
metastability resolution and propagation.
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Figure 4.2: Created CDC test bench with a standard cell connected to a sync cell

Figure 4.3: Created testbench for a sync cell in standalone
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4.2.3 Simulation results
In the first test bench, we wanted to observe the behavior of CDC paths including standard
cells or sync cells. The primary objective was to simulate a CDC path with both standard
cells connected. As illustrated in the simulation results in Figure 4.4, we observe that
when the rising edge of the destination clock CK2 is sufficiently distant from the falling
edge of CK1, data D is safely propagated to Q in cycle 2 and to Q2 in cycle 3. This is
especially relevant considering the activation timings of CK1 on falling edge and CK2 on
rising edge. This simulation aimed to verify the secure transmission of data on a CDC
path with standard cells were the metastability window is avoided.

Figure 4.4: Simulation results of a CDC path between two standard TSMC cells

Subsequently, we conducted a follow-up simulation wherein we replaced the standard
cells with synchronization cells to assess potential variation in behaviour. The results
depicted in Figure 4.5 revealed a consistent conclusion with our previous one. When data
changes occur sufficiently far from the metastability window, meaning the sampling edge
of the source clock Clk1 is significantly distant from the mestactability window of Clk2,
the data is reliably transmitted to Q2 with no observable delays.

In the second test bench, we conducted a thorough simulation of each cell type in
standalone mode, systematically varying the delay on the rise time of the incoming data
from zero to 500 microseconds with a pitch step of 20 microseconds. Figure 4.6 illus-
trates the behavior of a standard cell under these conditions. Notably, when observing the
pin Q, there is a significant prolongation in the tc2q (time from the sampling clock edge
to the pin Q changing). Although this increase in tc2q was calculated to be 130% of the
original tc2q —indicative of a metastability according to STMicroelectronics standards—
no apparent metastability manifested on the pin Q itself. Subsequently, exploration of an
internal node connecting the master and slave latches within the cell, denoted as ST D.I5P
in Figure 4.6, revealed an unresolved metastability characterized by an intermediate volt-
age level. This was translated into a prolongation of tc2q on the output Q, attributed to
the additional time required for stabilization in the slave latch. Notice that this prolonga-
tion of tc2q can conduct to violation of setup or hold timing in the next connected cell (if
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Figure 4.5: Simulation results of a CDC path between two sync TSMC cells

existing) which can generate and propagate a metastability. That explains why, accord-
ing to STMicroelectronics, a prolongation of 130% of the original tc2q is considered as
metastable cell.

Figure 4.6: Simulation results of producing metastability on a TSMC standard cell

Following this, we applied the same data delay to a standalone synchronization cell
to evaluate its response. As depicted in Figure 4.7, the output remained unchanged, with
no observable prolongation in tc2q. Examining the internal node sync.I5P of the syn-
chronization cell revealed a distinct behavior compared to the standard cell. Here, a slow
and gradual rise occurred, passing through an intermediate state. Unlike the standard cell,
the internal node of the synchronization cell eventually resolved without stagnating at an
intermediate voltage level. Due to the extended resolution time, the output Q did not cap-
ture the new data. Importantly, although data in this scenario may experience delays or
be lost, the absence of tc2q prolongation indicated the absence of inherent metastability
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risk for Q and subsequent cells, providing insights into the robustness of synchronization
cells in managing delayed data without introducing metastable states.

Figure 4.7: Simulation results of producing metastability on a TSMC sync cell

4.2.4 Conclusion and prespectives

In this section, we detailed our exploration of metastability simulation at the analog level,
utilizing the same technology library employed in our CPU subsystem test case. The
primary aim of these simulations was to gain firsthand experience and insights into the
metastability phenomenon, along with understanding associated risks. A comparative
analysis between a standard cell and a synchronization cell was conducted, introducing an
initiated data delay to violate setup/hold timings of the sampling clock. Upon monitoring
the internal node between the master and slave latch of the standard cell, we observed a
stagnation at an intermediate voltage level, leading to a 130% prolongation of the original
tc2q on the output Q. This presented a potential risk of propagating metastability to
subsequent cells. In contrast, the internal node of the synchronization cell demonstrated
no stagnation at an intermediate voltage level. Despite taking a relatively longer time to
reach a logical level, it eventually resolved, and no prolongation in tc2q was observed on
its output Q. However, a risk of data loss emerged in this scenario. The conclusion drawn
was that, owing to their distinct physical characteristics, synchronization cells exhibited
the ability to eventually resolve generated metastability compared to standard cells, which
tended to propagate it.

Looking ahead, our future work involves expanding our comparative study by incor-
porating the ST FDSOI 28nm technology. This extension aims to provide a more com-
prehensive understanding of cell behavior in diverse technological. Additionally, we plan
to delve into simulations under extreme conditions, specifically focusing on very high
temperatures. This strategic approach will offer valuable insights into conducting CDC
checks specifically for the specific operating conditions of each product.
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4.3 Metastability modeling

4.3.1 Stability and metastability
The stability and the metastability are properties that can be associated to signals, or more
precisely to the behaviour of signals. A signal S is a function in time t. On a digital
level, signals are bi-stable: s ∈ B, where B= {0,1}.

S : R→ B
t 7→ s

On silicon, this perfect bi-stability state can be perturbed by many factors, producing
volatile states that can involve an internal voltage between 0 and 1. This intermediate
undefined state will be called Ω. In this case, s ∈ V, where V= {0,1Ω}.

S : R→ V
t 7→ s

A signal is called stable in a time interval [t1, t2] if it satisfies the following function [103]:

stab : R2×S → B
t1, t2,s 7→ ∃b ∈ B,∀t ∈ [t1, t2],s(t) = b

The stability of a storage element depends on its timing characteristics expressed in its
own timing properties and the timing properties of its driving clock. Let C be the set of
clocks clocking the storage elements of a given design. Each clkx ∈C is associated to a
number of attributes:

period :
Γ(clkx) : C → R

clkx 7→ Γx

date :
dt(n,clkx) : N×C → R

n,clkx 7→ n.Γ(clkx)

clk
n=0 n=1 n=2 n=3

Γ(clk)

0 Γ(clk) 2xΓ(clk) 3xΓ(clk)

Figure 4.8: clock

Let F be the set of the registers existing in a design. The following attributes are
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associated to each x ∈F (see Figure 4.9)

input :
D(t,x) : R×F → S

t,x 7→ Dx

output :
Q(t,x) : R×F → S

t,x 7→ Qx

control :
Ce(t,x) : R×F → S

t,x 7→ Cex

initial output :
q0(x) : F → V

x 7→ q0
x

setup time :
tsp(x) : F → R

x 7→ tspx

hold time :
thd(x) : F → R

x 7→ thdx

time for the output to change :
tpmin(x) : F → R

x 7→ tpminx

time clock to output :
tpmax(x) : F → R

x 7→ tpmaxx

resolution time :
τ( f ) : F → R

f 7→ τ f

By abuse of notation, all the parameters of the previous functions will be denoted as
subscripts in the following models. For example, the data D(x) will be denoted Dx
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(a) schematic
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(b) Waveform

Figure 4.9: Flip-flop "x"

Flip-flop stable behaviour

The behaviour of a flip-flop x is described "stable", if its output Q(x) changes respecting
a certain profile. Contrarily to the stab function, the output of a flip-flop x can hold a
value Ω and yet be described as stable. This stays valid if and only if the value Ω enters,
remains and exists following the known characteristic timing. The stable behaviour of a
flop x is described as follows : if the data of the input Dx changes respecting the setup tsux

and the hold thdx timings of the flip-flop, it will be transmitted to its output Qx at the next
clock edge. ”Qx changes respecting three steps :

• It keeps its old value for a certain amount of time denoted tpminx.

• It starts to change to a transient state denoted Ω.

• After a time denoted tpmaxx, the new sampled data appears on the output Qx.

This behaviour is described as follows :

Rx :
N,F ,C →S

n,x,clkx 7→

when n = 0, λ t.q0
x

when Cex(dt(n)) = 1, λ t.


Rx(n−1, . . .)(t) : t ∈ dtx(n)+ [0 : tpminx[

Ω : t ∈ dtx(n)+]tpminx : tpmaxx[

Dx(dtx(n)) : t ∈ dtx(n)+ [tpmaxx : Γx]

Ω : t /∈]dtx(n) : dtx(n+1)[

Flip-flop Metastable behaviour

The behaviour of a flip-flop x is described "Metastable" if an anomaly appears on its
output Q(x). An anomaly here is defined to be either the value Ω to remain on Q(x) for
an uncertain amount of time andor it gets resolved to an unknown value x ∈ 0,1. If Dx is
changed too close to the sampling edge of clkx and violates the setup or the hold timings,
Qx risks to stay longer in the transient phase Ω. Staying longer in the transient phase
means taking longer to propagate the date between the sampling edge of clkx and Qx. The
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Figure 4.10: 1 flop stable

propagation time between the clock and the output is denoted tpcQ. A longer tpcQ is one of
the most important clues that a metastability is generated and being transmitted between
the master and the slave latches of the flop. A flip-flop x is described as metastable if Qx
changes as follows:

• It keeps its old value for a certain amount of time denoted ”tpminx”.

• It starts to change to a transient state denoted Ω. This metastable unknown state
will remain on Qx for a time longer than the usual ”tpmaxx” until it gets resolved to
a known value after a time τres.

• The metastability will be resolved to a certain logical value after a time ”tpmaxx”+
τres”. This logical value will remain unknown till a new value is sampled correctly.

This behaviour is described as follows :

R̃x :
F ,C →S

x,clkx 7→

when n = 0, λ t.q0
x

when Cex(dtx(n)) = 1, λ t.


R̃x(nx−1, . . .)(t) : t ∈ dtx(n)+ [0 : tpminx[

Ω : t ∈ dtx(nx)+]tpminx : tpmaxx + τres[

y ∈ {0,1} : t ∈ dtx(nx)+ [tpmaxx + τres : Γx]

Ω : t /∈]dtx(nx) : dtx(nx +1)[

4.3.2 CDC caused metastability
Synchronous communication

If two communicating flip-flops are clocked by the same clock or by two synchronous
clocks, the setup and the hold timings are surely respected and the data is sampled safely.
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Figure 4.11: 1 flop unstable

The respect of the setup and hold timings ensures that the destination clock clkd fires its
edge far enough from tpmins of the source avoiding sampling the old data, and far enough
from tpmaxs of the source avoiding sampling the transient value Ω. In this case, the desti-
nation flip-flop will have the stable behaviour Rd described previously. Assuming that the
control of the source flip-flop s is enabled for one cycle, and the control of the destination
flip-flop d is enabled during k cycles, the behaviour of these two communicating flip-flops
is described as follows :

CDCx :
F 2,C2 →S 2

s,d,clks,clkd 7→

when ns = 0,

λ t.(q0
s ,q

0
d)

when Ces(dts(ns)) = 1∧∀ns ∈]1 : k] Ces(dts(ns)) = 0

∧ ∀nd ∈ [1 : k] Ced(dtd(nd)) = 1

λ t.

{
(Rs(ns, . . .)(t),Rd(nd, . . .)(t)) : t ∈ [dts(ns) : dts(ns + k)[
(Ω,Ω) : t /∈ [dts(ns) : dts(ns + k)[

Asynchronous communication

In case of clock domain crossing, where the two communicating flip-flops are clocked
by different asynchronous clocks, the destination clock clkd can fire its edge very close
to tpmins of the source sampling the old data or within ”tpmaxs” of the source sampling
the undefined value Ω. For that, the destination flop is in risk to sample a metastability.
That is why, for the clock first cycle, the destination flip-flop d will have the metastable
behaviour R̃ described before. Then, if the data is kept stable for k cycles, the destination
flip-flop will restore the stable behaviour R. The behaviour of these two communicating
flip-flops is described as follows :
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Figure 4.12: CDC 1FF stable

˜CDCx :
F 2,C2 →S 2

s,d,clks,clkd 7→

when nx = 0,

λ t.(q0
s ,q

0
d)

when Ces(dts(ns)) = 1∧∀ns ∈]1 : k] Ces(dts(ns)) = 0

∧ ∀nd ∈ [1 : k] Ced(Ld(nd)) = 1

λ t.


(Rs(ns, . . .)(t), R̃d(nd, . . .)(t)) : t ∈ [dts(ns) : dts(ns +1)[
(Rs(ns, . . .)(t),Rd(nd, . . .)(t)) : t ∈ [dts(ns +1) : dts(ns + k)[
(Ω,Ω) : t /∈ [dts(ns) : dts(ns + k)[

General CDC model

We can conclude that dtd(nd)− tsud and dts(ns)+ tpmaxs are the important dates on which
depends whether the asynchronous communication is safe or not. The communication
is described safe or stable if dtd(nd)− tsud is larger than dts(ns)+ tpmaxs and the data is
kept stable during the study period (described in this model as k number of cycles). This
guarantees that the time of the sampling edge minus the setup time never happens before
the source clock edge plus tpmaxs avoiding sampling the source data while it is in the
transient state Ω. This can be expressed in 4.14 by the purple line. If the sampling edge of
clkd happens after this purple line, no metastability will occur on the destination flip-flop.
This general model is described as follows :
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4.4 Metastability injection
Metastability injection in RTL simulations is an important aspect of digital design ver-

ification. Although metastability itself cannot be injected in RTL simulation, it is crucial
to discover any potential issues related to metastability at early stages. Metastability in-
jection refers to mimicking the effect of metastability on digital level, which can lead to
data loss due to the prolongation of tc2q as seen in the analog simulation results os section
4.2. To understand how this analog phenomenon can be reproduced on digital level, it is
necessary to explain metastability from a pure digital point of view. EDA vendors have
developed solutions for metastability injection, and it is important to study the effect of
metastability on synchronization protocols and the quality of results of the CDC verifica-
tion. A first trial of metastability injection on a simple asynchronous FIFO provided us
valuable insights into this issue. Overall, metastability injection is an important aspect of
digital design verification that should not be overlooked.

4.4.1 Metastability effect on digital level
The effect of metastability is dependent on the type of timing violation that led to its
occurrence and how it was resolved. Typically, metastability is caused by violations of
setup and hold timings. If metastability occurs, it can either be resolved quickly to the
expected value of the input data, known as a "fast resolution", or it can resolve to the
opposite value of the input data, known as a "slow resolution". The terms "fast" and
"slow" refer to the speed at which the metastability is resolved within the same clock
cycle. In the case of a slow resolution, it is important for the data to remain stable in
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order to be re-sampled in the next clock cycle. Otherwise, it may be completely lost.
The effect of metastability can vary greatly depending on the specific circumstances of
the timing violation and resolution, making it an important consideration in digital design
verification.

Setup violation

Consider the example of a CDC synchronized by a 2-stage MFS, as illustrated in Figure
4.15. If the data on the destination side toggles far enough from the metastability window
of the destination clock, then metastability will not occur. This can be observed by fol-
lowing the green arrows sequence in Figure 4.16. When D_correct toggles early enough
at node x, the new data is transmitted to q1_correct in cycle 2 at node y and to q2_correct
in cycle 3 at node z without any metastability.

F_s

Ds Qs

clk_s clk

MFS
D q1 D q2

Figure 4.15: CDC path with two stage MFS

In contrast, if the data at D is delayed and violates the setup time of the destination
clock, a metastability can occur on the first destination flip-flop. Following the blue ar-
row sequence in Figure 4.16, when the delayed data D toggles at node a, a metastability
appears on q1 at node c due to the violation of the setup time. The metastability persists
in the flip-flop for a certain duration and is eventually resolved at node d. If the metasta-
bility resolves to the correct data value, as depicted in Figure 4.16, then the correct data
is transmitted to q2 in cycle 3, meeting the normal operating timing expectations. In such
a scenario, the metastability has no impact on the digital level. In this case, the metasta-
bility resolution is described as fast resolution. On the other hand, if the metastability

D

D_correct

clk

q1

q1_correct

q2

q2_correct

a

x

b e

c d

y

cycle 1 cycle 2 cycle 3 cycle 4

f

z

Figure 4.16: Setup violation: Metastability fast resolution

resolves to the incorrect data value at node d, as shown in Figure 4.17, the new data must
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be re-sampled at the next clock cycle. As a result, it is transmitted to q2 in cycle 4 instead
of cycle 3. In this scenario, the effect of the metastability manifests as a one-cycle delay
on the digital level. The metastability resolution in this case is described as slow due to
the additional time it took for the new data to reach the destination.

D

D_correct

clk

q1_correct

q1

q2

q2_correct

a

x

b e

y

c d j

k

f

cycle 1 cycle 2 cycle 3 cycle 4

Figure 4.17: Setup violation: Metastability slow resolution

Hold violation

Consider another scenario where the data at D must change after the clock edge to sample
the old data. Following the green arrow sequence in Figure 4.18, if D_correct changes
at node x far from the hold timing of the clock edge b, the new data will be transferred
to q1_correct at cycle 3 and to q2_correct at cycle 4. However, if the data changes
slightly earlier, violating the hold timing as shown at node a, a metastability can occur
on q1 at node c. In this case, following the blue arrow sequence, if the metastability
resolves quickly to the new data at node d, the new data will be transferred to q2 in cycle
3 instead of cycle 4. In this scenario, the resolution is described as fast and the effect of
the metastability that can be observed on the digital level is the advancement of the data
by one cycle.
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cycle 1 cycle 2 cycle 3 cycle 4

Figure 4.18: Hold violation: Metastability fast resolution

On the other hand, if the metastability resolves to the old data value, as shown at
node d in Figure 4.19, the new data is transmitted to q2 in cycle 4, meeting the timing
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Figure 4.19: Hold violation: Metastability slow resolution

expectations of the original normal behavior. In this scenario, the metastability resolution
is described as slow, and no effect appears on the digital level.

Table 4.1 concludes the effect of the metastability on digital level. We can observe 4
corner cases. The first is where the setup timing is violated and the metastability has a
fast resolution. In this case the metastability has no effect on digital level. The second is
where the setup timing is violated and the metastability has a slow resolution. In this case
the data is delayed by one clock cycle. The third case concerns the hold timing violation
with fast resolution. The data in this case reaches the destination one clock cycle earlier
that expected. And the fourth and last corner case is when the hold timing is violated and
the metastability has a slow resolution. No effect is seen on digital level in this case.

Violation Resolution q2 changes in cycle # Effect

None None 3 None

Setup Fast 3 None

Setup Slow 2 One cycle delay

None None 4 None

Hold Fast 3 One cycle earlier

Hold Slow 4 None

Tab. 4.1: Metastability effect on digital level according to the violation and the resolution
types

4.4.2 Metastability injection technologies
The metastability effect can be injected as an error in simulation by mimicking the four
corner cases concluded in Table 4.1. There exist several techniques to inject this type
of errors. After a study we conducted to gather information about what the EDA tools
propose in this field, we concluded that there exist two main approaches categories for
metastability injection:

121



Chapter 4. Metastability injection

• Intrusive approaches: An intrusive approach is an approach that changes the ver-
ified RTL in order to introduce one or more corner cases out of the metastability
corner cases presented in 4.1. The main idea is that the RTL is scanned to detect all
the MFS on the different CDC paths and to substitute them with modified MFS code
able to introduce a delay or an advancement to the crossing signal. These latter are
called "RTL substitution models". An example is shown in Figure 4.20 where the
substitution model in illustrated in the dotted frame. This model is inserted between
the two stages of the MFS FF1 and FF2. FF1′ delays the crossing signal one clock
cycle. random is generated everytime a change occurs on FF1. If random is 1, the
data will be delayed for one cycle. random is generated by dedicated behavioural
RTL using a random seed.

clk_1 clk_2

src1 FF2

FF1'

mux_1

random

I0

I1FF1

Figure 4.20: Metastability substitution model

• Non-intrusive approaches: The non-intrusive methodologies depend on signal
forcing during simulation. Dedicated modules, metastabilitychecker in Figure 4.21,
calculate the possibility of a setup or hold timing violations. The calculation is done
based on the source and the destination clocks and a metastability window defined
prior to the simulation. The metastability window is usually a percentage of the
destination clock period. If the data is changed in this time interval, a timing vio-
lation is flagged and the signal at the output if the second MFS stage can be forced
to its opposite value. This can delay or advance the crossing signal of one clock
cycle mimicking the effect of the metastability. The non-intrusive approaches do
not change anything in the native design RTL. Instead they calculate the potential
timing violations and force the signals on the spot in simulation.

4.4.3 Metastability injection on asynchronous FIFO

In order to assess the viability of applying a metastability injection flow, previously
untested in any project, a strategic decision was made to conduct initial testing on a
smaller-scale project. The primary objectives were to understand the flow application,
identify potential bugs related to design, and evaluate the overall feasibility and interest
in implementing such a methodology. The testing aimed to uncover insights that would
guide the application of the flow on a larger design. Despite initial doubts about the
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Figure 4.21: Metastability injection logic

feasibility, the preliminary results have proven the importance of this approach provid-
ing valuable insights into potential challenges and benefits. This testing phase serves as
a foundational step for a more comprehensive application of the metastability injection
flow on larger-scale projects.

Test case

We selected an asynchronous FIFO as our test case due to its comprehensive coverage
of aspects related to Clock Domain Crossing (CDC). This particular FIFO encapsulates
CDC data paths connecting memory and the destination flop. Additionally, it features
CDC control paths, where read and write pointers are synchronized bit by bit using Multi-
Flop Synchronizers (MFS). The test case also addresses reconvergences observed among
various bits of the resynchronized pointers, crucial for calculating empty and full flags.

In light of this, our test comprises five key modules,as shown in Figure 4.22 detailed
as follows:
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Figure 4.22: Asynchronous FIFO block diagram
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• The FIFO memory (fifomem.v): The memory of the FIFO paramerizd by the data
size DATASIZE and the addresses size ADDRSIZE.

module fifomem #(parameter DATASIZE = 8,
// Memory data word width
parameter ADDRSIZE = 4) // Number of mem address bits
(output [DATASIZE-1:0] rdata,
input [DATASIZE-1:0] wdata,
input [ADDRSIZE-1:0] waddr, raddr,
input wclken, wfull, wclk);
‘ifdef VENDORRAM
// instantiation of a vendor’s dual-port RAM
vendor_ram mem (.dout(rdata), .din(wdata),
.waddr(waddr), .raddr(raddr),
.wclken(wclken),
.wclken_n(wfull), .clk(wclk));
‘else
// RTL Verilog memory model
localparam DEPTH = 1<<ADDRSIZE;
reg [DATASIZE-1:0] mem [0:DEPTH-1];
assign rdata = mem[raddr];
always @(posedge wclk)
if (wclken && !wfull) mem[waddr] <= wdata;
‘endif

endmodule

• Write address synchronization (sync_w2r.v): This module is dedicated to syn-
chronize the write pointer with a three stages MFS.

module sync_w2r #(parameter ADDRSIZE = 4)
(output reg [ADDRSIZE:0] rq2_wptr,
input [ADDRSIZE:0] wptr,
input rclk, rrst_n);
reg [ADDRSIZE:0] rq1_wptr;
reg [ADDRSIZE:0] rq1x_wptr;
always @(posedge rclk or negedge rrst_n)
if (!rrst_n) {rq2_wptr,rq1x_wptr,rq1_wptr} <= 0;
else
{rq2_wptr,rq1x_wptr,rq1_wptr} <= {rq1x_wptr,rq1_wptr,wptr};

endmodule

• Read address synchronization (sync_r2w.v): This module is dedicated to synchro-
nize the read pointer with a three stages MFS.
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module sync_r2w #(parameter ADDRSIZE = 4)
(output reg [ADDRSIZE:0] wq2_rptr,
input [ADDRSIZE:0] rptr,
input wclk, wrst_n);
reg [ADDRSIZE:0] wq1_rptr;
reg [ADDRSIZE:0] wq1x_rptr;
always @(posedge wclk or negedge wrst_n)
if (!wrst_n) {wq2_rptr,wq1x_rptr,wq1_rptr} <= 0;
else
{wq2_rptr,wq1x_rptr,wq1_rptr} <= {wq1x_rptr,wq1_rptr,rptr};

endmodule

• Full Flag calculation (wptr_full.v): This module is dedicated to calculate the full
flag.
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module wptr_full #(parameter ADDRSIZE = 4)
(output reg wfull,
output [ADDRSIZE-1:0] waddr,
output reg [ADDRSIZE :0] wptr,
input [ADDRSIZE :0] wq2_rptr,
input winc, wclk, wrst_n);

reg [ADDRSIZE:0] wbin;
wire [ADDRSIZE:0] wgraynext, wbinnext;

// GRAYSTYLE2 pointer
always @(posedge wclk or negedge wrst_n)
if (!wrst_n) {wbin, wptr} <= 0;
else {wbin, wptr} <= {wbinnext, wgraynext};
// Memory write-address pointer
//(okay to use binary to address memory)
assign waddr = wbin[ADDRSIZE-1:0];
assign wbinnext = wbin + (winc & ~wfull);
‘ifdef INJECT_GRAY_ERROR

assign wgraynext = wbinnext;
‘else

assign wgraynext = (wbinnext>>1) ^ wbinnext;
‘endif

//three necessary full-tests
assign wfull_val=
((wgraynext[ADDRSIZE] !=wq2_rptr[ADDRSIZE])&&
(wgraynext[ADDRSIZE-1] !=wq2_rptr[ADDRSIZE-1]) &&
(wgraynext[ADDRSIZE-2:0]==wq2_rptr[ADDRSIZE-2:0]));

always @(posedge wclk or negedge wrst_n)
if (!wrst_n) wfull <= 1’b0;
else wfull <= wfull_val;

endmodule

• Empty Flag calculation (rptr_empty.v): This module is dedicated to calculate the
empty flag.
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module rptr_empty #(parameter ADDRSIZE = 4)

(output reg rempty,
output [ADDRSIZE-1:0] raddr,
output reg [ADDRSIZE :0] rptr,
input [ADDRSIZE :0] rq2_wptr,
input rinc, rclk, rrst_n);
reg [ADDRSIZE:0] rbin;
wire [ADDRSIZE:0] rgraynext, rbinnext;
//-------------------
// GRAYSTYLE2 pointer
//-------------------
always @(posedge rclk or negedge rrst_n)
if (!rrst_n) {rbin, rptr} <= 0;
else {rbin, rptr} <= {rbinnext, rgraynext};
// Memory read-address pointer
//(okay to use binary to address memory)
assign raddr = rbin[ADDRSIZE-1:0];
assign rbinnext = rbin + (rinc & ~rempty);

‘ifdef INJECT_GRAY_ERROR
assign rgraynext = rbinnext;

‘else
assign rgraynext = (rbinnext>>1) ^ rbinnext;

‘endif

assign rempty_val = (rgraynext == rq2_wptr);

always @(posedge rclk or negedge rrst_n)
if (!rrst_n) rempty <= 1’b1;
else rempty <= rempty_val;

endmodule

A simple test bench, as shown in Figure 4.23 was created to stimulate the asyn-
chronous interfaces. The top top.v instantiates a standard counter that generates data on a
source clock clks to be passed to an asynchronous destination clkd through the FIFO. The
counter is intended to stop counting when the FIFO is full. The rempty flag qualifies the
output of the FIFO enabling a register bank, where data are recirculated by a re-circulation
mux if the rempty is flagged.

Figure 4.23: Asynchronous FIFO test bench block diagram
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Results

Our analysis commenced with a standard structural check using a CDC static tool to guar-
antee the design’s integrity from a CDC perspective. The structural verification success-
fully passed, revealing no violations. Subsequently, we initiated our test bench simulation
to establish a reference simulation database, against which we could compare our results
following the injection of metastability.

Following that, we moved on to injecting metastability, opting for a non-intrusive ap-
proach. Dedicated EDA tools generated metastability checkers for each signal synchro-
nized by MFS, focusing on both pointers in our test case. We established a predefined
metastability window equivalent to 50% of the clock period of the destination clock. This
setup meant that if the source-side data coincided too closely with the destination clock
edge within this 50% period, based on a random seed, the signal could be manipulated to
induce either a delay or an advancement.

The coverage report, illustrated in Figure 4.24, reveals that all relevant signals expe-
rienced metastability injection at least once. Signal number 4, for example, exhibited the
fewest error injections, with the signal toggling being affected by an error injection in
50% of instances.

Figure 4.24: Metastability injection coverage report

During the results inspection, we compared the waveforms between standard simula-
tion and metastability injection. The metastability injection points are marked with orange
dots in the chronogram in Figure 4.25 on different bits of the write pointer. As we exam-
ined other key control signals, an initial observation was a false pulse on the empty flag.
This implies that the empty flag was erroneously flagged between t = 1000 and t = 1500,
violating the condition (rq2_wptr == rgraynext). While an incorrectly flagged flag may
be inconvenient, the converse situation – a flag that should be flagged but isn’t – can be
potentially critical.

Upon examining the impact of metastability injection on another control signal, specif-
ically the full flag post-error injection on the read pointer, critical instances were identi-
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Figure 4.25: Metastability injection effect on Empty flag

fied. The chronogram in Figure 4.26 illustrates situations where the full flag should have
been flagged, yet it wasn’t (e.g., between t=100 and t=300). This resulted in an unintended
data write, where wdata changed when it should have remained stable, contradicting the
intended prohibition.

Tracing back the root cause of the unexpected value propagated, as shown in Fig-
ure 4.27, on the full flag, we identified it as a consequence of reconvergence of different
bits of the read pointer where metastability was injected. This raised the question: why
were not these reconvergences detected during structural checks? It turns out that the
tool typically halts reconvergence analysis when the signals pass through a defined num-
ber of sequential elements before the reconvergence. In our case, with three stages of
MFS synchronizing the pointers, and the tool’s minimum depth being 2, the third flop
was considered an additional sequential depth, leading to the skipping of reconvergence
analysis. The metastability injection proved importance in uncovering these skipped re-
convergences, highlighting its effectiveness in detecting critical reconvergences that might
lead to functionality failure, often masked by the sequential depth parameter in structural
analysis.

4.5 Perspectives and future work

Metastability injection serves as a vital complement to CDC verification by addressing
potential design vulnerabilities. While initial test cases may not have yielded significant
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Figure 4.26: Metastability injection effect on Full flag

Figure 4.27: Root cause tracing for full flag failure
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results, it’s imperative to delve deeper into the domain. Additional studies are recom-
mended to standardize a flow and identify potential bugs that may not have surfaced dur-
ing the initial trials.

We suppose that the lack of conclusive results could be attributed to the existing ap-
proaches. That is why we highlight the need for innovative methodologies. Investing in
further research can uncover new approaches for metastability injection that prove more
effective in ensuring design immunity against metastability issues.

Moreover, there is an intriguing prospect in the field of formal verification. Develop-
ing a metastability model tailored for formal verification becomes essential. This model
would abstract the notion of fictive time, a concept prevalent in current simulation-centric
approaches. This exploration could pave the way for more comprehensive and accurate
verification methods in dealing with metastability.

4.6 Conclusion
The chapter effectively synthesizes our studies and efforts in the metastability injec-

tion domain. Initially, we gained firsthand insights into metastability by reproducing the
phenomenon in analog simulations, offering a nuanced understanding of related defini-
tions. We observed a prolongation in the propagation time, causing an impact on the
output Q of the slave latch when violating the setup time of the receiving flip flop.In
the second section, we delved into modeling the effects of metastability at both analog
and digital levels. The provided generic modeling for CDC paths helped distinguish
where metastability could and could not occur, leading to a conclusive abstraction of
the phenomenon on the digital level. Here, we interpreted metastability as a mere delay
or advancement in the crossing signal. Through fault injection in simulations, we demon-
strated how metastability can compromise coded synchronization protocols, as shown in
the asynchronous FIFO case. Notably, metastability injection in RTL simulations uncov-
ered re-convergences overlooked by CDC static tools due to substantial sequential depth.
Despite lacking insights on optimal application and evaluation metrics, our work serves
as a promising starting point. It lays the groundwork for potential further exploration,
offering a solid foundation for a comprehensive PhD study in this intriguing subject.
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General conclusion

During my three-year PhD program at STMicroelectronics and TIMA Laboratory, my
primary responsibility was to investigate and enhance the verification of asynchronous in-
terfaces on multi-clock systems. As a member of the CPU team at STMicroelectronics,
our initial focus centered on validating high-performance CPU subsystems with multiple
cores and shared peripherals. The critical challenge of Clock Domain Crossing (CDC)
in multi-clock systems posed a potential threat to silicon integrity, necessitating early
consideration in the design flow. Our mission aimed to optimize CDC verification, in-
troducing novel aspects to elevate the quality of verification. The comprehensive results
yielded positive outcomes, successfully addressing the targeted aspects.

Pre-PhD Context

CDC verification, traditionally a standalone process in design and verification plans, is
typically isolated in the industry, relying on specialized tools. However, when we com-
menced our mission, the status of this verification activity was far from mature.

CDC Structural Verification The current approach involved CDC structural verifica-
tion, conducted either at the RTL or gate level. It sought to statically identify all CDC
paths and ensure the presence of suitable synchronizers on each path. This involved
matching pre-coded synchronizer patterns with the design RTL and categorizing each
based on the matched pattern. Challenges emerged in this approach, notably with man-
ually written and error-prone design constraints. These constraints, forming the basis of
structural verification, lacked cross-verification due to the absence of reliable references
and specifications. The clock tree constraining task, for instance, consumed months be-
fore initiating structural verification, resulting in noisy and error-ridden outcomes. Ad-
ditionally, the native flow neglected important aspects such as constraints interdependen-
cies, power management logic, and establishing clear CDC coverage. Furthermore, the
pre-coded patterns struggled with custom or complex synchronizers, relying on partial
detection that could lead to undetected errors with catastrophic consequences on silicon.

CDC Functional Verification Complementing structural verification, CDC functional
verification addresses the limitation of solely relying on structural analysis. While struc-
tural verification identified CDC paths and synchronizers, it fell short in validating their
functionality. Efforts in CDC formal verification were observed in the state of the art,
yet the large-scale, multi-clock domain nature of CDC often rendered formal analysis in-
conclusive due to timeouts. Consequently, due to the unachievability of satisfying results
and the impossibility to do such an analysis within the projects’ timeframes, no CDC
functional check was ever done on projects.
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PhD Contributions

In the course of this doctoral study, the primary objective was to identify and address
existing limitations in the field of Clock Domain Crossing (CDC) verification. Early in
this endeavor, we questioned the singular and immature approach often employed in CDC
verification executed by designers themselves. The rarity of dedicated verification engi-
neers for CDC verification contributes to its overall immaturity. Unlike functional veri-
fication, which has a wealth of literature, clear coverage definitions, and multiple IEEE
standards, CDC verification’s literature is limited, lacking any IEEE standard. To address
these shortcomings, our focus shifted towards enhancing existing structural verification
methods and exploring connections with functional verification. By tapping into the ma-
ture methodologies of functional verification, we aimed to elevate the maturity of CDC
verification. The contributions of this PhD can be briefly summarized into three main
achievements.

Optimization of CDC Structural Verification Flow The initial goal of this phase was
to enhance and standardize the CDC structural verification flow, serving as the primary
defense against the risks posed by asynchronous paths (refer to Chapter2). This objective
materialized through two key proposals. Firstly, the introduction of a New CDC Struc-
tural Verification Flow involved the development of an innovative approach to address
deficiencies in the original flow. This new flow systematically verified various design
and CDC rules, aiming to improve violation reporting, expedite task completion, and
minimize false positives and negatives. When comparing the old and proposed flows for
our test case, approximately 75% of the erroneous results vanished. Secondly, the UPF-
Aware CDC Structural Verification initiative investigated the impact of low-power logic
on CDC aspects. Recognizing that low-power logic could compromise existing synchro-
nized CDCs or introduce new ones, we introduced the "UPF-Aware CDC Verification
Flow." This flow involved incorporating the UPF file to integrate low-power logic into the
verified design. The focus was on updating tools to recognize new clock declarations and
identify potential asynchronous control signals controlling isolation cells. The application
of this flow successfully uncovered CDC paths that remained undetected by the original
flow.

Integrating Dynamic Functional Verification with CDC Verification In contrast to
the isolated nature of CDC verification, a highly skilled team of engineers routinely de-
velops mature environments for dynamic functional verification, achieving notable func-
tional and code coverage. This prompted the exploration of a connection between dy-
namic functional verification and CDC verification, leveraging the efforts invested in the
former (refer to Chapter 3). Three key proposals emerged within this context. Firstly,
the introduction of the CDC Semi-Formal Verification Flow involved assertions-based
verification within a high-coverage dynamic functional verification environment. This
approach ensured the validity of the setup and reported synchronizers. Notably, our semi-
formal flow achieved 100% coverage of CDC assertions and unearthed new CDC bugs not
identified by structural verification. Given the time efficiency and coverage achieved, the
semi-formal approach for CDC verification demonstrated advantages over the formal ap-
proach results present in the state-of-the-art. Secondly, the Universal Qualifier presented
a unified method capable of verifying all CDC data synchronizers, irrespective of their
types. This marked a significant advancement in verifying custom data synchronizers that
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General conclusion

industrial tools often struggle to detect. Results indicated that our method generated more
reliable properties than those based on the native outputs of industrial tools. Finally, the
Hybrid Flow utilized semi-formal verification not only to complement CDC structural
verification but also to assist in the setup phase, particularly concerning clock tree config-
uration. This provided a solution to the mixed-mode verification approach (where clocks
are propagated randomly without referring to any realistic operating mode) commonly
used due to the absence of design specification. The outcomes revealed a substantial gap
in the number of detected CDC paths by the hybrid flow compared to the mixed-modes
approach. The hybrid flow identified five times more CDC paths, paving the way for an
iterative approach where various configurations are iteratively checked, as opposed to a
mixed-modes approach with incoherent and unrealistic clock propagation.

Pioneering the First IEEE Standard for CDC Models CDC models serve as con-
cise representations of blocks and sub-blocks, encapsulating essential CDC information
crucial for verifying CDC aspects at the periphery of a block integrated into a larger de-
sign context. In hierarchical CDC verification, these models are integrated from different
blocks to verify the top level, offering a more efficient approach for extensive designs.
However, the lack of portability between various CDC static verification tools hinders
widespread adoption, primarily due to the absence of a standard for these CDC models.
In an important initiative, a dedicated working group was established by Accellera to de-
fine the inaugural IEEE CDC standard. Our involvement in this CDC working group
resulted in the development and release of two versions of this Language Reference Man-
ual (LRM), both subjected to public review. This pioneering effort marks a significant
step towards establishing standardized CDC models.

Future Directions

In the forthcoming work, our aim is to integrate all proposed solutions into a coherent and
unified flow. The Hybrid Flow, in synergy with the New CDC Verification Flow, will con-
tribute to configuring clock trees reliably and supporting the adoption of an incremental
multi-mode CDC verification approach. This integration will pave the way for defining
a straightforward CDC coverage metric, measuring the percentage of detected CDC in
each mode, as opposed to the previous mixed-mode approach lacking a clear definition
for CDC coverage.

Additionally, we plan to push for the implementation of the Universal Qualifier con-
cept in verification tools, enabling the verification and analysis of any CDC data synchro-
nizer, regardless of its type. This implementation will significantly enhance the quality
and reliability of automatically generated protocol assertions.

Addressing the aspect of metastability injection (refer to Chapter 4), our initial study
has provided a unique synthesis of the metastability problem on both analog and dig-
ital levels. We have explored various metastability injection approaches proposed by
tools providers and researchers. A preliminary application of metastability injection has
demonstrated its potential in detecting CDC re-convergences that were previously unde-
tectable statically by structural verification. Despite time constraints, we recognize the
untapped potential in the domain of metastability injection, particularly in dynamic sim-
ulation and formal verification. For that, we started developing a metastability formal
model (refer to ??) that can be the first milestone in this subject. Future exploration in
these areas holds promise for further discoveries and advancements.
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Publications and Conferences

Publications and Conferences

Throughout my PhD, I had the opportunity to contribute significantly to various con-
ferences, showcasing our findings through publications in scientific and industrial papers.
Additionally, I actively participated in diverse seminars and webinars across different
contexts. Here is a synthesis of our substantial contributions over the three years of my
thesis.
Published Scientific conference papers

[1] Kalel, D., Brignone, J. C., Serre, I., Massicot, J., Avezou, J. (2023, June). UPF-
Aware CDC Structural Verification on RTL. In 2023 21st IEEE Interregional NEWCAS
Conference (NEWCAS) (pp. 1-2). IEEE.

[2] Kalel, D., Brignone, J. C., Fesquet, L., Morin-Allory, K. (2023, December). A
Generic CDC Modeling for Data Stability Verification. In 2023 30th IEEE International
Conference on Electronics, Circuits and Systems (ICECS) (pp. 1-4). IEEE.

Published Industrial conefrence papers

[3] Kalel D, Brignone JC, Massicot J, Avezou J. Generating and Elaborating CDC-RDC
UPF Aware Constraints with VC-Spyglass. Synopsys SNUG Europe 2022 Oct 17-18
(TECHNICAL COMMITTEE AWARD, HONORABLE MENTION)

[4] Kalel D, Brignone JC, Avezou J, Implementation of A Universal Qualifier Detection
Algorithm to Assist the CDC Verification. Synopsys SNUG Silicon Valley 2024 Mar. 20-
21 (TECHNICAL COMMITTEE AWARD, THIRD PLACE BEST PAPER)

[5] Massicot J, Perret F, Kalel D, Brignone, Avezou J, Multi-scenario CDC SAM Gen-
eration. Synopsys SNUG Europe 2024

Published CDC IEEE standard

[6] Clock Domain Crossing Standard Draft Version 0.1, https://accellera.org/
images/downloads/drafts-review/Clock_Domain_Crossing_Standard_Version_
0.1.pdf

Delivered Tutorial sessions and Seminars

[7] Accellera CDC WorkingGroup, Hierarchical CDC Closure with Standard Abstract
models, Tutorial Session, DVCON US 2024
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[8] Accellera CDC training SWG, CDC-RDC closure with Abstracts from Different
tools, Tutorial Session, DVCONEurope 2023

[9] UPF-Aware CDC Constraints generation Flow, Synopsys Symposium Grenoble 2022

[10] Complementary Semi-Formal Analysis for the CDC Structural Verification, Siemens
U2U, Munich 2023

[11] Complementary Semi-Formal Analysis to Assist the CDC Structural Verification
Constraining the Clock Tree, Synopsys Symposium Grenoble 2023

[12] CDC Semi-Formal Verification, Siemens Forum Grenoble 2023

[13] CDC Static Verification Tools Evaluation, ST forums and BCD days, Grenoble,
Castelleto, Catania 2023

[14] Constraints-Driven CDC and RDC Verification Including UPF Aware Analysis,
Synopsys-STM Webinar, https://www.synopsys.com/verification/resources/webinars/
constraints-driven-cdc-and-rdc-verification.html
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Annex 1 : Design Rules

This annex is a non exhaustive list of the setup violations a
user can need to solve before starting a CDC structural verifi-
cation.
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The setup rules, referenced in Chapter 2 as the design rules Π, is the set of rules that
the design specification should respect in order to ensure the design integrity prior to the
CDC structural verification. This is a non-exhaustive list of these design rules:

• ERROR_CLKPROP_NO_CLK : No clock definitions found

• ERROR_CLOCK_UNDECL : Clock net does not receive any defined clock

• ERROR_CLOCK_CONSTANT : Clock net is set to a constant

• ERROR_ASYNC_CLOCK_OVERLAP: Two or more clocks from different do-
mains overlap

• ERROR_CLOCK_GLITCH : Asynchronous source converges with different do-
main clock(s)

• ERROR_CLOCK_MODULEGLITCH: specified module driven by clock(s) con-
tains glitchy logic

• ERROR_PORT_UNCONSTRAINED: Port has no constraints

• ERROR_PORT_PARTIALLY_CONSTRAINED: Port is partially constrained

• ERROR_BBOXPIN_UNCONSTRAINED: Reports black-box pins that are un-
constrained or partially-constrained

• ERROR_LIBCELLPIN_UNMODELLED: Reports un-modeled library cell pin(s)

• ERROR_LIBCELL_COMBO_DRIVEN_ASYNCPIN: Reports library cell async
pins driven by combinational logic

• ERROR_CGLIBCELL_DEF_INCOMPLETE: Clock gating cells missing com-
plete definition

• ERROR_INPUT_MULTICLOCK_LOAD: Primary input signal is sampled by
multiple clock-domains

• ERROR_OUTPUT_MULTICLOCK_DRIVER: Primary output signal is in the
fan-out cone of multiple clock-domains

• ERROR_CLOCK_GATING_UNSAFE: An unsafe clock gating with enable and
source clock detected

• ERROR_MULT_ASYNC_CLK_MUX: Multiple asynchronous clocks reaching
MUX with dynamic select

• ERROR_MULT_ASYNC_CLKGATE: Multiple asynchronous clocks reaching
logic gate

• ERROR_COMBO_DRIVING_REDUNDANT_LOGIC: Multiple clocks reach-
ing logic gate with redundant logic in its fanout

• ERROR_MUX_SELPIN_CONSTRAINED: Multiple clocks reaching MUX with
constant select
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• ERROR_MUX_OUTPUT_CLOCK: Multiple clocks reaching MUX which has
another clock defined on its output

• ERROR_COMBO_OUTPUT_CLOCK: Multiple clocks reaching logic gate which
has another clock defined on its output

• ERROR_CONST_DATA: Sequential element with no set/reset pin that has data
pin tied to a constant

• ERROR_CONST_DATA_SET: Sequential element with set pin that has data pin
tied to high

• ERROR_CONST_DATA_RESET: Sequential element with reset pin that has data
pin tied to low

• ERROR_IGNORE_COMMAND: Reports commands that are ignored partially/-
fully due to error in specified options

• ERROR_LIBCELL_CONNECTIVITY_MISMATCH: Mismatch in path between
functional and timing model found for cell module

• ERROR_TIMING_ARC_PATH: Path exists in timing model only

• ERROR_FUNCTIONAL_PATH: Path exists in functional model only

• ERROR_LIBCELL_DEF_INCOMPLETE: Instance of library cell module has
pin(s) with incomplete definition

• ERROR_OVERRIDE_COMMAND: Reports if a command value is overridden

• ERROR_RESET_ASSERT_MISSING: Reports sequential elements that are not
asynchronously asserted by active reset/set

• ERROR_RESET_CONSTANT_ACTIVE: Reset/set pin is tied to active constant
value

• ERROR_RESET_UNDECL: Asynchronous reset/set input pin does not receive
any asynchronous defined reset signal, defined by create_reset -async

• ERROR_SYNCRESET_UNDECL: Net does not receive any synchronous de-
fined reset signal

• ERROR_SDC_CLK_NOTFOUND: SDC clock specified in SDC command does
not exist

• ERROR_SDC_CLKGRP_INVALID: Same clock object used multiple times in
set_clock_groups or clock group type is missing

• ERROR_SDC_CLKNAME_MISSING: Source object or -name missing in cre-
ate_clock or create_generated_clock commands

• ERROR_SDC_EMPTY_CLKGRP: Empty clock groups detected

• ERROR_SDC_OBJECT_NONEXIST: Object specified in the SDC command
does not exist
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• ERROR_SDC_OBJECT_NOTFOUND: Objects specified with SDC command
not found in design

• ERROR_SDC_DUTYCYCLE_INVALID: Duty cycle option is invalid in the cre-
ate_generated_clock SDC command

• ERROR_SDC_OPTIONS_INCOMPLETE: Inter dependent options of SDC com-
mands missing

• ERROR_MUX_DRIVING_REDUNDANT_LOGIC: Multiple clocks reaching
MUX with redundant logic in its fanout

• ERROR_RESET_SENSE_INVALID: Command is ignored
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Annex 2 : CDC Rules

This annex is a non exhaustive list of the CDC violations and
the related CDC problems that can be detected by the CDC
structural verification.

Contents
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The CDC violations, referenced as the set of CDC rules Πcdc = {π i} in Chapter 2,
is the set of CDC properties that should be followed by the different CDC paths and
synchronizers, such as gray coding for data bus synchronized by MFS. This is a non
exhaustive list of the CDC rules:

CDC Synchronization checks

• ERROR_CDC_UNSYNC_NOSCHEME: Unsynchronized CDC Paths found

• ERROR_CDC_UNSYNC_CTRL: Partially matched control synchronization scheme
found on the CDC path

• ERROR_CDC_UNSYNC_DATA: Partially matched data synchronization found
on the CDC path

CDC unsynchronized checks

• ERROR_CDC_UNSYNC_ASYNCRESET: Partially matched synchronization scheme
found for a CDC path crossing.

• ERROR_CDC_ASYNCRESET_CTRLSYNC_INVALID_USE: defined reset syn-
chronizers drive an invalid (non set/reset) pin.

• WARNING_CDC_COHERENCY_ASYNCRESET: Reset signal is getting syn-
chronized multiple times

CDC Convergence Checks

• ERROR_CDC_COHERENCY_SINGLESRC_RECONV_COMB: Combinational
convergence of single source divergence found at convergence point

• ERROR_CDC_COHERENCY_SINGLESRC_RECONV_SEQ: Sequential con-
vergence of single source divergence found at convergence point

• ERROR_CDC_COHERENCY_RECONV_COMB: Combinational convergence
found at ConvergencePoint

• ERROR_CDC_COHERENCY_RECONV_SEQ: sequential convergence of mul-
tiple synchronized signals on which the check for gray encoding of source bits is
skipped.

• ERROR_CDC_COHERENCY_MULTI_SYNC: Signals control synchronized mul-
tiple times in same domain without convergence.

• WARNING_CDC_COHERENCY_MULTI_SYNC_SRCBUS: Separate synchro-
nization of different bits of same source bus at destination bus

• WARNING_CDC_COHERENCY_BUS_NOCONV: Control synchronized bits
of same source vector signal that are neither converging nor checked for presence
of gray encoder

• WARNING_CDC_COHERENCY_VECTOR_DIFF_SYNC: Mismatch in syn-
chronization among different bits of the same vector source.
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• ERROR_CDC_COHERENCY_ASYNCSRCS_RECONV_COMB: Combinational
convergence of multiple synchronized signals from mutually asynchronous sources

• ERROR_CDC_COHERENCY_ASYNCSRCS_RECONV_SEQ: Sequential con-
vergence of multiple synchronized signals from mutually asynchronous sources

• ERROR_CDC_META_DESIGN_HIER: Default instance name is used for CDC
jitter model as meta_design_hier command is not specified or specified value for
the name of meta_design_hier command does not match with the current design
name.

• ERROR_CDC_COHERENCY_IGNORED: Ignored convergence due to -ignore_among_singals
argument of the configure_cdc_convergence command.

• ERROR_CDC_SEQCONV_ASYNC_SRCS: Sequential convergence found.

CDC Glitch Checks

• ERROR_CDC_GLITCH_CTRL: Glitch found on control crossing paths

• ERROR_CDC_GLITCH_UNSYNC: Glitch found on unsynchronized crossing
paths.

• WARNING_INTEGRITY_RESET_GLITCH: PinType pin of sequential element
DestReset is driven by combinational logic.
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Annex 3 : Constraints Assertions

Examples

This annex is a non exhaustive list of the constraints that can
be translated to properties used to either constraint the design
for formal verification, or to be cross checked by the functional
dynamic simulation.
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The CDC verification EDA tools translate the set of constraints specified by the user
to a set of assumptions that can be cross checked in simulation environment or reused in
a formal verification environment. Here as some examples of the constraints and their
correspondent assertions.

• Constant signals constraining the clock tree

#(1)constant constraint
define_constant -value [0\1] -signal [signal\_name]

//(1)constant assertion
always@*
begin
assert_cdc_constant_prop : assert (select === value)

• Pseudo-static signals where CDC static analysis is skipped

#(2) pseudo-static signals constraint
define_pseudostatic –name [signal name]
–stopped_clock [yes/no] –under_reset [yes/no]

//(2) pseudo-static signals assertion
property pseudo_static (EN);

@(posedge clk) disable iff(reset)
nexttime $stable(EN);

endproperty

• Exclusive CDC signals that can converge in the design fanout

#(3) Exclusive signals constraints
define_exclusive –signals [set of signals names]

//(3) Exclusive signals
property mutex (data, clk);

@(posedge clk)
$onehot0(data ^ $past(data));

endproperty
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Annex 4 : Simulation Results

This annex is a synthesis of the simulation results we obtained
verifying our CPU sub-system test case.
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The following tables give insights on the simulation results and the assertions exer-
cised in each of our dynamic functional regression tests.

Test acronym Scope static /400 Exclusive /59 Constant /169

Test 1-21 Basic CPU and SubSystem functionality 21 28 169

Test 22 Memory integration 140 30 169

Test 23-38 Interrupts 304 49 169

Test 39-56 Debug and trace 279 47 169

Test 57-68 System performance and power 361 59 169

Test 69-73 Clock and reset management 361 59 169

Test 74-79 Register programming 361 59 169

Test 80-84 Connectivity 361 46 169

Test 85-92 Memory integration 316 32 169

Test 93-96 Register verification 347 51 169

Test 97-104 Interface verification 361 59 169

Test 105-107 Custom IP verification 184 36 169

Test 108-130 Power aware functionality 400 48 169

Tab. D.1: Constraints assertions coverage wrt functional regression tests
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Test acronym Scope MFS /150 Qualifier /90

Test 1-21 Basic CPU and SubSystem functionality 118 71

Test 22 Memory integration 105 40

Test 23-38 Interrupts 128 70

Test 39-56 Deebug and trace 137 78

Test 57-68 System performance and power 147 82

Test 69-73 Clock and reset management 150 86

Test 74-79 Register programming 142 78

Test 80-84 Connectivity 125 63

Test 85-92 Memory integration 138 45

Test 93-96 Register verification 123 84

Test 97-104 Interface verification 150 90

Test 105-107 Custom IP verification 67 47

Test 108-130 Power aware functionality 150 68

Tab. D.2: Protocols assertions coverage wrt functional regression tests
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Annex 6: Asynchronous FIFO

This annex gives the verilog code of our asynchronous FIFO
test case used for the metastability injection flow. We selected
an asynchronous FIFO as our test case due to its comprehen-
sive coverage of aspects related to Clock Domain Crossing
(CDC).

XXVIII



FIFO memory

module fifomem #(parameter DATASIZE = 8,
// Memory data word width
parameter ADDRSIZE = 4) // Number of mem address bits
(output [DATASIZE-1:0] rdata,
input [DATASIZE-1:0] wdata,
input [ADDRSIZE-1:0] waddr, raddr,
input wclken, wfull, wclk);
‘ifdef VENDORRAM
// instantiation of a vendor’s dual-port RAM
vendor_ram mem (.dout(rdata), .din(wdata),
.waddr(waddr), .raddr(raddr),
.wclken(wclken),
.wclken_n(wfull), .clk(wclk));
‘else
// RTL Verilog memory model
localparam DEPTH = 1<<ADDRSIZE;
reg [DATASIZE-1:0] mem [0:DEPTH-1];
assign rdata = mem[raddr];
always @(posedge wclk)
if (wclken && !wfull) mem[waddr] <= wdata;
‘endif

endmodule

Write address synchronization

module sync_w2r #(parameter ADDRSIZE = 4)
(output reg [ADDRSIZE:0] rq2_wptr,
input [ADDRSIZE:0] wptr,
input rclk, rrst_n);
reg [ADDRSIZE:0] rq1_wptr;
reg [ADDRSIZE:0] rq1x_wptr;
always @(posedge rclk or negedge rrst_n)
if (!rrst_n) {rq2_wptr,rq1x_wptr,rq1_wptr} <= 0;
else
{rq2_wptr,rq1x_wptr,rq1_wptr} <= {rq1x_wptr,rq1_wptr,wptr};

endmodule
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Read address synchronization

module sync_r2w #(parameter ADDRSIZE = 4)
(output reg [ADDRSIZE:0] wq2_rptr,
input [ADDRSIZE:0] rptr,
input wclk, wrst_n);
reg [ADDRSIZE:0] wq1_rptr;
reg [ADDRSIZE:0] wq1x_rptr;
always @(posedge wclk or negedge wrst_n)
if (!wrst_n) {wq2_rptr,wq1x_rptr,wq1_rptr} <= 0;
else
{wq2_rptr,wq1x_rptr,wq1_rptr} <= {wq1x_rptr,wq1_rptr,rptr};

endmodule
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Full flag calculation

module wptr_full #(parameter ADDRSIZE = 4)
(output reg wfull,
output [ADDRSIZE-1:0] waddr,
output reg [ADDRSIZE :0] wptr,
input [ADDRSIZE :0] wq2_rptr,
input winc, wclk, wrst_n);

reg [ADDRSIZE:0] wbin;
wire [ADDRSIZE:0] wgraynext, wbinnext;

// GRAYSTYLE2 pointer
always @(posedge wclk or negedge wrst_n)
if (!wrst_n) {wbin, wptr} <= 0;
else {wbin, wptr} <= {wbinnext, wgraynext};
// Memory write-address pointer
//(okay to use binary to address memory)
assign waddr = wbin[ADDRSIZE-1:0];
assign wbinnext = wbin + (winc & ~wfull);
‘ifdef INJECT_GRAY_ERROR

assign wgraynext = wbinnext;
‘else

assign wgraynext = (wbinnext>>1) ^ wbinnext;
‘endif

//three necessary full-tests
assign wfull_val=
((wgraynext[ADDRSIZE] !=wq2_rptr[ADDRSIZE])&&
(wgraynext[ADDRSIZE-1] !=wq2_rptr[ADDRSIZE-1]) &&
(wgraynext[ADDRSIZE-2:0]==wq2_rptr[ADDRSIZE-2:0]));

always @(posedge wclk or negedge wrst_n)
if (!wrst_n) wfull <= 1’b0;
else wfull <= wfull_val;

endmodule
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Empty flag calculation

module rptr_empty #(parameter ADDRSIZE = 4)

(output reg rempty,
output [ADDRSIZE-1:0] raddr,
output reg [ADDRSIZE :0] rptr,
input [ADDRSIZE :0] rq2_wptr,
input rinc, rclk, rrst_n);
reg [ADDRSIZE:0] rbin;
wire [ADDRSIZE:0] rgraynext, rbinnext;
//-------------------
// GRAYSTYLE2 pointer
//-------------------
always @(posedge rclk or negedge rrst_n)
if (!rrst_n) {rbin, rptr} <= 0;
else {rbin, rptr} <= {rbinnext, rgraynext};
// Memory read-address pointer
//(okay to use binary to address memory)
assign raddr = rbin[ADDRSIZE-1:0];
assign rbinnext = rbin + (rinc & ~rempty);

‘ifdef INJECT_GRAY_ERROR
assign rgraynext = rbinnext;

‘else
assign rgraynext = (rbinnext>>1) ^ rbinnext;

‘endif

assign rempty_val = (rgraynext == rq2_wptr);

always @(posedge rclk or negedge rrst_n)
if (!rrst_n) rempty <= 1’b1;
else rempty <= rempty_val;

endmodule
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Advanced Structural and Semi-Formal
Verification Flow for Clock Domain
Crossing (CDC) in Asynchronous Multi-
clock Systems

Résumé

Pendant mon doctorat, nous nous sommes concentrés sur l’amélioration de la véri-
fication des interfaces asynchrones sur les systèmes multi-horloges. Notre mission
était d’optimiser la vérification de la traversée de domaine d’horloge (CDC) sur RTL
pour éviter les bugs potentiels qui pourraient affecter l’intégrité du silicium. Nous
avons introduit de nouveaux aspects pour élever la qualité de la vérification et avons
atteint avec succès leurs objectifs. Nous avons commencé par améliorer les méth-
odes de vérification structurelle existantes en introduisant le flot de vérification CDC
UPF-Aware. Nous avons également cherché à intégrer la vérification fonctionnelle
dynamique avec la vérification statique CDC à travers le flot de vérification semi-
formelle CDC. Cela a conduit à la modélisation du "Qualificateur Universel", une
méthode générique pour vérifier tous les types de synchroniseurs de données CDC,
et du "Flot Hybride", une façon d’utiliser des assertions pour accélérer la contrainte
de l’arbre d’horloge pour la vérification statique CDC. De plus, en collaboration avec
Accellera, notre équipe a été pionnière dans la création de la première norme IEEE
pour les modèles CDC, qui servent de représentations abstraites concises de blocs
et de sous-blocs pour la vérification hiérarchique CDC. Dans les travaux futurs, nous
visons à intégrer toutes les solutions proposées dans un flot cohérent et unifié. Nous
prévoyons également de traiter l’injection de métastabilité et d’explorer son potentiel
dans la simulation dynamique et la vérification formelle.

Mots-clés : CDC, domaine d’horloge, vérification, formelle, dynamique, sta-
tique, qualificateur, synchroniseur

Abstract

During my PhD, we focused on improving the verification of asynchronous interfaces
on multi-clock systems. Our mission was to optimize Clock Domain Crossing (CDC)
verification on RTL to avoid potential bugs that may affect silicon integrity. We intro-
duced novel aspects to elevate the quality of verification and successfully met their
goals. We started by enhancing existing structural verification methods introducing
the UPF-Aware CDC Verification Flow. We were also interested to integrate the
dynamic functional verification with CDC static verification through the CDC Semi-
Formal Verification Flow. This led to the modeling of the "Universal Qualifier", a
generic method to verify all types of CDC data synchronizers, and the "Hybrid Flow",
a way to use assertions to accelerate the clock tree constraining for the CDC static
verification. In addition, in collaboration with Accellera, our team pioneered the first
IEEE standard for CDC models, which serve as concise CDC abstracted represen-
tations of blocks and sub-blocks for CDC hierarchical verification. In future work, we
aim to integrate all proposed solutions into a coherent and unified flow. We also plan
to address metastability injection and explore its potential in dynamic simulation and
formal verification.

Keywords : CDC, Clock Domain Crossing, verification, formal, dynamic,
static, qualifier, synchronizer
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