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Abstract: For most neurons, the information the neuron passes on is contained
within the times of sending out electrical pulses - so-called action potentials. It
is still not fully understood how to read this

”
neural code“. The efficient coding

hypothesis proposes that due to evolutionary pressures sensory systems evolved
to transmit and process information in the most efficient way possible. However,
the notion of efficiency seems to be different in different sensory systems. Cortical
neurons keep their firing rates low to minimize metabolic expenses. So do insect
olfactory receptor neurons (ORNs, the first layer of the olfactory system). Neurons
in the insect antennal lobe (the second layer of the olfactory system), on the
other hand fully use the space of possible firing rates to encode the maximum
information about the odor. In my thesis, I studied how can single cortical neurons
and their populations transmit and process information, while keeping metabolic
expenses low, and also how the insect olfactory system encodes information about
odors encountered in the air.

In the part of my thesis about metabolically efficient information transmission I fo-
cused mainly on the role of inhibitory neurons in efficient information transmission.
Through mathematical analysis and Monte Carlo simulations of spiking neuronal
models, I show how can the input from pre-synaptic inhibitory neurons decrease
the trial-to-trial variability of the post-synaptic neuron, and by generalizing these
results to a recurrent neural network I illustrated how the trial-to-trial variability
can decrease with a stimulus-onset, phenomenon known as neural variability
quenching. However, an information-theoretical analysis showed that the input
from inhibitory neurons in the form of inhibitory feedback with a stimulus onset
will only yield significant improvements in metabolically efficient information
transmission if the information is being transmitted by a population of recurrently
connected neurons, rather than a single neuron.

To understand the general principles governing neural coding, I next focused on the
neural activity of the insect olfactory system. I analyzed the local field potentials
(LFPs) and firing activity of insect ORNs stimulated with a novel odor-delivery
device, capable of temporally precise stimulus delivery. These novel recordings
showed that moth ORNs are much more capable of encoding the stimulus duration
than previously thought. The properties of moth ORNs were revealed to be very
similar to the properties of the majority of Drosophila ORNs, which allows the
unification of the research on those species. Using the recordings of the LFPs I
constructed a minimal model of the moth ORN, which reliably describes the firing
activity while using only several interpretable parameters.

A simple and transferable model, that can describe the firing activity of the ORNs
is essential for building an integrative model of the insect olfactory system. Such
a model could be used to study the information-metabolic efficiency of the whole
system and analyze if under certain conditions the high firing rates in the antennal
lobe actually aid the information-metabolic efficiency. Therefore, the results of
my thesis are a step forward to understanding the general principles governing
the neural code.

Keywords: Neuron, coding, olfaction
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Abstrakt: U většiny neuron̊u je informace, kterou neuron předává, obsažena
v časech vyśıláńı elektrických impulz̊u - tzv. akčńıch potenciál̊u. Dosud neńı
zcela jasné, jak tento “neuronový kód” č́ıst. Hypotéza efektivńıho kódováńı
předpokládá, že v d̊usledku evolučńıch tlak̊u se smyslové systémy vyvinuly tak,
aby přenášely a zpracovávaly informace co nejefektivněǰśım zp̊usobem. Zdá se
však, že pojem efektivity se v r̊uzných smyslových systémech lǐśı. Kortikálńı
neurony udržuj́ı ńızkou frekvenci vyśıláńı akčńıch potentiál̊u, aby minimalizovaly
metabolické náklady. Podobně to dělaj́ı i hmyźı čichové receptorové neurony (ORN,
prvńı vrstva čichového systému). Neurony v hmyźım tykadlovém laloku (druhá
vrstva čichového systému) naopak plně využ́ıvaj́ı prostor možných frekvenćı, aby
zakódovaly maximum informaćı o pachu. Ve své diplomové práci jsem se zabýval
t́ım, jak mohou jednotlivé korové neurony a jejich populace přenášet a zpracovávat
informace při zachováńı ńızkých metabolických náklad̊u a také t́ım, jak hmyźı
čichový systém kóduje informace o paš́ıch, které se vyskytuj́ı ve vzduchu.

V části své práce věnuj́ıćı se metabolicky efektivńımu přenosu informace jsem se
zaměřil předevš́ım na roli inhibičńıch neuron̊u v efektivńım přenosu informace.
Pomoćı matematické analýzy a simulaćı Monte Carlo model̊u spikuj́ıćıch neuron̊u
jsem ukázal, jak může vstup z pre-synaptických inhibičńıch neuron̊u sńıžit vari-
abilitu post-synaptického neuronu přes jednotlivé pokusy, a zobecněńım těchto
výsledk̊u na rekurentńı neuronovou śıt’ jsem ilustroval, jak může variabilita přes
pokusy klesat s nástupem podnětu, což je jev známý jako zhášeńı neuronové
variability. Informačně-teoretická analýza však ukázala, že vstup z inhibičńıch
neuron̊u v podobě inhibičńı zpětné vazby s nástupem podnětu přinese významné
zlepšeńı metabolicky účinného přenosu informace pouze tehdy, pokud je informace
přenášena populaćı rekurentně propojených neuron̊u, nikoliv jediným neuronem.

Abych pochopil obecné principy, kterými se ř́ıd́ı nervové kódováńı, zaměřil jsem se
na nervovou aktivitu čichového systému hmyzu. Analyzoval jsem lokálńı polńı po-
tenciály (LFP) a aktivitu spikováńı hmyźıch ORN stimulovaných novým zař́ızeńım
pro doručováńı pach̊u, které je schopné časově přesně doručit podnět. Tyto
nové záznamy ukázaly, že ORN můry jsou mnohem schopněǰśı kódovat délku
trváńı podnětu, než se dosud předpokládalo. Ukázalo se, že vlastnosti ORN můry
jsou velmi podobné vlastnostem většiny ORN octomilky, což umožňuje sjednotit
výzkum na těchto druźıch. Na základě záznamů LFP jsem zkonstruoval minimálńı
model ORN můry, který spolehlivě popisuje jej́ı aktivitu, přičemž využ́ıvá pouze
několik interpretovatelných parametr̊u.

Jednoduchý a přenositelný model, který dokáže popsat aktivitu ORN, je nezbytný
pro vytvořeńı integrativńıho modelu čichového systému hmyzu. Takový model
by mohl být využit ke studiu informačńı metabolické účinnosti celého systému
a k analýze, zda za určitých podmı́nek vysoká frekvence akčńıch potenciál̊u v
anténńım laloku skutečně napomáhá informačně-metabolické účinnosti. Výsledky
mé práce jsou tedy krokem vpřed k pochopeńı obecných princip̊u ř́ıd́ıćıch nervový
kód.

Kĺıčová slove: Neuron, kódováńı, čich
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Résumé: Pour la plupart des neurones, l’information qu’ils transmettent est
contenue dans le décours temporel d’émission de leurs impulsions électriques, ap-
pelées potentiels d’action. On ne sait pas encore bien décrypter ce ”code neuronal”.
L’hypothèse du codage efficace propose que, sous l’effet de la pression évolutive,
les systèmes sensoriels ont évolué pour transmettre et traiter l’information de la
manière la plus efficace possible. Toutefois, la notion d’efficacité semble varier selon
les systèmes sensoriels. Les neurones corticaux maintiennent une faible fréquence
d’émission de potentiels d’action pour minimiser les dépenses métaboliques. Il en va
de même pour les neurones récepteurs olfactifs des insectes (NRO, première couche
du système olfactif). Les neurones du lobe antennaire des insectes (deuxième
couche du système olfactif), en revanche, utilisent pleinement la gamme possible
d’activité d’émission de potentiels d’action pour optimiser le codage olfactif. Dans
ma thèse, j’ai étudié comment des neurones corticaux uniques et leurs populations
peuvent transmettre et traiter des informations, tout en maintenant des dépenses
métaboliques faibles, et aussi comment le système olfactif des insectes encode les
informations sur les odeurs détectées dans l’air.

Dans la partie de ma thèse consacrée à la transmission métabolique efficace de
l’information, j’ai principalement analysé la contribution des neurones inhibiteurs.
En généralisant ces résultats à un réseau de neurones récurrents, j’ai illustré
comment la variabilité d’un essai à l’autre peut diminuer avec l’apparition d’un
stimulus, un phénomène connu sous le nom de ”neural variability quenching”
(atténuation de la variabilité neuronale). Toutefois, une analyse théorique de
l’information a montré que l’apport des neurones inhibiteurs sous la forme d’une
rétroaction inhibitrice lors de l’apparition d’un stimulus n’améliore significative-
ment la transmission métabolique efficace de l’information que si cette information
est transmise par une population de neurones connectés de manière récurrente,
plutôt que par un seul neurone.

Pour comprendre les principes généraux régissant le codage neuronal, je me
suis ensuite focalisé sur l’activité neuronale du système olfactif des insectes. J’ai
analysé les potentiels de champ locaux (LFP) et l’activité d’émission de potentiels
d’action de NRO d’insectes stimulés avec un nouveau dispositif capable de délivrer
des stimuli temporellement précis. L’utilisation de ce stimulateur a permis de
démontrer que les NRO des papillons de nuit encodent mieux la durée du stimulus
que ce qui était admis jusqu’à présent. Les propriétés des NRO de papillon de nuit
se sont révélées très similaires à celles de la majorité des NRO de drosophile, ce
qui permet d’unifier les recherches sur ces espèces. En utilisant les enregistrements
des LFP, j’ai construit un modèle minimal du NRO du papillon de nuit qui décrit
de manière fiable l’activité d’émission de potentiels d’action tout en utilisant
seulement quelques paramètres interprétables.

Un modèle simple et transférable, capable de décrire la réponse des NRO, est
essentiel pour construire un modèle intégratif du système olfactif des insectes.
Un tel modèle pourra être utilisé pour étudier l’efficacité métabolique du codage
de l’information par l’ensemble du système olfactif et analyser si, dans certaines
conditions, les taux d’excitation élevés des neurones du lobe antennaire favorisent
réellement cette efficacité. Les résultats de ma thèse constituent donc un pas en
avant vers la compréhension des principes généraux régissant le code neuronal.

Mots clés: Neuron, codage, olfaction
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Košt’ál and Philippe Lucas, without whom this thesis would never see the light of
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1. Introduction

Neurons are cells that process and transmit information. They contain an excess of
negatively charged ions compared to their surroundings, which makes the neuronal
membrane polarized. An external signal (received, e.g., from other neurons or
from a sensory stimulus) then opens ion channels in the neuronal membrane,
allowing an exchange of ions between the neuron and its surroundings. Thus the
external signal translates into a graded change of the neuron’s membrane potential.
If certain conditions are met (the membrane potential has to reach a threshold
value), the neuron produces its own electrical signal, called an action potential (or
a spike), which then propagates through the neuron’s axon and can, e.g., excite
or inhibit other neurons it connects to by synapses. For most neurons, an action
potential is the only way for a neuron to communicate information further (Dayan
and Abbott, 2005).

The shape of the action potentials typically does not differ much for a single
neuron (Fig. 1A,B). Moreover, their duration (commonly 1ms to 4ms) is relatively
short compared to other timescales of the system. Therefore, to analyze the
information that the neuron is sending further on, it is sufficient to limit ourselves
to the timings of individual action potentials - the communicated information has
to be encoded in the neuron’s “spike train”: a sequence of times when an action
potential was sent, or “fired”, (Fig. 1C).

It is unknown how the information should be “read out” from the spike trains,
and this clearly depends on the system. However, a classical hypothesis is the rate
coding hypothesis, dating back to the early experiments of Adrian and Zotterman
(Adrian, 1926; Adrian and Zotterman, 1926a,b; Adrian, 1954), who showed that
the number of action potentials from sensory nerves innervating a muscle increased
with the force the muscle was delivering. It was then observed in most sensory
systems that the number of spikes increases with the stimulus intensity (Kandel
et al., 2013).

Figure 1: The neural code. A: Extracellular recording of the membrane
potential of the olfactory receptor neuron of the noctuid moth Agrotis ipsilon.
The electrical pulses (apparent as vertical lines) are the action potentials. B: All
action potentials from A plotted over each other. The shape of the action
potential does not vary significantly. C: The spike train. Since the shape of the
action potential does not carry any information, the neuronal output can be
reduced to a sequence of times when the action potential was fired.
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Figure 2: Variability of neural response. The spiking activity of a single
ORN of Agrotis ipsilon. The ORN was presented with the same stimulus many
times (A, ON/OFF delivery of pheromone). The neuron’s response is different in
each trial (B, raster plots, each row represents a trial, each line represents a
spike). The precise timing of spikes is not maintained over the trials, but the time
course of the activity can be captured by a time-dependent firing rate (C,
estimated with kernel density estimation, as described in the Section 2.2.3, Eq.
2.9, bw = 10ms). The shaded area represents a 95% confidence interval of the
mean firing rate, estimated by bootstrapping.

According to the rate coding hypothesis, the information is encoded in the
mean firing rate of the neuron, with the mean firing rate of a neuron defined as the
number of spikes fired by the neuron, averaged over some time window, specified
by the experimenter. Therefore, within this time window, all information possibly
contained in the precise timing of the spikes is not considered (Stein et al., 2005).
In contrast to the rate code, a cell is considered to use temporal code if the precise
pattern of spike firing contains essential information about the stimulus (Dayan
and Abbott, 2005).

The great benefit of rate code is its robustness towards noise. Efficient infor-
mation transmission with temporal code requires precise timing of spikes over
multiple trials of presentation of the same stimulus. Although some neurons might
exhibit such behavior for certain stimuli (Mainen and Sejnowski, 1995), neurons
typically exhibit a significant trial-to-trial variability, and their behavior is better
described by an average firing rate. Fig. 2 shows the response of an ORN to
a repeated presentation of an identical stimulus. The precise timings of spikes
are not maintained over subsequent trials, but a time-dependent firing rate can
describe the activity.

Understanding how the information about the stimulus is encoded is essential
for understanding the evolutionary pressures on the neural system. The efficient
coding hypothesis asserts that neurons, under strong evolutionary pressure, are
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adapted to process the information from their natural surroundings efficiently
(Barlow, 1961). A popular approach to evaluating the efficiency of information
processing is using Shannon’s information theory (Shannon, 1948). Recordings
from the retina of the blow fly showed that the stimulus-response relationship of
the neurons (stimulus: contrast of the visual scene, response: firing rate) is such
that the entropy of the response is maximized by a stimulus distribution which is
very close to the contrast distribution observed in its natural environment. Similar
entropy maximization principle has been observed in the Drosophila antennal lobe,
the secondary layer of olfactory signal processing in insects (Bhandawat et al.,
2007; Abbott and Luo, 2007; Kadakia and Emonet, 2019).

The entropy of the output distribution corresponds to the maximum amount
of information that can be encoded in the output (Shannon, 1948). However, due
to the noise in the system, this is not necessarily equivalent to the maximum
amount of information that the system can transmit. It is, therefore, essential to
understand the trial-to-trial variability of the system. A number of studies, there-
fore, analyzed both theoretically and experimentally the trial-to-trial variability in
various neurons and neuronal models, showing that the trial-to-trial variability can
be in a large portion of neurons described by a Poisson-like activity with a Fano
factor close to one (Tuckwell, 1988; Gur et al., 1997; Geisler and Albrecht, 1997;
Shadlen and Newsome, 1998; Brunel, 2000). Interestingly, experimental studies
also showed that the trial-to-trial variability may decrease after the stimulus
onset (Monier et al., 2003; Churchland et al., 2010), a phenomenon which we
studied theoretically (Barta and Kostal (2021), Attachment I the attached report
Attachment II).

Taking the trial-to-trial variability into account, the entropy maximization
principle can be substituted by the mutual information maximization principle
(Stein, 1967; Borst and Theunissen, 1999; Ikeda and Manton, 2009; McDonnell
et al., 2011). However, neither entropy maximization of the output distribution nor
mutual information maximization principle is observed in the in-vivo recordings
of cortical neurons. Instead, their post-synaptic firing rates concentrate mainly at
lower values (Treves et al., 1999).

This points towards a balance between information transmission and energy
consumption (de Polavieja, 2002, 2004; Balasubramanian et al., 2001; Levy and
Baxter, 1996). Neurons need a significant amount of energy to process and transmit
information. It is estimated that in children, the brain accounts for up to 50%
of the resting body’s total oxygen consumption (Sokoloff, 1996). Given that the
brain’s energy budget is limited (Attwell and Laughlin, 2001), it is likely that
neurons have to balance between transmitting as much information as possible
and being economical.

Based on the observation in cortical neurons, suggesting that the cortex
maximizes transmitted information with constraints on the metabolic expenses, a
number of studies investigated the maximization of information-per-cost in single
neurons (Kostal and Kobayashi, 2015; Suksompong and Berger, 2010; Sengupta
et al., 2013; Xing et al., 2015; Sungkar et al., 2016, 2017). Sengupta et al. (2013)
showed that the balance between excitatory and inhibitory synaptic currents
observed in in-vivo recordings of the cortex (Destexhe et al., 2003; Paré et al.,
1998) maximizes the information-per-cost in neurons using temporal code. This
study, however, only considered a constant intensity input and did not analyze the
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effects of the external stimulus and the effect of its randomness on the trial-to-trial
variability of the neuron and how the external stimulus is encoded.

In (Barta and Kostal (2019), Attachment III), we modeled information transmis-
sion by single neurons, with spontaneous activity generated by the background
input with balanced excitatory and inhibitory synaptic currents as in (Sengupta
et al., 2013), but receiving an additional stimulus signal on top of this background
input and studied the effect of different model parameters on the mutual infor-
mation between the stimulus and the response with metabolic constraints. The
stimulus increased both the excitatory and inhibitory input to the neurons, as
observed in in-vivo recordings after stimulus presentation (Monier et al., 2003).
Among other parameters, we studied how the stimulus-associated inhibition affects
metabolically efficient information transmission by the neurons and found that com-
pared to other parameters, such as spontaneous activity, the stimulus-associated
inhibition has only a minor effect.

The inhibitory input is, however, likely to be much more important in neural
networks. The information about the stimulus is in some cases expected to be
carried by the averaged firing rate of the population instead of the firing rate of a
single neuron, which decreases the trial-to-trial variability of the response (Shadlen
and Newsome, 1998). The magnitude of the decrease of the trial-to-trial variability
is however affected by correlations between the neurons. Neural correlations are
typically classified as signal correlations and noise correlations (Averbeck et al.,
2006). While signal correlations are related to the encoded stimulus and are
important for discriminating between different stimuli, noise correlations are a
shared trial-to-trial variability among the neurons, which is detrimental to the
information transmission by the averaged population activity (Abbott and Dayan,
1999).

In recurrent neural networks, the inhibition associated with the external sti-
mulus emerges due to the recurrent connectivity of the network. This inhibitory
feedback then decreases the noise correlations (Renart et al., 2010; Tetzlaff et al.,
2012; Bernacchia and Wang, 2013) and thus improves the information transmis-
sion capabilities of the network. In (Barta and Kostal, 2019) we showed that the
inhibition associated with the stimulus increases the cost of the neural activity.
This raises the question, of whether the decreased noise correlations offer sufficient
improvement in information transmission to justify the increased metabolic expen-
ses. To better understand this balance, we analyzed the trade-off in a population
consisting of recurrently connected excitatory and inhibitory neurons, representing
a small area in the sensory cortex (Barta and Kostal (2023), Attachment IV).

Studying the amount of transferred information about the external stimulus
and the associated metabolic expenses only makes sense if we understand what
information about the stimulus is actually being transmitted. In (Barta and Kostal,
2019) and (Barta and Kostal, 2023) we assumed that the system is encoding
the intensity of the stimulus, such as contrast intensity in a visual scene, sound
intensity or the intensity of mechanical simulation and we assumed that the
information is carried by the number of fired action potentials. However, the
stimulus might be encoded in a more complex manner, e.g., in the time course
of the response. A popular method of estimating the transmitted information is
then attempting to decode the stimulus from the response and calculating the
mutual information between the decoded stimulus and the real stimulus and thus
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obtaining the lower bound on the mutual information (Borst and Theunissen,
1999; Geffen et al., 2009). However, we still need to make assumptions about
which parts of the stimulus are being encoded and what is their importance.

For insects using the olfactory signal for navigation, encoding the temporal
structure of the signal becomes crucial (Baker et al., 2018; Murlis et al., 1992;
Mafra-Neto and Cardé, 1994; Martinez et al., 2013; Cardé, 2021). However, it is
not yet fully understood which temporal features are encoded by the olfactory
system and how is the olfactory system adapted to encode these features. Moreover,
different insect species encode the olfactory signal differently, which could be the
result of different environments and behavioral strategies of the different species.

Among insects, male moths are considered to be the most efficient navigators.
They are able to locate a conspecific female emitting a pheromone plume over
hundreds of meters (Cardé and Charlton, 1984; Elkinton et al., 1987; Shorey, 1976;
Wall and Perry, 1987) and their olfactory system is expected to be highly tuned
for this task and understanding how they respond to different stimuli will help us
understand what features in the olfactory signal are important for odor-guided
navigation in turbulent environments. However, studying the response dynamics
of moth ORNs to pheromone stimulation is complicated due to difficulties with
the precise delivery of odor molecules with low volatility, such as pheromones
(Gorur-Shandilya et al., 2019). We built a new odor delivery device that solved
the previously encountered issues and studied the responses of male moth ORNs
to pheromone stimulation (Barta et al. (2022), Attachment V and Attachment
VI).

Previous studies showed that the ORNs respond phasi-tonically to a stimulus,
with an intense response to stimulus onset and a gradual adaptation to a steady
state activity (Fig. 3). The ORNs, therefore, seem to put more emphasis on
encoding the stimulus onset, which correlates with the observed behavior of moths.
Upon odor encounter, moths start an upwind flight (Mafra-Neto and Cardé, 1994).
Similarly, moths are observed to cease the upwind flight and start a movement
called zig-zag casting after losing the odor plume. We could therefore expect that
similar emphasis is put on detecting the stimulus offset. Some Drosophila ORNs
have been known to encode the stimulus offset by a transient inhibition following
the stimulus offset (Kim et al., 2011, 2015; Nagel and Wilson, 2011; Martelli et al.,
2013) (Fig. 3). However, moth ORNs were typically observed to show little change
in their firing activity after the stimulus offset and the duration of their responses
long exceeded the duration of the stimulus (Kaissling et al., 1989; Jarriault et al.,
2010; Grémiaux et al., 2012; Rospars et al., 2014) (Fig. 3) and the detection of the
stimulus offset was assumed to take place in the antennal lobe (AL), the second
olfactory signal processing layer in the insect olfactory signal. The duration of the
response of the AL neurons, however, still exceeded the duration of the stimulus
(Jarriault et al., 2009, 2010). With our new odor delivery device, we were able to
show that the responses of moth ORNs actually closely resemble the responses of
Drosophila ORNs by encoding the stimulus offset by a transient inhibition (Barta
et al., 2022).

To understand how a neuron integrates the stimulus and what features it
extracts, linear-nonlinear models are often employed (Geffen et al., 2009; Nagel
and Wilson, 2011; Martelli et al., 2013; Jacob et al., 2017). These robust models
consisting of a linear kernel and a static nonlinearity provide insight into the
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Figure 3: Stimulus offset detection by Drosophila and moths.

Illustration of time-dependent firing rates in a response to a 500ms stimulus. The
onset is detected by a rapid rise of the firing rate, which then gradually decays to
a steady state. While immediate termination of spike firing activity and a
transient inhibition typically marks the end of stimulus in Drosophila ORNs, the
response of moth ORNs to pheromone is long-lasting. Here the offset for the
moth response is modeled as an exponential decay with a time constant 384ms,
as in (Tuckman et al., 2021b,a).

temporal integration of the stimulus and can predict well the firing rate of a neuron.
However, classical approaches to fitting these models have drawbacks, such as
high-frequency oscillations of the linear kernel and acausality of the linear kernel
that complicate the interpretability of the model. We proposed a new method of
fitting the linear kernel which circumvents these issues and successfully applied
it to identify the time scales of integration and adaptation of the moth ORNs
(Barta et al., 2022).

Although temporal code is assumed to play a role in odor identification (Wehr
and Laurent, 1996; Laurent, 1997, 2002; Stopfer et al., 2003; Wilson and Laurent,
2005; Wilson et al., 2017; Kadakia and Emonet, 2019), studies focusing on the
encoding of the temporal information focus on the time-dependent firing rate in
relation to the stimulus and the spike firing patterns of the activity are ignored
or are modeled as inhomogeneous Poisson processes (Lee et al., 2023; Rapp and
Nawrot, 2020; Betkiewicz et al., 2020; Tuckman et al., 2021b,a). However, we
observed that this assumption is typically not satisfied in the ORN activity,
proposed a statistical model for its description, and discussed the possible origin
of the firing pattern and the effects on downstream neurons in the antennal lobe
(Attachment VI).

In the following chapters, I first provide a brief theoretical introduction to
insect olfaction, mathematical models of neural activity, and methods used in this
work. The chapter provides a general overview, more detailed information about
the used methods is provided in the attached manuscripts and reports. In the
Chapter 3 I provide a short summary of the main results and a discussion of each

8



attached work.

9



10



2. Theory and methods

2.1 Insect olfactory system

Olfaction is essential for insects to locate food sources, mating partners, and
oviposition sites. The high efficiency of the insect olfactory system, paired with
its relative simplicity, compared, e.g., to the sensory systems in mammals, makes
it ideal for studying the principles of efficient neural coding.

In my thesis, I focus on early information processing, i.e., on the ORNs,
stimulated directly by the odor molecules in the air and on the antennal lobe
(AL), the primary olfactory brain area in insects, consisting of projection neurons
(PNs), local neurons (LNs), and ORN terminals (the AL is the equivalent of the
olfactory bulb in vertebrates).

2.1.1 Olfactory receptor neurons

ORNs can be divided into functional types based on what odor receptor they
express. The expressed type of odor receptor defines to which odor molecules the
neuron responds. Some odor receptors are broadly tuned (responding to many
different odors), and some are narrowly tuned (responding only to one or few
different odor molecules) (de Fouchier et al., 2017). Typically, receptors sensitive
to social odors (e.g., pheromones) are narrowly tuned. Narrowly tuned moth ORNs
responding to a sex pheromone are the main focus of the olfaction-focused part of
the thesis.

The dendrite and soma of the ORN are located inside a sensillum, a porous,
hair-like structure on the insect antenna (Fig. 4A). The sensillum contains three
auxiliary cells, tightly wrapping the soma and effectively separating the ORN
into two parts with different extracellular ionic environments - the outer dendrite
is bathing the sensillar lymph, and the inner dendrite, soma, and axon in the
hemolymph (Jacquin-Joly and Lucas, 2005; Kaissling, 2014; Chertemps, 2017).

When the odor molecules enter the sensillar lymph and bind to their cognate
odor receptors on the dendrite, receptor ion channels open, and the dendrite
becomes depolarized. Knowledge of the transduction process, from odor molecules
entering the sensillar lymph to receptor channels opening (and eventually closing),
is essential for modeling the response of the ORN to an odor encounter. Classically,
the transduction process can be described by a set of chemical kinetic equations
(Kaissling, 2001, 2004):

Lair
ki−→ L (2.1)

nL+R
k−1−−⇀↽−−
k1

RL

k−2−−⇀↽−−
k2

R∗
L (2.2)

L+N
k−3−−⇀↽−−
k3

NL
k4−→ P +N (2.3)

Here Lair represents the number of odor molecules (ligands) in the air surrounding
the sensillum, L is the number of molecules that enter the sensillum, R is the
number of free receptors, n is the number of molecules required to activate the
receptor, RL the number of bound receptors and R∗

L number of activated receptors.
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Figure 4: Insect olfactory system. A: The ORN is located in a hair-like
structure called the sensillum. The pores in the cuticle allow the entry of odor
molecules into the sensillar lymph, where they can bind to the receptors on the
dendrite of the ORN. One sensillum can contain more than one ORN. The
neuron’s soma is surrounded by three auxiliary cells (thecogen, trichogen, and
tormogen) that delimit the sensillar compartment and control its ionic
composition. The electrodes illustrate their placement during single sensillar
recording (SSR). Note that the placement of the recording is different for tip SSR.
B: ORNs on the antenna express different odor receptors (color-coded in black,
green, and blue). All ORNs expressing the same type of receptor converge into
the same glomerulus in the antennal lobe (AL), where their axons connect to the
dendrites of projection neurons (PNs) and local neurons (LNs). LNs provide
lateral connections between the glomeruli and inhibit the PNs. The axons of the
PNs project to higher brain centers of the insect.

R∗
L is the number that specifies the number of open ionic channels, therefore, the

conductance between the dendrite and the sensillar lymph. The last equation
then describes the degradation of the ligands. N is the number of degrading
enzymes, NL the number of bound enzymes and P the number of inactivated
ligands. kx describe the reaction rates. The Eqs. (2.1-2.3) are a simplification
of a more complicated process, yet they can be used to build an ORN model
with a good predicting power (Levakova et al., 2019). The transduction process
can also be simplified by leaving out some intermediate steps or generalized by
including the spontaneous opening of the receptor channels (Nagel and Wilson,
2011; Gorur-Shandilya et al., 2017):

R
k1[Lair]−−−−⇀↽−−−−

k−1

RL

k2−−⇀↽−−
k−2

R∗
L, (2.4)

R
k3−−⇀↽−−
k−3

R∗
k4[Lair]−−−−⇀↽−−−−

k−4

R∗
L. (2.5)

Here the ligand dependence was moved into reaction rates that depend on the
ligand concentration in the air [Lair], R

∗ represents receptors activated without
any ligand, responsible for the spontaneous activity.
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2.1.2 Antennal lobe

The axons of ORNs expressing the same receptor type converge into the same
glomerulus in the AL, where they connect by synapses onto the dendrites of
the PNs and LNs (Kay and Stopfer, 2006; Wilson, 2013). PNs excite other PNs
and LNs within the glomerulus (Fig. 4B). The convergence of the ORNs ensures
a rapid response of the PNs to the odorant and reduction of the trial-to-trial
variability exhibited by individual ORNs when exposed to the same stimulus over
multiple trials (Rospars et al., 2014).

The LNs provide a lateral connection to other glomeruli in the AL. The lateral
input to PNs is generally inhibitory. Therefore the LNs are responsible for odor-
evoked inhibition. The lateral inhibition acts both presynaptically at the ORN
axon terminal (thus mediating a gain control in the synapse (Olsen and Wilson,
2008)) and synaptically, directly hyperpolarizing the PNs (Wilson and Laurent,
2005). The lateral inhibition is responsible, e.g., for narrowing the tuning of PNs
or for shaping their response profile by intensifying their response to the onset of
the stimulus (Olsen et al., 2010).

2.2 Experimental methods and data analysis

2.2.1 Single sensillum recordings

Each sensillum contains one or multiple ORN dendrites. By extracellularly recor-
ding from a single sensillum, it is possible to record the activity of these ORNs.
The activity of these ORNs can be discriminated by their spike amplitude and
shape. In the trichoid sensilla of Agrotis ipsilon, containing neurons sensitive to
the main compound of their sex pheromone, (Z)-7-dodecenyl acetate (Z7-12:Ac),
typically only one amplitude of action potentials is observed (see Appendix A for
cases with two different spike amplitudes). After recording the electrical signal
from the sensillum, the spiking activity needs to be extracted from the electrical
signal. Single sensillum recordings (SSR) and extraction of spiking activity were
performed by Christelle Monsempès and Elodie Demondion. In this section, I
provide a brief description of the process.

Two electrodes, a recording electrode and a reference electrode are placed into
the insect antenna. The recording electrode is placed into the sensillar lymph,
while the reference electrode is inserted into an adjacent antennal segment (Fig.
4A). The reference electrode is placed close to the sensillum to avoid contamination
of the signal by the activity of ORNs in the neighboring sensilla.

To extract the action potentials, the activity is high-pass filtered (10Hz) and
thresholded (Fig. 5A). From the events that cross the threshold, electrical artifacts
and random threshold crossings are separated from the action potentials using
principal component analysis in the Spike2 software.

2.2.2 Local field potential and spiking activity

The following methods and electrodes can be used for SSR:

1. Tungsten electrode,
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Figure 5: Signal analysis and firing rate estimation.A: Recording with a
glass electrode can be low-pass filtered to obtain the LFP or high-pass filtered to
isolate the firing activity. The high-pass filtered activity can be thresholded
(dashed line) to obtain the spike train. Note that the vertical line at the
beginning and end of the stimulus is an artifact, a signal from the electrovalve
controlling the stimulus. B: The estimated firing rate. Replacing each spike with
a normal distribution results in an estimate of time-dependent firing rate.

2. Glass electrode with a silver wire inserted in the base of the sensillum,

3. Glass electrode with a silver wire placed over the sensillum with a tip cut
off (tip recording).

Due to the sharpness of the electrode, recordings with the tungsten electrode
are the least invasive and it is possible to obtain long and stable recordings.
However, the signal tends to drift away from its baseline due to polarization of the
electrode and therefore the signal has to be high-pass filtered during the recording
and we can only obtain the high frequency signal, i.e., the action potentials and
their shapes and amplitudes.

Recordings with glass electrodes do not need to be high-pass filtered during the
recording, and therefore we can also obtain the low-frequency response, referred to
as the local field potential (LFP). During stimulation, positive current flows from
the sensillar lymph into the neuron, and we observe a decrease in the potential in
the sensillar lymph. To obtain the LFP from the glass electrode recordings, we
low-pass filtered the recordings with a 2-pole Butterworth filter (Fig. 5A). The
LFP is often used as a proxy for the current flow between the dendrite and the
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sensillar lymph (Wilson, 2013; Gorur-Shandilya et al., 2017). We showed that
in the moth ORNs, the relationship between the current Id and LFP can be
approximately expressed as (Barta et al., 2022):

LFP(t) = (Id ∗ g)(t) (2.6)

g(t) =

{︄

0 for t ≤ 0,

− β
τLFP

exp(−t/τLFP) for t > 0, with τLFP = 10ms,
(2.7)

where β is a scaling constant.

The recordings with the glass electrode are more invasive than the recordings
with the tungsten electrode, and we observed that after some time of recording,
the properties of the ORNs were often modified. This happened considerably
sooner with the tip recording technique, therefore, all recordings of the LFP were
done with the glass electrode inserted in the base of the sensilla.

2.2.3 Firing rate estimation

The time-dependent firing rate ν(t) of a neuron is defined as:

ν(t) = lim
∆t→0+

E[N(t, t+∆t)]

∆t
, (2.8)

where N(t, t+∆t) is the number of action potentials observed in the time window
t to t+∆t and E signifies the mean value across independent trials. To estimate
the firing rate from a single trial, we used the kernel density estimation method
with a Gaussian kernel (Fig. 5B):

ν̂(t) =
∑︂

{tk}

N (tk, bw(t)
2), (2.9)

where the sum goes over all spike times tk, N (µ, σ2) is the normal distribution
with mean µ and variance σ2 and bw is the (possibly time-dependent) bandwidth
of the kernel.

2.2.4 Trial-to-trial variability quantification

When comparing the trial-to-trial variability of two neurons (or the same neuron in
different conditions) with the same mean activity E[N(t, t+∆t)], where N(t, t+∆t)
is the number of observed action potentials in a time window (t, t + ∆t), we
can directly compare the variance of the number of observed action potentials
Var[N(t, t+∆t)]. However, sometimes it is beneficial to scale the variance relative
to the mean number of action potentials and obtain the Fano factor:

FF =
Var[N(t, t+∆t)]

E[N(t, t+∆t)]
. (2.10)

The Fano factor of a Poisson process is equal to one, therefore, calculating the
Fano factor lets us compare the trial-to-trial variability to a Poisson process.
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Figure 6: Linear filters and response profiles. The top row shows different
linear filters and the bottom row the firing responses obtain with the filter
convolved with a rectangular stimulus and passed through a static nonlinearity.
The shaded area illustrates the positive and negative parts of the linear filter.

We can also estimate the trial-to-trial variability from the inter-spike intervals
(ISIs) of a steady-state spike train with a coefficient of variation:

CV =

√︁

Var[τi]

E[τi]
, (2.11)

where τi are the interspike intervals. Then

FF0 = CV2, (2.12)

where FF0 is the Fano factor calculated from infinite-length time window (∆t →
+∞).

2.3 Mathematical models of neural activity

2.3.1 Linear-nonlinear models

A common approach to predicting the firing rate from the time-dependent stimulus
s(t) are linear-nonlinear models. Linear-nonlinear models consist of a linear kernel
K and a static non-linearity f :

ν(t) = f((K ∗ s)(t)). (2.13)

In the case of an excitatory stimulus, the kernel K can be decomposed into an
excitatory component Kexc (Kexc(t) > 0 ∀t) representing the integration of the
stimulus and an adaptation component KSFA (KSFA < 0 ∀t). Depending on the
kernel shape, the convolution K ∗ s can then produce different firing rate profiles
(Fig. 6):
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• Tonic response: single-lobed kernel,

• Phasic response: bi-lobed kernel,
∫︁

K(t) dt = 0,

• Phasi-tonic response: bi-lobed kernel,
∫︁

K(t) dt > 0.

Typical choices for the static nonlinearity f are the Hill function

ν =
1

1 + (H/νlin)n
, (2.14)

where H is the half maximum, n is the hill coefficient and νlin = K ∗ s; or a
rectifier function

ν(t) =

{︄

0 for t ≤ 0,

νlin(t) for t > 0.
(2.15)

Fitting the linear-nonlinear model to neural data allows us to understand the
time scales of input integration and adaptation.

Estimation of the linear kernel

Two common approaches exist for estimating the linear kernel K (Dayan and
Abbott, 2005):

1. Estimation in the frequency domain (Wilson, 2013),

2. Estimation using the variation calculus (Geffen et al., 2009; Martelli et al.,
2013; Jacob et al., 2017).

The linear kernel should only be defined for t > 0 (positive delays) so that the
model predicts the response only based on the past stimulus. A common issue
with filters estimated in the frequency domain is that unless the stimulus has
a flat power spectrum, the domain of the filter spans also to negative values of
the delay and the filter is therefore acausal. Such filters cannot be considered
biologically plausible and are difficult to interpret.

In the case of odor delivery, although it is possible to deliver a stimulus with
a flat power spectrum (up to a cut-off frequency), the LFP does not have a flat
power spectrum anymore and therefore we cannot estimate a causal LFP-to-firing
rate linear filter in the frequency domain. Therefore, in the following paragraphs I
focus on the variation calculus method.

In (Barta et al., 2022) we proposed an approach to linear filter estimation
closely related to the approach using variation calculus. Here I will first describe
the variation calculus approach and then the approach we used in (Barta et al.,
2022). Benefits of our new approach are discussed in the Section 3.5.

The goal is to estimate such linear filter K that the squared error between the
prediction (K ∗ s)(t) and the response ν(t) is minimized:

E =

∫︂ T

0

(︃∫︂ +∞

0

K(t′)s(t− t′) dt− ν(t)

)︃2

dt. (2.16)

To calculate the shape of the filter numerically, we may discretize the time, and the
problem may be solved as a least squares optimization problem. We construct a
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time shifted stimulus matrix S, Sji = s(t−(i+j)∆t). With k = (k1, . . . , kN )
T as the

kernel vector (time delay ranging from 0 to N∆t) and ν = (ν((N + 1)∆t), ν((N +
2)∆t), . . . , ν(T ))T as the response vector, the problem can be formulated as:

k = argmin
k′

(∥r− Sk′∥). (2.17)

Elastic-net regularization is often implemented to avoid overfitting on small
data sets (Zou and Hastie, 2005; Martelli et al., 2013; Jacob et al., 2017; Lever
et al., 2016):

k = argmin
k′

(∥r− Sk′∥+ λ∥k′∥2 + µ∥k′∥1), (2.18)

where λ and µ are regularization coefficients, ∥v∥ =
√︁
∑︁ |vi|2 is the L2 norm and

∥v∥1 =
∑︁ |vi| the L1 norm of a vector.

In (Barta et al., 2022), we modified the time-shifted stimulus matrix S. Instead
of the i-th row representing a stimulus segment of length N∆t, shifted by i∆t,
each column can be thought of as a convolution of the past stimulus with a gamma
distribution with time constant τ and shape parameter α:

pγ(x; τ, α) =
1

Γ(α)τα
xα−1e−x/τ . (2.19)

The coefficient vector θ = (θτ1,α1
, θτ2,α1

, ...)T then contains coefficients correspon-
ding to different time constants and shapes. We used lasso regression to estimate
the coefficients for a grid of (τ, α) pairs:

θ = argmin
θ′

(∥r− Sτ ,αθ
′∥+ µ∥θ′∥1). (2.20)

The delay-dependent kernel is then expressed as:

K(t) =
∑︂

τ

∑︂

α

θτ,α(pγ(x; τ, α) ∗ s)(t). (2.21)

2.3.2 Spiking neural models

The linear-nonlinear model belongs to a class of models that only predict the firing
rate of a neuron. But sometimes, a model generating action potential is desirable.
Apart from exploring coding by precise spike timing, spiking models may help
us investigate the trial-to-trial variability of neural systems. Here I first describe
how the membrane potential of neurons is modeled without any spike-generating
mechanism and then discuss different ways of extending the membrane potential
model with a spike-generating mechanism.

Subthreshold membrane potential

Neurons are commonly modeled as electrical circuits (Dayan and Abbott, 2005). In
the absence of any ion-transporting proteins, the neural membrane is impermeable
to electrically charged ions and acts as a capacitor with capacitance C. Here I
only consider models where we assume that charge and ions are distributed evenly
across the neuron without any delay and thus neglect the effect of the neuron’s
morphology.
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Ion pumps are proteins that actively use energy to move ions across the
membrane, make the neuron negatively charged, and create an electrical gradient
between the inside and outside of the neuron. Certain proteins, ion channels,
let specific ions pass through the membrane. These channels allow the flow of
electrical current and can therefore be described as conductances in an electrical
circuit.

The combination of active ion transport by ion pumps and passive transport
by ion channels leads not only to an electrical gradient but also to different
concentration gradients for different ion types. An equilibrium potential exists for
each ion channel type, at which the diffusion, driving the ions across the membrane
due to the concentration gradient, is in balance with the electrical forces. An RC
circuit equation can then describe the membrane potential V :

C
dV

dt
= −

∑︂

X

gX(t)(V − EX), (2.22)

where the sum goes over different ion channel types X, gX(t) are their (possibly
time dependent) conductances and EX are their equilibrium potentials.

The conductance of some ion channels can be considered constant over time.
These channels are grouped as leaky channels with leak equilibrium potential EL

(typically between −80mV and −70mV) and conductance gL.
Neurons receive external input, which causes the temporary opening of different

ion channels. These channels are either excitatory (equilibrium potential Eexc > V ),
and their opening depolarizes the neuron, or inhibitory (equilibrium potential Einh)
and their opening hyperpolarizes the neuron. A simple model of a cell receiving
excitatory and inhibitory external input is then

C
dV

dt
= −gL(V − EL) + Iext(t) (2.23)

Iext(t) = −gexc(t)(V − Eexc)− ginh(t)(V − Einh) (2.24)

Hodgkin-Huxley model

Neurons usually communicate by electrical impulses called action potentials (or
spikes). Action potentials are triggered by the depolarization of the membrane
and are shaped by a complex interplay of ion channels with membrane poten-
tial (voltage)-dependent conductances. Sodium-based action potential stem from
voltage-gated sodium channels. Calcium-based action potentials, stemming from
voltage-gated calcium channels, also occur in some neurons. However, in this
work, I focus only on sodium-based action potentials, which propagate along the
neuron’s axon and pass the signal to neurons downstream. Therefore, in this text,
action potential, or spike, refers to a sodium-based action potential.

The interplay of the ion channels can be described by the Hodgkin-Huxley
model (Hodgkin and Huxley, 1952; Destexhe and Paré, 1999), describing the
dynamics of the voltage-gated sodium and voltage-gated potassium channels:

C
dV

dt
= −gL(V − EL)− gNam

3h(V − ENa)− gKn
4(V − EK) + Iext(t), (2.25)

where Iext describes the external input (e.g., as in Eq. 2.23), gNa and gK are
maximum conductances of sodium and potassium channels, respectively, ENa and
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EK the corresponding reversal potentials and m, h, n are voltage-dependent gating
variables (0 ≤ x ≤ 1 for x ∈ {m,h, n}). The gating variables obey the kinetic
equations

dx

dt
= αx(V )(1− x)− βx(V )x, (2.26)

where αx, βx are the opening and closing rates, 0 ≤ x ≤ 1. Equivalently

τx(V )
dx

dt
= −[x− x∞(V )], (2.27)

where x∞(V ) is the steady state and τx(V ) the corresponding time constant.
A possible dependence of τx and x∞ on V is shown in Fig. 7 (Destexhe and

Paré, 1999), the mathematical form of the dependences is in the Appendix B. The
action potential is initiated when depolarization of the membrane potential triggers
further depolarization by opening the m-gates with a short time constant. The
action potential is terminated by slower inactivation of the h-gates and activation
of the n-gates, gating the hyperpolarizing potassium channels.

Figure 7: Dependence of gating variables of the Hodgkin-Huxley model

on the membrane potential. The dependence of the time constants and
steady-state values, as in Eqs. (2.27), on the membrane potential is shown for the
gating variables m, h, n.

Exponential leaky integrate-and-fire models

The Hodgkin-Huxley model can be simplified by only modeling the onset of the
action potential. During the initiation phase of the action potential, we can assume
that

dh

dt
=

dn

dt
= 0. (2.28)

Further, due to τm being very short, we can assume

m(V ) = m∞(V ). (2.29)
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In the range of membrane potentials where action potentials are initiated, we can
model gNam

3(V ) as an exponential function instead and obtain the exponential
leaky integrate-and-fire model (Fourcaud-Trocmé et al., 2003; Brette and Gerstner,
2005; Platkiewicz and Brette, 2010):

C
dV

dt
= −gL(V − EL)− gLka exp

(︃

V − VT

ka

)︃

+ Iext(t), (2.30)

where VT and ka characterize the exponential function. When the membrane
potential reaches some specific value (e.g., 0mV), an action potential is recorded,
and the membrane potential is reset to a reset value Vr (e.g., Vr = EL).

Leaky integrate-and-fire models

In the limit of ka → 0+, we obtain a model where any dynamics below VT are not
affected by the voltage-gated channels and immediately fires an action potential
upon reaching VT . This model, commonly called leaky integrate-and-fire (LIF),
while very simple and in some cases analytically tractable, can account for a wide
range of properties of single neurons and their networks (Tuckwell, 1989; Dayan
and Abbott, 2005; Brunel, 2000).

Spike frequency adaptation

All the models above consisted of two essential parts:

1. Input to the neuron,

2. Spike generating mechanism.

However, neurons express a wide range of ion channels in their membrane, modi-
fying their properties. These properties can be implemented in the models above
by including the additional ion channels in the Eq. (2.22) or modifying their
properties. An important property missed by the models above is spike frequency
adaptation (SFA) (Benda and Herz, 2003; Benda, 2021). SFA is a mechanism that
makes action potential firing more difficult. The onset of SFA is delayed to the
onset of the firing response. After the stimulus onset, neurons respond with a
firing response decreasing in its intensity with time during the stimulus. SFA is a
widespread neuronal property present in different animals, different brain areas,
and different sensory systems (including ORNs, Fig. 5B). LIF models extended
with various mechanisms of SFA can be fit to precisely predict a large variety
of neural responses, including precise spike timing (Jolivet et al., 2006, 2008;
Kobayashi et al., 2009; Yamauchi et al., 2011; Teeter et al., 2018).

The mechanisms of SFA can be grouped into two categories (Benda and Herz,
2003; Gutkin and Zeldenrust, 2014):

1. Inactivation of depolarizing currents,

2. Activation of hyperpolarizing currents.

Further, the (in)activation can be either

1. Spike dependent,

2. Voltage-dependent.
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Dynamic threshold models. Inactivation of depolarizing currents typically
means that the voltage-gated sodium channels are inactivated and, therefore,
cannot activate to generate an action potential. If the inactivation occurs only at
high membrane potential values, it can be considered spike dependent. Otherwise,
the inactivation is voltage-dependent or a combination of both if the inactivation
happens faster at high membrane potential values, as observed, for example, in
Fig. 7.

Inactivation of the sodium channels leads to a dynamic threshold VT in the
LIF model. Classically, the threshold is modeled as spike dependent, increasing
by ∆VT with every fired action potential and then decreasing to its original value
(Platkiewicz and Brette, 2010; Benda et al., 2010; Kobayashi et al., 2009; Yamauchi
et al., 2011; Kobayashi and Kitano, 2016; Levakova et al., 2019).

In the MAT model (Kobayashi et al., 2009), the threshold VT decays exponen-
tially to its steady state ω on several different time scales:

VT (t) =
∑︂

k

H(t− tk) + ω, (2.31)

H(t) =
L
∑︂

j=1

αj exp(−t/τj), (2.32)

where tk are the previous spikes of the neuron, L is the number of threshold
components, αj is the increase of j-th component upon spike firing, which then
decays to zero exponentially with a time constant τj . This model, in particular, is
very effective in precisely predicting spike firing times and spike firing patterns
(Kobayashi et al., 2009; Jahangiri and Gerling, 2011; Lee et al., 2023).

In models without a clear threshold, such as the exponential leaky integrate-
and-fire, the dynamic threshold may be implemented by modifying the inactivation
properties of the sodium channels (Fleidervish et al., 1996; Martina and Jonas,
1997; Edman et al., 1987; Benda and Herz, 2003; Benda et al., 2010). A common
extension is an additional gating variable s (governed by the Eq. 2.26) inactivating
during depolarization:

C
dV

dt
= −gL(V − EL)− gNam

3hs(V − ENa)− gKn
4(V − EK) + Iext(t), (2.33)

where τs (Eq. 2.27) is on the time scales of several hundred ms.

Hyperpolarizing currents. Hyperpolarizing currents lower the rate of de-
polarization by the stimulus and therefore attenuate the neuron’s spike-firing
response. These currents can be activated by depolarization of the neuron or by
processes resulting from firing an action potential, such as the influx of calcium
ions, activating hyperpolarizing potassium channels.

A common example of voltage-activated SFA through hyperpolarizing currents
is the M-current adaptation. The Hodgkin-Huxley model with M-current adap-
tation can be expressed as:

C
dV

dt
= −gL(V − EL)− gNam

3h(V − ENa)−
−gKn

4(V − EK)− gMp(V − EK) + Iext(t),
(2.34)
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where p is another gating variable following the Eqs. (2.26–2.27). The voltage
dependence of the activation and inactivation rates is given in the Appendix B.

After-hyperpolarization (AHP) currents are currents triggered by calcium influx
into the neuron during an action potential. It is, therefore, a spike-dependent
SFA. Proper modeling of AHP involves describing the calcium influx, calcium
extrusion, and calcium-dependent potassium channel activation. However, a more
straightforward approach is often implemented for LIF or exponential LIF models.
Additional potassium conductance that increases with every action potential and
decays exponentially to zero is added:

C
dV

dt
= −gL(V − EL)− gLka exp

(︃

V − VT

ka

)︃

− gAHP(t)(V − EK) + Iext(t),

(2.35)

dgAHP

dt
= −gAHP

τAHP

+
∑︂

k

∆AHPδ(t− tk), (2.36)

where τAHP is the time constant of the hyperpolarizing conductance decay, ∆AHP

the increase in the conductance with every action potential fired, and tk are the
action potentials fired by the modeled neuron.

Models of external input

Neurons connect with synapses. At the synapse, the pre-synaptic neuron (con-
necting with a synapse onto the studied, post-synaptic, neuron) releases neuro-
transmitters which are then bound by the synaptic receptors of the post-synaptic
neuron. In turn, ion channels are temporarily open. In the models above, the con-
ductances of these channels were represented by gexc and ginh and the total currents
as gexc(Eexc − V ) for the excitatory and ginh(Einh − V ). In the following, I will
summarize different approaches to modeling the time course of the conductances
and the synaptic currents used in this work.

We assume that the release of neurotransmitters and their uptake by the
receptors is fast, and the conductances of the synaptic channels then increase
discontinuously when the pre-synaptic neuron fires an action potential. Further,
we assume that there is a large number of these receptors that are activated after
pre-synaptic action potentials, and they start closing randomly and independently,
resulting the the time course of the conductances described by:

dgexc
dt

= −gexc
τexc

+
∑︂

tk∈Texc

∆excδ(t− tk), (2.37)

dginh
dt

= −gexc
τinh

+
∑︂

tk∈Tinh

∆inhδ(t− tk), (2.38)

where τexc, τinh are the inverse of the closing rates, ∆exc and ∆inh are the con-
ductance increases and Texc, Tinh are the pre-synaptic action potentials from
excitatory and inhibitory neurons.

This model can be further simplified, commonly with one or both of the
following assumptions:
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1. Reversal potentials Eexc and Einh are ignored and the differences (Eexc − V )
and (Einh − V ) are considered constant,

2. Synaptic filtering is ignored, meaning that τx → 0+ while ∆x

τx
remains

constant (x ∈ {exc, inh}).
If synaptic filtering is ignored, a pre-synaptic action potential evokes an

immediate discontinuous increase of the membrane potential of the post-synaptic
neuron. If reversal potentials are considered, this increase is proportional to
(Eexc − V ) or (Einh − V ), depending on whether the pre-synaptic neuron is
excitatory or inhibitory.

If only the reversal potentials are ignored, the external current Iext can be
described as

Iext = Iexc + Iinh, (2.39)

dIexc
dt

= −Iexc
τexc

+
∑︂

tk∈Texc

Aexcδ(t− tk), (2.40)

dIinh
dt

= −Iinh
τinh

+
∑︂

tk∈Tinh

Ainhδ(t− tk), (2.41)

where Aexc > 0 and Ainh < 0 are discontinuous changes in the synaptic current
upon arrival of the post-synaptic action potential.

Diffusion approximation The diffusion approximation simplifies analytical
tractability and computer simulations by expressing the input in terms of Gaussian
noise. To apply the diffusion approximation, we make the following assumptions:

1. The arrival times of pre-synaptic spikes are described by Poisson processes
with intensities λexc and λinh,

2. The increments ∆exc and ∆inh are infinitesimally small, while λexc and
λinh → ∞ and ∆excλexc, ∆inhλinh remain constant.

The conductances can then be described by the Ornstein-Uhlenbeck process
(Uhlenbeck and Ornstein, 1930):

dgexc
dt

= −gexc − µexc

τexc
+
√
2τexcσexcηexc(t), (2.42)

dginh
dt

= −ginh − µinh

τinh
+
√
2τinhσinhηinh(t), (2.43)

where νexc and νinh are white noise realizations and

µexc = ∆excλexcτexc, (2.44)

σexc =

√︃

τexcλexc∆2
exc

2
, (2.45)

representing the mean and standard deviation of the excitatory conductance,
with corresponding expressions for µinh and σinh. Conductances modeled in this
manner reproduce well the realistic properties of the neuronal membrane potential
(Destexhe et al., 2001).
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Spiking neural networks

Neurons create complex recurrent networks. The connectivity of a group of neurons
can be described by a connectivity matrix W containing the synaptic weights.
The membrane potential of an i-th neuron in a network of N neurons, with
neurons 1, . . . , Nexc being excitatory and Nexc, . . . , N being inhibitory, can then
be described by:

C
dVi

dt
= −gL(Vi − EL) + I iext, (2.46)

I iext = −giexc(Vi − Ei
exc)− giinh(Vi − Ei

inh), (2.47)

dgexc
dt

=
gexc
τexc

+
Nexc
∑︂

j=1

∑︂

ts∈Tj

wjiδ(t− ts), (2.48)

dginh
dt

=
ginh
τinh

+
N
∑︂

j=Nexc+1

∑︂

ts∈Tj

wjiδ(t− ts), (2.49)

where wij is the strength of the synapse from the j-th neuron to the i-th neuron,
Tj are the times of action potentials fired by the j-th neuron. Extending the Eq.
(2.46) with additional properties, such as SFA, is straightforward.

2.4 Metabolic cost of neural activity

The main component of the cost of neural activity is the cost to reverse the ionic
currents to maintain homeostasis, most importantly the reversal of the sodium
currents (Attwell and Laughlin, 2001). The sodium-potassium pump uses one
ATP molecule to pump 3 Na+ ions outside of the neuron and two K+ ions inside
the neuron. Therefore in order to estimate the cost of the neural activity, we need
to consider the events leading to the entry of Na+ ions and estimate the number
of Na+ ions that enter the neuron.

The main events that contribute to the influx of Na+ ions are:

• Action potentials,

• Excitatory synaptic currents,

• Na+ influx through leakage channels.

Attwell and Laughlin (2001) estimated that the extrusion of Na+ ions from a
neuron costs 0.384× 109 ATP per produced action potential. Their calculations
can be tailored to a specific neuronal model, as we have done in (Barta and Kostal,
2023).

We assume that the excitatory synaptic current is carried by Na+ and K+ ions.
For the excitatory reversal potential Eexc and total excitatory conductance gexc it
then holds (Harris et al., 2015):

Eexc =
gexcK EK + gexcNaENa

gexcK + gexcNa

, (2.50)

gexc = gexcK + gexcNa , (2.51)
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where gexcK and gexcNa are the sodium and potassium conductances associated with
the excitatory synapses. We may calculate the Na+ current as

INa(t) = gexcNa (t)(V (t)− ENa), (2.52)

gNa =
Eexc − EK

ENa − EK

. (2.53)

and the rate of Na+ ions entry as INa/e, where e is the elementary charge. Similarly,
we may estimate the influx of Na+ ions through the leakage channels with reversal
potential EL (wrest = 0.342 × 109 ATP per second according to Attwell and
Laughlin (2001)).

An action potential also causes depolarization of other, post-synaptic neurons.
If the activity of a single neuron is being calculated (Barta and Kostal, 2019),
the costs associated with the subsequent excitatory synaptic currents of its post-
synaptic neurons should also be included. This cost was estimated at additional
0.328×109 ATP per action potential adding up to the total cost of action potential
wspike = 0.71× 109 ATP (Attwell and Laughlin, 2001). Note that this cost does
not need to be calculated when the cost for the entire network is being calculated,
since this cost is included in the costs of synaptic currents of individual neurons
(Barta and Kostal, 2023).

The cost of activity w for a duration of ∆T associated with a stimulus s can
be then calculated as

w(s) = ∆T (wrest + wexc + ν · wspike), (2.54)

where ν is the firing rate of the neuron.

2.5 Measuring the transmitted information

2.5.1 Entropy and mutual information

Although the models presented in this chapter are deterministic, their input is
often treated as random. Many variables affect for example the binding of ligands
to receptors and the activity of pre-synaptic neurons and a coarse-grain description
then describes the receptor activity or the pre-synaptic spike trains as random
processes.

Due to the randomness in the input, presenting the same stimulus repeatedly
results in a different output of the neuron over the trials. If we denote the input
as x and the response as y, we may describe the stimulus-response relationship
by a conditional probability distribution f(y|x), i.e., the probability of observing
the response y, given the stimulus x.

In the following, I will focus on one-dimensional stimulus x, described by
a random variable X, representing the stimulus intensity, and one-dimensional
response y, described by a random variable Y , representing the number of action
potentials observed in a time window ∆T .

With the knowledge of the input probability distribution p(x), we can calculate
marginal output distribution:

qp(y) =

∫︂ xmax

xmin

p(x)f(y|x) dx, (2.55)
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Figure 8: Stimulus-response relationship and information-metabolic

efficiency. A: The stimulus-response relationship. The mean response to a
stimulus x is signified by a blue line, while the shaded area represents the noise
(standard deviation). The probability distribution of the response for a given
stimulus x0 is shown on the side. If we know the input probability distribution
p(x), we can calculate the marginal output distribution of the responses using the
stimulus-response relationship (Eq. 2.55). Each input x is associated with a
metabolic cost w(x). Stronger input implies a higher cost. B: The capacity cost

function (Eq. 2.60) and the ratio C(W )
W

with the information-metabolic efficiency
(Eq. 2.62) highlighted.

where xmin and xmax define the boundaries of the input.
The maximal amount of information that can be encoded in qp(y) is given by

the entropy of the distribution:

H(Y ) = −
+∞
∑︂

y=0

qp(y) log2 qp(y). (2.56)

However, the mutual information between the stimulus and the response I(X;Y )
is limited by the noise (Shannon, 1948; Gallager, 1968; Thomas M. Cover, 2006):

I(X;Y ) = H(Y )−H(Y |X), (2.57)

where H(Y |X) is the average noise entropy:

H(Y |X) =

∫︂ xmax

xmin

p(x)H(Y |x) dx, (2.58)

H(Y |x) = −
+∞
∑︂

y=0

f(y|x) log2 f(y|x). (2.59)

The mutual information sets the upper limit on the information the neuron
can reliably transmit, assuming a rate coding scheme with a counting time window
∆T .
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2.5.2 Information capacity, capacity-cost function and

information-metabolic efficiency

The Eqs. (2.55-2.59) allow us to calculate the mutual information I(X;Y ) when
the input probability distribution is known. However, it is possible to reverse the
problem and search for such p(x) that maximizes the mutual information. The
maximum over all possible input distributions is called the information capacity.
Moreover, we can put constraints on the average metabolic cost of the neural
activity to obtain the capacity-cost function (Fig. 8B):

C(W ) = max
p(x)

Wp<W

I(X;Y ), (2.60)

where Wp is the average cost of the activity associated with the input probability
distribution p(x):

Wp =

∫︂ xmax

xmin

p(x)w(x) dx. (2.61)

The ratio C(W )
W

provides the limit on transmitted information per unit of
cost (ATP molecule). The information-metabolic efficiency, the maximum of this
ratio, is then the upper limit on information per unit of cost that the neuron can
transmit:

E =
C(W ∗)

W ∗
, (2.62)

W ∗ = argmax
W

C(W )

W
. (2.63)

Typically, the distribution maximizing the mutual information at a given
average cost has to be found numerically. The classical algorithm for this ma-
ximization is the Blahut-Arimoto algorithm (Blahut, 1972). It is also possible
to skip the step of obtaining the capacity cost function C(W ) and obtain the
information-metabolic efficiency E with the Jimbo-Kunisawa algorithm (Jimbo
and Kunisawa, 1979; Suksompong and Berger, 2010) directly.
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3. Results

3.1 The stabilizing effect of inhibition

Attachment I

Upon stimulus presentation, cortical neurons receive both excitatory and
inhibitory input (Monier et al., 2003). Each neuron typically receives input from
many pre-synaptic neurons, and the timing of the pre-synaptic action potentials
will differ in each trial with the same stimulus. Such noise in the input to the
neuron leads to noise in the output of the neuron (Stein et al., 2005). Comparing
a situation where a neuron is excited only by the excitatory input with a situation
where the neuron is excited to the same level by combined excitatory and inhibitory
input, in the latter case, more pre-synaptic action potentials are necessary to
excite the neuron, which implies higher input noise. Intuitively, the higher input
noise should lead to higher trial-to-trial variability of the output.

Monier et al. (2003) observed that the fluctuation of the membrane potential
in the neurons in the cat visual cortex decreased after stimulus onset, even when
the mean membrane potential of the neuron remained unchanged. This is counter-
intuitive due to the higher input noise associated with the inhibitory input. We
analyzed this problem theoretically and showed that if the synaptic input to a
neural model is modeled with either of the two simplifying assumptions discussed
in the Section 2.3.2 (reversal potentials or synaptic filtering are neglected), the
stronger input noise leads to higher membrane potential fluctuations. However,
if neither of the two assumptions is considered, decreased membrane potential
fluctuations may be observed (Fig. 9).

The equation describing the membrane potential (Eq. 2.23) can be rewritten
as

C
dV

dt
= −gtot(t)(V − E0(t)), (3.1)

where gtot is the total conductance and E0(t) the effective reversal potential:

gtot(t) = gL + gexc(t) + ginh(t), (3.2)

E0(t) =
gLEL + gexc(t)Eexc + ginh(t)Einh

gL + gexc(t) + ginh(t)
. (3.3)

Simultaneously increasing the conductances gexc and ginh while keeping the mean
membrane potential constant, leads to the membrane potential V following the
effective reversal potential E0(t) more closely. Therefore, if fluctuations of E0(t)
decrease, membrane potential fluctuations may also decrease. We showed asympto-
tically that Var[E0(t)] → 0 as long as the fluctuations of the conductances scale
sub-linearly with the mean conductance value (Var[gX ] = O(gpX), p < 2, X stands
for exc and inh). This is naturally satisfied if the input is modeled as a Poisson
spike train and increasing the input intensity is modeled as increasing the intensity
of the Poisson process. Then Var[gX ] = O(E[gX ]).

The stimulus onset has been shown to decrease not only the trial-to-trial
variability of the membrane potential but also the trial-to-trial variability of the
firing activity (Churchland et al., 2010) as measured by the Fano factor (Eq. 2.10),
a phenomenon known as neural variability quenching. We analyzed whether this
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Figure 9: The stabilizing effect of inhibition. During a 2 s long simulation
the intensity of inhibitory input increases from 0 kHz to 20 kHz. The pre-synaptic
spike trains are modeled as Poisson point processes. The intensity of the
excitatory input is increased simultaneously with the inhibition to keep the mean
membrane potential constant. This increases synaptic current fluctuations and
subsequently increases membrane potential fluctuations unless both synaptic
filtering and reversal potentials are considered. The orange lines signify the mean
value ± the standard deviation.

might be caused by the decreased membrane potential fluctuations associated
with the stimulus onset. We found that the effect of the increased inhibitory input
depends on the spike frequency adaptation mechanism of the neuron. Models with
M-current or AHP current showed an increased trial-to-trial variability with the
increased inhibitory input. In contrast, models with dynamic threshold showed
decreased trial-to-trial variability (Fig. 10).

Our results illustrate the importance of considering synaptic filtering and
reversal potentials in neural modeling and extend our understanding of the effects
of using different SFA mechanisms on the input-output properties of neural
models (Benda et al., 2010). Moreover, we theoretically explain the experimentally
observed decrease of membrane potential fluctuations and provide a possible
mechanism of decreased Fano factor with the stimulus onset. Results of our study
were published in the journal Physical Review E (Barta and Kostal, 2021). A
reprint of the manuscript is enclosed with this thesis (Attachment I).

3.2 Neural variability quenching in networks

Attachment II

In our published work, we studied the properties of single neurons and simulated
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Figure 10: Changes in Fano factor with stimulus onset. During a 2 s long
simulation the intensity of inhibitory input increases from 0 kHz to 20 kHz. The
intensity of the excitatory activity is increased simultaneously to keep the
steady-state post-synaptic firing rate at approximately 10Hz (blue trace). The
pre-synaptic spike trains are modeled as Poisson processes. The Fano factor
(orange trace) decreases with the addition of inhibition to the input in the model
with spike-firing adaptation by M-currents. However, the model with the dynamic
threshold shows a clear increase in regularity with the added inhibitory input.
The Fano factor was calculated with a 100ms sliding window from multiple trials.

the stimulus onset as a simultaneous increase in the excitatory and inhibitory
input at different ratios. To understand better the neurons’ behavior with stimulus
onset, it is beneficial to study the single neuron behavior in the context of a
recurrent neural network in the sensory cortex with different neurons having
different stimulus preferences and thus reproduce the experimental conditions as
in (Monier et al., 2003) and (Churchland et al., 2010). The stimulus would be
represented by an increased input intensity from thalamocortical synapses, with
the increase dependent on the preferred stimulus and the associated increase in
inhibitory input given by the network properties. Thus, we can reproduce the
variability quenching effect with stimulus onset.

We started extending the published results in this direction. We considered a
recurrent neural network of 10000 neurons, with 7500 neurons excitatory and 2500
inhibitory. Each neuron was modeled as an exponential leaky integrated-and-fire
neuron, and the probability of a connection from one neuron to another was set
to 5% (Zerlaut et al., 2017). We compared three types of networks, specified by
two types of spike frequency adaptation (SFA) of the neurons:

1. SFA through after-hyperpolarization currents (AHP),
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Figure 11: Neural variability quenching in recurrent neural networks.

A: All neurons receive a background input throughout the 12 s simulation. After
the stimulus onset at 6 s, each neuron receives a different additional input due to
their different stimulus preference, representing the input from the
thalamocortical synapses. Neurons are organized vertically, neurons at the
bottom do not receive any thalamic input, and neurons at the top receive the
strongest thalamic input. B-C: Raster plots of the 7500 excitatory neurons with
different spike frequency adaptation mechanisms (SFA): after-hyperpolarization
(AHP) current (B) and dynamic threshold (C). In both cases, the neurons
receiving a strong input increase their firing activity, while neurons receiving
weak or no input decrease their firing activity. D-E: With fixed network
connectivity, we repeated the simulation 3600 times. For each neuron, we plotted
the variance of the response across the 3600 trials against its mean response.
Neurons with AHP SFA (D) increased their trial-to-trial variability after the
stimulus onset. In contrast, neurons with dynamic threshold SFA decreased their
trial-to-trial variability after the stimulus onset (E).

2. SFA through dynamic firing threshold.

Each neuron was receiving a background input before being presented with
a stimulus on top of this background input. Regardless of the SFA mechanism,
the neurons receiving strong input responded with an increased firing activity,
while neurons receiving only a weak input decreased their firing activity due to
increased inhibitory input from the network activity (Fig. 11B-C).

For fixed network connectivity, we ran the simulation 3600 times to obtain
the trial-to-trial variability of each neuron before and after the stimulus. We
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plotted the variance of the response of each neuron against the mean response.
Neurons with the AHP-mediated SFA increased their trial-to-trial variability after
the stimulus onset. In contrast, neurons with the SFA mediated by a dynamic
threshold decreased their trial-to-trial variability after the stimulus onset (Fig.
11).

This model clearly illustrates a possible mechanism of decrease in trial-to-trial
variability with stimulus onset. To develop this work further, we will consider
more realistic, proximity-based probabilities of synaptic connections between
neurons. Particularly, neurons with a peak response to a similar stimulus should
be connected with a higher probability than neurons responding to very different
stimuli. The preliminary results of the study are enclosed with this thesis in the
form of a short report (Attachment II).

3.3 Efficient coding by individual cortical neu-

rons

Attachment III

Given that all the information a neuron passes on is contained within its
output spike train, a model reproducing the neuron’s response to a stimulus can
be a proxy for conducting experiments. This is especially useful for evaluating the
information transmission capabilities of neurons because such studies require large
amounts of data, which are costly and lengthy to obtain experimentally. Numerous
studies used mathematical neuronal models to evaluate the theoretical limits on
information transmission. However, these studies typically dealt with simplified
models with simplified inputs, which do not represent well the true behavior of
neurons (Stein, 1967; de Polavieja, 2002, 2004; Suksompong and Berger, 2010;
Xing et al., 2015; Sungkar et al., 2016, 2017) or with biophysical models, which
are difficult to generalize (Kostal and Kobayashi, 2015).

A gap between those model types was somewhat filled by the Multi-timescale
Adaptive Threshold (MAT) model (Kobayashi et al., 2009) (Eqs. 2.31-2.32).
Kobayashi et al. (2009) showed that if the SFA is modeled at two separate
timescales: 10ms and 200ms, the MAT model can precisely predict the timings
of individual spikes of cortical neurons (Kobayashi et al., 2009; Gerstner and
Naud, 2009; Jahangiri and Gerling, 2011; Kobayashi and Kitano, 2016). The
great benefit of this model is its modest number of free parameters, which greatly
simplifies its fitting to neural recordings. We used this model to evaluate the limits
of metabolically efficient information transmission by neurons and to investigate
the effect of changing the free parameters, which can be directly related to the
neurons’ properties. An “optimal regime” can then be found for any neuron that
can be fitted by the MAT model, making the model the perfect tool for comparing
real neuronal responses with predictions based on efficient coding arguments.

In accordance with some of the previous studies, we assumed that the “optimal
regime” is such that it allows the transmission of as much information as possible
per unit of energy (molecule of ATP). Previous studies typically considered the
metabolic expenses of the neuron to be equivalent to its output firing rate. However,
the synaptic input to the neuron is responsible for a large portion of the metabolic
expenses (Harris et al., 2012) (in our study, possibly more than 50%, depending
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Figure 12: Simulation schematics. A: We record the response of the neural
model to a time-varying stimulus. The output of the neuron is the number of
spikes in a time window ∆ (here 250ms). B: The output of the neuron to the
same stimulus is random due to the randomness of the stimulus. The
stimulus-response relationship then has to describe the complete output
probability distribution for each input. Here thick lines signify the mean response
and the shaded area the standard deviation. C: Maximization of mutual
information provides a prediction in the form of post-synaptic firing rate
histograms, which can be compared to in-vivo recordings.

on the input and output, see Fig. 5A in (Barta and Kostal, 2019)).
With the knowledge of the stimulus-response relationship and the cost of the

neural activity, the information-metabolic efficiency can be calculated. However,
the adaptation properties of the neurons introduce memory to the neuron. The
Jimbo-Kunisawa algorithm cannot be directly applied to calculate the information-
metabolic efficiency of such channels. Therefore, we had to extend the Jimbo-
Kunisawa algorithm to take the adaptation properties into account (S5 Appendix
in (Barta and Kostal, 2019)).

We then studied the effect of the following neuronal and coding properties on
the information-metabolic efficiency:

• Spike firing patterns,

• Stimulus-associated inhibitory input,
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• Coding time window ∆,

• Spontaneous activity of the neuron.

We found that while the information-metabolic efficiency (Eq. 2.62) was robust
towards the changes in the inhibition excitation balance and to the change in
model parameters responsible for the spike firing patterns (Figure 4 in (Barta and
Kostal, 2019)), the coding time window and spontaneous activity of the neuron had
significant effects on the information-metabolic efficiency. Neurons with the lowest
spontaneous activity had the highest values of information-metabolic efficiency,
and shorter coding time windows led to higher information-metabolic efficiency.

We showed that it holds from the information-theoretic principles that shorter
time windows cannot decrease the mutual information if the neuron is considered
to be a memoryless information channel. However, with a shorter coding time
window, the response of the neuron is more affected by the previous stimulus
than in the case of a longer coding time window, decreasing its signal-to-noise
ratio, as the stimulus history introduced another source of stochasticity (Figure
8B in (Barta and Kostal, 2019)). We found that despite the additional source
of variability in the stimulus history, shorter coding time windows led to higher
information-metabolic efficiency (Figure 8E in (Barta and Kostal, 2019)).

We used 34 sets of parameters obtained by fitting 34 neurons from layers 2/3 and
5 of the rat motor cortex (Kobayashi et al., 2009; Isomura et al., 2009) (provided
by professor Ryota Kobayashi) to investigate the role of different parameters on
the efficiency of information transmission. For a fixed coding time window, the
information-metabolic efficiency was given mainly by the neurons’ spontaneous
firing rate due to the background network activity (Destexhe et al., 2001, 2003),
which is in turn given by the neurons’ long-term adaptation properties and their
resting threshold for action potential initiation. More detailed properties (e.g.,
the tendency to burst - fire rapidly many action potentials during a short period)
turned out to be of lesser importance (Figure 9 in (Barta and Kostal, 2019)).

The results of our study were published in the journal PLoS Computational
Biology (Barta and Kostal, 2019). The reprint of the manuscript is enclosed with
this work (Attachment III).

3.4 Efficient coding by populations cortical neu-

rons

Attachment IV

In the above-discussed study, among other parameters, we analyzed the effect
of the stimulus-associated inhibitory input on metabolically efficient information
transmission. While we observed that in some cases higher inhibition-to-excitation
ratio may decrease the trial-to-trial variability of the response (see also (Barta and
Kostal, 2021)), this decrease was not sufficient to balance out the increased costs
of synaptic currents and decreased coding range of the neurons. Yet, an increase in
excitatory input intensity due to an external stimulus is typically accompanied by
a simultaneous increase in the inhibitory input due to the excitation of inhibitory
neurons (Monier et al., 2003), and it is unclear if and how the inhibition aids
metabolically efficient information transmission.
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Figure 13: Metabolically efficient information transmission by a

recurrent neural network. A: Schematic illustration of a network used to
study the role of inhibition in metabolically efficient encoding by neural
populations. Neurons from an external population make random excitatory
connections on neurons in the excitatory and inhibitory populations. The
connection probability Pext was varied for different simulations between 1% and
100%, leading to different pair-wise correlations between the post-synaptic
neurons. The probability of recurrent connections (ext to exc, ext to inh, inh to
inh, inh to exc) was set to 20%, but the strength of those connections was varied.
B: Contour plot of the information-metabolic efficiency for different values of Pext

and recurrence strength. The information-metabolic efficiency is the highest for
Pext between 20% and 50% and recurrence strength of approximately 0.2 nS, or
20% of the synapse strength from the external population.

However, inhibition is likely to play a much more important role on the level
of whole neural populations instead of individual neurons. Inhibitory feedback
can decrease the noise correlations and subsequently the trial-to-trial variability
of the total population activity (Abbott and Dayan, 1999; Averbeck et al., 2006;
Renart et al., 2010; Tetzlaff et al., 2012; Bernacchia and Wang, 2013).

To analyze the impact of the inhibitory feedback on the rate coding capabilities
of neural populations, we modeled a recurrent spiking neural network with 800
excitatory and 200 inhibitory neurons, representing a small cortical area (Fig.
13A). Similarly, as in the above-discussed study, the neurons were receiving a
balanced excitatory and inhibitory input, representing the input from neighboring
cortical areas and an external input representing the excitatory input from the
thalamocortical synapses. We modeled the thalamic input by considering an
external population of 1000 excitatory neurons, making random connections onto
the 800 excitatory and 200 inhibitory neurons. In our simulation, the inhibitory
neurons provided the inhibitory feedback, and we varied the strength of the
feedback by varying the strength of the recurrent connections.

We treated the whole population of 800 excitatory and 200 inhibitory neurons
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as a single information channel. We defined the output of this channel as the total
number of post-synaptic action potentials observed in a time window ∆ = 1 s.
Adding together the activity of many neurons can lead to a significant decrease in
the trial-to-trial variability. However, noise correlations are induced by neurons
sharing input from the same neurons in the external population. In the presence
of noise correlations, the decrease in the signal-to-noise ratio will be lower (Abbott
and Dayan, 1999). We varied the noise correlations between neurons by varying
the connection probability Pext from the external neurons to the excitatory and
inhibitory populations. High values of Pext meant high noise correlations.

We considered the costs of the whole system. Therefore, on top of the costs
of the excitatory and inhibitory subpopulations (the cost of synaptic currents
and action potentials), we also considered the cost of the action potentials from
the external population. With higher Pext, more neurons are involved in exciting
any neuron from the excitatory or inhibitory subpopulation. Therefore, the total
activity of the external population can be lower to reach the same post-synaptic
firing rate.

On the other hand, increasing the inhibitory feedback by increasing the strength
of the recurrent connections decreases the post-synaptic firing rate of the network,
and stronger synaptic currents and stronger external input are needed to reach
the same post-synaptic firing rate, compared to a network with weaker inhibitory
feedback. Therefore, the cost of the neural activity of a network with stronger
recurrent connections is higher.

In our work, we studied the balance between mutual information in metabo-
lic costs. We found that high values of Pext typically increase the information-
metabolic efficiency of the system. With high values of Pext, the information-
metabolic efficiency can be further improved by strengthening the inhibitory
feedback (Fig. 13B). Moreover, we showed that the neural system can decrease
its energy consumption by decreasing the strength of the synaptic weights, a
phenomenon observed experimentally in food-restricted mice (Padamsey et al.,
2022).

Results of our study are currently published in bioRxiv. The preprint is enclosed
with this report (Attachment IV).

3.5 Temporal features encoding by moth olfac-

tory receptor neurons

Attachment V

Studying insect olfaction is, in certain aspects, the ideal system to study how
evolution shapes neural systems to adapt to their environment. The olfactory
system is relatively simple, and specifically, moth ORNs need to be highly adapted
to encode the temporal features of the pheromone plume. However, a lot is still
unknown about what temporal features the system actually encodes, and studying
the dynamics of the ORN response has been difficult in moths due to difficulties
with delivering odor stimulus with a sharp onset and offset, such as the moth
might encounter in nature.

We developed a new odor-delivery device that can deliver sharp stimulus pulses
even with odors with low volatility. We tested the precision of the odor delivery
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Figure 14: Spiking responses to constant stimuli of different durations.

After the short stimulus (20ms) the ORN continues to fire for approximately
100ms after the stimulus offset. After the 2 s stimulation, the stimulus offset is
immediately followed by a transient inhibition.

device with molecules detectable by a photo-ionization detector (PID). Although
the recorded stimulus became less sharp with less volatile odors, such as linalool,
we showed that the slow dynamics arise primarily from the properties of the PID
rather than from the delivered stimulus (Figure 3 in (Barta et al., 2022)).

Previous studies showed that the moth ORNs clearly detect the onset of the
stimulus by responding to the sudden increase in odor concentration, but also
observed a sustained response even after the stimulus offset (Kaissling et al.,
1989; Jarriault et al., 2010; Grémiaux et al., 2012; Rospars et al., 2014). Such
observations were surprising since it complicates the detection of the odor offset, a
feature which was then thought to be performed in the AL (Jarriault et al., 2009,
2010; Rospars et al., 2014; Tuckman et al., 2021b,a). With the new odor delivery
device we observed that the moth ORNs can, in fact, detect the odor offset by
a transient inhibitory phase, provided that the stimulus is sufficiently long (Fig.
14). Moreover, we showed that the response shape is independent of the stimulus
concentration, which has important implications for odor identity discrimination
(Martelli et al., 2013) (Figure 5 in (Barta et al., 2022)).

For brief stimuli, the response of the ORNs continued after the stimulus
offset. For pulses of duration below 200ms the firing response continued for
approximately 100ms after the stimulus offset (Fig. 14). Previous studies showed
that even though the response of ORNs is sustained after the stimulus offset, the
PNs do exhibit the transient inhibition marking the stimulus offset, albeit with a
delay of more than 100ms (Jarriault et al., 2009). We were therefore interested
in whether the encoding of the stimulus offset is further sharpened at the AL
level. We used the ORN firing rates as an input to a moth antennal lobe model
(Tuckman et al., 2021b,a) and did not observe any improvement in stimulus offset
detection. Although recordings from the antennal lobe neurons will be necessary
to show that the stimulus offset detection is not improved, we hypothesize that
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Figure 15: Comparison of moth and Drosophila ORN response to their

respective pheromones. A constant stimulus (10 pg of Z7-12:Ac for the moth
ORN, 10 µg of cVA for the Drosophila ORN) was presented between 0 s and 2 s.
The response of the moth ORN shows a phasi-tonic pattern with an intense firing
response to the stimulus onset and a gradual decrease to steady-state activity.
Response of the Drosophila ORN to cVA is rather tonic and does not show any
significant adaptation throughout the 2 s stimulus. Firing rate profiles of
individual neurons were estimated with kernel density estimation (Eq. 2.9,
bw = 50ms). The shaded area represents a 95% confidence interval of the mean
estimated by bootstrapping the firing rate profiles of individual neurons (8
Drosophila neurons, 57 moth neurons).

the stimulus offset detection is not necessary for very brief encounters with the
odor. This correlates with the observed behavior of flying insects. Moths were
shown to continue flying in a straight line towards the source when presented with
a pulsating stimulus (Willis and Baker, 1984; Kennedy et al., 1980; Mafra-Neto
and Cardé, 1994). Particularly, Mafra-Neto and Cardé studied the behavior of the
almond moth Cadra cautella and observed that the best navigation performance
was achieved with a pulse duration of 130ms and a gap between pulses of 83ms.
Instead, the prolonged response to very brief odor encounters might help the insect
to register those encounters.

The transient inhibition marking the stimulus offset has also been observed in
some Drosophila ORNs (Nagel and Wilson, 2011; Kim et al., 2011). The absence
of transient inhibition with some odors was attributed to imprecise odor delivery
(Martelli et al., 2013; Gorur-Shandilya et al., 2019). We recorded the activity
of Drosophila ORNs expressing the receptor OR67d sensitive to 11-cis-vaccenyl
acetate (cVA), an odor of low volatility with which precise odor delivery with
classical odor delivery devices is difficult. However, we still observed that the
recorded response did not exhibit the phasicity and transient inhibition as the
other ORNs. We also expressed the receptor sensitive to the main component
of the A. ipsilon pheromone (Z7-12:Ac) and observed that the response shape
remained the same as with cVA with no transient inhibition at stimulus offset.
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These observations suggest that:

• The lack of transient inhibition and phasicity in response to cVA are pro-
perties of the ORN and not due to imprecise odor delivery,

• Phasicity and transient inhibition in moth ORNs are a property of the
spike-generating mechanism of the ORN.

Interestingly, Drosophila does not use cVA for navigation, only at short distance
for recognizing whether mating partners are virgins. The staggering difference
between the response shapes of cVA-sensitive neurons and those responsible for
navigation (both in Drosophila and moths) suggests that the phasi-tonic response
shape evolved to aid navigation. The experiments in Drosophila ORNs are not
included in the attached version of the manuscript and will be part of its next
version.

It has been known that the phasi-tonic response shape of ORNs originates from
the adaptation processes in the spike-generating mechanism (Kaissling et al., 1987).
However, the molecular origins of this adaptation are still unknown (Brandão
et al., 2021). Low ratio of Na+ to K+ channels may make a neuron respond more
phasically (Lundstrom et al., 2008), and it was hypothesized that the phasicity
on Drosophila ORNs is due to this mechanism (Nagel and Wilson, 2011). With a
linear-nonlinear model, we identified that in the moth ORNs, the firing response
is shaped by adaptation processes in the soma at time scales of approximately
31ms and 635ms, which are longer than the common adaptation time scales
of Na+ channels in insect ORNs (approximately 5ms (Kadala et al., 2011)).
Slower adaptation of the Na+ channels, close to either 31ms or 635ms, would be
necessary to partially explain the observed responses. Further experiments focused
on identifying possible adaptation of insect ORN Na+channels at longer timescales
should be performed to understand better whether the hypothesis proposed by
Nagel and Wilson (2011) is correct.

We proposed a new approach to fitting linear-nonlinear models to neural
activity (described in the Section 2.3.1 of this thesis). As discussed in the previous
paragraph, this approach provides insight into the time scales of the physiological
processes responsible for the adaptation of the ORNs. Moreover, this approach
overcomes issues imposed by elastic net regularization, commonly employed for
fitting linear-nonlinear models (Martelli et al., 2013; Jacob et al., 2017) by enfor-
cing a continuous linear filter without oscillations while allowing high-frequency
components in the linear filter.

The two separate adaptation time scales also explain the prolonged response
to brief stimuli. During the short stimulus, the slow adaptation does not activate
sufficiently to rapidly terminate the response.

Studies using ORN firing rates as an input to models of higher brain centers
typically model the ORN input as piece-wise exponential functions with slow
firing rate decay after the stimulus offset (Belmabrouk et al., 2011; Tuckman et al.,
2021b,a). By combining our linear-nonlinear model with a simple transduction
model (Eq. 2.4), we created a reliable odor-to-firing rate model containing only
a small number of parameters that can be easily transferred to be used in such
studies and also incorporates the newly discovered properties of moth ORNs (Fig.
16).
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Figure 16: Odor-to-firing rate model. A-C: Prediction of LFP responses to
stimuli of different durations. The blue line shows the transduction model
prediction, dashed black line is the average LFP observed from SSR. D-F:

Combining the transduction model with the linear-nonlinear model leads to an
odor-to-firing rate model, which accurately predicts firing responses to the
different stimulus durations. G-H: The odor-to-firing rate model also reliably
predicts the firing rate in response to a fluctuating stimulus. G shows the stimulus
being switched between ON and OFF with a constant odor concentration.

3.6 Spike firing patterns of olfactory receptor

neurons

Attachment VI

The literature so far has paid attention mainly to the time course of firing rates
in ORNs and not so much to the spike firing patterns and the subsequent trial-
to-trial variability of the response. A common assumption is that the spike firing
activity can be described by an inhomogeneous Poisson process (Belmabrouk et al.,
2011; Rapp and Nawrot, 2020; Betkiewicz et al., 2020; Tuckman et al., 2021b,a).
Such an approach may be justified in some cases since the pooled activity of all
neurons could be approximated by an inhomogeneous Poisson process. However,
synapses from ORNs to the projection neurons in the antennal lobe (PNs) are
known to undergo short-term synaptic depression. Temporal correlations in the
spike trains are known to affect signal processing by such depressing synapses
(Bird and Richardson, 2018), and temporal correlations in the ORN firing activity
may, therefore, significantly affect how the signal is passed on from the ORNs to
the PNs. Consequently, a good statistical description of the spike firing patterns
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Figure 17: Statistical description of spontaneous activity of moth

ORNs. A: Distributions of ISIs for 10 different ORNs. The distributions have
two modes, one corresponding to ISIs within a burst and the second to ISI
between two bursts. B: We fit mixtures of two distributions to the ISIs by the
maximum likelihood method. The shown values are average log-likelihood values
relative to the exponential-exponential distribution. P - exponential distribution,
G - gamma distribution, IG - inverse Gaussian distribution. The vertical bar
indicates the standard error. The best fit was a mix of inverse Gaussian
distribution for the bursts and gamma distribution for the inter-burst intervals.
C: Root of the square error between the cumulative distribution function of the
fitted distribution and the empirical cumulative distribution function, averaged
over the neurons. The colors correspond to B, the IG-G model is in bold, and the
P-P model is in black.

is needed to understand the effect of these patterns on information transmission
from the ORNs to the PNs.

We analyzed the trial-to-trial variability and spike firing patterns of moth
ORNs. We found that most ORNs exhibit a bursting spike firing pattern, as seen
in inter-spike interval (ISI) histograms on a logarithmic scale (Fig. 17A). We could
describe the short ISIs within a burst by the inverse Gaussian distribution, while
the inter-burst intervals (IBIs) could be described with a gamma distribution (Fig.
17B-C).

The moth ORNs show an elevated spontaneous activity following the transient
inhibition after the stimulus offset (rebound activity). The elevated activity slowly
returns to its original level on the time scale of minutes. This activity also clearly
shows two modes of ISIs which can again be described by inverse Gaussian and
gamma distributions. We applied the time rescaling theorem (Brown et al., 2002;
Barbieri et al., 2001b,a) to fit a double exponential decay of the firing rate to
the rebound activity. The mixture of inverse Gaussian and gamma distributions
with time-dependent intensities provides a good fit to the rebound activity, as
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illustrated in the attached report.
We showed that the activity of moth ORNs can be described by a mixture of

two stochastic point processes with inverse Gaussian and gamma distributions. We
were able to fit well the spontaneous activity and the rebound activity. Whether a
similar model can describe the response during stimulation remains to be analyzed.
If we can describe the full behavior or an ORN with an inhomogeneous point
process, we can use it to extend the linear-nonlinear models with a spiking activity,
simulate realistic spike trains and thus obtain a spiking odor-to-firing rate model.
Such a model could then be used as an input to AL models to understand the
role of the observed spike firing patterns in signal transmission.

SSR recordings (Barta et al., 2022) indicate that the inactivation of the
receptor current is slow, which should lead to temporal correlations of the receptor
current. We extended the multi-compartmental model from (Barta et al., 2022) by
adding voltage-gated sodium and potassium channels in the somatic compartment
to simulate a spiking ORN. We described the receptor current as an Ornstein-
Uhlenbeck process to create temporal correlations. The firing pattern of this
neuron can then resemble the firing patterns observed in moth ORNs. However,
the average action potential observed in the extracellular recording should lie
within a valley, resembling an elementary action potential (Kaissling, 1986; Minor
and Kaissling, 2003; Pézier et al., 2007; Kaissling, 2013), which is not observed in
the A. ipsilon SSR. Further investigation is therefore needed to understand the
origin of the spontaneous activity and of the bursting firing patterns.

These results are not yet ready for publication. However, a brief report is
attached with this thesis (Attachment VI).
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Conclusion

In my thesis, I studied the encoding of neural information by different systems
and conditions and the information-metabolic efficiency of the encoding. I showed
that while inhibitory feedback does not help increase the efficiency of encoding
by single neurons, it may improve the information-metabolic efficiency of neural
populations. I showed that the information-metabolic efficiency is crucially affected
by the spontaneous activity of the neuron and its cost.

Such observation inspires questions about the importance of the spontaneous
activity. In the higher brain areas, the spontaneous activity can be important,
for example, for memory consolidation (Fukai, 2022). Such function is unlikely,
for example, in the periphery of the insect olfactory system. Accordingly, the
spontaneous activity of the pheromone-sensitive moth ORNs is very low (Pézier
et al., 2007; Jarriault et al., 2010; Barta et al., 2022). However, this is not always
the case across all ORN types and insect species. For example, moth ORNs
sensitive to plant volatile compounds and Drosophila ORNs may exhibit much
higher spontaneous firing rates (Hallem et al., 2004). The ORNs responding to
plant volatile compounds typically respond to a broad range of odors, and the
odor’s identity is then encoded by the combinatorial code (one ORN recognizes
multiple odor molecules, and one odor molecule is recognized by multiple ORNs)
(Malnic et al., 1999). Although most ORN-odor combinations result in excitation
of the ORN, some ORN-odor combinations decrease the spontaneous activity,
helping discriminate different odors (Hallem et al., 2004; Cao et al., 2017). The
metabolic importance of keeping the spontaneous activity low might be why the
spontaneous activity is not even higher and odor-induced inhibition not more
common. Pheromone-sensitive ORNs, on the other hand, do not need to encode
the odor identity, and higher spontaneous activity might not be beneficial for
stimulus encoding.

In the analysis of metabolically efficient neural coding, I focused predominantly
on models of cortical neurons and neural networks. The proposed model of ORN is
a step towards conducting similar studies in the moth olfactory system. Although
models of moth ORNs and PNs reproducing the firing rates of the neurons and
their heterogeneity have been proposed (Jacob et al., 2017; Levakova et al., 2019),
these models focused only on the firing rates and although the model by Levakova
et al. (2019) is a spiking model, it does not aim to reproduce the spiking patterns of
the ORNs and their trial-to-trial variability, properties essential for understanding
the efficiency of information encoding and effect on neurons downstream. The
model by Jacob et al. (2017) could be extended to take into account the trial-
to-trial variability of the neurons in the same way as the linear-nonlinear model
proposed in this thesis. However, the portability of this model is limited, as the
knowledge of the full time course of the filters (or the time course of their principal
components) is necessary to replicate the results.

Firing profiles of the ORN responses and behavior of the insects suggest that
greater emphasis is put on encoding the odor onset and odor offset when encoding
the information about the stimulus. Further downstream, PNs are less sensitive
to differences in odor concentration than ORNs (Jarriault et al., 2010; Stevens,
2016; Olsen et al., 2010). Therefore we can assume that the goal of the olfactory

45



system is not to transmit as much information as possible about the stimulus
to the higher brain areas. Instead, the ORNs and the neurons in the AL clearly
select which information should be passed on. An alternative approach is then to
evaluate the encoding efficiency of the specific features of the stimulus, such as
the durations of blanks between two subsequent odor encounters (Levakova et al.,
2018).

Ultimately, however, the goal of the insect in the navigation problem is to locate
the source. The efficiency of the olfactory system should therefore be evaluated
as the efficiency in locating the source. Simulations of insect behavior based on
olfactory system activity have been shown to be useful in comparing different
navigation strategies (Voges et al., 2014; Liberzon et al., 2018; Jayaram et al.,
2022) and in testing how properties of the olfactory system affect the navigation
efficiency (Jayaram et al., 2022; Kadakia et al., 2022). Having a reliable model of
the olfactory system is essential for such studies. Enforcing metabolic constraints
on the navigation task could then help explain from the first principles why PNs
seem to maximize the entropy of their output while ORN firing rates remain low.
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Appendix

Appendix A

Multiple spike amplitudes in the trichoid

sensillum of A. ipsilon

Here we analyze a single recording in which two different spike amplitudes are
clearly visible, both showing a stable behavior during 30min recording with
tungsten electrodes. The ORN was first recorded for 15min, then presented with a
2 s stimulus and then recorded for additional 15min. The recording was high-pass
filtered with a Butteworth 2-pole filter at the frequency of 200Hz. We selected
two thresholds: θ1 = 0.5mV and θ2 = 1.2mV. Small spikes had an amplitude > θ1
but < θ2, large spikes had an amplitude > θ2 (Fig. 18A).

Figure 18: Recording with different spike amplitudes. A: The high-pass
filtered recording in the interval 1000 s to 1010 s. Note that the stimulus was
presented between 900 s and 902 s. The dashed horizontal lines represent the
thresholds for spike detection, θ1 = 0.5mV and θ2 = 1.2mV. B-C: Inter-spike
intervals (ISIs) in chronological order for the large spikes (B) and the small spikes
(C). Orange points represent the ISIs that occured during the stimulus.

Firing of both spike amplitudes was more intense after the stimulus onset (ISIs
were shorter), indicating a rebound activity. Although we couldn’t see both spike
amplitudes during the response (small spike amplitudes were probably too small to
be distinguishable), we can assume that both neurons responded to the pheromone
stimulus. Therefore, either the sensilla contains two pheromone sensitive ORNs,
or the small amplitude corresponds to an ORN from a neighboring sensilla.
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Appendix B

Gating variables of the Hodgkin-Huxley model

An example of the functional form of the gating variables of the Hodgkin-Huxley
model (Destexhe and Paré, 1999):

αm = −0.32
V − VT − 13

exp(−(V − VT − 13)/4)− 1
, (3.4)

βm = 0.28
V − VT − 40

exp((V − VT − 40)/5)− 1
, (3.5)

αh = 0.128 exp(−(V − VT − VS − 17)/18), (3.6)

βh =
4

1 + exp(−(V − VT − VS − 40)/5)
, (3.7)

αn = −0.032
V − VT − 15

exp(−(V − VT − 15)/5)− 1
, (3.8)

βn = 0.5 exp(−(V − VT − 10)/40), (3.9)

αp = 0.0001
V + 30

1− exp(−(V + 30)/9)
, (3.10)

βp = −0.0001
V + 30

1− exp((V + 30)/9)
, (3.11)

with VT = −58mV and VS = −10mV. The time constant and steady state
activation (Eq. 2.27) can then be obtained as:

τx(V ) =
1

αx(V ) + βx(V )
, (3.12)

x∞(V ) =
αx(V )

αx(V ) + βx(V )
. (3.13)
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Abstract

Strong inhibitory input to neurons, which occurs in balanced states of neural networks,
increases synaptic current fluctuations. This has led to the assumption that inhibition
contributes to the high spike-firing irregularity observed in vivo. We used single
compartment neuronal models with time-correlated (due to synaptic filtering) and
state-dependent (due to reversal potentials) input to demonstrate that inhibitory input
acts to decrease membrane potential fluctuations, a result that cannot be achieved with
simplified neural input models. To clarify the effects on spike-firing regularity, we used
models with different spike-firing adaptation mechanisms and observed that the
addition of inhibition increased firing regularity in models with dynamic firing
thresholds and decreased firing regularity if spike-firing adaptation was implemented
through ionic currents or not at all. This novel fluctuation-stabilization mechanism
provides a new perspective on the importance of strong inhibitory inputs observed in
balanced states of neural networks and highlights the key roles of biologically plausible
inputs and specific adaptation mechanisms in neuronal modeling.

Introduction

In awake animals, neocortical neurons receive a stream of random synaptic inputs
arising from background network activity Matsumura et al. (1988); Rudolph et al.
(2007); Steriade et al. (2001). This “synaptic noise” is responsible for the fluctuations in
membrane potential and stochastic nature of spike-firing times Shadlen and Newsome
(1994); Vreeswijk and Sompolinsky (1996); Shadlen and Newsome (1998); Amit and
Brunel (1997); Brunel (2000); Destexhe (2010); Denève and Machens (2016). Since
spike-firing times encode the information transmitted by neurons, investigating the
properties of neuronal responses to stochastic input, representing pre-synaptic spike
arrivals, is of significant interest.

Typically, the total conductance of inhibitory synapses is several-fold higher than
that of excitatory synapses Destexhe et al. (2003). This state, commonly referred to as
the “high conductance state” has been demonstrated to significantly affect the
integrative properties of neurons Bernander et al. (1991); Paré et al. (1998); Mittmann
et al. (2005); Wolfart et al. (2005); Rudolph et al. (2007). Concurrently, the high
inhibition-to-excitation ratio introduces additional synaptic noise, which should
intuitively result in noisier firing. However, studies have demonstrated that the high
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ratio of inhibition may lead to more efficient information transmission Sengupta et al.
(2013); D’Onofrio et al. (2019); Barta and Kostal (2019). In vivo studies have also
demonstrated that the onset of stimuli can stabilize the membrane potential without a
significant change in its mean value Monier et al. (2003); Churchland et al. (2010).
Monier et al. Monier et al. (2003) observed that the decrease in fluctuations was
associated with higher evoked inhibition, which may have a shunting effect Fatt and
Katz (1953). Nevertheless, a theoretical framework explaining why and under which
conditions this shunting effect overpowers the increased synaptic noise is lacking.

Synaptic input can be modelled as temporary opening of excitatory and inhibitory
ion channels, which act to either depolarize or hyperpolarize the neural membrane,
respectively. Statistical measures of membrane potential can be calculated exactly with
the resulting expressions being non-analytic Wolff and Lindner (2010) or they can be
approximated in the steady-state with the effective time-constant approximation
Richardson (2004); Richardson and Gerstner (2005). For better analytical tractability,
the synaptic drive is often simplified with one (or both) of the following assumptions:

A1 The magnitude of the synaptic current elicited by each presynaptic spike is
independent of the voltage Lindner and Schimansky-Geier (2001); Brunel et al.
(2001); Fourcaud and Brunel (2002); Moreno-Bote and Parga (2004); Schwalger
and Schimansky-Geier (2008); Droste and Lindner (2017), or

A2 Time profiles of individual synapses (synaptic filtering) are neglected Brunel
(2000); Richardson (2004); Richardson and Gerstner (2006); Lánská et al. (1994);
Deger et al. (2012); Droste and Lindner (2017); Sanzeni et al. (2020).

In order to observe the shunting effect of inhibition Monier et al. (2003), reversal
potentials have to be considered, which excludes assumption A1. Richardson
Richardson (2004) demonstrated that an increase in inhibition could decrease the
membrane potential for strongly hyperpolarized membranes in a model of synaptic
input with omitted synaptic filtering (assumption A2). However, we demonstrate that if
neither of the simplifying assumptions are used, the membrane potential stabilization
effect can be observed across the complete range of membrane potentials, despite
increased synaptic current fluctuations (Fig 1A,B).

This naturally poses the question if the decreased membrane potential fluctuations
lead to more regular firing activity Churchland et al. (2010). To this end, we analyze
the effect of membrane potential stabilization on different neuronal models. In
particular, we focus on how the effects of inhibition change for different spike-firing
adaptation (SFA) mechanisms. SFA is responsible for the decrease of a neuron’s firing
rate in response to a sustained stimulus and plays a crucial role in all stages of sensory
processing (e.g., (Martinez, 2005; Peron and Gabbiani, 2009; Augustin et al., 2013; Ha
and Cheong, 2017; Levakova et al., 2019; Betkiewicz et al., 2020)). We compare two
distinct SFA mechanisms: adaptation through ionic currents (muscarinic currents, AHP
currents) and adaptation through dynamic threshold. We demonstrate that despite their
formal similarities (Benda and Herz, 2003; Kobayashi and Kitano, 2016) the effect of
inhibition qualitatively differs for these SFA mechanisms (Fig 1C,D). We illustrate the
differences on the analytically more tractable generalized leaky integrate-and-fire models
(GLIF) followed by the biophysically more plausible Hodgkin-Huxley (HH)-type models.

Methods

Subthreshold membrane potential

In order to analyze the behavior of neurons in the absence of any spike-firing mechanism,
we consider a point neuronal model with membrane potential V described by
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Fig 1. A: During a 2 s long simulation, the intensity of inhibitory input increases from 0 kHz to 20 kHz.
The pre-synaptic spike trains are modeled as Poisson point processes. B: The intensity of excitatory
input is increased simultaneously with the inhibition in order to maintain the mean membrane potential
constant. This increases fluctuations of the synaptic current but decreases fluctuations of the
membrane potential. The orange lines signify the mean value ± standard deviation. C and D: The
effect of membrane potential stabilization on firing regularity. The intensity of the inhibitory input
follows the time course shown in A, and the intensity of the excitatory activity is increased in order to
maintain the steady state post-synaptic firing rate at approximately 10Hz (blue trace). The firing
regularity (measured here by the Fano factor, orange trace) decreases with the addition of inhibition to
the input in the model with spike-firing adaptation by M currents (C). However, the model with
dynamic threshold (D) exhibits a clear increase in regularity with the added inhibitory input. The
mean firing rate and Fano factor were calculated by a sliding window of length 100ms from
approximately 105 trials.

C
dV (t)

dt
= −gL(V (t)− EL) +

1

a
(Ie(t) + Ii(t)), (1)

where C is the specific capacitance of the membrane, gL is the specific leak conductance,
EL is the leakage potential, Ie,i are the synaptic currents due to stimulation by afferent
neurons through excitatory and inhibitory synapses, respectively, and a is the
membrane area Tuckwell (1988); Dayan and Abbott (2005). For brevity, we will further
use V ≡ V (t). The synaptic currents are described by

Ie,i(t) = ge,i(t)(V − Ee,i), (2)

where ge(t), gi(t) are the total excitatory and inhibitory conductances, and Ee, Ei are
the respective synaptic reversal potentials.
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The total conductances in the Eq (2) are given by

ge,i(t) =
∑︂

tk∈Te,i

he,i(t− tk), (3)

where Te,i are sets of presynaptic spike times modeled as realizations of stochastic point
processes and he,i are filtering functions (i.e., time profiles of individual excitatory and
inhibitory conductances).

Unless stated otherwise, we used the following parameters: C = 1µF/cm2,
gL = 0.045mS/cm2, EL = −80mV, Ee = 0mV, Ei = −75mV, a = 3.4636× 10−4 cm2

Destexhe et al. (2001).

Spike firing models

GLIF models

We consider three versions of the GLIF model:

1. The classical Leaky Integrate-and-Fire model (LIF),

2. LIF with SFA through ionic (after-hyperpolarization) currents (AHP-LIF),

3. LIF with SFA through dynamic threshold (DT-LIF).

The membrane potential of the LIF model obeys the Eq (1). Whenever V > θ,
where θ is a fixed threshold value, a spike is fired, and the membrane potential V is
reset to a value Vr. For our simulations, we used θ = −55mV and Vr = EL.

In the model with AHP current SFA (AHP-LIF), an additional hyperpolarizing
conductance gAHP is included in the model, and the membrane potential then obeys the
equation Gerstner et al. (2019); Teeter et al. (2018); Benda et al. (2010):

C
dV

dt
= −gL(V − EL)− gAHP(t)(V − EK) + Ie(t) + Ii(t), (4)

or equivalently

τAHP
ef

dV

dt
= −(V − V AHP

ef ), (5)

τAHP
ef (t) =

aC

ge(t) + gi(t) + gAHP(t) + agL
, (6)

V AHP
ef (t) =

agLEL + ge(t)Ee + gi(t)Ei + gAHP(t)EK

ge(t) + gi(t) + gAHP(t) + agL
. (7)

where EK is the potassium reversal potential, and gAHP is the corresponding
conductance which increases by ∆gAHP when a spike is fired and otherwise decays
exponentially to zero with a time constant τAHP. V

AHP
ef then represents the effective

reversal potential. Note that for simplicity, we omitted the voltage dependence of gAHP.
In the dynamic threshold model (DT-LIF), the threshold increases by ∆θ after each

spike and then decreases exponentially to θ0 with time constant τθ.
The parameters for the GLIF models are specified in the Tab. 1.

Hodgkin-Huxley models

We adopted HH-type models developed by Destexhe et al. Destexhe and Paré (1999).
The membrane potential obeys the equation:

C
dV

dt
=− gL(V − EL)− gNam

3h(V − ENa)−

− gKn
4(V − EK)− gMp(V − EK)−

1

a
Isyn,

(8)
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Table 1. GLIF models parameters

LIF AHP-LIF DT-LIF
θ, θ0 (mV) -50 -50 -50
τAHP (ms) - 100 -
∆gAHP (nS) 0 5 0
EK (mV) - -100 -
τθ (ms) - - 100
∆θ (mV) 0 0 4

where ENa and EK are the sodium and potassium reversal potentials, respectively; gNa,
gK, and gM are peak conductances; and m, h, n, and p are gating variables obeying the
equation:

dx

dt
= αx(V )(1− x)− βx(V )x, (9)

or equivalently:

τx(V )
dx

dt
= −(x− x∞(V )), (10)

where x is the respective gating variable, αx and βx are the activation and inactivation
functions, respectively, and

τx(V ) =
1

αx(V ) + βx(V )
, (11)

x∞(V ) =
αx(V )

αx(V ) + βx(V )
. (12)

The activation and inactivation functions are defined as follows:

αm = −0.32
V − VT − 13

exp(−(V − VT − 13)/4)− 1
, (13)

βm = 0.28
V − VT − 40

exp((V − VT − 40)/5)− 1
, (14)

αh = Ah exp(−(V − VT − VS − 17)/18), (15)

βh =
4

1 + exp(−(V − VT − VS − 40)/5)
, (16)

αn = −0.032
V − VT − 15

exp(−(V − VT − 15)/5)− 1
, (17)

βn = 0.5 exp(−(V − VT − 10)/40), (18)

αp = 0.0001
V + 30

1− exp(−(V + 30)/9)
, (19)

βp = −0.0001
V + 30

1− exp((V + 30)/9)
. (20)

We set gM = 0 in both the HH-0 and HH-DT models, and gM > 0 in the HH-M
model. In order to achieve dynamic threshold behavior, we modified the activation and
deactivation functions of the gating variable h, which is responsible for deactivating
voltage-gated sodium channels after firing a spike, by changing the parameters Ah and
VS . For more details see the Supplementary Figure 1.

The parameters for the three HH-type models (without SFA (HH-0) / M-current
SFA (HH-M) / dynamic threshold SFA (HH-DT)) are specified in the Tab 2.
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Table 2. Parameters of the HH models

HH-0 HH-M HH-DT
gNa (mS/cm2) 50 50 50
gK (mS/cm2) 5 5 5
gM (mS/cm2) 0 0.5 0
ENa (mV) 50 50 50
EK (mV) -90 -90 -90
VT (mV) -58 -58 -58
VS (mV) -10 -10 14
Ah (ms−1) 0.128 0.128 0.00128

Simulation details

For synapses, we used the exponential filtering function:

he,i(t) =

{︄

Ae,i exp(−t/τe,i) t ≥ 0

0 t < 0
(21)

with Ae = Ai = 0.0015 µS, τe = 3ms, τe = 10ms. Such input parameters with
intensities λe = 2.67Hz and λi = 3.73 kHz provide an input with g0e = 12nS, σe = 3nS,
g0i = 57nS, and σi = 6.6 nS, as reported by Destexhe et al. Destexhe et al. (2001).

To ensure stability of the computation, we used the following update rule for the
simulations:

Vn+1 = (Vef)n+1 +
(︁

Vn − (Vef)n+1

)︁

exp

(︃

∆t

τn+1

)︃

, (22)

Vef =

∑︁

x∈X gxEx
∑︁

x∈X gx
(23)

τef =
C

∑︁

x∈X gx
(24)

where X contains all the channel types (synaptic, leak, voltage-gated, and adaptive).
The update rule for the synaptic conductances ge,i was

(ge,i)n+1 = (ge,i)n exp

(︃

∆t

τe,i

)︃

+Ne,iAe,i, (25)

where (Ne,i) is a Poisson random variable with mean λe,i∆t.
We used the step size ∆t = 0.025ms.

Evaluating firing rate regularity

A classical measure of the firing regularity of steady spike trains is the coefficient of
variation (CV), defined as follows (e.g., Softky and Koch (1993)):

CV =
σISI

µISI
, (26)

where µISI and σISI are the mean and standard deviation of the interspike intervals
(ISIs), respectively. Lower CV indicates higher firing regularity.

To achieve an accurate estimate of the CV, we estimated the statistics from
approximately 160,000 ISIs for each data point. For a Poisson process (CV = 1) with
this number of ISIs, the estimate of CV falls within [0.995, 1.005] in over 95% of cases.
Note that the estimation was more accurate for lower values of CV.
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Results

Membrane potential is stabilized with increased input

fluctuations

Since the inputs to a neuron consist of pooled spike trains from a large number of
presynaptic neurons, according to the Palm-Khintchine theorem Heyman and Sobel
(2004), it is sufficient to approximate the excitatory and inhibitory inputs by Poisson
processes with intensities λe and λi, respectively Tuckwell (1988). It has been
demonstrated that this condition is not necessarily satisfied for neurons in vivo Lindner
(2006). However, as we discuss below, this should not affect the conclusions of our
analysis. According to Campbell’s theorem Kingman (1993), it then holds for the mean
g0e,i and variance σ2

e,i of the input

g0e,i = λe,i

∫︂ ∞

0

he,i(t) dt, (27)

σ2
e,i = λe,i

∫︂ ∞

0

h2
e,i(t) dt. (28)

Therefore
σe,i

g0
e,i

= O

(︃

1√
λe,i

)︃

(a well-known property of the Poisson shot noise Tuckwell

(1988)).
For the purposes of our analysis, we consider the voltage equations of a membrane

without any spike-generating mechanism as:

τef(ge(t), gi(t))
dV

dt
= −V − Vef(ge(t), gi(t)), (29)

τef(ge, gi) =
aC

agL + ge + gi
, (30)

Vef(ge, gi) =
agLEL + geEe + giEi

gL + ge + gi
. (31)

For large inputs
σe,i

g0
e,i

≪ 1, we can linearize the Eq (31):

Vef(ge, gi)
.
= E0

(︃

1− gFe + gFi
agL + g0e + g0i

)︃

+
gFe Ee + gFi Ei

agL + g0e + g0i
, (32)

where E0 = Vef(g
0
e , g

0
i ) and gFe,i = ge,i − g0e,i. Since the fluctuating terms in Eq (32)

disappear with growing input, evaluating the limits with a fixed inhibition-to-excitation

ratio c =
g0
i

g0
e
leads to:

lim
λe,λi→∞

E [Vef ] = V∞(c) ≡ Ee + cEi

1 + c
, (33)

lim
λe,λi→∞

Var [Vef ] = 0. (34)

Var [Vef ] is an upper bound on the variance of V (it follows from the Eq (29) that the
membrane potential V is essentially a “low-pass filtered” effective reversal potential Vef).
Therefore, it also holds that lim

λe,λi→∞
⟨V⟩ = V∞(c) ≡ Ee+cEi

1+c and lim
λe,λi→∞

σV = 0. This

can also be observed from the perturbative approach suggested in Amit and Tsodyks
(1992) and further developed in Richardson (2004); Richardson and Gerstner (2005).
Therefore, any membrane potential between the reversal potentials Ei, Ee can be
asymptotically reached with zero variance, despite the variance of the total synaptic
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Fig 2. Stabilization of the membrane potential. A, top panel: Membrane potential
fluctuations as a function of the mean membrane potential for different values of c. The full lines
represent data obtained from simulations with different excitatory input intensities λe. The dotted
lines represent the effective time-constant approximation (ETA, Appendix A). Bottom panel: The
standard deviation σI of the total synaptic current Isyn = Ie + Ii. Note that σV decreases with
growing c even though σI increases. B: Overview of σV (color) for all achievable ⟨V ⟩ (x-axis) at
given c (y-axis). C = 1µF/cm2 and gL = 0.045mS/cm2, approximation of σV computed from the
ETA. Heatmaps for different values of gL are provided in the Supplementary Figure 2 and for
different values of Ai (Eq. (21)) in the Supplementary Figure 3.

current Isyn = Ie + Ii increasing. Note that the Poisson condition can be relaxed, since
it is sufficient for this result that

σe,i

g0
e,i

→ 0.

Let σV (⟨V ⟩; c) be the function specifying the standard deviation of the membrane
potential with mean ⟨V ⟩, parametrized by c. It is a continuous function, with
σV (EL; c) = σV (V∞(c); c) = 0, otherwise σV (⟨V ⟩; c) > 0. Note that lower c leads to
higher V∞(c). Therefore, given c1 > c2, there has to be an interval close to V∞(c1)
where c2 results in lower membrane fluctuations. Moreover, simulations indicate that
this holds, even in non-limit regimes (Fig 2A, top panel). This result is rather
counter-intuitive, since with an increase in c, it is necessary to increase both λe and λi

(if ⟨V ⟩ > Ei), and thus simultaneously increase synaptic current fluctuations (Fig 2A,
bottom panel) in order to keep the membrane potential constant. With our choice of
parameters, lower c may also result in a slight decrease in membrane potential
fluctuations. This is mainly due to the membrane time constant τ = C

gL

.
= 22ms. The

shorter the time constant, the closer V follows Vef , and the smaller the region in which
decreasing c leads to lower membrane potential variability (see the Supplementary
Figure 2).

Effects on firing regularity

The regularity of spike-firing is important for information transmission between neurons
Toyoizumi et al. (2006); Kostal et al. (2007); de Ruyter van Steveninck (1997); Strong
et al. (1998). In the previous section, we demonstrated that if appropriate synaptic
drive is used, higher inhibitory input rates (or equivalently higher
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inhibition-to-excitation ratio c) lead to lower membrane potential fluctuations. In this
section, we focus on the effects of inhibition on post-synaptic firing regularity,
particularly on the regularity of a post-synaptic spike train with a fixed frequency
evoked by different stimuli with different levels of inhibition.

Generalized Leaky Integrate-and-Fire models

For our analysis, it is essential to distinguish two different input regimes: 1.
Sub-threshold regime: E0 ≤ θ and 2. Supra-threshold regime: E0 > θ, where θ is the
firing threshold.

In the sub-threshold regime, firing activity is driven by fluctuations in the membrane
potential. Therefore, increasing the input rates λe, λi and simultaneously keeping E0

constant leads to a decrease in firing rate due to suppressed membrane potential
fluctuations (note that an analogous effect was described in the Hodgkin-Huxley model
Tiesinga et al. (2000)). In order to maintain the post-synaptic firing rate (PSFR)
constant while increasing the input rates, it is necessary to compensate for the decrease
in fluctuations by increasing E0. Therefore, it is not intuitively clear whether the
decrease in membrane potential fluctuations will lead to an increase in firing regularity.

In the supra-threshold regime, the firing activity is given by the driving force on the
membrane potential (V −Vef)/τef . Fluctuations in the interspike intervals are then given
mostly by the fluctuations of Vef . However, lower fluctuations of Vef are associated with
lower τef and it is necessary to decrease E0, if one wishes to decrease the fluctuations of
Vef and keep the firing rate constant at the same time. Intuitively, the fluctuations of
Vef will impact the firing regularity more, if the difference (V − Vef) is lower. Therefore
it is again unclear how the increased synaptic fluctuations affect the firing regularity.

In general, we observe that in the suprathreshold regime, the CV of ISIs decreases
with growing PSFR (Fig 3A,D). Moreover, as we show in the Appendix B:

lim
λe,λi→∞

CV = 0 (35)

However, if the firing rate is held constant, the CV increases with growing c. Therefore,
an increase in the inhibition-to-excitation ratio decreases firing regularity, despite the
stabilizing effect on membrane potential.

With high values of c, the CV grows locally with increasing firing rate. This is due
to the fact that as E0 is very close to the threshold and the membrane time constant
(Eq (30)) is very low, the neuron fires very rapidly (bursts) when Vef (Eq (29)) exceeds
the threshold but is otherwise silent.

For the AHP-LIF model, no improvements are observed in the firing regularity with
increasing c (Fig 3B,E). At low firing frequencies, the CV of the AHP-LIF model is
generally lower than that in the classical LIF model. This is to be expected given the
introduction of negative correlations in subsequent ISIs Chacron et al. (2004); Lindner
et al. (2005); Farkhooi et al. (2011). However, at higher firing rates, higher c actually
leads to a higher CV than that observed in the LIF model. This is due to the fact that
in regimes where Vef is always above the threshold in the LIF model, the
hyperpolarizing M-current drives the time-dependent effective reversal potential V AHP

ef

(Eq (7)) closer to the threshold. This leads to bursting, similar to that observed in the
LIF model with E0 near threshold. This is illustrated in more detail in the Appendix B,
where we also demonstrate that if V∞(c) > Vthr, then CV → 0, similar to the LIF model.

In the DT-LIF model, with the limit of infinite conductances, the membrane
potential will reach V∞(c) immediately after a spike is fired. If V∞(c) ≥ θ0, the neuron
will fire with exact ISIs

T = τθ log

(︃

1 +
∆θ

V∞(c)− θ0

)︃

. (36)
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Fig 3. The effect of membrane potential stabilization on spiking regularity in the GLIF models.

A-C: Dependence of the CV of ISIs on the post-synaptic firing rate for different values of c (color-coded). The
dotted parts of the curves represent the sections where λe > 100 kHz. In the LIF and AHP-LIF model, higher c
universally leads to higher CV. In contrast, in the DT-LIF model, higher c can lead to more regular spike trains,
especially if the input intensities are high. If V∞(c) ≤ θ (or θ0 for the DT-LIF model, i.e., c ≥ 2.75), the firing
rate will eventually drop to 0. D-E: Contour plots with color-coded CV, c on the y-axis. If more than one input
can produce the same PSFR with the same c, the lowest possible value of CV is color-coded, resulting in the
discontinuity in F. The data points were obtained from simulations with different input intensities λe, λi.

Therefore, any firing rate lower than
(︂

τθ log
(︂

1 + ∆θ
V∞(c)−θ0

)︂)︂−1

can be asymptotically

reached with CV = 0. Thus, firing regularity can always be improved by increasing c,
similar to the case of membrane potential variability. However, very high input
intensities are necessary to observe such regularization. Further, with biologically
realistic input intensities (excitatory input intensity up to 100 kHz), increased regularity
with higher c is observed only for post-synaptic firing rates below approximately 20Hz
(Fig 3C,F).

Note that the structure of the contour plot in Fig 3F is very similar to that in Fig
2B, i.e., approximately for c > 1, an increase in c stabilizes the membrane potential and
increases the spike-firing regularity. The opposite is observed for c < 1. Moreover, the
structure of the heatmap changes accordingly if the membrane time constant is
decreased by increasing gL (Supplementary Figure 2) or if the inhibitory synaptic
connections are strengthened (Supplementary Figure 3).

Hodgkin-Huxley models

Generally, the behavior of the HH models is very similar to that of their GLIF
counterparts (Fig 4). Similar “subthreshold” behavior is apparent - for high values of c,
the firing rate starts dropping to zero with increasing input intensity.
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Fig 4. The effect of membrane potential stabilization on spiking regularity in the Hodgkin-Huxley

models. A-C: Dependence of the CV of ISIs on the firing rate for different values of c (color-coded). The dotted
parts of the curves represent the sections where λe > 100 kHz. In the subthreshold regimes, the output rate
reaches its maximum and then starts dropping to zero. For the HH-DT model (C), the CV decreases at this point,
whereas for the HH-0 (A) and HH-M (B) models, no clear improvement is observed. D-F: Contour plots with
color-coded CV, c on the y-axis. If more than one input can produce the same PSFR with the same c, the lowest
possible value of CV is color-coded. Note that there is no discontinuity in F, unlike in Fig. 3F. The transition to
the more regular states with growing c is continuous, as is illustrated in Supplementary Figure 4. The data points
were obtained from simulations with different input intensities λe, λi.

Similarly to the GLIF models, no improvements are observed with growing c for the
HH-0 (Fig 4A,D) and HH-M (Fig 4B,E) models. For the HH-DT model, lower CV of
ISIs can always be achieved in the subthreshold regime, when the rate starts dropping
back to zero due to the strong input (Fig 4C,F).

Increasing c in the HH-DT subthreshold regime decreases the CV. However, it is
important to note that increased c does not imply stronger inhibitory input in this case.
In fact, increasing the inhibitory input rate λi is almost always beneficial for the
spike-firing regularity in the HH-DT model, and this is also the case in the DT-LIF
model (Fig 5). From this, we conclude that if a neuron exhibits a dynamic threshold, a
stimulus will produce a more regular spike train if it elicits an increase in inhibitory
input simultaneously with excitatory input.
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Fig 5. Constant inhibition trajectories for the dynamic threshold models. In
both the DT-LIF (A) and HH-DT (B) models, increasing the pre-synaptic inhibitory
firing rate (color) is beneficial for the firing regularity (measured by CV, y-axis) for a
wide range of PSFRs (x-axis).

Discussion

Simplified input models

Absence of reversal potentials

If the reversal potentials are not taken into account, the synaptic currents are given by

Ie,i(t) =
∑︂

tk∈Te,i

He,i(t− tk), (37)

where H is again a filtering function. If the two currents are uncorrelated, they will add
up to an input current with mean value I0 and standard deviation σI . If the diffusion
approximation is employed (the current is modeled as an Ornstein-Uhlenbeck process
with a time constant τI), the mean and standard deviation of the membrane potential
are Lindner and Longtin (2006):

⟨V ⟩I = EL +
I0
gL

, (38)

σ2
V,I = σ2

I

τI
a2gL(C + gLτI)

. (39)

In the absence of synaptic reversal potentials, the variance diverges with growing input,
and increasing the synaptic current fluctuations by increasing λe and λi clearly
increases the membrane potential fluctuations, in contrast to the model with synaptic
reversal potential.
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Absence of synaptic filtering

If synaptic filtering is neglected, he,i become δ-functions:

he,i(t) = Cae,iδ(t), (40)

where C is the membrane capacitance, and ae,i governs the jump in the membrane
potential ∆V triggered by a single pulse:

∆V = (Ee,i − V )(1− e−ae,i). (41)

This model was studied extensively, e.g., in Lánská et al. (1994); Richardson (2004);
Richardson and Gerstner (2006). In Richardson (2004); Richardson and Gerstner
(2006), the formulas for the mean membrane potential and its standard deviation are
calculated in the diffusion approximation:

⟨V ⟩W = τ(ELτ
−1
L + Eeλebe + Eiλibi) (42)

σ2
V,W =

τL
2

λeb
2
e(⟨V ⟩ − Ee)

2 + λib
2
i (⟨V ⟩ − Ei)

2

1 + τLλebe(1− be/2) + τLλibi(1− bi/2)
, (43)

where

τ−1 = τ−1
L + λebe + λibi (44)

be,i = 1− e−ae,i . (45)

Richardson Richardson (2004) reported that a higher inhibition-to-excitation ratio may
lead to a decrease in the membrane potential fluctuations for strongly hyperpolarized
membranes. However, the effect of inhibition reverses as the membrane potential
depolarizes (Fig 6). Furthermore, the membrane potential does not stabilize within the
limit of infinite firing rates. Therefore, the time correlation of synaptic input introduced
by synaptic filtering is necessary to observe the shunting effect of inhibitory synapses.

Regular firing in multicompartmental models

The models analyzed in this work are all single-compartmental models, i.e., models in
which the charge is distributed infinitely fast across the cell, and the membrane
potential is therefore the same everywhere. In reality, neurons receive input
predominantly at dendrites, and the spikes are initiated in the soma. To account for
this fact, multicompartmental models are typically employed. The soma and dendritic
parts can be modeled as two separate compartments (for simplicity, as two identical
cylinders) connected through a coupling conductance gc :

C
dVS

dt
= −gL(VS − EL)− gc(VS − VD) (46)

C
dVD

dt
= −gL(VD − EL)− gc(VD − VS)−

− 1

aD
(ge(VD − Ee) + gi(VD − Ei))

(47)

where VS and VD are the membrane potentials of the somatic and dendritic
compartments, respectively; aD is the dendritic area; and VS is reset to Vr when the
threshold θ is reached.

In the hypothetical case of infinite input rates, VD = V∞(c) and VS periodically
decay to V 0

S = gLEL+gcVD

gL+gc
with a time constant τ2 = gL+gc

aSC , resulting in regular ISIs

T = −τ2 log

(︃

1 +
Vr − θ

V 0
S − Vr

)︃

. (48)
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Fig 6. Membrane potential with conductance input without synaptic filtering. A:
Membrane potential fluctuations as a function of the mean membrane potential for different
values of c = λibi

λebe
(color-coded), as calculated from the Eqs (42,43). The dashed line represents

the limit lim
λe,λi→∞

σV,W (⟨V ⟩W ). The membrane potential is not stabilized at infinite inputs.

Above certain depolarizations, inhibition increases membrane potential fluctuations, contrary
to the case of conductance input with synaptic filtering. B: Heatmap with color-coded
standard deviation of the membrane potential. Parameters used were be = 0.0045, bi = 0.0150.

Therefore, it is possible to reach a wide range of firing rates with CV = 0 and decrease
CV while maintaining a constant mean firing rate by increasing c, similar to the case of
LIF with a dynamic threshold.

The coupling conductance can be calculated as gc =
d

4Ral2
Sterratt et al. (2011),

where d is the diameter of the cylinder, l is the length, and Ra = 150Ω cm is the
longitudinal resistance. If we consider that the original area of the neuron
approximately 3.5× 10−4 cm2 is split between the two cylinders and we set d = l, we
obtain τ2 ≈ 4.5 µs. It is therefore unlikely that firing rate regularization with biologically
relevant post-synaptic firing rates would be observed with biologically plausible inputs.

Conclusion

We demonstrate that a higher inhibition-to-excitation ratio and subsequently higher
synaptic current fluctuations lead to a more stable membrane potential if the
stimulation is modeled as time-filtered activation of synaptic conductances with reversal
potentials. Our analysis thus provides a theoretical context for the experimental
observations of Monier et al. (2003). Moreover, our results highlight the importance of
incorporating synaptic filtering and reversal potentials into neuronal simulations. The
qualitative differences between neurons stimulated with white noise and colored noise
current have been reported in the literature Brunel et al. (2001); Fourcaud and Brunel
(2002); Moreno-Bote and Parga (2004). However, we demonstrate that realistic synaptic
filtering with reversal potentials is responsible for a novel fluctuation-stabilization
mechanism which cannot be observed in simplified models.

We analyzed the impact of membrane potential stabilization on spike-firing
regularity in GLIF models and HH-type models. We compared the effects of an
increased inhibition-to-excitation ratio on two different mechanisms of spike-firing
adaptation: adaptation by a hyperpolarizing ionic current (AHP and M-current
adaptation) and adaptation implemented as a dynamic firing threshold. Both SFA
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mechanisms are biologically relevant and are useful in neuronal modeling Teeter et al.
(2018); Benda et al. (2010); Chacron et al. (2000); Kobayashi et al. (2009); Kobayashi
and Kitano (2016); Levakova et al. (2019); Gerstner and Naud (2009); Kobayashi et al.
(2019). We demonstrated that while an increase in inhibition leads to less regular spike
trains in the ionic current adaptation models and models without any spike-firing
adaptation, it may enhance the firing regularity in the dynamic threshold models. We
observed this effect in both the GLIF models and HH-type models.

High presynaptic inhibitory activity is typical of cortical neurons. In the so called
high-conductance state, total inhibitory conductance can be several-fold larger than
total excitatory conductance Destexhe et al. (2003). Our findings therefore provide a
novel view of the importance of the high-conductance state and inhibitory synapses in
biological neural networks.
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A Effective time constant approximation

The Eqs (1,2) can be rewritten as:

Ca
dV

dt
= −g0(V − E0)− gFe (V − Ee)− gFi (V − Ei), (49)

where g0 = agL + g0e + g0i , g
0
e,i, and gFe,i are the mean and fluctuating parts of the

conductance input. The input can then be separated into its additive and multiplicative
parts:

gFe (V − Ee) = gFe (E0 − Ee) + gFe (V − E0). (50)

By neglecting the multiplicative part gFe (V − E0), we obtain the effective time
constant approximation (ETA). In the diffusion approximation, the mean and standard
deviation of the membrane potential are Richardson (2004); Richardson and Gerstner
(2005):

⟨V ⟩ETA = E0, (51)

σ2
V,ETA =

(︃

σe

g0

)︃2

(Ee − E0)
τe

τe + τ0
+

+

(︃

σi

g0

)︃2

(Ei − E0)
τi

τi + τ0
,

(52)

where τ0 = aC
g0

is the effective time constant, and σe,i are the standard deviations of the
excitatory and inhibitory inputs.

B Limit cases of LIF and AHP-LIF models

High conductance limit of the LIF model

If V∞(c) > θ, in the case of high input intensities, Vef is permanently above the
threshold, and the effective membrane time constant τ(ge, gi) approaches zero.
Therefore, in the absence of a refractory period, the firing rate f = 1

µISI
diverges (µISI is

the average ISI). If the average postsynaptic ISI is much shorter than synaptic
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timescales, we can assume that the input remains effectively constant during the entire
ISI (corresponding to the adiabatic approximation (Moreno-Bote and Parga, 2004, 2005,
2006; Moreno-Bote et al., 2008; Moreno-Bote and Parga, 2010)). The length of the ISI
is then determined solely by the immediate values of the excitatory and inhibitory
conductances

T (ge, gi) = − aC

agL + ge + gi
log

(︃

θ − Vef(ge, gi)

Vr − Vef(ge, gi)

)︃

. (53)

Assuming independence of the inputs, the mean ISI and its standard deviation can then
be approximated as

µISI = − aC

gtot
log

(︃

θ − E0

Vr − E0

)︃

, (54)

σ2
ISI =

(︃

∂T

∂ge

)︃2
⃓

⃓

⃓

ge=g0
e

σ2
e +

(︃

∂T

∂gi

)︃2
⃓

⃓

⃓

gi=g0
i

σ2
i = (55)

= (aC)2g0e

[︃

Ae ((Ee − E0)(θ − Vr) + α)

g4tot(θ − E0)2(E0 − Vr)2
+

+
cAi ((Ei − E0)(θ − Vr) + α)

g4tot(θ − E0)2(E0 − Vr)2

]︃

,

α = (θ − E0)(E0 − Vr) log
E0 − θ

E0 − Vr
,

where gtot = agL + g0e + g0i (for validity of the approximation see Fig. 7). Therefore,

σISI/µISI = O
(︂

(︁

g0e
)︁−1/2

)︂

. We conclude that with growing input intensity, the firing

rate diverges and CV → 0.

High conductance limit of the AHP-LIF model

Effective reversal potential

We follow the assumption that the fluctuations in Vef(ge, gi) are very small and
therefore V AHP

ef (Eq. (7)) is permanently above the threshold θ. With the ISI

µAHP
ISI ≪ τAHP, gAHP(t) ≈ ⟨gAHP(t)⟩ = ∆gτAHP

µAHP
ISI

. Analogously to the Eq. (54)), we can

use the following implicit equation to approximate the mean ISI:

µAHP
ISI = − aC

gAHP
tot

log
θ − EAHP

0

Vr − EAHP
0

, , (56)

where

gAHP
tot = agL + g0e + g0i +

∆gτAHP

µAHP
ISI

, (57)

EAHP
0 =

agLEL + g0eEe + g0i Ei +
∆gτAHP

µAHP
ISI

EK

gAHP
tot

. (58)

We continue to evaluate the high-conductance limit of EAHP
0 :

lim
g0
e→+∞

EAHP
0 = V AHP

∞ (c) ≡

≡ lim
g0
e→+∞

agL
g0
e
EL + Ee + cEi +

τAHP

g0
eµ

AHP
ISI

∆gEK

agL
g0
e
+ 1 + c+ τAHP

g0
eµ

AHP
ISI

∆g
.

(59)
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Fig 7. Approximation of the PSFR and CV of LIF. Simulation results are
color-coded. The dashed lines represent the approximations from the Eqs (54,55). The
firing rate is approximated very well (A). CV is approximated well for very high PSFRs
(> 1 kHz) (B). This is due to the short input time constants (3ms for excitatory, 10ms
for inhibitory). For the simulation, we used the timestep ∆t = 0.1ms if the expected
PSFR was < 100Hz and ∆t µISI

10ms otherwise.

Clearly, agL
g0
e

→ 0. Therefore, it is important to evaluate the limit A = lim
g0
e→+∞

g0eµ
AHP
ISI .

Then:

V AHP
∞ (c) =

Ee + cEi +
τAHP

A ∆gEK

1 + c+ τAHP

A ∆g
. (60)

By multiplying both sides of Eq. ((56)) with gAHP
tot and then taking the limit of both

sides of the equation, we obtain:

agLµISI + g0e (1 + c)µISI + τAHP∆g = −aC log
θ − V AHP

∞

Vr − V AHP
∞

, (61)

A(1 + c) + τAHP∆g = −aC log
θ − V AHP

∞

Vr − V AHP
∞

. (62)

Numerical solution of Eq. ((62)) allows us to compare V AHP
∞ (c) with V∞(c) and thus

provides a comparison between the LIF model with and without the M-current
adaptation (Fig. 8). For approximately c > 5 (with the used parameters),
V∞(c)AHP ≈ θ. Therefore, the neuron requires a very high input intensity for the
fluctuations to be so small that V AHP

ef permanently exceeds the threshold, and in the
range of biologically feasible inputs, the fluctuations in V AHP

ef lead to bursting when
V AHP
ef > θ and are silent when V AHP

ef ≤ θ (Fig. 8).
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Fig 8. High conductance limit of the AHP-LIF model A: Equilibrium potential
(in mV) in the infinite conductance limit (Eq. (60)) for different values of c (shown in
blue). For high c, the value V AHP

∞ (c) is very close to the threshold (dashed black line).
The value of V∞(c) (33), corresponding to the LIF model, is shown in orange for
comparison. The M-current adaptation clearly pushes the equilibrium potential closer
to the threshold, leading to bursting behavior. B-D: Time-course of the membrane
potential of LIF with M-current adaptation with c = 1.7 for different values of input
intensities. The membrane potential (shown in blue) follows closely V AHP

ef (shown in
orange). When V AHP

ef > θ, the neuron is bursting; otherwise, the neuron is silent. With
higher input intensities, the probability of V AHP

ef ≤ θ drops, and the firing rate becomes
increasingly more regular.

The limit of CV

Neglecting the variance of gAHP(t), the variance of ISIs can then be approximated
analogously to Eq. ((55)) as:

σ2
ISI =

(︃

∂µISI

∂ge

)︃2

σ2
e +

(︃

∂µISI

∂gi

)︃2

σ2
i , (63)

Our goal is to demonstrate that the coefficient of variation (CV) approaches zero. Using
the definition of CV (Eq. (26)) and Eq. (56), we have

lim
g0
e→+∞

CV = lim
g0
e→+∞

σISI

µISI
(64)

= − lim
g0
e→+∞

gAHP
tot

aC

σISI

log
θ−EAHP

0

Vr−EAHP
0

(65)

= − lim
g0
e→+∞

gAHP
tot σISI lim

g0
e→+∞

(︃

log
θ − EAHP

0

Vr − EAHP
0

)︃−1

. (66)
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Since −∞ < lim
g0
e→+∞

(︂

log
θ−EAHP

0

Vr−EAHP
0

)︂−1

< 0, it remains to be shown that

lim
g0
e→+∞

gAHP
tot σISI = 0, which can be shown by using the implicit differentiation formula.
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Abstract

Neural variability quenching is a decrease of trial-to-trial variability of neural variability
evoked by a stimulus. This phenomenon has been observed across scales in the brain
including the membrane potential of individual cells (Monier et al., 2003) and firing
activity (Churchland et al., 2010). Monier et al. (2003) suggested that the decrease of
membrane potential variability is due to an increase in inhibitory activity associated
with the stimulus onset. However, the origins of the decrease of firing activity variability
(Fano factor) as well as its utility are still unclear.

Our theoretical study verified that increased inhibitory input to a neuron may
decrease the membrane potential variability, despite increasing the variability of the
input current (Barta and Kostal, 2021). Moreover, we showed that the spike frequency
adaptation mechanism (SFA) of the neuron affects whether the neuron will fire spikes
more or less regularly with higher inhibitory input.

In our continued effort, we show that our previous results are relevant in classical
models of recurrent neural networks with excitatory and inhibitory subpopulations,
where the feedforward input in the network is purely excitatory and the inhibitory input
is determined by the network properties. We used a recurrent neural network of
exponential integrate-and-fire neurons with SFA (Zerlaut et al., 2017). Each neuron
responded to a stimulus with different intensity, mitigating the effect of preferred and
non-preferred stimuli. When the SFA was implemented by after-hyperpolarization
current the Fano factor increased after the stimulus onset, while in networks with SFA
implemented by voltage-gated sodium channel inactivation (dynamic firing threshold),
the Fano factor decreased, even for neurons whose firing rate did not change upon
stimulus onset. Next, we analyze to which extent the differences between the SFA
mechanisms affect information transmission properties.

Our work both provides one of the possible mechanisms that can lead to neural
variability quenching as well as analyzes its possible utility by evaluating information
transmission capabilities.

1 Methods

1.1 Single neuron dynamics

To model the single neuron dynamics, we used the adaptive exponential
integrate-and-fire model (Brette and Gerstner, 2005), which we modified to incorporate
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Table 1. Parameters of the LIF model

Membrane capacitance Cm 150 pF
Leak conductance gL 10 nS
Resting potential EL −80mV

Vthr −50mV
ka 2mV for exc.

0.5mV for inh.
Exc. reversal potential Ee 0mV
Inh. reversal potential Ei −80mV
Exc. synapse decay τexc 5ms
Inh. synapse decay τinh 5ms
Exc. synapse strength w0

exc 1 nS
Inh. synapse strength w0

inh 5 nS

dynamic threshold by adding slow gating variable s to the term with the exponential
function:

Cm
dV i

dt
= gL(EL − V i) + Iisyn(V

i, t) + (1− si)kae
V i

−Vthr
ka − Iiw + Iibcg + Iistim, (1)

τw
dIiw
dt

= −Iiw + a · (V i − EL) +
∑︂

ts∈{tspike}i

bδ(t− ts), (2)

τw
dsi

dt
= −si +

∑︂

ts∈{tspike}i

c(1− si)δ(t− ts), (3)

with an action potential recorded when V i crosses the threshold 0mV and reset at EL.
{tspike}i is the set of all action potentials fired by the i-th neuron.

The exponential term represents the conductance of the voltage-gated Na+ channels
and the gating variable s represents the ratio of inactivated Na+ channels. We used the
model parameters as in (Zerlaut et al., 2017), with the exception of the adaptation
parameters, in order to compare different adaptation mechanisms. The parameters are
provided in the Table 1.

As in (Zerlaut et al., 2017), only excitatory neurons were adapting. In the case of
dynamic threshold adaptation b = 0 and c = 0.15, meaning that 15% of all open
channels become blocked with every fired action potential. In the case of
after-hyperpolarization currents (AHP), we set c = 0 and b = 20pA.

1.2 Network properties

The network consists of 10000 neurons, out of which 7500 are excitatory and 2500 are
inhibitory. Regardless of the neuron type, the connection probability is 5% (Zerlaut
et al., 2017).

The synaptic current Iisyn is the current from conductance-based recurrent synapses:

Iisyn = −giexc(V − Eexc)− giinh(V − Einh), (4)

dgiexc
dt

= −giexc
τexc

+
N
∑︂

j=1

∑︂

ts∈{tspike}j

wji
excδ(t− ts), (5)

dgiinh
dt

= −giinh
τinh

+
N
∑︂

j=1

∑︂

ts∈{tspike}j

wji
inhδ(t− ts), (6)
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where τexc = τinh = 5ms are synaptic decay time constants, wji
exc and wji

inh the synaptic

weights. wji
exc = 0 if the j-th neuron is inhibitory, wji

inh = 0 if the j-th neuron is
excitatory and otherwise for any connection the probability of the weight being non-zero
is 5% and then wji

exc = w0
exc = 1nS and wji

inh = w0
inh = 5nS.

1.3 External input

The external excitatory input is modeled as an Ornstein-Uhlenbeck process (Destexhe
et al., 2001; Uhlenbeck and Ornstein, 1930):

Iiext = −gext(V
i − Eext)

dgiext
dt

= −giext − µext(t)

τexc
+

√
2τexcσexc(t)η

i(t), (7)

where ηi(t) is white noise, µext and σext are set so that the stationary mean and
standard deviation of gext match those of a Poisson shot noise with an exponential
kernel with a time constant τexc, amplitude w0

exc and intensity λi
ext:

µext(t) = w0
excλ

i
ext(t)τexc, (8)

σext(t) =

√︃

τexcλi
ext(t)

2
w0

exc. (9)

During the 12 s simulation, we modelled λi
ext as

λi
ext =

{︄

λbcg for t < 6 s,

λbcg + λstim sin(αi − αstim) for t ≥ 6 s,
(10)

where αi is the preferred orientation of the i-th neuron and αstim is the stimulus
orientation, λbcg = 1kHz and λstim = 6kHz.

We assume that neurons 1, . . . , Nexc, where Nexc = 7500 are excitatory and neurons
Nexc, . . . , N , where N = 10000 are inhibitory. We then set the preferred orientations as

αi =

{︄

π
2

i
Nexc

for i ≤ Nexc,
π
2

i−Nexc

N−Nexc
for i > Nexc.

(11)

2 Results and discussion

We fixed the connectivity matrix and ran the simulation 3600 for each SFA mechanism -
AHP and dynamic threshold. Raster plots from an example simulation are shown in Fig.
1A-C. The neurons show transient activity at the beginning of the simulation and after
the stimulus onset. After the stimulus onset, the activity of neurons receiving strong
input increases, while the activity of neurons receiving only weak external input is
attenuated. For some neurons, the steady state activity remains approximately the
same as before the stimulus onset.

We calculated the spiking statistics - the mean number of spikes and variance of the
number of spikes before and after the stimulus onset. We left out the transient periods
1 s after the simulation start and 1 s after the stimulus onset. We plotted the spike
count variance against the mean spike count (Fig. 1D-E). In each situation (AHP /
dynamic threshold + before/after stimulus onset) the mean count - count variance
formed a continuous curve with very little variance and the trial-to-trial variability of a
neuron is essentially determined by its firing rate. Comparing this curve before and
after stimulus onset shows us whether trial-to-trial variability increased or decreased
after the stimulus onset. For AHP SFA, the trial-to-trial variability increased after the
stimulus onset, while with dynamic threshold the trial-to-trial variability decreased after
the stimulus onset.
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Fig 1. Trial-to-trial variability after stimulus onset depends on spike frequency

adaptation mechanism. A: The curve illustrates the strength of the external input on top
of the background input that each neuron starts receiving after 6 s. Each neuron receives a
different input due to a different preferred stimulus. B-C: Raster plots of the 8000 excitatory
neurons from one trial of the simulation with AHP (B) and dynamic threshold (C). D-E:

With each spike frequency adaptation (SFA) mechanism we ran the simulation 3600 times.
For each neuron, we calculated the mean number of spikes and their variance before the
stimulus onset (in the interval between 1 s and 5 s after the simulation start) and after the
stimulus onset (interval between 7 s and 12 s after the simulation start). With the AHP SFA,
the trial-to-trial variability of the neurons increased after the stimulus onset, while with the
dynamic threshold SFA the trial-to-trial variability decreased after the stimulus onset.
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Abstract

In this paper we investigate the rate coding capabilities of neurons whose input signal
are alterations of the base state of balanced inhibitory and excitatory synaptic currents.
We consider different regimes of excitation-inhibition relationship and an established
conductance-based leaky integrator model with adaptive threshold and parameter sets
recreating biologically relevant spiking regimes. We find that given mean post-synaptic
firing rate, counter-intuitively, increased ratio of inhibition to excitation generally leads
to higher signal to noise ratio (SNR). On the other hand, the inhibitory input
significantly reduces the dynamic coding range of the neuron. We quantify the joint
effect of SNR and dynamic coding range by computing the metabolic efficiency - the
maximal amount of information per one ATP molecule expended (in bits/ATP).
Moreover, by calculating the metabolic efficiency we are able to predict the shapes of
the post-synaptic firing rate histograms that may be tested on experimental data.
Likewise, optimal stimulus input distributions are predicted, however, we show that the
optimum can essentially be reached with a broad range of input distributions. Finally,
we examine which parameters of the used neuronal model are the most important for
the metabolically efficient information transfer.

Author summary

Neurons communicate by firing action potentials, which can be considered as all-or-none
events. The classical rate coding hypothesis states that neurons communicate the
information about stimulus intensity by altering their firing frequency. Cortical neurons
typically receive a signal from many different neurons, which, depending on the synapse
type, either depolarize (excitatory input) or hyperpolarize (inhibitory input) the neural
membrane. We use a neural model with excitatory and inhibitory synaptic
conductances to reproduce in-vivo like activity and investigate how the intensity of
presynaptic inhibitory activity affects the neuron’s ability to transmit information
through rate code. We reach a counter-intuitive result that increase in inhibition
improves the signal-to-noise ratio of the neural response, despite introducing additional
noise to the input signal. On the other hand, inhibition also limits the neuronal output
range. However, in the end, the actual amount of information transmitted (in bits per
energy expended) is remarkably robust to the inhibition level present in the system.
Our approach also yields predictions in the form of post-synaptic firing rate histograms,
which can be compared with in-vivo recordings.
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Introduction

Fig 1. Graphical abstract. (A) Stimulus consisting of excitatory and inhibitory synaptic conductances,
generated as shot noise with an exponential envelope, is delivered to the neuronal model, a passive leaky
membrane with a dynamic threshold. The measured response is the number of spikes in a specified time
window (e.g., 250ms). (B) For each stimulus intensity the full response distribution is obtained. The mean
response (solid) and its standard deviation (shaded) are shown for illustration. (C) We find the probability
distribution of inputs that maximizes the mutual information between the stimulus and the response per
single spike. The predicted histogram of post-synaptic firing rates (PSFR) can be compared with
experimental data.

Cortical neurons receive input in the form of bombardment by action potentials
(spikes) from other neurons and process and communicate the received information
further by transmitting their own action potentials to other neurons. Individual action
potentials do not differ in their time course and therefore, from the information
processing point of view, they can be seen as all-or-none events. The response to a
particular stimulus is therefore represented by a spike train - a sequence of times when
an action potential was produced [1].

According to the efficient-coding hypothesis [2], neurons are adapted to process the
information from their natural surrounding efficiently. This inspired a number of studies
based on optimality arguments (e.g., [3–9]), with the information efficiency usually
being interpreted by the means of Shannon’s information theory [10].

Given that the cortex has only a limited energy budget and information transfer is
costly [11–13], we expect that neurons balance information rates and energetic expenses.
The idea of energy efficient neural coding was popularized by Levy and Baxter [14]. In
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their work they focus on the representational capacity of a noiseless population of
neurons and show that optimizing the representational capacity per spike leads to low
firing rates, typically observed in vivo. The introduction of realistic noise [15] and
further biophysical details limits the analytical tractability and studies of noisy neurons
are generally limited to numerical analyses of single cells and simplified populations.

Typical approaches to information-theoretical analyses of single cells are either the
use of the direct method [16, 17] to evaluate the reproducibility of a response to a given
stimulus or the computation of the mutual information between the stimulus and the
response [18] and eventually evaluating the information capacity of the neuron as an
information channel [19–21]. The attractiveness of information capacity stems from
Shannon’s channel coding theorem which guarantees the existence of a code that is
asymptotically able to transmit information at the rate given by the capacity [22].
See [23–26] for reviews of the use of information theory in computational neurosciences.

Both the direct method and capacity analysis can be extended to account for the
metabolic expenses. One of the earliest efforts to relate the information capacity to the
metabolic expenses is that of Laughlin et at. [27], where the Gaussian distribution of
response variability is assumed for a cell encoding the stimulus in the graded potential.
Balasubramanian [28] discussed the possibilities of applying the formalism of capacity of
constrained channels [29] to neural systems and Polavieja [30, 31] showed that rate
coding neurons [32] with additive response noise that the predicted shapes of
post-synaptic firing rate (PSFR) distributions obtained from such formalism
qualitatively match the experimentally measured distributions [33]. These inspiring
results provided ground for investigating the information-energy balance for more
realistic neuronal models, such as the Hodgkin-Huxley model [34] or a formal model
based on an empirical stimulus-response relationship [35]. Studies concerning the
efficiency of neurons employing different methods of information encoding have also
been conducted (e.g., Leaky integrate and Fire with descending threshold [36],
generalized inverse Gaussian neuron model [37–39]).

In the presented work we utilize the MAT (Multi-timescale Adaptive Threshold)
model [40] which has been shown to be very good at predicting in-vivo recorded spike
trains [40–47], while maintaining only a modest number of free parameters. Therefore
information-theoretical analysis of this model allows us to make predictions for a wide
variety of neurons (Fig 1).

The main contributions and the structure of this work can be summarized as follows:

(i) By applying the results of Witsenhausen [48] in the context of neural systems, we
conclude that the maximal mutual information between input and output of a
neuron using rate code must be generally reachable with only a finite number of
inputs.

(ii) We qualitatively discuss the stimulus-response relationships and the capacity-cost
functions and show the stabilizing effect of inhibition on the membrane potential
fluctuations and discuss the implications for the given neuronal model.

(iii) We analyze the effect of inhibition on information-metabolic efficiency and more
intuitive indicators of information transmission efficiency. We find that for a given
mean post-synaptic firing rate, counter-intuitively, increased ratio of inhibition to
excitation generally leads to higher signal to noise ratio (SNR). On the other hand,
the inhibitory input significantly reduces the dynamic coding range of the neuron.

(iv) We present the predicted PSFR histograms and discuss the comparability with
experimental data. In combination with the relative simplicity of fitting the
parameters of the MAT model to real neurons, the presented framework allows us
to predict the PSFR histograms for a wide variety of neurons. Furthermore, we
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observe that the shapes of the histograms depend only marginally the rate coding
time scale.

(v) We show the predicted optimal input distributions and point out to the
robustness of metabolic efficiency and the PSFR histogram towards changes in the
input distribution.

(vi) We explain the effect of model parameters on the obtained results and the
significance of the spontaneous firing rate. We use parameter values fitted by
Kobayashi et. al. [40] on experimental data for further biological relevance and to
provide insight into what influences the information-metabolic efficiency on a
large scale.

Materials and Methods

Neuronal model

The membrane potential of the MAT model is governed by the equation:

τm
dV

dt
= −(V − EL) +RIsyn, (1)

where τm is the membrane time constant, V is the membrane potential, EL = −80mV
the leakage potential, Isyn is the synaptic current. Spikes are fired when the membrane
potential reaches (or is above) the value of a dynamic threshold θ(t). The dynamics of θ
is described by

θ(t) =
∑︂

k

D(t− tk) + ω, (2)

D(t) =
L
∑︂

j=1

H(t)αj exp(−t/τj) (3)

where k iterates through all the previous spikes, tk is the k-th spike’s time and H is
the Heaviside function. Therefore the threshold is composed of L exponentially
decaying components and an asymptotic threshold value ω. The j-th component
increases by αj every time a spike occurs and then decays with the time constant τj .
Absolute refractory period of 2ms is introduced, during which the dynamics of the
membrane potential and the threshold remain unchanged, but a spike cannot be fired.
The parameters used to replicate the behavior of neurons from different classes (regular
spiking - RS, intrisic bursting - IB, fast spiking - FS, chattering - CH) were identified by
Kobayashi et al. [40]. All relevant model parameters are specified in S1 Appendix.

The synaptic current is given by

Isyn(t) = gexc(t)(V − Eexc) + ginh(t)(V − Einh), (4)

where gexc, ginh are the total conductances of the excitatory and inhibitory synapses
and Eexc = 0mV, Einh = −75mV are the respective synaptic reversal potentials. We
consider the excitatory and inhibitory conductances to be

gexc(t) =
∑︂

tj<t

ḡexcH(tj − t) exp ((tj − t) /τexc) , (5)

ginh(t) =
∑︂

tk<t

ḡinhH(tk − t) exp ((tk − t) /τinh) , (6)
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where the times {tj}, {tk} are generated by independent Poisson point processes with
intensities λexc, λinh (to mimic the arrival of excitatory and inhibitory synapses), ḡexc
and ḡinh correspond to peak conducatances of individual synapses and τexc, τinh are
time constants of those synapses, which were chosen as 3ms for the excitatory and
10ms for the inhibitory synapses [49]. We denote the excitatory part λexc as the
stimulus intensity [34].

To recreate biologically plausible conditions, we calculate the peak conductances and

minimal intensities of Poisson processes λ
(bcg)
exc , λ

(bcg)
inh (where ”bcg” stands for the

background network activity ), so that the mean and standard deviation of gexc and ginh
correspond to values reported in [49], which were obtained from a detailed biophysical
simulation. The values of the peak conductances are ḡexc = 1.50 nS and ḡinh = 1.53 nS
and the rates of arrival of action potentials corresponding to the background activity

are λ
(bcg)
exc = 2.67 kHz, λ

(bcg)
inh = 3.73 kHz (S3 Appendix).

The response of the neuron y is the number of observed spikes in a time window ∆,
the corresponding firing rate is then y/∆. Since the differential equation describing the
membrane potential (Eq (1)) is stochastic due to the randomness introduced by the
input current, the response is described by a random variable Y for each input λexc. In
our work we compare the results for five different lengths of coding time windows:
100ms, 200ms, 300ms, 400ms and 500ms.

The numerical integration procedure is described in S2 Appendix.

Metabolic cost of neuronal activity

The metabolic cost of neuronal activity is determined mainly by the activity of the
Na+/K+ ionic pump in the neuronal membrane, pumping the excess Na+ out of the
neuron. The main contributors to the overall cost are then: 1. reversal of Na+ entry at
resting potential, 2. reversal of ion fluxes through post-synaptic receptors, 3. reversal of
Na+ entry for action potentials and 4. additional costs associated with the action
potential [12, 50, 51].

We follow the estimates from [11], i.e., we set the cost of maintaining the resting
potential at wrest = 0.342 · 109 ATP molecules per second, the cost of reversal of Na+

entry for action potentials at 0.384 · 109 ATP molecules per single action potential and
the costs associated with vesicle release due to action potential at 0.328 · 109 ATP
molecules, adding up to wspike ≈ 0.71 · 109 ATPs/spike

To calculate the cost needed to reverse the ion fluxes through post-synaptic receptors,
we follow the approach used in [13]. We calculated the conductance of Na+ channels:

gNa =
gexc

1− ENa

EK

, (7)

where ENa = 90mV, EK = −105mV are the reversal potentials of Na+ and K+

channels. The current due to influx of Na+ ions is then

INa(t) = gNa(t)(V (t)− ENa). (8)

Integrating the current over ∆ and dividing by the charge of an electron e gives us the
total number of Na+ that have to be extruded. The ion pump uses one ATP molecule
for 3 Na+ extruded.

Substituting gNa(t) and V (t) by their mean values (ḡNa(t), V̄ (t)) for excitation and
inhibition intensities λexc, λinh, we obtain the approximate formula for the cost of
reversal of the synaptic currents:

wsyn(λexc, λinh) =
1

3e
ḡNa(λexc, λinh)(V̄ (λexc, λinh)− ENa)∆. (9)
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The total cost of the signaling, given the input (λexc, λinh), is then:

w(λexc, λinh) = (wrest + wsyn)∆ + wspiken(λexc, λinh), (10)

where n(λexc, λinh) is the average number of spikes observed for the given input.

Information capacity and capacity-cost function

In the framework of information theory, the input is a random variable X with
probability density function p(x). In our case, x is the stimulus intensity, λexc, which is
a real number from an interval [a, b]. We can than define the corresponding marginal
output probability distribution qp:

qp(y) =

∫︂ b

a

p(x)f(y|x) dx. (11)

The conditional probability distribution f(y|x) describing the probability of observing
an output y given an input (stimulus) x has to be obtained first [22]. Due to the
non-linear character of Eqs (1-6) the closed-form solution for f(y|x) is not available,
therefore we used extensive Monte Carlo simulation to obtain the numerical
approximation. The amount of information about the stimulus X = x from observing
the response Y = y is defined as [22, p. 16]

i(x; y) = log2
f(y|x)
qp(y)

. (12)

By averaging the value of information over all possible outputs, we get the specific
information (since Y is discrete) [52–54]

i(x;Y ) =

+∞
∑︂

y=0

i(x; y)qp(y). (13)

By averaging the specific information over all possible inputs, we get the mutual
information

I(X;Y ) =

∫︂ b

a

i(x;Y )p(x) dx. (14)

The information capacity expresses the maximal amount of information that can be
reliably transmitted per single channel use and is defined as

C = sup
p(x)

I(X;Y ), (15)

where the supremum is taken over all possible input probability distributions. Since the
duration of one channel use is ∆, C

∆ is the capacity in bits per second.
Given the input probability distribution p(x) the average metabolic cost Wp is then

Wp =

∫︂ b

a

p(x)w(x) dx, (16)

where w(x) is given by Eq (10) We maximize mutual information over all possible input
probability distributions p that satisfy the condition Wp < W for some selected W , and
thus obtain the capacity-cost function [29]:

C(W ) = sup
p(x):Wp<W

I(X;Y ). (17)
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It follows from the Lagrangian theorem [55,56], that C(W ) is attained either at the
cost corresponding to the unrestrained capacity Wmax for W > Wmax or at W . The

quantity C(W )
W for W ≤ Wmax then expresses the amount of information per unit cost,

which motivates the definition of information-metabolic efficiency E [28, 35, 57], i.e. the
maximal amount of information per unit cost

E =
C(W ∗)

W ∗
, (18)

W ∗ = argmax
W∈[0,+∞)

C(W )

W
. (19)

where W ∗ is the optimal average cost.

We will refer to a regime in which the neuron encodes the maximal possible amount
of information per energy as to an information-metabolically efficient regime. In such
regime, the inputs x are assigned probabilities p∗(x) and the probability of observing an
output Y = y is

P (Y = y) =

∫︂ b

a

p∗(x)f(y|x). (20)

Since the response y is the number of spikes in a time window ∆, we can use Eq (20)
to calculte the mean PSFR:

PSFR =
1

∆
y (21)

⟨PSFR⟩ = 1

∆

+∞
∑︂

y=0

yP (Y = y). (22)

Properties of information-theoretic optima and numerical

optimization

Theoretical results show that the support of the optimal input distribution p∗(x) for
certain channels (neuron with gamma distributed inter-spike interval [21], energy
constrained Gaussian channel [56], Rayleigh-fading channel [58]) contains only a finite
number of points. Moreover, as a consequence of Dubin’s theorem [48], it is guaranteed
that for any channel with a finite number of possible output states the optimal input
distribution has to be discrete. The number of support points is at most equal to the
number of possible outputs. Since the number of action potentials in a finite time
window is limited, it generally follows that the optimal input distribution in the
rate-coding scheme must contain only finitely many stimulus values of non-zero
probability.

The theory presented above holds for memoryless information channels without
feedback, i.e., the response to the stimulus depends only on the current stimulus and
not on any past stimuli or responses of the channel. However, real neurons exhibit
adaptation to the stimulus, therefore the stimulus-response relationship f(y|x) is also
affected by the probability distribution of stimuli p(x). In order to mitigate the effect of
history, we developed a fixed-point based method to ensure that the distribution of
stimuli p(x) used to obtain f(y|x) is the same as the predicted optimal distribution (S5
Appendix).
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Fig 2. Stimulus-response relationships Stimulus-response relationships for the MAT neurons
specified by the parameters in Table A in S1 Appendix. Each row corresponds to a different inhibition
regime. The ratio of inhibitory to excitatory conductance as a function of stimulus intensity is displayed in
the leftmost column. The time window ∆ was in this case chosen as 500ms. The x-axis is logarithm of the
rate of bombardment by excitatory synapses (Eq 23). The y-axis shows the post-synaptic firing rate (Eq
21). The rate of inhibitory synapses is specified by B (Eq 24). This Figure is also available with equally
scaled y-axes for all neurons and regimes (S1 Figure).

Results

The capacity-cost functions

We evaluated the information transmission capabilities for different stimulation
scenarios distinguished by the amount of inhibition associated with the stimulus. In

each scenario, the frequency of excitatory synapses ranged from λ
(bcg)
exc to approximately

40 · λ(bcg)
exc , therefore the intensity of the stimulus can be represented by A ∈ [1, 40]:

λexc = A · λ(bcg)
exc . (23)

The frequency of inhibitory synapses added on top of λ
(bcg)
inh generally scales linearly

with the intensity added on top of λ
(bcg)
exc , i.e. with A− 1. The frequency of inhibitory

synapses can be than expressed with an inhibition scaling factor B as

λinh = λ
(bcg)
inh (1 +B(A− 1)) . (24)

From the stimulus-response relationships (Fig 2) it is obvious that the fast spiking
(FS) and chattering (CH) neurons have an advantage of a wide range of possible
outputs. Also the excitation-only stimulation scenario (B = 0) allows for higher firing
rates (i.e., offers wider coding range). However, when the metabolic expenses are taken
into account the range of possible outputs becomes less important (because of the high
associated expenses). This can be seen in Fig 3 where the capacity cost function for four
different parameter sets of the MAT model (Table A in S1 Appendix) is shown and it is
illustrated how the capacity cost function translates to bits per spike. The RS neuron is
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Fig 3. Capacity-cost function Capacity-cost function (panel A) and capacity per
spike (panel B) for the case of coding time window ∆ = 100ms and inhibition scaling
factor B = 0.4. The dashed vertical line indicates the cost at which the optimal
capacity per spike for the RS neuron is reached.

generally the most efficient independently either of the inhibition scaling factor B or the
coding time window. Moreover, since at any allowed cost either the RS of the FS
neuron offer the highest amount of transmitted information, we conclude that the
bursting behavior is not beneficial for rate coding. This was also observed
experimentally for temporal code [59].

Inhibition stabilizes the membrane potential

We observed that higher inhibition to excitation ratios leads to lower membrane
potential fluctuations. This arises as an effect of synaptic filtering and reversal
potentials, which are both biologically important parts of neural communication and
essential for observation of this phenomenon (see S4 Appendix for details). In [60],
similar effect was reported for a membrane potential model without synaptic filtering,
however, only for a strongly hyperpolarized membrane. The suppression of membrane
potential fluctuations has also been observed in vivo [61].

The decrease in the membrane potential’s standard deviation leads to a more
reliable firing rate (response) and subsequently higher signat-to-noise ratio (SNR) in
regimes with stronger inhibition (Fig 4). For given time window ∆ and inhibition
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Fig 4. The effect of inhibition on metabolically efficient information transfer. (A)
Signal-to-noise ratio (SNR, Eq (25)) of the RS neuron’s response as a function of the mean
post-synaptic firing rate r(x) (Eq 26). Higher inhibition leads to a higher SNR, however, also to a
lower coding range. The coding range for B = 0.2 is visualized in the plot. (B) The SNR at 10Hz
at different inhibition levels for all four neurons. The effect of the decreased membrane potential
fluctuations on the FS and CH neurons is negligible, as opposed to the RS and IB neurons. (C)
Decrease of the coding range with inhibition. (D) The metabolic efficiency in bits per spike (Eq
(18)). The initial increase in the efficiency is almost negligible, however, the drop for B = 1 caused
by the narrow coding range is apparent. The time window used for this figure is ∆ = 500ms.

scaling factor B, SNR is defined as

SNR(x; ∆, B) =

(︃

r(x; ∆, B)

s(x; ∆, B)

)︃2

, (25)

where r(x; ∆, B) is the mean response to the stimulus x, given the time window ∆ and
the inhibition scaling factor B, s(x; ∆, B) is the standard deviation of the response:

r(x) =
1

∆

+∞
∑︂

y=0

yf(y|x), (26)

s(x) =
1

∆

⌜

⃓

⃓

⎷

+∞
∑︂

y=0

y2f(y|x)− r(x)2. (27)

The effect of inhibition on metabolic efficiency

The higher ratio of inhibition to excitation also has some negative consequences:
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Fig 5. Metabolic cost of neural activity (A) Cost of response for a given input
x = λexc, RS neuron (Tab A in S1 Appendix), ∆ = 100ms, B = 0.4. (B) Cost of
maintaining a firing rate of 12Hz for 100ms for different values of inhibition to
excitation ratio.

1. The inhibition limits the possible depolarization of the membrane and the neuron
is unable to attain high firing rates. We quantify this by defining the coding
range:

CR(∆, B) = max
x1,x2

(r(x2; ∆, B)− r(x1; ∆, B)) . (28)

We observe that the coding range is generally decreased with increased amount of
inhibition (Fig 2, Fig 4A).

2. To attain identical mean firing rate with higher excitation to inhibition ratio, the
excitatory synaptic current has to be larger and therefore such stimulation is
associated with higher metabolic costs (Fig 5).

Surprisingly, the information theoretical efficiency is generally unaffected by the level
of inhibition, meaning that the increase in signal to noise ratio and decrease of coding
range effectively even out. This holds up to a certain point, when the coding range
becomes too narrow and the efficiency of information transfer starts dropping
dramatically (Fig 4D).

The optimal PSFR histograms

By evaluating the information-metabolic efficiency we also obtain the optimal
input-output statistics. The resulting optimal post-synaptic firing rate (PSFR)
histograms (Eq (11)) provide a potentially testable prediction (Fig 6). Our predictions
need to be tested against long in-vivo recordings, such as in [33,62,63]. Qualitatively,
our predictions agree with the observations in [33], that the probabilities of large firing
rates are suppressed, moreover, the tail is approximately exponential with respect to the
metabolic cost (Eq 10), as observed by Polavieja [30, 31]. Polavieja assumes that the
overall cost grows linearly with the output rate. For the case of metabolic cost
considered in this paper, the nonlinearity is important mostly for high firing rates.

Optimal input distributions

As we showed in the Methods section, the optimal input distribution has non-zero
probability only for a finite number of points. However, the optimal conditions can be
nearly reached by many different input distributions (Fig 7). Generally, we see a trend
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Fig 6. Predicted PSFR histograms. Post-synaptic firing rate histograms corresponding to the
metabolically efficient regime with the coding time window ∆ = 500ms and inhibition scaling
factor B = 0.4 for the four different neurons. Unlike the statistics of the input, the output statistics
can be measured in vivo and can therefore be used to verify whether a neuron employs
metabolically efficient coding. A typical spike train in the efficient regime is shown for each neuron.

towards more pronounced discreteness if we desire to be closer to the true optimum.
However, the increases in efficiency and effect on the PSFR distribution are only
marginal. Therefore, unlike in the case of PSFR distribution which is robust, the
optimal input distribution is difficult to relate to real data.

Yet we can observe that in the metabolically efficient regime, significant portion of
the probability is given to the weakest input, i.e., purely spontaneous activity. For a
population of independently encoding neurons this would mean that at any moment,
most of them would be exhibiting only spontaneous activity.

Rate coding time-scale

Naturally, longer time windows will lead to a higher signal to noise ratio (Eq (25)) - we
will be better able to identify a stimulus if we ”listen” longer (Fig 8A). For a truly
memoryless channel, however, the use of a shorter time window must always result in
higher information capacity (measured in bits per second). Mutual information from
two subsequent uses of a memoryless channel (with inputs x = {x1, x2} and outputs
y = {y1, y2}) is always lower or equal than double of the mutual information resulting
from a single use [64]:

I(x;y) = 2I(x1; y1)− I(y1; y2), (29)

I(y1; y2) being maximal for extreme correlation between the inputs, i.e. x1 = x2.
Moreover, I({x1, x2}; y1 + y2) < I({x1, x1}; {y1, y2}), since we are losing information
about the temporal structure of the response. Therefore, given any probability
distribution of the inputs, the mutual information for channel with a half-sized coding
time window will always be higher (in bits per second):

I({x1, x1}; y1 + y2) < I({x1, x1}; {y1, y2}) < 2I(x1; y1). (30)

In our case, the neurons are not truly memoryless channels. They exhibit
adaptation, which we took into consideration in the optimization process by using an
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Fig 7. Approximately optimal input probability distributions The plots show
different input probability distributions obtained from different steps of the
Jimbo-Kunisawa algorithm. For each input distribution the estimated efficiency E (in
bits / 109 ATP) is given in the plot together with the relative error eps (to the true
value of the efficiency). The true value of the efficiency (Eq (18)) can be nearly reached
with very different input probability distributions.

algorithm we developed specifically for this purpose (S5 Appendix). Due to adaptation,
the number of spikes is influenced by the previous stimulus, thus additional noise to the
stimulus-response relationship is introduced. We illustrate this by comparing the PSFR
histogram for a given stimulus intensity and a coding time window ∆ = 500ms with the
PSFR histogram for a coding time window ∆ = 100ms, five times convoluted with
itself, corresponding to and equal mean PSFR (Fig 8B). For a memoryless channel, the
distributions would be identical. However, the distribution obtained by using a shorter
time window is more spread.

We observe that while the length of time window doesn’t significantly influence the
mean PSFR, the information capacity with the optimal mean PSFR drops and so does
the associated efficiency in bits per spike (Fig 8C-E). Therefore we can conclude the
adaptation effects aren’t significant enough to make coding on longer time scales more
beneficial. Interestingly, however, not only the mean PSFR do not seem to be much
affected by the length of the coding time window (Fig 8C), but also the shape of the
PSFR histogram (computed from the optimal input distribution by Eq (11)) seems to
be rather unaffected by the length of the coding time window (Fig 8F-I).

The effect of model parameters and spontaneous firing rate

In order to provide a meaningful comparison of different firing patterns, we have so far
considered such parameters of the MAT model that lead to an approximately equal
spontaneous firing rate (by spontaneous firing rate we mean the average response to the
background noise, specified in S3 Appendix). However, it is known that neurons across
different layers of the cortex exhibit different spontaneous firing rates (e.g., [65–67]).

To calculate the spontaneous activity we take advantage of the approximate formula
describing the stationary firing rate f of MAT model if stimulated with a constant
current I [68]:

f
.
=

1

τ2 log
(︂

α2

IR−ω + 1
)︂ . (31)

In order to gain a general insight into the dependence of the predictions on the
model parameters, we calculated the predicted mean PSFR (Eq (22)) and efficiency (Eq
(18)) for 34 parameter sets corresponding to 34 neurons from the layers 2/3 and 5 of the
rat motor cortex (used in [40]), kindly provided by Prof. Kobayashi. As expected, both
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Fig 8. The effect of coding time window on metabolically efficient information transmission.

(A) Signal to noise ratio for different coding time windows as a function of the mean response r(x) (Eq 26). (B)
Comparison of response to a given stimulus (producing a response rate of approx 20Hz) for different coding
time windows. In order to get comparable results, the distribution on number of spikes in 100ms was five times
convoluted with itself. The distribution for 100ms is more spread due to the adaptation effects. (C) Optimal
mean PSFR (Eq 22). (D) Information capacity with the optimal metabolic expenses. (E) Metabolic efficiency
in bits per spikes. The decrease with the length of the coding time window shows us, that the adaptation
effects visible in B don’t play a significant role in this case. (F-I): Quantile-quantile plots comparing the PSFR
distributions for different coding time windows. The red dashed line is a linear fit, acting as a visual guide. In
the case of metabolically-efficient coding invariant on time scale, the q-q plots shouldn’t deviate significantly
from the line. This holds for the RS and FS neurons, for the most part also for the IB neuron. For all plots in
the figure the inhibition scaling factor B = 0.4 was used.

efficiency and the optimal mean PSFR are strongly related to the spontaneous firing
rate (Fig 9).

We confirmed that Eq (31) can be utilized to predict the spontaneous firing rate (see
S6 Appendix for details) and therefore we conclude that the spontaneous firing rate and
consequently also the information-metabolic efficiency are governed predominantly by
α2 and ω. Moreover, increase in any of the two parameters leads to an increase in the
spontaneous firing rate and therefore increase in the mean optimal PSFR and decrease
in the information-metabolic efficiency.

Discussion

The information capacity tells us what is the maximal amount of information a neuron
could potentially reliably transfer. It is, however, beyond the scope of this work to
investigate whether neurons utilize their full capacity and if so, how [34,69]. The
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Fig 9. Cortical neurons The x-axis in both graphs is the spontaneous firing rate of
the 34 neuronal models corresponding to the cortical neurons, i.e., their response to the
simulated background noise. The information-metabolic efficiency (Eq (18)) and
optimal mean PSFR (Eq (22)) was calculated for the case of constant inhibition (B = 0,
∆ = 100ms).

efficient coding hypothesis [2] leads us to believe that neurons are in some sense optimal.
They need to transfer information fast and reliably and minimize the metabolic costs at
the same time. This paper uses the value of information capacity per spike to take into
account both information transmission and metabolic costs. Maximization of the
information capacity per metabolic expenses leads to suppression of high post-synaptic
firing rates observed in in-vivo recordings [33].

Analyses of this type generally have to rely on number of assumptions, including the
nature of the input and the coding time scale. To mimic the nature of real neuronal
synapses, we consider excitatory and inhibitory input with reversal potentials. The
typical approach is to model the excitatory and inhibitory conductances as an
Ornstein-Uhlenbeck process [34, 40,49,70], however, it has been shown that for
consistency reasons, modeling the input as a shot noise with an exponential envelope is
more appropriate [71]. We recreate the effect of the background network activity, during
which the excitatory and inhibitory synaptic currents seem to be approximately
balanced [72–77]. We then systematically explore several different input regimes
differing in the amount of inhibition accompanying excitation during stimulation. This
allows us to compare the different regimes by their information-energetic efficiency.
Such systematic exploration also allows us to make less assumptions about the actual
nature of the neuronal input and the results can also provide insight into what kind of
dependency between excitation and inhibition is optimal.

The MAT model is remotely related to the model analyzed by Suksompong et.
al. [36], where the threshold function can be generalized to behave similarly to MAT
model. However, the key differences are in the assumptions on encoding (in [36] the
information is assumed to be encoded in a sequence of inter-spike intervals, whereas we
consider the rate coding) and in the input.

If the investigated neuronal model exhibits adaptation to the stimulus (as e.g. the
MAT model does), the coding time scale is typically significantly limited from below, so
that the influence of previous stimuli on the current response is negligible. We try to
overcome this issue by proposing an algorithm which partially takes into account the
effect of the previous stimulus. This is an important part of the optimization process,
because otherwise we could overestimate the benefits of inhibition on the
information-metabolic efficiency (Fig A in S5 Appendix).

The comparison of different noise levels was inspired by the work [70], where it was
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suggested that balanced excitatory and inhibitory currents lead to more efficient
information transfer. Our results can’t be compared straightforwardly with [70] for
several reasons. In our work, the state with balanced excitatory and inhibitory currents
was considered to be the base state and we were investigating different regimes of
stimulation of such neuron, whereas the work of Sengupta et. al. [70] focuses on the
benefits of the balanced state. Moreover, in [70] the direct method [17] was used for
evaluating information, which measures the entropy of spike trains without any
reference to the stimuli, whereas we were investigating the information-transmission
properties with the assumption that the neurons use rate code and computed the
information capacity [10, 22] to evaluate the limits of information transmission. We
observed a positive effect of higher inhibition, however, in the investigated stimulation
scenarios the overall information efficiencies in bits per spike were largely unaffected by
the inhibitory presynaptic activity. Robustness of the information-metabolically optimal
properties with respect to the change of amount of inhibition in the system has also
been recently reported by Harris et al. [78].

Numerically, our results are consistent with, e.g., [34], with the information efficiency
being in the order of 0.1 bits per 109 ATP molecules expended. Despite the differences
in spiking patterns among the neuronal classes (RS, IB, FS, CH), as quantified by local
variability [79], we find that the information metabolic efficiency of the rate code is
mainly governed by neuronal spontaneous activity.

We considered both the excitatory and inhibitory rates (added on top of the
modulatory background network activity) to scale linearly with the stimulus intensity,
since this is the simplest scenario that can be considered. For most of the stimulation
scenarios, we did not observe a significant change in the information-metabolic
efficiency, however, if the inhibitory rates scaled slower than linearly, we could achieve
both high signal to noise ratio and a wide coding range. Such regime is likely to employ
very high rates of synaptic bombardment, therefore in such case one should also
consider the cost of the pre-synaptic activity.

Our results deal with a single neuron, in accord with most of the previously
published work [25]. Nevertheless, Eqs (15) or (17) are easily extendable to the case of a
simple homogeneous population [80]. One may also investigate the multidimensional
stimulus-response relationship in a group of coupled neurons, however, the
corresponding optimization is performed over joint probability distributions which
becomes quickly untractable as the population size grows. It is also worth noting that
the problem of optimal information transmission through nodes in general networks is
still open and Eq (15) might not be directly useful [81].

To summarize the results of our work as follows:

• By employing a novel method for calculating the information transmission
capabilities of channels displaying adaptation to the stimulus (S5 Appendix) we
calculated numerically the information transmission capabilities of the MAT
model [40] for biologically relevant parameters under metabolic constraints on
different time scales and with different levels of inhibition.

• We used the results of Richardson [71] to show that inhibition can stabilize the
membrane potential, leading to a more reliable response of the MAT model. To
the best of our knowledge, this counter-intuitive effect of inhibition, for which we
provide a theoretical justification, has not yet been reported.

• We found that the regular spiking (RS) neuron offers best information
transmission per single spike, but when more energy is available, more information
can be transmitted by the behavior common to fast spiking (FS) neurons.
Neurons exhibiting the bursting behavior (IB, CH) were shown not to be very
effective for rate coding in the investigated regimes.
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• Due to adaptation effects shorter rate coding time windows led to lower signal to
noise ratios. Despite the increase in noise, information can be transferred more
efficiently with shorter time windows. However, we observed that the length of
the time window does not significantly affect the shape of the PSFR histograms,
which have the potential to be compared to experimental data.

• We found that the metabolic efficiency is surprisingly robust towards the changes
in the amount of inhibition accompanying the excitation. Moreover, we observed
that increased inhibition leads to higher signal to noise ratio, but also to a drop in
the coding range. This does not affect the metabolic efficiency significantly until a
certain point, when the coding range is so narrow that information cannot be
transferred efficiently by rate code.

• We pointed out that the optimal input for a neuron using rate code has non-zero
probability only for a finite number of inputs. However, by showing different input
distribution, which nearly achieve the information-metabolic efficiency, we
illustrated that the discreteness of the input is not a necessary condition for an
effective communication.

The core of the simulation code was written in C++ and packaged as a Python
module using Cython. This module is available on GitHub
(https://github.com/Tom83B/matsim). The analysis of the data was done in Python
using the NumPy and SciPy libraries. All necessary code was also uploaded to a
GitHub repository (https://github.com/Tom83B/rate-code-eff-2019).
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42. Jolivet R, Schürmann F, Berger TK, Naud R, Gerstner W, Roth A. The
quantitative single-neuron modeling competition. Biol Cybern.
2008;99(4-5):417–426. doi:10.1007/s00422-008-0261-x.

19/31



43. Gerstner W, Naud R. How Good Are Neuron Models? Science.
2009;326(5951):379–380. doi:10.1126/science.1181936.

44. Jahangiri AF, Gerling GJ. A multi-timescale adaptive threshold model for the
SAI tactile afferent to predict response to mechanical vibration. Int IEEE EMBS
Conf Neural Eng. 2011; p. 152–155.

45. Kobayashi R, Kitano K. Impact of slow K+ currents on spike generation can be
described by an adaptive threshold model. J Comput Neurosci.
2016;40(3):347–362. doi:10.1007/s10827-016-0601-0.

46. Gerstner W, Kistler WM, Naud R. Neuronal Dynamics. Cambridge University
Press; 2019. Available from:
https://www.ebook.de/de/product/22190732/wulfram_gerstner_werner_

m_kistler_richard_naud_neuronal_dynamics.html.

47. Levakova M, Kostal L, Monsempès C, Lucas P, Kobayashi R. Adaptive
integrate-and-fire model reproduces the dynamics of olfactory receptor neuron
responses in a moth. J R Soc Interface. 2019;16(157):20190246.
doi:10.1098/rsif.2019.0246.

48. Witsenhausen H. Some aspects of convexity useful in information theory. IEEE
Trans Inf Theory. 1980;26(3):265–271. doi:10.1109/TIT.1980.1056173.

49. Destexhe A, Rudolph M, Fellous JM, Sejnowski TJ. Fluctuating synaptic
conductances recreate in vivo-like activity in neocortical neurons. Neuroscience.
2001;107:13–24.

50. Sengupta B, Stemmler M, Laughlin SB, Niven JE. Action Potential Energy
Efficiency Varies Among Neuron Types in Vertebrates and Invertebrates. PLoS
Comput Biol. 2010;6(7):e1000840. doi:10.1371/journal.pcbi.1000840.

51. Harris JJ, Attwell D. The Energetics of CNS White Matter. J Neurosci.
2012;32(1):356–371. doi:10.1523/jneurosci.3430-11.2012.

52. Butts DA, Goldman MS. Tuning Curves, Neuronal Variability, and Sensory
Coding. PLoS Biol. 2006;4(4):e92.

53. Bezzi M. Quantifying the information transmitted in a single stimulus.
Biosystems. 2007;89:4–9.

54. Kostal L, D’Onofrio G. Coordinate invariance as a fundamental constraint on the
form of stimulus-specific information measures. Biol Cybern. 2018;112(1–2):13–23.

55. Luenberger DG. Optimization by Vector Space Methods. 1st ed. New York, NY,
USA: John Wiley & Sons, Inc.; 1997.

56. Smith JG. The Information Capacity of Amplitude- and Variance-Constrained
Scalar Gaussian Channels. Information and Control. 1971;18(3):203–219.

57. Verdu S. On channel capacity per unit cost. IEEE Trans Inf Theory.
1990;36(5):1019–1030. doi:10.1109/18.57201.

58. Abou-Faycal IC, Trott MD, Shamai S. The capacity of discrete-time memoryless
Rayleigh-fading channels. IEEE Trans Inf Theory. 2001;47(4):1290–1301.
doi:10.1109/18.923716.

59. Reinagel P, Reid RC. Temporal Coding of Visual Information in the Thalamus. J
Neurosci. 2000;20(14):5392–5400. doi:10.1523/jneurosci.20-14-05392.2000.

20/31



60. Richardson MJE. Effects of synaptic conductance on the voltage distribution and
firing rate of spiking neurons. Phys Rev E. 2004;69(5).
doi:10.1103/physreve.69.051918.

61. Monier C, Chavane F, Baudot P, Graham LJ, Frégnac Y. Orientation and
Direction Selectivity of Synaptic Inputs in Visual Cortical Neurons. Neuron.
2003;37(4):663–680. doi:10.1016/s0896-6273(03)00064-3.

62. Isomura Y, Harukuni R, Takekawa T, Aizawa H, Fukai T. Microcircuitry
coordination of cortical motor information in self-initiation of voluntary
movements. Nat Neurosci. 2009;12(12):1586–1593. doi:10.1038/nn.2431.

63. Tsubo Y, Isomura Y, Fukai T. Power-Law Inter-Spike Interval Distributions Infer
a Conditional Maximization of Entropy in Cortical Neurons. PLoS Comput Biol.
2012;8(4):e1002461. doi:10.1371/journal.pcbi.1002461.

64. Kostal L. Information capacity in the weak-signal approximation. Phys Rev E.
2010;82(2). doi:10.1103/physreve.82.026115.

65. Shafi M, Zhou Y, Quintana J, Chow C, Fuster J, Bodner M. Variability in
neuronal activity in primate cortex during working memory tasks. Neuroscience.
2007;146(3):1082–1108. doi:10.1016/j.neuroscience.2006.12.072.

66. O’Connor DH, Peron SP, Huber D, Svoboda K. Neural Activity in Barrel Cortex
Underlying Vibrissa-Based Object Localization in Mice. Neuron.
2010;67(6):1048–1061. doi:10.1016/j.neuron.2010.08.026.
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S1 Figure. Stimulus-response relationships with identical scales. Same as
Fig 2, but the scales are same for all the neurons and inhibition scaling factors B. Each
row corresponds to a different inhibition regime. The ratio of inhibitory to excitatory
conductance as a function of stimulus intensity is displayed in the leftmost column. The
time window ∆ was in this case chosen as 500ms. The x-axis is logarithm of the rate of
bombardment by excitatory synapses (Eq 23). The y-axis shows the post-synaptic firing
rate (Eq 21).
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S1 Fig. – Stimulus-response relationships with identical scales. Same as Fig 2, but the scales are
same for all the neurons and inhibition scaling factors B. Each row corresponds to a different inhibition
regime. The ratio of inhibitory to excitatory conductance as a function of stimulus intensity is displayed
in the leftmost column. The time window ∆ was in this case chosen as 500ms. The x-axis is logarithm
of the rate of bombardment by excitatory synapses (Eq 23). The y-axis shows the post-synaptic firing
rate (Eq 21).
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Table S1.1: Parameters of studied neurons
α1 α2 ω

Regular spiking (RS) 30mV 2.0mV −65mV
Intrinsive bursting (IB) 7.5mV 1.5mV −64.3mV
Fast spiking (FS) 10mV 0.2mV −62.4mV
Chattering (CH) −0.5mV 0.4mV −61.8mV

S1 Appendix

Parameters of the MAT model.

Kobayashi et al. (2009) identified sets of parameters of the MAT model that
correspond to real cortical neurons belonging to different classes, based on their
spiking pattern (FS, IB, RS) or are capable of reproducing the same general
behavior (CH). The following parameters were common for all four neurons:
τm = 5ms, R = 50MΩ and τ1 = 10ms, τ2 = 200ms, L = 2. We used the values
of α1 and α2 as suggested in Kobayashi et al. (2009) and chose the value of ω
so that the mean firing rate in the presence of spontaneous background activity

(i.e. λexc = λ
(bcg)
exc , λinh = λ

(bcg)
inh ) was approximately 8Hz in the steady state.

This is roughly in accordance with spontaneous firing rates observed in awake
animals (e.g., Steriade et al. (2001); O’Connor et al. (2010)). The exact value
of spontaneous firing rate is not crucial, since it does not affect the qualitative
character of the results. The used values of the free parameters α1, α2 and ω
are given in Table S1.1.
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S2 Appendix.

Numerical simulation of the leaky integrator.

Eq (1) may be rewritten as:

dV

dt
= − 1

τ(ge, gi)

(︂

V − V̂ (ge, gi)
)︂

, (S2.1)

where

τ(ge, gi) =
τm

1 +R(ge + gi)
, (S2.2)

V̂ =
EL +R(geEe + giEi)

1 +R(ge + gi)
. (S2.3)

Considering the conductances to be constant during the integration time step
∆t = 0.1ms, we can integrate the equation as follows:

Vn+1 = V̂ + (Vn − V̂ ) exp(−∆t/τ). (S2.4)

1



S3 Appendix.

Spontaneous activity.

In (Destexhe et al., 2003) the values of average and standard deviation of the
conductances during spontaneous background activity were reported as 0.012
and 0.0030 µS for gexc and 0.057 and 0.0066 µS for ginh. The goal was to re-
produce these values using shot noise with exponential decay described by Eqs
(5,6).

When the spike arrival times are Poissonian, the following holds (e.g., Rajdl
and Lansky (2015)):

E(gexc(t)) = τexcḡexcλexc, (S3.1)

Var(gexc(t)) =
1

2
τexcλexcḡ

2
exc. (S3.2)

Then it follows, that for fixed τexc and mean and variance given, the intensity
and peak conductance have to be chosen as

ḡexc = 2
Var(gexc(t))

E(gexc(t))
(S3.3)

λexc =
E(gexc(t))

ḡexcτexc
. (S3.4)

Computation of ḡexc and λexc is then identical.
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S4 Appendix.

Variability of the steady-state membrane potential.

Mean and variance of the membrane potential (given by Eq (1)), driven by
Poissonian shot noise conductances, can be approximated as (Richardson and
Gerstner, 2005):

⟨V ⟩ = µV + E0 (S4.1)

⟨V 2⟩ − ⟨V ⟩2 =

(︃

σexc

g0

)︃2

E2
exc

τexc
τexc + τ0

+

(︃

σinh

g0

)︃2

E2
inh

τinh
τinh + τ0

, (S4.2)

where σ2
exc, σ

2
inh are the variances of the shot noise (Eq (S3.2)) and

g0 =
1

R
+ gexc0 + ginh0, (S4.3)

E0 =
1

g0

(︃

1

R
EL + gexc0Eexc + ginh0Einh

)︃

, (S4.4)

Eexc = Eexc − E0, (S4.5)

Einh = Einh − E0, (S4.6)

τ0 =
τm
Rg0

, (S4.7)

µV =

(︃

σexc

g0

)︃2

Eexc
τexc

τexc + τ0
+

(︃

σinh

g0

)︃2

Einh
τinh

τinh + τ0
(S4.8)

gexc0, ginh0 denote the shot noise means (S3 Appendix):

gexc0 = τexcḡexcλexc, (S4.9)

ginh0 = τinhḡinhλinh. (S4.10)

These approximations provide a very good estimate of the mean and stan-
dard deviation of the membrane potential (Fig S4.1). Both in the theoretical
approximations and in the simulated values we see that given the same mean
value of the membrane potential, with higher inhibition to excitation ratio, the
standard deviation of the membrane potential drops. Some insight can be gained
by analyzing the limit case, i.e., λexc and λinh both tending to infinity while the
inhibition scaling factor B is held constant. Then:

⟨V ⟩ → τexcḡexcEexc +BτinhḡinhEinh

τexcḡexc +Bτinhḡinh
, (S4.11)

σV =
√︁

⟨V 2⟩ − ⟨V ⟩2 → 0. (S4.12)

With increasing B, ⟨V ⟩ drops and therefore, hypothetically, we can reach zero
variance of the membrane potential and the lower the desired mean value, the
higher B is needed.

Although we used the Poisson shot noise with an exponential filtering as an
input, the results apply also for the Ohrstein-Uhlenbeck input approximation.
The only difference will be in Eq (S4.1), because for the Ohrstein-Uhlenbeck
approximation ⟨V ⟩ = E0 (Richardson, 2004; Richardson and Gerstner, 2005).
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Figure S4.1: Standard deviation of the membrane potential as a function of
its mean. Color-coded are different inhibition to inhibition scaling factor B.
Dashed lines indicate the theoretical approximations (Eqs (S4.1, S4.2))
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S5 Appendix.

Information capacity of channels exhibiting adaptation.

Classical algorithm for computation of the information capacity C (Eq (15))
of a memoryless channel withou feedback and the optimal input distribution
is the Blahut-Arimoto algorithm (Blahut, 1972). Blahut (1972) also offers an
extension of the algorithm for computation of the constrained capacity C(W )
(Eq (17)), however, the cost restriction is not straightforward and we used the
cutting plane algorithm (Huang and Meyn, 2005; Kelley, 1960) for computation
of the capacity-cost function instead (for condensed summary of the algorithm
in the context of neuroscience see (Kostal and Lansky, 2013, Appendix A)).

For evaluating the capacity-cost functions, is is necessary to evaluate C(W )
for many different values of the cost W . When only the optimal state (maximal
amount of transferred information per unit of cost) is of interest, it is possible to
use the Jimbo-Kunisawa algorithm Jimbo and Kunisawa (1979); Suksompong
and Berger (2010), for which the input distribution converges towards the state
of maximal C(W )/W .

For neurons, it takes some time for the neuron to reach its steady state. A
transition between an intense stimulus to a less intense one is usually followed by
a period of silence when no spike is fired, because the dynamic threshold takes
some time to reach the new level of the membrane potential. On the other
hand, transitions from a less intense stimulus to a more intense one causes an
immediate increase in the firing rate which then slowly decreases until it reaches
its steady state value. Thus the statistics of transitions between stimuli can have
a significant effect on the observed response statistics to individual stimuli.

To mitigate the effect of past stimuli, ideally, we want the stimulus response
relationship to be generated with the same input statistics as the S-R relation-
ship predicts to be the optimum. However, the optimal input statistics depend
on the S-R relationship. We solved the problem in the following manner:

1. For each possible stimulus s, we evaluate the stimulus response relation-
ship Ps(y|x) - i.e. the S-R relationship if the previous stimulus is always
s

2. We select an arbitrary starting input probability assignment p0

3. We compute the n-th S-R relationship as Pn(y|x) =∑︁s∈S pn(s)Ps(y|x)

4. The input probability assignment that is optimal given the S-R relation-
ship (found using e.g. the cutting plane or Jimbo-Kunisawa algorithm) is
then the (n+ 1)-th input probability assignment pn+1.

Steps 3. and 4. are repeated until a self-consistent solution is found.
By comparing the efficiency after the first iteration with the efficiency after 5

iterations for different levels of inhibition (Fig S5.1), we see the necessity of the
described algorithm. Simply calculating the efficiency by the Jimbo-Kunisawa
algorithm (i.e., stopping after the first iteration) could lead us to the incorrect
conclusion that higher levels of inhibition lead to substantially higher efficiency.
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S6 Appendix.

Approximation of spontaneous firing rate.

Yamauchi et al. (2011) provide an approximate formula for the firing rate of
the MAT model stimulated by a constant current I (Eq (31)). In our case, the
neurons are not stimulated by a constant current, but by a shot noise resulting in
a fluctuating membrane potential. However, we found that by substituting IR
with V0

.
= −63mV this formula can be utilized to predict well the spontaneous

firing rate for a large portion of the neurons (Fig S6.1). The value −63mV
roughly represents the usual value of the membrane potential when a spike
is fired during the spontaneous activity. The formula in Eq (31) can provide
predictions only for those parameter sets, for which ω > V0, thus excluding
15 neurons, generally with a negligible spontaneous activity. Moreover, the
approximation does not apply for high firing rates, therefore also 3 FS neurons
were excluded.

Linear fit in the Fig S6.1 provides us with a formula for the spontaneous
firing rate yspont ≈ 100.31f0.72. Although the formula does not give a strict
approximation of the spontaneous firing rate, it clearly explains almost all of the
variance for the neurons with ω > V0, moreover, the dependence is monotonic.
Therefore increase in f will lead to an increase in the spontaneous firing rate
yspont.
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Abstract

Shared input to a population of neurons induces noise correlations, which decreases the
information carried by a population activity. The inhibitory feedback in recurrent
neural networks can reduce the noise correlations and thus increase the information
carried by the averaged population activity. However, the activity of inhibitory neurons
is costly. The inhibitory feedback decreases the gain of the population, and
depolarization of its neurons thus requires stronger excitatory synaptic input, which is
associated with higher ATP molecules consumption. Assuming that the goal of neural
populations is to transmit as much information as possible at minimal metabolic costs,
it is unclear whether the increased information transmission reliability provided by the
inhibitory feedback compensates for the additional costs. We analyze this problem in a
network of leaky integrate-and-fire neurons receiving correlated input. By maximizing
mutual information with metabolic cost constraints, we show that there is an optimal
strength of recurrent connections in the network, which maximizes the value of mutual
information-per-cost. For higher values of input correlation, the mutual
information-per-cost is higher for recurrent networks with inhibitory feedback compared
to feedforward networks without any inhibitory neurons. Our results, therefore, show
that an optimal synaptic strength of a recurrent network can be inferred from
metabolically efficient coding arguments and that the decorrelation of the input by
inhibitory feedback compensates for the associated increased metabolic costs.

Author summary

Information processing in neurons is mediated by electrical activity through ionic
currents. To reach homeostasis, neurons have to actively work to reverse these ionic
currents. This process consumes energy in the form of ATP molecules. Typically the
more energy the neuron can use, the more information it can transmit. It is generally
assumed that due to evolutionary pressures, neurons evolved to process and transmit
information efficiently at high rates but also at low costs. Many studies addressed this
balance between transmitted information and metabolic costs for the activity of single
neurons. However, information is often carried by the activity of a population of
neurons instead of single neurons, and few studies investigated this balance in the
context of recurrent neural networks, which can be found in the cortex. In such
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networks, the external input from thalamocortical synapses introduces pairwise
correlations between the neurons, complicating the information transmission. These
correlations can be reduced by inhibitory feedback through recurrent connections
between inhibitory and excitatory neurons in the network. However, such activity
increases the metabolic cost of the activity of the network. By analyzing the balance
between decorrelation through inhibitory feedback and correlation through shared input
from the thalamus, we find that both the shared input and inhibitory feedback can help
increase the information-metabolic efficiency of the system.

1 Introduction

The efficient coding hypothesis poses that neurons evolved due to evolutionary pressure
to transmit information as efficiently as possible (Barlow, 1961). Moreover, the brain
has only a limited energy budget, and neural activity is costly (Attwell and Laughlin,
2001; Harris et al., 2012). The metabolic expenses associated with the neural activity
should, therefore, be considered, and neural systems likely work in an
information-metabolically efficient manner, balancing the trade-off between transmitted
information and cost of the neural activity (Levy and Baxter, 1996; Balasubramanian
et al., 2001; Laughlin, 2001; Niven and Laughlin, 2008; Yu and Yu, 2017).

The principles of information-metabolically efficient coding have been successfully
applied to study the importance of inhibition-excitation balance in neural systems. It
has been shown that the mutual information between input and output per unit of cost
for a single neuron is higher if the excitatory and inhibitory synaptic currents to the
neuron are approximately equal if the source of noise lies in the stochastic nature of the
voltage-gated Na+and K+channels (Sengupta et al., 2013). In a rate coding scheme,
where the source of noise lies in the random arrival of pre-synaptic action potentials, the
mutual information per unit of cost has been shown to be rather unaffected by an
increase of pre-synaptic inhibition associated with an excitatory input (Barta and
Kostal, 2019).

However, the balance of excitation and inhibition is likely more important in the
context of recurrent neural networks than in the context of single neurons. In recurrent
neural networks, the inhibitory input to neurons associated with the stimulus (Monier
et al., 2003) arises as inhibitory feedback from a population of inhibitory neurons. The
inhibitory feedback prevents a self-induced synchronization of the neural activity
(Brunel, 2000) and reduces noise correlations induced by shared input to neurons in the
population (Renart et al., 2010; Tetzlaff et al., 2012; Bernacchia and Wang, 2013).
Noise correlations are detrimental to information transmission by neural populations
(Abbott and Dayan, 1999; Averbeck et al., 2006) and information is likely transmitted
by an activity of a population of neurons instead of a single neuron (Shadlen and
Newsome, 1998). Therefore, when studying the effect of excitation-inhibition balance on
information transmission, it is essential to consider the context of neural populations.

A number of studies analyzed the effect of noise correlations on the information
transmission properties (Abbott and Dayan, 1999; Averbeck et al., 2006; Moreno-Bote
et al., 2014). However, these studies did not analyze the relationship between the noise
correlations and the metabolic cost of neural activity. In our work, we consider a
computational model of a small part of a sensory cortex and noise correlations caused
by shared connections from an external thalamic population. The noise correlations
then may be reduced by inhibitory feedback, which, however, increases the cost of the
neural activity (Barta and Kostal, 2019). Our point of interest is the trade-off between
improved information transmission due to lower noise correlations and the increase in
metabolic costs due to the stronger inhibitory feedback.
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2 Methods

2.1 Network model

We modeled a network consisting of three subpopulations: external (ext), excitatory
(exc), and inhibitory (inh). The external subpopulation consisted of Poisson neurons,
defined by their firing intensity λ0

ext (same for all the neurons in the subpopulation).
Neurons in the excitatory and inhibitory subpopulations were modeled as leaky
integrate-and-fire (LIF) neurons:

Cm
dV i

dt
= gL(EL − V i) + Iirec(V

i, t) + Iiext(V
i, t) + Ibcgi(V i, t), (1)

Iirec(V
i, t) = giexc(Ee − V i) + giinh(Ei − V i), (2)

Iiext(V
i, t) = giext(Ee − V i) (3)

Iibcg(V
i, t) = gibcg,exc(Ee − V i) + gibcg,inh(Ei − V i), (4)

τexc
dgiext
dt

= −giext +

next
∑︂

j=1

∑︂

ts∈T j
ext

W ij
extδ(t− ts), (5)

τexc
dgiexc
dt

= −giexc +

nexc
∑︂

j=1

∑︂

ts∈T j
exc

W ij
excδ(t− ts), (6)

τinh
dgiext
dt

= −giinh +

ninh
∑︂

j=1

∑︂

ts∈T j

inh

W ij
inhδ(t− ts), (7)

τexc
dgibcg,exc

dt
= (µbcg,exc − gibcg,exc) + τexcσbcg,exc

√︃

2

τexc
ηiexc(t), (8)

τinh
dgibcg,inh

dt
= (µbcg,inh − gibcg,inh) + τinhσbcg,inh

√︃

2

τinh
ηiinh(t). (9)

Irec is the synaptic current arising from the recurrent connections (exc-exc, exc-inh,
inh-exc, inh-inh), Iext is the excitatory current from external neurons, and Ibcg is the

current from synapses from neighboring cortex areas. T j
ext, T j

exc, T j
inh represent the spike

times of the j-th external, excitatory, and inhibitory neuron respectively. The matrices
Wext, Wexc, Winh contain the synaptic connection strengths, W ij

X = aX
(X ∈ {ext, exc, inh}) if the j-th neuron connects to the i-th neuron and 0 otherwise.
The input from neighboring cortical areas is modeled as the Ornstein-Uhlenbeck process
with means µbcg,exc and µbcg,inh and standard deviations of the limiting distributions
σbcg,exc and σbcg,inh (Uhlenbeck and Ornstein, 1930; Destexhe et al., 2001). We set the
values of the background activity to match the moments of an exponential Poisson shot
noise with rates λbcg,exc = 0.5 kHz and λbcg,inh = 0.125 kHz (Rajdl and Lansky, 2015):

µX = aXτXλX , (10)

σX = aX

√︃

λXτX
2

, (11)

where X represents the excitatory or inhibitory background activity.
When the membrane potential V crosses the firing threshold (θexc, θinh) a spike is

fired and the membrane potential is reset to EL.
The network consisted of next = 1000 neurons in the external population, nexc = 800

neurons in the excitatory population, and ninh = 200 neurons in the inhibitory
population. The connections were set randomly with connection probability for the
recurrent connections (exc. to exc., exc. to inh., inh. to inh., inh. to exc.) set to
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Table 1. Parameters of the LIF model

Membrane capacitance Cm 150 pF
Leak conductance gL 10 nS
Resting potential EL −80mV
Exc. reversal potential Ee 0mV
Inh. reversal potential Ei −80mV
Exc. synapse decay τexc 5ms
Inh. synapse decay τinh 5ms
Exc. threshold θexc −55mV
Inh. threshold θinh −60mV
Ext. synapse amplitude aext 1 nS
Exc. synapse amplitude aexc 0.01–1 nS
Inh. synapse amplitude ainh g · aexc
Exc. inh. synapse amplitude abcg,exc aext
Bcg. inh. synapse amplitude abcg,inh g · aext
Inh. scaling factor g 20

Prec = 20% and connection probability from the external population (ext. to exc. and
ext. to inh., Pext) was varied from to 1% to 100% (Fig. 1A). We created the connection
matrices WX by generating a matrix of random uniformly distributed numbers RX

from the interval [0, 1) and set W ij
X = aX if Rij

ext < Pext or R
ij
X < PX for X ∈ {exc, inh}.

The random matrix Rext was the same for all values of Pext. In simulations where we
controlled for the effects caused by the random number of connections from the external
population, we fixed the number of connections by setting only the k = nextPext

elements in each row of Wext non-zero, in the location of k largest elements of the i-th
row of Rext.

The simulations were carried out with the Brian 2 package (Stimberg et al., 2019) in
Python with a 0.1ms time step.

2.2 Obtaining the input-output relationship of the network

We considered the total number of action potentials n from the excitatory and
inhibitory subpopulations in a time window ∆T = 1 s as an output of the network. We
modeled the stimulus as an input from the thalamic neurons, parametrized by the mean
input rate to a single neuron:

λext = nextλ
0
ext

100%

Pext
, (12)

where λ0
ext is the firing rate of a single neuron in the external population and next

100%
Pext

is
the mean number of pre-synaptic external neuron for each neuron in the excitatory and
inhibitory populations. For each set of parameters (arec and Pext pair) we determined
the input λmax

ext (arec, Pext) for which the output reached 30 kHz. In order to obtain the
input-output relationship, we discretized the input space to 30 equidistant stimulus
intensities: λi

ext(arec, Pext) =
i
30λ

max
ext (arec, Pext), where i = 0, . . . , 30. With a fixed

network connectivity, we simulated the network 1080 times for each λi
ext(arec, Pext).

We then fit 7th-degree polynomial functions to the mean output of the network as a
function of the stimulus λext and to the Fano factor as a function of the mean output,
where Fano factor is defined as:

FF =
Var[N ]

E[N ]
, (13)

where N is a random variable representing the number of output action potentials n.
Weights of the polynomial fit were set as 1

y2 , where y is the independent variable. We
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then discretized the input space to 1000 equidistant stimulus intensities and estimated
the mean output µ and Fano factor FF for each intensity from the polynomial functions.
We then estimated the input-output relationship, defined by a conditional probability
distribution f(n|λext) as a lognormal distribution for each λext, with corresponding
parameters to match the estimated mean and Fano factor:

f(n|λext) =
1

Z

1

nσlog

√
2π

exp

(︄

−
(lnn− µ2

log)

2σ2
log

)︄

, (14)

σlog =

√︄

ln

(︃

FF

µ
+ 1

)︃

, (15)

µlog = lnµ−
σ2
log

2
, (16)

Z =
+∞
∑︂

n=0

1

nσlog

√
2π

exp

(︄

−
(lnn− µ2

log)

2σ2
log

)︄

. (17)

This way we avoided the sampling bias when calculating information measures from
the data (Treves and Panzeri, 1995).

2.3 Metabolic cost of neural activity

In our calculations, we focus on the energy in the form of ATP molecules required to
pump out Na+ ions. We take into account the Na+ influx due to excitatory
post-synaptic currents, Na+ influx during action potentials, and Na+ influx to maintain
the resting potential. To this end, we follow the calculations in (Attwell and Laughlin,
2001) and (Harris et al., 2012), which we modify for our neuronal model.

We assume the standard membrane capacitance per area as cm = 1 µF/cm2 and the
cell diameter as D = 69µm, giving the total capacitance Cm = πD2cm = 150 pF.
Therefore, to depolarize the neuron by ∆V = 100mV the minimum charge influx is
∆V Cm = 1.5× 10−11 C and the minimum number of Na+ ions ∆V Cm

e

.
= 9.375× 107,

where e
.
= 1.6× 10−19 C is the elementary charge. The minimal number of Na+ ions is

then quadrupled to get a more realistic estimate of the Na+ influx due to the
simultaneous opening of the K+ channels (Attwell and Laughlin, 2001). The Na+ influx
must be then pumped out by the Na+/K+-ATPase, which requires one ATP molecule
per 3 Na+ ions. The cost of a single action potential can be then estimated as
4
3 × 9.375× 107 ATP = 1.25× 108 ATP. However, about 80% of the metabolic costs
associated with an action potential are expected to come from the propagation of the
action potential through the neuron’s axons. Therefore, we estimate the total cost as
6.25× 108 ATP.

Next, we assume that the excitatory synaptic current is mediated by the opening of
Na+ and K+ channels with reversal potentials ENa = 90mV and EK = −105mV. For
the excitatory synaptic current, it then has to hold

(gexc + gext)(V − Ee) = gNa(V − ENa) + gK(V − EK), (18)

gNa + gK = gext + gexc. (19)

Therefore:

INa =
gK(V − EK)

(gexc + gext)(V − Ee)
. (20)

The sodium entering with the sodium current INa again has to be pumped out by the
Na+/K+-ATPase and therefore we calculate the cost of the synaptic current as
1
3eINa∆T ATP, where ∆T is the time interval over which we are measuring the cost.
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Each input to the network (parametrized by λext) is then associated with a cost,
which we express as

w(λext) =

(︄

(Nexcµexc +Ninhµinh +Nextλext
100%

Pext
)WAP+

+
Nexc⟨IexcNa ⟩+Ninh⟨I inhNa ⟩

3e

)︄

∆T,

(21)

where µexc = µexc(λext), µinh = µinh(λext) are the mean firing rates of a single
excitatory and inhibitory neuron (given the input λext), ⟨IexcNa ⟩ = ⟨IexcNa ⟩(λext) and
⟨I inhNa ⟩ = ⟨I inhNa ⟩(λext) are the average excitatory synaptic currents in a single excitatory
and inhibitory neuron.

2.4 Measuring the information content

We treat the neural network as a memoryless information channel (Shannon, 1948;
Thomas M. Cover, 2006). The firing rates of the external population λext are the input
to the channel, and the number of action potentials n the excitatory population fires in
the time window ∆T = 1 s is the output of the channel. The input is then described by
a random variable Λ and the output by a random variable N . The mutual information
between the input and the output I(Λ;N) is calculated as

I(Λ;N) =

∫︂ λmax
ext

λmin
ext

p(λext)i(λext;N) dλext, (22)

i(λext;N) =

+∞
∑︂

n=0

i(λext;n)qp(n), (23)

i(λext;n) = log2
f(n|λext)

qp(n)
, (24)

qp(n) =

∫︂ λmax
ext

λmin
ext

p(λext)f(n|λext) dλext, (25)

where f(n|λext) is the probability distribution of N given that Λ = λext, p(λext) is the
input probability distribution, i(λext;n) is the amount of information that observing n
spikes gives us about the stimulus λext, i(λext;N) is than the average amount of
information we get from the input λext, qp(n) is the marginal output probability
distribution.

Given the input probability distribution p(λext), we can calculate the average
metabolic cost as

Wp =

∫︂ λmax
ext

λmin
ext

p(λext)w(λext) dλext. (26)

The capacity-cost function C(W ) is then the lowest upper bound on the amount of
mutual information (in bits) achievable given the constraint that Wp < W :

C(W ) = sup
p(λext):Wp<W

I(Λ;N). (27)

The information-metabolic efficiency E is then the maximal amount of mutual
information per molecule of ATP between the input and the output:

E =
C(W ∗)

W ∗
, (28)

W ∗ = argmax
W∈[0,+∞)

C(W )

W
. (29)
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The capacity-cost function can be obtained numerically with the Blahut-Arimoto
algorithm (Blahut, 1972), or the information-metabolic efficiency can be conveniently
obtained directly with the Jimbo-Kunisawa algorithm Jimbo and Kunisawa (1979);
Suksompong and Berger (2010).

2.4.1 Low noise approximation of constrained information capacity

If the trial-to-trial variability is very low, a lower bound on the capacity-cost function
can be found (Kostal and Lansky, 2013; Kostal et al., 2013). We used this low-noise
approximation to gain analytical insight into the importance of different properties of
the neural system for information-metabolically efficient information transmission. In
the low noise approximation, the optimal input distribution maximizing the mutual
information constrained by metabolic expenses W is given by:

p(λext) =

√︃

J(λext)

2πe
exp [λ1 − 1− λWw(λext)] . (30)

where J(λext) is the Fisher information and λ1 and λW are Lagrange multipliers which
can be obtained from the normalization condition:

∫︂ λmax
ext

λmin
ext

p(λext)w(λext) dλext (31)

and the average metabolic cost constraint (Eq. 26). In the Gaussian approximation, the
Fisher information is given by

J(λext) =
µ′
ext(λext)

2

σexc(λext)2
, (32)

where σexc(λext) is the standard deviation of the spike counts at input intensity λext.
The low noise estimate on the capacity-cost function is then

Clow(W ) = 1− λ1 + λWW. (33)

3 Results

3.1 Constrained information maximization in a simple linear

model

In order to gain an insight into what affects the information-metabolic efficiency of a
neural population, we first solve the problem for a simple linear system. The mean
response of the system is given by γ(λext) = gλext, where λext is the stimulus and g is
the gain of the system. The Fano factor (Eq. 13) is constant, and we assume that the
output is continuous and normally distributed. The input-output relationship is
therefore described by

f(n|λext) =
1√

2gλextFF
exp

[︄

−1

2

(︃

n− gλext

gλextFF

)︃2
]︄

. (34)

and the Fisher information (Eq. 32) is

J(λext) =
g

λextFF
(35)
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Next, we assume that the cost of the activity w(λext) depends linearly on the input:

w(λext) = w0λext +W0 =
w0

g
γ(λext) +W0, (36)

where W0 is the cost of the resting state.

The probability distribution derived from the low-noise approximation (Eq. 30) is
then

p(λext) =

√︃

1

2π

g

λextFF
exp(λ1 − 1− λWw0λext). (37)

After applying the normalization conditions (Eqs. 26 and 31) and using Eq. (33) we
obtain the lower bound on the capacity-cost function:

Clow(W ) =
1

2
log

[︃

(W −W0)
1

wAP

1

FF

]︃

, (38)

wAP =
w0

g
, (39)

where wAP is the cost of increasing the output intensity by one action potential.

The gain g, cost scaling w0, and Fano factor FF cannot be considered constant for
the real neural populations. However, the Eq. (38) provides an insight into the
importance of these properties, which we will study numerically for a more realistic
neural system.

In the following, we use:

g = µ′
ext(λext), (40)

w0 = w′(λext). (41)

3.2 Inhibitory feedback decorrelates the neural activity

With the increasing probability of shared input (Pext), the mean pairwise correlation
between the firing output of neurons increases (feedforward network, Fig. 1B). We
showed that these correlations can be removed by recurrent connections, as long as the
synaptic currents from the recurrent connections are inhibition dominated. We set the
excitatory recurrent synaptic amplitude as aexc = 0.01 nS to create a small perturbation
from the feedforward network and varied the scaling g determining the amplitude of
inhibitory synapses (ainh = gaexc) from 15 to 25. Correlations between neurons were
decreased for g ≥ 20 (Fig. 1C), which was also associated with stronger negative net
current from the recurrent synapses (Fig. 1D). For the network considered further in our
work we set g = 20. Simultaneously increasing the strength of the recurrent synapses
with fixed g led to a further decrease of the correlations among the neurons (Fig. 1E)
while further decreasing the net current from the recurrent synapses (Fig. 1F).

3.3 Trial-to-trial variability of single neurons vs. a population

In the inhibition-dominated network, the input needed from the external population in
order to evoke a given average firing rate has to be higher than in the case of the
feedforward network. The resulting increase in the synaptic noise leads to higher
trial-to-trial variability in the LIF model (Fig. 2 A-C; see also (Barta and Kostal,
2021)).

In the case of the total population activity, however, the pairwise correlations
between the neurons have a significant effect on the trial-to-trial variability. Denoting
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Fig 1. Inhibitory feedback decreases noise correlations. A: Schematic illustration of the simulated
neural network. Poisson neurons in the external population make random connections to the neurons in the
excitatory and inhibitory subpopulations. The connection probability Pext ∈ [0.01, 1] is varied to achieve
different levels of shared external input to the neurons. The neurons in the inhibitory (inh.) and excitatory
(exc.) subpopulations make recurrent connections (exc. to exc., exc. to inh., inh. to inh., inh. to exc.) with
probability Prec = 20%. The strength of those connections is parametrized by arec (Tab. 1). B: Mean pairwise
correlation between any two neurons in the exc. and inh. subpopulations plotted against the mean output of
the network for different values of Pext in a feedforward network (arec = 0nS). C: Mean pairwise correlations
as in B, for different values of g (ratio of inhibitory-to-excitatory synaptic strength), arec = 0.01 nS. D: The
total current from recurrent synapses for different values of g, as in C. E-F: Same as C-D, but with fixed
g = 20 and different values of arec.

the random variable representing the number of spikes of the i-th neuron observed
during a time window ∆T as Ni, we get for the Fano factor of the population activity:

FF =
Var(

∑︁

i Ni)

E [
∑︁

i Ni]
(42)

=

∑︁

i Var(Ni)
∑︁

i E [Ni]
+

2
∑︁

i<j Cov(Ni, Nj)
∑︁

i E [Ni]
(43)

=

∑︁

i Var(Ni)
∑︁

i E [Ni]

(︃

1 +
2
∑︁

i<j Cov(Ni, Nj)
∑︁

i Var (Ni)

)︃

(44)

=
v

µ

(︂

1 + (k − 1)
c

v

)︂

(45)

≈ FF0 (1 + kr) (46)
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Fig 2. Fano factor of single neurons and of populations. A-C: Mean Fano factor of individual neurons
for different values of Pext: 0.01 (A), 0.2 (B), 1 (C) and the strength of the recurrent synapses (arec)
colorcoded. The mean Fano factor increases with the strength of the recurrent synapses. D-F: Same as A-C,
but for Fano factor of the population activity. The points represent the population Fano factor obtained from
the simulation and the lines represent the fit with a 7th degree polynomial. For Pext = 0.01 the increase in
trial-to-trial variability of individual neurons (A) can have a stronger effect on the population Fano factor than
decreasing the pairwise correlations, resulting in an increase of the population Fano factor with high values of
arec (D). For higher values of Pext the pairwise correlations greatly increase the population Fano factor, which
is then decreased with increasing arec.

where c is the mean pairwise covariance, v the mean variance of a neuron, µ is the mean
number of spikes in ∆T , k the number of neurons and r the Pearson correlation
coefficient. The last approximation holds for neurons with identical variances and
pairwise covariances (Abbott and Dayan, 1999). It provides an insight into how the
pairwise correlations and Fano factor of individual neurons affect the Fano factor of the
total activity. If the correlations or number of neurons are small (r · k ≪ 1), the
decorrelation by strengthening the recurrent synapses does not significantly decrease the
population Fano factor. Instead, the population Fano factor may increase due to the
increase of the Fano factor of individual neurons (Fig. 2D, Pext = 1%). If greater
correlations are induced due to the shared input to the network, the correlations have a
dominating effect on the population Fano factor, which can then be greatly decreased
by strengthening the recurrent synapses and in turn decreasing the pairwise correlations
(Fig. 2E-F).

10/24



3.4 Inhibitory feedback is metabolically costly

3.4.1 Stronger recurrence strength increases the cost of the resting state

The cost of the resting state is an important factor for information-metabolic efficiency
(Barta and Kostal, 2019). In our network, increasing the recurrence strength decreased
the spontaneous activity of the neurons, due to inhibition dominating the recurrent
currents. However, the simultaneous increase in the strength of the recurrent excitatory
synapses increases the cost of the excitatory synaptic currents (Fig. 3A-C).

3.4.2 Inhibitory feedback decreases gain

Due to the net current from the recurrent synapses being hyperpolarizing, with stronger
recurrent synapses, a stronger excitatory current is necessary to bring the neuron to a
given post-synaptic firing rate and higher pre-synaptic firing rates are necessary.
Therefore, the gain g of the network decreases and with increasing arec the cost of
synaptic currents and the cost of external activity increase (Fig. 3D-E).

3.5 Shared input decreases gain

The number of synapses from the external population for each neuron in the excitatory
and inhibitory subpopulations follows the binomial distribution:

p(k) =

(︃

Next

k

)︃

P k
ext(1− Pext)

Next−k, (47)

with a mean number of synapses given by Next · Pext and variance Next · Pext(1− Pext).
We scaled the firing rate of the individual neurons in the external population as
λ0
exc =

λexc

Next·Pext
. Therefore the mean output to a single neuron was always λext,

independently of Pext and the variance of the input across neurons was λextNext
1−Pext

Pext
.

It follows from the convexity of the single neuron tuning curve in the analyzed input
range (S1 Fig) that out of two inputs with an identical mean λext, but different
variances across neurons, the input with the higher variance will lead to a higher
average firing rate. If we assume that the input across neurons follows a normal
distribution with mean λext and variance σ2 and the single neuron tuning curve can be
approximated by an exponential function in the form of c1 exp(c2x), where x is the
input intensity to the single neuron, we obtain for the mean firing rate:

∫︂ +∞

−∞

1

σ
√
2π

exp

[︃

− (x− λext)
2

σ2

]︃

c1 exp(−c2x) =
c1√
2
exp

(︂c2
4
(c2σ

2 − 4λext)
)︂

, (48)

which grows with the standard deviation of the input.
Accordingly, we observed that networks with higher Pext needed higher λext in order

to produce the same mean PSFR as networks with lower Pext (Fig. 4A-C). Moreover,
the mean Fano factor of individual neurons increased with increasing Pext (Fig. 4D-F).
This effect could be for the most part removed by fixing the number of connections from
the external population to each neuron in the excitatory and inhibitory populations to
PextNext (S2 Fig).

3.6 Optimal regimes for metabolically efficient information

transmission

We illustrated that the recurrence strength 1. increases the metabolic cost of the neural
activity and 2. decreases the trial-to-trial variability of the population response by
decreasing the correlations between the neurons. Similarly, the increased probability of
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Fig 3. Metabolic cost of the network activity. A-C: Cost at the resting state (λext = 0). A: Cost of the
excitatory synaptic currents from the background activity and excitatory action potentials evoked by the
background activity. B: Cost of the action potentials (both excitatory and inhibitory) evoked by the
background activity. C: The total resting cost obtained summing A and B. D: The total cost of the network
activity is plotted against the output of the network (the total post-synaptic firing rate). Filled areas represent
individual contributions of each cost component: cost of action potential from the external population, cost of
the excitatory synaptic currents, and cost of the post-synaptic (evoked) action potentials. As Pext increases,
the contribution of external action potentials to the overall cost decreases. With increasing arec, the
contribution of excitatory synaptic currents increases. E: The cost of increasing the mean input by one action
potential (wAP, Eq. 39) is significantly lower for higher Pext. However, while the difference between Pext = 1%
and Pext = 20% is approximately 10-fold, the difference between Pext = 20% and Pext = 100% is only
approximately 2-fold, as the cost of the external population starts to contribute less to the overall cost.

a synapse from an external neuron to a neuron in the excitatory or inhibitory
population decreases the cost of the neural activity but increases the trial-to-trial
variability of the population response by increasing the noise correlations. To find the
balance between the cost of the network activity (Eq. 26) and the mutual information
between the input and the output (Eq. 22) we calculated the information-metabolic
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Fig 4. Shared input decreases gain and increases individual trial-to-trial variability. A-C: The
input intensity λext needed to evoke given firing rate (x-axis) with different connection probabilities Pext,
relative to the input intensity for Pext = 1%. A: arec = 0nS, B: arec = 0.2 nS, C: arec = 1nS. With higher
Pext, higher values of λext are needed for higher values of Pext to achieve the same post-synaptic firing rates as
with lower values of Pext. This effect becomes more pronounced with stronger recurrent synapses (E-F). D-F:

Gain of the network (Eq. 40). Higher Pext leads to a lower gain of the population activity. G-I: Higher values
of Pext also increase the Fano factor of individual neurons.

efficiency, which maximizes the ratio of the mutual information to the cost of the
network activity (Eq. 28).

For low values of Pext (≤ 10%), increasing the strength of the recurrent input did
not lead to an increase in the information-metabolic efficiency. For higher values of Pext

the information-metabolic efficiency was maximized for arec between 0.1 nS and 0.5 nS
(Fig. 5A-B), meaning that the strength of the recurrent excitatory synapses was 2× to
5× lower that the strength of the synapses from the external population.

Moreover, varying Pext had a significant effect on the information-metabolic
efficiency across all values of arec. Namely, low values of Pext resulted in lower values of
information-metabolic efficiency across all values of arec, showing that shared input
from the external population is beneficial for metabolically efficient information
transmission. Overall, the highest values of information-metabolic efficiency
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Fig 5. Information transmission with cost constraints. A: Information-metabolic efficiency E (Eq. 28)
for different values of recurrence strength arec. Pext is color-coded. B: Contour plot of the
information-metabolic efficiency. Contours are at 0.6, 0.8, 1, 1.2, 1.4, 1.6, 1.8, and 2 bits/s. C-H: Contour
plots showing the capacity-cost function C(W ) (Eq. 27) with dependence on the recurrence strength arec for
different values of Pext. The contours show the maximal capacities constraint at different values of W (see Tab.
2 for the costs and capacity values at the contours). The heatmaps in B-H were calculated with piece-wise
cubic 2D interpolation (SciPy interpolator CloughTocher2DInterpolator (Virtanen et al., 2020)) from the grid
calculated with Pext values 1%, 2%, 3%, 5%, 10%, 20%, 50%, 80%, 100% and arec values 0, 0.01, 0.02, 0.03,
0.05, 0.1, 0.2, 0.3, 0.5, 1 nS.
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Table 2. Capacity-cost function values (in bits)

Pext \W (1012ATP) 2 3 4 5 6 7 8 10 12 15 20 30
0.02 2.30 3.19 3.73 4.11 4.40 4.63 4.83 5.13 5.36 5.62 5.88 6.05
0.05 3.14 3.96 4.41 4.73 4.96 5.14 5.28 5.49 5.63 5.78 5.89 5.96
0.10 3.50 4.23 4.62 4.88 5.08 5.22 5.35 5.52 5.63 5.74 5.86 5.96
0.20 3.69 4.31 4.65 4.89 5.06 5.20 5.31 5.48 5.61 5.73 5.82
0.50 3.67 4.24 4.56 4.78 4.95 5.10 5.20 5.36 5.48 5.57
1.00 3.52 4.07 4.39 4.61 4.79 4.93 5.03 5.20 5.30 5.38

(E ≥ 2 bit/1012ATP) were reached for arec between 0.05 nS and 0.5 nS and Pext between
20% and 100% (Fig. 5B).

We analyzed the effect of the resting cost (Fig. 3A-C) by setting the resting cost
equal in all cases to W0, the resting cost of the feedforward network. This did not have
a significant effect on the information-metabolic efficiencies (S3 Fig).

Neural circuits might not necessarily maximize the ratio of information to cost.
Instead, neurons and neural circuits could modulate their properties to maximize
information transmission with the available energy resources (Balasubramanian et al.,
2001). For example, neurons in the mouse visual cortex have been shown to decrease the
conductance of their synaptic channels after food restriction (Padamsey et al., 2022).

Accordingly, we studied how the optimal strength of recurrent synapses changes with
the available resources. We calculated the optimal value of arec for different values of
available resources (3, 4, 5, 6, 7, 8, 10, 12, 15, 20, 30, 40 ×1012 ATP). In Fig. 5C-H, we
plotted C(W ; arec), the capacity-cost function (Eq. 27) extended by one dimension with
arec. For each cost W , the optimal arec is highlighted, and the corresponding contour of
C(W ) is shown (see Tab. 2 for the values of C(W )). With decreasing W , the optimal
value of arec typically decreases. This effect is more robust with high values of Pext, as
the contours are more curved at the optimum.

We calculated the extended capacity-cost functions with input distributions obtained
from the low-noise approximation. To verify that the low noise approximation applies in
the case of the studies system, we compared the information-metabolic efficiency
obtained with the Jimbo-Kunisawa algorithm. The relative difference did not exceed
10% and did not have a significant impact on the information-metabolic efficiency
heatmap structure (S4 Fig).

4 Discussion

Populations in the cortex transmitting information by their summed (or averaged)
activity can be considered as a low noise information channel, due to the decrease in
trial-to-trial variability (Kostal and Lansky, 2013). The decrease in the trial-to-trial
variability of the response will be lower in the presence of positive noise correlations
(Abbott and Dayan, 1999). Positive noise correlations can be reduced by inhibitory
feedback, which, however, increases the cost of the neural activity (Barta and Kostal,
2019).

In our work, we studied the balance between increasing the transmitted information
by decreasing the noise correlations and the associated increase in the cost of the
activity. We showed that in a linear system, if the Fano factor of the population activity
is constant, as long as the ratio g

w0FF
(g is the gain of the system, or slope of the

stimulus-response curve, w0 is the slope of the stimulus-cost curve) remains constant,
the cost-constrained capacity will remain constant as well.

We proceeded to calculate the stimulus-response relationship and the metabolic cost
for a more biologically realistic neural system. In the studied system, the population
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Fano factor could not be considered constant. Instead, correlations between neurons
increased with the mean output of the system, and the mean Fano factor of single
neurons was also dependent on the mean output of the system, leading to complex
dependence of the population Fano factor on the mean output of the system (Fig.
2D-F). We showed that reducing the noise correlations by strengthening the inhibitory
feedback decreases the population Fano factor for large values of Pext but may increase
the population Fano factor for low values of Pext due to an increase of the mean single
neuron Fano factor FF0.

We illustrated the effect of inhibition-dominated recurrence and shared input on the
metabolic cost of neural activity. Increased strength of recurrence increased the cost of
excitatory synaptic currents due to the stronger excitatory synapses and stronger input
from the external population, as well as the cost of the activity of the external
population. A higher connection probability from the external population (higher
shared input probability) led to a decrease in the external population activity cost, as
the overall activity of the external population could be lower to result in the same mean
input to the post-synaptic neurons. On the other hand, due to less variable input to
single neurons with high values of Pext, the mean input across all neurons had to be
higher with higher values of Pext to evoke the same mean post-synaptic activity.

We found that high values of Pext are beneficial for metabolically efficient
information transmission, despite the increased noise correlations. For high values of
Pext, increasing the recurrence strength was also beneficial, suggesting that the two
mechanisms - decreasing input cost by high connection probability from the external
population Pext and decreasing noise correlations by recurrent activity may act together
to produce a metabolically efficient code.

Increasing the recurrence strength can lead to about a 10% to 15% increase in the
information-metabolic efficiency. The magnitude of the increase is dependent on the
cost of the action potentials. If the cost of synaptic currents could be neglected
compared to the cost of the action potentials, there would be a higher benefit in
increasing the inhibitory feedback since the increases in the cost of the synaptic current
could also be neglected.

Although in the cortex, the neurons also connect to neighboring areas of the cortex
and not only within the studied subpopulation, we did not consider the cost of synaptic
currents evoked in neurons not involved in our simulation. We assume that such
synaptic currents would take part in the background activity of a different area.
Therefore, if we included these costs and considered multiple cortical areas, we would
include the background activity cost multiple times.

In our model of the cortical area, we considered two neural subpopulations:
excitatory and inhibitory, each subpopulation was homogeneous, but we set the
threshold of the inhibitory neurons lower, in order to mimic the behavior of fast-spiking
inhibitory neurons. The difference between excitatory, regular spiking neurons and
inhibitory, fast-spiking neurons is often described not only by differences in the
threshold but also in differences in the adaptation properties (Kobayashi et al., 2009;
Zerlaut et al., 2017; Bernardi et al., 2021). In our case, we did not consider adaptation
for simplicity, as estimating the information capacity of a neural system with adaptation
is computationally considerably more difficult (Barta and Kostal, 2019).

In our work, we assumed that the neural circuit maximizes the mutual information
between the input and the output while minimizing the cost of the neural activity. Such
an approach does not provide any information about how the information is encoded. It
only calculates the limit on the amount of information that can be reliably transmitted.
Yet, the principles of mutual information maximization have proven very useful in
explaining the properties of neural systems. The tuning curves of blowfly’s
contrast-sensitive neurons are adapted to the distribution of contrasts encountered in
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the natural environment (Laughlin, 1981); the power spectrum of distribution of odor in
pheromone plumes follows the power spectrum predicted for an optimal input to
olfactory receptor neurons (Kostal et al., 2008); distributions of post-synaptic firing
rates of single neurons during in-vivo recordings follow distributions predicted from
cost-constrained mutual information maximization (Treves et al., 1999; de Polavieja,
2002, 2004).

By assuming a particular coding scheme, it is possible to place further constraints on
the complexity of information encoding, with the assumption that complex codes are
not an efficient way to transmit information (Kostal and Kobayashi, 2015, 2019). We
did not attempt this in our study. It would be interesting to study whether the
inhibitory feedback decreases or increases the encoding complexity.

We have shown that a cortical area can adapt to the amount of available energy
resources. In the event of scarceness of resources, information transmission can be
adapted by weakening the synaptic weights, thus expanding less resources to reduce the
noise correlations. Such a mechanism is implemented in the mouse visual cortex
(Padamsey et al., 2022). Padamsey et al. showed that in food-restricted mice, the
orientation tuning curves of individual orientation-sensitive neurons in the visual cortex
become broader due to weakened synaptic conductances. In our work, we studied the
properties of a population instead of single neurons and we considered a population
encoding the stimulus intensity instead of the stimulus identity, such as orientation.
Extending this model to a situation in which stimulus identity is encoded and shared
input is introduced due to the overlap of receptive fields would be interesting.

Neurons recorded in-vivo typically exhibit a Fano factor close to one, constant over a
broad range of post-synaptic firing rates Gur et al. (1997); Geisler and Albrecht (1997);
Shadlen and Newsome (1998). In the optimal regimes with stronger recurrent synapses,
the Fano factor decreased only very slowly over the studied range of post-synaptic firing
rates (up to 30Hz in a single neuron). With weaker synaptic strengths, the Fano factor
of a single neuron decreases rapidly with an increasing post-synaptic firing rate. Our
model predicts that less available resources would lead to weaker recurrent synapses.
This hypothesis is straightforward to test by calculating the Fano factors during
stimulus presentation (both population and single neuron) in food-restricted animals
and comparing them to controls. We expect that the population Fano factor will
increase (alternatively, the noise correlations will increase) with food scarcity, and single
neuron Fano factors will decrease.

Supporting information

S1 Fig. Input-output relationship of a single neurons. To leave out the
network effects, we plotted the tuning curves for the feedforward network separately for
the excitatory (blue) and inhibitory (yellow) neurons. The thick line represents the
median response across the neurons, which shows that their tuning curves are convex in
the studied range. The shaded area shows the spread of the tuning curves across
neurons (2.5 to 97.5 percentile). With low values of Pext, the tuning curves across
neurons vary significantly and are skewed to the higher firing rates.

S2 Fig. Fixing number of external connections to remove gain dependency.

Same as Fig. 4, but each excitatory and inhibitory neuron receives exactly PextNext

connections from the external population. The dependency on Pext is removed.

S3 Fig. Effect of equalizing the resting cost on the information-metabolic

efficiency. We observed that the cost of the resting state is different for different
recurrence strengths arec (Fig. 3A-C). This could potentially explain the higher
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information-metabolic efficiency E (Eq. 28) for intermediate values of arec and its
decrease for high values of arec. To quantify the effect of the resting cost, we set the
resting cost in each case to the resting cost of the feedforward network W0(arec = 0).
The differences in the cost of the resting state do not have a qualitative effect on the
conclusions. A: The same contour plot as in Fig. 5B. B: Contour plot with equalized
resting costs (contours as in Fig. 5B: 0.6, 0.8, 1, 1.2, 1.4, 1.6, 1.8 and 2 bits/s). C:

Heatmap of the relative differences.

S4 Fig. Accuracy of information-metabolic efficiency approximation. To
calculate the capacity-cost functions, we calculated the mutual information using Eq.
(22) with input probability distribution calculated from the Eqs. (30) and (32). Here we
compare the information-metabolic efficiencies calculated with the approximation and
the Jimbo-Kunisawa algorithm. A: The same contour plot as in Fig. 5B,
information-metabolic efficiencies calculated with the Jimbo-Kunisawa algorithm. B:

Information-metabolic efficiencies calculated with the Fisher-information-based input
distribution. C: Heatmap of the relative differences. Note that the approximation can
only reach lower values than the actual information-metabolic efficiency.
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S1 Fig. Input-output relationship of single neurons. To leave out the network effects, we plotted the
tuning curves for the feedforward network, separately for the excitatory (blue) and inhibitory (yellow) neurons.
The thick line represents the median response across the neurons, which shows that their tuning curves are
convex in the studied range. The shaded area shows the spread of the tuning curves across neurons (2.5 to 97.5
percentile). With low values of Pext, the tuning curves across neurons vary significantly and are skewed to the
higher firing rates.
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S2 Fig. Fixing the number of external connections to each neuron. Same as Fig. 4, but exactly
kext

Pext

100% external neurons connected to each excitatory and inhibitory neuron. This removed a large part of
the dependence on Pext seen in Fig. 4.
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S3 Fig. Effect of equalizing the resting cost on the information-metabolic efficiency. We observed
that the cost of the resting state is different for different recurrence strengths arec (Fig. 3A-C). This could
potentially explain the higher information-metabolic efficiency E (Eq. 28) for intermediate values of arec and
its decrease for high values of arec. To quantify the effect of the resting cost, we set the resting cost in each case
to the resting cost of the feedforward network W0(arec = 0). The differences in the cost of the resting state do
not have a qualitative effect on the conclusions. A: The same contour plot as in Fig. 5B. B: Contour plot with
equalized resting costs (contours as in Fig. 5B: 0.6, 0.8, 1, 1.2, 1.4, 1.6, 1.8 and 2 bits/s). C: Heatmap of the
relative differences.

S4 Fig. Accuracy of information-metabolic efficiency approximation. To calculate the capacity-cost
functions, we calculated the mutual information using Eq. (22) with input probability distribution calculated
from the Eqs. (30) and (32). Here we compare the information-metabolic efficiencies calculated with the
approximation and the Jimbo-Kunisawa algorithm. A: The same contour plot as in Fig. 5B,
information-metabolic efficiencies calculated with the Jimbo-Kunisawa algorithm. B: Information-metabolic
efficiencies calculated with the Fisher-information-based input distribution. C: Heatmap of the relative
differences. Note that the approximation can only reach lower values than the actual information-metabolic
efficiency.
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Abstract

Flying insects encounter turbulent environments, where chemotaxis along a
concentration gradient makes little sense. Detection of the onset and offset of discrete
odor pulses is then expected to become crucial for navigation, but it is not well
understood how the olfactory system encodes the offset of the odor pulse. Previous
works indicated that the duration of a male moth olfactory receptor neuron’s (ORN)
spike firing response to pheromone stimuli greatly exceeds the pulse duration. However,
these works were based on imprecise odor delivery systems. We built an odor delivery
system capable of delivering much sharper pheromone stimuli. The stimuli evoked ORN
firing responses that faithfully tracked the stimulus duration, provided the stimulus
lasted at least 200ms. A transient inhibition marked the termination of such stimuli.
Shorter stimuli produced a firing response exceeding the stimulus duration. The
response shapes could be explained by adaptation of the ORN on only two time scales.
With simulations, we showed that the observed limits in stimulus offset detection
propagate to the antennal lobe and are likely to be behaviorally significant. Our results
increase the understanding of the mechanisms necessary for male moths to navigate
through pheromone plumes.

Introduction

Flying insects heavily rely on olfactory cues to search for their mating partner, food and
oviposition sites. The turbulent airflow breaks the odor signal, e.g., sex pheromone from
a female, into pockets containing odor and pockets with clean air. A male moth
searching for a mating partner can then encounter pockets with high concentration of
pheromone even at large distances from the female (Jones, 1983; Murlis et al., 2000;
Justus et al., 2002; Celani et al., 2014). The odor plume does not form a continuous
gradient pointing to its source and obtaining a reliable concentration average would take
too long for flying insects to efficiently track odor plumes. Instead, the insect has to
implement different searching strategies, such as an upwind surge during an odor
encounter and cast, crosswind flight without progressing upwind, when the odor signal
is lost (Willis and Baker, 1984; Vickers and Baker, 1994; Kennedy, 1983; van Breugel
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and Dickinson, 2014; Cardé, 2021). This searching strategy requires the insect to
reliably detect the onset and offset of the odor pocket.

The olfactory receptor neurons (ORNs) typically respond to the odor onset by a fast
and intense action potential firing activity. On the other hand, ORNs were not always
observed to stop rapidly the firing activity after the odor offset. For example,
pheromone sensitive ORNs in moths have been considered to terminate their response
very slowly (Kaissling et al., 1989; Jarriault et al., 2010; Grémiaux et al., 2012; Rospars
et al., 2014; Tuckman et al., 2021a,b). The apparent inability to detect the pheromone
stimulus offset by moth ORNs is very surprising, given that male moths are extremely
sensitive to the sex pheromone of their conspecific females (Kaissling and Priesner, 1970;
Mayer and Mankin, 1990; Angioy et al., 2003; Kaissling, 2009), they exhibit a rich and
complex repertoire of maneuvers when navigating pheromone plumes (Willis et al., 2013;
Vickers, 2006; Cardé, 2021), can successfully track female pheromone plumes at large
distances (Cardé and Charlton, 1984; Elkinton et al., 1987; Shorey, 1976; Wall and
Perry, 1987) and their olfactory system has been shown to be very efficient (Kostal
et al., 2008; Levakova et al., 2018). The most detailed studies that have attempted to
link the odor plume structure with orientation behavior in terrestrial animals are from
plume tracking behavior of male moths to female sex pheromone. A driving ambition of
this long studied model was the use of insect sex pheromones in pest management
(Witzgall et al., 2010). These studies are also a source for bioinspired navigation models
and biohybrid odor-seeking robots (Ando et al., 2013; Martinez et al., 2014; Anderson
et al., 2020).

It has been suggested that the slow termination of ORN response depends on the
physiochemical properties of the odorant molecules and their interaction with the odor
delivery device surfaces (Martelli et al., 2013). Moth pheromone molecules have a
relatively low volatility, as indicated by their low vapor pressure (Olsson et al., 1983)
and when used as olfactory stimuli they are likely to exhibit slower dynamics, compared
to more volatile compounds. Therefore, we investigated if the slow response termination
is a physiological property of ORNs and is important for encoding, or if it is an artefact
caused by interactions of pheromone molecules with the odor delivery device.

The analysis of the dynamics of odor coding requires either monitoring or controlling
the temporal resolution of odor stimuli. Monitoring the odor stimulus can be done with
a photo-ionization detector (PID) with high temporal resolution (Justus et al., 2002).
Unfortunately, common moth pheromones cannot be detected by a PID, because their
ionization energies are too high for the PID lamp. Proton transfer reaction-mass
spectrometers (PTR-MS) can monitor the dynamic of odor plumes (Riffell et al., 2014),
including pheromone plumes. However, the sensitivity of PTR-MS remains too low to
monitor pheromone stimuli at physiological concentrations. Therefore, we developed a
new odor delivery device to better control the stimulus dynamics.

With our new odor delivery system we observed a tri-phasic pattern in the ORN
responses from the moth species Agrotis ipsilon and Spodoptera littoralis, consisting of
an excitatory response at the stimulus onset, inhibitory phase at the stimulus offset and
a less intense excitatory activity (rebound activity) following the inhibitory phase. This
is in contrast to the widely held belief that responses to pheromone in moth ORNs
terminate very slowly and is in fact reminiscent of the projection neuron’s (PN)
response profile. Yet, when ORNs were subjected to short stimuli, the inhibitory phase
disappeared and the response consisted of a single long-lasting burst that significantly
exceeded the stimulus duration.

The observed qualitative differences in the response, i.e., mono-phasic response to
short stimuli and tri-phasic response to long stimuli, point to slow adaptation of the
ORNs. In order to asses the slow adaptation process, we had to isolate the ORN
processing capabilities from the dynamics of the odor delivery. To this end, we measured
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the local field potential (LFP) in the sensilla, which is tightly correlated with the
depolarizing current entering the ORN. Recording both the LFP and the firing response
allows to study independently the transduction processes leading to the generation of
the receptor current and how the spike generating mechanism in the soma responds to
this current (Nagel and Wilson, 2011). We performed an optimization procedure which
allowed us to narrow down the adaptation processes to only two time-scales, providing
novel insights into the possible mechanisms leading to the adaptation.

1 Results

1.1 New odor delivery device improves the speed of odor onset

and offset

A common type of odor delivery device in insect olfactory studies consists of Pasteur
pipettes containing a filter paper loaded with one of the odors/doses to test. An
electrovalve (EV) redirects an airstream through the pipette, the small tip of which is
introduced into a hole on the side of a glass tube that bathes the insect antenna with a
constant humidified and filtered air-stream (Montagné et al., 2012). However, the time
constants of rising and falling odor concentrations at the onset and offset of the
stimulus can be very long, depending on the physicochemical properties of the odorant
(Vetter et al., 2006; Martelli et al., 2013; Gorur-Shandilya et al., 2019). First, odors are
sticky and adsorption / desorption on surfaces contributes to low-pass filtering of the
stimulus dynamics as the odors travels along the tube. Next, the temporal structure of
the odor stimuli disintegrates within 10–20 mm from the exit of the odor stimulus
device when the airflow is no more restrained within a tubing.

We built an odor delivery device in which we ensured that the effects of odor
molecules interacting with surfaces have minimal effect on the dynamics of the delivered
stimulus. The insect was placed directly in front of an electrovalve controlling the
odorant supply (Figure 1–Figure Supplement2). We tested with linalool (due to its low
volatility) that the odor delivery device is capable of delivering sharp and short odor
pulses (Figure 1A). Adding a glass tube between the PID and the electrovalve (15 cm
length, 1 cm diameter) resulted in much slower PID responses and short stimuli evoked
only very little response (Figure 1B).

Using more volatile compounds (acetone, α-pinene) resulted in sharper PID
responses (Figure 1C). We suspected that the slowdown of the response dynamics with
linalool is not a property of the odor delivery device, but of the PID. To verify this, we
performed an experiment where we completely cut off the odor delivery device from the
PID by inserting a plastic barrier between them during the stimulation. The time
course of the PID response offset remained slow (Figure 1D). Although the observed
PID response offset was slightly faster in the first 500ms after the stimulus termination
in the experiment with using the plastic barrier, after 500ms the sustained response was
identical (Figure 1E-J), indicating that the observed slow dynamics of the response and
the long lasting response are mostly a property of the PID and not of the odor delivery
device. Possibly the odorant molecules adhere to the surface of the PID and thus slow
down their onset and offset detection by the PID. Therefore, we conclude that it is risky
to use PID signal as a proxy for odor concentration and the physiochemical properties
of the used odorant need to be considered.

1.2 Moth ORN response shape tracks odor pulse durations

We presented the pheromone sensitive ORNs of A. ipsilon with stimuli of different
durations (3ms, 5ms, 10ms, 20ms, 50ms, 100ms, 200ms, 500ms, 1 s, 2 s, 5 s) of 100 pg
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Fig 1. New odor delivery device can deliver square stimuli. A: We verified with PID response to
linalool that the odor delivery device is capable of delivering sharp and short odor pulses. On the contrary,
adding a 15 cm glass tube after the valve produces responses which are much less sharp and short stimuli (up
to 200ms) evoke very little PID response or no response at all (B, we used pure linalool instead of 10% dilution
to compensate for airflow mixing in the glass tube). C: More volatile compounds produce sharper PID
responses. D: Shaded area indicates linalool stimulation. Approximately 2.8 s after the stimulus onset a plastic
barrier was dropped between the PID and the odor delivery device to prevent any odor molecules from the
odor delivery device from reaching the PID. The offset of the PID signal remained slow. E: We dropped the
barrier at different times after the stimulus onset. The longer the stimulus was, the slower was the PID
response offset. We observed the same pattern when we used our odor delivery device to deliver stimuli of
different durations (F). G-J: We compared the value (averaged in a 20ms window) of the PID at different
times after the stimulus offset to its peak value. 0.5 s after the stimulus termination the sustained signal is the
same regardless of whether stimulus was terminated regularly (with the electrovalve) or mid-odor delivery with
a plastic barrier. This shows that most of the slow dynamics observed with the PID are due to the properties
of the PID and not the odor delivery device. All PID responses in the figure were filtered with 49Hz 2-pole
Butterworth lowpass filter to remove noise.
Figure 1–Figure supplement 1. Schematics of the developed odor delivery device.

Figure 1–Figure supplement 2. Testing of equilibration times and source stability.

dose. The neurons responded by intense firing activity, reaching its peak approximately
20ms to 50ms after the stimulus onset, regardless of the stimulus duration. The time
course of the response changed qualitatively with the stimulus duration (Figure 2A-B).
For a stimulus duration below 100ms the neurons continued firing for around 100ms
after the stimulus offset, while slowly returning to their spontaneous activity (Figure
2C-D). For stimuli longer than 200ms the firing response terminated sharply with the
stimulus offset. The firing response was then followed by an inhibitory phase, lasting
approximately 300ms (Figure 2E). During the inhibitory phase (interval 100ms to
400ms after the firing response termination) the firing activity was significantly
suppressed, compared to the activity that followed (rebound phase, measured as the
activity in the period 1 s to 3 s after the firing response termination). The rebound
activity increases with stimulus duration, making the inhibitory phase more pronounced
and indicating that two opposing processes are at play (Figure 2F). A mono-phasic
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response to short stimuli and inhibitory phase after long stimuli were also observed with
higher (1 ng) and lower (10 pg) pheromone doses (Figure 3A-B). Moreover, in the dose
range 10 pg to 1 ng the shape of the firing profile is mostly independent of pheromone
concentration (Figure 3C), a property that has been illustrated on Drosophila ORNs
only with highly volatile odors and may help intensity invariant odor identity coding
(Martelli et al., 2013). We also saw the same response patterns with the ORNs of S.
littoralis (Figure 2–Figure Supplement1). These results lead us to the conclusion that
the previously reported sustained pheromone responses of the moth ORNs are an
artefact caused by interactions of the odor molecules with the tubing of the odor
delivery device and should not occur in the nature when the moth is flying sufficiently
far away from any surfaces that could release previously adsorbed pheromone molecules.

Flying insects use both olfactory and mechanosensory input (from wind speed) to
track odor plumes. Antennal lobe neurons integrate both sensory inputs (Tuckman
et al., 2021a,b). The detection of mechanosensory information in insect antennae is
attributed primarily to Johnston’s organ and Böhm’s bristles in the pedicel of the
antenna (Budick et al., 2007; Sane et al., 2007; Dieudonné et al., 2014). However, it was
recently proposed in the honeybee that mechanosensory signals can also be transduced
by olfactory sensilla on the antenna, with changes of sensilla position potentially
modulating ORN responses (Tiraboschi et al., 2021). To verify that the observed
response pattern is not an artefact caused by change in the mechanical pressure at the
stimulus offset, we performed recordings where we maintained constant mechanical
pressure throughout odor stimuli by delivering odorless air with an electrovalve in
opposing phase to the valve controlling the odor delivery. With this setting, we still
observed the tri-phasic response pattern (Figure 2–Figure Supplement2).

We still observed some sustained activity long after the stimulus end, with onset
after the inhibitory phase. The intensity of the activity increased both with duration
and dose of the stimulus (Figure 3B) and could last more than 15min (Figure 2–Figure
Supplement3). Our new setup strongly reduces the surface where odor molecules can
adsorb and then desorb and stimulate the antenna, therefore we conclude that the
sustained response has a physiological origin, e.g., pheromone molecules adhering to the
sensilla.

1.3 Rapid response termination stems from slow spike

frequency adaptation

We recorded the LFP simultaneously with the firing activity in response to 20ms,
200ms and 2 s stimuli (dose 1 ng). The LFP shape reflects the depolarizing current
flowing from the sensillar lymph into the neuron (with a multicompartmental model of
the ORN we estimated that the LFP corresponds to the depolarizing current filtered
with exponential kernel with 10ms decay, Figure 4–Figure Supplement1). After the
stimulus onset, the LFP decreases (downward deflection of the LFP signal) due to
positive charge flowing from the sensillar lymph into the ORN (exciting the neuron; the
amplitude of the LFP deflection is correlated with the peak firing rate; Figure 5–Figure
Supplement1B). The LFP typically exhibits some level of adaptation (upward
deflection) followed by an additional downward deflection (Figure 4A-D). Shortly after
the stimulus offset (within 10ms) the LFP starts increasing, signifying a decrease in the
depolarizing current. After an initial rapid increase, the LFP continues to slowly
increase towards the level before the stimulus. This can be either due to a different,
slower, signalling pathway or some of the odor molecules can be slowed down by first
adhering to the sensilla, before eventually reaching the odor receptors.

The transiency of the firing rate indicates that the firing rate responds to the slope
of the depolarizing current, as previously observed in Drosophila (Nagel and Wilson,
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Fig 2. Different stimulus durations produce qualitatively different response terminations. A:

Representative voltage traces in response to 20ms, 200ms and 2 s stimuli. B: Firing responses of the ORNs to
stimuli of different durations. Thin lines represent responses of individual neurons, thick line is the average
response across all measured neurons (blue area indicates the stimulus period, N=21-23 sensilla). C: Raster
plots of the spike trains, aligned at the stimulus offset. Responses to stimuli 100ms and shorter continue after
the stimulus offset, while the ends of responses to longer stimuli coincide with the stimulus offset. The red
vertical line represents the point in time where 50% of the ORNs’ responses finished (see Materials and
methods). D: Box-plot of how much the response ends exceed the stimulus duration. Color-coded is the
stimulus duration, same as in B. E: Raster plots aligned to the median response end. We compared the firing
rates in the red filled area (0.1 s to 0.4 s after the response end) with the firing rates in the green filled area (1 s
to 3 s after the response end) to evaluate the contrast between the inhibitory phase and the rebound activity, as
shown in F (top panel: firing rate during inhibitory / rebound phase, bottom panel: difference between the
rebound and inhibitory activity; stars indicate Wilcoxon rank test significance levels).
Figure 2–Figure supplement 1. Response patterns of Spodoptera littoralis.

Figure 2–Figure supplement 2. Control experiment with compensating airflow.

Figure 2–Figure supplement 3. Sustained firing activity measured over long periods.

6/37



Fig 3. Response properties are maintained with different odor doses. A: Raster plots
aligned to the stimulus termination, as in Figure 2C, but with different odorant doses (N=52-57
sensilla). For all doses the spiking response exceeds the short (20ms) stimulus but terminates rapidly
with the longer stimulus (2 s). B: The equivalent of Figure 2F for different odorant doses. With all
tested doses the neurons exhibited the transient inhibition after the 200ms and 2 s stimuli. C: Firing
rate shapes normalized to the peak for different stimulus durations and doses. The general shape is
independent of the odorant dose. The black bar indicates the stimulus presence.

2011). However, dependency purely on the LFP and its slope cannot fully explain the
shape of the firing rate. Particularly, the average LFP response to 200ms and 2 s is
nearly identical in the period 50ms before stimulus termination to 100ms after stimulus
termination, but the decreased firing rate indicates that the spike generating mechanism
is clearly more adapted after 2 s stimulation (Figure 5E). The comparison of LFP to
firing rate transformation between the response to 20ms and the longer stimuli is not
straightforward due to the weaker LFP response evoked by the 20ms stimulus. To
facilitate the comparison we shifted the responses by 50ms, so that the LFP decay after
20ms stimulation closely follows the LFP decay after 200ms stimulation, while the
firing rate is significantly higher (Figure 5A). These results illustrate a clear dependence
of the firing activity on the ORN’s history.

To formalize our claim we used a linear-nonlinear model to predict the firing rate
from the LFP (Figure 5A):

f(t) = N((Kf ∗ LFP)(t)). (1)

The linear kernel Kf is composed of multiple gamma distribution-shaped kernels
(Gorur-Shandilya et al., 2017; Jayaram et al., 2022) and a δ-function, therefore the
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Fig 4. Firing rate depends on the history of the input. A-C: Raw recordings of
a single ORN’s response to three different stimulus durations. D: LFP responses
averaged over 26 sensilla. Note that in response to the 2 s stimulus, LFP first increases
after the initial decrease, indicating receptor adaptation and after continues to decrease
again. This is apparent also in C. E: LFP (top) and average firing rate (bottom) aligned
at the stimulus termination. The LFP after the stimulus offset is identical for the 200ms
and 2 s stimulus, yet their firing rates are dramatically different. The dashed blue lines
indicate the response to the 20ms stimulus, but shifted by 50ms. Then the LFP time
course after the stimulus offset is identical with the 200ms stimulus, but the firing rates
again greatly differ.
Figure 4–Figure supplement 1. Multicompartmental ORN model

Figure 4–Figure supplement 2. Heterogeneity of ORN responses

Figure 4–Figure supplement 3. LFP recordings with TTX

convolution can be equivalently expressed as

Kf ∗ LFP(t) = c0 · LFP(t) +
n
∑︂

k=1

ck · (gk ∗ LFP)(t) (2)

gk(t) =

{︄

1
Γ(αk)τ

αk
k

tαk−1e
− t

τk t ≥ 0,

0 t < 0,
(3)

where ck are the linear combination coefficients and τk are the time scales αk ≥ 1 are
the shapes of the gamma distributions. N is a rectifying nonlinearity
(N(x) = max(0, x)). Using lasso regression, we found that the firing rate can be reliably
predicted from the LFP using only two time scales: 40ms and 800ms and the unfiltered
LFP (see Materials and methods and Figure 5–Figure Supplement2 for details, note
that the LFP provides a low-pass filtered representation of the depolarizing current).

We fitted the coefficients ck to a 2 s stimulus (and the preceding 1 s of spontaneous
activity) individually to each of 26 different neuron recordings by minimizing the square
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Fig 5. Slow spike-frequency adaptation is necessary to reproduce the ORNs’ behavior. A:

Illustration of the firing rate prediction process. The LFP was filtered with two different exponential kernels
with time constants τ1 and τ2. Linear combination of the filtered values and the LFP, followed by a rectifying
non-linearity, provides a prediction of the firing rate. This process is equivalent to directly convoluting the LFP
with a linear filter composed of two exponential kernels and a δ-function. B: Values of the optimal coefficients
for all the fitted neurons. Points are color coded by ORNs. C-E: Predictions of the firing rate with and
without the slow (800ms) component. Predictions with the full filter closely match the empirical firing rate
(dashed black line). The reduced filter predicts well the responses to short stimuli, but fails to predict the
response to the 2 s stimulus.
Figure 5–Figure supplement 1. Distributions of filter coefficients and their effect on spike firing properties

Figure 5–Figure supplement 2. Selection of filter time constants

Figure 5–Figure supplement 3. Firing rate prediction using odor transduction model

error between the prediction and the observed firing rate. The average values of the
coefficients were c0 = −95.4, c1 = 71.7, c2 = 20.4 (the coefficient distributions and their
mutual dependence is shown in Figure 5B and Figure 5–Figure Supplement1A). The
signs indicate that the neurons respond rapidly to LFP deflection by firing activity
(c0 < 0), which is then attenuated by adaptation on two different time scales (ck > 0,
k ≥ 1). The ratio c1+c2

c0
is negatively correlated with the steady state-to-peak ratio

(Figure 5–Figure Supplement1D). Using only the LFP (indicating the depolarization of
the neuron) and two adaptation time scales, we were able to predict very well the ORNs’
firing responses (Figure 5C-E). Despite being fit only to the 2 s pulse, the predicted
firing rate corresponds well even to the responses to the 20ms and 200ms pulses,
including the firing profile after the stimulus offset, which is different for each pulse
duration.

The presented model is the minimal model capable of capturing the shape of the
firing response. With c2 = 0 (set after the fitting procedure), the model still predicts
well the response to short stimuli (during the short period, the neuron does not become
adapted on the slow time scale), however, it does not predict the continued decrease of
firing rate during the 2 s long stimulation. If the model is fitted without the slow
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adaptation, aside from not predicting the time course of the firing rate well, the model
does not predict the prolonged responses as well (Figure 5–Figure Supplement2D-F).

We fit the model to each neuron individually, because the pheromone sensitive
ORNs of moth exhibit a significant cell-to-cell variability, as analyzed by Rospars et al.
(2014). Apart from the variability in the firing responses, we also observed variability in
the LFP shapes (in response to a 2 s stimulus). We verified that the response of a single
neuron over multiple trials is stable (exhibits little variability) compared to the
measured population Figure 4–Figure Supplement2.

It is also possible to obtain a full odor-to-firing-rate model. We used a simple
transduction model to predict the LFP from the odor concentration (Nagel and Wilson,
2011):

R
[O]kbsb

sb OR
kasa
sa OR*, (4)

LFP = OR∗ ∗ gLFP, (5)

where R are the unbound receptors, OR are bound, but not activated receptors and
OR∗ are bound activated receptors, [O] is the odorant concentration, sa and sb are the
unbinding and deactivation rates and ka and kb set the ratio between
activation/deactivation and binding/unbinding rates and gLFP is an exponential kernel
with 10ms decay (as estimated from our multicompartmental model; Figure 4–Figure
Supplement1B-C). Because the spontaneous activity of moth ORNs is very low
(0.34(3)Hz in A. ipsilon Jarriault et al., 2010; 0.5Hz to 0.8Hz in S. littoralis Pézier
et al., 2007; see also Figure 2–Figure Supplement3), we neglected the activation of
unbound receptors. The model predicts well the time course of the firing rate during
stimulation and the firing rate offset (Figure 5–Figure Supplement3).

We hypothesized that the adaptation could be facilitated by hyperpolarizing
Ca2+-gated K+ currents in the soma (Zufall et al., 1991; Lucas and Shimahara, 2002;
Pézier et al., 2007). We illustrated on a multicompartmental model that such
hyperpolarizing currents can affect the LFP by further decreasing it (Figure 4–Figure
Supplement1D-G) and could thus account for the second downward deflection of LFP
during 2 s stimulation. In such case, the second downward deflection could be removed
by abolishing the spiking activity and thus also the Ca2+ influx due to action potentials.
To test this hypothesis, we recorded the LFP after injecting the Na+ channel antagonist
tetrodotoxin (TTX, 50 µM) into the antenna. The TTX injections abolished the spiking
activity, however the secondary deflection of the LFP remained (Figure 4–Figure
Supplement3). Therefore we conclude that the secondary deflection is not caused by
hyperpolarizing currents in the soma triggered by Ca2+ influx during action potentials.

1.4 Prolonged response to short stimuli is maintained by the

antennal lobe

ORNs project their axons to the antennal lobe (AL) onto projection neurons (PNs) and
local neurons (LNs). All ORNs expressing the same odorant receptor project their
axons to the same glomerulus harboring the dendrites of PNs and LNs (Kay and
Stopfer, 2006; Wilson, 2013). PNs create excitatory connections with other PNs and
LNs provide an inhibitory feedback both to PNs and LNs. PNs then project their axons
to higher brain centers. Therefore, understanding how the PNs reshape the firing
response is essential for understanding the implications for behavior of the insect. Even
though the observation of the inhibitory phase in moth ORNs is novel, previous studies
observed the inhibitory phase in PNs, despite using the classical odor delivery device
with Pasteur pipette (Jarriault et al., 2010; Martinez et al., 2013). Moreover, PNs are
sensitive to the slope of ORN firing rate (Kim et al., 2015), which can explain their
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transient responses. These results suggest that although ORNs are not obviously
encoding the stimulus duration of short stimuli (Figure 2), the ORN responses could be
processed by the AL to provide a more accurate representation of the stimulus duration.

We used the ORN firing rates as an input to an antennal lobe model (Tuckman
et al., 2021a,b; see Materials and methods for details). We modelled a single glomerulus
containing 10 PNs and 6 LNs. PNs create random excitatory connections to PNs and
LNs withing the glomerulus and LNs create random inhibitory connection to PNs and
other LNs (Figure 6A). The PNs are equipped with small conductance Ca2+-activated
K+ channels (SK channels) which together with the inhibitory input facilitate spike
frequency adaptation and make the PNs sensitive to the slope of the ORN input, as also
observed with the Drosophila PNs (Kim et al., 2015). PNs then exhibit a transient
inhibition at the end of the stimulus, even if no transient inhibition is observed in the
ORN response, in agreement with Jarriault et al. (2010) (Figure 6B). Note that such
feature cannot be reproduced with adaptation resulting purely from synaptic depression
and LNs acting presynaptically, as suggested for Drosophila antennal lobe (Kazama and
Wilson, 2008; Nagel et al., 2015). However, the response to short stimuli still
significantly exceeds the stimulus duration (Figure 6C) and the firing profile shape with
this model does not differ greatly from the firing profile shape of ORNs (Figure 6D).
Therefore, we expect that the encoding of duration is not significantly altered by the
antennal lobe and thus the longer responses to short stimuli likely propagate further
and affect behavioral responses.

Although PNs can exhibit the inhibitory phase even when there is no inhibitory
phase in the ORN response, their precision of stimulus duration encoding is improved
by the observed dynamics in ORNs. To illustrate this, we made the ORN response less
sharp by convolving it with an exponential kernel with 100ms mean. The smoothed
ORN firing profile then did not show any inhibitory phase, but the inhibitory phase was
clear in the PN responses. However, the onset of the inhibitory phase did not mark the
offset of the stimulus, unlike in the case of the unmodified ORN firing profile (Figure
6–Figure Supplement1).

2 Discussion

2.1 Tri-phasic response of moth ORNs

We found qualitative differences between the responses to short (¡200ms) and long
(¿200ms) stimuli. While the spiking response to a short stimulus exceeds the stimulus
duration, spiking response to a long stimulus ends with the stimulus. The response to
long stimuli marks precisely the stimulus offset with an inhibitory phase. The inhibitory
phase was followed by rebound activity. The intensity of the rebound activity increased
both with stimulus duration and odor dose.

The observed firing pattern is reminiscent of the pattern observed previously in PNs.
Our results therefore show that encoding of temporal structure of the plume happens
already at the level of ORNs and not only at the level of PNs, as previously thought
(Jarriault et al., 2010; Rospars et al., 2014; Tuckman et al., 2021b,a). Moreover, we
showed with a simulation that the precise encoding of temporal structure by ORNs also
improves the encoding by the PNs, compared to ORN responses with slow offset.

Inhibitory phase marking the end of stimulus has also been observed with various
receptor-odor combinations in Drosophila (Nagel and Wilson, 2011; Martelli et al., 2013;
Kim et al., 2011, 2015). Moreover, we observed independence of the firing response
shape on the odor dose, also previously reported in Drosophila with volatile odors. The
newly observed similarities between Drosophila and moth ORNs unite the research in
these different species.
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Fig 6. Modelling the antennal lobe. A: Illustration of the used model. B: The response end is clearly
marked by an inhibitory phase, regardless of the stimulus duration (increasing from top to bottom, 3ms to 5 s).
The y-axis ranges from 0Hz to 20Hz. C: Although the inhibitory phase clearly marks the response end, the
spiking response duration still exceeds significantly the stimulus duration for stimuli shorter than 200ms. D:

Average firing rates of the PNs in response to stimuli of different durations. Dotted ORN firing rates were used
as an input. Note that the ORN input firing rate is not to scale and is normalized to the peak of the PN firing
rate for shape comparison.
Figure 6–Figure supplement 1. PNs do not track odor pulse durations if ORN response is smooth

The inhibitory phase was followed by a sustained increase in the firing activity long
after the stimulus termination and also a sustained LFP below the pre-stimulus level,
indicating that the sustained firing activity is due to sustained activity of the receptors.
With classical odor delivery devices with a Pasteur pipette, such sustained activity
could be explained by a slow release of pheromone molecules after closing the valve that
controls the stimulus. However, in our experiments, we strongly reduced the possibility
of any pheromone molecules adhering to the odor delivery device. The sustained
activity could be caused instead by odor molecules adhering to the sensilla and / or it
could represent an elevated probability of spontaneous OR-Orco channel opening after
prolonged ligand-receptor interaction.

Regardless of the exact mechanism leading to the sustained activity, ORNs seem to
remain slightly depolarized long after the stimulus termination and the their detection
threshold is thus decreased. It is possible that ORNs evolved to have a very low
spontaneous activity prior to any stimulation and after sufficient pheromone exposure
the activity is increased in order to decrease the detection threshold and ORNs should
respond with higher intensity following a previous stimulus.

Sensitization of ORNs was observed in Drosophila ORNs (Getahun et al., 2013) and
with heterologously expressed OR-Orco proteins (Mukunda et al., 2016). This OR
sensitization process requires Orco activity and was proposed to depend on cAMP
production that would activate two feedback loops involving protein kinase and
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Ca2+-calmodulin (Wicher, 2018).

2.2 Mechanism of the spike frequency adaptation

In Drosophila melanogaster, adaptation properties could be captured with a bi-lobed
linear filter with a temporal width of approximately 200ms (Nagel and Wilson, 2011;
Martelli et al., 2013; see Brandão et al., 2021 for a recent review). Studies of ORN
adaptation in moths suggest that their adaptation is slower (Jacob et al., 2017;
Levakova et al., 2019). However, the moth studies related the firing activity to the
binary state of the electrovalves controlling the odor delivery, it is therefore difficult to
assess to what extent the observed signal processing timescales are a property of the
odor delivery device or a property of the neuron.

We circumvented this issue by simultaneously measuring the local field potential
(LFP) in the sensilla, where the ORN’s outer dendrite resides. The LFP is tightly
correlated with the depolarizing current entering the ORN. We built a model of
transformation of the depolarizing current to the spiking activity and performed an
optimization procedure which allowed us to narrow down the adaptation processes to
only two time-scales, which are not directly inferable from the linear filters and
importantly, provide novel insights into the possible mechanisms leading to the
adaptation.

We showed that the shape of the ORN’s firing response can be very well captured
with only two adaptation time scales: 40ms and 800ms. This is the minimal model
capable of explaining the transiency of the firing response and the observed temporal
resolution limits of the ORN.

The slow adaptation time constant 800ms approximately corresponds to Ca2+

extrusion time scales (0.4 s to 1 s in Drosophila ORNs; Si et al., 2019). This indicates
that the adaptation of the spike generating mechanism could be Ca2+ dependent. Moth
ORNs express Ca2+-gated potassium channels (Lucas and Shimahara, 2002 in Mamestra
brassicae; Zufall et al., 1991 in Manduca sexta; Pézier et al., 2007 in S. littoralis). Their
expression in the soma would result in hyperpolarizing currents upon their activation.

Inactivation of voltage gated sodium channels (NaV) could also be responsible for
the phasicity of the spiking response (Lundstrom et al., 2008; Platkiewicz and Brette,
2010, 2011; Nagel and Wilson, 2011). However, the timescales typical for inactivation
(and reactivation) of NaV channels (4.8ms measured in cultured honeybee ORNs
(Kadala et al., 2011)) were not necessary to reproduce the firing rate profiles. Some
NaV channels also exhibit adaptation at slower time scales (Fleidervish et al., 1996; Kim
and Rieke, 2003; Badel et al., 2008; Wang et al., 2013; Sarno et al., 2022). Patch clamp
experiments on insect ORNs designed to measure slow adaptation of NaV channels in
insect ORNs would help to understand the physiological mechanisms behind their
adaptation.

2.3 Modelling the ORN response

We proposed a minimal model that links the stimulus to the firing rate which captures
well the firing profile of responses to isolated square pulses. This model can be easily
used to model the input to the higher brain centers, which is otherwise often modelled
as a piece-wise exponential function (Belmabrouk et al., 2011; Tuckman et al., 2021a,b).
It can be extended to model the responses to more complex stimuli; however, the model
captures all the features essential for our work. The following extensions could be
considered:

1. Adaptation of the odor receptors

2. Persistent receptor activity
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3. Nonlinearity of the slow adaptation process

Various receptor adaptation models were proposed for Drosophila ORNs (Nagel and
Wilson, 2011; Cao et al., 2016; Gorur-Shandilya et al., 2017) and we believe that these
models could be also successfully applied to the moth ORNs. However, in the case of
moth, the long lasting pheromone transduction pathway (due to pheromone adherence
to the sensilla and / or sustained increased probability of spontaneous receptor opening)
needs to be included as well to balance the adaptation and maintain receptor activity
after the stimulus offset and avoid transient LFP overshoot, as observed in some
Drosophila ORNs (Nagel and Wilson, 2011). It is also possible that the physics of fluid
(air) movement across morphologically distinct antennal types (globular in Drosophila,
feather-like in A. ipsilon), and the wingbeat frequency of the insect (200Hz in
Drosophila, 5Hz to 20Hz in moths) that re-sculpt the odor plume could have both
contributed to the evolution of the differentiated transduction process.

Our linear-nonlinear model predicts well the time course of the firing rate during
stimulation and its offset after stimulus termination. However, the predicted duration of
the inhibitory period is longer than what we generally observe. We believe that this can
be explained by a voltage dependency of the slow adaptation process. Such non-linearity
seems plausible, since either the NaV channels can recover faster at low membrane
potential values, or the voltage dependency of the Ca2+-gated K+ channels causes them
to close rapidly at low membrane potential values (Lucas and Shimahara, 2002).

2.4 Implications for behavior and navigation efficiency

Behavioral experiments showed that male moths reach the pheromone source most
reliably and with the least amount of counter-turning if the source is pulsating
(Kennedy et al., 1980; Willis and Baker, 1984; Mafra-Neto and Cardé, 1994).
Particularly, in (Mafra-Neto and Cardé, 1994), the pulse duration was 130ms and the
air-gap duration between pulses was 83ms (experiments done with the almond moth
Cadra cautella). These observations correlate well with our results showing that the
ORNs exhibit prolonged firing response to short (¡200ms) stimuli. Moreover, prolonged
response to very short stimuli (e.g., 3ms) can ensure that the brief encounter is
registered by the brain and can be acted upon.

On the other hand, the slow (800ms) adaptation allows the moth to respond rapidly
to a loss of pheromone signal after a prolonged exposure, but possibly also to adapt to
the background intensity within a pheromone plume. If the prolonged firing response to
short stimuli causes prolonged upwind flight after stimulus offset, we expect faster
switching from upwind flight to zig-zag casting after the stimulus offset with longer
stimuli. Such behavioral experiments could show a clear connection between the
temporal structure of the ORN and PN response and behavior.

3 Materials and methods

3.1 Insects

A. ipsilon and S. littoralis adult males were fed on an artificial diet. Pupae were sexed
and males and females were kept separately in an inversed light–dark cycle (16 h:8 h
light:dark photoperiod) at 22 °C. Experiments were carried out on 5-day-old males.

3.2 Chemicals

The main components of the pheromones of A. ipsilon (Z7-12:Ac, CAS 14959-86-5) and
S. littoralis (Z9,E11-14:Ac, CAS 50767-79-8) were bought from Pherobank (purity ¿
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99%). Linalool (CAS 78-70-6, purity ¿ 97%,) α-pinene (CAS 80-56-8, purity ¿98%) and
acetone (CAS 67-64-1) were bought from Sigma-Aldrich. They were diluted at 10% in
mineral oil (CAS 8012-95-1).

3.3 Odor delivery

Our odor delivery device is based on 2 serially connected electrovalves. The first
electrovalve (any of EV1 - EV8, further referred to as upstream valve) odorizes the
passing airflow. The second electrovalve (EV9, downstream valve) controls the timing of
the stimulus (Figure 1–Figure Supplement1).

A charcoal-filtered and humidified air stream (2.5 bar) is divided into 8 flows
(200mL/min each) with an airflow divider (LFMX0510528B, The Lee Company,
Westbrook, CT, USA). Each of the 8 flows is connected to a 3-way electrovalve (EV1 to
EV8; LHDA1223111H, The Lee Company). Normally opened (NO, non-odorized) and
normally closed (NC, odorized) exits of the eight valves are connected to a low
dead-volume manifold (MPP-8, Warner Instruments, Holliston, MA, USA) or to odor
sources, respectively. The non-odorized airflow permanently bathes the insect
preparation. All outlets of odor sources are connected to a second MPP-8 manifold that
is connected to an electrovalve (EV9; LHDA1233215H, The Lee Company). The NO
exit of EV9 is introduced within a vacuum system. A small glass tube (10mm total
length, 1.16mm internal diameter) bent at 90◦ facilitated focusing the stimuli on the
insect antenna. EV9 and the small bent tube are thus the sole surface on which odor
puffs controlled by EV9 can adsorb and thus alter the stimulus dynamics. The outlet of
the small tube is positioned under the dissecting microscope at 1mm from the recorded
sensilla. An aluminium shield connected to the ground around EV9 minimizes artifacts
during opening and closing of the valve. The downstream part of the stimulator (from
manifold to EV9 and the attached small bent tube) was decontaminated after each
experiment for 60min at 80 °C with an airflow injected from the small bent tube and
EV9 activated. All tubing but the exit of the permanent airflow was made of Teflon
(internal diameter 1.32mm). The shape of stimuli delivered to the antenna was
measured with a mini PID (Aurora Scientific Inc, Aurora, Canada).

3.3.1 Equilibration and stability of the odor source

After opening the upstream electrovalve two processes are at play when an airflow
passes through the odor source, with opposite effects on the concentration of odor
reaching the downstream electrovalve, EV9.

1. Dilution of the head-space, which reduces the concentration of odor delivered to
EV9 with an effect that increases with time until an asymptote is reached
corresponding to an equilibrium of odor molecules passing from the liquid phase
to the gas phase and those carried out of the vial by the airflow.

2. Reversible binding of odor molecules to the surfaces of the odor delivery device,
which reduces the concentration of odor delivered to EV9 with an effect that
gradually decreases over time until it becomes null when the
adsorption/desorption equilibrium is reached.

We verified with linalool (diluted at 10%) and the PID how long the upstream valve
must be open before the odor concentration delivered to the downstream valve is
constant (further referred to as equilibration time). With no or short equilibration times
(≤2 s), PID responses were not square but had a decreasing amplitude indicating that
the dilution of head-space was dominant. When the equilibrium time was at least 10 s,
the PID response to a 0.5 s stimulus was square. Increasing the equilibration time to
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Table 1. Number of sensilla recorded for each pulse duration. Number of neurons that
responded by firing at least 5 spikes in the first 100ms after stimulus onset is in the
brackets.

pulse duration: 3ms 5ms 10ms 20ms 50ms 100ms
22 (7) 22 (13) 23 (21) 22 (20) 21 (20) 23 (22)

pulse duration: 200ms 500ms 1 s 2 s 5 s
23 (22) 23 (23) 23 (22) 23 (22) 23 (22)

more than 10 s had very little effect on the amplitude of the PID response (Figure
1–Figure Supplement2A-B). When using α-pinene and acetone, more volatile molecules
than linalool, we kept the same 10 s equilibration time.

Since the PID cannot monitor pheromone stimuli, the equilibration time with
pheromone was adjusted by measuring the amplitude of SSR responses to a 0.5 s
stimulus with 100 pg of Z7-12:Ac. Equilibration times of 1 s, 3 s, 10 s, 30 s, 78 s were
tested both in ascending and descending order. Stimuli were applied every 2min.
Equilibrations were stopped at each stimulus offset. The amplitude of responses
increased for equilibration times of 1 s to 30 s and then remained stable, indicating that
the odor binding to surfaces was the dominant effect (Figure 1–Figure Supplement2C).
We thus kept an equilibration time of 30 s for further experiments.

We then measured the stability of the pheromone source first by applying 9 stimuli
with 100 pg of Z7-12:Ac. Each stimulus was preceded by an equilibration time of 30 s.
The inter stimulus interval was 2min. The amplitude of responses remained constant
over the 9 stimuli (Figure 1–Figure Supplement2D).

3.4 Single sensillum recordings

For single sensillum recordings, male moths were briefly anesthetized with CO2 and
restrained in a Styrofoam holder. One antenna was immobilized with adhesive tape.

Single sensillum recordings were carried out either with tungsten electrodes or with
glass electrodes, the later allowing to record the local field potential (LFP) in addition
to the firing response of ORNs. In both cases, one electrode was inserted into the
antenna to serve as a reference. We targeted the ORNs tuned to the pheromone
constituent Z7-12:Ac. The recording electrode was inserted at the base of one of the
long trichoid sensilla located along antennal branches, the vast majority of which house
an ORN tuned to the major pheromone component Z7-12:Ac. The reference electrode
was inserted in an antennal segment next to the one bearing the recorded sensillum.
Recordings were done using a CyberAmp 320 controlled by pCLAMP10 (Molecular
Devices, San Jose, CA, USA). The signal was amplified (×100), band-pass filtered
(10Hz to 3000Hz) with tungsten electrodes or low-pass filtered (3000Hz) with glass
electrodes and sampled at 10 kHz with a Digidata 1440A acquisition board (Molecular
Devices). Spikes were sorted using Spike 2 software (CED, Oxford, Great Britain).

3.4.1 Experimental protocols

To record the firing responses to pulses of different durations (Figure 2), we performed
recordings with tungsten electrode from 23 sensilla and presented them with stimuli of
durations 3ms, 5ms, 10ms, 20ms, 50ms, 100ms, 200ms, 500ms, 1 s, 2 s and 5 s
(pheromone dose 100 pg) in a randomized order. There was a 2min gap between stimuli.
The number of recorded responses varies for each duration and is provided in Table 1.
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Table 2. Number of sensilla recorded for each duration-dose pair. Number of neurons
that responded by firing at least 5 spikes in the first 100ms after stimulus onset is in
the brackets.

20ms 200ms 2 s
10 pg 57 (28) 57 (32) 57 (32)
100 pg 55 (33) 56 (44) 54 (38)
1 ng 53 (40) 52 (39) 52 (41)

To test the responses to different pheromone doses (Figure 3), we performed
recordings with tungsten electrodes from 57 sensilla, presenting them with pulses of
durations 20ms, 200ms and 2 s in a randomized order, but with an increasing
pheromone dose. The number of responses recorded for each duration-dose pair is
provided in Table 2.

We recorded the LFP simultaneously with the spiking activity for the pulse durations
20ms, 200ms and 2 s, presented in randomized order with 3min inter-stimulus intervals
(dose 1 ng). In some recordings with the glass electrode we observed a significant change
in the shape of the firing response; particularly, the neurons started responding more
tonically with time and did not exhibit the inhibitory period after 2 s pulse anymore.
We assume that this is due to the glass electrode being more invasive than the sharper
tungsten electrode, modifying the composition of the sensillar lymph and/or damaging
the ORN. Therefore, in order to exclude neurons whose functioning was altered, we
presented one more 2 s pulse after the the initial three pulses and included the recording
in the analysis only if the second response to the 2 s pulse exhibited the inhibitory phase
(here defined as zero spikes during the interval 50ms to 500ms). In total, we used 26
out of 37 recordings, therefore 26 responses for each duration. To filter out the LFP
without action potentials we used a 15Hz 2-pole Butterworth low-pass filter.

For the experiments using TTX, the drug was dissolved (50 µM) in saline (in mM:
NaCl 154, KCl 3, glucose 24) and injected into the body of the antenna using a
syringe-driven glass micropipette. Controls were saline injections. Recordings started
5min after injection. The firing activity was completely abolished after all TTX
injections and remained intact after saline injections.

3.5 Data analysis

3.5.1 Firing frequency

We estimated the firing rates by the kernel density estimation method. Each spike was
substituted with a normal distribution probability distribution function with mean at
the spike time and standard deviation σ = bw

2 , where bw is the kernel width.
In Figure 2 we used a time dependent kernel width in order to depict the responses

to short stimuli with sufficient detail, but avoid high noise when the firing rate drops
during longer stimulation. The time dependence was given by:

bw(t) =

{︄

bwmin t < 0,

bwmax − bwmin exp (−t/τKDE) + bwmin t > 0,
(6)

where bwmin = 10ms, bwmax = 100ms, τKDE = 500ms and we assume that the
stimulus onset is at 0.

3.5.2 Response end of individual ORNs

The first inter-spike interval (ISI) that finishes after the stimulus offset and exceeds
100ms is considered as the terminating ISI and the initiating AP as the time of the
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response end. We calculated the response end only if the neuron fired at least 5 action
potentials during the first 100ms after the stimulus onset (numbers of responding
neurons provided in brackets in Table 1 and Table 2). We then calculated the time of
the response end for a group of neurons as the median of individual response ends (red
vertical lines in Figure 2 and Figure 3). Note that if the ISI after the last spike during
stimulation is longer than 100ms, the calculated response end for the ORN is before the
stimulus end.

3.6 Linear-nonlinear model for firing rate prediction

We used linear regression to predict the firing rate. As independent variables, we used
values of the past LFP convolved with a gamma distribution-shaped function with
different time constants and shape parameters (Gorur-Shandilya et al., 2017; Jayaram
et al., 2022):

x(t; τ, α) =

∫︂ +∞

0

V (t− s)
1

Γ(α)τα
tα−1e−

t
τ ds, (7)

where V is the LFP. The model is then specified by the time constants τ1, ..., τn and
the corresponding shape parameters α1, ..., αn. The estimated firing rate before the
non-linearity is specified by the coefficients c1, ..., cn:

f(t) =
n
∑︂

k=1

ckx(t; τk). (8)

We estimated the coefficients with the least square method to provide the estimate of
firing rate (estimated from the spike train with kernel width 30ms) during the 2 s
stimulus and 1 s of the preceding spontaneous activity.

In order to choose the time constants and shapes specifying the model, we initially
used a model with 20 time constant, ranging from 1ms to 3 s, equidistantly spaced on
the logarithmic scale. Moreover, we used 17 different gamma distribution shapes α
ranging from 1 to 5, equidistantly spaced. The model then contained 20× 17
independent variables. We fit the model to the average LFP and average firing rate
response during 2 s stimulus with lasso regression (optimal L1 penalty parameter was
selected with cross-validation using the LassoCV regressor in Scikit-learn (Pedregosa
et al., 2011)). The non-zero coefficients then concentrated around several (α, τ) pairs,
but mostly at the α = 1 edge, from which we selected the three time constants with
α = 1, i.e., exponential kernels (1ms, 40ms, 800ms, Figure 5–Figure Supplement2A).
For simplicity, we substituted the kernel with τ = 1ms with a δ-function.

Although the filter obtained from the full lasso regression looks different from the
filters obtained with only three exponential kernels (Figure 5–Figure Supplement2B-C),
the predicted firing rates are nearly identical (Figure 5–Figure Supplement2D-F).

3.7 Modelling odor transduction

We modelled the transduction described by Eq. 4 by a set of differential equations:

d

dt
R = sb ·OR− [O]kbsb · R, (9)

d

dt
OR = [O]kbsb · R+ sa ·OR∗ − kasa ·OR− sb ·OR, (10)

d

dt
OR∗ = −sa ·OR∗ + kasa ·OR, (11)

d

dt
LFP = − 1

τLFP
(LFP− β ·OR∗). (12)
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Table 3. Synaptic connection amplitudes.

Sexc Sinh Sslow Sstim

PN 0.01 0.0169 0.0338 0.004
LN 0.006 0.015 0.04 0.0031

R, OR and OR∗ indicate the ratios of unbound, bound and activated bound receptors,
τLFP = 10ms. The initial conditions are R = 1 and OR = OR∗ = LFP = 0. We
modelled the odor concentration as a square odor pulse: [O] = 10−11 M during
stimulation and 0 otherwise. Because we did not attempt to model the adaptation and
the sustained activity (more important with long stimuli), we fitted the parameters sb,
kb, sa, ka and β to the first 400ms after stimulus onset of the average LFP from 20ms
and 200ms stimulations. We fitted the parameters by minimizing the square error of
the prediction with the L-BFGS-B algorithm implemented in SciPy (Virtanen et al.,
2020). The fitted model parameters are ka = 6.57 · 1011 s−1M−1, sa = 7.36 s−1,
kb = 37.3, sb = 131 s−1, β = −5.67mV.

3.8 Antennal lobe model

We used a model of a single glomerulus from the AL model proposed by Tuckman et al.
(2021a). In the following, we explicitely state when we deviate from the established
model.

The glomerulus contained 10 PNs and 6 LN. The membrane potential dynamics of
i-th PN and j-th LN were governed by the following dynamics:

d

dt
V i
PN = − 1

τV
(V i

PN − EL)− giSK(t)(V
i
PN − ESK)− gistim(t)(V

i
PN − Estim)−

− giexc(t)(V
i
PN − Eexc)− giinh(t)(V

i
PN − Einh)− gislow(t)(V

i
PN − Einh), (13)

d

dt
V j
LN = − 1

τV
(V j

LN − EL)− gjstim(t)(V
j
LN − Estim)−

− gjexc(t)(V
j
LN − Eexc)− gjinh(t)(V

j
LN − Einh)− gjslow(t)(V

i
LN − Einh), (14)

where τV is the membrane time constant, gSK is the conductance of SK channels, gstim
is the excitatory conductance associated with the ORN input, gexc is the excitatory
synaptic conductance from PNs, ginh is the fast inhibitory GABAA conductance, gslow is
the slow GABAB conductance. ESK, Estim, Eexc, Einh are the reversal potentials
associated with these conductances, EL is the leak reversal potential. The reversal
potentials are expressed in nondimensional units: EL = 0, Eexc = Estim = 14

3 ,
ESK = Einh = − 2

3 . The neuron fires a spike then the membrane potential V reaches the
threshold Vthr = 1 and is then reset to EL and held at EL for τref . The synaptic
conductances gX , X ∈ {exc, inh, slow, stim} follow the equation

τX
d

dt
giX = −giX + SX

∑︂

tspike∈{ti
X
}

δ(t− tspike), (15)

where {tiX} represents the corresponding presynaptic spikes to the i-th, τX is the
synaptic time constant for the given synapse type and the conductance increases by
τXSX with each presynaptic spike arrival. SX differ for PNs and LNs and are specified
in Table 3.
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Table 4. Neuron connection probabilities.

PN→PN PN→LN LN→PN LN→LN
0.75 0.75 0.38 0.25

The SK conductance gSK was modelled only for the PNs and did not rise
instantaneously, instead followed the equations:

τrise
d

dt
giSK = −(giSK − z), (16)

τSK
d

dt
z = −z + SSK

∑︂

tspike∈{ti}

δ(t− tspike), (17)

where τrise characterizes the rise time, τSK is the decay time constant of the SK
conductance and {ti} is the set of spikes fired by the i-th PN. Note that here, for
simulation purposes, we deviate from the original model (Tuckman et al., 2021a) by
modelling giSK with a set of two equations instead of modelling the time course of giSK
following a single spike as a piece-wise function. Si

SK was drawn from a normal
distribution with mean µ = 0.5 and σ = 0.2 (negative values were set to 0).

The connection between the neurons within the glomerulus were random with
probabilities specified in Table 4.

To model the ORN input, we generated the spike trains of 104 ORNs from an
inhomogeneous Poisson process, each ORN connects to any AL neuron with a 1%
probability. The time course of each ORN was given by the average ORN firing rate
(Figure 2, note that the input therefore differs from (Tuckman et al., 2021a)). We also
added a constant ORN input of 30Hz as a means to increase the spontaneous activity,
as observed in experiments (Jarriault et al., 2010).

We simulated the network using the Brian 2 Python package (Stimberg et al., 2019).

3.9 Multicompartmental ORN model

The model is a simplified version of the moth pheromone transduction model by Gu
et al. (2009). From this model we kept the morphology and the passive conductances
(Figure 4–Figure Supplement1). The following set of equations describes the evolution
of the potentials in the individual compartments:

dVid

dt
=

Ge

Cmd(Ge +Gi)
(IR + Ild − Ie)

+
Ge

Cma(Ge +Gi)
(Ia − Ie) +

Gi

Cms(Ge +Gi)
(Ii − Ils − Iad),

(18)

dVed

dt
=

Gi

Cmd(Ge +Gi)
(Ie − IR − Ild)

+
Ge

Cma(Ge +Gi)
(Ia − Ie) +

Gi

Cms(Ge +Gi)
(Ii − Ils − Iad),

(19)

dVis

dt
=
Ii − Ils − Iad

Cms
, (20)

dVea

dt
=
Ia − Ie
Cma

. (21)
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Where the currents are described by:

Ils = Gls(Vis − Els), (22)

Ild = Gld(Ved − Vid + Eld), (23)

Ii = Gi(Vid − Vis), (24)

Ia = −Ga(Vea + Ea), (25)

Ie = Ge(Vea − Ved). (26)

IR is the receptor current, which we either calculated by fixing the LFP (Ved) and
calculating what receptor current IR is necessary to produce given LFP time course, or
we fixed the IR time course. To estimate IR from given LFP, we substituted Eq. 19 by
the numerical derivative of the LFP and expressed IR using the numerical derivative to
use in Eq. 18.

Iad is the adaptation current. We considered Iad ̸= 0 only to illustrate the effect of
adaptation currents in the soma on the LFP. In such case, we fixed the input IR to the
model and fixed the time course of the somatic membrane potential Vis to correspond to
the shape of the firing rate (again, by calculating its numerical derivative and
eliminating Eq. 20). Then we calculated the necessary Iad to balance the depolarizing
effect of IR.

We simulated the multicompartmental model with the explicit Runge-Kutta method
of order 5(4) with upper limit on integration step 0.1ms implemented in SciPy
(Virtanen et al., 2020). We used the initial conditions Ved = Vea = −35mV,
Vid = Vis = −62mV. This condition corresponds to Ie = Ild = Ii = Ils = Ia = 0, given
that IR = Iad = 0.
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Figure 1–Figure supplement 1. Schematics of the developed odor delivery device.NO: normally
open (no stimulus) and NC normally closed (during stimulus). The insect is placed 1mm after EV9.
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Figure 1–Figure supplement 2. Testing of equilibration times and source

stability. A: Traces of PID recordings of linalool with different equilibration times.
When the equilibration is too short, the PID response exhibits a transient peak. B:

With an equilibration of approximately 10 s the peak is no longer present and the
amplitude of the response does not change significantly with longer equilibration times.
C: Number of spikes recorded in 200ms in response to 100 pg of Z7-12:Ac for different
equilibration times. Each ORN was presented with 5 stimuli with different equilibration
times (1 s, 3 s, 10 s, 30 s, 79 s) either in increasing or decreasing order. For each order,
the line is an average of 3 ORNs. The black line is an average of all 6 ORNs. D: We
measured the stability of the pheromone source first by applying 9 stimuli with 0.1 ng of
Z7-12:Ac. Each stimulus was preceded by an equilibration time of 30 s. The inter
stimulus interval was 2min. Each line represents the response of a single ORN.
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Figure 2–Figure supplement 1. Response patterns of Spodoptera littoralis. A: Raster plots of
Spodoptera littoralis ORN responses to different stimulus durations, aligned to the stimulus offset, show that
the response pattern to stimuli of different durations remains unchanged. ORNs exhibit a prolonged response
to short stimuli and transient inhibition shortly after offset of long stimuli. B-D: Full firing profiles of
responses to different stimulus durations.

Figure 2–Figure supplement 2. Control experiment with compensating

airflow. To avoid mechanical artefacts during odor stimuli, we added a second
electrovalve to deliver non-odorized air. This valve was in opposing phase with the valve
that delivers odor stimuli so that the airflow sent to the antenna was constant before,
during and after stimuli. We still observed the inhibitory phase after the stimulus offset,
indicating that it is not a mechanical artefact.
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Figure 2–Figure supplement 3. Sustained firing activity measured over long periods. We first
measured the spontaneous activity during a 15min period (black dashed lines) and then stimulated the ORN
with either 10 pg (A-E) or 1 ng (F-J) dose of pheromone. Blue lines indicate the firing rate as measured by
counting spikes in 20 s bins, starting 3 s after the pulse offset. Red dashed lines show a double exponential fit.
The ORNs stimulated with a 1 ng did not return close to their spontaneous activity within the 15min period
(except for G). The fitter parameters are provided in the tables.
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Figure 4–Figure supplement 1. Multicompartmental ORN model. A: Schematic illustration of the
model. See Materials and methods for details. B-C: LFP (Ved) and the corresponding estimated receptor
current IR (normalized, LFP changed from negative to positive). Dashed is the receptor current smoothed with
an exponential filter: IR ∗ exp(−t/10ms). D: The input current from C, used as an input the model can lead
to different time course of the somatic membrane potential (Vis), depending on the adaptation currents in the
soma (E-F). In E, no adaptation current is involved (Iad = 0). In F, the adaptation current is calculated so
that the somatic membrane potential resembles the firing rate of the ORN. The adaptation current then
changes the time course of the LFP (G).
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Figure 4–Figure supplement 2. Heterogeneity of ORN responses. A-C: LFP in response to a
2 s stimulus. Each panel (color) corresponds to a single neuron presented several times with the same
stimulus. Thin lines are the individual trials, the thick line represents their average. D-F: Firing profiles
of the three different neurons. Colors represent the neuron, as in A-C. Thin lines are the individual
trials, the thick line represents their average. G: Scatter plot of the first two PCA components of the
LFP. Each black point corresponds to a different neuron, while each of the colored points represents a
single trial of one of the three neurons from A-C. The colored points are always concentrating around
one spot, indicating that the responses of each neurons are stable in time and do not capture the
heterogeneity of the whole population. H: Same as G, but for the firing rate profiles.

Figure 4–Figure supplement 3. LFP recordings with TTX. The TTX treated
ORNs (N = 7) exhibited similar LFP response shape as the control ORNs (N = 5),
including a peak in deflection towards the end of the stimulus, indicating that this slow
deflection is not caused by the spiking activity.
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Figure 5–Figure supplement 1. Distributions of filter coefficients and their effect on spike firing

properties. A: Distributions of filter coefficients c0, c1 and c2 and their mutual dependence. While c0 and c1
are tightly correlated, c2, responsible for the slow adaptation is rather independent. B: Higher amplitudes of
initial LFP deflection (min. LFP during 200ms stimulus) is correlated (Pearson correlation, p = 1.5 · 10−4)
with the peak firing rate of the neuron (calculated with bw = 30ms). C: We did not see a significant
correlation between the peak firing rate and c0 (Pearson correlation, p = 0.097). D: We saw a significant
correlation (Pearson correlation, p = 3.9 · 10−3) between the steady state-to-peak ratio (ratio of the mean firing
rate in the last 0.5 s of 2 s stimulus to the peak firing rate).
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Figure 5–Figure supplement 2. Selection of filter time constants. A: heatmap of lasso
regression coefficient values for different time constants τ and gamma distribution shapes α.
Blue indicates a negative value, red positive value and white is zero. The non-zero values
concentrate around several spots. Based on this analysis, we selected the time constants 1ms,
40ms and 800ms, which are marked by crosses in the heatmap. B: Three different linear filters:
filter corresponding to the lasso regression, filter obtained from linear regression with the three
exponential kernels with the time constants 1ms, 40ms, 800ms and filter obtained from linear
regression with only two exponential kernels (1ms and 40ms). Note the difference with Figure
5E, where the filter with two kernels is obtained by fitting a filter with three kernels and only
then removing the slow component. C: The same filters as in B, but on logarithmic scale to
accent the differences between individual filters. D-F: Predictions of firing responses with the
linear filters from B, color-coded accordingly. Note that even though the filters with three
exponential kernels and the filter obtained from the lasso regression are obviously different,
their predictions are almost identical.
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Figure 5–Figure supplement 3. Firing rate prediction using odor

transduction model. Prediction of LFP (top row) and firing rate (bottom row) using
an odor transduction model (Eq. 4-Eq. 5) combined with the linear-nonlinear model
(Eq. 1-Eq. 2). The transduction model was fit to the average LFP (first 400ms of the
20ms and 200ms stimuli) and the LN model was fit to transform the average LFP to
the average firing rate (2 s stimulus) (indicated by the dashed lines). Note that the
model neglects receptor adaptation and the sustained activity.
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Figure 6–Figure supplement 1. PNs do not track odor pulse durations if

ORN response is smooth. The raster plots at the top show the spike trains of the 10
PNs in response to the unmodified ORN firing profile (Fast input) and ORN firing
profile smoothed with exponential kernel with 100ms mean (Slow input). The PNs with
the slow input also exhibit the inhibitory phase, but do not track the stimulus duration.
The full lines in the bottom panel show the PN firing rate averaged over 36 simulations.
The dotted lines show the ORN input.
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Mathematical modeling of the spontaneous activity and
triphasic response of the moth olfactory receptor neurons
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2 Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
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1 Methods

1.1 Point process modeling

1.1.1 Spontaneous activity

To model the ISI distributions, we considered the exponential, gamma, and inverse
Gaussian distributions and their mixtures. The probability density of a spike at the
time t, considering that the previous spike happened at the time 0 is for the different
distributions:

• Exponential
fE(t) = λ exp(−λt) (1)

• Gamma

fG(t;α) =
λα

Γ(α)
tγ−1 exp(−λt) (2)

• Inverse Gaussian

fIG(t;µ) =
λ

2πx3
exp

[︃

λ(x− µ)

2µ2x

]︃

(3)

where λ stands for the intensity of the process, α and µ are distribution parameters. We
describe the mixture of two distributions as

fXY (t; θX , θY ) = qfX(t; θX) + (1− q)fY (t; θY ), (4)

where q describes the fraction of the two distributions and θX and θY are the
distribution parameters.

The parameters of the ISI distribution (θ1, θ2, q) were fitted by maximizing the joint
probability density function of the spike train {t1, . . . , tn} happening in the
experimental time window T :

p(θ1, θ2, q|{t}) =
∏︂

t∈{ti}

f(tk − tk−1; θX , θY )

⎛

⎝1−
T−tn
∫︂

0

f(u; θX , θY ) du

⎞

⎠ , (5)

the last term here represents the probability, that tn+1 > T and we assume that t0 = 0.
To obtain the result, we maximized the value of log(p(θX , θY , q|{t})) using the
L-BFGS-B method implemented in SciPy (Virtanen et al., 2020).
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1.1.2 Fitting inhomogeneous point processes

The inhomogeneous probability density function for the considered ISI distributions are
(Barbieri et al., 2001b):

• Exponential

f t
E(tk; τ |tk−1) = λ(tk) exp

[︄

−
∫︂ tk

tk−1

λ(u) du

]︄

(6)

• Gamma

f t
G(tk;α|tk−1) =

αλ(tk)

Γ(α)

[︄

α

∫︂ tk

tk−1

λ(u) du

]︄α−1

exp

[︄

α

∫︂ tk

tk−1

λ(u) du

]︄

(7)

• Inverse Gaussian

f t
IG(tk;µ|tk−1) =

λ(tk)
{︃

2π
[︂

∫︁ tk
tk−1

λ(u) du
]︂3
}︃1/2

×

× exp

⎧

⎪

⎨

⎪

⎩

−1

2

[︂

∫︁ tk
tk−1

λ(u) du− µ
]︂2

µ2
∫︁ tk
tk−1

λ(u) du

⎫

⎪

⎬

⎪

⎭

,

(8)

where λ stands for the time-dependent intensity of the process, the superscript t
indicates that the probability density function is inhomogeneous. The joint probability
density of a spike train {t1, . . . , tn} can then be expressed as (Barbieri et al., 2001b;
Brown et al., 2002):

f(t1, t2, . . . , tn ∩N(T ) = n) =
n
∏︂

k=1

r(tk|tk−1) exp

[︄

−
∫︂ tk

tk−1

r(t|tk−1) dt

]︄

×

× exp

[︄

−
∫︂ T

tk

r(t|tk−1) dt

]︄

,

(9)

where r(t|t′) is the hazard function:

r(t|tk−1) =
ft(t|tk−1)

1−
∫︁ t

tk−1
ft(u|tk−1) du

, (10)

with ft being the inhomogeneous probability density function.
In the case of a mixture process of two inhomogeneous probability density functions

f t
X and f t

Y (each representing the inhomogeneous version of a homogeneous probability
density function fX and fY respectively), we expressed the inhomogeneous probability
density function as

f t
XY (tk|tk−1) = qf t

X(tk|tk−1) + (1− q)f t
Y (tk|tk−1), (11)

where q specifies the ratio of the two probability density functions. The optimal
parameters of fX and fY can then be found by maximizing the joint probability density
of the spike train (Eq. 9). We performed this maximization numerically on the
logarithm of the joint probability density with the L-BFGS-B algorithm implemented in
SciPy (Virtanen et al., 2020).
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1.1.3 Quantile-quantile plots

In order to visually evaluate the goodness of fit of the inhomogeneous point processes,
we used the quantile-quantile plots (Q-Q plots) of a time-rescaled spike train against an
exponential distribution (Barbieri et al., 2001b,a; Brown et al., 2002). The
rate-rescaling function is defined as

R(t) =

∫︂ t

0

r(t|Ht) dt, (12)

where Ht stands for the history of the process, in this case, the most recent action
potential. The rescaled interspike intervals

τk = R(tk)−R(tk−1) (13)

should be distributed independently with an exponential distribution with a mean of 1.

1.2 ORN model

1.2.1 Spiking model.

Our model is based on the model of moth ORN in (Barta et al., 2022), which is a
simplified version of the model by Gu et al. (2009). From this model we kept the
morphology and the passive conductances (Fig. 1):

Fig 1. Schematics of the moth ORN model. The model is composed of three
compartments: The outer dendrite, where the receptor channels are located, soma,
where action potentials are initiated, hemolymph, where the reference electrode is
placed and the sensillar lymph where is placed the recording electrode.
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dVid

dt
=

Ge

Cmd(Ge +Gi)
(IR + Ild − Ie)

+
Ge

Cma(Ge +Gi)
(Ia − Ie) +

Gi

Cms(Ge +Gi)
(Ii − Ils − IHH),

(14)

dVed

dt
=

Gi

Cmd(Ge +Gi)
(Ie − IR − Ild)

+
Ge

Cma(Ge +Gi)
(Ia − Ie) +

Gi

Cms(Ge +Gi)
(Ii − Ils − IHH),

(15)

dVis

dt
=

Ii − Ils − IHH

Cms
, (16)

dVea

dt
=

Ia − Ie
Cma

. (17)

Where the currents are described by:

Ils = Gls(Vis − Els), (18)

Ild = Gld(Ved − Vid + Eld), (19)

Ii = Gi(Vid − Vis), (20)

Ia = −Ga(Vea + Ea), (21)

Ie = Ge(Vea − Ved). (22)

The current IHH describes the spike generating mechanism:

IHH = gNam
3h(Vis − ENa) + gKn

4(Vis − EK) (23)

where ENa and EK are the sodium and potassium reversal potentials, respectively; gNa,
gK are peak conductances; and m, h and n are gating variables obeying the equation:

dx

dt
= αx(Vis)(1− x)− βx(Vis)x, (24)

or equivalently:

τx(Vis)
dx

dt
= −(x− x∞(Vis)), (25)

where x is the respective gating variable, αx and βx are the activation and inactivation
functions, respectively, and

τx(Vis) =
1

αx(Vis) + βx(Vis)
, (26)

x∞(Vis) =
αx(Vis)

αx(Vis) + βx(Vis)
. (27)

The activation and inactivation functions are defined as follows:

αm = −0.32
Vis − VT − 13

exp(−(Vis − VT − 13)/4)− 1
, (28)

βm = 0.28
Vis − VT − 40

exp((Vis − VT − 40)/5)− 1
, (29)

αh = Ah exp(−(Vis − VT − VS − 17)/18), (30)

βh =
4

1 + exp(−(Vis − VT − VS − 40)/5)
, (31)

αn = −0.032
Vis − VT − 15

exp(−(Vis − VT − 15)/5)− 1
, (32)

βn = 0.5 exp(−(Vis − VT − 10)/40). (33)
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Neuron properties Hodgkin-Huxley Input

Cmd 3.28× 10−3 nF gNa 500 nS µR 7.2× 10−2 nS
Gld 0.4373 nS ENa 50mV σR 4.6× 10−2 nS
Eld −97mV gK 50 nS τR 20ms
ER 0mV EK −90mV
Gi 0.4373 nS VT −10mV
Cms 1.44× 10−3 nF VS −58mV
Gls 1.44 nS
Cma 30× 10−3 nF
Ga 3.1 nS
Ea −35mV

Table 1. Neuron parameters, including the Hodgkin-Huxley spike generator and input
parameters.

Parameters of the model are given in Tab. 1.

1.2.2 Receptor current.

We consider that an individual channel, when opened, has a conductance of gR and
stays open for the duration of τR. If the receptors open randomly with rate λR the
mean conductance and the variance are (Stoyan et al., 1987)

µR = λRτRgR, (34)

σR = gR
√︁

τRλR. (35)

We use the diffusion approximation (small gR and large λR) and model the total
conductance of the receptor channels by the Ornstein-Uhlenbeck process (Destexhe
et al., 2001; Uhlenbeck and Ornstein, 1930):

τR
dgR
dt

= −(gR − µR) + 2σR
dW

dt
, (36)

where W is the Wiener process.
The used parameters of the input are given in Tab. 1.

2 Results

2.1 Spontaneous activity can be modeled as a mixture of

inverse Gaussian and gamma distributions

We studied the activity of 10 neurons (for experiment description see (Barta et al.,
2022)), from which we recorded the spontaneous activity for 15min, then stimulated for
2 s (5 ORNs with pheromone dose 10 pg, 5 ORNs with pheromone does 1 ng) and
recorded the activity for another 15min. The activity of the neurons was elevated even
after the stimulus offset (rebound activity) and returned very slowly to the original
spontaneous activity.

Both during the spontaneous activity and during the rebound activity, in all
recorded neurons the interspike intervals (ISIs) could be clearly separated into intervals
within a burst and inter-burst intervals (IBIs) (Fig. 2A). We fit different mixed
distributions to the ISI distributions in the general form

f(t; θ1, θ2) = qf1(t; θ1) + (1− q)f2(t; θ2), (37)
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where f1(t; θ1) is the probability density function (PDF) of the ISI within a burst,
f2(t; θ2) is the PDF of the IBIs, θ1, θ2 represent the parameters of the two distributions
and q is the ratio of the two distributions. We tried the 9 possible combinations of
routinely used, distributions of ISIs: exponential, gamma, and inverse Gaussian. The
data were best fitted by a mixture of inverse Gaussian distribution for ISIs within a
burst and gamma distribution for the IBIs (Fig. 2B-C).

Fig 2. Spontaneous activity of ORNs. The spontaneous activity of 10 different ORNs was recorded
for 15min. The bimodality of their ISI distributions is clearly apparent on the log scale (A). Using the
maximum likelihood method we fit different mixed distributions to the ISI data. The panel B shows the
mean value of the log-likelihood of different models (the first letter stands for distribution with shorter
ISIs, P - exponential distribution, G - gamma distribution, IG - inverse Gaussian distribution). The
averaged values are the values relative to the exponential-exponential distribution for each model, to
remove the variability introduced by the inter-neuron variability. The vertical bar indicates the standard
error. The best fit was a mix of inverse Gaussian distribution for the bursts and gamma distribution for
the inter-burst intervals. C: Root of the square error between the CDFs and ECDFs, averaged over the
neurons. The colors correspond to B, the IG-G model is in bold, and the E-E model is in black. D:

Distribution of lengths of bursts (shortest possible burst contains two spikes). The red line indicates a
geometric distribution with the same mean.

Having separate distributions for the bursts and IBIs allows us to assign a
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Table 2. Spontaneous activity of ORNs

rate (Hz) ⟨IBI⟩ (s) burst length ⟨burst ISI⟩ (ms)
ORN1 0.18 13.9 3.2 19.5
ORN2 0.36 9.1 3.3 32.8
ORN3 0.13 15.6 2.0 41.7
ORN4 0.27 9.7 2.6 19.7
ORN5 0.44 4.5 2.0 23.5
ORN6 0.16 9.3 1.5 24.8
ORN7 0.03 51.4 1.8 33.3
ORN8 0.31 6.9 2.2 19.2
ORN9 0.09 21.3 1.9 74.5
ORN10 0.09 59.1 5.4 6.8

probability to each ISI, whether it is an IBI or an interval within a burst, and estimate
a threshold α between the two modes:

qf1(α; θ1) = (1− q)f2(α; θ2). (38)

With such a threshold, we can mark each interval as whether it belongs to a burst and
analyze the distribution of the number of spikes within a burst. We summarized the
statistics of the spontaneous activity (firing rate, average length of the IBI, average
number of spikes in one burst, average ISI between two spikes within a burst) in Tab. 2.
For most ORNs, the distribution of the number of spikes in a burst is very close to the
geometric distribution, indicating that the probability that the next ISI will be short or
long is independent of whether the previous ISI was short or long.

2.2 Modeling the rebound activity

The firing rate after the stimulus offset can be fit by a sum of two exponential functions
(Barta et al., 2022). Therefore fitted the rebound activity with a mixture of
inhomogeneous gamma and inverse Gaussian processes with their intensities is described
by a sum of two exponential functions. We evaluated the goodness of fit visually by
comparing the observed and expected ISIs with Q-Q plots and concluded that the model
fits the data well. Therefore, not only spontaneous activity but also the time-dependent
activity of moth ORNs can be modeled with the mixture of the two distributions.

2.3 Origin of the bursting pattern

Using the multi-compartmental model from (Barta et al., 2022) equipped with
voltage-gated Na+ and K+ channels to produce action potentials, we could reproduce
the bursting activity of the ORNs. However, if the spikes are generated due to time
correlations in the receptor current, they should lie within a well in the extracellular
recordings, as illustrated on the averaged action potential shape from the simulation.
However, this is not what we observe in the recordings of the spontaneous activity.
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