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Abstract

Liquid-gas two-phase flows are present in numerous industrial applications such as
aerospace propulsion, nuclear hydraulics or bubble column reactors in the chemical
industry. The simulation of such flows is of primary interest for their understand-
ing and optimization. However, the dynamics of the interface separating the gas
from the liquid can present a multiscale dynamics and thus makes simulations of
industrial processes computationally too expensive. Some modelling efforts have
been conducted on the development of cheaper multi-fluid models adapted to par-
ticular interface dynamics regime, e.g. in the separated regime where the fluids
are separated by a single smooth surface or in the disperse regime where there are
inclusions of one fluid carried by the other. Attempts of coupling between these
models have showed some progress to simulate multiscale flows like atomization,
but usually have physical or mathematical drawbacks. This thesis then pursues
the goal of proposing a unified two-scale modelling framework with appropriate
numerical methods adapted to this multiscale interface dynamics which goes from
a separated to a disperse regime. The main contributions related to this mod-
elling effort are : 1- The combination of compressible multi-fluid models of the
literature adapted to either the separated or the disperse regime into a unified
two-scale multi-fluid model relying on Hamilton’s Stationary Action Principle; 2-
The local coupling of the models with an inter-scale mass transfer both regulariz-
ing the large-scale inter face and modelling mixed regime phenomena such as in
primary break-up; 3- Enhancing the small-scale models for the disperse regimes by
adding the dynamics of geometric quantities for oscillating droplets and pulsating
bubbles, built as moments of a kinetic description. From the numerical perspec-
tive, finite-volume schemes and relaxation methods are used to solve the system
of conservative laws of the models. Eventually, simulations with the open-source
finite solver Josiepy demonstrates the regularization properties of the model on
a set of well-chosen numerical setups leading to multi-scale interface dynamics.
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Résumé

Les écoulements diphasiques liquide-gaz sont présents dans de nombreuses appli-
cations industrielles telles que la propulsion aérospatiale, l’hydraulique nucléaire
ou les colonnes à bulles dans l’industrie chimique. La simulation de ces écoule-
ments est d’un intérêt primordial pour leur compréhension et leur optimisation.
Cependant, la dynamique de l’interface séparant le gaz du liquide peut avoir une
dynamique multi-échelle et rend alors sa simulation trop coûteuse en calcul dans
un contexte industriel. Une classe de modèles - dits multi-fluides - sont moins coû-
teux pour des régimes particuliers de dynamique d’interface, par exemple lorsque
les fluides s’écoulent de part et d’autre d’une unique interface lisse dans un régime
séparé ou lorsque l’un des deux fluides est sous formes d’inclusions (gouttes ou
bulles) portées par l’autre fluide dans un régime dispersé. Le couplage de ces
modèles a été proposé pour des écoulements multi-échelles comme l’atomisation
liquide, mais un tel couplage est souvent difficile à mettre en place du point de
vue de la modélisation physique ou de ses propriétés mathématiques. Cette thèse
répond à cette problématique en proposant un cadre de modélisation unifiée à deux
échelles ainsi que des schémas numériques robustes. Les principales contributions
liées à cette modélisation sont : 1- La combinaison de modèles multi-fluides com-
pressibles de la littérature, adaptés soit au régime séparé soit au régime dispersé,
en un modèle multi-fluide unifié à deux échelles grâce au principe d’action station-
naire de Hamilton ; 2- Le couplage local des modèles avec un transfert de masse
inter-échelle régularisant l’interface à grande échelle en conservant l’énergie capil-
laire et modélisant les phénomènes de régime mixte présents dans l’atomisation
primaire ; 3- L’amélioration des modèles à petite échelle pour les régimes dispersés
en ajoutant la dynamique de quantités géométriques pour des gouttes oscillantes
ou des bulles pulsantes, construites comme des moments d’une description ciné-
tique. D’un point de vue numérique, des schémas volumes-finis adaptés aux sys-
tèmes de lois de conservation avec relaxations ont été implémentés dans le solveur
open-source Josiepy. Enfin, des simulations démonstratives des propriétés de
régularisation du modèle sont proposées sur des configurations numériques con-
duisant à des dynamiques d’interface multi-échelles.
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Introduction

Industrial and scientific context
Two-phase flows of liquid and gaseous phases appear in a variety of industrial applications. On the one hand,
some processes explicitly requires the interaction of a liquid and a gaseous phase across an interface, like a chemical
reaction or a phase transition. The amount of interface area present in the flow is then a critical parameter of these
processes. On the other hand, other flows can be globally driven by the motion of the interface, like the sloshing in
a container or the interaction of a hot gaseous flow with a liquid interface at rest (Chanteperdrix, 2004; Haegeman
et al., 2024). Other configurations are sensitive to both aspects such as atomization of a liquid jet into a spray or
bubbly flows. For introductory purposes, let us detail the flow mechanisms and physics phenomena associated with
these two configurations.

Figure 0.1: Air-assisted atomization of a liquid jet of water for different velocities of the injected air 𝑢𝑎 and water
𝑢𝑤 from Farago and Chigier (1992).

If one considers the atomization of a jet in a combustion chamber, the liquid fuel is injected through a nozzle
and the combustion can take place after the evaporation of the resulting droplets such as in diesel-like engines
(Kah, 2010; Bode et al., 2014; Oguz, 2014; Essadki, 2018) or cryogenic flames for aerospace propulsion (Habiballah
et al., 2006; Cordesse, 2020; Granger et al., 2023; Haegeman, 2025). As the phase change occurs at the interface
between the liquid and the gas, the time rate of this transition is controlled by the amount of interface area present
in the reactor. In order to control the timescale of the phase transition, large or small droplets are produced by
triggering different regimes of atomization spanning a wide range of Weber and Reynolds numbers (see Figure 0.1) by
selecting different injection velocities or nozzle geometries (Reitz and Bracco, 1979; Janodet et al., 2022). However,
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xii Introduction

the prediction of the statistical distribution in sizes of the resulting droplets is very challenging and depends on each
experimental setup. Indeed, this size distribution is obtained as the consequence of numerous complex mechanisms
encompassing interface instability, formation of filaments or thin surfaces, appearance of holes, filament and droplet
break-up, coalescence. Therefore, extensive experimental studies have been conducted to better understand the
overall dynamics of the atomization (Farago and Chigier, 1992; Faeth, 1996; Marmottant and Villermaux, 2004;
Mayer and Branam, 2004; Dumouchel, 2008; Jain et al., 2015; Warncke et al., 2017; Sharma et al., 2021; Aliseda and
Heindel, 2021). The investigation of such mechanisms is showed to be very complex such that these experimental
studies are also complemented with numerical ones to better capture the dynamics at play (Deberne et al., 2024;
Ferrando et al., 2023).

Let us then discuss the case of bubbly flows where the reaction between the two phases can occur at the interface
between the two phases or in the liquid phase after dissolution (Orejas, 1999). In this context, bubble columns are
very practical as the gas is injected at the bottom of the liquid column and the bubbles are naturally agitated within
the liquid phase thanks to their unstable upward displacement under buoyancy forces (see Figure 0.2). Although
the experimental setup is quite simple, it may bring into play several flow regimes that remain an active research
topic nowadays (Zehner and Kraum, 2000; Risso, 2018; Zamansky et al., 2023). Indeed, the dynamics of a single
bubble is quite complex as it is highly deformable under the stress enforced by the flow (Lalanne et al., 2013). The
drag endured by the bubble then changes in time, modifying its trajectory within the liquid phase (Ern et al., 2012).
The shape of the bubble also impacts in return the local flow and can generate turbulence. Furthermore, the overall
dynamics of the bubbly flow shows collective behaviours through the coalescence of bubbles, the segregation of the
bubbles and added-mass effect, which all depend on the average gaseous volume occupation in the reactor and the
sizes of the bubbles. Remark however that the bubbly flow notably differs from the atomization process as of the
gaseous inclusions are directly injected within the flow but predicting the interface area density is still of major
interest.

Figure 0.2: Lateral oscillation in a bubble column (Becker et al., 1999).

Conversely, some two-phase flow phenomena are sometimes unwanted. One example is the “boiling crisis” in
some heat exchangers when the water boiling goes from a nucleation regime with small bubbles appearing in the
liquid to a film regime where a thin layer of vapour separates the liquid phase from the heater. Indeed, such phase
change phenomenon prevents the cooling by the liquid which is replaced by the vapour that insulates the heater
(Theofanous et al., 2002) and may cause damage to the heater surface. Another drawback of the presence of a
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two-phase flow sometimes lies in the cavitation phenomenon when small bubbles appear in the liquid phase under
a sudden depressurization. The following implosion of the bubble can then cause damage on neighbouring surfaces
or generates acoustic waves. These two issues are critical for the submarines as it prematurely damages the helix
propellers or decreases the stealth of the ships.

Finally, all these phenomena occur at length- and time-scales encompassing several orders of magnitude. There-
fore, we will qualify these two-phase flows as multiscale. In this manuscript, we are particularly interested in the
atomization process with compressible phases as it is the perfect example of a multiscale flow with different interface
regimes. The length-scales span over several orders of magnitude, from the size of the injection nozzle to the smallest
droplets in the flow downstream.

A broad classification of the interface regime is proposed in Ishii and Hibiki (1975), and, as far as the atomization
is concerned, we identify the following regimes:

• The separated regime describes a sufficiently regular interface such that the length-scale of the interface dynamics
is comparable or larger than the length-scales of the bulk phase, and no arbitrary small length-scales arise from
the flow dynamics.

• The mixed regime involves arbitrarily small length-scales as the interface surface undergoes topological changes
through pinching, filament break-up or apparition of holes. Such regime encompasses the primary break-up
when the first liquid inclusions appear.

• The disperse regime corresponds only to small inclusions of one phase (here the liquid) carried by the other (the
gas), where the inclusions can break up again in smaller ones (also known as secondary break-up), or coalesce
with other inclusions. Due to the large number of inclusions, this regime is often described statistically through
a distribution over a phase-space characterizing the inclusions: size, shape, velocity, temperature, ….

These regimes are schematically represented in Figure 0.3.

Figure 0.3: Schematic representation of an atomization of cryogenic injectors in aerospace engines (Cordesse, 2020).

With such different interface regimes, it is common to focus on a single regime to capture a smaller amount of
phenomena, that can be efficiently described. Consequently, numerous models have been developed to tackle each of
these regimes.

A wide variety of two-phase flow models

Different length-scales and different models
The choice of the two-phase flow model is usually adapted to the regime of interest and proposes different levels of
details for the description of the interface, both its dynamics and capillarity phenomena. Let us briefly describe each
class of models from the smallest length-scale level of description of the interface to the largest.

When including in the modelling the full spectrum of length-scales, a family of models that can be referred to as
Phase Field Diffuse Interface Model (DIM) that proposes to describe continuously the transition from one phase to
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the other and involves a potentially very small length scale, which will have to be resolved, which is the thickness
of the interface. Many models fall within this category, such as Cahn-Hilliard models (Cahn and Hilliard, 1958),
Korteweg materials (Korteweg, 1901; Dunn, 1986; Dunn and Serrin, 1986) or second-gradient models (Gouin, 1996;
Seppecher, 2002). Despite relying on a solid thermodynamic model (see the recent derivation from the kinetic level
of description by Giovangigli (2021)) and thus a proper mathematical structure (Giovangigli et al., 2023), they are
of limited use in ambient conditions, where the physical thickness of the interface only reaches a few nanometers.

At a larger scale, that is if the thickness of the interface is not described in the model, sharp interface models
(Sussman et al., 1994; Vaudor et al., 2017) enable a non-ambiguous location of the interface as a discontinuity of the
material properties. These strategies can be viewed as the coupling of single-fluid systems across a sharp and moving
boundary. Therefore, the chosen numerical schemes must track the location of the interface during the simulations.
For instance, in Volume Of Fluid (VOF) methods (Rudman, 1998; Gueyffier et al., 1999; Scardovelli and Zaleski,
1999) or Front-Tracking methods (Chern et al., 1986; Unverdi and Tryggvason, 1992; Popinet and Zaleski, 1999;
Glimm et al., 2000), the location of the interface is tracked with an advected colour function, Level-Set methods
use distance functions (Sussman et al., 1994; Desjardins and Moureau, 2010), or Coupled Level-Set VOF methods
combines the advantages of each method, which are respectively a fine description of geometric properties and better
mass conservation (Sussman and Puckett, 2000; Ménard et al., 2007; Vaudor et al., 2017). These approaches are
sometimes used in what can be referred to as Direct Numerical Simulations (DNS) regarding the capture of the
interface although resolving the scales cannot always be guaranteed. However, for cases involving multiple interface
topology regimes, implementing these approaches requires to reconstruct the interface at all relevant scales. This can
lead to an unreasonably high computational cost for challenging setups such as atomizations where mesh convergence
can rarely be reached (Herrmann, 2009; Shinjo and Umemura, 2010; Ling et al., 2017) (see Figure 0.4). Despite its
inherent high computational cost, it remains a well-adopted technique to investigate the atomization process (Janodet
et al., 2022) or focus on elementary, but complex, two-phase flow phenomena such as droplet break-up, apparition
of holes (Chirco et al., 2022), or turbulence (Martinez et al., 2021).

Figure 0.4: Resolution of a thin wave crest for different mesh resolutions from coarse (left) to fine (right) (Ling et al.,
2017).

The disperse regime is also very challenging for the DNS approach, despite the presence of a unique flow regime, the
length-scale of the flow around or within the carried inclusions can be much smaller, with several orders of magnitude.
If capturing the collective behaviour of the disperse flow is at stake, such approach becomes intractable because of
the large amount of inclusions. Therefore, some dedicated models have been proposed to tackle this specific regime,
for instance with Particle Resolved DNS or PR-DNS (Uhlmann, 2005; Uhlmann et al., 2023) where the interaction
between the fluid and rigid particles are solved with an immersed boundary approach in an incompressible context.

Another class of models are the kinetic models have been derived with the assumption of point particles described
with a Number Density Function (NDF) which accounts for the inclusions characteristics (e.g. in sizes, shapes,
temperatures). While most models assume spherical droplets with static interface shape (Williams, 1958; Dufour
and Villedieu, 2005; Essadki et al., 2018; Fox et al., 2020), others aim at modelling interface dynamics of the
inclusions, e.g. with droplet oscillation (O’Rourke and Amsden, 1987), resulting either from the mixed regime or
from agitated downstream by the gaseous flow. Analogously with the kinetic theory for gas dynamics modelling, a
Population Balance Equation (PBE) describe the dynamics of the NDF e.g. Williams (1958). It results in a high-
dimensional model which is difficult to solve with usual deterministic discretization techniques. One possibility is to
do a statistical sampling of the inclusion distribution with the Lagrangian tracking of numerous inclusions (Amsden
et al., 1989). Otherwise, a method of moments can then be used to reduce this high dimensional problem into an



Multi-fluid models xv

Eulerian reduced-order model with the transport of a finite set of moments which gathers statistical information
about the NDF (Massot et al., 1998; Laurent and Massot, 2001; Fox and Marchisio, 2007; Massot, 2007; Doisneau
et al., 2013).

Multi-fluid models

Another class of models, can efficiently reduce the complexity associated with the interface length-scale, the multi-
fluid models, which are typically obtained after an averaging process (Drew, 1990; Saurel and Abgrall, 1999). These
models stand at a relatively large scale to capture a specific interface regime, a portion of a smooth interface or
a collection of inclusions. This allows building reduced-order models for the interface dynamics and description,
usually with the advection of a single scalar information. However, various challenges arise with this approach such
as the proper modelling of capillarity depending on the flow regime or the description of the local thermodynamics
between the two fluids. In the separated regime, one can adopt a multi-fluid DIM where both immiscible phases
coexist within an artificial mixture, and one usually considers the interface to be approximately captured in the
computational domain by the transition zone from 0 to 1 of a colour function that also provides an estimator of the
interface area density (IAD). Remark that such a model, except if some specific interface compression techniques are
added to the model (Shukla et al., 2010), does not involve any interface thickness length scale as opposed to phase-
field DIM. Regarding the modelling of capillarity, the Continuum Surface Force (CSF) model of Brackbill (Brackbill
et al., 1992) accounts for the capillarity forces as a source term based on the colour function. Therefore, this allows
a volume-based approach of a surface-based phenomena, making it compatible with the multi-fluid framework. An
alternate approach involves an equivalent flux form referred to as the Continuum Surface Stress (CSS) model (Lafaurie
et al., 1994; Gueyffier et al., 1999; Perigaud and Saurel, 2005; Grenier et al., 2013; Schmidmayer et al., 2017). Other
methods based on second-gradient DIM (Jamet et al., 2001; Bueno and Gomez, 2016) are reminiscent of the Phase
Field (Cahn and Hilliard, 1958; Jacqmin, 1999) approach. They rely on an adapted thermodynamic model in order
to control the thickness of the interface. However, both multi-fluid DIM or second-gradient DIM methods cannot be
used to capture fine geometric details that are smaller than the resolution of the bulk scale, potentially related to the
interface width in the second-gradient approach. Then, the multi-fluid approach naturally introduces the notion of
large-scale dynamics which corresponds to the dynamics of the interface that can be located by the colour function
field while small-scale dynamics corresponds to the under-resolved features or small fluid inclusions that are naturally
out of reach for amenable mesh resolution.

In the disperse regime, the exact locations of the droplets or bubbles are unknown, and a mixture description
with the sole volume fraction can be retained in a multi-fluid disperse model (Baer and Nunziato, 1986; Raviart and
Sainsaulieu, 1995; Saurel et al., 2017; Drui et al., 2019; Fox et al., 2020). In such regime, capillarity effects are often
not considered as the particles are assumed spherical with no intrinsic dynamics.

Regarding the thermodynamics associated with the multi-fluid approach, the local description of the medium can
encompass several disequilibria between averaged pressures, averaged velocities and averaged temperatures. Such
disequilibria naturally appear when deriving the model with the classic averaging of the local equations (Drew, 1983).
The thermodynamics of the model is tuned either by closing some averaged quantities or by assuming partial or total
equilibria. At one end of the spectrum stands full-disequilibrium two-velocity two-pressure models, also known as
seven-equation models (volume fraction, and for each phase, density, velocity, energy) with for instance the models in
Baer and Nunziato (1986); Saurel and Abgrall (1999); Coquel et al. (2002); Guillemaud (2007b). At the other end of
the spectrum, one can consider the four-equation model where full equilibrium is considered for pressure, velocity and
temperature (Le Touze, 2015; Haegeman et al., 2024). Partial equilibrium or models with relaxation source terms
can also be considered, and leads to six- and five-equation models (Kapila et al., 2001). Let us underline that these
models do not all share the same mathematical structure regarding hyperbolicity or the definition of jump relations
in presence of discontinuous solutions (Coquel et al., 2002). Moreover, the right definition of the relaxation source
terms is a non-trivial task as different time-scales are involved, and cannot always be considered for any amplitude
of disequilibrium (Jomée, 2023; Bussac, 2023). Such issue is currently under consideration in the PhD thesis of
Haegeman (2025).
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Derivation of multi-fluid models with Hamilton’s Stationary Action Principle
As mentioned before, the multi-fluid models can be derived through a classic averaging of the local equations (Drew,
1983) but involve many averaged terms, the expression of which is unknown and are usually difficult to close. Another
derivation technique, a variational method, is the Hamilton’s Stationary Action Principle (SAP). Hamilton’s SAP,
or Least Action Principle, derives the equation of the motion thanks to an extremization problem. The strength of
this approach relies on the genericity of its modelling framework, which encompasses a wide spectrum of physical
theories from quantum physics (Dirac, 1933; Feynman, 1948; Schwinger, 1963) to general relativity (Dirac, 1974), and
of course Newtonian mechanics with the seminal works of Maupertuis, Euler and Lagrange. These works were later
interpreted within the new Hamiltonian framework by both Hamilton and Jacobi. This approach allows deriving the
equations of motion from a single scalar function the Lagrangian L defined as the difference between the kinetic and
potential energies

L = 𝐸𝑘𝑖𝑛 − 𝐸𝑝𝑜𝑡 . (1)

The associated action A is then extremized over a space-time domain Ω using a variational operator 𝛿 over family
of trajectories,

𝛿A = 0, A =
∫
Ω
L. (2)

In the context of discrete mechanical system, the Hamilton’s SAP boils down to a set of Euler-Lagrange equations
Bourguignon (2007). Inspired by its use for electrodynamics by Eckart (1938), it has later been applied to continuum
mechanics for the dynamics of solids or fluids (Herivel, 1955; Serrin, 1959; Eckart, 1960; Sedov, 1965; Salmon,
1983; Bedford, 1985; Berdichevsky, 2009; Gouin, 2020), and the specific application to multi-fluid systems was then
proposed with the works of Bedford and Drumheller (1978); Geurst (1986); Truskinovsky (1991); Gavrilyuk and
Gouin (1999).

The two-phase modelling strategy with Hamilton’s SAP relies on the a priori knowledge of the energies of a
restricted amount of physical phenomena that we want to model in order to include them in the Lagrangian energy.
Thus, it differs from the averaging approach which consider a priori all the physical phenomena, and the restriction to
specific phenomena is carried out a posteriori, through the closure of averaged terms. Numerous models have recently
been derived with Hamilton’s SAP as it provides a systematic methodology to derive models once the energies at
stake are identified, for instance bubbly flows or capillarity (Gavrilyuk, 2011; Drui et al., 2019; Schmidmayer et al.,
2017). However, such models are dedicated to the description of a single flow regime except for recent attempts of
multi-regime models (Cordesse, 2020; Di Battista, 2021) that are notably discussed hereafter.

Multi-regime strategies
In order to adapt the modelling choices to the various flow regimes in a single computational domain, Eulerian-
Eulerian (Le Touze et al., 2020) or Eulerian-Lagrangian (Herrmann, 2010; Tomar et al., 2010) coupling strategies
have been developed, but the transfers between models, with either full-volume coupling or through a preset interface
(see Figure 0.5), suffer from multiple drawbacks beyond the usual heuristics parametrizing the transfer. First, when
a coupling interface is chosen, its a priori setup is difficult to manage, and the mathematical properties of the overall
system is usually hard to study. Second, when a full-volume coupling is considered, the mass transfer from one
model to another locally changes the local volume occupation and liquid density in each model, such that unphysical
pressure variations are generated in return (Le Touze, 2015). Such mass transfer is consequently restricted to regions
where the liquid volume fractions are relatively small.

Another strategy lies in Large-Eddy Simulation (LES), where the averaged equations are filtered so that the
under-resolved small scales are modelled. Such an approach, is typically used to model turbulence, but has also
been introduced for filtering interface length-scales (Toutant, 2006; Ménard et al., 2007; Herrmann, 2015). Similarly
to the averaging of the equations, these models require the closure of the filtered term either with heuristics or
assuming a small-scale model for the interface dynamics. However, this task is all the more difficult in the turbulent
context considered by LES as both the turbulence in the neighbourhood of an interface and the small-scale dynamics
of the interface are coupled and lead to unclosed terms (Chesnel et al., 2011; Vaudor et al., 2017). Thus, the



Multi-regime strategies xvii

(a)

(b)

Figure 0.5: (a) An Eulerian-Lagrangian two-dimensional simulation of the atomization of a liquid sheet (Zuzio et al.,
2013). The coupling occurs through a fixed surface (the light-blue square shape). (b) An Eulerian-Eulerian three-
dimensional simulation of the atomization of a liquid injection (Le Touze et al., 2020). An iso-contour of the dense
volume fraction of the separated phase is plotted in blue and a disperse volume fraction field of the disperse phase
is plot red.

concomitant modelling of both phenomena is a challenging task, and we follow here another modelling strategy out
of the turbulence context.

Finally, the two-scale modelling combines two models: one for the large scale and one for the small scale where
the reduced-order model of the small-scale dynamics is included in the derivation of the two-phase model. Some
attempts of formulating such models have been proposed by Bedford and Drumheller (1978); Gavrilyuk and Saurel
(2002); Drui et al. (2019) using the Hamilton’s SAP. However, they only account for a disperse flow regime of bubbles
in a carrier liquid phase. Then, attempts of unified models describing both the separated and disperse regime have
been proposed in Devassy et al. (2015); Drui (2017); Cordesse et al. (2019, 2020); Di Battista (2021), with the
introduction of some small-scale geometric quantities. In these last two works, Hamilton’s SAP has been used to
combine a large-scale multi-fluid DIM model, adapted to the separated phase regime above a preset length threshold
with the dynamics of geometric quantities describing the small interface length-scales. Furthermore, it has been
showed that some well-chosen geometric quantities can be linked to statistical moments of the size distribution of the
inclusions in the disperse regime (Essadki et al., 2016). This suggests a possible coupling of these two-scale models
with disperse models. However, the two-scale modelling approach still suffers from limitations preventing its use for
effective simulations of flows with multiple regimes, namely:
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• no transfer from one scale to another is considered, preventing the presence of transition from one regime to
another;

• no control over the length-scales associated with each regime in the models;

• only spherical static inclusions in small-scale models, that is not realistic enough nearer to the transitional
mixed regimes where inclusions are deformed with their own dynamics of interface;

• no consistent capillarity models at both scales, which are required to balance the energies when topological
changes of the interface occur.

The work proposed in this manuscript follows this two-scale modelling strategy and offers solution to overcome
these modelling hurdles with a two-scale multi-regime regime approach or two-scale unified model that aims at both
the description of the multiple two-phase flow regimes within a unique set of equations and subsequent simulations.

Numerical schemes
In our context of compressible two-phase flows, the employed numerical schemes are built for a specific family of
partial differential equations: the systems of conservation laws. Such systems read

𝜕𝑡𝒒 + ∇ · 𝑭(𝒒) = 0, (3)

with 𝒒 a set of conserved variables and 𝑭(𝒒) a vector-valued function of the conserved variables. A particular
property of such systems relies on the existence of discontinuous weak solutions accounting for either shocks or
material contacts (Lax, 1957; Godlewski and Raviart, 1991). Such a property restricts the choice of numerical
methods to conservative ones based on a consistent discretization of the flux divergence at the interface of the
computational cell. This corresponds to a class of methods called finite-volume scheme and many schemes can be
interpreted in that framework, but we underline that a natural conservative extension of the upwind scheme was
first proposed by (Godunov and Bohachevsky, 1959). Such a method allows the resolution of the weak solution
without introducing artificial viscosity, but requires solving a non-linear problem between two constant states, also
known as the Riemann problem. Then, numerous strategies have been proposed to either build high-order extension
of the Godunov scheme, e.g. MUSCL schemes (Van Leer, 1979), ENO/WENO schemes (Harten et al., 1987), or
approximated Riemann solvers to avoid the costly solution of a Riemann problem, e.g. Rusanov (Rusanov, 1961),
HLL (Harten et al., 1983), and Roe schemes (Roe, 1981).

However, some two-phase flow DIM do not match the form (3) but also include other first-order partial differential
terms called non-conservative terms (Baer and Nunziato, 1986; Saurel and Abgrall, 1999; Kapila et al., 2001),
higher-order partial differential terms called dispersive terms (Schmidmayer et al., 2017; Tkachenko et al., 2023),
additional algebraic equations (Chanteperdrix et al., 2002) or relaxation source terms (Baer and Nunziato, 1986;
Downar-Zapolski et al., 1996; Hérard, 2007; Jomée, 2023; Bussac, 2023). Note that no general theory is available
for the study of such features, only some case-dependent theoretical elements are available. We mention here some
theoretical results for non-conservative models (Coquel et al., 2002; Gallouët et al., 2004; Forestier and Gavrilyuk,
2011; Cordesse and Massot, 2020) or for relaxation source terms (Liu, 1987; Bouchut, 1999), but the lack of global
proper mathematical theory for systems involving such terms in the general case makes the derivation of numerical
schemes model-dependent and are discussed in each of the reference aforementioned.

Besides, some multi-fluid disperse models rely on a kinetic equation and a method of moments, as McGraw (1997);
Dufour and Villedieu (2005); Marchisio and Fox (2005); Massot et al. (2010); Essadki et al. (2018); Fox et al. (2022)
and must satisfy supplementary realizability conditions (Akhiezer, 1965; Schmüdgen, 2017) that must be preserved
at the discrete numerical level to ensure the existence of a corresponding positive distribution. Realizable numerical
schemes on moments (Perthame, 1990; Bouchut, 1994; Bouchut et al., 2003; Essadki, 2018; Ait-Ameur et al., 2024)
preserve this property through the use of the underlying kinetic equation in the construction of the numerical schemes.

In the context of such an abundant literature of models and numerical schemes, we require a fast-prototyping
solver to rapidly implement, couple and test models and their dedicated schemes. Therefore, the open-source solver
Josiepy (2023), initiated by the PhD thesis of Di Battista (2021) has been chosen to fulfil this task and consists in
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a structured finite-volume solver. The modularity of the implementation enables to efficiently reproduce a hierarchy
of two-phase models derived thanks to Hamilton’s SAP in this manuscript.

Overview of the manuscript
The coupling process offered by two-scale unified models is a cornerstone for two-scale models as it allows describing
the transition between the different regimes, while ensuring critical properties such as energy conservation or a dis-
sipative structure. In the first part of this manuscript, the modelling tools for the derivation of unified models are
provided along with numerous building block models, which can be combined with each other to design the most
adequate model for a given two-phase flow. The second part of the manuscript is dedicated to the numerical methods
associated with the two-scale unified model. Moreover, simulations designed to assess the potential of the modelling
approach are proposed on demonstrative test-cases.

In Chapter 1, an overview of the derivation techniques leading to multi-fluid models is provided, and key systems
are identified in separated and disperse regimes that will be used as building blocks for the upcoming two-scale mod-
els. In Section 1.1, some mathematical properties of conservation laws are recalled before presenting the derivation
of several models of the literature. Despite an incomplete mathematical theory for systems of conservation laws, the
models always seek to satisfy the key mathematical properties that are required for well-posedness in simpler context
such as scalar equations, namely the hyperbolicity of the system, the existence of a supplementary conservation
equation and well-defined Rankine-Hugoniot jump relations. We highlight how the quest of a two-phase flow model
with such properties has influenced the various derivation techniques of the literature. Furthermore, we emphasize
another modelling challenge, mainly through the presentation of averaged models, that lies in the coupling between
the dynamics of each phase and the interface. The difficult modelling step for such models particularly lies in estab-
lishing the a posteriori closure of averaged terms. Indeed, without any assumption made on the interface regime, a
generic closure is most probably out of reach. Conversely, the derivation of two-phase flow models with Hamilton’s
SAP detailed in Section 1.2 requires an a priori knowledge of the two-phase flow regime. The method relies on the
identification of the Lagrangian energy, i.e. kinetic minus potential energies, locally present in the flow and should
gather any knowledge about the specific flow regime under consideration. In order to both assess the methodology
and demonstrate the flexibility of the method, examples of two-phase flows are derived with Hamilton’s SAP for both
the separated regime in Section 1.3 and the disperse regime in Section 1.4. Moreover, while the Sections 1.1-1.2-1.3
offers an interesting perspective on multi-fluid models of the literature, an original perspective is drawn in Section 1.4
regarding the derivation of two-velocity models with Hamilton’s SAP through the accounting of added-mass effects.

Chapter 2 is dedicated to the reduced-order modelling of the small-scale dynamics, mainly based on the as-
sumption of a small-scale disperse regime. Extending the works of Essadki et al. (2016) for polydisperse spherical
inclusions, the goal is to characterize other small-scale configurations, not just static but also with a dynamical model,
using appropriate geometric quantities. As we extensively use geometric quantities and their associated kinematic
relations, we propose in Section 2.1 a detailed presentation of the geometric quantities through introductory concepts
of differential geometry. A specific emphasis is set on the kinematic relations for closed shapes as it characterizes the
interface movement of inclusions such as droplets or bubbles. In Section 2.2, we formalize the Geometric Method of
Moments (GeoMOM), a small-scale modelling approach, based on the method of moments of a kinetic model, that
allows to describe the collective dynamics of inclusions (droplets or bubbles) with geometric quantities. Remark that,
thanks to the use of geometric quantities rather than statistical moments, such a method particularly enables the use
of the resulting models anywhere in the flow regardless of the assumption on the disperse nature of the small-scale
dynamics. This geometric information is then included within the framework of the Hamilton’s SAP at two levels.
First, the energies related to the collection of inclusions are expressed with these geometric quantities and added
in the total Lagrangian. Second, kinematic constraints between the geometric quantities are also enforced in the
variational process leading to the equations of motion. This approach is then applied to propose new models for
bubbly flows and oscillations of deformed liquid droplets. This latter model with deformed inclusions answers a first
limitation in existing two-scale models where only static droplets are accounted for, and it has lead to a contribution
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Loison et al. (2023b). It notably makes a step towards the description of mixed regime by both providing a simple
model for detached filaments and showing that handling some cases requires new oriented geometric quantities. In-
deed, these models provide clues on the right variables to use for the modelling of more complex interface dynamics
by first identifying the ones required for the minimal models – pulsating bubbles and oscillating droplets.

Chapter 3 holds the key elements for the derivation of two-scale unified models and stands as a major contribution
of this manuscript. Indeed, it provides an answer to the remaining limitations of two-scale models aforementioned by
showing how the models for both separated and disperse regimes can be combined in a single one and how we model
the interaction between each other. We proceed in three steps: 1- building a unified model with the addition of the
small-scale liquid phase as a third phase, 2- introducing an inter-scale mass transfer complying with a dissipative
structure, 3- defining a modelling length-scale separating the two scales of the model via a regularizing of the large-
scale interface. In Section 3.1, the usual concept of two-phase mixture for two-fluid models is first extended into a
unified two-scale two-phase mixture. Taking advantage of Hamilton’s SAP flexibility, classic separated multi-fluid
models and the newly proposed disperse models are combined in a single set of conservation laws. This way, we
overcome the issues of unphysical pressure variations arising with coupling techniques when the volume of one phase
is transferred to the other model. Section 3.2 then details the inter-scale transfer between the two scales within the
unified model through the addition of mass exchanges. The mathematical admissibility of such exchanges is assessed
as either a simple energy redistribution within the model or a dissipative process complying with the second principle
of thermodynamics. With the geometric quantities and their associated small-scale models introduced in Chapter
2, we assess the modelling capabilities of such inter-scale processes with the identification of parameters that can
be tuned to model the primary break-up phenomena. Polydispersion in sizes of the droplets or their deformations
resulting from the break-up of filaments can be encompassed in this approach. Finally, an innovative interface reg-
ularizing process (Loison et al., 2023a) is introduced in Section 3.3 to both locate where the inter-scale transfers
are triggered and keep the large-scale interface from developing length-scales below a preset size threshold. A key
feature of this regularization lies in its local nature that differs from usual non-local mass re-distribution processes
and in its interpretation as a local energy re-distribution between the large- and small-scale models that preserves
the mathematical properties of the model. Moreover, it is important to note that the length-scale threshold is also
introduced as a preset value and does not rely on the numerical cell size. Note that this inter-scale transfer and reg-
ularization process are tuned by the modeller as a mean to model the complex phenomena arising in the mixed regime.

Thanks to these new advances regarding inter-scale mass transfers, relevant simulations of two-scale two-phase
flows are presented in the second part of this manuscript.

In Chapter 4, we introduce the numerical strategies to solve the different parts of the two-scale unified models.
Section 4.1 focuses on a two-scale model with the regularization process connecting the large-scale flow model to a
simple small-scale model only accounting for a disperse regime characterized by its volume fraction and its interface
area density. This model involves a set of partial differential equations that can be split into terms of different natures
with time splitting techniques (Hundsdorfer and Verwer, 2003; Duarte, 2011). Due to the discontinuous nature of
the solutions, we solve numerically these equations with a Finite-Volume approach. More specifically, we separate
the convective-related part of the system from the capillarity-related one. This enables the use of classic schemes
(LeVeque, 1992; Godlewski and Raviart, 1996; Toro, 2009) such as the Godunov method that uses the exact solution
of the two-scale Riemann problem. The capillarity is present both in both the conservative fluxes in the momentum
equation and in a local Laplace pressure jump that is solved with a relaxation procedure. While the fluxes are clas-
sically discretized with an arithmetic average of gradients, the Laplace pressure jump cannot be solved with a usual
relaxation procedure on the volume fraction, like Rosenbrock methods for Differential Algebraic Equations (Hairer
and Wanner, 1996; Hundsdorfer and Verwer, 2003). Indeed, the relaxation source terms not only depends on the
volume fraction but also on its spatial derivatives. Therefore, an original implicit-explicit relaxation procedure is then
proposed to extend the usual Newton-Raphson method. This requires to solve the Laplace equation with respect of a
fictitious time by means of an explicit integration of the source terms with spatial derivatives. This approach allows
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to preserve the low complexity of the procedure in comparison with a relaxation procedure that implicitly couples
each cell with its neighbour. We propose in Section 4.2 a numerical scheme dedicated for the small-scale model
with oscillating droplets. This model is here treated separately to address the realizability issue associated with the
geometric quantities, i.e. the possibility of reconstructing a distribution represented by the moments related to the
geometric quantities obtained by GeoMOM. A specific kinetic scheme is chosen to preserve the realizability prop-
erties thanks to the exact solution of the kinetic equation associated with the dynamics of the polydisperse inclusions.

In Chapter 5, we validate the implementation for the discretization methods and some basic model properties.
This test cases all result from personal contributions of the author in the open-source solver Josiepy1. This chapter
considers each sub-model separately before integrating them all together in a full two-scale simulation in Chapter 6.
In Section 5.1, we start by assessing the convergence rate of the second-order MUSCL extension of Godunov schemes
for smooth solutions. Both material advection and sound propagation test cases are set up for the convective part of
the two-scale models. The simulation of sound propagation enables to verify that the instantaneous relaxation of the
one velocity/two-pressure model solves the one velocity/one pressure model and that the small-scale volume fraction
modifies the sound propagation velocity. The study of Riemann problems is proposed in Section 5.2 to validate that
the implemented finite-volume scheme and Riemann solvers are indeed solving the corresponding exact solutions. We
pursue in Section 5.3 by illustrating the effect of capillarity fluxes and local Laplace equation on the case of a static
droplet initialized out of the correct global Laplace pressure jump. The simulation of this test-case reveals to be
challenging as the mean curvature of the equilibrium circle shape is complex to compute accurately on a Cartesian
mesh. Finally, Section 5.4 assesses the proper dynamics for a spray of oscillating droplets without global motion
including possible external source terms.

In Chapter 6, we propose numerical studies that illustrate the potential of both the two-scale model with regu-
larization and the small-scale model of oscillating droplets in a physical context. In Section 6.1, we first consider a
compressible liquid column deformed by an impacting compressible gaseous flow. This setup has been chosen as it
develops filaments on each side of the column such that a basic multiscale interface dynamics appear. Then, it allows
us to demonstrate the efficiency of the regularization process of the large-scale interface. Moreover, we indicate how
the parametrization of the source terms enables the modelling of the evolution of interface geometry, particularly
the IAD, as the transfer occurs. A comparison is proposed with a simulation of higher fidelity coming from another
implementation of the test-case. More specifically, we estimate the source terms parameters that must be chosen
to get the same geometric characteristics. This illustrates the modelling potential for regime transition within the
two-scale unified approach. We finally propose in Section 6.2, one-dimensional simulations of a spray of oscillating
droplets that are agitated by an external source term mimicking the effect of velocity drag on oscillations. Although
this test can be considered elementary, it shows us the rich description contained in the model, especially regarding
the dynamics of geometric quantities Moreover, this model should also be considered as another building blocks
which aims to be added in a complete configuration involving all the modelling ingredients

The manuscript ends with conclusive remarks, outlooks and works in progress towards richer two-scale unified
models. The preparation of this thesis has also led to scientific communications, collaborations and contributions
which are listed in the next section.

1https://github.com/hpc-maths/josiepy

https://github.com/hpc-maths/josiepy
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Introduction

Contexte industriel et scientifique
Les écoulements diphasiques composés de phases liquides et gazeuses apparaissent dans diverses applications indus-
trielles. Certains processus impliquent directement l’interaction d’une phase liquide et d’une phase gazeuse à travers
une interface, comme pour une réaction chimique ou une transition de phase. La surface déployée par l’interface
présente alors dans l’écoulement est alors un paramètre critique de ces processus. D’autres processus sont eux com-
plètement influencés par le mouvement de l’interface, comme le ballottement dans un réservoir (Chanteperdrix, 2004;
Haegeman et al., 2024). D’autres configurations sont, elles, sensibles aux deux aspects, comme l’atomisation d’un jet
de liquide en un spray ou les écoulements à bulles. À titre introductif, détaillons les mécanismes d’écoulement et les
phénomènes physiques associés à ces deux configurations.

Figure 0.6: A atomisation assistée d’un jet d’eau liquide pour différentes vitesses de l’air injecté 𝑢𝑎 et de l’eau 𝑢𝑤 de
Farago and Chigier (1992).

Pour l’atomisation d’un jet dans une chambre à combustion, le carburant liquide est injecté par une buse, se
disperse en gouttelettes et la combustion a ensuite lieu après l’évaporation des gouttelettes obtenues, comme pour
les moteurs diesel (Kah, 2010; Bode et al., 2014; Oguz, 2014; Essadki, 2018) ou les flammes cryogéniques pour
la propulsion aérospatiale (Habiballah et al., 2006; Cordesse, 2020; Granger et al., 2023; Haegeman, 2025). Du
fait que le changement de phase se produit à l’interface entre le liquide et le gaz, la vitesse de cette transition de
phase est contrôlée par la quantité de surface interfaciale présente dans le réacteur. Afin de contrôler la vitesse de la
transition de phase, on peut choisir de produire des gouttelettes plus ou moins grosses en déclenchant différents régimes
d’atomisation sur de grandes plages de nombres de Weber et nombres de Reynolds (voir la Figure 0.6) en sélectionnant
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différentes vitesses d’injection ou géométries de buse (Reitz and Bracco, 1979; Janodet et al., 2022). Cependant, prédir
la distribution statistique en tailles des gouttelettes est très difficile et dépend de chaque dispositif expérimental. En
effet, cette distribution en taille résulte de nombreux mécanismes complexes comprenant l’instabilité de l’interface,
la formation de filaments ou de surfaces minces, l’apparition de trous, la rupture des filaments et des gouttelettes,
la coalescence. Ainsi, de nombreuses études expérimentales approfondies ont été menées pour mieux comprendre
la dynamique globale de l’atomisation (Farago and Chigier, 1992; Faeth, 1996; Marmottant and Villermaux, 2004;
Mayer and Branam, 2004; Dumouchel, 2008; Jain et al., 2015; Warncke et al., 2017; Sharma et al., 2021; Aliseda and
Heindel, 2021). L’étude de tels mécanismes est souvent très complexe, de sorte que ces dispositifs expérimentaux
sont également complétées par des études numériques afin de mieux saisir la dynamique en jeu (Deberne et al., 2024;
Ferrando et al., 2023).

Examinons maintenant le cas des écoulements à bulles où la réaction entre les deux phases se produit à l’interface
entre les deux phases ou bien dans la phase liquide après dissolution (Orejas, 1999). Pour une telle interaction,
les colonnes à bulles sont très pratiques car le gaz est injecté au bas de la colonne de liquide et les bulles sont
naturellement agitées dans la phase liquide grâce à leur déplacement instable vers le haut sous l’effet de la poussée
d’Archimède (voir la Figure 0.7). Bien que le dispositif expérimental soit assez simple, il peut mettre en jeu plusieurs
régimes d’écoulement qui restent un sujet de recherche aujourd’hui encore très actif (Zehner and Kraum, 2000; Risso,
2018; Zamansky et al., 2023). En effet, rien que la dynamique d’une seule bulle est déjà assez complexe car elle se
déforme facilement sous les contraintes imposées par l’écoulement (Lalanne et al., 2013). La traînée subie par la bulle
peut alors changer au cours du temps, modifiant sa trajectoire dans la phase liquide (Ern et al., 2012). La forme
de la bulle impacte également en retour l’écoulement local et peut générer des phénomènes turbulences. De plus, la
dynamique globale de l’écoulement à bulles présente des comportements collectifs à travers la coalescence des bulles,
la ségrégation des bulles et l’effet de masse ajoutée, qui dépendent tous de l’occupation moyenne du volume gazeux
dans le réacteur et de la taille des bulles. Il convient toutefois de noter que l’écoulement à bulles diffère notablement
du processus d’atomisation, car les inclusions gazeuses sont directement injectées dans l’écoulement sans régime de
transition pour les créer. Toutefois, la prédiction de la densité d’aire interfaciale dans l’écoulement reste d’un interet
majeur.

Figure 0.7: L’oscillation latérale dans une colonne de bulles (Becker et al., 1999).

Néanmoins, il existe aussi certains phénomènes d’écoulement diphasique qui présentent parfois des effets indésir-
ables. Un exemple est la ”crise d’ébullition” dans certains échangeurs de chaleur, lorsque l’ébullition de l’eau passe
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d’un régime dit de nucléation avec l’apparition de petites bulles dans le liquide à un régime film où une fine couche
de vapeur sépare la phase liquide de la paroi chauffante. En effet, ce phénomène de changement de phase empêche
le bon transfert de chaleur avec le liquide qui est remplacé par la vapeur, isole le dispositif de chauffage (Theofanous
et al., 2002) et peut endommager la surface du dispositif de chauffage qui n’est plus suffisamment refroidi. Un autre
inconvénient de la présence impliquant un écoulement diphasique réside dans le phénomène de cavitation, lorsque
de petites bulles apparaissent dans la phase liquide sous l’effet d’une dépressurisation brutale. L’implosion de la
bulle qui s’ensuit peut alors causer des dommages sur les surfaces voisines ou générer des ondes acoustiques. Ces
deux problèmes sont critiques, notamment pour les sous-marins, car ils endommagent prématurément les hélices des
propulseurs ou réduisent leur furtivité.

Enfin, notons que tous ces phénomènes se produisent à des échelles de longueur et de temps qui s’étalent sur
plusieurs ordres de grandeur. C’est pourquoi nous qualifierons ces écoulements diphasiques de multiscale. Dans ce
manuscrit, nous nous intéressons particulièrement au processus d’atomisation avec des phases compressibles car il
s’agit d’un bon exemple réunissant une grande partie de la compléxité d’un écoulement multi-échelle avec différents
régimes d’interface. Dans ces dispositifs, les échelles de longueur s’étendent en effet sur plusieurs ordres de grandeur:
de la taille de la buse d’injection aux plus petites gouttelettes dans l’écoulement en aval.

Une classification générale du régime lié à interface est proposée dans Ishii and Hibiki (1975), et, en ce qui concerne
l’atomisation, nous identifions les régimes suivants:

• Le régime séparé décrit une interface suffisamment régulière pour que l’échelle de longueur lié à la dynamique
de l’interface soit comparable ou plus grande que les échelles de longueur de la phase globale, et qu’aucune
petite échelle, arbitrairement petite, ne puisse résulter de la dynamique de l’écoulement.

• Le régime mixte implique des échelles de longueur arbitrairement petites car la surface de l’interface subit
des changements topologiques par pincement, rupture de filaments ou apparition de trous. Ce régime inclut
notamment l’atomisation primaire lorsque les premières inclusions liquides apparaissent.

• Le régime dispersé correspond uniquement à de petites inclusions d’une phase (ici le liquide) transportées par
l’autre (le gaz), où les inclusions peuvent alors se diviser à nouveau en plus petites (phénomène également
appelé atomisation secondaire), ou coalescer avec d’autres inclusions. En raison du grand nombre d’inclusions,
ce régime est souvent décrit statistiquement par une distribution sur un espace de phase caractérisant les
inclusions : taille, forme, vitesse, température, ….

Ces régimes sont représentés schématiquement dans la Figure 0.8.

Figure 0.8: Représentation schématique d’une atomisation d’injecteurs cryogéniques dans les moteurs aérospatiaux
(Cordesse, 2020).

Avec des régimes d’interface aussi différents, il est courant de se concentrer sur un seul régime pour représenter un
plus petit nombre de phénomènes, qui peuvent être décrits alors de manière efficace. Par conséquent, de nombreux
modèles ont été développés pour traiter chacun de ces régimes.
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Une grande variété de modèles d’écoulement diphasique

Différentes échelles de longueur et différents modèles
Le choix du modèle d’écoulement diphasique est généralement adapté à un régime d’intérêt et peut proposer différents
niveaux de détails pour la description de l’interface, à la fois sa dynamique et les phénomènes de capillarité qui y sont
attachés. Décrivons brièvement chaque classe de modèles, partant du plus petit niveau de description de l’interface
au plus grand.

Si l’on inclut dans la modélisation l’ensemble des échelles de longueur, on obtient une famille de modèles que
l’on peut nommer modèles d’interface diffuse à champs de phase et qui propose de décrire en continu la transition
d’une phase à l’autre et implique une échelle de longueur potentiellement très petite, l’épaisseur de l’interface, qui
devra être résolue. De nombreux modèles entrent dans cette catégorie, tels que les modèles de Cahn-Hilliard (Cahn
and Hilliard, 1958), ceux de Korteweg (Korteweg, 1901; Dunn, 1986; Dunn and Serrin, 1986) ou les modèles de
second gradient (Gouin, 1996; Seppecher, 2002). Bien qu’ils s’appuient sur un modèle thermodynamiquement solide
(voir la récente dérivation à partir niveau de description cinétique par Giovangigli (2021)) et donc une structure
mathématique appropriée (Giovangigli et al., 2023), elles sont d’une utilité limitée dans des conditions ambiantes, où
l’épaisseur physique de l’interface n’atteint que quelques nanomètres.

À plus grande échelle, c’est-à-dire si l’épaisseur de l’interface n’est pas décrite dans le modèle, les modèles à
interface résolues (Sussman et al., 1994; Vaudor et al., 2017) permettent une localisation précise de l’interface avec une
discontinuité des propriétés entre les fluides. Ces stratégies peuvent être considérées comme un couplage de systèmes
monophasiques à travers une frontière dynamique. Par conséquent, les schémas numériques choisis doivent suivre
l’emplacement de l’interface pendant les simulations. Parmi ces méthodes on trouve les méthodes de type Volume
Of Fluid (Rudman, 1998; Gueyffier et al., 1999; Scardovelli and Zaleski, 1999) ou les méthodes de Front Tracking
(Chern et al., 1986; Unverdi and Tryggvason, 1992; Popinet and Zaleski, 1999; Glimm et al., 2000) pour lesquelles
l’emplacement de l’interface est suivi à l’aide d’une fonction de couleur advectée, les méthodes Level-Set utilisent des
fonctions de distance (Sussman et al., 1994; Desjardins and Moureau, 2010), ou les méthodes Coupled Level-Set VOF
qui combinent les avantages de chaque méthode, qui sont respectivement une description plus précise des propriétés
géométriques et une meilleure conservation de la masse (Sussman and Puckett, 2000; Ménard et al., 2007; Vaudor
et al., 2017). Ces approches sont parfois utilisées dans ce que l’on peut appeler les simulations numériques directes ou
DNS car elles permettent la localisation précise de l’interface, bien que la résolution de toutes les échelles associées
ne puisse pas toujours être garantie. Dans les cas impliquant plusieurs régimes de topologie d’interface, la mise en
œuvre de ces approches nécessite de reconstruire l’interface à toutes les échelles pertinentes. Cela peut entraîner
alors un coût de calcul déraisonnablement élevé pour des configurations complexes telles que les atomisations où la
convergence du maillage est rarement atteinte (Herrmann, 2009; Shinjo and Umemura, 2010; Ling et al., 2017) (voir
la Figure 0.9). Malgré son coût de calcul élevé inhérent, elle reste une technique fréquemment adoptée pour étudier
le processus d’atomisation (Janodet et al., 2022) ou se concentrer sur des phénomènes d’écoulement diphasique
élémentaires, mais complexes, tels que la rupture des gouttelettes, l’apparition de trous (Chirco et al., 2022), ou la
turbulence (Martinez et al., 2021).

Figure 0.9: Résolution d’une fine crête de vague pour différentes résolutions de maillage, de grossier (à gauche) à fin
(à droite) (Ling et al., 2017).

Le régime dispersé est également très difficile pour l’approche DNS car, malgré la présence d’un régime d’écoulement
unique, l’échelle de longueur de l’écoulement autour ou à l’intérieur des inclusions transportées peut être beaucoup
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plus petite de plusieurs ordres de grandeur. De plus, s’il s’agit d’étudier le comportement collectif de l’écoulement
dispersé, cette approche devient alors impossible à mettre en œuvre en raison du grand nombre d’inclusions. Par
conséquent, certains modèles dédiés ont été proposés pour aborder ce régime spécifique, par exemple avec Particle
Resolved DNS ou PR-DNS (Uhlmann, 2005; Uhlmann et al., 2023) où l’interaction entre le fluide et les particules
rigides est résolue avec une approche de frontière immergée dans un contexte incompressible.

Une autre classe de modèles, dits cinétiques, ont, eux, été dérivés dans l’hypothèse de particules ponctuelles
décrites par une fonction de distribution qui tient compte des caractéristiques des inclusions (taille, forme, tem-
pérature, etc.). Alors que la plupart des modèles supposent des gouttelettes sphériques avec une forme d’interface
statique (Williams, 1958; Dufour and Villedieu, 2005; Essadki et al., 2018; Fox et al., 2020), d’autres visent aussi à
modéliser la dynamique de l’interface des inclusions, e.g. avec l’oscillation des gouttelettes (O’Rourke and Amsden,
1987), résultant soit du régime mixte, soit d’une agitation uléerieure par l’écoulement du gaz. De manière analogue
à théorie cinétique pour la dynamique des gaz, une équation de transport dans l’espace physique et l’espace des
phases i.e. des caractéristiques, permet de décrire la dynamique de la distributioon e.g. Williams (1958). Il en
résulte un modèle à grande dimension qui est difficile à résoudre avec les techniques de discrétisation habituelles.
Afin de palier à cette difficulté, une possibilité est d’effectuer un échantillonnage statistique de la distribution avec un
suivi Lagrangien d’un grand nombre d’inclusions (Amsden et al., 1989). Une autre possibilité consiste à utiliser une
méthode aux moments pour réduire ce problème de grande dimension en un modèle Eulérien d’ordre réduit de faible
dimension avec le transport d’un nombre fini de moments qui rassemble des informations statistiques pertinente sur
la distribution des inclusions (Massot et al., 1998; Laurent and Massot, 2001; Fox and Marchisio, 2007; Massot, 2007;
Doisneau et al., 2013).

Modèles multi-fluides
Une autre classe de modèles peut aussi réduire efficacement la complexité associée à l’échelle de longueur de l’interface,
les modèles multi-fluides, qui sont généralement obtenus après un processus de moyennisation (Drew, 1990; Saurel and
Abgrall, 1999). Ces modèles se positionnent à une échelle relativement grande pour capturer un régime d’interface
spécifique, comme une zone où l’interface lisse ou une collection d’inclusions. Cela permet de construire des modèles
d’ordre réduit pour la dynamique et la description de l’interface, généralement avec l’advection d’un champ scalaire
unique. Cependant, cette approche pose aussi différents problèmes, tels que la modélisation correcte de la capillarité
en fonction du régime d’écoulement ou la description de la thermodynamique locale entre les deux fluides. Dans le
régime séparé, on peut adopter un modèle à interface diffuse multi-fluide où les deux phases non miscibles coexistent
dans un mélange artificiel, et on considère généralement que l’interface est approximativement capturée dans le
domaine de calcul par la zone de transition de 0 à 1 d’une fonction couleur qui fournit également un estimateur de
la densité d’aire interfaciale. Il convient alors de noter qu’un tel modèle, sauf si certaines techniques spécifiques de
compression de l’interface sont ajoutées au modèle (Shukla et al., 2010), n’implique pas d’échelle de longueur liée
à l’épaisseur de l’interface, contrairement au modèles à interface diffuse à champ de phase. En ce qui concerne la
modélisation de la capillarité, le modèle Continuum Surface Force de Brackbill (Brackbill et al., 1992) tient compte des
forces de capillarité en tant que terme source basé sur la fonction couleur. Cela permet donc une approche volumique
d’un phénomène surfacique, ce qui le rend compatible avec le cadre multi-fluide. Une autre approche équivalente
au modèle précédent permet une formulation sous la forme d’un flux conservatif (Lafaurie et al., 1994; Gueyffier
et al., 1999; Perigaud and Saurel, 2005; Grenier et al., 2013; Schmidmayer et al., 2017). D’autres méthodes basées
sur les modèles à interface diffuse de type second gradient (Jamet et al., 2001; Bueno and Gomez, 2016) rappellent
l’approche utilisée pour les modèles à champ de phase (Cahn and Hilliard, 1958; Jacqmin, 1999). Elles s’appuient sur
un modèle thermodynamique modifié afin de contrôler l’épaisseur de l’interface. Cependant, les méthodes à interface
diffuse ou type second gradient ne peuvent pas être utilisées pour capturer les détails géométriques fins qui sont plus
petits que la résolution de l’épaisseur de l’interface. Enfin, l’approche multi-fluide introduit naturellement la notion
de dynamique grande échelle qui correspond à la dynamique de l’interface qui peut être localisée par le champ de la
fonction de couleur tandis que petite échelle correspond aux caractéristiques non résolues ou aux petites inclusions
fluides qui sont naturellement hors de portée de la résolution du maillage.

Dans le régime dispersé, les emplacements exacts des gouttelettes ou des bulles ne sont pas nécessaires, et une
description du mélange local avec la seule fraction de volume peut suffire dans un modèle multi-fluide dispersé (Baer
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and Nunziato, 1986; Raviart and Sainsaulieu, 1995; Saurel et al., 2017; Drui et al., 2019; Fox et al., 2020). Dans
ce régime, les effets de capillarité ne sont souvent pas pris en compte car les inclusions ou particules sont supposées
sphériques sans dynamique intrinsèque.

Maintenant, en ce qui concerne la thermodynamique associée à l’approche multi-fluide, la description locale du
mélange peut tenir compte de plusieurs déséquilibres entre chaque phase notamment entre les pressions moyennes, les
vitesses moyennes et les températures moyennes. Ces déséquilibres apparaissent naturellement lors de la dérivation
du modèle avec la moyennisation des équations locales (Drew, 1983). La thermodynamique du modèle est alors fixée
soit en fermant certaines quantités moyennées, soit en supposant des équilibres partiels ou totaux entre les phases.
D’une part, on trouve les modèles avec un déséquilibre complet à deux vitesses et deux pressions, également connus
sous le nom de modèles à sept équations (fraction volumique, et pour chaque phase, densité, vitesse, énergie), avec
par exemple les modèles de Baer and Nunziato (1986); Saurel and Abgrall (1999); Coquel et al. (2002); Guillemaud
(2007b). D’autre part, on peut considérer le modèle à quatre équations où l’équilibre complet est pris en compte
pour la pression, la vitesse et la température (Le Touze, 2015; Haegeman et al., 2024). La considération d’équilibres
partiels ou des modèles avec des termes de source de relaxation peuvent également être considérés, et conduisent
à des modèles à six et cinq équations (Kapila et al., 2001). Soulignons que ces modèles ne partagent pas tous la
même structure mathématique en ce qui concerne l’hyperbolicité ou la définition des relations de saut en présence
de solutions discontinues (Coquel et al., 2002). En outre, la bonne définition des termes sources de relaxation n’est
pas évidente car différentes échelles de temps sont impliquées et ne peuvent pas toujours être prises en compte pour
toute amplitude de déséquilibre (Jomée, 2023; Bussac, 2023). Cette question est actuellement à l’étude dans la thèse
de doctorat de Haegeman (2025).

Dérivation des modèles multi-fluides avec le principe de moindre action de Hamilton
Comme indiqué précédemment, les modèles multi-fluides peuvent être dérivés par une moyennisation des équations
locales (Drew, 1983) mais ils impliquent de nombreux termes moyennés, dont l’expression est inconnue et qui sont
généralement difficiles à exprimer. Une autre technique de dérivation, une méthode variationnelle, est le principe
de moindre action de Hamilton. Le principe de moindre action, permet de dériver l’équation du mouvement grâce
à un problème d’extrémisation. La force de cette approche repose sur la généricité de son cadre de modélisation,
qui englobe un large spectre de théories physiques allant de la physique quantique (Dirac, 1933; Feynman, 1948;
Schwinger, 1963) à la relativité générale (Dirac, 1974), et bien sûr la mécanique newtonienne avec les travaux
fondateurs de Maupertuis, d’Euler et de Lagrange. Ces travaux ont ensuite été interprétés dans le nouveau cadre
hamiltonien par Hamilton et Jacobi. Cette approche permet de dériver les équations du mouvement à partir d’une
seule fonction scalaire, le lagrangien L défini comme la différence entre l’énergie cinétique et l’énergie potentielle.

L = 𝐸𝑘𝑖𝑛 − 𝐸𝑝𝑜𝑡 . (4)

L’action associée A est alors extrémisée sur un domaine spatio-temporel Ω à l’aide d’un opérateur variationnel 𝛿 sur
une famille de trajectoires,

𝛿A = 0, A =
∫
Ω
L. (5)

Dans le contexte d’un système mécanique discret, la principe de moindre action se résume à un ensemble d’équations
d’Euler-Lagrange Bourguignon (2007). Inspiré par son utilisation en électrodynamique par Eckart (1938), il a ensuite
été appliqué à la mécanique des milieux continus pour la dynamique des solides ou des fluides (Herivel, 1955; Serrin,
1959; Eckart, 1960; Sedov, 1965; Salmon, 1983; Bedford, 1985; Berdichevsky, 2009; Gouin, 2020), et l’application
spécifique aux systèmes multi-fluides a ensuite été proposée avec les travaux de Bedford and Drumheller (1978);
Geurst (1986); Truskinovsky (1991); Gavrilyuk and Gouin (1999).

La stratégie de modélisation diphasique avec le principe de moindre action de Hamilton repose sur la connais-
sance a priori des énergies d’un nombre restreint de phénomènes physiques que nous voulons modéliser afin de les
inclure dans l’énergie lagrangienne. Elle diffère donc de l’approche par moyennisation qui considère a priori tous
les phénomènes physiques, et la restriction à des phénomènes spécifiques est effectuée a posteriori, par le biais de la
fermeture des termes moyennés. De nombreux modèles ont récemment été dérivés avec le principe de moindre action,
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car il fournit une méthodologie systématique pour dériver des modèles une fois que les énergies en jeu sont identi-
fiées, par exemple les écoulements à bulles ou la capillarité (Gavrilyuk, 2011; Drui et al., 2019; Schmidmayer et al.,
2017). Cependant, ces modèles sont souvent dédiés à la description d’un seul régime d’écoulement, à l’exception de
propositions récentes de modèles multi-régimes (Cordesse, 2020; Di Battista, 2021) que l’on va maintenant discuter.

Stratégies multi-régimes
Afin d’adapter les choix de modélisation aux différents régimes d’écoulement dans un même domaine de calcul, des
stratégies de couplage ont été développées (Herrmann, 2010; Le Touze et al., 2020), mais les transferts entre modèles,
soit avec un couplage volumique, soit à travers une interface prédéfinie (voir Figure 0.10), souffrent de plusieurs
inconvénients au-delà de l’utilisation habituelle d’heuristiques qui paramétrisent un tel transfert. Premièrement,
lorsqu’une interface de couplage est choisie, sa localisation a priori est difficile à gérer, et les propriétés mathématiques
du système global sont généralement difficiles à étudier. Deuxièmement, lorsqu’un couplage volumique est considéré,
le transfert de masse d’un modèle à l’autre modifie localement l’occupation du volume et la densité du liquide dans
chaque modèle, de sorte que des variations de pression non physiques sont générées en retour (Le Touze, 2015). Ce
transfert de masse est par conséquent limité aux régions où les fractions de volume de liquide sont relativement
faibles.

Une autre stratégie consiste à utiliser la simulation LES, où les équations moyennes sont filtrées de manière à
modéliser les petites échelles non résolues. Une telle approche est généralement utilisée pour modéliser la turbulence,
mais elle a également été introduite pour filtrer les échelles de longueur des interfaces (Herrmann, 2015; Toutant,
2006). De même que pour la moyennisation des équations, ces modèles nécessitent la fermeture du terme filtré, soit
à l’aide d’heuristiques, soit en supposant un modèle à petite échelle pour la dynamique de l’interface. Cependant,
cette tâche est d’autant plus difficile que, dans le contexte turbulent considéré par la LES, la turbulence au voisinage
d’une interface et la dynamique à petite échelle de l’interface sont couplées et conduisent à des termes complexes et
non fermés (Chesnel et al., 2011). Ainsi, la modélisation concomitante des deux phénomènes est une tâche difficile,
et nous suivons ici une autre stratégie de modélisation hors du contexte de la turbulence.

Enfin, la modélisation à deux échelles combine deux modèles : un pour la grande échelle et un pour la petite
échelle où le modèle d’ordre réduit de la dynamique à petite échelle est inclus dans la dérivation du modèle à deux
phases. Certaines tentatives de formulation de ces modèles ont été proposées par Bedford and Drumheller (1978);
Gavrilyuk and Saurel (2002); Drui et al. (2019) à l’aide du principe de moidre action. Cependant, ils ne prennent
en compte qu’un régime d’écoulement dispersé de bulles dans une phase liquide porteuse. Ensuite, des tentatives
de modèles unifiés décrivant à la fois le régime séparé et dispersé ont été proposées dans Devassy et al. (2015);
Drui (2017); Cordesse et al. (2019, 2020); Di Battista (2021), avec l’introduction de certaines quantités géométriques
à petite échelle. Dans ces deux derniers travaux, le principe de moindre action a été utilisé pour combiner un
modèle multi-fluide à interface diffuse de grande échelle, adapté au régime de phase séparée au-dessus d’une échelle
de longueur prédéfinie avec la dynamique des quantités géométriques décrivant les petites échelles de longueur de
l’interface. En outre, il a été montré que certaines quantités géométriques bien choisies peuvent être liées aux moments
statistiques de la distribution de la taille des inclusions dans le régime dispersé (Essadki et al., 2016). Cela suggère un
couplage possible de ces modèles à deux échelles avec des modèles dispersés. Cependant, l’approche de modélisation
à deux échelles souffre encore de limitations empêchant son utilisation pour des simulations d’écoulements à régimes
multiples, notamment :

• le transfert d’une échelle à l’autre qui n’est pas pris en compte, et qui empêche la présence d’une transition
d’un régime à l’autre ;

• l’absence de contrôle sur les échelles de longueur associées à chaque régime dans les modèles ;

• la seule description sphérique et statique des inclusions dans les modèles à petite échelle, ce qui n’est pas assez
réaliste à proximité des régimes mixtes transitoires où les inclusions sont déformées avec leur propre dynamique
d’interface ;

• l’absence de modèles de capillarité cohérents aux deux échelles, qui sont nécessaires pour équilibrer les énergies
lorsque des changements topologiques de l’interface se produisent.
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(a)

(b)

Figure 0.10: (a) Une simulation eulérienne-lagrangienne bidimensionnelle de l’atomisation d’une feuille de liquide
(Zuzio et al., 2013). Le couplage se produit à travers une surface fixe (la forme carrée bleu clair). (b) Simulation
tridimensionnelle eulérienne-eulérienne de l’atomisation d’une injection de liquide (Le Touze et al., 2020). Un iso-
contour de la fraction volumique dense de la phase séparée est tracé en bleu et un champ de fraction volumique
dispersée de la phase dispersée est tracé en rouge.

Le travail proposé dans ce manuscrit suit cette stratégie de modélisation à deux échelles et offre une solution pour
surmonter ces obstacles de modélisation avec une approche de régime multi-régime à deux échelles ou modèle unifié à
deux échelles qui vise à la fois la description des multiples régimes d’écoulement diphasique dans un ensemble unique
d’équations et de simulations ultérieures.

Schémas numériques
Dans notre contexte d’écoulements compressibles à deux phases, les schémas numériques employés sont construits
pour une famille spécifique d’équations aux dérivées partielles : les systèmes de lois de conservation. De tels systèmes
s’écrivent

𝜕𝑡𝒒 + ∇ · 𝑭(𝒒) = 0, (6)

avec 𝒒 un ensemble de variables conservées et 𝑭(𝒒) une fonction flux des variables conservées. Une propriété
particulière de ces systèmes repose sur l’existence de solutions faibles discontinues qui décrivent soit des chocs, soit
des discontinuités matérielles (Lax, 1957; Godlewski and Raviart, 1991). Une telle propriété restreint le choix des
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méthodes numériques à des méthodes conservatrices basées sur une discrétisation cohérente de la divergence du flux
à l’interface du volume de controle. Cela correspond à une classe de méthodes appelées schémas de volumes finis
et de nombreux schémas peuvent être interprétés dans ce cadre, mais notons tout d’aborf l’extension conservative
du schéma Upwind a été proposée pour la première fois par (Godunov and Bohachevsky, 1959). Une telle méthode
permet la résolution de la solution faible sans introduire de viscosité artificielle, mais nécessite la résolution d’un
problème non linéaire entre deux états constants, dit problème de Riemann. Par la suite, de nombreuses stratégies
ont été proposées pour construire une extension d’ordre élevé du schéma de Godunov, e.g. les schémas MUSCL
(Van Leer, 1979), les schémas ENO/WENO (Harten et al., 1987), ou des solveurs de Riemann approchés pour éviter
la résolution coûteuse d’un problème de Riemann, comme le schéma de Rusanov (Rusanov, 1961), HLL (Harten
et al., 1983), et les schémas de Roe (Roe, 1981).

Cependant, certains modèles diphasique à interface diffuse ne correspondent pas à la forme conservative (6) mais
incluent également d’autres termes différentiels du premier ordre appelés termes non-conservatifs (Baer and Nunziato,
1986; Saurel and Abgrall, 1999; Kapila et al., 2001), des termes différentiels d’ordre supérieur appelés termes dispersifs
(Schmidmayer et al., 2017; Tkachenko et al., 2023), des équations algébriques supplémentaires (Chanteperdrix et al.,
2002) ou des termes sources de relaxation (Baer and Nunziato, 1986; Downar-Zapolski et al., 1996; Hérard, 2007;
Jomée, 2023; Bussac, 2023). Il est important de noter qu’il n’existe pas de théorie générale pour l’étude de ces
systèmes, mais seulement quelques éléments théoriques au cas par cas pour chaque modèle. Nous mentionnons ici
quelques résultats théoriques pour des modèles non conservatifs (Coquel et al., 2002; Gallouët et al., 2004; Forestier
and Gavrilyuk, 2011; Cordesse and Massot, 2020) ou pour l’étude des termes sources de relaxation (Liu, 1987;
Bouchut, 1999), mais l’absence d’une théorie mathématique globale appropriée pour les systèmes impliquant de tels
termes rend la dérivation de schémas numériques dépendante du modèle et est discutée dans chacune des références
susmentionnées.

En outre, certains modèles multi-fluides dispersés reposent sur une équation cinétique et une méthode des moments
(McGraw, 1997; Dufour and Villedieu, 2005; Marchisio and Fox, 2005; Massot et al., 2010; Essadki et al., 2018;
Fox et al., 2022) et doivent satisfaire des conditions de réalisabilité supplémentaires (Akhiezer, 1965; Schmüdgen,
2017) qui doivent être préservées au niveau numérique discret pour garantir l’existence d’une distribution positive
correspondante. Les schémas numériques réalisables sur les moments (Perthame, 1990; Bouchut, 1994; Bouchut et al.,
2003; Essadki, 2018; Ait-Ameur et al., 2024) préservent notamment cette propriété grâce à l’utilisation de l’équation
cinétique sous-jacente dans la construction des schémas numériques.

Dans le contexte d’une littérature aussi abondante de modèles et de schémas numériques, nous avons alors besoin
d’un solveur de prototypage rapide pour mettre en œuvre, coupler et tester rapidement les modèles et les schémas
dédiés. Par conséquent, le solveur open-source Josiepy (2023), initié par la thèse de Di Battista (2021) a été choisi
pour remplir cette tâche et consiste en un solveur structuré de volumes finis. La modularité de l’implémentation
permet de reproduire efficacement la hiérarchie de modèles diphasiques dérivés dans ce manuscrit grâce au principe
de moindre action.

Vue d’ensemble du manuscrit
Le processus de couplage offert par les modèles unifiés à deux échelles est une étape décisive pour les modèles à deux
échelles car il permet de décrire la transition entre les différents régimes, tout en assurant des propriétés importantes
telles que la conservation de l’énergie ou une structure dissipative. Dans la première partie de ce manuscrit, les outils
de modélisation pour la dérivation de modèles unifiés sont fournis avec de nombreux modèles de base, qui peuvent
être combinés les uns avec les autres pour concevoir le modèle le plus adéquat à un écoulement diphasique donné.
La deuxième partie du manuscrit est consacrée aux méthodes numériques associées au modèle unifié à deux échelles.
Enfin, des simulations conçues pour évaluer le potentiel de cette approche de modélisation unifiée à deux échelles
sont proposées sur des cas-tests démonstratifs.

Le chapitre 1 présente une vue d’ensemble des techniques de dérivation conduisant à des modèles multi-fluides,
et identifie les systèmes clés dans les régimes séparés et dispersés qui seront utilisés comme éléments de base pour
les modèles à deux échelles à venir. Dans la section 1.1, certaines propriétés mathématiques des lois de conservation
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sont rappelées avant de présenter la dérivation de plusieurs modèles de la littérature. Malgré une théorie mathéma-
tique incomplète pour les systèmes de lois de conservation, les modèles cherchent toujours à satisfaire les propriétés
mathématiques clés qui sont requises pour la bonne pose dans un contexte plus simple tel que les équations scalaires,
à savoir l’existence d’une équation de conservation supplémentaire avec des relations de saut de Rankine-Hugoniot
bien définies. Nous soulignons comment la recherche d’un modèle d’écoulement diphasique avec de telles propriétés a
influencé les différentes techniques de dérivation de la littérature. En outre, nous mettons l’accent sur un autre défi
de modélisation, principalement à travers la présentation de modèles moyennés, qui réside dans le couplage entre la
dynamique de chaque phase et l’interface. L’étape difficile de modélisation pour de tels modèles réside en particulier
dans l’établissement de la fermeture a posteriori des termes moyennés. En effet, en l’absence de toute hypothèse
sur le régime de l’interface, une fermeture générique est très probablement hors de portée. Inversement, la dériva-
tion des modèles d’écoulement diphasique avec le principe de moindre action, détaillée dans la section 1.2, nécessite
une connaissance a priori du régime d’écoulement diphasique. La méthode repose sur l’identification de l’énergie
lagrangienne, c’est-à-dire l’énergie cinétique moins l’énergie potentielle, présente localement dans l’écoulement et doit
rassembler toutes les connaissances sur le régime d’écoulement spécifique considéré. Afin d’évaluer la méthodologie
et de démontrer sa flexibilité, des exemples d’écoulements diphasiques sont dérivés avec le principe de moindre action
pour le régime séparé dans la section 1.3 et le régime dispersé dans la section 1.4. En outre, alors que les sections
1.1-1.2-1.3 offrent une perspective intéressante sur les modèles multifluides de la littérature, une perspective originale
est dessinée dans la section 1.4 concernant la dérivation des modèles à deux vitesses avec le principe de moindre
action par la prise en compte des effets de la masse ajoutée.

Le chapitre 2 est consacré à la modélisation d’ordre réduit de la dynamique à petite échelle, principalement basée
sur l’hypothèse d’un régime dispersé à petite échelle. En prolongeant les travaux de Essadki et al. (2016) pour les in-
clusions sphériques polydisperses, l’objectif est de caractériser d’autres configurations à petite échelle, non seulement
statiques mais aussi avec un modèle dynamique, en utilisant des quantités géométriques appropriées. Comme nous
utilisons largement les grandeurs géométriques et les relations cinématiques qui leur sont associées, nous proposons
dans la section 2.1 une présentation détaillée des grandeurs géométriques à l’aide de concepts d’introduction à la
géométrie différentielle. Un accent particulier est mis sur les relations cinématiques pour les formes fermées, car
elles caractérisent le mouvement d’interface des inclusions telles que les gouttelettes ou les bulles. Dans la section
2.2, nous formalisons la méthode géométrique des moments (GeoMOM), une approche de modélisation à petite
échelle, basée sur la méthode des moments d’un modèle cinétique, qui permet de décrire la dynamique collective
des inclusions (gouttelettes ou bulles) avec des quantités géométriques. Il est à noter que, grâce à l’utilisation de
grandeurs géométriques plutôt que de moments statistiques, une telle méthode permet notamment d’utiliser les mod-
èles résultants n’importe où dans l’écoulement, quelle que soit l’hypothèse sur la nature dispersée de la dynamique à
petite échelle. Cette information géométrique est ensuite incluse dans le cadre du principe de moindre action à deux
niveaux. Premièrement, les énergies liées à la collection d’inclusions sont exprimées avec ces quantités géométriques
et ajoutées au lagrangien total. Deuxièmement, les contraintes cinématiques entre les quantités géométriques sont
également appliquées dans le processus variationnel menant aux équations du mouvement. Cette approche est en-
suite appliquée pour proposer de nouveaux modèles pour les écoulements bulleux et les oscillations de gouttelettes
de liquide déformées. Ce dernier modèle avec des inclusions déformées répond à une première limitation des modèles
à deux échelles existants où seules les gouttelettes statiques sont prises en compte, et il a conduit à une contribution
Loison et al. (2023b). Il fait notamment un pas vers la description du régime mixte en fournissant à la fois un
modèle simple pour les filaments détachés et en montrant que le traitement de certains cas nécessite de nouvelles
quantités géométriques orientées. En effet, ces modèles fournissent des indices sur les bonnes variables à utiliser
pour la modélisation de dynamiques d’interface plus complexes en identifiant d’abord celles requises pour les modèles
minimaux - commes les bulles pulsantes et gouttelettes oscillantes.

Le chapitre 3 contient les éléments clés pour la dérivation des modèles unifiés à deux échelles et constitue une
contribution majeure de ce manuscrit. En effet, il apporte une réponse aux limitations restantes des modèles à
deux échelles mentionnées ci-dessus en montrant comment les modèles pour les régimes séparés et dispersés peuvent
être combinés en un seul et comment nous modélisons l’interaction entre ceux-ci. Nous procédons en trois étapes
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: 1- construction d’un modèle unifié avec l’ajout de la phase liquide à petite échelle comme troisième phase, 2-
introduction d’un transfert de masse inter-échelle conforme à une structure dissipative, 3- définition d’une échelle de
longueur de modélisation séparant les deux échelles du modèle via une régularisation de l’interface à grande échelle.
Dans la section 3.1, le concept habituel de mélange biphasique pour les modèles à deux fluides est d’abord étendu
à un mélange biphasique unifié à deux échelles. En tirant parti de la flexibilité du principe de moindre action, les
modèles multi-fluides séparés classiques et les modèles dispersés nouvellement proposés sont combinés en un seul
ensemble de lois de conservation. De cette manière, nous surmontons les problèmes de variations de pression non
physiques découlant des techniques de couplage lorsque le volume d’une phase est transféré dans l’autre modèle. La
section 3.2 détaille ensuite le transfert entre les deux échelles au sein du modèle unifié par l’ajout d’échanges de
masse. L’admissibilité, du point de vue mathématique ,de ces échanges est évaluée comme une simple redistribution
d’énergie au sein du modèle ou comme un processus dissipatif conforme au deuxième principe de la thermodynamique.
Avec les quantités géométriques et leurs modèles associés à petite échelle introduits au chapitre 2, nous évaluons les
capacités de modélisation de ces processus inter-échelles avec l’identification des paramètres qui peuvent être ajustés
pour modéliser les phénomènes de rupture primaire. La polydispersion des tailles des gouttelettes ou leurs déforma-
tions résultant de la rupture des filaments peuvent être prises en compte dans cette approche. Enfin, un processus
innovant de régularisation de l’interface (Loison et al., 2023a) est introduit dans la section 3.3 pour localiser l’endroit
où les transferts inter-échelles sont déclenchés et empêcher l’interface à grande échelle de développer des échelles
de longueur inférieures à un seuil de taille prédéfini. L’une des principales caractéristiques de cette régularisation
réside dans sa nature locale, qui diffère des processus habituels de redistribution de masse non locale, et dans son
interprétation en tant que redistribution locale d’énergie entre les modèles à grande et à petite échelle, qui préserve
les propriétés mathématiques du modèle. En outre, il est important de noter que le seuil de l’échelle de longueur est
également introduit comme une valeur prédéfinie et ne dépend pas de la taille de la cellule numérique. Il convient de
noter que ce transfert inter-échelle et ce processus de régularisation sont réglés par le modélisateur afin de modéliser
les phénomènes complexes qui se produisent dans le régime mixte.

Grâce à ces nouvelles avancées concernant les transferts de masse inter-échelles, des simulations pertinentes
d’écoulements diphasiques à deux échelles sont présentées dans la deuxième partie de ce manuscrit.

Dans le chapitre 4, nous présentons les stratégies numériques permettant de résoudre les différentes parties des
modèles unifiés à deux échelles. La section 4.1 se concentre sur un modèle à deux échelles avec le processus de
régularisation reliant le modèle d’écoulement à grande échelle à un modèle simple à petite échelle ne prenant en
compte qu’un régime dispersé caractérisé par sa fraction de volume et la densité de sa zone d’interface. Ce modèle
implique un ensemble d’équations aux dérivées partielles qui peuvent être divisées en termes de nature différente
grâce à des techniques de division temporelle (Hundsdorfer and Verwer, 2003; Duarte, 2011). En raison de la nature
discontinue des solutions, nous résolvons numériquement ces équations à l’aide d’une approche à volumes finis. Plus
précisément, nous séparons la partie du système liée à la convection de celle liée à la capillarité. Cela permet d’utiliser
des schémas classiques (LeVeque, 1992; Godlewski and Raviart, 1996; Toro, 2009) tels que la méthode de Godunov
qui utilise la solution exacte du problème de Riemann à deux échelles. La capillarité est présente à la fois dans les
flux conservatifs de l’équation de quantité de mouvement et dans un saut de pression de Laplace local qui est résolu
par une procédure de relaxation. Alors que les flux sont discrétisés classiquement avec une moyenne arithmétique
des gradients, le saut de pression de Laplace ne peut pas être résolu avec une procédure de relaxation habituelle sur
la fraction de volume, comme les méthodes de Rosenbrock pour les équations algébriques différentielles (Hairer and
Wanner, 1996; Hundsdorfer and Verwer, 2003). En effet, les termes sources de relaxation dépendent non seulement
de la fraction volumique mais aussi de ses dérivées spatiales. Par conséquent, une procédure originale de relaxation
implicite-explicite est proposée pour étendre la méthode habituelle de Newton-Raphson. Cela nécessite de résoudre
l’équation de Laplace en fonction d’un temps fictif au moyen d’une intégration explicite des termes sources avec
les dérivées spatiales. Cette approche permet de préserver la faible complexité de la procédure par rapport à une
procédure de relaxation qui couple implicitement chaque cellule avec sa voisine. Nous proposons dans la section
4.2 un schéma numérique dédié au modèle à petite échelle avec des gouttelettes oscillantes. Ce modèle est traité
séparément pour résoudre le problème de réalisabilité associé aux quantités géométriques, c’est-à-dire la possibilité
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de reconstruire une distribution représentée par les moments liés aux quantités géométriques obtenues par GeoMOM.
Un schéma cinétique spécifique est choisi pour préserver les propriétés de réalisabilité grâce à la solution exacte de
l’équation cinétique associée à la dynamique des inclusions polydisperses.

Dans le chapitre 5, nous validons la mise en œuvre des méthodes de discrétisation et certaines propriétés de base
du modèle. Ces cas de test résultent tous de contributions personnelles de l’auteur au solveur open-source Josiepy2.
Ce chapitre examine chaque sous-modèle séparément avant de les intégrer tous ensemble dans une simulation com-
plète à deux échelles au chapitre 6. Dans la section 5.1, nous commençons par évaluer le taux de convergence de
l’extension MUSCL du deuxième ordre des schémas de Godunov pour les solutions lisses. Des cas d’essai d’advection
de matière et de propagation du son sont mis en place pour la partie convective des modèles à deux échelles. La
simulation de la propagation du son permet de vérifier que la relaxation instantanée du modèle à une vitesse/deux
pressions résout le modèle à une vitesse/une pression et que la fraction de volume à petite échelle modifie la vitesse de
propagation du son. L’étude des problèmes de Riemann est proposée dans la section 5.2 pour valider que le schéma de
volumes finis et les solveurs de Riemann mis en œuvre résolvent effectivement les solutions exactes correspondantes.
Nous poursuivons dans la section 5.3 en illustrant l’effet des flux de capillarité et de l’équation de Laplace locale sur
le cas d’une goutte statique initialisée hors du saut de pression de Laplace global correct. La simulation de ce cas-test
s’avère difficile car la courbure moyenne de la forme du cercle d’équilibre est complexe à calculer avec précision sur
un maillage cartésien. Enfin, la section 5.4 évalue la dynamique appropriée pour un spray de gouttelettes oscillantes
sans mouvement global, y compris d’éventuels termes de source externe.

Au chapitre 6, nous proposons des études numériques qui illustrent le potentiel du modèle à deux échelles avec
régularisation et du modèle à petite échelle de gouttelettes oscillantes dans un contexte physique. Dans la section 6.1,
nous considérons tout d’abord une colonne de liquide compressible déformée par un écoulement gazeux compressible
impactant. Cette configuration a été choisie parce qu’elle développe des filaments de chaque côté de la colonne, de
sorte qu’une dynamique d’interface multi-échelle de base apparaît. Il nous permet ensuite de démontrer l’efficacité
du processus de régularisation de l’interface à grande échelle. De plus, nous indiquons comment la paramétrisation
des termes sources permet de modéliser l’évolution de la géométrie de l’interface, en particulier la densité d’aire
interfaciale, au fur et à mesure que le transfert se produit. Une comparaison est proposée avec une simulation plus
fidèle provenant d’une autre implémentation du cas-test. Plus précisément, nous estimons les paramètres des termes
sources qui doivent être choisis pour obtenir les mêmes caractéristiques géométriques. Cela illustre le potentiel de
modélisation de la transition de régime dans le cadre de l’approche unifiée à deux échelles. Nous proposons enfin,
dans la section 6.2, des simulations unidimensionnelles d’un jet de gouttelettes oscillantes agitées par un terme
source externe imitant l’effet de la traînée de vitesse sur les oscillations. Bien que ce test puisse être considéré comme
élémentaire, il nous montre la richesse de la description contenue dans le modèle, en particulier en ce qui concerne la
dynamique des quantités géométriques.

Le manuscrit se termine par quelques conclusions, des perspectives et la synthèse travaux en cours vers la mod-
élisation des modèles unifiés à deux échelles plus riches. La préparation de cette thèse a également donné lieu à des
communications scientifiques, des collaborations et des contributions qui sont énumérées dans la section suivante.

2https://github.com/hpc-maths/josiepy

https://github.com/hpc-maths/josiepy
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Notations and list of abbreviations

In this manuscript, the vectors and matrices are denoted in bold.

The partial derivative of a function 𝑓 with respect to 𝑥 is denoted with 𝜕𝑥 𝑓 . The partial derivative with respect to
a vector 𝒗 is sometimes denoted with the operator ∇𝒗. If such operator is not indexed, it is a partial derivation with re-
spect to the Eulerian coordinates 𝒙. Given a velocity fields 𝒖, we denote the material derivative 𝐷𝑡 (·) := 𝜕𝑡 (·)+𝒖 ·∇(·).

Furthermore, for clarity purposes, some operation on vectors and matrices are sometimes written with the sum-
mation convention on repeated indexes.

We notably underline that the divergence of a matrix A is a vector denoted ∇ · A which here evaluates to
∇ · A = (𝜕𝑥 𝑗 𝐴𝑖 𝑗 ) with the summation on repeated indexes. The double scalar product of two matrices 𝑨 and 𝑩 is
𝑨 : 𝑩 = 𝐴𝑖 𝑗𝐵𝑖 𝑗 . The gradient of a vector 𝒂 is ∇𝒂 = 𝜕𝑥 𝑗𝑎𝑖.

List of abbreviations
CFL Courant-Friedrichs-Lewy
CSF/CSS Continuum Surface Force/Stress
DIM Diffuse Interface Model
DNS Direct Numerical Simulation
DSDF Discrete Surface Density Function
EEC Entropy Extension Criterion
EOS Equation Of State
FV Finite-Volume
GeoMOM Geometric Method of Moments
IAD Interface Area Density
ImEx Implicit-Explicit
LES Large-Eddy Simulation
NDF Number Density Function
ODE Ordinary Differential Equation
PBE Population Balance Equation
PDE Partial Differential Equations
SAP Stationary Action Principle
SDF Surface Density Function
TAB Taylor Analogy Breakup
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CHAPTER 1
Multi-fluid modelling

The resolution of the two-phase models by solving the fluid equations on each side of the interface have showed
inherent bottlenecks in the context of multiscale interface dynamics as previously discussed in the introduction of
this manuscript. Therefore, we propose now to focus on the multi-fluid class of models as they appear as a possible
answer to the complexity of the interface dynamics. Furthermore, these models often takes the form of a system
of conservation laws which can be analysed following the theory of Lax (1957). Instead of directly solving some
single-fluid, local and instantaneous equations, e.g. Navier-Stokes, for each fluid on each side of a moving boundary
(the interface), multi-fluid models typically assume a particular regime of the interface, separated or disperse, and
respectively describe at a same location an artificial mixture of the two-phases or inclusions of one fluid into the other.
We respectively denote these two classes of models as multi-fluid diffuse interface models and multi-fluid disperse
models.

The multi-fluid DIM can result from an averaging process as proposed by Drew (1983). Such averaging is
performed on a single set of the local instantaneous equations thanks to the introduction of an indicator function
locating each fluid. Then, the interface is located through the volume fraction defined as the average of this indicator
function. This averaging process then provides a diffuse interface model made of a set of partial differential equations
for artificial two-phase fluid particles where the two fluid phases coexist even though they are not miscible. Such an
approach naturally discards the challenging interface dynamics, which is now accessed through the volume fraction
field. However, this approach also comes with its own challenges. First, the averaging procedure produces unclosed
averaged terms, classically the interface velocity and pressure, which gathers in a concise formulation the complexity
of the interaction between the two fluids across the interface (Saurel and Abgrall, 1999). The closure of these terms is
mostly sought such that the model is hyperbolic with coherent jump relation, notably in the case of a non-conservative
form of the system (Coquel et al., 2002). Second, there is no sound and generic thermodynamic theory to help us to
choose the right closures in the equations on energy as the thermodynamic processes between the phases depend on
the structure of the interface separating the fluids. Third, the transition from a flow regime to another is not clear as
the diffuse interface model spreads the interface over a distance below which the interface dynamics in not accessible.

The multi-fluid disperse models offer a different perspective as the two-phase mixture is not artificial anymore, but
consists in a collection of inclusions of one fluid carried by another fluid. Then, instead of describing the fine details
of the flow around the inclusions, i.e. the small-scale dynamics, only the dynamics of the volume fraction occupied
by the inclusions is followed in time. Typical setups involve solid particles/incompressible droplets (Marble, 1963;
Baer and Nunziato, 1986; Saurel et al., 2017) or compressible bubbles (Bedford and Drumheller, 1978; Biesheuvel
and Wijngaarden, 1984; Gavrilyuk and Saurel, 2002; Drui et al., 2019). More complex models, where more quantities
than just the volume fraction are used to represent the collection of droplets, are the subject of Chapter 2. Another
challenge associated with this second class of models is the hyperbolicity of the two-velocity models which requires
considering ad-hoc interaction terms, either pressure (Raviart and Sainsaulieu, 1995) or energy (Gavrilyuk, 2020).

If not considering a particular separated or disperse regime, there is no all-regime multi-fluid models in the
literature, and only the coupling of models in different region of the flows are possible (Le Touze, 2015). A key
modelling contribution towards the derivation of such all-regime model is later proposed in Chapter 3.

3



4 1. Multi-fluid modelling

The purpose of this first chapter is to offer an overview of multi-fluid modelling techniques of the literature
and motivate the upcoming extensive use of a variational method, the Hamilton’s SAP, by assessing its flexibility
with the derivation of two-phase models for different regimes. The overview of the main multi-fluid model derivation
techniques is provided in Section 1.1 along with a presentation of some theoretical properties of such systems. Then, a
specific focus is set in Section 1.2 on Hamilton’s Stationary Action Principle (SAP) approach, a variational derivation
strategy based on the knowledge of the energies of the flow. We illustrate the advantage of this technique through the
detailed derivation of the Euler equations along with the methodology to add dissipative source terms consistently
with the second principle of thermodynamics. Then, we propose the derivation of multi-fluid models with Hamilton’s
SAP for separated regime in Section 1.3 and the disperse regime in Section 1.4. While classic models of the literature
are derived in the separated regime, a new modelling approach based on added-mass is proposed for the derivation of
a hyperbolic multi-fluid disperse model and a contribution associated with this model is currently under preparation:

• Loison, Arthur, Teddy Pichard, Samuel Kokh, and Marc Massot. “Derivation of a disperse two-velocity model
accounting for added-mass through the Stationary Action Principle”, In preparation.
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1.1. Overview of multi-fluid modelling approaches 5

1.1 Overview of multi-fluid modelling approaches

The derivation of multi-fluid models can be achieved in several ways, and we propose here to detail the averaging
approach and the Landau approach as they have led to numerous multi-fluid models of the literature.

The averaging approach relies on the definition of an averaging operator, over space, time or different realizations
of a statistical process. The single-fluid models such as Euler or Navier-Stokes equations are averaged to provide the
multi-fluid models. These latter models involve complex averaged terms, which require to be expressed using the
averaged state to obtain a closed model. The Landau approach directly assumes a set of state variables, and the
equations of evolutions are obtained by enforcing Galilean invariance and thermodynamic principles.

All these approaches lead to multi-fluid models involving conservation laws, sometimes supplementary non-
conservative terms. Then, we propose to recall some mathematical properties associated with such systems in
Section 1.1.1. We expect some of them to be satisfied for the obtention of physically relevant multi-fluid models,
and they will guide us for the closure of averaged models presented in Section 1.1.2 and the models derived with the
Landau approach in Section 1.1.3.

1.1.1 Systems of conservation laws

In this section, we provide some definitions, properties and theorems associated with the study of systems of conser-
vation laws. Let us write a system of 𝑝 conservation laws in dimension 𝑑. Given a vector-valued function 𝒒 ∈ Ω ⊂ R𝑝

from the space-time domain R𝑑 × (0, +∞) to Ω, smooth flux functions 𝑭 from Ω to R𝑝, and source terms 𝑺 from Ω
to R𝑝, the system of conservation laws reads

𝜕𝑡𝒒 + ∇ · (𝑭(𝒒)) = 𝑺(𝒒), (1.1)

which locally translates the integral balance of advected quantities within an arbitrary control volume.

1.1.1.1 The theory of Lax

Let us first recall fundamental elements of the Lax’s theory (Lax, 1957) which focuses on systems of conservation
laws of the form

𝜕𝑡𝒒 +
∑

𝑗=1,...,𝑑
𝜕𝑥 𝑗 (𝑭 𝑗 (𝒒)) = 0, (1.2)

where we decomposed the flux in each direction 𝑭 = (𝑭1, . . . , 𝑭𝑑). Note that we only provide here the key properties
that we will use for the further modelling work proposed in this manuscript. For a more comprehensive presentation
of the systems of conservation, we refer the reader to Godlewski and Raviart (1991); Smoller (1994); Dafermos (2005).
First, a system of conservation laws is said hyperbolic if it satisfies Property 1 i.e. the eigenvalues of the Jacobian of
the flux functions has 𝑝 real eigenvalues and 𝑝 linearly independent eigenvectors. If all the eigenvalues are distinct,
the system is said to be strictly hyperbolic. Such property is critical as it has been showed to be a necessary condition
for the well-posedness of the system of conservation laws (Métivier, 2005).
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Property 1 (Hyperbolicity)

Consider the system of conservation laws (1.2). For each direction 𝑗 = 1, ..., 𝑑, we define the Jacobian
of the fluxes 𝑭 = (𝐹𝑖 𝑗 )1≤𝑖≤𝑝,1≤ 𝑗≤𝑑 by

𝑨 𝑗 =

(
𝜕𝐹𝑖 𝑗

𝜕𝑞𝑘

)
The system is called hyperbolic if, for any direction 𝝎 ∈ S𝑑−1, the matrix

𝑨 =
∑

𝑗=1,...,𝑑
𝜔 𝑗𝑨 𝑗 ,

has 𝑝 real eigenvalues 𝜆1 ≤ ... ≤ 𝜆𝑝 and 𝑝 linearly independent eigenvectors 𝒓1 ≤ ... ≤ 𝒓 𝑝 such that for
𝑘 = 1, ..., 𝑝,

𝑨𝒓𝑘 = 𝜆𝑘 𝒓𝑘 .

Remark that the study of hyperbolicity of system (1.1) does not depend on the source terms and that only one
arbitrarily chosen direction can be considered as the divergence operator is rotational invariant. In the following, the
hyperbolicity of the system of conservation laws is always assumed.

We are now interested in the solution of the Cauchy problem associated with (1.2). It is well known that even
for smooth initial datum, the solution can develop discontinuities in finite time and that one should define a notion
of weak solution for system (1.2), as recalled in Definition 1.

Definition 1 (Weak solution)

Consider a Cauchy problem of system (1.2) with initial datum 𝒒0 ∈ 𝐿∞𝑙𝑜𝑐 (R𝑑) 𝑝. Denote C∞
𝑐 (R𝑑 ×

(0, +∞)) 𝑝 the ensemble of smooth functions with compact support. A function 𝒒 ∈ 𝐿∞𝑙𝑜𝑐 (R𝑑 × [0, +∞)) 𝑝
is called a weak solution of the Cauchy problem if 𝒒(𝒙, 𝑡) ∈ Ω almost everywhere and, for any test-
function 𝝓 ∈ C∞

𝑐 (R𝑑 × (0, +∞)) 𝑝, 𝒒 satisfies∫ ∞

0

∫
R𝑑

[𝒒 · 𝜕𝑡𝝓 + (𝑭(𝒒) · ∇)𝝓] 𝑑𝒙 𝑑𝑡 +
∫
R𝑑

𝒒0 · 𝝓𝑑𝒙 = 0.

Now considering a C1-piecewise weak solution of (1.2) separated by discontinuity, one can show that for each surface
of discontinuities, the weak solution satisfies the Rankine-Hugoniot jump conditions given in Theorem 1.

Theorem 1 (Rankine-Hugoniot jump conditions)

Given 𝒒 a C1-piecewise weak solution of (1.2), then :

• 𝒒 is a classic solution of (1.2) where 𝒒 is C1;

• for each time-space surface discontinuity, at every location along the surface oriented by its local
normal 𝒏 = (𝑛𝑡 , 𝒏𝒙), and denoting 𝒒− and 𝒒+ the solution on each side, we have

(𝒒+ − 𝒒−)𝑛𝑡 + (𝑭(𝒒+) − 𝑭(𝒒−)) · 𝒏𝒙 = 0.

Remark that, in the one-dimensional case, the Rankine-Hugoniot jump involves the velocity of the discontinuity 𝑠
with (𝒒+ − 𝒒−)𝑠 = (𝑭(𝒒+) −𝑭(𝒒−)). It is also well known that the system of conservation laws (1.2) can admit several
weak solutions. In the scalar case i.e. 𝑝 = 1, uniqueness is recovered in Theorem 2 by introducing the notion of
mathematical entropy in Definition 2 and entropy solution in Definition 3.
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𝑑 = 1 𝑑 ≥ 2

𝑝 = 1 𝑞0 ∈ 𝐿∞𝑙𝑜𝑐 (R𝑑)
Existence, uniqueness

𝑝 = 2
𝒒0 ∈ 𝐿∞𝑙𝑜𝑐 (R𝑑)2 +

geometric assumption
Existence

𝑇𝑉 (𝒒0) � 1 Terra
incognita

𝑝 ≥ 3 Existence
Uniqueness

Table 1.1: Existence and uniqueness results for Cauchy problems of conservation laws reproduced from Serre (2001).
See the references therein for the proofs of these results.

Definition 2 (Mathematical entropy)

A convex function H : Ω → R is called a mathematical entropy of system (1.2) if there exists function
G𝒋 such that for 𝑗 = 1, ..., 𝑑,

(𝜕𝒒H)𝑨 𝑗 = 𝜕𝒒G 𝑗 .

Definition 3 (Entropy solutions)

A weak solution 𝒒 is called an entropy solution if it satisfies

𝜕𝑡H +
∑

𝑗=1,...,𝑑
𝜕𝑥 𝑗G 𝑗 ≤ 0,

for every mathematical entropy H of (1.2).

Theorem 2 (Uniqueness of the entropy solution in the scalar case)

If 𝑝 = 1, and 𝒒0 ∈ 𝐿∞𝑙𝑜𝑐 (R𝑑) 𝑝 the entropy solution 𝑞, in the sense of distribution, of the strictly hyperbolic
system

𝜕𝑡𝑞 + 𝜕𝑥𝐹 (𝑞) = 0, 𝑞(𝑡 = 0) = 𝒒0,

is unique.

The proof of this theorem can be found in Kruzhkov (1969). For general cases 𝑝 ≥ 1, the existence and uniqueness
of the entropy solution is not proven. We reproduce below in Table 1.1 a summarized list of results regarding the
existence and uniqueness of the Cauchy Problem associated with the conservation equation (1.1). As a consequence
of this lack of results for the existence and uniqueness for general systems of conservation laws, we identify two
requirements for the following modelling work: the hyperbolicity of the system and the existence of a mathematical
entropy H and fluxes G 𝑗 such that

𝜕𝑡H +
∑

𝑗=1,...,𝑑
𝜕𝑥 𝑗G 𝑗 ≤ 0. (1.3)

For systems of conservation laws, providing a mathematical entropy is a priori neither trivial nor guaranteed, but
for some physical systems, it is linked to the physical notion of entropy.
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1.1.1.2 Non-conservative terms

In many models, some non-conservative terms are present in the following form

𝜕𝑡𝒒 + ∇ · 𝑭(𝒒) + 𝑩(𝒒) · ∇𝒒 = 0. (1.4)

The first question lies in the proper definition of the weak solutions in the presence of the non-conservative product.
One approach was given by Dal Maso’s theory (Dal Maso et al., 1995; Parés, 2006; Castro et al., 2008) by introducing
path-integral in the Rankine-Hugoniot jump conditions. However, the associated path-conservative schemes are
difficult to implement successfully (Abgrall and Karni, 2010) as some numerical schemes do not systematically
recover the exact solution for the Euler model. Another approach can be found in Raviart and Sainsaulieu (1995);
Wargnier et al. (2020), where the jump relations are obtained by connecting the states through travelling waves with
vanishing diffusion terms. Finally, following the works in Seguin (2002); Gallouët et al. (2004); Guillemaud (2007a)
some systems see their non-conservative products well-defined as both quantities involved in the product are not
simultaneously discontinuous such that Rankine-Hugoniot jump conditions are well-defined too.

Other works are related to the study of first-order non-conservative term such as Forestier and Gavrilyuk (2011)
where a hyperbolic criterion is given for system admitting a supplementary conservation law, or Cordesse and Massot
(2020) where criteria for finding a supplementary conservation equation are given.

As modelling requirements when dealing with non-conservative systems, we will focus on the eigen-structure study
and the existence of an entropy evolution equation. The issue of giving a proper definition for the non-conservative
products is not of prime interest in this work, and will be discussed on a case-by-case basis In order to avoid such
issues, most of our model relies on simplified barotropic Equation of States (EOS) under either isentropic or isothermal
assumptions and a single velocity for both phases.

1.1.1.3 Relaxation source terms

Some models derived in this work are endowed with dissipative processes that act through source terms of the
following form

𝜕𝑡𝒒 + ∇ · (𝑭(𝒒)) = 𝑹(𝒒)
𝜖

. (1.5)

Such source terms are called relaxation source terms as they tend to drive the state 𝒒 relax towards an equilibrium
manifold defined by 𝑹(𝒒) = 0. The smaller 𝜖 is, the stiffer the dynamics. Formally, we can consider that in the
instantaneous relaxation limit where 𝜖 → 0, one obtain the equilibrium models{

𝜕𝑡𝒒
∗ + ∇ · (𝑭∗ (𝒒∗)) = 0,

𝑹(𝒒∗) = 0.
(1.6)

A theoretical framework for such models is provided in Chen et al. (1994); Bouchut (2004) for pairs of systems of the
form (1.5) of dimension 𝑝 and (1.6) of dimension 𝑞 linked by a linear operator i.e. a matrix 𝑳 : R𝑝 → R𝑞 such that

𝑳𝑹(𝒒) = 0, 𝒒∗ = 𝑳𝒒. (1.7)

It is further assumed that, for all 𝒒∗, one can define a unique equilibrium 𝑳̃(𝒒∗) such that 𝑹( 𝑳̃(𝒒∗)) = 0. It follows
that the fluxes of (1.5) and (1.6) are related with 𝑭∗ (𝒒∗) = 𝑳𝑭( 𝑳̃(𝒒∗)).

Then, in order to study the behaviour of the relaxing system (1.5) in the limit 𝜖 → 0, Chen et al. (1994) provided
an Entropy Extension Criterion (see Definition 4) summarized in Bouchut (2004) which, when verified, shows that
the relaxing system formally converges to the relaxed system with a first-order diffusion term.
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Definition 4 (Entropy Extension Criterion (EEC))

There exists a convex mathematical entropy H for the relaxing system (1.5) such that H ◦ 𝑳̃ is a convex
mathematical entropy for the relaxed system (1.6).
Moreover, the minimization principle holds, i.e.

H( 𝑳̃(𝒒∗)) ≤ H (𝒒), when 𝑳𝒒 = 𝒒∗,

and the relaxation source term is dissipative

∇(H (𝒒)) · 𝑹(𝒒) ≤ 0.

Therefore, such EEC should be verified in further models when there are relaxing terms fitting this theoretical
framework.

1.1.2 Averaging methods

We start the overview of the derivation technique with the averaging approach. Such approach is obtained through
the averaging of single-fluid models coupled across an interface. We propose here to recover classic models of the
literature starting from the works of Ishii and Hibiki (1975); Drew (1983).

1.1.2.1 Local instant formulation of fluid equations

Consider two fluid phases indexed by 𝑘 ∈ {1, 2}, the continuity, momentum and energy equations read


𝜕𝑡 𝜌𝑘 +∇ · (𝜌𝑘𝒖𝑘) = 0,
𝜕𝑡 (𝜌𝑘𝒖𝑘)+∇ · (𝜌𝑘𝒖𝑘 ⊗ 𝒖𝑘 + 𝑝𝑘I)= ∇ · 𝑫𝑘 + 𝒇 𝑘 ,

𝜕𝑡 (𝜌𝑘𝐸𝑘)+∇ · ((𝜌𝑘𝐸𝑘 + 𝑝𝑘)𝒖𝑘) = ∇ · (𝑫𝑘 · 𝒖𝑘 − 𝒒𝑘) + 𝒇 𝑘 · 𝒖𝑘 + 𝑟𝑘 ,
(1.8)

with, for each fluid 𝑘, 𝜌𝑘 the density, 𝒖𝑘 the velocity, 𝑝𝑘 the pressure, 𝑫𝑘 the viscous tensor, 𝒇 𝑘 the body forces per
unit of volume, 𝐸𝑘 = 1

2𝒖
2
𝑘 + 𝑒𝑘 the total energy per unit of mass, 𝑒𝑘 the internal energy per unit of mass, 𝒒𝑘 the heat

flux and 𝑟𝑘 an energy source term per unit of volume.
These fluids are separated by a surface S, and the equations (1.8) are supplemented with the following jump

conditions across the interface∑
𝑘=1,2

(𝜌𝑘 (𝒖𝑘 − 𝒖𝐼 )) · 𝒏𝑘 = 0,
∑
𝑘=1,2

(𝜌𝑘𝒖𝑘 ⊗ (𝒖𝑘 − 𝒖𝐼 ) + 𝑝𝑘I − D𝑘) · 𝒏𝑘 = 𝜎𝐻𝒏,∑
𝑘=1,2

(
𝜌𝑘𝐸𝑘 (𝒖𝑘 − 𝒖𝐼 ) + (𝑝𝑘I − D𝑘) · 𝒖𝑘 + 𝒒𝑘

)
· 𝒏𝑘 = 𝜎𝐻𝒏 · 𝒖𝐼 ,

(1.9)

where 𝒏𝑘 is the normal of the interface oriented from phase 𝑘 to 𝑘 ′, 𝒖𝐼 is the local velocity of the interface, 𝐻 is the
local mean curvature and 𝑛 the normal of the interface. These two latter quantities are not indexed by any phase
as we choose the convention of defining them respectively with a positive sign for a locally convex surface from the
liquid point of view and oriented from liquid to gaseous phase.
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Example 1

With such convention, a static non-viscous liquid droplet of radius 𝑅 at equilibrium 𝒖𝑘 = 𝒖𝐼 = 0 satisfies
the following Laplace pressure jump with a positive mean curvature 𝐻 = 2/𝑅

𝑝1 − 𝑝2 = 𝜎𝐻,

with 1 indexing the liquid phase and 2 the gaseous phase. This shows that the pressure within the
droplet is superior to the surrounding gaseous pressure.

The set of equations (1.8) and (1.9) completed with constitutive laws and EOS for each phase is the starting
point for DNS methods discussed in the introduction.

1.1.2.2 Averaging process

Before averaging the equations (1.8), we cast them in a single set of equation by introducing the characteristic
function

𝑋𝑘 (𝒙, 𝑡) =
{

0 if 𝒙 is in phase 𝑘 at time 𝑡,
1 else,

(1.10)

and its kinematics is given on the compact support of the interface surface through the topological equation

𝜕𝑡𝑋𝑘 + 𝒖𝐼 · ∇𝑋𝑘 = 0, (1.11)

in the sense of generalized function. Then one can introduce an averaging process 〈·〉 which can be either a time,
a space or ensemble average depending on the desired nature of equations and available experimental data to close
some averaged terms. For instance, space averaging can be useful over a cross area for a two-phase flow within a tube
(Ransom and Hicks, 1984), while a volume average for disperse flow will help to capture the averaged behaviour of a
collection of inclusions. However, time or ensemble averaging are the most common interpretations of such averaging
process (Ishii and Hibiki, 1975).

Let us then define the volume fraction 𝛼𝑘 as

𝛼𝑘 := 〈𝑋𝑘〉 . (1.12)

It corresponds to the average of presence probability of phase 𝑘. Remark also that in the separated regime, the
transition of 𝛼𝑘 from 0 to 1 provides an estimate of the “most probable location” of the interface. In the disperse
regime, the volume fraction indicates the average volume occupation of the inclusions, but the interface location is
assumed to be embedded within the carrier phase at a scale much below the averaging scale.

Regardless of this distinction, the equations (1.8) are multiplied by 𝑋𝑘 then averaged with the operator 〈·〉.
Neglecting second-order fluctuations, we obtain

𝜕𝑡 (𝛼𝑘𝜌𝑘) +∇ · (𝛼𝑘𝜌𝑘 𝒖̃𝑘) = Γ𝑘 ,

𝜕𝑡 (𝛼𝑘𝜌𝑘 𝒖̃𝑘) +∇ ·
[
𝛼𝑘𝜌𝑘 𝒖̃𝑘 ⊗ 𝒖̃𝑘 + 𝛼𝑘

(
𝑝𝑘 𝑰 − T̃𝑘

)]
= 𝑴𝑘 ,

𝜕𝑡

(
𝛼𝑘𝜌𝑘𝐸𝑘

)
+∇ ·

[
𝛼𝑘

(
𝜌𝑘𝐸𝑘 + 𝑝𝑘 − T̃𝑘

)
𝒖̃𝑘

]
= 𝑃I,𝑘 ,

(1.13)

where the phase average and the mass-weighted average of a variable 𝜑 are defined by

𝜑 =
〈𝑋𝑘𝜑〉
𝛼𝑘

, 𝜑 =
〈𝑋𝑘𝜌𝑘𝜑〉
𝛼𝑘𝜌𝑘

, (1.14)

where 𝑻𝑘 := −𝑝𝑘I+𝑫𝑘 is the stress tensor. The quantities Γ𝑘 , 𝑀𝑘 and 𝑃𝐼,𝑘 are the interfacial source terms defined by

Γ𝑘 = 〈𝜌𝑘 (𝒖𝑘 − 𝒖𝐼 ) · ∇𝑋𝑘〉 , 𝑴𝑘 = 〈𝜌𝑘 (𝒖𝑘 − 𝒖𝐼 ) ⊗ 𝒖𝑘 · ∇𝑋𝑘〉 + 〈𝑝𝑘∇𝑋𝑘〉 − 〈D𝑘 · ∇𝑋𝑘〉 ,
𝑃I,𝑘 = 〈𝜌𝑘𝐸𝑘 (𝒖𝑘 − 𝒖𝐼 ) · ∇𝑋𝑘〉 + 〈𝑝𝑘𝒖𝑘 · ∇𝑋𝑘〉 − 〈D𝑘𝒖𝑘 · ∇𝑋𝑘〉 ,

(1.15)
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with the jump conditions∑
𝑘=1,2

Γ𝑘 = 0,
∑
𝑘=1,2

𝑴𝑘 = 〈𝜎𝐻∇𝑋1〉 ,
∑
𝑘=1,2

𝑃I,𝑘 = 〈𝜎𝐻𝒖𝐼 · ∇𝑋1〉 . (1.16)

The averaged equations then boil down to a set of conservation laws with unclosed interface source terms. These
source terms are naturally split into mass transfer terms, pressure forces and viscous forces at the interface. Remark
that all these terms involve averages of ∇𝑋𝑘 = −𝒏𝑘𝛿𝐼 , following the notations of Morel (2015), which supports and
orientates the interface source terms. Therefore, the presence of either the interface velocity 𝒖𝐼 or the weak gradient
of the indicator function ∇𝑿𝑘 in all the unclosed terms shows that the geometry of the interface encompassed by the
averaging scale has a critical influence on the closure of those terms.

1.1.2.3 Definition of interfacial terms

Following the works of Drew (1983); Saurel and Abgrall (1999), one can further simplify equations (1.13) by defining
interface velocities 𝒖𝐼,𝑘 , pressures 𝑝𝐼,𝑘 and energies, 𝐸𝐼,𝑘 such that

𝒖𝐼,𝑘 := 〈𝜌𝑘 (𝒖𝑘 − 𝒖𝐼 ) ⊗ 𝒖𝑘 · ∇𝑋𝑘〉
Γ𝑘

, 𝑝𝐼,𝑘 := 〈𝑝𝑘∇𝑋𝑘〉 · ∇𝛼𝑘

‖∇𝛼𝑘 ‖2 , 𝐸𝐼,𝑘 := 〈𝜌𝑘𝐸𝑘 (𝒖𝑘 − 𝒖𝐼 ) · ∇𝑋𝑘〉
Γ𝑘

. (1.17)

Moreover, as suggest in Perrier and Gutiérrez (2021), the term 〈𝑝𝑘𝒖𝑘 · ∇𝑋𝑘〉 should not necessarily be closed with
𝑝𝐼,𝑘 and 𝒖𝐼,𝑘 . Thus, we propose to define

(𝑝𝒖)𝐼,𝑘 := 〈𝑝𝑘𝒖𝑘 · ∇𝑋𝑘〉 ∇𝛼𝑘

‖∇𝛼𝑘 ‖2 , (1.18)

such that the averaged set of equations (1.13) becomes
𝜕𝑡 (𝛼𝑘𝜌𝑘) +∇ · (𝛼𝑘𝜌𝑘 𝒖̃𝑘) = Γ𝑘 ,

𝜕𝑡 (𝛼𝑘𝜌𝑘 𝒖̃𝑘) +∇ ·
[
𝛼𝑘𝜌𝑘 𝒖̃𝑘 ⊗ 𝒖̃𝑘 + 𝛼𝑘

(
𝑝𝑘 𝑰 − T̃𝑘

)]
= 𝒖𝐼,𝑘Γ𝑘 + 𝑝𝐼,𝑘∇𝛼𝑘 + 𝑭𝑘 ,

𝜕𝑡

(
𝛼𝑘𝜌𝑘𝐸𝑘

)
+∇ ·

[
𝛼𝑘

(
𝜌𝑘𝐸𝑘 + 𝑝𝑘 − T̃𝑘

)
𝒖̃𝑘

]
= 𝐸𝐼,𝑘Γ𝑘 + (𝑝𝒖)𝐼,𝑘∇𝛼𝑘 + 𝑃′

𝑘 ,

(1.19)

with
𝑭𝑘 =

〈
(𝑝𝑘 − 𝑝𝐼,𝑘)∇𝑋𝑘

〉
− 〈D𝑘 · ∇𝑋𝑘〉 , 𝑃′

𝑘 = − 〈D𝑘𝒖𝑘 · ∇𝑋𝑘〉 . (1.20)
The final modelling step now consists in closing the interface terms and providing an evolution equation for the
volume fraction. In the model of Saurel and Abgrall (1999), the proposed closure is

𝑝𝐼,𝑘 = 𝑝𝐼 =
∑
𝑘=1,2

𝛼𝑘 𝑝𝑘 , 𝒖𝐼,𝑘 = 𝒖𝐼 =
∑
𝑘=1,2

𝛼𝑘𝜌𝑘 𝒖̃𝑘

𝛼𝑘𝜌𝑘
, (𝑝𝑘𝒖𝑘)𝐼 = 𝑝𝐼𝒖𝐼 , 𝑭𝑘 = 𝜆(𝒖̃𝑘′ − 𝒖̃𝑘), 𝑃′

𝑘 = 𝒖𝐼 · 𝑭𝑘 ,

(1.21)
and, for the volume fraction,

𝜕𝑡𝛼𝑘 + 𝒖𝐼 · ∇𝛼𝑘 = 0. (1.22)
From now on, we drop the notations attached to averaged quantities for clarity purposes (tildes and bars). The
closure of 𝐸𝐼,𝑘 is not provided under the further assumption of no mass transfer i.e. Γ𝑘 = 0. Given the rotational
invariance of the system, hyperbolicity is studied in an arbitrary direction 𝝎. Except for a finite set of resonance
conditions (Andrianov, 2003), the system is showed to be hyperbolic with the following eigenvalues

𝒖𝐼 · 𝝎 𝒖1 · 𝝎, 𝒖1 · 𝝎 ± 𝑐1, 𝒖2 · 𝝎, 𝒖2 · 𝝎 ± 𝑐2, (1.23)

where 𝑐𝑘 = ((𝜕𝑝𝑘 𝑒𝑘)−1 (𝜌−2
𝑘 𝑝𝑘−𝜕𝜌𝑘 𝑒𝑘))1/2 is the sound velocity of phase 𝑘, and the eigenvalues 𝒖𝑘 ·𝝎 have a multiplicity

of 3. Another closure was later proposed in Saurel et al. (2003) by considering the limit of discretized equations
involving the solution of a linearized Riemann problem at the interfaces. For each direction, here along the 𝑥-axis,

𝑝𝐼 =
𝑍1𝑝2 + 𝑍2𝑝1
𝑍1 + 𝑍2

+ sign (𝜕𝑥𝛼1)
(𝑢2 − 𝑢1)𝑍1𝑍2

𝑍1 + 𝑍2
, 𝑢𝐼 =

𝑍1𝑢1 + 𝑍2𝑢2
𝑍1 + 𝑍2

+ sign (𝜕𝑥𝛼1)
𝑝2 − 𝑝1
𝑍1 + 𝑍2

, (𝑝𝑢)𝐼 = 𝑝𝐼𝑢𝐼 . (1.24)
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Other closures are proposed in the work of Perrier and Gutiérrez (2021), based on a separation of length-scales in
the averaging process, and take advantage of the interfacial term (𝑝𝑘𝒖𝑘)𝐼 . For instance, following similar ideas as
Saurel et al. (2003), the averaging of the solution of a Riemann problem between two Euler systems in the acoustic
approximation is considered, and the following closure is obtained

𝑝𝐼,𝑘 = 𝑝𝐼 =
𝑍𝑘′ 𝑝𝑘 + 𝑍𝑘 𝑝𝑘′
𝑍𝑘 + 𝑍𝑘′

, 𝒖𝐼,𝑘 = 𝒖𝐼 =
𝑍𝑘𝒖𝑘 + 𝑍𝑘′𝒖𝑘′

𝑍𝑘 + 𝑍𝑘′
, (𝑝𝑘𝒖𝑘)𝐼 = 𝑝𝐼,𝑘𝒖𝐼,𝑘 +

𝑍𝑘𝑍𝑘′ (𝑝𝑘′ − 𝑝𝑘)(𝒖𝑘′ − 𝒖𝑘)
(𝑍𝑘 + 𝑍𝑘′ )2 , (1.25)

and, for the volume fraction,
𝜕𝑡𝛼𝑘 + 𝒖𝐼 · ∇𝛼𝑘 = 𝑅𝑘 , (1.26)

where 𝑍𝑘 = 𝜌𝑘𝑐𝑘 , and 𝑭𝑘 , 𝑃′
𝑘 and 𝑅𝑘 are relaxation terms which are not detailed here. The system is showed to be

hyperbolic with the same eigenvalues as listed in (1.23) with the use of the new closure for the definition of 𝒖𝐼 .
Beyond these examples, other closure relations have been found such that it yields both a hyperbolic system

and associate the interface velocity with a discontinuity wave which translates the physical material advection of the
interface location Coquel et al. (2002); Hérard and Mathis (2019); Jomée (2023).

1.1.2.4 Evolution of averaged geometry

Remark that the closures proposed for the averaging models in (1.21) or (1.25) are symmetric. Such closure assumes
a role symmetry in the model regardless of the interface geometry. However, such an approach seems limited if one
considers capillarity forces or mass transfer between the two-phases. Indeed, capillarity is related to the local mean
curvature while mass transfer is known to be proportional to the area of the interface, and the process is expected to
be faster in a disperse regime than in the separated regime. Then, the general closure problem for equations (1.13)
strongly depends on the underlying geometry of the interface. Consequently, any additional knowledge about the
interface geometry could help to find better closures for the averaged set of equations.

Averaging of geometric characteristics of the interface has been proposed in Drew (1990) or Lhuillier (2004) with,
for instance, the interface area density Σ. While Drew proposed to investigate geometric scalars such as curvatures,
Lhuillier introduced a tensorial point of view with the anisotropic tensor 𝒒𝑎𝑛𝑖 (Lhuillier, 2003). We propose to briefly
present here the work of Lhuillier, while the results of Drew are detailed in Chapter 2 where geometric variables
are introduced more carefully. Given the generalized function 𝛿𝐼 locating the interface and the interface orientation
tensor 𝑸 = 〈𝒏 ⊗ 𝒏𝛿𝐼〉, the IAD and the anisotropic tensor are defined by

Σ = 〈𝛿𝐼〉 , 𝒒𝑎𝑛𝑖 =
〈(
𝒏 ⊗ 𝒏 − 1

3 𝑰
)
𝛿𝐼

〉
. (1.27)

The kinematics of such quantities is obtained thanks to the topological equation (1.11) (Drew, 1990; Morel, 2015).
First, the kinematics of 𝛿𝐼 and 𝒏 read{

𝜕𝑡𝛿𝐼+∇ · (𝛿𝐼 (𝒖𝐼 · 𝒏)𝒏)= 𝛿𝐼 (𝒖𝐼 · 𝒏)∇ · 𝒏,
𝜕𝑡𝒏 +(𝒖𝐼 · ∇)𝒏 = −(𝑰 − 𝒏 ⊗ 𝒏) · (𝒏∇𝒖𝐼 ) .

(1.28)

From the kinematics of 𝛿𝐼 and 𝒏, the evolution of the orientation tensor is deduced, and the IAD is then obtained in
Lhuillier (2003, 2004) from the relation Σ = 𝑇𝑟 (𝑸)

𝜕𝑡Σ + ∇ · 〈𝒖𝐼𝛿𝐼〉 =
〈
𝒒𝑎𝑛𝑖 : ∇𝒖𝐼

〉
. (1.29)

Remark that in the case of a model with a deterministic single velocity i.e. 〈𝒖𝐼〉 = 〈𝒖〉 = 𝑣𝑒𝑙, the isotropic part can
be extracted to provide

𝜕𝑡Σ + ∇ · (Σ𝒖) = 2
3
∇ · 𝒖 −

〈(
𝒒𝑎𝑛𝑖 −

1
3
𝑰

)
: ∇𝒖

〉
. (1.30)

Moreover, for a general probabilistic interface velocity 𝒖𝐼 , we can denote the scalar velocity 𝒖̃𝐼,𝑘 = 〈𝒖𝐼 · 𝒏𝛿𝐼〉 /Σ such
that the averaging of the topological equation gives the following kinematics for the volume fraction,

𝜕𝑡𝛼𝑘 = 𝒖̃𝐼,𝑘Σ. (1.31)
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In the end, the equations (1.29) and (1.31) push the averaging modelling a step further by introducing two unclosed
equations on geometric quantities 𝛼𝑘 and Σ. Augmenting the state vector of averaged variables with these two
quantities allows the introduction of geometric information into the model. For instance, in the dilute disperse
regime i.e. a collection of inclusions with a small volume fraction, a closure of 〈𝒖𝐼𝛿𝐼〉 and

〈
𝒒𝑎𝑛𝑖 : ∇𝒖𝐼

〉
is proposed

in Lhuillier (2004), partly through dimensional considerations. A general closure for such terms is not known by the
author and seems out of reach for any flow regime. Nevertheless, an additional averaging step is proposed in Lhuillier
(2003) where an unclosed equation is proposed for 𝒒𝑎𝑛𝑖, but such modelling strategies lead to many unclosed terms
which are difficult to close without any a priori knowledge on the interface dynamics.

Let us conclude this overview on averaging process by underlining that many closures of these models exist and are
not listed here. The closure of the averaged terms is mainly motivated by the obtained mathematical structure, such
as hyperbolicity and the nature of the wave structure of the linearized model, rather than geometric considerations.
Nevertheless, the averaging models provide insights to suggest adequate multi-fluid models depending on the interface
flow regime.

1.1.3 Landau derivation approach
The Landau derivation approach is introduced in Khalatnikov (1965); Landau and Lifshitz (1986) (see English
translations in Landau and Lifshitz (1987); Khalatnikov (1989)) for the derivation of superfluid models. It assumes
balance equation with Galilean invariance along with a Gibbs thermodynamic identity.

This approach has notably been used for the derivation of the two-phase flow model of Baer and Nunziato (1986)
describing gas-particle flows where conservation equations for mass, momentum and specific internal energies are
assumed for each phase following Truesdell (1969). Consider first a Galilean invariant form of the system of fluid
equations 

𝜕𝑡 (𝛼𝑘𝜌𝑘) +𝒖𝑘 · ∇(𝛼𝑘𝜌𝑘) = −𝛼𝑘𝜌𝑘∇ · 𝒖𝑘 + Γ𝑘 ,

𝜕𝑡 (𝛼𝑘𝜌𝑘𝒖𝑘)+𝒖𝑘 · ∇(𝛼𝑘𝜌𝑘𝒖𝑘)= −∇ · 𝑻𝑘 + 𝛼𝑘𝜌𝑘 𝒇 𝑘 + 𝑴𝑘 − Γ𝑘𝒖𝑘 ,

𝜕𝑡 (𝛼𝑘𝜌𝑘𝑒𝑘) +𝒖𝑘 · ∇(𝛼𝑘𝜌𝑘𝑒𝑘)= −𝑻𝒌 : ∇𝒖𝑘 − ∇ · 𝒒𝑘 + 𝛼𝑘𝜌𝑘𝑟𝑘 + 𝑃𝑘 ,

(1.32)

where 𝑻𝑘 is the surface stress tensor, 𝒇 𝑘 the external body forces, 𝒒𝑘 the heat conduction flux, 𝑟𝑘 the external energy
source terms and Γ𝑘 , 𝑴𝑘 , 𝑃𝑘 the mass, momentum and energy transfer source terms. Then, Gibbs thermodynamic
relations are assumed for both phases and dissipative relaxation processes are added to the model preserving a
second principle for the mixture where the mixture’s entropy is the mass-weighted sum of the specific entropies of
both phases. The resulting model is unclosed and the dynamics of the volume fraction needs to be specified so that
it is compatible with the second principle. The final model reads

𝜕𝑡𝛼2 +𝒖2 · ∇𝛼2 = (𝑝2 − 𝛽2) 𝛼1𝛼2
𝜇 (𝑝2 − 𝛽2 − 𝑝1) + Γ

𝜌2
,

𝜕𝑡 (𝛼𝑘𝜌𝑘)+∇ · (𝛼𝑘𝜌𝑘𝒖𝑘)= (−1)𝑘Γ,
𝜕𝑡 (𝛼𝑘𝜌𝑘𝒖𝑘)+∇ · [𝛼𝑘𝜌𝑘𝒖𝑘 ⊗ 𝒖𝑘 + 𝛼𝑘 𝑝𝑘] = 𝑝1∇𝛼𝑘 − 𝜆(𝒖𝑘 − 𝒖𝑘′ ) + Γ(𝒖𝑘 − 𝒖𝑘′ ),
𝜕𝑡 (𝛼𝑘𝜌𝑘𝐸𝑘)+∇ ·

[
𝛼𝑘 (𝜌𝑘𝐸𝑘 + 𝑝𝑘) 𝒖𝑘 + 𝒒𝑘

]
= 𝑝1 (𝒖𝑘 − 𝒖𝑘′ ) · ∇𝛼𝑘 − (−1)𝑘𝜆(𝒖𝑘 − 𝒖𝑘′ )2 + (−1)𝑘ℎ(𝑇𝑘 − 𝑇𝑘′ )
−(−1)𝑘 (𝑝2 − 𝛽2) 𝛼1𝛼2

𝜇 (𝑝2 − 𝛽2 − 𝑝1) − (−1)𝑘Γ(𝐸𝑘 − 𝐸𝑘′ ),

(1.33)

where quantities with index 1 relate to the gas and 2 with particles, 𝑇𝑘 is the temperatures of phase 𝑘, 𝛽2 is the
contact pressure for particles, 𝜆 is a drag coefficient, ℎ is a heat transfer coefficient, and 𝜇𝑐 is a compaction viscosity.
It is also showed to be hyperbolic in any direction 𝝎 with the following eigenvalues

𝒖1 · 𝝎, 𝒖1 · 𝝎 ± 𝑐1, 𝒖2 · 𝝎, 𝒖2 · 𝝎 ± 𝑐2, (1.34)

with 𝒖1 · 𝝎 of multiplicity 3 and 𝒖2 of multiplicity 4.
This model is well-known among two-phase flow models, and is also known as seven-equation model as it allows to

describe a two-phase flow in full disequilibrium with relaxation source terms for: 1-mass transfer through the definition
of Γ, 2-velocities with a drag force, 3-pressures with the compaction dynamics of viscosity 𝜇, 4-temperature with
heat transfer of coefficient ℎ.
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Other models have also been considered by taking the limit of these relaxation processes in the Baer-Nunziato
model. For instance, the pressure and velocity equilibrium are assumed for the five-equation model (Kapila et al.,
2001; Murrone and Guillard, 2005; Petitpas et al., 2007; Saurel et al., 2008). A six-equation model has also been
proposed in Saurel et al. (2009) to build a numerical method to solve the five-equation model. Moreover, a com-
patibility exist with the seven-equation model obtained in Saurel and Abgrall (1999) via the averaging approach by
selecting the closure

𝑝𝐼 = 𝑝1, 𝒖𝐼 = 𝒖2. (1.35)

This asymmetric closure for the averaging equations particularly suggest that the Baer-Nunziato model is more
adapted to a specific gas-solid flow regime. Nevertheless, with specific closures, such a seven-equation model has also
been used to model liquid-vapour flows Guillemaud (2007a,b).

Conclusion of Section 1.1
Let us conclude this overview by underlining some advantages of the averaging process, and consequently the Landau
approach thanks to Saurel and Abgrall (1999) :

• A simple averaging process from the local instantaneous equation;

• A single set of fluid equations on averaged variables;

• Clear definitions of the unclosed averaged terms which bring insight on the interaction between the fluids and
the interface dynamics;

• A set of equations on the geometric quantities associated with the interface;

However, we can observe that the dynamics of the flow is rarely coupled with the quantities describing interface
geometry despite their intimately related dynamics. This observation can be explained by some drawbacks of the
averaging strategy :

• The averaged terms that appear in the equations for fluid dynamics can be grouped in a non-unique way and
their general closure seems out of reach for any flow;

• The choice of geometric quantities is non-unique and the most common ones (volume fraction, IAD, 𝑞𝑎𝑛𝑖) are
insufficient to tackle complex interface regime;

• The usual strategy for the closing of the averaged terms mostly relies on the mathematical structure of the
resulting set of equations rather than experimental closures or physical knowledge of the underlying mechanisms.

Therefore, we propose now to focus on another model derivation strategy, the Hamilton’s Stationary Action Principle,
which offers another perspective where both the energies related to the two-phase mechanisms and the quantities of
interest must be identified a priori. Such methodology addresses simpler flow regimes but provides a closed dynamical
system.
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1.2 Hamilton’s Stationary Action Principle
We propose here to introduce the derivation methodology of the Hamilton’s SAP through discrete mechanics and the
Euler-Lagrange equations for discrete systems in Section 1.2.1. The extension to continuum mechanics is proposed
in Section 1.2.2 with essential calculations and notations used throughout this manuscript for the derivation of each
model. Finally, the addition of dissipation source terms is discussed in Section 1.2.3 through the relation between
physical and mathematical entropies.

1.2.1 Euler-Lagrange equations for mechanics of point particles
We propose to introduce Hamilton’s SAP by first recovering the equations of classic mechanics dealing with the
motion of a set of punctual particles as a first step towards continuum mechanics. More particularly, we present
here the derivation of the Euler-Lagrange equations. For a comprehensive introduction to variational mechanics, the
reader is referred to Bourguignon (2007).

Consider a set of particles indexed by 𝑖 ∈ I. For a particle 𝑖 denote its mass 𝑚𝑖, its position at time 𝑡 𝑿𝑖 (𝑡) and
its velocity ¤𝑿𝑖 (𝑡). When no explicit time dependency is retained, the Lagrangian L of the system is defined as the
difference between the kinetic and potential energy 𝑊 (𝑿𝑖)

L(𝑿𝑖 , ¤𝑿𝑖) =
∑
𝑖∈I

1
2
𝑚𝑖

¤𝑿2
𝑖 −𝑊 ((𝑿𝑖)𝑖∈I). (1.36)

The associated action A is defined as the time integral over Ω = (𝑡1, 𝑡2),

A =
∫
Ω
L(𝑿, 𝑿𝑖 , ¤𝑿𝑖) 𝑑𝑡. (1.37)

Then, Hamilton’s SAP states that the motion of particles minimizes the action. Therefore, we introduce families of
perturbed trajectories to provide a functional space over which the action is minimized. We introduce the families
of trajectory variations 𝑿̃𝑖 (𝑡, 𝜖) smoothly depending on 𝜖 a small-parameter in the vicinity of 0. This family satisfies
two conditions:

• The family defines a perturbation of the minimizing trajectory, i.e. for all 𝑖 ∈ I and 𝑡 ∈ (𝑡1, 𝑡2)

𝑿̃𝑖 (𝑡, 0) = 𝑿𝑖 (𝑡). (1.38)

• The families do not introduce perturbation on the boundaries, i.e. for all 𝑖 ∈ I and 𝜖

𝑿̃𝑖 (𝑡1, 𝜖) = 𝑿𝑖 (𝑡1), 𝑿̃𝑖 (𝑡2, 𝜖) = 𝑿𝑖 (𝑡2), (1.39)

Then, we introduce the variational operator
𝛿(·) = 𝜕𝜖 (̃·) | 𝜖=0. (1.40)

Then, Hamilton’s SAP states that the motion of particles minimizes the action for any variation 𝛿𝑿𝑖 i.e.

𝛿A = 0. (1.41)

As the boundaries are independent of time, we can develop the variation of the action as

𝛿A =
∫
Ω

∑
𝑖∈I

(
(𝜕𝑿 𝑖L)𝛿𝑿𝑖 + (𝜕 ¤𝑿 𝑖

L)𝛿 ¤𝑿𝑖

)
. (1.42)

Then integrating by part leads to
𝛿A =

∫
Ω

∑
𝑖∈I

(
𝜕𝑿 𝑖L − 𝑑𝑡 (𝜕 ¤𝑿 𝑖

L)
)
𝛿𝑿𝑖 . (1.43)
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Then, as the Hamilton’s SAP gives 𝛿A = 0 for any set of variations 𝛿𝑿𝑖, we have for all 𝑖 ∈ I, the set of Euler-Lagrange
equations

𝜕𝑿 𝑖L − 𝑑𝑡 (𝜕 ¤𝑿 𝑖
L) = 0. (1.44)

Evaluating the derivatives of the Lagrangian with (1.36) gives Newton’s fundamental principle of dynamics for each
particle 𝑖 ∈ I undergoing conservative forces of potential 𝑊 ,

𝑚𝑖
¥𝑿𝑖 = −𝜕𝑿 𝑖𝑊. (1.45)

Remark that the Lagrangian is non-unique for a system as one could have obtained the same dynamics by considering
L′ = L+ 𝑑𝑡𝐹 (𝑿𝑖 , 𝑡). Moreover, we have not discussed here the cases where the Lagrangian explicitly depends on time
or how boundary – here initial – conditions can be enforced with this formalism.

1.2.2 Application to single-phase fluid mechanics
Hamilton’s SAP for continuum mechanics has been introduced with Herivel (1955) and the derivation of the Euler
equations, and it can also be found in Serrin (1959) From the perspective of Hamilton’s SAP, the main differences
between continuum mechanics and the mechanics of point particles are: 1-the existence of a smooth path-function 𝝓
which associates for any position 𝑿 of a reference space domain Ω a position 𝒙 in the transformed space domain Ω(𝑡)
at time 𝑡, 2-the mass conservation of the fluid particle, 3-the choice between the Eulerian and Lagrangian coordinates.

We define the path-function as a space-time function 𝝓 : Ω × R+ smooth in time and for any 𝑡 > 0

𝝓(·, 𝑡) :=
{
Ω → Ω(𝑡),
𝑿 ↦→ 𝒙 = 𝝓(𝑿, 𝑡).

(1.46)

This path-function 𝝓 also admits a reciprocal with respect to its first variable

𝝓−1 (·, 𝑡) :=
{
Ω(𝑡) → Ω,

𝒙 ↦→ 𝑿 = 𝝓−1 (𝒙, 𝑡).
(1.47)

We call Lagrangian coordinates the coordinates 𝑿 of the reference space Ω and Eulerian coordinates at time 𝑡 the
coordinates of the space Ω. The first system follows the position 𝒙 of a unique fluid particle given its initial position
𝑿, while the second gives the initial position 𝝓−1 (𝒙, 𝑡) of a particle located at 𝒙 and instant 𝑡. For a given fluid
property, we note 𝑏𝐿 (𝑿, 𝑡) its Lagrangian field and 𝑏(𝒙, 𝑡) its Eulerian field which are related for all (𝑿, 𝑡) by

𝑏𝐿 (𝑿, 𝑡) = 𝑏(𝝓(𝑿, 𝑡)). (1.48)

This Eulerian coordinates system is particularly convenient when the space domain under consideration is constant,
with inflow and outflow conditions if needed, as there is no need to follow fluid particles and their paths with time.
Only an in-and-out balance of fluid properties is locally accounted in a geometric volume.

Finally, the Lagrangian velocity field of the fluid is defined in Lagrangian coordinates as

𝒖𝐿 (𝑿, 𝑡) = 𝑑𝑡𝝓(𝑿, 𝑡), (1.49)

and the time derivative of a Lagrangian field defines a material derivative for the Eulerian field

𝜕𝑡𝑏
𝐿 (𝑿, 𝑡) = 𝜕𝑡𝑏 + ∇𝑏 · 𝑑𝑡𝝓 = 𝜕𝑡𝑏 + 𝒖 · ∇𝑏 =: 𝐷𝑡𝑏. (1.50)

1.2.2.1 Definition of a family of perturbation for Eulerian fields

Despite both Eulerian and Lagrangian coordinates allows the derivation of the equations of fluid, given the Eulerian
nature of some constraints further investigated, the Eulerian coordinates are chosen. Nevertheless, due to the
Lagrangian coordinates are used to define the perturbation of the path-function and the variations of the Eulerian
fields in order to apply Hamilton’s SAP.
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Let us emphasize that we will further make a special difference between the perturbations associated with the
path-function 𝝓, the velocity 𝒖, the advected Eulerian fields 𝑏𝑎 satisfying

𝜕𝑡𝑏𝑎 + 𝒖 · ∇𝑏𝑎 = 0, (1.51)

describe constant quantities for a given fluid particle, and conserved Eulerian fields 𝑏𝑐 satisfying

𝜕𝑡𝑏𝑐 + ∇ · (𝑏𝑐𝒖) = 0, (1.52)

which corresponds to the conservation in time of mass-related extensive quantities.
First, let us introduce the family of perturbed trajectories 𝝓̃(𝑿, 𝑡, 𝜖), indexed by 𝜖 , that maps the position 𝑿 in a

referential domain Ω = Ω(0) to the Eulerian position 𝒙 in Ω(𝑡) at time 𝑡 ∈ (𝑡1, 𝑡2). 𝜖 is a small parameter in a vicinity
of 0. We similarly introduce families of perturbed Lagrangian fields 𝑏̃𝐿 (𝑿, 𝑡, 𝜖) and Eulerian fields 𝑏̃(𝝓̃(𝑿, 𝑡, 𝜖), 𝑡, 𝜖)
such that for any 𝜖 ,

𝑏̃𝐿 (𝑿, 𝑡, 𝜖) = 𝑏̃(𝝓̃(𝑿, 𝑡, 𝜖), 𝑡, 𝜖). (1.53)
We assume that these families of Lagrangian mappings and Eulerian fields satisfy the following properties:

• The mapping 𝝓 and Eulerian fields 𝑏 of the solution are included in the families for 𝜖 = 0 i.e. for all 𝑿 ∈ Ω(0)
and (𝒙, 𝑡) ∈ Ω, {

𝝓̃(𝑿, 𝑡, 𝜖 = 0) = 𝝓(𝑿, 𝑡),
𝑏̃(𝒙, 𝑡, 𝜖 = 0) = 𝑏(𝒙, 𝑡).

(1.54)

• All the mappings and Eulerian fields preserve the constraints. Denote the conserved Eulerian field 𝑏𝑐, and the
advected Eulerian fields 𝑏𝑎, then for all (𝒙, 𝑡) ∈ Ω,{

𝜕𝑡 𝑏̃𝑐 + ∇ · (𝑏̃𝑐𝒖) = 0,
𝜕𝑡 𝑏̃𝑎 + 𝒖 · ∇𝑏̃𝑎 = 0.

(1.55)

• All the mappings and families of Eulerian fields 𝑏 preserve the values at the boundaries of the space-time
domain i.e. for all (𝒙, 𝑡) ∈ 𝜕Ω,

𝑏̃(𝒙, 𝑡, 𝜖) = 𝑏(𝒙, 𝑡). (1.56)

1.2.2.2 Eulerian variations

Then, we use the same variational operator as in (1.40)

𝛿(·) = 𝜕𝜖 (̃·) | 𝜖=0. (1.57)

Then, we introduce is the infinitesimal Eulerian displacement in Eulerian coordinates,

𝜼(𝒙, 𝑡) := 𝛿𝒙 =
(
𝜕𝜖 𝝓̃

)
𝑿 ,𝑡

((𝝓)−1 (𝒙, 𝑡), 𝑡, 𝜖 = 0), (1.58)

and the variation of Eulerian fields 𝑏
𝛿𝑏(𝒙, 𝑡) :=

(
𝜕𝜖 𝑏̃

)
𝒙,𝑡

(𝒙, 𝑡, 𝜖 = 0). (1.59)

Remark now that the velocity field 𝒖, the advected fields 𝑏𝑎 and the conserved fields 𝑏𝑐 are linked to the variations of
the trajectories through either their definitions or constraints. Two approaches are then possible to include this link
into the minimization of the action either by adding the constraints within the Lagrangian energy with Lagrangian
multipliers or by expressing the variation of the fields with the infinitesimal Eulerian displacement 𝜼. One can find
the first approach in Herivel (1955); Eckart (1960); Lin (1963); Gouin and Debieve (1986); Berdichevsky (2009) and
the second in Serrin (1959); Berdichevsky (2009); Gavrilyuk (2011). Note that, in the first approach, the constraints
mainly deal with: 1-for compressible fluids, enforcing conservation as all advected can be expressed as conserved
quantities if multiplied by a conserved quantity, 2-for incompressible fluids, enforcing a divergence-free flow (Eckart,
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1960; Berdichevsky, 2009), 3-enforcing the advection of particle labels to express the velocity field’s dependency on
the trajectories (Lin, 1963; Gouin and Debieve, 1986).

We propose here to pursue the second approach and derive, in Eulerian coordinates, the expression of the variation
of the velocity field 𝒖, a conserved variable 𝑏𝑐 and an advected variable 𝑏𝑎. These computations can also be found
in Gavrilyuk (2011).

1.2.2.2.a Variation of an Eulerian field

Let us remark first that the variation of an Eulerian field 𝑓 is related to its associated Lagrangian field 𝑓 𝐿 by applying
the variational operator on (1.53)

𝛿𝑏𝐿 = 𝛿𝑏 + ∇𝑏 · 𝜼. (1.60)

1.2.2.2.b Variation of the velocity field

From the definition of the Lagrangian velocity field 𝒖𝐿 in Eulerian coordinates

𝛿𝒖𝐿 = 𝐷𝑡𝜼, 𝛿𝒖𝐿 = 𝛿𝒖 + ∇𝒙𝒖 · 𝜼. (1.61)

Combining these two relations gives
𝛿𝒖 = 𝜕𝑡𝜼 + 𝒖 · ∇𝜼 − (𝜼 · ∇)𝒖. (1.62)

1.2.2.2.c Variation of a conserved field

The conservation of a Lagrangian field can be expressed by

𝑏𝐿𝑐 (𝑿, 𝑡) det(𝑭(𝑿, 𝑡)) = 𝑏𝐿𝑐 (𝑿, 0), 𝑭(𝑿, 𝑡) = 𝜕𝝓

𝜕𝑿
. (1.63)

Applying the variational operator 𝛿 then leads to

𝛿𝑏𝐿𝑐 = −(det 𝑭)−1 (𝑏𝐿𝑐 𝛿 det 𝑭). (1.64)

From Jacobi’s formula, we have that

𝛿 det 𝑭 = (det 𝑭)𝑇𝑟 (𝑭−1𝛿𝑭) = (det 𝑭)∇ · 𝜼. (1.65)

Combining these two relations gives

𝛿𝑏𝐿𝑐 = −𝑏𝐿𝑐∇ · 𝜼, 𝛿𝑏𝑐 = −∇ · (𝑏𝑐𝜼). (1.66)

1.2.2.2.d Variation of an advected field

The advection of an Eulerian field just translates a constant Lagrangian field

𝑏𝐿𝑎 (𝑿, 𝑡) = 𝑏𝐿𝑎 (𝑿, 0), (1.67)

the variation of which is trivial
𝛿𝑏𝐿𝑎 (𝑿, 𝑡) = 0. (1.68)

Then, from the relation between Lagrangian and Eulerian fields (1.53), we have

𝛿𝑏𝑎 = −𝜼 · ∇𝑏𝑎 . (1.69)
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1.2.2.3 Derivation of the isentropic Euler model with Hamilton’s SAP

Let us now derive the isentropic Euler model with Hamilton’s SAP. We first define the Lagrangian of the system in
Eulerian coordinates with

L =
1
2
𝜌𝒖2 − 𝜌𝑒(𝜌, 𝑠), (1.70)

where 𝜌 it the fluid density, 𝒖 the fluid velocity and 𝑒 the specific internal energy depending on the fluid density and
the specific entropy 𝑠. The Action of the fluid on a space-time domain Ω̄ = Ω × (𝑡1, 𝑡2) is defined by

A =
∫
Ω×(𝑡1 ,𝑡2 )

L 𝑑𝒙𝑑𝑡. (1.71)

The fluid density is assumed to be conserved while the specific entropy is advected,

𝜕𝑡 𝜌 + ∇ · (𝜌𝒖) = 0, 𝐷𝑡 𝑠 = 0, (1.72)

and we have the Gibbs relation
𝑇𝐷𝑡 𝑠 = 𝐷𝑡𝑒 + 𝑝𝐷𝑡

(
1
𝜌

)
, (1.73)

with 𝑇 = (𝜕𝑠𝑒) |𝜌 the temperature and 𝑝 = 𝜌2 (𝜕𝜌𝑒) |𝑠 the pressure.
With the variational operator 𝛿, Hamilton’s SAP reads

𝛿A = 0, (1.74)

Denoting (𝜕𝒖L = 𝑲)𝑇 , we decompose the variation of the Action into

𝛿A =
∫
Ω̄
𝜕𝜌L𝛿𝜌 + 𝜕𝑠L𝛿𝑠 + 𝑲 · 𝛿𝒖 =

∫
Ω̄
𝜕𝜌L(−∇ · (𝜌𝜼)) + 𝜕𝑠L(−𝜼 · 𝑠) + 𝑲 · (𝜕𝑡𝜼 + 𝒖 · ∇𝜼 − (𝜼 · ∇)𝒖). (1.75)

Then, integrating by parts gives

𝛿A =
∫
Ω̄

[
𝜌∇𝜕𝜌L − 𝜕𝑠L∇𝑠 − 𝜕𝑡𝑲 − ∇ · (𝑲𝒖) − 𝑲∇𝒖

]
· 𝜼. (1.76)

As the variation of the Action is minimized for any variation 𝜼, it yields

𝜕𝑡𝑲 + ∇ · (𝑲𝒖) + 𝑲∇𝒖 − 𝜌∇𝜕𝜌L + 𝜕𝑠L∇𝑠 = 0. (1.77)

Introducing L∗ = 𝜌𝜕𝜌L − L, it also writes as the conservation law

𝜕𝑡𝑲 + ∇ · (𝑲𝒖 − L∗𝑰) = 0, (1.78)

where 𝑰 is the identity matrix. Then, evaluating the derivatives gives

𝑲 = 𝜌𝒖, L∗ = −𝑝, (1.79)

and, from (1.78), we obtain the momentum equation

𝜕𝑡 (𝜌𝒖) + ∇ · (𝜌𝒖 ⊗ 𝒖 + 𝑝𝑰) = 0. (1.80)

A supplementary equation can be obtained for the total energy 𝜌𝐸 = 1
2 𝜌𝒖

2 + 𝜌𝑒 by multiplying (1.80) by 𝒖, and use
the Gibbs relation (1.73) and the transport of specific entropy (1.72),

𝜕𝑡 (𝜌𝐸) + ∇ · ((𝜌𝐸 + 𝑝)𝒖) = 0. (1.81)

The mass conservation equation (1.72) together with the momentum equation (1.80), and either the isentropic
advection constraint (1.72) or the energy equation (1.81) form the isentropic Euler model 1.
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Model 1 (Isentropic Euler equations)

Denoting 𝜌 the density, 𝒖 the velocity, 𝑒(𝜌, 𝑠) the specific internal energy, 𝑠 the specific entropy, 𝑝 the
pressure and 𝐸 the specific total energy, the Euler equations read

𝜕𝑡 𝜌 +∇ · (𝜌𝒖) = 0,
𝜕𝑡 (𝜌𝒖) +∇ · (𝜌𝒖 ⊗ 𝒖 + 𝑝𝑰) = 0,
𝜕𝑡 (𝜌𝐸)+∇ · ((𝜌𝐸 + 𝑝(𝜌, 𝑠))𝒖)= 0.

Let us assess now some properties given in Section 1.1.1 for the Euler equations. The study for an arbitrary
direction 𝝎 of the fluxes Jacobian gives us three eigenvalues

𝒖 · 𝝎 − 𝑐, 𝒖 · 𝝎, 𝒖 · 𝝎 + 𝑐, (1.82)

with 𝑐 =
√
(𝜕𝜌𝑝) |𝑠, and 𝒖 ·𝝎 of multiplicity 3. Given a single space dimension, the system is strictly hyperbolic. More-

over, from the Gibbs relation and the Euler equations, one can show using the following supplementary conservation
equation

𝜕𝑡 (−𝜌 𝑓 (𝑠)) + ∇ · (−𝜌 𝑓 (𝑠)𝒖) = 0, (1.83)

with 𝑓 a smooth function of 𝑠. It is then showed in Harten et al. (1998) that for any region where the Euler equations
are hyperbolic, there exists a function 𝑓 such that −𝜌 𝑓 (𝑠) is strictly convex and, consequently is a mathematical
entropy. For an ideal gas of adiabatic index 𝛾, it is showed in Godlewski and Raviart (1991) that choosing

𝑓 := (𝜌, 𝒖, 𝜌𝐸) ↦→ ln
(
𝜌𝐸 − 1

2𝜌
𝒖2

)
− 𝛾 ln 𝜌, (1.84)

makes −𝜌 𝑓 (𝑠) a mathematical entropy.

1.2.2.4 Derivation of the isothermal Euler mode with Hamilton’s SAP

Let us consider now an isothermal flow such that the temperature is advected with the flow in the time-space domain,
and a barotropic EOS defined by the function 𝑒(𝜌).

For the isothermal case, we introduce the Helmholtz free energy defined by

𝜀(𝜌, 𝑇) = 𝑒(𝜌, 𝑠) − 𝑇𝑠, (1.85)

which allows to use the Gibbs relation with the temperature constraint,

𝐷𝑡𝜀 + 𝑠𝐷𝑡𝑇 + 𝑝𝐷𝑡

(
1
𝜌

)
= 0, (1.86)

with 𝑝 = 𝜌2 (𝜕𝜌𝜀) |𝑇 and 𝑠 = −(𝜕𝑇𝜀) |𝜌. Hamilton’s SAP is then applied with the following Lagrangian,

L =
1
2
𝜌𝒖2 − 𝜌𝜀(𝜌, 𝑇), (1.87)

and the constraints 𝐷𝑡𝑇 = 0. It yields the following momentum equation

𝜕𝑡 (𝜌𝒖) + ∇ · (𝜌𝒖 ⊗ 𝒖 + 𝑝𝑰) = 0. (1.88)

Moreover, multiplying the momentum equation by velocity gives

𝜕𝑡 (𝜌E) + ∇ · ((𝜌E + 𝑝)𝒖) = 0, (1.89)



1.2. Hamilton’s Stationary Action Principle 21

with 𝜌E = 1
2 𝜌𝒖

2 + 𝜌𝜀(𝜌), the total Helmholtz free energy. It is showed to be a mathematical entropy as the reduced
mathematical entropy of the full Euler equations in the viscous limit of the Euler-Fourier system (Euler equations
with thermal diffusion) (Serre, 2010).

Similarly to the isentropic case, the conservation of mass together with the momentum equation, and either the
temperature advection constraint or the total Helmholtz free energy equation, forms the closed model of isothermal
Euler equations 2.

Model 2 (Isothermal Euler equations)

Denoting 𝜌 the density, 𝒖 the velocity, 𝜀(𝜌) the specific free energy, 𝑝 = 𝜌2 (𝜕𝜌𝜀) |𝑇 the pressure, 𝑇 the
temperature, the isothermal Euler equations read

𝜕𝑡 𝜌+∇ · (𝜌𝒖)= 0,
𝜕𝑡𝑇+𝒖 · ∇𝑇 = 0,
𝜕𝑡 (𝜌𝒖) + ∇ · (𝜌𝒖 ⊗ 𝒖 + 𝑝𝑰) = 0.

The isothermal Euler equations are similarly showed hyperbolic in an arbitrary direction 𝝎 with the eigenvalues

𝒖 · 𝝎 − 𝑐, 𝒖 · 𝝎, 𝒖 · 𝝎 + 𝑐, (1.90)

with 𝑐 =
√
(𝜕𝜌𝑝) |𝑇 , and with 𝒖 · 𝝎 of multiplicity 2. Given a single space dimension, it is showed strictly hyperbolic.

In the end, the isentropic and isothermal models are very similar, and we refer to both of them as the barotropic
Euler models as the temperature or the entropy have only a passive role.

With such mathematical properties, the models are also showed to admit a local-in-time unique smooth solution
(Gårding, 1963; Serre, 1999). However, the global well-posedness of the Initial Boundary Value problem for Euler
models 1 and 2 is not assessed yet. The reader is referred to Serre (2001); Markfelder (2021) for reviews of the
available results.

1.2.3 Dissipative source terms

Hamilton’s SAP has been used to derive conservative equations in Section 1.2.2, but we would like now to add
some dissipative processes to these systems in a coherent way with both the mathematical structure of the model and
the physical one associated with the second principle of thermodynamics. These two structures are related through
the mathematical entropy and the physical entropy. The source of dissipation are various such as discontinuities of
entropic weak solutions (Tadmor, 1986), viscous terms such as fluid viscosity or heat transfer (Courant and Friedrichs,
1948; Tadmor, 1986; Serre, 2010), or relaxation terms (Chen et al., 1994; Serre, 2008) which are not here at stake
for classic Euler equations but will be later considered for two-phase flow models. We propose to illustrate here
such relation by considering the addition of Stokes viscous terms to the Euler Models 1 and 2. Only elementary
results and observations are provided here, and the interested reader is referred to the references aforementioned for
a comprehensive introduction to viscous dissipation in conservation laws.

1.2.3.1 Mathematical entropy and physical entropy of the Euler equations

With the Euler equations, both the physical and mathematical entropies are conserved

𝜕𝑡 (𝜌𝑠) + ∇ · (𝜌𝑠𝒖) = 0, 𝜕𝑡 (−𝜌 𝑓 (𝑠)) + ∇ · (−𝜌 𝑓 (𝑠)𝒖) = 0, (1.91)

for some smooth increasing functions 𝑓 .
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Now let us add the classic Navier-Stokes viscous terms in the momentum and energy equations of the Euler
equations 

𝜕𝑡 𝜌 +∇ · (𝜌𝒖) = 0,
𝜕𝑡 (𝜌𝒖) +∇ · (𝜌𝒖 ⊗ 𝒖 + 𝑝𝑰)= ∇ · (𝑻𝑠𝑡𝑜𝑘𝑒𝑠),
𝜕𝑡 (𝜌𝐸)+∇ · ((𝜌𝐸 + 𝑝)𝒖) = ∇ · (𝑻𝑠𝑡𝑜𝑘𝑒𝑠 · 𝒖),

(1.92)

with 𝑻𝑠𝑡𝑜𝑘𝑒𝑠 = 𝜇(∇𝒖+ (∇𝒖)𝑇 ) +𝜆(∇ ·𝒖)𝑰 and 𝜆+ 2
3 𝜇 ≥ 0. We compute now the conservation of entropy density thanks

to the Gibbs equation, and, after some calculations, we obtain

𝜕𝑡 (𝜌𝑠) + ∇ · (𝜌𝑠𝒖) = 1
𝑇
𝑻𝑠𝑡𝑜𝑘𝑒𝑠 : ∇𝒖

=
1
𝑇

(
2𝜇

(
∇𝒖 + (∇𝒖)𝑇

2

)2
+ 𝜆(∇ · 𝒖)2

)
=

1
𝑇

(
2𝜇

(
∇𝒖 + (∇𝒖)𝑇

2
− 1

3
(∇ · 𝒖)

)2
+

(
𝜆 + 2

3
𝜇

)
(∇ · 𝒖)2

)
≥ 0.

(1.93)

The right-hand side is also named the viscous dissipation rate 𝜖𝑑𝑖𝑠𝑠, and its positiveness shows that the entropy of the
fluid increases. Furthermore, multiplying the above equation by the derivative 𝑓 (𝑠) of an increasing smooth function
defined for the mathematical entropy of the Euler equation leads to

𝜕𝑡 (−𝜌 𝑓 (𝑠)) + ∇ · (−𝜌 𝑓 (𝑠)𝒖) = − 𝑓 ′ (𝑠)𝜖𝑑𝑖𝑠𝑠 ≤ 0. (1.94)

Then, this illustrates that the physical and mathematical entropy are here related, and they show opposite signs for
their respective entropy production rate.

1.2.3.2 Mathematical entropy and physical entropy of the isothermal Euler equations

Let us now illustrate the same procedure on the isothermal Euler equation by adding the Stokes viscous tensor to
the momentum equation {

𝜕𝑡 𝜌 +∇ · (𝜌𝒖) = 0,
𝜕𝑡 (𝜌𝒖)+∇ · (𝜌𝒖 ⊗ 𝒖 + 𝑝𝑰)= ∇ · (𝑻𝑠𝑡𝑜𝑘𝑒𝑠).

(1.95)

Recalling the free energy definition 𝜀 = 𝑒 − 𝑇𝑠, the Gibbs relation (1.73) becomes

𝐷𝑡𝜀 + 𝑠𝐷𝑡𝑇 + 𝑝𝐷𝑡

(
1
𝜌

)
= 0. (1.96)

Then, multiplying the momentum equation by 𝒖 leads

𝜕𝑡 (𝜌E) + ∇ · ((𝜌E + 𝑝)𝒖 + 𝑻𝑠𝑡𝑜𝑘𝑒𝑠 · 𝒖) = −𝜖𝑑𝑖𝑠𝑠 ≤ 0. (1.97)

We observe that, for isothermal barotropic flow, the free energy production is negatively signed when dissipative
processes are added, and it is also coherent with the physical entropy nature of 𝜌E.

Indeed, for an isothermal flow, the variation of the entropy of the fluid is not relevant to illustrate the second
principle of thermodynamics as the temperature is maintained by an external system whose entropy is not described in
the model. However, an isothermal second principle is verified through a decrease of the free energy (Chanteperdrix,
2004; Caro et al., 2006).



1.3. Multi-fluid modelling of the separate flow regime 23

1.3 Multi-fluid modelling of the separate flow regime
In this section, we focus on the separated regime where the multi-fluid DIM gives a diffuse interface, i.e. a region
where the volume fraction transitions from 0 to 1 and where the interface is thus located. Note that the length defined
by such transition is not comparable with the physical thickness of the interface, which is orders of magnitude smaller
in ambient conditions. Provided that no arbitrarily small dynamics are present in the described physics, it allows
a good representation of the interface dynamics while ensuring physical conservation laws despite the numerical
spreading of the interface. Note that some methods include supplementary terms to control the interface thickness
by modifying the capillarity thermodynamics in liquid-vapour flows (Jamet et al., 2001), but discards the interface
dynamics below the preset interface thickness. Eventually, the location of the interface can be defined using any
level-set of the volume fraction. These models are very appreciated but are of limited validity when the interface
dynamics becomes complex as discussed in Section 1.1.2 or when thermodynamic disequilibria are considered (Saurel
and Abgrall, 1999; Coquel et al., 2002). Simpler configurations can then be considered with for instance thermal
equilibrium (Allaire et al., 2002) or barotropic EOS (Chanteperdrix et al., 2002). However, such thermodynamics
does not rely on the same physical grounds and mathematical developments as single-phase fluid particle do because
of the diffuse interface represented by the volume fraction. Some efforts have been put towards the modelling of
such thermodynamics involving a parameter order variable such as the volume fraction, mass fraction or other (Caro
et al., 2005; Helluy and Seguin, 2006; Gaillard, 2015; Cordesse, 2020) for the proper modelling of phase transition or
capillarity.

In this section, we place ourselves at a large-scale level where only a separated regime is accounted with a diffuse
interface model. Moreover, we assume a simple configuration for clarity and illustrative purposes to further extend
the models towards more complexity. We particularly propose to derive barotropic two-fluid models of the literature,
first without capillarity in Section 1.3.1 and with capillarity in Section 1.3.2.

1.3.1 Barotropic multi-fluid model with one velocity
The purpose of this section is to derive a first two-fluid model under simplifying assumptions to both: assess the
ability of Hamilton’s SAP of recovering multi-fluid models from the literature, and to propose a building block model
which will be successively extended throughout this manuscript.

1.3.1.1 Derivation of a conservative model with Hamilton’s Stationary Action Principle

Let us consider the same physical assumptions as the three-equation model of Chanteperdrix et al. (2002):

• liquid and gaseous phases have the same velocity 𝒖; (H1a)
• the fluids are equipped with a barotropic EOS; (H1b)
• there is no mass exchanges between the phases. (H1c)

The need of a velocity for each phase is here questionable as the two velocities would interact only in the mixture
at the location of the diffuse interface where the physics is not well determined. Consequently, we assume the
kinematic equilibrium (H1a) such that the velocity in the diffuse interface is defined unambiguously. A two-velocity
framework is proposed in Section 1.4.2, but it is dedicated to a disperse multi-fluid model for advected inclusions at
the small-scale. Moreover, we assume here (H1b) to focus the discussion on the study of the interface regime apart
from the discussion on thermodynamics. In the light of the discussion proposed for the barotropic Euler equations
in both isentropic and isothermal cases, we propose here, and for the rest of this manuscript, to consider an agnostic
barotropic EOS for each fluid. The impact of the two-phase modelling on the temperature repartition between the
fluids is therefore not discussed.

Finally, (H1c) is assumed as it would unnecessarily add complexity to the thermodynamics, the reader is referred
to the references cited previously for a better overview of the topic.

Let us denote the quantities related to the liquid and gaseous phases by respectively the indexes 1 and 2. For
a phase 𝑘, we write its volume fraction 𝛼𝑘 and its density 𝜌𝑘 . Then, the barotropic EOS is modelled by a specific
barotropic internal energy 𝑒𝑘 (𝜌𝑘). The pressure is defined by 𝑝𝑘 := 𝜌2

𝑘𝑒
′
𝑘 (𝜌𝑘) and the sound velocity by 𝑐𝑘 := (𝑝′𝑘)1/2.
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The reader is referred to Sections 1.2.2.4 and 1.2.2.3 for case-specific definitions. Denoting 𝑚𝑘 := 𝛼𝑘𝜌𝑘 the effective
density for each phase 𝑘 = 1, 2, the mass of each phase is then conserved following (H1a) and (H1c),

𝜕𝑡𝑚𝑘 + ∇ · (𝑚𝑘𝒖) = 0. (1.98)

If we define 𝜌 := 𝑚1 +𝑚2 the density of the medium, summing the equation above for 𝑘 = 1, 2 enables to retrieve the
total mass conservation equation 𝜕𝑡 𝜌 + ∇ · (𝜌𝒖) = 0. The total volume occupancy of the phases in the mixture also
enforces

𝛼1 + 𝛼2 = 1. (1.99)

We set the kinetic and potential energies of the phase 𝑘 as

𝐸 𝑘𝑖𝑛
𝑘 := 1

2
𝑚𝑘𝒖

2, 𝐸 𝑝𝑜𝑡
𝑘 := 𝑚𝑘𝑒𝑘

(
𝑚𝑘

𝛼𝑘

)
, (1.100)

and the mixture kinetic and potential energies are ∑
𝑘 𝐸

𝑘𝑖𝑛
𝑘 and ∑

𝑘 𝐸
𝑝𝑜𝑡
𝑘 . This enables the definition of the Lagrangian

energy L𝑘 = 𝐸 𝑘𝑖𝑛
𝑘 − 𝐸 𝑝𝑜𝑡

𝑘 of the phase 𝑘 and a mixture Lagrangian energy L =
∑

𝑘 L𝑘 . Following the lines of Section
1.2.2.3, we use Hamilton’s SAP by minimizing the Lagrangian’s action over a space-time domain Ω̄ = Ω × (𝑡1, 𝑡2).
The volume fraction is here chosen as a free variable which is expected to lead to an additional equilibrium. Remark
that other models assume the volume fraction to be advected (Allaire et al., 2002) and lead to a different equilibrium,
but they are not considered here. Without developing the partial derivatives of the Lagrangian, the variation of the
action A =

∫
Ω̄ L reads

𝛿A =
∫
Ω̄
−

{
𝜕𝑡𝑲 + ∇ ·

[
𝑲 ⊗ 𝒖 − (L∗

1 + L∗
2)𝑰

]
− (𝜕𝛼1L1 − 𝜕𝛼2L2)∇𝛼1

}
· 𝜼 +

(
𝜕𝛼1L1 − 𝜕𝛼2L2

)
𝛿𝛼1. (1.101)

Then, Hamilton’s SAP 𝛿A = 0 leads to the following two equations{
𝜕𝑡𝑲 + ∇ · (𝑲 ⊗ 𝒖) − ∇(L∗ + L∗

2) = 0,
𝜕𝛼1L1 − 𝜕𝛼2L2 = 0,

(1.102)

where 𝑲𝑇 = 𝜕𝒖L, L∗
𝑘 = 𝑚𝑘 (𝜕𝑚𝑘L𝑘) − L𝑘 and L∗ =

∑
𝑘 L∗

𝑘 . The choice of energies (1.100) yields

𝑲 = 𝜌𝒖, L∗
1 = −𝛼1𝑝1, 𝜕𝛼1L1 = 𝑝1, L∗

2 = −𝛼2𝑝2, 𝜕𝛼2L2 = 𝑝2. (1.103)

Including the constraints (1.98) and evaluating the equations of (1.102) leads to Model 3.

Model 3 (Three-equation model)

With 𝑚𝑘 = 𝛼𝑘𝜌𝑘 the phase effective densities, 𝜌 = 𝑚1 +𝑚2 the mixture density, 𝑝𝑘 the phase pressures,
𝒖 the mixture velocity, the three-equation model reads

𝜕𝑡𝑚1 + ∇ · (𝑚1𝒖) = 0,
𝜕𝑡𝑚2 + ∇ · (𝑚2𝒖) = 0,
𝜕𝑡 (𝜌𝒖) + ∇ · (𝜌𝒖 ⊗ 𝒖 + 𝑝I) = 0,

with 𝑝(𝑚1, 𝑚2) := 𝑝1 (𝑚1, 𝛼
∗) = 𝑝2 (𝑚2, 𝛼

∗) and 𝛼∗ solution of 𝑝1 (𝑚1, 𝛼) = 𝑝2 (𝑚2, 𝛼).

The pressure 𝑝 is defined by the pressure equilibrium in the mixture thermodynamic closure 𝑝 := 𝑝1 = 𝑝2 given
by the second line of (1.102). This algebraic equation gives 𝛼1 and 𝑝 respectively as the solution and the value of
the equilibrium for given 𝑚1, 𝑚2. Model 3 also admits a supplementary conservation equation

𝜕𝑡H + ∇ · ((H + 𝑝)𝒖) = 0, (1.104)
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where H = 1
2 𝜌‖𝒖‖2 + 𝜌𝑒 with 𝜌𝑒 = 𝑚1𝑒1 + 𝑚2𝑒2 is showed in Chanteperdrix (2004) to be a mathematical entropy

for (1.3.1.1). Moreover, the system is hyperbolic for any direction 𝝎, with eigenvalues

𝒖 · 𝝎 − 𝑐𝑊 , 𝒖 · 𝝎, 𝒖 · 𝝎 + 𝑐𝑊 , (1.105)

where 𝒖 · 𝝎 of multiplicity 3 and 𝑐𝑊 the Wood – or Wallis – velocity (Wood, 1930; Wallis, 1969),

𝑐𝑊 =

(
𝜌

(
𝛼1

𝜌1𝑐
2
1
+ 𝛼2

𝜌2𝑐
2
2

))−1/2

. (1.106)

Despite accounting for only the coexistence of the two phases and no other phenomena, such a multi-fluid model
presents all the good mathematical properties for a multi-fluid model. It offers a minimal building block upon which
we will add a hierarchy of other phenomena. Remark that we could have obtained a similar set of equations in the
isothermal limit rather than using barotropic EOS similarly to Euler equations in Section 1.2.2.4. Then, gathering
mass conservation, momentum and total energy equations rather than the temperature advection constraint would
have lead to the four-equation model given in Le Touze (2015).

1.3.1.2 Adding a dissipative pressure relaxation

Following the work of Chanteperdrix (2004), let us start by investigating the existence of a two-pressure multi-fluid
model by relaxing the pressure equilibrium of (1.3.1.1) into

𝐷𝑡𝛼1 =
1
𝜇
(𝑝1 − 𝑝2), (1.107)

where 𝜇 > 0 has the dimension of a dynamic viscosity. For linearized barotropic EOS, the function 𝛼1 ↦→ 𝑝1 (𝑚1, 𝛼1) −
𝑝2 (𝛼1) is strictly decreasing from +∞ to −∞ as 𝛼1 goes from 0 to 1. Therefore, there exists a unique equilibrium
𝛼∗1 ∈ (0, 1) and (1.107) makes the volume fraction relax towards such equilibrium. Since the pressure equilibrium no
longer provides a pressure definition, we postulate that the momentum equation reads

𝜕𝑡 (𝜌𝒖) + ∇ · (𝜌𝒖 ⊗ 𝒖 + 𝑝𝑰) = 0, (1.108)

where 𝑝 is chosen to provide a signed dissipation of the mathematical entropy H similarly defined as the one of
the three-equation model. Multiplying the momentum equation by 𝒖 yields the following mathematical entropy
production rate

𝜕𝑡H + ∇ · ((H + 𝑝)𝒖) = (𝑝 − 𝛼1𝑝1 − 𝛼2𝑝2)∇ · 𝒖 − 𝜇(1 − 𝛼𝑑
1 ) (𝐷𝑡𝛼1)2. (1.109)

Therefore, choosing 𝑝 := 𝛼1𝑝1 + 𝛼2𝑝2 gives a signed mathematical entropy production 𝜍 ≤ 0 and the following
four-equation Model 4.

Model 4 (Four-equation model)

With 𝑚𝑘 = 𝛼𝑘𝜌𝑘 the phase effective densities, 𝜌 the mixture density such that 𝜌 = 𝑚1 + 𝑚2, 𝑝𝑘 the
phase pressures, 𝛼𝑘 the volume fractions, 𝒖 the mixture velocity, the four-equation model reads

𝜕𝑡𝑚1 + ∇ · (𝑚1𝒖) = 0,
𝜕𝑡𝑚2 + ∇ · (𝑚2𝒖) = 0,
𝜕𝑡 (𝜌𝒖) + ∇ · (𝜌𝒖 ⊗ 𝒖 + 𝑝𝑰) = 0,
𝐷𝑡𝛼1 = 𝜇−1 (𝑝1 − 𝑝2),

with 𝑝 = 𝛼1𝑝1 + 𝛼2𝑝2.
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The Model 4 is also showed to be hyperbolic for any direction 𝝎 with eigenvalues

𝒖 · 𝝎 − 𝑐𝐹 , 𝒖 · 𝝎, 𝒖 · 𝝎 + 𝑐𝐹 , (1.110)

where 𝒖 · 𝝎 of multiplicity 4 and

𝑐𝐹 =

√
𝑚1𝑐

2
1 + 𝑚2𝑐

2
2

𝜌
. (1.111)

Remark that the pair of models 3 and 4 satisfies the criterion EEC of Definition 4. Therefore, one can consider that
the four-equation model formally relaxes towards the three-equation model in the limit where 𝜇 → 0.

One could further discuss the nature of the viscous relaxation term introduced in (1.107) by considering a finite
value for 𝜇. This would correspond to an actual physical process that should be modelled with a physical closure
of the parameter 𝜇. One would also expect such a closure to depend on the interface geometry at all scales and
consequently on the flow regime. Such closures have been proposed for disperse bubbly flows which requires a minimal
amount of variables to describe its geometry, as a statistical average of a pressure equilibrium process in Perrier and
Gutiérrez (2021) and a viscous damping of bubble pulsation in Drui et al. (2019). This discussion will be pursued in
Chapter 2 dealing with the interface geometric modelling at small scales.

1.3.2 Adding a Brackbill-like capillarity model
We are now interested in proposing a multi-fluid model with capillarity. As previously discussed, such a task does not
aim at proposing a sound thermodynamic and mathematical model as the multi-fluid modelling approach does not
model the smallest scales where the capillarity phenomena originates, in contrast to phase-field models (Korteweg,
1901; Cahn and Hilliard, 1958; Anderson et al., 1998). Nevertheless, the CSF approach proposed by Brackbill et al.
(1992) offers to describe the macroscopic effects of capillarity via a force density relying on a colour function. Note
that a similar approach involves an equivalent flux form also referred to as the Continuum Surface Stress (CSS) model
(Lafaurie et al., 1994; Gueyffier et al., 1999; Perigaud and Saurel, 2005; Grenier et al., 2013; Schmidmayer et al.,
2017). Such models have been showed to be compatible with barotropic two-phase flow model in Chanteperdrix
(2004) by using the volume fraction as the colour function and integrating it in the internal energy via a capillarity
energy contribution

𝜌𝑒 = 𝑚1𝑒1 + 𝑚2𝑒2 + 𝜎‖∇𝛼1‖, (1.112)

where 𝜎 is the capillarity coefficient. Remark that ‖∇𝛼1‖ has the dimension of a surface density and is here used
as an IAD estimator as (Perigaud and Saurel, 2005). Remark that one can further use this colour function that
implicitly describes the large-scale interface to estimate geometric quantities such as mean curvature (Osher and
Fedkiw, 2003; Goldman, 2005)

𝐻 (∇𝛼1) := −∇ ·
(

∇𝛼1
‖∇𝛼1‖

)
. (1.113)

Similarly to Schmidmayer et al. (2017), we consider then the following Lagrangian for our multi-fluid model

L =
1
2
𝑚1𝒖

2 − 𝑚1𝑒1

(
𝑚1
𝛼1

)
︸                      ︷︷                      ︸

L1

+ 1
2
𝑚2𝒖

2 − 𝑚2𝑒2

(
𝑚2
𝛼2

)
︸                      ︷︷                      ︸

L2

−𝜎‖∇𝛼1‖︸      ︷︷      ︸
L𝑐𝑎𝑝

. (1.114)

Let us denote L∗
𝑘 := 𝑚𝑘𝜕𝑚𝑘L𝑘 − L𝑘 , for 𝑘 = 1, 2, 𝑫𝑇 := 𝜕∇𝛼1L𝑐𝑎𝑝, and 𝑲𝑇 := 𝜕𝒖L. Using integration by parts, the

variation of the action associated with the Lagrangian boils down to

𝛿A =
∫
Ω
−

(
𝜕𝑡𝑲 + ∇ ·

[
𝑲 ⊗ 𝒖 − (L∗

1 + L∗
2 − L𝑐𝑎𝑝)𝑰 − ∇𝛼1 ⊗ 𝑫

]
− (𝜕𝛼1L1 − 𝜕𝛼2L2 − ∇ · 𝑫)∇𝛼1

)
· 𝜼

+
(
𝜕𝛼1L1 − 𝜕𝛼2L2 − ∇ · 𝑫

)
𝛿𝛼1,

(1.115)
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where 𝑰 is the identity matrix. Then, Hamilton’s SAP, i.e. 𝛿A = 0 for any variation of the trajectories 𝜼 and the
volume fraction 𝛿𝛼1, yields {

𝜕𝑡𝑲 + ∇ ·
[
𝑲 ⊗ 𝒖 − (L∗

1 + L∗
2 − L𝑐𝑎𝑝)𝑰 − ∇𝛼1 ⊗ 𝑫

]
= 0,

𝜕𝛼1L1 − 𝜕𝛼2L2 − ∇ · 𝑫 = 0.
(1.116)

Evaluating the derivatives of the Lagrangian gives

𝑲 = 𝜌𝒖, 𝑫 = −𝜎 ∇𝛼1
‖∇𝛼1‖

, L∗
1 = −𝛼1𝑝1, L∗

2 = −𝛼2𝑝2, (1.117)

and for 𝑘 = 1, 2,
𝜕𝛼𝑑

1
L𝑘 = −𝛼𝑘 𝑝𝑘 , 𝜕𝛼𝑘L𝑘 = (1 − 𝛼𝑑

1 )𝑝𝑘 . (1.118)

Using the conservative variables (𝑚1, 𝑚2, 𝜌𝒖), the full system including constraints (1.98) reads as follows

Model 5 (Barotropic capillarity model)

With 𝑚𝑘 = 𝛼𝑘𝜌𝑘 the phase effective densities, 𝜌 = 𝑚1 +𝑚2 the mixture density, 𝑝𝑘 the phase pressures,
𝛼𝑘 the volume fractions, 𝒖 the mixture velocity, and 𝜎 the coefficient of capillarity, we have

𝜕𝑡𝑚1 + ∇ · (𝑚1𝒖) = 0,
𝜕𝑡𝑚2 + ∇ · (𝑚2𝒖) = 0,
𝜕𝑡 (𝜌𝒖) + ∇ ·

(
𝜌𝒖 ⊗ 𝒖 + (𝑝 − 𝜎‖∇𝛼1‖)𝑰 + 𝜎 ∇𝛼1⊗∇𝛼1

‖∇𝛼1 ‖

)
= 0,

with
𝑝 := 𝛼1𝑝1

(
𝑚1
𝛼1

)
+ 𝛼2𝑝2

(
𝑚2

1 − 𝛼1

)
,

and 𝛼1 defined by the implicit Laplace equilibrium

𝑝1

(
𝑚1
𝛼1

)
− 𝑝2

(
𝑚2

1 − 𝛼1

)
= 𝜎𝐻 (∇𝛼1), (1.119)

where 𝐻 (∇𝛼1) is defined by (1.113).

This system admits a supplementary equation of conservation for H := 1
2 𝜌𝒖

2 + 𝜌𝑒 + 𝜎‖∇‖ that reads

𝜕𝑡H + ∇ ·
(
H𝒖 + (𝑝 − 𝜎‖∇𝛼1‖)𝒖 − 𝜎 ∇𝛼1

‖∇𝛼1‖
𝐷𝑡𝛼1

)
= 0, (1.120)

where the material time derivative 𝐷𝑡𝛼1 in the flux is implicitly obtained by taking the time material of the Laplace
equilibrium (1.119). Remark then that Model 5 and the equation (1.120) are conservation equations with fluxes
depending on the gradient of 𝛼1. Consequently, the mathematical theory of conservation laws presented in Section
1.1.1 does not apply anymore. Nevertheless, we still refer to H as a “mathematical entropy” as it naturally extends
the mathematical entropies without capillarity, and we still aim at verifying the same properties such as hyperbolicity,
and a negatively signed mathematical entropy production. Regarding the hyperbolicity, it cannot be assessed for
Model 5 as it involves second-order space derivatives and an implicit definition of pressure equilibrium also involving
space derivatives.

One can similarly propose a relaxation model of Model 5 by introducing the following dynamic for 𝛼1

𝜕𝑡𝛼1 + 𝒖 · ∇𝛼1 =
1
𝜇
(𝑝1 − 𝑝2 − 𝜎𝐻) . (1.121)
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This yields the Model 6.

Model 6 (Barotropic capillarity model with relaxation)

With 𝑚𝑘 = 𝛼𝑘𝜌𝑘 the phase effective densities, 𝜌 the mixture density such that 𝜌 = 𝑚1 + 𝑚2, 𝑝𝑘 the
phase pressures, 𝛼𝑘 the volume fractions, 𝒖 the mixture velocity, and 𝜎 the coefficient of capillarity,
the model reads 

𝜕𝑡𝑚1 +∇ · (𝑚1𝒖) = 0,
𝜕𝑡𝑚2 +∇ · (𝑚2𝒖) = 0,
𝜕𝑡𝛼1 +𝒖 · ∇𝛼1 = 1

𝜇 (𝑝1 − 𝑝2 − 𝜎𝐻)
𝜕𝑡 (𝜌𝒖) + ∇ ·

(
𝜌𝒖 ⊗ 𝒖 + (𝑝 − 𝜎‖∇𝛼1‖)I + 𝜎 ∇𝛼1⊗∇𝛼1

‖∇𝛼1 ‖

)
= 0,

with
𝑝 := 𝛼1𝑝1

(
𝑚1
𝛼1

)
+ 𝛼2𝑝2

(
𝑚2

1 − 𝛼1

)
,

where 𝐻 (∇𝛼1) is defined by (1.113).

This model also admits a mathematical entropy inequality similar to the four-equation Model 4,

𝜕𝑡H + ∇ ·
(
H𝒖 + (𝑝 − 𝜎‖∇𝛼1‖)𝒖 − 𝜎 ∇𝛼1

‖∇𝛼1‖
𝐷𝑡𝛼1

)
= −𝜖−1 (1 − 𝛼𝑑

1 )
(
𝑝1 − 𝑝2 − 𝜎

1 − 𝛼𝑑
1
𝐻

)2

≤ 0. (1.122)

Moreover, thanks to the relaxed structure of the Model 6, one can propose an alternative way of studying hyperbolicity
of the homogeneous form of Model 6. Indeed, by introducing 𝒘 = ∇𝛼1 as a new variable, one can introduce the
following homogeneous augmented model using similar lines as Schmidmayer et al. (2017).

Model 7 (Homogeneous augmented barotropic capillarity model)

With 𝑚𝑘 = 𝛼𝑘𝜌𝑘 the phase effective densities, 𝜌 = 𝑚1 +𝑚2 the mixture density, 𝑝𝑘 the phase pressures,
𝛼𝑘 the volume fractions, 𝒘 the gradient of the volume fraction 𝛼1, 𝒖 the mixture velocity, and 𝜎 the
coefficient of capillarity, we have

𝜕𝑡𝑚𝑘 +∇ · (𝑚𝑘𝒖) =0, 𝑘 = 1, 2,
𝜕𝑡𝛼1 +𝒖 · ∇𝛼1 =0,
𝜕𝑡𝒘 +∇(𝒖 · 𝒘) =0,
𝜕𝑡 (𝜌𝒖) + ∇ ·

(
𝜌𝒖 ⊗ 𝒖 + (𝑝 − 𝜎‖𝒘‖)I + 𝜎 𝒘⊗𝒘

‖𝒘 ‖

)
= 0,

with
𝑝 := 𝛼1𝑝1

(
𝑚1
𝛼1

)
+ 𝛼2𝑝2

(
𝑚2

1 − 𝛼1

)
.

Note that this augmented model is showed not to be rotational invariant, and one must study the hyperbolicity
in every direction 𝜔. The details of this study can be found in Appendix 1.A and the results are summarized here.
Let us now note 𝑢𝝎 := 𝒖 ·𝝎, 𝒏 := ∇𝛼1/‖∇𝛼1‖, 𝜓 = 𝜎‖∇𝛼1‖/(𝜌𝑐2

𝐹), 𝑐𝐹 , the velocity, a geometrical-physical parameter
and the two-scale frozen sound speed as established in (1.111). In the diffuse interface with moderate capillarity
effects in comparison with acoustics, i.e. 𝜓 � 1, we have the following eigenvalues in the direction 𝜔,

𝑢𝝎 , 𝑢𝝎 ± 𝑐𝐹 (1 − (𝝎 · 𝒏)2)
√
𝜓, 𝑢𝝎 ± 𝑐𝐹

(
1 + 1

2
𝜓(𝝎 · 𝒏)2 (1 − (𝝎 · 𝒏)2)

)
. (1.123)
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Remark that when the capillarity effects are negligible with respect to acoustics ones 𝜓 � 1 or when we are oriented
towards the surface normal (𝝎 · 𝒏)2 = 1, we recover at the zeroth order the frozen speed of sound. Indeed, in such
conditions the capillarity plays no role, and we recover the properties of Model 4. Otherwise, these velocities are
a priori distinct but, as showed in the Appendix 1.A, the system is only weakly hyperbolic. Remark that strongly
hyperbolic extensions of this augmented model are proposed in Chiocchetti et al. (2021) with a special care dedicated
on the development of curl-free schemes for the evolution of 𝒘, notably with divergence-cleaning techniques introduced
by Munz et al. (2000) in the context of magneto-hydrodynamics.
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1.4 Multi-fluid modelling of the disperse flow regime

We continue the flexibility assessment of the framework proposed by Hamilton’s SAP by considering now the mod-
elling of disperse multi-fluid models. Let us recall that modelling of disperse regimes deals with a collection of
inclusions, liquid, gaseous or solid, embedded in a carrier phase. This regime encompasses itself another wide spec-
trum of regimes (e.g. bubbly, cap, slug or annular flows), which depends, among other parameters, on the volume
occupation of the inclusions – dilute or dense –, the density ratio between the inclusion and the carrier phase, the
size and velocity polydispersion, etc (Crowe et al., 2012). In order to propose a simpler description of the interface,
these models need to translate at a macroscopic scale the numerous phenomena occurring at the small scale such as
drag, added-mass, turbulence, segregation, collisions, or small-scale dynamics such as oscillation or pulsation of the
inclusion.

One possibility to describe such regime is using a kinetic-based model to capture these phenomena from the
dynamics of a single inclusion (Williams, 1958; O’Rourke and Amsden, 1987). Multi-fluid models can potentially be
obtained by taking the statistical averages, but it requires a particular method which is later detailed in Chapter 2.

Actually, the derivation of disperse multi-fluid model has revealed to be challenging as many attempts provide
ill-posed non-hyperbolic models as reviewed in Lhuillier et al. (2013). This difficulty notably arises when considering
the buoyant forces in two-velocity models and correction terms need to be added to recover hyperbolicity (Raviart and
Sainsaulieu, 1995; Fox et al., 2020). Another issue comes from the unphysical sound propagation at the inclusion’s
sound velocity as in Baer and Nunziato (1986); Saurel and Abgrall (1999). Such a modification of the Baer-Nunziato
system is proposed in Saurel et al. (2017) by introducing an ad-hoc conservation equation for compressible and
relaxing droplets at the small-scale. As pointed out by Lhuillier et al. (2013), a key feature to overcome this difficulty
would lie in the proper modelling of the added-mass effects and pseudo-turbulence as recently proposed in the
hyperbolic model of Fox et al. (2022) for a specific stiffened gas EOS.

In order to reach a better understanding of such modelling difficulty, a derivation of such models with Hamilton’s
SAP would help identify the key mechanisms restoring hyperbolicity of the model. The derivation of two-phase
flow models with Hamilton’s SAP in the disperse regime has first been proposed by Bedford and Drumheller (1978)
where a micro-inertia term is added to describe the small-scale pulsation of a bubbly flow. The hyperbolicity of such
model has not been assessed as it was not closed. This idea remained in the works of Gavrilyuk and Saurel (2002);
Drui et al. (2019), but respectively include a propagation speed related to the inclusion or a single-velocity model.
Following the ideas of Lhuillier, added-mass contributions have been accounted for in the derivation with Hamilton’s
SAP (Burtea et al., 2021) but hyperbolicity was not recovered.

In this section we propose to both recover some simple disperse models of the literature with Hamilton’s SAP and
investigate the derivation of two-velocity models. In Section 1.4.1, a single-velocity model disperse multi-fluid model
is derived. Then, a naive derivation of a two-velocity model is proposed in Section 1.4.2 without adding added-mass
effects. Finally, a novel approach to include added-mass effects in Hamilton’s SAP is detailed in Section 1.4.3 and
hyperbolicity is recovered for an original and simple model.

This last results is associated with the following contribution :

• Loison, Arthur, Teddy Pichard, Samuel Kokh, and Marc Massot. “Derivation of a disperse two-velocity model
accounting for added-mass through the Stationary Action Principle”, In preparation.

1.4.1 A disperse model with incompressible droplets

Let us first consider a collection of incompressible inclusions, either droplets or solid particles, embedded in a
compressible gas. The only parameters used to describe these inclusions are their velocity and volume occupancy.
As a consequence, the sole energy involved in the SAP will be the inclusions kinetic energy. The fine description of
the small-scale is proposed in the dedicated Chapter 2. For consistency, we index with 2 the quantities related to
the gaseous phase and with both an index 1 and an exponent 𝑑 – or sometimes 1𝑑 – the quantities related to the
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disperse phase. We first assume

• liquid and gaseous phases have the same velocity 𝒖; (H1d)
• the fluids are equipped with a barotropic EOS; (H1e)
• the inclusions are incompressible. (H1f)

Such one-velocity assumption is made to avoid any difficulty associated with hyperbolicity, and is further relaxed in
Sections 1.4.2 and 1.4.3. The barotropic equations of state are assumed similarly as models for the separated regime
derived in Section 1.3. Finally, the incompressibility of inclusions discards any non-physical sound propagation at
their associated sound speed as remarked in Saurel et al. (2017).

We have the following occupation constraint,

𝛼2 + 𝛼𝑑
1 = 1, (1.124)

the conservation of phase densities for 𝑘 = 2, 1𝑑 and the incompressibility properties of the inclusions,

𝜕𝑡𝑚𝑘 + ∇ · (𝑚𝑘𝒖) = 0, 𝜕𝑡𝛼
𝑑
1 + ∇(𝛼𝑑

1𝒖) = 0, 𝐷𝑡 𝜌
𝑑
1 = 0. (1.125)

The Lagrangian associated with this system then reads

L =
1
2
𝑚2𝒖

2 − 𝑚2𝑒2

(
𝑚2

1 − 𝛼𝑑
1

)
︸                            ︷︷                            ︸

L2

+ 1
2
𝑚𝑑

1𝒖
2 − 𝑚𝑑

1𝑒
𝑑
1 (𝜌𝑑1 )︸                     ︷︷                     ︸

L𝑑
1

. (1.126)

As mentioned before, the internal energy of the inclusions has no impact on the derived model, and one could also have
added similarly capillarity energy thanks to additional geometric parameters. The internal energy is unnecessarily
kept here to highlight the absence of any contribution in the final model. Let us now write the variation of the action
A associated with the Lagrangian defined by (1.126)

𝛿A =
∫
Ω̄
−

{
𝜕𝑡𝑲 + ∇ ·

[
𝑲 ⊗ 𝒖 −

(
L∗

2 + L𝑑,∗
1 + 𝛼𝑑

1 𝜕𝛼𝑑
1
L2

)
𝑰
]}

· 𝜼. (1.127)

Hamilton’s SAP 𝛿A = 0 yields

𝜕𝑡𝑲 + ∇ ·
[
𝑲 ⊗ 𝒖 −

(
L∗

2 + L𝑑,∗
1 + 𝛼𝑑

1 𝜕𝛼𝑑
1
L2

)
𝑰
]
= 0. (1.128)

Then, evaluating the derivatives of the Lagrangian,

𝑲 = 𝜌𝒖, L∗
2 = −(1 − 𝛼𝑑

1 )𝑝2, L𝑑,∗
1 = 0, 𝜕𝛼𝑑

1
L2 = 𝑝2. (1.129)

Hence, the final momentum equation reads

𝜕𝑡 (𝜌𝒖) + ∇ · (𝜌𝒖 ⊗ 𝒖 + 𝑝2𝑰) = 0. (1.130)

The final system is gathered in the Model 8.

Model 8 (Single-velocity disperse model)

With 𝑚𝑘 = 𝛼𝑘𝜌𝑘 and 𝛼𝑘 the phase densities and volume fractions of phases 𝑘 = 2, 1𝑑, 𝜌 = 𝑚𝑑
1 + 𝑚2 the

mixture’s density, 𝒖 the velocity and 𝑝2 (𝜌2) the pressure of the gaseous phase 2, the single-velocity
disperse model reads 

𝜕𝑡𝑚2+∇ · (𝑚2𝒖)= 0,
𝜕𝑡𝑚

𝑑
1+∇ · (𝑚𝑑

1𝒖)= 0,
𝜕𝑡𝛼

𝑑
1 +∇ · (𝛼𝑑

1𝒖) = 0,
𝜕𝑡 (𝜌𝒖) + ∇ · (𝜌𝒖 ⊗ 𝒖 + 𝑝2𝑰) = 0.
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This model is showed to be hyperbolic in any direction 𝝎 with the following eigenvalues

𝒖 · 𝝎 − 𝑐, 𝒖 · 𝝎, 𝒖 · 𝝎 + 𝑐, (1.131)

with
𝑐 =

𝑐2

(1 − 𝛼𝑑
1 )

√
1 + 𝛼𝑑

1
1−𝛼𝑑

1

𝜌𝑑
1
𝜌2

, (1.132)

and where 𝒖 ·𝝎 has multiplicity 4. We recover the same formula as the one derived in Urick and Ament (1949) where
it is presented under the following equivalent form( 𝑐2

𝑐

)2
=

(
1 − 𝛼𝑑

1

) (
1 + 𝛼𝑑

1
𝜌𝑑1 − 𝜌2

𝜌2

)
. (1.133)

In the work of Urick and Ament, sound velocity measures show a good agreement with this model up to a volume
fraction of 25%, which is remarkable for such a minimal model. Remark also that in the limit 𝛼𝑑

1 → 0 the sound
velocity of the barotropic Euler gaseous model is recovered and that, for any 𝛼𝑑

1 > 0, the sound velocities are
decreasing for admissible values of 𝛼𝑑

1 .
Finally, the Model 8 admits the following conservation equation for H = 1

2 𝜌𝒖
2 + 𝑚2𝑒2

𝜕𝑡H + ∇ · ((H + 𝑝2)𝒖) = 0. (1.134)

Moreover, we can show that H is a convex function of (𝑚2, 𝑚
𝑑
1 , 𝛼

𝑑
1 , 𝒖) by considering its Hessian H and verifying that

𝒚𝑇H𝒚 ≥ 0 for any vector 𝒚. Writing 𝒚 = ( 𝒚̃, 𝒚̄) with 𝒚̃ = (𝑦𝑎, 𝑦𝑏, 𝑦𝑐) and 𝒚̄ = (𝑦1, 𝑦2, 𝑦3), we indeed have that

𝒚𝑇H𝒚 =
‖ 𝒚̄ − (𝑦𝑎 + 𝑦𝑏)𝒖‖2

𝜌
+
𝑚3

2 ((1 − 𝛼𝑑
1 )𝑦𝑎 + 𝑚2𝑦𝑐)2𝑐2

2

(1 − 𝛼𝑑
1 )6

+
4𝑚2

2 ((1 − 𝛼𝑑
1 )𝑦𝑎 + 𝑚2𝑦𝑐)2𝑝2

(1 − 𝛼𝑑
1 )5

≥ 0. (1.135)

Hence, H is then a mathematical entropy for the Model 8.

1.4.2 Towards two-velocity models
The derivation of two-velocity models is necessary for the proper modelling of critical phenomena arising in gas-liquid
atomization such as drag, added mass, particle turbulence, etc. Let us consider first a simple extension of the previous
one-velocity two-scale model in a disperse regime. Consider a naive first model where the kinetic energy is simply
split in two contributions. We propose then the following Lagrangian

L =
1
2
𝑚2𝒖

2 − 𝑚2𝑒2 (𝜌2)︸                    ︷︷                    ︸
L2

+ 1
2
𝑚𝑑

1 (𝒖𝑑)2 − 𝑚𝑑
1𝑒1 (𝜌𝑑1 )︸                         ︷︷                         ︸

L𝑑
1

, (1.136)

and the mass conservation constraints assuming that the small-scale liquid phase is incompressible,

𝜕𝑡𝑚2 + ∇ · (𝑚2𝒖) = 0, 𝜕𝑡𝑚
𝑑
1 + ∇ · (𝑚𝑑

1𝒖
𝑑) = 0, 𝐷𝑡 𝜌

𝑑
1 = 0, 𝜕𝑡𝛼

𝑑
1 + ∇ · (𝛼𝑑

1𝒖
𝑑) = 0. (1.137)

For computational convenience, we express the Lagrangian was a function of (𝑚𝑑
1 , 𝑚2, 𝛼

𝑑
1 , 𝒖, 𝒖

𝑑),

L(𝑚𝑑
1 , 𝑚2, 𝛼

𝑑
1 , 𝒖, 𝒖

𝑑) = 1
2
𝑚2𝒖

2 − 𝑚2𝑒2

(
𝑚2

1 − 𝛼𝑑
1

)
+ 1

2
𝑚𝑑

1 (𝒖𝑑)2 − 𝑚𝑑
1𝑒1 (𝜌𝑑1 ), (1.138)

Remark now that we introduce two families of trajectories for the variation of the action A associated with the
above Lagrangian. Note also that the Eulerian formulation is particularly convenient to use the Eulerian constraint
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of volume occupancy 𝛼𝑑
1 + 𝛼2 = 1 i.e. 𝛿𝛼𝑑

1 + 𝛿𝛼2 = 0. Therefore, we introduce two Eulerian displacement variations 𝜼
and 𝜼𝑑, and we use the formula for the constraints variations accordingly

𝛿𝑚2 = −∇ · (𝑚2𝜼), 𝛿𝑚𝑑
1 = −∇ · (𝑚𝑑

1𝜼
𝑑), 𝛿𝛼𝑑

1 = −∇ · (𝛼𝑑
1𝜼

𝑑), 𝛿𝜌𝑑1 = −(𝜼𝑑 · ∇)𝜌𝑑1 ,
𝛿𝒖 = 𝜕𝑡𝜼 + (𝒖 · ∇)𝒖 − (𝜼 · ∇)𝒖, 𝛿𝒖𝑑 = 𝜕𝑡𝜼

𝑑 + (𝒖𝑑 · ∇)𝒖𝑑 − (𝜼𝑑 · ∇)𝒖𝑑 .
(1.139)

Defining 𝑲𝑇 = 𝜕𝒖L, (𝑲𝑑)𝑇 = 𝜕𝒖𝑑L,L∗
2 = 𝑚2𝜕𝑚2L2 −L2, and L𝑑,∗

1 = 𝑚𝑑
1𝜕𝑚𝑑

1
L𝑑

1 −L𝑑
1 , the variation of the action reads

𝛿A =
∫
Ω̄
−

{
𝜕𝑡𝑲 + ∇ · (𝑲 ⊗ 𝒖 − L∗

2𝑰) − 𝜕𝛼𝑑
1
L2∇(𝛼𝑑

1 )
}
· 𝜼 −

{
𝜕𝑡𝑲

𝑑 + ∇ · (𝑲𝑑 ⊗ 𝒖𝑑 − L∗,𝑑
1 𝑰) − 𝛼𝑑

1∇(𝜕𝛼𝑑
1
L2)

}
· 𝜼𝑑 , (1.140)

and Hamilton’s SAP 𝛿A = 0 provide for any variation 𝜼 and 𝜼𝑑 that{
𝜕𝑡𝑲 +∇ · (𝑲 ⊗ 𝒖 − L∗

2𝑰) − 𝜕𝛼𝑑
1
L2∇𝛼𝑑

1 = 0,
𝜕𝑡𝑲

𝑑+∇ · (𝑲𝑑 ⊗ 𝒖𝑑 − L∗,𝑑
1 𝑰) − 𝛼𝑑

1∇(𝜕𝛼𝑑
1
L2)= 0.

(1.141)

Evaluating the derivatives yields,

𝑲 = 𝑚2𝒖, 𝑲𝑑 = 𝑚𝑑
1𝒖

𝑑 , L∗
2 = −(1 − 𝛼𝑑

1 )𝑝2, 𝜕𝛼𝑑
1
L2 = −𝑝2 L∗,𝑑 = 0. (1.142)

The final momentum equations are then{
𝜕𝑡 (𝑚2𝒖) +∇ · (𝑚2𝒖 ⊗ 𝒖 + 𝑝2𝑰)−𝛼𝑑

1∇𝑝2= 0,
𝜕𝑡 (𝑚𝑑

1𝒖
𝑑)+∇ · (𝑚𝑑

1𝒖
𝑑 ⊗ 𝒖𝑑) +𝛼𝑑

1∇𝑝2= 0.
(1.143)

And the final two-velocity model is gathered in Model 9.

Model 9 (Two-velocity model without added-mass)

With 𝑚𝑘 = 𝛼𝑘𝜌𝑘 and 𝛼𝑘 the phase densities and volume fractions of phases 𝑘 = 2, 1𝑑, 𝜌 = 𝑚1 + 𝑚2 the
mixture’s density, 𝒖 the velocity of the carrier phase, 𝒖𝑑 the velocity of the inclusions and 𝑝2 (𝜌2) the
pressure of the gaseous phase 2,

𝜕𝑡𝑚2+∇ · (𝑚2𝒖) = 0,
𝜕𝑡𝑚

𝑑
1+∇ · (𝑚𝑑

1𝒖
𝑑)= 0,

𝜕𝑡𝛼
𝑑
1 +∇ · (𝛼𝑑

1𝒖
𝑑) = 0,

𝜕𝑡 (𝑚2𝒖) +∇ · (𝑚2𝒖 ⊗ 𝒖 + 𝑝2𝑰)−𝛼𝑑
1∇𝑝2= 0,

𝜕𝑡 (𝑚𝑑
1𝒖

𝑑)+∇ · (𝑚𝑑
1𝒖

𝑑 ⊗ 𝒖𝑑) +𝛼𝑑
1∇𝑝2= 0.

Remark also that this model is very similar to the one of Raviart and Sainsaulieu (1995) except for an additional
pressure term in the momentum equation of the inclusion. However, the hyperbolicity study of this system reveals
that the model is not hyperbolic for velocity differential smaller than the mixture sound speed as remarked in Burtea
et al. (2021). Indeed, the characteristic polynomial P of the linearized flux, denoting 𝑢 = 𝒖 · 𝜔 and 𝑢𝑑 = 𝒖𝑑 · 𝜔 for
any direction 𝝎, reads

P(𝑋) = (𝑋 − 𝑢𝑑)Q(𝑋), (1.144)
with Q a fourth-order polynomial not reported explicitly here that we compute with the symbolic computational
software Mathematica (Wolfram Research, 2023). The nature of the roots of a fourth-order polynomial can be
accessed via the sign of its discriminant ΔQ . To simplify this study, we focus on a neighbourhood of 0 for both 𝛼𝑑

1
and (𝑢 − 𝑢𝑑) which correspond to a dilute regime at small Stokes number. At first order in 𝛼𝑑

1 and second order in
(𝑢 − 𝑢𝑑), the discriminant reads

ΔQ = −
16𝑐10

2 𝜌2

𝜌𝑑1
𝛼𝑑

1 (𝑢 − 𝑢𝑑)2 + 𝑜(𝛼𝑑
1 (𝑢 − 𝑢𝑑)2). (1.145)
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A negative discriminant in a fourth-order polynomial implies that two roots are complex and the other two are reals.
Therefore, in a neighbourhood of 0 for both 𝛼𝑑

1 and (𝑢 − 𝑢𝑑), the model admits two complex eigenvalues and is
not hyperbolic. Non-hyperbolicity property is not compatible with the well-posedness of the model (Métivier, 2005)
if no other terms are added to the system to stabilize the solution, see for instance Ramshaw and Trapp (1978).
Nonetheless, we choose here to restore hyperbolicity by considering additional physics.

1.4.3 Added mass effects for dilute disperse regime
Let us now account for a correction term in the kinetic energies of the Lagrangian in order to model added mass
phenomena. These phenomena are accounted by adding correcting the assumption that the kinetic energy of the
mixture is the sum of the kinetic energy of each flow as if they do not see each other. As we attempt to restore
hyperbolicity, at least for a dilute regime of particles and small velocity differential, one can assume that the flow
at small scale is a d’Alembert flow around a spherical rigid particle. Such assumption has already been considered
in Biesheuvel and Wijngaarden (1984) where an averaging method is used to obtain a hyperbolic model. A model
similar to the one proposed by Fox et al. (2020) is obtained therein where hyperbolicity is also achieved.

Inspired by these models, we include an energetic contribution related to added-mass with Hamilton’s SAP. In
order to do so, we need first to express the kinetic energy correction associated with the local d’Alembert flow. In
order to get explicit expressions of these corrective terms, we make the following assumptions:

• The disperse phase is dilute such that the flow around an inclusion does not affect the flow
around the others; (H1g)

• The flow is incompressible and irrotational at small scale; (H1h)
• The inclusion is a sphere and its centre of mass has exactly the velocity 𝒖𝑑, and it is not rotating; (H1i)
• The small-scale flow tends to the velocity of the large scale 𝒖 far from the inclusion. (H1j)

Under these assumptions, we place ourselves in the referential frame of the carrier phase such that the inclusion can
be considered as moving at velocity 𝒖 − 𝒖𝑑 and the velocity far from the inclusion vanishes. The kinetic energy of
such flow is well known and can be found for instance in Lamb (1916, §92) for a sphere of radius 𝑅,

2
3
𝜋𝜌𝑎2𝑅

3 (𝒖 − 𝒖𝑑)2, (1.146)

where 𝜌𝑎2 is the density of the locally incompressible fluid. It is comparable to 𝜌2 := 𝑚2/𝛼2 in terms of order
of magnitude, however it does not follow the same dynamics. For a local volume fraction of 𝛼𝑑

1 , the associated
correction term is

𝑒𝑎 := 1
2
𝜌𝑎2𝛼

𝑑
1 (𝒖 − 𝒖𝑑)2. (1.147)

1.4.3.1 Hamilton’s SAP

The following Lagrangian is then introduced,

L =
1
2
𝑚2𝒖

2 − 𝑚2𝑒2 (𝜌2)︸                    ︷︷                    ︸
L2

+ 1
2
𝑚𝑑

1 (𝒖𝑑)2 − 𝑚𝑑
1𝑒1 (𝜌𝑑1 ) −

1
2
𝜌𝑎2𝛼

𝑑
1 (𝒖 − 𝒖𝑑)2︸                                                      ︷︷                                                      ︸

L𝑑
1

, (1.148)

with 𝛼𝑑
1 + 𝛼2 = 1, and with two components identified within the Lagrangian: L2, L𝑑

1 . We also make the usual
assumptions of mass conservation and incompressible small-scale liquid phase

𝜕𝑡𝑚2 + ∇ · (𝑚2𝒖) = 0, 𝜕𝑡𝑚
𝑑
1 + ∇ · (𝑚𝑑

1𝒖
𝑑) = 0, 𝐷𝑡 𝜌

𝑑
1 = 0, 𝜕𝑡𝛼

𝑑
1 + ∇ · (𝛼𝑑

1𝒖
𝑑) = 0. (1.149)
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However, the variable 𝜌𝑎2 is still non-constraint at this point, and we consequently assume that the added-mass kinetic
energy is conserved with the flow of the inclusions,

𝜕𝑡𝑒
𝑎 + ∇ · (𝑒𝑎𝒖𝑑) = 0. (1.150)

Given these constraints, we choose to express the Lagrangian with the following dependencies

L(𝑚𝑑
1 , 𝑚2, 𝛼

𝑑
1 , 𝜌

𝑑
1 , 𝑒

𝑎, 𝒖, 𝒖𝑑) = 1
2
𝑚2𝒖

2 − 𝑚2𝑒2

(
𝑚2

1 − 𝛼𝑑
1

)
+ 1

2
𝑚𝑑

1 (𝒖𝑑)2 − 𝑚𝑑
1𝑒1 (𝜌𝑑1 ) − 𝑒𝑎, (1.151)

where the added-mass kinetic energy correction is added with a negative sign as it is not a usual quadratic form.
Denoting (𝑲)𝑇 = 𝜕𝒖L, (𝑲𝑑)𝑇 = 𝜕𝒖𝑑L, L∗

2 = 𝑚2𝜕𝑚2L2 − L2, and L∗,𝑑 = 𝑚𝑑
1𝜕𝑚𝑑

1
L𝑑

1 − L𝑑
1 , the variation of the action

associated the Lagrangian above reads

𝛿A =
∫
Ω̄
−

{
𝜕𝑡𝑲 + ∇ · (𝑲 ⊗ 𝒖 − L∗

2𝑰) − 𝜕𝛼𝑑
1
L2∇𝛼𝑑

1

}
· 𝜼

−
{
𝜕𝑡𝑲

𝑑 + ∇ · (𝑲𝑑 ⊗ 𝒖𝑑 − (L∗,𝑑 + 𝑒𝑎𝜕𝑒𝑎L𝑑
1 )𝑰) − 𝛼𝑑

1∇(𝜕𝛼𝑑
1
L2)

}
· 𝜼𝑑 .

(1.152)

Applying Hamilton’s SAP to the action 𝛿A = 0 boils down to nullifying the expressions factoring 𝜼 and 𝜼𝑑. It yields{
𝜕𝑡𝑲 + ∇ · (𝑲 ⊗ 𝒖 − L∗

2𝑰) − 𝜕𝛼𝑑
1
L2∇𝛼𝑑

1 = 0,
𝜕𝑡𝑲

𝑑 + ∇ · (𝑲𝑑 ⊗ 𝒖𝑑 − (L∗,𝑑 + 𝑒𝑎𝜕𝑒𝑎L𝑑
1 )𝑰) − 𝛼𝑑

1∇(𝜕𝛼𝑑
1
L2) = 0.

(1.153)

Then, evaluating the partial derivatives gives

𝑲 = 𝑚2𝒖, L∗
2 = −(1 − 𝛼𝑑

1 )𝑝2, 𝑲𝑑 = 𝑚𝑑
1𝒖

𝑑 , 𝜕𝛼𝑑
1
L2 = −𝑝2 L∗,𝑑 = 0, 𝜕𝑒𝑎L𝑑

1 = −1. (1.154)

We report the final system in Model 10.

Model 10 (Two-velocity model with added-mass)

With 𝑚𝑘 = 𝛼𝑘𝜌𝑘 and 𝛼𝑘 the phase densities and volume fractions of phases 𝑘 = 2, 1𝑑, 𝜌𝑎2 the density of
the incompressible d’Alembert flow, 𝒖, the velocity of the carrier phase, 𝒖𝑑 the velocity of the inclusions
and 𝑝2 (𝜌2) the pressure of the gaseous phase 2,

𝜕𝑡𝑚2+∇ · (𝑚2𝒖) = 0,
𝜕𝑡𝑚

𝑑
1+∇ · (𝑚𝑑

1𝒖
𝑑)= 0,

𝜕𝑡𝛼
𝑑
1 +∇ · (𝛼𝑑

1𝒖
𝑑) = 0,

𝜕𝑡𝑒
𝑎 +∇ · (𝑒𝑎𝒖𝑑) = 0,

𝜕𝑡 (𝑚2𝒖) +∇ · (𝑚2𝒖 ⊗ 𝒖 + (1 − 𝛼𝑑
1 )𝑝2𝑰) +𝑝2∇𝛼𝑑

1= 0,
𝜕𝑡 (𝑚𝑑

1𝒖
𝑑)+∇ · (𝑚𝑑

1𝒖
𝑑 ⊗ 𝒖𝑑 + 1

2 𝜌
𝑎
2𝛼

𝑑
1 (𝒖 − 𝒖𝑑)2𝑰)+𝛼𝑑

1∇𝑝2= 0,

with 𝑒𝑎 = 1
2 𝜌

𝑎
2𝛼

𝑑
1 (𝒖 − 𝒖𝑑)2.

Denoting H = H2 + H 𝑑
1 with

H2 =
1
2
𝑚2𝒖

2 + 𝑚2𝑒2, H 𝑑
1 =

1
2
𝑚𝑑

1 (𝒖𝑑)2 + 𝑚𝑑
1𝑒

𝑑
1 + 𝑒𝑎, (1.155)

we have the following additional conservation equation

𝜕𝑡H + ∇ ·
[(
H2 + (1 − 𝛼𝑑

1 )𝑝2

)
𝒖 +

(
H 𝑑

1 + 𝑒𝑎 + 𝛼𝑑
1 𝑝2

)
𝒖𝑑

]
= 0. (1.156)
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Moreover, H is showed to be convex function of 𝑚2, 𝑚
𝑑
1 , 𝛼

𝑑
1 , 𝑒

𝑎, 𝒖, 𝒖𝑑. With its Hessian denoted H, and given a vector
𝒚 = (𝑦𝑎, 𝑦𝑏, 𝑦𝑐, 𝑦𝑑 , 𝒚̄, 𝒚̃), we have

𝒚𝑇H𝒚 =
‖ 𝒚̄ − 𝑦𝑎𝒖‖2

𝑚2
+ ‖ 𝒚̃ − 𝑦𝑏𝒖

𝑑 ‖2

𝑚2
+
(𝑚𝑑

1 )2 (𝛼𝑑
1 𝑦𝑏 − 𝑚𝑑

1 𝑦𝑐)2

(𝛼𝑑
1 )5

(
𝑚𝑑

1𝑐
2
1

𝛼𝑑
1

+ 4𝑝1

)
+
𝑚2

2 ((1 − 𝛼𝑑
1 )𝑦𝑎 + 𝑚2𝑦𝑐)2

(𝛼𝑑
1 )5

(
𝑚2𝑐

2
2

1 − 𝛼𝑑
1
+ 4𝑝2

)
≥ 0.

(1.157)
H is then a mathematical entropy for the Model 10.

1.4.3.2 Hyperbolicity

As the model is rotational invariant, we consider only a one-dimensional model for the hyperbolicity study, and we
choose the primitive set of variables

𝒒 = (𝛼𝑑
1 , 𝑚2, 𝑢, 𝑢𝑑 , 𝜌

𝑎
2 ). (1.158)

The characteristic polynomial of the Jacobian shares a similar structure to the one of the model in Raviart and
Sainsaulieu (1995) and writes

P(𝑋) = (𝑋 − 𝑢𝑑)Q(𝑋), Q(𝑋) =
(
(𝑋 − 𝑢)2 − 𝑐2

2

) (
𝜌𝑎2

2𝜌𝑑1
(𝑢 − 𝑢𝑑)2 − (𝑋 − 𝑢𝑑)2

)
+ (𝑋 − 𝑢)2 𝜌2𝛼

𝑑
1 𝑐

2
2

(1 − 𝛼𝑑
1 )𝜌𝑑1

. (1.159)

We pursue a similar study considering the fourth-order polynomial Q =: 𝑎𝑋4 + 𝑏𝑋3 + 𝑐𝑋2 + 𝑑𝑋 + 𝑒. The existence of
four distinct real roots is given by the positivity of the determinant ΔQ along with the negativity of

𝑃 := 8𝑎𝑐 − 3𝑏2, 𝐷 := 64𝑎3𝑒 − 16𝑎2𝑐2 + 16𝑎𝑏2𝑐 − 16𝑎2𝑏𝑑 − 3𝑏4. (1.160)

At first-order in both (𝑢 − 𝑢𝑑)2 and 𝛼𝑑
1 , we have

Δ𝑄̃ ∼
8(𝑢 − 𝑢𝑑)2𝑐10

2

(𝜌𝑑1 )2

(
4𝜌2𝜌

𝑎
2𝛼

𝑑
1 + 𝜌𝑑1 (𝜌𝑎2 − 2𝜌2𝛼

𝑑
1 )

)
𝑃 ∼ −8𝑐2

2, 𝐷 ∼ −16𝑐4
2. (1.161)

Then, the hyperbolicity conditions (Δ𝑄̃ > 0) ∩ (𝑃 < 0) ∩ (𝐷 < 0) are fulfilled in such neighbourhood under the
sufficient condition

𝛼𝑑
1 <

𝜌𝑑1 𝜌
𝑎
2

2𝜌2 (𝜌𝑑1 − 2𝜌𝑎2 )
. (1.162)

For gaseous and liquid densities classically ordered such that 𝜌𝑎2 ≈ 𝜌2 � 𝜌𝑑1 , the hyperbolicity condition boils down
to

𝛼𝑑
1 <

1
2
, (1.163)

which is reasonable for many disperse flows. Remark that the condition 𝜌𝑎2 ≈ 𝜌2 could be similarly expressed using
the conservative set of variables of Model 10 as

𝑒𝑎 ≈ 1
2
𝑚2𝛼

𝑑
1

1 − 𝛼𝑑
1
(𝒖 − 𝒖𝑑)2. (1.164)

Such model demonstrates that hyperbolicity of a two-velocity model can be achieved with added-mass solely at least
for a certain disperse flow regime.

1.4.3.3 Dissipation

From the non-dissipative Model 10 and the condition (1.164), we propose to add a relaxation process of 𝑒𝑎 towards
1
2
𝑚2𝛼

𝑑
1

1−𝛼𝑑
1
(𝒖 − 𝒖𝑑)2. This corresponds to an exchange of kinetic energy between the bulk kinetic energies and the
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corrective term 𝑒𝑎. Hence, we consider the following system with a scalar source term 𝑅𝑎 and a vector-valued source
term 𝑹 for the following equations

𝜕𝑡𝑒
𝑎 + ∇ · (𝑒𝑎𝒖𝑑) = 𝑅𝑎,

𝜕𝑡 (𝑚2𝒖) +∇ · (𝑚2𝒖 ⊗ 𝒖 + (1 − 𝛼𝑑
1 )𝑝2𝑰) +𝑝2∇𝛼𝑑

1= 𝑹,

𝜕𝑡 (𝑚𝑑
1𝒖

𝑑)+∇ · (𝑚𝑑
1𝒖

𝑑 ⊗ 𝒖𝑑 + 1
2 𝜌

𝑎
2𝛼

𝑑
1 (𝒖 − 𝒖𝑑)2𝑰)+𝛼𝑑

1∇𝑝2= −𝑹,
(1.165)

such that the total momentum is still conserved. The mathematical entropy production rate associated with H for
this system reads

𝜕𝑡H + ∇ ·
[(
H2 + (1 − 𝛼𝑑

1 )𝑝2

)
𝒖 +

(
H 𝑑

1 + 𝑒𝑎 + 𝛼𝑑
1 𝑝2

)
𝒖𝑑

]
= 𝑹(𝒖 − 𝒖𝑑) + 𝑅𝑎 . (1.166)

We would like now to enforce the relaxation while having a negatively signed mathematical entropy production rate.
We propose the following choice for 𝜇 > 0

𝑅𝑎 = − 1
𝜇
𝑒𝑎 (1 − 𝛼𝑑

1 )
(
𝑒𝑎 − 1

2
𝑚2𝛼

𝑑
1

1 − 𝛼𝑑
1
(𝒖 − 𝒖𝑑)2

)
, 𝑹 = − 1

𝜇

𝛼𝑑
1𝑚2

2

(
𝑒𝑎 − 1

2
𝑚2𝛼

𝑑
1

1 − 𝛼𝑑
1
(𝒖 − 𝒖𝑑)2

)
(𝒖 − 𝒖𝑑). (1.167)

These source terms yield

𝜕𝑡H + ∇ ·
[(
H2 + (1 − 𝛼𝑑

1 )𝑝2

)
𝒖 +

(
H 𝑑

1 + 𝑒𝑎 + 𝛼𝑑
1 𝑝2

)
𝒖𝑑

]
= − 1

𝜇
(1 − 𝛼𝑑

1 )
(
𝑒𝑎 − 1

2
𝑚2𝛼

𝑑
1

1 − 𝛼𝑑
1
(𝒖 − 𝒖𝑑)2

)2

≤ 0, (1.168)

and the final set of equations is gathered in Model 11.

Model 11 (Two-velocity disperse model with added mass and relaxation)

With 𝑚𝑘 = 𝛼𝑘𝜌𝑘 and 𝛼𝑘 the phase densities and volume fractions of phases 𝑘 = 2, 1𝑑, 𝜌𝑎2 the density of
the incompressible d’Alembert flow, 𝒖, the velocity of the carrier phase, 𝒖𝑑 the velocity of the inclusions
and 𝑝2 (𝜌2) the pressure of the gaseous phase 2,

𝜕𝑡𝑚2+∇ · (𝑚2𝒖) = 0,
𝜕𝑡𝑚

𝑑
1+∇ · (𝑚𝑑

1𝒖
𝑑)= 0,

𝜕𝑡𝛼
𝑑
1 +∇ · (𝛼𝑑

1𝒖
𝑑) = 0,

𝜕𝑡𝑒
𝑎 +∇ · (𝑒𝑎𝒖𝑑) = 𝑅𝑎,

𝜕𝑡 (𝑚2𝒖) +∇ · (𝑚2𝒖 ⊗ 𝒖 + (1 − 𝛼𝑑
1 )𝑝2𝑰) +𝑝2∇𝛼𝑑

1= 𝑹,

𝜕𝑡 (𝑚𝑑
1𝒖

𝑑)+∇ · (𝑚𝑑
1𝒖

𝑑 ⊗ 𝒖𝑑 + 1
2 𝜌

𝑎
2𝛼

𝑑
1 (𝒖 − 𝒖𝑑)2𝑰)+𝛼𝑑

1∇𝑝2= −𝑹,

with

𝑅𝑎 = − 1
𝜇
𝑒𝑎 (1 − 𝛼𝑑

1 )
(
𝑒𝑎 − 1

2
𝑚2𝛼

𝑑
1

1 − 𝛼𝑑
1
(𝒖 − 𝒖𝑑)2

)
,

and

𝑹 = − 1
𝜇

𝛼𝑑
1𝑚2

2

(
𝑒𝑎 − 1

2
𝑚2𝛼

𝑑
1

1 − 𝛼𝑑
1
(𝒖 − 𝒖𝑑)2

)
(𝒖 − 𝒖𝑑).

However, there is no linear operator nullifying the relaxation source terms while keeping a two-velocity model as
considered in (1.7) in the theoretical framework of Chen et al. (1994); Bouchut (2004). Then, we cannot conclude
regarding the convergence of the model towards its formal limit when 𝜇 → 0. Besides, despite being hyperbolic, the
formal limit of Model 11 with two velocities is showed not to admit any entropy flux associated with the mathematical
entropy of Model 11.
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Therefore, one should rather interpret these source terms for a finite value of 𝜇 as a drag interaction between
the bulk flow and the d’Alembert flow around the particle. One could also add a second and independent drag
contribution with 𝜆 > 0 such that{

𝜕𝑡 (𝑚2𝒖) +∇ · (𝑚2𝒖 ⊗ 𝒖 + (1 − 𝛼𝑑
1 )𝑝2𝑰) +𝑝2∇𝛼𝑑

1= 𝑹 −𝜆(𝒖 − 𝒖𝑑),
𝜕𝑡 (𝑚𝑑

1𝒖
𝑑)+∇ · (𝑚𝑑

1𝒖
𝑑 ⊗ 𝒖𝑑 + 1

2 𝜌
𝑎
2𝛼

𝑑
1 (𝒖 − 𝒖𝑑)2𝑰)+𝛼𝑑

1∇𝑝2= −𝑹+𝜆(𝒖 − 𝒖𝑑),
(1.169)

and the associated mathematical entropy production

𝜕𝑡H + ∇ ·
[(
H2 + (1 − 𝛼𝑑

1 )𝑝2

)
𝒖 +

(
H 𝑑

1 + 𝑒𝑎 + 𝛼𝑑
1 𝑝2

)
𝒖𝑑

]
= − 1

𝜇
(1 − 𝛼𝑑

1 )
(
𝑒𝑎 − 1

2
𝑚2𝛼

𝑑
1

1 − 𝛼𝑑
1
(𝒖 − 𝒖𝑑)2

)2

− 𝜆(𝒖 − 𝒖𝑑)2 ≤ 0.

(1.170)
In the end, these models provide us with hyperbolic two-velocity models for a disperse regime with incompressible
and rigid inclusion, particularly for small velocity differentials and volume fraction of the disperse phase. This has
been possible thanks to an original accounting of added-mass effect in the derivation of the model with Hamilton’s
SAP. Moreover, the proposed dissipation processes bring to light a particular exchange of kinetic energy between the
phases, that can be interpreted as a drag phenomenon. One can consider these drag terms as which complementary
with the classic form of drag forces. However, these models have not provided a non-dissipative two-velocity model
showcasing both hyperbolicity and a mathematical entropy.

Conclusion of chapter 1
We proposed in this chapter an overview of multi-fluid modelling with a specific emphasis on the models dedicated
either the separated or the disperse regime as they are used in the upcoming chapter. We introduced well-known
but key elements that are used in the remaining of this manuscript :

• Mathematical properties regarding the mathematical properties of systems of conservation laws;

• The derivation of multi-fluid models with Hamilton’s Stationary Action Principle in both the separated and
disperse regime.

Moreover, we also proposed original contributions with :

• The accounting of added-mass for hyperbolic disperse multi-fluid models with two velocities.

This chapter particularly highlights the main challenges associated with the modelling of two-phase flow with the
local description of the interfaces or the thermodynamics. We particularly address separately the multi-fluid models
whether they correspond to a separated flow regime or a disperse flow regime. Indeed, Hamilton’s SAP addresses
these two classes of models by requiring a priori the modelling of both the interface regime and the thermodynamics
of the mixture rather than the a posteriori interpretation or modelling occurring for averaged models or models via
the Landau approach. Furthermore, the combination of Hamilton’s SAP with the analysis of dissipation processes
ensures the second principle of thermodynamics along with a better identification of the dissipative source terms.
This last topic is fundamental for both the physics and mathematical consistency of the models and the upcoming
numerical schemes. Finally, we showed that the Hamilton’s SAP proposes an intuitive modelling approach through
the definition of the Lagrangian, a scalar quantity gathering all the physics of the two-phase mixture. It allows
to both recover existing models of the literature, notably in the separated regime, and propose new models in the
disperse regime to account for the added mass effects of inclusions with their own mean velocity.

We have demonstrated here the modelling flexibility of Hamilton’s SAP for the derivation of multi-fluid models
by including the energies associated with the desired physical phenomena. It helps us to build a hierarchy of reduced-
order models by successively adding these energies, particularly for the modelling of the small-scale dynamics as for
the d’Alembert flow of Section 1.4.3 or the dynamics of the interface as studied in Chapter 2. Moreover, it offers the
potential to combine the different multi-fluid models together as investigated in Chapter 3.



Appendix

1.A Hyperbolicity of augmented model with capillarity
The system of conservation equations modelling our two-phase flow with capillarity (see Model 6) involves fluxes,
which not only depend on the set of conserved variables, but also on their gradients, in particular for 𝛼1. A possible
mean to study the mathematical properties of the system consists in considering an augmented system of equation
including a new conserved variable 𝒘 := ∇𝛼1. Depending on capillarity fluxes model, the system may still involve
derivative of the conservative variables, and it is possible to resort to a symmetrization of the system using entropy
variables in order to study the structure of the resulting system of Partial Differential Equations (PDEs) (Gavrilyuk
and Gouin, 1999; Giovangigli et al., 2023).

Nevertheless, within the framework of our model, a study of hyperbolicity for Model 6 can be led under the
following assumptions along the same lines as Schmidmayer et al. (2017): 1- we consider an augmented system of
conservation equations, where the new variable 𝒘 is introduced and satisfies an independent conservation equation.
The link between ∇𝛼1 and 𝒘 is then a result of initial conditions and of the dynamics of the system of PDEs. 2-
Even if we rely on this augmented variable, we are still in the presence of gradients of the conserved variables in
the sources terms, where the mean curvature involves the derivative of 𝒘. These terms are still considered as source
terms and are supposed to be local fields, in the sense that they are not taken into account in the convective part of
the system.

We then consider an augmented model with 𝒘 as an independent variable. Taking the gradient of the equation
on 𝛼1 leads to

𝜕𝑡𝒘 + ∇(𝒖 · 𝒘) = 𝑺, (1.171)

where 𝑺 is a source term which does not impact the hyperbolicity study. We then consider the following first-order
homogeneous system 

𝜕𝑡𝑚𝑘 + ∇ · (𝑚𝑘𝒖) = 0, 𝑘 = 1, 2,
𝜕𝑡𝛼1 + 𝒖 · ∇𝛼1 = 0,
𝜕𝑡𝒘 + ∇(𝒖 · 𝒘) = 0,
𝜕𝑡 (𝜌𝒖) + ∇ ·

[
𝜌𝒖 ⊗ 𝒖 + (𝑝 − 𝜎‖𝒘‖)I + 𝜎 𝒘⊗𝒘

‖𝒘 ‖

]
= 0.

(1.172)

Remark that the above system is not rotational invariant as the equation on 𝒘 is not an equation of conservation
and that hyperbolicity must be studied for each direction 𝝎 with ‖𝝎‖ = 1. Denote the primitive set of variables
𝒒 = (𝑚1, 𝑚2, 𝛼1, 𝑤𝑥 , 𝑤𝑦 , 𝑤𝑧 , 𝑢𝑥 , 𝑢𝑦 , 𝑢𝑧). We consider a smooth solution such that we look for a quasi-linear form

𝜕𝑡𝒒 + A𝑥 (𝒒)𝜕𝑥𝒒 + A𝑦 (𝒒)𝜕𝑦𝒒 + A𝑧 (𝒒)𝜕𝑧𝒒 = 0, (1.173)

with A𝑖 are the Jacobian matrices in the direction 𝑖. Denote 𝒏 := 𝒘/‖𝒘‖ and Δ𝑝 := 𝑝1 − 𝑝2, then (1.172) admits a
linearized form with, for each direction 𝑖 the Jacobian matrices A𝑖. As the system is not rotational invariant, consider
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then the direction 𝝎 with ‖𝝎‖ = 1. Let us study then the eigenvalues of the Jacobian matrix A𝝎 := 𝜔𝑥A𝑥+𝜔𝑦A𝑦+𝜔𝑧A𝑧

associated with this direction. The characteristic polynomial 𝑃𝝎 of A𝝎 reads

𝑃𝝎 (𝜆) = (𝜆 − 𝑢𝝎)8
[
(𝜆 − 𝑢𝝎)4 + (𝜆 − 𝑢𝝎)2 (−𝑐2

𝐹 − 𝜎

𝜌
‖𝒘‖(1 − (𝝎 · 𝒏)2)) + 𝑐2

𝐹

𝜎

𝜌
‖𝒘‖(1 − (𝝎 · 𝒏)2)

]
, (1.174)

with 𝑢𝝎 = 𝒖 · 𝝎. Denote 𝑢𝝎 := 𝒖 · 𝝎, 𝒏 := ∇𝛼1/‖∇𝛼1‖, 𝜓 = 𝜎‖∇𝛼1‖/(𝜌𝑐2
𝐹), 𝑐𝐹 , the velocity, a geometrical-

physical parameter and the two-scale frozen sound speed as established in (1.111), the roots of 𝑃𝝎 gives the following
eigenvalues

𝜆1,2,3,4,5 = 𝑢𝝎 , (1.175)

𝜆6,7 = 𝑢𝝎 ± 𝑐𝐹
√

1
2

[
1 + 𝜓(1 − (𝝎 · 𝒏)2)

]
+ 1

2

√[
1 − 𝜓(1 − (𝝎 · 𝒏)2)

]2 + 4𝜓(1 − (𝝎 · 𝒏)2)(𝝎 · 𝒏)2, (1.176)

𝜆8,9 = 𝑢𝝎 ± 𝑐𝐹
√

1
2

[
1 + 𝜓(1 − (𝝎 · 𝒏)2)

]
− 1

2

√[
1 − 𝜓(1 − (𝝎 · 𝒏)2)

]2 + 4𝜓(1 − (𝝎 · 𝒏)2)(𝝎 · 𝒏)2. (1.177)

As 𝑢𝝎 is a multiple eigenvalue, we are particularly interested in whether there are as many independent eigenvectors
associated with 𝑢𝝎 as the degree of multiplicity which is here 5. Remark that the eigenvectors are independent
and span a subspace of dimension 3 when 𝒏 and 𝝎 are not collinear, and a subspace of dimension 4 when they are
collinear. In either case, the Model 6 is weakly hyperbolic.



CHAPTER 2
Small-scale modelling

Let us now address one of the challenges of multi-fluid modelling: the lack of information about the small-scale
dynamics of the interface. This geometric information is indeed at the heart of the averaged multi-fluid models
(see discussion in Section 1.1.2). However, such dynamics can be very complex, and we propose here an efficient
description of the small-scale such that the essential physical phenomena are represented with a minimal amount
of variables. This complexity reduction is often named reduced-order modelling. In the context of the averaging
approach, such enrichment of the usual models is proposed with the dynamics of geometric variables such as the
interface area density (Vallet and Borghi, 1999; Chesnel et al., 2011), the mean curvature or the Gauss curvature
(Drew, 1990; Pope, 1988). Their evolutions are obtained from the averaged kinematics of a deformed interface. Their
dynamics, i.e. the cause of their of evolution, is then prescribed by closing the remaining averaged terms. Most of the
time, these additional geometric variables account for all the scales of the interface i.e. the large-scale ones, which can
be accessed from the volume fraction field, and the small-scale ones that are below the resolution length-scale. The
closure of their dynamics is tractable only for certain regimes. For instance, in the disperse regime, such closures are
reachable thanks to, either the isotropic assumption or the simplified dynamics of the closed interfaces of inclusions
(Lhuillier, 2004). Multi-fluid models based on small-scale geometric variables have started to be proposed in the
works of Devassy et al. (2015); Essadki et al. (2016); Drui et al. (2019); Cordesse et al. (2020); Di Battista (2021);
Granger (2023), but are both restricted to the disperse regime and do not provide a general framework to include
any kind of dynamics of the interface, associated with an identified mechanism (pulsation, oscillation, ...) for the
inclusions.

In this chapter, we introduce an efficient framework to build small-scale reduced-order model by combining
kinematic relations from differential geometry, a statistical description with a Geometric Method of Moments, and
the Hamilton’s SAP to derive the associate dynamics. Following the lines of the works aforementioned, the small-scale
models are assumed to be in a disperse regime with a set of closed interface representing the inclusions (droplets or
bubbles). Despite having their dynamics based on the disperse regime, the small-scale models should be expressed
in terms of geometric quantities defined for any regime and accounting for a dynamical interface and not just static
geometric quantities as previously considered in Essadki et al. (2019). Such a feature is essential for the extension to
generic interface in movement which cannot rely on variables only defined for static disperse inclusions. Nevertheless,
the disperse regime allows using efficient kinematic relations between the geometric variables, which can be used to
describe the dynamics of the inclusions such as compressible pulsation or incompressible oscillation. The disperse
regime assumption also gives the opportunity to rely on kinetic models, benefiting from a large existing literature
(Williams, 1958; O’Rourke and Amsden, 1987; Laurent and Massot, 2001; Laurent et al., 2004; Essadki et al., 2018).
The reduced-order models are then derived with a method of moments which reduces the multidimensional kinetic
equation to a finite set of scalar equations. Following the lines of Essadki (2018); Essadki et al. (2019), we introduce
the Geometric Method of Moments which extends the statistical definition of moments to an interpretation in terms
of surface averages of geometric quantities. Such a property provides an interpretation of the small-scale models
in the disperse regime with closed inclusions, but also in the mixed regime where the small scales correspond to a
portion of an open interface. We particularly extend here this method to account for the dynamics of the inclusions
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for droplet oscillation and bubble pulsation, and this extension has lead to the following contribution :

• For the two-scale modelling approach: Loison, Arthur, Teddy Pichard, Samuel Kokh, and Marc Massot. “
Two-scale modelling of two-phase flows based on the Stationary Action Principle and a Geometric Method Of
Moments”. arXiv, 2023. https://doi.org/10.48550/arXiv.2308.15641.

We start with the introductory Section 2.1 on differential geometry with definition and properties related to the
geometric quantities, firstly defined for a local point of any smooth interface, and secondly integrated over a closed
interface or a set of closed interfaces as it occurs in the disperse regime. We discuss the equations of evolution of such
variables starting from kinematics with only geometric considerations, and we introduce the associated equations
for the modelling of dynamics. The Section 2.2 is dedicated to the detailed steps of the derivation technique for
models in the disperse regime with the new framework combining Hamilton’s SAP and GeoMOM. We then apply
the method for the derivation of the new small-scale models including either a spray of droplets, with or without
oscillation motion, or a pulsating bubbly flow like the one considered in Drui et al. (2019).

2.1 Introducing geometric variables
The aim of this section is to define the geometric quantities which we want to use to characterize the interface
dynamics in the multi-fluid models. We propose the following guideline: 1- Defining some geometric quantities
of interest to characterize the local geometry; 2- Extend their definitions to surface-averaged quantities to build
quantities interpretable in both the separated and disperse regimes, 3- Determine the kinematic relations between
them to assess potential redundancies of information, 4- Give them a probabilistic framework to define ensemble-
averaged geometric quantities compatible with multi-fluid models. We particularly want to identify quantities that
can describe the small-scale dynamics be it in the separated regime or the disperse regime.

We start in Section 2.1.1 with elementary definitions of local and surface-averaged quantities. In Section 2.1.2,
we propose a probabilistic definition of the geometric variables to describe either a complex and fluctuating geometry
in the mixed regime or the fluctuations within a large collection of inclusions as in the disperse regime. Along with
these definitions, we recall and derive essential formulas in Section 2.1.3 describing the kinematics of these quantities
under the deformation of the surface, regardless of the underlying cause of this deformation. After discussing how
these descriptions relate to each other, we provide in Section 2.1.4 the means for the derivation of a system of PDEs
involving the dynamics of the interface for the different regimes.

2.1.1 Elements of differential geometry for deterministic surfaces
The purpose of this section is to provide the definitions of the quantities and operators that are later used to define the
dynamics of the inclusions, the geometry of which is impacted by the dynamics. There is no contribution contained in
the following section 2.1.1.1, and the reader familiar with the concepts of differential geometry can skip it. However,
we underline the presence of key definitions namely: the surface Laplace operator or Laplace-Beltrami operator (see
Definition 8), the mean and Gauss curvatures (see Definition 10).

2.1.1.1 Local geometric quantities

The definition of the geometric quantities of interest relies on differential geometry which is reduced here to its
most elementary elements. For a more exhaustive introduction to this mathematical domain, the reader is referred
to Kreyszig (1991) or the introduction notes of Deserno (2015). To help the non-experienced reader and for the
following application, we will systematically illustrate the definitions and properties with the simple example of the
sphere. From now, we use the Einstein summation rule on repeated indices.

We follow here an explicit formalism where we consider a surface S defined by mapping a set U ⊂ R2 onto S ⊂ R3

S :=
{
𝒓 (𝑢1, 𝑢2) ∈ R3, (𝑢1, 𝑢2) ∈ R2} . (2.1)

https://doi.org/10.48550/arXiv.2308.15641
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Example 2

The sphere of radius 𝑅 can be defined with the colatitude-longitude (𝜃, 𝜙) ∈ U = [0, 𝜋] × [0, 2𝜋]
convention, which reads in the Cartesian coordinates of R3,

𝒓 (𝜃, 𝜙) = ©­«
𝑅 sin 𝜃 cos 𝜙
𝑅 sin 𝜃 sin 𝜙
𝑅 cos 𝜃

ª®¬ .
2.1.1.1.a Local orthogonal basis

We assume the function 𝒓 to be sufficiently smooth, at least twice differentiable with respect to 𝑢 and 𝑣, to locally
define around a point of coordinate (𝑢0, 𝑣0), a local orthonormal basis, composed of two tangential vectors and a
normal one.

Definition 5 (Tangent vectors)

For an explicit definition of the surface (2.1), the tangent vectors are defined by

𝒆𝑢1 := 𝜕𝑢1 𝒓, 𝒆𝑢2 := 𝜕𝑢2 𝒓,

where we purposely omit the dependencies on (𝑢0, 𝑣0) for readability purposes.

Using the convention of an outward normal unit vector, we define 𝒏 with

𝒏 := 𝒆𝑢1 × 𝒆𝑢2

|𝒆𝑢1 × 𝒆𝑢2 | , (2.2)

such that (𝒆𝑢1 , 𝒆𝑢2 , 𝒏) locally define a direct orthogonal basis.

Example 3

With the chosen parametrization of the sphere, the orthogonal basis simply reads

𝒆𝜃 = ©­«
𝑅 cos 𝜃 cos 𝜙
𝑅 cos 𝜃 sin 𝜙
−𝑅 sin 𝜃

ª®¬ , 𝒆𝜙 = ©­«
−𝑅 sin 𝜃 sin 𝜙
𝑅 sin 𝜃 cos 𝜙

0

ª®¬ , 𝒏 = ©­«
sin 𝜃 cos 𝜙
sin 𝜃 sin 𝜙

cos 𝜃

ª®¬ .
2.1.1.1.b Metric - First fundamental form

One of the first important quantities arising in differential geometry is the metric, or first fundamental form, g or
(𝑔𝑖 𝑗 ) with 𝑖, 𝑗 ∈ 1, 2.

Definition 6 (Metric - First fundamental form)

The metric matrix defined by the local tensor product of tangential vectors

𝑔𝑖 𝑗 := 𝒆𝑖 · 𝒆 𝑗 . (2.3)

We particularly denote 𝑔 the determinant of g.
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Remark that the metric is symmetric and invertible, we note on purpose its inverse 𝑔𝑖 𝑗 such that

(𝑔𝑖 𝑗 ) = 1
𝑔

(
𝑔22 −𝑔21
−𝑔12 𝑔11

)
. (2.4)

Example 4

For the sphere, we have
g =

(
𝑅2 0
0 𝑅2 sin2 𝜃

)
.

The purpose of this quantity is to represent the change of basis between the tangent space, i.e. the linear approxima-
tion of the surface around 𝒓 (𝑢0, 𝑣0), and the cotangent space, i.e. its dual basis of real-valued functions derivatives
defined on S around 𝒓 (𝑢0, 𝑣0).

Example 5

For the sphere, the tangent space around the top point 𝒙𝑇 = (0, 0, 1)𝑇 , is

T𝒙𝑇 = 𝒙𝑇 +𝑉𝑒𝑐𝑡
(
𝒆𝜃 (𝒙𝑇 ), 𝒆𝜙 (𝒙𝑇 )

)
.

The cotangent space T̃ is the dual space of linear forms which can be represented by the basis

T̃ = 𝑉𝑒𝑐𝑡
(
𝑣 𝜃 , 𝑣𝜙

)
, 𝑣 𝑗 (𝑒𝑖) = 𝛿 𝑗𝑖 ,

𝑣 𝜃 and 𝑣𝜙 can be chosen as the scalar products against vectors 𝒆𝜃/‖𝒆𝜃 ‖ and 𝒆𝜙/‖𝒆𝜙 ‖.

Consider a valid change of basis from (𝑢1, 𝑢2) to (𝑢1, 𝑢2) with 𝜕𝑢 𝑗/𝜕𝑢𝑖 invertible. Then, we qualify as a co-variant
transformation, the relation between quantities 𝑎𝑖 in basis (𝑢1, 𝑢2) and 𝑎𝑖 in basis (𝑢1, 𝑢2) behaving as

𝑎𝑖 = 𝑎 𝑗
𝜕𝑢 𝑗

𝜕𝑢𝑖
, or equivalently, 𝑎 𝑗 = 𝑎𝑖

𝜕𝑢𝑖

𝜕𝑢 𝑗
, (2.5)

and contra-variant the relations between 𝑏𝑖 and 𝑏
𝑖 such that

𝑏
𝑖
= 𝑏 𝑗 𝜕𝑢

𝑖

𝜕𝑢 𝑗
, or equivalently, 𝑏 𝑗 = 𝑏

𝑖 𝜕𝑢 𝑗

𝜕𝑢𝑖
. (2.6)
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Example 6

Basis vectors (𝒆𝜃 , 𝒆𝜙) are co-variant quantities into (𝒆𝜃 , 𝒆𝜙) with the change of basis (𝜃, 𝜙) := (𝜋 −
𝜃, 𝜙 + 2𝜃) gives

𝒆𝜃 = ©­«
−𝑅(2 sin 𝜃 sin 𝜙 + cos 𝜃 cos 𝜙)
𝑅(2 sin 𝜃 cos 𝜙 − cos 𝜃 sin 𝜙)

𝑅 sin 𝜃

ª®¬ , 𝒆𝜙 = ©­«
−𝑅 sin 𝜃 sin 𝜙
𝑅 sin 𝜃 cos 𝜙

0

ª®¬ ,
𝜕𝜃

𝜕𝜃
= −1, 𝜕𝜃

𝜕𝜙
= 0, 𝜕𝜙

𝜕𝜃
= 2, 𝜕𝜙

𝜕𝜙
= 1.

We verify the co-variant property with 𝒆𝜃 = −𝒆𝜃 + 2𝒆𝜙 and 𝒆𝜙 = 𝒆𝜙. The contra-variant property is
however not verified as

𝜕𝜃

𝜕𝜃
= −1, 𝜕𝜃

𝜕𝜙
= 0, 𝜕𝜙

𝜕𝜃
= 2, 𝜕𝜙

𝜕𝜙
= 1,

with 𝒆𝜃 ≠ −𝒆𝜃 and 𝒆𝜙 ≠ 2𝒆𝜃 + 𝒆𝜙.

Example 7

Conversely, one can show that the components 𝜆𝑖 of a vector of a tangent space is contravariant, say
𝒘 = 𝜆𝜃 𝒆𝜃 + 𝜆𝜙𝒆𝜙. Writing the vector 𝒘 in any other basis (𝒆𝜃 , 𝒆𝜙) gives

𝒘 = 𝜆
𝑖
𝒆𝑖 = 𝜆

𝑖
𝒆 𝑗
𝜕𝑢 𝑗

𝜕𝑢𝑖
,

by unicity of the decomposition, we have then

𝜆
𝑗
= 𝜆

𝑖 𝜕𝑢 𝑗

𝜕𝑢𝑖
.

Remark also that the differentials are contravariant,

𝑑𝑢𝑖 =
𝜕𝑢𝑖

𝜕𝑢 𝑗
𝑑𝑢 𝑗 . (2.7)

Both covariant and contravariant quantities vary under a change of basis, but the contraction of co-variant and
contra-variant quantities 𝑎𝑖𝑏𝑖 are invariant under a change of basis as

𝑎𝑖𝑏
𝑖
= 𝑎 𝑗

𝜕𝑢 𝑗

𝜕𝑢𝑖
𝑏 𝑗 𝜕𝑢

𝑖

𝜕𝑢 𝑗
= 𝑎 𝑗𝑏

𝑗 . (2.8)

With the definition of the metric and the differentials, we can now define the element of surface.

Definition 7 (Element of surface)

The local element of surface 𝑑𝐴 is defined by the local metric determinant 𝑔 and differentials of the
basis (𝑢1, 𝑢2) with

𝑑𝐴 =
√
𝑔𝑑𝑢1𝑑𝑢2,

We call √𝑔 the stretching factor.
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It is also demonstrated in Kreyszig (1991) that the element of surface is a contracted quantity and, thus, is
independent of the coordinate system.

Example 8

For the sphere, we have that for both respectively (𝜃, 𝜙) and (𝜃, 𝜙) (as defined in Example 6) that

𝑑𝐴 = 𝑅2 sin 𝜃𝑑𝜃𝑑𝜙 = 𝑅2 sin 𝜃𝑑𝜃𝑑𝜙.

Note that the metric tensor and its inverse have the ability to respectively raise or lower an index, i.e. it can change
a co-variant quantity into a contra-variant one and vice-versa, following

𝑏𝑖 = 𝑔𝑖𝑘𝑏𝑘 , and 𝑎𝑖 = 𝑔𝑖𝑘𝑏
𝑘 . (2.9)

2.1.1.1.c Covariant derivation

We introduce and note the covariant derivative of a quantity 𝑓 as

𝑓,𝑖 = ∇𝑖 𝑓 =
𝜕 𝑓

𝜕𝑢𝑖
. (2.10)

The covariant derivative ∇𝑖 of covariant and contravariant quantities is a derivative operator which extends the notion
of derivative to curved space. Its definition uses Christoffel symbols,

∇𝑎𝑋
𝑏 := 𝜕𝑎𝑋𝑏 + 𝑋𝑐Γ𝑏

𝑎𝑐, ∇𝑎𝑋𝑏 := 𝜕𝑎𝑋𝑏 − 𝑋𝑐Γ
𝑐
𝑎𝑏, (2.11)

with
Γ𝑐
𝑎𝑏 = 𝑔𝑐𝑑Γ𝑎𝑏𝑑 , Γ𝑎𝑏𝑑 =

1
2
(𝜕𝑎𝑔𝑏𝑑 + 𝜕𝑏𝑔𝑑𝑎 − 𝜕𝑑𝑔𝑎𝑏) . (2.12)

If 𝑋 is a scalar, then there is no Christoffel symbols and ∇𝑖𝑋 = 𝜕𝑖𝑋.

Example 9

The Christoffel symbols for the sphere read

Γ𝜗
𝜗𝜗 = 0, Γ𝜗

𝜗𝜙 = 0, Γ𝜙
𝜗𝜗 = 0, Γ𝜙

𝜗𝜙 = cot 𝜗,
Γ𝜗
𝜙𝜗 = 0, Γ𝜗

𝜙𝜙 = − sin 𝜗 cos 𝜗, Γ𝜙
𝜙𝜗 = cot 𝜗, Γ𝜙

𝜙𝜙 = 0.

In the case of the sphere, these expressions simplify considerably, and we obtain

∇𝜗𝑋
𝜗 = 𝜕𝜗𝑋𝜗 , ∇𝜗𝑋

𝜙 = 𝜕𝜗𝑋 𝜙 + 𝑋 𝜙 cot 𝜗,
∇𝜙𝑋

𝜗 = 𝜕𝜙𝑋𝜗 − 𝑋 𝜙 sin 𝜗 cos 𝜗, ∇𝜙𝑋
𝜙 = 𝜕𝜙𝑋 𝜙 + 𝑋𝜗 cot 𝜗,

∇𝜗𝑋𝜗 = 𝜕𝜗𝑋𝜗 , ∇𝜗𝑋𝜙 = 𝜕𝜗𝑋𝜙 − 𝑋𝜙 cot 𝜗,
∇𝜙𝑋𝜗 = 𝜕𝜙𝑋𝜗 − 𝑋𝜙 cot 𝜗, ∇𝜙𝑋𝜙 = 𝜕𝜙𝑋𝜙 + 𝑋𝜗 sin 𝜗 cos 𝜗.

Then, we can define the surface Laplacian or Laplace-Beltrami operator which extends the definition of the
Laplace operator to a surface.

Definition 8 (Laplace-Beltrami operator)

For any scalar field 𝑋, the Laplace-Beltrami operator reads

Δ𝑋 := ∇𝑖∇𝑖𝑋 =
1
√
𝑔

𝜕

𝜕𝑢𝑖

(
√
𝑔𝑔𝑖 𝑗

𝜕𝑋

𝜕𝑢 𝑗

)
.
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Example 10

Let us develop the expression of the Laplace-Beltrami operator for the sphere,

Δ𝑋 = ∇𝜗∇𝜗𝑋 + ∇𝜙∇𝜙𝑋 = 𝜕𝜗∇𝜗𝑋 + 𝜕𝜙∇𝜙𝑋 + cot 𝜗∇𝜗𝑋

= 𝜕𝜗 (𝑔𝜗𝜗𝜕𝜗𝑋) + 𝜕𝜙𝑔𝜙𝜙𝜕𝜙𝑋 + cot 𝜗𝑔𝜗𝜗𝜕𝜗𝑋

=
1
𝑅2 𝜕𝜗𝜗𝑋 + 1

𝑅2 sin2 𝜗
𝜕𝜙𝜙𝑋 + cot 𝜗

𝑅2 𝜕𝜗𝑋.

We retrieve the surface Laplacian over a sphere in spherical coordinates (𝑟, 𝜃, 𝜙) for a surface-based
quantity with no dependence on 𝑟.

Moreover, on a closed surface 𝑆, we have the useful integration-by-part formula,∫
𝑆
𝑌∇𝑖𝑋

𝑖𝑑𝑆 = −
∫

𝑋 𝑖∇𝑖𝑌𝑑𝑆. (2.13)

2.1.1.1.d Second fundamental form and curvatures

We define now the second fundamental form which expresses the deformation of curves on surfaces (see Deserno
(2004) for details).

Definition 9 (Second fundamental form)

The second fundamental form is defined by the following matrix,

𝑏𝑖 𝑗 := −∇ 𝑗 𝒆𝑖 · 𝒏 = 𝒆𝑖 · ∇ 𝑗𝒏,

The two expressions in the definition of b = (𝑏𝑖 𝑗 ) are equivalent and are linked to each other by the derivation of
𝒆𝑖 · 𝒏 = 0.

Example 11

For the sphere,
b =

(
𝑅 0
0 𝑅 sin 𝜃

)
.

Remark that we have the specific property for the sphere that 𝑏𝑖 𝑗 =
𝑔𝑖 𝑗
𝑅 .

Then, from this second fundamental form, we define the mean curvature and the Gauss curvature 𝐺.

Definition 10 (Mean and Gauss curvatures)

The mean curvature 𝐻 and the Gauss curvature 𝐺 are contracted quantities defined from the first and
second fundamental forms,

𝐻 := 1
2
𝑏𝑖𝑖 =

1
2
𝑔𝑖 𝑗𝑏𝑖 𝑗 , 𝐺 := 𝑏

𝑔
,

with 𝑏 = det(b).

The geometric definitions of these curvatures can also be defined from the principal curvatures 𝜅1, 𝜅2 with 𝐻 =
1
2 (𝜅1 + 𝜅2) and 𝐺 = 𝜅1𝜅2. The principal curvatures are the local extremal curvatures.
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Example 12

For the sphere, we recover the classic result

𝐻 =
1
𝑅
, and 𝐺 =

1
𝑅2 .

Let us conclude this section by recalling in Table 2.1.1 the contracted quantities that will be of interest for
the following as they provide local information about the interface independently of the basis considered. Indeed,
these geometric quantities provide independent information about the local geometry, as showed by their respective
definitions involving different combination of covariant derivatives. Additional independent contracted geometric
quantities could have been considered but involve more complex dependencies on covariant derivatives, see their
derivation in Capovilla et al. (2003) and their ordering in Deserno (2015). However, such quantities are not adapted
for the scale of description in the disperse regime. We propose in the next section to define surface averages of these
quantities to recover extensive quantities which can be added in order to easily extend the description of one inclusion
to a collection of inclusions.

Contracted quantity Definition
𝐴

√
det(g)𝑑𝑢1𝑑𝑢2

𝐻 1
2𝑔

𝑖 𝑗𝑏𝑖 𝑗

𝐺 𝑏
𝑔 .

Table 2.1.1: Local geometric quantities as contracted quantities.

2.1.1.2 Surface-averaged geometric quantities over closed surfaces

With the geometric defined in the previous section, we can characterize the geometry of the interface with two-
dimensional fields all over the surface developed by the interface. To reduce such information in the case of multiple
sets of closed interface, as it occurs in the disperse regime, we propose now to study integrated quantities over closed
interfaces. We consider a single closed surface S, enclosing a volume V, defined by mapping a set U ⊂ R2 onto
S ⊂ R3 such that we denote 𝐴(𝑢1, 𝑢2) =

√
𝑔 the local infinitesimal surface element defined in 2.1.1.1. Then, the

surface area reads

𝑆 :=
∫
U
𝐴(𝑢1, 𝑢2) 𝑑𝑢1𝑑𝑢2, (2.14)

and we can define a surface-average operator.

Definition 11 (Surface-average operator on a closed surface)

Given an interface defined on a two-dimensional smooth manifold U of surface area 𝑆 and stretching
factor 𝐴, the surface-average of a quantity 𝑋 is defined by

(̃·) := 1
𝑆

∫
U
(·) 𝐴(𝑢1, 𝑢2) 𝑑𝑢1𝑑𝑢2,

With the contracted quantities listed in Table 2.1.1, we obtain the total surface area 𝑆 = 𝑆1̃, the surface-averaged
mean curvature 𝑆𝐻 and the surface-averaged Gauss curvature 𝑆𝐺. We prefer to multiply the averaged geometric
with the surface area 𝑆 to include the case of a null interface. With the divergence theorem, one can also access the
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volume 𝑉 =
∫
V 𝑑𝑉 of a closed inclusion using

𝑆
�(1
3
· 𝑟

)
=

∫
U

1
3
𝒏 · 𝒓 𝐴𝑑𝑢1𝑑𝑢2 =

∫
V
∇ ·

(
1
3
𝒓

)
𝑑𝑉 = 𝑉. (2.15)

With this surface-averaging operator, we introduce the Gauss-Bonnet theorem 3 (Bonnet, 1848; Kreyszig, 1991).

Theorem 3 (Gauss-Bonnet theorem)

𝑆𝐺 = 2𝜋𝜒,

where 𝐺 is the Gauss curvature and 𝜒 the Euler characteristic (2 for a sphere).

This theorem gives us an invariant for inclusions sharing the same Euler characteristic. The Euler characteristic
describes the topological nature of the volume. It varies when the number of holes increase (Essadki, 2018), e.g.
between the sphere and the torus. However, it stays the same if two volumes are related to each other through a
smooth deformation e.g. a sphere into an ellipsoid. Even if inclusions with holes can temporarily occur in gas-liquid
flows, they naturally tend to recover a shape that can be obtained from a deformed sphere. Consequently, this
theorem allows us to count the number of inclusions within a collection of inclusions with same Euler characteristic
through the integral of a geometric property.

Note however that we have lost the independency of 𝐴, 𝐺, 𝐻 through the surface-averaged process to get 𝑆, 𝑆𝐺, 𝑆𝐻
the independency of which is a priori unknown.

Furthermore, we now wish to extend these definitions to a probabilistic framework to define ensemble-averages
of these quantities, and make them compatible with multi-fluid models both in the mixed and the disperse regimes.

2.1.2 Probabilistic definition of geometric quantities: Number Density Function vs.
Surface Density Function

We propose now to make the geometric quantities, defined in the previous section, compatible with the ensemble-
averaging interpretation of multi-fluid models in both the disperse regime and for an arbitrary open interface as it
occurs in the description of the mixed or separated regimes. Such a definition is possible for each regime with a
NDF in the disperse regime and a Surface Density Function (SDF) (Pope, 1988) in the separated regime. Quantities
compatible with both regimes are identified by Essadki (2018) and a compatibility criterion is established. We show
here that such criterion can encompass our geometric quantities of interest. We split the discussion in three stages
: 1- The description of the interface in the disperse regime where its definition is reduced to a NDF evaluating
geometrically as integrated values over a distribution; 2- The description of an interface in any regime with the
introduction of an SDF evaluating the local geometry of an arbitrary interface; 3- The assessment of the compatibility
between the two descriptions in the disperse regime through an original identification of geometric quantities, notably
for the time derivatives of geometric quantities.

2.1.2.1 Definition of the NDF in the disperse regime

In the disperse regime, we assume a general framework where we have inclusions moving in a carrier fluid, and
that can be deformed with their own dynamics. For the probabilistic description of such regime, let us introduce
for a statistic outcome 𝜆, a set of 𝑁 barycentre locations (𝒙𝒊,𝝀 (𝑡))𝑖=1,...,𝑁 with corresponding characteristics indexed
by 𝑘 = 1, .., 𝑃 gathered in a vector 𝝃𝑖 = (𝜉𝑖,𝑘 (𝑡)) which can include the volume, the surface, the average interface
velocity, the temperature. We then define the associated NDF representing the statistical distribution of inclusions
in Definition 12 with the ensemble average of Drew and Passman (1999).
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Definition 12 (Number density function)

The NDF 𝑓 that counts the average number of inclusions around a position 𝒙 at time 𝑡 with velocity
𝒗 and characteristics 𝝃 is defined by the following ensemble average,

𝑓 (𝑡, 𝒙, 𝒗, 𝝃) :=
〈∑

𝑖

𝛿(𝒙 − 𝒙𝑖,𝜆)𝛿(𝒗 − ¤𝒙𝑖,𝜆)𝛿(𝝃 − 𝝃𝑖,𝜆)
〉
𝐸

, (2.16)

where 𝛿(·) is the Dirac function.

Note that the ensemble-average operator 〈·〉𝐸 is only defined under certain conditions (Letournel, 2022) about the
disperse regime that we assume to meet here. Note also that the ensemble-average operator 〈·〉𝐸 differs from the
surface-average operator 〈·〉. The former averages over statistical realizations, while the latter integrate a quantity
over a given surface. One can then evaluate an interface area density by integrating the NDF against the surface of
the inclusions

Σ =
∫
𝝃̂
𝑆(𝝃) 𝑓 𝑑𝝃, (2.17)

provided that the surface 𝑆 of any inclusion can be expressed as a function of the phase-space variables 𝝃. We
then define a moment 𝑀(𝛽𝑘 )𝑘=1,...,𝑃+3 as the integral over the phase-space of the NDF against the polynomial of
𝑣1, 𝑣2, 𝑣3, 𝜉1, ...𝜉𝑃 defined by the multi-index 𝛽𝑘

𝑀𝛽𝑘 (𝑡, 𝒙) =
∫
(𝒗,𝝃̂ ) ∈R3×Ω̂

𝑣
𝛽1
1 𝑣

𝛽2
2 𝑣

𝛽3
3

𝑃∏
𝑘=1

𝜉
𝛽𝑘+3
𝑘 𝑓 (𝑡, 𝒙, 𝒗, 𝝃) 𝑑𝒗𝑑𝝃 . (2.18)

Note that if 𝝃 includes the surface as a variable, Σ would be a first-order moment of 𝑓 . Remark also that surface-
averaged quantities such as 𝐻 or 𝐺 can be included in the characteristics 𝝃 such that we can define averaging operators
for the local population of inclusions. Such an operator can be non-weighted, but for further compatibility properties,
we prefer to introduce it as a surface-weighted averaging operator as it is well-defined when there is no inclusion

Σ 〈·〉 :=
∫
𝒗,𝝃̂

(̃·)𝑆(𝝃) 𝑓 𝑑𝒗𝑑𝝃 . (2.19)

One can particularly define the surface average of mean and Gauss curvatures Σ 〈𝐻〉 and Σ 〈𝐺〉. Finally, let us
underline that the Gauss-Bonnet theorem provides for inclusions of same genus 𝜒 that

Σ 〈𝐺〉 =
∫
𝒗,𝝃̂
𝐺𝑆(𝝃) 𝑓 𝑑𝒗𝑑𝝃 =

∫
𝒗,𝝃̂

2𝜋𝜒 𝑓 𝑑𝒗𝑑𝝃 = 2𝜋𝜒𝑛, (2.20)

where 𝑛 is the number density of inclusions. This section has showed us how to extend the definition of surface-
averaged quantities from one inclusion to a collection of inclusions thanks to the NDF, but such approach is restricted
to the disperse regime. We discuss next the definition of geometric quantities for arbitrary surfaces.

2.1.2.2 Definition of the SDF for an arbitrary interface

Let us now tackle the probabilistic description of an interface in any kind of regime. Following the works of Pope
(1988); Essadki et al. (2019), for a given outcome denoted 𝜆 of a random function 𝒓𝜆 : R+ × R2 → R3, we define the
following surface with an explicit formalism (see Section 2.1.1.1)

S𝜆 (𝑡) :=
{
𝒓𝜆 (𝑡, 𝑢1, 𝑢2) ∈ R3, (𝑢1, 𝑢2) ∈ R2} .

Note that the surface both evolves in time 𝑡 and changes over the different outcomes 𝜆. For a given outcome, we
introduce surface-defined time functions 𝑾𝜆 : R+ × R2 → R𝑃 which provide 𝑃 geometric quantities related to the
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interface. These quantities stored 𝑾𝜆 account for at least for the local interface area 𝐴𝜆. We introduce a single-layer
generalized function 𝐹𝜆, defined through its action against smooth test-functions 𝜙, that locates additional geometric
properties, denoted as the phase-space variables 𝒘̂, on the interface around the position 𝒙,

𝐹𝜆 (𝒙, 𝑡, 𝒘̂) := 𝜙 ↦→
∫
U
𝛿(𝒘̂ −𝑾𝜆 (𝑡))𝜙(𝒓𝜆 (𝑡),𝑾𝜆 (𝑡), 𝑡)𝐴𝜆 (𝑡)𝑑𝑢1𝑑𝑢2,

where the dependencies of 𝑾𝜆, 𝒓𝜆 and 𝐴𝜆 on 𝑢1, 𝑢2 were purposely dropped for the sake of readability. This definition
allows defining and evaluating quantities integrated over the interface if there is some interface at 𝒙 at time 𝑡 and for
outcome 𝜆. If not, function 𝐹𝜆 is still defined but evaluates to nil.

Now, we access the probabilistic average of these surface-integrated quantities over all the outcomes to define our
probabilistic geometric quantities with the SDF defined in Definition 13.

Definition 13 (Surface Density Function)

The SDF is defined as the ensemble average of 𝐹𝜆,

𝐹 (𝒙, 𝑡, 𝒘̂) :=< 𝐹𝜆 (𝒙, 𝑡, 𝒘̂) >𝐸 . (2.21)

Then, one can define the probabilistic interface area density Σ as the 0th-order moment of 𝐹,

Σ =
∫
𝒘̂
𝐹𝑑𝒘̂, (2.22)

and the probabilistic surface-averaging operator as defined in Section 2.1.1.2 satisfies

Σ 〈·〉 =
∫
𝒘̂
(·)𝐹𝑑𝒘̂. (2.23)

Remark that choosing 𝑾𝜆 = (𝐴𝜆, 𝐻𝜆, 𝐺𝜆) provides Σ, Σ 〈𝐻〉 and Σ 〈𝐺〉 respectively as a zeroth-order moment and
two first-order moments of 𝐹.

2.1.2.3 Multi-regime compatibility between the two approaches

While the definition of the NDF and the SDF has allowed us to define geometric quantities in the disperse regime and
for an arbitrary interface respectively. We remark that some geometric quantities, the IAD and the surface-averaged
geometric quantities can be defined with both NDF and SDF. These definitions actually provides a more general
result obtained by Essadki et al. (2019) and that we tackle here.

In order to demonstrate such a result, let us first remark that the definitions of the NDF and the SDF share
similarities especially when considering surface averaged characteristics for the NDF. Following Essadki et al. (2019),
we introduce the Discrete SDF (DSDF) as the following generalized function

𝐹𝑑 (𝒙, 𝑡, 𝒘̂) := 𝜙(·, 𝑡, ˆ̄𝒘) ↦→
〈

𝑁∑
𝑖=1

𝛿( ˆ̄𝒘 −𝑾𝑖,𝜆 (𝑡))𝜙(𝒙𝑖,𝜆 (𝑡), 𝑡,𝑾𝑖,𝜆 (𝑡))𝑆𝑖,𝜆 (𝑡)
〉
𝐸

,

where 𝑾 only accounts for surface-averaged characteristics located at the barycentres of each inclusion. Then, the
following Property 2 stands.
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Property 2 (Shared moments between SDF and DSDF)

Given the SDF 𝐹 depending on local interface characteristics 𝑾 and the DSDF 𝐹𝑑 defined using the
same averaged characteristics 𝑾, the SDF and the DSDF share the same 0th- and 1st-order moments
in these variables: ∫

𝒙

∫
𝒘̂
𝐹 (𝒙, 𝑡, 𝒘̂)𝑑𝒙𝑑𝒘̂ =

∫
𝒙

∫
ˆ̄𝒘
𝐹𝑑 (𝒙, 𝑡, ˆ̄𝒘)𝑑𝒙𝑑 ˆ̄𝒘,∫

𝒙

∫
𝒘̂
𝑤̂𝑘𝐹 (𝒙, 𝑡, 𝒘̂)𝑑𝒙𝑑𝒘̂ =

∫
𝒙

∫
ˆ̄𝒘
𝑤̂𝑘𝐹

𝑑 (𝒙, 𝑡, ˆ̄𝒘)𝑑𝒙𝑑 ˆ̄𝒘.

The proof of this property can be found in Essadki et al. (2019). Remark that the phase-space variables ˆ̄𝒘 of the
DSDF are obtained from the surface averages of the phase-space variables 𝒘̂ of the SDF. These shows that the
probabilistic description for any regime with an SDF only shares zeroth- and first-order moments with the DSDF
which is only defined in the disperse regime. Moreover, one has the following property,

𝑓 (𝒙, 𝑡, 𝝃) =
∫

ˆ̄𝒘

𝐺 (𝝃)
4𝜋

𝐹𝑑 (𝒙, 𝑡, ˆ̄𝒘)𝛿(𝒘̄(𝝃) − ˆ̄𝒘) 𝑑 ˆ̄𝒘, (2.24)

that links the DSDF and the NDF provided that the surface-average Gauss curvature 𝐺 can be accessed through the
characteristics variables 𝝃. The combination of these two results indicates that all surface-averaged characteristics
that can be reconstructed via the phase-space of the NDF correspond to some zeroth-order and first-order moments of
the all regime 𝑆𝐷𝐹. Thus, these pieces of information may be chosen to describe the interface is a requirement to build
models that can be interpreted in both disperse and mixed regimes. Both the IAD and the surface averaged quantities
are showed to satisfy this property Let us then state some variables equivalent to surface average characteristics that
one can use for the NDF while satisfying Property 2.

(i) If the phase-space characteristics allow the reconstruction of surface average of contracted quantities such as 𝐻,
𝐺, or equivalently 𝑆 thanks to the Gauss-Bonnet theorem, then the 𝐼 𝐴𝐷 and the surface-averaged quantities
Σ 〈𝐻〉 and Σ 〈𝐺〉 satisfy Property 2.

(ii) As previously mentioned, the volume can also be cast as a surface average for a closed inclusion. Indeed, we
have from the divergence theorem,

𝑉 =
∫
V
𝑑𝑉 =

∫
V
∇ ·

(
1
3
𝒓

)
𝑑𝑉 =

∫
U

(
1
3
𝒓

)
· 𝒏𝐴𝑑𝑢1𝑑𝑢2 = 𝑆

�𝒓 · 𝒏
3
. (2.25)

Then, if the volume can be reconstructed from the characteristics of the NDF, we conclude from (i) that
Σ

〈 1
3 𝒓 · 𝒏

〉
, which corresponds to the volume fraction 𝛼𝑑

1 of the collection of inclusions in the disperse regime,
satisfies Property 2.

(iii) We now propose the original accounting of time derivatives of surface-averaged quantities 𝑋 via the underlying
surface average �¤𝑋 + ¤𝐴/𝐴. Indeed,

𝜕𝑡 (𝑆𝑋) =
∫
U
𝜕𝑡 ((𝑋𝐴)) =

∫
U

(
𝑋

¤𝐴
𝐴
+ ¤𝑋

)
𝐴 = 𝑆

�(
¤𝑋 + 𝑋

¤𝐴
𝐴

)
, (2.26)

which results in a first-order moment for the DSDF and the SDF. Remark that 𝜕𝑡 (𝑆𝑋) ≠ 𝑆 ¤̃𝑋. Then, it follows
that 𝜕𝑡Σ, 𝜕𝑡𝛼𝑑

1 , 𝜕𝑡 (Σ 〈𝐻〉), and similar time derivatives satisfy Property 2. This last quantities allow us to endow
the description of the interface with quantities related to its dynamics.
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Conclusion of Section 2.1.2

This section provides guideline to identify geometric quantities of interest interpretable in different regimes from the
description the more common NDF used in the disperse regime. Indeed, for a given model of the disperse regime
described by a NDF 𝑓 , one can build a DSDF 𝐹𝑑 which transforms the counting of objects to an integration over
surfaces, which is a more general approach but still defined in the disperse regime only. Then, the jump from the
DSDF defined for disperse regime to the SDF defined for generic surface is only possible for a class of quantities
satisfying the Property 2. This class is particularly showed to include the IAD and the mean and Gauss surface-
averaged quantities, along with some non-classic time derivatives of these geometric quantities which are critical
for the upcoming dynamics. This last result enables the description of interface dynamics rather than just a static
description, such as polydisperse sprays in Essadki et al. (2018). Let us see a simple example of this multi-regime
interpretation: the interpretability of the number density of inclusions 𝑛 is restricted to the disperse regime while
Σ 〈𝐺〉, evaluating to 4𝜋𝑛 in the disperse regime, has an extended interpretability out of the disperse regime. Then,
using these variables enables to propose models with interpretability domains in both regimes.

2.1.3 Kinematics of the geometric quantities
Now that we have defined the geometric quantities we want to work with, we propose to investigate their equations
of evolution, first in a kinematic framework where a deformation of the interface is assumed without discussing
the underlying cause of the motion. The study of the origin of the underlying movement, i.e. the dynamics of
the interface, is not provided here, and it will be discussed at the modelling stage in Section 2.1.4. The study of
kinematics allows the potential identification of underlying quantities on which the geometric quantities are based.
We split the discussion on the kinematics between a first part dedicated to the distortion of open surfaces and a
second one to closed inclusions in the disperse regime.

2.1.3.1 For local geometric quantities over open surfaces

In Drew (1990); Essadki et al. (2019), one can find the derivation of the evolution equations for geometric quantities,
namely the surface element stretch factor 𝐴, the mean curvature 𝐻, the Gauss curvature 𝐺, related to a same material
point where the normal interface velocity is 𝑣𝑛 = 𝒗𝐼 · 𝒏. The velocity 𝒗𝐼 is here defined as the time derivative of
the interface distortion rather than the actual velocity of a material point. With Δ the Laplace-Beltrami operator
(see Definition 8), ∇𝑢𝑖 the covariant derivative with respect to the 𝑖-th surface coordinate, the local instantaneous
kinematics reads 

𝜕𝑡 𝐴= 2𝐻𝑣𝑛,
𝜕𝑡𝐻= 1

2Δ𝑣𝑛 − (2𝐻2 − 𝐺)𝑣𝑛,
𝜕𝑡𝐺= −𝐻Δ𝑣𝑛 +

√
𝐻2 − 𝐺 (∇𝑢1∇𝑢1

𝑣𝑛 − ∇𝑢2∇𝑢2
𝑣𝑛) − 2𝐻𝐺𝑣𝑛.

(2.27)

Remark that only the normal interface velocity impacts the kinematics, as a tangential displacement only acts like
a change of variables with no influence on the interface shape. Elementary examples of these equations for closed
interfaces are provided in Drew (1990). 𝐴, 𝐻 and 𝐺 have been showed independent, and their respective dynamics
confirm such property as each right-hand side show independent operators.

Let us now see what these equations become in a multi-fluid framework obtained after averaging. Drew suggests
averaging these equations together with the topological equation (1.11) over a small volume. Following the same line
as the averaging of the fluid equations in Section 1.1.2, we define the IAD with

Σ = 〈‖∇𝑋 ‖〉𝐸 . (2.28)

Then, assuming 〈𝑣𝑛〉𝐸 = 𝑣𝑛, the following equations are obtained from the averaging of (2.27),
𝜕𝑡𝛼+Σ𝑣 = 0,
𝜕𝑡Σ+∇ · (Σ𝒗̄)= 𝑣Σ 〈𝐻〉 + ΣΦΣ,

𝜕𝑡 (Σ 〈𝐻〉)+∇ · (Σ 〈𝐻〉 𝒗̄)= −∇ · (Σ𝒒𝐻 ) − Σ(〈𝐻〉2 − 〈𝐺〉)𝑣 + ΣΦ𝐻 ,

𝜕𝑡 (Σ 〈𝐺〉)+∇ · (Σ 〈𝐺〉 𝒗̄)= −∇ · (Σ𝒒𝐺) − Σ 〈𝐻〉 〈𝐺〉 𝑣 + ΣΦ𝐺 ,

(2.29)
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with

𝑣 = 〈𝑣𝑛‖∇𝑋 ‖〉𝐸 , 𝒗̄ = 〈𝒗𝐼 ‖∇𝑋 ‖〉𝐸 , 𝒒𝐻 = 〈𝒗𝐼 − 𝑣𝐻〉𝐸 , 𝒒𝐺 = 〈𝒗𝐼 − 𝑣𝐺〉𝐸 , ΦΣ =
〈
(𝐻 − 〈𝐻〉)𝒖𝐼,𝑛

〉
𝐸
,

Φ𝐻 = −1
2

〈
(∇𝑢1∇𝑢1

𝑣𝑛 + ∇𝑢2∇𝑢2
𝑣𝑛)

〉
𝐸
−

〈
(𝐻2 − 〈𝐻〉2)𝒖𝐼,𝑛

〉
𝐸
−

〈
(𝐺 − 〈𝐺〉)𝒖𝐼,𝑛

〉
𝐸
,

Φ𝐺 = −
〈
𝐻 (∇𝑢1∇𝑢1

𝑣𝑛 + ∇𝑢2∇𝑢2
𝑣𝑛)

〉
𝐸
−

〈√
𝐻2 − 𝐾 (∇𝑢1∇𝑢1

𝑣𝑛 + ∇𝑢2∇𝑢2
𝑣𝑛)

〉
𝐸
−

〈
(𝐻𝐺 − 〈𝐺〉 〈𝐻〉)𝒖𝐼,𝑛

〉
𝐸
.

(2.30)
These equations involve many averaged terms, the closure of which is far from trivial. Therefore, in a general case,
the geometric quantities 𝛼, Σ, Σ 〈𝐻〉 and Σ 〈𝐺〉 contain independent information, and are therefore relevant for the
description of the local interface geometry. However, the complexity of the right-hand side denotes that the finding
of a closure with the geometric quantities under consideration seems unlikely in a general case.

2.1.3.2 For surface-averaged geometric quantities over closed surfaces

For disperse regimes, the deterministic kinematics can be detailed with more precision as the kinematics of the
interface is the sum of the kinematics of all inclusions, Therefore, we propose now to start with the kinematics of
one inclusion. From now on, we drop the dependencies on (𝑢1, 𝑢2) to lighten the formulas. For convex and closed
inclusions, we write a small deformation of length 𝜓 in the direction of the non-deformed surface normal,

𝒓 = 𝒓0 + 𝜓𝒏. (2.31)

No tangential deformation need to be considered as any deformation of a closed interface can be written with a
normal deformation.

With the deformation considered, we derive the perturbation 𝛿𝑋 of a quantity 𝑋 as 𝛿𝑋 = 𝑋 (𝒓) − 𝑋 (𝒓0) for all the
relevant geometric contracted quantities 𝐴, 𝐻, 𝐺 and the perturbation of their corresponding integrated quantities
𝑆, 𝑆𝐻 and 𝐺. We report here the results up to second order in 𝜓 for any closed interface while the third order is
only provided for the sphere in Appendix 2.A.

2.1.3.2.a First and second order perturbation of a closed inclusion

We provide here the results for the perturbation of closed inclusions at first and second order following the notes
of Deserno (2004). In the following, we assume smooth perturbations 𝜓 such that its covariant derivatives have an
equivalent magnitude as 𝜓. First, we have the perturbation of the basis vectors and the metric, which follow

𝛿𝒆𝑖 = (∇𝑖𝜓) 𝒏 + 𝜓𝑏 𝑗
𝑖 𝒆 𝑗 ,

𝛿𝑔𝑖 𝑗 = 𝜓𝑏𝑖 𝑗 + 𝜓𝑏 𝑗𝑖 + (∇𝑖𝛿𝜓)
(
∇ 𝑗𝛿𝜓

)
+ 𝜓2𝑏𝑘𝑖 𝑏 𝑗𝑘 .

(2.32)

Then, the following variations are obtained Deserno (2004) for the local surface element factor 𝐴 =
√
𝑔

𝛿𝐴 = −2𝐻𝜓𝐴 + 𝐺𝜓2 + 1
2
(∇𝑖𝜓)

(
∇𝑖𝜓

)
𝐴 +𝑂 (𝜓3). (2.33)

We denote 𝑑𝑆 = 𝐴𝑑𝑢1𝑑𝑢2. For a closed inclusion, we integrate by part following 2.13 to obtain the variation of the
surface

𝛿𝑆 =
∫
U
(−2𝐻𝜓 + 𝐺𝜓2 − 1

2
𝜓Δ𝜓)𝑑𝑆 +𝑂 (𝜓4). (2.34)

From the divergence theorem applied to 𝒓 · 𝒏, only a few calculation steps lead to

𝛿𝑉 =
∫
U
(𝜓 − 𝐻𝜓2)𝑑𝑆 +𝑂 (𝜓3). (2.35)

The variation of the local mean curvature is

𝛿𝐻 = −(2𝐻2 −𝐺)𝜓 − 1
2
Δ𝜓 +𝐻 (4𝐻2 −3𝐺)𝜓2 +𝜓(∇𝑘𝜓) (∇𝑘𝐻) +𝜓𝑏𝑖 𝑗∇𝑖∇ 𝑗𝜓 − 1

2
(𝐻∇𝑖𝜓∇𝑖𝜓 − 𝑏𝑖 𝑗∇𝑖𝜓∇ 𝑗𝜓) +𝑂 (𝜓3), (2.36)
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such that

𝛿(𝐻 𝐴) =
[
𝐺𝜓 − 1

2
Δ𝜓 + 𝐻 (4𝐻2 − 2𝐺)𝜓2 + 𝜓(∇𝑘𝜓)(∇𝑘𝐻) + 𝜓𝑏𝑖 𝑗∇𝑖∇ 𝑗𝜓 + 1

2
𝑏𝑖 𝑗∇𝑖𝜓∇ 𝑗𝜓

]
𝐴 +𝑂 (𝜓3). (2.37)

Integrating over U and using integration by parts, we obtain

𝛿(𝑆𝐻) =
∫
U

[
𝐺𝜓 + 𝐻 (4𝐻2 − 2𝐺)𝜓2 − 𝐻𝜓Δ𝜓 − 𝐻 (∇𝑘𝜓) (∇𝑘𝜓) + 𝜓𝑏𝑘𝑗∇𝑘∇ 𝑗𝜓 + 1

2
𝑏𝑖 𝑗∇𝑖𝜓∇ 𝑗𝜓

]
𝑑𝑆 +𝑂 (𝜓3). (2.38)

2.1.3.2.b Application: Second-order perturbation of the sphere inclusion

We provide here the second order perturbation applied to the geometry of a sphere for geometric quantities, the
details of the calculation and the third-order variations are reported in Appendix 2.A. We are only interested here
in the variation of the integrated surface 𝑆, volume 𝑉 , and surface-weighted mean curvature 𝑆𝐻. Given the metric
of the sphere or radius 𝑅 detailed in the examples of Section 2.1.1.1, we obtain

𝛿𝑆= 2𝑅
∫
S2
𝜓 𝑑𝑆−1

2

∫
S2
𝜓ΔS2𝜓 𝑑𝑆 +

∬
S2
𝜓2 𝑑𝑆 + 𝑜(𝜓3),

𝛿(𝑆𝐻)=
∫
S2
𝜓𝑑𝑆 − 1

2𝑅

∫
S2
𝜓ΔS2𝜓𝑑𝑆 + 𝑜(𝜓2),

𝛿𝑉= 𝑅2
∫
S2
𝜓 𝑑𝑆+𝑅

∫
S2
𝜓2 𝑑𝑆 + 𝑜(𝜓2),

(2.39)

where S2 is the mapping of the unit sphere interface and 𝑑𝑆 the non-dimensional element of surface or stretching area
factor. Remark that with first-order perturbation of the sphere, the perturbations of integrated geometric quantities
𝑆, 𝑆𝐻 and 𝑉 all correspond to the same information about the underlying perturbation 𝜓, namely its integral over
the surface. For higher orders, the relations between the different geometric quantities are not trivial.

However, thanks to the following Theorem 4, one can decompose the deformation field and select only the
dominant modes in the manner of Fourier series for a time signal.

Theorem 4 (Spherical harmonics decomposition)

The continuous perturbation 𝜓 of the sphere is uniquely decomposed on the spherical harmonics basis
(𝑌𝑛,𝑙)

𝜓 =
∑
𝑙

∑
|𝑚 | ≤𝑙

𝑐𝑙,𝑚𝑌𝑙,𝑚,

with a unique sequence of real coefficients (𝑐𝑙,𝑚) and where 𝑌𝑙,𝑚 are orthonormal eigenvectors of the
spherical Laplacian such that

ΔS2𝑌𝑙,𝑚 = −𝑙 (𝑙 + 1)𝑌𝑙,𝑚,
and ∫

S2
𝑌𝑙,𝑚𝑌𝑙′ ,𝑚′ = 𝛿𝑙,𝑙′𝛿𝑚,𝑚′ .

The proof of this theorem can be found in (Müller, 1966). Such a decomposition allows to split the time and the
space deformation of the interface with the coefficients (𝑐𝑙,𝑚) depending on time. Illustration of perturbation along
these spherical harmonics in Figure 2.1.1. Injecting this form in the sphere perturbation of the integrated geometric
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Figure 2.1.1: Spherical harmonics 𝑌𝑙,𝑚 for 𝑙 ∈ [[0, 6]] and |𝑚 | ≤ 𝑙 computed with Mathematica (Wolfram Research,
2023).

quantities leads to

𝛿𝑆 = 2𝑅𝑐0,0+
∑
𝑙

∑
|𝑚 | ≤𝑙

(
1 + 𝑙 (𝑙 + 1)

2

)
𝑐2
𝑙,𝑚 + 𝑜(𝑐3

𝑙,𝑚),

𝛿(𝑆𝐻)= 𝑐0,0+
1

2𝑅

∑
𝑙

∑
|𝑚 | ≤𝑙

𝑙 (𝑙 + 1)𝑐2
𝑙,𝑚 + 𝑜(𝑐2

𝑙,𝑚),

𝛿𝑉 = 𝑅2𝑐0,0+𝑅
∑
𝑙

∑
|𝑚 | ≤𝑙

𝑐2
𝑙,𝑚 + 𝑜(𝑐2

𝑙,𝑚).

(2.40)

This shows that we can drastically reduce the complexity of the kinematics of the interface to the data of only a
few geometric quantities. However, one must be careful that if only specific deformation modes are considered, the
geometric information can become redundant, for instance if only isotropic deformation is considered i.e. only 𝑐0,0
is not null. Such an approach is proposed hereafter in Sections 2.2 for the incompressible oscillation of droplets and
compressible pulsation of bubbles by respectively choosing modes 𝑌2,0 and 𝑌0,0.

2.1.3.2.c Application: Perturbation of the ellipsoid

The strength of differential geometry of closed surface not only apply to the spherical reference shapes, but also
other shapes such an ellipsoidal shape of reference. Such inclusion shape can be relevant especially for rising bubbles
(Moore, 1965; Risso, 2000). The discussion about the geometry of the ellipsoid relies on the results of Hobson
(1931); Dassios (2012) and is proposed as illustrative purposes only as no two-phase flow disperse models relies on
this geometry in this work. The mathematical details can be found in the references detailed aforementioned. An
ellipsoid is classically described with the following implicit parametrization

𝑥2

𝑎2
1
+ 𝑦2

𝑎2
2
+ 𝑧2

𝑎2
1
= 1, (2.41)
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with (𝑥, 𝑦, 𝑧) the Cartesian coordinates and 𝑎1 > 𝑎2 > 𝑎3 > 0 are the half-axes. Denoting ℎ2
1 = 𝑎2

2 − 𝑎2
3, ℎ2

2 = 𝑎2
1 − 𝑎2

3,
ℎ2

3 = 𝑎2
1 − 𝑎2

2, each quadrant of the ellipsoid can then be classically described with the ellipsoidal coordinates 𝜌 = 𝑎1
and (𝜇, 𝜈) ∈ (ℎ3, ℎ2) × (0, ℎ3) such that

𝑥2
1 =

𝜌2𝜇2𝑣2

ℎ2
2ℎ

2
3
, 𝑥2

2 =

(
𝜌2 − ℎ2

3
) (
𝜇2 − ℎ2

3
) (
ℎ2

3 − 𝑣2)
ℎ2

1ℎ
2
3

, 𝑥2
3 =

(
𝜌2 − ℎ2

2
) (
ℎ2

2 − 𝜇2) (
ℎ2

2 − 𝑣2)
ℎ2

1ℎ
2
2

. (2.42)

Then, the surface ellipsoidal harmonics 𝑆𝑙,𝑚 are eigenvectors of the ellipsoidal Laplace-Beltrami operator, as defined
in Definition 8, and read

𝑆𝑙,𝑚 (𝜇, 𝜈) = 𝐸𝑙 (𝜇)𝐸𝑚 (𝜈), (2.43)

with 𝐸𝑘 is a Lamé polynomial of order 𝑘 and of any class 𝐾, 𝐿, 𝑀 or 𝑁 (see Dassios (2012) for the polynomials up
to the third order). Similarly to the theorem 4 for the sphere, one can then uniquely decompose the perturbation of
an ellipsoid along ellipsoidal harmonics (Dassios, 2012) which are represented in Figure 2.1.2. Again, this provides

Figure 2.1.2: Ellipsoid harmonics 𝑆𝑙,𝑚 for 𝑙 ∈ [[0, 3]] and |𝑚 | ≤ 𝑙 computed with Mathematica (Wolfram Research,
2023).

us with an efficient way to decompose the kinematics of the interface of the inclusions and identify whether the
geometric quantities represent redundant information or not.

Conclusion of Section 2.1.3

This section allowed us to better understand the information hold by the geometric quantities under an arbitrary
distortion of the interface. Such knowledge is critical for the choice of the NDF phase-space where only an independent
set of quantities must be chosen to unambiguously define the current state of the inclusion. We can conclude from
this section that the geometric quantities under consideration are probably insufficient to have closed equation of
evolution due to the arbitrary complexity of the interface motion in the general case. However, the decomposition
of a closed interface deformation shows that the time evolution of the interface can be fully closed with only a small
amount of information if specific modes are considered. Therefore, the derivation of models relying on the disperse
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regime seems accessible with the geometric quantities at stake. We propose now to present the usual closure of
dynamics before presenting a novel approach to close such dynamics with Hamilton’s SAP in Section 2.2.

2.1.4 Dynamics of the geometric quantities
In this section, we discuss a straightforward approach to obtain the dynamics associated from the statistical distribu-
tion introduced in the previous section. This approach consists in providing the dynamics directly by closing the time
evolution of the NDF and the SDF. While this approach works well in the disperse regime, it is not easy to account
for the coupling with the carrier phase. Moreover, its application for an arbitrary interface is very challenging.

2.1.4.1 Dynamics in the disperse regime

Let us start with the disperse regime where the dynamics of the collection of inclusions is expressed as the transport
in both the real-space associated with the space variable 𝒙 and the phase-space associated with the velocity 𝒗 and
the phase-space variable 𝝃. Differentiating in time the definition of the NDF yields,

𝜕𝑡 𝑓 + ∇𝒙 · (
〈
𝒗 |𝒙, 𝝃

〉
𝑓 ) + ∇𝒗 · (

〈
¤𝒗 |𝒙, 𝝃

〉
𝑓 ) + ∇𝝃̂ · (

〈
( ¤𝝃𝜆) |𝒙, 𝝃

〉
𝑓 ) =

(〈
¤𝑆 |𝒙, 𝝃

〉
+

〈 ¤̃𝐺
𝐺
|𝒙, 𝝃

〉)
𝑓 , (2.44)

with 〈(·) |𝒙, 𝝃〉 is the conditional expectancy of (·) given 𝝃 at position 𝒙. It is remarked in Essadki et al. (2019) that
assuming all the inclusions homeomorphic to spheres leads to〈

¤𝑆 |𝒙, 𝝃
〉
+

〈 ¤̃𝐺
𝐺
|𝒙, 𝝃

〉
= 0, (2.45)

thanks to the Gauss-Bonnet theorem. Therefore, this term can be interpreted as a source term accounting for
topological changes through, for instance, coalescence and break-up. Moreover, as the transport in the real-space
is governed by the second Newton’s law of dynamics, this equation is then usually interpreted as a population
balance equation – or Williams-Boltzmann equation in the context of evaporating sprays (Shapiro and Erickson,
1957; Williams, 1958) – on a collection of objects written

𝜕𝑡 𝑓 + ∇𝒙 · (𝒗 𝑓 ) + ∇𝒗 · (𝑭𝒆𝒙𝒕 𝑓 ) + ∇𝝃̂ (𝑅𝝃 𝑓 ) = Γ, (2.46)

where
〈
¤𝒗 |𝒙, 𝝃

〉
= 𝑭𝑒𝑥𝑡 are the external forces i.e. Stokes drag, gravity,

〈
( ¤𝝃𝜆) |𝒙, 𝝃

〉
= 𝑅𝒘 gathers the time rates of

change of characteristics 𝒘 and represents the a priori chosen phenomena i.e. evaporation, heat transfer, deformation,
and we note Γ the right-hand side of (2.44) which accounts for source terms of phenomena such as break-up or
coalescence. The closure of such dynamical system then comes from the knowledge of the dynamics for one inclusion
(characteristics 𝝃 and the associated 𝑅𝝃) which is extended to the collection via the NDF.

2.1.4.2 Dynamics for an arbitrary regime

For the multi-regime offered by the SDF, we similarly get the unclosed dynamics equation by differentiating in time
the definition of the SDF. It yields,

𝜕𝑡𝐹 + ∇𝒙 · (< ¤𝑿𝑜
𝜆 |𝒙, 𝒘̂ >𝐹) + ∇𝒘̂ · (< ¤𝑾𝑜

𝜆 |𝒙, 𝒘̂ >𝐹) =
〈 ¤𝐴𝑜

𝜆

𝐴𝑜
𝜆

|𝒙, 𝒘̂
〉
𝐹, (2.47)

where < ·|𝒙, 𝒘̂ > is the expectancy of · conditioned by 𝒙, 𝒘̂. Similarly, the dynamics is closed by choosing expressions
for < ¤𝑿𝑜

𝜆 |𝒙, 𝒘̂ >, < ¤𝑾𝑜
𝜆 |𝒙, 𝒘̂ > and

〈 ¤𝐴𝑜
𝜆

𝐴𝑜
𝜆
|𝒙, 𝒘̂

〉
. However, the interpretation of the conditional expectancies is more

delicate out of the disperse regime. In the disperse regime, we do not know the explicit closure of these conditional
expectancies, but we can provide the dynamics of some specific moments of the SDF, which are related through
Property 2 and the Gauss-Bonnet Theorem to some moments of the NDF, which are our geometric quantities of
interest: the IAD, the surface-averaged curvatures, and their time derivatives if needed.

The details to include such a strategy in the modelling of two-phase flow are provided in the next section.
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2.2 Extending the interpretation of the disperse regime with GeoMOM
In the previous sections, we have demonstrated that the geometric variables are good candidates to model the small-
scale dynamics as they hold geometric information about the interface while being defined for any flow regime.
However, the expression of their dynamic and their coupling with the flow appears very challenging without further
assumptions. Conversely, we showed that the interface kinematics of closed inclusions in the disperse regime can be
efficiently described with few quantities and then, the modelling of their dynamics is possible.

Therefore, we propose here an intermediate strategy where the identification of a dynamics in the disperse regime
is used as a particular case of a more generic interface dynamics through the use of geometric variables interpretable
in any regime.

Such a strategy would particularly allow the use of kinetic-based models which encompass a large variety of
physical phenomena such as the evaporation of spherical droplets described through a size distribution (Williams,
1958; Dufour and Villedieu, 2005; Massot et al., 2010; Essadki et al., 2018), or the secondary break-up Taylor-Analogy
Breakup (TAB) model with a vibrational oscillation of the droplets by adding a deformation parameter (O’Rourke
and Amsden, 1987; Amsden et al., 1989). Once the PBE is closed, the resulting model has a large dimension, and the
dimension of the model can be reduced with the Method of Moments (Schmüdgen, 2017) instead of discretizing both
the physic and phase spaces. This method reduces the multidimensional model with the NDF to a set of conservation
laws with unclosed source terms. Their closure then requires a reconstruction of the distribution with the moments
at hand. This method has been widely applied to disperse models (Hulburt and Katz, 1964; Marchisio and Fox,
2005; Kah et al., 2012). While the reconstruction problem has a well-understood framework for one extra-dimension
(size or velocity typically) and has led to numerous reconstruction techniques (McGraw, 1997; Laurent and Massot,
2001; Marchisio and Fox, 2005; Yuan et al., 2012; Essadki, 2016; Fox et al., 2022), the multidimensional one lacks
a general theory and the reconstruction techniques depend both on the phase-space and the chosen moments (Fox,
2009; Yuan and Fox, 2011; Vié et al., 2012; Chalons et al., 2017).

For the strategy under consideration, we want to represent the small-scale dynamics with geometric quantities
rather than statistical moments. In the case of spherical inclusions, the Geometric Method of Moments, as introduced
in Essadki et al. (2016, 2018, 2019), has successfully identified geometric quantities through a method of moments
applied to a NDF with a size distribution. However, more complex models with oscillation and secondary break such
as TAB model are out of reach when using the geometric quantities used in Essadki et al. (2019).

We propose here a new contribution (Loison et al., 2023b) which extends the scope of GeoMOM to the description
of inclusions endowed with their own interface kinematics and therefore kinematics.

In this section, we first detail the GeoMOM strategy and its coupling with the carrier flow through Hamilton’s
SAP. We illustrate this method with three examples: 1- the description of a polydisperse spray of spherical droplets,
on which the model by Essadki for evaporating droplets is based, 2- a polydisperse spray of oscillating droplets based
on a kinetic model inspired from O’Rourke and Amsden (1987), 3- a bubbly flow of pulsating bubbles, the dynamics
of which follows the Rayleigh-Plesset equation.

These examples are of great interest in the modelling of a multiscale two-phase flow, say an atomization, as they
correspond to elementary energy-conservative mechanisms which can temporarily store energy as the interface breaks
up. Moreover, these models can also be considered on their own as building block models for the description of sprays
or bubbly flows.

2.2.1 The Geometric Method of Moments
In this section, we detail the steps to build a two-phase model based on GeoMOM. Before that, in Section 2.2.1.1,
we place ourselves in the simpler context of a unique velocity for both the inclusions and the carrier phase. Then,
we split the strategy in three steps:

(A) Applying the method of moments on a closed kinetic-based model (Section 2.2.1.2);

(B) Linking the moments of the NDF to surface-averaged geometric variables, IAD, and their time derivatives if
needed (Section 2.2.1.3);
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(C) Construct the kinetic and potential energies associated with the small-scale dynamics, and include them in the
Lagrangian used for the derivation of the two-phase model with Hamilton’s SAP (Section 2.2.1.4).

2.2.1.1 The mono-kinetic assumption

In this section, we are mainly interested in the accounting for the geometry kinematics of the disperse phase.
Therefore, we do not tackle the reconstruction of both velocities and geometric characteristics (see Vié et al. (2013)
for an Eulerian model coupling the effects of size and velocity distributions).

We recall the generic PBE (2.46) of the NDF 𝑓 (𝑡, 𝒙, 𝒗, 𝝃),

𝜕𝑡 𝑓 + ∇𝒙 · (𝒗 𝑓 ) + ∇𝒗 · (𝑭𝑒𝑥𝑡 𝑓 ) + ∇𝝃̂ (𝑅𝝃 𝑓 ) = Γ, (2.48)

Then, we discard the velocity dependency by considering the mono-kinetic assumption

𝑓 (𝑡, 𝒙, 𝒗, 𝝃) = 𝛿(𝒗 −𝑼(𝑡, 𝒙, 𝝃))𝑛𝝃 (𝑡, 𝒙), (2.49)

with 𝑛𝝃 =
∫
𝒗
𝑓𝒗,𝝃̂𝑑𝒗 and 𝑼 =

∫
𝝃̂
𝒗 𝑓 is the averaged velocity conditioned by 𝝃.

To further simplify and distinguish the geometric modelling and from the barycentre dynamics, we consider a
Stokes force 𝑭 in the limit of a vanishing Stokes number 𝑆𝑡 → 0, i.e. when the inertial timescale of inclusions is
negligible compared to the timescale of the flow. The flow is then characterized by the carrier flow velocity 𝒖 only.
Following the works of Jabin (2002); Massot (2007), the dynamics of 𝑛𝝃 reads

𝜕𝑡𝑛𝝃 + ∇𝒙 · (𝑛𝝃𝒖) + ∇𝝃̂ (𝑅𝝃𝑛𝝃 ) = 0, (2.50)

where 𝒖 is the unique velocity of both the inclusions and the carrier phase.

2.2.1.2 The method of moments

We reduce now the complexity of the inclusions’ dynamics, modelled by the distribution 𝑛𝝃 given in (2.50), by
introducing a finite set of moments indexed by I, 𝑴𝝃 =

(
𝑀

𝝃
(𝑎𝑘 )𝑖

)
𝑖∈I

with

𝑀
𝝃
(𝑎𝑘 )𝑖 =

∫̂
𝝃

𝑃∏
𝑘=1

𝝃̂
𝑎𝑘,𝑖

𝑛𝝃 𝑑𝝃̂, 𝑖 ∈ I finite ⊂ (N𝑃)N, (2.51)

where (𝑎𝑘)𝑖 are 𝑃-multi-indices. These scalars retain statistical information about the NDF and their dynamics can
be obtained by integrating (2.50) against the corresponding monomials,

𝜕𝑡𝑴
𝝃 + ∇ · (𝑴𝝃𝒖) + ∇𝝃̂ · (R) = 0, R =

∫̂
𝝃

𝑃∏
𝑘=1

𝝃̂
𝑎𝑘,𝑖

𝑅𝝃𝑛𝝃 𝑑𝝃̂, 𝑖 ∈ I, (2.52)

where the flux term R = (R)𝑖∈I is a priori not closed i.e. whether it can be expressed with the moments of 𝑴𝝃 . The
method of moments then gives a reduced-order model for the small-scale spray in comparison with (2.50). In general,
the equations are unclosed, and a reconstruction of the NDF based on the selected moments must be provided such as
Entropy-Maximization techniques (Mead and Papanicolaou, 1984), quadratures (McGraw, 1997) or multi-gaussian
distributions (Vié et al., 2012). The selection of these moments is not obvious and is usually motivated on the basis
of mathematical properties of the resulting moment model.

2.2.1.3 Linking moments to surface-averaged geometric variables

The specificity of GeoMOM consists in the selection of moments related to geometric quantities defined with (2.14)
and (2.19) to construct a model interpretable even out of the disperse regime. The finite family of multi-indices (𝑎𝑘)I
is chosen such that there exists geometric quantities gathered in vector 𝑿 satisfying component-wise

Σ 〈𝑿〉 = F (𝑴𝝃 ), (2.53)
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with F an invertible function. Such a property then provides both moments to close the fluxes 𝑭 and Σ 〈𝝃〉 for
their geometric interpretations. Then from the dynamics of 𝑴𝝃 obtained in (2.52), the dynamics of the geometric
quantities Σ 〈𝑿〉 are obtained from (2.53).

2.2.1.4 Multi-fluid dynamics with Hamilton’s SAP

The dynamics of the disperse model can be derived by combining the energies of the carrier fluid and the inclusions
through the Lagrangian

L =
1
2
𝑚𝑘𝒖

2 − 𝑚2𝑒2

(
𝑚𝑘

𝛼𝑘

)
+ 1

2
𝑚𝑘′𝒖

2 − 𝑚𝑘′𝑒𝑘′

(
𝑚𝑘′

1 − 𝛼𝑘′

)
+ L𝑠𝑠 (𝑴𝝃 ), (2.54)

with (𝑘, 𝑘 ′) = (2, 1𝑑) for disperse liquid inclusions or (𝑘, 𝑘 ′) = (1, 2𝑑) for a bubbly flow, and L𝑠𝑠 is the additional
Lagrangian associated with the chosen small-scale dynamics. This latter contribution can account for small-scale
kinetic energy of the fluid within the inclusion and its immediate surrounding, and potential energy accounting for
capillarity energy.

Our contribution is materialized here in the small-scale kinetic energies added in L𝑠𝑠 which can only be accounted
with time derivatives of geometric quantities. This will be illustrated in the upcoming examples of oscillating droplets
in Section 2.2.4 and the pulsating bubbles in Section 2.2.3. Finally, the moments 𝑴𝝃 are constrained by (2.52), e.g.
a conservation constraint if the associated flux R is nil, or unconstrained if they are associated with a dynamics.
Another consequence of the addition of new time derivatives of geometric quantities in the phase space lies in the
apparition of kinematic constraints. Indeed, consider the phase-space 𝝃 = (𝜒, ¤𝜒) and its homogeneous PBE,

𝜕𝑡𝑛 + ∇ · (𝑛𝒖) + 𝜕𝜒 ( ¤𝜒𝑛) + 𝜕 ¤𝜒 ( ¥𝜒𝑛) = 0. (2.55)

Then, integrating against 𝜒 yields
𝜕𝑡𝑀

𝜉
1,0 + ∇ · (𝑀 𝜉

1,0𝒖) = 𝑀
𝜉
0,1. (2.56)

Assuming these moments to have a geometric nature, this latter relation translates into a kinematic relation between
𝜒 and ¤𝜒. This concludes the main steps to build small-scale two-phase flow models with GeoMOM and Hamilton’s
SAP. We propose now different examples relying on this derivation technique.

2.2.2 Application 1: Polydispersion of a collection of inclusions
Let us first consider a simple example, treated in Loison et al. (2023a), to illustrate GeoMOM where we assume no
individual dynamics associated with the inclusions, but they are compressible and equilibrates with the surrounding
pressure. Therefore, we describe a spray of either spherical droplets or bubbles which are only characterized by their
mass. Indeed, for a compressible inclusion, the size can variate from the surrounding pressure forces while its mass
is constant when no evaporation is accounted. Then, we define the mass-based NDF 𝑛𝑚 (𝑚), with 𝝃 = (𝑚) the mass
of the inclusion, satisfying the following PBE

𝜕𝑡𝑛𝑚 + ∇ · (𝑛𝑚𝒖) = 0. (2.57)

2.2.2.1 GeoMOM

We follow then the hierarchy of moments introduced by Essadki et al. (2018) to identify the averaged geometric
quantities related to the moments 𝑴𝑚 of 𝑛𝑚. For the spherical inclusions described by 𝑛𝑚, the local Gauss and mean
curvatures 𝐺, 𝐻 on the sphere are constant and equal respectively to 𝑅−1 and 𝑅−2 where 𝑅 = (3𝑚/(4𝜋𝜌𝑑𝑘 ))

1/3 is
the radius of the sphere of density 𝜌𝑑𝑘 and mass 𝑚. Therefore, considering a population of spherical inclusions, we
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express the geometric quantities Σ, Σ 〈𝐺〉 and Σ 〈𝐻〉 as moments of the distribution 𝑛𝑚

Σ 〈𝐺〉 =
∫
𝑚̂

4𝜋 𝑛𝑚 𝑑𝑚 = 4𝜋 𝑀𝑚
0 ,

Σ 〈𝐻〉 =
∫
𝑚̂

4𝜋
(

3
4𝜋𝜌𝑑𝑘

)1/3

𝑚1/3 𝑛𝑚 𝑑𝑚 = 4𝜋
(

3
4𝜋𝜌𝑑𝑘

)1/3

𝑀𝑚
1/3,

Σ =
∫
𝑚̂

4𝜋
(

3
4𝜋𝜌𝑑𝑘

)2/3

𝑚2/3 𝑛𝑚 𝑑𝑚 = 4𝜋
(

3
4𝜋𝜌𝑑𝑘

)2/3

𝑀𝑚
2/3.

(2.58)

Remark the special role of Σ 〈𝐺〉 proportional to the zeroth-order moment of 𝑛𝑚. This results from the Gauss-
Bonnet theorem 3, which indicates a geometric invariant 𝑆𝐺 = 4𝜋 for any continuous deformations of the sphere.
Furthermore, the small-scale volume fraction is not surface-related in general, but in the specific case of spherical
droplets, it is also linked to a moment of 𝑛𝒘 via the surface averaged of 1

3 𝒓 · 𝒓 (see (2.25)) with

𝛼𝑑
𝑘 =

∫
𝑚̂

1
𝜌𝑑𝑘
𝑚 𝑛𝑚 𝑑𝑚 =

1
𝜌𝑑𝑘
𝑀𝑚

1 . (2.59)

From (2.58) and (2.59), we select I = {0, 1/3, 2/3, 1} in (2.52) to get the dynamics of the geometric quantities
𝜕𝑡 (Σ 〈𝐺〉) + ∇ · (Σ 〈𝐺〉 𝒖) = 0,
𝜕𝑡 ((𝜌𝑑𝑘 )

1/3Σ 〈𝐻〉) + ∇ · ((𝜌𝑑𝑘 )
1/3Σ 〈𝐻〉 𝒖) = 0,

𝜕𝑡 ((𝜌𝑑𝑘 )
2/3Σ) + ∇ · ((𝜌𝑑𝑘 )

2/3Σ𝒖) = 0,
𝜕𝑡𝑚

𝑑
𝑘 + ∇ · (𝑚𝑑

𝑘𝒖) = 0.

(2.60)

Up to here, the model has been derived for compressible spherical inclusions. We can further assume a spray of
liquid droplets (𝑘𝑑 = 1𝑑) by assuming the classic incompressibility of the small scale (Raviart and Sainsaulieu, 1995)
thanks to the constraint 𝐷𝑡 𝜌

𝑑
1 = 0. Then, the geometric variables are governed by


𝜕𝑡 (Σ 〈𝐺〉) + ∇ · (Σ 〈𝐺〉 𝒖) = 0,
𝜕𝑡 (Σ 〈𝐻〉) + ∇ · (Σ 〈𝐻〉 𝒖) = 0,
𝜕𝑡Σ + ∇ · (Σ𝒖) = 0,
𝜕𝑡𝛼

𝑑
𝑘 + ∇ · (𝛼𝑑

𝑘 𝒖) = 0.

(2.61)

2.2.2.2 Geometrical constraints

System (2.61) corresponds to the system with surface-based moments of Essadki et al. (2018) when no evaporation
nor condensation is accounted for. Indeed, when the droplets are incompressible, the mass-based NDF 𝑛𝒘 relates to
the surface-based NDF 𝑛𝑆 defined by

𝑛𝑆 (𝒙, 𝑡, 𝑆) :=
∫
𝑚̂
𝑛𝒘 (𝒙, 𝑡, 𝑚)𝛿(𝑚 − 𝑚(𝑆)) 𝑑𝑚, 𝑚(𝑆) = 𝜌𝑑1

𝑆

3
√

4𝜋
. (2.62)

As 𝜌𝑑1 is a constant along the streamlines, there is no variation of surface area for the droplets and the dynamics is
then driven by

𝜕𝑡𝑛𝑆 + ∇𝒙 · (𝑛𝑆𝒖) = 0. (2.63)

Again, when the droplets have the same density, the geometric quantities are also expressed through the moments
𝑀𝑆

𝑖 of 𝑛𝑆,
Σ 〈𝐺〉 = 4𝜋𝑀𝑆

0 , Σ 〈𝐻〉 =
√

4𝜋𝑀𝑆
1/2, Σ = 𝑀𝑆

1 , 𝛼𝑑
1 =

1
3
√

4𝜋
𝑀𝑆

3/2. (2.64)
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The change of variables (2.62) only modifies the dimensions and orders of the moments gathered in (2.58)-(2.59),
and the half-integer moments (2.64) can be recovered as in Essadki et al. (2018). Remark that, in both the cases
of (2.58)-(2.59) and (2.64), the moments are of ascending orders. With this special choice of moments, one can
reconstruct a NDF by solving the truncated Hausdorff problem detailed in Theorem 5.

Theorem 5 (Hausdorff (1921) problem)

Given a finite set of scalars 𝑴 = 𝑀𝑘 𝑘 = 0, ..., 𝑁, one can find unidimensional representation distribution
𝑛𝑴 supported on the segment (0, 1) such that

𝑀𝑘 =
∫ 1

0
𝑥𝑘𝑛𝑴 (𝑥) 𝑑𝑥, 𝑘 = 0, ..., 𝑁,

if and only if the Hankel matrices 𝑯 and 𝑯 are positive semi-definite. If 𝑁 = 2𝑘, they read

𝑯 = (𝑚𝑖+ 𝑗 )𝑖, 𝑗=0,...,𝑘 , 𝑯 = (𝑚𝑖+ 𝑗+1 − 𝑚𝑖+ 𝑗+2)𝑖, 𝑗=0,...,𝑘−1,

and, if 𝑁 = 2𝑘 + 1, they read

𝑯 = (𝑚𝑖+ 𝑗+1)𝑖, 𝑗=0,...,𝑘 , 𝑯 = (𝑚𝑖+ 𝑗 − 𝑚𝑖+ 𝑗+1)𝑖, 𝑗=0,...,𝑘 .

Theorem 5 applies to our set of half-integer moments (2.64) via a change of variable and leads to the constraints

𝑀𝑆
0 > 0, 𝑀𝑆

1/2 > 0, 𝑀𝑆
1/2𝑀

𝑆
3/2 − (𝑀𝑆

1 )2 > 0, 𝑀𝑆
0 𝑀

𝑆
1 − (𝑀𝑆

1/2)
2 > 0, (2.65)

and defines a moment-space which indicates a convex subset of R𝑛+1 where the moments are properly defined.
This also implies constraints on the geometric variables 𝛼𝑑

1 , Σ, Σ 〈𝐻〉 and Σ 〈𝐺〉 linked to these moments which
read

𝛼𝑑
1 > 0, Σ > 0, Σ 〈𝐻〉 > 0, Σ 〈𝐺〉 > 0, 3 〈𝐻〉 𝛼𝑑

1 > Σ, 〈𝐺〉 − 〈𝐻〉2 > 0. (2.66)

These constraints are not an issue at the modelling stage as they are all passively advected by the flow. However,
they will raise issues at the numerical level as further discussed in Section 4.2.2.

2.2.2.3 Polydisperse multi-fluid models with Hamilton’s SAP

2.2.2.3.a Incompressible inclusions – droplets

The derivation of the dynamics is very similar to the one-velocity disperse Model 8 as it does not modify its Lagrangian
(except the capillarity term 𝜎Σ, but it acts as a constant in Hamilton’s SAP),

L =
1
2
𝑚2𝒖

2 − 𝑚2𝑒2

(
𝑚2

1 − 𝛼𝑑
1

)
+ 1

2
𝑚𝑑

1𝒖
2 − 𝑚𝑑

1𝑒
𝑑
1 (𝜌𝑑1 ) + 𝜎Σ. (2.67)

Regarding the constraints, we assume conservation of effective densities and geometric quantities like (2.61), we
particularly underline that 𝛼𝑑

1 is conserved. Applying Hamilton’s SAP leads to Model 12.
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Model 12 (Polydisperse model of incompressible droplets)

We denote the carrier gaseous phase with index 2 and the liquid droplets with index 1𝑑. With 𝑚𝑘 = 𝛼𝑘𝜌𝑘
and 𝛼𝑘 the phase densities and volume fractions of phases 𝑘 = 2, 1𝑑, 𝜌 = 𝑚𝑑

1 +𝑚2 the mixture’s density,
𝒖 the velocity and 𝑝2 (𝜌2) the pressure of the gaseous phase 2, Σ the IAD, Σ 〈𝐻〉, Σ 〈𝐺〉 the surface-
weighted mean curvature densities, the flow is governed by

𝜕𝑡𝑚2 +∇ · (𝑚2𝒖) = 0,
𝜕𝑡𝑚

𝑑
1 +∇ · (𝑚𝑑

1𝒖) = 0,
𝜕𝑡𝛼

𝑑
1 +∇ · (𝛼𝑑

1𝒖) = 0,
𝜕𝑡Σ +∇ · (Σ𝒖) = 0,
𝜕𝑡 (Σ 〈𝐻〉)+∇ · (Σ 〈𝐻〉 𝒖) = 0,
𝜕𝑡 (Σ 〈𝐺〉)+∇ · (Σ 〈𝐺〉 𝒖) = 0,
𝜕𝑡 (𝜌𝒖) +∇ · (𝜌𝒖 ⊗ 𝒖 + 𝑝2𝑰)= 0.

Remark here that there is no interaction between the flow geometric quantities and the flow. From the averaging
perspective, such a model also provides a trivial closure for the averaged equations (2.29) as there is no small-scale
dynamics of the inclusions’ interface.

2.2.2.3.b Compressible inclusions – bubbles

Now considering compressible inclusions (case (𝑘, 𝑘 ′) = (1, 2𝑑)), one can introduce the variables 𝑧𝑎 = (𝜌𝑑2 )2/3Σ/𝑚𝑑
1

and 𝑧𝑏 = (𝜌𝑑2 )1/3Σ 〈𝐻〉 /𝑚𝑑
1 which are constrained by 𝐷𝑡 𝑧𝑎 = 0 and 𝐷𝑡 𝑧𝑏 = 0 or equivalently


𝜕𝑡Σ + ∇ · (Σ𝒖) = 2

3
Σ∇ · 𝒖 + 2

3
Σ
𝐷𝑡𝛼

𝑑
2

𝛼𝑑
2
,

𝜕𝑡 (Σ 〈𝐻〉) + ∇ · (Σ 〈𝐻〉 𝒖) = 2
3
Σ 〈𝐻〉 ∇ · 𝒖 + 2

3
Σ 〈𝐻〉

𝐷𝑡𝛼
𝑑
2

𝛼𝑑
2
.

(2.68)

This structure of equation for the IAD is similar to the one derived by Lhuillier (2004) for a single-velocity model
recalled in (1.30). Similarly, the Hamilton’s SAP is not affected by the additional capillarity energy. However, we
consider here 𝛼𝑑

2 as unconstrained for Hamilton’s SAP such that we obtain similar models as the separated multi-fluid
Model 3 and Model 4. Then, Hamilton’s SAP provides the momentum equation

𝜕𝑡 (𝜌𝒖) + ∇ · (𝜌𝒖 ⊗ 𝒖 + 𝑝I) = 0, (2.69)

with 𝑝 := 𝑝1 = 𝑝𝑑2 , which for barotropic EOS and smooth solution gives the following dynamics for 𝛼𝑑
2 ,

𝐷𝑡𝛼
𝑑
2 = 𝛼𝑑

2𝛼1
𝜌1𝑐

2
1 − 𝜌𝑑2 (𝑐𝑑2 )2

𝛼𝑑
2 𝜌1𝑐

2
1 + 𝛼1𝜌2 (𝑐𝑑2 )2

∇ · 𝒖 =: 𝛼𝑑
2𝐾∇ · 𝒖.

Together with the constraints, this yields Model 13.
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Model 13 (Polydisperse model of compressible bubbles)

We denote the carrier liquid phase with index 1 and the gaseous bubbles with index 2𝑑. With 𝑚𝑘 = 𝛼𝑘𝜌𝑘
and 𝛼𝑘 the phase densities and volume fractions of phases 𝑘 = 1, 2𝑑, 𝜌 = 𝑚1 +𝑚𝑑

2 the mixture’s density,
𝒖 the velocity and 𝑝𝑑2 (𝜌𝑑2 ) the pressure of the gaseous phase 2, Σ the IAD, Σ 〈𝐻〉, Σ 〈𝐺〉 the surface-
weighted mean curvature densities, the flow is governed by

𝜕𝑡𝑚1 +∇ · (𝑚1𝒖) = 0,
𝜕𝑡𝑚

𝑑
2 +∇ · (𝑚𝑑

2𝒖) = 0,

𝜕𝑡Σ +∇ · (Σ𝒖) =
2
3
Σ ∇ · 𝒖 + 2

3
Σ𝐾∇ · 𝒖,

𝜕𝑡 (Σ 〈𝐻〉)+∇ · (Σ 〈𝐻〉 𝒖) =
2
3
Σ 〈𝐻〉∇ · 𝒖 + 2

3
Σ 〈𝐻〉 𝐾∇ · 𝒖,

𝜕𝑡 (Σ 〈𝐺〉)+∇ · (Σ 〈𝐺〉 𝒖) = 0,
𝜕𝑡 (𝜌𝒖) +∇ · (𝜌𝒖 ⊗ 𝒖 + 𝑝𝑰)= 0,

with 𝑝 := 𝑝1 = 𝑝𝑑2 , and 𝐾 = 𝛼1
𝜌1𝑐

2
1 − 𝜌𝑑2 (𝑐𝑑2 )2

𝛼𝑑
2 𝜌1𝑐

2
1 + 𝛼1𝜌2 (𝑐𝑑2 )2

.

We have now a complete set of closed equations for the small-scale geometric quantities, thus providing a closure
for both the averaged equation of Drew and Lhuillier. The source terms in the equation of evolution of the geometric
quantity dynamics translates the pressure adjustment of the bubbles with the carrier fluid when this latter undergoes
compressibility phenomena. Finally, we can introduce the same dissipative relaxation as Model 4 such that we obtain
the Model 14.

Model 14 (Polydisperse model of compressible bubbles with relaxation)

We denote the carrier liquid phase with index 1 and the gaseous bubbles with index 2𝑑. With 𝑚𝑘 = 𝛼𝑘𝜌𝑘 ,
𝛼𝑘 𝑝𝑘 the phase densities, volume fractions and pressures of phases 𝑘 = 1, 2𝑑, 𝜌 = 𝑚1 +𝑚𝑑

2 the mixture’s
density, 𝒖 the velocity, Σ the IAD, Σ 〈𝐻〉, Σ 〈𝐺〉 the surface-weighted mean curvature densities, the flow
is governed by 

𝜕𝑡𝑚1 +∇ · (𝑚1𝒖) = 0,
𝜕𝑡𝑚

𝑑
2 +∇ · (𝑚𝑑

2𝒖) = 0,

𝜕𝑡𝛼
𝑑
2 +𝒖 · ∇𝛼𝑑

2 =
1
𝜇
(𝑝𝑑2 − 𝑝1),

𝜕𝑡Σ +∇ · (Σ𝒖) =
2
3
Σ∇ · 𝒖 +2

3
Σ

𝛼𝑑
2

1
𝜇
(𝑝𝑑2 − 𝑝1),

𝜕𝑡 (Σ 〈𝐻〉)+∇ · (Σ 〈𝐻〉 𝒖) =
2
3
Σ 〈𝐻〉 ∇ · 𝒖+2

3
Σ 〈𝐻〉
𝛼𝑑

2

1
𝜇
(𝑝𝑑2 − 𝑝1),

𝜕𝑡 (Σ 〈𝐺〉)+∇ · (Σ 〈𝐺〉 𝒖) = 0,
𝜕𝑡 (𝜌𝒖) +∇ · (𝜌𝒖 ⊗ 𝒖 + 𝑝𝑰)= 0,

with 𝑝 = 𝛼1𝑝1 + 𝛼𝑑
2 𝑝

𝑑
2 .

The source terms in the equation of evolution of the geometric quantity dynamics also shows that the inclusions
see their pressure to be balanced with the pressure of the carrier fluid. In these last two models, the bubbles
instantaneously react to the pressure variations of the carrier phase to maintain the pressure equilibrium. A more
physical behaviour would be to account for the Laplace pressure jump and that the bubbles have their own dynamics
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at small-scale resulting from the small-scale flow around the bubble and introduce inertial and damping terms.
However, that would require enlarging the NDF phase-space and add non-trivial time-rate of change in the PBE
(2.57). This modelling approach is tackled in the next section.

2.2.3 Application 2: Pulsating bubbly flow
We now propose a small-scale model of compressible inclusions, say bubbles in a liquid, with an independent small-
scale dynamics. The modelling of pulsating bubble is well-known under the Rayleigh-Plesset model (Plesset and
Prosperetti, 1977; Prosperetti, 1982), and accounts for the dynamics of spherical bubble embedded in a locally
incompressible fluid, undergoing both internal and external pressure forces and capillarity surface tension. The
resulting dynamics read

𝑅 ¥𝑅 + 3
2
¤𝑅2 =

1
𝜌1

(
𝑝2 − 𝑝1 − 2𝜎

𝑅

)
. (2.70)

Many multiphase models have already been proposed with related approaches to account for such pulsation of the
bubbles, particularly using Hamilton’s SAP and a micro-inertia term 1

2 𝜈(𝐷𝑡𝛼)2 in the Lagrangian (Bedford and
Drumheller, 1978; Gavrilyuk and Teshukov, 2001; Teshukov and Gavrilyuk, 2002; Gavrilyuk and Saurel, 2002; Drui
et al., 2019). However, these model often postulates the expression of the micro-inertia or the compressibility of the
carrier flow is not fully accounted for. Therefore, we propose here another derivation of such model addressing these
two limits in a one-velocity model taking advantage of the GeoMOM framework.

2.2.3.1 Energetic derivation of the Rayleigh-Plesset equation

We propose first to derive the Rayleigh-Plesset equation as in Prosperetti (1982) by considering a small-scale in-
compressible flow of velocity 𝒖̃ around the bubble of radius 𝑅(𝑡) such that. The dynamics is obtained by the time
derivation of the total energy of the system made of the bubble and the surrounding flow such that the dominant
added-mass kinetic energy is properly accounted.

First, let us determine the surrounding flow through the incompressibility condition with the spherical referential
of the bubble (𝑟, 𝜃, 𝜙),

∇ · 𝒖̃ = 0. (2.71)
From the spherical symmetry, it boils down to

𝜕𝑟 (𝑟2𝑢𝑟 ) = 0, (2.72)
that we integrate into

𝑢𝑟 (𝑡, 𝑟) =
𝐶 (𝑡)
𝑟2 , (2.73)

where 𝐶 (𝑡) is a quantity depending on time only. We determine this constant as the component normal to the
interface is continuous at the interface of the bubble i.e. 𝑢𝑟 (𝑡, 𝑅(𝑡)) = ¤𝑅(𝑡), and then we obtain

𝑢𝑟 =
𝑅2

𝑟2
¤𝑅. (2.74)

We neglect the kinetic energy brought by the fluid inside the bubble, and we obtain the following kinematic energy
for one bubble with its liquid surrounding,

𝐸𝑘 =
∫ 𝜋

𝜃=0

∫ 2𝜋

𝜙=0

∫ ∞

𝑟=𝑅 (𝑡 )

1
2
𝜌1𝑢

2
𝑟 𝑟

2 sin 𝜃𝑑𝑟𝑑𝜃𝑑𝜙 =
1
2
¤𝑅2𝑅3𝜌14𝜋. (2.75)

The potential energy comes from the internal energy 𝑒(𝜌2), the capillarity and the pressure work of the surrounding
fluid with an energy constant set such that 𝐸𝑘 + 𝐸𝑝 = 0 at equilibrium when 𝑅 = 𝑅0 and ¤𝑅 = 0,

𝐸𝑝 = 𝜎(𝑆 − 𝑆0 (𝑅0)) + 𝑒(𝜌2) − 𝑒(𝜌2 (𝑚𝑏, 𝑅0)) + 𝑝1,∞ (𝑉 (𝑅) −𝑉0 (𝑅0))

= 𝜎4𝜋(𝑅2 − 𝑅2
0) + 𝑚𝑏𝑒

(
𝑚𝑏

4
3𝜋𝑅

3

)
− 𝑚𝑏𝑒

(
𝑚𝑏

4
3𝜋𝑅

3
0

)
+ 𝑝1,∞

4𝜋
3
(𝑅3 − 𝑅3

0).
(2.76)
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Then, the equilibrium radius 𝑅0 is a minimizer of 𝐸𝑝, i.e.

(𝜕𝑅𝐸𝑝) |𝑅0 = 4𝜋𝜎2𝑅0 − 4𝜋𝑅2
0

[
𝑝2

(
𝑚𝑏

4
3𝜋𝑅

3
0

)
− 𝑝1,∞

]
= 0 ⇒ 𝑝2

(
𝑚𝑏

4
3𝜋𝑅

3
0

)
− 𝑝1,∞ = 𝜎

2
𝑅0
. (2.77)

As expected, we recover the Laplace pressure jump at the equilibrium. For the dynamics, we derive in time the total
energy 𝐸𝑚 = 𝐸𝑘 + 𝐸𝑝 which yields the Rayleigh-Plesset equation,

𝑅 ¥𝑅 + 3
2
¤𝑅2 =

1
𝜌1

[
𝑝2

(
𝑚𝑏

4
3𝜋𝑅

3

)
− 𝑝1,∞ − 𝜎 2

𝑅

]
. (2.78)

In the limit of small oscillations, one can introduce 𝑅 = 𝑅0 + 𝛿𝑅 with ¤𝑅 = 𝛿 ¤𝑅 and ¥𝑅 = 𝛿 ¥𝑅 such that the linearized
Rayleigh-Plesset equation is obtained

𝛿 ¥𝑅 + 1
𝜌1

[
3𝜌2

𝑅2
0
𝑐2

2,0 − 𝜎 2
𝑅3

0

]
𝛿𝑅 = 0. (2.79)

The coefficient of the zero order term is positive if 𝑅0 >
2𝜎

3𝜌2𝑐2
2,0

which is very small (e.g. 10−8 m for an air bubble in

water). We define then the pulsation 𝜔𝑅𝑃
0 =

√
3
𝑅2

0
𝑐2

2 − 𝜎 2
𝑅3

0
of the oscillating dynamics.

2.2.3.2 GeoMOM with a monodisperse synchronous bubbly flow

Given the dynamics of a unique bubble, we are now interested in the dynamics of a bubbly flow that we derive with
GeoMOM and Hamilton’s SAP. We proceed by first describing the kinetic model at the small-scale, and we identify
the variables we want to work with in the two-scale model. The assumptions are the following

• The local dynamics of one bubble follows a Rayleigh-Plesset equation with a surrounding incompressible flow
at small-scale;

• The small-scale flow around the bubbles is potential;

• The bubbles locally are pulsating synchronously.

We first tackle the case where we have a monodisperse collection of bubbles following the non-linear Rayleigh-
Plesset equation (2.78), and second a polydisperse collection of bubbles following the linear case (2.79).

2.2.3.2.a The monodisperse non-linear model

We describe the bubbly flow with a NDF 𝑓 of phase space accounting for both the radius and the radius velocity
(𝑚, 𝑅, ¤̂𝑅). The NDF is governed by the following PBE

𝜕𝑡𝑛𝑏 + ∇ · (𝑛𝑏𝒖) + 𝜕𝑅 ( ¤̂𝑅𝑛𝑏) + 𝜕 ¤̂𝑅 ( ¥𝑅(𝑅, ¤̂𝑅)𝑛𝑏) = 0, (2.80)

where the relation ¥𝑅(𝑅, ¤̂𝑅) is given by the Rayleigh-Plesset equation (2.78). Considering a monodisperse spray and
the synchronous pulsation of the droplets, the NDF has the following form

𝑛𝑏 (𝑚, 𝑅, ¤̂𝑅) = 𝑛𝛿(𝑚 − 𝑚𝑏)𝛿(𝑅 − 𝑅)𝛿( ¤̂𝑅 − ¤𝑅), (2.81)

where 𝑚𝑏, 𝑅 and ¤𝑅 are the abscissa of the bubble distribution 𝑛𝑏. It is then required to identify at least three
geometric quantities following the GeoMOM approach. We choose them to be 𝛼𝑑

2 the volume fraction of the gaseous
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phase (denoted 𝛼 in Drui et al. (2019)), Σ 〈𝐺〉 and the time derivative 𝜕𝑡𝛼𝑑
2 as allowed by GeoMOM (see (2.26)).

Integrating the NDF 𝑓 against 𝑚, 4𝜋, 4
3𝜋𝑅

3 and the PBE (2.80) against 4
3𝜋𝑅

3 yields,

𝑚𝑑
2 = 𝑚𝑏𝑀0,0, Σ 〈𝐺〉 = 4𝜋𝑀0,0 = 4𝜋𝑛, 𝛼𝑑

2 =
4
3
𝜋𝑀3,0 = 𝑛

4
3
𝜋𝑅3, 𝑤 := 𝜕𝑡𝛼𝑑

2 + 𝒖 · ∇𝛼𝑑
2 + 𝛼𝑑

2∇ · 𝒖 = 𝑛4𝜋𝑅2 ¤𝑅, (2.82)

which allows to identify the weight 𝑛 and the abscissa 𝑚𝑏, 𝑅, ¤𝑅. For the sake of readability and following comparable
notation as in Drui et al. (2019), we note 𝑤 := 𝐷𝑡𝛼

𝑑
2 + 𝛼𝑑

2∇ · 𝒖. Remark that this definition translate a kinematic
relation, as identified in (2.56) associated with the variation of the inclusions’ volume. With 𝑤, relations (2.82)
become

𝑛 =
Σ 〈𝐺〉

4𝜋
, 𝑚𝑏 =

𝑚𝑑
2
𝑛

=
𝛼𝑑

2 𝜌
𝑑
2

𝑛
, 𝑅 =

(
3𝛼𝑑

2
Σ 〈𝐺〉

)1/3

, ¤𝑅 =
𝑤

Σ 〈𝐺〉

(
3𝛼𝑑

2
Σ 〈𝐺〉

)−2/3

. (2.83)

The Lagrangian of the system is then evaluated using these variables by integrating the kinetic and potential energies
against the NDF. However, in the context of multi-fluid models, the pressure work does not need to be added as it
comes from the equilibrium of the internal energies of both phases. Using the abscissa, the Lagrangian reads

L =
1
2
𝜌𝒖2 − 𝜌𝑌1𝑒1

(
𝜌𝑌1

1 − 𝛼𝑑
2

)
+ 𝑛

(
1
2
¤𝑅2𝑅3𝜌14𝜋

)
− 𝑚2𝑒2

(
𝜌𝑌2

𝛼𝑑
2

)
− 𝜎

(
𝑛4𝜋𝑅2

)
. (2.84)

Then, for calculation purposes, we use relations (2.82) to express the Lagrangian notably with 𝑚𝑏, 𝑌2, and 𝛼𝑑
2 ,

L(𝒖, 𝜌, 𝛼𝑑
2 , 𝑤, 𝑚𝑏, 𝑌2, 𝑌1) =

1
2
𝜌𝒖2−𝜌𝑌1𝑒1

(
𝜌𝑌1

1 − 𝛼𝑑
2

)
−𝜌𝑌2𝑒2

(
𝜌𝑌2

𝛼𝑑
2

)
+ 1

2
𝜈(𝑚𝑏, 𝑌2, 𝜌, 𝛼

𝑑
2 )𝑤2−𝜎(4𝜋)1/332/3 (𝛼𝑑

2 )2/3
(
𝜌𝑌2
𝑚𝑏

)1/3
,

(2.85)
with

𝜈(𝑚𝑏, 𝑌2, 𝜌, 𝛼
𝑑
2 ) =

1
(4𝜋)2/331/3

(
(1 − 𝑌2)𝑚2/3

𝑏

𝑌2/3
2

)
𝜌1/3

(𝛼𝑑
2 )1/3 (1 − 𝛼𝑑

2 )
. (2.86)

Remark that this Lagrangian extends the one proposed by Gavrilyuk and Teshukov (2001), and additionally accounts
for the carrier liquid phase compressibility and capillarity of the bubbles. Also note that a Lagrangian for a bubbly
potential flow accounting for two velocities and added-mass has been proposed in Teshukov and Gavrilyuk (2002).
We further consider the following constraints,

𝐷𝑡𝑌1 = 0, 𝐷𝑡𝑌2 = 0, 𝐷𝑡𝑚𝑏 = 0, 𝜕𝑡 𝜌 + ∇ · (𝜌𝒖) = 0. (2.87)

For an Eulerian variation of the trajectories 𝜼, we have the following variations,

𝛿𝑏𝑎 = −(𝜼 · ∇)𝑏𝑎, for 𝑏𝑎 ∈ {𝑌1, 𝑌2, 𝑚𝑏},
𝛿𝜌 = −∇ · (𝜌𝜼), 𝛿𝒖 = 𝐷𝑡𝜼 − (𝜼 · ∇)𝒖,

𝛿𝑤 = 𝛿(𝐷𝑡𝛼
𝑑
2 + 𝛼𝑑

2∇ · 𝒖) = 𝜕𝑡𝛿𝛼𝑑
2 + 𝛿𝒖 · ∇𝛼𝑑

2 + 𝒖 · ∇𝛿𝛼𝑑
2 + 𝛼𝑑

2∇ · 𝛿𝒖 + (∇ · 𝒖)𝛿𝛼𝑑
2 ,

(2.88)

and the following variation for the action,

𝛿A =
∫
Ω̄
−

{
𝜕𝑡𝑲 + ∇ · (𝑲 ⊗ 𝒖) + 𝑲 · ∇𝒖 − 𝜌∇(𝜕𝜌L) + 𝜕𝑚𝑏L∇𝑚𝑏 + 𝜕𝑌1L∇𝑌1 + 𝜕𝑌2L∇𝑌2

+ 𝑀∇(𝐷𝑡𝛼
𝑑
2 ) + (𝜕𝑡𝑀 + ∇ · (𝑀𝒖))∇𝛼𝑑

2

− ∇
(
𝛼𝑑

2 (𝜕𝑡𝑀 + ∇ · (𝑀𝒖)) + 𝑀 (𝐷𝑡𝛼
𝑑
2 + 𝛼𝑑

2 (∇ · 𝒖))
)
− 𝛼𝑑

2∇(𝑀 (∇ · 𝒖)) − 𝑀∇(𝛼𝑑
2 (∇ · 𝒖))

}
· 𝜼

−
{
𝜕𝑡𝑀 + ∇ · (𝑀𝒖) − 𝑀 (∇ · 𝒖) − 𝜕𝛼𝑑

2
L

}
.

(2.89)
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Hamilton’s SAP then implies
𝜕𝑡𝑲 + ∇ · (𝑲 ⊗ 𝒖) + 𝑲 · ∇𝒖 + 𝜕𝑌1L∇𝑌1 + 𝜕𝑌2L∇𝑌2 + 𝜕𝑚𝑏L∇𝑚𝑏 − 𝜌∇(𝜕𝜌L)

−
[
(𝐷𝑡𝛼

𝑑
2 + 𝛼𝑑

2∇ · 𝒖)∇𝑀 + 𝛼𝑑
2∇(𝜕𝛼𝑑

2
L)

]
= 0,

𝜕𝑡𝑀 + ∇ · (𝑀𝒖) = 𝜕𝛼𝑑
2
L + 𝑀 (∇ · 𝒖).

(2.90)

Introducing L∗ = 𝜌𝜕𝜌L − L, we have{
𝜕𝑡𝑲 + ∇ · (𝑲 ⊗ 𝒖 − (L∗ + 𝑀 (𝐷𝑡𝛼

𝑑
2 + 𝛼𝑑

2 (∇ · 𝒖)) + 𝛼𝑑
2 𝜕𝛼𝑑

2
L)𝑰) = 0,

𝜕𝑡𝑀 + 𝒖 · ∇𝑀 = 𝜕𝛼𝑑
2
L.

(2.91)

Evaluating the partial derivatives of the Lagrangian gives

𝑲 = 𝜌𝒖, 𝑀 = 𝜈(𝐷𝑡𝛼
𝑑
2 + 𝛼𝑑

2∇ · 𝒖), L∗ = −(1 − 𝛼𝑑
2 )𝑝1 − 𝛼𝑑

2 𝑝2 − 1
3
𝜈(𝐷𝑡𝛼

𝑑
2 + 𝛼𝑑

2 (∇ · 𝒖))2 + 2
3
𝜎Σ,

𝜕𝛼𝑑
2
L = 𝑝2 − 𝑝1 + 1

2
𝜈( 1

1 − 𝛼𝑑
2
− 1

3𝛼𝑑
2
)𝑤2 − 2

3𝛼𝑑
2
𝜎Σ,

L∗ + 𝑀 (𝐷𝑡𝛼
𝑑
2 + 𝛼𝑑

2 (∇ · 𝒖)) + 𝛼𝜕𝛼𝑑
2
L = −𝑝1 + 1

2
𝜈

1 − 𝛼𝑑
2
𝑤2.

(2.92)

The dynamics of the pulsation is simplified remarking that

𝐷𝑡𝜈 = 𝜈

((
1

(1 − 𝛼𝑑
2 )

− 1
3(𝛼𝑑

2 )

)
(𝑤 − 𝛼𝑑

2 (∇ · 𝒖)) − (∇ · 𝒖)
3

)
, (2.93)

and the final model is gathered in Model 15.

Model 15 (Monodisperse model of pulsating bubbles)

With 𝑚𝑘 = 𝛼𝑘𝜌𝑘 the phase densities for 𝑘 = 1, 2𝑑, 𝜌 the mixture density, 𝒖 the mixture velocity,
Σ 〈𝐺〉 the surface-average density of Gauss curvature (linked to the number density of bubbles), 𝑝𝑘 the
pressure of phase 𝑘, the flow is governed by

𝜕𝑡𝑚1 +∇ · (𝑚1𝒖) = 0,
𝜕𝑡𝑚

𝑑
2 +∇ · (𝑚𝑑

2𝒖) = 0,
𝜕𝑡 (Σ 〈𝐺〉)+∇ · (Σ 〈𝐺〉 𝒖)= 0,
𝜕𝑡 (𝜌𝒖) + ∇ ·

(
𝜌𝒖 ⊗ 𝒖 + (𝑝1 − 1

2
1

1−𝛼𝑑
2
𝜈𝑤2)𝑰

)
= 0,

𝜕𝑡𝑤 + 𝒖 · ∇𝑤 + 𝛼𝑑
2

1−𝛼𝑑
2
∇ · 𝒖 = 1

2

(
1

3𝛼𝑑
2
− 1

1−𝛼𝑑
2

)
𝑤2 + 1

𝜈

(
𝑝2 − 𝑝1 − 𝜎 2

𝑅

)
,

with 𝑤 = 𝐷𝑡𝛼
𝑑
2 + 𝛼𝑑

2∇ · 𝒖, 𝜈 defined by (2.86) and 𝑅(𝛼𝑑
2 , Σ 〈𝐺〉) the radius defined using (2.82).

Let us first remark that the pressure of the mixture in the mixture momentum equation is the one of the carrier fluid
perturbed with a term corresponding to the pulsating dynamics, notably the time derivative of 𝛼. This corresponds to
a dispersive system, and we refer the reader to Gavrilyuk and Teshukov (2001), where some properties of such systems
are studied. The absence of pressure contribution 𝑝2 in the mixture momentum is reminiscent of what is observed
for the modelling of disperse particle flow, and comes from the introduction of the pulsation via a “conservative”
derivative 𝑤 = 𝐷𝑡𝛼 + 𝛼∇ · 𝒖. The additional equation for the dynamics of the pulsating bubbles is quite complex and
results from the non-linear Rayleigh-Plesset equation governing the pulsation of each bubble. In the limit with no
velocity, it yields

𝜕𝑡𝑡𝛼
𝑑
2 =

1
2

(
1

3𝛼𝑑
2
− 1

1 − 𝛼𝑑
2

)
(𝜕𝑡𝛼𝑑

2 )2 + 1
𝜈

(
𝑝2

(
𝑚𝑑

2

𝛼𝑑
2

)
− 𝑝1

(
𝑚1

1 − 𝛼𝑑
2

)
− 𝜎 2

𝑅

)
. (2.94)
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As expected, in the equilibrium state when there is no more pulsation, i.e. 𝑤 = 0, simply gives the Laplace pressure
jump relation where the quantity 𝑅 is implicitly defined by the pressure equilibrium depending on the carrier fluid
pressure 𝑝1 as in (2.77).

For the hyperbolicity study, we consider the augmented model corresponding with Model 15 by decoupling 𝑤
and 𝛼𝑑

2 and introducing the former definition of 𝑤 as an additional equation. For an arbitrary direction 𝜔, denote
𝑢 = 𝒖 · 𝜔, then the augmented model is hyperbolic with, after some calculations, the following eigenvalues

𝑢, 𝑢 − 𝑐, 𝑢 + 𝑐, with 𝑐 =
1

1 − 𝛼𝑑
2

√
(1 − 𝛼𝑑

2 )𝜌1𝑐
2
1 − 𝛼2𝜈𝑤(1 + 𝑤)
𝜌

, (2.95)

with 𝑢 of multiplicity 5 and 5 independent eigenvectors. Remark that there is no sound propagation associated with
the sound velocity of the gaseous phase conversely to the modified frozen sound velocity found in Drui et al. (2019).
This property is physically more acceptable as the sound propagation within the gaseous bubbles is not relevant at
the scale of the bubbly flow mixture (see the remark in Saurel et al. (2017, Sec. II-A, infra)).

Finally, the dynamics of the geometric quantities Σ or Σ 〈𝐻〉 is not required to close the dynamical system.
Nevertheless, one can have their equations of evolution the PBE (2.80) against the right monomials, e.g.

𝜕𝑡Σ + ∇ · (Σ𝒖) = 2
(
Σ 〈𝐺〉
3𝛼𝑑

2

)1/3

𝑤, (2.96)

which translates the relation 𝜕𝑡 (4𝜋𝑅2) = 2(𝜕𝑡𝑉)/𝑅 for a sphere.

2.2.3.3 The monodisperse linearized model

Given the equilibrium state around the Laplace equilibrium, we propose now to investigate the linearized problem
around this very state. For the linearized Rayleigh-Plesset equation, the dynamics of each droplet is determined by
(𝛿𝑅, 𝛿 ¤𝑅) which defines the new phase-space of the NDF 𝑛𝑏 describing the bubbles. The PBE governing the dynamics
of 𝑛𝑏 is then

𝜕𝑡𝑛𝑏 + ∇ · (𝑛𝑏𝒖) + 𝜕𝛿̂𝑅 (𝛿 ¤𝑅𝑛𝑏) + 𝜕𝛿̂ ¤𝑅 (𝛿 ¥𝑅(𝛿𝑅, 𝛿 ¤𝑅)𝑛𝑏) = 0, (2.97)
For this model, we account for mass polydispersion, but the need of explicit reconstruction for Hamilton’s SAP
energies makes us choose a distribution of Dirac,

𝑛𝑏 (𝑚, 𝛿𝑅, 𝛿 ¤𝑅) = 𝑛𝛿(𝑚 − 𝑚)𝛿(𝛿𝑅 − 𝛿𝑅)𝛿(𝛿 ¤𝑅 − 𝛿 ¤𝑅). (2.98)

This form, similarly assume the synchronicity of the bubbles’ pulsation. However, for simpler calculations, we change
the mass dependency into a dependency on the radius equilibrium through the implicit function defined by the
Laplace equilibrium

𝑝2

(
𝑚

4
3𝜋𝑅0

)
− 𝑝1

(
𝑚1

1 − 𝑛 4
3𝜋𝑅

3
0

)
= 𝜎

2
𝑅0
, (2.99)

that we assume invertible. Thus, we consider now

𝑛𝑏 (𝑅0, 𝛿𝑅, 𝛿 ¤𝑅) = 𝑛𝛿(𝑅0 − 𝑅0)𝛿(𝛿𝑅 − 𝛿𝑅)𝛿(𝛿 ¤𝑅 − 𝛿 ¤𝑅). (2.100)

For consistency with the non-linear model, we write the relations between the geometric variables 𝛼𝑑
2 and Σ 〈𝐺〉 and

the moments of 𝑛𝑏

𝛼𝑑
2 =

4
3
𝜋𝑀3,0,0 + 4𝜋𝑀2,1,0, 𝐷𝑡𝛼

𝑑
2 + 𝛼𝑑

2∇ · 𝒖 = 4𝜋𝑀2,0,1, Σ 〈𝐺〉 = 4𝜋𝑀0,0,0. (2.101)

We propose then to decompose the volume fraction 𝛼𝑑
2 in its static contribution 𝛼0 and 𝛼̃ associated with the

pulsation. We can then link them to the abscissa 𝑛, 𝑅0, 𝛿𝑅, 𝛿 ¤𝑅 with

𝑛 =
Σ 〈𝐺〉

4𝜋
, 𝑅0 =

(
3𝛼0
Σ 〈𝐺〉

)1/3
, 𝛿𝑅 =

𝛼̃

Σ 〈𝐺〉

(
3𝛼0
Σ 〈𝐺〉

)−2/3
, 𝛿 ¤𝑅 =

𝐷𝑡 𝛼̃ + 𝛼̃∇ · 𝒖
Σ 〈𝐺〉

(
3𝛼0
Σ 〈𝐺〉

)−2/3
. (2.102)
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Using both geometric quantities and abscissa, we write the potential energy

𝐸𝑝 = 𝑚1𝑒1

(
𝑚1

1 − 𝛼0 − 𝛼̃

)
+ 𝜎𝑛4𝜋(𝑅0 + 𝛿𝑅)2 + 𝑚𝑑

2𝑒2

(
𝑚𝑑

2
𝛼0 + 𝛼̃

)
, (2.103)

and differentiating this equation around its equilibrium gives the potential energy in the limit of small pulsation

E𝑝 = 𝑚1𝑒1

(
𝑚1

1 − 𝛼0

)
+ 𝑚𝑑

2𝑒2

(
𝑚𝑑

2
𝛼0

)
︸                                  ︷︷                                  ︸

E0

+1
2

[
𝑐2

2

(
𝑚1

(1 − 𝛼0)2 +
𝑚𝑑

2
𝛼2

0

)
+ 2𝜎
𝑅4

0Σ 〈𝐺〉

]
︸                                          ︷︷                                          ︸

𝛾

𝛼̃2. (2.104)

The kinetic energy reads for small pulsations

𝐸𝑘 =
1
2
𝜈(𝑚𝑏, 𝑌2, 𝜌, 𝛼0)(𝐷𝑡 𝛼̃ + 𝛼̃∇ · 𝒖)2, (2.105)

with 𝜈 defined by (2.86). Let us gather the terms of the Lagrangian following

L =
1
2
𝜌𝒖2 + 1

2
𝜈(𝑚𝑏, 𝑌2, 𝜌, 𝛼) (𝐷𝑡𝛼 + 𝛼∇ · 𝒖)2 − E𝑝 (𝑚𝑏, 𝑌2, 𝜌, 𝛼), (2.106)

where E𝑝 is the potential energies gathering both specific internal energies and capillarity energy.
We now express the linearized Lagrangian around the equilibrium volume fraction 𝛼0 defined as the minimizer of

E𝑝. It yields

L =
1
2
𝜌𝒖2 − E𝑝 (𝑚𝑏, 𝑌2, 𝜌, 𝛼0) +

1
2
𝜈(𝑚𝑏, 𝑌2, 𝜌, 𝛼0) (𝐷𝑡 𝛼̃ + 𝛼̃(∇ · 𝒖))2 − 1

2
𝛾(𝑚𝑏, 𝑌2, 𝜌, 𝛼0)𝛼̃2, (2.107)

with 𝜈 defined as in (2.86), and

𝛾(𝑚𝑏, 𝑌2, 𝜌, 𝛼0) = (𝜕2
𝛼E𝑝) |𝛼0 =

𝜌(1 − 𝑌2)𝑐2
1

(1 − 𝛼0)2 +
𝜌𝑌2𝑐

2
2

𝛼2
0

− 2(4𝜋)1/3

(3𝛼0)4/3𝜎

(
𝜌𝑌2
𝑚𝑏

)1/3
. (2.108)

We assume the same constraints as considered previously, except for 𝛼0 which varies under the constraint of the
equilibrium 𝜕𝛼E𝑝 (𝛼0, 𝜌,𝑌2, 𝑚𝑏) = 0. It follows that

𝛾 𝛿𝛼0 + (𝜕𝜌𝜕𝛼E𝑝) |𝛼0 𝛿𝜌 + (𝜕𝑌2𝜕𝛼E𝑝) |𝛼0 𝛿𝑌2 + (𝜕𝑚𝑏𝜕𝛼E𝑝) |𝛼0 𝛿𝑚𝑏 = 0. (2.109)

Decomposition the variation of the action along each variable gives

𝛿A𝑏𝑎 = −
∫

𝜕𝑏𝑎L∇𝑏𝑎 · 𝜼, 𝛿A𝑏𝑎 = −
∫

𝜕𝑏𝑎L∇𝑏𝑎 · 𝜼, 𝛿A𝜌 =
∫
Ω
𝜌∇(𝜕𝜌L) · 𝜼, 𝛿A𝛼 =

∫
Ω
𝜕𝛼L𝛿𝛼̃,

𝛿A𝒖 =
∫
Ω
− (𝜕𝑡𝑲 + ∇ · (𝑲 ⊗ 𝒖) + 𝑲 · ∇𝒖) · 𝜼,

𝛿A𝛼0 =
∫
Ω

{
𝜌∇

[
𝛾−1 (𝜕𝛼0L)(𝜕𝜌𝜕𝛼E𝑝) |𝛼0

]
+ 𝛾−1 (𝜕𝛼0L)(𝜕𝑌2𝜕𝛼E𝑝) |𝛼0∇𝑌2 + 𝛾−1 (𝜕𝛼0L)(𝜕𝑚𝑏𝜕𝛼E𝑝) |𝛼0∇𝑚𝑏

}
· 𝜼,

𝛿A (𝐷𝑡 𝛼+𝛼∇·𝒖) =
∫
Ω
(−𝜕𝑡𝑀 − ∇ · (𝑀𝒖) + 𝑀 (∇ · 𝒖))𝛿𝛼̃

−
∫
Ω
(𝑀∇(𝐷𝑡 𝛼̃) + (𝜕𝑡𝑀 + ∇ · (𝑀𝒖))∇𝛼̃) · 𝜼

+
∫
Ω
[∇ (𝛼̃(𝜕𝑡𝑀 + ∇ · (𝑀𝒖)) + 𝑀 (𝐷𝑡 𝛼̃ + 𝛼̃(∇ · 𝒖))) − 𝛼̃∇(𝑀 (∇ · 𝒖)) − 𝑀∇(𝛼̃(∇ · 𝒖))] · 𝜼.

(2.110)
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It yields the following system{
𝜕𝑡𝑲 + ∇ · (𝑲 ⊗ 𝒖 − (L∗ + 𝑀 (𝐷𝑡 𝛼̃ + 𝛼̃∇ · 𝒖) + 𝛼̃(𝜕𝛼L) + 𝜌(𝜕𝛼0L)𝛾−1 (𝜕𝜌𝜕𝛼E𝑝) |𝛼0 )I) = 0,
𝜕𝑡𝑀 + 𝒖 · ∇𝑀 = 𝜕𝛼L,

(2.111)

Evaluating the derivatives of the Lagrangian gives

𝑲 = 𝜌𝒖, L∗ = −
(
(1 − 𝛼0)𝑝1 + 𝛼0𝑝2 − 2

3
𝜎(4𝜋)1/3 (3𝛼)2/3

(
𝜌𝑌2
𝑚𝑏

))
− 1

3
𝜈(𝐷𝑡 𝛼̃ + 𝛼̃∇ · 𝒖)2 − 1

2
(𝜌𝜕𝜌𝛾 − 𝛾)𝛼̃2,

𝑀 = 𝜈(𝐷𝑡 𝛼̃ + 𝛼̃∇ · 𝒖), 𝜕𝛼L = −𝛾𝛼̃, 𝜕𝛼0L =
1
2

(
1

3𝛼0
− 1

1 − 𝛼0

)
(𝐷𝑡 𝛼̃ + 𝛼̃∇ · 𝒖)2 − 1

2
𝜕𝛼0𝛾𝛼̃

2,

(2.112)

and

L∗ + 𝑀 (𝐷𝑡 𝛼̃ + 𝛼̃∇ · 𝒖) + 𝛼̃(𝜕𝛼L) + 𝜌(𝜕𝛼0L)𝛾−1 (𝜕𝜌𝜕𝛼E𝑝) |𝛼0

= − 𝑝1 + 1
2
( 4
3
+ 𝜌 1

𝛾
( 1
3𝛼0

− 1
1 − 𝛼0

)(𝜕𝜌𝜕𝛼E𝑝) |𝛼0 )𝜈(𝐷𝑡 𝛼̃ + 𝛼̃∇ · 𝒖)2 − 1
2
(𝜌𝜕𝜌𝛾 + 𝜌

𝜕𝛼0𝛾

𝛾
(𝜕𝜌𝜕𝛼E𝑝) |𝛼0 + 𝛾)𝛼̃2.

(2.113)

We further simplify the expressions by assuming a linearized EOS and a dilute bubbly flow 𝛼0 � 1. The expressions
above simplify particularly for

𝜈 =
1

(4𝜋)2/331/3

(
(1 − 𝑌2)𝑚2/3

𝑏

𝑌2/3
2

)
𝜌1/3

𝛼1/3
0

, 𝛾 =
𝜌𝑌2𝑐

2
2

𝛼2
0
,

L∗ + 𝑀 (𝐷𝑡 𝛼̃ + 𝛼̃∇ · 𝒖) + 𝛼̃(𝜕𝛼L) + 𝜌(𝜕𝛼0L)𝛾−1 (𝜕𝜌𝜕𝛼E𝑝) |𝛼0 = −𝑝1 + 1
2
𝜈(𝐷𝑡 𝛼̃ + 𝛼̃∇ · 𝒖)2 + 𝛾

𝛼0
𝛼̃2.

(2.114)

Under these assumptions, and using the notation 𝑤 = 𝐷𝑡 𝛼̃ + 𝛼̃∇ · 𝒖, we obtain Model 16.

Model 16 (Dilute monodisperse model of linearly pulsating bubbles)

With 𝑚𝑘 = 𝛼𝑘𝜌𝑘 the phase densities for 𝑘 = 1, 2𝑑, 𝛼𝑑
2 = 𝛼0 + 𝛼̃ the bubbles volumes fraction decomposed

in an equilibrium part and a pulsating part, 𝜌 the mixture density, 𝒖 the mixture velocity, Σ 〈𝐺〉 the
surface-average density of Gauss curvature, 𝑝1 the liquid pressure, the flow is governed by

𝜕𝑡𝑚1 +∇ · (𝑚1𝒖) = 0,
𝜕𝑡𝑚

𝑑
2 +∇ · (𝑚𝑑

2𝒖) = 0,
𝜕𝑡 (Σ 〈𝐺〉)+∇ · (Σ 〈𝐺〉 𝒖)= 0,
𝜕𝑡 (𝜌𝒖) + ∇ · (𝜌𝒖 ⊗ 𝒖 + (𝑝1 − 1

2 𝜈𝑤
2 − 𝛾

𝛼0
𝛼̃2)𝑰) = 0,

𝜕𝑡𝑤 + 𝒖 · ∇𝑤 = − 𝛾
𝜈 𝛼̃,

with 𝛼0 defined by the Laplace equilibrium

𝑝2

(
𝑚𝑑

2
𝛼0

)
− 𝑝1

(
𝑚1

1 − 𝛼0

)
= 𝜎

2
𝑅0
,

and 𝑤 = 𝐷𝑡 𝛼̃ + 𝛼̃∇ · 𝒖, 𝜈, 𝛾 defined by (2.114) and 𝑅0 =
(

3𝛼0
Σ〈𝐺〉

)1/3
.

The obtained Laplace equilibrium is reminiscent of Models 3 and 5 with pressure equilibria. Then, similarly to
the separated Model 3 at pressure and the relaxed separated Model 4, we relax the Laplace pressure jump of the
Model 16 above to obtain the relaxed Model 17 below.
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Model 17 (Dilute monodisperse model of linearly pulsating bubbles with relaxation)

With 𝑚𝑘 = 𝛼𝑘𝜌𝑘 the phase densities for 𝑘 = 1, 2𝑑, 𝛼𝑑
2 = 𝛼0 + 𝛼̃ the bubbles volumes fraction decomposed

in an equilibrium part and a pulsating part, 𝜌 the mixture density, 𝒖 the mixture velocity, Σ 〈𝐺〉 the
surface-average density of Gauss curvature, 𝑝1 the liquid pressure, the flow is governed by

𝜕𝑡𝑚1 +∇ · (𝑚1𝒖) = 0,
𝜕𝑡𝑚

𝑑
2 +∇ · (𝑚𝑑

2𝒖) = 0,
𝜕𝑡 (Σ 〈𝐺〉)+∇ · (Σ 〈𝐺〉 𝒖)= 0,

𝜕𝑡𝛼0 + 𝒖 · ∇𝛼0 = 1
𝜇

(
𝑝2

(
𝑚𝑑

2
𝛼0

)
− 𝑝1

(
𝑚1

1−𝛼0

)
− 𝜎2

(
Σ〈𝐺〉
𝛼0

)1/3
)
,

𝜕𝑡𝑤 + 𝒖 · ∇𝑤 = − 𝛾
𝜈 𝛼̃,

𝜕𝑡 (𝜌𝒖) + ∇ ·
(
𝜌𝒖 ⊗ 𝒖 + (𝑝1 − 1

2 𝜈𝑤
2 − 𝛾

𝛼0
𝛼̃2)𝑰

)
= 0,

with 𝑤 = 𝐷𝑡 𝛼̃ + 𝛼̃∇ · 𝒖, 𝜈, 𝛾 defined by (2.114).

The hyperbolicity of the augmented model where 𝑤 is independent of 𝛼̃, with 𝐷𝑡 𝛼̃ + 𝛼̃∇ · 𝒖 = 𝑤. The following
eigenvalues are obtained

𝑢, 𝑢 − 𝑐, 𝑢 + 𝑐, with 𝑐 =

√
𝑐2

1 − 𝜈𝑤2

6𝜌
+

3𝑌 𝑑
2 𝑐

2
2

𝛼3
0

𝛼̃2, (2.115)

with 𝑢 of multiplicity 6 and 6 corresponding independent eigenvectors. The pulsation motion of the bubbles still
affects the propagation of sound in the medium, but weakly as we assumed a dilute regime. Moreover, in the limit
where the volume fraction of bubbles vanishes,

𝑤 → 0,
3𝑌 𝑑

2 𝑐
2
2

𝛼3
0

𝛼̃2 =
3𝑐2

2
𝜌

𝛼̃2

𝛼2
0

(
1 + 𝛼̃

𝛼0

)
→ 0,

such that the velocity of the carrier fluid is recovered 𝑐 → 𝑐1.

2.2.3.4 Conclusion of Section 2.2

Finally, these models for monodisperse pulsating bubbles have illustrated how the compressible effects of both the
carrier liquid phase and the gaseous bubbles act on each other. At the level of the bubble, the compressibility allows
the bubble oscillation around an equilibrium volume defined by the Laplace law. At the level of the carrier phase,
the variations of pressure 𝑝1 modifies this Laplace equilibrium. In the non-linear model, these two effects are fully
coupled whereas they have been split between two different contributions for the linear model, either through the
change of volume of equilibrium of the bubbles with 𝛼0, or the pulsation motion at the small-scale with the dynamics
of 𝛼̃. One can extend this approach to the bi-disperse regime, but it adds a significant step of complexity as the
model would involve two Laplace laws, one for each size of bubbles, coupled together through the influence of volume
occupation in the pressure of the carrier phase.

2.2.4 Application 3: Spray of oscillating droplets
Let us model the spray of oscillating droplets by first considering the following hypotheses :

• the droplets’ internal flow is irrotational; (H2a)
• the amplitude of the interface deformation is small; (H2b)
• the droplets’ interface is deformed along the second axisymmetric spherical harmonic. (H2c)
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2.2.4.1 The oscillation model

The dynamics of a droplet satisfying (H2a) and (H2b) has been studied thoroughly (John W. Strutt (3rd Baron
Rayleigh), 1879; Prosperetti, 1977; Plümacher et al., 2020). Denote 𝒓 the position of the droplet interface in spherical
coordinates (𝑟, 𝜃, 𝜙) and (𝒆𝑟 , 𝒆𝜃 , 𝒆𝜙) the spherical orthonormalized basis. Following (H2c), we denote 𝑌2 (𝜃) =√

5/(4√𝜋)(3 cos2 𝜃 − 1) the second axisymmetric spherical harmonic (see Figure 2.1.1), and 𝑅0 the radius of the
non-deformed spherical droplet, such that the position writes

𝒓 = (𝑅0 + 𝑥2𝑌2)𝒆𝑟 , (2.116)

where 𝑥2 denotes the amplitude of the deformation. The dynamics of this motion follows the harmonic oscillation

¥𝑥2 + 𝜔2𝑥2 = 0, 𝜔2 = 8 𝜎

𝜌𝑑1𝑅
3
0
= 𝜔̃2𝑆−3/2

0 , (2.117)

where 𝜔̃2 = (8(4𝜋)3/2𝜎/𝜌𝑑1 ) is a constant along the streamlines. The dynamics of the droplets is then characterized
by (𝑆0, 𝑥2, ¤𝑥2). For computational reasons, we introduce 𝜒 = (2/𝑆0)1/2𝑥2 which satisfies the same dynamics (2.117)
as 𝑥2. The balance equation for the NDF 𝑛𝜉 in the phase-space 𝝃̂ = (𝑆0, 𝜒̂, ¤̂𝜒) yields

𝜕𝑡𝑛𝜉 + ∇𝒙 · (𝑛𝜉𝒖) + 𝜕𝜒 (𝑅𝜒𝑛𝜉 ) + 𝜕 ¤̂𝜒 (𝑅 ¤𝜒𝑛𝜉 ) = 0, (2.118)

where 𝑅𝜒 and 𝑅 ¤𝜒 are rates of change that remain to be closed. With the oscillator model (2.117), we close (2.118)
by fixing 𝑅𝜒 = ¤̂𝜒 and 𝑅 ¤̂𝜒 = −𝜔̃2𝑆−3/2

0 𝜒̂,

𝜕𝑡𝑛𝜉 + ∇𝒙 · (𝑛𝜉𝒖) + 𝜕𝜒 ( ¤̂𝜒𝑛𝜉 ) + 𝜕 ¤̂𝜒 (−𝜔̃
2𝑆−3/2

0 𝜒̂𝑛𝜉 ) = 0. (2.119)

This model can be seen as a particular case of the kinetic model considered by O’Rourke and Amsden (1987); Amsden
et al. (1989) where only the oscillation motion is retained.

2.2.4.2 Modelling a spray of asynchronously oscillating droplets

With the new PBE (2.119), GeoMOM leads to a non-trivial closure problem and the geometric quantities chosen
in (2.58) and (2.59) cannot model an arbitrary distribution. With such a choice, we propose in this section to
approximate the distribution with

𝑛𝜉 (𝒙, 𝑡, 𝑆0, 𝜒̂, ¤̂𝜒) = 𝑛𝑆0 (𝒙, 𝑡, 𝑆0)
1

|E(𝑆0) |
1E(𝑆0 ) ( 𝜒̂, ¤̂𝜒), (2.120)

where the amplitudes and their rates of change ( 𝜒̂, ¤̂𝜒) are uniformly distributed on a compact space E ⊂ R2 of area
|E(𝑆0) | that allows a maximal energy for a given droplet size 𝑆0. It is later identified in (2.131). This approximation
of the NDF discards situations where droplets oscillate synchronously, and consequently a macroscopic oscillation
motion of the spray. However, it could be more adapted to the mixed regime where the droplets resulting from
primary breakups are very agitated by coalescence and drag phenomena.

2.2.4.2.a GeoMOM based on the classic surface-average operator

We apply GeoMOM with the same surface-average operators 〈 · 〉 and (̃·) defined in Section 2.1, and geometric
quantities Σ 〈𝐺〉, Σ 〈𝐻〉, Σ, 𝛼𝑑

1 . We establish then the relations between these geometric quantities and moments of
the NDF in the context of a disperse regime,

Σ 〈𝐺〉 =
∫̂
𝝃
𝑆𝐺 𝑛𝜉 𝑑𝝃̂, Σ 〈𝐻〉 =

∫̂
𝝃
𝑆𝐻 𝑛𝜉 𝑑𝝃̂, Σ =

∫̂
𝝃
𝑆 𝑛𝜉 𝑑𝝃̂, 𝛼𝑑

1 =
∫̂
𝝃
𝑉 𝑛𝜉 𝑑𝝃̂ . (2.121)

When the oscillations are small and considering only a perturbation along mode 𝑌2, (2.40) shows that

𝛿𝑉 = 𝑅2
0𝑥0+𝑅0𝑥

2
0+𝑅0𝑥

2
2+𝑜(𝑥2

0+𝑥2
2), 𝛿𝑆 = 2𝑅0𝑥0+𝑥2

0+4𝑥2
2+𝑜(𝑥2

0+𝑥2
2), 𝛿(𝑆𝐻) = 𝑥0+3𝑅−1

0 𝑥2
2+𝑜(𝑥2

0+𝑥2
2). (2.122)
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Then enforcing incompressibility at the kinematics level i.e. 𝛿𝑉 = 0 yields

𝑥0 = −𝑅−1
0 𝑥2

2 + 𝑜(𝑥2
2), (2.123)

and the geometric variations read

𝛿𝑉 = 0, 𝛿𝑆 = 2𝑥2
2 + 𝑜(𝑥2

2), 𝛿(𝑆𝐻) = 2𝑅−1
0 𝑥2

2 + 𝑜(𝑥2
2). (2.124)

Equivalently, with the variable 𝜒, it reads

𝑆𝐺 = 4𝜋, 𝑆𝐻 − 𝑆0𝐻0 =
√

4𝜋𝑆1/2
0 𝜒2, 𝑉 =

1
3
√

4𝜋
𝑆3/2

0 , 𝑆 − 𝑆0 = 𝑆0𝜒
2, (2.125)

where 𝐻0 =
√

4𝜋𝑆−1/2
0 is the surface averaged mean curvature when the droplet is a sphere i.e. 𝜒 = 0. Remark that

𝑆𝐺 and 𝛼𝑑
1 are constant despite the oscillation thanks to the Gauss-Bonnet Theorem 3 and the incompressibility

assumption. Finally, relations between geometric quantities and moments 𝑀 𝜉
𝑖, 𝑗 ,𝑘 :=

∫̂
𝝃
𝑆𝑖 𝜒̂ 𝑗 ¤̂𝜒𝑘 𝑛𝜉 𝑑𝝃̂ of 𝑛𝜉 are obtained

Σ 〈𝐺〉 = 4𝜋𝑀 𝜉
0,0,0, Σ 〈𝐻〉 =

√
4𝜋(𝑀 𝜉

1/2,0,0 + 𝑀 𝜉
1/2,2,0),

Σ = 𝑀 𝜉
1,0,0 + 𝑀 𝜉

1,2,0, 𝛼𝑑
1 =

1
3
√

4𝜋
𝑀

𝜉
3/2,0,0.

(2.126)

These relations extend the ones of (2.64) with moments dedicated to the oscillatory dynamics. Such decomposition
leads us to define and choose the following geometric quantities and moments for our model

Σ 〈𝐻〉0 :=
√

4𝜋𝑀 𝜉
1/2,0,0, Δ(Σ 〈𝐻〉) :=

√
4𝜋𝑀 𝜉

1/2,2,0,

Σ0 := 𝑀 𝜉
1,0,0, ΔΣ := 𝑀 𝜉

1,2,0,
(2.127)

instead of just Σ and Σ 〈𝐻〉 which can be reconstructed with (2.126). Integrating (2.119) against 1,𝑆1/2
0 ,𝑆0, 𝑆3/2

0 ,
𝑆1/2

0 𝜒̂2, 𝑆0 𝜒̂
2 provides 

𝜕𝑡 (Σ 〈𝐺〉) + ∇ · (Σ 〈𝐺〉 𝒖) = 0,
𝜕𝑡 (Σ 〈𝐻〉0) + ∇ · (Σ 〈𝐻〉0 𝒖) = 0,
𝜕𝑡Σ0 + ∇ · (Σ0𝒖) = 0,
𝜕𝑡𝛼

𝑑
1 + ∇ · (𝛼𝑑

1𝒖) = 0,
𝜕𝑡 (Δ(Σ 〈𝐻〉)) + ∇ · (Δ(Σ 〈𝐻〉)𝒖) = 2

√
4𝜋𝑀 𝜉

1/2,1,1,

𝜕𝑡 (ΔΣ) + ∇ · (ΔΣ𝒖) = 2𝑀 𝜉
1,1,1.

(2.128)

We obtained that Σ 〈𝐺〉, Σ 〈𝐻〉0, Σ0 and 𝛼𝑑
1 are conserved similarly as (2.61) with two additional equations for the

oscillatory components Δ(Σ 〈𝐻〉) and ΔΣ.

2.2.4.2.b Energies of the spray

In the context of two-scale modelling with Hamilton’s SAP, we are specifically interested in defining the energies of
the spray with the geometric quantities. For the oscillatory motion described by (2.117), the kinetic and potential
energies of a droplet can be expressed as function of 𝝃 (John W. Strutt (3rd Baron Rayleigh), 1879, appendix II)

𝐸 𝑘𝑖𝑛,1𝑑 =
1
2

𝜌𝑑1
4(4𝜋)3/2 𝑆

5/2
0 ¤𝜒2, 𝐸 𝑝𝑜𝑡,1𝑑 = 𝜎𝑆 = 𝜎𝑆0 + 𝜎𝑆0𝜒

2. (2.129)

It is then straightforward to obtain the energies of the spray 𝐸 𝑘𝑖𝑛,𝑑 and 𝐸 𝑝𝑜𝑡,𝑑 from moments of 𝑛𝜉 by integrating
the expressions above,

𝐸 𝑘𝑖𝑛,𝑑 =
1
2

𝜌𝑑1
4(4𝜋)3/2 𝑀

𝜉
5/2,0,2, 𝐸 𝑝𝑜𝑡,𝑑 = 𝜎Σ = 𝜎𝑀 𝜉

1,0,0 + 𝜎𝑀 𝜉
1,2,0. (2.130)
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Remark that the moment 𝑀 𝜉
5/2,0,2 is not linked to any of the selected geometric quantities of the model. We can

find a closure for this moment using the approximation of 𝑛𝜉 given in (2.120). It requires to provide a definition
for E which is chosen following the break-up criterion of O’Rourke and Amsden (1987). Therefore, we authorize the
droplets to oscillate with an energy lower than a fraction 𝑐 ∈ [0, 1] of the maximal energy 𝐸𝑚𝑎𝑥 before break-up,

E(𝑆0) :=
{
( 𝜒̂, ¤̂𝜒) ∈ R2 s.t. 𝐸 𝑘𝑖𝑛,1𝑑 (𝑆0, 𝜒̂, ¤̂𝜒) + 𝐸 𝑝𝑜𝑡,1𝑑 (𝑆0, 𝜒̂, ¤̂𝜒) ≤ 𝑐𝐸𝑚𝑎𝑥 (𝑆0)

}
. (2.131)

The break-up energy 𝐸𝑚𝑎𝑥 (𝑆0) corresponds to a deformation up to an equatorial radius reaching half the value of
the spherical radius

𝑅𝑒𝑞 := ‖𝒓 (𝜋/2)‖ = 𝑅0
2
. (2.132)

Then, the subset E boils down to E = {𝜒2 + ( ¤𝜒/𝜔)2 ≤ 2𝑐/5} whose area is |E | = 2
5𝜋𝜔𝑐. We can now close the

expression of 𝐸 𝑘𝑖𝑛,𝑑, 𝐸 𝑝𝑜𝑡,𝑑 in (2.130) and find the dynamics of the parameter 𝑐 using (2.128) and the approximation
of the NDF (2.120). It yields

𝐸 𝑘𝑖𝑛,𝑑 =
1
10
𝑐𝜎Σ0, 𝐸 𝑝𝑜𝑡,𝑑 = 𝜎Σ0 + 1

10
𝑐𝜎Σ0, 𝐷𝑡𝑐 = 0. (2.133)

Remark that, as (𝜒, ¤𝜒) are uniformly distributed in E, the mechanical energy is evenly distributed between kinetic
and potential energies. Regarding the dynamics of 𝑐, it means that the energy of the oscillation is advected along the
streamline. Moreover, using the relation ΔΣ = 𝑀 𝜉

1,2,0, one can replace 𝑐 by geometric quantities with 𝑐 = 10ΔΣ/Σ0.
Remark also that we chose ΔΣ to define the energies over Δ(Σ 〈𝐻〉) which is now omitted in the following models,
but it can be reconstructed with the relations (2.127).

Now, the energies of the small-scale have been defined, and we can proceed to the derivation of the two-phase
model dynamics with Hamilton’s SAP.

2.2.4.2.c Two-scale model with the small-scale spray model of asynchronous droplets

Energies related to the small-scale oscillation are negatively signed in Hamilton’s SAP as the kinetic energy is not
a quadratic form of any kind of velocity. Indeed, the energy of the droplets is here considered as a whole energetic
contribution without following their specific dynamics. The expression of the Lagrangian corresponds then to

L =
1
2
𝜌‖𝒖‖2 − 𝑚2𝑒2

(
𝑚2

1 − 𝛼𝑑
1

)
− 𝑚𝑑

1𝑒1 (𝜌𝑑1 ) − 𝜎Σ0

(
1 + 𝑐

5

)
. (2.134)

The constraints are the same as in Section 1.4.1 with the additional advection constraint 𝐷𝑡𝑐 = 0. The derivation
of the two-scale mixture’s dynamics with Hamilton’s SAP is very similar (only advected or conserved variables are
added) and yields Model 18.
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Model 18 (Polydisperse spray model of asynchronously oscillating droplets)

With 𝑚𝑘 = 𝛼𝑘𝜌𝑘 and 𝛼𝑘 the phase densities and volume fractions of phases 𝑘 = 2, 1𝑑, 𝜌 = 𝑚1 + 𝑚2
the mixture’s density, 𝒖 the velocity and 𝑝2 (𝜌2) the pressure of the gaseous phase 2, Σ = Σ0 + ΔΣ
the IAD decomposed in a static part and an oscillation-related part, the static-related parts of the
surface-averaged density of the mean and Gauss curvatures Σ 〈𝐻〉0 and Σ 〈𝐺〉, the flow is governed by

𝜕𝑡𝑚2 + ∇ · (𝑚2𝒖) = 0,
𝜕𝑡𝑚

𝑑
1 + ∇ · (𝑚𝑑

1𝒖) = 0,
𝜕𝑡𝛼

𝑑
1 + ∇ · (𝛼𝑑

1𝒖) = 0,
𝜕𝑡Σ0 + ∇ · (Σ0𝒖) = 0,
𝜕𝑡 (ΔΣ) + ∇ · (ΔΣ𝒖) = 0,
𝜕𝑡 (Σ 〈𝐺〉) + ∇ · (Σ 〈𝐺〉 𝒖) = 0,
𝜕𝑡 (Σ 〈𝐻〉0) + ∇ · (Σ 〈𝐻〉0 𝒖) = 0,
𝜕𝑡 (𝜌𝒖) + ∇ · (𝜌𝒖 ⊗ 𝒖 + 𝑝2𝑰) = 0.

The model also admits an additional equation for the mathematical entropy for Model 18,

𝜕𝑡H + ∇ · ((H + 𝑝2)𝒖) = 0, H =
1
2
𝜌‖𝒖‖2 + 𝑚2𝑒2

(
𝑚2

1 − 𝛼𝑑
1

)
+ 𝑚𝑑

1𝑒1 (𝜌𝑑1 ) + 𝜎Σ0

(
1 + 𝑐

5

)
. (2.135)

Now considering dissipation processes, we could also add the pressure relaxation as in the previous two-scale models.
We propose here to focus on the dissipation associated with the small-scale oscillatory dynamics. Indeed, the
oscillation motion eventually decreases and the associated energy dissipates into thermal energy or small-scale kinetic
energy of the gas phase. Each of these last two energies are not modelled here, so the system loses this energy, and
we only consider the following source term 𝑅𝑐 on the dynamics of 𝑐,

𝐷𝑡𝑐 = 𝑅𝑐 . (2.136)

The mathematical entropy production writes

𝜕𝑡H + ∇ · ((H + 𝑝2)𝒖) = −(𝜕𝑐L)𝑅𝑐 . (2.137)

As 𝜕𝑐L = −𝜎Σ0/5, we choose 𝑅𝑐 = −𝑐/𝜏 in Model 19 to sign the mathematical entropy production 𝜍 ≤ 0 and model
the dissipation with an exponential decrease of characteristic time 𝜏 > 0.
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Model 19 (Dissipative polydisperse spray model of asynchronously oscillating droplets)

With 𝑚𝑘 = 𝛼𝑘𝜌𝑘 and 𝛼𝑘 the phase densities and volume fractions of phases 𝑘 = 2, 1𝑑, 𝜌 = 𝑚1 + 𝑚2
the mixture’s density, 𝒖 the velocity and 𝑝2 (𝜌2) the pressure of the gaseous phase 2, Σ = Σ0 + ΔΣ
the IAD decomposed in a static part and an oscillation-related part, the static-related parts of the
surface-averaged density of the mean and Gauss curvatures Σ 〈𝐻〉0 and Σ 〈𝐺〉, the flow is governed by

𝜕𝑡𝑚2 + ∇ · (𝑚2𝒖) = 0,
𝜕𝑡𝑚

𝑑
1 + ∇ · (𝑚𝑑

1𝒖) = 0,
𝜕𝑡𝛼

𝑑
1 + ∇ · (𝛼𝑑

1𝒖) = 0,
𝜕𝑡Σ0 + ∇ · (Σ0𝒖) = 0,
𝜕𝑡 (ΔΣ) + ∇ · (ΔΣ𝒖) = −𝜏−1ΔΣ,

𝜕𝑡 (Σ 〈𝐺〉) + ∇ · (Σ 〈𝐺〉 𝒖) = 0,
𝜕𝑡 (Σ 〈𝐻〉0) + ∇ · (Σ 〈𝐻〉0 𝒖) = 0,
𝜕𝑡 (𝜌𝒖) + ∇ · (𝜌𝒖 ⊗ 𝒖 + 𝑝2𝑰) = 0.

One can see that the component of the interface area density modelling the droplets’ dynamics have now its own
dynamics with an additional source term that makes it dissipate over time. We proposed, with this first model, a
precise derivation framework to recover some essential dynamical mechanisms in the evolution of volume fraction,
namely a conservative structure and a dissipation rate. This model is further extended in Section 3.2.3 with a creation
term such that a model with comparable dynamics as Vallet et al. (2001) is obtained. Then, in the context of droplets
all resulting from a same mechanism, say the synchronous break up of multiple filaments, we would be interested in
capturing a global oscillation motion. Such a situation is discussed in the next section.

2.2.4.3 Modelling a spray of synchronously oscillating droplets

With the choice of geometric quantities of the previous section, the moments are not suited to obtain a macroscopic
oscillation of the spray. Therefore, we introduce now new geometric quantities with GeoMOM based on another
surface-average operator, and the following NDF approximation

𝑛𝜉 (𝑆0, 𝜒̂, ¤̂𝜒) =
∑
𝑖

𝑛𝑖𝛿(𝑆0 − (𝑆0)𝑖)𝛿( 𝜒̂ − 𝜒𝑖)𝛿( ¤̂𝜒 − ¤𝜒𝑖). (2.138)

This corresponds to several populations of droplets which share the same size and oscillate synchronously.

2.2.4.3.a GeoMOM based on an oriented surface-average operator

Similarly to Section 2.1, we consider a surface S and its mapping U ⊂ R2 onto S ⊂ R3 such that 𝐴(𝑢, 𝑣) 𝑑𝑢𝑑𝑣 is the
infinitesimal surface element over S. We decompose the surface local area into two contributions, one related to a
preferred direction 𝑵, say the one given by the large-scale dynamics. In this sense, we decompose this infinitesimal
surface element 𝐴(𝑢, 𝑣) 𝑑𝑢𝑑𝑣 using its definition using tangential vectors 𝒆𝑢 and 𝒆𝑣 (see Figure 2.2.1),

𝐴 = ‖𝒆𝑢 × 𝒆𝑣 ‖, 𝐴‖ = | (𝒆𝑢 × 𝒆𝑣) · 𝑵 | , 𝐴⊥ = 𝐴 − 𝐴‖ . (2.139)

From them, we decompose the surface into parallel and perpendicular components 𝑆‖ and 𝑆⊥ such that

𝑆 =
∫
U
𝐴(𝑢, 𝑣) 𝑑𝑢𝑑𝑣 =

∫
U
𝐴‖ (𝑢, 𝑣) 𝑑𝑢𝑑𝑣 +

∫
U
𝐴⊥ (𝑢, 𝑣) 𝑑𝑢𝑑𝑣 = 𝑆‖ + 𝑆⊥. (2.140)

We also define new surface-average operators similarly to (2.14)

〈 · 〉 ‖ := 1
𝑆‖

∫
U
(·) 𝐴‖ (𝑢, 𝑣) 𝑑𝑢𝑑𝑣, 〈 · 〉⊥ := 1

𝑆⊥

∫
U
(·) 𝐴⊥ (𝑢, 𝑣) 𝑑𝑢𝑑𝑣, (2.141)
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𝑥

𝑦

𝑧

Figure 2.2.1: Decomposition of the element of surface.

and the surface-average operators (̃·) ‖ , (̃·)⊥ for one closed inclusion. Considering now the oscillatory motion (2.117),
we have the following dynamics for the geometric quantities of one droplet (see details in appendix 2.B)

𝑆‖ =
1
2
𝑆0 − 1

√
4𝜋

√
5𝜋
2
𝑆0𝜒, 𝑆‖𝐻

‖ =
1
2
√

4𝜋
√
𝑆0 − 1

2

√
5𝜋
2

√
𝑆0𝜒,

𝑆⊥ =
1
2
𝑆0 + 1

√
4𝜋

√
5𝜋
2
𝑆0𝜒, 𝑆⊥𝐻

⊥ =
1
2
√

4𝜋
√
𝑆0 + 1

2

√
5𝜋
2

√
𝑆0𝜒.

(2.142)

Defining the oriented interface area densities Σ⊥ and Σ‖ within the mixture, we remark that Σ = Σ⊥ + Σ‖ and
Σ 〈 · 〉 = Σ⊥ 〈 · 〉⊥ + Σ‖ 〈 · 〉 ‖ . Integrating (2.142) against 𝑛𝜉 provides

Σ‖ =
1
2
𝑀

𝜉
1,0,0 − 1

√
4𝜋

√
5𝜋
2
𝑀

𝜉
1,1,0, (Σ 〈𝐻〉)‖ =

1
2
√

4𝜋𝑀 𝜉
1/2,0,0 − 1

2

√
5𝜋
2
𝑀

𝜉
1/2,1,0,

Σ⊥ =
1
2
𝑀

𝜉
1,0,0 + 1

√
4𝜋

√
5𝜋
2
𝑀

𝜉
1,1,0, (Σ 〈𝐻〉)⊥ =

1
2
√

4𝜋𝑀 𝜉
1/2,0,0 + 1

2

√
5𝜋
2
𝑀

𝜉
1/2,1,0.

(2.143)

Remark that both the parallel and perpendicular geometric variables represent the same information for the spray
as they are related to the same moments of the NDF. Consequently, we here retain the perpendicular components
only, and we extract the part dedicated to the dynamics by defining

Σ⊥,0 := 1
2𝑀

𝜉
1,0,0, (ΔΣ⊥) := 1

√
4𝜋

√
5𝜋
2
𝑀

𝜉
1,1,0,

(Σ 〈𝐻〉)⊥,0 := 1
2
√

4𝜋𝑀 𝜉
1/2,0,0, (Δ(Σ 〈𝐻〉))⊥ := 1

2

√
5𝜋
2
𝑀

𝜉
1/2,1,0.

(2.144)

We intentionally factored some indexes in the two last geometric quantities to lighten the notations. This splitting
allows us to retain more information on the NDF in our model by including two moments rather than the sum of
two moments. We know from (2.128) that Σ⊥,0 and (Σ 〈𝐻〉)⊥,0 are conserved, while we integrate (2.119) to obtain
the dynamics of the two other geometric quantities

𝜕𝑡 (ΔΣ⊥) + ∇ · ((ΔΣ⊥)𝒖) =
1

√
4𝜋

√
5𝜋
2
𝑀

𝜉
1,0,1,

𝜕𝑡 (Δ(Σ 〈𝐻〉))⊥ + ∇ · ((Δ(Σ 〈𝐻〉))⊥𝒖) =
1
2

√
5𝜋
2
𝑀

𝜉
1/2,0,1.

(2.145)

With the moments considered up to now, we cannot model a macroscopic oscillatory spray as we lack some information
regarding the distribution of ¤̂𝜒 in our model. We propose then to add two new geometric quantities that correspond
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to the unclosed moments of (2.145)

(Δ𝑡Σ⊥) := Σ⊥

〈
𝜕𝑡 𝐴⊥
𝐴⊥

〉
⊥

=
1

√
4𝜋

√
5𝜋
2
𝑀

𝜉
1,0,1,

(Δ𝑡 (Σ 〈𝐻〉))⊥ := Σ⊥

〈
𝜕𝑡𝐻 + 𝐻 𝜕𝑡 𝐴⊥

𝐴⊥

〉
⊥

=
1
2

√
5𝜋
2
𝑀

𝜉
1/2,0,1.

(2.146)

The above definitions with the oriented surface-average operators show that these quantities are also well-defined
regardless of the flow regime. Finally, we consider the following eight geometric quantities to describe the spray of
oscillating droplets: 𝛼𝑑

1 , Σ⊥,0, (ΔΣ⊥), (Δ𝑡Σ⊥), (Σ 〈𝐻〉)⊥,0, (Δ(Σ 〈𝐻〉))⊥, (Δ𝑡 (Σ 〈𝐻〉))⊥, Σ 〈𝐺〉.

2.2.4.3.b Synchronous closure

With the eight moments given by the eight corresponding geometric quantities, we propose to look for a two-point
quadrature which corresponds to two population of droplets as defined in (2.138),

𝑛𝜉 (𝑆0, 𝜒̂, ¤̂𝜒) =
∑
𝑖=1,2

𝑛𝑖𝛿(𝑆0 − (𝑆0)𝑖)𝛿( 𝜒̂ − 𝜒𝑖)𝛿( ¤̂𝜒 − ¤𝜒𝑖), (2.147)

where 𝑛𝑖 are the weights or numbers of droplets that share the same abscissas 𝜒𝑖 and ¤𝜒𝑖. The quadrature above admits
a unique solution (excluding symmetry) under some realizability conditions that ensure that Σ 〈𝐺〉, (Σ 〈𝐻〉)⊥,0, Σ⊥,0
and 𝛼𝑑

1 are positive with additional geometric constraints (see appendix 2.C). Remark that 𝑛𝑖 and (𝑆0)𝑖 depend only
on Σ 〈𝐺〉, (Σ 〈𝐻〉)⊥,0, Σ⊥,0, 𝛼𝑑

1 and, for (𝑖, 𝑗) ∈ {(1, 2), (2, 1)},

𝜒𝑖 =

√
2

5𝜋

√
4𝜋(ΔΣ⊥) − 2

√
(𝑆0) 𝑗 (Δ(Σ 〈𝐻〉))⊥

𝑛𝑖

(
(𝑆0)𝑖 −

√
(𝑆0)𝑖 (𝑆0) 𝑗

) , ¤𝜒𝑖 =
√

2
5𝜋

√
4𝜋(Δ𝑡Σ⊥) − 2

√
(𝑆0) 𝑗 (Δ𝑡 (Σ 〈𝐻〉))⊥

𝑛𝑖

(
(𝑆0)𝑖 −

√
(𝑆0)𝑖 (𝑆0) 𝑗

) . (2.148)

We easily obtain that 𝛼𝑑
1 , Σ 〈𝐺〉, (Σ 〈𝐻〉)⊥,0 and Σ⊥,0 are conserved such that, together with (2.145), it implies

𝜕𝑡𝑛𝑖 + ∇ · (𝑛𝑖𝒖) = 0, 𝐷𝑡 (𝑆0)𝑖 = 0, 𝐷𝑡 𝜒𝑖 = ¤𝜒𝑖 , 𝑖 = 1, 2. (2.149)

A synchronous oscillatory dynamics of two droplet size population is then expected while being advected by the flow
at velocity 𝒖.

2.2.4.3.c Two-scale model with the small-scale spray model of synchronous droplets

Denote 𝜈 := 𝜌𝑑1/(4(4𝜋)3/2) and 𝛾 := 2𝜎 such the kinetic and potential energies of the spray of oscillating droplets
given in (2.130) write

𝐸 𝑘𝑖𝑛,𝑑 =
1
2
𝜈𝑀

𝜉
5/2,0,2, 𝐸 𝑝𝑜𝑡,𝑑 = 𝜎𝑀 𝜉

1,0,0 + 1
2
𝛾𝑀

𝜉
1,2,0, (2.150)

and 𝜔̃2 = 𝛾/𝜈. The closure (2.147) then yields

𝐸 𝑘𝑖𝑛,𝑑 =
∑
𝑖=1,2

1
2
𝜈𝑛𝑖 (𝑆0)5/2

𝑖 ¤𝜒2
𝑖 , 𝐸 𝑝𝑜𝑡,𝑑 =

∑
𝑖=1,2

𝜎𝑛𝑖 (𝑆0)𝑖 +
1
2
𝛾𝑛𝑖 (𝑆0)𝑖𝜒2

𝑖 . (2.151)

We extend the two-scale Lagrangian of the one-velocity disperse model given in (3.10) by adding the energies above
to account for the small-scale oscillation

L =L1 (𝛼1, 𝑚1, 𝒖) + L2 (𝛼2, 𝑚2, 𝒖) + L𝑑
1

(
𝑚𝑑

1 , 𝜌
𝑑
1 , 𝒖

)
+ L𝑣𝑖𝑏

1 (𝑛1, (𝑆0)1, 𝜒1, ¤𝜒1) + L𝑣𝑖𝑏
2 (𝑛2, (𝑆0)2, 𝜒2, ¤𝜒1) , (2.152)

where L𝑣𝑖𝑏
𝑖 is defined using vibrating energies of (2.151)

L𝑣𝑖𝑏
𝑖 =

1
2
𝜈𝑛𝑖 (𝑆0)5/2

𝑖 ¤𝜒2
𝑖 − 𝜎𝑛𝑖 (𝑆0)𝑖 −

1
2
𝛾𝑛𝑖 (𝑆0)𝑖𝜒2

𝑖 . (2.153)
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Remark that the kinetic energy is here positively signed as it is a quadratic form of ¤𝜒1 and ¤𝜒2 with their associated
momentum equations after Hamilton’s SAP. We provided an expression using the quadrature’s abscissas rather than
the geometric quantities for computational convenience, but the dynamics of the geometric quantities is equivalently
obtained using the quadrature expression of appendix 2.C. The quantities 𝜒1 and 𝜒2 are here free variables which
results in the following system with two additional momentum equations for each population of droplets of same size
in the spray (see appendix 2.D)

Model 20 (Polydisperse spray model of synchronously oscillating droplets)

With 𝑚𝑘 = 𝛼𝑘𝜌𝑘 and 𝛼𝑘 the phase densities and volume fractions of phases 𝑘 = 2, 1𝑑, 𝜌 = 𝑚1 + 𝑚2 the
mixture’s density, 𝒖 the velocity and 𝑝2 (𝜌2) the pressure of the gaseous phase 2, and 𝑛𝑖, (𝑆0), 𝜒𝑖, ¤𝜒𝑖
respectively the number density, the equilibrium surface area, the amplitude parameters of droplets of
population 𝑖, the flow is governed by

𝜕𝑡𝑚2 +∇ · (𝑚2𝒖) = 0,
𝜕𝑡𝑚

𝑑
1 +∇ · (𝑚𝑑

1𝒖) = 0,
𝜕𝑡𝑛𝑖 +∇ · (𝑛𝑖𝒖) = 0, 𝑖 = 1, 2,
𝜕𝑡 (𝑛𝑖 (𝑆0)𝑖) +∇ · (𝑛𝑖 (𝑆0)𝑖𝒖) = 0, 𝑖 = 1, 2,
𝜕𝑡 (𝑛𝑖 ¤𝜒𝑖) +∇ · (𝑛𝑖 ¤𝜒𝑖𝒖) = −𝜔2

𝑖 𝑛𝑖𝜒𝑖 , 𝑖 = 1, 2,
𝜕𝑡 (𝑛𝑖𝜒𝑖) +∇ · (𝑛𝑖𝜒𝑖𝒖) = 𝑛𝑖 ¤𝜒𝑖 , 𝑖 = 1, 2,
𝜕𝑡 (𝜌𝒖) +∇ · (𝜌𝒖 ⊗ 𝒖 + 𝑝2) = 0,

with 𝜔2
𝑖 = 𝜔̃2 (𝑆0)−3/2

𝑖 .

Combining the equations at the fifth and sixth lines of the system above, one can recognize the equations of
harmonic oscillators advected along the streamlines

𝐷𝑡 (𝐷𝑡 𝜒𝑖) + 𝜔2
𝑖 𝜒𝑖 = 0, 𝑖 = 1, 2. (2.154)

Similarly to the previous models, this system admits an additional conservation equation for mathematical entropy
H defined hereafter

𝜕𝑡H + ∇ · ((H + 𝑝2)𝒖) = 0, H =
1
2
𝜌 |𝒖 |2 + 𝑚2𝑒2 + 𝑚𝑑

1𝑒
𝑑
1 +

∑
𝑖=1,2

1
2
𝜈𝑛𝑖 (𝑆0)5/2

𝑖 ¤𝜒2
𝑖 + 𝜎𝑛𝑖 (𝑆0)𝑖 +

1
2
𝛾𝑛𝑖 (𝑆0)𝑖𝜒2

𝑖 . (2.155)

Once again, we could consider a pressure relaxation model, but we would like to focus again on the dissipation
associated with the oscillation process, and we introduce source terms 𝑅𝜒𝑖 in the new momentum equations

𝜕𝑡 (𝑛𝑖 ¤𝜒𝑖) + ∇ · (𝑛𝑖 ¤𝜒𝑖𝒖) = −𝜔2
𝑖 𝑛𝑖𝜒𝑖 + 𝑅𝜒𝑖 , 𝑖 = 1, 2. (2.156)

This source term provides the following mathematical entropy production

𝜕𝑡H + ∇ · ((H + 𝑝2)𝒖) =
∑
𝑖=1,2

𝜈(𝑆0)5/2
𝑖 𝑅𝜒𝑖𝐷𝑡 𝜒𝑖 . (2.157)

As the closure (2.147) groups droplets by size, we can now model the first-order size-dependent damping term of the
viscous droplet in a light carrier phase (Prosperetti, 1977; Plümacher et al., 2020). Then, we expect each population
of oscillators to be damped following

𝐷𝑡 (𝐷𝑡 (𝜒𝑖)) + 𝜔2
𝑖 𝜒𝑖 = −𝛽𝑖𝐷𝑡 𝜒𝑖 ⇐⇒ 𝐷𝑡 ¤𝜒𝑖 + 𝜔2

𝑖 𝜒𝑖 = −𝛽𝑖 ¤𝜒𝑖 , (2.158)

with 𝛽𝑖 = 4𝜋𝜈𝑣𝑖𝑠/(𝑆0)𝑖 > 0 with 𝜈𝑣𝑖𝑠 the liquid kinematic viscosity. One can then choose 𝑅𝜒𝑖 = −𝑛𝑖𝛽𝑖 ¤𝜒𝑖 and recover
both the above dissipation process for both populations of droplets and a signed production of mathematical entropy

𝜕𝑡H + ∇ · ((H + 𝑝2)𝒖) = −𝛽1𝑛1𝜈(𝑆0)5/2
1 ¤𝜒2

1 − 𝛽2𝑛2𝜈(𝑆0)5/2
2 ¤𝜒2

2 ≤ 0. (2.159)
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It leads to the dissipative Model 21.

Model 21 (Dissipative polydisperse spray model of synchronously oscillating droplets)

With 𝑚𝑘 = 𝛼𝑘𝜌𝑘 and 𝛼𝑘 the phase densities and volume fractions of phases 𝑘 = 2, 1𝑑, 𝜌 = 𝑚1 + 𝑚2 the
mixture’s density, 𝒖 the velocity and 𝑝2 (𝜌2) the pressure of the gaseous phase 2, and 𝑛𝑖, (𝑆0), 𝜒𝑖, ¤𝜒𝑖
respectively the number density, the equilibrium surface area, the amplitude parameters of droplets of
population 𝑖, the flow is governed by

𝜕𝑡𝑚2 +∇ · (𝑚2𝒖) = 0,
𝜕𝑡𝑚

𝑑
1 +∇ · (𝑚𝑑

1𝒖) = 0,
𝜕𝑡𝑛𝑖 +∇ · (𝑛𝑖𝒖) = 0, 𝑖 = 1, 2,
𝜕𝑡 (𝑛𝑖 (𝑆0)𝑖) +∇ · (𝑛𝑖 (𝑆0)𝑖𝒖) = 0, 𝑖 = 1, 2,
𝜕𝑡 (𝑛𝑖 ¤𝜒𝑖) +∇ · (𝑛𝑖 ¤𝜒𝑖𝒖) = −𝜔2

𝑖 𝑛𝑖𝜒𝑖 − 𝛽𝑖𝑛𝑖 ¤𝜒𝑖 , 𝑖 = 1, 2,
𝜕𝑡 (𝑛𝑖𝜒𝑖) +∇ · (𝑛𝑖𝜒𝑖𝒖) = 𝑛𝑖 ¤𝜒𝑖 , 𝑖 = 1, 2,
𝜕𝑡 (𝜌𝒖) +∇ · (𝜌𝒖 ⊗ 𝒖 + 𝑝2𝑰) = 0,

with 𝜔2
𝑖 = 𝜔̃2 (𝑆0)−3/2

𝑖 and 𝛽𝑖 = 4𝜋𝜈𝑣𝑖𝑠/(𝑆0)𝑖.

This model shows a macroscopic synchronous oscillation through the two momentum equations on ¤𝜒1 and ¤𝜒2
and includes a physics-based dissipation rate. The system is here written using the weights and abscissas, but it can
also be written using the geometric quantities of the model. This last models show that the dynamics of geometric
cannot be simply expressed relying on the usual quantities 𝛼𝑑

1 and Σ, but sometimes must require other geometric
quantities, both related to curvatures to capture size polydispersion or geometry dynamics to capture the small-scale
dynamics.

Conclusion of chapter 2
Small-scale multi-fluid models are inherently very complex as they aim at representing the phenomena below the
scale of the volume fraction variations. In the disperse regime, they correspond to the dynamics of inclusions with
closed interfaces while, in the separated regime, they describe the dynamics of the small-scale geometric quantities
below the scale of computational resolution. This chapter has proposed a flexible modelling framework to efficiently
describe the small-scale interface with geometric quantities through GeoMOM and Hamilton’s SAP. An original
contribution is also proposed to account for the small-scale dynamics with key mechanisms such as incompressible
oscillation and compressible pulsation of small-scale inclusions. These new dynamical systems, based on GeoMOM
and kinetic-models, pave the way to the modelling in the mixed regime where the interface undergoes break-ups and
deformations. We summarize here the key contributions of this chapter :

• Definition of geometric quantities either locally or integrated over a closed interface, and either for a determin-
istic or averaged interface location;

• A proper separation between kinematics and dynamics of geometric quantities;

• The extended GeoMOM framework with both statistic information of the disperse small-scale model and
information about the small-sale geometry and its dynamics;

• Several new reduced-order models for a collection of oscillating droplets or pulsating bubbles;

With such geometric information and the new small-scale dynamics models of this chapter, the next critical
step lies in the interaction of the large-scale model with the small-scale model. Indeed, the regime transition from
separated regime to disperse regime, physically happening through strong deformations of the interface, pinching,
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filament break-ups and other topology changes, is modelled in the next Chapter 3 as a user-defined mass transfer.
As this strategy bypasses the complex dynamics of the mixed regime, the upcoming inter-scale mass transfer must
contain enough parameters about the small-scale geometry to model the resulting distribution of droplets. The
variety of small-scale models proposed in this chapter are then critical for such modelling strategy.
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Appendix

2.A Third order variations of local and surface-average geometric quan-
tities

Greatly based on the working notes Deserno (2004), we compute third-order variation in 𝜙 around the sphere of
radius 𝑅 for geometric quantities of interest.

Tangential vectors

From the definition (2.1.1.1.a) and the Weingarten formula 𝒏,𝑖 = 𝑏
𝑗
𝑖 𝒆 𝑗 , we obtain

𝛿𝒆𝑖 = (𝜓𝒏) ,𝑖 = 𝜓,𝑖𝒏 + 𝜓𝒏,𝑖 = (∇𝑖𝛿𝜓) 𝒏 + 𝜓𝑏 𝑗
𝑖 𝒆 𝑗 = (∇𝑖𝛿𝜓) 𝒏 + 𝜓𝑔 𝑗𝑘𝑏𝑖𝑘𝒆 𝑗 = (∇𝑖𝛿𝜓) 𝒏 + 𝜓

𝑅
𝒆𝑖 . (2.160)

The metric
As the metric coefficients are dot product of the tangential vectors, the perturbation is of order 2 and reads

𝑔𝑖 𝑗 + 𝛿1𝑔𝑖 𝑗 + 𝛿2𝑔𝑖 𝑗 = (𝒆𝑖 + 𝛿𝒆𝑖) · (𝒆 𝑗 + 𝛿𝒆 𝑗 ), (2.161)

and 𝛿1𝑔𝑖 𝑗 = 2𝛿𝒆𝑖 · 𝒆 𝑗 =
2𝜓
𝑅
𝑔𝑖 𝑗 , 𝛿2𝑔𝑖 𝑗 = 𝛿𝒆𝑖 · 𝛿𝒆 𝑗 = (∇𝑖𝛿𝜓)

(
∇ 𝑗𝛿𝜓

)
+ 𝜓

2

𝑅2 𝑔𝑖 𝑗 . (2.162)

Metric determinant
As we are considering a 2D surface, it is easy to work with the explicit formula (without Einstein summation) of the
determinant 𝑔 = 𝑔𝜗𝜗𝑔𝜙𝜙 − 𝑔2

𝜗𝜙. We limit ourselves to the 3rd order. Moreover, the metric of the sphere is diagonal,
hence

𝑔 + 𝛿1𝑔 + 𝛿2𝑔 + 𝛿3𝑔 = (𝑔𝜗𝜗 + 𝛿1𝑔𝜗𝜗 + 𝛿2𝑔𝜗𝜗)(𝑔𝜙𝜙 + 𝛿1𝑔𝜙𝜙 + 𝛿2𝑔𝜙𝜙) − (0 + 0 + 𝛿2𝑔𝜙𝜗)2, (2.163)

Then

𝛿1𝑔 = 𝑔𝜗𝜗𝛿
1𝑔𝜙𝜙 + 𝑔𝜙𝜙𝛿

1𝑔𝜗𝜗 = 𝑔𝜗𝜗
2𝜓
𝑅
𝑔𝜙𝜙 + 𝑔𝜙𝜙

2𝜓
𝑅
𝑔𝜗𝜗 =

4𝜓
𝑅
𝑔, (2.164)

85
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𝛿2𝑔 = 𝑔𝜗𝜗𝛿
2𝑔𝜙𝜙 + 𝑔𝜙𝜙𝛿

2𝑔𝜗𝜗 + 𝛿1𝑔𝜙𝜙𝛿
1𝑔𝜗𝜗

= 𝑔𝜗𝜗

( (
∇𝜙𝛿𝜓

) (
∇𝜙𝛿𝜓

)
+ 𝜓

2

𝑅2 𝑔𝜙𝜙

)
+

(
(∇𝜗𝛿𝜓) (∇𝜗𝛿𝜓) +

𝜓2

𝑅2 𝑔𝜗𝜗

)
𝑔𝜙𝜙 + 4𝜓2

𝑅2 𝑔

= 𝑔

( (
∇𝜙𝛿𝜓

) (
∇𝜙𝛿𝜓

)
+ 𝜓

2

𝑅2

)
+ 𝑔

((
∇𝜗𝛿𝜓

)
(∇𝜗𝛿𝜓) +

𝜓2

𝑅2

)
+ 4𝜓2

𝑅2 𝑔

= 𝑔

((
∇𝑘𝛿𝜓

)
(∇𝑘𝛿𝜓) +

6𝜓2

𝑅2

)
.

(2.165)

𝛿3𝑔 = 𝛿1𝑔𝜗𝜗𝛿
2𝑔𝜙𝜙 + 𝛿1𝑔𝜙𝜙𝛿

2𝑔𝜗𝜗

=
2𝜓
𝑅
𝑔𝜗𝜗

( (
∇𝜙𝛿𝜓

) (
∇𝜙𝛿𝜓

)
+ 𝜓

2

𝑅2 𝑔𝜙𝜙

)
+ 2𝜓
𝑅
𝑔𝜙𝜙

(
(∇𝜗𝛿𝜓) (∇𝜗𝛿𝜓) +

𝜓2

𝑅2 𝑔𝜗𝜗

)
= 𝑔

(
2𝜓
𝑅

(
∇𝑘𝛿𝜓

)
(∇𝑘𝛿𝜓) +

4𝜓3

𝑅3

)
.

(2.166)

Element of surface and total surface

The local element of surface is necessary for the surface integration and is given by 𝑑𝑆 =
√
𝑔𝑑𝜗𝑑𝜙. Let’s write its

Taylor series with only the contributive variations up to the 3rd order.

√
𝑔 + 𝛿1 (√𝑔) + 𝛿2 (√𝑔) + 𝛿3 (√𝑔) = √

𝑔

(
1 + 1

2
𝛿1𝑔 + 𝛿2𝑔 + 𝛿3𝑔

𝑔
− 1

8

(
𝛿1𝑔 + 𝛿2𝑔

𝑔

)2
+ 1

16

(
𝛿1𝑔

𝑔

)3)
. (2.167)

Then

𝛿1 (√𝑔) =
1
2
𝛿1𝑔

𝑔

√
𝑔 =

2𝜓
𝑅

√
𝑔. (2.168)

𝛿2 (√𝑔) =
1
2
𝛿2𝑔

𝑔

√
𝑔 − 1

8

(
𝛿1𝑔

𝑔

)2 √
𝑔 =

1
2

((
∇𝑘𝛿𝜓

)
(∇𝑘𝛿𝜓) +

6𝜓2

𝑅2

)
√
𝑔 − 1

8
16𝜓2

𝑅2
√
𝑔

=

(
1
2

(
∇𝑘𝛿𝜓

)
(∇𝑘𝛿𝜓) +

𝜓2

𝑅2

)
√
𝑔.

(2.169)

𝛿3 (√𝑔) =
1
2
𝛿3𝑔

𝑔

√
𝑔 − 1

8
2
(
𝛿1𝑔

𝑔

) (
𝛿2𝑔

𝑔

)
√
𝑔 + 1

16

(
𝛿1𝑔

𝑔

)3 √
𝑔

=
1
2

(
2𝜓
𝑅

(
∇𝑘𝛿𝜓

)
(∇𝑘𝛿𝜓) +

4𝜓3

𝑅3

)
√
𝑔 − 1

4
4𝜓
𝑅

((
∇𝑘𝛿𝜓

)
(∇𝑘𝛿𝜓) +

6𝜓2

𝑅2

)
√
𝑔 + 1

16
64𝜓
𝑅3

= 0.

(2.170)

Using the integration-by-part relation of (2.13), the variation of the surface is then

𝛿𝑆 = 2𝑅
∬

S2
𝜓 𝑑𝑆 − 1

2

∬
S2
𝜓ΔS2𝜓 𝑑𝑆 +

∬
S2
𝜓2 𝑑𝑆. (2.171)

Remark that, for a sphere, the second-order approximation variation of the surface is valid up to third order. One
can further show that there is a non-trivial fourth-order term.
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Inverse metric
The inverse of the metric is needed to compute the mean curvature through 𝐻 = 1

2𝑔
𝑖 𝑗𝑏𝑖 𝑗 . We use the explicit formula

for 2 × 2 matrices and the specific metric of the sphere such that 𝑔𝜗𝜗 =
𝑔𝜙𝜙

𝑔 , 𝑔𝜗𝜙 = − 𝑔𝜗𝜙

𝑔 , and

𝑔𝜗𝜗 + 𝛿1𝑔𝜗𝜗 + 𝛿2𝑔𝜗𝜗 + 𝛿3𝑔𝜗𝜗 =
1
𝑔

(
𝑔𝜙𝜙 + 𝛿1𝑔𝜙𝜙 + 𝛿2𝑔𝜙𝜙

) (
1 − 𝛿1𝑔 + 𝛿2𝑔 + 𝛿3𝑔

𝑔
+

(
𝛿1𝑔 + 𝛿2𝑔

𝑔

)2
−

(
𝛿1𝑔

𝑔

)3)
, (2.172)

and

𝛿1𝑔𝜗𝜗 =
1
𝑔

(
𝛿1𝑔𝜙𝜙 + 𝑔𝜙𝜙

(
−𝛿

1𝑔

𝑔

))
=

1
𝑔

(
2𝜓
𝑅
𝑔𝜙𝜙 − 4𝜓

𝑅
𝑔𝜙𝜙

)
= −2𝜓

𝑅
𝑔𝜗𝜗 , (2.173)

𝛿2𝑔𝜗𝜗 =
1
𝑔

(
𝛿2𝑔𝜙𝜙 + 𝑔𝜙𝜙

(
−𝛿

2𝑔

𝑔
+

(
𝛿1𝑔

𝑔

)2)
+ 𝛿1𝑔𝜙𝜙

(
−𝛿

1𝑔

𝑔

))
=

1
𝑔

( (
∇𝜙𝛿𝜓

) (
∇𝜙𝛿𝜓

)
+ 𝜓

2

𝑅2 𝑔𝜙𝜙 + 𝑔𝜙𝜙

(
−

(
∇𝑘𝛿𝜓

)
(∇𝑘𝛿𝜓) −

6𝜓2

𝑅2 + 16𝜓2

𝑅2

)
+ 2𝜓
𝑅
𝑔𝜙𝜙

(
−4𝜓
𝑅

))
=

(
−

(
∇𝜗𝛿𝜓

)
(∇𝜗𝛿𝜓) +

3𝜓2

𝑅2

)
𝑔𝜗𝜗 ,

(2.174)

𝛿3𝑔𝜗𝜗 =
1
𝑔

(
𝛿2𝑔𝜙𝜙

(
−𝛿

1𝑔

𝑔

)
+ 𝛿1𝑔𝜙𝜙

(
−𝛿

2𝑔

𝑔
+

(
𝛿1𝑔

𝑔

)2)
+ 𝑔𝜙𝜙

(
−𝛿

3𝑔

𝑔
+ 2

(
𝛿1𝑔

𝑔

) (
𝛿2𝑔

𝑔

)
−

(
𝛿1𝑔

𝑔

)3))
=

1
𝑔

[( (
∇𝜙𝛿𝜓

) (
∇𝜙𝛿𝜓

)
+ 𝜓

2

𝑅2

)
𝑔𝜙𝜙

(
−4𝜓
𝑅

)
+ 2𝜓
𝑅
𝑔𝜙𝜙

(
−

(
∇𝑖𝛿𝜓

)
(∇𝑖𝛿𝜓) −

6𝜓2

𝑅2 + 16𝜓2

𝑅2

)
+𝑔𝜙𝜙

(
−2𝜓
𝑅

(
∇𝑖𝛿𝜓

)
(∇𝑖𝛿𝜓) −

4𝜓3

𝑅3 + 24𝜓
𝑅

( (
∇𝑖𝛿𝜓

)
(∇𝑖𝛿𝜓) +

6𝜓2

𝑅2

)
− 64𝜓3

𝑅3

)]
= 𝑔𝜗𝜗

(
−4𝜓
𝑅

(
∇𝜙𝛿𝜓

) (
∇𝜙𝛿𝜓

)
+ 4𝜓
𝑅

(
∇𝑖𝛿𝜓

)
(∇𝑖𝛿𝜓)

)
= 𝑔𝜗𝜗

(
−4𝜓3

𝑅3 + 4𝜓
𝑅

(
∇𝜗𝛿𝜓

)
(∇𝜗𝛿𝜓)

)
.

(2.175)

We obtain the same expression for 𝛿𝑔𝜙𝜙.
Now let’s develop the first orders of 𝛿𝑔𝜗𝜙 = 𝛿

(
− 𝑔𝜗𝜙

𝑔

)
with

𝑔𝜗𝜙 + 𝛿1𝑔𝜗𝜙 + 𝛿2𝑔𝜗𝜙 + 𝛿3𝑔𝜗𝜙 = −1
𝑔

(
0 + 0 + 𝛿2𝑔𝜗𝜙

) (
1 − 𝛿1𝑔 + 𝛿2𝑔 + 𝛿3𝑔

𝑔
+

(
𝛿1𝑔 + 𝛿2𝑔

𝑔

)2
−

(
𝛿1𝑔

𝑔

)3)
. (2.176)

Then

𝛿1𝑔𝜗𝜙 = 0, 𝛿2𝑔𝜗𝜙 = −
𝛿2𝑔𝜗𝜙

𝑔
= −1

𝑔
(∇𝜗𝛿𝜓)

(
∇𝜙𝛿𝜓

)
, 𝛿3𝑔𝜗𝜙 = −

𝛿2𝑔𝜗𝜙

𝑔

(
−𝛿

1𝑔

𝑔

)
=

1
𝑔

4𝜓
𝑅

(∇𝜗𝛿𝜓)
(
∇𝜙𝛿𝜓

)
.

(2.177)
We can now generalize these relations to

𝛿1𝑔𝑖 𝑗 = −2𝜓
𝑅
𝑔𝑖 𝑗 , 𝛿2𝑔𝑖 𝑗 = −

(
∇𝑖𝛿𝜓

) (
∇ 𝑗𝛿𝜓

)
+ 3𝜓2

𝑅2 𝑔
𝑖 𝑗 , 𝛿3𝑔𝑖 𝑗 =

4𝜓
𝑅

(
∇𝑖𝛿𝜓

) (
∇ 𝑗𝛿𝜓

)
− 4𝜓3

𝑅3 𝑔
𝑖 𝑗 . (2.178)
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Normal unit vector

As 𝒏 =
𝒆𝜃×𝒆𝜙√

𝑔 , let’s start by the perturbation of 𝒆𝜃 × 𝒆𝜙. As it is a product of first orders, we have at most a second
order. Hence,

𝛿1 (
𝒆𝜃 × 𝒆𝜙

)
= 𝒆𝜃 × 𝛿𝒆𝜙 + 𝛿𝒆𝜃 × 𝒆𝜙 = −

√
𝑔𝜗𝜗

𝑔𝜙𝜙

(
∇𝜙𝜓

)
𝒆𝜙 + √

𝑔
𝜓

𝑅
𝒏 −

√
𝑔𝜙𝜙

𝑔𝜗𝜗
(∇𝜗𝜓) 𝒆𝜃 +

√
𝑔
𝜓

𝑅
𝒏

=
√
𝑔

(
2𝜓
𝑅

𝒏 −
(
∇𝑖𝜓

)
𝒆𝑖

)
,

(2.179)

𝛿2 (
𝒆𝜃 × 𝒆𝜙

)
= 𝛿𝒆𝜃 × 𝛿𝒆𝜙

=

(
(∇𝜗𝛿𝜓) 𝒏 + 𝜓

𝑅
𝒆𝜃

)
×

( (
∇𝜙𝛿𝜓

)
𝒏 + 𝜓

𝑅
𝒆𝜙

)
= −

√
𝑔𝜗𝜗

𝑔𝜙𝜙

(
∇𝜙𝛿𝜓

) 𝜓
𝑅
𝒆𝜙 −

√
𝑔𝜙𝜙

𝑔𝜗𝜗
(∇𝜗𝛿𝜓)

𝜓

𝑅
𝒆𝜃 +

√
𝑔
𝜓2

𝑅2 𝒏

=
√
𝑔

(
𝜓2

𝑅2 𝒏 − 𝜓

𝑅

(
∇𝑘𝜓

)
𝒆𝑘

)
.

(2.180)

Then,

𝒏 + 𝛿1𝒏 + 𝛿2𝒏 + 𝛿3𝒏 =
(
𝒆𝜃 × 𝒆𝜙 + 𝛿1 (

𝒆𝜃 × 𝒆𝜙
)
+ 𝛿2 (

𝒆𝜃 × 𝒆𝜙
) ) 1

√
𝑔

× ©­«1 −
𝛿1 (√𝑔) + 𝛿2 (√𝑔)

√
𝑔

+
(
𝛿1 (√𝑔) + 𝛿2 (√𝑔)

√
𝑔

)2

−
(
𝛿1 (√𝑔)
√
𝑔

)3ª®¬ ,
(2.181)

and

𝛿1𝒏 =
1
√
𝑔
𝛿1 (

𝒆𝜃 × 𝒆𝜙
)
−
𝛿1 (√𝑔)
√
𝑔

𝒏 =
2𝜓
𝑅

𝒏 −
(
∇𝑘𝜓

)
𝒆𝑘 −

2𝜓
𝑅

𝒏 = −
(
∇𝑘𝜓

)
𝒆𝑘 , (2.182)

𝛿2𝒏 =
1
√
𝑔
𝛿2 (

𝒆𝜃 × 𝒆𝜙
)
+ ©­«−

𝛿2 (√𝑔)
√
𝑔

+
(
𝛿1 (√𝑔)
√
𝑔

)2ª®¬ 𝒏 + 1
√
𝑔
𝛿1 (

𝒆𝜃 × 𝒆𝜙
) (

−
𝛿1 (√𝑔)
√
𝑔

)
=
𝜓2

𝑅2 𝒏 − 𝜓

𝑅

(
∇𝑖𝜓

)
𝒆𝑖 +

(
−

(
1
2

(
∇𝑘𝛿𝜓

)
(∇𝑘𝛿𝜓) +

𝜓2

𝑅2

)
+ 4𝜓2

𝑅2

)
𝒏 − 2𝜓

𝑅

(
2𝜓
𝑅

𝒏 −
(
∇𝑙𝜓

)
𝒆𝑙

)
=
𝜓

𝑅

(
∇𝑖𝜓

)
𝒆𝑖 −

1
2

(
∇𝑘𝛿𝜓

)
(∇𝑘𝛿𝜓) 𝒏,

(2.183)
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𝛿3𝒏 =
1
√
𝑔
𝛿2 (

𝒆𝜃 × 𝒆𝜙
) (

−
𝛿1 (√𝑔)
√
𝑔

)
+ 1
√
𝑔
𝛿1 (

𝒆𝜃 × 𝒆𝜙
) ©­«−

𝛿2 (√𝑔)
√
𝑔

+
(
𝛿1 (√𝑔)
√
𝑔

)2ª®¬
+ ©­«2

(
𝛿1 (√𝑔)
√
𝑔

) (
𝛿2 (√𝑔)
√
𝑔

)
−

(
𝛿1 (√𝑔)
√
𝑔

)3ª®¬ 𝒏
= −2𝜓

𝑅

(
𝜓2

𝑅2 𝒏 − 𝜓

𝑅

(
∇𝑖𝜓

)
𝒆𝑖

)
+

(
2𝜓
𝑅

𝒏 −
(
∇𝑘𝜓

)
𝒆𝑘

) (
−

(
1
2

(
∇𝑙𝛿𝜓

)
(∇𝑙𝛿𝜓) +

𝜓2

𝑅2

)
+ 4𝜓2

𝑅2

)
+

(
22𝜓
𝑅

(
1
2
(∇𝑚𝛿𝜓) (∇𝑚𝛿𝜓) +

𝜓2

𝑅2

)
− 8𝜓3

𝑅3

)
𝒏

= −𝜓
2

𝑅2
(
∇𝑖𝜓

)
𝒆𝑖 +

𝜓

𝑅

(
∇ 𝑗𝛿𝜓

) (
∇ 𝑗𝛿𝜓

)
𝒏 + 1

2

(
∇𝑘𝛿𝜓

)
(∇𝑘𝛿𝜓)

(
∇𝑙𝜓

)
𝒆𝑙 .

(2.184)

Second fundamental form

We consider the definition 𝑏𝑖 𝑗 = −∇ 𝑗 𝒆𝑖 · 𝒏. We recall the Weingarten formula, and we assume the Gauss formula :

∇𝑖𝒏 = 𝑏 𝑗
𝑖 𝒆 𝑗 = 𝑔

𝑗𝑘𝑏𝑖𝑘𝒆 𝑗 = 𝑔
𝑖𝑖𝑏𝑖𝑖𝒆𝑖 , ∇𝑘𝒆𝑖 = −𝑏𝑖𝑘𝒏. (2.185)

Therefore,

𝑏𝑖 𝑗 + 𝛿1𝑏𝑖 𝑗 + 𝛿2𝑏𝑖 𝑗 𝑗 + 𝛿3𝑏𝑖 𝑗 = −∇ 𝑗 (𝒆𝑖 + 𝛿𝒆𝑖) ·
(
𝒏 + 𝛿1𝒏 + 𝛿2𝒏 + 𝛿3𝒏

)
, (2.186)

and

𝛿1𝑏𝑖 𝑗 = −∇ 𝑗 𝒆𝑖 · 𝛿1𝒏 − ∇ 𝑗𝛿𝒆𝑖 · 𝒏 = −𝑏𝑖 𝑗𝒏 ·
(
∇𝑘𝜓

)
𝒆𝑘 − ∇ 𝑗

(
(∇𝑖𝛿𝜓) 𝒏 + 𝜓

𝑅
𝒆𝑖

)
· 𝒏 = −∇ 𝑗 (∇𝑖𝜓) −

𝜓

𝑅

(
∇ 𝑗 𝒆𝑖

)
· 𝒏

= −∇ 𝑗 (∇𝑖𝜓) +
𝜓

𝑅
𝑏𝑖 𝑗 ,

(2.187)

𝛿2𝑏𝑖 𝑗 = −∇ 𝑗 𝒆𝑖 · 𝛿2𝒏 − ∇ 𝑗𝛿
1𝒆𝑖 · 𝛿1𝒏

= 𝑏𝑖 𝑗𝒏 ·
(
𝜓

𝑅

(
∇𝑘𝜓

)
𝒆𝑘 −

1
2

(
∇𝑙𝛿𝜓

)
(∇𝑙𝛿𝜓) 𝒏

)
− ∇ 𝑗

(
(∇𝑖𝛿𝜓) 𝒏 + 𝜓

𝑅
𝒆𝑖

)
· (− (∇𝑚𝜓) 𝒆𝑚)

= −1
2
𝑏𝑖 𝑗

(
∇𝑙𝛿𝜓

)
(∇𝑙𝛿𝜓) +

(
(∇ 𝑗∇𝑖𝜓)𝒏 + (∇𝑖𝜓)(∇ 𝑗𝒏) +

∇ 𝑗𝜓

𝑅
𝒆𝑖 +

𝜓

𝑅
(∇ 𝑗 𝒆𝑖)

)
· (∇𝑚𝜓)𝒆𝑚

= −1
2
𝑏𝑖 𝑗

(
∇𝑙𝛿𝜓

)
(∇𝑙𝛿𝜓) +

(
(∇𝑖𝜓)𝑔 𝑗 𝑗𝑏 𝑗 𝑗 𝒆 𝑗 +

∇ 𝑗𝜓

𝑅
𝒆𝑖

)
· (∇𝑚𝜓)𝒆𝑚

= −1
2
𝑏𝑖 𝑗

(
∇𝑙𝛿𝜓

)
(∇𝑙𝛿𝜓) + (∇ 𝑗𝜓)(∇𝑖𝜓)𝑏 𝑗 𝑗 +

1
𝑅
(∇𝑖𝜓)(∇ 𝑗𝜓)𝑔𝑖𝑖

= −1
2
𝑏𝑖 𝑗

(
∇𝑙𝛿𝜓

)
(∇𝑙𝛿𝜓) +

2
𝑅
(∇𝑖𝜓)(∇ 𝑗𝜓),

(2.188)
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𝛿3𝑏𝑖 𝑗 = −∇ 𝑗 𝒆𝑖 · 𝛿3𝒏 − ∇ 𝑗𝛿
1𝒆𝑖 · 𝛿2𝒏

= 𝑏𝑖 𝑗𝒏 ·
(
−𝜓

2

𝑅2

(
∇𝑘𝜓

)
𝒆𝑘 +

𝜓

𝑅

(
∇𝑙𝛿𝜓

)
(∇𝑙𝛿𝜓) 𝒏 + 1

2
(∇𝑚𝛿𝜓) (∇𝑚𝛿𝜓) (∇𝑛𝜓) 𝒆𝑛

)
− ∇ 𝑗

(
(∇𝑖𝛿𝜓) 𝒏 + 𝜓

𝑅
𝒆𝑖

)
·
(
𝜓

𝑅
(∇𝑝𝜓) 𝒆𝑝 − 1

2
(∇𝑞𝛿𝜓)

(
∇𝑞𝛿𝜓

)
𝒏

)
= 𝑏𝑖 𝑗

𝜓

𝑅

(
∇𝑙𝛿𝜓

)
(∇𝑙𝛿𝜓) −

(
∇ 𝑗∇𝑖𝜓𝒏 + (∇𝑖𝜓)

(
∇ 𝑗𝒏

)
+
∇ 𝑗𝜓

𝑅
𝒆𝑖 +

𝜓

𝑅

(
∇ 𝑗 𝒆𝑖

) )
·
(
𝜓

𝑅
(∇𝑝𝜓) 𝒆𝑝 − 1

2
(∇𝑞𝛿𝜓)

(
∇𝑞𝛿𝜓

)
𝒏

)
= 𝑏𝑖 𝑗

𝜓

𝑅

(
∇𝑙𝛿𝜓

)
(∇𝑙𝛿𝜓) −

(
∇ 𝑗∇𝑖𝜓𝒏 + (∇𝑖𝜓) 𝑔 𝑗 𝑗𝑏 𝑗 𝑗 𝒆 𝑗 +

∇ 𝑗𝜓

𝑅
𝒆𝑖 − 𝑏𝑖 𝑗

𝜓

𝑅
𝒏

)
·
(
𝜓

𝑅
(∇𝑝𝜓) 𝒆𝑝 − 1

2
(∇𝑞𝛿𝜓)

(
∇𝑞𝛿𝜓

)
𝒏

)
= 𝑏𝑖 𝑗

𝜓

𝑅

(
∇𝑙𝛿𝜓

)
(∇𝑙𝛿𝜓) +

1
2
(∇𝑞𝛿𝜓)

(
∇𝑞𝛿𝜓

)
∇ 𝑗∇𝑖𝜓 − 𝜓

𝑅

(
∇ 𝑗𝜓

)
(∇𝑖𝜓) 𝑏 𝑗 𝑗 −

∇ 𝑗𝜓

𝑅

𝜓

𝑅

(
∇𝑖𝜓

)
𝑔𝑖𝑖

− 1
2
𝑏𝑖 𝑗

𝜓

𝑅
(∇𝑞𝛿𝜓)

(
∇𝑞𝛿𝜓

)
=

1
2
𝑏𝑖 𝑗

𝜓

𝑅

(
∇𝑙𝛿𝜓

)
(∇𝑙𝛿𝜓) +

1
2
(∇𝑞𝛿𝜓)

(
∇𝑞𝛿𝜓

)
∇ 𝑗∇𝑖𝜓 − 2𝜓

𝑅2 (∇𝑖𝜓)
(
∇ 𝑗𝜓

)
.

(2.189)

Mean curvature

We use the definition 𝐻 = 1
2 (𝑔𝑖 𝑗𝑏𝑖 𝑗 ) such that

𝐻 + 𝛿1𝐻 + 𝛿2𝐻 + 𝛿3𝐻 =
1
2

(
𝑔𝑖 𝑗 + 𝛿1𝑔𝑖 𝑗 + 𝛿2𝑔𝑖 𝑗 + 𝛿3𝑔𝑖 𝑗

) (
𝑏𝑖 𝑗 + 𝛿1𝑏𝑖 𝑗 + 𝛿2𝑏𝑖 𝑗 + 𝛿3𝑏𝑖 𝑗

)
, (2.190)

and

𝛿1𝐻 =
1
2

(
𝑔𝑖 𝑗𝛿1𝑏𝑖 𝑗 + 𝛿1𝑔𝑖 𝑗𝑏𝑖 𝑗

)
=

1
2

(
𝑔𝑖 𝑗

(
−∇ 𝑗 (∇𝑖𝜓) +

𝜓

𝑅
𝑏𝑖 𝑗

)
+

(
−2𝜓
𝑅
𝑔𝑖 𝑗

)
𝑏𝑖 𝑗

)
=

1
2

(
−∇𝑖 (∇𝑖𝜓) −

𝜓

𝑅
𝑔𝑖 𝑗𝑏𝑖 𝑗

)
= − 𝜓

𝑅2 − 1
2
Δ𝜓,

(2.191)

𝛿2𝐻 =
1
2

(
𝑔𝑖 𝑗𝛿2𝑏𝑖 𝑗 + 𝛿1𝑔𝑖 𝑗𝛿1𝑏𝑖 𝑗 + 𝛿2𝑔𝑖 𝑗𝑏𝑖 𝑗

)
=

1
2

(
𝑔𝑖 𝑗

(
−1

2
𝑏𝑖 𝑗

(
∇𝑙𝛿𝜓

)
(∇𝑙𝛿𝜓) +

2
𝑅
(∇𝑖𝜓) (∇ 𝑗𝜓)

)
+

(
−2𝜓
𝑅
𝑔𝑖 𝑗

) (
−∇ 𝑗 (∇𝑖𝜓) +

𝜓

𝑅
𝑏𝑖 𝑗

)
+

(
−

(
∇𝑖𝛿𝜓

) (
∇ 𝑗𝛿𝜓

)
+ 3𝜓2

𝑅2 𝑔
𝑖 𝑗

)
𝑏𝑖 𝑗

)
=

1
2

(
− 1
𝑅

(
∇𝑙𝛿𝜓

)
(∇𝑙𝛿𝜓) +

2
𝑅
(∇𝑖𝜓)(∇𝑖𝜓) +

(
2𝜓
𝑅

Δ𝜓 − 4𝜓2

𝑅3

)
− 1
𝑅

(
∇ 𝑗𝛿𝜓

) (
∇ 𝑗𝛿𝜓

)
+ 6𝜓2

𝑅3

)
=
𝜓2

𝑅3 + 𝜓
𝑅
Δ𝜓,

(2.192)
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𝛿3𝐻 =
1
2

(
𝑔𝑖 𝑗𝛿3𝑏𝑖 𝑗 + 𝛿1𝑔𝑖 𝑗𝛿2𝑏𝑖 𝑗 + 𝛿2𝑔𝑖 𝑗𝛿1𝑏𝑖 𝑗 + 𝛿3𝑔𝑖 𝑗𝑏𝑖 𝑗

)
=

1
2

[
𝑔𝑖 𝑗

(
1
2
𝑏𝑖 𝑗

𝜓

𝑅

(
∇𝑙𝛿𝜓

)
(∇𝑙𝛿𝜓) +

1
2
(∇𝑞𝛿𝜓)

(
∇𝑞𝛿𝜓

)
∇ 𝑗∇𝑖𝜓 − 2𝜓

𝑅2 (∇𝑖𝜓)
(
∇ 𝑗𝜓

) )
+

(
−2𝜓
𝑅
𝑔𝑖 𝑗

) (
−1

2
𝑏𝑖 𝑗

(
∇𝑙𝛿𝜓

)
(∇𝑙𝛿𝜓) +

2
𝑅
(∇𝑖𝜓) (∇ 𝑗𝜓)

)
+

(
−

(
∇𝑖𝛿𝜓

) (
∇ 𝑗𝛿𝜓

)
+ 3𝜓2

𝑅2 𝑔
𝑖 𝑗

) (
−∇ 𝑗 (∇𝑖𝜓) +

𝜓

𝑅
𝑏𝑖 𝑗

)
+

(
4𝜓
𝑅

(
∇𝑖𝛿𝜓

) (
∇ 𝑗𝛿𝜓

)
− 4𝜓3

𝑅3 𝑔
𝑖 𝑗

)
𝑏𝑖 𝑗

]
=

1
2

[
𝜓

𝑅2

(
∇𝑙𝛿𝜓

)
(∇𝑙𝛿𝜓) +

1
2
(∇𝑞𝛿𝜓)

(
∇𝑞𝛿𝜓

)
Δ𝜓 − 2𝜓

𝑅2
(
∇ 𝑗𝜓

) (
∇ 𝑗𝜓

)
+ 2𝜓
𝑅2

(
∇𝑙𝛿𝜓

)
(∇𝑙𝛿𝜓) −

4𝜓
𝑅2 (∇

𝑖𝜓) (∇𝑖𝜓)

+
(
∇𝑖𝛿𝜓

) (
∇ 𝑗𝛿𝜓

)
∇ 𝑗 (∇𝑖𝜓) −

3𝜓2

𝑅2 Δ𝜓 − 𝜓

𝑅2
(
∇𝑖𝛿𝜓

)
(∇𝑖𝛿𝜓) +

6𝜓3

𝑅4 + 4𝜓
𝑅2

(
∇𝑖𝛿𝜓

)
(∇𝑖𝛿𝜓) −

8𝜓3

𝑅4

]
= −𝜓

3

𝑅4 − 3𝜓2

2𝑅2Δ𝜓 + 1
4
(∇𝑞𝛿𝜓)

(
∇𝑞𝛿𝜓

)
Δ𝜓 + 1

2
(
∇𝑖𝛿𝜓

) (
∇ 𝑗𝛿𝜓

)
∇ 𝑗 (∇𝑖𝜓) .

(2.193)

Integrated mean curvature

In order to integrate the mean curvature over the surface, we need the perturbation of 𝐻√𝑔, that reads

𝐻
√
𝑔 + 𝛿1 (

𝐻
√
𝑔
)
+ 𝛿2 (

𝐻
√
𝑔
)
+ 𝛿3 (

𝐻
√
𝑔
)
=

(
𝐻 + 𝛿1𝐻 + 𝛿2𝐻 + 𝛿3𝐻

) (√
𝑔 + 𝛿1 (√𝑔) + 𝛿2 (√𝑔) + 𝛿3 (√𝑔)

)
. (2.194)

Then

𝛿1 (
𝐻
√
𝑔
)
= 𝐻𝛿1 (√𝑔) + 𝛿1𝐻

√
𝑔 =

1
𝑅

(
2𝜓
𝑅

√
𝑔

)
+

(
− 𝜓

𝑅2 − 1
2
Δ𝜓

)
√
𝑔

=

(
𝜓

𝑅2 − 1
2
Δ𝜓

)
√
𝑔,

(2.195)

𝛿2 (
𝐻
√
𝑔
)
= 𝐻𝛿2 (√𝑔) + 𝛿1𝐻𝛿1 (√𝑔) + 𝛿2𝐻

√
𝑔

=

(
1
𝑅

(
1
2

(
∇𝑘𝛿𝜓

)
(∇𝑘𝛿𝜓) +

𝜓2

𝑅2

)
√
𝑔 +

(
− 𝜓

𝑅2 − 1
2
Δ𝜓

) (
2𝜓
𝑅

√
𝑔

)
+

(
𝜓2

𝑅3 + 𝜓
𝑅
Δ𝜓

)
√
𝑔

)
=

(
1

2𝑅

(
∇𝑘𝛿𝜓

)
(∇𝑘𝛿𝜓) +

𝜓2

𝑅3 − 2𝜓2

𝑅3 − 𝜓

𝑅
Δ𝜓 + 𝜓

2

𝑅3 + 𝜓
𝑅
Δ𝜓

)
√
𝑔

=
1

2𝑅

(
∇𝑘𝛿𝜓

)
(∇𝑘𝛿𝜓)

√
𝑔.

(2.196)
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𝛿3 (
𝐻
√
𝑔
)
= 𝐻𝛿3 (√𝑔) + 𝛿1𝐻𝛿2 (√𝑔) + 𝛿2𝐻𝛿1 (√𝑔) + 𝛿3𝐻

√
𝑔

=
1
𝑅
× 0 +

(
− 𝜓

𝑅2 − 1
2
Δ𝜓

) (
1
2

(
∇𝑘𝛿𝜓

)
(∇𝑘𝛿𝜓) +

𝜓2

𝑅2

)
√
𝑔 +

(
𝜓2

𝑅3 + 𝜓
𝑅
Δ𝜓

)
2𝜓
𝑅

√
𝑔

+
(
−𝜓

3

𝑅4 − 3𝜓2

2𝑅2Δ𝜓 + 1
4
(∇𝑞𝛿𝜓)

(
∇𝑞𝛿𝜓

)
Δ𝜓 + 1

2
(
∇𝑖𝛿𝜓

) (
∇ 𝑗𝛿𝜓

)
∇ 𝑗 (∇𝑖𝜓)

)
√
𝑔

=

[
− 𝜓

2𝑅2

(
∇𝑘𝛿𝜓

)
(∇𝑘𝛿𝜓) −

1
4

(
∇𝑘𝛿𝜓

)
(∇𝑘𝛿𝜓) Δ𝜓 − 𝜓3

𝑅4 − 𝜓2

2𝑅2Δ𝜓 + 2𝜓3

𝑅4 + 2𝜓2

𝑅2 Δ𝜓

−𝜓
3

𝑅4 − 3𝜓2

2𝑅2Δ𝜓 + 1
4
(∇𝑞𝛿𝜓)

(
∇𝑞𝛿𝜓

)
Δ𝜓 + 1

2
(
∇𝑖𝛿𝜓

) (
∇ 𝑗𝛿𝜓

)
∇ 𝑗 (∇𝑖𝜓)

]
√
𝑔

=

(
− 𝜓

2𝑅2

(
∇𝑘𝛿𝜓

)
(∇𝑘𝛿𝜓) +

1
2
(∇𝑖𝛿𝜓)

(
∇ 𝑗𝛿𝜓

)
∇ 𝑗

(
∇𝑖𝜓

) ) √
𝑔.

(2.197)

From 𝛿 (Σ 〈𝐻〉) =
∫
U 𝛿

(
𝐻
√
𝑔
)
𝑑𝑢1𝑑𝑢2 and using integration by part (2.13), we obtain

𝛿 (Σ 〈𝐻〉) =
∫
S2
𝜓𝑑𝑆 − 1

2𝑅

∫
S2
𝜓ΔS2𝜓𝑑𝑆

+ 1
4𝑅2

∫
S2
𝜓2ΔS2𝛿𝜓𝑑𝑆 + 1

4

∫
S2
𝜓 (ΔS2𝛿𝜓)2 𝑑𝑆 − 1

8

∫
S2
𝜓2Δ2

S2𝛿𝜓𝑑𝑆.

(2.198)

Volume
From the Gauss theorem, one can write :

𝑉 =
∫
𝑉
𝑑𝑉 =

∫
𝑉

∇ · 𝒓
3

𝑑𝑉 =
1
3

∫
𝑆
𝒏 · 𝒓 𝑑𝑆 =

1
3

∫
U
𝒏 · 𝒓√𝑔𝑑𝑢1𝑑𝑢2. (2.199)

Knowing that 𝒏
√
𝑔 · 𝒓 =

(
𝒆𝜃 × 𝒆𝜙

)
· 𝒓 and that these three quantities admit at most first-order variations, the

perturbation of the volume is at most of third-order

𝛿1 (√
𝑔𝒏 · 𝒓

)
=

(
𝛿 (1) 𝒆𝜃 × 𝒆𝜙

)
· 𝒓 +

(
𝒆𝜃 × 𝛿 (1) 𝒆𝜙

)
· 𝒓 +

(
𝒆𝜃 × 𝒆𝜙

)
· 𝛿 (1) 𝒓

=

((
(∇𝜗𝛿𝜓) 𝒏 + 𝜓

𝑅
𝒆𝜃

)
× 𝒆𝜙

)
· 𝒓 +

(
𝒆𝜃 ×

( (
∇𝜙𝛿𝜓

)
𝒏 + 𝜓

𝑅
𝒆𝜙

))
· 𝒓 +

(
𝒆𝜃 × 𝒆𝜙

)
· 𝛿𝜓𝒏

=
𝜓

𝑅

√
𝑔𝒏 · 𝒓 + 𝜓

𝑅

√
𝑔𝒏 · 𝒓 + 𝜓

𝑅

√
𝑔𝒏 · 𝒓

= 3𝜓√𝑔,

(2.200)

𝛿2 (√
𝑔𝒏 · 𝒓

)
=

(
𝛿 (1) 𝒆𝜃 × 𝛿 (1) 𝒆𝜙

)
· 𝒓 +

(
𝒆𝜃 × 𝛿 (1) 𝒆𝜙

)
· 𝛿 (1) 𝒓 +

(
𝛿 (1) 𝒆𝜃 × 𝒆𝜙

)
· 𝛿 (1) 𝒓

=

((
(∇𝜗𝛿𝜓) 𝒏 + 𝜓

𝑅
𝒆𝜃

)
×

( (
∇𝜙𝛿𝜓

)
𝒏 + 𝜓

𝑅
𝒆𝜙

))
· 𝒓 +

(
𝒆𝜃 ×

( (
∇𝜙𝛿𝜓

)
𝒏 + 𝜓

𝑅
𝒆𝜙

))
· 𝛿𝜓𝒏

+
((
(∇𝜗𝛿𝜓) 𝒏 + 𝜓

𝑅
𝒆𝜃

)
× 𝒆𝜙

)
· 𝛿𝜓𝒏

=
𝜓2

𝑅2
(
𝒆𝜃 × 𝒆𝜙

)
· 𝒓 + 𝜓

2

𝑅2
(
𝒆𝜃 × 𝒆𝜙

)
· 𝒓 + 𝜓

2

𝑅2
(
𝒆𝜃 × 𝒆𝜙

)
· 𝒓

= 3𝜓
2

𝑅

√
𝑔.

(2.201)



2.B. Variations of the oriented geometric quantities 93

𝛿3 (√
𝑔𝒏 · 𝒓

)
=

(
𝛿 (1) 𝒆𝜃 × 𝛿 (1) 𝒆𝜙

)
· 𝛿 (1) 𝒓 =

((
(∇𝜗𝛿𝜓) 𝒏 + 𝜓

𝑅
𝒆𝜃

)
×

( (
∇𝜙𝛿𝜓

)
𝒏 + 𝜓

𝑅
𝒆𝜙

))
· 𝛿𝜓𝒏 =

𝜓3

𝑅3
(
𝒆𝜃 × 𝒆𝜙

)
· 𝒓

=
𝜓3

𝑅2
√
𝑔.

(2.202)

The variation of the volume is then

𝛿𝑉 = 𝑅2
∬

S2
𝜓 𝑑𝑆 + 𝑅

∬
S2
𝜓2 𝑑𝑆 + 1

3

∬
S2
𝜓3 𝑑𝑆. (2.203)

2.B Variations of the oriented geometric quantities
In Section 2.2.4.3, new geometric quantities 𝑆‖ , 𝑆⊥, 𝑆‖𝐻 ‖ and 𝑆⊥𝐻⊥ are defined to recover first order variations in
𝑥2 using the decomposition of the local surface element into

𝐴 = ‖𝒆𝜃 × 𝒆𝜙 ‖ =
��(𝒆𝜃 × 𝒆𝜙) · 𝑵

�� + (
‖𝒆𝜃 × 𝒆𝜙 ‖ −

��(𝒆𝜃 × 𝒆𝜙) · 𝑵
��) =: 𝐴‖ + 𝐴⊥, (2.204)

where 𝒆𝑎 := 𝜕𝑎 𝒓 for 𝑎 = 𝜃, 𝜙, and 𝒆𝑣 := 𝜕𝑣 𝒓 (𝑢, 𝑣) are the tangential vectors and 𝑵 = (0, 0, 1) is a constant vector
chosen along the axisymmetric axis. Then for any local geometric quantity 𝑋 (𝑢, 𝑣), we split the variation of the
surface-averaged geometric quantity into

𝛿(𝑆𝑋) = 𝛿(𝑆‖𝑋 ‖ ) + 𝛿(𝑆⊥𝑋⊥), (2.205)

such that we can focus on the variation 𝛿(𝑆‖𝑋 ‖ ), and 𝛿(𝑆⊥𝑋⊥) follows from (2.122). The variation of 𝑆‖𝑋 ‖ reads

𝛿(𝑆‖𝑋 ‖ ) =
∫
U
𝛿(𝑋𝐴‖ ) =

∫
U
𝛿
(
𝑋

��(𝒆𝜃 × 𝒆𝜙) · 𝑵
��) , (2.206)

We get rid of the absolute value by remarking that the perturbations along harmonics 𝑌0 and 𝑌2 are symmetric with
respect to the equatorial plane of the droplet. We split U into two hemispheres using the half unit sphere mapping
1
2U = (0, 𝜋/2) × (0, 2𝜋) where (𝒆𝜃 × 𝒆𝜙) · 𝑵 > 0 and perform a change of variables leading to

𝛿(𝑆‖𝑋 ‖ ) =
∫

1
2 U

𝛿(𝑋 (𝒆𝜃 × 𝒆𝜙) · 𝑵) −
∫
U\1

2 U
𝛿(𝑋 (𝒆𝜃 × 𝒆𝜙) · 𝑵)

= 2
∫

1
2 U

𝛿(𝑋 (𝒆𝜃 × 𝒆𝜙)) · 𝑵.
(2.207)

Then, the variation is decomposed following

𝛿(𝑆‖𝑋 ‖ ) = 2
∫

1
2 U

𝛿(𝑋𝐴) (𝒏 · 𝑵) + 2
∫

1
2 U

𝑋0𝐴0𝛿𝒏 · 𝑵, (2.208)

with 𝐴0𝛿𝒏 = 𝛿(𝒆𝜃 × 𝒆𝜙) − 𝒏𝛿𝐴. The first-order variation in 𝑥2 is non-trivial here, and we retain only the first-order
terms in 𝜓 for 𝛿(𝐻𝐴) and 𝛿𝐴 in (2.39). Only the first-order variation of 𝛿(𝒆𝜃 × 𝒆𝜙) is still undetermined. For the
first-order deformation 𝜓 = 𝑥2𝑌2 + 𝑜(𝑥2), it yields

𝛿(𝒆𝜃 × 𝒆𝜙) = 𝜕𝜃 𝒓 × 𝜕𝜙 𝒓 − 𝜕𝜃 𝒓0 × 𝜕𝜙 𝒓0

= 𝑥2𝑅0𝑌2 (𝜕𝜃𝒏 × 𝜕𝜙𝒏) + 𝑥2𝑅0 (𝜕𝜃𝑌2)(𝒏 × 𝜕𝜙𝒏) + 𝑅0𝑥2𝑌2 (𝜕𝜃𝒏 × 𝜕𝜙𝒏) + 𝑜(𝑥2
2).

(2.209)

For the sphere, we recall that

𝜕𝜃𝒏 = 𝑅−1
0 𝒆𝜃 , 𝜕𝜙𝒏 = 𝑅−1

0 𝒆𝜙 , 𝒆𝜃 × 𝒆𝜙 = 𝐴0𝒏,

𝐴0 = 𝑅2
0 sin 𝜃, 𝑵 · 𝒏 = cos 𝜃, 𝑵 · 𝒆𝜃 = −𝑅0 sin 𝜃.

(2.210)
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The first-order variation 𝛿(𝒆𝜃 × 𝒆𝜙) then reads

𝛿(𝒆𝜃 × 𝒆𝜙) = 𝑥2𝑅
−1
0 𝑌2 (𝒆𝜃 × 𝒆𝜙) + 𝑥2 (𝜕𝜃𝑌2) (𝒏 × 𝒆𝜙) + 𝑅−1

0 𝑥2𝑌2 (𝒆𝜃 × 𝒆𝜙) + 𝑜(𝑥2
2)

= 𝑥2𝑅
−1
0 𝑌2𝐴0𝒏 − 𝑥2 (𝜕𝜃𝑌2)𝐴0𝑅

−2
0 𝒆𝜃 + 𝑅−1

0 𝑥2𝑌2𝐴0𝒏 + 𝑜(𝑥2
2)

= 2𝑥2𝑅
−1
0 𝑌2𝐴0𝒏 − 𝑥2 (𝜕𝜃𝑌2)𝒆𝜃 + 𝑜(𝑥2

2).
(2.211)

Now, taking 𝑋 = 1 in (2.208) gives

𝛿𝑆‖ = 2
∫

1
2 U

𝛿(𝒆𝑢 × 𝒆𝑣) · 𝑵

= 2
∫

1
2 U

2𝑥2𝑅
−1
0 𝑌2𝐴0 (𝒏 · 𝑵) − 𝑥2𝐴0𝑅

−2
0 (𝜕𝜃𝑌2)(𝒆𝜃 · 𝑵) + 𝑜(𝑥2

2)

= 4𝑥2𝑅0

∫
1
2 U

𝑌2 sin 𝜃 cos 𝜃 + 2𝑥2𝑅0

∫
1
2 U

(𝜕𝜃𝑌2) sin2 𝜃 + 𝑜(𝑥2
2)

= 4𝑥2𝑅0

√
5𝜋
8

+ 2𝑥2𝑅0

(
−3

√
5𝜋

4

)
+ 𝑜(𝑥2

2)

= −𝑥2𝑅0
√

5𝜋 + 𝑜(𝑥2
2).

(2.212)

For 𝑋 = 𝐻, there is an extra term in the first-order variation 𝛿(𝐻𝐴) = (𝐺0 − 1
2Δ)𝜓𝐴0 (Capovilla et al., 2003) which

has been nullified in (2.39) as the inclusion is closed. Here, it is taken into account as we integrate twice over a half
inclusion. It yields

𝛿𝑆‖𝐻
‖ = 2

∫
1
2 U

𝛿(𝐻𝐴)(𝒏 · 𝑵) + 2
∫

1
2 U

𝐻0 (𝛿(𝒆𝜃 × 𝒆𝜙) − 𝒏𝛿𝐴) · 𝑵,

= 2
∫

1
2 U

(𝐺0 − 2𝐻2
0)𝜓𝐴0 (𝒏 · 𝑵) +

∫
1
2 U

Δ𝜓𝐴0 (𝒏 · 𝑵) + 2
∫

1
2 U

𝐻0𝛿(𝒆𝜃 × 𝒆𝜙) · 𝑵,

= −2𝑥2

∫
1
2 U

𝑌2 sin 𝜃 cos 𝜃 + −𝑥2

∫
1
2 U

(ΔS2𝑌2) sin 𝜃 cos 𝜃 + 2𝑅−1
0

∫
1
2 U

𝛿(𝒆𝜃 × 𝒆𝜙) · 𝑵,

= −𝑥2
1
2
√

5𝜋.

(2.213)

Replacing 𝑥2 with its expression in 𝜒 and 𝑆0 yields geometric relations (2.142).

2.C Weights and quadrature points of the bi-disperse quadrature

The bi-disperse closure for 𝑛1, 𝑛2, (𝑆0)1, (𝑆0)2 in terms of the moment in size only 𝑀𝑘 = 𝑀 𝜉
𝑘,0,0 with 𝑘 = 0, 1/2, 1, 3/2

is obtained by solving the truncated moment problem with Mathematica (Wolfram Research, 2023) and reads

𝑛𝑖 =
1
2

(
𝑀0 + (−1)𝑖+1

3𝑀0𝑀1𝑀1/2 − 2𝑀3
1/2 − 𝑀2

0𝑀3/2
√
Δ

)
,

(𝑆0)𝑖 = (2(𝑀2
1/2 − 𝑀0𝑀1)2)−1

(
𝑀2

0𝑀
2
3/2 − 𝑀2

1𝑀
2
1/2 + 2(𝑀0𝑀

3
1 + 𝑀3

1/2𝑀3/2)

−4𝑀0𝑀1/2𝑀1𝑀3/2 + (−1)𝑖+1 (𝑀0𝑀3/2 − 𝑀1𝑀1/2)
√
Δ
)
,

with Δ = 4𝑀0𝑀
3
1 − 3𝑀2

1𝑀
2
1/2 − 6𝑀0𝑀1/2𝑀1𝑀3/2 + 4𝑀3

1/2𝑀3/2 + 𝑀2
0𝑀

2
3/2.

(2.214)

It can be written with the geometric variables using either relations (2.64), (2.126)-(2.127) or (2.143)-(2.144). Mathe-
matica also shows that these relations yield positive values of 𝑛𝑖 and (𝑆0)𝑖 provided that the moments 𝑀𝑘 are positive
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and
𝑀1/2𝑀3/2 − 𝑀2

1 > 0, 𝑀0𝑀1 − 𝑀2
1/2 > 0. (2.215)

These last two conditions ensure the positivity of Hankel matrices involved in the realizability conditions of the
Hausdorff truncated moment problem (Schmüdgen, 2017).

2.D Hamilton’s SAP for the polydisperse spray of oscillating droplets
This model is built on the basis of the one velocity disperse Model 8 where additional energies are added to take into
account capillarity at the small-scale along with the internal flow of the droplets. We recall the Lagrangian given in
(2.152) for the two-scale mixture

L = L1 (𝛼1, 𝑚1, 𝒖) + L2 (𝛼2, 𝑚2, 𝒖) + L𝑑
1

(
𝑚𝑑

1 , 𝜌
𝑑
1 , 𝒖

)
+ L𝑣𝑖𝑏

1 (𝑛1, (𝑆0)1, 𝜒1, ¤𝜒1) + L𝑣𝑖𝑏
2 (𝑛2, (𝑆0)2, 𝜒2, ¤𝜒1) , (2.216)

where L𝑣𝑖𝑏
𝑖 = 1

2 𝜈𝑛𝑖 (𝑆0)5/2
𝑖 𝜒2

𝑖 − 𝜎𝑛𝑖 (𝑆0)𝑖 − 1
2𝛾𝑛𝑖 (𝑆0)𝑖𝜒2

𝑖 . We define the action A =
∫
Ω. As same as previous models,

𝛼1 is a free variable in the minimization process, while effective densities 𝑚𝑘 are conserved, 𝜌𝑑1 is advected. For the
additional variables, the number densities of droplets 𝑛𝑖 are conserved, the surfaces (𝑆0)𝑖 are advected, 𝜒𝑖 are free
variables describing the oscillatory motion of the droplets, and ¤𝜒𝑖 are linked to time derivatives of 𝜒𝑖 with 𝐷𝑡 𝜒𝑖 = ¤𝜒𝑖.
This last constraint translates in terms of variations

𝛿( ¤𝜒𝑖) = 𝛿(𝐷𝑡 𝜒𝑖) = 𝜕𝑡 (𝛿𝜒𝑖) + 𝒖 · ∇(𝛿𝜒𝑖) + 𝛿𝒖 · ∇𝜒𝑖 . (2.217)

Denoting 𝐾 ¤𝜒𝑖 = 𝜕 ¤𝜒𝑖L𝑣𝑖𝑏
𝑖 and 𝒖 = 𝜕𝒖L, we decompose then the variation of the action according to each dependency

𝛿A𝛼1 =
∫
Ω
𝜕𝛼1L1 𝛿𝛼1, (2.218)

𝛿A𝛼2 =
∫
Ω
𝜕𝛼2L2 𝛿𝛼2 = −

∫
Ω
𝛼𝑑

1∇(𝜕𝛼2L2) · 𝜼 −
∫
Ω
𝜕𝛼2L2 𝛿𝛼1, (2.219)

𝛿A𝑚𝑘 =
∫
Ω
𝜕𝑚𝑘L𝑘 𝛿𝑚𝑘 =

∫
Ω
𝑚𝑘∇(𝜕𝑚𝑘L𝑘) · 𝜼, (2.220)

𝛿A𝜌𝑑
1
=

∫
Ω
−𝜕𝜌𝑑

1
(L𝑑

1 + L𝑣𝑖𝑏
1 + L𝑣𝑖𝑏

2 ) ∇𝜌𝑑1 · 𝜼, (2.221)

𝛿A (𝑆0 )𝑖 =
∫
Ω
−𝜕(𝑆0 )𝑖L𝑣𝑖𝑏

𝑖 ∇(𝑆0)𝑖 · 𝜼, (2.222)

𝛿A𝑛𝑖 =
∫
Ω
𝜕𝑛𝑖L𝑣𝑖𝑏

𝑖 𝛿𝑛𝑖 =
∫
Ω
𝑛𝑖∇(𝜕𝑛𝑖L𝑣𝑖𝑏

𝑖 ) · 𝜼, (2.223)

𝛿A𝜒𝑖 =
∫
Ω
𝜕𝜒𝑖L𝑣𝑖𝑏

𝑖 𝛿𝜒𝑖 , (2.224)

𝛿A ¤𝜒𝑖 =
∫
Ω
𝐾 ¤𝜒𝑖 𝛿 ¤𝜒𝑖 =

∫
Ω
𝐾 ¤𝜒𝑖 (𝜕𝑡 (𝛿𝜒𝑖) + 𝒖 · ∇(𝛿𝜒𝑖) + 𝛿𝒖 · ∇𝜒𝑖), (2.225)

= −
∫
Ω
(𝜕𝑡𝐾 ¤𝜒𝑖 + ∇ · (𝐾 ¤𝜒𝑖𝒖))𝛿𝜒𝑖 (2.226)

−
∫
Ω
(𝜕𝑡 (𝐾 ¤𝜒𝑖∇𝜒𝑖) + ∇ · ((𝐾 ¤𝜒𝑖∇𝜒𝑖)𝒖) + 𝐾 ¤𝜒𝑖∇𝜒𝑖 · ∇𝒖) · 𝜼, (2.227)

𝛿A𝒖 =
∫
Ω
− (𝜕𝑡𝑲 + ∇ · (𝑲 ⊗ 𝒖) + 𝑲 · ∇𝒖) · 𝜼. (2.228)

We denote L∗
𝑘 = 𝑚𝑘𝜕𝑚𝑘L𝑘 − L𝑘 , L𝑣𝑖𝑏,∗

𝑖 = 𝑛𝑖𝜕𝑛𝑖L𝑣𝑖𝑏
𝑖 − L𝑣𝑖𝑏

𝑖 and L∗ = L∗
1 + L∗

2 + L𝑑,∗
1 such that the variation of the

action related to the mixture Lagrangian reads

𝛿A =
∫

𝑨𝜼 · 𝜼 + 𝑨𝛼1𝛿𝛼1 + 𝑨𝜒1𝛿𝜒1 + 𝑨𝜒2𝛿𝜒2, (2.229)
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with
𝑨𝛼1 = 𝜕𝛼1L1 − 𝜕𝛼2L2,

𝑨𝜒𝑖 = 𝜕𝜒𝑖L𝑣𝑖𝑏
𝑘 − 𝜕𝑡𝐾 ¤𝜒𝑖 − ∇ · (𝐾 ¤𝜒𝑖𝒖),

𝑨𝜼 = −
(
𝜕𝑡𝑲 + ∇ · (𝑲 ⊗ 𝒖) − ∇(L∗ − 𝛼𝑑

1 𝜕𝛼2L2) − 𝑨𝛼1∇𝛼1 − 𝑨𝜒1∇𝜒1 − 𝑨𝜒2∇𝜒2

)
,

(2.230)

and L𝑣𝑖𝑏,∗
𝑖 := 𝑛𝑖𝜕𝑛𝑖L𝑣𝑖𝑏

𝑖 − L𝑣𝑖𝑏
𝑖 . Nullifying the variations gives the following system


𝜕𝑡𝑲 + ∇ · (𝑲 ⊗ 𝒖) − ∇(L∗ − 𝛼𝑑

1 𝜕𝛼2L2) = 0,
𝜕𝜒1L𝑣𝑖𝑏

1 − 𝜕𝑡𝐾 ¤𝜒1 − ∇ · (𝐾 ¤𝜒1𝒖) = 0,
𝜕𝜒2L𝑣𝑖𝑏

2 − 𝜕𝑡𝐾 ¤𝜒2 − ∇ · (𝐾 ¤𝜒2𝒖) = 0,
𝜕𝛼1L1 − 𝜕𝛼2L2 = 0.

(2.231)

Evaluating the derivatives of the Lagrangian as defined in (2.153) yields

𝑲𝒖 = 𝜕𝒖L = 𝜌𝒖, L∗ = −𝛼1𝑝1 − 𝛼2𝑝2, 𝜕𝛼2L2 = 𝑝2, 𝜕𝛼1L1 = 𝑝1,

𝜕𝜒𝑖L𝑣𝑖𝑏
𝑖 = −𝛾𝑛𝑖 (𝑆0)𝑖𝜒𝑖 , 𝐾 ¤𝜒𝑖 = 𝜕 ¤𝜒𝑖L𝑣𝑖𝑏

𝑖 = 𝜈𝑛𝑖 (𝑆0)5/2
𝑖 ¤𝜒𝑖 .

(2.232)

Finally, with the constraints and the relation 𝐷𝑡 𝜒𝑖 = ¤𝜒𝑖, we write the final system in its conservative form

𝜕𝑡𝑚𝑘 +∇ · (𝑚𝑘𝒖) = 0, 𝑘 = 1, 2, 1𝑑 ,
𝜕𝑡𝑛𝑖 +∇ · (𝑛𝑖𝒖) = 0, 𝑖 = 1, 2,
𝜕𝑡 (𝑛𝑖 (𝑆0)𝑖) +∇ · (𝑛𝑖 (𝑆0)𝑖𝒖) = 0, 𝑖 = 1, 2,
𝜕𝑡 (𝑛𝑖 ¤𝜒𝑖) +∇ · (𝑛𝑖 ¤𝜒𝑖𝒖) = −𝜔2

𝑖 𝑛𝑖𝜒𝑖 , 𝑖 = 1, 2,
𝜕𝑡 (𝑛𝑖𝜒𝑖) +∇ · (𝑛𝑖𝜒𝑖𝒖) = 𝑛𝑖 ¤𝜒𝑖 , 𝑖 = 1, 2,
𝜕𝑡 (𝜌𝒖) +∇ · (𝜌𝒖 ⊗ 𝒖 + 𝑝𝑰) = 0,

(2.233)

where 𝑝 := 𝑝1 = 𝑝2 and 𝜔2
𝑖 = 𝛾/𝜈(𝑆0)−3/2

𝑖 .

2.E The monodisperse case
We consider a monodisperse closer of the synchronous oscillating droplet kinetic model. In this case, only four geomet-
ric quantities are required, two related to statics and two related to dynamics. We choose (Σ 〈𝐺〉 , 𝛼𝑑

1 , (ΔΣ⊥), (Δ𝑡Σ⊥))
or equivalently (𝑛𝑑1 , 𝛼𝑑

1 , (ΔΣ⊥), (Δ𝑡Σ⊥)). We then obtain the following quadrature in terms of the geometric quantities,

𝑛(𝒙, 𝑡, 𝑆0, 𝜒̂, ¤̂𝜒) = 𝑛𝑑1𝛿(𝑆0 − 𝑆0)𝛿( 𝜒̂ − 𝜒)𝛿( ¤̂𝜒 − ¤𝜒),

𝑆0 =
(6√𝜋𝛼𝑑

1 )2/3

(𝑛𝑑1 )2/3 , 𝜒 = 2
√

2
5

(ΔΣ⊥)
(𝑛𝑑1 )1/3 (6√𝜋𝛼𝑑

1 )2/3 , ¤𝜒 = 2
√

2
5

(Δ𝑡Σ⊥)
(𝑛𝑑1 )1/3 (6√𝜋𝛼𝑑

1 )2/3 .
(2.234)

It can also be written in terms of moments with

𝑛𝑑1 = 𝑀 𝜉
0,0,0, 𝑆0 = ©­«

𝑀
𝜉
3/2,0,0

𝑀
𝜉
0,0,0

ª®¬
2/3

, 𝜒 =
𝑀

𝜉
1,1,0

(𝑀 𝜉
0,0,0)1/3 (𝑀 𝜉

3/2,0,0)2/3
, ¤𝜒 =

𝑀
𝜉
1,0,1

(𝑀 𝜉
0,0,0)1/3 (𝑀 𝜉

3/2,0,0)2/3
. (2.235)



CHAPTER 3
Two-scale modelling

In complex multi-scale flows, typically when the regime transitions from a separated regime to a disperse regime, the
interface goes through a mixed regime, where several length-scales coexist. Such flows are observed in atomization
(Marmottant and Villermaux, 2004; Fuster et al., 2009; Shinjo and Umemura, 2010; Chesnel et al., 2011; Hoarau et al.,
2023), dam breaks (Koshizuka and Oka, 1996) or gaseous jets impacts on liquid surfaces (Banks and Chandrasekhara,
1963; Haegeman et al., 2024). The mixed regime is inherently difficult to model as it involves a wide spectrum of
length-scales and a variety of phenomena. A more common approach consists in bypassing the modelling of this
regime through the transition of a separated model to a disperse model as those presented in Chapters 1 and 2. With
such an approach, the interface is resolved in the separated regime that we call large-scale, and it is modelled in a
small-scale regime is the disperse regime.

A first approach to model such transitions would be to couple two different models, each adapted to one of the
two regimes. The two models then exchange mass, momentum and energy via Eulerian-Lagrangian coupling (Vallet
et al., 2001; Zuzio et al., 2013) or Eulerian-Eulerian coupling (Le Touze et al., 2020), either through a virtual interface
or everywhere in the domain. In both cases, the coupling is challenging as it requires transferring seamlessly mass
from one model to another. Indeed, such transfer is intrinsically difficult as it requires an unphysical appearance, or
disappearance, of one of the two phases. Furthermore, the mathematical properties associated with such coupling
are rarely studied and must be compatible with the second principle of thermodynamics.

The main idea of this chapter is to pursue a second approach through the derivation of a unified model which is
able to describe the two regimes within the same set of equations. Some preliminary ideas of such approach have been
proposed in Devassy et al. (2015) to account for primary atomization, but the model was mainly proposed through
heuristics, and the dissipation of the coupling was not studied. First steps towards the derivation of such a unified
model with Hamilton’s SAP were proposed in Cordesse (2020); Di Battista (2021) with the addition of geometric
quantities representing the small-scale dynamics. Here, we introduce a two-scale mixture model where two models
coexist with independent volume fractions: large-scale volume fractions for a multi-fluid DIM in the separated regime
and a small-scale volume fraction for a multi-fluid disperse model. We take here full advantage of the flexibility of
Hamilton’s SAP as the physics of both models are combined in a unified model by combining their energies into a
unique Lagrangian energy. Remark that this approach sets a particular disperse regime for the small-scale and thus
differs from the statistical approach of Cordesse et al. (2019) where the small scale is defined using a length-scale
threshold in the statistical distribution of the interface length-scales. However, such a threshold is recovered as a
regularizing parameter of the large-scale interface in a mass transfer between the two scales. This mass transfer
proposes here an original coupling between the models of each scale by both regularizing the large-scale interface and
preserving the energy of the flow. It has led to the two following contributions :

• For the two-scale modelling approach: Loison, Arthur, Teddy Pichard, Samuel Kokh, and Marc Massot. “
Two-scale modelling of two-phase flows based on the Stationary Action Principle and a Geometric Method Of
Moments”. arXiv, 2023. https://doi.org/10.48550/arXiv.2308.15641.

• For the regularization process: Loison, Arthur, Samuel Kokh, Teddy Pichard, and Marc Massot. “A unified
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two-scale gas-liquid multi-fluid model with capillarity and interface regularization through a mass transfer
between scales ”. arXiv, 2024. https://doi.org/10.48550/arXiv.2401.09169.

The two-scale mixture is presented in Section 3.1 where an atomization process is assumed. Thus, both a separated
gas-liquid large-scale model and a disperse small-scale model of liquid inclusions are combined in a single set of
conservation laws using Hamilton’s SAP. Then, in Section 3.2, mass exchange is defined between the two scales while
ensuring both good mathematical properties of the model (supplementary conservation equation and hyperbolicity)
and its compliance with the second principle of thermodynamics. The parameters characterizing the mass transfer
between the separated and the disperse regime are identified. They are showed to model some physical mechanisms
comparable to the primary break-up process. Finally, in order to keep the large-scale model in a separated regime,
we introduce, in Section 3.3, a regularization process which detects the location where the curvature of the large-scale
interface is considered too high to be accurately represented with a multi-fluid DIM. A length-scale is then introduced
at the modelling stage to split the length-scales of the large-scale separated regime from the ones of the small-scale
disperse regime. Such a regularization is enabled by a modification of the local Laplace equilibrium which triggers an
energy-conservative mass transfer from the liquid large-scale phase to the small-scale while being energy-conservative.

Such approach shares a similar goal as two-phase Large-Eddy Simulations (Herrmann, 2015; Fleau, 2017) where
the small length-scales are gathered in a small-scale model. However, the two-scale approach presented in this chapter
relies on the a priori modelling of the small scales whereas LES small-scale models are obtained a posteriori when
closing the filtered terms of the dynamics. This technique is usually more suited for turbulence modelling.
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3.1 Derivation of two-scale unified models
In this section, we introduce two-scale unified models by combining the models derived in both the separated regime
(see Chapter 1) and the disperse regime (see Chapters 1 and 2). In order to do so, the energies introduced in their
respective Lagrangian are here combined in a single one.

We start by introducing in Section 3.1.1 the notion of a two-scale mixture along with some assumptions retained
in this chapter. Then, we continue in Section 3.1.2 with the derivation of a first two-scale model without capillarity
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based on separated Models 3 and 4 and disperse Model 8. We finish by the derivation of two-scale models with
capillarity accounted at both scales in Section 3.1.3, thus extending the separated-regime capillarity Models 5 and 6
and the polydisperse Model 12.

3.1.1 Definition of the two-scale mixture
The unified modelling approach relies on the definition of a two-scale two-phase mixture where we account for the
presence of both large-scale and small-scale phases at the same location. This artificial mixture follows the same
philosophy of the two-fluid mixture of immiscible fluids. This allows a smooth and gradual transition from the
separated model to the disperse model. Let us recall that this multi-fluid diffuse interface approach does not involve
here any preset length-scale for the interface thickness which is not comparable to the physical thickness introduced
in second-gradient DIM.

To fix the ideas, from now on, we will focus on an atomization process where a gas-liquid large-scale mixture in
the separated regime evolves towards a disperse regime with a spray of liquid droplets (see Figure 3.1.1). Therefore,

Figure 3.1.1: Schematic view of an atomization process. The liquid is injected from the nozzle on the left in a
separated regime. The liquid core then destabilizes to form a mixed regime. Finally, a disperse regime is observed
away from the liquid core. The dashed line delimits the zone where the one-velocity assumption can be considered
adequate.

we also make the following assumptions :

• all phases have the same mean velocity; (H3a)
• the small-scale liquid phase is incompressible; (H3b)
• each phase is isothermal with barotropic equations of state. (H3c)

These assumptions correspond to the ones of the separated Models 3 and 4 and the disperse Model 8. The one-
velocity assumption is here retained for clarity purposes and is acceptable in the immediate surrounding of the liquid
core (see Figure 3.1.1). It would however be possible to add a second velocity as proposed in Models 10 and 11.

Following Section 1.3.1, we denote with the subscript 𝑘 = 1 the liquid and 𝑘 = 2 the gaseous phase of the
separated large-scale model. Similarly to Section 1.4.1, an additional superscript 𝑑 identifies the small-scale disperse
liquid phase as a third phase. Following (H3c), each large-scale fluid 𝑘 = 1, 2 is equipped with a barotropic equation
of state of the form 𝜌𝑘 ↦→ 𝑒𝑘 (𝜌𝑘), where 𝜌𝑘 and 𝑒𝑘 are the density and the internal energy of the phase 𝑘 = 1, 2. The
pressure 𝑝𝑘 of the large scale phase 𝑘 = 1, 2 is then defined by 𝑝𝑘 = 𝜌2

𝑘𝑒
′
𝑘 (𝜌𝑘). We assume that 𝑝′𝑘 (𝜌𝑘) > 0 so that

the sound speed 𝑐𝑘 associated with the phase 𝑘 = 1, 2 is 𝑐𝑘 =
√
𝑝′𝑘 (𝜌𝑘). With 𝛼𝑘 the volume fraction of the phase
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𝑘 = 1, 2, 1𝑑, we consider a two-scale mixture such that it obeys the volume constraint,

𝛼1 + 𝛼2 + 𝛼𝑑
1 = 1, (3.1)

and its density 𝜌 is obtained from the effective phase densities 𝑚𝑘 := 𝛼𝑘𝜌𝑘 ,

𝑚1 + 𝑚2 + 𝑚𝑑
1 = 𝜌. (3.2)

Moreover, we introduce the large-scale volume fractions for 𝑘 = 1, 2

𝛼𝑘 =
𝛼𝑘

1 − 𝛼𝑑
1
. (3.3)

The large-scale volume fractions allow to symmetrize the roles of the large-scale phases regarding the modelling of
the interface (see Figure 3.1.2). Thus, the presence of the small scale is not particularly associated with any of the
two phase preferably but to the large-scale mixture symmetrically. Eventually, the small scale is here carried by
the gaseous phase, but this symmetric construction of the large-scale volume fraction allows the large-scale model
interface not to be impacted. Let us underline here that the coexistence of both the separated regime and disperse
regime is confined to the immediate surrounding of the interface and serves as a modelling framework to allow the
transition from the separated regime to the disperse one (see Figure 3.1.2). This approach notably differs from the
previous works of Cordesse (2020); Di Battista (2021) where the small-scale model was defined as the scales present
below a filtered threshold with additional geometric quantities but not an independent volume fraction as we propose
here following also some ideas of Devassy et al. (2015). However, we propose in the following sections an original
variational derivation of such a system along with the assertion of the mathematical properties of the set of equations,
including when inter-scale transfer terms are added (cf. Section 3.2).

α1

α2

α1

α2

α1
d

Figure 3.1.2: Left: Schematic view of the transition within the mixed regime from a liquid core in a separated regime
and to disperse liquid inclusions. Right: Diffuse schematic representation of the transition showed on the left. The
diffuse interface is represented through the evolution of the volume fractions of the two-scale mixture. Note the
symmetrized role of the large-scale volume fractions and the absence of explicit interface width in the model.

3.1.2 The minimal two-scale model without capillarity
For the derivation of the first two-scale model, we make the simplifying assumption :

• capillarity effects are negligible. (H3d)

3.1.2.1 Energies and constraints

Let us then define the energies and constraints associated with the mixture. Denoting 𝑌𝑘 the mass fraction, the
specific internal energy 𝑒 of the two-phase material is defined by

𝑒 = 𝑌1𝑒1 (𝜌1) + 𝑌2𝑒2 (𝜌2) + 𝑌 𝑑
1 𝑒1 (𝜌𝑑1 ). (3.4)
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As we considered here a unique velocity 𝒖 describing the mixture

𝒖 := 𝒖1 = 𝒖2 = 𝒖𝑑
1 , (3.5)

such that the mass conservation property of each phase reads

𝜕𝑡𝑚𝑘 + ∇ · (𝑚𝑘𝒖) = 0, for 𝑘 = 1, 2, 1𝑑 . (3.6)

Summing these equations provides the total mass conservation equation

𝜕𝑡 𝜌 + ∇𝒙 · (𝜌𝒖) = 0. (3.7)

Moreover, the incompressibility of the small-scale liquid phase yields

𝐷𝑡 𝜌
𝑑
1 = 0, 𝜕𝑡𝛼

𝑑
1 + ∇ · (𝛼𝑑

1𝒖) = 0. (3.8)

We set the kinetic and potential energies of the phase 𝑘 as follows

𝐸 𝑘𝑖𝑛
𝑘 := 1

2
𝑚𝑘𝒖

2, 𝐸 𝑝𝑜𝑡
𝑘 := 𝑚𝑘𝑒𝑘

(
𝑚𝑘

𝛼𝑘

)
, (3.9)

and the mixture kinetic and potential energies are ∑
𝑘 𝐸

𝑘𝑖𝑛
𝑘 and ∑

𝑘 𝐸
𝑝𝑜𝑡
𝑘 .

3.1.2.2 Hamilton’s Stationary Action Principle

Let us now use Hamilton’s SAP for the derivation of the model. We define the Lagrangian energy L𝑘 = 𝐸 𝑘𝑖𝑛
𝑘 − 𝐸 𝑝𝑜𝑡

𝑘
of each phase 𝑘 and a mixture Lagrangian energy L =

∑
𝑘 L𝑘 .

Thereby, the Lagrangian associated with our system reads

L
(
𝛼1, 𝑚1, 𝛼2, 𝑚2, 𝑚

𝑑
1 , 𝜌

𝑑
1 , 𝒖

)
=

1
2
𝑚1𝒖

2 − 𝑚1𝑒1

(
𝑚1
𝛼1

)
︸                      ︷︷                      ︸

L1
(
𝛼1 ,𝑚1 ,𝒖

)
+ 1

2
𝑚2𝒖

2 − 𝑚2𝑒2

(
𝑚2
𝛼2

)
︸                      ︷︷                      ︸

L2
(
𝛼2 ,𝑚2 ,𝒖

)
+ 1

2𝑚
𝑑
1𝒖

2 − 𝑚𝑑
1𝑒1 (𝜌𝑑1 )︸                    ︷︷                    ︸

L𝑑
1

(
𝑚𝑑

1 ,𝜌
𝑑
1 ,𝒖

) . (3.10)

The dependency on 𝜌𝑑1 = 𝑚𝑑
1/𝛼𝑑

1 was added to take advantage of the constraint 𝐷𝑡 𝜌
𝑑
1 = 0 in the derivation with

Hamilton’s SAP. Hamilton’s SAP provides the momentum equation by minimizing the Lagrangian’s action, i.e. the
integral of the Lagrangian over a space domain Ω𝒙 and a time interval [0, 𝑇]. We also note Ω̄ = Ω𝒙 × [0, 𝑇]. This
minimization takes place under the mass conservation and incompressibility constraints. Regarding the volume
fraction, either 𝛼1 or 𝛼𝑑

1 can be considered as a free variable. This choice is equivalent here, and, for comparison
purposes with the derivation of the barotropic model in the separated regime in Section 1.3.1, we choose 𝛼1 as the free
variable. The choice between the two quantities will however have its significance in the next section where capillarity
is accounted for. Then, we compute the variation of the action A associated with the mixture’s Lagrangian. It yields

𝛿A = −
∫
Ω̄
(𝜕𝑡𝑲 + ∇ · (𝑲 ⊗ 𝒖) − ∇(L∗ − 𝛼𝑑

1 𝜕𝛼2L2) − (𝜕𝛼1L1 − 𝜕𝛼2L2)∇𝛼1) · 𝜼 +
∫
Ω̄
(𝜕𝛼1L1 − 𝜕𝛼2L2) 𝛿𝛼1. (3.11)

Hamilton’s SAP then requires that 𝛿A = 0 which leads to the following two equations{
𝜕𝑡𝑲 + ∇ · (𝑲 ⊗ 𝒖) − ∇(L∗

1 + L∗
2 + L𝑑∗

1 − 𝛼𝑑
1 𝜕𝛼2L2) = 0,

𝜕𝛼1L1 − 𝜕𝛼2L2 = 0,
(3.12)

where 𝑲 = 𝜕𝒖L, L∗
𝑘 = 𝑚𝑘 (𝜕𝑚𝑘L𝑘) − L𝑘 . Evaluating the partial derivatives of the mixture’s Lagrangian then gives

𝑲 = 𝜌𝒖, L∗
1 = −𝛼1𝑝1, 𝜕𝛼1L1 = 𝑝1, L𝑑,∗

1 = 0, L∗
2 = −𝛼2𝑝2, 𝜕𝛼2L2 = 𝑝2. (3.13)
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Including the mass conservation and incompressibility constraints, we obtain the two-scale Model 22.

Model 22 (Two-scale model with incompressible small-scale and at pressure equilibrium)

With 𝑚𝑘 = 𝛼𝑘𝜌𝑘 the phase effective densities of the large-scale liquid phase 𝑘 = 1, gaseous phase 𝑘 = 2
and small-scale liquid phase 𝑘 = 1𝑑, the mixture density 𝜌 = 𝑚1 + 𝑚2 + 𝑚𝑑

1 , 𝑝𝑘 the large-scale phase
pressures, 𝛼𝑘 the volume fractions, 𝒖 the mixture velocity, the flow is governed by

𝜕𝑡𝑚1+∇ · (𝑚1𝒖)= 0,
𝜕𝑡𝑚2+∇ · (𝑚2𝒖)= 0,
𝜕𝑡𝑚

𝑑
1+∇ · (𝑚𝑑

1𝒖)= 0,
𝜕𝑡𝛼

𝑑
1 +∇ · (𝛼𝑑

1𝒖) = 0,
𝜕𝑡 (𝜌𝒖) + ∇ · (𝜌𝒖 ⊗ 𝒖 + 𝑝𝑰) = 0,

with 𝑝 := 𝑝1

(
𝑚1
𝛼1

)
= 𝑝2

(
𝑚1

1−𝛼1−1𝛼𝑑
1

)
.

Model 22 admits a supplementary conservation equation,

𝜕𝑡H + ∇ · ((H + 𝑝)𝒖) = 0, (3.14)

where the total energy H = 𝜌‖𝒖‖2 + 𝑚1𝑒1 + 𝑚2𝑒2 + 𝑚𝑑
1𝑒

𝑑
1 is convex with respect to (𝑚1, 𝑚2, 𝑚

𝑑
1 , 𝛼

𝑑
1 , 𝜌𝒖) and thus

is a mathematical entropy. The model is also showed hyperbolic for an arbitrary direction 𝜔, with the following
eigenvalues,

𝒖 · 𝜔, 𝒖 · 𝜔 − 𝑐𝑑𝑊 , 𝒖 · 𝜔 + 𝑐𝑑𝑊 , (3.15)
with the modified Wallis sound velocity,

(𝑐𝑑𝑊 )2 =
𝑐2
𝑊

(1 − 𝛼𝑑
1 )2

, (𝑐2
𝑊 )−1 = 𝜌

(
𝛼1

𝜌1𝑐
2
1
+ 𝛼2

𝜌2𝑐
2
2

)
, (3.16)

and 𝒖 · 𝜔 of multiplicity 5.
Then, let us derive the associated model with pressure relaxation similarly to Models 3 and 4 in the separated

regime. We would like to reproduce the symmetric roles of the large-scale phases with respect to the definition of
the interface. Therefore, such relaxation associated with the large-scale process of pressure balancing through the
large-scale interface is expected to be similarly symmetric. Therefore, we consider the large-scale volume fractions
defined in (3.3) to parameter the pressure relaxation,

𝐷𝑡𝛼1 =
1
𝜇
(𝑝1 − 𝑝2), (3.17)

where 𝜇 > 0 has the dimension of a dynamic viscosity. Remark that another relaxation process 𝐷𝑡𝛼1 = 𝜇−1 (𝑝1 − 𝑝2)
is also showed to be dissipative but does not preserve the symmetric roles of the large-scale phases with respect to
the pressure balancing process. Introducing these two pressures prevents the use of the equilibrium pressure in the
momentum flux. Consequently, we look for a new momentum equation that we choose to express as follows,

𝜕𝑡 (𝜌𝒖) + ∇ · (𝜌𝒖 ⊗ 𝒖 + 𝑝𝑰) = 0, (3.18)

where 𝑝 is chosen to provide a mathematical entropy extension of Model 22 as defined by Definition 4, and such that
it yields signed dissipation of the mathematical H which reads

𝜕𝑡H + ∇ · ((H + 𝑝)𝒖) = (𝑝 − 𝛼1𝑝1 − 𝛼2𝑝2)∇ · 𝒖 − 𝜇(1 − 𝛼𝑑
1 )(𝐷𝑡𝛼1)2. (3.19)

Therefore, choosing 𝑝 := 𝛼1𝑝1 + 𝛼2𝑝2 satisfies the two conditions we stated above, and we obtain the Model 23.
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Model 23 (Two-scale model with incompressible small-scale and pressure relaxation)

With 𝑚𝑘 = 𝛼𝑘𝜌𝑘 the phase effective densities of the large-scale liquid phase 𝑘 = 1, gaseous phase 𝑘 = 2
and small-scale liquid phase 𝑘 = 1𝑑, the mixture density 𝜌 = 𝑚1 + 𝑚2 + 𝑚𝑑

1 , 𝑝𝑘 the large-scale phase
pressures, 𝛼𝑘 the volume fractions, 𝛼𝑘 the large-scale volume fractions, 𝒖 the mixture velocity, the flow
is governed by 

𝜕𝑡𝑚𝑘+∇ · (𝑚𝑘𝒖)= 0, for 𝑘 = 1, 2, 1𝑑 ,
𝜕𝑡𝛼

𝑑
1 +∇ · (𝛼𝑑

1𝒖)= 0,
𝜕𝑡 (𝜌𝒖) + ∇ · (𝜌𝒖 ⊗ 𝒖 + 𝑝𝑰) = 0,
𝐷𝑡𝛼1 = 𝜇−1 (𝑝1 − 𝑝2),

with 𝑝 = 𝛼1𝑝1 + 𝛼2𝑝2.

This latter model is also showed hyperbolic with, for an arbitrary direction 𝜔, the following eigenvalues,

𝒖 · 𝜔, 𝒖 · 𝜔 − 𝑐𝑑𝐹 , 𝒖 · 𝜔 + 𝑐𝑑𝐹 , with (𝑐𝑑𝐹)2 =
𝑐2
𝐹

(1 − 𝛼𝑑
1 )2

, 𝑐2
𝐹 = 𝑌1𝑐

2
1 + 𝑌2𝑐

2
2, (3.20)

with 𝒖 · 𝜔 of multiplicity 6.

3.1.2.3 Discussion of the two-scale models

The Models 22 and 23 fulfil our first goal of proposing models that describe simultaneously separated and disperse
regimes, and consequently allows a transition between these two regimes. This mixture couples the different phases
with a dissipative pressure relaxation at the large scale while the large-scale phases are coupled with the small-scale
one through the incompressibility constraint on its volume occupancy. Let us discuss now the consequences of such a
coupling on the mathematical and physical properties of these systems, with a particular interest in their separated
regime limit, when 𝛼𝑑

1 → 0, and disperse regime limit, when 𝛼1 → 0.
In the region where both the separated and the disperse model coexist, we assess the model hyperbolicity along

with a supplementary equation of conservation for a mathematical entropy. From the hyperbolicity study, we notably
observe that the presence of the small-scale increases the sound speed by a factor (1 − 𝛼𝑑

1 )−1 in the transition region
between the separated and disperse regime. This phenomenon is confined to a very thin region of the flow and only
impacts the acoustics in the neighbourhood of the interface.

In the separated regime limit 𝛼𝑑
1 → 0, the Models 22 and 23 formally tend towards separated Models 3 and 4

derived in Section 1.3. In the disperse limit 𝛼1 → 0, both models reduce the one-velocity disperse Model 8. Note
that this latter disperse regime limit is however very limited to the surrounding of the interface as the modelling of
the disperse regime requires at least two independent velocities: one for the carrier phase and one for the inclusions
as proposed in the Section 1.4.3

3.1.3 Two-scale modelling with capillarity
In this section, we introduce the capillarity phenomena at both scales. The objective here is twofold: first, we study
how the small-scale phase impacts the large-scale capillarity modelling proposed in Section 1.3.2, second, we underline
the difference of interface modelling between each scale, whether it models a separated or a disperse regime.

3.1.3.1 Interfacial area density modelling at both scales

In order to write the capillarity energies for the subsequent derivation with Hamilton’s SAP, we need first to estimate
the IAD at both scales.

At the large scale, the IAD estimator defined by (1.112) has lost its symmetry with respect to each of the large-
scale phases because of the presence of the small-scale as depicted in Figure 3.1.2. Thus, we now use the norm of
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the gradient of the large-scale fraction ‖∇𝛼1‖ which is showed to be a volume-based estimator of the IAD (Sethian,
1999). We end up with the mixture’s internal energy 𝜌𝑒

𝜌𝑒 = 𝑚1𝑒1 (𝜌1) + 𝑚2𝑒2 (𝜌2) + 𝑚𝑑
1𝑒1 (𝜌𝑑1 ) + 𝜎‖∇𝛼1‖, (3.21)

where 𝜎 is the capillarity coefficient.
At small-scale, we place ourselves in the same context of a polydisperse spray of incompressible liquid droplets as

Model 12 and the following conservation constraints are obtained for the following small-scale geometric quantities,
𝜕𝑡𝛼

𝑑
1+∇ · (𝛼𝑑

1𝒖)= 0,
𝜕𝑡Σ +∇ · (Σ𝒖) = 0,
𝜕𝑡 (Σ 〈𝐻〉)+∇ · (Σ 〈𝐻〉 𝒖)= 0,
𝜕𝑡 (Σ 〈𝐺〉)+∇ · (Σ 〈𝐺〉 𝒖)= 0,

(3.22)

with Σ the small-scale IAD, Σ 〈𝐻〉, Σ 〈𝐺〉 the small-scale surface-weighted mean curvature densities. The capillarity
density of energy associated with the small-scale is then 𝜎Σ.

We have illustrated here the fundamental difference between the large-scale separated model and the small-scale
disperse model. The interface geometry of the former is described through the field of its colour function and its
derivatives, e.g. ‖∇𝛼1‖ to estimate the IAD or

𝐻 := −∇ ·
(

∇𝛼1
‖∇𝛼1‖

)
, (3.23)

to estimate the large-scale mean curvature (Sethian, 1999). The geometry of the latter disperse model is locally
described via a handful of statistical moments as showed in Chapter 2.

3.1.3.2 Derivation of the model with Hamilton’s SAP

The energy of the two-scale mixture is gathered into the following Lagrangian

L := 1
2
𝑚1𝒖

2 − 𝑚1𝑒1

(
𝑚1
𝛼1

)
︸                      ︷︷                      ︸

L1

+ 1
2
𝑚2𝒖

2 − 𝑚2𝑒2

(
𝑚2
𝛼2

)
︸                      ︷︷                      ︸

L2

−𝜎‖∇𝛼1‖︸      ︷︷      ︸
L𝑐𝑎𝑝

+ 1
2
𝑚𝑑

1𝒖
2 − 𝑚𝑑

1𝑒1

(
𝜌𝑑1

)
− 𝜎Σ︸                              ︷︷                              ︸

L𝑑
1

.
(3.24)

Then, using 𝛼𝑘 = 𝛼𝑘 (1−𝛼𝑑
1 ) for 𝑘 = 1, 2 and 𝑧 = Σ/𝑚𝑑

1 , we make the Lagrangian (3.24) depend only on the conserved
quantities 𝑏𝑐 ∈ {𝑚1, 𝑚2, 𝑚

𝑑
1 , 𝛼

𝑑
1 }, the advected quantities 𝑏𝑎 ∈ {𝑧, 𝜌𝑑1 }, and 𝒖, 𝛼1, 𝛼2, ∇𝛼1,

L =L1 (𝑚1, 𝛼1, 𝛼
𝑑
1 , 𝒖) + L2 (𝑚2, 𝛼1, 𝛼

𝑑
1 , 𝒖) + L𝑐𝑎𝑝 (‖∇𝛼1‖) + L𝑑

1 (𝑚𝑑
1 , 𝜌

𝑑
1 , 𝑧, 𝒖). (3.25)

Let us denote L∗
𝑘 := 𝑚𝑘𝜕𝑚𝑘L𝑘 − L𝑘 , for 𝑘 = 1, 2, 1𝑑, 𝑫𝑇 := 𝜕∇𝛼1L𝑐𝑎𝑝, and 𝑲𝑇 := 𝜕𝒖L. The derivation of the model

is very similar to the one of Model 5 Using the variation formula for constrained variables given in Section 1.2.2.2,
the variation of the action reads

𝛿A =
∫
Ω
−

{
𝜕𝑡𝑲 + ∇ ·

[
𝑲 ⊗ 𝒖 − (L∗

1 + L∗
2 + L𝑑,∗

1 − L𝑐𝑎𝑝 + 𝛼𝑑
1 𝜕𝛼𝑑

1
(L1 + L2))𝑰 − ∇𝛼1 ⊗ 𝑫

]
− (𝜕𝛼1L1 − 𝜕𝛼2L2 − ∇ · 𝑫)∇𝛼1

}
· 𝜼 +

(
𝜕𝛼1L1 − 𝜕𝛼2L2 − ∇ · 𝑫

)
𝛿𝛼1,

(3.26)

where 𝑰 is the identity matrix. Then, Hamilton’s SAP, i.e. 𝛿A = 0 for any variation of the trajectories 𝜼 and the
large-scale volume fraction 𝛿𝛼1, yields{

𝜕𝑡𝑲 + ∇ ·
[
𝑲 ⊗ 𝒖 − (L∗

1 + L∗
2 + L𝑑,∗

1 − L𝑐𝑎𝑝 + 𝛼𝑑
1 𝜕𝛼𝑑

1
(L1 + L2))𝑰 − ∇𝛼1 ⊗ 𝑫

]
= 0,

𝜕𝛼1L1 − 𝜕𝛼2L2 − ∇ · 𝑫 = 0.
(3.27)
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Evaluating the derivatives of Lagrangian gives

𝑲 = 𝜌𝒖, 𝑫 = −𝜎 ∇𝛼1
‖∇𝛼1‖

, L∗
1 = −𝛼1𝑝1, L∗

2 = −𝛼2𝑝2, L𝑑,∗
1 = 0,

𝜕𝛼𝑑
1
L𝑘 = −𝛼𝑘 𝑝𝑘 , 𝜕𝛼𝑘

L𝑘 = (1 − 𝛼𝑑
1 )𝑝𝑘 , for 𝑘 = 1, 2.

(3.28)

The full model is reported in Model 24.

Model 24 (Two-scale model with capillarity and a small-scale polydisperse spray)

With 𝑚𝑘 = 𝛼𝑘𝜌𝑘 the phase effective densities of the large-scale liquid phase 𝑘 = 1, gaseous phase 𝑘 = 2
and small-scale liquid phase 𝑘 = 1𝑑, 𝜌 = 𝑚1 + 𝑚2 + 𝑚𝑑

1 the mixture density, 𝑝𝑘 the large-scale phase
pressures, 𝛼𝑘 the large-scale volume fractions, 𝒖 the mixture velocity, Σ the small-scale IAD, Σ 〈𝐻〉,
Σ 〈𝐺〉, the small-scale mean and Gauss curvatures, the flow is governed by

𝜕𝑡𝑚𝑘 +∇ · (𝑚𝑘𝒖) =0, 𝑘 = 1, 2, 1𝑑 ,
𝜕𝑡𝛼

𝑑
1 +∇ · (𝛼𝑑

1𝒖) =0,
𝜕𝑡Σ 〈𝑋〉 +∇ · (Σ 〈𝑋〉 𝒖) =0, 𝑋 = 1, 𝐻, 𝐺,
𝜕𝑡 (𝜌𝒖) + ∇ ·

(
𝜌𝒖 ⊗ 𝒖 + (𝑝 − 𝜎‖∇𝛼1‖)I + 𝜎 ∇𝛼1⊗∇𝛼1

‖∇𝛼1 ‖

)
= 0,

with 𝑝 := 𝛼1𝑝1

(
𝑚1

𝛼1 (1−𝛼𝑑
1 )

)
+ 𝛼2𝑝2

(
𝑚2

(1−𝛼1 ) (1−𝛼𝑑
1 )

)
, and 𝛼1 defined by the implicit Laplace equilibrium

𝑝1

(
𝑚1

𝛼1 (1 − 𝛼𝑑
1 )

)
− 𝑝2

(
𝑚2

(1 − 𝛼1)(1 − 𝛼𝑑
1 )

)
=

𝜎

1 − 𝛼𝑑
1
𝐻,

where 𝐻 (∇𝛼1) := −∇ ·
(

∇𝛼1
‖∇𝛼1 ‖

)
estimates the large-scale mean curvature.

Moreover, this system admits a supplementary equation of conservation for

H =
1
2
𝜌𝒖2 + 𝑚1𝑒1 + 𝑚2𝑒2 + 𝜎‖∇𝛼1‖ + 𝑚𝑑

1𝑒
𝑑
1 + 𝜎Σ, (3.29)

that reads
𝜕𝑡H + ∇ ·

(
H𝒖 + (𝑝 − 𝜎‖∇𝛼1‖)𝒖 − 𝜎 ∇𝛼1

‖∇𝛼1‖
𝐷𝑡𝛼1

)
= 0, (3.30)

where the material time derivative 𝐷𝑡𝛼1 in the flux is implicitly obtained for smooth solutions by taking the time
material of the Laplace equilibrium (1.119) similarly to the capillarity Model 5 obtained for the separated regime.
A similar supplementary equation as (3.30) has been obtained in Cordesse (2020) and is compatible with the ones
of Perigaud and Saurel (2005); Schmidmayer et al. (2017) where a constraint 𝐷𝑡𝑐 = 0 was considered on the colour
function 𝑐 (here 𝑐 = 𝛼1 is not constrained).

We similarly introduce a relaxation dynamics using the large-scale volume fraction,

𝜕𝑡𝛼1 + 𝒖 · ∇𝛼1 = 𝑅𝛼1 , (3.31)

where 𝑅𝛼1 is an unclosed source term. Considering this dynamics for 𝛼1 along with the Model 24, we write the
mathematical entropy production rate 𝜍 associated with H (see details in Appendix 3.A)

𝜍 := 𝜕𝑡H + ∇ · G =
[
(1 − 𝛼𝑑

1 ) (𝑝1 − 𝑝2) − 𝜎𝐻
]
𝑅𝛼1 , (3.32)

with the flux G = H𝒖 + P𝒖 − 𝜎 ∇𝛼1
‖∇𝛼1 ‖ 𝑅𝛼1 and P = (𝛼1𝑝1 + 𝛼2𝑝2 − 𝜎‖∇𝛼1‖)I + 𝜎 ∇𝛼1⊗∇𝛼1

‖∇𝛼1 ‖ . The dissipation of the
system is then ensured when 𝜍 ≤ 0. We propose now to consider a dissipative process with a pressure relaxation
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source term that relaxes towards the Laplace equilibrium

𝜕𝑡𝛼1 + 𝒖 · ∇𝛼1 = 𝜇−1

(
𝑝1 − 𝑝2 − 𝜎

1 − 𝛼𝑑
1
𝐻

)
, (3.33)

where 𝜇 has the dimension of a viscosity. The equilibrium (1.119) is formally recovered for the instantaneous limit
case when 𝜇 → 0. With such dynamics for 𝛼1, we obtain the Model 25.

Model 25 (Two-scale model with capillarity, pressure relaxation and a small-scale poly-
disperse spray)

With 𝑚𝑘 = 𝛼𝑘𝜌𝑘 the phase effective densities of the large-scale liquid phase 𝑘 = 1, gaseous phase 𝑘 = 2
and small-scale liquid phase 𝑘 = 1𝑑, the mixture density 𝜌 = 𝑚1 + 𝑚2 + 𝑚𝑑

1 , 𝑝𝑘 the large-scale phase
pressures, 𝛼𝑘 the volume fractions, 𝒖 the mixture velocity, Σ the small-scale IAD, Σ 〈𝐻〉, Σ 〈𝐺〉, the
small-scale mean and Gauss curvatures, the fluid flow is governed by

𝜕𝑡𝑚𝑘 +∇ · (𝑚𝑘𝒖) =0, 𝑘 = 1, 2, 1𝑑 ,
𝜕𝑡𝛼

𝑑
1 +∇ · (𝛼𝑑

1𝒖) =0,
𝜕𝑡Σ 〈𝑋〉 +∇ · (Σ 〈𝑋〉 𝒖) =0, 𝑋 = 1, 𝐻, 𝐺,
𝜕𝑡𝛼1 + 𝒖 · ∇𝛼1 = 𝜇−1

(
𝑝1 − 𝑝2 − 𝜎

1−𝛼𝑑
1
𝐻

)
,

𝜕𝑡 (𝜌𝒖) + ∇ ·
(
𝜌𝒖 ⊗ 𝒖 + (𝑝 − 𝜎‖∇𝛼1‖)I + 𝜎 ∇𝛼1⊗∇𝛼1

‖∇𝛼1 ‖

)
= 0.

Model 25 is dissipative in the sense that, following (3.32), we have a negative mathematical entropy production rate

𝜍 = −𝜇−1 (1 − 𝛼𝑑
1 )

(
𝑝1 − 𝑝2 − 𝜎

1 − 𝛼𝑑
1
𝐻

)2

≤ 0. (3.34)

Remark that, with the relaxation (3.33), the entropy flux G in (3.32) is now explicit.

3.1.3.3 Discussion of the two-scale models with capillarity

The equilibrium Model 24 and the relaxation Model 25 both formally extend the two-scale models derived in Section
3.1.2 by including capillarity energies. The reader is referred to the discussion therein about the behaviour of these
systems in the disperse limit 𝛼1 → 0 and the separated regime limit 𝛼𝑑

1 → 0. Regarding capillarity modelling, both
models show that the addition of capillarity at the large-scale impacts the flow dynamics through the addition of
a capillarity flux. Normalizing the large-scale volume gradients shows that this flux is proportional with the IAD
estimator ‖∇𝛼1‖ and consequently impacts the flow at the location of the large-scale diffuse interface. However, the
capillarity at small-scale does not impact the flow as it is passively advected by the flow. The coupling with the flow
will be described in the following section.

Regarding the hyperbolicity of Model 25, it is studied through an augmented system, where 𝑤 = ∇𝛼1 is added
as an independent quantity following the same line as Appendix 1.A. Let us now note 𝑢𝝎 := 𝒖 · 𝝎, 𝒏 := ∇𝛼1/‖∇𝛼1‖,
𝜓 = 𝜎‖∇𝛼1‖/(𝜌(𝑐𝑑𝐹)2), 𝑐𝑑𝐹 , the velocity, a geometrical-physical parameter and the two-scale frozen sound speed as
established in (3.20). By replacing 𝛼1 with 𝛼1 in Model 5, the properties of such a system are then identical. In the
diffuse interface with moderate capillarity effects in comparison with acoustics, i.e. 𝜓 � 1, we have the following
eigenvalues in the direction 𝜔,

𝑢𝝎 , 𝑢𝝎 ± 𝑐𝑑𝐹 (1 − (𝝎 · 𝒏)2)
√
𝜓, 𝑢𝝎 ± 𝑐𝑑𝐹

(
1 + 1

2
𝜓(𝝎 · 𝒏)2 (1 − (𝝎 · 𝒏)2)

)
. (3.35)

These eigenvalues illustrate the impact of the small-scale on the model which modifies the eigenvalues at two levels :
by increasing the Frozen velocities, and through the estimation of large-scale interface normal and IAD with the
colour function 𝛼1. Let us note that the system is weakly hyperbolic as the separated Model 5.
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Conclusion of Section 3.1
We have constructed in this section a framework for the unified modelling approach through the splitting of the liquid
volume fraction into a large-scale volume fraction 𝛼1 and a small-scale volume fraction 𝛼𝑑

1 . Moreover, we have added
the modelling of capillarity at both scales of modelling using different IAD estimators: ‖∇𝛼1‖ at large scale and Σ
at small scale. While the first estimator is based on the implicit representation of surfaces with level-set (Sethian,
1999), the second is obtained from GeoMOM (see Section 2.2) where the IAD is a statistical moment of the spray
distribution. All these two-scale models are showed hyperbolic and admit supplementary equations on energy.

With this framework, we propose in the next Section 3.2 to further couple each scales through the addition of
inter-scale source terms. Moreover, some more advanced small-scale models of Chapter 2 are introduced in the two-
scale unified approach to use the inter-scale transfer as a primary break-up model. Then, in Section 3.3 a length-scale
threshold will be introduced to define an interface scale separation.
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3.2 Two-scale coupling via inter-scale mass exchanges
In the previous section, two-scale models have been proposed with good properties when the two regimes are coex-
isting, thus allowing a progressive transition from the separated regime to the disperse regime.

In this section, we focus on the modelling of this transition through the addition of source terms allowing a
transfer of mass and momentum between the scales. Note that this inter-scale mass transfer considered here is
manually introduced and does not result from a thermodynamic equilibrium. A geometric criterion is however
introduced later in Section 3.3 to trigger the mass transfer through the introduction of a disequilibrium. We propose
here an intermediary modelling step to emphasize the various parametrizations possible of the inter-scale transfer in a
simpler framework. We notably illustrate how it can be used to model the primary break-up similarly to Devassy et al.
(2015) based on experimental correlations (Pilch and Erdman, 1987; Marmottant and Villermaux, 2004). Moreover,
a specific attention is dedicated to the sign study of the mathematical entropy to ensure dissipation properties and
thus ensuring the fulfilment of the second principle of thermodynamics. Remark also that we consider a momentum
exchange in single-velocity two-scale models, not to accelerate the small-scale inclusions as they have here the same
velocity as the large scale, but to balance the energy transfer between the scales, notably when capillarity is accounted.

In this section, we gradually introduce the inter-scale mass transfer with models of increasing complexity. We
start in Section 3.2.1 by adding source terms without accounting for polydispersion or capillarity to extend Model 23.
Then, these exchanges terms are added with a polydisperse spray model in Section 3.2.2, extending 25. Finally, we
aim at describing primary break-up with the inter-scale transfer towards small-scale model with oscillating droplets
in Section 3.2.3.

3.2.1 Mass and momentum exchanges for a disperse small-scale model without capil-
larity

Consider again the assumptions of Models 22 and 23, namely an incompressible disperse small-scale, but we neglect
the capillarity energies. We add unclosed source terms on each quantity, say of Model 23, involved in the transfer
between scales 

𝜕𝑡𝑚1+∇ · (𝑚1𝒖)= 𝑅𝑚1 ,

𝜕𝑡𝑚2+∇ · (𝑚2𝒖)= 0,
𝜕𝑡𝑚

𝑑
1+∇ · (𝑚𝑑

1𝒖)= 𝑅𝑚𝑑
1
,

𝜕𝑡𝛼
𝑑
1 +∇ · (𝛼𝑑

1𝒖) = 𝑅𝛼𝑑
1
,

𝜕𝑡 (𝜌𝒖) + ∇ · (𝜌𝒖 ⊗ 𝒖 + 𝑝𝑰) = 𝑹𝒖 ,

𝐷𝑡𝛼1 = 𝑅𝛼1 ,

(3.36)

with 𝑝 = 𝛼1𝑝1 + 𝛼2𝑝2. Remark immediately that liquid mass conservation and small-scale incompressibility gives us
that

𝑅𝑚𝑑
1
= −𝑅𝑚1 , 𝑅𝛼𝑑

1
= −𝑅𝑚1

𝜌𝑑1
. (3.37)

Then, writing the equation of evolution for the associated mathematical entropy H defined by (3.19) (see Appendix
3.A) yields

𝜕𝑡H + ∇ · ((H + 𝑝)𝒖) = −(1 − 𝛼𝑑
1 ) (𝑝1 − 𝑝2)𝑅𝛼1 −

(
𝑒𝑑1 + 𝑝

𝜌𝑑1
− 𝑒1 − 𝑝1

𝜌1

)
𝑅𝑚1 + 𝑹𝒖 · 𝒖. (3.38)

We recognize in the right-hand side the mathematical entropy production associated with a potential pressure relax-
ation, a mass transfer and a momentum transfer. The dissipation of the model requires a negative right-hand sign.
Remark first that we can split the source term on 𝛼1 into a term related to the instantaneous pressure relaxation
and another source term 𝑅𝑚

𝛼1
related to the mass transfer at finite timescale and at pressure equilibrium,

𝐷𝑡𝛼1 =
1
𝜇
(𝑝1 − 𝑝2) + 𝑅𝑚

𝛼1
. (3.39)
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The source term 𝑅𝑚
𝛼1

is then obtained by differentiating the pressure equilibrium 𝑝1 (𝑚1, 𝛼1, 𝛼
𝑑
1 ) = 𝑝2 (𝑚2, 𝛼1, 𝛼

𝑑
1 ).

After some calculations, it yields

𝑅𝑚
𝛼1

= (1 − 𝛼1)𝛼1
𝑚2𝛼1𝑐

2
2 + (1 − 𝛼1)((1 − 𝛼𝑑

1 )𝜌𝑑1 − 𝑚1)

𝜌𝑑1 (1 − 𝛼𝑑
1 )

(
(1 − 𝛼1)2𝑚1𝑐

2
1 + 𝛼2

1𝑚2𝑐
2
2

) 𝑅𝑚1 =: K𝑅𝑚1 . (3.40)

With the pressure equilibrium satisfied during the mass transfer, this yields the following mathematical entropy
production

𝜕𝑡H + ∇ · ((H + 𝑝)𝒖) = −𝜇−1 (1 − 𝛼𝑑
1 )(𝑝1 − 𝑝2)2 −

(
𝑒𝑑1 + 𝑝

𝜌𝑑1
− 𝑒1 − 𝑝1

𝜌1

)
𝑅𝑚1 + 𝑹𝒖 · 𝒖. (3.41)

Then, the term in factor of the mass source term can be identified as a chemical potential difference and accounts
for the thermodynamic disequilibrium between the large-scale and small-scale liquid phase. In the context of liquid
phases, this disequilibrium is expected to be small and can be compensated by choosing an appropriate momentum
source term such that

𝑹𝒖 · 𝒖 =

(
𝑒𝑑1 + 𝑝

𝜌𝑑1
− 𝑒1 − 𝑝1

𝜌1

)
𝑅𝑚1 . (3.42)

Remark that such a relation cannot be satisfied if there is both a thermodynamic disequilibrium and a null velocity
amplitude. Moreover, this compensation process is only required to ensure the dissipation of the system when

−
(
𝑒𝑑1 + 𝑝

𝜌𝑑1
− 𝑒1 − 𝑝1

𝜌1

)
𝑅𝑚1 > 0, ⇐⇒ 𝑒𝑑1 + 𝑝

𝜌𝑑1
> 𝑒1 + 𝑝1

𝜌1
. (3.43)

We denote this conditions as

C1 :
(
𝑒𝑑1 + 𝑝

𝜌𝑑1
> 𝑒1 + 𝑝1

𝜌1

)
. (3.44)

Then, the source terms must satisfy

𝑅𝑚1 = 𝑅𝑚1 ,1 (1 − 1C1 ) + 𝑅𝑚1 ,2‖𝒖‖2
1C1 , 𝑹𝒖 = 𝑅𝑚1 ,2

(
𝑒𝑑1 + 𝑝

𝜌𝑑1
− 𝑒1 − 𝑝1

𝜌1

)
𝒖1C1 , (3.45)

with the mass transfer rates 𝑅𝑚1 ,1 and 𝑅𝑚1 ,2 are yet to be determined, but must keep 𝑚1 > 0. They may include
experimental heuristics or geometric criteria to provide the right timescale for the transfer process or locate the
transfer given supplementary conditions such as a high large-scale curvature to detect the growth of filaments. A
simple heuristic closure would be 𝑅𝑚1 ,1 = −𝜏−1𝑚1 and 𝑅𝑚1 ,2 = −𝑙−1𝑚1 where 𝜏 and 𝑙 are characteristic time and
length which provide an exponential decay of the large-scale phase density and can be chosen to mimic an actual
primary break-up process. Remark that the momentum transfer does not represent a clear physical mechanism, but
compensates the small disequilibrium between the large-scale and small-scale liquid densities. We summarize the
overall system in Model 26.
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Model 26 (Two-scale model with incompressible small-scale and inter-scale transfer)

With 𝑚𝑘 = 𝛼𝑘𝜌𝑘 the phase effective densities of the large-scale liquid phase 𝑘 = 1, gaseous phase 𝑘 = 2
and small-scale liquid phase 𝑘 = 1𝑑, the mixture density 𝜌 = 𝑚1 + 𝑚2 + 𝑚𝑑

1 , 𝑝𝑘 the large-scale phase
pressures, 𝛼𝑘 the volume fractions, 𝒖 the mixture velocity, the flow is governed by

𝜕𝑡𝑚2+∇ · (𝑚2𝒖)= 0,
𝜕𝑡𝑚1+∇ · (𝑚1𝒖)= 𝑅𝑚1 ,

𝜕𝑡𝑚
𝑑
1+∇ · (𝑚𝑑

1𝒖)= −𝑅𝑚1 ,

𝜕𝑡𝛼
𝑑
1 +∇ · (𝛼𝑑

1𝒖) = −𝑅𝑚1
𝜌𝑑

1
,

𝜕𝑡 (𝜌𝒖) + ∇ · (𝜌𝒖 ⊗ 𝒖 + 𝑝𝑰) = 𝑹𝒖 ,

𝐷𝑡𝛼1 = 𝜇−1 (𝑝1 − 𝑝2) + K𝑅𝑚1 ,

with

𝑅𝑚1 = 𝑅𝑚1 ,1 (1 − 1C1 ) + 𝑅𝑚1 ,2‖𝒖‖2
1C1 , 𝑹𝒖 = 𝑅𝑚1 ,2

(
𝑒𝑑1 + 𝑝

𝜌𝑑1
− 𝑒1 − 𝑝1

𝜌1

)
𝒖1C1 ,

𝑝 = 𝛼1𝑝1 + 𝛼2𝑝2,

and C1 defined by (3.44), K defined in (3.40).

With such choice of source terms, (3.38) ensures the second principle of thermodynamics. The hyperbolicity properties
are not affected by the source terms, therefore, Model 26 is hyperbolic as Model 23.

3.2.2 Mass and momentum exchange accounting for small-scale capillarity and poly-
dispersion

Let us now account for the small-scale capillarity. The combination of inter-scale transfer and capillarity modelling
at both scale is treated in the next Section 3.3. We consider the same set of equation but add source terms for all
quantities at stake for the inter-scale mass transfer, namely Σ, Σ 〈𝐻〉, Σ 〈𝐺〉,

𝜕𝑡𝑚2+∇ · (𝑚2𝒖)= 0,
𝜕𝑡𝑚1+∇ · (𝑚1𝒖)= 𝑅𝑚1 ,

𝜕𝑡𝑚
𝑑
1+∇ · (𝑚𝑑

1𝒖)= 𝑅𝑚𝑑
1
,

𝜕𝑡𝛼
𝑑
1 +∇ · (𝛼𝑑

1𝒖) = 𝑅𝛼𝑑
1
,

𝜕𝑡Σ 〈𝑋〉 + ∇ · (Σ 〈𝑋〉 𝒖) = 𝑅𝑋, 𝑋 = 1, 𝐻, 𝐺,
𝜕𝑡𝛼1 + 𝒖 · ∇𝛼1 = 𝜇−1 (𝑝1 − 𝑝2) ,
𝜕𝑡 (𝜌𝒖) + ∇ · (𝜌𝒖 ⊗ 𝒖 + 𝑝I) = 𝑹𝒖 ,

(3.46)

with 𝜇 > 0 and 𝑝 = 𝛼1𝑝1 + 𝛼2𝑝2. First, the liquid mass conservation similarly gives 𝑅𝑚𝑑
1
= −𝑅𝑚1 . For all the other

quantities related to the spray, we reconsider the underlying kinetic equation with a source term 𝑅𝑛 (𝑆),

𝜕𝑡𝑛𝑆 (𝑆) + ∇ · (𝑛𝑆 (𝑆)𝒖) = 𝑅𝑛 (𝑆), (3.47)

such that the source terms on the surface-averaged geometry of the spray is obtained by integrating the equation
above,

𝑅Σ〈𝑋〉 =
∫
𝑆
𝑆𝑋 (𝑆)𝑅𝑛 (𝑆) 𝑑𝑆 =: (𝑆𝑋)𝑎𝑣𝑔

∫
𝑆
𝑅𝑛 (𝑆) 𝑑𝑆, (3.48)

with (̃·) the surface averaging operator defined in Definition 11. For the sphere, we have 𝐻 (𝑆) = (4𝜋/𝑆)1/2 and
𝐺 (𝑆) = 4𝜋/𝑆 and 𝑆𝑎𝑣𝑔, (𝑆𝐻)𝑎𝑣𝑔 and (𝑆𝐺)𝑎𝑣𝑔 = 4𝜋 which characterize the averaged geometric characteristics of the
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droplets created at small-scale. Similarly, from small-scale incompressibility, we have that

𝑅𝑚𝑑
1
=

∫
𝑆
𝑚(𝑆)𝑅𝑛 (𝑆) =: 𝑚𝑎𝑣𝑔

∫
𝑆
𝑅𝑛 (𝑆) 𝑑𝑆. (3.49)

It yields the following relations,

𝑅Σ = −
𝑆𝑎𝑣𝑔

𝑚𝑎𝑣𝑔
𝑅𝑚1 , 𝑅Σ〈𝐻 〉 = −

(𝑆𝐻)𝑎𝑣𝑔
𝑚𝑎𝑣𝑔

𝑅𝑚1 , 𝑅Σ〈𝐺〉 = − 4𝜋
𝑚𝑎𝑣𝑔

𝑅𝑚1 , 𝑅𝛼𝑑
1
= −𝑅𝑚1

𝜌𝑑1
. (3.50)

Only the source term related to the IAD impacts the mathematical entropy production. Indeed, we show in Appendix
3.A that the mathematical entropy production rate 𝜍 associated with the supplementary equation obtained in (3.30)
for the total energy H now reads

𝜍 := −((1 − 𝛼𝑑
1 )(𝑝1 − 𝑝2) − 𝜎𝐻) (𝑅𝑟𝑒𝑙𝑎𝑥

𝛼1
+ 𝑅𝑚𝑎𝑠𝑠

𝛼1
) −

(
𝑒1 (𝜌𝑑1 ) +

𝑝

𝜌𝑑1
−

(
𝑒1 (𝜌1) +

𝑝1
𝜌1

)
+ 𝜎

𝑆𝑎𝑣𝑔

𝑚𝑎𝑣𝑔

)
𝑅𝑚1 + 𝒖 · 𝑅𝒖 , (3.51)

where we split the source term on large-scale volume fraction between the instantaneous relaxation process and the
inter-scale mass transfer. The large-scale pressure relaxation now accounts for the local Laplace pressure jump, and
we choose

𝑅𝑟𝑒𝑙𝑎𝑥
𝛼1

=
1
𝜇
(𝑝1 − 𝑝2) . (3.52)

The inter-scale source term accounting for large-scale volume fraction is chosen similarly as (3.40) in order to preserve
𝑝1−𝑝2 constant. The mathematical entropy production is negatively in the same way such that we obtain the following
Model 27.

Model 27 (Two-scale capillarity model with incompressible small-scale and inter-scale
transfer)

With 𝑚𝑘 = 𝛼𝑘𝜌𝑘 the phase effective densities of the large-scale liquid phase 𝑘 = 1, gaseous phase 𝑘 = 2
and small-scale liquid phase 𝑘 = 1𝑑, the mixture density 𝜌 = 𝑚1 + 𝑚2 + 𝑚𝑑

1 , 𝑝𝑘 the large-scale phase
pressures, 𝛼𝑘 the volume fractions, 𝒖 the mixture velocity, 𝜎 the capillarity coefficient, Σ the IAD,
Σ 〈𝐻〉, Σ 〈𝐺〉 the surface-weighted mean curvature densities, the flow is governed by

𝜕𝑡𝑚2+∇ · (𝑚2𝒖)= 0,
𝜕𝑡𝑚1+∇ · (𝑚1𝒖)= 𝑅𝑚1 ,

𝜕𝑡𝑚
𝑑
1+∇ · (𝑚𝑑

1𝒖)= −𝑅𝑚1 ,

𝜕𝑡𝛼
𝑑
1 +∇ · (𝛼𝑑

1𝒖) = −𝑅𝑚1
𝜌𝑑

1
,

𝜕𝑡Σ 〈𝑋〉 + ∇ · (Σ 〈𝑋〉 𝒖) = − (𝑆𝑋)𝑎𝑣𝑔
𝑚𝑎𝑣𝑔

𝑅𝑚1 , 𝑋 = 1, 𝐻, 𝐺,
𝜕𝑡𝛼1 + 𝒖∇𝛼1 = 𝜇−1 (𝑝1 − 𝑝2) + K𝑅𝑚1 ,

𝜕𝑡 (𝜌𝒖) + ∇ · (𝜌𝒖 ⊗ 𝒖 + 𝑝I) = 𝑹𝒖 ,

with 𝜇 > 0, 𝑝 = 𝛼1𝑝1 + 𝛼2𝑝2, K defined by (3.40), and the source terms read

𝑅𝑚1 = 𝑅𝑚1 ,1 (1 − 1C1 ) + 𝑅𝑚1 ,2‖𝒖‖2
1C1 , 𝑹𝒖 = 𝑅𝑚1 ,2

(
𝑒𝑑1 + 𝑝

𝜌𝑑1
+ 𝜎

𝑆𝑎𝑣𝑔

𝑚𝑎𝑣𝑔
− 𝑒1 − 𝑝1

𝜌1

)
𝒖,

with 𝑅𝑚1 ,1 and 𝑅𝑚1 ,2 unclosed and

C1 :
(
𝑒𝑑1 + 𝑝

𝜌𝑑1
+ 𝜎

𝑆𝑎𝑣𝑔

𝑚𝑎𝑣𝑔
> 𝑒1 + 𝑝1

𝜌1

)
.
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Remark here that the additional geometric quantities used to characterize the underlying spray do not interact with
the transfer process except for Σ, which is associated with the capillarity energy. Such a polydisperse structure
offers more possibilities to use experimental or heuristics (see for instance Marmottant and Villermaux (2004)) in
the inter-scale transfer as a model of primary break-up. For instance, the three parameters of the source terms 𝑚𝑎𝑣𝑔,
𝑆𝑎𝑣𝑔 and (𝑆𝐻)𝑎𝑣𝑔 can be specifically chosen to create two sizes of droplets 𝑆1 and 𝑆2 with a given proportion 𝑝
associated with a kinetic source term,

𝑅𝑛 (𝑆) = 𝑝𝛿(𝑆 − 𝑆1) + (1 − 𝑝)𝛿(𝑆 − 𝑆2). (3.53)

These parameters are related through

𝑚𝑎𝑣𝑔 = 𝑝𝑚(𝑆1) + (1 − 𝑝)𝑚(𝑆2), 𝑆𝑎𝑣𝑔 =
𝑝𝑆1 + (1 − 𝑝)𝑆2

𝑝𝑚(𝑆1) + (1 − 𝑝)𝑚(𝑆2)
, (𝑆𝐻)𝑎𝑣𝑔 =

𝑝𝑆1𝐻 (𝑆1) + (1 − 𝑝)𝑆2𝐻 (𝑆2)
𝑝𝑚(𝑆1) + (1 − 𝑝)𝑚(𝑆2)

,

with 𝐻 (𝑆) = (4𝜋/𝑆)1/2 and 𝑚(𝑆) = 𝜌𝑑1 (4𝜋/3) (𝑆/(4𝜋))3/2. Then the sizes 𝑆1 and 𝑆2 of the droplets produced by the
inter-scale transfer can be chosen either using the flow parameters or large-scale interface geometry such as its local
mean-curvature 𝐻 (∇𝛼1). Remark that any distribution characterized by at most three parameters can be used in
this modelling approach.

3.2.3 Inter-scale transfer with a polydisperse spray of oscillating droplets
In this section, we provide an additional example of inter-scale transfer that takes advantage of an enhanced descrip-
tion of the small scale with more geometric quantities and demonstrates the modelling capabilities of the primary
break-up. We particularly consider the context of a two-scale model where capillarity is only accounted for at the
small-scale with an oscillating spray. Such a model is physically relevant for atomization setup with regions dom-
inated by inertial forces, and other regions, particularly for interface small scales, where capillarity forces are not
negligible any more.

Such models are derived by combining the Lagrangian of the two-scale Model 23 with the asynchronous oscillation
Model 19. We get the Model 28.

Model 28 (Two-scale model with a small-scale polydisperse spray of oscillating droplets)

With 𝑚𝑘 = 𝛼𝑘𝜌𝑘 and 𝛼𝑘 the phase densities and volume fractions of phases 𝑘 = 2, 1𝑑, 𝜌 = 𝑚1 + 𝑚2
the mixture’s density, 𝒖 the velocity and 𝑝2 (𝜌2) the pressure of the gaseous phase 2, Σ = Σ0 + ΔΣ,
the IAD decomposed in a static part and an oscillation-related part, the static-related parts of the
surface-averaged density of the mean and Gauss curvatures Σ 〈𝐻〉0 and Σ 〈𝐺〉,

𝜕𝑡𝑚𝑘+∇ · (𝑚𝑘𝒖)= 0, 𝑘 = 1, 2, 1𝑑 ,
𝜕𝑡𝛼

𝑑
1 +∇ · (𝛼𝑑

1𝒖)= 0,
𝜕𝑡Σ0 +∇ · (Σ0𝒖) = 0,
𝜕𝑡 (ΔΣ) +∇ · (ΔΣ𝒖) = 0,
𝜕𝑡 (Σ 〈𝐺〉) +∇ · (Σ 〈𝐺〉 𝒖) = 0,
𝜕𝑡 (Σ 〈𝐻〉0)+∇ · (Σ 〈𝐻〉0 𝒖)= 0,
𝜕𝑡𝛼1 + 𝒖 · ∇𝛼 = − 1

𝜇 (𝑝1 − 𝑝2),
𝜕𝑡 (𝜌𝒖) + ∇ · (𝜌𝒖 ⊗ 𝒖 + 𝑝𝑰) = 0.

This model admits a supplementary equation of conservation on the energy

H =
1
2
𝜌‖𝒖‖2 + 𝑚2𝑒2

(
𝑚2

1 − 𝛼𝑑
1

)
+ 𝑚𝑑

1𝑒1 (𝜌𝑑1 ) + 𝜎Σ0

(
1 + 𝑐

5

)
, (3.54)
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with 𝑐 = 10ΔΣ/Σ0 introduced in Section 2.2.4.2 measuring the “intensity” of the oscillation motion. When 𝑐 = 1 the
droplets break up. Its equation simply reads 𝐷𝑡𝑐 = 0.

Let us now consider an inter-scale mass and energy transfer trough source terms for the oscillation motion of the
droplets. We denote 𝑅𝑋 the source terms of the equation on quantities 𝑋 ∈ {𝑚1, 𝑚

𝑑
1 , 𝛼

𝑑
1 , Σ0,ΔΣ, Σ 〈𝐺〉 , Σ 〈𝐻〉0 , 𝜌𝒖}.

Then the conservation of the liquid mass and the incompressibility still gives

𝑅𝑚𝑑
1
= −𝑅𝑚1 , 𝑅𝛼𝑑

1
= −𝑅𝑚1

𝜌𝑑1
.

Similarly to Section 3.2.1, we introduce a source term in the underlying PBE (2.119) that now reads

𝜕𝑡𝑛𝜉 + ∇𝒙 · (𝑛𝜉𝒖) + 𝜕𝜒 ( ¤̂𝜒𝑛𝜉 ) + 𝜕 ¤̂𝜒 (−𝜔̃
2𝑆−3/2

0 𝜒̂𝑛𝜉 ) = 𝑅𝜉 (𝑆̂0, 𝜒̂, ¤̂𝜒), (3.55)

and the source terms for geometric quantities related to the surface 𝑆0 are derived according to the relations between
moments and geometric quantities (2.126) and (2.127), it yields

𝑅Σ0 = −
𝑆0,𝑎𝑣𝑔

𝑚𝑎𝑣𝑔
𝑅𝑚1 , 𝑅Σ〈𝐻 〉0 = −

(𝑆𝐻)0,𝑎𝑣𝑔
𝑚𝑎𝑣𝑔

𝑅𝑚1 , 𝑅Σ〈𝐺〉 = − 4𝜋
𝑚𝑎𝑣𝑔

𝑅𝑚1 , 𝑅𝛼𝑑
1
= −𝑅𝑚1

𝜌𝑑1
. (3.56)

The source term 𝑅ΔΣ can be decomposed in two contributions: a creation term arising from the mass transfer 𝑅ΔΣ,𝑚
and a viscous damping 𝑅ΔΣ,𝑣 as in Model 19. As ΔΣ = 4𝜋𝑀1,2,0, the creation source term then read

𝑅ΔΣ,𝑚 =
∫
𝜉
𝑆̃0 𝜒̃

2𝑅𝜉 (𝑆̂0, 𝜒̂, ¤̂𝜒). (3.57)

Let us then assume that :

•the droplets are created at a fraction 𝑞 of their maximal amplitude. (H3e)

Given the definitions of Section 2.2.4.1, that 𝜒𝑚𝑎𝑥 (𝑆0) = 2/
√

5, such that the assumption translates as

𝑅ΔΣ,𝑚 =
4
5
𝑞2𝑅Σ0 = −4

5
𝑞2 𝑆0,𝑎𝑣𝑔

𝑚𝑎𝑣𝑔
𝑅𝑚1 . (3.58)

The source terms 𝑅𝛼1 𝑅ΔΣ,𝑣 𝑅𝑚1 and 𝑹𝒖 are left unconstrained for now. Now, the “mathematical entropy” dissipation
rate 𝜍 associated with the energy H gives

𝜍 = −(1 − 𝛼𝑑
1 )(𝑝1 − 𝑝2)𝑅𝛼1 + 2𝜎𝑅ΔΣ,𝑣 −

(
𝑒1 (𝜌𝑑1 ) +

𝑝

𝜌𝑑1
−

(
𝑒1 (𝜌1) +

𝑝1
𝜌1

)
+ 𝜎(1 + 8

5
𝑞2)

(
𝑆𝑎𝑣𝑔

𝑚𝑎𝑣𝑔

))
𝑅𝑚1 + 𝒖 · 𝑅𝒖 . (3.59)

We sign the two first terms, respectively the pressure relaxation and the viscous damping of the oscillation, with

𝑅𝛼1 = − 1
𝜇
(𝑝1 − 𝑝2), 𝑅ΔΣ,𝑣 = −𝜏−1ΔΣ, (3.60)

and 𝜇, 𝜏 > 0 a dynamic viscosity and a damping timescale. Finally, we obtain a dissipation rate similar to Model 27
that we close similarly to get Model 29.
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Model 29 (Two-scale model with inter-scale transfer with a small-scale polydisperse spray
of oscillating droplets)

With 𝑚𝑘 = 𝛼𝑘𝜌𝑘 and 𝛼𝑘 the phase densities and volume fractions of phases 𝑘 = 2, 1𝑑, 𝜌 = 𝑚1 + 𝑚2
the mixture’s density, 𝒖 the velocity and 𝑝2 (𝜌2) the pressure of the gaseous phase 2, Σ = Σ0 + ΔΣ
the IAD decomposed in a static part and an oscillation-related part, the static-related parts of the
surface-averaged density of the mean and Gauss curvatures Σ 〈𝐻〉0 and Σ 〈𝐺〉, the flow is governed by

𝜕𝑡𝑚2 +∇ · (𝑚2𝒖) = 0,
𝜕𝑡𝑚1 +∇ · (𝑚1𝒖) = 𝑅𝑚1 ,

𝜕𝑡𝑚
𝑑
1 +∇ · (𝑚𝑑

1𝒖) = −𝑅𝑚1 ,

𝜕𝑡𝛼
𝑑
1 +∇ · (𝛼𝑑

1𝒖) = −𝑅𝑚1
𝜌𝑑

1
,

𝜕𝑡Σ 〈𝑋〉0+∇ · (Σ 〈𝑋〉0 𝒖)= − (𝑆𝑋)0,𝑎𝑣𝑔
𝑚𝑎𝑣𝑔

𝑅𝑚1 , 𝑋 = 1, 𝐻, 𝐺
𝜕𝑡 (ΔΣ) + ∇ · (ΔΣ𝒖) = −𝜏−1ΔΣ − 4

5𝑞
2 𝑆0,𝑎𝑣𝑔

𝑚𝑎𝑣𝑔
𝑅𝑚1 ,

𝜕𝑡𝛼1 + 𝒖 · ∇𝛼 = − 1
𝜇 (𝑝1 − 𝑝2),

𝜕𝑡 (𝜌𝒖) + ∇ · (𝜌𝒖 ⊗ 𝒖 + 𝑝𝑰) = 𝑹𝒖 ,

with 𝑝 = 𝛼1𝑝1 + 𝛼2𝑝2, and the source terms

𝑅𝑚1 = 𝑅𝑚1 ,1 (1 − 1C1 ) + 𝑅𝑚1 ,2‖𝒖‖1C1 , 𝑹𝒖 = 𝑅𝑚1 ,2

(
𝑒𝑑1 + 𝑝

𝜌𝑑1
+ 𝜎(1 + 8

5
𝑞2)

𝑆𝑎𝑣𝑔

𝑚𝑎𝑣𝑔
− 𝑒1 − 𝑝1

𝜌1

)
𝒖,

with 𝑅𝑚1 ,1 and 𝑅𝑚1 ,2 unclosed and

C1 :
(
𝑒𝑑1 + 𝑝

𝜌𝑑1
+ 𝜎(1 + 8

5
𝑞2)

𝑆𝑎𝑣𝑔

𝑚𝑎𝑣𝑔
> 𝑒1 + 𝑝1

𝜌1

)
.

This model allows an extended modelling of the mechanism of the primary breakup with the additional parameter
𝑞. Depending on the flow conditions, one can either create static inclusions by setting 𝑞 = 0 or deformed inclusion
on the verge of breaking up a second time by choosing 𝑞 = 1. This initial deformation influences the dynamics of the
inclusions right after the break-up. Depending on the oscillation pulsation, the damping timescale and additional
source terms such as velocity drag, the initial deformation can either lead to a secondary break-up or not. The
combination with two-velocity models like the ones in Section 1.4.3 is not proposed in this work and is left for a
further study.

This model shows a similar structure with the model of Vallet et al. (2001) with a conservative structure and
both “creation and destruction” terms which have here rather the interpretation of a creation and a dissipation.

Conclusion of Section 3.2
In this section, we have demonstrated how we can couple the scales with each other through a mass transfer while
preserving a dissipative structure.

Three models of inter-scale mass transfer of increasing complexity have been proposed to emphasize the parametriza-
tion possibilities. In the first Model 26, the small-scale model is only described through its volume fraction and no
information on the size of the produced droplets can be set up. The second Model 27 then includes a model of
polydisperse droplets such that three parameters are then added to the tuning of the inter-scale mass transfer. It
typically allows choosing the production of droplets with two different sizes. Finally, Model 29 includes the oscillation
dynamics of the small-scale spray of droplets. Thus, it enables the parametrization of additional information on the
small-scale dynamics expressed in terms of geometric quantities during the inter-scale transfer. Such information
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could correspond to the residual motion of detached ligaments after primary break-up.
Remark that all these models provide a framework to model an inter-scale transfer in the manner of a pri-

mary break-up, but it does not indicate how to choose these parameters. Local heuristics based on experimental
observations should be included to make the models able to reproduce the mixed regime in the most generic way.

In the next section, we discuss the final key element for the setting a proper two-scale method: the definition of
a length-scale separating the two scales of the flow.
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3.3 Regularization of the large-scale interface through local inter-scale
mass transfer

We have demonstrated how to proceed with mass transfers between scales within the unified models, letting the
opportunity for the user to select where to activate it and on which criteria. We propose now another kind of
inter-scale transfer following three simultaneous goals: 1- modelling the transition from the separated regime to the
disperse regime, 2- introducing a length-scale threshold separating the two scales, 3- limiting locally the large-scale
interface curvature through an energy redistribution between the scales while complying with the second principle of
thermodynamics.

Such a regularizing process is represented in Fig. 3.3.1: mass transfer from the large scale to the small scale
initiates at points where the mean curvature is the most pronounced, advancing until the mean curvature criterion
is satisfied everywhere on the large-scale interface. This geometric criterion thus quantifies the amount of mass
transferred from one scale to another at the difference with the inter-scale transfers of the previous section. Under
the chosen convention, the local normal ∇𝛼1/‖∇𝛼1‖ is oriented inward the liquid phase and the curvature 𝐻 has a
positive value in the red areas.

Figure 3.3.1: Schematic representation of the regularization of the large-scale interface. The grey region corresponds
to the liquid 𝛼1 = 1 and the white region is the gas 𝛼1 = 0. The red zones represent the locations where the mean
curvature 𝐻 is higher than a prescribed maximal mean curvature 𝐻𝑚𝑎𝑥 .

3.3.1 Mathematical entropy production of the inter-scale mass transfer
In order to introduce such process, we consider again the addition of source terms in Model 25,

𝜕𝑡𝑚1+∇ · (𝑚1𝒖)= 𝑅𝑚1 ,

𝜕𝑡𝑚
𝑑
1+∇ · (𝑚𝑑

1𝒖)= 𝑅𝑚𝑑
1
,

𝜕𝑡𝑚2+∇ · (𝑚2𝒖)= 0,
𝜕𝑡𝛼

𝑑
1 +∇ · (𝛼𝑑

1𝒖) = 𝑅𝛼𝑑
1
,

𝜕𝑡Σ +∇ · (Σ𝒖) = 𝑅Σ,

𝜕𝑡𝛼1 +𝒖 · ∇𝛼1 = 𝑅𝛼1 ,

𝜕𝑡 (𝜌𝒖) + ∇ ·
(
𝜌𝒖 ⊗ 𝒖 + (𝑝 − 𝜎‖∇𝛼1‖)I + 𝜎 ∇𝛼1⊗∇𝛼1

‖∇𝛼1 ‖

)
= 𝑅𝒖 .

(3.61)

Here, the equation on total momentum has also a source term to balance the expected gain of capillarity energy at
small scale with a loss of kinetic energy at large scale. Let us first relate 𝑅𝑚𝑑

1
, 𝑅𝛼𝑑

1
, 𝑅Σ to 𝑅𝑚1 . Given the total liquid

mass conservation and the incompressibility of the small-scale,

𝑅𝑚𝑑
1
= −𝑅𝑚1 , 𝑅𝛼𝑑

1
= −𝑅𝑚1

𝜌𝑑1
. (3.62)
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For the source term 𝑅Σ, we consider the underlying kinetic equation with an additional source term 𝑅𝑛 accounting
for the creation of droplets, i.e.

𝜕𝑡𝑛 + ∇ · (𝑛𝒖) = 𝑅𝑛. (3.63)
As 𝑅𝑛 depends on 𝑚, it produces droplets of average size and mass

𝑆𝑎𝑣𝑔 :=

∫
𝑚̂
𝑆(𝑚, 𝜌𝑑1 )𝑅𝑛 𝑑𝑚∫

𝑚̂
𝑅𝑛 𝑑𝑚

, 𝑚𝑎𝑣𝑔 :=

∫
𝑚̂
𝑚𝑅𝑛 𝑑𝑚∫

𝑚̂
𝑅𝑛 𝑑𝑚

. (3.64)

Integrating (3.63) against 𝑆(𝑚, 𝜌𝑑1 ) and 𝑚 provides the desired relation{
𝜕𝑡Σ + ∇ · (Σ𝒖) = 𝑆𝑎𝑣𝑔

∫
𝑚̂
𝑅𝑛 𝑑𝑚,

𝜕𝑡𝑚
𝑑
1 + ∇ · (𝑚𝑑

1𝒖) = 𝑚𝑎𝑣𝑔

∫
𝑚̂
𝑅𝑛 𝑑𝑚,

(3.65)

so that we have
𝑅Σ = −

𝑆𝑎𝑣𝑔

𝑚𝑎𝑣𝑔
𝑅𝑚1 . (3.66)

More information could be recovered about the polydispersity of the mass transfer as demonstrated in Section 3.2.1
and 3.2.3. This model can easily be extended to account for these geometric variables, but they are not relevant here
as only the interface area density has an impact in the inter-scale mass transfer through capillarity. With the mass
transfer process, the system yields

𝜕𝑡𝑚1+∇ · (𝑚1𝒖)= 𝑅𝑚1 ,

𝜕𝑡𝑚
𝑑
1+∇ · (𝑚𝑑

1𝒖)= −𝑅𝑚1 ,

𝜕𝑡𝑚2+∇ · (𝑚2𝒖)= 0,
𝜕𝑡𝛼

𝑑
1 +∇ · (𝛼𝑑

1𝒖) = −(𝜌𝑑1 )−1𝑅𝑚1 ,

𝜕𝑡Σ +∇ · (Σ𝒖) = − 𝑆𝑎𝑣𝑔
𝑚𝑎𝑣𝑔

𝑅𝑚1 ,

𝜕𝑡𝛼1 +𝒖 · ∇𝛼1 = 𝑅𝛼1 ,

𝜕𝑡 (𝜌𝒖) + ∇ ·
(
𝜌𝒖 ⊗ 𝒖 + (𝑝 − 𝜎‖∇𝛼1‖)I + 𝜎 ∇𝛼1⊗∇𝛼1

‖∇𝛼1 ‖

)
= 𝑅𝒖 .

(3.67)

Concerning the dissipation of the model, the mathematical entropy production rate 𝜍 associated with the energy H
defined in (3.29) is

𝜍 = −((1 − 𝛼𝑑
1 )(𝑝1 − 𝑝2) − 𝜎𝐻)𝑅𝛼1 −

(
𝑒1 (𝜌𝑑1 ) +

𝑝

𝜌𝑑1
−

(
𝑒1 (𝜌1) +

𝑝1
𝜌1

)
+ 𝜎

𝑆𝑎𝑣𝑔

𝑚𝑎𝑣𝑔

)
𝑅𝑚1 + 𝒖 · 𝑅𝒖 . (3.68)

The reader is referred to Appendix 3.A for calculation details.

3.3.2 Large-scale mean curvature limitation via the pressure relaxation
In order to define the mass transfer between scales, we proceed as follows: we alter the large-scale Laplace equilibrium
by introducing a different curvature 𝐻𝑙𝑖𝑚 instead of 𝐻 in (1.119),

𝑅𝛼1 =
1
𝜇

(
𝑝1 − 𝑝2 − 𝜎𝐻𝑙𝑖𝑚

1 − 𝛼𝑑
1

)
, (3.69)

and we further compensate the “mathematical entropy” production with the source term of the momentum equation.
The regularization process is introduced by the definition of 𝐻𝑙𝑖𝑚 := min(𝐻, 𝐻𝑚𝑎𝑥) where 𝐻𝑚𝑎𝑥 is a positive curvature
threshold to locally control the capillarity phenomena as suggested by the scheme in Figure 3.3.1.

Choosing such a different equilibrium leads to an unsigned term in the mathematical entropy production rate
(3.68) when no mass transfer is accounted for, i.e. 𝑅𝑚1 = 0. Thus, we must determine the right mass and momentum
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transfer to make the total process dissipative. With such dynamics, the mathematical entropy production rate is
now

𝜍 = −((1 − 𝛼𝑑
1 )(𝑝1 − 𝑝2) − 𝜎𝐻)

1
𝜇

(
𝑝1 − 𝑝2 − 𝜎𝐻𝑙𝑖𝑚

1 − 𝛼𝑑
1

)
−

(
𝑒1 (𝜌𝑑1 ) +

𝑝

𝜌𝑑1
−

(
𝑒1 (𝜌1) +

𝑝1
𝜌1

)
+ 𝜎

𝑆𝑎𝑣𝑔

𝑚𝑎𝑣𝑔

)
𝑅𝑚1 + 𝒖 · 𝑅𝒖 . (3.70)

Then, considering that the large-scale and small-scale densities are close, we set Δ𝜌1 = 𝜌𝑑1 − 𝜌1 and we define a
non-dimensional function ℎ corresponding to the first-order integral remainder of 𝑒1 (𝜌𝑑1 ) + 𝑝/𝜌𝑑1 − (𝑒1 (𝜌1) + 𝑝1/𝜌1)
such that

𝑒1 (𝜌𝑑1 ) +
𝑝

𝜌𝑑1
−

(
𝑒1 (𝜌1) +

𝑝1
𝜌1

)
= −𝛼2

𝜌1
(𝑝1 − 𝑝2)(1 + ℎ), (3.71)

with ℎ → 0 when Δ𝜌1/𝜌1 → 0. Then, defining

Δ𝐻 := 𝐻 − 𝐻𝑙𝑖𝑚, (3.72)

we reorganize the terms in (3.70) to obtain

𝜍 = − 1
𝜇
(1 − 𝛼𝑑

1 )
(
𝑝1 − 𝑝2 − 𝜎𝐻𝑙𝑖𝑚

1 − 𝛼𝑑
1

)2

+
(
𝛼2
𝜌1
𝑅𝑚1 +

1
𝜇
𝜎Δ𝐻

)
(𝑝1 − 𝑝2)

− 1
𝜇
𝜎Δ𝐻

(
𝜎𝐻𝑙𝑖𝑚

1 − 𝛼𝑑
1

)
+

(
𝛼2
𝜌1

(𝑝1 − 𝑝2)ℎ − 𝜎
𝑆𝑎𝑣𝑔

𝑚𝑎𝑣𝑔

)
𝑅𝑚1 + 𝒖 · 𝑅𝒖 .

(3.73)

This reorganization suggests nullifying the second unsigned term with the pressure difference by choosing

𝑅𝑚1 = − 1
𝜇

𝜌1𝜎Δ𝐻
𝛼2

. (3.74)

This choice seems coherent as it is only activated when Δ𝐻 > 0 i.e. when the local curvature 𝐻 is greater than the
prescribed curvature 𝐻𝑚𝑎𝑥 . Then, the mathematical entropy production rate becomes

𝜍 = − 1
𝜇
(1 − 𝛼𝑑

1 )
(
𝑝1 − 𝑝2 − 𝜎𝐻𝑙𝑖𝑚

1 − 𝛼𝑑
1

)2

− 1
𝜇
𝜎Δ𝐻

(
𝜎𝐻𝑙𝑖𝑚

1 − 𝛼𝑑
1
+ (𝑝1 − 𝑝2) ℎ − 𝜎

𝑆𝑎𝑣𝑔

𝑚𝑎𝑣𝑔

𝜌1
𝛼2

)
+ 𝒖 · 𝑅𝒖 . (3.75)

The first term of the right-hand side is obviously negative for any 𝜇 ≥ 0. However, as ℎ is expected to be small,
the sign of the second term depends mainly on both the chosen limiting large-scale curvature 𝐻𝑙𝑖𝑚 and the ratio
𝑆𝑎𝑣𝑔/𝑚𝑎𝑣𝑔 pthat arametrizes the production of small-scale droplets. This second term has approximately the sign of

𝑆𝑎𝑣𝑔

𝑚𝑎𝑣𝑔

𝜌1
𝛼2

− 𝐻𝑙𝑖𝑚

1 − 𝛼𝑑
1
. (3.76)

For a classic configuration and given a mixture-volume of typical length 𝑙 with a small-scale of typical length 𝑙𝑠𝑠,
large-scale and small-scale density are almost the same so that 𝑚𝑎𝑣𝑔 ∼ 𝜌1𝑙

3
𝑠𝑠, and we also have 1−𝛼𝑑

1 ∼ 1 and 𝛼2 ∼ 1.
However, the typical length-scale of the small-scale 𝑙𝑠𝑠 is much smaller than 𝐻−1

𝑙𝑖𝑚 that is comparable to 𝑙. Then, the
quantity (3.76) behaves as

𝑆𝑎𝑣𝑔

𝑚𝑎𝑣𝑔

𝜌1
𝛼2

− 𝐻𝑙𝑖𝑚

1 − 𝛼𝑑
1
∼ 1
𝑙𝑠𝑠

− 1
𝑙
, (3.77)

which is consequently expected to be positive. Then, the dissipative nature of the inter-scale transfer must be
enforced by choosing a momentum source term that provides a negative contribution through the third term of the
mathematical entropy production rate (3.75).
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3.3.3 Choice of the momentum source term to enforce a dissipative inter-scale transfer
We look for an expression of the momentum source term such that it provides a negative contribution in the math-
ematical entropy production rate that can be activated similarly as the other source terms 𝑅𝑚1 , 𝑅𝑚𝑑

1
, 𝑅Σ, 𝑅𝛼1 of the

inter-scale mass transfer. We propose a momentum source term of the following form

𝑹𝒖 = −𝜇−1𝜎Δ𝐻𝑅𝒖𝒖, (3.78)

with 𝑅𝒖 > 0. This choice enforces that the momentum source term is similarly activated when Δ𝐻 > 0 and that both
velocity amplitude and the kinetic energy decrease. Indeed, imposing the negative sign of the mathematical entropy
production rate (3.75) is now possible by enforcing a last condition on 𝑅𝒖,

𝜎𝐻𝑙𝑖𝑚

1 − 𝛼𝑑
1
+ (𝑝1 − 𝑝2) ℎ − 𝜎

𝑆𝑎𝑣𝑔

𝑚𝑎𝑣𝑔

𝜌1
𝛼2

+ 𝒖2𝑅𝒖 ≥ 0. (3.79)

Such a source term is only possible for non-zero velocity which is here assumed, but later discussed in Section 3.3.4.
In order not to dissipate energy through the contributions related to the inter-scale transfer, we choose 𝑅𝒖 so that it
satisfies the equality case of the above inequality, that is to say

𝑅𝒖 =
1
𝒖2

(
−𝜎𝐻𝑙𝑖𝑚

1 − 𝛼𝑑
1
+ (𝑝2 − 𝑝1) ℎ + 𝜎

𝑆𝑎𝑣𝑔

𝑚𝑎𝑣𝑔

𝜌1
𝛼2

)
, (3.80)

with the assumption that
−𝜎𝐻𝑙𝑖𝑚

1 − 𝛼𝑑
1
+ (𝑝2 − 𝑝1) ℎ + 𝜎

𝑆𝑎𝑣𝑔

𝑚𝑎𝑣𝑔

𝜌1
𝛼2

> 0. (3.81)

Despite its a priori satisfaction with the setting of a small value for 𝑆𝑎𝑣𝑔, this latter condition is required to allow the
inter-scale mass transfer as further discussed in Section 3.3.4. Such an energy transfer from large-scale momentum is
necessary as the regularization process creates small-scale droplets involving more interface area and therefore more
energy due to capillarity. The final set of equations is gathered in Model 30.

Model 30 (Two-scale model with large-cale curvature regularization)

With 𝑚𝑘 = 𝛼𝑘𝜌𝑘 the phase effective densities of the large-scale liquid phase 𝑘 = 1, gaseous phase 𝑘 = 2
and small-scale liquid phase 𝑘 = 1𝑑, 𝜌 the mixture density such that 𝜌 = 𝑚1+𝑚2+𝑚𝑑

1 , 𝑝𝑘 the large-scale
phase pressures, 𝛼𝑘 the volume fractions, 𝒖 the mixture velocity, 𝜎 the capillarity coefficient, Σ the
IAD, 

𝜕𝑡𝑚1+∇ · (𝑚1𝒖)= − 1
𝜇
𝜌1𝜎
𝛼2

Δ𝐻,

𝜕𝑡𝑚
𝑑
1+∇ · (𝑚𝑑

1𝒖)=
1
𝜇
𝜌1𝜎
𝛼2

Δ𝐻,

𝜕𝑡𝑚2+∇ · (𝑚2𝒖)= 0,
𝜕𝑡𝛼

𝑑
1 +∇ · (𝛼𝑑

1𝒖) =
1
𝜇

𝜌1𝜎

𝛼2𝜌
𝑑
1
Δ𝐻,

𝜕𝑡Σ +∇ · (Σ𝒖) = 1
𝜇

𝑆𝑎𝑣𝑔
𝑚𝑎𝑣𝑔

𝜌1𝜎Δ𝐻
𝛼2

,

𝜕𝑡𝛼1 +𝒖 · ∇𝛼1 = 1
𝜇 (𝑝1 − 𝑝2 − 𝜎

1−𝛼𝑑
1
𝐻𝑙𝑖𝑚),

𝜕𝑡 (𝜌𝒖) + ∇ ·
(
𝜌𝒖 ⊗ 𝒖 + (𝑝 − 𝜎‖∇𝛼1‖)I + 𝜎 ∇𝛼1⊗∇𝛼1

‖∇𝛼1 ‖

)
= − 1

𝜇𝜎Δ𝐻
(

3
𝜅𝜌𝑑

1

𝜌1
𝛼2

− 1
1−𝛼𝑑

1
+ (𝑝2 − 𝑝1) ℎ

𝜎𝐻𝑙𝑖𝑚

)
𝜎𝐻𝑙𝑖𝑚

𝒖
𝒖2 ,

with 𝑝 = 𝛼1𝑝1 + 𝛼2𝑝2 and 𝜇 > 0.

Remark that in the limit of an instantaneous relaxation, we have

𝑝1 − 𝑝2 =
𝜎𝐻𝑙𝑖𝑚

1 − 𝛼𝑑
1
, and 𝐻 = 𝐻𝑙𝑖𝑚. (3.82)
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It particularly enforces the local modified Laplace equilibrium and the limited curvature such that the large-scale
interface regularized.

3.3.4 Mass transfer location
In Model 30, the mass transfer from large to small scale is a priori triggered everywhere in the domain provided that
𝐻 ≠ 𝐻𝑙𝑖𝑚. However, the discussion of the inter-scale model showed that it can only occur provided that

−𝜎𝐻𝑙𝑖𝑚

1 − 𝛼𝑑
1
+ (𝑝2 − 𝑝1) ℎ + 𝜎

𝑆𝑎𝑣𝑔

𝑚𝑎𝑣𝑔

𝜌1
𝛼2

> 0, and ‖𝒖‖ > 0. (3.83)

Moreover, due to the interface thickness and the absence of proper accounting of small- to large-scale mass transfer
model, we propose to locate the mass transfer at the most desirable location of the flow to avoid the limits of our
model. Therefore, we modify the definition of 𝐻𝑙𝑖𝑚 into

𝐻𝑙𝑖𝑚 = 1C min(𝐻, 𝐻𝑚𝑎𝑥) + (1 − 1C)𝐻, (3.84)

where C is a condition or a set of conditions that enables the mass transfer via curvature limitation, only at the
location where C is satisfied. Note that we have omitted here the space and time dependencies.

We propose to account for the following conditions, C := C1 ∩ C2 ∩ C3 with

C1 :=
(

3
𝜅𝜌𝑑1

𝜌1
𝛼2

− 1
1 − 𝛼𝑑

1
+ (𝑝2 − 𝑝1)

ℎ

𝜎𝐻𝑙𝑖𝑚
≥ 0

)
, C2 :=

(
𝛼𝐼,𝑚𝑖𝑛 < 𝛼1 < 𝛼𝐼,𝑚𝑎𝑥

)
, C3 := (∇𝛼1 · 𝒖 > 0) . (3.85)

C1 corresponds to the decreasing condition of the kinetic energy that also ensures the dissipative nature of the mass
transfer process as showed by the signed equation on the mathematical entropy (3.75). C2 ensures that the mass
transfer occurs in the outer side of the numerically thickened interface. The lower bound 𝛼𝐼,𝑚𝑖𝑛 ensures that we
indeed are in or very near of the interface while the upper bound 𝛼𝐼,𝑚𝑎𝑥 prevents that small-scale appear with almost
no gaseous phase to contain it. C3 avoids re-impact of the small-scale into the large-scale liquid phase as it is not
modelled here. Indeed, this criterion favours situations where the small-scale to be carried away from the large-scale
interface. Remark also that this condition also requires the velocity amplitude to be positive as required by (3.83).

3.3.5 Closure of the two-scale model
We conclude the modelling part of this work by proposing a specific closure of the two-scale Model 30 that relies
on a closure for 𝑆𝑎𝑣𝑔/𝑚𝑎𝑣𝑔 and the choice of EOS for ℎ. For weakly compressible test-cases, and with the reduced
information about the small-scale geometry 𝛼𝑑

1 and Σ, we make the following assumptions:

• the small-scale and large-scale liquid phases have the same linearized barotropic EOS; (H3f)
• the inter-scale produces a spray of monodisperse droplets; (H3g)
• the radius of the droplets is smaller than the large-scale curvature threshold. (H3h)

With (H3f), we define 𝑝0 and 𝜌0,1 a pressure of reference and a density of reference for the liquid such that the EOS
reads 𝑝1 (𝜌1) = 𝑝0 + 𝑐2

1 (𝜌1 − 𝜌0,1). Integrating the pressure law leads to

𝑒1 (𝜌1) =
(𝜌1 log(𝜌1))𝑐2

1 − 𝑝0

𝜌1
+ 𝑒𝑐, (3.86)

where 𝑒𝑐 is an energy constant. Then, from (3.71) and denoting 𝛿𝜌1 = Δ𝜌1/𝜌1, we obtain

ℎ = −
−𝛿𝜌1

1 + 𝛿𝜌1

+
𝜌1𝑐

2
1

(𝑝2 − 𝑝1)𝛼2

(
−

𝛿𝜌1

1 + 𝛿𝜌1

log(1 + 𝛿𝜌1 )
)
= −𝛿𝜌1 +𝑂 (𝛿2

𝜌1 ). (3.87)
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Following (H3g), let us denote with 𝑟 the radius of the droplets produced, then 𝑆𝑎𝑣𝑔/𝑚𝑎𝑣𝑔 = 3/(𝑟𝜌𝑑1 ). Then, according
to (H3h), we have that 𝑟 = 𝜅𝐻−1

𝑙𝑖𝑚, with 𝜅 < 1 a scaling factor. Using this expression of 𝑆𝑎𝑣𝑔/𝑚𝑎𝑣𝑔 in (3.78) and
(3.80), the source term on the momentum equation becomes

𝑹𝒖 = − 1
𝜇
𝜎Δ𝐻

(
3
𝜅𝜌𝑑1

𝜌1
𝛼2

− 1
1 − 𝛼𝑑

1
+ (𝑝2 − 𝑝1)

ℎ

𝜎𝐻𝑙𝑖𝑚

)
𝜎𝐻𝑙𝑖𝑚

𝒖

𝒖2 . (3.88)

The final set of equations is gathered in Model 31.

Model 31 (Two-scale model with large-scale curvature regularization)

With 𝑚𝑘 = 𝛼𝑘𝜌𝑘 the phase effective densities of the large-scale liquid phase 𝑘 = 1, gaseous phase 𝑘 = 2
and small-scale liquid phase 𝑘 = 1𝑑, 𝜌 the mixture density such that 𝜌 = 𝑚1+𝑚2+𝑚𝑑

1 , 𝑝𝑘 the large-scale
phase pressures, 𝛼𝑘 the volume fractions, 𝒖 the mixture velocity, 𝜎 the capillarity coefficient, Σ the
IAD, the flow is governed by

𝜕𝑡𝑚1+∇ · (𝑚1𝒖)= − 1
𝜇
𝜌1𝜎
𝛼2

Δ𝐻,

𝜕𝑡𝑚
𝑑
1+∇ · (𝑚𝑑

1𝒖)=
1
𝜇
𝜌1𝜎
𝛼2

Δ𝐻,

𝜕𝑡𝑚2+∇ · (𝑚2𝒖)= 0,
𝜕𝑡𝛼

𝑑
1 +∇ · (𝛼𝑑

1𝒖) =
1
𝜇

𝜌1𝜎

𝛼2𝜌
𝑑
1
Δ𝐻,

𝜕𝑡Σ +∇ · (Σ𝒖) = 1
𝜇

3𝐻𝑙𝑖𝑚

𝜅𝜌𝑑
1

𝜌1𝜎Δ𝐻
𝛼2

,

𝜕𝑡𝛼1 +𝒖 · ∇𝛼1 = 1
𝜇 (𝑝1 − 𝑝2 − 𝜎

1−𝛼𝑑
1
𝐻𝑙𝑖𝑚),

𝜕𝑡 (𝜌𝒖) + ∇ ·
(
𝜌𝒖 ⊗ 𝒖 + (𝑝 − 𝜎‖∇𝛼1‖)I + 𝜎 ∇𝛼1⊗∇𝛼1

‖∇𝛼1 ‖

)
= − 1

𝜇𝜎Δ𝐻
(

3
𝜅𝜌𝑑

1

𝜌1
𝛼2

− 1
1−𝛼𝑑

1
+ (𝑝2 − 𝑝1) ℎ

𝜎𝐻𝑙𝑖𝑚

)
𝜎𝐻𝑙𝑖𝑚

𝒖
𝒖2 ,

(3.89)

with 𝑝 = 𝛼1𝑝1 + 𝛼2𝑝2, 𝜈 > 0 and 0 < 𝜅 ≤ 1.

The remaining unclosed parameters are 𝐻𝑚𝑎𝑥 and 𝜅, and are meant to be parametrized for each setup. The
parameter 𝐻𝑚𝑎𝑥 is the inverse of the length-scale that splits the separated model from the disperse one and should be
chosen such that the global shape of the bulk liquid phase is resolved. The parameter 𝜅 is used to tune the average size
of the droplets created at small-scale. More parameters could be introduced by adding further information about the
small scale to capture polydispersion in Model 27 or oscillatory dynamics of the inclusions in Model 29. Additional
phenomena such as added-mass or drag could also be added with the two-velocity disperse models of Section 1.4.3.

Conclusion of chapter 3
This chapter provides key features for two-scale models to describe multi-scale two-phase flows with different regimes,
including :

• the unified derivation of two-scale models with coexisting models for the separated and disperse regime in
Section 3.1;

• the identification of mass, momentum and geometric source terms taking advantage of small-scale models to
model phenomena of the mixed regime such as primary break-up in Section 3.2;

• a regularization process of the large-scale interface which indicates the transition from the separated to the
disperse regime in Section 3.3.
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More particularly, in Section 3.1, the unified derivation of the two-scale models with Hamilton’s SAP is showed to
provide unified models allowing a transition zone where the two regimes can interact while recovering the usual multi-
fluid DIM and disperse models in the regions where the separated regime and disperse regime are respectively well
identified. Then in Section 3.2, the main feature consists in authorizing local exchange source terms between both
scales while ensuring the local conservation of energy and the dissipative structure of the model. Finally, in Section
3.3, we specifically introduce a regularizing process which modifies the large-scale Laplace pressure equilibrium while
transferring liquid from the large scale to the small scale. It allows to manually introduce a length-scale separating the
large and small scales without modifying the thermodynamics of the large-scale. It particularly limits the curvature
of the large scale diffuse interface but not its thickness which is not prescribed here. Finally, we use the geometric
information at both scales to build some source terms which allows to model the mixed regime, e.g. the polydispersity
or deformations of the small-scale resulting from a primary atomization mechanism or the deformation, or the location
of the inter-scale mass transfer.



Appendix

3.A Mathematical entropy production of the two-scale capillarity model

For calculation purposes, we consider a transport equation on the variable 𝑧 = (𝜌𝑑1 )2/3Σ/𝑚𝑑
1 similarly to Di Battista

(2021) instead of the conservation equation on Σ. We introduce then the source term 𝑅𝑧 such that 𝐷𝑡 𝑧 = 𝑅𝑧, and
𝑅𝑧 = 𝑅Σ (𝜌𝑑1 )2/3/𝑚𝑑

1 + 𝑧𝑅𝑚1/𝑚𝑑
1 . We do not prescribe the dynamics of 𝛼1, and we consider then the following system

of equations,



𝜕𝑡𝑚1 +∇ · (𝑚1𝒖) =𝑅𝑚1 ,

𝜕𝑡𝑚2 +∇ · (𝑚2𝒖) =0,
𝜕𝑡𝑚

𝑑
1 +∇ · (𝑚𝑑

1𝒖) = − 𝑅𝑚1 ,

𝜕𝑡𝛼
𝑑
1 +∇ · (𝛼𝑑

1𝒖) = − (𝜌𝑑1 )−1𝑅𝑚1 ,

𝜕𝑡 𝑧 +𝒖 · ∇𝑧 =𝑅𝑧 ,

𝜕𝑡 (𝜌𝒖) +∇ · (𝜌𝒖 ⊗ 𝒖 + P) =𝑹𝒖 ,

(3.90)

where the dynamics of 𝛼1 is not specified and P is a general pressure tensor. Remark also that the fourth and fifth
equations are equivalent to 𝐷𝑡 𝜌

𝑑
1 = 0 and 𝐷𝑡 𝑧 = 𝑅𝑧. We look for a supplementary conservation equation for an

entropy-entropy flux pair (H ,G) such that the entropy production rate 𝜍 is negatively signed,

𝜍 := 𝜕𝑡H + ∇ · G ≤ 0. (3.91)

With H := 𝑲 · 𝒖 − L, multiplying the momentum equation of (3.90) by 𝒖 gives

0 =𝒖 · 𝜕𝑡𝑲 + 𝒖 · [∇ · (𝑲 ⊗ 𝒖 + 𝑷)] − 𝒖 · 𝑅𝒖
=𝜕𝑡 (𝑲 · 𝒖) − 𝑲 · 𝜕𝑡𝒖 + ∇ ·

[
(𝑲 · 𝒖) ⊗ 𝒖 + 𝑷𝑇𝒖

]
− (𝑲 ⊗ 𝒖) : ∇𝒖 − 𝑷 : ∇𝒖 − 𝒖 · 𝑅𝒖

=𝜕𝑡H + ∇ · (H𝒖 + 𝑷𝑇𝒖) + 𝜕𝑡L + ∇ · (L𝒖) − 𝑲 · 𝜕𝑡𝒖 − (𝑲 ⊗ 𝒖) : ∇𝒖 − 𝑷 : ∇𝒖 − 𝒖 · 𝑅𝒖 .
(3.92)
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Developing the derivatives of the Lagrangian and accounting for the dynamics given by (3.90) yields

0 =𝜕𝑡H + ∇ ·
[
H𝒖 + 𝑷𝑇𝒖

]
+ 𝜕𝑚1L1𝐷𝑡𝑚1 + 𝜕𝛼1L1𝐷𝑡𝛼1 + 𝜕𝛼𝑑

1
L1𝐷𝑡𝛼

𝑑
1

+ 𝜕𝑚2L2𝐷𝑡𝑚2 + 𝜕𝛼2L2𝐷𝑡𝛼2 + 𝜕𝛼𝑑
1
L2𝐷𝑡𝛼

𝑑
1

+ 𝜕𝑚𝑑
1
L𝑑

1𝐷𝑡𝑚
𝑑
1 + 𝜕𝜌𝑑

1
L𝑑

1𝐷𝑡 𝜌
𝑑
1 + 𝜕𝑧L𝑑

1𝐷𝑡 𝑧

+ 𝑫 · 𝐷𝑡 (∇𝛼1) + L∇ · 𝒖 − 𝑷 : ∇𝒖 − 𝒖 · 𝑅𝒖
=𝜕𝑡H + ∇ ·

[
H𝒖 + 𝑷𝑇𝒖 + (𝐷𝑡𝛼1)𝑫

]
+ (𝜕𝛼1L1 − 𝜕𝛼2L2 − ∇ · 𝑫)𝐷𝑡𝛼1

+
[
𝜕𝑚1L1 − 𝜕𝑚𝑑

1
L𝑑

1 − 1
𝜌𝑑1

(
𝜕𝛼𝑑

1
L1 + 𝜕𝛼𝑑

1
L2

)]
𝑅𝑚1 + 𝜕𝑧L𝑑

1𝑅𝑧

−
{
𝑷 +

[
L∗

1 + L∗
2 + L𝑑,∗

1 − L𝑐𝑎𝑝 + 𝛼𝑑
1

(
𝜕𝛼𝑑

1
L1 + 𝜕𝛼𝑑

1
L2

)]
𝑰 + 𝑫 ⊗ ∇𝛼1

}
: ∇𝒖 − 𝒖 · 𝑅𝒖 .

Evaluating the Lagrangian leads to

0 =𝜕𝑡H + ∇ ·
(
H𝒖 + P𝑇𝒖 − 𝜎 ∇𝛼1

‖∇𝛼1‖
𝐷𝑡𝛼1

)
+

[
(1 − 𝛼𝑑

1 )(𝑝1 − 𝑝2) − 𝜎𝐻
]
𝐷𝑡𝛼1

+
(
𝑒𝑑1 − 𝑒1 − 𝑝1

𝜌1
+ 𝜎𝑧(𝜌𝑑1 )−2/3 + 𝛼1𝑝1 + 𝛼2𝑝2

𝜌𝑑1

)
𝑅𝑚1

−
(
P −

(
(𝛼1𝑝1 + 𝛼2𝑝2 − 𝜎‖∇𝛼1‖)I + 𝜎

∇𝛼1 ⊗ ∇𝛼1
‖∇𝛼1‖

))
: ∇𝒖

− 𝜎𝑚𝑑
1 (𝜌𝑑1 )−2/3𝑅𝑧 − 𝒖 · 𝑅𝒖 ,

with 𝑒𝑑1 := 𝑒1 (𝜌𝑑1 ) and 𝑒1 := 𝑒1 (𝜌1). We choose the entropy flux G by setting

P := (𝛼1𝑝1 + 𝛼2𝑝2 − 𝜎‖∇𝛼1‖) I + 𝜎∇𝛼1 ⊗ ∇𝛼1
‖∇𝛼1‖

,

G := H𝒖 + P𝑇𝒖 − 𝜎 ∇𝛼1
‖∇𝛼1‖

𝐷𝑡𝛼1.

(3.93)

With the expression of Lagrangian (3.24), the mathematical entropy production rate finally evaluates to

𝜍 = −
[
(1 − 𝛼𝑑

1 ) (𝑝1 − 𝑝2) − 𝜎𝐻
]
𝐷𝑡𝛼1 −

(
𝑒𝑑1 − 𝑒1 − 𝑝1

𝜌1
+ 𝜎𝑧(𝜌𝑑1 )−2/3 + 𝛼1𝑝1 + 𝛼2𝑝2

𝜌𝑑1

)
𝑅𝑚1

+ 𝜎𝑚𝑑
1 (𝜌𝑑1 )−2/3𝑅𝑧 + 𝒖 · 𝑅𝒖 .

(3.94)

Then, the sign of the mathematical entropy production rate 𝜍 depends on the assumptions on the dynamics of 𝛼1
and the source terms 𝑅𝑚1 and 𝑅𝑧.
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Numerics
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CHAPTER 4
Numerical strategy and methods

In this work, we have derived several multi-fluid compressible models as systems of partial differential equations
which outreach the classic theory of Lax (1957) for systems of conservation laws. Indeed, the models of Chapters
1-2-3 particularly feature additional equilibrium equations or relaxation source terms, dispersive terms and non-
conservative terms. Nevertheless, such models are derived following specific guidelines ensuring necessary conditions
for a possible well-posedness of the system, including supplementary conservation equations (Cordesse and Massot,
2020), the extension of dispersive system to hyperbolic systems (Tkachenko et al., 2023), the good definitions of
jump conditions (Gallouët et al., 2004) or that the supplementary equilibria are reachable with relaxation processes
(Jomée, 2023; Bussac, 2023).

Besides, the small-scale models that we have proposed in Chapter 2 mostly rely on a kinetic equation and a method
of moments through GeoMOM and requires the satisfaction of supplementary constraints to ensure the existence of
a positive distribution for the inclusions. These constraints on moments are called realizability conditions and define
a convex moment space for the well-known truncated moment problem (Stieltjes, 1894; Akhiezer, 1965; Curto and
Fialkow, 1991; Schmüdgen, 2017). Depending on the support of the distributions, the realizability conditions are
different. In one dimension, the problems are known under the following names: the Hamburger moment problem
for the open support R, the Stieltjes moment problem for a support (0, +∞) and the Hausdorff moment problem for
a bounded support (0, 1). In the multidimensional case, no general solution is known. Nevertheless, some results are
available for specific phase-spaces, e.g. (Curto and Fialkow, 2000, 2005; Kleiber and Stoyanov, 2013).

These specific features then require adequate numerical schemes which can be treated separately via a time-
splitting procedure (Trotter, 1959; Strang, 1968; Hundsdorfer and Verwer, 2003) as in Schmidmayer et al. (2017).
However, the issue of non-conservative terms is not treated here as the scope of this contribution has been purposely
restricted to focus on the small-scale models of Chapter 2 and inter-scale mass transfers of 3.

Regarding the classic conservative model, we consider a classic Finite-Volume (FV) method (LeVeque, 1992;
Smoller, 1994; Godlewski and Raviart, 1996; Serre, 1999; Toro, 2009) with second-order MUSCL schemes extending
the Godunov scheme (Godunov and Bohachevsky, 1959; Van Leer, 1979) in order to minimize the numerical diffusion
introduced by the scheme. The FV method relies on the evaluation of the fluxes on the faces of the cells of the mesh,
i.e. the space discretization of the domain. In the context of Godunov-type schemes, the evaluation of the fluxes
requires solving or approximating the solution of a Riemann problem, i.e. a local discontinuous problem between
the numerical states of two adjacent mesh cells. Second, some models involve relaxation source terms which yield
the definition an equilibrium manifold defined by algebraic relations and drive the variables of the system towards
these manifolds. In the limit case of an infinite stiffness, this enables the definition of a new equilibrium system (Liu,
1987; Chen et al., 1994; Natalini, 1998; Bouchut, 1999, 2004). Its use in multiphase flow modelling translates into
an instantaneous relaxation step (Saurel and Abgrall, 1999; Saurel et al., 2009; Pelanti, 2022) where the state vector
of the model is projected on the equilibrium variety defined by a supplementary closure relation. Such relaxation
usually adopts implicit methods. Thus, the Newton-Raphson method offers an efficient and locally implicit solve
of the equilibrium relation. However, we derive new relaxation procedures, e.g. for the inter-scale regularization
process of Model 30, that involves space derivatives in the modified pressure law (3.69), which induces a global
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coupling during the Newton-Raphson process. Therefore, we propose here an innovative implicit-explicit (ImEx)
procedure to efficiently solve the equilibrium. Finally, for the small-scale kinetic models, the realizability of the
numerical scheme, i.e. its ability of preserving the realizability of moments, relies on the use of kinetic schemes
(Perthame, 1990; Bouchut, 1994; Aregba-Driollet and Natalini, 2000; Bouchut et al., 2003), which provides realizable
schemes at first-order.

In this chapter, we deal separately with the issues aforementioned, which are all present in a complete two-scale
model with polydisperse dynamic small-scale model, by proposing, in Section 4.1, a numerical scheme for the two-
scale Model 30 with the inter-scale regularizing mass transfer but a minimal small-scale model without realizability
issues. Then, a specific numerical scheme is proposed in Section 4.2 for the numerical solution of the small-scale
polydisperse Model 20 of oscillating droplets in the disperse regime.

This chapter has led to the following contributions :

• For the numerical procedure of the two-scale regularizing model: Loison, Arthur, Samuel Kokh, Teddy Pichard,
and Marc Massot. “A unified two-scale gas-liquid multi-fluid model with capillarity and interface regularization
through a mass transfer between scales ”. arXiv, 2024. https://doi.org/10.48550/arXiv.2401.09169.

• For the numerical procedure of the small-scale kinetic model of oscillating droplets: Katia Ait-Ameur, Arthur
Loison, Teddy Pichard, et Marc Massot. “Simulation of polydisperse oscillating droplets with kinetic schemes
for geometric moment equations”. In preparation.

4.1 Numerical strategy for the two-scale model with mass transfer
We now propose a numerical scheme to solve the two-scale Model 30 as it combines some key features of this work: a
two-scale unified model, capillarity modelling at both scale, inter-scale mass transfer with regularization. The other
key features, including polydispersion and small-scale oscillation dynamics are treated in the next Section 4.2. The
numerical scheme proposed here relies on a first-order Lie splitting procedure such that numerical methods for the
other models of Chapters 1-2-3 can be built by selecting the relevant sub-system solved in this section. Each of
these sub-systems is then solved with a dedicated scheme: a Godunov method (Godunov and Bohachevsky, 1959)
for the hyperbolic model to limit artificial viscosity, an arithmetic solver (Chanteperdrix et al., 2002; Schmidmayer
et al., 2017) for the capillarity model, and a relaxation step to solve the pressure equilibrium. For the Model 30,
the relaxation step includes the regularization procedure with an equilibrium relation involving space derivatives. As
this extra relation is not an algebraic equation any more, we propose here a new numerical procedure to solve the
equilibrium.

4.1.1 Splitting, relaxation and time integration
For the building of the numerical method, we propose to cast the system into a fully conservative form with a state
vector 𝒒, fluxes 𝑭 and the source term 𝜇−1𝒓 (𝒒) that we will solve in the limit 𝜇 → 0. We obtain

𝜕𝑡𝒒 + ∇ · 𝑭(𝒒) = 𝜇−1𝒓 (𝒒). (4.1)

The chosen state variable is 𝒒 := (𝛼1𝜌, 𝛼1𝜌1, 𝛼2𝜌2, 𝛼
𝑑
1 𝜌

𝑑
1 , 𝛼

𝑑
1 , Σ, 𝜌𝒖)𝑇 , and the fluxes 𝑭 = 𝑭𝑐𝑜𝑛𝑣 +𝑭𝑐𝑎𝑝 are decomposed

following a convective-related part 𝑭𝑐𝑜𝑛𝑣 and a capillarity-related part 𝑭𝑐𝑎𝑝,

𝑭𝑐𝑜𝑛𝑣 :=

©­­­­­­­­­«

𝛼1𝜌
𝛼1𝜌1
𝛼2𝜌2
𝛼𝑑

1 𝜌
𝑑
1

𝛼𝑑
1
Σ

𝜌𝒖 ⊗ 𝒖 + 𝑝𝑰

ª®®®®®®®®®¬
, 𝑭𝑐𝑎𝑝 :=

©­­­­­­­­­­­«

0
0
0
0
0
0

𝜎

(
∇𝛼1 ⊗ ∇𝛼1

‖∇𝛼1‖
− ‖∇𝛼1‖𝑰

)

ª®®®®®®®®®®®¬
, (4.2)

https://doi.org/10.48550/arXiv.2401.09169
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and the source term corresponding to the pressure relaxation and the inter-scale mass transfer process is

𝒓 (𝒒) =

©­­­­­­­­­­­­­­­­­­­«

−𝜎𝜌1
𝛼2

Δ𝐻
𝜎𝜌1
𝛼2

Δ𝐻

0
𝜎𝜌1

𝛼2𝜌
𝑑
1
Δ𝐻

𝑆𝑎𝑣𝑔

𝑚𝑎𝑣𝑔

𝜎𝜌1
𝛼2

Δ𝐻

𝜌

(
𝑝1 − 𝑝2 − 𝜎

1 − 𝛼𝑑
1
𝐻𝑙𝑖𝑚

)
𝜎Δ𝐻

(
3

𝜅𝜌𝑑
1

𝜌1
𝛼2

− 1
1−𝛼𝑑

1
+ (𝑝2 − 𝑝1) ℎ

𝜎𝐻𝑙𝑖𝑚

)
𝜎𝐻𝑙𝑖𝑚

𝒖
𝒖2

ª®®®®®®®®®®®®®®®®®®®¬

. (4.3)

Due to the different natures of each term of the system (hyperbolic flux, capillarity flux, source terms), we propose to
introduce a splitting procedure in order to use different numerical schemes for each part of the system. We decompose
the fluxes and introduce an instantaneous relaxation process for the source term (Bouchut, 1999). It results in solving
successively the three following systems, 

𝜕𝑡𝒒 + ∇ · 𝑭𝑐𝑜𝑛𝑣 (𝒒) = 0,
𝜕𝑡𝒒 + ∇ · 𝑭𝑐𝑎𝑝 (𝒒) = 0,
𝒓 (𝒒) = 0.

(4.4)

We formalize the procedure by introducing the discrete operators L𝑐𝑜𝑛𝑣, L𝑐𝑎𝑝, L𝑟𝑒𝑙𝑎𝑥 and L𝐹 = L𝑐𝑎𝑝 ◦ L𝑐𝑜𝑛𝑣 that
are integrated in time with a Lie splitting procedure, i.e. successive first-order explicit Euler integrations in time.
Regarding the building of high-order time integration scheme with relaxation methods requires special numerical
schemes e.g. Jin (1995); Caflisch et al. (1997); Lafitte et al. (2017). In our case, the state 𝒒𝑛 computed at the 𝑛−th
time-step results from the asymptotic limit of the second-order scheme of Jin (1995) extending the second-order Total
Variation Diminishing Runge-Kutta (Shu and Osher, 1988) for relaxation systems. It yields

𝒒 (1) = L𝐹
(
𝒒𝑛−1

)
,

𝒒 (1)
𝑟𝑒𝑙 = L𝑟𝑒𝑙𝑎𝑥

(
𝒒 (1)

)
,

𝒒 (2) = L𝐹
(
𝒒 (1)
𝑟𝑒𝑙

)
,

𝒒 (3) =
1
2

(
𝒒𝑛−1 + 𝒒 (2)

)
,

𝒒𝑛 = L𝑟𝑒𝑙𝑎𝑥
(
𝒒 (3)

)
.

(4.5)

Remark that if the intermediary relaxation steps are removed, we recover the Heun’s method. However, the stability
of this time integration is not well established as the eigenvalues of Model 30 are not known. Therefore, we consider
an upper-bound of the eigenvalues of the very similar augmented model obtained in (3.35), the eigenvalues of which
are known. For any direction 𝜔, with 𝜓 = 𝜎‖∇𝛼1‖/(𝜌(𝑐𝑑𝐹)2), these eigenvalues are upper-bounded by

𝜆𝑚𝑎𝑥 := ‖𝒖‖ + 𝑐𝑑𝐹
(
1 + 1

8
𝜓

)
, (4.6)

so that we set
Δ𝑡 = CFL × 𝜆𝑚𝑎𝑥 , (4.7)

where CFL is the Courant-Friedrichs-Lewy number. Let us now detail the numerical procedure to solve each of these
operators.
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4.1.2 Hyperbolic fluxes

We focus here on the numerical method dedicated to the numerical approximation of operator 𝑳𝑐𝑜𝑛𝑣 : 𝒒0 ↦→ 𝒒𝑐𝑜𝑛𝑣.
We choose here a Godunov method (Godunov and Bohachevsky, 1959; Godlewski and Raviart, 1991; LeVeque, 1992;
Toro, 2009) to solve this system of conservation laws. It particularly enables minimizing the numerical dissipation
and allows a better capture of large-scale geometry which is of prime interest here. For the sake of readability, we
now consider one-dimensional space problems, and we discretize the model into

𝒒𝑐𝑜𝑛𝑣𝑖 − 𝒒0
𝑖

Δ𝑡
=

S𝑖

V𝑖

(
𝐹𝑐𝑜𝑛𝑣
𝑖+1/2 − 𝐹𝑐𝑜𝑛𝑣

𝑖−1/2

)
, (4.8)

where the subscript 𝑖 indexes the 𝑖−th cell encompassing the space domain between 𝑥𝑖−1/2 = 𝑥𝑖 − Δ𝑥/2 and 𝑥𝑖+1/2 =
𝑥𝑖 + Δ𝑥/2, the superscript 𝑛 indexes the discretized time 𝑡𝑛, 𝒒𝑛𝑖 is the volume average of the state of the 𝑖−th cell at
the discretized time 𝑡𝑛, V𝑖 is the volume of the 𝑖−th cell, S𝑖 the surface area with the neighbouring cells. 𝐹𝑐𝑜𝑛𝑣

𝑖±1/2 are
the fluxes at the interface between the 𝑖−th cell and the (𝑖 + 1)−th cell. Remark that for a one-dimensional regular
mesh we have S𝑖/V𝑖 = 1/Δ𝑥.

Following a Godunov scheme, we consider the following Riemann problem centred at 𝑥𝑖+1/2,


𝜕𝑡𝒒 + ∇ · 𝑭𝑐𝑜𝑛𝑣 (𝒒) = 0,

𝒒(𝑥, 0) =
{

𝒒𝑖 if 𝑥 < 0,
𝒒𝑖+1 if 𝑥 > 0.

(4.9)

The solution 𝒒 of this problem is self-similar and for 𝑡 > 0, and we note 𝒒(𝑥/𝑡) = 𝒒(𝑥, 𝑡). The flux at the interface
𝐹𝑐𝑜𝑛𝑣
𝑖+1/2 is computed by evaluating 𝐹𝑐𝑜𝑛𝑣 (𝒒(0)). Details of the procedure to solve the Riemann problem (4.9) is given

in Appendix 4.A. It extends to the two-scale approach the resolution of the Riemann problem of the Model 3 as in
Chanteperdrix (2004). We extend here this approach to a MUSCL scheme (Van Leer, 1979; Toro, 2009) that relies
on the linear extrapolation of the conservative set of variables into 𝒒𝑖±1/2 on the faces of cell [𝑥𝑖−1/2, 𝑥𝑖+1/2]. The
previous method is the same except that the initial conditions of the interface Riemann problem are now

𝒒(𝑥, 0) =
{
𝒒−
𝑖+1/2, if 𝑥 < 0,

𝒒+
𝑖+1/2, if 𝑥 > 0.

(4.10)

For a regular mesh the linear extrapolation within the 𝑖−th cell is defined by

𝒒+ = 𝒒𝑖 +
Δ𝑥
2
𝒔𝑖 , 𝒒− = 𝒒𝑖 −

Δ𝑥
2
𝒔𝑖 , 𝒔𝑖 := 1

2 (𝒔𝑖−1/2 + 𝒔𝑖+1/2), 𝒔𝑖+1/2 := 1
2 (𝒒

𝑛
𝑖+1 − 𝒒𝑛𝑖 ). (4.11)

Furthermore, the slopes are limited component-wise to avoid spurious oscillation using the MINMOD limiter (Sweby,
1984; Coquel and LeFloch, 1996; Toro, 2009) so that each component (𝒔𝑖)𝑘 of the slope 𝒔𝑖 reads

(𝒔𝑖)𝑘 =

{
max(0,min((𝒔𝑖−1/2)𝑘 (𝒔𝑖+1/2)𝑘)) if (𝒔𝑖+1/2)𝑘 > 0,
min(0,max((𝒔𝑖−1/2)𝑘 (𝒔𝑖+1/2)𝑘)) if (𝒔𝑖+1/2)𝑘 < 0.

(4.12)

The fluxes extend for multidimensional problems by adding fluxes for all the other faces in (4.8).

4.1.3 Capillarity fluxes

Let us focus now on the building of a numerical scheme for the capillarity fluxes, i.e. operator 𝑳𝑐𝑎𝑝 : 𝒒0 ↦→ 𝒒𝑐𝑎𝑝, with
an arithmetical-average approach as proposed in Chanteperdrix (2004); Schmidmayer et al. (2017). The numerical
scheme is here written in two dimensions with 𝒖 = (𝑢𝑥 , 𝑢𝑦), and the cells of a regular mesh space of step sizes Δ𝑥, Δ𝑦
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are here indexed by the subscripts 𝑖 and 𝑗 . The update relations for the momentum read

(𝜌𝑢𝑥)𝑐𝑎𝑝𝑖, 𝑗 − (𝜌𝑢𝑥)0
𝑖, 𝑗

Δ𝑡
= 𝜎

1
Δ𝑥

[
(𝜕𝑥𝛼1)𝑖+1/2, 𝑗 (𝜕𝑥𝛼1)𝑖+1/2, 𝑗

‖∇𝛼1‖𝑖+1/2, 𝑗
+
(𝜕𝑥𝛼1)𝑖+1/2, 𝑗

(
𝜕𝑦𝛼1

)
𝑖+1/2, 𝑗

‖∇𝛼1‖𝑖+1/2, 𝑗
− ‖∇𝛼1‖𝑖+1/2, 𝑗

−
(
(𝜕𝑥𝛼1)𝑖−1/2, 𝑗 (𝜕𝑥𝛼1)𝑖−1/2, 𝑗

‖∇𝛼1‖𝑖−1/2, 𝑗
+
(𝜕𝑥𝛼1)𝑖−1/2, 𝑗

(
𝜕𝑦𝛼1

)
𝑖−1/2, 𝑗

‖∇𝛼1‖𝑖−1/2, 𝑗
− ‖∇𝛼1‖𝑖−1/2, 𝑗

)]
+ 𝜎 1

Δ𝑦

[
(𝜕𝑥𝛼1)𝑖, 𝑗+1/2 (𝜕𝑥𝛼1)𝑖, 𝑗+1/2

‖∇𝛼1‖𝑖,+1/2
+
(𝜕𝑥𝛼1)𝑖, 𝑗+1/2

(
𝜕𝑦𝛼1

)
𝑖, 𝑗+1/2

‖∇𝛼1‖𝑖, 𝑗+1/2
− ‖∇𝛼1‖𝑖, 𝑗+1/2

−
(
(𝜕𝑥𝛼1)𝑖, 𝑗−1/2 (𝜕𝑥𝛼1)𝑖, 𝑗−1/2

‖∇𝛼1‖𝑖, 𝑗−1/2
+
(𝜕𝑥𝛼1)𝑖, 𝑗−1/2

(
𝜕𝑦𝛼1

)
𝑖, 𝑗−1/2

‖∇𝛼1‖𝑖, 𝑗−1/2
− ‖∇𝛼1‖𝑖, 𝑗−1/2

)]
,

(𝜌𝑢𝑦)𝑐𝑎𝑝𝑖, 𝑗 − (𝜌𝑢𝑦)0
𝑖, 𝑗

Δ𝑡
= 𝜎

1
Δ𝑥

[ (
𝜕𝑦𝛼1

)
𝑖+1/2, 𝑗 (𝜕𝑥𝛼1)𝑖+1/2, 𝑗

‖∇𝛼1‖𝑖+1/2, 𝑗
+

(
𝜕𝑦𝛼1

)
𝑖+1/2, 𝑗

(
𝜕𝑦𝛼1

)
𝑖+1/2, 𝑗

‖∇𝛼1‖𝑖+1/2, 𝑗
− ‖∇𝛼1‖𝑖+1/2, 𝑗

−
( (
𝜕𝑦𝛼1

)
𝑖−1/2, 𝑗 (𝜕𝑥𝛼1)𝑖−1/2, 𝑗

‖∇𝛼1‖𝑖−1/2, 𝑗
+

(
𝜕𝑦𝛼1

)
𝑖−1/2, 𝑗

(
𝜕𝑦𝛼1

)
𝑖−1/2, 𝑗

‖∇𝛼1‖𝑖−1/2, 𝑗
− ‖∇𝛼1‖𝑖−1/2, 𝑗

)]
+ 𝜎 1

Δ𝑦

[ (
𝜕𝑦𝛼1

)
𝑖, 𝑗+1/2 (𝜕𝑥𝛼1)𝑖, 𝑗+1/2

‖∇𝛼1‖𝑖,+1/2
+

(
𝜕𝑦𝛼1

)
𝑖, 𝑗+1/2

(
𝜕𝑦𝛼1

)
𝑖, 𝑗+1/2

‖∇𝛼1‖𝑖, 𝑗+1/2
− ‖∇𝛼1‖𝑖, 𝑗+1/2

−
( (
𝜕𝑦𝛼1

)
𝑖, 𝑗−1/2 (𝜕𝑥𝛼1)𝑖, 𝑗−1/2

‖∇𝛼1‖𝑖, 𝑗−1/2
+

(
𝜕𝑦𝛼1

)
𝑖, 𝑗−1/2

(
𝜕𝑦𝛼1

)
𝑖, 𝑗−1/2

‖∇𝛼1‖𝑖, 𝑗−1/2
− ‖∇𝛼1‖𝑖, 𝑗−1/2

)]
,

(4.13)

where the gradients are discretized following

(𝜕𝑥𝛼1)𝑖+1/2, 𝑗 =
(𝛼1)𝑖+1, 𝑗 − (𝛼1)𝑖, 𝑗

Δ𝑥
, (𝜕𝑦𝛼1)𝑖+1/2, 𝑗 =

1
2

( (𝛼1)𝑖, 𝑗+1 − (𝛼1)𝑖, 𝑗−1

2Δ𝑥
+
(𝛼1)𝑖+1, 𝑗+1 − (𝛼1)𝑖+1, 𝑗−1

2Δ𝑥

)
, (4.14)

and (𝜕𝑦𝛼1)𝑖, 𝑗+1/2, (𝜕𝑥𝛼1)𝑖, 𝑗+1/2 are obtained by symmetrically inverting the role of the 𝑥-axis and 𝑦-axis. Finally, the
norm of the gradient is obtained with

‖∇𝛼1‖𝑖+1/2, 𝑗 =
√
(𝜕𝑥𝛼1)2

𝑖+1/2, 𝑗 + (𝜕𝑦𝛼1)2
𝑖+1/2, 𝑗 . (4.15)

As discussed in Section 1.3.2, other numerical schemes are possible for the capillarity fluxes, notably by using a
strongly hyperbolic reformulation of the augmented model as in Chiocchetti et al. (2021). With such a numerical
strategy, the quantity 𝒘 = ∇𝛼1 is solved independently in time, and an additional curl cleaning step is enforced to
conserve the gradient nature of 𝒘. The augmented formulations proposed in this work are notably showed to be
more robust on some test cases like the oscillation of an ellipsoidal column.

4.1.4 Relaxation method
This section is now dedicated to the relaxation of the state 𝒒𝑐𝑎𝑝 = 𝑳𝑐𝑎𝑝 ◦ 𝑳ℎ𝑦𝑝𝑒𝑟 (𝒒𝑛) towards a state 𝒒𝑛+1 such that
𝒓 (𝒒𝑛+1) = 0. Such step corresponds to a singular perturbation of the dynamical system (Hairer and Wanner, 1996),
also called an instantaneous relaxation procedure, and is, in general, a very challenging task, notably when full EOS
are involved (Saurel et al., 2007; Pelanti, 2022; Jomée, 2023; Bussac, 2023). Despite the consideration of the simpler
barotropic EOS as Chanteperdrix et al. (2002) where an explicit solution of the equilibrium is available, the presence
of the discretized mean curvature estimator keeps the relaxation challenging as the Newton-Raphson cannot be used
straightforwardly.

In order to build an efficient solution to this problem, we start in Section 4.1.4.1 by recalling the classic Newton-
Raphson method, assuming first a constant mean curvature estimator as a first development stage of the relaxation



132 4. Numerical strategy and methods

scheme. Then, an alternative formulation of this method is proposed in Section 4.1.4.2 through the computation of
the asymptotic solution of a dynamical ODE solved with a Rosenbrock scheme. Finally, an original implicit-explicit
Rosenbrock scheme is introduced in Section 4.1.4.3 along with the proper account of a varying mean curvature during
the relaxation.

4.1.4.1 Relaxation towards the equilibrium with a Newton-Raphson method

We consider first the case without regularization mass transfer Δ𝐻 = 0 and neglect variations of the mean curvature
𝐻. This corresponds to the two-scale capillarity Model 25, the problem boils down to solving, at the continuous level,
the pressure equilibrium by finding the solution field 𝛼𝑟𝑒𝑙𝑎𝑥1 such that F = 0 with,

F (𝛼1) := (1 − 𝛼𝑑
1 )

(
𝑝1

(
𝛼1𝜌1

(1 − 𝛼𝑑
1 )𝛼1

)
− 𝑝2

(
𝛼2𝜌2

(1 − 𝛼𝑑
1 )(1 − 𝛼1)

)
− 𝜎𝐻

)
, (4.16)

while all other components of 𝒒𝑐𝑎𝑝 are kept constant. The relaxation problem stated in Chanteperdrix (2004) is
recovered when no small-scale is accounted for i.e. 𝛼𝑑

1 = 0 and, in the case of linearized barotropic EOS, an explicit
solution is available. However, the Newton-Raphson method is used here as an introductory step in the building of
a relaxation method when capillarity is accounted for. Remark that 𝐻 = ∇ · (∇𝛼1/‖∇𝛼1‖) depends on 𝛼1 through
derivative operators such that the discretized problem in one cell depends on the neighbouring cells. In this first
method, the mean curvature is assumed constant such that the equilibrium value of 𝛼1 can be found with a Newton-
Raphson method. Given an initial guess 𝛼0

1 = (𝜌𝛼1)𝑐𝑎𝑝/(𝜌)𝑐𝑎𝑝, the (𝑘 + 1)-th iteration is obtained from the 𝑘-th
through a corrective term

(Δ𝛼1)𝑘𝑁𝑅 = −
F (𝛼𝑘

1)
F ′ (𝛼𝑘

1)
. (4.17)

Remark that F ′ (𝛼𝑘
1) is always strictly negative

F ′ (𝛼𝑘
1) = −

(
(𝛼1𝜌1)𝑐𝑎𝑝𝑐2

0,1

𝛼2
1

+
(𝛼2𝜌2)𝑐𝑎𝑝𝑐2

0,2

(1 − 𝛼1)2

)
< 0. (4.18)

To avoid overshoots of the procedure where an iteration of the large-scale volume fraction could escape the admissi-
bility range of [0, 1], we adopt a modified Newton-Raphson algorithm combined with an asymmetric bisection step
when the root finding iterations are close to the boundaries of the interval. The next iteration is computed with the
following modified corrective term

�(Δ𝛼1)
𝑘
=

{
min((Δ𝛼1)𝑘𝑁𝑅, 𝜆(1 − 𝛼𝑘

1)) if (Δ𝛼1)𝑘 > 0,
max((Δ𝛼1)𝑘𝑁𝑅, −𝜆𝛼

𝑘
1) if (Δ𝛼1)𝑘 < 0,

(4.19)

with 0 < 𝜆 < 1 close to 1 to ensure that the next iteration

𝛼𝑘+1
1 = 𝛼𝑘

1 + �(Δ𝛼1)
𝑘
∈ (0, 1), (4.20)

does not get closer than a fraction 𝜆 of the distance that separated it from the boundary of [0, 1]. In the simulations
of Chapter 5 and 6, 𝜆 is set to 0.9.

We expect the relaxation process to end when the value F (𝛼𝑘
1) either reaches a sufficiently small value or 𝛼𝑘

1
becomes too small to have a significant impact in the fluxes. Moreover, as a preparative stage for regularization mass
transfer, we introduce a supplementary condition preventing the relaxation process when volume fraction is too small
to be accurately stored. The stopping criterion is then fulfilled when

|F (𝛼𝑘
1) | < 𝑡𝑜𝑙𝑟𝑒𝑠𝑃𝑟𝑒 𝑓 , or 𝛼𝑘

1 < 𝑡𝑜𝑙𝑝𝑢𝑟𝑒 or 1 − 𝛼𝑘
1 < 𝑡𝑜𝑙𝑝𝑢𝑟𝑒, (4.21)

where 𝑃𝑟𝑒 𝑓 is a reference pressure such as the reference pressure of the linearized EOS, the Laplace pressure jump
at the beginning of the relaxation process, or a combination of both. The constants 𝑡𝑜𝑙𝑟𝑒𝑠 and 𝑡𝑜𝑙𝑝𝑢𝑟𝑒 are tolerance



4.1. Numerical strategy for the two-scale model with mass transfer 133

parameters that respectively indicate that the pressure equilibrium is reached via a low residual of F and that the
phase is considered pure and the relaxation of pressures do not impact the mixture’s pressure anymore. Furthermore,
due to the difficulty of accurately solving the pressure equilibria at very different orders of magnitude, we introduce
a final criterion to ensure robustness by ending the process if

|�(Δ𝛼1)
𝑘
| < 𝑡𝑜𝑙𝑖𝑡𝑒𝑟 , (4.22)

with 𝑡𝑜𝑙𝑖𝑡𝑒𝑟 a tolerance parameter to build a stopping criterion on the iteration step. The use of a tolerance parameter
𝑡𝑜𝑙𝑟𝑒𝑠 on pressure residual and 𝑡𝑜𝑙𝑖𝑡𝑒𝑟 on iteration of the volume fraction is respectively adapted to the case where a
mixture is present with a well conditioned problem, and the case of an almost pure phase where the finding of the
equilibrium is a stiff problem (Deuflhard, 2011). In the following numerical setups, we choose the following values

𝑡𝑜𝑙𝑟𝑒𝑠 = 10−10, 𝑡𝑜𝑙𝑝𝑢𝑟𝑒 = 10−14, 𝑡𝑜𝑙𝑖𝑡𝑒𝑟 = 10−14. (4.23)

Remark that, for values of volume fraction below these thresholds, the relaxation process does not take place any
more. Indeed, the problem of finding the pressure equilibrium is so stiff that the iterative procedure requires change
of volume fraction less than the machine precision. In this case, the two-phase model boils down to a single-phase
model with a residual amount of the other phase which is passively advected. This case is illustrated in Section
5.2.1.3 and the pure phases are showed to have a similar behaviour as almost pure phases for material advection
problems. Such particular treatment is of particular interest to avoid issues when the computation of mean curvature
is involved in Section 4.1.4.3.

4.1.4.2 The Newton-Raphson method as a first-order Rosenbrock scheme

In this second subsection, we propose to interpret the Newton-Raphson procedure as an integration in fictitious
time of the relaxation source term with a Rosenbrock scheme (Hairer and Wanner, 1996; Hundsdorfer and Verwer,
2003). Such schemes consist in the linearization of implicit Runge-Kutta methods and are showed to be both A-
stable and L-stable. Moreover, in the limit of an instantaneous relaxation, the Rosenbrock scheme extension for
Differential-Algebraic Equations (DAE) boils down to a Newton-Raphson step (Hairer and Wanner, 1996) for all the
component concerned by the singular perturbation. We consider then the pressure relaxation dynamics with respect
to a fictitious time 𝜏

𝜕𝜏𝛼1 =
1
𝜇

(
𝑝1 − 𝑝2 − 𝜎

1 − 𝛼𝑑
1
𝐻 (𝛼𝑐𝑎𝑝

1 )
)
, (4.24)

for 𝜇 > 0. We consider then a first-order Rosenbrock scheme which corresponds to a linearized implicit Euler
discretization of (4.24),

𝛼𝑘+1
1 − 𝛼𝑘

1
Δ𝜏

=
1
𝜇

(
F (𝛼𝑘

1) + F ′ (𝛼𝑘
1)(𝛼𝑘+1

1 − 𝛼𝑘
1)

)
, (4.25)

so that

𝛼𝑘+1
1 = 𝛼𝑘

1 +
Δ𝜏
𝜇 F (𝛼𝑘

1)

1 − Δ𝜏
𝜇 F ′ (𝛼𝑘

1)
. (4.26)

One can then immediately see that the usual Newton-Raphson step (4.17) in the singular perturbation limit Δ𝜏
𝜇 → ∞.

The modified corrective term is also recovered through the introduction of a stability criterion on the ratio Δ𝜏
𝜇 to

ensure that 𝛼𝑘+1
1 stays in [0, 1]. Using the same parameter 𝜆, we look for the maximal step ratio

(
Δ𝜏
𝜇

)
𝑚𝑎𝑥

such that

−𝜆𝛼𝑘
1 ≤ 𝛼𝑘+1

1 − 𝛼𝑘
1 ≤ 𝜆(1 − 𝛼𝑘

1). (4.27)

Considering the condition given by the left side of the above inequality and using the expression obtained in (4.26),
we obtain

Δ𝜏
𝜇
F ′ (𝛼𝑘

1)
(
𝜆𝛼𝑘

1 + (Δ𝛼1)𝑘𝑁𝑅

)
≤ 𝜆𝛼𝑘

1 . (4.28)

Three cases arise depending on the sign of (Δ𝛼1)𝑘𝑁𝑅 and the comparison between −𝜆𝛼𝑘
1 and (Δ𝛼1)𝑘𝑁𝑅:
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• if (Δ𝛼1)𝑘𝑁𝑅 > 0, then (4.28) is satisfied;

• if (Δ𝛼1)𝑘𝑁𝑅 < 0 and −𝜆𝛼𝑘
1 < (Δ𝛼1)𝑘𝑁𝑅, then (4.28) is also satisfied;

• if (Δ𝛼1)𝑘𝑁𝑅 < 0 and −𝜆𝛼𝑘
1 > (Δ𝛼1)𝑘𝑁𝑅, then (4.28) enforces the following condition

Δ𝜏
𝜇

≤
𝜆𝛼𝑘

1

F ′ (𝛼𝑘
1)

(
𝜆𝛼𝑘

1 + (Δ𝛼1)𝑘𝑁𝑅

) =:
(
Δ𝜏
𝜇

)
𝑚𝑎𝑥

. (4.29)

In the case under consideration, selecting the maximal step ratio defined above in the implicit Euler step (4.26)
is equivalent to computing 𝛼𝑘+1

1 following (4.20).

A similar discussion stands for the right-side inequality of (4.27) such that the Newton-Raphson method with the
modified update (̃𝛼1)

𝑘
is equivalent to the implicit Euler integration of the relaxation with respect to a fictitious

time with the stability condition (4.27).

4.1.4.3 ImEx integration of the instantaneous relaxation process for regularizing mass transfer

We consider now the full dynamical system of the relaxation with inter-scale mass transfer reads



𝜕𝜏 (𝛼1𝜌1) = − 1
𝜇

𝜌1𝜎

𝛼2
Δ𝐻,

𝜕𝜏 (𝛼𝑑
1 𝜌

𝑑
1 ) =

1
𝜇

𝜌1𝜎

𝛼2
Δ𝐻,

𝜕𝜏 (𝛼2𝜌2) =0,

𝜕𝜏𝛼
𝑑
1 =

1
𝜇

𝜌1𝜎

𝛼2𝜌
𝑑
1
Δ𝐻,

𝜕𝜏Σ =
1
𝜇

𝑆𝑎𝑣𝑔

𝑚𝑎𝑣𝑔

𝜌1𝜎Δ𝐻
𝛼2

,

𝜕𝜏𝛼1 =
1
𝜇
(𝑝1 − 𝑝2 − 𝜎

1 − 𝛼𝑑
1
𝐻𝑙𝑖𝑚),

𝜕𝜏 (𝜌𝒖) = − 1
𝜇

(
3
𝜅𝜌𝑑1

𝜌1
𝛼2

− 1
1 − 𝛼𝑑

1
+ (𝑝2 − 𝑝1)

ℎ

𝜎𝐻𝑙𝑖𝑚

)
𝜎𝐻𝑙𝑖𝑚

𝒖

𝒖2𝜎Δ𝐻.

(4.30)

Extending the numerical methods for the relaxation processes introduced in Section 4.1.4.1 and 4.1.4.2, we propose
to use the Rosenbrock scheme for the whole dynamical system 4.30. As previously remarked, the discretization of
the mean curvature 𝐻 requires the neighbouring cells and an implicit treatment of the source terms would then
result in an integration solver coupling the whole computational domain. To avoid such a computational expense,
we propose to choose a Rosenbrock scheme where we integrate implicitly the source term on 𝛼1, and explicitly all
the other source terms including a discretized mean curvature. The relaxed state 𝒒𝑟𝑒𝑙 is then the asymptotic state
for the fictitious time 𝜏 → +∞ of (4.30) and initial state 𝒒0. Following the chosen implicit-explicit time integration,
and defining the function of the Laplace pressure equilibrium at the continuous,

F (𝛼1𝜌1, 𝛼2𝜌2, 𝛼1, 𝛼
𝑑
1 ) := (1 − 𝛼𝑑

1 )
(
𝑝1

(
𝛼1𝜌1

𝛼1 (1 − 𝛼𝑑
1 )

)
− 𝑝2

(
𝛼2𝜌2

(1 − 𝛼1)(1 − 𝛼𝑑
1 )

)
− 𝜎𝐻 (∇𝛼1)

)
, (4.31)
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the discretization in fictitious time writes in all computational cells

(𝛼1𝜌1)𝑘+1 − (𝛼1𝜌1)𝑘 = −Δ𝜏
𝜇

𝜌𝑘1𝜎

𝛼𝑘
2

(Δ𝐻)𝑘 ,

(𝛼𝑑
1 𝜌

𝑑
1 )𝑘+1 − (𝛼𝑑

1 𝜌
𝑑
1 )𝑘 =

Δ𝜏
𝜇

𝜌1𝜎

𝛼2
(Δ𝐻)𝑘 ,

(𝛼2𝜌2)𝑘 = (𝛼2𝜌2)0,

(𝛼𝑑
1 )𝑘+1 − (𝛼𝑑

1 )𝑘 =
Δ𝜏
𝜇

𝜌1𝜎

𝛼2𝜌
𝑑
1
(Δ𝐻)𝑘 ,

Σ𝑘+1 − Σ𝑘 =
Δ𝜏
𝜇

𝑆𝑎𝑣𝑔

𝑚𝑎𝑣𝑔

𝜌1𝜎

𝛼2
(Δ𝐻)𝑘 ,

𝛼𝑘+1
1 − 𝛼𝑘

1 =
Δ𝜏
𝜇

1
1 − (𝛼𝑑

1 )𝑘
(
F 𝑘 + (𝛼𝑘+1

1 − 𝛼𝑘
1) (𝜕𝛼1F )𝑘

+ ((𝛼1𝜌1)𝑘+1 − (𝛼1𝜌1)𝑘) (𝜕(𝛼1𝜌1 )F )𝑘 + ((𝛼𝑑
1 )𝑘+1 − (𝛼𝑑

1 )𝑘) (𝜕(𝛼𝑑
1 )F )𝑘

)
,

(𝜌𝒖)𝑘+1 − (𝜌𝒖)𝑘 = −Δ𝜏
𝜇

(
3
𝜅𝜌𝑑1

𝜌𝑘1

𝛼𝑘
2
− 1

1 − (𝛼𝑑
1 )𝑘

+
(
𝑝𝑘2 − 𝑝𝑘1

) ℎ𝑘

𝜎𝐻𝑘
𝑙𝑖𝑚

)
𝜎𝐻𝑘

𝑙𝑖𝑚

(𝒖𝑘)
(𝒖𝑘)2𝜎(Δ𝐻)

𝑘 ,

(4.32)

where
𝜌𝑘1 := (𝛼1𝜌1)𝑘

𝛼𝑘
1 (1 − (𝛼𝑑

1 )𝑘)
, 𝛼𝑘

2 := 1 − 𝛼𝑘
1, 𝒖𝑘 := (𝜌𝒖)𝑘

(𝛼1𝜌1)𝑘 + (𝛼2𝜌2)𝑘 + (𝛼𝑑
1 𝜌

𝑑
1 )𝑘

, (4.33)

and with the initial condition 𝒒0 = 𝒒𝑐𝑎𝑝. Remark that all the terms in (4.32) are evaluated in the same computational
cell except the mean curvature difference Δ𝐻, which depends on the neighbouring cells. For readability purpose, we
now omit to write the update formula of (𝛼𝑑

1 𝜌
𝑑
1 ) and Σ, which are expressed straightforwardly from (𝛼𝑑

1 )𝑘+1. After
some manipulations, the update for 𝛼1 reads

𝛼𝑘+1
1 − 𝛼𝑘

1 =

Δ𝜏
𝜇

1
1−(𝛼𝑑

1 )𝑘

1 − Δ𝜏
𝜇

1
1−(𝛼𝑑

1 )𝑘 (𝜕𝛼1F )𝑘

(
F 𝑘 − Δ𝜏

𝜇

𝜌𝑘1𝜎

𝛼𝑘
2

(Δ𝐻)𝑘
(
(𝜕(𝛼1𝜌1 )F )𝑘 + Δ𝜏

𝜇

1
𝜌𝑑1

(𝜕(𝛼𝑑
1 )F )𝑘

))
. (4.34)

4.1.4.4 Relaxation restricted to admissible states

Furthermore, we want to enforce stability conditions for 𝜌𝒖, 𝛼1𝜌1, 𝛼𝑑
1 and 𝛼1, by keeping the updated values in their

respective admissible set during the relaxation process. These set are (0, 1) for 𝛼1, 𝛼𝑑
1 , R+ for 𝛼1𝜌1 and such that

𝜌𝒖 · 𝒖 ≥ 0 for 𝜌𝒖.
We proceed by introducing 0 < 𝜆 < 1 close to 1 to ensure that the next iteration 𝛼𝑘+1

1 does not get closer than a
fraction 𝜆 of the distance that separated it from the boundaries of [0, 1].

For the constraint on 𝜌𝒖, this yields the two following conditions

3
𝜅𝜌𝑑1

𝜌𝑘1

𝛼𝑘
2
− 1

1 − (𝛼𝑑
1 )𝑘

+ (𝑝2 − 𝑝1)
ℎ

𝜎𝐻𝑙𝑖𝑚
≥ 0, (4.35)

and

(𝜌𝒖)𝑘+1 · 𝒖𝑘 ≥ 0 ⇐⇒ Δ𝜏
𝜇

≤
(
𝜎(Δ𝐻)𝑘

(
3
𝜅𝜌𝑑1

𝜌𝑘1

𝛼𝑘
2
− 1

1 − (𝛼𝑑
1 )𝑘

+
(
𝑝𝑘2 − 𝑝𝑘1

) ℎ𝑘

𝜎𝐻𝑘
𝑙𝑖𝑚

)
𝜎𝐻𝑙𝑖𝑚

)−1

(𝜌𝒖)𝑘 · 𝒖𝑘 =:
(
Δ𝜏
𝜇

)
𝜌𝒖,𝑚𝑎𝑥

.

(4.36)
For the constraint on 𝛼1𝜌1, we have the following condition ensuring positivity

(𝛼1𝜌1)𝑘+1 ≥ 0 ⇐⇒ Δ𝜏
𝜇

≤ (𝛼1𝜌1)𝑘
(
𝜌𝑘1𝜎

𝛼𝑘
2

(Δ𝐻)𝑘
)−1

=:
(
Δ𝜏
𝜇

)
𝛼1𝜌1 ,𝑚𝑎𝑥

. (4.37)
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For the constraint on 𝛼𝑑
1 , we ensure that it does not go beyond 1 (in practice, we actually expect it to remain

small compared to 1). It yields

(𝛼𝑑
1 )𝑘+1 − (𝛼𝑑

1 )𝑘 ≤ 𝜆(1 − (𝛼𝑑
1 )𝑘) ⇐⇒ Δ𝜏

𝜇
≤ 𝜆(1 − (𝛼𝑑

1 )𝑘)
(
𝜌𝑘1𝜎

𝛼𝑘
2𝜌

𝑑
1
(Δ𝐻)𝑘

)−1

=:
(
Δ𝜏
𝜇

)
𝛼𝑑

1 ,𝑚𝑎𝑥

. (4.38)

Finally, for the constraint of 𝛼1, we have the following condition,

−𝜆𝛼𝑘
1 ≤ 𝛼𝑘+1

1 − 𝛼𝑘
1 ≤ 𝜆(1 − 𝛼𝑘

1) ⇐⇒
(
P1

(
Δ𝜏
𝜇

)
≤ 0 and P2

(
Δ𝜏
𝜇

)
≥ 0

)
, (4.39)

with
P1 (𝑋) := 𝑎𝑋2 + 𝑏1𝑋 + 𝑐1, P2 (𝑋) := 𝑎𝑋2 + 𝑏2𝑋 + 𝑐2, (4.40)

and

𝑎 :=
𝜌𝑘1𝜎

𝛼𝑘
2 (1 − (𝛼𝑑

1 )𝑘)
(Δ𝐻)𝑘 ((𝜌𝑑1 )−1 (𝜕𝛼𝑑

1
F )𝑘 − (𝜕𝛼1𝜌1F )𝑘), 𝑏1 := (1 − (𝛼𝑑

1 )𝑘)−1 (F 𝑘 + 𝜆𝛼𝑘
2 (𝜕𝛼1F )𝑘),

𝑏2 := (1 − (𝛼𝑑
1 )𝑘)−1 (F 𝑘 − 𝜆𝛼𝑘

1 (𝜕𝛼1F )𝑘), 𝑐1 := −𝜆(1 − 𝛼𝑘
1), 𝑐2 := 𝜆𝛼𝑘

1 .

(4.41)

For the first condition P1 (Δ𝜏/𝜇) ≤ 0, its validity depends on the sign of the discriminant Δ1 of the second-order
polynomial P1.

• If Δ1 < 0, the condition is always satisfied as 𝑐1 < 0 and the stability of 𝛼1 does not introduce any restriction
on Δ𝜏/𝜇;

• If Δ1 > 0, Δ𝜏/𝜇 is restricted by either the first root of P1 when 𝑎 < 0 or the second root when 𝑎 > 0.
A similar discussion can be conducted for the second condition P2 (Δ𝜏/𝜇) ≥ 0 such that one can define a maximal
step ratio (Δ𝜏/𝜇)𝛼1 ,𝑚𝑎𝑥 defined by the minimal bound enforced on Δ𝜏/𝜇 by the two conditions of (4.39).

Indeed, the final step ratio Δ𝜏/𝜇 to be used for the integration with respect to fictitious time (4.34) is

Δ𝜏
𝜇

= min
((
Δ𝜏
𝜇

)
𝜌𝒖,𝑚𝑎𝑥

,

(
Δ𝜏
𝜇

)
𝛼1𝜌1 ,𝑚𝑎𝑥

,

(
Δ𝜏
𝜇

)
𝛼𝑑

1 ,𝑚𝑎𝑥

,

(
Δ𝜏
𝜇

)
𝛼1 ,𝑚𝑎𝑥

)
, (4.42)

such that the next iteration 𝒒𝑘+1 stays an admissible state, and consequently the convergence of the method is
improved.

Conclusion of Section 4.1.4

We have detailed in this section an original relaxation method to solve the local Laplace equilibrium

𝑝1

(
𝛼1𝜌1

𝛼1 (1 − 𝛼𝑑
1 )

)
− 𝑝2

(
𝛼2𝜌2

(1 − 𝛼1) (1 − 𝛼𝑑
1 )

)
− 𝜎

1 − 𝛼𝑑
1
𝐻 (∇𝛼1), (4.43)

which involves space derivatives of ∇𝛼1. The method relies on three ingredients: 1- the interpretation of the Newton-
Raphson method as the asymptotic state of a dynamical process; 2- the use of an ImEx Rosenbrock method for DAE
to extend the Newton-Raphson method in the singular perturbation limit, i.e. 𝜇 → 0; 3- the combination of the
Rosenbrock scheme with admissibility criteria to enhance the convergence of the method. While existence criteria
of the solution are not assessed, we observe in Chapter 6 that the convergence is reached and indeed regularize the
large-scale interface.

In the two-scale regularizing model discussed in this section, only a simple small-scale is accounted with a spray
of droplets described with two geometric quantities 𝛼𝑑

1 and Σ as the associated realizability constraints are simply
their positivity. However, when more geometric quantities are accounted for, e.g. the surface-average densities of
curvatures, additional constraints must be fulfilled. In order to satisfy these conditions at the numerical level, we
discuss in the next section a special class of numerical schemes preserving the fulfilment of such constraints: the
kinetic schemes.
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4.2 Numerical strategy for the transport of geometric moments

Denoting 𝜉 = (𝑆̂0 , 𝜒̂ , ¤̂𝜒 ) , we consider the kinetic small-scale model of oscillating droplets with the velocity-
dependent NDF 𝑓𝜉 ( 𝑡 , 𝒙 , 𝒗 , 𝜉) which counts the droplets by their velocity 𝒗, by their surface area 𝑆0 when they
are spherical, and with amplitude and its time rate of change 𝜒̂ and ¤̂𝜒 as defined in Section 2.2.4. Then, we consider
the mono-kinetic assumption

𝑓𝜉 (𝑡, 𝒙, 𝒗, 𝜉) = 𝑛𝜉 (𝑡, 𝒙, 𝜉)𝛿(𝒗 −𝑼), (4.44)

with 𝑼 =
∫
𝜉
𝒗 𝑓𝜉 and the NDF 𝑛𝜉 (𝑡, 𝒙, 𝜉). Moreover, we assume the limit of a vanishing Stokes number such that

the average velocity of the spray is the same as the one of the carrier gaseous phase 𝒖 = 𝑼. Despite this modelling
simplification, we introduce an artificial interaction with the carrier fluid with a force 𝐹𝑒𝑥𝑡

𝑆0
sharing the same size

dependence as drag forces (O’Rourke and Amsden, 1987). The geometry dynamics is then given by the PBE (2.118)
with

¥𝜒2 + 𝜔2𝜒2 =
𝐹𝑒𝑥𝑡
𝑆0

, 𝜔2 = 8 𝜎

𝜌𝑑1𝑅
3
0
= 𝜔̃2𝑆−3/2

0 . (4.45)

he dynamics of the NDF 𝑓𝜉 is then

𝜕𝑡 𝑓𝜉 + ∇𝒙 · ( 𝑓𝜉𝒖) + 𝜕𝜒 ( ¤̂𝜒 𝑓𝜉 ) + 𝜕 ¤̂𝜒 ((−𝜔̃
2𝑆−3/2

0 𝜒̂ + 𝐹𝑒𝑥𝑡
𝑆0

) 𝑓𝜉 ) = 0. (4.46)

Moreover, the disperse phase is one way coupled with the carrier phase by assuming a carrier flow velocity 𝒖 and the
dynamics of the disperse phase to be given by the second equation of (2.50),

𝜕𝑡𝑛𝜉 + ∇𝒙 · (𝑛𝜉𝒖) + 𝜕𝜒 ( ¤̂𝜒𝑛𝜉 ) + 𝜕 ¤̂𝜒

(
(−𝜔̃2𝑆−3/2

0 𝜒̂ − 𝐹𝑒𝑥𝑡
𝑆0

)𝑛𝜉
)
= 0. (4.47)

Following Section 2.2.4.3, we assume either a monodisperse case where 𝑛𝜉 has the form

𝑛𝜉 (𝑡, 𝒙, 𝑆̂0, 𝜒̂, ¤̂𝜒) = 𝑛1 (𝑡, 𝒙)𝛿(𝑆̂0 − (𝑆0)1)𝛿( 𝜒̂ − 𝜒1)𝛿( ¤̂𝜒1 − ¤𝜒1), (4.48)

or a bi-disperse form
𝑛𝜉 (𝑡, 𝒙, 𝑆̂0, 𝜒̂, ¤̂𝜒) =

∑
𝑘=1,2

𝑛𝑘 (𝑡, 𝒙)𝛿(𝑆̂0 − (𝑆0)𝑘)𝛿( 𝜒̂ − 𝜒𝑘)𝛿( ¤̂𝜒1 − ¤𝜒𝑘). (4.49)

4.2.1 The small-scale moment model
The model is built upon up either four or eight geometric quantities corresponding for as many moments of the
mono-kinetic NDF gathered respectively in moment vectors 𝑴𝑚𝑜𝑛𝑜 and 𝑴 𝑝𝑜𝑙𝑦 with

𝑴𝑚𝑜𝑛𝑜 =
(
𝑀

𝜉
0,0,0, 𝑀

𝜉
3/2,0,0, 𝑀

𝜉
1,1,0, 𝑀

𝜉
1,0,1

)
,

𝑴 𝑝𝑜𝑙𝑦 =
(
𝑀

𝜉
0,0,0, 𝑀

𝜉
1/2,0,0, 𝑀

𝜉
1,0,0, 𝑀

𝜉
3/2,0,0, 𝑀

𝜉
1/2,1,0, 𝑀

𝜉
1/2,0,1, 𝑀

𝜉
1,1,0, 𝑀

𝜉
1,0,1

)
,

(4.50)

respectively in bijection with 𝒃 = 𝒃𝑚𝑜𝑛𝑜, 𝒃𝑝𝑜𝑙𝑦 (see (2.148) and Appendices 2.Cand 2.E), the monomial vectors
corresponding to the moments of the monodisperse and bi-disperse cases

𝒃𝑚𝑜𝑛𝑜 =
(
1, 𝑆̂0

3/2
, 𝑆̂0 𝜒̂, 𝑆̂0 ¤𝜒

)𝑇
, 𝒃𝑝𝑜𝑙𝑦 =

(
1, 𝑆̂0

1/2
, 𝑆̂0, 𝑆̂0

3/2
, 𝑆̂0 𝜒̂, 𝑆̂0 ¤𝜒, 𝑆̂0

1/2
𝜒̂, 𝑆̂0

1/2 ¤𝜒
)𝑇
. (4.51)

Integrating the geometric dynamics of (4.47) with the monomial corresponding to 𝑴𝑚𝑜𝑛𝑜 and 𝑴 𝑝𝑜𝑙𝑦, and the
momentum dynamics against 1 yields for the monodisperse case

𝜕𝑡𝑀
𝜉
𝑖,0,0 +∇ · (𝑀 𝜉

𝑖,0,0𝒖) = 0, 𝑖 = 0, 3/2,
𝜕𝑡𝑀

𝜉
1,1,0+∇ · (𝑀 𝜉

1,1,0𝒖)= 𝑀
𝜉
1,0,1,

𝜕𝑡𝑀
𝜉
1,0,1+∇ · (𝑀 𝜉

1,0,1𝒖)= 𝑀
𝜉
1,1,0 + 𝐹𝑒𝑥𝑡𝑀 𝜉

0,0,0,

(4.52)
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and the polydisperse case 

𝜕𝑡𝑀
𝜉
𝑖,0,0 +∇ · (𝑀 𝜉

𝑖,0,0𝒖) = 0, 𝑖 = 0, 1/2, 1, 3/2,
𝜕𝑡𝑀

𝜉
1,1,0 +∇ · (𝑀 𝜉

1,1,0𝒖) = 𝑀 𝜉
1,0,1,

𝜕𝑡𝑀
𝜉
1,0,1 +∇ · (𝑀 𝜉

1,0,1𝒖) = 𝑀 𝜉
1,1,0 − 𝐹𝑒𝑥𝑡𝑀 𝜉

0,0,0,

𝜕𝑡𝑀
𝜉
1/2,1,0+∇ · (𝑀 𝜉

1/2,1,0𝒖)= 𝑀
𝜉
1/2,0,1,

𝜕𝑡𝑀
𝜉
1/2,0,1+∇ · (𝑀 𝜉

1/2,0,1𝒖)= 𝑀
𝜉
1,1,0 + 𝐹𝑒𝑥𝑡𝑀 𝜉

−1/2,0,0.

(4.53)

A direct discretization of the system of equations above would probably lead to a set of updated moments which is
not realizable. The kinetic schemes then offer realizable numerical schemes by taking advantage of the underlying
kinetic equation.

4.2.2 Kinetic schemes to preserve realizability
In order to preserve realizability of the set of moments i.e. the existence of a positive distribution associated with the
moments, we write a numerical scheme for these moments where the fluxes are evaluated using the advected solution
of the kinetic equation. We consider a uniform discretization in one direction of space. With no loss of generality, we
consider a one-dimensional problem, and the averaged moment (𝑀 𝜉

𝑗,𝑘,𝑙)
𝑛
𝑖 over a cell 𝐶𝑖 = (𝑥𝑖−1/2, 𝑥𝑖+1/2) at time 𝑡𝑛 is

(𝑀 𝜉
𝑗,𝑘,𝑙)

𝑛
𝑖 =

1
Δ𝑥

∫
𝐶𝑖

𝑀
𝜉
𝑗,𝑘,𝑙 (𝑡𝑛, 𝑥)𝑑𝑥 =

1
Δ𝑥

∫
𝐶𝑖×𝐸

𝑆̂0
𝑗
𝜒̂𝑘 ¤̂𝜒𝑙 𝑓 (𝑡𝑛, 𝑥, 𝑣, 𝑆̂0, 𝜒̂, ¤̂𝜒)𝑑𝑣𝑑𝑆̂0𝑑 𝜒̂𝑑 ¤̂𝜒𝑑𝑥, (4.54)

with the phase space 𝐸 = 𝐸𝑆0 × 𝐸𝑣 × 𝐸𝜒 × 𝐸 ¤𝜒 = (0, 1) × R3. The momentum 𝑞𝑛𝑖 attributed to cell 𝑖 at time 𝑡𝑛 is

𝑞𝑛𝑖 = (𝑀 𝜉
0,0,0)

𝑛
𝑖 𝑈

𝑛
𝑖 =

1
Δ𝑥

∫
𝐶𝑖

𝑀
𝜉
0,0,0 (𝑡𝑛, 𝑥)𝑈 (𝑡𝑛, 𝑥)𝑑𝑥 =

1
Δ𝑥

∫
𝐶𝑖×R

𝑈 𝑓 (𝑡𝑛, 𝑥, 𝑣, 𝑆̂0, 𝜒̂, ¤̂𝜒)𝑑𝑣𝑑𝑥. (4.55)

We compute the transported solution with the characteristics of the kinetic equation (4.46) with 𝐹𝑒𝑥𝑡 = 0 for
𝑡 ∈ [𝑡𝑛, 𝑡𝑛+1] in cell 𝐶𝑖. Let us note that equation (4.46) can be rewritten as follows

(𝜕𝑡 · +𝑣𝜕𝑥 ·) 𝑓 (𝑡, 𝑥, 𝑣, 𝑆̂0, (𝑋, ¤𝑋) (𝑡)) = 0, (4.56)

where (𝑋, ¤𝑋) are defined by the ordinary differential equation (ODE) ( ¤𝑋, ¥𝑋) = ( ¤𝑋,−𝜔̃2𝑆̂0
−3/2

𝑋). Solving the ODE
between 𝑡𝑛 and 𝑡𝑛+1 yields

©­­«
𝑋 (𝑡𝑛+1)

¤𝑋 (𝑡𝑛+1)

ª®®¬ =

©­­­­­«
cos

(
𝜔̃𝑆̂0

−3/4
Δ𝑡

) sin
(
𝜔̃𝑆̂0

−3/4
Δ𝑡

)
𝜔̃𝑆̂0

−3/4

−𝜔̃𝑆̂0
−3/4

sin
(
𝜔̃𝑆̂0

−3/4
Δ𝑡

)
cos

(
𝜔̃𝑆̂0

−3/4
Δ𝑡

)
ª®®®®®¬
©­­«
𝑋 (𝑡𝑛)

¤𝑋 (𝑡𝑛)

ª®®¬ . (4.57)

We end up with the following updated solution of the kinetic equation (4.46) without source term

𝑓 (𝑡, 𝑥, 𝑣, 𝑆̂0, (𝑋, ¤𝑋)(𝑡)) = 𝑓
(
𝑡𝑛, 𝑥 + 𝑣(𝑡 − 𝑡𝑛), 𝑣, 𝑆̂0, 𝜒̂ cos

(
𝜔̃𝑆̂0

−3/4 (𝑡 − 𝑡𝑛)
)
+ ¤̂𝜒

sin
(
𝜔̃𝑆̂0

−3/4 (𝑡 − 𝑡𝑛)
)

𝜔̃𝑆̂0
−3/4 ,

¤̂𝜒 cos
(
𝜔̃𝑆̂0

−3/4 (𝑡 − 𝑡𝑛)
)
− 𝜔̃𝑆̂0

−3/4
𝜒̂ sin

(
𝜔̃𝑆̂0

−3/4 (𝑡 − 𝑡𝑛)
) )
.

(4.58)

Here we present briefly the main steps to derive the first-order kinetic schemes for the systems (4.52) and (4.53). We
use the finite volume discretization by integrating over [𝑡𝑛, 𝑡𝑛+1] × 𝐶𝑖 the kinetic equation against 𝒃 = 𝒃𝑚𝑜𝑛𝑜, 𝒃𝑝𝑜𝑙𝑦,

𝑴𝑛+1
𝑖 = 𝑴𝑛

𝑖 −
Δ𝑡
Δ𝑥

(
𝑭𝑖+1/2 − 𝑭𝑖−1/2

)
, (4.59)
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where 𝑭𝑖±1/2 are the fluxes oriented outwards at the interfaces are obtained with

𝑭𝑖+1/2 =
1
Δ𝑡

∫ 𝑡𝑛+1

𝑡𝑛

∫
𝐸
𝒃(𝑣, 𝑆̂0, 𝜒̂, ¤̂𝜒) 𝑓 (𝑡, 𝑥𝑖+1/2, 𝑣, 𝑆̂0, 𝜒̂, ¤̂𝜒)𝑑𝑣𝑑𝑆̂0𝑑 𝜒̂𝑑 ¤̂𝜒𝑑𝑡. (4.60)

We split the fluxes in two integral parts 𝑭𝑖+1/2 = 𝑭+
𝑖+1/2 + 𝑭−

𝑖+1/2 where the first corresponds to the droplet of positive
velocity in 𝑥-direction. Then we use the advected solution (4.58) of the kinetic system, to express the fluxes as
function of the NDF at 𝑡 = 𝑡𝑛. We obtain the following expressions

𝑭𝑚𝑜𝑛𝑜,±
𝑖+1/2 =

1
Δ𝑡

∫ 𝑥𝑖+1/2

𝑥𝑖−1/2

©­­­­«
𝑀

𝜉
0,0,0 (𝑡𝑛, 𝑥)

𝑀
𝜉
3/2,0,0 (𝑡𝑛, 𝑥)

𝑅1 (𝑡𝑛, 𝑥)𝑆1
0 (𝑡𝑛, 𝑥)

𝑀
𝜉
0,0,0𝑢(𝑡𝑛, 𝑥)

ª®®®®¬
1Σ± (𝑥)𝑑𝑥, 𝑭𝑝𝑜𝑙𝑦,±

𝑖+1/2 =
1
Δ𝑡

∫ 𝑥𝑖+1/2

𝑥𝑖−1/2

©­­­­­­­­­­­­­«

𝑀
𝜉
0,0,0 (𝑡𝑛, 𝑥)

𝑀
𝜉
1/2,0,0 (𝑡𝑛, 𝑥)
𝑀

𝜉
1,0,0 (𝑡𝑛, 𝑥)

𝑀
𝜉
3/2,0,0 (𝑡𝑛, 𝑥)∑

𝑘=1,2
𝑅𝑘 (𝑡𝑛, 𝑥)𝑆𝑘0 (𝑡𝑛, 𝑥)∑

𝑘=1,2
𝑅𝑘 (𝑡𝑛, 𝑥) (𝑆𝑘0)1/2 (𝑡𝑛, 𝑥)

𝑀
𝜉
0,0,0𝑢(𝑡𝑛, 𝑥)

ª®®®®®®®®®®®®®¬
1Σ± (𝑥)𝑑𝑥,

(4.61)
where Σ± =

{
𝑥′,±(𝑥𝑖+1/2 − Δ𝑡𝑢(𝑡𝑛, 𝑥′)) < ±𝑥′

}
and 𝑅𝑘 is the rotation defined by (4.57),

𝑅𝑘 (𝑥) = 𝑛𝑘
©­­«

cos(𝜔̃(𝑆𝑘0)−3/4Δ𝑡)𝜒𝑘 −
sin(𝜔̃(𝑆𝑘0)−3/4Δ𝑡)

𝜔̃(𝑆𝑘0)−3/4 ¤𝜒𝑘

𝜔̃(𝑆𝑘0)−3/4 sin(𝜔̃(𝑆𝑘0)−3/4Δ𝑡)𝜒𝑘 + cos(𝜔̃(𝑆𝑘0)−3/4Δ𝑡) ¤𝜒𝑘

ª®®¬ , (4.62)

where we have written 𝑛𝑘 = 𝑛𝑘 (𝑡𝑛, 𝑥), 𝑆𝑘0 = 𝑆𝑘0 (𝑡𝑛, 𝑥), 𝜒𝑘 = 𝜒𝑘 (𝑡𝑛, 𝑥), ¤𝜒𝑘 = ¤𝜒𝑘 (𝑡𝑛, 𝑥) for concision. Hence, following the
above strategy, we obtain two kinetic finite volume schemes of first order for the moment system with a monodisperse
(4.48) and a polydisperse quadrature (4.49). The numerical fluxes are defined as follows,

𝑭𝑚𝑜𝑛𝑜
𝑖+1/2 =

©­­­­«
(𝑀 𝜉

0,0,0)𝑛𝑖
(𝑀 𝜉

3/2,0,0)
𝑛
𝑖

1
Δ𝑡 (𝑅′

1)𝑛𝑖 (𝑆1
0)𝑛𝑖

(𝑀 𝜉
0,0,0)𝑛𝑖 𝑢𝑛𝑖

ª®®®®¬
max(𝑢𝑛𝑖 , 0) +

©­­­­«
(𝑀 𝜉

0,0,0)𝑛𝑖+1
(𝑀 𝜉

3/2,0,0)
𝑛
𝑖+1

1
Δ𝑡 (𝑅′

1)𝑛𝑖 (𝑆1
0)𝑛𝑖+1

(𝑀 𝜉
0,0,0)𝑛𝑖+1𝑢

𝑛
𝑖+1

ª®®®®¬
min(𝑢𝑛𝑖+1, 0) , (4.63)

and

𝑭𝑝𝑜𝑙𝑦
𝑖+1/2 =

©­­­­­­­­­­­«

(𝑀 𝜉
0,0,0)𝑛𝑖

(𝑀 𝜉
1/2,0,0)

𝑛
𝑖

(𝑀 𝜉
1,0,0)𝑛𝑖

(𝑀 𝜉
3/2,0,0)

𝑛
𝑖

1
Δ𝑡

[
(𝑅′

1)𝑛𝑖 (𝑆1
0)𝑛𝑖 + (𝑅′

2)𝑛𝑖 (𝑆2
0)𝑛𝑖

]
1
Δ𝑡

[
(𝑅′

1)𝑛𝑖 ((𝑆1
0)1/2)𝑛𝑖 + (𝑅′

2)𝑛𝑖 ((𝑆2
0)1/2)𝑛𝑖

]
(𝑀 𝜉

0,0,0)𝑛𝑖 𝑢𝑛𝑖

ª®®®®®®®®®®®¬
max(𝑢𝑛𝑖 , 0)+

©­­­­­­­­­­­«

(𝑀 𝜉
0,0,0)𝑛𝑖+1

(𝑀 𝜉
1/2,0,0)

𝑛
𝑖+1

(𝑀 𝜉
1,0,0)𝑛𝑖+1

(𝑀 𝜉
3/2,0,0)

𝑛
𝑖+1

1
Δ𝑡 (𝑅′

1)𝑛𝑖+1 (𝑆1
0)𝑛𝑖+1 + (𝑅′

2)𝑛𝑖+1 (𝑆2
0)𝑛𝑖

1
Δ𝑡 (𝑅′

1)𝑛𝑖+1 ((𝑆1
0)1/2)𝑛𝑖+1 + (𝑅′

2)𝑛𝑖+1 ((𝑆2
0)1/2)𝑛𝑖+1

(𝑀 𝜉
0,0,0)𝑛𝑖+1𝑢

𝑛
𝑖+1

ª®®®®®®®®®®®¬
min(𝑢𝑛𝑖+1, 0),

(4.64)
where the rotation 𝑅′

𝑘 is given by

(𝑅′
𝑘)𝑛𝑖 = 𝑛𝑘

©­­­­«
sin(𝜔̃(𝑆𝑘0)−3/4Δ𝑡)

𝜔̃(𝑆𝑘0)−3/4 𝜒𝑘 +
cos(𝜔̃(𝑆𝑘0)Δ𝑡) − 1
𝜔̃2 (𝑆𝑘0)−3/2 ¤𝜒𝑘

sin(𝜔̃(𝑆𝑘0)−3/4Δ𝑡)
𝜔̃(𝑆𝑘0)−3/4 𝜒𝑘 −

(
cos(𝜔̃(𝑆𝑘0)−3/4Δ𝑡) − 1

)
¤𝜒𝑘

ª®®®®¬
, (4.65)
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with the weights and abscissa evaluated at time 𝑡𝑛 and cell 𝐶𝑖. The kinetic finite-volume schemes for respectively the
monodisperse and bi-disperse model write

𝑴𝑛
𝑚𝑜𝑛𝑜,𝑖 =

©­­­­«
(𝑀 𝜉

0,0,0)𝑛𝑖
(𝑀 𝜉

3/2,0,0)
𝑛
𝑖

(𝑅′
1)𝑛𝑖 (𝑆1

0)𝑛𝑖
(𝑀 𝜉

0,0,0)𝑛𝑖 𝑢𝑛𝑖

ª®®®®¬
− Δ𝑡
Δ𝑥

(
𝑭𝑚𝑜𝑛𝑜
𝑖+1/2 − 𝑭𝑚𝑜𝑛𝑜

𝑖−1/2

)
+ Δ𝑡

©­­­­­«
0
0
0

𝐹𝑒𝑥𝑡 (𝑀 𝜉
0,0,0)𝑛𝑖

0

ª®®®®®¬
, (4.66)

and

𝑴𝑛
𝑝𝑜𝑙𝑦,𝑖 =

©­­­­­­­­­­­«

(𝑀 𝜉
0,0,0)𝑛𝑖

(𝑀 𝜉
1/2,0,0)

𝑛
𝑖

(𝑀 𝜉
1,0,0)𝑛𝑖

(𝑀 𝜉
3/2,0,0)

𝑛
𝑖

(𝑅′
1)𝑛𝑖 (𝑆1

0)𝑛𝑖 + (𝑅′
2)𝑛𝑖 (𝑆2

0)𝑛𝑖
(𝑅′

1)𝑛𝑖 ((𝑆1
0)1/2)𝑛𝑖 + (𝑅′

2)𝑛𝑖+1 ((𝑆2
0)1/2)𝑛𝑖

(𝑀 𝜉
0,0,0)𝑛𝑖 𝑢𝑛𝑖

ª®®®®®®®®®®®¬
− Δ𝑡
Δ𝑥

(
𝑭𝑝𝑜𝑙𝑦
𝑖+1/2 − 𝑭𝑝𝑜𝑙𝑦

𝑖−1/2

)
+ Δ𝑡

©­­­­­­­­­­«

0
0
0

𝐹𝑒𝑥𝑡 (𝑀 𝜉
0,0,0)𝑛𝑖

0
𝐹𝑒𝑥𝑡 (𝑀 𝜉

−1/2,0,0)
𝑛
𝑖

0

ª®®®®®®®®®®¬
. (4.67)

Remark that, except for the source term, these two updating formula results of rotations 𝑅′
1 and 𝑅′

1 and a convex
combination of a set of moments of cells 𝐶𝑖−1, 𝐶𝑖 and 𝐶𝑖+1. As the moment space associated with the size distribution
is convex (Schmüdgen, 2017), the updating formulas keep the size moments in their corresponding convex moment
space. Finally, the source terms act on the moments 𝑀 𝜉

1,0,1 and 𝑀
𝜉
1/2,0,1 but are not subject to any restriction if

the ones on sizes are satisfied. Indeed, if the moments related to size only 𝑀
𝜉
0,0,0, 𝑀 𝜉

1/2,0,0, 𝑀 𝜉
1,0,0, 𝑀 𝜉

3/2,0,0 are
realizable for the size distribution, one can reconstruct a quadrature distribution on the full distribution following
the quadratures (2.148) and Appendix 2.C without any further restrictions. Thus, a realizable set of moments is
obtained at time 𝑡𝑛 and makes the schemes realizable under the CFL condition Δ𝑡 ≤ Δ𝑥. The numerical scheme can
also be showed to preserve the oscillation energy if no source term is accounted for, this will be numerically assessed
in Section 5.4. Note that a second-order extension of this scheme can be found in Ait-Ameur et al. (2024).

Remark also that the update of the moment vector at time 𝑡𝑛+1 depends directly on the weights 𝑛𝑖 and abscissas
(𝑆0)𝑖 , 𝜒𝑖 , ¤𝜒𝑖 , 𝑖 = 1, 2 defined by (4.49) at time 𝑡𝑛, and the moment 𝑀 𝜉

−1/2,0,0 which is closed with the same weights
and abscissas. The calculation of 𝑛𝑖 and (𝑆0)𝑖 , 𝑖 = 1, 2 only depending on the monodisperse of polydisperse closure
are respectively found in (2.148) and Appendix 2.C, and in Appendix 2.E.

Conclusion of chapter 4
We have detailed in this chapter numerical methods adapted to the specificities of the models derived in this
manuscript, namely sets of conservation laws, additional equilibrium equations and dynamics of sets of moments.
This chapter included the following contributions :

• A Godunov method for the hyperbolic fluxes of the two-scale model with small-scale liquid inclusions;

• A dynamical interpretation of the relaxation process;

• An efficient implicit-explicit procedure to solve the relaxation towards an equilibrium involving space derivatives;

• A realizability-preserving kinetic scheme for the small scale of polydisperse oscillating droplets.

We have proposed numerical schemes for two-scale models, with a time splitting procedure where sub-systems are suc-
cessively integrated in time. This method allows dealing with systems with simpler structures, namely a convective-
related sub-system, a capillarity-related sub-system and a relaxation sub-system. The hyperbolicity and the knowl-
edge of the eigen-structure of the convection-related part of the two-scale model allows us to build a Godunov method
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for the convective-related sub-system and an extension at second order. The evaluation of the capillarity flux is here
approximated with arithmetic averages as in Schmidmayer et al. (2017); Cordesse (2020). Then, a new procedure
has been introduced to solve the algebraic equation given by a local Laplace pressure equilibrium. For usual pressure
relaxation, a simple Newton-Raphson procedure is sufficient to solve the pressure equilibrium. However, the presence
of space derivatives in the Laplace pressure jump couple all the space domain at the discretized level with the same
procedure. Therefore, we propose to interpret the Newton-Raphson procedure as the solution of a dynamical system
integrated with a Rosenbrock method with respect to fictitious time. To avoid the growth of the computational
cost, we specifically choose to integrate explicitly the source terms involving the discretization of space derivatives.
We identify stability conditions, similarly as a Newton-Raphson combined with a bisection method, that keep the
intermediary states in an admissible range during the relaxation procedure. Finally, we have derived a realizable
kinetic scheme for the small-scale model with a spray of oscillating droplets. This integration approach relies on the
exact solution of the kinetic equation and involves here both a material advection in space and a rotation in the
phase space of the oscillation motions.



142 4. Numerical strategy and methods



Appendix

4.A Solution of the Riemann problem
We detail here the computational method to evaluate the flux at the interface between two cells, arbitrarily called
”left” and ”right” and denoted with the indexes L and R. We consider the 𝑥-axis oriented in the direction of the
interface. For the considered Godunov method, we recall that the fluxes at the interface are evaluated using the
solution 𝒒 of the Riemann problem 

𝜕𝑡𝒒 + ∇ · 𝑭(𝒒) = 0,

𝒒(𝑥, 0) =
{
𝒒𝐿 if 𝑥 < 0,
𝒒𝑅 if 𝑥 > 0,

(4.68)

with 𝒒 = (𝜌𝛼1, 𝛼1𝜌1, 𝛼2𝜌2, 𝛼
𝑑
1 𝜌

𝑑
1 , 𝛼

𝑑
1 , 𝜌𝑢𝑥 , 𝜌𝑢𝑦). Given the self-similar nature of the solution, we denote 𝒒(𝑥/𝑡) = 𝒒(𝑥, 𝑡)

for 𝑡 > 0, and the interface flux is evaluated as 𝑭(𝒒(0)). The solution of this Riemann problem with linearized
barotropic EOS is an extension of the work proposed by (Chanteperdrix et al., 2002). Indeed, the model presented
in their work is recovered when 𝛼𝑑

1 → 0, and the structure of the eigenvalues is the same with two truly non-linear
waves of velocity 𝑢𝑥 ± 𝑐𝑑𝐹 , and additional linearly degenerate fields to the material velocity 𝑢𝑥 .

Given the structure of the eigenvalues and eigenvectors, the solution of this problem is self-similar with three
waves denoted from left to right in the usual 𝑥 − 𝑡 plane as the 1-wave, the discontinuity wave, and the 3-wave. They
separate the 𝑥 − 𝑡 plane in four regions:

• the left state 𝒒𝐿 at the left of the 1-wave,

• the left star-state 𝒒∗𝐿 between the 1-wave and the discontinuity wave,

• the left star-state 𝒒∗𝑅 between the discontinuity wave and the 3-wave,

• the right state 𝒒𝑅 at the right of the 3-wave.

From the Rankine-Hugoniot conditions, one can demonstrate that the normal velocity 𝑢𝑥 and the pressure 𝑝 are
constant across the discontinuity wave. For either shocks or rarefaction waves, left and right states are both linked
to their respective star regions of same velocity 𝑢∗𝑥 and 𝑝∗. We express that relation with functions 𝑓𝐿 and 𝑓𝑅 giving
respectively the velocity of the star region from the left/right state and the pressure of the star region. The common
normal velocity within the star region gives

𝑓𝐿 (𝑝∗, 𝒒𝐿) = (𝑢𝑥)∗ = (𝑢𝑥)∗𝑅 = 𝑓𝑅 (𝑝∗, 𝒒𝑅). (4.69)

For concision purposes, only the main computational procedure along with the differences are highlighted here, and
the reader is referred to their work for an exhaustive discussion. We propose here to establish the expression of 𝑓𝐿
for the 1-wave only, as the expression of 𝑓𝑅 is similarly obtained.
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Expression of 𝑓𝐿 for a 1-shock
Let us write the Rankine-Hugoniot conditions for a 1-shock of velocity 𝑠,

𝑠
(
𝒒∗𝐿 − 𝒒𝐿

)
= 𝑭𝑐𝑜𝑛𝑣 (𝒒∗𝐿) − 𝑭𝑐𝑜𝑛𝑣 (𝒒𝐿). (4.70)

Such a shock is only valid if the Lax inequality (𝑢𝑥)𝐿 > 𝑠 > (𝑢𝑥)∗ holds. We develop and reorganize this set of
equation to obtain for 𝑞 ∈ (𝜌𝛼1, 𝛼1𝜌1, 𝛼2𝜌2, 𝛼

𝑑
1 𝜌

𝑑
1 , 𝛼

𝑑
1 , 𝜌𝑢𝑦){

𝑞∗𝐿 = 𝑞𝐿
(𝑢𝑥 )𝐿−𝑠
(𝑢𝑥 )∗−𝑠 ,

(𝜌𝑢𝑥)∗𝐿 = (𝜌𝐿𝑢𝑥)𝐿 (𝑢𝑥 )𝐿−𝑠
(𝑢𝑥 )∗−𝑠 + 𝑝𝐿−𝑝∗

𝐿
(𝑢𝑥 )∗−𝑠 .

(4.71)

From these equations, we particularly obtain that

(𝛼1)∗𝐿 = (𝛼1)𝐿 , 𝜌∗𝐿 = 𝜌𝐿
(𝑢𝑥)𝐿 − 𝑠
(𝑢𝑥)∗ − 𝑠

, 𝑠 = (𝑢𝑥)𝐿 + 𝑝𝐿 − 𝑝∗

𝜌𝐿 [(𝑢𝑥)𝐿 − (𝑢𝑥)∗]
. (4.72)

In order to get the expression of 𝑓𝐿 for a shock, we need to express 𝑠 as a function of 𝑝∗ and (𝑢𝑥)∗. We do so by
using the linearized barotropic EOS and the first relation of (4.71) in the last relation of (4.72) to express 𝑝∗ with 𝑠
and (𝑢𝑥)∗. Then, isolating 𝑠 yields

𝑠 =
1 − (𝛼𝑑

1 )𝐿
(𝑢𝑥 )𝐿
(𝑢𝑥 )∗

1 − (𝛼𝑑
1 )𝐿

(𝑢𝑥)∗ + 𝜌𝐿 (𝑐𝑑𝐹)2
𝐿

(𝑢𝑥)𝐿 − (𝑢𝑥)∗
𝑝𝐿 − 𝑝∗ . (4.73)

Using this relation with the last relation of (4.72) finally gives

(𝑢𝑥)∗ = (𝑢𝑥)𝐿 −
√

1 − (𝛼𝑑
1 )𝐿

𝑝∗ − 𝑝𝐿√
𝜌𝐿 (𝑝∗ − 𝑝𝐿 + (1 − (𝛼𝑑

1 )𝐿)𝜌𝐿 (𝑐𝑑𝐹)2
𝐿)

=: 𝑓 𝑠ℎ𝑜𝑐𝑘𝐿 (𝑝∗, 𝒒𝐿). (4.74)

According to the Lax inequality, this last relation is only valid for 𝑝∗ > 𝑝𝐿.

Expression of 𝑓𝐿 for a 1-rarefaction
Consider now a rarefaction wave connecting the state 𝒒𝐿 and 𝒒∗𝐿. From the Riemann invariants associated with
𝑢𝑥 − 𝑐𝑑𝐹 for the barotropic linearized EOS,

𝛼1,
𝛼1𝜌1
𝛼2𝜌2

,
𝛼𝑑

1 𝜌
𝑑
1

𝛼1𝜌1
,

Σ
𝛼1𝜌1

, 𝜌𝑑1 , 𝑐𝑑𝐹 (1 − 𝛼𝑑
1 ), 𝑢𝑥 +

1
2
𝑐𝑑𝐹 (1 − 𝛼𝑑

1 ) log
(

(𝛼1𝜌1)(𝛼2𝜌2)
(1 − 𝛼𝑑

1 )2𝛼1 (1 − 𝛼18)𝜌0,1𝜌0,2

)
. (4.75)

As these invariants are equal in state 𝒒𝐿 and 𝒒∗𝐿, some calculations provide for 𝑞 ∈ (𝜌𝛼1, 𝛼1𝜌1, 𝛼2𝜌2, 𝛼
𝑑
1 𝜌

𝑑
1 , 𝛼

𝑑
1 , 𝜌𝑢𝑦)

𝑞∗𝐿 = 𝑞𝐿
1−𝛼1

𝑑,∗
(1−𝛼1

𝑑,𝑔
) exp

(
𝑢𝑔−𝑢∗

𝑐𝑔 (1−𝛼1
𝑑,𝑔

)

)
,

(𝑢𝑥)∗𝐿 = (𝑢𝑥)𝐿 +(𝑐𝑑𝐹)𝐿 (1 − (𝛼𝑑
1 )𝐿) log

(
𝜌𝐿 (𝑐𝑑𝐹 )2

𝐿 (1−(𝛼𝑑
1 )𝐿 )

𝑝∗−𝑝𝐿+𝜌𝐿 (𝑐𝑑𝐹 )2
𝐿 (1−(𝛼𝑑

1 )𝐿 )

)
=: 𝑓 𝑟𝑎𝑟𝑒 𝑓𝐿 (𝑝∗, 𝒒𝐿),

(4.76)

where the last relation defines the function 𝑓𝐿 for 𝑝∗ < 𝑝𝐿 such that (𝑢𝑥)𝐿 < (𝑢𝑥)∗𝐿 Remark that we start computing
the state in the star region with the component 𝛼1

𝑑,∗ thanks to the first relation of (4.76) with 𝑞 = 𝛼𝑑
1 and a

Newton-Raphson method.
We finally define the function 𝑓𝐿 with

𝑓𝐿 (𝑝∗, 𝒒𝐿) =
{
𝑓
𝑟𝑎𝑟𝑒 𝑓
𝐿 (𝑝∗, 𝒒𝐿) if 𝑝∗ < 𝑝𝐿 ,

𝑓 𝑠ℎ𝑜𝑐𝑘𝐿 (𝑝∗, 𝒒𝐿) if 𝑝∗ > 𝑝𝐿 .
(4.77)
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Solution algorithm
Given the definition of 𝑓𝐿 and assuming that we have obtained 𝑓𝑅 similarly, we obtain the solution of the Riemann
problem (4.68) by proceeding as follows:

(i) Identifying the nature of the 1-wave and 3 wave by solving in 𝑝 the invariance of velocity (𝑢𝑥) in the star region
with a Newton-Raphson method,

𝑓𝐿 (𝑝, 𝒒𝐿) − 𝑓𝑅 (𝑝, 𝒒𝑅) = 0. (4.78)

(ii) Identifying the region where the cell interface stationary wave 𝑥/𝑡 = 0 belong,

(iii) Computing the state 𝒒(0) and the flux 𝑭(𝒒(0)) with the set of relations (4.71) or (4.76).
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CHAPTER 5
Verification test-cases

We implement the numerical methods provided in chapter 4 in the code Josiepy (2023)1, the development of which
was initiated during the PhD thesis of Di Battista (2021). Following good software development practices and
the development guidelines of Josiepy, some verification test-cases are required to ensure the correctness of both
the implementation and the models before investigating more complex setups. This chapter and the following also
illustrate the numerical development and software implementation proposed by the author including second-order
MUSCL scheme, implementation of models, numerical solution of Riemann problems and relaxation schemes. The
reader interested on details about the software architecture is referred to the PhD manuscript of R. Di Battista
aforementioned, the documentation and the introductory Jupyter notebooks available on the GitHub repository.
These verification test-cases are the topic of this chapter. By nature, such tests only rely on the existence of either
an analytical solution for the model to test the numerical schemes, or a physical solution to test both the model and
the numerical schemes. We sort these tests in four groups :

• convergence order assessment of the space-time numerical schemes with one-dimensional smooth solution;

• one-dimensional exact Riemann problems;

• two-dimensional capillarity setups;

• one-dimensional setup for the small-scale model of oscillating droplets.

In Section 5.1, we assess the convergence order of MUSCL-type and Runge-Kutta schemes on the advection of
a smooth profile. We also test the order convergence of the proposed scheme for the two-phase barotropic Model 4
at pressure equilibrium and without capillarity. We ensure that the pressure relaxation, solved in its instantaneous
limit, actually corresponds to the Model 3 at pressure equilibrium with the right sound propagation velocity. Then,
we propose successive Riemann test-cases in Section 5.2 for the barotropic Model 4 without capillarity, also solved
in the instantaneous relaxation limit and the corresponding two-scale extension with an incompressible small-scale
as proposed in Model 22. Two-dimensional capillarity problems are then investigated in Section 5.3 to assess the
capabilities and limits of the numerical scheme. The evolution two-dimensional liquid column with either a circular
shape and a square shape are studied. We conclude on the assessment of the proposed numerical strategy for the
various models at play.

5.1 Smooth test-cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
5.1.1 Scalar advection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
5.1.2 Three-equation model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

5.1.2.1 Material advection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
5.1.2.2 Sound propagation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

1https://github.com/hpc-maths/josiepy
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5.1.3 Two-scale three-equation model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
5.2 Riemann test-cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

5.2.1 The three-equation model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
5.2.1.1 Material advection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
5.2.1.2 Shock test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
5.2.1.3 With pure phases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

5.2.2 Two-scale three-equation model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
5.3 Capillarity test-cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

5.3.1 Initialization of the diffuse interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
5.3.2 Relaxation of the liquid towards the Laplace pressure law . . . . . . . . . . . . . . . . . . . . . 160

5.3.2.1 Oscillating dynamics of the averaged pressure . . . . . . . . . . . . . . . . . . . . . . . 161
5.3.2.2 Pressure profiles and mean curvature . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

5.3.3 Relaxation of a square column . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
5.4 Harmonic oscillation of the spray of droplets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
Conclusion of chapter 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

5.1 Smooth test-cases

5.1.1 Scalar advection
We assess the correct implementation of the numerical methods by checking that the expected order of convergence
is obtained for two numerical strategies :

• a classic first-order finite-volume scheme with an upwind flux and explicit Euler integration scheme;

• a second-order MUSCL scheme as detailed in 4.1.2 with the upwind flux and second-order Runge-Kutta inte-
gration scheme.

We consider here the one-dimensional scalar advection model of the following smooth initial condition{
𝜕𝑡𝑞 +𝑈𝜕𝑥𝑞 = 0,
𝑞(0, 𝑥) = 𝑒−𝛽𝑥2

, 𝛽 = 8 m−2,
(5.1)

in the domain 𝑥 ∈ (−1, 1) m with periodic boundary conditions. This advection problem is solved for 𝑈 = 1 m.s−1 for
Δ𝑥 = 0.01 m and a CFL condition of 𝐶𝐹𝐿 = 0.8 for 𝑡 ∈ [0, 2] s. Consequently, the profile is expected to travel back
to its original position. The numerical solutions are compared with the exact solution in Figure 5.1.1a. Then, the
convergence order is assessed from the 𝐿2-error 𝐸𝐿2 defined for the numerical solution (𝑞𝑖)𝑖=1,...,𝑁 for 𝑁 cells located
at 𝑥𝑖 =

(
𝑖 − 1

2
)
Δ𝑥 at final time 𝑇 by

𝐸𝐿2 ((𝑞𝑖)) =

√√√
𝑁∑
𝑖=1

(𝑞𝑖 − 𝑞𝑒𝑥𝑎 (𝑥𝑖))2Δ𝑥. (5.2)

The 𝐿2-error is plotted for different mesh sizes in Figure 5.1.1b and a first-order convergence is obtained for the
classic finite-volume scheme and a second-order one for the MUSCL scheme.

5.1.2 Three-equation model
We propose here to solve the 3-eq. Model 3 using the relaxation 4-eq. Model 4. We assess here first- and second-order
strategies on two test-cases: a material advection and a sound propagation.
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(a) Scalar advection at time 𝑇 = 2 with a 100-cell
mesh.
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(b) 𝐿2-error for different mesh sizes.

Figure 5.1.1: Advection problem solution with first-order upwind scheme and second-order MUSCL scheme. (a) The
exact solution ( ), and numerical solutions with the upwind scheme ( ) and the ( ). (b) Discrete 𝐿2-error
for the upwind scheme ( ) and the MUSCL scheme ( ). Slopes of order 1 ( ) and order 2 ( ) are reported

5.1.2.1 Material advection

The multi-fluid modelling approach allows to represent the transition between two pure fluids as a smooth transition.
Therefore, we consider an inclusion of fluid 1 in a fluid 2, all phases at pressure equilibrium and moving at the same
velocity 𝑈 = 1 m−1. The EOS of each phase is a linearized barotropic equation of the form

𝑝𝑘 (𝜌𝑘) = 𝑝0,𝑘 + 𝑐2
𝑘 (𝜌𝑘 − 𝜌0,𝑘), (5.3)

the parameters of which are summarized in Table 5.1.1. Moreover, we follow the relaxation method detailed in Section
4.1.4, and we choose the same parameters as the one listed in (4.23). We particularly choose reference pressures and
densities physically relatable with a gas-liquid density ratio at ambient pressure. However, unrealistically slow sound
velocities are chosen to avoid the fast propagation of pressure perturbations in comparison with the material velocity.
We consider an initial condition on the volume fraction 𝛼1 such that it approximates a characteristic function of the

Phase 𝑝0,𝑘 𝑐𝑘 𝜌0,𝑘
1 105 Pa 3 m.s−1 103 kg.m−3

2 105 Pa 1 m.s−1 1 kg.m−3

Table 5.1.1: Linearized EOS parameters.

interval [−0.5, 0.5] in a one-dimensional periodic domain (−1, 1) m with the following smooth function,

𝛼1 =

{
1
2 + 1

2 tanh(𝑘 (𝑥 − 𝑥𝐿)), if 𝑥 < 0,
1
2 + 1

2 tanh(−𝑘 (𝑥 − 𝑥𝑅)), if 𝑥 ≥ 0,
(5.4)

with 𝑘 = 20 m−1, 𝑥𝐿 = −0.5 m and 𝑥𝑅 = 0.5 m. The densities are initialized at equilibrium such that the pressure is
𝑝0 everywhere. We evaluate then two numerical strategies :

• a first-order Godunov scheme based on the solution of the 4-eq. Riemann problem and an explicit Euler
integration scheme followed by the relaxation step;
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• a second-order MUSCL scheme based on the solution of the 4-eq. Riemann problem and second-order Runge-
Kutta integration scheme with relaxation steps as described in Section 4.1.1.

We compare the two strategies with the exact solution in Figure 5.1.2.
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Figure 5.1.2: Material advection problem numerical solution at time 𝑇 = 2 s and Δ𝑥 = 0.02 m with first-order Godunov
scheme ( ) and second-order MUSCL scheme ( ). The exact solution ( ) is plotted for reference.

Convergence orders are measured in Figure 5.1.3 with the 𝐿2-error defined by

𝐸𝐿2 ((𝒒𝑖)) =

√√√
𝑁∑
𝑖=1

(𝒒𝑖 − 𝒒𝑒𝑥𝑎 (𝑥𝑖))2Δ𝑥, with 𝒒 = (𝛼1𝜌1, 𝛼2𝜌2, 𝜌𝑢). (5.5)

5.1.2.2 Sound propagation

We consider in this test-case a homogeneous mixture of the two phases with 𝛼1 = 0.12 and linearized barotropic EOS
(5.3), the properties of which are given in Table 5.1.2.

At initialization, there is no velocity but an initial pressure bump given by

𝑝(𝑥, 0) = 𝑝0 + 𝛿𝑝𝑒−𝑏𝑥2
, 𝛿𝑝 = 1Pa, 𝑏 = 80m−2. (5.6)

In Figure 5.1.4a, we compare the two strategies for Δ𝑥 = 0.02 m with a quasi-exact solution obtained with the
second-order strategy for Δ𝑥 = 0.001 m and after a time integration of 𝑇 = 0.01 s. Comparing the distance of the
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Figure 5.1.3: Order assessment, via 𝐿2-error for different mesh sizes, of the Godunov scheme ( ) and MUSCL scheme
( ) for a 3-eq advection problem. Slopes of order 1 ( ) and order 2 ( ) are plotted for comparison.

Phase 𝑝0,𝑘 𝑐𝑘 𝜌0,𝑘
1 105 Pa 3 m.s−1 1 kg.m−3

2 105 Pa 15 m.s−1 103 kg.m−3

Table 5.1.2: Linearized EOS parameters.

local maxima from the initial maximum at 𝑥 = 0, we observe that the initial pressure bump propagates in each
direction as expected from the eigenvalues (1.105) with a measured sound velocity of 0.30 m.s−1. The frozen and
Wallis sound velocity for such mixture are respectively 𝑐𝐹 = 15 m.s−1 and 𝑐𝑊 = 0.29 m.s−1. Thus, this measure
confirms that the relaxation scheme based on the 4-eq. Model 4 indeed provides an approximation the 3-eq. Model
3. Then, the convergence order of these schemes towards the quasi-exact solution obtained with the second order
scheme is assessed in Figure 5.1.4b. A first- and third-order convergence are respectively observed for the Godunov
and MUSCL schemes. Such orders were expected as the quasi-exact solution is of second-order.
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(a) Numerical solution at time 𝑇 = 0.7s.
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(b) 𝐿2-error for different mesh sizes.

Figure 5.1.4: (a) Sound propagation problem for the 3-eq. model. Pressure difference from the reference pressure 𝑝0
for the initial pressure profile ( ), the quasi exact one ( ), the one obtained with the MUSCL scheme ( ),
the one obtained with the Godunov scheme ( ). (b) Convergence plot of 𝐿2-error for the Godunov scheme ( ),
the MUSCL scheme ( ) and reference slopes of order 1 ( ) and 2 ( ).
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5.1.3 Two-scale three-equation model
Let us finish by assessing the properties of the two-scale Model 22 by considering a similar sound propagation test-
case as one of Section 5.1.2.2. The relaxation method is set similarly as the previous section but with the pressure
equilibrium of Model 22 We consider a homogeneous two-scale mixture with a large-scale volume fraction 𝛼1 = 0.12
and a small-scale volume fraction 𝛼𝑑

1 = 0.2 with the same EOS as the ones of Table 5.1.2. The small-scale density is
set to 𝜌𝑑1 = 𝜌1. The same pressure bump as (5.6) is considered. We then compare the numerical solutions obtained
with the second-order approach for Δ𝑥 = 0.01m and at time 𝑇 = 0.7s in Figure 5.1.5.
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Figure 5.1.5: Sound propagation comparison at time 𝑇 = 0.7s between the three-equation model with and without
incompressible small-scale.

The theoretical sound propagation velocities are respectively 𝑐𝑊 = 0.29 m.s−1 and 𝑐𝑑𝑊 = 0.36 m.s−1 for the three-
equation models without or with the small-scale phase. As expected, we graphically measure sound velocities using
the position of the maxima, and we obtain sound velocities of 0.30 m.s−1 and 0.37 m.s−1.

Conclusion of Section 5.1
In this first set of verification test-cases, we considered problems with initial smooth profiles and without apparition of
discontinuities such that we can measure the convergence order of the numerical method. While the scalar advection
test-case has only tested the second-order space discretization, the two following test-cases were performed on multi-
fluid models with a pressure equilibrium such that the relaxation procedure is tested. We observe that the solution
showcases both the expected propagation velocities of the model, including the modified velocity in the presence of
a small-scale phase, and the correct convergence orders. Starting from these successful tests on smooth solutions,
the next section focuses on some typical test-cases that are specific to systems of conservation laws: the Riemann
problems.
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5.2 Riemann test-cases

5.2.1 The three-equation model
We propose here to reproduce the Riemann problems proposed by Chanteperdrix (2004) for the Model 3. We solve
these test-case with the same numerical strategy the numerical strategy which is recovered from the numerical methods
for two-scale models detailed in Section 4.1 applied with 𝛼𝑑

1 . These test-cases consist in a material discontinuity and
a shock between almost pure phases. Then, for demonstrative purpose, we also propose the same test-cases for
initially pure phases such that it is solved only where a mixture is locally present. This particular setup differs from
the usual approach the pure phases contains a residual amount of the other phase at initialization, and a physically
questionable pressure equilibrium is satisfied.

5.2.1.1 Material advection

We consider two phases endowed with barotropic linearized EOS, the parameteres of which are listed in Table 5.1.2.
A Riemann problem on a domain (0, 1) m is then considered with respectively constant left and right states initially
separated at 𝑥0 = 0.25 m. The initial states are given through a primitive set of variables (𝛼1, 𝜌1,𝑈) given in Table
5.2.1. Remark that the density 𝜌2 is necessarily equal to 𝜌0,2 as pressure equilibrium is always satisfied.

Side 𝛼1 𝜌1 𝑈
Left 1 − 𝜖 1 0.15

Right 𝜖 1 0.15

Table 5.2.1: State characteristics with 𝜖 = 10−7 on each side of the material discontinuity 𝑥0 = 0.25 m.

We compare the first-order and second-order approaches with the exact solution for Δ𝑥 = 0.02m at integration
time 𝑇 = 3.33 s in Figure 5.2.1.

We observe that both schemes accurately solve the position of the discontinuity which moved from 𝑥0 = 0.25 m
to 𝑥𝐹 = 𝑥0 +𝑈𝑇 ≈ 0.75 m with a more precise profile for the second-order scheme.

5.2.1.2 Shock test

We consider now the shock test proposed in Chanteperdrix (2004) which consists in a Riemann problem on a domain
(0, 1) m where the left and right states are separated at 𝑥0 = 0.3 m and at a pressure disequilibrium of 891 Pa by
considering the initial states reported in Table 5.2.2.

Side 𝛼1 𝜌1 𝑈
Left 1 − 𝜖 100 0

Right 𝜖 1 0

Table 5.2.2: State characteristics with 𝜖 = 10−7 on each side of 𝑥0 = 0.3.

The numerical solution obtained with the second-order approach is compared with the exact solution in Figure
5.2.2 for Δ𝑥 = 0.02 m and at integration time 𝑇 = 0.03 s. The exact solution is computed thanks to the procedure
detailed in 4.A.
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Figure 5.2.1: Material advection problem numerical solution at time 𝑇 = 3.33 s and Δ𝑥 = 0.02 m with second-order
MUSCL scheme respectively for the initial condition ( ), the exact solution ( ) and the numerical solution
computed with MUSCL ( ).

0 0.5 1
0

0.5

1

𝛼
1

0 0.5 1
0

50

100

𝛼
1
𝜌

1

0 0.5 1
0

500

1,000

𝛼
2
𝜌

2

0 0.5 1

0

20

40

60

𝜌
𝑢

Figure 5.2.2: Shock problem numerical solution at time 𝑇 = 0.03 s and Δ𝑥 = 0.02 m with second-order MUSCL
scheme respectively for the exact solution ( ) and the numerical solution computed with MUSCL ( ).
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5.2.1.3 With pure phases

Let us now consider the same test-cases, but where the parameter 𝜖 is nil. Before any further discussion, let us clarify
that this study only affects the initialization and the first time steps of the test-case as, with numerical diffusion, the
pure phases rapidly acquire a vanishing amount of the other. Yet, this discussion is motivated by the upcoming test-
cases on capillarity where the vanishing presence of volume fraction affects the computation of local mean curvature
(see Section 5.3.2.2). Given that the current parameters of the discretization (4.23), the relaxation is performed for
𝛼1 ∈ (10−14, 1 − 10−14). With such low values, we expect the relaxation to rapidly extends to the whole domain.
During this short period of time, this numerical setup can also be formally interpreted as a coupling between pure
phase Euler models and a multi-fluid model at pressure equilibrium.

We respectively compare these two setups for the material advection of the discontinuity and the shock in Figures
5.2.3 and 5.2.4, by considering a residual volume fraction of 𝜖 = 10−7 as in the previous section or not. We observe
no qualitative difference between the two approaches as the orders of magnitude for the volume fractions are locally
the same everywhere in the domain at time 𝑇 . This shows that the initialization at 𝜖 = 0 or 𝜖 = 10−7 has no impact
on these test-cases and can be considered at an initialization strategy in Section 5.3 where the delicate question of
mean curvature initialization arises.
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Figure 5.2.3: Material advection problem numerical solution at time 𝑇 = 3.33 s and Δ𝑥 = 0.02 m with second-order
MUSCL scheme respectively for 𝜖 = 10−7 ( ) and 𝜖 = 0 ( ).
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Figure 5.2.4: Shock problem numerical solution at time 𝑇 = 0.03 s and Δ𝑥 = 0.02 m with second-order MUSCL
scheme respectively for 𝜖 = 10−7 ( ) and 𝜖 = 0 ( ).

5.2.2 Two-scale three-equation model
We are now interested in the impact of the small-scale on the shock velocities. Therefore, we set up a similar shock
test-case as the one described for the three-equation model but where the volume fraction 𝛼1 are replaced by the
large-scale volume fraction 𝛼1 and with a small-scale volume fraction 𝛼𝑑

1 = 0.2 of density 𝜌𝑑1 = 𝜌1. The numerical
solutions for these two models are obtained following the methods of Section 4.1 and plotted in Figure 5.2.5 along
with the exact solution of the two-scale model computed with the procedure provided in Appendix 4.A. We observe
that the shock velocities are increased by a factor 1.25 which corresponds to the same increasing factor of (1− 𝛼𝑑

1 )−1

obtained for sound propagation in Section 5.1.3.

Conclusion of Section 5.2
The numerical solutions of the Riemann problems presented in this section are showed very comparable to the ones
obtained in Chanteperdrix (2004). This successful reproduction of the test-cases assess the correct implementation
of the numerical method. Moreover, we also showed that the associated model and numerical methods extends
consistently to the two-scale model with 𝛼𝑑

1 = 0.2 where the velocity of shocks is increased by a factor (1 − 𝛼𝑑
1 ).
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Figure 5.2.5: Comparison between the classic three-equation model ( ) and the two-scale one on the Riemann
shock problem at time 𝑇 = 0.03 s and Δ𝑥 = 0.02 m, respectively the exact solution ( ) with second-order MUSCL
scheme ( ).
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5.3 Capillarity test-cases
We consider now the numerical study of the capillarity effects as present in Models 5, 6 with gradients of the
volume fraction 𝛼1, and Models 24, 25, 30 with gradients of large-scale volume fraction 𝛼1. The discretization of
the capillarity fluxes is detailed in Section 4.1.3 and follows the numerical strategies proposed by Schmidmayer et al.
(2017); Cordesse (2020). We assess here the general properties of capillarity trough two numerical test-cases: the
global Laplace pressure jump of a two-dimensional spherical-shaped liquid column, the deformation of a square-shaped
liquid column towards a spherical-shaped column.

Note that our model mainly differs from similar models of the literature (Chanteperdrix, 2004; Perigaud and
Saurel, 2005; Schmidmayer et al., 2017; Cordesse, 2020) with the presence of a local Laplace law which is not neglected
and solved numerically as it has a critical role in the regularization process detailed in Section 3.3. A particular
emphasis is put on this particular point during the following study. In Section 5.3.1, we discuss the initialization of
the first test-case with respect to the initial thickness of the diffuse interface. Then, we solve in Section 5.3.2 the
oscillatory motion of the droplet pressure towards the global Laplace law following a similar setup as the one proposed
in Schmidmayer et al. (2017). We pursue in Section 5.3.2.2 with a close up on the different pressure profiles when
the droplet reaches the global Laplace pressure law. At the difference with the global Laplace law that is known,
the local one, specific to this capillarity modelling, is not well understood at the analytical level. Indeed, the mean
curvature does not degenerate well when one of the large-scale volume fraction becomes small. Finally, we consider
in Section 5.3.3 the dynamics of a liquid column is initialized with a square shape, which progressively recovers a
circular shape.

5.3.1 Initialization of the diffuse interface
The modelling of capillarity in Model 6 relies on the introduction of an interface area density estimator which is only
defined for diffuse interface. However, no information about interface thickness can be obtained from the model.
This consequently raises the question of initialization of the interface thickness at the numerical level. This question
is also linked to the fact that our model differs from the one of Schmidmayer et al. (2017) through the definition of
a local Laplace pressure jump

𝑝1 − 𝑝2 = 𝜎∇ ·
(

∇𝛼1
‖∇𝛼1‖

)
= 𝜎𝐻 (∇𝛼1), (5.7)

which requires the proper definition of ∇𝛼1. In the regions where there are pure phases, a constant initialization
of the volume fraction makes the mean curvature hardly defined as it requires to normalize the gradients of the
volume fraction which is expected to be null. In order to avoid such an issue, the volume fraction in the pure phases
is initially set to 0 or 1 respectively and the relaxation does not take place according to parameters given in 4.23
(see also the discussion in Section 5.2.1.3). Such a choice introduces an initial interface thickness which cannot be
chosen arbitrary small as the mean curvature is not approximated well on a Cartesian mesh. For the test-case under
consideration, we propose to initialize the volume fraction axisymmetrically using the distance 𝑟 from the center of
the liquid,

𝛼1 =


1 if 𝑟 < 𝑅 − 𝜖

2 ,

0 if 𝑟 < 𝑅 + 𝜖
2 ,

𝑔
(
𝑟−𝑅+ 𝜖

2
𝜖

)
else,

𝑔(𝑟) = 1
2
+ 1

2
tanh

(
−8

(
𝑟 − 1

2

))
, (5.8)

with 𝜖 the initial thickness of the interface. First, we assess the ability of the IAD estimator ‖𝛼1‖ to capture the
right amount of IAD depending on the mesh size and the initial thickness. We report the numerical integral of ‖𝛼1‖
and compute the relative error in comparison with the IAD reference, i.e. the perimeter of the circle shape 2𝜋𝑅 in
two dimensions. The results are reported in Table 5.3.1.

The IAD estimator shows a very good agreement with the exact one even for coarse meshes and does not indicate
a preferred initial choice o interface thickness. We propose then to study the impact of interface thickness on the
mean curvature field.

In Figure 5.3.1, we plot the gradient norm of ‖∇𝛼1‖ and 𝐻 (∇𝛼1) for different values of 𝜖 .
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𝜖/𝑅 \ 𝑁 60 80 100 120
0.6 5.1 × 10−4 4.0 × 10−5 6.7 × 10−5 8.2 × 10−5

1 6.2 × 10−4 3.9 × 10−4 2.5 × 10−4 1.8 × 10−4

1.4 7.9 × 10−4 4.6 × 10−4 2.9 × 10−4 1.9 × 10−4

Table 5.3.1: Relative errors between the estimated IAD and the exact IAD at initialization for different widths and
mesh sizes 𝑁 × 𝑁.

(a) ‖∇𝛼1‖ for 𝜖 = 1.4 × 𝑅. (b) ‖∇𝛼1‖ for 𝜖 = 1 × 𝑅. (c) ‖∇𝛼1‖ for 𝜖 = 0.6 × 𝑅.

(d) 𝐻 (∇𝛼1) for 𝜖 = 1.4 × 𝑅. (e) 𝐻 (∇𝛼1) for 𝜖 = 1 × 𝑅. (f) 𝐻 (∇𝛼1) for 𝜖 = 0.6 × 𝑅.

Figure 5.3.1: Comparison of mean curvature field 𝐻 (∇𝛼1) ∈ (0, 30) m−1 and normalized field ‖∇𝛼1‖ ∈
(0, 1) for different interface thickness 𝜖 on a 60 × 60 mesh.

We observe that the choice of a thin interface gives a non-homogeneous estimate of the mean curvature within the
interface thickness. In addition to breaking the rotational invariance of the problem, it triggers unphysical pressure
inhomogeneities due to the local Laplace pressure jump. Moreover, the light inhomogeneities in the field of ‖∇𝛼1‖
also disturbs the capillarity fluxes, the intensity of which is proportional to ‖∇𝛼1‖.

A compromise to choose the initial interface thickness is here chosen based on the following criterion : the initial
width is the smaller length such that the initialization profile gives a sufficiently constant field for both ‖∇𝛼1‖ and
𝐻 (∇𝛼1) in any direction. Hence, we chose the minimal initial width 𝜖 which provides an axisymmetric field for both
‖∇𝛼1‖ and 𝐻 (∇𝛼1). In the simulations presented in the upcoming sections, we have chosen 𝜖 = 1.4 × 𝑅. The width
of the interface could seem very large, but it has to be compared here with the chosen discretization space step. A
more refine simulation would allow the use of a smaller interface initial width.
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5.3.2 Relaxation of the liquid towards the Laplace pressure law
This two-dimensional test-case consists in a liquid pressure column embedded in a lighter fluid such as a gaseous
phase. For comparison purposes, we implement the setup proposed by Schmidmayer et al. (2017) by considering
two fluids with linearized barotropic EOS (5.3) as detailed in Table 5.3.2. However, a lower capillarity coefficient is
chosen as 𝜎 = 30 N.m−1 due to the choice of linearized EOS and the two fluids are initially at the same pressure
𝑝0. Considering a two-dimensional periodic domain (0, 0.75)𝑚 × (0, 0.75)𝑚, and the centered liquid column of radius
𝑅 = 0.15𝑚 we expect a global pressure jump of 200 Pa.

Phase 𝑘 𝑝0 𝑐0 𝜌0
1 105Pa 374 m.s−1 1kg.m−3

2 105Pa 48 m.s−1 103kg.m−3

Table 5.3.2: Parameters of the static column test-case.

With a space discretization of 𝑁 = 60 cells in each direction and with a time integration of 𝑇 = 2, the dynamics of
the pressure is reported in Figure 5.3.2 at different times and goes through the following steps :

• The pressures of each phase quickly relax in the diffuse interface region to satisfy the local Laplace pressure
jump 𝑝1 − 𝑝2 = 𝜎𝐻 (∇𝛼1) with the mean curvature computed with the discretized gradients of 𝛼1 (see Figure
5.3.2a);

• Pressure waves travel within the liquid column, thus generating pressure oscillations within the liquid (see
Figures 5.3.2b-5.3.2c);

• The oscillatory motion stabilizes around a pressure profile corresponding to the global Laplace jump 𝑝𝑖𝑛−𝑝𝑜𝑢𝑡 =
1/𝑅 for the 2D liquid column (see Figure 5.3.2d).

(a) 𝑡 = 0.01 s. (b) 𝑡 = 0.05 s.

(c) 𝑡 = 0.1 s. (d) 𝑡 = 1 s.

Figure 5.3.2: Pressure field 𝑝−𝑝0 ∈ (0, 300) Pa (with proportional vertical deformation) during the transitional
dynamics towards the global Laplace equilibrium of the liquid column.
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5.3.2.1 Oscillating dynamics of the averaged pressure

Let us study the average pressure oscillatory dynamics and damping towards the global Laplace pressure jump. We
define the average pressure within the droplet with

𝑃𝑖𝑛,𝑎𝑣𝑔 =

∫
Ω 𝑝1𝛼1>𝛼𝑖𝑛𝑡∫
Ω 1𝛼1>𝛼𝑖𝑛𝑡

, 𝑝 = 𝛼1𝑝1 + 𝛼2𝑝2, (5.9)

and we consider that the interior of the droplet delimited by the volume fraction threshold 𝛼𝑖𝑛𝑡 = 0.99. The outside
pressure 𝑃𝑒𝑥𝑡 away from the droplet remains at the reference pressure 𝑃𝑒𝑥𝑡 = 𝑝0 with rapidly damped pressure waves
so that their propagation are negligible. We report in Figure 5.3.3a the evolution in time of the averaged interior
pressure 𝑃𝑖𝑛,𝑎𝑣𝑔. It starts at 𝑝0, as both pressures 𝑝1 and 𝑝2 are initialized at the reference pressure at the beginning.
Then, it oscillates and progressively stabilizes to satisfy the expected pressure jump of 200 Pa. Denoting 𝑃𝑒𝑞 = 𝑝0+ 𝜎

𝑅 ,
we confirm this observation by plotting in Figure 5.3.3b the relative error towards the expected pressure jump against
time. We observe that it converges to the right pressure jump with a relative error of 0.6%.
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(a) Oscillatory motion of the averaged inside pressure 𝑃𝑖𝑛,𝑎𝑣𝑔.
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Figure 5.3.3: Pressure evolution in time towards the Laplace equilibrium.

After the equilibrium is reached, we observe that the averaged pressure becomes slightly unstable with the develop-
ment of small oscillations after a longer integration time. Such behaviour has been similarly observed in Schmidmayer
et al. (2017), but does not seem to be associated with spurious currents as the maximal magnitude of the velocity
field is only decreasing with time (see Figure 5.3.4).
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Figure 5.3.4: Evolution in time of the maximal velocity magnitude in the computational domain.
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5.3.2.2 Pressure profiles and mean curvature

The capillarity model in this manuscript differs from the one of Schmidmayer et al. (2017) as it aims at satisfying
two Laplace relations :

• a local one, explicitly present in the model which describes the partial pressure difference between the phases
within the diffuse interface,

𝑝1 − 𝑝2 = 𝜎𝐻 (∇𝛼1); (5.10)

• a global one which corresponds to the physical Laplace law describing the pressure jump across the interface
that was numerically studied in Section 5.3.2.1,

𝑃𝑎𝑣𝑔,𝑖𝑛 − 𝑃𝑒𝑥𝑡 =
𝜎

𝑅
. (5.11)

While the target pressure equilibrium relation is le Laplace law (5.11), we do not know the partial pressure profiles
at equilibrium for the phase pressures 𝑝1, 𝑝2 or the pressure of the mixture 𝑝. Such pressure profiles are plotted
in Figure 5.3.5 and the corresponding mean curvature estimator is plotted in Figure 5.3.6 through the pressure-
dimensioned term 𝜎𝐻 (∇𝛼1).
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Figure 5.3.5: Profiles of pressure 𝑝1 − 𝑝0 ( / ), 𝑝2 − 𝑝0( / ), 𝑝 − 𝑝0( ). The pressure profiles are
dotted for the gaseous pressure when 𝛼1 > 0.99 and for the liquid phase when 𝛼 < 0.01.
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Figure 5.3.6: Profile of 𝜎𝐻 (∇𝛼1) in Pa. The profile is dashed when the phases are almost pure 𝛼1 > 0.99 and when
𝛼 < 0.01.

We observe that the local Laplace equilibrium is indeed satisfied within the interface (see the mean curvature in
Figure 5.3.6 through the profile of 𝜎𝐻 (∇𝛼1)), with a pressure difference between 𝑝1 and 𝑝2 that slightly decreases
following the mean curvature profile when going from the inner side of the interface to the outer side. The behaviour
of the partial pressure in a region where its respective phase has almost vanished cannot be considered as physically
relevant as the mean curvature estimate is no longer reasonably accurate. Remark that the equilibrium profiles are
rather complex to analyse and conjecturing its form is difficult.
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5.3.3 Relaxation of a square column

In order to further confirm the validity of the capillarity model and numerical scheme, we propose to consider a
modified version of the test presented in the previous section, but with an initial square shape. Then, we expect that
our capillarity model to bring the liquid column back to a circular shape. With an initialization out of the circular
shape equilibrium, the liquid column is expected to oscillate similarly to the oscillating droplet problem discussed
in Section 2.2.4. However, with numerical diffusion, such oscillatory motion is damped and converge to the circular
equilibrium shape. Snapshots of the pressure field with a three-dimensional deformation of the mesh illustrates such
dynamics in Figure 5.3.7. Right after the beginning of the simulation, we observe that they are pressure peaks coming
from the corners of the column. They result from the local Laplace law pressure equilibrium as the corners have
very large mean curvatures despite the smoothing of the interface. As a consequence of the intensity of these initial
peaks, the pressure waves travel for a longer time within the liquid column than for the circular-shaped column (see
Figure 5.3.2) but a global pressure equilibrium is eventually reached within the liquid column. The volume fraction
field is also provided in Figure 5.3.8. We indeed observe that the shape of liquid column slightly oscillates before
reaching its equilibrium circular shape.

(a) 𝑡 = 0.01 s. (b) 𝑡 = 0.05 s.

(c) 𝑡 = 0.1 s. (d) 𝑡 = 0.2 s.

(e) 𝑡 = 0.5 s. (f) 𝑡 = 1 s.

Figure 5.3.7: Pressure field 𝑝−𝑝0 ∈ (0, 300) Pa (with proportional vertical deformation) during the transitional
dynamics towards the global Laplace equilibrium of the liquid column initialized with a square shape.
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(a) 𝑡 = 0 s. (b) 𝑡 = 0.05 s.

(c) 𝑡 = 0.1 s. (d) 𝑡 = 1 s.

Figure 5.3.8: Volume fraction field 𝛼1 ∈ (0, 1) during the transitional dynamics towards the global Laplace
equilibrium of the liquid column.

Conclusion of Section 5.3
These simple test-cases have showed that the capillarity model has indeed the correct physical behaviour with both
the capture of global Laplace pressure jump and the surface minimization of a given shape towards the circular
shape, in two-dimension test-cases. We have also investigated the particular local Laplace pressure jump in this
model within the diffuse interface. Remark that satisfying the local pressure jump between the pressures of the two
phases requires a sufficiently good estimation of mean curvature and therefore a relatively thick initialization of the
interface to recover the rotational invariance on a Cartesian mesh. We can then conclude that the modelling of
capillarity will be accurate at the largest scales of the simulation, but not at the smallest scales. Such a property
is not an issue for the two-scale simulation further presented in 6 as a regularization process purposely introduces
a third scale, with the mean curvature threshold 𝐻𝑚𝑎𝑥 between the large-scale of the bulk and the under-resolved
small scale, such that it transfers these small scales to a small-scale model. In this small-scale model, the interface
dynamics is no longer resolved at the bulk scale, but follows a dynamics described by handful scalar quantities that
carry information about the subscale interface geometry. The simulation of such model is the subject of the following
section.
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5.4 Harmonic oscillation of the spray of droplets
In this section, we consider the small-scale model of oscillating droplet presented in Section 4.2. We consider here
a simple test-case for verification purposes which consists in the advection at velocity 𝒖 = 1 m.s−1 of a spray of
oscillating droplets without any forcing term. Each size of droplet in the spray defines a population of droplets whose
dynamics follows the equation of a harmonic oscillator. We assess the correctness of the model and the numerical
schemes with respect to the energy conservation property. Indeed, the proposed kinetic scheme is expected to preserve
the oscillation energy as its construction is based on the method of characteristics. We consider here two subcases:
a monodisperse one defined by the moments 𝑴𝑚𝑜𝑛𝑜 of (4.50) and a bi-disperse one defined by the moments 𝑴 𝑝𝑜𝑙𝑦

of (4.50). The spray is localized in the region D𝑖𝑛𝑖𝑡 := (0.25, 0.75) m of the one-dimensional computational domain
D = (0, 2) m with the following initialization :

• for the monodisperse case, for 𝑥 ∈ D, 
𝑀

𝜉
0,0,0 (𝑥, 0) = 1D𝑖𝑛𝑖𝑡 (𝑥),

𝑀
𝜉
3/2,0,0 (𝑥, 0) = 1D𝑖𝑛𝑖𝑡 (𝑥),

𝑀
𝜉
1,1,0 (𝑥, 0) = 0,

𝑀
𝜉
1,0,1 (𝑥, 0) = 1D𝑖𝑛𝑖𝑡 (𝑥),

(5.12)

• for the polydisperse case, for 𝑥 ∈ D,

𝑀
𝜉
𝑖,0,0 (𝑥, 0) = (𝑖 + 1)−1

1D𝑖𝑛𝑖𝑡 (𝑥), 𝑖 = 0, 1/2, 1, 3/2

𝑀
𝜉
1/2,1,0 (𝑥, 0) = 0,

𝑀
𝜉
1/2,0,1 (𝑥, 0) = 1D𝑖𝑛𝑖𝑡 (𝑥),

𝑀
𝜉
1,1,0 (𝑥, 0) = 0,

𝑀
𝜉
1,0,1 (𝑥, 0) = 1D𝑖𝑛𝑖𝑡 (𝑥).

(5.13)

The kinetic energy due to the oscillation is defined by setting 𝜔̃ = 4 (respectively 𝜔̃ = 2) for the mono-disperse
(respectively poly-disperse) case. The domain D is discretized with 400 cells and the CFL is equal to 0.9 in all the
simulations.

We assess the conservation of total energy over many periods by following in time an advected cell of the spray.
The total energy of the monodisperse case and polydisperse case respectively reads

𝐸𝑚𝑜𝑛𝑜 =
1

2𝜔̃2 𝑛1 (𝑆0)5/2
1

¤𝜉2
1︸                ︷︷                ︸

𝐸𝑚𝑜𝑛𝑜
𝑘𝑖𝑛

+ 1
2
𝑛1 (𝑆0)1 + 1

2
𝑛1 (𝑆0)1𝜉2

1︸                          ︷︷                          ︸
𝐸𝑚𝑜𝑛𝑜

𝑝𝑜𝑡

,

𝐸 𝑝𝑜𝑙𝑦 =
∑
𝑘=1,2

1
2𝜔̃2 𝑛𝑘 (𝑆0)5/2

𝑘
¤𝜉2
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𝐸
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1
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𝐸

𝑝𝑜𝑙𝑦
𝑝𝑜𝑡

.
(5.14)

In Figures 5.4.1-5.4.2, we plot the evolution in time of the kinetic, potential and total energies in one advected
cell of the domain. We see that the first order kinetic scheme indeed preserves the total energy of the harmonic
oscillator over many periods. For the bi-disperse quadrature, two droplets populations are considered where each
population is expected to oscillate at a different frequency, that depends on size. Let us note that in the bi-disperse
spray, the initial condition gives initial size ratio of 0.42 and an initial total energy ratio of 7.5 × 10−3 between the
two populations of droplets. Therefore, we only see a single oscillatory dynamics for the bi-disperse test-case.
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Figure 5.4.1: Evolution in time of the kinetic, potential and total energies in one advected cell of the domain:
harmonic oscillator case, monodisperse quadrature. Mesh size Δ𝑥 = Δ𝑥 = 5 · 10−3 m. Final time 𝑇 = 2𝜋 s.

Figure 5.4.2: Evolution in time of the kinetic, potential and total energies 𝐸 𝑝𝑜𝑙𝑦 of the two populations in one
advected cell of the domain: harmonic oscillator, bi-disperse quadrature. Mesh size Δ𝑥 = 5 · 10−3 m. Final time
𝑇 = 2𝜋 s.

Conclusion of chapter 5
In this chapter, we demonstrated the validity of the implementation of the numerical schemes presented in Chapter
4, namely :

• the MUSCL extrapolation method combined with the Runge-Kutta integrator are showed to provide a second-
order method for smooth solutions of the convection-related systems;

• the sound propagation velocities are recovered for the systems at pressure equilibrium thanks to relaxation
methods and the expected increasing of sound velocities is observed in the presence of incompressible small-
scale;

• the Riemann problems are accurately solved for classic two-phase and two-phase two-scale models;

• the dynamics induced by capillarity is assessed while satisfying both a global and local Laplace pressure law;

• the total energy of oscillation is conserved thanks to a kinetic scheme for the advection of oscillating droplets.

The verification test-cases presented in this chapter both assess the correct implementation of the numerical methods
and show the limits of what can be solved in the upcoming numerical experiments. For advection problems of smooth
solutions, the implementation of the numerical scheme is tested by convergence tests and evaluating their convergence
rate. The Riemann problems showed the right capture of exact entropy solutions for advection- and shock-type test
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cases, with and without an incompressible small-scale. Then, the numerical scheme related to the capillarity effects
is tested against the capillarity-driven evolution of a circular-shaped liquid column in two dimensions. Both the
circular shape and the global pressure jump across the interface are showed to be recovered as an equilibrium setup.
Moreover, the pressures within the diffuse interface layer are showed to satisfy a local Laplace pressure law that
requires a relatively thick interface in comparison to the mesh discretization. Indeed, the local pressure law includes
the local mean curvature estimator which requires a smooth transition of the volume fraction to correctly estimates
the local mean curvature of the interface. Consequently, this study of capillarity unsurprisingly reveals that the proper
capillarity behaviour are more accurate at the largest scales rather than the smallest. The simulation, involving a
two-scale test-case, proposed in the next chapter is not strongly affected by this issue as the under-resolved interface
is regularized.



168 5. Verification test-cases



CHAPTER 6
Simulations

In this final chapter, we propose to assess the properties of two models which encompass to the most original con-
tributions of this work towards the simulation of a full atomization. A first demonstrative test-case is proposed to
illustrate the inter-scale coupling, capillarity modelling and its regularization properties as presented in Chapter 3. It
consists in an air-blasted liquid column at high Weber number and offers a simple test-case with multiscale interface
behaviour similar to shear-stripping observed for droplets (see Figure 6.0.1). At the scale of a unique droplet, a
transition from a separated phase towards a fully disperse one is observed and makes the use of a two-scale approach
very relevant. A second demonstrative test-case illustrates the advection and dynamics of the geometric quantities
associated with a spray of oscillating droplets undergoing size-dependent source terms.

(a)

(b) (c)

Figure 6.0.1: (a) Schematic view of sheet stripping atomization of a droplet from Pilch and Erdman (1987). (b)
Experimental pictures and (c) simulations (from left to right and top to bottom) of an air-blasted droplet (squared
in the picture) with 𝑊𝑒 = 120 (Jain et al., 2015) with the solver Gerris (Popinet, 2003).

These two test-cases demonstrate original key features to tackle a full atomization test-case: 1- the transition
from the separated regime to the disperse regime while keeping track of key geometric quantities, and consequently
capillarity energy, 2- the complex dynamics of geometric quantities of a spray of droplets deformed, for instance as
a result of primary atomization or because of a velocity differential with the carrying phase.

The first test-case presented in Section 6.1 proposes a setup at a high Weber number where a liquid column is

169
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embedded within a gaseous flow with a strong velocity differential. After a short period, the column deforms and is
atomized after the apparition of filaments on each side of the column. It allows the apparition of small scales which
are not well resolved by the multi-fluid DIM adapted to a separated regime. The test-case is therefore adequate
to illustrate the regularization properties and inter-scale transfer to the small-scale disperse model of the two-scale
model. Then, a second setup is investigated in Section 6.2 dealing with the advection and oscillation of a polydisperse
spray of droplets within a carrier flow. Only a one-way coupled setup is investigated here by enforcing a specific
velocity field for the carrier phase. Nevertheless, a size-dependent source term is added to mimic the size-dependent
drag forces as modelled in O’Rourke and Amsden (1987) and enables to exhibit complex dynamics. Therefore, the
model includes the main numerical challenges associated the realizability and opens the way to its use as a small
scale-model in a full atomization setup.

These two contributions have addressed some critical modelling challenges associated with the global modelling
of an atomization setup and a natural extension of this work would be to couple the two test-cases. Moreover, such
a two-scale model would include several inter-scale parameters to model the primary break-up and this task is one
of the perspective of this work.

6.1 Two-scale simulation of the deformation and atomization of a liquid column . . . . . . . . . . . . . . . 170
6.1.1 Description of the test-case and simulation without inter-scale transfer . . . . . . . . . . . . . . 171
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6.1 Two-scale simulation of the deformation and atomization of a liquid
column

We propose now to study the two-dimensional test-case of a liquid column deformed by an incident gaseous flow
such that filaments appear on each side of the deformed column (see Figure 6.0.1) using either the separated regime
Model 5 with capillarity or the two-scale Model 24. Such a test-case provides us with a curved interface involving a
very large spectrum of scales: a large scale interface corresponding to the shape of the column core and a small scale
for the filaments and droplets.

In Section 6.1.1 the physical and computational parameters of the test-case are detailed. A simulation without
inter-scale mass transfer is proposed to underline the limits of a single-scale approach, and the different stages of
the simulation are identified in terms of the large-scale interface regime and geometry. Section 6.1.2 then tackles the
same test-case with the inter-scale transfer. The threshold length-scale is chosen to keep the large-scale dynamics,
and both the mass and IAD transfers to small-scale are quantitatively discussed in comparison with the case without
inter-scale transfer. Finally, a comparison with a simulation of higher fidelity is proposed in Section 6.1.3. It allows
the illustration of how the parameters of the inter-scale mass transfer can be tuned to reproduce an experimental
data, or in this case, a high fidelity simulation. Note that the simulations presented in this chapter, except the
high fidelity simulation, rely on the numerical schemes detailed in Chapter 4 and implemented with the open-source
finite-volume solver Josiepy (2023).
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6.1.1 Description of the test-case and simulation without inter-scale transfer
We consider a two-dimensional 4 × 2 m2 domain D filled with a gaseous phase (denoted by the subscript 2) and
a liquid column of circular section of radius 𝑅 = 0.15 m and located at the position 𝐶 = (1, 1) m. The fluids are
given a linearized barotropic EOS: 𝑝(𝜌) = 𝑝0 + 𝑐2

0 (𝜌 − 𝜌0), the parameters of which are listed in Table 6.1.1. The
capillarity coefficient is set at 1 · 10−2 N.m−1. With an impacting gas velocity of 6.66 m.s−1, the Weber and Mach
numbers are 𝑊𝑒 = 665 and 𝑀𝑎 = 0.66, thus the flow compressibility must not be neglected. The parameters of the
model have been purposely chosen such that the time needed for the deformation of the column is comparable with
the one of advection throughout the domain. A liquid water/air density ratio has been chosen to mimic the inertia
effects of a liquid droplet in a gas, but the sound velocities involved in the barotropic EOS are strongly decreased
to mitigate the computational cost of the fast propagation of shock waves. Nevertheless, this test-case presents all
the ingredients to illustrate the inter-scale mass transfer and its curvature-limitation properties. We distinguish then

Phase 𝑝0 𝑐0 𝜌0
1 105 Pa 10 m.s−1 103 kg.m−3

2 105 Pa 10 m.s−1 1 kg.m−3

Table 6.1.1: Parameters of the fluids’ barotropic linearized EOS.

three areas : the gaseous area (G), the liquid area (L) and the mixture area (M) resulting from a smoothening of
the interface of thickness 𝑅/5. The location of these areas along with the initialization parameters are summarized
in Table 6.1.2. An inlet boundary condition enforces the initial state of region (G) on the left side of the domain

Area Location 𝛼1 𝑝1 𝑝2 𝑢𝑥 𝑢𝑦 𝛼𝑑
1 Σ

(G) D \ B𝐶 (𝑅 + 𝑅/5) 0 NaN 𝑝0 6.66 m.s−1 0 m.s−1 0 0 m−1

(L) B𝐶 (𝑅) 1 𝑝0 + 𝜎/𝑅 NaN 0 m.s−1 0 m.s−1 0 0 m−1

(M) B𝐶 (𝑅 + 𝑅/5) \ B𝐶 (𝑅) ℎ𝛼1 (𝒙) 𝑝0 + 𝜎𝐻 𝑝0 𝑌1𝑢𝑥,(L) + 𝑌2𝑢𝑥,(G) 0 m.s−1 0 0 m−1

Table 6.1.2: Initialization state for each area. B𝐶 (𝑟) denotes the ball of radius 𝑟 centred in 𝐶, and ℎ𝛼1 is a smoothening
function defined by ℎ𝛼1 : 𝒙 ↦→ ℎ̃𝛼1 (‖𝒙 − 𝒙𝐶 ‖) with ℎ̃𝛼1 : 𝒙 ↦→ exp(2𝑥2 (𝑥2 − 3)/(𝑥2 − 1)2), and the mass fractions are
denoted 𝑌𝑘 = 𝛼𝑘𝜌𝑘/𝜌.

with Dirichlet conditions on 𝛼1, 𝒖, 𝛼𝑑
1 and Σ, while a homogeneous Neumann condition is set on phase pressures.

An outlet boundary condition is set on the right side with a Neumann condition on all components. Top and bottom
boundaries are periodic. The simulations are then performed over a time of 3 s on 400 × 200 cells with a CFL
condition set on 0.4. The mesh is coarse, but only the large-scale dynamics has to be simulated at this stage, and
further convergence in mesh refinement does not offer all the scales down to the spray as illustrated in 6.1.3. For
the demonstrative purpose of this test-case, the numerical setup chosen here is sufficient to illustrate the two-scale
modelling strategy. In this first test-case, the mass transfer is deactivated by choosing 𝐻𝑚𝑎𝑥 = 103 m−1 which is an
order of magnitude larger than the discretization length inverse Δ𝑥−1 = 102 m−1.

The overall dynamics is showed in Fig. 6.1.1 and can be described in three successive stages:

• Stage 1: The liquid column deforms as it undergoes the upstream pressure of the incident flow between 𝑡 = 0 s
and 𝑡 = 0.25 s. The interface is well resolved as the iso-line 𝛼1 = 0.5 and the interface area estimator maxima
are superposed.

• Stage 2: We observe the growth of two filaments on both the top and bottom sides of the liquid column between
𝑡 = 0.25 s and 𝑡 = 1.25 s. The interface is less and less well-located as we go further to the filament’s extremity
and the IAD estimator shows an opening at its end. This shows that the simulation is not converged enough
in space discretization and the capillarity phenomena are lost at these small scales.

• Stage 3: The water column breaks in two and gets out of the simulation domain between 𝑡 = 1.25 s and 𝑡 = 2 s.
The interface has numerically spread too much such that the liquid core of the column does not reach a volume
fraction of 1.
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These numerical difficulties can also be quantified through the evolution of 𝐻𝑙𝑖𝑔 := max(𝐻1C) defined with the
criteria (3.85) that is almost always located at the end of the ligaments. Fig. 6.1.2 shows that 𝐻𝑙𝑖𝑔 quickly rises from
1/𝑅 as the ligaments start to grow, and it saturates at approximately 150 m−1 which corresponds to the scales of the
space discretization length.

6.1.2 Comparison with the activated mass-transfer
In order to circumvent the challenging resolution of the filaments’ growth at large-scale, we introduce now the inter-
scale transfer to both regularize the large-scale interface, and model the primary atomization in the under-resolved
mixed-regime region. We consider then the same initial setup as the one described in Section 6.1.1. However, we
change the settings dedicated to the inter-scale mass transfer by choosing 𝐻𝑚𝑎𝑥 = 40 m−1, 𝜌𝑑1 = 1000 kg.m−3 and
𝜅 = 1. We expect that the curvature threshold limits the mean curvature 𝐻𝑙𝑖𝑔 while the latter pilots the amount of
interface area density created when mass is transferred form large to small scales.

We propose to discuss the dynamics of this system by highlighting the impact of the two main effects of the
inter-scale mass transfer: (i) the large-scale regularizing properties of the inter-scale process, (ii) the quantitative
repartition of both the liquid mass and IAD between large and small scales. The following two sets of figures address
each of these effects:

(i) In Figs. 6.1.4-6.1.5, we compare the dynamics at large-scale of the two cases by plotting respectively the large-
scale volume fraction 𝛼1 and the large-scale IAD estimator ‖∇𝛼1‖. In Fig. 6.1.3, we compare the evolution in
time of the curvature 𝐻𝑙𝑖𝑔 to measure the regularizing impact of the inter-scale transfer.

(ii) In Fig. 6.1.7, effective densities at large scale 𝛼1𝜌1 and small scale 𝛼𝑑
1 𝜌

𝑑
1 are compared and their repartition

between the two scales is plotted in time in Fig. 6.1.8. The same discussion is proposed for the IAD in Fig.
6.1.6 along with its evolution in time in Fig. 6.1.9.

6.1.2.1 Regularizing properties

Let us first observe from Figs. 6.1.4-6.1.5 that the dynamics is similar during stage 1 as the inter-scale transfer has not
started yet. When the filaments begin to grow in stage 2, we see that the growth is stopped when the mass transfer
is activated via a curvature threshold set to 𝐻𝑚𝑎𝑥 = 40 m−1. The interface is locally regularized in the sense that
the under-resolved filaments, appearing when there is no mass transfer, have been transferred to the small-scale part
of the model. As showed by the Fig. 6.1.3, the curvature 𝐻𝑙𝑖𝑔 is indeed limited starting from stage 2 and is almost
always kept below the threshold 𝐻𝑚𝑎𝑥 . We observe that the curvature goes over the limit for very few snapshots
which correspond to situations where the condition 𝐶1 is not satisfied, and then, mass transfer cannot occur despite
the mean curvature higher than the threshold. This regularization also allows to “close” the interface through a
non-negligible amount of interface area density ‖∇𝛼1‖ all around the level-set 𝛼1 = 0.5 at large-scale which makes the
intensity of capillarity fluxes stronger. This consequently impacts the overall dynamics, and we particularly observe
that the core of the liquid column has a more compact shape.

Given the mesh resolution considered, we have a better resolution of the large-scale capillarity phenomena with
the inter-scale transfer. The previously under-resolved small-scale interface dynamics is now purposely modelled with
geometric quantities.
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Figure 6.1.1: Liquid column deformation without inter-scale transfer. Liquid volume fraction 𝛼1 ∈ (0, 1) (top)
and estimator of the interface area density ‖ ∇ 𝛼1 ‖ ∈ (0, 16) (bottom) with the iso-line 𝛼1 = 0.5 (white,
bottom). Snapshots are taken each 0.25 s from 𝑡 = 0 s to 𝑡 = 2.5 s from top to bottom and left to right.
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Figure 6.1.2: Evolution in time of the mean curvature 𝐻𝑙𝑖𝑔 when inter-scale transfer is deactivated.
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Figure 6.1.3: Evolution in time of the mean curvature 𝐻𝑙𝑖𝑔 when inter-scale transfer is either activated ( ) or
deactivated ( ). Threshold 𝐻𝑚𝑎𝑥 = 40 m−1 is represented with the black dashed line.
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Figure 6.1.4: Large-scale liquid volume fraction 𝛼1 ∈ (0, 1) with mass transfer (top) and without mass transfer
(bottom). Snapshots are taken each 0.25 s from 𝑡 = 0 s to 𝑡 = 2.5 s from top to bottom and left to right.
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Figure 6.1.5: Large-scale IAD ‖∇𝛼1‖ ∈ (0, 16) with mass transfer (top) and without mass transfer (bottom).
Snapshots are taken each 0.25 s from 𝑡 = 0 s to 𝑡 = 2.5 s from top to bottom and left to right.
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Figure 6.1.6: Large-scale IAD ‖∇𝛼1‖ ∈ (0, 16) m−1 without inter-scale transfer (top), with inter-scale transfer
(bottom), and small-scale IAD Σ ∈ (0, 3.4) m−1 with inter-scale transfer (bottom). Snapshots are

taken each 0.25 s from 𝑡 = 0 s to 𝑡 = 2.5 s from top to bottom and left to right.
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Figure 6.1.7: Large-scale liquid effective density 𝛼1𝜌1 ∈ (0, 103) without inter-scale transfer (top), with inter-
scale transfer (bottom), and small-scale liquid effective density 𝛼𝑑

1 𝜌
𝑑
1 ∈ (0, 3.8 × 102) with inter-scale transfer

(bottom). Snapshots are taken each 0.25 s from 𝑡 = 0 s to 𝑡 = 2.5 s from top to bottom and left to right.
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6.1.2.2 Repartition of mass and IAD between scales

Now let us discuss the repartition of both the liquid mass and IAD transfer and production. As expected one
can observe in Fig. 6.1.8 that the large-scale liquid effective density is transferred to the small-scale model while
conserving the total liquid mass during stage 2. Remark that such a transfer does not generate any loss of mass
or excess in comparison with the available volume for each scale as the two scales are gathered in a single set of
equations, thus describing a two-scale mixture. This approach particularly differs from the coupling strategies (Lebas
et al., 2009; Zuzio et al., 2013; Le Touze, 2015) between two solvers where the transferred mass is not compensated in
terms of volume occupation and can produce pressure artefacts. The superposition of the effective densities at both
scales shows that the mass transfer has happened at the extremities of the large-scale ligaments, and the small-scale
liquid phase is then advected by the flow. We can again measure the impact on the dynamics as the liquid mass is
not spatially distributed at the same location, whether the inter-scale transfer is activated or not, by summing the
contributions of both the large- and small-scale components.

Regarding the IAD, one can see in Fig. 6.1.9 that the regularization tends to decrease the total large-scale IAD
when mass transfer is activated, in accordance with the more compact shape of the liquid core. However, we observe
for activated inter-scale transfer that the sum of the IAD from both scales largely exceed the large-scale IAD when
the inter-scale transfer is deactivated. This follows from the greater amount of IAD generated by droplets than
the one associated with a small bit of an under-resolved open interface for a given liquid mass. The choice of the
parameter 𝑆𝑎𝑣𝑔/𝑚𝑎𝑣𝑔, or in our case 𝜅, strongly impacts the amount of small-scale IAD produced from the same
amount of mass as the IAD source term is inversely proportional to 𝜅 in Model 31 The fitting of such a parameter
is discussed in the next section thanks to the comparison with a high fidelity simulation.
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Figure 6.1.8: Evolution in time of liquid effective density for large-scale 𝛼1𝜌1 and no inter-scale transfer ( ), for
large-scale 𝛼1𝜌1 and inter-scale transfer ( ), for small-scale 𝛼𝑑

1 𝜌
𝑑
1 and inter-scale transfer ( ), for both scales
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1 and inter-scale transfer ( ).
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Figure 6.1.9: Evolution in time of IAD for large-scale ‖∇𝛼1‖ and no inter-scale transfer ( ), for large-scale ‖∇𝛼1‖
and inter-scale transfer ( ), for small-scale Σ and inter-scale transfer ( ), for both scales ‖∇𝛼1‖ + Σ and inter-
scale transfer ( ).
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6.1.3 Comparison with a high fidelity simulation
The previous section has demonstrated the ability of the two-scale model to describe the interface at two levels:
a large-scale one where the interface is regularized and estimated via the gradient of the volume fraction, and a
small-scale one where it is represented with the small-scale IAD, a moment of a spray distribution. However, the
regularization process proposed in the two-scale model used in the previous section relies on two key size parameters
which strongly influence the resulting amount of IAD in the whole simulation: the maximal mean curvature threshold
𝐻𝑚𝑎𝑥 and the parameter 𝜅 which pilots the size of the produced droplets.

In this section, we compare, for demonstrating purpose, the results from the two-scale simulation with another
simulation, now referred as high fidelity simulation, without two-scale transfer, performed on a refined mesh to
qualitatively measure to what extent the two-scale model can model the small-scale dynamics. In Section 6.1.3.1, we
discuss the differences between the models used for the two-scale simulation and the one used for the high-fidelity
simulation along with the numerical parameters of the simulations. Due to the small differences at both modelling
and numerical stages, we first assess in Section 6.1.3.2 that both simulations provide comparable large-scale dynamics.
Finally, the total IAD obtained from each simulation is compared in Section 6.1.3.3.

6.1.3.1 High fidelity test-case comparison: model and numerical methods

The high fidelity simulation is obtained with another solver based on the same one-velocity model but with a different
numerical method detailed in Grenier et al. (2013). When the regularization process is deactivated, this solver is
then able to solve the same test-case, but more efficiently, on a parallel architecture. Therefore, it offers a size
resolution which is out of reach with the current implementation of the two-scale model in Josiepy. However, the
two implementations differ slightly as they do not precisely solve the same set of equations, and do not use the same
numerical methods. Let us then detail their differences.

From the modelling perspective, let us recall that the large-scale sub-model of the two-scale model is based
on the Model 5, which is adapted to separated regime and accounting for capillarity. The set of equations solved
in the high fidelity simulation differs only on the local Laplace equilibrium where the capillarity pressure jump is
neglected. Therefore, this second model consider a pressure equilibrium 𝑝1 = 𝑝2 and avoid the issues associated with
the evaluation of the estimator of the local mean curvature 𝐻 (∇𝛼1).

From the numerical perspective, the implementation associated with the high-fidelity simulation differs on two
main points from the one proposed in Josiepy:

• A low-Mach compressible scheme is used following Grenier et al. (2013);

• The compressive limiter of Blanchard (2014).
While the former scheme has a priori not a significant impact in the test-case at stake where we have an initial
Mach number of 𝑀𝑎 = 0.66, the latter limiter keeps the interface as thin as possible while keeping the consistencies
of the numerical schemes. Such limitation procedure helps the development of the small-scale dynamics without the
requirement of a very fine meshing of the domain. Finally, the high fidelity simulation proposes a much more refined
mesh with a regular meshing of 3200 × 1600 cells distributed on 120 different regions (see Figure 6.1.10) while the
two-scale simulation only has 400 × 200 cells.

This modelling and numerical frameworks particularly allows simulating smaller length-scales of the interface
dynamics that we want to measure to calibrate the two-scale model. Before comparing the small-scale models, we
assess in the following section that the two simulations provide similar dynamics at large scale.

6.1.3.2 Large-scale dynamics assessment

Before comparing the high fidelity simulation with the simulations obtained with Josiepy, we propose to first identify
the interface regimes from the dynamics of the high fidelity simulation displayed in Figure 6.1.11. We identify three
stages :

• A “two-scale regime” from 𝑡 = 0 s to 𝑡 = 0.75 s: two different scales are clearly visible to describe the interface
dynamics, a large one corresponding to the contour of the core of the liquid column, and a small one associated
with the creation of small and thin filaments on the top, left and bottom sides of the liquid column.
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Figure 6.1.10: The decomposition of the 3200 × 1600-cell Cartesian mesh into 120 regions where the model is solved
in parallel.

• A mixed regime from 𝑡 = 0.75 s to 1.25 s: we can still identify a liquid core with filaments attached to it, but
their respective length-scales are now comparable as the liquid core has become thinner and the filaments have
grown.

• A disperse regime after 𝑡 = 1.25 s: the liquid core is atomized into a disperse phase that quickly dissipates due
to the numerical scheme.

This dynamics reveals that the time of the transition from the separated and two-scale regime to the disperse
regime is shorter than the one suggested by the coarser two-scale simulation obtained with Josiepy, and that the very
small length-scales appear all over the liquid surface rather than just at the extremities of the filaments. Furthermore,
the quick numerical dissipation of the smallest scales associated with the final disperse regime illustrates the difficulty
of such simulations which, despite the refined mesh and the compressive limiter, cannot resolve the dynamics of the
interface of such inclusions. Moreover, the use of a compressive limiter at such small scales is questionable as no
interface can be properly defined when the length-scales become comparable with the mesh size.

Then, we confirm the right setting of the test-cases by verifying that the dynamics of the two simulations, the
high fidelity one and the two-scale one, present similar dynamics, at least for the two-scale regime where the interface
dynamics has not influenced the whole flow yet. The comparison between the volume fraction, pressure and velocity
fields of these two simulations are showed in Figures 6.1.12-6.1.13-6.1.14. We qualitatively observe a very good
agreement between the two simulations up to the moment where the first filaments break up into small inclusions at
the end of the two-scale regime timespan. However, the presence of such inclusions strongly perturbs the structure
of the pressure waves and the velocity field downstream the liquid column. Nevertheless, the pressure and velocity
fields upstream and the “averaged” shape of the liquid core are very comparable in the two simulations.

At the end of the “two-scale regime”, the influence of the dispersed inclusions have a strong influence on the
overall flow and the displacement of the liquid column starts to desynchronize between the two simulations (see
Figure 6.1.16). The right simulation of the disperse phase then shows to be of great influence on the overall dynamics
and further studies must be provided to better understand this phenomenon, notably to measure the influence of
convergence which reveals more and more inclusions in the disperse phase.

Now that the large-scale dynamics have been studied and showed comparable during the two-scale regime, let us
study the small-scale dynamics afterwards.
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Figure 6.1.11: Liquid volume fraction 𝛼1 ∈ (0, 1) of the high fidelity simulation. Snapshots are taken each
0.25 s from 𝑡 = 0 s to 𝑡 = 2.25 s from top to bottom and left to right.
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Figure 6.1.12: Volume fraction and large-scale volume fraction field 𝛼1, 𝛼1 ∈ (0, 1) respectively for the high fidelity
simulation (top) and the two-scale simulation (bottom). Snapshots are taken each 0.1 s from 𝑡 = 0 s to 𝑡 = 0.7 s from
top to bottom and left to right.
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Figure 6.1.13: Pressure field 𝑝, 𝑝 ∈ (99900, 100200) Pa respectively for the high fidelity simulation (top) and
the two-scale simulation (bottom). The interface of the liquid column is located respectively for the high fidelity
simulation and the two-scale one with the level set 𝛼1 = 0.5 and 𝛼1 = 0.5. Snapshots are taken each 0.1 s from 𝑡 = 0
s to 𝑡 = 0.7 s from top to bottom and left to right.
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Figure 6.1.14: Velocity streamlines and magnitude field ‖𝒖‖ ∈ (0, 20) m.s−1 respectively for the high fidelity
simulation (top) and the two-scale simulation (bottom). Snapshots are taken each 0.1 s from 𝑡 = 0 s to 𝑡 = 0.7 s from
top to bottom and left to right.
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6.1.3.3 Comparison of the small-scale interface area density

From the previous study, we have identified three regimes: a two-scale one, a mixed one and a disperse one. Based
on this distinction of regimes, we propose to compare both the amount and the location of the interface area density
between the two simulations. For the high-fidelity simulation, we estimate the IAD with the gradient magnitude of
the volume fraction ‖∇𝛼1‖ while, for the two-scale simulation, we combine both the large-scale IAD estimator ‖∇𝛼1‖
and the small-scale IAD Σ. The location of the IAD and their evolution in time are plotted respectively in Figure
6.1.16 and in Figure 6.1.15.

Regarding the location of the IAD, the two simulations offers very different space repartition of the IAD as the
dynamics of the liquid core is very different once the two-scale regime has ended. We particularly observe that the
disperse inclusions are spread further from the liquid core in the high fidelity simulation while it is restricted to the
neighbouring of the growing filaments in the other one.

In terms of evolution of the total IAD, we remark that the small-scale IAD in the two-scale simulation is mostly
created from the end of the two-scale regime and mainly during the mixed and disperse regime. Indeed, the inter-scale
regularization only acts on resolved filaments and the current resolution of the two-scale simulation does not allow
the capture of the small filaments appearing during the two-scale regime. The accounting of this small-scale IAD
would either require a refined simulation or a small-scale model representing the local growth of filaments.

Then, the amount of IAD generated in the high fidelity simulation indicates that the averaged size of the droplets
of the two-scale simulation has been overestimated. Such an observation was expected as a very large size of droplets
was chosen for the inter-scale transfer with 𝜅 = 1 i.e. a droplet radius of the same size as the inverse of the curvature
threshold 𝐻𝑚𝑎𝑥 (see Model 30). Assuming that the impact on the flow is negligible, a projection of the amount
of IAD produced by selecting 𝜅 = 0.2 is sketched in Figure 6.1.9. Such a projection provides a very good match
with the high fidelity simulation regarding the global evolution of IAD within the spray. This demonstrates that the
inter-scale model is able to recover global quantity of interest with very few parameters despite the inexact location
of the small-scale or beginning time of the primary atomization process.

More advanced modelling of the atomization process would require the include more phenomena such as a small-
scale two-velocity model with drag, oscillation and secondary break-up with parameters chosen with experimental
heuristics.

Conclusion of Section 6.1
We have presented in this section an original two-scale simulation which illustrates numerous contributions present in
this manuscript and demonstrates the potential of the two-scale modelling strategy of Chapter 3 which combines the
models for both the separated and disperse regimes derived in Chapter 1. Given a test-case with multiscale interface
dynamics, we have introduced a relevant length-scale threshold which pilots the location of inter-scale transfer as a
regularization of the large-scale interface. This successful regularization process, notably illustrated by the limitation
of mean curvatures (see Figure 6.1.3), has also demonstrated the efficiency of the underlying numerical methods
presented in Chapter 4 which are another contribution of this work. Many complementary studies could follow from
this test-case with the assessment of the influence of inter-scale transfer parameters, here 𝐻𝑚𝑎𝑥 and 𝜅, the testing of
different test-cases, or other numerical schemes to better capture the large-scale interface dynamics with compression
limiters or adaptive mesh refinement. A critical extension of this setup also relies on an enhanced modelling of the
small-scale dynamics with models of Chapter 2. Indeed, the two-scale model used for this simulation was intentionally
deprived of non-required geometric quantities to focus this section on inter-scale mass transfer. We propose now to
tackle separately a test-case related to the small-scale modelling with the advection of an agitated spray of oscillating
droplets and thus conclude on one of the other main modelling contribution from this manuscript.
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Figure 6.1.15: Evolution in time of IAD for the high fidelity simulation with ‖∇𝛼1‖ ( ), the two-scale simulation
with 𝜅 = 1 for large-scale ‖∇𝛼1‖ ( ), for small-scale Σ ( ), for both scales ‖∇𝛼1‖ +Σ ( ), and an approximate
evolution for the two-scale simulation in a projected scenario with 𝜅 = 0.2, for both scales ‖∇𝛼1‖ + Σ ( ).
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Figure 6.1.16: IAD ‖∇𝛼1‖ ∈ (0, 400) m−1 (top) of the high-fidelity simulation, large-scale IAD ‖∇𝛼1‖ ∈ (0, 16)
m−1 (bottom) and small-scale IAD Σ ∈ (0, 34) m−1 (bottom) of the two-scale simulation. Snapshots
are taken each 0.25 s from 𝑡 = 0 s to 𝑡 = 2.5 s from top to bottom and left to right.
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6.2 Polydisperse spray of oscillating droplets

In this second simulation, we propose to illustrate the potential dynamics of the small-scale model of oscillating
droplets detailed in Section 4.2 that we recall here for the polydisperse case,
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(6.1)

6.2.1 Test-case description

This test case aims at providing a more physical setup than the one provided as a verification test-case in Section
5.4 and illustrating the potential of the oscillatory model. To this end, we consider the advection of a spray of
droplets which becomes agitated due to an external force as it goes across an “agitated region”. We interpret here
this external force as a drag force in a region with a velocity differential between the inclusions and the carrier flow
that is strong enough to trigger a deformation of the droplet as in a jet crossflow (Herrmann, 2009; Sakano et al.,
2022; Janodet et al., 2022). Following this interpretation, the external force is chosen to be size-dependent with the
same dependency as the drag force proposed in the TAB model of O’Rourke and Amsden (1987). Such force has
been introduced in the model of moments (4.52) and (4.53) defined in Section 4.2.

Then, we initialize the test-case with a bi-disperse spray of static droplets located in a domain D𝑖𝑛𝑖𝑡 = (0.25, 0.75)
of the total periodic domain D = (0, 3) which contains the agitated region D𝑎𝑔𝑖𝑡 = (1.75, 2.25) (see Figure 6.2.1).
The droplets oscillations are further triggered by the external force as it goes across the agitated region where the
intensity of the external force is defined for 𝑥 ∈ D,

𝐹𝑒𝑥𝑡 (𝑥) = 𝐹1D𝑎𝑔𝑖𝑡 (𝑥), (6.2)

with 𝐹 = 5 in the following simulations.

0.2

0.4

0.6

0.8

1.0

Figure 6.2.1: Schematic representation of the setup with the initial position of the spray and the location of the
forcing term through the characteristic functions 1D𝑖𝑛𝑖𝑡 and 1D𝑎𝑔𝑖𝑡 .

Similarly to the verification test-case of Section 5.4, we set 𝜔̃ = 4 for the monodisperse cases, 𝜔̃ = 2 for the
polydispere test-case. The CFL is chosen at 0.9 for all the simulations. In the following Figures 6.2.2, 6.2.3 and
6.2.4, we track the dynamic of an advected cell in the center of the spray and observe its dynamics as it goes across
the agitated region several times.
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6.2.2 One-dimensional simulation of the oscillating spray
In the polydisperse case, we initialize the simulation with the following set of moments,

𝑀
𝜉
𝑖,0,0 (𝑥, 0) = (𝑖 + 1)−1

1D𝑖𝑛𝑖𝑡 (𝑥), 𝑖 = 0, 1/2, 1, 3/2

𝑀
𝜉
1/2,1,0 (𝑥, 0) = 0,

𝑀
𝜉
1/2,0,1 (𝑥, 0) = 0,

𝑀
𝜉
1,1,0 (𝑥, 0) = 0,

𝑀
𝜉
1,0,1 (𝑥, 0) = 0.

(6.3)

As the external force always increases the oscillation velocity parameter, it accelerates the dynamics and total
energy builds up when the oscillation velocity is positive, and slows the dynamics when the oscillation velocity is
negative. In Figures 6.2.2, 6.2.3 and 6.2.4, we plot the kinetic, potential and total energies for respectively the
population of large droplets, small droplets and the whole spray. After reaching the forcing zone, the two droplets
populations start to oscillate with different oscillation frequencies depending on their size. The kinetic energy is
initially triggered by the forcing term since the source term arises in the moments equations 𝑀 𝜉

1,0,1 and 𝑀
𝜉
1/2,0,1 of

the model (6.1). For the population of large droplets in Figure 6.2.2, the total energy increases to a first threshold
and a second one when the droplets cross the forcing term area the first two times. However, the third crossing of
the agitated zone happens at a moment where the oscillation velocity is negative. The oscillation motion is slowed
down, and the droplets lose some energy. Besides, we can remark in Figure 6.2.2 that the energy of large droplets
slightly dissipates between two agitated zones due to the numerical diffusion of the kinetic scheme, while the energy
of small droplets in Figure 6.2.3 decreases faster. This phenomenon originates in the quadrature relation between
moments and abscissa which affects more the small droplets due to the initial large ratio of 7.5 × 10−3 between the
energy of the small droplets over the one of the large droplets. In Figure 6.2.3, the dynamics of the second droplet
population is displayed. Due to the higher oscillation frequency associated with the smaller size of droplets, the
oscillation dynamics is successively accelerated and slowed down as the velocity has the time to oscillate with both
positive and negative values in the agitated area.

Finally, the energy associated with the small-sized droplets is negligible in comparison with the energy of the
larger ones. Therefore, the energies of the spray plotted in Figure 6.2.4 are comparable to the ones of the larger
droplets given in Figure 6.2.2.

This test-case illustrates that the small-scale model of oscillation droplet can provide a rich dynamics despite
the simple oscillatory model underneath. The energy of the spray results from the subtle combination of the time
of exposure to external source terms and size-dependent frequencies of the droplets within the spray. From this
test-case, we can make the following conjectures : for some sizes where the period of oscillation is of the same order
of magnitude as the advection time through an agitated zone, the oscillation energy of the droplets builds up, and an
eventual break up has to be further considered as extension of this model. For some smaller sizes, the frequency of
oscillation is too high to show a similar kind of resonance phenomenon and the energy remains stable asymptotically.
Such an observation shows that the oscillation motion in polydisperse sprays can influence the resulting secondary
break-up phenomenon as some sizes are more probable to break-up than the others. Indeed, break-up occurs more
often for larger Weber numbers which scale here with the radius of the droplet.

Conclusion of Section 6.2
Let us conclude this second test-case on small-scale modelling by underlining that this dynamical model aims at
being coupled with the previous test-case of inter-scale transfer to model a full atomization process. Moreover, a
more comprehensive approach of the small-scale dynamics should also include a two-velocity modelling framework,
secondary break-up, and potentially coalescence and re-impact if the spray is dense. The inclusion of these phenomena
in a two-scale model is a natural perspective to this work which mainly offered an original framework to treat the
dynamics of the interface resulting from the mixed regime.
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Figure 6.2.2: Evolution in time of the kinetic, potential and total energies of the population of larger droplets in the
cell at the center of the spray. Mesh size Δ𝑥 = 0.003 m . Final time 𝑇 = 8.

Figure 6.2.3: Evolution in time of the kinetic, potential and total energies of the population of smaller droplets in
the cell at the center of the spray. Mesh size Δ𝑥 = 0.003 m . Final time 𝑇 = 8.

Figure 6.2.4: Evolution in time of the kinetic, potential and total energies 𝐸 𝑝𝑜𝑙𝑦 of the spray in the cell at the center
of the spray. Mesh size Δ𝑥 = 0.003 m . Final time 𝑇 = 8.
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Conclusion of chapter 6
In this chapter, we have successfully demonstrated the innovative capabilities of the two-scale and polydisperse
small-scale models :

• The coupling of multi-fluid models for both the separated and disperse regime within a unified model;

• The regularization of the large-scale interface through a local and dissipative coupling with the small-scale;

• The efficient modelling of the primary break-up process through the parametrization of the small-scale droplet
sizes;

• The dynamics of a polydisperse spray of oscillating droplets.

The liquid column deformation test-cases has assessed the potential of two-scale modelling at multiple levels. Indeed,
the inter-scale mass transfer successfully regularize the large-scale while offering tunable parameters to account
for the production of a small-scale polydisperse spray. An example of such a tuning is proposed thanks to the
comparison with a high-fidelity simulation on a refined mesh and with a compressive limiter providing a better
resolution of the interface dynamics. Besides, the proposed regularization process is set at the modelling stage, does
not involve an explicit dependency with the mesh size, and respects a dissipative principle. Such a framework aims at
providing accessible mesh convergence for a given curvature threshold, which is usually out of reach when all scales
of the interface dynamics are resolved. Finally, the test-case involving the polydisperse spray of oscillating droplets
demonstrates that, once the liquid phase would be transferred from large to small scale, the reduced-order model still
offers the modelling of complex behaviour such as droplet deformation resulting from either the primary atomization
through the inter-scale transfer or possible secondary break-up in presence of velocity differential.

This chapter demonstrates the possibility of a more comprehensive modelling and simulation of the atomiza-
tion process thanks to efficient reduced-order models for mechanism involved while offering a proper mathematical
framework.



Conclusions and outlooks

Conclusive remarks
This thesis has proposed new contributions for the modelling of complex two-phase flows involving different flow
regimes and multiscale interface dynamics by enabling the use of two-scale unified models. Indeed, the direct
simulation of such flows with state-of-the-art numerical methods is out of reach due to the multiscale nature of the
interface, and alternative, cheaper but predictive two-phase flow models have to be developed to lift this computational
bottleneck. This work has pursued a long-term effort in developing such a solution through unified multi-fluid models
(Drui, 2017; Essadki, 2018; Cordesse, 2020; Di Battista, 2021) able to tackle both the separated and disperse flow
regimes occurring in liquid-gas atomization. The idea of this modelling approach lies in an efficient description of the
different regimes in a single set of partial differential equations with desirable mathematical and physical properties
such as energy conservation, hyperbolicity or entropy-dissipative structure. The work presented in this manuscript
particularly offers new critical features for the applicability of such unified models: the two-scale approach with
independent volume fractions for the large- and small-scale liquid phase, and the inter-scale interface-regularizing mass
transfer to model the transition from the separated to the disperse regime. These two features are respectively found in
the following contributions Loison et al. (2023a,b). However, an accurate modelling of the complex interface dynamics
occurring in an atomization process requires the accounting of multiple mechanisms (break-up, polydispersion, added-
mass) coupled together. Steps towards a more comprehensive description of these phenomena and their coupling have
been proposed in this manuscript through both the use of Hamilton’s Stationary Action Principle for the derivation
of conservative mechanisms, and the addition of source terms complying with the second principle of thermodynamics
for the modelling of dissipative mechanisms. We propose to summarize here the main results contributing to the
development of unified multi-fluid models :

• The two-scale approach presented in Chapter 3 is one of the key ingredients of the unified models as it enable
to make two models, a large-scale one describing a separated regime, and a small-scale one for the disperse
regime, coexist locally, and thus let the opportunity of setting up a local transfer between each other. In our
context of liquid atomization, two independent large- and small-scale liquid phases have been combined in a
one-velocity two-scale model with Hamilton’s SAP. With a compressible large scale and an incompressible small
scale, this two-scale model particularly extends classic multi-fluid models in both the separated and disperse
regime with a conservative hyperbolic structure. Moreover, the two-scale model offers a two-fold representation
of the interface geometry and thus, of capillarity energy which is of prime interest for the inter-scale coupling.

• Another main feature of the unified models is the coupling between the models of each scale also presented in
Chapter 3. Such a transfer must comply with the second principle of thermodynamics, which translates, in
the context of barotropic EOS, as an energy redistribution from the large- to the small-scale models. Then,
the location of such a transfer is chosen where it is both physically and numerically relevant: at the end of
growing filaments, where the interface bends and pinches before breaking up and where the length-scales are
the smallest in the computational domain. In order to do so, we take advantage of a modification of the local
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Laplace equilibrium to both locate the mass transfer at the points of the highest curvatures, and regularize the
interface to prevent the further apparition of small length-scales below of chosen mean curvature threshold.
Such a transfer also interacts greatly with the modelling of capillarity energies at both scales. Indeed, the
regularization of the large-scale interface creates a capillarity energy loss which is over-compensated by the
production of small-scale droplets. Then, this imbalance is corrected by locally decreasing the flow momentum.

• The modelling of small-scale phenomena is also critical to describe and obtain the right spray properties in
the disperse regime. In the inter-scale transfers discussed before, we showed that they rely on an energy
redistribution where the capillarity pilots the average size of the produced droplets. In order to model more
information about the small scale, enhanced reduced-order models of the small-scale with several geometric
quantities are introduced in Chapter 2 with the Geometric Method of Moments GeoMOM. The proposed models
allow the description of the spray polydispersion i.e. distribution in sizes a polydisperse description of the spray,
but also the small-scale dynamics with incompressible pulsation, or compressible pulsation. Other energetic
contributions such as added-mass can be accounted for as detailed in Chapter 1. All these mechanisms can
then be put together in a more complex inter-scale transfer to better model the energy exchanges taking place
in the mixed regime and during the primary break-up.

From the numerical perspectives, classic numerical methods are used with the unified models under consideration.
They are recalled in Chapter 4 along with new methods dedicated to the specificities of the inter-scale transfer.
Moreover, demonstrative simulations are provided to assess the specific properties of some key models presented in
this manuscript. We summarize these contributions here :

• In two-scale models with regularizing mass transfer, the resolution of the modified local Laplace pressure law
particularly relies on a new implicit-explicit integration method in fictitious time. This method, presented in
Chapter 4, provides an alternative to the classic use of Newton-Raphson methods with an efficient and stable
procedure to solve the pressure equilibrium despite the presence of spatial gradients through the estimator of
mean curvature.

• A numerical simulation of a static liquid column in Chapter 5 also reveals the pressure profiles in the presence
of the local and global Laplace pressure laws within the large-scale capillarity Model 5. Indeed, a local one
pilots the pressure jump within the two-fluid mixture in the diffuse interface while the global one accounts for
the usual pressure jump between the pressure in and out the liquid column. In the literature (Chanteperdrix,
2004), the global one is usually obtained without the resolution of local one, but its presence, here due to
the multi-fluid framework, is at the center of the inter-scale transfer. Nevertheless, its proper solve is showed
particularly challenging due to the complex evaluation of the mean curvature on a Cartesian grid.

• A final simulation of a liquid column deformation and atomization with either a regularizing inter-scale transfer
model or a high-fidelity solver is presented in Chapter 6. It particularly shows the ability of the inter-scale
transfer to regularize the large-scale interface and triggers the creation of droplets. Moreover, we also illustrate
the potential tuning of the inter-scale transfer to match the same amount of interface area density as a high-
fidelity simulation. This simple test-case then demonstrates the efficiency of the small-scale reduced-order
modelling approach to capture relevant geometric information about the interface within a unified modelling
framework.

These contributions have proved the potential of two-scale unified models for the simulation of multiscale two-phase
flows and now pave the way to further extensions.

Outlooks of this manuscript
The modelling contributions proposed in this manuscript have opened a new spectrum of models which could not have
been tackled entirely due to the numerous combinations of models and configurations to investigate. Nevertheless,
we gather here some immediate applications and extensions of the modelling and numerical contributions to indicate
some promising research directions. This first group of extensions is followed with longer-term outlooks requiring
some in-depth investigation.

Starting with the immediate extensions in terms of modelling, we have:
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• The derivation of a two-scale unified model with both the inter-scale transfer via the regularizing of the large-
scale and the small-scale model of oscillating spray. Such model could then be used to simulate the test-case
of the airblasted liquid column proposed in Section 6.1 and propose a similar comparison with a high fidelity
simulation for different parameters of the inter-scale transfer.

• A natural symmetric extension of the two-scale modelling approach proposed in this work would be to account
for a small-scale gaseous phase in the liquid with, for instance small bubbles. Such extension would require
to include a supplementary set of variables to characterize this new phase, particularly with its own volume
fraction.

• The rigid rotation of fluid inclusions, or the presence of Hill’s vortices (Hill and Henrici, 1894) within the
inclusions could also be added as another source of energy. Such rotating motion could notably influence the
energy redistribution happening during the inter-scale transfer and add another parameter to fit the mechanisms
of the primary break-up.

• The inter-scale transfer can be extended to include transfer from small to large scale with the modelling of the
re-impact of inclusions into its respective large-scale phase similarly as the model proposed by Le Touze (2015).
Such a transfer could also be considered for high volume occupation of the small scale where the inclusions
coalesce to form a large-scale bulk phase.

• The primary break-up modelling can be enhanced with the proper choice of parameters in the inter-scale
transfer. Similarly to Granger (2023), such choices can rely on either the use of experimental heuristics (Pilch
and Erdman, 1987; Marmottant and Villermaux, 2004), or modelling heuristics (Vallet and Borghi, 1999).

Then, we list the following short-term numerical contributions and investigations:

• The introduction of compressive limiter in the resolution of the large-scale interface which could help to locate
more accurately where the primary atomization occurs. Moreover, the use of such a limiter in a two-scale
model also avoids applying it in the disperse regime where the compression of the interface does no make sense
anymore. Indeed, the inclusions are smaller than the discretization length-scale and their interfaces cannot be
properly described.

• A numerical study to measure the convergence of the two-scale simulations with respect to the curvature
threshold. Indeed, the inter-scale mass transfer prevents the appearance of arbitrarily small-scale and the
numerical convergence is expected happen, especially the mean curvature threshold is low, i.e. when the
interface is intensively regularized.

Regarding the long-term outcomes of this manuscript, we have the following perspectives in terms of modelling:

• The development of a small-scale model adapted to the mixed regime where some additional information on the
interface dynamics could enhance the inter-scale transfer, and thus help for the modelling of primary break-up.
The modelling of dynamics in such model can notably take advantage of the dynamic modelling of geometrical
quantities performed with GeoMOM which opened new perspective in this research area. Besides, such small-
scale models could be derived from the geometric analysis of high-fidelity simulations resolving the interface
with the geometric post-processing library Mercur(v)e (Di Battista, 2018). Some works in this direction are
currently in progress in collaboration with Giuseppe Orlando, post-doctoral researcher at CMAP.

• The extension to non-barotropic/full equations of state in the two-scale unified modelling approach is also
of primary interest for industrial test-case involving evaporation, cavitation of combustion, and is partly the
subject of the PhD thesis of Haegeman (2025), PhD candidate at CMAP/ONERA. In this context, the modelling
of heat or mass transfer (evaporation or condensation) should benefit from additional information about the
local interface geometry.

• The accounting of the two-velocity Model 11 with a velocity for the large-scale model and a different velocity for
the small-scale model would be another critical feature to model numerous phenomena such as drag, secondary
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break-up and a more accurate space distribution of the spray in the domain. However, such phenomena would
trigger the appearance of a continuous distribution in velocities, and its use with Hamilton’s SAP should be
further investigated, for instane through a method of moments involving size-velocity coupling in the manner
of Vié et al. (2013).

• The modelling of turbulence via the addition of velocity dispersion in the framework of Hamilton’s SAP is also
investigated in the PhD thesis of W. Haegeman.

Finally, the numerical perspectives which could significantly impacts this work in the long run are:

• The development of numerical schemes for the two-velocity Model 11 adapted to the non-conservative and
relaxation source terms. Following Gallouët et al. (2004), we could verify that the corresponding Riemann
problem has well-defined non-conservative terms and Rankine-Hugoniot conditions.

• The use of Adaptive Mesh Refinement (AMR) techniques, as currently developed in the Samurai (2023) library
by the HPC@Maths team, would also enable a better resolution of the large-scale dynamics. Indeed, as depicted
in the simulation of the atomized liquid column, the complexity of the flow is concentrated in the neighbourhood
of the large-scale interface and the inclusions. While the computational cost of such a technique is still high
for complex multiscale flow, the combination of the regularizing inter-scale mass exchange with AMR should
bring a determining execution speed up.
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Titre: Modélisation Eulérienne multi-fluide unifiée à deux échelles des écoulements diphasiques à phases sé-
parées et dispersées
Mots clés: Écoulements diphasiques, Modelisation deux-échelles, Géométrie de l'interface, Description cinétique
via la méthodes aux moments géométrique (GeoMOM), Calcul variationnel, Régularisation de l'interface
Résumé: Les écoulements diphasiques liquide-
gaz sont présents dans de nombreuses applications
industrielles telles que la propulsion aérospatiale,
l'hydraulique nucléaire ou les colonnes à bulles dans
l'industrie chimique. La simulation de ces écoulements
est d'un intérêt primordial pour leur compréhension
et leur optimisation. Cependant, la dynamique de
l'interface séparant le gaz du liquide peut avoir une
dynamique multi-échelle et rend alors sa simulation
trop coûteuse en calcul dans un contexte industriel.
Une classe de modèles - dits multi-fluides - sont moins
coûteux pour des régimes particuliers de dynamique
d'interface, par exemple lorsque les fluides s'écoulent
de part et d'autre d'une unique interface lisse dans un
régime séparé ou lorsque l'un des deux fluides est
sous formes d'inclusions (gouttes ou bulles) portées
par l'autre fluide dans un régime dispersé. Le couplage
de ces modèles a été proposé pour des écoulements
multi-échelles comme l'atomisation liquide, mais un tel
couplage est souvent difficile à mettre en place du point
de vue de la modélisation physique ou de ses propriétés
mathématiques. Cette thèse répond à cette probléma-
tique en proposant un cadre de modélisation unifiée à

deux échelles ainsi que des schémas numériques ro-
bustes. Les principales contributions liées à cette mod-
élisation sont : 1- La combinaison de modèles multi-
fluides compressibles de la littérature, adaptés soit au
régime séparé soit au régime dispersé, en un modèle
multi-fluide unifié à deux échelles grâce au principe
d'action stationnaire de Hamilton ; 2- Le couplage local
des modèles avec un transfert de masse inter-échelle
régularisant l'interface à grande échelle en conservant
l'énergie capillaire et modélisant les phénomènes de
régime mixte présents dans l'atomisation primaire ;
3- L'amélioration des modèles à petite échelle pour
les régimes dispersés en ajoutant la dynamique de
quantités géométriques pour des gouttes oscillantes
ou des bulles pulsantes, construites comme des mo-
ments d'une description cinétique. D'un point de vue
numérique, des schémas volumes-finis adaptés aux
systèmes de lois de conservation avec relaxations ont
été implémentés dans le solveur open-source Josiepy.
Enfin, des simulations démonstratives des propriétés de
régularisation du modèle sont proposées sur des con-
figurations numériques conduisant à des dynamiques
d'interface multi-échelles.

Title: Unified two-scale Eulerian multi-fluid modeling of separated and dispersed two-phase flows
Keywords: Two-phase flows, Two-scale modelling, Interface geometry, Kinetic description via Geometric Method
of Moments (GeoMOM), Variational methods, Interface regularization
Abstract: Liquid-gas two-phase flows are present in
numerous industrial applications such as aerospace
propulsion, nuclear hydraulics or bubble column reac-
tors in the chemical industry. The simulation of such
flows is of primary interest for their understanding and
optimization. However, the dynamics of the interface
separating the gas from the liquid can present a multi-
scale dynamics and thus makes simulations of industrial
processes computationally too expensive. Some mod-
elling efforts have been conducted on the development
of cheaper multi-fluid models adapted to particular in-
terface dynamics regime, e.g. in the separated regime
where the fluids are separated by a single smooth sur-
face or in the disperse regimewhere there are inclusions
of one fluid carried by the other. Attempts of coupling
between these models have showed some progress to
simulate multiscale flows like atomization, but usually
have physical or mathematical drawbacks. This thesis
then pursues the goal of proposing a unified two-scale
modelling framework with appropriate numerical meth-
ods adapted to this multiscale interface dynamics which

goes from a separated to a disperse regime. The main
contributions related to this modelling effort are : 1- The
combination of compressible multi-fluid models of the lit-
erature adapted to either the separated or the disperse
regime into a unified two-scale multi-fluid model rely-
ing on Hamilton’s Stationary Action Principle; 2- The
local coupling of the models with an inter-scale mass
transfer both regularizing the large-scale inter face and
modelling mixed regime phenomena such as in primary
break-up; 3- Enhancing the small-scale models for the
disperse regimes by adding the dynamics of geometric
quantities for oscillating droplets and pulsating bubbles,
built as moments of a kinetic description. From the nu-
merical perspective, finite-volume schemes and relax-
ation methods are used to solve the system of conser-
vative laws of the models. Eventually, simulations with
the open-source finite solver Josiepy demonstrates the
regularization properties of the model on a set of well-
chosen numerical setups leading tomulti-scale interface
dynamics.
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