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General Introduction

Many dedicated researchers have recently been trying to provide their
best interpretation and contribution to how individuals move. Indeed, pedes-
trian dynamicsmodels play a crucial role in urbanplanning, architecture, trans-
portation engineering, and crowd management. These models provide in-
sights into the behavior of individuals in pedestrian environments, helping
designers and policymakers create safer, more efficient, and more accessi-
ble spaces. By simulating pedestrian movements, these models can predict
congestion, identify potential bottlenecks, and optimize layouts to enhance
flow and mitigate risks. Moreover, they aid in the design of public spaces
that accommodate diverse needs, including those of people with disabilities
or mobility challenges. Understanding pedestrian dynamics is essential for
creating sustainable, inclusive cities where people can move freely and com-
fortably, promoting both safety and quality of life. Pedestrian dynamics mod-
els are not only instrumental in optimizing urban spaces for efficiency but
also in ensuring safety. By accurately simulating pedestrian behavior, these
models can anticipate potential incidents such as overcrowding, stampedes,
or evacuation scenarios. This predictive capability allows designers and au-
thorities to implement preemptive measures to mitigate risks and enhance
safety protocols. Additionally, these models enable the testing of emergency
evacuation plans and the assessment of crowd management strategies, en-
suring that urban environments are resilient in the face of unforeseen events.
Ultimately, the ability to accurately simulate pedestrian dynamics contributes
to the creation of environments that prioritize both efficiency and safety, fos-
tering thriving and resilient communities.

To better understand pedestrian dynamics modeling, it is helpful to ad-
here to the recommendations of [45], who propose that pedestrians’ move-
ment can be categorized into three distinct layers. First, the strategic layer,
pertaining to the choice of the goal of the motion. Then there is a tactical
layer, or which way to take to achieve the objective. Ultimately, the opera-
tional aspect of the motion is considered, covering all the minor decisions
and adjustments made by pedestrians during their trajectory. In particular,
the motivation for our work stems from a consideration that has been circu-
lating for quite some time in the field of pedestrian dynamics. It has been
observed that human crowds, especially at the operational level, sometimes
resemble granular matter, especially as their density increases. This was first
suggested by Helbing in [41]. Here the author affirms that by observing some
time-lapse footage of human crowds in motion, it is possible to draw some
qualitative resemblances with both fluids and granular matter. In particular,
Helbing observations focus on a few features of pedestrians’ motion, among
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which the formation of streamlines when two crowds of pedestrians moving
in opposite directions cross each other, the propagation of shock waves and
the oscillation of the passing direction through a narrow choke point where
two masses of pedestrian meet. Further examples of the analogy between
pedestrians and inert matter was given in [43], where the authors analyzed
the video recording of the tragic stampedes of 2006 at the Hajj pilgrimage
to explore the onset of phase transitions and turbulence in pedestrian flows
during panic movement. Furthermore, [77, 89] study the evacuation times
through a bottleneck by three different kinds of crowds, made by humans,
animals (sheep) or granular material, to show that the faster-is-slower (FIS)
effect, i.e., the fact that individuals all trying to exit a room at a faster speed
end up evacuating inmore time than calmer crowds, is universal among these
types of throngs.

To further investigate the validity of the analogy, Nicolas et al. [75] de-
cided to perform a test with a human crowd that is considered a classic one
for grains, the passage of a cylindrical intruder. To achieve this, a conjoint ef-
fort between the French team of Alexandre Nicolas and Cécile Appert-Rolland
and their Argentinian counterparts Kuperman and Ibañez took place. The two
teams organized two identical experimental set-ups inOrsay, France, andBar-
iloche, Argentina respectively: a crowd of volunteers (35–40 people) was gath-
ered in a controlled environment and arranged to obtain various average den-
sities, then, one staff member, equipped with a cylindrical outfit to simulate a
moving obstacle made his/her way through the crowd, keeping a constant ve-
locity and walking as straight as possible. The experiment was initially carried
out in two configurations, one with all participants facing the obstacle, and
the other where they were randomly oriented, to see if any difference was
visible. Contrary to the expectations, the outcome did not bear any resem-
blance to the granular behavior. In fact, as section 1.1 will show, grains tend to
be pushed along by the intruder, whereas participants in the experiment in
the two configurations, as reported in section 1.2, showed a radically different
response. Indeed, individuals anticipated, in the facing case more than in the
random case, the arrival of the obstacle and stepped aside to let it pass.To see
if they could recover the granular behavior, the experimenters asked partici-
pants to try not to anticipate the intruder’s arrival, and to let them be pushed
away. However, even in that case, pedestrians still instinctively anticipated,
and it was only when they were also asked to give their back to the cylinder
that the empirical behavior started to look like grains.

One of the goals of the project I took part into was to prove that the antic-
ipation displayed by pedestrians in the experiment, when participants were
facing the obstacles, is a crucial element of pedestrian dynamics, and that nev-
ertheless the most common simulating techniques fail to fully capture it. To
show this, we will simulate this experimental scenario using two models for
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pedestrians dynamics that are described in chapter 2. There, we will explain
the difference betweenmicroscopic models, namely those that describe each
pedestrian individually, and macroscopic models, that, on the other hand,
consider the crowd as a whole and focus on the evolution of the density. In
particular, since microscopic models are generally considered more precise,
we will only use models of this kind to compare to the experiment. The first
of the models we will use is Helbing’s social force model [44], described in
section 2.1.1. In this model, the preferences of individuals in crowded envi-
ronments are translated into forces resulting from social constraints. In par-
ticular, Helbing considers the desire of people not to be too close to others.
The use of forces analogous to natural ones but of social origin in Helbing’s
model prompted a series of significant contributions in the field of pedestrian
dynamics. The majority of these contributions built on Helbing’s intuition and
proposed novel approaches to comprehend and delineate such societal con-
straints on human motion. The second we will use is another microscopic
model, the one developed by one of the authors of the experiment, A. Nico-
las, in collaboration with I. Echeverria-Huarte [33]. This is a very recent model
that brings together many of the observations and results in the field, to offer
a flexible and realistic simulation tool. As section 2.1.2 will show, this model
is based upon the minimization of a cost functional, something that will be-
come interesting later. The results of the comparison are collected in section
4.1, where we will indeed show that neither model can fully reproduce what
the experiment shows.

The other objective of this thesis is to show that a model based on a min-
imal version of the theory of Mean-Field Games can, contrarily to other mod-
els, fully capture the experimental behavior. Mean-field games (MFG) are op-
timally driven stochastic processes. These models, based on the union of op-
timal control and game theory, describe situations where amultitude of ratio-
nal agents interact, in a competitive or cooperative way, while trying to reach
an objective or a target. Introduced almost two decades ago by the works
of Lasry and Lions on one side, and of Huang, Malhamé and Caines on the
other, mean-field games suppose that the behavior of each simulated agent
can bemodeled as a stochastic process using a Langevin equation, where the
drift term is obtainedminimizing (maximizing) a certain cost (gain) functional.
This functional describes the preferences of the agents and the way they in-
teract. In particular, one of the key assumptions of MFG is that when the
number of players goes to infinity, these become indistinguishable and the
way they interact with each other is via their average density, which makes
the mathematics of the problem more tractable. Chapter 3 will be dedicated
to a detailed introduction to MFG. In subsection 3.3.2, we will also present
an alternative formulation of the problem, allowing us to leverage the knowl-
edge generated in another field of physics, that of theNon-Linear Schrödinger
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Equation (NLSE). We will use this analogy to introduce some mathematical
tools that will grant us a greater understanding of Mean-Field Games.

Chapter 4 will then present the bulk of the work done during my doctor-
ate. First, in section 4.1, we will show how the Helbing’s social force and ANDA
simulate the experiment of section 1.2 in the frontal configuration, and how
both of them fail to fully capture the empirical anticipation pattern. We will
argue that the reason lies in the fact that these models’ agents are too my-
opic, since they choose how to move based only on a small portion of future
events. Then, in section 4.2 we prove that indeed the MFG model succeeds
where the others fail, predicting an anticipation pattern very similar to the
empirical one, and explaining that indeed it is in long-term anticipation that
lies the key to explaining the empirical behavior. In section 4.3, we will treat
the other two configurations, and show that what causes the change in the
empirical behavior is the impairment of pedestrians’ forecasting ability, their
anticipation. We achieve this by showing that adding only one parameter to
our MFG model, namely the discount factor, modulating the weight given to
future events during the optimization, is enough to simulate the experimen-
tal configurations where people were randomly oriented or were giving their
back to the intruder.

Wewill dedicate the last chapter to the presentation of two projects, corol-
lary to the main one, that I have been working on during these years. Section
5.1 will present a simulation software that I developed, and that I baptized Op-
timal Crowds. The intent behind this work is to create a simulation tool that
couples the benefits ofMFGwith the flexibility of the agent-basedmicroscopic
models. In fact, although MFG provides an accurate representation of the
long-term anticipation of pedestrians, by modeling the crowd via their den-
sity, it cannot describe those situations where interactions at a microscopic
level play a major role, for example near doors during an evacuation. The
model I propose is therefore an agent-based model, where the microscopic
part is based on the work of Chraibi and Seyfried [23], a force model where
agents have an elliptical form whose dimensions evolve as a function of the
speed. The trajectories followed by the pedestrians are given by a velocity
floor field, along which each individual tries to align. MFGwould therefore en-
ter into play for the definition of said floor field. In fact, the goal of the project
was to obtain the velocity field by solving a MFG, to account for the presence
of eventual obstacles and for the distribution of the density in the environ-
ment, providing the simulated pedestrians with a route ensuring an optimal
behavior (in the sense ofMFG). However, in the current state of the project we
are yet to find a way to properly define and solve such MFG. At the moment
in fact, we define the velocity field floor simply by solving a Hamilton-Jacobi-
Bellman equation, which is one of theMFG equations. In themost stable form
of the algorithm we solve this equation without information about the den-
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sity of pedestrians but only with the description of the environment. In this
way, we ensure an optimal avoidance of the obstacles but we cannot prevent
bottlenecks. However, we are working on periodically including the density in
the solution of the HJB equation, to make pedestrians stuck in bottlenecks to
find an alternative trajectory, in the spirit of Hoogendoorn’s works [45, 46].

Finally, section 5.2 will discuss the second of these corollary projects, done
in collaborationwith London’s Imperial College, namely the onewhere we use
Neural Networks (NN) to solve theMFG equations. In fact, as wewill better ex-
plain in 4.4, once we will introduce the discount factor, the MFG equations will
becomemore complicated to solve. In particular, wewill introduce evenmore
non-linearities, and this is where usual finite different numerical schemes
start to suffer and give poor results. However, solving any well defined differ-
ential equation can be seen as simply finding the zeros of a operator whose
arguments are functions. Under this light, we can imagine to approximate
the argument of the operator as a Neural Network, which, thanks to a well
known theoretical results, are actually universal approximators under certain
hypotheses. Therefore, the goal would be to train the NN to become a zero of
said operator. In this way, at least in principle, we could deal with equations
of any complexity, as long as they are well defined. Unfortunately however,
as section 5.2 will show, this is only true in principle, as the reality is that the
nature of the equation strongly influences the kind of NN needed to solve
it. In this thesis, we will show how we could solve some simpler form of the
MFG equations. In particular, we could solve a one-dimensional version of
the problem, with and without information about the environment and other
agents. Then, we will show our best attempt the complete problem.
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Introduction Générale

De nombreux chercheurs dévoués ont récemment tenté de fournir leur
meilleure interprétation et contribution à la compréhension desmouvements
des individus. En effet, les modèles de dynamique piétonne jouent un rôle
crucial dans la planification urbaine, l’architecture, le génie des transports et
la gestion des foules. Ces modèles fournissent des informations sur le com-
portement des individus dans des environnements piétons, aidant les con-
cepteurs et les décideurs à créer des espaces plus sûrs, plus efficaces et plus
accessibles. En simulant les mouvements des piétons, ces modèles peuvent
prédire les embouteillages, identifier les goulets d’étranglement potentiels et
optimiser les aménagements pour améliorer le flux et réduire les risques. De
plus, ils aident à concevoir des espaces publics qui répondent à des besoins
divers, y compris ceux des personnes handicapées ou ayant des difficultés
de mobilité. Comprendre la dynamique piétonne est essentiel pour créer
des villes durables et inclusives où les gens peuvent se déplacer librement
et confortablement, favorisant à la fois la sécurité et la qualité de vie. Les
modèles de dynamique piétonne sont non seulement instrumentaux pour
optimiser l’efficacité des espaces urbains, mais aussi pour garantir la sécu-
rité. En simulant avec précision le comportement des piétons, ces modèles
peuvent anticiper des incidents potentiels tels que la surpopulation, les bous-
culades ou les scénarios d’évacuation. Cette capacité prédictive permet aux
concepteurs et aux autorités de mettre en œuvre des mesures préventives
pour atténuer les risques et renforcer les protocoles de sécurité. De plus, ces
modèles permettent de tester des plans d’évacuation d’urgence et d’évaluer
des stratégies de gestion des foules, garantissant que les environnements
urbains soient résilients face aux événements imprévus. En fin de compte,
la capacité de simuler avec précision la dynamique piétonne contribue à la
création d’environnements qui priorisent à la fois l’efficacité et la sécurité, fa-
vorisant des communautés prospères et résilientes.

Pour mieux comprendre la modélisation de la dynamique piétonne, il est
utile de suivre les recommandations de [45], qui proposent que le mouve-
ment des piétons peut être catégorisé en trois couches distinctes. Tout d’abord,
la couche stratégique, concernant le choix de l’objectif du mouvement. En-
suite, il y a la couche tactique, ou la manière de choisir le chemin pour attein-
dre l’objectif. Enfin, l’aspect opérationnel du mouvement est pris en compte,
couvrant toutes les petites décisions et ajustements effectués par les pié-
tons au cours de leur trajet. En particulier, la motivation de notre travail
découle d’une considération qui circule depuis un certain temps dans le do-
maine de la dynamique piétonne. Il a été observé que les foules humaines,
surtout au niveau opérationnel, ressemblent parfois à de la matière gran-
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ulaire, surtout lorsque leur densité augmente. Cela a été suggéré pour la
première fois par Helbing dans [41]. Ici, l’auteur affirme qu’en observant cer-
taines séquences vidéo accélérées de foules humaines en mouvement, il est
possible de dégager quelques similitudes qualitatives avec à la fois des flu-
ides et de la matière granulaire. En particulier, les observations d’Helbing se
concentrent sur quelques caractéristiques dumouvement des piétons, parmi
lesquelles la formation de lignes de courant lorsque deux foules de piétons
se déplaçant dans des directions opposées se croisent, la propagation des
ondes de choc et l’oscillation de la direction de passage à travers un point
d’étranglement étroit où deux masses de piétons se rencontrent. D’autres
exemples de l’analogie entre les piétons et la matière inerte ont été donnés
dans [43], où les auteurs ont analysé l’enregistrement vidéo des bousculades
tragiques de 2006 lors du pèlerinage de Hajj pour explorer l’apparition de
transitions de phase et de turbulences dans les flux piétons en situation de
panique. En outre, [77, 89] étudient les temps d’évacuation à travers un goulot
d’étranglement par trois types de foules différents, composés d’humains, d’ani-
maux (moutons) ou de matière granulaire, pour montrer que l’effet plus-vite-
est-plus-lent (FIS), c’est-à-dire le fait que des individus essayant tous de sortir
d’une pièce à une vitesse plus rapide finissent par évacuer en plus de temps
que des foules plus calmes, est universel parmi ces types de groupes.

Pour approfondir la validité de l’analogie, Nicolas et al. [75] ont décidé
de réaliser un test avec une foule humaine qui est considéré comme un clas-
sique pour les grains : le passage d’un intrus cylindrique. Pour y parvenir, un
effort conjoint entre l’équipe française d’Alexandre Nicolas et Cécile Appert-
Rolland et leurs homologues argentins Kuperman et Ibañez a eu lieu. Les
deux équipes ont organisé deux configurations expérimentales identiques à
Orsay, en France, et à Bariloche, en Argentine respectivement : une foule
de volontaires (35-40 personnes) a été rassemblée dans un environnement
contrôlé et disposée pour obtenir différentes densités moyennes, puis un
membre de l’équipe, équipé d’une tenue cylindrique pour simuler un obsta-
cle en mouvement, s’est frayé un chemin à travers la foule, en maintenant
une vitesse constante et en marchant aussi droit que possible. L’expérience
a été initialement menée dans deux configurations, l’une avec tous les partic-
ipants face à l’obstacle, et l’autre où ils étaient orientés aléatoirement, pour
voir si une différence était visible. Contrairement aux attentes, le résultat ne
ressemblait en rien au comportement granulaire. En fait, comme la section
1.1 le montrera, les grains ont tendance à être poussés par l’intrus, alors que
les participants à l’expérience dans les deux configurations, comme rapporté
dans la section 1.2, ont montré une réponse radicalement différente. En ef-
fet, les individus anticipaient, dans le cas face à l’obstacle plus que dans le
cas aléatoire, l’arrivée de l’obstacle et s’écartaient pour le laisser passer. Pour
voir s’ils pouvaient retrouver le comportement granulaire, les expérimenta-
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teurs ont demandé aux participants d’essayer de ne pas anticiper l’arrivée de
l’intrus et de se laisser pousser. Cependant, même dans ce cas, les piétons an-
ticipaient encore instinctivement, et ce n’est que lorsqu’on leur a également
demandé de tourner le dos au cylindre que le comportement empirique a
commencé à ressembler à celui des grains.

Un des objectifs du projet auquel j’ai participé était de prouver que l’antici-
pation affichée par les piétons dans l’expérience, lorsque les participants fai-
saient face aux obstacles, est un élément crucial de la dynamique piétonne,
et que néanmoins les techniques de simulation les plus courantes échouent
à le capturer pleinement. Pour montrer cela, nous allons simuler ce scé-
nario expérimental en utilisant deuxmodèles de dynamique piétonne décrits
dans le chapitre2. Nous y expliquerons la différence entre les modèles mi-
croscopiques, c’est-à-dire ceux qui décrivent chaque piéton individuellement,
et les modèles macroscopiques, qui, en revanche, considèrent la foule dans
son ensemble et se concentrent sur l’évolution de la densité. En particulier,
puisque les modèles microscopiques sont généralement considérés comme
plus précis, nous n’utiliserons que des modèles de ce type pour comparer
avec l’expérience. Le premier modèle que nous utiliserons est le modèle de
force sociale de Helbing [44], décrit dans la section 2.1.1. Dans ce modèle, les
préférences des individus dans des environnements encombrés sont traduites
en forces résultant de contraintes sociales. En particulier, Helbing considère
le désir des gens de ne pas être trop proches des autres. L’utilisation de forces
analogues à des forces naturelles mais d’origine sociale dans le modèle de
Helbing a suscité une série de contributions significatives dans le domaine de
la dynamiquepiétonne. Lamajorité de ces contributions se sont appuyées sur
l’intuition de Helbing et ont proposé de nouvelles approches pour compren-
dre et décrire ces contraintes sociétales sur le mouvement humain. Le deux-
ième modèle que nous utiliserons est un autre modèle microscopique, celui
développé par l’un des auteurs de l’expérience, A. Nicolas, en collaboration
avec I. Echeverria-Huarte [33]. Il s’agit d’un modèle très récent qui rassem-
ble de nombreuses observations et résultats dans le domaine, pour offrir un
outil de simulation flexible et réaliste. Comme la section 2.1.2 le montrera, ce
modèle est basé sur la minimisation d’une fonction de coût, ce qui devien-
dra intéressant par la suite. Les résultats de la comparaison sont rassemblés
dans la section4.1, où nous montrerons en effet qu’aucun modèle ne peut
reproduire pleinement ce que l’expérience montre.

L’autre objectif de cette thèse est de montrer qu’un modèle basé sur une
version minimale de la théorie des jeux à champ moyen (Mean-Field Games,
MFG) peut, contrairement à d’autres modèles, capturer pleinement le com-
portement expérimental. Les jeux à champmoyen sont des processus stochas-
tiques optimisés. Ces modèles, basés sur l’union du contrôle optimal et de
la théorie des jeux, décrivent des situations où une multitude d’agents ra-
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tionnels interagissent, de manière compétitive ou coopérative, tout en es-
sayant d’atteindre un objectif ou une cible. Introduits il y a près de deux
décennies par les travaux de Lasry et Lions d’une part, et de Huang, Mal-
hamé et Caines d’autre part, les jeux à champ moyen supposent que le com-
portement de chaque agent simulé peut être modélisé comme un proces-
sus stochastique utilisant une équation de Langevin, où le terme de dérive
est obtenu en minimisant (maximisant) une certaine fonction de coût (gain).
Cette fonction décrit les préférences des agents et la manière dont ils inter-
agissent. En particulier, l’une des hypothèses clés des MFG est que lorsque le
nombre de joueurs tend vers l’infini, ceux-ci deviennent indiscernables et la
manière dont ils interagissent entre eux est via leur densité moyenne, ce qui
rend les mathématiques du problème plus traitables. Le chapitre 3 sera con-
sacré à une introduction détaillée aux MFG. Dans la sous-section 3.3.2, nous
présenterons également une formulation alternative du problème, nous per-
mettant de tirer parti des connaissances générées dans un autre domaine
de la physique, celui de l’équation de Schrödinger non linéaire (NLSE). Nous
utiliserons cette analogie pour introduire certains outils mathématiques qui
nous permettront de mieux comprendre les jeux à champ moyen.

Le chapitre 4 présentera ensuite l’essentiel du travail effectué durantmon
doctorat. Tout d’abord, dans la section 4.1, nous montrerons comment le
modèle de force sociale de Helbing et l’ANDA simulent l’expérience de la sec-
tion 1.2 dans la configuration frontale, et comment ils échouent tous les deux
à capturer pleinement le schéma d’anticipation empirique. Nous soutien-
drons que la raison réside dans le fait que les agents de ces modèles sont
trop myopes, car ils choisissent comment se déplacer en se basant unique-
ment sur une petite partie des événements futurs. Ensuite, dans la section
4.2, nous prouverons que le modèle MFG réussit là où les autres échouent,
en prédisant un schéma d’anticipation très similaire à celui empirique, et en
expliquant que c’est en fait l’anticipation à long terme qui est la clé pour ex-
pliquer le comportement empirique. Dans la section 4.3, nous traiterons les
deux autres configurations, et montrerons que ce qui cause le changement
dans le comportement empirique est l’altération de la capacité de prévision
des piétons, leur anticipation. Nous y parviendrons en montrant que l’ajout
d’un seul paramètre à notremodèleMFG, à savoir le taux d’actualisation, mod-
ulant le poids donné aux événements futurs lors de l’optimisation, suffit pour
simuler les configurations expérimentales où les personnes étaient orientées
aléatoirement ou tournaient le dos à l’intrus.

Nous consacrerons le dernier chapitre à la présentation de deux projets,
corollaires au principal, sur lesquels j’ai travaillé au cours de ces années. La
section 5.1 présentera un logiciel de simulation que j’ai développé et que j’ai
baptisé Optimal Crowds. L’intention derrière ce travail est de créer un outil de
simulation qui combine les avantages des MFG avec la flexibilité des modèles
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microscopiques basés sur les agents. En effet, bien que les MFG fournissent
une représentation précise de l’anticipation à long terme des piétons enmod-
élisant la foule via leur densité, ils ne peuvent pas décrire les situations où
les interactions au niveau microscopique jouent un rôle majeur, par exemple
près des portes lors d’une évacuation. Le modèle que je propose est donc
un modèle basé sur les agents, où la partie microscopique est basée sur les
travaux de Chraibi et Seyfried [23], un modèle de force où les agents ont une
forme elliptique dont les dimensions évoluent en fonction de la vitesse.

Les trajectoires suivies par les piétons sont données par un champ de
vitesse, le long duquel chaque individu essaie de s’aligner. Les MFG inter-
viennent donc pour la définition de ce champ de vitesse. En fait, l’objectif
du projet était d’obtenir le champ de vitesse en résolvant un MFG, pour tenir
compte de la présence d’éventuels obstacles et de la distribution de la den-
sité dans l’environnement, fournissant ainsi aux piétons simulés une route as-
surant un comportement optimal (au sens des MFG). Cependant, dans l’état
actuel du projet, nous n’avons pas encore trouvé un moyen de définir et de
résoudre correctement un tel MFG. À l’heure actuelle, nous définissons le
champ de vitesse simplement en résolvant une équation de Hamilton-Jacobi-
Bellman, qui est l’une des équations des MFG. Dans la forme la plus stable
de l’algorithme, nous résolvons cette équation sans information sur la den-
sité des piétons mais uniquement avec la description de l’environnement.
De cette manière, nous assurons une évitement optimal des obstacles mais
nous ne pouvons pas prévenir les goulets d’étranglement. Cependant, nous
travaillons à inclure périodiquement la densité dans la solution de l’équation
HJB, pour permettre aux piétons coincés dans des goulets d’étranglement de
trouver une trajectoire alternative, dans l’esprit des travaux de Hoogendoorn
[45, 46].

Enfin, la section 5.2 discutera du deuxième de ces projets corollaires, réal-
isé en collaboration avec l’Imperial College de Londres, à savoir celui où nous
utilisons des réseaux de neurones (NN) pour résoudre les équations desMFG.
En fait, comme nous l’expliquerons mieux dans la section 4.4, une fois que
nous aurons introduit le taux d’actualisation, les équations des MFG devien-
dront plus compliquées à résoudre. En particulier, nous introduirons encore
plus de non-linéarités, et c’est là que les schémas numériques classiques aux
différences finies commencent à souffrir et à donner de mauvais résultats.
Cependant, résoudre toute équation différentielle bien définie peut être vu
comme simplement trouver les zéros d’un opérateur dont les arguments sont
des fonctions. Sous cet angle, nous pouvons imaginer approximativement
l’argument de l’opérateur comme un réseau de neurones qui, grâce à un
résultat théorique bien connu, sont en fait des approximations universelles
sous certaines hypothèses. Par conséquent, l’objectif serait de former le NN
à devenir un zéro de cet opérateur. De cette manière, en principe du moins,

11



nous pourrions traiter des équations de toute complexité, tant qu’elles sont
bien définies. Malheureusement cependant, comme la section 5.2 le montr-
era, cela n’est vrai qu’en principe, car la réalité est que la nature de l’équation
influence fortement le type de NN nécessaire pour la résoudre. Dans cette
thèse, nous montrerons comment nous avons pu résoudre certaines formes
plus simples des équations des MFG. En particulier, nous avons pu résoudre
une version unidimensionnelle du problème, avec et sans information sur
l’environnement et les autres agents. Ensuite, nousmontrerons notremeilleure
tentative pour résoudre le problème complet.
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1 - Context and Motivation

Our work is motivated by the findings of an experiment performed some
years ago by Nicolas et al. [75], that challenged a belief shared by many, that,
especially at high densities, the behavior of human crowds would be similar
to that of granularmatter. Therefore, Nicolas et al. decided that a goodway to
further inquire into this matter would be to perform a test using pedestrians
that would be a standard one for amorphous media, the passage of an in-
truder. Much to their surprise, the behavior of pedestrians they observed dif-
fered substantially from what they would expect if the comparison with gran-
ular matter held through. In section 1.1 of this chapter, we will use a method
created by A. Seguin to show how a cylindrical intruder moves through an
amorphous medium. This model will be used to replicate the experimental
setup and demonstrate how granular particles react to obstacles. This will
set the benchmark against which we will compare the results of the experi-
ment, which will be described in details in section 1.2, where we will explain
why Nicolas et al. were surprised by their findings.

1.1 . Passage of an Intruder in a Granular Medium

The crossing by an intruder is a classical test in the field of granular mat-
ter. In fact, various experimental results can be found in the literature [19],
where, as we can see from Figure 1.1, a cylinder is dragged with various forces
through an assembly of smaller cylinders, representing grains, with different
density configurations. Similar to when using a finger to draw into sand, most
of the grains accumulate in front of the intruder along its direction of mo-
tion, leaving a wake promptly filled by the excess material escaping on the
sides of the intruder. In this section, we will introduce a numerical model, first
conceived by Antoine Seguin in his Ph.D. thesis [82], that simulates this sce-
nario. This model was not first conceived to simulate pedestrians, although
it could serve as a starting point to create a model with that intent. Never-
theless, it accurately represents granular matter, and our goal now is to show
what the results of the experiment of Nicolas et al. would be if it were per-
formed in such material. These models are based on the principle that two
grains, should not overlap. This means that a purely theoretical approach
would suggest choosing the grains’ velocities only among those that ensure
that no overlap will occur. Although it being technically implementable, such
a method quickly becomes cumbersome when many grains are to be simu-
lated. This is the reason the way these simulations are actually carried out
allows for at least some amount of overlap in the form of the relaxation of
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Figure 1.1: Left: Experimental setup where a cylindrical intruder isdragged through a granular medium. Right: velocity field measuredin the experiment. Particles are pushed by the cylinder and circulatearound it due to the vibration of the plate. Note that the cylindermovesfrom left to right. Figures extracted from [19].
the rigidity hypothesis of the grains, which physically means that if two grains
overlap they are actually deforming one into the other, and they will both feel
a repelling force related to the amount of the deformation following an elastic
potential. More specifically, the force felt by two penetrating particles comes
from Hertz’s theory and reads:

Fn = −ka
3
2 (1.1)

where a is the penetration’s depth and k is a constant expressing the sphere’s
rigidity and depends on its elastic properties. At this point, one can use any
kind of algorithm to integrate the equation of motion and use the expres-
sion of the force (1.1) to simulate the motion of a particle. Most importantly,
the choice of the time step is particularly delicate in this context. In fact, let
us visualize the act of one particle impacting into another. When they touch
each other, they deform and their velocity is reduced until, at somemaximum
penetration amax they halt. This happens when the kinetic energy Ekin of theparticles equals the elastic potential energy Eel. Then, both particles are re-
pelled away from each other via the Hertz force. Now, if we want to accurately
simulate this, since the particles’ motion is discrete, we have tomake sure that
during one time step∆t neither particle moves more than amax. To do so, letus compute the elastic energy at maximum penetration. During the impact,
the Hertz force Fn performs a work

Eel =

∫ amax

0
kx

3
2dx ∼ ka

5
2
max (1.2)
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As we said, at amax the elastic energy equals the kinetic energy Ekin ∼ mv2

therefore we have
mv2 ∼ ka

5
2
max.

Moreover, since an estimate of amax can be obtained as vτ where v is the
velocity of the particle we are following just before impact and τ the time it
takes to arrive at maximum penetration, we can finally write mv2 ∼ k(vτ)

5
2 ,

fromwhich we get that one can choose safely the time step for the simulation
by making sure that

∆t ≪
(
m2

vk2

) 1
5 (1.3)

Now that we settled this, one last consideration is in order. This method is
used by Seguin [12] to reproduce the passage of an obstacle with fixed velocity
through granularmatter. In this case however, the intruderwould keephitting
other particles without being impacted, thus continuously adding energy to
the system. One way to make up for this, as suggested again in [82], is to
introduce a damping term in the expression of the force, which now becomes

Fn = −kx
3
2 − λd

da

dt
(1.4)

where λd is linked to the coefficient of restitution, i.e., the ratio between the
velocity of a particle before and after the collision, such that en = exp(−λdτ/m).

As we said, this model was used to simulate how granular matter is im-
pacted by the passage of an intruder. To this end, we choose the grains’ diam-
eter is d = 0.37m, a measure comparable with that of humans. The simulated
tank containing the grains is of size Lx = 25d along the x-direction and of
Ly = 200d along y-direction. Then, the damping coefficient λn is chosen so
that the restitution coefficient en = 0.5. The initial state is prepared by first po-
sitioning the intruder, of size 2d, at the point of coordinates (Lx/2, 2.5d). Then,the other grains’ positions are initialized, uniformly chosen at random to re-
spect the target average density of 2.5ped/m2 to reproduce the experimental
ones, and making sure that no overlap is present from the beginning. The
intruder will then make its way through with constant velocity s = 0.6ms−1

for a distance of approximately 80d, to feel the least the wall pressure on the
top and the bottom. Most importantly, a Gaussian white noise is added to
the grains motion, so that particles fill up through diffusion the wake caused
by the intruder’s passage. Figure 1.2 shows the density and velocity fields,
obtained as an average over 10 realizations, of the simulation of granular par-
ticles crossed by an intruder. By observing the left panel of Figure 1.2, we can
see how the passage of the intruder through the granular medium causes an
accumulation of mass in front of it along the direction of its motion. This is
quite intuitive to understand, since the grains are subjected to purelymechan-
ical forces and have no idea of the intruder’s arrival. The velocity field shows
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Figure 1.2: Left: Density field (Expressed in packing fraction) of the gran-ular simulation obtained as an average over 10 repetitions. The mostprominent features are the accumulation of the density in front of theintruder and the trail behind it. Average density equivalent is 2.5ped/m2

Right: velocity field of the granular simulation, again obtained as an av-erage over 10 repetitions. We observe how the grains are pushed alongby the intruder. Figure extracted from [12].
that, indeed, grains are pushed along the direction of motion of the obstacle.
Moreover, we observe some differences between the simulated velocity field
and the experimental one showed in Figure 1.1. Indeed, in the experiment
the density is higher, close to the jamming transition, and circulation around
the obstacle is present. On the other hand, the simulation is performed for a
density well below this value, and circulation is less visible. In fact, when the
density is high, once impacted by the cylinder, grains have no way to go but
to slowly diffuse and wait for some space to free up thanks to the occupation
of the cylinder’s wake. When the density is lower, grains have instead more
space to travel when they are pushed. Nevertheless, both setups show a sim-
ilar pattern for the density, because in either case no anticipation is present.

1.2 . Passage of an Intruder through a Crowd of Pedestrians

Now thatwe knowwhat happenswhena cylindrical intruder passes through
an amorphous medium, we turn our attention to the findings of the experi-
ment performed by Nicolas et al. [75]. The experiment was performed by
gathering a group of around 40 individuals used to assemble crowds of dif-
ferent average densities in a controlled environment. After equipping each
participant with a colored hat, a member of the staff wore a cylinder and
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Figure 1.3: Experimental configuration of [75]. Crowds of different den-sities were assembled in a controlled environment, and a cylindricalobstacle impersonated by a staff member made its way through them(left panel). The motion of the individuals was recorded using a high-resolution camera placed above the crowd and a software capableof detecting the colored hats participants were equipped with (rightpanel). Image taken from [75].

made his/her way through the crowd, trying to keep its velocity and direc-
tion as constant as possible, as can be seen in the left panel of Figure 1.3 The
motion of the individuals was registered using a high-resolution camera and
a software capable of detecting the colored hats so that the trajectories could
be recorded and analyzed. The right panel of Figure 1.3 shows a snapshot of
the trajectories of both the intruder and the pedestrians.

The experiment was initially conducted in two configurations: with par-
ticipants facing the incoming obstacle, or oriented randomly with respect to
the cylinder’s direction ofmotion. For each configuration, the experiment was
repeated multiple times and the average density and velocity fields were ob-
tained. The density field was computed as follows. At each time step, given
a snapshot of the participants’ position, a tessellation of the convex hull con-
taining all individuals was created, with each region being a Voronoi cell with
seed a pedestrian’s position, i.e., the region of space of all points closer to that
position than to any other. Then, for each point in a Voronoi cell, the density
was defined as the inverse of the cell’s area. The velocity field, on the other
hand, was computed by dividing the difference between two successive po-
sitions by the time step and then each point of a regular grid was assigned
a velocity obtained by interpolating the velocities nearby. Figure 1.4 sum-
marizes the findings of the experiment, for average densities of 2.5ped/m2,
3.5ped/m2 and 6ped/m2 in the frontal and random configurations. What this
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Figure 1.4: Top row: density plots with averages 2.5ped/m2, 3.5ped/m2

and 6ped/m2 for the experimental configuration where participantswere all facing the intruder. Bottom row: same as top row, but forthe configuration where pedestrians were randomly oriented. Imagetaken from [75].
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Figure 1.5: Experimental velocity field obtained with the configurationwhere pedestrians were all facing the incoming intruder. Regardlessof the average density (1.5ped/m2 on the left, 6ped/m2 on the right) weobserve a clear anticipation patter with pedestrians moving laterallywell in advance. Image taken from [75].

Figure shows is that, regardless of the value of the density, and to an extent
of the disposition of pedestrians, we observe a wing-shaped density field with
an increase on the sides of the obstacles and a decrease in front of and be-
hind it. This behavior radically diverges from the one observed in granular
matter, where grains would be pushed along by the intruder and accumulate
in front of it. Instead, pedestrians in the experiment anticipated the arrival of
the intruder, choosing the right moment to step into a denser area, accept-
ing a temporary increase in discomfort to be able to return to a calmer area
sooner. From the perspective of a pedestrian in front of the cylinder and ob-
serving it getting closer, it is evident how anymove with a component parallel
to the intruder motion would not be beneficial. This is further confirmed by
the velocity plots in Figure 1.5. In fact, here we can see how pedestrians move
laterally in front of the obstacle and well in advance before its arrival. They
understand that any step with a backward component would simply delay the
impact, whereas any step with a forward component does not give them any
advantage. This is, whether unbeknownst to pedestrians or not, an optimiza-
tion process, which does not simply involve how the cylinder will move, but
also how other people will react to it while knowing that everyone is trying
to achieve the same goal. What is even more striking is that this behavior is
observed independently fro the value of the average density, and regardless
of the intensity of the physical contacts.

Once they realized how the empirical behavior differed from their granu-
lar expectation, the experimenters asked participants to try not to anticipate,
to see if they could recover the granular behavior. However, even in this case,
participants displayed some sign of anticipation, showing how strongly hard-
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Figure 1.6: Density plot (left panel) and velocity field (right panel) for theexperimental configuration where pedestrians were giving their backand were told not to anticipate. The average density is of 4ped/m2.Image taken from [16].

wired in our brains the urge to move away is. Finally, the experimenters de-
cided to perform the trial with a new disposition of the participants. This time
they asked them to give their back to the obstacle and not to anticipate. In this
case, the empirical density and velocity plots started to look more like those
of an amorphous medium. The results of this configuration are shown in Fig-
ure 1.6. Here, indeed, we observe something reminiscent of the granular case
of section 1.1. In fact, by looking at the density plot, we see how participants
accumulate in front of the cylinder. By observing at the velocity field, we also
see how in front of the obstacle pedestrians did not move laterally as in the
other configuration, but rather they were pushed along by it. It should also be
observed that the circulation pattern observed in the experiment with pedes-
trians is not as strong as the observed in the experiment with grains, showed
in Figure 1.1. In fact, for reasons of safety, it is difficult to approach the jam-
ming limit with pedestrians if one wants to avoid accidents. Nevertheless, it is
evident that the one observed in Figure 1.6 is a behavior more similar to gran-
ular matter than in the other two experimental configurations. Finally, the
velocity plot observed here differs from the one of Figure 1.2, because in that
case the average density was lower, allowing the grains to be pushed along
by intruder.

At this point, it is evident why Nicolas et al. were surprised by the results
they obtained. In fact, pedestrians in their experiments showed a clear antic-
ipatory dynamics, by not waiting to be impacted by the obstacle before mov-
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ing, reacting well in advance and efficiently to avoid it. The key takeaway from
this experiment is that pedestrians do not always exhibit granular behavior.
In contrast to grains, humans possess self-propulsion and possess the ability
to devise a strategy to effectively evade incoming obstacles, irrespective of
the average density in their vicinity. Therefore, although there might be situa-
tions where individuals indeed qualify as grains, this is generally not the case
and failing to properly account for this difference could lead to faulty meth-
ods and inaccurate simulation tools. In particular, what emerges from this
experiment is that one important aspects of pedestrian motion is indeed an-
ticipation, and that this, in situations that are simple and familiar enough, can
happen on time and length scales that could be longer than what previously
thought. One of the goals of this thesis is to prove that the way pedestrian
models have been designed through the years, usually only provide a short-
term anticipation that is not enough to reproduce what was observed in this
experiment. In chapter 2 we will give an overview of various pedestrian dy-
namics models, providing more details about those that will later be used in
chapter 4 to compare against the experiment and the MFG model.
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2 - Modelling Pedestrian Dynamics

In the previous chapter we have seen that, even though this might be
the case under certain circumstances, it is generally not true that pedestrians
crowds behave like granularmatter. Indeed, when the situation is familiar and
simple, individuals can anticipate obstacles and behave very differently from
amorphous media. For this reason, we stressed the importance of having
simulation tools that correctly take this anticipation capability into account to
ensure accurate prediction. However, as will be apparent in chapter 4, where
we will compare them to the experimental data, most pedestrian dynamics
models simulate pedestrians without an adequate level of foresightedness.
In this chapter, we want to give an overview of the most important attempts
at simulating pedestrian motion produced in the last decades. These models
can be divided into two distinct categories, namely microscopic and macro-
scopic models. Section 2.1 will deal with microscopic models, that describe
each pedestrian separately and simulate their motion using a fixed rule ap-
plied at each time step using to each individual’s current position and veloc-
ity. These models have been widely used and are also at the base of various
commercial simulation software tools. Then, in 2.2 we will focus on macro-
scopic models, that describe pedestrians as a whole, and study the evolution
of aggregate quantities like their average density. These models usually in-
herit the knowledge coming from other fields where densities are the object
of study, such as fluid dynamics. In particular, macroscopic models sacrifice
some accuracy about the details of the interaction between pedestrians, but
are usually more flexible and can handle more numerous crowds.

2.1 . Microscopic Models

Microscopicmodels have the advantage ofmore accurately describing the
configurations where the granularity of pedestrians’ crowds plays a crucial
role, such as near a door or a narrow passage. However, these models’ draw-
back lies in their inability to scale efficiently, sincemodelling a large number of
individuals often is limited by computational capabilities. Microscopic mod-
els can be divided into force-based models and velocity-based. Force-based
models simulate the motion of individuals using Newton’s equations of mo-
tion, and introducing various force terms to reproduce what have been called
first by Helbing [44] social forces. These forces emerge from the consideration
that although all of us want to reach their target as fast as possible, consum-
ing the least amount of energy, we generally refrain from bumping into other
people, especially if they are a protected category (disabled, old folks, preg-
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nant women etc.), and we generally try to respect others’ personal space and
preserve our own. These are social constraints, that are not straightforwardly
described into amathematical expression, therefore each iteration of a force-
basedmodel expands on the characterization of these so-called social forces.
Velocity-based models, on the other hand, who were first developed in the
field of robotics [88, 28], prescribe to each simulated pedestrian a velocity cho-
sen among those ensuring no collision in the motion. If this is done in a fully
decentralized way [83], it is common that, especially at high densities, finding
a suitable velocity becomes so hard that the motion of the crowd stops alto-
gether. Adopting a centralized approach [50, 28] partly solves this, but it also
makes it harder to scale for a large number of pedestrians, and it may also
lead to unrealistic motion such as sharp turns or freezing. In subsections 2.1.1
and 2.1.2 respectively, we will describe in details the two microscopic models
we will use in chapter 4 to compare against the experiment, Helbing’s social
force [44], and the model of Echeverria et al. [33], a hybrid between a veloc-
ity and force-based model. We will observe how these two models present
two different levels of anticipation. Helbing’s social force prescribe no knowl-
edge of future events to simulated individuals, whereas Echeverria’s model
use the concept of time-to-collision, a type of anticipation mechanism that, in
the spirit of velocity-based models, only reaches to the near-future. We will
explain these models in detail, especially focusing on the way interactions be-
tween pedestrians are dealt with and what kind of anticipation dynamics they
entail.

2.1.1 . Helbing’s Social Force Model

In its first paper of 1995, Helbing presented an innovative concept, trying
to describe an aspect of pedestrian motion that many overlooked at. In fact,
let us for a moment consider our personal experience. When we move in
spaces where other people are present, reasonably we do not wait to impact
into someone else before changing our operational strategy, i.e., our direction
and velocity. We, on the other hand, try to move ahead of time to avoid get-
ting too close, as this would be considered awkward and unpleasant, or, more
generally, unwelcome in society. Hence, we act as if there were a personal
space that extends beyond the volume occupied by other individuals’ bodies,
resulting in a repulsive interaction that intensifies with increasing proximity,
emulating the repulsion forces observed for electrically charged particles, i.e.,
a field of forces. This idea, althoughmore general, was first captured by Lewin
in [65], where the author asserts that individuals, when living in the world, are
constantly subject to a series of stimuli, of different nature and coming from
all directions, which cause a behavioral response, chosen by maximizing the
personal benefit while trying to cope with social expectations. In the case of
pedestrians, we could clearly tramp over other people and push them away
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to enter the train car first. However, depending on howmuch we worry about
their reaction, wemight refrain ourselves and behavemore gently, effectively
balancing between the urge to reach our goals and the consequences we are
prepared to face for our behavior. The first to translate this into a mathe-
matical model was Helbing, in his seminal paper [44], where he introduced
the concept of social forces. His model is a force-based model, its dynamics
given by Newton’s equation of motion where, among the force terms, one
represents these social forces, actively inducing local repulsion whose inten-
sity increases exponentially with the decrease in distance. More specifically,
the motion of pedestrian i ∈ {1 . . . N} is given by

mi
dv⃗i
dt

=
mi

τi
(v⃗∗i − v⃗i) +

∑

i ̸=j

F⃗ contact
i,j +

∑

i ̸=j

F⃗ social
i,j + ξ⃗i(t). (2.1)

The first term of the right-hand side of the equations simulates the effort of
pedestrian i to maintain a certain desired velocity v⃗∗i . Then, the second termincludes the contact forces F⃗ contact

i,j , analog to those used for the granular
model in section 1.1, describing the collision between two pedestrians when
their bodies overlap. Finally, the term F⃗ social

i,j describes the local repulsion felt
by individuals induced by social norms and the desire to respect each other’s
personal space, and in more precise terms it reads, in one possible formula-
tion proposed by Pinsard [78],

F social
i,j = −F social

i

(
αi + (1− αi)

1 + cos θi,j
2

)
e
−

di,j
li (2.2)

This formula includesF social
i , themaximum intensity of the force felt by pedes-

trian i, which models how strong each individual feels the repulsion away
from others close to their personal space. Then, the term in the parenthe-
sis describes the anisotropy of the force, with αi ∈ [0, 1] being a coefficient
measuring how much a pedestrian differentiates between obstacles in front
of and behind him. In fact, when αi = 1, pedestrian i will give the same im-
portance to all interactions regardless of their relative position. On the other
hand, if αi = 0, the intensity of the interaction will decrease with the angle,
meaning that only obstacles in front of pedestrian iwill be given full attention,
and this will decrease as the cosine of the relative angle, finally vanishing for
obstacles behind the individual’s back. Finally, the last term in the multiplica-
tion exp{di,j/li}, where di,j is the distance between pedestrians i and j, and liis a length scale, describes how the intensity of the social force decreases with
the distance, with li giving the scale of the personal space perceived by pedes-trian i. Note that although all the parameters of this force term could change
from one pedestrian to another, allowing for greater realism, one would al-
most always choose them all the same because in the limit of a large number
of pedestrians their effect would average out.
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Figure 2.1: Reproduction of the faster-is-slower effect using the socialforce model: for desired velocities higher than 1.5m/s the evacuationis performed worse, with the leaving time (left panel) increasing andthe pedestrian flow decreasing (right panel). Image taken from [42].

This model represented a break-through, allowing for an accurate quan-
titative and qualitative description of many of the phenomena observed in
pedestrian dynamics. For example, Helbing et al. [42] were able to reproduce
the faster-is-slower effect, the well-known empirical fact that the efficiency of
the evacuation of a room decreases when individuals try to go too fast. This
is because when everyone tries to move fast, they simply end up bouncing
one into the other, creating a flow that escapes more slowly from the room.
As Figure 2.1 shows, the evacuation performance decreases for desired veloc-
ities higher than 1.5m/s with an increase in evacuation time and a decrease
in the flow of pedestrians through the exit. This is something well known to
experts in building security, since a typical faster-is-slower scenario occurs
when people have to evacuate a building in a hazardous situation. Moreover,
Helbing et al. were able to describe the clogging effect appearing when a uni-
form flow of pedestrians walking in a corridor passes through an area where
the corridor is enlarged and then restricted again, creating something sim-
ilar to a funnel. In this case, the disruption of the flow is due to a sudden
change in the surrounding constraints, to which the flow of individuals has to
adjust. Finally, they were able to use their social force model to investigate
the best strategy between following the group or individually looking for an
exit in case of an evacuation where the presence of smoke blinds pedestrians,
making the escapes invisible to them. They showed indeed that an optimal
strategy would be a mix of the two, meaning that one should observe where
themass of people ismoving, but also not disregard the information acquired
independently.

However, social force models also have some limitations. In fact, one
problematic aspect of this approach is that the contribution to the social force
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repulsion of all pedestrians are summed together, which sometimes is not a
good idea. For example, imagine you are facing one pedestrians, moving to-
wards you, and then there is another person behind him, moving in the same
direction, like a queue. Clearly, you would react to the first of the two, the one
you actually see. However if you sum the contributions of the social forces,
simulated pedestrianswould also react to the secondone, which they are sup-
posed to ignore. Moreover, as pointed out in [59], Helbing’s social force, in its
original implementation, leads to a choice of certain parameters resulting in
a totally nonphysical behavior to ensure a realistic crowd behavior. For exam-
ple, in order to prevent pedestrians to overlap too much, a very high elastic
constant, which produces elastic repulsion forces of the order of several times
themass of a body. Or, a very short cutoff of the social force interaction range.
Finally, in [76], it is observed that the social force model pedestrians do not
possess any kind of self-slowing mechanism, meaning that their behavior is
always competitive, which in practice means that they will always be pushing,
even when this is detrimental.

In the years after the first introduction of Helbing’s model, many have
worked on it and, using the same idea, improved it. Others have decided
to deviate from the use of forces to determine the pedestrians trajectories,
instead directly choosing their velocity from a set of admissible ones. In the
next section, we will discuss a very recent model that takes many of the ad-
vancements the community of pedestrian dynamics realized and blend them
into one time-to-collision model.

2.1.2 . ANDA - A Time-to-Collision Model

We now turn our attention to describing themodel recently introduced by
Echeverria-Huarte andNicolas in [33]. Thismodel, named ANDA, ANticipatory
Dynamics Algorithm, at each time step∆t divides the simulation of pedestri-
ans’ motion into various layers, summarized in Figure 2.2, each dealing with
the simulation of a segment of a pedestrian’s motion. First, agents find their
preferred velocity via a decision-making layer by minimizing a cost functional,
inspired by the suggestion of Moussaid et al.[74]. This functional is made of
various terms such as the shortest path to the target, a biomechanical term
representing the physical cost of motion, a term incorporating the desire to
respect the one’s private sphere and then a time-to-collision term inspired
by Karamouzas et al.[49] to avoid collisions, giving more importance to the
most imminent. Then, a mechanical layer handles the case where a collision
occurs. Finally the agents’ positions are updated. Most of the novelty in this
model is contained in their choice of a cost functional E to be minimized to
find the desired velocity. For each agent, for any velocity function u(s) ∈ R2,

27



Figure 2.2: Schematic representation of the flow of operation in theANDA model. A decision-making layer gives the energetic landscape,where pedestrians follow the direction of steepest descent to reachtheir goal. Then, if needed, a mechanical layer handles collisions. Im-age taken from [33].
s ∈ [t, t+∆t), the cost functional E reads

E [u⃗] =
∫ t+∆t

t
e(τ, r⃗(τ), u⃗(τ))dτ + ET (r⃗(t+∆t)).

where r(t) is the position of the agent. The term e(τ, r⃗(τ), u⃗(τ)) is a Lagrangian
cost that contains the preferences of the agent for its motion towards the
target, specified by ET (r⃗(t + ∆t)), a driving term, prescribing the direction
towards the shortest path to the target. The authors of ANDA then consider
the limit for∆t → 0, so that the functional becomes

E(u⃗) ≃ e(t, r⃗(t), u⃗)∆t+ ET (r⃗(t) + u⃗∆t).

and now the optimization is performed on E(u⃗), a function of the number
u⃗ ∈ R2. Thus, given r(t), the position of an agent at time t, the position at
time t+∆t is given by the velocity u⃗∗ obtained solving

u⃗∗ = inf
u⃗∈R2

E(u⃗), (2.3)
that in [33] is done with a using a Nelder–Mead algorithm. The first thing we
notice is that the decision-making process considers only what will happen
between the time t, let us say the present, and the very near future up to time
t+∆t, where∆t can be interpreted as a reaction time.
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Let us now explain the terms that compose the running Lagrangian cost.
First, a bio-mechanical cost is considered, inducing individuals to limit their
velocity. This term comes from the measurements of [68], where the energy
expenditure of a human body was linked to the speed of motion, and reads

espeed(u) =
{
7.6u− 35.4u2, u < 0.1m/s

0.4 + 0.6u2, u ≥ 0.1m/s
. (2.4)

Then, another biomechanical aspect considered in ANDA is the fact that abruptly
changing one’s velocity is uncomfortable. Thus, an inertial term

einertia(u⃗ ) = µ(u⃗− v⃗(t))2 (2.5)
is included in the cost functional. In this expression v⃗ represents the present
velocity, i.e., the velocity of the agent at time t. The terms introduced until now
only consider the individual aspects of pedestrianmotion. In the following, we
will define how pedestrians in ANDA interact with each other. This interaction
occurs on two scales. First, a cost term describes the tendency of pedestrians
to preserve a personal space. This is modeled similarly to what Helbing does,
with a repulsive term depending on the distance between two pedestrians,
and activates up to a value Ri, the size of the personal space of pedestrian i.
More precisely, this term reads

Epers(u⃗) =
∑

j∈fov(i)
η

Ri +Rj
V rep

( ||ri(t) + u⃗(t)∆t− r⃗ j(t+∆t)||
Ri +Rj

)
, (2.6)

where r⃗ j(t+∆t) = rj(t)+ v⃗j(t)∆t is the position of neighbor j at time t+∆t

assuming that it maintains the current velocity v⃗j(t). Then, a sum over all the
neighbors in the field of view (fov) of pedestrian i, extending from −θ to θ

from the direction of its current velocity v⃗(t), is performed, with Vrep givingthe intensity of the repulsion
V rep(d ) =

{
1
d − 1

1+ε∗ , d < 1 + ε∗

0, d ≥ 1 + ε∗
. (2.7)

The repulsion therefore decreases with the inverse of ration between the fu-
ture relative position and the sum of the personal space radii and vanishes
when the ratio is equal to 1+ε∗. This termmeans that the contribution to the
choice of the velocity u⃗∗ made by the desire to respect the personal space is
given by observing where neighbors will be after a time step assuming they
will maintain the same velocity they had at time t. In particular, this terms
does not describe interactions with pedestrians whose future relative posi-
tion enters the personal space. To describe interactions with agents further
than this distance it was proved by [74] and [49] that instead of positional
variables, considering the time to collision τi,j between pedestrians is much
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more effective to simulate how people react to incoming dangers. The time-
to-collision with an other pedestrian j is a function on the velocity u⃗ and is
calculated using j ’s current velocity v⃗j(t). The function that was found to bet-ter reproduce the anticipation based on the TTC is

V ttc(τ) = Kttc e−τ/τc

τp
, (2.8)

with p = 2 and τ = 3.0s and Kttc giving the intensity of this interaction term.
The authors of ANDA consider the time to the most imminent collision, based
on the empirical findings of [72] showing that individuals tend to focus on
the greatest danger when they choose how to move. Moreover, they average
the intensity of the TTC potential V ttc over pedestrian i’s personal space, to
extend the anticipation radius. The TTC term of the cost then reads

eTTC =
1

ε∗

∫ ε∗

0
V ttc(τj(ε))dε. (2.9)

For amore detailed explanation of the derivation of this termwe refer to [33].
Combining all the terms introduced the ANDA cost functional reads
E(u⃗) = [espeed(u)+einertia(u⃗ )+eTTC(u⃗ )]∆t+ET (r⃗(t)+ u⃗∆t)+Epers(u⃗). (2.10)
Once this is minimized, see [33] for details, for all the agents, the movement
is performed. At this point, it is not assured that no collision occurs. However,
this is not pathological, but a price to pay to keep the algorithm away from the
deadlocks and the unnatural motion otherwise affectingmost of the so-called
velocity-based models. If two pedestrians overlap as a result of their motion
after the decision-making step, a mechanical layer in spirit and in theory very
similar to the one described for the granular model in section 1.1 kicks in and
repels the agents away from each other.

With their model, the authors of ANDA were able to obtain a vast array of
results validating their approach. First, they were able to simulate the avoid-
ance of two pedestrians walking one towards the other in a narrow corridor,
then, they performed various simulation to test their model’s performance in
unidirectional and bidirectional flows, obtaining a fundamental diagram com-
parable to multiple experimental databases, as Figure 2.3 shows. Moreover,
they were able to apply their simulation tool to reproduce the navigation of
pedestrians throughout a complex environment, reproducing the Montpar-
nasse train station in Paris. Finally, the ANDAmodel was used to simulate the
changes in level of attention or lack thereof when individuals walk with while
using their smartphone, something common nowadays. They were able to
do so by modifying the decision time of pedestrians by giving a longer one
to those simulating a person walking and looking at the phone. The results
they obtained were in good agreement with empirical studies, testifying even
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Figure 2.3: Comparison between the fundamental diagram predictedby the ANDA model, in solid red, against various empirical databases.Image taken from [33].

further to the validity of this simulationmethod. As we said, the reason we in-
troduced both ANDA and Helbing’s social force in detail, is to understand how
they work before comparing them to the experiment in chapter 4. Of course,
we could have chosen many other models to perform this comparison, how-
everwe believe that these twomodels representwell enough two attempts, of
radically different complexity, at describing pedestrian dynamics. In fact, Hel-
bing’s model builds on a granular model, and simply add some longer-ranged
repulsion. In this case no anticipation is present, and any avoidance begins
once a certain threshold distance is reached. On the other hand, ANDA is a
very complete model, taking the best of a wide range of advances in the field
occurred over the three decades that separate it from the social force model.
Most importantly, ANDA’s time-to-collision avoidance mechanisms perfectly
represents the short-time anticipationmanymodels have started including to
account for pedestrians’ forecasting capabilities. As will see in in chapter 4, no
matter the complexity of the simulation scheme, both models lack an essen-
tial element to reproduce the experimental findings: long term anticipation.

2.2 . Macroscopic Models

The use ofmacroscopicmodels to describe human behavior dates back to
the 1950s, whenmodels of trafficdynamicswere developed that described the
ensemble of cars on a road as a continuum characterized by the local density.
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Then, in the 70s, Fruin [34] proposed an approach consisting in schematizing
the rooms of a building as the nodes of a graph, with each node being as-
sociated with the density in the room and each edge with the flow between
connected rooms. Although very simple, this model can be useful to simulate
buildings with many small rooms, however, when applied to large premises
the graph description becomes less effective. In general, macroscopicmodels
focus on the description of the density of pedestrians, rather than trying to
capture each individual’s motion. In this section, we will describe two macro-
scopic models that describe the motion of pedestrians through their density.
The first is the Lighthill-Whitham-Richardsmodel, invented in 1955 and used to
describe car traffic in a one-dimensional environment, simulating a road. The
other is the Hughesmodel, a more recent one that introduces the passage to
two dimensions, making it suitable for simulating pedestrians. Although with
some differences, these two models use the same equation to describe the
evolution of the density. This equation is the conservation law much used in
other disciplines such as fluid dynamics. Its derivation is intuitive, and can
be described as follow. For simplicity, we consider the one-dimensional case.
Let us consider a point in space x and a small space element dx at time t.
After a small time element dt, the quantity of fluid (or anything else we want
to describe with this equation) that entered the space element from point x
is given by j(x, t)dt, where j is the current. The amount that at the end of dt
left the same space is given by j(x + dx, t)dt. Thus, to know how much fluid
accumulated or dispersed in dx during dt, we can take j(x, t)dt−j(x+dx, t)dt.
However, the same amount of fluid can be given by considering the density ρ.
In fact, if we take dx small enough that ρ(x, t) is constant over it, then to know
the amount of fluid that accumulated or dispersed in dx after dtwe can simply
take ρ(x, t + dt)dx − ρ(x, t)dx. Equating the two ways of obtaining the accu-
mulated or dispersed fluid gives the following conservation law, generalized
to more than one dimensions,

∂tρ+ ∇⃗ · j⃗ = 0 (2.11)
When we observe that j⃗ = ρv⃗, where v⃗ is the velocity of the fluid, this law
now gives us the evolution in time of the density. In the following we will
explain what hypotheses can be made on this equation to simulate different
scenarios. In particular, we will show how it is the choice of the current j to
determine the dynamics of the density.

2.2.1 . Lighthill-Whitham-Richards Model
Thefirstmacroscopicmodelwe are going to explore is the Lighthill-Whitham-

Richards model, first introduced in 1955 in two papers [66, 67]. In a nutshell,
this model describes the motion of cars along a one-dimensional road with
no curves. It aims to accurately describe how the changes in local densities
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Figure 2.4: Example of flow-density relation used in LWR model. Al-though empirical ones may differ, this picture serves to give the ideathat when density is low, the flow is low because there are few cars.Then, when the density is very high, nobody moves anymore, thusstopping the motion. It follows that there must be a value of the den-sity where the flow is at its maximum. Image taken from [67].
propagate along through the traffic. For example, if a current of cars is inter-
rupted by a traffic light that turns red, how does the information about the
difference in speed and consequently the increase in density reach all drivers.

In this model, the density of vehicles evolves following the conservation
law (2.11), with the assumption that the current j = j(ρ) = f(ρ) depends
only on the density ρ following a fundamental diagram as in Figure 2.4. This
shape of the fundamental diagram is commonly found empirically by exper-
imenters, and although LWR specifically treats the case of vehicles, this rela-
tion still holds for pedestrians. In this model, equation (2.11) is solved by con-
sidering a curve (x̂(t), t) parameterized by t. Let us now solve the equation
along this curve, and then we will be able to say something about its nature.
First, let us define ρ̂(t) = ρ(x̂(t), t), the density along the curve. Now, if we
take its time-derivative we have

dρ̂

dt
= ∂x̂ρ̂

dx̂

dt
+ ∂tρ̂, (2.12)

and if we choose dx̂
dt = df(ρ̂)

dρ̂ we have, from (2.11), that ρ̂ is constant along the
curve, meaning that ρ̂ ≡ const. If this is the case, though, df(ρ̂)dρ̂ also is constant
along the curve (x̂(t), t), meaning that dx̂

dt is constant as well. This leads to thefact that (x̂(t), t) is a straight line. This means that, for a given initial value
of the density ρ0, one can follow the line with angular coefficient given by
df(ρ)/dρ evaluated in ρ0 and the density would be constant along that line.Auseful way to visualize this is by using a representation of the solution where
the position x is plotted against the time t.
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Figure 2.5: Characteristic curves of the LWR model. Each curve repre-sents a locus of points where the solution of equation (2.11) is constant.These curves carry the information about the fact that at time t = 0 atpoint x0 the density had a certain value ρ0. When two curves intersect,a shock is produced. Image taken from [67].
This is what Figure 2.5 shows, where the different lines are the curves

alongwhich the solution of equation (2.11) is constant, with different initial con-
ditions. To understand what these lines represent in practice, let us imagine
that at time t, at a certain position x = 0, the value of the density is ρ0. Then,we can follow the line of constant density to see where the value ρ0 will beafter some time. If two lines intersect, this means that at the same time there
should be two values of the density, clearly something impossible, and this is
called a shock. Although this model was purely conceived having car traffic
in mind, it can be adapted to human motion provided that the fundamental
diagram is chose accordingly, in particular in one-dimensional unidirectional
flows of pedestrians.

2.2.2 . Hughes’s Model
Another important macroscopic model is Hughes’s model. This describes

the crowd of pedestrians using the continuity equation (2.11), making the as-
sumption that all individuals are aware of a common goal, typically a certain
area to reach, that could represent, for example, an exit. The desire to achieve
the goal is described using a potential ϕ(x, y), indicating at each location in
space the time required to reach the final destination. In this model, the ve-
locity of the simulated pedestrians is parallel to −∇⃗ϕ. Moreover, Hughes de-
scribes the effect of interactions among pedestrians through the local density,
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introducing a term g(ρ) penalizing speed in congested areas. This term is then
multiplied to the potential gradient and finally the continuity equation of the
model reads

∂tρ− ∇⃗ · (ρg(ρ)∇⃗ϕ) = 0. (2.13)
This model was used by Hughes in [48] to simulate the approaching of a
pedestrian crowd to the pillars on the Jamarat bridge in Mina, Saudi Arabia,
during the stoning ritual. In this event, millions of pedestrians cross a multi
storey bridge that has at the center three pillars going through all the floors,
approaching them to throw stones. Hughes used his model to simulate the
situation upstream a pillar, showing how the velocity decreases near it, due
to congestion effects. Moreover, Hughes introduces some variations to its
model such as the possibility to treat different populations of pedestrians
and how they interact. This model is particularly interesting for us because
it uses some elements which we will find later. In the following chapter, in
fact, we will introduce the theoretical foundation of the MFG model, and we
will find again the continuity equation. However, what will differ is the choice
of the term corresponding to the flux. In fact, this term is chosen arbitrarily,
although as consequence of certain assumptions, in both the macroscopic
models we have described. On the other hand, in MFG this term comes from
the solution of another differential equation and is a consequence of the mi-
croscopical description of individuals.
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3 - Mean-Field Games

Mean-Field Games (MFG) are a branch of applied mathematics that de-
veloped during the last decade under the impulse of the seminal works of
Lasry and Lions [61, 60] on one side and of Huang, Malhamé and Caines [47]
on the other. MFG are optimally driven diffusion processes, used to find the
optimal strategy for an agent to reach a certain goal while being affected by a
multitude of other agents trying to do the same thing and subject to interfer-
ence with his/her plan. MFG has been since applied in various fields, ranging
from finance [20, 22], to economics [1, 2], problems of social nature such as
pedestrian dynamics, segregation, and epidemics [3, 54, 14], and engineer-
ing [53, 52]. This demonstrates the flexibility and adaptability of the method,
which can be used to find the right balance between costs and benefits in
situations of competition.

The theory of MFG is built upon two other successful mathematical the-
ories, that of Optimal Control and Game Theory. In fact, MFG are in essence
an optimization process, based on the concept of utility, the total satisfaction
gained by performing a certain action, as well as what is paid in the process, in
terms of consumption or discomfort. Therefore, to obtain the optimal course
of action one simply needs to maximize the utility, and this would indeed be
an optimization process, as explained in section 3.1. But it is often the case
that such decisions aremade in a competitive context, wheremanypeople are
trying to solve the problem at the same time. In that case, it is necessary to
assess how the presence of others impacts on the decision process and on its
outcome. This is where Game Theory comes into play. Developed in the 1950s
by a group of scientist of the RAND corporation to estimate the likelihood of
nuclearwarwith the Soviet Union, this theory studies the consequences of the
interaction, competitive or collaborative, on decision processes, as wewill see
in section 3.2. However, when the number of interacting agents grows, this
becomes very difficult to solve, if not impossible.

This is where the theory of Mean-Field Games is most effective. MFG as-
sumes the interaction with a multitude of agents can be reduced to the inter-
action against an aggregate of the others’ behavior. In the case of pedestrians,
for example, one does not record the position of all the people in the crowd
to decide how to move, but instead focuses on their average density. This
reduces the complexity of the problem at the expense of some accuracy, a
trade-off that has proven to be beneficial in many instances. Section 3.3 will
delve into the mathematical structure of MFG and will provide all the neces-
sary tools to simulate the experimental configuration of chapter 1, together
with additional context about the use of MFG.
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3.1 . Optimal Control

Optimal Control is the branch of appliedmathematics dealing with the de-
scription of systemswhose dynamics can bemodified via one ormore param-
eters, called control parameters, to maximize (minimize) a certain gain (loss)
function. Although this concept found most of its applications to systems of
recent appearance, such as in the economy or industrial production, its origin
is actually more remote and related to a concept familiar to physicists. In fact,
it is well known that in classicalmechanics, when a body ofmassm changes its
position from q1 at time t1 to q2 at time t2, the trajectory is given by Newton’ssecond law

q̈ = − d

dx
U. (3.1)

However, it is also possible to describe the particle’s dynamics as the mini-
mization of the action associated with the motion

S =

∫ t2

t1

L(q, q̇, t)dt, (3.2)
where L is called the Lagrangian of the motion. All in all, it is the shape of the
Lagrangian that determines themotion. Abstractly, any form could be chosen,
however, in classical mechanics, a series of considerations fix the Lagrangian
to be

L(q, q̇, t) = q̇2

2
− U(q). (3.3)

Then, it can be proven that
δS

δq
= 0 =⇒ d

dt

∂L
∂q̇

− ∂L
q

= 0 (3.4)
is equivalent to Newton’s law (3.1). In this case, we interpret the Lagrangian as
a running cost of the process, the total cost, or utility, being the action func-
tional. The control parameter of the system is the position q and optimizing
the utility amount to finding the dynamics of the body.

In a more general way, optimal control can also be applied to stochastic
dynamics, i.e., where the dynamics contains a random part, described by a
random variable. Let us consider x⃗ ∈ Rn the position of a body moving with
a random component from time t to time T , then this kind of dynamics is
described by the Langevin equation

˙⃗x = a⃗(t) + σξ⃗(t), (3.5)
where a⃗(t) ∈ Rn is called the drift term, whereas ξ⃗ ∈ Rn is a Gaussian white
noise representing the random component of the motion, and σ its intensity.
Now, a typical problem in optimal control would be to find the best drift term
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to optimize a certain cost functional. In this case, a⃗(t) is the control parameter
and the cost functional to be minimized can be written as

C [⃗a](x⃗, t) = E
{∫ T

t
L[⃗aτ ](x⃗τ , τ)dτ + CT (x⃗T )

}
. (3.6)

Analogously to the classical mechanics case, we will call Lagrangian the func-
tion L[⃗a](x⃗, t) giving the running cost of the motion governed by a⃗ between
time t and T , with initial position x⃗. The running cost is used to describe the
preferences of the underlying motion. The second term of the cost functional
is the final cost CT (x⃗T ), telling where it will be more or less expensive to be at
the end of the motion, describing eventual areas of attractions or repulsion.
Finally, since the motion is random, as expressed by the Langevin equation
(3.5), to obtain a deterministic quantity we must take the expected value. At
this point, let us introduce the value function, the value the cost functional
takes at its minimum

u(x⃗, t) = inf
a⃗
C [⃗a](x⃗, t). (3.7)

The goal is therefore to find the optimal control, which is the a that minimizes
C. For this, we can use Bellman’s Dynamic Programming Principle [9]. This prin-
ciple states that, if the trajectory from point A to point B, given by an opti-
mal policy, passes through point C, then the trajectory from point C to point
B would still be optimal with respect to the cost functional. In practice, this
means that it is possible to divide the integral in the definition of the cost
functional and still obtain the same value function

u(x⃗, t) = inf
a⃗
E
{∫ t+dt

t
L[⃗a](x⃗, τ)dτ +

∫ T

t+dt
L[⃗a](x⃗, τ)dτ + CT (x⃗T )

}

= inf
a⃗
{L[⃗a](x⃗, t)dt+ u(x⃗+ dx⃗, t+ dt)} (3.8)

Now, u(x⃗+ dx⃗, t+ dt) can be written as
u(x⃗+ dx⃗, t+ dt) ≃ u(x⃗, t) +

du

dt
dt, (3.9)

where the total derivative of u with respect to t is given by Ito’s chain rule [35]
du

dt
= ∇⃗u · a⃗+ ∂tu+

σ2

2
∆u. (3.10)

Finally, we can plug (3.10) in (3.9) and this into equation (3.8) to obtain the
Hamilton-Jacobi-Bellman (HJB) equation

0 = inf
a⃗
{L[⃗a](x⃗, t) + ∇⃗u · a⃗}+ ∂tu+

σ2

2
∆u. (3.11)

This is a backward differential equation that is solved starting from the termi-
nal condition

u(x⃗, t) = CT (x⃗(T )). (3.12)
Moreover, the final form of (3.11) equation is determined once the Lagrangian
is specified.
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1 betrays (1B) 1 cooperates (1C)2 betrays (2B) -7/-7 -1/-102 cooperates (2C) -10/-1 -3/-3
Table 3.1: Payoffs of the prisoner’s dilemma as formalized by Tucker [79].Values are negative because they represent jail time in years. The Nashequilibrium of the game is the situation where both prisoners betray,although this is not the set of strategy granting them the lowest num-ber of years in prison.

3.2 . Game Theory

The other pillar at the foundation of the theory of Mean-Field Games is
Game Theory, a branch of applied mathematics that studies how to find the
best strategy in competitive situationswhere two ormore players interact and
have something to gain and something to lose. The best way to illustrate the
kind of situations Game Theory deals with is with an example. Let us consider
the situationwhere two accomplices to an armed robbery are arrested and in-
terrogated at the same timebut in separate roomsby the police. The evidence
against them is enough to arrest both for robbery, however, not definitive to
prove their guilt for a homicide that occurred during the robbery. The only
way for the police to link the criminals to the homicide is if one betrays the
other, causing the other a worse punishment and gaining a small discount for
his/her sentence. Otherwise, if the two cooperate remaining silent, they will
both be given a lighter sentence. This situation is called the prisoner’s dilemma,
and its first formalization dates to 1950 by Tucker [79]. In table 3.1 we quan-
tify the aforementioned situation, by adding numerical values to each set of
strategies. In fact, each player, called 1 and 2 here, has in practice 2 choices,
the strategies, betray (B) or cooperate (C), and each choice will give him a cer-
tain number of years of jail, the payoffs. In Game Theory agents are supposed
to act rationally, meaning that they will act according to the mathematical op-
timization of the payoffs associated to the strategies, while keeping in mind
that all the opponents are trying to do the same. By reasoning only in terms
of payoffs, it is possible to identify the so-called Nash-equilibrium (NE), i.e.,
the set of strategies ensuring that, if the other player does not modify his/her
behavior, then one should not change his/her own neither. To find the NE,
one should therefore not simply look for the strategy allowing for the best
payoffs, but also the one from which nobody deviates. If we now go back to
the prisoner’s dilemma, to find the Nash-equilibrium we focus on one of the
two players, let us say player 1, and try to find an answer to each move of
player 2.
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• Let us assume player 2 betrays (2B), then player 1 would get fewer years
of prison if he betrays (1B), rather than if he cooperates (1C) because
he/she allows the police to put the other criminal away for longer.

• On the other hand, if player 2 cooperates (2C) and does not denounce
player 1, the latter’s best choice would still be to betray (1B) because
he/she is rewarded for his confession to the police.

If we apply the same reasoning to player 2 we realize that the strategy
they both end up playing, reasoning in terms of payoffs and accounting for
the other player, is to betray. The set of strategies (1B,2B) is therefore the
Nash-equilibrium of the game.

We can formalize this in general as follows. Let us consider a game played
by N players, and let us call si the strategy of player i and wi(s1, . . . , sN ) the
payoff for player i. We define the N-tuple s⃗∗ the Nash-equilibrium if

wi(s
∗
1, . . . , s

∗
i , . . . , s

∗
N ) ≥ wi(s

∗
1, . . . , si, . . . , s

∗
N ), ∀i (3.13)

meaning that for any given player i, it is not convenient to change strategy if
everyone else is sticking to the NE strategy.

In the prisoner’s dilemma, we have found that the NE is when both players
betray the other, although this is not the strategy providing a lighter sentence
for both players. In fact, if the two were able to agree on not denouncing the
other, they would be better off. In general, the NE is stable with respect to the
mathematical optimization of the outcomes, but in the real world, it might be
hard identify it. However, in the experiment of the cylinder, as we will later
see, individuals show a level of spontaneous coordination that allow them to
get really close to the theoretical NE given by the MFGmodel. Although being
also at the base of much of the economic research, rationality is subject to
controversy [70], especially when assumed in contexts where the players, or
agents, have to deal with complex situations with uncertain outcomes. Shed-
ding light on this topic is clearly out of the scope of the present work, however
the author of this thesis believes that, at least in some cases, simple and famil-
iar enough, humans can actually be rational and find, maybe not intentionally,
the best option. The experiment with pedestrians this thesis is dealing with,
testifies to that. In fact, since humans start taking their first steps as new-
borns, obstacle-avoidance strategies are hardwired into the brains and, in a
more advanced stage of development, so is the self positional-awarenesswith
respect to others. The goal of the present work is therefore to illustrate how
an approach based on a macroscopic description of pedestrians’ motion cou-
pled with the game-theoretical nature of their strategy allows for an accurate
representation of certain instances of pedestrian dynamics.
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3.2.1 . Differential Games
Wehave introducedGame Theory using an examplewith only two players,

choosing among a discrete number of strategies. However, the same reason-
ing can be done in a case where the number of players is larger than two, let
us say N, choosing from a continuum of alternatives at every time step be-
tween an initial time t and a final time T . We imagine that we can associate to
each player a state variable x⃗i, which evolves following a Langevin equation

˙⃗xi = a⃗i + σξ⃗i(t). (3.14)
Analogously to what we discussed for optimal control models, a⃗i is the control
parameter. Then, in this case we reasons in terms of a cost, and not of payoffs,
which wewant tominimize. The cost associated to a strategy is given by a cost
functional analog to (3.6).

Ci [⃗ai](X⃗, t) = E
{∫ T

t
Li [⃗ai,τ ](X⃗τ , τ)dτ + CT (X⃗T )

}
, (3.15)

where X⃗ = (x⃗1, . . . , x⃗N ) contains the state variables of all players. Like for
normal games (3.13), it is possible to introduce the notion of Nash-equilibrium
A⃗∗ = (⃗a∗1, . . . , a⃗

∗
N ) so that

Ci[A⃗∗] ≤ Ci[(⃗a∗1, . . . , a⃗i, . . . , a⃗∗N )], ∀i. (3.16)
Differential games constitute the addition of the game theoretical component
to an optimization process. Using the procedure of section 3.1 one would ob-
tain a system ofN coupled Hamilton-Jacobi-Bellman equations, one for each
player, that once solved would give the Nash equilibrium of the differential
game. However, this is often very difficult to do, especially when N becomes
large. In the next section, we will introduce the assumptions at the base of
MFG that are crucial to be able to solve these problems.

3.3 . Quadratic Mean-Field Games

Mean-Field Games build upon differential games, extending them and
finding a way to actually solve them, in the limit N → ∞. Everything we de-
fined until now applies to a generic optimization problem. However, the first
MFG models ever introduced use a running cost that reads

Li[A⃗t](X⃗t, t) =
µi

2
a⃗2i (t)− V (X⃗t, t). (3.17)

Models using this Lagrangian are called Quadratic Mean-Field Games, and
they are the first type of models initially studied by MFG founders [61, 60, 62,
47]. This kind of MFG has also been the subject of multiple studies such as
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[87, 40], giving us more profound understanding about their functioning. In
this thesis, we will only deal with quadratic MFG. We observe that the running
cost (3.17) is composed of a quadratic term, depending solely on the strat-
egy of player i, and a term V (X⃗t, t) that depends on the state variables of allother players. This term couples the agents together, therefore representing
the competitive, game-theoretical side of the optimization process. Through
the potential, one could possibly model various forms of interaction. How-
ever, as we said, describing the interaction between agents through their in-
dividual position would be computationally unfeasible once their number N
becomes large. Thus, the core simplification of MFG is to consider that indi-
viduals interact via the empirical density

m̂(x⃗, t) =
1

N

N∑

i=1

δ(x⃗− x⃗i(t)) (3.18)
that, using the Central Limit Theorem, for N → ∞, is equivalent to its ex-
pected values m(x⃗, t) = E[m̂(x⃗, t)]. This approximation, at the basis of the
definition of Mean-Field Games, is what finally renders the problem treatable,
giving us a chance to solve it. Moreover, when the number of agents becomes
large, we can consider their differences fading, to the point that they become
indistinguishable. Thus, we will drop the index from our equations and the
running cost, after these simplifications becomes

L[⃗at](x⃗t, t) =
µ

2
a⃗2(t)− V [m](x⃗t, t). (3.19)

Then, although other choices are possible, we decide to use a potential of the
form

V [m](x⃗t, t) = gm(x⃗, t) + U0(x⃗, t) (3.20)
where g is a constant giving the intensity and the nature of the interaction. A
negative sign of g means a repulsive interaction, and in this case, we call this
a MFG with negative coordination, whereas a positive gmeans an attractive in-
teraction, thus positive coordination. On the other hand, U0(x⃗, t) is an externalpotential describing eventual additional constraints and the interaction with
the environment.

Now that we have defined the running cost, we can introduce the cost
functional of our MFG model

C [⃗a](x⃗, t) = E
{∫ T

t

µ

2
a⃗ 2
τ − V [m](x⃗τ , τ)dτ + CT (x⃗T )

}
. (3.21)

At this point, if we follow the same path as in section 3.1, we obtain that (3.11)
with our choice of running cost becomes

0 = inf
a⃗

{µ

2
a⃗2(t) + ∇⃗u · a⃗

}
− V [m](x⃗, t) + ∂tu+

σ2

2
∆u (3.22)
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If then minimize the term in the curly brackets we observe that the potential,
that does not depend on the control parameter, exits the brackets, and from
what is left we obtain that the optimal control is given by

a⃗∗ = −∇⃗u

µ
(3.23)

This is therefore the optimal control parameter that guides the dynamics of
the stochastic process given by equation (3.14). Intuitively, this tells agents to
perform a descent along the gradient of the value function, reaching as fast
as possible the most desirable areas in the state variable space. Moreover,
once we have obtained (3.23), we can plug it back in (3.22) and finally obtain
the Hamilton-Jacobi-Bellman equation of our MFG as

{
∂tu = −σ2

2 ∆u+ 1
2µ(∇⃗u)2 + V [m]

u(x⃗, t = T ) = cT (x⃗)
. (HJB)

As previously observed, this equation is solved backwards, as also hinted at
by the minus sign in front of the Laplacian, starting from a terminal condi-
tion u(x⃗, t = T ) = cT (x⃗). Finally, given that each player’s state variable fol-
lows a stochastic evolution described by the Langevin equation (3.14), the cor-
responding average density evolves following the Kolmogorov-Fokker-Plank
equation {

∂tm = σ2

2 ∆m+ 1
µ∇ · (m∇u)

m(x⃗, t = 0) = m0(x⃗)
, (KFP)

a forward equation solved starting from an initial density profile. The key as-
pect ofMean-FieldGames lies in the fact that the drift term in the KFP equation
is given by the optimal control, obtained by solving the HJB equation. The fact
that the latter is solved backwards is crucial, in that the information about the
future is winded back up to the initial start of the process. MFG agents have
full knowledge of everything that will happen along the process, making them
able to anticipate and act efficiently.

3.3.1 . The Stationary or Ergodic Regime of MFG
As we said, a MFG is calculated over a time that goes from 0 to T . As

pointed out by [21], however, what happens near the beginning or the end
of this interval and what happens during intermediate times, namely when
t ≪ τ ≪ T , differ substantially. In fact, it can be shown that under certain
hypotheses, among which the fact that the potential term V [m](x⃗, t) does not
depend on time explicitly, during this intermediate period, the observables of
the system become time-independent, meaning that we can write
∂ta⃗

∗
e(x⃗, t) = − 1

µ
∂t∇⃗ue(x⃗, t) = 0 =⇒ ue(x⃗, t) = ue(x⃗)+ue(t) . (3.24)

44



and thatme(x⃗, t) = me(x⃗). In particular, always in [21], it is shown that
m(x⃗, t) ≃ me(x⃗), u(x⃗, t) ≃ ue(x⃗)− λt (3.25)

where λ is a constant that varies depending on the problem at hand. We
call this regime of the system the ergodic or stationary state. We will use
the two definitions interchangeably. Having established this fact means that
we can cast equations (KFP) and (HJB) in a time independent form. In fact,
by substituting expressions (3.25) into these equations we obtain the time-
independent ergodic system

0 =
σ2

2
∆ue − 1

2µ
(∇⃗ue)2 − λ− V [me] , (3.26)

0 =
σ2

2
∆me +

1

µ
∇ · (me∇ue) . (3.27)

This is useful because in many instances one is more interested in what hap-
pens during themajority of the time of the game, i.e. the ergodic or stationary
regime, than near the beginning or the end, i.e. the transient regime.

3.3.2 . The Schrödinger Formulation
Another technical detail that we wish to introduce is the possibility to cast

the Mean-Field Games equation in a form familiar to physicists. In fact, fol-
lowing the work of Ullmo et al. [87, 86], let us define the following change of
variables

u(x⃗, t) = −µσ2 log Φ(x⃗, t), (3.28)
that is called Cole-Hopf transformation. Moreover, let us define m = ΦΓ. By
substituting these expressions into the time-dependent equations of MFG
(KFP) and (HJB) we obtain

µσ2∂tΦ = −µσ4

2
∆Φ− V [m]Φ (3.29)

for the Hamilton-Jacobi-Bellman equation and
µσ2∂tΓ =

µσ4

2
∆Γ + V [m]Γ (3.30)

for the Kolmogorov-Fokker-Planck equation. At this point we observe that,
besides the missing imaginary factor associated with time derivation, these
equations have exactly the structure of the Non-Linear Schrödinger Equation,
with formal correspondence Ψ → Γ, Ψ∗ → Φ and ρ ≡ ||Ψ||2 → m ≡ ΦΓ.
Therefore, all the knowledge pertaining to this subject can be applied to the
context of quadratic MFG. In the following, we will refer to this formulation
of the problem as the Schrödinger Representation (SR). One of the first ad-
vantages of using the SR becomes apparent when we consider the stationary
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state of MFG. In fact, in SR the ergodic value function and density are trans-
formed into

Φe = e
− ue

µσ2 , Γe =
me

Φe
, (3.31)

and it can be easily shown that they both follow the samedifferential equation
µσ4

2
∆Ψe + V [me]Ψe + λΨe = 0. (3.32)

It is also possible to show that once equation (3.32) is solved, then it is possible
to have access to the entire solution because

Φ = e
λ

µσ2 tΨe, Γ = e
− λ

µσ2 tΨe

solve equations (3.29) and (3.30).
Always in the spirit of quantum mechanics, it is possible to define oper-

ators that, once evaluated on a state of the system, correspond to physical
quantities. First, let us introduce the position operator X̂ = (X̂1, . . . , X̂n),corresponding to the multiplication to the i-th component. Then, we define
the momentum operator P̂ = −µσ2∇⃗. Finally, for any operator Ô defined in
terms of X̂ and P̂ we define its average as

⟨Ô⟩ (t) = ⟨Φ(t)| Ô |Γ(t)⟩ =
∫

Φ(x⃗, t)ÔΓ(x⃗, t)dx⃗, (3.33)
with Φ and Γ evolving according to equations (3.29) and (3.30) respectively.
We observe that, with this definition, whenever Ô does not depend on P̂ , its
average is actually

⟨Ô⟩ (t) =
∫

m(x⃗, t)Ô(x⃗)dx⃗. (3.34)
Then, it is possible to show that by taking the time derivative of (3.33), one
recovers

d

dt
⟨Ô⟩ = ⟨∂tÔ⟩ − 1

µσ2
⟨[Ô, Ĥ]⟩ , (3.35)

where Ĥ is the Hamiltonian that reads
Ĥ = − P̂ 2

2µ
− V [m](X̂), (3.36)

by using (3.35) to the position and momentum operators one has
d

dt
⟨X̂⟩ = ⟨P̂ ⟩

µ
,

d

dt
⟨P̂ ⟩ = ⟨F̂ [m]⟩ , (3.37)

where F̂ [m] = −∇⃗V [m](X̂) is the force operator. Moreover, if
V [m](X̂) = U0(x⃗) + f(m), (3.38)
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the mean force depends uniquely on the external potential ⟨F̂ ⟩ = ⟨F̂0⟩ =

−⟨∇⃗U0⟩. Finally, reconnecting with what we discussed at the beginning of
section 3.1, it is possible to introduce an action functional
S[Φ,Γ] =

∫ T

0
dt

∫

Rd

dx⃗

(
µσ2

2
(Φ∂tΓ− Γ∂tΦ)−

µσ4

2
∇⃗Φ · ∇⃗Γ + ΦU0(x⃗)Γ + F [ΦΓ]

)
,

(3.39)
and it can be shown that finding a couple (Φ∗,Γ∗) so that

δS

δΦ
(Φ∗,Γ∗) = 0,

δS

δΓ
(Φ∗,Γ∗) = 0, (3.40)

means that (Φ∗,Γ∗) solve equations (3.29) and (3.30) respectively.
3.3.3 . Understanding the Ergodic Regime - Solitons

Wenowwish to use the SR to explore inmore depth the concept of ergodic
or stationary state of MFG we introduced in subsection 3.3.1, following the
footsteps of Ullmo et al.[87]. Let us consider a simple example of a one dimen-
sional system with linear local interactions given by V [m](x) = U0(x)+gm(x)

in the limit of a strong attractive interaction g → +∞, and with a quartic ex-
ternal potential

U0(x) = −x2

2
− x4

4
. (3.41)

Moreover, let us imagine an initial density profile which is localized and that
could bedescribedby itsmeanand variance, such as, for example, aGaussian,
with a short characteristic length η. In the strongly attractive limit, as reported
in [87], what is found is that agents soon stick together and move coherently
forming what is called, again in analogy with the NLS nomenclature, a soliton.
This behavior appears after a certain time τ erg from the beginning t = 0 and
disappears before the end T − τ erg of the time interval. Here, we are inter-
ested in describing the dynamics of the soliton during this intermediate time,
thus its stationary or ergodic state. Using relations (3.37), the fact that interac-
tions are local, and the assumption that the density to be compact and narrow
over a short length, the position Xt = ⟨X⟩ (t) and momentum Pt = ⟨P ⟩ (t)
operators follow {

d
dtXt =

Pt
µ

d
dtPt = −∇⃗U0

(3.42)
This is the dynamical system giving the dynamics of the position and the mo-
mentumof the density’s center ofmass. Itsmotion is therefore that of a classi-
cal particle of mass µ in the potentialU0. However, unlike classical mechanics,
the dynamics is not fixed by the choice of the initial position and momentum.
In fact, with a MFG we have to satisfy both an initial and terminal conditions.
The initial position is given by

Xt=0 =

∫
dxxm0(x), (3.43)
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Figure 3.1: Phase space of a one dimensional MFG model, evolvingwith local interactions and a quartic potential U0(x) = −x2/2 − x4/4.Along the vertical dashed line x0 = −3/2 are the allowed initial posi-tion, whereas the slanted dashed line is the terminal condition pT =
−xT +7/2. Trajectories for small T are further away from the unstablefixed-point (x ≡ 0, p ≡ 0) whereas when T grows trajectories spenda long time in a neighborhood of the fixed point, reaching the ergodicstate. Image taken from [87].
whereas for the terminal condition we observe that

Pt=T = ⟨P̂ ⟩ (t = T ) = µσ2

∫
dxΓ(x, T ) ∂xΦ(x, T ),

can be written, by multiplying and dividing by Φ, as
PT = −

∫
dxmT (x) ∂xuT (x) = −⟨∂xcT (x)⟩ ≃ −∂xcT (xT ), (3.44)

again assuming that the density stays localized on a shorter scale than the
variation of cT . Let us deal with amore concrete example. The authors of [87]
deal with the case where the initial position is x0 = −3/2 and the terminal
condition reads ct(x) = x(x − 7)/2. The dynamics of the soliton’s center of
mass is given by equations (3.42), where the potential U0 is given by equation(3.41). In this case, we observe that the system has one fixed point, given by
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(x ≡ 0, p ≡ 0), and by performing a simple stability analysis we find that this
fixed point is unstable, with one attractive and one repulsive direction. Fig-
ure 3.1 gives us the entire phase space of the dynamics, which confirms that
(x ≡ 0, p ≡ 0) is an unstable fixed point, with the stable manifold colored
in blue and the unstable manifold in green. Moreover, in this figure we see
a vertical dashed line representing all points of the phase space compatible
with the initial condition x0 = −3/2. The slanted dashed line is given from the
expression of ct(x) that combined with (3.44) gives us all points compatible
with the terminal condition, i.e. all points satisfying pT = −xT + 7/2. This
means that only the trajectories starting above the two manifolds in the pic-
ture are compatible with these two conditions. What differentiates between
them would therefore be T . In fact, when T is small, the trajectory stays fur-
ther from the fixed point, whereas for large T , trajectories approach the fixed
point very fast, spend a long in its vicinity reaching a stationary or ergodic
state, before leaving the neighborhood of the fixed point to reach the terminal
condition. The author of this thesis finds this example simple but informative
enough to better understand the concept of ergodic state. This will become
particularly relevant in chapter 4, where we will show the MFG simulation of
the experiment described in section 1.2. In fact, during the experiment, data
were collected when the cylinder was halfway through the crowd, neglecting
what happens when the obstacle enters or leaves the crowded area. For this
reason, we will use the ergodic state of the MFG to simulate the experiment,
and the simple example treated here can be a good way to better grasp what
will be shown in the following.

3.4 . Overview on MFG Applications

Before discussion of a more specific type of MFG to use for simulating the
experiment of chapter 1, we want to provide more insight into the various
directions along which the research on MFG has evolved during the past two
decades.
MFG with Big Players As we mentioned, the key assumption of MFG is
that the interaction between agents happens via the average density of all
other players, that are considered indistinguishable. However, it could be in-
teresting to have one or few “big players”, whose strategy and behavior in-
fluences other small players, therefore their density. One case this behavior
could be observed in a real-life scenario is in finance, as the work of Lehalle
et al. [55] proves. In this case, few large investors enter a market populated
a large number of small retail high frequency traders. While the moves of a
single big investor impact the market decisively, only a large group of small
investors can have any direct effect on it. Another example can be found in
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the field of opinion dynamics, where Stella et al. [85] show that the impact
of a “stubborn” big agent is enough to pull the average of the other small
players towards a neighborhood of its opinion. In this case, the big agent is
integrated into the MFG by choosing for him a running cost different from
the one of other agents, and solving a dedicated set of equations to obtain
its strategy and motion. Including a big agent into the MFG entails a large
deal of complications in the model, most importantly the fact that its motion
is stochastic and cannot be averaged out. Being able to solve the MFG system
with a stochastic element presents a big challenge and is a topic yet to be fully
understood.

MFG onNetworks MFG can also be extended to situations where individ-
uals are in contact through a more or less organized structure, for example a
graph. It could, for example, be the case that many graphs are then in contact
between them, as in the work of [7]. Here, the authors use a mix of repeated
games and mean-field games to study the interaction of different networks
where individuals are rewarded for herding towards a shared common opin-
ion. For a more mathematical explanation of mean-field games on networks
we refer to [4], where existence and uniqueness results are obtained.

MFG in Different Populations Another possible application of MFG is
the description of populations each composed of indistinguishable rational
agents, that are in contact with each, usually with different overall prefer-
ences. This scenario is considered, for example, by Lachapelle et Wolfram in
[54], where they treat the case of two different groups of pedestrians moving
towards two different targets trying not to mix with the other group. Another
instance of MFG between populations can be found in [3], where the case of
segregation in cities is treated.

MFG in Epidemiology MFG models have found their territory in the field
of epidemic models. On notable work in the field is the one of Laguzet and
Turinici [58], where the decision of individuals to be vaccinated is analyzed,
and the model is compared with the 2009/10 vaccination campaign. Interest-
ingly, the authors observe that when a term attenuating future risk is intro-
duced in the model, agents may choose to wait before getting vaccinated to
better estimate the actual need for it. This anticipates the introduction of the
discount factor we will discuss in section 4.3. Another important and recent
contribution to the epidemiology field is that of Bremaud et al. [14, 13], where
a MFG model is coupled to the SIR (Susceptible, Infected, Recovered) model
to find the optimal way to enforce a lockdown and how this affects various
classes of individuals among an interacting population. Moreover, they also
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discuss the case where each individual only interacts with a limited number k
of neighbors, organized on a graph.

MFG in Economics and Finance Applications of MFG to finance date
soon after the introduction of the model. Among the main contributions on
the topic, we register that of Lehalle et al. [20], where the problem of trade
crowding, meaning the effects of transactions of the dynamics of the price of
the traded object, using mean-field games, and obtaining the optimal trad-
ing rate to liquidate a position during regular trading hours. Moreover, an-
other example of MFG applied to economics are the works of of Gomes et al.
[36, 37], where the authors study an economy where agents have to balance
between capital gain and consumption.

3.4.1 . MFG in Pedestrian Dynamics
One of the first attempts to build amodel using differential games canwas

made by Hoogendoorn in [45, 46]. In these works, however, the model pro-
posed does not fully correspond to a Mean-Field Game. In fact, although in
Hoogendoorn’s models the minimization of a subjective cost functional is al-
ready present, the actual motion of pedestrians is not performed by the evo-
lution of their density but through a microscopic model, where the desired
velocity is obtain from said optimisation, computed not over the entire dura-
tion of the motion but repeatedly over time. Indeed, in the various scenarios
simulated with this model, pedestrians reevaluate their trajectory based on
the current traffic condition, whereas, in a fully MFG approach, the optimal
behavior would be available to all individuals from the beginning.

The use MFG to describe pedestrian dynamics was at first suggested by
Guéant et al. [39, 25], Lachapelle [56] and Dogbé [32]. In particular, in [32],
Dogbé describes how to model a crowd of individuals using the MFG formal-
ism, starting with the case of one pedestrian, whose state variable is its posi-
tion, whose dynamics is given by the minimizing a cost functional describing
the environment. Then, it passes to the problem with N pedestrians and fi-
nally, taking the limitN → ∞, arrives to the actual definition of theMean-Field
Game. Although introducing the technical tools of MFG, Dogbé does not solve
the system of equations nor presents any simulation. For the first actual im-
plementation of MFG for describing pedestrian motion, we refer to the work
by Lachapelle and Wolfram [54]. In this paper the authors they treat the case
where more than one population exist in the same simulation space, with
different levels of aversion towards agents of the same or of the other popu-
lation. They do this by adding a coupling term to the MFG cost functional they
choose for their model, giving the intensity of the aversion between popula-
tions of different kind. In addition to this, Lachapelle andWolframaddress the
problem of the description of congestion, which is the fact that moving fast
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in high density areas is harder. This is particularly important to try and re-
cover a realistic fundamental diagram, in connection with the Hughes model
were the current depends on the density. The relation between MFG and the
Hughes’ model is explored even further in the work by Burger et al [15], that
describes the scenario where a group of pedestrians tries to evacuate a room
as fast as possible. In particular, in this work the authors show that through
an accurate choice of the MFG’s running cost it is possible to draw a mapping
between the two models.

Another and more recent contribution to the field of MFG model for sim-
ulating pedestrian dynamics is the one proposed by Cristiani et al. [26, 27].
In particular, in the first of these two papers, [27], the authors delve into the
categorization of pedestrian models based on the anticipation abilities of the
simulated individuals, ranging from irrational, where pedestrians move er-
ratically, to rational and highly rational, where pedestrians move following a
trajectory obtained from the analysis of the surrounding environment and
other people’s behavior. In the case of MFG, as we will see in section 4.3, the
anticipation abilities of the agents can be modulated using what is called a
discount factor, however Cristiani et al. propose in [27] an alternative way to
do this, by reducing the time interval of the agents’ optimization. Then, in [26],
the authors extend this by considering a MFGmodel where agents constantly
recompute their optimization over a moving time interval.

Finally, we acknowledge the work of Arjmand and Mazanti [5, 6] where
the authors explore the mathematical properties of a general form of MFG
applied to a pedestrian dynamics scenario, namely the onewhere pedestrians
have to evacuate a room as fast as possible. In this work, they study the well-
posedness of the problem, look for the uniqueness of Lagrangian equilibria.
Then, they bring their attention on models where constraints are presents,
usually to describe obstacles like walls, fences etc.
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4 - Simulation of the Experiment

The goal of this chapter is to convince the reader that a MFG description
is a good way to simulate the experiment introduced in chapter 1 and that it
can provide a good framework to understand its results, in all three experi-
mental configurations, summarized in Figure 4.1. Since, as we explain in 1.2,
the main empirical features are present regardless of the average density, we
decide to work with a value of 3.5ped/m2, because for this density we possess
the cleanest experimental data. First, we focus on the case where pedestri-
ans were facing the obstacle, displayed on the left-most column of Figure 4.1.
We refer to this as the complete information configuration, since in that case,
all pedestrians could assess the cylinder’s position and velocity, anticipating
it at their best. Under these circumstances, we want to show that models of
pedestrian dynamics based on short-term anticipation fail at reproducing the
empirical data. Thus, in section 4.1 we show how two of the microscopic mod-
els of chapter 2, namely Helbing’s social force and ANDA, perform at the task.
We will discover that none of them fully captures the dynamics at play be-
cause they both fail to provide long-term anticipation, the ability to anticipate
the obstacle well ahead of its arrival, and to deal with its passage until the
subsequent rearrangement of the crowd. In section 4.2 we want to convince
the Reader that, on the other hand, a model based on the minimal version
of MFG described in section 3.3 can simulate agents with a sufficiently long
anticipation time-frame to adequately reproduce the experimental configura-
tion where pedestrians had complete information about the intruder. Then,
we deal with the other two experimental setups, displayed in the central and
right-most columns of Figure 4.1, with participants randomly oriented, or giv-
ing their back to the obstacles and trying not to anticipate. In section 4.3 we
show how by adding only one parameter to our MFG model, namely the dis-
count factor, we can modulate the anticipation time-window of the simulated
agents to correctly reproduce these configurations as well. What follows is a
synthesized version of the work contained in the two journal papers [12, 16],
attached to this thesis in the Published Papers chapter, and in the preprints
[17, 18]. We invite the Reader to consult them to havemore details about what
we present here.

4.1 . Microscopic Models - Complete Information

In chapter 2 we gave an overview of various pedestrian dynamics simu-
lation models and divided them into microscopic and macroscopic models.
As we said, each type of model has drawbacks and advantages. In particular,
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Figure 4.1: Experimental results of the passage of a cylindrical intruder(blue disc) through a static dense crowd for an average density of ∼
3.5ped/m2 for the three different configurations of the experiment ofsection 1.2. Top row: densities plots. Bottom row: velocity fields. Datafrom [75]. Figures extracted from [16].
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Figure 4.2: Density (left panel) and velocity (right panel) fields of the so-cial force simulation. An accumulation is present in front of the ob-stacle, and the velocity field displays the agents moving around theintruder.

as was reported in [78], macroscopic model perform particularly well when
used to describe situations with a very large number of pedestrians, such as
the evacuation of large buildings. On the other hand, macroscopic models
are less precise in reproducing situations where the interactions between the
agents have an important role on the behavior of the crowd, especially at
the operational level. In a direct comparison between a microscopic and a
macroscopic model, Maury et al. [69] showed how the behavior of the sim-
ulated flow near a door during an evacuation can widely differ between the
two types of models, with macroscopic one unable to predict some of the
features observed in the microscopic simulation. We therefore expect micro-
scopic models to be accurate at capturing the interactions between the indi-
viduals around the incoming intruder. Here we will show how the Helbing’s
social force model of subsection 2.1.1 and the ANDA model explained in sub-
section 2.1.2 perform at reproducing the experimental configuration where
participants were facing the obstacle. We test the models on this configu-
ration because it is the one where long-term anticipation is more clearly in-
volved in the pedestrians’ behavior, thus providing us with a valuable bench-
mark against which we will compare the MFG model.

As shown in section 2.1.1, Helbing’s social force model has proved very
valuable in numerous situations and still constitutes a valid tool implied in
some of the state-of-the-art simulation software. However, when it comes to
reproducing the frontal configuration of the experiment of chapter 1.2, it ap-
pears that this method fails at capturing the dynamics at play. In fact, as the
left panel of Figure 4.2 shows, in the density plot simulated using this model
we observe an accumulation, although slight, of pedestrians in front of the
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Figure 4.3: Density (left panel) and velocity (right panel) fields of theANDA simulation. Although the density fields display a clear improve-ment, with more wing-shaped distribution, the velocity field still lacksthe lateral motion ahead of the intruder observed empirically. Figuresextracted from [12].

obstacle, similarly to the granular simulation of 1.1. Moreover, in the right
panel of Figure 4.2 we can see how the velocity field simulated with the social
force model does not show any sign of anticipatory behavior, with most mo-
tion being the rotation of individuals around the incoming intruder. Although
having represented amilestone in the field of pedestrian dynamics, the social
force model struggles to capture the complex anticipatory behavior observed
in the experiment we refer to here. The reason for this is the locality of the
social force interaction, whose scale in space and time is too short to inform
the simulated individuals of the intruder’s arrival.

The second model we want to use to simulate the experiment is ANDA.
This is a complex simulation tool that puts together decades of advancements
in the field of simulating pedestrians and, as we showed in section 2.1.2, it
can reproduce a wide array of pedestrian dynamics empirical facts. However,
when used to reproduce the experimental configuration of complete informa-
tion, although achieving a better overall result than the social force model, it
still cannot fully reproduce it. As we can see, the density field, on the left of
Figure 4.3 shows a decisive improvement with respect to both the granular
model, in Figure 1.2, and the social force model, showed in Figure 4.2. Indeed,
in ANDA agents accumulate at the sides of themoving intruder. However, the
opening in front of the obstacle is not at all comparable to the empirical one,
as if the simulated agents did not anticipate enough. In fact, by looking at the
right panel of Figure 4.3, we see that the displacement in front of the intruder
is alongside its direction of motion, meaning that agents were pushed along
by it without anticipating. In conclusion, we have observed how ANDA, al-
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though being waymore technologically advanced than the simple social force
model, cannot reproduce the entirety of the empirical features displayed by
the experimental figure. We insist that the reason for this is the lack of long
term anticipation in both models. In fact, in the social-force model no antic-
ipation is considered, whereas ANDA uses a short-term time-to-collision an-
ticipation mechanism, clearly not enough to reproduce the timely avoidance
maneuver displayed by pedestrians in the experiment.

4.2 . MFG Simulation of Complete Information

We have tested both the social force model and ANDA finding that nei-
ther of them can fully reproduce the complete information experiment. This
is because they only allow for short-time anticipation. Although this exper-
iment is of a simple conception, it entails something crucial to understand
how far into the future individuals plan their motion. Indeed, in the configu-
ration where participants were facing the obstacle, the situation was familiar
enough that they could estimate the location and timing of their collision with
the intruder as well as understand others behavior. Therefore, they could an-
ticipate its arrival in advance and choose a strategy allowing them the least
amount of displacement, given that moving in a crowded space is uncomfort-
able. However, this optimization takes place on a timescale longer than that
of the aforementioned models, exceeding the operational layer of motion. In
the following, we prove that using a minimal MFG model, we can extend the
anticipation horizon and include some tactical planning.

4.2.1 . Adapting MFG to the Experiment
Wedescribe each pedestrianmotion through the Langevin equation (3.14),

where the state variable x⃗ represents the position at time t. Then, the optimal
control a⃗ is the optimal velocity at time t. We use the running cost (3.19), where
the square of the velocity means that pedestrians try not to go too fast and, in
general, the optimal strategywould be not tomove. However, the presence of
the potential (3.20) forces them to move. Moreover, we choose the terminal
cost cT ≡ 0 because we only want to simulate the avoidance of the intruder.
The external potential U0 is used here to describe the moving cylinder

U0(x⃗, t) =

{
+∞ ∥x⃗− s⃗t∥ < R

0 otherwise . (4.1)
Then, the density term of potential (3.20) represents the interactions among
pedestrians, mediated by the average density. Since we want pedestrians to
avoid congested areas, we choose negative coordination g < 0.

In practice, we decide that we want to simulate the experimental config-
uration using the ergodic state of the MFG model. This is for two reasons:
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first, the empirical data of the experiment were collected when the moving
intruder was halfway along its path; second, solving the stationary state is
faster, although not easier, than solving the time-dependent MFG. However,
the choice of external potential 4.1 presents two issues:

1. As section 4.4.1 will better explain, the value function uwould be infinite
for all points under the cylinder, something unpleasant to implement
numerically. Fortunately, using the Schrödinger representation solves
this, since where u is infinite we have that Φ ≡ 0 and Γ ≡ 0.

2. U0(x⃗, t) explicitly depends on time, preventing the existence of the er-
godic state, as we mentioned in subsection 3.3.1. We solve this by pass-
ing from the reference frame of the experimenters to the frame of the
cylinder, defining

Φ̂(x⃗− s⃗t, t) = Φ(x⃗, t), Γ̂(x⃗− s⃗t, t) = Γ(x⃗, t),

û(x⃗− s⃗t, t) = u(x⃗, t), m̂(x⃗− s⃗t, t) = m(x⃗, t).

With these assumptions, the MFG equations we solve to simulate the experi-
ment are

µσ4

2
∆Φ̂− µσ2s⃗ · ∇⃗Φ̂ + [U0(x⃗) + gm̂]Φ̂ = −λΦ̂ (4.2)

µσ4

2
∆Γ̂ + µσ2s⃗ · ∇⃗Γ̂ + [U0(x⃗) + gm̂]Γ̂ = −λΓ̂ (4.3)

where λ is the same as the one in equation (3.25). These equations differ only
for the sign of the term with the cylinder’s velocity s⃗ = (0, s). The value of λ
in this case is given by observing what happens far from the obstacle, in what
we call the asymptotic regime.In fact, at a certain distance from the intruder,
pedestrians are not impacted by its presence. Thus, the optimal strategy is
not to move, so that a⃗∗ = 0 and the average density would be constant, equal
to m0. Using this information and the definition of the cost functional (3.21)
we get, far from the cylinder,

u(x⃗, t) = −
∫ T

t
(gm0)dτ = −gm0T + gm0t , (4.4)

and thus λ = −gm0. Moreover, to solve equations (4.2) and (4.3) we need
to specify the boundary conditions. To this end, we need to introduce the
velocity field, given by the KFP equation in the moving frame

∂tm̂− s⃗ · ∇⃗m̂ =
σ2

2
∆m̂+

1

µ
∇⃗ · (m̂∇⃗û)

∂tm̂ = ∇⃗ ·
[
σ2

2
∇⃗m̂+ s⃗m̂+

1

µ
m̂∇⃗û

]
= −∇⃗ · j⃗
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from which, since j⃗ = mv⃗, we have that
ˆ⃗v = −∇⃗û

µ
− s⃗− σ2∇⃗m̂

2m̂
. (4.5)

Of course, this definition is still valid in particular for the ergodic regime. We
observe now that passing to themoving framemeans that we now look at the
experiment standing on top of the cylinder. In this case, we see distant pedes-
trians moving with relative velocity−s⃗, and, as we already mentioned, having
a constant density m0. Using these facts, we can say that in the asymptotic
regime, in the ergodic state, it must hold

ˆ⃗vasy = −∇⃗ûasy
µ

− s⃗ = −s⃗

from which we obtain ∇ûasy = 0 and ∇Φ̂asy = 0, leaving us with Φ̂asy = C.
To fix C we recall that Φ̂asyΓ̂asy = m0, meaning that one can take C ≡ √

m0,and this is the boundary condition for both equations (4.2) and (4.3).
Interestingly, it is possible to choose another set of boundary conditions.

In fact, let us consider the change of variables û = ū − µν⃗ · r⃗, with ν⃗ generic
velocity. Substituting (4.5) gives

¯⃗v = −∇ū

µ
− (s⃗− ν⃗)− σ2∇m̂

2m̂
, (4.6)

that, considering the asymptotic behavior, whenput equal to−s⃗ gives,∇ūasy =

µν⃗, from which∇Φ̄e
asy = −(µν)/σ2Φ̄e

asy , that, when solved gives
Φ̄e
asy =

√
m0e

−µν⃗·r⃗
σ2 , Γ̄e

asy =
√
m0e

µν⃗·r⃗
σ2 , (4.7)

that, in the Schrödinger formalism, can be considered a Gauge transforma-
tion.

4.2.2 . Phase Space MFG
Another useful property of the Schrödinger formulation is that, as it was

shown in [11], the MFG solutions are entirely specified by two dimensionless
parameters. In fact, the intruder is characterized by its radiusR and its speed
s. Similarly, the crowd is characterized by a length scale

ξ =

√∣∣∣∣
µσ4

2gm0

∣∣∣∣ (4.8)
the distance over which the crowd density tends to recover its bulk value from
a perturbation, the healing length, and a velocity scale

cs =

√∣∣∣∣
gm0

2µ

∣∣∣∣ (4.9)
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Figure 4.4: Typical density and velocity fields induced by the crossing in-truder in the permanent regime, as predicted by the MFGmodel in dif-ferent regions of the parameter space. Parameters taken in the small
cs/s and small ξ/R quadrant display good visual agreement with theexperimental data. Figure taken from [12].

the typical speed at which pedestrians tend tomove, that, in analogy with NLS
formalism, we call the sound velocity. Note that µξcs = µσ2 has the dimension
of an action and plays the role of ℏ in the original nonlinear Schrödinger equa-
tion. Up to a scaling factor, solutions of (4.2) and (4.3) can be expressed as a
function of the two ratios ξ/R and cs/s instead of depending on the full set ofparameters (R, v, µ, σ,m0, g), which facilitates the exploration of the param-
eter space and makes modeling more robust. Figure 4.4 presents the typical
density and velocity fields simulated in the ergodic regime, for each quadrant
of the reduced parameter space. Intuitively, one understands that cs governsthe cost of motion for the agents while ξ gives the extent of the perturbation
caused by the presence of the intruder. The main difference between large
and small cs/s is the change in rotational symmetry, which reflects a funda-
mental change in strategy. For large values of cs/s pedestrians do not mind
moving, and they rather try to avoid congested areas for as long as possible,
thus creating circulation around the intruder, as shown in the velocity plots.
On the other hand, for small values of cs/s, moving fast costs more; there-
fore, to avoid the intruder, pedestrians have to move earlier, and accept to
temporarily side-step into a more crowded area, thereby stretching the den-
sity along the vertical direction.

4.2.3 . MFG Simulation of the Complete Information Case

We now present the MFG simulation of the experimental configuration
where pedestrians were facing the arriving cylinder. Under these circum-
stances, participants could efficiently estimate the cylinder’s size and velocity,
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Figure 4.5: Qualitative comparison between density, first row, and ve-locity plots, second row, between the experiment, right column, andthe ergodic state of the MFG model, with parameters ξ = 0.2, cs = 0.1,left column, for the case where all pedestrians were facing the incom-ing intruder. Figures extracted from [16].
thus the time it would take for the obstacle to reach them. The simulation
is shown on the left column of Figure 4.5. Here we see how striking the re-
semblance to the experiment is. Starting from the density plot, we clearly see
the vertically symmetric distribution of pedestrians, with a depletion prior and
posterior to the obstacle passage and with an increase on the sides. More-
over, the velocity field obtained from the MFG model correctly displays the
lateral motion of pedestrians stepping aside to make room for the intruder.
We believe MFG good performances should be attributed to long-term antic-
ipation, naturally hardwired to the very structure of MFG. In fact, the back-
propagation of information in the HJB equation (HJB) allows MFG agents to
optimally anticipate the obstacle’s arrival.

We have achieved a good qualitative agreement to the experimental data,
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Figure 4.6: Profile comparison between the MFG simulation and the ex-perimental data for the frontal configuration. The left panel shows theprofile perpendicular to the intruder’s direction of motion, whereas inthe right panel the profile parallel to the intruder’s direction of motionis shown.

using amodel inspired on aminimal version ofMean-Field Games. This points
to the fact that what is needed to accurately capture the empirical behavior,
is already present in the vary basics of MFG. In particular, the long-term an-
ticipation present in this kind of model is what makes it a good choice to re-
produce scenarios such as the one considered here. However, attempting to
reach a perfect quantitative agreement was out of the scope of our work. In
fact, let us take a look at Figure 4.6, where the MFG and experimental density
profiles are compared. The left and right panels represent the comparison of
the density profiles cut along the directions perpendicular and parallel to the
intruder’s motion respectively. As we can see, the agreement in this case is
not perfect, with a clear difference in the maximum density in the left panel,
and a visible discrepancy of the parallel profile. It should be noted that the
data at our disposal is very coarse grained, which makes it hard to accurately
tune the parameters of the MFGmodel. We hope the future experiments will
bring to the table evenmore data that will allow for amore precise calibration
of the model.

4.3 . Reduced Information

Now we turn our attention to the other two configurations the experi-
ment was performed in, namely the center column, where pedestrians were
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oriented randomly, and the right-most column, where pedestrians were giv-
ing their back to the obstacle and were told not to anticipate, of Figure 4.1.
To simulate them, we first need to understand what changes from the frontal
configuration. The difference is indeed the quantity and quality of informa-
tion individuals in the crowds had depending on their orientation. When they
were facing the obstacle, participants had perfect knowledge of its trajectory.
On the other hand, in the other configurations, only some, or in the third
case, no one, could directly see the approaching intruder. This means that
these people had to rely on other elements, like the pressure of the crowd
or the noise, to choose an avoidance strategy, and their knowledge of the
intruder’s future trajectory was less certain than before. To incorporate this
into our MFG we choose to add an exponential term eγ(t−τ) that multiplies
the running cost, much like a continuous interest rate on a cash flow, with γ

being called a discount factor. We expect the consequences to be that future
events will be more or less disregarded, depending on the value of γ. This
term therefore acts as a measure of the knowledge of pedestrians. After this
addition, the model’s cost functional is defined as

c[⃗a](x⃗, t) = E
{∫ T

t
L(x⃗, τ)[m]eγ(t−τ)dτ + eγ(t−T )cT (x⃗T )

}
(4.10)

where γ is the discount factor, and its inverse 1/γ defines an anticipatory
timescale determining how far into the future agents will look while optimiz-
ing. Making use of the dynamic programming principle [9], as in section 3.3,
u(x⃗, t) can be written as
u(x⃗, t) = inf

a⃗

[
L(x⃗, t)[m]dt+ e−γdtu(x⃗+ dx⃗, t+ dt)

]

Ito
= inf

a⃗

{
L(x⃗, t)[m]dt+ (1− γdt)

[
u(x⃗, t) + dt

(
∂tu+ a⃗ · ∇⃗u+

σ2

2
∆u

)]}

where in the last passage the Ito chain rule has been used to calculate the
total time derivative of the value function. Then, by keeping only terms of
order one in dt we obtain

0 = ∂tu− V [m] +
σ2

2
∆u− γu+ inf

a⃗

{µ

2
a⃗2 + a⃗ · ∇⃗u

}
. (4.11)

At this point, by minimizing the term in the curly brackets with respect to a⃗we
still find that the optimal velocity is given by a⃗∗ = −∇⃗u/µ. When we plug a⃗∗

in (4.11) we have
{
∂tu = −σ2

2 ∆u+ 1
2µ(∇⃗u)2 + γu+ V [m]

u(x⃗, t = T ) = cT (x⃗)
. (HJB-d)

The (KFP) equation, on the other hand, is unchanged.
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In subsection 3.3.1 we have introduced the ergodic state of MFG but for
the model without discount factor. Now we make the rather natural hypoth-
esis that, for large T , such a stationary state also exists when γ ̸= 0, i.e. for a
finite anticipation time 1/γ. We therefore assume that for intermediate times,
there exists a state of the discounted system where the observables are in-
dependent on time. If that is the case, (3.24) should still hold, and we can
as before determine the time-dependent part of ue by considering what hap-pens far from the cylinder where the density remains homogeneous, and the
optimal strategy is simply to stand still. In this case (4.10) becomes

u(x⃗, t) = −
∫ T

t
(gm0)e

−γ(τ−t)dτ =
gm0

γ

(
e−γ(T−t) − 1

)
. (4.12)

We observe that if we fix T and let γ → 0, the right-hand side of equation
(4.12) becomes −gm0T + gm0t, recovering equation (4.4) and the γ = 0 case.
On the other hand, if we fix γ and let T → ∞, we have that ue(t) ≡ 0, and
since ue(t) does not depend on the position, this must be true everywhere,
meaning that when γ ̸= 0

ue(x⃗, t) = ue(x⃗) , (4.13)
and therefore λ = 0. Finally, we can write (HJB-d) in its stationary form as

0 =
σ2

2
∆ue − 1

2µ
(∇⃗ue)2 − γue(x)− V [me]. (4.14)

4.3.1 . Phase Space of the Partial Information Case
Before showing the simulation of the experimental configuration, we dis-

cuss the consequences on the phase space diagram of Figure 4.4 of the inclu-
sion of the discount factor in the model. In fact, the inclusion of a non-zero
discount factor γ, which has the dimension of the inverse of a time, implies
that the MFG model is now characterized by three dimensionless quantities,
R̃ ≡ R/ξ, s̃ ≡ s/cs and a third one that can be either γ̃(1) ≡ (ξ/cs)γ or
γ̃(2) ≡ (R/s)γ (Note γ̃(2) = (R̃/s̃)γ̃(1)). The first option, γ̃(1), compares the
timescale associated with anticipation to one of the crowd dynamics, while
γ̃(2) measures it in terms of the timescale characterizing the cylinder. Fig-
ure 4.7 shows the numerical solution of the stationary equations of the dis-
counted MFG model for four choices of (R̃, s̃) and different values of γ. Note
that in the (R̃ ≫ 1, s̃ ≫ 1) and (R̃ ≪ 1, s̃ ≪ 1) quadrants, we have as-
sumed R̃ ∼ s̃, so that γ̃(1) ∼ γ̃(2), and both of them are therefore either large
together or small together. However, in the quadrant (R̃ ≫ 1, s̃ ≪ 1), we
have γ̃(2) = (R̃/s̃)γ̃(1) ≫ γ(1), so we have distinguished the three possible
cases (γ̃(1) ≪ 1, γ̃(2) ≪ 1), (γ̃(1) ≪ 1, γ̃(2) ≫ 1), and (γ̃(1) ≫ 1, γ̃(2) ≫ 1);
and in the same way in the quadrant (R̃ ≪ 1, s̃ ≫ 1) where γ̃(2) ≪ γ(1) we
distinguish the three cases (γ̃(1) ≪ 1, γ̃(2) ≪ 1), (γ̃(1) ≫ 1, γ̃(2) ≪ 1), and
(γ̃(1) ≫ 1, γ̃(2) ≫ 1). Let us consider for instance the III quadrant, where both
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s̃ and R̃ are small. The fact that s̃ is small means the cylinder is perceived as
nearly immobile by the crowd, which explains the rotational invariant shapeof
the solution. For small values of γ, the distance at which an immobile pertur-
bation is felt by the crowd is, as mentioned above, given by the healing length
ξ. As γ increases, this length should be compared to dcs = cs/γ, the lengthscale related to the finite nature of the anticipation horizon. Hence, from Fig-
ure 4.8 we see that the scale of the density perturbation around the obstacle
is given by the smallest between the dcs and ξ. In this case, a large γ does
not, however, modify the qualitative aspect of the density distribution, which
remains vertically invariant. Figure 4.9 then focuses on the I quadrant, where
both R̃ and s̃ are large. Because s̃ is large, the agents feel that the cylinder
moves significantly more rapidly than the speed they can themselves main-
tain comfortably within the crowd. For small γ, they would therefore tend to
anticipate the obstacle arrival by moving sideways quite early, which explains
the low density corridor extending rather far in front of the cylinder in that
case, typically at a distance of order ls = sξ/cs. The density profile is in this
case essentially symmetric, as for γ = 0 the system in the ergodic state is
invariant under the symmetry y 7→ −y. When γ increases, ls should be com-
pared with ds = s/γ, which measures how far from the cylinder, agents can
foresee its motion. As illustrated in Figure 4.9, we see that when ds < ls, thesize of the perturbation in front of the cylinder is given by ds. Contrarily towhat happens in the third quadrant, however, this change of scale qualita-
tively alters the solution, with a density blob forming in front of the cylinder
and, on the other hand, a density profile behind the cylinder which is much
less affected. The variations of the density plots seen on quadrant II and IV
are somewhat more complex since the four length scales (ξ, ls, dcs , ds) are in-volved, but themechanisms observed in Figure 4.8 and Figure 4.9 can be seen
to be at work there too.

4.3.2 . MFG Simulation of the Partial Information Case

Now that we know how the model behaves when we introduce the dis-
count λ, we use it to simulate the other two experimental configurations. In
the experimental configurationwhere participantswere asked to orient them-
selves randomly, we see, from the right column of Figure 4.10, that the main
difference with the frontal case is in the decrease in the depletion in front of
the obstacle, meaning that participants anticipate less. We can imagine that,
when participants were placed randomly, only some of them could gather in-
formation about the obstacle visually, whereas the rest had to resort to all
their other senses to decide how to react. This impacts the global anticipa-
tory behavior and causes a later reaction to the obstacle arrival. The inclu-
sion of the discount factor γ in our MFG is enough to describe the change in
the crowd’s avoidance strategy. The left column of Figure 4.10 shows the nu-
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Figure 4.7: Exploration of the parameter space of the MFG model.Each sub-figure represents the discounted stationary MFG density ob-tained solving (3.27) and (4.14). The axes represent the dimension-less quantities R̃ ≡ R/ξ and s̃ ≡ s/cs. Each quadrant shows dif-ferent values of γ̃(1) ≡ (ξ/cs)γ (or γ̃(2) ≡ (R/s)γ). Parameters ofthe sub-figures in each quadrant in format (s̃, R̃; [γ̃(1)]) [with γ̃(2) =
(R̃/s̃)γ̃(1)]: quadrant I (3, 3; [.25, 5]), quadrant II (3, 0.3; [0.5, 5, 40]), quad-rant III (0.3, 0.3; [0.25, 5]), quadrant IV (0.3, 3; [0, 0.45, 1.8]). Image takenfrom [16].
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Figure 4.8: Focus on the quadrant III of Figure 4.7 with details about thesize of the perturbation. The white circle has radius R+ ξ whereas theblack circle has radiusR+dcs , with dcs ≡ cs/γ (note that the left panel’sblack circle is not visible since dcs = 4). We observe how the smallest ofthe circles is the one governing the distance at which the perturbationdue to the cylinder is felt. Image taken from [16].

merical solution of the MFG system for ξ and cs as for the frontal case andwith γ = 0.5. We can indeed observe that turning on the discount factor pro-
duces the desired effects, by reducing the crowd’s displacement in front of
the obstacle but still conserving the accumulation on the sides and the den-
sity depletion after its passage. Moreover, the simulated velocity field shows
an increase in escaping dynamics in front of the cylinder and slight circulation
around it, while still mantaining a strong lateral component.

Finally, when participants in the experiment had to give their back to the
obstacle and were asked not to anticipate, the observed behavior changed
decisively. As the right panel of Figure 4.11 shows, having lost the visual in-
formation, it was harder to estimate the obstacle’s velocity and direction of
motion, resulting in pedestrians being pushed along by the intruder, and be-
having like granular material [12]. Behind the cylinder, on the other hand, no
significant depletion is shown, and this, we believe, is due to the diffusivity of
the crowd, given the pedestrians’ intention to have asmuch space as possible.
The left column of Figure 4.11 shows the MFG simulation for ξ = 0.4, cs = 0.2

and γ = 6. Here we recover the accumulation in front of the obstacle and the
smaller depletion behind it. By looking at the velocity plots, we clearly see that
pedestrians in front of the cylinder are pushed by the intruder along the di-
rection of its motion. Then, we also remark the agreement with the rotational
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Figure 4.9: Focus on the quadrant I of Figure 4.7 with details about thesize of the perturbation. The purple arrow’s length is R + ls, with ls ≡
sξ/cs the scale of the length at which agents would start moving tooptimally avoid impact if γ = 0, whereas the blue arrow’s length is R+
ds, where ds = s/γ represents how far the cylinder travels during time
1/γ. It is apparent how a congestion in front of the cylinder appearswhen ds < ls because the agents optimize only on a small portion ofthe cylinder’s trajectory. Image taken from [16].
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Figure 4.10: Qualitative comparison between density, first row, and ve-locity plots, second row, between the experiment, right column, andthe ergodic state of the MFG model, with parameters ξ = 0.2, cs = 0.1and γ = 0.5, left column, for the case where pedestrians were orientedrandomly. Image taken from [16].
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Figure 4.11: Qualitative comparison between density, first row, and ve-locity plots, second row, between the experiment, right column, andthe ergodic state of the MFG model, with parameters ξ = 0.4, cs = 0.2and γ = 6, left column, for the casewhere pedestrianswere giving theirback to the incoming cylinder and were asked not to anticipate. Imagetaken from [16].
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motion around the obstacle, analogously to what would happen for granular
inert matter, under purely mechanical forces. We managed to recover the
experimental behavior mainly using the discount factor, slightly modifying ξ

and cs to better fit the data, placing the solution at the boundary between
quadrants I and II. This means that the discounting term correctly reproduces
losses in anticipatory abilities.

4.4 . Solving the Equations

In the previous sections we have compared the results of the MFG simu-
lations to the experimental data. As we said, to obtain them we have solved
the model in the ergodic state. In fact, given that the experimental data were
obtained when the cylinder was halfway of its path, we are not interested
in exploring the transient regime. Solving for the stationary state allows us
to directly access the information we need without solving the entire time-
dependent process. This is, in fact, generally a longer process, in particular
because of the backward-forward nature of the system. However, solving the
ergodic state has its challenges as well. In fact, we already know that one
of the critical aspects of this model is solving the equations under obstacles,
where the value function is expected to be infinite. We know from section
3.3.2 that we can overcome this issue passing to the Schrödinger formulation.
However, this same formulation when a discount factor is added, as we will
see, brings to the table new logarithmic terms that do not allow for a straight-
forward implementation of the method we use for the undiscounted case.
Nevertheless, we will show in section 4.4.3 how one can still find a way to di-
rectly solve for the discounted ergodic state. Before introducing this method,
however, we need to understand how the solution behave near walls.

4.4.1 . Behavior near Walls
As we mentioned in 4.2.1, under the simulated cylinder, the solution for u

should be by definition infinite. In fact, if we look at the cost functional (4.10),
we see that if U0 = −∞ then u = ∞ there. In this subsection we explain what
kind of instability one faces when solving the HJB in its original formulation.
This is true for both the time-dependent and the stationary problem, regard-
less of the presence of a discount factor. However, for simplicity, we will deal
with the undiscounted ergodic equation. Moreover, since we want to under-
stand what happens near walls, we restrict ourselves to the 1D equation and
we assume that the wall is located at x = 0

0 =
σ2

2
uxx −

1

2µ
u2x − γu− gm. (4.15)

Now, since we do not want to be botheredwith parameters andwe are just in-
terested in the behavior of the solution, we make the equation adimensional.
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To do so, first we operate the transformation u = u′µσ2, and have
0 =

µσ4

2
u′xx −

µσ4

2
u′

2
x − µσ2γu′ − gm. (4.16)

Then we apply the change of variables x = x′l and get
0 =

µσ4

2l2
u′x′x′ − µσ4

2l2
u′

2
x′ − µσ2γu′ − gm

0 = u′x′x′ − u′
2
x′ − 2l2γ

σ2
u′ − 2l2gm

µσ4
(4.17)

Which is now adimensional, without changing the location of the wall, which
is still at x′ = 0. From (4.17) we see that if we take l ≪ σ/

√
2γ we can neglect

the γ term and the density term. This means that for x < l we can solve
uxx − u2x = 0, (4.18)

This equation can be transformed into a simple heat equation via the Cole-
Hopf transformation, but it can also be solved by applying the transformation
h(u) = ux, which means that uxx = huh, that gives h = ±eu, and since we
already know that u grows to+∞ near the obstacle, h(u) = ux must be nega-
tive, and thus we choose the minus sign, meaning that h = −eu. At this point,
we can write

x = −
∫ u(x)

+∞
e−udu = e−u(x) =⇒ u(x) = − log x (4.19)

This tells us that near obstacles u goes to+∞ as fast as a negative logarithm.
This is the reason we cannot solve the equations in their (u,m) formulation.
In fact, to approximate the solution near obstacles with a reasonable preci-
sion, we would need a space discretization more and more refined. In par-
ticular, since in HJB we have to compute the second derivative of u, and this
behaves as a logarithm, if we consider the discretization of the logarithm’s
second derivative

d2

dx2
(log x) = − 1

x2
∼ log (x+∆x) + log (x−∆x)− 2 log x

∆x2
,

and expanding the logarithm in the numerator on the right we have that
− 1

x2
∼ − 1

x2
− ∆x2

x4
,

therefore it must be that
1

x2
≫ ∆x2

x4
=⇒ ∆x ≪

√
2x (4.20)

which means that, if the wall is placed at x = 0, this approximation requires
an ever decreasing ∆x the more we approach the wall, making it impossible
to precisely approximate the HJB solution near obstacles and walls with the
(u,m) formulation.
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4.4.2 . Solving the Complete Information Case
Luckily, as we already know, one workaround is found by transforming

the equations through the Cole-Hopf change of variables u = −µσ2 log Φ,
m = ΦΓ, which gives the ergodic system in the moving frame

{
µσ4

2 ∆Φ− s⃗ · ∇⃗Φ+ V [m]Φ = −λΦ,
µσ4

2 ∆Γ+ s⃗ · ∇⃗Γ + V [m]Γ = −λΓ.
(S0)

In this case, since Φ = exp{−u/(µσ2)}, when U0 → −∞, Φ → 0 and we have
no more divergence near walls. At this point, we show that a simple iterative
method is enough to solve (S0) with the boundary conditions chosen in sub-
section 4.2.1, Φasy ≡ Γasy ≡ √

m0. We will explain this method by focusing
on the first equation of system (S0), since it can be applied also on the other,
simply changing the sign of the velocity term. The equation is

µσ4

2
∆Φ− s⃗ · ∇⃗Φ+ (gm+ U0(x⃗))Φ = −λΦ, (4.21)

We want to solve the equation in a box of side L, that we simulate as a grid of
N ×N points corresponding to the (x, y) coordinates in discretized Euclidean
spacewith equal spacing dx = dy. Thenwedefine thematrixΦ ∈ RN,N whose
entries are the discretized version of (4.21)

µσ4

2dx2
(Φi−1,j +Φi+1,j +Φi,j−1 +Φi,j+1 − 4Φi,j)+

− s

dx
(Φi,j−1 − Φi,j+1) + (gmi,j + U0Ui,j)Φi,j = −λΦi,j

At this point, the trick is to make the term Φi,j explicit and obtain
Φk+1
i,j =

µσ4

2 (Φk
i−1,j +Φk

i+1,j +Φk
i,j−1 +Φk

i,j+1)− s(Φi,j−1 − Φi,j+1)dx

2µσ4 − (λ+ gmi,j + U0Ui,j)dx2
, (4.22)

where k is the iteration step, which gives a recursive rule that updates Φi,juntil convergence using the values of each point’s neighbor at the previous
iteration. At convergence,Φwould solves (4.21). Now, the first step is choosing
an initial guess for Φi,j , and for m, which for convenience is chosen to be
a constant function over the grid equal to the boundary values. Then, the
second step is to use (4.22) to update each entry of the matrix Φ, and this
can be done simultaneously for all points in languages like Python, until a
certain criterion of convergence is reached, and call Φnew the results. The
third step is to find Γnew, by applying the same reasoning, simply by changing
the sign of s, and the fourth step is to calculate mnew = ΦnewΓnew. Now, theloop restarts with step two, with Φ = Φnew, Γ = Γnew and m = mnew. Thealgorithm stops when a certain criterion of convergence of mnew is reached.
As to why this algorithm works, let us take a look at its update rule (4.22).
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There we see that what is solved is essentially a Laplace equation ∆Φ = 0,
where Φi,j is taken as the average of its neighbors, but a perturbative term
of order dx2 is added to the denominator, and a gradient term of order dx
to the numerator. Moreover, we observe in particular that under walls or
obstacles, U0 is infinite (in practice a large number), therefore annihilating
the entire fraction, correctly giving Φ = 0. We will now proceed, showing how
this changes when we introduce the discount term γ.

4.4.3 . Solving the Reduced Information Case
Unfortunately, when dealing with the ergodic equations of the discounted

system, using the sameCole-Hopf transformation causesmoreproblems than
it solves. In fact, in this case the discounted ergodic equations are

{
0 = −µσ4

2 ∆Φ− V [m0]Φ + γµσ2Φ logΦ + s⃗ · ∇⃗Φ

0 = µσ4

2 ∆Γ+ V [m0]Γ− γµσ2Γ logm+ γµσ2Γ log Γ + s⃗ · ∇⃗Φ
(S1)

We immediately observe that the symmetry of (S0) is lost here, and various
logarithmic terms appear. Let us take a closer look at why we do not like this.
As before, we choose to focus on the first of the two equations of the system,
whose discretized version reads

0 =
µσ4

2
(Φi−1,j +Φi+1,j +Φi,j−1 +Φi,j+1 − 4Φi,j)

+ (gmi,j + U0Ui,j)Φi,jdx
2 − γµσ2Φi,j log Φi,jdx

2

− s(Φi,j−1 − Φi,j+1)dx,

If we try to explicit Φi,j we obtain

Φi,j =
µσ4

2 (Φi−1,j +Φi+1,j +Φi,j−1 +Φi,j+1)− s(Φi,j−1 − Φi,j+1)dx

2µσ4 − (gmi,j + U0Ui,j − γµσ2 log Φi,j)dx2
(4.23)

One could immediately see here that a fundamental change occurs in the de-
nominator, where a logarithmic term appears. What we observe empirically is
that now the algorithm gets stuck and is unable to reach convergence. In fact,
this is a consequence of the instability caused by the presence of the logarith-
mic term. Indeed, near walls, where Φ is supposed to vanish, the logarithm
grows indefinitely, at some point becoming comparable with U0, but with op-posite sign, canceling out. There is no way to solve this, since to prevent the
logarithm from diverging one should take an infinitely small dx. Fortunately,
however, we have seen that up to a certain l ≪ σ/

√
2γ from the wall, the

cylinder in this case, HJB reduces to equation (4.18), that after substituting
Cole-Hopf gives∆Φ = 0.

Therefore, what we propose is to solve the discounted problem by keep-
ing the iterative approach, but to use it on both formulations (Φ,Γ) up to a
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Figure 4.12: Sketch of the close-up of the grid G in the vicinity of the cylin-der. The green points represents the cylinder. The yellow points arewhere we solve the MFG equations in the (Φ,Γ) formulation, whereasfor the purple points we solve them in the (u,m) one. Although in thepicture the yellow area seems large with respect to the green one, inthe real implementation, since l is small with respect to the cylinder’sradius, the yellow area would be much thinner.
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distance l ≪ σ/
√
2γ from the cylinder, since it is the only way to cope with in-

finite potential, and (u,m) elsewhere, to avoid dealing with the logarithmic
terms. Our goal is to implement a numerical scheme that solves the dis-
counted ergodic MFG using the (Φ,Γ) formulation under the cylinder and up
to a distance l ≪ σ/

√
2γ from it, represented by the green and yellow points

in Figure 4.12. Then, we solve the system in the (u,m) formulation elsewhere,
i.e. the purple points in Figure 4.12, and connect the two.

In practice, we simulate the space using two N × N matrices X and Y

representing the x and y coordinates of N ×N points inside a L× L square
forming the grid G. The only prescription is that we must choose the size
of the grid step ∆x to be small enough to have enough points between the
wall’s edge and l. Moreover, since l ≪ σ/

√
2γ, the higher γ the smaller ∆x

must be. Once the space-step is chosen, for all points of the grid up to a
distance l from the obstacle’s edge, we use (4.22) to solve the equation in
the (Φ,Γ) formulation. To better understand which points are updated with
(4.22), let us define V = {(x, y) ∈ G|U0(x, y) = +∞} as the set of points
under the walls or eventual obstacles. Then, the set of points updated us-
ing rule (4.22) are those in the set U = {(x, y) ∈ G| dV(x, y) ≤ l}, where
dV(x, y) = inf{

√
(x− a)2 + (y − b)2| ∀(a, b) ∈ V} is the distance of the point

of coordinates (x, y) from V . In fact, U contains all points under the cylinder
and all those at a distance at most l. For all other points, i.e. those contained
in Ū = G − U , we solve the (u,m) problem. To find the update rule, we need
to discretize the discounted ergodic HJB equation (4.14) and the ergodic KFP
equation (3.27). For reasons of simplicity, we deal with their form before the
passage to the moving frame. Discretizing HJB equation (4.14) gives

0 =
σ2

2
(uki−1,j + uki+1,j + uki,j−1 + uki,j+1 − 4uki,j)+

− 1

8µ
((uki,j+1 − uki,j−1)

2 + (uki+1,j − uki−1,j)
2)− γuki,jdx

2 − gmk
i,jdx

2,

from which we derive the rule
uk+1
i,j =

−σ2

2 (∆k
i,j) +

1
8µ((u

k
i,j+1 − uki,j−1)

2 + (uki+1,j − uki−1,j)
2) + gmk

i,jdx
2

2σ2 + γdx2
,

(4.24)where
∆k

i,j = uk
i−1,j + uk

i+1,j + uk
i,j−1 + uk

i,j+1

Following an analogous reasoning one can obtain the update rule forthe KFP equation (3.27). Finally, to compute derivatives at the bound-ary between Ū and U , we extend these two sets to overlap with theircomplement, correctly transforming the points to either the (u,m) or
(Φ,Γ) formulation, and then take the derivatives. Moreover, it can be
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generalized to solve equations where other kinds of obstacles are sim-ulated. In fact, in this section, we have shown how these equationsbehave near impassable obstacles and proposed a method to circum-vent the challenge posed by the introduction of a discount factor underthese circumstances.
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5 - Related Projects

In the previous chapter I have completed the discussion of the coreof my research during my PhD. However, during this time I have alsoexplored other related topic which deviate frompurely solving theMFGdifferential equation. In fact, in this chapter I present two researchroads that I started exploring but that could notwalk until the end. Nev-ertheless, although not being able to fulfill all the objectives of theseprojects, I managed to obtain some noteworthy results, which will bepresented in the following. First, we will discuss about my ambition toblend together microscopic agent based modelling of pedestrian dy-namics andMFG, by creating amodel where force-based agents followoptimal trajectories obtained solving aMFG system. Then, I will discussthe results of my work in collaboration with the team of D. Kalise of Im-perial College, in the context of the partnership between the ImperialCollege and the CNRS, which I am part of.

5.1 . Optimal Crowds

In chapter 2 I have introduced some simulation techniques for pedes-trians dynamics, and divided them into microscopic and macroscopic.Then, we have seen in 4 that in situations like the experiment of thecylinder we described in 1.2, models based on short-term anticipationfail at properly reproducing empirically observed behavior. As men-tioned in chapter 4, the reason lies into the the absence of a mecha-nism enabling the prediction of events far enough into the future. Dur-ingmyPh.D.work, I have tried to usewhat I have learntwithMean-FieldGames to create an agent-based microscopic model where agents fol-low an optimal velocity obtained solving a MFG. In principle, this wouldkeep the microscopic description of the motion, important when gran-ularity effects play a key role in the dynamics, while giving the simulatedpedestrians the ability to deal with obstacles with enough anticipation.This would be particularly useful around bottlenecks and doors, wherethe ability of pedestrians to orient themselves to find the right orienta-tion of their body and the right velocity play a crucial role in their abilityto pass through and continue their motion. My goal was also to builda model that others could download freely frommy GitHub repositoryand integrate it with their suggestions. For this reason, I devoted alarge part of the work in building a sound and user-friendly sandboxsoftware, making it easy for the user to describe obstacles like walls,
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Figure 5.1: Initial configuration of a simulation representing a train sta-tion evacuation. Parts in violet represent impassablewalls. In the lowerpart of the figure pedestrians are initialized inside the train cars, andthe different colors represent their target, which can be the door in thewall in the top left part of the figure, representing an escalator, or thedoor in the top right part. The three cylinders represent columns in thetrain station. Video can be found here.
columns and doors, and to initialize the agents, eventually more thanone group possibly with different targets.
Creating the Simulation The model I present here simulates themotion of an arbitrary number of pedestrians trying to evacuate a sim-ulated environment reproducing possible real-life scenarios like trainstations, concert-halls, stadiums etc. These spaces can be built andcustomised with obstacles like walls and cylinders, and with doors orescape points. In practice, we create a grid representing the environ-ment, then we define a variable on this grid equal to a large negativevalues where there are walls and positive values where there are tar-gets. Pedestrians in this model have the sole objective to reach a tar-get, i.e. a door or an escape point, or multiple targets. These targetsare chosen by the user during the initialization phase of the simula-tion, where the user describes where in the environment pedestrianswill start their motion, howmany of them and towards which objective.Figure 5.1 shows an example of an initial configuration of a simulationthat represents the evacuation of a train station. In this case, pedes-trians are initialized in the train cars, in the lower part of the figure.Each dot is a pedestrian in its initial position, and the color represents
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the target, or the targets. The configuration is contained in a .json fileand can be stored and shared separately from the code. Here we seethat each pedestrian can aim either to the door, in the top right part ofthe figure (where the contour line is interrupted), or to the automaticstairs, represented by the hole in the wide rectangle in the top left partof the figure.
Choosing the Desired Velocity Once pedestrians are initialized, themodel finds the trajectories the agents should follow to reach their tar-gets, and agents will try to align their velocity to the desired one. Thisis where MFG enters into play. In fact, as we said the goal is to useMFG to give the agents to ability to anticipate the future, so that theycan avoid obstacles and foresee congested areas and possibly avoidthem. This means that one should, once the room is built and thepedestrians’ initial positions initialized, solve the MFG equations anduse the optimal control a⃗∗ = −∇⃗u/µ to create a velocity floor field thatfor each point of the discretized space will give the optimal velocity.In principle, one could solve the stationary problem, as we previouslydid, obtaining desired velocities that do not depend on time, and thatcan be followed by the pedestrians until the room is empty. However,one can do this only if there are constant exiting and entering flows,which is not the situation we want to model here. For this reason, wechoose to solve the time dependent problem instead. For each simu-lation the user decides a final time T , which is the terminal time of thecost functional (3.21), from which the HJB equation (in its Schrödingerformulation) is solved (backward). In this context, this final time canbe interpreted as the total time the pedestrians are allowed to evac-uate the premises. If this time T is too small, agents do not have thetime to fully evacuate the room, whereas when T is chosen to be verylarge, i.e. in the T → ∞ regime, pedestrians simply evacuate as fast aspossible. Althoughmore computationally intensive, at least solving thetime dependent problem is in principle straightforward since it can bedone with any Runge-Kutta scheme. Then, to find the solution of theMFG, one should solve the KFP, for t ∈ [0, T ], to find the new density,that one should then use to solve HJB again until convergence of theself consistency. However, I was only able to partly implement the fullMFG system. In the following, I explain three main modes in which thesimulation tool could work.

• Without density: in this case we take g = 0, meaning that wedo not consider the mean-field interaction between pedestrians.The potential V is therefore only composed by U0, that gives thedescription of the environment. In this case, pedestrians will try
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Figure 5.2: Elliptic exclusion zones representing two pedestrians. Imagetaken from [23].
to follow a trajectory that simply minimizes the time to the tar-get, but that also contains the information about obstacles, giv-ing them the best trajectory for avoiding them. This is simply anoptimal control problem, it is not a MFG in any kind of form oraspect. In fact, the HJB is only solved once and its solution is usedto obtain the velocity which is optimal again in the sense of thecost functional (3.21). This is the modality that I managed to im-plement fully and the most stable one.

• With density periodically included: in this mode the informa-tion about the density is included inside the HJB equation, butonly at regular intervals. At first, the HJB is solved without densityas in the previous case. Then, after every n steps, a snapshot ofthe density is obtained by performing a Gaussian convolution ofthe positions of the simulated agents. This is then plugged intothe HJB equation, which is solved again and a new optimal veloc-ity is obtained. This new velocity will therefore include the infor-mation about the local density, and at least it principle,it shouldinduce agents in highly congested areas tomove away from thereand possibly take an alternative route. I am still in the process ofimplementing this modality, since I am trying to find the right cal-ibration the crowd’s repulsion. Finally, it should be noted thatthis and the previous modes are analog to what already done byHoogendoorn in [45, 46], although some details may vary.
• Solving the MFG in Advance: this is the mode I was aiming tofully implement. This mode would consist in, once the room isinitialized, solving the time-dependent MFG, eventually including

82



a term for congestion. This should, in principle, give a optimal ve-locity field where the information about the density was alreadyaccounted for. The idea is that by solving theMFG one would findthe trajectories that allow for the best occupation of the space al-ready from the start of the simulation. This would constitute theultimate blending between the MFG anticipation and optimiza-tion capability and the granular description of the agent-basedmodel.We are still at the beginning of the conception of how toactually implement this mode, keeping it for future research.
TheMicroscopic Rule Once the room and the pedestrians are initial-ized, themicroscopic simulation begins. At each time step, each agent’sposition and velocity are updated, using a force based model made ofmainly two force terms

F⃗ = F⃗des + F⃗rep. (5.1)
The first term represents the strive of the agents to follow the desiredvelocity, which is the one obtained by solving the MFG in any of threeways we have listed before. Then, F⃗rep is a repulsion term, dealing withthe interaction between agents and the walls and obstacles. To de-fine it, I followed the footstep of Chraibi et al. [23]. In this work, theauthors introduce what they call the Centrifugal Force Model (CFM).In this model the repulsion depends, other than on the distance, onthe relative velocity as well. Moreover, it assumes that each pedes-trian is described by an exclusion zone, that is an ellipse with centerat the position of the pedestrian. The reason behind the choice of thisshape is that it has been shown empirically that when humanswalk thearea they occupy is elongated in the direction of the motion, and, con-versely, they do not take as much space on the sides as if they werecircles. The dimensions of the ellipse changes with the velocity, withthe major semiaxis being linearly dependent on the speed. Finally, theform of the intensity of the repulsion between pedestrians i and j isgiven by

Frep = min

{
Fmax, kvis exp

{
Rij − ri − rj

η + kvel

}}
(5.2)

• Rij = |R⃗ij| = |R⃗j − R⃗i| is distance between the position of i andthe position of j. We also introduce e⃗ij = R⃗ij/Rij

• kvis =
1
2

e⃗ij ·v⃗i+|e⃗ij ·v⃗i|
v⃗i

is a term simulating the fact that agents in thesimulations only care about what they have in front of them, in a
180 field-of-view.
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Figure 5.3: (a) - Repulsion profiles up to a cutoffof 5m for different valuesof kvel for a small value of η. (b) - Repulsion profiles up to a cutoff of 5mfor different values of kvel for a large value of η. We observe that thelarger the η, the less relevant the value of kvel becomes in determiningthe shape of the repulsion.
• ri and rj represent the distance from the center to the limit of theelliptical exclusion zone, respectively of i and j, along the direc-tion given by e⃗ij . This can be seen in Figure 5.2, where the dashedblue segments represent ri and rj respectively.
• kvel = 1

2
(−e⃗ij · v⃗ij + |e⃗ij · v⃗ij|) describes the fact that the inten-sity of the repulsion increases towards those pedestrians whosevelocity has a component pointing towards pedestrian i. In par-ticular, this allows for pedestrians to be able to walk alongsidewithout being repelled. This can be seen in both panels of Figure5.3, where the repulsion profiles are plotted for different valuesof the relative velocities. Here we see how for small values of kvel,the repulsion, especially for small η rapidly drops.

• η is a term that is necessary to avoid the divergence of the frac-tion when the two pedestrians are walking away from each other,meaning that kvel = 0. In this, case, they keep feeling a certain re-pulsion whose intensity is given by η. Actually, η also gives the im-portance of the relative velocity in the repulsion felt by the agents.In fact, for large values of η, the value of kvel has less and less im-pact on the repulsion intensity, as can be seen in Figure 5.3. Ahigh value of η stiffens the interactions, preventing overlapping,
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Figure 5.4: Snapshot of the train station simulation whose initialisationis shown in Figure 5.1. Video can be found here.
however it also causes oscillations. On the other hand, a lowervalue of η decreases oscillations but leads to more overlapping.In [23], the authors showhow to properly define both the averageoverlapping and the average oscillation, and show how η can bechosen as the value that minimizes both quantities at the sametime.

Performanceof theModel In the following, wewill show some snap-shots of some simulations to showcase some of the most interestingfeatures of the model. All the videos of the simulations discussed hereand other which we do not mention but are noteworthy can be foundhere. It is not in the scope of this work to quantitatively prove the valid-ity of the microscopical approach, since this analysis has already beenperformed in [23]. Here, we just want to show and discuss some of themost notable features this model produces.
• Side by side walking First, we consider a snapshot of the simu-lation of the train station whose initialization is showed in Figure5.1. Figure 5.4 shows the state of the simulation at around 13s.In this picture we observe how the relative velocity part of the re-pulsion plays a crucial role in allowing pedestrians to walk sideby side. Moreover, and this can be seen even more clearly in thevideo, we observe that this model is capable of reproducing a re-alistic crossing behavior. For example, we observe a line of bluepedestrians being crossed by an orange one, who wants to go to
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Figure 5.5: Snapshot of the evacuation of an empty room. Video can befound here.
the top door. In this case, we see how a blue pedestrian slowsdown and let an orange one pass.

• Teardrop shape of evacuation Another interesting test for thismodel is how it performs at simulating an evacuation of a singlegroup of pedestrians from an empty room. This being a classi-cal test for pedestrians, it is possible to find many experimentalpapers about it. In particular, my understanding is that evacua-tions can be calm, in which case a teardrop shaped queue formsin front of the door, where no one is crushed against the wall, orrushed, in which case a semicircle is produced, and people arepressed against the walls near the door. As Figure 5.5 shows, thismodels creates calm evacuations, with a teardrop shaped queue,and this is regardless of the choice of the parameters. In particu-lar, I believe this is due to the fact that agents only react to whatis in front of them. In fact, for a semicircle to be created, peoplemust be pushed by those behind them and with a most centralposition trying to reach the exit. However in this case, agents feelno pressure coming from behind, which make them simply keeptheir distance from those in front, patiently waiting to exit theroom.
• Ability to find complex trajectories The greatest advantage ofobtaining the desired velocities by solving a HJB equation, is thatthe trajectorieswe obtain naturally include the information aboutthe environment, providing, evenwhen no information about the
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Figure 5.6: Snapshot of a simulation representing the evacuation of 54pedestrians from a room where an N shape corridor is present. Theadvantage of finding the trajectories by solving HJB equation is thatthe information about the obstacle is naturally included in the solution.Video can be found here.
density is included, an obstacle avoidance strategy that usuallyproduce realistic behavior, for example as shown in Figure , wherepedestrians follow a narrow N shaped corridor with the exit atits end. Finding the trajectories through the corridor using HJBstraightforwardly give the agents the good N shaped path, with-out the needofmanually imposing them through eventuallymorecomplicated methods.

• Aborting evacuation due to lack of time Another interestingconsequence of finding the desired velocities using theHJB is thatif the total time of the simulation T , which is chosen by the user,is too small, all agents, or just some of them, may not even initi-ate the evacuation, or they may stop where they are. In fact, inthe optimization problem solved by the HJB equation, if reachingthe target in time means going too fast, then it could be moreconvenient, always in the sense of the cost functional (3.21), notto move at all and to accept the price of neglecting terminal con-ditions and attractive potential areas. This could be particularlyuseful for the simulation of the boarding of a train, where someofthe furthest pedestrians anticipate that they do not have enoughtime left to board, and therefore simply give up and stand on theplatform.
The creation of this agent-based model allowed me to experimentthe implementation of theMFG trajectories in amicroscopic force-based
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model. In fact, as we said the ultimate goal of this project is to bringtogether the positive aspects of both worlds. In particular, solving aMFG describing the venue would allow to have an optimal occupationof the space and, therefore, an evacuationwhere accumulations at bot-tlenecks should be avoided at most. Then, it would be interesting tosee if making themicroscopic agents follow theMFG trajectories finallygives an evolution of the density similar to theMFG one. Clearly, a largeeffort should then be made to choose the right MFG matching the be-havior of the microscopic model. In the process, one would possiblylearn a lot about the relation between themicroscopic interactions andtheir mean-field description. Alternatively, another interesting way toproceed would be to try to achieve the self-consistency by substitutingthe KFP equation with the evolution given by the microscopic model.In practice, one would solve HJB once, without information about thedensity, to obtain the "free trajectories". Then, the density of the agentsevacuating the room following said trajectories would be computed atall time (for example using a Gaussian convolution, which is already im-plemented in the code), and this density would then be used to solveHJB again.

5.2 . Solving MFG using PINNs

Neural networks, a cornerstoneofmodern artificial intelligence, rep-resent a class of algorithms inspired by the biological structure andfunction of the human brain. Conceptualized in the mid-20th century,the development of neural networks was propelled by the quest tomimic human cognitive processes through computational means. Theseminal work by McCulloch and Pitts in 1943 [71] introduced the ideaof a simplified brain model through their concept of a neural networkcomposed of threshold logic units, which later evolved into what arenow known as artificial neurons.
Despite their early promise, neural networks experienced periodsof waning interest, known colloquially as the "AI winters," primarily dueto limitations in computing power and data availability which were es-sential for training these models. The resurgence and explosion in thepopularity of neural networks in recent decades can be attributed toseveral key advancements. The advent of powerful graphical process-ing units (GPUs) has drastically reduced the computational time fortraining complex models. Additionally, the digital age has facilitatedthe availability of large datasets, which are crucial for training accu-rate, robust neural network models. Moreover, breakthroughs in al-gorithmic design, particularly the development of backpropagation by
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Rumelhart, Hinton, andWilliams in the 1980s [81], have significantly en-hanced the efficiency and feasibility of training deep neural networks.
Today, neural networks find applications across a diverse array ofacademic and professional sectors. Academically, they are pivotal inadvancing research in fields such as neuroscience, where they helpmodel brain functions and cognitive processes, and in theoretical com-puter science for solving complex computational problems. Profes-sionally, neural networks underpin numerous applications in indus-tries such as finance, for fraud detection and algorithmic trading; inhealthcare, for disease diagnosis and personalized medicine; and inautonomous vehicle technology, where they contribute to the devel-opment of safe, efficient self-driving systems. Moreover, they play acritical role in the development of natural language processing tools,enhancing machine-human interaction. The broad applicability androbust performance of neural networks continue to drive their adop-tion in both academic research and practical, real-world applications,heralding a new era of innovation in numerous fields.
For an intuitive introduction to the actual implementation of thesemodels, we refer to [38] for a rigorousmathematical explanation, where-as we recommend reading the work of Metha et al. [73] for a physicist-friendly introduction to the topic. In general, the simplest form of Neu-ral Network are Feedforward Neural Networks, that will be describedin details section 5.2.1. However, many variations of the Neural Net-work model have appeared in recent years. The most notable exam-ples being Convolutional Neural Networks, that turned out to be veryuseful at image and sound recognition tasks [64], and Recurrent NeuralNetwork [38], very useful in reproducing time series, with a generallyhigh signal to noise ratio, and in language generation, a subject thatrecently reached the spotlight thanks to the appearance of Large Lan-guage Models, usually based on recurrent neural network.
Our goal, in collaboration with D. Kalise and S. Bicego of ImperialCollege, was to use a recently introduced kindofNeural Network, PhysicsInformed Neural Networks, a machine learningmethod inspired to thework of Sirignano et al. [84] and of Raissi et al. [80] and detailed insection 5.2.2, to find the solution of the differential equations of MFG,in particular in the ergodic regime. The broader reason behind thisis to explore the possibility of creating a universal solver for differen-tial equations. In particular, we were interested in exploring how wellthese models can solve equations regardless of their complexity. Aswe will see, in fact, using PINNs one should in principle be able to solveequations of arbitrary complexity. More specifically, our goal was touse the Deep Galerkin Method architecture designed in [84] to solve

89



the equations of MFG. However, although at the moment the solutionof the full bi-dimensional backward forward system was not achievedyet, we will nevertheless show how we could solve a 1D equivalent. Itshould be noted that we are not the first to use Neural Networks tostudy a MFG system. In fact, one could also see the work of Laurière etal. [63], a review of the recent attempts at solving MFG models usingReinforcement Learning, and the work of Cohen et al. [24], where theyporpose two methods using Neural Networks to solve a MFG masterequation, proving the existence of Neural Networks that can learn thesolution of the equation. In particular, they also show that this is inde-pendent of the choice of the initial distribution of the MFG density, aresult which is particularly important for when the initial distribution isnot known in advance.
5.2.1 . A Short Introduction to NN

To briefly introduce the mathematical foundation of Neural Net-works, we will follow the recipe of DeVore et al. [30]. In general, NNcan be describe as a directed acyclic graph, composed of three sets ofnodesN = I ∪H∪O, called the input, hidden and output nodes, andof a set of edges E . Then, to each node except for the input nodes,we associate a function σν : R → R, ∀ν ∈ N /I , called activation func-
tion, and a bias, bν ∈ R. Each node of the graph therefore becomes acomputational unit, and in analogy with biology, in Machine Learningnodes are called also neurons. Then, to each edge e ∈ E , we associatea weight we ∈ R. Now, the way a Neural Networks work is by taking avalue xI as input, with dimensions the number of input nodes. Then,other nodes ν ∈ N /I receive values from nodes ν ′ they share an edgewith e = (ν ′, ν) ∈ E , and output

xν = σν


 ∑

e=(ν′,ν)∈E

wexν′ + bν


 (5.3)

This output is then passed to subsequent nodes following the sense ofthe directed graph until the output nodes ν ∈ O, which give the globaloutput of the Neural Network. More precisely, given xI ∈ Ω ⊆ Rd,where d = |I|, we define
S{we,bν} :

{
Ω ⊆ Rd → Rd′

xI 7→ xO
(5.4)

where d′ = |O|, a mapping between the input and the output values,that depends on {we, bν}, ∀e ∈ E and ∀ν ∈ N /I , which are called train-
able parameters of the network. The definition we have just given is the
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Figure 5.7: Schematic representation of a Neural Network based on afully connected acyclic graph. Starting from the input layer, each layer’snodes are connected solely with all other nodes of the subsequentlayer, until the output layer. Image taken from [30].

most general one can have for a Neural Network, and it allows us toconclude that these mathematical objects are just very complex mapsof an input value to the output, and each NN is actually a family of func-tions parameterized by a large number of parameters.
The most successful type of Neural Network, is the one based on a

fully-connected graph, where nodes apart from the input ones are orga-nized in layers, and edges only exist between nodes of subsequent lay-ers. Figure 5.7 shows a schematic representation of a fully connectedgraph. This kind of NN are also called feed forward neural networks, be-cause the information goes from the input to the output nodes follow-ing the direction of the edges. All in all, therefore, we have establishedthat NN are families of functions parameterized by their trainable pa-rameters, that could be chosen to reproduce, in theory, any kind ofgiven output. This makes NN an excellent choice to approximate em-pirical data or other functions. Indeed, it is known since the 1980s [29],that given any target function f and ε > 0, it is possible to choose aset of trainable parameters, and an architecture, so that S{we,bν} canapproximate f over any given domain with tolerance of ε. However,what made it that NN did not emerge as the approximation method ofchoice until recently was the fact that finding the right set of trainableweights was deemed too hard to make this kind of model suitable forany practical application. It is only recently that, in fact, the compu-tational power necessary to train these models with sufficiently largenumber of parameters became available to the public, which fostered
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their use and sparkled theirmassive application in science and beyond.In our case, however, we choose to focus on a specific application ofNN, in particular the solution of differential equations emerging fromphysics related problems, which will be the subject of the next section.
5.2.2 . Physics Informed Neural Networks - PINNs

Aswe said, Neural Networks are excellent approximation functions.Therefore, it should not surprise that attempts were made to used thisobjects to approximate solution of differential equations. This topicwas first explored by Lagaris et al. [57] and Dissanayake et al. [31],in the 1990s, but it was not until recently that it gained new popular-ity thanks to the work of Raissi et al. [80]. In this paper, the authorsuse Neural Networks to solve some of the most famous equations inPhysics. In general, let us consider any differential equation with un-known u(x⃗, t) defined over Ω ⊆ RD × [0,+∞), this can be expressedas
f(u, u̇, ü, . . . , t; ω⃗) = 0. (5.5)

where f is a real valued functional, and ω⃗ represents the vector con-taining the parameters of the equation. Then, in [80] two situations areproposed. The first is, given equation (5.5) with fixed ω⃗, and, eventu-ally, a set of observations O = {uo
i , x

o
i , t

o
i}, giving us the true value ofthe solution in certain points of the domain Ω, we want to solve thedifferential equations, i.e. find the true value of u for a set of uniformlysampled points P = {(xi, ti) ∈ Ω ⊆ RD × [0,+∞)}. To do so, the au-thors in [80] propose to approximate the true solution by uθ, a NeuralNetwork function like the one in equation (5.4), where θ is the set ofthe trainable parameters. Then, one would define the loss functions

LO(θ) =
1

|O|
∑

O

|uθ(x
o
i , t

o
i )− uo

i |2, (5.6)
LE(θ) =

1

|P |
∑

P

|f(uθ(xi), u̇θ(xi), üθ(xi), . . . , ti; ω⃗)|2. (5.7)
and the goal is therefore to train the Network, i.e. find the trainableparameters that minimize the global loss function

L(θ) = LO(θ) + LE(θ). (5.8)
It should beobserved that the operator describing thedifferential equa-tion f , could be, in theory, of any complexity, and possibly non linear.In fact, thanks to the advances in the field of automatic differentiation[8], routines available in programming languages such as Python areable to calculate the derivative of the approximating function uθ, with
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respect to the input coordinates and model parameters. therefore, itis possible to define any kind of differential operator.The second scenario discussed in [80], is the one where a largedataset of empirical measurements {uo
i , x

o
i , t

o
i}i∈N⊆N is available, andthe physical law, i.e. the differential equation defined by the operator

f(uθ(xi), u̇θ(xi), üθ(xi), . . . , ti; ω⃗),

the phenomenon originates from is known, but the parameters ω⃗ areunknown. In this case, by using a loss function like LO(θ), one is ableto find both the function best reproducing the measurements and theparameters of the equation originating them.
5.2.3 . Solving MFG with PINNs

In our case however, the data at our disposal is too noisy and, al-though the MFG accurately reproduce the experimental features, weare not in the position to claim to have found a general physical lawof pedestrians motion, with the same confidence one has about theSchrödinger equation for Quantum Mechanics. Therefore, we cannotuse the experimental data in the same way as explained above. How-ever, nothing prevents us from trying to create a Neural Network andto train it to solve the differential equations of the MFGmodel. Indeed,this is what we have been trying to do, together with Ph.D. student SaraBicego and Dr. Dante Kalise of the Imperial College of London, duringthe last three years.In particular, wewere interested in leveraging PINNs to create a uni-versal solver for MFG equations, which would be extremely useful toexplore different formulations of theMFGmodel. In fact, in all relevantliterature on the subject, little assumptions aremadeon the formof theloss LE(θ), and the approach has been proven working for linear, el-liptic, parabolic or hyperbolic, and non-linear differential equations. Inparticular, this would give us freedom to modify the MFG without wor-rying about howmuchmore complicated themodel would become, forexample like when we added the discount factor to the model in sec-tion 4.3. In that case, the appearance of the logarithmic term meantthat we could no longer use our finite different scheme without modi-fying it profoundly.To explore how such a solver could be defined, we followed thework of Sirignano and Spiliopoulos [84]. In this work, the authors de-fine a model where, in addition to minimizing the loss related to theequation’s operator, they also add terms related to the initial andbound-ary conditions. In fact, when using PINNs, we can include the informa-tion about initial conditions u(x, 0) = u0(x), for time-dependent prob-
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lems, and eventually also boundary values u(x, t) = ub(x), x ∈ ∂Ω, sim-ply by adding the corresponding terms in the lost function. The initialcondition term would read
LIC(θ) =

1

|P |
∑

P

|uθ(xi, t = 0)− u0(xi)|2 (5.9)
whereas for the boundary condition we have

LBC(θ) =
1

|∂P |
∑

∂P

|uθ(xi, ti)− ub(xi)|2 (5.10)
where ∂P = {(xi, ti) ∈ ∂Ω × [0,+∞)}. Our effort consisted in adapt-ing the tools introduced in [84] and [80] to our MFG problem at hand.In fact, as said we do not use any experimental points to guide to-wards the discovery of the solution, and the problem we want to solveis time-independent, since we only care solving the stationary state ofthe MFG. Therefore, the only loss terms adapted to the solution of ourproblem are the one relative to the boundary conditionsΦ = Γ =

√
m0,as we saw in section 4.2.1, and to the solution of the equation.So, to sum it up, our goal was to use Machine Learning, and in par-ticular PINNs, as intended by the spirit of the papers [80, 84], to solvethe stationary discounted MFG coupled system differential equations(S1). We have not accomplished this goal and, in the following, I will talkabout what results we were able to obtain and explain what are themajor issues preventing us from completely solving the problem. Theresults are listed in order of complexity and of level of achievement.To have a gradual approach to the problem, and thus to eventualcomplications, we started by solving only the equation for Φ, in onedimension, for γ = 0 and g = 0. In this case, the equation becomes

µσ4

2
∂xxΦ + U0Φ = 0, (5.11)

where U0 represents an obstacle between −1 and 1. We want to solvethis equation in the interval [−5, 5], with boundary conditions given by
Φ(−5) = Φ(5) = 1. In this case we already know how the solutionshould look like. In fact, we expect Φ to be equal to 0 for all pointsunder the obstacle. Then the solution is a straight line on both sides ofit, between its base at−1 and 1 and the boundary of the interval, wherethe solution is equal to 1, as per the boundary condition. This equationcan be easily solved with a finite difference method similar to the onealready used in section 4.4, but now we want to use a Neural Networkand see if we recover the good results. We define a NN composed of 4feed-forward hidden layers, composed of 100 nodes each.
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Rectified Linear Unit (ReLU) f(x) = max(x, 0), ∀x ∈ RExponential Linear Unit (ELU) f(x) = x ∀x ≤ 0, f(x) = ex − 1 otherwise.Scaled Exponential f(x) = x ∀x ≤ 0, f(x) = λα(ex − 1) otherwiseLinear Unit (SELU) λ = 1.050711... and α = 1.673263...Sigmoid f(x) = (1 + e−x)−1

Table 5.1: Definition of the activation functions used in our PINNsmodel.

Figure 5.8: Solution of equation (5.11) using both a finite differencescheme (solid line behind the dots), and a Neural Network (blue dots).We can see how the NN correctly recovers the finite difference solu-tion.
For each layer we choose ReLU activation function (see table 5.1)and use the Adam method [51] to perform the learning. To reproducethe interval we uniformly sample 2000 points between −5 and 5, andthe terms composing the loss will be the one relative to the PDE LE ,and the one for the boundary conditions LBC . As Figure 5.8 shows,the NN is able to correctly recover the finite difference solution, with acumulative loss of 2.5 × 10−2, after 10000 training steps. This does notsurprise us, given the simplicity of the problem.Now that we proved that this model is capable of solving the simpleequation (5.8), we complicate the problem, always in one dimension,without discount but with now g < 0. In this case the equation for Φbecomes

µσ4

2
∂xxΦ + (U0 + gm+ λm0)Φ = 0, (5.12)

where λ = −gm0 and m = Φ2, since we know that in the ergodic state
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Figure 5.9: Solution of equation (5.12) using both a finite differencescheme (solid line behind the dots), and a Neural Network (blue dots).We can see how the NN correctly approximates the finite differencesolution.
Φ = Γ. The space interval and the boundary conditions are the same asbefore. In this case, we have found that the configuration that seemsworking best is with 9 hidden layer, alternating ReLU, ELU and SELU (seetable 5.1), activation functions, of 300 nodes each. The idea behind thisconfiguration is to have enough complexity to let the training decidewhat kind of layers to use to reproduce the various features of the so-lution. Aswe did before, we train theNNusing Adam optimizer, and theloss function is defined by the PDE and the boundary term, plus, con-trarily to what we had before, a term forcing the solution to be equalto 0 under the obstacle. In fact, one of the most interesting featuresof solving the equations with NN is that we can include into the lossfunction any information we have on the solution, ad this should helpthe training discover the solution of the PDE more easily. As Figure 5.9shows, the Neural Network configuration we have chosen is capableto approximate fairly well the finite different curve, obtained with theusual technique of section 4.4. However, we can clearly see how thecurve wiggles in some areas, especially near the boundary. Moreover,since we have used a large value of U0 to simulate the obstacle thevalue of the loss function is high and around 10e2. However, what wehave observed is that the loss does not seem to go any lower than thatorder ofmagnitude, evenwhenwe let the training go on for longer. The
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loss stabilizes after around 10k steps and remains at that level regard-less of the choice of the learning rate or the implementation of a learn-ing schedule. Other relevant literature in the field, such as [10] sug-gest that this problem can be addressed by changing the optimizer. Inthis work, the authors show that a modified version of the Levenberg-Marquardt algorithm drastically outperforms Adam especially in solv-ing non linear differential equations. We leave the exploration of thistopic in relation to MFG for future research.At this point, we felt confident enough to pass to the two dimen-sional problem, and to add themoving cylinder to themodel, thereforeadding the velocity term to theMFG equations. However, we were onlyable to recover somethingmeaningful for the γ = 0 case, therefore theequations of system (S0). In this case, we used a NN with 5 hidden lay-ers, 100 each, 4 of them with sigmoid activation function (see table 5.1)and the last one with ReLU activation. The loss function used in thiscase is comprised of a term penalizing the PDE operator and one termfor the boundary condition. Figure 5.10 shows the best results we wereable to obtain, with a loss of the order of 10−2. Here we see the densityplot obtained solving the MFG equations with the same parameters ofsection 4.2.1, but with average density 2.5ped/m2. As we can see, the al-gorithm seems to find something that resembles the finite differencesolution, with the low density corridors in front and behind the obsta-cle (located at (0, 0) but not shown in the picture to better show thesolution details around it), and a higher density at the sides. However,it is evident that the level of accuracy of the details is far from whatwe obtain with the finite difference scheme. Moreover, the compu-tational time needed to train the NN is several orders of magnitudelarger than the time needed to obtain a much crispier result with thefinite difference method. All in all, although we admit that we are notMachine Learning engineers and we have not taken the time to me-thodically explore a wide number of configurations of the NN, whatwe have observed suggests that this kind of method to solve differen-tial equations, although very promising on paper, is still at its infancyand we leave future researchers discover how to tune it to make it aviable alternative in situations where finite difference schemes cannotbe used.
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Figure 5.10: Solution of the MFG equations (S0) using a Neural Networkwith the same parameters used in section 4.2.1 for the frontal case, butwith average density of 2.5ped/m2.
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Conclusion

Pedestrian dynamics is a fundamental field of study for urban plan-ning, architecture, transportation engineering, and crowdmanagement.Throughout this thesis, we have explored the pedestrians’ behaviorthrough experimental observations and simulations, with a particu-lar focus on long-term anticipation in pedestrian movements. This re-search has highlighted the limitations of existing models and used amodel based on the theory of Mean-Field Games (MFG), capable ofmore accurately capturing these behaviors. The experimental setup,involving controlled crowds and amoving cylindrical obstacle, revealedthat pedestrians exhibit anticipatory behaviors that deviate significantlyfrom those observed in granular materials. This finding underscoresthe necessity of models that account for the cognitive and anticipatoryaspects of human behavior, which are often oversimplified or over-looked in traditional pedestrian dynamics models.The critical analysis of two widely used pedestrian dynamics mod-els—Helbing’s social forcemodel and the ANDAmodel—demonstratedtheir inability to fully capture the anticipatory nature of pedestrianmove-ment. These models were found to be too myopic, incapable of cor-rectly describing the long term anticipation necessary to reproduce theexperimental behavior. To address these shortcomings, we proposeda model based on Mean-Field Games. MFG models, which merge op-timal control and game theory, offer a robust framework for describ-ing interactions among a large number of agents through their aver-age density. This approach simplifies the mathematical treatment ofthe problem while capturing the essential features of anticipation anddecision-making in pedestrian behavior. By incorporating a discountfactor that modulates the weight given to future events during the op-timization process, our MFG model successfully predicted the experi-mental anticipation patterns.Most importantly, the good agreement between the experimentaldata and the MFG simulation suggest something crucial. In fact, withour work we do not want to convince that humans walk while solvinga complex system of differential equations, nor that they always havea complete information about the future. However, we want to con-vey the message that in some simple a familiar enough cases, humanscan coordinate and spontaneously find a Nash equilibrium strategy.This is otherwise not always the case. In fact, Nash equilibria are notalways immediately recognized. Moreover, as we have seen with theprisoner’s dilemma, they may not even be the best collective choice.
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However, as we have seen, once the individuals start playing the NE,no one has any interest in deviating from this trajectory, and this usu-ally ensures the stability of the system. For example, in the case of theavoidance of the cylinder, pedestrians as a group spontaneously coor-dinated and behaved following the NE, granting a stable and efficientprocess.
With respect to all the contributions to the field of pedestrian dy-namics, our MFG model highlights some important aspects of pedes-triansmotion thatmay have been overlooked, or that have been poorlyimplemented in the past. In particular, our model showed that macro-scopic models, although falling short of accurately describing the gran-ularity of crowds, can accurately describe some aspects of the opera-tional dynamics of pedestrians. In particular, to the best of our knowl-edge, this is the first time that aMFGmodel is directly tested against theempirical data, which adds the validity of our findings. Moreover, ourmodel, although mathematically quite complex, has simple hypothe-ses and few assumptions, with a very similar structure to the modelintroduced by Lasry and Lions. Interestingly, already with this simpleform of themodel we were able to reproduce the experimental config-uration where pedestrians were facing the obstacle, simply finding theright regime of parameters. Besides, we have seen that thanks to theaddition of a single parameter, the discount factor, wewere also able tosimulate the other two experimental configurations. This proves thatthe discount factor is indeed enough to modulate the agents’ knowl-edge about the future. It is clear, however, that using a MFG modelto simulate pedestrians motion is not always realistic. For example, itwould be hard to justify that a person evacuating a multi-storey build-ing perfectly knows everything that happens in the building. Neverthe-less, as our work shows, there still are situations that are simple andfamiliar enough where MFG can achieve a better result than other sim-ulation techniques. Finally, thanks to the passage to the Schrödingerformulation, we are able to provide a complete analysis of the parame-ter space of MFG, analyzing their role and their impact on the observedbehavior. To the best of our knowledge, ours constitutes the first at-tempt at such an extensive analysis.
In addition to the theoretical advancements, this thesis presentedtwo corollary projects that extend the application of MFG in practicalscenarios. The first project involved developing a simulation softwarenamed Optimal Crowds, which integrates MFG with agent-basedmicro-scopic models. This hybrid approach allows for detailed individual in-teractions in scenarios such as evacuations, where traditional density-based models fall short. This project can be seen as a natural contin-
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uation of my main work. In fact, with our MFG model we were able togenerate a strategy that we proved to be very similar to the one usedby real pedestrians in the experiment. Therefore, it would be interest-ing to use this knowledge to create a microscopic model where agentsdeal with obstacles similarly to what happens in real life.The second project explored the use of Physics Informed NeuralNetworks (PINNs) to solve MFG equations. This innovative approachleverages the power of neural networks to find solutions to complexequations, paving the way for more efficient and scalable simulations.This project was certainly ambitious in its attempt to find a universalsolver for differential equations. However, being able to reach this goalat least partially would certainly ease the understanding of many phys-ical phenomena, even beyond pedestrian dynamics. For this reason,we hope that future discoveries in how these machine learning mod-els work will allow for the creation of reliable and effective solvers.The implications of this research are far-reaching. By incorporat-ing long-term anticipation into pedestrian dynamics models, we pro-vide a more accurate and realistic representation of pedestrian behav-ior. This has significant implications for the design and managementof urban environments. With better predictive models, urban plan-ners and engineers can create safer, more efficient, and more inclu-sive public spaces. These models can help identify potential conges-tion points, optimize layouts to enhance flow, and implement effectivecrowdmanagement strategies to prevent incidents such as overcrowd-ing and stampedes. Recognizing the anticipatory nature of pedestrianscan lead tomore humane and responsive designs, accommodating thediverse needs of all city dwellers, including those with disabilities ormobility challenges. In conclusion, this thesis represents a significantstep forward in the field of pedestrian dynamics. By challenging ex-isting models and proposing a novel approach based on Mean-FieldGames, we have laid the groundwork for more accurate and practi-cal simulations of pedestrian behavior. As cities continue to grow andevolve, the importance of understanding andmanaging pedestrian dy-namics will only increase, making this research both timely and essen-tial.
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but game players".
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Physics and is titled "Discounted Mean Field Game model of a dense
static crowd with variable information crossed by an intruder".
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The local navigation of pedestrians is assumed to involve no anticipation beyond the most immi-
nent collisions, in most models. These typically fail to reproduce some key features experimentally
evidenced in dense crowds crossed by an intruder, namely transverse displacements towards regions
of higher density, due to the anticipation of the intruder’s crossing. We introduce a minimal model
based on mean-field games, emulating agents planning out a global strategy that minimizes their
overall discomfort. By solving the problem in the permanent regime thanks to an elegant analogy
with the nonlinear Schrödinger’s equation, we are able to identify the two main variables governing
the model’s behavior and to exhaustively investigate its phase diagram. We find that, compared
to some prominent microscopic approaches, the model is remarkably successful in replicating the
experimental observations associated with the intruder experiment. Besides, the model can capture
other daily-life situations such as partial metro boarding.

I. INTRODUCTION

Although crowd disasters (such as the huge stampedes
that grieved the Hajj in 1990, 2006 and 2015 [1]) are more
eye-catching to the public, the dynamics of pedestrian
crowds are also of great relevance in less dire circum-
stances. They are central when it comes to designing and
dimensioning busy public facilities, from large transport
hubs to entertainment venues, and optimizing the flows of
people. Modelling pedestrian motion in these settings is a
multi-scale endeavour, which requires determining where
people are heading for (strategic level), what route they
will take (tactical level), and finally how they will move
along that route in response to interactions with other
people (operational level) [2]. The strategic and tactical
levels typically involve some planning in order to make
a choice among a discrete or continuous set of options,
such as targeted activities, destinations [2], paths (pos-
sibly knowing their expected level of congestion) [3], or,
in the context of evacuations, egress alternatives [3, 4].
These choices are often handled as processes of maximisa-
tion (minimisation) of a utility (cost), which may depend
on lower-level information such as pedestrian density or
streaming velocity [5, 6].

The operational level deals with much shorter time
scales and is generally believed to involve no planning
ahead. Anticipatory effects are thus merely neglected
in so-called reactive models, especially at high densities,
possibly with the lingering idea that mechanical forces
then prevail. For example, the popular social force model
of Helbing and Molnar [7], still at the heart of several

commercial software products, combines contact forces
and pseudo-forces (“social” forces) which, in the original
implementation, are only functions of the agents’ current
positions (and possibly orientations). Some degree of an-
ticipation has since been introduced into these models to
better describe collision avoidance, e.g., by making the
pseudo-forces depend on future positions rather than cur-
rent ones [8, 9]. In a dual approach, the most imminent
collisions can be avoided by scanning the whole velocity
space [10–12] or a subset of it [13] in search of the opti-
mal velocity. All these dynamic models, at best premised
on a constant-velocity hypothesis, owe their high com-
putational tractability to their relative shortsightedness.
Note that, to mitigate these limitations, in particular in
the case of denser crowds, anticipated collisions beyond
the most imminent one [14] or, at a more coarse-grained
scale, local density inhomogeneities [5] can be taken into
account.

In this paper, we argue that, even at the operational
level, crowds in some daily-life circumstances display
signs of anticipation that may elude the foregoing short-
sighted models; this will be exemplified by the recently
studied response of a dense static crowd when crossed by
an ‘intruder’ [15, 16]. We purport to show that a min-
imal game theoretical approach, made tractable thanks
to an elegant analogy between its mean-field formulation
[17–19] and Schrödinger equation [20, 21], can replicate
the empirical observations for this example case, provided
that it accounts for the anticipation of future costs. To
our knowledge this is the first experimental validation
of Mean Field Games (MFG) as a relevant framework
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to study pedestrian dynamics. Beyond that particular
example, the approach efficiently captures certain be-
haviours of crowds at the interface between the opera-
tional and tactical levels that are crucial to consider in
attempts to improve the security of dense crowds.

II. CROSSING A STATIC CROWD

Crossing a static crowd is a common experience in busy
premises, from standing concerts and festivals to railway
stations. Recently, small-scale controlled experiments
[15, 22] shed light on trends that robustly emerged in the
response of a crowd crossed by a cylindrical intruder, as
displayed in Fig. 1 (right column). The induced response
consists of a fairly symmetric density field around the
intruder, displaying depleted zones both upstream and
downstream from the intruder, as well as higher-density
regions on the sides. Consistently the crowd’s displace-
ments are mostly transverse: pedestrians tend to simply
step aside. A similar behavior - though more noisy - was
observed when the intruder was a single pedestrian. In-
cidentally, a qualitatively similar response was filmed at
much larger scale in a dense crowd of protesters in Hong-
Kong, which split open to let an ambulance through [23].

As penetration by an intruder is a benchmark test for
granular matter, it is instructive to compare the response
of the two systems. Actually the above crowd features
strongly depart from the mechanical response observed
in experiments [24, 25] or simulations [26] of penetration
into a granular mono-layer below jamming, where grains
are pushed forward by the intruder [see Fig. 1 (left col-
umn) and Movie S1] and accumulate downstream, in-
stead of moving crosswise. More worryingly, these “me-
chanical” features are also observed (see Fig. 1 in [27])
in simulations of pedestrian dynamics performed with
the social-force model [7], which rests on tangential and
normal forces at contact and radial repulsive forces for
longer-ranged interactions.

Introducing collision anticipation in the pedestrian
model helps reproduce the opening of an agent-free ‘tun-
nel’ ahead of the intruder, as illustrated with a ‘time
to (first) collision’ model (second column of Fig. 1 and
Movie S2) directly inspired from [12], details of which can
be found in Appendix B. However, even though the dis-
placements need not align with the contact forces in this
agent-based model, the displacement pattern diverges
from the experimental observations, with streamwise
(walk-away) moves that prevail over transverse (step-
aside) ones. Indeed, such models rely on ‘short-sighted’
agents, who do not see past the most imminent collision
expected from constant-velocity extrapolation.

Results will naturally vary with the specific collision-
avoidance model and the selected parameters. Yet, the
failure of diverse state-of-the-art models to reproduce
prominent experimental features suggests that an ingre-
dient is missing in these approaches based on short-time
(first-collision) anticipation.

III. A GAME THEORETICAL APPROACH TO
ACCOUNT FOR LOW-LEVEL PLANNING

To bring in the missing piece, we start by noticing
that the observed behaviours are actually most intuitive:
Pedestrians anticipate that it will cost them less effort
to step-aside and then resume their positions, even if
it entails enduring high densities temporarily, than to
endlessly run away from an intruder that will not de-
viate from its course. But accounting for this requires
a change of paradigm compared to the foregoing ap-
proaches. Game theory is an adequate framework to
handle conflicting impulses of interacting agents endowed
with planning capacities: agents are now able to optimize
their strategy taking into account the choices (or strate-
gies) of others. So far, its use in pedestrian dynamics has
mostly been restricted to evacuation tactics in discrete
models [4, 28, 29]. Unfortunately, the problem becomes
intractable when the number of interacting agents grows.

To overcome this quandary, we turn to MFG, intro-
duced by Lasry and Lions [17, 18] as well as Huang et al.
[19] in the wake of the mean-field approximations of sta-
tistical mechanics, and since used in a variety of fields,
ranging from finance [30–32] to economics [33–35], epi-
demiology [36–38], sociology [36, 39, 40], or engineering
[41–43]. While applications of MFG to crowd dynamics
have already been proposed [3, 44–48], our goal here is to
demonstrate the practical relevance of this approach at
the operational level, using an elementary MFG belong-
ing to one of the first class of models introduced by Lasry
and Lions [17], and which can be thoroughly analysed
thanks to its connection with the nonlinear Schrödinger
equation.

In the mean field approximation, the “N -player” game
is replaced by a generalized Nash equilibrium [49] where
indiscriminate microscopic agents play against a macro-
scopic state of the system (a density field) formed by the
infinitely many remaining agents. Consider a large set
of pedestrians, the agents of our game, characterised by
their spatial position (state variable) Xi ≡ (xi, yi) ∈ R2,
which we assume follows Langevin dynamics

dXi
t = aitdt+ σdWi

t (1)

where the drift velocity (control variable) ait reflects the
agent’s strategy. In (1), σ is a constant and components
of Wi are independent white noises of variance one ac-
counting for unpredictable events. Agents are supposed
identical, apart from their initial positions Xi(t = 0) and
realisations of Wi.

Each agent strives to adapt their velocity ait in order to
minimise a cost functional we assume to take the simple
form

c[ai](t,xi
t) =

〈∫ T

t

[
µa2

2
− (gme(t,x) + U0(x−vt))

]
dτ

〉

(2)
where ⟨·⟩ denotes averaging over all realizations of the
noise for trajectories starting at xi

t at time t. In this
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Figure 1: Data (middle row) and velocity (bottom row) fields induced in a static crowd by a cylindrical intruder
that crosses it; the transparency of the velocity arrows is linearly related to the local density. (Column 1)

Simulations of a mono-layer of vibrated disks. (Column 2) Simulations of an agent-based model wherein agents may
anticipate the most imminent collision. All fields have been averaged over many realisations. (Column 3) Results of

the mean-field game introduced in this paper. (Column 4) Controlled experiments of [15]. Note the relatively
symmetrical density dip in front and behind the intruder, as well as the transverse moves. (Columns 1-3) The
crowd’s density and intruder’s size have been adjusted to match the experimental data (average density of 2.5

ped/m2). Details of simulations and videos showcasing time evolution can be found in Appendix.

expression, the term µa2/2, akin to a kinetic energy, rep-
resents the efforts required by the agent to enact their
strategy (how much/how fast they have to move in this
case), while the interactions with the other agents via

the empirical density me(t,x) =
∑

i δ(x −Xi(t))/N are
controlled by a parameter g < 0. Finally, the space
occupied by the intruding cylinder, which moves at a
velocity v = (0, v), is characterised by a ‘potential’
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U0(x) = V0Θ(∥x∥−R) that tends to V0 → −∞ inside the
radius R of the cylinder and is zero elsewhere. Agents
need to balance those three terms over the whole duration
T of the game, which enables them to make costly, but
temporary moves if they lower the overall cost. For ex-
ample, depending on the parameters, stepping aside into
a high density region (a cost-inefficient strategy a priori)
to let the intruder through may prove overall more effi-
cient than running away from it; the first strategy implies
paying a high cost upfront, but nothing afterwards, while
the second implies paying a comparatively low cost that
however extends over the whole duration of the game,
resulting in a potentially worse pay-off.

In the presence of many agents, the density self-
averages to m(t,x) = ⟨me(t,x)⟩noise and the optimization

problem (2) does not feature explicit coupling between
agents anymore. It can then be solved by introducing
the value function u(t,x) = min

a(·)
c[a](t,x), which obeys a

Hamilton-Jacobi-Bellman [HJB] equation [18, 50], with
optimal control a∗(t,x) = −∇u(t,x)/µ. Consistency
imposes that m(t,x) is solution of the Fokker-Planck
[FP] equation associated with (1), given the drift veloc-
ity a(t,x) = a∗(t,x). As such, MFG can be reduced
to a system of two coupled partial differential equations
[17, 18, 20, 21].





∂tu(t,x) =
1

2µ
[∇u(t,x)]

2 − σ2

2
∆u(t,x) + gm(t,x) + U0(x− vt) [HJB]

∂tm(t,x) =
1

µ
∇ · [m(t,x)∇u(t,x)] +

σ2

2
∆m(t,x) [FP]

(3)

The atypical “forward-backward” structure of Eqs. (3),
highlighted by the opposite signs of Laplacian terms in
the two equations, accounts for anticipation. The bound-
ary conditions epitomise this structure: based on (2), the
value function has terminal condition u(t = T,x) = 0,
while the density of agents evolves from a uniform initial
distribution m(t = 0,x) = m0. In previous work, we have
evinced a formal, but insightful mapping of these MFG
equations onto a nonlinear Schrödinger equation (NLS)
[20, 21, 51], well studied in fields ranging from nonlinear
optics [52, 53] to Bose-Einstein condensation [54, 55] and
fluid dynamics [56, 57].

We perform a change of variables (u(t,x),m(t,x)) 7→
(Φ(t,x),Γ(t,x)) through u(t,x) = −µσ2 log Φ(t,x),
m(t,x) = Γ(t,x)Φ(t,x) [21]. The first relation is the
usual Cole-Hopf transform [58]; the second corresponds
to an "Hermitization" of Eqs. (3). In terms of the new
variables (Φ,Γ), the MFG equations read





−µσ2∂tΦ =
µσ4

2
∆Φ + (U0 + gΓΦ)Φ

+µσ2∂tΓ =
µσ4

2
∆Γ + (U0 + gΓΦ)Γ

. (4)

Besides the missing imaginary factor associated with
time derivation, these equations have exactly the struc-
ture of NLS describing the evolution of a quantum state
Ψ(t,x) of a Bose-Einstein condensate, with formal cor-
respondence Ψ → Γ, Ψ∗ → Φ and ρ ≡ ||Ψ||2 → m ≡
ΦΓ. This system, however, retains the forward-backward
structure of MFG evidenced by mixed initial and fi-
nal boundary conditions Φ(T,x) = 1, Γ(0,x) Φ(0,x) =
m0(x). Several methods have been developed to deal
with NLS and most can be leveraged to tackle the MFG
problem [21, 59].

Self-consistent solutions of Eqs. (4) are obtained by it-

eration: (i) Assume m(t,x) = min(t,x); (ii) Solve the
equation for Φ backward in time with terminal condi-
tion Φ(T,x) = 1; (iii) Solve the equation for Γ forward
in time with initial condition Γ(0,x) = m0(x)/Φ(0,x);
(iv) iterate with Φ(t,x)Γ(t,x) = mout 7→ min until mout

is sufficiently close to min(t,x). A video illustrating the
evolution of the agents’ density for a particular set of
parameters, along with additional details about the nu-
merical scheme, can be found in Appendix C.

Focusing on the permanent regime [60], for which
we have experimental data [15], rather than on the
transients associated with the intruder’s entry or exit,
further simplifies the resolution. In this regime, de-
fined by time-independent density and velocity fields
in the intruder’s frame, the auxiliary functions Φ
and Γ are not constant in time, but they assume
the trivial dynamics Φ(t,x) = exp

[
λt/µσ2

]
Φer(x) and

Γ(t,x) = exp
[
−λt/µσ2

]
Γer(x) where, in the intruder’s

frame



µσ4

2
∆Φer − µσ2v · ∇⃗Φer + [U0(x) + gmer]Φer = −λΦer

µσ4

2
∆Γer + µσ2v · ∇⃗Γer + [U0(x) + gmer]Γer = −λΓer

(5)
(with mer = ΦerΓer independent of time). Far from the
intruder U0(x) = 0, m ≃ m0 and pedestrians have con-
stant velocity −v in the intruder’s frame. This imposes
the asymptotic solutions Φer(x) = Γer(x) =

√
m0, from

which λ = −gm0.

IV. RESULTS

The stationary Eqs. (5) have two remarkable features:
(i) They give direct access to the permanent regime, and
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are straightforward to implement numerically since time
dependence has disappeared (results with reasonable res-
olution can be obtained in a few minutes on a mid-range
laptop). (ii) As in [61], rescaling Eqs. (5) shows that so-
lutions are entirely specified by only two dimensionless
parameters.

Indeed, the intruder is characterised by its radius R
and its velocity v. Similarly, pedestrians are character-
ized by a length scale ξ =

√
|µσ4/2gm0|, the distance

over which the crowd density tends to recover its bulk
value from a perturbation, a.k.a healing length, and a ve-
locity scale cs =

√
|gm0/2µ|, the typical speed at which

pedestrians tend to move 1. Up to a scaling factor, solu-
tions of Eqs. (5) can be expressed as a function of the two
ratios ξ/R and cs/v instead of depending on the full set
of parameters (R, v, µ, σ,m0, g), which facilitates the ex-
ploration of the parameter space, makes modeling more
robust, and highlights the uttermost importance of antic-
ipation. It should be noted that in MFG the individual
anticipation time, usually defined explicitly in classical
agent-based models, is encoded in the choice of ξ and cs
but it is not readily available as a function of the two.
In fact, MFG leads to a strategy of motion where the
anticipation time is optimal, without prescribing it.

Figure 2 presents typical density and velocity fields
simulated in the permanent regime, for each quadrant
of the reduced parameter space. Intuitively, one under-
stands that cs governs the cost of motion for the agents
while ξ gives the extent of the perturbation caused by
the presence of the intruder. The main difference be-
tween large and small cs/v is the change in rotational
symmetry, which reflects a fundamental change in strat-
egy. For large values of cs/v pedestrians do not mind
moving, and they rather try to avoid congested areas for
as long as possible, thus creating circulation around the
intruder, as shown in the velocity plots. On the other
hand, for small values of cs/v, moving fast costs more;
therefore, in order to avoid the intruder, pedestrians have
to move earlier, and accept to temporarily side-step into a
more crowded area, thereby stretching the density along
the vertical direction.

Experimental observations [15] are best reproduced for
small cs/v and small ξ/R (cs = 0.11 and ξ = 0.15), as
shown in the third column of Fig. 1. Considering the
minimalism of our MFG model, the obtained agreement
is especially satisfying. In particular it demonstrates that
even basic MFG models can naturally capture prominent
features of the response of static crowds which may be
out of reach of more short-sighted pedestrian dynamics
models.

1 Note that µξcs = µσ2 has the dimension of an action and plays
the role of ℏ in the original nonlinear Schrödinger equation.

V. ALTERNATIVE CONFIGURATION:
BOARDING OF A TRAIN

Although our model reproduces remarkably well the
experiments of [15] in view of its minimalism, we realise
that a single test might not be sufficient to justify our
claim that MFG theory is a good candidate for model-
ing pedestrian dynamics. We argue that MFG are also
applicable to a broader array of crowd-related problems
at the operational level, beyond crossing scenarios. In
this section we illustrate this assertion by exploring the
daily-life situation of people waiting to board a coach in
an underground station. This is a common configura-
tion at the frontier between the operational and tactical
level, which should give a strong edge to MFG over al-
ternative models, owing to the important role played by
anticipation.

This situation can be readily simulated by suitably
modifying the external potential U0(x) and the geom-
etry of the system, as shown on Fig. 3; U0(x) here is a
box-like infinite potential representing the walls of the
coach (black bands). On top of that we introduced a ter-
minal cost cT (x) [21, 59] that is lower aboard the metro
than on the platform

cT (x) = cplatform + [ccoach − cplatform]Θ (xwall − x) , (6)

where ccoach < cplatform, Θ is the Heaviside function and
xwall is the x-coordinate (horizontal) where the walls of
the coach start. This terminal cost cT (x) does not modify
the MFG equations (3) but serves as terminal condition
for the value function u(x, t = T ) = cT (x) (and accord-
ingly for Φ). We then numerically solve the nonlinear
Schrödinger type system using the algorithm described
succinctly in Section III and in more details in Appendix
C. Results of our simulations can be seen in Movie S4, of
which Fig. 3 (right) is a snapshot.

There are sadly no experimental evidence to support
this at the moment, but we manage to reproduce the
boarding process in a qualitatively realistic way, despite
the simplicity of our model. We even naturally capture
the decision made by some agents to stay on the platform
rather than board the overcrowded metro. We believe
this last point to be particularly interesting since this
"passive" behaviour emerges naturally from our (antic-
ipatory) game theoretical model, which would be more
difficult to implement in traditional approaches of crowd
dynamics.

VI. DISCUSSION

To conclude, our results have been obtained with a sim-
ple, generic MFG model which depends linearly on den-
sity via gm(t,x). The NLS representation provides im-
portant insight, efficient numerical schemes and powerful
analytical tools. Most notably it draws a bridge between
pedestrian dynamics and optics, fluid dynamics or Bose-
Einstein condensation. Naturally our minimal model can
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Figure 2: Typical density and velocity fields induced by the crossing intruder in the permanent regime, as predicted
by the MFG model in different regions of the parameter space. Parameters taken in the small cs/v and small ξ/R

quadrant display good visual agreement with the experimental data.

be refined: the MFG formalism is flexible enough to in-
corporate further elements and make it truer to life, in-
cluding time-discounting effects [62, 63] and congestion
[44, 64, 65]. Higher quantitative accuracy will be within
reach of these more sophisticated approaches, possibly at
the expense of less transparent outcomes. For sure, MFG
will struggle to capture a variety of problems of crowd dy-
namics at the operational level, notably those for which
the granularity of the crowd is central. However, the
afore-studied experiments strikingly illustrate that even
the simplest of MFG model is able to capture qualita-
tive features that generally elude existing agent-based
models, even if they include short-time anticipation.

We also believe MFG can apply in various other con-
figurations. In particular, we show in Section V an MFG
simulation of train-boarding at peak hours that quali-
tatively reproduces some nontrivial features associated
with this situation (Movie S4) [66]. All this bolsters the
claim that optimization and anticipation stand among the
essential ingredients for the description of crowd dynam-
ics at the operational level, and justifies to claim entry for
MFG based approaches into the toolkit of practitioners
of the field.
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Appendix A: Granular simulations

This first appendix provides details on the numerical
method used to produce the granular matter simulation,
displayed in the first column of the Fig. 1 of the main text
(also see Movie S1). The numerical method is adapted
from [67].

To simulate the displacement of an intruder in a two-
dimensional granular medium, we resort to molecular dy-
namics. The diameter of the grains is d = 0.37 m and
they all have the same mass. All interactions between
two grains i and j in the simulation are modelled with a

dissipative Hertz law of the form Fij = kζ3/2−λ
dζ

dt
where

ζ is the interpenetration of the grains, k is the stiffness of
the contact and λ is a damping coefficient. The stiffness
k is related to the Young’s modulus E = 1 GPa of the
grains by k = E

√
d/2. The coefficient of viscous damp-

ing λ simulates a restitution coefficient e = 0.5. One
can notice that the grains are frictionless. The time step
is small enough to ensure numerical convergence. The
details of these calculations were reported in [67]. The
diameter of the intruder is D = 2d = 0.74 m and its me-
chanical properties are identical to those of the grains.
The tank containing the granular material is of length
Lx = 25d in the x-direction and Ly = 200d in the y-
direction.

To prepare the initial state, the intruder is initially
fixed in the tank. The y position of the intruder in the
y-direction corresponds to the vertical distance from the
bottom wall of the tank to the center of the intruder
such that y = 2.5D is the initial vertical position of the
intruder. The x position of the intruder in the x-direction
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Figure 3: Boarding a crowded metro coach at rush hour. Left: Morning rush hour of November 18, 2021, on the
platform of Metro A in Lyon, France. The doors are about to close and the gap between boarding passengers and

those who preferred to wait for the next metro is clearly visible. Right: Snapshot from a MFG simulation at
t = 0.9T . Players start uniformly distributed on the platform and would like to get on the coach before the doors
close, at t = T . Just before that moment, the players closest to the doors choose to rush towards the coach and

cram themselves in it despite the high density. Others prefer to stay on the platform (see Movie S4 for the whole
process). Simulations have been performed in a box of dimensions 15x15 over a time T = 10, with an initial density

on the platform m0 = 0.2. Parameters are chosen to have healing length ξ = 1.1, and speed of sound cs = 0.45,
while ccoach = 0 and cplatform = 6.21.

corresponds to the equal distance from the left wall and
right wall of the tank to the center of the intruder such
that x = Lx/2 is the initial horizontal position of the
intruder. Once the intruder is placed, we fill the remain-
ing space by randomly drawing x and y positions for
each grain. The number of grains to insert depends on
the chosen objective density. We ensure that there is no
spatial overlap between the grains. Once the initial con-
figuration has been prepared, we move the intruder at
constant velocity v = 0.6 m.s−1 along the y direction.
The intruder runs a distance equivalent almost to 80D in
the y-direction to avoid getting too close to the top wall of
the tank. The displacement of the intruder in this granu-
lar material naturally leaves a wake behind it since there
is no pressure scale that comes to fill it up [26, 68, 69].
In order to create a process that fills this wake, we intro-
duce a small Gaussian noise in the displacement of the
grains during the simulation. This noise acts as diffusion
for the displacement which will then have the possibility
of filling the wake.

The run of the intruder through the granular medium
allows to get the positions of the grains over time. Con-
sidering these data after passing through the spatial tran-
sient regime (of the order of one D), we reach a stationary
regime in average for the grain flow around the intruder.
For each simulation, we can calculate the density field

and the velocity field around the intruder. In order to
smooth the results, they have been averaged over 10 runs
of intruder displacement.

Appendix B: Agent-based model for pedestrian
dynamics based on an anticipated time to collision

The second appendix provides details on the numerical
methods used to produce the agent based simulations,
displayed in the second column of Fig. 1 of the main text
(also see Movie S2).

1. Principle

The Social Force Model (SFM), initially propounded
by Helbing and Molnar [7], arguably remains the con-
tinuous model that is most widely used commercially to
simulate pedestrian dynamics. In this model, agents es-
sentially obey Newtonian dynamics, with a sum of bi-
nary pseudo-forces (social forces) mimicking their attrac-
tive and repulsive interactions with neighbouring agents,
which are mostly based on their relative positions.

However, it has been shown that substituting these po-
sitional variables with a time-to-collision (TTC) variable,
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reflecting the time at which each agent expects the most
imminent collision with other agents, better renders the
spatial organisation of pedestrians in diverse empirical
settings [9]. The agent-based model used in the main
text to represent a crowd of agents displaying some de-
gree of anticipation is based on the same approach, but
incorporates a number of changes aimed at correcting
some issues as identified in Karamouzas et al.’s seminal
paper [9].

First, to enhance numerical stability, instead of solving
a Newtonian equation with a TTC-based force, we opt
for a numerical scheme in which the velocities selected
at each time step result from the minimisation of a total
energy (including the TTC contribution), following [12].
Nonetheless, contrary to [12], each agent minimises their
own energy, rather than solving for the set of agents’ ve-
locities that minimises the global energy of the assembly;
these individual choices better reflect the decisional pro-
cess at play in a crowd of autonomous agents (and not
robots), in line with the concept of utility used in Eco-
nomics rather than the global energy used in Physics [70].
Besides, only the most imminent collision is taken into
account to compute the TTC energy. Finally, to avoid
grazing trajectories and smooth the agents’ response [71],
each agent is modelled as a disk whose radius is uncer-
tain, i.e., estimated between R and (1+ ϵ)R. In addition
to avoiding discontinuities in the collision avoidance re-
sponse, this uncertainty accounts for the existence of an
immaterial private sphere around each agent, which oth-
ers are reluctant to cross.

All in all, the total energy E[v′
p] minimised by each

agent with respect to their velocity v′
p comprises the fol-

lowing contributions:

• a driving term Etarget = FF (r+τϕv
′
p) with a static

floor field FF giving the shortest-path distance to
a target or a set of targets, computed with the Di-
jkstra algorithm. Here, τϕ is a reaction time and
r+ τϕv

′
p is the position at which the agent expects

to be after this reaction time, should they choose
velocity v′

p,

• a term constraining the agent’s speed, Espeed =
αv′p(v

′
p − vp

pref)2, where v′p = ||v′
p||. Note that

v′p = 0 is a minimum of this term, which means that
not moving is a suitable option for static agents, as
it should be,

• a term penalising sudden changes in velocity (di-
rection), compared to the current velocity vp

t,

Einertia = β
∣∣∣v′

p − vp
t
∣∣∣
2

dt−2,

• an interpedestrian repulsion term, Ecore-repulsion =
η
(
1
d − 1

d∗
)
, with d the actual distance between

pedestrians and d∗ a threshold distance beyond
which this term is no longer zero. Here, ϵ takes
into account the uncertainty that each pedestrian
has when estimating the radii of their neighbours,

• the TTC energy ETTC
i = maxj ETTC(τij), where

τij is the anticipated time to collision between agent
i and agent j under the assumption that the current
velocities are maintained and ETTC is the TTC en-
ergy expression given by [9] which we characterise
with the parameter γ. This is actually the most
important term in our model. Should it be turned
off, particles would stop anticipating the upcoming
intrusion.

The minimisation over vp is performed with the
Nelder-Mead algorithm for each agent and the updating
scheme is made via:

vp
t+1 = argminv′

p

(
E[v′

p]
)

xt+1 = xt + vp
t+1 ·∆t

with a time step ∆t = 0.1 s (lower values of ∆t were also
used to test the convergence of the implemented frame-
work with no significant changes).

2. Simulation layout

To simulate the crossing of a static crowd by an in-
truder, the model is specified as follows:

The floor-field energy Etarget is specific to each agent,
with a target that matches their initial position. The
interaction with the intruder (and other particles) will
make them move away from this position, but they will
strive to come back to it once it has passed. The speed
term in the energy is computed with a preferential speed
vpref
p coinciding with experimental measurements for the

avoidance response.
Regarding the geometry, an intruder of diameter D =

0.74m has to cross a region of 20 m length x 4 m width
along its median part. The intruder moves uniformly
and linearly along the y-axis at a prescribed speed v =
0.5m · s−1. Inside this zone, 200 particles (thus obtaining
a global density of 2.5 ped/m2) of diameter d = D/2 are
randomly distributed.

The results presented in the main text correspond to
moments when the intruder is at least 3m from the
boundaries (entrance and exit of the corridor). This was
done in an attempt to minimise boundary effects in the
measurements and achieve an approximately stationary
state.

For the sake of completeness, we include here an ex-
haustive exploration of parameter space determined by
the values of α, β and γ. Indeed, figures 4, 5 and 6
show the density and velocity plots for the TTC model for
four different choices of these parameters. For each fig-
ure, the rightmost columns shows the results for the val-
ues used in the Letter, whereas the other three columns
show the variation of one of the three parameters, leaving
the other two untouched. By observing these figure, we
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Figure 4: Variation of the agent speed term for the TTC model, while keeping the other parameters equal to those
of the picture displayed in the letter.

Figure 5: Variation of the inertial term for the TTC model, while keeping the other parameters equal to those of the
picture displayed in the letter.

can conclude that the fundamental parameter of the TTC
model is indeed the time to collision amplitude term γ,
indeed the only one capable to produce significant vari-
ations of the solution. The other two parameters, while
introducing some changes in the velocity plots, do not
have a real impact on the main features we look for, such
as the horizontal displacement and the lateral accumula-
tion of the agents.

Appendix C: Mean-Field Game simulations

This third and last section describes the numerical
schemes used to produce Mean-Field Game simulations.
Results of a time independent simulation are displayed

on the third column of the Figure 1 of the main text,
whereas time-dependent one are used to simulate metro-
boarding. Naturally we expect both schemes to be con-
sistent in the appropriate regime as evidenced by Movie
S3.

1. Time Independent MFG

The equation we want to solve numerically is the first
of system (5), which we recall,

µσ4

2
∆Φ− µσ2v∂yΦ+ (gm+ U0(x⃗))Φ = −λΦ, (C1)



10

Figure 6: Variation of the time to collision amplitude term for the TTC model, while keeping the other parameters
equal to those of the picture displayed in the letter.

where λ = −gm0. We want to solve the equation in
a box of side L. We define the matrices Φ ∈ RN,N

and Γ ∈ RN,N that we have to evaluate on a grid of
N ×N points corresponding to the (x, y) coordinates in
Euclidean space. In order to do this, we first write the

discrete form of equation (C1)

µσ4

2dx2
(Φi−1,j +Φi+1,j +Φi,j−1 +Φi,j+1 − 4Φi,j)

− µσ2v
Φi,j+1 − Φi,j−1

2dy
+ (gmi,j + V0Vi,j)Φi,j = −λΦi,j

,

where we choose dx = dy. Then we make the term Φi,j

explicit and obtain

Φk+1
i,j =

µσ4

2 (Φk
i−1,j +Φk

i+1,j +Φk
i,j−1 +Φk

i,j+1)− µσ2

2 vdx(Φk
i,j+1 − Φk

i,j−1)

2µσ4 − λdx2 − (gmi,j + V0Vi,j)dx2
.

This is the recursive rule that updates Φi,j until conver-
gence. For a generic geometry, the same rule with oppo-
site sign of v would be used to find Γi,j . Here we take
advantage of the symmetry Φ → Γ and (x, y) → (x,−y)
to directly obtain Γ. Starting from an initial guess for
Φ, Γ and m, we fix boundary conditions given by the
asymptotic solution Φer(x)=

√
m0, then iterate the for-

mula to find Φ and Γ, and, recalling that ΦΓ = m, also
the density. We repeat this operation until convergence
of m.

2. Time-Dependent MFG

Time-dependent simulations were realized using a
C++ algorithm, using the Schrödinger representation of
MFG equations to lean on the symmetry between the
fields Φ and Γ and on well-proven numerical methods

such as Crank-Nicolson [72, 73] implicit scheme which
provide added stability compared to Euler method. De-
tails of the discretisation, along with a stability analysis
of the method, can be found in Appendix A of [74].

The forward-backward conditions, along with the non-
linear coupling between the fields, make direct resolution
of MFG equations difficult. A simple, though not per-
fectly controlled, way to bypass those difficulties is to
solve the system iteratively:

• Assume a plausible form of the density m0 (e.g. a
constant equal to the average density).

• Compute, using the Crank-Nicolson scheme, a first
solution Φ1 of the backward equation

−µσ2∂tΦ
1 =

µσ4

2
∆Φ1 + (U0 + gm0)Φ1 , (C2)

with given terminal condition Φ(T,x).
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• Compute Γ1, solution of the forward equation

µσ2∂tΓ
1 =

µσ4

2
∆Γ1 + (U0 + gm0)Γ1 , (C3)

with initial condition m0(x, t = 0)/Φ1(x, t = 0).

• Update the initial guess m0 → m1 = Φ1Γ1 and
repeat the process until mn is sufficiently close to
mn−1. In practice we check for

max
x,t

|mn(x, t)−mn−1(x, t)| < ϵ . (C4)

(We will use ϵ = 0.001, which we expect to be
sufficiently small given the average density m0 =
2.5, in accordance with the experiments of [15].)

This method is easy to implement and fairly efficient but
in some particular circumstances convergence may not

occur. This may be alleviated by updating the guess
differently

mi+1 = αmi + (1− α)Φi+1Γi+1 , (C5)

α being a suitable number between 0 and 1.
The complete dynamics of the time-dependent MFG

can be found in Movie S3. All MFG simulations are
realized with parameters ξ = 0.15 and cs = 0.11. In
the time-dependent simulations, the intruder (of diam-
eter D = 0.74 and velocity v = 0.5) crosses vertically
a static crowd in a box of dimensions 6x11 (with peri-
odic boundary conditions) over a time T = 27.5 long
enough to reach the ergodic state. The time independent
simulation is performed in a box of side L = 40, large
enough so that differences between the boundary condi-
tions of the two approaches are negligible. As proof of the
soundness of both approaches, the comparison between
the time-dependent simulation at t ≃ T/2 and the time
independent results shows excellent agreement.
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Abstract

It was demonstrated in [1] that the anticipation pattern displayed by a dense crowd
crossed by an intruder can be successfully described by a minimal Mean-Field Games
model. However, experiments show that changes in the pedestrian knowledge signifi-
cantly modify the dynamics of the crowd. Here, we show that the addition of a single
parameter, the discount factor γ, which gives a lower weight to events distant in time,
is sufficient to observe the whole variety of behaviors observed in the experiments. We
present a comparison between the discounted MFG and the experimental data, also pro-
viding new analytic results and insight about how the introduction of γ modifies the
model.
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1 Introduction

As discussed by Hoogendorn et al. [2], pedestrian motion is a multi-scale endeavour that needs
to be described at different levels, and one typically distinguishes the strategic level (what are
the goals of the travel and the general timing), the tactical level (which route to take) and
the operational level (how to move on that route). If the strategic and tactical levels naturally
assume some form of long term optimisation, it is on the other hand quite generally expected
that the operational level, especially for dense crowds, could be described by dynamical models
involving physical and social forces [3], and possibly a short term (up to the next collision)
anticipation [4–6]. However, the comparison of experimental data from a control experiment
involving a static dense crowd [7] with various simulation models showed that [1], in such
cases, it appears necessary to include long term anticipation in order to reproduce the observed
experimental features. This could be achieved with a very simple Mean-Field Game model.

Mean-Field Games, introduced by Lasry and Lions [8, 9] as well as Huang et al. [10] is a
mathematical formalism in which both anticipation and competitive optimization between the
agents, here pedestrians, are accounted for at the mean field level. The fact that it may provide
a good description of human behaviour is a priori non trivial for at least two reasons. The first
one is that the agents clearly cannot compute the predictions of the Mean-Field Games model,
the second is that they usually do not have the perfect information assumed in the model.

The answer to this first concern is, as in many game theoretical context, that we expect the
behaviour of the agents to be learnt rather than computed. In the same way that we do not
need to use the laws of dynamics to know where a ball thrown in the air will land, there are
in daily life many circumstances which are familiar enough that we can, by instinct, predict
the behavior of the crowd and act accordingly. It is clearly in these circumstances that we
can expect a Mean-Field-Game description to apply, and this was the case in the experimental
context of [7]. The second of these concerns, which will be the main focus of this paper, was
actually addressed experimentally in [7]. The experimental setup studied there consisted in
the crossing of a dense static crowd by a cylindrical intruder. However, the experiments have
been performed in three configurations: with pedestrian facing the obstacle, being randomly
oriented, or giving their back to it. Moreover, in the latter case pedestrians were asked not to
anticipate, while no such instruction was given in the first two cases. Clearly, if, in this simple
context, we can consider that in the first configuration, participants have perfect information
about the incoming cylinder, this is not the case for the other two, and indeed, as seen on
Fig. 1, the observed density maps, obtained by an average over repeated realizations of the
experiment, clearly differ significantly in the three cases.

In [1], we focused only on the case where pedestrians were facing the obstacle (for an
average density of 2.5ped/m2, slightly lower than the one shown in Fig. 1(a), but displaying
the same features). Observing Figure 1(a), we see that in the frontal configuration, individ-
uals move in advance, temporarily accepting a higher local density in order to get rid of the
obstacle sooner, showing evidence of a trade-off dynamics. The crowd’s density increases on
the sides and depletes in front of and behind the cylinder, with pedestrians moving outward

2
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Figure 1: Experimental results of the passage of a cylindrical intruder (blue disc)
through a static dense crowd for an average density of ∼ 3.5ped/m2 for three differ-
ent configurations. In (a) pedestrians were all facing the obstacle, in (b) they were
randomly oriented and in (c) participants were asked to give their back to it and not
to anticipate. Data from [7].

to avoid its arrival and inward to regain a less congested position, always perpendicularly to
the obstacle’s motion. This clearly is an anticipatory dynamics. Indeed even pedestrians far
from the cylinder know that it will arrive and, depending on its speed, they will start moving
accordingly. However, when individuals are placed randomly, as in the second panel of Fig-
ure 1, we notice a shorter corridor of anticipation in front of the obstacles, but with similar
accumulation patterns on its sides. When pedestrians in the experiment were asked not to
anticipate and to give their back to the incoming intruder, effectively looking away from it, as
the third panels of Figure 1 shows, we observe that the accumulation of the individuals moves
from the sides to the front of the obstacle, similarly to what happens in analog configurations
with granular matter [1].

The main goal of this paper is to demonstrate that at least in the experimental setup cor-
responding to Fig.1, this lack of information can be taken into account simply by introducing
a discount factor, i.e. a term discounting the cost of actions in a future further than a certain
cutoff, to the model already used in [1] to simulate the frontal case. Such discount factors
are, for example, usually introduced in optimization problem spanning a long time period
(typically in economic context) to express the unwillingness of agents to wait too long for a
reward. Here however we use it as a way to simulate the shortsightedness of pedestrians. We
shall in section 2 introduce the corresponding Mean-Field-Game model and give some discus-
sion about its generic behavior. Then, section 4 will feature the comparison with the three
experimental cases discussed above. We will first come back on the case where pedestrians
were facing the obstacle, providing more details about the results presented in [1]. Then, the
other experimental setups will be considered, and we will show how the introduction of the
discount factor helps in modeling these configurations.

2 The mean-field games model

Mean-Field Games (MFG) constitutes a relatively new field of research. Its foundations are
in the works of J.-M. Lasry and P.-L. Lions [8, 9], and of M. Huang, R. P. Malhamé and P. E.
Caines [10]. During the years, many works have been focused on the mathematical properties
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of MFG [11–15]. Although there are applications of MFG to pedestrian dynamics [16], to the
best of our knowledge comparisons of crowds simulated with MFG to experimental data [1]
are rare. A general and mathematically rigorous discussion of the foundations of MFG being
found in the book [14], and a physicist-friendly version being exposed in [17], here we will
limit ourselves to essentials.

2.1 The discounted equations

In the specific settings of our MFG model, each agent’s state variable X⃗ (t) ∈ R2, representing
their position, evolves following the Langevin equation

˙⃗X = a⃗(t) +σξ⃗(t) , (1)

where ξ⃗(t) is a two dimensional Gaussian white noise of variance one, and a⃗ is the drift
velocity, the control parameter that represents the strategy players choose by minimizing the
discounted cost functional defined, in this case, as

c[a⃗]( x⃗ , t) = E
¨∫ T

t
L( x⃗ ,τ)[m]eγ(t−τ)dτ+ eγ(t−T )cT ( x⃗T )

«
, (2)

where cT is a terminal cost, that could be used to represent a target for pedestrians, as for
instance an exit, but which here is simply taken as cT = 0. In this equation, γ is the discount
factor, and its inverse 1/γ defines an anticipatory time scale determining how far into the
future agents will look while optimizing. Finally

L( x⃗ ,τ)[m] =
µ

2
(a⃗(τ))2 − V [m] ( x⃗ ,τ) , (3)

can be seen as the term describing the agents’ preferences. In fact, the squared velocity tells
that going too fast is detrimental, and that the best would be to stand still, but the presence
of the external world, represented by the potential term

V [m]( x⃗ , t) = gm( x⃗ , t) + U0( x⃗ , t) , (4)

describing the interaction with the others and with the environment, cause agents to actually
move. The main assumptions of MFG are that all agents are equal and the interaction with
others is of mean-field type, determined only through the average density

m( x⃗ , t) = E
�

1
N

N∑
i=1

δ( x⃗ − X⃗ i(t))

�
.

For g < 0, the first term in the right hand side of Eqs. (4), gm( x⃗ , t), expresses the agents’
desire to stay away from densely packed areas. On the other hand, the term U0( x⃗ , t) describes
the interaction with the environment, and in the case of the crossing cylinder reads

U0( x⃗ , t) =

¨
+∞ , ∥ x⃗ − s⃗ t∥< R ,

0 , otherwise,
(5)

where s⃗ is the velocity and R the radius of the cylinder. A quantity of interest of the MFG is
then the value function

u( x⃗ , t) = inf
a⃗

c[a⃗]( x⃗ , t) , (6)

4
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that, as shown in appendix A, can be obtained solving the Hamilton-Jacobi-Bellman equation

¨
∂tu= −σ

2

2 ∆u+ 1
2µ(∇⃗u)2 + γu+ V [m] ,

u( x⃗ , t = T ) = cT ( x⃗) .
(HJB)

This is a backward equation, that is solved starting from the terminal condition expressed by
the terminal cost cT ( x⃗). The optimal choice of the control parameter is a⃗∗ = −∇⃗u/µ. Given the
stochastic evolution of each player’s state variable, the corresponding average density evolves
following the Kolmogorov-Fokker-Plank equation

¨
∂t m=

σ2

2 ∆m+ 1
µ∇⃗ · (m∇⃗u) ,

m( x⃗ , t = 0) = m0( x⃗) ,
(KFP)

a forward equation solved starting from an initial density profile.
As discussed extensively in [1,17], in the γ = 0 limit the sytem of equations (HJB)-(KFP)

can be cast in a form analog to the non-linear Schrödinger equation through the combination of
a Cole-Hopf transformation and of an hermitization of the KFP equation. We show in appendix
B how this formulation evolves for a general γ.

2.2 The ergodic state

2.2.1 Without discount factor

When γ = 0, i.e. when the anticipation time 1/γ is not bounded, we know from [18], that
under certain hypothesis, among which a large optimisation time T and the time independence
of the potential V , and for times far from the beginning and the end, an ergodic or stationary
state exists. Such state is characterised by the fact that its observable quantities, i.e. the
optimal velocity field and the density field, do not depend on time anymore. In particular, for
the velocity this means that

∂t a⃗
∗
e( x⃗ , t) = −1

µ
∂t∇⃗ue( x⃗ , t) = 0 =⇒ ue( x⃗ , t) = ue( x⃗) + ue(t) , (7)

where the superscript e refers to the ergodic state. Moreover, again from [18] we also know
that for γ = 0, u⃗(t)e = −λt, where λ is a parameter to be estimated. In the settings of our
experiment, in the frontal case, so that we can use γ = 0, we can determine the value of λ
by looking at what happens far enough from the cylinder for the density to be unaffected by
its presence. In fact, away from the obstacle we expect me( x⃗ , t) ≃ m0, ∀t ∈ [0, T] and the
optimal strategy is just to stay at rest, meaning a⃗∗ = 0. Therefore, using definition (2) with
γ= 0 we have

u( x⃗ , t) = −
∫ T

t
(gm0)dτ= −gm0T︸ ︷︷ ︸

ue( x⃗)

+ gm0︸︷︷︸
−λ

t , (8)

and thus λ= −gm0.

2.2.2 With discount factor

Here we make the rather natural hypothesis that, for large T , such a stationary state exists also
when γ ̸= 0, i.e. for a finite anticipation time 1/γ. We therefore assume that for intermediate
times, there exists a state of the discounted system whose observables are independent on
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time. If that is the case, (7) should still hold, and we can as before determine the time depen-
dent part of ue by considering what happens far from the cylinder where the density remains
homogeneous and the optimal strategy is simply to stand still. In this case (2) becomes

u( x⃗ , t) = −
∫ T

t
(gm0)e

−γ(τ−t)dτ=
gm0

γ

�
e−γ(T−t) − 1
�

. (9)

We observe that if we fix T and let γ→0, the right hand side of Eq. (9) becomes−gm0T+gm0 t,
recovering Eq. (8) and the γ= 0 case. On the other hand, if we fix γ and let T →∞, we have
that ue(t)≡ 0, and since ue(t) does not depend on the position, this must be true everywhere,
meaning that when γ ̸= 0

ue( x⃗ , t) = ue( x⃗) , (10)

and we can write both (HJB) and (KFP) in their stationary form as

0=
σ2

2
∆ue − 1

2µ
(∇⃗ue)2 − γue(x)− V [me] , (11)

0=
σ2

2
∆me +

1
µ
∇ · (me∇ue) . (12)

2.3 Passing to the moving frame

When we introduced the ergodic state in subsection 2.2 we stressed the necessity of the absence
of any explicit time dependence in the cost functional (2) for Eqs. (11)-(12) to be possible,
which conflicts with the fact that we simulate the presence of the intruder by using a cylindrical
potential whose position evolves with time. We thus change the reference frame in which we
describe the experimental setting by passing from the point of view of the laboratory to the
point of view of the cylinder, and define

û( x⃗ − s⃗ t, t) = u( x⃗ , t) , m̂( x⃗ − s⃗ t, t) = m( x⃗ , t) .

In the framework of the cylinder the potential becomes V̂ [m̂] = gm̂+ Û0( x⃗), not depending
explicitly on time anymore, and with

Û0( x⃗) =

¨
+∞ , x < R ,

0 , otherwise,
(13)

where R is the radius of the cylinder. For all other quantities we observe that, in general,

∂t f ( x⃗ , t) =
d
dt

f ( x⃗ , t) =
d
dt

f̂ ( x⃗ − s⃗ t, t) = ∂t f̂ − s⃗ · ∇⃗ f̂ , (14)

where the total derivative is taken in the lab’s reference frame. Using (14) in (HJB) and (KFP)
gives us the time dependent version of the MFG equation in û and m̂ variables in the moving
frame

∂t û− s⃗ · ∇⃗û= −σ
2

2
∆û+

1
2µ
(∇⃗û)2 + γû+ V̂ [m̂] , (15)

∂t m̂− s⃗ · ∇⃗m̂=
σ2

2
∆m̂+

1
µ
∇ · (m̂∇û) , (16)

whereas the corresponding equations for the ergodic state are

0= −σ
2

2
∆ûe +

1
2µ
(∇⃗ûe)2 + s⃗ · ∇⃗ûe + γûe(x) + V̂ [m̂e] , (17)

0=
σ2

2
∆m̂e +

1
µ
∇ · (m̂e∇ûe) + s⃗ · ∇⃗m̂ . (18)

6



SciPost Phys. 16, 104 (2024)

3 Parameter space of the model

In [1], it was shown that when γ = 0, the agents’ dynamics is entirely characterized by two
parameters, a length scale

ξ=

√√ µσ4

2gm0
,

that by analogy with the non-linear Schrödinger context we refer to as the healing length, and
a velocity scale

cs =
√√ gm0

2µ
,

that, for the same reason, we refer to as the sound velocity. Their physical meaning can be
understood by imagining that the pedestrian crowd is subjected to a local perturbation. The
healing length would then be the distance up to which the density would deform, and the
sound velocity the speed at which the density would return to its initial unperturbed state
when the perturbation is removed. If we then include the parameters R and s characterizing
the intruding cylinder, we see that when γ = 0, our MFG model is entirely characterized by
two dimensionless quantities, R̃≡ R/ξ and s̃ = s/cs.

As shown in Appendix D, the inclusion of a non-zero discount factor γ, which has the
dimension of the inverse of a time, implies that the MFG model is now characterized by three
dimensionless quantities, R̃, s̃ and a third one that we can take as either γ̃(1) ≡ (ξ/cs)γ or
γ̃(2) ≡ (R/s)γ (Note γ̃(2) = (R̃/s̃)γ̃(1)). The first option, γ̃(1), compares the time scale associated
with anticipation to the one of the crowd dynamics, while γ̃(2) measures it in terms of the time
scale characterizing the cylinder.

Fig. 2 shows the numerical solution of the stationary equations (17) and (18) (see ap-
pendix C for a brief description of the numerical implementation) for four choices of (R̃, s̃) and
different values of γ. Note that in the (R̃≫ 1, s̃≫ 1) and (R̃≪ 1, s̃≪ 1) quadrants, we have
assumed R̃ ∼ s̃, so that γ̃(1) ∼ γ̃(2), and both of them are therefore either large together or
small together. However in the quadrant (R̃≫ 1, s̃≪ 1), we have γ̃(2) = (R̃/s̃)γ̃(1) ≫ γ(1), so
we have distinguished the three possible cases (γ̃(1) ≪ 1, γ̃(2) ≪ 1), (γ̃(1) ≪ 1, γ̃(2) ≫ 1), and
(γ̃(1)≫ 1, γ̃(2)≫ 1); and in the same way in the quadrant (R̃≪ 1, s̃≫ 1) where γ̃(2)≪ γ(1) we
distinguish the three cases (γ̃(1)≪ 1, γ̃(2)≪ 1), (γ̃(1)≫ 1, γ̃(2)≪ 1), and (γ̃(1)≫ 1, γ̃(2)≫ 1).

Let us consider for instance the III quadrant, where both s̃ and R̃ are small. The fact that
s̃ is small means that from the point of view of the crowd the cylinder is perceived as nearly
immobile, which explains the rotational invariant shape of the solution. For small values of γ,
the distance at which an immobile perturbation is felt by the crowd is, as mentioned above,
given by the healing length ξ. As γ increases this length should be compared to dcs

= cs/γ, the
length scale related to the finitude of the anticipation horizon. Hence, from figure 3 we see
that the scale of the density perturbation around the obstacle is given by the smallest between
the dcs

and ξ. In this case, a large γ does not, however, modify the qualitative aspect of the
density distribution, which remains rotationally invariant.

Figure 4 then focuses on the I quadrant where both R̃ and s̃ are large. Because s̃ is large,
the agents feel that the cylinder moves significantly more rapidly than the speed they can
themselves maintain comfortably within the crowd. For low γ, they would therefore tend to
anticipate the obstacle arrival by moving sideways quite early, which explains the low density
corridor extending rather far in front of the cylinder in that case, typically at a distance of order
ls = sξ/cs. The density profile is in this case essentially symmetric, as for γ = 0 the system is
invariant under the symmetry (t 7→ −t, y 7→ −y). When γ increases, ls should be compared
with ds = s/γ, which measure how far from the cylinder agents can foresee its motion. As
illustrated on Figure 4 , we see that when ds < ls, the size of the perturbation in front of the
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Figure 2: Exploration of parameter space of the MFG model. Each sub-figure repre-
sents the discounted stationary MFG density obtained solving (18) and (17). The
axis represent the dimensionless quantities R̃ ≡ R/ξ and s̃ = s/cs. Each quad-
rant shows different values of γ̃(1) ≡ (ξ/cs)γ (or γ̃(2) ≡ (R/s)γ). We note that
the choice of parameters best representing the experimental conditions lies in quad-
rant I, except for the case of Fig. 1c which lies at the boundary between quadrants
I and II. Parameters of the sub-figures in each quadrant in format

�
s̃, R̃; [γ̃(1)]
�
[with

γ̃(2) = (R̃/s̃)γ̃(1)]: quadrant I (3,3; [.25, 5]), quadrant II (3,0.3; [0.5, 5, 40]), quad-
rant III (0.3, 0.3; [0.25, 5]), quadrant IV (0.3,3; [0, 0.45, 1.8]).

cylinder is given by ls. Contrarily to what happens in the third quadrant however, this change
of scale qualitatively alters the solution, with a density blob forming in front of the cylinder
and on the other hand a density profile behind the cylinder which is much less affected.

The variations of the density plots seen on quadrant II and IV are somewhat more complex
since the four length scales (ξ, ls, dcs

, ds) are involved, but the mechanisms observed in Figure
3 and Figure 4 can be seen to be at work there too.

4 Comparisons with experiment

We now turn to the analysis of the experimental settings previously discussed. We will deal
with the three different experimental configurations showed in Figure 1 separately. Our claim
is that we can describe the three scenarios as the stationary state of our MFG model. This is
already true for the frontal configuration, as was shown in [1]. Our goal is therefore to demon-
strate that this is also true for the other two configurations. We will compare the experimental
data to the density field m̂e and to the velocity field v( x⃗) = −[µ−1∇ûe + σ2(∇m̂e)/(2m̂e)]
derived from the system Eqs. (18)-(17). For completeness, we have also solved the time de-
pendent MFG equations (HJB)-(KFP) and in appendix C we compare their solution at interme-
diate times t ≃ T/2 to m̂e, and verify that they are as expected identical, the ergodic approach
being however significantly faster and more precise.

4.1 Pedestrians facing the obstacle

In [1] we studied the case where pedestrians were facing the arriving cylinder. Under these
circumstances, people could efficiently estimate the cylinder’s size and velocity, thus the time
it would take for the obstacle to reach them. We model such scenario by taking γ= 0, and the

8
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Figure 3: Focus on the quadrant III of Figure 2 with details about the size of the
perturbation. The white circle has radius R+ ξ whereas the black circle has radius
R + dcs

, with dcs
≡ cs/γ (note that the left panel’s black circle is not visible since

dcs
= 4). We observe how the smallest of the circles is the one governing the distance

at which the perturbation due to the cylinder is felt.

simulation is shown on the left column of Figure 5. Here we see how striking the resemblance
to the experiment is. Starting from the density plot, we clearly see the vertically symmetric dis-
tribution of pedestrians, with a depletion prior and posterior to the obstacle passage and with
an increase on the sides. Moreover, the velocity field obtained from the MFG model correctly
displays the lateral motion of pedestrians stepping aside to make room for the intruder. We
believe MFG good performances should be attributed to an element that, as already discussed
in [1], many pedestrian dynamics models, such as granular and social force models, strug-
gle accounting for. This is the long term anticipatory behavior of individuals clearly captured
in the experiment and naturally present in the very structure of MFG, namely by means of
the backward-solved HJB equation (HJB). The back-propagation of information allows MFG
agents to optimally anticipate the obstacle’s arrival, and most notably without prescribing an
anticipation time, contrarily to many models for crowds motion. Indeed, solving the MFG
equations gives the Nash equilibrium velocity an agent should adopt for any given point in the
simulated space, i.e. the strategy of motion which, in the spirit of (2), is best suited to avoid
the obstacle and high density areas.

4.2 Pedestrians randomly oriented

In the experimental configuration where participants were asked to orient themselves ran-
domly we see, from the right column of Figure 6, that the main difference with the frontal
case is in the decrease of the depletion in front of the obstacle, meaning that participants an-
ticipate less. We can imagine that, when participants were placed randomly, only some of
them could gather information about the obstacle visually, whereas the rest had to resort to all
their other senses to decide how to react. This impacts the global anticipatory behavior and

9
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Figure 4: Focus on the quadrant I of Figure 2 with details about the size of the
perturbation. The purple arrow’s length is R + ls, with ls ≡ sξ/cs the scale of the
length at which agents should start moving to optimally avoid impact, whereas the
blue arrow’s length is R+ ds, where ds = s/γ represents how far the cylinder travels
during time 1/γ. It is apparent how a congestion in front of the cylinder appears when
ds < ls, because the agents optimize only on a small portion of cylinder’s trajectory.

causes a later reaction to the obstacle arrival. The inclusion of the discount factor γ in our
MFG is enough to describe the change in the crowd’s avoidance strategy. The left column of
Figure 6 shows the numerical solution of the MFG system for ξ and cs as for the frontal case
and with γ = 0.5. We can indeed observe that turning on the discount factor produces the
desired effects, by reducing the crowd’s displacement in front of the obstacle but still conserv-
ing the accumulation on the sides and the density depletion after its passage. Moreover, the
simulated velocity field shows an increase in escaping dynamics in front of the cylinder and
slight circulation around it.

4.3 Pedestrians giving their back to the obstacle

Finally, when participants in the experiment had to give their back to the obstacle and were
asked not to anticipate, the observed behavior changed decisively. As the right panel of Figure
7 shows, having lost the visual information, it was harder to estimate the obstacle’s velocity and
direction of motion, resulting in pedestrians being pushed along by the intruder, and behaving
like granular material [1]. Behind the cylinder, on the other hand, no significant depletion is
shown, and this we believe is due to the diffusivity of the crowd, given the pedestrians’ inten-
tion to have as much space as possible. The left column of Figure 7 shows the MFG simulation
for ξ= 0.4, cs = 0.2 and γ= 6. Here we recover the accumulation in front of the obstacle and
the smaller depletion behind it. By looking at the velocity plots we clearly see that pedestrians
in front of the cylinder are pushed by the intruder along the direction of its motion. Then,
we also remark the agreement with the rotational motion around the obstacle, analogously to
what would happen for granular inert matter, under purely mechanical forces. We managed to
recover the experimental behavior mainly by means of the discount factor, slightly modifying
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Figure 5: Qualitative comparison between density, first row, and velocity plots, sec-
ond row, between the experiment, right column, and the ergodic state of the MFG
model, with parameters ξ= 0.2, cs = 0.1 and γ= 0, left column, for the case where
all pedestrians were facing the incoming intruder. The green segment and the red
arrow are a scale for distance and velocity respectively.

ξ and cs to better fit the data, placing the solution at the boundary between quadrants I and
II. This means that the discounting term correctly reproduces losses in anticipatory abilities.

5 Conclusion

In the present work we have provided a detailed description of the consequences of adding
to the Mean-Field Games model used in [1] a term representing agents anticipation’s hori-
zon. Moreover, we have shown that such term helps modulating the simulated anticipatory
behavior, making it possible to reproduce a wider range of crowd dynamic scenarios, as the
comparison with the different experimental configurations has shown. This is all the more re-
markable since we used the most simple and first ever proposed Mean-Field Game model [8],
to which we just added a parameter, the discount factor. By using our MFG to describe, both
quantitatively and qualitatively, the human behavior observed in this particular experiment,
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Figure 6: Qualitative comparison between density, first row, and velocity plots, sec-
ond row, between the experiment, right column, and the ergodic state of the MFG
model, with parameters ξ = 0.2, cs = 0.1 and γ = 0.5, left column, for the case
where pedestrians were oriented randomly.

we do not wish to imply that pedestrians solve a system of coupled differential equations while
walking, but we highlight that at least in simple cases, individuals have internalized some ba-
sic anticipation mechanisms allowing them to rapidly coordinate with others and efficiently
avoid eventual obstacles.
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Figure 7: Qualitative comparison between density, first row, and velocity plots, sec-
ond row, between the experiment, right column, and the ergodic state of the MFG
model, with parameters ξ= 0.4, cs = 0.2 and γ= 6, left column, for the case where
pedestrians were giving their back to the incoming cylinder and were asked not to
anticipate.
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A Derivation of the discounted HJB

Starting from the definition of the cost functional (2) we have

u( x⃗ , t) = inf
a⃗
E
¨∫ T

t
L( x⃗ ,τ)[m]eγ(t−τ)dτ+ eγ(t−T )cT ( x⃗T )

«

= inf
a⃗
E
¨∫ t+d t

t
L( x⃗ ,τ)[m]eγ(t−τ)dτ+ e−γd t

×
�∫ T

t+d t
L( x⃗ ,τ)[m]eγ(t+d t−τ)dτ+ eγ(t+d t−T )cT ( x⃗T )

�«
.

Making use of the dynamic programming principle [19], this can be written as

u( x⃗ , t) = inf
a⃗

�
L( x⃗ , t)[m]d t + e−γd tu( x⃗ + d x⃗ , t + d t)

�

Ito
= inf

a⃗

�
L( x⃗ , t)[m]d t + (1− γd t)

�
u( x⃗ , t) + d t

�
∂tu+ a⃗ · ∇⃗u+

σ2

2
∆u

���
,

where in the last passage the Ito chain rule has been used to calculate the total time derivative
of the value function. Then, by keeping only terms of order one in d t we obtain

0= ∂tu− V [m] +
σ2

2
∆u− γu+ inf

a⃗

nµ
2

a⃗2 + a⃗ · ∇⃗u
o

. (A.1)

At this point, by minimizing the term in the curly brackets with respect to a⃗ we find that the
optimal velocity is given by

a⃗∗ = −∇⃗u
µ

. (A.2)

Finally, (A.2) is plugged back in (A.1) to obtain (HJB).

B Alternative formulation of MFG

In [1], we took advantage of the fact that by applying the Cole-Hopf transformation

u( x⃗ , t) = −µσ2 logΦ( x⃗ , t) , (B.1)

one can cast the MFG equation in a form more familiar to physicists. Now, substituting (B.1)
into equation (HJB) we obtain

µσ2∂tΦ= −
µσ4

2
∆Φ− V [m]Φ+ γµσ2Φ logΦ . (B.2)

The second part of this transformation amounts to defining Γ ( x⃗ , t) = m( x⃗ ,t)
Φ(x ,t) which, when

plugged inside the KFP equation (KFP) yields

µσ2∂tΓ =
µσ4

2
∆Γ + V [m]Γ − γµσ2Γ log m+ γµσ2Γ log Γ . (B.3)

The stationary equations are

−µσ
4

2
∆Φe − V [me]Φe + γµσ2Φe logΦe = 0 , (B.4)

µσ4

2
∆Γ e + V [me]Γ e − γµσ2Γ e logΦeΓ e + γµσ2Γ e log Γ e = 0 . (B.5)
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When passing to the moving frame, as in 2.3, the time dependent MFG in the Cole-Hopf settings
becomes

µσ2∂t Φ̂−µσ2s⃗ · ∇⃗Φ̂= −µσ
4

2
∆Φ̂− V [m]Φ̂+ γµσ2Φ̂ log Φ̂ , (B.6)

µσ2∂t Γ̂ −µσ2s⃗ · ∇⃗Γ̂ = µσ
4

2
∆Γ̂ + V [m]Γ̂ − γµσ2Γ̂ log m+ γµσ2Γ̂ log Γ̂ , (B.7)

whereas from (B.4) and (B.5) we get the corresponding equations for the stationary state

−µσ
4

2
∆Φ̂e − V [m0]Φ̂

e + γµσ2Φ̂e log Φ̂e +µσ2s⃗ · ∇⃗Φ̂e = 0 , (B.8)

µσ4

2
∆Γ̂ e + V [m0]Γ̂

e − γµσ2Γ̂ e log m+ γµσ2Γ̂ e log Γ̂ e +µσ2s⃗ · ∇⃗Γ̂ e = 0 . (B.9)

Now, if γ= 0, we see that these equations are similar to the Non-linear Schrödinger equation in
a moving frame, and in [1] we explain that casting the problem in this form is beneficial to the
development of efficient numerical schemes, especially for the stationary state of MFG. Unfor-
tunately the presence of the logarithmic term does pose significant problems for the numerical
implementation when γ > 0, if one tries to solve for the stationary state in this formulation.
However, as explained in appendix C, this form of the MFG equations is instrumental in cur-
ing the divergences occurring near the obstacle in the original (m, u) formulation of the MFG
equations.

C Brief description of the numerical scheme

Figures 5, 6 and 7 compare the stationary state of our MFG model to the experimental data
collected in [7]. The stationary states shown there, as well as in Fig. 2, are obtained solving
directly equations (17) and (18), using an algorithm which at its core is related to the one
used in [1] for the stationary state. This consists in choosing a grid representing the space, in
this case the 2d area where the experiment took place. Then, for each site i, both m̂e

i and ûe
i

are expressed as functions of neighboring sites. By starting from an initial guess, the values of
ûe and m̂e are updated until convergence.

Within the (ûe, m̂e) variables, this approach fails however near hard walls, or here near
the cylinder, where the value function u shows a logarithmic divergence. This is why in [1]
we applied this method to the equations in their NLS form (i.e. with the variables (Φ̂e, Γ̂ e)).
Unfortunately, as explained in appendix B, when γ ̸= 0 the MFG equations in the (Φ̂e, Γ̂ e)
variables imply a logarithm, and this logarithm makes this approach unfeasible.

For finite γ, it is therefore necessary to mix the solution of the equations in both formula-
tions, and more specifically to solve the problem expressed in the (Φ̂e, Γ̂ e) variables near the
obstacles, and in its original (ûe, m̂e) form away from it. This has proven to be a very reliable
and fast algorithm, allowing us to directly compute the solution of the ergodic state. More
details on this method will be provided in a future publication.

As a check of coherence, we also have solved the time dependent MFG system, to verify that
the solution we obtain solving (18) is the same to what we get by taking the solution of (16)
at t = T/2. We solved the time dependent problem using the Matlab routine ode45. Figures
8 and 9 show the results of this comparison for the choice of parameters used in Figs. 6 and
7 demonstrating that the two approaches indeed give the same result. The ergodic approach
is, however, significantly faster and more precise, in particular because the time-dependent
approach, being performed in the lab reference frame, requires a large system.
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Figure 8: Middle and right panels: density profiles of the discounted MFG stationary
state along a vertical (middle) and horizontal (right) cut passing through the center
of the cylinder. The curves compare the solution obtained solving directly Eqs. (18)-
(17) (blue line) and the one obtained from the time dependent Eqs. (HJB)-(KFP) and
taking the solution at T/2 (orange line). Left panel: density plot obtained from the
time dependent Eqs. (HJB)-(KFP). The parameters of the simulations are the same
as in Fig. 6 (corresponding to γ= 0.5).

Figure 9: Same as in Fig. 8, but for the parameters of Fig. 7(corresponding to γ= 6).

D Dimensionless equations

In section 3 we have introduced the length scale ξ and velocity scale cs, which are such that at
γ = 0, the solution of the MFG equations are entirely determined by the dimensionless ratio
R̃= R/ξ, and s̃ = s/cs.

Considering now γ ̸= 0, let us introduce the scaled variables x̃ = x/ξ, and t̃ = t/τ, where
τ is the characteristic time scale of the system obtained as τ= ξ/cs. Substituting these in (15)
we get

∂ t̃u
τ
= − σ

2

2ξ2
∆ x̃ x̃u+

(∇⃗ x̃u)2

2µξ2
+ γu+

cs

ξ
⃗̃s · ∇⃗ x̃u+ gm+ U0( x̃ξ, R̃ξ) . (D.1)

Introducing now ã∗ = a∗/cs the scaled optimal velocity, we see that if we want to define it
as ã∗ = −∂ x̃ ũ this implies to define the scaled value function as ũ = u/(µξcs) = 2u/(µσ2).
Noting furthermore than the definition Eq. (13) of U0 implies U0( x̃ξ, R̃ξ) = U0( x̃ , R̃), Eq. (D.1)
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reads

∂ t̃ ũ= −∆2
x̃ x̃ ũ+

(∆⃗ x̃ ũ)2

2
+ γ̃(1)ũ+ ⃗̃s · ∇⃗ x̃ ũ+

m
m0
+ U0( x̃ , R̃) , (D.2)

with γ̃(1) = γτ is the scaled discount ratio. Applying the same scaling to Eq. (16) we obtain
the dimensionless KFP equation

∂ t̃ m=∆ x̃ x̃ m+ ∇⃗ x̃ · (m∇⃗ x̃ ũ) + ⃗̃s · ∇⃗ x̃ m . (D.3)

Up to a scaling, the solution of our model is therefore entirely determined by the scaled quan-
tities
�
R̃, s̃, γ̃(1)
�
, or equivalently

�
R̃, s̃, γ̃(2)
�

where γ̃(2) = (R̃/s̃)γ̃(1).
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