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Introduction

MOTIVATIONS

In all aspects of our daily lives, we interact with other individuals in our
social circles, we use commodities such as public transport, the power grid
to heat our homes and cook, social networks for leisure and information.
They fall under what we call complex networks. Complex networks are
structured complex systems in which items are interconnected if they en-
tertain relations. These relations can, for example, be social between indi-
viduals, exchanges of information and messages in mail networks or in the
form of energy between electrical power stations. Gaining insight into the
topology of these complex networks can help us understand how they are
structured, evolve and do not collapse. Furthermore, it might help us better
understand how humans interact, communicate and collaborate. However,
complex networks typically contain many interconnected elements, making
it difficult to analyze their structure without algorithmic means.

Artificial Intelligence (AI), and particularly Machine Learning (ML) pro-
vide algorithmic solutions to exploiting large quantities of data. However,
algorithms work with mathematical representations, and data is often not
suited to be exploited as is. Representation learning solves this issue by
providing summarized mathematical representations of data that can be
exploited by machine learning algorithms. Representation learning spans
many areas of science and can be used to extract representations of data
for modalities as diverse as speech, image, text, temporal series. Usually,
these vector representations of data are called embeddings. Embedding
comes from the objective of learning the representation by compressing in-
formation in a latent space that conveys the similarity between items in
the data source. In complex networks, graph embeddings are used to rep-
resent networks’ nodes and edges. In Natural Language Processing (NLP)
representations of words from texts are word embeddings.

How does an algorithm extract a representation of data? Algorithms
rely on statistical methods to learn representations of data. They capture
what items appear together, extract patterns from the data. Representa-
tion learning and, more generally, currently, most fields in Al rely heavily
on neural networks. By ingesting large amounts of data, they can capture
regularities and patterns of a dataset to solve tasks, like classifying texts,
recommending content or goods, etc. Recently, chatbots have put NLP in
the spotlight for the public. Users can interact with an Al that seems om-
niscient. However, chatbots like OpenAl’s ChatGPT were only trained on
massive text datasets to predict the most probable answer to a sequence of
words. The underlying algorithm of these heavily publicized systems is a
language model, learning a representation of language.

The first large architectures were Pre-trained Language Models (PLMS)
whose size and training objectives evolved into today’s Large Language Mod-
els (LLM). These architectures require large quantities of training data. At
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FIGURE 1: Sizes of some LLM (billions of parameters) according to their release dates. When
multiple models are made available, only the largest is plotted. The list is not exhaustive and
for illustration purposes. *Alleged size of GPT-4 not confirmed by OpenAl.

their beginnings, these architectures only amounted to around a hundred
million trainable parameters. Since then, model sizes have grown, from
GPT-3’s 175 billion parameters in 2020 to models in the tens to hundreds
of billion parameters nowadays (see Figure 1) [Bro+20; Ani+23].

This trend towards large neural architectures is observed in other ar-
eas of machine learning, including Complex Networks with the emergence
of Graph Neural Networks (GNN) [Sca+09]. These large architectures have
opened up new opportunities to involve Al in our everyday life: credit
scores, assisted X-ray interpretations, automatic processing of CVs [Mos21;
Bou+23].

Despite the benefits brought by these new architectures, able to learn
representations on large amounts of data, some concerns subsist. First and
foremost, neural architectures are trained on large hardware systems using
graphical processing units (GPU). The environmental impact of training and
serving these large models to end users is a first challenge that begs the ques-
tion of the long-term sustainability of these approaches. Their training con-
sumes a lot of energy. In 2022, it was estimated that the cost of training the
176B parameters of the BLOOM LLM consumed 433,196 kWh of electricity,
amounting to over 1B GPU hours for a training time of over 118 days. The
total carbon cost is estimated to be around 24.7 tonnes of CO,eq (however,
the energy mix was mostly nuclear) [IVL23]. For reference, in [SGM19],
it is estimated that the average yearly CO,eq production of an American
is around 16.4 tonnes. This measure is only considering training. Yet, the
bulk of the energy consumption of large neural architectures is associated
with inference, in production, when data is fed through the network to ob-
tain an ou