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“Le mouvement évolutif serait chose simple, nous aurions vite fait d’en
déterminer la direction, si la vie décrivait une trajectoire unique, comparable
à celle d’un boulet plein lancé par un canon. Mais nous avons affaire ici à un
obus qui a tout de suite éclaté en fragments, lesquels, étant eux-mêmes des
espèces d’obus, ont éclaté à leur tour en fragments destinés à éclater encore,
et ainsi de suite pendant fort longtemps. ”

Henry Bergson





A B S T R A C T

Title: Protein evolution and data-driven sequence landscapes

Abstract: Thanks to the explosion of available protein sequence data,
driven by next-generation sequencing, unsupervised machine learn-
ing models can be harnessed to learn protein sequence landscapes.
Specifically, methods like Direct Coupling Analysis (DCA) directly
consider the patterns of conservation and coevolution between pro-
tein sites. DCA has been applied to many biological problems, from
predicting the fitness effects of mutations to artificial sequence gen-
eration. In this thesis, we broaden the application of DCA to study
protein evolution, the dynamical process of amino acid substitutions
in protein sequences driven by random mutations and natural selec-
tion. We particularly focus on the effects and implications of epistasis,
which refers to the context-dependence of mutational effects. Our
goal is to design and test various dynamical algorithms to navigate
the data-driven sequence landscape inferred by DCA, with a focus on
beta-lactamase enzyme families. Beta-lactamases are enzymes capable
of degrading many commonly prescribed antibiotics posing a serious
threat to health systems worldwide. Initially, we modeled two recently
published neutral drift protein evolution experiments that used beta-
lactamases as starting sequences. We demonstrate that our artificially
generated libraries reproduce well the statistics of the experimental
ones by introducing an evolutionary dynamics that relies on the fitness
landscape inferred by DCA and accounts for the degeneracy of the
genetic code. Computationally, we explore the influence of different
experimental parameters, highlighting a trade-off between the number
of experimental rounds and the sequencing depth when trying to
elucidate epistatic constraints. Thanks to a simple modification of the
sampling algorithm, we manage to model proteins’ evolutionary dy-
namics across timescales, spanning from dozens of years to eons. For
the first time, this approach allows us to quantitatively model the pre-
dictability of mutational effects as sequences diverge, a phenomenon
driven by epistasis. Subsequently, we examine the deep mutational
scanning experiments of two other beta-lactamase enzymes, VIM-2
and NDM-1. We analyze the role and prevalence of context-dependent
mutability by integrating experimental data with DCA predictions and
we propose that structural regions with intermediate solvent exposure
exhibit the greatest variability in mutational effects. Furthermore, we
computationally characterize mutational heterogeneities across the
entire enzyme family. We then develop and test a straightforward
approach to produce mutational paths between VIM-2 and NDM-1,
successfully obtaining functional proteins with numerous mutations
and uncovering the presence of unexpected epistatic interactions.
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R É S U M É

Titre: Évolution des protéines et paysages de séquences guidés par les
données

Résumé: Grâce à l’explosion des données disponibles sur les séquences
de protéines, alimentée par le séquençage de nouvelle génération, les
modèles d’apprentissage automatique non supervisé peuvent être
exploités pour apprendre les paysages de séquence de protéines. Plus
précisément, des méthodes comme Direct Coupling Analysis (DCA)
considèrent directement les motifs de conservation et de coévolution
entre les sites protéiques. La DCA a été appliquée à de nombreux
problèmes biologiques, allant de la prédiction des effets de la fit-
ness des mutations à la génération de séquences artificielles. Dans
cette thèse, nous élargissons l’application de la DCA pour étudier
l’évolution des protéines, le processus dynamique des substitutions
d’acides aminés dans les séquences de protéines, entraîné par des
mutations aléatoires et la sélection naturelle. Nous nous concentrons
particulièrement sur les effets et les implications de l’épistasie, qui
fait référence à la dépendance contextuelle des effets mutationnels.
Notre objectif est de concevoir et de tester différents algorithmes
dynamiques pour naviguer dans le paysage de séquence guidé par
les données, inféré par la DCA, en mettant l’accent sur les familles
d’enzymes beta-lactamase. Les bêta-lactamases sont des enzymes
capables de dégrader de nombreux antibiotiques couramment pre-
scrits, représentant une menace sérieuse pour les systèmes de santé
du monde entier. Au départ, nous avons modélisé deux expériences
d’évolution de protéines de dérive neutre récemment publiées qui
utilisaient des bêta-lactamases comme séquences de départ. Nous dé-
montrons que nos bibliothèques générées artificiellement reproduisent
bien les statistiques des expériences en introduisant une dynamique
évolutive qui repose sur le paysage de fitness inféré par la DCA et
prend en compte la dégénérescence du code génétique. Computa-
tionnellement, nous explorons l’influence de différents paramètres
expérimentaux, mettant en évidence un compromis entre le nombre
de tours expérimentaux et la profondeur de séquençage lors de la
tentative d’élucider les contraintes épistatiques. Grâce à une simple
modification de l’algorithme d’échantillonnage, nous parvenons à
modéliser la dynamique évolutive des protéines à travers les échelles
de temps, allant de dizaines d’années à des éons. Pour la première
fois, cette approche nous permet de modéliser quantitativement la
prédictibilité des effets mutationnels à mesure que les séquences di-
vergent, un phénomène entraîné par l’épistasie. Par la suite, nous
examinons les expériences de deep mutational scanning de deux
autres enzymes bêta-lactamase, VIM-2 et NDM-1. Nous analysons
le rôle et la prévalence de la mutabilité dépendante du contexte en
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intégrant les données expérimentales avec les prédictions de la DCA
et nous proposons que les régions structurales avec une exposition
intermédiaire au solvant présentent la plus grande variabilité des ef-
fets mutationnels. De plus, nous caractérisons computationnellement
les hétérogénéités mutationnelles à travers toute la famille d’enzymes.
Nous développons ensuite et testons une approche simple pour pro-
duire des voies mutationnelles entre VIM-2 et NDM-1, obtenant avec
succès des protéines fonctionnelles avec de nombreuses mutations et
révélant la présence d’interactions épistatiques inattendues.

Mots-clés: Direct Coupling Analysis, modèles génératifs, épistasie,
évolution des protéines, expérience de dérive neutre, Deep Mutational
Scanning, bêta-lactamases
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1 I N T R O D U C T I O N

In this chapter, we present an overview of the biological and theoreti-
cal concepts essential for understanding the thesis. We will introduce
more specific topics individually in the subsequent chapters as they
become relevant. Section 1.1 offers an elementary introduction to
protein biology. Section 1.2 provides some basic concepts about pro-
tein evolution, spanning from the concept of protein space to that
of sequence alignments. Section 1.3 discusses the phenomenon of
antibiotic resistance in bacteria, specifically focusing on the role of
beta-lactamase enzymes that confer resistance to β-lactam antibiotics.
A significant portion of the research presented in this thesis deals
with those enzymes as model systems. In section 1.4 one of the most
central topics of my thesis is introduced: epistasis. The term refers to
the dependence on the amino acid context of the mutational effects
in proteins. Section 1.5 gives a brief overview of some of the most
recent experimental techniques and approaches to study fitness land-
scapes and protein evolution. Finally, section 1.6 offers a theoretical
depiction of the Potts model, which we use as the primary tool for
computationally modeling protein sequence landscapes and studying
evolution.

1.1 protein biology

Proteins are fundamental biomolecules present in all living organisms,
serving as the vital building blocks of life. They facilitate a wide
array of essential functions necessary for the survival and operation
of biological systems. Among the roles that they execute, proteins
are responsible for structural support, accelerating chemical reactions,
and acting as signaling agents to mediate communication between
cells. In its most essential form, a protein is a linear polypeptide chain
made up of smaller monomeric sub-units, also referred to as residues,
which are chemically known as amino acids.

1.1.1 Amino acids

There are 20 amino acids encoded by the standard genetic code, plus
2 additional ones - selenocysteine and pyrrolysine - that can be incor-
porated by non-standard translation mechanisms. Each amino acid is
associated with a standard letter. Chemically speaking, amino acids
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Figure 1.1 – Chemical structure of the 20 standard amino acids found in
eukaryotes, plus selenocysteine. Pyrrolysine is not depicted
owing to its rarity. Image by Bert Hubert, CC BY-SA 4.0 License.

are organic compounds constituted of two main elements: a fixed
common core and a variable side chain.

The fixed common core of each amino acid consists of an amino
group (-NH2) and an acidic carboxyl group (-COOH). These groups
are identical across all amino acids, forming their basic structure. The
variable side chain, on the other hand, differs among every amino
acid, giving each its unique combination of physicochemical properties
(i.e. charge, polarity, hydrophobicity, size, etc.), as partially shown in
Figure 1.1.

1.1.2 Protein structure & function

The conventional view of protein structure often focuses on the 3D con-
figuration of the sequence of amino acids in the folded state. However,
a better way to describe proteins is through a hierarchy of structures,
each level offering a progressively more comprehensive view of their
organization. This in turn elucidates the relationship between struc-
ture and function which is essential to comprehend how proteins
operate in the cell.

Primary structure

The primary structure refers to the linear sequence of amino acids,
which constitutes the most fundamental level of a protein, as described
in the previous subsection. The primary structure is intimately linked
to the 3D shape of proteins. This concept is emphasized by Anfinsen’s
dogma [2] which states that all information required to specify the

https://en.wikipedia.org/wiki/Amino_acid#/media/File:Amino_Acids-wide.svg


Figure 1.2 – Hierarchical organization of protein structure, illustrating the
progression from the primary to the quaternary level. Image
adapted from [1].

structure of a protein is encoded in its amino acid sequence. Although
generally true, there are limitations. For example, in real cellular
environments, additional factors such as molecular chaperones, or
environment-dependent factors can influence the folding process and
the final 3D structure of proteins.

Secondary structure

The secondary structure represents the local geometrical organization
of the protein and can be classified into two main groups: alpha helices,
beta sheets. These elements are usually connected by less structured
sections, typically in the form of loops.

• Alpha helices: right-handed coiled strands, held together by hy-
drogen bonds between nearby residues. Each helix turn typically
corresponds to 3− 4 amino acids. Alpha helices are common to
most proteins and provide stability and flexibility.

• Beta sheets: comprising strands lying side by side, beta sheets are
connected through hydrogen bonds between different parts of
the protein chain. They add rigidity and form the core of many
proteins. Beta-sheets can be categorized into two main types:
parallel and antiparallel, depending on the relative orientation
of the adjacent strands.

Tertiary structure

The tertiary structure indicates the overall 3D arrangement of a protein.
This level of organization is critical, as it enables proteins to carry
out their respective functions effectively. For example, enzymes -
proteins dedicated to catalyzing specific chemical reactions - must
have a precise 3D arrangement of their active site to fit correctly with



their substrates. This necessity is even more evident for structural
proteins, which play a critical role in maintaining the integrity and
shape of cells. These proteins provide support and stability to various
biological structures through their unique shapes.

In conclusion, the tertiary structure is foundational to a protein’s
function, dictating the specific molecular interactions that determine
the protein’s role within the cell.

Quaternary structure

The quaternary structure involves the assembly of multiple protein
subunits into a complex, essentially functioning as a large molecular
machine that performs various functions. Both homomeric (identical
subunits) and heteromeric (different subunits) complexes exist in
nature. Hemoglobin, a homomeric protein complex present in red
blood cells, is a classic example. It consists of four subunits working
together to bind and transport oxygen throughout the body. The
hemoglobin complex is an example of permanent interaction between
proteins. The interaction can also be transient, allowing proteins
to interact with multiple partners quickly in processes like signal
transduction or metabolic regulation.

Quinary structure

The highest level of protein organization involves the interactions
between proteins and their broader cellular context. The quinary struc-
ture of proteins includes the transient or semi-permanent interactions
between proteins or protein complexes within the cellular environ-
ment. This level of organization entails interactions with nucleic acids,
lipids, or other cellular components, and can lead to macroscopic
phenomena such as liquid-liquid phase-separated regions.

1.1.3 Protein biosynthesis

Protein biosynthesis is the process, common to all living beings, that
generates proteins by assembling amino acids based on the instruc-
tions encoded in the DNA. As stated by the central dogma of molecular
biology, which elucidates the flow of genetic information within a cell,
this process occurs in two main steps: transcription and translation.

Transcription

The genetic information that codes for proteins is stored within genes,
which are specific segments of DNA carrying the information neces-
sary to determine the amino acid sequence of proteins. In the first
stage of protein biosynthesis, transcription, the information stored
in the genes is transcribed into messenger RNA (mRNA). Inside the



cell’s nucleus, the enzyme RNA polymerase binds to the DNA, reads
the specific sequence of a gene, and synthesizes a complementary
mRNA strand. This mRNA acts as a temporary copy of the genetic in-
formation and is later transported out of the nucleus to the cytoplasm.
It is important to note that this process is specific to eukaryotes. In
contrast, prokaryotes, such as bacteria, do not have a defined nucleus,
and transcription occurs directly in the cytoplasm.

Translation

Following transcription, the translation phase happens. Translation
takes place in the ribosome, a cellular machine found in the cytoplasm.
The ribosome reads the sequence of the mRNA, and with the help of
molecules called transfer RNA (tRNA), it links together amino acids
in the specific order dictated by the mRNA sequence. This process
forms a polypeptide chain of amino acids, the primary structure of
proteins, that subsequently folds autonomously into its functional
three-dimensional structure. The folding process is guided by the
sequence of amino acids within the protein chain and is influenced
by various factors, e.g. the hydrophobic interaction of amino acids
with the surrounding water. Ultimately, the protein chain assumes
the set of dynamical configurations that reflect the most energetically
favorable conformations within the cellular environment.

1.1.4 The genetic code

Crucial to the process of translation is the genetic code, the set of rules
that determine how a sequence of nucleotides of DNA (or mRNA) is
translated into the sequence of amino acids in a protein. The genetic
code consists of three nucleotide sequences called codons, each of
which codes for a specific amino acid or serves as a stop signal to
terminate translation. Across a vast range of organisms, from simple
bacteria to complex multicellular eukaryotes, the same genetic code
applies. While there are a few minor exceptions, this universality
underscores the shared evolutionary ancestry of all life on Earth.

A noteworthy aspect of the genetic code is its degeneracy or redun-
dancy. Since there are only 4 nucleotides in DNA, a total of 43 = 64
possible codons exist. These must code for 20 amino acids, plus the
stop signal, meaning that multiple codons often code for the same
amino acid. This fact is illustrated in Figure 1.3, which presents a
genetic codon table. By reading the nucleotides from the inner to
the outer circle, it is possible to associate each codon with its specific
amino acid. Codons that code for the same amino acid are called
synonymous. The figure reveals that degeneracy often arises from
variability in the third nucleotide of codons; consequently, a mutation
at this position generally does not alter the coded amino acid. For



Figure 1.3 – Circular RNA codon table. Codons are read from the inner to
the outer circle. Amino acids are shown next to codons, colored
by their chemical properties. Image adapted from [3].

instance, Threonine (Thr) is coded by all four codons starting with
AC, irrespective of the last nucleotide. However, different mappings
between codons and amino acids exist. For instance, the amino acid
serine (Ser) is encoded by six different codons: all codons starting with
UC and the codons AGC and AGU. There is also the case of methion-
ine (Met), which is coded by only one codon, AUG, and is also used to
initiate translation. A remarkable characteristic of the genetic code is
its capacity to reduce the negative impacts of non-synonymous amino
acid mutations. Mutations are usually deleterious to protein structure
and function. However, a mutation might not affect much a protein’s
function if the chemical characteristics of the replaced amino acid,
such as hydrophobicity, are preserved. Interestingly, the genetic code
mapping is such that non-synonymous single-nucleotide mutations
often have similar chemical characteristics. For example, codons in the
form of NUN (where N represents any nucleotide) always code for
hydrophobic amino acids (grey color in the amino acid side chain of
Figure 1.3). The degenerate nature of the genetic code adds a layer of
resilience and adaptability to protein evolution. Minor changes in the
nucleotide coding sequences may not lead to significant alterations in
the resulting protein, ensuring that essential functions are preserved
even in the face of genetic variations.

1.2 protein evolution

Life on Earth has evolved for over three billion years, beginning with
the self-replication of the first primitive molecules. This process has



enabled the development and spread of a wide variety of species,
creating the complex web of life we see today, much of which is still
to be explored.

Evolution is defined as the heritable change in the characteristics of
living beings over successive generations, guided by natural selection,
which acts on phenotypic variation. One of the biggest discoveries of
the 20th century is the cause and nature of this phenotypic variation:
random and spontaneous mutations in the genome.

Mutations

Among all types of mutations that affect the genetic material of living
beings, the most well-understood affect genes, the specific subsections
that code for proteins. Protein or gene evolution, therefore, is a
primary and essential form of molecular evolution. Point mutations,
insertions, and deletions are common types of mutations in genes.
While point mutations involve a change in a single nucleotide base,
insertions or deletions can have more profound effects. These latter
mutations are likely to disrupt proteins unless they happen in groups
of three, as this preserves the reading frame of the genetic information.

As noted in the previous section, point mutations can be syn-
onymous or non-synonymous. Synonymous mutations result in the
translation of the same protein, while non-synonymous mutations
lead to the translation of proteins with one mutated amino acid. The
distinction between these two types of mutations is crucial in under-
standing how genetic changes can either preserve or alter the function
of proteins. Interestingly, even though only non-synonymous muta-
tions are supposed to affect the synthesis of proteins, through amino
acid changes, synonymous mutations can play an effect as well. In
particular, it has been shown that organisms can have specific pref-
erences for specific synonymous codons, a phenomenon known as
"codon usage bias". One of the explanations that has been put forward
to explain the overuse of specific codons claims that those codons
are translated faster and more efficiently, conferring an evolutionary
advantage to genes containing them.

Natural selection plays the role of favoring organisms with mu-
tations that increase their fitness. These mutations make the organ-
isms better adapted to their environment, increasing their chances
of survival and reproduction. Conversely, mutations that result in
less favorable traits may be wiped out over time, as they hinder the
organism’s ability to survive.

1.2.1 Sequence space

The number of possible protein sequences of a given length is huge.
For a gene of length 1000, corresponding to a medium-length protein



of around 300 amino acids, the total combinatorial space amounts to
approximately 20300 = 10390 unique amino acid sequences. Compared
to the known universe’s approximate 1080 atoms, the magnitude of
the distinct possible sequences becomes clear. The set of all possible
sequences of a given length L, composed of amino acids or nucleotides,
is commonly referred to as sequence space. The topology of sequence
space can be envisioned as a network where adjacent points denote
sequences differing by just a single mutation. Navigating through
sequence space thus facilitates the representation of sequences via
mutations or chains of mutations along evolutionary pathways.

Despite the vastness of this space, only a minuscule fraction can
be occupied by well-structured and functional proteins and even a
smaller fraction corresponds to extant sequences. Random sequences
have a negligible probability of functioning, and most mutations
around a given sequence are deleterious. Nonetheless, as Maynard
Smith emphasized in [4], a prerequisite for the existence of modern
sequences is that sequence space must be mostly connected: most
sequences must be linked to at least another functional sequence
through a single mutation.

Protein evolution continuously expands and diversifies protein se-
quences, transforming them from their ancient precursors into highly
specialized functional entities upon which all known biological life is
based. This diversification has led to the emergence of a vast array of
protein functions, each tailored to its specific biological need.

1.2.2 Protein families

Protein sequences can be systematically classified into protein families
with a common evolutionary origin. Proteins in the same protein fam-
ily are referred to as homologous, meaning that they have a common
ancestry. Homologous proteins can be further subdivided into two
categories: paralogs and orthologs. Paralogs are homologous proteins
deriving from the same species, originating from a gene duplication
event. Over time, these duplicate genes diverge, leading to vari-
ations in function while still retaining common sequence features.
Orthologs, by contrast, are homologous proteins that are found in
different species. They result from the incremental accumulation of
mutations during and after speciation events, while retaining a similar
functional role. As such, they can provide insights into evolutionary
relationships and conserved biological mechanisms of genes. Homolo-
gous sequences exhibit substantial amino acid divergence, up to only
20% of the amino acid being identical between two pairs of proteins
in the same family. Despite this sequence divergence, the conserva-
tion of the three-dimensional structure and function across species
is remarkable - particularly for orthologs. For example, humans and
the baker’s yeast S. cerevisiae share hundreds of orthologous genes



[5]. Although the typical sequence identity between those genes is
around 30%, almost half of the yeast genes can be swapped for the
human version and still allow normal growth of yeast as it was shown
in Ref. [6]. Notably, sequence identity was not the strongest predictor
of replaceability.

Similar experiments [7, 8] have replaced essential E. coli genes
with thousands of homologous sequences from different species and
have confirmed that a sizable percentage of the divergent homologs
have no to little detrimental effect on fitness. Indeed, swapping
genes between different species has been a method for identifying
functionally equivalent homologs for a long time [9].

Sequence alignments and HMM

The advent of next-generation sequencing technologies has greatly fa-
cilitated the study of protein families, making hundreds of millions of
protein sequences available in public databases [10]. These sequences
are often assembled into Multiple Sequence Alignments (MSAs), a
powerful data structure used to visualize and analyze the relationships
between homologous protein sequences coherently. While sequences
within the same family generally have a similar length, the specific
number of amino acids can vary significantly from one sequence to
another. This is due to the presence of insertions and deletions which
change the length of sequences. Although the structure of homologous
proteins can slightly differ between distant sequences [11], the overall
shape remains remarkably conserved. This is why aligning sequences
[12] and comparing aligned positions often unveils a lot of biological
information. Sequence alignments are instrumental for phylogeny
reconstruction, structure prediction, and prediction of the function of
uncharacterized proteins.

Bio-informatics tools to align sequences are necessary to deal with
the huge amount of available sequences, and have a long history of
development [13]. Hidden Markov Models (HMM) [14] are powerful
statistical models used for aligning protein sequences and discovering
new homologous ones [15]. The underlying concept of profile Hidden
Markov Models (HMMs) is to capture the statistical variations in
an alignment based on the frequency of amino acids and gaps in
each column of the alignment. A gap is a special symbol ’-’ used for
sequence alignments to indicate the absence of an amino acid with
respect to another sequence in the alignment. Profile HMMs consist
of a Markov chain based on a directed graph as depicted in figure
1.4, which can be broken down into three primary types of nodes or
states:

• Match states: Representing the frequency of amino acids in a non-
insert column of an alignment, these model the position-specific
amino acid usage patterns within a family.



Figure 1.4 – HMM structure depicted as a directed graph consisting of three
types of states: squares for match states, diamonds for insert
states, and circles for deletion states. Image from [17].

• Insertion states: Accounting for the potential addition of amino
acids in certain sequences, resulting in gaps in the MSA for other
members.

• Deletion states: Reflecting the removal of amino acids in certain
sequences, lead to a corresponding gap in the aligned sequence.

Each match and insertion state is associated with an amino acid
distribution. In the case of insertion states, the MSA frequency of each
amino acid is utilized, while match states rely on the distribution of
residues in the corresponding column of the MSA. The Markov chain
emits a residue by the corresponding distribution, or a gap symbol if
a deletion state is reached. Transition probabilities exist between two
"layers" of the graph, moving from left to right.

The parameters of the HMM, encompassing emission probabilities
for match states and transition probabilities between different states,
are learned from a seed alignment, which often is manually aligned
by experts. Parameter learning is based on the seed alignment’s
conservation profile.

Once the HMM is trained, it can be employed to identify new
members of the seed family or align new sequences. This alignment
is achieved through computing the most likely corresponding path
from "Begin" to "End," often utilizing algorithms such as the Viterbi
algorithm. HMMer [16] is one of the most common tools used to both
infer HMM models and align sequences.

1.2.3 Statistical signals in sequence alignments

A multiple sequence alignment can be formally represented as a
matrix A with M rows and L columns, where rows represent protein
sequences, and each column represents one aligned position of the
sequences. Each matrix element, denoted as aim, represents one of the
20 standard amino acids or the gap symbol "-". Assuming that we
can perfectly align an MSA, the outcome is a set of very divergent



homologous sequences that despite their differences, represent various
solutions to a unique problem: specifying a functional protein. It
thus becomes evident that sequences must adhere to certain common
constraints to ensure proper folding and functionality. These crucial
indicators are frequently found imprinted in MSAs in the form of
statistical patterns. The most notable statistical indicator is the 1-point
frequency of the amino acid a at position i:

fi(a) =
1
M

M

∑
m=1

δ(aim, a) (1.1)

Intuitively, the distribution of amino acids in a certain column can
reveal a lot about the functional role of that site. If we observe fi(a) to
be close to one in site i, we expect the amino acid a in that position to be
very important for the protein fold or function. More complex patterns
exist as well, which involve multiple sites at the same time. These
patterns can unveil not only the conserved regions but also potential
sites of functional importance, as well as structural features of the
proteins in question. Let us now examine some common patterns
one by one to understand the intricacies they reveal about different
protein sequences through the lens of multiple sequence alignment. A
pictorial representation is presented in figure 1.5:

• Conservation: the preservation of one specific amino acid across
different sequences in the alignment, likely reflecting essential
functional or structural roles within the protein family. Repre-
sented in figure 1.5a.

• Variability: the lack of conservation of any amino acid in a spe-
cific column of the alignment. Amino acids differing among
sequences potentially signify a position where substitutions do
not impact function. Represented in figure 1.5b.

• Specific conservation: the preservation of one specific amino acid
only within a subset of sequences in the alignment, usually
part of the same phylogenetic branch. It possibly highlights
functional requirements relevant only to a subgroup within
the family. Those residues are sometimes called "specificity-
determining residues". Represented in figure 1.5c.

• Specific variability: the lack of conservation of specific amino
acids only within a subset of sequences in the alignment, usually
part of the same phylogenetic branch. It possibly highlights the
absence of functional requirements relevant to that subgroup.
Represented in figure 1.5d.

• Covariation: the correlated evolution between two residues, where
changes in one position may be associated with changes in an-
other. This pattern may suggest structural or functional interac-



(a) Conservation. (b) Variability.

(c) Specific conservation. (d) Specific variability.

(e) Coevolution. (f ) Phylogeny.

Figure 1.5 – Toy MSA depicting typical statistical patterns common to real
MSA.



tions between the corresponding residues. Represented in figure
1.5e.

• Phylogeny: the correlated presence of amino acids between re-
cently diverged sequences due to a recent evolutionary origin.
It might not have functional significance and be confused with
coevolution. Represented in figure 1.5f.

Beyond single-column conservation and variability patterns, the
most prominent statistical signal captured by MSAs is covariation,
which often arises due to correlated evolution occurring between
residues. To further illustrate, let us refer to figure 1.5e where we
observe that pairs of amino acids — specifically K with R and V with
T — seem to only appear in this specific combination. We can quantify
this behavior by comparing the frequency of amino acids in each
column, with the frequency of amino acids in a pair of columns. If
they are not independent, covariance will be non-zero, i.e.

cij(a, b) = fij(a, b)− fi(a) f j(b) 6= 0, (1.2)

with

fij(a, b) =
1
M

M

∑
m=1

δ(aim, a)δ(ajm, b) (1.3)

The cause of this covariation is commonly attributed to coevolution. In
this scenario, a pair of amino acids is important in either maintaining
the three-dimensional structure of a protein or facilitating its proper
functioning. Therefore, any mutation affecting one residue in the pair
can have detrimental effects, necessitating a coevolutionary adjustment
in the other residue to maintain the protein’s functionality. Naturally,
multiple couples of amino acids fulfill the same functional role, but
those couples are often mutually exclusive. It is these interactions
between sites that are thought to generate observable correlations, a
topic that however remains a subject of debate as evidenced in various
studies [18, 19].

1.3 antibiotic resistance

Antibiotic resistance refers to the ability of microorganisms, such as
bacteria, to counteract the effects of antibiotics that are designed to kill
them or inhibit their growth. This resistance can compromise the effec-
tiveness of antibiotic treatments, posing a critical global health concern
[20], with serious repercussions [21]. Since Alexander Fleming’s land-
mark discovery of penicillin in 1929 [22], antibiotics have been a
cornerstone in the battle against bacterial infections. These drugs have
significantly reduced mortality rates and have been indispensable in
various medical procedures, from surgeries to chemotherapy.



However, the excessive and inappropriate use of antibiotics in
both medical and agricultural settings has facilitated the emergence of
antibiotic-resistant bacterial strains. In this context, bacterial popula-
tions undergo mutations in their genes, some of which grant resistance
to specific antibiotics. Proteins encoded by these mutated genes can
alter the target site of the antibiotic within the bacterial cell, expel the
antibiotic out of the cell, or reduce the antibiotic’s effectiveness [23].

Recent data suggests [24] that 1.3 million deaths globally were
attributable to antibiotic-resistant infections in 2019. If the trend con-
tinues, this number is projected to escalate to 10 million by 2050. In
addition, the use of antibiotics in livestock feed is a contributing factor
that has exacerbated the issue. Such agricultural practices facilitate
the horizontal gene transfer of resistance traits among different bac-
terial species, thereby accelerating the spread of antibiotic resistance
[25]. The history of antibiotic resistance is characterized by a perpet-
ual arms race between the development of new antibiotics and the
emergence of new bacterial resistance mechanisms. Comprehensively
understanding the mechanics, contributing factors, and ramifications
of antibiotic resistance is necessary to devise effective strategies for
mitigating this global health crisis.

1.3.1 β-lactam antibiotics

β-lactams represent the most commonly employed category of an-
tibiotics and serve as a cornerstone in fighting bacterial infections
[26]. Since the initial discovery of penicillin, a range of classes of
β-lactams have been discovered [27]. Their widespread use in clinical
and industrial settings has invariably led to the emergence and spread
of bacterial resistance mechanisms against these drugs [28].

β-lactams include penicillins, cephalosporins, carbapenems, monobac-
tams and clavams. These antibiotics possess a β-lactam ring in their
molecular structure. Their primary mode of action is to hinder the
creation of bacterial cell walls by targeting penicillin-binding proteins
(PBPs) essential in forming and cross-linking peptidoglycan layers.
This interference weakens the bacterial cell wall, leading to osmotic
imbalance and eventually causing bacterial cell lysis. Mechanisms of
resistance include the production of beta-lactamases, enzymes that
break open the beta-lactam ring [29], and alterations of PBPs, which
reduce the antibiotics’ affinity for their target.

1.3.2 β-lactamase resistance

Most of the work detailed in this thesis deals with β-lactamase-
resistant enzymes. Enzymes that attack β-lactams have evolved inde-
pendently several times in history. The evolutionary pressure behind
this convergent evolution may be the result of an arms race between



Figure 1.6 – The evolution and function of β-lactamase enzymes. a) Proceed-
ing from top to bottom: the synthesis pathways of five distinct
classes of β-lactams along with their structures; the structural
analogy between the natural substrate of PBPs and β-lactams;
the evolutionary relation of the SBL and MBL enzymes to their
respective superfamily origins. b) Schematic representation of
the sequence-function network within each enzyme superfamily.
Image source: [31].

bacteria and fungi, although many uncertainties remain. While β-
lactams are primarily produced by fungi, some bacteria also secrete
them as secondary metabolites [30]. The most well-known source
of beta-lactams is the mold genus Penicillium, from which the first
antibiotic, penicillin, was isolated. Enzymes with β-lactamase capacity
are classified into two main groups, serine-β-lactamases (SBLs) and
metallo-β-lactamases (MBLs) [31].

Serine-β-lactamases

Serine-β-lactamases constitute a specialized subset of enzymes within
the PBP-like superfamily. This superfamily encompasses a diverse
collection of proteins, most of which are instrumental in bacterial
cell wall synthesis, particularly in the formation of the peptidoglycan
layer that grants structural integrity to bacterial cells. A key feature



of the β-lactam antibiotics is their β-lactam ring structure, which
closely resembles the natural substrates of these cell-wall-synthesizing
enzymes, D-Ala D-Ala, as depicted in panel "a" of figure 1.6. As
a result of this structural similarity, the antibiotics are capable of
binding to the enzyme’s active site, thereby inhibiting its function.
This inhibition disrupts the formation of the peptidoglycan layer,
leading to bacterial cell death.

However, SBLs are no longer involved in the cell synthesis process,
but they retain the β-lactam acylation mechanism, which involves the
covalent binding of the β-lactam ring of the antibiotic to the enzyme’s
active serine residue. On top of this, they have evolved the enzymatic
capability to hydrolyze this intermediate. The hydrolysis enables
the detachment of the antibiotic from the enzyme, deactivating the
antibiotic in the process. This means the enzyme can re-engage in
successive catalytic cycles, thereby conferring resistance to β-lactam
antibiotics [32]. SBLs are further divided into Classes A, C, and D, each
evolved from different subclasses of the PBP superfamily, namely high
molecular weight (HMW) and low molecular weight (LMW) PBPs
[31], see panel "b" of figure 1.6. Each class has distinct sequence and
molecular patterns, and a very diverse evolutionary origin, making
each a protein family on its own.

Metallo-β-lactamases

The metallo-β-lactamase superfamily, a diverse group of proteins
characterized by distinct sequences and functions, possess multiple
functions, including β-lactamase activity, RNA degradation, arylsulfa-
tase action, phosphonate metabolism, and DNA repair [33], see panel
"b" of figure 1.6. Within the MBL superfamily, subclasses B1, B2, and
B3 share a common trait: the capability to hydrolyze beta-lactams.

Class B β-lactamases constitute approximately 1.5% of the entire
MBL superfamily with around 6000 sequences deposited on public
databases [34]. Despite substantial divergence in their amino acid
sequences, these enzymes share strong structural similarities. Their
common structural feature is an αββα-fold domain, which typically
consists of 200-300 amino acids. An intriguing aspect of these en-
zymes is the presence of two conserved metal-binding motifs within
this fold, which play a critical role in their catalytic activity. The in-
tricate catalytic mechanism of MBLs in hydrolyzing β-lactams hinges
on a range of factors including diverse zinc ligands and active site
geometries. Generally, zinc ions facilitate the initiation of the β-lactam
ring breakdown process.

Phylogenetic analysis indicates two distinct evolutionary events
leading to the acquisition of β-lactamase activity within MBLs, one
leading to the emergence of the B1 and B2 subclasses, while the
other giving rise to the B3 subclass. These evolutionary events were
characterized by alterations in the metal-binding motif, potentially



leading to adjustments in the arrangement of metal ions. Additionally,
modifications in the overall configuration of the active site occurred,
influencing the enzyme’s ability to interact with specific substrates.

1.4 molecular epistasis

The rise of antibiotic-resistant bacteria, as well as the evolution of
viruses like SARS-CoV-2 and HIV, constitutes a mounting threat to
public health. Commonly, even a small number of mutations in crucial
proteins of emerging pathogens (for example, the spike protein in
SARS-CoV-2 [35]) can substantially augment their potential to infect
humans. To safeguard against these threats and respond quickly when
harmful variants emerge, it is crucial to develop the capability to antic-
ipate the emergence and the consequences of such mutations, in a way,
to predict molecular evolution [36, 37]. This challenge is the dynamical
version of an already very complex problem: understanding genotype-
phenotype-fitness maps in proteins [38]. A precise understanding of
the mutational effects in proteins is indeed the basis to tackle the prob-
lem of protein evolution [39]. However, this task is very intricate due
to a phenomenon known as epistasis [40, 41]. Epistasis refers to the
interaction between genetic mutations, that is when their combined
effect on a protein’s function is different from the sum of individual
effects, i.e. non-additive. Understanding the effect of mutations in
proteins and how individual mutations interact with one another [42]
in an epistatic manner is vital for predicting how a pathogen might
evolve or how to design effective drugs. If the relationships between
genotype and phenotype were linear or additive, predicting the effect
of any mutation on a protein would be straightforward [43]. A protein
of length L would only require measuring the effect of all possible
19L mutations, to predict its behavior. However, epistasis complicates
this matter, as mutational effects in proteins are sequence-dependent,
making it necessary to measure a greater number of combinations of
mutations.

1.4.1 Types of epistasis

Specific and non-specific epistasis

Epistasis manifests itself as a non-additivity in the effect of multiple
mutations. In this context, it is possible to identify two broad types
of epistasis: one is non-specific, stemming from the non-linear nature
of genotype–phenotype maps and therefore applies to all possible
mutation combinations; the other is specific and takes place only
among certain groups of mutations. These two cases are commonly
referred to as specific and non-specific - or global - epistasis. Let’s



Figure 1.7 – Depiction of nonspecific epistasis. The grey non-linear curve
connects the biophysical traits to phenotypic observable traits.
Mutations A and B combine additively in the biophysical dimen-
sion, but their combined phenotype deviates from the additive
expectation. Epistasis is the deviation from the expected effect.
Image adapted from [40].

start with non-specific epistasis. In this case, the effect of mutations
is independent at the molecular level. However, at the level of the
biological organization that we observe, the effect is non-linear. For
example, the relationship between a protein’s stability and the fraction
of folded protein is sigmoidal. If we consider a marginally stable
protein, each single destabilizing mutation will not affect much its
folding probability, but the combination of two mutations could have
a dramatic effect. As a consequence, any assay that is affected by
the amount of folded protein will measure a non-linear effect in the
interaction of two mutations, even though their combined effect on
stability was additive [44]. This is pictorially shown in figure 1.7 where
the effect of mutations A and B is additive at the molecular level, but
not at the level where the phenotype is measured. Specific epistasis,
on the other hand, depends on the identity of the mutations involved.
This type of epistasis primarily emerges from unique combinations
of mutations, such as amino acid pairs in a folded protein that come
into direct contact or confer specificity for a particular ligand. These
interactions are often mediated by direct physical interactions among
residues and can result directly in non-additive effects on various
physical properties of the protein itself. In-depth case studies have
shed light on some molecular mechanisms behind specific epistasis.
Those include interaction between contacting residues [45], cofactor
repositioning [46] and changes to the structural dynamics of proteins
[47]. Specific epistasis is thought to be one of the main reasons
behind the correlated evolution of residues [48, 49], as revealed by the
statistical analysis of MSAs.

Magnitude and sign epistasis

When mutations interact non-additively, the consequent effect may
be categorized according to both the sign and the magnitude of the



Figure 1.8 – The figure illustrates various forms of epistasis. The example
illustrated an initial ’ab’ hypothetical genotype transitioning to
a derived ’AB’ genotype through mutations a to A and b to B.
Fitness levels for each genotype are indicated by colored dots.
Image adapted from [42].

resultant epistatic interaction. Specifically, in the case of magnitude
epistasis, the collective effect of the interacting mutations preserves
its overall orientation, or sign, irrespective of whether the individual
mutations were beneficial or detrimental. Positive magnitude epistasis
occurs when the synergistic interaction of the two mutations enhances
the combined effect beyond the summation of their contributions.
Conversely, negative magnitude epistasis happens when the mutual
influence of the two mutations attenuates their combined effect.

Distinct from magnitude epistasis, sign epistasis represents a unique
interaction class. In this scenario, the combination between the two
mutations alters the direction of their collective effect. In the case of
reciprocal sign epistasis, the co-occurrence of both mutations reverses
the sign of each mutation’s impact. Figure 1.8 schematically depicts
all the cases described here.

1.4.2 The consequences of epistasis

Overall, epistasis has a key influence on protein evolution [39] and
complicates our ability to predict phenotypic outcomes based on geno-
types alone [43]. It also shapes factors like evolvability and robustness.
For example, positive epistasis enhances a protein’s capacity to evolve
and be robust. However, the unpredictability injected by epistasis,
particularly specific epistasis, introduces a degree of historical con-



tingency in evolutionary outcomes, making them dependent on rare
events [50]. This unpredictability is particularly surprising when dele-
terious mutations combine to improve the function of proteins, for
example, multiple destabilizing mutations can allow an enzyme to
change its preferred substrate for a novel one, conferring an evolution-
ary advantage. Beyond natural evolution, epistasis has implications
for healthcare, affecting the development of treatments for rapidly
evolving pathogens like influenza and HIV [51].

1.5 measuring sequence landscapes

A fundamental challenge in protein biology is to determine the precise
function of proteins. We do not refer here to the problem of ’functional
annotation,’ which involves determining the broad roles of a protein
within a biological system based on its amino acid sequence. We
rather allude to the quantitative characterization of the function of pro-
teins, in the sense of determining their activity level. For example, the
turnover rate of an enzyme, or the binding energy of an antibody. Un-
derstanding and quantifying protein function is critical in the field of
molecular biology. It helps us grasp how biological systems work at a
fundamental level and has a major impact on medicine and biotechnol-
ogy. Applications range from the development of novel therapeutics,
like antibodies, to the optimization of industrial enzymes. The task
of protein function characterization usually involves measuring the
effect of mutations concerning a target wild-type (WT) protein. For
example, we might be interested in knowing how resistant a particular
β-lactamase protein sequence is, concerning a specific antibiotic. Usu-
ally, it is quite hard to specifically measure the function of a protein
at a chemical level, particularly if many thousands of variants have
to be assessed. This is why the problem is often transformed into a
fitness problem, where the functional question shifts to the survival of
organisms harboring the proteins under scrutiny. In general, function
and fitness are related through a complicated, non-linear relationship,
which might even be non-monotonous. In this manuscript, we will
however restrict our discussion to cases where improved function
corresponds to equal or higher fitness.

1.5.1 High-throughput sequencing

To measure the effect of mutations of a protein in vivo typically
needs three components: a method for mutating genes, a strategy for
selecting those mutations, and a system to correlate the survival of
the cells harboring the genes with their function. The main issue is
scalability. If applied serially by hand, this approach can quantify a
few dozen to a few hundred variants, but it is generally inadequate



for characterizing fitness landscapes more broadly, due to the huge
size of mutational spaces. For example, all single mutations of a
typical gene of 300 amino acids amount to almost 6000 different
sequences that need to be tested. This is precisely where the adoption
and increasing affordability of next-generation sequencing (NGT)
has proved to be transformative in exponentially augmenting the
capabilities of experiments to measure protein fitness landscapes.
NGT allows the determination of the sequence of nucleotides within
a DNA or RNA molecule, a process called ’sequencing’, by reading
millions of sequences in parallel during a single run. This large-scale
parallelization enables experimental labs to quantify a gene’s fitness
by analyzing its prevalence in a sequenced library. By evaluating
the abundance of sequencing reads in different libraries (for example
before and after a selection process), it becomes possible to infer the
fitness of a huge number of variants at the same time. For instance,
a frequently appearing mutant sequence indicates that this variant is
more "fit" or favorable under the chosen experimental conditions. In
subsequent sections, we will outline the basic concepts behind some
of the most common experimental techniques employed to measure
fitness landscapes in vivo, as well as experiments that mimic protein
evolution in the laboratory.

1.5.2 Deep mutational scans

Deep mutational scans (DMS) are an array of tools that provide a
way to systematically study how thousands of different mutations
individually affect a protein’s function, helping to build a detailed
understanding of protein fitness landscapes in biologically relevant
conditions [52]. In the following, I will describe experiments per-
formed in live cells, like bacteria, but a similar approach can be
modified to work in vitro as well. To start, a diverse library of mutated
versions of the target gene is created. This is done through different
mutagenesis techniques, like error-prone PCR (epPCR) or site-directed
mutagenesis, based on the required needs for the experiment. The
first is a technique that allows to randomly mutate the nucleotides
along a gene, while the second is a targeted approach that introduces
specific mutations at predetermined positions within the gene. After
the creation of the mutant library, the next step is to introduce these
sequences into a suitable host organism, like bacteria or yeast, through
a process called transformation. This allows for the mutant proteins
to be expressed within living cells, providing a living laboratory in
which to study their functions. Following this, a selection or screening
process is initiated. This involves applying a specific selective pressure
to identify which variants are functional and which are not. This step
is usually complicated because not all genes specify phenotypes that
are easy to select for. Once a suitable selective assay has been found,



selection can usually be applied in batch, i.e. at the same time for all
cells expressing each individual variant. In this case, selective pressure
might be an environmental condition or a chemical substance that
permits only cells with functional variants to survive. There exist
also different techniques for selecting cells, like Fluorescent Activated
Cell Sorting (FACS), which requires specialized equipment to sort and
analyze cells based on specific fluorescent markers (which are linked
to the desired phenotypic outcome), enabling the identification and
isolation of mutants that exhibit desired traits or functionalities. Next,
the gene of interest in the surviving cells is extracted in bulk and
prepared for high-throughput sequencing. At this step, it is crucial to
have previously analyzed the initial set of variants (before selection)
to compare it with the final set of variants that have survived the selec-
tion process. This dual analysis allows researchers to get an unbiased
picture of the impacts of each mutation. Finally, the data from the
sequencing is analyzed. By comparing the number of each variant
before and after the selection process, it is possible to determine a
fitness score for each mutation, providing a measure of how each
change has affected the survival of the cells, and as a consequence, the
function of the protein. In specific cases, where a reliable biophysical
model is available, it is possible to infer also the molecular functions
of the variants, such as stability or enzyme turnover rate.

Overall, DMS studies over the last decade have illuminated the
relationship between protein sequence and function at an unprece-
dented scale [53]. To date, more than two hundred datasets have
been produced [54], each characterizing all single mutations of given
proteins, as well as more complex mutational combinations.

Measuring epistasis

The most common type of DMS measures the effect of single mutations
in a protein. However, to measure and quantify epistasis, it is essential
to assess the effect of multiple mutations and compare them with
their individual effects. To probe epistatic interactions, two main
strategies can be employed: introducing the same mutations across
distantly related enzymes (to probe context-dependence) or examining
the effects of multiple mutations in the vicinity of the same gene (to
probe for non-additive effects).

One of the first studies [55] that demonstrated mutational in-
compatibilities between the swap of amino acids across orthologs
introduced 168 mutations from the P. aruginosa IMDH enzyme into
the E. coli IMDH enzyme. Approximately one-third of the mutations
resulted in deleterious effects, demonstrating widespread epistasis.
The fully functional wild-type amino acids from one ortholog could
single-handedly impair the function of another. Similar studies have
reconstructed ancestral protein sequences and have systematically
introduced one by one all the modern amino acids into the ancient



background sequence, and vice-versa [50, 56]. Also in this case strong
and specific epistatic effects were detected. Many of the modern mu-
tations were incompatible with the ancestral background, relying on
interactions with preceding mutations for their viability.

Other studies have aimed to characterize the local sequence land-
scape of protein sequences more extensively, relying strongly on HTS
and parallelization. A pivotal experiment led by Olson et al. [57]
examined the effect of all double mutants in the IgG-binding domain
of protein G (GB1). The team succeeded in measuring the binding
affinity for over 5, 000, 000 variants, revealing both prevalent positive
and negative epistasis. Different works sought to investigate smaller
regions of sequence space, but more in depth. Two seminal studies [58,
59] assessed the effects of every possible combination of mutations
at 4 critical positions, amounting to a total of 204 = 160, 000 assayed
mutations. This allowed for the characterization of higher-order epis-
tasis and the study of alternative evolutionary trajectories in sequence
space.

Another popular method for exploring fitness landscapes and
detecting higher-order epistasis involves creating complete binary
landscapes. In this case, every possible combination of the wild-type
amino acids from two distinct sequences is tested, yielding a total
of 2n variants, n representing the number of differing amino acids
between the two sequences. Those studies are limited by experimental
constraints to a maximum of around 15 mutations, i.e. < 100, 000
variants. These studies have revealed a strong yet surprisingly sparse
network of epistatic interactions [60] in a fluorescent protein and have
enabled the reconstruction of all possible evolutionary intermediates
between one unmutated germline sequence [61] and two mature
broadly neutralizing influenza antibodies.

Those massive datasets have begun to shed light on the complex-
ity of protein function and interaction between mutations. However,
achieving a more comprehensive understanding remains a challenging
endeavor due to the difficulties in distinguishing specific from global
epistasis, the necessity to focus on the correct levels of biological orga-
nization, and the complex task of generalizing findings to biological
systems in the wild [62].

1.5.3 Broad mutational scans

The experimental approaches described earlier predominantly focused
on analyzing the effects of all possible single mutations in a specific
gene, the complete combinations of all mutations within a very re-
stricted number of residues, or the binary landscapes between pairs
of them. All of these approaches are centered on single or very few
enzymes, largely ignoring the reality that protein families consist of
thousands of members, all belonging to a complex - and in principle



unique - global landscape. Broad mutational scanning (BMS) [7] is a
technique developed to address this limitation. BMS seeks to analyze
in parallel the fitness landscape of a large set of homologs. Unlike
typical DMS studies, which focus on all single mutations, BMS encom-
passes a broader range of mutations, offering a more expansive view
of the mutational space, albeit less systematically. To achieve this, the
authors first created a method capable of cheaply synthesizing long
genes, called DropSynth [63]. Essentially, they improved upon the
initial step of DMS, which is the creation of the variant library. Tradi-
tional techniques generally allow for either the introduction of targeted
mutations into long genes (> 300 base pairs) or the synthesis of many
thousands of small genes (< 300 bp). DropSynth overcomes these
limitations by allowing the synthesis of long genes at cost-effective
prices.

Here is a very simplified description of how DropSynth works.
Initially, short DNA or RNA sequences called oligonucleotides are
designed and synthesized to correspond to different regions of the
target genes. These oligonucleotides are then placed into a microfluidic
device that creates tiny droplets, each containing a different mix of
oligonucleotides. The droplets are created in such a way that each
one contains all the oligonucleotides necessary to assemble a single
gene. Through a process called emulsion PCR, the droplets function
as individual chambers where the oligonucleotides are amplified and
assembled into full genes. This process can sometimes introduce
errors, generating random variants around the intended sequences.
As a consequence, a library of diverse genes and random mutations
around them is created. The library can be transformed inside bacteria
and tested for the trait of interest, like typical DMS experiments.

In this study [63] BMS was used to analyze 5775 homologs of the
dihydrofolate reductase (DHFR) enzyme as well as 1152 homologs of
the enzyme phosphopantetheine adenylyltransferase (PPAT). 497 of
the PPAT homologs survived their experimental assay. Thanks to the
random mutations generated by DropSynth, the researchers managed
to assay 71, 061 mutants in total around the functional sequences,
studying the effect of mutations across the whole sequence space of
PPAT enzymes.

1.5.4 Laboratory protein evolution

Another important tool in the study of epistasis and evolution is
laboratory protein evolution. Laboratory protein evolution is the
study of protein evolution in a controlled and simplified environment.
The aim is to either capture and reproduce the mechanisms of protein
evolution as observed in the wild or to leverage the principles of
natural evolution as an engineering tool for designing molecules
and organisms with specific attributes. The controlled conditions



of the laboratory facilitate the development of particular traits in
organisms or molecules, although tuning the environment to achieve
the desired settings can be quite challenging. Typically, but not always,
evolution is conducted in vivo, necessitating the use of a host organism.
This process hinges on two fundamental components: a source of
mutations like epPCR (that occur at a significantly faster rate than in
nature) and a reliable selection method. These two steps are usually
applied iteratively, exploiting the full potential of evolution. The term
’experimental evolution’ can denote different concepts depending on
the specific focus of interest. In this discussion, we consistently refer
to cases where a single gene undergoes mutations while the rest of
the genome remains unchanged, a scenario distinct from the approach
taken, for example, by the Lenski lab [64], where entire populations
of one organism evolve at natural mutation rates for thousands of
generations in controlled environments.

Directed evolution

One major sub-field of laboratory protein evolution is directed evo-
lution. Directed evolution is a laboratory technique that simulates
the principles of Darwinian evolution, aiming to artificially steer the
evolution of molecules [65] towards useful and applied goals. The
original motivation behind this method was the fact that nature had
already created remarkable enzymes capable of accelerating chemical
reactions millions of times at ambient temperatures and pressures.
Thereby, simulating the same process in the lab would hopefully reach
similar goals. The technique was pioneered by Nobel Prize winner
Francis Arnold [66, 67, 68]. Initially, the primary application of this
methodology focused on evolving proteins individually to enhance
aspects such as stability and suitability for industrial environments.
Over time, the technique has evolved to encompass the engineering
of enzymes for novel functions not previously seen in biological sys-
tems, as well as genetic circuits and even whole genomes. To generate
genetic variability, directed evolution leverages heightened rates of
mutation and recombination vastly exceeding those encountered in
natural processes exploiting biotechnological techniques such as ep-
PCR. Subsequently, a strong selection pressure is applied, to allow
only the best variants to survive. Then, further amplification and
diversification of the genetic material are performed, as depicted in
figure 1.9. Iterating this process, the hope is that enzymes gradually
improve towards some peaks of the fitness landscape. However, as we
have observed, sequence space is immense. Therefore, the appropriate
means and intensity of selection are necessary to guide the biological
systems to the desired outcome. Equally important is to iterate the
process sufficiently to fully optimize the enzyme under investigation.
Usually, this approach favors only the fitter or the fittest genotypes
in each round, potentially leading to the risk of becoming trapped in



Figure 1.9 – Schematic representation of the directed evolution experimental
workflow. Image adapted from [65].

local fitness or functional peaks without reaching the optimum. In
other words, the strategy is usually greedy with all the limitations
that this search method brings with it. Notwithstanding all those
difficulties, directed evolution is currently one of the main approaches
to engineering enzymes.

Neutral drift experiments

Directed evolution is fundamentally adaptive, and designed to en-
hance existing functions continuously. Nonetheless, we know that
MSAs contain thousands of sequences with low degrees of similarity
but nearly identical functions. Essentially, this suggests that a signif-
icant portion of the genetic diversity observed across species stems
from the accumulation of neutral mutations that neither improve nor
degrade function. Experiments involving neutral drift focus on the
diversification of enzymes to understand the processes that drive
natural evolution or to generate large libraries of variants for subse-
quent experiments. Researchers manage to introduce many neutral
mutations by fine-tuning the selection strength to a level that merely
maintains essential enzyme characteristics without promoting opti-
mization, thereby encouraging divergence in the amino acid sequences
[69, 70]. The primary limitation of neutral genetic drift is the necessity
to maintain high diversity within a population of growing cells, such
as bacteria, and to transfer this variability from one generation to
the next while avoiding bottlenecks. Through neutral genetic drift



experiments, scientists have successfully explored the spontaneous
emergence of a predisposition to new functions solely through random
occurrences [71], created enormous libraries of orthologous sequences
harboring numerous mutations to study the local fitness landscape of
an antibiotic resistance gene [72], and examined phenotypic variability
within populations evolving under uniform selection pressures [73].

1.6 sequence models

The surge in the number of unlabeled sequences deposited in pub-
lic databases [10], driven by rapid advancements in next-generation
sequencing technologies, presents an ideal opportunity for leverag-
ing statistical and machine learning methods to learn the statistics
of protein families. As previously noted, sequences belonging to the
same family often represent diverse solutions to the same problem:
creating a functionally well-folded protein fine-tuned to perform a
specific function. Therefore, the task of inferring sequence landscapes
can be posed as an unsupervised machine-learning problem; its goal
being the fit of the statistical distribution of the data. This is useful
because it allows the approximation of the fitness landscape of pro-
tein families, with applications ranging from the study of evolution
in silico to the computational engineering of enzymes. It is logical
to assume that proteins within the same family, sharing the same
three-dimensional structure and biological role, are subjected to sim-
ilar evolutionary pressures. These shared pressures have imprinted
discernible patterns in the statistics of multiple sequence alignments,
suggesting that a single global model for each family could coherently
describe the entirety of the available data. Therefore, sequence models
utilize the evolutionary information from alignments of proteins to
construct statistical representations that can produce insights about
protein biology. Specifically, those models are trained to assign a high
probability to functional sequences that are present in the training
data, and conversely, a low probability to non-functional sequences
that are supposed to be outside a target family.

1.6.1 Profile models

One of the earliest classes of sequence models, which only model the
single-column statistics of MSA, are profile models or position-specific
scoring matrices (PSSM). For a general reference, see [74].



In these statistical models, the probability of observing a sequence
is proportional to the product of the frequencies of each of the amino
acids in a corresponding MSA, denoted as fi(si):

P(s) =
L

∏
i=1

fi(si). (1.4)

By definition, the model is factorizable over the sites. Given that
there is no interaction between the sites, this model is inherently non-
epistatic. Despite their simplicity, such models have been utilized
extensively for fitness predictions in proteins [75], for sequence align-
ment via profile HMM, for phylogeny reconstruction or in conjunction
with machine learning, for the prediction of secondary structure ele-
ments [76]. However, they are unable to model some critical statistical
signals of MSAs, notably covariation. Assuming that all necessary
information to specify the protein fold is encoded in the amino acid se-
quence [2], one can investigate whether the evolutionary information
encapsulated by profile models is adequate to statistically differentiate
between good and bad proteins. This hypothesis was experimentally
tested in 2005 [77, 78]. The research team generated and tested several
artificial sequences in the WW protein domain family, comparing
them to natural sequences. The non-natural sequences were fabricated
based on the statistical properties of an MSA of natural sequences
using three methods: the first involved generating sequences of ran-
dom amino acids (R), thereby disrupting any site conservation pattern;
the second shuffled the amino acids of the MSA by preserving the
statistics of individual positions and eliminating covariation patterns,
thereby retaining only independent conservation (IC); the third sought
to replicate the pairwise amino acid frequencies found in the origi-
nal MSA, achieved through coupled conservation (CC) obtained via
Markov Chain Monte Carlo (MCMC) annealing procedure. Experi-
mental results revealed that neither the R nor IC sequences achieved
correct folding and thereby did not function. However, 31% of CC se-
quences and 67% of natural sequences were functional. Those results
indicate that the sequence information contained in MSAs is sufficient
to impose the structural constraints of the WW domain. It further sug-
gested that correlations between column pairs in MSAs are sufficient
to adequately define the protein fold. We see that, as previously noted,
epistasis is vital in understanding evolutionary biochemistry and vice
versa [79]. Drawing from these findings, we can learn an important
lesson for sequence models: it is important when they are generative,
i.e. capable of generating data statistically similar, yet distinct, to the
training set. This is particularly relevant to discriminating functional
sequences and going beyond the training set of natural sequences.
Practically, reproducing the two-point statistics of the MSA used for
training appears to be a sufficient condition.



1.6.2 Potts models

One of the first global statistical models capable of modeling the
correlation between sites of MSAs was Direct Coupling Analysis
(DCA) [49, 80, 81].

DCA allows us to infer a probabilistic model that leverages both
the first and second-order statistics of MSAs to recapitulate the evo-
lutionary forces influencing the sequences. It attributes a probability,
denoted by P(s|h, J), to each possible amino acid sequence in the
space. This probability distribution adopts the form of a Potts model,
an extension of the renowned Ising model [82]. Potts models, an active
research area on their own [83], describe a probability distribution
over configurations of categorical units (in our case the L residues of a
protein sequence) coupled in a pairwise manner with each other, each
harboring multiple states (the q amino acids).

The parameters defining this model are termed ’fields’ h and
’couplings’ J. Fields act on single amino acids, while couplings connect
pairs of different residues. For an amino acid sequence denoted as
s = (s1, s2, . . . , sL), where L is the length of the aligned sequences
in the MSA used for training, the probability distribution of a Potts
model is expressed as:

P(s|h, J) =
1

Z(h, J)
exp (−H(s)) . (1.5)

Here, H(s) stands for the Hamiltonian, or energy function, defined by

H(s) = −
L

∑
i=1

hi(si)−
L

∑
i<j

Jij(si, sj). (1.6)

In this context, hi(si) represents the field term pertaining to the i-th
amino acid of type si, while Jij(si, sj) is the coupling term for amino
acids si and sj. The field terms affect the propensity of individual
amino acids to occur at specific positions, in particular a positive hi(a)
field, favors amino acid a in positions i. The coupling terms instead
model the co-evolutionary interaction between amino acid pairs at
different positions within the sequence, and similarly a positive Jij(a, b)
respectively favors the presence of a and b in positions i and j. The
partition function Z(h, J) guarantees a correct normalization of the
probability distribution:

Z(h, J) = ∑
s∈S

exp (−H(s)) (1.7)

where S is the space of all sequences. We will use the expressions
’DCA’ and ’Potts model’ interchangeably throughout the text.

Originally, the form of Potts models for modeling protein se-
quences was derived through the maximum-entropy principle [84].
fi and fij were chosen as the relevant variables that the statistical



model had to fit, and the Potts Hamiltonian is the m that incorporates
the fewest possible number of assumptions while still being able to
reproduce the data statistics. Nonetheless, different models have also
demonstrated proficiency in modeling MSA statistics, including Re-
stricted Boltzmann Machines (RBM) [85] and simple autoregressive
models [86] and more complex deep learning architectures. An im-
portant advantage of Potts models is their capacity to describe the
interactions between sites via direct coupling J, which can disentangle
direct from indirect interactions between sites [87]. The drawback
of the use of direct couplings between every pair of amino acids is
that the models become fully connected. The number of couplings
is therefore of the order of L2q2, with q representing the number of
amino acids. As a consequence, Potts models can have millions of
parameters even for medium size length proteins. This complexity
not only makes models slow to learn but also poses challenges to
the accurate determination of the parameters due to limited statistics.
Potts models are the primary sequence model that we have used in
this thesis to investigate sequence landscapes and study evolution.

Inference

Once we have established a form for the probability distribution of
our model, the exact values of the parameters need to be inferred.
The goal of the inference procedure is to adjust the parameters in
such a way that the training set has the highest possible probability.
In other words, we aim to maximize the likelihood of the training
data awith respect to the model parameters. Since the introduction of
DCA, many fast and approximate approaches have been developed
[88, 89] for this task. However, we will focus here on an asymptotically
exact, yet slower method: Boltzmann machine learning [90]. This
is how all models mentioned in this thesis have been trained unless
specified otherwise. If we assume that we have M sequences in our
training MSA and that they are all independent, we can write the
log-likelihood of the data as:

L(h, J|{sµ}) = log
M

∏
µ=1

P(sµ| h, J) (1.8)

=
M

∑
µ=1

[
L

∑
i=1

his
µ
i +

L

∑
i<j

Jij(s
µ
i , sµ

j )

]
−M log Z(h, J).

The log-likelihood is a convex function of the parameters; therefore, to
find its maximum, a simple gradient ascent strategy is sufficient. Once
the parameters are initialized, the update equations are as follows:

ht+1
i (a)← ht

i(a) + ηh
∂L({sµ}|Jt, ht)

∂hi(a)
(1.9)



Jt+1
ij (a, b)← Jt

ij(a, b) + ηJ
∂L({sµ}|Jt, ht)

∂Jij(a, b)
(1.10)

where ηh, ηJ represent the learning rates that must be chosen inde-
pendently. The derivatives of the log-likelihood are easy to compute:

∂L({sµ}|Jt, ht)

∂hi(a)
= fi(a)− pt

i(a) (1.11)

∂L({sµ}|Jt, ht)

∂Jij(a, b)
= fij(a, b)− pt

ij(a, b) (1.12)

with pt
i , pt

ij being the the marginal of the model at time t/ The learning
procedure reaches a fixed point when pt

i , pt
ij match the empirical fre-

quencies fi, fij. A proper stopping condition needs to be set to reach
the desired accuracy. A significant challenge with this approach is that
the model frequencies cannot be calculated analytically, necessitating
a Markov Chain Monte Carlo (MCMC) approach for the estimation.
As a consequence, each iteration of the algorithm samples an artifi-
cial MSA using the model parameters at time t, and then uses this
sample to estimate pt

i , pt
ij. This method is based on the fact that a suf-

ficiently large MCMC sample allows in principle for the exchange of
the ensemble average over sequence space with the empirical average
over the data sample. For a detailed explanation of the algorithm’s
implementation, refer to [91].

A point must be raised about one of the crucial assumptions of
Boltzmann learning: the independence of the training data. This con-
dition is tclearly not satisfied in the case of MSAs due to the complex
phylogenetic process that has produced our modern sequences. To
address this discrepancy, a common strategy is to down-weight closely
related sequences when estimating their amino acid frequencies. Em-
pirically, we assign a weight wm to each sequence sm, which is inversely
proportional to the number of other sequences in its neighborhood,
namely:

wm =

(
1 + ∑

n 6=m
Θ
(

d(sm, sn)

L
< δ

))−1

(1.13)

where d(sm, sn) is the number of different amino acids, or Hamming
distance, between sequences sm and sn, Θ is the Heaviside function
and δ is usually 0.2.

Another important point about the Potts model concerns its inverse
temperature, denoted as β. By changing this parameter the DCA
probability distribution can be skewed towards sequences with either
higher or lower energy. Specifically, this inverse temperature enters
the model as follows:

Pβ(s) =
exp (−βH(s))

Z
(1.14)



where β = 1 is the temperature at which the data is inferred. Altering
this parameter allows for the sampling of sequences with skewed
statistics. For instance, using a β lower than 1 results in sequences with
higher energies, i.e. low probabilities, and vice versa. Conventionally,
the temperature T = β−1 is also used as a variable. Analogous to
thermodynamic systems, a high temperature corresponds to random
configurations, while a low temperature is indicative of low-energy,
more structured configurations. In the next chapter, I will show that
high T can be used to model low selection pressure, and vice versa.

Structure prediction

Predicting the structure of a protein from its sequence is one of the
central goals of molecular biology. Understanding a protein’s structure
is crucial as it sheds light on its biological function through insights
gleaned from mechanical features or resemblances to known struc-
tures. Despite proteins having an intrinsic ability to autonomously
fold into their native configurations in physiological environments
with remarkable precision, unraveling this intricate process has chal-
lenged scientists for years. Although direct and precise computa-
tional simulations of protein folding exist, they are often prohibitively
resource-intensive, and the simplifications introduced to make the sim-
ulations feasible often fail to recapitulate the true folding dynamics,
leading to the wrong structures.

Historically, determining protein structures has been primarily
performed experimentally, relying on the crystallization of proteins
and subsequent analysis through X-ray crystallography — a method
both time-consuming and costly. In the last decade, a strategy rooted
in evolutionary biology has introduced a completely new tool capa-
ble of aiding the determination of structures. Initial investigations
into multiple sequence alignments (MSAs) of homologous proteins
revealed a wealth of information regarding protein structure [92, 93].
Correlations between different sites in the sequence were found to
be indicative of contacting residues in the protein structure. As we
have explained before, this is likely due to the coevolution of the
amino acids in those positions. A significant advancement over those
first observations came with the introduction of DCA, which was
originally utilized to predict direct contacts between protein sequence
residues [49]. The idea was to leverage and interpret the values in the
Jij coupling matrices once the model is inferred. If positions i and j
are in contact with the 3D structure and coevolving, high values of
the couplings are expected to be observed to accommodate for the
covariation of the sites. An effective scalar metric derived from the
couplings was found to be the Frobenius norm, defined as:

Fij =

√√√√ q

∑
a=1

q

∑
b=1

Jij(a, b)2. (1.15)



Utilizing this metric, it was possible to rank all possible residue pairs
based on the DCA scores. The breakthrough was that most of the top
L predicted contacts were true structural contacts. The high accuracy
of those contacts was shown to be enough to predict protein folds
correctly [94]. The method has seen enhancements, notably by the
introduction of the APC correction [95].

Inspired partly by these early successes, there has been a real
breakthrough in resolving the protein structure problem. Advances
in computational power, algorithms, and expansion of protein struc-
ture databases have allowed supervised models to enter the game.
While Potts models and related approaches are unsupervised and
do not utilize any prior structural information, new deep-learning
models can incorporate more information from previously resolved
structures. A pivotal moment came in 2020 with Google DeepMind’s
introduction of AlphaFold [96] and AlphaFold2 [97]. The models
combine the intuition about the relevance of evolutionary information
for structure prediction put forward by DCA but also incorporate
structural information for much more precise predictions. In simple
terms, AlphaFold-like models train supervised deep neural networks
end to end to predict the atomic positions of all amino acids in a pro-
tein structure using as input information only the MSA of the family
of the sequence of interest. Interestingly, despite the complex internal
architectures of these machine-learning models, models that use only
single sequences as inputs, instead of the full MSA have much worse
performances.

Nevertheless, the protein folding problem has still many hurdles
yet to be overcome. The elusive nature of protein folding pathways
continues to be a monumental challenge; the exact routes that amino
acid chains take to attain their final configurations remain largely
unknown. However, significant progress has been made in deducing
the end states of these pathways using sequence data alone.

Mutational effect prediction

As discussed in paragraph 1.5, a pivotal question in protein biology is
understanding the effects of mutations in protein sequences, a concept
we will loosely refer to as fitness prediction.

Sequence models have emerged as some of the most affordable and
powerful tools for predicting the fitness effects of mutations. These
models primarily use information from homologous sequences to
foresee the effect of mutations in protein sequences. Given a sequence
model that assigns probabilities to each possible sequence, it can be
employed to assess mutation effects. Currently, the most proficient
models are complex sequence models that factor in epistatic interac-
tions, outclassing profile models and setting the standard in the field.
Notably, Potts models were the pioneers in successfully predicting
mutational effects using only sequence data [98, 99, 100].



These models have also been extended to predict the adverse
effects of mutations in human proteins, emphasizing the significant
role of site couplings [101]. A method rooted in similar models has
also recently achieved notable success [102].

So, how do Potts models predict mutation effects in proteins? The
strategy involves utilizing the model probability as a score, specifically,
the energy of the sequences which is equivalent to the negative elog-
probability. A perfect testing ground for mutation effect prediction is
DMS datasets, where mutation effects are usually expressed relative
to those of a wild-type sequence. Here’s how the DCA scoring system
works:

∆H = H(swt)−H(smut). (1.16)

In this formula, if ∆H > 0 the mutant sequence smut is predicted to
be deleterious with respect to the wildtype swt, and vice versa. In the
case of a single mutation occurring at position i, swapping amino acid
a with amino acid b :

∆H(a→ b) = hi(b)− hi(a) + ∑
k
(Jik(b, sk)− Jik(a, sk)) . (1.17)

As it can seen from this equation, ∆H explicitly couples the wt and
the mutant amino acids to the sequence background. Subsequently,
predictions are compared to experimental outcomes to estimate the
model’s predictive accuracy. This methodology has proven effective
across a range of proteins found in viruses, bacteria, and humans.
Typically, the correlation, calculated using the Spearman correlation
coefficient to account for potential non-linearities, is around 0.5, with
some proteins exceeding 0.7.

De novo sequence generation

As we previously mentioned, the ultimate test for generative sequence
models is experimental validation. In other words, novel artificial
sequences generated from those models must be tested in vivo to
determine whether they perform their functions as efficiently as their
homologous counterparts.

The Potts model gives us a probabilistic framework to assess the
likelihood of sequences belonging to a specific family. This enables
two major applications: first, to score mutations, as we have seen in
the previous section; and second, to generate artificial sequences by
sampling from the Potts distribution. To generate artificial sequences
the most used and straightforward way for Potts models is MCMC
sampling.

The question of whether sampled sequences from the Potts model
are functional in vivo was tested with DCA on the chorismate mutase



(CM) enzyme family in 2020 [8]. CMs are essential enzymes composed
of about 100 amino acids, playing a crucial role in bacteria survival
due to their ability to synthesize a precursor to the essential amino
acids tyrosine and phenylalanine. The authors of the work gathered
an alignment of 1259 homologous sequences of the E. coli CM enzyme
(ecCM) and substituted it with each of the homologs. Initially, a high-
throughput selection screen was employed to verify whether each of
the sequences in the alignment, consisting of the homologs of different
species, would support growth in E. coli, and approximately 38% of
the sequences proved successful.

Subsequently, the researchers trained a Potts model on the same
alignment using Boltzmann machine learning. They created over 1000
artificial variants through MCMC sampling, aiming to generate highly
diverse proteins with varying parameters. In particular, sequences
were generated at different temperatures to influence their average
energy. A profile model was also utilized to create sequences serving
as a negative control. Each sequence was tested in vivo for its ability
to substitute the ecCM enzyme.

The results were notable, as detailed below:

• Sequences generated with the profile model were ineffective.

• 3% of the sequences generated at T = 1 were functional.

• 31% of the sequences generated at T = 0.66 were functional.

• 48% of the sequences generated at T = 0.33 were functional.

In summary, the findings underscore three critical aspects: the
inadequate generative capacity of the profile model, already verified
by [78]; the remarkable ability of the Potts model to create previously
unseen functional sequences; and a correlation between lower tem-
peratures (i.e., sequences with higher probabilities according to the
model) and increased functionality. An important note regarding
the latter point is that the temperatures of T = 0.33 and T = 0.66
facilitated the sampling of sequences with energy comparable to that
of natural sequences, albeit limiting their divergence from the training
set. Sampling at low temperatures was needed due to the specifics of
the regularization in the inference procedure of the Potts model in the
paper. In practice, the temperature allowed to interpolate between the
statistics of natural sequences (low temperature) and that of random
sequences (higher temperature).

Since this pivotal study, others have replicated the results [103],
although sometimes with a lower success [104], but the underlying
reasons for limited success remain somewhat unclear in this latter
work. Recently, researchers have leveraged the model for designing
functional antibiotic-resistant proteins [105], focusing on a wild type
and sampling various sequences along evolutionary trajectories.



1.6.3 Other generative models

In recent years, generative models have undergone significant de-
velopment for protein sequence modeling, fitness prediction, and
generation. This surge has been largely driven by advancements in
machine learning algorithms and increased computational power. Pre-
dominantly, these models employ deep learning techniques capable
of capturing complex interactions between amino acids in protein
sequences. However, their complexity makes those models more chal-
lenging to train and interpret compared to Potts’ models. A pivotal
test for new architectures is their ability to generate functional artificial
sequences [106]. Trinquier et al. proposed one of the simplest autore-
gressive models with generative capabilities [86]. While suggesting
its potential to generate functional sequences, they did not furnish
conclusive evidence. Autoregressive models forecast new tokens in a
sequence based on previously observed elements alone, positioning
them as useful frameworks for modeling protein sequences. Further-
more, these models can leverage deep-learning architectures inspired
by neural language processing, such as transformers, and be trained
on vast datasets comprising all known proteins, and not just single
families. Madani et al. demonstrated that large language models based
on transformers are capable of crafting functional protein sequences
[104]. These models are very big, with over 1 billion parameters,
and need substantial computational costs to be trained. The training
is usually composed of hundreds of millions of sequences from all
known families. This is done to leverage some kind of transfer learn-
ing, allowing the models to extrapolate and reuse information across
different families. Nonetheless, further exploration of those models
is needed, especially since the study revealed something interesting.
To surpass the quality of Potts models (which are only trained on the
family of interest) in fitness prediction tasks, it was essential to do a
fine-tuning on a curated alignment of that family as well. Repecka
et al. utilized a Generative Adversarial Network (GAN) approach to
produce functional, highly mutated malate dehydrogenase enzymes
[107]. Hawkins-Hooker et al. harnessed variational autoencoders in
the design of bacterial luciferase [108].

In conclusion, generative models pave the way for a plethora of
new techniques for creating artificial protein sequences and forecasting
the repercussions of mutations. However, pressing questions linger, in-
cluding the optimal balance between interpretability and expressivity,
the relevance of various models in studying protein evolution, and the
comparative efficacy of different models when trained with identical
data.



2 E X P LO R AT I O N O F S E Q U E N C E
S PA C E

2.1 introduction

This chapter discusses our work on modeling protein evolution. We
initially focus on a simple setting, namely experimental evolution
by neutral drift, a technique that we have discussed in section 1.5.4.
Shortly, the experiments consist of multiple rounds of mutation and
selection of a library of genes evolved in vivo. The approach aims at
diversifying the library of genes while maintaining its function with
a low selection pressure. Section 2.2 contains the article [109] that
resulted from the modeling of two such experiments involving beta-
lactamase genes. The article shows that our modeling framework can
quantitatively reproduce the statistics of the experimental libraries, by
relying on a sequence landscape inferred from distant homologs and
a sampling algorithm that takes into account many biological details
of the experiment. In the following two sections, we discuss some
improvements to our approach. Section 2.3 discusses a refinement of
the modeling approach which involves taking into account mutational
biases of the nucleotide substitutions. Section 2.4 describes a major
change to the sampling dynamics that allows us to reproduce the
amino acid statistics of distant homologous proteins. Section 2.5 builds
upon this newly developed stochastic evolutionary dynamics joining
data-driven models of protein sequences with a realistic mutational
process happening directly on nucleotides. The evolutionary model
proposed provides a comprehensive new tool to model and investigate
long evolutionary trajectories in sequence space. In particular, we
investigate the emergence of epistasis-driven evolutionary timescales
affecting the change in mutability of sites over time. The content of
this section will be the object of a separate publication that will appear
soon.

2.2 article
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Abstract

During their evolution, proteins explore sequence space via an interplay between random mutations and phenotypic
selection. Here, we build upon recent progress in reconstructing data-driven fitness landscapes for families of homol-
ogous proteins, to propose stochastic models of experimental protein evolution. These models predict quantitatively
important features of experimentally evolved sequence libraries, like fitness distributions and position-specific muta-
tional spectra. They also allow us to efficiently simulate sequence libraries for a vast array of combinations of experi-
mental parameters like sequence divergence, selection strength, and library size. We showcase the potential of the
approach in reanalyzing two recent experiments to determine protein structure from signals of epistasis emerging in
experimental sequence libraries. To be detectable, these signals require sufficiently large and sufficiently diverged librar-
ies. Our modeling framework offers a quantitative explanation for different outcomes of recently published experiments.
Furthermore, we can forecast the outcome of time- and resource-intensive evolution experiments, opening thereby a way
to computationally optimize experimental protocols.

Key words: protein evolution, fitness landscapes, sequence space, epistasis, data-driven models.

Introduction
In the course of evolution, biological sequences encoding pro-
teins explore functional sequence space. The observable se-
quence variability between homologous sequences, that is,
sequences connected by common ancestry, results from a
delicate balance between mutation and selection. Mutations
tend to randomize sequences, whereas natural selection
prunes most of those mutations having a deleterious effect
on fitness. When analyzing large databases of homologous
protein families (Mistry et al. 2021), we therefore find sequen-
ces with 70–80% different amino acids, but highly conserved
functional and structural properties.

In turn, it is possible to search for statistical patterns in
ensembles of homologous proteins (Durbin et al. 1998), using
tools borrowed from statistical inference and unsupervised
machine learning, and to relate them to selective constraints
acting in these proteins. The most prominent signal is conser-
vation; a position in a protein not (or rarely) changing amino
acid over extended evolutionary time scales, is likely to play an
important role in the protein’s function (e.g., active sites in
enzymes) or for the protein’s structural stability (e.g., residues
buried in the protein core).

A second type of statistical signal has received a lot of
attention during the last decade (De Juan et al. 2013; Levy

et al. 2017; Cocco et al. 2018). The correlations between the
amino acids present in pairs of residue positions can be
extracted via global statistical models like those used in direct
coupling analysis (DCA) (Weigt et al. 2009; Morcos et al.
2011), Gremlin (Balakrishnan et al. 2011), or PSICOV (Jones
et al. 2012). This signal of residue–residue coevolution results
from epistatic couplings between residues in structural con-
tact in the folded proteins, that is, of residue pairs in direct
physical interaction in the 3D structure of the protein, even if
possibly located at long distance along the primary amino
acid sequence. Coevolutionary methods, in particular when
used as input for structurally supervised deep-learning meth-
ods like RaptorX (Xu 2019), DeepMetaPSICOV (Greener et al.
2019), AlphaFold (Senior et al. 2020), or trRosetta (Yang et al.
2020), have recently induced a revolution in protein-structure
prediction, reaching unprecedented accuracy in computa-
tionally predicted structures close to the accuracy of experi-
mentally determined structures (Jumper et al. 2021).
Hundreds of previously unknown protein structures have
been predicted this way (Ovchinnikov et al. 2017;
Tunyasuvunakool et al. 2021).

However, coevolutionary methods rely on the availability
of large alignments of homologous but diverged proteins,
since they rely on statistical signatures extracted from se-
quence variability (Haldane and Levy 2019). Recently, two
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groups have independently asked the question, if experimen-
tally generated sequences can be used instead of natural
homologs for contact prediction (Fantini et al. 2020; Stiffler
et al. 2020). To this aim, they have proposed and performed
similar experiments. First, starting from a given wildtype se-
quence, they have iterated several rounds of alternating se-
quence diversification via error-prone polymerase chain
reaction (epPCR) (Cadwell and Joyce 1992), and selection
for functionality (antibiotic resistance for both experiments).
In contrast to traditional directed evolution (Arnold 1998,
2018), selection was very weak (low antibiotic concentra-
tions), so proteins are not simply optimized for function,
but may diversify their sequences while maintaining a certain
level of functionality. After a certain number of rounds, the
resulting sequence library was sequenced, to provide the data
for statistical learning.

The resulting functional sequence libraries were quite di-
versified, with typical distances of 10–15% of the sequence
length from the wildtype protein used as a starting point. This
is much less than in natural protein families, characterized
typically by average distances of 70–80% between homologs.
However, the simultaneous emergence of about 10–40 muta-
tions, and the depth of more than 104 � 105 sequences in the
experimentally evolved libraries, could make the detection of
epistasis, and thus contact prediction, possible (Fantini et al.
2020; Stiffler et al. 2020).

Interestingly, both teams have run plmDCA (Ekeberg et al.
2013), or evCouplings based on plmDCA (Hopf et al. 2019),
on the data—with very different results. Although the con-
tact signal in (Fantini et al. 2020) was quite weak, and mostly
concentrated to nearby positions along the sequence, (Stiffler
et al. 2020) found a sufficiently accurate contact prediction to
enable the subsequent construction of a precise structural
model.

To understand the differences in results given the similarity
in approaches, we have developed a modeling scheme, which
allows us to simulate protein evolution in a data-driven se-
quence landscape. Comparison of simulated and experimen-
tal data of both experiments shows that our simulations
reproduce quantitatively the experimental observations.
Furthermore, the simulation scheme allows us to control
important parameters of the experiments, like the evolution-
ary distance from the wildtype in the final evolved library, the
sequencing depth of the library, or the strength of selection.
We find that our model is able to explain the difference in
contact prediction between the two experiments in terms of
sequence divergence and sequencing depth.

The agreement between simulations and experiments sug-
gests that our modeling framework allows for a quantitative
analysis of important questions about protein evolution, like
the mechanism underlying sequence space exploration and
the emergence of signatures of epistasis with sequence diver-
gence, compare also the related Sequence Evolution with
Epistatic Contributions (SEEC) model (de la Paz et al. 2020).
Beyond such basic questions in evolutionary biology, our
framework has also the potential to help in optimizing ex-
perimental design. To give an example, our simulations pre-
dict that both experiments would have benefited from

slightly weaker selection, represented by slightly lower antibi-
otic concentrations. This would have enabled a faster explo-
ration of the neighborhood of the wildtype sequence and the
occurrence of slightly more deleterious mutations, which
have a better chance to be coupled by epistasis than the
predominantly neutral mutations accepted at strong selec-
tion. Such predictions are very interesting, since our compu-
tational approach is efficient and can be applied to thousands
of protein families, whereas the experiments are expensive in
time and resources. Guiding them to increase the success
probability may therefore be an impactful strategy. For in-
stance, our approach can be used to explore different proto-
cols, such as alternating cycles of strong and weak selection.

Results
The general procedure of our modeling approach is graphi-
cally illustrated in figure 1. In this section, we first describe the
data-driven sequence landscape, which is inferred from mul-
tiple sequence alignments (MSA) of natural homologs of the
experimentally studied wildtype, that is, from data unrelated
to the experiment. As a first check of robustness, we show
that this landscape represents well the mutational effects of
single-residue substitutions when compared with a deep-
mutational scanning experiment, and that the inclusion of
epistatic couplings in the landscape model is essential for its
accuracy. The landscape can thus be used as a proxy for the
protein’s fitness landscape.

Next, we present a minimal model of evolutionary dynam-
ics, very similar to but more quantitative than SEEC. In this
model, mutations appear at the level of the DNA sequence
via single-nucleotide mutations, but selection acts exclusively
at the protein level, that is, on the amino acid sequence
translated from the DNA sequence, via the inferred sequence
landscape. We will show that sequences generated in silico by
this model reproduce quantitative features of the experimen-
tally generated sequences, like mutational profiles or the fit-
ness distribution.

Subsequently, we explore the potential of the experiments
by performing simulations under variable conditions for se-
quence divergence, sequencing depth, or selection strength.
This allows us to locate the two experiments in an exhaus-
tively scanned parameter space, to understand the limitations
of the experiments, and to propose schemes for overcoming
current limitations.

An Epistatic Data-Driven Sequence Landscape
Captures Mutational Effects
The basis of our approach is a computationally inferred se-
quence landscape, used as a proxy to quantify protein fitness
and selection acting on proteins. To obtain this landscape, we
first use the Pfam protein-family database (Mistry et al. 2021)
to extract an MSA of diverged homologs of the wildtype
protein used in the experiments. Both studies performed
experiments with a member of the beta-lactamase family
(Pfam accession PF13354), TEM-1 in (Fantini et al. 2020)
and PSE-1 in (Stiffler et al. 2020); the latter work also studied
the acetyltransferase AAC6 (PF00583). The details of the MSA
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construction are given in Materials and Methods below; we
find, for example, an MSA of 18,334 beta-lactamase
sequences.

The underlying idea of our work is to represent the natural
variability of this MSA via a generative statistical model
Pða1; . . . ; aLÞ, with ða1; . . . ; aLÞ representing an aligned
amino acid sequence, that is, the ai are either one of the 20
natural amino acids, or an alignment gap. Since data are
limited, we need to assume some mathematical form for
Pða1; . . . ; aLÞ. Introducing:

Pða1; . . . ; aLÞ ¼
1

Z
exp f�Eða1; . . . ; aLÞg ; (1)

we write the “statistical energy” Eða1; . . . ; aLÞ, which is to be
seen as a proxy for negative protein fitness (Morcos et al.
2014; Levy et al. 2017), in the form used by DCA (Weigt
et al. 2009; Morcos et al. 2011; Cocco et al. 2018),

Eða1; . . . ; aLÞ ¼ �
X

i

hiðaiÞ �
X

i< j

Jijðai; ajÞ ; (2)

as a sum over position- and amino acid-specific single-residue
biases, or fields, hiðaiÞ and pairwise epistatic residue–residue
couplings Jijðai; ajÞ. This model, also known as Potts model,
assigns low statistical energy E to “good/fit” sequences of high
probability, and high E to “bad/unfit” nonfunctional sequen-
ces of low probability. As illustrated in figure 1, we expect to
find low statistical energies for both natural and experimen-
tally evolved sequences. The strongest couplings are known
to be related to residue–residue contacts in the 3D protein
structure, compare with (Morcos et al. 2011).

The model parameters are inferred by the currently most
accurate version of DCA, called bmDCA (Figliuzzi et al. 2018),
which maximizes the model’s likelihood via Boltzmann-
machine learning (Ackley et al. 1985). As is known from the

literature (Sutto et al. 2015; Levy et al. 2017; Figliuzzi et al.
2018), this model is generative because sequences sampled
from Pða1; . . . ; aLÞ reproduce many statistical properties of
the MSA of natural sequences. This does not only concern
fitted quantities like one- and two-site amino acid frequen-
cies, but also nonfitted properties like three-residue amino
acid frequencies or the clustering of beta-lactamases into
subfamilies in sequence space. Note that the epistatic cou-
plings are essential for the model to be generative: a profile
model having only fields hiðaiÞ but no couplings Jijðai; ajÞ,
that is, a model assuming statistical independence of all posi-
tions in the protein, is not generative in the rather strict sense
discussed above (Figliuzzi et al. 2018). It misses both nontrivial
second- and higher-order correlations and the clustered se-
quence distribution. Note also that, in a different protein
family (chorismate mutase, PF01817), the same modeling ap-
proach was recently shown to artificially generate fully in vivo
functional protein sequences (Russ et al. 2020).

To test the quantitative character of our landscape
Eða1; . . . ; aLÞ, we compare the model predictions
DE ¼ EðmutantÞ � EðwildtypeÞ for the effect of mutations
introduced into a wildtype sequence, with the results of a
deep-mutational scan of the beta-lactamase TEM-1
(Firnberg et al. 2014). As is shown in figure 2A and B,
the two are highly correlated, with a Spearman rank cor-
relation of �0.77, compare also with (Figliuzzi et al. 2016)
and (Hopf et al. 2017) and the scatter plot supplementary
figure S1A, Supplementary Material online, directly compar-
ing prediction and experiment. This correlation shows that
our landscape Eða1; . . . ; aLÞ, even if inferred using distantly
diverged TEM-1 homologs, provides quantitative informa-
tion in the direct vicinity of TEM-1. As expected, low sta-
tistical energies correspond to high fitness values. To
underline the importance of the epistatic couplings in

FIG. 1. Scheme of our evolutionary modeling approach: starting from a wildtype sequence (red), we collect a large multiple sequence alignment of
naturally diverged homologs (blue), which are used to learn a generative landscape model using bmDCA (Figliuzzi et al. 2018). Evolution is
simulated as a Markov process in this landscape, leading to simulated, or in silico evolved mutant sequences. These sequences can be compared
with the results of evolution experiments (Fantini et al. 2020; Stiffler et al. 2020) (green), to assess estimated protein fitness (so-called statistical
energies, compare below), mutational profiles, and DCA-based epistasis and contact prediction. The simulation scheme also allows for changing
experimental control parameters like final sequence divergence, sequencing depth, and selection strength.
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our model, we also show in figure 2C and supplementary
figure S1B, Supplementary Material online, the predictions
of a nonepistatic profile model inferred from the same
beta-lactamase MSA: the correlation with the experimental
data decreases to �0.6, compare with (Figliuzzi et al. 2016).

This observation is central for our evolutionary model
since the selection of sequences with few mutations with
respect to the wildtype reference will be modeled by energy
differences DE as introduced above.

A Model of Evolutionary Dynamics Reproduces
Quantitative Features of Experimentally Evolved
Sequences
Evolution (natural and experimental) can be seen as a sto-
chastic process in a sequence landscape, with random muta-
tions and phenotypic selection modeled by our statistical
energy Eða1; . . . ; aLÞ. A minimal model realizing this idea is
SEEC (de la Paz et al. 2020): a random site i 2 f1; . . . ; Lg is
selected, and an amino acid b 2 fA; C; . . . ; Yg is selected to
substitute ai with a probability proportional to
exp f�DEðai ! bÞg, with DE being the statistical-energy
difference between the mutated and the unmutated sequen-
ces. A nonaccepted or synonymous mutation is characterized
by ai¼b. Note that deletions and insertions are currently not
considered in our model.

Although this model can be used to explore the qualitative
influence of epistasis on protein sequence evolution, our anal-
ysis requires a more quantitative model taking in particular
two differences into account:

• Mutations happen at the “nucleotide” level. As a conse-
quence, not all amino acids are accessible from all amino
acids via a single nucleotide mutation; and the set of
accessible amino acids depends specifically on the used
codon.

• The experiments allow to “vary selection strength.” For
TEM-1 and PSE-1, this is done by modifying the antibiotic
concentration: the same mutation can be more or less
strongly favored or suppressed.

To include these factors into our evolutionary model, we
introduce two important modifications with respect to SEEC:
first, we model evolution at the level of the nucleotide se-
quence ðn11; n12; n13; . . . ; ni1; ni2; ni3; . . . ; nL1; nL2; nL3Þ
coding for the amino acid sequence ða1; . . . ; aLÞ, that is,
the nucleotide triplet ðni1; ni2; ni3Þ codes for amino acid ai.
For each possible codon ðn1; n2; n3Þ 2 fA; C;G; Tg3 (with
the exception of the stop codons), we introduce the set of
amino acidsAaccðn1; n2; n3Þ � fA; . . . ; Yg, which are acces-
sible from ðn1; n2; n3Þ by at most a single nucleotide muta-
tion. Possible substitutions for ai are now only selected from
Aaccðni1; ni2; ni3Þ. Note that also ai is in Aaccðni1; ni2; ni3Þ,
accessible via its original codon and any synonymous
mutation.

Second, selection strength will be regulated by a new pa-
rameter b, having the form of an inverse temperature b ¼ 1
=T in statistical physics, which modifies the sequence prob-
ability to P � exp f�bEg. The “low-temperature” case b >
1 (T< 1) corresponds to increased selection (e.g., higher an-
tibiotic concentration, or directed evolution), in the limit b
!1 (T ! 0) only the best possible amino acid in position i

FIG. 2. Experimental and predicted mutational effects in TEM-1: panel (A) shows the results of the deep-mutational scanning experiment of
(Firnberg et al. 2014), as compared with the computational predictions using the epistatic Potts model (B) and the nonepistatic profile model (C).
Panels (A) and (B) have a Spearman rank correlation of �0.77, showing that low energies correspond to high fitness. Panels (A) and (C) have a
reduced Spearman correlation of �0.6 due to the absence of epistatic couplings in the profile model.
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is accepted. The “high-temperature” case b < 1 (T> 1) cor-
responds to decreased selection (e.g., lower antibiotic concen-
tration); the limit b! 0 (T !1) describes the case of
mutation-accumulation experiments without selection.

This idea is implemented in the following three steps,
which are iterated, compare with Materials and Methods
for details:

(1) We randomly select a site i 2 f1; . . . ; Lg to be mutated,
corresponding to the codon ni ¼ ðni1; ni2; ni3Þ and the
amino acid ai.

(2) One of the accessible amino acids b 2 AaccðniÞ is se-
lected to substitute ai with a probability Pðbja1; . . . ;
ai�1; a iþ 1; . . . ; aLÞ / exp f�bDEðai ! bÞg. Due
to the epistatic couplings in (equation 2), this probabil-
ity depends explicitly on the sequence context
ða1; . . . ; ai�1; aiþ1; . . . ; aLÞ.

(3) One out of the possible codons for amino acid b, which
differs from ni in at most a single nucleotide, is selected
uniformly at random.

The resulting nucleotide and amino acid sequences remain
thus mutually consistent.

The proposed dynamics can be efficiently implemented,
and very large sequence libraries can be simulated over long
times. To make these data comparable with the libraries gen-
erated by experimental evolution, we need to adapt the sim-
ulation parameters: first, the number of mutational steps in
our simulation is not directly related to the number of exper-
imental generations (because error-prone PCR may introduce
multiple mutations each round); we choose it to reach the
same average number of substituted amino acids in the sim-
ulated and experimental libraries. In this sense, different ex-
perimental mutation rates can be parametrized by the
number of steps needed by our dynamics to reach the
same number of mutations. Second, the selection strength b
¼ 1=T has no evident relation to the antibiotic concentra-
tion used in the experiment. We therefore tune the value of
b ¼ 1=T such that the statistical energy Eða1; . . . ; aLÞ of the
simulated and the experimental sequences have the same
linear slope as a function of the number of substitutions.
For the case of PSE-1, shown in figure 3, we find that
T¼ 1.4 is a good value, compare figure 3A for the experimen-
tal data from (Stiffler et al. 2020), and figure 3B for simulated
data. This corresponds to low selection strength
b ¼ 1=T < 1. Even if we adjust only average distance and
slope, we find that also the overall distribution is well repro-
duced. Similar observations for TEM-1 and AAC6 are shown
in supplementary figures S2 and S3, Supplementary Material
online.

Figure 3C shows that for strong selection T¼ 0.05
(b ¼ 20) the sequence energy decreases with the number
of substitutions, corresponding to an increasing fitness as
expected in a directed-evolution scenario. Weak selection,
shown in figure 3D for T¼ 20 (b ¼ 0:05), corresponds to a
sharp increase in statistical energy, and thus a loss in fitness, as
expected from the accumulation of predominantly deleteri-
ous random mutations.

Figures show global measures comparing experimental
and simulated sequences: the Hamming distance is the num-
ber of substitutions along the entire amino acid sequence, the
energy also depends on the entire sequence. To increase our
confidence in the quantitative character of our evolutionary
model, we compare in figure 4 the site- and amino acid-
specific mutational frequencies between experimental and
simulated sequence data. To this end, we extract the quan-
tities fiðaÞ describing the fraction of sequences in an MSA
having amino acid a in position i. Interestingly, also this re-
fined measure of sequence diversity is very similar for simu-
lated and experimental sequences; we observe a high
correlation of 86%, compare with supplementary figure S4,
Supplementary Material online. These plots highlight the im-
portance of working only with amino acid substitutions ac-
cessible via single-nucleotide mutations: many amino acids
show zero frequency in both plots due to inaccessibility. The
mutational spectrum predicted without considering the ac-
cessibility of amino acids is shown in supplementary figure S4,
Supplementary Material online: we see that the mutational
frequencies are more homogeneously distributed, close-to-
zero frequency mutations become very rare as compared
with the experimental sequences. The correlation goes
down to 65% between simulated and experimental data in
this case.

Based on these observations, we conclude that our evolu-
tionary model, which combines mutations at the nucleotide
level with selection at the amino acid level, is able to repro-
duce well the statistical features of the experimental sequen-
ces. This conclusion is also confirmed, when using TEM-1 and
AAC6 as initial wildtype sequences, compare with supple-
mentary figures S5 and S6, Supplementary Material online.

In Silico Sequence-Space Exploration, and the
Emergence of Epistatic Signals
Having developed a quantitative model to simulate experi-
mental evolution, we are now able to explore evolutionary
scenarios going well beyond those realized in the experiments.
We can systematically analyze the influence of the sequence
divergence from wildtype, of the sequenced library depth, and
of the selection strength on the accuracy of coevolution-
based contact prediction. Each setting of these parameters
would require long experiments and would sometimes be
inaccessible due to the high number of experimental rounds
or the depth of the sequenced library.

Computationally this becomes straightforward although
intensive: we have performed many runs of evolutionary sim-
ulations, each producing an MSA with specific parameters,
simulating the possible outcome of an evolutionary experi-
ment, as represented in figure 5. Each square in these plots
corresponds to the average over five simulation runs.
Depicted is the positive predictive value (PPV), which meas-
ures the fraction of true positive contact predictions within
the first 100 contact predictions, compare with Materials and
Methods for details. Due to the large number of contact
predictions to be performed, we used GaussDCA (Baldassi
et al. 2014), a very fast, even if not the most accurate contact
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predictor. Figure 5A shows the plot for the selection strength
used in the experiments for PSE-1. The red zone corresponds
to inaccurate contact predictions, being sometimes hardly
better than random (PPV � 0.13). It is found consistently
for small sequence libraries, and for sequence libraries of low
divergence from wildtype. It becomes evident that we need to
go to a sufficient number of simultaneous mutations to be
able to detect at least a weak epistatic signal between muta-
tions, which can be used for contact prediction. However, this
signal remains weak: we need much larger sequence libraries
of at least about 50,000 sequences to reach a reasonable
contact prediction. However, even for the largest and most
diverged library we have studied, a PPV of only 0.7–0.8 is
reached, which remains below the contact prediction reached
by using the MSA of natural homologs, which was used before
for the inference of our sequence landscape. The latter
reaches a PPV of 0.98 using GaussDCA. Figure 5B shows
the same observables for experiments starting with the
TEM-1 sequence, the overall results are very similar to PSE-
1, even if some quantitative details depend on the initial
wildtype sequence.

It might be speculated that better contact-prediction algo-
rithms may shift the region of nontrivial predictions down to
lower Hamming distances from wildtype, or to lower se-
quence numbers. Although the computational cost of
plmDCA is too high to reproduce the full analysis of figure 5,
we have reanalyzed two columns at average Hamming dis-
tance 41 and 65. As is shown in supplementary figure S7,
Supplementary Material online, for low sequence numbers
GaussDCA and plmDCA give very similar low prediction ac-
curacies, whereas the improved accuracy of plmDCA over
GaussDCA becomes visible only at sufficiently high sequence
numbers. At the resolution of our analysis, no shift in the
boundary is observable.

The conditions of the experiments for PSE-1 and TEM-1
are highlighted, in the two panels of figure 5. For PSE-1, 20
rounds of evolution led to an average sequence distance of 27
amino acid substitutions from wildtype, and a sequenced
library of 165,000 distinct sequences (Stiffler et al. 2020).
Interestingly, this point is located slightly beyond the bound-
ary of emergence of coevolutionary signal. The predicted av-
erage PPV of 0.58 is comparable with the 0.65 obtained using

FIG. 3. Statistical energy in dependence of sequence distance from wildtype: panel (A) shows the statistical energies of the sequences from
generation 20 in Stiffler et al., as a function of the Hamming distance (number of substituted amino acids) from the wildtype PSE-1. Panel (B) shows
the same quantities for the in silico simulated sequences, where selection strength T and the number of simulated evolutionary steps are adjusted
to reproduce the average distance and the slope from panel (A). Panel (C) shows an example of strong selection (T � 1) leading to optimized
sequences having lower statistical energies/higher fitness. Panel (D) shows the case of very weak selection (T � 1) resulting in random, mostly
deleterious substitutions strongly increasing statistical energy.
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the experimental MSA, compare with Materials and Methods
section.

This is in contrast to the TEM-1 experiment of (Fantini
et al. 2020), compare with figure 5B: the experiment was
performed for fewer rounds, leading to less divergence

from TEM-1, and the sequence library was less deeply
sequenced. The resulting library, with an average
Hamming distance of 18 from TEM-1 and with 34,431
unique sequences, is located slightly below the line of
emergence of coevolution signal. This observation provides

FIG. 4. Position-specific amino acid frequencies for experimental and simulated sequence libraries: panel (A) shows the frequencies fiðaÞ of usage of
amino acid a in site i in round 20 of experimental PSE-1 evolution, panel (B) shows the same quantity for simulated evolution. The Spearman rank
correlation between the two frequency spectra is 86%.

FIG. 5. Accuracy of contact prediction as a function of sequence number and sequence divergence: panel (A) shows the accuracy of contact
prediction as a function of the average sequence divergence from wildtype PSE-1 and the depth of the sequenced library. The accuracy is measured
via the PPV, that is, the fraction of true positive contact predictions in the first 100 DCA-predicted contacts, compare with Materials and Methods
for details. The selection strength T¼ 1.4 corresponds to the experimental condition in (Stiffler et al. 2020). The highlighted square indicates an
average Hamming distance of about 27 and a sequence library of 165,000, as realized in (Stiffler et al. 2020). Panel (B) shows the same quantities for
wildtype TEM-1, and for the experimental conditions used in (Fantini et al. 2020).
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a potential explanation for the observed reduced perfor-
mance in contact prediction.

The AAC6 results show that reduced sequence diver-
gence can, at least partly, be compensated by a strong
increase in the number of sequences in the evolved
MSA, compare with supplementary figure S8,
Supplementary Material online, which confirms original
findings of (Stiffler et al. 2020). Even if having only an
average Hamming distance of about 8 substitutions, the
large library of more than 106 sequences allows for the
detection of a weak contact-related signal.

The results depend substantially on the strength of selec-
tion. Supplementary figure S9, Supplementary Material on-
line, shows the extreme cases of very strong and very weak
selection discussed before. Both show inaccurate prediction.
An important difference becomes visible when looking at the
horizontal axes: all use the same number of simulated evolu-
tionary steps. In the case of strong selection, sequences stay
closer to the wildtype, since most mutations are deleterious
and selected against, and they stay close to each other. So
while being all functional, they do not accumulate sufficient
sequence variability to provide a reliable epistatic signal. In the
case of extremely weak selection, almost all mutations are
acceptable. Sequences are found to diverge strongly from
the initial PSE-1 sequence, but the absence of selection causes
also an absence of coevolution.

Discussion
The aim of this work was to showcase the potential of evo-
lutionary models in data-driven sequence landscapes. Recent
progress in landscape modeling has led to advances in using

sequence alignment to predict protein structure, mutational
effects, and even to design non-natural but biologically func-
tional sequences. Here we show that, equipped with a simple
stochastic dynamics capturing the interplay between muta-
tion and selection, these landscapes lead to models which are
able to describe in a quantitatively accurate way the results of
evolution experiments. This is not only restricted to proteins,
as studied in this work, but similar evolution experiments
have been performed for RNA (Zhou et al. 2018) and could
therefore be analyzed in an analogous way starting from se-
quence landscapes for RNA families (Kalvari et al. 2021).

The applications for experimental evolution are evident:
we can use our modeling to optimize experimental evolution
protocols, for example, when we search for fully functional
sequences but at some minimum number of mutations from
a starting sequence, or when we want to explore sequence
space optimally for contact prediction. In this case, we could,
for example, optimize the selection strength. In the case of the
beta-lactamases studied in this article, figure 6 shows that a
slightly lower selection pressure (i.e., higher selection temper-
ature) would have led to even better contact predictions.
However, this potential increase is weak as compared with
the one reachable by more diverged sequences.

A possible obstacle in such applications is the fact that the
selection temperature T, which we use to model selective pres-
sure, has to be fitted from experimental data via the slope of the
statistical energies of the evolved sequences vs. their distance
from wildtype. To understand the minimal sequence require-
ments for reaching robust and accurate slope estimates, we
have subsampled the experimental sequence libraries of PSE-1
for rounds 10 and 20. As is shown in supplementary figure S10,
Supplementary Material online, we observe: 1) that the slope

FIG. 6. Dependence of the contact-prediction accuracy on selection strength: we show the PPV (100 predicted contacts) of simulated MSAs at
variable selection strength T (panel A for PSE-1, panel B for TEM-1), and for different sequence distances from the wildtype protein. We predict
that, for the distances observed in the evolution experiments (27 for PSE-1, 18 for TEM-1), both experiments would have benefited from slightly
lower antibiotic concentrations.
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can be estimated accurately already from about 200–300
sequences, whereas the estimation error becomes large when
using less than 100 sequences, and 2) that the estimates are
almost equal for round 10 and round 20. We conclude that the
selection temperature T can be reliably determined with mod-
erate experimental effort (low number of sequences, few exper-
imental rounds). Once estimated, the parameters can be used in
simulations, which may guide more massive experiments evolv-
ing large sequence libraries over many rounds.

We see our current model as a starting point for more
detailed evolutionary models. There is space for a substantial
gain in accuracy: we can introduce biases in the mutations
introduced by error-prone PCR directly into the model
(Moore and Maranas 2000; Pritchard et al. 2005), the latter
can be derived from data by analyzing synonymous muta-
tions. Furthermore, we can introduce codon bias, the differ-
ence between transitions and transversions, the fact that
error-prone PCR may introduce simultaneously several muta-
tions before selection, or the emergence of phylogeny in
cycles of mutation and selection.

The modeling can also benefit from experimental feed-
back. If sequence libraries would also be sequenced before
and after the selection step, we could establish a better cor-
respondence between statistical energies and selection, up to
a gauge of statistical energies vs. antibiotic concentrations.

However, the potential of such evolutionary models in
data-driven landscapes goes far beyond the application to
experimental evolution. As is shown by SEEC (de la Paz
et al. 2020), already the simplest nontrivial evolutionary
model allows for illuminating important consequences of
epistasis in evolution, like the site- and time-dependence of
substitution rates. We anticipate that the proposed modeling
framework may capture many of these effects in a highly
quantitative way. The relatively simple modeling framework
proposed in our paper might also be a starting point for more
theoretical–mathematical analyses about, for example, the
emergence of epistatic signals in sequence libraries. In this
context, it might also be interesting to see in how far more
distributed signatures of epistatic signal, possibly related to
protein function rather than contacts, become visible in ex-
perimentally evolved sequence libraries, compare with
(Rivoire et al. 2016), (Shimagaki and Weigt 2019), and
(Tubiana et al. 2019).

Materials and Methods

Sequence Data
Sequences from Experimental Evolution
We include in our analysis the sequence data coming from
the experiments of in vitro evolution by (Fantini et al. 2020)
on TEM-1 and by (Stiffler et al. 2020) on PSE-1 and AAC6.

The aligned amino acid sequences from (Fantini et al. 2020)
were kindly provided by the authors prior to publication, and
can also be found at http://laboratoriobiologia.sns.it/supplemen-
tary-mbe-2019/ (last accessed November 17, 2021). The raw
sequencing reads are available at the National Centre for

Biotechnology Information Sequence Read Archive (SRA)
with accession code PRJNA528665 (http://www.ncbi.nlm.nih.
gov/sra/PRJNA528665, last accessed November 17, 2021).
Amino acid sequences with more than six gaps were discarded
as a quality control to remove sequences with lower quality.

Stiffler et al. (2020) ran two experiments using the PSE-1
beta-lactamase and the AAC6 acetyltransferase as starting
wildtypes. Aligned sequencing reads from the last round of
the two experiments (translated into amino acid sequences)
can be found at https://github.com/sanderlab/3Dseq (last
accessed November 17, 2021). The raw sequencing reads
are available at the National Centre for Biotechnology
Information Sequence Read Archive (SRA) with accession
code PRJNA578762 (http://www.ncbi.nlm.nih.gov/sra/
PRJNA578762, last accessed November 17, 2021).

Our models are built for the Pfam-annotated positions
using the corresponding Pfam domains PF13354 (Beta-lacta-
mase2) and PF00583 (Acetyltransf1). We realigned the wild-
type sequence using the hmmalign command from the
HMMer software suite (Eddy 2011) and profile Hidden
Markov Models downloaded from Pfam (Mistry et al.
2021). We then removed from the experimental MSAs all
columns corresponding to nonmatched states of the
wildtype sequence.

The resulting MSAs of experimentally evolved sequences
have 202 sites and 165,855 sequences for PSE-1 (round 20),
and 34,431 sequences for TEM-1 (generation 12). For AAC6,
we find 117 sites and 1,260,048 sequences (round 8).

Natural Homologous Sequences and Preprocessing of the

Training Set
The MSAs of natural homologous sequences of the two consid-
ered protein families PF13354 (Beta-lactamase2) and PF00583
(Acetyltransf1) were generated running the hmmsearch com-
mand from the HMMer software suite (Eddy 2011) on the
UniProt database (The UniProt Consortium 2021). Insertions
were removed, and sequences with more than 10% gaps and
duplicated sequences were excluded to improve the quality of
the alignment. Any sequence closer than 80% to the wildtypes
TEM-1, PSE-1, or AAC6 was excluded from the alignments to
avoid the introduction of biases toward these sequences in the
bmDCA learning. The resulting MSAs included 18,333 (43,576)
homologous and nonidentical aligned sequences of length 202
(117) for PF13354 (PF00583).

Note that some residues, which are present in the N- and
C-terminal regions of the experimental sequences, are not
covered by the Pfam domains, and therefore excluded from
our analyses. Extending the MSA beyond the borders of the
Pfam domains would lead to the inclusion of evolutionarily
less conserved positions, and thus to the inclusion of highly
gapped columns into the MSA of natural data. Such columns
have been previously found to compromise the accuracy of
DCA landscapes (Figliuzzi et al. 2016) and are therefore left
out in this study.
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The natural MSA were used to train two Potts models
using bmDCA (Figliuzzi et al. 2018) in the implementation
of Barrat-Charlaix et al. (2021), which provides the currently
most accurate DCA models.

Evolutionary Model
As already discussed in Results section, our evolutionary
model combines mutations at the nucleotide level with
selection at the level of aligned amino acid sequences.
We therefore need to specify both the nucleotide sequence
n ¼ ðn11; n12; n13; . . . ; ni1; ni2; ni3; . . . ; nL1; nL2; nL3Þ and
the resulting amino acid sequence a ¼ ða1; . . . ; aLÞ, which
is translated from n using the standard genetic code. Since we
consider full-length aligned sequences of Pfam domains, stop
codons are not allowed in n. Furthermore, we have to ac-
commodate alignment gaps possibly existing in a: a gap in a is
represented by a triplet of gaps in n. Gaps are not changed
during our simulations, our model does consider only single-
nucleotide substitutions, but no insertions and no deletions.
Note that the gray columns in figure 4 and supplementary
figures S5 and S6, Supplementary Material online, correspond
to gaps in the wildtype sequence, which are conserved both
in the experiment and in the model.

As mentioned before, for each codon
ðn1; n2; n3Þ 2 fA; C;G; Tg3, we consider the set of amino
acids Aaccðn1; n2; n3Þ � fA; . . . ; Yg, which are accessible
from ðn1; n2; n3Þ by at most a single nucleotide mutation.

Our simulation of sequence evolution proceeds by iterat-
ing the following three steps defining a Markov chain (MC) in
the space of nucleotide sequences (note that, due to the
degeneracy of the genetic code, the process is “not” an MC
in amino acid sequence space):

(1) A position i 2 f1; . . . ; Lg is chosen uniformly at ran-
dom along the amino acid sequence, corresponding to
the codon ni ¼ ðni1; ni2; ni3Þ and the amino acid ai.
Although ai ¼ }–}, that is, a gap is chosen, we repeat
the selection of the position i.

(2) Out of all accessible amino acids b 2 AaccðniÞ, we se-
lected one using the conditional probability Pbðbja�iÞ,
which couples the amino acid b explicitly to the se-
quence context a�i ¼ ða1; . . . ; ai�1; aiþ1; . . . ; aLÞ:

Pbðbja�iÞ ¼
exp fbhiðbÞ þ b

P
jð6¼iÞ Jijðb; ajÞg

ziða�iÞ
; (3)

with

ziða�iÞ ¼
X

b2AaccðniÞ
exp fbhiðbÞ þ b

X

jð6¼iÞ
Jijðb; ajÞg (4)

being a normalization constant. In difference to Z in equa-
tion (1), it can be calculated efficiently by summing over the
less than 20 accessible amino acids.

(3) One out of the possible codons for amino acid b, which
differs from ni in at most a single nucleotide, is selected
uniformly at random.

The new amino acid b substitutes ai in a, and the new
codon ni in n. We thereby conserve the coherence between
nucleotide and amino acid sequence.

To simulate an entire MSA of M sequences, the process is
initiated M times in the wildtype reference sequence, and M
independent runs of the MC are performed. The number of
steps in these MCs is chosen such that the average Hamming
distance of the generated amino acid sequences reaches a
target number. Note that the Hamming distances may vary
from MC to MC, since AaccðniÞ contains the case b¼ai ac-
cessible via any synonymous mutations. The Hamming dis-
tance can therefore assume any value between zero and the
number of performed mutational steps.

Simulated Sequence Data for Contact Prediction
Our evolutionary algorithm has three input parameters add-
ing to the wildtype sequence and the statistical-energy model:
the number of sequences M, the number NMC of steps of our
evolutionary MC model, and the selection temperature T.
Given this triplet of numbers it outputs an MSA obtained
simulating evolution for NMC iterations starting from the
wildtype sequence, repeating the sampling independently
M times at temperature T ¼ 1=b.

For each wildtype sequence, we simulated the outcome of
different protein evolution experiments by scanning these
three input parameters within a range of interest. For MSA
generated starting from TEM-1 or PSE-1 (AAC6), we varied M
in the range 100� 165; 000 (500� 1; 250; 000), NMC in the
range 5–255 (4–120), and T in the range 0.05–20.

To save resources and time, given the computational cost
of sampling, we opted for a scheme that would allow us to
reduce the number of independent MC chains needed to
simulate evolution. For each temperature T, we run 165,000
(1,250,000) independent MCs for TEM-1 and PSE-1 (AAC6)
and printed MSAs at the desired number of MC steps until
255 (120) MC steps. The MSAs with less sequences were
obtained by randomly subsampling without replacement
from the MSA with 165,000 (1,250,000) sequences. To pro-
duce more statistics, we ran the same simulations five times.

Contact Prediction
Contact prediction was performed using GaussDCA (Baldassi
et al. 2014) for all MSAs, included, for coherence, the exper-
imental ones. GaussDCA is the computationally most effi-
cient implementation of DCA. Its accuracy of contact
prediction is slightly inferior to plmDCA or bmDCA.
However, we use it: in our analysis, we had to predict contacts
for a large number of partially deep simulated MSAs (cf., fig. 5)
to explore multiple combinations of sampling time, sample
size, and selection strengths.

The reweighting parameter was set to 0 for contact pre-
diction of in silico MSAs, as this reduces computational time
and is coherent with the independence of the simulated MCs.
On the other hand, contact prediction of experimental MSAs
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was performed using the default option “:auto” of GaussDCA
for reweighting. These different treatments of simulated and
experimental sequences are based on the fact, that simula-
tions generate statistically independent sequences (condi-
tioned to wildtype initialization), whereas the experiments
may generate sequence ensembles having nontrivial phyloge-
netic effects. The pseudocount was set to 0.6 (0.5) for PSE-1
and TEM-1 (AAC6) empirically, as we found it to be a good
intermediate value for MSAs with very different statistics.

Intrachain atomic distances for both families were
obtained by running the single-protein mode of the code
provided by Pfam Interactions (https://doi.org/10.5281/zen-
odo.4080947, last accessed November 17, 2021), we used the
shortest distance between heavy atoms of the two amino
acids among all structures of the Protein Data Bank (PDB)
(Burley et al. 2021) listed in Pfam. Following standards in
coevolutionary contact prediction, all pairs with distance be-
low 8 Å and a minimum separation of 5 positions along the
sequence are kept as contacts for the calculation of the PPV.
For AAC6, we used a more stringent cutoff of 5.5 Å, since the
structural variability across the protein family is already well
represented in the PDB.

Supplementary Material
Supplementary data are available at Molecular Biology and
Evolution online.
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2.2.1 Limits of the evolutionary model

The modeling approach chosen to study neutral drift experiments
described in this paper is based on a highly simplified dynamics.
Nonetheless, we show that artificial sequences simulated with our
method are in quantitative agreement with the experimental libraries.
On one side, we assessed the relative importance of two experimental
parameters in determining contact prediction accuracy, namely the
number of sequences in the library and their divergence from the
wild-type sequence; on the other side, the artificial libraries that we
generated had a mutational profile statistically similar to that of the ex-
perimental libraries. We turn now to discussing the simplifications of
our evolutionary dynamics, to understand its limitations in modeling
neutral drift experiments and, more generally, protein evolution:

• Mutational biases: mutations were introduced via epPCR during
the neutral drift experiments discussed in section 2.2: random
nucleotide mutations were disseminated in the surviving genes
at each new round of evolution. Unfortunately, these mutations
were not evenly distributed and presented mutational biases.
In particular, the type of nucleotide already present in a spe-
cific position biased the kind of substitutions possible. For the
moment, our dynamics does not take this fact into account, as
new mutations are proposed independently from the current
sequence.

• Stationary distribution: in the long run, we would like the se-
quences simulated with our dynamics to reproduce the natural
statistics of the beta-lactamase family. However, our sampling
method does not respect detailed balance, a condition that guar-
antees that the stationary distribution of a given Markov chain
converges to a specific probability distribution. In our case, we
want the target distribution to be the sequence landscape ap-
proximated by our Potts model. This is not a problem by itself
when modeling short-term evolution but it is desirable when
modeling protein diversification over the time scales of natural
evolution.

• Transition probability: when running the Markov chains that sim-
ulate the evolutionary process, there exist many different local
dynamics, or transition probabilities, that satisfy the detailed
balance condition. In practice, all members of this class of dy-
namics guarantee the convergence to the target distribution in
the long run, however, on shorter timescales, there are differ-
ences in the kind and frequency of mutations sampled. We chose
the Gibbs sampling dynamics due to its empirical superiority,
but it is still unclear why the Metropolis-Hastings algorithm had
a poorer performance. In practice, we need to explore more



sampling algorithms and understand their differences in short
time frames.

• Population genetics: our modeling approach lacks competition
between strains, i.e. each sequence evolves independently. This
greatly simplifies the generation of the artificial sequences and
allows for a parallel implementation. Mutations and selection act
on each protein site independently from the rest of the popula-
tion of sequences in the library. As a consequence, mutations are
not accepted or rejected based on population sweeps, or survival
of the fittest strains in the pool, but rather through an effective
dynamics that selects for good enough mutations. We need to
implement a version of the algorithm in which mutations are
selected on a population level, by devising an appropriate fitness
function.

In the next sections, we will address the first two points detailed
above to better account for the experimental details in one case, and
to define a sampling dynamics that can describe longer evolutionary
timescales. The other points are left for future work.

2.3 inclusion of mutational biases

In this section, we discuss a first attempt to include mutational biases
in our simulations. The results described are preliminary and further
research is needed. Part of the research presented has seen the partici-
pation of two master’s students: Tiziri Terkmani and Aya Elmesaoudi.
To test our approach we focused on the library of beta-lactamase
sequences gathered from round 20 of the experiment of Stiffler et al.
[110]. We chose it for two reasons: the sequences in this library are in
high number and the simulations presented in our paper show that
on this dataset we have the highest predictive accuracy with the base
model.

2.3.1 Quantification of the experimental bias

First, we need to quantify the mutational bias induced by the ex-
periment. To this aim, we require the nucleotide sequences, which
we will use to analyze biases in the synonymous codons. The sup-
plementary data accompanying the original paper exclusively listed
the amino acid sequences of the genes that underwent neutral ge-
netic drift. Furthermore, the dataset of amino acid sequences was
pre-processed to enhance the accuracy of subsequent contact pre-
diction, removing hundreds of thousands of sequences. To over-
come this limitation, we collected the experimental raw PacBio se-
quencing reads (https://www.ncbi.nlm.nih.gov/bioproject/?term=

https://www.ncbi.nlm.nih.gov/bioproject/?term=PRJNA578762
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https://www.ncbi.nlm.nih.gov/bioproject/?term=PRJNA578762


PRJNA578762) in FASTQ format from the Sequence Read Archive and
we cleaned them with a Matlab code adapted from the one released
by the original paper. We downloaded the DNA sequence of the wt
PSE-1 gene from the European Nucleotide Archive (https://www.ebi.
ac.uk/ena/browser/api/fasta/AAA25741.1?lineLimit=1000). Upon
cleaning the reads from round 20 we obtained more than 450, 000
aligned nucleotide sequences of round 20 of the genetic drift experi-
ment of [110].

From this dataset, we were able to measure the prevalence of
mutational biases. A mutational bias in our context refers to a non-
uniform mutational probability between nucleotides caused by the
mutational process. Measuring this effect is nontrivial due to the
concurrent selection process that is applied at each experimental
round. Therefore, we focused on synonymous mutations, which may
affect the fitness but much less than amino acid changes, and can
therefore isolate biases in the mutational process from the effects
of non-synonymous mutations. In particular, to compute the bias
we focused on amino acids in the wt sequences of PSE-1 with a
fourfold degenerate third position, i.e. NNX where NN are two
specific nucleotides, and X represents any of the four nucleotides. We
can compute the relative abundance of these codons compared to that
in the wt to estimate the mutational bias.

As an illustrative example let’s consider the four amino acids
Threonine, Glycine, Valine, and Alanine, which are coded respectively
by ACX, GGX, GTX, and GCX. Let’s further focus on the positions in
the wt-sequence PSE-1 where the wt-codon ends with A. For each of
those codons, we computed the relative frequency in the alignment of
the other three synonymous codons (ending with C, G, and T). In the
absence of any bias, we expect them to be equally represented. Instead,
we can see from figure 2.1 that there is a clear bias: the mutation A→
C is disfavored, compared to A→ G and A→ T. This phenomenon
is consistent across positions and amino acids: it is a mutational bias,
and not a codon bias, or another phenomenon dictated by selection.

Using this set of four amino acids we computed the relative fre-
quency of all possible transitions w(n → n′) which we report in the
left side of table of 2.1. Interestingly, when we checked the specifics
of the mutational biases of the epPCR protocol employed in the ex-
periments (see https://www.agilent.com/cs/library/usermanuals/

public/200550.pdf), we found very similar transition probabilities
(right side of table 2.1).

2.3.2 Re-weighted Gibbs sampling

Once established the kind and prevalence of mutational bias in the
experiments, we implemented a simple modification in our Gibbs

https://www.ncbi.nlm.nih.gov/bioproject/?term=PRJNA578762
https://www.ncbi.nlm.nih.gov/bioproject/?term=PRJNA578762
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https://www.ebi.ac.uk/ena/browser/api/fasta/AAA25741.1?lineLimit=1000
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https://www.ebi.ac.uk/ena/browser/api/fasta/AAA25741.1?lineLimit=1000
https://www.agilent.com/cs/library/usermanuals/public/200550.pdf
https://www.agilent.com/cs/library/usermanuals/public/200550.pdf
https://www.agilent.com/cs/library/usermanuals/public/200550.pdf


Figure 2.1 – Percentage of synonymous codons in the final library of Stiffler
et al. experiments of 4 wt-codons: ACA, GGA, GTA, and GCA.

sampling strategy to take them into account. In particular, at every
Monte Carlo step, the algorithm works as follows:

1. A nucleotide position ik is randomly selected, with i ∈ {1, . . . , L}
being the codon index and k ∈ {1, 2, 3} being the nucleotide
position inside the codon.

2. The set of 4 codons Cik is created. Each codon is derived by
inserting into position ik one of the 4 DNA nucleotides, i.e.
N = {A, C, G, T}. The codons are then translated to produce a
corresponding set of amino acids, represented as Aik .

3. For each b(n′) ∈ Aik , the corresponding P(b|a−i) are computed.
These conditional Potts probabilities are identical to those de-
scribed in the methods of section 2.2, except for the normaliza-
tion, which is now computed over Aik .

4. Each P(b|a−i) is re-weighted with a factor which depends on
the nucleotide n0 already present in position ik and the substi-
tuting nucleotide n′ introduced in its place. In particular, the
experimentally derived mutational biases w(n0 → n′) from table
2.1 are used.

5. A new nucleotide n′ is emitted from the following probability
distribution:

P(nik = n′|n−ik) =
w̃(n0

ik
→ n′)P(b(n′)|a−i)

∑
n∈N

w̃(n0

ik
→ n)P(b(n)|a−i)

(2.1)



A C G T
A 8 ± 2 45 ± 6 48 ± 5

C 34 ± 13 7 ± 3 58 ± 13

G 56 ± 12 10 ± 3 34 ± 11

T 48 ± 9 44 ± 10 9 ± 2

A C G T
A 9 35 56
C 32 10 58
G 58 10 32
T 56 35 9

Table 2.1 – Left table: experimentally measured transition probabilities ob-
tained from nucleotide sequences of round 20 of Stiffler et al,
experiments with PSE-1 beta-lactamases. Right table: nominal
mutation spectra induced by the epPCR protocol as reported by
the manufacturer. Values are expressed as percentages, normal-
ization of the rows might not be exact due to rounding errors.

where w̃(n→ n′) is a redefinition of the mutational bias transition
matrix described in the following. Since Gibbs sampling contemplates
re-emitting the same symbol present before the Monte Carlo step, we
introduce an ad hoc value for w(n→ n), namely λ. This allows us to
define w̃(n→ n′) in the following way:

w̃(n→ n′) = λδnn′ + (1− λ)w(n→ n′) (2.2)

where δnn′ is the Kronecker delta, which is equal to 1 if n = n′ and 0
otherwise. λ ∈ [0, 1] is a parameter that models explicitly a mutation
rate. In particular, when λ = 1 no mutation can occur, while λ < 1,
controls the average proportion of accepted mutations at each Monte
Carlo step.

The first results of our new sampling strategy are encouraging. We
run this dynamics starting from the wt PSE-1 nucleotide sequence with
and without the mutational bias. As always we generate a number of
Monte Carlo chains equal to those of the experiment and we tune the
number of Monte Carlo steps to reach the same average Hamming
distance as the wildtype. For the first simulations, we chose a value of
λ = 0.25. To evaluate the results we compared the 1-point statistics
of our simulations with that of the experiments, with and without
bias. Results can be seen in figure 2.2. As expected, the new sam-
pling strategy provides a small boost in the statistical accuracy of the
sampling algorithm. This is likely due to the different accessibility of
non-synonymous amino acids [111] compared to our previous model,
which is more consistent with the experiments. Overall, our algorithm
is able to integrate detailed nucleotide-level mutation information into
a sequence model, achieving a balance between a faithful represen-
tation of the experimental mutational process and the simplicity of
the implementation. Future work may explore strategies for setting λ

based on the experimental data and the influence of the mutation rate
on the simulations.



Figure 2.2 – Comparison of the 1-point amino acid statistics between ex-
perimental and in silico libraries. The left panel presents the
in silico data generated without including the mutational bias.
The right panel showcases data generated using the mutational
bias, exhibiting a higher correlation.

2.4 inclusion of detailed balance

Sampling from high-dimensional probability distributions usually
requires advanced algorithms, such as Markov Chain Monte Carlo
(MCMC) sampling [112]. For spin models defined over categorical
variables, like Potts models, many sampling algorithms are available.
For example, Metropolis-Hastings and Gibbs Monte Carlo are both uti-
lized as a sampling technique in the implementation [91] of Boltzmann
learning that our group currently exploits to infer protein sequence
landscapes. In this context, MCMC sampling generates equilibrium
sequences via long simulations, ensuring the proper exploration of
sequence space. However, MCMC sampling can also be used to model
the dynamics of biological systems [113, 114], by interpreting the mean-
ing of configurations drawn along the sampling. As we have shown
in the article presented in section 2.2, Markov chain sampling can also
be used to model short-term protein evolution in neutral genetic drift
experiments. In this setting, short simulations performed with Gibbs
sampling, with the addition of the constraints of the genetic code,
accurately reproduced many statistical features of the experimental
data. In the next sections, we discuss how to extend this approach to
sample long chains that reach equilibrium, thereby modeling protein
evolution over billions of years, while also accurately incorporating the
amino acid accessibility dictated by the genetic code. All the results
have been obtained in collaboration with Leonardo di Bari, a master’s
student in our group.



2.4.1 Model definition over nucleotide space

Let’s consider a Potts model

P(a) =
e −βH(a)

Z
(2.3)

whose parameters of the Hamiltonian H have been inferred from the
natural sequences of a protein family. We aim to define an evolution-
ary dynamics using this model that takes into account the fact that
evolution happens in nucleotide space. This necessitates specifying the
probability distribution of P(a) over nucleotide sequences instead of
amino acid sequences. A straightforward procedure to accomplish this
consists of uniformly distributing the probability associated with an
amino acid sequence across all its synonymous nucleotide sequences.
To formalize this concept, we define an amino acid sequence of length
L as a = (a1, a2, ..., aL) and a corresponding nucleotide sequence as
n = (n11 , n12 , n13 , n21 , ..., nL3). The function A(n) applies the genetic
code to transform the nucleotide sequence n into its respective amino
acid sequence a. For each amino acid sequence a, we also define the
set

Γ(a) = {n : A(n) = a}, (2.4)

and the function N(a) = |Γ(a)|, i.e. the cardinality of Γ(a). N(a)
counts the number of synonymous nucleotide sequences coding for
a given amino acid sequence a. N(a) factorizes over the amino acids
and can be rewritten as:

N(a) =
L

∏
i=1

N(ai) (2.5)

where N(a) is the number of synonymous codons coding for amino
acid a. We now have all the elements to define the probability distri-
bution of a new model P(n) over nucleotide space:

P(n) = P(A(n))
N(A(n))

=
1

N(A(n))
e −βH(A(n))

Z
=

e −βH(n)

Z
(2.6)

such that the new Hamiltonian is defined as:

H(n) = H(A(n)) + T log [N(A(n))]

= H(a) + T
L

∑
i=1

log [N(ai)].
(2.7)

The Hamiltonian in Eq. (2.7) incorporates a novel term compared
to the standard Potts Hamiltonian defined over amino acid space.
Namely,

T
L

∑
i=1

log [N(ai)] (2.8)



which accounts for the entropic contribution arising from the degen-
eracy of synonymous DNA sequences. By assigning non-uniform
weights to the codons, we can also account for the specific codon us-
ages of different species. The term in Eq. (2.8) introduces a correction
that disfavors amino acid sequences with high genetic redundancy
by assigning them higher energy, i.e. lower probability, compared
to sequences with low degeneracy which are assigned lower energy,
i.e. higher probability. Consequently, the original Potts probability of
amino acid a defined in Eq. (2.3) is correctly recovered after summing
over all synonymous nucleotide sequences:

P(a) = ∑
n∈Γ(a)

e −βH(A(n))

Z
. (2.9)

2.4.2 Description of the algorithm

Detailed balance (DB) is a mathematical condition that ensures that the
configurations generated by a Markov process converge to a stationary
distribution. In our case, DB ensures that the Markov chains converge
to the statistics of natural amino acid sequences that we used to infer
the Potts model. Unfortunately, the sampling dynamics presented in
the article of section 2.2 does not respect the DB condition. Adapting
the Gibbs sampling algorithm described in the paper to satisfy DB
is the goal of this section. DB is a statement about the transition
probabilities π between configurations of our system. In the case of
nucleotide sequences, for every pair of sequences n, n′, this expression
must hold:

π(n→ n′)P(n) = π(n′ → n)P(n′). (2.10)

The condition requires that, in equilibrium, the probability flux n→ n′

equals the one from n′ → n, i.e. the probabilities of n and n′ do not
change. A vast class of Markov Chain Monte Carlo algorithms de-
pends on finding a suitable transition matrix that satisfies this equation.
In addition to that, we want π to reflect plausible evolutionary dy-
namics on nucleotides. To this aim, we need to account for at least
three processes:

• single-nucleotide mutations: a nucleotide is replaced by another
one

• amino acid deletion: a codon is lost from the sequence, removing
3 nucleotides

• amino acid insertion: a codon is inserted in the sequence, adding
3 nucleotides



We model only triplets of nucleotide insertions or deletions because
inserting or deleting single bases results in a frameshift, misalign-
ing subsequent codons in the reading frame and leading to a non-
functional sequence with high probability. On top of this, in terms of
the amino acid sequence, this move would be highly non-local, thus
hard to model. As a consequence, we assume that this process has
zero probability and we exclude it from the dynamics. We observe
that among the types of mutational processes described above, one
operates at the individual nucleotide level, while the other operates
on triplets of nucleotides, or codons. While this approach represents
a simplification of the actual indel statistics, we contend that it main-
tains a foundation in biological understanding. Replication slippage
[115], one of the most well-understood mechanisms generating indels
in protein evolution, exemplifies this biological basis. During DNA
replication, the DNA polymerase sometimes pauses and disconnects
from the DNA. This pause can allow the new, growing DNA strand
to momentarily detach and then accidentally reconnect to a similar
sequence either ahead or behind the original spot. When the DNA
polymerase restarts copying, it may either miss a section or repeat
a section of the DNA, creating a deletion or an insertion in the new
DNA strand. Including both indel mutations and single-nucleotide
substitutions in a single MCMC framework is not trivial, since they act
differently on variables and satisfaction of DB cannot be guaranteed.
To overcome this issue, we suggest an approach that combines Gibbs
and Metropolis sampling. We devised a mixed sampler operating as
follows:

• With probability p, execute a Metropolis move simulating codon
indels, i.e. operating on triplets of nucleotides.

• With probability 1 − p, perform a Gibbs move simulating a
single-nucleotide mutation.

Note that this reflects also the different nature of the two processes:
our dynamics determines first which process happens, and then its
outcome.

Indels: Metropolis sampling

To model codon insertions and deletions (indels), we introduce a new
symbol: the triple gap "- - -" which we denote with c0. This codon,
equivalent to an amino acid gap, models the deletion of a codon within
a nucleotide sequence. We also designate with ck, k ∈ {1, ..., 63}, all
other amino-acid-coding codons, but the stop codon.

Moving to the Metropolis sampling algorithm for indels, we de-
compose the transitions matrix π(n → n′) into two components: a
proposal term p(n → n′) and an acceptance term α(n → n′). Since
we exclusively focus on single codon substitutions, we only need to



consider transitions n → n′ such that n = (c1, c2, . . . , ci, . . . , cL) and
n′ = (c1, c2, . . . , c′i, . . . , cL). As a consequence, we will only consider
the matrices p(c→ c′) and α(c→ c′).

We restrict our proposal to mutations from amino-acid-coding
codons towards the gap codon and vice versa, leading to the following
proposal matrix p(c→ c′):

c0 c1 c2 · · · c63

c0 η β β · · · β

c1 β γ 0
c2 β γ
...

... 0
. . .

c63 β γ

(2.11)

This symmetric matrix accommodates insertions and deletions via
the parameter β and prohibits amino acid substitutions:

p(cm → cn) = 0 ⇐⇒ m 6= n & m, n > 0. (2.12)

The parameters η and γ are used to normalize the proposal probability
and correspond to “empty” moves not changing the state of the
codon. To speed up the algorithm, we want to maximize β while
maintaining the proposal probability normalized. As a result we get
η = 0, β = 1/63 and γ = 62/63. This means that when we select an
amino-acid-coding codon, in 62 out of 63 attempts we emit the same
codon, and only in one case we emit the triple gap.

We are now in a position to describe how the Metropolis sampling
algorithm for indels works. For each Monte Carlo step:

1. A sequence position i ∈ {1, . . . , L} is randomly selected, along
with its corresponding ci codon.

2. A new codon c′i is proposed though the proposal matrix p(ci → c′i)

3. The acceptance probability of the proposed transition ci → c′i is
computed according to the Metropolis prescription:

α(c→ c′) = min
(

1,
P(n′)
P(n)

)
= min

(
1, e−β[H(n′)−H(n)]

)
(2.13)

4. Codon c′i is accepted with probability α(ci → c′i) or refused with
probability 1− α(ci → c′i).

Thanks to the fact that the proposal matrix in Eq. (2.11) is sym-
metric and that we accept codon mutations according to Eq. (2.13),
detailed balance is guaranteed. Note that this part of the algorithm,
modeling indels, was completely absent in the version of section 2.2,
which simply did not sample them.



Point mutations: Gibbs sampling

The second type of mutation that we need to consider is single nu-
cleotide substitutions. We resort to Gibbs Monte Carlo sampling
generalizing the approach discussed in the paper, but introducing DB
for accurate long-term sampling. Gibbs sampling works by iteratively
emitting new variables from their conditional distribution, given the
current value of the rest of the sequence. According to Eq. (2.6), we
can express the conditional probability of nik given the rest of the
sequence as:

P(nik |n−ik) =
P(n)
P(n−ik)

=
P(n)

∑
nik
∈N
P(n)

=
e−βH(n11 , n12 , ..., nik

, ..., nL3 )

∑
n∈N

e−βH(n11 , n12 , ..., nik
= n, ..., nL3 )

(2.14)

where N = {A, C, G, T}.
We can now present how a step of Gibbs Monte Carlo sampling

works in our situation:

1. A nucleotide position ik, i ∈ {1, . . . , L} and k ∈ {1, 2, 3}, is
randomly selected, excluding currently gapped positions.

2. The set of amino acids Aik is generated to explicitly compute the
value of Eq. (2.14). We recall thatAik is the amino acid equivalent
of the 4 codons derived by inserting each of the nucleotides of
N in position ik.

3. A new amino acid n′, and the respective amino acid a′, is sam-
pled from the following probability distribution, computed ex-
ploiting the Hamiltonian of Eq. (2.7):

P(nik = n′|n−ik) =
e−βH(a1, ..., ai = a′, ..., aL)−log[N(a1, ..., ai = a′, ..., aL)]

∑
a∈Aik

e−βH(a1, ..., ai = a, ..., aL)−log[N(a1, ..., ai = a, ..., aL)]

=
e βhi(a′)+β ∑j Jij(a′,aj)−log[N(a′)]

∑
a∈Aik

e βhi(a)+β ∑j Jij(a,aj)−log[N(a)]

(2.15)

4. n′ is accepted unless it produces a stop codon. In either case, the
procedure is restarted from point 1.

Eq. (2.15) is quick to evaluate, thanks to the many simplifications
happening. In particular, the fields h and the couplings J between
unmutated sites, as well as the degeneracies N(n) of unmutated
codons appear in both the numerator and the denominator, so they
can be divided out from the expression, keeping only parameters
containing the mutated site.



2.5 intermediate time scales

We have developed a novel data-driven evolutionary dynamics for
protein sequences, operating on nucleotide sequences and accounting
for mutational effects at the level of amino acids. The dynamics takes
place on an epistatic sequence landscape derived from an MSA of ex-
tant natural sequences. The underlying model we employed to fit the
sequence landscape has a Potts form, and the parameters are derived
via Boltzmann learning to reproduce the 1 and 2-point statistics of the
natural MSA. However, any model capable of defining a probability
distribution over sequence space can be adapted to our approach. We
name our evolutionary model GENIE (Gene Evolution on Nucleotides
Including Epistasis). GENIE can be considered an improvement of
the SEEC (Sequence Evolution with Epistatic Contributions) frame-
work presented by De La Paz et al. [116] adapted to nucleotide space.
GENIE works by iteratively sampling new mutations from a given nu-
cleotide sequence. Mutations are of two different kinds: Gibbs moves
produce nucleotide substitutions, and Metropolis moves produce in-
dels, with parameter p controlling the relative frequency between the
two moves.

A significant breakthrough of GENIE is the modeling of nucleotide
mutations while respecting DB. When considering extended trajec-
tories, DB enables us to reach the statistics of natural sequences, a
critical attribute when looking to model protein evolution spanning
billions of years. However, we still face a challenge when attempting
to incorporate mutational biases into our dynamics. The issue lies in
the use of table 2.1 as a proposal matrix. Its non-symmetric structure
does not guarantee DB, contrary to the proposal matrix used in Eq.
(2.11). We plan to delve deeper into this issue in the future.

2.5.1 Equilibrium properties of long-term sampled sequences

GENIE is well suited to model the local statistics of genetic drift ex-
periments since it is a simple modification of our previous approach.
To confirm that it works on genetic drift experiments we re-run all
simulations from section 2.2 and, as expected, we found identical
results. More interestingly, GENIE is supposed to reproduce the statis-
tics of natural sequences after long enough sampling. In particular,
we want to verify that GENIE can reproduce the amino acid statis-
tics of beta-lactamase sequences. To do so, we started from the wt
gene of PSE-1 and we ran GENIE in parallel for 1000 sequences, for
6× 107 Monte Carlo steps, and p = 0.5. The results are shown in
Fig. 2.3. Fig. 2.3a shows that we recover the distribution of pairwise
distances typical of natural beta-lactamases, with a peak around 160
mutations, or 160/202 ∼ 80% of sequence divergence. The left side of
the distribution that is not reproduces is related to phylogeny, which



(a) Pairwise Hamming distance of natu-
ral and equilibrium sequences.

(b) Energy of natural and equilibrium se-
quences.

(c) Fraction of gaps per position of natural and equilibrium sequences. The excess of
gaps at the extremities of the alignment is due to the alignment procedure.

Figure 2.3 – Statistical properties of 1000 sequences sampled with GENIE
compared with natural sequences.

we cannot reproduce. Another important statistical test regards the
energy of generated sequences. The lower the energy, the better they
are according to the model. The energy of the sequences we generate
at end of the sampling is close to that of natural sequences (Fig. 2.3b),
although a bit higher. This is expected since the model is trained to
assign very low energy to the training set, i.e. the natural sequences.
We also confirm that we recover the gap statistics (Fig. 2.3c) of the
training alignment, validating our Metropolis sampling of indels.

A more stringent test of the sampling capacity of GENIE regards
the generative capabilities of the Potts model. We know that a good
equilibrium sample obtained from the model has to respect the 1- and
2-point statistics of natural sequences, as computed in Eq. (1.1) and Eq.
(1.2). Interestingly, we can track the quality of the statistics of our 1000
sequences over time, as they diverge from the PSE-1 sequence and
plot it in Fig. 2.4. We see that after 107 MC steps the 1- and 2- point
statistics are well recovered, meaning that, from the point of view
of this metric, artificially sampled and natural sequences are hard to
distinguish. At the end of the sampling, the correlation between fi and
cij computed from natural and sampled sequences reaches respectively
the value of 0.98 and 0.87.



Figure 2.4 – Correlation of fi and cij statistics between natural sequences
and a set of 1000 sequences sampled with GENIE over time.
The starting MSA is entirely composed of PSE-1 wt sequences.

2.5.2 Context-dependent and context-independent entropies

In Fig. 2.4 we have seen a glimpse of an interesting dynamics taking
place while sequences diverge from a given point in sequence space
and explore the surroundings. To quantify better this behavior we
introduce two quantities, the Context-Independent Entropy (CIE) and
the Context-Dependent Entropy (CDE). Those two measures will help
us examine how a residue’s variability is affected by its surrounding
sequence context, and how this changes over time. For a residue at
position i, we determine the CIE as:

CIEi = −
20

∑
ai=1

fi(ai) log2 fi(ai) (2.16)

Using the frequency of amino acids fi(ai) computed from the
columns of the natural alignment allows us to capture the global
variability of protein sites over many different sequence contexts. CIE
has a minimum of 0 in the case of complete conservation, i.e. no
amino acid variability in the alignment column, and a maximum of
log2(20) ∼ 4.3 in the case of a completely variable column. We can
also define a similar entropy, namely

St
i = −

20

∑
ai=1

f t
i (ai) log2 f t

i (ai) (2.17)

where f t
i (ai) is the amino acid frequency during the sampling with

GENIE, at Monte Carlo step t. Both those entropies characterize



the site variability of a collection of sequences. When t → ∞, or in
practical terms when the sampling goes on for long enough, we have
that S∞

i = CIEi. We can also define a more specific context-dependent
entropy, leveraging the DCA model. For every position i:

CDEi(a) = −
20

∑
ai=1

P(ai|a−i) log2 P(ai|a−i) (2.18)

where

P(ai|a−i) =
exp

(
hi(ai) + ∑j 6=i Jij(ai, aj)

)
∑20

b=1 exp
(

hi(b) + ∑j 6=i Jij(b, aj)
) (2.19)

The CDE allows the quantification of the variability, or mutability, of
a site in a specific context, thanks to the coupling Jij which couples
the amino acid ai with the rest of the sequence. CDE has shown
to be informative on the evolution and emergence of novel variants
in the SARS-CoV-2 RBD spike domain [117], as well as to predict
polymorphisms in E.Coli strains.

2.5.3 Emergence of time scales driven by epistasis

Epistasis, or the context dependence of mutations, emerges as muta-
tions accumulate. This phenomenon is pivotal in shaping the evolu-
tionary paths linking homologous proteins across various distances.
To better quantify this process, we can use the difference between
CDE and CIE that captures the impact of the sequence context on the
mutability of a specific site, compared to the global natural variability.
For example, a site can be globally variable, i.e. high CIE, but locally
constrained, i.e. low CDE. Using PSE-1 as a reference we characterized
each protein site based on its CIE and CDE variability, as illustrated
in Fig. 2.5. We colored in red, green, and blue respectively three
types of sites: variable, conserved, and epistatic sites. While the first
two categories are intuitive, we define epistatic sites as those which
are constrained in PSE-1 (low CDE), but very variable in the MSA of
natural homologs.

Tracking the sites belonging to these three categories during the
sampling of GENIE (see Fig. 2.6) reveals three types of emergent
behavior:

• Variable sites (high CIE and CDE, red) mutate rapidly due to the
absence of constraints imposed by the background.

• Conserved sites (low CIE and CDE, green) mutate slowly, reflect-
ing their conservation both in the overall alignment and in the
local context of PSE-1.

• Epistatic sites (high CIE but low CDE, blue) remain conserved
when the context does not change too much, i.e. during the first



Figure 2.5 – Site classification of beta-lactamase PSE-1 residues by using the
local variability (CDE) computed with the model and the global
variability (CIE) computed using the natural protein family
amino acid frequencies. Sites are colored according to three
classes: conserved (green), mutable (red), and epistatic (blue)
sites.

105 steps. However, they evolve rapidly when the background
deviates from PSE-1, achieving at the end a high variability, as
predicted by the CIE.

We recall that the final values St
i of the entropy of the sites along

the GENIE simulations correspond to the CIE, indeed it is high for
variable (red) and epistatic (blue) sites and low for conserved (green)
sites.

Overall, our simulations reveal that the local context of a site is
enough to predict its evolutionary dynamics over long time scales. In
particular, epistatic sites start to mutate after 105 MC steps, or 50%
sequence divergence, see Fig. 2.7 for reference. Ultimately, what we
observe in Fig. 2.6 is the emergence of a time-scale separation in the
mutability of amino acids during evolution:

• diversification happens very fast in a given context, mostly on
sites with high CDE which can tolerate mutations,

• the context itself, on the contrary, evolves much slower, needing
30− 50% of sequence divergence to start accepting mutations,
as exemplified by the entropy of the blue trajectories

In the future, we expect to define more quantitatively this sep-
aration over time scales and to compare it with experimental data
from DMS in different protein families. Note also that experimental
evolution never reaches the divergence needed to substantially alter
the background, and mutations in the TEM-1 [72] and PSE-1 [110]
experiments that we analyzed mostly happened in positions with
high CDE. This may also be a reason why it was so difficult to detect
contacts from experimentally evolved libraries.



Figure 2.6 – Site entropy over 1000 GENIE chains for three different site
categories, variable, epistatic, and conserved. Faded lines refer
to single sites whereas thick lines represent the mean over the
sites in each category.

Figure 2.7 – Relation between the number of Monte Carlo steps and the
average % sequence divergence from wildtype PSE-1 along
1000 evolutionary trajectories.



3 FA M I LY-W I D E M U TAT I O N A L
I N C O M PAT I B I L I E S

3.1 introduction

The analysis of protein fitness landscapes is complicated by the pres-
ence of epistasis. Due to epistatic interaction between amino acids,
identical mutations can cause very different effects on protein func-
tion when compared across different homologs. This phenomenon
becomes manifest when comparing identical mutations across ho-
mologous sequences belonging to different species. Dobzhansky-
Muller (DM) incompatibilities in protein evolution [118] refer to ge-
netic changes that are neutral within one species but can be harmful
in another species. These incompatibilities originate when different
lineages accumulate genetic changes that, while adaptive or neutral
within their respective lineages, become incompatible when brought
together, typically causing degradation of function. The sites where
DM incompatibilities take place are precisely the epistatic ones that
we have described in the previous chapter. Those sites can be very
conserved in the context of PSE-1, but very mutable in the context of
different backgrounds.

One of the first studies that investigated this phenomenon in pro-
tein fitness landscapes [118] collected a set of human pathogenic
missense mutations in 32 proteins to amino acid substitutions that
naturally happened during evolution in other species. They found
that around 10% of the mutations that are deleterious in humans, were
naturally occurring in nonhuman proteins, i.e. they were compen-
sated by interactions with other sites. Multiple studies since then, have
measured the incompatibility of mutations across different sequence
backgrounds on a much larger scale, using modern high-throughput
biotechnological techniques like Deep Mutational Scans (DMS) to
probe fitness landscapes. There are two important elements to con-
sider when comparing identical mutations across different sequence
backgrounds: the genetic distance between the backgrounds and the
number of mutations compared, i.e. the coverage of the possible
proximal mutations.

An interesting study from Lunzer et al. [55] tested all reversion mu-
tations in the IMDH gene of E. coli towards the very distant homolog
in P. aeruginosa. They found up to 30% of mutations with deleterious
effects, although they were naturally occurring in P. aeruginosa. Ge-
netic distance plays an important role in order to detect epistasis [119].
As we have seen in the previous chapter, epistasis reveals itself over
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time, following the accumulation of many small effects. Studies using
sequences that are too genetically close, although testing all possible
single mutations in two homologs, could miss the chance of detecting
epistasis [120], or finding very little effects [121]. The comprehensive
saturation mutagenesis of three beta-lactamase sequences with up to
2 amino acid differences [122] confirms the high degree of correlation
between mutational effects over short genetic distance, highlighting
however isolated cases of strong epistatic effects.

The recent work of Park et al. [123] presented for the first time
results including multiple complete DMS for homologs belonging
to the same protein family, although sequence divergence was never
higher than 40%. Other studies have managed to compare mutations
across much more diverged sequences [124, 125, 126, 127], however
never testing mutations across the full gene length. In the next section,
we present the first complete comparison of all single mutants across
two genes belonging to the B1 metallo-β-lactamase protein family, with
more than 60% sequence divergence between each other. In the article,
we show how combining these two DMS studies with the analysis
at a family level coming from DCA allows us to better understand
the epistatic network in B1 β-lactamases. DCA model is a good
approximation of protein fitness landscapes in the local neighborhood
of single sequences by predicting the effects of mutations [98, 86] over
multiple protein families, predicting the emergence of novel SARS-
CoV-2 variants [117] or capturing the variability of mutations within
an entire specie [128]. In our previous work, we have shown how
it was able to model the local landscape of two very distant genes,
TEM-1 and PSE-1 [109]. In the next section, we extend this work
by analyzing the predictive power and the limits of DCA to capture
epistasis across a protein family.

3.2 article
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Abstract

Throughout evolution, proteins undergo substantial sequence divergence while preserving a

consistent structure and function. Although most single mutations in a protein are deleterious,

evolution is able to explore sequence space via interconnected networks of epistatic interactions

that alleviate the harmful effect of mutations. To investigate this phenomenon, we studied the B1

class of beta-lactamase enzymes by combining the predictive power of a computational approach

known as Direct Coupling Analysis (DCA) with the experimental insights from two Deep Mutational

Scanning (DMS). DCA unveiled significant heterogeneity in mutational tolerance across 100

homologs belonging to the family, which was confirmed by the DMS of two clinically relevant

enzymes: VIM-2 and NDM-1. The experiments show that more than half of the alignable residues

from the two enzymes display significantly different mutability, indicating a widespread presence of

epistasis. Moreover, around 30% of the reversion mutations are reciprocally deleterious, with no

obvious compensatory mutations available among those tested. By comparing the DCA-predicted

mutability with the accessible surface area in the respective amino acid positions, we found a

predominance of epistatic residues among those with intermediate exposure. Analyzing the family

both with DCA and through DMS experiments highlights the collective character of epistasis. This

suggests a model of protein evolution where mutational effects change due to the slow buildup of

small interactions between residues. Overall, our study demonstrates that the combination of DCA

and DMS enables a thorough exploration and understanding of the intramolecular networks and

coevolutionary signatures in B1 beta-lactamases, offering a panoramic view of epistatic networks

across a protein family.



Introduction

Proteins are a fundamental component of life, and the comprehension of their

sequence-structure-function relationship is essential to the understanding and application of a

variety of fields, including biology, biochemistry, and protein engineering. Over the course of billions

of years of evolution, many proteins have emerged to perform a specific function. Subsequently,

these proteins further diversified their sequences, forming protein families through the

accumulation of mutations, i.e., homologous protein sequences spread among diverse organisms.

Consequently, homologs often share as little as <25% amino acid sequence identity1,2, suggesting

evolution has navigated a vast sequence space while maintaining the main protein function.

However, the sequence space is often riddled with ‘fitness valleys’3. Many recent comprehensive

mutant characterization studies, such as deep mutational scanning (DMS), showed that most

mutations (~35-70%) in a single protein are deleterious4–12. While variants with these deleterious

mutations would have been purged out from the evolutionary process by natural selection, many

mutations that are deleterious in a given protein can be observed in other orthologous protein

sequences, i.e., in the context of many other mutations13. These observations suggest that evolution

finds mutational paths that go around fitness valleys by exploring networks of intramolecular

interactions (i.e., epistatic networks) that can compensate and moderate the deleterious effects of

some mutations. In other words, the existence of complex intramolecular networks and coevolution

between residues can lead to differential mutational behavior in homologous proteins.

The evolution of natural proteins thus prompts a number of important and unanswered

questions. Why can mutations that destroy function in one sequence be fixed in the sequence of

homologs? How often are such heterogeneities in mutational effect encountered in a protein family?

Can these patterns be modeled and predicted? Knowledge of such epistatic networks within a

protein sequence is key to the understanding of the sequence-structure-function relationships,

especially in predicting protein sequences that encompass functional proteins. Thanks to advances

in both genomics (sequencing) and biochemical (DMS) approaches, we can obtain information on

the epistatic network from both: as the coevolutionary trend in sequences within an orthologous

family, or as the experimentally measured mutational behavior in each protein. Epistatic networks

can be observed as coevolution of amino acid residues within a protein family. Statistical models

trained on multiple sequence alignments are able to capture those patterns of coevolution and even



reproduce them by generating artificial sequences that respect the statistics of protein families14–20.

While such data-driven computational approaches have shown to be powerful enough to design

functional protein sequences that do not exist in nature21,22, it is still unclear to what extent and

accuracy such models can capture protein epistatic networks in terms of specific interactions.

Experimentally, the influence of epistatic networks can be detected as mutational incompatibilities,

i.e., mutations that can be tolerated in one genetic background but may be deleterious in another.

Such experimental insight provides an in-depth understanding of specific interactions within

proteins in terms of biochemical and biophysical mechanisms. However, the experimental study of

functional constraints at a family-wide level by comparing residue-level mutational epistasis across

homologous sequences remains scarce. This is because only a small number of protein families have

been studied13, including a few large-scale datasets acquired through DMS23–28. Furthermore, most

analyses are restricted to higher-level, broader trends between homologs with limited examinations

of detailed mechanistic bases for epistasis.

In this study, we combine these two complementary approaches to improve our

understanding of epistatic networks. We apply both approaches to the same system, the class B1

metallo-beta-lactamases (MBL), which is a family of highly diversified antibiotic degrading enzymes

with a long evolutionary history29. Using Direct Coupling Analysis (DCA)16, we analyze the

coevolutionary signatures of the entire B1 family, arriving at a global statistical description of

epistatic tendencies based on sequence data. At the same time, we perform DMS on two distantly

related members of the B1 family, NDM-1 and VIM-2 (~30% sequence identity), revealing

protein-specific mutational trends and incompatibilities as experimentally measured through

functional characterization. By employing both methods in parallel, we have the opportunity to

compare the results between them and to learn how they can strengthen and explain each other. We

find a general consensus between the two methods on the prevalence and strength of epistasis and

find interesting cases where complementary information provides insight beyond what can be

discerned from either method individually. There appear to be trends of mutational behavior in the

structure, but the exact intramolecular network appears much more complex upon further testing,

as predicted by the DCA model. Overall, the combination of DCA and DMS allows us to greatly

enhance our understanding of epistatic networks.



Results

Co-evolutionary model of the B1 family reveals sequence-specific mutational heterogeneities

Figure 1. Family-wide residue mutability by direct coupling analysis (DCA). (a) Schematic of computational and
experimental workflow. The B1 beta-lactamase enzyme family is isolated through sequence space exploration via a
sequence similarity network. The entire set of sequences is used to generate a co-evolutionary model via DCA. Two
highly diversified homologs within the family are selected for DMS to generate a large mutational dataset. (b) Each
square in the heat map represents the context-dependent entropy (CDE) calculated for a given position in each of the
100 aligned homologs. Blue cells represent positions, which are highly mutable in the given context, while red cells
signify context-dependent conservation. White cells represent alignment gaps. For each position, the percentiles of
the distribution of CDEs are presented as a box plot on top of the heat map: 0-100% as thin lines, 25-75% as bars,
and the median as a black dot. The bars are colored by the median value, with the same color scale as the heatmap.
The secondary structure of the homologs, as well as the active site residues, are depicted under the heat map. The
phylogenetic tree of the 100 homologs is shown on the left of the heat map. We observe that changes in CDE
typically follow the evolutionary tree.



Class B1 metallo-beta-lactamases are a highly diversified family of enzymes (as low as 20% identity

within the family) that degrade -lactam antibiotics1,30,31, a function for which there is likely a long

evolutionary history32,33. Given the high sequence divergence, this family is an excellent model for

epistatic networks, as different orthologs likely formed different sets of intramolecular interactions.

To create a comprehensive dataset of all B1 sequences, we collected ~5000 sequences that belong

to B1 MBLs, from the MBL domain superfamily (Interpro ID: IPR001279) along with metagenomic

data from the Joint Genomics Institute (JGI) (see methods). Then, we inferred a global statistical

model using DCA (see methods) on the resulting B1 MBL orthologs (~3500), which to this aim were

aligned in a multiple-sequence alignment (MSA) based on a seed multiple-structure alignment of 14

diverged homologs (see methods); residues outside the structurally conserved region were

excluded from the MSA and consequently from the computational analysis. The DCA model

explicitly describes the coevolutionary relationships between all pairs of residues in the B1 family

through direct couplings, and it models residue conservation via biases (or fields). Using these

parameters, the model assigns a probability P(sequence) to any sequence, with high probabilities

predicting viable sequences (functional MBLs), and low probabilities assigned to dysfunctional

ones. The model can thus be used to score the effect of mutations in any specific sequence

background. This is achieved by computing the difference in the model's statistical score, the

“energy” E, as ΔE = - log[P(mutant)/P(WT)], corresponding to the negative change in log-probability

between the mutant sequence and the wild-type (WT). The inclusion of coevolutionary couplings

into the DCA model makes this prediction directly dependent on all other WT residues in the

sequence context15. Thanks to the global nature of DCA, it is possible to predict the effect of all

possible single amino acid substitutions starting from any possible WT protein.

We calculated ΔE for all single mutants of 100 diverse homologs in the B1 family, as well as

for NDM-1 and VIM-2, to probe the heterogeneous mutational behavior across the family. The

homologs were chosen to minimize pairwise sequence identity. To gauge the effects of epistatic

networks at the level of protein positions, we calculated the Shannon Entropy of all mutant

probabilities relative to the wild type (proportional to exp(-ΔE)) at each position in each homolog,

which we will refer to as the context-dependent entropy (CDE)34,35. The CDE can be interpreted as

the (base-2 logarithm of the) effective number of tolerated mutations at a position in this specific

WT sequence, such that 0 means only 1 (20) residue is tolerated (the WT, no mutation), and 4.3

means all 20 (24.3) amino acids are equally tolerated, with all other residues being kept fixed to the



specific WT context. The CDEs at each aligned position in the conserved B1 family are shown for

100 homologs as a heat map in Fig. 1b. The figure reveals a number of interesting aspects about the

B1 family and its constituent homologs. We can see that there are regions that are highly

constrained in terms of mutations, but also others that are highly tolerant. Moreover, phylogenetic

proximity between sequences (represented by the phylogenetic tree) typically correlates with

similarity in mutation patterns, yet distinct subtrees present different patterns. Active site residues

are highly constrained across the entire family.

Computing the median and the spread of the CDEs at each position across the 100 homologs

highlights substantial heterogeneity in mutational tolerance. There is a considerable spread of CDE

values across homologs in most positions (bar plot in Fig. 1b), suggesting that positions that only

allow for a few mutations in one homolog may show substantial mutability in other homologs. We

quantified the spread in CDE at each position as the interquartile range (IQR), defined as the

distance between the 25-75 percentile of the data. We see a median IQR spread of 0.87 (20.87=1.83),

meaning that half of the positions have at least an almost 2-fold difference in the effective number of

tolerated amino acids between homologs. The spread can be as high as 2.65, or a 6.3 fold difference

in effective amino-acid number. Furthermore, the full range of CDEs across positions has a median

spread of 2.67 and a max spread of 3.85, meaning half of the positions in the protein have a 6.3-14.4

fold difference in CDE between the most and the least mutationally tolerant sequences. This strong

mutational heterogeneity of equivalent positions across homologs is a hallmark of epistasis and is

represented collectively via the DCA couplings in our sequence model.



Heterogeneity in mutational behavior is supported by DMS data of NDM-1 and VIM-2

Figure 2. Overview of DMS for NDM-1 and structural similarity to VIM-2. (a) Workflow for DMS of NDM-1. (b)
Correlation between replicates of the NDM-1 library selected at 256µg/mL AMP. The R2 and P-value of a linear
regression are shown at the top. (c) Comparisons of entropies calculated from all mutations’ DMS fitness scores at
each aligned position for the NDM-1 and VIM-2 experiments. The R2 and line of best fit for a linear regression are
shown. (d) Distribution of differences in entropy (DMS) or CDE (DCA) between NDM-1 and VIM-2 at the same
aligned position. The distribution of the difference in CDE between the same aligned position in 100 random pairs of
homologs CDEs is also plotted. (e) Comparison of entropies (DMS and CDE) for NDM-1 (top) and VIM-2 (bottom).
The R2 and line of best fit for a linear regression are shown. (f) Comparison of the entropy difference between NDM-1
and VIM-2 at each position to the difference in CDE. The data is colored by the spread in CDE IQR, with the color
scale (scaled so that the median of the distribution is the center) shown to the right. The R2and line of best fit for a
linear regression are shown.

To gain experimental observations for differential mutational effects between homologous enzymes,

we conducted DMS to obtain all single-mutational effects on two homologs, NDM-1 and VIM-2

(~30% sequence identity). A complete DMS dataset of all single amino acid variants of VIM-2 was

previously published6,36. To conduct a comparison, we performed DMS on NDM-1 in an identical

manner to VIM-2 (Fig. 2a). Briefly, all single amino acid variants were generated for NDM-1 and



placed under selection under three different antibiotics: ampicillin, cefotaxime, and meropenem.

The plasmid DNA was isolated after selection and sent for deep sequencing. The fitness conferred

by each variant relative to wtNDM-1 was then characterized as the fitness score in Eq. (1):

(1)𝑓
𝑣𝑎𝑟

=  log
2
( 𝑓𝑟𝑒𝑞 𝑣𝑎𝑟 𝑠𝑒𝑙

𝑓𝑟𝑒𝑞 𝑣𝑎𝑟 𝑛𝑜𝑠𝑒𝑙 ) − log
2
( 𝑓𝑟𝑒𝑞 𝑤𝑡 𝑠𝑒𝑙

𝑓𝑟𝑒𝑞 𝑤𝑡 𝑛𝑜𝑠𝑒𝑙 )

The experiments were conducted in duplicate on separate days, and replicates typically show good

correlation (R2 of 0.77-0.95 across conditions) (Fig. 2b, Supp. Fig. 1). As was the case for VIM-2, the

NDM-1 data shows that fitness scores of -4 or lower are below the fitness of nonsense variants. As

such, we also limit the fitness scores to a minimum of -4 for analyses, and scores below -4 are set to

be -4 instead.

In a similar fashion as in the DCA analysis, we define the DMS entropy, a measure of the

mutational tolerance of each position in NDM-1 and VIM-2, as the Shannon entropy of the

mutational probability of each amino acid. For the probability, we use the normalized enrichment

ratio of the variant frequencies with and without selection; this is also proportional to𝑓𝑟𝑒𝑞 𝑣𝑎𝑟 𝑠𝑒𝑙
𝑓𝑟𝑒𝑞 𝑣𝑎𝑟 𝑛𝑜𝑠𝑒𝑙

the exponential of the DMS fitness (with basis 2). We find mutational behaviors in the same protein

positions to be quite varied between the two homologs, where differences in certain positions can

span nearly the full range of possible entropy values, i.e., the same position can accept only the WT

amino acid in one homolog (entropy 0) and almost all amino acids in the other homolog (entropy

>4) (Fig. 2c). We compare the magnitude of entropy differences between VIM-2 and NDM-1 in the

DMS data to differences in CDE computed from DCA, and we find strikingly similar distributions

(Fig. 2d). The median difference between two homologs across all positions is 0.45 in DMS (0.39 in

DCA), meaning that half of the positions have more than a 1.37 fold difference in entropies, ranging

up to a maximum of 4.22 (18.7 fold). As a baseline for the expected behavior between any pair of

homologs, we also computed the CDE difference between 100 random pairs of homologs. Wound a

similar distribution (Fig. 2d), suggesting a common statistical trend of mutational behavior

between homologs where certain positions exhibit similar tolerance (such as conserved sites) while

others can greatly vary in mutation tolerance.

We further probe whether the DMS and DCA data are in agreement specifically on NDM-1

and VIM-2, by comparing DMS entropies and DCA CDEs of each position within either NDM-1 or

VIM-2 (Fig. 2e). There is significant correlation ( ~0.55) between the DMS and DCA values for𝑅2

each of NDM-1 and VIM-2, and this correlation is slightly higher than between the DMS entropies of



NDM-1 vs. VIM-2. This observation shows that DCA captures sequence-specific trends to a good

degree. Despite the significant correlation, DCA predicts fewer variable sites (entropy > 3.5)

compared to DMS. A possible explanation of this difference may be attributed to the fact that DMS

experiments are limited to specific experimental conditions, i.e. a single antibiotic, while DCA likely

reflects broader evolutionary constraints. Furthermore, the CDE differences between VIM-2 and

NDM-1 computed from DCA can also capture the specific entropy differences in DMS (Fig. 2f). The

combined analysis of mutational behaviors from DMS and DCA data also reveals some interesting

observations. When the potential spread across homologs (IQR of 100 homolog CDE distribution) is

overlaid on the mutational differences between NDM-1 and VIM-2 (Fig. 2f), we can see that

positions with large differences between NDM-1 and VIM-2 also show high spread in all homologs.

Furthermore, positions with low spread in all homologs tend to show lower differences in both DMS

and DCA. Finally, positions that have lower differences between NDM-1 and VIM-2 in both methods

can also have high spread across all homologs, further underscoring the fact that mutational

behaviors can be quite varied for different homologs. Hence, the combination of methods can reveal

and reinforce patterns that would not be obvious from just a single approach.



Structural basis of mutational tolerance and incompatibilities

Figure 3. Structural basis of tolerance classifications. (a) CDE data overlaid on the crystal structure of VIM-2
(5yd7), with the thickness of the backbone representing the range in CDE of the 100 homologs, and colored by the
median CDE of all homologs. (b) DMS entropy data overlaid on the crystal structure of VIM-2, with the thickness of
the backbone representing the absolute entropy difference between NDM-1 and VIM-2, and colored by the average
entropy. (c) CDE of VIM-2 and NDM-1 overlaid on the crystal structure of VIM-2, with the thickness of the backbone
representing the absolute CDE difference, and colored by the average CDE. (d) Scatter plot of the CDE median
values of 100 homologs versus the average ASA of VIM-2 and NDM-1, with positions colored by the CDE range. (e)
Scatter plot of the average DMS entropy of NDM-1 and VIM-2 DCA CDE versus the average ASA, with the positions
colored by the difference in the DMS entropy between NDM-1 and VIM-2. (f) Same as panel (e) but for the DCA
predictions: scatter plot of the average CDE of VIM-2 and NDM-1 versus their average ASA, colored by the CDE
differences.

In this section, we investigate in detail the relationship between mutational heterogeneity and

structure, for the two selected wildtypes and at the family level. We proceed by analyzing the

experimental datasets and the model predictions in terms of the protein structure of the B1 family,

using the crystal structures of NDM-1 (PDB ID:3spu) and VIM-2 (PDB ID:5yd7) as representatives.



For VIM-2 and NDM-1, we quantify the discrepancy in mutability using the absolute difference in

entropy, computed via the DMS experiments and the DCA model, while for the 100 homologs, the

IQR of CDEs serves as a DCA-based indicator of variability. It should be noted that points exhibiting

either very high or very low average mutability obviously have inherently restricted variability. This

is evidenced by the observation that data points in Fig.3 with an entropy lower than 1 or greater

than 3 always have low spread (mainly blue).

We first visualize the DCA-derived CDEs of the 100 homologs superimposed on the structure

in terms of the spread (IQR, the thickness of the backbone) and mutational tolerance (median of

CDE, the color scale) (Fig. 3a). To compare this global predicted trend with the specific behavior of

the two wild types we produce equivalent figures using the DMS entropies (Fig. 3b) and CDEs (Fig.

3c) for VIM-2 and NDM-1 only. We see similar tendencies in the three figures. Regions that are

buried in the protein core, including the active-site metal-binding residues, tend to have both low

mutational tolerance and spread, likely as a result of the regions being critical to folding or activity

and hence mutationally constrained. The most exposed positions generally have high entropy and

very low spread according both to the DMS and the DCA, even if we observe that there is a higher

spread across the homologs according to DCA, which is a result of both NDM-1 and VIM-2 being

completely mutationally tolerant at these positions. Finally, we also observe that some of the more

buried residues have a higher entropy as computed from the DMS of NDM-1 and VIM-2 than in the

DCA model. This observation is consistent with the fact that DCA typically tends to underestimate

the number of neutral, or almost neutral, mutations. It can also possibly be due to specific

differences in residues and spatial arrangements between the two homologs.

To better quantify the observations about the role of the structure we use the average

accessible surface area37 (ASA) of NDM-1 and VIM-2. The first pattern that emerges is a significant

correlation between average ASA and the site-specific mutability, evident in both experimental data

and model predictions (Fig. 3d-f). In particular, there is a pronounced correlation between average

ASA and DMS-derived entropies (Spearman correlation = 0.82) (Fig. 3e). This observation has been

reported before4,8,38,39, and is possibly due to the higher prevalence of structural interactions among

internally situated protein residues, thereby amplifying the potential for mutations with adverse

effects and vice versa. The correlation is still large (Spearman 0.66-0.71) when we compare ASA to

the DCA-derived mutability, both at the family level (Fig. 3d) and for the two specific homologs

VIM-2 and NDM-1 (Fig. 3f). In this case, the capacity of DCA to identify these signals is mainly

attributable to the single-column conservation patterns embedded within the MSA utilized to train

the model.



Furthermore, we can use the ASA as a structural variable to distinguish three classes of

residues: very buried (ASA<0.1), partially exposed (0.1<ASA<0.7), and very exposed (ASA>0.7).

Let's analyze in detail how mutational heterogeneity is influenced by the three levels of residue

burial. First of all, very buried residues tend to be more mutationally constrained, i.e. positions with

very low ASA (ASA < 0.1) have low entropy and low spread (blue points in the bottom left of Fig.

3d-f). Second, the very exposed positions (ASA >0.7) typically display high mutational entropy and

low spread, i.e. they are very mutable in all homologs. These first two observations are consistent

with a classical picture of conservation due to structural constraints. Most importantly, we find an

intermediate region of partially exposed residues (0.1<ASA<0.7) showing some residues with very

high spread in mutability as expressed by CDE and DMS entropy (white and red points in Fig. 3d-f).

This is an original finding of this work, which highlights the largest variability in mutational

behaviors of moderately buried sites, possibly due to having more freedom to mutate than the fully

buried positions while still forming interactions with other residues.

On top of this distinction, we observe that in the case of buried residues, some positions do

exhibit a fairly large mutational variability between the two wildtypes VIM-2 and NDM-1, as

highlighted by the presence of light blue-colored points in panels d-e of Fig. 3. Interestingly, this

contrasts with the almost total absence of mutational heterogeneity observed between very

exposed residues of VIM-2 and NDM-1 (almost all points are dark blue), especially in the DMS data.

A possible cause of this difference is the numerous intramolecular interactions occurring

around buried residues, suggesting that a rich intramolecular network not only reduces the

mutability of residues but also leads to homolog-specific differences of such constraints. However, it

is the intermediately exposed region that exhibits the largest variability in behaviors for all datasets.

This ASA range corresponds to positions that have more freedom to mutate than the fully buried

positions while still being capable of forming interactions with other residues. The possibility of a

mutation is therefore strongly dependent on the sequence context and is, therefore,

homolog-specific. The large spread in the mutational patterns of the intermediate region (manifest

from the red and light-red color of the points in the central regions of Fig. 3d-f is common to both

the two and the one-hundred homolog analyses, confirming the dependence between epistatic

networks and the structure.



Epistasis from individual variants

Fig. 4. Residue level epistasis between NDM-1 and VIM-2. (a) Flowchart of the epistasis classification
method. (b) Correlation of DMS data between NDM-1 and VIM-2. The regions between dashed lines in
each axis represent the range of neutral fitness effects for each homolog (1.96 x SD of synonymous
variants). The diagonal line shares the same neutral range as the y-axis. (c) Distribution of fitness effect
differences between NDM-1 and VIM-2. The region between vertical dashed lines represents the range of
neutral fitness, equal to 1.96xSD of synonymous variants for NDM. (d) Positions in which mutations can
be compared directly in VIM-2 and NDM-1 (‘comparable’): fraction of epistatic mutations overlaid on the
VIM-2 structure, and colored by the color scale to the lower left. The thickness of the structure
corresponds to the average ASA of the NDM-1 and VIM-2 crystal structures. Regions outside the
classification are made transparent. (e) Plot of the IQR in CDE of 100 homologs and the ASA, with each
position colored by the fraction of mutations that are epistatic. Only positions highlighted in panel (d) are
included. (f) Scatter plot of fitness effects for mutations of VIM-2 amino acids towards NDM-1 amino acids
(x-axis) and NDM-1 amino acids towards VIM-2 amino acids (y-axis) for equivalent positions. The vertical
dashed line indicates the left side of the region of neutral effects for VIM-2 based on the synonymous



variant distribution, and the horizontal dashed line shows the right side of the region of neutral effects for
NDM-1. Quadrants with different behavioral classes are colored as in Fig 4a. (g) Positions that are
diverged between NDM-1 and VIM-2 and have undergone epistasis analysis of WT reversion mutations.
The structure thickness corresponds to the average ASA as in panel (d) and regions outside the
classification are transparent. (h) Scatter plot of ΔE for mutations of VIM-2 amino acids towards NDM-1
amino acids (x-axis) and NDM-1 amino acids towards VIM-2 amino acids (y-axis) for equivalent positions.
Points are colored according to their experimental classification as in Fig 4c. The dashed line represents
the expected behavior without epistasis. (i) Bar plot showing the relative fraction of points in each
epistatic class at various distances from the diagonal of Fig. 4i. The total number of points in each
distance bin is written over the bar.

We now turn to the study of intramolecular interactions and use both experimental and model

information to characterize the epistatic networks and reveal the interdependencies between

residues. For this purpose, we compare the effects of individual variants in the mutational scans of

VIM-2 and NDM-1 as fitness differences (𝛿f = fNDM-1 - fVIM-2 ). A large number of variants can be

compared directly for positions in which VIM-2 and NDM-1 have the same WT amino acid, which we

refer to as 'shared' positions. However, when the WT amino acids are not identical, that is at

‘differing’ positions, a direct comparison is not always possible. Therefore, we devise a systematic

classification scheme to analyze mutations in ‘shared’ and ‘differing’ positions between NDM-1 and

VIM-2 accordingly (Fig. 4a).

At ‘differing’ positions, the effect of the starting point of each mutation may impede a

straightforward comparison and characterization of epistasis. To accommodate this, for each of

these positions, we first examine the effect of swapping WT residues between NDM-1 and VIM-2 in

both backgrounds. If the swap is neutral in both directions, we define the site as ‘compatible’ (44

positions) and proceed to the comparison of all the missense variants as if the starting points at that

position were ‘shared’ (Fig. 4a). If the swap is incompatible, that is if one of the mutations is

deleterious in either of the two backgrounds (88 positions) we only compare the reversion

mutations and consider the position as ‘entrenched’ (Fig. 4f, supp. Fig. 2). We further classify the

entrenched positions as ‘1-wt entrenched’ if the swap is incompatible in one background (44

positions) and ‘2-wt entrenched’ if the mutation is incompatible in both directions (40 positions).

Because 4 positions lack reversion mutants in our DMS data, we exclude them from the analysis and

label them as ‘not observed’. The great number of entrenched positions points to a pervasive

presence of epistasis: for each individual WT only ~50% of WT-swapping mutations are neutral,

while the remaining mutations lead to a significant loss in fitness, even though they are occurring

naturally in another homolog. Thus, a complex set of compensating epistatic effects must be

considered to account for the collective presence of those mutations.



We then analyze ‘shared’ positions, that is positions with the same WT amino acid. Together

with the ‘compatible’ positions described earlier, they add up to a total of 125 residues which we

collectively call ‘comparable’. The analysis of the DMS data for these positions allows us to compare

equivalent mutations across the NDM-1 and VIM-2 backgrounds and, therefore, directly quantify

context dependence. In this case, we can compare the fitness of all mutations A->B, where A is the

common WT amino acid and B represents one of the 19 possible mutations (18 for ‘compatible’

residues). Mutational effects are strikingly different between homologs, with an overall Pearson

correlation R2 of 0.51 (Fig. 4b). For each mutation, we consider it epistatic if the fitness difference 𝛿f

is greater than the range of neutral effects (standard deviation [SD] of the synonymous variants of

NDM-1). Then, a large proportion of variants (~55%) shows a statistically significant difference in

mutational effects between homologs; differences are not strongly biased in sign or effect size

toward a single homolog (Fig. 4c). To evaluate the degree of epistasis, for each position we compute

the fraction of epistatic mutations. We observe a widespread presence of epistasis (Fig. 4d) across

the entire structure. Quantified as a distribution, we find the median fraction of epistatic mutations

at each position is 0.21, meaning that half of the positions have significant epistasis in at least ~4

mutations (0.21 x 19 missense aa). The fraction of epistasis at each position can be used to compare

site-specific epistasis of VIM-2 and NDM-1 with the spread in mutational tolerance across all 100

homologs and ASA (Fig. 4e). Strongly epistatic positions (dark red) are enriched in regions with a

higher spread in CDE across homologs, and in particular in positions with intermediate ranges of

ASA, as previously noticed (Fig. 2f and Fig. 3d-f). In fact, the fraction of epistasis is closely linked to

the delta DMS entropy (supp Fig. 3). The subset of positions classified as entrenched is especially

suited to study the influence of epistatic constraints in evolution. They cannot be easily linked to

site-specific features or residue burial, as they are scattered across the whole protein structure (Fig.

4g). From a DCA point of view, the deleterious effect of the mutations is caused by the sum of many

distributed negative interactions with the surrounding amino acids (supp. Fig. 4). This picture

points to a model of protein evolution where the effect of mutations changes gradually due to the

incremental accumulation of small-magnitude interactions between residues40.

We can exploit a DCA-based analysis at the level of individual mutations to explore the role

and meaning of entrenched positions in VIM-2 and NDM-1. We produce a scatterplot analogous to

that of Fig. 4f, but using ΔE instead of fitness (Fig. 4h). Despite having a stretch along the diagonal,

mutations mainly concentrate around the neutral center, or populate the lower half-plane defined

by the diagonal. As expected, we see almost no points towards the upper half-plane, where the swap

of both WTs would result in higher fitness. Ideally, in the absence of epistasis, the effect of the



mutations A->B and B->A in different backgrounds should have opposite signs, exhibiting a perfect

anticorrelation of the reversion effects, indicated by the diagonal in Fig. 4h. Epistasis, however,

causes a deviation from this simple picture. We can quantify the magnitude of epistasis between

reverse mutations in different backgrounds as the deviation from the diagonal: the further away the

points are from the diagonal, the bigger the difference of the mutational effect in the two sequence

contexts. We can verify this idea by using the distance from the diagonal as an “entrenchment

metric". We compute the fraction of mutations from each entrenchment class at different distances

from the diagonal (Fig. 4i). We see that regions far from the diagonal are enriched by 2-wt

entrenched mutations, those near the diagonal are mostly compatible, while intermediate regions

have mutations with mixed classifications.

The biggest qualitative difference between the mutation reversion plots in Fig. 4f and Fig.

4h is that DCA predicts many WT-swapping mutations to be beneficial, in clear contrast with the

DMS data. Since the experimental setting is not well suited to measure gain of function mutations,

experimental points cannot populate the pink quadrants in Fig. 4f outside the regions of neutral

effects. As a consequence, a potential confusion between epistatic and non-epistatic mutations

arises, as illustrated in supp. Fig. 5. While 2-wt entrenched mutations are guaranteed by the

experiment to be epistatic, this is not true for 1-wt entrenched mutations. In fact, if one of the

mutations is negative, and the reversion is neutral, in principle we cannot tell whether the mutation

was truly neutral, or if it was a a beneficial mutation that the experimental assay was incapable of

measuring. In the absence of direct experimental data, there are however a few reasons that suggest

that most of those mutations are truly neutral in one background and deleterious in the other.

First, the interpretation is supported by the distribution of effects observed in our previous

EC50 analysis of VIM-2 variants (supp. Fig. 6). The rarity of gain-of-function mutations

(constituting only 1-2% of all occurrences) makes it improbable that there would be sufficient data

points to create the anti-correlation expected in the absence of epistasis. Moreover, DCA supports

this interpretation as well: as we have shown in Fig. 4i many 1-wt entrenched positions are

statistically different from compatible ones, to the extent that some reach far away from the

diagonal, just like 2-wt entrenched mutations.

We argue that, once again, the model and the experiment complement each other: the model

suggests that epistatic interactions identified in the experiment are sparse and pervasive and

supports the interpretation of 1-wt entrenched mutations as being mainly neutral in one of the two

directions. Moreover, DCA proves to be quite accurate in predicting epistasis: all of the most distant

points from the diagonal are either 1- or 2-wt entrenched according to the experiments.



Experimentally probing specific epistatic interactions

Fig. 5. Testing interactions of entrenched positions in NDM-1. (a) Example of potentially interacting entrenched
WT positions in the crystal structures of NDM-1 (top) and VIM-2 (bottom). (b) Experimental scheme for testing single
or combined mutational effects in the NDM-1 background. (c) Entrenched WT positions chosen for testing epistatic
interactions. Positions with the same color are mutated together to test for compensation of entrenchment; A204L
overlaps 2 sets and is also tested with G192Y (red). (d) Plot of IQR in CDE across 100 homologs and the average
ASA of NDM-1 and VIM-2 structures, with the tested positions highlighted. Tested combinations are shown as lines.
(e) Scatterplot of DCA energy change of all tested double (1 triple) mutants, with the expected additive single mutant
effects in the x-axis, and the observed double mutant effects in the y-axis. (f) Scatterplot of all tested double (1 triple)
mutants, with the expected additive single mutant effects in the x-axis, and the observed double mutant effects in the
y-axis. Effects are calculated as fold change relative to wtNDM-1.

A subset of our data also gives us the opportunity to dissect specific epistatic interactions in the

homologs. Positions that have entrenched WT provide a potential signal for residues that are

functionally important and may participate in specific interactions. We sought to find surrounding

interactions within the proteins by identifying pairs of positions that are in close proximity, and

where the pair of positions have entrenched WT residues (supp. Fig. 7). One example of shape



complementarity can be found between NDM-1 positions 125 and 249 (VIM-2 positions 119 and

239) directly underneath the active site Zn2+ ions, where both are entrenched positions within

contact distance to each other (Fig. 5a). In VIM-2, the Arg at position 125 is paired with Gly at

position 249. In contrast, NDM bears a somewhat smaller, but still positively charged Lys at position

125, which is now paired with a larger Ser at position 249. To test if these positions possess

significant interactions, we generated the single and double mutants of each position pair in the

NDM-1 background by mutating to the VIM-2 WT at those positions, then measuring their

phenotype (EC50 against AMP) (Fig. 5b). As the effect of VIM-2’s WT is deleterious in NDM-1 as

single mutants, we expect that mutating all interacting positions may lead to compensation,

generating a less negative effect. We also extend this experiment to pairings in the L3 active site

loop (NDM-1 positions 67+68), L10 active site loop (218+266, 211+229), and some buried

positions beneath the L10 loop (197+204, and a triplet of 204+246+259) (Fig. 5c); the triplet was

tested as all pairs of doubles and the full triplet. Combined, our selection of positions covers a

variety of positions, including those with different biochemical properties (size, polarity, charge),

different solvent accessibilities, and different spread in mutational behaviors across the whole

family (Fig. 5c, d).

The effects of the single mutants validate the deleterious nature of the observed fitness scores,

and we observe a sigmoidal relationship between a mutant’s EC50 and the fitness score, which is

consistent with previous observations6. This validates the entrenchment observed in DMS, as all

selected mutations that are WT residues in VIM-2 are deleterious in the NDM-1 background. It is

also notable that our selected mutations evenly span a wide range of deleterious effects. When we

tested the mutants in combination, however, we did not observe significant compensation in any of

the mutant combinations (Fig. 5f). In fact, the log-additive effects of the single mutants (null model

for no epistasis) show a distinctly linear correlation with the observed double mutant effects, with

an R2 of 0.85. It appears that entrenched positions cannot be easily swapped simply by mutating

other nearby entrenched residues. This scenario is confirmed by DCA where, as previously

discussed, the epistatic effects can only arise as a cumulation of small contributions including a

multitude of epistatically coupled positions. The double mutation effects are therefore basically

additive in DCA (Fig 5e) as in the experiment (Fig 5f). It is also not the case that the positions are

globally independent in their effect, as these same mutations are fixated in VIM-2 and the

deleterious effects have been compensated for during evolution. Thus, these experiments suggest

that the intramolecular network of residue interactions is much more complex, and even

entrenched WT residues are not sufficient to dictate the epistatic networks.



Discussion

By combining the computational approach of DCA and the experimental approach of DMS, we have

gained a better picture of the epistatic and mutability tendencies between the homologs within a

protein family. In the B1 family, we find a prevalence of heterogeneity in mutational effects both at

the level of the mutational tolerance at each position, as well as epistasis of the same mutation

across different backgrounds. At a global level across all homologs, over half of the positions can

exhibit a > 6-fold difference in mutational tolerance depending on the sequence background. When

examined specifically in the NDM-1 and VIM-2 contexts, half of the positions with conserved WT

residues have >4 mutants that are epistatic. In particular, the complementarity of the two

approaches has enabled better understanding than either approach alone. The global level view

provided by DCA for 100 homologs reveals the full spread in mutational behaviors, which would

have been obscured for positions that behave similarly for the 2 specific homologs tested. In turn,

while both approaches generally agree on the mutational behaviors of each position, the

experimental results can highlight peculiarities that the statistical approach may not identify from

just the extant sequence data.

To expand upon previous DMS studies involving multiple homologs, which are generally

focused on higher-level statistical analyses23–26,28,40,41, we also performed a deeper examination of

the mechanisms behind the observed incompatibilities. The ASA of a protein position shows trends

with various facets of epistasis. The mutability spread across homologs is lower at low and high

ASA, while the epistatic behavior between two specific sequences seems most prevalent at

intermediate ASA. These observations are likely underpinned by differential intramolecular

networks in different homologs, as a result of gradually co-evolved epistatic networks over the

course of evolution. However, directly replacing just two or three residues is not enough to

compensate for evolutionarily entrenched residues, suggesting that a much more complex network

of interactions is at play42, as predicted by the DCA model.

We suspect that many of the observed behaviors are not limited to NDM-1 and VIM-2, or the

B1 family. The trends with regard to structure in both DCA and DMS, which are typical of those

observed in other systems43–45, suggest that the behaviors we observe can be explained through

general mechanisms such as secondary structure formation and structural packing. However, more

evidence from other systems would be required to distinguish the global trends from

system-specific trends. Overall, we provide a global view of epistatic networks at the protein family

level that complements more detailed examinations of epistasis in specific residues26,46.



Methods

Sequence collection for the B1 MBL family

In an effort to comprehensively isolate all B1 MBLs, we used a broad sweep approach through a

sequence similarity network (SSN) using data from genomic (UniProt) and metagenomic (JGI)

databases. Initially, an SSN was constructed using the EFI-EST tool using the InterPro ID IPR001279

(MBL domain superfamily) as the input. The network was analyzed at different alignment score

cut-offs to find a cut-off where all clinically isolated B1 enzymes fell within the same isolated cluster

(~1,800 sequences at EFI alignment score cut-off of 25). The sequences that were shorter than

220aa were removed, and the remainder (~1,300) were clustered by cd-hit to 60% identity to

reduce redundancy (187 sequences final) and then used to generate an HMM, i.e., sequence profile,

of the B1 family. The HMM was used to search for B1 sequences in the JGI database resulting in

~2.5M sequences from JGI, with 1,859,503 non-redundant sequences determined by cd-hit

clustering at 100%.

To construct the final SSN, all sequences of the MBL domain superfamily were downloaded

from UniProt using the InterPro IPR001279 definition (434,623 sequences, accessed 2019). The

UniProt and JGI data were combined, sequences with ambiguities were removed, and the length was

restricted to between 100-1500aa. Cd-hit was used to successively cluster the sequences to 100%,

90%, 70%, and finally, 50% identity to reduce redundancy, resulting in 86,947 representative

sequences for the entire MBL superfamily. A SSN was generated by performing ‘all by all’ BLASTP

with an e-value cutoff of 1e-5 and 1000 maximum hits per sequence, giving a raw network of

~90Mil pairwise bitscore values (edges) between all sequences (nodes). The network was

processed using an in-house SSN analysis pipeline (MetaSSN) to identify the lowest bitscore cutoff

at which all clinically isolated B1 sequences break off into an isolated cluster (10,252 sequences).

Finally, to identify sequences that are most likely to be active B1 sequences, the dataset was filtered

by length to between 200-350aa (6,828) and used to build a multiple sequence alignment (MSA)

using Clustal Omega on default settings. The MSA was manually curated to exclude any misaligned

sequences, resulting in 6308 curated sequences. Finally, to ensure the sequences were likely to have

B1-like function, only sequences aligned with the conserved B1 active-site metal binding

residues(H116/H118/H196 and D120/C221/H263, BBL numbering) were kept, resulting in a final

dataset of 5035 B1 family sequences, with a roughly 50/50 split between sequences from UniProt

and JGI.



Direct coupling analysis of the B1 family

To generate an alignment of conserved structure, crystal structures of 14 orthologs were aligned

using mTM-align (https://yanglab.nankai.edu.cn/mTM-align/)47. The orthologs (PDB IDs) are:

NDM-1 (3spu), VIM-2 (5yd7), DIM-1 (4wd6), ECV-1 (6t5k), FIM-1 (6v3q), GIM-1 (2ynt),

IMP-1(4uam), IND-7 (3l6n), MYO-1 (6t5l), TMB-1 (5mmd), VMB-1 (6jv4), bc-II (1bc2), blaB (1m2x)

and cfiA (1znb). An HMM sequence profile was trained on this curated dataset by using HMMER via

the hmmbuild command. We used a -symfrac value of 0.3 to control the maximum number of gaps in

each alignment column. Then, the 5035 B1 sequences were then aligned to this profile via the

hmmsearch command to produce the MSA for training the DCA model. After converting the

alignment to FASTA format, all sequences exhibiting more than 10% gaps were removed from the

alignment. Additionally, flank columns exhibiting more than 75% gaps were eliminated. The

resulting alignment contained 222 sites. A final refinement was achieved after removing all

sequences that exhibited more than 80% sequence identity to NDM-1 or VIM-2, thereby ensuring

the alignment was not biased toward the sequences used for further analysis. The resulting MSA

had 3655 sequences. We then inferred on this alignment a DCA model by using the standard

settings of adabmDCA48.

Library generation and deep mutational scanning of NDM-1

The procedure for library generation and DMS on NDM-1 was conducted in an identical manner to

VIM-2. The wtNDM-1 sequence is encoded on an in-house pIDR5.1 plasmid, expressed under a

constitutive AmpR promoter. To generate all single amino acid mutants, we used a PCR-based

method (restriction-free cloning) to introduce a degenerate ‘NNN’ sequence at each codon in the

coding sequence in separate reactions. After every single position was mutated, the library was

combined into 7 groups of 39 consecutive positions each, forming 117nt long mutated regions that

were fully sequenced by paired-end Illumina NextSeq reads.

The NDM libraries are then transformed into Escherichia coli (E. cloni 10G, Lucigen) and

stored as glycerol stocks, with the number of colony-forming units after transformation to be >=

100,000 to ensure complete coverage of each group. To perform selection experiments, we inoculate

the glycerol stocks into fresh LB (Fisher) and grow the cultures shaking overnight at 30°C for 16

hours. The cultures are diluted into fresh LB to an inoculum of 1.5x106 cells/mL (targeting a 1:1000

dilution of a culture with OD600 of 1.5) and grown shaking at 37°C for 2 hours. Selection pressure is

introduced by mixing 960uL of cell culture with 40uL of a 25x stock of each antibiotic suspended in



LB, for a final culture volume of 1mL. We tested selection at 32, 128, and 256ug/mL AMP, 2, 16,

32ug/mL CTX, and 0.063, 0.25 and 0.5ug/mL MEM. We also grew a sample of the library without

selection. The culture is grown under selection while shaking at 37°C for 6 hours, then removed

from selection via centrifugation and resuspension in 1mL of fresh LB, repeated 3 times. The

post-selection culture is grown, shaking overnight at 30°C for 16hrs and the plasmid DNA is purified

using a QiaPrep 96-column DNA purification kit (Qiagen). This procedure was conducted twice on

different days to produce two separate replicates.

To deep sequence the selected library, we used primers targeting unmutated regions that directly

flank the mutated region of each of the 7 library groups to amplify the DNA and attach Nextera

adaptors to the amplicons. The amplicons undergo a second PCR to attach the Illumina sequencing

indices and flowcell binding sites. All tested samples (all groups, conditions, replicates) were

sequenced in the same Illumina NextSeq 550 run with fully overlapping paired-end reads. We also

included control samples of amplicons extracted from just wtNDM-1 using the primers for each

group in the NextSeq run. After deep sequencing, the forward and reverse reads are merged

together using our previously published pipeline

(https://github.com/johnchen93/DMS-FastQ-processing), and we discard reads with greater than

20 mismatches between forward and reverse reads or with a posterior Q score of less than 10. We

use the wtNDM-1 samples as an estimate for error rates arising from the deep sequencing process,

and we filter the non-selected libraries to remove variants with frequencies less than 2x of the

expected frequency from sequencing noise alone, or variants with less than 5 reads. We then

calculate the fitness scores for each variant in all conditions according to eq (1). All variants that

pass filtering in the non-selected condition are considered to truly exist in the library, and if the

same variants are not observed in conditions undergoing selection they are assumed to have been

depleted by selection and are given a dummy count of 1 to simulate the lowest possible frequency.

Generation and dose-response assay of NDM single and combined mutants

The selected positions with entrenched WT behaviors were mutated in the NDM-1 background from

the NDM-1 wt residue to the VIM-2 wt residue using Golden Gate cloning as single mutants (NDM-1

positions M67F, P68D, K125R, G197Y, A204L, K211Y, L218A, Y229W, I246V, I259L, A266V). Then,

combinations of positions were generated by a second (or third for the triplet) round of mutations.

Dose-response curves were carried out to obtain the half-maximal effective concentration (EC50)

under ampicillin (AMP) selection. For testing, mutants and wtNDM-1 were transformed into E. coli

and grown overnight for 16hrs at 30°C, then diluted to a target inoculum of1.2Mil cells / mL (OD600



of 0.0015) the next day. The diluted culture is grown for 1.5 hours at 37°C, then 180uL of culture is

mixed with 20uL of 10x AMP stock, with final ampicillin concentrations from 1-1024ug/mL. Growth

under AMP selection is done for 6 hours at 37°C, and the OD600 of each culture is measured after

selection. For each mutant or wtNDM-1, the OD600 across all selected AMP concentrations is plotted

as a dose-response curve and fitted using a sigmoidal equation to obtain the EC50.
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3.3 further analysis

3.3.1 Gain of function mutations

Here we briefly elaborate on the lack of gain of function mutations
in our experimental system and why it confounds the detection of
epistatic mutations. As mentioned, the experimental setup used to
assess the fitness effects of mutations in VIM-2 and NDM-1 has a
big limitation: it struggles to detect gain of function mutations. This
limitation arises because mutations that allow for survival at higher
antibiotic concentrations than those necessary for the growth during
the experiments are irrelevant. To address this, an alternative experi-
mental system would be required. This shortcoming complicates the
understanding and measurement of epistasis due to the non-linear
relationship between fitness and function; while function can continue
to increase, fitness may plateau.

To visualize this, imagine an experimental system that effectively
detects gains in both function and fitness. It would be straightforward
to differentiate between epistatic and non-epistatic positions, as shown
in Panel A of Fig. 3.1. Non-epistatic positions align with the y = −x
diagonal, while non-epistatic ones are located in the lower quadrant.
However, without the ability to detect gain of function mutations, the
data points skew towards the negative quadrant, leading to ambiguity.
This distortion is evident in Panel B, where non-epistatic positions
adopt an ’L’ shape, causing epistatic and non-epistatic positions to
mix. As we have discussed in the paper, we are still able to distinguish
the two classes in the case of 2-wt entrenched mutations and we have
discussed how 1-wt entrenched mutations might be discerned.

A B

Figure 3.1 – Scatterplots illustrating two hypothetical datasets of reversion
mutations between VIM-2 and NDM-1. The left panel depicts
data with gain of function mutations, while the right panel,
consistent with experimental data, excludes them. Both charts
differentiate between non-epistatic and epistatic positions.



Figure 3.2 – Scatterplot between DMS entropies and CDE (left plot) or ASA
(right plot) for the enzyme NDM-1.

3.3.2 Combining structural and evolutionary information

In the paper discussed in the previous section, we have obtained the
mutability data of two homologous sequences from an experimental,
structural, and computational point of view. Here we discuss how
to combine these different quantities to create a predictive mutability
score. In particular, we combine the residue accessible surface area
(ASA) with the context-dependent entropy (CDE) of each site, to
predict the experimental mutability of sites, computed as the entropy
of the DMS fitnesses. For both NDM-1 and VIM-2 there is already a
solid correlation (∼ 0.75) between ASA and DMS mutability, as well
as between CDE and DMS mutability, see for example Fig. 3.2.

To improve this correlation and combine the the two types of
information, we trained a logistic regression model on 217 aligned
positions of NDM-1 to predict the DMS entropy based on the ASA
and CDE values of each position (each quantity was rescaled to lie
between 0 and 1). The logistic regression model is:

pβ(x1, x2) =
1

1 + e−(β0+β1x1+β2x2)
(3.1)

where x1 and x2 represent the rescaled ASA and CDE values respec-
tively, and β denotes the set of 3 parameters (β0, β1, β2) learned by the
model.

Once fitted, we can compare the model’s predictions with the DMS
values. In the case of NDM-1, we see an increase in correlation from
0.75 to 0.82. More interestingly, we can use the same β parameters to
compute the DMS entropies for VIM-2, without re-training our model,
by using the corresponding x1 and x2 values for VIM-2. The correlation
in this case raises quite a lot, from 0.75 of CDE or ASA alone to 0.86,
see Fig. 3.3. An increase in correlation by combining structural and
evolutionary information has been seen before, for example [129], but



Figure 3.3 – Scatterplot between DMS entropies and predictions by a logistic
regression. The logistic regression has been trained with CDE
and ASA of NDM-1 and then tested on both NDM-1 (left plot)
and VIM-2 (right plot) datasets.

to our knowledge is was never tested independently on a different
homolog, suggesting that the learned parameters are robust. Since the
model is so simple, we can also try to interpret it. First, we look at
the value of the β1 and β2 parameters of the logistic regression. We
find for each of them an almost identical value of β1,2 ∼ 2.5 indicating
an equal participation of the evolutionary and structural information
to the prediction accuracy. Using β1,2 in place of β1 and β2, we can
interpret the logistic regression as a soft OR classifier:

• when ASA and CDE are concordant, i.e. they are both high or
low, the prediction is respectively high and low. For example:

pβ(1, 1) =
1

1 + e−(β0+2β1,2)
= 0.97

pβ(0, 0) =
1

1 + e−β0
= 0.17

(3.2)

• when ASA and CDE are discordant, i.e. one is high and the
other is low, the prediction tends to be quite high. For example:

pβ(1, 0) = pβ(0, 1) =
1

1 + e−(β0+β1,2)
∼ 0.7 (3.3)

In practice, the prediction is intuitive when the information from
both ASA and CDE is consistent, as one would naturally anticipate.
However, when there is a discrepancy between the two, the site is
predicted to be mutable. Indeed, we could already see from Fig. 3.2
that both ASA and CDE underestimate the mutability of the sites.
The fact that most sites of NDM-1 and VIM-2 are well predicted by
the logistic regression (with the notable exception of a few sites in
NDM-1, see left plot of Fig. 3.3) indicates two things. Firstly, some



buried sites are mutable according to the DMS data, yet these sites can
be accurately identified as mutable using the DCA-derived entropies.
Secondly, there are sites that, while appearing conserved based on
the CDE, are mutable according to the DMS. Notably, these sites
are exposed and can therefore be predicted to be variable. Such a
case might require a more in-depth examination. It is intriguing that
some sites can be variable in the DMS, yet show no variability in the
alignment of their homologs, i.e. having a low CDE. This inconsistency
may indicate that the experimental selection used in DMS experiments
might not fully capture the natural selection pressures exerted on
these enzymes, at least for certain sites.





4 C O N C L U S I O N A N D O U T LO O K

Protein evolution is a fundamental biological process that underlies
the adaptation and diversification of life on Earth. A deep understand-
ing of this dynamical process can significantly enhance our ability
to respond to emerging pathogens in a clinical setting [130], refine
our comprehension of the history of life on Earth [131], and even aid
in the creation of artificial enzymes [132]. However, despite being a
pervasive phenomenon across all branches of life, protein evolution
remains extremely hard to predict. One of the primary challenges in
developing a predictive theory of protein evolution is epistasis, the
context-dependence of mutational effects. The fact that mutations
have different effects depending on the sequence background they
happen in, makes it difficult to predict the outcomes of new mutations
accurately. Epistasis dictates which mutations can be accepted in a
specific sequence background, and can open or close evolutionary
paths. Notably, proteins from different species can have the same func-
tion, i.e. catalyze the same biochemical reaction, while exhibiting great
differences in their amino acid sequences. This diversity is integral
to the flexibility of proteins and plays a crucial role in the develop-
ment of machine learning models, such as Potts models, which aim to
reproduce the probability distribution of functional proteins within
sequence space. Traditionally, these models have been employed to
capture the equilibrium properties of protein families and predict
protein-protein interactions [49, 133], residue-residue contacts [80], or
the fitness effect of mutations [98].

The research presented in this thesis shifts the focus from the
static properties of protein fitness landscapes toward the dynami-
cal properties that dictate the evolution of proteins. In section 2.2,
we demonstrate how to simulate genetic drift experiments with β-
lactamase enzymes [72, 110] thanks to an algorithm for sampling new
mutations based on a data-driven sequence landscape while includ-
ing the constraints of the genetic code. These simulations unveil the
values of the experimental parameters necessary for identifying the
emergence of epistasis and inferring protein structures from sequenc-
ing data. The quantitative character of our evolutionary dynamics
suggests that it could be exploited to develop methods that directly
infer the fitness landscape from sequence data, similar to the work
of Sesta et al. [134]. In section 2.4 we further refine our stochastic
dynamics to generate long trajectories that converge to the sequence
statistics of the training set, i.e. natural sequences. This allows us
to simulate evolution at every time scale. Our findings highlight the
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pivotal role of epistasis in driving protein evolution and determining
the timing of mutations’ emergence. The mutability of sites is strongly
dependent on a local measure of mutability that we define thanks to
our model. Our approach is highly versatile, requiring only a model
that can calculate the relative likelihood of two sequences, opening
the applicability to more powerful machine learning models. We en-
visage further refinements of this model, including species-specific
mutational biases and more complex mutational processes.

In section 3.2, we analyze a dataset comprising 100 homologs from
the B1 β-lactamase protein family, revealing widespread variability
in the mutability of sites across the protein family. We validate the
predictions of our model using DMS data from two clinically relevant
sequences, VIM-2 and NDM-1. We show a strong correlation between
experimental and model mutability and we detect the presence of
epistasis in a significant proportion of sites. This study compares
mutations between two enzymes with more than 60% sequence diver-
gence, a distance big enough to disclose mutations that are neutral in
one genetic background but deleterious in another. How this transi-
tion happens, however, cannot be determined by analyzing only the
snapshot given by two sequences. To better understand how epistasis
changes the effect of mutations during evolution, the same muta-
tions need to be probed along an evolutionary pathway. A recently
published work [135, 136] has shown a way to sample evolutionary
trajectories between two points in sequence space with sequence mod-
els. We believe that it could be possible to employ a similar strategy,
inspired by Transition Path Sampling [137, 138], with Potts models,
to construct and test evolutionary trajectories of β-lactamases. This
would allow the creation of "anchors" protein in sequence space, that
are not accessible experimentally, and that can be further characterized.
We are currently developing different path-sampling algorithms to
generate all single mutants directly connecting the enzymes VIM-2
and NDM-1. This means sampling the space of 2n mutations, where
n = 141 is the number of different residues between the two aligned
sequences, searching for low-energy intermediate sequences. The de-
signed sequences will be synthesized thanks to DropSynth (see section
1.5.3), transformed into E.coli and phenotyped in bulk against different
antibiotics to find functional sequences. By performing Deep Muta-
tional Scanning (DMS) experiments on multiple intermediates along
these paths, we aim to unravel the functional and possibly structural
mechanisms behind epistasis.
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LO N G R É S U M É

Grâce à l’afflux de données de séquences protéiques disponibles grâce
au séquençage de nouvelle génération, les modèles d’apprentissage
automatique non supervisé peuvent désormais apprendre efficace-
ment les paysages de séquences protéiques. Parmi les outils, Direct
Coupling Analysis (DCA) se distingue car elle évalue les motifs de
conservation et de coévolution entre les sites protéiques. Le DCA a été
utilisé pour divers défis biologiques, allant de la prédiction des effets
des mutations sur la fitness à la génération de séquences artificielles.
Cette thèse étend l’utilité du DCA pour sonder l’évolution des pro-
téines, qui fait référence aux changements continus dans les séquences
d’acides aminés dus aux mutations aléatoires et à la sélection naturelle.
Comprendre les subtilités de ce processus dynamique est crucial pour
des défis tels que la lutte contre les pathogènes émergents, la com-
préhension de l’histoire de la vie sur Terre, et même pour la concep-
tion d’enzymes artificielles. Malgré sa nature omniprésente, prédire
l’évolution des protéines reste un défi, surtout lorsqu’on considère
l’épistasie, les effets contextuels des mutations. Notre travail vise à
développer et évaluer des algorithmes pour traverser le paysage de
séquences déduit par DCA, mettant l’accent sur les familles d’enzymes
bêta-lactamases, notoires pour leur capacité à dégrader de nombreux
antibiotiques couramment utilisés.

Le premier chapitre de recherche, intitulé " Exploration of sequence
space ", se penche sur la modélisation de l’évolution des protéines.
Ici, nous explorons d’abord l’évolution des protéines par évolution
expérimentale à travers la dérive neutre. Cette approche implique
plusieurs cycles de mutation et de sélection de bibliothèques géniques
évoluées in vivo. L’objectif est de diversifier la bibliothèque génique
tout en préservant sa fonction, même sous de faibles pressions de
sélection. Nous présentons un premier article discutant d’un modèle
évolutionnaire qui reproduit la diversification des enzymes résistantes
aux antibiotiques dans des expériences de dérive génétique : "Model-
ing Sequence-Space Exploration and Emergence of Epistatic Signals
in Protein Evolution". Les modèles reproduisent avec précision les
statistiques expérimentales, en utilisant un paysage de séquences
d’homologues éloignés et un algorithme d’échantillonnage qui prend
en compte les contraintes du code génétique. De plus, nous analysons
computationnellement l’impact des paramètres expérimentaux, identi-
fiant un équilibre entre les tours expérimentaux et la profondeur de
séquençage lors du décryptage des contraintes épistatiques. Ce tra-
vail démontre le potentiel des modèles évolutionnaires dans l’analyse
des paysages de séquences basés sur des données. En utilisant des



dynamiques stochastiques simples qui capturent la relation entre mu-
tation et sélection, ces modèles peuvent dépeindre avec précision
les résultats des expériences d’évolution. Les modèles fournissent
des applications pratiques pour l’évolution expérimentale, comme
l’optimisation des protocoles pour obtenir les résultats de séquence
désirés. Le modèle actuel est considéré comme fondamental, avec
des possibilités d’amélioration comme l’incorporation de biais de
mutation, de biais de codon, et d’autres subtilités biologiques.

Nous présentons ensuite des améliorations à notre méthodologie,
en nous concentrant sur les biais mutationnels dans les substitutions
nucléotidiques et en mettant à jour la dynamique d’échantillonnage
avec un équilibre détaillé. Nous appelons ce nouveau modèle évolu-
tionnaire pour les séquences protéiques GENIE (Gene Evolution on
Nucleotides Including Epistasis), qui se concentre sur les séquences
nucléotidiques tout en considérant les effets mutationnels au niveau
des acides aminés. Il propose deux types de méthodes de mutation
: les mouvements de Gibbs pour les substitutions nucléotidiques et
les mouvements de Metropolis pour les insertions ou délétions. Cela
nous permet de reproduire avec précision les statistiques d’acides
aminés de protéines lointainement apparentées. Un aspect essentiel
de GENIE est qu’il nous permet de générer de manière plausible des
trajectoires évolutionnaires pour nous aider à comprendre les échelles
de temps évolutionnaires pilotées par l’épistasie et leur effet sur la mu-
tabilité des sites au fil du temps. Grâce à nos méthodes, nous pouvons
modéliser quantitativement la prévisibilité des effets mutationnels à
mesure que les séquences divergent, l’épistasie étant la force motrice.
Nous capturons l’épistasie en analysant les différences de variabilité
locale (Context-Dependent Entropy, CDE) et globale (Context Inde-
pendent Entropy, CIE) dans les sites protéiques. Les sites sont classés
comme variables, conservés ou épistatiques, avec des comportements
de mutation distincts observés dans chacun pendant les simulations.
Les sites variables mutent rapidement, les sites conservés lentement,
et les sites épistatiques restent stables jusqu’à ce que leur contexte
change considérablement, puis mutent rapidement. La recherche met
en évidence une séparation à l’échelle du temps dans les taux de mu-
tation, avec une diversification rapide dans des contextes spécifiques
et des changements de contexte évolutionnaire plus lents.

Dans la section suivante, intitulée "Family-Wide Mutational Incom-
patibilities", nous présentons un deuxième article : "Understanding
epistatic networks in B1 beta-lactamases through coevolutionary sta-
tistical modeling and deep mutational scanning ". Tout au long de
l’évolution, les protéines maintiennent leur structure et leur fonc-
tion malgré des changements de séquence significatifs, grâce à des
réseaux interconnectés d’interactions épistatiques qui réduisent les
impacts négatifs des mutations. En analysant la classe B1 des enzymes
bêta-lactamase à l’aide du DCA et du Deep Mutational Scanning



(DMS), nous identifions des clusters coévolutifs de sites protéiques
qui sont interconnectés par des motifs de conservation et de coévolu-
tion. Nous interprétons ces motifs comme des contraintes structurelles
et fonctionnelles, ainsi que des incompatibilités mutationnelles. Les
bêta-lactamases B1 sont un groupe diversifié d’enzymes qui évoluent
rapidement pour dégrader un large éventail d’antibiotiques. Cette
diversité est possible grâce à des mutations bénéfiques et neutres qui
parcourent les séquences et les structures protéiques. Les clusters
coévolutifs identifiés sont interconnectés par des motifs de conser-
vation et de coévolution, qui se reflètent dans les structures et les
dynamiques de repliement protéique. Ces clusters sont probablement
des unités fonctionnelles dans les bêta-lactamases qui travaillent en-
semble pour conférer une résistance aux antibiotiques. En utilisant
le DCA, nous modélisons les contraintes de séquence et de structure
dans ces clusters et identifions des motifs coévolutifs qui ne sont pas
immédiatement apparents dans les analyses de séquences simples. Le
DMS nous fournit une carte de l’impact fonctionnel des mutations à
travers les séquences de bêta-lactamase, nous montrant comment les
mutations influencent la fitness et l’activité enzymatique. En combi-
nant les résultats du DCA et du DMS, nous identifions des zones de
la protéine qui sont plus tolérantes aux mutations et d’autres zones
qui sont essentielles pour la fonction et la stabilité. Cette recherche
fournit des informations sur les contraintes évolutionnaires dans les
bêta-lactamases et peut aider à informer la conception d’inhibiteurs et
d’enzymes modifiées.

La dernière section de cette thèse résume nos principaux résultats
et leur impact sur le champ de la biologie évolutive. Nous soulignons
comment notre recherche contribue à une meilleure compréhension
de l’évolution des protéines et offre de nouvelles méthodes pour
modéliser et analyser les paysages de séquences protéiques. Nous
discutons également des implications pratiques de notre travail pour
la conception de protéines, la pharmacologie et la médecine. En
conclusion, cette thèse souligne le potentiel des méthodes basées sur
le DCA pour prédire et comprendre l’évolution des protéines, et offre
une vision nouvelle sur les mécanismes sous-jacents qui régissent les
changements de séquence au fil du temps.
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