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Résumé :

Les outils de vérification formelle, en particulier
dans le domaine de la vérification déductive, ap-
portent des garanties statiques fortes de correction
des systèmes logiciels, mais nécessitent un haut de-
gré d’expertise et des durées de développement con-
sidérables. Ces obstacles compromettent parfois
leur mise en place dans un contexte industriel, et
presque toujours leur passage à l’échelle dans des
systèmes complexes. Dans ce contexte, la vérifica-
tion dynamique (comprendre : à l’exécution) per-
met une approche plus graduelle. Alors que les
spécifications sont toujours exprimées en termes lo-
giques précis, on s’assure de la correction de l’im-
plémentation par des tests automatiques à mesure
de son exécution, plutôt que par des preuves. L’ex-
pertise nécessaire est alors restreinte à la conception
de spécifications et l’interprétation des résultats de
test.

La communauté du langage de programmation
OCaml n’échappe pas à ce constat. Malgré le fait
que le langage semble propice à la mise en place
de méthodes formelles, aucun outil ne paraît con-
naître une adoption large pour la production de
code OCaml spécifié ou vérifié. De surcroît, pour
un outil prétendant répondre à cette question, il
faut également prendre en compte les spécificités du
langage, notamment les interactions avec le typage
statique, l’influence de la représentation mémoire et

du ramasse-miettes ou les idiomes liés à la program-
mation fonctionnelle.

Dans ce travail, on propose des techniques de
vérification dynamique de code OCaml applicables
à des bases de code préexistantes et intégrables
aux flux de travail des ingénieurs logiciels qui les
maintiennent. En particulier, on présente briève-
ment Gospel, un langage de spécification access-
ible mais expressif pour OCaml. On décrit Ortac,
un outil de vérification dynamique pour OCaml
entièrement automatisé dont l’interface modulaire
permet son utilisation dans une grande variété de
scenarii (fuzzing, monitoring, test). Il entend sup-
porter un sous-ensemble non trivial d’OCaml (e. g.
foncteurs, exceptions, effets) avec l’appui du typage
et dans un souci d’efficacité des vérifications effec-
tuées (e. g. limitation des copies, gestion des enti-
ers de précision arbitraire, vérification partielle des
invariants de types). Enfin, on développe une fa-
mille d’optimisations de la mémoire pour la vérifica-
tion de post-conditions faisant référence au pré-état.
Elles prennent la forme de transformations de spé-
cifications, généralisées pour être applicables dans
d’autres langages, et prouvées correctes avec l’assist-
ant de preuves Coq.

Le travail entrepris permet d’envisager un écosys-
tème de vérification automatisé, peu intrusif et ad-
apté aux besoins des développeurs et développeuses
de la communauté OCaml.
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Abstract:
Formal verification methods, in particular when

it comes to deductive verification, bring strong guar-
antees about the correctness of software systems.
However, they require a high degree of expertise
and tremendous development time. These pitfalls
sometimes jeopardize their application in industrial-
grade software, almost always preventing scaling to
complex systems. In that respect, dynamic (read:
runtime) verification allows for a more gradual ap-
proach. While the user still expresses specifications
in a formal, precise language, one checks the correct-
ness of the implementation via automatic testing at
runtime rather than proofs. It narrows the required
expertise to the specification design and the inter-
pretation of test results.

These observations also apply to the OCaml pro-
gramming language community. Despite the suit-
ability of the language for formal methods, broad
adoption still seems out of reach for tools that pro-
duce specified or verified code. Moreover, such tools
must account for details of the language: its type sys-
tem, memory representation, garbage collector, and
functional idioms.

In thiswork, we propose runtime verification tech-
niques for OCaml code that apply to preexisting
codebases and engineers’ workflows. In particu-
lar, we briefly introduce Gospel, an accessible yet
expressive specification language for OCaml. We
describe Ortac, an automated runtime assertion
checker for OCaml with a modular interface that
allows for multiple usage scenarii (fuzzing, monit-
oring, tests). Ortac aims to support a non-trivial
subset of OCaml (e. g. functors, exceptions, effects).
It uses typing information to produce efficient veri-
fications (e. g. narrowing the copies, handling ar-
bitrary precision integers, partially verifying type
invariants). Lastly, we elaborate on memory optim-
izations for verifying postconditions referencing the
prestate. They consist of specification transforma-
tions, generalized to apply to other languages, that
have been proven correct using the Coq proof assist-
ant.

This work opens a way for an automated verifica-
tion ecosystem that would be unintrusive and suit-
able for the developers’ needs in the OCaml com-
munity.
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ABSTRACT

Formal verification methods, in particular when it comes to deductive veri-
fication, bring strong guarantees about the correctness of software systems.
However, they require a high degree of expertise and tremendous develop-
ment time. These pitfalls sometimes jeopardize their application in industrial-
grade software, almost always preventing scaling to complex systems. In
that respect, dynamic (read: runtime) verification allows for a more gradual
approach. While the user still expresses specifications in a formal, precise
language, one checks the correctness of the implementation via automatic test-
ing at runtime rather than proofs. It narrows the required expertise to the
specification design and the interpretation of test results.

These observations also apply to the OCaml programming language com-
munity. Despite the suitability of the language for formal methods, broad
adoption still seems out of reach for tools that produce specified or verified
code. Moreover, such tools must account for details of the language: its type
system, memory representation, garbage collector, and functional idioms.

In this work, we propose runtime verification techniques for OCaml code
that apply to preexisting codebases and engineers’ workflows. In particu-
lar, we briefly introduce Gospel, an accessible yet expressive specification
language for OCaml. We describe Ortac, an automated runtime assertion
checker for OCaml with a modular interface that allows for multiple usage
scenarii (fuzzing, monitoring, tests). Ortac aims to support a non-trivial sub-
set of OCaml (e. g. functors, exceptions, effects). It uses typing information to
produce efficient verifications (e. g. narrowing the copies, handling arbitrary
precision integers, partially verifying type invariants). Lastly, we elaborate on
memory optimizations for verifying postconditions referencing the prestate.
They consist of specification transformations, generalized to apply to other
languages, that have been proven correct using the Coq proof assistant.

This work opens a way for an automated verification ecosystem that would
be unintrusive and suitable for the developers’ needs in the OCaml com-
munity.
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RÉSUMÉ

Les outils de vérification formelle, en particulier dans le domaine de la véri-
fication déductive, apportent des garanties statiques fortes de correction des
systèmes logiciels, mais nécessitent un haut degré d’expertise et des durées
de développement considérables. Ces obstacles compromettent parfois leur
mise en place dans un contexte industriel, et presque toujours leur passage
à l’échelle dans des systèmes complexes. Dans ce contexte, la vérification dy-
namique (comprendre : à l’exécution) permet une approche plus graduelle.
Alors que les spécifications sont toujours exprimées en termes logiques précis,
on s’assure de la correction de l’implémentation par des tests automatiques à
mesure de son exécution, plutôt que par des preuves. L’expertise nécessaire
est alors restreinte à la conception de spécifications et l’interprétation des
résultats de test.

La communauté du langage de programmation OCaml n’échappe pas à
ce constat. Malgré le fait que le langage semble propice à la mise en place de
méthodes formelles, aucun outil ne paraît connaître une adoption large pour
la production de code OCaml spécifié ou vérifié. De surcroît, pour un outil
prétendant répondre à cette question, il faut également prendre en compte
les spécificités du langage, notamment les interactions avec le typage statique,
l’influence de la représentationmémoire et du ramasse-miettes ou les idiomes
liés à la programmation fonctionnelle.

Dans ce travail, on propose des techniques de vérification dynamique de
code OCaml applicables à des bases de code préexistantes et intégrables
aux flux de travail des ingénieurs logiciels qui les maintiennent. En particu-
lier, on présente brièvement Gospel, un langage de spécification accessible
mais expressif pour OCaml. On décrit Ortac, un outil de vérification dy-
namique pour OCaml entièrement automatisé dont l’interface modulaire
permet son utilisation dans une grande variété de scenarii (fuzzing,monitoring,
test). Il entend supporter un sous-ensemble non trivial d’OCaml (e. g. fonc-
teurs, exceptions, effets) avec l’appui du typage et dans un souci d’efficacité
des vérifications effectuées (e. g. limitation des copies, gestion des entiers de
précision arbitraire, vérification partielle des invariants de types). Enfin, on
développe une famille d’optimisations de la mémoire pour la vérification de
post-conditions faisant référence au pré-état. Elles prennent la forme de trans-
formations de spécifications, généralisées pour être applicables dans d’autres
langages, et prouvées correctes avec l’assistant de preuves Coq.

Le travail entrepris permet d’envisager un écosystème de vérification auto-
matisé, peu intrusif et adapté aux besoins des développeurs et développeuses
de la communauté OCaml.
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1
INTRODUCT ION

In the beginning God created the programs. Now the programswere formless
and empty, darkness and bugswere over the surface of the deep, and the Spirit
of God was hovering over the waters.

And God said, ‘Let there be correctness’, and there was correctness. God
saw that correctness was good, and they separated the programs from the
bugs.

The end.

Well, not quite.
Bugs still lingered, multiplying with each stride. Undeterred, humans

pressed on, seeking perfection through the harmonious fusion of formalmeth-
ods and runtime checks. The journey continues, for in this quest, they find the
ever-unfolding promise of bug-free software. The end? Nay, a new beginning.

1 .1 specifications and proofs

1.1 .1 What Should Programs Do?

Correctness only makes sense with respect to specifications: they set the ex-
pectations in the sentence ‘what should this program do?’. Software systems
are often—almost always—developed without complete, formal specifica-
tions. Instead, the development constraints are expressed in plain natural
language by a manager, a client, a little voice in our head, or, at best, a written
design document. Regardless of the level of details provided, they rely on our
human understanding of these spoken constraints, where ambiguities and
cultural influence—and therefore misunderstandings—thrive.

Hence we need dedicated formal specification languages based on math-
ematical notations and logic and designed to describe program behaviour
with precise semantics. Specifying programs remains a complex task in many
cases. It requires a deep understanding of the logic system the specification
language implements and the specified program.

1.1 .2 Do Programs Do What They Should Do?

Along with formal specifications, formal methods were developed to reason
about programs and characterize their behaviour to ultimately prove that they

3
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comply with their specification. They aim at statically—i. e. by analyzing
the program only, not executing it—predicting program outputs and effects.
The results they provide hold for all possible executions of the program. The
details of these techniques are off the topic of this thesis. However, we may
cite a few significant domains available for program verification.

weakest precondition calculus. In this method, we compute the
weakest precondition that ensures a desired postcondition—e. g. the one in
the specification—holds after a program is executed. We check that this pre-
condition indeed holds. It allows for compositional reasoning andmodularity
in verifying the correctness of individual program statements or fragments.
Why3, VeriFast, Dafny, or the WP plugin from Frama-C are notable
tools that rely on this technique.

theorem proving. Theorem proving involves using mathematical logic
closer to Mathematics usage—users write definitions, theorems, proofs—to
prove the correctness of software or hardware systems. It requires construct-
ing formal proofs based on axioms and rules of inference. Interactive theorem
provers like Coq and Isabelle are popular tools for this domain. The veri-
fied C compiler CompCert is a particularly noticeable success story of these
methods.

model checking. Model checking is a formal verification technique that
exhaustively explores all possible states of a system—or abstract states—to
check whether specific properties hold true or if certain conditions are met.
It is handy for finite-state systems and concurrent systems. Tools like SPIN
and NuSMV are commonly used for model checking.

abstract interpretation. Abstract interpretation is a static analysis
technique that approximates the behaviour of a program using abstract do-
mains. They are suitable for automated proofs, at the cost of often weaker
logic systems. The Astrée and PAGAI tools are examples of abstract inter-
pretation tools.

1 .1 .3 [Proving] Software [Correctness] is Hard

While it offers significant advantages regarding reliability and confidence,
formal verification is notoriously challenging and resource-intensive. Several
factors contribute to the difficulty of proving software using formal verifica-
tion.

software size and complexity. Deployed software systems consist of
millions of lines of code and intricate interactions betweennumerous components—
often written by different authors.
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limited automation; extensive expertise. While some aspects of
formal verification can be automated, such as syntax checking and simple
property verification, more complex proofs often require human intervention
and manual effort. The process of constructing formal proofs can be labour-
intensive and require specialized skills.

interaction with the program environment. Real-world soft-
ware systems interact with external environments, including user inputs, net-
work communication, and hardware devices. Verifying the correctness of
software in such dynamic environments can be particularly challenging as it
requires modelling and specifying these too.

undecidable problems. Last but not least, many problems in software
verification are undecidable. The most (in?)famous one is perhaps the halt-
ing problem—does this program terminate?—but many deduction systems
implemented in specification languages are also undecidable, e. g. first-order
logic with quantifiers.

1 .2 towards runtime assertion checking.

Runtime Assertion Checking (RAC) is a set of dynamic verification techniques
that verify that someproperties—assertions—about the programhold at runtime
during the execution of the program. They aim at detecting and reporting
misbehaviours as soon as they arise in the execution and the development
process and, hopefully, before they cascade into catastrophic events.

level 0: assert . The concept of assertions in programming can be
traced back to the 1960s when they were used informally as comments or
sanity checks in code. Developers manually insert checks to ensure certain
Boolean conditions are met during program execution, aiding debugging and
error detection.

design by contract™. The development of formal methods in the Funnily enough (?),
Design by
Contract™ has been
a registered
trademark of Eiffel
Software since
2004 [34].

1970s and 1980s brought a more systematic approach to software verification.
Bertrand Meyer popularized assertions as a formal means of specifying pro-
gram behaviour (as opposed to individual statements at specific points in
the program) in the 1980s with Eiffel and its Design by Contract™. It ad-
vocates using preconditions, postconditions, and class invariants within the
programming language itself as programmatic documentation. The program
Boolean expressions are meant to be verified at runtime during the develop-
ment phase. Design by Contract™ also provides methods and workflows to
guide developers into using this new technique that mixes tests and formal
specifications.

broader adoption. Since then, the approach has been adopted to de-
velop specification languages and their runtime assertion checkers for most
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mainstream programming languages. The support and verification of these
contracts still take various shapes and forms: some are part of the language
itself (e. g. SPARK for Ada), others are special comments meant to be pro-
cessed by external tools (e. g. JML for Java or E-ACSL for C), and some are
libraries that let developers program the contracts from within the language
(e. g. Decorator Contracts for Javascript) before they are executed.

1 .2.1 A More Practicable Technique

Of course, runtime assertion checks offer weaker correctness guarantees: they
check individual program executions rather than proving the correctness of
all program executions. They, however, overcome some of the weaknesses of
static verifications and are generally easier to apply.

ease of use. With the correct tooling, integrating runtime assertion checks
into the code does not require additional expertise other than interpreting the
results.

incremental approach. Unlike static verification, which often requires
the entire program to be formally verified—because the individual parts influ-
ence the general outcome of the program—runtime assertion checking allows
developers to apply verification selectively. They can specify their programs
partially and focus on specific parts of the code that are most critical or prone
to errors, making it a more incremental and manageable process.

systematic counterexamples. Runtime assertion checking aids de-
bugging by identifying errors, pinpointing their locations in the code, and
providing failing examples. The failed assertions provide valuable informa-
tion about the program’s state at the time of the error, facilitating efficient bug
diagnosis and resolution.

flexibility. Assertions can be used for various purposes, such as check-
ing preconditions or postconditions of functions, validating data invariants,
or verifying correct behaviour in specific scenarios. This flexibility allows
developers to tailor the assertions to suit their specific verification needs.

applicability to large codebases. Runtime assertion checking can
be applied to large, existing codebases without significant changes to the
overall development process, which makes it a practical option for improving
the reliability of legacy software systems.

1.2.2 Some Challenges Ahead

Is it to say that runtime assertion checking is easy? After all, we just have to
test the specifications, right? Well, not really.
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If the ultimate goal is to provide tools that are easy to use, designing them
comes with challenges. Some are verification and semantics challenges: we
need to bridge the semantics of the programming language and the one of
the specification language; others are engineering challenges: the runtime
checks should integrate seamlessly into the developers’ workflows; others are
performance challenges: checking assertions at runtime introduce additional
computations that affect the program performance.

1 .3 the gospel project

In 2018, the goal of the Vocal project was to develop Vocal[39], a formally
verified library containing useful data structures like the ones of a standard
library (e. g. lists, arrays, queues, hash tables) written in (and for) the OCaml
programming language. As we mentioned previously, formal verification
means correction with respect to a formal specification. However, there was
no formal specification language for OCaml.

The key contribution of the project is the design of a specification language
for OCaml: Gospel. From the beginning, a key design point is that the We show examples of

Gospel
specifications in
chapter 2.

specification language should remain independent of the tools that will later
be used to prove that the programs comply with them.

For instance, it aims at interfacingwith CFML—which implements a separa-
tion logic and targets pointer-based data structure—, or the Why3 platform—
with its high degree of automation using off-the-shelf SMT solvers[10].

No runtime assertion checking in sight, though! In truth, although Gos-
pel did not target a specific verification tool, it was mainly designed with
Deductive Verification (DV) in mind, and its specifications are not necessarily
executable.

1 .4 contributions

In this thesis, we show some of the challenges that arise when it comes to
executing these specifications. We propose techniques and methods for the
runtime assertion checking of OCaml code based on the Gospel language.
We implemented them in a tool named Ortac (Ocaml RunTime Assertion
Checking) [33]. Rather than trying to bring developers to prove their software,
we believe RAC is a great means to bring formal methods to the developers
with a tool that can be useful to them.

1.4.1 Gospel: a Specification Language for OCaml

In chapter 2, we briefly introduce Gospel through three examples. We do
not dive into specifics about the language—this would be out of our topic.
Instead, we give a sense of the basics to understand why runtime assertion
checking is challenging.

In parallel with the work presented in this thesis was a significant develop-
ment and maintenance of the Gospel type-checker and test cases to ensure
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that the language and its implementation stay aligned with its core principles
and evolve along with the uncovered new needs. The initial code base was
significantly simplified and was brought up to speed with the common prac-
tices of PPX—OCaml preprocessors—development. It provides a library
that multiple tools build upon to process the specifications and an executable
that perform simple sanity checks over the specifications. Finally, the code
is tested with hundreds of test cases that ensure regressions do not occur in
future developments.

Gospel is an open-source project available at https://github.com/ocaml-gospel/
gospel.

1 .4.2 Ortac: a Runtime Assertion Checking Tool for OCaml and Gospel

In chapter 3, we present Ortac, a tool that consumes OCaml interfaces
augmented with Gospel specifications and generates code that checks the
function contracts and type invariants at runtime and reports the specification
violations as soon as they occur. It produces wrappers around the functions
and types of the instrumented module. It returns a module with the same
interface to the user, only augmented with runtime verifications.

The design of Ortac is guided by several principles: (a) it aims at being
fully automated—although configurable—and should not require extra ex-
pertise beyond the interpretation of the results; (b) it should be clear at all
times what verifications are made by the instrumented code, so the results are
easy to interpret; (c) it should be unintrusive to the developers’ workflows and
integrate properly into the compilation chain; (d) itmust not break any abstrac-
tion barriers—provided by the module system or the memory representation
of OCaml—that are present in the instrumented code. RAC by essence has a
performance cost since it introduces extra computations. However, we also
set it as a secondary goal to limit this cost to a minimum.

On top of an executable tool, Ortac also provides a library—with the same
name—for the translation of Gospel specifications to OCaml programs. It
lets developers extend its behaviour via plugins. We describe a plugin that
turns Ortac into a full-fledged fuzzer for OCaml interfaces that include
the boilerplate code necessary to interface with afl-fuzz and automatically
generates test cases.

Since Gospel is not a language dedicated to runtime assertion checking,
some specifications contain parts that cannot be checked at runtime without
more information, such as unbounded quantifiers or uninterpreted logical
symbols. Other specifications seem hard to execute—e. g. because the specific-
ations refer to values that do not exist or are not accessible in the program but
only exist in the logic domain—but one can find workarounds to verify them
regardless. Ortac identifies and translates the executable subset of these spe-
cifications. It reports non-executable parts to the user but does not block the
rest of the instrumentation. It allows incremental specifications improvements
over time and partial proofs by other means (e. g. DV).

https://github.com/ocaml-gospel/gospel
https://github.com/ocaml-gospel/gospel
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In chapter 6, we highlight some challenging aspects of translating Gospel
to OCaml and techniques we implemented to tackle them.

Gospel (rightfully) abstracts away from implementationdetails in its stand-
ard library. For instance, it provides polymorphic containers like sets or a
polymorphic equality predicate. However, these ‘details’ need to be resolved
when one wants to execute specifications, and implementing these is not a
straightforward task in pure OCaml. We show how Ortac uses the static
typing information of OCaml to generate primitives over OCaml values
that allow us to implement these complex structures. We also describe cases
where the type information allows us to generate more efficient code than
using their generic, polymorphic counterparts.

Sometimes, the performance improvements come from something other
than implementing the verifications themselves but from the structure of the
wrappers. We show how Ortac avoids some computations by skipping use-
less verifications (e. g. type invariants) when they are not needed to ensure
the correctness of the program.

Finally, we also show that the complexity of verifying Gospel specifications
by instrumenting OCaml code sometimes involves somewhat unexpected
combinatorics that has to be dealt with carefully, for instance, when dealing
with exceptions. Indeed, exceptional behaviours are also part of the specific-
ations and must be checked. However, we also must consider that the code
Ortac generates may itself raise exceptions.

Ortac is an open-source project available online at https://github.com/
ocaml-gospel/ortac.

1 .4.3 A Formalized Subset of Gospel to Reason About Memory

In chapter 4, we formalize imperative programs alongwith a subset of our spe-
cification language to provide a basis for proofs of specificationmanipulations.
The formalization is done within the Coq theorem prover.

The goal of this language is to be ‘simple, but not too simple’: it is simple
on the surface, and its semantics is easy to manipulate, but it does not hide
the details of the memory representation of values.

It features three primitive types—mathematical integers and their arith-
metics, mutable homogeneous arrays, and immutable heterogeneous tuples—
alongwith primitives tomanipulate them in the specifications. It also features
the old primitive in Gospel to refer to prestate values in function postcon-
ditions. These structures allow us to model complex behaviour and memory
patterns e. g. involving aliasing, cyclic values, value mutations, or immutable
values.

Imperative programs in this formalization are agnostic of the language they
are written in, and the specification language only has constructs common to
most specification languages, making it reusable in other settings.

https://github.com/ocaml-gospel/ortac
https://github.com/ocaml-gospel/ortac
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1.4.4 Optimizations for an Efficient Capture of Prestates in Postconditions

In most behavioural specification languages for imperative languages, func-
tion postconditions may refer to the prestate of the function, typically us-
ing some old, at, or pre operator. Gospel is no exception and provides
an old operator that does just that. For instance, a function postcondition
!x = old !x + 1 states that the function call increments the variable x.

In order to perform runtime verification, we need to evaluate terms and
predicates—such as the term old !x above—after function calls. However,
the prestate, which old refers to, does not exist anymore at this point in the
program: mutable state can be modified—in function parameters or even
global state—and the structure of the memory may be different under the
action of the Garbage Collector (GC)—in particular, some values may not be
accessible anymore. Consequently, the code instrumentation must record any
value required to evaluate the predicates involving old.

In chapter 5, we consider the problemof efficiently capturing these prestates
in Ortac. We propose specification transformations that let us copy a sound
subset of the memory and ultimately let us produce correct and well-typed
instrumented code. We also propose a last transformation that optimizes the
runtime verification cost of logical assertions containing old by reducing the
subset of the memory one must copy to compute these checks. We rely on the
language formalization to prove that these transformations are sound and im-
prove the performance of the instrumented programs. We show the efficiency
of this method with benchmarks that confirm significant improvements in
memory usage and CPU time.

conclusion

Runtime assertion checking is paving the path towards a more formal ap-
proach to programming. By inserting dynamic checks into the code, de-
velopers can actively detect errors and violations during program execution,
boosting confidence in software correctness. This pragmatic technique com-
plements formal methods and type-checking, ensuring rapid bug identifica-
tion and enhancing code reliability, all while preserving the agility needed for
modern software development.

Gospel and Ortac provide a framework to better structure the tests de-
velopers alreadywrite by incorporating precise semantics and documentation
into their libraries. These automated tests are unintrusive and easily deploy-
able and are the first step for a smooth transition towards verified software.







2
GOSPEL: A FORMAL SPEC I F ICAT ION LANGUAGE FOR
OCAML

In this chapter, we introduce the Gospel specification language and the pro-
cess of specifying OCaml interfaces with it. We do not aim to provide a lan-
guage specification or a user manual. Instead, we present three examples that
involve interesting features of Gospel with respect to the runtime verifica-
tion capabilities of Ortac and its limitations. Amore detailed and up-to-date
language specification is available online at https://ocaml-gospel.github.
io/gospel, along with a user manual and some more examples of use cases.

2.1 example 1: fibonacci numbers

In this first example, we aim to specify a simple function that computes the
𝑛th Fibonacci number. Recall that Fibonacci numbers are defined as follows:

𝐹0 = 0
𝐹1 = 1
𝐹𝑛 = 𝐹𝑛−1 + 𝐹𝑛−2

Here is a tail-recursive implementation of this function in OCaml.

let fib n =

let rec aux n b a =

if n <<= 0 then a

else aux (n - 1) (a + b) b in

aux n 1 0

Its signature is simple: the function takes an integer and returns an integer.

val fib: int -> int

(*** [fib n] is the [n]th Fibonacci number. *)

Its functional correctness, however, is not trivial (in particular because of
the inner function aux). Therefore, writing a specification for this function
and attaching it to its interface makes sense. We write Gospel specifications
in special comments starting with the character @. They have an attachment
mechanism similar to OCaml documentation comments (starting with the
character *). Documentation comments and Gospel specification comments
can (and should!) coexist.

13
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In most cases, the function specification consists of two parts: (a) a specific-
ation header, which lets us name the function arguments and return value so
we can mention them in the rest of the specification; (b) a specification body,
which contains a number of clauses that specify the behaviour of the function.

2.1 .1 Specifying Allowed Input Values

In the case of fib, a minimal specification can already contribute to the docu-
mentation, which implicitly assumes that 𝑛 should be positive, but does not
specify the function behaviour in that case or whether this is considered a
valid call.

There are many ways of specifying this condition on the input. We show
three of them in this example. We show a fourth one based on exceptions in
the following example in section 2.2.

forbidden values. A first way of specifying fib is to mention that one
should never call it with a negative argument. We can express this precondi-
tion with a requires clause.

val fib: int -> int

(*@ r = fib n

requires 0 <= n *)

In that case, the behaviour of fib is unspecified when 𝑛 is negative. It can
return an arbitrary integer, raise an exception, crash the program with a seg-
mentation fault, or even not terminate at all.

a more defensive version. One could also consider a more defensive
version of fib that checks that the input is valid before doing anything and
raises an exception to the user otherwise:

let fib n =

let rec aux n b a =

if n = 0 then a

else aux (n - 1) (a + b) b in

if n < 0 then invalid_arg "argument must be positive";

aux n 1 0

This time, the function is in charge of checking the precondition instead of
the caller. Although the previous specification is still valid, Gospel also
lets us specify this idiomatic pattern with a checks precondition instead of a
requires clause:

val fib: int -> int

(*@ r = fib n

checks 0 <= n *)
It is up to each proof

or test tool to
determine if this is
considered a valid

call.

The checks clauses express that a clientmay call fibwith a negative input, but
the function raises an Invalid_argument exception from the standard library
in that case.
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significant default value. Our initial implementation does return a
value even if 𝑛 is negative (it returns 0 in that case). A third possible specifica-
tion would be to expose this default value for the client to use if necessary. In Arguably, this would

be a poor design
choice in this case.

this scenario, passing a negative integer to fib is a valid call, and the caller is
guaranteed to get 0 as a return. Therefore, we need not express a precondition
but a postcondition instead. We introduce postconditions clauses with the
ensures keyword.

val fib: int -> int

(*@ r = fib n

ensures n < 0 -> r = 0 *)

This postcondition uses the implication operator ->- to state that the result is
null if the argument is negative.

2.1 .2 Specifying the Result

Now that we specified the behaviour when 𝑛 < 0, let us ensure that when 𝑛 is
non-negative, fib n indeed returns the 𝑛th Fibonacci number. Let us assume
that 𝑛 is non-negative in this section to avoid unnecessary repetitions in the
specifications.

introducing fibonacci numbers to gospel. Since Gospel has no
a priori knowledge of Fibonacci numbers, we may define it in a Gospel logic
function that follows the mathematical definition. The syntax for defining
this function is close to the one of OCaml, which makes it easy to read and
write for OCaml developers.

(*@ function rec fibonacci (n: integer) : integer =

match n with

| 0 -> 0

| 1 -> 1

| i -> fibonacci (i - 1) + fibonacci (i - 2) *)
The Gospel logic is
total, meaning one
must prove that this
definition is
well-founded. We do
not discuss the
specifics of this
process here.

We may now use this definition and state that fib indeed returns a value that
corresponds to this definition when its argument is non-negative:

val fib: int -> int

(*@ r = fib n

checks 0 <= n

ensures r = fibonacci n *)

mathematical integers and machine integers. Note that the
definition of fibonacci involves values of type integer. Gospel features
both the OCaml int type for its 63 (or 31) bits integers and a logic type
integer for mathematical arbitrary-precision integers. It defaults to arbitrary-
precision integers for most operations. In particular, the operations + and -

in the definition are defined in the Gospel standard library over the type
integer. In order to keep the specifications readable, Gospel also provides
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a coercion mechanism that implicitly promotes machine integers to mathem-
atical integers in many cases.

expressing overflows. We have established that in our specification,
the function fibonacci computes the 𝑛th Fibonacci number according to the
mathematical definition. In this context, we cannot hope the function fib (or
any other implementation, for that matter) to comply with its specification
since machine int are bounded. However, Fibonacci numbers and mathem-
atical integers are not. In fact, fib n only is the 𝑛th Fibonacci number when
the 𝑛th Fibonacci number does not exceed Int.max_int, which occurs for
𝑛 = 91 on 64 bits machines and 𝑛 = 47 on 32 bits machines. Therefore, a
correct specification of fib’s postcondition (on 64 bits machines) would be:

val fib: int -> int

(*@ r = fib n

checks 0 <= n

ensures n <= 91 -> r = fibonacci n *)

We can even use fibonacci as a source of truth to detect the overflow inde-
pendently of the architecture:

val fib: int -> int

(*@ r = fib n

checks 0 <= n

ensures fibonacci n <= Int.max_int ->

r = fibonacci n *)

2.1 .3 Rearranging the Clauses and Wrapping Up

Once again, this last specification is partial: it does not specify the value of
𝑟 when an overflow occurs, even though that would be a valid call (there is
no precondition in this specification). We can use one of the methods presen-
ted in section 2.1.1 to change it into a precondition if we wish to defer this
constraint to the client:

val fib: int -> int

(*@ r = fib n

checks 0 <= n

requires fibonacci n <= Int.max_int

ensures r = fibonacci n *)

In that case, we do not need to repeat the precondition in the postcondition:
the preconditions are always assumed in the postconditions. A fully specified
interface for fib is presented in listing 2.1.
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1 (* This function is a specification helper for fib. *)

2 (*@ function rec fibonacci (n: integer) : integer =

3 match n with

4 | 0 -> 0

5 | 1 -> 1

6 | i -> fibonacci (i - 1) + fibonacci (i - 2) *)

7

8 val fib : int -> int

9 (*** [fib n] is the [n]th Fibonacci number. *)

10 (*@ r = fib n

11 requires fibonacci n <= Int.max_int

12 checks 0 <= n

13 ensures r = fibonacci n *)

Listing 2.1: Specified Fibonacci function.

2.2 example 2: mutable queues

In this second example, we specify a polymorphic mutable container: a queue
(a.k.a. a FIFO). Specifically, let us consider the interface of the Queue presented
in listing 2.2, borrowed from the OCaml standard library.

The main challenge when specifying this interface with behavioural func-
tion contracts is that the operations over the structure modify (or create)
queues. However, the type of queues and their contents is abstract and not
visible in the interface. There are two main ways of overcoming this issue
using Gospel: models and pure projection functions.

2.2.1 Specifying Abstract Types Using Models

Models allow us to attach Gospel types to an OCaml type to describe that
type’s values in specifications further.

2.2.1 .1 The Type 'a t

To enable reasoning about the elements of a queue, we attach a model to its
type declaration:

type 'a t

(*@ model { mutable elements: 'a seq } *)

The model elements represents the mathematical sequence of elements
stored in the queue. The type 'a seq is the type of logic sequences defined in Gospel annotations

provide extra insight
and are also relevant
for documentation:
the mutability of the
type 'a t cannot be
deduced from its
OCaml declaration
alone.

the Gospel standard library. It is defined using Gospel comments and is us-
able for specifications only (it does not exist as an OCaml type). The mutable
keyword states that the elements model can change over time. Models only
exist in specifications to represent abstract types or add more information
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type 'a t

(*** The type of queues containing elements of

type ['a]. *)

exception Empty

(*** Raised when {!Queue.pop_exn} is applied to

an empty queue. *)

val create: unit -> 'a t

(*** Return a new queue, initially empty. *)

val push: 'a -> 'a t -> unit

(*** [push x q] adds the element [x] at the end

of the queue [q]. *)

val unsafe_pop: 'a t -> 'a

(*** [unsage_pop q] removes and returns the first

element in non-empty queue [q]. *)

val pop: 'a t -> 'a

(*** [pop q] removes and returns the first

element in non-empty queue [q]. *)

val pop_exn: 'a t -> 'a

(*** [pop_exn q] removes and returns the first

element in queue [q], or raises {!Empty}

if the queue is empty. *)

Listing 2.2: The Queue module interface.

to exposed types. They do not infringe on the abstraction barrier or expose
implementation details.

2.2.1 .2 Creating Queues

The first function features the creation of a queue. Its declaration and spe-It is worth
mentioning that the

specification
implicitly assumes q
to be disjoint from
every previously
allocated queue.

cification are as follows:

val create: unit -> 'a t

(*@ q = create ()

ensures q.elements = empty *)

Like for the function fib, the first line of the specification is the header: it
names the argument and return value of create in the context of this specific-
ation. The newly created queue has no elements: its elements model equals
the empty sequence, as stated by the postcondition.
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2.2.1 .3 Pushing Into the Queue

Let us now declare and specify a push operation for these queues:

val push: 'a -> 'a t -> unit

(*@ push v q

modifies q

ensures q.elements = cons v (old q.elements) *)

In this case, there is no need to name the output since it is of type unit.
The modifies clause states that the function push may mutate the contents
of q. Finally, the ensures clause introduces a postcondition that describes
the model elements of q after a call to push: the new elements extends the
old value of elements with the value v at the front. We use the keyword old

to refer to the value of an expression (here, q.elements) in the pre-state, i. e.
before the function call.

2 .2.1 .4 Various Flavours of pop

Let us now move to the functions that remove and return the first element of
a queue and illustrate three ways of handling assumptions from the client in
Gospel specifications.

exceptional version. In this version, pop_exn raises an Empty excep-
tion if its argument is an empty queue. We specify this behaviour as follows:

val pop_exn: 'a t -> 'a

(*@ v = pop_exn q

modifies q

ensures old q.elements = q.elements ++ (singleton v)

raises Empty -> q.elements = old q.elements = empty *)

We have two postconditions:

• The first one, introduced with ensures, states the post-condition that
holds whenever the function pop returns a value v.

• The second one, introduced by raises, states the exceptional postcon-
dition that holds whenever the call raises the exception Empty.

Similarly to the push case, the clause modifies indicates that this function
call may mutate q. Note that this also applies to the exceptional case, which
explains why we have stated that q is both empty and not modified in that
case.

unsafe version. Now, let us consider an unsafe variant of pop that
should only be called on a non-empty queue, leaving the responsibility of
that property to the client code. The function does not raise Empty but expects
a non-empty argument. We can thus add the following precondition to the
contract using the keyword requires:
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val pop: 'a t -> 'a

(*@ v = pop q

requires q.elements <> empty

modifies q

ensures old q.elements = q.elements ++ (singleton v) *)

defensive version. Instead of assuming the caller guarantees the pre-
condition, we can adopt amore defensive approachwhere pop raises Invalid_argument
whenever an empty queue is provided. As stated in the last section, Gospel
provides a way to declare such a behavior, using checks instead of requires:

val unsafe_pop: 'a t -> 'a

(*@ v = unsafe_pop q

checks q.elements q <> empty

modifies q

ensures old q.elements = q.elements ++ (singleton v) *)

The checks keyword means that the function itself checks the precondi-
tion q.elements <<> empty and raises Invalid_argument whenever it does
not hold. Note that q.elements is just a logical model and may not exist in
the implementation. However, the function checks a property that results in
q.elements not being empty.
Remark 1. The checks and raises clauses are similar, yet they present a major
difference: checks states that if the queue is empty, then the function raises
an exception , whereas raises states that if an exception is raised, then the
queue was originally empty.

The interface is now fully specified and reproduced in listing 2.3. However,
in the context of runtime verification, there is a potential for trouble in this
specification. Indeed, models are purely logic structures that do not exist in
the implementation. Therefore, checking conditions on these structures not
only requires a translation of the predicates from Gospel to OCaml but also
requires the ability to construct and maintain the model ourselves, which is
generally not possible. While there might be solutions to overcome this issue
(see chapter 7 for some insight about the support of models), there is also a
way to transform the specification to eliminate models overall.

2 .2.2 Specifying Abstract Types Using Pure Projections

The type for queues is abstract, so we used a model type to represent its
contents and specify it. Another solution exists if we have—or can write
and expose—a projection function in the interface. For instance, suppose the
OCaml interface for Queue also provides a function elements:Exposing such a

function is not
unusual in OCaml,

and an equivalent
one even exists in

some of the standard
library modules (e. g.

elements in
Set.S).

val elements : 'a t -> 'a list

(*** [elements q] is the list of elements contained

in [q]. *)

Unfortunately (or rather, fortunately), not all functions can be used in Gos-
pel specifications; only pure ones. In our context, pure functions are functions
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that (a) do not perform any observable writing effect on mutable data; (b) do
not raise exceptions; (c) always terminate. If these conditions are met by our
implementation of elements (they hopefully are), we can mark the function
as pure in its Gospel contract: The Gospel

type-checker (or
Ortac) does not
check whether the
function is pure.

val elements : 'a t -> 'a list

(*@ pure *)

We may now use this function in the specification and replace the model
references q.elements by functions calls elements q, and the Sequence func-
tions by the corresponding ones in List, for instance:

val push: 'a -> 'a t -> unit

(*@ push v q

modifies q

ensures elements q = v :: (old (elements q)) *)

Remark 2. When using calling List functions in Gospel contracts, we in fact
call pure functions located in the OCaml standard library. In fact, Gospel
embeds a (partially) specified version of the OCaml standard library where
functions are marked as pure when they comply with the above conditions,
e. g. the (:::) function.

Themodel elements is no longer helpful in the type specification. However,
removing the type specification altogether is impossible since it also carries
its mutability information. By default, types with no specifications are im-
mutable; and the clauses modifies q would then be invalid. When a type is
mutable but carries no model, one can add an ephemeral clause instead:

type 'a t

(*@ ephemeral *)

The resulting specification is presented in listing 2.4. By reducing the
amount of models, we improve our chances of being able to execute the spe-
cification. However, as shown in the following chapters, this is not always
sufficient (or even necessary).

2.3 example 3: union-find

In this third example, we specify an interface for a union-find data structure.
Recall that a union-find data structure (sometimes also called a disjoint-set
data structure) is a data structure that stores a partition of a set. Notable use
cases are the Kruskal minimum spanning forest algorithm, congruence clos-
ure algorithm for decision procedures in SMT solvers, or register allocation
in compilers.

This section shows a restricted version of union-find that stores partitions
of sets of the form ℕ𝑛. A more general version is presented in the Gospel
documentation [38]. However, its specification is not executable by Ortac
as it uses advanced features of Gospel (e. g. models, ghost values and ghost
arguments). In this section, we only use pure projections in the specification.
Here is the OCaml interface we want to specify:
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1 type t

2 (*** The type of union-find.

3 It stores a partition of {0, ..., n-1}, where n is

4 provided in [create]. *)

5

6 val size : t -> int

7 (*** [size t] is the number of elements in [t], i.e. the

8 argument provided to [create] during its creation. *)

9

10 val num_classes : t -> int

11 (*** [num_classes t] is the number of subsets contained

12 in [t]. *)

13

14 val create : int -> t

15 (*** [create n] is a fresh union-find of size [n]

16 representing {{0}, ..., {n-1}}. *)

17

18 val find : t -> int -> int

19 (*** [find t i] is the representative of [i] in [t]. *)

20

21 val union : t -> int -> int -> unit

22 (*** [union t i j] merges the subsets containing [i] and

23 [j] in [t]. *)

2.3.1 Specifying Effects

Most of the time, the simplest specification (and therefore an excellent way
to start writing one) consists of the set of effects provided in the interface:
which types are mutable, what functions have modifying effects, what are the
possible exceptions, etc.

2.3.1 .1 Effects on the Type t

First, look at the type of union-find t. Although we do not expose models, we
can specify that this type is mutable (in particular, union modify it in place).
Similarly to the type of queues in the previous section, we can state this using
the ephemeral keyword.

type t

(*@ ephemeral *)

Since the type is mutable, we can also specify the functions that modify it:
in this interface, only union does:Arguably, if find

performs path
compression in the
implementation, it

also modifies its
argument. However,

it does it in a
non-observable way.

val union : t -> int -> int -> unit

(*@ union t i j

modifies t *)
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2.3.1 .2 Exceptions and Pure Functions

Our functions do not raise exceptions, except for Invalid_argument, when
invalid integers are passed (integers that are outside the domain of the union-
find, i. e. not in ℕ𝑛), but we will come to that later. On the other hand, the
functions size, find, and num_classes are pure, so we can mark them and
use them in the rest of the specification.

2.3.2 Preconditions and Bound Validity

In the functions find and union, the integer arguments represent integers in
the set the union-find represents. Therefore, some sort of bound checking is
necessary.

val find : t -> int -> int

(*@ j = find t i

requires 0 <= i < size t

pure *)

val union : t -> int -> int -> unit

(*@ union t i j

checks 0 <= i < size t

checks 0 <= j < size t

modifies t *)

Note that the same predicate is repeated three times. Although it is pretty
simple, one can easily imagine the problems it would cause with more com-
plex properties. We can define a logic predicate to avoid repetitions:

(*@ predicate valid (t: t) (i: int) = 0 < i <= size t *)

val find : t -> int -> int

(*@ j = find t i

requires valid t i

pure *)

val union : t -> int -> int -> unit

(*@ union t i j

checks valid t i

checks valid t j

modifies t *)

Similarly, create only makes sense for positive sizes. We can state it using
a requires or checks clause:

val create : int -> t

(*@ t = create n

checks n > 0 *)
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2.3.3 Capturing the union Semantics in Postconditions

There are a few postconditions that we can specify using our pure functions:

• (line 6) the representatives of the unioned elements are now the same;

• (line 7) when 𝑘 is an integer in the union-find, then
– if it was in the class of 𝑖 or 𝑗, then it is now in the class of 𝑖 (and 𝑗),
– otherwise, its class remains unchanged;

• (line 13) the number of classes is not more than before the union;

• (lines 14–15) if the two elements were in different classes, then the num-
ber of classes was decremented.

val union : t -> int -> int -> unit

(*@ union t i j

modifies t

ensures find t i = find t j

ensures forall k:int.

valid t k ->

if (find (old t) k = find (old t) i

|| find (old t) k = find (old t) j)

then find t k = find t i

else find t k = find (old t) k

ensures num_classes t <= num_classes (old t)

ensures find (old t) i <> find (old t) j ->

num_classes t = num_classes (old t) - 1 *)

We can also extend the specifications for find, num_classes, and create.
The full specification is displayed in listing 2.5.

related work

Specification languages are not new. We may identify dozens of them, but
they all have different goals and constraints. For instance, some have been
designed for runtime assertion checking and are, therefore, executable, while
others focus on deductive verification and allow more expressivity. More
generally, the destination of the language is critical to the design decisions.
Gospel is agnostic of its usage; it is meant to be usable for both DV and RAC.
A second aspect is whether specifications are meant to be entirely discharged
by automated tools, which may impose a particular presentation style for
specifications.

Eiffel [31] is the first programming language to embedbehavioural contract-
based specifications. It is an object-oriented language that provides class in-
variants, methods preconditions and postconditions, and loop invariants, all
embedded in the programming language. It is designed for runtime assertion
checking: its assertions and instructions are written in the same (obviously
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executable) language. Contract violations are reported back to them when
the user enables their monitoring.

JML [7, 11, 25] is a behavioral specification language for Java which is also
executable. It is suitable for both runtime assertion checking and deductive
verification, e. g. via the OpenJML [15] project.

SPEC# [3] extends the C# programming language with support for func-
tion contracts. AsmL [4, 5], then Code Contracts [2], implement similar
yet less intrusive approaches for the .NET framework.

SPARK [8, 30] also integrates program specifications into its host language,
Ada.

The Frama-C [17] framework for the C language also provides a specific-
ation language: ACSL [6]. The specifications are not necessarily executable
and were initially designed for deductive verification. However, the E-ACSL
plugin [18, 42] aims at identifying and translating an executable subset of
ACSL for runtime assertion checking.

Another consideration on the design of specification languages is how they
treat the frame problem and how they describe the separation of arguments and
the freshness of return values. Specifications languages such as SPARK, JML,
or ACSL require explicit freshness assertions. In Gospel, however, access-
ibility predicates, disjointness and freshness assertions are always implicit
and cannot be specified at this point, although there is active work in that
direction.

Some verification tools like Viper [32], Why3 [20], and Dafny [27] also
come with their own programming language on top of their specification lan-
guage. Gospel, on the other hand, applies to a general-purpose programming
language rather than one dedicated to proof and verification. While they share
some features, Gospel must remain unintrusive and integrate into its host
language. This approach can add additional constraints; for instance, Gospel
is not more expressive than OCaml when it comes to memory abstraction
and cannot mention memory locations explicitly.

conclusion

In these examples, we showed how Gospel lets us incrementally specify a
simple function interface by adding more details and precisions as the devel-
opment continues. All the intermediary specifications make sense to Gospel,
even if they are partial, which helps to make its learning curve more gradual.
The specification style may also vary depending on the use of the module, i. e.
depending on the client to verify constraints, adopting a defensive style, or a
mix of both.

In contrast, Gospel intends to lightly and incrementally introduce ideas
taken from formalmethods into theOCaml community. For instance, Gospel
may be used in large projects to specify and verify some critical core compon-
ents while leaving other components unverified.
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1 (*@ open Sequence *)

2

3 type 'a t

4 (*@ mutable model elements: 'a sequence *)

5

6 exception Empty

7

8 val create: unit -> 'a t

9 (*@ q = create ()

10 ensures q.elements = empty *)

11

12 val push: 'a -> 'a t -> unit

13 (*@ push v q

14 modifies q

15 ensures q.elements = cons v (old q.elements) *)

16

17 val unsafe_pop: 'a t -> 'a

18 (*@ v = unsafe_pop q

19 requires q.elements <> empty

20 modifies q

21 ensures old q.elements = q.elements ++ (singleton v) *)

22

23 val pop_exn: 'a t -> 'a

24 (*@ v = pop_exn q

25 modifies q

26 ensures old q.elements = q.elements ++ (singleton v)

27 raises Empty -> q.elements = old q.elements = empty *)

28

29 val pop: 'a t -> 'a

30 (*@ v = pop q

31 checks q.elements <> empty

32 modifies q

33 ensures old q.elements = q.elements ++ (singleton v) *)

Listing 2.3: Queues specified with models.
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1 type 'a t

2 (*@ ephemeral *)

3

4 exception Empty

5

6 val elements: 'a t -> 'a list

7 (*@ pure *)

8

9 val create: unit -> 'a t

10 (*@ q = create ()

11 ensures elements q = [] *)

12

13 val push: 'a -> 'a t -> unit

14 (*@ push v q

15 modifies q

16 ensures elements q = v :: (old (elements q)) *)

17

18 val unsafe_pop: 'a t -> 'a

19 (*@ v = unsafe_pop q

20 requires elements q <> []

21 modifies q

22 ensures old elements q = (elements q) @ [v] *)

23

24 val pop_exn: 'a t -> 'a

25 (*@ v = pop_exn q

26 modifies q

27 ensures old elements q = (elements q) @ [v]

28 raises Empty -> elements q = old (elements q) = [] *)

29

30 val pop: 'a t -> 'a

31 (*@ v = pop q

32 checks elements q <> []

33 modifies q

34 ensures old elements q = (elements q) @ [v] *)

Listing 2.4: Queues specified with pure projections.
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1 type t

2 (*@ ephemeral *)

3

4 val size : t -> int

5 (*@ pure *)

6

7 (*@ predicate valid (t: t) (i: int) = 0 < i <= size t *)

8

9 val find : t -> int -> int

10 (*@ j = find t i

11 requires 0 <= i < size t

12 pure

13 ensures 0 <= j < size t *)

14

15 val num_classes : t -> int

16 (*@ c = num_classes t

17 pure

18 ensures c <= size t *)

19

20 val create : int -> t

21 (*@ t = create n

22 checks n > 0

23 ensures size t = n

24 ensures forall i:int. 0 <= i < n -> find t i = i

25 ensures num_classes t = n *)

26

27 val union : t -> int -> int -> unit

28 (*@ union t i j

29 checks 0 <= i < size t

30 checks 0 <= j < size t

31 modifies t

32 ensures find t i = find t j

33 ensures forall k:int. 0 <= k < size t ->

34 if (find (old t) k = find (old t) i

35 || find (old t) k = find (old t) j)

36 then find t k = find t i

37 else find t k = find (old t) k

38 ensures num_classes t <= num_classes (old t)

39 ensures find (old t) i <> find (old t) j

40 -> num_classes t = num_classes (old t) - 1 *)

Listing 2.5: Specified union-find interface.
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3
ORTAC: HANDL ING THE TOOL

In this chapter, we consider some OCaml module interfaces specified with
Gospel and show what Ortac does and how to apply it. Let us consider
a variant of the Fibonacci module presented in listing 2.1 where the inter-
face now exposes two functions: (a) fib is the same as presented previously;
(b) fib_all returns all the Fibonacci numbers up to its argument in an array.
We present its interface in listing 3.1.

(* This function is a specification helper. *)

(*@ function rec fibonacci (n: integer) : integer =

match n with

| 0 -> 0

| 1 -> 1

| i -> fibonacci (i - 1) + fibonacci (i - 2) *)

val fib : int -> int

(*** [fib n] is the [n]th Fibonacci number. *)

(*@ r = fib n

requires fibonacci n <= Int.max_int

checks 0 <= n

ensures r = fibonacci n *)

val fib_all : int -> int array

(*** [fib_all n] is an array containing the [n+1] first

Fibonacci numbers. *)

(*@ a = fib_all n

requires fibonacci n <= Int.max_int

checks 0 <= n

ensures Array.length a = n + 1

ensures forall i, 0 <= i <= n -> a.(i) = fibonacci i

Listing 3.1: The interface of Fibonacci augmented with fib_all.

Internally, fib is implemented by calling fib_all and returning the last Of course, fib’s
memory complexity
is suboptimal, but
this is not relevant to
the discussion in this
chapter.

value, as shown in listing 3.2.
If we aim to verify these specifications at runtime, we need a full program

that we can execute. Let us write a simple client for the Fibonacci module:

31
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let fib_all n =

let fm2 = ref 0 in

let fm1 = ref 1 in

Array.init (n + 1) (function

| 0 -> 0

| 1 -> 1

| i ->

let fi = !fm1 + !fm2 in

fm2 ::= !fm1;

fm1 ::= fi;

fi)

let fib n = (fib_all n).(n)

Listing 3.2: The implementation of Fibonacci with fib_all.

it reads an integer on the command line, passes it to fib, and prints out the
result.

let () =

Sys.argv.(1)

||> int_of_string

||> Fibonacci.fib

||> Printf.printf "%d\n"

The structure of our program is depicted in figure 3.1.

Remark 3. We chose this interactive client for educational purposes, but the
contents of the client do not matter for Ortac. Although clients may have
different verification needs (see sections 3.1.2 and 3.2 for more insight about
this), the tool can apply to arbitrary clients e. g. other libraries, servers, or
unikernels.

fibonacci.mli

fibonacci.ml

client.ml

Figure 3.1: Structure of the fib program.

Once the build system is correctly configured, we may compile and execute
it:

$ dune build

$ ./fib 10

55

Our program is now ready for instrumentation using the ortac executable
tool, the main entry point of this work. It is intended for specification writers
whowant to instrument their code as described earlier. We show how to use it
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and interpret its results in section 3.1 On the other hand, Ortac also comes as
a library intended for tool developerswhowant to extend Ortac orwrite new
tools based on Gospel. We show examples of these use-cases in section 3.2.

3.1 the ortac instrumentation tool

When using Ortac, the instrumented program has the structure depicted in
figure 3.2. The ortac tool reads interface files annotated with Gospel spe-
cifications (e. g. fibonacci.mli) and produces corresponding OCaml code
that checks them in an implementation file (fibonacci_rac.ml). It does not
modify the original implementation of the modules (fibonacci.ml). Instead,
it creates wrappers around the functions exposed in the initial modules that
verify the specification clauses. For instance, the wrappers verify the precon-
ditions, call the original functions, and check the postconditions. The newly
formed modules (fibonacci_rac.ml) have the same interface as the original
(fibonacci.mli) but overrides the exposed values with the instrumented
ones. Their interface file (fibonacci_rac.mli) is obtained by a simple copy. The generated

module may contain
more values than the
original one, but
these are only needed
for the verifications
and need not be
exposed.

In order to make the verifications and have proper error reporting, the gen-
erated code depends on ortac-runtime, a lightweight library provided with
Ortac. It contains various helpers implementing the Gospel standard lib-
rary or handling errors, for example.

fibonacci.mli

fibonacci.ml

fibonacci_rac.mli

fibonacci_rac.ml

ortac-runtime

client.ml

copy
Ortac

Provided by the user Automatic generation
Automatically generated Runtime dependency
Provided with Ortac

Figure 3.2: Structure of the instrumented fib program.

Remark 4. Ortac never reads the implementation files at any point (either to
get additional information or tomodify implementations) and always respects
the abstraction barrier of the interfaces of the modules.

Since Ortac creates wrappers instead of modifying the existing code, it
does not check the specifications of the calls internal to the module. The
figure 3.3 shows the call paths in our example. Note how the fib instrumented
function never calls the instrumented fib_all function: it always calls the
uninstrumented one.

This behaviour aligns with how interfaces conceptually fit the code struc-
ture in OCaml: internal calls do not ‘go through’ the interface. For instance,
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let fib_all =

.....

let fib n =

.....

fib_all n

.....

Fibonacci.ml

let fib_all n =

.....

Fibonacci.fib_all n

.....

let fib n =

.....

Fibonacci.fib n

.....

Fibonacci_rac.ml

Provided by the user
Automatically generated

Runtime dependency

Figure 3.3: Internal calls in the Fibonacci module.

(a) one can call internal functionswithout exposing them at all; (b) evenwhen
exposed, their type might be different internally than the one declared in the
interface.

a note on verifying internal calls. Verifying the internals call
would require reading and modifying (or creating a modified copy) the im-
plementation files to replace the calls with calls to instrumented versions.
Implementing this would be challenging.

First, it is not a simple syntactic operation since one can use the same sym-
bol for different values: typing is necessary for name resolution. Currently,
Ortac does not need typed implementation files since it does not read them.
On the technical front, implementing this is challenging. On the one hand,
using the outcome of the OCaml compiler is not straightforward as it re-
quires parsing the compilation artefacts and plugging Ortac in the middle
of the compilation chain (rather than a preprocessor right now). On the other
hand, re-implementing OCaml typing independently (or extracting it from
the compiler sources) is daunting and hard to maintain.

Regardless of the technical aspects of implementing this, checking the in-
ternal calls only makes sense if the internal type is compatible with the spe-
cification type. In that case, Ortac would have to ignore some of the internal
calls, which we believe hurt the clarity of its results.

Example 1. Consider the following interface:

val id : int -> int

(*@ y = id x

ensures x + 1 = y + 1 *)

implemented with let id x = x. One can call this function id intern-
ally on any type (in particular, not integers), but its specification as-
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sumes integer values. For such internal calls, there is no meaningful
specification to check.

3.1 .1 Usage

The tool expects a positional argument: the filename of an OCaml interface
file (a .mli file) annotated with Gospel specifications. It outputs the instru-
mented code (a .ml file) on the standard output or in a file provided with the
-o argument.

$ ortac fibonacci.mli > fibonacci_rac.ml

$ ortac fibonacci.mli -o fibonacci_rac.ml

static checks failures. At this stage, Ortac (a) assumes that the in-
terface file and its corresponding implementation file (if any) are accepted by
the OCaml compiler; (b) checks that the specifications are well-formed and
reports the same errors as gospel check otherwise; (c) checks that the specific-
ations are executable and emits warnings otherwise. For instance, when fed
with the interface of queues specified with models (see listing 2.3), Ortac
emits a series of warnings since these models are not supported.

$ ortac queue_models.mli -o queues_models_rac.ml

File "queue_models.mli", line 4, characters 19-39:

Warning: the model elements attached to the type t is not

supported.

File "queue_models.mli", line 10, characters 13-30:

Warning: the predicate q.elements = empty references the model

elements, which is not supported. It will not be checked.

File "queue_models.mli", line 15, characters 13-48:

Warning: the predicate q.elements = cons v (old q.elements)

references the model elements, which is not supported. It will

not be checked.

.....

Even if the specification is not fully executable by Ortac, it still instruments
the code to check as much as possible. For instance, although it cannot check
any clause involving elements, it will still check for unexpected exceptions
raised by the functions.

Ortac does not create the corresponding interface file itself. Since the
instrumented code has the same signature, usersmay do it trivially by copying
the original one.

$ cp fibonacci.mli fibonacci_rac.mli
In some cases where
types are exposed,
users may need to
add type aliases
manually signal that
the types in the
original and the
instrumented
modules are the
same.

Now that we have an instrumented version of the Fibonacci module, we
may reuse our client and replace it with the Fibonacci_rac module to check
the specifications at runtime:
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let () =

Sys.argv.(1)

||> int_of_string

||> Fibonacci_rac .fib

||> Printf.printf "%d\n"

The project now has the structure presented in figure 3.2. We can build it with
no modification to the build system parameters.

$ dune build

When the specifications are satisfied, the instrumented code provides the
same result as the original one: The verifications, however, are not cost-free:
one may notice a performance impact when using the instrumented module.

$ ./fib 10

55

However, when a specification is unsatisfied, the instrumented code stops the
program and reports the violations to the user. Here are a few examples of
error messages provided by the instrumented code.

precondition and postcondition violation. Let us start with
a faulty call to fib, i. e. a call that violates the function’s precondition. If
we pick a large enough argument 𝑛, then the 𝑛th Fibonacci number exceeds
Int.max_int. Ortac implements Gospel integers with arbitrary precision
integers using the zarith library, which lets it detect integer overflows:

$ ./fib 4242

File "fibonacci.mli", lines 8-13, characters 0-30:

Runtime error when executing fib 4242:

- the precondition

fibonacci 4242 <<= Int.max_int

did not hold.

The error message provides the following information: (a) the location
of the specification that was violated; (b) the faulty call, with its arguments
when Ortac inferred a way to print them (see chapter 6 for more details);
(c) the nature of the failures—here, a predicate did not hold—; (d) the faultyWhen Ortac

cannot print the
arguments, it uses

the names present in
the specification.

clauses—there is only one here, but all the failures are reportedwhenmultiple
clauses are violated.

Remark 5. Unfortunately, there is no way of providing the location of the caller
instead of the callee in the error message without modifying the client code.
It is, however, still possible to retrieve this information by enabling OCaml’s
backtrace printing.

unexpected and invalid exceptions. Recall that functions can-
not raise exceptions unless specified otherwise with a raises clause. Ortac
catches unexpected exceptions and reports them to the user. For instance, if
our function fib was to raise a Failure exception, it would be reported as
follows:
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$ ./fib 0

File "fibonacci.mli", lines 8-13, characters 0-30:

Runtime error when executing fib 0:

- the call raised an unlisted exception:

Failure.

When an exceptional postcondition is associated with the exception, the in-
strumented code also checks it. If the exception is correct with respect to the
specification, it is re-raised as if the code was not instrumented.

failure to check a specification. Users may encounter reports
related to the behaviour of Ortac-instrumented code when it fails to execute
the specification, i. e. when its execution itself raises an exception. When that
happens, the failure is reported to the user, but it does not stop the execution
of the program. Indeed, the instrumented code could not verify the clause, so
we cannot deduce anything from it at this point: it may or may not hold. In
other words, it is treated as a warning.

$ ./fib 424242

File "fibonacci.mli", lines 8-13, characters 0-30:

Warnings when executing fib 424242:

- the evaluation of the precondition

fibonacci 424242 <<= Int.max_int

raised an exception:

Stack_overflow.

It could not be checked.

- the evaluation of the postcondition

3202736562209518488 = fibonacci 424242

raised an exception:

Stack_overflow.

It could not be checked.

3202736562209518488

The exceptions raised by the verifications themselves are discussed in more
detail in section 6.3.1.

Remark 6. The definition provided for fibonacci has terrible performances.
It is fine: specifications should be clear, simple and as close as possible to
the properties they translate. In Ortac, we try not to encourage users to
care about the efficiency of the definitions. Instead, we automatically gener- The automatic

memoization can be
disabled with the
---no-memo option.

ate memoized versions of user-provided recursive functions. Therefore, the
execution of fib 100 terminates instantly.

defensive strategy not enforced. When the specification has some
defensive preconditions (checks clauses), then the instrumentation checks
that the function indeed raises Invalid_argument if such a precondition does
not hold:

$ ./fib -10
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File "fibonacci.mli", lines 8-13, characters 0-30:

Runtime error when executing fib -10:

- the evaluation of the precondition

fibonacci 424242 <<= Int.max_int

raised an exception:

Stack_overflow.

It could not be checked.

- the checks precondition

0 <<= -10

did not hold.

The function should have raised Invalid_argument.

The first message is a warning concerning the requires precondition, as we
discussed in the last paragraph: when executed with negative input, it indeed
overflows the stack. The second message is about the checks precondition
violation.

The instrumentation also checks for false positives and reports if the func-
tion incorrectly raises Invalid_argument. For instance, if fib was to raise
Invalid_argumentwhen provided the input 0, the user would get the follow-
ing message:

$ ./fib 0

File "fibonacci.mli", lines 8-13, characters 0-30:

Runtime error when executing fib 0:

- the call raised Invalid_argument,

but none of the checks preconditions

- 0 <<= 0

were violated.

You can read more about the instrumentation of defensive preconditions in
section 6.3.2.2.

3.1 .2 Checking Mode

By default, the instrumentation verifies as much of the specification as Ortac
is able to translate. This is usually a good default when developing software
with Gospel and Ortac. However, there are cases where some verifications
are better disabled depending on the performance requirements or the use
of the instrumented modules. Therefore, Ortac users may choose amongst
multiple verification modes corresponding to different instrumentation levels.
The mode is given using the ---mode Command Line Interface (CLI) argument,
or mode option in .ortac.

$ ortac --mode=<mode>

no checks. The mode nop is trivial: it does not perform any verification
at all. The ‘instrumented’ module re-exposes the original module without
modifications. Although the relevance of this mode seems questionable, there
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are two reasons why this mode is available: (a) it lets the user control the
executability of their specification, as Ortac still issues warnings; (b) from
a development workflow perspective, the developer can keep referring to
the *_rac modules in the client code, regardless of whether they want the
verifications enabled or not, rather than having to change these references in
the code.

exceptions only. The mode exceptions only monitors the exceptions
raised by the instrumented functions. Optionally (themode is then exceptions-
cond), it can check that the associated conditions hold when they exist. It is
a relatively lightweight instrumentation, and results are generally easy to in-
terpret. These verifications help diagnose implementations using exceptions
since the OCaml type-checker brings few static guarantees regarding excep-
tions. Not only do exceptions not appear in the function’s types, but they can See [28] for an

attempt at including
exceptions in OCaml
types.

also escape the scope where they are defined, even if when are not declared
in the module interfaces.

Remark 7. When the verification of the associated conditions is enabled, it
would be naive to consider that ‘it only costs something when the function
raises an exception’. Indeed, we show in chapter 5 and section 6.3.2.2 how the
old primitives or the checks clauses will trigger (potentially costly) compu-
tations regardless.

preconditions only. In the mode requires, Ortac only monitors the
functions preconditions in requires clauses and ignores the rest. It is particu-
larly interesting for library developers, as the correction obligation created by
these conditions relies on the caller, i. e. the library client. Once their libraries
are appropriately tested (or proved correct using another tool!), developers
can release their libraries with those preconditions monitored and ensure that
the users correctly use them.

postconditions and invariants. On the other hand, one can also
enable the monitoring of the obligations created for the callee, i. e. the instru-
mented module, with the mode ensures. It turns all the tests on: precondi-
tions, postconditions, exceptions, type invariants at functions entry and exit,
etc.

toggling the verifications. The user decides the level of checks
statically when they invoke the ortac executable. The mode defines the kind
of instrumentation that Ortac generates and the verifications embedded in
the final executable. However, regardless of the level of verifications, users
can toggle these verifications dynamically (a) before running each function,
ortac-runtime reads the ORTAC_DISABLE environment variable and turns off
the tests when it is set to a truthy value; (b) at any point during the execu-
tion, users may toggle the verifications by sending the SIGUSR1 POSIX signal
to the instrumented process to enable the tests, or SIGUSR2 to disable them.
When using this feature, the verifications are not simply silenced; they are
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fully disabled, meaning they do not cost any resources besides checking the
environment variable.

Dynamically toggling the tests or monitoring for specific runs or specific
parts of the execution is interesting, particularly in regardwith the performance-
guarantees tradeoff. As mentioned earlier, although Ortac has some optim-
izations implemented, the cost of verifications can still be high, and having all
the verifications running at all times may not be feasible.

For instance, it is often interesting to run functional tests (with verifica-
tions enabled) and performance tests (with verifications disabled) during the
same feedback loop. In that case, setting the environment variable is enough
to change the context instead of recompiling the executable. Another possible
use case is when only some operations are critical and should be monitored,
but they are not segregated in the codebase and cannot be instrumented sep-
arately. One can then toggle the tests before and after this specific operation
from the client using an environment variable or an external process using
the signals.

3.2 using the ortac library: other frontends

Thus far, we presented the default instrumentation provided by the ortac

executable, which stops the program by raising an exception and displays a
(hopefully helpful) error message as soon as a specification violation is de-
tected. Although it is sometimes possible to catch this Ortac_runtime.Error
exception and silence the error message to handle it differently, we find this
default behaviour is too specialized and prevents other exciting use cases.
Therefore, Ortac also provides a library that lets developers customize the
instrumentation to implement different verification policies. These alternative
instrumentations (we call them frontends) can then be compiled into plugins
for the ortac executable. The user provides them to ortac through a CLI

argument or an option of the same name in .ortac.

$ ortac --frontend=<frontend>

3.2.1 Automated Testing, a.k.a. Fuzzing

Using RAC for testing during the development phase of the software is its
most obvious use case. Ortac automates the assertion checking. However,
the developer is still responsible for organizing the testing suites and writing
relevant test cases that expose potential misbehaviours or trigger edge cases.
Organizing the tests often consists in writing a decent amount of ‘boilerplate
code’ using a test framework, and finding edge cases is a tedious task.It is easier to find

edge cases when the
implementation is
known or when a

bug is already
detected, but testing
is much more about
discovering bugs.

The goal of the monolith frontend is to fully automate these extra steps
in the context of fuzz testing (or fuzzing), so developers only have to write
down the properties that the implementation should satisfy, and the rest is
automated. The frontend presented in this section is extracted from joint work
with Nicolas Osborne, whom I supervised during his internship.
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fuzzing and afl-fuzz. Fuzz testing is a group of techniques aiming
at automating the test case elaboration phase. It consists in feeding the pro-
gram under test with randomly generated data and observing crashes. In this
frontend, we use the afl+++ [21] fuzzer to generate this data. It is a grey-box afl+++ is the

successor—and a
fork—of the
afl-fuzz

fuzzer[44].

fuzzer: it requires instrumented compiled code (the +afl compiler variant
provides such instrumentation) to maximize the exploration of the universe
of possible executions. It is mutation-based: it initially generates random data,
then mutates it to explore different execution paths at each iteration and try
to find buggy ones.

monolith. The fuzzer feeds the program under test with the bytes it
generates and observes program crashes. Some ‘glue’ is needed to interface
it to the OCaml libraries under tests: they require more—or differently—
structured data and are not designed to stop the program (tests are!). The
Monolith[36, 37] library is a model-based testing framework that does just
that. Other testing frameworks interface OCaml tests with the Afl generator,
such as Crowbar [19]. We did not identify any obstacle to writing a similar
frontend for Crowbar in place of Monolith. Monolith requires as input
two modules with the same signature, a ‘reference’ and a ‘candidate’, along
with a dynamic representation of that signature. It processes the afl bytes
to generate an execution scenario, i. e. a list of function calls and along with
their arguments that are possibly chained. It then executes this scenario for
both the reference and the candidate and crashes when it sees discrepancies
so that the fuzzer can see and report the failure.

The monolith frontend for Ortac leverages the typing information to gen-
erate the dynamic representations of the signature. It then uses the original
implementation as the candidate and the wrapper generated by ortac as the
reference, containing the expected behaviour information. The wrapper has
to be slightly modified though: since monolith will feed random data to the
tested interface, some of this data will likely not comply with the precondi-
tions. Precondition violations, therefore, should not be reported as errors.
Instead, they are reported to monolith (and in turn to afl) as ‘bad input’,
letting them know that the corresponding execution path is not relevant and
should be ignored in the subsequent tests.

what is tested. In summary, this frontend tests that the instrumented
and original codes behave the same, which is the case when the program is
correct. It reports discrepancies between the two; three kinds of differences
may appear:

• The original module terminates normally (i. e. not with an exception),
but the instrumented module raises an exception. In that case, the in-
strumented module caught a specification violation and reported it: if
Ortac is correct (we hope it is!), we likely found a bug in our code.

• The original module raises an exception, but the instrumented module
exits with a value. This case should not happen and shows that the
code generated by Ortac is incorrect.
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• The original module and the instrumented one both return values, but
they are different. Again, the Ortac instrumentation is faulty in that
case.

These last two cases should never occur in released versions of Ortac. It was,
however, useful to test Ortac itself during its development stages.

The frontend generates a full program ready to be executed as a standalone
executable—in that case, it will use fully random data—or via the fuzzer for
better results.

# random mode

$ ./main

# fuzzing mode with afl

$ afl+++ -i inputs/ -o outputs/ -- ./main

In both cases, Monolith provides inputs to the annotated functions and re-
ports errors in the directory outputs/crashes as replayable scenarii. The user
can replay the scenario by passing the corresponding file name to the gener-
ated program as an argument to get more information about misbehaviour.
This way, the user has access to—and can replay—the failure scenario and all
the errors reported by ortac on these specific inputs, highlighting the broken
specifications.

$ ./main outputs/crashes/<filename>

File "fibonacci.mli", lines 8-13, characters 0-30:

Runtime error when executing fib 4242:

- the precondition

fibonacci 4242 <<= Int.max_int

did not hold.

limitations. The experiments conducted so far have been underwhelm-
ing. Fuzzing is famously hard to predict: it relies on the fuzzer’s ability to
analyze the program structure correctly and generate the relevant test cases.
Mutation-based fuzzers generally perform [29]mildly at this task. We identify
three reasons why fuzzing is made even harder in the case of this Ortac fron-
tend:

• The instrumentation we generate can be oversized and is branching by
nature, which grows the space of execution paths very quickly.

• The cost of this instrumentation is sometimes important, which reduces
the number of execution cycles afl can perform in a given timeframe
and thus reduces its ability to test data mutations.

• When the specification contains preconditions, it can be tricky (or im-
possible) for the pseudo-random generators to produce compliant data,
and most of the executions triggered by afl end up being marked as
non-significant. One solution would be to let the user provide their
own (specification-compliant) generators manually rather than using
entirely random ones, but this is not currently available in Ortac.
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More recently, Nicolas Osborne and Samuel Hym have been developing
another automated testing frontend for Ortac named qcheck-stm. It relies
on QCheck [16], a property-based testing framework inspired by Haskell’s
Quickcheck [13].

3.2.2 Monitoring

Another interesting derived use-case of the instrumentations is the use of RAC

to monitor long-running applications (e. g. servers) and provide reports on
their execution.

On top of reporting specification violations, it reports the ordinary events One could write a
very similar frontend
to aggregate statistics
about the execution
and expose them in a
Prometheus
server, for instance.

of the execution, particularly function calls, their arguments and return values,
and successful verifications. When a specification appears violated, it logs the
events (with a different logging level) rather than stopping the program.

These reports are meant to be aggregated in a file for further inspection
after the end of the execution (or the failing verifications). Users can easily
customize the log format by programming it in the client code.

The results provided by this frontend should be treatedwith caution. When
multiple violations are reported, they cannot be considered independently:
once the program fails once, the subsequent execution as a whole is faulty to
the specification.

related work

wrappers and internal calls verifications. In section 3.1, We
discussed why Ortac does not verify internal function calls. However, many
existing tools [14, 30, 41] do provide this feature. The main difference lies in
the specification and host languages and their design choices. The OCaml
language has a strong concept of abstraction associated with the interfaces,
which is also applied by Gospel (and therefore Ortac) by specifying the
interfaces rather than the implementations. Instead, ACSL, JML or SPARK
specifications are much closer to the implementation, both by their locations—
they are located in the implementation—and their constructs—some even
feature loop invariants, local assertions, or code locations. For these tools,
instrumenting the original code is a much more reasonable option that also
gives them the ability to check finer properties if they need to (e. g. type
invariants inside function bodies or internal calls)

partial verifications. The idea of providing different levels of in-
strumentation (see section 3.1.2) for different use-cases or stages of the de-
velopment already existed in the Design by Contract™ approach presented
through and implemented by Eiffel [31]. The RAC tool provided by Open-
JML provides options to turn off some checks but based on different cri-
teria [14]. For instance, one relies on OpenJML being able to distinguish
internal calls from external ones and turns off the verifications for internal
calls. E-ACSL provides a script that generates both an instrumented and un-
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instrumented version but does not allow more granularity [41]. In any case,
none of these tools can dynamically turn the verifications on or off at runtime.

monitoring mode. Both E-ACSL and OpenJML have a keep-going

option that lets the program run even if a violation occurs, but they do not
provide a complete trace log with function calls and successful verifications.







4
SETT ING UP THE WORKBENCH : MICROSPEL , A TOY
LANGUAGE

In the following chapters, we will dive into the transformations that Ortac
operates to correctly identify the executable parts of a Gospel specification
and produce OCaml code that checks them at runtime.

Ortac aims at covering as much of the OCaml language as possible
and relies on external libraries, e. g. ppxlib to manipulate the OCaml AST.
Therefore, completely formalizing and proving it would be a daunting task
with questionable relevance. We also hope that this work can apply to other Gospel, Ortac,

and OCaml itself
are rapidly moving
targets that are
expected to keep
evolving in the
upcoming years.

runtime assertion checkers for other languages, and thus prefer to simplify our
approach by modeling Ortac’s behaviour using a more abstract language.

In this chapter, we introduce Microspel, a simple specification language
attached to black-box programs to model the behaviour of imperative inter-
faces annotated with logic contracts. We will later use this language to form-
alize and prove the instrumentation that Ortac produces. We believe it is
generic enough to enable detailed reasoning about the semantics andmemory
models of OCaml and Gospel. We use it in the following chapters to de-
scribe some of the instrumentation techniques implemented in Ortac in a
way that is generalisable to other programming languages where similar is-
sues arise.

4.1 programs

Let us set up the context for Microspel specifications. We want to consider
programs that:

• can read data and perform side-effects on their environment;

• can have non-deterministic behaviour;

• do not expose their implementation, and only allow observing the in-
puts and outputs of its executions;

4.1 .1 Program Values and Program States

Programs operate via effects (i. e. reading orwriting) on program states 𝑆during
their execution. This section defines program values and states.

47
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4.1 .1 .1 Program Values

The program values 𝑣 handled by our language can be either integers 𝑛 or
addresses 𝑎.

𝑣 ∶∶= 𝑛 integer
| 𝑎 address

The addresses point to locations in a memory that depends on the program
state.

4.1 .1 .2 Program States

The program states are the execution environment of the program. They
consist of variable bindings that associate variables to values (function 𝑉),
andmemory bindings that associatememory addresses to sequences of values
that represent arrays or tuples (function 𝑀).

𝑉 ∶∶= 𝑥 ↦ 𝑣
𝑀 ∶∶= 𝑎 ↦ [𝑣, … , 𝑣]
𝑆 ∶∶= 𝑉 × 𝑀

These functions are partial (not all variables and addresses are bound in aOne could consider
that these functions
are total, but return
garbage outside their

domain. This
distinction is not

relevant to us, as we
will ensure memory
access is always safe.

program state); we note 𝑑𝑜𝑚(𝑉) (resp. 𝑑𝑜𝑚(𝑀)) their domain, i. e. the set of
variables (resp. addresses) where they are defined.
Notation 1. For the sake of conciseness, we always assume the notation 𝑆 =
(𝑉, 𝑀) in the rest of this thesis, which means 𝑉 (resp. 𝑉′, resp. 𝑉1) is the
variable function associated to the state 𝑆 (resp. 𝑆′, resp. 𝑆1).

Example 2 (Simple program state).The state𝑆0 contains three variables:
(a) the variable 𝑥 is bound to an integerwhich value is 0; (b) the variable
𝑦 is bound to an integer array of size 3; (c) the variable 𝑧 is bound to a
tuple of size 5 containing both integers and integer arrays.

𝑉0 ∶ 𝑥 ↦ 0
𝑦 ↦ 𝑎𝑦

𝑧 ↦ 𝑎𝑧

𝑀0 ∶ 𝑎𝑦 ↦ [1, 3, 4]
𝑎𝑧 ↦ [5, 𝑎0, 𝑎1, 7, 4]
𝑎0 ↦ [0, 0, 0]
𝑎1 ↦ [1, 1, 1]

In the graphical representation, we ignore addresses, and we replace
them with arrow pointers, as the addresses themselves are irrelevant
to the understanding of the state structure.

𝑥 ↦ 0

1 3 4𝑦

5 7 4𝑧

0 0 0 1 1 1
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Note that states may also contain aliased values, i. e. distinct pointers values
that point to the same address in memory, as shown in the following example.

Example 3 (States with aliases). The state 𝑆1 binds a single variable 𝑥
to a tuple containing aliases.

2 3 0 8 3𝑥

0 0 0

Notation 2. For the sake of clarity, we will only show states using their graph-
ical representation in the following from now on.

state inclusion. Let us define a partial order over program states for
inclusion. It is useful to later describe the semantics of Microspel specific-
ations. We say that 𝑆0 is included in 𝑆1 whenever all the bindings in 𝑆0 are
also in 𝑆1.

Definition 1 (State inclusion). Let 𝑆0 and 𝑆1 be two states. 𝑆0 is included in
𝑆1, and we note 𝑆0 ⊑ 𝑆1, when:

(a) 𝑉0 is included in 𝑉1 (we note 𝑉0 ⊑𝑉 𝑉1 ): for all variables 𝑥 in 𝑑𝑜𝑚(𝑉0),
we have 𝑥 ∈ 𝑑𝑜𝑚(𝑉1) and 𝑉0(𝑥) = 𝑉1(𝑥);

(b) 𝑀0 is included in 𝑀1 (we note 𝑀0 ⊑𝑀)𝑀1): for all addresses 𝑎 in
𝑑𝑜𝑚(𝑀0), we have 𝑎 ∈ 𝑑𝑜𝑚(𝑀1) and 𝑀0(𝑎) = 𝑀1(𝑎).

well-formed states. Not all states—and this is especially relevant for
initial states—are valid states for evaluating programs. A program state iswell
formed when its variables and memory do not contain dangling addresses.
In other words, all addresses point to well-defined memory locations.

Definition 2 (Well-formed program states). A program state (𝑉, 𝑀) is well
formed when:

(a) for all variable 𝑥 such that 𝑉(𝑥) = 𝑎, we have 𝑎 ∈ 𝑑𝑜𝑚(𝑀);

(b) for all address 𝑎 such that 𝑀(𝑎) = [𝑣0, 𝑣1, … , 𝑣𝑛−1], and for all 𝑣𝑖 that is
an address, we have 𝑣𝑖 ∈ 𝑑𝑜𝑚(𝑀).

We note 𝑤𝑓 (𝑆) when 𝑆 is well formed. The notation 𝑤𝑓 (_) will also be used
for other good formation definitions, but the context should always make the
disambiguation immediate.

This definition is consistent with the guarantees provided by the OCaml There are always
ways to trick the type
system, e. g. using
the Obj module or
some unsafe_*
functions for the
standard library, or
even C bindings.

type system, which ensures that all pointers in memory are initialized before
being accessed.
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4.1 .2 Programs

A program 𝑝 is a relation between two states, noted 𝑝 . An execution of 𝑝 is
noted 𝑆 𝑝 𝑆′. In this context, we refer to 𝑆 as the pre-state of the execution and
𝑆′ as the post-state of the execution.

Programs implementations details are not relevant in our model, and this
definition lets us abstract away from it. We ensure that our model language
does not let us inspect the program implementation, since Ortac also has
this design constraint.

Example 4 (Counter increment). The program 𝑝𝑖𝑛𝑐𝑟 increments the
value contained in the variable 𝑥.

𝑆 𝑝𝑖𝑛𝑐𝑟 𝑆′ ⟹ ∃𝑛.𝑉(𝑥) = 𝑛 ∧ 𝑉′(𝑥) = 𝑛 + 1

The following shows a sample execution of 𝑝𝑖𝑛𝑐𝑟:

𝑥 ↦ 3
𝑝𝑖𝑛𝑐𝑟 𝑥 ↦ 4

Example 5 (Array sorting). The program 𝑝𝑠𝑜𝑟𝑡 sorts the array bound to
the variable 𝑥 in-place according to an 𝑖𝑠_𝑠𝑜𝑟𝑡𝑒𝑑 predicate.

𝑆 𝑝𝑠𝑜𝑟𝑡 𝑆′ ⟹ ∃𝑎. 𝑉(𝑥) = 𝑉′(𝑥) = 𝑎 ∧
𝑖𝑠_𝑠𝑜𝑟𝑡𝑒𝑑(𝑀′(𝑎)) ∧
𝑖𝑠_𝑝𝑒𝑟𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛(𝑀′(𝑎), 𝑀(𝑎))

Note that defining programs as relations between states—rather than func-
tions from states to states—does not prevent a program from associating mul-
tiple post-states to the same pre-state. Therefore, this semantics accounts for
possibly non-deterministic programs.

Example 6 (Greater array). The program 𝑝𝑔𝑟𝑒𝑎𝑡𝑒𝑟 replaces the cells in
the integer array 𝑥 with greater values.

𝑆
𝑝𝑔𝑟𝑒𝑎𝑡𝑒𝑟 𝑆′ ⟹ ∃𝑎, 𝑛0, 𝑛′

0, … , 𝑛𝑛−1, 𝑛′
𝑛−1.

𝑉(𝑥) = 𝑉′(𝑥) = 𝑎 ∧
𝑀(𝑎) = [𝑛0, … , 𝑛𝑛−1] ∧
𝑀′(𝑎) = [𝑛′

0, … , 𝑛′
𝑛−1] ∧

∀𝑖 ∈ ℕ𝑛.𝑛𝑖 ≤ 𝑛′
𝑖

The two following executions share the same initial state and have dif-
ferent post-states, but are both valid.

2 3 0 8 3𝑥 𝑝𝑖𝑛𝑐𝑟 3 3 0 8 3𝑥

2 3 0 8 3𝑥 𝑝𝑖𝑛𝑐𝑟 3 5 0 8 19𝑥
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Remark 8. The examples 4 to 6 define classes of programs, rather than single
programs, as their definitions do not specify the program effects outside of 𝑥.

For instance, the following execution is also valid for a program 𝑝𝑖𝑛𝑐𝑟. Be-
sides modifying 𝑥, it creates a variable 𝑦 and modifies 𝑧’s contents:

𝑥 ↦ 0

2 3 0 8 3𝑧

0 0 0

𝑝𝑖𝑛𝑐𝑟

1 3 4𝑦

𝑥 ↦ 1

2 3 0 8 3𝑧

0 4 0 0 0

Note that 𝑝𝑖𝑛𝑐𝑟 may or may not modify the contents of 𝑧, and it can even
remove or add new bindings in the program state, as it does in this example.

well-formed programs. Programs are well-formed, when they main-
tain the good formation of states.

Definition 3 (Well-formed programs). A program 𝑝 is well formed (we write
𝑤𝑓 (𝑝)) when, for all states 𝑆 and 𝑆′ such that 𝑤𝑓 (𝑆) and 𝑆 𝑝 𝑆′, we have
𝑤𝑓 (𝑆′).

4 .2 program specifications

A program specification 𝑠𝑝 is made of four parts: (a) variable declarations that
define the program domain; (b) a subset of these variables that the program
may modify during its execution; (c) additional identifiers introduced by
copying the result of terms evaluation before the program starts; (d) a predicate
that the program must satisfy after its execution, i. e. a post-condition. The predicate 𝑃 may

use identifiers from
both a and c.𝑠𝑝 ∶∶= domain 𝑥:𝜏, 𝑥:𝜏, …, 𝑥:𝜏;

modifies 𝑥, 𝑥, …, 𝑥;
let 𝑥, 𝑥, …, 𝑥 = copy (𝑡, 𝑡, …, 𝑡) in

ensures 𝑃
Microspel does not differentiate program arguments, return values, or

global variables; all of these are part of the program’s domain and are treated
the same.

In the following, we describe in more details the components of these spe-
cifications.
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4.2.1 Types

The types appearing in the domain specification (a) reflect those of the data
manipulated by the program, i. e. they can be an integer, a homogeneous
array—i. e. containing a single type of values—or a heterogeneous tuple.

𝜏 ∶∶= int integer
| 𝜏 array array
| 𝜏 * … * 𝜏 tuple

4.2.2 Terms

The purpose of terms is to read program states in the logic space. They can
appear in the post-condition (d) to express computations about the program
states, or in the additional bindings (c) to save computations before the pro-
gram execution.

Terms can be integer literals, variables, basic arithmetic, and array and tuple
accessors. They also feature the specific primitive old that refers to the pre-Similarly to OCaml,

this language does
not allow any direct

manipulation of
memory addresses in

its terms.

state value of a term. Terms only feature read-only constructs, and modifying
program states from the specifications is not allowed.

𝑡 ∶∶= 𝑛 integer literal
| 𝑥 variable
| 𝑡 + 𝑡 | 𝑡 - 𝑡 basic arithmetic
| 𝑡[𝑡] array getter
| length 𝑡 array length
| 𝑡.𝑛 tuple getter
| old 𝑡 prestate reference

4.2.3 Predicates

The purpose of predicates is to express properties about the program states.
They are the predicate of the first-order logic with bounded quantifications
over integers. They provide Boolean constants, logic negation, logic conjunc-
tion and disjunction, bounded existential and universal quantifiers over in-
tegers, as well as an equality predicate over terms.

We use the equality
symbol === in

specifications to
differentiate from the

mathematical
equality = we use in

formulas. The
meaning of === is

described in
section 4.3.3.

𝑃 ∶∶= true | false constants
| not 𝑝 negation
| 𝑡 === 𝑡 equality
| 𝑃 //\ 𝑃 conjunction
| 𝑃 \\/ 𝑃 disjunction
| forall 𝑥, 𝑡 <<= 𝑥 < 𝑡 -> 𝑃 universal
| exists 𝑥, 𝑡 <<= 𝑥 < 𝑡 //\ 𝑃 existential
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4.2.4 Well-formed Specifications

For specifications to bewell formed, their componentsmust complywith basic
typing rules.

well-typed terms. Terms—whether they appear in copies or in predicates—
should be well typed. We introduce a typing judgment Γ ⊢ 𝑡 ∶ 𝜏 meaning
that 𝑡 has type 𝜏 in the typing environment Γ, which associates variables to
types. The inference rules for this judgment are standard and should follow
intuition; they are available in figure 4.1.

Γ ⊢ 𝑛 ∶ int
(Ty-Int)

Γ(𝑥) = 𝜏
Γ ⊢ 𝑥 ∶ 𝜏

(Ty-Var)

Γ ⊢ 𝑡 ∶ 𝜏1 × 𝜏2 × … × 𝜏𝑛 0 ≤ 𝑖 < 𝑛
Γ ⊢ 𝑡.𝑖 ∶ 𝜏𝑖

(Ty-Pi)

Γ ⊢ 𝑡1 ∶ 𝜏 array Γ ⊢ 𝑡2 ∶ int
Γ ⊢ 𝑡1[𝑡2] ∶ 𝜏

(Ty-Get)

Γ ⊢ 𝑡 ∶ 𝜏 array

Γ ⊢ length 𝑡 ∶ int
(Ty-Length)

Γ ⊢ 𝑡 ∶ 𝜏
Γ ⊢ old 𝑡 ∶ 𝜏

(Ty-Old)

Figure 4.1: Typing rules for terms.

These rules make the typing relation a deterministic relation over terms:
there is at most one type associated to a term in a given typing environment.

Lemma 1 (Terms typing is deterministic). Let Γ be a typing environment, 𝑡 a
term, and 𝜏 and 𝜏′ two types.
If Γ ⊢ 𝑡 ∶ 𝜏 and Γ ⊢ 𝑡 ∶ 𝜏′, then 𝜏 = 𝜏′.

Proof. By induction over 𝑡.

well-typed predicates. Predicates also have to be well typed, and
similar rules apply to them, which essentially express that all their sub-terms
are also well typed. We note Γ ⊢ 𝑃 to denote that 𝑃 is well typed in the
environment Γ. The rules for deciding Γ ⊢ 𝑃 are shown in figure 4.2.

well-formed specifications. Wesay that a specification iswell formed
when (a) the variables in the domaindeclaration are all distinct; (b) the modifies
identifiers are a subset of the domain identifiers; (c) there are as many iden-
tifiers as terms in the copy declaration; (d) all the copy terms are well typed
in the environment formed by the domain; (e) the ensures predicate is well
typed in the environment formed by the domain and the variables introduced
by the copy declaration.



54 setting up the workbench: microspel, a toy language

Γ ⊢ true
(Ty-True)

Γ ⊢ false
(Ty-False)

Γ ⊢ 𝑃
Γ ⊢ not 𝑃

(Ty-Not)
Γ ⊢ 𝑃1 Γ ⊢ 𝑃2

Γ ⊢ 𝑃1 //\ 𝑃2
(Ty-And)

Γ ⊢ 𝑃1 Γ ⊢ 𝑃2

Γ ⊢ 𝑃1 \\/ 𝑃2
(Ty-Or)

Γ ⊢ 𝑡1 ∶ 𝜏 Γ ⊢ 𝑡2 ∶ 𝜏
Γ ⊢ 𝑡1 === 𝑡2

(Ty-Equal)

Γ ⊢ 𝑡1 ∶ int Γ ⊢ 𝑡2 ∶ int
Γ, 𝑖 ↦ int ⊢ 𝑃

Γ ⊢ forall 𝑖, 𝑡1 <<= 𝑖 < 𝑡2 -> 𝑃
(Ty-Forall)

Γ ⊢ 𝑡1 ∶ int Γ ⊢ 𝑡2 ∶ int
Γ, 𝑖 ↦ int ⊢ 𝑃

Γ ⊢ exists 𝑖, 𝑡1 <<= 𝑖 < 𝑡2 //\ 𝑃
(Ty-Exists)

Figure 4.2: Typing rules for predicates.

Definition 4 (Well-formed specifications). A specification

domain 𝑥0: 𝜏0, …, 𝑥𝑑−1: 𝜏𝑑−1;

modifies 𝑦0, …, 𝑦𝑚−1;

let 𝑧0, …, 𝑧𝑐−1 = copy (𝑡0, …, 𝑡𝑐′−1) in

ensures 𝑃

is well formed when:

(a) for all distinct integers 𝑖 and 𝑗, we have 𝑥𝑖 ≠ 𝑥𝑗;

(b) for all integer 𝑖, there exists an integer 𝑗 such that 𝑦𝑖 = 𝑥𝑗;

(c) we have 𝑐 = 𝑐′;

(d) for all integer 𝑖, there exists a type 𝜏𝑡𝑖
such that

(𝑥0 ∶ 𝜏0), … , (𝑥𝑑−1 ∶ 𝜏𝑑−1) ⊢ 𝑡𝑖 ∶ 𝜏𝑡𝑖

(e) we have

(𝑥0 ∶ 𝜏0), … , (𝑥𝑑−1 ∶ 𝜏𝑑−1), (𝑧0 ∶ 𝜏𝑡0
), … , (𝑧𝑐−1 ∶ 𝜏𝑡𝑐−1

) ⊢ 𝑃

When a specification 𝑠𝑝 is well formed, we note 𝑤𝑓 (𝑠𝑝).



4.3 program correctness 55

4.3 program correctness

In this section, we consider well-formed states, programs, and specifications,
and seek to define program correctness with respect to a specification, i. e.
what it means for a program to ‘meet its specification’. We first need to in-
troduce the values handled by the specification and define the semantics for
terms and predicates, then we can wrap it up together to provide a meaning
for the specifications.

4.3.1 Logic Values

Our semantics for specifications separates the program space—which the pro-
gram itself manipulates—and the logic space—which the specification con-
siders. Terms and predicates manipulate logic values 𝑙𝑣, which are agnostic
of the memory. They represent self-contained values rather than program
values made of unresolved addresses. Logic values can be integers, or arrays
or tuples of logic values. At this stage, we

cannot differentiate
arrays from tuples;
typing provides this
information.

𝑙𝑣 ∶∶= 𝑛 integer
| [𝑙𝑣, … , 𝑙𝑣] array or tuple

from program values to logic values. The specification (hence
logic values) can manipulate the result of program computations via vari-
ables (hence program values). Therefore, we need to establish the rules for
resolving program values into logic values. We note 𝑀, 𝑣 ↬ 𝑙𝑣 when the pro-
gram value 𝑣 resolves to the logic value 𝑙𝑣 in the memory 𝑀. Unsurprisingly,
this resolution is defined by recursively browsing the value and querying the
memory whenever an address is encountered:

𝑀, 𝑛 ↬ 𝑛
(R-Int)

𝑀(𝑎) = [𝑣0, … , 𝑣𝑛−1] ∀𝑖 ∈ ℕ𝑛.𝑀, 𝑣𝑖 ↬ 𝑙𝑣𝑖

𝑀, 𝑎 ↬ [𝑙𝑣0, … , 𝑙𝑣𝑛−1]
(R-Addr)

This relation is deterministic, meaning that a program value resolves to at
most one logic value in a given memory.

Lemma 2 (↬ is deterministic). Let 𝑀 be a memory, 𝑣 a program value, and 𝑙𝑣
and 𝑙𝑣′ two logic values.
If 𝑀, 𝑣 ↬ 𝑙𝑣 and 𝑀, 𝑣 ↬ 𝑙𝑣′, then 𝑙𝑣 = 𝑙𝑣′.

Lemma lv_of_v_deterministic :

forall M v lv lv',

lv_of_v M v lv -> lv_of_v M v lv' -> lv = lv'.

Proof. By induction over the proof of 𝑀, 𝑣 ↬ 𝑙𝑣.

It is also worth mentioning that in well-formed states, program variables
always resolve to a logic value.
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Lemma 3 (Value Resolution in Well-formed States). Let 𝑆 be a state, and 𝑥 a
variable.
If 𝑤𝑓 (𝑆) and 𝑉(𝑥) = 𝑣, then there exists a logic value 𝑙𝑣 such that 𝑀, 𝑣 ↬ 𝑙𝑣.

Proof. By induction over 𝑣.

4 .3.2 Terms Semantics

Terms only exist in the specification world, so evaluating them leads to logic
values. Because terms contain the old primitive, evaluating them not only
requires a program state, but two program states: one for the pre-state when a
sub-term is under old, and one for the post-state in other cases. We note J𝑡K𝑆′

𝑆
the logical value produced by evaluating of the term 𝑡 in the pre-state 𝑆 and
post-state 𝑆′.

While terms are generally evaluated in the post-state, the old operator lets
you refer to the pre-state. The semantics is expressed by evaluating the term
in the pre-state 𝑆 only, rather than in the couple 𝑆, 𝑆′.This rule

conveniently makes
the old primitive

idempotent.
Jold 𝑡K𝑆′

𝑆 = J𝑡K𝑆
𝑆

Evaluating variables—which typically exist in the program space—requires
to query the variable bindings to get the corresponding address, then apply
the value resolution to compute the logic value.

𝑉′(𝑥) = 𝑣 𝑀′, 𝑣 ↬ 𝑙𝑣
J𝑥K𝑆′

𝑆 = 𝑙𝑣
(T-Var)

The other rules for the judgment J𝑡K𝑆′

𝑆 = 𝑙𝑣 are simple and follow the intu-
ition.

J𝑛K𝑆′

𝑆 = 𝑛
(T-Int)

J𝑡1K𝑆′

𝑆 = 𝑛1 J𝑡2K𝑆′

𝑆 = 𝑛2 𝑛 = 𝑛1 + 𝑛2

J𝑡1 + 𝑡2K𝑆′

𝑆 = 𝑛
(T-Plus)

J𝑡1K𝑆′

𝑆 = 𝑛1 J𝑡2K𝑆′

𝑆 = 𝑛2 𝑛 = 𝑛1 − 𝑛2

J𝑡1 - 𝑡2K𝑆′

𝑆 = 𝑛
(T-Minus)

J𝑡1K𝑆′

𝑆 = [𝑙𝑣0, … , 𝑙𝑣𝑛−1] J𝑡2K𝑆′

𝑆 = 𝑛0 0 ≤ 𝑛0 < 𝑛
J𝑡1[𝑡2]K𝑆′

𝑆 = 𝑙𝑣𝑛0

(T-Get)

J𝑡K𝑆′

𝑆 = [𝑙𝑣0, … , 𝑙𝑣𝑛−1]
Jlength 𝑡K𝑆′

𝑆 = 𝑛
(T-Length)

J𝑡K𝑆′

𝑆 = [𝑙𝑣0, … , 𝑙𝑣𝑛−1] 0 ≤ 𝑖 < 𝑛
J𝑡.𝑖K𝑆′

𝑆 = 𝑙𝑣𝑖
(T-Pi)

The evaluation of terms is also deterministic: if a term evaluates to twoThis justifies the
notation J𝑡K𝑆′

𝑆 = 𝑙𝑣. logic values in the same couple of states, then these values are in fact equal.
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Lemma 4 (J𝑡K𝑆′

𝑆 is deterministic). Let 𝑆 and 𝑆 be two states, 𝑡 a term, and 𝑙𝑣 and
𝑙𝑣′ two logic values.
If J𝑡K𝑆′

𝑆 = 𝑙𝑣 and J𝑡K𝑆′

𝑆 = 𝑙𝑣′, then 𝑙𝑣 = 𝑙𝑣′

Proof. By induction over the proof of J𝑡K𝑆′

𝑆 = 𝑙𝑣.

4 .3.3 Predicate Semantics

The semantics of predicates naturally derives from the semantics of the terms.
We note 𝑆, 𝑆′ ⊨ 𝑃when𝑃 holds in pre-state 𝑆 andpost-state 𝑆′. Unsurprisingly,
most of the definition follow the rules of first-order logic.

𝑆, 𝑆′ ⊨ true ∶∶= ⊤
𝑆, 𝑆′ ⊨ false ∶∶= ⊥
𝑆, 𝑆′ ⊨ 𝑃1 //\ 𝑃2 ∶∶= 𝑆, 𝑆′ ⊨ 𝑃1 ∧ 𝑆, 𝑆′ ⊨ 𝑃2

𝑆, 𝑆′ ⊨ 𝑃1 \\/ 𝑃2 ∶∶= 𝑆, 𝑆′ ⊨ 𝑃1 ∨ 𝑆, 𝑆′ ⊨ 𝑃2

𝑆, 𝑆′ ⊨ not 𝑃 ∶∶= ¬(𝑆, 𝑆′ ⊨ 𝑃)

Let us pause on the definition of the equality predicate. In fact, the logic
domain of predicates and terms is not aware of addresses at all; we reason
directly on the contents of the memory instead of their location. Comparing
arrays 𝑎 and 𝑏 with the predicate 𝑎 === 𝑏 should compare the contents of the ar-
rays (recursively if necessary), rather than their addresses in memory. Hence,
we compare logical values rather than program values.

𝑆, 𝑆′ ⊨ 𝑡1 === 𝑡2 ∶∶= J𝑡1K𝑆′

𝑆 = J𝑡2K𝑆′

𝑆

Finally, the quantifiers require to lexically substitute the quantified variable
in the predicate before evaluating it. The standard capture-avoiding substitu-
tion of 𝑥 by 𝑡 in 𝑃 is noted 𝑃[𝑥 ← 𝑡]. The semantics of the forall and exists

constructs are is defined as follows.

𝑆, 𝑆′ ⊨ forall 𝑥, 𝑡1 <<= 𝑥 < 𝑡2 -> 𝑃 ∶∶=

∃𝑛1, 𝑛2. J𝑡1K𝑆′

𝑆 = 𝑛1 ∧
J𝑡2K𝑆′

𝑆 = 𝑛2 ∧
∀𝑗.𝑛1 ≤ 𝑗 < 𝑛2 ⟹ 𝑆, 𝑆′ ⊨ 𝑃[𝑥 ← 𝑗]

𝑆, 𝑆′ ⊨ exists 𝑥, 𝑡1 <<= 𝑥 < 𝑡2 //\ 𝑃 ∶∶=

∃𝑛1, 𝑛2. J𝑡1K𝑆′

𝑆 = 𝑛1 ∧
J𝑡2K𝑆′

𝑆 = 𝑛2 ∧
∃𝑗.𝑛1 ≤ 𝑗 < 𝑛2 ∧ 𝑆, 𝑆′ ⊨ 𝑃[𝑥 ← 𝑗]

Although it is not structural over𝑃, this recursive definition iswell-founded,
because the substitution of a variable by an integer does not affect the size of
the predicate.

Thanks to the bounds over the quantified variables, the statement 𝑆, 𝑆′ ⊨ 𝑃 This property make it
possible for Ortac
to execute and verify
those predicates at
runtime. This will be
discussed in the
following chapters.

is always decidable.
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Lemma 5 (𝑆, 𝑆′ ⊨ 𝑃 is decidable). Let 𝑆 and 𝑆′ be two states, and 𝑃 a predicate.
Then 𝑆, 𝑆′ ⊨ 𝑃 is decidable.

Proof. By induction over P.

4.3.4 Program Correctness

Now that we defined the semantics of terms and can decide whether a pre-
dicate holds, we can finally give a meaning to ‘the program 𝑝 is correct with
respect to the specification 𝑠𝑝’.

4 .3.4.1 Effects Correctness

The second condition for a program to meet its specification concerns its
modifies variables: if the program can modify the contents of a variable at
any depth (e. g. if the corresponding logic value changes), then that variable
must appear in the modifies list. Variables outside the modifies variables
are left unchanged by any execution of the program.

Definition 5 (Effects correctness). Let 𝑝 be a program and 𝑠𝑝 a specification.
The program 𝑝’s effects are correct with respect to 𝑠𝑝 when:

• for all states 𝑆, 𝑆′ such that 𝑆 𝑝 𝑆′,

• for all variables 𝑥 ∉ {𝑦0, … , 𝑦𝑚},

we have
𝑆(𝑥) = 𝑙𝑣 ⟺ 𝑆′(𝑥) = 𝑙𝑣

Note that this definition is about logic values, so they apply to variable con-
tents in their full depth. Hence, when two variables share somememory space
that the program may modify, they should both appear in the modifies list.

4.3.4.2 Post-condition Correctness

Finally, the third condition concerns the ensures post-condition, with its as-
sociated copy. The program is correct with respect to this part of the specific-
ation when the predicate holds for every execution, when the pre-state and
post-state have been extended with the copied terms.

Definition 6 (Post-condition correctness). Let 𝑝 be a program and 𝑠𝑝 a spe-
cification, with the following post-condition:

let 𝑦0, …, 𝑦𝑐−1 = copy (𝑡0, …, 𝑡𝑐−1) in ensures 𝑃

We say that 𝑝 is correct with respect to 𝑠𝑝’s post-condition when,

• for all states 𝑆 and 𝑆′ such that 𝑆 𝑝 𝑆′,

• for all state 𝑆𝑐 such that 𝑆 ⊑ 𝑆𝑐 and ∀𝑦𝑖. J𝑦𝑖K𝑆𝑐
𝑆𝑐 = J𝑡𝑖K𝑆

𝑆,

• for all state 𝑆𝑐′ such that 𝑆′ ⊑ 𝑆𝑐′ and ∀𝑦𝑖. J𝑦𝑖K𝑆𝑐′

𝑆𝑐′ = J𝑡𝑖K𝑆
𝑆,

we have 𝑆𝑐, 𝑆𝑐′ ⊨ 𝑃.
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The state 𝑆𝑐 (resp. 𝑆𝑐′) is a superset of 𝑆 (resp. 𝑆′), augmented with the
variables 𝑦𝑖 bound to values that resolve to the same logic values as the terms
𝑡𝑖 in the pre-state.

Note that these extended states always exist, as long as there are enough
free addresses available in 𝑆′ for new bindings. We discuss the perspective of
dealing with a ‘full memory’ (and Out_of_memory exceptions) in more details
in chapter 6.

Remark 9 (About copy redundancy). The construction introducing the new
identifiers 𝑦𝑖 bound to the pre-state computations of the terms 𝑡𝑖 is in fact
redundant as the same result can be achieved by at least two other means.

First, it is equivalent to using old(𝑡𝑖) in the predicates directly (see the
rule T-Old). However, both differ by their nature, as old is generally a logic
primitive, not accessible in most programming languages, whereas copy is a
feature of imperative programming language, not available to specifications
as they are generally pure.

Likewise, this state extension could be part of the program execution in
the first place, and the variables 𝑦𝑖 added to the program domain, rather than
considered only when verifying the predicate.

Microspel aims at transitioning from the specifications to the (verifying)
programs, which explains some of its redundancy. In the next chapters, we
will consider specifications without copy, and will transform them to specific-
ations without old, then will translate the result into a program.

conclusion

This chapter introduced a formalization of imperative programs and their
Microspel specifications. We described what it means for a program to be
correct with respect to a specification.

The following chapter uses the definitions introduced previously to de-
scribe specification transformations that allow Ortac to efficiently decide
the predicate’s validity with only the computing capabilities available to the
OCaml programmer (e. g. no access to previous states, no access to the ad-
dresses, no old primitive).

The attentive readermayhave noticed that Microspel uses a copy keyword,
but no copying is involved at any point in the definitions presented in this
chapter. In a real-world context where imperative program alter the state
during the execution, accessing ‘the value of a term in the pre-state’ is only
possible in the pre-state, which has been destroyed. Therefore, copying some
memory chunks corresponding to these terms may be the only way to actu-
ally implement this state extension, which is mandatory for checking that the
predicate holds.





5
EFF IC IENT PRESTATE CAPTURES IN FUNCT ION
POSTCONDIT IONS

In this chapter, we use Microspel as a model to show how Ortac instru-
ments OCaml code when its Gospel specification contains postconditions
that involve the old operator. Indeed, as we explained in chapter 2 (for Gos-
pel) and formalized in chapter 4 (for Microspel), the terms appearing un-
der old primitives are meant to be evaluated in the prestate of the function
before its execution, and the result of this evaluation is used to evaluate a
postcondition predicate in a poststate.

In the presence of effects and a transient memory, the program may mutate
the memory portions referred to via old. Since this memory is no longer
accessible after the execution of the program, copying is necessary.

executability criteria. Since OCaml does not provide such a primit-
ive, we must perform an old elimination in the specifications before executing
them. In other words, we must ensure that (a) the copied terms 𝑡𝑖 contain no
old primitives; (b) the postcondition predicate 𝑃 contains no old primitives.

Definition 7 (Specification executability criteria). Awell-formed specification
𝑠𝑝 is executable when it contains no old primitive.

5.1 motivating example

Let us consider the following running example for this chapter. This specification
initially has no
copies, so we omit
them in the
presentation. Also
note that the
specification does not
say anything about
the rest of the array
a.

domain a: (int array) array;

modifies a;

ensures length a[0] === 2 * length (old (a[0])) //\

forall i, 0 <<= i < length (old (a[0])) ->

a[0][i] === old (a[0][i])

Notation 3. We will use the following notations to shorten the two parts of the
predicate:

𝑃1 ∶= length a[0] === 2 * length (old (a[0]))

𝑃2 ∶= forall i, 0 <<= i < length (old (a[0])) ->

a[0][i] === old (a[0][i])

It specifies a program that takes an array of integer arrays a as input, and
modifies it in place. It doubles the size of the array in the first cell (𝑃1), but
maintains the existing elements at the head of the array (𝑃2).

61
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For instance, the following execution is correct with respect to this specific-
ation: it modifies nothing other than the array a; the size of a[0] is doubled
from 3 to 6, and the first three elements (1, 1, and 2) are still the first three
elements after the execution.

a

1 1 2

old (a[0][i])

 

a

1 1 2 3 5 8

a[0][i]

copying is necessary. When executing this specification, the postcon-
dition should be evaluated in the poststate (i. e. in the right-hand side state
above). However, someof the data necessary for the computation (e. g. old a[0][i]

or length (old (a[0]))) points to memory portions in the prestate (left-
hand side). Therefore, copying a prestate version of a[0] is necessary before
the execution of the program.

replacing old with copies is too naive. A first intuition would
consist in copying the data necessary to evaluate the terms under old, saving
their contents into fresh variables, and replacing the terms with these vari-
ables, as noted in the previous chapter. However, this can lead to ill-formed
specifications. For instance, in the case of 𝑃2, copying a[0][i] in the prestate
does not make sense since i does not exist in the prestate; the resulting spe-
cification would not pass the typing phase.

5.2 executing prestate captures

This section presents the transformationswe apply to specifications in order to
make them executable and acceptable by Ortac (with respect to definition 7).

5.2.1 Removing Redundant old Primitives

This section describes a first sanitation transformation that removes old prim-
itives that do not impact the specification semantics. Specifically, we want to
remove (a) all old primitives in the copied terms; (b) nested old primitives
in the postcondition.

Remark 10. One could assume or enforce these properties during the typing
phase, but being overly restrictive gets in the way of writing intelligible spe-
cifications.

Indeed, in the context of Gospel, the library developer may willingly add
redundant old in the postcondition to emphasize a particular aspect of the
specification. The primitives may also appear after applying and inlining lo-
gic predicates that use them in their definition. Finally, forbidding redundant
old could get in the way of automatically adding these primitives in Gos-
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pel or Ortac, e. g. around values that are not mutable or while generating
specifications.

The first part of the transformation lets us remove all old primitives from a
term and its sub-terms, i. e. it replaces the sub-terms of the form old 𝑡 with 𝑡.

Definition 8 (𝑟𝑒𝑚𝑜𝑣𝑒_𝑜𝑙𝑑). Wedefine the transformation 𝑟𝑒𝑚𝑜𝑣𝑒_𝑜𝑙𝑑 as follows
when applied to old terms:

old 𝑡 ↦ 𝑡

In other cases, 𝑟𝑒𝑚𝑜𝑣𝑒_𝑜𝑙𝑑 is a simple recursive traversal of the terms.

𝑥 ↦ 𝑥
𝑛 ↦ 𝑛

𝑡1 + 𝑡2 ↦ 𝑟𝑒𝑚𝑜𝑣𝑒_𝑜𝑙𝑑(𝑡1) + 𝑟𝑒𝑚𝑜𝑣𝑒_𝑜𝑙𝑑(𝑡2)
𝑡1 - 𝑡2 ↦ 𝑟𝑒𝑚𝑜𝑣𝑒_𝑜𝑙𝑑(𝑡1) - 𝑟𝑒𝑚𝑜𝑣𝑒_𝑜𝑙𝑑(𝑡2)
𝑡1[𝑡2] ↦ (𝑟𝑒𝑚𝑜𝑣𝑒_𝑜𝑙𝑑(𝑡1))[𝑟𝑒𝑚𝑜𝑣𝑒_𝑜𝑙𝑑(𝑡2)]

length 𝑡 ↦ length (𝑟𝑒𝑚𝑜𝑣𝑒_𝑜𝑙𝑑(𝑡))
𝑡.𝑛 ↦ (𝑟𝑒𝑚𝑜𝑣𝑒_𝑜𝑙𝑑(𝑡)).𝑛

The definition is well-founded since recursive calls apply to structurally de-
creasing terms.

Example 7.

𝑟𝑒𝑚𝑜𝑣𝑒_𝑜𝑙𝑑(2 * length (old (a[0]))) =
2 * length a[0]

The second part, 𝑟𝑒𝑚𝑜𝑣𝑒_𝑛𝑒𝑠𝑡𝑒𝑑_𝑜𝑙𝑑, lets us remove nested old primitives in
a term. Just like 𝑟𝑒𝑚𝑜𝑣𝑒_𝑜𝑙𝑑, it recursively traverses the terms except for terms
of the form old 𝑡, where it removes all old primitives in 𝑡.

Definition 9 (𝑟𝑒𝑚𝑜𝑣𝑒_𝑛𝑒𝑠𝑡𝑒𝑑_𝑜𝑙𝑑 (terms)). We define the term transformation
𝑟𝑒𝑚𝑜𝑣𝑒_𝑛𝑒𝑠𝑡𝑒𝑑_𝑜𝑙𝑑 as follows for old terms:

old 𝑡 ↦ old (𝑟𝑒𝑚𝑜𝑣𝑒_𝑜𝑙𝑑(𝑡))

In other cases, 𝑟𝑒𝑚𝑜𝑣𝑒_𝑛𝑒𝑠𝑡𝑒𝑑_𝑜𝑙𝑑 is also a recursive traversal of the terms.

𝑥 ↦ 𝑥
𝑛 ↦ 𝑛

𝑡1 + 𝑡2 ↦ 𝑟𝑒𝑚𝑜𝑣𝑒_𝑛𝑒𝑠𝑡𝑒𝑑_𝑜𝑙𝑑(𝑡1) + 𝑟𝑒𝑚𝑜𝑣𝑒_𝑛𝑒𝑠𝑡𝑒𝑑_𝑜𝑙𝑑(𝑡2)
𝑡1 - 𝑡2 ↦ 𝑟𝑒𝑚𝑜𝑣𝑒_𝑛𝑒𝑠𝑡𝑒𝑑_𝑜𝑙𝑑(𝑡1) - 𝑟𝑒𝑚𝑜𝑣𝑒_𝑛𝑒𝑠𝑡𝑒𝑑_𝑜𝑙𝑑(𝑡2)
𝑡1[𝑡2] ↦ (𝑟𝑒𝑚𝑜𝑣𝑒_𝑛𝑒𝑠𝑡𝑒𝑑_𝑜𝑙𝑑(𝑡1))[𝑟𝑒𝑚𝑜𝑣𝑒_𝑛𝑒𝑠𝑡𝑒𝑑_𝑜𝑙𝑑(𝑡2)]

length 𝑡 ↦ length (𝑟𝑒𝑚𝑜𝑣𝑒_𝑛𝑒𝑠𝑡𝑒𝑑_𝑜𝑙𝑑(𝑡))
𝑡.𝑛 ↦ (𝑟𝑒𝑚𝑜𝑣𝑒_𝑛𝑒𝑠𝑡𝑒𝑑_𝑜𝑙𝑑(𝑡)).𝑛

This definition is also well-founded for the same reason as 𝑟𝑒𝑚𝑜𝑣𝑒_𝑜𝑙𝑑: it re-
cursively applies to structurally decreasing terms.
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Example 8.

𝑟𝑒𝑚𝑜𝑣𝑒_𝑛𝑒𝑠𝑡𝑒𝑑_𝑜𝑙𝑑 (old (2 * length (old (a[0])))) =
old (2 * length a[0])

Wealso generalize the transformation 𝑟𝑒𝑚𝑜𝑣𝑒_𝑛𝑒𝑠𝑡𝑒𝑑_𝑜𝑙𝑑 for predicateswith
a simple morphism that applies the previously defined transformation down
to the terms.

Example 9.

𝑟𝑒𝑚𝑜𝑣𝑒_𝑛𝑒𝑠𝑡𝑒𝑑_𝑜𝑙𝑑
(forall i, 0 <<= i < n -> a[i] === old ((old a)[i])) =

forall i, 0 <<= i < n -> a[i] === old (a[i])

Finally, the 𝑠𝑎𝑛𝑖𝑡𝑖𝑧𝑒 transformation applies to specification in order to re-
move duplicate old operators.

Definition 10 (𝑠𝑎𝑛𝑖𝑡𝑖𝑧𝑒). If 𝑠𝑝 is the following specification:

domain 𝑥0: 𝜏0, …, 𝑥𝑑−1: 𝜏𝑑−1;

modifies 𝑦0, …, 𝑦𝑚−1;

let 𝑧0, …, 𝑧𝑐−1 = copy (𝑡0, …, 𝑡𝑐−1) in

ensures 𝑃,

then 𝑠𝑎𝑛𝑖𝑡𝑖𝑧𝑒(𝑠𝑝) is the following specification:

domain 𝑥0: 𝜏0, …, 𝑥𝑑−1: 𝜏𝑑−1;

modifies 𝑦0, …, 𝑦𝑚−1;

let 𝑧0, …, 𝑧𝑐−1 =

copy (𝑟𝑒𝑚𝑜𝑣𝑒_𝑜𝑙𝑑(𝑡0), …, 𝑟𝑒𝑚𝑜𝑣𝑒_𝑜𝑙𝑑(𝑡𝑐−1))
in

ensures 𝑟𝑒𝑚𝑜𝑣𝑒_𝑛𝑒𝑠𝑡𝑒𝑑_𝑜𝑙𝑑(𝑃).

Example 10. The following specification

domain a: (int array) array;

modifies a;

let x = copy ((old a)[0]) in

ensures length a[0] === 2 * old (length x) //\

forall i, 0 <<= i < length x ->

a[0][i] === old ((old a)[0][i])

is sanitized into

domain a: (int array) array;

modifies a;

let x = copy (a[0]) in

ensures length a[0] === 2 * old (length x) //\

forall i, 0 <<= i < length x ->

a[0][i] === old a[0][i]
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Remark 11. In the context of OCaml, notice how one could also simplify
old (length x) into length x since x is already a prestate variable,
and arrays lengths in OCaml cannot be modified. This task is not the
role of 𝑠𝑎𝑛𝑖𝑡𝑖𝑧𝑒; we will discuss it in the next section.

correctness. This transformation is correct, meaning that (a) it does
not change the good formation of the specification; (b) it does not change the
semantics of the specification; (c) the copied terms in the result do not contain
any old and the postcondition of the result does not contain any nested old.

Theorem 6 (𝑠𝑎𝑛𝑖𝑡𝑖𝑧𝑒 preserves the good formation of the specification). If 𝑠𝑝
is a specification, we have

𝑤𝑓 (𝑠𝑝) ⟺ 𝑤𝑓 (𝑠𝑎𝑛𝑖𝑡𝑖𝑧𝑒(𝑠𝑝)).

Theorem sanitize_wf:

forall sp, wf_spec sp <-> wf_spec (sanitize sp).

Proof. By induction over terms and predicates. The old primitive does not
affect typing (see Ty-Old rule).

Theorem 7 (𝑠𝑎𝑛𝑖𝑡𝑖𝑧𝑒 maintains program correctness). If 𝑝 is a well-formed pro-
gram and 𝑠𝑝 is a well-formed specification, we have

𝑝 ⊨ 𝑠𝑝 ⟺ 𝑝 ⊨ 𝑠𝑎𝑛𝑖𝑡𝑖𝑧𝑒(𝑠𝑝).

Theorem sanitize_correct:

forall p sp,

wf_spec sp ->

wf_prog p ->

correct p sp <-> correct p (sanitize sp).

Proof. By induction over terms and predicates. Concerning nested old, as
noted in section 4.3.2, the primitive is idempotent, so the inner old in nested
configurations have no effect on the specification semantics. As for the copied
terms, they are always evaluated in the prestate (see section 4.3.4.2), so old

primitives are also safely removable in this context.

Remark 12. In this theorem, and the upcoming similar ones in this chapter,
the direct implication ( ⟹ ) ensures that the transformed specification is not
more restrictive than the original one, which would cause Ortac to trigger
false positives. Conversely the indirect implication ( ⟸ ) ensures that the
transformationdid not loosen the constraints of the specification, whichwould
trigger false negatives.

Theorem 8 (𝑠𝑎𝑛𝑖𝑡𝑖𝑧𝑒 postcondition). If 𝑠𝑝 is a specification, then

(a) no copied term in 𝑠𝑎𝑛𝑖𝑡𝑖𝑧𝑒(𝑠𝑝) contain a old;

(b) the postcondition in 𝑠𝑎𝑛𝑖𝑡𝑖𝑧𝑒(𝑠𝑝) contains no nested old.
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Theorem sanitize_post:

forall sp,

no_old (post (sanitize sp)) //\

Forall no_nested_old (copies (sanitize sp)).

Proof. By induction over terms and predicates.

5.2.2 Moving old Down to Variables

In order to address the issue of locally bound variables we raised in our ex-
ample, we propose a second term transformation with two effects: (a) it
‘moves’ the old primitives down to the variables; (b) it removes some of these
old.

Indeed, when old is applied to a variable introduced by a forall or exists
binder, we claim that removing old does not change the semantics of the
term. Similarly, we remove old primitives around variables introduced by
copy, with no prejudice to the semantics of the specification. Finally, we also
remove old around variables that are not declared in the modifies variables.As in Ortac, the

modifies part is
considered an

hypothesis that we
can use to optimize

the specification.

The outcome of this transformation is a specification where only the poten-
tially modified variables available in the prestate appear under old primitives.

The first part of this transformation is a function 𝑜𝑙𝑑_𝑣𝑎𝑟𝑠 that takes two
arguments: a term and the set of locally bound variables ℬ, i. e. variables
introduced by a copy or a quantifier. It returns a new term where it added
old around all variables, except for those in ℬ.

Definition 11 (𝑜𝑙𝑑_𝑣𝑎𝑟𝑠). We define the transformation 𝑜𝑙𝑑_𝑣𝑎𝑟𝑠 as follows
when applied to variables.

𝑥, ℬ ↦
⎧{
⎨{⎩

𝑥 if 𝑥 ∈ ℬ
old 𝑥 otherwise

In other cases, 𝑜𝑙𝑑_𝑣𝑎𝑟𝑠 recursively traverses the term while maintaining the
set ℬ unchanged (these terms introduce no new variable).The definition

provided for
𝑜𝑙𝑑_𝑣𝑎𝑟𝑠(old 𝑡, ℬ)

does not matter as
long as 𝑜𝑙𝑑_𝑑𝑜𝑤𝑛

remains
well-founded since

the global
transformation
defined later in

definition 14 will
never reach that case.

𝑛, ℬ ↦ 𝑛
𝑡1 + 𝑡2, ℬ ↦ 𝑜𝑙𝑑_𝑣𝑎𝑟𝑠(𝑡1, ℬ) + 𝑜𝑙𝑑_𝑣𝑎𝑟𝑠(𝑡2, ℬ)
𝑡1 - 𝑡2, ℬ ↦ 𝑜𝑙𝑑_𝑣𝑎𝑟𝑠(𝑡1, ℬ) - 𝑜𝑙𝑑_𝑣𝑎𝑟𝑠(𝑡2, ℬ)
𝑡1[𝑡2], ℬ ↦ (𝑜𝑙𝑑_𝑣𝑎𝑟𝑠(𝑡1, ℬ))[𝑜𝑙𝑑_𝑣𝑎𝑟𝑠(𝑡2, ℬ)]

length 𝑡, ℬ ↦ length (𝑜𝑙𝑑_𝑣𝑎𝑟𝑠(𝑡, ℬ))
𝑡1.𝑛, ℬ ↦ (𝑜𝑙𝑑_𝑣𝑎𝑟𝑠(𝑡1, ℬ)).𝑛

old 𝑡, ℬ ↦ 𝑜𝑙𝑑_𝑣𝑎𝑟𝑠(𝑡, ℬ)

Example 11.

𝑜𝑙𝑑_𝑣𝑎𝑟𝑠(length a[0], ∅) = length ((old a)[0])

We may now use this transformation to introduce 𝑜𝑙𝑑_𝑑𝑜𝑤𝑛, which ‘moves’
the old primitives down to the variables and removes the unnecessary ones
using 𝑜𝑙𝑑_𝑣𝑎𝑟𝑠. It takes the same arguments as 𝑜𝑙𝑑_𝑣𝑎𝑟𝑠 and returns a term.
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Definition 12 (𝑜𝑙𝑑_𝑑𝑜𝑤𝑛 (terms)). Wedefine the function 𝑜𝑙𝑑_𝑑𝑜𝑤𝑛 as follows
for the cases of variables and old. Unlike in 𝑜𝑙𝑑_𝑣𝑎𝑟𝑠,

variables are left
untouched, because
they are not located
under old at this
stage.

𝑥, ℬ ↦ 𝑥
old 𝑡, ℬ ↦ 𝑜𝑙𝑑_𝑣𝑎𝑟𝑠(𝑡, ℬ)

Again, 𝑜𝑙𝑑_𝑑𝑜𝑤𝑛 recursively traverses the term with the same set ℬ in other
cases.

𝑛, ℬ ↦ 𝑛
𝑡1 + 𝑡2, ℬ ↦ 𝑜𝑙𝑑_𝑑𝑜𝑤𝑛(𝑡1, ℬ) + 𝑜𝑙𝑑_𝑑𝑜𝑤𝑛(𝑡2, ℬ)
𝑡1 - 𝑡2, ℬ ↦ 𝑜𝑙𝑑_𝑑𝑜𝑤𝑛(𝑡1, ℬ) - 𝑜𝑙𝑑_𝑑𝑜𝑤𝑛(𝑡2, ℬ)
𝑡1[𝑡2], ℬ ↦ (𝑜𝑙𝑑_𝑑𝑜𝑤𝑛(𝑡1, ℬ))[𝑜𝑙𝑑_𝑑𝑜𝑤𝑛(𝑡2, ℬ)]

length 𝑡, ℬ ↦ length (𝑜𝑙𝑑_𝑑𝑜𝑤𝑛(𝑡, ℬ))
𝑡1.𝑛, ℬ ↦ (𝑜𝑙𝑑_𝑑𝑜𝑤𝑛(𝑡1, ℬ)).𝑛

Example 12.

𝑜𝑙𝑑_𝑑𝑜𝑤𝑛(2 * old (length a[0]), ∅) =
2 * length ((old a)[0])

𝑜𝑙𝑑_𝑑𝑜𝑤𝑛(2 * old (length a[0]), {𝑎}) =
2 * length a[0]

We also extend 𝑜𝑙𝑑_𝑑𝑜𝑤𝑛 for predicates and take special care to expand ℬ
with newly bound variables when traversing quantifiers.

Definition 13 (𝑜𝑙𝑑_𝑑𝑜𝑤𝑛 (predicates)). The transformation 𝑜𝑙𝑑_𝑑𝑜𝑤𝑛 is a pre-
dicate transformation defined as follows for quantifiers that introduce vari-
ables:

forall 𝑥, 𝑡1 <<= 𝑥 < 𝑡2 -> 𝑃, ℬ ↦
forall 𝑥, 𝑜𝑙𝑑_𝑑𝑜𝑤𝑛(𝑡1, ℬ) <<= 𝑥 < 𝑜𝑙𝑑_𝑑𝑜𝑤𝑛(𝑡2, ℬ)

-> 𝑜𝑙𝑑_𝑑𝑜𝑤𝑛(𝑃, ℬ ∪ {𝑥})

exists 𝑥, 𝑡1 <<= 𝑥 < 𝑡2 //\ 𝑃, ℬ ↦
exists 𝑥, 𝑜𝑙𝑑_𝑑𝑜𝑤𝑛(𝑡1, ℬ) <<= 𝑥 < 𝑜𝑙𝑑_𝑑𝑜𝑤𝑛(𝑡2, ℬ)

//\ 𝑜𝑙𝑑_𝑑𝑜𝑤𝑛(𝑃, ℬ ∪ {𝑥})

In other cases, 𝑜𝑙𝑑_𝑑𝑜𝑤𝑛 is a simple morphism.

true, ℬ ↦ true

false, ℬ ↦ false

not 𝑃, ℬ ↦ not 𝑜𝑙𝑑_𝑑𝑜𝑤𝑛(𝑃, ℬ)
𝑡1 === 𝑡2, ℬ ↦ 𝑜𝑙𝑑_𝑑𝑜𝑤𝑛(𝑡1, ℬ === 𝑜𝑙𝑑_𝑑𝑜𝑤𝑛(𝑡2, ℬ)

𝑃1 //\ 𝑃2, ℬ ↦ 𝑜𝑙𝑑_𝑑𝑜𝑤𝑛(𝑃1, ℬ) //\ 𝑜𝑙𝑑_𝑑𝑜𝑤𝑛(𝑃2, ℬ)
𝑃1 \\/ 𝑃2, ℬ ↦ 𝑜𝑙𝑑_𝑑𝑜𝑤𝑛(𝑃1, ℬ) \\/ 𝑜𝑙𝑑_𝑑𝑜𝑤𝑛(𝑃2, ℬ)
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Example 13.

𝑜𝑙𝑑_𝑑𝑜𝑤𝑛(𝑃1) = length a[0] ===

2 * length ((old a)[0])

𝑜𝑙𝑑_𝑑𝑜𝑤𝑛(𝑃2) = forall i,

0 <<= i < length ((old a)[0]) ->

a[0][i] === (old a)[0][i]

Finally, we define 𝑜𝑙𝑑_𝑑𝑜𝑤𝑛 for specifications. It is a transformation that
takes a specification as an argument and returns a specification. It applies
𝑜𝑙𝑑_𝑑𝑜𝑤𝑛 (for predicates) to the postcondition predicate. The initial set ℬ is
the set of variables introduced by copy or declared in modifies.

Definition 14 (𝑜𝑙𝑑_𝑑𝑜𝑤𝑛 (specification)). If 𝑠𝑝 is the following specification:

domain 𝑥0: 𝜏0, …, 𝑥𝑑−1: 𝜏𝑑−1;

modifies 𝑦0, …, 𝑦𝑚−1;

let 𝑧0, …, 𝑧𝑐−1 = copy (𝑡0, …, 𝑡𝑐−1) in

ensures 𝑃,

then 𝑜𝑙𝑑_𝑑𝑜𝑤𝑛(𝑠𝑝) is the following specification:

domain 𝑥0: 𝜏0, …, 𝑥𝑑−1: 𝜏𝑑−1;

modifies 𝑦0, …, 𝑦𝑚−1;

let 𝑧0, …, 𝑧𝑐−1 = copy (𝑡0, …, 𝑡𝑐−1) in

ensures 𝑜𝑙𝑑_𝑑𝑜𝑤𝑛(𝑃, {𝑦0, … , 𝑦𝑚−1, 𝑧0, … , 𝑧𝑐−1}).

Example 14. After applying this transformation, our initial specifica-
tions becomes

domain a: (int array) array;

modifies a;

ensures length a[0] === 2 * length ((old a)[0]) //\

forall i, 0 <<= i < length ((old a)[0]) ->

a[0][i] === (old a)[0][i].

correctness. This transformation is correct, meaning that (a) it does
not change the good formation of the specification; (b) it does not change the
semantics of the specification; (c) in the resulting specification, if a sub-term
is of the form old 𝑡, then 𝑡 is a variable that belongs to the domain of the
specification.

Theorem 9 (𝑜𝑙𝑑_𝑑𝑜𝑤𝑛 preserves the good formation of the specification). If
𝑠𝑝 is a specification, we have

𝑤𝑓 (𝑠𝑝) ⟺ 𝑤𝑓 (𝑜𝑙𝑑_𝑑𝑜𝑤𝑛(𝑠𝑝)).

Lemma wf_old_down:

forall sp, wf_spec sp <-> wf_spec (old_down sp).

Proof. Similar to theorem 6: old does not affect the typing of terms.
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Theorem 10 (𝑜𝑙𝑑_𝑑𝑜𝑤𝑛 maintains program correctness). If 𝑝 is a well-formed
program and 𝑠𝑝 is a well-formed specification, we have

𝑝 ⊨ 𝑠𝑝 ⟺ 𝑝 ⊨ 𝑜𝑙𝑑_𝑑𝑜𝑤𝑛(𝑠𝑝).

Lemma old_down_correct:

forall p sp,

wf_spec sp ->

wf_prog p ->

correct p sp <-> correct p (old_down sp).

Proof. By induction over the terms and predicates. Moving old down to
the variables does not affect the semantics (see rules T_Old and T_Var.
Moreover, the old we chose to remove are either locally introduced, or not
modified by the program; in both cases, the old primitive is redundant.

Theorem 11 (𝑜𝑙𝑑_𝑑𝑜𝑤𝑛 postcondition). If 𝑠𝑝 is a well-formed specification, and
𝑡 is a term appearing in 𝑜𝑙𝑑_𝑑𝑜𝑤𝑛(𝑠𝑝), then 𝑡 is a variable declared in 𝑠𝑝’s mutable
variables.

Theorem old_down_post:

forall sp t,

wf_spec sp ->

subterm (TOld t) sp ->

exists x,

In x (modifies sp) //\ t = TVar x.

Proof. By induction over terms and predicates.

5.2.3 Introducing Copies

In this section, we show the last transformation required to make the specific-
ations executable. The function 𝑐𝑜𝑙𝑙𝑒𝑐𝑡_𝑜𝑙𝑑 traverses the terms and collects the
old sub-terms to replace with fresh variables. It produces the transformed
terms, and a vector 𝒱 of pairs (𝑧, 𝑡) of variables and terms that represent the
sub-term under old that it replaced and the corresponding variables that re-
placed it. To make the

definition easier to
read, we present it
using an imperative
syntax, where
𝑐𝑜𝑙𝑙𝑒𝑐𝑡_𝑜𝑙𝑑 modifies
a global vector 𝒱. In
Coq, we implemented
a state monad to
achieve a similar
presentation.

Definition 15 (𝑐𝑜𝑙𝑙𝑒𝑐𝑡_𝑜𝑙𝑑). Wedefine the function 𝑐𝑜𝑙𝑙𝑒𝑐𝑡_𝑜𝑙𝑑 as follows. When
it faces a term old 𝑡, 𝑐𝑜𝑙𝑙𝑒𝑐𝑡_𝑜𝑙𝑑 creates a fresh variable 𝑥, adds the pair (𝑥, 𝑡)
to the vector 𝒱, and returns the variable 𝑥.

old 𝑡 ↦ 𝑥 ← 𝑓 𝑟𝑒𝑠ℎ_𝑣𝑎𝑟();
𝒱 ← (𝑥, 𝑡) ::: 𝒱;
𝑥
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For the other cases, 𝑐𝑜𝑙𝑙𝑒𝑐𝑡_𝑜𝑙𝑑 recursively traverses the terms.

𝑥 ↦ 𝑥

𝑛 ↦ 𝑛

𝑡1 + 𝑡2 ↦ 𝑡′
1 ← 𝑐𝑜𝑙𝑙𝑒𝑐𝑡_𝑜𝑙𝑑(𝑡1);

𝑡′
2 ← 𝑐𝑜𝑙𝑙𝑒𝑐𝑡_𝑜𝑙𝑑(𝑡2);

𝑡′
1 + 𝑡′

2

𝑡1 - 𝑡2 ↦ 𝑡′
1 ← 𝑐𝑜𝑙𝑙𝑒𝑐𝑡_𝑜𝑙𝑑(𝑡1);

𝑡′
2 ← 𝑐𝑜𝑙𝑙𝑒𝑐𝑡_𝑜𝑙𝑑(𝑡2);

𝑡′
1 - 𝑡′

2

𝑡1[𝑡2] ↦ 𝑡′
1 ← 𝑐𝑜𝑙𝑙𝑒𝑐𝑡_𝑜𝑙𝑑(𝑡1);

𝑡′
2 ← 𝑐𝑜𝑙𝑙𝑒𝑐𝑡_𝑜𝑙𝑑(𝑡2);

𝑡′
1[𝑡′

2]

length 𝑡 ↦ 𝑡′ ← 𝑐𝑜𝑙𝑙𝑒𝑐𝑡_𝑜𝑙𝑑(𝑡);
length 𝑡′

𝑡1.𝑛 ↦ 𝑡′ ← 𝑐𝑜𝑙𝑙𝑒𝑐𝑡_𝑜𝑙𝑑(𝑡);
𝑡′.𝑛

We generalize this transformation for predicates, where it recursively tra-
verses the predicate and applies 𝑐𝑜𝑙𝑙𝑒𝑐𝑡_𝑜𝑙𝑑 to every term. Finally, the trans-
formation 𝑖𝑛𝑡𝑟𝑜𝑑𝑢𝑐𝑒_𝑐𝑜𝑝𝑖𝑒𝑠 applies 𝑐𝑜𝑙𝑙𝑒𝑐𝑡_𝑜𝑙𝑑 to its postcondition, then adds
the pairs in 𝒱 to its copy bindings.

Definition 16 (𝑖𝑛𝑡𝑟𝑜𝑑𝑢𝑐𝑒_𝑐𝑜𝑝𝑖𝑒𝑠). If 𝑠𝑝 is the following specification:

domain 𝑥0: 𝜏0, …, 𝑥𝑑−1: 𝜏𝑑−1;

modifies 𝑦0, …, 𝑦𝑚−1;

let 𝑧0, …, 𝑧𝑐−1 = copy (𝑡0, …, 𝑡𝑐−1) in

ensures 𝑃,

we apply the function 𝑐𝑜𝑙𝑙𝑒𝑐𝑡_𝑜𝑙𝑑 to its postcondition:Applying
𝑐𝑜𝑙𝑙𝑒𝑐𝑡_𝑜𝑙𝑑 here

creates the predicate
𝑃′, and also fills the

vector 𝒱.

𝑃′ ← 𝑐𝑜𝑙𝑙𝑒𝑐𝑡_𝑜𝑙𝑑(𝑃),

then return the following specification:

domain 𝑥0: 𝜏0, …, 𝑥𝑑−1: 𝜏𝑑−1;

modifies 𝑦0, …, 𝑦𝑚−1;

let 𝑧0, …, 𝑧𝑐−1, 𝑧′
0, …, 𝑧′

𝑠 =

copy (𝑡0, …, 𝑡𝑐−1, 𝑧′
0, …, 𝑧′

𝑠)

in

ensures 𝑃′,

when 𝒱 = {(𝑧′
0, 𝑡′

0), … , (𝑧′
𝑠, 𝑡′

𝑠)}.

Example 15. Consider the following specification:

domain a: (int array) array;

modifies a;

ensures length a[0] === 2 * length ((old a)[0]) //\

forall i, 0 <<= i < length (old (a[0])) ->

a[0][i] === (old a)[0][i].
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The function 𝑖𝑛𝑡𝑟𝑜𝑑𝑢𝑐𝑒_𝑐𝑜𝑝𝑖𝑒𝑠 will produce

domain a: (int array) array;

modifies a;

let z_0, z_1, z_2 = copy (a, a[0], a[0][i]) in

ensures length a[0] === 2 * length z_0[0] //\

forall i, 0 <<= i < length z_1 -> a[0][i] === z_2.

correctness. Before proving the correctness of this function, note that
the properties that hold for 𝑠𝑎𝑛𝑖𝑡𝑖𝑧𝑒 and 𝑜𝑙𝑑_𝑑𝑜𝑤𝑛 do not necessarily hold for
𝑖𝑛𝑡𝑟𝑜𝑑𝑢𝑐𝑒_𝑐𝑜𝑝𝑖𝑒𝑠. For instance, transforming a well-formed specification can
lead to an ill-formed specification as output.

Example 16 (𝑖𝑛𝑡𝑟𝑜𝑑𝑢𝑐𝑒_𝑐𝑜𝑝𝑖𝑒𝑠 can lead to ill-formed specification). Our
example specification is well formed, as we discussed earlier. However,
applying 𝑖𝑛𝑡𝑟𝑜𝑑𝑢𝑐𝑒_𝑐𝑜𝑝𝑖𝑒𝑠 leads to the following specification:

domain a: (int array) array;

modifies a;

let z_0, z_1, z_2 = copy (a[0], a[0], a[0][i]) in

ensures length a[0] === 2 * length z_0 //\

forall i, 0 <<= i < length z_1 -> a[0][i] === z_2,

which is ill-formed, since one cannot type a[0][i] in the environment
a ∶ (int array) array (because of the unbound variable i).

In fact, 𝑖𝑛𝑡𝑟𝑜𝑑𝑢𝑐𝑒_𝑐𝑜𝑝𝑖𝑒𝑠 is meant to be executed after 𝑜𝑙𝑑_𝑑𝑜𝑤𝑛, and we need
this hypothesis to prove its correctness. This transformation is correct, mean-
ing that when fed a well-formed specification that also obeys the properties
described in theorem 11, (a) it maintains the good formation of the specifica-
tion; (b) it maintains the semantics of the specification; (c) there are no more
old primitives in the resulting specification’s postcondition.

Theorem 12 (𝑖𝑛𝑡𝑟𝑜𝑑𝑢𝑐𝑒_𝑐𝑜𝑝𝑖𝑒𝑠 preserves the good formation of the specifica-
tions). If 𝑠𝑝 is a specification, we have

𝑤𝑓 (𝑜𝑙𝑑_𝑑𝑜𝑤𝑛(𝑠𝑝)) ⟺ 𝑤𝑓 (𝑖𝑛𝑡𝑟𝑜𝑑𝑢𝑐𝑒_𝑐𝑜𝑝𝑖𝑒𝑠(𝑜𝑙𝑑_𝑑𝑜𝑤𝑛(𝑠𝑝))).

Theorem introduce_copies_wf:

forall sp,

wf_spec (old_down sp) <->

wf_spec (introduce_copies (old_down sp)).

Proof. Replacing a term with a variable of the same type does not change the
good formation of the specification.

Theorem 13 (𝑖𝑛𝑡𝑟𝑜𝑑𝑢𝑐𝑒_𝑐𝑜𝑝𝑖𝑒𝑠 maintains program correctness). If 𝑝 is a well-
formed program and 𝑠𝑝 is a well-formed specification, we have

𝑝 ⊨ 𝑠𝑝 ⟺ 𝑝 ⊨ 𝑖𝑛𝑡𝑟𝑜𝑑𝑢𝑐𝑒_𝑐𝑜𝑝𝑖𝑒𝑠(𝑠𝑝).
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Theorem introduce_copies_correct:

forall p sp,

wf_spec sp ->

wf_prog p ->

correct p sp <-> correct p (introduce_copies sp).

Proof. By applying T-Old and the copy semantics described in definition 6.

Theorem 14 (𝑖𝑛𝑡𝑟𝑜𝑑𝑢𝑐𝑒_𝑐𝑜𝑝𝑖𝑒𝑠 postcondition). If 𝑠𝑝 is a well-formed specification,
then for all sub-terms of the form old 𝑡 appearing in 𝑜𝑙𝑑_𝑑𝑜𝑤𝑛(𝑠𝑝), the term 𝑡 is a
variable declared in 𝑠𝑝’s domain.

Theorem introduce_copies_post:

forall sp t,

wf_spec sp ->

subterm (TOld t) sp ->

exists x, In x (domain sp) //\ t = TVar x.

Proof. By applying T-Old and the copy semantics described in definition 6.

5.2.4 Wrapping Up: How We Make the Specification Executable

Wemay now compose the three transformations we presented to transform ar-
bitrary well-formed specifications into equivalent well-formed specifications
that satisfy the executability criteria (definition 7).

We note this final transformation 𝑇𝑏𝑎𝑠𝑒:

𝑇𝑏𝑎𝑠𝑒 = 𝑖𝑛𝑡𝑟𝑜𝑑𝑢𝑐𝑒_𝑐𝑜𝑝𝑖𝑒𝑠 ∘ 𝑜𝑙𝑑_𝑑𝑜𝑤𝑛 ∘ 𝑠𝑎𝑛𝑖𝑡𝑖𝑧𝑒

Remark 13. The order of 𝑠𝑎𝑛𝑖𝑡𝑖𝑧𝑒 does not matter for the computation result
or the proofs; the only constraint is that 𝑖𝑛𝑡𝑟𝑜𝑑𝑢𝑐𝑒_𝑐𝑜𝑝𝑖𝑒𝑠 is fed a specification
where the property from theorem 11 holds. However, applying 𝑠𝑎𝑛𝑖𝑡𝑖𝑧𝑒 first
is convenient since it lets us ignore some cases that are eliminated in our
transformation (e. g. in 𝑜𝑙𝑑_𝑑𝑜𝑤𝑛, as we noted earlier).
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This specification
could be simplified
by only copying a
once rather than
three times. However,
this difference is of
little importance if
the concrete
implementation of
copy handles
memory sharing
properly, which we
will show in
chapter 6.

Example 17. Our initial example

domain a: (int array) array;

modifies a;

ensures length a[0] === 2 * length (old (a[0])) //\

forall i, 0 <<= i < length (old (a[0])) ->

a[0][i] === old (a[0][i])

finally becomes

domain a: (int array) array;

modifies a;

let a_0, a_1, a_2 = copy (a, a, a) in

ensures length a[0] === 2 * length a_0[0] //\

forall i, 0 <<= i < length a_1[0] ->

a[0][i] === a_2[0][i],

which is indeed well formed and does not contain any more old oper-
ators, therefore is executable.

Theorem 15 (𝑇𝑏𝑎𝑠𝑒 preserves the good formation of the specifications). If 𝑠𝑝
is a specifications, we have

𝑤𝑓 (𝑠𝑝) ⟺ 𝑤𝑓 (𝑇𝑏𝑎𝑠𝑒 (𝑠𝑝)) .

Theorem t_base_wf:

forall sp, wf_spec sp <-> wf_spec (t_base sp).

Proof. By applying theorems 6, 9 and 12.

Theorem 16 (𝑇𝑏𝑎𝑠𝑒 maintains program correctness). If 𝑝 is a well-formed pro-
gram and 𝑠𝑝 is a well-formed specification, we have

𝑝 ⊨ 𝑠𝑝 ⟺ 𝑝 ⊨ 𝑇𝑏𝑎𝑠𝑒 (𝑠𝑝) .

Theorem t_base_correct:

forall p sp,

wf_spec sp ->

wf_prog p ->

correct p sp <-> correct p (t_base sp).

Proof. By applying theorems 7, 10, 11 and 13.

Theorem 17 (𝑇𝑏𝑎𝑠𝑒 produces executable specifications). If 𝑠𝑝 is a specification,
then 𝑇𝑏𝑎𝑠𝑒 (𝑠𝑝) does not contain any old.

Theorem t_base_executable:

forall sp, wf_spec sp -> executable (t_base sp).

Proof. By applying theorems 8, 11 and 14.
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5.3 reducing the copied space

We made sure that the transformation 𝑇𝑏𝑎𝑠𝑒 is correct, but we did not pay
attention to the performance of the execution of the resulting specification just
yet. Although we have not yet discussed the execution of the specifications
itself, we can already sense with definition 6 that executing a specificationThis is the object of

the chapter 6, where
we will also discuss

the actual
implementation and

cost of the copy.

will induce a memory cost due to the copy part. For instance, the result of
𝑇𝑏𝑎𝑠𝑒 on our specification presented in section 5.2.4 induces a copy of the full
array a, whereas only a[0] is necessary to decide if the postcondition holds.

In this section, we present a last transformation that investigates how we
manipulate the old variables to helps us reduce the copied space and improve
the performance. Indeed, the instrumentation not only results in high runtime
verification overhead, but can also change the complexity of the algorithm (see
an example in section 5.5.3), threatening its scalability.

5.3.1 The Cost of Copying

For now, let us approximate the cost of copy (𝑡1, …, 𝑡𝑐) as the size (i. e. the
number of memory cells) of the memory necessary to fully evaluate the terms
𝑡1, … , 𝑡𝑐. This is the metric we will try to optimize.

Definition 17 (Footprint of a copy). Let us note 𝒜𝑀(𝑣) the set of addresses
that one must read to resolve 𝑀, 𝑣 ↬ 𝑙𝑣 following section 4.3.1. We have

𝒜𝑀(𝑛) = ∅;
𝒜𝑀(𝑎) = {𝑎} ∪ (

𝑛−1
⋃
𝑖=0

𝒜𝑀(𝑣𝑖)) ,

when 𝑀(𝑎) = [𝑣0, … , 𝑣𝑛−1].
We also use the notation 𝒜𝑆 for the function that gives the footprint of a

term in the state 𝑆. In the case of variables, we look for the footprint of theWe can avoid a
definition for

𝒜𝑆(old 𝑡) when
𝑠𝑎𝑛𝑖𝑡𝑖𝑧𝑒 is applied

first, since after
sanitation, there are
no more old in the

copied terms.

value associated to this variable:

𝑥 ↦ 𝒜𝑀(𝑉(𝑥)).

The cases for tuple and array projections are defined as follows:

𝑡1[𝑡2] ↦ 𝒜𝑀(𝑣𝑖),
when 𝑡1 evaluates to [𝑣0, … , 𝑣𝑛−1] and 𝑡𝑖 evaluates to 𝑖.

𝑡.𝑖 ↦ 𝒜𝑀(𝑣𝑖),
when 𝑡 evaluates to [𝑣0, … , 𝑣𝑛−1].

The terms which evaluation produces integers have an empty footprint.

𝑛 ↦ ∅
𝑡1 + 𝑡2 ↦ ∅
𝑡1 - 𝑡2 ↦ ∅

length 𝑡 ↦ ∅
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Finally, the memory footprint of the copy in a specification is the union of
the footprints of the copied terms:

𝒜𝑆(𝑠𝑝) =
𝑐−1
⋃
𝑖=0

𝒜𝑆(𝑡𝑖),

when 𝑐𝑜𝑝𝑖𝑒𝑠(𝑠𝑝) = [(𝑧0, 𝑡0), … , (𝑧𝑐−1, 𝑡𝑐−1)].

Example 18. Consider the following state 𝑆.

𝑥 ↦ 0

1 3 4𝑦 ↦ 𝑎𝑦 = 𝑢 ↦ 𝑎𝑢 =

5 7 4𝑧 ↦ 𝑎𝑧 = 42𝑣 ↦ 𝑎𝑣 =

0 0 0𝑎𝑧1 = 1 1 1𝑎𝑧2 =

In this state, we have:

𝒜𝑆(𝑥) = ∅

𝒜𝑆(𝑦) = {𝑎𝑦}

𝒜𝑆(𝑧) = {𝑎𝑧, 𝑎𝑧1, 𝑎𝑧2}
𝒜𝑆(1 + 𝑢[0].1) = ∅

𝒜𝑆(𝑢) = {𝑎𝑢, 𝑎𝑣, 𝑎𝑧2}

We can use this definition to define the cost of a copy as the sum of the sizes
of the memory blocks pointed by the addresses in the footprint. This definition is not

equivalent to
considering the cost
of the copy of a term
as the size of its logic
value. Indeed, logic
values do not take
memory sharing into
account.

Definition 18 (Cost of a copy). Let us note 𝒲𝑆(𝑠𝑝) the final cost of the copies
induced by 𝑠𝑝. We have

𝒲𝑆(𝑠𝑝) = ∑
𝑎∈𝒜𝑆(𝑠𝑝)

|𝑀(𝑎)| ,

where |𝑀(𝑎)| = 𝑛 when 𝑀(𝑎) = [𝑣0, … , 𝑣𝑛−1].

Example 19. In the state we considered above, we have:

𝒲𝑆(𝑥) = 0
𝒲𝑆(𝑦) = 3
𝒲𝑆(𝑧) = 5 + 3 + 3 = 11

𝒲𝑆(1 + 𝑢[0].1) = 0
𝒲𝑆(𝑢) = 2 + 2 + 3 = 7

Note that although 𝑢 contains two pointers to 𝑣, the footprint taken by
𝑣 is only counted once.
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5.3.2 Moving old Upwards

The goal of the transformation 𝑜𝑙𝑑_𝑢𝑝 is to ‘move’ the old operators upwards
in the terms. That will lead to moving as much computations under old as
possible, so the term size is reduced before we copy it using 𝑖𝑛𝑡𝑟𝑜𝑑𝑢𝑐𝑒_𝑐𝑜𝑝𝑖𝑒𝑠.

Definition 19 (𝑜𝑙𝑑_𝑢𝑝). We define the term transformation 𝑜𝑙𝑑_𝑢𝑝 as follows.
For old terms, no transformation is needed:

old 𝑡 ↦ old 𝑡

In the other cases, 𝑜𝑙𝑑_𝑢𝑝 moves old upwards when it can transform all the
sub-terms into old.Note that in the case

of variables, we do
not add an old

primitive.
𝑥 ↦ 𝑥
𝑛 ↦ old 𝑛

𝑡1 + 𝑡2 ↦
⎧{
⎨{⎩

old (𝑡′
1 + 𝑡′

2) when 𝑜𝑙𝑑_𝑢𝑝(𝑡1) = old 𝑡′
1

and 𝑜𝑙𝑑_𝑢𝑝(𝑡2) = old 𝑡′
2

𝑜𝑙𝑑_𝑢𝑝(𝑡1) + 𝑜𝑙𝑑_𝑢𝑝(𝑡2) otherwise

𝑡1 - 𝑡2 ↦
⎧{
⎨{⎩

old (𝑡′
1 − 𝑡′

2) when 𝑜𝑙𝑑_𝑢𝑝(𝑡1) = old 𝑡′
1

and 𝑜𝑙𝑑_𝑢𝑝(𝑡2) = old 𝑡′
2

𝑜𝑙𝑑_𝑢𝑝(𝑡1) - 𝑜𝑙𝑑_𝑢𝑝(𝑡2) otherwise

𝑡1[𝑡2] ↦
⎧{
⎨{⎩

old (𝑡′
1[𝑡′

2]) when 𝑜𝑙𝑑_𝑢𝑝(𝑡1) = old 𝑡′
1

and 𝑜𝑙𝑑_𝑢𝑝(𝑡2) = old 𝑡′
2

𝑜𝑙𝑑_𝑢𝑝(𝑡1)[𝑜𝑙𝑑_𝑢𝑝(𝑡2)] otherwise

length 𝑡 ↦ { old (length 𝑡′) when 𝑜𝑙𝑑_𝑢𝑝(𝑡) = old 𝑡′

length (𝑜𝑙𝑑_𝑢𝑝(𝑡)) otherwise

𝑡.𝑛 ↦ { old (𝑡′.𝑛) when 𝑜𝑙𝑑_𝑢𝑝(𝑡) = old 𝑡′

𝑜𝑙𝑑_𝑢𝑝(𝑡).𝑛 otherwise

This definition is well-founded for the same reason as 𝑟𝑒𝑚𝑜𝑣𝑒_𝑜𝑙𝑑 as it applies
to structurally decreasing terms.

Remark 14. When applying 𝑜𝑙𝑑_𝑢𝑝, we may end up with more old primitives
than before, particularly around constants and operations on constants. For
instance the term 1 + x becomes old 1 + x. These old are obviously unne-
cessary, but they (a) have a copy cost of 0 since they are constants; (b) are easy
to detect and remove if necessary.

We generalize this transformation to predicates as a simple recursive tra-
versal that applies to terms. We also generalize it to specifications, where we
apply 𝑜𝑙𝑑_𝑢𝑝 to the postcondition.

Finally, the ultimate transformation applies the function 𝑜𝑙𝑑_𝑢𝑝 before 𝑖𝑛𝑡𝑟𝑜𝑑𝑢𝑐𝑒_𝑐𝑜𝑝𝑖𝑒𝑠,
but after 𝑜𝑙𝑑_𝑑𝑜𝑤𝑛:The functions

𝑜𝑙𝑑_𝑢𝑝 and
𝑜𝑙𝑑_𝑑𝑜𝑤𝑛 have

opposite effects, but
they are not the

inverse function of
each other.

𝑇𝑜𝑝𝑡 = 𝑖𝑛𝑡𝑟𝑜𝑑𝑢𝑐𝑒_𝑐𝑜𝑝𝑖𝑒𝑠 ∘ 𝑜𝑙𝑑_𝑢𝑝 ∘ 𝑜𝑙𝑑_𝑑𝑜𝑤𝑛 ∘ 𝑠𝑎𝑛𝑖𝑡𝑖𝑧𝑒
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Example 20 (𝑇𝑜𝑝𝑡 examples). The term 1 + (old x)[0] is transformed
into old (1 + x[0]).
However, when considering the predicate

forall i, 0 <<= i < n -> 1 + (old x)[i] === 0,

we cannot transform 1 + (old x)[i] into old (1 + x[i]) because
the variable i is not under old.
If we apply 𝑜𝑙𝑑_𝑢𝑝 ∘ 𝑜𝑙𝑑_𝑑𝑜𝑤𝑛 to our example specification. We get

domain a: (int array) array;

modifies a;

ensures length a[0] === old (2 * length a[0]) //\

forall i, 0 <<= i < old (length a[0]) ->

a[0][i] === old (a[0])[i]

Then, after 𝑖𝑛𝑡𝑟𝑜𝑑𝑢𝑐𝑒_𝑐𝑜𝑝𝑖𝑒𝑠, we obtain the following final specification.

domain a: (int array) array;

modifies a;

let z_0, z_1, z_2 =

copy (2 * length a[0], length a[0], a[0])

in

ensures length a[0] === z_0 //\

forall i, 0 <<= i < z_1 ->

a[0][i] === z_2[i]

5.3.3 Correctness and Optimization

proof of correctness. The correctness of this transformation does not
make additional hypothesis on the specification. The transformation does not
affect the good formation of the specification, nor does it change its semantics.

Theorem 18 (𝑜𝑙𝑑_𝑢𝑝 preserves the good formation of the specification). If 𝑠𝑝
is a specification, we have

𝑤𝑓 (𝑠𝑝) ⟺ 𝑤𝑓 (𝑜𝑙𝑑_𝑢𝑝 (𝑠𝑝))

Proof. This is the same argument as in theorem 9: the old operator does not
affect the types of the terms.

Theorem 19 (𝑜𝑙𝑑_𝑢𝑝 maintains program correctness). If 𝑝 is a well-formed pro-
gram and 𝑠𝑝 is a well-formed specification, we have

𝑝 ⊨ 𝑠𝑝 ⟺ 𝑝 ⊨ 𝑇𝑜𝑝𝑡 (𝑠𝑝)

Proof. By induction on terms and predicates.

proof of optimization. When moving old up before introducing cop-
ies, we reduce the cost of copies. In fact, the set of addresses that copy needs
to read when applying 𝑇𝑜𝑝𝑡 is a subset of the one obtained after applying 𝑇𝑏𝑎𝑠𝑒
only.
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Theorem 20 (𝑜𝑙𝑑_𝑢𝑝 reduces the set cost of the copies). For all specifications 𝑠𝑝,
we have

𝒜 (𝑇𝑜𝑝𝑡 (𝑠𝑝)) ⊆ 𝒜 (𝑇𝑏𝑎𝑠𝑒 (𝑠𝑝)) .

It immediately follows that

𝒲 (𝑇𝑜𝑝𝑡 (𝑠𝑝)) ≤ 𝒲 (𝑇𝑏𝑎𝑠𝑒 (𝑠𝑝)) .

Proof. The function 𝒜𝑆 over terms is monotonically non-increasing.

about optimality. Although this approach lets us save significantmemory
space and thus computation time in some cases (e. g. see section 5.5), it does
not provide the optimal solution to minimizing the copied memory.

Indeed, a trivial example would consist in a specification with the postcon-
dition old x === old x. Of course, the equality predicate is reflexive (see the
rule P-Equal in section 4.3.3), so evaluating (or worse, copying) x in this
context is not necessary, but will not be avoided by 𝑇𝑜𝑝𝑡. One could imagine
combining other methods (e. g. symbolic execution, abstract interpretation,
or deductive verification) to tweak the transformations further, but these ex-
periments have not been conducted in Ortac yet.

In the context of Gospel, the predicates have the expressiveness of the
first-order logic, which is known to be undecidable [12, 43]. Therefore, there
might be no way of deciding the optimal copies when considering a predicate
of the form if 𝑃 then old x else old y. Instead, Ortac has to copy both
x and y, while only one of thosemight be sufficient every time (e. g. if 𝑃 always
holds).

5.4 concrete implementation in ortac: extensions and limitations

Ortac applies the principles presented via the transformations of this chapter
to make Gospel specifications that contain old executable. However, Gos-
pel’s logic is richer, so the actual implementation in Ortac requires to extend
these transformations, and sometimes faces limitations.

5.4.1 Prestate Captures Applies to Predicates Too

In Microspel, old is a primitive that applies to a term and gives a term back.
In Gospel however, old can also apply to predicates. Therefore, we need to
establish new transformation rules so that 𝑜𝑙𝑑_𝑢𝑝 can ‘move’ old up in the
predicates too.

Example 21. The case of quantifiers is interesting. Consider for instance
the following postcondition predicate:

forall i, 0 <<= i < n -> (old a)[0][i] === 0.

In Microspel, this predicate is transformed by 𝑇𝑜𝑝𝑡 into

forall i, 0 <<= i < n -> (old (a[0]))[i] === 0,
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which later only requires copying a[0] rater than the full array a. In
Gospel, we can go one step further and propose

old (forall i, 0 <<= i < n -> a[0][i] === 0).

In that case, the predicate under old evaluates to a single Boolean in
Ortac, and no copies at all are necessary.

See chapter 6 for
more details about
the interpretation of
predicates by
Ortac.

In Ortac, 𝑜𝑙𝑑_𝑢𝑝 is slightly different. Let us consider a modified trans-
formation 𝑜𝑙𝑑_𝑢𝑝′ that acts like 𝑜𝑙𝑑_𝑢𝑝 except it adds old around quantified
variables. The transformation for quantifiers is then as follows:

forall i, 𝑡1 <<= i < 𝑡2 -> 𝑃 ↦
⎧{{{{{
⎨{{{{{⎩

old (forall i, 𝑡′
1 <<= i < 𝑡′

2 -> 𝑃′)
when 𝑜𝑙𝑑_𝑢𝑝′(𝑡1) = old 𝑡′

1
and 𝑜𝑙𝑑_𝑢𝑝′(𝑡2) = old 𝑡′

2.
and 𝑜𝑙𝑑_𝑢𝑝′(𝑃) = old 𝑃′.

forall i, 𝑜𝑙𝑑_𝑢𝑝(𝑡1) <<= i < 𝑜𝑙𝑑_𝑢𝑝(𝑡2) -> 𝑜𝑙𝑑_𝑢𝑝(𝑃)
otherwise.

In other words, we apply old to a quantified predicate if and only if all its
sub-terms and sub-predicates except for variables introduced by quantifiers
can be put under old.

Example 22. If we consider the predicate

forall i, 0 <<= i < old (length m) -> old m[i] === 0,

the function 𝑜𝑙𝑑_𝑢𝑝 does not let us go any further, because of the vari-
able i. However, when applying the rule above, we get the following
predicate:

old (forall i, 0 <<= i < length m -> m[i] === 0),

which we can compute in the prestate and get a single Boolean to save,
rather than the full array m.

5 .4.2 Some Terms May Require Allocating New Memory

In Microspel, the terms constructs do not need to allocate memory, and
their result is always smaller in memory than their arguments. In other words,
they are memory projections. When considering Gospel’s terms however,
this is not always the case, because they feature calls to arbitrary functions.
In the general case, calls to functions that are declared pure can appear in There are conditions

for a function to be
usable in a
specification. See
chapter 2.

specifications. A natural extension of 𝑜𝑙𝑑_𝑢𝑝 is to transform function calls the
following way:

f (old x) ↦ old (f x),

which is indeed correct if f is pure. These functions, provided by the user
and written in OCaml, can allocate memory during their execution, and
return values that are larger than their arguments. In that case, transforming
f (old x) into old (f x) in 𝑜𝑙𝑑_𝑢𝑝 actually increases the cost of the copies.
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Correctly deciding whether to apply this rule or not is again undecidable,
because f can contain arbitrary code. In Ortac, we default to always moving
old upwards, as we observed most of the functions used in specifications are
actually projections, or conversions (i. e. from one container to another, with
equivalent memory complexity).

However, one could imagine a static allocation analysis to decide whether
to apply it or not depending on the context, in particular if space complexity
specification makes it way into Gospel in the future. We also experimented
with a heuristic based on types to try and improve the decision making. For
instance, one could approximate that a string is smaller than a string array.
However, most of these approximations are over-simplifications that are easy
to contradict, and their use did not show significant improvements in practice.

5.4.3 Branching Leads to Worse CPU Time

In some cases, some of the branches of the control flow of the specification
do not need to be executed, for instance when using a conditional branching.
In such situations, applying 𝑜𝑙𝑑_𝑢𝑝 can induce additional CPU cost, even if
it preserves the memory optimization property. Let us explore this trade-off
through an example.

Example 23. Let us consider a predicate of the following form:

if P then sorted (old x) else sorted (old y),

where sorted returns a sorted version of its argument.
In our previous discussion about the optimality of 𝑇𝑜𝑝𝑡, we established
that in the general case, we have to copy both x and y. However, when
applying 𝑜𝑙𝑑_𝑢𝑝 to this predicate, we obtain

if P then old (sorted x) else old (sorted y),

which leads to (a) sorting the original arrays x and y; (b) copying both
the resulting arrays.
Therefore, applying 𝑜𝑙𝑑_𝑢𝑝 not only makes us copy two arrays, but also
execute potentially costly operations that is ultimately not necessary
for the check: we sort two arrays instead of one.

Scenarii like this one show aweakness of this approach when faced to codeThis issue arises even
without introducing

function calls.
containing branching, as correctly checking those actually require to execute
all the branches, even those that will not, in the end, be useful to the check. In
Ortac, we resolve this time-memory trade-off by choosing to always apply
𝑜𝑙𝑑_𝑢𝑝, as our experiments show the typical use-cases benefit from it. We do,
however, provide an option to deactivate the optimization if the user knows
they might be facing tricky cases.

5.5 example and benchmarks

In this section, we show how Ortac applies these specification transform-
ations to an existing program implemented in OCaml and annotated with
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Gospel specifications, making them executable and verifiable at runtime. We
compare the optimization levels to demonstrate that a simple program and its
specification are sufficient for this optimization to be critical to the perform-
ance and practicability of the instrumentation in production.

5.5.1 A Maze Generator

Our stress test program takes an integer 𝑛 as input and generates a perfect,
random maze on a 𝑛2 square grid. A maze is perfect when for any pair of
points 𝐴 and 𝐵, there exists a single path between 𝐴 and 𝐵. The algorithm is
as follows:

(a) Create a list 𝒲 of all the possible walls in the grid.

(b) Create a set of sets of cells 𝒞 containing the singletons {𝑐} for each cell 𝑐.

(c) For each wall in 𝒲, in some random order,
• if the cells that this wall separates belong to distinct sets,

a) remove the wall from the list 𝒲;
b) join the sets of the formerly separated cells.

The set 𝒞 maintain the connected components of the grid, so during each
iteration, we remove a wall from 𝒲 if and only if it joins otherwise discon-
nected components. The loop goes through all the walls, so there is only one
connected component at the end of the iterations. Therefore, the remaining
walls in the list constitute a perfect maze.

Anatural data structure implementation for𝒞 is union-find [1]. Our OCaml The specifications in
these contracts is
partial, but sufficient
for our example.

implementation of the union-find exposes the interface reproduced in list-
ing 5.1, which we instrument using Gospel contracts that we aim to verify at
runtime.

The type t represents an instance of the data structure: a set of sets of
cells that we represent with integer identifiers. Our module will be operating
in place, so this type is mutable, which is reflected by the Gospel clause
ephemeral.

The function num_classes returns the number of disjoint sets in the data The function find

may actually perform
path compression,
but as far as the
specification is
concerned, this is not
observable.

structure and find returns the representative element of a set. These functions
do not perform any writing effects (i. e. they do not modify the union-find
structure), do not raise exceptions, and always terminate. Therefore, they are
considered pure by Gospel, and we can use them to specify other functions
further.

Finally, the function union performs the union of two sets in the structure.
We will focus on this function in the rest of this example. Its contract states
it can modify the data structure with the modifies clause. Because the type
of union-find is mutable, and this function potentially modifies it, executing
properties that refer to the old structure versionwill require copies. Therefore,
the transformations we proposed in section 5.2 are relevant in this example.
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1 type t

2 (*@ ephemeral *)

3

4 val create : int -> t

5 (*@ uf = create n

6 checks n >= 0 *)

7

8 val num_classes : t -> int

9 (*@ pure *)

10

11 val find : t -> int -> int

12 (*@ pure *)

13

14 val union : t -> int -> int -> unit

15 (*@ union uf i j

16 modifies uf

17 requires 0 <= i < size uf

18 requires 0 <= j < size uf

19 ensures num_classes uf <= num_classes (old uf)

20 ensures find (old uf) i <> find (old uf) j

21 -> num_classes uf = num_classes (old uf) - 1

22 *)

Listing 5.1: Union-find module interface.

5.5.2 Runtime Verification with Ortac

Weuse Ortac to generate OCaml code that checks these contracts at runtime.
More precisely, the generated implementation performs the following opera-
tions:

(a) Check the preconditions and fail if they do not hold or raise an excep-
tion.

(b) Evaluate the terms under old operators, and copy their values into fresh
variables.

(c) Call the function union and fail if it raises an exception.

(d) Replace the terms precomputed in step 2 with their value in the post-
conditions, execute them, and then fail if they do not hold or raise an
exception.

5.5.2.1 Direct instrumentation

In this example, the transformations 𝑜𝑙𝑑𝑑𝑜𝑤𝑛 and 𝑠𝑎𝑛𝑖𝑡𝑖𝑧𝑒 do not modify the
specification, as there are no nested old or quantifiers.

In the unoptimized instrumentation, Ortac collects all terms appearing
under old, evaluates them in the prestate, and then copies the result. There
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1 let union uf i j =

2 if not (0 <<= i <<= size uf) then fail ();

3 if not (0 <<= j <<= size uf) then fail ();

4 let old_1, old_2, old_3, old_4 =

5 copy (uf, uf, uf, uf)

6 in

7 (try union uf i j with _ -> fail ());

8 if not (num_classes uf <<= num_classes old_1 )

9 then fail ();

10 if not (

11 not (find old_2 i <<> find old_3 j)

12 ||| num_classes uf = num_classes old_4 - 1)

13 then fail ();

Listing 5.2: Naive instrumentation of union (𝑇𝑏𝑎𝑠𝑒).

are four occurrences of the old operator, all of which refer to the old version
of uf. The generated code is showed in listing 5.2.

5.5 .2.2 Optimized Version

In the optimized version, although the user can still write the specifications in
the way that feels the most natural to them, Ortac pre-processes the terms
to propagate the old operator upwards, as explained in section 5.3. Ortac
automatically rewrites the terms as if the user had written the following post-
conditions:

ensures num_classes uf <<= old (num_classes uf)

ensures old (find uf i <<> find uf j)

-> num_classes uf = old (num_classes uf - 1)

This rewriting effectively moves to the prestate some computations pre-
viously executed in the poststate. Therefore, it only triggers a copy of the
result of the computations (two integers and one Boolean in this case) instead
of the context necessary for the execution (here, the whole union-find struc-
ture). The instrumentation generated by Ortac now has the form showed in
listing 5.3.

We do not show the details of the wrapper code at this time, but more
details are provided about the generated code in chapter 6, in particular about
the fail calls, handling of exceptions, etc.

5 .5 .3 Benchmarks

We run our maze generator with multiple values of 𝑛. For each value, we
gather the execution time, the number of garbage collections, and the cumu-
lative amount of data copied by copy. We ran our benchmarks on an i7-1165G7
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1 let union uf i j =

2 if not (0 <<= i <<= size uf) then fail ();

3 if not (0 <<= j <<= size uf) then fail ();

4 let old_1, old_2, old_3 = copy (

5 num_classes uf,

6 find uf i <<> find uf j,

7 num_classes uf - 1)

8 in

9 (try union uf i j with _ -> fail ());

10 if not (num_classes uf <<= old_1 ) then fail ();

11 if not (not old_2 ||| num_classes uf = old_3 )

12 then fail ();

Listing 5.3: Instrumentation of union with optimized copies (𝑇𝑜𝑝𝑡).

@ 2.80GHz CPU, with 16GB of RAM using the OCaml 4.14.0 compiler. Each
data point is an average of 10 runs. We present the results in figure 5.1.

They show that naive instrumentations of the code make it impracticable
for large values of 𝑛, which timed out after one hour of execution. On the other
hand, the optimized version significantly reduces the cost of the verifications
to a constant factor no larger than 2. The limited amount of data copied and
limited use of the GC allow this cost mitigation.

about complexity. Recall that the maze generation calls union until
there is only one remaining set (i. e. exactly 𝑛2 − 1 times) so its complex-
ity, when invoked with size 𝑛, is 𝒪(𝑛2 × 𝑢𝑓 (𝑛)), where 𝑢𝑓 (𝑛) is the complex-
ity of union. When one properly implements union-find, we get 𝑢𝑓 (𝑛) =
𝒪(𝛼(𝑛)) ≈ 𝒪(1), so the complexity of the maze generation is 𝒪(𝑛2) in the
un-instrumented version.

However, when copying the entire union-find structure (no optimization
and shared copies only), the instrumented union now needs to copy a struc-
ture of size 𝑛2. This copy increases 𝑢𝑓 (𝑛) to 𝒪(𝑛2), which in turn makes the
total maze generation complexity 𝒪(𝑛4). Conversely, the old propagation
optimization does not require copying this much data. Instead, it copies a
fixed amount at each call (two integers and one Boolean), and restores the
original quadratic complexity of the program.

related work

The efficient evaluation of old terms in runtime assertion checking is a well-
known and challenging problem forwhich there is still room for improvement.
In the general case, most tools copy the whole memory state before the call to
the function [23, 35], while acknowledging the flaws of this approach.

ACSL [6] generalizes the old feature by introducing an \at(t, L) oper-
ator, which lets the user specify arbitrary locations L in the code, rather than
restricting it to the function prestate. This extension leads to possibly worse
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𝑛 Instrument. Time (s) GC runs Copies (MB)

100
None 0.0026 0 -
𝑇𝑏𝑎𝑠𝑒 2.0 260 190
𝑇𝑜𝑝𝑡 0.0062 0 0.038

200
None 0.012 0 -
𝑇𝑏𝑎𝑠𝑒 30 4400 3000
𝑇𝑜𝑝𝑡 0.032 2 0.15

400
None 0.088 1 -
𝑇𝑏𝑎𝑠𝑒 680 31 000 48 000
𝑇𝑜𝑝𝑡 0.19 2 0.61

800
None 0.46 4 -
𝑇𝑏𝑎𝑠𝑒 ∞ ∞ ∞
𝑇𝑜𝑝𝑡 0.89 4 2.4

1600
None 2.2 5 -
𝑇𝑏𝑎𝑠𝑒 ∞ ∞ ∞
𝑇𝑜𝑝𝑡 3.9 5 9.8

3200
None 11 5 -
𝑇𝑏𝑎𝑠𝑒 ∞ ∞ ∞
𝑇𝑜𝑝𝑡 19 6 39

Figure 5.1: Benchmarks results for the old instrumentation

performance issues, with even more states needing captures. While initial im-
plementations of E-ACSL [42] used to perform a shallow copy of the variable
contents only, which is incorrect in most cases, more recent implementations
provide a hybrid method to reduce the copied memory space [40], but this
approach has not been detailed yet.

It is also worth mentioning that, as noted in [9], in the presence of precon-
ditions, the evaluation and copy of the old terms are meant to be guarded
by these preconditions. Accordingly, Ortac only evaluates those once the
corresponding preconditions are successfully verified.

Previous work have also explored other optimizations for runtime asser-
tion checkers, such as providing efficient representation of integers [24] or
improving the verification of modifies clauses [26]. Regarding the former,
Ortac benefits from zarith, which only switches to arbitrary-precision in-
tegers when machine integers are not large enough to store them without
overflows. Regarding the latter, Ortac always assumes that the variables
provided by the user in the modifies clauses are correct and even uses them
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to optimize the copies. They are in the trusted part of the specification, and
verifying these clauses is still future work for Ortac at this point.

conclusion

In this chapter, we have presented the transformations performed by Ortac
to (a) be able to execute specifications containing old primitives; (b) mitigate
the cost of copying prestate values during postconditions verifications. We
supported this approach with a Coq formalization and proofs of correctness
and showed its efficiency in a practical example.

We presented the transformations in this chapter using Microspel, which
specifications are significantly simplified compared to Gospel’s, to make the
presentation and proofs amenable and allow the techniques to generalize
in other specification languages. Ortac, however, goes beyond Microspel
and operates on Gospel specifications directly. For instance, it moves old
upwards in predicates, including quantifiers, local variables, and user-defined
predicates and functions.

In the next chapter, we discuss other interesting points of translating Gos-
pel terms and specifications. In particular, we did not explain here howOrtac
implements the copy function. We show in the next chapter how it relies on
the OCaml type-checker to take into account memory sharing and optimizes
for immutable data in order to limit even further the cost of copying.







6
ORTAC: JO INT ING OCAML AND GOSPEL

So far, we did not dive into the implementation of Ortac and the design
and implementation choices that let us implement specification verifications
that respect Gospel’s semantics. This chapter shows some challenges when
instrumenting the code and how Ortac handles them.

6.1 type-guided code generation

Ortac leverages the information provided by the typing information—of
OCaml in the interface and of Gospel in the specifications—to produce
more accurate, or more optimized code.

6.1 .1 Copies

In the previous chapter, we explained what and when Ortac needs to copy
in order to execute predicates that contain the old primitive. We did not,
however, explore how this copy is implemented to provide the correct deep-
copy semantics at a limited cost.

Let us consider an example where we need to copy an array 𝑥 of pairs of
integers and an array 𝑦 of arrays of integers.

val x : (int * int) array

val y : int array array

The array 𝑥 has size 4 and contains two aliased pairs, respectively, its first two
cells and its last two cells. The array 𝑦 has size 3, and all its cells point to the
same array. The memory they use is represented below.

𝑥 ↦ 𝑦 ↦

6.1 .1 .1 Copying while Preserving Sharing

Thefirst feature of copyweare interested in is the sharing preservation: shared
memory in the original value should be shared in the copy for better compacity.
A straightforward way of implementing such a copy is to use the Marshal Memory sharing is a

commonly used
feature of OCaml in
particular when
writing functional
data structures.89
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module from the OCaml standard library, which implements marshalling.
Copying is done by serializing and then immediately deserializing the value:

let copy : 'a -> 'a = fun a ->

Marshal.from_string (Marshal.to_string a [Closures]) 0

This copy function is polymorphic, preserves sharing (per Marshal specific-
ation), and works correctly for cyclic values as well —the Marshal functions
are implemented using C code that traverses the memory representation of
values.

𝑥 ↦ 𝑦 ↦

𝑜𝑙𝑑_𝑥 ↦ 𝑜𝑙𝑑_𝑦 ↦

This approach presents two weaknesses: (a) it needs to allocate a string to
perform the serialization, which is immediately consumed by the deserializa-
tion (although these strings are usually small, they put unnecessary pressure
on the GC); (b) it copies all memory blocks, regardless of whether they repres-
ent mutable or immutable values. The first point is merely an implementation
detail of the Marshalmodule. The second point, however, is a legitimate weak-
ness of this method. Indeed, OCaml does not keep the type information at
runtime, and therefore exploring the memory does not give any information
on the mutability of the data being traversed.Rather, it keeps very

limited typing
information via tags.

We, however, do have some static information on the mutability of data via
via the Gospel type-checker and the modifies clauses of the specifications.
We wish to leverage this information in order to reduce the copied size.

6.1 .1 .2 Sharing Immutable Values with the Prestate

Rather than using Marshal, we can use the type of the expression to copy in
order to generate a monomorphic copy function by recursively composing
primitives. When we encounter an immutable value (or a value that does not
appear in the modifies clause), copy is the identity function.

Remark 15. More than inspecting the root type of a value is required to de-
termine immutability. Values of type t list are only immutable if t is also
an immutable type.

For instance, when copying x : (int * int) array, we generate:

• a function to copy (int * int) array values, given a function to copy
(int * int) values:



6.1 type-guided code generation 91

let copy_int_pair_array a : int array =

Array.map copy_int_pair a

• a function to copy (int * int) values (which are immutables):
let copy_int_pair = identity

We proceed similarly to generate a function copy_int_array_array to copy
𝑦.

let copy_int = identity

let copy_int_array a : int array =

Array.map copy_int a

(* Final copy function for y *)

let copy_int_array_array a : (int array) array =

Array.map copy_int_array a

After the copy, we obtain the following memory:

𝑥 ↦ 𝑦 ↦

𝑜𝑙𝑑_𝑥 ↦ 𝑜𝑙𝑑_𝑦 ↦

Note how 𝑜𝑙𝑑_𝑥 now has pointers to 𝑥, rather than duplicating immutable
data.

There is, however, a significant drawback: this copying method only pre-
serves sharing between immutable data but not between imperative values.
While this is luckily the most common scenario for sharing in OCaml, there
are still many examples of sharing between (partially) imperative data, for
instance, when one implements polymorphic containers with sharing but in-
stantiates them with mutable types. Therefore, this solution is only partially
satisfying.

6.1 .1 .3 The Best of Both Worlds

The actual implementation in Ortac attempts to achieve the best of both
worlds. It performs similarly to the implementation in Marshal: bymemoizing
the result of the copies using OCaml’s physical equality:

let copy_int_array =

let module H = Hashtbl.Make(struct

type t = int array

let equal = (===)
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let hash = Hashtbl.hash

end) in

let tbl = H.create 0 in

fun a ->

try H.find tbl a

with Not_found ->

let copy_a = Array.map copy_int a in

H.add tbl a copy_a;

copy_a

Remark 16. The contents of the memoization table must be cleared before each
new specification verification so previous copies are discarded.

By implementing this memoization on top of the monomorphic copy gen-
eration presented previously, we can achieve the most compact deep copy:

𝑥 ↦ 𝑦 ↦

𝑜𝑙𝑑_𝑥 ↦ 𝑜𝑙𝑑_𝑦 ↦

It does share a limitation with the previous solutions: this is only possible
when themutable parts of the value to copy are fully known; e. g. when it does
not involve polymorphic or abstract parts. When it does, generating a copy

function by following the type definition is no longer possible, and Ortac
falls back to the Marshal module to copy the whole term, as presented in
section 6.1.1.1.

Remark 17. One could think of a hybrid solution: use a type-guided approach
for as long as the type is known, then fall back to Marshal to copy only the
abstract or polymorphic parts. In that case, though, the result is neither guar-
anteed to preserve sharing nor to save copying of immutable data.

6.1 .2 Equality Functions

On the one hand, Gospel provides a polymorphic equality operator (=)

which semantics corresponds to the logic equality and depends on the type of
the compared values. For instance, two sets provided by the Gospel stand-
ard library are equal if and only if they contain elements that are equal with
respect to their logic equality. We have used this predicate extensively in the
examples of chapter 2, and it is a central point of most specifications.

On the other hand, OCaml also provides a polymorphic equality operator
(=). Its semantics, however, is defined in different terms. It is a structural
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equality, meaning that it recursively compares the contents of the values, in-
cluding when they are mutable. This definition needs to be revised to fully
understand the function’s behaviour: it is worth detailing what structure is
compared, i. e. the structure of the memory representation of the values. For
instance, two sets from the OCaml standard library are equal if and only if
they are represented by equal—structurally, not physically—equal binary tree
internally.

Although their semantics are defined differently, they coincide for many
basic types and type compositions, e. g. machine integers, lists, arrays, records,
and variants. Therefore, it is tempting to implement Gospel’s polymorphic
equality using OCaml’s polymorphic equality, which would also have the
advantage of being predictable for OCaml developers. This is not, however,
what Ortac does.

why avoid ocaml’s polymorphic equality? There are several reas-
ons why Ortac avoids implementing Gospel’s logic equality with OCaml’s
polymorphic equality provided in the standard library.

• When applied to functional values, it fails at runtimewith an Invalid_argument
exception. While the generated code would still be valid (Ortac re-
ports that it cannot translate the property), this case can be detected
and reported at the instrumentation time rather than on each run.

• When applied to cyclic values, it may not terminate (mainly if the values
are equal) or raise an exception (e. g. if it overflows the stack), depend-
ing on the structure of the arguments. When it does not terminate,
the process also cannot be stopped with a SIGTERM signal because the
program running is C code from the OCaml runtime.

• On a conceptual level, the polymorphic equality breaks the module
abstraction barrier (and even the OCaml memory representation ab-
straction!). Gospel and Ortac are higher-level languages that tend to
avoid this.

• Finally, as we already mentioned, OCaml’s equality implements a dif-
ferent relation than Gospel’s logic equality. It is agnostic of the type of This is a frequent

source of bugs in
OCaml and using
the polymorphic
equality generally be
used with caution.

the compared values and compares their memory representations. It
is specific to the implementation users choose for their types and can
even be affected by compiler optimizations!

Therefore, when translating Gospel’s polymorphic equality, Ortac imple-
ments ad-hoc polymorphism, generating the corresponding monomorphic
functions. It substitutes them in the instrumentation, similar to the one de-
scribed for copies (see section 6.1.1). Primitive types are known to Ortac,
along with their equality predicates. It composes the equality functions iso-
morphically to the structure of the type, just like copy. When a type is un-
known or does not have an attached equality predicate (e. g. type variables in
polymorphic types, abstract types, functional types), the equality predicate
is deemed non-executable and is rejected.
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Note that this solution does not prevent equality tests of cyclical values from
not terminating. However, it does mitigate the issue in two ways: (a) beforeThe compare

function from the
standard library also
implements this trick

based on physical
comparison.

comparing values structurally with their types, it compares them physically,
so cyclic values that are physically equal (or have physically equal parts) are
properly compared; (b) since the generated implementation is pure OCaml
code and does not contain C bindings, the program still properly responds to
SIGTERM signals by exiting.

6.1 .3 Printing, Hashing, Comparing

The functions copy and equal are necessary to implement the specifications
that involve Gospel’s (=) and old. In some cases, it is also helpful to generate
monomorphic print, hash or compare functions. Unlike copies or equality,
these functions are optional to the instrumentation, but they are helpful to
generatemore performant code or providemore useful feedback to users. The
generation process is the same: it is guided by the types andmay fail statically
(e. g. at the generation time) and issue a warning if it reaches polymorphic or
abstract types.

comparing and hashing. Comparing and hashing are performance
helpers that Ortac uses when it generates verifications. For instance, Ortac
needs them to implement efficient sets when translating Gospel’s standard
library’s sets or to generate memoized recursive functions as we showed in
chapter 3. The polymorphic compare and hash functions provided by the
standard library are sometimes enough for these use cases as they are less re-
strictive. For instance, the hash function is guaranteed to terminate. However,
even when we apply them to types that make their execution safe, they might
not be compatible with the equality functions for these types. For instance,
compare nan nan evaluates to 0 and Hashtbl.hash nan = Hashtbl.hash nan

evaluates to true, but nan = nan evaluates to false, in accordance with the
IEEE 754 standard for floating point arithmetics [22]. Therefore, using them
in the generated code can introduce inconsistencies with respect to the equal-
ity predicate and erroneous verifications.

printers. Finally, Ortac also generates printers for the values involved
in the specifications so that the errormessages presented in the errormessages
(see chapter 3) contain the actual arguments.

$ ./fib 4242

File "fibonacci.mli", lines 8-13, characters 0-30:

Runtime error when executing fib 4242 :

- the precondition

fibonacci 4242 <<= Int.max_int

did not hold.

This makes it easier for users to understand them and to replay failed test
cases. When printers cannot be inferred, the error messages only show the
variable names given in the specifications:
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$ ./fib 4242

File "fibonacci.mli", lines 8-13, characters 0-30:

Runtime error when executing fib n :

- the precondition

fibonacci n <<= Int.max_int

did not hold.

6.1 .4 Limitations and Fallbacks

This approach of type-based generation applies well to fully known types.
However, it is not applicable in all cases, and three scenarii prevent it from
succeeding: abstract types, polymorphic types, and functional types. If the
type of a term is abstract, polymorphic, or functional (or contains parts that
are), it is no longer possible to generate monomorphic functions based on the
type definition. Ortac provides two ways to overcome this and execute the
specifications.

user-provided functions. In many OCaml interfaces exposing a
type, developers also expose an equal function that implements meaningful
equality (as opposed to the structural equality of memory representations).
In those cases, users may say so using the equality clause in the function spe-
cification. Gospel checks that it indeed has the type of an equality function
(possibly parametrized by higher order equality functions when the type is
polymorphic), and Ortac uses it as the equality function for this type in its
monomorphic function generation.

While exposing an equal in an interface is idiomatic, exposing a hash func-
tion is pretty rare. When optional functions (e. g. print, compare, or hash) are
missing, Ortac can also give up on the corresponding optimization and fall-
back to a less efficient (or comfortable) implementation. For instance, when
hash is missing but compare is present, the memoization is implemented with
a reference pointing to a finite map from OCaml’s standard library; when
only equal is available, Gospel’s sets are implemented with lists. When
Ortac falls back to inefficient implementations, it reports it to the user as a
warning during the instrumentation phase.

polymorphic functions. When the user does not provide those func-
tions, the only fallback is to use the standard library polymorphic functions.
Ortac does not do it by default for all the reasons discussed earlier, but it
provides an option to allow this behaviour.

mixing approaches. All these options are mutually exclusive: Ortac
ensures that all the functions used in its generated code come from the same
source (type, user, or standard library) to reduce the risk of incompatible
functions. Note that Ortac does not check that all these functions are com- Verifying at runtime

that these functions
are compatible is
possible but was not
implemented.

patible: when the user provides functions, it is their responsibility to ensure
this property.
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Example 24 (User-provided functions and generated functions may
be incompatible). For instance, consider the following example of a
module implementing rational numbers using a non-reduced couple
of integers and exposing an equal function that judges whether two
rational numbers are equal:

type rat = int * int

val equal: rat -> rat -> bool

(*@ equality *)

In this module, the same number (in the sense of equal) can be rep-
resented with multiple different OCaml values. For instance, (1, 2)

and (3, 6) both represent 1
2 . However, the type-generated (or the

polymorphic) compare will judge whether these values differ.
If one now wishes to implement sets of rational numbers using
OCaml’s sets built with such a compare function, they cannot retrieve
values as expected. The following code fails the assertion check:

module Set = Set.Make (struct

type t = rat

let compare = Stdlib.compare

end)

let () =

let s = Set.singleton (1, 2) in

assert (Set.mem (3, 6) s)

6.2 type invariants

In Gospel, the specifier can attach invariants to types. They describe prop-
erties that hold (a) for all values of this type; (b) at all times outside of the
abstraction barrier. In particular, values stored inside containers (e. g. lists,
arrays, or records) must also obey their invariants. However, it is possible for
internal functions to temporarily break these invariants, so long as they are
restored before the function returns. This applies to function arguments but
also global values and internal states.

For instance, the specification of the type of union-find presented in sec-
tion 2.3 could mention that there are always fewer classes in the structure
than its full size, and these are both positive integers:

type t

(*@ ephemeral

with self

invariant 0 <= num_classes self <= size self *)

The first line, with self, introduces the name of the value of the type t, so
we can use it in the invariant itself in the second line.

Remark 18. At first sight, this definition looks suspiciously cyclic: the type
t is defined in terms of num_classes and size, which are defined over the
type t. However, one can always rewrite it using a Gospel axiom instead of
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an invariant, which would detach the property from the type definition and
break the cyclicity:

type t

(*@ ephemeral *)

(*@ axiom t_inv : forall (self: t).

0 <= num_classes self <= size self *)

6.2.1 How Invariants are Checked

The first, easy step to check these invariants is to translate them into OCaml
expressions and generate a checking function for them, which we may call
whenever we want them to hold. Again, this step may statically fail if the
invariant is not deemed executable, in which case the invariant is ignored,
and a warning is issued by Ortac.

However, being able to verify the invariants on one value of the type is
not sufficient. Indeed, the values are not always immediately accessible for
verification, for instance, if they are stored inside containers or are part of a
larger value. For instance, one may write a function returning a list of values
of type t:

val f : unit -> t list

In that case, all the values in the returned list must satisfy the invariant. In
general, values of type t can be nested into arbitrary types, which can be
part of the Gospel standard library (if the function is a logic function), the
OCaml standard library, or written by the user.

In order to perform the correct verifications, we, therefore, have to (a) de-
termine for each input and output whether they carry values of types that
have invariants attached; (b) in that case, generate iterators to access these
values. The iterator generation is performed the same way as copy (see sec-
tion 6.1.1): it is guided by the type definition and composes the iter functions
available for each type. For instance, for the function f shown before, Ortac
generates the following iterator:

let iter_t_list (f: t -> unit) (x: t list) =

List.iter f x

The generator works similarly as long as the container type is well-known.
Here is another example of values of type ((t * 'a) list) Set.t appear
in the module. Note that the type need not be fully known (this one is poly-
morphic); only the container (and its associated iter function) is required.

let iter_t_a_pair (f: t -> unit) (x: t * 'a) =

f (fst x)

let iter_t_a_pair_list (f: t -> unit) (x: (t * 'a) list) =

Set.iter (iter_t_a_pair f) x
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let iter_t_a_pair_list_set (f: t -> unit)

(x: ((t * 'a) list) Set.t) =

Set.iter (iter_t_a_pair_list f) x

In both examples, the containers are either part of the language (pairs),
defined in the OCaml standard library (lists) or in the Gospel standard
library (sets). All of those are known to Ortac; therefore, the iterators gener-
ation is not a problem. Sometimes, however, the container is part of the user
codebase and is not exposed:

type 'a container

val g : unit -> t container

In that case, there is no fallback polymorphic solution like for copy or equal.
The user may expose an iter function, annotated with an iterator specific-Recall that runtime

values do not hold
type information.

ation (this is only used by Ortac and is not part of the Gospel language):

val iter : ('a -> unit) -> 'a container -> unit

(*@ iterator *)

If the user does not provide such a function, the invariant cannot be checked
on the return values of g (it may still be checkable in other functions), and a
warning is issued.

Now that we have a function generated by Ortac that checks the invariants
of a value, we have to decide when to call the checking function to enforce the
invariants.

6.2.2 When Invariants are Checked

Themost straightforward solution seems to follow the definition: we can check
the invariants on all accessible values of that type at every function’s entrance
and exit (normal and exceptional). We can achieve this by maintaining a list
of weak pointers (i. e. pointers that the GC does not follow and may collect as
soon as the pointee is collected) of previously seen values at the interface of
the functions in the module. However, this would be very costly and is often
unnecessary.

Remark 19. When a function does not have a contract attached, it still must
maintain all the type invariants. Therefore, Ortac produces wrappers even
for functions that are not specified.

abstract types. Abstract types can only be modified by the module’s
functions where they are defined. Therefore, checking the invariants at the
function exits only is sufficient to ensure they hold everywhere.

immutable values. In the case of immutable values, checking the in-
variant once is enough. More generally, values that are ‘locally immutable’,One could also

maintain a set of
already checked

values to ensure that
the invariants are

checked exactly once.

i. e. values that do not appear in the modifies clause also do not need to
be checked since these clauses are in the trust base of the specification (see
chapter 3).
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the case of public types. In the case of public types (or types that
contain publicly modifiable parts), checking the invariants at every function
entry is also necessary since they might have been modified from outside the
module.

consumed values. Gospel features a consumes clause in function con-
tracts that lets users specify that a value must not be used anymore after the
call. For instance, when specifying an interface for file descriptors (or OCaml
channels) manipulation, the close operation consumes its argument, which is
now invalid for further use.

val close_out : out_channel -> unit

(*@ close_out ch

consumes ch *)

Ortac instruments these clauses by keeping track of all consumed values
with a set of weak pointers to these values. This set typically remains small
since pointers to consumed values are usually not kept alive for long (when
the code is correct); the impact on performance should be minimal. Before
each function call, it checks if the arguments were previously consumed and
reports it to the user. When it comes to type invariants, they are not checked
on consumed values.

6.3 exceptions

This section shows how Ortac instruments the code to consider exceptions,
whether raised by the instrumented implementation or by the generated code
itself.

6 .3.1 Exceptions Raised when Executing Specifications

In chapter 3, we showed that Ortac sometimes statically fails when it determ-
ines that it cannot translate a term into an executable OCaml expression, e. g.
when it faces a logic function with no definition. In that case, it shows a warn-
ing to the user and does not translate that part of the specification. However,
there are situations where a term seems executable, but its execution raises an
exception instead.

6.3.1 .1 How Executing Pure Specifications Can Raise Exceptions

In Gospel, the logic domain is pure. Therefore it may seem unexpected that
executing a specification can raise an exception at all. However, the OCaml
instrumentation by Ortac creates potential sources of exceptional behaviour.

exceptions linked to the environment. First, no matter how pure
the generated OCaml expression is, it is always possible that its OCaml exe-
cution raises an exception due to the execution environment. Indeed, memory
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allocations may result in Out_of_memory, recursive functions calls can raise
Stack_overflow, or a user interrupt via CTRL-c will raise Sys.Break. When
these asynchronous exceptions are raised, we can deduce nothing from the
execution of the specification, and the only reasonable behaviour is to report
it back to the user.

gospel’s total logic and gospel standard library. Second,
some functions from the Gospel standard library are pure because Gospel’s
logic is total, but their actual implementation in Ortac is not. Let us consider
the function Sequence.get from the standard library, which returns the 𝑖th
element of a sequence.

(*@ val get : 'a t -> int -> 'a *)

If 𝑖 is outside the bounds of the sequence, the function cannot raise an excep-
tion since it is a logic function. Instead, it always returns an arbitrary value
of the correct type with only one piece of information available: it is equal to
itself. Moreover, since logic functions provide referential transparency, it is
equal to all other calls to Sequence.getwith the same arguments. Implement-
ing such a mechanism for total functions is generally not possible for multiple
reasons:It is possible by

tricking the
type-checker with
Obj.magic or the
like, but we do not

want to go down that
path.

• If the return type is polymorphic, then the type-checker does not allow
crafting an arbitrary value of that type.

• When crafting a value is possible (e. g. because the type is known),
picking a default one is still unsound. Indeed, a single default value
does not allow us to enforce that it equal to itself and other same calls,
yet different from default values created by different calls. For instance,
according to Gospel’s semantics, wemust ensure that 1/0 = 1/0 holds
but 1/0 = 2/0 does not.

• Some types have invariants attached to them, making crafting values
even more complex, if not impossible.Even though this is

rarer, there is no
guarantee that the
type is inhabited at

all!

• Even if crafting a default value is not necessary, the memoization mech-
anism required to ensure referential transparency is only possible if
we can generate at least an equal function for all the argument types,
which is not always possible. In the case of Sequence.get, that would
mean using OCaml’s polymorphic equality. We already discussed the
issues in that case in section 6.1.2.

Therefore, Ortac does not try to mimic Gospel’s totality when implement-
ing the standard library. Instead, it uses exceptions like they are used in the
OCaml standard library: for instance, executing Sequence.get s (-1) raises
an exception.

ocaml pure functions. Third, some functions from the OCaml do-
main are marked as pure (and therefore are allowed in specifications). How-
ever, their implementation can be faulty or contract preconditions can be vi-
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olated. Let us explore this possibility through the following specification for
the Array.get function:

type 'a array

(*@ model { m : 'a Sequence.t } *)

val get : 'a array -> int -> 'a

(*@ v = get a i

requires 0 <= i < Sequence.length a.m

pure

ensures v = a.m[i] *)

In this example, the function get is pure on the condition that its precondition is
satisfied. Now consider the following specification for copy. Recall that we do not

statically know if a
function’s
precondition is
satisfied.

val copy : 'a array -> 'a array

(*@ y = copy x

ensures forall i,

0 <= i < length x ->

get x i = get y i *)

If the implementation of copy is erroneous, then y can be a different, smaller
size from x. In that case, the call get y i violates the precondition for get,
and the function’s behaviour is undefined. Under Gospel’s totality logic, it
should return an arbitrary value of type 'a, but this is not what get does in
the standard library. The get implementation is such that executing that call
will raise an Invalid_argument exception instead.

Whether the responsibility lies on the caller, the callee, or the environment,
Ortac cannot statically determine that an exceptional behaviour will occur.
Therefore, we must account for that when generating the wrapper and deal
with the potential exceptions when executing specifications appropriately.

6.3.1 .2 The Instrumentation of Terms

There are multiple ways of dealing with exceptions raised by the execution of
specification terms. We already determined in the last section that replacing
the faulty term result with a ‘default value of the correct type’ is not technic-
ally practicable. Another solution is to silence the exception and falsify the
predicate that uses the failing term. For instance, v = a.m[i] would evalu-
ate to false if the evaluation of a.m[i] raises an exception. This approach
is arguably a risky choice: the predicate not (v <<> a.m[i]) would evaluate
to… true! Ortac does not implement any of these methods: silencing ex-
ceptions introduces implicit computation rules that users are unfamiliar with,
providing unpredictable and misleading results.

The approach taken by Ortac is to consider the whole root clause to have
failed if one of the sub-terms raised an exception. Because the nature of the
failure differs from a contract violation (a failure to check for a violation), we
report this using a specific exception. In the generated code, Ortac wraps all
clauses evaluation in a try with block to catch and report exceptions. Let us
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take back the function Queue.unsafe_pop presented in listing 2.4 and illus-
trate this on the verification of its precondition.

val unsafe_pop: 'a t -> 'a

(*@ v = unsafe_pop q

requires elements q <> []

modifies q

ensures old elements q = (elements q) @ [v] *)

The instrumentation of that function is a wrapper of the following form that
catches and reports execution failures in the specification.Like before, the

details of the failure
depend on the testing

frontend (see
chapter 3).

let unsafe_pop q =

if not

try (elements q <<> [])

with e -> undefineness_failure e

then correctness_failure ();

..... (* Call the function and check the rest of

the contract *)

One may also propose a hybrid reporting about such failures: (a) on the
one hand, exceptions raised by the execution of terms always report a specific
trigger to the user to warn that the specification could not be fully checked;
(b) on the other hand, when the instrumenter can determine that the clause is
violated regardless of the result of that execution, a regular specification violation
is also reported. This approach would require a finer analysis to determine
the position (negative or positive) in the root predicate. It has not been im-
plemented in Ortac.

the special case of old. In this context, we must take special care of
terms under the old operator. In chapter 5, we showed how Ortac evaluates
these terms: it evaluates it as much as possible in the pre-state, then copies
the result of the computation and uses it in the post-state verification. The
instrumentation would therefore be of the following form:

let unsafe_pop q =

..... (* Check the precondition *)

let old_elements_q = copy (elements q) in

let v = unsafe_pop q in

if not

try old_elements_q = List.append (elements q) [v]

with e -> undefineness_failure e

then correctness_failure ()

Consider the case where the elements q under old raises an exception. With
this instrumentation, the exception is not caught by the instrumentation code
and is leaked directly to the user before the function is executed. Wrapping the
copy inside a try with reporting block would also be incorrect: it would pre-
vent the function frombeing executed and the other postconditions frombeing
verified. Moreover, the old term may not even be needed in the execution at
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all because of some lazy operations (e. g. implying conditionals), in which
case the exceptions should not be reported at all. Instead, wemust ensure that
the execution carries on, and the failure must only be reported in the poststate,
where it is used. Therefore, when evaluating a term old 𝑡, we try to evaluate
𝑡 and store the result (whether it is a value or an exception) in an OCaml
result instead, then we copy it. Errors are never reported at this point. Then,
when it appears in the predicate, rather than using old_elements_q directly,
we have to unwrap it and re-raise the exception, which will, in turn, be caught
by the try with block surrounding the postcondition check. This is where
the reporting happens.

let unwrap = function

| Ok v -> v

| Error e -> raise e

In the end, we obtain the following instrumentation. Note that we also
deep-copy the
exception e, as it
could also carry
mutable values.

let unsafe_pop q =

..... (* Check the precondition *)

let old_elements_q = copy (

try Ok (elements q) with e -> Error e

) in

let v = unsafe_pop q in

if not

try

unwrap old_elements_q = List.append (elements q) [v]

with e -> undefineness_failure e

then correctness_failure ()

6.3.2 Exceptions Raised by Functions

Apart from exceptions raised by the generated code while verifying the spe-
cifications, Ortac also has to deal with the exceptions the instrumented func-
tionsmay raise. Functionswith a specification attached should not raise excep-
tions unless specified otherwise. Therefore, the basic instrumentation around
functions wraps calls in try with blocks that catch exceptions and report
them to the user as forbidden exceptions.

By default, Ortac makes a particular case for the three exceptions men-
tioned in section 6.3.1.1 and lets them through as they might not be related to
the program logic at all, but this is easily customizable by the user.

let unsafe_pop q =

..... (* Check the precondition and compute old *)

let v =

try Queue.unsafe_pop q

with

| (Sys.Break | Stack_overflow | Out_of_memory) as e ->

raise e

| e -> unexpected_exception_failure e
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in

..... (* Check the postcondition *)

v

Some clauses in the function specification can allow it to raise exceptions: via
exceptional postconditions (raises) or defensive preconditions (checks).

6.3.2.1 Exceptional Postconditions

Consider now the variant pop_exn, which raises Empty if the input queue is
empty and, in that case, does not modify it.

val pop_exn: 'a t -> 'a

(*@ v = pop_exn q

modifies q

ensures old elements q = (elements q) @ [v]

raises Empty -> elements q = old (elements q) = [] *)

The translation of the exceptional postcondition is rather straightforward.
When an exception appears in a raise clause with an associated predicate, we
generate a case at the top of the exception matching that checks the associated
predicate and re-raises the exception if it holds.Note that the

precautions described
in the previous
section are also
applied when
exceptional

postconditions are
checked.

let pop_exn q =

let elements_q = copy (

try Ok (elements q) with e -> Error e

) in

let v =

try Queue.pop_exn q

with

| Empty as e ->

if not

try (elements q = unwrap elements_q

&&& unwrap elements_q = [])

with e -> undefineness_failure e

then correctness_failure ();

raise e

| (Sys.Break | Stack_overflow | Out_of_memory) as e ->

raise e

| e -> unexpected_exception_failure e

in

..... (* Check the normal postcondition *)

v

Remark 20. When the function also involves types with invariants attached,
those must be checked in all the exceptional branches we just generated.
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6.3.2.2 Defensive Functions and Invalid Arguments

In function specifications, the user may also write defensive preconditions
in checks clauses. As explained in chapter 2, when a function has checks 𝑃
in its contract, we have to check that the function raises Invalid_argument if
and only if the predicate 𝑃 does not hold in the prestate. Let us switch to the If multiple checks

clauses are present,
their conjunction
must hold.

pop variant, which defensively checks that the input queue is not empty.

val pop: 'a t -> 'a

(*@ v = pop q

checks elements q <> []

modifies q

ensures old elements q = (elements q) @ [v] *)

The checks clause is a precondition, sowe evaluate the predicate in the prestate.
However, we do not check it until the poststate: we are interested in the func- The evaluation of the

predicate leads to a
value of type bool:
it does not need to be
copied.

tion reaction to the input rather than the condition on the input itself. After the
function execution, we add a case for Invalid_argument in the errormatching
and check that (a) if the function raised Invalid_argument, then the precon-
dition was not verified (otherwise, it is a false negative); (b) in all other cases
(normal exit and other exceptional exits), the precondition was verified (oth-
erwise, it should have raised Invalid_argument, and it is a false positive). For
the same reasons we discussed in the case of old, the result (or the exception)
is wrapped into an OCaml result so that the code reports the undefineness
issues at the time of the actual checks. The generated code for pop is similar
to the one presented in listing 6.1.

Remark 21. Note that a checks clause is incompatiblewith a raises Invalid_argument

clause.

val f : int -> int

(*@ y = f x

checks P

raises Invalid_argument _ -> Q *)

In that case, if f correctly raises Invalid_argument, (a) it can be because P
holds; (b) it can imply that Q holds; (c) or both at the same time. Since there is
noway of deciding one case from the other, instrumenting this functionwould
not bring guarantees regarding these clauses. For this reason, specifications
that combine these clauses are rejected by Ortac.
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1 let pop q =

2 let check =

3 try Ok (elements q <<> []) with e -> Error e

4 in

5 let v =

6 try Queue.pop_exn q

7 with

8 | Invalid_argument _ as e ->

9 if (* Fail if the condition *was* verified. *)

10 try unwrap check

11 with e -> undefineness_failure e

12 then correctness_failure ();

13 (* Otherwise, it is correct: re-raise it. *)

14 raise e

15 | (Sys.Break | Stack_overflow | Out_of_memory) as e ->

16 if not (* Fail if it *was not* verified. *)

17 try (unwrap check)

18 with e -> undefineness_failure e

19 then correctness_failure ();

20 raise e

21 | e ->

22 if not (* Same here *)

23 try (unwrap check)

24 with e -> undefineness_failure e

25 then correctness_failure ();

26 unexpected_exception_failure e

27 in

28 if not (* Same here *)

29 try (unwrap check)

30 with e -> undefineness_failure e

31 then correctness_failure ();

32 ..... (* Check the normal postcondition *)

33 v

Listing 6.1: The handling of OCaml exceptions in the instrumented code pro-
duced for Queue.pop.
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PERSPECT IVES

Ortac is still a few steps away from a full-fledged tool that can be deployed
in a high-scale setting. To conclude this thesis, we show two independent
directions that can guide the development of the tool in the future. One is
an open scientific question: how can we execute and verify logic models at
runtime? In essence, these models do not exist in the implementation and
therefore are never created or updated by the programs. The second is more
of an engineering challenge: how can we integrate Ortac’s workflow into
the build system and package manager of OCaml so that instrumentations
compose correctly with system dependencies, transitive dependencies, and
the packaging of libraries?

7.1 handling gospel models

With the mutable queues in chapter 3, we showed an example of how the
specification style can impact its executability. Logic models are a central
feature of Gospel; writing logic views of abstract types and using them in
function specifications is a natural way of writing specifications. They are
also well supported by other tools that build upon Gospel (e. g. the Why3
plugin and Cameleer).

They are, however, not easy to check at runtime since they do not exist
in the program space. For this reason, they are currently not supported by
Ortac. The main challenge is that Ortac does not have any information on
how the models are updated after each function call and cannot retrieve the
model from the value it is attached to.

Therefore, developers must write specifications differently, for instance,
using pure functions, if they wish to use Ortac. Sadly, this is not always a
natural way of writing specifications. It may even force developers to expose
functions they otherwise would not have exposed, which hurts our initial
goal of little intrusion. It is also not always possible, and models are generally
more expressive: theymay carry information that is impossible to retrieve from
the implementation. Therefore, handling models is essential to supporting as
many Gospel specifications as possible.

At this point, we do not have a plan for supporting all models in specifica-
tions. However, when writing specifications with models, a specific shape of
function postconditions naturally arises: postconditions that express the new
value of the model directly, often as a function of its old version: v.model =
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<term>. For instance, in the mutable queues example, we naturally wrote the
specifications of create and push that way:

type 'a t

(*@ mutable model elements: 'a sequence *)

val create: unit -> 'a t

(*@ q = create ()

ensures q.elements = empty *)

val push: 'a -> 'a t -> unit

(*@ push v q

modifies q

ensures q.elements = cons v (old q.elements) *)

When such postconditions are present, and the term is executable by Or-
tac, we could use it to compute the new value of the model after a call to the
function. Ortac would then maintain the models associated with each value
and could verify the clauses that use them.

all or nothing. It is important to note that instrumenting a model
using this technique is only possible if all the functions in the module have
a compatible postcondition. Indeed, the model Ortac generates must be in
sync with the actual OCaml value at all times to be meaningful. If one (or
more) function in the interface does not have a postcondition for this model,
or if the postcondition is not of a compatible form, then updating the model
is not possible. In that case, the model must be deemed not executable and
ignored for all functions and invariants in the interface. For a model to be
instrumentable this way, all the functions in the interface must be specified
with a compatible postcondition.

a shift in the trust base. Using relational postconditions to gener-
ate and update the models corresponding to OCaml values has important
implications regarding the verifications and guarantees Ortac provides. In
this context, such postconditions would not be verified by the instrumented
code: they would trusted. The generated models can still be used to check
other preconditions and type invariants that involve them. However, these
checks are only meaningful if the postconditions are correct, which Ortac
cannot check.

the best-case scenario for hybrid verification. Let us zoom
out and consider the big picture of Gospel capabilities. In particular, Gospel
interfaces well with Why3 via the interface refinment plugin—for WhyML
implementations—or Cameleer—for OCaml implementations. Both allowGhost code only

exists for
specifications and
cannot otherwise
affect the program

computations.

models to exist in the implementation files, and some ghost code in the func-
tion’s body must update them to let Why3 prove the corresponding postcon-
ditions. In the case of our relational postconditions, the code that updates
the model and the relational postcondition are identical, which makes the
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proof trivial for automatic provers. Therefore, this scenario is close to a best-
case scenario to verify the parts that Ortac assumes using Why3 and obtain
correct instrumentation.

a better syntax for relational postconditions. Suppose Or-
tac consider these specific postconditions differently for RAC. In that case, it
also makes sense to differentiate them at the Gospel language level. It would
immediately make relational postconditions visible to both tools and users.
One possible syntax option is to extend the modifies clause as follows:

val push: 'a -> 'a t -> unit

(*@ push v q

modifies q.elements <- cons v (old q.elements) *)

It regroups twopieces of information conceptually significantly linked, yet cur-
rently separated: whichmodels are modified and how they are modified. Note
that this may not compose very well with exceptional behaviours: modifies
clauses—unlike ensures ones—apply to normal and exceptional behaviours,
but model mutations are often different.

7.2 integrating ortac to the ocaml platform

In chapter 3, we showed that Ortac provides a few options to control its
output depending on the context it is used in. However, we only showed
how to apply it to very basic scenarios with single-file libraries. This structure
is, of course, not realistic. Real-world programs combine multiple libraries—
some are local to the project, some are installed on the system—into a final
client code thatmay be a library or an executable (orworse, a dynamic plugin).
When these dependencies have Gospel specifications, onemust decidewhich
ones to check, instrument them with Ortac, compile them, and link the final
code with the correct implementation (instrumented or not). Developers
should also decide whether they package their libraries with the runtime
verifications enabled or not. Manually performing these tasks is daunting and
should ultimately be dealt with by a build system and a package manager. In
this section, we highlight some challenges ahead—and propose some design
options—to better integrate Ortac to some of the most essential tools in the
OCaml community: its build system Dune and its package manager Opam.

first things first: better tooling for the gospel language.
A new language—even if ‘only’ a specification language—means renewed
needs for developer tools. At this stage, we proposed several proofs of concept
of possible integrations into some existing tools.

For instance, Gospel can pre-process specifications to be added to the doc-
umentation comments, so users may see them in the HTML documentation
generated by Odoc. However, Odoc does not know about Gospel spe-
cifically, so the current workaround is to insert them as verbatim code in the
documentation string. We can also manually write custom rules to let Dune
handle Gospel specifications type-checking as part of the compilation chain.
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For instance, the following rule automatically type-checks the specifications
during the package tests:

(rule

(alias runtest)

(action

(run gospel check %{dep:fibonacci.mli})))

Ultimately, Gospel could integrate seamlessly with these tools—and others—
to provide better user experience: editor integration à la merlin, specific-
ation formatting with OCamlFormat, automatic integration with Dune,
understanding and printing clauses with cross-reference links in generated
documentations.

A challenging long-term plan is to replace part of the Gospel type-checker
to use the type information produced by the OCaml compiler during the com-
pilation instead. There is, however, no frontend for the OCaml type-checker,
so that wouldmean processing the compilation artifacts (e. g. the *.cmti files)
to gather the information. The plan forward is not obvious at this stage, as this
process would integrate poorly with the current compilation chain of OCaml
programs, especially when involving Ortac instrumentation as well. In any
case, it is not expressible with custom Dune rules.

instrumenting and packaging libraries. As for Ortac integra-
tion, the main challenge also lies in the integration to the build system and
package manager. Ideally, it is the build system’s responsibility to understand
the structure of the project to instrument and, therefore, to invoke Ortac
appropriately—e. g. on all interface files, and only when interface files change.
It should also integrate the generated files into the compilation chain to pro-
duce the instrumented version of the libraries.

There are multiple paths ahead to producing instrumented libraries. One
possible way is a Dune profile similar to dev or release that produces an
instrumented version. Another interesting possibility is for Dune to gener-
ate a library variant—a library with a different implementation but the same
interface. That would allow library consumers to switch between a runtime
checked library (e. g. for development stages) and a ‘vanilla’ one (for pro-
duction settings) by simply changing the dependency in the dune file. No
modification would be necessary in the OCaml client code at all.

; Depend on the vanilla fibonacci library

; This is the current available workflow without Ortac

(libraries fibonacci)

; OR

; Depend on the instrumented fibonacci library

; This one is generated by Ortac + Dune

(libraries fibonacci.rac)

As for the packaging of these libraries, the integration with Opam is also
not trivial: one should decide which version of the libraries to package and
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install. Ideally, when instrumenting a given ‘project’, (a) the libraries that are
local to the project should be fully instrumented; (b) the direct dependencies
should be instrumented with the preconditions mode only; (c) the transitive
dependencies should not be instrumented. Note that some direct dependen-
cies might also be transitive dependencies. In that case, they should probably
be instrumented for local calls, but uninstrumented for external calls.

In the way Opam currently works, the behaviour we just described is not
achievable: it pulls dependencies source code, then compiles them once and
keeps the installed version along with the compiler in a switch. However, in
our description, we need libraries to potentially be compiled multiple times,
with different instrumentation levels, depending on their dependency status
in the project. It is possible that opam-monorepo can bring part of a solution
to this issue, since it operates differently: it pulls all the sources locally and
vendors them in the project, then compiles them at the same time as the project
itself using Dune. Regardless, the correct design to achieve still requiresmore
experimentations and expertise to mature.





EP ILOGUE

Mywork as a PhD candidate is now over, but the Gospel and Ortac projects
are not.

In the past years, we have built a small yet potent team of Gospel de-
velopers who will carry on working on this verification ecosystem. It involves
researchers and engineers from the Formal Methods Laboratory (LMF), Inria
Paris, Tarides, and Nomadic Labs.

In December 2022, we were awarded an ANR grant to (a) further develop
the Gospel language to increase its expressiveness; (b) develop a complete
verification and test ecosystem around it, and improve its integration to de-
veloper tools (e. g. IDE, build system, documentation generators); (c) apply
these tools to practical use cases and demonstrate their ability to scale up.

As for the Ortac project I started, it is now being actively developed by
Nicolas Osborne and Samuel Hym, who keep improving the support for
more Gospel specifications and more OCaml programs, and experiment
with complex and strangely exciting use cases.

115





B IBL IOGRAPHY

[1] Alfred V. Aho, John E. Hopcroft and Jeffrey D. Ullman. Data
Structures and Algorithms. Boston, MA, USA: John Wiley & Sons,
Ltd, 1983 (cit. on p. 81).

[2] Mike Barnett. ‘Code Contracts for .NET: Runtime Verification
and So Much More’. In: Runtime Verification. Ed. by Howard Bar-
ringer, Yliès Falcone, Bernd Finkbeiner, Klaus Havelund, Insup
Lee, Gordon J. Pace, Grigore Rosu, Oleg Sokolsky and Nikolai
Tillmann. Vol. 6418. Berlin, Heidelberg: Springer Berlin Heidel-
berg, 2010, pp. 16–17. doi: 10.1007/978-3-642-16612-9_2
(cit. on p. 25).

[3] Mike Barnett, K. Rustan M. Leino and Wolfram Schulte. ‘The
Spec# Programming System: An Overview’. In: Construction and
Analysis of Safe, Secure, and Interoperable Smart Devices. Ed. by
Gilles Barthe, Lilian Burdy, Marieke Huisman, Jean-Louis Lanet
and Traian Muntean. Vol. 3362. Lecture Notes in Computer Sci-
ence. Springer Berlin Heidelberg, Jan. 2005, pp. 49–69. doi: 10.
1007/978-3-540-30569-9_3 (cit. on p. 25).

[4] Mike Barnett and Wolfram Schulte. Contracts, Components, and
their Runtime Verification on the .NET Platform. Tech. rep. MSR-TR-
2002-38. Apr. 2002, p. 33 (cit. on p. 25).

[5] Mike Barnett andWolframSchulte. ‘Runtime verification of .NET
contracts’. In: vol. 65. 3. Elsevier BV, Mar. 2003, pp. 199–208. doi:
10.1016/s0164-1212(02)00041-9 (cit. on p. 25).

[6] Patrick Baudin, Jean-Christophe Filliâtre, Claude Marché, Ben-
jamin Monate, Yannick Moy and Virgile Prevosto. ACSL: AN-
SI/ISO C Specification Language. 2008. url: https : / / frama -
c.cea.fr/acsl.html (cit. on pp. 25, 84).

[7] Lilian Burdy, Yoonsik Cheon, David R. Cok, Michael D. Ernst,
Joseph R. Kiniry, Gary T. Leavens, K. Rustan M. Leino and Erik
Poll. ‘An overview of JML tools and applications’. In: Interna-
tional Journal on Software Tools for Technology Transfer 7.3 (June
2005), pp. 212–232. doi: 10.1007/s10009-004-0167-4 (cit. on
p. 25).

[8] Bernard Carré and Jonathan Garnsworthy. ‘SPARK—an annot-
ated Ada subset for safety-critical programming’. In: Proceedings
of the conference on TRI-ADA’90. TRI-Ada’90. Baltimore, Mary-
land, United States, 1990, pp. 392–402. doi: http://doi.acm.
org/10.1145/255471.255563. url: http://doi.acm.org/10.
1145/255471.255563 (cit. on p. 25).

117

https://doi.org/10.1007/978-3-642-16612-9_2
https://doi.org/10.1007/978-3-540-30569-9_3
https://doi.org/10.1007/978-3-540-30569-9_3
https://doi.org/10.1016/s0164-1212(02)00041-9
https://frama-c.cea.fr/acsl.html
https://frama-c.cea.fr/acsl.html
https://doi.org/10.1007/s10009-004-0167-4
https://doi.org/http://doi.acm.org/10.1145/255471.255563
https://doi.org/http://doi.acm.org/10.1145/255471.255563
http://doi.acm.org/10.1145/255471.255563
http://doi.acm.org/10.1145/255471.255563


118 bibliography

[9] PatriceChalin andFrédéric Rioux. ‘JMLRuntimeAssertionCheck-
ing: ImprovedError Reporting andEfficiencyUsing StrongValid-
ity’. In: Lecture Notes in Computer Science. Ed. by Jorge Cuéllar,
T. S. E. Maibaum and Kaisa Sere. Vol. 5014. Berlin, Heidelberg:
Springer Berlin Heidelberg, June 2008, pp. 246–261. doi: 10 .
1007/978-3-540-68237-0_18 (cit. on p. 85).

[10] ArthurCharguéraud, Jean-Christophe Filliâtre, Cláudio Lourenço
and Mário Pereira. ‘GOSPEL—Providing OCaml with a Formal
Specification Language’. In: Lecture Notes in Computer Science. Ed.
by Maurice H. ter Beek, Annabelle McIver and José N. Oliveira.
Vol. 11800. Porto, Portugal: Springer International Publishing,
Oct. 2019, pp. 484–501. doi: 10.1007/978-3-030-30942-8_29.
url: https://hal.inria.fr/hal-02157484v2/file/final.
pdf (cit. on p. 7).

[11] Yoonsik Cheon. ‘A runtime assertion checker for the Java Mod-
eling Language’. In: (Aug. 2018). doi: 10.31274/rtd-180813-
9872 (cit. on p. 25).

[12] AlonzoChurch. ‘AnUnsolvable Problemof ElementaryNumber
Theory’. In: Journal of Symbolic Logic 1.2 (1936), pp. 73–74. doi:
10.2307/2268571 (cit. on p. 78).

[13] Koen Claessen and John Hughes. ‘QuickCheck: A Lightweight
Tool for Random Testing of Haskell Programs’. In: SIGPLANNot.
35.9 (Sept. 2000), pp. 268–279. doi: 10.1145/357766.351266.
url: https://doi.org/10.1145/357766.351266 (cit. on p. 43).

[14] David R. Cok. Does your software do what it should? User guide to
specification and verification with the Java Modeling Language and
OpenJML. Version draft as of July 1, 2022. 2022. url: https://
www . openjml . org / documentation / OpenJMLUserGuide . pdf

(visited on 01/07/2023) (cit. on p. 43).
[15] DavidR. Cok. ‘OpenJML: JML for Java 7 by ExtendingOpenJDK’.

In: Lecture Notes in Computer Science. Ed. by Mihaela Gheorghiu
Bobaru, Klaus Havelund, Gerard J. Holzmann and Rajeev Joshi.
Vol. 6617. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011,
pp. 472–479. doi: 10.1007/978-3-642-20398-5_35 (cit. on
p. 25).

[16] SimonCruanes, GrinbergRudi, Jacques-PascalDeplaix, JanMidtgaard
and Valentin Chaboche. QCheck. Github. 2013. url: https://
github.com/c-cube/qcheck/ (visited on 01/07/2023) (cit. on
p. 43).

[17] Pascal Cuoq, Florent Kirchner, Nikolai Kosmatov, Virgile Pre-
vosto, Julien Signoles and Boris Yakobowski. ‘Frama-C’. In: Soft-
ware Engineering and Formal Methods. Ed. by George Eleftherakis,
Mike Hinchey and Mike Holcombe. Vol. 7504. Springer Berlin

https://doi.org/10.1007/978-3-540-68237-0_18
https://doi.org/10.1007/978-3-540-68237-0_18
https://doi.org/10.1007/978-3-030-30942-8_29
https://hal.inria.fr/hal-02157484v2/file/final.pdf
https://hal.inria.fr/hal-02157484v2/file/final.pdf
https://doi.org/10.31274/rtd-180813-9872
https://doi.org/10.31274/rtd-180813-9872
https://doi.org/10.2307/2268571
https://doi.org/10.1145/357766.351266
https://doi.org/10.1145/357766.351266
https://www.openjml.org/documentation/OpenJMLUserGuide.pdf
https://www.openjml.org/documentation/OpenJMLUserGuide.pdf
https://doi.org/10.1007/978-3-642-20398-5_35
https://github.com/c-cube/qcheck/
https://github.com/c-cube/qcheck/


bibliography 119

Heidelberg, May 2012, pp. 233–247. doi: 10.1007/978-3-642-
33826-7_16 (cit. on p. 25).

[18] Mickaël Delahaye, Nikolai Kosmatov and Julien Signoles. ‘Com-
mon specification language for static and dynamic analysis of
C programs’. In: Proceedings of the 28th Annual ACM Symposium
on Applied Computing - SAC ’13. Ed. by Sung Y. Shin and José
Carlos Maldonado. ACM Press, Mar. 2013, pp. 1230–1235. doi:
10.1145/2480362.2480593 (cit. on p. 25).

[19] Stephen Dolan. Crowbar. Github. 2017. url: https://github.
com/stedolan/crowbar (visited on 01/07/2023) (cit. on p. 41).

[20] Jean-Christophe Filliâtre andAndrei Paskevich. ‘Why3—Where
Programs Meet Provers’. In: Programming Languages and Systems.
Ed. by Matthias Felleisen and Philippa Gardner. Vol. 7792. Lec-
ture Notes in Computer Science. Springer Berlin Heidelberg,
Mar. 2013, pp. 125–128. doi: 10.1007/978-3-642-37036-6_8.
url: https://link.springer.com/content/pdf/10.1007/
978-3-642-37036-6_8.pdf (cit. on p. 25).

[21] Andrea Fioraldi, DominikMaier,HeikoEißfeldt andMarcHeuse.
‘AFL++ : Combining Incremental Steps of Fuzzing Research.’ In:
14th USENIXWorkshop on Offensive Technologies, WOOT 2020, Au-
gust 11, 2020. Ed. by Yuval Yarom and Sarah Zennou. WOOT’20.
USA:USENIXAssociation, 2020. doi: 10.5555/3488877.3488887.
url: https://www.usenix.org/conference/woot20/presentation/
fioraldi (cit. on p. 41).

[22] ‘IEEE Standard for Floating-Point Arithmetic’. In: IEEE Std 754-
2019 (Revision of IEEE 754-2008) (2019), pp. 1–84. doi: 10.1109/
IEEESTD.2019.8766229 (cit. on p. 94).

[23] Piotr Kosiuczenko. ‘An Abstract Machine for the Old Value Re-
trieval’. In: Lecture Notes in Computer Science. Ed. by Claude Bol-
duc, Jules Desharnais and Béchir Ktari. Vol. 6120. Berlin, Heidel-
berg: Springer Berlin Heidelberg, 2010, pp. 229–247. doi: 10.
1007/978-3-642-13321-3_14 (cit. on p. 84).

[24] Nikolai Kosmatov, FonenantsoaMaurica and Julien Signoles. ‘Ef-
ficient Runtime Assertion Checking for Properties overMathem-
atical Numbers’. In: Runtime Verification. Ed. by Jyotirmoy Desh-
mukh and Dejan Nickovic. Vol. 12399. Cham: Springer Interna-
tional Publishing, 2020, pp. 310–322. doi: 10.1007/978-3-030-
60508-7_17 (cit. on p. 85).

[25] Gary T. Leavens, K. Rustan M. Leino, Erik Poll, Clyde Ruby
and Bart Jacobs. ‘JML: notations and tools supporting detailed
design in Java’. In: OOPSLA 2000 Companion, Minneapolis, Min-
nesota. 2000, pp. 105–106 (cit. on p. 25).

https://doi.org/10.1007/978-3-642-33826-7_16
https://doi.org/10.1007/978-3-642-33826-7_16
https://doi.org/10.1145/2480362.2480593
https://github.com/stedolan/crowbar
https://github.com/stedolan/crowbar
https://doi.org/10.1007/978-3-642-37036-6_8
https://link.springer.com/content/pdf/10.1007/978-3-642-37036-6_8.pdf
https://link.springer.com/content/pdf/10.1007/978-3-642-37036-6_8.pdf
https://doi.org/10.5555/3488877.3488887
https://www.usenix.org/conference/woot20/presentation/fioraldi
https://www.usenix.org/conference/woot20/presentation/fioraldi
https://doi.org/10.1109/IEEESTD.2019.8766229
https://doi.org/10.1109/IEEESTD.2019.8766229
https://doi.org/10.1007/978-3-642-13321-3_14
https://doi.org/10.1007/978-3-642-13321-3_14
https://doi.org/10.1007/978-3-030-60508-7_17
https://doi.org/10.1007/978-3-030-60508-7_17


120 bibliography

[26] Hermann Lehner and Peter Müller. ‘Efficient Runtime Assertion
Checking of Assignable Clauses with Datagroups’. In: Funda-
mental Approaches to Software Engineering. Ed. by David S. Rosen-
blumandGabriele Taentzer. Vol. 6013. Berlin,Heidelberg: Springer
Berlin Heidelberg, 2010, pp. 338–352. doi: 10.1007/978-3-642-
12029-9_24. url: https://link.springer.com/content/pdf/
10.1007%2F978-3-642-12029-9_24.pdf (cit. on p. 85).

[27] K. Rustan M. Leino. ‘Dafny: An Automatic Program Verifier for
Functional Correctness’. In: LPAR-16. Vol. 6355. 2010, pp. 348–
370 (cit. on p. 25).

[28] Xavier Leroy and François Pessaux. ‘Type-based analysis of un-
caught exceptions’. In: ACM Transactions on Programming Lan-
guages and Systems (TOPLAS) 22.2 (2000), pp. 340–377. doi:
10.1145/349214.349230. url: https://inria.hal.science/
hal-01499948 (cit. on p. 39).

[29] Jun Li, Bodong Zhao and Chao Zhang. ‘Fuzzing: a survey’. In:
Cybersecurity 1 (Dec. 2018). doi: 10.1186/s42400-018-0002-y
(cit. on p. 42).

[30] JohnW. McCormick and Peter C. Chapin. Building High Integrity
Applications with SPARK. Cambridge University Press, Aug. 2015.
doi: 10.1017/cbo9781139629294 (cit. on pp. 25, 43).

[31] B.Meyer. ‘Applying ’design by contract’’. In:Computer 25.10 (Oct.
1992), pp. 40–51. doi: 10.1109/2.161279. url: http://www.
inf.ethz.ch/~meyer/publications/computer/contract.pdf

(cit. on pp. 24, 43).
[32] P. Müller, M. Schwerhoff and A. J. Summers. ‘Viper: A Verifica-

tion Infrastructure for Permission-Based Reasoning’. In: Verific-
ation, Model Checking, and Abstract Interpretation (VMCAI). Ed.
by B. Jobstmann and K. R. M. Leino. Vol. 9583. LNCS. Springer-
Verlag, 2016, pp. 41–62 (cit. on p. 25).

[33] Clément Pascutto. Ortac. Github. 2020. url: https://github.
com/ocaml-gospel/ortac (visited on 01/07/2023) (cit. on p. 7).

[34] United States Patent and Trademark Office. ‘DESIGN BY CON-
TRACT’. 2911197. Inc. Interactive Software Engineering. 2004
(cit. on p. 5).

[35] Guillaume Petiot, Bernard Botella, Jacques Julliand, Nikolai Kos-
matov and Julien Signoles. ‘Instrumentation of Annotated C Pro-
grams for Test Generation’. In: 2014 IEEE 14th International Work-
ing Conference on Source Code Analysis and Manipulation. Victoria,
Canada: IEEE, Sept. 2014, pp. 105–114. doi: 10.1109/scam.2014.
19 (cit. on p. 84).

[36] François Pottier. Monolith. Gitlab. 2020. url: https://gitlab.
inria.fr/fpottier/monolith/ (cit. on p. 41).

https://doi.org/10.1007/978-3-642-12029-9_24
https://doi.org/10.1007/978-3-642-12029-9_24
https://link.springer.com/content/pdf/10.1007%2F978-3-642-12029-9_24.pdf
https://link.springer.com/content/pdf/10.1007%2F978-3-642-12029-9_24.pdf
https://doi.org/10.1145/349214.349230
https://inria.hal.science/hal-01499948
https://inria.hal.science/hal-01499948
https://doi.org/10.1186/s42400-018-0002-y
https://doi.org/10.1017/cbo9781139629294
https://doi.org/10.1109/2.161279
http://www.inf.ethz.ch/~meyer/publications/computer/contract.pdf
http://www.inf.ethz.ch/~meyer/publications/computer/contract.pdf
https://github.com/ocaml-gospel/ortac
https://github.com/ocaml-gospel/ortac
https://doi.org/10.1109/scam.2014.19
https://doi.org/10.1109/scam.2014.19
https://gitlab.inria.fr/fpottier/monolith/
https://gitlab.inria.fr/fpottier/monolith/


bibliography 121

[37] François Pottier. ‘Strong Automated Testing of OCaml Libraries’.
In: JFLA 2021 - 32es Journées Francophones des Langages Applic-
atifs. Saint Médard d’Excideuil, France, Feb. 2021. url: https:
//inria.hal.science/hal-03049511 (cit. on p. 41).

[38] The Gospel Project. The Gospel Documentation. 2023. url: http:
//ocaml-gospel.github.io/gospel (visited on 01/07/2023)
(cit. on p. 21).

[39] The Vocal Project. Vocal. Github. 2018. url: https://github.
com/ocaml-gospel/vocal (visited on 01/07/2023) (cit. on p. 7).

[40] Julien Signoles. ‘The e-ACSL perspective on runtime assertion
checking’. In: Proceedings of the 5th ACM International Workshop on
Verification andmOnitoring at Runtime EXecution. Ed. byWolfgang
Ahrendt,DavideAncona andAdrian Francalanza. VORTEX2021:
Proceedings of the 5th ACM InternationalWorkshop on Verifica-
tion and mOnitoring at Runtime EXecution. (online), Denmark:
ACM, July 2021, pp. 8–12. doi: 10.1145/3464974.3468451 (cit.
on p. 85).

[41] Julien Signoles, Basile Desloges and Kostyantyn Vorobyov. The
E-ACSL User Manual. Version 27.0. 2023. url: https://frama-
c.com/download/e-acsl/e-acsl-manual.pdf (visited on
01/07/2023) (cit. on pp. 43, 44).

[42] Julien Signoles, Nikolai Kosmatov and Kostyantyn Vorobyov. ‘E-
ACSL, a Runtime Verification Tool for Safety and Security of C
Programs (tool paper)’. In: Kalpa Publications in Computing. Ed.
by Giles Reger and Klaus Havelund. Vol. 3. EasyChair, Jan. 2018,
pp. 164–173. doi: 10.29007/fpdh. url: https://easychair.
org/publications/open/t6tV (cit. on pp. 25, 85).

[43] Alan Mathison Turing. ‘On Computable Numbers, with an Ap-
plication to the Entscheidungsproblem’. In: Proceedings of the Lon-
donMathematical Society s2-42.1 (1937), pp. 230–265. doi: https:
//doi.org/10.1112/plms/s2-42.1.230 (cit. on p. 78).

[44] Michał Zalewski. Technical ”whitepaper” for afl-fuzz. 2013. url:
https://lcamtuf.coredump.cx/afl/technical_details.txt

(visited on 01/07/2023) (cit. on p. 41).

https://inria.hal.science/hal-03049511
https://inria.hal.science/hal-03049511
http://ocaml-gospel.github.io/gospel
http://ocaml-gospel.github.io/gospel
https://github.com/ocaml-gospel/vocal
https://github.com/ocaml-gospel/vocal
https://doi.org/10.1145/3464974.3468451
https://frama-c.com/download/e-acsl/e-acsl-manual.pdf
https://frama-c.com/download/e-acsl/e-acsl-manual.pdf
https://doi.org/10.29007/fpdh
https://easychair.org/publications/open/t6tV
https://easychair.org/publications/open/t6tV
https://doi.org/https://doi.org/10.1112/plms/s2-42.1.230
https://doi.org/https://doi.org/10.1112/plms/s2-42.1.230
https://lcamtuf.coredump.cx/afl/technical_details.txt




SYTHÈSE EN FRANÇAIS

Lorsque l’on souhaite s’assurer de la correction d’un logiciel, l’écriture de
tests est souvent bien intégrée dans les chaines d’ingéniérie logicielle. Ils per-
mettent une vérification incrémentale des propriétés recherchées et sont (dans
leur version simple) facile à mettre en place. Cependant, leur écriture est sou-
vent lourde ou répétitive, et la compréhension des garanties qu’ils apportent
nécessite une expertise particulière car il faut établir précisément quelles par-
ties du code sont testées, quelles propriétés sont vérifiées, et sur quels jeux de
tests.

D’un autre coté, les outils de vérification formelle, en particulier dans le do-
maine de la vérification déductive, apportent des garanties statiques fortes de
correction des systèmes logiciels. Les propriétés vérifiées sont exprimées en
des termes non ambigus et destinées à être lues et comprises par des humains,
et la correction est garantie pour toutes les entrées possibles du programme.
La vérification formelle nécessite cependant un haut degré d’expertise et des
durées de développement considérables. Ces obstacles compromettent par-
fois leur mise en place dans un contexte industriel, et presque toujours leur
passage à l’échelle dans des systèmes complexes.

Dans ce contexte, la vérification dynamique (comprendre : à l’exécution)
basée sur des contrats formels permet une approche intermédiaire plus gra-
duelle. Alors que les spécifications sont toujours exprimées en termes logiques
précis, on s’assure de la correction de l’implémentation par des tests générés
automatiquement. Les résultats sont fournis par l’éxécution des tests àmesure
de son exécution, plutôt que par des preuves. L’expertise nécessaire est alors
restreinte à la conception de spécifications et l’interprétation des résultats de
test. L’outil de vérification dymanique est responsable de traiter l’implémen-
tation test, et fournit des garanties sur ce qui est effectivement testé.

La communauté du langage de programmation OCaml n’échappe pas à ce
constat. Alors que le langage semble propice à la mise en place de méthodes
formelles par la présence d’éléments d’analyse statique (e.g. son typage) et
son modèle d’exécution simple, aucun outil ne paraît connaître une adoption
large pour la production de code OCaml spécifié ou vérifié. De surcroît, un
tel outil doit prendre en compte les spécificités du langage, notamment les
interactions avec le typage statique, l’influence de la représentation mémoire
et du ramasse-miettes ou les idiomes liés à la programmation fonctionnelle.

Dans ce travail, on propose des techniques de vérification dynamique de
code OCaml applicables à des bases de code préexistantes et intégrables aux
flux de travail des ingénieurs logiciels qui les maintiennent. En particulier, on
présente brièvement dans le chapitre 2 Gospel, un langage de spécification
accessible mais expressif pour lse interfaces de modules OCaml. On décrit
Ortac, un outil de vérification dynamique pour OCaml entièrement automa-
tisé dont l’interface modulaire permet son utilisation dans une grande variété
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de scenarii (fuzzing, monitoring, test). Il entend supporter un sous-ensemble
non trivial d’OCaml (e. g. foncteurs, exceptions, effets) avec l’appui du ty-
page et dans un souci d’efficacité des vérifications effectuées (e. g. limitation
des copies, gestion des entiers de précision arbitraire, vérification partielle des
invariants de types). Le chapitre 3 présente son fonctionnement général et un
guide d’utilisation sur des exemples. Le chapitre 6 présente son architecture
interne et le traitement de certaines spécificités du langage OCaml. Enfin,
on développe une famille d’optimisations de la mémoire pour la vérification
de post-conditions faisant référence au pré-état. Ces optimisations sont pré-
sentées à l’aide de Microspel, un langage de spécification minimaliste et
agnostique du langage de programmation hôte présenté dans le chapitre 4.
Elles prennent la forme de transformations de spécifications présentées dans
le chapitre 5, généralisées pour être applicables dans d’autres langages, et
prouvées correctes avec l’assistant de preuves Coq.

Le travail entrepris permet d’envisager un écosystème de vérification auto-
matisé, peu intrusif et adapté aux besoins des développeurs et développeuses
de la communauté OCaml.







This work is licensed under a a Creative Commons Attribution-ShareAlike 4.0 International License.
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