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Introduction

Context of this work

Probing quantum-gravity with electromechanical systems

The quest to reconcile Quantum Mechanics (QM) and General Relativity (GR) remains one
of the grand challenges in contemporary physics. These foundational theories describe the
universe at vastly different scales and under distinctly different conditions, yet a unified
framework that incorporates both remains elusive. A particular stumbling block in this
endeavor is the integration of GR’s prediction of time dilation—where the flow of time is
altered by the presence of mass—with the quantum mechanics paradigm. This integration is
crucial, as GR-induced time dilation introduces ambiguities when massive objects are placed
in quantum superpositions, conflicting with the defined temporal framework required by
Schrödinger’s equation [5858].

There is no consensus at present regarding what effects will emerge when the phase shift
due to time-dilation becomes experimentally relevant (see Figure 0.10.1a). However, several
theoretical insights point towards a fundamental gravitational decoherence mechanism [3838].
Such gravity-induced decoherence would bestow a purely mass-related origin to the quantum-
to-classical boundary [2727, 6060]. In the model proposed by Penrose, a massive object placed in
a quantum superposition |Ψ⟩ = |Ψ1⟩+|Ψ2⟩ would undergo a gravitational collapse over a time-
scale τG = ℏ/∆E, where ∆E is the gravitational self-energy of the quantum superposition
[2121, 4444].

Experimental tests of such ideas are challenging because relativistic effects such as time-
dilation are only significant for massive objects, whereas quantum effects on macroscopic
systems tend to be blurred over very short time-scales due to environmental decoherence.
The effects of relativistic time dilation become substantial only with massive objects; how-
ever, observing quantum phenomena in such objects is complicated by rapid environmental
decoherence. In practice, two conditions need to be fulfilled to test these theories with
massive quantum superpositions: 1. The spatial separation ∆x between the states in the
superposition needs to exceed the typical width of the mass distribution. 2. the standard de-
coherence time τdec—due to the unavoidable interactions with the environment—must occur
on a slower timescale than the gravitational collapse itself.

Both conditions depend crucially on the mass distribution of the object, and there is much
debate regarding what form this mass distribution should take for a macroscopic object
[2828, 4444]. However, a plausible assumption is that the mass is distributed over a regular
array of spheres, each of mass mi, and radius rn representing the nuclei of the considered
material (see Figure 0.10.1b). In practice, an experimental test of gravitational decoherence

1
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Fig. 0.1 (a) Gedanken experiment: we consider a mass in a quantum superposition
of being displaced in two opposite directions. The rate of evolution of the proper
time t± with respect to the proper time tfar of a reference location far away is
represented in blue (red) for the left (right) position of the mass. There is an
ambiguity, quantified by t+ − t− in the definition of local time close to the locations
of each parts of the superposition. (b) Exprimental test with a mechanical oscillator:
a mechanical resonator in a Schrödinger-cat state can be seen as an assembly of N
nucleis placed in a quantum superposition similar to (a). Figure adapted from ref.
[3535].

requires to prepare a massive object in a quantum superposition, where the spatial extent
∆x of the wavefunction exceeds the typical width 2rn of the mass distribution. Under this
assumption, the gravitational self-energy of each nucleus is given in good approximation by
∆E = 48πGm2

i /5rn [4444], leading to a total gravitational decoherence time:

τG ≈ 5ℏrn
48πGmmi

= 1
m

· 3.× 10−15 kg.s, (0.1)

where m is the total mass of the object, G the gravitational constant, and the atomic mass
mi = 4.6 × 10−26 kg and nuclear radius rn = 2.7 fm of silicon (A = 28, Z = 14) have been
taken for the numerical calculation.

Circuit Quantum Acousto Dynamics (cQAD) is a powerful experimental framework,
where the quantum state of a mechanical system is probed and manipulated thanks to its
nearly resonant coupling to a superconducting qubit [99, 2323, 5959, 6767]. Recently, this framework
has been used to prepare a 16 µg piezo-mechanical resonator in a Schrödinger-cat state [1010]
|Ψ+

cat⟩ = (|α⟩ + | − α⟩)/N , where |α⟩ is a coherent state of complex amplitude α and N is
a normalization factor with N ≃ 1/

√
2 for |α| ≫ 1. In this state, the spatial separation

between the classical components |α⟩ and | − α⟩ is given by ∆x = 2|α|xzpf , with xzpf the
zero-point fluctuations of the mechanical system. This parameter describing the width of
the ground state wavefunction xzpf =

√
ℏ/2mΩm plays a crucial role, as this is the natural

length-scale of low-energy quantum states. For instance, in the Zürich experiment, the large
mass (16 µg) combined with large mechanical frequency (Ωm/2π ∼ 6 GHz) results in a small
value of xzpf ∼ 3 ·10−19 m. Consequently, the extent of the quantum superposition, was only
∆x ∼ 10−18 m, approximately 4 orders of magnitude short of condition (1). In other words,
achieving a spatial separation of ∆x ≥ 2rn with such a device would require to prepare a
Schrödinger-cat state with |α|2 ≳ 108 phonons. Even if successfully prepared, such a highly
excited quantum state would suffer very fast environmental decoherence masking a possible
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gravitational collapse.
In order to estimate the potential of various systems to observe quantum gravitational

effects, we compare the gravitational decoherence time predicted by eq. 0.20.2 to the thermal
decoherence time [3535, 4141] in a pure quantum state satisfying ∆x > 2rn

τdec = 1
Γm

1
(n+ 1)nth + n(nth + 1) . (0.2)

The previous formula is the exact expression for the lifetime of the Fock state |n⟩ in the
presence of a thermal environment of occupation nth, and constitutes a good approximation
for the decoherence time of the quantum superposition |Ψcat+⟩ [2525]. The main mechanical
parameters for various cQAD systems are summarized in Figure 0.20.2. The two last columns
of the table correspond to the parameters τdec, as calculated for a quantum superposition
with a 5-fm spatial separation using formula (0.20.2) and the Penrose gravitational decoherence
time predicted by Formula (0.10.1). This table confirms what was illustrated in the previous
example: only the low-frequency (≲ MHz) mechanical resonators, which feature a zero-
point fluctuation sizeable with the nuclear radius, stand a chance to reach condition (1)
with a reasonable-sized quantum superposition. Furthermore, as highlighted in red, one
type of mechanical resonator already combines all the characteristics to fulfill condition (2).
These are so-called softly-clamped membranes [7474]: highly stressed, ultra-thin silicon-nitride
membranes, with a phononic crystal directly patterned on the suspended film. Owing to a
phenomenon known as dissipation dilution, the quality factor of such mechanical resonators
can reach extremely high values (up to 109) at cryogenic temperature, bringing their thermal
decoherence time in the 100 ms range. The group at LKB where I have conducted this
thesis has already demonstrated the design and fabrication of such softly-clamped mechanical
resonators [4343] and the long-term objective of the group is to perform an experimental test
of quantum-gravitational collapse with such a mechanical system.

Interfacing low-frequency mechanical systems with superconducting qubits

State-of-the art Numerous experimental works have strived to extend the quantum control
achieved with GHz cQAD systems towards low-frequency mechanical resonators. Here, the
main difficulty stems from the large frequency imbalance between the mechanical resonator
and the superconducting qubit, typically operating at GHz frequency. For instance, the
group of Gary Steele in Delft has proposed to interface indirectly a low-frequency mechanical
resonator to a transmon qubit via an electromagnetic resonator operating in the RF frequency
range, as recently demonstrated with a 200 MHz electromagnetic cavity [3434]. Pioneering
works in the group of Konrad Lehnert have also demonstrated that the phononic excitations
of a 20-MHz DC-biased aluminium-drum capacitor could be detected thanks to its dispersive
coupling to a Cooper-pair box at 4.6 GHz [5151, 7777]. This work was the first to demonstrate
a direct interface between a superconducting qubit and a MHz mechanical resonator. In
this experiment, the ubiquitous transmon was replaced with a Cooper-pair box (CPB), a
strongly anharmonic qubit behaving as a quasi-ideal two-level system, even in the regime
Ωm ≪ ωq. Unfortunately, the sensitivity of the CPB to low-frequency environmental charge
noise is also its Achilles’ heel. In the previous example, the ∼ 40 ns CPB coherence time
was insufficient to perform coherent manipulation of the mechanical system.
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Fig. 0.2 Comparison between various mechanical systems for quantum memory,
sensing, and quantum gravity applications. The force sensitivity is calculated using
the formula Fmin =

√
ℏmΩ2

m(2nth + 1)/Q (see ref. [7070]). The state size required
for quantum gravity experiments is n = (2.7 fm/xzpf)2. The corresponding thermal,
and gravitational decoherence times are extracted from (0.20.2) and (0.10.1) respectively.
For mechanical systems where small cat states n < 1, or even the ground state are
sufficient to observe quantum gravitational effects, we write n = 0/1 and calculate
the decoherence time in state |1⟩. The performances of the system envisioned in this
proposal are framed in red (see text for details). Images and system parameters are
extracted from the following references: Rugar et al. [6666], Fogliano et al. [3232], Rossi
et al. [6565], Ghadimi et al. [3737], Neuhaus et al. [5656], Teufel et al. [7373], Verhagen et
al. [7575], Chan et al. [2020], Arrangoiz et al. [66], Satzinger et al. [6767], O’Connell et al.
[5959], Chu et al. [2222]. Figure adapted from ref. [3535].

The fluxonium qubit The group at LKB is pursuing a new approach where the mechanical
system would be coupled to a radically different qubit architecture enabling direct reso-
nant strong coupling: the fluxonium qubit. This circuit developed in the group of Michel
Devoret at Yale in 2009 [5252] is composed of a Josephson junction (JJ) (Josephson energy
EJ , capacitive energy Ec) shunted by an extremely large inductance (inductive energy EL),
fulfilling the high-impedance condition EL < Ec. In this configuration, the two conjugate
circuit variables—the superconducting phase φ̂ and the charge N̂ across the junction—play
a role analogous to the position and momentum of a particle moving in a potential that is
the sum of the sinusoidal Josephson energy −EJ cos(φ̂) and the parabolic inductive energy
EL(φ̂ − φext)2, with φext the magnetic flux threading the superconducting loop. In this
physical picture, the capacitive energy 4Ec(N̂ − ng)2 plays a role analogous to a kinetic en-
ergy. Here, ng is the offset charge due to the capacitive coupling of the circuit to an external
potential.

Very recently, several experimental groups have explored an unprecedented parameter
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Fig. 0.3 Circuit diagrams (left): in the heavy fluxonium, a large capacitance sup-
plements the intrinsic junction capacitance. Energy-levels and flux wavefunctions
(right) calculated at φext/2π = 0.5. Fluxonium parameters (in GHz): EL/h = 0.5,
EC/h = 5, EJ/h = 8, heavy fluxonium parameters: EL/h = 0.1, EC/h = 0.4,
EJ/h = 3.

regime, coined the “heavy fluxonium” [3030]. In this regime, identified by Ec ≪ EJ , each
potential well contains several bound states (see Fig. 0.30.3). The singularity of the heavy
fluxonium is most apparent at the flux-frustration point φext/2π = 0.5, where the phase
φ̂ is subjected to a degenerate double-well potential. At this point, the two lowest energy
eigenstates |g⟩ and |e⟩ are the symmetric and anti-symmetric superpositions of the left- and
right-well eigenstates (or fluxons, hence the name fluxonium). The energy difference between
|g⟩ and |e⟩ being given by the tunneling rate through the central barrier, it is exponentially
reduced as a function of EJ

EC
in the heavy fluxonium regime. At this bias point, where the

qubit frequency is insensitive to first-order to changes in flux, a coherence time > 250 µs,
with a qubit frequency as low as ωq/2π = 15 MHz has recently been demonstrated [8181].

The mecaflux project The Mecaflux project, as illustrated in Figure 0.40.4, focuses on probing
and manipulating the quantum state of a mechanical oscillator by interfacing it resonantly
with a superconducting fluxonium qubit. The heavy-fluxonium, located on the bottom
chip, is composed of an individual Josephson junction (energy EJ), shunted by a large
capacitor (energy EC) and a super-inductor in parallel (inductive energy EL). Furthermore,
the fluxonium electrode is capacitively coupled via a moving gap capacitor C(x) to a nearby
electrode maintained at a DC-voltage Vg. In this configuration, the motion x̂ is transduced
into a charge modulation N̂g = Vg

2e
∂C
∂x x̂ on the fluxonium electrode.

The membrane/fluxonium interaction is thus described by a motion-dependent offset
charge:

Ĥ = 4Ec(N̂ − N̂g(t))2 − EJ cos(φ̂− φext) + EL

2 φ̂2 + ℏΩmb̂
†b̂. (0.3)

In this expression, N̂g(t) = Nzpf(b̂+b̂†) represents the offset-charge induced by the mechanical
motion, where b̂ is the annihilation operator for phonons in the mechanical mode, and Nzpf =
Vg

2e
∂C
∂x xzpf stands for the “zero-point charge fluctuations” (in units of Cooper pairs) that
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are induced by the electromechanical system on the fluxonium electrode as a result of the
mechanical zero-point fluctuations. With realistic experimental conditions, this parameter
remains exceedingly small, with an estimated value of Nzpf ∼ 10−2.

Interestingly, this experiment highlights a somewhat paradoxical aspect of fluxonium-
based systems: while the fluxonium is inherently immune—or insensitive—to a static (DC)
charge offset, the focus here is to detect exceedingly small, mechanically induced charge
modulations at the MHz frequency of the mechanical system. This is made possible by
the peculiar frequency response of the circuit inductive shunt, which filters efficiently the
environmental noise at audio frequency while being maximally sensitive at the resonant
qubit frequency in the MHz range.

Objectives of this work
This PhD work is mainly centered on the qubit side of the experiment, and in particular, it
aims at demonstrating the following pre-requisites:

1. Low-operational frequency: the goal is to demonstrate the feasibility of a supercon-
ducting qubit resonant at –or below– the mechanical resonance frequency of a softly-
clamped membrane (∼ 5 MHz).

2. Demonstrating the possibility to drive the qubit transitions directly with a nearly-
resonant AC charge-offset.

3. Ensuring sufficient charge sensitivity to detect the tiny charge modulation induced by
the mechanical motion in the final experiment.

This PhD project necessitated the implementation of a number of techniques that were
new to the host laboratory (Josephson junction fabrication and characterization, simula-
tion of complex circuit QED devices, pulsed microwave experiments and cryogenic quantum
measurements). This manuscript is structured to provide a comprehensive examination of
each aspect involved in the development of heavy-fluxonium qubits and their application in
sensing protocols. Chapters 11 and 22 review essential theoretical concepts on circuit Quantum
ElectroDynamics (cQED), and Fluxonium qubits respectively. Chapter 33 and 44 cover various
design and experimental techniques that are pivotal for our experiments. In chapters 55 and
66, we present the experimental characterization of the circuit at cryogenic temperature. In
particular, chapter 55 focuses on the GHz transitions to from the low-energy qubit manifold to
higher excited states that are pivotal for the readout and manipulation of the qubit manifold,
as demonstrated in chapter 66. Finally, in chapter 77, we demonstrate the exquisite charge
sensitivity of the heavy-fluxonium qubit to a nearly resonant MHz charge modulation.

Summary of the main results
1 A record-low frequency superconducting qubit (1.8 MHz)
The main focus of this work is to push the operational boundaries of superconducting qubits
towards the low-frequency spectrum. Whereas typical circuit Quantum Electrodynamics
(cQED) systems operate in the 5-10 GHz range, extending their operation into the radio-
frequency domain introduces distinct challenges: Firstly, adapting readout techniques to
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Fig. 0.4 Concept of the mecaflux project. The mechanical oscillator developed
in the LKB group (top) consists of a suspended silicon-nitride film (orange) sus-
pended above a silicon substrate (green). A 5 MHz out-of-plane vibrational mode
is confined close to a phononic-crystal defect directly etched in the membrane (the
inset shows the color-coded displacement profile). The quantum state of this me-
chanical oscillator is probed and manipulated thanks to its coupling to a resonant
heavy-fluxonium qubit (bottom). In order to couple the two systems, a metalized
membrane is integrated as one electrode of a vacuum gap capacitor (middle). By
applying a voltage bias across this capacitor, the motion of the membrane translates
into a charge modulation. I have developed and optimized the qubit component
of this setup, ensuring it operates at sufficiently low frequencies and possesses the
requisite charge sensitivity to detect the motion of the membrane.
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Fig. 0.5 Two tone spectrum of the microwave transitions of a heavy fluxonium
centered on the flux frustration point φext/2π = 0.5. The various qubit transitions
are well explained by a 3 parameters model with EJ/h = 5.178 GHz, EC/h = 0.4144
GHz, and EL/h = 0.18 GHz. The magnitude of the avoided-crossing near the flux
frustration point (inset) corresponds to the low-frequency qubit transition of 1.8
MHz

.

lower frequencies is non-trivial. Traditional cQED setups rely on the dispersive shift im-
parted to a nearby superconducting resonator for qubit state readout. At lower frequencies,
this dispersive shift diminishes significantly when the cavity detuning exceeds the qubit an-
harmonicity. In such cases, maintaining resonant conditions for the resonators would require
impractically large physical dimensions—for example, achieving resonance at 1 MHz would
necessitate a coplanar cavity approximately 100 meters long. Secondly, systems operating
below kBT/ℏ (where T denotes the environmental temperature) face severe thermal noise
issues. At these frequencies, the qubit is effectively coupled to a hot thermal bath, stim-
ulating random photon exchanges that can rapidly degrade quantum states into statistical
mixtures.

Thankfully, owing to its highly non-linear spectrum–the transition to the second excited
state lies 3-orders of magnitude above the qubit transition, the fluxonium can be manipulated
and readout using standard microwave techniques. These technics are reminiscent to optical
manipulations of spin degrees-of-freedom in atomic systems. In this work, we have achieved
a significant milestone by realizing a heavy-fluxonium with a qubit transition frequency as
low as 1.8 MHz [5555], marking an unprecedented achievement for superconducting qubits, as
highlighted in Figure 0.50.5. The manipulation and characterization of this low-frequency qubit
are extensively detailed across several chapters.

In Chapter 55, we describe the successful implementation of a single-shot projective mea-
surement of the qubit state. This is accomplished by selectively addressing a specific transi-
tion to a higher excited state of the circuit, followed by a conventional circuitQED readout
process. Prior to these manipulations, as detailed in Chapter 66, we implemented a side-
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band cooling protocol which effectively reduced the qubit’s effective temperature, achieving
a final ground state population of 97.7 % and corresponding to an effective temperature of
23 µK. This protocol was critical in preparing the qubit system in a low-entropy state for
high-fidelity operations. Moreover, we demonstrated the direct manipulation of the qubit’s
degrees of freedom, showcasing its robustness with coherence times of T1 = 34 µs and T2
= 39 µs. These results confirm that, despite the qubit’s operation within a “hot” thermal
environment, it retains sufficient coherence to permit effective manipulation and readout.

Fig. 0.6 Direct Rabi manipulation of the radio frequency qubit transition. after
initial preparation in |g⟩, the qubit is driven via a charge port with a MHz pulse of
variable duration and frequency. The colorscale indicates the final qubit population.
The negative frequency part of the graph is here to highlight the validity range of the
rotating-wave approximation. The inset shows the Rabi frequency for a resonant
drive at 1.8 MHz, as a function of the drive voltage amplitude (upper horizontal
axis) and in units of Cooper-pairs on the fluxonium electrode (lower horizontal axis).
The yellow dot is obtained for the parameters of the main figure. The negative-
frequency half is just a reflection of the positive-frequency half, it was added for
visualization porpuses only.

2 Ultra-sensitive nearly resonant charge sensing
In chapter 7, we demonstrate direct Rabi oscillations by driving the MHz fluxonium qubit
close to resonance via a capacitively coupled waveguide (see Fig. 0.60.6). This experiment
can be seen as a simplified version of the Mecaflux setup, where the mechanical charge
modulation is replaced by the classical drive through this port. By relating the voltage
amplitude on the digital-to-analog converter and the equivalent number of Cooper pairs
on the fluxonium electrode, we extract a single-shot charge sensitivity of Nmin ∼ 5 × 10−3

cooper pairs. This is the smallest charge modulation required to observe coherent Rabi



10 CONTENTS

flipping. This highlights the capability of the fluxonium qubit to respond to less than 1 %
of a Cooper pair, reflecting its exceptional ac-charge sensitivity. Specifically, this sensitivity
aligns with the charge fluctuations Nzpf expected from mechanical zero-point fluctuations,
suggesting that achieving strong coupling in the Mecaflux project is a feasible target.

This value corresponds to a single-shot charge sensitivity of 10−2 e. In order to compare
our qubit-based sensor to other more conventional charge sensors, we have implemented a
quantum sensing protocol, similar to those routinely used in nitrogen-vacancy center magne-
tometry [1414] and similar methodologies [6262]. Via the application of a cyclic qubit preparation
and interrogation sequence, we are able to accumulate statistical data on the weak modu-
lation signal (see Figure 0.70.7). This enables us to report a sensitivity of δq =33 µe/

√
Hz,

indicating that our quantum sensor can detect charge modulations as low as 33 millionths
of an elementary charge over a 1-second integration period.

This sensitivity rivals that of the most advanced transport-based devices [11, 44, 1212, 1616,
1919, 3939, 4646, 5050, 6868, 7676, 7878], while maintaining intrinsic insensitivity to dc-charge noise. Fur-
thermore, the capacitance C ∼ 50 fF of the fluxonium electrode exceeds the typical gate
capacitance of single-electron transistors (SETs) [11, 6868] by approximately 2 orders of mag-
nitude, resulting in a record-low energy sensitivity δq2/2C ∼ 2.8ℏ. This metric can be
regarded as more fundamental than the bare charge sensitivity, which gets diluted when
the self-capacitance of the probed system exceeds that of the sensor in a real-world charge-
sensing scenario. Beyond the application of this work within the Mecaflux project, the high
charge sensitivity combined with large capacitive shunt unlocks new avenues for exploring
quantum phenomena in the 1–10 MHz, for instance in spin sensing protocols.
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Fig. 0.7 AC-charge sensing. (a) A weak monochromatic charge-drive (also re-
ferred to as calibration tone) is detected thanks to a repeated pulse sequence: the
qubit is prepared in |g⟩ (black arrow in the Bloch sphere (b)). After interacting
for a time τI with the tone, a partial information on the qubit state is obtained by
performing a π/2 pulse in one of the 4 directions +X,+Y,−X,−Y , followed by a
qubit state readout in the eg basis. From the measurement samples mk ∈ {0, 1},
a complex telegraphic signal σk = ik(mk − 1/2) is constructed. The noise spec-
trum centered around the qubit frequency is estimated by the Bartlett’s-method,
with periodograms of 1000 non-overlapping consecutive samples. (c) The estimated
noise spectrum presents a residual-bandwidth-limited peak at the calibration tone
frequency νcal = 1.853 MHz. Red inset: zoom on the calibration peak and sinus-
cardinal fit (solid line). Left and right insets: signal-to-noise-ratio (SNR) for the
calibration peak as a function of interrogation time τI and calibration peak ampli-
tude respectively. The red dots in the insets correspond to the parameters used in
the main graph of panel (c). The solid lines are the results of an analytic model
taking into account the evolution of the qubit during the interrogation time. Signal
cancellation occurs when the calibration tone amplitude is a multiple of that of a
pi-pulse. The spectrum in (c) is calibrated using the known variance of the calibra-
tion tone.
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Chapter 1

Superconducting circuits
fundamentals

Introduction
The goal of the following section is to give a short introduction to the superconducting circuits
platform and the theoretical and experimental techniques which describe the most simple
experiments in circuit QED. We will discuss the basic building blocks which are microwave
cavities (harmonic oscillators), the heavily used Transmon qubit (anharmonic oscillators)
and the procedure with which we can control the states of qubits (Rabi oscillations) as well
as measure the state of the qubit (dispersive readout). Each of these topics will only be
convered briefly, a very thorough treatment of some of the theory can be found in (Girvin
les Houches 2011) [43] and (Blais et al. CQED) [44].

1.1 The quantum LC harmonic oscillator
This section explains the basic concepts and the elementary physical description of the su-
perconducting circuits by considering the simplest kind of circuit, the quantum harmonic
oscillator. We start wit the minimalist but useful description of the circuit in terms of
lumped elements. Then, we consider the degrees of freedom of the circuit and the classical
approach to the circuit dynamics. We finalize the section with the quantization of the circuit.
This is nothing but the quantum-mechanical description of the circuit, which turns around
two core properties: The energy spectrum of the circuit and quantum fluctuations of the
circuit variables.

1.1.1 Flux variable in electrical circuits

The most elementary version of an electrical harmonic oscillator is a lumped-element LC-
resonator. This circuit consists of an inductance L and a capacitance C in parallel connection.
The LC-resonator has a single degree of freedom: either the voltage drop V between the two
electrodes of the capacitor or the current I flowing through the inductor. However, when
it comes to superconducting circuits, we prefer a description in terms of either accumulated

13
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charge Q at the capacitor electrodes or the flux ϕ threading the inductor. The flux ϕ is
defined as the time-integral of the voltage V

ϕ =:
∫ t

−∞
dt′ V (t′) . (1.1)

This equation means that the voltage V is the derivative of the flux with respect to time,
ϕ̇ = V . For example, in the case of a solenoid, the flux ϕ coincides with the external flux
ϕext of the magnetic field B⃗ threading the wire-loop of the solenoid:

ϕext =:
∫

Ω
dσ⃗ · B⃗(r⃗) (1.2)

On the one hand, the voltage drop V across the capacitor electrodes is related to the accu-
mulated charge at electrodes Q as:

Q = C V = C ϕ̇ (1.3)

On the other hand, the flux ϕ threading through the inductor is related to the circulating
current I as:

ϕ = LI = L Q̇ (1.4)
The stored energy in a lumped-element is calculated as:

U ≡
∫ t

−∞
dt′ V (t′)I(t′) . (1.5)

Thus, the energy stored in the capacitor is

UC = Q2

2C = Cϕ̇2

2 (1.6)

Moreover, the energy stored in the inductor is

UL = ϕ2

2L = LQ̇2

2 (1.7)

As we will see in the following, the circuit description in terms of charge Q or flux ϕ is
equivalent.

1.1.2 Classical dynamics of the LC-resonator
This section is about the classical dynamics of the LC-resonator, which is governed by its
Lagrangian L . The Lagrangian L contains the kinetic energy T(ẋ) minus the potential
energy V(x) of the circuit, where "x" represents either the flux ϕ or the charge Q. For
instance, the Lagrangian of the LC-resonator in terms of flux ϕ reads:

Lϕ = Cϕ̇2

2 − ϕ2

2L (1.8)

Notice that the conjugated variable of the flux ϕ is nothing but the charge Q,

∂ϕ̇L = Cϕ̇ = Q (1.9)
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Fig. 1.1 Lumped-element LC-resonator: .

Similarly, the Lagrangian of the LC-resonator in terms of charge Q reads:

LQ = LQ̇2

2 − Q2

2C . (1.10)

The conjugated variable of the charge Q is nothing but the flux ϕ,

∂Q̇L = LQ̇ = ϕ (1.11)

The description of the LC-resonator in terms of flux ϕ or charge Q is thus equivalent. By
using the Euler-Lagrange equation, we obtain the equation ruling the time evolution of the
flux ϕ:

d

dt
∂ϕ̇Lϕ − ∂ϕLϕ = 0 → C ϕ̈+ ϕ

L
= 0 (1.12)

The solution of this equation is then:

ϕ(t) = ϕmax cos(ω0 t+ θ) (1.13)

This means that the flux ϕ threading the inductor oscillates at an angular frequency ω0,

ω0 ≡ 1√
LC

. (1.14)

The accumulated charge Q on the capacitor electrodes (Eq. 1.31.3) is then:

Q(t) = C ϕ̇(t) = −ϕmax
Z0

sin(ω0 t+ θ), (1.15)

where Z0 is the resonator impedance,

Z0 ≡

√
L

C
. (1.16)

Notice that the flux ϕ in the inductor and the charge Q in the capacitor oscillate in quadra-
ture. The energy stored in the inductance UL(t) and the energy stored in the capacitance
UC(t) as functions of time are:

UL(t) = ϕ2
max
2L cos(ω0 t+ θ)2 , UC(t) = ϕ2

max
2C Z2

0
sin(ω0 t+ θ)2. (1.17)
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Thus, the total energy stored in the LC-resonator is a constant of motion:

E = Q(t)2

2C + ϕ(t)2

2L = ϕ2
max
2L . (1.18)

Eq. 1.131.13, 1.151.15 and 1.181.18 correspond to the intuitive picture of the harmonic oscillator where
the energy flows back and forth between the inductor and the capacitor but the total energy
is conserved. The initial flux, at time t = 0, is ϕ(0) = ϕmax cos(θ), while the initial charge
is Q(0) = −ϕmax

Z0
sin(θ). Therefore, the flux ϕ(t) and the charge Q(t) as functions of time

(Eqs. 1.131.13 and 1.151.15) can be written as:

ϕ(t) = ϕ(0) cos(ω0 t) + Z0Q(0) sin(ω0 t),

Q(t) = −ϕ(0)
Z0

sin(ω0 t) +Q(0) cos(ω0 t).
(1.19)

These two equations together describe an elliptical trajectory (ϕ(t), Q(t)) in phase space,
the space given by the pairs (ϕ, Q), such that the energy E of the LC-resonator is conserved
and it is given by:

E = ϕ(0)2

2L + Q(0)2

2C . (1.20)

Only the initial conditions ϕ(0) and Q(0) are needed to determine the time evolution of the
LC-resonator.

1.1.3 Quantum-mechanical description of the LC-resonator
In this section, we consider the quantum mechanical description of the LC-resonator. The
main difference of the quantum-mechanical theory with respect to the classical theory is that
the energy E of the LC-resonator can’t take arbitrary values but it is quantized in units of
ℏω0, where ℏ is the Planck’s constant and ω0 is the resonance frequency of the LC-resonator
(Eq. 1.141.14).

We start by obtaining the classical Hamiltonian of the LC-resonator from its Lagrangian
L (Eq. 1.81.8) via the Legendre transform, H = Qϕ̇− L ,

H = ϕ2

2L + Q2

2C (1.21)

Firstly, notice that the Hamiltonian just has the sign of the potential energy inverted with
respect to the Lagrangian (Eq. 1.81.8), such that the Hamiltonian is just the total energy of the
LC-resonator. Secondly, notice that describing the LC-resonator in terms of flux or charge
leads to the same Hamiltonian. We obtain the quantum Hamiltonian of the LC-resonator
H via the canonical quantization, where the conjugated variables ϕ and Q are replaced by
conjugated operators ϕ̂ and Q̂1, such that, the canonical commutation relation between the
operators is: [

ϕ̂, Q̂
]

= ϕ̂ Q̂− Q̂ ϕ̂ ≡ iℏ (1.22)

1For the sake of simplicity, we will drop the hat of the operators in the following sections, but the reader
must be aware that an operator (typically a matrix) is a different mathematical object than a variable
(typically a real number).
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This equation implies that the operators ϕ̂ and Q̂ don’t have the same eigenvalues, meaning
that is not physically possible to determine with infinite precision both the flux ϕ and the
charge Q at the same time. This is nothing but the Heisenberg’s indeterminacy principle:
Qzpf , the quantum fluctuations of the charge Q in the capacitor electrodes, and ϕzpf , the
flux ϕ threading the inductor, must fulfil the inequality ϕzpf Qzpf ≥ ℏ/2.

In the quantum-mechanical picture, we do not describe the state of the LC-resonator with
a pair of variables (ϕ, Q), but rather with a vector |ψ⟩. Such vector is normalized ⟨ψ|ψ⟩ = 1
and lives in a Hilbert space representing all the allowed states of the LC-resonator. In this
thesis, the considered Hilbert spaces are discrete. Moreover, the physical observables, such as
the flux ϕ and the charge Q, are related to the mean values of their corresponding operators,
in this case ϕ̂ and Q̂, respectively. For example, the mean value of the flux ⟨ϕ⟩, at a given
time "t", is calculated as:

⟨ϕ⟩ = ⟨ψ|ϕ̂|ψ⟩ (1.23)

The time evolution of the wavefunction, thus the evolution of the observables over time, is
governed by the Schrödinger equation:

iℏ ∂t |ψ⟩ = Ĥ |ψ⟩ (1.24)

This equation is in general complicated to handle, however, it simplifies a lot if the wave-
function |ψ⟩ is written in the basis of eigen-states of the Hamiltonian H. An eigen-state |E⟩
of the Hamiltonian H with eigenvalue E, satisfies the relation:

Ĥ |E⟩ = E |E⟩ (1.25)

This equation is also known as the time-independent Schrödinger equation.

1.1.4 Energy spectrum of the quantum LC-resonator
This section focuses on the eigen-values and the eigen-vectors of the Hamiltonian H of the
LC-resonator. We also introduce the useful ladder operators. Since the Hamiltonian H
(Eq. 1.211.21) is the operator representing the total energy of the LC-resonator, therefore,
the eigen-values E represent the allowed energies of the LC-resonator. The set of all the
eigen-values {E} is the referred to as the spectrum of the Hamiltonian H. In order to find
the spectrum corresponding to the LC-resonator, we introduce the ladder operators â and
â†:

â =
√

1
2ℏZ0

(
ϕ̂+ iZ0Q̂

)
â† =

√
1

2ℏZ0

(
ϕ̂− iZ0Q̂

) (1.26)

Where Z0 is the impedance of the LC-resonator (Eq. 1.161.16). The operator â† is the hermitian
adjoint of â. The ladder operators satisfy the commutation relation:[

â, â†
]

= â â† − â† â = 1 (1.27)
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Fig. 1.2 Spectrum of the LC-resonator: The harmonic oscillator Hamiltonian has a dis-
crete spectrum, with equally spaced eigen-energies. The ladder operators allow to go up
or down the ladder of eigenstates. The ground state has an energy that is higher than the
minimum of the potential energy.

One can write the Hamiltonian of the LC-resonator (Eq. 1.211.21) in terms of the ladder
operators:

Ĥ = ℏω0

(
â†â+ 1

2

)
(1.28)

The eigen-energies En are given by

En = ℏω0

(
n+ 1

2

)
. (1.29)

Notice that the smallest energy E0 is not zero, the value of the potential energy minimum,
but 1

2ℏω0. It is commonly referred as the vacuum energy or the zero-point energy. The eigen-
states of the LC-resonator are labeled as |n⟩, with "n" representing the number of energy
quanta of the mode. The quantization of the energy spectrum is a consequence of the
commutation relations between a and a† and H:

[Ĥ, â ] = −ℏω0 â

[Ĥ, â†] = +ℏω0 â
† (1.30)

The first relation 1.301.30 implies that the operator â subtracts an energy quantum from the
LC-resonator, i.e.:

Ĥ â |n⟩ = â (H − ℏω0) |n⟩ = (En − ℏω0) â |n⟩ (1.31)

Eq. 1.311.31 means that applying the operator â to an eigen-state |n⟩ with energy En produces
other eigen-state |n− 1⟩ that has 1 less energy quantum, |n− 1⟩ ∝ â |n⟩ with energy En−1 =
En − ℏω0. In particular

â |n⟩ =
√
n |n− 1⟩ (1.32)
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Because of this, the operator â is referred to as the annihilation operator. The second relation
1.301.30 implies that the operator â† adds an energy quantum to the LC-resonator, i.e.:

Ĥ â† |n⟩ = â† (H + ℏω0) |n⟩ = (En + ℏω0) â† |n⟩ (1.33)

Eq. 1.331.33 means that applying the operator â† to a state |n⟩ with energy En produces
other eigen-state |n+ 1⟩ that has 1 more energy quantum, |n+ 1⟩ ∝ â† |n⟩ with energy
En+1 = En + ℏω0. In particular,

â† |n⟩ =
√
n+ 1 |n+ 1⟩ (1.34)

1.1.5 Quantum fluctuations of the energy eigen-states
In the previous section we saw that the spectrum of the quantum LC-resonator is discrete
and their energy levels are equally spaced by ℏω0 (see Figure 1.21.2). This result differs from
the classical LC-resonator whose energy E (Eq. 1.181.18 and 1.201.20) can take any arbitrary value.
Moreover, there is another fundamental difference between the quantum LC-resonator and
the classical one: the so-called quantum fluctuations. In this section, we consider the (quan-
tum) fluctuations of both the flux ∆ϕ and the charge ∆Q of the energy eigen-states |n⟩ of
the LC-resonator. We also discuss the relation between each other, which is nothing but the
Heisenberg’s uncertainty principle.

We start by writing the flux ϕ̂ and charge Q̂ operators in terms of the ladder operators
â and its hermitian adjoint â† (Eq. 1.261.26):

ϕ̂ = ϕzpf√
2

(
â+ â†

)
Q̂ = Qzpf

i
√

2

(
â− â†

) (1.35)

Where the parameters ϕzpf and Qzpf are named the "flux zero-point-fluctuations" and the
"charge zero-point-fluctuations", respectively. These parameters are related to the LC-
resonator impedance Z0 (Eq. 1.161.16 and 1.261.26) as:

ϕzpf ≡
√
ℏZ0

Qzpf ≡
√

ℏ
Z0

(1.36)

We can then calculate the mean value of the flux ⟨ϕ⟩ and the mean value of the charge ⟨Q⟩
for an energy eigen-state |n⟩:

⟨ϕ⟩nn = ⟨n|ϕ̂|n⟩ = ϕzpf√
2

⟨n|â+ â†|n⟩ = 0

⟨Q⟩nn = ⟨n|Q̂|n⟩ = Qzpf

i
√

2
⟨n|â− â†|n⟩ = 0

(1.37)

Notice that the ladder operators â and â† cause a jump from |n⟩ to a state with 1 less |n+ 1⟩
or 1 more |n+ 1⟩ energy quantum, respectively, and the eigen-states are orthogonal to each
other:

⟨m|n⟩ = δm, n (1.38)
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Where δm, n is a Kronecker delta (an identity matrix), such that δn, n = 1 and δm̸=n, n = 0.
Eq. 1.371.37 mean that the energy eigen-states |n⟩ represent states of the LC-resonator with
both zero mean-flux ⟨ϕ⟩ and zero mean-charge ⟨Q⟩, nevertheless, those states still have an
energy En ∝ nℏω0 which is conserved over time2. These states have no-classical equivalent,
since in the case of the classical LC-resonator, the energy E is also fixed but it is related to
the mean values of the flux ⟨ϕ⟩ and the charge ⟨Q⟩ (Eq. 1.181.18) as:

Eclassic
nn = ⟨ϕ⟩2

nn

2L + ⟨Q⟩2
nn

2C (1.39)

The energy of the Hamiltonian eigen-states |n⟩ is actually related to the quantum fluctuations
of the charge ∆Q and the flux ∆ϕ,

∆ϕ2
nn ≡ ⟨n|ϕ̂2 − ⟨ϕ⟩2 |n⟩ =

ϕ2
zpf
2 ⟨n|ââ† + â†â|n⟩ = ϕ2

zpf

(
n+ 1

2

)
∆Q2

nn ≡ ⟨n|Q̂2 − ⟨Q⟩2 |n⟩ =
Q2

zpf
2 ⟨n|ââ† + â†â|n⟩ = Q2

zpf

(
n+ 1

2

) (1.40)

By combining Eq. 1.361.36 and 1.401.40 we find the relations between the flux and charge fluctua-
tions of the energy eigen-states |n⟩:

∆ϕnn

∆Qnn
= Z0

∆ϕnn∆Qnn = ℏ
(
n+ 1

2

)
≥ ℏ

2

(1.41)

Firstly, notice that the ratio between the flux ∆ϕ and charge ∆Q fluctuations is determined
by the impedance Z0 but it is independent of the number of energy quanta "n" in the
LC-resonator. Secondly, the product of the flux ∆ϕ and charge ∆Q fluctuations scales
proportionally to the number of energy quanta "n", but it is independent of the parameters
of the LC-resonator, which are the resonance frequency ω0 and the impedance Z0. Since the
Hamiltonian Ĥ is the operator related to the total energy of the LC-resonator, the mean
energy ⟨E⟩ of the Hamiltonian eigen-states |n⟩ is actually

⟨E⟩nn = ⟨n|Ĥ|n⟩ = ∆ϕ2
nn

2L + ∆Q2
nn

2C = ℏω0

(
n+ 1

2

)
(1.42)

Thus, the Hamiltonian eigen-states |n⟩ represent cases where the LC-resonator has no net
charge ⟨Q⟩ = 0 nor net flux ⟨ϕ⟩ = 0, so that it’s classical energy Eclassic

nn is zero as well,
nonetheless, the LC-resonator still has some energy Equantum

nn = ℏω0
(
n+ 1

2

)
that is stored

in the form of quantum fluctuations of the flux ∆ϕnn and the charge ∆Qnn. Notice that,
in virtue of Heisenberg’s uncertainty principle, ∆ϕ∆Q ≥ ℏ/2, the energy stored in the
quantum fluctuations Equantum has always a minimum value greater than zero, the so-called
"vacuum energy" or zero-point energy. In the case of the LC-resonator, the zero-point energy
is E0 = 1

2ℏω0. Although the ladder operators â† and â can rise or decrease, respectively, the
energy stored in the quantum fluctuations by quanta ℏω0, nonetheless, the vacuum |0⟩ is the

2We well see this in a following section.
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state with the minimal energy of quantum fluctuations and no energy can be extracted from
it, such that

â |0⟩ = 0 |0⟩ = 0 (1.43)

Notice that the vacuum state |0⟩ is an eigen-state of the annihilation operator â with eigen-
value α = 0. In the more general case of an arbitrary state of the LC-resonator |ψ⟩ that
is not an eigen-state of the Hamiltonian Ĥ, such that mean values of the flux ⟨ϕ⟩ and the
charge ⟨Q⟩ are not zero, the mean energy ⟨E⟩ is:

⟨E⟩ = ⟨ψ|Ĥ|ψ⟩ = ⟨ψ|ϕ̂2|ψ⟩
2L + ⟨ψ|Q̂2|ψ⟩

2C = ⟨ϕ⟩2 +∆ϕ2

2L + ⟨Q⟩2 +∆Q2

2C = Eclassic + Equantum

(1.44)

1.1.6 The vacuum-state of the LC-resonator
This section is about the wavefunction of the vacuum state |0⟩ in either charge ⟨Q|0⟩ or flux
⟨ϕ|0⟩ representation. The vacuum state is interesting because it represents the state with
the minimum energy of the quantum fluctuations. In general, the wavefunction in the charge
representation ⟨Q|ψ⟩ is the Fourier transform of the wavefunction in the flux representation
⟨ϕ|ψ⟩:

⟨Q|ψ⟩ =
∫ ∞

−∞
dϕ ⟨ϕ|ψ⟩ exp

(−iϕQ
ℏ

)
(1.45)

The wave function of the vacuum-state |0⟩ in the flux ϕ representation (in the basis of the
flux operator ϕ̂) is:

ψ0(ϕ) ≡ ⟨ϕ|0⟩ = π− 1
4√

ϕzpf
e

− 1
2

(
ϕ

ϕzpf

)2

(1.46)

The wave function ψ0(ϕ) is a Gaussian centered at ϕ = 0 with a standard deviation ϕzpf =√
ℏZ0 (Eq. 1.361.36). Similarly, the wave function of the vacuum-state |0⟩ in the charge Q

representation (in the basis of the charge operator Q̂) is:

Ψ0(Q) ≡ ⟨Q|0⟩ = π− 1
4√

Qzpf
e

− 1
2

(
Q

Qzpf

)2

(1.47)

The wave function Ψ0(Q) is a Gaussian centered at Q = 0 with a standard deviation
Qzpf =

√
ℏ/Z0 (Eq. 1.361.36).

1.2 Non-linear circuits
The Section 1.11.1 was about the most elementary superconducting circuit, the LC-resonator,
that is made of a linear inductance L and a linear capacitance C in parallel connection. How-
ever, the more involved and interesting superconducting circuits are typically anharmonic
oscillators: They have a more complicated lower energy spectrum that results from the inclu-
sion of a non-linear element in the circuit components. This non-regularity (anharmonicity)
of the spectrum allows to drive and manipulate an individual pair of levels, realising what is
known as a two-level system. This last one is also referred to as a pseudo-spin or a qubit and
it is at the core of the field of quantum information. In practice, the non-linearity of a circuit
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originates from a small tunnel-effect junction, named a Josephson junction, that is made of
a thin insulating barrier (I) separating two superconducting electrodes (S). The junction
behaves as a non-linear inductance that depends on the superconducting phase difference
across the junction. This chapter is about the fundamentals of the Josephson junctions and
how they allow the realisation of anharmonic circuits that can be used as two-level systems.

1.2.1 Josephson junction
This section is about the fundamentals of the Josephson junctions. A Josephson junction is
a tunnel-effect junction made of a thin insulating barrier (I) between two superconducting
electrodes (S). B. Josephson showed in 1962 [Jos62] that a phase difference φ = φS1 −
φS2 between the two superconducting electrodes can produce a super-current of pairs of
electrons (Cooper pairs) through the junction. This is the case even if the transmission of
single electrons through the tunnel barrier is very small. The super-current of Cooper pairs
is proportional to the normal-state tunnel conductance of the junction [33]. The so-called
Josephson relations characterize the behavior of the junction:

I = Ic sin(φ)

∂tφ = V

Φ0
,

(1.48)

where V and I are the voltage and current through the junction, respectively, and Φ0 = ℏ/2e
is the reduced flux quantum. The parameter Ic is named the critical current of Cooper pairs
through the junction and it is given by

Ic = π∆

2eRN
, (1.49)

where ∆ is the BCS gap of the superconducting electrodes and RN is the normal state
resistance of the junction. Notice that the superconducting phase difference φ across the
junction is proportional to the flux ϕ = Φ0 φ (Eq. 1.11.1). Then, the phase operator is defined
as φ̂ = ϕ̂/Φ0. According to the relations 1.481.48, the time derivative of the super-current ∂tI is
written:

∂tI = Ic cos (φ) V
Φ0

(1.50)

This equation suggests that the junction behaves approximately as a linear inductance V =
Lİ as long as the superconducting phase difference φ is small. In general, a Josephson
junction behaves as a non-linear inductance L(I) which depends on the value of the super-
current I through the junction. By combining the Eq. 1.481.48 and 1.501.50, we obtain an expression
for the inductance corresponding to the junction:

L(I) = Φ0
Ic cos(φ) = Φ0

Ic

√
1 −

(
I
Ic

)2
(1.51)

Using Eq. 1.51.5, we can calculate the energy stored in the junction:

UJ(ϕ) =
∫ t

−∞
dt′ V (t′) I(t′) = −EJ cos

(
ϕ

Φ0

)
, (1.52)
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where
Ej ≡ Φ0 Ic (1.53)

is the so-called Josephson energy. In the regime where the flux ϕ across the junction is small,
ϕ ≪ Φ0, the energy of the junctions is approximately UJ(ϕ) ≈ EJϕ

2/2Φ2
0, meaning that the

junction behaves as a linear inductance LJ , such that

LJ ≡ Φ2
0

EJ
= Φ0

Ic
(1.54)

Note that this Josephson junction inductance is a kinetic inductance. In the work de-
scribed in this thesis, Josephson will be used either as non-linear inductors, or as large linear
inductors.

1.2.2 Anharmonic oscillator: The transmon
Building upon the non linearity provided by Josephson junctions, one can create a wide
variety of circuits that behave as artificial atoms. For instance, the charge circuit of a super-
conducting island that is allowed to exchange Cooper pairs with a superconducting reservoir
(e.g., another superconducting island) through a Josephson junction. These elementary kind
of circuits can be modeled by the Hamiltonian:

H = Q̂2

2C − EJ cos
(
ϕ̂

Φ0

)
(1.55)

Where the charge Q̂ and flux ϕ̂ operators satisfy the canonical commutation relation
[
ϕ̂, Q̂

]
=

iℏ. When it comes to describing a superconducting circuit with a Josephson junction, it is
more natural to express its Hamiltonian with dimensionless variables that are the (super-
conducting) phase operator φ̂ = ϕ̂/Φ0 and the operator representing the number of extra
Cooper pairs on the capacitor N̂ = Q̂/2e,

Ĥ = 4ECN̂
2 − EJ cos (φ̂) (1.56)

Where EC ≡ e2/2C is the so-called charging energy. Notice that the phase φ̂ and Cooper-pair
number operator N̂ satisfy the commutation relation[

φ̂, N̂
]

= i (1.57)

The ratio between the tunneling energy and the charging energy, EJ/EC , controls the Hamil-
tonian spectrum. In the so-called "transmon regime", EJ/EC ≫ 1 (typically EJ/EC ≈ 50), a
charge circuit described by the Hamiltonian 1.561.56 behaves as a weakly non-linear LC-resonator
(also referred to as "anharmonic" resonator). This circuit, named transmon, is insensitive to
external charge noise at the expense of having a reduced non-linear behaviour (the spectrum
anharmonicity). Nowadays, most of the quantum computing architectures based on super-
conducting circuits are built upon circuits made of several coupled transmons. Similarly to
the case of the quantum LC-resonator, the phase φ̂ and Cooper-pair number N̂ operators
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can be written in terms of the ladder operators â and its hermitian adjoint â† (see Eq. 1.261.26
and 1.351.35):

φ̂ = ϕzpf
Φ0

(
â+ â†

)
√

2

N̂ = Qzpf
2e

(
â− â†

)
i
√

2

(1.58)

Where the zero-point fluctuations of the flux ϕzpf =
√
ℏZ0 and the charge Qzpf =

√
ℏ/Z0

are related to the circuit impedance Z0 (see Eq. 1.361.36). In this case, the circuit impedance
is given by:

Z0 =
√
LJ

C
= RQ

(2EC

EJ

)1/2
(1.59)

Where RQ ≡ ℏ/2e2 is the reduced quantum of resistance and 2π ·RQ ≈ 12.9 kΩ. The charge
circuit Hamiltonian Ĥ (Eq. 1.561.56) in terms of the ladder operators â and â† (Eq. 1.581.58) is
written:

Ĥ = −4ECN
2
zpf

(
â− â†

)2

2 − EJ cos

φzpf

(
â+ â†

)
√

2

 (1.60)

Where the parameters φzpf and Nzpf are defined as:

φzpf ≡ ϕzpf
Φ0

=
(8EC

EJ

)1/4

Nzpf ≡ Qzpf
2e =

(
EJ

8EC

)1/4 (1.61)

Notice that in the transmon regime φzpf ≪ 1. Then, the junction potential in the transmon
Hamiltonian (Eq. 1.601.60) can be expanded in power series. In a first approximation, the
cosine is approximated to the 4th order yielding:

Ĥ ≈
√

8EC EJ

(
â†â+ 1

2

)
−
EJ φ

4
zpf

24

(
â+ â†

)4

4 (1.62)

The first term in the RHS represents the linear part of the Hamiltonian Ĥ0 and it is nothing
but the Hamiltonian of an LC-resonator (see Eq. 1.281.28) with a resonance frequency ω0 given
by:

ω0 ≡ 1
ℏ
√

8EC EJ (1.63)

The second term in the RHS is the non-linear part of the Hamiltonian Ĥnl and it is written
as:

Ĥnl = −EC

3

(
â+ â†

)2

4 (1.64)

The transmon Hamiltonian (Eq. 1.621.62) can be seen as a quantum harmonic oscillator Ĥ0
perturbed by a weak non-linearity Ĥnl. We expand the non-linear part Ĥnl and keep only the
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terms with equal number of creation and annihilation operators (in virtue of the rotating-
wave approximation), and after simplifying a bit by taking into account the commutator
between â and â† (Eq. 1.271.27), we finally obtain a simplified form of the transmon Hamiltonian:

Ĥ ≈
√

8EC EJ

(
1 −

√
EC

8EJ

)
â†â− EC

2 â† 2â2 (1.65)

Firstly, notice that the frequency related to the linear part of the Hamiltonian has been
reduced as:

ℏωtr ≡ ℏω0 − EC =
√

8EC EJ − EC (1.66)
This means that the spectrum of linear part Ĥ0 ∝ â†â has been re-scaled according to the
factor (1 −

√
EC/8EJ), this effect is referred to as Lamb shift. Secondly, to first order in

perturbation, notice that the nonlinear part Ĥnl ∝ â† 2â2 has the same eigen-states |n⟩ as
the linear part Ĥ0. Thus, the eigen-states |n⟩ of the transmon Hamiltonian (Eq. 1.651.65) are
the same as the states of a harmonic-oscillator with resonance frequency ωtr (Eq. 1.661.66)
and impedance Z0 (Eq. 1.591.59). However, the energies En of the eigen-states |n⟩ now scale
quadratically with the number of energy quanta "n":

En ≈
(√

8EC EJ − EC

)
n− EC

n(n− 1)
2 (n ≥ 1) (1.67)

The transition frequency between ground state |g⟩ = |0⟩ and the first excited state |e⟩ = |1⟩
is ωge = ωtr, while the transition frequency between first excited state |e⟩ = |1⟩ and the next
excited state |f⟩ = |2⟩ is ωef = ωtr − EC/ℏ. The difference between these two frequencies
is referred to as the anharmonicity α of the transmon:

α ≡ ωge − ωef ≈ EC

ℏ
(1.68)

The key result is that the spectrum of the transmon is sufficiently non-linear to be used
as a two level system, also referred to as a qubit. In practice, the two lower energy states |g⟩
and |e⟩ are typically chosen as qubit states. The anharmonicity of the transmon spectrum
makes it possible to address the qubit transition without exciting higher energy transitions,
such that it can legitimately be regarded as a two-level system.

1.3 Two-level system manipulation
In this section, we describe the physics of an ideal two-level system: time evolution, state
representation in the Bloch sphere, arbitrary state preparation with Rabi oscillation. We also
describe the physics of a two-level system coupled to an environment: either a microwave
resonator used to readout its state, or a thermal bath leading to relaxation and decoherence.

1.3.1 Mathematical description of a two level system
The quantum state of a two-level system is represented by a normalized vector in complex
2-dimensional space, such that

|ψ⟩ = α0 |0⟩ + α1 |1⟩ =
[
α1
α0

]
(1.69)
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Fig. 1.3 Spectrum of the transmon circuit: .

Where the base vectors |0⟩ and |1⟩ represent the allowed states of the two level system. They
are normalized ⟨1|1⟩ = ⟨0|0⟩ = 1 and they are orthogonal to each other ⟨0|1⟩ = ⟨1|0⟩ = 0.
The coefficients satisfy |α0|2 + |α1|2 = 1, such that they can be rather written as:

α0 = cos
(
θ

2

)
α1 = eiγ sin

(
θ

2

)
(1.70)

Where the term eiγ represents the relative phase between the two terms in the decomposition.
In general, the Hamiltonian of a two-level system is a 2×2 matrix that is hermitian (self-
adjoint), Ĥ† = Ĥ:

Ĥ = 1
2ℏω0

[
−A B − iC

B + iC +A

]
(1.71)

Where the coefficients A, B and C are real numbers satisfying A2 +B2 +C2 = 1, such that
the eigen-values of the Hamiltonian are always E± = ±1

2ℏω0. When dealing with a two-level
system, it is convenient to use the formalism of the Pauli matrices:

σ̂x =
[
0 1
1 0

]
, σ̂y =

[
0 −i
i 0

]
, σ̂z =

[
1 0
0 −1

]
, Î2 =

[
0 1
1 0

]
(1.72)

Where Î2 is the 2×2 identity matrix. One can show that Ĥ can be written in terms of Pauli
matrices as:

Ĥ = −1
2ℏω0 (− sin(θ) cos(γ) σ̂x − sin(θ) sin(γ) σ̂y + cos(θ) σ̂z) . (1.73)

The coefficients of the Pauli operators resemble the coordinates of vector laying on the unit
sphere, where cos(θ) is the projection on the z-axis, sin(θ) is the transversal projection on the



1.3 TWO-LEVEL SYSTEM MANIPULATION 27

x-y plane, and γ is the component of the transverse projection on the x-axis. The eigen-states
of the two-level Hamiltonian Ĥ (Eq. 1.751.75) are given by:

|−⟩ = cos
(
θ

2

)
|0⟩ − sin

(
θ

2

)
eiγ |1⟩

|+⟩ = sin
(
θ

2

)
|0⟩ + cos

(
θ

2

)
eiγ |1⟩ .

(1.74)

Finally, there exists a basis set where the Hamiltonian reduces to

Ĥ = −1
2ℏω0 σ̂z. (1.75)

Problems are usually parametrized such that |0⟩ and |1⟩ are the eigenstates of this Hamil-
tonian. The eigen-energies associated to the states |0⟩ and |1⟩ are E0 = −1

2ℏω0 and
E1 = +1

2ℏω0, such that the qubit transition frequency is ω0.

1.3.2 Bloch sphere representation
It is useful to consider the Bloch sphere representation of a two-level system for a better
visualization of its dynamics (see Figure 1.41.4). Any state of a two level system |ψ⟩ can be
written:

|ψ⟩ = cos
(
θ

2

)
|0⟩ + sin

(
θ

2

)
eiγ |1⟩ → êr ≡

sin(θ) cos(γ)
sin(θ) sin(γ)

cos(θ)

 , (1.76)

where θ ∈ [0, π] and ϕ ∈ [0, 2π[ are angles having same interval of definition than radial and
azimuthal angles of the spherical coordinates system. Thus, each state vector of the two-level
system can be mapped onto a unique vector of the unite sphere. In this representation, the
eigen-states of the Hamiltonian Ĥ = −1

2ℏω0σ̂z are located the south pole |1⟩ and the north
pole |0⟩ of the unit sphere.

1.3.3 Dynamics of the two-level system
In general, the dynamics of a two-level system is governed by the Schrödinger equation 1.241.24.
Firstly, we consider the natural time evolution of the state |ψ⟩ of the two-level system that
is driven by its time-independent Hamiltonian Ĥ (Eq. 1.751.75). Finally, we consider the time
evolution of the state of the two level system when affected by an external coherent drive.

The time evolution of the two level system is described by the Schrödinger equation
iℏ ∂t |ψ⟩ = Ĥ |ψ⟩ . We start by considering the time evolution of the states |0⟩ and |1⟩. We
recall that these are the eigen-states of the Hamiltonian Ĥ = −1

2ℏω0σ̂z. In this case, the
equations describing the dynamics of the states |0⟩ and |1⟩, respectively, are:

iℏ ∂t |0⟩ = −1
2ℏω0 |0⟩ → |0(t)⟩ = e+ i

2 ω0t |0⟩

iℏ ∂t |1⟩ = +1
2ℏω0 |1⟩ → |1(t)⟩ = e− i

2 ω0t |1⟩
(1.77)

The states |0⟩ and |1⟩ remain invariant up to a global phase exp(± i
2ω0t), respectively. This

stems from the fact that the energy of the eigen-states of the Hamiltonian is conserved. Next,
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Fig. 1.4 Bloch sphere representation of a two-level system: .

we consider the time evolution of an arbitrary state |ψ⟩ = α0 |0⟩ + α1 |1⟩, which is a linear
combination of the eigen-states of the Hamiltonian |0⟩ and |1⟩. The equation governing the
dynamics of the state |ψ⟩ is:

iℏ ∂t |ψ⟩ = iℏ (α̇0 |0⟩ + α̇1 |1⟩) = 1
2ℏω0 (−α0 |0⟩ + α1 |1⟩) (1.78)

Since the states |0⟩ and |1⟩ are orthogonal to each other, we can separate the dynamics of
the two coefficients α0 and α1, resulting in:

α̇0 = + i

2ℏω0α0 → α0(t) = e+ i
2 ω0t α0(0)

α̇1 = − i

2ℏω0α1 → α1(t) = e− i
2 ω0t α1(0)

(1.79)

If the initial value of the state |ψ(0)⟩ = cos(θ/2) |0⟩ + sin(θ/2) eiγ |1⟩, meaning that
α0(0) = cos(θ/2) and α1(0) = sin(θ/2) eiγ , then, the state of the two-level system at a later
time |ψ(t)⟩ is, up to a global phase, given by:

|ψ(t)⟩ = cos(θ/2) |0⟩ + sin(θ/2) ei(γ−ω0t) |1⟩ (1.80)

Notice that the relative phase between the two states |0⟩ and |1⟩ grows proportionally to
the elapsed time as ω0t. The complex number eiω0t represents a clockwise-rotation around
the unit circle with angular velocity ω0. The Bloch sphere representation of the state vector
|ψ(t)⟩ at a time "t" is:

|ψd(t)⟩ =

+ sin (θ) cos (ω0 t− γ)
− sin (θ) sin (ω0 t− γ)

cos (θ)

 (1.81)
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The pseudo-spin representing the state of the two level system |ψ(t)⟩ follows a clock-wise pre-
cession around the z-axis of the Bloch sphere (see Figure 1.41.4) with frequency ω0. This rota-
tion of the pseudo-spin is naturally driven by its own Hamiltonian (Eq. 1.751.75) Ĥ = −1

2ℏω0σ̂z.

1.3.4 Sinusoidal drive of a two-level system: Rabi oscillations
Here we describe the major qubit state manipulation used in this work: Rabi oscillations.
We consider the time evolution of the state of a two level system when it is subject to a
coherent drive. We encounter this situation often in the experiments, for instance, when
applying a microwave pulse to drive a transition of a non-linear circuit, such as a transmon
(see 1.2.21.2.2).

1.3.4.1 Out of resonance case

The Hamiltonian of a two level system under a coherent drive is:

Ĥ = −1
2ℏω0σ̂z + ℏΩr cos (ωd) σ̂x (1.82)

The time-independent part of the Hamiltonian is Ĥ0 = −1
2ℏω0σ̂z. The coherent drive is

represented by the interaction Hamiltonian:

ĤI = ℏΩr cos (ωd) σ̂x (1.83)

Where the drive frequency is ωd and the drive amplitude is Ωr, the so-called Rabi frequency.
The time-evolution of the two-level system is governed by the Schrödinger equation 1.241.24,
however, the interaction Hamiltonian ĤI, as it is, is too complicated for us to find an ana-
lytical solution. We start by performing a transformation of the state vector |ψ⟩ as:

|ψ⟩ = Ûd(t) |ψd⟩

Ûd(t) ≡ exp
(

+ i

2ωdt σ̂z

) (1.84)

The term Ûd(t) is a unitary operator, such that Ûd(t)† = Ûd(t)−1. In the general case, the
operator Ûd(t) can be regarded as a generalized rotation of the Hilbert space representing
the allowed states of a quantum system. In this particular case, the transform given by
Ûd(t) translates into a rotation of the state vector |ψ⟩ around the z-axis of the Bloch sphere
(see Figure 1.41.4) with an angular velocity ωd, the frequency of the coherent drive. Next, we
substitute the explicit form of the wave vector (Eq. 1.841.84) in the Schrödinger equation 1.241.24,
and after multiplying by Û †

d(t), we finaly obtain:

iℏ ∂t |ψd⟩ = Û †
d(t) Ĥ Ûd(t) |ψd⟩ − iℏ Û †

d(t) ∂t Ûd(t) |ψd⟩ (1.85)

Notice that the operator Ûd(t) is time-dependent, thus, it produces an additional term in the
equation governing the time evolution of the state vector |ψd⟩. In order to simplify Eq. 1.851.85,
we consider the Baker-Hausdorff Lemma:

e+iλ Ĝ Â e−iλ Ĝ =
∞∑

n=0

(iλ)n

n!
[
Ĝ, Â

]
n
, (1.86)
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Where the term
[
Ĝ, Â

]
n

represent the nested commutator between Ĝ and Â of n-th order:[
Ĝ, Â

]
0

≡ Î[
Ĝ, Â

]
n

≡
[
...
[[[
Â, Ĝ

]
, Ĝ
]
, Ĝ
]
, ...Ĝ

]
(n times)

(1.87)

By substituting Eq. 1.821.82, 1.841.84 and 1.861.86 into Eq. 1.851.85, we obtain:

iℏ ∂t |ψd⟩ = ℏ
2 (−∆σ̂z +Ωr σ̂x) |ψd⟩ + ℏ

2 (−Ωr sin(2ωd) σ̂y +Ωr cos(2ωd) σ̂x) |ψd⟩ (1.88)

Where the detuning ∆ is defined as ∆ ≡ ω0 −ωd. Finally, we drop the quickly rotating terms
at frequency 2ωd conserving only the time-independent terms in virtue of the rotating-wave
approximation (RWA):

iℏ ∂t |ψd⟩ = ℏ
2 (−∆σ̂z +Ωr σ̂x) |ψd⟩ (1.89)

This equation corresponds to the Schrödinger equation 1.241.24 of a two level system with the
effective Hamiltonian:

Ĥ ′
0 = −1

2ℏ∆σ̂z + 1
2ℏΩr σ̂x (1.90)

In the frame rotating at ωd, we see that the Hamiltonian acquires a term proportional to
σ̂x which gives rise to oscillations between the qubit states, that are named Rabi oscillations.
In the next subsection, we explicitly derive this result in the resonant case.

1.3.4.2 Resonant case

In the resonant driving regime, the detuning ∆ between the drive frequency ωd and the
bare frequency ω0 of the two-level system is equal zero. Thus, the Hamiltonian driving the
dynamics of the qubit is only

Ĥ ′
0 = 1

2ℏΩr σ̂x (1.91)

By substituting the explicit form of the state vector |ψd⟩ = α0 |0d⟩ + α0 |1d⟩ into Eq. 1.891.89
and separating the equations for |0d⟩ and |1d⟩, we obtain:

α̇0 = −iΩr
2 α1 α̇1 = −iΩr

2 α0 (1.92)

The solutions of these equations are, up to a global phase:

α0(t) = α0(0) cos
(
Ωr t

2

)
− i α1(0) sin

(
Ωr t

2

)
α1(t) = α1(0) cos

(
Ωr t

2

)
− i α0(0) sin

(
Ωr t

2

) (1.93)

Where α0(0) and α1(0) represent the initial state |ψd(0)⟩ of the two-level system. For in-
stance, when the two-level system is initially in the south pole of the Bloch sphere |ψd(0)⟩ =
|0d⟩, the state of the two level system at a later time "t" is:

|ψd(t)⟩ = cos
(
Ωr t

2

)
|0d⟩ − i sin

(
Ωr t

2

)
|1d⟩ (1.94)
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The Bloch sphere representation of the state vector |ψd(t)⟩ is:

|ψd(t)⟩ =

 0
− sin (Ωr t)
cos (Ωr t)

 (1.95)

Notice that the pseudo-spin representing the state of the two-level system |ψd(t)⟩ is un-
dergoing a counter-clockwise rotation around the x-axis of the Bloch sphere with angular
frequency Ωr. This rotation of the pseudo-spin, in the frame rotating at the drive frequency,
is generated by the effective Hamiltonian Ĥ ′

0 = 1
2ℏΩr σ̂x (Eq. 1.911.91).

1.4 Qubit readout
In the previous section we have seen how to initialize any qubit state by driving Rabi oscil-
lations, in this section we describe how the state of a qubit can be readout by coupling it to
a far-detuned microwave resonator.

1.4.1 Jaynes-Cummings Hamiltonian
The interaction between a qubit and a single cavity mode is captured by the Jaynes-
Cummings Hamiltonian. The qubit Hamiltonian is Ĥ0 = (−ℏω0/2)σ̂z, the micowave res-
onator mode Hamitonian is Ĥr = ℏ(â†â + 1/2). The non-trivial dynamics of the system
stems from an additional term in the Hamiltonian, accounting for the coupling between the
qubit and the resonator mode. This interaction Hamiltonian writes Ĥint = ℏg(âσ̂+ + â†σ̂−),
where σ̂+ and σ̂− are the ladder operators for the qubit states, and where g denotes the
coupling strength. g has the dimension of a frequency, and represents the energy exchange
rate between the qubit and the resonator mode. If g ≫ ω0, ωr, we get

Ĥ = −ℏω0
2 σ̂z + ℏωr

2 (â†â+ 1/2) + ℏg(âσ̂+ + â†σ̂−). (1.96)

Note that, in order to make sure that the system dynamics is not predominantly influenced
by the interaction with the environment, such that the Jaynes-Cummings Hamiltonian ac-
curately describes the system’s time evolution, it is crucial to achieve the strong coupling
limit. In this regime, the coupling strength must exceed the decay rates of the qubit and the
losses in the cavity (g > κ, Γ1, Γ2).

1.4.2 Far-detuned limit, dispersive coupling
In the far-detuned regime, application of a unitary transformation followed by perturbation
theory[1111] yields an effective Hamiltonian:

Ĥeff = ℏ
(
ωr + g2

∆
σ̂z

)
â†â+ ℏ

2

(
ω0 + g2

∆

)
σ̂z.

The frequency of the resonator is shifted by χ = 2g2/∆ when changing the qubit state from
|0⟩ to |1⟩. It is usually referred to as as the dispersive shift. It enables the readout of the
qubit state by monitoring the resonator frequency, as shown in Fig. 1.51.5.
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Fig. 1.5 Reproduced from [77]. Dispersive shift of and ancillary resonator disper-
sively coupled to a qubit: Amplitude (dashed lines) and phase (solid lines) of the
readout resonator field as a function of the frequency of the drive signal when the
qubit is in state |0⟩ (red lines) or |1⟩ (blue lines). The readout resonator resonance
frequency shift depends on the qubit state (|0⟩ or |1⟩). The signal is mostly ab-
sorbed at frequency ω0 (resp ω0 −χ) when the qubit is in the ground (resp excited)
state.

1.5 Qubit coherence properties

In the last section, we have seen how to extract information regarding the qubit state through
the coupling of an additional resonator. In this section, we describe the decoherence of the
qubit induced by the interaction with its global environment.

We will consider two mechanisms, relaxation and dephasing. Relaxation is an energy
exchange between the qubit and the environment that occurs at a rate γ1. Dephasing
corresponds to the loss of information about the phase of the superposition of the qubit
basis states at a rate of γϕ. It is caused by fluctuations in the qubit frequency due to
fluctuations in the environment state.

1.5.1 Lindblad Master Equation

The qubit-environment interaction is described by the Linblad master equation [4949], which
introduces some decoherence terms, namely the jump operators L̂, into the Schrödinger
evolution equation of the density matrix ρ̂:

∂ρ̂

∂t
= −i

ℏ
[Ĥ0,ρ̂] +

∑
L̂

DL̂(ρ̂), (1.97)

with:
DL̂(ρ̂) = L̂ρ̂L̂† − 1

2 L̂
†L̂ρ̂− 1

2 ρ̂L̂
†L̂. (1.98)

and Ĥ0 = (−ℏω0/2)σ̂z the qubit Hamiltonian. the jump operators describing the relaxation
and dephasing phenomena can be written as:
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L̂r− =
√
γ1(nth + 1)σ̂− (1.99)

L̂r+ = √
γ1nthσ̂

+ (1.100)

L̂Φ =
√
γΦ

2 σ̂z. (1.101)

Due to the non-zero temperature of the environment, the relaxation operator is split into
two parts, describing the gain (L̂+) and loss (L̂−) of a qubit excitation. The evolution rates
Γ↓ =

√
γ1(nth + 1) and Γ↑ = √

γ1nth are determined by the environment mode occupancy
nth = 1/(eℏω0/kbT −1) (following Bose-Einstein statistics), for an environment at temperature
T .

The master equation 1.971.97 and the trace properties of the density matrix (Tr(ρ̂) = 1)
gives the following first-order derivatives:

dρ00
dt

= −γ1nthρ00 + (1 − ρ00)γ1(nth + 1) (1.102)

dρ01
dt

= −γ1nthρ01 + γ1ρ01 (nth + 1)
2 − γϕρ01 − iωqρ01 (1.103)

where ρij represents the density matrix components. We solve the first order differential
equation for each components. The final density matrix reads:

ρ00(t) = A1e
−(γ1+2γ1nth)t + nth + 1

2nth + 1 (1.104)

ρ01(t) = A2e
−(iωq+γΦ+ γ1

2 +γ1nth)t (1.105)

with the A1 and A2 defined by the initial conditions.

1.5.2 Relaxation time, and impact of a non-zero thermal populations

From the density matrix calculated in the last section, several characteristic times can be
defined. 1/γ1 is the pure relaxation time of the qubit at zero-temperature, while T1 = 1/(γ1+
2γ1nth) is the total relaxation time in the presence of a non-negligible average occupancy
of the bath modes. In the following, this work presents the manipulation of a very low
frequency qubit (1.8 MHz) in a cryogenic environment (10 mK). Under these conditions,
ℏω0/(kbT ) ≪ 1 and we can make the approximation: nth ∼ kbT/(ℏω0) ≫ 1.

In this particular case, the qubit has almost equal ground and excited state populations
at equilibrium. The relaxation time is reduced to T1 ∼ 1/(2γ1nth), much smaller than the
pure zero-temperature relaxation time 1/γ1 (see Figure 1.61.6), and is completely dominated
by the thermal effect.

Experimentally, the relaxation time is determined by initially placing the qubit in its
excited (or ground) state, allowing some time to elapse, and then employing the measurement
technique described in section 1.41.4.
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Fig. 1.6 Qubit relaxation in presence of a thermal bath a) Bloch sphere repre-
senting a qubit in its excited state, which relaxes to a statistical mixture of excited
and ground states. b) Evolution of the diagonal matrix element when nth = 115
and 1/γ1 = 100 µs. Due to the thermal bath, the observed relaxation time would
be reduced to T1 = 0.43 µs.

1.5.3 Dephasing time and Ramsey sequence
In a similar way, we can define TΦ = 1/γΦ, the pure dephasing time. The total dephasing
time, 1/T2 = 1/2T1,tot +1/TΦ includes the pure dephasing time but also an energy relaxation
component which ultimately limits its value to 2T1.

Fig. 1.7 Bloch sphere representation of a Ramsey interferometer.

The coherence time T2 can be determined experimentally using the Ramsey sequence
(see Figure 1.71.7), which is well known in the field of magnetic resonance [6363]. The qubit is
first initialized in its fundamental state, then placed in the equator of the Bloch sphere by
means of a resonant pulse (see section 1.3.41.3.4). After a waiting period, another pulse identical
to the first is applied. If the qubit does not change of frequency during the waiting time,
it will be in its excited state at the end of the sequence. On the other hand, if a frequency
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fluctuation occurs, it will have a non-zero probability of being in its ground state.
The coherence time T2 is the characteristic time after which the qubit is measured equally

in its fundamental and excited states at the end of the Ramsey sequence.

Conclusion In this chapter, we have established the fundamentals of superconducting cir-
cuits, emphasizing the role of the Josephson junction in introducing non-linearity crucial for
the realization of two-level quantum systems. We have also introduced various techniques
that are pivotal to circuit quantum electrodynamics (circuitQED), such as qubit readout,
manipulation, and the measurement of coherence properties. These techniques will be im-
plemented in the experimental contexts of Chapters 55 and 66. However, before delving into
these applications, the next chapter will focus on the specific type of qubit used in our
investigations—the fluxonium qubit.
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Chapter 2

Fluxonium fundamentals

In this chapter, we introduce the Fluxonium circuit—a distinct type of superconducting qubit
where the Josephson junction is shunted by an inductive element. We begin by addressing
a fundamental limitation of traditional charge qubits in section 2.12.1: their susceptibility to
offset-charge fluctuations due to random voltage noise on the capacitor electrodes. These
fluctuations often result in significant dephasing and operational instability. While trans-
mons are engineered to be exponentially protected against charge noise, this design inherently
involves a trade-off between dephasing rate and anharmonicity. In section 2.22.2, we delve into
the Fluxonium’s Hamiltonian, illustrating its intrinsic protection against charge offset that
does not compromise anharmonicity. Next, in section 2.32.3, we explore the excitation spec-
trum of the Fluxonium, providing a phenomenological description of its diverse transitions.
Finally, in section ??, we introduce the heavy-Fluxonium regime, which plays a pivotal role
in the context of this work. In particular, we show the exponential dependence of the qubit
frequency as a function of circuit parameters.

2.1 Limitations of charge qubits

The development of one of the earliest quantum superconducting circuits, the charge qubit,
often referred to as the Cooper-pair box (CPB) [1515], heralded potential breakthroughs in the
domains of quantum information [88, 5757] and high-sensitivity measurements, such as quantum
metrology. Essentially, the CPB operates by manipulating the quantum state of a pair of
superconducting electrons, known as a Cooper pair, across a small insulating barrier (see Fig.
2.12.1). However, it was quickly realized that such devices were strongly limited by dephasing,
the loss of quantum coherence that destroys interference and makes quantum systems to
behave as classical ones. In the case of the Cooper-pair box, the dephasing was mainly the
effect of slowly drifting microscopic charges, the offset charges, which were common to solid
states systems [? ]. To address this issue, substantial advancements were initially directed
towards the design of superconducting qubits. A critical milestone was achieved in 2007
when Koch et al. [4545] demonstrated that shunting the Cooper pair box with a large ca-
pacitance offers some protection to the qubit against the decoherence effects due to charge
noise. This insensitivity is achieved by diminishing the energy associated with offset charge
fluctuations, thereby broadly de-localizing the wave function over several states in charge
states (effectively reducing the phase zero-point fluctuations).

37



38 CHAPTER 2. FLUXONIUM FUNDAMENTALS

Fig. 2.1 The Cooper pair box: In a piece of isolated a superconducting metal, the box
(dashed line), the charge is quantized in units of 2e. The box is allowed to exchange Cooper-
pairs with another piece of superconducting material, a reservoir, through a Josephson
junction. An electrode shunted to the island by the gate capacitance Cg controls the
potential U , or equivalently the offset charge on the island, ng = CgU/2e, in units of Cooper
pairs. The junction favors the tunneling of pairs of electrons, however, the addition of an
extra Cooper-pair on the box rises the electrostatic energy by the amount 4E = (2e)2/2Cj ,
representing the Coulomb repulsion, where Cj is the capacitance between the islands.

The Hamiltonian of the transmon and the Cooper pair box is:

Ĥ = 4EC(N̂ − ng)2 − EJ cos(φ̂) (2.1)

Where EC is the capacitive energy, EJ is the Josephson energy and N̂ and φ̂ are con-
jugated operators. This Hamiltonian describes the scenario of a superconducting island, a
box, that is allowed to exchange Cooper-pairs through a Josephson junction with another
piece of superconducting material acting as a reservoir (see Figure 2.22.2). The N̂ operator
corresponds to the excess of Cooper pairs in the island, and ng is the offset charge in units
of Cooper pairs, it represents the potential at the island. The operator φ̂ is related to the
superconducting phase difference between the two sides of the junction, which is the con-
jugated variable of charge on the island. The operator N̂ has a discrete set of eigenvalues
resulting from the quantization of the charge in the island in units of 2e. Reciprocally, the
wave function ψ(φ) in phase space is periodic, up to a global phase, with a period of 2π.
The coefficient 4EC is the change of the island electrostatic energy associated to the excess
of 1 Cooper-pair:

EC = e2

2C (2.2)

Where C is the total capacitance of the island and e is the electron charge. The coefficient EJ

is the energy gain when a Cooper pair tunnels across the junction. Both the Cooper-pair box
and the transmon are described by the same hamiltonian 2.12.1, but at different regimes of the
parameters EC and EJ . This hamiltonian describes a Cooper-pair box when EJ/8EJ ≳ 1,
while it describes a transmon when EJ/8EJ ≫ 1. The coefficient EJ/8EJ determines the
ratio between the phase zero-point fluctuations φzpf and the charge zero-point fluctuations
Nzpf , and it is related to the impedance of the circuit Z0.

An offset charge ng in the island translates into a complex phase eingφ affecting the the
boundary conditions of the wavefunction ψ(φ). This effect is less detrimental for the trans-
mon as it is for the Cooper pair box, since this last one presents smaller phase zero-point
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Fig. 2.2 Transmon vs Cooper-pair box: Both quantum circuits are described by the same
hamiltonian, but at different parameter regimes: EJ/EC ≳ 1 for the Cooper-pair box, while
EJ/EC ≫ 1 for the transmon. In the limit of an opaque junction EJ ≪ EC , the circuit
hamiltonian 2.12.1 is dominated by the Coulomb repulsion between the Cooper pairs. In this
case, charge fluctuations are very small Nzpf ≪ 1, and the charge of the island ⟨N⟩ is
essentially fixed at the value N0 that minimizes the electrostatic energy, 4EC(N0 − ng)2.
When the junction transparency is high EJ ≳ EC , in the Cooper-pair box regime, the
junction favors the tunneling of Cooper pairs into the island, generating charge fluctuations
around around the mean value ⟨N⟩ ≈ ng, such that the wavefunction is a linear combination
of few charge states |N⟩. In the limit of when the junction transparency is very high, in the
transmon regime, EJ/EC ≫ 1, the wavefunction is broadly delocalized over many charge
states |N⟩. Because of Heisenberg’s indeterminacy principle, the wavefunction is then more
confined around its mean value in φ-space. These reduced phase zero-point fluctuations
φzpf ≪ 1 of the transmon wavefunctions results in less sensitivity to offset charges. Both
the Cooper-pair box and the transmon are operated at the sweet spot, ng = 0.5, such that
they are (first-order) insensitive to offset-charge noise.

fluctuations φzpf =
√

8EC/EJ , having states that are more confined in the phase φ-space.
However, the increased insensitivity to offset charges of the transmon comes at the price of
a lower anharmonicity. While ψ(φ) becomes more localized in phase φ space, the high-order
terms of the cosine potential in Equation 2.12.1 become less relevant, such that cos(φ) can be
well approximated as φ2/2 − φ4/24. In this limit case, the Hamiltonian of the transmon
2.12.1 resembles the one of a linear LC-resonator with only a small distortion of the parabolic
potential. Thus, the energies of the eigen-states are almost equally spaced (see Figure 2.22.2),
resulting in small anharmonicity. The small anharmonicity is a limiting factor when the
superconducting circuit is intended to be used as a qubit, a two-level system for quantum
information applications. The anharmonicity determines how fast one can drive the two-level
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system without pumping other higher energy levels. In the transmon regime, the sensitivity
to offset charges reduces exponentially with EJ/EC , while the anharmonicity only decreases
algebraically with a slow power law in EJ/EC . Therefore, there is always a compromise be-
tween noise sensitivity and anharmonicity for the Cooper-pair box and the transmon circuits
[4545].

2.2 A DC charge-offset free superconducting circuit: the fluxo-
nium

In 2009, the group of Michel Devoret proposed a new device for reducing the sensitivity to
offset-charges [5252]: the fluxonium circuit. This circuit is realised by shunting the Josephson
junction of a transmon with a large inductance (see Figure 2.32.3). The effect of this inductance
is to cancel out DC offset charges. This work was very challenging, since it required to
fabricate a super inductance, that is to say an on-chip component with a high impedance
that behaves like a linear pure inductance.

Fig. 2.3 Fluxonium circuit: The Hamiltonian in Eq. 2.32.3 describes the scenario of two
superconducting electrodes (nodes) shunted by a Josephson junction and an inductive "wire"
at the same time. The variable φ is the flux circulating in the loop between the wire and
the Josephson junction, and its conjugated variable N is the displacement charge on the
junction electrodes. The fluxonium regime corresponds to EJ > EC ≫ EL.

2.2.1 Hamiltonian
The fluxonium circuit is described by the following Hamiltonian

Ĥ = 4EC(N̂ − ng)2 + EL

2 (φ̂− φext)2 − EJ cos (φ̂) (2.3)

This Hamiltonian describes two superconducting electrodes connected by a Josephson junc-
tion and an inductance L. The variable φ represents the flux across the Josephson junction,
and its conjugated variable N is the displacement charge on the capacitor plate in units of
Cooper pairs. This Hamiltonian is analogous to that of a particle moving in a 1D potential.
The particle has a position(-like variable) φ and a momentum(-like variable) N . In this
picture, the inductance, with associated energy EL, results in a parabolic contribution to
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the potential energy (second term in Eq. 2.32.3). Also, note that EL represents the energy of
one flux quantum threading the fluxonium loop:

EL = ϕ2
0

4π2L
= Φ2

0
L

(2.4)

where L is the inductance, ϕ0 = h/2e is the quantum of flux, and Φ0 = ℏ/2e is the reduced
flux quantum. The Josephson junction, with associated energy EJ , results in a sinusoidal
potential energy (third term in Eq. 2.32.3). The first term in Eq. 2.32.3, that is quadratic in
the momentum-like variable, is analogous to the kinetic energy of the particle. Overall, the
fluxonium physics is equivalent to a particle evolving in a potential landscape that is the
sum of a parabola and a sinusoid (see Figure 2.42.4). In this scenario, there are typically a few
trapped states within the wells defined by the deeps of the sinusoidal potential.

Note that shunting the junction by an inductance has two main consequences: First,
compared to the transmon case, the flux representation of the wave-function ψ(φ) is no
longer periodic. As a consequence, the charge operator N has no longer a discrete set of
eigenvalues, but a continuous spectrum, and the wave functions ψ(φ) and ψ(N) (flux and
charge representations) are connected by a conventional Fourier transform. Second, an exter-
nal magnetic flux φext can be threaded into the superconducting loop made by the inductor
and the Josephson junction. This provides an additional external control parameter that
allows to shift the parabolic term of the potential energy with respect to the sinusoidal one.
The third consequence is an intrinsic immunity to DC offset-charges. It will be the subject
of the next section, but we can intuitively think of the inductance as a perfect wire for
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Fig. 2.4 Potential energy and few levels of the fluxonium: The potential energy of the
fluxonium is the sum of a parabola and a sinusoid. This particular mixture results in a
set of wells that are defined by the deeps of the sinusoidal potential. Each well contain
few trapped states that are practically localized within the well. In this schematics, the
trapped states are labeled with a letter referring for the well, "L" for right, "C" for center,
"R" for right, and a number labeling the different states within each well.
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slowly varying offset-charge fluctuations, keeping both electrodes of the junction at the same
potential.

2.2.2 Intrinsic insensitivity to DC charge offset
Let us consider the Hamiltonian of the fluxonium (Eq. 2.32.3) at zero offset-charge (ng = 0),
Ĥ(ng = 0) = Ĥ(0). Given that |Ψ(0)⟩ is an eigenfunction of Ĥ(0) with energy E(0), we have

Ĥ(0) |Ψ(0)⟩ = E(0) |Ψ(0)⟩ . (2.5)

We then consider the unitary transformation:

|Ψ(0)⟩ = Ûng |Ψ(ng)⟩ , Ûng ≡ e−ingφ̂ (2.6)

This transform represents a charge displacement by ng (being equivalent to a translation in
momentum space in the analogous mechanical problem). Adding a charge ng thus amounts
to applying the following transform to Ĥ(0):

Û †
ng
Ĥ(0) Ûng = Ĥ(ng) (2.7)

By applying the gauge transform 2.62.6 to the eigen-value Equation 2.52.5, we find the Ûng adds
an offset charge to the hamiltonian, Ĥ(0) → Ĥ(ng), while leaving the energy E of the state
invariant E(ng) = E(0). This matches the intuitive picture of the inductance acting as a
perfect wire that keeps the two electrodes of the junction at the same electrostatic potential.
Now, let us consider a time-dependent charge modulation, e.g., ng = ng(t) is a slowly varying
function of time. For instance, let us consider the Hamiltonian of the fluxonium Ĥ(ng) with a
time-dependent offset-charge ng(t) = A cosωdt. The time-independent Schrodinger equation
must be replaced by the time-dependent one:

iℏ∂t |Ψ⟩ = Ĥ(ng(t)) |Ψ⟩ . (2.8)

However, when trying to get rid of the offset-charge term in the R.H.S by applying the uni-
tary transform Û(−ng) as |Ψ⟩ = Û |ψ⟩, a new term proportional to the time derivative of ng

arises in the L.H.S. of the Schrodinger equation, specifically −ℏ ṅg(t)φ̂ |ψ⟩ = iℏωd ngφ̂ |ψ⟩.
This term has to be compared to the inductive energy of the qubit EL. Finally, the hamil-
tonian effectively transforms as

Ĥ(ng) → Ĥ(0) − i EL

(
LIg

ϕ0/2π

)
φ̂ (2.9)

The previous equation means that a time-dependent offset-charge ng(t) generates a current
Ig ≡ 2e ωd ng, that is then turned into a flux-offset φg ≡ 2π L Ig/ϕ0 by the inductance.
This result agrees with the classical intuition about an inductance. Therefore, the fluxonium
remains insensitive to offset-charge fluctuations, as long as the corresponding current in
the inductance remains small, e.g., Ig ≪ Ic = ϕ0/(2πL), or equivalently, as long as the
corresponding flux-offset ϕg = 2πLIg is much smaller than the flux quantum ϕ0.
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2.2.3 Fluxonium-regime
In this section, we will explain that what we name fluxonium regime, corresponds to the
following parameter regime of the Hamiltonian of Eq. 2.32.3:

EJ

EL
≫ 1 ; EJ

EC
> 1 (2.10)

This conditions can also be stated as EJ > EC ≫ EL (see Figure 2.52.5). The first inequality,
EJ/EL ≫ 1, means that the potential energy, EL

2 (φ−φext)2−EJ cos(φ), resembles a series of
potential wells at locations close to φ = (2m−1)π, with "m" an integer. The parabolic term,
proportional to EL, shifts the height of the wells with respect to each other. We typically
refer to the well that contains the absolute minimum of the potential energy as the central
well. Notice that the potential energy is a periodic function of the external flux φext with a
period of 2π.

The second inequality, EJ/EC > 1, means that each potential well contains at least
one trapped state. In general, these states have a non-zero mean value of the flux Φ0 ⟨φ⟩,
but a zero mean value of the charge 2e ⟨N⟩. They represent states of a frictionless current
circulating in the loop made by the Josephson junction and the superinductance (see Figure
2.32.3). If we take 2EJ as the approximate depth of a well, and we consider that inside the well
the levels are almost equally spaced by:

ℏωplasmon ≡
√

8EC(EJ + EC) ≈
√

8ECEJ (2.11)

This results from approximating the cosine potential with related energy EJ around the
center of the well as a parabola. The number of levels inside each well ℓwell then scales as:

ℓwell ∼ 2EJ√
8ECEJ

=
√

EJ

2EC
(2.12)

Thus, for a fixed EJ , decreasing EC (increasing the capacitance C) makes the spectrum of
levels inside each well more dense. This corresponds to increasing the mass of the particle in
the equivalent mechanical problem. Therefore, the capacitance C plays the role of the mass
of the particle, and EC is equivalent to the reciprocal of the particle mass.
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Fig. 2.5 Fluxonium-regime: lower energy states for different values of the ratios EC/EJ

and EL/EJ (with EJ = 1 GHz) at zero external flux φext. The ratio EC/EJ decreases
from the left column to the right column, corresponding to an increasing number of trapped
states inside the central well increases: 1 trapped state (left), 2 trapped states (center), 3
trapped stated (right). The ratio EL/EJ decreases from the top row to the bottom row, it
controls the energy difference between the first state in the central well and the first state
in the adjacent wells. There is an additional condition to consider only when operating
at zero flux: 2π2EL <

√
8ECEJ . It means that the second state inside the central well

should be higher in energy than the first state in the adjacent wells. In the ideal case when
4π2EL ≈

√
8ECEJ , these three levels hybridize resulting in a maximum anharmonicity

(non-linearity of the low-frequency spectrum).
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2.3 Spectrum of the fluxonium circuit

This section provides the fundamental ideas to understand the low-energy spectrum of the
fluxonium.

2.3.1 Plasmon/fluxon transitions

On the fluxonium low-frequency spectrum we can identify two kinds of transitions (see Figure
2.62.6): the plasmon-like transitions, that are transitions within the same flux-well (blue and red
arrows in Figure 2.62.6), and the fluxon-like transitions that are transitions between different
wells (black, green, orange and purple arrows in Figure 2.62.6). In the case of the plasmon-like
transitions, we approximate the potential around the center of the well as a parabola with
energy EJ

2 φ
2. Then, the energy difference between the first and second state within the well

is approximately ℏωplasmon =
√

8EC EJ . Note that the plasmon transitions, do not depend
on φext.

The parabolic term in the potential changes the relative heights between the depths of
adjacent wells, such that contrary to plasmon-like transitions, the frequencies of the fluxon-
like transitions depend linearly on φext. Let us consider the first fluxon-like transition, that
is the transition between the first state in the central well and the first state in the adjacent
well that is the closest in energy. Notice that the location of the lowest-energy state in
the adjacent well (the right well in Figure 2.62.6) is φR/2π ≈ 1. Thus, the energy difference

Fig. 2.6 Fluxonium transitions: lower energy states. Two categories of transitions can be
identified: the plasmon-like transitions that are transitions within the same potential well,
and the fluxon-like transitions that are transitions between different wells. In this case,
the plasmon transitions are for instance, represented by the blue and red arrows, while the
fluxon transitions correspond to the black, green, orange and purple arrows. The fluxon
transition are very sensitive to the relative energy height between the corresponding wells,
which is determined by the external flux φext threading the fluxonium loop.
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between the first state of the central well and the first state of the adjacent well is given by:

ℏωfluxon ≈ EL

2
[
(2π − φext)2 − φ2

ext

]
= 4π2EL

∣∣∣∣φext
2π − 1

2

∣∣∣∣ . (2.13)

The frequency of this transition reaches a maximum of 2π2EL when the external flux is
equal to zero, φext = 0. Conversely, it reaches a minimum at the so-called flux-frustration
point when φext = π. In general, at these two interesting values of the external flux, pairs
of wells are at the same relative energy level, allowing their localized states of equal energy
to hybridize, resulting in avoided crossings.

2.3.2 Flux frustration point
In this section we discuss the low-frequency transition spectrum of the fluxonium around
the flux frustration point, φext/2π = 0.5, which will be the main working point in the ex-
perimental part of this thesis. As seen in Section 2.3.12.3.1, at zero external flux and at the flux
frustration point, φext = π, there are pairs of trapped states with the same energy belonging
to different wells. Trapped states with mean flux ⟨φ⟩ ̸= 0 represent states of frictionless
current circulating in the fluxonium loop, the so-called fluxons. These states hybridize at
the avoided crossing resulting in superpositions of different states of frictionless current cir-
culating the fluxonium loop. In particular, at the flux frustration point, the potential is a
symmetric double well potential and the ground state |g⟩ and the first excited state |e⟩ are
symmetric and anti-symmetric superpositions of the localized states of two adjacent wells
(left and right).

Figure 2.72.7 shows the low-frequency transition spectrum of the fluxonium around the
flux-frustration point, φext/2π = 0.5. Slightly away from the flux-frustration point (dotted
purple line in subpanel 2.72.7a), the energy difference between |g⟩ and |e⟩, ℏωge, varies linearly
with the external flux φext according to Equation 2.132.13 and these states are localized in dif-
ferent wells (see subpanel 2.72.7c). At the flux-frustration point (dotted gray line in subpanels
2.72.7a and 2.72.7b), the energy splitting ℏωge reaches a minimum value, which is proportional
to the tunneling rate of fluxons from one well to the other ET /h. The states |g⟩ and |e⟩
become delocalized over the two wells (see panel 2.72.7d), left and right. Note that at the flux
frustration point, for these two lower states, the problem reduces to the textbook problem
of the ammonia molecule. There is a similar scenario happening for the second states (the
first plasmon-like states) of the two adjacent wells at the flux frustration point |f⟩ and |h⟩.
These states hybridize resulting in symmetric and anti-symmetric superpositions. However,
the energy splitting between these higher energy states ℏωfh is higher compared to ℏωge (see
panel 2.72.7b) since the effective energy barrier seen by |f⟩ and |h⟩ is smaller (see panel 2.72.7d).
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Fig. 2.7 Fluxonium spectrum around the flux frustration point: (a) transition frequen-
cies around the flux-frustration point, φext/2π = 0.5. The solid (dashed) lines represent
the transitions from the ground state |g⟩ (first excited state |e⟩). (b) Zoom into smaller fre-
quency span. The difference between the frequencies of the "|e⟩ → |f⟩" transition (dashed-
red) and the "|g⟩ → |f⟩" transition (solid-red) is the frequency of the "|g⟩ → |e⟩" transition
(solid-blue line in subpanel a). The frequency of the "|g⟩ → |e⟩" transition, approximately
20 MHz, is two orders of magnitude smaller than the frequencies of the next pair of tran-
sitions "|e⟩ → |f⟩" (dashed-red) and "|g⟩ → |f⟩" (solid-red) that are around 4.45 GHz. (c)
Slightly away from the flux frustration point, φext/2π = 0.42, the lowest-energy states,
|g⟩, |e⟩, |f⟩ and |h⟩, localized within a well. The energy splitting between |g⟩ and |e⟩ are
symmetric and anti-symmetric super-positions of the localized states of the two adjacent
wells (left and right) (d) At the flux frustration point, φext/2π = 0.5, the lowest-energy
states, |g⟩, |e⟩, |f⟩ and |h⟩, are symmetric and anti-symmetric super-positions of the local-
ized states of the two adjacent wells (left and right). The parameters of the numerically
simulated hamiltonian are EJ = 5.00 GHz, EC = 0.750 GHz, EL = 0.185 GHz.
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2.3.3 Heavy-fluxonium regime
As discussed in the previous section, at the flux-frustration point, φext/2π = 0.5, the energy
splitting between the ground |g⟩ and first excited state |e⟩ is given by the tunneling rate
ET /h between the left and right fluxon states. In the heavy-fluxonium regime, correspond-
ing to EJ

EC
≫ 1, the barrier height 2EJ becomes much larger than the typical energy of the

fluxon-states, such that the transition frequency decreases significantly compared to other
circuit transitions. Figure 2.82.8 illustrates the scaling of the few first transition frequencies of
the fluxonium, in particular as a function of the ratio between the Josephson energy EJ and
the capacitive energy EC .

To understand more quantitatively the scaling of the fundamental transition frequency,
we can approximate the potential experienced by the fluxon states as quasi-parabolic, ex-
pressed as EJ

2 (φ̂ ± π)2. In this approximation, the left- and right-well state wavefunctions
ψ±(φ) are Gaussian wave-packets located at the center of their corresponding wells (±π)
with zero-point fluctuations φzpf = 4

√
8EC/EJ .

ψ±(φ) = (πφzpf)−1/4 exp

−1
2

(
φ∓ π

φzpf

)2
 . (2.14)

The overlap between them, and thus, the energy splitting between |g⟩ and |e⟩, scales as:

ET ∼ e
−
√

π4
8

EJ
EC . (2.15)

From these basic considerations, we can already envision that the transition frequency be-
tween |g⟩ and |e⟩ at the flux-frustration point decreases exponentially as a function of the
ratio EJ

EC
. Taking into account the parabolic correction due to the inductive energy, one can

derive a better approximation of the fluxon tunneling rate:

ET ≈
√

8EC EJ

( 2EJ

π2EC

)1/4
exp

(
−
√

8EJ

EC
+ 14 ζ(3)EL√

8EC EJ

)
, (2.16)

where ζ(3) ∼ 1.202 is Riemann’s zeta function evaluated at the integer 3. This expression,
derived using the Wentzel–Kramers–Brillouin (WKB) method [55], accurately matches the
numerically diagonalized results of the Fluxonium Hamiltonian, as shown by the black dotted
line in Figure 2.82.8e.

The exponential dependence of ET = ℏωge as a function of the ratio EJ/EC is in stark
contrast with the scaling of the plasmon-like transitions ωgh ∼ ωef ∼

√
8ECEJ . Conse-

quently, the qubit anharmonicity, can reach extremely large values in the heavy-fluxonium
regime:

α ≈
√

8ECEJ

ET
≫ 1. (2.17)

We will next discuss the implications of this distinctive energy spectrum in the context
of hybrid quantum devices.
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Fig. 2.8 Heavy-fluxonium regime. Panels a, b and c show the wave functions of the
first energy levels for different values of the ratio EJ/EC . Here, the Josephson energy
EJ = 5.18 GHz and the inductive energy EL = 0.207 GHz are fixed while the capacitive
energy EC , thus the ratio EJ/EC , increases from panel a to panel c. The states |g⟩ (blue)
and |e⟩ (red) are symmetric and anti symmetric superpositions of the localized states at the
bottom of the adjacent wells (left and right). At increasing ratio EJ/EC , the wave functions
become more confined towards the centers of the wells, and thus, the energy splitting
between |g⟩ and |e⟩ decreases dramatically. This is not the case for the transitions from the
g-e manifold to the next pair of excited states |f⟩ (green) and |h⟩ (orange), since they are
plasmon like-transitions and their frequencies decrease more slowly as

√
8EC EJ . (d) First

transition frequencies of the fluxonium spectrum as a function of the ratio EJ/EC . The
black dotted line represents the asymptotic expression in the semi-classical limit obtained
by the WKB-method.
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2.4 The heavy-fluxonium as a novel quantum device
As detailed in section 2.3.32.3.3, the low-energy spectrum of the heavy fluxonium at the flux-
frustration point is characterized by a strong anharmonicity which depends on the ratio
between the junction characteristic energy EJ and the capacitive energy EC . This section
explores the potential applications of the heavy-fluxonium’s rich non-linear spectrum in the
field of hybrid quantum devices, which is central to this experimental work. Additionally,
these properties have been identified as an interesting resource to facilitate rapid qubit gate
operations that extend beyond the rotating wave approximation.

2.4.1 A superconducting qubit at MHz frequency
The qubit frequency, as seen in Section 2.3.32.3.3, has an exponential dependence on the ratio
EJ/EC , that translates into significant tunability from the GHz range down to the few MHz
range. This unique capability offers the possibility to bring the frequency of the heavy-
fluxonium qubit close to resonance with other interesting quantum systems. For instance,
the silicon nitride micro-mechanical resonators that have been developed in the context of
optomechanics [4343, 7474] exhibit extremely large coherence times of the order of seconds with
characteristic frequencies on the order of 1-10 MHz. Lowering the fluxonium-qubit frequency
down to the few MHz range can be achieved in practice by increasing the capacitance C
shunting the junction by approximately one order of magnitude compared to typical fluxo-
nium experiments. An example is provided in Figure 2.82.8 (b), which shows the situation for a
parameter regime close to the experimental setup used in this thesis, with EJ/EC ≈ 10. In
this setup, the frequency of the |g⟩ → |e⟩ transition is reduced by three orders of magnitude
with only a tenfold change in the EJ/EC ratio.

Furthermore, the higher plasmon-like transitions such as |g⟩ → |h⟩ and |e⟩ → |f⟩, can
serve as ancillary to readout the population in the qubit manifold, with easily accessible GHz
techniques. This approach was first demonstrated by Zhang et al in 2020 [8181]. By employing
an optimized measurement chain, including a quantum-limited parametric amplifier, we have
significantly improved the readout sensitivity and achieved a single-shot readout of the qubit
state, detailed in the experimental section of this thesis (see chapter 55).

In addition, the highly non-linear spectrum of the fluxonium is advantageous as it enables
the initialization of the qubit in its ground state. Despite the typical temperatures of a
dilution cryostat, where a MHz transition would normally couple to a "hot" environment
with a large thermal population, the higher-excited states can essentially be used as a cold
reservoir enabling to extract the entropy from the qubit state. This active reset protocol is
also described in details in the experimental section (see chapter 66).

2.4.2 Charge-matrix element of the heavy-fluxonium
In order to assess the potential of the heavy-fluxonium in hybrid quantum systems, we need
to consider a possible coupling scenario. The coupling mechanism that we have chosen in the
mecaflux project is a dipolar interaction, where the mechanical motion induces a modulation
of the charge offset ng(t) in equation 2.32.3. For a sinusoidal modulation ng(t) = nd cos(ωget),
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resonant with the qubit transition, and with a small amplitude nd ≪ 1, the quadratic
capacitive energy term 4EC(N̂−ng(t))2 can be linearized and projected in the qubit manifold
yielding an interaction term:

Ĥint = ℏΩr

2 σ̂x (2.18)

Here, Ωr = 8EC |⟨N⟩ge|nd represents the frequency of the Rabi oscillations induced by the
resonant charge drive. Hence, the sensitivity of the qubit to the external charge modulation
is determined by the magnitude of the charge matrix element |⟨N⟩ge|.

From the fluxonium hamiltonian 2.32.3, we can deduce the following relation between the
charge ⟨N⟩ge and the flux ⟨φ⟩ge matrix elements:

| ⟨g|
[
φ̂, Ĥ

]
|e⟩ | = ℏωge | ⟨φ⟩ge | = 8EC | ⟨N⟩ge | (2.19)

By substituting the second equality in the expression of Ωr, one obtains:

Ωr = nd ωge|⟨φ⟩ge| (2.20)

This expression, valid for any capacitively shunted qubit under a resonant charge drive,
shows that the Rabi frequency for a given drive amplitude and frequency is solely governed
by the magnitude of the flux matrix element |⟨φ⟩ge|. As such, maximizing this parameter is
the only way to increase the sensitivity to such a signal in a resonant coupling scenario.

Owing to the peculiar nature of the heavy fluxonium eigenstates at the flux-frustration
point–the flux-wavefunctions resemble a Schrödinger-cat-state with the phase being localized
around φ = ±π– the overlap between the wavefunctions is nearly optimal, at a value of
|⟨φ⟩ge| = π, leading to the final expression for the Rabi frequency:

Ωr ∼ πωgend (2.21)

The analysis indicates that even if practical issues such as readout and state preparation
were resolved for a MHz frequency charge qubit, its charge sensitivity would still be inferior
to that of a heavy fluxonium operating at the same frequency.

In chapter 77, we build on the large dipole moment of the fluxonium operated at the
flux-frustration point to turn the heavy-fluxonium into a nearly resonant charge-sensor, and
compare its sensitivity–expressed in “elementary charges/

√
Hz”–to that of more conventional

charge sensors [6868].

2.4.3 Applications in quantum computing
In a different context, when the fluxonium is intended to be used as a qubit for quantum
information processing, the extremely large anharmonicity α is a desired feature, but it
comes at the price of an extremely small qubit frequency ωge = Ege/ℏ. At first sight, the
small qubit frequency seems to limit the duration of quantum gates performed on the qubit,
since they are typically implemented with Rabi oscillations (in the weak driving-amplitude
limit). In fact, this apparent problem can be circumvented by exploiting the very large
dipole moment of the heavy-fluxonium qubit (Equation 2.212.21). Such large dipole moment
means that even a weak charge modulation of a fraction of a Cooper pair, 1/π ≈ 0.31, is
translated into a driving amplitude comparable to the qubit frequency, Ωr ≈ ωge (Equation
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2.212.21). This peculiarity, in combination with the large anharmonicity α, allows reaching
very strong driving amplitudes beyond the rotating-wave approximation, that can be used
for implementing fast-gates with a duration of the order of the Larmor period of the qubit
Tg ≈ 2π/ωge [1717, 1818, 8181].



Chapter 3

Fluxonium design

In this chapter, we discuss the circuit design and optimization. We first give a brief descrip-
tion of the main circuit components which include the fluxonium circuit, control lines, and
readout resonator. In order to precisely adjust the characteristics of these elements, we rely
on classical electromagnetic simulations, the principles of which are presented in section 3.23.2.
These simulations are crucial for determining the optimal geometry of the circuit elements.
Specifically, in section 3.2.13.2.1, we describe how the resonant frequency of these components and
their coupling to the control lines are adjusted using eigenmode electromagnetic simulation.
Further, in section 3.2.23.2.2, we explore a simple method to determine the coupling between
the readout resonator and the fluxonium mode through the observation of anti-crossing in
the frequencies of the normal modes. This process involves conducting repeated simulations
while varying the frequency of one of the circuit elements. While this method provides a
simple way to adjust the coupling in our circuit, it is time-consuming, and doesn’t provide a
full analytical understanding of the quantum circuit Hamiltonian. Finally, in section 3.33.3, we
take one step forward in the complexity of the design process by discussing an approach to
estimate the full circuit Hamiltonian from a single circuit simulation. This approach builds
on the energy-participation method, introduced earlier in the context of weakly anharmonic
qubits [5454].

3.1 Circuit design
The Figure 3.13.1 shows the design of our fluxonium circuit. In the following, we provide a
brief description of its different elements:

• Fluxonium loop: The main component of the fluxonium circuit. It is made of a small
Josephson junction (red) shunted to a superinductance (dark blue). In practice, the
superinductance is realised by an array of about 360 large-area junctions in serial con-
nection. All the circuit junctions are aluminum-oxide-aluminum Dolan style junctions
and their fabrication process is described in Section 4.1.24.1.2.

• Fluxonium co-planar capacitor (green): The large circular plate connected to one side
of the fluxonium loop represents a large capacitance to ground (white) shunting the

53
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small junction. It is also used to couple the fluxonium to the ancillary resonator and
to drive the fluxonium by applying a voltage modulation via the charge-drive electrode.

• Ancillary resonator (Purple): It is a λ/4 coplanar-wave (CPW) resonator. It is shorted
to ground at one end, while the other end is left open. This open end features a U-
shaped termination that acts as a shunting capacitance between the resonator and the
fluxonium. The resonator is used to readout the state of the qubit state, via the disper-
sive shift of the resonator resonance frequency that is caused by the plasmon-like mode.

• Charge drive (light blue): It is a superconducting electrode that we use to set the
potential on the fluxonium capacitor pad. In particular, by applying a voltage modu-
lation with frequency ωd, we can resonantly drive the various fluxonium transitions.

• Flux line (orange): This component consists of a coplanar waveguide that terminates
with two wires connected to ground. The flux-line is slightly off-centered with respect
to the fluxonium loop, such that a current flowing symmetrically in the two wires
generates a magnetic flux through the fluxonium loop. The external flux can thus be
controlled precisely by driving this line with a DC- or AC-current.

The large-size elements are implemented in the co-planar superconducting-circuit archi-
tecture. They are made of niobium over a silicon substrate (gray) and their fabrication
process is described in Section 4.14.1. The gap and track size of all coplanar-waveguide ele-
ments are such that the waveguide impedance is 50 Ohm. The circuit design for this project
utilized HFSSdrawpy, a Python library initially developed by Raphael Lescanne [4848] and
maintained by the company Alice and Bob. This tool enables the programmable definition
of circuit geometries, facilitating the creation of precise layouts for experimental setups. The
library supports the generation of "gds" files for lithography machines, essential for the fab-
rication process. Additionally, it allows for direct integration with the simulation software
HFSS (High Frequency Structure Simulator), aiding in the verification and adjustment of
the design parameters before the physical manufacturing begins.
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Fig. 3.1 Drawing of the grounded fluxonium circuit: (a) The circuit is made of a co-
planar capacitor (green), an ancillary resonator(purple), a charge drive (light blue) and
a flux line (orange) and the fluxonium loop. (b) Zoom into the fluxonium loop area:
The loop is composed by a small junction (red) and a junction-chain implementation of a
superinductance (dark blue).
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3.2 Simulations of the circuit

Before starting the sample fabrication, we need to adjust the various circuit parameters such
that it matches our design requirements. We recall that the fluxonium circuit has three
characteristic elements (see Equation 2.32.3): a superinductance with energy EL = Φ2

0/L, a
capacitance with energy EC = e2/2C and a Josephson junction with energy EJ (non-linear
element). These 3 parameters determine the spectrum of the fluxonium, and in particular,
the frequency of the qubit transition ωge. In practice, we typically use the scqubits python-
package for diagonalizing the fluxonium hamiltonian with parameters EC , EL and EJ , and
obtain the low-energy spectrum of the fluxonium circuit.

Ultimately, these parameters can be traced back to the circuit geometry. For instance,
the fluxonium capacitance C is related to the geometry of the fluxonium co-planar capacitor
(green in Figure 3.13.1), and it can be accurately predicted from an electromagnetic simulation
of the circuit design. On the other hand, the tunneling energy EJ and the inductance of
the chain L not only depend on the area of the individual junctions composing them, but
also crucially on the thickness of the oxyde layer. As such, we typically do not attempt to
extract these parameters from a simulation, but rather empirically adjust these values via a
physical sweep of the junction area and a resistance characterization at room temperature
(see 4.34.3 for details).

The second element of our circuit is the ancillary resonator that is used to readout the
fluxonium state. It is a co-planar waveguide λ/4-resonator that is coupled to the fluxonium
via a co-planar capacitor represented by a shunting capacitance CS . The frequency of the
ancillary resonator ωR can be traced back to the length of the CPW resonator. Furthermore,
its coupling to the fluxonium circuit is governed by the mutual capacitance CS between the
resonator and the fluxonium electrode. These two parameters are also precisely adjusted via
an electromagnetic-field simulations using the circuit geometry as the input.

3.2.1 Normal-modes simulation

In practice, we perform the EM-field simulations with the software ansys HFSS (see Figure
3.23.2). This software allows us to retrieve the eigenmodes of the electromagnetic problem
(i.e. the electric and magnetic fields), and the real and imaginary parts of their eigen-
frequency (i.e. their frequency and losses). Of course, this classical simulation software
cannot simulate non-linear elements such as Josephson junctions. However, one can include
a “linearized” version of these elements, by replacing them with a lumped-element inductance
LJ = Φ2

0/EJ . In practice, this is equivalent to replacing the non-linear term in the Josephson
energy −EJ cos(ϕ) by a quadratic potential EJ

2 ϕ
2. This is particularly relevant in situations

where the non-linearity of the junction is only a weak perturbation to the linear circuit
spectrum. For instance, by replacing the small junction and super-inductance with a linear
inductance LJ , the EM-field simulation reproduces the physics of one of the plasmon-like
fluxonium transition coupled to the readout resonator (see Fig. 3.23.2).

In order to account for the various loss channels, and make sure they are sufficiently
suppressed, a 50Ω lumped-impedance is added at the end port of the flux line, the charge
drive and the resonator drive. This allows us to determine the quality factor of the ancillary
resonator, which affects the efficiency of the readout process, and the quality factor of the
plasmon-like mode of the fluxonium, which is related to the rate of Purcell losses of the
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fluxonium. We can immediately deduce the fluxonium capacitance C from the plasmon-like
mode ωq frequency as C = 1/LJ ω

2
q, where LJ is the value of the lumped-element inductance

replacing the small junction of the fluxonium.
The results of this simulation are summarized in the table of Figure 3.23.2e. We typically

choose a readout resonator frequency around 5.5 GHz, at the lower end of our detection
bandwidth. The quality factor of the readout resonator Q = ωr/κr is adjusted to a value
close to 5 · 103 by adjusting the gap between the resonator and the drive waveguide. This
value is a good compromise between the readout speed (the time to load the resonator with a
resonant readout pulse is given by 1/κr) and state-selectivity. The plasmon-like frequency of
4.03 GHz is slightly overestimated compared to the measured value of 3.7 GHz (see Chapter
55). This correction likely results from the junction anharmonicity being ignored in this clas-
sical simulation. The total plasmon-like loss rate through the 3 loss-channels of 4.43 kHz sets
an upper limit of 36 µs to the lifetime of this mode. The experimentally measured lifetime of
8 µs (see chapter 55) indicates that material absorption is dominating over Purcell-like losses.

We finalize this section with a few closing remarks to consider for designing a fluxonium
circuit. In general, the fluxonium parameters EC , EL and EJ must satisfy the conditions
given by Equation 2.52.5. The condition EJ ≪ EL essentially means that the superinductance
L = φ2

0/EL should be as large as practically possible. Moreover, the condition EJ > EC

sets a minimum value for the fluxonium capacitance C = e2/2EC . Additionally, the values
of EC , EJ and EL are limited by practical constrains. For instance, the typical capacitance
C of a co-planar capacitor over a silicon substrate is in the range between 10 fF and 100 fF.
Furthermore, the tunneling energy EJ of an aluminum-oxide-aluminum junction is typically
in the range between 2 GHz·h and 100 GHz·h. Finally, the large-area junctions that build up
the superinductance L usually have individual inductances LJ n of the order of 3 nH.

3.2.2 Coupling between the normal modes

In the previous section we have shown how the parameters EC and ωR could be extracted
from a single simulation of the circuit’s normal modes. Since the energies EJ and EC

are adjusted separately, the main unknown parameter to be determined is the coupling
between the fluxonium circuit and readout resonator. It is important to adjust this parameter
properly since a too small coupling could result in an insufficient dispersive shift to perform
a projective readout of the circuit state. On the other hand, a too large coupling might
compromise the qubit coherence properties via Purcell effect and resonator shot noise.

For a very non-linear circuit, like the heavy-fluxonium, the dispersive shift depends in
a convoluted manner of the circuit parameters, for instance, the coupling g between the
resonator and the fluxonium and the frequency of the ancillary resonator ωR with respect to
the various fluxonium levels [8282]. In practice, we haven’t tried to model precisely the expected
dispersive shift as a function of all possible parameters. Since the readout protocol involves
a transmon-like transition to a plasmonic excited state, we rather adjusted the geometry of
the U-shaped capacitor ending the resonator to achieve a value of g/2π ≈ 150 MHz, which
is typical of dispersive readouts in circuit QED [8181].

In this section we describe a simple approach to estimate the coupling g via simulations
of the normal-modes of the circuit.
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Fig. 3.2 Electrical field simulation, fluxonium and readout resonator. Finite element
electromagnetic simulation using ANSYS HFFS. The electric field amplitude, obtained by
setting 1J in the resonant mode, is plotted respectively for a) and b) the fluxonium plasmon-
like mode, c) and d) the ancillary mode. The frequencies and energy decay rates for the
first five eigen-modes of the circuit are reported in table e).

3.2.2.1 Avoided-crossing method

The Figure 3.33.3a shows the lumped-element schematics of the circuit design that was pre-
sented in the Figure 3.23.2. Furthermore, the “linearized” version of the circuit, used in classical
electromagnetic simulations, is represented in Figure 3.33.3b. One of the modes is related to the
ancillary resonator while the other mode is a "linearized" fluxonium mode, corresponding to
the so-called plasmon mode. The bare frequency of the resonator mode is ωR = 1/

√
LRCR

(purple in Figure 3.33.3a) and the bare frequency of the plasmon mode is ω0 = 1/
√
LJC, where

C is the fluxonium capacitance (green in Figure 3.33.3a) and LJ = Φ2
0/EJ is the equivalent

linear-inductance of the small junction (red in Figure 3.33.3a). The two bare modes are ca-
pacitively coupled to each other via the shunting capacitance CS. In general, a system of
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two coupled modes can be modeled up to a good approximation by the following quantum
hamiltonian:

Ĥ = ℏω0

(
â†

QâQ + 1
2

)
+ ℏωR

(
â†

RâR + 1
2

)
− 1

2ℏg
(
âQ + â†

Q

) (
âR + â†

R

)
(3.1)

Where â and its hermitian self-adjoint are the so-called ladder operators. The term on the
RHS of Equation 3.2.2.13.2.2.1 is responsible of mixing together the two bare modes. In general,
the eigen-modes of the hamiltonian 3.2.2.13.2.2.1 correspond to linear combinations of the bare
modes. They are referred to as the normal modes of the joint-system. In the dispersive
coupling regime, when the difference between the frequencies of the bare modes is much
larger than the coupling, ωR − ω0 ≫ g, then, the hybridization is minimal and the normal
modes resemble the bare modes, and the frequencies of the normal modes ω+ and ω− are
very similar to the frequencies of the bare modes: ω+ ≈ ωR and ω− ≈ ω0. This is the regime
in which the simulations presented in Figure 3.23.2 have been achieved, such that we could
label the normal modes as resonator-like and plasmon-like modes, respectively. However,
when the coupling g is comparable to ωR − ω0, the hybridization of the normal modes is
significant. The maximum hybridization is reached at the resonance condition, when the fre-
quencies of the bare modes are equal, ωR = ω0. The eigen-modes of the hamiltonian 3.2.2.13.2.2.1
are then symmetric and anti-symmetric combination of the bare modes. At this condition,
the difference between the frequencies of the normal modes is ω+ − ω− = g.

3.2.2.2 Practical implementation of the method

In order to extract g, we perform a “parametric sweep”, where the value Lt of the lumped-
element inductance that replaces the small junction is varied around the resonance condition

Fig. 3.3 Schematics of the circuit design (a) Minimalist equivalent circuit containing the
main elements of the circuit design. (b) Simpler version of the circuit corresponding to a
pair of coupled LC resonators: One of them is related to the ancillary resonator (purple)
and the other one is a "linearized" fluxonium mode, where LJ = Φ2

0/EJ .
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ωq = ωR, with ωq = 1/
√
LtC. In order to maximize the efficiency of the simulations, we

use the same pre-optimized mesh as the initial mesh for all the variations of the junction
inductance LJ . This pre-optimized mesh is obtained by performing several adaptive passes
(7 to 8) of a given variation of LJ corresponding to a high-frequency plasmon mode, for
instance 6.5 GHz. In this way, we ensure that the pre-optimized mesh captures quite well
the spatial variations of the plasmon mode at lower frequencies (corresponding to a higher
values of the junction inductance LJ). Next, for each variation of the junction inductance
LJ , we perform at least four extra adaptive passes on the initially pre-optimized mesh. From
the size of the avoided-crossing at the resonance condition between readout mode and bare
plasmon resonance, we deduce the coupling g.

Figure 3.43.4 shows the result of this parametric sweep, where the two normal mode fre-
quencies ω± are represented in blue (red respectively) as a funtion of Lt. The bare mode
frequencies, ωR and ωq = 1/

√
LtC are represented as a dashed (resp. full) black line. By us-

ing the avoided-crossing method, we found that the fluxonium capacitance is approximately
C ≈ 52.5 fF, the bare resonator frequency is about ωR/2π ≈ 5.58 GHz and the coupling be-
tween the resonator and the plasmon mode is about g/π ≈ 140 MHz. The avoided-crossing
approach is thus a simple method to estimate the relevant circuit parameters, ωR, C and g,
at the expense of performing multiple normal-modes simulations of the circuit design.
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Fig. 3.4 Avoided crossing method (a) Frequencies of the simulated normal modes as func-
tions of the equivalent linear inductance LJ of the junction. (b) Zoom into the region of
the anti-crossing. The dashed orange line represents de minimum energy splitting between
the two frequencies which is the coupling g/2π. The blue and read open bullets corre-
spond to the frequencies of simulated the normal modes while the black lines represent the
asymptotic behaviour of the plasmon-mode (solid) and the resonator mode (dotted) in the
zero-coupling limit
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3.3 Advanced design method: quantization of the capacitively
shunted fluxonium

In Section 3.2.23.2.2, we have discussed a simplistic but useful approach for estimating the rele-
vant parameters of the circuit via normal-modes simulations. The avoided-crossing method,
although very useful as a first try, fails to provide a clear connection between the coupling "g"
of the bare circuit modes and the dispersive shift χ. This section provides an alternative ap-
proach to estimate the relevant circuit parameters coming from a different conceptual point
of view. This alternative approach draws inspiration from the energy-participation (EP)
method of Minev et al [5454]. While the avoided-crossing method (Section 3.2.2.23.2.2.2) relies only
on the frequencies of the simulated normal modes, the EP-method introduces an additional
quantity for each normal mode: the energy participation ratio p, which is the percentage of
the total energy of the mode that it is stored in a given element of the circuit, in this case,
a lumped element inductance. The EP-method uses the set of the frequencies ω and the
energy-participation ratios p of the normal modes obtained from a single simulation to re-
trieve the relevant circuit parameters. This is in contrast with the avoided-crossing method
which relies on performing multiple simulations of the circuit design to infer the relevant
circuit parameters. Moreover, the EP-method provides a more explicit connection between
the circuit design and the effective quantum hamiltonian that describes the behavior of the
real circuit at cryogenic temperature.

3.3.1 Equivalent lumped-element circuit
When designing a superconducting circuit, we typically find the scenario described in the Fig-
ure 3.53.5a: there is a non-linear element, a Josephson junction EJ , whose ports are shunted to
a microwave environment. In the case of the capacitively shunted fluxonium, the microwave
environment includes, the fluxonium co-planar capacitor, the readout port, the charge drive
electrode, the flux line and the CPW resonator with the shunting coplanar capacitor (see
Figure 3.13.1). We then face the problem of finding an appropriate lumped-element equivalent
circuit representing the circuit design (junction plus microwave environment). For instance,
a minimalist representation of the circuit design was shown in the Figure 3.33.3. Ideally, the
equivalent circuit must be as simple as possible, but at the same time, it must be involved
enough to predict with sufficient accuracy the behaviour of the real circuit under the exper-
imental conditions.

The most popular approach that is used for weakly non-linear circuits is shown in Figures
3.53.5b and 3.53.5c. It consists of decomposing the junction into a linear inductance LJ = Φ2

0/EJ

and a non-linear inductance Lnl, which incorporates to the circuit all the non-linear effects
that are induced by the junction. In the simulations of the circuit design, the junction is thus
replaced by the equivalent lumped-element inductance LJ . The linearized joint-system of the
microwave environment and the junction (dotted black box in Figure 3.53.5c) is represented
by a pair of capacitively coupled linear modes (LC-resonators), one corresponding to the
ancillary-resonator mode and the other one corresponding to a "linearized" mode of the
fluxonium (the plasmon mode). The results of one simulation then yield the normal modes
of the linearized joint system.
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Fig. 3.5 Finding the equivalent circuit corresponding to the circuit design: (a) General
representation of the circuit design as a Josephson junction shunted to a microwave en-
vironment. Then, we consider two approaches for finding an equivalent lumped-element
circuit that predicts the behaviour of the circuit design. Avoided-crossing method: (b) In
the first approach, the junction is decomposed as a linear inductance LJ and a non-linear
inductance Lnl. (c) A simulation yields the normal modes of the linearized circuit (dotted
black box) in which the junction has been replaced by its equivalent linear inductance LJ .
The non-linear effects induced by Lnl are later taken into account in a perturbative fash-
ion. Energy-participation method: (d) In the second approach, the junction is shunted by
a fictitious test inductance Lt which acts as probe for the microwave environment. (e) A
simulation yields the normal modes of the linearized circuit (dotted black box) in which the
junction has been replaced by the test inductance Lt. From here, there are two possible
paths to proceed: In the first one, if the test inductance Lt is set equal to the fluxonium
superinductance L, the parameters of the simulated normal modes can be used to syn-
thesize an effective quantum hamiltonian of the circuit design (more details in the main
text). In the second path, the value of test inductance Lt is irrelevant, and the parameters
of the simulated normal modes are just used to retrieve the parameters of the microwave
environment shunting the junction (more details in the main text).
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By finding the coupling g between the bare modes of the system, for instance, via the
avoided-crossing method (Section 3.2.2.23.2.2.2), we can then account for the effects induced by
the non-linear inductance Lnl in a perturbative fashion. This method works quite well for
weakly non-linear circuits, such as the transmon, since the contribution of the non-linear
inductance Lnl is small. However, in the case of very non-linear circuits, like the heavy
fluxonium operated at the flux frustration point ϕext/Φ0 = π, the contribution of the non-
linear inductance is very significant. In general, the contribution of the non-linear inductance
Lnl to the potential energy of the circuit is:

Unl(ϕ) ≡ −EJ cos
(
ϕ− ϕext
Φ0

)
− (ϕ− ϕext)2

2LJ
≈ − EJ

24Φ4
0

(ϕ− ϕext)4 (3.2)

Where ϕ = Φ0φ is the equivalent flux across the junction and ϕext is the external flux thread-
ing the fluxonium loop1. By looking at Equation 3.23.2, we identify that when the fluctuations
of the flux across the junction are large, ϕzpf/Φ0 ≫ 1, the energy related to the non-linear
inductance diverges to −∞. Nonetheless, the coupling "g" still modulates the non-linear ef-
fects on the resonator that are indirectly induced by the junction, for instance the dispersive
shift χ. However, the relation between the coupling g and the dispersive shift χ is more
involved.

In the energy-participation approach, the whole fluxonium loop is replaced by a lumped-
element test inductance Lt, which acts as a probe for the microwave environment. A simula-
tion then yields frequencies ωbb

n and the energy-participation ratios pn of the normal modes
of the linearized equivalent circuit including the microwave environment and the test induc-
tance (dotted black-box in Figure 3.53.5d). If the value of the test inductance Lt is set equal to
the fluxonium superinductance L, then, the parameters of the simulated normal modes can
be directly related to an effective hamiltonian of the circuit design. However, in the general
case, the parameters of the normal modes that are obtained from the simulations do not have
a direct physical meaning, and they are just used to retrieve the characteristic parameters
of the microwave environment: the fluxonium capacitance C, the bare resonator frequency
ωR, and the shunting capacitance CS. Up to a good approximation, these parameters are
independent from the value of the test inductance Lt. The contribution of the fluxonium
loop, in particular, the non-linearity induced by the Josephson junction as a whole, is later
taken into account.

3.3.2 Calculating the energy-participation ratios from simulations

In the energy-participation approach, we rely not only on the frequencies ωbb
n of the nor-

mal modes, but also in their energy participation ratios (EPR) pn. This section provides a
description of the EPRs of the normal modes and the method to calculated them from the
electromagnetic-fields simulations.

1Notice that in the case of a transmon, there is no loop, thus, no external flux ϕext. However, in the case
of a fluxonium circuit, or in general, a circuit where the Josephson junction belongs to a loop, the external
flux ϕext threading the loop must be taken into account.
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The energy-participation ratio pn of a normal mode "n" is defined as the energy percentage
of the mode that is stored in a particular element of the circuit, in this case, the test
inductance Lt

2. On the one hand, the magnetic energy Emag
n of a normal mode "n" has two

contributions: The energy stored in the magnetic field EH−field
n and the energy stored in the

(lumped-element) test inductance Eind
n ,

Emag
n = Eind

n + EH−field
n (3.3)

On the other hand, the electric energy Eelec
n of the normal mode "n" is all stored in the

electric field EE−field
n

3. Because of detailed balance, the electric and magnetic energies of a
normal mode must be equal:

Emag
n = Eelec

n (3.4)

Thus, the energy participation ratio pn of the normal mode "n" on the test inductance Lt
can be computed as:

pn ≡ EE−field
n − EH−field

n

EE−field
n

(3.5)

The energy stored the electric and magnetic fields is computed by integrating the respective
field over the entire simulation volume, taking into account the different dielectric regions,
and then, taking the time average [5454]. In the practice, the energies of the fields, EE−field

n and
EH−field

n , are obtained with the aid of the pyEPR python-environment, which was developed
by Zlatko Minev and Zaki Leghtas. Then, the EPRs of the simulated normal modes are
calculated with Equation 3.53.5.

With the set of the energy-participation ratios {p1, p2} and the frequencies {ωbb
1 , ωbb

2 } of
the simulated normal modes, we can follow two possible paths for finding the equivalent cir-
cuit that predicts the behaviour of the real circuit under the experimental conditions. In the
first one, we set the value of the test inductance Lt equal to the fluxonium superinductance
L (see Figure 3.53.5c), and then, the EPRs pn and frequencies ωbb

n of the simulated normal
modes can be directly used to synthesize an effective quantum hamiltonian of the circuit.
This path is explained in more detail in the Section 3.3.33.3.3. In the second path, the value of
the test inductance is irrelevant Lt, since it is just a tool to probe the microwave environment
shunting the junction (see Figure 3.53.5e). The EPRs pn and frequencies ωbb

n of the simulated
normal modes are just used to retrieve the parameters of the microwave environment, which
are in principle independent of the value of the test inductance Lt. This path is explained
in more detail in the Section 3.3.43.3.4.

3.3.3 Energy-participation quantization
The energy-participation quantization (EPQ) method of Minev et al [5454] uses the frequencies
ωbb

n and the energy-participation ratios pn of the simulated normal modes to synthesize an
effective quantum hamiltonian of the circuit design Ĥepq. This process can be thought of
as the quantization of the Foster equivalent circuit corresponding to the circuit design. The

2Here, we only consider the case of a single lumped element in the circuit, being Lt.
3When the circuit contains both lumped-element inductances and capacitances, the energy stored in the

lumped element capacitances Ecap
n must be taken into account in the electric energy Eelec

n
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effective hamiltonian Ĥepq is composed by a linear part Ĥ0 and a non-linear part Ĥnl. The
linear part of the hamiltonian is:

Ĥ0 ≡
∑

n

ℏωbb
n

(
â†

nân + 1
2

)
(3.6)

This hamiltonian represents a set of decoupled linear modes, which are nothing but the
simulated normal modes of the linearized circuit (see dotted black-box in Figures 3.53.5c and
3.53.5d). The parameters ωbb

n are the frequencies of the simulated normal modes. In the con-
ventional EPQ method, which works very well for weakly non-linear circuits, the Josephson
junction is decomposed into a linear inductance LJ and a non-linear inductance Lnl. The
linear inductance LJ is included in the simulations of the normal modes, thus, it is already
accounted for in the linear part Ĥ0 of the hamiltonian. Next, the non-linear hamiltonian
Ĥnl corresponds to the energy of the non-linear inductance Lnl (Equation 3.23.2):

Ĥnl ≡ −EJ

cos
(
ϕ̂

Φ0
− φext

)
− 1

2

(
ϕ̂

Φ0
− φext

)2
 ≈ −EJ

24

(
ϕ̂

Φ0
− φext

)4

(3.7)

Where the operator ϕ̂ = Φ0 φ̂ is related to the effective flux across the junction, with φ̂
corresponding to the superconducting phase difference between the two ports of the junction.
However, the conventional EPQ method does not work very well for very non-linear circuits,
such as the heavy fluxonium. In this case, we replace the whole fluxonium loop by the test
inductance Lt, which is set equal to the fluxonium superinductance L. Thus, the non-linear
hamiltonian Ĥnl actually is:

Ĥnl ≡ −EJ cos (φ̂− φext) (3.8)

The phase operator φ̂ in terms of the ladder operators of the normal modes ân and â†
n is

written as:

φ̂ ≡
∑

n

φzpf
n

(
â†

n + ân

)
√

2
(3.9)

Where φzpf
n represents the phase zero-point fluctuations in the junction that are induced by

the corresponding normal mode n. The φzpf
n are related to the impedances Zbb

n of the normal
modes as seen by the junction as:

φzpf
n ≡ 1

Φ0

√
ℏZbb

n =
√
Zbb

n

2 rQ
(3.10)

Where rQ = ℏ
2e2 is the reduced resistance quantum. The amplitude of the phase zero-point

fluctuations φzpf
n can be traced to the energy-participation ratio pn of the corresponding

normal mode as:

φzpf
n =

√
pn
ωbb

n /2π
EL/h

(3.11)

Where EL is the energy corresponding to the test inductance EL = Φ2
0/Lt. The hamiltonian

Ĥepq = Ĥ0 + Ĥnl is the effective quantum hamiltonian of the circuit design. Diagonalizing
this hamiltonian yields the spectrum the fluxonium capacitively shunted to the ancillary
resonator. In the practice, the hamiltonian Ĥepq can be diagonalized using the scqubits
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python-environment [4040]. Alternatively, one can follow, for instance, the method described
by Smith et al in [7171], where the matrix elements of the cosine potential are explicitly cal-
culated in the energy basis (the basis of the bare hamiltonian Ĥ0), and then, the resulting
hamiltonian Ĥepq is diagonalized numerically.

3.3.4 Probing the microwave environment shunting the junction
In this Section, we describe an alternative application of the energy-participation method to
model the microwave environment shunting the junction as an equivalent lumped-element
circuit with a small set of characteristic parameters (see Figure 3.53.5a, 3.53.5d and 3.53.5e). In
the practice, we replace the junction EJ by a test inductance Lt, and then, we simulate
the normal modes of the linearized circuit including the microwave environment and the
test inductance. The output data from one simulation are the frequencies ωbb

n and energy-
participation ratios p of the normal modes. These parameters are functions of the test in-
ductance Lt, however, they can be traced to the characteristic parameters of the microwave
environment, which are in principle independent from the test inductance Lt. The char-
acteristic parameters of the microwave environment are: the fluxonium capacitance C, the
bare resonator frequency ωR and the shunting capacitance CS.

For each normal mode, the energy-participation ratio pn is related to the impedance Zbb
n

as seen at the ports of the test inductance as it follows:

Zbb
n = Lt ω

bb
n pn (3.12)

With the frequencies {ωbb
1 , ωbb

2 } and the impedances {Zbb
1 , Zbb

2 } of the simulated normal
modes, we can then synthesize the Foster (lumped-element) equivalent circuit corresponding
to the circuit design, as it is shown in the Figure 3.63.6b. Alternatively, we can make the reason-
able consideration that the circuit design can be represented by the bare (lumped-element)
circuit that is shown in Figure 3.63.6a.

The objective then is finding the equations connecting the parameters of the two rep-
resentations of the circuit design. On the one side, there are the parameters of the Foster
equivalent circuit {ωbb

1 , ωbb
2 , Zbb

1 , Zbb
2 }, which are obtained from the simulation of the nor-

mal modes but depend on the test inductance Lt. On the other hand, we have the bare
parameters of the microwave environment {C, ωR, CS}, which are independent of the test
inductance Lt. For this proof of concept, we re-use the same set of simulated data that was
used before for the avoided-crossing method described in Section 3.2.2.23.2.2.2. In the first place,
we extract the energy-participation ratios pn and the frequencies ωbb

n of the simulated normal
modes as functions of the test inductance Lt, and then, we try to model all the obtain results
with an unique set of parameters characterizing the microwave environment {C, ωR, CS}.
Next, we test the efficiency of the energy-participation method to retrieve the characteristic
parameters of the microwave environment shunting the Josephson junction from only one
simulation of the normal modes, for an arbitrary value of the test inductance Lt.
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Fig. 3.6 Two lumped-element representations of the circuit design. (a) Bare (equivalent)
circuit: a non-linear resonator (the fluxonium) capacitively shunted to a linear resonator
(purple). The non-linear resonator consists of an inductance (blue) and a capacitance
(green) in parallel connection to the Josephson junction (red). (b) Foster equivalent circuit:
the Josephson junction is shunted to a chain of two independent linear resonators, that
represent the normal modes of the circuit design. Notice that a simulation yields the
parameters of this circuit representation, Zbb

n and ωbb
n .

3.3.4.1 Forward transform: going from the bare circuit to the Foster equivalent cir-
cuit

In this section we provide the equations relating the parameters of the Foster equivalent
circuit, that are obtained from the simulations {ωbb

1 , ωbb
2 , Zbb

1 , Zbb
2 }, as functions of the

parameters of the bare circuit, which include the parameters of the microwave environment.
Here we just provide the results of the analytic derivations, check out the appendix A3 for
more detailed information on the derivation of all the formulas. We then use these equations
to model the same data set that was used before for the avoided-crossing method described
in Section 3.2.2.23.2.2.2.

The frequencies of the normal modes ωbb
n as functions of the parameters of the bare

circuit are:

1
(ωbb

1 )2 = 1
2

(
1
ω2

0
+ 1
ω2

R

)
+ 1

2

√√√√( 1
ω2

0
− 1
ω2

R

)2

+ 4
G4

1
(ωbb

2 )2 = 1
2

(
1
ω2

0
+ 1
ω2

R

)
− 1

2

√√√√( 1
ω2

0
− 1
ω2

R

)2

+ 4
G4

(3.13)
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Where:

ω0 ≡ 1√
C Lt

ωR ≡ 1√
CR LR

1
G2 ≡ CS√

C CR

1
ω0 ωR

(3.14)

The parameters ωR and ω0 are the bare frequencies of the resonator mode and the linearized
fluxonium mode, respectively. The parameter G depends on the shunting capacitance CS
and it is related to the coupling g between the two bare modes.

The impedances of the normal modes Zbb
n as functions of the bare circuit parameters are

given by:

Zbb
1 = 1

2Lt ω
bb
1 [1 + cos (θ)]

Zbb
2 = 1

2Lt ω
bb
2 [1 − cos (θ)]

(3.15)

Where cos (θ) is given by:

cos(θ) ≡

(
1

ω2
0

− 1
ω2

R

)
√(

1
ω2

0
− 1

ω2
R

)2
+ 4

G4

, tan(θ) =
2

G2
1

ω2
0

− 1
ω2

R

(3.16)

Thus, the energy-participation ratios pn of the normal modes can be simply related to the
angle θ as:

p1 = 1
2 [1 + cos (θ)]

p2 = 1
2 [1 − cos (θ)]

(3.17)

Notice that G (Equation 3.143.14) depends on the frequency of the linearized fluxonium mode
ω0, and this quantity depends of the test inductance Lt. Thus, G is not a good parameter to
characterize the microwave environment. In the ideal scenario, we would like determine the
values of both the shunting capacitance CS and bare resonator capacitance CR. However, the
equations only depend of the ratio CS/

√
CRC and not on the individual values of CS and CR.

Thus, we define this ratio as the last parameter characterizing the microwave environment:

γS ≡ CS√
CRC

(3.18)

We will refer to γS as the relative shunting capacitance. Therefore, the good set of charac-
teristic parameters of the microwave environment are {C, ωR, γS}. The Figure 3.73.7 shows
the results of applying the formulas 3.133.13-3.183.18 to fit the frequencies ωbb

n and the energy-
participation ratios pn of the simulated normal modes as functions of the test inductance Lt.
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We fitted the frequencies ωbb
n of the normal modes around the anti-crossing, Lac ≈ 15.50 nH

(panel 3.73.7b), obtaining the three parameters related to the microwave environment, {C, ωR,
γS}. These parameters were then used to calculate the expected energy-participation ratios
pn of the normal modes as functions of test inductance Lt (panel 3.73.7c), and the expected
phase fluctuations φbb

n at a junction shunting the test inductance (panel 3.73.7d). We found
that the Equations 3.133.13-3.183.18 with a single set of fixed parameters representing the microwave
environment are in a good agreement with the simulations for a wide range of values of the
test inductance Lt.
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Fig. 3.7 Parameters of the simulated normal modes as functions of the test inductance:
(a) Frequencies ωbb

n of the simulated normal modes. (b) Zoom-in at the anti-crossing
between the modes. The orange dashed line represents the amplitude of the coupling at
the anti-crossing gac that was deduced from the fit. (c) Energy-participation ratios pn

of the normal modes. (d) Expected amplitude of the phase zero-point fluctuations φzpf
n

at a junction shunting the test inductance that are induced by each normal mode. The
purple dashed line represents the value of the test inductance Lt corresponding to the
linear inductance of the junction LJ . The green dashed line represents the value of the
test inductance Lt corresponding to the superinductance of the fluxonium, of the order of
1 µH. The red and blue open bullets correspond to the data obtained from the simulations,
while the solid lines are the calculated values using the equations described in the main text
and the fitted parameters of the microwave environment: {C, ωR, γS}. This parameters
were founded by fitting the frequencies of the normal modes ωbb

n around the anti-crossing
Lac ≈ 15.50 nH, yielding C = 52.2 fF, ωR/2π = 5.57 GHz and γS = 0.024.
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3.3.4.2 Reversed transform: retrieving the parameters of the microwave environ-
ment shunting the junction from one simulation

The good agreement between theory and simulations that was found in section 3.3.4.13.3.4.1 sug-
gests that it is possible to retrieve the parameters of the microwave environment shunting the
junction from the results of a single simulation of the normal modes. This chapter provides
such equations, moreover, we test them with the simulated data that was used in sections
3.3.4.13.3.4.1 and 3.2.2.23.2.2.2.

By inverting the Equations 3.133.13-3.183.18, we obtain a set of equations to express the charac-
teristic parameters parameters of the microwave environment {C, ωR, γS} as functions of the
frequencies ωbb

n and the energy participation ratios pn obtained from one simulation. Here
we just provide the results of the calculations,a more detailed explanation on the derivation
of the equations can be found in the appendix A3. Firstly, we express the bare frequencies
of the modes ω0 and ωR in terms of the frequencies ωbb

n and the energy participation ratios
pn of the simulated normal modes:
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(3.19)

Where ωbb
1 < ωbb

2 , and the parameter G is related to the coupling g between the bare modes.
From these three parameters, we extract the bare capacitance of the fluxonium C and the
relative shunting capacitance γS:
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C CR
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1 ωbb

2
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1 )2−(ωbb
2 )2

)2
+ p1 p2

(3.20)

The coupling between the bare modes g is related to the relative shunting capacitance γS as:

g = γS
√
ω0 ωR (3.21)

While γS only depends on the fixed parameters of the microwave environment, the coupling
rate g depends on the bare frequency of the plasmon mode ω0, which is a function of test
inductance Lt, thus, it varies at each iteration of the simulations. The coupling at the anti-
crossing g0, when the bare frequencies of the modes are equal ω0 = ωR, is related to γS
as:

g0 ≡ γSωR (3.22)

The Figure 3.83.8 shows the results of applying the reversed Equations 3.193.19-3.223.22 to retrieve the
characteristic parameters of the microwave environment shunting the junction from the four
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normal-modes parameters, {ωbb
1 , ωbb

2 } and {p1, p2}, obtained from a single simulation. We
calculate a set of microwave environment parameters for each iteration of the simulations
(that were already display in Figure 3.73.7), which correspond to a variation of the test induc-
tance Lt.

The calculated parameters of the microwave environment are: the capacitance of the flux-
onium C (subpanel 3.83.8a), the bare frequency of the ancillary resonator ωR (subpanel 3.83.8b)
and the relative shunting capacitance γS (subpanel 3.83.8c). We also plot the coupling rate at
the anti-crossing g0 (Equation 3.223.22) that is obtained for each value of the test inductance
Lt (subpanel 3.83.8d). The dotted lines represent the ideal values that were obtained by fitting
the frequencies ωbb

n of the simulated normal modes around the anti-crossing (see Figure 3.73.7b).
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Fig. 3.8 Parameters of the microwave environment retrieved from the energy-
participation method: (a) fluxonium capacitance C, (b) bare resonator frequency ωR, (c)
relative shunting capacitance γS, and (d) coupling rate g0 at the anti-crossing. Each point
corresponds to one simulation with one variation of the test inductance Lt. The dotted
lines represent the ideal values obtained by fitting the frequencies ωbb

n of the simulated
normal modes around the anti-crossing, Lac ≈ 15.50 nH.
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We found that the parameters of the microwave environment depend slightly on the value
of the test inductance Lt, nevertheless, their variations are rather small compared to the best
values (dotted lines). The agreement between theory and simulations is in fact good enough
such that we can estimate the parameters of the microwave environment from the frequencies
ωR

n and energy participation ratios pn of the normal modes obtained from one simulation.
The quality of the estimation decreases when the frequencies of the bare modes are away
from from the avoided crossing, however, this constrained can be relaxed a bit by increasing
the precision of the simulations. Thus, we can fairly assume that the microwave environment
shunting the junction can be well represented by the bare equivalent circuit shown in Figure
3.63.6a. This equivalent circuit only contains three free parameters of characterizing the mi-
crowave environment, the fluxonium capacitance C, the bare resonator frequency ωR and the
relative shunting capacitance γS, which are up to a good approximation independent from
the value of the test inductance Lt that takes the place of the junction during the simulations.



Chapter 4

Fabrication and experimental setup

This chapter covers experimental techniques that are central to the realization and operation
of superconducting circuits. In particular, I describe in details various characterization tech-
niques used to extract the geometric and electrical properties of the circuit’s key element:
the Josephson junctions. The chapter is divided in 5 sections: in the first one, I describe
the various steps to fabricate the fluxonium circuit in the cleanroom. In the second one, I
present various imaging techniques used to extract the geometry of the Josephson junctions.
In section three, I describe an experimental setup used to measure the resistivity of the
junctions at room-temperature. Guided by these characterization tools, I then explain the
process through which the precise design choices for the various junctions in the circuit are
made. Finally, I present the cryogenic setup used to operate the circuit at low-temperature.
In the last section of the chapter I show a first low-temperature characterization of the junc-
tion chain allowing us to extract the plasma frequency of the fabricated junctions: a key
parameter for the Josephson junction chains employed in the fluxonium circuit.

4.1 Circuit fabrication
This section describes fabrication process of the fluxonium circuit. The circuit is two-
dimensional: it consists of a set of metal and oxide layers that are deposited on an insulating
silicon substrate. It is fabricated in two steps. First, the circuit components that are larger
than a few micrometers in size (including the coplanar wave-guide readout resonator, the
flux line, the charge-drive coplanar resonator, and the fluxonium capacitor pad are etched
with a plasma in a Niobium (Nb) layer following a UV-laser lithography. Next, the smaller
circuit components, i.e. , mainly the Josephson junctions, are created using the conventional
Dolan approach, which involves electron-beam lithography, metal deposition and oxidization,
concluding with a lift-off process.

4.1.1 Large structures fabrication: UV-laser lithography
The process flow of the UV laser lithography (UV-litho) is sketched in Figure 4.14.1,

1. Substrate: the initial substrate for the fabrication of the circuit is a silicon (Si) wafer
with (100)-orientation and 280 µm thickness and resistivity greater than 20 kΩ·cm.

75
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Fig. 4.1 Laser lithography process flow: The initial substrate for the circuit is a 280-µm-
thick silicon wafer with (100) orientation and a resistivity greater than 20 kΩ·cm (panel
1), then, a thin layer of niobium (Nb) with 150 nm-thick layer is deposited on one side of
the wafer (panel 2). Next, a thin layer of the photo-sensitive resist S1805 is deposited over
the Nb surface via spin coating (panel 3) then baked at 115 °C for 1 min (panel 4). The
resist is exposed with an UV laser with a dose of 100 mJ/cm2, (panel 5), next, the exposed
resist areas are etched away by rinsing the wafer into MF-319 developer for 1 min (panel
6), any developer remainders are cleaned within a deionized water (di-H2O) bath for 1 min
before the wafer is dried with N2 gas. The exposed areas of the Nb surface are etched
(via reactive ion etching, RIE) with a SF6 plasma (panel 7), with 20 extra seconds for Si
etching. Finally, the resist remainders are removed following the standard wet cleaning
procedure (panel 8): Firstly, the wafer is rinsed a hot bath of acetone at 50 °C for 15
min with low-power ultrasound, then, the wafer is cleaned within a bath of IPA at room
temperature, finally, the wafer is dried with N2 gas.
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2. Sputtering of Nb: An uniform niobium (Nb) layer with 150 nm thickness is deposited
on top of the Si wafer via sputtering.

3. Spin coating resist: First, the Nb surface is cleaned by the standard wet cleaning,
which consists in rinsing the wafer into a hot bath of acetone at 50 °C for approx 10
min, then, with the wafer still inside the bath, pouring hot acetone uniformly with a
pipette over the whole Nb surface. Immediately after the hot acetone bath, the wafer
is rinsed in IPA for about 20 s with gentle agitation, and finally the wafer is dried with
N2 gas. Next, a thin layer of UV-sensitive S1805 positive resist is deposited over the
Nb-coated surface of the wafer by spin coating with an angular speed of 4000 RPM for
1 min.

4. Baking resist: The resist is then baked at 115 °C for 1 min.

5. Exposing resist (UV-laser lithography): The wafer alignment is performed by manually
matching the center of the wafer (physical origin) with the origin of the circuit draw-
ing. The sample holder of the lithography machine has a X-Y positioning system with
sub µm-precision that is used for raster scanning the sample surface with a focused
UV-laser beam. During a typical scan, the laser is briefly unblanked at the points
determined by the circuit drawing (mask), exposing locally the resist with a dose of
100 mJ/cm2 at each point. The laser beam is focused by a microscope-objective that
is mounted right above the sample holder. The objective mount has a Z positioning
system with sub µm-precision for adjusting the position of beam focus on the vertical
(Z) axis. The wafer surface is not completely flat and might be tilted, such that a cor-
rection of the beam focus is performed prior to resist exposure. This focus correction
starts by manually optimizing the beam focus at some (at least three) key locations
properly distributed over the wafer surface. The coordinates Zm(Xm, Ym) of these
points, are then interpolated to infer the wafer height at each position, and correct for
the beam focus position.

6. Developing resist: The exposed resist is etched away into a bath of MIF-319 developer
for 1 min.

7. Dry-etching of Nb: Next, the Nb-layer parts that were left uncovered are removed via
reactive ion-etching (RIE) with SF6 plasma for about 50 s, with extra 20 s for etching
a bit of Si to ensure that the circuit will be deposited on a clean surface.

8. Cleaning remaining resist: The resist remainders are removed following the standard
wet cleaning procedure: Firstly, the wafer is rinsed in a hot bath of acetone at 50 °C
for 15 min with low-power ultrasound, then, the wafer is rinsed in IPA for about 15 s
and immediately after it is dried with N2 gas.
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Fig. 4.2 Fluxonium circuit mask: This Figure shows the actual mask that was used to
fabricate the fluxonium circuit. The left panel shows all the larger circuit elements: the
coplanar readout resonator plus its driving coplanar wave-guide (top), the fluxline (bottom
left), the charge drive (bottom right), the circuit capacitor pad (circle in the bottom) and
last but not least the ground plane. The right panel is a zoom into the smaller circuit
structures: a superinductance made of few chains of large junctions (blue) and a small
"black-sheep" junction (red), they are both shunted in parallel to the circuit capacitance to
ground.

4.1.2 Josephson junction fabrication: Electron beam lithography
The previous section described the fabrication of the large circuit elements via laser lithog-
raphy, although they comprise most of the circuit, we are still missing two smaller but key
elements: the super inductance, which is made of few chains of large junctions, and a small
"black sheep" junction that acts as the main non-linear element of the fluxonium circuit.

We remind the reader that a S-I-S Josephson junction is a multi-layer structure that is
made of two superconducting layers separated by an intermediate insulating layer, e.g., an
oxide layer. The overlap between the three layers covers an area A, meaning that the Cooper
pairs have to tunnel through the insulating barrier to hop between the two superconduct-
ing layers. For this project, we had chosen to fabricate Dolan-bridge style junctions [2929],
although this is not the only known style of Josephson junctions.
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Fig. 4.3 Dolan-brige: a) Isometric view of a Dolan bridge in a stack of two resist layers.
The bridge is actually a beam in the top resist layer (PMMA, green) that is suspended
above the substrate surface (purple) thanks to the bottom resist layer (MMA, red) acting
as a support. b) Front view of the Dolan bridge, the bidge has a length bl and a height
τ corresponding to the thickness of the top resist layer, and it is kept at a height h from
the substrate that corresponds to the thickness of the bottom resist layer. Notice that the
undercut in the bottom resist layer extends a bit beyond the lenght of the bridge bl. c)
Side view of the Dolan bridge, the width of the bridge is bw, typycally 150 nm d) Example
of the fabrication of an overlap structure, an S-I-S junction, by using the Dolan bridge
and depositing two thin superconducting layers at different angles with respect to normal
incidence. The first thin superconducting layer (light blue) is deposited at an angle of −θ,
then, an oxide layer (gray) is created on top the first layer via passive oxidation, finally
the second thin superconducting layer (yellow) is deposited at an angle +θ, with respect
to normal incidence. The final overlap structure has a length J and a width roughly the
same as bl.
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In a nutshell, the Dolan’s (e-beam) lithography technique allows producing multi-layer
structures with sub-micron scale features using a single mask and having only one lift-off
processing [2929], this goal is achieved by having a suspended mask 1, i.e., free standing above
the substrate surface, that can be used to deposit different layers each one at a different
angle with respect to normal incidence. 2 Particularly, the free standing mask is suspended
at a height h, such that a layer deposited at an angle θ has also a horizontal offset S (in
plane) with respect to a film deposited at normal incidence (see panel d) of Figure 4.34.3).

In the particular case of a Josephson junction, the fabrication process via the Dolan’s ap-
proach is as follows: Firstly, a thin film of a superconducting metal (for example, aluminum)
is deposited at an angle −θ1, then, an insulating layer is generated on top by passive oxi-
dation, and finally another thin film of the superconducting metal is deposited at an angle
θ2. The S-I-S junction is then a stack of three layers where the overlap area A, the junction
area, is determined by the deposition angles of the two superconducting films θ1 and θ2.

The key element for the junction fabrication via the Dolan’s approach are free-standing
resist bridges, as shown in Figure 4.34.3, the so-called Dolan bridges. The free-standing bridges
are implemented by electron-beam lithography on a stack of two electro-sensitive resist lay-
ers, where the bottom (MMA) layer is more electro-sensitive than top (PMMA) layer. The
amount of electrons (dose) that is used to expose the resist according to the design mask has
to be well calibrated such that, upon development, a large area of the bottom layer is etched
away, while only a small bridge from the top layer remains free-standing without collapsing
(see panel a) of Figure 4.34.3).

This implementation of the free-standing bridges via laser lithography is further com-
plicated because of the secondary electrons that are generated by inelastic scattering of the
main electron beam (or primary electrons) which causes indirect exposing of the regions in
the proximity of the lithographic patterns, we commonly refer to this additional and unde-
sired dose as "proximity effects". After a lot of practical experience, we have managed to keep
the proximity effects under control by defining two distinct layers in the lithographic masks,
such that each one is related to a different lithographic pattern and a different dose. The
main lithographic patter, referred to as the "main" design layer, corresponds to the regions
of resist stack where both resist layers should be etched away, while the second lithographic
patter, referred to as the "undercut" design layer, corresponds to the areas of the resist stack
where only the bottom (MMA) layer is supposed to be etched away. The undercut design
layer is exposed with a lower dose compared to the main design layer, e.g., the undercut dose
is typically between 20 % and 30 % of the main dose.

4.1.2.1 Electron beam lithography

1. Resist bilayer processing: Firstly, a thin layer of the electro-sensitive resist MMA
1The suspended mask is actually a suspended resist layer with a lithographic pattern of holes acting as

hard mask during the evaporation.
2Notice that the conventional lithography technique, where the mask is not suspended from the substrate

surface, is only optimal for deposition at normal incidence so that a clean break of the deposited is ensured
during the lift-off process.
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EL13 is deposited via spin-coating with a speed 5000 RPM for 1 min, then, it is baked
at 195 °C for 1 min. Next, a thin layer of the electro-sensitive resist PMMA A3 is
deposited on top of the first layer via spin-coating with a speed 4000 RPM for 1 min,
then, it is baked at 195 °C for 30 min. This long baking time is intended to evaporate
as much water as possible from the top resist layer to ensure the stability the free
standing bridges.

2. Electron-beam lithography: We load the sample into the lithography machine and
pump it until reaching a working pressure of about 2×10−5 mbar. We set the working
voltage of the e-beam at 25 kV and we then expose the the lithographic patthern cor-
responding to the main design layer with a dose of 0.85 times 280.00 µC/cm2 and a
spot size (d-step) of (10 nm)x(10 nm). The lithographic pattern corresponding to the
undercut design layer is next exposed with a lower dose, 0.25 times 280.00 µC/cm2,
but same spot size with respect to the main lithographic pattern. The Figure 4.34.3 shows
the design mask that was actually used to fabricate a fluxonium circuit, notice that
the undercut design layer comprises areas surrounding the areas of the the main design
layer, for example, the middle area of the free standing bridges.

3. Resist developing: Once the e-beam lithography has been completed, we develop the
exposed resist with a mixture of di − H2O and IPA 1:3 at 6 °for 90 s with steady
agitation, immediately after we rinse the wafer in IPA at room temperature for 10
more seconds, finally we dry the wafer with N2 gas.
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a)

b) c)

Fig. 4.4 E-beam lithography of the fluxonium circuit with doses: a) Fluxonium circuit
mask: there are three main structures, the junction arrays (blue), the small cross junctions
(red) and the wires (green) connecting both of them. The distinction between them is
needed to avoid underdosing or overdosing problems, e.g., the big array junctions are stacked
so closed together that a junction chain receives some significant indirect exposition from
the adjacent junction chains (on top and below), thus, the junction arrays (blue) require
a smaller dose, 0.85 dose factor, compared to the wires (green), 0.90 dose factor. On the
contrary, the small cross junctions (red) are too narrow, about 200 nm, and they are far
away from other structures so that they require a higher dose, 1.05 dose factor, compared
to the wires. Notice that a dose factor of 1.0 corresponds to 280.0 µC/cm2. The panel
b) shows a zoom into a junction array, the dashed white layer has a smaller dose factor
of 0.25, the purpose of this undercut-layer is properly defining the undercut in the bottom
resist layer, i.e., while the blue layer represents the holes in the top resist layer, the white
dashed layer is related to the undercut in the bottom resist layer. The panel c) shows a
zoom into a small cross junction, the dashed yellow layer has a smaller dose factor of 0.30.
The importance of the undercut layers must not be underestimated, they allow to obtain
well defined junction geometries and avoiding dosing problems, for example, collapsing of
the free standing bridges (overdosing) or unwanted resist remainders below the bridges
(underdosing).
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4.1.2.2 Al evaporation

The final step in the junction fabrication is the aluminum evaporation, we make the S-I-S
junctions by evaporating two aluminum layers at different angles, with an oxidation step in
between to make an oxide layer separating the two aluminum layer.

1. Preliminary preparations: After creating the suspended bridges in the resist stack,the
wafer is loaded into the evaporation machine, and then, it is pumped (overnight) until
reaching a pressure of about 5.0×10−7 mbar.

2. Ti deposition: Before starting the first evaporation, a bit of titanium (Ti) is evapo-
rated (with the sample shutter closed) at a rate of 0.2 nm/s in order to pump down
the chamber down to 5×10−5 mbar.

3. Ion milling: Next, the native oxide layer is etched from the wafer surface with the aid
of ion milling with a voltage of 100 V and a flow of argon (Ar) corresponding to a
pressure of 3×10−4 mbar for 6 s.

4. 1st Al layer deposition: The first Al layer is evaporated with a tilt angle of -22°(with
respect to a horizontally aligned wafer, i.e., normal incidence) at a rate of 1 nm/s
amounting for a thickness of 31 nm.

5. Passive oxidation: Then, an insulating layer is created by oxidizing the top of the first
Al layer via passive oxidation at 200 mbar for 10 min. Before evaporating the last Al
layer, the evaporation chamber is pumped back for about 1 h until reaching a pressure
of about 5×10−7 mbar.

6. 2nd Al layer deposition: Next, the second Al layer is evaporated with a tilt angle of
+22°at a rate of 1 nm/s amounting for a thickness of 100 nm. The thickness of the
second layer has to be greater than the thickness of the first layer to avoid unwanted
discontinuities in the layers, therefore, resulting in, for example, opened junction chains.

7. Lift-off and cleaning: Finally, the unwanted aluminum and the remaining resist are
lift-off by rinsing the wafer in hot bath of NMP at 80 °C for 20 min, continuing with a
bath of acetone at 50 °C for 10 min. The wafer is then dried with N2 gas after rinsing
it in IPA.



84 CHAPTER 4. FABRICATION AND EXPERIMENTAL SETUP

MMA EL13PMMA A3 Bridge Si

2nd Al layer1st Al layer Oxide layer

G
J

G

100 nm
31 nm

6 2nd Al evaportation

4 1st Al evaportation

2 Ti evaporation

7 Lift-off

5 Passive oxidation

3 Ion milling

𝜏

h

𝜏

h

𝜏

h

S
+θ

S
-θ

Fig. 4.5 Junction evaporation: As preliminary step (1, not shown), the substrate is loaded
into the evaporation machine and pumped down to about 9×10−7 mbar. Next, a bit of
Ti is evaporated in the sample chamber (panel 2) at a rate of 0.2 nm/s, with the sample
shutter closed, in order to reduce the vacuum down to about 5×10−7 mbar. Then, the
native oxide layer (gray) is removed from the Si substrate (purple) by ion milling with Ar
plasma at a voltage of 100 V and a pressure of Ar flow of 3×10−4 mbar for 6 s. Next,
the first Al layer is evaporated (panel 4) at an angle −θ with a rate of 1.0 nm/s until
reaching a thickness of 31 nm. Then, an oxide layer is created by passively oxidizing the
surface of the first Al layer (panel 5) with a mixture of Ar and O2 9:1 at a static pressure
of 200 mbar for 10 min. Next, the second Al layer is evaporated at an angle +θ with a rate
of 1.0 nm/s until reaching a thickness of 100 nm. Finally, the resist stack of MMA (orange)
and PMMA (green) as well as the Al remainders are removed during the lift-of (panel 7):
first, the sample is rinsed in a hot bath of NMP at 80°for about 20 min removing most of
the resists and the unwanted Al remainders, next, the wafer is rinsed in a bath of acetone
at 50°for about 20 min, and lastly, the wafer is rinsed in a bath a IPA at room temperature
and dried with N2 gas.



4.1 CIRCUIT FABRICATION 85

4.1.2.3 Junction-chain geometry formulas

The Josephson junction chain is obtained during the same evaporation steps as those used
for the small "black sheep" junction of the fluxonium. In practice, a 1-dimensional array of
N Dolan bridges is used to form a compact array of Josephson junctions, as it can be seen in
Figure 4.54.5. In the following, we estimate the final junction-chain geometry from the relevant
geometric parameters of the mask used for its fabrication: the width of each resist bridge
bw, the spacing between adjacent bridges bs, the thickness of the MMA and PMMA layers,
h and τ , respectively, and the angles of the two successive deposition steps −θ and θ (for
simplicity, both angles are assumed to be equal in magnitude but with opposite directions).

As visible in panel c) of Figure 4.54.5, the first (blue) and second (yellow) Al layers are not
continuous but they contain several gaps, each one of them being created by the "shadow"
of one free-standing bridge. Furthermore, the two Al layers are shifted with respect to one
another by an offset

S = (2h+ τ) tan(θ) (4.1)

The width G of a bridge shadow is slightly wider compared to the actual bridge width
because of the the bridge height, or rather the thickness of the PMMA layer τ :

G = bw + τ tan(θ) (4.2)

We remark that we only consider the relevant parameter regime where the bridge shadows
of one layer do not overlap with the bridge shadows of the other one, such that the su-
perposition of the two Al layers forms a periodic array of bilayer-strips interconnected by
monolayer-strips, these last ones correspond to the bridge shadows. The junction-chain can
then be seen as an array of 2N − 1 Josephson junctions connected in series, where N is
the number of bridges. In other words, a Cooper–pair would need to tunnel through those
2N − 1 bilayers in order to traverse the chain from one end to the other.

One can identify two families of junctions in the chain: the first family consists of the
junctions centered below each bridge of index k, those are bounded at their left and right
edges by the shadow of bridge k in the Al layer 1 and the shadow of the same bridge in
Al layer 2, respectively. We denote by J1 the width of those junctions. Via elementary
trigonometric considerations, we arrive at

J1 = 2h tan(θ) − bw (4.3)

From the fact that the spatial periodicity of array of bridges P = bw + bs transfer to the Al
layers and the junction chain, we get the following equation

J1 + J2 + 2G = P (4.4)

The second family of junctions appears in between successive bridges: those junctions are
bounded at the left edge by the shadow of the bridge indexed k in Al layer 1, and at the right
edge by the shadow of the bridge indexed k + 1 in Al layer 2. The width of these junctions
is denoted as J2. By plugging Equation 4.24.2 and 4.34.3 into 4.44.4, we obtain

J2 = bs − 2(h+ τ) tan(θ) (4.5)
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Fig. 4.6 Geometrical parameters of Dolan-style junction chains: The panel a) shows an
SEM picture of an actual Dolan-style junction chain, the bottom (first) and top (second) Al
layers are highlighted by the blue and red rectangles, respectively, matching the colors used
in panel b). The junction width is denoted by w, the length of the bridge shadows is G, the
widths of the junctions are denoted by J1 (first junction family) and J2 (second family),
the offset between the Al layers is S, and the period of the junction chain is P , which is
the same as the period of each Al layer as well as the period of the array of suspended
bridges. The panel b) shows a drawing with the relevant geometrical parameters related to
the fabrication of Dolan-style junction chains. The junctions are created by evaporating-
oxidizing-evaporating Al at the angles −θ and +θ. Each Al layer is not continuous but
it is interrupted by the "shadows" of the suspended bridges, such that the centers of two
adjacent "shadows" are separated by P , the period of the array of suspended bridges. The
two Al layers are shifted with respect to each other by S which depends on the evaporation
angles −θ and +θ and the thicknesses of the resist layers τ and h. The length of a bridge
shadow G is slightly grater than the bridge width bw because of the finite thickness τ of the
suspended bridges. Two families of junctions are created from the overlap between the Al
layers: The junctions from the first family, whose length is denoted by J1, are created at
the horizontal position of the bridges, such that J1 = S −G, while the junctions from the
second family, whose length is denoted by J2, are created at the intermediate horizontal
position between two adjacent bridges, such that J2 = X − G, where P = S + X. The
condition of symmetric junctions is achieved when, X = S, meaning that P = 2S. Notice
that a total of 2N − 1 junctions are generated from an array of N suspended bridges.
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Finally we must consider the case of symmetric junctions, i.e., both junction families in
the chain having the same width J = J1 = J2, this case is typically the most important one
from the practical point of view. We derive an expression for difference between the widths
of both families of junctions using Equations 4.34.3 and 4.54.5

J2 − J1 = P − 2S (4.6)

Therefore, the condition of equal junctions J1 = J2 is fulfilled when P = 2S, i.e., the period
P of the array of bridges (same as the one of the chain) is equal to twice the offset S between
the deposited Al layers

P = 2S = 2(2h+ τ) tan(θ) (4.7)

4.1.2.4 Guidelines for designing Dolan-style junction chains

We finalize the considerations on the junction-chain geometry by providing few practical
considerations, from the fabrication point of view, in order to fulfill the following constraints
on the final junction-chain geometry:

1. The portions of the chain consisting of monolayers increase the stray capacitance of
the chain without significantly contributing to the total (kinetic) inductance of the
chain. Consequently, the approach should be minimizing the width G of these elements
compared to the width J = J1 = J2 of the junctions.

2. Both families of junctions should have the same area (i.e. the same width J1 = J2 = J
in this 1-dimensional model). Otherwise, the smallest junctions would constitute a
weak link for phase slips, leading to sub-optimal chain properties.

From criterion 1, it follows that the resists used for the lithographic mask must be chosen
such that the thickness of the top resist layer τ is as small as possible compared to the thick-
ness of the bottom resist layer h. Also, the width of the free standing bridges bw is chosen to
be approximately equal to the thickness of the top resist layer τ . Indeed, reducing bw further
only has a marginal impact on the gap G, as visible on Equation 4.24.2, while it would weaken
the free-standing PMMA bridge. Notice that the value of τ can be estimated from the resist
data sheet, for example, PMMA A3, by knowing the angular speed used for the spin-coating.

Satisfying criterion 2 requires that both junction families in the chain have the same
width, this case was already discussed at the end of the previous subsection, essentially the
P = 2S must be fulfilled, meaning that the periodicity P 3 of the bridge pattern should be
set to twice the offset between the 2 deposited aluminum layers. Notice that the offset S
depends on τ and h and the deposition angle θ. However, in practice it is not necessary to
determine to high precision τ and h to set the period P of the array of bridges since the
offset S between the two Al layers can be easily measured via scanning electron microscopy
(SEM). Thus, once we have chosen the deposition angle to be θ, we only have to set the
period P equal to twice the measured offset between the Al layers 2S. Finally, once we

3The periodicity S = bw + bs is perfectly defined by the lithographic mask, contrary to the individual
parameters bw and bs that depend on the precise dose and development conditions, making it a more robust
design parameter to consider.
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have determined the right period Pa corresponding to a deposition angle θa, for example,
θa = 22◦, if the deposition angle is later modified to θb, then, the period Pb needs to be
adjusted such that

Pb

Pa
= tan(θb)

tan(θa) (4.8)

4.2 Junction geometry characterization
Two characterizations need to be performed (at room temperature) after the fabrication of
the junctions: measuring the junction resistance and the junction area. There is a remaining
characterization to be done at cryogenic temperature (inside the cryostat), the junction
plasma frequency measurement, but that will be described in a later section.

4.2.1 Scanning electron microscopy
This section presents the results from the geometric characterization of the junctions via
scanning electron microscopy (SEM), specially its area. The Figure 4.64.6 shows two SEM pic-
tures of a junction chain belonging to a fluxonium circuit fabricated in our laboratory, the
junctions edges look sufficiently straight and the corners are not too rounded. We remark
that throughout this text the dimension of the junctions that is collinear to the wire length
is referred to as the junction length, while the dimension orthogonal (in-plane) to the wire
length is referred to as the junction width. Notice that the chain is made by pairs of almost
equivalent junctions, having lengths of J1 = 568 nm (P2) and J2 = 557 nm (P3), respec-
tively. The width of the junctions is w = 1.5 µm (P1). The period of the junction chain is
P = 1.7 µm (P4), which is the same as the period of the 1-D arrays of bridges that were
used to fabricate the junction chains. Although the offset between the Al layers can be seen
in Figure 4.64.6, being S = 852 nm (P6), the period was actually measured in advance, from a
previously fabricated batch of junction chains via SEM, so that the period for the junction
chains displayed in this picture could be set to satisfy P = 2S.

This was not the case back when we started fabricating junctions. In the beginning,
we were not using extra layers (and doses) to define the undercuts properly and the junc-
tions edges were rounded, specially at the corners, and junction length (dimension parallel
to the wire length) was not constant for different width values (the dimension orthogonal
to the wire length), which was not expected. Indeed, without an additional layer to de-
fine the undercuts, there were resist remainders (from the bottom layer) below the bridges
resulting in irregular bridge shapes and effectively thicker bridges. The amount of resist
remainders below each bridge was strongly dependent on the bridge length (junction width)
due to proximity effects (the indirect and unwanted dosing of a resist area coming from the
direct exposure of nearby resist areas), meaning that the effective bridge height was strongly
dependent on the bridge length, the consequence of this was that the right periodicity to
have equal junctions, P = 2S, was bridge-length dependent, making junction fabrication
very prone to reproducibility problems. Notice that we also added an additional layer for
the "wires" (sections of the fluxonium loop connecting two junction chains or a junction
chain and the small "black-sheep" junction). The addition of all the extra layers, see Figure
4.44.4, each one related to a different exposure dose, had a significant effect in reducing the
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proximity affecting the junctions, and it made the junction fabrication more reproducible
(less variation in the junction areas after each iteration), and the fabricated junctions were
looking better.

The Figure 4.74.7 shows two SEM pictures of a small junction of the fluxonium circuit. The
junction length and width are 244 nm (P4) and 166 nm (P3), respectively. The shift between
the two Al layers is approx 850 nm (P2 and P5), Figure 4.74.7 shows clearly why S is referred
to as the offset between the two deposited layers.
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Fig. 4.7 Junction array: Top: SEM picture of a junction array in a fluxonium circuit.
Bottom: SEM picture with a larger magnification of the same junction array.

4.2.2 Atomic force microscopy

This section presents the results from the geometric characterization of the junctions via
atomic force microscopy (AFM). The atomic force microscopy is useful to obtain informa-
tion about the relieve of a given surface, in fact, an AFM picture represents a 2-D map of
the height as function of the position over the surface, such that each color is associated
with a different height value. Notice that the contrast in an SEM picture also can be as-
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Fig. 4.8 Cross junction: Top: SEM picture of a cross junction in a fluxonium circuit.
Bottom: SEM picture with a larger magnification of the same cross junction.

sociated to differences in height over the scanned surface, or rather differences in thickness
in the case of a multi-layer structure, nevertheless, there are other things additionally af-
fecting the contrast, after all, different materials interact differently with the electron beam
used to acquired the SEM pictures. Moreover, even for multi-layer structures made of the
same material, like the Dolan style junctions presented here, there is no simple relation (for
example, linear) between the picture brightness and the corresponding surface height, or
rather material thickness. Finally, although more information can be inferred from an AFM
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picture compared to a SEM picture, the SEM picture is typically more accurate for mea-
suring in-plane distances, and the AFM should rather be used only to scan the surface height.

The Figure 4.84.8 displays an AFM picture of a junction chain, the 1-D array of bridges used
to fabricate this chain has had similar geometric parameters as the array of bridges used to
fabricate the junction chain in 4.64.6, e.g., the period P = 1.7 µs and the bridge width 125 nm,
the evaporation angle was also identical, θ = 22 °(and -22 °), however, the bridge length was
different for the two chains, which only means that the junction widths are different.

Several white lines were drawn over the picture of the junction chain in panel a) of Figure
4.84.8, each line represents a trajectory over the surface, the panel b) plots the surface height as
function of the distance along the lines, notice that the curves in panel b) are labelled with
different colors and not the same as the white lines in panel a). The panel b) also display
the information about the height of the Al layers, for example, the lowest part of the cyan
line identifies the beginning of the Si substrate underneath the junctions. We see that the
thickness of the first layer (deepest valley) is about 25 nm, as measured from the Si substrate
surface, on the other hand, the thickness of the second layer is about 70 nm (highest valley).
Each white line in panel a) has a pair of marks that are represented by two vertical dashed
lines in the panel b), respectively. The panel c) shows the measured horizontal and vertical
distances between the two marks of each withe line in panel a).
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Fig. 4.9 AFM picture of a junction array: Top: AFM 2-D scanning of a junction array.
Middle: AFM 1-D scanning over the path defined by the lines in the top panel. Bottom:
Vertical and horizontal distances between the points in the 1-D scanning lines in the top
panel (the pairs of points correspond to vertical lines in the middle panel).
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4.3 Junction resistance measurement
We intend to use the junctions as inductive elements to build up a super-inductance wire,
where each junction contributes with a (kinetic) inductance LJ . The linear junction induc-
tance LJ is related to the Josephson energy of the junction EJ as,

LJ = Φ2
0/EJ (4.9)

Although it might seem quite surprising, it is possible to calculate the junction energy
EJ at cryogenic temperatures (the relevant temperature regime for the circuit operation)
from a measurement of the DC junction resistance Rn at room temperature (RT). The
junction energy EJ is related to the tunneling of a Cooper pair through the junction and
it is inversely proportional to the junction resistance Rn, i.e., they are connected via the
Ambegaokar-Baratoff relation [33]:

EJ = h∆

8e2Rn
(4.10)

where ∆ is the superconducting gap. Moreover, the junction resistance Rn is inversely pro-
portional to the area A, connecting the junction energy EJ (or the inductance LJ) with its
geometrical properties.

As we had just explained, characterizing the junction resistance becomes a priority. We
measure the junction resistance using a standard probe station with two thin nails that
we galvanically connect to the two electrodes of a junction, one at each end of a junction,
respectively. The lumped-element diagram of the resistance measurement setup is shown in
Figure 4.94.9, consisting of a DC volt-meter connected in parallel to a DC current source. In
order to measure the junction resistance, for example, in the case of a junction-chain, we
connect the two ends of the chain in parallel to both the volt-meter and the current source,
then, the voltage drop Vm across the junction chain is measured while a constant current is
applied, typically I0 = 0.1 µA. As a preventive measure, we set the voltage compliance of
the current source to 0.2 V (highest attainable voltage) in order to avoid unwanted voltage
peaks specially when connecting the junction electrodes with the probe station tips (when the
resistance between the tips effectively passes from nearly infinity to something very small).
The resistance of the junction chain is computed as:

Rm = Vm
I0

(4.11)

However, the measured resistance Rm must be adjusted to try to account for the effect of
the substrate resistance Ropen and the stray resistance that is not coming from the junctions
Rshort. The effective resistance Reff of the junction chain is calculated as

Reff = RopenRm −Rshort (Rm −Ropen)
Ropen −Rm

≈ RopenRm
Ropen −Rm

(4.12)

This equation is derived by considering that the total resistance Reff of junctions of the
chain is connected in series to the stray resistance of the chain Rshort while they both are
simultaneously connected in parallel to the substrate resistance Ropen. Normally, the stray
resistance Rshort of the chain is negligible compared the total resistance of the junctions Reff ,
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this is expected since in the end the chain is made of Al which is a good conductor at room
temperature. However, the effect of the substrate resistance Ropen should not be neglected
in general, since it can easily result in the overestimation of the junction energy EJ by a
factor of 20 %.
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Fig. 4.10 Resistance measurement setup: This figure shows the lumped-element diagram
of the resistance measurement setup. We use a standard probe station that consists of a
DC current source and a volt-meter connected in parallel to each other. Additionally,
the probe station has a pair of thin tips to be connected to the two junction electrodes,
respectively. After contacting galvanically the tips with the junction electrodes, the junction
is effectively connected in parallel to both the current source and the volt-meter, such that
we can measure the voltage drop Vm across the junction while we apply a constant current
I0. The measured resistance is calculated as Rm = Vm/I0, however, in order to estimate
the actual junction resistance, the effects of the stray resistance Rshort and the substrate
resistance Ropen must be accounted out. The stray resistance Rshort comes from the fact
that the junction is made of metal in the end, Rshort can be safely neglected since it is
normally to small compared to the actual junction resistance Reff . We can consider that
the substrate resistance Ropen is connected in parallel to the actual junction resistance Reff ,
thus, the effect of Ropen should not be neglected because it can easily shift the measured
junction resistance by 30 % compared to the real value.

In general, trying to measure the resistance of the whole super-inductance belonging to a
fluxonium circuit is not practical at all, firstly, there are hundreds of junctions making up the
super-inductance so that its resistance is normally too large, exceeding the typical voltage
compliance. Secondly, we must not forget about the parallel resistance of the substrate, in
the case of a Si substrate its resistance is of the order of 200 kΩ, which limits the maximum
resistance that can be easily measured. Last but not least, in order to ensure proper galvanic
connection between the probe station tips and the junction electrodes, the tips have to scratch
slightly the surface of the junction electrodes to go through the native oxide layer covering
the electrodes. In the case of a junction forming part of an actual circuit, if the contacting
between the tips and electrodes is not done carefully enough, it might cause devastating
damage to the circuit itself. It is then clear from the previous considerations that measuring
the whole resistance of a super inductance is not a good idea. Instead, the approach should
rather be:

1. Calculating the inductance of an individual junction LJ from the resistance measure-
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ment of some "test" chains with few junctions, such that the test chain resistance is at
least 1 order of magnitude smaller compared to the substrate resistance.

2. Approximating the total inductance LTot of the super-inductance as N times LJ , the
inductance of an individual junction.

Notice that the junctions in the test chains must have the same geometrical parameters
(same area) as the junctions in the final circuit super-inductance.

4.4 Junction parameter optimization
We have seen in the section 4.1.2 "Josephson junction fabrication" the various necessary el-
ements to realize Dolan-style junctions, for both the small cross junctions and the chains of
large junctions. However, there are various parameters that need to be determined empiri-
cally in order to succeed at fabricating the junctions:

1. The electron dose corresponding to each design layer.

2. The geometry of the lithographic patterns corresponding to each design layer, i.e., the
bridge width and the bridge period in the particular case of the junction chains.

This empirical optimization is implemented by fabricating a batch of "test circuits" such
that their junctions have one particular set of design parameters, i.e, main dose, undercut
dose, bridge width, and period in the case of the junction chains. We refer to this preliminary
fabrication step as a "dose-test", even though the doses are not the only parameters to be
scanned. The objective of the dose test is two-fold: On one hand, identifying the safe param-
eter range in order to obtain functional junctions, in the worse case scenario, for example, a
non optimal dose leads to the partial or complete collapse of the suspended bridges. On the
other hand, the dose test allows us to determine empirically the relationship between the
junction area AJ and the junction energy EJ .The final geometry of the junctions of the test
circuits is characterized via SEM microscopy, as described in section 4.2, while the junction
energies EJ are systematically extracted via the procedure described in section 4.3. Notice
that there must be two kinds of test circuits: one for optimizing the parameters of the chains
of large junctions, and another one for optimizing the parameters of the small cross junctions.

In practice, we fabricate a large batch of test circuits that are almost identical variations
of the final circuit, in the section 4.4.14.4.1, practical considerations on the design of the dose test
are provided. Next, the geometry of the junctions (the area) is inspected via SEM imaging,
in the in the section 4.4.24.4.2, we give some example micrographs obtained for various choices
of parameters (underdose, nominal dose, overdose). Next, the resistance of the junctions is
systematically measured in the room temperature setup described in section 4.3, allowing us
to obtain a relationship between the junction area AJ and the junction energy EJ to finally
choose the optimal design parameters for junctions in the real sample. This is described in
the final section 4.4.34.4.3.



4.4 JUNCTION PARAMETER OPTIMIZATION 97

4.4.1 Practical considerations for the test junctions

We use the familiar term "dose test" to refer to a batch of test junctions. In the following,
we discuss some considerations to be taken into account when designing a dose test.

• Basic considerations: The main objective of the dose test is determining the junction
energy EJ as function of the junction area AJ , within a significant range of areas.
This goal is achieved by sweeping the junction width w in the dose test. In the case
of junction chains, recalling the discussion of the subsection guidelines for designing
Dolan-style junction chains, the junction length J is uniquely determined once the
evaporation angle is chosen, for example, θ = 22◦. However, the junction width w is
still a free parameter that can be used to vary the junction area A. Notice that the
period P of a junction chain is not a free parameter, since it must be fixed at P = 2S
to ensure the condition of equal junctions, J1 = J2. Nevertheless, one might sweep the
period P within a small range around the optimal value in the dose test, just as a kind
of "sanity check" to verify that indeed the chosen period P is the optimal one. In the
case of the small cross junctions, the junction width w again is the only free parameter
that can be varied to sweep the junction area AJ .

• Other considerations: As the name suggests, in a dose test one needs to optimize the
electron dose that is used to expose the resists in the junction fabrication. When the
dose is not enough (underdosing), there might be resist remainders where they are not
meant to, for example, in the rectangular holes between two successive free standing
bridges. Then, the produced junctions might have irregular shapes and smaller areas
than expected, and in the worse case when the Al layers making the junctions are
deposited over a film of resist remainders instead of being deposited on the substrate
surface, the junctions might be completely washed away during the lift-off step. In the
opposite case, when the dose overpasses the optimal value (overdosing), the free stand-
ing bridges might be thinner than expected, again resulting in an undesired variation
of the junction shapes and areas, and in the worse case when the dose is completely
overloaded, one might expect the collapse of the free standing bridges.

Notice that we use two separate layers, each one related to a different electron dose, to
fabricate each junction kind in the fluxonium circuit, i.e., two layers for the junction
chains, and two layers for the small cross junctions. This means that 2 different dose
values have to be swept for each kind of junctions, amounting a total of 4 dose values
to sweep in the dose test.

The purpose of the additional undercut layers is addressing the significant problem of
proximity effects, i.e., the additional and unwanted dose that a part of resist receives
when other nearby resist parts are exposed during the e-beam lithography. For exam-
ple, in the less but still concerning cases, the proximity effects might cause the two
families of junctions in a junction chain to have different lengths, J2 − J1 ̸= 0. In
general, overdosing due to proximity effects causes narrower bridges, thus, resulting in
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an undesired variation of the junction shapes and areas. In worse case, when there
is too much overdosing due to proximity effects, the free standing bridges might col-
lapse. Therefore, proximity effects must always be taken into account when designing
compact structures, like the junction chains and the very super inductance made of
several of them in a fluxonium circuit. The addition of the undercut layers in the cir-
cuit mask, which are exposed with a lower dose than the one used to expose the main
circuit layer, helps a lot to keep the proximity effects under control. For example, the
bridges are more stable and preserve their shapes for a large range of junction widths
w, for example, from 1.0 µm to 2.5 µm.

Summarizing, 3 parameters need to be swept in the dose test for each one of the two
junction kinds of the fluxonium circuit, the parameters are the junction width, the main-
layer dose, and the undercut layer dose. An extra parameter can be added for the junction
chains, the period P , just as a "sanity check". Thus, a total of 6 or 7 parameters have to be
optimized in a dose test (see Figure 4.114.11), which means fabricating and characterizing lots
of junctions before moving forward to the fabricating of the final fluxonium circuit, beware
of that :). We finalize this subsection with one remark: in order to account properly for
proximity effects, the test junctions have to be as similar as possible as the junctions used in
the final circuit, for example, the super-inductance of the fluxonium circuit is made of several
junction chains that are closely packed to each other, e.g., the separation between two adja-
cent chains is fixed at about 2.0 µm, therefore, each test junction chain in the dose test must
be surrounded by other "dummy" chains that only have the purpose of accounting for prox-
imity effects. Although these measures might seem a bit exaggerated in the beginning, they
fulfill their purpose correctly, these measures resulted from our empirical experience in de-
bugging and optimizing the junction fabrication, we suggest the reader to keep them in mind.
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Fig. 4.11 Dose test example: This figure shows an example of a design mask that is used
to fabricate a dose test. a) displays the whole mask: a typical dose test chip contains an
array of Nb pads that are connected to each other by either a junction chain (left) or a
small junction (right). The chip consists of several "blocks" each one being characterized
by a set of junction design parameters. For example, on the side of the junction chains
(left), the light-blue (top) and the dark blue rectangle rectangle (bottom) stand for an
undercut dose of 0.15 and 0.20 (times 280 µC/cm2), respectively, while the dark green
rectangle, light green rectangle and yellow rectangle correspond to a junction-chain period
of 1.1 µm, 1.2 µm, and 1.3 µm, respectively. On the side of the small junctions (right), the
red rectangle (top) and the orange rectangle rectangle (bottom) are related to an undercut
dose of 0.25 and 0.30 (times 280 µC/cm2), respectively. b) shows a zoom into the block
with undercut dose of 0.20 and a period 1.2 µm (which was the optimal period for an angle
of 22 °), this block is signaled by the overlap between the light green rectangle and the
light blue rectangle. Inside this block, each column is related to a different main dose, for
example, 0.8 (left), 0.9 (mid) and 1.0 (right), while each row corresponds to a different
value of the junction width, in this case 1.2 µm (bottom), 1.6 µm, 2.0 µm, 2.5 µm, 3.0 µm,
4.0 µm and 5.0 µm (top). c) show a zoom into the design used for the small junctions while
d) shows the design used for junction-chains.
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4.4.2 Geometrical characterization of the test junctions

40 µm

10 µm

200 nm
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b) d)
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400 nm

Fig. 4.12 SEM pictures of a functional fluxonium circuit: a) An integral view of the
circuit elements, including both the large ones and the smaller ones. The large circuit
elements are the capacitor pad, the readout resonator, the flux line, the charge drive and
the ground plane. The small circuit elements are the small cross junction and the super-
inductance made of few chains of large junctions. b) Zoom into the fluxonium loop, made
of both the small cross junction and the super-inductance in parallel connection to each
other and to the capacitance to ground. c) Zoom into two pairs of junctions of a junction
chain of the super-inductance. d) Zoom into the small cross junction.



4.4 JUNCTION PARAMETER OPTIMIZATION 101

600 nm 600 nm 600 nm

600 nm 600 nm 600 nm

600 nm 600 nm

600 nm

wJ = 1.2 µm wJ = 2.0 µm wJ = 3.0 µm

c)
 M

ai
n 

do
se

b)
 C

ha
in

 p
er

io
d

a)
 J

un
ct

io
n 

w
id

th

P = 1.1 µm P = 1.2 µm P = 1.3 µm

dose: 0.75 dose: 0.85 dose: 0.95

Fig. 4.13 Examples of test junction chains: Each row corresponds to the sweep of one
design parameter: junction width (top), period (middle) and electron dose of the main
design layer (bottom). In the top row, the period and dose are fixed at 1.2 µm and 0.75,
respectively, while the junction chain is varied. Notice that for the narrower junction
width, one junction from each pair has rounded corners indicating that the used dose was
sub-optimal. The rounded junctions are actually the kind of junctions created bellow the
suspended resist bridges, and the rounded corners indicate that there were some resist
remainders from the bottom resist layer below the suspended bridges, i.e., arc bridges
instead of flat bridges. In the middle row, the junction width and dose are fixed at 2.0 µm
and 0.75, respectively, while the period is varied. Notice that the length of one junctions
of each pair is increasing from the left panel to the right panel, this is expected since the
length of one junctions depends on the period (distance between consecutive bridges), while
the length of the other junction only depends on the thicknesses of the resist layers and
not on the period. Finally, in the bottom row, the junction width and period are fixed at
2.0 µm and 1.2 µm, respectively, while the dose is varied. Notice that the junction edges
are almost flat and the corners are not rounded in the dose range scanned here, although it
might seem trivial in the beginning, actually shows the stability of the suspended bridges
to variations of the electron dose, which is a result of fabricating the bridges with two
lithographic patters and two different doses, one for each lithographic pattern, i.e., "main"
dose and "undercut" dose. In the case where only one lithographic pattern is uses (and one
dose) on typically finds that the shape of the bridges, and consequently the length of the
junctions, is very sensitive to variations of the electron dose.



102 CHAPTER 4. FABRICATION AND EXPERIMENTAL SETUP

2.0 µm 2.0 µm

2.0 µm
2.0 µm

a)

c)

b)

d)

Fig. 4.14 Examples of junctions chains with non-optimal dosing: a) The proximity effects
between adjacent chains were so strong that the whole bottom resist layer was etched,
even the parts between adjacent chains, this caused that the top resist layer acquired
some curvature due to gravity, which translates into a bridge height that varies for each
chain. Notice however that the suspended resist bridges did not collapse in spite of the
strong proximity effects. The test junction chains shown in a) were fabricated with an old
recipe where onmy one lithographic pattern (and one dose) where used during the ebeam-
lithography. b) The dose used was way too high above the optimal value, resulting in the
complete collapse of the bridges. c) The dose used for these test junction chains was way
below the optimal value, such that the resist below the bridges was not etched and the
bridges were not really suspended. d) In this case, the dose used for fabricating the test
junction chains was slightly below the optimal value, causing one junction from each pair
to have rounded corners, because of the suspended bridges having an arc shape, instead of
being almost flat as in the optimal case.
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Fig. 4.15 Examples of cross junctions: Each frame corresponds to a variation of the
design parameters of the small cross junctions, such that within a row (column) the dose
(junction width) is swept while the junction width (dose) is fixed.
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4.4.3 Results and chosen parameters
As mentioned previously, one objective of the junction parameter optimization (the "dose
test") is determining the relation between the energy EJ (or the inductance LJ) of the fabri-
cated junctions and the design parameters, specially the junction area AJ . The Figure 4.164.16
displays the results obtained for 5 different dose tests, each one with a particular set of pas-
sive oxidation parameters: static pressure and time. The junction areas were measured via
SEM as shown in Section 4.2.14.2.1, while the junction energies EJ were determined as described
in Section 4.34.3. Notice that for a given dose test iteration, the junction energy EJ and the
junction area AJ follow a linear relation. It is particularly surprising that the same linear
fit works pretty fine for both the small cross junctions, with areas as small as 0.25 µm2, and
the large junctions of the chains, with areas as big as 0.7 µm2. Indeed, the linear relation
between EJ and AJ holds for almost 3 orders of magnitude of AJ .

We can get some intuition on this result from the fact that the junction energy EJ is
inversely proportional to the junction resistance R according to the Ambegaokar-Baratoff
relation (Equation 4.104.10), and for a S-I-S junction with area AJ made of two superconducting
layers separated by an insulating layer, the junction resistance R should be inversely propor-
tional to the junction area AJ . Similarly, the junction resistance R should be proportional
to the thickness of the insulating layer, however, it does not seem to be the case by look-
ing at the Figure 4.164.16, since one would expect that larger values of the product oxidation
pressure-duration should correspond to thicker oxide layers, and thus, smaller values of the
ratio EJ over AJ . Actually, the slope corresponding to each dose test iteration appears to
be somehow random and not correlated to the product oxidation pressure-duration. This
later result put in evidence a reproducibility problem in our junction fabrication, which we
assumed to be related to lack of reproducibility of the passive oxidation step (oxide layer
thickness). We addressed this problem by fabricating several copies of our final circuit at
once, i.e., wafer scale instead of chip scale, such that each copy had a different value of the
area of both kinds of junctions: the small cross junction and the large junctions of the chains.
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Fig. 4.16 Energy vs area of the fabricated junctions: This figure shows the results of the
measured energies EJ and areas AJ of the junctions corresponding to a total of 5 different
dose tests, each one with a different value of the product oxidation pressure-time. The top
panel displays energies EJ and the areas AJ of both the small cross junctions and the large
junctions of the chains, while the bottom panel only shows the energies EJ and the areas
AJ of the small cross junctions.
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4.5 Experimental setup
In this section I will briefly explain the experimental setup used for the characterization
and manipulation of the fluxonium circuit. It consists of two parts: A cryogenic part (see
Figure 4.174.17), i.e., inside the dilution cryostat, that will be explained in the following sec-
tion, and a room temperature part (see Figure 4.184.18) that will be explained in the next section.

4.5.1 Cryogenic setup

In our experiments, we used a suspended dilution cryostat LDXX provided by the bluefors
cryogenics company. Our cryostat typically reaches a working temperature as low as 8 mK.
Such low temperatures are normally required when working with microwave superconducting
circuits in order to reduce the negative effects of environment on the coherence properties
of the circuit components, for example, the qubit and its readout resonator. Notice that the
negative effects of the temperature are enhanced according to the quantity

r = exp
(

− hν0
kBT

)
(4.13)

Where Boltzmann constant is kB ≈ 20.84 h·GHz·K−1, and ν0 is the relevant transition fre-
quency, e.g., a circuit transition. This expression tell us that we should maximize the ratio
hν0/kBT to maximize the coherence properties of our circuit components. Considering a
typical circuit frequency of ν0 = 5 GHz, the value of r is practically equal to 0.9992 ≈ 1 at
room temperature (300 K), notice that the maximum value of r is indeed 1. However, inside
a dilution cryostat environment at a temperature of 8 mK, r ≈ 9.4 × 10−14 ≈ 0.

Coming back to the cryogenic part of the setup that is shown in Figure 4.174.17, the flux-
onium device, consisting of the fluxonium circuit, the ancillary readout resonator plus the
readout drive line (both purple), the charge drive line (green) and the fluxline (dark yellow),
is right at the bottom of the cryostat at the level of 8 mK (red rectangle). 4. In this way,
there are 4 input lines descending through the cryostat corresponding to the flux line (dark
yellow), the charge drive line (green), the input readout line (purple), and the TWPA pump
line (black). On the other hand, there is only one output line, the one of the readout res-
onator (purple).

• Flux line (dark yellow): This line is used for both driving the fluxonium transitions,
and setting the external flux in the fluxonium loop, thus setting the working point of
the fluxonium, e.g., the sweet spot. This line is galvanically connected to a DC voltage
source at room temperature end. This line has 40 dB of attenuation at 4 K to decrease
the amplitude of the current noise descending from the room temperature environment.
It also has two high pass filters, the VLFX 500 and the SLP 1.9+, to prevent the high
frequency noise of affecting the higher order transitions of the fluxonium circuit.

4The circuit is packaged in a JAWS (circuit box) that is inside a magnetic field shield
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• Charge drive line (green): This line is used for driving the fluxonium via the charge
operator by applying an AC voltage pulse at the room temperature end. This line has
a total of 70 dB attenuation: 20 dB at 4 K, 10 dB at 800 mK and 40 dB at the bottom
of the cryostat, at 8 mK. This line is not galvanically connected with the outside of
the cryostat to prevent DC noise from affecting the fluxonium spectrum.

• TWPA pump line (black): This line is used to pump the cryogenic amplifier, the TWPA
(traveling-wave parametric amplifier), that is at the level of 8 mK. The pump signal
is combined with the reflected signal from the ancillary readout resonator via a direc-
tional coupler with a 50 ω termination, preventing the TWPA pump to be reflected
back to the fluxonium circuit. This input line has a total of 50 dB attenuation: 20 dB
at 4 K, 10 dB at 800 mK and 20 dB at 8 mK due to the directional coupler. This line
is not galvanically connected with the outside of the cryostat to prevent DC noise from
affecting the fluxonium spectrum.

• Readout input line (purple): This line is used to probe the ancillary readout resonator
to access the fluxonium state via dispersive shift. This line has a total of 70 dB atten-
uation: 20 dB at 4 K, 10 dB at 800 mK and 40 dB at the bottom of the cryostat, at
8 mK. This line is not galvanically connected with the outside of the cryostat. This
line only allows signals to go down the cryostat and it prevents ascending pulses, like
the reflected signal, thanks the pairs of circulators plus a 50 ω termination in the first
one, they are located at the bottom of the line at 8 mK before the line is connected to
readout port of the fluxonium device.

• Readout output line (purple): This line is used to read out the fluxonium state, in
reflection-configuration, thanks to the dispersive shift that the different states produce
on the ancillary readout resonator. In this way, once the readout resonator is probed
by an input signal, the reflected component is directed towards the output line by the
pair of circulators at the end of the readout input line. This line has no filtering to
avoid any reflected signal from the fluxonium to be further attenuated, thus worsening
the signal-to-noise ratio (contrast). First the reflected signal is added with with the
TWPA pump by a directional coupler with a 50 ω termination. Next, the combination
of the two signals feeds a cryogenic amplifier, the TWPA, and the amplified signal
goes through a high-pass filter K&L with a cutoff frequency of 8 GHz, and then the
signal goes through a pair of circulators, each one with a 50 ω termination in one port.
The circulators prevent the signals from the room temperature level to descend down
the line to be amplified by the TWPA and lastly the affecting the fluxonium circuit.
Finally, the reflected signal is further amplified by a HEMT (high-electron mobility
transistor) at 4 K, before reaching the outside of the cryostat. This line is not gal-
vanically connected with the outside of the cryostat. There is an additional amplifier
at the room temperature level, but this will be shown latter in the room temperature
setup.
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Fig. 4.17 Resistance measurement setup: .
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4.5.2 Room temperature setup
The room temperature part of the setup is shown in Figure 4.184.18, here we can see the part of
the input lines and the output line that is outside the cryostat at room temperature. As we
have seen early, there are 4 input lines descending down the cryostat corresponding to the
flux line (dark yellow), the charge drive line (green), the input readout line (purple), and
the TWPA pump line (black). On the other hand, there is only one output line, the one of
the readout resonator (purple). At the end of the room temperature side of the lines, there
is either one output port of the microwave source (Anapico APMS40G) or the output port
of the DC source (Ykowaga) or one analog output port of the quantum machine operator X
(OpX), that is used to generate AC-voltage pulses with a maximum amplitude of 0.5 V and
a carrier frequency within the interval of -350 MHz to 350 MHz In fact, the AC-signals that
are sent down the cryostat are the combination of a high frequency pulse from an output of
the microwave source with a lower frequency pulse generated by an output of the OpX via
an IQ-mixer.

• Flux line (dark yellow): This line is essentially used for setting the external flux in the
fluxonium loop, which sets the working point of the fluxonium, e.g., at the sweet spot.
This line adds the DC voltage from the output of the Yokowaga source with the voltage
that is output by port 2 of the OpX via a conventional power combiner, i.e., a pair of
resistances that are connected at one end. While the output of the DC-voltage source
is typically fixed at the sweet spot, the voltage that is output by the OpX is used to
sweep the total voltage within a small range, for example, around the sweet spot. The
port of the OpX can also output an AC-voltage, this particularly important to drive
the fluxonium transitions via the flux operator. The resulting voltage after the power
combiner generates a constant current that descends down the cryostat, notice that
this is the only line that galvanically connects the input and the output of the cryostat.

• Charge drive line (green): This line combines three different AC-voltage signals into
one, each of the signals optimized to drive a particular transition of the fluxonium
circuit. On the one hand, the output 3 of the Anapico microwave source is mixed
with the outputs 5 and 6 of the OpX by means of an IQ-mixer generating one of the
mentioned signals, on the other hand, the output 1 of the Anapico microwave source
is mixed with the outputs 7 and 8 of the OpX by means of an IQ-mixer generating
another of the mentioned signals. These two signals are added up by a power splitter
connected backwards, and the resulting signal is added with the signal coming from
the output 1 of the OpX by a 10 dB directional, such that the signal coming from the
power splitter is attenuated by 10 dB. The low-frequency signal from the output 1 of
the OpX is used to drive the qubit transition, which is typically of the order of few
MHz. The high-frequency signal that is generated by the combination of the output 3
of the Anapico and the outputs 5 and 6 of the OpX is used to drive a higher frequency
fluxonium transition around 3 GHz, that is used as an ancillary transition for the
single-shot readout of the low-frequency qubit. Finally, the high-frequency signal that
is generated by the combination of the output 1 of the Anapico and the outputs 7 and
8 of the OpX is used to drive a readout-assisted transition around 5 GHz that is used
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for the initialization of the low-frequency qubit (side-band cooling. Notice that there
are multiple DC-blocks to prevent DC-signals to go down the line into the cryostat.

• TWPA pump line (black): This line is used to pump the cryogenic amplifier, the
TWPA, that is inside the cryostat. This line is particularly simple, it has a DC-block
right after the outside of the cryostat, and at the end of the room temperature level
the level, there is the output 4 of the Anapico microwave source, which is typically
on always and fixed at the frequency that produces the maximum gain of the TWPA
(approximately 6.9 GHz).

• Readout input line (purple): This line is used to probe the ancillary readout resonator
to access the fluxonium state via dispersive shift. This line mixes the outputs 3 and 4 of
the OpX with the output 2 of the Anapico microwave source by means of an IQ-mixer.
Notice that there is 10 dB attenuation at each output of the OpX, and also notice
that the signal from the output 2 of the Anapico source is splitted into two by a power
splitter: one of the resulting signals is used to generate the high-frequency signal to
probe the readout resonator, while the other resulting signal is used to demodulate the
reflected signal from the readout resonator. Notice that there are multiple DC-blocks
to prevent DC-signals to go down the line into the cryostat.

• Readout output line (purple): This line is used to read out the fluxonium state, in
reflection-configuration, thanks to the dispersive shift that the different states produce
on the ancillary readout resonator. Starting at the room temperature level, the signal
ascending out from cryostat goes through a DC block right after exiting the cryostat,
then, the signal signal is further amplified by a conventional room-temperature mi-
crowave amplifier that is pumped by a current of 0.13 A at a constant voltage of 15 V.
Next, the amplified signal is demodulated by an image-reflected (IR) mixer, where the
local oscillator port is connected to the output 2 of the Anapico source, the resulted
low-frequency signal finally reached the analog input 1 of the OpX at the top end of
the line. As previously mentioned, the signal from the output 2 of the Anapico source
is used for both generating the high-frequency signal to probe the readout resonator
and demodulating the reflected signal coming from the readout resonator. Notice that
there are multiple DC-blocks to prevent DC-signals to go down the line into the cryo-
stat.
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4.6 Plasma frequency measurement
We remark that the junctions have a self resonance at the frequency ωp, which is referred to
as the junction plasma frequency. This can be understood by viewing the S-I-S junction as a
kind of parallel plate capacitor, where the oxide-layer is separating the two superconducting
plates. Then, it becomes evident that a S-I-S junction has a self-capacitance CJ , in addition
to an inductance LJ , such that its self-capacitance CJ is proportional to its area A. Thus, the
junction plasma frequency ωp = 1/

√
LJCJ is independent of the junction area, this comes

from the fact that LJ ∝ Rn ∝ 1/A as well as CJ ∝ A. Nevertheless, the plasma frequency
does depend on the thickness of the oxide layer, meaning that this is an important parameter
to keep in mind. In the case of Al-Ox-Al junctions, the most popular physical implemen-
tation of a Josephson junction, the plasma frequency is of the order of 10 GHz, and this
value can be increased (decreased) by augmenting (diminishing) thickness of the oxide-layer,
corresponding to an increment (reduction) of the passive oxidation time or pressure.

In order to characterize the junction plasma frequency, we fabricate a linear resonator
made of several junctions, which is nothing that a large junction chain that is opened at both
ends. We then find the frequencies of the collective chain modes via two-tone spectroscopy:
Firstly, the resonator is driven by a probe (first) tone at the frequency of the lowest chain
mode, then, the amplitude of the reflected probe signal is measured while an additional tone,
the pump tone, is used to drive higher order modes of the chain. Thus, we keep track of the
reflected probe tone amplitude while sweeping the frequency of the pump tone.

The Figure 4.194.19 shows the results of the characterization of the junction plasma fre-
quency. According to the linear model of a junction chain that is described in the fluxonium
design chapter, the frequency of the chain modes should saturate at the plasma frequency as
soon as the mode number increases. This is precisely the behavior that we observe for the
frequency of the chain modes as function of the mode number. From the fit, we determine
that the saturation frequency, i.e., the plasma frequency of the junctions, is approximately
17.9 GHz.
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Fig. 4.19 Junctions plasma-frequency characterization: Left: Reflected probe tone am-
plitude as function of the frequency of the pump tone. Right: The stars represent the
measured frequencies of the chain modes as function of their mode number, and the solid
blue line is the corresponding fit obtained by using the model of the linear junction chain
described in the fluxonium design chapter.
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Chapter 5

Basic characterization of the
fluxonium device

This chapter describes the basic characterization of the fluxonium device. It is organized as
some sort of manual for future students working on the experiment. In particular, the order
of the sections closely follows the typical sequence of measurements within the logbook used
to characterize new samples as they are cooled within our dilution cryostat. The first section
is about the frequency-domain characterization of the readout resonator that is coupled to
the fluxonium circuit. This step is vital since the only information that we ever extract from
the fluxonium state is obtained indirectly via the readout resonator. The main component of
the fluxonium circuit is a superconducting loop made by the super-inductance and the small
junction in series. In order to quickly check the integrity of these components, we rapidly
verify that the readout resonator has a periodic response as a function of applied external
flux. This single-tone resonator spectroscopy is described in section 5.15.1. Immediately after
this quick verification, we perform a pump-probe measurement that is used to characterize
the various fluxonium transitions, via the frequency-change of the readout resonator, when
particular qubit states are populated. This so-called “two-tone spectroscopy” is the subject
of section 5.25.2. The final section of this chapter is about the optimization of the indirect
readout through the resonator. The main goal being to perform a projective measurement
of the qubit state, that is able to distinguish between them in a single-shot experimental
realization.

5.1 Single tone spectrum
In this section, we undertake the fundamental characterization of the initial circuit element
accessible to us: the readout resonator. This component is a coplanar waveguide resonator,
with a λ/4 configuration, directly coupled to a measurement line. Furthermore, it is linked
to the fluxonium circuit in such a way that its precise frequency provides valuable insights
into the state of the fluxonium.

5.1.1 Readout spectroscopy
The resonator is probed in reflection configuration, as it is described in Section 4.5.24.5.2. The
resonator probe pulse is generated by up-converting a MHz signal from the OpX (quantum

115
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machine) to the GHZ range with the aid of an IQ mixer and a microwave source (see Figure
4.184.18). The reflected signal from the resonator is then down-converted by an image-reject
mixer, and the resulting MHz signal is demodulated by the OpX yielding as output the two
quadratures of the complex reflection coefficient S11.

The Figure 5.15.1 shows the resonator spectrum, i.e., the amplitude and phase of the reflec-
tion coefficient S11 as function of the probe frequency ν and for a fixed value of the external
flux φext (typically φext = 0).

The curves are fitted simultaneously by a complex lorentzian zL(ω), as described for
instance in Ref. [3333]:

zL(ω) =

A0 e
iϕ0 − Aeiϕ

i
(

ω−ω0
k/2

)
+ 1

 ei(ω−ω0) τd , (5.1)

where k/2π is the linewidth (full-width at half maximum, FWHM) of the peak centered at
the frequency ω0/2π and τd is the delay-time of the signal because of propagation through
the coaxial lines through which the readout pulse is propagating.
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Fig. 5.1 Single-flux resonator spectrum: Reflection response of the readout resonator.
(a) Magnitude of the complex reflection coefficient S11. The magnitude units correspond
to the raw values output by the OPX, where the factor 4 is related to the 4ns-sampling rate
of the analog to digital converter (ADC). (b) Phase of the complex reflection coefficient S11.
Red dots are the measured data points and the solid line is a fit according to Equation 5.15.1
of the main text. The fit yields the central frequency ω0/2π = 5.5751 GHz (dotted black
line) and the linewidth of k/2π = 1.254 MHz.
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5.1.2 Flux-dependence of the readout response
The Hamiltonian of the fluxonium coupled to the readout resonator (Equation 2.32.3) shows a
periodic dependence upon the external flux φext. This periodicity is directly traceable to the
presence of a closed superconducting loop in the circuit. The loop, constituted of the 360
junctions of the superinductor in series with the small junction, is the most sensitive element
of the circuit, since a single open junction in the loop would compromise this property of the
Hamiltonian. Consequently, once the readout resonator has been characterized, we perform
a rapid check of the circuit by scanning the response of the resonator as function of the
external flux.

The Figure 5.25.2 displays the reflection coefficient S11 of the resonator for different val-
ues of the external flux control (in volts), which we refer to as the resonator single-tone
spectrum. The spectrum is flat for most of the external-flux control values, except at some
specific values, for instance, V ≈ -14 V, -7 V and +8 V, where we observe abrupt variations.
At these points, the frequency of a given fluxonium transition crosses that of the resonator,
leading to an anti-crossing in the spectrum. For each value of the external flux control,
we fit the resonator response with the Equation 5.15.1. Notice that a quantitative analysis of
the resonator spectrum as a function of the external flux can be very involved, because of
the complex interplay between qubit-resonator detuning, mutual coupling strength, and the
absence of selection rules in the fluxonium leading to a variety of virtual transitions that
significantly affect the dispersive shifts [8282]. However, we identify two clear symmetry points
that correspond to the symmetries Ĥ (φext) = Ĥ (−φext) and Ĥ (φext) = Ĥ (2π − φext) (see
the vertical dashed lines in Figure 5.45.4c). These two symmetries are consequences of the
main features of the fluxonium hamiltonian, being both even and periodic (see Equation
2.32.3). The presence of these two symmetries are the clear signature of the circuit containing
a closed-loop. Then, we can identify the voltage values Vφext=0 and Vφext=π corresponding
to the external flux values φext = 0 and φext = π, respectively, which we use to rescale the
x-axis in terms of the external flux φext for all subsequent measurements.

In practice, we are interested to operate the fluxonium at φext = π, the so-called flux
frustration point. At this particular point, the frequency of the lowest transition of the fluxo-
nium is minimal and the fluxonium is first-order insensitive to variations of the external-flux.
The last feature means that the decoherence related to external-flux fluctuations is minimal
at the flux frustration point.
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Fig. 5.2 Resonator single-tone spectrum: Reflection response of the readout resonator
as function of the external flux control (x-axis) and the probe tone frequency (y-axis). (a)
Magnitude of the complex reflection coefficient S11. (b) Phase of the complex reflection
coefficient S11. (c) Fit parameters according to Equation 5.15.1, the red solid line is the fitted
central frequency of the complex Lorentzian as function of the external flux control while
the blue-filled region represents the fitted linewidth as function of the external flux control.
(d) Fitted linewidth of the complex Lorentzian as function of the external flux.

5.2 Two tone spectrum
The next step is characterizing the fluxonium circuit transitions in the frequency domain
around the already identified flux frustration point. For this purpose we perform a pump-
probe experiment, referred to as two-tone spectroscopy. The first tone (pump), applied to
the charge driving port, is scanned over a wide frequency range such that it populates higher
fluxonium excited states whenever the pump frequency matches a particular transition. The
different fluxonium states can be detected through their dispersive interaction with the read-
out resonator. Thus, the response of the resonator S11(ω0) is monitored with a second tone
(probe) whose frequency is fixed close to the unperturbed resonator central frequency ω0.

The result from the two-tone spectroscopy is shown in Figure 5.35.31. The color scale en-
codes the magnitude of the change of the complex reflection coefficient of the probe field
S11(ω0) as a function of the external flux φext and the pump frequency ωpump. The various

1The magnitude units correspond to the raw values output by the OPX.
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transitions of the fluxonium appear as blue lines in this graph. The red dotted lines corre-
spond to a fit of the various transition frequencies, obtained by numerically diagonalizing the
1D hamiltonian 2.32.3 [4040]. In spite of the apparent complexity of the circuit, being composed
of more than 360 Josephson junctions, we note the remarkable agreement between theory
and measurements. Thus, the physics of the system is well captured by a 3 parameters
lumped-element equivalent circuit (Equation 2.32.3). The fit parameters EJ = 5.178 GHz,
EC = 0.414 GHz, EL = 0.180 GHz. In the practice, the parameter EC can be inferred from
an EM-field simulation of the circuit design as it only depends on geometric parameters
of the circuit (see Section 3.13.1). The junction-related parameters EL and EJ are estimated
prior to cooling down the circuit in the dilution cryostat from resistance measurements at
room-temperature (see Section 4.34.3).

Away from the flux-frustration point, φext ̸= ±π, the fluxonium wave functions in the
position-like variable φ are well localized within each of the potential wells (see Figure 5.35.3c
right). These states, with small quantum fluctuations around a given value of φ are referred
to as fluxons. They can be thought of as states of a persistent current flowing through the
superconducting loop in either clockwise or counter-clockwise direction. Away from the flux
frustration point, we can distinguish two families of transitions according to their behavior
with respect to the external flux (see 2.72.7): The intra-well or plasmon transitions (|e⟩ → |h⟩
and |g⟩ → |f⟩), which are mostly independent on the external flux φext, and the inter-well
or fluxon transitions (|g⟩ → |h⟩ and |e⟩ → |f⟩), whose frequency varies linearly as a func-
tion of φext. As the external flux approaches closely to the flux frustration point, the two
neighboring potential wells become nearly degenerate and the left-well and right-well states
hybridize (see Figure 6.56.5 left). This leads to a double avoided crossing at the flux frustration
point. There are two characteristic frequencies, one of them given by the tunneling rate
across the central barrier for the excited states of each well |h⟩ and |f⟩), and the tunneling
rate as experienced by the bottom states of the wells (|g⟩ and |e⟩). The wavefunctions of
the excited states of the wells are more spread over the position-like variable φ, and thus,
their overlap is larger than the overlap between the wavefunctions of the bottom states of
the wells. The larger wavefunction overlap for excited states leads to an avoided crossing of
60 MHz between |f⟩ and |h⟩ versus only 1.8 MHz between |g⟩ and |e⟩ (See Figure 5.35.3a and
5.35.3b). Notice that the frequency of the |g⟩ → |e⟩ transition is minimal at the flux frustration
point, while the anharmonicity, the ratio between the frequency of the |g⟩ → |e⟩ transition
and the frequency of the transition to the next level |f⟩, is maximal, being of the order of 103.
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Fig. 5.3 Fluxonium two-tone spectrum: Reflection response of the readout resonator as
function of the external flux (x-axis) and the pump-tone frequency (y-axis) for a fixed value
of the readout probe frequency. (a) Magnitude of the complex reflection coefficient S11.
The red dotted lines are the first transition frequencies obtained from the lumped-element
hamiltonian of the fluxonium with the parameters EJ = 5.178 GHz, EC = 0.414 GHz,
EL = 0.180 GHz. The label of each red dotted line indicates the two levels involved in
the corresponding transitions. (b) Zoom into panel (a) at the region indicated by the red
rectangle, the difference between the two red dotted lines is actually the frequency of the
ground to first exited state transition, which is about 1.8 MHz at the flux frustration point
(φext/2π = 0.5). (c) Wavefunctions of the first 4 energy eigen-states of the fluxonium
at the flux frustration point (left) and at close to the flux-frustration point (right). (d)
Pulse sequence used to perform the measurement: firstly, the external flux threading the
fluxonium loop is set with the aid of the OPX, then, a 5 µs-long pump pulse is applied at
a given frequency, and simultaneously the readout is probed with a 5 µs-long pulse.
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5.3 Single shot readout

In the previous sections, we have learned how to probe experimentally the various transitions
of the circuit, extract the Hamiltonian parameters EJ , EC , and EL, and adjust the magnetic
flux to operate the circuit at the flux frustration point φext = π. At this particular operation
point, we have identified a low-frequency manifold {|g⟩, |e⟩}, that we refer to as the qubit
transition in the following. Ultimately, the goal of this work is to use the low frequency tran-
sition as a nearly resonant probe for the electric field generated by other physical systems.
However, extending the range of operation of circuit QED to the radio-frequency (MHz)
domain comes with distinct challenges: In the first place, the qubit transition is coupled to
a thermal environment with a large occupation nth ∼ kBT/ℏωeg ≫ 1, such that at equilib-
rium, the populations in |e⟩ and |g⟩ are nearly equal. Secondly, due to the large frequency
difference between the microwave readout resonator and the radio-frequency qubit transi-
tion, the state-dependent dispersive shift of the cavity is typically too weak to readout the
qubit state in a single-shot manner [8181]. In order to overcome these challenges, we rely on
the highly non-linear structure of the fluxonium spectrum (see, for instance, section 2.3.32.3.3):
the transition to the second excited state being in the microwave domain, it can be easily
manipulated and probed using standard circuit QED techniques. Moreover, the dispersive
shift of the ancillary readout resonator due to the higher energy states is large enough to
allow an efficient readout. This approach, where a low-frequency manifold is manipulated
thanks to higher-frequency transitions is reminiscent of optical spin manipulation in atomic
physics [3131], or Nitrogen-Vacancy centers [4242, 8181]. In response to the first challenge, we will
describe in Section 6.16.1 a protocol based on sideband cooling [2626, 7272] to deterministically pre-
pare the states |e⟩ or |g⟩. In the following sections, we rather focus on the second challenge:
in order to readout the qubit state, we address a selective transition to a higher-energy level
of the fluxonium circuit, as previously demonstrated in reference [8181]. This ancillary level
(either |f⟩ or |h⟩) isn’t typically populated at the operational temperature of the dilution
cryostat and they exhibit a significant dispersive shift impacting the readout resonator. In
the following, we describe the readout protocol using the higher energy state |f⟩ as the ancil-
lary state, but the experiment has given similar results with using |h⟩ as the ancillary state
instead. We start by characterizing the frequency of the ancillary transition |e⟩ → |f⟩ in
section 5.3.15.3.1. In the next section 5.3.25.3.2, we characterize the dispersive shift of the ancillary
resonator related to the |e⟩ → |f⟩ transition (at the flux frustration point) and we describe
the procedure to set the single-shot readout of the quibit transition using the ancillary state
|f⟩. The coherence properties of the |e⟩ → |f⟩ transition are characterized in section 5.3.35.3.3.
Finally, we demonstrate the single-shot readout in the qubit manifold using the ancillary
transition in section 5.3.25.3.2.

5.3.1 Characterization of the ancillary transition frequency

The first step consists in performing a selective π-pulse in order to transfer as efficiently as
possible the population from one of the lower levels either |g⟩ or |e⟩ to one of the higher
fluxonium excited states, for instance, |f⟩ or |h⟩. At the flux-frustration point φext = π, the
wavefunctions are either even-parity (|g⟩, |f⟩) or odd-parity (|e⟩, |h⟩). Consequently, the
selection rule forbids the direct |g⟩ → |f⟩ and |e⟩ → |h⟩ transitions (the matrix element for
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the flux operator φ, governing the strength of the transition, is strictly 0 at the flux frus-
tration point). This fact explains the vanishing of the corresponding lines in the two-tone
spectroscopy (see Figure 5.35.3). We thus aim for calibrating a π-pulse on either the |g⟩ → |h⟩
and |e⟩ → |f⟩ transition. In the first place, we perform a coarse scan of the frequency and
the duration of the pump pulse. The Figure 5.45.4 shows the measured readout signal (the
quadratures of the reflection coefficient S11) as a function of the frequency and the dura-
tion of the pump pulse. We clearly distinguish two sets of fringes (familiarly designated as
"chevrons") that are centered around 3.705 GHz and 3.760 GHz. Each chevron represents the
coherent oscillation of the occupation probabilities between two levels of the fluxonium, the
so-called Rabi oscillations. We associate to the Rabi fringes to the |e⟩ → |f⟩ and |g⟩ → |h⟩
transitions, respectively. The contrast of the Rabi oscillations is maximum when the pump
pulse frequency matches the resonance frequency of a given fluxonium transition (black dot-
ted lines). As the detuning increases, we observe simultaneously a reduction of the contrast
and an increase of the oscillation frequency. The geometric interpretation is that during
the excitation pulse, the pseudo-spin representing the two involved fluxonium levels rotates
around an effective pseudo-magnetic field ∝ Ωr/2êx +∆/2êz, where ∆ ≡ ωtransition − ωpump
is the detuning and Ωr is the Rabi frequency at resonance, leading to a Rabi oscillations
frequency

√
Ω2

r +∆2. From these graphs, we infer the approximate duration of the π-pulses
(approximately 25 ns with this drive amplitude), and at the same time, we can estimate the
optimal drive frequency to achieve resonance (3.705 GHz and 3.760 GHz for the |e⟩ → |f⟩
and |g⟩ → |h⟩ transitions respectively).
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Fig. 5.4 e-f Rabi chevron: Reflection response of the readout resonator as function of the
pump-tone duration (x-axis) and frequency (y-axis) for a fixed value of the readout probe
frequency (at the flux frustration point, φext/2π = 0.5). (a) Magnitude of the complex
reflection coefficient S11. The horizontal dotted lines are placed at the frequencies of the
|e⟩ → |f⟩ and |g⟩ → |h⟩ transitions, respectively. (b) Phase of the complex reflection
coefficient S11.

Next, we typically sweep the amplitude of the pump pulse, while keeping the duration
fixed, in order to more precisely adjust the pulse amplitude to perform a π-pulse on the
chosen ancillary transition. We recall that a π-pulse corresponds to a nearly perfect pop-
ulation exchange between the two states involved in the transition, e.g., |e⟩ and |f⟩. For
instance, the Figure 5.55.5 shows one of the quadratures of the reflection coefficient S11 as a
function of the contrast the amplitude of the pump pulse. In this case, the frequency of the
pump pulse was set in resonance with the |e⟩ and |f⟩ transition. Thanks to a sinusoidal fit
(blue line in Figure5.55.5b), we precisely infer the amplitude corresponding to a π-pulse (here
Vπ = 0.056 mV). These settings (frequency, amplitude and duration) of the pump pulse
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maximize the population transfer, for instance, from the lower state |e⟩ to the excited state
|f⟩. We assume that initially, prior to the pump pulse, both states of the qubit transition,
|g⟩ and |e⟩, are equally populated while the higher energy state |f⟩ is typically empty. Then,
the final state of the fluxonium, after the pump pulse, should resemble a statistical mixture
with states |g⟩ and |f⟩ equally populated while the state |e⟩ is now empty. This is precisely
the transition that we use as ancillary in the following to set the single-shot readout of the
qubit transition.
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Fig. 5.5 e-f Rabi power: Reflection response of the readout resonator as function of the
pump-tone amplitude (x-axis) while its duration and frequency are fixed and the external
flux is set at the sweet spot (φext/2π = 0.5). (b) Magnitude of the complex reflection
coefficient S11. The vertical dotted lines is placed at the amplitude corresponding to a
π-pulse. (a) Pulse sequence used to perform the measurement: First, a pulse with with a
varying amplitude V , and then, the readout probe pulse.
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5.3.2 Readout histograms and single-shot readout

The readout signals that we have discussed so far were extracted from a large number of
identical experimental realizations. The two quadratures I and Q of the complex reflection
coefficient S11 were averaged over the statistical ensemble of measured data, yielding a pair
of values expressed in an arbitrary unit (4 V·ns), which depends on the details of the amplifi-
cation and measurement chain. We are now interest in the fluctuations of the readout signals
over different iterations of the experiment. The Figure 5.65.6 shows a bi-dimensional histogram
of the quadrature values obtained for about 105 realizations of the same experiment. In the
subpanels (c) and (e), the readout pulse is applied at the circuit being at thermal equilib-
rium. An idle time of around 50 µs, about three times the thermal relaxation time of the
level |f⟩, was set between consecutive iterations of the experiment to ensure that the circuit
returns to thermal equilibrium. In this case, mostly the levels |g⟩ and |e⟩ are populated
while the other states, like |f⟩ and |h⟩, are mainly empty. This is a consequence of the
very non-linear spectrum of a heavy fluxonium at the flux frustration point. Typically, the
frequency of the qubit transition, |g⟩ → |e⟩, is so low that is below the environment energy
represented by kBT (see 5.65.6a). On the contrary, the next level of the fluxonium, |f⟩, has a
transition frequency 3 orders of magnitude larger compared to the qubit transition, such that
the level |f⟩ is above the environment energy (just like the other levels of the fluxonium).
The differential frequency shift of the readout resonator is too small to resolve between these
two-levels: in other words, the average shift in the quadratures I and Q between the realiza-
tions where the qubit is in state |e⟩, compared to those realization where it is in state |g⟩,
is much smaller than the standard deviation due to readout noise. This explains why the
histograms in Figure 5.65.6c and 5.65.6e are very close to a single Gaussian peak. However, two
well separated Gaussian peaks are visible when π-pulse on the |e⟩ → |f⟩ transition precedes
the readout pulse (see subpanels (d) and (f)). This bi-modal histogram clearly indicates
that the circuit occupies discrete states that can be resolved in a single readout realisation
(single-shot readout).

Notice that one of the quadratures, Q in this case, does not provide any useful informa-
tion on the fluxonium state and it is only the quadrature I that enables the labeling of the
|f⟩ state and the ensemble of |g⟩ and |e⟩. Beware that this is not the normal case, typically
the centers of the two gaussians are aligned along an arbitrary direction in the complex I-Q
plane that not necessarily matches any of the default coordinate axis. This is easily solved in
practice by performing a global-translation followed by a rotation in the complex I-Q plane,
e.g., a subtraction of zoffset and a multiplication by eiθ0 , where both the complex offset zoffset
and the phase θ0 are characteristic of a given transition. The Figure 5.65.6 also shows 1-D
histograms of the measurement results only as a function of the relevant quadrature I. By
looking at them, it becomes evident that, with an appropriate threshold, it is possible to
distinguish between the state |f⟩ and the ensemble of states |g⟩ and |e⟩ by a single-shot mea-
surement of the quadrature I. However, this shingle-shot readout is not perfect since there is
a small overlap between the tails of the distributions corresponding to |f⟩ and the ensemble
of |g⟩ and |e⟩, this overlap is small nonetheless. Thus, under the reasonable assumption that
the ancillary level |f⟩ is typically empty, by applying a π-pulse between the states |e⟩ and
|f⟩ (transferring all the population of state |e⟩ to |f⟩) before probing the readout resonator,
we can actually resolve between the states of the qubit-manifold, |g⟩ and |e⟩, in a single
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iteration of the experiment. We refer to this indirect readout of the qubit state through an
ancillary fluxonium level plus the readout resonator as the single-shot readout.
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Fig. 5.6 Readout histograms: real (I) and imaginary (Q) parts of the complex reflection
coefficient S11. (a) Pulse sequence used to perform the measurement: In one case, the
readout resonator is probed while the fluxonium is at thermal equilibrium, and in the second
case, a π-pulse (labeled as "X") at the frequency of the |e⟩ → |f⟩ transition is applied before
probing the readout resonator. (b) Level diagram of the low-frequency spectrum of the
fluxonium at the flux-frustration point: The |g⟩ → |e⟩ transition is so low, approximately
1.8 MHz, that is is typically below the environment energy represented by kBT . This means
that both levels |g⟩ and |e⟩ are equally populated at thermal equilibrium, while the next level
|f⟩, that is several GHz away from the ground state |g⟩, remains practically unpopulated.
The orange line represents the π-pulse applied in the measurement protocol. 2-D histograms
of the real (I) and the imaginary (Q) parts of the complex reflection coefficient S11 (as
measured by a 5 µs resonant pulse), without (c) π-pulse (X) and with (d) π-pulse. 1-D
histograms obtained by ignoring the Q-quadrature corresponding to the case without (e)
π-pulse (X) and with (f) π-pulse. The vertical dashed lines represents the threshold that
we set to implement the single shot read out.
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5.3.3 Coherence properties

We finalize this chapter by completing the characterization of the ancillary transition |e⟩ →
|f⟩ in time domain, particularly we discuss the measurement of its coherence properties, its
thermal relaxation time T1 and its coherence time T2. In the first place, the relaxation time
of the |e⟩ → |f⟩ transition is measured by first applying a π-pulse, and then, probing the
resonator after waiting a time τ . The Figure 5.75.7 shows the results of the T1 measurement, the
results are presented in terms of population in |f⟩, instead of quadratures (or magnitude and
phase), now that the single shot has been set. The data follows an exponential fit yielding
a decay time (T1) of 8 µs.
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Fig. 5.7 T1 e-f: Measurement of the relaxation time of the |e⟩ → |f⟩ transition. (a)
Measurement protocol: First a π-pulse (X) is applied transferring 50 % of the fluxonium
population from the |g⟩, |e⟩ manifold to the |f⟩ state, and then, after an idle time τ , the
readout resonator is probed. (b) Population in the |f⟩ state as a function of the elapsed
time after the π-pulse (X). The blue empty circles represent the measured data, while the
red solid line is obtained by fitting the data with an exponential decay. The fitted T1 of
the |e⟩ → |f⟩ transition is 6.27 µs.

Next, the coherence time (T ∗
2 ) of the |e⟩ → |f⟩ transition is measured as it follows: A

first π/2-pulse is applied followed by an idle time τ , during which the qubit pseudo-spin
freely evolves in the equatorial plane of the Bloch sphere, and then, a second π/2-pulse is
finally applied in order to map one of the directions of the equatorial plane (x or y) to the z-
direction. If the local oscillator controlling the phase of the two π/2-pulses was precisely set
at the natural precession frequency of the qubit ωge, one would expect a non-oscillatory signal
as a function of τ , as the qubit pseudo-spin decays towards the center of the Bloch sphere.
However, any detuning ∆ ̸= 0 between the local oscillator ωd and the qubit frequency ωge

would result in an oscillatory behavior of the signal. If both the period of these oscillations
and the exponential decay had similar characteristic time scales, it would be delicate to fit
the signal and extract each parameter independently. Therefore, in order to separate the two
timescales, we intentionally dephase the second π/2-pulse by an angle θ(τ) = δ0τ , where δ0
is the so-called (artificial) Ramsey detuning. Furthermore, in order to remove the ambiguity
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between positive and negative detuning ∆, we alternate experimental sequences where the
second π/2-pulse probes the the X quadrature of the qubit pseudo-spin with sequences where
the second π/2-pulse probes the Y quadrature instead. Following this approach, it is possible
to reconstruct the precise evolution of the qubit pseudo-spin in the Bloch sphere as a function
of the idle time τ . The Figure 5.85.8 shows the results of the T2-Ramsey measurement, they
are properly fitted by a complex spiral with an exponential decay (T ∗

2 ) of 10.31 µs.
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Fig. 5.8 T2 Ramsey e-f: Measurement of the decoherence time of the |e⟩ → |f⟩ transition.
(a) Measurement protocol: First a π/2-pulse (

√
X) is applied between the |e⟩ and |f⟩

states, then, after an idle time τ , a second π/2-pulse is applied. This second pulse has a
phase difference θ = δ0τ with respect to the first pulse, so that it is labeled as

√
Xθ(τ).

Alternatively, (b) an additional phase difference of π/2 is added to the second π/2-pulse,
effectively probing the Y -axis of the Bloch sphere, thus, this pulse is labeled as

√
Yθ(τ).

Measured population in the |f⟩ state as function of the elapsed time τ between the two
π/2-pulses: (c)

√
X and

√
Xθ(τ), and

√
X and

√
Yθ(τ). The blue empty circles represent

the measured data, while the red solid line is obtained by fitting the data with a complex
spiral with an exponential decay. The fitted T ∗

2 Ramsey of the |e⟩ → |f⟩ transition is
10.31 µs.

This chapter has presented the basic characterization of the circuit, using a higher-energy
state of the fluxonium |f⟩ to set a single-shot readout of the qubit-manifold, the states |g⟩
and |e⟩. The next chapter is about the preparation and manipulation of the low-frequency
qubit.



Chapter 6

Characterization and manipulation of
the low-frequency qubit

As discussed in Section 2.3.22.3.2, the heavy-fluxonium operated at the flux-frustration point, has
a lowest-energy transition in the range of few MHz, while the next transitions are 3 orders
of magnitude higher in frequency (in the GHz range). The two lowest-energy states of the
heavy-fluxonium circuit then can be used as a radio-frequency qubit. The associated transi-
tion has a large charge matrix element, which allows direct manipulation via charge driving
(voltage driving). This chapter is dedicated to describing the preparation and manipulation
of this radio-frequency qubit.

As the qubit transition is typically below kBT where T is the environment temperature,
the states |e⟩ and |g⟩ are equally populated. Thus, it is necessary to implement a protocol
to prepare the qubit in a pure state (|g⟩ or |e⟩), before any further measurement or manipu-
lation. The first section of this chapter is about the implementation of this protocol that we
refer to as the sideband preparation protocol. Then, we continue with the basic manipulation
of the qubit, in this case, we perform a Rabi spectroscopy as the first step for optimizing the
coherent manipulation of the qubit degree of freedom. The next sections of the chapter are
dedicated to the characterization of the qubit coherence properties: its thermal relaxation
time T1 and its coherence time T2. We conclude the chapter with the characterization of
the qubit frequency and coherence time as function of the external flux φext around the flux
frustration point, φext/2π = 0.5.

129
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6.1 Sideband preparation
As we have seen in section 5.25.2, the qubit transition |g⟩ → |e⟩ has a frequency of approximately
1.8 MHz. This transition is few orders of magnitude below the next fluxonium transitions.
For instance, the frequency of the next allowed transition, |e⟩ → |f⟩, is around 3.705 GHz,
while the frequency of the next next allowed transition, |g⟩ → |h⟩, is around 3.760 GHz. The
low-energy spectrum of the fluxonium is sufficiently non-linear such that the g-e manifold can
be used as a radio frequency qubit. However, the qubit frequency is far below kBT , where T
is the environment temperature such that both states have practically the same population
at thermal equilibrium. Thus, a reset protocol is required to initialize the qubit in a pure
state, either |g⟩ or |e⟩, before proceeding with further manipulations. We drew inspiration
from opto-mechanics [7272] and took advantage of the coupling between the ancillary resonator
and the fluxonium, as schematically shown in Figure 6.16.1. In practice, we initialize the qubit
by driving the resonator at a detuned frequency. More specifically, we use a reset pulse to
drive one of the resonator sidebands corresponding to either the transition |g 0⟩ → |e 1⟩ or
the transition |e 0⟩ → |g 1⟩ (see Figure 6.26.2). The number "0" represents the vacumm state
of the ancillary resonator, while 1 represents the resonator state with 1 quantum of energy.
The two sidebands are located at the frequencies νs± = νresonator ± νge, respectively.

Fig. 6.1 Sideband cooling scheme. .

The Figure 6.26.2 shows in more detail the implementation of the reset protocol1. As the
first step, we performed a pump-probe experiment that we refer to as the sideband spec-
troscopy. In this experiment, the qubit starts at thermal equilibrium, then, a reset pulse
is used to pump one of the sidebands transitions while the change in qubit population is
tracked via the single shot readout of the ancillary resonator (see Figure 6.26.2b). The fre-
quency of the reset pulse is scanned within a few MHz range around the bare resonator
frequency νresonator = 5.64 GHz. Finally, this measurement is repeated for different values of
the external flux around the flux frustration point. The result of the sideband spectroscopy
is shown in Figure 6.26.2c. Notice the two clear transition lines at both sides of the resonator
frequency (see dashed horizontal line in Figure 6.26.2c). We remark that the two sidebands
correspond to the transitions |g 0⟩ → |e 1⟩ and |e 0⟩ → |g 1⟩, such that the difference between
their frequencies is the qubit frequency νge (see Figure 6.26.2a). Away from the flux frustration
point, the difference between the frequencies of the two sidebands scale linearly with the
external flux. This is traced to the dependence of the |g⟩ → |e⟩ transition frequency on the
external flux, which roughly goes as 2πEL|φext|. Moreover, this measurement verifies once

1The population in |e⟩ is re-scaled to account for the finite readout efficiency
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more that the frequency of the transition |g⟩ → |e⟩ is minimal at the flux frustration point.
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Fig. 6.2 Sideband preparation: (a) Level diagram of the sideband preparation. (b) Pulse
sequence used for the measurement: Firstly, the reset pulse with duration τ and frequency
νreset is applied, and it is followed by the single shot-readout of the qubit state, consisting
of a π-pulse (X) at the |e⟩ → |f⟩ transition and the readout pulse to probe the resonator.
(c) Spectrum of sideband transitions of the resonator: the frequency of the reset pulse νreset
is varied around the readout resonator frequency νreadout for different external flux values
around half flux, φext/2π = 0.5, the population in state |e⟩ at the end of the sequence is
represented by the color of each pixel. (d) Optimization of the reset-pulse duration: the
external voltage is set at the value indicated by the vertical dashed line in panel (c), the
frequency of heating pulse (red branch) is shown by the height of the red dot while the
frequency of the cooling pulse (blue branch) is indicated by the height of the blue dot.
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Notice that the two sideband transitions vanish in the vicinity of the flux frustration
point. This result is expected since the wavefunctions of the states |g⟩ and |e⟩ have op-
posite parities at the flux frustration point and the sideband transitions are forbidden in
consequence. However, this represents a problem for setting the reset protocol at the flux
frustration point, as this is the optimal point for the operation of the low-frequency qubit
but the sideband transition are forbidden. We circumvented the issue by first shifting the
external flux away from the flux frustration point (see vertical dashed line in Figure 6.26.2c),
then, preparing the qubit in one of the states |g⟩ or |e⟩ by pumping the respective resonator
sideband, and finally, shifting the resonator back to the flux frustration point. The external
flux is shifted sufficiently slow to avoid non-adiabatic effects, i.e., that the qubit remains in
the prepared state for the whole duration of the ramp of the external flux. The duration of
the external flux ramp was set to 4 µs. The final step was optimizing the duration of the
reset pulse. In Figure 6.26.2d we scan the duration of the reset pulse and track the change in
the quit population. We set the duration of the reset pulse to 10 µs.

We conclude this section by estimating the efficiency of the sideband preparation. As we
have discussed in Section 5.3.25.3.2, the dispersive shift of the ancillary resonator corresponding
to the qubit manifold is negligible, however, we can take advantage of the large dispersive
shift of the resonator due to the higher energy levels of the fluxonium to set a single-shot
readout of the qubit manifold. The single-shot readout nonetheless is not ideal, meaning that
there is some probability of miss-labeling the measured qubit states. In order to estimate
the readout efficiency and the preparation efficiency all at once, we perform the following
experiment: The qubit is initialized in either a thermal state "th" (in thermal equilibrium),
state |g⟩ or state |e⟩, then, the transition |g⟩ → |h⟩ is resonantly driven for a fixed duration
and an amplitude that is varied over several iterations, and finally, the qubit state readout
by probing the ancillary resonator 2. The results of the experiment are shown in Figure
6.36.3. By fitting the data (dashed lines), we retrieve the readout efficiency and the sideband-
preparation efficiency.

Let’s refer to the computational basis as |0⟩ (ground state) and |1⟩ (excited state). In the
case of an ideal single-shot readout, the probability of correctly detecting the qubit in state
|e⟩ (state |g⟩) is P [|1⟩ | |e⟩] = 1 (P [|0⟩ | |g⟩] = 1). This means that the probability of wrongly
labeling the qubit in state |e⟩ (state |g⟩) is P [|0⟩ | |e⟩] = 0 (P [|1⟩ | |g⟩] = 0). Notice that the
higher energy level, in this case |h⟩, that is involved in the single-shot readout must be taken
into account in the analysis. The density matrix of the qubit right after the initialization is:

ρ0 = ρx
g(0) |g⟩ ⟨g| +

(
1 − ρx

g(0)
)

|e⟩ ⟨e| (6.1)

Where the symbol "x" refers to the qubit initialization, {"th", "0", "1"}. After resonantly

2Notice that for the other experiments involving the qubit we normally use the ancillary fluxonium state
|f⟩ for the single-shot readout, as described in Section 5.3.25.3.2.
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driving the |g⟩ → |h⟩ transition with an amplitude Vd (in volts), the density matrix becomes:

ρ1 =
ρx

g(0)
2

(
1 + cos

(
2π Vd

V2π

))
|g⟩ ⟨g| +

(
1 − ρx

g(0)
)

|e⟩ ⟨e|

+
ρx

g(0)
2

(
1 − cos

(
2π Vd

V2π

))
|h⟩ ⟨h|

+ 1
2

√
ρx

g(0)
(
1 − ρx

g(0)
)

sin
(

2π Vd
V2π

)
(|g⟩ ⟨h| + |h⟩ ⟨g|)

(6.2)

The probability of detecting the qubit in state |1⟩ is then:

P [|1⟩] =
ρx

g(0)
2

(
1 + cos

(
2π Vd

V2π

))
P [|1⟩ | |g⟩] +

(
1 − ρx

g(0)
)
P [|1⟩ | |e⟩]

+
ρx

g(0)
2

(
1 − cos

(
2π Vd

V2π

))
P [|1⟩ | |h⟩]

(6.3)

Where P [|1⟩ | |g⟩], P [|1⟩ | |h⟩] and P [|1⟩ | |e⟩] are the probabilities of detecting the qubit in
the computational state |1⟩ given that the fluxonium is actually in either state |g⟩, |h⟩ or
|e⟩, respectively. In the case of the single-shot readout, the amplitude of the resonant drive
of the |g⟩ → |h⟩ transition is chosen such that Vd/V2π = 0.5 (a π-pulse). The probability of
detecting the qubit in state |1⟩ is after the single-shot readout is then:

Pssr [|1⟩] =
(
1 − ρx

g(0)
)
P [|1⟩ | |e⟩] + ρx

g(0)P [|1⟩ | |h⟩] (6.4)

The efficiency of the readout is given by the coefficients γ11 and γ00, where γ11 is the prob-
ability of (correctly) detecting the computational state |1⟩ given that the qubit was initially
in state |e⟩, while γ00 is the probability of (correctly) detecting the computational state |0⟩
given that the qubit was initially in state |g⟩:

γ11 =P [|1⟩ | |e⟩] ≈ 0.959
γ00 =P [|0⟩ | |h⟩] ≈ 1 − P [|1⟩ | |h⟩] ≈ 0.878

(6.5)

Notice that this simple model doesn’t take into account explicitly the relaxation of the
fluxonium states during the readout of the ancillary resonator. However, the lower efficiency
of labeling the qubit as |0⟩, γ00, with respect to the efficiency of labeling the qubit as |1⟩,
γ11, can be explained by considering the higher relaxation rate 1/T hg

1 of the level |h⟩ with
respect to the relaxation rate 1/T eg

1 of level |e⟩. The Equation 6.46.4 can be inverted to infer
the "real" population of state |e⟩ from the measured value Pssr [|1⟩] (raw population) 3:

ρe = Pssr [|1⟩] + γ00 − 1
γ11 + γ00 − 1 (6.6)

Finally, the preparation efficiency is characterized by the coefficient ϵ0 and ϵ1, where ϵ0 is
defined as the population of state |g⟩ after the sideband initialization in the ground state
|0⟩, while ϵ1 is defined as the population of state |e⟩ after the sideband initialization in the
excited state |1⟩:

ϵ0 =ρ0
g(0) ≈ 0.991

ϵ1 =ρ1
e(0) = 1 − ρ1

g(0) ≈ 0.976
(6.7)

3This equation was used to rescale the axis of Figure 6.26.2d
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Fig. 6.3 Preparation efficiency: Readout efficiency: P [1| |g⟩] = 0.94065, P [1| |e⟩] =
0.95872, P [1| |h⟩] = 0.87809. Preparation efficiency: ρg(0) = 0.99096, ρe(0) = 0.97630,
ρg, th = 0.50764

6.2 Rabi spectroscopy
With the reset protocol already implemented, we proceed with the characterization of the
qubit manifold {|g⟩, |e⟩}. We perform a Rabi oscillations experiment, in which the qubit is
initialized in the state |e⟩, and then, an additional pulse is used to drive the coherent popu-
lation exchange between the states |e⟩ and |g⟩, finally, the population in state |e⟩ at the end
of the measurement protocol was measured via the single-shot readout of the ancillary res-
onator. The Figure 6.46.4 shows the result of the measurement referred to as Rabi spectroscopy.
The population exchange between the states |e⟩ and |g⟩ is clear and more noticeable when
the frequency of the drive (g-e) pulse matches the qubit frequency (see dashed line in Figure
6.46.4b).
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Fig. 6.4 g-e Rabi chevron: (a) Pulse sequence used in each experimental realization:
Firstly, the qubit is initially prepared in the state |e⟩ by applying the sideband reset pulse,
then, the drive pulse with duration τ is applied at the frequency of the |g⟩ → |e⟩ transition,
and finally, the projective measurement of the qubit state is performed by applying the
π-pulse (X) at the |e⟩ → |f⟩ transition and concluding with the readout pulse to probe the
resonator. (b) Rabi chevron of the g-e transition: The coordinates of each pixel indicate
the values of the g − e pulse frequency (y-axis) and duration (x-axis) while the color of
each pixel indicates the represents the qubit population at the end of each measurement
realization.

6.3 Relaxation time
The next step in the qubit characterization is measuring the relaxation time T1. In this
experiment, the qubit is initialized in one of the states of the qubit manifold, either |e⟩ or
|g⟩, and after a delay time τ , the final quit population is measured.

6.3.1 Qubit relaxation time at 10 mK

The Figure 6.56.5 shows the results of the experiment. In either case, we notice the clear ex-
ponential decay of the population in |e⟩ towards the thermal equilibrium value 0.5.

In general, when a qubit interacts with a thermal environment of occupation nth, it is
exposed to two loss channels, described by the operators Γ↑σ

+ and Γ↓σ
−, such that Γ↑ ∝ nth

and Γ↓ ∝ nth + 1 [4141]. In the case of a low-frequency transition, such as the {|e⟩ , |g⟩}
manifold, the large environmental occupation nth ≈ kBTge/ℏωge, with Tge being the environ-
mental temperature associated to the 1.8 MHz transition, results in Γ↓ ≈ Γ↑ ≡ Γ , leading to
an exponential relaxation towards the statistical mixture ρth = (|e⟩ ⟨e| + |g⟩ ⟨g|) /2 at a rate
2Γ . By fitting exponential curves to the data of Figure 6.56.5, we obtain T1 = 1/2Γ = 34 µs.
This value is below the the reported values of other state-of-the-art qubit implementations
[8181].
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Fig. 6.5 T1 g-e: Measurement of the relaxation time of the |g⟩ → |e⟩ transition. (a) Pulse
sequence used for the experimental realization: The qubit is initially prepared in either |g⟩
or |e⟩ with the aid of the reset pulse, and then, after waiting a time τ , the qubit state is
determined by the projective measurement consisting of a π-pulse (X) at the |e⟩ → |f⟩
transition and the readout pulse to probe the resonator. (b) Population in the state |e⟩ at
the end of each realization as function of the waiting time τ after the qubit preparation. The
empty circles represent the measured data while the solid lines are obtained by fitting the
data with an exponential decay. The blue and red colors correspond to a qubit preparation
in state |g⟩ or |e⟩, respectively. The fitted T1 of the |g⟩ → |e⟩ transition is 34 µs.

6.3.2 Qubit relaxation time vs cryostat temperature
As the qubit frequency explored in the current work extends well below the values reported
in the literature so-far [8181], it is important to determine whether the qubit transition couples
with a thermal environment or is primarily constrained by technical noises (e.g. 1/f -charge
noise). In this section, we study the dependence of the relaxation rate as a function of the
temperature. To achieve this, we heat the mixing-chamber of the cryostat with a resistor.
The temperature TRuO2 , as measured by a Ruthenium oxide probe built-in with the cryostat
(model Bluefors BFLD250) is stabilized thanks to a feedback loop to various setpoints rang-
ing from 7 mK to 100 mK. For each point, we measure the decay rate 2Γ eg = 1/T eg

1 of the
states |e⟩ and |g⟩, akin to the measurement shown in the Figure 6.56.5. We observe a nearly
constant decay rate 2Γ eg ≈ 35 ms−1 in the range 7 mK ≤ TRuO2 ≤ 50 mK. Above 50 mK, we
observe a linear increase of the decay rate, compatible with an imperfect thermalization of the
sample with the mixing chamber. The fact that the assymptote of the curve Γ (TRuO2) does
not intersect with the origin is attributed to a possible miscalibration of the cryostat tem-
perature sensor at high temperature. In order to cross check the temperature measurement,
we perform an independent temperature measurement by taking into account the residual
thermal population of the higher qubit excited states {|f⟩ , |h⟩}. This signal serves as a local
probe, scrutinizing the noise temperature of the circuit at the second transition frequency of
3.7 GHz. In practice, we let the circuit thermalize with its environment, and then record a
histogram of the real (I) and imaginary part (Q) of the readout cavity reflection coefficient,
as visible on Figure 6.66.6. Three peaks are visible on the histogram, corresponding to the
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population in the manifold |g⟩ , |e⟩}, the state |f⟩ and the state |h⟩ respectively. We assume
a Boltzmann distribution for the population in the various qubit states: pk ∝ e−kbTeff/Ek,
where Ek is the energy of state k (k ∈ |g⟩, |e⟩, |f⟩ , |h⟩}. Furthermore, by neglecting the small
transition frequencies ωge/2π ≈ 1.8 MHz, and ωfh/2π ≈ 50 MHz, compared to ωef/2π ≈
3.7 GHz, we get P|g⟩ = P|e⟩ ≡ Pg,e/2 and P|f⟩ = P|h⟩ ≡ Pf,h/2. We extract the populations
Pg,e and Pf,h by a triple Gaussian fit to the readout histogram, where the Gaussian peaks
corresponding to |f⟩ and |h⟩ are constrained to the same area. From the values Pg,e and
Pf,h, we determine the effective temperature:

Tef = ℏωge

kB log
(

Pg,e

Pf,h

) (6.8)

We then plot the decay rate 2Γ eg as a function of effective temperature Tef in Figure 6.66.6. We
observe a linear dependence on most of the temperature range indicating that the |g⟩ → |e⟩
and |e⟩ → |f⟩ transitions are coupled to thermal environments with similar noise tempera-
tures, in spite of their 3-orders of magnitude frequency difference.
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Fig. 6.6 Relaxation rate vs temperature: (a) 2-dimensional histogram of the I and Q
quadratures of the readout reflection coefficients for a qubit at thermal equilibrium with
the environment. (b) Histogram of the I quadrature. The population in the manifolds {|g⟩,
|e⟩, |f⟩ and |h⟩} are determined by fitting the various peaks with Gaussian functions. (c)
Energy decay rate 2Γ in the {|g⟩, |e⟩} manifold measured via T x

1 relaxometry (see Figure
6.56.5), as a function of cryostat temperature. (d) The same data are plotted as a function
of the effective temperature of the |e⟩ → |f⟩ transition, as determined from Equation 6.86.8).
The filled point is the one extracted from the histograms in (a) and (b). The dashed line
is a guide to the eyes highlighting the linear dependency above Tef = 100 mK.
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6.4 Coherence time

The next step in the qubit characterization is measuring the dephasing time T ∗
2 thanks to a

Ramsey spectroscopy (see Chapter 1 section 1.5.31.5.3). Compared to the sequence described in
the first chapter, the second π/2 pulse is applied with a phase difference θ(τ) = θ0 + 2πδτ
(see figure 6.76.7), with the respect to the first pulse, in order to generate an artificial oscillation
between the states to simplify the fitting procedure.
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Fig. 6.7 g-e T2 Ramsey: Measurement of the decoherence time of the |g⟩ → |e⟩ transition.
(a) Pulse sequence used for the experimental realization: The qubit is initially prepared
in state |e⟩, and then, the first π/2-pulse (

√
X) between |g⟩ and |e⟩ is applied, and after

a delay time τ , the second π/2-pulse between |g⟩ and |e⟩ is applied, however, this second
pulse has a phase difference θ(τ) with respect the first one, such that θ = δ0τ , thus, the
second pulse is labeled as

√
Xθ(τ). Alternatively, (b) an additional phase difference of π/2

is added to the second π/2-pulse, effectively probing the y-axis of the Bloch sphere, thus,
the second pulse is labeled as

√
Yθ(τ). Finally, the qubit state is projectively measured

by first applying a π-pulse between |e⟩ and |f⟩ and then probing the resonator with the
readout pulse. The population of the state |e⟩ at the end of the pulse sequence in the case
of the pulses

√
X and

√
Xθ(τ) is shown in (c), while the population of the state |e⟩ at the

end of the pulse sequence in the case of the pulses
√
X and

√
Yθ(τ) is shown in (d). The

blue empty circles represent the measured data, while the red solid lines are obtained by
fitting the data with a complex spiral times an exponential decay. The fitted T2 Ramsey
of the |g⟩ → |e⟩ transition is 39.7 µs.

We perform the measurement sequence twice for each value of the delay time τ , each
iteration corresponds to a different value of the initial phase difference θ0 between the pulses.
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The two values of θ0 are shifted with respect to each other by π/2. In this way, we effectively
probe two orthogonal axis on the Bloch sphere. The Figure 6.76.7 shows the results of the
Ramsey spectroscopy at the flux frustration point. We fit the obtained results with a complex
spiral, which is nothing but a rotation in the complex plane times an exponential decay.
The fitted decay time, corresponding to the decoherence time T ∗

2 of the qubit, was 39.7 µs.
Notably, the measured coherence is not too far from the upper limit of 2T1, suggesting a
pure dephasing rate of Γφ = 1/2T1 − 1/T ∗

2 = (97 µs)−1.

6.5 Ramsey spectroscopy vs external flux

The final step of the qubit characterization is the measurement of the coherence time T2
around the flux frustration point. We recall the fluxonium circuit is supposed to be insensi-
tive to first-order flux fluctuations at the flux frustration point. For this purpose, we perform
the experimental sequence described in section 6.26.2, for different values of the external flux
φext in a vicinity around the flux frustration point. We fitted the data corresponding to each
value of the external flux obtaining a relation between the qubit frequency and decoherence
time as function of the external flux. The Figure 6.86.8 shows the measurement results. We
can distinguish two clear regions in the plot according to the behaviour of the curves. On
the one hand, we notice that, in a very small vicinity around the flux frustration point,
the qubit frequency remains almost constant as function of the external flux, with a local
minimum at the flux frustration point. On the contrary, within this same region around
the flux frustration point, the decoherence time varies abruptly as function of the external
flux reaching a local maximum at the flux frustration point. On the other hand, when the
external flux shifts away from the flux frustration point, the qubit frequency varies almost
linearly as function of the external flux. Nonetheless, the decoherence time varies very slowly
as function of the external flux away from the flux frustration point.

We can infer from these results that the qubit dephasing away from the flux frustra-
tion point takes place via two mechanisms. Therefore, we can express the total dephasing
rate 1/T2 as the sum of the dephasing rates of the two mechanisms. We can attribute one
of the dephasing mechanisms to the imperfect qubit preparation because of unwanted and
uncontrollable external flux fluctuations. This means that if the target operation point is
φext = φ0, the effective operation point for a particular measurement iteration is actually
φext = φ0 + δφ, with δφ being a random variable for each measurement iteration, in conse-
quence, the qubit frequency is also a random variable for each measurement iteration. This
means that the measured data corresponding to two measurement iterations have a random
phase difference δθ with respect to each other. When the measured data of all the iterations
is averaged, at a fixed operation point, the random phases add up and the signal contrast
is reduced. Moreover, the phase difference δθ increases with the delay time τ , thus, the
signal contrast becomes worse the longer the delay time τ . This dephasing mechanism is
less dominating at the operation points where the qubit frequency varies less as function of
the external flux. Therefore, when the qubit is operated at the flux frustration point, where
the qubit frequency is minimal, the dephasing related to external flux fluctuations is also
minimal.
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The results of the Ramsey spectroscopy vs external flux confirm that the flux frustration
point is the optimal point for operation the low frequency qubit.
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Fig. 6.8 T2 g-e vs external flux: (a) Pulse sequence used for the experimental realization:
Firstly, the external flux φext is set to a given value, and then, the qubit is initially prepared
in |e⟩, next, the first π/2-pulse (

√
X) between |g⟩ and |e⟩ is applied, and after a delay time

τ , the second π/2-pulse (
√
Xθ(τ)) between |g⟩ and |e⟩ is applied with a phase difference θ(τ)

with respect the first one, finally, the qubit state is projectively measured by first applying
a π-pulse between |e⟩ and |f⟩ and then probing the resonator with the readout pulse. (b)
Qubit frequency (red) and decoherence time T2 (blue) as function of the external flux
φext. Both the frequency and T2 of the qubit are obtained by fitting the measured Ramsey
fringe, corresponding to each value of the external flux φext, with a complex spiral with
an exponential decay. The red solid line is a plot of the qubit frequency as function of the
external flux obtained from the fluxonium hamiltonian whose parameters were previously
determined.



Chapter 7

AC-charge sensitivity of the
low-frequency qubit

The superconducting-circuits platform offers the possibility of designing artificial quantum
systems with desired properties for interesting applications. A typical superconducting cir-
cuit is engineered to have a sufficiently an-harmonic transition to be used as a qubit, which
can be easily manipulated and read-out thanks to its strong (dipolar) interaction with elec-
tromagnetic fields. The property of having a strong dipole moment is particularly interesting
for interfacing a superconducting circuit with other quantum systems. For instance, fluo-
rescence from individual electronic spins was successfully detected using a superconducting
qubit-based microwave-photon detector [7979] operating close to 7 GHz. Additionally, in the
realm of circuit quantum acousto-dynamics (cQAD), the coupling between a qubit and a
piezoelectric resonator is used to detect and manipulate the phononic state, typically within
the 2-10 GHz range [66, 2323, 5959, 6767]. However, adapting these sensing schemes to lower fre-
quencies, below the conventional operating frequency of superconducting qubits, introduces
distinct challenges. First, superconducting qubits are read out thanks to the dispersive shift
imparted to a nearby superconducting resonator. As the dispersive shift quickly drops for
a cavity detuning exceeding the qubit anharmonicity, weakly anharmonic qubits, such as
transmons, would require nearly resonant resonators with dimensions scaling inversely with
the frequency (as an illustration, a 1 MHz λ/2-coplanar cavity requires a 100-m-long waveg-
uide). Second, low-frequency systems are coupled to a hot thermal bath with which they
exchange photons randomly, quickly turning pure quantum states into statistical mixtures.
In recent years, significant progress has been made in overcoming these challenges. Notable
contributions include the development of a 14 MHz heavy fluxonium qubit with a long co-
herence time and fast manipulation through fast-flux gates [8181]. Furthermore, operation of
a fluxonium qubit dispersively coupled to a 690 MHz piezoelectric mechanical system was
demonstrated earlier this year [4747].

The fact that the qubit transition has a frequency of ωge/2π ≈ 1.8 MHz is interesting
for applications in the field of hybrid quantum systems. For example, it could be resonantly
coupled to a high quality factor mechanical resonator such as a phononic crystal defect mode
(see Figure 7.17.1a). Typical parameters in such mechanical resonators are: frequencies of the
order of few MHz and quality factors of the order of 108 at cryogenic temperatures [4343, 6161].

141
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This device is a thin square silicon nitride film with 1 mm long edges and that is 100 nm
thick. It is patterned with a periodic array of holes such that out of plane modes see a large
bandgap, which is a frequency range where the system does not have any mode. By breaking
the symmetry of the crystal in the center of the structure, a single mode appears within the
bandgap. It is spatially localized at the center of the structure (see Figure 7.17.1b), such that
the amplitude of the mode is exponentially decreasing from the center, towards the edges of
the membrane. This helps minimizing the bending losses due to the very high curvature of
the membrane at the edges, where the connection between the film and the substrate forces
the membrane motion to zero. At the same time, the localized defect mode is also protected
from environmental noise (see Figure 7.17.1c and 7.17.1d). This device is promising for building
quantum memories with record times, of the order of few seconds. Moreover, silicon nitride
phononic crystal membranes are promising candidates for testing the Penrose gravitational
collapse due to its long coherence time and large zero-point fluctuations [3636].

The coupling between a SiN membrane and a fluxonium can be achieved by metallizing
the SiN membrane, and bring the defect pad in the vicinity of the fluxonium capacitor elec-
trode, making some sort of parallel plate capacitor where the spacing is modulated by the
membrane oscillations. In this way, if the membrane is DC-biased, the motion of the mem-
brane produces a charge modulation on the fluxonium capacitor electrode. In the absence of
membrane, we can emulate the motion of the membrane by imposing a voltage modulation
on the charge-drive electrode of the circuit. For instance, it was used in Section 6.26.2 to drive
Rabi oscillations of the qubit states. Note that the fluxonium qubit not only has a low fre-
quency, but it also features a large charge matrix element | ⟨g|N |e⟩ | with respect to the qubit
transition frequency ωge, such that its sensitivity to a charge modulation is extreme. In this
chapter we evaluate the sensitivity of the fluxonium to a nearly resonant AC-charge drive.
We start by discussing the theoretical advantages of the fluxonium qubit over other qubit
implementations, and then, we introduce a practical scheme for detecting a weak AC-charge
modulation. We show that our device allows the detection of charge modulations of the
order of 10−2 Cooper pairs, on a capacitance of the order of 20 fF.

7.1 The fluxonium qubit for sensing weak charge modulations

The fluxonium qubit can be used as a charge sensor. Indeed, a charge modulation induces a
Rabi oscillation of the qubit, as seen in Section 1.3.41.3.4. The amplitude of the charge modulation
can be inferred from the measured Rabi frequency. Since the qubit has a finite relaxation
time T1, the ultimate sensitivity is reached when the charge modulation induces a single Rabi
flop during T1. In more details, let us consider a single-mode qubit with a capacitive energy
given by 4EC (N − ng(t))2, which interacts with a classical offset charge ng(t) = Nd cos(ωdt).
For small charge modulations Nd ≪ 1, the Hamiltonian can be linearized according to
the rotating-wave approximation (RWA). In a frame rotating at the drive frequency, the
hamiltonian writes:

Hint = −8ECNd ⟨e|N |g⟩σx (7.1)
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Fig. 7.1 Phononic membrane resonator: (a) Micrograph of a phononic-crystal membrane
resonator suspended over a silicon substrate (green). The membrane is made of silicon
nitride (yellow) with a thickness of about 90 nm. It has a phononic crystal pattern with a
defect in the middle (withe dashed-line), resulting in a mode that is both localized in space
and frequency (red dot in panel c). (b) Displacement profile of the defect mode, the contrast
represents the amplitude of the out-of-plane displacement probed at the mode frequency
5.702 MHz. The x and y axes are in units of position over the membrane surface (panel a).
(c) Membrane spectrum probed at the defect center. (d) Ring-down measurement of the
defect mode at room temperature, giving a quality factor of 2.28 ×106. This membrane was
fabricated and characterized in our lab, but more information about the lotus membrane
is provided in [6161].

Using the relation between charge and flux matrix elements, i.e., 8EC | ⟨e|N |g⟩ | = ℏωge| ⟨e|φ|g⟩ |
[5353], we derive the Rabi frequency

Ωr = 2Ndωge| ⟨e|φ|g⟩ | (7.2)

In a resonant coupling scenario, where the drive frequency ωd is imposed by the resonance
of an auxiliary system to probe, the qubit frequency needs to fulfill ωge = ωd. In such a
situation, maximizing the third factor | ⟨e|φ|g⟩ | is crucial. Indeed, only this term depends on
the specifics of the qubit implementation, while the first two terms Nd and ωge are charac-
teristics of the auxiliary system to be detected. For instance, in cQAD, the frequency ωd is
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set by the mechanical resonance frequency, whereas the amplitude Nd depends on the details
of the mechanical-electrical transduction. In this case, we expect an AC-charge modulation
of Nd ∼ 10−2 at a resonance frequency of ωd/2π = Ωm/2π ≈ 2 MHz (see section 7.1.17.1.1).
While the matrix element | ⟨e|φ|g⟩ | is typically suppressed exponentially in the heavy flux-
onium regime, a radically different scenario emerges at the flux-frustration point. Here, the
wavefunctions recover a large overlap | ⟨e|φ|g⟩ | ≈ π. This value compares favorably with
weakly anharmonic qubits, where | ⟨e|φ|g⟩ | ∼ (2EC/EJ)1/4 ≪ 1, or even the Cooper-pair
box | ⟨e|φ|g⟩ | ∼ 4EC/EJ ∼ 1. In essence, the unique characteristics of fluxonium eigenstates
at the flux-frustration point, manifesting as Schrödinger cat-like superpositions of persistent
current states, endow it with a larger charge sensitivity compared to a transmon or Cooper-
pair box operating at the same transition frequency.

In Figure 6.46.4 of Section 6.26.2, we directly drive the qubit, biased at φext = π, with a MHz
pulse on the charge drive. We observe a Rabi oscillation pattern with maximum contrast for
ωd = ωge = 1.8 MHz. In a similar experiment, the frequency of the driving pulse was set
equal to the qubit frequency, ωd = ωge, while its amplitude Vd was varied. The Figure 7.27.2a
shows the results of this measurement, each column corresponds to a measured Rabi fringe
for one value of the driving pulse amplitude Vd. Then, we fit the measured data with an
decaying-cosine function obtaining one Rabi frequency Ωr for each value of the driving am-
plitude Vd. The half-periods of the Rabi fringes are well fitted by α/Vd (see black dashed line
in Figure 7.27.2a), representing a linear relation between the Rabi frequency Ωr and the driving
pulse amplitude Vd. The Figure 7.27.2b shows the measured Rabi frequency Ωr/2π as function
of amplitude of the driving pulse in terms of either volts Vd (top axis) or number of Cooper-
pairs Nd (bottom-axis). The value of Nd corresponding to Ωr is calculated with Equation
7.27.2. As expected, we observe a linear relation between the Rabi frequency and the drive
amplitude (in terms of Nd or Vd, respectively), up to Ωr/2π ≈ 1 MHz. This result agrees
wtht the rotating-wave approximation (RWA) which is valid in the weak-driving-amplitude
regime, Ωr ≪ ωge.

We deduce from Equation 7.27.2 the minimum charge modulation N required to observe a
single Rabi flop within T1:

Nmin = 2π
| ⟨e|φ|g⟩ |ωgeT1

≈ 5 × 10−3 (Cooper pairs) (7.3)
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Fig. 7.2 Calibration of the Rabi frequency vs charge drive amplitude: (a) Rabi spec-
troscopy of the qubit transition. The color of each pixel represents the rabi-fringe contrast
for a given driving pulse duration (y-coordinate) and amplitude (x-coordinate). In this way,
a given column corresponds to rabi oscillation of the qubit at a fixed driving amplitude.
The measured data are fitted column by column using a decaying-cosine function. The fit
yields the rabi oscillations frequency Ωr/2π corresponding to the driving amplitude of each
column Vd. (b) Qubit Rabi frequency Ωr/2π as a function of the charge driving amplitude
Vd: The data (blue open circles) is fitted with a linear function (red solid line), resulting in
a relation between Rabi frequency Ωr (Vd) as a function of the charge driving amplitude Vd.
Finally, the amplitude of the charge drive in terms of Cooper-pairs number Nd as function
of the Rabi frequency Ωr/2π is obtained by considering that Ωr/2 ≈ πωgeNd (see Equation
7.27.2). The green dot represents the chosen amplitude of the calibration tone Vcal for the
AC-charge sensing experiment.
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The ability to manipulate the qubit state with less than one percent of a Cooper-pair
shows the extreme sensitivity of the fluxonium to a resonant AC-charge modulation. For
instance, this value would be sufficient to reach the strong-coupling regime with a DC-biased
mechanical membrane in a resonant coupling scenario as we will discuss in Section 7.1.17.1.1. The
aforementioned value of 5×10−3 Cooper pairs corresponds to a single shot charge sensitivity
of 10−2 e. However, through the implementation of quantum sensing protocols, like those
routinely used in nitrogenvacancy-center magnetometry [1313] and similar methodologies [? ],
we are able to accrue substantial statistical data. This allows us to measure charge sensitivity
within a one second integration period and subsequently compare these findings with other
charge sensing methods.

7.1.1 The meca-fluxonium
In this section, we assess the possibility for the heavyfluxonium to reach the strong-coupling
regime with a state-of-the art macroscopic electromechanical systems. For this, we esti-
mate the magnitude of the charge modulation induced by the zero-point fluctuations of a
DC-biased vacuum-gap capacitor (see Figure 7.37.3). In this scenario, we consider that the
out-of-plane vibrations of a silicone-nitride membrane modulate the capacitance between
two parallel electrodes subjected to a DC bias voltage Vg. Table I summarizes the main
geometric parameters of the membrane. The membrane lateral dimensions are chosen such
that the fundamental mechanical mode matches the qubit frequency ωge [8080]. The area of
the electrodes are chosen to obtain a capacitance C = 50 fF matching the value reported in
our fluxonium implementation. We assume an electrode separation w = 500 nm, which is a
conservative estimate based on flip-chip assemblies already reported in the literature [6969].

Membrane length l 150 µm
Defect-mode frequency Ωm 1.8 MHz

Mode effective mass m 3 ng
Zero-point fluctuations xzpf 7 fm

Capacitor plates separation w 500 nm
Capacitor plates surface S (90 µm)2

Table 7.1: Estimated parameters of the electro-mechanical system.

The mechanical resonator undergoes the sum of the restoring force and the electrostatic
force:

F = mΩ2
m (w − z) −

V 2
g ϵ0S

z2 (7.4)

We can estimate the regime of mechanical stability as Vg <
√
mΩ2

mw3/ϵ0S ≈ 50 V. If we
assume a conservative bias voltage Vg = 5 V, we obtain

Nzpf = Vg

2e xzpf
dC

dx
≈ 0.01 (Cooper pairs) (7.5)

where xzpf =
√
ℏ/(2mΩm) is the amplitude of the zero-point fluctuations of the mechanical

motion, and dC
dx ≈ C/w. The term Nzpf represents the amplitude of the charge fluctuations

induced on the small junction of the fluxonium due to the fluctuations of the membrane
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Fig. 7.3 Schematics of the mecha-fluxonium.

position xzpf . Notice that Nzpf is larger than the minimal value that is needed to observe
Rabi oscillations Nmin (Equation 7.37.3), which is set by the relaxation time of the qubit T1.
Thus, this simple calculation with a realistic set of parameters suggests that is possible to
use the fluxonium qubit as a sensor for the membrane motion, and in particular, the strong
coupling regime between the fluxonium and the membrane can be achieved in principle.

7.2 Frequency-resolved AC-charge sensing experiment
In Section 7.17.1, we have performed an experiment to measure the sensitivity of the fluxonium
qubit to an external charge modulation (see Figure 7.27.2). Nonetheless, this scheme has two
main limitations: In the first place, we intentionally set the frequency of the driving tone
ωd emulating the charge modulation equal to the qubit transition frequency ωge. This max-
imized the contrast of the Rabi oscillations, thus, maximizing the qubit sensitivity to the
charge modulation. In a realistic scenario where the qubit is used as a probe, the frequency
of the charge modulation ωd is an arbitrary parameter which is not controlled. In fact,
we would be interested in determining both the amplitude and the frequency of the charge
modulation in a single experiment. However, the simple scheme used in Section 7.17.1 does not
provide transparent information about the frequency of the charge modulation ωd. In prin-
ciple, by sweeping the qubit frequency ωge around the frequency of the charge modulation
ωd, we can obtain a map of the frequency of the Rabi oscillations Ωr as a function of the
detuning ∆ = ωge − ωd, a so-called Rabi chevron as the one shown in Figure 6.46.4. By fitting
this map Ωr(∆), we could infer both parameters of the charge modulation. Although the
frequency of the qubit ωge indeed can be tuned by adjusting the external flux φext threading
the fluxonium loop (see Figure 5.35.3), this is not practical since at each iteration we would need
to adjust the parameters of the pulses that are used to manipulate the qubit. Additionally,
the coherence properties of the qubit change drastically outside the flux frustration point
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φext = π (see Figure 6.86.8), the ideal point for operating the qubit.

This section describes the implementation of a method for detecting both the frequency
and the amplitude of a weak AC-charge modulation with using the fluxonium qubit as the
probe. In a quantum sensing experiment, we can leverage the ability to swiftly prepare and
read out the qubit state to detect a weak charge signal through repeated interaction with
the two-level system. This involves preparing the qubit in |g⟩, after which it interacts for an
interrogation time τI with the weak continuous signal to be detected (referred to as the “cal-
ibration tone” henceforth), of frequency ωcal, applied to the charge port. For weak enough
calibration tone, the Bloch-vector undergoes a small rotation away from the south pole. We
then probe this displacement by mapping the transverse component of the Bloch-vector to
the σz basis with a π/2-pulse, before performing a single-shot readout of the qubit in the {
|g⟩, |e⟩ } basis. In this scheme, the probability to detect the qubit in |e⟩ slightly deviates
from 1/2, by an amount that depends on the phase and amplitude of the calibration tone.
Furthermore, the mismatch ∆ = ωge−ωcal between the calibration tone and qubit frequencies
gives rise to a shot-to-shot rotation of the Bloch-vector by an angle θk = k∆τM , where k is
the repetition index and τM the repetition period of the experiment. Even though each mea-
surement result mk ∈ {0, 1} only contains one bit of information, the complete measurement
record {mk}0≤k<Ntot can be used to reconstruct the spectrum of the charge modulation by
the periodogram method [22]. Performing the π/2-rotation along an unique axis would lead to
an ambiguity between positive and negative detuning ∆. We thus perform the π/2-rotation
of the qubit along an axis picked up sequentially in the set {+X, +Y , -X, -Y }. This ensures
a non-ambiguous correspondence between discrete and continuous time frequencies over the
interval

[
−ΩNy/2, +ΩNy/2

]
, where ΩNy is the Nyquist angular frequency ΩNy = π/τ . In the

end, the series of 0 and 1 that is obtained from this protocol contains information on both
the amplitude and the frequency of the charge modulation produced by the calibration tone.
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Fig. 7.4 Experimental protocol: A weak monochromatic charge-drive (also referred to as
calibration tone) is detected thanks to a repeated pulse sequence: The qubit is prepared in
|g⟩. After interacting for a time τI with the tone, a partial information on the qubit state
is obtained by performing a π/2 pulse in one of the 4 directions {+X, +Y , −X, −Y },
followed by a qubit state readout in the ge basis. From the measurement samples mk ∈
{0, 1}, a complex telegraphic signal σk = ik(mk − 1/2) is constructed. The noise spectrum
centered around the qubit frequency is estimated by Bartlett’s-method, with periodograms
of 1000 non-overlapping consecutive samples.
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Then, by performing a Fourier transform of these results, we can turn the fluxonium qubit
into a quantum spectrum analyzer that allows to reconstruct the power spectral density of
the charge modulation. This last one is thus obtained by performing fast-Fourier-transforms
over consecutive windows of N = 1000 consecutive samples. The calibration tone is finally
visible as a sinus-cardinal-shaped peak, centered around ωcal and of width ΩRBW = 2π/Nτ .
This value is the residual bandwidth of our quantum spectrum analyzer, and it can be tuned
by adjusting the window length (the samples per window N).

7.2.1 Qubit evolution during the interrogation time

We first model the evolution of the qubit during the interrogation time, by taking into
account the interaction with the calibration-tone, which has a Rabi-frequency Ωr and a
finite detuning ∆ = ωge − ωcal. Since the qubit is coupled to a thermal bath with a large
occupation, we choose an equal rate Γ for the loss and gain of qubit excitations. From the
empirical finding T1 ≈ T2 (see Figure 3), we also assume a dephasing rate Γφ ≈ Γ/2. The full
evolution of the qubit’s density matrix ρ is thus, in a frame rotating at the drive frequency:

d

dt
ρ = − i

ℏ
[H , ρ] + Γ

[
σ†

−ρ σ− − 1
2
(
σ−σ

†
−ρ+ ρ σ−σ

†
−

)]
+ Γ

[
σ†

+ρ σ+ − 1
2
(
σ+σ

†
+ρ+ ρ σ+σ

†
+

)]
+ Γ

[
σ†

zρ σz − 1
2
(
σzσ

†
zρ+ ρ σzσ

†
z

)] (7.6)

Where the qubit Hamiltonian is H = ℏ∆/2σz + ℏΩr/2σx. We proceed by calculating the
Bloch equations for the 3 components of the qubit pseudo-spin:

d

dt
⟨σx⟩ = −∆ ⟨σy⟩ − 2Γ ⟨σx⟩

d

dt
⟨σy⟩ = −Ωr ⟨σz⟩ +∆ ⟨σx⟩ − 2Γ ⟨σy⟩

d

dt
⟨σz⟩ = +Ωr ⟨σy⟩ − 2Γ ⟨σz⟩

(7.7)

This equations describe two simultaneous rotations, one around the z-axis with angular
frequency ∆ and the other one around the x-axis with angular frequency Ωr, and the isotropic
relaxation of the pseudo-spin components towards the origin of the Bloch sphere at a rate
Γ . We consider the qubit to be in state |g⟩ as the initial condition, i.e., ⟨σx⟩ = −1 and
⟨σz⟩ = ⟨σy⟩ = 0. Solving the Bloch equations with the mentioned initial condition leads to:

⟨σx⟩ (t) = e−2Γ t
(

cos
(
t
√
Ω2

r +∆2
)

− 1
)

Ωr∆

Ω2
r +∆2

⟨σy⟩ (t) = e−2Γ t sin
(
t
√
Ω2

r +∆2
)

Ωr√
Ω2

r +∆2

⟨σz⟩ (t) = −e−2Γ t
(
∆2 +Ω2

r cos
(
t
√
Ω2

r +∆2
)) 1

Ω2
r +∆2

(7.8)
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At the end of the interrogation time τI, the projection of the Bloch vector on the xy-plane
is:

|2 ⟨σ⊥⟩ | =
√

⟨σx⟩2 + ⟨σy⟩2 = Ωr τI e
−2Γ τI f(∆) (7.9)

The coefficient f(∆) is the response function of the detector, that is given by

f(∆) =

√√√√√∆2 sinc
(

τI
2π

√
Ω2

r +∆2
)2

+Ω2
r sinc

(
τI
π

√
Ω2

r +∆2
)2

Ω2
r +∆2 (7.10)

The quantity | ⟨σ⊥⟩ | can be think of as the contrast that we would observe in a Rabi spec-
troscopy, where driving pulse has an amplitude Ωr, duration τI, and frequency ωd = ωge −∆.
In the limit ∆ ≫ Ωr, the detector response function simplifies to

f(∆) ≈ sinc
(

∆

Ωfull

)
(7.11)

Where the bandwidth is defined as Ωfull =: 2π/τI, and sinc(x) = sin(πx)/πx. The Equation
7.117.11 means that the qubit is not sensitive to the noise that is away from its central frequency
ωge by more than Ωfull.

7.2.2 Signal processing
At the end of the interrogation time, a projective measurement of one of the transverse
components of the pseudo-spin is performed in the qubit frame. The discrete random variable
mk represents the outcome of the qubit-state measurement at the iteration step k. This is
nothing but a "0" if the qubit is found in |g⟩ or a "1" if the qubit is found in |e⟩. The mean
value of ⟨mk⟩ is related to the transverse component of the qubit pseudo spin σ⊥ as:

⟨mk⟩ = 1
2 + Re

[
⟨σ⊥⟩ (−i)kei∆τMk

]
(7.12)

The term (−i)k encodes for the alternating measurement basis {+X, +Y , −X, −Y }. The
term ei∆τMk describes the phase difference between the frames of the qubit and calibration
tone. Without loss of generality, we can ignore the phase of the pseudo-spin projection ⟨σ⊥⟩,
and assume ⟨σ⊥⟩ ∈ R+, such that:

⟨mk⟩ = 1
2 + ⟨σ⊥⟩ Re

[
(−i)kei∆τMk

]
(7.13)

Notice that the sequence of measurement axis as function of the iteration number k (mod
4), {+X, +Y , −X, −Y }, corresponds to an effective clockwise-rotation of the lab frame
with angular frequency ωlab = π/2τM. Moreover, this rotation of the lab frame translates
into an anti-clockwise-rotation of the pseudo-spin ⟨σ⊥⟩ with angular frequency −ωlab. Keep
in mind that exp(−iωlab kτM) = exp(−iπk/2) = (−i)k. Then, we can rewrite Equation 7.137.13
in a way such that this additional rotation of the pseudo-spin shows up explicitly:

⟨mk⟩ = 1
2 + ⟨σ⊥⟩

2
[
ei(∆−ωlab) kτM + e−i(∆−ωlab) kτM

]
(7.14)
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The final step in sampling the data sets is applying the following transformation:

σk = ik
(
mk − 1

2

)
(7.15)

Notice again that the term ik corresponds to a clockwise rotation of the pseudo spin with
angular frequency ωlab = π/2τM. Finally, we compute the mean of the generated data σk:

⟨σk⟩ = ⟨σ⊥⟩
2

[
ei∆ kτM + ei(2ωlab−∆) kτM

]
(7.16)

The mean of the signal σk is the sum of two rotations in the complex plane: one with fre-
quency ω+ = ∆ and the other with frequency ω− = π/τM − ∆. The spectrum of a real
harmonic-oscillating function, for instance cos(∆t), contains two peaks in the frequency do-
main: one at ω+ = ∆ and the other one at ω− = −∆. This means thay the spectrum
is insensitive to the sign of the frequency ∆. We see in Equation 7.167.16 that the negative
component of the signal has been shifted in the frequency domain as −∆ → (2ωlab − ∆),
with ωlab = π/2τM. This shift is different depending on the sign of the detuning ∆. On the
one hand, if the detuning ∆ is positive, both ω+ = ∆ and ω− = π/τM −∆ are positive, rep-
resenting clock-wise rotations on the complex plane. On the other hand, if the detuning ∆
is negative, both ω+ = −|∆| and ω− = −π/τM + |∆| (mod 2π/τM) are negative, representing
counter-clock-wise rotations on the complex plane. Thus, the sign of the detuning ∆ can be
inferred from the spectrum of the signal ⟨σk⟩.

Alternatively, we can write Equation 7.167.16 into a more friendly but less insightful form:

⟨σk⟩ = ⟨σ⊥⟩ cos (kτM∆) (k even)
⟨σk⟩ = i ⟨σ⊥⟩ sin (kτM∆) (k odd)

(7.17)

The real and imaginary parts of the complex numbers ⟨σ⊥⟩ ei∆t are encoded pairwise on the
successive samples σk.

7.3 Frequency-domain analysis of the signal
This section is about the analysis of the measured data in frequency domain.

7.3.1 Power spectral density estimation
The sampled data σk (see Equation 7.157.15) are grouped by windows of N = 1000 consecutive
samples, the spectrum of each window is obtained via the discrete Fourier transform (DFT),
yielding a set of frequencies {ωn} for each window that is referred to as periodogram. In
order to reduce the spacing between Fourier frequencies, the Fourier transform is performed
on a 0-padded version of each window {zk}0≤k<Np N , such that

zk = σk 0 ≤ k ≤ N − 1
zk = 0 N ≤ k < NpN

(7.18)

The padding factor Np represents the number of frequency bins in each measurement band-
widths. We typically use Np = 5.
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We denote {Zn}0≤n<Np N the discrete Fourier transform of the samples of a given window
{zk}0≤k<Np N :

Zn =
Np N−1∑

k=0
zk exp

(
−i 2πk n
NpN

)
(7.19)

In the previous expression k is related to a discrete time tk =: kτM, while n is related to the
frequencies ωn obtained from the DFT. The DFT frequencies are given by

ωn = 2π n
NNp τM

(mod 2π/τM) (7.20)

With n = 0, 1, 2, ... NNp − 1. Notice that the index n > NNp/2 correspond to a negative
frequency. The Fourier frequencies ωn ∈ (−π/τM, π/τM], and any two adjacent frequencies
are separated by δω = 2π/NNp τM.

We evaluate ⟨Zn⟩ that is obtained by averaging the spectra of all the data windows Zn.
By plugging Equations 7.167.16 and 7.187.18 into Equation 7.197.19, we get an expression for ⟨Zn⟩:

⟨Zn⟩ = ⟨σ⊥⟩
2

N−1∑
k=0

[
ei(∆−ωn) kτM + ei(π/τM−∆−ωn) kτM

]
(7.21)

This expressions contains two geometric sums that can be easily simplified. Moreover, we
would like to rewrite the previous expression in terms of the Nysquit frequency ΩNy =: π/τM:

⟨Zn⟩ = ⟨σ⊥⟩
2 exp

(
iπ(N − 1) (∆− ωn)

2ΩNy

) sin
(
πN(∆−ωn)

2ΩNy

)
sin
(
π (∆−ωn)

2ΩNy

)
+ ⟨σ⊥⟩

2 exp
(
iπ(N − 1) (ΩNy −∆− ωn)

2ΩNy

) sin
(
π

N(ΩNy−∆−ωn)
2ΩNy

)
sin
(
π

(ΩNy−∆−ωn)
2ΩNy

)
(7.22)

The mean of the spectrum ⟨Zn⟩ is periodic with respect to the detuning ∆, with period of
4ΩNy. Moreover, it contains two families of resonances: the first family appears at ω+ = ∆
(mod 2ΩNy), while the second family appears at ω− = ΩNy −∆ (mod 2ΩNy). The difference
between the center frequencies of the two resonances is |ω+ − ω−| = |ΩNy − 2|∆||.

Next, we proceed to analyze the behavior of ⟨Zn⟩ near the first family of resonances. We
consider ωn = ∆+ δ such that |δ| ≪ ΩNy. In this regime, ⟨Zn⟩ can be approximated as:

⟨Zn⟩ ≈ N
⟨σ⊥⟩

2 exp

iπ (∆− ωn)
2ΩNy

(N−1)

 sinc
(
∆− ωn

2ΩNy
N

)
(7.23)

Now we analyze the behavior of ⟨Zn⟩ near the second family of resonances. We consider
ωn = ΩNy −∆+ δ such that |δ| ≪ ΩNy. In this regime, ⟨Zn⟩ can be approximated as:

⟨Zn⟩ ≈ N
⟨σ⊥⟩

2 exp

iπ (ΩNy −∆− ωn)
2ΩNy

(N−1)

 sinc
(
ΩNy −∆− ωn

2ΩNy
N

)
(7.24)
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Following Bartlett’s method, the power spectrum Sn is then estimated by taking the
mean-value ⟨|Zn|2⟩ over a large number of periodograms. If the two resonances are sufficiently
narrow, the power spectrum of the signal, Ssignal

n = | ⟨Zn⟩ |2, can be approximated as:

Ssignal
n (∆, ωn) ≈ N2 ⟨σ⊥⟩2

4

[
sinc

(
∆− ωn

ΩRBW

)2
+ sinc

(
ΩNy −∆− ωn

ΩRBW

)2
]

(7.25)

Where the residual bandwidth ΩRBW is:

ΩRBW = 2ΩNy
N

= 2π
NτM

(7.26)

The regime of the two resonances being narrow enough corresponds to the conditionΩRBW ≪
|ω+ − ω−| = |ΩNy − 2|∆||. The residual bandwidth ΩRBW results from the sampling of the
measurement data. The Figure 7.57.5 shows the power spectrum Sn = ⟨|Zn|2⟩ of the measured
data {σk}. We observe the two expected peaks of the signal power spectrum Ssignal

n (Equation
7.257.25), at the Fourier Frequencies ω+/2π = ∆/2π and ω−/2π = ΩNy/2π−∆/2π. Notice that
the mean point between the peaks centers is ΩNy/4π = 7.3485 kHz (see vertical dashed line
in Figure 7.57.5a). The maximum frequency of the spectrum is νmax = ΩNy/2π = 14.697 kHz,
corresponding to a measurement repetition time τM ≈ 34.02 µs. The Figure 7.57.5b zooms in
around the first peak, whose center frequency is ω+/2π = 1.146 kHz. The residual bandwidth
of the peak is ΩRBW ≈ 31 Hz. The peak is fitted according to Equation 7.257.25, assuming a flat
noise level Snoise

n . The height of the peak max(Sn) × 4/N2 is approximately the projection
of the Bloch vector in the xy-plane ⟨σ⊥⟩.
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Fig. 7.5 Power spectrum of the measured data: (a) Power spectrum Sn = ⟨|Zn|2⟩ of
the measured data. It was obtained by averaging the magnitude-squared of the spectrum
of many periodograms. The power spectrum is normalized by the factor 4/N2, where
N = 1000 is the number of samples per periodogram. (b) Zoom in around the center
frequency ω+/2π of the first peak of the power spectrum Sn(ωn). The amplitude of the
peak A is related to the mean-value of the in-plane projection of the qubit pseudo spin
⟨σ⊥⟩ as A = ⟨σ⊥⟩2. Blue empty circles are the measured data while the red solid line
is a sinc-squared fit according to Equation 7.257.25. The residual bandwidth of the peak is
ΩRBM/2π ≈ 31 Hz, and the in-plane projection of the qubit pseudo-spin is ⟨σ⊥⟩ ≈ 0.1690.
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7.3.2 Response to the calibration tone and frequency aliasing

In the section 7.37.3 we saw that mean-value of the spectrum ⟨Zn⟩ is actually a periodic function
of ∆, with period of 2ΩNy (see Equation 7.227.22). However, the approximation of the power
spectrum Ssignal

n that was provided in Equation 7.257.25 does not explicitly show this 2ΩNy-
periodicity. Moreover, the power spectrum Ssignal

n contains two families of resonances that
further complicate the analysis. The combination all this factors makes difficult to trace the
exact value of the detuning ∆ from the center frequency of a measured resonance ωp. The
section is about the analysis of the power spectrum Ssignal

n (∆) as function of the detuning
∆.

A better approximation of the power spectrum Ssignal
n (∆, ωn) = | ⟨Zn⟩ |2 that shows more

explicitly its periodic nature is the following:

Ssignal
n (∆, ωn) ≈ ⟨σ2

⊥⟩
4

sin
(
πN(∆−ωn)

2ΩNy

)2

sin
(
π (∆−ωn)

2ΩNy

)2 +
sin
(
π

N(ΩNy−∆−ωn)
2ΩNy

)2

sin
(
π

(ΩNy−∆−ωn)
2ΩNy

)2

 (7.27)

This approximation is obtained from Equation 7.227.22 in the limit of sufficiently narrow reso-
nances. This condition is equivalent to ΩRBW ≪ |ω+ −ω−| = |ΩNy −2|∆||, where ω+ and ω−
are the center frequencies of the two families of resonances that are present in ⟨Zn⟩. More
precisely, the previous condition can be translated into:

N ≫ 2
|1 − 2|∆|

ΩNy
|

(7.28)

For sufficiently large number of samples per window N , the approximation of the power
spectrum Ssignal

n (∆, ωn) = | ⟨Zn⟩ |2 given by Equation 7.277.27 works well everywhere except
within a small vicinity around |∆| = ΩNy/2.

Notice that the the power spectrum Ssignal
n (∆, ωn) has two families of resonances that

are given by the zeros of sin
(
π (∆−ωn)

2ΩNy

)2
and sin

(
π

(ΩNy−∆−ωn)
2ΩNy

)2
. Therefore, the center

frequencies of the two families of resonances are located at the Fourier frequencies

ω+ = ∆ (mod 2ΩNy)
ω− = ΩNy −∆ (mod 2ΩNy)

(7.29)

In general, we observe that the power spectrum Ssignal
n (∆) = | ⟨Zn⟩ |2 is periodic with respect

to the detuning ∆, with a period of 2ΩNy, while the mean-value of the spectrum ⟨Zn⟩ has
a period of 4ΩNy. The difference between the center frequencies of the two resonances is
|ω+−ω−| = |ΩNy−2|∆modΩNy

||. Moreover, the two resonances become degenerate, ω+ = ω−,
when ∆ = ±ΩNy/2. This suggest that the points ∆ = ±ΩNy/2 are symmetry points of the
power spectrum Ssignal

n (∆).

Firstly, we verify that ∆ = +ΩNy/2 is a symmetry point by applying the transformation
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∆ → +ΩNy/2 +∆ to the power spectrum Ssignal
n given by Equation 7.277.27:

Ssignal
n

(
∆+ ΩNy

2 , ωn

)
= ⟨σ2

⊥⟩
4


sin
(
π

N( 1
2 ΩNy−ωn+∆)

2ΩNy

)2

sin
(
π

( 1
2 ΩNy−ωn+∆)

2ΩNy

)2 +
sin
(
π

N( 1
2 ΩNy−ωn−∆)

2ΩNy

)2

sin
(
π

( 1
2 ΩNy−ωn−∆)

2ΩNy

)2


(7.30)

Notice that Ssignal
n

(
−∆+ ΩNy

2 , ωn

)
= Ssignal

n

(
∆+ ΩNy

2 , ωn

)
meaning that ∆ = +ΩNy/2 is

indeed a symmetry point of the power spectrum Ssignal
n (∆). Next, we verify that∆ = −ΩNy/2

is a symmetry point by applying the transformation ∆ → −ΩNy/2+∆ to the power spectrum
Ssignal

n given by Equation 7.277.27:

Ssignal
n

(
∆− ΩNy

2 , ωn

)
= ⟨σ2

⊥⟩
4


sin
(
π

N(− 1
2 ΩNy−ωn+∆)

2ΩNy

)2

sin
(
π

(− 1
2 ΩNy−ωn+∆)

2ΩNy

)2 +
sin
(
π

N((2− 1
2 )ΩNy−ωn−∆)

2ΩNy

)2

sin
(
π

((2− 1
2 )ΩNy−ωn−∆)

2ΩNy

)2


(7.31)

By considering that the period of the power spectrum Ssignal
n (∆) with respect to the detuning

∆ is 2ΩNy, we therefore find that Ssignal
n

(
−∆− ΩNy

2 , ωn

)
= Ssignal

n

(
∆− ΩNy

2 , ωn

)
, meaning

that ∆ = −ΩNy/2 is also a symmetry point of the power spectrum Ssignal
n (∆). Finally, the

power spectrum Ssignal
n (∆, ωn) is invariant under the exchange of the variables ωn ↔ ∆,

meaning that ωn = ±ΩNy/2 are also symmetry points of the power spectrum.

The Figure 7.67.6 shows the expected behaviour of the power spectrum Ssignal
n (∆, ωn) as

function of the detuning ∆. We can observe the central frequencies ω± of the peaks of the
power spectrum Ssignal

n as function of the value of the detuning ∆ (see red and blue lines in
Figure 7.67.6a).

Moreover, we see the symmetry points of the power spectrum. For instance, the centers
of the peaks ω± are symmetrically located with respect to the horizontal lines ωn = ±ΩNy
(see the horizontal dashed black lines in Figure 7.67.6a). The Figure 7.67.6b shows the expected
amplitude of the peaks Ssignal

n (∆, ωn = ω±(∆)) as function of the detuning ∆. The decay
of the peak amplitude with increasing ∆ comes from the in-plane projection of the qubit
pseudo-spin ⟨σ⊥⟩ according to Equation 7.277.27. The qubit has approximately a sinc-like re-
sponse as a function of ∆ (see Equations 7.97.9 and 7.117.11), with a bandwidth Ωfull = π/τI.
Finally, the Figure 7.67.6c displays the response of the power spectrum Ssignal

n at a fixed Fourier
frequency ω0 when the detuning ∆ is swept, i.e., Ssignal

n (∆, ωn = ω0).
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Fig. 7.6 Theoretical power spectrum vs detuning: (a) Location of the peaks ω± of the
power spectrum Ssignal

n in Fourier frequency space ωn as function of the detuning ∆ between
the qubit frequency and the calibration-tone frequency. The yellow rectangle represents the
ideal region to set and detect the calibration tone without an ambiguity of the relation be-
tween the measured peak center ω+ and the detuning ∆. (b) Amplitude of the peaks
Ssignal

n (∆, ωn = ω±) as function of the detuning ∆. The width of the envelope is approxi-
mately Ωfull = 2π/τI. (c) Response of the power spectrum at a fixed Fourier frequency ω0
when the detuning ∆ is swept. The width of the peaks is approximately ΩRBM = 2π/NτM.
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Fig. 7.7 Aliasing diagram of the spectrum analyzer: (a) The blue lines indicate the
position of the peaks in discrete frequency space ωn as a function of the continuous frequency
∆ of the applied calibration tone, ω+ = ∆ (mod 2ΩNy) and ω− = ΩNy − ∆ (mod 2ΩNy).
(b) Experimental spectrogram with an applied tone of fixed frequency. The detuning ∆ is
swept by adjusting the qubit frequency. In this particular instance, the repetition time of
the experiment was set to τM = 14.4 µs, corresponding to a Nyquist frequency ΩNy/2π =
35 kHz.



7.4 SIGNAL TO NOISE RATIO 159

7.4 Signal to noise ratio
Owing to the quantum nature of our sensor, the measurement records are in essence discrete,
such that a fundamental sampling noise, of spectral shape Ssampling

n , affects our measurement.
Indeed, the spectrum estimator can be decomposed according to

Sn = Ssignal
n + Ssampling

n (7.32)

with Ssignal
n = | ⟨Zn⟩ |2 and Ssampling

n = ⟨|Zn − ⟨Zn⟩ |2⟩. To calculate the sampling noise,
we can consider the situation when no calibration tone is applied, such that the samples
{zk}0≤k<N are independent, with ⟨zk⟩ = 0 and ⟨zkz

∗
k−m⟩ = δm, 0/4. Combined with the

relation 7.197.19, we get

Ssampling
n =

N−1∑
k=0

⟨zkz
∗
k−n⟩ = N

4 (7.33)

By combining the relations 7.257.25 and 7.337.33, we get the signal-to-noise ratio:

SNR =

√√√√max
(
Ssignal

n

)
Ssampling

n

=
√
N ⟨σ⊥⟩ (7.34)

The signal to noise ratio scales linearly with the in-plane projection of the qubit pseudo-spin
⟨σ⊥⟩. By combining Equations 7.97.9 and 7.107.10, in the limit of weak driving amplitude, i.e.,
∆ ≪ Ωr, we can simply write ⟨σ⊥⟩ with the respect to the interrogation time τI, the qubit
relaxation time T1 and the Rabi frequency Ωr:

⟨σ⊥⟩ ≈ 1
2 sin (ΩrτI) e−τI/T1 (7.35)

As the Rabi frequency Ωr and the relaxation time T1 are given parameters of the sensor
and the singnal, the only adjustable parameter to improve the SNR is the interrogation time
τI. In order to find the optimum SNR with the respect to the interrogation time τI, we per-
form sequentially several AC-charge sensing experiments varying the interrogation time τI at
each iteration. In this way, we obtain a set of measured data {σk} for each value of τI. Then,
we get the power spectrum Sn(ωn) = ⟨|Zn|2⟩ corresponding to each measured data set (for
a given value of τI). We find the center frequency ω± of the peaks of each power spectrum
Sn(ωn), and we make a sinc-squared fit on one of them, determining the signal amplitude
Ssignal

n an the noise amplitude Snoise
n . Finally, we evaluate the signal to noise ratio SNR of

each data set according to Equation 7.347.34. The Figure 7.87.8 shows the signal to noise ratio SNR
as a function of the interrogation time τI. The SNR as a function of τI is well described by
Equation 7.357.35, where we used the measured qubit relaxation time T1 = 1/(2Γ ) = 24 µs and
the Rabi frequency Ωr corresponding to the amplitude of the calibration tone. Moreover,
we added a factor of 84 % to account for non-ideal readout efficiency. The expected SNR
showed good qualitative agreement with the measured one (see green solid line in Figure
7.87.8a). Qualitatively, the SNR increases linearly for τI ≪ T1, as the initial Bloch-vector accu-
mulates a transverse component 2| ⟨σ⟩ | = ΩrτI. On the other hand, due to the interaction
with the thermal bath, the Bloch-vector relaxes eventually towards the origin of the Bloch
sphere such that the SNR vanishes for τI ≫ T1.
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Fig. 7.8 Signal to noise ratio vs interaction time: (a) Signal to noise ratio SNR for
different values of the interaction time τI. The blue open circles represent the measured
data while the green solid line is made according to Equation 7.357.35 with a scale factor
of 84 % to account for non-ideal readout efficiency. (b) The normalized power spectrum
Sn = ⟨|Zn|2⟩ for some values of the interrogation time τI that are represented by the vertical
dashed lines in panel (a).

7.5 Approximate expression for the optimal charge sensitivity
The noise spectrum in units of e2/Hz is calibrated such that the area under the calibration
peak matches the known modulation amplitude:∫ ∞

0

dω

2π See = (2eNd)2 (7.36)

The factor of 2 accounts for the number of elementary charges in each Cooper-pair. The
left-hand side of Equation 7.277.27 is approximately given by See[ωd]ΩRBW/2π, such that the
peak of the noise spectrum is given by:

max
(
Ssignal

ee

)
= (2eNd)2 2π

ΩRBW
(7.37)

Where e is the electron charge. We can now use the definition of the signal-to-noise ratio (in
conjunction with the linear relationship between See and Sn):

Ssampling
ee =

max
(
Ssignal

ee

)
SNR2 (7.38)



7.5 APPROXIMATE EXPRESSION FOR THE OPTIMAL CHARGE SENSITIVITY 161

Additionally, by combining Equation 7.97.9 with Equation 7.347.34, we obtain the approxi-
mate expression of the signal-to-noise ratio for a calibration tone well within the detector
bandwidth (∆ ≪ Ωfull):

SNR2 = N

(1
2e

−τI/T1ΩrτI

)2
(7.39)

Finally, by inserting Equation 7.307.30 into Equation 7.297.29, and using the expressions 7.27.2 for
Nd and the definition of ΩRBW (Equation 7.207.20), we derive

Ssampling
ee = δq2 = 4τM e2

(πωgeτI)2 e−2τI/T1
(7.40)

To minimize δq, it is beneficial to maximize the duty cycle τI/τM. In our experiment, the
total preparation and readout time is approximately amounts to τprep ≈ 13 µs, rendering the
total cycle time as τM = τI + τprep.

The figure 11 illustrates the evolution of Ssampling
ee as a function of the interrogation time

τI for various T1 values under two distinct scenarios. In the first one (dotted lines), we have
considered the ideal case τprep = 0 µs. In this ideal case, the optimal sensitivity is obtained
for τI = T1/2, reaching a value

δq2
min = 8 exp(1) e2

T1(πωge)2 (7.41)

Remarkably, δqmin only depends on the qubit frequency ωge and coherence time T1. This
stems from the observation that at the flux-frustration point, the Rabi frequency depends
only on the product ωgeNdrive (Equation 7.27.2), and not on the specific qubit parameters, as
long as the systems operates in the heavy-fluxonium regime. In the second scenario (full
lines in Figure 11), we consider a realistic preparation and readout time τprep = 13 µs. As
evident from Equation 7.317.31, for a given interrogation time τI, the sensitivity is degraded by a
factor

√
1/η, where η =: τI/τM is the non-ideal duty cycle of the experiment, in comparison

to the ideal case. The ideal sensitivity is defined as

δqmin = minτI(δq) (7.42)

The optimal sensitivity remains close to the ideal one as long as τprep ≪ T1, as visible in
Figure 11b.
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7.6 Normalized spectrum
In this the final section, we proceed to calculate the normalized spectrum of the measured
data. We start from the raw power spectrum Sn = ⟨|Zn|2⟩ of the measured data that was
displayed in Figure 7.47.4. There, we have fitted the signal power spectrum Ssignal

n = | ⟨Zn⟩ |2
with a sinc-squared function obtaining a good agreement (see red-dashed line in Figure 7.47.4b).
We used the fitted signal amplitude max

(
Ssignal

n

)
and the amplitude of the charge modula-

tion produced by calibration tone Ncal (in terms of Cooper-pairs) to determine the scaling
factor γ of the power spectrum Sn according to Equation 7.377.37. The amplitude of charge
modulation produced by the calibration tone Ncal is computed by taking into account the
linear fit shown in Figure 7.27.2. Next, we transform the power spectrum as Sn → γSn, after
the re-scaling, the power spectrum is in units of µe2/Hz. Finally, we obtain the normalized
noise spectrum of the measured data by taking the square-root of the power spectrum Sn.
The Figure 7.97.9 shows the normalized noise spectrum in units of µe/

√
Hz.

The calibration peak sits on a flat noise background, which is attributable to the sampling
noise of the quantum sensor [2424]. In practice, when the the AC-charge sensor is operated
around its optimal sensitivity (τI ≈ 20 µs in Figure 7.87.8), the sensor achieves a noise-level
as low as 33×10−6e/

√
Hz. This value approaches that of the most sensitive electrometers

such as the radiofrequency quantum point contact (rf-QPC) [1919, 6464] or the radiofrequency
single-electron transistor [6868, 8383]. Yet, these transport-based sensors are very different in
nature from the current qubit-based quantum protocol. The shuntcapacitor on which the
charge is detected in our system is typically 2 orders of magnitude larger than the supercon-
ducting islands employed in those systems [1919, 6868]. This is of utmost practical importance
when it comes to connecting the sensor to an auxiliary quantum system. As an example,
when trying to detect the charge-modulation of an electromechanical system such as [6969], the
50 fF capacitor of the vacuum-gap system would perfectly match the value employed in this
work, whereas traditional sensors would suffer a large dilution of the signal. The challenge
of detecting extremely small charge signals while maintaining a large island capacitance is
more directly captured by the energy sensitivity [1919] δq2/2C ≈ 2.8 ℏ which is below the sen-
sitivity of any other charge detectors operating at MHz frequencies. Furthermore, in stark
contrast with transport-based measurements, featuring a flat frequency response from DC to
several tens of MHz, our resonant detector features a narrow frequency response around the
qubit frequency, the full bandwidth being given by Ωfull = 2π/τI ≈ 50 kHz, as obtained from
Equation 7.117.11. This peculiar frequency response is highly advantageous when coupling the
fluxonium to a nearly resonant system, as it guarantees perfect immunity to low-frequency
environmental charge noise while maximizing charge sensitivity at the MHz region of interest.
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Fig. 7.9 Normalized noise spectrum: (a) Normalized spectrum
√
Sn =

√
⟨|Zn|2⟩ of the

measured data. The spectrum is normalized with the aid of the fit of the calibration
peak and according to Equations 7.377.37 and 7.27.2. (b) Zoom in around the frequency of
the calibration peak. Blue empty circles are the measured data while the red solid line
is a fit according to Equation 7.257.25. The residual bandwidth of the calibration peak is
ΩRBM/2π ≈ 31 Hz.
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Chapter 8

Conclusion and perspectives

8.1 Detecting weak charge modulations with a radio-frequency
fluxonium qubit

The primary contribution of this thesis is the successful demonstration of the fluxonium
superconducting-circuit architecture’s capability to develop low-frequency qubits that op-
erate effectively in the few MHz range. Specifically, we designed and operated a heavy
fluxonium qubit with a notably low transition frequency of 1.8 MHz and a large dipole
moment.

Additionally, the intrinsic non-linearity of the fluxonium circuit has yielded a rich and
useful low-frequency spectrum. This spectrum features a high degree of anharmonicity at
the qubit transition, with higher energy levels reaching into the GHz range. These proper-
ties facilitate the implementation of ancillary states essential for the single-shot readout of
the low-frequency qubit transition. We successfully demonstrated resolved sideband cool-
ing, achieving a final ground state population of 97.7 %, which corresponds to an effective
temperature of 23 µK. The coherence times measured were T1 = 34 µs and T2 = 39 µs,
highlighting the qubit’s coherence.

Importantly, our experiments have also shown that the fluxonium’s large dipole moment
makes it highly sensitive to radio-frequency fields. By employing a capacitively coupled
waveguide to directly address the qubit transition, we were able to transform this low-
frequency fluxonium qubit into a frequency-resolved charge sensor. Through cyclic qubit
preparation and interrogation, we achieved a charge sensitivity of 33 µe/

√
Hz, and an en-

ergy sensitivity of 2.8 ℏ, rivaling state-of-the-art transport-based devices while maintaining
inherent insensitivity to dc-charge noise.

These capabilities position the fluxonium qubit as an exceptionally suitable tool for prob-
ing quantum phenomena in the 1–10 MHz range, opening new avenues for exploring interac-
tions in hybrid quantum systems. This constitutes the main directions that the project will
undertake in the coming years.
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8.2 Future directions

Immediate improvements of the Fluxonium circuit

As our research group looks to enhance the design of the heavy fluxonium, several strategies
emerge for improving its performance. Initially, enhancing the coherence properties of the
qubit could be achieved by substituting the current silicon substrate with sapphire, which is
known for its superior dielectric properties that can reduce decoherence.

Another area of focus could be increasing the fluxonium’s insensitivity to flux noise. This
might be accomplished by augmenting the value of the superinductance. Practically, this
involves modifying the junctions within the superinductance from Dolan-style to Manhattan-
style junctions. These junctions have a larger area, which can make them more resilient
to quantum coherent-phase-slips, currently a primary limitation in superinductance perfor-
mance.

Additionally, enhancing the tunability of the qubit frequency presents a significant oppor-
tunity for improvement. In the current design, the qubit frequency depends exponentially on
the small junction energy (EJ), a parameter challenging to control with a precision greater
than ∼ 10% in the micro-fabrication process. This variability complicates the precise design
of hybrid systems where the auxiliary system’s resonance frequency is predefined. A possible
workaround involves replacing the small junction with a tunable junction, such as a SQUID
(Superconducting Quantum Interference Device) loop. This modification would allow for in
situ adjustment of the effective junction potential EJ of the fluxonium (its “weight”), thereby
enabling precise control over the transition frequency. Although this solution introduces the
need for additional magnetic control, the benefit of achieving exact frequency alignment in
hybrid quantum systems could significantly outweigh the complexity added by this extra
layer of control.

Strong electro-mechanical coupling: the mecafluxonium

In the main text, we have shown that our heavy fluxonium qubit has the potential to achieve
strong resonant coupling with a micro-mechanical phononic-crystal membrane resonator.
Our group has successfully fabricated and characterized both quantum devices independently,
but integrating them into the unified system known as the mecafluxonium introduces several
technological challenges.

One significant challenge is the precise assembly of two chips, each about 1 cm2, at a
sub-micron distance. To minimize dust interference during the flip-chip process, a recess is
etched on the chips to reduce the areas in regard, thus lowering the likelihood that dust will
prevent successful assembly.

Additionally, it is important to ensure that the mechanical and qubit modes are not
affected by energy leakage through the DC bias lines. Robust DC-line filtering strategies are
necessary to ensure that AC-fluctuations are effectively reflected back to the circuit.

The ultimate goal of our research is to develop the mecafluxonium, which could have
significant applications in fields such as quantum gravity and quantum memories. As de-
picted in Figure 8.18.1, our experiment involves configuring the capacitor pad of the fluxonium
(green) to overlap with the defect of the metallized membrane, effectively converting mechan-
ical motion into a charge modulation at the fluxonium junction (red). Successful assembly
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has been achieved using a flip-chip process with aluminum spacers approximately 600 nm
high to ensure separation and maintain galvanic contact.

Himanshu Patange and Kyrylo Gerashchenko, the two PhD students who will continue
this project, are focusing on specific aspects of the integration. Himanshu is enhancing the
flip-chip process and improving electromechanical integration, while Kyrylo is adapting the
fluxonium circuit design for this particular setup. The initial experiment planned–qubit-
assisted cooling of the membrane–is relatively straightforward, as it does not require the

Fig. 8.1 Meca-fluxonium (work in progress): False-colored micrograph of silicon nitride
phononic crystal membrane resonator on a grounded heavy-fluxonium. The capacitor pad
of the fluxonium (green) overlaps with the defect of the metallized membrane resembling
a parallel plate capacitor, which transduces the mechanical motion of the membrane into
a charge modulation at the fluxonium junction (red). The two chips were successfully
assembled via flip-chip with a few aluminum spacers keeping them apart while ensuring
galvanic contact between them. The height of the spacers is about 600 nm.
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system to be in the strong coupling regime. This allows the qubit to be operated away from
the flux-frustration point, where the T2 time is typically degraded. As such, we are optimistic
about obtaining the first results in the coming months. This experiment is crucial as it sets
the stage for more advanced quantum state manipulation of the membrane, paving the way
for further explorations of truly non-classical quantum states of the macroscopic mechanical
system.

8.3 Summary of activities
During my time as PhD student I was involved in a variety of activities, from circuit design
using python for both circuit drawing for electromagnetic-fields simulations (Ansys HFSS)
and lithography mask scripting, up to more practical activities like microfabrication and
characterization of the designed circuits in both frequency and time domains using a quan-
tum operator X (from Quantum Machines) inside a dilution cryostat. My duties were set to
fulfill the requirements and priorities of our main project at the each time, which was fabri-
cating a superconducting fluxonium qubit that was suitable for reaching strong coupling with
our micromechanical membrane resonators. In the early days of my PhD work, I focused on
fabricating the thin membrane resonators and later trained new PhD students in this task as
I transitioned towards participating in circuits-related activities. In this way, I fabricated the
first superconducting circuit that was ever fabricated in the Laboratoire Kastler Brossel. I
also designed part of the membrane resonator characterization setup using FreeCAD. Finally,
towards the later stage of my PhD I became the responsible of the entire microfabrication
process and successfully fabricated a superconducting qubit with a then-record low frequency
of 1.8 MHz. The qubit achieved high anharmonicity (1000) and strong coherence (40 µm),
demonstrating potential for resonant coupling with an ultra-coherent nanomechanical mem-
brane resonator.
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.1 Synthesizing the equivalent circuit from the simulations
In this section, we aim to synthesize an equivalent circuit with the frequencies ωn and energy-
participation ratios pn of the simulated normal modes. In the first place, the lagrangian Lbare
of the bare equivalent circuit (see Figure 3.63.6a) is written as:

Lbare =
[
Cϕ̇ 2

2 − ϕ 2

2L + CRϕ̇
2
R

2 − ϕ 2
R

2LR
− CSϕ̇Rϕ̇

]
+ EJ cos

(
ϕ

Φ0
+ φext

)
(.1)

Where Φ0 = ℏ/2e is the reduced flux quantum. The linear part of the bare lagrangian Lbare
are the terms inside the brackets. The shunting capacitance CS accounts for the coupling
the fluxonium and the resonator. The the capacitance CR and the inductance LR of the
ancillary resonator are related to its bare frequency as ωR = 1/

√
CRLR. Notice that the

bare lagrangian Lbare depends on 6 unknown parameters: {L, C, ωR, ZR, CS, EJ}, where
the resonator bare impedance is defined as Zn =

√
LR/CR. The parameters related to the

circuit junctions, L = Φ2
0/EL and EJ , are determined by measuring the junctions resistance

at room temperature, and then, using the Ambegaokar-Baratoff relation [33] to calculate their
tunneling energies. This is described in more detail in Section 4.34.3.

The next step is decoupling the linear part of the bare lagrangian Lbare. This is achieved
by applying a linear transform K, such that ϕ and ϕR are transformed as:

ϕ → K11Φ+K12ΦR

ϕR → K21Φ+K22ΦR
(.2)

Here, the variables ϕ and ϕR correspond to bare linearized-fluxonium and resonator modes,
respectively, while the variables Φ and ΦR are related to the normal modes. The transfor-
mation K suppresses the linear coupling term, CSϕ̇Rϕ̇. The resulting lagrangian Lnorm has
the form:

Lnormal =
[
C ′Φ̇ 2

2 − Φ 2

2L′ + C ′
RΦ̇

2
R

2 − Φ 2
R

2L′
R

]
+ EJ cos

(
K11

Φ

Φ0
+K12

ΦR
Φ0

+ φext

)
(.3)

We refer to Lnormal as the normal-modes lagrangian. The linear part of Lnormal is shown
inside the brackets. The capacitances C ′

x and inductances L′
x in terms of the parameters of

the bare equivalent circuit are:

C ′
1 =K2

11C +K2
21CR −K11K21CS

C ′
2 =K2

12C +K2
22CR −K12K22CS

1
L′

1
=K2

11
L

+ K2
21

LR

1
L′

2
=K2

12
L

+ K2
22

LR

(.4)

The inductances L′
x and capacitances C ′

x of the normal modes are in general different from
the ones of the bare lagrangian (see Equation .1.1), for example, C ′ ̸= C. Notice that the
EM-fields simulations yield the frequencies of the normal modes, ω′

x = 1/
√
L′

xC
′
x , and not
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the frequencies of the bare modes, ωx = 1/
√
LxCx .

The linear part of the lagrangian Lnormal (see Equation .3.3) describes two independent
modes that can be written, for instance, as:

Φx = Φx, 0 cos(ωxt) (.5)

The total energy of the mode "x" is then:

ETot
x =

Φ2
x, 0

2L′
x

cos(ω′
xt)2 + 1

2ω
′ 2
x C

′
xΦ

2
x, 0 sin(ωxt)2 =

Φ2
x, 0

2L′
x

(.6)

By substituting Equations .2.2 and .5.5 into the bare lagrangian Lbare (Equation .1.1), we find
the energy of the mode "x" that is stored in the lumped element inductance L:

Eind
x = maxt

(
ϕ2

2L

)
= K2

1x

Φ2
x, 0

2L (.7)

It follows that the energy-participation ratio Px of mode "x" in the inductance L is:

Px = Eind
x

ETot
x

= K2
1x

L′
x

L
(.8)

Thus, by setting px = Px, we have found a natural way to connect the energy-participation
ratios px that are obtained from the simulations (Equation 3.53.5) and the parameters of the
normal-modes lagrangian Lnormal (Equation .3.3). We substitute the inductance L′

x of a
normal modes in terms of its frequency ω′

x and its impedance Z ′
x in Equation .8.8, obtaining a

relation between the impedances Z ′
x and the simulated energy-participation ratios px of the

normal modes:
Z ′

x = Lω′
xpx

K2
1x

(.9)

Notice that L in Equation .9.9 does not represent the junction-chain superinductance Lc but it
rather corresponds to the test inductance Lt that replaces the junction-chain superinductance
in the simulations. In general, it is not mandatory to set the value of the test inductance
Lt equal to the inductance of the junction chain Lc, which is determined independently by
measuring the resistance of the chain junctions at room temperature as detailed in Section
4.34.3. The results of simulations can be traced to the parameters of the bare equivalent circuit
(Equation .1.1), independently of the value of the test inductance Lt.

The Equation .9.9, as it is right now, it is not useful, since it relates the simulated energy-
participation ratios px to two unknown parameters, Z ′

x and K1x. We need some extra steps
to turn this equation into a more useful form. Firstly, we re-scale the normal flux variables
as Φx = fx/K1x in the normal-modes lagrangian Lnormal (Equation .3.3), obtaining

Lbb =
[
C ′

1ḟ
2

1
2K2

11
− f 2

1
2K2

11 L
′
1

+ C ′
2ḟ

2
2

2K2
12

− f 2
2

2K2
12 L

′
2

]
+ EJ cos

(
f1
Φ0

+ f2
Φ0

+ φext

)
(.10)

This is the lagrangian of the Foster equivalent circuit corresponding to a junction shunted
to a "black-box" microwave environment (see Figure 3.63.6b). The re-scaling of the fluxes
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translates into a re-scaling of the inductances and the capacitances as Lbb
x = L′

x · K2
1x and

Cbb
x = C ′

x/K
2
1x , respectively. This re-scaling, nonetheless, leaves the frequencies invariant,

ωbb
x = ω′

x, but it re-scales the impedances as Zbb
x =

√
Lbb

x /Cbb
x = Z ′

x ·K2
1x. Thus, we define

the frequencies ωbb
x and impedances Zbb

x of the Foster equivalent circuit as:

ωbb
x = ω′

x

Zbb
x = Z ′

xK
2
1x

(.11)

Where ω′
x and Z ′

x are the frequencies and impedances of the normal modes, respectively,
and K1x are the matrix elements of transform linking the bare flux coordinates ϕx and
normal flux coordinates Φx. By substituting Equations .11.11 into Equation .9.9, we obtain the
relation between the energy-participation ratios px of the simulated normal modes and the
parameters of the Foster equivalent circuit:

Zbb
x = Lt ω

bb
x px (.12)

Notice that a single simulation of the normal modes of the circuit design yields the frequencies
ωbb

x and the energy-participation ratios px of the normal modes. Since the value of the test
impedance Lt is defined a priori, thus, we can use the Equation .12.12 to obtain the impedances
Zbb

x of the Foster equivalent circuit (see Figure 3.63.6b). Therefore, the EP method allows
synthesizing the Foster equivalent circuit from the results of one single simulation of the
normal modes of the circuit design. The lagrangian of the Foster equivalent circuit, in terms
of the frequencies ωbb

x and impedances Zbb
x , is written as:

Lbb =
[

ḟ 2
1

2ωbb
1 Zbb

1
− ωbb

1 f 2
1

2Zbb
1

+ ḟ 2
2

2ωbb
2 Zbb

2
− ωbb

2 f 2
2

2Zbb
2

]
+ EJ cos

(
f1
Φ0

+ f2
Φ0

+ φext

)
(.13)

.2 Relations between the bare and the Foster equivalent circuits
In the Section .1.1, we discussed the equations relating the parameters of the normal modes
and the parameters of the Foster equivalent circuit (see Equation .11.11). Moreover, the pa-
rameters of the normal modes are connected to the parameters the bare equivalent circuit
via a linear transform K (see Equation .4.4). This section is about finding the analytical
expressions connecting the parameters of the Foster equivalent circuit (see Figure 3.63.6b) and
the parameters of the bare (equivalent) circuit (see Figure 3.63.6a). The fist step is finding the
normal modes of the linear part L bare

0 of the bare lagrangian Lbare (Equation .1.1),

L bare
0 = Cϕ̇ 2

2 − ϕ 2

2L + CRϕ̇
2
R

2 − ϕ 2
R

2LR
− CSϕ̇Rϕ̇ (.14)

The typical approach is finding a transform of the flux coordinates ϕx that diagonalizes
the lagrangian L bare

0 [5454, 7171]. However, the approach here is rather different. Instead of
focusing on the lagrangian L bare

0 , we are rather going to decouple the differential equations
dominating the flux variables ϕx. The set of differential equations generated by the lagrangian
L bare

0 (Equation .1.1) is:

Cϕ̈− CSϕ̈R + ϕ

L
= 0

CRϕ̈R − CSϕ̈+ ϕR
LR

= 0
(.15)
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This set of linear differential equations can be conveniently written in matrix form as:

C ¨⃗
ϕ+ L−1ϕ⃗ = 0⃗ (.16)

where ϕ⃗ represents the flux coordinates and C and L are the capacitance and inductance
matrices:

C =
[
C −CS

−CS CR

]
, L−1 =

[
L−1 0

0 L−1
R

]
, ϕ⃗ =

[
ϕ
ϕR

]
(.17)

Notice that the inductance matrix L is diagonal. It is useful to write the inductance matrix
as:

L = S2 =
[√

L 0
0

√
LR

]
(.18)

We transform the flux coordinates as ϕ⃗ = K Φ⃗ , where the transform K has the form:

K = S U S−1 (.19)

Where U is an unitary matrix. We substitute the ansatz of K (Equation .19.19) into the
Equation .16.16 and multiply by KT, obtaining

S−1
(
U−1 S C S U

)
S−1 ¨⃗

Φ+ S−2Φ⃗ = 0⃗ (.20)

We define the matrix
W−2 ≡ S C S (.21)

Notice that if U chosen such that U−1 W−2 U ≡ Λ−2
W is a diagonal matrix, the Equation

.20.20 becomes:
S−2 Λ−2

W
¨⃗
Φ+ S−2Φ⃗ = 0⃗ (.22)

Since both S and ΛW are diagonal matrices, the flux variables Φx are not coupled. The
entries of ΛW are the eigen-values of W, which are nothing but the resonance frequencies ω′

x

of the normal modes. The Equation .22.22 resembles the Equation .16.16, with L′−1 = S−2 = L−1

and C′ = S−2 Λ−2
W . Thus, the set of differential equations represented by Equation ?? can

be associated with the following lagrangian:

L normal
0 = C ′

1Φ̇
2
1

2 − Φ 2
1

2L1
+ C ′

2Φ̇
2
2

2 − Φ 2
2

2L2
(.23)

Alternatively, this lagrangian L normal
0 can be obtained by substituting the transform K

(Equation .19.19) into the lagrangian L bare
0 (Equation .1.1). Notice that the inductances L′

x of
the normal modes are the same as the inductances of the bare equivalent circuit Lx. On the
contrary, the capacitances C ′

x and impedances Z ′
x of the normal modes are given by

C ′
x = 1

Lx ω′ 2
x

Z ′
x = Lx ω

′
x

(.24)

As discussed in Section .1.1, the lagrangian Lnormal (Equation .10.10) results from applying the
transform K (Equation .19.19) to the lagrangian Lbare of the bare equivalent circuit (Equation
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.10.10). The lagrangian Lnormal can be turned into the lagrangian Lbb of the Foster equivalent
circuit (Equation .13.13) by re-scaling the flux variables as Φx = fx/K1x corresponding to a
re-scaling of inductances Lbb

x = K2
1x L

′
x and the capacitances Cbb

x = K2
1xC

′
x. Moreover, the

impedances Zbb
x =

√
Lbb

x /Cbb
x are re-scaled as

Zbb
x = K2

1x Z
′
x (.25)

Notice that the frequencies remain invariant, i.e., ωbb
x = ω′

x. Thus, in order to find the
relation between the parameters of the Foster equivalent circuit, ωbb

x and Zbb
x , and the

parameters of bare equivalent circuit, L, C, CS, ωR, ZR, we must determine both the eigen-
values and eigen-vectors of the matrix W,

W−2 = S C S =
[

LC −CS
√
LLR

−CS
√
LLR LR CR

]
(.26)

Notice that W−2 is a symmetric matrix, thus, it can be written in the form

W−2 = ϵ

2 I2 + Ω

2

[
∆

Ω
Z − 2G

Ω
X
]

(.27)

Where
I2 =

[
1 0
0 1

]
, Z =

[
1 0
0 −1

]
, X =

[
0 1
1 0

]
(.28)

ϵ ≡ 1
ω2 + 1

ω2
R

∆ ≡ 1
ω2 − 1

ω2
R

G ≡ CS
√
LLR = CS√

C CR ω ωR

Ω ≡
√
∆2 + 4G2 =

√√√√( 1
ω2 − 1

ω2
R

)2

+ 4
G2

(.29)

Notice that the Equation .27.27 represents a spin-matrix. Therefore, the eigenvalues of W−2

are λ± = ϵ/2 ± Ω/2. As mentioned before, the eigenvalues of W are the frequencies of the
normal modes ω′

x. Thus,

1
ω′ 2 = 1

2

(
1
ω2 + 1

ω2
R

)
+ 1

2

√√√√( 1
ω2 − 1

ω2
R

)2

+ 4
G2

1
ω′ 2

R
= 1

2

(
1
ω2 + 1

ω2
R

)
− 1

2

√√√√( 1
ω2 − 1

ω2
R

)2

+ 4
G2

(.30)

The next step is determining the eigen-vectors of W. This is also simple because W−2 is a
symmetric matrix. Notice from Equation .27.27 that it is sufficient to find the eigen-vectors of
the matrix:

A = cos(θ) Z − sin(θ) X (.31)
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Where

cos(θ) =∆

Ω
=

(
1

ω2 − 1
ω2

R

)
√(

1
ω2 − 1

ω2
R

)2
+ C2

S
C CR

4
ω2 ω2

R

sin(θ) =2G
Ω

tan(θ) = 4CS√
C CR

ω ωR
ω2

R − ω2

(.32)

In this way, the eigenvectors of A are

û1 =

 cos
(

θ
2

)
− sin

(
θ
2

) , û2 =

sin
(

θ
2

)
cos

(
θ
2

) (.33)

Where

cos
(
θ

2

)
=

√
1 + ∆

Ω

2

sin
(
θ

2

)
=

√
1 − ∆

Ω

2

(.34)

Finally, we obtain the explicit form of the transformation K (Equation .19.19):

K =
[
K11 K12
K21 K22

]
=

 cos
(

θ
2

)
sin
(

θ
2

)√
L

LR

− sin
(

θ
2

)√
LR
L cos

(
θ
2

)
 (.35)

.3 Calculating the bare circuit parameters from the simulations
An EM-fields simulation of the normal modes of the circuit design yields a set of frequencies
ωbb

x and energy-participation ratios px that can be related to the impedances Zbb
x of the

modes as seen by the test inductance Lt. In this Section we take into account the results of
Sections .1.1 and .2.2 to connect the simulation results with the bare equivalent circuit param-
eters.

Substituting Z ′
x = L′

xω
′
x into Equation .9.9, produces a relation between the energy-

participation ratios px and the entries of the matrix transform K:

px = Lx

Lt
K2

1x (.36)

Then, by substituting the explicit form of the entries of K (Equation .35.35), we obtain a
relation between the components of the eigenvectors of the matrix W−2 (Equations .33.33 and
.34.34) and the energy-participation ratios:

p1 = cos
(
θ

2

)2

p2 = sin
(
θ

2

)2 (.37)
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Therefore, we can write the unitary matrix U (Equation .33.33) that diagonalizes W−2 in terms
of the energy participation ratios as:

U =
[ √

p1
√
p2

−√
p2

√
p1

]
(.38)

We recall that the frequencies of simulated normal modes ωbb
x are the eigen-values of the

matrix W. As mentioned in Section .2.2, we denote by ΛW the diagonal matrix containing
the eigen-values of W:

ΛW =
[
ωbb

1 0
0 ωbb

2

]
(.39)

We can recover the matrix W−2 (Equation .21.21) by applying the following transform:

W−2 = U Λ−2
W U−1 (.40)

Notice that on the L.H.S. there are only parameters of the bare equivalent circuit and on
the R.H.S. there are only results from the simulation of the normal modes:

[
LtC −CS

√
Lt LR

−CS
√
Lt LR LR CR

]
=


(√

p1
ωbb

1

)2
+
(√

p2
ωbb

2

)2
−

√
p1 p2

(ωbb
1 )2 +

√
p1 p2

(ωbb
2 )2

−
√

p1 p2

(ωbb
1 )2 +

√
p1 p2

(ωbb
2 )2

(√
p2

ωbb
1

)2
+
(√

p1
ωbb

2

)2

 (.41)

Firstly, we express the bare frequencies of the modes ω0 and ωR in terms of the frequencies
ωbb

n and the energy participation ratios pn of the simulated normal modes1:

1
ω2

0
= 1

2

(
1 + (p1 − p2)

(ωbb
1 )2 + 1 − (p1 − p2)

(ωbb
2 )2

)
1
ω2

R
= 1

2

(
1 − (p1 − p2)

(ωbb
1 )2 + 1 + (p1 − p2)

(ωbb
2 )2

)
1
G2 = CS

√
Lt LR = CS√

CR C

1
ω0ωR

=
∣∣∣∣∣ 1
(ωbb

1 )2 − 1
(ωbb

2 )2

∣∣∣∣∣√p1p2

(.42)

Where ωbb
1 < ωbb

2 , and the parameter G is related to the coupling g between the bare modes.
From these three parameters, we extract the bare capacitance of the fluxonium C and the
relative shunting capacitance γS:

C = 1
ω2

0 Lt

γS ≡ CS√
C CR

=
√
p1 p2√(

ωbb
1 ωbb

2
(ωbb

1 )2−(ωbb
2 )2

)2
+ p1 p2

(.43)

The coupling between the bare modes g is related to the relative shunting capacitance γS as:

g = γS
√
ω0 ωR (.44)

1Here, we have used the fact that p1 + p2 = 1.
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While γS only depends on the fixed parameters of the microwave environment, the coupling
rate g depends on the bare frequency of the plasmon mode ω0, which is a function of test
inductance Lt, thus, it varies at each iteration of the simulations. The coupling at the anti-
crossing g0, when the bare frequencies of the modes are equal ω0 = ωR, is related to γS
as:

g0 ≡ γSωR (.45)

Unfortunately, the energy participation method here described can’t associate the results
of the simulation, the frequencies ωbb

x and energy-participation ratios px of the normal modes,
to an unique set of bare circuit parameters. The bare fluxonium capacitance C and the
bare resonator frequency ωR can be uniquely determined. However, as it can be seen in
Equation .43.43, the shunting capacitance CS and the bare resonator capacitance CR can’t
be determined independently from each other. However, with a reasonable estimate of the
resonator impedance, for example, ZR = 50Ω, one estimate the shunting capacitance CS
using Equation .43.43.
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