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Résumé : Cette thèse est dédiée à l’étude
des enchères d’ouverture et de clôture sur les
marchés européens d’actions, plus particulière-
ment celles de la bourse de Paris. Les enchères
sont un mécanisme essentiel permettant d’ou-
vrir et clôturer les journées de négociation de
manière ordonnée. En particulier, les prix de
clôture sont d’une importance cruciale pour les
investisseurs et les régulateurs. Contrairement
à la littérature abondante sur la phase de né-
gociation continue, les travaux sur les enchères
sont rares, en partie à cause de la difficulté
d’acquérir des données de haute qualité. Cette
thèse est basée sur un ensemble de données
de haute qualité qui nous permet de fournir
un aperçu nouveau sur les phases d’enchères,
de reconstruire leur dynamique évènement par
évènement et de proposer des modèles pré-
cis des phénomènes observés. Premièrement,

nous examinons l’impact des ordres sur les prix
dans les enchères. Nous fournissons un cadre
mathématique pour les enchères, calculons la
formemoyenne du carnet d’ordres aumoment
de l’enchère et sa répartition en fonction de la
latence des agents et du compte utilisé. Nous
étudions l’impact aumoment de l’enchère ainsi
que l’effet d’un temps de compensation aléa-
toire. Deuxièmement, nous adaptons un mo-
dèle continu en prix et en temps aux spécifici-
tés des enchères d’actions. Nousmontrons que
des solutions générales peuvent être obtenues
en formules fermées. Nous résolvons numéri-
quement les équations du modèle et nous le
calibrons à la dynamique complète du carnet
d’ordres moyen à la clôture. Nous concluons
en étudiant les causes de la sous-diffusivité des
prix indicatifs.

Title: Statistical analysis and modeling of opening and closing auctions in financial markets.
Keywords: Microstructure; Auctions; Quantitative finance; Agents behavior.

Abstract: This thesis is devoted to the study of
opening and closing auctions in Europeanmar-
kets with a specific emphasis on the Paris stock
exchange. Auctions serve as an essential mech-
anism to open and close trading days in an or-
derly way. In particular, closing prices are of
crucial importance for both investors and reg-
ulators. In contrast to the abundant literature
on the continuous trading phase, work on auc-
tions is scarce, partly due to the difficulty in ac-
quiring high-quality data. This thesis is based
on a high-quality dataset allowing us to provide
novel insights into auction phases, reconstruct
their tick-by-tick dynamics, and propose accu-
rate models of the observed phenomena. First,

we examine price impact in auctions. We pro-
vide a mathematical framework for auctions,
compute the average shape of the limit order
book at auction time, and its breakdown by
agents’ latency and account type. We investi-
gate price impact at auction time and address
the effect of random clearing times. Second,
we adapt a continuous price-time model to the
specifics of equity auctions. We show that time-
dependent solutions can be obtained in closed-
form formulas. We numerically solve the full
equations and fit the average dynamics of the
limit order book in closing auctions. We con-
clude by investigating the causes behind the in-
dicative price sub-diffusivity.
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Résumé

Cette thèse est dédiée à l’étude des enchères d’ouverture et de clôture sur les marchés eu-

ropéens d’actions, en particulier sur les enchères de la bourse de Paris. Les enchères sont un

mécanisme essentiel permettant d’ouvrir et clôturer les journées de négociation de manière or-

donnée. En particulier, les prix de clôture sont d’une importance cruciale pour les investisseurs

et les régulateurs.

Pendant la journée de négociation, les marchés électroniques fonctionnent selon le principe

de la double enchère continue : à tout moment, les agents proposent un certain volume d’offres

et de demandes, à différents prix ; à tout moment, un agent peut accepter n’importe laquelle de

ces propositions et commercer immédiatement. Pendant les enchères d’ouverture et de clôture,

aucune transaction ne peut avoir lieu. Les agents peuvent néanmoins soumettre, modifier et

annuler des ordres. Au moment de l’enchère, les ordres compatibles se concluent au prix de

l’enchère. Il s’agit du prix qui maximise le volume échangé et minimise le volume restant au prix

de l’enchère.

Le mécanisme d’enchères gagne en importance. Les bourses de Londres et de Francfort ont

introduit une enchères quotidienne à la mi-journée. En outre, elles s’appuient désormais sur des

enchères de volatilité au lieu d’arrêter brusquement la négociation continue lorsque des limites de

prix anormales sont déclenchées. Les marchés européens de l’électricité fonctionnent désormais

selon un mécanisme de vente aux enchères à l’avance. Le Chicago Board Options Exchange a lancé

un marché d’actions dédié aux enchères successives. Enfin, les volumes de clôture augmentent

constamment, en particulier sur les marchés européens où le volume de clôture peut dépasser

la moitié du volume quotidien échangé pendant les jours de rebalancement et d’expiration de

dérivées.

Contrairement à la littérature abondante sur la phase de négociation continue, les travaux

sur les enchères sont rares, en partie à cause de la difficulté d’acquérir des données de haute

qualité. Précisément, cette thèse est basée sur un ensemble de données de haute qualité qui nous
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permet de fournir un aperçu nouveau sur les phases d’enchères, de reconstruire leur dynamique

évènement par évènement et de proposer des modèles précis pour les phénomènes observés.

Dans le Chapitre 1, nous fournissons une introduction complète aux principaux mécanismes

de compensation sur les marchés. Nous effectuons une revue de la littérature sur les enchères

d’actions, présentons l’impact des ordres sur le prix dans les marchés ouverts et soulignons

les différences notables lorsqu’on le considère dans le cadre des enchères. Nous présentons des

modèles de liquidité latente qui seront utiles pour la modélisation des enchères et concluons ce

chapitre par un aperçu de nos principales contributions.

Le chapitre 2 est consacré à l’analyse de l’ensemble de données de haute qualité utilisé

dans cette thèse. Il présente les données et les méthodologies utilisées pour reconstruire les

états du carnet d’ordres et la séquence d’événements. Ce chapitre se termine par une description

statistique préliminaire, incluant une analyse de la contribution des différentes catégories d’agents

à l’enchère de clôture, ainsi qu’une mesure des caractéristiques moyennes de chaque type d’ordre.

Dans le chapitre 3, nous examinons l’impact des ordres sur les prix dans les enchères. Nous

fournissons un cadre mathématique pour les enchères, calculons la forme moyenne du carnet

d’ordres au moment de l’enchère et sa répartition en fonction de la latence des agents et du

compte utilisé. Spécifiquement, nous étudions l’impact au moment de l’enchère, en supposant

qu’un opérateur plus rapide que les autres agit en dernier dans l’enchère. Nous étudions l’effet

d’un temps de compensation aléatoire et ce que cela implique pour la négociation au moment de

l’enchère. Nous concluons en calculant les fonctions de réponse du prix indicatif.

Dans le chapitre 4, nous adaptons un modèle continu en prix et en temps aux spécificités des

enchères d’actions. Nous calibrons des solutions stationnaires aux données de carnets d’ordres

au moment de l’enchère et montrons que des solutions dynamiques peuvent être obtenues en

formules fermées. Nous mesurons les soumissions, les annulations et les changements de prix au

cours de l’enchère, en les reliant aux paramètres de notre modèle. Nous résolvons numériquement

les équations du modèle et nous le calibrons à la dynamique complète du carnet d’ordres moyen

à la clôture. Nous concluons en étudiant les causes de la sous-diffusivité des prix indicatifs.

Dans le chapitre 5, nous discutons nos principaux résultats et nous proposons quelques ex-

tensions des travaux présentés dans cette thèse.

L’annexe A tente de répondre à la question suivante : comment un investisseur peut-il répartir

de manière optimale un grand ordre entre la phase de négociation continue et l’enchère de clôture

tout en minimisant les coûts liés à l’impact ?
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Abstract

This thesis is dedicated to the study of opening and closing auctions in European markets

with a specific emphasis on the Paris stock exchange. Auctions serve as an essential mechanism

to open and close trading days in an orderly way. In particular, closing prices are of crucial

importance for both investors and regulators.

During the trading day, electronic markets operate on the continuous double auction: at any

time, agents offer a certain volume of bids and asks, at various prices; and at any time, an agent

can accept any of these proposals and trade immediately. However, during opening and closing

auctions, transactions can not occur. Still, agents can submit, modify, and cancel orders. At the

auction time, eligible orders are cleared at the auction price: it is the price that maximizes the

exchanged volume and minimizes the remaining volume at the auction price.

The auction mechanism is gaining importance and attracting increasing attention. The

London and Frankfurt stock exchanges have introduced a daily midday auction. In addition,

they now rely on volatility auctions instead of abrupt trading halts when abnormal price limits

are triggered. European electricity markets now operate on a day-ahead auction mechanism.

The Chicago Board Options Exchange has launched a dedicated equity market operating on

successive auctions instead of the continuous double auction. Ultimately, closing auction volumes

are consistently increasing, especially in European markets where the closing volume can exceed

half the daily exchanged volume on rebalancing and expiry days.

In contrast with the abundant literature on the continuous trading phase, work on auctions

is scarce, partly due to the difficulty in acquiring high-quality data. Precisely, this thesis is based

on a high-quality dataset allowing us to provide novel insights into auction phases, reconstruct

their tick-by-tick dynamics, and propose accurate models of the observed phenomena.

In Chapter 1, we provide a comprehensive introduction to the main clearing mechanisms in

equity markets. We conduct a literature review on equity auctions, present price impact in open

markets, and highlight notable differences when considered in auctions. We introduce latent
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liquidity models that will be beneficial for auction modeling and conclude this Chapter with an

outline of our main contributions.

Chapter 2 is dedicated to the analysis of the high-quality dataset used in this thesis. It

presents the data and the methodologies for reconstructing order book snapshots and tick-by-tick

events. This chapter concludes with direct observations of the refined data, including an analysis

of the contribution of various agent categories in the closing auction, as well as a description of

the average dynamics by order type.

In Chapter 3, we examine price impact in auctions. We provide a mathematical framework for

auctions, compute the average shape of the limit order book at auction time, and its breakdown

by agents’ latency and account type. We investigate price impact at auction time, assuming a

low latency trader acts last in the auction. We address the effect of random clearing times and

what it implies for trading at auction time. We conclude by calculating response functions of

the indicative price.

In Chapter 4, we adapt a continuous price-time model to the specifics of equity auctions. We

use stationary solutions to fit order books at auction time and show that, in some cases, dynamic

solutions can be obtained in closed-form formulas. We provide measurements of auction submis-

sions, cancellations, and price updates, linking them to our model parameters. We numerically

solve the full equations and fit the average dynamics of the limit order book during the closing

auction. We conclude by investigating the causes behind the indicative price sub-diffusivity.

In Chapter 5, we discuss our core results and elaborate on possible extensions and future

outlooks.

Appendix A tries to provide meaningful answers to the following question: How can an

investor optimally split a large order between the continuous trading phase and the closing

auction while minimizing impact-related costs?
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Chapter 1

General introduction

Figure 1.1 – AI-Generated image by DALL-E 3 using the prompt: A brief history of
markets and mechanisms of market clearing.

1.1 A brief history of markets

1.1.1 Ancient markets

Humans used bartering, donating, and lending, to acquire and share the resources they needed

to survive, collaborate, and prosper. To complete a bartering transaction, both parties had to

agree on the quantity, quality, and nature of the items they were willing to offer and receive.

To overcome this difficulty, humans invented (or evolved to use) currency (Svizzero and Tisdell,

2019). It is a medium of exchange that represents a standard unit of value. It should be stable,

durable, divisible, portable, and widely accepted. It can be issued by a central authority, such as

a government or a bank nowadays, or have intrinsic value, such as gold or silver. Currency has

a long history, dating back to when people used shells, beads, and grains as money. Over time,

currency evolved to include coins, paper notes, and digital forms. With currency, people who

wanted to exchange items and goods only had to determine the fair price in the currency unit.
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The common trust in the currency’s value enabled the trade of commodities to flourish through

price negotiation.

In parallel, the concept of a company’s share or stock can be traced back to 1250 in Toulouse

with what is likely the first joint-stock company, “Les moulins de Bazacle” (Sicard, 1953). Approx-

imately a hundred shares, representing a fraction of ownership in this company, were traded, and

their value fluctuated based on the company’s profitability. However, the modern understanding

of a joint-stock company, with freely transferable shares and limited liability for shareholders,

was more formally instituted with the Dutch East India Company in the 17th century, whose

shares were exchanged on the Amsterdam Bourse.

The establishment of the Amsterdam stock market (1602) laid the groundwork for the de-

velopment of stock exchanges in other countries. Inspired by the Amsterdam model, London

(1698) and Paris (1724) founded their respective stock exchanges. These new financial institu-

tions adopted the principles of freely transferable shares and limited liability for shareholders,

which had proven successful in Amsterdam. The foundation of these stock exchanges marked the

beginning of a new era in the global financial market. They facilitated the growth of companies

and contributed to economic development. Over time, these exchanges have evolved and adapted

to changes in technology and market dynamics. Still, their core function remains the same: to

provide a marketplace for buying and selling securities.

1.1.2 Modern markets

Financial markets have undergone structural changes in the past decades due to the massive

electronization of exchanges, allowing quasi-instantaneous transactions anywhere in the world.

Electronic stock exchanges operate digital platforms where market participants can execute

transactions. They typically charge trading fees for liquidity takers and offer rebates for liq-

uidity providers. Their role is similar to that of a poker house, collecting fees with each played

hand. With the advent of MiFID regulations in Europe, alternative markets known as multilat-

eral trading facilities (MTFs) have emerged. Examples include BATS and Chi-X, merged into

BATS-Chi-X and acquired by CBOE Europe, Turquoise, acquired by the LSE, and other MTFs

launched by large investment banks. These platforms compete with primary exchanges such as

Euronext in Paris, LSE in London, and Xetra in Frankfurt. The rise of alternative exchanges

results in market fragmentation, in contrast with market centralization around a central primary

exchange.

Gaining direct access to financial markets is subject to strict regulatory requirements. How-
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ever, thanks to the large number of possibilities offered by brokerage firms, accessing financial

markets is becoming simpler for investors nowadays. A variety of agents can trade a vast array

of asset classes. Although highly heterogeneous, market participants can be categorized into

broadly defined groups that may sometimes overlap:

1. Market makers animate the market. They are consistently present and offer to sell and

buy from impatient agents. They are usually high-frequency actors. Their business model

is to collect the difference between the ask (the price at which they sell) and the bid (the

price at which they buy), assuming prices are stable. Retail exchange offices and gold

jewelers operate with the same market-making mechanism. However, market makers carry

the inventory risk. For instance, when they buy a substantial amount of a security and

hold it for a certain period awaiting sellers, the ask price may plummet far below the

bid at which they bought it. This results in losses if they were to liquidate this position

immediately, i.e., clear their inventory. This is why they continuously adjust their quotes

in order to manage their inventory and need to be profitable on average.

2. Brokers, often large financial institutions, provide access to the market in return for fees to

retail investors and other financial institutions who cannot operate directly in the markets.

They bear the risk of default of their clients. Additionally, they are subject to several

compliance and regulatory obligations.

3. Investment banks offer a wide range of financial services to their clients. They can function

as market makers, brokers, and provide their clients with customized financial instruments

such as complex derivative products or hybrid proprietary indices. Given their crucial

role in the financial network, they are subject to numerous regulatory mandates. Indeed,

the collapse of a major investment bank poses a systemic risk to the financial system and

potentially the global economy. For example, the bankruptcy of the bank Lehman Brothers

in 2008 was a triggering event of the great financial crisis that followed.

4. Institutional investors are significant players in the market due to the size of their assets,

such as pension funds, sovereign funds, and insurance companies. They are usually man-

dated to manage and invest in a large volume of financial instruments. Depending on their

objectives, mandates, and the maturity of claims, they usually engage in acceptable risks

to maximize returns.

5. Portfolio managers, investors, or speculators. Examples include high-frequency trading

agents that employ sophisticated technological infrastructures to conduct market making

and profit from price discrepancies. Medium frequency agents such as hedge funds employ

quantitative strategies to detect investment opportunities or statistical arbitrage. Low-
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frequency agents such as mutual funds often rely on more traditional fundamental analysis

to build portfolio positions on markets.

1.2 Mechanisms of market clearing

To monitor financial markets efficiently, regulators need to achieve a deep understanding of

the market microstructure and the price formation process. Market microstructure is a branch

of finance that studies how trading rules affect price determination and how information and

behavior drive the price. Natural questions arise: what is the fair price for a given security at

a given time? Does it even exist? Should prices fluctuate? How do they fluctuate? How can

the exchange of securities be regulated in order to ensure fairness, competitiveness, and financial

stability?

1.2.1 Auctions

One way to determine a price for a given security is to hold an auction. The word “auction”

(late 16th century) is derived from the Latin word augere, then auctio, meaning to increase.

Auctions are a market mechanism that allows one or multiple buyers to transact with one or

multiple sellers. The most popular auction mechanism is the English auction (McAfee and

McMillan, 1987; Krishna, 2009), where multiple buyers try to outbid each other for one asset.

The highest bid wins. Throughout the auction, the current highest bid is known by bidders.

Different variations of the English auction, also called an ascending-bid auction, are possible:

bids may be announced by the bidder themselves, by the auctioneer, by proxies, and nowadays

submitted electronically.

Other auction types may be driven by bidders, time, or a combination of both. In the auction

by candle, another type of ascending-bid auctions, the highest bid right before a candle goes out

wins. Conversely, in descending-bid auctions such as the Dutch auction, the announced prices

by the auctioneer decrease and the first bid wins. Japanese auctions work in reverse as the

announced price continuously increases and bidders abandon when the price becomes too large

for them. The last standing bidder wins at the current price.

Auctions can be “sealed-bid” where bids are submitted simultaneously, and no bidder knows

how much the others bid. Sealed-bid auctions can be first-price, where the highest bid wins and

pays his bid, or second-price (Vickrey auction), where the winner pays the best second bid.

All the stated above are forward auctions where multiple buyers compete to buy an asset. In
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reverse auctions, however, multiple sellers compete to sell to one buyer. The lowest ask price, the

equivalent of the bid in reverse auctions, wins. Lastly, double auctions involve multiple buyers

and multiple sellers.

Auctions may comprehend additional features that change the structure of bids, such as a

bidding fee, a minimum bid increment, or the visibility of the bids. The determination of the

winner and the paid price can also be subject to specific rules. The winners’ curse emphasizes

that the winner of an ascending-price auction often overestimates the asset’s value and ends

up paying more (Thaler, 1988). This is the case, for instance, when the distribution of bids is

broadly distributed around the fair asset value.

Paul Milgrom and Robert B. Wilson won the 2020 Nobel in Economy for their significant

contributions to auction theory (NobelPrize.org, 2020). For more about auction theory, see for

instance Milgrom (2004); Krishna (2009).

1.2.2 Walrasian auctions: price tâtonnement

Economists addressed the price determination problem within the broader context of an

economy, e.g., with Leon Walras formulating a general equilibrium theory of the economy in the

19th century (Walras, 1900). During this period, several theories were proposed regarding the

origin of an asset’s value, suggesting it could be derived from labor, utility, or scarcity. Walras’

work is widely acknowledged today for its substantial contributions to the mathematization of

economics.

The marketplace had identified the concepts of supply and demand long before they were

mathematically theorized and documented. Supply is the total available volume to be sold, and

demand is the total volume to be acquired, at a given time, at a given price. Supply often

increases as the price increases and vice-versa for demand. Figure 1.2 shows the cumulative

quantity to be sold in blue (supply) and the cumulative quantity to be bought in red (demand)

as a function of the price. In this case, supply p → S(p) and demand p → D(p) intersect at a

unique equilibrium price p = pa that maximizes the exchanged quantity Qa = S(pa) = D(pa).

When S and D are not fully revealed, the equilibrium price can be determined using the

dynamic process known as Walras’ tâtonnement (trial and error). In essence, the equilibrium

price is established by an auctioneer (crieur) who gathers all potential buyers and sellers in a

single place and then proceeds by tâtonnement. The auctioneer announces the first price and

then collects, anonymously from each agent, the quantity to be sold or bought at the announced

price. Then, the total quantity to be sold (supply) and bought (demand) are compared. If

15



Qa

pa

Price

C
um

ul
at

iv
e 

qu
an

ti
ty

Demand
Supply

Cumulative buy and sell curves during an auction

Figure 1.2 – Theoretical supply and demand curves during a Walrasian auction. The
equilibrium price pa is the price that maximizes the total exchanged quantity Qa between
buyers and sellers.

supply exceeds demand, the auctioneer understands that the announced price is larger than the

equilibrium price, and vice-versa. He then iterates by announcing an adjusted price, collects the

updated buy and sell intentions, and compares the total updated supply and demand. Iterations

are carried on until converging to an equilibrium price where supply equals demand. Impor-

tantly, no transaction is allowed to happen during this procedure. Once an equilibrium price is

reached, willing buyers and sellers transact at the auction price. Theoretically, the auction price

pa maximizes the possible volume that satisfied buyers and sellers can exchange, which is the

auction volume Qa (see Fig. 1.2). The convergence relies on strong assumptions such as perfect

information and competition that are not always verified in practice.

Walras’ auction allows buyers and sellers to exchange large quantities at a unique price and

time. While the transaction price is determined by S = P , the time of the clearing is determined

by the exchange.
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Figure 1.3 – Schematic view of a limit order book (left panel) and an incoming buy market
order (right panel).

1.2.3 Continuous double auctions

Continuous double auctions enable impatient buyers and sellers to trade anytime they choose

(“continuous”). The buy price and the sell price are determined by two distinct auctions that run

in parallel, hence the name “double auctions”. Patient sellers publicly display the quantities they

are willing to sell and the corresponding prices, and likewise for patient buyers. These fixed-price,

fixed-quantity orders are known as limit orders and result in an order book that resembles Fig.

1.3.

In this figure (left panel), patient sellers are offering the quantities in blue bars to be sold at

prices 101, 103, 104, and 105. Conversely, patient buyers offer to buy the quantities in light red

bars at prices 99, 98, 96, 95. Subsequently, impatient buyers can purchase the blue quantities

offered in the order book, and impatient sellers can sell the red quantities to patient bidders

using market orders that are instantaneously executed. The lowest offered price is the ask (here,

101), and the highest price a buyer is willing to pay is the bid (here, 99). The spread is the

difference between the best ask and the best bid (here, 2); it is an important measure of the

market liquidity. The larger the spread, the less liquid the asset. Market orders consume the

available limit volume at the opposite side of the book, either fully or partially, across one or

several price levels. The prevailing price of the asset can be defined as the last transaction price,

the mid-price (the average of the bid and ask), or the weighted mid-price (the volume-weighted

average of the bid and ask).

During the day, most stock exchanges, such as Euronext in France, Xetra in Germany, or
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the LSE in the UK, operate using electronic order books, also known as continuous limit order

books. In addition to limit and market orders, most exchanges provide multiple order types to

market participants. For example, in Euronext, one finds:

1. Stop orders that can be limit or market orders, and activate only when the price crosses

a specified threshold. The price threshold for buy orders must be higher than the current

price and vice-versa for sell orders, hence their other name “stop loss orders”.

2. Primary pegged orders are limit orders that track the best bid when on the buy side and

the best ask when on the sell side, with possibly an offset from the best bid/ask.

3. Iceberg orders can be large limit orders with only a small disclosed quantity in the order

book; generally, the hidden quantities acquire queue priority only when revealed.

Orders can be submitted with a validity parameter or execution instructions:

1. Good-for-day orders are canceled at the end of the trading day if not executed.

2. Good-till-cancel orders persist in the order book until completion.

3. Valid-for-auction or Valid-for-closing orders can be submitted throughout the trading day

and become active only at the start of the relevant auction phase.

4. Fill-or-kill orders are executed either totally or canceled.

5. Immediate-or-cancel orders are executed either totally or partially, and the remaining

volume is automatically canceled.

When a limit order crosses the opposite best quote, it becomes a marketable order: it acts as a

market order until it depletes the available volume up to its limit price. If a quantity remains

unexecuted, it transforms into a limit order at a new best (bid or ask). Marketable orders are far

more used than market orders during continuous trading sessions as they offer more control over

the trading price. Market orders represented 3.7%, on average, of the orders that triggered a

transaction during the continuous trading phase for the TotalEnergies stock on Euronext between

2013 and 2017.

There are many other types and possible parametrizations for order submissions that may

depend on the considered exchange. We refer the reader to the complete rulebooks, e.g., Euronext

(2023a,b) for further information on general trading rules, order types, and parametrizations on

Euronext.
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1.2.4 Equity auctions

Limit order books allow market participants to trade instantaneously when needed and to

engage in market-making activities. However, most stock exchanges only operate during the day,

unlike the FX market for instance, which operates on a 24/7 basis. Before the introduction of

call auctions, opening and closing prices were subject to a significant amount of manipulation.

When the closing price was simply the last transaction price, prior to the introduction of the

closing auction on the Paris stock exchange, Hillion and Suominen (2004) found that spread and

volatility experienced a significant increase in the last minute of the trading day, along with a

sharp increase in the bid/ask spread and the number of hidden orders. Using an equilibrium

model, they argued that the observed patterns are likely due to the manipulation of the closing

price.

The closing price is an important metric for stocks as it facilitates the benchmarking of

daily returns, portfolios, and net asset values of funds, among others. In an effort to curb

the manipulation, primary exchanges adapted their opening and closing mechanisms during

the last decades. Some switched to mechanisms similar to a volume-weighted price in the last

minutes of the trading day to determine the closing price. For instance, in 1993, the Hong Kong

stock exchange started to use the median of five prices in the last minute of the trading day as

the closing price (Park et al., 2020). Some others, such as the Paris stock exchange, adopted

similar mechanisms to Walras’ auction. Currently, most electronic exchanges, including primary

exchanges in European countries, use auctions to start and end trading days on liquid stocks.

Unlike US equity auctions where continuous trading runs in parallel, continuous trading is halted

in European equity auctions.

Equity auctions start with an accumulation period and end with a clearing process. During

the accumulation period, participants submit orders (quantity, price, side, order type, . . . ) to the

exchange. Modifications and cancellations are allowed, but transactions cannot occur. Figure 1.4

(left panel) shows an example of a limit order book during an equity auction. Buy and sell limit

orders overlap in the order book. When supply and demand overlap during the accumulation

period, there is no best bid, no best ask, and no spread. At all times, an indicative price pa

can be computed: it maximizes the matched volume (indicative volume) Qa and minimizes the

unmatched volume at the indicative price. The unmatched volume at the indicative price is

known as the imbalance or the surplus. Finding the indicative price and volume boils down to

finding the intersection of the supply and demand curves, as shown in the right panel of Fig 1.4.

At auction time, buy orders whose prices are larger than the auction price and sell orders whose

prices are smaller than the auction price are executed at the auction price. Limit orders whose
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Figure 1.4 – Schematic view of a limit order book during an equity auction (left panel)
and its cumulative counterpart (right panel).

limit price equals the auction price may be matched or remain in the order book depending on

a time priority principle.

Note that the auction price is often not uniquely defined by the maximization of the exchanged

volume alone; this is why exchanges implement a complementary set of rules such that pa is always

well defined. In the case of the Euronext markets, when multiple prices maximize the exchanged

volume, the chosen pa is the one with the smallest imbalance. Then, if multiple prices with the

highest executable volume and the smallest imbalance still exist, the auction price is the one

closest to the reference price (last traded price).

In the case of Euronext Paris, the accumulation period of the opening auction starts as soon

as 07:15:00, and the clearing occurs randomly in a thirty-second window starting at 09:00:00.

Likewise, the accumulation period of the closing auction starts at 17:30:00 and lasts for five

minutes. The close clearing occurs randomly between 17:35:00 and 17:35:30. Following the

closing auction clearing and until 17:40:00, the exchange operates a period of trading-at-last in

which agents can further trade at the closing price. Figure 1.5 shows a sketch of a typical trading

day in the Paris stock exchange for a liquid stock.

The closing auction volume has seen consistent growth, particularly in European markets,

where it can surpass half the daily volume on days of index rebalancing and derivative expiry

(Raillon, 2020). To enhance liquidity during midday, typically the period of lowest liquidity, and
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Figure 1.5 – Schematic view of a typical trading day on Euronext Paris.

to mitigate the exposure to high-frequency market makers which dominate the total turnover

during day trading (AMF, 2017), some primary exchanges, such as Xetra and LSE, also intro-

duced a daily intraday auction. For less liquid stocks in Paris, Euronext (2019) implements the

double-fixing trading method, i.e., two auctions per day with periods of trading at last after the

uncrossings, and no continuous double auction.

Financial markets are highly complex systems where numerous human and algorithmic agents

interact at different timescales. Identifying the fundamental laws that govern these systems,

ranging from micro- to macro-level, is a considerable challenge. However, with the advent of in-

creasingly precise data, the significance of market microstructure research has greatly increased.

Many stylized facts have been uncovered, and theoretical models can now be tested and con-

fronted with real-world data, leading to a robust body of knowledge in this field (Mantegna and

Stanley, 1999; Chakraborti et al., 2011a,b; Abergel et al., 2016; Bouchaud et al., 2018a; Lehalle

and Laruelle, 2018).

Despite their importance, equity auctions have been the subject of very few studies in com-

parison with open markets, partly due to the difficulty of obtaining suitable granular data. This

thesis is based on high-quality data, which will enable us to reconstruct the tick-by-tick dynamics

of accumulation periods and propose adequate modeling of the observed phenomena.
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1.3 Empirical studies of call auctions

1.3.1 Stylized facts

In the following, call auctions refer to the auction market mechanism, pre-opening refers to

the accumulation period of the opening auction, and frequent batch auctions refer to a market

mechanism where call auctions are sequentially held one after the other. They are also named

periodic auctions.

Early studies of the pre-opening

The Paris stock exchange used to operate on a (unique) daily call auction before 1986; then

it gradually switched to a computerized continuous limit order book mechanism (Biais et al.,

1995). This change allowed for continuous trading from 10:00 to 17:00 each day, preceded by a

pre-opening period, i.e. an opening auction. In 1998, a closing auction mechanism was introduced

for the most actively traded stocks. The continuous trading phase in Euronext Paris currently

spans from 09:00 to 17:30.

Generally, most primary stock exchanges introduced call auctions in order to determine

opening and closing prices in the late 90s’ and at the start of the 21st century.

Biais et al. (1999) study the pre-opening period on the Paris bourse, highlighting its high

degree of similarity with the Walrasian tâtonnement process. They test whether the indicative

price reflects learning vs noise and find that early in the pre-opening period, the noise hypothesis

is not rejected. However, as the opening time gets closer, the informational content and efficiency

of prices increase, and the learning hypothesis can no longer be rejected.

The effect of introducing closing call auctions on market quality

The seminal work of Pagano and Schwartz (2003) study the effect of this introduction on

market quality. They find a substantial reduction in transaction costs after the introduction of

the closing auction and enhanced accuracy of the price determination for the overall market.

Similarly, Aitken et al. (2005) analyze the effect of the introduction of a closing call auction

on the Australian stock exchange in 1997. They document a shift of activity from the last hour of

continuous trading to the closing auction. In addition, they find that the closing auction consol-

idates liquidity without having an adverse effect on the cost of trading in the continuous session.
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Lastly, they document higher activity and exchanged volumes during Fridays and quarter-end

days.

Kandel et al. (2012) conduct similar research on the Borsa Italiana and report a volume shift

from the last minutes of the continuous phase to the closing auction. Additionally, they report

reduced spreads, volatility, and average trade sizes in the last minutes of continuous trading.

Interestingly, they evidence an increased average order size in the closing auction one year after

its introduction; they link this finding to increased confidence in agents’ ability to execute large

trades at the close.

Park et al. (2020) examine the effect of introducing a closing call auction on price manipula-

tion in the Hong Kong stock exchange. The latter introduced a closing call auction in 2016 after

it removed it in 2008, only 10 months after its adoption, due to suspicions of widespread price

manipulation. The authors indicate that the call auction mechanism is prone to price manipula-

tion unless it is coupled with other precautionary mechanisms. These include the establishment

of price thresholds, volatility interruptions, randomization of the clearing, and price stabilization

mechanisms such as the order-balancing mechanism in NYSE and NASDAQ.

Likewise, Li et al. (2021) investigate the impact of the introduction of a closing auction in

the Shanghai stock exchange in 2018. They use the Shenzhen stock exchange as a control group

where closing auctions have been held since 2006. Their findings indicate significant shifts in the

trading volume from closing auctions to preceding continuous trading. In addition, they observe

a significant decrease in the closing price deviation. The authors argue that the introduction of

a closing call auction could reduce manipulation and liquidity noise in the closing price.

Alexakis et al. (2021) use tick-by-tick data from the Athens stock exchange to investigate the

effect of introducing a closing call auction on price manipulation. They find that the closing call

auction manages to lower manipulation compared with a value-weighted average price (VWAP)

mechanism. In addition, they indicate that the closing auction does not fully eliminate manip-

ulation, even when precautionary mechanisms are included in the auction. Lastly, they suggest

continuous monitoring from regulators with a specific emphasis on the reference price.
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Pre-opening, high-frequency trading, and fragmentation

Boussetta et al. (2017) investigate the quality of price discovery in the pre-opening of Eu-

ronext Paris within the context of fragmented markets and the rise of high-frequency trading.

They report an early activity of slow brokers and a later activity of fast traders (HFTs) and

dedicated liquidity providers (market makers) in the last half-hour. Additionally, they find that

the pre-opening activity of slow brokers is strongly related to the price discovery process across

trading venues.

In the same vein, Bellia et al. (2017) examine the strategic behavior of high-frequency traders

in Euronext Paris pre-opening. They document that HFTs neither harm nor improve the quality

of the price discovery process and liquidity. Additionally, they report increased profitability

for later submissions, whether stemming from HFTs or slow agents in comparison with earlier

submissions. HFTs lead the price discovery process using their own accounts in contrast with

market-making accounts, and the presence of liquidity providers in the pre-opening is marginal.

They argue that the latter is the result of Euronext’s policy that rewards market makers only

during continuous trading; raising questions about this policy’s relevance for the overall market

quality.

Note that both Boussetta et al. (2017) and Bellia et al. (2017) employ the BEDOFIH

database (European High-Frequency Financial Database; Base Européenne de Données Finan-

cières à Haute Fréquence), a high-quality dataset developed and maintained by EUROFIDAI

(The European Financial Data Institute), which is used in this thesis. A detailed presentation of

the BEDOFIH database, the data processing, and preliminary results on the ecology of closing

auctions in Euronext Paris are provided in Chapter 2.

Statistical regularities in equity auctions

Gu et al. (2010) is one of the earliest works analyzing empirical regularities of equity auc-

tions using high-frequency data from the Shenzhen stock exchange in 2003. They find that the

distribution of limit prices is a skewed bell shape around the reference price. The maximum of

the distribution of buy limit prices is reached below the reference price and vice versa for sell

limit prices with asymmetric buys and sells. Interestingly, they evidence a large peak at the

reference price, i.e., yesterday’s closing price. Additionally, they study the distribution of order

sizes, highlighting number preferences known as order size clustering. Lastly, they show that the

average order book, i.e., the available limit volume as a function of the distance to the bid (for

buys) and the ask (for sells), is exponentially decreasing.
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Raillon (2020) documents the increasing share of the closing auction in the total traded

volume, especially in European markets such as France where 41% of the CAC40 volume was

exchanged on the close in June 2019. The author proposes several explanations for this trend

such as the growth in passive investing, MiFID II regulations (best execution, transaction cost

analysis), lower exposure to HFTs, and an amplification by automated execution algorithms. In

addition, the study describes cases of indicative price and volume formation during the accumu-

lation period. It highlights that indicative volume and price converge rapidly to their terminal

values. 90% of the auction volume and 0.3% distance from the auction price are, on average,

reached in the first two minutes of the closing accumulation period.

Challet and Gourianov (2018) conduct a thorough study of the dynamical regularities in

US equity auctions, highlighting the same trend of increasing closing volumes. They find that

the indicative price is mean-reverting with Hurst exponent H < 1/2, particularly in the closing

auction. In addition, the authors examine response functions in auctions, i.e., the response of

the auction price conditional on an order submission or cancellation at a given time during the

accumulation period. They find that earlier actions have more impact than later ones, and

that conditional on improving or worsening the imbalance, response functions can be markedly

different. For instance, at the close, submissions that improve imbalance have the opposite effect

on the auction price than those that worsen it, In contrast with the open, where imbalance-

improving submissions have barely the same effect to no effect at all compared with imbalance-

worsening submissions.

Lehalle and Laruelle (2018) provides a comprehensive overview of call auctions in its second

chapter. The authors highlight the importance of closing auctions for primary exchanges in the

context of market fragmentation. In addition, microstructural details of the indicative price de-

termination across numerous primary exchanges are discussed. The authors report the temporal

shape of the indicative volume and discuss informational peaks during the accumulation period.

In parallel, the first chapter of Bouchaud et al. (2018a) formalizes the mechanism of price de-

termination in Walrasian auctions. Features of opening and closing auctions are discussed in its

third chapter.

Challet (2019) examines statistical regularities of the opening and closing auctions of French

equities with a focus on the diffusive properties of the indicative auction price. The author finds

that as the auction goes by, the typical price change decreases, favoring the sub-diffusion of the

indicative price. Conversely, the author shows that the rate of events increases as the clearing

approaches, favoring super-diffusion. The author concludes with the need for an additional

mechanism —strategic behavior— to produce nearly diffusive prices.
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Frauendorfer and Müller (2020) analyze closing auctions of Swiss equities and find that closing

prices are highly sensitive to the removal of both small limit and market orders. For instance,

removing 25% of the executed volume from one side results in the dislocation of 20 bps (basis

points) in the closing price. In addition, the authors highlight that most of the price discovery

process occurs within the first two minutes of the auction, with the rest of the period having no

major influence on price discovery.

Asset managers Bank (2020); Blackrock (2020) discuss the key role of closing auctions in

day trading. They both highlight the increasing importance of the closing auction and attribute

the upward trend of the share of closing volumes to the rise in passive investing. They argue

that additional factors are responsible for this trend, such as the large liquidity at the close

and the desire to avoid being exposed to high-frequency traders. The authors view the closing

auction as a funnel of liquidity and accurate price discovery. They argue that fears around rising

market-on-close activity are unlikely to materialize.

Comerton-Forde and Rindi (2022) use data from European primary exchanges with a focus on

UK stocks to investigate the trading activity at the close. They document an increase in market-

on-close activity and highlight that the rise in passive investing does not fully explain this trend.

They report that the auction returns increase with activity, especially during index rebalancing

days, and that these returns are permanent in liquid stocks. Aramian and Comerton-Forde

(2023) show that despite the large panel of competitive alternative closing mechanisms, closing

auctions of primary exchanges still capture the lion’s share (more than 80% in 2023) in European

equity markets. The authors show that alternative trading mechanisms attract a higher market

share than usual in index rebalancing days (40%) and end-of-months (30%). Conversely, the

market share of alternative trading mechanisms decreases significantly on volatile and less liquid

days. They discuss the divergent perspectives on the impact of fragmentation at the close and

raise the need for further research on the subject.

Besson and Fernandez (2021) leverage a dataset from Euronext to examine the price impact

of order submission at the close. They argue that the lower cost of trading at the close is a key

factor in explaining the increase of the closing volume share alongside its large liquidity. They

report that price impact at the close is two to three times lower than its continuous counterpart

and use linear functions to fit the price impact at the close. In addition, they report several

statistical regularities such as the price distribution of limit orders, order types, and temporal

pattern of the indicative price and volume. Lastly, the authors discuss the potential adverse

consequences of the internalization of market orders, which is the leading alternative closing

mechanism, on the auction’s volatility.
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1.3.2 Auctions and market design

Reboredo (2012) study the effect of volatility auctions. These are five-minute auctions trig-

gered during continuous trading whenever the price abnormally moves beyond predetermined

thresholds. Volatility auctions are intended to have an overall positive impact on market quality

in comparison with trading halts. The author uses intraday data from the Madrid stock exchange

on a period that includes the switch from trading halts to volatility auctions. Reboredo (2012)

finds that although the trading volume and intensity peak around these auctions, they system-

atically return to pre-event levels. Additionally, the author reports a decrease in post-events

volatility in contrast with trading halts events where the post-events volatility remains high.

Since the mid-2000s, high-frequency trading firms have engaged in a technological arms race,

i.e., large investments in their technology platforms to minimize the travel time of their signals

(latency). The main goal of these firms is to be the fastest to exploit arbitrage opportunities in

the markets. Amid the race, markets witnessed anomalies that are very likely to be attributed

to high-frequency trading. A striking example is the NYSE flash crash on May 6th, 2010. This

event triggered an ongoing debate among the research community on whether high-frequency

trading is beneficial or harmful. Budish et al. (2015) argue that the arms race is the result of the

flawed design of continuous limit order books and the sequential nature of order processing on

the stock exchange. They employ a simple model that reproduces their empirical observations.

The authors advocate for the use of frequent batch auctions, which is also motivated by their

model. They find that a lower bound of 100 ms on the batch period totally eliminates the arms

race problem.

Building on the frequent batch auction design, Paul et al. (2021) use a stochastic order book

model to compute the optimal batch duration. They assume the case of naive market takers and

that of rational ones looking to minimize their transaction costs. The optimal auction duration

is derived from the minimization of a quadratic tracking error between the clearing prices and an

ad-hoc fair price. The model’s parameters are related to observable quantities for 77 stocks on

Euronext markets. The authors find that continuous limit order books are usually sub-optimal,

with optimal auction durations from 2 to 10 minutes. Derchu et al. (2020) use a similar framework

to compare continuous limit order books, frequent batch auctions, and the AHEAD mechanism

(Ad-Hoc Electronic Auction Design). The latter is a market design where agents trade at a

fixed price and can launch auction phases whenever they are unsatisfied with the current price.

Once the auction clears, trading resumes at the (fixed) auction price, and so on. The authors

argue that the AHEAD mechanism significantly improves the market microstructure from the

investors’ viewpoint.
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CBOE (2020) implemented a periodic auction book for European equities in 2015 with a

randomized auction duration that can not exceed 100ms. Besson et al. (2019) find that there

is essentially only one market order involved in each auction batch. Thus, a small batch period

does not allow buyers and sellers to net their market orders. Aquilina et al. (2022) review

the recent developments in the HFT arms race. They find that arbitrage opportunity races

are very frequent, extremely fast, and account for more than 20% of the total traded volume.

They argue that latency arbitrage is tantamount to a half-basis point tax on trading and that

five billion dollars a year are at stake in global markets equity alone. Budish et al. (2023)

propose a comprehensive market design combining frequent batch auctions with the possibility

of constructing a portfolio using single order submission.

Donier and Bouchaud (2016) argue that the inter-auction time should be large enough for

liquidity to accumulate. However, as the inter-auction time grows, waiting costs increase, which

may result in fragmentation in favor of secondary continuous markets.

1.3.3 Auction modeling

The seminal work of Mendelson (1982) is one of the earliest in auction modeling. The author

models a clearing house with buyers and sellers submitting orders of unit size on a discrete price

grid. When buyers and sellers have the same intensity, the distribution of the exchanged volume

is derived along with its first moments. When there is an imbalance between buyers and sellers,

weaker results are presented. Another seminal work is that of Madhavan (1992) comparing

continuous trading with batch auctions. The author uses a rational expectation framework to

show that periodic auctions offer greater price efficiency, albeit agents must sacrifice trading

continuity and bear informational and waiting costs. In light of these findings, Madhavan (1992)

suggests a switch from trading halts to volatility auctions when the continuous trading mechanism

fails, i.e., when large movements of the price occur.

Muni Toke (2015b) shows that the call auction problem is analytically tractable even in

cases where Mendelson (1982) claims such forms did not exist. The author derives the exact

distribution of the auction volume and the lower and upper clearing prices. Weak limits of these

distributions are shown to be asymptotically normal and independent of the distribution of limit

prices. The model is extended to allow for cancellations. Derksen et al. (2020) presents a similar

model, allowing for possibly different distributions of limit order placement. The authors present

the asymptotic limit of the distribution of the clearing price and study the influence of the order

flow parameters. Building on the previous model, Derksen et al. (2022a) theoretically relate the
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tail exponent to the order flow parameters and examine the empirical tails of the closing auction

return distribution. They argue that limit orders are likely the main cause of the observed heavy

tails in the return distribution. Empirical fits on the empirical distribution tails are conducted

to support the theoretical results.

Lastly, Donier and Bouchaud (2016) introduce a continuous (time and price) limit order book

model incorporating mechanisms for order deposition, cancellation, and price updates without

involving transactions. Doing so, they recover the Walrasian auction mechanism and extend the

framework to allow for successive batch auctions (see Section 1.5.1).

1.4 Price impact

Price impact, sometimes coined as market impact, refers to the fact that a buy pressure

pushes the price up whereas a sell pressure pushes it down. In continuous double auctions, every

transaction is an agreement between a buyer and a seller to exchange a given quantity at an

agreed price. Thus, it is not obvious how a buyer or a seller will impact the price. The key

to this paradox is the heterogeneity in the agents’ opinions. In particular, a transaction can be

viewed as a disagreement: the buyer can only hope that his freshly acquired asset will appreciate

in the future. If the seller had a similar opinion, he would not have sold in the first place.

Milgrom and Stokey (1982) prove the “no-trade theorem”, stating that under some constraints

(efficient market structure, no noise trading or irrational actions, and accessible public informa-

tion), no trader can profit from a piece of private information. The underlying idea behind the

proof is the key difference between patient and impatient agents. The initiator of a transaction

reveals his buying/selling intention to other agents. If there is no noise and all agents are ra-

tional, no one should accept that trading proposition. In practice, patient agents adjust their

reservation price once they digest the information surrounding impatient agents’. This is partic-

ularly well illustrated by the following dialogue taken from Bouchaud et al. (2018a) (translated

from Laumonier (2014))

Buyer: How much is it?

Seller: £1.50.

Buyer: OK, I’ll take it.

Seller: It’s £1.60.

Buyer: What? You just said £1.50.
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Seller: That was before I knew you wanted it.

Buyer: You cannot do that!

Seller: It’s my stuff.

Buyer: But I need a hundred of those!

Seller: A hundred? It’s £1.70 a piece.

Buyer: This is insane!

Seller: It’s the law of supply and demand, buddy. Do you want it or not?

1.4.1 Price impact in open markets

In open markets, price impact is an important source of transaction costs for agents with

sizable portfolios. To minimize the price impact of large orders, agents often resort to optimal

execution schemes (Almgren and Chriss, 2001; Alfonsi et al., 2010; Obizhaeva and Wang, 2013;

Abi Jaber and Neuman, 2022; Hey et al., 2023). Studying comprehensively price impact is

important for regulators to enhance effective policies that promote market stability.

Price impact of single market orders

Bouchaud et al. (2018a) measure an unconditional price impact of individual trades. It is

the correlation between the side of an incoming market order and the subsequent price change.

R = ⟨εt · (mt+1 −mt)⟩, (1.1)

where mt is the mid-price at time t, εt = +1 for a buyer-initiated transaction and -1 for a

seller-initiated transaction, and ⟨·⟩ denotes the average over time. The time t increases by one

at the arrival of every trade. R is found to be strictly positive with high statistical significance

for 20 US stocks using one year (2015) worth of data. Actually, R is the linear regression slope

estimate of (mt+1 −mt) on εt given zero-intercept. Using 2017 data for TotalEnergies, we also

find that R = 0.47 bps is strictly positive with high statistical significance. This proves that buy

market(able) orders are, on average, followed by an upward price move and vice versa for sell

orders.

Conditioning on the size of the traded volume, we can define the price impact of a single
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market order of volume v (until the arrival of the next market order)

R1(v) = ⟨εt · (mt+1 −mt)|Vt = v⟩ . (1.2)

R1 is the lag-1 response function, where Vt is the transaction size at time t. Empirically, R1 is

found to be weakly dependent on v and is often described as a concave function with exponent ≃
0.3 (Lillo et al., 2003; Lillo and Farmer, 2004) and sometimes logarithmic (Potters and Bouchaud,

2003; Bouchaud et al., 2003). Actually, this strong sub-linearity results from selective liquidity

taking (Bouchaud et al., 2009). This refers to agents usually considering the volume at the

opposite best to size their orders as they often do not consume more than one price level.

Farmer et al. (2004) argue that large price fluctuations are not driven by the size of market

orders but rather by the distribution of gaps in the order book. They highlight the important

role of liquidity fluctuation in defining price impact (Lillo and Farmer, 2005).

General lag response functions can be defined as

R(l, v) = ⟨εt · (mt+l −mt)|Vt = v⟩, (1.3)

where the average is now taken over time. Bouchaud et al. (2003) find that the general response

function is separable R(l, v) ≈ R(l) × R1(v), where R(l) is an unconditioned response function

that measures the impact of an initiated trade at time t, l lags further.

Another relevant measure of price impact relates to volume imbalance ∆V (t, t + T ) =∑
t<t′<t+T εt′Vt′ over a given time horizon T . An aggregate impact over a time horizon T is

defined as

R(∆V, T ) = E[mt+T −mt| ∆V (t, t+ T ) = ∆V ], (1.4)

with the expectation taken over periods of length T that can span from minutes to a whole

trading day. When T is the average inter-arrival times of market orders such that ∆V (t, t+ T )
contains on average one market order, R and R1 coincide. Similarly, R is found to be a concave

function of ∆V when T is small while becoming linear as T increases (Plerou et al., 2002).
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Virtual price impact

If the order book is visible, one may want to measure price impact from the shape of the

order book. Averaging impact values from the observed volumes and quotes would yield a virtual

impact function. Weber and Rosenow (2005) calculate a virtual impact function on order book

data and find that it is four times stronger than the actual impact function R(∆V, T ). Bouchaud

et al. (2009) conduct similar calculations and find that the virtual impact significantly differs

from the actual price impact for actual orders. By definition, price impact is the average price

move of actual orders conditioned on their volumes, whereas virtual impact is the average order

book depth at a given volume. Until the arrival of the next order that triggers a transaction,

the market reacts and digests some of the recently sent market orders. Additionally, agents can

adjust quotes, cancel orders, and submit new limit orders between the arrivals of two market

orders. The virtual impact does not allow for the measurement of such interactions and market

reactions.

The long memory of market orders and propagators

Lastly, an accurate measure of price impact in continuous markets relates to the concept

of meta-orders. These refer to large orders that are executed incrementally, as the order book

liquidity does not permit a one-shot execution without resulting in a large price change. Agents

slice and dice their large-size orders into several child orders that are executed over a given time

horizon (typically one trading day). Meta-orders are responsible for the long memory of order

flow (Lillo and Farmer, 2004): It refers to the slow decay of the autocorrelation function of market

order signs (εt). Using agents’ labeled data, Toth et al. (2015) break down the autocorrelation

function of (εt) into two contributions: splitting (slice and dice) and herding. They find that the

persistence of order flow is overwhelmingly due to splitting rather than herding.

The predictability in market order signs may push one to question the price predictability.

For example, if each trade moves the current mid-price permanently with impact R such that

rt = Rεt + ξt, (1.5)

where εt is the sign of the incoming market order at t and ξt an idiosyncratic noise, then

E[rt rt+l] = (R)2E[εt εt+l]. (1.6)

Since C(l) = E[εt εt+l] slowly decays as power law of parameter γ, Eq. (1.6) is clearly in-
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compatible with the unpredictability of returns. A way around (Bouchaud et al., 2003, 2006,

2009, 2018a) is to consider that impact is not permanent and decays with time with a ker-

nel G. Then, the mid-price is mt = m0 +
∑

n<tG(t − n)εn +
∑

n<t ξt and the return is

rt = G(1)ε1 +
∑

n<t(G(t − n + 1) − G(t − n)) · εn + ξt. The first term is the immediate im-

pact of the incoming market order at time t and the second one describes the decay of previous

market orders. The propagator G can be calibrated on empirical data using response functions.

Interestingly, the absence of correlation in returns implies that G should decay as a power law

of parameter β = (1− γ)/2. This suggests that open markets operate near criticality.

Another way around (Lillo-Mike-Farmer model) is to relate the exponent of the distribution

of metaorders with γ (Lillo et al., 2005; Sato and Kanazawa, 2023).

Price impact of metaorders

In continuous markets, the price impact of meta-orders is consistently found to be of square

root type w.r.t. the order size; independently of the market, the asset, the considered period, and

the execution style (Almgren et al., 2005; Tóth et al., 2011; Donier and Bonart, 2015; Zarinelli

et al., 2015; Mastromatteo et al., 2014; Tóth et al., 2016). The impact of a meta-order of size Q

is

I(Q) = Y σd

√
Q

Vd
, (1.7)

where σd is the daily volatility, Vd is the daily traded volume, and Y is a constant of order unity.

The square root law in open markets is very likely a universal phenomenon. However, it only

holds when Q/Vd is small, up to a few percent. Furthermore, it is only valid when the execution

horizon is larger than the typical time needed for the limit order book to refill its liquidity (order

of minutes). Otherwise, if execution is fast, the available liquidity is rapidly consumed, and price

impact turns out to be convex. Lastly, the execution horizon should be smaller than the typical

memory time of the latent (hidden) liquidity (order of days).

Price impact of order book events

Other studies investigated the price impact of order book events and not only marketable

orders. Said et al. (2017) conduct a large-scale investigation on the market impact of (meta)

limit orders, distinguishing between aggressive (in this context, marketable) and passive limit

orders. The authors confirm the square root law on their proprietary dataset with lesser impact

for passive limit orders. Cont et al. (2014) introduce the order flow imbalance that measures
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the changes in supply and demand at the best bid/ask, thereby including market orders, limit

orders, and cancellations. They conduct linear regression analysis on a fixed time scale (10

seconds) and find a positive linear correlation between returns and the order flow imbalance.

The authors argue that order flow imbalance has more predictive power than volume imbalance.

They suggest that the square root law may be a post-aggregation statistical artifact related to

the trade’s duration along with Capponi and Cont (2019). However, Bucci et al. (2019b) indicate

that “price impact should not be misconstrued as volatility”, i.e., the average directional price

move conditioned on an individual trading decision (price impact of a meta-orders) has nothing

to do with the average standard deviation of the price over that trade’s duration (price diffusion

and volatility).

Eisler et al. (2012) extend the propagator model to account for limit orders and cancellations.

Whereas events happening on the same side of the order book (bid or ask) are long-range corre-

lated, signed events of the same side are short-ranged: these observations corroborate price un-

predictability even when market order signs are predictable. Although similar to the Hasbrouck

VAR model (Hasbrouck, 1991), the generalized propagator model is microscopically interpretable

in contrast with the ad-hoc econometric assumptions of the former.

1.4.2 Price impact in auctions

Research on auction impact is scarce. Donier and Bouchaud (2016) show that under sufficient

regularity constraints of the supply and demand curves, price impact is linear in Walrasian

auctions. Besson and Lasnier (2022) use linear price impact models to best fit empirical data

from Euronext closing auctions. They find a smaller instantaneous impact for later submissions, a

larger impact decay for earlier submissions, with a mitigated overall impact when distinguishing

early and late submissions. Derksen et al. (2020) assert a concave market impact for market

orders, treating them as a liquidity surplus that shifts the clearing price distribution.

Auctions differ in a number of ways from open markets. The auction time frame can be

very short. For instance, five minutes at the closing auction is all it takes to exchange consid-

erable amounts of volume. As the clearing approaches, the perspective of slicing a large order

is narrower. Additionally, a large amount of liquidity builds up toward the end of the auction;

the order book becomes resilient to large submissions, and the typical price change decreases

(Challet, 2019), favoring one-shot executions. Importantly, when supply and demand overlap,

there is no bid/ask. In continuous markets, trades must account for a half-spread cost when the

benchmark is at the mid-price. In auctions instead, there is no half-spread to be paid. More

34



surprisingly, large market orders may result in zero impact on the indicative price at the auction

time (see Chapter 3).

Although response functions of the indicative price yield the shape of market impact during

auctions, they can not characterize the actual cost of trading. The transaction price of a given

submission is not an impacted indicative price but rather the final auction price (assuming that

the corresponding order is matchable at auction time). Therefore, the actual cost of trading

for an order that is sent during the accumulation period stems from the impact on the auction

price. Response functions of the auction price measured by Challet and Gourianov (2018) are

conditioned on the time of the submission/cancellation and unconditional on the order size.

These are consistent with measuring the cost of trading during equity auctions.

If the auction clearing time is known with certainty, some (low-latency) agent can —in

theory— act last in the auction and send an order just before the clearing. In this case, the

market does not have enough time to react as it clears right away. Transaction costs originate

fully from the instantaneous impact caused by this agent’s submission, who can then infer the

incurred cost by calculating a virtual/instantaneous impact function from the order book. Thus,

an apparent benefit of the clearing time randomization is to prevent fast agents from having an

edge over the other participants, i.e., act last knowing what every other agent has submitted.

One way to examine auction impact is to investigate the statistical regularities of price impact

at the auction clearing time, i.e., measuring the order book response at auction time. Although

closely related to the concept of virtual impact, price impact at auction time is a faithful measure

of the actual costs incurred by agents who act very late in the accumulation period. In parallel,

calculating 1-lag response functions of the indicative price will provide us with useful information

about the shape of market impact in equity auctions. We develop these contributions on price

impact in equity auctions in Chapter 3.

1.5 Latent liquidity models

To describe numerous stylized facts in financial markets, various models have been developed

ranging from simple phenomenological models to complex micro-founded ones. In contrast with

standard economic models, where a representative rational agent maximizes a utility function,

zero-intelligence agent-based models assume that agents do not learn. The resulting dynamics

are analyzed from a statistical mechanics standpoint. Despite their simple hypotheses, zero-

intelligence models are powerful predictive tools (Farmer et al., 2005; Smith et al., 2003).

In continuous markets, the available liquidity in the whole order book at a given time is, on
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average, 10−5 of the market capitalization, and the average daily volume rarely exceeds 0.5% of

the market capitalization (Tóth et al., 2011). Therefore, visible liquidity in LOBs is the result

of a dynamic process, and most liquidity latent, i.e., not revealed yet. Starting from the skewed

bell shape of the average order book, Bouchaud et al. (2018a) argues that there is no reason for

the true supply and demand of a given asset to be sharply localized around the current price.

Thus, the revealed liquidity at a given time in the order book can only be “the tip of the iceberg”.

By introducing the latent order book concept, Tóth et al. (2011) succeed in explaining the shape

of market impact with minimal ingredients, i.e., using purely statistical considerations without

resorting to fair price implications or expected utility maximization. The main hypothesis is the

existence of a latent limit order book containing all buy and sell intentions that are partially

revealed in the observable limit order book.

1.5.1 Walras’ auctioneer

Donier and Bouchaud (2016) build on the latent order book model and provide a fully

consistent framework for the free evolution of the marginal supply and demand curves ρS and

ρB defined as
ρS(p, t) = ∂pS(p, t);

ρB(p, t) = ∂pD(p, t),
(1.8)

where S and D are the supply and demand curves. Under the Walrasian mechanism, i.e., no

transaction occurs before the auction final time, the free evolution of marginal supply and demand

curves is governed by the following partial differential equations

∂tρS(x, t) = D∂xρS(x, t)− νS(x)ρS(x, t) + λS(x);

∂tρB(x, t) = D∂xρB(x, t)− νB(x)ρB(x, t) + λB(x),
(1.9)

where x = p−pt, is the centered log price p around the current log price pt. The first term on the

right-hand side (RHS) of (1.9) represents price updates with diffusion coefficient D. Originally,

the PDEs are derived with respect to p and contain a drift term −St∂pρ(p, t). The underlying

idea is that between t and t+δt, each agent updates its reservation price p to p+βdpt +η, where

η is an idiosyncratic noise with zero mean and variance Σ2, and β is a prefactor encoding agents’

reaction to price movements. Agents over-react when β > 1 and under-react when β < 1. When

derived in the reference frame of the current price pt with dpt = dSt, the drift term disappears.

When the price is deterministic, there is no additional contribution to the diffusion coefficient

that consists of idiosyncratic price updates D = Σ2/2. When pt is a Brownian motion with
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volatility σ, an additional contribution to the diffusion coefficient comes from agents’ reaction to

price movements Var(β)σ2/2. Hence

D = (Σ2 + Var(β)σ2)/2. (1.10)

If β = 1 for every agent, this volatility term disappears as well. The second term of the RHS

of (1.9) corresponds to cancellations with rate ν; usually, cancellations are symmetric νS = νB.

The third term of the RHS of (1.9) refers to the deposition of new orders with rate λ. A constant

cancellation rate ν(x) = ν allows the retrieval of a closed-form formula for the buy and sell latent

order books

ρ(x, t) = 1√
4πDt

·
∫
R
ρ(y, 0)e− (y−x)2

4Dt
−νtdy +

∫ t

0

1√
4πD(t− t′)

∫
R
λ(y)e− (x−y)2

4D(t−t′) −ν(t−t′)dydt.

(1.11)

Note that although market orders (corresponding to |x| → ∞), buy limit orders for x > 0,

and sell limit orders for x < 0 directly affect the equilibrium point of the supply and demand

curves, this effect is not accounted for in the model.

Donier and Bouchaud (2016) allow for successive auctions with inter-auction time τ . When

the inter-auction time is large τ → ∞, they evidence a linear price impact proportional to the

sum of the marginal supply and demand around the auction price. When the inter-auction time

is very short τ → 0, they show that the order book becomes locally linear around the current

price, which leads to a square root impact. The theory’s prediction is confirmed using Bitcoin

data from 2015: the authors document an average order book that is locally linear and vanishing

around the current price.

In open markets, the model is slightly modified to account for the transaction mechanism

by adding a reaction term −κρBρS to both equations of system (1.9) and setting κ → +∞.

In this case, marginal supply and demand do not overlap (Donier et al., 2015). Introducing a

buy meta-order with a trading rate mt adds a terms mtδ(x − xt) to the sell equations where

xt = pt − p̂t is the impacted price and p̂t is the un-impacted price assuming the absence of

the meta-order. Donier et al. (2015) study the behavior of the impact price xt and find square

root impact regimes in the infinite memory limit (very large timescales for the cancellation and

the deposition rates, λ, ν → 0, with λ/
√
Dν constant). In addition, this model is proven to be

arbitrage-free and consistent with diffusive prices. Benzaquen and Bouchaud (2018a) extends

the study on the impacted price xt when the order book’s memory is finite (λ, ν ̸= 0) and show

that the square root law is valid in multiple execution regimes by including market participants
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with heterogeneous timescales. Importantly, the multi-time scale framework reconciles the latent

liquidity model with the diffusivity puzzle, i.e., the slow decay of the autocorrelation of market

order signs using a fine-tuning argument analogously to propagator models (Bouchaud et al.,

2003).

1.5.2 From latent liquidity to revealed liquidity

Latent liquidity models are the subject of extensive research. Starting from a discrete stochas-

tic order book model (Cont et al., 2010), Gao and Deng (2018) show that the average order book

converges in the hydrodynamic limit (zero tick size, infinite rates of order arrivals, zero-order

size relative to queue size, continuous-time), to a deterministic shape and verifies the partial

differential equations of Equation (1.9) without the diffusion term. Lemhadri (2019) adds a

mean-reverting agent behavior and provides existence results for the impacted price xt.

Recently, Dall’Amico et al. (2019) introduced a conversion mechanism between the latent and

the revealed order books during the continuous trading phase and fitted stationary solutions of

their model to order book snapshots convincingly. In summary, orders materialize in the revealed

order book ρ(r) coming from the latent order book ρ(l) with a rate νrΓr and disappear from the

revealed order book all the way to the latent order book with a rate νlΓl. See Fig. 1.6 for an

illustration. In the infinite memory limit, the sell side equations read

∂tρ
(r)
S = Dr∂xxρ

(r)
S + νrΓr(x)ρ(l)

S − νlΓl(x)ρ(r)
S − κρ

(r)
S ρ

(r)
B ;

∂tρ
(l)
S = Dl∂xxρ

(l)
S − νrΓr(x)ρ(l)

S + νlΓl(x)ρ(r)
S ,

(1.12)

and the buy side equation equations read

∂tρ
(r)
B = Dr∂xxρ

(r)
B + νrΓr(−x)ρ(l)

B − νlΓl(−x)ρ(r)
B − κρ

(r)
B ρ

(r)
S ;

∂tρ
(l)
B = Dl∂xxρ

(l)
B − νrΓr(−x)ρ(l)

B + νlΓl(−x)ρ(r)
B ,

(1.13)

where νl, νr are constant rates and Γr,Γl are probability functions for revealing and unrevealing

orders. Dall’Amico et al. (2019) take νr = νl and Γr = 1 − Γl ∈ [0, 1]. Using ϕ = ρ
(r)
S − ρ

(r)
B ,

closed form stationary solutions are obtained, for instance, when Dr = 0 and Dr = Dl ̸= 0.

When Dr ̸= Dl, numerical schemes are used to obtain the revealed order books and these are

calibrated to empirical order book data.

The stationary latent books are found to be linear with a decreasing exponential correction.

The stationary revealed order books are found to have a skewed bell shape around the current

price. When Dr = 0, the limit volumes at the current price are found to be strictly positive,
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Figure 1.6 – Sketch of the conversion mechanism between the latent and the revealed
order books. Adapted from Dall’Amico et al. (2019).
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and ϕ experiences a discontinuity at x = 0. When Dr ̸= 0, ϕ becomes continuous at x = 0.

Importantly, empirical order book data can be calibrated using the latent/revealed framework,

thereby providing an estimate of the involved latent liquidity. Dall’Amico et al. (2019), use the

calibrated parameters of their model to sort the studied assets on a stability map. Calibrating

assets during periods of high volatility yields indeed positions in the map that are near critical

regions. This may be a useful tool for regulators who monitor market stability.

Due to the considerable variability in the temporal dynamics of open markets, only stationary

solutions are calibrated to successive snapshots of a given asset in a given period. Auctions,

however, offer a suitable avenue for deriving and calibrating time-dependent solutions thanks

to their distinctive temporal patterns. A good starting point would be to measure the time

and price dependencies of depositions, cancellations, and diffusions (price updates) during the

accumulation period. This is precisely the adopted approach in Chapter 4.

1.6 Objectives, outline, and main findings

1.6.1 Order book reconstruction

To investigate the statistical regularities of equity auctions and their dynamics, this thesis

leverages high-quality data from the European high-frequency database (BEDOFIH) with mi-

crosecond resolution. Naturally, a substantial part of the research work involved handling and

mining this database. An upfront effort of pre-processing and reconstruction of snapshots as well

as tick-by-tick events was needed.

In Chapter 2, we provide a detailed description of the data, the pre-processing, and the recon-

struction of snapshots and tick-by-tick events. Moreover, we provide a comprehensive overview

of the closing auction ecology, i.e., the types of agents participating in the closing auction. In

addition, we map the contribution of each category to the total events of the accumulation period

as well as the contribution to the closing volume. Importantly, we dissect the temporal patterns

of the auction events (submissions, cancellations, and updates), first by looking through the lens

of market orders and then that of limit orders.
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1.6.2 Price impact in equity auctions

In Chapter 3, we formalize mathematically the relevant quantities in equity auctions. We

show that market orders can result in zero impact on the indicative price up to a large fraction

of the auction volume.

Indeed, if the size of a buy market order is smaller than V R
S (pa) + V M

B (pa), the indicative

price does not change. Here, V R
S (pa) is the sell limit volume that remains at the auction price

after the clearing, and V M
B (pa) is the matched buy limit volume that was posted at the auction

price. We prove a similar assumption for the sell side. Essentially, for a market order to move

the price in a given direction, its size should not only be larger than the remaining limit volume

at the auction price of the opposite side (i.e., the opposite side’s imbalance) but to the sum of

that imbalance and the matched limit volume at the auction price of the market order side.

The intuition behind this result is that for a market order to be executed at the clearing,

it should not only deplete the available liquidity on the opposite side (imbalance) but also gain

priority over matched orders with the lowest priority — specifically, matched limit orders at the

auction price. Fig. 1.7 provides an illustration of how the indicative price first changes under

the influence of market orders.

In open markets, a market order can also have a zero instantaneous impact on the mid-price

provided it does not deplete the opposite best. However, the cost of trading remains strictly

positive, amounting to a half-spread (when benchmarked at mid-price). This cost of immediacy

represents the market maker’s gain. Importantly, even though the market order’s immediate

impact is zero, the average impact until the next market order is strictly positive (albeit lower

than that of a market order that crosses the opposite best). In fact, the market is continuously

reacting to incoming market orders through cancellations of opposite-side limit orders, price

updates, and limit order submissions.

Taking into account these remarks, we investigate the (instantaneous) price impact at auc-

tion time. The reason for this is twofold. First, if we assume that an agent acts last during

the accumulation period, he can exactly infer the impact on the auction price by looking at the

order book. In this case, impact costs stem fully from this instantaneous impact. Most primary

exchanges recently implemented a clearing time randomization, in part to avoid price manipu-

lation by low-latency actors. We address the effect of this randomization as well by comparing

the impact at auction time with that at the last deterministic time of the auction.

Second, we argue that agents have a strong incentive to reveal their intentions at auction

time, especially around the indicative price and particularly at the end of the trading day, hence
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Figure 1.7 – Cumulative buy (red curves) and sell curves (blue curves) during hypothetical
auctions. Left panel: the buy volume is totally matched at the auction price; right panel:
the sell volume at the auction price is totally matched at the auction price. Dash-dotted
lines: effect of an addition buy market order (left plot) and sell market order (right plot):
the auction price can change only when the market order is larger than the matched
volume plus the imbalance, which explains why zero impact is prevalent.
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the focus on the closing auction. This allows us to relate the average limit order book at auction

time with the latent order book that determines the shape of market impact.

Scaling the zero impact volume introduced above by the auction volume Qa, we define

ω
(0)
B = V R

S (pa) + V M
B (pa)

Qa
;

ω
(0)
S = V M

S (pa) + V R
B (pa)

Qa
.

(1.14)

We show that ω(0)
B and ω(0)

S can be simultaneously large. This means that sending a large market

order either to buy or to sell will result in zero impact on the indicative price. Additionally, we

provide the daily distribution of the zero-impact volumes and compare them with subsequent

incremental volumes that are needed to change the tick price further. We find that sending a

market order of size 1%Qa (which is already a large volume compared with the typical size of a

market order during day trading) at auction time and not impacting the price occurs in 46% to

74% of the days depending on the studied stock.

We show that zero impact volumes have bursty dynamics where they can be very large at

a given time and be totally depleted in the next few events. Conversely, they can be null at a

given time and abnormally high right after. In the latter case, large limit volumes are posted at

the auction price and result in price pinning.

Removing the zero impact part, we show that price impact at auction time is linear whenever

the sum of buy and sell orders sum up to a constant in the direction of the indicative price

I(ω(i))− I(ω(0)) = 1
p(1)L̃

(
ω(i) − ω(0)

)
, (1.15)

where L̃ = ρ̃S(x) + ρ̃B(x) is a constant, ρ̃S , ρ̃B are the scaled order densities. We show that

the ρ̃S and ρ̃B sum up to constant day by day with variable price range ∆. We determine this

interval using a change detection criterion and show that the estimated slope is an accurate proxy

for price impact at auction time. We emphasize that the investigated price impact at auction

time is examined on a day-to-day basis rather than being averaged across days.

In addition, we investigate the influence of derivatives expiry days on the resilience of the

order book and find that the impact slope is often lower than during other days of the week or

the month. This means that the auction order book is prepared to absorb larger shocks during

these days. We examine the evolution of the liquidity paQaL̃ , which links with the inverse of

the impact slope during the accumulation period. We find that it has a distinctive temporal
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pattern, first linear, then concave, and finally convex w.r.t. time as the auction time approaches.

After the introduction of random clearing times, it is no longer possible for (low-latency)

agents to act last during the auction. Nevertheless, we show that acting the latest deterministic

time of the accumulation period T , i.e., right before 09:00:00 for the opening auction and 17:35:00

for the closing auction, yields a similar outcome as acting at auction time. In fact, the order

book stabilizes after T with a 77% reduction in the indicative price volatility in comparison with

the last five seconds of the deterministic closing auction time. In addition, the impact slope is

stable during this random time window: its changes in absolute value are capped by 12% in more

than 90% of the days. Lastly, as pointed out earlier, the dynamics of zero impact are bursty

and can drastically vary in a very short interval. Therefore, agents can act conservatively at

17:35:00, and their impact can be decomposed into a stable and predictable linear component

plus a random zero impact bonus that can decrease the incurred cost.

Finally, we compute 1-lag response functions of the indicative price for aggressive orders

(market orders, buy limit orders with limit price larger than the indicative price, and sell limit

orders with limit price smaller than the indicative price) and find that it is linear as well. This

result proves that the nature of price impact is the same during the accumulation time and at

the auction time, i.e., mostly mechanical, and contrasts with results for open markets, where

selective liquidity taking causes very different shapes between the average virtual impact (using

the instantaneous shape of the book) and market impact of actual trades.

1.6.3 Modeling the auction dynamics

In Chapter 4, we adapt the latent/revealed liquidity framework to equity auctions. Our

starting point is the coupled partial differential equations of Dall’Amico et al. (2019). In that

sense, our model is very similar to Eqs. (1.12), (1.13). For the sell side, they read∂tρ
(r)
S = Dr∂xxρ

(r)
S + (νrΓr)(x, t)ρ(l)

S − (νlΓl)(x, t)ρ
(r)
S ;

∂tρ
(l)
S = Dl∂xxρ

(l)
S − (νrΓr)(x, t)ρ(l)

S + (νlΓl)(x, t)ρ
(r)
S .

(1.16)

Eqs (1.16) are complemented with the following boundary conditions


∂xρ

(l)
S −→

x→+∞
a > 0, ρ

(l)
S −→

x→−∞
b ≥ 0;

ρ
(r)
S does not diverge when |x| → +∞.

(1.17)

The main innovation is that the reveal and unrevealed rates νrΓr, νlΓl depend on both price
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and time without a guarantee of variable separation at first. As latent exogenous depositions

and cancellations are omitted, revelations are equivalent to submissions and unrevelations are

equivalent to cancellations. For symmetry reasons, we focus on the sell side and omit the subscript

S from ρ(l), ρ(r). When the revealed diffusion coefficient is zero, we obtain a simple stationary

solution
ρ(r)(x) = νr

νl

Γr(x)
Γl(x) ρ

(l)(x);

ρ(l)(x) = max(ax+ b, b).

By assuming the simplest price functions for the reveal and unreveal rates, i.e., a constant Γl = 1
and an exponentially decreasing Γr ∝ e−|x|, we are able to fit the average order book at auction

time. This yields estimates of the involved latent liquidity (a, b).

Finding closed-form general solutions of Eqs (1.16) is challenging. However, taking Dr =
Dl = 0 allows tractable calculations. In addition, it is later shown that diffusion has a lesser in-

fluence on the order book than submissions and cancellations during the accumulation period. In

this new setup, Eqs (1.16) can be decoupled, and each price level x can be treated independently

∂tρ
(r) + (νrΓr + νlΓl) ρ(r) = νrΓrρ

Σ;

∂tρ
(l) + (νrΓr + νlΓl) ρ(l) = νlΓlρ

Σ;

ρΣ(x) = max(ax+ b, b).

(1.18)

Simplifying further by assuming stationary rates (νΓ)(x, t) = ν × Γ(x), we obtain the following

general solution
ρ(r)(x, t) = ρ∞

[
1− e−[νrΓr(x)+νlΓl(x)] t

]
;

ρ∞(x) = νr Γr(x) ρΣ(x)
νr Γr(x) + νl Γl(x) .

(1.19)

The revealed order book of Eq. (1.19) converges to ρ∞ in the long run t → +∞. This solution

fails to reproduce the accelerating auction dynamics around the indicative price as the auction

deadline approaches t → T . Introducing time-dependent rates, we assume that they evolve as

the inverse of the remaining time to the clearing starting from a certain time threshold t(0)

(νΓ)(x, t) = C

γ + T − t
Γ(x), (1.20)

where γ is an offset to the deadline. When γl = γr and t
(0)
l = t

(0)
r , we obtain a closed-form
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formula for the revealed order book

ρ(r)(x, t) = ρT − (ρT − ρ0)
(
γ + T − t
γ + T − t(0)

)CrΓr(x)+ClΓl(x)
;

ρT (x) = Cr Γr(x) ρΣ(x)
Cr Γr(x) + Cl Γl(x) ,

(1.21)

and ρ0 is the initial condition at t(0). The revealed order book of Eq. (1.21) is convex w.r.t.

time whenever the exponent CrΓr(x) + ClΓl(x) is below 1. Empirically, the fitted exponents

are not always below one. However, we find γl > γr, which yields a convex time behavior when

t → T . In addition, when the cancellation rate is constant, and the submission rate evolves as

the inverse of the remaining time to the deadline, we obtain convex time solutions as the auction

time approaches.

Before solving Eqs (1.16) numerically in the general case, we provide thorough measurements

of the submission and cancellation rates as well as the revealed diffusion coefficient using tick-

by-tick data. We find that the submission rate is exponentially decreasing ∝ e−|x|/xr for positive

prices x ≥ 0 with an apparently constant price scale xr in time. For prices below a negative price

threshold x < −x0, submissions become noisy and constant. For −xc < x < 0, submissions are

exponentially decreasing with a decreasing price scale w.r.t. time. Additionally, at the beginning

of the auction, we find that submissions are constant w.r.t. time (price-wise), then increasing

as the auction time approaches. We verify that submissions satisfy the scaling relationship

νrΓr ∝ (γr +T − t)α with an optimal exponent α = 1 around the indicative price. We show that

submissions have the same magnitude and shape whether for high frequency agents (HFTs) or

non high frequency agents (non-HFTs) with a smaller price scale for HFTs.

We conduct a similar analysis on the cancellation rate, showing a complex overall price

dependence. The time dependence of cancellation is first decreasing (price-wise), then increasing

only for limit prices around the indicative price. We verify that cancellations satisfy the scaling

relationship νlΓl ∝ (γl + T − t)α with an optimal exponent α = 1 in a narrow region around the

indicative price. Importantly, we show that cancellations are mostly driven by HFTs, when the

cancellation rate for non-HFTs is significantly smaller, noisy and may be assumed constant to a

good approximation.

We break down the revealed diffusion coefficient into two contributions. The first contribution

is linked with the indicative price volatility. We estimate the latter to be of order 10−8. The

second contribution represents idiosyncratic price updates. We find that it is negligible compared

with the volatility contribution. In addition, we highlight a time-dependent pattern of the

indicative price volatility σ ∝ t−1/2. Thus, Dr ∝ 1/t.
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To solve the coupled PDEs, we take νlΓl = ν to be constant and model the submission rate

as the sum of two exponential terms with different price scales. We allow for the fast exponential

term (smaller price scale) to evolve as the inverse of the remaining time to the clearing. We

study three diffusion settings: zero diffusion Dr = Dl = 0, constant diffusion where we consider

(Dr, Dl) as free parameters, and time diffusion where we add an additional free parameter by

considering Dr ∝ 1/t. The calibration to auction data shows that the model is able to reproduce

the full price and time dynamics of the average order book density during the accumulation

period. The obtained order of magnitude of Dr is similar to that estimated previously. We find

that diffusion regularizes the discontinuities of the first derivative of the revealed order book

while improving the fit accuracy, particularly around the indicative price.

In a separate section, we study the reasons that are responsible for the sub-diffusivity of

the indicative price, i.e., ⟨log(pt+τ/pt)2⟩t ∼ τ2H , with H < 1/2. We conduct a similar analysis

to Chen et al. (2017) that show that H can be decomposed as H = J + L + M − 1. Each of

the exponents J, L,M is respectively associated with the failure of one condition in the central

limit theorem. We divide the closing auctions into separate regimes and fit average exponents

H,J, L,M on 1-second auction data for five active stocks. We find H ≈ 0.3 (sub-diffusivity),

L ≈ 0.7 (heavy-tailed increments), M ≈ 0 (time decreasing increments), J ≈ 1/2 (absence of

long-term memory). The latter indicates the indicative price process is efficient (unpredictable)

in the sense of Chen et al. (2017).
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Chapter 2

Analyzing a high-quality dataset

Figure 2.1 – BEDOFIH’s Logo.
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2.1 Dataset description

BEDOFIH is a large financial database managed by the EUROFIDAI Institute. In addition

to the high-frequency database, BEDOFIH also comprises a refined daily database and an ESG

(Environmental, Social, and Governance) database. The high-frequency database contains de-

tailed market data (Orders, trades, references, flags) with a millisecond or microsecond accuracy,

depending on the market. It covers a wide range of instruments, including stocks, bonds, struc-

tured products, and exchange-traded funds (ETFs), among others, across four main exchanges:

three primary exchanges (LSE, Xetra, and Euronext), and a secondary exchange, BATS Chi-X.

For this thesis, we extracted data from the 34 most active stocks on Euronext Paris under the

regulation of the AMF (Autorité de Marché Financiers) between 2013 and 2017. In this case,

the timestamp resolution is one microsecond.
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For each stock and each trading day, information is available in four files:

— a history orders file that contains all the orders that remained in the central limit order

book from the previous trading day;

— a current orders file that contains all submissions, modifications, and cancellations for the

current trading day;

— a trades’ file that lists all the transactions that took place during the current trading day;

— an events file that lists special market events, if any, such as a delayed opening, a halt in

trading, etc.

Each order is uniquely determined by its order ID. When an order is first submitted, a new

line is inserted in the current orders file with a characteristic ID equalling one. The characteristic

ID tracks the changes of the order during its lifetime and increases by one each time the order

is modified; a new line in the orders file is inserted then. In addition to the order ID and its

characteristic ID, precise times of the order submission and its time of validity in the central limit

order book are displayed. Interestingly, if an order is, a posteriori, modified, we know about the

time of modification in the corresponding line. We also know, ex-ante, the time when the order

is released from the order book, i.e., if it is canceled or totally executed. Similarly, we have at

our disposal the state variable of an order (partially/totally filled, canceled, expired, rejected by

the trading system, etc), its validity (Good for the day, good till cancel, valid for auction, valid

for closing, good until a specified date, fill or kill, etc), and its type (market, limit, stop order,

etc).

For every order, detailed information is available, including the side (buy/sell), the limit price

(zero for market orders), the initial submitted quantity, the price threshold if it is a stop order, the

remaining quantity of an order—which can be useful when there are partial executions between

modifications. More importantly, two flags are of interest: the HFT flag corresponding to the

AMF’s classification of market participants (pure HFTs, MIXED HFTs, and NON-HFTs) 1, and

the user account flag (Own account, client account, parent company account, market maker,

retail market organization, or retail liquidity provider). An agent can operate using multiple

user accounts. Meanwhile, its HFT flag remains the same.

1. “A participant is considered a high-frequency trader (HFT) if he meets one of the two following
conditions:

— The average lifetime of its canceled orders is less than the average lifetime of all orders in the book,
and it has canceled at least 100,000 orders during the year.

— The participant must have canceled at least 500,000 orders with a lifetime of fewer than 0.1 seconds,
and the top percentile of the lifetime of its canceled orders must be less than 500 microseconds.

An investment bank meeting one of these conditions is described as mixed-HFT (MIX). If a participant
does not meet any of the above conditions, it is a non-HFT (NON).”(AMF, 2017), p. 33.

49



The trades file contains information about every transaction during the trading day. Each

transaction comprises the buyer and seller order IDs in synchronization with the orders file,

the transaction price, the exchanged quantity, and the transaction time. A unique order ID

may generate one or multiple transactions. In the latter case, the generated transactions are

processed sequentially in time with a resolution of a few microseconds. This is also the case for

the generated transactions of opening and closing auctions. A session flag allows us to distinguish

the opening auction transactions from those of the rest of the session. For the continuous trading

session, each transaction comprises a flag indicating whether it is buyer or seller initiated. More

on the files’ description can be found in EUROFIDAI (2020).

We extract 2 to 5 years’ worth of data for each stock, amounting to N = 34, 977 stock days.

2.2 Reconstructing order book snapshots

In order to reconstruct the exact state of the limit order book at any point in time, including

at auction time, we combine the information from the four different files for each stock and each

trading day to create a snapshot. The idea is to keep track of the last update for orders whose

validity time is below the snapshot time and release time is above the snapshot time. After

combining the history file with the current file, we encountered the “partial execution problem”.

Some history orders may have been partially executed in the past. Without a modification from

the order sender, no update regarding the remaining quantity is available in the order files.

Therefore, one should look at all previous trade files to see if they involve partial executions of

the history orders. When constructing snapshots for the closing auction, one should take into

account the possible partial executions that occur during the day.

Very few of these stock-days result in errors or mismatches (e.g., dataset errors, non-crossing

supply and demand for the opening auction, or half-day trading/halted trading before 17:30 for

the closing auction). After removing these invalid snapshots, we are left with No = 34, 971 valid

snapshots at the opening auction time and Nc = 34, 820 valid snapshots at the closing auction

time.

Using these reconstructed snapshots just before the auction time, we compute reconstructed

prices and volumes as per Euronext rules, i.e., by maximizing the exchanged volume and min-

imizing the imbalance. This boils down to finding the intersection of the reconstructed supply

and demand curves. Table 2.1 reports the percentage of snapshots for which the reconstructed

price (resp. volume) matches the actual auction price (resp. volume) among valid snapshots.

The actual auction price and volume are easily accessible in the trades’ file.

50



Table 2.1 – Percentages of auction snapshots with accurate reconstruction.

Opening auction Closing auction
Number of valid snapshots 34,971 34,820

% snapshots matching the auction price 99.6% 99.9%
% snapshots matching the auction volume 99.0% 99.7%

% snapshots matching both 98.9% 99.6%

The remaining discrepancies are likely a result of using simplified rules to account for stop

orders. For these few unmatched snapshots, we note that the discrepancies between computed

and actual quantities are small: less than 1 basis point on the absolute average difference from

the auction price and 0.2% on the absolute average distance from the auction volume. These

few unmatched auctions are discarded from the sample in the subsequent analysis, though they

would not alter the outcome of our experiments.

Stop orders that are sent during the accumulation period are not taken into account in the

calculation of the executable volume at the clearing, even if they are triggerable during that

phase. However, they may generate additional execution right after the auction clearing. On the

contrary, stop orders that were sent before the start of the accumulation period are taken into

account in the calculation of the auction quantities if the threshold price was crossed prior to

the start of the auction phase. Thus, for each stop order, one should investigate the whole price

history (since the submission of the corresponding stop order) to assess if it is active before the

start of an accumulation period.

Note that there are many other order types that might used in the accumulation period such

as pegged orders and iceberg orders. Although these does not represent a significant fraction of

order types used in the auction, they might however induce small discrepancies in the matching

of the indicative volume. For iceberg orders, the whole quantity of the order is used to calculate

the auction price and volume.

By computing 1-second snapshots, we build an auction replayer that allows us to visualize

the full dynamics for a given auction. Figure 2.2 provides an overview of the built dashboard

paused at four moments: 17:32:00 for the top left panel, 17:33:00 for the top right panel, 17:34:55

for the bottom left, and 17:35:29 at the auction closing time for the bottom right panel. We

can track, for instance, the evolution of the cumulative limit order book as shown in the top

left panel of a given snapshot of the dashboard. The intersection of the cumulative curves

(supply and demand) points to the indicative price and volume, that are shown using black

dashed curves. The upper right panel of the replayer depicts the usual limit order book. The
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bottom left panel shows the evolution of the total amount of market orders (buy, sell, and their

difference). Finally, the evolution of the indicative price is shown in the bottom right panel.

The replayer can be fully customized to account for other or new quantities of interest (e.g.,

the indicative volume, the matched volume of HFTs, etc.) and provide us with useful insights

if careful enough when watching. For instance, we can notice that a large sell limit order has

been inserted during that closing auction between 17:34:55 and 17:35:29 when inspecting the

cumulative LOB evolution. This order provides a large resistance against upward price moves

while being mostly unmatchable. This may suggest strategic price pinning.

2.3 Reconstructing tick-by-tick events

To have a comprehensive overview of the auction dynamics, we reconstructed tick-by-tick

events during the accumulation period in order to monitor every change in price limits (queues),

indicative prices, and volumes. The preliminary idea is to compute a first snapshot, 07:15:00 for

the opening auction (history orders) and 17:30:00 for the closing auction. Next, we can derive

the differences in quantity by order ID for each order that is present during the accumulation

period. Then, the total volume at a limit price is obtained by proceeding with a cumulative sum

of the previous quantity differences for each limit price.

However, when an order is canceled, no new line is present in the data to announce it. Thus,

the corresponding cancellation events are created, concatenated, then sorted chronologically with

the rest of the events. Importantly, we amend the corresponding limit queues whenever there is

an update in an order volume, its price, or both. Once a sequential description of the events and

the queues is obtained, we are able to compute an indicative price and volume for each event.

We conducted the tick-by-tick reconstruction of the opening and closing auction for the

five actively traded stocks on Euronext Paris (BNP Paribas, LVMH, Sanofi, Société Générale,

and TotalEnergies) between 2013 and 2017. The obtained accuracy of the final reconstructed

indicative price and volumes is larger than 97%, similar to the results in Table 2.1.
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Figure 2.2 – Snapshots of the auction replayer dashboard for the closing auction of the
TotalEnergies stock on February 28th, 2017.
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2.4 Closing auction ecology

Using the reconstructed tick-by-tick events, we provide an overview of the closing auction

ecology for the TotalEnergies stock between 2013 and 2017.

2.4.1 Dissecting the contribution of agent categories

We report in Table 2.2 the average participation in the closing auction volume broken down

by agent type and latency. MIX agents (investment banks) hold the lion’s share in the closing

auction volume (80% of the closing volume on average), followed by slow agents (15.5%). The

market share of HFTs in the closing volume is only 4.5% on average. However, HFTs engage in

more than 40% of the price-changing events of the closing auction (see Table 2.3), more than

80% of all events, and more than 55% of all events using their market-making account. Thus,

high-frequency market makers display a large activity during auctions when they hold a very

low share of the closing volume (1%). In addition, market orders represent less than 3% of the

auction events and less than 0.002% of HFT-related events.

Table 2.2 – In bold: average daily participation in the closing auction volume. In paren-
thesis: daily standard deviation. Buy and sell sides are nearly symmetrical. TotalEnergies
2013∼2017.

Client account Own account Market maker Parent company
HFT 2.5 (3.8) 1 (1.6) 1 (1.4) 0 (-)
MIX 18 (10.9) 50 (12.1) 3 (3.3) 9 (6.3)
NON 7.5 (6.2) 8 (7.1) 0 (0.4) 0 (0.6)

Table 2.3 – Participation in % of price changing events for a total of 560, 816 events.
TotalEnergies 2013∼2017.

Client account Own account Market maker Parent company
HFT 0.65 14.98 24.87 0
MIX 6.83 37.35 3.12 3.27
NON 2.86 5.91 0.02 0.09

54



0

2000

4000

6000

17:30 17:31 17:32 17:33 17:34 17:35
time

co
un

t

Cancellations
Submissions

Market order count

0.00

0.02

0.04

0.06

17:30 17:31 17:32 17:33 17:34 17:35
time

%
 o

f t
he

 a
uc

ti
on

 v
ol

um
e

Cancellations
Submissions

Average market order size

Figure 2.3 – Market orders during the closing auction. Left panel: market order count
as a function of time. Right panel: average market order size using 1-second time bins.
Buy and sell are aggregated as they are symmetrical. A breakdown by market order
submission (blue) and cancellation (red) is shown.

2.4.2 An overview on order dynamics

Market orders

Market orders represent 312, 785 out of 10, 234, 512 closing auction events on TotalEnergies

between 2013 and 2017. Figure 2.3 shows that the market order count displays significant peaks

at round minutes (17:31, 17:32, 17:34) and multiples of 30 seconds (17:30:00, 17:31:30). Some

peaks are present right after round times and may indicate reactions to round time actions. Most

market order activity takes place before 17:32:30. However, we observe an increase in activity

as the auction time approaches. The average size of market order submission or cancellation is

roughly constant throughout the auction.

Regarding the average dynamics of the indicative price and volume, Challet (2019); Raillon

(2020) find that 80% of the final auction volume is matched in the first two minutes of the closing

auction. Besson and Lasnier (2022) report that the indicative price overreacts in the first minute

of the accumulation period before mean reverting in the last minute.
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Figure 2.4 – Passive limit orders during the closing auction. Left panel: passive order
count as a function of time. Right panel: average passive limit order size using 1-second
time bins. Buy and sell are aggregated as they are symmetrical. A breakdown by market
order submission (green), cancellation (red), and price update (blue) is shown.

Passive limit orders

Passive limit orders (buy limit orders whose limit price is strictly below the indicative price

and sell limit orders with limit price strictly above the indicative price at the time they were

submitted/canceled/updated) represent 6, 548, 086 out of the total events. Figure 2.4 shows that

the count of the passive limit orders displays an overall U shape and increases as the auction time

approaches. The events count is moderately distributed across the two halves of the accumulation

period. The average cancellation size is stable after the first thirty seconds of the accumulation

period. However, the average submission rate displays large peaks and increases during the last

minute of the auction. Price update events represent less than 2.5% of passive limit events.
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Figure 2.5 – Aggressive limit orders during the closing auction. Left panel: Aggressive
order count as a function of time. Right panel: average aggressive limit order size using
1-second time bins. Buy and sell are aggregated as they are symmetrical. A breakdown
by market order submission (green), cancellation (red), and price update (blue) is shown.

Aggressive limit orders

Aggressive limit orders (buy limit orders whose limit price is above the indicative price

and sell limit orders with limit price below the indicative price at the time they were sub-

mitted/canceled/updated) represent 3, 373, 641 out of the total events. Figure 2.5 shows that

the count of the passive limit orders displays an overall U shape as well, although with a less

pronounced increase than passive orders at the auction time. The average submission and can-

cellation rates are 50% to twice larger than those of passive limit orders. Both aggressive rates

(submission and cancellation) increase and double during the last minute of the auction. Price

update events represent less than 4.5% of aggressive limit events. Note that 3, 054, 425 out of

3, 373, 641 + 312, 785 (Aggressive limit orders + market orders) do not induce a change in the

indicative price. These zero-impact events have similar dynamics to the ones shown in Fig. 2.5

with lower baselines of the average order size.

To sum up, the comprehensive nature of the BEDOFIH dataset enables us to thoroughly

examine the statistical regularities of the accumulation period phase while distinguishing the

behavior of different market participant categories. Additionally, it provides us with the oppor-

tunity to verify the accuracy of our models with a high degree of precision.
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Abstract

Using high-quality data, we report several statistical regularities of equity auctions in the Paris

stock exchange. First, the average order book density is linear around the auction price at the

time of auction clearing and has a large peak at the auction price. While the peak is due to slow

traders, the order density shape is the result of subtle dynamics. The impact of a new market

order or cancellation at the auction time can be decomposed into three parts as a function of the

size of the additional order: (1) zero impact, caused by the discrete nature of prices, sometimes

up to a surprisingly large additional volume relative to the auction volume (2) linear impact for

additional orders up to a large fraction of the auction volume (3) for even larger orders price

impact is non-linear, frequently super-linear.
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3.1 Introduction

Most electronic markets rely on auctions to start and end trading days in an orderly way.

Because the volume involved during auctions is larger than the liquidity available at a given time

in a typical open-market limit order book, auctions reduce price impact and fluctuations. The

share of the closing auction in the total exchanged volume has significantly increased over the

years (Blackrock, 2020), especially in European markets (Raillon, 2020). This increase highlights

the importance of the auction mechanism in the price formation process.

In contrast to the abundant literature about open-market dynamics, work on auctions is

scarce. On the theoretical side, Muni Toke (2015b) derives the distribution of the exchanged

volume and the auction price using a stochastic order flow model during a standard call auction.

In the same vein, Derksen et al. (2020) propose a stochastic model for call auctions which

produces a concave price impact function of market orders; in addition, Derksen et al. (2022a)

build on the previous model to demonstrate the heavy-tailed nature of price and volume in

closing auctions. Besides, Donier and Bouchaud (2016) show that under sufficient regularity

conditions (continuous price and time) and using a first-order Taylor expansion of supply and

demand curves, price impact in Walrasian auctions is linear in the vicinity of the auction price.

Empirically, Pagano and Schwartz (2003) find that introducing opening and closing call auc-

tions improves market quality and lowers execution costs in the Paris stock exchange. Boussetta

et al. (2017) add that although opening volumes are decreasing and the market is fragmenting,

the opening auction still improves market quality on Euronext Paris. They also report that

slow brokers submit orders early, whereas high-frequency traders tend to act moments before
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the clearing. Challet and Gourianov (2018) analyze US equities data and compute the auction

price response functions conditional on the addition, and cancellation of an order. In addition,

Challet (2019) demonstrates that a strategic behavior of agents is needed to explain the antag-

onistic effects of activity acceleration and indicative price volatility decrease as the auction end

approaches.

More recently, Jegadeesh and Wu (2022) assess the robustness of closing auctions by compar-

ing the price impact between NASDAQ and NYSE exchanges and find that the cost of trading

during closing auctions is generally smaller than during trading hours. They also find that clos-

ing auctions mainly attract uninformed and passive investors, while informed traders prefer to

act during continuous market hours. In the same spirit, Besson and Fernandez (2021) analyze

the closing auction in European markets and use a linear function to fit the impact of market

orders; they report a smaller instantaneous impact for later submissions, and an overall cost of

trading on close two to three times smaller than during trading hours.

Here, we characterize in detail the empirical properties of liquidity and price impact in

equity auctions. At auction time, price impact is fully determined by the state of the order

book, and we focus on the instantaneous impact caused by an order if sent just before the

clearing. We do not find a straightforward linear impact: while adding or canceling a market

(or marketable) order at the auction time has a linear component, the discreteness of the limit

order book mechanically leads to zero price impact for small enough orders. These free-of-cost

volumes can represent a fairly large fraction of the total matched volume. Before auction time,

the order book shape yields a virtual/instantaneous price impact that can differ from that of

actual submissions/cancellations. However, we find that the average impact of actual orders is

of the same nature, i.e., linear.

This paper is organized as follows: first, we introduce a discrete-price auction mathematical

framework (Section 3.2) suitable to derive the conditions under which price impact is zero or

linear. Next, we present the high-quality data used in this work: a large dataset from the

European high-frequency financial (BEDOFIH) database (Section 3.3). The main part consists

in a detailed study of several statistical regularities of auctions, focusing on limit order book

shapes and price impact during the auctions (Sections 3.4 and 3.5). Our main results are as

follows:

1. the average limit order book of buy (sell) orders has a skewed bell shape whose maximum

is attained below (above) the auction price. Both distributions roughly mirror each other

and can be considered linear in the vicinity of the auction price;

2. there is an often large peak of volume at the auction price that builds up towards the end
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of the auction;

3. breaking down the average limit order book densities by the agent latency (HFT, MIXED,

NON) and their account type (own account, client account, market maker, parent company,

retail market organization . . . ) makes it clear that each category has a different behavior;

the peak is not due to HFTs but to slower traders, and some traders post buy and sell

orders asymmetrically;

4. at any time during the auction, instantaneous price impact is zero for small enough volumes

for both buy and sell orders simultaneously because of the discreteness of prices. The

presence of a peak for both buy and sell limit order densities increases the importance of

zero impact in auctions;

5. for large enough volumes, instantaneous price impact is linear for most of the days and not

only on average. This holds when the sum of the buy and sell order densities is constant as

a function of the price around the indicative/auction price, which happens on most days.

Using a change point detection algorithm, we characterize the linear impact price region

day by day and asset by asset at the auction time;

6. the average price impact of actual submissions/cancellations during the accumulation pe-

riod is linear as well. This contrasts with open markets where the dependence of the

average impact on the order size is much weaker. In some exchanges, limit order books

are not disseminated during auctions and selective liquidity taking is not possible;

7. price impact at auction time is smaller during option expiry dates.

3.2 A mathematical framework for auctions

In Euronext markets, equity auctions start with an accumulation period and end with a

clearing process. During the accumulation period, participants send their orders (quantity, price,

side, order type, . . . ) to the exchange. Types of orders include market orders, limit orders,

activated stop orders, and valid for auction orders. Modifications and cancellations are allowed,

but transactions cannot occur. At any time during the accumulation process and at the end

of the auction, the price that maximizes the matched volume and minimizes the imbalance is

computed. At the auction time, buy (resp. sell) orders whose prices are larger (resp. smaller)

than the auction price are executed, while limit orders whose price equals the auction price may

be matched or remain in the order book after the auction.

Definition 1 (Supply and demand). For an auction A = (a, d), where a is the auction type
(open, close, . . . ) at date d, we define the available supply S(p, t) and demand D(p, t) at a price
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p and time t as, dropping the (a, d) for the sake of clarity,

S(p, t) =
∑
p′≤p

VS(p′, t),

D(p, t) =
∑
p′≥p

VB(p′, t),
(3.1)

where VS(p′, t) (resp. VB(p′, t)) is the available sell volume (resp. buy volume) at a price p′ and
time t.

Limit orders can only be submitted on a discrete price grid. Therefore, at any time t,

p 7→ S(p, t) is a non-decreasing right-continuous step function, and p 7→ D(p, t) is a non-increasing

left-continuous step function.

Definition 2 (Auction price and volume). For an auction A = (a, d), the auction volume
Qd

a noted Qa is the one maximizing the exchanged quantity between buyers and sellers at the
time of the clearing T d

a noted Ta. For a given price p at time t, buyers and sellers can exchange
a volume equal to min{S(p, t), D(p, t)} at most. Thus

Qa = max
p

min {S(p, Ta), D(p, Ta)} .

The auction price pd
a noted pa is the price that maximizes the exchanged quantity. As it may

not be unique, we have

pa ∈ {p | Qa = min {S(p, Ta), D(p, Ta)}} .

In this work we will always assume that supply S(p, Ta) and demand D(p, Ta) intersect, so

that Qa always exists and is unique. Note however that pa is often not uniquely defined by the

maximization of the exchanged volume alone; this is why exchanges implement a complementary

set of rules such that pa is always well defined. In the case of the Euronext markets used in this

work, when multiple prices maximize the exchanged volume, the chosen pa is the one with the

smallest imbalance. Then, if multiple prices with the highest executable volume and the smallest

imbalance coexist, the auction price is the one closest to the reference price (last traded price).

Definition 3 (Indicative price and volume). For an auction A , the indicative price pind
t

and the indicative volume Qind
t at time t ≤ Ta are the hypothetical auction price and the total

matched volume if the clearing took place at time t.

Obviously, we have pa = pind
Ta

and Qa = Qind
Ta

. From now on, the time notation will be omitted
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when we work at time t = Ta (e.g., S(p) stands for S(p, Ta)). Note however that subsequent

definitions and results can be stated for any time t ≤ Ta using time-dependent notations and

substituting pa with pind
t and Qa with Qind

t .

Definition 4 (Buy and sell densities). For an auction A = (a, d), we define the buy (resp.
sell) density ρd

B (resp. ρd
S) at a price p as

ρd
•(p) = V•(p)

δp
, • ∈ {B,S}, (3.2)

where δp is the difference between the price p and the next non-empty tick price when • = B,
and δp is the difference between p and the previous non-empty tick price when • = S.

To define a meaningful average density over a large number of days, volumes can be scaled

by the auction volume Qd
a at day d, and prices can be substituted with log-price differences from

the auction price p← log(p/pa).

Definition 5 (Scaled buy and sell densities). For an auction A = (a, d), we define the
scaled buy and sell densities as

ρ̃d
•(x) = ρd

•(pae
x)

Qd
a

, • ∈ {B,S}, (3.3)

where x = log
(

p
pa

)
. Furthermore, if we substitute δp by a constant δx, we can compute for a

given stock the average scaled density as

⟨ρ̃•(x)⟩ =
〈
V•(pae

x)
Qd

a × δx

〉
, • ∈ {B,S}, (3.4)

where ⟨·⟩d denotes the average across days of the computed quantity at time t = Ta.

Observe that this quantity is a discrete version of the continuous marginal supply and demand

curves defined in Donier and Bouchaud (2016), where ρB(p) = −∂pD and ρS(p) = ∂pS.

Definition 6 (Matched and remaining volumes). For an auction A , we define V M
• (p) as

the matched (executed) volume at a price p and side • ∈ {B,S}, and V R
• (p) as the remaining

(non-executed) volume at a price p and side •. Hence, any limit volume V•(p) at price p is the
sum of the matched and remaining volumes

V•(p) = V M
• (p) + V R

• (p), • ∈ {B,S}. (3.5)
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Obviously, for any price p > pa, all the buy volume is matched and all the sell volume

remains. Thus V M
B (p) = VB(p), V M

S (p) = 0, V R
B (p) = 0, and V R

S (p) = VS(p). Symmetrically,

for any, price p < pa, we have V M
B (p) = 0, V R

B (p) = VB(p), V M
S (p) = VS(p), and V R

S (p) = 0.

Consequently, V M
• (p)× V R

• (p) can be non-zero only if p = pa.

Proposition 1. Let A be an auction with an auction price pa and an auction volume Qa. The
following equalities stand:

(a) Qa = S(pa)− V R
S (pa) = D(pa)− V R

B (pa) ;

(b) V R
S (pa)× V R

B (pa) = 0.

Proof. (a): as the auction volume Qa is the sum of all matched volumes, we have

Qa =
∑

p

V M
B (p) =

∑
p

V M
S (p),

= V M
B (pa) +

∑
p>pa

V M
B (p) = V M

S (pa) +
∑

p<pa

V M
S (pa),

= VB(pa)− V R
B (pa) +

∑
p>pa

VB(p) = VS(pa)− V M
S (pa) +

∑
p<pa

VS(pa),

= D(pa)− V R
B (pa) = S(pa)− V R

S (pa).

(b) is proved by contradiction: if V R
S (pa) × V R

B (pa) ̸= 0 , then
(
V R

S (pa), V R
B (pa)

)
̸= (0, 0).

This implies that a residual volume δV = min
(
V R

S (pa), V R
B (pa)

)
> 0 can be matched between

buyers and sellers at the auction price and thus contradicts the fact that Qa is maximizing the
exchanged volume during the auction.

Let us now introduce volumes scaled by the auction volume: given an integer volume of

shares q ∈ N, we define the scaled volume ω = q/Qa.

Definition 7 (Price impact). For an auction A , for any ω > 0, we define the price impact
before the auction clearing of a buy (resp. sell) market order IB(ω) (resp. IS(ω)) as the absolute
change in the auction log-price immediately after submitting a buy (resp. sell) market order of
size q = ω ×Qa

I•(ω) =
∣∣∣∣log

(
pω

pa

)∣∣∣∣ , • ∈ {B,S}, (3.6)

where pω is the new auction price after injecting the market order.

Note that I• refers to the instantaneous impact of an order submission at auction time t = Ta,

i.e., assuming a market order is sent just before the clearing. In this case, the market can not react
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to this submission as the clearing happens right away, and no relaxation can occur. However, if a

submission/cancellation is sent to the exchange way before the clearing, the corresponding price

impact I• at t < Ta with pa ← pind
t and Qa ← Qind

t refers to a virtual/instantaneous price impact

that may differ from the price impact of an actual submission/cancellation since the market can

still react to it.

Proposition 2. Let A be an auction with an auction price pa and an auction volume Qa. We
inject a market order of size q = ωQa before the auction clearing. The new auction price is pω.
We have:

(a) The function I• : ω 7→
∣∣∣log

(
pω

pa

)∣∣∣, for • ∈ {B,S} and ω > 0, is a non-decreasing and
right-continuous step function.

(b) Let (ω(i)
B )i≥0 be the ordered points of discontinuity of IB. Then

ω
(0)
B = V R

S (pa) + V M
B (pa)

Qa
,

ω
(i)
B = ω

(i−1)
B + VS(p(i)

B ) + VB(p(i)
B )

Qa
, i ≥ 1,

(3.7)

where p(i)
B > pa is the ith non-empty price tick strictly greater than the auction price.

(c) Let (ω(i)
S )i≥0 be the ordered points of discontinuity of IS . Then

ω
(0)
S = V M

S (pa) + V R
B (pa)

Qa
,

ω
(i)
S = ω

(i−1)
S + VS(p(i)

S ) + VB(p(i)
S )

Qa
, i ≥ 1,

(3.8)

where p(i)
S < pa is the ith non-empty price tick strictly lower than the auction price.

Obviously I•(ω(i)
• ) =

∣∣∣log(p(i+1)
• /pa)

∣∣∣. Also, remark that if all price ticks contain non null

volume (VB +VS > 0), then p(i)
• = pa± iθ, where θ is the tick size. The proof of Proposition 2 is

given in Appendix 3.A. Proposition 2 allows us to compute the impact function at any time of a

given auction, including during the accumulation period. In addition, the price impact of a new

order is zero if its size is smaller than ω(0)
• Qa. Figure 3.1 provides a graphical explanation of ω(0)

•

formulas. On the left panel for example, the buy volume at the auction price is totally matched

(VB(pa) = V M
B (pa) and V R

B (pa) = 0). In this case, in order to shift the price, a buyer would need

to execute a market buy order of minimal volume V R
S (pa) +VB(pa). Alternatively, a seller would

need to execute a market sell order of minimal volume V M
S (pa). The right panel of Figure 3.1
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Figure 3.1 – Cumulative buy (red curves) and sell curves (blue curves) during hypothetical
auctions. Left panel: the buy volume is totally matched at the auction price; right panel:
the sell volume at the auction price is totally matched at the auction price. Dash-dotted
lines: effect of an addition buy market order (left plot) and sell market order (right plot):
the auction price can change only when the market order is larger than the matched
volume plus the imbalance, which explains why zero impact is prevalent.
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illustrates the symmetric case in which the sell volume at the auction price is totally matched

(VS(pa) = V M
S (pa) and V R

S (pa) = 0). Moreover, observe that if a trader sends a market order of

exact size q = ω
(0)
• ×Qa ∈ N, then both pa and p(1)

• maximize the auction volume. As explained

above, the new auction price would be the one with the smallest imbalance, i.e. equal remaining

volumes. If pa and p
(1)
• have equal imbalances, then the new auction price is the closest to the

reference price. Here, we assumed that whenever q = ω
(0)
• × Qa ∈ N, the price automatically

shifts to p(1)
• .

Also, by Proposition 2, VS(p(i)
• ) + VB(p(i)

• ) = Qa × (ω(i)
• − ω(i−1)

• ) for i ≥ 1 is the necessary

volume to take the price from p
(i)
• to p(i+1)

• . We therefore define δω(i)
• = ω

(i)
• −ω(i−1)

• for i ≥ 1 to

denote this scaled incremental volume, with the convention that δω(0)
• = ω

(0)
• . Finally, notice that

a cancellation of a buy market order of size q affects the price in the same way as submitting a sell

market order of the same size: in both cases the new price pω is a solution of S(pω) + q = D(pω).
Similarly, cancelling a sell market order has the same effect as submitting a buy market order.

Consequently, we only focus on the price impact of market order submissions in the following.

3.3 Data

The dataset used in this work is part of the BEDOFIH database (Base Européenne de

Données Financières à Haute-fréquence) built by the European Financial Data Institute (EU-

ROFIDAI). The dataset provides detailed order data for all stocks traded on Euronext Paris

between 2013 and 2017. For each stock and each trading day, information is provided in four

files:

— a history orders file that contains all the orders that remained in the central limit order

book from the previous trading day ;

— a current orders file that contains all submissions, modifications, and cancellations for the

current trading day ;

— a trades file that lists all the transactions that took place during the current trading day ;

— an events file that lists special market events, if any, such as a delayed opening, a halt in

trading, etc.

In addition to standard information such as time with microsecond precision, price, side (buy/sell),

quantity, and price threshold for stop orders, we have access to additional order details in these

files, some of which are computed ex-post. These include the order type and its temporal validity

(market, limit, valid-for-auction, valid-for-closing, etc.), the high-frequency status of the market

participant (HFT, NON-HFT, or MIXED), and the account type (own account, client account,
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Table 3.1 – Percentages of auction snapshots with accurate reconstruction.

Opening auction Closing auction
Number of valid snapshots 34,971 34,820

% snapshots matching the auction price 99.6% 99.9%
% snapshots matching the auction volume 99.0% 99.7%

% snapshots matching both 98.9% 99.6%

market maker, parent company, retail liquidity provider, retail market organization).

In order to reconstruct the exact state of the limit order book (LOB) at any point during the

auction, we combine the information from the four different files for each stock and each trading

day to create a snapshot. We select the 34 most traded stocks on Euronext Paris between 2013

and 2017 and analyze 2 to 5 years worth of data for each stock, totaling N = 34, 977 stock-

days. A small number of these stock-days result in errors or mismatches (e.g., dataset errors,

non-crossing supply and demand for the opening auction, or half-day trading/halted trading

before 17:30 for the closing auction). After removing these invalid snapshots, we are left with

No = 34, 971 valid snapshots at the opening auction time and Nc = 34, 820 valid snapshots at

the closing auction time.

Using these reconstructed snapshots just before the auction time, we compute reconstructed

prices and volumes as per Euronext rules, i.e., by maximizing the exchanged volume and min-

imizing the imbalance. This boils down to finding the intersection of the reconstructed supply

and demand curves. Table 3.1 reports the percentage of snapshots for which the reconstructed

price (resp. volume) matches the actual auction price (resp. volume) among valid snapshots.

The remaining discrepancies may be a result of using simplified rules to account for stop orders

and occasional contradictions between recorded data in the orders file and the trades file. For

these few unmatched snapshots, we note that the discrepancies between computed and actual

quantities are small: less than 1 basis point on the absolute average difference from the auction

price and 0.2% on the absolute average distance from the auction volume. These few unmatched

auctions are discarded from the sample in the subsequent analysis, though they would not alter

the outcome of our experiments.
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3.4 Average shape of the auction limit order book

This section investigates the typical shape of the limit order book at auction time Ta, what

it implies for post-clearing price impact, and how the average LOB shape can be broken down

by latency and account type of market participants.

3.4.1 Pre-clearing vs. post-clearing LOB shape

For each stock of the dataset, we compute the buy and sell average empirical densities ⟨ρ̃•⟩
(see Definition 5) as a function of the log-price difference x = log

(
p

pa

)
. Figure 3.2 shows the

average LOB density for the most traded stock in our dataset (ISIN FR0000120271, TTE.PA,

TotalEnergies). We distinguish the orders that are cleared by the auction process (dotted lines)

from the ones that remain in the LOB after the end of the auction (full lines). Average LOB

densities are very similar across all the studied stocks.

Figure 3.2 shows the average LOB densities at the closing auction: the buy and sell densities

have a skewed bell-shaped curve around the auction price. Opening and closing auctions have

clearly different LOB densities. As expected, the average LOB density is noisier at the opening

auction than at the closing auction which reflects the typical liquidity available at either auction

Challet (2019). However, the following remarks hold for both auctions:

— there is a peak at the auction price, i.e. ⟨ρ̃•⟩ (0) is larger than typical values taken near 0.

This translates an accumulation of orders on p = pa on average at the time of the clearing;

— ⟨ρ̃•⟩ is linear around x = 0, i.e. p = pa.

As shown by Fig. 3.2, all buy orders with p > pa are cleared, and all buy orders with

p < pa remain in the LOB after the auction as long as their temporal validity extends beyond

the clearing; similarly, all sell orders with p < pa are cleared and all sell orders with p > pa

remain in the LOB after the auction. For p = pa, some orders are matched, some are not. This

explains why the peaks of buy and sell volumes at pa are reduced after the clearing. Finally, the

auction-only orders are removed from the LOB after the clearing if they are not executed.
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Figure 3.2 – Average density of the limit order book ⟨ρ̃•⟩ as a function of the log difference
from the auction price pa at the opening auction (top) and at the closing auction (bot-
tom); left plots: pre-clearing, right plots: post-clearing (right). TTE.PA (TotalEnergies)
between 2013 and 2017. In all panels, the mean density is computed on price intervals of
size δx = 1bp over N = 1266 days.
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3.4.2 Post-clearing instantaneous price impact

Let us briefly discuss the instantaneous post-clearing price impact during a continuous trading

phase just after an auction. The following remarks are valid whenever there is a continuous

trading phase right after the auction clearing (that is, after the open auction here). Consider

the case of a trader sending a buy market order during the continuous trading phase just after

auction clearing. This trader can expect to match up to all the remaining sell orders at pa

without impacting the price. Once the liquidity at pa is consumed, sending an additional buy

volume q > 0 will result in a sub-linear price impact. Indeed, since ⟨ρ̃S⟩ has been observed to

be linear around 0 (peak excluded), we may write ⟨ρ̃S⟩ (x) = a1 + b1x on this neighborhood so

that we have on average ∫ x

0
⟨ρ̃S⟩ (u)du = q, (3.9)

which implies
b1
2 x

2 + a1x− q = 0. (3.10)

Hence, the post-clearing instantaneous price impact x is sub-linear and ranges between a square

root limit when q ≫ a2
1

2b1
and a linear impact limit q ≪ a2

1
2b1

. This reproduces in a stylized way the

crossover between linear and square-root market impact observed in continuous double auctions

(Bucci et al., 2019a). The latter can be explained for example by assuming the existence of a

hidden, latent LOB (Tóth et al., 2011), which is only partially revealed but whose shape largely

determines that of market impact. At auction times instead, market participants are forced to

reveal their intentions at least in the vicinity of pa, and one can relate the auction LOB with the

latent LOB.

3.4.3 Breakdown by market participant latency

Figure 3.3 displays a breakdown of the average empirical densities ⟨ρ̃•⟩ at the closing auctions

by the speed of market participants. We used the latency flag in our data which specifies the HFT

category of the order sender as per the AMF definition. Let us make three remarks regarding

Figure 3.3. First, we notice that the MIX LOB has the same order of magnitude and shape

as the total LOB (Fig. 3.2, bottom). This indicates that the contribution of traders flagged

as fast (HFT) and slow (NON) to the liquidity provision of the closing auction (limit orders in

the neighbourhood of the auction price) is smaller than the contribution of investment banks

(flagged MIX). Second, the HFT LOB does not display an outstanding peak of volumes at the

auction price. This suggests that this peak is actually caused by slow traders and may result
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Figure 3.3 – Average density of the limit order book ⟨ρ̃•⟩ as a function of the log difference
from the auction price pa: breakdown by user latency of the average LOB during the
closing auction just before the clearing (left), right after the clearing (right and bottom),
with Y-axis in a log-scale (bottom) for TTE.PA between 2013 and 2017. The HFT flag
denotes pure high frequency traders, MIX denotes investment banks with high frequency
trading activities, and NON denotes traders without HFT activities.
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in auction price pinning. Third, Figure 3.3 deals with the most liquid stock of the sample, but

some stocks have a very small HFT-flagged LOB with the same order of magnitude as the low

frequency LOB: HFT-flagged traders do not place sizeable limit orders in the closing auction of

all stocks.

As stated in AMF (2017); Benzaquen and Bouchaud (2018a), open markets are dominated

by fast trading algorithms, which suggests considering the HFT LOB only (up to a multiplicative

constant) when relating the auction LOB with the latent continuous-auction LOB. In this setting,

the post-clearing price impact is much closer to a square root because of the sharp linear shape

of the HFT LOB that vanishes around the current price.

3.4.4 Breakdown by account type

Figure 3.4 shows a breakdown of the average empirical densities ⟨ρ̃•⟩ at the closing auction

by the account type. This particular flag tells on whose behalf an order was sent: client account,

market maker, own account, parent company account, retail market organization (RMO), and

retail liquidity provider (RLP). We notice that traders operating on behalf of their own account,

which includes a significant fraction of investment bank activities, and market makers provide

most of the liquidity in the vicinity of the auction price. In addition, the density of orders sent

on behalf of clients and slow traders have the same shape (see Fig. 3.3). This decomposition

will be valuable in designing realistic agent-based models in addition to incorporating multi-time

scale liquidity 1.

3.5 Price impact

This section investigates a set of statistical regularities of price impact in equity auctions

focusing on closing auctions. In the first part, we study price impact at the auction time, which

was fixed at 17:35:00 before the 28th of September 2015, and then randomly between 17:35:00

and 17:35:30: we assume that a trader wishes to know by how much the auction price would have

moved if she had sent a market order right before the clearing, supposing that she could know the

clearing time in advance. In the second part, we study the behavior of price impact before the

auction time. To this end, we examine the evolution of the virtual/instantaneous price impact

throughout the accumulation period. Then, we relate the price impact at auction time with that

1. There are only 126 authorized participants on the cash market (that includes equities) of Euronext
Paris. See: https://live.euronext.com/en/resources/members-list.
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Figure 3.4 – Average density of the limit order book ⟨ρ̃•⟩ as a function of the log difference
from the auction price pa: breakdown of the average LOB during the closing auction by
user account type just before the clearing (left), right after the clearing (right and bottom),
with Y-axis in a log-scale (bottom) for TTE.PA between 2013 and 2017. Colors represent
orders executed on the behalf of: a client account, a market maker, an own account,
a parent company account, a retail market organization (RMO), and a retail liquidity
provider (RLP).
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at 17:35:00. Finally, we compute the average impact of actual submissions/cancellations during

auctions and discuss why it is markedly different from that of open markets.

3.5.1 At the auction time

In this first part, we investigate the impact of a market order submitted (or canceled) to

the exchange just before the clearing. We explicitly assume that the trader would have been

able to insert or cancel her order just before the clearing process. In this setting, we highlight

the existence of a significant zero impact volume below which the auction price would not have

changed and explain why this zero impact is purely mechanical. We then show that any additional

volume has a linear price impact over a volume range that we determine, not only on average

but for most stocks and days. We also derive a simple formula for the impact slope that we

validate empirically using a simplified optimization routine. Finally, we examine the influence of

derivative expiry days on closing auctions.

Zero impact: ω < ω(0)
•

When inspecting the price impact function over several days and auctions, we observe that

the minimal volume necessary to change the auction price (Qa × ω
(0)
• using the notations of

Proposition 2), can be much larger than the typical volumes needed to impact the price further

(Qa × δω
(i)
• , i ≥ 1). A compelling example is given by Figure 3.5, which shows the price

impact function for TTE.PA at the closing auction of May 5, 2017, with the following quantities:

pa = 48.00e, Qa = 2, 246, 617, ω(0)
B = 27.45%, and ω(0)

S = 9.61%. Hence, if sent just before Ta, a

buy order of a cash volume lower than Qa×ω(0)
B ×pa = 29.6 millione would not have resulted in

an auction price change. Similarly a sell order of a cash volume lower than Qa×ω(0)
S ×pa = 10.3

millione would have had zero impact.

In our sample, zero price impact is present in more than 98% of the total processed days and

sides. This means that in more than 98% of the time, sending one share, either on the buy or

the sell side, will not change the auction price. In addition, and maybe more surprisingly, zero

impact on both sides simultaneously is by far the most common situation. This comes from the

fact that the prices are discrete and thus the cumulative buy and sell volumes D(p) and S(p) are

step functions. At the auction price, these steps only overlap partially. To change the auction

price, one needs to shift vertically either D or S in such a way that the overlap at the auction

price disappears (see Figure 3.1 for an illustration). Thus, zero price impact only disappears

when both VB(pa) and VS(pa) only have one share at most at pa.
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• .

Price impact can be zero for relatively large orders because of the peak of volume at pa: recall

that the (scaled) zero-impact volume ω(0)
• is the minimal volume needed to change the auction

price; by the definition of ω(0)
• in Proposition 2, having large matched buy and sell volumes at

the auction price leads to large zero impact volumes on both sides (see Figure 3.1). This is

confirmed empirically: we report in Table 3.2 the probability P1% to send a market order of

size q = 1% × Qa just before the clearing without moving the closing price. For the stocks in

our sample, this probability ranges from 46% to 74%. The randomization of the clearing time

prevents fast agents from using their low latency to size their trades so as to have zero impact.

We also report several statistical observations on ω(0)
B and ω(0)

S . First, their statistical distri-

bution can not be distinguished (as shown in Figure 3.6). This is confirmed by a Kolmogorov-

Smirnov test reported in Table 3.2, which also reports the empirical Spearman correlation be-

tween these two quantities: quite surprisingly, given the observation above, the correlation be-

tween ω(0)
B and ω(0)

S is rather weak, −0.15 on average, and is non-significant for some very liquid

stocks (e.g., TTE.PA the most traded stock in our dataset). This confirms that zero-impact is

mostly a mechanical effect, not a strategic one.

Let us finally compare δω(0)
• = ω

(0)
• , the minimal scaled volume needed to move the auction

price, to δω(i)
• = ω

(i)
• − ω(i−1)

• , i ≥ 1, the minimal scaled volumes needed to take the price from

p
(i)
• to p(i+1)

• (see Proposition 2). Table 3.3 presents results for the stock TTE.PA of pairwise
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Table 3.2 – Spearman correlation and Kolmogorov-Smirnov test statistics for ω(0)
B and

ω
(0)
S , as well as the probability P1% to send a market order of size q = 1% × Qa without

impacting the auction price just before the clearing across the stocks in our sample.

ISIN cor(ω(0)
B , ω

(0)
S ) KS statistic(ω(0)

B , ω
(0)
S ) P1% Observations

CH0012214059 -0.559*** 0.088* 64% 510
FR0000031122 -0.267*** 0.056 67% 1009
FR0000045072 -0.321*** 0.035 65% 1014
FR0000073272 -0.102** 0.049 66% 1015
FR0000120073 -0.210*** 0.025 64% 1014
FR0000120172 -0.156*** 0.045 66% 1268
FR0000120271 -0.048 0.022 46% 1266
FR0000120354 -0.152*** 0.088*** 70% 1014
FR0000120404 -0.089** 0.052 69% 1015
FR0000120537 -0.004 0.044 70% 504
FR0000120578 -0.139*** 0.054* 48% 1268
FR0000120628 -0.263*** 0.043 64% 1261
FR0000120644 -0.166*** 0.027 60% 1012
FR0000120685 -0.209*** 0.044 68% 1014
FR0000121014 -0.272*** 0.021 68% 1014
FR0000121147 -0.015 0.027 73% 1013
FR0000121261 -0.225*** 0.027 65% 1013
FR0000121501 -0.311*** 0.053 68% 1014
FR0000121667 -0.338*** 0.021 69% 1012
FR0000121972 -0.095*** 0.035 58% 1264
FR0000124141 -0.288*** 0.026 73% 1012
FR0000125007 -0.14*** 0.036 57% 1265
FR0000125338 -0.172*** 0.042 68% 1012
FR0000125486 -0.132*** 0.038 59% 1013
FR0000127771 -0.248*** 0.04 68% 1015
FR0000130338 -0.098* 0.033 74% 613
FR0000130809 -0.061* 0.032 56% 1259
FR0000131104 -0.128*** 0.049 53% 1264
FR0000131708 -0.118** 0.042 68% 771
FR0000131906 -0.075** 0.032 62% 1269
FR0000133308 -0.242*** 0.043 67% 1012
FR0010208488 -0.271*** 0.025 68% 1010
FR0013176526 -0.349*** 0.065 57% 401
NL0000235190 -0.096*** 0.035 61% 1264

The symbols ***,**, and * indicate significance at the 0.1%, 1%, and 5% level, respec-
tively.

78



Table 3.3 – Kolmogorov-Smirnov statistics for pairs of rescaled incremental volumes δω(i)
•

and δω(j)
• for the stock TTE.PA.

δω(0) δω(1) δω(2) δω(3) δω(4) δω(5) δω(6) δω(7) δω(8) δω(9) δω(10)

δω(0)

δω(1) 0.091***
δω(2) 0.047** 0.08***
δω(3) 0.063*** 0.103*** 0.034
δω(4) 0.057*** 0.105*** 0.033 0.023
δω(5) 0.053** 0.089*** 0.02 0.026 0.028
δω(6) 0.055** 0.112*** 0.04* 0.021 0.028 0.032
δω(7) 0.068*** 0.117*** 0.044* 0.019 0.026 0.031 0.024
δω(8) 0.043* 0.086*** 0.02 0.03 0.03 0.018 0.037. 0.037
δω(9) 0.047** 0.091*** 0.019 0.025 0.021 0.02 0.032 0.036 0.016
δω(10) 0.042* 0.081*** 0.022 0.04* 0.037 0.022 0.043* 0.041* 0.016 0.023

The symbols ***, **, and * indicate significance at the 0.1%, 1%, and 5% level,
respectively.

Kolmogorov-Smirnov tests on the empirical distribution functions of δω(i)
• and δω

(j)
• . For the

sake of brevity, results are presented for i, j ≤ 10, but the statistical testing has actually been

conducted up to i, j = 40. We clearly observe that δω(0)
• and δω

(1)
• have specific statistical

properties, while the distributions of the incremental volumes δω(i)
• for 2 ≤ i ≤ 32 could hardly

be distinguished as the null hypothesis could not be rejected at the 1% significance level. Figure

3.7 shows smoothed histograms and empirical reverse cumulative distribution function for δω(i)
• ,

0 ≤ i ≤ 5. This observation is not easily generalized to all stocks since additional factors come

into play: small tick vs. large tick stocks and the randomization of the clearing time. These

factors have a non-negligible influence on the distribution of δω(i)
• s across different stocks and

over the years.

Linear impact: ω(0)
• < ω < ω(max)

•

According to Donier and Bouchaud (2016), in a Walrasian auction with continuous prices,

average volumes around the auction price are non-null, which leads to a linear impact (in a

first-order expansion), while in a continuous double auction, average volumes vanish around the

current price and lead to a square root impact.

It is useful to first assume that price is continuous in order to derive a simple condition for

the price impact to be strictly linear. If we send a buy market order of size ω × Qa before the

auction clearing, and assuming we work in a log-price frame of reference x = log(p/pa) in a
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Figure 3.7 – Left panel: smoothed histograms of scaled incremental volumes δω(i)
• for

i = 0 · · · 5; right panel: empirical reverse cumulative distribution function (RCDF) of
scaled incremental volumes δω(i)

• for i = 0 · · · 5.

continuous price setting, we haveS(0) = D(0),

S (IB(ω)) = D (IB(ω)) + ωQa,
(3.11)

hence,

S (IB(ω))− S(0) = D (IB(ω))−D(0) + ωQa. (3.12)

Donier and Bouchaud (2016) perform a first-order expansion to write

∂xS(0)× (IB(ω)− 0) = ∂xD(0)(IB(ω)− 0) + ωQa, (3.13)

and approximate

IB(ω) = 1
ρ̃S(0) + ρ̃B(0) × ω. (3.14)

However, instead, we use equation (3.12) to find exactly

∫ IB(ω)

0
(ρ̃S + ρ̃B)(x)dx = ω, (3.15)
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Figure 3.8 – Average empirical density of total (buy + sell) volumes for TTE.PA at the
closing auction.

thus
IB(ω) = F−1(ω),

F (x) =
∫ x

0
(ρ̃S + ρ̃B)(u)du.

(3.16)

Having a linear impact requires that F−1 and F are linear functions, therefore that x 7→
(ρ̃S + ρ̃B)(x) is constant.

Figure 3.8 shows the average empirical density ⟨ρ̃S + ρ̃B⟩d of the sum of buy and sell volumes

for the most liquid stock in the sample. It strongly suggests the existence of a price interval, on

each side of the auction price, in which the sum of buy and sell volumes can be well approximated

by a constant.

We now include this observation in the discrete-price theoretical framework introduced Sec-

tion 3.2 and we prove in Proposition 3 that if buy and sell densities sum up to a constant around

the auction price pa (removing the zero-impact part), price impact is linear.

Proposition 3. If x 7→ (ρ̃S + ρ̃B)(x) is constant on some intervals ]−∆S , 0[ and ]0,∆B[, then
the price impact I• is linear. More precisely, if ρ̃S(x) + ρ̃B(x) = L̃B positive constant for all
x ∈]0,∆B[ and ρ̃S(x) + ρ̃B(x) = L̃S positive constant for all x ∈] −∆S , 0[, then for all i such
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that I(ω(i)) < ∆, we have

I(ω(i))− I(ω(0)) = 1
p(1)L̃

(
ω(i) − ω(0)

)
, (3.17)

where we omitted the • ∈ {B,S} notation from I, ω, p(1) and L̃ . Recall that p(1)
• is the first

non empty price tick after (resp. before) the auction price when • = B (resp. when • = S), as
in Proposition 2.

The proof of Proposition 3 is given in Appendix 3.B. Notice that L̃ represents a constant

scaled liquidity around pa. Also, since L̃ and ω are both scaled by Qa, the price impact as

written in the right-hand side of equation (3.17) does not depend on the auction volume Qa. For

large-tick stocks, if VB(p) + VS(p) = Vc constant around pa, then the scaled liquidity is given by

L̃ = Vc/(Qaθ), where θ is the tick size. For small-tick stocks, one can obtain an approximation

by substituting θ with a fraction of the average spread.

Following Proposition 3, we want to characterize the intervals in which ρ̃S + ρ̃B can be

considered constant. Therefore we need to find L̃• and ∆• for • ∈ {B,S}, such that

ρ̃S(x) + ρ̃B(x) = L̃B for all x ∈]0,∆B[;

ρ̃S(x) + ρ̃B(x) = L̃S for all x ∈]−∆S , 0[.
(3.18)

For symmetry reasons, we focus on ∆B and L̃B: the problem is to find ∆B and L̃B for a given

day d by resorting to a simple change point detection algorithm. This method minimizes the

residual sum of squared errors between log (ρ̃S(x) + ρ̃B(x)) and its mean η(y) for x ∈]0, y] plus

the residual sum of errors of a linear fit of log (ρ̃S(x) + ρ̃B(x)) for x > y. We choose to work

with logarithms, since errors are multiplicative. The resulting cost function is

f(y) =
∑

0<x≤y

|log (ρ̃S(x) + ρ̃B(x))− η(y)|2 +
∑
x>y

∣∣∣log (ρ̃S(x) + ρ̃B(x))− β̂(y)x− α̂(y)
∣∣∣2 ;

η(y) = 1
Ny

∑
0<x≤y

log (ρ̃S(x) + ρ̃B(x)) ,
(3.19)

where (α̂(y), β̂(y)) is the linear regression estimate of log (ρ̃S(x) + ρ̃B(x)) over x for x > y, and

Ny is the number of non-null observations (x, log (ρ̃S(x) + ρ̃B(x))) for x ∈]0, y]. We then define

∆B = arg min
y

f(y). (3.20)

This definition means that for x ≤ ∆B, the sum of the logarithm of the sum of scaled empirical
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buy and sell densities is better approximated by its mean than by a non-constant (linear) fit,

whereas for x > ∆B, the opposite holds. Then, we calculate L̃B as the mean of (ρ̃S + ρ̃B)(x)
for 0 < x ≤ ∆B in order to avoid an underestimation due to the convexity of the exponential

function. Finally, we define ω(max)
• as the maximum scaled volume of a market order that would

result in a null or linear impact, i.e.,

ω
(max)
• = ω

(0)
• +

∑
0<|x|≤∆•

VB(x) + VS(x)
Qa

. (3.21)

Figure 3.9 shows examples for ∆ detection using the previous optimisation for two different days

at the closing auction, and plots in each case the theoretical impact given by Proposition 3 with

respect to the actually observed impact function. One sees that the estimated cut-off ∆, as well

as the slope estimate (p(1)L̃ )−1 ≈ (paL̃ )−1, fit very well the actual slope and domain of the

linear price impact. This is actually the case of most days, as shown by Figure 3.10, where we

plot the observed slope against the theoretical slope.

We also plot the smoothed histograms of ∆ and ω(max) issued by our detection algorithm

for the stock TTE.PA between 2013 and 2017 (1266 stock-days and two sides (buy and sell))

(see Fig. 3.11) . Note that we truncated the closing auction snapshots at a maximum log-price

distance x ≤ 2%, which is twice the average impact of a market order of a size equal to the

auction volume Qa. In addition, only fits with a number of points ≥ 20 are kept, which happens

in about ≈ 90% of the days and sides: this shows that the price impact is linear for most of the

days with an average value of ∆ above 50 basis points. Finally, P
[
ω(max) > 0.5

]
= 0.73: this

means that a trader has 73% chance to execute 50% of the total auction volume just before the

close clearing and still result in zero or linear impact.

Appendix 3.C reports empirical properties of the impact slope at auction time computed for

every asset, which may be of some use in transaction cost analysis.

Influence of derivatives expiry dates

When there is no derivatives expiry, the liquidity in currency units defined by L$ := pa×Qa×
L̃ whether on Friday or other days of the week (Fig. 3.12, right panel) seem to be drawn from

the same distribution, as we could not reject the null hypothesis associated with Kolmogorov-

Smirnov tests for any pair of weekdays outside the third week of the month. However, on expiry

days (third Fridays of the month), liquidity in currency units is typically larger than for other

weekdays during the same week and seems to be drawn from a different shifted distribution to

the right (Fig. 3.12, left panel). This finding is confirmed by one tailed Kolmogorov-Smirnov
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Figure 3.9 – Simplified change point detection algorithm applied on the buy side of the
closing auction of TTE.PA at 2013-03-21 (left) and the sell side of the closing auction
of TTE.PA at 2017-02-28 (right). The upper plots show the sum of the buy and sell
empirical densities and estimated cut-off ∆ with a green dashed line. Lower plots show
the fit of the estimated impact slope (p(1)L̃ )−1 ≈ (paL̃ )−1 on the corresponding impact
functions.
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Figure 3.11 – Smoothed histograms of the maximum log-distance ∆ over which the sum
of the buy and sell densities can be considered constant (left) and the maximum scaled
volume ω(max) that results in a null or linear impact. These are outputs of the optimization
of equation (3.19) applied to closing auctions of TTE.PA between 2013 and 2017.
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Figure 3.12 – Smoothed histograms of the closing auction estimated cash liquidity L$ :=
L̃ × Qa × pa during the third week of the month (left) and outside of the third week of
the month (right).

tests for Friday and any other weekday during third weeks of a month. Therefore, the impact

slope is typically smaller during expiry days and the final auction order book is more resistant

to price changes.

3.5.2 Before the auction time

In this second part, we study price impact before the auction time. First, we examine the

evolution of virtual price impact throughout the accumulation period by looking at the evolution

of liquidity as well as the maximum volume resulting in a linear impact. Second, we assume that

traders have means to infer the impact slope at 17:35:00, which is the latest time that ensures

not missing the clearing with certainty. We then relate zero impacts and the impact slope at

17:35:00 with those at the auction time. Finally, we study the average impact on the indicative

price of actual submissions/cancellations between 17:30:30 and the auction time by means of

response functions.
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Price impact evolution

We investigate how the virtual price impact behaves throughout the accumulation period. We

construct successive snapshots at 5-second intervals for TTE.PA at the closing auction. Then,

we compute the (virtual/ instantaneous) price impact for t ≤ Ta with pa ← pind
t and Qa ← Qind

t .

We define the absolute liquidity Lt as the (constant) sum of buy and sell empirical densities

at time t: Lt = (VB + VS)(t)/δp (Recall that the buy and sell densities sum up to a constant

around the current indicative price). Similarly, we define Q(max)
t as the maximum (absolute)

volume that results in a null or linear impact time t. Figure 3.13 shows that averages of both

the absolute liquidity (w.r.t. Qa) Lt/Qa and the fraction of the final liquidity Lt/LTa follow

the same pattern, i.e., a strong concave monotonicity at the start of the accumulation period

followed by strong convex evolution as the clearing nears. Likewise, the average of the maximum

linear volume with respect to the final volume Q(max)
t /Qa has the same shape. Nonetheless,

the average mean of Q(max)
t /Q

(max)
Ta

has a more complex pattern and suggests a strong effect of

cancellations.

Impact at auction time vs. 17:35:00

Let us now relate the virtual market impact at 17:35:00 and at auction time after the intro-

duction of the randomized clearing time. When the limit order book is not disseminated, traders

have no direct way to estimate its shape or their virtual impact, at either time. However, sending

a large market order and gradually cancelling it is a way around, and is observed at times.

The relationship between the two parts of price impact (zero, then linear) at both times is

markedly different. The relative change of zero impact volumes is distributed over several orders

of magnitude (see Fig. 3.14); agents do have an incentive to send zero-impact orders between

17:35:00 and the auction time. On the contrary, the slopes of the linear impact part are closely

related: in 90% of the days, the relative change in the impact slope is smaller than 12% in

absolute value (see Fig. 3.14). This means that the auction book stabilizes after 17:35:00 as one

can expect since the clearing can occur at any time after 17:35:00. For TotalEnergies stock, the

average absolute price change between 17:34:55 and 17:35:00 is 7 basis points. It is only 1.6 basis

points between 17:35:00 and the auction time.
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Figure 3.13 – Average absolute liquidity with respect to Qa during the closing auction
(upper left). Average fraction ⟨Lt/LTa⟩ of the absolute liquidity at time t Lt by final
-at the clearing- liquidity LTa (upper right). Average (absolute) maximum linear-impact
volume with respect to Qa during the closing auction

〈
Q
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〉
of the absolute maximum linear-impact volume at time t Q(max)

t

by final -at the clearing- absolute maximum volume Q(max)
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(lower right).
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17:35:00 and 17:35:30 at closing auctions. Negative changes in % of zero impact are
broadly distributed between 0% and -100%. Shown results are for TotalEnergies stock.

The linear impact of market order submission/cancellation before the auction

Finally, we evaluate the average impact of actual submissions/cancellations during the ac-

cumulation period. To this end, we compute the one lag response function R1 for marketable

orders (market orders and limit orders with an aggressive limit price) conditional on the order

(scaled) size ω

R1(ω) = ⟨εt · (pt+1 − pt)|ω⟩ , (3.22)

where, pt is the indicative price just before the arrival of tth marketable order submission, ε = +1
for a buy, −1 for a sell, and the time is incremented at each marketable order submission.

Additionally, we compute the one lag mechanical response function RM conditional on the order

(scaled) size ω

RM (ω) =
〈
εt · (p+

t − pt)|ω
〉
, (3.23)

where p+
t is the indicative price just after the marketable order arrival.

In contrast to open markets where R1 is sub-linearly dependent on the volume (Lillo et al.,

2003; Potters and Bouchaud, 2003; Bouchaud et al., 2018a), we observe in Fig. 3.15 that R1

scales linearly with ω for marketable orders larger than a certain threshold ω∗ ≈ 3 · 10−3. For
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Figure 3.15 – Left panel: the average one lag response function R1 and the mechanical
impact RM for marketable order submissions as a function of the scaled order size ω =
V/Qind

t ; right panel: R1 and RM for submissions and cancellations. We used tick-by-tick
closing auction data from BEDOFIH for TotalEnergies stock between 2013 and 2017. We
discarded the first 30 seconds of each auction as it contains abnormal submissions related
to the activation of VFA/VFC orders (Valid For Auction/Valid For Closing). The green
line is the curve of y = 0.02× x.

ω < ω∗, values of R1 can be negative indicating a strong mean reversion of the price, with

values smaller than a tenth of a basis point in absolute value. For ω > ω∗, we have essentially

R1 ≈ RM indicating that the price impact of individual orders is mostly mechanical and linear

in ω. There is no selective liquidity taking as R1 and RM scale linearly with ω. Incorporating

marketable order cancellations with ε = +1 for sell cancellations and −1 for buy cancellations

yields ω∗ −→ 0, as we account for almost all price-changing events (right panel of Fig. 3.15).

These results imply that the nature of price impact is the same during the accumulation time

and at the auction time, and contrasts with results for open markets, where selective liquidity

taking causes very different shapes between the average virtual impact (using the instantaneous

shape of the book) and market impact of actual trades (Weber and Rosenow, 2005; Bouchaud

et al., 2009).
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3.6 Conclusion

The discrete nature of prices in limit order books mechanically causes the price impact at

auction time to be zero at first, sometimes for quite a substantial fraction of the total exchanged

volume. Surprisingly, zero price impact happens most of the time simultaneously on both sides

of the auction book, for additional sell and buy market orders or equivalently for cancellations

of buy or sell market orders. For volumes larger than zero-impact ones, price impact at auction

time is linear in a limited price range around the auction price not only on average but for more

than 90% of days. The theoretical work of Donier and Bouchaud (2016) shows the linearity

of the auction impact locally around the auction price using a first-order expansion and under

strong regularity assumptions of supply and demand in a continuous price setting. Here, we

showed that the linearity of auction impact is due instead to the fact that the sum of buy and

sell volumes around the auction price is constant.

While this work mainly describes the final result of the order accumulation process and

characterizes the limit order book at the auction time, a more microscopic description of the

dynamics of order submission, cancellation, and perhaps diffusion (price update) is needed. Even

though market orders submitted during the accumulation period do not play a significant role

in shaping the price response of the final limit order book, the action-reaction game between

market orders and limit orders throughout the auction (Raillon, 2020; Besson and Fernandez,

2021) is probably a major driver of its dynamics. Similarly, the interplay between the various

categories of agents (HFTs, market makers, agents trading on their behalf, or agents trading on

behalf of their clients, . . . ) is clearly of great interest. For example, Boussetta et al. (2017) show

that HFTs submit their orders in a markedly different way than slow traders. A good starting

point would be a substantial modification of the model of Donier and Bouchaud (2016) in the

spirit of the work done by Lemhadri (2019).
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Appendix

3.A Proof of Proposition 2

Proof. We only prove the proposition for an additional buy market order resulting in a price
impact denoted by IB. The case of a sell market order resulting in an impact IS is symmetric.
By definition, ω 7→ pω is a non-decreasing right-continuous step function; the same holds for
ω 7→ I(ω). Obviously I(0) = 0 and I(ω) = 0 if and only if pw = pa. Since ω(0) denotes the first
point of discontinuity of I, by monotonicity, the condition pw = pa is equivalent to ω < ω(0). In
the original auction A with auction price pa and auction volume Qa, we have S(pa)− V R

S (pa) = D(pa)− V R
B (pa) = Qa,

V R
S (pa)× V R

B (pa) = 0.
(3.24)

All these quantities are fixed by the original auction setting. If we add a buy market order of
size q = ω ×Qa in this setting, the new auction price pω satisfies S(pω)− V R

S (ω) = D(pω)− V R
B (ω) + q,

V R
S (ω)× V R

B (ω) = 0,
(3.25)

where S and D are the original supply and demand functions, and V R
S (ω) (resp. V R

B (ω)) is
the remaining sell quantity (resp. buy quantity) at price pω in the new setting. These volumes
depend clearly on ω.

Let us now determine the first point of discontinuity ω
(0)
B . It is clear that the first price

change due to the addition of a market order of size q = ω
(0)
B Qa occurs when V R

S (ω) = VS(pω),
V R

B (ω) = 0, and the new auction price pω = p
(1)
B is the first non empty price tick after pa in the

sense of VS + VB, i.e., the first tick price strictly greater than the auction price which contains
buy or sell shares. (see Figure 3.1 to build an intuition). Equation (3.25) yields

S(p(1)
B )− VS(p(1)

B ) = D(p(1)
B ) + q. (3.26)

Using the fact that S(p(1)
B ) = S(pa) + VS(p(1)

B ) and D(p(1)
B ) = D(pa)− VB(pa) we obtain

S(pa) = D(pa)− VB(pa) + q, (3.27)
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hence, using equation (3.24), one finds

V R
S (pa) = V R

B (pa)− VB(pa) + q. (3.28)

Using VB(pa) = V R
B (pa) + V M

B (pa), we obtain

q = V R
S (pa) + V M

B (pa), (3.29)

which yields
ω

(0)
B = 1

Qa

(
V R

S (pa) + V M
B (pa)

)
(3.30)

Let us now determine ω(i)
B , i ≥ 1: which is the (i + 1)th point of discontinuity of IB. We

proceed similarly: the (i+ 1)th price change due to the injection of a market order occurs when
V R

S (ω) = VS(pω), V R
B (ω) = 0, and pω = p

(i+1)
B is the (i+ 1)th non empty price tick greater than

pa (in the sense of VS + VB). Equation (3.25) yields

S(p(i+1)
B )− VS(p(i+1)

B ) = D(p(i+1)
B ) + q, (3.31)

∑
p′<p

(i+1)
B

VS(p′) =
∑

p′≥p
(i+1)
B

VB(p′) + q, (3.32)

S(pa) +
∑

pa<p′<p
(i+1)
B

VS(p′) = D(pa)−
∑

pa≤p′<p
(i+1)
B

VB(p′) + q. (3.33)

Using equation (3.24), we obtain

Qa + V R
S (pa) +

∑
pa<p′<p

(i+1)
B

VS(p′) = Qa + V R
B (pa)− (VB(pa) +

∑
pa<p′<p

(i+1)
B

VB(p′)) + q. (3.34)

Finally, ∑
pa<p′<p

(i+1)
B

(VS + VB)(p′) = q − (V R
S (pa) + V M

B (pa)). (3.35)

Thus,
ω

(i)
B = ω

(0)
B + 1

Qa

∑
pa<p′<p

(i+1)
B

(VS + VB) (p′) , i ≥ 1, (3.36)

which leads to

ω
(i)
B = ω

(i−1)
B + VS(p(i)

B ) + VB(p(i)
B )

Qa
, i ≥ 1. (3.37)
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3.B Proof of Proposition 3

Proof. Using Proposition 2 we have

ω
(i)
B − ω

(0)
B = 1

Qa

∑
pa<p′<p

(i+1)
B

VS(p′) + VB(p′)

= 1
Qa

i∑
k=1

(VS + VB)(p(k)
B )

=
i∑

k=1
(p(k+1)

B − p(k)
B ) (ρ̃S + ρ̃B) (p(k)

B )

= L̃B

i∑
k=1

(p(k+1)
B − p(k)

B )

= L̃B(p(i+1)
B − p(1)

B )

≈ L̃Bp
(1)
B

[
IB

(
ω

(i)
B

)
− IB

(
ω

(0)
B

)]
,

(3.38)

where we used the approximation IB

(
ω

(i)
B

)
− IB

(
ω

(0)
B

)
= log(p(i+1)

B /p
(1)
B ) ≈ p(i+1)

B /p
(1)
B − 1.

3.C Empirical properties of impact slopes at auction
time

In this appendix, we report empirical observations on the impact slope at auction time on

day d defined as

S̃d = (p(1)L̃ )−1. (3.39)

Figure 3.C.1 plots S̃d for TotalEnergies as a function of time. It oscillates around a typical

value and has a positive autocorrelation over a few days. The distribution of S̃d for the 34 stocks

is reported in Fig. 3.C.2: while its shape is similar for all the assets, its parameters depend on

each stock.

We also report the distribution of the absolute value log-changes of the slopes in Fig. 3.C.3,

which clearly appear to be exponentially distributed. Its one-step autocorrelation is negative.
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Equity auction dynamics: latent
liquidity models with time

acceleration

Based on Salek et al. (2024)
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Abstract

Equity auctions display several distinctive characteristics in contrast to continuous trading. As

the auction time approaches, the rate of events accelerates causing a substantial liquidity buildup

around the indicative price. This, in turn, results in a reduced price impact and decreased

volatility of the indicative price. In this study, we adapt the latent/revealed order book framework

to the specifics of equity auctions. We provide precise measurements of the model parameters,

including order submissions, cancellations, and diffusion rates. Our setup allows us to describe

the full dynamics of the average order book during closing auctions in Euronext Paris. These

findings support the relevance of the latent liquidity framework in describing limit order book

dynamics. Lastly, we analyze the factors contributing to a sub-diffusive indicative price and

demonstrate the absence of indicative price predictability.
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4.1 Introduction

Auctions play an essential role in modern equity markets, facilitating the matching of large

volumes at a single price. Major equity exchanges such as Euronext (Paris), Xetra (Germany),

and LSE (UK) among others, start and end trading days with an auction to set opening and

closing prices for liquid stocks. The matched volume in the closing auction is a significant portion

of the daily exchanged volume. This closing volume has seen consistent growth, particularly in

European markets, where it can surpass half the daily volume on days of index rebalancing and

derivative expiry (Raillon, 2020). To enhance liquidity during midday, typically the period of

lowest liquidity, and to mitigate the exposure to high-frequency market makers which dominate

the total turnover during day trading (AMF, 2017), some primary exchanges such as Xetra and

LSE, also introduced a daily intraday auction. For less liquid stocks in Paris, Euronext (2019)

implements the double-fixing trading method, i.e., two auctions per day and no continuous double

auction. Some researchers advocate for periodic batch auctions as an alternative market design

to continuous trading (Paul et al., 2021; Derchu et al., 2020; Budish et al., 2015). In 2015, CBOE

(2020) implemented periodic batch auctions for liquid European stocks.

During the so-called auction accumulation period, auction limit and market orders can be

sent, modified, or canceled but no transaction occurs. At all times, an indicative price can be

computed: it maximizes the matched volume (indicative volume) and minimizes the remaining

order imbalance at the indicative price (surplus). Depending on the exchange, the order book

data can be fully open: opening and closing auctions in the London Stock Exchange (2018), or

partially opaque: the exchange only disseminates the indicative price, volume, the surplus, and

its side as in Xetra (2021). At the auction time, the exchange clears all matched orders at the

auction price. Unlike US equity auctions where continuous trading runs in parallel, continuous

trading is halted during accumulation periods in European equity markets.
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Auctions are found empirically to improve the overall price formation process (Pagano and

Schwartz, 2003), even when the market is fragmented (Boussetta et al., 2017). Similarly, Besson

and Fernandez (2021) find that the cost of trading during closing auctions in European markets

is reduced by a factor two compared to open markets. Challet and Gourianov (2018) examine

US opening and closing auctions and find markedly different auction response functions for

each auction. Challet (2019) shows that as the auction clearing approaches, the indicative price

volatility decreases while the rate of events accelerates. Salek et al. (2023) analyze equity auctions

on Euronext Paris and find that price impact at the auction time is first zero due to large limit

orders that are present at the auction price, then linear for most days.

While there is an extensive literature on the microstructure modeling of open markets

(Chakraborti et al., 2011a,b; Bouchaud et al., 2018a; Lehalle and Laruelle, 2018), auction-specific

models are relatively rare (Derksen et al., 2020; Mendelson, 1982; Muni Toke, 2015b). The

zero-intelligence model of Donier and Bouchaud (2016) is a promising framework for Walrasian

auctions; this model assumes the existence of a latent (hidden) limit order book containing all

buy and sell intentions that may be partially revealed in the visible limit order book, building

on Tóth et al. (2011). Remarkably, the latent order book model is able to reproduce the shape

of market impact with minimal ingredients.

Latent order book models have been the subject of extensive research (Donier et al., 2015;

Lemhadri, 2019; Benzaquen and Bouchaud, 2018a,b; Mastromatteo et al., 2014). Recently,

Dall’Amico et al. (2019) introduced a conversion mechanism between the latent and revealed

order books and fitted the resulting model to market data convincingly. In this work, we specif-

ically adapt the framework of Dall’Amico et al. (2019) to equity auctions, allowing for more

generic dependencies of the model parameters on price and time. In addition to stationary so-

lutions, we demonstrate that general solutions can be obtained in closed form when diffusion is

negligible. When diffusion is not negligible, numerical schemes are used to fit the full auction

dynamics. Thanks to high-quality tick-by-tick data, we meticulously measure the price and time

dependencies of the submission, cancellation, and diffusion rates within our framework. We show

that the time acceleration near the clearing can be achieved using assumptions similar to those

introduced by Alfi et al. (2009, 2007) which describe human behavior when faced with a deadline.

Our main findings are as follows:

1. Calibrating the average book at auction time under our framework requires only a few

essential parameters. This provides estimates of the involved latent liquidity.

2. The submission rate is found to be an exponentially decreasing function of the distance

to the indicative price, and inversely proportional to the remaining time to the auction
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clearing, both close enough to the indicative price.

3. The cancellation rate is predominantly influenced by high-frequency agents. It is a decreas-

ing time function at the start of the auction, then inversely proportional to the remaining

time to the auction clearing around the indicative price.

4. The revealed diffusion coefficient is primarily driven by the indicative price volatility, with

price reassessments being, on average, negligible.

5. Despite the indicative price being sub-diffusive, it is nevertheless efficient in the sense of

Chen et al. (2017).

4.2 Modeling the auction book

4.2.1 Model description

Our starting point is the coupled reaction-diffusion equations for the revealed ρ(r) and the

latent ρ(l) orders densities derived in Dall’Amico et al. (2019): they posit the existence of interac-

tions between the latent order book ρ(l) and the revealed order book ρ(r). The reveal rate νrΓr is

the rate at which latent trading intentions in the latent order book materialize into actual orders

in the revealed order book and the unreveal rate νlΓl is the rate at which actual orders revert

back to latent intentions. In addition, a diffusion mechanism is included in both the revealed and

the latent order book corresponding to price updates in each order book with diffusion coefficient

Dr and Dl, respectively.

Assuming the absence of exogenous depositions and cancellations in the latent order book,

an order submission is equivalent to an order revelation, and similarly, an order cancellation is

equivalent to an order unrevelation. By allowing for general price and time dependencies, the

buy side equations read∂tρ
(r)
B = Dr∂xxρ

(r)
B + (νrΓr)(−x, t)ρ(l)

B − (νlΓl)(−x, t)ρ
(r)
B ;

∂tρ
(l)
B = Dl∂xxρ

(l)
B − (νrΓr)(−x, t)ρ(l)

B + (νlΓl)(−x, t)ρ
(r)
B ,

(4.1)

where x = log(p/pt) is the centered log price around the log indicative price log(pt). For the sell

side, we have ∂tρ
(r)
S = Dr∂xxρ

(r)
S + (νrΓr)(x, t)ρ(l)

S − (νlΓl)(x, t)ρ
(r)
S ;

∂tρ
(l)
S = Dl∂xxρ

(l)
S − (νrΓr)(x, t)ρ(l)

S + (νlΓl)(x, t)ρ
(r)
S .

(4.2)
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We complement Eqs (4.1) and (4.2) with a set of boundary conditions. Let us focus on the

sell side for the time being. It makes sense to assume that the latent liquidity book ρ
(l)
S is an

increasing function of x, as more people are willing to sell assets at a higher price. This means that

one can impose a boundary condition on the slope of the latent order book: ∂xρ
(l)
S −→

x→+∞
a > 0,

which corresponds to the latent liquidity parameter of Donier et al. (2015), and that ρ(l)
S does

not diverge when x→ −∞, which reflects the fact that the number of people willing to sell at a

vanishing price is not infinite. We also impose that the revealed order book ρ(r)
S does not diverge

for large prices |x| → +∞. This means that agents tend not to reveal their reservation price when

it is far away from the indicative price. In practice, agents can send market orders or matchable

limit orders far away from the indicative price in order to guarantee their participation in the

auction volume. Market orders are not included in the densities ρ(r)
S and ρ(r)

B as latent liquidity

models are defined in the reference frame of the indicative price.

Similar boundary conditions hold for the buy side.

In the original framework, νl = νr is a constant rate, and Γr (resp. Γl) is conceived as a

probability function of the relative price x for revealing a latent intention (resp. unrevealing a

public intention), with 0 ≤ Γ ≤ 1. In the context of equity auctions, the remaining time to the

auction clearing plays an essential role Challet (2019). Thus, we allow for the quantities νrΓr

and νlΓl to depend jointly on x and t. However, we will often posit that the variable separation

is possible (νΓ)(x, t) = ν(t)Γ(x) for the sake of analytical tractability and interpretability.

In addition, the initial model comprises a reaction term that is formally written κRSB =
κρ

(r)
S ρ

(r)
B , with κ → +∞ in order to make both densities interact and transactions happen; for

sufficiently large κ, no overlap between the buy and sell densities is possible. In Walrasian

auctions instead, no transaction takes place before the clearing, and buy and sell limit orders

usually overlap. When the order book is partially opaque during the accumulation period, it is

reasonable to believe that order densities interact solely through the knowledge of the indicative

price. Therefore, when considered in the reference frame of the indicative price, buy and sell

order densities should evolve independently, which leads us to set κ = 0.

Lastly, in open markets, the current price pt is the point where vanishing supply meets

vanishing demand; accordingly, Dall’Amico et al. (2019) define pt as the point where p →(
ρ

(r)
B − ρ

(r)
S

)
(p) changes sign. In auctions instead, the indicative price pt is determined by

equalizing supply and demand

S(pt) +MOS,t = D(pt) +MOB,t, (4.3)
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where S(p) =
∫

p′<p ρ
(r)
S (p′)dp′, D(p) =

∫
p′>p ρ

(r)
B (p′)dp′, andMOB andMOS is the volume of buy

and sell auction market orders. Equation (4.3) makes it clear that only the difference of market

order volume has an influence on the indicative price. As latent liquidity models are defined in

the reference frame of the indicative price, market orders are not included in the densities ρ(r)
S

and ρ(r)
B .

When centering equations around log(pt), we implicitly assume that the indicative price

evolves independently of order densities. However, changes in the sell (resp. buy) order density

for x < 0 (resp. x > 0) directly influence supply (resp. demand) subsequently changing the

indicative price. We disregard this effect and consider that the dynamics of the indicative price

are independent of average order densities around the indicative price. In the following, we focus

on the sell-side equations (4.2), and denote ρS as ρ when there is no ambiguity.

4.2.2 A stationary solution

The simplest stationary solution of Eqs (4.2) is obtained when both νlΓl and νrΓr are time-

independent and there is no diffusion in the revealed order book (Dr = 0), while orders may

diffuse in the latent order book (Dl ≥ 0). Eqs (4.2) reduce to0 = νrΓrρ
(l) − νlΓlρ

(r),

0 = Dl∂xxρ
(l) − νrΓrρ

(l) + νlΓlρ
(r),

(4.4)

which further simplifies to

ρ(r) = νr

νl
· Γr

Γl
· ρ(l)

Dl∂xxρ
(l) = 0.

(4.5)

We solve Eq. (4.5) separately on R+ and R− as the first derivative of x → Γr/l(x) might

not be continuous at x = 0. Thus, whenever Dl ̸= 0, the latent order book should be linear.

Incorporating the boundary conditions ∂xρ
(l) −→

x→+∞
a > 0 and ρ(l) −→

x→−∞
b ≥ 0 yields

ρ(l)(x) = max(ax+ b, b). (4.6)

Subsequently, the stationary revealed order book is

ρ(r)(x) = νr

νl
· Γr(x)

Γl(x) ·max(ax+ b, b). (4.7)
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As the revealed order book does not diverge for large prices, Eq. (4.7) imposes that Γr decays

faster than Γl for x→ −∞, and that xΓr decays faster than Γl for x→ +∞. For instance, this

condition is satisfied by an exponentially decaying submission rate and a constant cancellation

rate.

4.2.3 Dynamic solutions

Here, we derive non-stationary solutions of Eqs (4.2) in several cases. First, we suppose that

diffusion is negligible in both latent and revealed order books (Dr = Dl = 0). This is a sound

approximation as the calibrated orders of magnitude of Dl and Dr do not significantly influence

the order book shape (see section 4.3.3).

Summing Eqs (4.2) yields

∂t(ρ(l) + ρ(r)) = 0, (4.8)

which suggests defining the total density ρΣ = ρ(l)(x, t) + ρ(r)(x, t). Thus, Eq. (4.8) implies that

ρΣ(x, t) = ρΣ(x, t = 0). (4.9)

Now, we posit the initial condition ρ(r)(x, t = 0) = 0, which is a reasonable approximation

because the revealed order book at the beginning of the auction is negligible in comparison with

the final auction book. Additionally, we set ρ(l)(x, t = 0) = max(ax + b, b) to satisfy the latent

order book boundary conditions. Making these substitutions, we find that Eqs (4.2) can be

decoupled into

∂tρ
(r) + (νrΓr + νlΓl) · ρ(r) = νrΓrρ

Σ; (4.10)

∂tρ
(l) + (νrΓr + νlΓl) · ρ(l) = νlΓlρ

Σ, (4.11)

where ρΣ = max(ax+ b, b).

Time-independent rates

When νlΓl and νrΓr do not exhibit temporal dependencies, i.e., (νΓ)(x, t) = ν · Γ(x), Eqs

(4.11) yields the following expression for the revealed order book

ρ(r)(x, t) = ρ∞ ·
[
1− e−(νrΓr+νlΓl)·t

]
, (4.12)
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where ρ∞ = (νrΓr ·ρΣ)/(νrΓr +νlΓl). The obtained solution converges to ρ∞ in the long run, i.e.,

as t −→ +∞. This solution replicates the dynamics of the revealed order book during auction

phases when rates νlΓl and νrΓr can be considered time-independent. Moreover, it is valid for

order book portions that are already in a stationary state. Finally when (νrΓr + νlΓl) · t ≪ 1,

ρ(r) no longer depends on νlΓl anymore. This occurs for large values of |x| where νrΓr + νlΓl

goes to zero while t remains bounded

ρ(r)(x, t) ∼
|x|≫1

νr · Γr(x) · ρΣ(x) · t. (4.13)

Eq. (4.13) demonstrates that ρ(r) does not diverge when |x| → +∞ even when ρ∞ does, e.g. when

Γl decays faster than Γr. Note that this simple framework can not reproduce the accelerating

auction dynamics as the clearing approaches (Challet, 2019).

Time-dependent rates

To replicate the accelerating order book activity as the auction time approaches, which

usually results in a convex ρ(r) with respect to t as t −→ T , we need to introduce a pressure

from the auction deadline T . The auction deadline is the final time that ensures trading with

certainty. For liquid stocks listed in Euronext, T = 17:35:00 for the closing auction, and 09:00:00

for the opening auction. The clearing randomly occurs in a thirty-second window starting at T . 1

Drawing inspiration from Alfi et al. (2007, 2009), who argue that the probability of registering

at a conference is inversely proportional to the remaining time to the registration deadline, we

posit that the submission rate νrΓr (resp. the cancellation rate νlΓl) is time-dependent for

t ≥ t(0)
r and constant for t ≤ t(0)

r (resp. t(0)
l ), where t(0)

r/l is a cut-off time in ]0, T [. More precisely,

we set
(νrΓr)(x, t) = Cr

γr + T − t
· Γr(x), t ≥ t(0)

r ;

(νlΓl)(x, t) = Cl

γl + T − t
· Γl(x), t ≥ t(0)

l ,

(4.14)

with Cr, Cl > 0, γl, γr ≥ 0. A strictly positive γr (resp. γl) indicates that the perceived deadline

for submitting (resp. canceling) limit orders around the indicative price is T + γr (resp. T + γl).

Assuming that γr = γl = γ and t
(0)
r = t

(0)
l = t(0), we substitute νrΓr and νlΓl of Eqs (4.14)

1. In the 28th of September 2015, Euronext introduced a random clearing window of thirty-second
length for its equity auctions. The clearing randomly happens between 09:00:00 and 09:00:30 for the
opening auction and 17:35:00 and 17:35:30 for the closing auction. This prevents fast agents from using
low latency to take advantage of slower agents.
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into the first equation of (4.11) and obtain for t ≥ t(0)

∂tρ
(r) + CrΓr + ClΓl

γ + T − t
· ρ(r) = CrΓr

γ + T − t
· ρΣ, (4.15)

whose solution is given by

ρ(r)(x, t) = ρT − (ρT − ρ0) ·
(
γ + T − t
γ + T − t(0)

)CrΓr+ClΓl

, (4.16)

where ρT = CrΓrρ
Σ/(CrΓr + ClΓl), and ρ0 is obtained by substituting t = t(0) in Eq. (4.12).

The functional shape of Eq. (4.16) is convex w.r.t. t for all 0 ≤ t ≤ T + γ whenever

CrΓr + ClΓl < 1. It converges to a finite solution ρT as t −→ γ + T . Assuming that Γl

decays faster than Γr yields a divergent ρT for large |x| and the solution of Eq. (4.16) becomes

incompatible with the boundary conditions of the revealed order book. However, it should be

noted that the time dependence of the reveal and unreveal rates in Eq. (4.14) is only valid in a

limited region around the indicative price and that for large values of |x| the time dependency

vanishes.

Convex solutions of time around the auction deadline can be obtained even if Cr, Cl > 1
provided that γl > γr, i.e., when the perceived deadline of cancellations occurs later than that

of submissions. The ordinary differential equation verified by the revealed order book reads

∂tρ
(r) +

(
Cl

γl + T − t
+ Cr

γr + T − t

)
· ρ(r) = Cr

γr + T − t
. (4.17)

Likewise, when the rate of cancellations is constant (νlΓl)(x, t) = νl > 0, the resulting order

book dynamic is convex as t −→ T , and the ordinary differential equation reads

∂tρ
(r) +

(
νl + Cr

γr + T − t

)
· ρ(r) = Cr

γr + T − t
. (4.18)

Eqs (4.17), (4.18) are challenging to solve analytically, and we present numerical solutions in

Figure 4.2.1 by varying the parameters of interest.
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Figure 4.2.1 – Left panel: numerical solutions of Eq. (4.17) for Cr = Cl = 2. Right panel:
numerical solutions of Eq. (4.18) with a constant cancellation rate νl.

Diffusion

The diffusion coefficient is the sum of two contributions: idiosyncratic price reassessments

and reactions to changes in the indicative price. We explore the limiting case where latent price

reassessments equal the revealed ones Dr = Dl = D > 0. Summing once again Eqs (4.2), we

obtain

∂t

(
ρ(r) + ρ(l)

)
= D · ∂xx

(
ρ(r) + ρ(l)

)
. (4.19)

The solution ρΣ = ρ(r) + ρ(l) of Eq. (4.19) is then

ρΣ(x, t) = 1√
4πDt

∫
R
ρΣ(y, t = 0) · e− (x−y)2

4Dt dy;

ρΣ(x, t = 0) = max(ax+ b, b).
(4.20)

In this scenario, Eqs (4.2) can be decoupled, and order densities ρ(r) and ρ(l) satisfy∂tρ
(r) = D∂xxρ

(r) − (νrΓr + νlΓl) · ρ(r) + νrΓrρ
Σ;

∂tρ
(l) = D∂xxρ

(l) − (νrΓr + νlΓl) · ρ(l) + νlΓlρ
Σ.

(4.21)

If we further assume that νrΓr +νlΓl is constant w.r.t. x and t, the revealed order density can be

obtained in a closed-form formula Donier and Bouchaud (2016), and diffusion leads to non-trivial
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interactions depending on the shape of the source terms. Outside this specific case (Dr = Dl and

νrΓr + νlΓl constant), it is challenging to obtain closed-form solutions and we solve the general

Eqs (4.2) numerically in section 4.3.3.

4.3 Empirical observations and calibrations

In this section, we confront the model presented in section 4.2 to real auctions in Euronext

Paris. Using high quality data from BEDOFIH, we process detailed tick-by-tick closing auction

data for five active stocks (TotalEnergies, Sanofi, BNP Paribas, LVMH, Société Générale) in

Euronext Paris between 2013 and 2017. First, we reconstruct order book snapshots at the

auction time to calibrate the stationary solution of our model. Next, we leverage the level-3

tick-by-tick data to measure the submission, cancellation, and diffusion rates in the revealed

order book. Lastly, we reconstruct 1-second successive snapshots to calibrate the full dynamics

of the revealed order book during the auction.

4.3.1 Fitting order books at auction time

Using Eq. (4.7) we can fit the empirical order book at auction time ρ(r)(t = T ). The

empirical order book at auction time is obtained by averaging order book snapshots at the

closing auction time across days. We choose the simplest functional forms for the stationary

submission and cancellation rates, i.e., an exponentially decreasing revelation probability function

Γr(x) = e−|x|/xr , xr > 0 and a constant unrevelation probability function Γl = 1. Substituting

these into Eq (4.7), we fit the empirical order density at auction time. The obtained fits suggest

that accuracy is improved by allowing for more than one exponential term. Consequently, we

use the following ansatz

ρ(r)(x) = νr

νl
·max(ax+ b, b) ·

[
w · e−|x|/xr + (1− w) · e−|x|/(k·xr)

]
, (4.22)

where 0 ≤ w ≤ 1, k ≥ 1. This can be interpreted as having two types of agents with different

price scales. In a similar framework, Benzaquen and Bouchaud (2018a) find that the typical

price scale is proportional to the square root of the typical timescale. Thus, fast agents can be

characterized as having a smaller price scale xr and slow agents as having a larger price scale

kxr.

Note that the parameters a and b in Eq. (4.22) can only be determined up to a factor
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Table 4.3.1 – Median value of νr/νl forN = 1266 closing auctions of TotalEnergies between
2013 and 2017.

νr/νl Buy side Sell side
last 1 second 1.17 1.2

last 10 seconds 1.13 1.15
last 30 seconds 1.03 1.05

νr/νl. Prior to delving into fits, we independently measure νr/νl as the ratio of the number of

submissions to the number of cancellations, in the vicinity of x = 0, seconds before the clearing.

We report in Table 4.3.1 the median values of this ratio in the last second, 10 seconds, and 30

seconds before 17:35:00 for each side. These results imply a median value around 1.

We now proceed to fitting buy and sell densities at auction time, as well as their breakdown

by latency (HFT, MIX, and NON) for each of the five studied stocks. For instance, fitting the

HFT order book yields an estimate of the HFT latent book, i.e., the latent book that contains

trading intentions of HFT-flagged agents only. This breakdown will prove useful in section 4.3.2

where we measure the contribution by agent category to the global submission rate.

We run each minimization procedure from 18 different initializations in order to avoid local

minima and use ordinary least squares to obtain a set of optimal parameters (â, b̂, x̂r, k̂, ŵ). We

report the optimal estimates for each stock and side in Appendix 4.A, Table 4.A.1, and present

fits for TotalEnergies in Fig. 4.3.1. Eq. (4.22) provides accurate fits for x > 0. However, it

cannot reproduce the oscillations of liquidity at multiples of −0.5%. These fluctuations result

from punctual order submissions in these locations that undergo diffusion with coefficient Dr

seconds before the clearing.

4.3.2 The empirical dynamics of the auction book

Before providing measurements of the model parameters, we first present an overview of

the dynamics of the empirical order density (x, t) → ρ(r)(x, t). For that purpose, we perform

1-second order book snapshots during the closing auction averaged over days. We present in

Fig. 4.3.2 the empirical functions x → ρ(r) at round minutes and t → ρ(r) at various prices.

We observe that ρ(r) exhibits a skewed shape w.r.t. x, reaching its maximum for x > 0 (which

corresponds to non-matched orders for both buy and sell sides by convention). Its temporal

dependency is initially concave, then accelerates towards the clearing. The time acceleration is

more pronounced around the maximum argument and vanishes for large values of |x|.
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Figure 4.3.1 – Fits (solid lines) with the functional of Eq. (4.22) of the average orders’
density ρ(r) just before the close clearing for TotalEnergies between 2013 and 2017. Left
panel: ordinary scale. Right panel: Y-axis in log scale. The HFT flag denotes pure high-
frequency traders, MIX denotes investment banks with high-frequency trading activities,
and NON denotes traders without HFT activities.

Within the latent order book framework, the revealed order density ρ(r) evolves in time due

to three mechanisms: submissions from latent order book ρ(l) with a rate νrΓr, cancellations

from the revealed book with a rate νlΓl, and diffusion with a coefficient Dr. In this part, we

provide empirical measurements of these rates.

The reconstructed tick-by-tick data from BEDOFIH allows us to track changes in quantity

for each price level. We view pure price updates without a change in quantity as a diffusion mech-

anism. Thus, we do not categorize pure price updates as cancellations from the corresponding

previous price limits nor as submissions to the new ones.
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Figure 4.3.2 – Empirical time and price dependencies of the average sell order density ρ(r)
S

throughout the closing auction. We averaged auction book data for TotalEnergies.

Measuring the cancellation rate: νlΓl

The cancellation rate (νlΓl)(p, t− δt→ t) for price p between t− δt and t is defined as

(νlΓl)(p, t− δt→ t) = − 1
δt

∑
t−δt<ti<t

δV (p, ti)
Vp(ti)

· ⊮{δV (p,ti)<0}, (4.23)

where δV (p, ti) is the volume change at limit price p at time ti excluding volumes that diffused

to another price p′, and Vp(ti) is the total volume at limit price p at time t−i .

For each aggregation period [t− δt, t] and each asset, we average Eq. (4.23) over all the days

in our dataset using equal log price intervals of length δx = 2 basis points and time step δt = 2
seconds. Figure 4.3.3 shows a non-trivial behavior of the cancellation rate w.r.t. x and t. At the

beginning of the auction, a series of order cancellations yields a decreasing cancellation rate as a

function of time. In addition, we have νlΓl ∝ e−|x|. As the auction time approaches, νlΓl reaches

a maximum at a value larger than the indicative price. We report in the left panel of Fig. 4.3.4

averaged values of νlΓl as a function of time over different price buckets in order to display the

temporal dependency of cancellations: we confirm the cancellation decrease at the start of the

auction, then the increase for prices around indicative price. We verify that νlΓl ∝ 1/(γl +T − t)
for 0 < x < 10bps and t > t

(0)
l . To determine t(0)

l , we use a change point detection criterion: we

assume that when t < t
(0)
l a constant model is a better fit than a fit to t → 1/(γl + T − t) and
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Figure 4.3.3 – Estimating the cancellation rate νlΓl from tick by tick data. Left panel:
heatmap (x, t) → νlΓl. Right panel: x → νlΓl at n-seconds before auction time
T =17:35:00, n ∈ {0, 10, 30, 60, 240}.

vice versa when t > t
(0)
l . We exclude the first minute of the auction when cancellations decrease.

The right panel of Fig. 4.3.4 displays such a time fit for TotalEnergies.

To examine the variation in the cancellation rates across market participants, we compute the

cancellation rate separately for HFT-flagged traders and for non-HFTs. Although MIX includes

the high-frequency activity of investment banks, we denote MIX and NON as non-HFTs for

simplicity. Figure 4.3.5 reveals that the shape of cancellations for non-HFTs is markedly different

from that of HFTs. The cancellation rate of non-HFTs is noisier and is only weakly dependent on

the price most of the time, then peaking around the indicative price with exponential decay as the

auction time approaches. On the contrary, HFT-flagged traders are the predominant contributors

to the cancellation rate, significantly outweighing the cancellations initiated by non-HFTs. In

reality, HFTs are highly active in auctions, accounting for more than 80% of all events on average,

yet they contribute to only a minor portion of the closing volume, approximately 4% on average.

Lastly, notice a significant peak at x = −1% indicating a strategic behavior of non-HFTs

that are canceling, on average, large matched volumes a few seconds prior to auction time.
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Figure 4.3.4 – Estimating νlΓl. Left panel: t → ⟨νlΓl⟩ |x averaged for different price
buckets as a function of time. Right panel: average values of νlΓl for x in ]0, 0.1%[
(diamonds) as a function of (γl + T − t)−1 for t > t

(0)
l . The solid line is a linear fit

minimizing the L1 norm of errors. Fitted values: t(0)
l = 202, γ̂l = 16, Ĉl = 2.38.
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Figure 4.3.5 – Estimating the cancellation rate across market participants. Left panel:
MIX & NON contribution. Right panel: HFT contribution.
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Figure 4.3.6 – Estimating the submission rate νrΓr from tick by tick data. Left panel:
heatmap (x, t) → νrΓr. Right panel: x → νrΓr at n-seconds before auction time
T =17:35:00, n ∈ {0, 10, 30, 60, 240}.

Measuring the submission rate: νrΓr

The product of the submission rate νrΓr by the latent order density ρ(l) for price p between

t− δt and t is defined as

(νrΓr · ρ(l))(p, t− δt→ t) = 1
δt

∑
t−δt<ti<t

δV (p, ti)
δx ·Qa

· ⊮{δV (p,ti)>0}, (4.24)

where δV (p, ti) is the volume change in limit price p at time ti excluding volumes that diffused

from another price p′, and Qa is the final auction volume: we scale the submitted density

δV (p, ti)/δx by the final auction volume Qa to be able to average Eq. (4.24) over different days.

Likewise, we average Eq. (4.24) over days with equal log price intervals of δx = 2 basis

points and time step δt = 2 seconds. Then, we infer νrΓr using the numerical estimate of the

latent order book from section 4.3.1 where ρ(l)(x) = max(â, âx+ b̂). We implicitly assume that

the latent order book remains stable throughout the accumulation period. This is the case when

the latent book is significantly larger in comparison with the revealed order book at all times.

Figure 4.3.6 shows that νrΓr displays a clear exponential decay for x > 0 with a constant price

scale at most times, and a truncated exponential decay for x < 0.

We report in the left panel Fig. 4.3.7 averaged values of νrΓr as a function of time over
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Figure 4.3.7 – Estimating νrΓr. Left panel: t → ⟨νrΓr⟩ |x averaged for different price
buckets as a function of time. Right panel: average values of νrΓr for x in ] − 0.1, 0.1%[
(diamonds) as a function of (γr + T − t)−1 for t > t(0)

r . The solid line is a linear fit
minimizing the L1 norm of errors. Fitted values: t(0)

r = 210, γ̂r = 3.1, Ĉr = 0.93.

different price buckets to display the temporal dependency of submissions. We empirically verify

that νrΓr grows proportionally to 1/(γr + T − t) for values of t > t
(0)
r , and determine t(0)

r using

a change detection criterion. We report in the right panel of Fig. 4.3.7 such a time fit for

TotalEnergies.

Considering HFTs and non-HFTs separately in Fig. 4.3.8, we find a similar shape of submis-

sions for both with a larger price scale for non-HFTs. Note that we inferred each submission rate

(HFTs and non-HFTs) from the respective latent book as computed section 4.3.1. Lastly, we

notice large peaks at x = 0 and at multiples of −0.5% as the clearing approaches: these point to

agents trying to pin the current indicative price when they send orders at x = 0, or to construct

a barrier of matchable orders at a less favorable price when they send them at x < 0.
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Figure 4.3.8 – Estimating the submission rate across market participants. Left panel:
MIX & NON contribution. Right panel: HFT contribution.

Measuring diffusion in the revealed order book: Dr

When prices are diffusive, the diffusion coefficient (Donier and Bouchaud, 2016) D(x) at a

price x ∈ R is defined as

D(x) = 1
2

(
Var(β) · σ2 +

∫
R

(x− y)2ΓD(x, y)dy
)
, (4.25)

where σ is the volatility of the indicative price, Var(β) is a prefactor that encodes the hetero-

geneity of agent reactions to price movements: should agents neither over-react nor under-react

to indicative price movements (β = 1 for all agents), the first term vanishes; Tóth et al. (2011)

consider a unit prefactor Var(β) = 1. The other term
∫

(x− y)2ΓD(x, y)dy corresponds to Ei[Σ2
i ]

in Donier and Bouchaud (2016) and represents “the purely idiosyncratic noisy updates of agents”:

here ΓD(x, y) is the rate at which orders are updated from log-price x to log-price y. Histori-

cally, the derivation of the diffusion coefficient in latent models was introduced first in Tóth et al.

(2011), then developed further in the appendix of Donier et al. (2015).

The definition of Eq. (4.25) corresponds to that of the revealed diffusion coefficient Dr in

our framework, provided we only account for visible price reassessments. Note that the under-

diffusive nature of the indicative price may result in a different first-term contribution to the

diffusion coefficient.
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Figure 4.3.9 – Left panel: histogram of daily 1-second volatility during the closing auction.
Middle panel: ensemble average of the price update contribution to diffusion as a function
of x. Right panel: histogram of daily price update contribution (restricted to limit prices
−1% ≤ x ≤ 1%).

First, let us consider the volatility per unit of time σ. The average 1-second volatility is

of order 10−3 in the first minute of the accumulation period and of order 10−4 in the last four

minutes (see section 4.4). To inspect daily measures, we plot in the left panel of Fig. 4.3.9

a histogram of the daily realized 1-second volatility σ =
√

(
∑N

t=1 log(pt+1s/pt)2)/N during an

auction, with medians of order 10−4. On an average day, the volatility contribution in the

diffusion coefficient is of order 10−8.

Let us now measure the contribution of pure price updates 1
2

∫
R(x − y)2ΓD(x, y)dy. We

compute the update rate ΓD(x, y) as

(ΓD)(x, y, t− δt→ t) = 1
δt

∑
t−δt<ti<t

δV (p, p′, ti)
Vp(ti)

, (4.26)

where δV (p, p′, ti) is the amount of volume moving from limit price p to p′ at time ti, x =
log(p/p−

ti
), y = log(p′/p+

ti
), and Vp(ti) is total volume in limit price p at time t−i . We plot in Fig.

4.3.9 the average contribution (across days) of the second term
〈

1
2

∫
R(x− y)2ΓD(x, y)dy

〉
d

(x)
as a function of x (middle panel), and a histogram of daily values (for −1% ≤ x ≤ 1% ) of aver-

age price reassessments
〈

1
2

∫
R(x− y)2ΓD(x, y)dy

〉
|−1%≤x≤1% (right panel). These measurements

show that the second term has a mode of order 10−12. Thus, the contribution of price reassess-

ments in the revealed diffusion coefficient is negligible in comparison with that of the indicative

price volatility provided unit prefactor, in line with the findings of Challet and Stinchcombe

(2001).

It is worth noting that visible price reassessments might be undervalued, as agents may choose
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to cancel a limit order entirely before resubmitting it at an updated price. This mechanism, which

is difficult to observe in our data, should be accounted for as a form of revealed diffusion. Time

priority is less important in auctions than in continuous trading; it is important only for limit

orders whose price at the auction time equals the auction price.

4.3.3 Solving the full dynamical equations

To replicate the full dynamics of the revealed auction book throughout the accumulation

period, we return to the full model introduced in section 4.2 and solve Eqs (4.2) numerically. To

this end, we take a constant cancellation rate (νlΓl)(x, t) = νl > 0, and model the submission

rate νrΓr as follows: For positive prices x ≥ 0, we take a weighted sum of two exponential terms,

representing, respectively, the contribution of fast agents with price scale xr and slow agents

with price scale k · xr, (k > 1) (see section 4.3.1). We allow for the fast agent contribution to

increase proportionally to 1/(γr +T − t) when t > t
(0)
r . For negative prices, we choose a constant

submission rate for prices x < −x0, where x0 > 0 is a threshold, then we employ one exponential

term for prices −x0 ≤ x < 0 establishing continuity at x = 0 and x = −x0. This yields

(νrΓr)(x, t) =


w·Cr

γr+T −max{t,t
(0)
r }
· e−x/xr + (1−w)·Cr

γr+T −t
(0)
r

· e−x/(k·xr) , x ≥ 0;

A∗ · ex/x∗
r ,−x0 ≤ x < 0;

m · Cr
γr

, x < −x0,

(4.27)

where Cr, xr, x0,m > 0, 0 < w < 1, and γr, t
(0)
r are computed in section 4.3.2. A∗ and x∗

r are

determined by the continuity conditions at x = 0 and x = −x0. We complement Eqs (4.2) with

the following initial conditions

ρ(r)(x, 0) = 0;

ρ(l)(x, 0) = max(ax+ b, b),
(4.28)

where a, b > 0 are the stationary latent book parameters computed in section 4.3.1.

To calibrate Eqs (4.2) to order book data, we minimize the sum of squared errors at times

0,10,..., 290 seconds before the auction time t ∈ J = {10, 20, . . . , 300} and prices x ∈ I =
[−2%, 2%].

f(Cr, xr, k, w, νl, x0,m, . . . ) =
∑
x∈I

∑
t∈J

(
ρ(x, t)− ρ̂(x, t)

)2
. (4.29)

Finally, to measure the influence of diffusion, we minimize (4.29) first taking Dr = Dl = 0
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(Zero diffusion), then we allow for Dr, Dl > 0 as constant parameters to be calibrated (Constant

diffusion). Lastly, as suggested by the temporal pattern of the indicative price volatility of section

4.4, we opt for a time-dependent Dr (Time diffusion)

Dr(t) =


D0 , 0 < t ≤ 1;

(DT −D0) · t−1−1
T −1

s −1 +D0 , 1 < t < Ts;

DT , t ≥ Ts.

(4.30)

Eq. (4.30) states that the revealed diffusion coefficient is equal to D0 at times 0 < t ≤ 1 then

decreases as a power law with exponent -1 to a value DT < D0 until time t = Ts, where Ts ≤ T
is a saturation time. Then for times t ≥ Ts, Dr remains equal to DT . We take Ts = 180s.

We present the obtained fits first in the plane (ρ(r), x) at different times in Fig. 4.3.10, then

in the plane (ρ(r), t) at different prices in Fig. 4.3.11. Even under a constant cancellation rate

and no diffusion, our model satisfactorily succeeds in replicating the dynamics of the empirical

order density. This is largely attributed to the sophisticated submission rate of Eq. (4.27). The

presence of two different price scales for x > 0 is of crucial importance. The time dependence

of the first exponential term allows the order density around the auction price to increase as

the clearing approaches. As the second exponential term is not time-dependent, the smooth

price decay for larger x is not disrupted (Fig. 4.3.10). This translates into an expansion of the

order density only around the indicative price (Fig 4.3.11). Thus, agents posting orders near the

indicative price can be seen as more sensitive to the auction deadline compared with agents that

act at larger prices.

We note that the constant diffusion fit (Dr, Dl > 0) permits the regularization of the obtained

density around x = 0 and x = −x0 compared with the zero diffusion fit (Dr = Dl = 0), where

the discontinuity of the first derivative remains. Overall, the influence of diffusion is minimal

within our framework, and adopting a time-varying revealed diffusion coefficient Dr ∝ 1/t yields

slightly better fits around the indicative price. Lastly, locating the global minimum of the loss

function f given by Eq. (4.29) poses a considerable challenge and our strategy has been to seek

approximate optimal parameters. We present these in Table 4.3.2.
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Figure 4.3.10 – Numerical fits ρ(r)
S (solid lines) of the average auction book (green dots)

as a function of the centered log price −2% ≤ x ≤ 2% at different instants during the
accumulation period. The Y-axis is in log scale. The zero diffusion fit (Dr = Dl = 0) is in
red lines, the constant diffusion fit (Dr, Dl > 0) is in purple lines, and the time diffusion
fit (Dr ∝ 1/t) is in blue lines.
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Figure 4.3.11 – Numerical fits ρ(r)
S (solid lines) of the average auction book (green dots)

as a function of time 0 < t ≤ T at different prices price −2% ≤ x ≤ 2%. The Y-axis is in
ordinary scale. The zero diffusion fit (Dr = Dl = 0) is in red lines, the constant diffusion
fit (Dr, Dl > 0) is in purple lines, and the time diffusion fit (Dr ∝ 1/t) is in blue lines.
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Table 4.3.2 – Fitted parameters from the minimization of Eq. (4.29). In the constant
diffusion and the time diffusion cases, we fix the obtained parameters of the zero diffusion
case.

Zero diffusion Constant diffusion Time diffusion
Cr · 10−1 9.3 _ _
xr · 10−3 2.3 _ _
k · 100 4.9 _ _
w · 10−1 8.7 _ _
νl · 10−2 2.3 _ _
x0 · 10−3 3.2 _ _
m · 10−2 1.6 _ _
Dl · 10−9 0 2.4 4.8
Dr · 10−9 0 7 _
D0 · 10−5 _ _ 1.2
DT · 10−8 _ _ 2.2

4.3.4 Discussion

Even though the calibration procedure of section 4.3.3 yields fairly good results, it is impor-

tant to note that some simplifications were made. The null initial condition for the revealed order

book ρr(x, t = 0) does not fully reflect reality, given that the order book is already populated

by limit orders (x > 0) prior to the closing auction. A large fraction of these orders are canceled

at the start of the accumulation period, which results in an initial decrease in the revealed order

book. This downward trend at t = 0 is observable in Fig. 4.3.11 for prices 0 < x < 1%.

In addition, we have shown in section 4.3.2 that cancellations exhibit a U-shaped pattern

over time. We checked, however, that the introduction of a time-decreasing cancellation rate νlΓl

analogous to Eq. (4.30) does not significantly improve the quality of fits. Similarly, the time

acceleration of cancellations around the indicative price does not enhance accuracy, given that

the time acceleration of submissions can be adjusted to counterbalance it.

Note that plugging the empirical rates of submission and cancellation as measured in section

4.3.2 into our model does not yield an accurate shape of the empirical order book. While

the shape of empirical submissions is similar to the proposed functional of Eq. (4.27), that

of empirical cancellations seems to distort the order book at auction time. A likely reason

for this discrepancy is the non-trivial behavior of high-frequency agents, which are responsible

for intricate interactions and feedback loops that are not accounted for in our zero-intelligence

framework.
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A larger framework with fast and slow (or more) potentially interacting agents with markedly

different submission, cancellation, and diffusion rates could be of interest but is beyond the scope

of this paper. The total order density would then be a weighted sum of interacting individual

order densities. Additionally, auctions are characterized by bursts of activity at specific round

times typical of human behavior. These exogenous bursts of activity suggest segmenting the

auction into distinct regimes (section 4.4). Lastly, our model does not capture the large peak

of volumes at the indicative price: it is the result of strategic agents aiming to pin the auction

price or simply sending orders at the current indicative price.

4.4 The anomalous scaling of the indicative price

When measuring the revealed diffusion coefficient Dr in section 4.3.2, the indicative price

was assumed to be a diffusive process. However, it is known to be sub-diffusive (Challet, 2019).

In this section, we examine the causes behind the anomalous diffusion of the indicative price.

We investigate the temporal pattern of the indicative price and find that it has non-stationary

increments. Figure 4.4.1 depicts ensemble averages over days during the closing auction of 1-

second absolute returns ⟨|log(pt+1s/pt)|⟩ for five stocks on Euronext Paris. Here, we assume that

the indicative price is a realization of the same stochastic process during each closing auction in

order to proceed with ensemble averages for each stock. In particular, we observe volatility bursts

and relaxations that suggest dividing the closing auction into different regimes: two 30-second

regimes during the first minute, followed by a third regime between 17:31:00 and 17:32:00, a

longer fourth regime between 17:32:00 and 17:34:00, and a final one-minute regime.

We test for the presence of anomalous scaling of the indicative price in each regime by

computing average Hurst exponents. Assuming that the indicative price is a self-similar process,

we can estimate an average Hurst exponent H as

〈〈
(log(pt+τ/pt))2

〉
t

〉
d
∼ τ2H , (4.31)

where ⟨·⟩t is the average over one realization of the indicative price series, and ⟨·⟩d is the ensemble

average over days. The underlying process undergoes normal diffusion when H = 1/2 and

anomalous diffusion when H ̸= 1/2 (super-diffusion when H > 1/2, and sub-diffusion when

H < 1/2).

Chen et al. (2017) show that H can be decomposed as H = J + L + M − 1, where each

of the exponents J, L,M is associated with the failure of one condition of the central limit
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Figure 4.4.1 – Ensemble average of the absolute value of 1-second log price increments
E[| log(pt+1s/pt)|] in the closing auction of five stocks traded on Euronext Paris between
2013 and 2017: BNP Paribas, LVMH, Sanofi, Société Générale, and TotalEnergies. Left
panel: ordinary scale. Right panel: Y-axis in log scale.

theorem: (i) the presence of correlations/long-term memory, (ii) infinite variance, and (iii) the

non-stationarity of increments.

1. Joseph exponent J quantifies the long-term memory of increments. It is defined as the

scaling of the ensemble average of a rescaled range statistic

⟨Rt/St⟩d ∼ t
J , (4.32)

where the considered range statistic is expressed asRt = max
1≤s≤t

[Xs − s/tXt]− min
1≤s≤t

[Xs − s/tXt],

the deviation being S2
t = Zt/t − (Xt/t)2, and Xt = log(pt/p0) is the log indicative price

centered around the origin of the considered regime. If J > 1/2 increments are positively

correlated, J < 1/2 corresponds to negatively correlated increments, and J = 1/2 refers

to the absence of correlations; Chen et al. (2017) argue that the Joseph exponent J is the

appropriate measure to test the efficient market hypothesis and not the Hurst exponent

H.

2. Noah exponent L quantifies whether increments have finite variance (L = 1/2), or infinite

variance (L > 1/2). Assuming that increments have power law tails with exponent γ, i.e.
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P>(|x|) ∼
|x|→+∞

|x|−γ , then

L = max(1
2 ,

1
γ

). (4.33)

3. Moses exponent M quantifies whether increments are stationary (M = 1/2) or non sta-

tionary (M ̸= 1/2). It is defined as the scaling of the ensemble average of centered absolute

increments (see Fig. 4.4.1)

⟨| log(pt+1/pt)|⟩d ∼ t
M− 1

2 . (4.34)

We estimate H, J , L, and M for each regime separately. For M and L, we use robust

methods. Namely, M is estimated using the median of the sum of absolute increments

m

[
t−1∑
k=0
| log(pk+1/pk)|

]
∼ tM+ 1

2 , (4.35)

and L is estimated using the median of the sum of square increments

m

[
t−1∑
k=0

log(pk+1/pk)2
]
∼ t2L+2M−1, (4.36)

where each sum starts at the beginning of the considered regime. For an in-depth discussion and

proofs regarding the estimation of each exponent, see Chen et al. (2017).

We report in Table 4.4.1 numerical estimates of the scaling exponents in each regime for five

different stocks. We draw the following remarks and conclusions from our results:

— the indicative price is a sub-diffusive process during the closing auction as H < 1/2, except

in the final minute, where it switches to a diffusive (or an over-diffusive) behavior H ≳ 1/2;

— the increments of the indicative price do not exhibit long-term memory during the accu-

mulation period as J ≈ 1/2 for most stocks and regimes. Note that as the auction end

approaches, the rescaled range statistic Rt/St flattens due to the stabilization of the in-

dicative price. As a result, J is not defined in the last regime. We thus conclude that the

indicative price is efficient in the sense of Chen et al. (2017): even if the apparent Hurst

exponent is not 1/2, J = 1/2 precludes price predictions. Finally, Besson and Fernandez

(2021) report an overreaction of the indicative price based on the following definition of

the indicative jump on close J(t)

J(t) = pt − pref

pauction − pref
. (4.37)

However, this incorporates the first jump from pref (the last price of the continuous trading

125



Table 4.4.1 – Average Hurst, Joseph, Levy, and Moses exponents for the studied stocks
in each regime.

Regime Stock H J L M H-J-L-M+1
BNP Paribas _ 0.47*** _ _ _
LVMH _ 0.56*** _ _ _

1 Sanofi _ 0.48*** _ _ _
Société Générale _ 0.41*** _ _ _
TotalEnergies _ 0.4*** _ _ _
BNP Paribas 0.35*** 0.54*** 0.72*** 0.09*** 0
LVMH 0.43*** 0.55*** 0.71*** 0.13*** 0.04

2 Sanofi 0.38*** 0.49 0.73*** 0.13*** 0.03
Société Générale 0.39*** 0.49 0.78*** 0.11*** 0.01
TotalEnergies 0.38** 0.52. 0.69*** 0.18*** -0.01
BNP Paribas 0.37*** 0.63*** 0.72*** 0.03*** -0.01
LVMH 0.34*** 0.54*** 0.73*** 0.06*** 0.01

3 Sanofi 0.37*** 0.52*** 0.68*** 0.1*** 0.07
Société Générale 0.32*** 0.53*** 0.76*** -0.01*** 0.04
TotalEnergies 0.34*** 0.53*** 0.71*** 0.05*** 0.04
BNP Paribas 0.35*** 0.55*** 0.73*** 0.12*** -0.04
LVMH 0.36*** 0.48*** 0.69*** 0.14*** 0.05

4 Sanofi 0.34*** 0.5 0.61*** 0.26*** -0.03
Société Générale 0.37*** 0.55*** 0.74*** 0.05*** 0.03
TotalEnergies 0.36*** 0.51** 0.68*** 0.15*** 0.01
BNP Paribas 0.58*** _ _ _ _
LVMH 0.55*** _ _ _ _

5 Sanofi 0.49 _ _ _ _
Société Générale 0.65*** _ _ _ _
TotalEnergies 0.51* _ _ _ _

1. Values of H in the first regime are omitted as the mean square displacement of
the indicative price is not a power law of the lag in this regime and is rather noisy.
We suspect the activation of VFA,VFC (Valid For Auction, Valid For Closing)
to be the cause of this large noise.

2. Values of J in the last regime are omitted as the ensemble average of the rescaled
range statistic is not a power law of time. Instead, E[Rt/St] flattens with time:
this results from the stabilization of the indicative price during the last moments
of the accumulation period.

3. The symbols ***,**, and * indicate significance at the 0.1%, 1%, and 5% level,
respectively for testing the null hypothesis {S = 0.5}, where S ∈ {H, J, L,M}.
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phase) to p0 (the first indicative price of the accumulation period). When the reference

price is the first indicative price of the accumulation period p0, J(t) becomes J̃(t)

J̃(t) = pt − p0
pauction − p0

, (4.38)

which does not display any overreaction. In addition, we find that the pauction − pref does

not have systematically the same sign as pauction − p0 (only ≈50% of the time). Thus, the

first jump from pref to p0 is not predictive of the direction of the auction price.

— the increments of the indicative price are highly non-stationary as M significantly differs

from 1/2. Considering thatM ≈ 0 implies that the indicative price volatility is a decreasing

time function in each regime σt ∝ t−1/2, and equivalently that the revealed diffusion

coefficient is time-dependentDr ∝ 1/t. This appears to be the major cause of the indicative

price anomalous scaling;

— the increments of the indicative price exhibit infinite variance as L ≈ 0.7.

4.5 Conclusion

Zero intelligence models are surprisingly able to reproduce non-trivial stylized facts in fi-

nancial markets (Farmer et al., 2005). Here, we showed that by adapting the zero intelligence

latent/revealed liquidity framework of Dall’Amico et al. (2019) to auctions, we are able to repli-

cate complex price-time dynamics of the average order book throughout the accumulation period.

Within our framework, the skewed shape of the order book emerges from the product of the linear

latent book by the exponentially decreasing submission rate. The time acceleration around the

indicative price arises from inversely proportional rates to the remaining time to the deadline,

analogously to typical human behavior when facing a deadline Alfi et al. (2009). These results

were confirmed by the estimation of the submission, cancellation, and diffusion rates. These

represent a new piece of evidence advocating for the relevance of the latent order book of Tóth

et al. (2011).

Although successful at reproducing many of the complex patterns observed during auctions,

our model can only describe average order books where large daily fluctuations are neglected.

Additionally, price-changing events (sell limit orders above the indicative price and buy limit

orders below the indicative price that are breaching zero impacts) were supposed not to have

an influence on the indicative price when they directly impact the supply/demand equilibrium

similarly to market orders. Finite-size effects such as the large peak of volumes at the indicative
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price cannot be captured by continuous models and result from a possible strategic behavior.

Finally, the heterogeneous nature of the agents involved and the reasons why they take part in

auctions should be of interest: these range from manually trading agents for idiosyncratic rea-

sons to more sophisticated trading algorithms minimizing impact and/or maximizing profits. A

general model accounting for the overall auction ecology, price discreteness, volume fluctuations,

and the strategic behavior of agents is needed to explain daily deviations, e.g., during index

rebalancing and derivatives expiry days, or after the release of a significant piece of news.
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Table 4.A.1 – Estimate values of the optimal parameters (νr/νl ·a, νr/νl ·b, xr, k, w) fitting
the orders’ density using the stationary setting. Fitting range: x = 0± 5%.

Side Agent type Stock νr/νl · a νr/νl · b · 10−2 xr k w
BNP Paribas 5.72 0.56 0.37% 5.6 0.984

LVMH 9.23 0.62 0.3% 5.4 0.978
ALL Sanofi 7.89 0.58 0.29% 5.2 0.983

Société Générale 6.32 0.63 0.38% 6.1 0.974
TotalEnergies 6.08 0.50 0.33% 6.8 0.989
BNP Paribas 5.24 0.47 0.36% 3.9 0.980

LVMH 7.47 0.53 0.31% 5.4 0.986
MIX Sanofi 5.89 0.47 0.31% 4.2 0.986

Société Générale 5.94 0.50 0.37% 6.8 0.988
Buy TotalEnergies 4.68 0.40 0.34% 5.0 0.990

BNP Paribas 0.87 0.04 0.04% 7.8 0.227
LVMH 1.65 0.03 0.28% 5.6 0.977

HFT Sanofi 2.45 0.05 0.2% 11.5 0.995
Société Générale 0.21 0.05 0.33% 3.3 0.707

TotalEnergies 1.91 0.04 0.21% 10.5 0.993
BNP Paribas 0.01 0.05 0.44% 6.8 0.341

LVMH 0.07 0.07 0.2% 11.2 0.591
NON Sanofi 0.08 0.07 0.14% 11.6 0.631

Société Générale 0.08 0.08 0.2% 10.4 0.317
TotalEnergies 0.01 0.03 0.35% 7.6 _
BNP Paribas 6.39 0.51 0.36% 7.4 0.980

LVMH 8.96 0.67 0.3% 4.7 0.971
ALL Sanofi 7.83 0.54 0.29% 5.4 0.979

Société Générale 6.83 0.60 0.37% 6.2 0.977
TotalEnergies 6.77 0.58 0.3% 5.1 0.969
BNP Paribas 5.38 0.44 0.35% 3.7 0.962

LVMH 7.78 0.55 0.3% 5.3 0.987
MIX Sanofi 5.92 0.43 0.31% 4.8 0.984

Société Générale 6.23 0.48 0.35% 4.1 0.976
Sell TotalEnergies 5.12 0.46 0.32% 3.8 0.971

BNP Paribas 1.00 0.02 0.29% 12.1 0.987
LVMH 1.77 0.02 0.28% 7.2 0.983

HFT Sanofi 2.30 0.04 0.21% 11.2 0.995
Société Générale 1.82 0.09 0.02% 21.2 0.585

TotalEnergies 2.05 0.04 0.2% 7.7 0.987
BNP Paribas 0.06 0.06 0.18% 16.5 0.452

LVMH 0.08 0.06 0.27% 8.6 0.516
NON Sanofi 0.03 0.04 0.21% 9.6 0.106

Société Générale 0.10 0.07 0.44% 4.8 0.291
TotalEnergies 0.05 0.05 0.2% 11.7 0.258
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Chapter 5

Discussion and outlook

5.1 Price impact in equity auctions

Using the shape of the order book, we computed price impact at auction time as a function

of the order size for a given day and a given auction. Although closely related to the concept of

virtual impact, price impact at auction time is a faithful measure of the incurred cost, assuming,

for instance, that a low-latency agent manages to act last in the accumulation period. In fact,

the market has little time to react to later submissions. Additionally, the shape of the 1-lag

response function of the indicative price shows that price impact is mostly mechanical and linear

as a function of the order size submission (or cancellation) during the accumulation period.

5.1.1 Impact-related cost for early submissions

Whereas the 1-lag response function describes how order submissions impact the indicative

price, it does not tell the impact-related cost, e.g., for an early submission during the accumu-

lation period. A matched submission at the clearing transacts at the auction price. Thus, the

impact-related cost is the difference in the auction price between a world in which this submission

occurred and a parallel world in which this submission did not occur; this is the reaction impact

(Bouchaud et al., 2018a). The observed impact is the difference between the auction price and

the indicative price right before an order submission. The observed impact is a reasonable proxy

for the reaction impact, and equality holds when prices are unpredictable. The impact-related

cost Icost measured on the auction price reads similarly to that of Challet and Gourianov (2018)

Icost(ω) = ⟨εt · (pa − pt)|ω⟩ . (5.1)

Whereas the instantaneous impact is linear on average, we find no dependence of the Icost

on the order size. Actually, the impact on the auction price has a strong dependence on the

time of the submission with early submissions having a larger auction impact, on average, than

later submissions. Figure 5.1.1 reports the average mechanical impact RM =
〈
εt · (p+

t − pt)
〉
,

the lagged indicative price response R1 = ⟨εt · (pt+1 − pt)⟩, and the average impact on the
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Figure 5.1.1 – Average impact as a function of the time in the accumulation period in-
dependently of the order size. The impact on the auction price (blue), the mechanical
impact (red), and the 1-lag response function (green) of aggressive order submissions.
Closing auction data for TotalEnergies between 2013 and 2017.

auction price Icost = ⟨εt · (pa − pt)⟩ as a function of the time in the accumulation period and

independently of the order size. Note that the average is taken over grouped submissions in

1-second time bins. As one may expect, when the auction time approaches, the impact on the

auction price for aggressive order submissions decreases to match their instantaneous impact as

well as their 1-lag impact function. This confirms the relevance of acting last during the auction

when looking to minimize the price impact of large one-shot submissions.

5.1.2 Impact-related cost for metaorders

An interesting research direction would be to assess the impact of metaorders, if any, during

auctions. This requires agent-labeled data such as proprietary trading firm or brokerage data.

Executing a metaorder by slicing it into two or several child orders during the closing is less

straightforward than during the continuous trading phase. Due to the distinct temporal pattern

of the closing, an agent can choose, for instance, to submit child orders during activity bursts

at round minutes to go undetected. The large liquidity build-up towards the clearing allows

for agents to complete their metaorder with large one-shot submissions. If similar one-shot

submissions were sent during the trading day, they would have caused abnormal price jumps.
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Note that even when a large one-shot submission results in an abnormal indicative price move

at the start of the accumulation period, agents can mitigate this effect, and the indicative price

mean reverts to reasonable values before the clearing.

Another interesting direction is to provide response elements to the following “optimal split

problem”. Suppose an agent is willing to liquidate a large volume during a given day, including

at the closing auction, and is looking to minimize the total impact costs. Fund managers are

often confronted with a similar problem, looking to execute large orders at the closing price

without substantially impacting the price formation in the closing auction. A way around this

is to divide the metaorder into two fractions. The first fraction would be traded during the

continuous trading phase using, for instance, a target close algorithm (Guéant, 2016). The

remaining fraction would be traded in the closing auction. In appendix A, we derive the optimal

fraction x∗ ∈ [0, 1] to be traded in the continuous trading phase as a function of the intraday

volatility, the auction liquidity, and the market impact prefactors during both trading phases,

while minimizing the total cost of trading.

5.2 Modeling auction dynamics

5.2.1 Upgrading the latent/revealed liquidity framework

When adapted to equity auctions, the latent/revealed liquidity framework is successful in

reproducing the average dynamics of the limit order book throughout the accumulation period.

In Section 4.3.3, the submission rate of Eq. (4.27) implicitly implements a multi-time scale

approach; it is the sum of two exponential terms. The first term with price scale xr represents

the contribution of fast agents, and the second term with a larger price scale k xr, k > 1 represents

the contribution of slow agents. We allowed for the contribution of fast agents’ to be pressured

by the auction deadline.

As pointed out in Section 4.3.4, the model can be upgraded by adopting a global multi-

time/price-scale approach not only for the submission rate (Benzaquen and Bouchaud, 2018a).

For instance, one can model the order book evolution for each agent category, say fast and slow

agents or more. These order books may influence each other, and the resulting order book is

their sum.

Additionally, the behavior of high-frequency agents likely requires accounting for additional

memory terms. In fact, the actions of HFTs during the accumulation period mainly involve

updating the volume of their existing orders either by increasing or decreasing the number of
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shares in reaction to the order flow. Within our model, these quantity updates are viewed as

(independent) order submissions or cancellations, which mechanically inflates the cancellation

rate. To account properly for these events, we need to take into consideration their dependence

on existing orders as well as the order flow via a memory kernel resulting in complex integro-

differential equations.

The indicative price dynamics, that are implicit in our model, can be further investigated.

The indicative price is determined by equalizing supply and demand and is driven by market

orders and aggressive limit orders. A general framework where limit prices are not centered

around the current indicative price may be of interest. Thus, modeling market orders as well as

their influence on the price through, e.g., linear instantaneous impact or propagators is required.

5.2.2 Questioning the closing auction liquidity

At the closing auction time, most of the non-matchable orders expire at the end of the trading

day. These non-matchable orders, usually a few ticks away from the auction price, represent a

substantial fraction of the total order book volume at auction time. As liquidity begets liquidity,

it is interesting to question the presence of these large orders bound to expire at the end of the

auction. Are they used as a resistance barrier to adverse price moves? Or do they represent

revealed intentions (reservation price) at the auction time, waiting for a discount in the last

moments of the accumulation period?

Similarly, one might wonder why high-frequency market makers display a large activity during

auctions (more than 55% of total events) when their share in the closing volume is around 1%. A

likely explanation is that they continuously minimize their impact by profiting from zero-impact

volumes. Another likely explanation is to influence the price as they surprisingly account for

25% of price-changing events.

On the one hand, high-frequency agents are less likely to be interested in auction price

pinning as the average HFT book shape does not display a peak around the indicative price. On

the other hand, non-high frequency agents clearly engage in an apparent “price pinning war” by

sending large limit orders at the indicative price as the auction end approaches. In Fig. 5.1.1),

the auction impact significantly decreases in the last five seconds of the accumulation period

and converges towards its instantaneous counterpart. This significant decrease can partly be

attributed to the stabilization of the indicative price towards the clearing which itself results

from this price-pinning competition.
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5.2.3 Towards more realistic models

Continuous price models can not reproduce some important finite-size effects as limit orders

are considered to have an infinitesimal size. For instance, if an aggressive buy (or sell) limit order

has a large size, it impacts the current indicative price all the way up (or down) to its limit price.

Shifting to a discrete price model will likely result in different yet rich aggregate behavior.

An interesting direction would be to design a game in which an agent plays against zero

intelligence agents, rational agents, or a mix of both. The idea would be to find the optimal

strategy that maximizes the agent’s profit, minimizes the impact costs, or fixes the auction price

at a given level. Should the agent split his submission throughout the accumulation period? Or

should he send it in one shot? When is the optimal time to send his order(s)?

A parallel direction would be to investigate the effect of exogenous information on the price

formation process during auctions. Kyle’s model (Kyle, 1985) describes the auction price forma-

tion in the presence of a market maker, an insider, and a noise trader. In contrast with private

information, public information can be accessed by almost all agents in the market. However, the

news interpretation may differ from agent to agent, as well as their reactions, which translates

into heterogeneous investment decisions. Thus, the release of a piece of news may change the

way agents act during auctions vs when there is no relevant news.

134



Appendices

135



Appendix A

Trading costs reduction: continuous
trading and close split

Based on an unpublished work

by Charles-Albert Lehalle, Mohammed Salek, Damien Challet, and Ioane Muni Toke

A.1 Introduction

Open markets can absorb large meta-orders during the day with impact-related costs scaling

as the square root of the metaorder size. In parallel, the closing auction allows the matching

of large submissions, particularly towards the auction clearing, with impact-related costs scaling

linearly with the order size. The cost of trading during the closing auction is typically smaller

than in the continuous trading phase for reasonable order sizes. When the daily volatility is

large, the exchanged volume during the continuous trading phase tends to be smaller, and that

of the closing auction tends to be larger. Indeed, an increase of 1% in the intraday volatility

yields, on average, a decrease of 3% in the market share of the closing volume.

Thus, it is unclear whether a meta-order is better off traded during the continuous trading

phase, the closing auction, or a mix of both. This decision may depend on the cost of trading

during both phases, intraday volatility, and auction liquidity, among other considerations. In this

Chapter, we assume that a large (meta)order of size V is split with fraction x ∈ [0, 1] that trades

at the continuous trading phase and the remaining fraction 1− x trades at the closing auction.

We look for the optimal x∗ that minimizes the total trading costs. The following framework

was originally designed to check if price manipulation can accidentally occur in closing auctions

(Lehalle, 2022). Indeed, there exists a degenerate case where an agent minimizes his impact costs

and simultaneously results in the maximum price impact.

The price impact of a meta-order of size v during the continuous trading phase is given by

δIc(v) = Y σ

√
v

Vd
, (A.1)
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where σ is the intraday volatility, Vd is the daily exchanged volume, and Y is a constant of order

unity. Henceforth, we take Y = 1.

Additionally, the price impact of an order submission of size v late in the closing auction is

given by

δIa(v) = S̃ · v
Qa

, (A.2)

where S̃ is the impact slope (see Section 3.C), and Qa is the auction volume. Even though a

late one-shot submission in the accumulation period may result in zero impact part, the price

impact of Eq. (A.2) represents the average instantaneous impact which is linear and converges

to the impact on the auction price as the clearing approaches.

Assuming that the fraction x of the meta-order is traded before the start of the closing

auction, one should account for the relaxation of the impact by including a factor 1− r ∝ t−1/2,

where t is the measured time from the last continuous trade of the meta-order until the start

of the accumulation period. r = 0 corresponds to no relaxation and the closing auction starts

right after the last continuous trade; r = 1 corresponds to a case where the last continuous trade

occurs long before the start of the accumulation period and the peak impact totally relaxes before

the start of the closing accumulation period. Therefore, the meta-order is responsible for a total

price impact
δI(V ) = (1− r) · δIc(x · V ) + δIa((1− x) · V )

= (1− r) · σ ·
√
x · V
Vd

+ S̃ · (1− x) · V
Qa

.
(A.3)

We introduce ϕ = V/Vd, the participation rate of the meta-order in the total exchanged volume,

and ψ = Qa/Vd, the ratio of the auction volume to the total exchanged volume. Thus

δI(x) = (1− r) · σ ·
√
ϕ ·
√
x+ S̃ · ϕ

ψ
· (1− x). (A.4)

Figure A.1.1 provides a general overview of the auction liquidity ψ, which is the fraction of the

closing volume in the daily exchanged volume vs the intraday volatility σ for the TotalEnergies

stock between 2013 and 2017.

If the impact relaxation is weak r → 0, a minimal price impact is reached when x = 0, i.e.,

when the meta-order fully trades at the closing auction. This is because the auction impact is

assumed to be much lower than the continuous trading impact (δIa ≤ δIc). If r → 1, price impact

is zero when the metaorder trades fully at the continuous trading phase δI(x = 1, r = 1) = 0:

the market totally forgets about the metaorder.
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Figure A.1.1 – Left panel: ψ = Qa/Vd the fraction of the closing volume in the daily
exchanged volume as a function of the Parkinson volatility estimator σ = log(Shigh/Slow).
Right panel: smoothed histogram of ψ broken down by year.

We can compute an equivalent relaxation re such that price impact is the same whether the

meta-order is fully traded during the continuous trading phase or fully traded during the closing

auction

re = 1− S̃

σ
·
√
ϕ

ψ
≈ 1−

√
ϕ

ψ
. (A.5)

Typical values ϕ = 10−3, ψ = 25% yield re = 87%, meaning that 87% of the peak impact in the

continuous phase should relax in order for the price impact to be equal in both phases in which

the meta-order is traded.

A.2 Maximal impact

From now on, we suppose r < re, i.e., trading during the auction yields the least price impact.

Since x→ δI(x) is a concave function, we can compute a critical fraction xc such that the total

price impact is maximal

xc = min
{

1; ψ
2σ2(1− r)2

4S̃2ϕ

}
, r < re. (A.6)
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If r is sufficiently close to 1 (strong relaxation), we can have xc < 1. Figure A.2.1 shows the

value of xc when r ∈ [0, 1] in the case of usual values of ϕ, ψ (top panel) and in the case of

a large participation rate ϕ (bottom panel). As the relaxation factor grows, the impact of the

continuous trading phase is lost, and trading fully at the auction (x = 0) yields a larger impact

than trading fully during the continuous phase (see r = 0.8 for instance).

A.3 Minimal impact-related cost

The total cost of trading is given by the product of respective price impacts and traded

volumes.

δC(V ) = x · V · δIc(x · V ) + (1− x) · V · δIa((1− x) · V ). (A.7)

Note that the cost of trading during the continuous trading phase does not involve any relaxation

factor. Therefore, the cost per unit volume (dividing the total cost by V ) is

δC(x) = σ ·
√
ϕ · x

3
2 + S̃ · ϕ

ψ
· (1− x)2, (A.8)

and the optimal fraction x∗ that minimizes the total cost of trading is

x∗ = min

1; 1 +
9ψ2σ2 − 3ψσ

√
64S̃2ϕ+ 9ψ2σ2

32S̃2ϕ

 . (A.9)

Figure A.3.1 shows the optimal fraction x∗ as a function of ψ (top panel) and of ϕ (bottom

panel). Intuition matches the obtained results: the larger the auction liquidity ψ, the smaller is

x∗, and the more should be traded in the auction phase. Similarly, the larger the participation

rate ϕ, the larger is x∗, and the larger is the traded fraction in the continuous trading phase.

However, notice that even for large participation rates, e.g. ϕ = 1%, and a usual value of the

auction liquidity ψ = 25%, x∗ ≈ 19%: this means that the vast majority of the volume is

executed in the auction phase. If the agent chooses however to execute the entire volume in the

continuous trading phase, he will incur 13bps additional cost for being far from optimality.

Finally, even when the closing has low liquidity ψ = 5%, for a participation rate of 1%,

roughly more than 25% of the metaorder should be executed during the auction. If, however, the

entire metaorder trades in the continuous phase, 5 bps of additional cost are incurred compared

to the optimal split case.
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Figure A.2.1 – Price impact of the meta-order at the end of the closing auction as a
function of the executed fraction x during the continuous trading phase. Top panel:
usual values ϕ = 0.1%, ψ = 25%. Bottom panel: large participation rate ϕ = 1%. The
critical fraction xc yielding a maximum impact for a given relaxation factor r is drawn in
black.
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Figure A.3.1 – The total cost of trading (per unit volume) as a function of the executed
fraction x during the continuous trading phase. Top panel: large participation rate ϕ =
1% and different values of the auction liquidity ψ. Bottom panel: ψ = 25% and different
values of the participation rate ϕ. The optimal fraction x∗ to be executed in the continuous
trading phase is drawn in black.
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A.4 Conclusion

Observe that ϕ and σ play symmetric roles in Eqs (A.6) and (A.9), and keeping the product

ψσ constant does not alter the critical values of x. A degenerate case occurs when an agent

minimizes his total cost of trade and accidentally results in the highest possible price impact. In

this case x∗ = xc and the corresponding critical relaxation factor rc is

rc = 1−

√
64S̃ϕ+ 18ψ2σ2 − 6ψσ

√
64S̃2ϕ+ 9ψ2σ2

4ψσ . (A.10)

Using the typical values from above, rc ≈ 65%.

To sum up, in order to optimally split a large order between the continuous trading phase and

the closing auction, one should gauge price impact during both phases by accurately measuring

the impact prefactors, i.e., the intraday volatility σ, and the (average) auction impact slope S̃.

Even if the auction liquidity is extremely large or extremely low, thereby favoring a full execution

during the auction or the continuous phase, respectively, one may incur additional costs for not

optimally splitting the order size as seen above. Finally, predicting the ratio of the auction

volume to the total exchanged volume ψ, as well as its own participation ratio ϕ is not an easy

task. Predictive models can approach the desired quantities, e.g., by controlling for seasonality

and the effect of special days such as index rebalancing or derivative expiry days.
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