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Résumé: La propagation des ondes sismiques
dans le sol est soumise à de nombreuses sources

d’incertitudes, allant de l’activité incertaine des

failles géologiques à notre connaissance imparfaite

des propriétés mécaniques à l’intérieur de la croûte

terrestre. Pour évaluer correctement l’aléa sis-

mique, il est donc essentiel de quantifier l’influence

des incertitudes sur l’intensité des mouvements du

sol générés par les séismes.

Dans les zones à sismicité faible à modérée,

comme la plupart des régions de France métropoli-

taine, les enregistrements sismiques ne sont pas

suffisants pour évaluer les incertitudes des mou-

vements du sol. Dans cette situation, les simula-

tions numériques sont la seule option pour estimer

l’intensité du mouvement du sol, mais les coûts

de calcul élevés rendent impossible la plupart des

analyses d’incertitude. Dans cette thèse, on pro-

pose un méta-modèle qui permet de remplacer le

solveur numérique en réduisant considérablement

les coûts de calcul tout en conservant sa flexibilité

et une précision satisfaisante.

On illustre tout d’abord l’influence des

hétérogénéités géologiques sur l’intensité du

mouvement du sol dans le contexte du séisme

du Teil (Mw4.9, Ardèche, France, 2019). Des

hétérogénéités sont ajoutées à un modèle

géologique régional sous la forme de champs aléa-

toires et on montre que le mouvement sismique

ainsi généré est plus réaliste. Cependant, les

hétérogénéités induisent également une grande

variabilité entre les réalisations.

Pour étudier cette variabilité de manière sys-

tématique, on élabore une base de données de

30000 modèles géologiques hétérogènes en 3D

et à l’intérieur de chaque géologie, des ondes

sismiques sont propagées à partir d’une source

aléatoire en utilisant le code d’éléments spectraux

SEM3D. La base de données est ensuite utilisée

pour entraîner le méta-modèle.

Notre méta-modèle est une extension de

l’opérateur neuronal de Fourier appelée opérateur

neuronal de Fourier à entrées multiples (MIFNO).

Le MIFNO prend en entrée une géologie 3D et un

vecteur de paramètres de source pour prédire le

mouvement du sol en 3D. Le mouvement du sol

est un champ d’ondes enregistré à la surface du do-

maine en fonction du temps. Il est prédit en une

seule itération grâce à une conversion profondeur-

temps. On caractérise ensuite l’erreur de pré-

diction du MIFNO et on explore sa capacité de

généralisation aux données hors de la distribution

d’entraînement.

Enfin, on utilise l’apprentissage par transfert

pour améliorer la précision du MIFNO dans le con-

texte du séisme du Teil. Avec ce méta-modèle spé-

cifique, on obtient des distributions statistiques de

plusieurs quantités d’intérêt pour l’aléa sismique.

Ces distributions sont cohérentes avec les simula-

tions numériques et fournissent des intervalles de

confiance qui étaient hors de portée avec les méth-

odes précédentes.
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Abstract: The propagation of seismic waves in the
ground is subject to many sources of uncertain-

ties, ranging from the uncertain activity of geolog-

ical faults to the incomplete knowledge of mechan-

ical properties inside the Earth’s crust. To properly

assess seismic hazard, it then becomes essential to

quantify how uncertainties influence the intensity

of ground motion generated by earthquakes.

In areas with low-to-moderate seismicity, like

most regions in metropolitan France, seismic

records are too sparse to evaluate ground motion

uncertainties. In this situation, numerical simula-

tions are the only option to estimate groundmotion

intensity, but their high computational costs pre-

vent most uncertainty analyses. In this thesis, we

design a surrogate model that can replace the nu-

merical solver by drastically reducing the computa-

tional costs while preserving its flexibility and a sat-

isfying accuracy.

We first illustrate the influence of geological

heterogeneities on ground motion intensity in the

context of the Mw4.9 Le Teil earthquake (Ardèche,

France, 2019). Heterogeneities are added to a re-

gional geological model in the form of random

fields, and we show that it generates more realis-

tic ground motion. However, heterogeneities also

lead to a large variability between samples.

To study this variability systematically, we build

a database of 30000 heterogeneous 3D geologi-

cal models, and inside each geology, seismic waves

are propagated from a random source using the

spectral element code SEM3D. The database is then

used to train a surrogate model in a purely data-

driven framework.

To design the surrogate model, we propose an

extension of the Fourier Neural Operator called the

Multiple Input Fourier Neural Operator (MIFNO).

The MIFNO takes as inputs a 3D geology and a vec-

tor of source parameters to predict 3D ground mo-

tion. Ground motion is a time-dependent surface

wavefield, but we do not need any time iteration

thanks to a depth-to-time conversion. We charac-

terize the MIFNO prediction error and explore the

MIFNO generalization ability to out-of-distribution

data.

We finally take advantage of transfer learning to

further improve the MIFNO accuracy in the context

of the Le Teil earthquake. With this fine-tuned sur-

rogate model, we obtain statistical distributions of

several quantities of interest in seismic hazard as-

sessment. They are coherent with numerical simu-

lations and provide confidence intervals that were

out of reach with existing methods.



A Alba,

Rêve ta vie en grandes lettres colorées et ose vivre tes rêves



Contents

Introduction 10
From seismic hazard to physics-based simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

Scientific machine learning to design surrogate models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

Quantifying and propagating uncertainties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

Outline of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1 Physics-based earthquake simulations 14
1.1 Numerical simulations in seismology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.1.1 Wave propagation equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.1.2 Physics-based simulations with SEM3D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.1.3 Modelling earthquake sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.2 Geological models and their uncertainties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

1.2.1 Geological models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

1.2.2 Geological heterogeneities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

1.3 Evaluation metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

1.3.1 Mean Absolute Error (MAE) and Root Mean Square Error (RMSE) . . . . . . . . . . . . . . . . . 25

1.3.2 Frequency biases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

1.3.3 Goodness-Of-Fit (GOF) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

1.3.4 Intensity measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

1.3.5 Pseudo-Spectral Acceleration (PSA) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

1.4 Simulations of the Le Teil earthquake (France, 2019) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

1.4.1 Context of the work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

1.4.2 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

1.4.3 Comparison of simulations with records . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

1.4.4 Effects of geological heterogeneities on simulated ground motion . . . . . . . . . . . . . . . . 31

1.4.5 Partial conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

1.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2 First attempts to build a reduced-order model 35
2.1 Machine learning-based surrogate models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.1.1 Gaussian processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.1.2 Polynomial chaos expansion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.1.3 Reduced-order models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.2 HEMEW-3D database . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.2.1 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.2.2 Heterogeneous geological models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.2.3 Source parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

2.2.4 Solutions of the wave equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

2.2.5 Descriptive statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

2.2.6 Dimensionality analyses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

2.3 Reducing the dimension of geological models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

2.3.1 3D auto-encoder with a UNet architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

2.3.2 Assessing the reconstruction accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

2.3.3 Influence of the dimension on ground motion response . . . . . . . . . . . . . . . . . . . . . . 50

4



2.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3 Predicting ground motion with Fourier Neural Operators 53
3.1 Scientific Machine Learning for PDEs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.1.1 Interfacing numerical solvers with machine learning . . . . . . . . . . . . . . . . . . . . . . . . 55

3.1.2 Deep Operator Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.1.3 Fourier Neural Operators and variants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.2 Fourier Neural Operator for the elastic wave equation . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.2.1 Fourier Neural Operator principles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.2.2 U-shaped Neural Operator (UNO) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.2.3 Factorized Fourier Neural Operator (F-FNO) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.2.4 Multiple-Input Fourier Neural Operator (MIFNO) . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.3 Predictions accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

3.3.1 Prediction illustrations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

3.3.2 Metrics analyses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

3.3.3 FNO, U-NO, and F-FNO comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

3.3.4 Comparing the MIFNO with baseline models . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

3.4 Towards explainability of the prediction error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

3.4.1 Influence of the geological heterogeneities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

3.4.2 Influence of the source parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

3.4.3 Relationship with the energy integral . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

3.5 Generalizability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

3.5.1 Generalization to out-of-distribution sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

3.5.2 Generalization to out-of-distribution geologies . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

3.5.3 Generalization to higher resolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

3.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4 Application to the Le Teil earthquake: transfer learning and uncertainty quantification 82
4.1 Transfer learning: data and methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.1.1 Le Teil geological database . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.1.2 Le Teil source database . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.1.3 Transfer learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

4.2 Prediction results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

4.2.1 Ground motion prediction illustrations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

4.2.2 Improved accuracy with transfer learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

4.2.3 Variability with the choice of the transfer learning samples . . . . . . . . . . . . . . . . . . . . 87

4.2.4 Fault modelling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

4.3 Uncertainty propagation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

4.3.1 Influence of geological heterogeneities on Peak Ground Velocity (PGV) . . . . . . . . . . . . . . 88

4.3.2 Sensitivity analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

4.3.3 Parameters conditioning from fictive observations . . . . . . . . . . . . . . . . . . . . . . . . . 94

4.3.4 Uncertainty quantification on the PSA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

4.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

Conclusion and perspectives 98
Physics-based simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

The Multiple Input Fourier Neural Operator (MIFNO) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

Societal implications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

Perspectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

A Appendices 113
A.1 Le Teil simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

A.2 Dimensionality reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

A.3 Fourier Neural Operators architectures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

A.3.1 Main results on the Factorized Fourier Neural Operator (F-FNO) . . . . . . . . . . . . . . . . . 122

A.3.2 F-FNO hyperparameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

A.3.3 F-FNO training strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

5



A.3.4 F-FNO robustness to noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

A.4 Multiple Input Fourier Neural Operator (MIFNO) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

A.4.1 Metrics analyses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

A.4.2 Comparison with baseline models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

A.4.3 Influence of the source parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

A.4.4 Out-of-distribution data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

A.5 Applications to the Le Teil earthquake . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

A.5.1 Transfer learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

A.5.2 Le Teil earthquake: uncertainty quantification . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

6



Acknowledgements
I would like to start by expressing my deepest gratitude to the members of the jury who gave me the honour of

assessing my work; Prof. Mathilde Mougeot, for presiding the jury and for your advice from the MASCOT-NUM

workshop where we first met; Prof. Roger Ghanem and Prof. Yann Capdeville, thank you for your time reading my

manuscript and your encouraging report; Prof. Sylvie Le Hegarat and Prof. Mishra, for sharing your expertise on

machine learning. Your questions and suggestions are immensely valuable.

I am deeply indebted to my supervisors, Didier Clouteau, Filippo Gatti, and Michaël Bertin, for their continuous

support and precious guidance during those three years. Working under your supervision was an absolute pleasure

that made me learn and grow, as a woman and as the researcher I have become. You challenged me to open new

scientific doors and encouragedme to embrace opportunities. I am privileged to have shared enlighteningmoments

with you.

I would also like to extend my sincere thanks to Fernando Lopez-Caballero and Pierre-Alain Boucard for welcom-

ing me to the Laboratoire de Mécanique Paris-Saclay. I am grateful to Nicolas Lardjane and Amaury Vallage for the

support and resources of the CEA without which this research would not have been possible.

My sincere appreciation goes to Divya Madhavan, Melissa Ann-Thomas, Andrew Crawford, and Calvin Peck at

the Academic Writing Center for the immensely rich resources you offer us and the amazing 3-minute thesis ex-

perience we shared. Your workshops and coaching sessions have been truly transformative. I am also grateful to

the mentorship program of the Université Paris-Saclay, and especially my mentor, Anaïs Pitto-Barry, for helping me

navigate the academic world and anticipate the post-PhD path. Our discussions were helpful breathes along this

PhD journey.

I would also like to thank the many colleagues and friends I met. Sharing office, meals, and activities with you

mademy PhD evenmore enjoyable. Valeria, Hugo, Exneyder, Juan Camillo, Julian, Yilun, Briac, Valentin, Ali, Gianluca,

Mouhammed, Kuralay, Min, Eloi, Wilfried, Jean-Baptiste, Gottfried, Gerardo, Camille, Héloïse, and all the members

of the OMEIR team. Benjamin, Pierre L., Pierre A., Alice, Aurélie, Marine, Jérôme, Clara, Elodie, Nadège, and all my

colleagues at the CEA. Special thanks are due to Christophe Millet for your collaboration.

And lastly, I am infinitely grateful to my family and friends, whose unlimited love and support have always been

essential. Your achievements are a daily motivation, and I am proud to share a little bit of my world with you.

7



Résumé étendu
La propagation des ondes sismiques dans le sol est soumise à de nombreuses sources d’incertitudes, allant de

l’activité incertaine des failles géologiques à notre connaissance imparfaite des propriétés mécaniques à l’intérieur

de la croûte terrestre. Pour évaluer correctement l’aléa sismique, il est donc essentiel de quantifier l’influence

des incertitudes sur l’intensité des mouvements du sol générés par les séismes. Dans les zones à sismicité faible

à modérée, comme la plupart des régions de France métropolitaine, les enregistrements sismiques ne sont pas

suffisants pour évaluer les incertitudes des mouvements du sol. Dans cette situation, les simulations numériques

sont la seule option pour estimer l’intensité dumouvement du sol, mais les coûts de calcul élevés rendent impossible

la plupart des analyses d’incertitude.

On illustre tout d’abord l’influence des hétérogénéités géologiques sur l’intensité du mouvement du sol dans le

contexte du séisme du Teil (Mw4.9, Ardèche, France, 2019). Des simulations numériques sont réalisées dans une

région de 50 km× 115 km avec deux modèles géologiques nationaux (un modèle unidimensionnel, 1D, et un mod-
èle tridimensionnel, 3D) et deux modèles de source sismique (un point source et un modèle de rupture dynamique

du plan de faille). Le code SEM3D basé sur la méthode des éléments spectraux est employé pour les simulations.

Les deux modèles géologiques permettent de reproduire les caractéristiques principales du mouvement du sol en-

registré. Cependant, le modèle unidimensionnel crée un guide d’ondes absent des sismogrammes et le modèle

tridimensionnel induit des amplitudes plus élevées que les données enregistrées du fait d’un manque de fluctua-

tions géologiques. Des hétérogénéités sont alors ajoutées au modèle géologique unidimensionnel sous la forme

de champs aléatoires et on montre que le mouvement sismique ainsi généré est plus réaliste. En particulier, les

effets du guide d’ondes sont atténués par la présence des hétérogénéités. Cependant, les hétérogénéités induisent

également une grande variabilité entre les trois réalisations de champs aléatoires, ce qui montre la nécessité d’une

analyse quantitative de la variabilité ainsi obtenue.

Pour étudier cette variabilité de manière systématique, on élabore une base de données de 30000 modèles

géologiques hétérogènes en 3D. Les modèles géologiques sont construits comme la superposition de couches

horizontales choisies aléatoirement, ce qui représente la structure 1D de la géologie. Ensuite, des champs aléa-

toires sont ajoutés indépendamment dans chaque couche. A l’intérieur de chaque géologie, une source sismique

ponctuelle est placée demanière aléatoire avec une orientation aléatoire. Les ondes sismiques sont alors propagées

avec le code SEM3D, depuis la source jusqu’à la surface où elles sont synthétisées par une grille de capteurs virtuels.

On constitue ainsi la base de données HEMEW
S
-3D de 30000 triplets (géologie 3D, propriétés de source, mou-

vements du sol en surface). Pour caractériser la base de données, plusieurs définitions de la dimension intrin-

sèque des données sont explorées : l’analyse en composantes principales, une estimation à partir du maximum

de vraisemblance, la dimension de corrélation et un indice de similarité structurelle. Si les valeurs de la dimension

intrinsèque fluctuent grandement selon les méthodes, il apparaît néanmoins clairement que les données sont de

grande dimension. La base de données HEMEW
S
-3D est ensuite utilisée pour entraîner le méta-modèle, ce qui

constitue le cœur de cette thèse.

Notre méta-modèle est une extension de l’opérateur neuronal de Fourier appelée opérateur neuronal de Fourier

à entrées multiples (Multiple Input Fourier Neural Operator, MIFNO). Le MIFNO prend en entrée une géologie 3D et un

vecteur de paramètres de source pour prédire le mouvement du sol en 3D. Le premier point important du MIFNO

est d’utiliser une architecture factorisée dans laquelle les transformées de Fourier sont effectuées séparément sur

les trois axes. Cela permet de traiter des données 3D avec un nombre de paramètres raisonnable. Deuxièmement,

le mouvement du sol est un champ d’ondes enregistré à la surface du domaine en fonction du temps. Il est prédit en

une seule itération grâce à une conversion profondeur-temps. Ainsi, le MIFNO prédit la solution d’une équation aux

dérivées partielles en 3D dépendant du temps sans nécessiter de variables en quatre dimensions. La conversion

profondeur-temps évite également le recours à des méthodes auto-régressives qui ont tendance à diminuer la

précision en temps long. La troisième caractéristique du MIFNO est de contenir une branche dédiée pour la source.

On peut ainsi considérer un vecteur quelconque de paramètres de source sans être contraint par la structure 3D
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des géologies, ce qui n’était pas possible avec les opérateurs neuronaux existant auparavant.

Après avoir entraîné le MIFNO sur la base de données HEMEW
S
-3D , on illustre sa capacité de prédiction sur des

données de test. L’erreur de prédiction est quantifiée avec plusieurs métriques pour analyser différentes propriétés

physiques. En particulier, des métriques de biais fréquentiel montrent que les erreurs sont plus importantes sur

les composantes hautes fréquences du mouvement du sol, ce qui est cohérent avec le biais spectral des réseaux

de neurones. De plus, des critères de Goodness-Of-Fit habituels en sismologie montrent que les prédictions sont

généralement excellentes pour la phase, ce qui traduit des temps d’arrivée précis, et elles sont bonnes à excellentes

pour l’enveloppe, ce qui indique la précision sur les amplitudes prédites. Le MIFNO est également capable de

généraliser les prédictions à des géologies hors de la distribution d’entraînement, comme illustré avec le modèle

géologique de Marmousi, ainsi qu’à des sources placées hors du domaine d’entraînement.

Enfin, on utilise l’apprentissage par transfert pour améliorer la précision du MIFNO dans le contexte du séisme

du Teil. Dans ce cadre, une base de données de 4000 simulations est réalisée avec des géologies dérivées dumodèle

géologique 1D de référence pour la région du Teil et des caractéristiques de source cohérentes avec la faille ayant

généré le séisme du Teil. La base de données contient moins de réalisations que la base de données générique

HEMEW
S
-3D car sa variabilité est plus faible. Le MIFNO pré-entraîné est alors spécialisé avec les réalisations de la

base de données du Teil, ce qui améliore ses précisions. On montre qu’environ 500 simulations spécifiques sont

nécessaires pour obtenir d’excellentes prédictions. Par application du principe de superposition des sources, le

MIFNO fournit d’excellentes prédictions pour la rupture dynamique de la faille, bien que les caractéristiques spatiales

et temporelles dumouvement du sol soient plus complexes que dans le cas d’un point source. Avec ce méta-modèle

spécifique, on obtient également des distributions statistiques de plusieurs quantités d’intérêt pour l’aléa sismique,

en particulier l’accélération pseudo-spectrale. Ces distributions sont cohérentes avec les simulations numériques,

ce qui montre la fiabilité du MIFNO dans un cadre statistique. Grâce à la rapidité du MIFNO, il est possible d’obtenir

rapidement plusieurs centaines demilliers de prédictions. On en déduit alors des intervalles de confiance qui étaient

hors de portée avec les méthodes précédentes. On propose également une première application pour conditionner

les paramètres de source et de géologie à partir d’observations fictives.

En conclusion, cette thèse a proposé un méta-modèle pour la propagation des ondes sismiques dans des do-

maines tridimensionnels. Le méta-modèle générique est précis, applicable à un grand nombre de configurations et

capable de généraliser à des données hors de la distribution d’entraînement. Il peut être spécialisé pour des con-

textes spécifiques avec des coûts de calcul réduits grâce au transfert d’apprentissage. Cela permet ainsi des études

de quantification d’incertitudes avec des coûts énergétiques divisés d’un facteur 100 par rapport à l’utilisation exclu-

sive des simulations numériques.
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Introduction
Devastating earthquakes regularly remind us of the vulnerability of infrastructures to extreme natural hazards. In

2011, the Tohoku earthquake (Japan) generated a tsunami that led to a major nuclear accident at the Fukushima-

Daïchi power plant. In response, nuclear authorities worldwide requested new safety analyses of the existing struc-

tures. In France, this gave rise to the SINAPS@ project (2012-2017), which was devoted to the full evaluation of

seismic safety from the earthquake source to the infrastructure, and the characterization of uncertainties (Berge-

Thierry et al. 2020). In parallel, the SIGMA (2012-2017) and SIGMA-2 (2017-2022) projects involved 30 European

partners with the aim to improve the modelling of seismic ground motion and, similarly to SINAPS@, reduce uncer-
tainties (Pecker et al. 2017). Despite numerous achievements in the evaluation of ground motion, the development

of numerical tools to simulate earthquakes, and propositions of new regulations, both projects showed that a proper

quantification of uncertainties was beyond reach with the existing framework (Berge-Thierry et al. 2020).

On November 11, 2019, an earthquake of magnitude Mw 4.9 hit the Le Teil village in South-Eastern France,

damaging more than 900 houses and buildings. This is the most destructive earthquake felt in metropolitan France

since the Arlette earthquake (Pyrenees) in 1967 (Ritz et al. 2020), and it raised several questions about the adequacy

of regional ground motion estimates. Indeed, the Le Teil surroundings were considered a low-seismicity region, and

few earthquakes had been recorded since the deployment of seismic instruments (from 1962 in France, Duverger

et al. 2021). In addition, the Le Teil earthquake occurred within the Rhône valley, in the vicinity of several industrial

installations, including the Cruas and Tricastin nuclear power plants, respectively 14 km and 20 km away from the

epicenter. Installations of the French Alternative Energies and Atomic Energy Commission (CEA) are also located

within the Rhône valley and the CEA is responsible for the assessment of seismic hazard around its installations

(Règle fondamentale de sûreté n°2001-01). For these reasons, the Le Teil earthquake called for new seismic hazard

investigations in low-to-moderate seismicity regions and is one of the motivations of this doctoral thesis.

Figure 0.1: Map of seismic hazard in France, colored by five intensity zones (credit: Ministry of ecological transition)
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From seismic hazard to physics-based simulations
Assessing seismic hazard amounts to determining the ground motion intensity that could be reached at a given

location with a defined return period. A typical question can be formulated as “What is the maximum ground

motion acceleration that has a 10% probability of being observed in the next 50 years in this region?” Seismic

hazard assessment is, therefore, strongly related to probabilistic evaluations, and, as such, it requires large amounts

of data to derive meaningful distributions of ground motion intensities. Thanks to a massive deployment of seismic

sensors worldwide, large datasets of recorded earthquakes are now available (the ESM database in Europe (Luzi

et al. 2016), the NGA-West 2 database of crustal events in active tectonic regions (Ancheta et al. 2012), the K-Net and

KikNet databases in Japan (C. Zhu et al. 2021), etc.). These datasets have led to a wide variety of Ground Motion

Models, also called Ground Motion Prediction Equations (GMPEs), that estimate ground motion intensity from the

earthquake parameters and geological characteristics at the site of interest. GMPEs are the most common method

to estimate seismic hazard but have several limitations.

In low-to-moderate seismicity regions such as most of metropolitan France, datasets of recorded ground motion

are too sparse to inform GMPEs. Then, the only option is to use numerical simulations to complement recorded

earthquakes. Thanks to a continuous increase in computational resources and improvements in numerical schemes

over the last decades, physics-based earthquake simulations have reached a high level of fidelity. They now enable

the simulation of past earthquakes with complex physical phenomena (dynamic fault rupture, realistic geological

properties, three-dimensional wave propagation, etc.). As an illustrative example, high-fidelity simulations have

been conducted for the 1976 Mw 7.6 Tangshan earthquake (China, H. Fu et al. 2017; W. Zhang et al. 2019), the 1992

Mw 7.3 Landers earthquake (United States of America, Heinecke et al. 2014), the 2005 Mw 7.6 Kashmir earthquake

(Pakistan, Khan et al. 2020). The Le Teil earthquake has also been simulated with different numerical settings (El

Haber et al. 2021; F. Lehmann et al. 2022; Smerzini et al. 2023).

However, large-scale three-dimensional (3D) simulations require huge computational costs, on the order of tens

of thousands of scalar CPU hours (Central Processing Unit hours, total time of all cores in the parallel simulation).

In seismic hazard analyses, ground motion must be assessed for a large number of potential seismic sources and a

wide variety of geological properties. Conducting these analyses with 3D physics-based simulations would require

multiple calls to the earthquake simulator. But due to their prohibitive computational costs, high-fidelity simulations

cannot be used directly to assess seismic hazard.

Scientific machine learning to design surrogate models
Thanks to the large datasets of groundmotion records, machine learning has a long tradition in seismology (Mousavi

and Beroza 2023). In particular, analytical GMPEs can be replaced by deep neural networks to offer more flexibility

to ground motion predictions. However, these methods still depend on the quantity of recorded data in the region

under study and are of limited use in low-to-moderate seismicity regions.

Recent developments in deep learning offer new perspectives to replace physics-based simulations with surro-

gate models that preserve the accuracy of simulations while drastically reducing computational costs (Z. Li et al.

2020; Lu et al. 2021; Brandstetter et al. 2022). In this work, we define a surrogate as a numerical model that has

the same inputs as the parameters of the physics-based simulations and that estimates ground motion at any loca-

tion and time without fully resolving the wave propagation equation. It is important to emphasize that the surrogate

model should predict time series and not only onemeasure of groundmotion intensity. The need for the full ground

motion history in non-linear structural dynamic analysis and earthquake engineering justifies this major difference

with GMPEs.

The intersection between physics-based simulations and deep learning has given rise to the field of Scientific

Machine Learning (SciML). One prominent method in SciML is the Fourier Neural Operator (FNO, Z. Li et al. 2021) that

- in a concise and oversimplified summary - predicts the solution of a Partial Differential Equation (PDE) by learning

its representation in the frequency space of Fourier coefficients. Soon after the introduction of the FNO, Y. Yang

et al. 2021 showed that it could predict the solution of the two-dimensional (2D) acoustic wave equation. These

works and many others inspired us to direct our research towards a FNO-based surrogate model of seismic wave

propagation.

In F. Lehmann et al. 2023, we proposed the first FNO application to predict the solution of the 3D elastic wave

equation. This work and the followings build on large datasets of physics-based simulations (F. Lehmann et al.

2024a) that enable the surrogate model to learn the simulation outputs when provided with the simulation param-

eters. Then, a faster FNO was proposed by Tran et al. 2023, and we showed that this surrogate model significantly
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improves the prediction accuracy (F. Lehmann et al. 2024b). However, none of the existing works allowed to vary

the earthquake source, which severely restricts the applicability of the surrogate model. To address this limit, we

proposed aMultiple Input Fourier Neural Operator (MIFNO) that considers the dependency on both geological prop-

erties and source parameters when predicting ground motion.

Quantifying and propagating uncertainties
A common objective of the SINAPS@ and SIGMA projects was to characterize, quantify, and ultimately reduce the

numerous uncertainties in seismic hazard estimates. The earthquake source is the first uncertain parameter. In

intraplate regions, earthquakes mainly occur on geological faults that are well identified. However, the Le Teil earth-

quake occurred on the La Rouvière fault, whose seismogenic activity was ill-defined (Marconato et al. 2022). After

identifying the fault, the location of the rupture and its dynamic along the fault are also difficult to characterize.

Nevertheless, the influence of the earthquake source uncertainties on ground motion is often studied, for instance

by simulating different fault rupture scenarios of the Le Teil earthquake (Causse et al. 2021) or by running sensitivity

analyses on the source location (Laporte et al. 2024).

Figure 0.2: Sources of uncertainties in seismic hazard assessment: position and characteristics of the earthquake

source, mechanical properties of the Earth’s crust (including geological heterogeneities), geological singularities that

create site effects.

Another source of uncertainties concerns the properties of the propagation domain. Seismic waves propagate in

three dimensions, over long distances, and in deep heterogeneous materials where measurements are challenging

or even impossible. Although geological models provide essential information on the material properties, they are

only an approximation of the Earth’s mechanical characteristics. Geological fluctuations impact the propagation of

seismic waves between the source and the surface, resulting in different ground motion time series at neighbouring

locations (R.-S. Wu and Aki 1988). Yet localized peculiarities, such as the presence of a sedimentary basin, can also

greatly amplify seismic waves and lead to severe damage (Kawase 2003). These site effects constitute a significant

concern in seismic hazard analyses, and a 3D physics-based surrogate model is one approach to quantifying their

influence.

Finally, model uncertainties must be quantified. High-fidelity simulations rely on assumptions that differ from

the propagation of waves in reality, for instance, through the implementation of boundary conditions to mimic

an infinite propagation domain. The accuracy of numerical solvers is also limited by the available computational

resources, implying for instance that high frequencies cannot be resolved numerically. Numerical errors are also a

potential source of uncertainties. Then, when using a surrogate model to replace simulations, the approximation

error should be added to the other sources of uncertainties.

If previous works (e.g. within the SINAPS@ and SIGMA projects) have greatly improved the identification of

uncertainties, propagating them from their different sources to the resulting ground motion requires an efficient

and accurate model that includes a detailed description of the earthquake source and the 3D geological properties.

Using the Le Teil earthquake as a case study, we show that our MIFNO surrogate model is a promising tool towards

this objective.
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Outline of the thesis
Chapter 1 presents the computational framework of this thesis. All earthquake simulations are conducted with
SEM3D, an open-source code developed in collaboration between the CEA, CentraleSupélec, and IPGP (Touhami

et al. 2022). SEM3D solves the elastic wave equation in 3D heterogeneous media, thanks to the Spectral Element

Method. The main simulation parameters are introduced from a seismological perspective, and their implementa-

tion is detailed. We focus on the description of the earthquake source, which is at the origin of seismic waves, and

the geological model since it characterizes the properties of the propagation domain and controls the wave prop-

agation. In this chapter, we also present our simulations of the Le Teil earthquake, emphasizing the importance of

geological heterogeneities to reproduce realistic ground motion.

Chapter 2 presents our database of seismic simulations that was used to train the surrogate model. Its ground
motion characteristics are analyzed and we provide insights on the intrinsic dimension of the data. The high dimen-

sions justify that traditional surrogate models are not suitable to predict space- and time-dependent ground motion

from 3D highly heterogeneous geological parameters and varying earthquake sources. In an attempt to reduce

the data dimensionality, two common approaches are explored and compared, namely the Principal Component

Analysis (PCA) and a deep neural network called UNet auto-encoder.

Chapter 3 reviews state-of-the-art surrogate models to predict the solution of parametric PDEs. It introduces
the FNO methodology and exposes our MIFNO surrogate model. From a 3D geological model, a description of

the earthquake source position and orientation, the MIFNO predicts the ground motion wavefield at the surface of

the propagation domain. The MIFNO predictions are assessed with different metrics and several architectures are

compared to exhibit optimal hyperparameters. We also highlight relationships between input parameters and the

prediction accuracy that help to understand situations where the surrogate model can give the best predictions.

Generalization to corrupted and out-of-distribution data is also investigated.

In Chapter 4, we focus on the application of our surrogate model to the Le Teil earthquake. We illustrate the
benefits of transfer learning to improve the predictions in a target region. In particular, ground motion generated

by a extended fault source is predicted with our surrogate model. Then, we quantify the influence of geological

uncertainties on ground motion and show that our surrogate model provides meaningful distributions of ground

motion intensity measures. Thanks to the speed of the MIFNO predictions, we also propose a first application of

parameter conditioning based on fictive observations and provide confidence intervals of groundmotion intensities.

Throughout this thesis, we estimate the energy consumption of the various methods and highlight the benefits of

our surrogate model in this respect.
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Chapter 1

Physics-based earthquake simulations
In low-to-moderate seismicity regions, numerical simulations are necessary to complement recorded groundmotion

data. They rely on numerical schemes to solve the wave propagation equation, namely the elastic wave equation.

This equation describes the motion of particles in an elastic medium defined by its mechanical properties when

particles are subject to an external force such as an earthquake source. Among the existing numerical schemes,

the Spectral Element Method (SEM, Faccioli et al. 1997; Komatitsch and Tromp 1999) has several advantages in

computational seismology and constitutes the backbone of our work (Section 1.1).

Several factors determine the accuracy of earthquake simulations. One crucial parameter is the 3D description

of the mechanical properties of the Earth, which we refer to as a geological model (Section 1.2). Due to the difficulty

of conducting geophysical measurements, the geological model is often poorly known and too simplistic. When

seismic waves propagate through the geological model, this can result in significant discrepancies between the

synthetic and recorded seismograms. One standard method to account for geological uncertainties consists in

adding random fluctuations to the reference geological model. Depending on the random fields characterization,

seismic waves encounter different perturbations and can be rendered more realistically by numerical simulations.

Second, the design of the simulation mesh also influences the accuracy of ground motion. One aims at high-

frequency simulations to approach the needs of structural engineering, but this leads to many degrees of freedom.

In addition, earthquake simulations are run on large spatial scales to encompass the seismic source and distant

areas that can encounter high ground motion intensities. These two factors lead to high computational costs that

make large-scale simulations very demanding. Table 1.1 references some large-scale high-frequency earthquake

simulations, and their limited number indicates the difficulty of conducting these simulations.

These challenges are illustrated with our simulations of the Le Teil earthquake. We use two geological models,

namely a 1D national and a 3D regional geological model. Two parametrizations of the earthquake source are also

compared: a kinematic fault rupture model and an equivalent point-wise source. Although the overly simplistic

geological models are able to capture only the main ground motion features, we show that adding geological het-

erogeneities can producemore realistic synthetic seismograms (Section 1.4). This work was published in F. Lehmann

et al. (2022). “Machine Learning Opportunities to Conduct High-Fidelity Earthquake Simulations in Multi-Scale Het-

erogeneous Geology”. In: Frontiers in Earth Science 10. ISSN: 2296-6463. DOI: 10.3389/feart.2022.1029160.

Table 1.1: Non-exhaustive summary of large-scale high-frequency earthquake simulations. fmax is the maximal
frequency accurately resolved. See Poursartip et al. 2020 for additional references

Reference Case study Domain size fmax
Heinecke et al. 2014 1992 Mw 7.3 Landers earthquake (USA) - 10Hz

Maufroy et al. 2016 19 earthquakes in the Mygdonian basin (Greece) 69 km× 69 km× 30 km 4Hz

H. Fu et al. 2017 1976 Mw 7.6 Tangshan earthquake (China) 320 km× 312 km× 40 km 18Hz

W. Zhang et al. 2019 1976 Mw 7.6 Tangshan earthquake (China) 320 km× 320 km× 40 km 7.3Hz

Khan et al. 2020 2005 Mw 7.6 Kashmir earthquake (Pakistan) 40 km× 40 km× 40 km 5.5Hz

Touhami et al. 2022 2014 Mw 6.0 Cephalonia earthquake (Greece) 44 km× 44 km× 63 km 10Hz

Smerzini et al. 2023 2019 Mw 4.9 Le Teil earthquake (France) 45 km× 70 km× 8.5 km 8Hz

this work 2019 Mw 4.9 Le Teil earthquake (France) 50 km× 115 km× 38 km 5Hz
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1.1 Numerical simulations in seismology
Seismic waves are a type of mechanical waves that are generated by a disturbance in the solid Earth. Although

earthquakes are the most obvious source of seismic waves, they can also originate from other sources such as

volcanic tremors, mining, explosions, noise from railroads, etc. The propagation of seismic waves inside the Earth

obeys the elastic wave equation, which is introduced below.

1.1.1 Wave propagation equations
In a solid Ω ⊂ Rd, the propagation of disturbances generates particle motion in several directions, implying that
the displacement u is a vector : u : Ω × [0, T ] → Rd, with [0, T ] being the temporal interval. The displacement is
governed by the elastic wave equation, for which two equivalent formulations are (the derivation can be found, for

instance, in Shearer 2019, p.40-44)

ρ
∂2u

∂t2
−∇ · σ(u) = f (1.1)

where σ(u) = C : ∇u is the stress tensor depending on the elasticity tensor C , and

ρ
∂2u

∂t2
−∇λ (∇ · u)−∇µ

[
∇u+ (∇u)T

]
− (λ+ 2µ)∇ (∇ · u) + µ∇×∇× u = f (1.2)

In equation 1.2, the material is described by three parameters: its density ρ and the Lamé parameters λ, µ. In
heterogeneous media, they all depend on the spatial point x ∈ Ω. The right-hand side f : (x, t)→ R is an external
body force (detailed in Section 1.1.3) and u : (x, t) → Rd is the solution of the elastic wave equation, written as a
displacement. From the parameters (ρ, λ, µ), one can express the velocity of compression waves (P waves, VP ) and
shear waves (S waves, VS ) through

VP =

√
λ+ 2µ

ρ
, VS =

√
µ

ρ
(1.3)

The analysis of P and S waves is of practical importance in seismology and our results will often be discussed in

terms of P and S waves components. Equation 1.3 especially implies that the velocity of P-waves is always higher

than the S-wave velocity (see Fig. 1.1 where P waves arrive before S waves).

Figure 1.1: Acceleration recorded at station OGDF during the Le Teil earthquake, located 32 km away from the epi-

center (more details in Section 1.4). Sub-panels show the East-West (E), North-South (N), and vertical (Z) components.

Arrows indicate the approximate arrival time of P and S waves, as well as the coda.

Because it is the most general and accurate, the elastic wave equation 1.2 is the main focus of this work. How-

ever, beyond the case of an infinite homogeneous medium or some forms of approximations, analytical solutions
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do not exist and numerical approximations are sought after. It is also important to note that the wave equation is

not linear with respect to the material parameters, although it is linear with respect to the source.

Due to the hyperbolicity of the elastic wave equation, it is challenging to obtain accurate numerical solutions.

The wave equation is a prototypical example of hyperbolic equations. Other examples include the linear advection

equation
∂u
∂t + a∂u∂x = f and the Burger’s equation ∂u

∂t + u∂u∂x = ν ∂
2u
∂x2
. In hyperbolic equations, information

travels at a finite speed, referred to as the wavespeed. This means that points where the wave has not yet arrived

have received no information. Hyperbolic equations are also characterized by the propagation or appearance of

discontinuities, controlled by the initial and boundary conditions. Hyperbolicity therefore often results in solutions

with high complexity (Thomas 1995).

Before explaining the numerical scheme used to solve the elastic wave equation, one should mention other

forms of wave equations that will be encountered in the deep learning literature review (Section 3.1). First, the

Helmholtz equation is obtained by taking the Fourier transform in time (denoted F or )̂ of the acoustic equation.
When propagation involves a scalar quantity uP : (x, t) → R (e.g. pressure field or P waves only) instead of a
vector, the wave equation is restricted to the acoustic equation

ρ(x)
∂2uP
∂t2

(x, t)−∇ · (µ(x)∇uP (x, t)) = f(x, t) (1.4)

Let us define û(x, ω) as the Fourier transform ofu at pointx and circular frequencyω, and recall thatF
(
∂2u
∂t2

)
(ω) =

− ω2F(u)(ω). Then, the Helmholtz equation reads

ρ(x)ω2û(x, ω) +∇ · (µ(x)∇û(x, ω)) = −f̂(x, ω) (1.5)

Equation 1.5 is an elliptic equation, implying that its solutions are smooth, even if the initial and boundary conditions

are rough (although there may be singularities at sharp corners). Therefore, solving the elastic wave equation or the

Helmholtz equation involves different complexities.

Another form of the wave equation is given by the eikonal equation. It is a high-frequency approximation of

the elastic wave equation, leading to a time-independent first-order non linear hyperbolic PDE. It is often used to

describe the traveltime of waves from the source to any point in the domain.

1.1.2 Physics-based simulations with SEM3D
Numerically solving the elastic wave equation requires a discrete approximation of the problem, both spatially and

temporally. Several discretization schemes exist and have been used for the wave equation, such as the finite differ-

ence method, pseudospectral methods, boundary element methods, finite element method, etc. A methodological

review can be found in Seriani and Oliveira 2020 and references of early work are given in Komatitsch and Tromp

1999. The Spectral Element Method (SEM, Faccioli et al. 1997; Komatitsch and Tromp 1999) is a special type of finite

element method, well-used for wave propagation problems. The computational code SEM3D, originally developed

by the CEA, CentraleSupélec, and IPGP relies on the SEM and constitutes the backbone of this work (Touhami et al.

2022). In the following, we describe the main ideas of the SEM and its implementation in SEM3D. More details can

be found in the works referenced below.

The SEM does not solve directly the elastic wave equation 1.1. Instead, this equation is integrated against any

test function φ : Ω→ Rd to give the weak formulation of the wave equation (Komatitsch and Tromp 1999, eq. 12)∫
Ω
ρφ · ∂2

t u d3x = −
∫

Ω
∇φ : σ(u) d3x−

∫
Ω
φ · f d3x+

∫
Γ
ρ
(
σ(u) · −→n

)
· φ d2x (1.6)

The boundary of the spatial domain Ω is separated into a stress-free surface ∂Ωtop (usually the upper surface) and

an absorbing boundary Γ which mimics a semi-infinite domain (waves going through Γ are supposed to escape the
domain, Fig. 1.2). In equation 1.6,

−→n is the outward unitary vector normal to the boundary surface Γ. The upper sur-
face ∂Ωtop does not appear in the integration since this stress-free surface must satisfy σ(u) · −→n = 0. Therefore,
this boundary condition is necessarily satisfied when satisfying the weak formulation of the wave equation 1.6.

In the SEM, the spatial domain Ω is discretized in a mesh of hexahedral elements {Ωa}a and similarly, the
boundary Γ is discretized with the corresponding quadrilateral elements {Γb}b. Then, the wave equation 1.6 can
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Figure 1.2: Schematic illustration of the spatial domain Ω divided into mesh elements {Ωa}a. ∂Ω is the upper

surface boundary and Γ contains all the other boundaries.

be solved in parallel in each mesh element (with points common to several elements managed carefully), which

considerably reduces the computational time.

Computing integrals as in equation 1.6 is always a computational challenge. One solution is to use quadrature

points and compute the integral as the sum over the function value at the quadrature points. First, notice that each

mesh elementΩa is isomorphous to the reference cube [−1, 1]3. This implies that any function φ evaluated at point
x = (x, y, z) ∈ Ωa can be expressed in terms of points (x̃, ỹ, z̃) ∈ [−1, 1]3 and the element-wise function φa.
Integrals can then be rewritten as∫

Ωa

φ(x) d3x =

∫
[−1,1]3

φa(x̃, ỹ, z̃)Ja(x̃, ỹ, z̃) dx̃ dỹ dz̃ (1.7)

where Ja is the Jacobian expressing the change of coordinates between [−1, 1]3 andΩa. One specific feature of the

SEM is that the quadrature points are chosen as the Gauss-Lobato-Legendre (GLL) points, defined as the roots of

(1 − x̃2)P ′n(x̃) = 0 where Pn is the Lagrange polynomial of degree n. If the GLL points are denoted x̃0, · · · , x̃n
along the x̃ axis and similarly ỹ0, · · · , ỹn and z̃0, · · · , z̃n along the ỹ and z̃ axes, the integral in equation 1.7 can be
approximated by∫

[−1,1]3
φa(x̃, ỹ, z̃)Ja(x̃, ỹ, z̃) dx̃ dỹ dz̃ '

n∑
i,j,k=0

wiwjwkφa(x̃i, ỹj , z̃k)Ja(x̃i, ỹj , z̃k) (1.8)

where wi, wj , wk are the weights associated with the GLL points and can be pre-computed.
From these developments, the displacement is expressed at each grid pointxm as a global vectorU = (u(xm))m

and the global system is written in the form

MÜ + F int(U ; U̇) = F ext (1.9)

whereM is the mass matrix, F int the matrix of internal forces, and F ext the external force matrix. The coefficients
of those matrices are found by inserting the integral expression 1.8 into the weak formulation 1.6. One advantage

of the SEM on the basis of Lagrange polynomials is that the mass matrix is diagonal, meaning that its inversion is

computationally cheap.

Equation 1.9 involves time derivatives that also need to be discretized temporally. The temporal discretization is

a velocity leap-frog scheme, where the velocity U̇ at time tn is approximated by U̇n ' U̇(tn) and is computed from

M
U̇n+1 − U̇n

∆t
+ F int

(
Un+1/2; U̇n+1/2

)
= F extn+1/2 (1.10)

The elastic wave equation is solved with initial conditions u(x, t = 0) = 0 and ∂u
∂t (x, t = 0) = 0 to reflect that

the medium is at rest before the seismic event. One should also note that the leap-frog scheme is conditionally

stable with a Courant–Friedrichs–Lewy (CFL) stability condition determined by the size of the mesh elements and

the maximum wave velocity (i.e. the P-wave velocity). This means that the time step becomes very small when small

mesh elements are needed and the P-wave velocity is large. This leads to a large number of time iterations and

therefore a high computational time.
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Design of the mesh
Although the computation of the time step is managed automatically in SEM3D from the CFL value imposed by

the user (CFL=0.2 in this work), the design of the mesh is left to the user and has a crucial importance. The mesh

elements should be small enough to accurately represent the material properties and the propagation of waves. In

the meantime, the computational time increases with the number of elements, meaning that we aim for elements

as large as numerically possible.

The most constraining factor is the accurate representation of the wave propagation. Following (De Martin

2011), at least 5 GLL points should be used to discretize the minimum wavelength propagating inside the domain.

The minimum wavelength λmin depends on the minimum wave velocity, i.e. VS,min, and the maximum frequency
of the waves one aims at representing, fmax, following

λmin =
VS,min
fmax

(1.11)

The element size can be increased if the number of GLL points NGLL is larger than 5 since the distance between

quadrature points will remain of the same order. Therefore, the mesh element size∆x is computed with

∆x =
NGLL

5
λmin =

NGLL

5

VS,min
fmax

(1.12)

The material properties detailed in Section 1.2 will be designed in accordance with the mesh element size.

It was mentioned earlier that the domain Ω is delineated by an absorbing boundary Γ. This allows to approxi-
mate the propagation of waves in a semi-infinite domain where waves hitting the absorbing boundary should escape

the domain and no longer influence the propagation inside the domain. SEM3D employs the Perfectly Matched Lay-

ers (PML) as absorbing boundary conditions (Berenger 1994; Festa and Vilotte 2005). This means that layers of mesh

elements are added on the boundary of the domain and the amplitude of the incident wave is exponentially reduced

inside the PML. When hitting the external PML boundary, the wave amplitude is negligible, so that no reflecting wave

can be seen.

SEM3D has been validated for different benchmarks (Touhami 2020), widely employed to simulate past earth-

quakes (Touhami et al. 2021), and to assess the seismic response of nuclear sites and urban areas (Gatti et al. 2018;

Korres et al. 2022). Therefore, under the assumption that the input parameters are accurate, numerical results of

SEM3D reflect the reality. In the following, results of SEM3D simulations are sometimes referred to as ground truth,

in opposition with the prediction of the surrogate model. This term implies simulated ground truth.

1.1.3 Modelling earthquake sources
The elastic wave equation 1.2 involves a source term f(x, t) that describes the distribution of force density acting
on a point x at time t. The simplest description of the source is a point-source located at xs ∈ Ω, with a time
evolution described by the seismic moment functionM(t). The seismic moment function is a time-dependent
3× 3 symmetric tensor describing the forces acting at the source location. The point source expression can then
be written

f(x, t) = ∇ · (M(t)δ(x− xs)) (1.13)

It is well-known that the far-field components of groundmotion are proportional to the time-derivative of the seismic

moment function (see e.g. Madariaga 2015, eq. 21). Knowing that the geometry of the point source is generally

independent from its temporal evolution, it is then convenient to describe the moment rate function
dM
dt (t) as

dM

dt
(t) = Ms(t) (1.14)

where s(t) is the source time function andM is the seismic moment

M =

(
Mxx Mxy Mxz

Mxy Myy Myz

Mxz Mxy Mzz

)
(1.15)
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The componentMij corresponds to the action of two point forces parallel to the i axis (with opposite signs) and
separated by a small distance in the j direction. In particular, the diagonal elements represent force dipoles while
the off-diagonal elements correspond to force couples.

When an earthquake is generated by a fault rupture, the seismic moment function describes the slip history

along the fault. Then, the moment tensor can be parametrized by four variables characterizing the rupture process

(Aki and Richards 2002):

• the scalar seismic momentM0 (unitN.m),
• the dip angle of the fault (δ)
• the strike angle of the fault with respect to the north (φ)
• the rake angle of the fault (λ), which is the angle of the slip vector with respect to the horizontal

Figure 1.3: Description of a fault from its dip (δ), strike (φ), and rake (λ) angles. Figure extracted from Shearer 2019

In this work, faults are parametrized either with their three descriptive angles or with the moment tensor com-

ponents. Equivalences between the two representations are obtained through (Aki and Richards 1980)

Mxx = −M0(sin δ cosλ sin(2φ) + sin(2δ) sinλ sin2 φ)

Mxy = M0(sin δ cosλ cos(2φ) + 0.5 sin(2δ) sinλ sin(2φ))

Mxz = −M0(cos δ cosλ cosφ+ cos(2δ) sinλ sinφ)

Myy = −M0(sin δ cosλ sin(2φ)− sin(2δ) sinλ cos2 φ)

Myz = −M0(cos δ cosλ sinφ− cos(2δ) sinλ cosφ)

Mzz = M0(sin(2δ) sinλ)

(1.16)

Source time function
The source time function describes the temporal evolution of the earthquake process. As such, it provides rich

information to seismologists about the fault rupture duration and its frequency content. Assuming a simple linear

slip of the fault leads to the ramp seismic moment function depicted in Fig. 1.4a whose source time function is a

boxcar function. The boxcar length is equal to the rise time τ of the fault, i.e. the time to evolve from the initial state
to the final state. It is known that small faults lead to shorter rise times, hence, source time functions that are closer

to a Dirac impulse (Fig. 1.4b).

Fortunately, the numerical analysis of source time functions is made easier by the introduction of the Green

functionGM ,xs,t0(x, t), which is the fundamental solution of the elastic wave equation 1.2 when the source is an
impulse point force located at xs and occurring at t = t0,

f(x, t) = ∇ · (Mδ(t− t0)δ(x− xs)) (1.17)
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(a) (b)

Figure 1.4: Seismic moment functionsM(t) of a simple ramp (a) and a Heaviside step (b). The associated source
time functions are proportional to the moment rate function

dM
dt (t).

For any source time function s(t), the general solution of the elastic wave equation 1.2 is then obtained from the
convolution of the Green function with the source time function

u(x, t) = GM ,xs,t0(x, t) ∗ s(t) (1.18)

Assuming that the solution u1 of the elastic wave equation is known for a given source time function s1 and provided

that the moment tensorM remains the same, it is easy to obtain the solution u2 for any new source time function

s2. The steps are as follows:

1. compute the Fourier transform of the original source time function ŝ1 := F(s1) and the solution û1 := F(u1)

2. derive the Green function in the frequency domain Ĝ1 =
û1

ŝ1
3. compute the Fourier transform of the new source time function ŝ2

4. compute the new solution in the frequency domain û2 = Ĝ1 ∗ ŝ2

5. deduce the new solution in the temporal domain u2 = F−1 (û2)
This procedure is illustrated in Fig. 1.5, starting from a spice bench seismic moment functionM1. It is often used to

describe the temporal evolution of a typical point source and is used as the reference source time function in this

work. The solution u1 is simulated with SEM3D (Fig. 1.5a). The associated Green function G1 allows to reconstruct

the solution for a new seismic moment function M2. Figure 1.5b shows that the reconstructed solution G1 ∗ s2

perfectly matches the true solution u2.

Although the temporal evolution of the solution is crucial, the Green function approach explains that the tem-

poral evolution of the source can be fixed when designing the metamodel (Chap. 3). In Chapter 4, convolutions are

employed to obtain predictions for different source time functions.

1.2 Geological models and their uncertainties
Numerical simulations require a description of the material properties: density ρ, S-wave velocity VS and P-wave
velocity VP , that together define a unique elastic wave equation 1.2. These properties correspond to the mechanical

behaviour of rocks inside the Earth crust, from the surface to several dozens of kilometers depth, on all the spatial

extend of the region under study (on the order of 10
2
to 10

4
km

2
). Hence, it is extremely difficult to measure the

material properties in the whole study domain and one needs to rely on models with different levels of fidelity.

In this section, we give a brief overview of some types of geological models commonly used in seismic numer-

ical simulations to highlight their strengths and limitations. In particular, we focus on the modelling of geological

heterogeneities to ensure that our data are as realistic as possible.
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(a) (b)

Figure 1.5: For the original source (a) and the new source (b), derivation of the Green functions G1 and G2. The

Green functionG1 is then used to obtain the solutionG1 ∗ s2 for a new source time function s2.

1.2.1 Geological models
Let us define a geological model a as the description of one or more material properties (with g being the number
of properties) at each point of the domain

a :
Ω ⊂ Rd → Rg
x 7→ a(x)

(1.19)

The coarsest level of fidelity is a one-dimensional (1D) geological model that describes a as a function of depth.
It assumes a 1D structure of the Earth with parallel horizontal layers. This type of model can be obtained from

borehole measurements to give accurate but very localized information. The depth is also limited to a few hundred

(rarely thousand) meters (Vergniault and Mari 2020). Alternatively, a 1D model can be obtained as the result of

an optimization problem based on the observation of seismic wave arrivals. Starting from an initial hypothetical

model, one tries to minimize the error between the seismic waves simulated with the hypothetical model and the

observed seismic waves. The CEA LDG provides a 1D model for metropolitan France (Duverger et al. 2021, detailed

in Section 1.4). In the vicinity of the Le Teil earthquake, Causse et al. 2021 obtained a 1D model of VP and VS with

this optimization process (Fig. 1.6a).

Onemain limitation of 1D geological models is their ignorance of horizontal variations in material properties that

can lead to site effects. Site effects refer to the amplification (or deamplification) of ground motion due to geological

or topological characteristics in the vicinity of the site under study. Following this definition, they are considered

as a local effect and should be distinguished from the path effect, i.e. the modification of ground motion due to

the propagation of seismic waves between the source and the surface. Well-known features leading to site effects

are the presence of sedimentary basins where seismic waves get trapped inside the sediments due to their lower

velocity. Other characteristics such as the presence of a hill are also known to create site effects but topography is

not considered in this work.

3D geological models are required to assess the site effects (Makra and Chávez-García 2016; Smerzini et al.

2011) but they are expensive to acquire. When devoting much effort into the modelling of a region of interest,

a local model describes the interfaces between geological layers. It is common to describe at least the interface
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(a) (b)

(c) (d)

Figure 1.6: Example of (a) a layer cake 1D geological model (Smerzini et al. 2023) adapted from (Causse et al. 2021),

(b) a 3D regional model (Arroucau 2020), (c) a local 3D model with a sedimentary basin, (d) a local 3D model with an

overthrust of thin sedimentary layers (Aminzadeh et al. 1997). Note the different spatial scales between the models

between the sedimentary basin and the bedrock (Fig. 1.6c) and more detailed models describe thinner sedimentary

layers (1.6d). Geological parameters are then inferred in each layer, which is also subject to the extrapolation of

point-wise measurements.

Alternatively, 3D regional models can be obtained on a large scale (several hundreds of kilometers wide and

tens of kilometers deep to represent the Moho, the crust-mantle boundary) from seismic tomography. For instance,

Arroucau 2020 provides a geological model for metropolitan France with a 10 km horizontal and 0.5 km vertical

resolution (a small area of this model is shown in Fig. 1.6b). However, this resolution is too coarse to include any site

effect.

All the above-mentioned geological models are subject to uncertainties, related to the depth and shape of the

main structures, and the parameter values in-between (Wellmann and Caumon 2018). Beyond these uncertainties,

it is also crucial to acknowledge that the Earth crust is not a homogeneous material. Indeed, it is made of composite

minerals and fractures of various sizes that induce a deviation of the mechanical properties from their mean values.

1.2.2 Geological heterogeneities
As stated by R.-S. Wu and Aki 1988, “the scale length of heterogeneities revealed by seismic waves, not including

the laboratory measurements of rock samples, spans 8 orders of magnitude”. Thus, before considering the effects

of geological heterogeneities, we firstly need to define the appropriate scales for our problem. We aim at con-

ducting local seismic simulations on areas with a typical length L ∼ 10 km. The minimum wavelength defined by
equation 1.11 is λ ∼ 100m while the largest wavelengths associated with low frequencies extend up to λ ∼ 50 km.
Geological heterogeneities are parametrized by their correlation length `c, which remains to be characterized. The
correlation length reflects the typical size of heterogeneities and indicates the distance above which two spatial

points are assumed uncorrelated.

When heterogeneities are small compared to the wavelength (`c � λ), homogenization can be used to convert
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the heterogeneous medium into an effective smooth medium where the effective wave equation can be solved effi-

ciently (Capdeville and Marigo 2007; Cupillard and Capdeville 2018). In our work, we focus on larger heterogeneities

inducing scattering, i.e. a transfer of the coherent energy in the incoming signal to an incoherent signal, further lead-

ing to a modification of seismic waves. Scattering is responsible for the coda of seismic signals (i.e. the seemingly

random wave train visible after the arrival of the coherent pulses, Fig. 1.1), the envelope broadening (i.e. S waves

having a longer duration when the travel distance is longer), and the differences between ground motion observed

at neighbouring sensors (R.-S. Wu and Aki 1988). Two main scattering regimes exist.

Large-angle scattering is characterized by `c ' λ. In this situation, heterogeneities mainly cause scattering

attenuation, i.e. the wave amplitude globally decreases with increasing distance. Hence, including this type of

heterogeneities in the geological models is important to make the simulations more realistic. When `c ' λ, one
can introduce an additional characteristic length, the transport mean free path, that describes the mean distance

between two scatterers. Although it is useful to obtain numerical solutions with the radiative transfer equations,

materials are rarely characterized with the transport mean free path.

In the small-angle scattering regime defined by `c � λ, the seismic energy is scattered into the forward direction.
This mainly causes travel time and amplitude fluctuations since waves travelling through a heterogeneity are sub-

ject to a different velocity than the background model. While seismic tomography revealed crustal heterogeneities

between 1 km- and 10 km-wide (Cottereau 2016 and references therein), several studies used 3D numerical simu-

lations to reproduce seismic recordings by altering the reference geological models with random heterogeneities.

The following studies were conducted on scales similar to ours and therefore, serve as a reference to define the

correlation lengths in our work.

In the San Francisco bay area, correlation lengths of 4 km were found by Thompson et al. 2007 in the first 10m

of the basin and Hartzell et al. 2010 confirmed correlations between 5 km and 10 km. In southern Nevada, Scalise

et al. 2021 experimented horizontal correlation lengths between 0.6 km and 2.4 km and vertical correlation lengths

from 0.15 km to 0.6 km. Finally, based on generic geological models, Imperatori and Mai 2013 found that correla-

tion lengths between few hundreds meters and few kilometers produce good agreement between simulations and

recordings.

Random fields
Random fields are a convenient approach to model geological heterogeneities since they cannot be located at a

precise location in the domain. A random fieldA can be thought of as a stochastic process defined on a probabilistic
space and the physical domain Ω ⊂ Rd. For a given realization η in the probabilistic space, Aη is a deterministic
function defining the value of the random field at any point, Aη(x). Alternatively, when fixing the spatial point
x ∈ Ω, A(x) is a random variable describing the material properties. Under some conditions on the individual
random components of the elasticity tensor, the random field describing the material is a second-order random

field (Soize 2008). Log-normal random fields are conveniently used to preserve the positivity of material properties

by assuming that any finite-dimensional variable {log(A)(x1), · · · , log(A)(xn)} is a multivariate Gaussian random
variable. Gaussian random fields are characterized by their meanm(x) and covariance Cov(x,x′) functions

m(x) := E [A(x)]

Cov(x,x′) := E
[
(A(x)−m(x))

(
A(x′)−m(x′)

)] (1.20)

The mean function is obtained from the reference geological model. The covariance function is conveniently

defined from a correlation model R that assumes some relationships between the material properties at different
points. In particular, the stationarity and isotropy assumption allows to write the correlation model as a function

of distance r = ‖x − x′‖ instead of the exact location of points x and x′. The covariance function is related to
the correlation model through the standard deviation of A(x), assumed to be constant for all x ∈ Ω, and hence
denoted σ

Cov(x,x′) = σ2R(‖x− x′‖) (1.21)

It is commonly accepted that geological parameters can be appropriately defined with a von Karman correlation

model (e.g. Hartzell et al. 2010 and references therein). The von Karman correlation model reads

R(r) =
21−ν

Γ(ν)

(
r

`c

)ν
Kν

(
r

`c

)
(1.22)

where ν is the Hurst exponent characterizing the roughness of the material (ν is fixed to 0.1 in this work), Γ is the
Gamma function, andKν is a second-order Bessel function. One can note that the correlation length can be made
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anisotropic by defining correlation lengths `x, `y , `z along each direction and scaling r independently along each
axis

‖x− x′‖
`c

=

√(
x− x′

`x

)2

+

(
y − y′

`y

)2

+

(
z − z′

`z

)2

(1.23)

To compute efficiently the random fields, the spectral representation technique (Shinozuka and Deodatis 1991;

de Carvalho Paludo et al. 2019) is adopted within the SEM3D framework. With this formulation, a centered Gaussian

random fieldA can be decomposed as a sumof independent identically distributed random variables (φn)−N≤n≤N ,
with uniform distribution over [0, 2π]

A(x) =

N∑
n=−N

√
2R̂(n∆k) cos(n∆k · x+ φn)

where R̂ is the Fourier transform of the correlation kernel R and∆k the unit volume in R3
. Figure 1.7 illustrates

two heterogeneous geological models obtained with this method, different correlation lengths and coefficients of

variation.

(a) `x = `y = 6km, `z = 3km, σ = 40% (b) `x = `y = `z = 1.5km, σ = 20%

Figure 1.7: (a) Geology with large-scale heterogeneities: correlation lengths of 6 km in directions x and y, 3 km in
direction z, coefficient of variation of 40%. (b) Geology with small-scale heterogeneities: correlation lengths of
1.5 km in directions x, y and z, coefficient of variation of 20%.

With these definitions, we are left with the choice of the coefficient of variation σ. The above-mentioned works
(Hartzell et al. 2010; Imperatori and Mai 2013; Scalise et al. 2021) use coefficients of variation between 5% and

13%. However, in local studies focusing on borehole measurements, coefficients of variation as large as 40% have

been found (El Haber et al. 2019; Chaljub et al. 2021). Although those values are associated with smaller correlation

lengths, it indicates that it is worth exploring large coefficients of variation.

1.3 Evaluation metrics
It is often required to compare ground motion time series, either between numerical simulations and recorded

seismograms, or between numerical simulations and the predictions of a surrogate model. The comparison should

account for the three components of ground motion, the temporal evolution, as well as all spatial points where

ground motion is available. No single metric can provide an exhaustive measure of the agreements between two

sets of time series and we need to evaluate several metrics to get a proper understanding of the agreement between

the time series.
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Let us consider a reference velocity time series v(x, t) and an approximation ṽ(x, t), both depending on space
x and time t. Their numerical representation is given at Nx spatial points x1, · · · ,xNx and Nt time instants

t1, · · · , tNt . Our typical variable of interest is the ground motion velocity but the metrics can be defined for other
variables. In the usual framework, the space is three-dimensional (d = 3), which means that ground motion has
three components (uE , uN , uZ , see Fig. 1.1).

1.3.1 Mean Absolute Error (MAE) and Root Mean Square Error (RMSE)
The Mean Absolute Error (MAE) and the Root Mean Square Error (RMSE) are common metrics to compare data in

machine learning. They are often used in their relative formulation

rMAE(x) =
1

Nt

Nt∑
t=1

‖ṽ(x, t)− v(x, t)‖1
‖v(x, t)‖1 + ε

(1.24)

rRMSE(x) =

√√√√ 1

Nt

Nt∑
t=1

‖ṽ(x, t)− v(x, t)‖22
‖v(x, t)‖22 + ε2

(1.25)

where ε (typically ε=0.01m/s in this work) prevents numerical artefacts due to small values.

1.3.2 Frequency biases
TheMAE and RMSE are point-wisemetrics that do not give information on the accuracy of the approximated physical

phenomena. We propose to use frequency biases to represent the agreement between the Fourier coefficients of

the approximation ṽ and the ground truth v. To do so, we compute the mean of Fourier coefficients on several
frequency intervals: low frequency (0-1Hz), medium frequency (1-2Hz), and high frequency (2-5Hz)

F (v(x))low =
1

Nf

∑
0≤f<1

|F(v(x))(f)| (1.26)

In equation (1.26), Nf denotes the number of frequencies f between 0 and 1Hz and F(v(x))(f) is the Fourier
coefficient of the time series v(x) at frequency f . Definitions naturally extend to medium and high frequencies.
Frequency biases are then defined by

rFFTlow(x) =
F(ṽ(x))low −F(v(x))low

F(v(x))low
(1.27)

It should be noted that positive frequency biases indicate an overestimation of the frequency content compared to

the reference (F (ṽ(x)) ≥ F (v(x))) while negative values indicate an underestimation. Noting that the mean of

Fourier coefficients amplitudes F (v(x)) is always positive, this implies that the frequency biases cannot be lower
than−1. Also, the frequency biases are computed individually for each of the three components of ground motion
and then, averaged.

Alternatively, Anderson 2004 defines the frequency bias as the logarithm ratio

ln

(
F(ṽ(x))low
F(v(x))low

)
(1.28)

The two definitions are not very different when the error between the prediction and the ground truth is small, which

is our main focus of interest. Indeed, writingF(ṽ(x))low = (1+α)F(v(x))low , our definition of the frequency bias
(equation 1.27) becomes α while the logarithm ratio (equation 1.28) becomes ln(1 + α). When α is relatively small
(typically |α| ≤ 0.5), both values are close.
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1.3.3 Goodness-Of-Fit (GOF)
In seismology, time series are often compared in terms of time-frequency envelope and phase misfits Kristeková et

al. 2009. The time-frequency representationW of the signal v is computed from the continuous wavelet transform

Wx(t, f) =

√
2π|f |
ω0

∫ ∞
−∞

v(x, τ)ψ∗
(

2πf
τ − t
ω0

)
dτ (1.29)

Misfits are evaluated on the envelope of the signals |Wx(t, f)| and on the phaseArg(Wx(t, f)). They can be sum-
marized by two scalar values: the envelope Goodness-Of-Fit (GOF) and the phase GOF. The envelope GOF expresses

the error of the predicted amplitude compared to the reference time series while the phase GOF describes the error

of the phase arrivals. GOFs are given on a scale between 0 and 10 where 10 means a perfect agreement and the

following score assessment is well accepted: 0-4 is a poor score, 4-6 is fair, 6-8 is good, 8-10 is excellent (Kristeková

et al. 2009). Figure 1.8 illustrates the time-frequency GOF between a reference simulation and a surrogate model

prediction. Lower GOF values are found at the time instants where signals are the most different.

Figure 1.8: Illustration of the time-frequency representation and GOF values. In the central panel, the black line is

the reference simulated ground motion and the red line is the ground motion predicted by our surrogate model

(same configuration as Fig. 3.8 but for a different sensor). At the top, the envelope GOF is shown with respect to

time and frequency. On the bottom, the phase GOF is shown. The final GOF scores are the envelope GOF (EG) and

phase GOF (PG).

Olsen and Mayhew 2010 states that GOFs are well adapted for low-frequency comparisons, which is the frame-

work of this work since the maximum frequency solved in the simulations is 5Hz. Also, one should note that the

GOFs are computed simultaneously on the three components and the normalization accounts for the three compo-

nents.

1.3.4 Intensity measures
Several intensity measures are used in seismology to evaluate specific features of ground motion. They are often

related with structural response.

The Peak Ground Velocity (PGV) is computed as the maximum absolute value of the velocity time series

PGV (v)(x) = max
t
|v(x, t)| (1.30)
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Similarly, the Peak Ground Displacement and Peak Ground Acceleration correspond to the maximum of the dis-

placement and acceleration time series. The PGV can be computed component-wise, on the norm of the three

components or more specifically, on the geometrical mean of the two horizontal components.

The Relative Significant Duration (RSD) indicates the duration of ground motion. It corresponds to the duration

of the signal between 5% and 95% of the Arias intensity (IA) (Arias 1970)

IA =
π

2g

∫ T

0
a2(t)dt (1.31)

where a(t) is the acceleration field and T is the total duration of the signal.
The Cumulative Absolute Velocity (CAV) is often computed to provide a proxy of the velocity field’s energy content

since it is found to be related to structural damage (M.-H. Wu et al. 2022)

CAV =

∫ T

0
|a(t)|dt (1.32)

1.3.5 Pseudo-Spectral Acceleration (PSA)
The Pseudo-Spectral Acceleration (PSA) is the most commonly used metric to estimate structural response. If a

structure is approximated by a linear oscillator with a given natural period T0 and a damping level (usually 5%

damping), one can compute the displacement dosc and acceleration aosc of the oscillator when the structure is
subject to ground acceleration a(t). Then, the spectral displacement is SD(T0) = maxt |dosc(t)| and the spectral
acceleration is SA(T0) = maxt |aosc(t)|. Despite being close to the spectral acceleration, the “true mesure” (J. W.
Baker and Cornell 2006) of the structural response is the pseudo-spectral acceleration (PSA), defined as

PSA(T0) =

(
2π

T0

)2

SD(T0) (1.33)

1.4 Simulations of the Le Teil earthquake (France, 2019)
This section presents the work done in 2021-2022 to simulate the Le Teil earthquake with SEM3D and the data

available at this time. In particular, this study was conducted before the publication of Smerzini et al. 2023 and

El Haber et al. 2021 within the framework of the SIGMA-2 project. They investigated several simulation methods to

reproduce the recordings of the Le Teil earthquake, including large-scale 3D physics-based simulations. We do not

aim at comparing our results with theirs (geological models and source parameters are different) but instead, we

intend to show the limitations of regional models and how random heterogeneities can complement these models.

This work was published in F. Lehmann et al. 2022 and is mostly reproduced below.

1.4.1 Context of the work
The Rhône valley was hit by a MW4.9 earthquake on November, 11

th
, 2019 known as the Le Teil earthquake. The

Le Teil earthquake is the most damaging earthquake of the last decade in metropolitan France. While the seismic

source can be constrained by InSAR data (De Novellis et al. 2020; Vallage et al. 2021), determining local geological

models is more challenging. In this region with a low instrumental seismicity (Larroque et al. 2021), poor geological

measurements are available at present. Although geophysical campaigns were conducted after the earthquake,

data remain too sparse to design a geological model at the scale of interest (Marconato et al. 2022). Therefore, the

most specific geological model is the 3D regional geological model (P- and S-waves) recently elaborated within the

framework of the SIGMA-2 international project (Arroucau 2020). Thus, in the absence of a validated local model, it

is legitimate to explore the abilities of regional-scale models in regional numerical simulations.

However, due to its insufficient resolution, this 3D geological model shows only gentle horizontal variations

representing the main geological patterns of the region (i.e. a 50 km× 115 km domain across the Rhône Valley
characterized by a crystalline basement with higher velocities in the Massif Central in the Northwest and sediments

in the plain (Ritz et al. 2020)). The 3D model especially lacks the description of the sedimentary basin extending

along the Rhône valley (Bravard and Gaydou 2015). This prevents the possibility to constrain numerical simulations

in a broad-band spectrum (0-10 Hz at least). One possible remedy consists in modelling the sedimentary basin from
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a Digital Elevation Model. Then, velocity fields can be inferred from 1D velocity profiles acquired by seismic inversion

inside and outside the basin, as done by Smerzini et al. 2023; El Haber et al. 2021. This method has already been

adopted in other low-to-moderate seismicity regions such as the Grenoble region (Chaljub 2006; Stupazzini et al.

2009).

Anothermodelling challenge is introduced by small-scale heterogeneity, which plays a crucial role in seismic wave

propagation, especially at high-frequency (Vyas et al. 2018; Scalise et al. 2021). Heterogeneity is rarely included in

numerical simulations due to the increased computational demand. It can be represented by random fields that

add small scale fluctuations to the geophysical models (Gatti et al. 2017; Svay et al. 2017).

1.4.2 Data
Source models
The Le Teil earthquake occurred on the La Rouvière fault, a fault which was not considered as active despite being

part of the larger Cevennes fault system which was potentially active (Ritz et al. 2020). Remarkably, this shallow

earthquake (1.3 km depth ± 0.5 km) induced a surface rupture. Figure 1.9 shows the map of the region of interest,
including the available recording stations and the trace of the La Rouvière fault.

Figure 1.9: Map of the region affected by the 2019 Le Teil earth-

quake, in South-Eastern France. The computational domain is in-

dicated with the dotted box. Velocimeters and accelerometers are

shown with black triangles (details in Tab. A.1).

Figure 1.10: Final slip given by the kinematic

fault model (Vallage et al. 2021).

The Le Teil earthquake was recorded by 22 stations within 70 km from the fault (Table A.1). Some velocimeters

(e.g. PAUL and BOLL in Figure 1.9) saturated while recording and they could not be considered for further analyses.

This study focuses on the stations OGDF, OGCB, CRU1 located out of the sedimentary basin since its absence from

our geological models is likely to impact synthetic ground motions inside the basin.

The hypocenter was obtained from the results of the waveform inversion (44.5188°N, 4.6694°E, depth −1.3 km,

Delouis et al. 2021). In this study, two types of seismic sources were compared, with a target seismic moment

M0 = 2.47× 1016Nm. Namely, a double-couple point source was assumed with strike = 48°, dip = 45°, and
rake = 88° (Delouis et al. 2021). Its temporal evolution is a spice bench

t 7→ 1−
(

1 +
t

τ

)
e−

t
τ , (1.34)
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with τ = 100.5(MW−6.69)
= 0.127 s (Dreger et al. 2007; Gatti 2017). In addition, a kinematic fault model was designed

from the inversion of InSAR satellite observations performed by Vallage et al. 2021 (Fig. 1.10). The fault model was

computed following the Ruiz’s Integral Kinematic (RIK) numerical scheme (Ruiz et al. 2011) implemented by Gallovič

2016. The fault was represented as a 7 km-long and 4 km-deep plane with a 60° dip and reaching the surface at its

highest point. It was further discretized in triangular patches. A bidirectional rupture front starts from the nucleation

point located at the hypocenter. Each patch activates when it is reached by the rupture front, under the constraint

that its final slip corresponds to the one obtained from the InSAR inversion.

Geological models
In the absence of a local model, two geological models for metropolitan France were adopted in this study and com-

pared. The first one is a 1Dmodel used by the Geophysical and Detection Laboratory (LDG) of the French Alternative

Energies and Atomic Energy Commission (CEA) to locate seismic events (Table 1.2, Figure 1.11a and Duverger et al.

2021). It was obtained using the Pg, Sg, Pn, and Sn phases of a series of 50+ well identified earthquakes (Veinante-

Delhaye and Santoire 1980). It presents a thin sedimentary subsurface layer with low velocity (VS = 1730m/s),

overlying a 25 km thick crustal layer (VS = 3560m/s). The average ratio between P- and S- wave velocities is 1.69.

The bedrock is described by S-wave velocities of 4650m/s.

layer thickness (m) VP (m/s) VS (m/s) ρ (kg/m3) QP QS

1 900 3000 1730 2700 200 61

2 25,000 6030 3560 2700 300 128

3 15,000 8160 4650 3300 1000 500

Table 1.2: 1D geological model used by the CEA-LDG to locate seismic events. Described in more details in (Duverger

et al. 2021).

(a) VP (black) and VS (grey) velocity profiles for the 1D ge-

ological model (solid line), 3D geological model in station

VIV1 (dashed line), and station SAUF (dotted line).

(b) 3D geological model for S-wave velocity from Arroucau 2020

Figure 1.11: Geological models used in the simulations

Alternatively, Arroucau 2020 proposed in the framework of the SIGMA2 project a 3D geological model for S-

and P-waves in metropolitan France. This model includes topography/bathymetry and was built as an improved
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and homogeneized version of partial previous models (mainly EPcrust (Molinari and Morelli 2011), combined with

ambient noise and teleseismic surface wave tomography models, a CSS-derived model, and a local earthquake

tomography study, see references in Arroucau 2020). This model has a 10 km× 10 km× 0.5 km resolution and
shows horizontal variability even at the regional scale of interest. Figure 1.11b for example shows higher surface

velocities in the North-Western mountainous part of the region compared to the plains in the South-East. The

thickness of the Earth crust is between 26 km and 31 km in the region of interest, consistently with geophysical

knowledge (Larroque et al. 2021). This model also leads to a mean VP /VS ratio of 1.72 (between 1.68 and 1.8),

which is slightly lower than the 1.9 ratio recommended by Delouis et al. 2021 to recover S-waveforms of the Le Teil

earthquake.

Heterogeneous geological models
Random fields were added to the 1D geological model to create small scale heterogeneities. They were drawn

independently in each of the three layers, thus possibly creating sharp interfaces between layers. Following previous

works described in Section 1.2, we adopted correlation lengths of 10 km in the horizontal direction and 1 km in the

vertical direction, associated with a 10% coefficient of variation. This parametrization is coherent with the results

obtained for the Le Teil earthquake via a Monte-Carlo approach of particles diffusion in a heterogeneous Earth crust

(Heller 2021). Thanks to the spectral representation (Equation 1.2.2), random fields were generated in a few seconds

for the whole domain with a 2 km× 2 km× 0.2 km resolution. They were later interpolated on the Gauss-Lobato-
Legendre (GLL) points as part of the computation process.

Simulation framework
The 50 km× 115 km× 38 km computational domain was discretized on a hexahedral mesh with 6.7million ele-
ments. With a minimum S-wave velocity of 1730m/s (in the 1D geological model) and 5 GLL points per element,

this mesh allowed wave propagation up to 5Hz. Simulations were run on 2048 cores AMD Milan @2.45GHz (AVX2)

operated by the Très Grand Centre de Calcul (TGCC, France). Thanks to this computational power, simulations were

obtained in 5800h CPUs for 60 s of simulated signal.

Figure 1.12 summarizes the configurations investigated in this study, with different combinations of sources and

geological models. When running the simulations with the heterogeneous models, we focus on the point-source

description to limit the interactions between the source and the medium which may alter the results independently

from path effects.

1.4.3 Comparison of simulations with records
Numerical results were compared with seismograms records in several stations to evaluate the parameters choices.

First, the point-source was used in conjunction with the 1D geological model. Figures 1.13 and A.1 show that despite

the simplicity of the models, the level of agreement is surprisingly good. Indeed, the frequency response spectra

show a correct corner frequency around 0.8Hz, as well as similar slopes and amplitudes.

In addition, the wave arrival times are well reproduced by the simulation, proving that the mean velocity on the

source-to-site path is correctly modelled (Fig. 1.14). The very first oscillations are also coherent with the records,

especially in station OGDF (Fig. 1.14a).

However, one can notice in Figures 1.14a and 1.14b that the numerical simulation produces late oscillations

with higher amplitudes than the recorded ones. They can be seen from 27 s in station OGDF and from 36 s in

station OGCB. These oscillations may come from the thin upper layer with a high velocity contrast defined in the

1D geological model that creates a wave guide. In fact, when the 3D geological model is used instead of the 1D

geological model, those late oscillations are no more present, as can be seen in Figures A.2a and A.2b.

Yet, the use of the 3D geological model leads to other issues. Figures A.2a and A.2b indeed show high velocity

peaks at the beginning of the signal. The peaks’s amplitude is higher than the maximal velocities recorded during

the earthquake. As an example, the horizontal Peak Ground Velocity (PGV) was 5 times higher than records in

station OGDF and 7 times higher in station OGCB. The velocity peaks indicate that the energy content of the signal

is concentrated in the first wave arrivals. This results from the smoothness of the 3D geological model: the absence

of inter-layer discontinuity prevents the multiple wave refractions and reflections that tend to spread the energy

distribution over time.

To better represent the time duration of the signal, the point-source was replaced by an extended fault model

and used in conjonction with the 3D model. Figures 1.15 and A.3 show a satisfactory agreement between the
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Figure 1.12: The simulation workflow involves a 3D geological model and a 1D geological model that was perturbed

by three random field samplings. Inside each model, seismic waves from a point source were simulated. Ground

motion generated by the kinematic fault model was also computed in both homogeneous models.

recorded and synthetic frequency response spectra in this setting. As expected, the successive nucleation of points

on the fault plane creates an energy distribution that avoids the large peaks observed with the point source (Fig-

ure A.4). The horizontal PGV was hence reduced to 1.15 and 5 times the recorded one in stations OGDF and OGCB

respectively.

1.4.4 Effects of geological heterogeneities on simulated ground motion
Figure 1.16 shows that introducing heterogeneities reduces the early peaks’ amplitude compared to the signals gen-

erated with the homogeneous 1D geological model. Heterogeneities also limit the duration and scale of the surface

wave oscillations. This behaviour is interpreted as a consequence of the diffraction induced by heterogeneities that

spread the energy content and limit the wave guide effect. Therefore, the signal obtained with a heterogeneous

medium seems more realistic than those originating from the homogeneous model.

However, one cannot claim that one sampling of a random field can represent the variability of all possible

heterogeneities. To assess the possible impacts of heterogeneities while maintaining reasonable computational

costs, two other different random fields were drawn and added to the 1D geological model. Figures A.5a and A.5b

show the ground motion response in station OGDF with those random fields. One can notice that those samplings

tend to increase the amplitude of the late oscillations compared to those obtained with the homogeneous medium.

Therefore, the influence of random fields on the surface wave oscillations was not consistent between samplings.

Given the large variability in ground motion responses arising from the three random fields samplings, it is cru-
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Figure 1.13: Frequency response spectra of the numerical simulation (in red) obtained with the 1D geological model

and a point source. Comparison with seismograms records (in black). Velocities are given in the East-West (E-W),

North-South (N-S), and vertical (Z) directions for the station OGCB.R denotes the epicentral distance.

(a) (b)

Figure 1.14: Results of the numerical simulation (in red) obtained with the 1D geological model and a point source.

Comparison with seismograms records (in black) filtered at 5 Hz. Velocities are given in the East-West (E-W), North-

South (N-S), and vertical (Z) directions for stations OGDF (a) and OGCB (b)
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Figure 1.15: Frequency response spectra of the numerical simulation (in red) obtained with the 3D geological model

and a kinematic fault model. Comparison with seismograms records (in black). Velocities are given in the East-West

(E-W), North-South (N-S), and vertical (Z) directions for the station OGCB.

cial to ensure that those responses remain physically plausible. This was done by computing the mean horizontal

Pseudo Spectral Acceleration (PSA) in three stations for the 1D geological model and the three heterogeneous mod-

els. Then, we compared the synthetic PSA with the one given by a regional Ground Motion Prediction Equation

(GMPE, Berge-Thierry et al. 2003). Figure 1.17 shows that the synthetic PSAs were within the confidence bounds

of the GMPE, thereby ensuring that our heterogeneous models were realistic. More precisely, the first and second

random field samplings were close to the GMPE. The third sampling led to PSA slightly higher than the upper bound

of the GMPE for stations CRU1 and OGDF. However, it is noteworthy that the record in station OGCB was also out of

the confidence interval. Therefore, we had no reason to reject the third sampling based on the sole analysis of the

PSA.

Moreover, Figure 1.17 shows that both the homogeneous 1D geology and the second sampling of the heteroge-

neous geology were close to the records. Although comparing the PSA did not lead to a preference for one of these

two models, we showed above that the heterogeneous model was able to reduce the surface wave oscillations.

1.4.5 Partial conclusion
Considering the sparsity of available geological data in the Le Teil region, a 1D layered geological model was not rich

enough to accurately simulate the Le Teil earthquake. Geological models can be improved by the addition of random

fields that however yield a large ground motion variability. We showed that the main ground motion characteristics

of the Le Teil earthquake can be reproduced using regional geological models. The frequency response spectra were

in satisfactory agreement with the recorded seismograms. However, the 1D geological model, with its peculiar sub-

surface layer, induced surface waves with high-amplitude oscillations. These oscillations were significantly reduced

when adding random fields to the geological model, therefore leading to more realistic signals.

With the 3D geological model, surface wave oscillations disappeared. However, this model needed to be used

in conjunction with the kinematic fault model to ensure that the signal energy was correctly spread over time.

Otherwise, the point source model led to peak ground velocities much larger than the recorded ones. We also

found some differences between ground motion generated from a point source and from an extended kinematic

fault model. We interpret these differences as plausibly coming from the low depth of the Le Teil fault.

Although the addition of random fields on the 1D geological model could reduce the unrealistic surface waves

oscillations, this effect was not necessarily consistent between stations and between different random fields sam-

plings. Therefore, a larger diversity of random fields is necessary to better understand the impacts of hetero-

geneities on ground motion.

1.5 Conclusion
We have presented the elastic wave equation that models the propagation of seismic waves in the Earth’s crust. This

equation is solved numerically with the Spectral Element code SEM3D that provides an efficient High-Performance

Computing (HPC) framework. Simulations are parametrized by a 3D geological model that often relies on random
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Figure 1.16: Numerical results in station OGDF obtained

with a point source and the 1D geological model en-

hanced with random fields (blue). Comparison with the

results of the homogeneous 1D geological model (grey)

and the records filtered at 5 Hz (black).

Figure 1.17: Pseudo Spectral Acceleration (PSA) at 1 s

in 3 stations (CRU1, OGDF, OGCB). Mean horizontal

PSA for records (pink cross), 1D model (black dots),

1D model with random fields (colored dots), and a

GMPE (grey line) with the associated confidence inter-

val (Berge-Thierry et al. 2003).

fields to represent geological heterogeneities and account for our lack of geophysical knowledge in the region of

interest. Although the seismic source can be defined as an extended fault plane, it is often approximated by the

equivalent point-wise source with the moment tensor description.

Simulations of the Le Teil earthquake highlighted that numerical simulations can reproduce recorded seismo-

grams, provided that geological models and source parameters are accurate enough. However, quantitative anal-

yses of the variability induced by heterogeneous models would require hundreds of thousands of simulations in a

typical Monte Carlo framework, which is computationally intractable. Based on the sensitivity analysis performed in

Chapter 4, let us assumeNMC = 105
Monte-Carlo evaluations of ground motion with different geological models.

Knowing that one SEM3D simulation in the whole domain lasts for 5800h CPUs, this would amount to an energy

consumption of 2.8GWh (Tab. 1.3).

Task Number of realizations Energy consumption (MWh)

SEM3D simulations 50 km× 115 km× 38 km, Tf=60 s NMC = 105
2800

Table 1.3: Estimation of the energy consumption that would be necessary for uncertainty quantification analyses

with large-scale SEM3D simulations. The energy consumption of 1 CPU is estimated to 4.88Wh.

This study illustrates the need for a surrogate model able to predict the ground motion generated by a realistic

earthquake source when seismic waves propagate through a complex 3D geological medium. The surrogate model

should be fast enough to allow repeated runs while preserving a good accuracy.
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Chapter 2

First attempts to build a reduced-order
model
In the perspective of seismic hazard analyses, we focus on the forward problem of wave propagation and we inves-

tigate the design of a surrogate model to replace SEM3D physics-based simulations. The surrogate should offer a

flexibility similar to simulations by

1. taking as input a 3D geological model that enables a detailed description of the Earth’s crust properties, and

especially geological heterogeneities

2. considering different earthquake source properties

3. predicting ground motion time series for each spatial location

The surrogate model should be accurate enough so that predicted ground motion is reliable and physically consis-

tent, and it should be significantly faster than the physics-based simulations.

Machine learning provides several well-used surrogate models, such as Gaussian processes, polynomial chaos

expansions, and projection-based reduced-order models. Despite many developments and several applications

in seismology, none of these surrogate models offers a framework that meets all our requirements (Section 2.1).

Surrogate models that depend on a 3D heterogeneous geology are especially rare, although we showed in Chapter 1

that the influence of geological heterogeneities on ground motion should be accurately quantified.

To fill in this gap, we design a database of 30 000 heterogeneous geological models and compute the ground

motion generated by an earthquake source in each geology (Section 2.2). Existing databases in the literature either

compile recorded groundmotion (e.g. STanford EArthquake Dataset (Mousavi et al. 2019), MLAAPDE dataset (Cole et

al. 2023)), in which case information on the geological properties between the earthquake source and the recording

sensor are almost nonexistent, or provide synthetic 3D geological models (e.g. Noddyverse dataset Jessell et al.

2022) with no associated ground motion. We provide the first database of physics-based earthquake simulations

in complex 3D domains with enough samples to allow machine learning applications. Our HEMEW-3D database is

publicly available (https://doi.org/10.57745/LAI6YU) and its analysis is under review in F. Lehmann et al. (2024a).

“Synthetic Ground Motions in Heterogeneous Geologies: The HEMEW-3D Dataset for Scientific Machine Learning”.

In: Earth System Science Data Discussions 2024, pp. 1–26. DOI: 10.5194/essd-2023-470.

Due to their dependence on three spatial coordinates, our geological models are described by a large number of

variables. In many surrogate models, one aims at reducing the dimension of variables to capture only the meaning-

ful relationships in a latent space of smaller dimension than the initial data space. To this end, we compare a linear

(Principal Component Analysis, PCA) and a non-linear (UNet auto-encoder) dimensionality reduction method (Sec-

tion 2.3). After evaluating the quality of the reduced geological dimension, we show its influence on ground motion

and highlight several shortcomings of this approach. This work was published as the second part of F. Lehmann

et al. (2022). “Machine Learning Opportunities to Conduct High-Fidelity Earthquake Simulations in Multi-Scale Het-

erogeneous Geology”. In: Frontiers in Earth Science 10. ISSN: 2296-6463. DOI: 10.3389/feart.2022.1029160.

2.1 Machine learning-based surrogate models
In the following sections, we highlight some commonly used surrogate models like Gaussian processes, polynomial

chaos expansion and projection-based reduced order models. While acknowledging the numerous theoretical ad-

vancements that extend those methods beyond the reference framework presented here, we focus on studies that
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have direct applications in the prediction of ground motion. Several of these works also inspired further develop-

ments of our surrogate model and their significance should not be understated.

2.1.1 Gaussian processes
A Gaussian Process (GP) is “a collection of random variables (Yx)x∈X , any finite number of which have a Gaussian
distribution” (Rasmussen andWilliams 2006). The index setX is the set of possible inputs, for instanceX ⊂ Rdmay
represent the spatial coordinates of the Gaussian process. As examples, one can think of Y as describing geological
properties or ground motion displacement as a function of space. A Gaussian Process is entirely characterized by

its mean functionm and covariance function k

m(x) = E[Yx] (2.1)

k(x,x′) = E
[
(Yx −m(x))

(
Yx′ −m(x′)

)]
(2.2)

One suitable property of Gaussian processes lies in the ease of obtaining new data from a set of training data.

More precisely, let us assume zeromean, a given expression of the covariance function (e.g. the squared exponential

covariance function k(x,x′) = σ2 exp
(
− 1

2`‖x− x′‖2
)
) and a set of training data of the form (xi, Yxi)1≤i≤n. Train-

ing datamay come from (assumed noise-free) observations and can bewritten in the short formx1:n := (x1, · · · ,xn),
Y1:n := (Yx1 , · · · , Yxn). Then, for a new observation point x∗ ∈ X , it is well-known that the output Y∗ can be
computed from the joint prior distribution conditioned on the observations (Rasmussen and Williams 2006, eq.

2.19)

Y∗|x∗,x1:n, Y1:n ∼ N
(
k(x∗,x1:n)k(x1:n,x1:n)−1Y1:n,

k(x∗,x∗)− k(x∗,x1:n)k(x1:n,x1:n)−1k(x1:n,x∗)
) (2.3)

One major difficulty is to define a suitable covariance function and adjust its hyperparameters (σ and ` in the
example of the squared covariance function) to match the training data.

Illustrative examples of Gaussian processes in our seismological objective can be divided in two broad classes.

In the first class, the geological model is prescribed and one aims at finding an interpolator of ground motion dis-

placement between a set of observation points. When considering the 3D homogeneous acoustic wave equation,

Henderson et al. 2023 showed that it is possible to build a Gaussian process that approximates the numerical solu-

tion from a small number of observations (30 sensors inside a cubic domain). However, the geological parameter

is constant and fixed, meaning that the obtained Gaussian process is specific to a given geological model. A similar

application was conducted by Tamhidi et al. 2022 from numerical simulations of the 1906 Mw 7.9 San Francisco

earthquake. They were able to estimate the acceleration time series at any point from a set of synthetic seismo-

grams but, once again, the geological model used in the simulation is fixed. In this setting, Gaussian Processes are

similar to Physics-Informed Neural Networks (PINNs, Chapter 3) in the sense that they output (an approximation of)

the solution of the wave equation in a given geological model.

In the second class of Gaussian processes applications, one considers varying geological configurations and

one wants to estimate some ground motion features corresponding to each configuration. In this context, ground

motion is not predicted as an entire time series but with some scalar features such as the spectral acceleration

at a given period (corresponding to the random variable Y ). And the input x is a set of parameters related to
the earthquake (e.g. magnitude, epicentral distance) and the ground characteristics at the location of interest (e.g.

VS,30). This is the typical framework of ground motion models where ground motion and inputs can be modelled

with Gaussian processes (Alimoradi and Beck 2015; Lacour 2023). However, this framework does not satisfy our

requirement that the surrogate model should provide ground motion time series.

2.1.2 Polynomial chaos expansion
Polynomial chaos expansion (PCE) is another well-used surrogate model, especially thanks to its strong relationship

with sensitivity analysis (Sudret 2008). This method relies on the decomposition of a random variable Y as a sum of
orthogonal polynomials φ (Wiener 1938; Ghanem and Spanos 1991)

Y (ξ) =
∑
k∈Np

αkφk(ξ) (2.4)
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Inputs are random variables ξ1, · · · , ξp that parametrize, for instance, the earthquake source or the geological
model. After deciding the form of the polynomial basis functions φk and determining the coefficients αk from a

training database, the surrogate model can infer outputs corresponding to any new values of the random inputs.

Cruz-Jiménez et al. 2018 studied the influence of the fault plane on the Peak Ground Velocity (PGV) thanks to

8000 simulations of fault rupture. Each rupture is parametrized by 7 random variables and a 9-th order PCE models

the PGV at a given station. To study the spatial variability of ground motion, one new surrogate model is built for

each station, which increases the required computation. To benefit from the spatial correlation in ground motion,

Sochala et al. 2020 applied the PCE to the dominant spatial modes of the Peak Ground Displacement (PGD). Their

model also differs by considering parameters of the geological model as input random variables instead of the

source parameters. For a given region near Thessaloniki (Greece), the 3D geological model was parametrized by 7

random variables that describe the interfaces between layers and the velocity values per layer.

The first two studies predict the maximum displacement, which does not give information on the groundmotion

dynamics. To obtain ground motion time series, F. Wang and Sett 2016 rely on an intrusive approach that intricates

the PCE inside the numerical solver of the wave equation. By doing so, both the source time function and the

geological model can be parametrized by random variables. This method was extended to a 3D domain in F. Wang

and Sett 2019. However, there are numerous situations where the numerical solver cannot be accessed by the

end-user, or even there exists no such solver. Non-intrusive approaches are therefore the only approach in those

situations.

2.1.3 Reduced-order models
The above mentioned works parametrize the inputs with a small number of random variables that correspond to

tangible physical parameters. However, when acquiring geological models from observations for instance, inputs

are high-dimensional images and there exists no close-form relationship to express the geological model as a func-

tion of parameters. In this case, one generally assumes that there exists a representation of the physical processes

in a lower-dimensional subspace and one looks for a reduced representation. Proper Orthogonal Decomposition,

Principal Component Analysis (PCA), Empirical Orthogonal Functions, and Karhunen-Loeve expansion are all differ-

ent terms to define the decomposition of a function as a sum of components which correspond to a projection

on a reduced basis. As an illustrative example, let us consider the ground motion displacement u generated by
parameters θ as a function of space x and time t. It can be decomposed as

u(x, t;θ) =

∞∑
m=1

vm(t;θ)φm(x;θ) (2.5)

where the space and time dependencies are split between two sets of basis functions, respectively temporal eigen-

modes vm(t) and spatial eigenmodes φm(x). Eigenfunctions are classically obtained by computing the eigenvec-
tors of the empirical covariance matrix. However, this matrix becomes very large when the number of snapshots

(u(xi, tj))i,j is large, which can make the computation intractable.
Ignoring the spatial dependency, a reduced basis can be obtained from a collection of seismograms and further

used to fit a Ground Motion Model (Alimoradi 2011; Hu et al. 2023). However, the generalizability of this approach

is strongly dependent on the region where seismograms were recorded. To account for different earthquake sce-

narios, Imai et al. 2021 expressed earthquake shaking maps (spatial description of PGV) as the PCA of space- and

scenario-dependent functions. The reduced-order model was built from a database of 12 scenarios and new sce-

narios were generated while preserving the probability distribution of the scenario eigenmodes. A similar approach

was followed by Rekoske et al. 2023 who predicted PGV maps for a region in south California. The input parameters

θ correspond to the description of the earthquake source (depth, strike, dip, and rake) and the spatial eigenmodes
account for the spatial correlation of ground motion. The training database was obtained from 5000 3D earthquake

simulations with a reference Californian geological model. However, the POD formulation in Equation 2.5 highlights

one challenge of this method since the basis functions vm and φm have been obtained only for a set of parameters
θ that belong to the training database. If one wants to approximate u(x, t;θ∗) for a new θ∗, more advanced meth-
ods like Empirical Interpolation Methods need to be employed (a summary can be found in Ghattas and Willcox

2021). Rekoske et al. 2023 resolved this issue by an explicit parametrization of the source eigenmodes with radial

basis functions which allows them to predict the PGV for new source parameters that do not belong to the training

database. However, the surrogate model cannot be applied with a different geological model than the one used in

the training database.
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Similarly to the intrusive approach mentioned with the PCE, the POD is also appropriate to obtain a reduced

basis for the wave equation. This approach was adopted by Hawkins et al. 2023 to express time-dependent ground

motion with less variables and therefore enable the decomposition of the empirical covariance matrix. Although

their reduced-order model generates reasonable predictions when the geological model is slightly perturbed from

the reference, it is still closely tied to the geological configuration used during training.

2.2 HEMEW-3D database
Our literature review has highlighted several works that relate the source parameters with ground motion intensity,

either in the form of intensity measures or as time series. However, much less investigations have been conducted

on the relationship between geological models and ground motion, especially when considering heterogeneous

geological models. Our study of the Le Teil earthquake showed that a better understanding of the influence of

geological heterogeneities is crucial to include site effects in 3D seismic hazard analyses. Therefore, it appears that

we need a database of various heterogeneous geological models with their associated ground motion to study the

relationship between geology and ground motion.

This section introduces the HEMEW-3D and HEMEW
S
-3D databases that have been computed for this objec-

tive. Both databases contain 30000 geological models whose description is provided in Section 2.2.2. The main

difference between the two databases lies in the fact that the earthquake source has random properties and loca-

tion in HEMEW
S
-3D while it is fixed in HEMEW-3D (Section 2.2.3). Since most of the results presented in Chapter 3

have been obtained with a random source, the emphasis is put on the HEMEW
S
-3D database in this section and

notable differences with HEMEW-3D are pointed out when necessary. For each geological model and each earth-

quake source, the solution of the elastic wave equation was solved with SEM3D and acquired at the earth surface

(Section 2.2.4).

2.2.1 Related work
There exist many datasets of worldwide seismograms that provide groundmotion time series at monitoring stations

for local as well as distant earthquakes (e.g. Bahrampouri et al. 2021; Michelini et al. 2021; Mousavi et al. 2019).

Although the datasets of recorded ground motion are incredibly important for machine learning applications in

seismology, they show several limitations. In particular, recordings are sparse in regions with low-to-moderate

seismicity or poor instrumental coverage. In addition, the only geological data associated with the recordings are, at

best, local properties at the recording station which are not sufficient to inform 3D physics-based simulations. The

BB-SPEEDset dataset provides a compilation of simulation results for several past earthquakes (Paolucci et al. 2021)

but the number of simulations is not appropriate for machine learning approaches.

Due to the high computational costs of solving 3D Partial Differential Equations (PDEs), only very few 3D datasets

are publicly available for general physical problems. In geophysics, CO2 underground storage has been explored

with machine learning based on 3D numerical simulations (Grady et al. 2023; Wen et al. 2023; Witte et al. 2023).

To support the study of Witte et al. 2023, Annon 2022 provided 4000 simulation results for 3D CO2 flow through

geological models based on the Sleipner dataset complemented by random fields (Equinor 2020). The Kimberlina

dataset also contains 6000 CO2 leakage rates simulations (Mansoor et al. 2020). However, the geological models in

both databases are all variants of the geological model carefully estimated for a given region, thereby limiting the

reproducibility in other areas.

A few datasets of realistic geological units have been developed, such as the Noddyverse dataset (Jessell et al.

2022). In this dataset, geological models result from the deformation of horizontal layers by successive geologi-

cal events (folds, faults, unconformities, dykes, plugs, shear zones, and tilts) but no associated ground motion is

provided. Along the same line of geological deformation, some databases combine geological models with asso-

ciated waveforms, and target 2D geophysical inversion as the main application (Deng et al. 2022; Liu et al. 2021).

The OpenFWI database also includes real geological models from field survey areas and models of CO2 geological

storage (Deng et al. 2022). The EFWI
database is an extension of this work to the elastic wave equation, thereby

providing two-dimensional ground motion time series (Feng et al. 2023).

As a summary, no database provides solutions of the elastic wave equation in 3D domains. Our HEMEW-3D and

HEMEW
S
-3D databases intend to fill this gap.
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2.2.2 Heterogeneous geological models
The 3D geological models are designed in terms of S-wave velocities since the average velocity of S-waves in the

top 30m (denoted VS,30) is a well-used proxy to characterize the geological properties of a given site. Geological

models VS(x) are non-stationary random fields defined as a 1D model (horizontal homogeneous layers) to which

fluctuations are added, as illustrated in Figure 2.1. The domain is a cube of size 9.6 km× 9.6 km× 9.6 km, discretized
in 32× 32× 32 voxels of size 300m× 300m× 300m.

Figure 2.1: Geological models are built by adding heterogeneities to randomly chosen horizontal layers. Then, elastic

waves are propagated from a source located randomly inside the domain with random orientation up to the surface,

where velocity wavefields are acquired.

Homogeneous models
A 1.8 km-thick homogeneous layer is imposed at the bottom of each geological model, with a constant VS value of

4500m/s. This layer was originally conceived to contain the source in the HEMEW-3D database and ensure that

the seismic waves would always originate from a region with the same properties. This assumption is relaxed in the

HEMEW
S
-3D database but the same geological models are used in both databases for the sake of consistency. Above

the bottom layer, a random arrangement of horizontal layers is designed. The number of horizontal layersN` and

their thickness are randomly chosen for each geological model, with the sole constraint to fill the remaining depth

of 9.6− 1.8 = 7.8km with 1 to 6 layers. Then, the mean layer-wise VS value is drawn from the uniform distribution
U([1785; 3214 m/s]). The bounds of the uniform distribution were determined to ensure that most values remain
bounded between VS,min=1071m/s and VS,max=4500m/s after the addition of random fields (1785 = 1071

1−0.4 , 3214 =
4500

1+0.4 and 0.4 corresponds to an interval of two 0.2 standard deviation around the mean, interval which contains

95% of values following a normal distribution). Table 2.2 gives a summary of the geological parameters.

We can already make a few observations. First, the minimum S-wave velocity of 1071m/s is rather high when

compared to S-wave velocities in soft sediments (typically of few hundreds of m/s) but coherent for hard sediments

(Molinari and Morelli 2011). One should also note that the vertical resolution of the geological models is 300m

while very low VS values are more commonly encountered in the first tens of meters and they would be averaged in

our models. Reducing the minimum velocity poses no theoretical limitation but would increase the computational

cost of the subsequent numerical simulations since it increases the number of mesh elements (equation 1.12).

Second, the maximum S-wave velocity of 4500m/s corresponds to typical VS values at the bottom of the Earth’s

crust (Molinari and Morelli 2011). Third, we do not constrain the ordering of layer-wise VS values, meaning that

some geological models may contain layers with VS values decreasing with depth, which is unphysical. However, the

physics of wave propagation is still satisfied in those situations and these geological models increase the variability

of our database.
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Parameter Statistical distribution

Number of heterogeneous layersN` U({1, 2, 3, 4, 5, 6})
Layers’ thickness h1, · · · , hN` U

(
{(h1, · · · , hN`) > 0|h1 + · · ·+ hN` = 7.8km}

)
Mean VS value per layer U([1785, 3214])

Layer-wise coefficient of variation |N (0.2, 0.1)|
Layer-wise correlation length along x U({1.5, 3, 4.5, 6 km})
Layer-wise correlation length along y U({1.5, 3, 4.5, 6 km})
Layer-wise correlation length along z U({1.5, 3, 4.5, 6 km})

Table 2.2: Statistical distribution of each parameter describing the geological models. Mean VS values, coefficients
of variation, and correlation lengths are chosen independently in each layer. Since the bottom layer has a constant

thickness of 1.8 km, it is not included in these parameters.

To solve the elastic wave equation with SEM3D, the velocity of P waves VP and the density ρ are required in
addition to VS. To reduce the complexity of the problem we aim at solving, we assume that VP and ρ can be fully
determined from VS. More precisely, the ratio of P- to S-wave velocity is fixed to VP /VS = 1.7 and the density ρ is
computed as a function of the P-wave velocity (Molinari and Morelli 2011)

ρ = 1.6612VP − 0.4721V 2
P + 0.0671V 3

P − 0.0043V 4
P + 0.000106V 5

P (2.6)

Attenuation factors for P-waves (QP ) and S-waves (QS ) are computed as

QP = max

(
VP
20
,
VS
5

)
;QS =

VS
10

(2.7)

Addition of heterogeneities
The layers’ thickness and mean value describe the general structure of the propagation domain and they corre-

spond to the prior physical information usually available. However, materials in the Earth’s crust contain much

more variability, especially along the horizontal directions. Following the methodology presented in Section 1.2, het-

erogeneities are represented as Gaussian random fields with a von Karman correlation kernel and a Hurst exponent

of 0.1 (marginal distributions are log-normal to preserve positive values). We choose correlation lengths randomly in

{1.5 km, 3 km, 4.5 km, 6 km}, to mix samples with small- and large-scale heterogeneity. In addition, large coefficients
of variation were chosen to provide high geological contrasts, following a folded normal distribution |N (0.2, 0.1)|,
with mean 0.2 and standard deviation 0.1. After the addition of random fields on the 1D geological model, VS values

are clipped between VS,min and VS,max. Figure 1.7 illustrates two geological models from the HEMEW
S
-3D database.

By allowing large correlation lengths and large coefficients of variation, we create regions with singular properties

that can mimic some forms of sedimentary basins for instance.

It should be noted that all layers have distinct coefficients of variation and correlation lengths, meaning that

different random fields are drawn inside each layer. In particular, this implies that there is no continuation of

random fields across two layers. To facilitate further analyses, a small dataset of 1000 consistent geological models

was also designed. The only difference with the HEMEW
S
-3D database is that all layers in the consistent model have

the same coefficient of variation σ and correlation length `c. Random fields are still drawn independently inside

each layer but it allows to identify one geological model with a pair (σ, `c).

2.2.3 Source parameters
The earthquake source is represented as a point-wise source, defined by its position xs and its orientation θs. In
the HEMEW

S
-3D database

1
, the source is located randomly inside the propagation domain, not too close from the

boundaries to avoid numerical issues due to absorbing boundary conditions. The source position xs = (xs, ys, zs)

1
In the HEMEW-3D database, the source position is fixed at (4.8, 4.8, −8.4 km).
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is chosen from a Latin Hypercube sampling with

xs ∈ [1.2; 8.4 km]

ys ∈ [1.2; 8.4 km]

zs ∈ [−9.0;−0.6 km]

The source orientation can be described alternatively by the three angles (strike, dip, rake) or by the 6 compo-

nents of the moment tensor
2
. In the first representation, θs ∈ R3

, the angles are sampled from a Latin Hypercube

with a strike between 0° and 360°, dip between 0° and 90°, and rake between 0° and 360°. In the second represen-

tation, the equivalent moment tensor θs ∈ R6
is computed for each set of angles (Section 1.1.3).

Figure 2.2: The seismic moment function in the HEMEW-3D and HEMEW
S
-3D databases

The source amplitude corresponds to a seismic momentM0 = 2.47× 1016Nm and the source time evolution is
a spice bench given by s(t) = 1−

(
1 + t

τ

)
e−

t
τ with τ = 0.1 s (Fig. 2.2).

2.2.4 Solutions of the wave equation
The elastic wave equation is solved in each domain with SEM3D. The maximum frequency fmax one aims at exactly
resolving is chosen at 5Hz, which is relatively high for this type of simulations. Indeed, many simulations have

been conducted so far with an accuracy up to 1 or 2Hz (Rekoske et al. 2023; Rosti et al. 2023), while high-fidelity

simulations for local realistic earthquake scenarios extend up to 10Hz, and exceptionally up to 18Hz (Table 1.1).

With 7 Gauss-Lobatto-Legendre quadrature points per side of mesh element and a minimum velocity of 1071m/s,

this leads to elements of size 300m. This choice corresponds to the discretization of the geological models in voxels

of size 300m× 300m× 300m.
Since the numerical scheme of SEM3D solves for velocity values, we consider only ground motion velocity; dis-

placement and acceleration can be obtained afterwards via integration or derivation of the velocity time series. To

maintain reasonable computational loads and reflect real-life situations, velocity wavefields are recorded only at the

surface of the propagation domain. A regular grid of 32× 32 sensors3 is placed between 150m and 9450m in both
horizontal directions. At each monitoring sensor, the three-component velocity field is synthetized with a 100Hz

sampling frequency between 0 and 8 s
4
. With the surrogate model described in Chapter 3, the velocity wavefields

were low-pass filtered at 5Hz to match the maximum frequency of the simulation, restricted to the time window

[0 s; 6.4 s] and downsampled from 100Hz to 50Hz.

2
In the HEMEW-3D database, the source orientation is fixed and corresponds to the source of the Le Teil earthquake, strike = 48°, dip = 45°,

and rake = 88° (Delouis et al. 2021)

3
In the HEMEW-3D database, the grid is coarser and has only 16× 16 sensors
4
In the HEMEW-3D database, velocity fields are synthetized up to 20 s but it appeared that most of the ground motion occurs before 8 s.

Therefore, the time duration was shortened in the following HEMEW
S
-3D database
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2.2.5 Descriptive statistics
Since most of the geological parameters are chosen uniformly randomly (Table 2.2), the geological dataset is well-

balanced: geological models with 1 to 6 layers are equipartitioned and all random fields parameters have approxi-

mately the same frequency. Mean VS values range from 1756m/s to 3145m/s.

Since our surrogate model needs to predict time series, it is interesting to explore the temporal evolution of the

target signals. The first wave arrival time is a crucial parameter for earthquake early warning. It depends on the

distance between the earthquake source and the monitoring sensor, as well as the geological properties on the

propagation path. Wave arrival times are usually determined from recordings, either manually by experts, or with

machine learning methods. However, it is possible to compute approximated arrival times from synthetic velocity

fields since ground motion is almost zero before the first wave arrival. Therefore, we obtained the wave arrival

times for the P-waves as the first time where the amplitude exceeds 0.1% of the maximum amplitude. Due to the

variability in the source depth and the different wave velocities in the geological models, first wave arrival times vary

significantly between samples and between sensors. Figure 2.3a shows that 10% of velocity time series are initiated

before 0.66 s while 10% of time series are still null after 2.18 s.

(a) (b)

Figure 2.3: Distributions of the temporal features of velocity time series at each monitoring sensor and for 30000

samples. (a) the first P-wave arrival time is computed on the vertical component (b) the Relative Significant Duration

(RSD) is shown for the East-West component, results are very similar for the two other components

The temporal evolution of ground motion can also be characterized by its Relative Significant Duration (RSD,

defined in Section 1.3.4). Figure 2.3b shows that many time series are relatively short since 25% of them have a RSD

smaller than 0.36 s. This is not surprising since synthetic time series do not contain the high-frequency components

that form most of the seismic coda. However, there are still 10% of ground motion time series that last more than

2.82 s. These observations on the first wave arrival time and on the RSD indicate that the surrogate model needs to

predict time series with very different temporal features.

Figure 2.4a firstly shows that the Peak Ground Velocity (PGV) extends over three orders of magnitude, with the

first percentile being equal to 0.89 cm/s while the 99th percentile equals 129.3 cm/s. When the propagation path is

longer, seismic waves encounter more geological heterogeneities. They create a dispersion and diffraction of waves

that spread the energy signal over time. For an earthquake source located at (xs, ys, zs) and a monitoring sensor
at (x, y, z), the hypocentral distance is defined as

Rhypo =
√

(x− xs)2 + (y − ys)2 + (z − zs)2 (2.8)

Larger hypocentral distances are associated with longer propagation paths. Figure 2.4a then shows that the PGV is

negatively correlated with the hypocentral distance.
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(a) (b)

Figure 2.4: For each sample and each sensor, the PGV is shown against (a) the hypocentral distance, (b) the S-wave

velocity at the source location. The PGV is computed on the East-West component, results are very similar for the

two other components.

It is also known that the seismic energy Es generated by a fault rupture is

Es =
M0∆σ

2µ
(2.9)

whereM0 is the seismic moment,∆σ is the stress drop and µ is the shear modulus at the fault location. Knowing
that the shear wave velocity writes VS =

√
µ/ρ, equation 2.9 indicates that the seismic energy is inversely propor-

tional to V 2
S . And Figure 2.4b confirms that the PGV is negatively correlated with the velocity of S waves at the source

location. The relationships between the PGV and the hypocentral distance, as well as the source S-wave velocity will

be used in Chapter 3 to normalize the outputs of the surrogate model and hence, reduce the variability of ground

motion amplitudes.

2.2.6 Dimensionality analyses
In supervised deep learning, it is always challenging to determine whether the size of the database (i.e. the number

of samples) is sufficient to represent its variability. This questions relates to the definition of the intrinsic dimension

of the dataset, which indicates the number of hidden variables that should be necessary to represent the main

features of the samples. In the following, we provide insights on this question with the intrinsic dimension based on

the Principal Component Analysis, the correlation dimension, the Maximum Likelihood Estimate, and the Structural

Similarity Index.

For all methods, let us consider a set of N samples {φi}1≤i≤N ∈ RD that can be either geological models or
ground motion wavefields. We assume that there exists a continuous and sufficiently smooth mapping g : Rd →
RD such that each φi ∈ RD can be identified with φ̃i ∈ Rd via φi = g(φ̃i). From this formulation, d is called the
intrinsic dimension.

Principal Component Analysis (PCA)
The Principal Component Analysis (PCA) decomposes data in principal components that correspond to the directions

where data vary themost. For different sizes of datasets, we compute the number of principal components required

to retain 95% of variance and define this number as the intrinsic dimension of data. The 3D geological models and

the 3D ground motion wavefields are transformed into 1D vectors to perform the PCA. To reduce the memory

requirements, ground motions are analyzed only on the East-West component. Geological models are represented

44



by 32× 32× 32 = 32768 points and groundmotions contain 16× 16× 320 = 81920 points (16 sensors in directions
x and y, and 320 time steps between 0 s and 6.4 s). To ease the computation on the large sample covariance matrix,
an incremental PCA algorithm was used (Ross et al. 2008).

Figure 2.5: Number of principal components (y-axis) required to represent 95% of the variance in data as a function
of the dataset size (x-axis) for geological models (left) and ground motion wavefields (right). For ground motion, the
HEMEW-3D database is used for the fixed source (black line) and the HEMEW

S
-3D database corresponds to the blue

line.

Figure 2.5 shows that more than 1000 principal components are needed to reconstruct the geological models

with high accuracy whereas the intrinsic dimension of ground motion wavefields is much higher. When the source

is fixed (HEMEW-3D database), the intrinsic dimension is 3200 while it increases to 4900 when the source has a

random location and orientation (HEMEW
S
-3D database). It is reasonable that adding degrees of freedom with a

random source increases the variability of data. However, due to its linearity, the PCA requires a large number of

components to accurately represent complex patterns. Therefore, it may overestimate the intrinsic data dimension.

Correlation dimension
An alternative dimensionality measure was introduced by Grassberger and Procaccia 1983 as the correlation dimen-

sion, which characterizes the distance between pairs of samples. For a given radius r, the correlation dimension
CN (r) is defined as the ratio of sample pairs (φi, φj)i 6=j being at distance less than r

CN (r) =
2

N(N − 1)

N∑
i=1

N∑
j=i+1

1 (‖φi − φj‖ ≤ r) (2.10)

The correlation dimension is determined as the slope of the linear part in the log-log representation ofCN (Fig. A.7).
This definition is subject to some interpretation since one should determine which portion constitutes the linear

part. Nevertheless, we found that small variations of the linear part limits had very little influence on the slope

estimate (less than one unit).

Figure A.6 indicates a correlation dimension of 8 for the geological dataset, which is significantly lower than

the PCA dimension. In fact, it is known that the correlation dimension may underestimate the intrinsic dimension,

especially “when data are scattered” (Qiu et al. 2023), which is likely to be the case in high-dimensional spaces.

However, the correlation dimension of the ground motion wavefields is debatable. It is evaluated around 12 when

the source is fixed and it drops to 2 when the source is random (Fig. A.6). In the latter situation, Fig. A.7c shows that

the log-log representation does not produce an obvious linear part.

MLE intrinsic dimension
Levina and Bickel 2004 proposed another measure of intrinsic dimension based on the Maximum Likelihood Esti-

mator (MLE) of the distance to the closest neighbours. Similarly to the correlation dimension, this method considers
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the Euclidean distance between samples φi, φj ∈ RD. Denoting Tk(φ) the Euclidean distance between φ and its
k-th nearest neighbour in the dataset, the estimated intrinsic dimension at point φ is

d̂k(φ) =

 1

k − 1

k−1∑
j=1

log
Tk(φ)

Tj(φ)

−1

(2.11)

This expression derives from the MLE estimate of dimension d when considering the observation of points in the

neighbourhood of point φ as a Poisson process (Levina and Bickel 2004). The global intrinsic dimension d̂ is finally
obtained by averaging over all points and a small number of neighbours 0 < k1 < k2

d̂ =
1

k2 − k1 + 1

1

N

k2∑
k=k1

N∑
i=1

d̂k(φi) (2.12)

The MLE intrinsic dimension was computed with the scikit-dimension package.

Figure 2.6: Intrinsic dimension estimated by the MLE (y-axis) as a function of the dataset size (x-axis) for geological
models (left) and ground motion wavefields (right). For ground motion, the HEMEW-3D database is used for the

fixed source (black line) and the HEMEW
S
-3D database corresponds to the blue line.

Figure 2.6 shows the evolution of the intrinsic dimension as a function of the number of samples for geological

models and ground motion wavefields. When the source is fixed, the intrinsic dimension of geological models is 34,

which is similar to the one of ground motion wavefields (d=37). This is sound since variability in the wavefields is
created entirely from the variability in the geological models. When the source is random, the dimension of ground

motion wavefields increases significantly (d=110). Although this method may still underestimate data with high
intrinsic dimensionality (Qiu et al. 2023), it provides higher estimates than the correlation dimension.

Structural similarity
The above mentioned measures of intrinsic dimension rely on the Euclidean distance which may not represent well

similarities between samples. Alternative metrics such as the Structural Similarity Index Measure (SSIM) have been

introduced to mimic the human perception of similarity (Z. Wang et al. 2004). The SSIM theoretically ranges from 0

to 1, with 0 indicating no similarity and 1 indicating perfectly similar samples (although values between -1 and 0 can

be obtained numerically from the covariance computation). The SSIM of two samples φi, φj is defined as

SSIM(φi, φj) =
(2µiµj + C1)(2σij + C2)

(µ2
i + µ2

j + C1)(σ2
i + σ2

j + C2)
(2.13)

where µi and µj are the means of φi and φj , σi and σj are the unbiased estimators of the variance of φi and φj ,
σij is the unbiased estimator of the covariance of φi and φj , C1 and C2 are constants determined from the range

of φi and φj values.
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Figure 2.7: The Structural Similarity Index Measure (SSIM) quantifies the visual ressemblance between images, in a

way that should mimic human perception. For each SSIM value s on the x-axis, the percentage of geological pairs
being more similar than s is reported on the y-axis.

We focus on the SSIM between geological models since it indicates a notion of sparsity among the inputs of the

surrogate model. Figure 2.7 shows that only 1.4% of geological pairs have a SSIM greater than 0.2. This means

that geological models are generally very distinct from each other in our database. For comparison purposes, the

2D OpenFWI dataset leads to significantly higher SSIM, with 31% of geologies having a SSIM larger than 0.2 (3000

models were chosen from each of the 10 OpenFWI families (Deng et al. 2022)).

Partial conclusion on the intrinsic dimension
Many different methods exist to estimate the data intrinsic dimension and we exemplified the well-known fact that

they can lead to very different values. Taking the MLE as a lower bound, one can argue that the intrinsic dimension

of the geological database is at least 30. In addition, the low values of the SSIM indicate that geologies are sparse

and quite distant from each other in the HEMEW
S
-3D database.

Concerning the groundmotion wavefields, the PCA and theMLE confirm the intuition that the intrinsic dimension

is larger when the source has a random location and orientation (HEMEW
S
-3D database) since it adds variability to

the time arrival of wavefields as well as their location at the surface. In this situation, it is reasonable to consider that

the intrinsic dimension of ground motion is at least on the order of 100. However, if data are decomposed with the

PCA, then the number of principal components is a few thousands. The correlation dimension yields questionable

estimates of the intrinsic dimension that contradict our intuition and the PCA and MLE outcomes.

It can also be noted that the intrinsic dimension increased with the number of samples, for the PCA and the MLE.

This may reflect a flaw in the intrinsic dimension’s definition or it may indicate that despite being already large, our

database of 30 000 samples does not capture all the variability.

One should also point out the relationship between the PCA intrinsic dimension and the Kolmogorov d-width,
defined as the best possible error achievable by projecting data in an original space of dimension D onto a linear
subspace of dimension d (Kolmogoroff 1936). If the error is measured with the L2 norm, then it is known that

the PCA is the optimal approximation. Greif and Urban 2019 showed that the Kolmogorov d-width cannot decay
faster than

1
4d
−1/2

for an example of the second-order equation. This is in line with our observations that good

approximations can only be achieved with a large number of principal components.

2.3 Reducing the dimension of geological models
Although the MLE and the correlation dimension provide small estimates of the intrinsic dimension, one cannot

compute the associated reduced basis. With the PCA on the contrary, it is easy to compute the basis of principal

components and hence, represent the geological models with their basis coefficients. Then, one obtains reconstruc-

tions of geological models that depend on the number of principal components retained in the basis.
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It has already been mentioned that the linearity of the PCA is one factor explaining the high intrinsic dimension.

Auto-encoders are among the most popular deep learning methods to reduce the dimensionality of inputs (Hinton

and Salakhutdinov 2006) and they are often viewed as a nonlinear extension of the PCA. Auto-encoders have been

largely used in various fields to encode complex datasets into reduced order manifolds (e.g., Kadeethum et al. 2022;

Ladjal et al. 2019), but their application on 3D data remains spurious (Gangopadhyay et al. 2021; Tekawade et al.

2021; Yu et al. 2021).

In this section, we focus on the decomposition of geological models. The relationship with ground motion is

only assessed afterwards from the reconstructed geology. This analysis is considered as a preliminary study to

investigate the feasibility of a surrogate model built on a reduced basis.

2.3.1 3D auto-encoder with a UNet architecture
By considering geological models as 1D vectors, the PCA looses the spatial organization of 3D geologies. To obtain

the same reconstruction error, onemay therefore expect a greater dimensionality reduction with a 3D auto-encoder

than a PCA. The auto-encoder is made of two sub-networks, namely an encoder that associates a 3D geological

model with a latent representation of reduced dimension and a decoder that reconstructs a 3D geology from the

latent representation while trying to minimize the error between the input and the reconstruction.

Figure 2.8: 3D UNet auto-encoder with 6 blocks of double convolutions (4 million parameters in total). Skip connec-

tions between the encoder and decoder are done via concatenation.

Our 3D auto-encoder is built from the architecture of the 3D UNet developed byWolny et al. 2020. We conducted

an exhaustive search of the main hyperparameters to adapt the proposed architecture to our objectives. Our final

encoder is composed of 6 blocks that increase the number of channels of the inputs from 1 to 256. As represented

in Figure 2.8, each block is composed of two convolutional layers. Blocks are separated by max pooling layers to

reduce the dimensionality from 32× 32× 32 with 1 channel to 1× 1× 1 with 256 channels. A batch size of 16 was
found to produce lower reconstruction errors than larger batches for both training and validation datasets. The
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decoder is made of 6 blocks of 2 transposed convolutional layers separated by upsampling to increase the spatial

dimensions.

The database of 40 000 geological fields was split in 90% of training and 10% of validation data. Inputs were

centered and normalized by 4 times the standard deviation, moving values approximately into [−0.5, 0.5]. The
training loss was simply composed of the L1 reconstruction error. The Adam optimizer was used with a learning

rate of 2× 10−4. Training the network for 1000 epochs on 4 Nvidia Ampere A100 GPUs took 9.5 h.

2.3.2 Assessing the reconstruction accuracy
Based on the analysis of the intrinsic dimension, the PCA is applied on 40000 geological models with 1024 com-

ponents. Figure 2.9 shows that geological models reconstructed with 1024 principal components are visually close

to the inputs. Indeed, the heterogeneities’ size and location correspond to the inputs. However, it can be noted

that geological fields reconstructed with the PCA lack some sharpness in the geological heterogeneities and can

appear blurrier than the input. This is especially visible on samples with a high coefficient of variation (e.g. last

row of Figure 2.9). For those samples, more than 1024 principal components are necessary to capture the small

scale heterogeneities. Quantitatively, the median Root Mean Square Error (RMSE) on all samples is 90m/s, which

corresponds to 8.6% of the minimum VS value (Fig. 2.10).

Figure 2.9: Each row represents one geological model from the test dataset of 4000 samples. (Left column) original

field. (Middle column) reconstruction with a PCA with 1024 principal components. (Right column) reconstruction

with a 3D UNet autoencoder. RMSE = Root Mean Square Error.

Reconstructions obtained with the 3D UNet are generally satisfying since heterogeneities are well reproduced.

The median RMSE is 85m/s, which is slightly lower than the PCA error (Fig. 2.10). Interestingly, Figure 2.10 shows

that the PCA and the 3D UNet lead to very different error distributions despite having a similar median error. While

the PCA reconstruction error resembles a normal distribution, the 3D UNet histogram has more values close to 0.

This means that the 3D UNet is able to create more reconstructions with a very low error. As a counterpart, the 3D

UNet also leads to more geological models with poorer reconstructions than the PCA. Among the geologies showing

a high reconstruction error with the 3D UNet, many have a low coefficient of variation (an example is visible on the
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first row of Figure 2.9). In those cases, the large error derives from a biased reconstruction by the neural network.

One possible explanation is the fact that the 3D UNet was initially proposed for segmentation, which means that

the architecture is well-suited to detect edges, but it may be less sensitive to the mean value when no clear edges

are visible. We also found that adding a penalization term on the mean bias in the loss function did not improve the

biased reconstructions.

Figure 2.10: Reconstruction error on 4000 test geological fields using a PCA with 512 components (in grey) and 1024

components (in brown), and the 3D UNet (in red). Top: histogram of the error. Bottom: boxplot of the error, boxes

extend from the 1st to the 3rd quartile, line shows the median.

2.3.3 Influence of the dimension on ground motion response
More importantly than the reconstruction error, we are interested in the ground motion generated from the recon-

structed geological models, compared to the ones generated from the input geologies. As an illustrative example,

we choose one geological model with a rather large reconstruction error, around 135m/s for both the PCA and the

3D UNet. This example represents the general observations obtained for the ground motion of 250 reconstructed

geologies. A RMSE of 135m/s corresponds to the third quartile of the reconstruction error for both PCA and 3D UNet

(Fig. 2.10). A point-wise source is located in the bottom layer and seismic waves propagate up to the surface (same

methodology as the HEMEW-3D database), in the input geology as well as the geologies reconstructed by the PCA

and by the 3D UNet. Figure 2.11 compares the ground motions generated through the original and reconstructed

geologies by displaying GOF scores at the surface.

Figure 2.11 shows that a vast majority of sensors exhibit GOFs above 8, which is considered as an excellent

agreement. Therefore, despite a large reconstruction error on the geological model, the surface ground motion is

still very close to the reference one. One can also notice that the various types of errors described above for the

PCA and the 3D UNet have very different consequences on the groundmotion generated through the reconstructed

geological models. For the PCA reconstruction, the envelope GOFs are slightly worse than the phase GOFs. This is

exemplified in Figure 2.12a where the signal amplitude is higher with the reconstructed geology than the input one.

This can be explained by the lack of small-scale heterogeneities that should have diffracted and reflected seismic

waves. Signals propagated through the reconstructed geology are therefore less attenuated than the reference

ones. However, the wave arrival times are very well reproduced since the mean velocity is correctly reconstructed

by the PCA.
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(a) PCA 1024 components (b) 3D UNet

Figure 2.11: Goodness-Of-Fit (GOF) for each sensor on a 32× 32 grid at the surface (10 means a perfect agreement).
Each GOF is given for the three velocity components: East-West (E), North-South (N), Vertical (Z) axes. EG: Envelope

GOF, PG: Phase GOF. The black triangles show the position of the sensor in Figure 2.12.

On the contrary, ground motion responses of the geological model reconstructed by the 3D UNet differ from

the input mostly in terms of phase (Fig. 2.12b). Since the 3D UNet underestimates (for this specific sample) the

mean velocity, the reconstructed signal is delayed with respect to the reference one. However, amplitudes are well

reproduced thanks to the good reconstruction of small-scale heterogeneities.

2.4 Conclusion
The aim of this chapter was to investigate machine learning based surrogate models that fulfill three requirements:

i) a parametrization with different 3D heterogeneous geological models, ii) a dependence on the earthquake source

properties, iii) the prediction of time series for each spatial point. Although several works on Gaussian processes,

polynomial chaos expansion, and reduced-order models satisfy one or two of these requirements, no methodology

was able to combine them all.

It then became necessary to build a database of ground motions associated with geological models that suits

the framework of this work and allows us to design a new surrogate model. Our HEMEW
S
-3D database is made of

30000 3D heterogeneous geological models. It contains small-scale heterogeneities to investigate scattering effects

as well as large-scale heterogeneities that represent hypothetical geological characteristics of the Earth’s crust. Each

geological model serves as the propagation domain for seismic waves generated from a point-wise source with a

random location and orientation inside the domain.

The HEMEW
S
-3D database exhibits a large variability on several aspects. The amplitude and duration of ground

motion is widespread and depends, among other factors, on i) the hypocentral distance since longer propagation

paths tend to reduce the PGV and increase the duration, ii) the seismic energy generated by the source, iii) the geo-

logical heterogeneities that induce dispersion and diffraction of seismic waves. This variability was quantified with

several measures of intrinsic dimension in the ground motion database. Although there are several PCA methods,

the analysis focused on the linear PCA. Thousands of principal components are required to capture the variability

of ground motion with very good accuracy (95% of the explained variance). Non-linear estimates of the intrinsic

dimension based on the correlation dimension and the MLE indicate intrinsic dimension at least of the order of 100.

While it is impossible to conclude on the exact intrinsic dimension of data, these analyses indicate that predicting

the solution of the wave equation in 3D heterogeneous geologies is certainly a high-dimensional problem.

Relying on a drastic reduction of the input dimension does not seem either a very promising approach for a

reduced-order surrogate model, based on our analyses of the PCA and the 3D auto-encoder. The PCA was com-

puted with 1024 components to retain good reconstruction abilities. The latent space of the 3D UNet was designed

with only 256 variables to enforce a greater reduction than the PCA. However, it should be noted that the skip con-

nections between the encoder and the decoder transmit part of the information. In our experiments, we found

that the reconstruction quality severely degrades when removing the skip connections. Without skip connections,
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(a) PCA 1024 components (b) 3D UNet

Figure 2.12: For the sensor depicted by the black triangles in Figure 2.11, velocity ground motion along the North-

South component. Black: ground motion obtained with the input VS field. Red: ground motion obtained with the
VS field reconstructed by (a) PCA and (b) 3D UNet. GOFs are represented in the frequency (FEG and FPG), time-

frequency (TFEG and TFPG), and time (TEG and TPG) domain for the envelope (top) and phase (bottom).

the latent space needed to be larger than 1024 to provide correct reconstructions, which limits the benefits of the

dimensionality reduction.

By propagating seismic waves through the geological models reconstructed by the PCA and the 3D UNet, we

showed that the selected number of components was a minimal requirement to preserve the ground motion accu-

racy. It appeared that the PCA smooths small-scale heterogeneities, thereby leading to ground motions with larger

amplitudes than the original ones. The only way to alleviate this issue would be to increase the number of principal

components, which is not the desired direction. Different conclusions were drawn for the geological models recon-

structed by the 3D UNet. The reconstruction error was somewhat similar to the one obtained with the PCA, with

more geologies having an even better reconstruction. Especially, the 3D UNet was able to produce sharp outputs

with small-scale heterogeneities being well preserved. However, some reconstructions were biased and yielded a

time shift in the output ground motion.

In conclusion, these results show that we need another way to design a surrogate model of seismic waves propa-

gation. Instead of trying to reduce the dimension of inputs into a 1D variable, we can take advantage of the cartesian

structure of the geological models and ground motion wavefields to compute efficient Fast Fourier Transforms (FFT)

of the data. Chapter 3 elaborates on the Fourier Neural Operator (FNO) that uses FFT to predict the full ground

motion wavefields. Following the energy analysis of Chapter 1, one can estimate that running 30000 SEM3D simu-

lations to build the HEMEW
S
-3D database amounts to an energy consumption of 3.3MWh (Tab. 2.3).

Task Number of realizations Energy consumption (MWh)

SEM3D simulations 9.6 km× 9.6 km× 9.6 km, Tf=6.4 s Ntrain = 30000 3.3

Table 2.3: Estimation of the energy consumption required to build the database. The energy consumption of 1 CPU

is estimated to 4.88Wh. One SEM3D simulation lasts in average 22.72h CPU. Although the database contains time

series of duration 8 s, we count only the 6.4 s used with the surrogate model in Chapter 3.
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Chapter 3

Predicting ground motion with Fourier
Neural Operators
Large datasets of internationally recorded earthquakes have enabled successful deep learning applications in seis-

mology, in tasks as diverse as: localizing the hypocenter, characterizing the type of source (earthquake, blast, am-

bient noise) and the type of earthquake (subduction, crustal, etc.), picking the phase of P- and S-waves for wave

arrival determination, reconstructing missing recorded data, detecting geological faults, imaging the sub-surface

from ground motion recordings, etc (see Mousavi and Beroza 2023; Kubo et al. 2024 for reviews of deep learning

in seismology). Focusing on the prediction of ground motion features, we should distinguish several applications.

Early works start with a Multi-Layer Perceptron (MLP) that connects all artificial neurons between two consecutive

layers (Fig. 3.1). Within this framework, MLPs are similar to GMPEs in the sense that the input layer gathers all

parameters that are expected to influence ground motion (e.g. earthquake depth, moment magnitude, source ori-

entation, epicentral distance, VS,30 at the location of interest) and the output layer contains one neuron per ground

motion feature to predict (e.g. PGV, PGA, PSA at various periods). Besides the numerous works based on recorded

earthquakes (e.g. Alavi and Gandomi 2011; Derras et al. 2016; Kalakonas and V. Silva 2022), L. Lehmann et al. 2023

used physics-based simulations with a given 1D geological model and randomly chosen seismic sources to create a

dataset of PGD, PGV, PGA from synthetic ground motions. This dataset was then used to train a MLP.

Figure 3.1: Example of a Multi Layer Perceptron (MLP) predicting ground motion features from earthquake parame-

ters and features of the location of interest. For the sake of clarity, only a fraction of the inter-neuron connections is

depicted.

Instead of considering scalar inputs that are dependent on the accuracy of the pre-processing step, ground

motion features can be predicted directly from the full ground motion time series. This approach is especially

useful in the context of Earthquake Early Warning (EEW) when the peak ground motion can be predicted from the

first seconds of ground motion recordings. Indeed, early ground motion does not contain the peak values of the

S waves, which allows to send early alerts to stations farther from the epicenter. Convolutional Neural Networks

(CNN, LeCun et al. 2015) achieve this task by applying learnable kernels to the time series and extract groundmotion

features (Hsu and C.-W. Huang 2021; Jozinović et al. 2020), Recurrent Neural Networks (RNN) take advantage of the

temporal structure of groundmotion waveforms to predict peak groundmotion (Mousavi and Beroza 2020; A. Wang

et al. 2023), while Graph Neural Networks (GNN) benefit from the spatial arrangement of seismic sensors to learn

the distance between stations (Bloemheuvel et al. 2023; Murshed et al. 2023) and Transformers learn an attention
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mechanism that informs ground motion predictions with a notion of similarity between sensors (Münchmeyer et al.

2021).

However, these methods are not suitable for structural analysis since the ground motion dynamics is not learnt

and only peak values are available. To predict ground motion time series, Datta et al. 2022 used RNN in the context

of EEW to predict the next 10 s of ground motion from the first 15 s. Generative Adversarial Networks (GAN) have

also seen several applications to create synthetic ground motion time series that resemble those from a recorded

dataset (see Marano et al. 2023 for a review of GANs in seismology). In particular, the generation can be conditioned

on properties such as the magnitude, epicentral distance, or VS,30 (Esfahani et al. 2022; Florez et al. 2022). Shi et al.

2024 extended this method with a U-shaped Neural Operator (Section 3.2.2) that can handle different resolutions,

although this advantage has not been investigated by the authors.

Although most of the above-mentioned works contain some information about the geological context (for in-

stance through the VS,30), these scalar properties give limited information on the physical propagation of seismic

waves between the source and the receiver. More detailed information can be obtained when considering geo-

logical models as inputs of the neural network. Moseley et al. 2020 proposed an auto-encoder to convert a 2D

geological model into a time-depth image that stacks groundmotion time series recordings on a line of sensors. Ge-

ological models are randomly generated from a superposition of horizontal layers fractured by a fault and outputs

are generated from the simulation of the acoustic wave equation. This example approaches our target application,

even though the prediction is disconnected from the underlying Partial Differential Equation (PDE). At this point,

we should also notice the numerous deep learning applications in full waveform inversion, where an image of the

sub-surface properties (VS for instance) is predicted from a time-depth image of recordings. Reviews can be found

in Adler et al. 2021; Y. Lin et al. 2023 and we can mention InversionNet3D (Zeng et al. 2021) as one of the few 3D

models, based on an auto-encoder made of CNN layers and invertible layers.

Contrary to data-driven methods, some neural networks are purely physics-informed and do not require any

training data. Prominent representatives of these approaches are Physics-Informed Neural Networks (PINN, Raissi

et al. 2019) where neurons in the input layer correspond to the spatial x ∈ Ω and temporal query points t ∈ [0, Tf ]

and the output layer gathers the solution u(x, t). The derivatives ∂u∂t (x, t),∇xu(x, t), · · · can be computed effi-
ciently with automatic differentiation. Then, the loss function constrains u to satisfy the PDE, providing a PDE solu-
tion without the need for any additional data. PINNs have seen many applications on the acoustic wave equation

(Rasht-Behesht et al. 2022) and the 2D Helmholtz equation with geological models of various complexities (e.g. X.

Huang and Alkhalifah 2022; Song et al. 2022; Song et al. 2023). Since PINNs are mesh-free, they can be used to solve

the wave equation with non-flat surfaces and explore the influence of topography on ground motion wavefields

(Song et al. 2022; Ding et al. 2023). However, training PINNs is challenging, especially for high-frequency features.

These difficulties are related to the conditioning of a differential operator in the PDE one aims at solving (De Ryck

et al. 2023). Several approaches have been followed to mitigate this effect, such as pre-training PINNs with lower

frequency signals (X. Huang and Alkhalifah 2022) and adding a new layer of Gabor basis functions to localize the sig-

nals (Alkhalifah and X. Huang 2023). Although some advanced training procedures have been proposed to improve

the flexibility of PINNs (Cheng and Alkhalifah 2024), another drawback lies in the fact that PINNs are tightened to a

given geological model and training needs to restart from scratch when geology changes.

It then becomes desirable to learn the solution of a PDE for a class of PDE parameters, input and/or boundary

conditions. Scientific Machine Learning (SciML) emerged in this context to design deep learning approaches that

have strong relationships with the PDEs they aim at solving (N. Baker et al. 2019). In this work, we focus on the

forward problem of the elastic wave equation 1.2 and rewrite it as

L(a,xs,θs,u)(x, t) = 0, ∀x ∈ Ω,∀t ∈ [0, Tf ] (3.1)

where we remind that a : Ω→ R+
is the PDE parameter (S-wave velocity), xs ∈ R3

is the source position, θs ∈ R3

or θs ∈ R6
is the source orientation, and u : Ω × [0, Tf ] → R3

is the solution of the elastic wave equation. The

boundary condition is fixed to absorbing boundary conditions on all surfaces excepting the traction-free top surface.

The solution of the elastic wave equation is then given by

u = G(a,xs,θs) (3.2)

so as to satisfy equation 3.1. Typically, SEM3D plays the role of the operator G and it is assumed that the numerical
solver provides an error-free solution in the frequency range of validity. We aim at finding a surrogate model Gφ
parametrized by φ that is a good approximation of G. The surrogate model is obtained with supervised learning
as the solution of a regression problem. More precisely, for a set of inputs (ai,xis,θ

i
s)1≤i≤N , the corresponding
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solution (ui)1≤i≤N is computed with the numerical solver G. From these training samples, we aim at finding the
optimal parameter φ∗

φ∗ = arg min
φ

N∑
i=1

‖Gφ(ai,xis,θ
i
s)− ui‖ (3.3)

where ‖ · ‖ is a norm to be specified. This framework is often called a parameter-to-solution mapping since the
surrogate seeks the solution u that corresponds to a given set of parameters (a,xs,θs).

In the following, we review some SciML works applicable in our context and, due to the vast and rapidly expand-

ing literature, we give a particular emphasis to approaches that have already seen applications with wave propaga-

tion (Section 3.1). Among the wide variety of methods, the Fourier Neural Operator (FNO, Z. Li et al. 2021) fulfills our

requirements and its methodology is detailed (Section 3.2). Our first study of the FNO involved the U-shaped variant

of the FNO (U-NO, Rahman et al. 2023), with which we provided the first prediction of the 3D wave equation using

neural operators in F. Lehmann et al. (June 2023). “Fourier Neural Operator Surrogate Model to Predict 3D Seis-

mic Waves Propagation”. In: 5th ECCOMAS Thematic Conference on Uncertainty Quantification in Computational

Sciences and Engineering. Athens, Greece. DOI: 10.7712/120223.10339.20362

Our next developments were done with the Factorized Fourier Neural Operator (F-FNO, Tran et al. 2023) that

greatly reduces the number of parameters and improves the predictions accuracy. With this method, the choice of

hyperparameters was thoroughly investigated and some of the analyses are reproduced (Section 3.3.3 and 3.4.1).

Using the HEMEW-3D with a fixed seismic source, we showed that predictions of the 3D elastic wave equation can

be efficiently obtained thanks to a depth-to-time conversion (detailed in Section 3.2). This work was published in

F. Lehmann et al. (Feb. 15, 2024b). “3D Elastic Wave Propagation with a Factorized Fourier Neural Operator (F-FNO)”.

in: Computer Methods in Applied Mechanics and Engineering 420, p. 116718. ISSN: 0045-7825. DOI: 10.1016/j.cma.

2023.116718

Then, we introduced our Multiple-Input Fourier Neural Operator (MIFNO) that enables the first prediction of the

3D elastic wave equation depending on both the geological model and the source characteristics. After analyzing the

results accuracy (Section 3.3), we try to understand the prediction error and how it relates to input parameters (Sec-

tion 3.4). We finally test the generalizability of the MIFNO in different settings to assess its robustness (Section 3.5).

This work is currently under review in the Journal of Computational Physics: F. Lehmann et al. (2024c). Multiple-Input

Fourier Neural Operator (MIFNO) for Source-Dependent 3D Elastodynamics. arXiv: 2404.10115. preprint.

3.1 Scientific Machine Learning for PDEs
When trying to solve PDEs with deep learning, one first approach consists in exploiting the advantages of available

numerical solvers, such as their accuracy, and mitigating their weaknesses with deep learning. In particular, the

computational time is often the bottleneck of numerical solvers, especially when refining the mesh, and neural

networks can significantly reduce the total time (Section 3.1.1). However, it is also desirable to obtain a surrogate

model that can run independently from a numerical solver, once duly trained. In this direction, a line of work relies

on the assumption that PDE solutions evolve in a subspace of reduced dimension (e.g. X. Huang et al. 2022, Z. Li et al.

2023a, Bhattacharya et al. 2021, P. Chen et al. 2024, Regazzoni et al. 2023, Lee and Carlberg 2021, Venturi and Casey

2023). Building on ideas already developed in Section 2.1, these deep learning approaches rely on neural networks

to exhibit a database of basis functions. Most of these approaches are auto-regressive and need to compute the

solution at time t − 1 to compute the results at time t, which can hinder the accuracy for long prediction horizons.
Also relying on a form of basis functions, the Deep Operator Network (DeepONet, Lu et al. 2021) was one of the

earliest methods to provide PDE solutions for a class of PDE parameters (Section 3.1.2). Neural operators are defined

as an extension of neural networks when inputs and outputs are functions. Deriving from the theory of kernel

integral operators and benefiting from the efficiency of the Fast Fourier Transform (FFT), the FNO has seen many

developments and several applications around the wave equation (Section 3.1.3).

3.1.1 Interfacing numerical solvers with machine learning
The speed of neural networks predictions makes them ideal candidates to accelerate the most demanding opera-

tions of numerical solvers. Numerical simulations are especially costly when run for high frequencies and refined

meshes (the latter being often a necessary condition for the former). In this setting, neural networks can learn the

mapping from a coarse grid to a finer grid. Coarse grid solutions are typically obtained with numerical solvers at
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moderate computational costs and, after training, the neural network provides the corresponding fine-grid solution.

For instance, seismic inversion was tackled with 2D finite differences enhanced by a UNet auto-encoder (Gadylshin

et al. 2021).

The computational costs of numerical solvers also arise from repeated iterations to reach convergence of min-

imization problems, such as Newton iterations. These processes become significantly faster if one is able to start

from a suitable initialization value. CNN auto-encoders have been used as preconditioners for a numerical solver of

the Helmholtz equation (Azulay and Treister 2023; Lerer et al. 2023). Some iterations can also be directly replaced by

neural networks such as DeepONet (E. Zhang et al. 2022), whose architecture will be specified in Section 3.1.2. Sub-

stantial speed-ups can also be achieved by learning optimal parameters in standard numerical integration schemes

(Mishra 2018).

3.1.2 Deep Operator Networks
The Deep Operator Network (DeepONet, Lu et al. 2021) originates from the universal approximation theorem and

relies on an architecture split in two sub-networks. On the one hand, a branch network takes PDE parameters

discretized at several points {a(x1), · · · , a(xm)} as an input and predicts a latent vector b = (b1, · · · , bp). In our
framework, the input would correspond to the evaluation of a geological model at some sensors but it could also

be an initial or boundary condition. On the other hand, a trunk network predicts a latent vector r = (r1, · · · , rp)
from the coordinates (x, t) where one would like to obtain the solution. Then, the output is obtained as the scalar
product 〈b, r〉 and it should approximate the solution of the PDE parametrized by a,G(a)(x, t). The choice of layers
inside the branch and trunk networks is flexible but fully connected and convolutional layers are commonly found.

Figure 3.2: Illustration of the vanilla DeepONet (Lu et al. 2021) made of a branch network and a trunk network. For

a PDE parameter a discretized at points x1, · · · , xm and a query point (x, t), it outputs the solution of the PDE
defined by a at the query point,G(a)(x, t).

Among the many DeepONet extensions, one can notice the Physics-Informed DeepONet that constrains the

solution to satisfy a given PDE with an additional term in the loss function, thereby reducing the number of training

data (S. Wang et al. 2021). The MIONet augments the architecture with several branch networks to accept multiple

inputs (Jin et al. 2022). A variant called GreenONet was designed to predict the Green function solution of the wave

equation when the initial condition is given as an input (Aldirany et al. 2023). A 2D DeepONet was also applied for

seismic inversion but it was complemented with a FNO to predict 2D maps of geological models (M. Zhu et al. 2023).

However, Haghighat et al. 2024 noted that “DeepONets show weakness in learning operators in which the output

solution moves spatially, corresponding to variations in the input function”. Therefore, they designed an Extended-

DeepONet that becomes aware of the function localization and used this model to solve the Eikonal equation. The

DeepONet surrogatemodel was then used as a replacement of a numerical solver to find the earthquake hypocenter

as the minimizer of a traveltime problem.

However, all of these works involve mapping inputs with a p-dimensional vector and to the best of our knowl-
edge, this has not been achieved for 3D inputs. When considering 3D heterogeneous geologies, the input discretiza-

tion must be fine enough to capture the small-scale geological heterogeneities, which leads to high-dimensional

inputs. And the analyses conducted with the PCA and the 3D UNet have not led to any 1D geological encoding with

a reasonable size. On the contrary, the FNO strongly relies on a regular discretization of the inputs.

3.1.3 Fourier Neural Operators and variants
Before explaining the FNO architecture in the next Section 3.2, we review existing works based on the FNO that

tackle wave propagation problems. Similarly to the DeepONet, the FNO takes as input the initial condition, boundary

condition, or parameter of a PDE and predicts its solution. For time-dependent PDEs, the FNO can either predict the
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solution in an auto-regressive manner where u(x, t + 1) is obtained from u(x, t), or by augmenting the problem
dimension, predict the entire solution (u(x, t = 0), · · · , u(x, t = T )) in a single iteration.
The FNO and several variants were shown to be efficient surrogate models for the 2D wave equation, using

the acoustic (Wei and L.-Y. Fu 2022; Y. Yang et al. 2021), elastic (O’Brien et al. 2023; Y. Yang et al. 2023; T. Zhang et

al. 2023), or Helmholtz (B. Li et al. 2022) formulation (Tab. 3.1). Although the FNO was used for different objectives

such as predicting high-frequency components from low-frequency features (Song and Y. Wang 2022) and predicting

the following time steps based on the first iterations (Wei and L.-Y. Fu 2022; T. Zhang et al. 2023), several studies

map a 2D geological model with the ground motion generated through this model. Geological models are obtained

from random fields with a homogeneous background (coefficient of variation around 0.1), geometrical constructions

where objects are embedded into a homogeneous background and create sharp discontinuities, or the OpenFWI

dataset that contains different types of layers (Deng et al. 2022). When predicting solutions of the 2D elastic wave

equation, Y. Yang et al. 2023 also consider a varying VP/VS ratio via random fields with large correlation lengths.

FNO applications in 3D are rare, especially for time-dependent PDEs. We were the first to show that the FNO can

predict solutions of the 3D wave equation with the U-NO (F. Lehmann et al. 2023) and then, the F-FNO (F. Lehmann

et al. 2024b). We proposed a depth-to-time conversion to predict the solution only at the surface of the propagation

domain, where observations are usually available in real-life situations. Kong and Rodgers 2023 and C. Zou et al.

2023 instead use a 4D FNO (resp. 4D U-NO) to predict solutions of the elastic wave equation at all points in the

domain but this leads to high computational and memory requirements.

In 2D and 3D, some studies consider both the source location and the geological parameters as input variables

(Kong and Rodgers 2023; O’Brien et al. 2023; Y. Yang et al. 2023; C. Zou et al. 2023). Yet, these works do not take into

account the different nature of the geological and source parameters: a structured 2D or 3D field for the geology

and a vector of coordinates for the source. The source position is encoded as a binary field where a single pixel of

value 1 describes the source location. In addition, an earthquake source cannot be described solely by the source

location since its orientation also plays a crucial role, through the definition of the moment tensor. With the notable

exception of O’Brien et al. 2023 that restricts their analyses to 2D and mention "significant challenges" to extend

their methodology to 3D, the above-mentioned works consider an isotropic explosive source. In this situation, the

moment tensor is fixed and does not need to be learnt by the surrogatemodel. But it prevents earthquakemodelling

that requires a moment tensor description of the source. We propose the MIFNO architecture to include both the

source location and moment tensor by considering their vector representation.

3.2 Fourier Neural Operator for the elastic wave equation
3.2.1 Fourier Neural Operator principles
Let us consider a PDE that depends on parameters a and the source term f(Xs) := f(xs,θs)

Lau(x, t) = f(Xs)(x, t) (3.4)

Let us introduce the variable ξ = (x, t) to ease the notation and Ωξ = Ω × [0, Tf ] where Ω = [0; Λ]3 is the
propagation domain and Tf > 0 is the final time. For the theoretical introduction of the surrogate model, we
consider that u has values inR and the reasoning can be easily extended to the different components of the solution
in the case of multi-dimensional outputs. IfGa : Ω× Ω→ R is the Green function solution of

LaGa(ξ, ·) = δξ, (3.5)

it is well-known that the general solution u can be obtained as a convolution of the Green function and the initial
condition

u(ξ) =

∫
Ωξ

Ga(ξ, ξ
′)f(ξ′)dξ′ (3.6)

Z. Li et al. 2020 proposed to model the Green functionGa as a neural network κψ with parameters ψ

Ga(ξ, ξ
′) := κψ

(
ξ, ξ′, a(ξ), a(ξ′)

)
(3.7)

Embedding the integral formulation 3.6 with the kernel neural network, one can then introduce hidden variables

v0, · · · , v`, · · · , vL that are obtained via

v`+1(ξ) = σ

(
Wv`(ξ) +

∫
Ωξ

κψ(ξ, ξ′, a(ξ), a(ξ′)v`(ξ
′))dξ′

)
(3.8)
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whereW is a bias matrix and σ is the activation function (Gaussian Error Linear Unit, GELU, Hendrycks and Gimpel
2023). The integral operator appearing in Eq. 3.8 is denoted

Kψ(a)v`(ξ) :=

∫
Ωξ

κψ
(
ξ, ξ′, a(ξ), a(ξ′)

)
v`(ξ

′)dξ′ (3.9)

Kψ is a crucial component of the FNO and it concentrates most of the weights learnt by the network. It also requires

computing an integral, which is always a numerical challenge, addressed by the Fourier formulation (detailed below).

In the parameter-to-solution framework, the surrogatemodel predicts the solution u from the input a. To achieve
this, Z. Li et al. 2020 defines the learning a 7→ u as an iterative process(

a(ξ)
ξ

)
P−→ v0(ξ)

F1−→ v1(ξ)→ · · · F`−→ v`(ξ)→ · · ·
FL−−→ vL(ξ)

Q−→ u(ξ) (3.10)

Iterations can be decomposed in three main parts that are detailed hereafter: an uplift block P , a succession of
Fourier layers F1, · · · , FL, and a projection blockQ (Fig. 3.3).

Figure 3.3: FNO architecture to predict the three components of ground motion uE , uN , uZ from the geology a

It is important to note that the formulation is given for functions of ξ and this notation is preserved in the
following. Indeed, neural operators predict functions, contrary to neural networks that predict scalar values. Also,

we focus on the parameter-to-solution methodology since it corresponds with our objective. But the FNO can also

be used to predict the solution from the initial conditions or to predict the solution at time t + 1 from the solution
at time t with the same implementation.

Uplift block P
The first step of the iterative process (Eq. 3.10) is an uplift block P that i) combines the input a with coordinates
and ii) increases the data dimension by augmenting the number of channels. The input a is represented as a 3D
tensor that contains the discretization of the function a on a Cartesian grid (xi, yj , zk)1≤i≤Sx,1≤j≤Sy ,1≤k≤Sz ⊂ Ω
with regular spacing ∆x,∆y,∆z. To preserve the functional representation of the neural operator, the architec-
ture should ensure that predictions can be queried at any point x ∈ Ω at inference stage. This is achieved by

combining the point’s coordinates xi, yj , zk with the input value at this point a(xi, yj , zk). In practice, the point

x = (xi, yj , zk) is identified with its image in the unitary cube [0, 1]3: x̃ = (∆x i
Sx
,∆y j

Sy
,∆z k

Sz
). The four values

a(xi, yj , zk), x̃i, ỹj , z̃k are then given as inputs to the uplift block P (Fig. 3.4).
The second objective of the uplift block is to embed the inputs into a higher-dimensional space. To do so, P con-

sists of two dense layers to produce hidden variables v0(xi, yj , zk) ∈ Rdv (Fig. 3.4), where dv is a hyperparameter
to tune (the reference is chosen as dv=16 in this work). Finally, from the concatenation of four matrices (a, x, y, z)
each being of size Sx × Sy × Sz , P outputs a four-dimensional hidden variable v0 of size Sx × Sy × Sz × dv . It
should be emphasized that P acts point-wise and therefore, the mapping involves the same weights at each point.
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Figure 3.4: The uplift block P consists of two dense layers with 128 neurons each, followed by GELU activation. It
takes as input the PDE parameter a and coordinates x, y, z. It outputs the first hidden variable v0. Note that only a

fraction of the inter-neurons connections are displayed for the sake of clarity.

Fourier layers F`
Equation 3.6 involves computing an integral on the domainΩξ , which is a main computational concern. The original

formulation of Z. Li et al. 2020 used a graph to compute the value at point ξ from the values of points in a neigh-
bourhood of fixed radius. However, the computational efficiency can be significantly improved by relying on the Fast

Fourier Transform (FFT). For this purpose, Z. Li et al. 2021 assumes that κψ is a convolution kernel, i.e. stationary
and independent from a, κψ(ξ, ξ′, a(ξ), a(ξ′)) := κψ(ξ − ξ′). Thanks to this assumption, the integral operator can
be written as a convolution

Kψ(a)v` = κψ ∗ v` (3.11)

From the convolution theorem, the convolution can be written as a product in the Fourier space

Kψ(a)v` = FFT−1 (FFT (κψ) · FFT (v`)) (3.12)

Since κψ is a neural network whose weights need to be learnt, they can be learnt directly in the Fourier space by
definingRψ := FFT (κψ). Transforming Eq. 3.8 with this method leads to the formulation of the Fourier layer

v`+1 = σ
(
Wv` + FFT−1 (Rψ · FFT (v`))

)
(3.13)

To reduce the number of learnable weights, the high-order Fourier modes are discarded. DenotingMx,My ,Mz the

number of Fourier modes preserved in each direction,Rψ is a complex tensor of sizeMx ×My ×Mz × dv × dv .
The full iterative process (Eq. 3.10) involves a succession of L Fourier layers (Tab. A.2). Although the reference

FNOmodel has L=4 layers, this hyperparameter is optimized alongside the number of Fourier modesMx,My ,Mz .

Projection blockQ
After the last Fourier layer FL, the hidden variable vL needs to be projected back to the physical space. The projec-
tion blockQ is similar to the uplift P since it contains two dense layers separated by a GELU activation layer. When
predicting the solution of the elastic wave equation, u has three components that correspond to the three directions
of motion (East-West, North-South, vertical). They are obtained by three distinct projection blocksQE ,QN ,QZ

uE = QE(vL)

uN = QN (vL)

uZ = QZ(vL)

(3.14)

3.2.2 U-shaped Neural Operator (UNO)
The U-shaped Neural Operator (U-NO, Rahman et al. 2023) encompasses the Fourier layer into an architecture

inspired from the UNet (Ronneberger et al. 2015). It comprises eight Fourier layers split into an encoder part (four
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Fourier layers) with intermediate outputs of decreasing dimensions, and a decoder part (four Fourier layers) with

increasing dimensions (Fig. 3.5 and Tab. A.3). Skip connections between the encoder and decoder are done via

interpolation and concatenation. This architecture allows a deeper model than the FNO with a smaller number of

parameters (from 58.7million to 24.6million) despite having twice more layers.

Figure 3.5: Representation of the U-NO, with four Fourier layers in the encoding part and four Fourier layers in the

decoding part.

One important feature of the U-NO is its ability to modify the dimensions between v` and v`+1. In the encoder

part, dimensions are reduced by decreasing the number of Fourier modes in each Fourier layer. Although the orig-

inal implementation suggests to increase the number of channels dv alongside the dimension reduction (Rahman
et al. 2023), this was not applied in our work. In the decoder part, dimensions are augmented by increasing the

number of Fourier modes preserved inside each Fourier layer and padding with zeros when necessary. Especially,

this trick allows us to obtain ground motion wavefields uE , uN , uZ that have a larger dimension (Sx=32, Sy=32,
St=320) than the geological input (Sx=32, Sy=32, Sz=32). This is applied to all neural operators used in this work.

3.2.3 Factorized Fourier Neural Operator (F-FNO)
The number of weights in the Fourier layer (Eq. 3.13) becomes very large when solving 3D PDEs. Indeed, weights

Rψ are of sizeMx ×My ×Mz × dv × dv . The factorized Fourier Neural Operator (F-FNO) was introduced by Tran
et al. 2023 to reduce the number of learnable parameters. The general architecture of the F-FNO is similar to the

FNO and is illustrated in Fig. 3.6.

First, the structure of the factorized Fourier (F-Fourier) layer is slightly modified compared to the Fourier layer by

introducing two bias matricesW 1
` andW

2
` , and applying the residual connection outside the activation function

v`+1 = v` +MLP (K`(v`))
MLP (k) = W 2

` σ
(
W 1
` k + b1`

)
+ b2`

(3.15)

where b1` and b
2
` are scalar biases. However, the main difference lies in the formulation of the integral operatorKψ .

Instead of computing 3D Fourier transforms as in Eq. 3.12, Fourier coefficients are computed independently along

each dimension

Kψ(a)v` = FFT−1
x (Rψ,x · FFTx(v`)) + FFT−1

y (Rψ,y · FFTy(v`)) + FFT−1
z (Rψ,z · FFTz(v`)) (3.16)

This reduces the number of learnable weights to (Mx+My+Mz)×dv×dv . Consequently, a 4-layer F-FNO contains
only 139000 parameters, compared to 58.7million for the FNO (Tab. A.4).

3.2.4 Multiple-Input Fourier Neural Operator (MIFNO)
The F-FNO predicts the geology-to-ground-motion mapping but does not account for the variability due to the

source. Works like Kong and Rodgers 2023; C. Zou et al. 2023 add the source position as an additional input to

the Neural Operator. This is done by inserting a fifth variable alongside a and the grids x, y, z. This variable is a
cube full of zeros with a single pixel of 1 denoting the source position. We propose an alternative architecture that

takes advantage of the vector representation of the source to include more source parameters.
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Figure 3.6: The F-FNO is made of one uplift block P , a succession ofL factorized Fourier layers, and three projection
sub-networksQE ,QN ,QZ . The details of a factorized Fourier layer are given to show the decomposition of the FFT
along each dimension.

Inspired by the MIONet architecture that designs separate branches for each input (Jin et al. 2022), we design

a Neural Operator architecture that encodes the source parameters in a specific source branch. Our Multiple-Input

Fourier Neural Operator (MIFNO) is illustrated in Fig. 3.7.

In our MIFNO, the succession of factorized Fourier layers is split in two parts. From layers 1 to K , factorized
Fourier layers act on the geology as in the original F-FNO. This forms the geology branch. In parallel, the source

branch takes as input the vector of source coordinatesxs concatenated with the source orientation θs. Even though
resolution invariance requires additional conditions (Bartolucci et al. 2023), FNOs can always be technically applied

to inputs having a different resolution than the resolution used during training. This property must be preserved in

the source branch, which is not trivial for convolutional layers whose number of weights depend on the size of the

inputs. To circumvent this issue, the layers in the source branch are defined based on the number of modes used in

theK-th factorized Fourier layer,Mx,My ,Mz , and not the actual size of the inputs.

Several architectures were investigated to design the source branch (not shown) and we found that the best one

was made of a perceptron and two convolutional layers separated by reshaping operations. The source branch can

be decomposed in the following steps:

1. a 2-layer perceptron encodes the source characteristics in two dimensions. Its first layer contains 128 neurons

and its second layer 4MxMy neurons. The reshaping operation leads to a 3D variable of size 2Mx×2My×1.
2. a 2D CNN (with kernel size of 3) creates the third dimension. A first convolutional layer creates 8 channels and

a second layer creates 2Mz channels. After reshaping, one gets a 4D variable of size 2Mx × 2My × 2Mz × 1.
3. a 3D CNN (kernel size of 3) adds the channel dimension with two convolutional layers.

At the end of the source branch, the ModifyDimensions layer transforms variables into the Fourier space where

Fourier coefficients are padded with 0 if necessary, and then inverse transformed to obtain the same dimension as

the output of the geology branch vK , i.e. Sx × Sy × Sz × dv .
To combine variables from the geology and source branches, we take inspiration from Haghighat et al. 2024 who

propose a 2D eXtended-DeepONet for earthquake localization. Following this idea, vK and vs are summed, sub-
stracted, and multiplied before being concatenated along the channel dimension. This leads to a variable of size

Sx × Sy × Sz × 3dv that is then sent to the remaining factorized Fourier layers,K + 1 to L. The final projection
layersQE ,QN ,QZ are identical to the F-FNO.

It can also be noted that the MIFNO is exemplified with factorized Fourier layers but the architecture can be

extended to other types of layers. The MIFNO used in this work contains 16 factorized Fourier layers in total (L =
16), including 4 layers in the geology branch (K = 4). The number of channels is fixed to dv = 16. Its total number of
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Figure 3.7: TheMIFNO ismade of a geology branch that encodes the geology with factorized Fourier (F-Fourier) layers,

and a source branch that transforms the vector of source parameters into a 4D variable matching the dimensions

of the geology branch output. Outputs of each branch are concatenated after elementary mathematical operations

and the remaining factorized Fourier layers are applied. Uplift P and projectionQE ,QN ,QZ sub-networks are the
same as in the F-FNO.

parameters amounts to 3.40million. The initial learning rate is 0.0004 and is halved on plateau, and the loss function
is the relative Mean Absolute Error. The choice of hyperparameters and training strategies were investigated for the

F-FNO (Section 3.3.3) and the best hyperparameters are preserved for the MIFNO. 27000 samples were used for

training and 3000 for validation. Training was performed on 4 Nvidia A100 GPUs for 200 epochs, which took 29.6 h.

Considerations related to inputs and outputs
It is important to note that the inputs and outputs of our Neural Operators do not live in the same physical space.

In fact, inputs are geological models

a(x, y, z), (x, y, z) ∈ Ω.

while outputs are velocity wavefields defined at the surface of the propagation domain ∂Ωtop. In Eq. 1.2, u denotes
displacement at any point inside the domain while our Neural Operators predict velocity only at the surface. By

abuse of notation, u denotes surface velocity ∂u∂t |∂Ωtop
in the following and the Neural Operators’ outputs are

u(x, y, t) =

(
uE(x, y, t)
uN (x, y, t)
uZ(x, y, t)

)
, (x, y) ∈ ∂Ωtop, t ∈ [0, Tf ].

By writing Fourier layers as functions of a hidden non-physical variable ξ, we interpret this variable ξ as transporting
the depth information z contained in the third dimension of a into the temporal dimension t of u. This depth-to-
time conversion is a crucial feature to predict the solution of a 3D time-dependent PDE without the need for a 4D

surrogate model.

Some care should be taken to normalize the inputs and outputs since their variability ranges are significantly

different. Geological models are normalized to a Gaussian distribution, by centering them with respect to the mean

geology and normalizing by four times the geological standard deviation. This normalization is the same as the

one used to train the 3D UNet on geological reconstruction (Section 2.3.1) and yields geological values close to

the interval [−0.5; 0.5]. The source coordinates and the source angles are mapped to the [0, 1]3 cube. Velocity
wavefields predicted by the MIFNO are normalized with a scalar (i.e. independent of the sensor coordinates) that

depends only on parameters known beforehand: the S-wave velocity at the source location VS(xs) and the source

depth zs. The normalization value is c = Vs(xs)
√
z2
s + (Λ/4)2 where Λ is the length of the domain. The first

term relates to the seismic energy released by an earthquake, which is inversely proportional to the shear modulus

(hence, to the S-wave velocity) at the rupture location (Eq. 2.9). The second term accounts for the amplitude decrease

of seismic waves generated by deep sources since they undergo more geometrical dispersion and diffraction. One

should note that the normalization is applied during training to compute the loss function, but results presented

hereafter have been denormalized.
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3.3 Predictions accuracy
This section illustrates the MIFNO prediction ability. A representative example of MIFNO prediction is discussed in

Section 3.3.1 and predictions on the test dataset are quantitatively assessed in Section 3.3.2. To justify the choice of

the factorized Fourier layers and the MIFNO hyperparameters, the main results obtained for the F-FNO trained with

the HEMEW-3D database are summarized in Section 3.3.3. In Section 3.3.4, the MIFNO is compared with variants of

the F-FNO to ensure that the complexity added by the random source is well managed by the MIFNO architecture.

3.3.1 Prediction illustrations
Figure 3.8 illustrates the MIFNO predictions for a geology in the test dataset (Fig. 3.8a) and a source located at (3.9,

2.6, −6.2 km) with a strike of 298.7°, dip of 85.3°, and rake of 15.4°. The time series show an excellent accuracy on the

three components since the wave arrival times are exactly reproduced: P-waves around 1.6 s and S-waves around

2.7 s (Fig. 3.8b). The peaks amplitude is also very similar between the prediction and the simulated ground truth.

The frequency representation confirms the excellent agreement for all frequency ranges (Fig. 3.8c) and the three

components.

At the depicted sensor, the envelope GOF is 8.7 and the phase GOF is 9.5. Since both scores are excellent, they

reflect the visual agreement that can be observed in Fig. 3.8b. The envelope GOF is slightly lower than the phase

GOF due to the presence of small-scale and small-amplitude fluctuations that are challenging to predict with the

MIFNO (visible around 4 s in Fig. 3.8b).

When looking at the spatial evolution of the predictions, Fig. 3.9 shows that it is very accurate for the different

time steps. The wavefront propagates from the source (epicenter denoted with the white star) with the correct

speed since the arrival times are correct for all spatial locations. The source orientation is clearly visible in the first

snapshot and it is correctly reproduced by the MIFNO. It is also remarkable that both P waves and S waves are

well predicted, although their amplitude is very different (maximum East-West amplitude around 2 cm/s for the P

waves and around 20 cm/s for the S waves). One can however notice that the predictions are smoother after the

main wavefront, which reflects that small-amplitude fluctuations are under-estimated. This is visible for instance at

t=2.00 s in Fig. 3.9 where the predicted wavefields show less fluctuations than the simulated ground truth.

3.3.2 Metrics analyses
To quantify the predictions accuracy more systematically, the envelope and phase GOFs were computed for samples

in the training and validation datasets. Figure 3.10 shows that the GOF distributions are very similar for training and

validation data. This indicates that the MIFNO is not subject to overfitting. Although the loss evolution during

training shows a stable convergence with a small generalization gap (Fig. 3.11), this does not seem to impact the

prediction accuracy.

The GOFs distributions confirm that the phase accuracy is better than the envelope accuracy (Fig. 3.10 and

Tab. 3.3). Indeed, 80.2% of predictions have an excellent phase GOF (phase GOF larger than 8). Envelope GOFs

are good for 87.3% of predictions (envelope GOF larger than 6), and 27.8% are excellent (envelope GOF larger

than 8). Table 3.3 indicates that the relative Root Mean Square Error (rRMSE) is 33% on the validation dataset (first

quartile). The relative RMSE is computed between predicted and simulated velocity time series at each sensor.

Errors are then averaged over all sensors and samples. Relative errors on the order of 30% are common in 3D PDE

predictions, especially when complexity arises from the presence of heterogeneous parameters. The relative RMSE

is complemented by the frequency biases (Section 1.3). Reminding that the frequency bias is by definition larger

than −1, this explains the steep decrease of the high-frequency distribution around −1 in Fig. A.21.

Model rRMSE rFFTlow rFFTmid rFFThigh EG PG

MIFNO 8 layers 0.34 ; 0.59 -0.54 ; -0.09 -0.63 ; -0.15 -0.68 ; -0.18 6.32 ; 7.89 8.07 ; 9.17

MIFNO 16 layers 0.33 ; 0.59 -0.49 ; -0.05 -0.57 ; -0.09 -0.62 ; -0.11 6.57 ; 8.08 8.20 ; 9.21

Table 3.3: 1st and 3rd quartiles of the metrics computed on 1000 validation samples. rRMSE: relative RMSE (0 is

best), rFFTlow: relative frequency bias 0-1Hz (0 is best), rFFTmid: relative frequency bias 1-2Hz (0 is best), rFFThigh:

relative frequency bias 2-5Hz (0 is best), EG: envelope Goodness-of-Fit (10 is best), PG: phase Goodness-of-Fit (10 is

best). For frequency biases, negative values indicate underestimation.
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(a)

(b)

(c)

Figure 3.8: (a) Geology in the test dataset corresponding to the predictions in panels (b) and (c). The source is located

at (3.9, 2.6, −6.2 km) with a strike of 298.7°, dip of 85.3°, and rake of 15.4°. (b) Velocity time series simulated (black)

and predicted (dashed red line) in the three components: East-West (E), North-South (N), Vertical (Z). (c) For the same

sensor as panel (b), amplitude of the Fourier coefficients of the velocity time series.
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Figure 3.9: East-West component of the simulated (upper row) and predicted (center row) velocity fields for the

geology illustrated in Fig. 3.8 at five time instants. The error between simulation and prediction is given in the lower

row. The white star indicates the epicenter.

Table 3.3 also shows that the MIFNO mainly underestimates the frequency content of signals since frequency

biases are mostly negative. This can be observed in Fig. 3.8b where the small fluctuations at the end of the signal

tend to be ignored in the predictions. Findings on the F-FNO for the HEMEW-3D database with a fixed source cor-

roborate these results (Tab. 3.4). Also, the MIFNO leads to larger underestimations for high-frequency components

(the inter-quartile range is −62% ; −11% for high-frequency components while it reduces to −49%; −5% for low

frequencies, Tab. 3.3). This reflects the well-known spectral bias, which states that small-scale (i.e. high-frequency)

features are more difficult to predict than large-scale features (Basri et al. 2020; Rahaman et al. 2019). In addition,

the late small-scale fluctuations also reflect complex physical phenomena due to the diffraction of seismic waves

on scatterers. Indeed, fluctuations are mostly observed in the coda, after the S-wave arrival. Hence, they originate

from the late arrivals of diffracted waves. Late velocity fields are subject to a large inter-sample variability, both

between different sensors and between similar geologies with different locations of scatterers. These factors make

high-frequency predictions very challenging.

Figure 3.12 gives additional insights on these results by representing the minimum and maximum GOF for each

test sample. It shows that for almost all geologies, one can find a sensor that achieves an excellent GOF, and (almost)

all sensors are at least fair. In addition, there is no correlation between the minimum GOF and the maximum GOF.

This means that some samples have similar GOFs for all sensors while others display a large variability between sen-

sors. The inter-sensor variability is not randomly distributed but instead shows a spatial organization that reflects

underlying geological heterogeneities (see an example of the GOF maps in Fig. A.25). As will be discussed in-depth

in Section 3.4.1, smaller coefficients of variation generally lead to better predictions, which is reflected by the color

shades in Fig. 3.12.

One can also notice that the deeper MIFNO with 16 layers gives better predictions than the MIFNO with 8 layers

(Tab. 3.3). Therefore, increasing the complexity of the model is beneficial to improve its accuracy and does not
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Figure 3.10: Distribution of the envelope GOF (left) and phase GOF (right) for each sensor and 1000 samples in the

training (grey area) and validation (blue line) datasets.

lead to overfitting. This improvement is not reflected by the relative RMSE while it is obvious on the other metrics,

emphasizing the need to consider physically-rooted metrics to evaluate the predictions accuracy. It can also be

noted that there is no significant difference between the MIFNO taking as inputs the three angles describing the

source orientation or the corresponding moment tensor (Tab. A.8). Therefore, the MIFNO with angles is used in the

following for more direct interpretations of the results.

3.3.3 FNO, U-NO, and F-FNO comparison
The MIFNO was designed with factorized Fourier layers because our first investigations on a surrogate model pre-

dicting groundmotion wavefields from the geology with a fixed source showed that the F-FNOwas themost efficient

and accurate architecture. This section recalls the main results obtained in this setting. All models were trained with

the HEMEW-3D database, whose complexity is reduced compared to the HEMEW
S
-3D database with a random

source (Section 2.2.6). Therefore, errors presented in this section are smaller than the ones discussed above.

The baseline FNO model is able to predict correct surface wavefields, especially in the low-frequency range

(−17% bias, Tab. 3.4). However, Fig. 3.13a shows a large generalization gap between the validation error and the

training error. This may be due to the large number of parameters (58.7 million) that requires a huge training

database to avoid overfitting.

HEMEW-3D database with a fixed source

Model # parameters rRMSE rFFTlow rFFTmid rFFThigh

FNO 58.7m 0.23± 0.088 -0.17± 0.18 -0.30± 0.24 -0.44± 0.30
U-NO 24.6m 0.22± 0.088 -0.16± 0.16 -0.28± 0.22 -0.44± 0.28

F-FNO 4 layers 139k 0.23± 0.081 -0.29± 0.16 -0.42± 0.21 -0.55± 0.26
F-FNO 8 layers 246k 0.21± 0.083 -0.15± 0.14 -0.26± 0.19 -0.37± 0.26
F-FNO 28 layers 782k 0.17± 0.081 -0.08± 0.10 -0.14± 0.15 -0.23± 0.22

Table 3.4: Mean and standard deviation of relative biases for 1000 validation samples. For frequency biases rFFTlow,

rFFTmid, and rFFThigh, negative values indicate underestimation. For the number of parameters, "m" stands for

million and "k" for thousand.

Despite the U-NO having been proposed to improve the performances of the FNO, our results show little dif-

ferences between the two models. The medium frequency bias is −28% for the U-NO compared to −30% for the

FNO. One can also notice on Fig. 3.13b that the generalization gap is smaller for the U-NO but still significant. The

generalization gap may not be entirely related to the size of the training database. Indeed, the frequency biases are
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Figure 3.11: Evolution of the training loss (solid line) and

validation loss (dashed line) as a function of the number

of epochs.

Figure 3.12: Each of the 1000 test samples is repre-

sented by the minimum (blue) and maximum (orange)

GOF across all spatial points. The color shade corre-

sponds to the coefficient of variation of the associated

geology.

almost the same with 22000 and 27000 training samples (Fig. A.8). Though it is still possible that a database one

order of magnitude larger than the one used in this study could drastically impact the results.

Additionally, we find that all skip connections are not necessary in the U-NO since the lowest errors are obtained

for a model with only the deepest skip connection (Fig. A.9). The improvements obtained by removing the upper

skip connections is especially visible on the high frequency biases. These findings may be explainable by the fact

that inputs and outputs are not the same physical variables. Outputs of the first Fourier layer entering the upper

skip connection are more similar to geological models while they get concatenated with variables being transformed

into surface wavefields.

The F-FNO has the smallest number of parameters (from 139000 with 4 layers to 782000 with 28 layers) but its

8-layer version beats the FNO and the U-NO on all metrics reported in Tab. 3.4. Improvements are especially visible

on the high-frequency bias that is reduced from −44% to −37%. One considerable difference between the FNO and

the F-FNO also stands in the closing of the generalization gap. Independently from the number of factorized Fourier

layers used in the model, the validation loss always closely follows the training loss (Fig. 3.13c).

With the F-FNO, a large number of those parameters were tested to highlight themost influential ones. All details

can be found in Appendix A.3.2 and A.3.3; and the main outcomes are summarized below. The accuracy of each

F-FNO variant is assessed with the frequency biases in low, medium, and high frequency ranges, on a subset of 1000

training and 1000 validation samples.

The two hyperparameters that have the most influence on the predictions’ accuracy are the number of channels

(dv) and the number of layers. At least 12 channels should be considered and there is no improvement when
increasing from 28 to 32 channels (Fig. 3.14a). In addition, choosing a deeper model is beneficial since the errors

shrink between 4 and 16 layers and continue to reduce withmore than 16 layers (Fig. 3.14b). Concerning the number

of Fourier modes used in each layer, small improvements are also obtained when preserving more Fourier modes

(Fig. A.10). However, effects are less pronounced for Fourier modes than for the number of layers or the number

of channels. Especially, we found that increasing the number of temporal modes does not reduce the errors on the

high-frequency components of the signal.

The training strategy was investigated in terms of the loss function, the size of the training database, the batch

size, and the learning rate. For the loss function, the best results were obtained with the MAE rather than a combi-

nation of MAE and RMSE (Fig. A.12). Also, improvements were moderate when increasing the number of samples,

which suggests that our database with 27000 training samples is well-suited for this model (Fig. A.13). A learning

rate of 6× 10−4 was optimal to reach the lowest errors and the strategy to halve the learning rate on plateau was
better than two alternative strategies (One cycle and cosine annealing with warm restarts, A.14).
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(a) (b)

(c)

Figure 3.13: Evolution of the training (solid lines) and validation loss (dashed lines) for the three FNO variants (FNO,

U-NO, F-FNO). Each panel reports the reference loss with the FNO (black). In the panels (a) and (b), the shaded lines

correspond to trainings with random initializations.

3.3.4 Comparing the MIFNO with baseline models
Due to the difficulty of finding existing implementations of models for 3D and vector inputs, the MIFNO is compared

to F-FNO models with less flexibility. This is meant to ensure that the additional complexity induced by the source

branch does not deteriorate the predictions. To do so, we use three different databases that contain the same

geological models but different surface velocity wavefields depending on the source parametrization:

1. in the HEMEW-3D database, both the source position and orientation are fixed. The source is located in the

middle of the bottom layer: xs=4.8 km, ys=4.8 km, zs=−8.4 km and its orientation is fixed to strike=48°, dip=45°,
rake=88°. This database contains Ntrain=27000 training, Nval=3000 validation and Ntest=1000 test samples.

2. in an intermediate database, the source is located randomly inside the bottom layer, i.e. xs ∼ U([1200; 8100m]),
ys ∼ U([1200; 8100 m]), zs ∼ U([−9000;−8100 m]) and its orientation is fixed to the same value as the
HEMEW-3D database. This database contains Ntrain=20000 training, Nval=2000 validation and Ntest=1000 test

samples.

3. the HEMEW
S
-3D database described in Section 2.2 contains sources located randomly anywhere in the do-

main and any source orientation. It contains Ntrain=27000 training, Nval=3000 validation and Ntest=1000 test

samples.
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Figure 3.14: Evolution of the relative frequency bias as a function of the number of channels (dv , panel a) and
the number of layers (panel b). The mean frequency bias on training samples is shown with filled markers while

unfilled markers refer to validation samples. Frequency biases are computed for low frequency (0-1Hz, light grey),

medium frequency (1-2Hz, dark grey), and high frequency (2-5Hz, black). Note that the y-axis gives the opposite of

the frequency biases, so that the best models have the lowest amplitude of frequency biases. The red area shows

the reference model with dv=16.

First, let us consider the prediction accuracy with respect to the geological properties. The baseline model is

the 16-layer F-FNO described in Section 3.2.3. To match the number of parameters of the MIFNO, the F-FNO was

designed with dv=16 channels in layers 1 to 4, and dv=48 channels in layers 5 to 16. The F-FNO was trained on the
first database HEMEW-3D with fixed source location and orientation. The MIFNO was trained as described above

on the HEMEW
S
-3D database with random source location and orientation. Therefore, it should be noted that the

training task of the MIFNO is much more complex than the F-FNO task.

Figure 3.15: For 1000 samples in the HEMEW-3D test dataset (fixed position and fixed orientation) and each sensor,

the frequency bias of the MIFNO (vertical axis) is shown against the F-FNO frequency bias (horizontal axis). Each

subplot corresponds to a different frequency bias, 0-1Hz (left), 1-2Hz (middle), 2-5Hz (right). Optimal predictions

correspond to a frequency bias of 0.

At inference stage, both the F-FNO and the MIFNO were used to predict surface velocity wavefields for 1000

test geologies with a fixed source corresponding to the reference source in the HEMEW-3D database. Figure 3.15

compares the F-FNO predictions with the MIFNO predictions for each sensor and each sample. One can firstly

notice that points are widespread on both sides of the diagonal, meaning that the MIFNO or the F-FNO can give

better predictions depending on the situation. However, points are more densely distributed in the lower right
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triangle of the graph, close to the diagonal (Fig. 3.15). This indicates that the F-FNO is in average more accurate than

the F-FNO when predicting only solutions with a fixed source.

However, the difference between the F-FNO and the MIFNO is around 0.8 GOF units, which remains acceptable

knowing the extended complexity of the MIFNO task (Tab. A.9). Figure A.22 illustrates velocity time series predicted

by the F-FNO and the MIFNO. It shows that the MIFNO predictions are already reasonable while the F-FNO locally

improves the accuracy.

For the next comparison, we focus on the influence of the source location. To do so, we designed a F-FNO taking

as input the geological parameters and a binary encoding of the source position, i.e. a cube full of zeros with a single

1 indicating the position of the source. The MIFNO was trained with only the source coordinates given as inputs to

the source branch. In this experiment, both the F-FNO and theMIFNOwere trained on the second database (random

source location and fixed orientation).

Dataset with a random source position and fixed source orientation

Model rRMSE rFFTlow rFFTmid rFFThigh EG PG

F-FNO 0.11 ; 0.20 -0.22 ; 0.06 -0.29 ; 0.05 -0.34 ; 0.05 7.49 ; 8.63 8.74 ; 9.42

MIFNO 0.12 ; 0.21 -0.23 ; 0.05 -0.30 ; 0.04 -0.36 ; 0.04 7.36 ; 8.53 8.64 ; 9.36

Table 3.5: 1st and 3rd quartiles of the metrics computed on 1000 validation samples. rRMSE: relative RMSE (0 is

best), rFFTlow: relative frequency bias 0-1Hz (0 is best), rFFTmid: relative frequency bias 1-2Hz (0 is best), rFFThigh:

relative frequency bias 2-5Hz (0 is best), EG: envelope Goodness-of-Fit (10 is best), PG: phase Goodness-of-Fit (10

is best). For frequency biases, negative values indicate underestimation. Both models contain 16 layers and were

trained with 20000 samples for 300 epochs.

When both models have 8 layers, the MIFNO predictions are slightly better than the F-FNO (Tab. A.10). With 16

layers, bothmodels give a similar accuracy (second digit fluctuations in Tab. 3.5 are within the variability of themodel

due to a different random initialization). Phase GOFs are excellent for both models and the envelope GOFs are close

to excellent (Tab. 3.5). Overall, these results show that the source branch architecture in the MIFNO preserves the

expressivity of the F-FNO while providing the flexibility to add more source parameters.

3.4 Towards explainability of the prediction error
Although a surrogate model can never be expected to predict perfect results, it is desirable to understand the

situations when it leads to the best accuracy, hence when one can trust its predictions the most. Section 3.4.1

investigates the influence of geological heterogeneities, in terms of the coefficients of variation and correlation

length. Results in this section have been obtained with the F-FNO trained on the HEMEW-3D dataset with a fixed

source. They can be extended to the MIFNO by decoupling the influence of the source, which is why we choose to

present first the F-FNO results. Then, Section 3.4.2 explores the impact of the source position and source orientation

on the prediction accuracy.

3.4.1 Influence of the geological heterogeneities
In this section, predictions are done with the F-FNO on the 1000 consistent geological models to analyse the rela-

tionship between the coefficient of variation of heterogeneities in geological models, their correlation length, and

the prediction error. In the consistent geological models, all layers have the same coefficient of variation and the

same correlation length to facilitate the interpretation. One can firstly observe in Fig. 3.16 that the prediction errors

increase when coefficients of variation are larger. Additionally, the slope of the prediction error is larger when the

correlation length is small. This means that there is an interaction between coefficients of variation and correla-

tion lengths. Thus, geological models with both large coefficients of variation and small correlation lengths lead

to the largest errors. Indeed, it is known that geological models with high coefficients of variation induce stronger

impedance contrasts that disperse the incident wave. The subsequent multi-scattering effect is more pronounced

when the coefficient of variation increases. Also, the correlation length impacts the dispersion and diffraction of

incident waves at different wavelengths.

These findings reflect previous remarks on the spectral bias inherent to neural networks, which implies that

high-frequency features are less well predicted than lower frequencies. It can be emphasized that these prediction
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Figure 3.16: For 1000 consistent geological models in the test database, the high-frequency relative frequency bias is

computed for each spatial point where mean (dots) and standard deviation (error bars) are extracted. Each geolog-

ical model is characterized by its coefficient of variation (x-axis). Velocity models are stratified by their correlation

length.

errors are not due to some imbalance in the training dataset. Indeed, coefficients of variation of geological models

follow a normal distribution of mean 0.2. This implies that there are statistically as many geological models with

coefficients of variation around 0.1 than there are around 0.3. Although it is very clear from Fig. 3.16 that frequency

biases are significantly larger for coefficients of variation around 0.3.

For the MIFNO, the interpretation is challenging since more parameters influence the predictions accuracy but

Fig. 3.12 suggests that geologies with the largest coefficients of variation lead to lower GOFs.

3.4.2 Influence of the source parameters
In this section, we highlight the influence of the source parameters on the MIFNO predictions and on the error. For a

given geology, Figure 3.17a compares the predictions and the ground truth for three different positions of the source

(with the same orientation). One can firstly observe that the predicted wavefields are very similar to the ground truth

for all source positions. Especially, their spatial location closely follows the source position. This confirms that the

source position encoding in the source branch is accurate. Figure 3.17a also illustrates the variability of surface

wavefields that can be obtained by moving the source in a heterogeneous geology. Indeed, the same geology was

used for all three snapshots and the source orientation is fixed but the surface wavefields are distorted differently

due to the heterogeneities encountered between the source and the surface.

Next, we focus on the source orientation while fixing the position of the source. A geology with low hetero-

geneities is chosen to emphasize the source orientation. Three sets of (strike, dip, rake) angles are examined in

Fig. 3.17b. The selected time is just after the P-wave arrival time. For all orientations, the signs of the predicted

ground motion closely match the ground truth, meaning that the MIFNO can predict the influence of the source

orientation. As already mentioned, a slight amplitude underestimation is visible in some regions but this is not due

to the source orientation.

For more systematic analyses, the 1-2 Hz frequency bias is evaluated on 1000 samples with various geologies,

source locations, and source orientations. Figure 3.18 shows the frequency bias against the source coordinates.

Similar errors are obtained for all source longitudes and latitudes, meaning that the prediction accuracy is indepen-

dent from the epicenter location. There is a slightly positive correlation between the source depth and the frequency

bias but the inter-sample variability is of the same order. Figure 3.18 suggests that the underestimation of frequency
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(a) (b)

Figure 3.17: Comparison of the MIFNO predictions (lower rows) with the simulated ground truth (upper rows) for a

given geology and time. (a) the source position changes (indicated by the white star) but the orientation remains

constant. (b) the source position is fixed but the orientation changes and is indicated with the (strike, dip, rake)

angles.

content is greater when the source is deeper while errors are smaller and overestimation is more frequent for shal-

low sources. Since both the phase and envelope GOFs indicate better results for shallow sources (Fig. A.24), this

effect is likely due to the increased complexity of the wavefields generated by a long propagation of waves. Indeed,

seismic waves originating from deep sources statistically encounter more heterogeneities on their path, which leads

to diffraction and dispersion and hence, perturbs the surface wavefields. Therefore, it is generally more complex to

predict accurate wavefields generated by deep sources.

Figure 3.19 corroborates this interpretation since, for most predictions, the GOF is inversely correlated with the

epicentral distance, defined as the horizontal distance between the source and the sensor. This effect is especially

pronounced for the envelope GOF since we have already commented that longer propagation paths lead to more

complex groundmotion time series, with small fluctuations. In conclusion, both the source depth and the epicentral

distance are pertinent explanatory variables to understand the prediction accuracy. On the contrary, it can be

observed that the source orientation parameters (strike, dip, and rake angles) have no effect on the prediction

accuracy (Fig. A.23). This confirms that the MIFNO produces equally accurate predictions for all types of sources.

3.4.3 Relationship with the energy integral
We have already mentioned that wavefields with small-scale fluctuations are predicted less accurately. To quantify

this phenomenon, let us introduce the energy integral IE at sensor x and the normalized energy integral ĨE with
respect to all surface sensors of a given realization

IE(x) =

∫ T

0

uE(x, t)2 + uN (x, t)2 + uZ(x, t)2

3
dt (3.17)

ĨE(x) =
IE(x)

maxx′∈∂Ωtop IE(x′)
(3.18)

Figure 3.20 displays the envelope and phase GOF as a function of the energy integral. There is a significant

positive correlation between the GOF and the energy integral, meaning that the most energetic signals lead to

the best predictions. The correlation is stronger for the envelope GOF than the phase GOF. This reflects previous

observations that the envelope GOF is hindered by errors on small-amplitude fluctuations. From an engineering
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Figure 3.18: For 1000 samples, the 1-2 Hz frequency bias is shown against the source position (x, y, z). Negative
(resp. positive) values indicate underestimation (resp. overestimation) of the frequency content.

Figure 3.19: Envelope GOF and phase GOF represented for each sensor and 1000 test samples as a function of the

epicentral distance. Colors indicate the density of points.

perspective, this association is important as it means that the most damaging ground motions (i.e. with the highest

energy) are generally well predicted.

3.5 Generalizability
Neural networks and neural operators are not meant to extrapolate data beyond the training distribution. However,

when evaluating predictions on real data, one cannot guarantee that test data are perfectly in-distribution. Although

predictions are not expected to be excellent in this situation, it is crucial that they remain reasonable. For the elastic

wave equation, this especially means that predicted amplitudes should be of the right order of magnitude and wave

arrival times should be close to the reference.

Generalization was firstly assessed on the F-FNO by adding white noise to the geological models (Appendix A.3.4).

This shows that predictions are stable and the F-FNO acts as a low-pass filter to remove the influence of non-

coherent geological fluctuations. Then, the MIFNO generalization ability is assessed on out-of-distribution sources

(Section 3.5.1) and geologies with a real overthrust geological model (Section 3.5.2). We also test the MIFNO ability

to perform zero-shot super resolution by increasing the spatial resolution of the prediction (Section 3.5.3).
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Figure 3.20: Envelope GOF and phase GOF represented for each sensor and 1000 test samples as a function of the

normalized energy integral ĨE at each sensor. Colors indicate the density of points.

3.5.1 Generalization to out-of-distribution sources
In the HEMEW

S
-3D database, the propagation domain extends from 0km to 9.6 km and the sources are located

between 1.2 km and 8.4 km. However, since the source location is provided as a vector of coordinates, the MIFNO is

not constrained to sources located inside the domain. Thus, in this section, we explore its ability to predict surface

ground motion originating from a source outside the training domain.

To simulate the reference ground motion, we create 1000 new geologies that are twice larger than the original

propagation domains and have the same depth. They are all heterogeneous geologies with parameters following the

same distributions as the HEMEW
S
-3D database (Tab. 2.2). In these large geologies, sources are located randomly

within [−3.6km; 13.2km] and their orientation is also randomly chosen. The reference ground motion is acquired
only at the surface of the original propagation domains, i.e. [0km; 9.6km].

Figure 3.21: 25-th percentile of envelope GOF (left) and phase GOF (right) for 1000 samples where the source is

located outside the training domain (dashed square) or even outside the physical domain (dotted square). For

reference, 1000 samples with a source inside the training domain are shown.

Figure 3.21 shows that the MIFNO maintains very good predictions when the source is located outside the train-
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ing domain, both for the envelope GOF and the phase GOF. When the source remains inside the propagation domain

(dotted square in Fig. 3.21), the inter-quartile range is 6.24-7.70 for the envelope GOF and 7.41-8.77 for the phase

GOF. These good to excellent results are satisfying for out-of-distribution predictions since they are not too far from

the reference results on in-distribution data (Tab. 3.3). When the source locations are farther from the training do-

main, predictions worsen. This can be seen in Fig. 3.21 for sources out of the training domain and it is perfectly

expected since neural operators are not designed for severe extrapolation tasks.

3.5.2 Generalization to out-of-distribution geologies
To test the generalization ability of the MIFNO to out-of-distribution geologies, a 3D overthrust model was adapted

to the size of our geological domain (Aminzadeh et al. 1997). This model is a 3D extension of the well-usedMarmousi

model. It shows a succession of thin layers with contrasting velocities and several folds. It is downscaled to a spatial

resolution of 300m tomatch the resolution of the HEMEW
S
-3D database (Fig. 3.22a). The source is located at (1.2 km,

4.8 km, −9.0 km) with strike = 48°, dip = 45°, rake = 88°.

Figure 3.22 shows that the predicted wavefronts are close to the simulations, in all parts of the domain. In par-

ticular, the wave arrival times are accurately predicted and the influence of the source orientation is well preserved

since the phases correspond to the reference. The amplitude of the main fluctuations is also accurate. The P wave

peaks tend to be overestimated (see t=2.50 s in Fig. 3.22c) but they have a small amplitude on the East-West com-
ponent. The focus is instead on the S waves, for which the amplitudes agree well with the reference simulation

(Fig. A.26a).

The envelope GOFs are good for a largemajority of sensors and phase GOFs are very good to excellent (Fig. 3.22b).

The GOF distributions are concentrated around the mean of the GOFs obtained on the HEMEW
S
-3D database,

thereby showing the generalization ability of the MIFNO to real complex geologies. Figure 3.22b also illustrates

the large GOF variability between sensors for the same realization (around 2 GOF units). This variability is similar to

the HEMEW
S
-3D database as shown by the difference between the worst and best sensor in Fig. 3.12. Differences

are not randomly distributed but instead follow a coherent spatial organization that is related to the geological

heterogeneities. Figure A.25 indeed shows that areas with a GOF lower than 6 are rare and most of the sensors

achieved at least a good GOF.

One can however notice the absence of late fluctuations in the predictions (mainly visible for low amplitudes

around t=3 s). This was expected from our previous analyses since these ground motion fluctuations are created
by the multiple wave reflections and refractions on the thin geological layers and they are difficult to predict. These

differences are exacerbated when the simulations are run with a high resolution geological model (50m) instead

of using the same resolution as the prediction (300m). Figure A.26 indeed shows that ground motions obtained

through a high-resolution geology contain more complex small-scale patterns.

3.5.3 Generalization to higher resolution
Although zero-shot super resolution can always be technically performed with FNOs, FNOs are not invariant with re-

spect to the resolution in the general framework (Bartolucci et al. 2023). This means that high-resolution predictions

may be less accurate than predictions at the training resolution. Since there is no theoretical result for FNOs includ-

ing source and PDE parameter, we investigate zero-shot super resolution experimentally with the MIFNO. While the

MIFNO was trained with inputs of spatial resolution of 32× 32× 32, geologies are interpolated to 64× 64× 32 to
obtain high-resolution predictions. The vertical dimension is preserved to maintain the same depth-to-time con-

version. Since the source is given with absolute coordinates, there is no need to modify the source branch when

modifying the resolution.

Figure 3.23 shows that it is possible to obtain accurate velocity wavefields with a resolution of 64 that has not

been seen during training. The wavefronts are better defined with the increased resolution, which allows to cap-

ture peaks more accurately in this example (see snapshots at t=1.40 s in Fig. 3.23 for instance). However, some

discrepancies are visible at higher resolution, especially on the boundaries. These artefacts can be explained by the

fact that high-resolution predictions are in advance at the edge of the domain, which induces a phase difference

between the prediction and the reference (Fig. A.27).
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(a) (b)

(c)

Figure 3.22: (a) Overthrust geology downscaled to 300m. (b) Distribution of the envelope and phase GOF for the

HEMEW
S
-3D database (grey, darker colors indicate higher points density) and for each surface sensor predicted

with the overthrust geology (green). (c) East-West component of the simulated (upper row) and predicted (middle

row) velocity fields at five time instants. The white star denotes the position of the source (depth=−9 km). The error

between simulation and prediction is given in the lower row.
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Figure 3.23: East-West component of the velocity wavefield at five time instants. first row: simulation with 32× 32
sensors. second row: prediction with 32× 32 sensors. third row: simulation with 64× 64 sensors. fourth row:
prediction with 64× 64 sensors. The white star denotes the position of the source (depth=−1.3 km).
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3.6 Conclusion
We proposed an implementation of the factorized Fourier Neural Operator (F-FNO) that predicts surface groundmo-

tion generated in 3D geologies thanks to a depth-to-time conversion. By focusing on the surface of the domain, i.e.

the only location where observations are commonly available, we can provide the solution of a 3D time-dependent

PDE without a 4D surrogate model. The factorized Fourier layer is efficient for 3D PDEs as it significantly reduces

the number of parameters compared to the baseline FNO. In particular, this allows to obtain a deep and wide F-FNO

that does not lead to overfitting, contrary to the FNO that suffers from a large number of parameters.

Building on these findings, we introduced a Multiple-Input Fourier Neural Operator (MIFNO) that takes as input

a 3D geological domain and a vector describing the source position and orientation. The structured geology is

processed with factorized Fourier layers, and the source parameters are transformed via convolutional layers while

maintaining resolution invariance properties. The MIFNO was trained on 30000 earthquake simulations from the

HEMEW
S
-3D database covering a large variety of heterogeneous geological models, source positions, and source

orientations. It predicts 3-component surface ground motion between 0 s and 6.4 s for frequencies up to 5Hz.

The MIFNO performs on par with the reference F-FNO model, as was verified by restraining the MIFNO training

task to a dataset with i) a fixed source and ii) a randomly located source with a fixed orientation. This shows that the

flexibility offered by our proposed architecture preserves the accuracy of the F-FNO.

MIFNO predictions are considered good to excellent for most sensors, following the common understanding of

Goodness-Of-Fit (GOF) criteria. GOFs are better for the phase than for the envelope, which indicates that the MIFNO

is well suited to predict wave arrival times and the spatial propagation of wavefronts. With 87% of predictions

having a good envelope GOF, the main peaks are correctly predicted, which is crucial for engineering applications.

Complex wave propagation phenomena due to heterogeneities yield small-scale fluctuations with small amplitude

that are difficult to predict accurately and negatively impact the envelope GOF. Indeed, large coefficients of variation

and small correlation lengths lead to larger prediction errors.

These difficulties are exacerbated by the design choices of the HEMEW
S
-3D database that purposely contains

geologies with strong heterogeneities (mean coefficient of variation of 0.2). However, such large coefficients of

variations are rarely found in reality for large correlation lengths. They are included in the HEMEW
S
-3D database to

enhance its variability in a Scientific Machine Learning perspective. Therefore, predictions on common 1D geological

models augmented by moderate heterogeneities will fall in the most accurate range of the MIFNO predictions.

We found that the MIFNO tends to underestimate the frequency content of the ground motion fluctuations.

Geological heterogeneities lead to the dispersion of wave energy over time. Since the low-frequency components

are affected only by the equivalent mean geological field, they are not influenced by small heterogeneities. There-

fore, the influence of dispersion is visible only on the high-frequency components. Since dispersed ground motion

wavefields are more challenging to predict, this explains that the prediction errors are larger for high frequencies.

However, GOF scores are positively associated with the signal energy, meaning that the most energetic ground

motions are generally well predicted, which is crucial for engineering applications.

Using a more complex MIFNO (i.e. with more layers and more channels) is a privileged approach to increase the

accuracy, as illustrated by the difference between the 8-layer and 16-layer MIFNO. Investigations on the F-FNO also

showed that this architecture scales well when the number of parameters increases and we hypothesize that similar

results hold true for the MIFNO. As a consequence, provided that one can obtain enough training data and bear the

cost of training deeper models, the MIFNO would become more accurate.

The MIFNO is also able to generalize well to different out-of-distribution data. The source was located out of

the training domain with only a moderate degradation of the accuracy. Although it could also be placed outside

the propagation domain, this large distribution shift worsened the predictions. In addition, the MIFNO can be

applied to geologies that have a different resolution than the training resolution. Although there is no guarantee

that the accuracy will systematically be maintained at higher resolutions, the illustrated example showed that finer

predictions improve the predictions of peaks amplitudes. These results show the robustness of the MIFNO when

applied on test data, which is crucial to move towards real-case applications.

Generalization to geologies that are far from the training database is challenging but the MIFNO predicts accu-

rate ground motion for an overthrust geology with thin folded layers. The GOF distributions with the overthrust

geology follow the distributions on the HEMEW
S
-3D database. These good to excellent GOFs illustrate the good

generalization ability of the MIFNO for real complex geologies. However, the thin layers in the overthrust geology

create dispersed wavefields, which are challenging to predict with a generic surrogate model.

When aiming for more accurate predictions in complex settings, transfer learning should be used to specialize

the MIFNO on a smaller database tailored to the region under study. Once duly trained, the MIFNO produces quasi

real-time evaluations of surface ground motion, thereby paving the way for 3D uncertainty quantification analysis,
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design optimization, and inverse problems that are beyond reach with traditional methods.

Indeed, the MIFNO provides 6.4 s of ground motion in around 10ms (with one GPU) while numerical simulations

take around 1day (1 CPU equivalent). The energy consumption of the MIFNO should be distinguished between

training and inference. The training phase amounts to 22 kWh and thanks to the speed of the MIFNO, the inference

phase represents only 52Wh to obtainNMC = 105
predictions (Tab. 3.6).

Task Number of realizations Energy consumption (MWh)

MIFNO training Ntrain = 30000 0.022

MIFNO prediction NMC = 105
5.2× 10−5

Table 3.6: Energy consumption of theMIFNO training and prediction. The energy consumption of 1 GPU is estimated

to 187Wh. Training the MIFNO on 4 A100 GPUs lasts for 29.6 h. One MIFNO prediction takes around 10ms on 1

A100 GPU.
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Chapter 4

Application to the Le Teil earthquake:
transfer learning and uncertainty
quantification
Seismic hazard analyses are subject to many sources of uncertainty, ranging from fault rupture to site effects and

geological properties, not withstanding uncertainties in the models providing ground motions. To provide reliable

estimates of seismic hazard, it is crucial to study how these uncertainties propagate to ground motion intensity.

Seismic hazard analysis can be classified in two broad categories, namely deterministic (or scenario-based) seismic

hazard analysis and Probabilistic Seismic Hazard Analysis (PSHA). Although formalizing a full PSHA framework is out

of the scope of this work, we explore how our surrogate model can be used in some of the PSHA components.

Seismic hazard aims at determining the rate of exceedance of an Intensity Measure (IM), i.e. λ(IM > im)
where im is a user-defined threshold. IMs can be seen as quantities of interest computed from ground motion u
through IM = h(u), where h is a deterministic function. Common IMs are the Peak Ground Velocity (PGV) and
Pseudo-Spectral Acceleration (PSA) at specific periods. PSHA computes the rate of exceedance as

λ(IM > im) =
∑
rup∈R

P(IM > im|rup,m)λ(rup) (4.1)

whereR is the set of possible fault ruptures generating earthquakes in the region under study,P(IM > im|rup,m)
is the probability that the IM exceeds the threshold im when the earthquake is generated by rupture rup and prop-
agates with model parametersm (m includes the geological properties, the ground motion model parameters, and
the site condition), and λ(rup) is the rate of occurrence of rupture rup within a specific time window.
We choose as a study region the surroundings of the Le Teil earthquake. Seismological and geological investiga-

tions provide reference geological models for this region and we adapt the 1D model of Causse et al. 2021 to the

design of the HEMEW
S
-3D database. This model is complemented by 3D geological heterogeneities to provide a

prior distribution of geological properties pa(a). The fault ruptures are described by the possible source locations xs
on the La Rouvière fault (Vallage et al. 2021) and the source orientations θs compatible with the seismological con-
text (Delouis et al. 2021). Seismotectonics knowledge therefore yields a prior distribution of the source properties

ps(xs,θs) (Section 4.1).
For any geological model a ∼ pa and any source (xs,θs) ∼ ps, our surrogate model Gφ trained with data D

gives an estimation of ground motion at location x

û(x) = Gφ(a,xs,θs|D)(x) (4.2)

One non-negligible source of uncertainty is the prediction error of the surrogatemodel, namely e(x) := û(x)−u(x)
where u is assumed to be the error-free ground motion time series u = G(a,xs,θs). In reality, u suffers from
measurements error if acquired from recordings, or from numerical errors if obtained with physics-based simula-

tions. As a first approximation, these uncertainties are neglected in this work.

Chapter 3 showed that the MIFNO is an accurate surrogate model of ground motion propagation but prediction

errors can be significant in some situations. One efficient method to reduce the prediction error of deep learning-

based surrogate models is to train them on data that are specific to the target task. In our framework, this pertains
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to geological models and source properties specific to the Le Teil earthquake. Transfer learning is widely used

in the machine learning community to transfer knowledge i) from a specific task to a different task, or ii) from a

generic task to a specific task (Quiñonero-Candela 2009; Pan and Q. Yang 2010; Weiss et al. 2016). This work takes

advantage of the latter framework. For a regression problem like the one we are concerned about, a task should be

understood as the prediction of an output u given inputs (a,xs,θs) with training dataD = {ai,xis,θis,ui}1≤i≤N .
Then, transfer learning means that a surrogate model Gφ(·|D1) trained on the generic dataset D1 will be further

trained (or fine-tuned) on the specific datasetD2. Depending on the distributional shift betweenD1 andD2, and the

transfer learning strategies, the fine-tuned surrogate model should be (significantly) more accurate than the generic

one.

In the following, Section 4.1 details the ground motion databases designed for the Le Teil earthquake and our

transfer learning methodology for the MIFNO. Section 4.2 then presents the ground motion predictions and illus-

trates the benefits of transfer learning to improve the MIFNO accuracy. Although the MIFNO was trained only with

point-wise sources, we show that it predicts the ground motion generated by a kinematic fault rupture with excel-

lent accuracy. With this improved surrogate model, we conduct uncertainty analyses on several intensity measures

(Section 4.3). The influence of geological heterogeneities on PGV is firstly assessed (Sections 4.3.1). This work

was conducted with the F-FNO fine-tuned with a fixed source and was published as a conference paper for the

2023 TINCE conference (Technological Innovations in Nuclear Civil Engineering) with the associated special issue F.

Lehmann et al. (n.d.). “Quantifying Uncertainties in Seismic Hazard Analysis with a Fourier Neural Operator”. In:

European Journal of Environmental Civil Engineering (under review) ()

Excepting this Section 4.3.1, all the other results were obtained with the MIFNO. We focus on the PSA and per-

form sensitivity analyses (Section 4.3.2) to highlight the influence of several parameters. We show that our surrogate

model allows to constrain the source properties in the presence of uncertainties, based on PSA observations (Sec-

tion 4.3.3). We finally take advantage of the speed of the MIFNO predictions to estimate confidence intervals of the

high PSA percentiles (Section 4.3.4).

4.1 Transfer learning: data and methods
4.1.1 Le Teil geological database
Seismological studies based on inversion methods provide a reference 1D model of VP and VS in the vicinity of the

Le Teil earthquake (Causse et al. 2021). After some slight adaptations to the design of the HEMEW
S
-3D database, the

1D model contains six horizontal layers and the S-wave velocities described in Table 4.1. The ratio of P- and S-waves

velocities (VP and VS ) is assumed constant and equal to 1.7 Density and attenuation factors are computed from VP

and VS (equation 2.7). This model serves as the reference geology a in our Le Teil database.
A set of 4000 heterogeneous geologies was then derived by superposing log-normal random fields δ to the

reference geology

a(x) = a(x) · δ(x), with δ(x) ∼ LN (0, kσ,`x,`y ,`z (x,x
′)) (4.3)

where k is the von Karman correlation kernel depending on the coefficient of variation σ and correlation lengths
`x, `y, `z (Section 2.2.2). It should be noted that random fields are sampled independently inside each of the five

upper layers. To enable an easier interpretation of the results, parameters σ, `x, `y, `z are the same in all layers and
they follow the same distribution as the HEMEW

S
-3D database

pσ = |N (0.2, 0.1)|
p`x = U({1.5, 3, 4.5, 6 km})
p`y = U({1.5, 3, 4.5, 6 km})
p`z = U({1.5, 3, 4.5, 6 km})

(4.4)

The prior distribution on geologies can then be expressed as

pa = pδ,σ,`x,`y ,`z = pδ|σ,`x,`y ,`z · pσ · p`x · p`y · p`z (4.5)

The Le Teil database finally contains 4000 heterogeneous geologies that are all plausible variations of the reference

geology. Figure 4.1 illustrates the vertical distribution of VS .
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Figure 4.1: VS distribution in the Le Teil database. For

each of the 32 vertical levels, themean and percentiles are

computed over all horizontal points and samples (shaded

areas). Blue lines show some individual vertical profiles.

Thickness (m) VS (m/s) VP (m/s) ρ (kg/m3)
600 2100 3570 2329

600 3500 5950 2706

300 1200 2040 1923

600 2300 3910 2380

5700 3500 5950 2706

1800 4500 7650 3170

Table 4.1: Reference 1D geological model for the LeTeil

region. Each layer from top to bottom is described by

its thickness, S-wave velocity (VS ), P-wave velocity (VP ),

and density ρ (adapted from (Smerzini et al. 2023)).

4.1.2 Le Teil source database
Several studies estimated the source parameters of the Le Teil earthquake, both in the form of a fault plane and an

equivalent point-source. In our Le Teil database, we choose the source locations close to the fault plane obtained by

Vallage et al. 2021. The fault is 7 km-wide, 4 km-high and extends between −780m and −4210m. Since the source

must be located close to the fault plane, we firstly define the three normal vectors that characterize the fault plane

−→α along strike,
−→
β along dip and −→n normal to the fault plane (Fig. 4.2). The source location is then sampled with a

Latin Hypercube Sampling (LHS) in the (−→α ,
−→
β ,−→n ) frame as three independent variables

sα ∼ U([0, 7 km])

sβ ∼ U([0, 4 km])

sn ∼ U([−0.1, 0.1 km])

(4.6)

The absolute source position is then obtained as(
xs
ys
zs

)
= sα

−→α + sβ
−→
β + sn

−→n (4.7)

Each point source is assigned a random moment tensor, whose angles (φ, δ, λ) are chosen from the moment
tensor inversion conducted by Delouis et al. 2021 and sampled with a LHS

φ ∼ U([30◦, 70◦])

δ ∼ U([20◦, 70◦])

λ ∼ U([70◦, 120◦])

(4.8)

Since all source parameters are chosen independently, the source probability distribution can be written

ps = psα · psβ · psγ · pφ · pδ · pλ (4.9)

Finally, we follow the same methodology as the HEMEW
S
-3D database to generate 6.4 s of ground motion inside

each geological domain. Ground motion is synthesized at the surface by 32× 32 sensors. Within this framework,
we obtain 4000 samples (a,xs,θs,u) tailored to the Le Teil earthquake.
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Figure 4.2: Position of the 4000 sources in the Le Teil
S
database, colored by their depth. The red star denotes the

source that generated the ground motion in Fig. 4.3

4.1.3 Transfer learning
Among the 4000 pairs of geologies and velocity wavefields in the Le Teil database, up to 3000 were used for training,

300 for validation, and 700 for testing. With transfer learning, the neural operator’s weights are initialized with the

weights of the MIFNO trained on the HEMEW
S
-3D database instead of starting from a random initialization. This

way, the model starts from a solution where it is already able to predict the propagation of seismic waves in generic

geologies.

Then, the model is trained solely on samples from the Le Teil database, forcing it to specialize to the Le Teil

context. The number of samples used for the second training is called the number of transfer learning samples and

is denoted NTL. We used between NTL=100 and NTL=3000 transfer learning samples.

Most of the following results were obtained with the 16-layer MIFNO described in Section 3.2.4. The MIFNO was

fine-tuned with one A100 GPU, a learning rate of 1× 10−4, a batch size of 16 and an early stopping criterion when
the validation loss does not improve. Transfer learning with 100 samples took 0.5 h for 150 epochs (i.e. 11 s per

epoch) and 11h with 3000 samples for 200 epochs (i.e. 198 s per epoch). We also tried to freeze the upper layers of

the MIFNO but it degraded the MIFNO accuracy on training and test data. Therefore, all weights are updated during

transfer learning.

Only when focusing on the influence of geological heterogeneities on ground motion with a fixed source (Sec-

tion 4.3.1), a 20-layer F-FNO with 16 channels was trained on the HEMEW-3D database and then fine-tuned with a

database of Le Teil geologies and ground motion generated from the fixed source of the HEMEW-3D database.

4.2 Prediction results
4.2.1 Ground motion prediction illustrations
Figure 4.3 illustrates the velocity time series obtained for a test sample in the Le Teil database. Predictions are very

close to the simulated ground truth for all wave arrivals and amplitudes. One can especially notice the numerous

high fluctuations that are very well captured at all sensors. The MIFNO is also able to reproduce the late small-scale

fluctuations (between 3 s and 5 s, Fig. 4.3) thanks to transfer learning. Phase GOFs are excellent or close to excellent

for all sensors, while envelope GOFs are excellent for the sensors with the largest fluctuations (two bottom rows in

Fig. 4.3) and good for the other sensors. These metrics confirm the excellent visual agreement.

The temporal evolution of the wavefield can also be observed on the snapshots (Fig. 4.4). The MIFNO predictions

are very close to the simulations and the spatial propagation of the wavefronts is very well reproduced. As already

mentioned for the generic MIFNO, the late fluctuations are less localized than the reference and appear blurry (see
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Figure 4.3: East-West velocity time series at 8 sensors aligned at x=2.25 km for a test sample. Predictions (red
dashed lines) were obtained with the MIFNO fine-tuned on 2000 samples. The reference ground motion is given by

the numerical simulation (black lines). For each sensor, its position along the y axis is indicated, and the envelope
GOF (EG) and phase GOF (PG) are also reported. The source is located in the upper part of the fault plane (5.71 km,

6.94 km, −2.15 km) and its orientation is defined as strike=68.6°, dip=43.9°, rake=102.7°. The corresponding geology

has a 5.2% coefficient of variation with correlation lengths of 1.5 km, 6.0 km, and 3.0 km in directions x, y, and z.

the bottom left corner at t=3.0 s). However, one should also notice the amplitude scale which is almost ten times
smaller than the wavefront at t=1.0 s. Therefore, the late errors aremuch less significant for seismic hazard analyses.

4.2.2 Improved accuracy with transfer learning
Figure A.28 compares the evolution of the loss function for different numbers of transfer learning samples. It shows

that the validation loss always converges and errors decrease when using more data. For comparison purposes,

the MIFNO trained only with 3000 samples from the Le Teil database (i.e. without pretraining) is also given (black

dashed line in Fig. A.28). One can observe that its loss evolution is more chaotic and reaches a plateau higher than

the loss with transfer learning (except for NTL=100). This exemplifies the benefits of transfer learning to improve the

accuracy of the MIFNO.

Quantitatively, 700 predictions in the test dataset were assessed with the relative RMSE, the frequency biases

and the GOFs. When predicting ground motion directly with the generic MIFNO (i.e. without transfer learning, line

NTL=0 in Tab. 4.2), metrics are in line with the general results on the HEMEW
S
-3D database (Tab. 3.3), although

slightly better due to the absence of deep sources in the Le Teil database. With only 100 transfer learning samples,

the GOFs already improve by 1 to 2 units, illustrating the considerable benefits of transfer learning, even with a

limited number of data. After even a light transfer learning (NTL=100), 68% predictions reach a good envelope GOF

and 61% an excellent phase GOF. When training the MIFNO solely on 3000 samples from the Le Teil database (line

NTL=3000 in Tab. 4.2), the predictions accuracy was worse than the predictions obtained with 250 transfer learning

samples. This shows the major benefits of initializing the weights with the pre-trained MIFNO.

Table 4.2 also shows that the metrics continuously improve when the number of transfer learning samples in-

creases. The first quartile of frequency biases improves by 23% between NTL=100 and NTL=3000. The GOFs also

benefit from larger transfer learning databases and the improvement is mainly visible on the first quartile, mean-

ing that good predictions with NTL=100 tend towards excellent with NTL=3000 This is illustrated by comparing the

MIFNO predictions obtained with 2000 transfer learning samples (Fig. 4.3) and 500 samples (Fig. A.29). While the

main fluctuations are already accurate with 500 transfer learning samples, increasing the number of samples allows

to better capture the late fluctuations with a small amplitude.
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Figure 4.4: East-West component of the simulated (upper row) and predicted (center row) velocity fields for a geology

in the Le Teil database. The error between the prediction and the simulation is shown in the lower row. The white

star indicates the epicenter.

4.2.3 Variability with the choice of the transfer learning samples
Since the full MIFNO is fine-tuned with only a limited number of transfer learning samples, it is important to en-

sure that the results do not depend on the sample choice. For this purpose, the MIFNO was trained with six non-

overlapping sets of 100 to 500 samples and predictions were assessed on a fixed set of 700 test samples. Figure A.30

indicates a moderate inter-set variability, slightly higher for the envelope GOF than the phase GOF. Both the mean

and extreme GOFs improve when the number of transfer learning samples increases, showing that the better accu-

racy observed for larger transfer learning datasets in Tab. 4.2 is not due to some favorable sample choice.

Figure 4.5 additionally shows that increasing the number of transfer learning samples does not compensate

a limited pre-training. Indeed, reducing the number of pre-training samples from 27000 to 18000 systematically

worsened the GOFs (0.6 units reduction for the envelope and 0.4 units for the phase GOF). This reduction was

much less pronounced on the whole HEMEW
S
-3D database (0.1 GOF units worsening when training the MIFNO with

18000 samples instead of 27000). This advocates for the need of a large pre-training database to obtain good

generic predictions and the benefits of fine-tuning on a small database to reach excellent accuracy.

4.2.4 Fault modelling
Since the wave equation 1.2 is linear with respect to the source, it is well-known that the ground motion generated

by an extended fault can be computed as the sum of the groundmotion generated individually by each point source

on the fault. Hence, the dynamic rupture of the fault determined by Vallage et al. 2021 was represented by 16660

point sources with different source time functions describing the slip of each fault patch (Figure 4.6).
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Figure 4.5: Envelope and phase GOF computed for different number of transfer learning samples when the MIFNO

was pre-trained with 18000 (blue) and 27000 (orange) HEMEW
S
-3D samples. The solid line indicates the mean GOF

and the shaded area extends from the first to the third quartile.

In the HEMEW
S
-3D database, all point sources have the same source time function (a 10Hz spice bench, Fig. 2.2).

To correctly model the fault rupture, one needs to predict the ground motion generated from the source time

functions at different points (Fig. 4.6b). Following the methodology of Section 1.1.3, this can be done easily by

i) deconvolving the ground motion response by the spice bench source time function (this gives the approximated

response to a Dirac pulse) and ii) convolving the impulse response with the target source time function. In summary,

the ground motion generated by the fault was predicted following the steps below:

1. select one geology in the Le Teil database

2. for each point on the fault plane, predict the surface wavefields with the fine-tuned MIFNO

3. deconvolve all surface wavefields by the spice bench source time function

4. convolve each surface wavefield by the source time function corresponding to its associated point source

5. sum all surface wavefields

With this setting, the geology is chosen with a 0.11 coefficient of variation, correlation length of 4.5 km along x, 3 km
along y, 1.5 km along z. The fault is characterized by a 45° strike, 108° rake, and 60° dip (Fig. 4.6a).
Figure 4.7 illustrates the spatial propagation of waves originating from the extended fault. One can first observe

that predictions agree very well with the reference simulation since the wave fronts are accurately reproduced, both

for their arrival times and their amplitude. Despite the first wave arrivals being more complex than the pulse-like

ground motion generated by individual point sources, Fig. 4.8 shows that their temporal evolution is very accu-

rate. Thanks to the contribution of the different point sources, detailed ground motion features are also correctly

captured by the predictions. Time series in Fig. 4.8 and snapshots around 1.8 s in Fig. 4.7 indeed show that small-

amplitude fluctuations are well reproduced by the MIFNO. This visual agreement is confirmed by the GOF scores

since phase GOFs are excellent at all spatial locations and envelope GOFs are excellent for 85.6% of points.

4.3 Uncertainty propagation
Section 4.3.1 focuses on the influence of geological heterogeneities on PGV and PSA. These results were obtained

with the F-FNO fine-tuned on the Le Teil database (i.e. with a fixed source). In the following sections, all results are

provided by the MIFNO.

4.3.1 Influence of geological heterogeneities on Peak Ground Velocity (PGV)
Several intensity measures are of interest for engineering applications. Therefore, one should ensure that the F-FNO

can provide accurate estimates of the different intensity measures. In this section, we focus on the Peak Ground

Velocity (PGV), computed as themaximum value over time of the geometric mean of the two horizontal components.
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Le Teil database with a random source along the fault plane

# samples rRMSE rFFTlow rFFTmid rFFThigh EG PG

Ntrain=3000 0.40 ; 0.73 -0.49 ; -0.02 -0.60 ; -0.06 -0.67 ; -0.09 6.60 ; 8.43 8.25 ; 9.31

NTL=0 0.64 ; 0.98 -0.44 ; 0.33 -0.64 ; 0.06 -0.68 ; -0.05 5.98 ; 7.69 6.30 ; 8.44

NTL=100 0.41 ; 0.78 -0.44 ; 0.08 -0.56 ; 0.00 -0.66 ; -0.05 6.51 ; 8.32 8.17 ; 9.25

NTL=250 0.38 ; 0.75 -0.41 ; 0.09 -0.52 ; 0.03 -0.61 ; -0.01 6.70 ; 8.47 8.38 ; 9.35

NTL=500 0.37 ; 0.74 -0.38 ; 0.11 -0.49 ; 0.06 -0.58 ; 0.02 6.87 ; 8.57 8.51 ; 9.41

NTL=1000 0.35 ; 0.69 -0.42 ; 0.03 -0.52 ; -0.02 -0.59 ; -0.04 6.92 ; 8.62 8.62 ; 9.46

NTL=2000 0.33 ; 0.68 -0.38 ; 0.05 -0.47 ; 0.01 -0.54 ; -0.01 7.10 ; 8.72 8.72 ; 9.51

NTL=3000 0.33 ; 0.68 -0.34 ; 0.08 -0.43 ; 0.04 -0.51 ; 0.02 7.20 ; 8.78 8.76 ; 9.53

Table 4.2: 1st and 3rd quartiles of the metrics computed on 700 test samples specific to the Le Teil region. (upper

row): training with only 3000 specific data. In other experiments, transfer learning was used with 100 to 3000

samples (NTL= number of transfer learning samples). rRMSE: relative RMSE (0 is best), rFFTlow: relative frequency

bias 0-1Hz (0 is best), rFFTmid: relative frequency bias 1-2Hz (0 is best), rFFThigh: relative frequency bias 2-5Hz (0

is best), EG: envelope Goodness-of-Fit (10 is best), PG: phase Goodness-of-Fit (10 is best). For frequency biases,

negative values indicate underestimation.

(a) 3D representation of the fault plane

(b) Seismic moment function for some points on the fault

plane

Figure 4.6: Kinematic model of the fault that generated the Le Teil earthquake computed by Vallage et al. 2021.

Colors indicate the final seismic moment of each point.
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Figure 4.7: East-West component of the simulated (upper row) and predicted (center row) velocity fields for a het-

erogeneous geology in the Le Teil database. The error between simulation and prediction is given in the lower row.

The black rectangle indicates the fault extend.

Figure 4.8: East-West velocity time series at 8 sensors aligned at x=2.25 km generated from the extended fault.
Predictions (red dashed lines) were obtained with the MIFNO fine-tuned on 2000 samples. The reference ground

motion is given by the numerical simulation (black lines). For each sensor, its position along the y axis is indicated.
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(a) For each test sample and each sensor point, the predicted

PGV is shown against the true PGV. Colors denote the density

of points.

(b) Each test sample is represented by the geological coeffi-

cient of variation (x axis). For each sample, the PGV bias is

given as the mean of all sensors (black dot) and the standard

deviation across samples (grey error bar).

Figure 4.9: PGV prediction with the fine-tuned F-FNO

Figure 4.9a first compares the predicted PGV with the simulated PGV for 700 test samples and all spatial points.

One can observe that the predictions align well with the ground truth for a large majority of points (dense dark

area). This indicates that the F-FNO accurately predicts the peak values, despite not being targeted for this specific

quantity of interest. When predictions are inaccurate, they are more often underestimated than overestimated.

This is especially true for large PGVs (larger than 10 cm/s) that represent rare events where predictions are very

challenging.

Quantitatively, the PGV accuracy can be defined as the relative error between the prediction and the simulation.

Figure 4.9b then shows the PGV relative bias as a function of the coefficient of variation for the associated geology.

One can notice that predictions are excellent when heterogeneities have a low amplitude. Indeed, the PGV relative

bias is lower than 2.5% for coefficients of variation smaller than 5%. Then, in average, the F-FNO tends to slightly

underestimate the PGV. Indeed, the PGV relative bias sensors is between −7.4% and 3.3% for coefficients of varia-

tion around 10% (one standard deviation around the mean, Fig. 4.9b). Across all samples, the PGV relative bias is

comprised between −17% and 14% for coefficients of variation lower than 10%. When heterogeneities have large

amplitudes (coefficients of variation larger than 20%), the underestimation generally worsens. Thus, the F-FNO

provides accurate PGV estimates for low to moderate coefficients of variation that are commonly encountered in

practice at our scale of interest (few kilometers). Increasing the number of transfer learning samples improves the

PGV predictions.

4.3.2 Sensitivity analysis
In the following, we analyze the relationships between the geological/source parameters and the PSA. To ease the

interpretation, the analysis is restricted to six receivers R0, R1, · · · , R5 with various azimuths from the fault (Fig. 4.10).
Global sensitivity analysis amounts to quantifying the influence of individual parametersX1, · · · , Xq on amodel

outcome Y ∈ R = M(X1, · · · , Xq). In our framework, parameters X1, · · · , Xq are the coefficients of variation

σk and the correlation lengths in the three directions `x,k , `y,k , `z,k for each of the 5 layers k ∈ {1, · · · , 5} in the
geological model. Parameters also contain the source position relative to the fault sα, sβ, sn and the source orien-
tation φ, δ, λ. The outcome Y is the PSA at a given receiver xR and a given period T . Denoting h the deterministic
function that computes the PSA from the velocity time series, the model isM := h ◦Gφ.
One commonmethod in global sensitivity analysis is the Sobol analysis (Sobol 2001). It provides first-order Sobol’

indices Si that quantify the influence of parameterXi on the outcome Y via

Si =
V ar(E[Y |Xi])

V ar(Y )
(4.10)
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Figure 4.10: Six receivers R0, R1, · · · , R5 and the vertical projection of the fault plane colored by depth.

To account for interactions between parameters, let us introduce

Di(Y ) := V ar(E[Y |Xi])

Dij(Y ) := V ar(E[Y |Xi, Xj ])−Di(Y )−Dj(Y ),
(4.11)

with natural extensions to higher-order interactions. The total indices STi can then be computed on all sets of
parameters I including i

STi =
∑

I⊂{1,··· ,q}|i∈I

SI (4.12)

To compute the expectation in the Sobol’ indices, we rely on a Saltelli sampler with 213
Monte Carlo samples (Saltelli

2002). Since our model depends on q = 26 parameters, the Sobol analysis requires 213(2q+2) = 442 368 samples.
All geological and source parameters are independent and they follow the same distribution as the Le Teil database

(equations 4.4, 4.6, 4.8), with the exception of the coefficient of variation that was limited to smaller values, common

in the literature (Section 1.2) to avoid large deviations from the reference geology. Coefficients of variation σk follow
a truncated normal distribution between 0 and 0.15 with mean 0.1 and standard deviation 0.04

σk ∼ pσk = N[0,0.15](0.1, 0.04) (4.13)

From the 442368 parameter values determined by the Saltelli sampler, we designed the corresponding 3D hetero-

geneous geological models and predicted the velocity wavefields with the MIFNO. The PSA is finally computed at

the six receivers of interest (Fig. 4.10), leading to 442368 predictions × 29 PSA periods × 6 receivers = 76972032
values to analyze.

Figure 4.11 shows the first-order and total Sobol indices for the PSA computed at receiver R3 at all periods

between 0.2 s and 3 s. The total indices are the largest for the two parameters sα and sβ corresponding to the
source position on the fault plane. They are also the largest first-order indices and this observation holds for all

receivers (Tab A.12). Note that sβ accounts for the source depth and (sα, sβ) is correlated with the source-to-
receiver distance. Therefore, it is perfectly expected that they strongly influence the PSA.

The source orientation (φ, δ, λ) has moderate total indices (smaller than 0.1) and the relative influence of each
angle varies between the receivers (Tab A.13). The first-order indices of the geological parameters σk, `x,k, `y,k, `z,k
are non-significant but their total indices are of the same order as the total indices of the source orientation. There-

fore, it means that heterogeneities influence the PSA with high-order interactions between several parameters

(second-order interactions account only for a small portion of the total indices).

It is interesting to notice that indices are generally similar for all periods, excepting at receivers R2 and R4 where

total indices of geological parameters are significantly larger at small periods (Fig. A.31). Both receivers are located

along the fault normal, which may explain that they exhibit a slightly different behaviour than the receivers parallel

to the fault plane.
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Figure 4.11: First-order (top) and total (bottom) Sobol indices for the PSA on the East-West component computed at

receiver R3. Each of the 26 parameters is reported on the x axis and the y axis denotes the period.
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4.3.3 Parameters conditioning from fictive observations
Although all geological models designed in the previous section are plausible realizations in the Le Teil region, they

may contradict the real geology, for instance if high-velocity heterogeneities have been located in an area with low-

velocity fluctuations. To better inform the PSA predictions, we want to focus on admissible geologies that approach

the real geology. One possibility to discriminate these admissible geologies is to create or record a small-magnitude

event with a controlled source (e.g. microtremor) and record the PSA at a reference receiver. In the absence of such

recordings, we use a fictive observation obtained from numerical simulations.

Let us denote S = {ai,xs,i,θs,i}1≤i≤442368 the set of geologies, source positions, and source orientations sam-

pled with the Saltelli sampler. The observed groundmotionu∗ is simulated with a geology a∗ and source parameters
(x∗s,θ

∗
s) that do not belong to S . The observed PSA is computed at receiver R3. This quantity of interest is denoted

y∗ := h(u∗(xR3)). Figure 4.12a shows the PSA distribution on the set S (by abuse of notation, this implies the set
of PSA ŷ = h(û) = h(Gφ(a,xs,θs)) computed from parameters (a,xs,θs) in S). The observed PSA y∗ is close to
the median on the East-West and vertical components, and higher than the median on the North-South component

(Fig. 4.12a).

(a) Distribution on S (b) Distribution on S|y∗

Figure 4.12: Distribution of predicted PSA ŷ on the three components at receiverR3 (grey shaded areas) and obser-

vation y∗ (red dashed line)

The difference between one PSA ŷ obtained from the set S and the observed PSA y∗ is computed as the Euclidean
distance ‖ŷ − y∗‖ (more specific metrics could be chosen as well but we aim at demonstrating the applicability of
the method). Then, we consider that the 10000 realizations with the smallest difference are admissible and this

set is denoted S|y∗ (the choice of 10000 admissible realizations corresponds to a rupture point in the cumulative
distribution of ‖ŷ − y∗‖). Figure 4.12b illustrates that the PSA variance reduces significantly when considering the
set of admissible geologies.

One can then consider the set of source positions xs ∈ S|y∗ . This yields posterior distributions of the source
parameters constrained by the observation y∗. Figure 4.13a shows that the source position is well constrained
by the observation since the variance significantly reduces between p(xs) and p(xs|y∗) (similarly for p(ys|y∗) and
p(zs|y∗)). Additionally, the distribution concentrates around the source position that generated the observation.
Although the posterior distributions of the strike and dip angles are different from the prior distributions, they are

less concentrated around the true values (Fig. 4.13b). And there is no significant difference between the prior and

posterior distributions of the rake angle. This indicates that it is more difficult to constrain the source orientation

than the source position. Moreover, the observation does not allow to constrain the geological parameters, as
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(a) Distribution of source positions (b) Distribution of source orientations

Figure 4.13: Distribution of source positions (a) and source orientations (b) for samples in S (grey) and admissible
samples in S|y∗ (blue). The parameters corresponding to the observation x∗s , θ∗s are shown with the red dots.

illustrated with the posterior distributions of the coefficients of variation that are similar to the prior distributions

(Fig. A.32).

Finally, it is interesting to note that the parameters that are better constrained by the observation correspond to

the ones with the largest first-order Sobol indices. Indeed, large Sobol indices mean that a small parameter variation

induces a large outcome change. Therefore, one is able to discriminate parameters that do not lead to a PSA close

to the observation.

4.3.4 Uncertainty quantification on the PSA
The set of 10 000 admissible geologies provides distributions of predicted PSA at each receiver p(ŷ(xR)|y∗). Civil
engineering focuses on the highest percentiles of this distribution since structures are most threatened by high

ground motion intensity. In this percentile estimation, one should also i) account for the MIFNO prediction error, ii)

compare the predicted PSA percentile with simulations, and iii) estimate the number of samples necessary to reach

convergence.

The 4000 training samples provide a reference to calibrate the MIFNO prediction error on the PSA. This error

exR,T is estimated at each receiver xR and each period T

log10(y(xR, T )) = exR,T (log10(ŷ(xR, T ))) + ε (4.14)

exR,T is a skew normal distribution from which we find the parameters that minimize the residual ε (Fig. A.33).
Then, we choose randomly a set of n samples in S|y∗ and compute the 90th percentile of the predicted PSA in

this set. For n varying from 10 to 10000 this procedure is repeated 100 times to quantify the variability (orange
boxplots in Fig. 4.14). For each PSA prediction, the correction exR,T is also applied before computing the 90th
percentile. Figure 4.14 shows that the variability decreases when the number of samples n increases (red boxplots).
Indeed, the percentile estimation becomes more robust when the set is large. With correction, the predicted PSA

converges towards 2.16m/s
2
. The confidence interval estimated with 100 repetitions of 1000 samples is [2.01m/s

2
;

2.34m/s
2
].

Without the surrogate model, the 90th percentile of PSA could also be estimated from simulations, in which

case the geological models are not constrained. In the Le Teil database of 4000 samples, 944 geologies satisfy

the conditions of the sensitivity analysis (coefficient of variation smaller than 0.15). Therefore, the 90th percentile
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Figure 4.14: Variability of the 90th percentile computed on n samples, repeated 100 times. Prediction ŷ (orange),

corrected predictions 10
exR,T

(log10(ŷ))
(red), and simulation y (black)

is evaluated on n samples among the 944. Except for very small sets (n=10), the PSA variability is comparable
between simulations and predictions (Fig. 4.14). However, the simulated PSA converges towards 1.94m/s

2
, which is

lower than the lower bound of the predicted confidence interval.

Finally, one should note that these results have been obtained at receiver R4, which is not the receiver used

to constrain the PSA with the observation. Despite this, the predicted PSA is coherent with the simulation. Similar

conclusions can be drawn at other receivers (Fig. A.34) and other periods (Fig. A.35).

4.4 Conclusion
Using a database of geological models and source properties tailored to the Le Teil earthquake, the MIFNO was fine-

tuned to predict ground motions specific to this region. We showed that transfer learning is an efficient approach to

improve theMIFNO accuracy when focusing on a target area. As few as 250 transfer learning samples were sufficient

to obtain good envelope GOFs and excellent phase GOFs. This training took only 1h with one A100 GPU, making it

affordable for other site-specific applications.

We proved that the MIFNO has an excellent phase accuracy for 69% of predictions (GOF larger than 8) and good

amplitude accuracy for more than 73% of predictions (GOF larger than 6). In particular, the wave arrival times

are well reproduced, the spatial propagation of the waves is correctly captured, and the amplitude of the main

fluctuations is accurate. Thanks to this good accuracy, we applied the superposition principle of the elastic wave

equation to predict ground motion generated by an extended fault source. Results were excellent on the vast

majority of sensors, despite the temporal complexity of the ground motion time series.

The influence of geological uncertainties on ground motion intensity was further assessed with the Peak Ground

Velocity (PGV). Results indicate that the F-FNO predictions are excellent when the geologies have moderate ampli-

tude heterogeneities ; the mean PGV relative bias was between −3% and 7% when geologies have a coefficient of

variation smaller than 0.1. When geologies have stronger heterogeneities, the F-FNO tends to slightly underestimate

the PGV when comparing predictions and simulated ground truths for the same geology.

Thanks to the MIFNO speed, a sensitivity analysis was performed on more than 440000 ground motion pre-

dictions. First-order Sobol indices showed that the PSA is largely influenced by the source position. Geological

parameters have non-negligible total indices but they reflect high-order interactions. Using a fictive observation at

a reference receiver, we were able to constrain the source position and obtain meaningful posterior distributions.

However, constraining the source orientation was less obvious and a single observation was not enough to infer

the geological parameters that generated the observation. These results show that the MIFNO is an appropriate sur-

rogate model to address inverse problems and we have only provided a first insight into the possible applications.
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More advanced approaches could be explored to study the optimal position of reference receivers, choose a more

specific definition of the admissible geologies, or formalize a rigorous inverse problem.

Our method already provides confidence intervals of the 90th PSA percentile. By selecting only admissible geolo-

gies, the MIFNO predictions rely on realistic geological and source parameters. If one were to compute confidence

intervals only with numerical simulations, it would not be possible to restrain the variability of configurations and

extreme unrealistic PSA values could be found. For real-life applications where security is a major concern, it would

be ideal to run a small number of simulations wisely sampled among the set of admissible geologies to ensure that

the confidence intervals match the MIFNO estimates.

The influence of the MIFNO error could also be addressed in more details. Especially, there is a wide literature on

neural networks that include an intrinsic notion of uncertainty. Extending those methods to neural operators is not

an easy task due to high computational requirements but several studies have already shown promising results (e.g.

Agata et al. 2024; Cao et al. 2024; Guilhoto and Perdikaris 2024; Ma et al. 2024; Z. Zou et al. 2022). They provide a

complimentary view to our approach where uncertainty evaluation does not rely on repeated calls to the surrogate

model.
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Conclusion and perspectives
Physics-based simulations
Physics-based simulations are convenient methods to evaluate ground motion intensity. Thanks to advanced nu-

merical schemes, they solve the elastic wave equation with high fidelity. However, their outcomes strongly depend

on the simulation parameters such as the geological models and source properties. When simulating the ground

motion produced by the Le Teil earthquake, we showed in Chapter 1 that adding random heterogeneities to the

reference geological model was an adequate way to compensate for the general lack of geological knowledge. Es-

pecially, heterogeneities attenuated the ground motion peaks coming from the absence of scatterers in the smooth

reference model. Yet different heterogeneities samplings led to significant differences in ground motion intensity

and the computational costs of large-scale 3D physics-based simulations prevent uncertainty quantification analy-

ses.

Simulations of the Le Teil earthquake indicated the key elements to include in our database of ground motions.

The HEMEW
S
-3D database contains 30000 geological models of size 9.6 km× 9.6 km× 9.6 km accompanied by the

surface ground motion generated by random point-wise sources. The geological models are based on a random

arrangement of horizontal layers onto which random heterogeneities are added. The choice of horizontal layers

is lightly constrained to offer flexibility to the machine learning model. Random heterogeneities are stronger than

the typical values observed at our scale of interest to create geological peculiarities that cannot be represented by

horizontal layers. In Chapter 2, we showed that this design leads to a large intrinsic dimension of the geological

database, at least of the order of 30.

Inside each geological domain, seismic waves were propagated from a point-wise source having a random loca-

tion and random orientation. The propagation was computed with the SEM3D earthquake simulator based on the

Spectral Element Method. The 3D simulations are valid up to a frequency of 5Hz and are conducted for 6.4 s. The

30000 simulations amount to a simulation time of 6.8× 105 h equivalent CPU. To reduce thememory requirements,
seismic waves are recorded only at the surface of the propagation domain on a grid of 32× 32 virtual sensors. Then,
each ground motion sample in the HEMEW

S
-3D database is a set of three 3D variables (one for each component of

ground motion). The intrinsic dimension of the ground motion database is at least on the order of 100, suggesting

the high complexity of the ground motion prediction task by a surrogate model.

The Multiple Input Fourier Neural Operator (MIFNO)
We proposed an extension of the Factorized Fourier Neural Operator (F-FNO) called Multiple Input Fourier Neural

Operator (MIFNO) that predicts surface groundmotion depending on a 3D geology and a vector of source properties.

This surrogate model derives from successive extensions of the Fourier Neural Operator (FNO) and achieves the

following objectives:

1. the geological model is given as a 3D variable, which allows any parametrization of geological interfaces and

small-scale heterogeneities

2. ground motion is a time series predicted for any point at the surface

3. although ground motion is a time-dependent 3D variable, we avoid the need for a huge 4D surrogate model

with a depth-to-time conversion between inputs and outputs

4. the earthquake source can be placed at any location inside the domain and parametrized by any moment

tensor orientation

The MIFNO predicts accurate ground motion for a vast majority of samples. It is especially accurate to estimate

the wave arrival times and the phase of ground motion signals, as illustrated by the excellent phase Goodness-Of-
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Fit (GOF). Envelope GOFs quantify the errors on ground motion amplitudes and are considered good to excellent.

Overall, these results demonstrate that the MIFNO is an accurate surrogate model for ground motion prediction.

Predictions are also robust to out-of-distribution data as quantified by the good predictions on realistic geologies

such as the Marmousi model and the good predictions when the source is located outside the training domain. The

MIFNO can also be readily applied to inputs of higher resolution than the training resolution. Although it does not

systematically improve the results, predictions are stable for higher resolutions.

Prediction errors can be interpreted from several physical variables, which helps to understand the MIFNO lim-

itations. We showed in Chapter 3 that errors increase for high-frequency components, reflecting the well-known

spectral bias inherent to neural networks. Larger errors are also obtained for geological models displaying small

correlation lengths and large coefficients of variation. Indeed, geological heterogeneities induce dispersion that

create ground motion fluctuations. Ground motion then becomes intrinsically harder to predict. Similarly, deeper

sources and larger epicentral distances generally lead to more complex ground motion. However, the most en-

ergetic, and hence damaging, ground motions tend to be well predicted, which is of the utmost importance for

engineering applications.

Training theMIFNO on the HEMEW
S
-3D database provides a generic surrogatemodel that gives good predictions

for a wide variety of geological models and source parameters. However, training on a large database is compu-

tationally demanding and it becomes difficult to significantly improve the accuracy without massive investments

in data collection and multi-GPU training. In this context, transfer learning is an efficient approach to specialize

the MIFNO to a target task with light computational requirements. In Chapter 4, we designed a transfer learning

database tailored to the Le Teil earthquake. The variability of geological models is reduced since they all originate

from a reference 1D model and sources correspond to the La Rouvière fault that created the Le Teil earthquake.

We showed that as few as 250 samples from this tailored database were sufficient to improve the MIFNO accuracy

by 1 to 2 GOF units. One could even achieve almost excellent predictions with a few thousands transfer learning

samples.

We illustrated the benefits of the fine-tuned MIFNO on several applications that are relevant for seismic hazard

analyses. When geological models present moderate heterogeneities (i.e. in line with observations at our scale of

interest), the F-FNO predicts accurate Peak Ground Velocity (PGV). It can also predict Pseudo Spectral Acceleration

(PSA) distributions that match well with the simulations. Thanks to the speed of the MIFNO predictions, confidence

intervals can be obtained by predicting ground motion for hundreds of thousands of geological and source config-

urations. They give higher estimates than the simulations, thereby providing safety margins.

Societal implications
Uncertainty quantification is unreachable with high-fidelity 3D simulations due to the computational time. How-

ever, deep learning surrogate models require large training databases that need to be acquired from numerical

simulations (at least in the supervised learning framework adopted in this work). Throughout this thesis, the energy

consumption of the different tasks was assessed to evaluate whether the MIFNO is beneficial compared to simu-

lations in this respect. We summarize the results from Tab. 1.3, Tab. 2.3, and Tab. 3.6 in the following Tab. 5.1 and

Fig. 5.1.

Conducting the uncertainty analysis of Chapter 4 with NMC=10
5
realizations would represent 11MWh with CPU

simulations and preliminary benchmarks on SEM3D give an equivalent projection of 1.9MWh with GPU simulations.

Assuming that the generic MIFNOwould be applied at 100 different locations where transfer learning would be used

to fine-tune the surrogate model, the same uncertainty analysis would amount to 0.14MWh. Therefore, the MIFNO

reduces the total energy consumption by two orders of magnitude compared to the current framework.

We have mentioned in Chapter 4 that the number of initial training samples was crucial to allow accurate pre-

dictions after transfer learning. By factorizing the costs of the database simulation across several studies, one can

make the corresponding energy consumption reasonable. Results in Tab. 5.1 assume that a large number of transfer

learning samples would be necessary to reach excellent accuracy on the target task and we would argue that they

give a conservative evaluation of the MIFNO energy consumption. Most importantly, the MIFNO prediction time are

so negligible that the MIFNO energy consumption does not depend on the number of predictions. Though the costs

scale linearly in the case of numerical simulations. Therefore, demanding Monte Carlo frameworks with millions of

iterations, or more, will benefit even more from the MIFNO (Fig. 5.1).

Finally, transferring knowledge between a generic surrogate model and target tasks require that the database,

the neural operator architecture, and the weights of the pre-trained model are publicly available and usable. The
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Task Number of realizations Energy consumption (MWh)

SEM3D simulation (CPU) NMC = 10
5 11

SEM3D simulation (projection GPU) NMC = 10
5

1.9

Database simulation (CPU) Ntrain = 30000 shared in 100 0.033

Transfer learning database (CPU) NTL = 1000 0.11

MIFNO training (GPU) Ntrain = 30000 shared in 100 0.00022

MIFNO fine-tuning (GPU) NTL = 1000 0.00074

MIFNO prediction (GPU) NMC = 10
5

0.000052

Total MIFNO (CPU + GPU) NMC = 10
5 0.14

Table 5.1: Estimation of the energy consumption for all the tasks presented in this thesis. The energy consumption

of 1 CPU is estimated to 4.88Wh. The energy consumption of 1 GPU is estimated to 187Wh. In all situations, the

domain has a size of 9.6 km× 9.6 km× 9.6 km and time series have a duration Tf=6.4 s. From preliminary bench-
marks, SEM3D simulation time is estimated to 0.10h one 1 GPU. The costs of building the HEMEW

S
-3D database

and training the MIFNO are shared between 100 studies at different sites of interest.

Figure 5.1: Energy consumption of n ground motion evaluations using numerical simulations on CPUs (black line),
GPUs (black dashed line), and the MIFNO (red bards).

HEMEW-3D and HEMEW
S
-3D databases can be downloaded on Recherche Data Gouv

1
and the code to train, re-use,

and fine-tune the neural operators is available on Github
2
.

Perspectives
The field of Scientific Machine Learning (SciML) evolves rapidly and new neural operators regularly improve state-

of-the-art benchmarks. Several techniques could improve the MIFNO accuracy, such as adding constraints on the

derivative in the loss function (Cao et al. 2024; Cho et al. 2024) or focusing on extreme values that are the most

threatening for infrastructures (Lagerquist and Ebert-Uphoff 2022; Xu et al. 2024). Building on alternative architec-

tures that alleviate the requirements of a Cartesian grid (H. Lin et al. 2022; Z. Li et al. 2023b), one could also envision

a surrogate model that considers a non-flat topography. This would allow statistical quantification of site effects

due to 3D topography.

The MIFNO can also be extended to more flexible geological parameters. Especially, one could add the P-wave

velocity and density as additional inputs. We do not expect a massive increase in computational requirements

since the architecture would require only small changes in the uplift network. However, it requires designing a new

1https://doi.org/10.57745/LAI6YU
2https://github.com/lehmannfa/HEMEW3D
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training database. In this framework, it would be interesting to add more physical constraints to the geological

models. In particular, one may want to reach lower surface velocities and avoid strong velocity inversion between

layers. It it also possible to include anisotropy in the random fields (Ta et al. 2010).

Considering the benefits of transfer learning, it is desirable to apply this method with other geological models.

For instance, it would be interesting to investigate the site effects created by sedimentary basins with this approach.

Thanks to the 3D representation of geological models, the MIFNO allows a rich parametrization of the basin shapes

and it could complement existing works based on numerical simulations (e.g. Soto Moncada 2023).

The MIFNO could also be coupled with generative methods that increase the frequency content of physics-based

simulations to reach frequencies of interest in engineering applications (e.g. Gatti and Clouteau 2020). Then, it could

be embedded in a domain reduction method to analyze soil-structure interactions in deeper extents than currently

achieved with numerical simulations (Korres et al. 2022).

Finally, many physical problems rely on parametrized PDEs with various inputs and wave propagation appears in

several contexts others than seismology. Although the MIFNOwas inspired by seismic wave propagation challenges,

its architecture is more general and can certainly benefit other scientific communities.
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Appendix A

Appendices
A.1 Le Teil simulations

network latitude longitude elevation type
epicentral

distance (km)

PGA

(cm/s2)
PGV

(cm/s)

VIVF LDG 44.86° N 4.67° E 618 m velocimeter 37 km - -

OGCB FR 44.85° N 5.1° E 773 m velocimeter 50 km 1.80 0.11

P53 OHP 44.74° N 4.97° E 157 m velocimeter 34 km 7.53 0.75

CAI535 SNCF 44.66° N 4.92° E 212 m velocimeter 25 km 16.32 0.64

CRU1 3C 44.64° N 4.76° E 77 m accelerometer 14 km 44.91 1.21

P54 SNCF 44.61° N 4.88° E 148 m velocimeter 19 km 19.29 0.80

OGDF FR 44.56° N 5.07° E 709 m velocimeter 32 km 4.12 0.35

CAI550 SNCF 44.53° N 4.82° E 129 m velocimeter 11 km 96.00 2.76

P55 SNCF 44.48° N 4.77° E 133 m velocimeter 8 km 69.65 3.18

OGCC FR 44.43° N 5.55° E 1250 m velocimeter 70 km 0.77 0.21

CAI567 SNCF 44.4° N 4.74° E 60 m velocimeter 14 km 15.14 1.76

ADHE 3C 44.37° N 4.77° E 90 m velocimeter 17 km 4.17 0.31

BANN FR 44.37° N 4.16° E 343 m accelerometer 44 km 4.96 0.42

P56 SNCF 44.32° N 4.7° E 48 m velocimeter 22 km 8.24 1.15

OGLP RA 44.31° N 4.69° E 46 m accelerometer 23 km 6.10 1.15

P60 SNCF 44.16° N 4.74° E 42 m velocimeter 39 km 6.78 0.82

CAI604 SNCF 44.09° N 4.77° E 25 m velocimeter 48 km 2.92 0.15

P61 SNCF 43.99° N 4.74° E 44 m velocimeter 59 km 7.38 0.77

SAUF FR 43.94° N 5.11° E 230 m accelerometer 73 km 1.33 0.14

P71 SNCF 43.94° N 4.72° E 109 m velocimeter 64 km 0.69 0.09

P62 SNCF 43.93° N 4.78° E 17 m velocimeter 66 km 3.72 0.28

CAI633 SNCF 43.9° N 4.89° E 38 m velocimeter 70 km 1.58 0.15

Table A.1: Stations with available records ordered by decreasing latitude. PGA (resp. PGV): maximum of the East-

West and North-South components for the Peak Ground Acceleration (resp. Velocity). VIVF is a vertical sensor only.

LDG = Geophysical and Detection Laboratory of the French Alternative Energies and Atomic Energy Commission

(CEA). FR, OHP, 3C, RA are networks of RAP-Résif (French Permanent Accelerometric Network). SNCF = French Na-

tional Railway Company

113



Figure A.1: Frequency response spectra of the numerical simulation (in red) obtained with the 1D geological model

and a point source. Comparison with seismograms records (in black). Velocities are given in the East-West (E-W),

North-South (N-S), and vertical (Z) directions for the station OGDF.R denotes the epicentral distance.

114



(a) (b)

(c)

(d)

Figure A.2: Results of the numerical simulation (in red) obtained with the 3D geological model and a point source.

Comparison with seismograms records (in black) filtered at 5 Hz. Velocities are given in the East-West (E-W), North-

South (N-S), and vertical (Z) directions.
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Figure A.3: Frequency response spectra of the numerical simulation (in red) obtained with the 3D geological model

and a kinematic fault model. Comparison with seismograms records (in black). Velocities are given in the East-West

(E-W), North-South (N-S), and vertical (Z) directions for the station OGDF.

(a) (b)

Figure A.4: Results of the numerical simulation (in red) obtained with the 3D geological model and a kinematic fault

model. Comparison with seismograms records (in black) filtered at 5 Hz. Velocities are given in the East-West (E-W),

North-South (N-S), and vertical (Z) directions in stations OGDF A.4a and OGCB A.4b
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(a) (b)

Figure A.5: Velocities obtained with two random fields added to the 1D geological model in OGDF station. The third

random field is shown in Figure 1.16.
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A.2 Dimensionality reduction

Figure A.6: Correlation dimension (y-axis) as a function of the dataset size (x-axis) for geological models (left) and
ground motion wavefields (right). For ground motion, the HEMEW-3D database is used for the fixed source (black

line) and the HEMEW
S
-3D database corresponds to the blue line.
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(a) Correlation dimension for 30000 geological models

(b) Correlation dimension for 30000 ground motion wave-

fields with a fixed source (HEMEW-3D database)

(c) Correlation dimension for 30000 ground motion wave-

fields with a random source (HEMEW
S
-3D database)

Figure A.7: The correlation dimensionCN (r) is computed from the number of samples being at (Euclidean) distance
smaller than r for different values of r (Equation 2.10). Then, the correlation dimension is obtained as the slope of
the linear part in the log-log representation.
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A.3 Fourier Neural Operators architectures
This section provides details on the layers in each FNO variant: FNO (Tab. A.2), U-NO (Tab. A.3), and F-FNO (Tab. A.4).

The number of parameters is indicated for each layers (“k” denotes thousands and “m” denote millions).

output shape # parameters

b, 32, 32, 32, 1

concatenate grid b, 32, 32, 32, 6

uplift b, 32, 32, 32, 16 200

permute and optional padding b, 16, 32, 32, 32

Fourier layer 1 (modes=16, 16, 16) b, 16, 32, 32, 64 8.39m

Fourier layer 2 (modes=16, 16, 32) b, 16, 32, 32, 128 16.8m

Fourier layer 3 (modes=16, 16, 32) b, 16, 32, 32, 256 16.8m

Fourier layer 4 (modes=16, 16, 32) b, 16, 32, 32, 320 16.8m

unpadding and permute b, 32, 32, 320, 16

projection QE b, 32, 32, 320, 1 1.1k

total 58.7m

Table A.2: For each group of operations in the FNO, output shape and number of parameters in this group. In the

output shape column, dimensions refer to (batch size, x, y, z or t, channels). The number of channels is 16 in all

layers. The number of modes in (x, y, z or t) is indicated for each Fourier layer.

output shape # parameters

b, 32, 32, 32, 1

concatenate grid b, 32, 32, 32, 6

uplift b, 32, 32, 32, 16 200

permute and optional padding b, 16, 32, 32, 32

Fourier layer 1 (modes=12, 12, 12) b, 16, 24, 24, 24 3.54m

Fourier layer 2 (modes=9, 9, 9) b, 16, 18, 18, 18 1.49m

Fourier layer 3 (modes=6, 6, 7) b, 16, 13, 13, 13 516k

Fourier layer 4 (modes=4, 4, 5) b, 16, 8, 8, 8 164k

Fourier layer 5 (modes=4, 4, 5) b, 16, 13, 13, 17 164k

Fourier layer 6 (modes=6, 6, 9) b, 16, 18, 18, 34 1.33m

Fourier layer 7 (modes=9, 9, 17) b, 16, 24, 24, 64 5.64m

Fourier layer 8 (modes=12, 12, 20) b, 16, 32, 32, 320 11.8m

unpadding and permute b, 32, 32, 320, 16

projection QE b, 32, 32, 320, 1 2.17k

total 24.6m

Table A.3: For each group of operations in the U-NO, output shape and number of parameters in this group. In the

output shape column, dimensions refer to (batch size, x, y, z or t, channels). The number of channels is 16 in all

layers. The number of modes in (x, y, z or t) is indicated for each Fourier layer.
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output shape # parameters

b, 32, 32, 32, 1

concatenate grid b, 32, 32, 32, 4

uplift b, 32, 32, 32, 16 96

permute and optional padding b, 16, 32, 32, 32

F-Fourier layer 1 (modes=16, 16, 16) b, 16, 32, 32, 32 26.8k

F-Fourier layer 2 (modes=16, 16, 16) b, 16, 32, 32, 32 26.8k

F-Fourier layer 3 (modes=16, 16, 16) b, 16, 32, 32, 32 26.8k

F-Fourier layer 4 (modes=16, 16, 16) b, 16, 32, 32, 32 26.8k

F-Fourier layer 5 (modes=16, 16, 16) b, 16, 32, 32, 64 26.8k

F-Fourier layer 6 (modes=16, 16, 32) b, 16, 32, 32, 128 35.0k

F-Fourier layer 7 (modes=16, 16, 32) b, 16, 32, 32, 256 35.0k

F-Fourier layer 8 (modes=16, 16, 32) b, 16, 32, 32, 320 35.0k

unpadding and permute b, 32, 32, 320, 16

projection QE b, 32, 32, 320, 1 2.4k

total 246k

Table A.4: F-FNO with 8 layers. For each group of operations in the F-FNO, output shape and number of parameters

in this group. In the output shape column, dimensions refer to (batch size, x, y, z or t, channels). The number

of channels is 16 in all layers. The number of modes in (x, y, z or t) is indicated for each factorized Fourier layer

(F-Fourier layer).
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A.3.1 Main results on the Factorized Fourier Neural Operator (F-FNO)
The influence of the training database size was investigated by reducing the database of 27 000 training samples to

12000 samples. Figure A.8 shows that a small database (Ntrain=12000) is detrimental but increasing from 22000 to

27000 training samples has no visible effect on the prediction error.

Figure A.8: frequency bias as a function of the number of training samples for the U-NO. frequency bias is given for

low frequency (0-1Hz, light grey), medium frequency (1-2 Hz, drak grey), and high frequency (2-5Hz, high frequency).

Average results are reported for 1000 training samples (filled markers and solid lines) and 1000 validation samples

(unfilled markers and dashed lines). Note that the y-axis gives the opposite of the frequency bias.

The original U-NOmodel has three skip connections (Fig. 3.5). The importance of the skip connections was quan-

tified by removing them progressively from top to bottom. Results for two skip connections in Fig. A.9 correspond

to a model without the upper skip connection (between the Fourier layers F1 and F8).

Evaluating the accuracy of predictions with frequency biases suggests that the two upper connections are not

useful. The lowest errors are even found for the U-NO with a single skip connection (between the Fourier layers F3

and F6).
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Figure A.9: frequency bias as a function of the number of skip connections in the U-NO. frequency bias is given for

low frequency (0-1Hz, light grey), medium frequency (1-2 Hz, drak grey), and high frequency (2-5Hz, high frequency).

Average results are reported for 1000 training samples (filled markers and solid lines) and 1000 validation samples

(unfilled markers and dashed lines). Note that the y-axis gives the opposite of the frequency bias.
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A.3.2 F-FNO hyperparameters
This section presents the influence of hyperparameters on the prediction accuracy and complements the main

text in Section 3.3.3. The default F-FNO has 8 layers, 16 channels (dv = 16), 16 Fourier modes in the first and
second dimension (M`,1 = M`,2 = 16,∀`) and 32 Fourier modes in the third dimension except for the first layer
(M1,3 = 16, M`,3 = 32, ∀` ≥ 2). With nominal settings, training was performed on 4 Nvidia A100 GPUs for 350
epochs with a learning rate of 0.0006 halved on plateau, and the relative Mean Absolute Error as loss function.
Activation functions are Gaussian Error Linear Units (GeLU, Hendrycks and Gimpel 2023). Early stopping was used

when the validation loss did not improve. The default configuration is identified with the red area in the following

figures.

The first hyperparameter tested is the number of channels (dv). It has a significant effect on the predictions
accuracy since Fig. 3.14a shows a steep reduction of the frequency biases when the number of channels increases.

Improvements are similar for all frequency ranges. For high frequencies, the relative frequency bias shrinks from

−58% to −30% when increasing the number of channels from 8 to 28. However, it does not seem beneficial to go

beyond 28 channels. Note that since all models underestimate the frequency content, y-axes display the oppositive

of the frequency biases. Also, the best models have the lowest amplitude of frequency biases.

As already seen in Tab. 3.4, the number of layers considerably influences the F-FNO accuracy. Figure 3.14a details

the relative frequency biases for models having between 4 and 28 layers. The most striking improvements occur

between 4 and 16 layers but the biases keep reducing when the number of layers is increased beyond 16. The linear

decrease between 20 and 28 layers even suggests that deeper models could be beneficial.

The number of Fourier modes selected in each factorized Fourier layer is a key hyperparameter but it seems to

have much less influence than the number of layers or the number of channels. The maximum number of Fourier

modes is determined by the variables size. Since inputs and outputs have a spatial size of 32, at most 16 spatial

Fourier modes can be computed. Models with 8 (Fig. A.10 top left), 12 (Fig. A.10 top right), and 16 (Fig. A.10 bottom)

spatial Fourier modes were tested. Along the third dimension, inputs are of size 32 (depth of the geological model)

and outputs are of size 320 (number of time steps of the surface wavefields). Table A.5 indicates the number of

points and modes in the third dimension for the reference model. When testing a model with 20 Fourier modes in

the third dimension for instance, the first five layers were preserved with 16 modes and the three last layers were

reduced to 20 modes.

layer 1 layer 2 layer 3 layer 4 layer 5 layer 6 layer 7 layer 8

Third dimension 32 32 32 32 64 128 256 320

Number of modesM`,3 16 16 16 16 16 32 32 32

Table A.5: Number of points in the third dimension and number of Fourier modes in the reference F-FNO model.

Figure A.10 shows that 16 spatial Fourier modes are slightly preferable than 12 or 8. Indeed, with 8 modes in the

third dimension, the high-frequency frequency bias reduces from −43% at 8 spatial modes to −39% at 16 spatial

modes. When using 8 or 12 spatial modes, the frequency bias slightly decreases when increasing the number

of modes in the third dimension. However, with 16 spatial modes, increasing the number of modes in the third

dimension does not improve the results (bottom panel in Fig. A.10). In particular, this means that the larger errors

on the high-frequency components of the time series are not due to a limited representation of temporal patterns.

Some other hyperparameters had almost no impact on the predictions’ accuracy; their detailed results are given

in the appendix. Firstly, padding is often added on the sides of the domain to account for the lack of periodicity in

the inputs. While the reference model has no padding, we tested adding 2 to 6 zero pixels to the x and y sides of the

inputs. Figure A.11 shows that the frequency biases are the same for all padding values. Therefore, padding is not

necessary in our model.

Some versions of the FNO also proposedmodifying the grid of coordinates that are concatenated with the inputs.

In the original implementation, each coordinate is represented by a linear grid between 0 and 1. This configuration

was used in the reference model. An alternative method relies on a sinusoidal decomposition of the coordinates

where, for instance, the x coordinate will be described by two grids: (cosxi, sinxi), 0 ≤ xi ≤ 2π. Our experiments
show that the sinusoidal decomposition slightly altered the predictions accuracy (Tab. A.6).

Finally, we mention that our model requires increasing the third dimension from a size of 32 (corresponding

to the depth of the geological models) to a size of 320 (corresponding to the number of time steps in the surface

wavefields). Since this is unusual practice, we tested three different strategies of increasing the dimension to ensure

that this did not impact the results (Tab. A.7).
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Figure A.10: Relative frequency bias depending on the number of Fourier modes. In each panel, the number of

spatial modes (first and second dimensions) is fixed. The reference model has 16 spatial modes and 32 modes in

the third dimension (red area).

A.3.3 F-FNO training strategy
Besides considerations on the model hyperparameters, training choices such as the loss function, the number of

training samples, the batch size, and the learning rate are crucial to obtain a model with a satisfying accuracy.

Common loss functions to train neural operators involve pixel-wise metrics such as the (relative) MAE and (rela-

tive) MSE. We investigated linear combinations of these two loss metrics by constructing the loss function as a linear

combination of relative MAE and relative MSE:

L(·) = ω rMAE(·) + (1− ω) rMSE(·), 0 ≤ ω ≤ 1

It is important to note that predictions are assessed with frequency biases, which are independent from the loss

function. Figure A.12 shows a clear improvement for all frequency ranges when using only the relative MAE.

When training deep neural networks, larger datasets (almost) always improve the predictions’ accuracy. How-

ever, in the context of supervised learning when data are expensive to acquire, one tries to limit the size of datasets.

Our dataset contains 27000 training data and Fig. A.13 shows similar results for models trained with 22000 and

27000 samples. This suggests that our database is well-suited for training the 3D F-FNO.

The influence of the learning rate was firstly evaluated by varying the initial learning rate between 1× 10−4 and
1× 10−3. For small learning rates (1× 10−4 and 2× 10−4 ), the convergence rate is too low and the loss function
reaches a sub-optimal plateau (Fig. A.17). For larger learning rates, it is noticeable that the training remains very

stable for learning rates up to 1× 10−3 (we observed divergence issues above this value, not shown). Analysing the
Fourier relative biases in Fig. A.14 (left) suggests that a learning rate of 6× 10−4 may be preferred.

In the default training configuration, the learning rate was halved when the validation loss did not improve for 10
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Figure A.11: frequency bias as a function of the number of padding pixels. frequency bias is given for low frequency

(0-1Hz, light grey), medium frequency (1-2 Hz, drak grey), and high frequency (2-5Hz, high frequency). Average results

are reported for 1000 training samples (filled markers and solid lines) and 1000 validation samples (unfilled markers

and dashed lines). Note that the y-axis gives the opposite of the frequency bias.

Model rFFTlow rFFTmid rFFThigh

Cartesian grid (reference) -0.15± 0.14 -0.26± 0.19 -0.37± 0.26
Sinus grid -0.18± 0.15 -0.29± 0.20 -0.40± 0.26

Table A.6: Mean and standard deviation of relative frequency biases for 1000 validation samples.

epochs. This well-known strategy aims at exploring potentially close local minima by reducing the gradient descent

step once the algorithm starts converging. Among the diversity of alternative learning rate schedulers, we tested

the cosine annealing with warm restarts (Loshchilov and Hutter 2017) and the one cycle scheduler (Smith and Topin

2018). The cosine annealing with warm restarts begins with a large learning rate (6× 10−4) that is sinusoidally
reduced for 70 epochs where it is brutally increased to its initial value (see Fig. A.18). The periodic increases aim

at helping the gradient descent algorithm escape local minima where it could get trapped during training. Our

experiments show that the loss function decreased more slowly than the reference loss during the first period due

to the diminishing learning rate (Fig. A.14, right). Moreover, the successive restarts did not allow the loss to reduce

significantly, thereby reaching a plateau higher than the reference.

Contrary to the cosine annealing scheduler, the one cycle scheduler starts with a very low learning rate that

should allow the gradient descent to reach some initial stability. Then, the learning rate increases up to 2.5× 10−4
to explore vast portions of the loss landscape. Figure A.14 (right) shows that the loss function degrades and becomes

noisy at this point. Then, the learning rate is slowly reduced to let the gradient descent converge to a local minima

(see Fig. A.18). However, the convergence value was significantly higher than the value obtained with the reference

scheduler. Therefore, with the parameters used in these experiments, halving the learning rate on plateaus remains

the best strategy.

Lastly, we explored the variability of results due to the weights’ initialization. With the default configuration,

models having 4, 8, 12, and 16 layers were trained with five different seeds for the random distribution of initial

weights. The largest variability in relative frequency biases was 0.07, which remains smaller than the differences

between two models with a distinct number of layers (Fig. A.15).
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Model (3rd dimension) rFFTlow rFFTmid rFFThigh

32-32-32-32-64-128-256-320 (reference) -0.15± 0.14 -0.26± 0.19 -0.37± 0.26
32-48-64-96-128-192-256-320 -0.16± 0.14 -0.27± 0.19 -0.38± 0.26
32-320-320-320-320-320-320-320 -0.16± 0.14 -0.27± 0.20 -0.38± 0.26

Table A.7: Mean and standard deviation of relative frequency biases for 1000 validation samples.

Figure A.12: Relative frequency bias as a function of the weight ω of the relative MAE in the loss function. The
reference model is evaluated with only the rMAE (red area).

Figure A.13: Relative frequency bias as a function of the number of training samplesNtrain. The reference model is

trained with 27000 samples (red area).
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Figure A.14: Influence of the learning rate on the predictions. (left): relative frequency biases for initial learning rates

between 1× 10−4 and 1× 10−3 halved on plateau. (right): Evolution of the loss function during training for three
learning rate schedulers: reduce on plateau (black, reference model), cosine annealing with warm restarts (blue),

one cycle (orange). Solid lines show training loss functions and dashed lines show validation loss.

Figure A.15: Relative frequency bias for models with 4, 8, 12, and 16 layers when using five different initialization

values for each model.
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Figure A.16: Relative frequency bias as a function of the number of elements per mini-batch. The reference model

is trained with mini-batches of 16 (red area).

Figure A.17: Evolution of the training loss for several initial rates between 1× 10−4 and 1× 10−3
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Figure A.18: Evolution of the learning rate using the cosine annealing with warm restarts scheduler (blue) and the

one cycle scheduler (orange).
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A.3.4 F-FNO robustness to noise
Velocity models in the HEMEW-3D database were created from random fields with spatially coherent features. In

reality, they could be corrupted by some white noise originating, for instance, from measurement errors. In this

case, it is desirable that predictions are not too sensitive to noise in the velocity models. To test this, we added white

noise as a centered Gaussian distributionN (0, σσVS ) with a noise level σ varying from 0.01 to 0.25 and σVS being
the mean standard deviation of velocity models.

Figure A.19: Relative frequency bias (left) and relative RMSE (right) for increasing noise level in the velocity models.

Predictions are compared with surface wavefields generated in unperturbed velocity models (blue lines) and noisy

velocity models (black lines).

Figure A.19 firstly compares the F-FNO predictions on noisy velocity models with the ground truth simulations in

the unperturbed velocity models (blue dashed curves). The relative frequency bias degrades slightly but the degra-

dation remains very limited, from −24.4% without noise to −27.0% with a 0.25 noise level (for the high-frequency

bias). For the relative RMSE, this represents an increase from 16.6% to 17.1%. These results show that the F-FNO is

very robust to noise added in the inputs.

Secondly, the predictions on noisy velocity models are compared with the true surface wavefields generated in

the same noisy velocity models (black curves in Fig. A.20). Then, the prediction error increases slightly more, es-

pecially in the high-frequency range (relative high-frequency frequency bias degrades from −24.4% without noise

to −27.7% with a 0.25 noise level). This can be better understood by examining the time series in Fig. A.20. When

simulating the true wavefield in the noisy velocity model, the small-scale heterogeneities added by the noise dis-

perse and diffract seismic waves. This is reflected by the presence of small-scale fluctuations after 3.5 s in Fig. A.20

(black curves, right panels). It has already been mentionned that the F-FNO predictions have limited high-frequency

accuracy, thereby explaining that prediction errors are higher when comparing with simulations in noisy velocity

models.

However, when studying noise robustness, the main interest remains in having predictions on noisy inputs close

to predictions on unperturbed inputs. This is achieved by the F-FNO to a great extent, as shown by our first experi-

ment.
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Figure A.20: Surface wavefield at one sensor synthetized with the unperturbed velocity model (black curves, left

panel) and the noisy velocity model (black curves, right panel). F-FNO predictions are shown for the unperturbed

velocity model (red dashed curves, left panel) and the noisy velocity model (red dashed curves, right panel). The

corresponding velocity models are illustrated on the left. Time series of velocity wavefield are given in the three

components (East-West, North-South, vertical).
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A.4 Multiple Input Fourier Neural Operator (MIFNO)
A.4.1 Metrics analyses

Figure A.21: Distribution of the frequency bias for each sensor and each sample in the training (grey area) and

validation (blue line) dataset.

Table A.8 compares the 8-layer MIFNO taking as input the 6 components of the moment tensor (Mxx,Myy ,Mzz ,

Mxy ,Mxz ,Myz) or the equivalent representation with 3 angles (strike, dip, rake).

Model rRMSE rFFTlow rFFTmid rFFThigh EG PG

angle 0.341 ; 0.589 -0.545 ; -0.095 -0.63 ; -0.15 -0.68 ; -0.18 6.32 ; 7.89 8.07 ; 9.17

moment 0.338 ; 0.589 -0.536 ; -0.091 -0.64 ; -0.16 -0.70 ; -0.20 6.29 ; 7.86 8.06 ; 9.16

Table A.8: 1st and 3rd quartiles of the metrics computed on 1000 validation samples. rRMSE: relative RMSE (0 is

best), rFFTlow: relative frequency bias 0-1Hz (0 is best), rFFTmid: relative frequency bias 1-2Hz (0 is best), rFFThigh:

relative frequency bias 2-5Hz (0 is best), EG: envelope Goodness-of-Fit (10 is best), PG: phase Goodness-of-Fit (10 is

best). For frequency biases, negative values indicate underestimation.
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A.4.2 Comparison with baseline models
Table A.9 compares a 16-layer F-FNO with a 16-layer MIFNO predicting surface velocity wavefields when the source

has a fixed position and orientation. It should be noted that the MIFNO was not specifically trained on this database.

Dataset with a fixed source position and fixed source orientation

Model rRMSE rFFTlow rFFTmid rFFThigh EG PG

F-FNO 0.14 ; 0.25 -0.30 ; 0.03 -0.39 ; 0.01 -0.44 ; 0.01 7.09 ; 8.37 8.49 ; 9.32

MIFNO 0.20 ; 0.31 -0.40 ; -0.03 -0.51 ; -0.06 -0.56 ; -0.08 6.36 ; 7.65 7.71 ; 8.83

Table A.9: 1st and 3rd quartiles of the metrics computed on 1000 validation samples. rRMSE: relative RMSE (0 is

best), rFFTlow: relative frequency bias 0-1Hz (0 is best), rFFTmid: relative frequency bias 1-2Hz (0 is best), rFFThigh:

relative frequency bias 2-5Hz (0 is best), EG: envelope Goodness-of-Fit (10 is best), PG: phase Goodness-of-Fit (10 is

best). For frequency biases, negative values indicate underestimation.

Figure A.22 illustrates the F-FNO and MIFNO predictions when the source has a fixed position and orientation.

Envelope GOFs of the F-FNO are between 8.3 and 8.7, MIFNO ones are between 7.5 and 8.7. Phase GOFs of the

F-FNO are between 9.2 and 9.6, MIFNO ones between 8.2 and 9.4.

Dataset with a random source position and fixed source orientation

Model rRMSE rFFTlow rFFTmid rFFThigh EG PG

F-FNO 8 layers 0.14 ; 0.24 -0.31 ; 0.01 -0.41 ; -0.03 -0.48 ; -0.04 6.71 ; 8.05 8.26 ; 9.19

MIFNO 8 layers 0.13 ; 0.23 -0.27 ; 0.05 -0.37 ; -0.00 -0.43 ; -0.00 6.93 ; 8.24 8.40 ; 9.26

Table A.10: 1st and 3rd quartiles of the metrics computed on 1000 validation samples. rRMSE: relative RMSE (0 is

best), rFFTlow: relative frequency bias 0-1Hz (0 is best), rFFTmid: relative frequency bias 1-2Hz (0 is best), rFFThigh:

relative frequency bias 2-5Hz (0 is best), EG: envelope Goodness-of-Fit (10 is best), PG: phase Goodness-of-Fit (10

is best). For frequency biases, negative values indicate underestimation. Both models were trained with 20000

samples for 300 epochs.
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Figure A.22: East-West component of ground motion from simulations (black solid line), F-FNO predictions (blue

dashed line), and MIFNO predictions (red dashed line)
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A.4.3 Influence of the source parameters

Figure A.23: For 1000 samples, the 1-2 Hz frequency bias is shown against the source orientation (strike, dip, rake).

Figure A.24: For 1000 samples, the envelope and phase GOF of MIFNO predictions is shown against the source

depth.
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A.4.4 Out-of-distribution data

Figure A.25: Envelope and phase GOF for the geology depicted in Fig. 3.22. The white star denotes the epicenter.
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(a) Simulations with a low-resolution geology (300m) (b) Simulations with a high-resolution geology (50m)

Figure A.26: East-West component of ground motion from simulations (black solid line) and MIFNO predictions (red

dashed line) for the overthrust geology depicted in Fig. 3.22
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Figure A.27: East-West component of ground motion from simulations (black solid line) and MIFNO predictions with

resolution 64 (orange dashed line)
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A.5 Applications to the Le Teil earthquake
A.5.1 Transfer learning

Figure A.28: Evolution of the validation loss computed as the relativeMean Absolute Error when theMIFNO is trained

on the Le Teil database. The black line corresponds to a random initialization. Colored lines illustrate trainings with

different number of training samples.

Le Teil database with a fixed source

Model rRMSE rFFTlow rFFTmid rFFThigh EG PG

Ntrain=3000 0.17 ; 0.28 -0.45 ; -0.04 -0.64 ; -0.14 -0.65 ; -0.12 5.98 ; 7.76 7.49 ; 9.00

NTL=0 0.31 ; 0.45 -0.28 ; 0.49 -0.59 ; 0.39 -0.70 ; -0.22 5.47 ; 6.32 5.43 ; 6.33

NTL=10 0.17 ; 0.29 -0.29 ; 0.14 -0.47 ; 0.02 -0.48 ; 0.05 6.35 ; 7.84 7.50 ; 8.95

NTL=50 0.14 ; 0.26 -0.29 ; 0.08 -0.43 ; 0.03 -0.45 ; 0.03 6.61 ; 8.20 7.95 ; 9.20

NTL=100 0.14 ; 0.25 -0.28 ; 0.07 -0.43 ; 0.02 -0.44 ; 0.02 6.68 ; 8.25 8.04 ; 9.23

NTL=250 0.12 ; 0.23 -0.24 ; 0.08 -0.38 ; 0.04 -0.39 ; 0.04 7.02 ; 8.54 8.32 ; 9.37

NTL=500 0.11 ; 0.22 -0.24 ; 0.06 -0.36 ; 0.05 -0.38 ; 0.03 7.14 ; 8.66 8.42 ; 9.43

NTL=1000 0.10 ; 0.22 -0.22 ; 0.07 -0.35 ; 0.06 -0.37 ; 0.04 7.25 ; 8.75 8.50 ; 9.47

NTL=2000 0.10 ; 0.21 -0.21 ; 0.07 -0.34 ; 0.06 -0.36 ; 0.05 7.35 ; 8.85 8.57 ; 9.51

NTL=3000 0.10 ; 0.21 -0.22 ; 0.06 -0.34 ; 0.05 -0.37 ; 0.03 7.36 ; 8.86 8.60 ; 9.53

Table A.11: 1st and 3rd quartiles of the F-FNO metrics computed on 700 test samples. rRMSE: relative RMSE (0 is

best), rFFTlow: relative frequency bias 0-1Hz (0 is best), rFFTmid: relative frequency bias 1-2Hz (0 is best), rFFThigh:

relative frequency bias 2-5Hz (0 is best), EG: enveloppe Goodness-of-Fit (10 is best), PG: phase Goodness-of-Fit (10

is best). For frequency biases, negative values indicate underestimation.
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Figure A.29: Same as Figure 4.3 but only 500 transfer learning samples

Figure A.30: Envelope and phase GOF computed on 700 test samples when theMIFNO is trained on non-overlapping

sets of transfer learning samples. Each boxplot corresponds to the training with one set of transfer learning samples.
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A.5.2 Le Teil earthquake: uncertainty quantification

Parameter R0 R1 R2 R3 R4 R5

`x,0 -0.010± 0.010 0.006± 0.007 0.000± 0.017 0.011± 0.013 0.014± 0.016 -0.000± 0.!005
`y,0 0.003± 0.007 -0.002± 0.006 -0.007± 0.020 -0.001± 0.012 0.011± 0.017 0.004± 0.006
`z,0 -0.003± 0.008 -0.002± 0.008 -0.005± 0.019 -0.003± 0.012 -0.004± 0.014 -0.000± 0.006
σ0 -0.006± 0.013 0.009± 0.010 0.010± 0.025 0.003± 0.014 0.014± 0.017 0.004± 0.007
`x,1 0.005± 0.009 0.001± 0.007 -0.008± 0.017 0.002± 0.011 0.017± 0.015 -0.002± 0.008
`y,1 -0.003± 0.010 0.010± 0.011 -0.024± 0.021 0.004± 0.011 0.005± 0.014 -0.001± 0.007
`z,1 0.000± 0.008 -0.000± 0.008 -0.014± 0.020 -0.001± 0.012 0.014± 0.016 0.004± 0.008
σ1 -0.004± 0.011 0.003± 0.008 -0.006± 0.020 0.006± 0.017 0.008± 0.018 0.002± 0.008
`x,2 -0.001± 0.008 0.001± 0.007 -0.003± 0.018 -0.002± 0.012 0.014± 0.015 0.002± 0.007
`y,2 -0.003± 0.010 0.001± 0.011 -0.011± 0.021 0.001± 0.013 0.012± 0.016 -0.002± 0.007
`z,2 0.002± 0.008 0.002± 0.007 -0.001± 0.020 0.009± 0.015 0.012± 0.016 0.001± 0.006
σ2 0.000± 0.008 -0.001± 0.010 -0.018± 0.023 0.001± 0.014 0.005± 0.020 -0.002± 0.006
`x,3 -0.000± 0.011 -0.001± 0.008 0.010± 0.017 0.009± 0.011 0.011± 0.016 -0.004± 0.006
`y,3 -0.001± 0.010 0.005± 0.010 -0.010± 0.018 0.005± 0.012 0.019± 0.016 0.004± 0.007
`z,3 -0.002± 0.009 -0.005± 0.006 -0.008± 0.018 -0.000± 0.010 0.004± 0.016 -0.001± 0.005
σ3 0.007± 0.012 -0.007± 0.008 -0.001± 0.022 -0.003± 0.014 0.003± 0.016 0.001± 0.010
`x,4 0.000± 0.012 -0.002± 0.007 -0.012± 0.016 0.005± 0.011 0.017± 0.019 0.004± 0.007
`y,4 0.002± 0.012 -0.000± 0.007 -0.018± 0.020 -0.004± 0.013 0.011± 0.014 0.001± 0.005
`z,4 0.001± 0.009 0.005± 0.011 -0.024± 0.017 -0.001± 0.013 0.008± 0.015 -0.000± 0.007
σ4 0.006± 0.010 0.002± 0.011 -0.010± 0.024 0.005± 0.013 0.021± 0.016 0.006± 0.007
sα 0.209± 0.033 0.349± 0.049 0.073± 0.018 0.475± 0.036 0.080± 0.017 0.349± 0.035
sβ 0.231± 0.041 0.112± 0.032 0.116± 0.024 0.059± 0.019 0.359± 0.041 0.099± 0.026
sn -0.002± 0.006 -0.000± 0.004 -0.002± 0.006 -0.001± 0.005 -0.006± 0.007 0.004± 0.005
strike φ 0.011± 0.006 0.001± 0.005 0.020± 0.010 0.017± 0.007 0.005± 0.005 0.009± 0.006
dip δ 0.030± 0.018 0.021± 0.014 0.038± 0.014 0.020± 0.013 0.010± 0.011 0.014± 0.010
rake λ 0.001± 0.010 -0.006± 0.006 0.024± 0.009 0.008± 0.009 0.001± 0.005 0.007± 0.006

Table A.12: First-order Sobol indices of the PSA at T=0.2 s for the six receivers
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Figure A.31: Total Sobol indices for the PSA on the East-West component computed at receiver R2 (top) and R4

(bottom). Each of the 26 parameters is reported on the x axis and the y axis denotes the period.
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Parameter R0 R1 R2 R3 R4 R5

`x,0 0.07± 0.01 0.08± 0.01 0.38± 0.02 0.16± 0.02 0.23± 0.02 0.07± 0.01
`y,0 0.07± 0.01 0.07± 0.01 0.38± 0.02 0.16± 0.02 0.24± 0.02 0.06± 0.01
`z,0 0.07± 0.01 0.07± 0.01 0.39± 0.02 0.16± 0.02 0.25± 0.02 0.06± 0.01
σ0 0.10± 0.01 0.10± 0.02 0.52± 0.02 0.21± 0.02 0.34± 0.02 0.08± 0.01
`x,1 0.07± 0.01 0.07± 0.01 0.39± 0.02 0.15± 0.02 0.24± 0.02 0.07± 0.01
`y,1 0.06± 0.01 0.07± 0.02 0.39± 0.02 0.16± 0.02 0.24± 0.02 0.07± 0.01
`z,1 0.07± 0.01 0.07± 0.01 0.38± 0.02 0.16± 0.02 0.25± 0.03 0.06± 0.01
σ1 0.10± 0.01 0.09± 0.01 0.53± 0.03 0.22± 0.02 0.31± 0.02 0.08± 0.01
`x,2 0.06± 0.01 0.07± 0.01 0.37± 0.02 0.16± 0.02 0.23± 0.02 0.06± 0.01
`y,2 0.07± 0.01 0.08± 0.02 0.40± 0.02 0.16± 0.02 0.24± 0.02 0.06± 0.01
`z,2 0.07± 0.01 0.07± 0.01 0.39± 0.02 0.18± 0.04 0.23± 0.02 0.06± 0.01
σ2 0.09± 0.01 0.09± 0.01 0.52± 0.02 0.21± 0.02 0.31± 0.02 0.08± 0.01
`x,3 0.08± 0.01 0.08± 0.02 0.37± 0.02 0.17± 0.02 0.24± 0.02 0.07± 0.01
`y,3 0.07± 0.01 0.07± 0.01 0.38± 0.02 0.15± 0.02 0.24± 0.02 0.06± 0.01
`z,3 0.07± 0.01 0.06± 0.01 0.38± 0.02 0.15± 0.02 0.24± 0.02 0.06± 0.01
σ3 0.09± 0.01 0.10± 0.02 0.52± 0.02 0.22± 0.02 0.32± 0.02 0.08± 0.01
`x,4 0.07± 0.01 0.06± 0.01 0.39± 0.02 0.16± 0.02 0.25± 0.02 0.06± 0.01
`y,4 0.07± 0.01 0.06± 0.01 0.40± 0.02 0.16± 0.02 0.24± 0.02 0.06± 0.01
`z,4 0.07± 0.01 0.07± 0.01 0.39± 0.02 0.17± 0.03 0.25± 0.02 0.06± 0.01
σ4 0.10± 0.01 0.10± 0.02 0.52± 0.02 0.20± 0.02 0.31± 0.02 0.08± 0.01
sα 0.62± 0.05 0.78± 0.08 0.39± 0.02 0.79± 0.05 0.36± 0.02 0.78± 0.07
sβ 0.69± 0.07 0.55± 0.06 0.65± 0.03 0.39± 0.04 0.82± 0.05 0.51± 0.05
sn 0.06± 0.01 0.05± 0.01 0.07± 0.01 0.04± 0.01 0.08± 0.01 0.05± 0.01
strike φ 0.04± 0.00 0.04± 0.01 0.09± 0.01 0.06± 0.01 0.03± 0.00 0.03± 0.01
dip δ 0.26± 0.03 0.29± 0.04 0.22± 0.01 0.12± 0.01 0.11± 0.01 0.18± 0.02
rake λ 0.07± 0.01 0.08± 0.02 0.13± 0.01 0.06± 0.01 0.03± 0.00 0.05± 0.01

Table A.13: Total indices of the PSA at T=0.2 s for the six receivers

Figure A.32: Distribution of coefficients of variation inside each layer for samples in S (grey) and admissible samples
in S|y∗ (blue). The coefficients of variation corresponding to the observation x∗s , θ∗s are shown with the red dots.
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Figure A.33: Predicted PSA at receiver R4 shown against the simulated PSA (colored dots, where darker colors corre-

spond to higher points density). Blue lines show the skewed normal distribution that approximates the prediction

error.

Figure A.34: Same as Fig. 4.14 for receiver R3
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Figure A.35: Same as Fig. 4.14 for period T=0.2 s

146


	Introduction
	From seismic hazard to physics-based simulations
	Scientific machine learning to design surrogate models
	Quantifying and propagating uncertainties
	Outline of the thesis

	Physics-based earthquake simulations
	Numerical simulations in seismology
	Wave propagation equations
	Physics-based simulations with SEM3D
	Modelling earthquake sources

	Geological models and their uncertainties
	Geological models
	Geological heterogeneities

	Evaluation metrics
	Mean Absolute Error (MAE) and Root Mean Square Error (RMSE)
	Frequency biases
	Goodness-Of-Fit (GOF)
	Intensity measures
	Pseudo-Spectral Acceleration (PSA)

	Simulations of the Le Teil earthquake (France, 2019)
	Context of the work
	Data
	Comparison of simulations with records
	Effects of geological heterogeneities on simulated ground motion
	Partial conclusion

	Conclusion

	First attempts to build a reduced-order model
	Machine learning-based surrogate models
	Gaussian processes
	Polynomial chaos expansion
	Reduced-order models

	HEMEW-3D database
	Related work
	Heterogeneous geological models
	Source parameters
	Solutions of the wave equation
	Descriptive statistics
	Dimensionality analyses

	Reducing the dimension of geological models
	3D auto-encoder with a UNet architecture
	Assessing the reconstruction accuracy
	Influence of the dimension on ground motion response

	Conclusion

	Predicting ground motion with Fourier Neural Operators
	Scientific Machine Learning for PDEs
	Interfacing numerical solvers with machine learning
	Deep Operator Networks
	Fourier Neural Operators and variants

	Fourier Neural Operator for the elastic wave equation
	Fourier Neural Operator principles
	U-shaped Neural Operator (UNO)
	Factorized Fourier Neural Operator (F-FNO)
	Multiple-Input Fourier Neural Operator (MIFNO)

	Predictions accuracy
	Prediction illustrations
	Metrics analyses
	FNO, U-NO, and F-FNO comparison
	Comparing the MIFNO with baseline models

	Towards explainability of the prediction error
	Influence of the geological heterogeneities
	Influence of the source parameters
	Relationship with the energy integral

	Generalizability
	Generalization to out-of-distribution sources
	Generalization to out-of-distribution geologies
	Generalization to higher resolution

	Conclusion

	Application to the Le Teil earthquake: transfer learning and uncertainty quantification
	Transfer learning: data and methods
	Le Teil geological database
	Le Teil source database
	Transfer learning

	Prediction results
	Ground motion prediction illustrations
	Improved accuracy with transfer learning
	Variability with the choice of the transfer learning samples
	Fault modelling

	Uncertainty propagation
	Influence of geological heterogeneities on Peak Ground Velocity (PGV)
	Sensitivity analysis
	Parameters conditioning from fictive observations
	Uncertainty quantification on the PSA

	Conclusion

	Conclusion and perspectives
	Physics-based simulations
	The Multiple Input Fourier Neural Operator (MIFNO)
	Societal implications
	Perspectives

	Appendices
	Le Teil simulations
	Dimensionality reduction
	Fourier Neural Operators architectures
	Main results on the Factorized Fourier Neural Operator (F-FNO)
	F-FNO hyperparameters
	F-FNO training strategy
	F-FNO robustness to noise

	Multiple Input Fourier Neural Operator (MIFNO)
	Metrics analyses
	Comparison with baseline models
	Influence of the source parameters
	Out-of-distribution data

	Applications to the Le Teil earthquake
	Transfer learning
	Le Teil earthquake: uncertainty quantification



