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Abstract
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Supervisors:
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Nicolas Gutowski - LERIA, Angers University
Fabien Chhel - ESEO
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Symbolic music modeling (SMM) represents the tasks performed by Deep Learning
models on the symbolic music modality, among which are music generation or music
information retrieval. SMM is often handled with sequential models that process data as
sequences of discrete elements called tokens. Such models are widely used for natural
language processing (NLP) and leverage the dependencies between the input tokens which
represent words or parts of words. The tokenization and detokenization steps are usually
performed by one of the several existing software libraries specifically made for NLP. For
symbolic music however, there is no extensive dedicated software allowing researchers and
engineers to easily use deep learning models with symbolic music. In addition, whereas
tokens represent words for natural language, previous work on symbolic music use them
to represent note and time attributes. This creates two major concerns: 1) the high
length of the token sequences, which is a performance bottleneck; 2) the tokens do not
carry much information by themselves other than their absolute value, which does not
represent rich and meaningful musical information. In addition, the various ways to
serialize musical information into sequences of different types of tokens remain to be
analyzed and compared. Lastly, there are only a few publicly shared models, despite
music generation being a growing topic. In this thesis, we address these challenges by:
1) developing a complete, flexible and easy to use software library allowing to tokenize
symbolic music; 2) analyzing the impact of various tokenization strategies on model
performances; 3) increasing the performance and efficiency of models by leveraging large
music vocabularies with the use of byte pair encoding; 4) building the first large-scale
model for symbolic music generation, which handles multiple instruments and all genres
of music, and share it publicly. As we lower the barrier of entry for newcomers as well
as experienced researchers and engineers, we aim to encourage more people to develop
tools tied to deep learning and symbolic music, such as generative systems for assisted
composition.

HTTPS://WWW.SORBONNE-UNIVERSITE.FR/EN


iii

SORBONNE UNIVERSITÉ

Résumé

Apprentissage automatique pour la modélisation de musique
symbolique

par Nathan Fradet

Encadrants:

Amal El Fallah Seghrouchni - LIP6, Sorbonne Université - CNRS
Jean-Pierre Briot - LIP6, Sorbonne Université - CNRS

Nicolas Gutowski - LERIA, Université d’Angers
Fabien Chhel - ESEO

Mots-clés: Apprentissage Automatique, Modelisation de la musique, Génération

La modélisation de la musique symbolique représente les tâches effectuées par les mod-
èles d’apprentissage automatique pour la musique symbolique, parmi lesquelles figurent
la génération ou la récupération d’informations musicales. Ces tâches sont générale-
ment effectuées par des modèles séquentiels traitant les données sous forme de séquences
d’éléments discrets appelés tokens. Ces modèles sont largement utilisés avec les langues
naturelles et exploitent les relations entre les tokens, qui représentent des mots ou des
parties de mots. La tokenization et la détokenization sont généralement effectuées par des
bibliothèques logicielles existantes spécifiquement conçues pour les langues naturelles. En
ce qui concerne la musique symbolique, il n’existe pas de bibliothèque logicielle dédiée
permettant de la tokenizer facilement. De plus, dans les travaux antérieurs, les tokens
représentent généralement des attributs de notes et de temps, ce qui pose deux problèmes
majeurs : 1) la grande longueur de la séquence de tokens, qui représente une limitation
de performance ; 2) les tokens ne portent pas beaucoup d’informations par eux-mêmes,
hormis leur valeur absolue, ne permettant pas de représenter une information musicale
riche. De plus, la modélisation de la musique symbolique reste largement inexplorée à ce
jour. Il existe plusieurs façons de sérialiser l’information musicale en séquences de tokens
de types différents, qui restent à être analysées. Enfin, il existe très peu de modèles partagés
publiquement pour la musique symbolique. Dans cette thèse, nous relevons ces défis en :
1) développant une bibliothèque logicielle complète, flexible et facile à utiliser permettant
de tokenizer la musique symbolique ; 2) améliorant les performances et l’efficacité des
modèles en exploitant de vastes vocabulaires musicaux construits avec byte pair encoding ;
3) mettant en lumière les principales différences entre les différentes tokenizations de la
musique symbolique ; 4) construisant le premier modèle à grande échelle pour la généra-
tion de musique symbolique, capable de gérer plusieurs instruments et tous les genres
musicaux, et en le partageant publiquement. En abaissant les barrières d’entrée pour
les nouveaux venus aussi bien que pour les chercheurs et ingénieurs expérimentés, nous
espérons encourager davantage de personnes à développer des outils liant apprentissage
profond et musique symbolique, tels que des systèmes de génération pour la composition
assistée.
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Chapter 1

Introduction

Music is historically represented by sequences of symbols describing notes and their
attributes. Music composition has been a writing process of notes and annotations, and
musicians played, improvised, and wrote music on sheets. Since the last century, the
process of music composition has drastically changed with the progress and wide adoption
of technology. First with electronic devices, that offered musicians ways to produce
unique new sounds from synthesizers, record their music on analog supports, sample
them with sequencers, and in the end create new music and even new genres that did
not exist. More recently, the main support for music has once again changed with the
progress of computers, to become digital. Now, almost every musician composes music
with computers or digital devices, to record, process, mix and master songs. The analog
devices in studios have been replaced by computers, Digital Audio Workstation (DAW)
softwares and Virtual Studio Technology (VST) plugins1. Music creation is nowadays
mostly computerized.

The rapid advancement of Deep Learning (DL) in since the years 2010s has ushered in
a transformative era across various domains, from Natural Language Processing (NLP) to
Computer Vision (CV) and beyond. Within this spectrum of innovation, the intersection
of Artificial Intelligence (AI) and music, specifically the application of deep learning to
symbolic music tasks, has witnessed notable progress. After witnessing the major impact
NLP and CV models have had in our daily lives through products that we use daily such
as search engines, digital cameras or soon autonomous vehicle, we can easily think that
DL will impact the music creation field too. Yet, this domain remains a niche within the
broader deep learning landscape, characterized by immense potential and challenges.

Music modeling through deep learning holds great promise, primarily as a tool for
assisting musicians in the creative process. However, the utilization of existing models
in real-world musical contexts has been hampered by several significant shortcomings.
Musicians and composers, despite their enthusiasm for embracing AI-based tools, often
find the outputs of current models lacking in the nuanced artistry that characterizes human
musical expression. The controllability of these models, essential for shaping music
according to artistic intent, is often limited, and the usability of such systems in practical
music production workflows remains challenging.

The fundamental objectives of this thesis lie at the heart of addressing some of these
critical issues and advancing the state of symbolic music generation with deep learning
models.

1Digital instruments and effects plugins that can be embedded in DAWs. They can for instance emulate
and reproduce the sounds of classic analog synthesizers.
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1.1 Objectives of this thesis

Our research endeavors to bridge the gap between the potential of deep learning and the
practical expectations of musicians, researchers, and engineers. Our pursuit encompasses
two overarching goals:

1. Enhancing model performance and efficiency: We aim to push the boundaries of
symbolic music generation by improving the quality, creativity, and expressiveness
of the generated compositions. Through innovative approaches in deep learning
architecture and training methodologies, we seek to develop models that can pro-
duce music compositions more convincing. Furthermore, we strive to enhance
the computational efficiency of these models to enable real-time music generation,
making them more practical for real-world applications;

2. Lowering the barrier of entry for AI-assisted music creation: In our pursuit of
advancing the field, we acknowledge the importance of democratizing access to
cutting-edge music generation tools. We aspire to provide open solutions that
empower researchers, musicians, and engineers with the means to integrate AI-
assisted music creation into their creative processes and products seamlessly. This
includes developing user-friendly interfaces, clear documentation, and accessible
software implementations that democratize the use of AI in music composition.

As we go at intersection of deep learning and music, our aim is to not only contribute
to the academic discourse but also to foster innovation and creativity in the broader music
community. By elevating the capabilities of symbolic music generation models and making
them more accessible, we aspire to unlock new possibilities for artistic expression and
collaboration between humans and machines.

1.2 Organization

The chapters that follow will delve into the intricacies of our research, presenting novel
approaches, experimental findings, and practical implementations that collectively serve
to advance the field of symbolic music generation with deep learning models.

The second and third chapters (Chapter 2 and Chapter 3) will introduce the back-
ground of the thesis, by focusing respectively on the base principles of DL and its existing
application to symbolic music. We will detail how DL work, and present the main cate-
gories of Neural Network (NN) operations. We will specifically focus on the Transformer
architecture, which will be extensively used in the experiments of the thesis. The third
chapter will introduce how symbolic music can be used with DL models, and the works that
have already been conducted in the field. The fourth chapter (Chapter 4) will introduce
their current limitations, as well as the main challenges that researchers and people working
in the field are facing.

The Chapter 5 will introduce MidiTok. It is a software contribution, that allows to
easily tokenize MIDI files for sequential DL models such as Transformers. To use this
model, one must first serialize the input data into a sequence of elements intelligible to
the model. This step is called the tokenization, and is performed by a tokenizer. Its role is
basically to translate the data between its original form to the token form for the model.
Before MidiTok, there was no tool allowing to easily tokenize music, while allowing to
preprocess the files with great flexibility and extended features. MidiTok will be used for
the experiments in this thesis.

Music can actually be tokenized by different ways, as the notes and time information
can be serialized by different manners. We will see in the Chapter 6 that the information
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representation choices lead to different results. These results may also vary depending
on the task at hand, and that the explicit information carried by the tokens is a key factor
helping models to learn.

The tokenization of music, as we presented it until the Chapter 7, presents two major
drawbacks: 1) the number of token per sequence for a piece of music is very long, leading
to computational bottlenecks and inefficient models; 2) the "understanding" capacities of
the model are greatly underused due to a mismatch between usual vocabulary sizes and the
number of embedding dimensions. We will show in this chapter that Byte Pair Encoding,
a compression technique, can address these two problems and allow to increase model
performances and efficiency.

Finally, we contribute to open science in the Chapter 8 by publicly sharing large music
models. In the last years, we have seen a large number of large models being openly
shared on the internet. This sharing stimulates research and innovation, while lowering
the barrier of entry into the field as training large models is very expensive. At the time of
writing, we are not aware of any performant, general and easy to use model for symbolic
music generation. We intend to fill this gap by releasing a first large music model, that can
be used for generative purposes and finetuned.

We will finally conclude in the Chapter 9 by summarizing the contributions of the
thesis, and give directions that are probably worth to be explored to further improve the
deep learning approaches for symbolic music modeling. You will find in the end of the
document the appendixes, that bring additional details for some of the previous chapters.



4

Part I

Overview
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Chapter 2

Deep Learning

This chapter aims to give a short overview of the deep learning (DL) field, by introducing
the most commonly used techniques. It will not be comprehensive, as the field evolves
very quickly, and is large enough to be covered by books [66, 195]. It will rather focus on
the fundamental bases of DL, introduce the main families of model architectures and for
which purpose they are better used.

2.1 Deep Learning operations and modules

DL is a subfield of machine learning (ML), which is itself a subfield of AI. ML focuses on
the development of algorithms and statistical models that solve tasks by learning from data.
Hence, these models are not explicitly programmed and automatically learn to perform
their task. Within ML, DL more specifically relies on artificial neural networks (NN)
to solve complex tasks, such as image recognition, natural language processing, speech
recognition, and even autonomous driving.

DL models are particularly suited for tasks that would require too much complexity to
be programmed by humans. Image classification, pattern recognition or many computer
vision (CV) tasks are concerned. This approach has become increasingly popular in recent
years due to the growing availability of large datasets and powerful computational resources.
It is a rapidly evolving field that holds tremendous promise for revolutionizing the way we
interact with technology and making our lives easier and more efficient.

This section will cover the basics of DL: beginning with how does ML model are trained,
following with artificial NN, and finishing with the general categories of DL models.

2.1.1 Machine learning theory

This subsection introduces the elementary theory behind ML - and subsequently DL, and
specifically how such model are trained.

x

y

••••••
•••
••
••••

• •
• •
• •
••
•

Figure 2.1: The relationship between X and Y. Here the data D is represented by the
dots, and the blue curve is the relationship the model aims to learn.
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The fundamental goal of ML is to model the relationship between an input x and its
associated result y. In other word, a model pθ with trainable parameters1 will be taught
this relationship. The concept is pictured in Figure 2.1. To do this, one must collect a
dataset of input and expected output pairs :

D = {(xi, yi)}Ni=0

The model learns by having its parameters updated so that pθ(x)→ y. This is done
by computing the discrepancy between the predicted output and the true output, called
the loss ℓ: ℓ = f(pθ(x), y) with f being the loss function. θ is optimized to minimize ℓ,
the general training objective can be represented as:

min
θ

E
(x,y)∼D

[f(pθ(x), y)] (2.1)

For DL models, optimization is done by gradient backpropagation [163]: the gradients
are computed from the loss, operation to operation back to the input, and each parameter
wt is iteratively updated accordingly and regulated by a learning rate η:

∇ℓ(w) =

[
δℓ

δw1
,
δℓ

δw2
, ...,

δℓ

δwn

]
wt+1 = wt − η∇ℓ(wt)

(2.2)

The loss function must be adapted to the task at hold. Classification tasks are for
instance well coupled with the cross-entropy (negative log-likelihood) loss function.

Parameter updates are performed by an optimizer, accordingly to the gradients, in order
to reduce the loss ℓ. Common optimizers are stochastic gradient descent [159] and Adam
[101].

The learning rate is a hyperparameter that controls how much the model’s parameters
are updated. The role of the learning rate is crucial, as it can have a significant impact
on the performance and convergence of the model. If the learning rate is too low, the
model may take a long time to converge, or it may get stuck in a local minimum. On
the other hand, if the learning rate is too high, the model may overshoot the optimal
solution and diverge or oscillate around it. Therefore, selecting an appropriate learning
rate is critical. There are several techniques for choosing the learning rate, such as grid
search or random search, though it is most is often determined through a trial-and-error
process. Additionally, learning rate scheduling can be used to adjust the learning rate
during training, such as reducing it gradually as the model approaches convergence.

When trained, the model can be considered as a parametric approximation of f : x→
y. Its number of parameters is limited, and it is expected to perform on examples on which
it has not been trained. Therefore it can still predict errors and show some uncertainty.

2.1.2 Artificial Neural Networks

A NN is a type of ML model inspired from the structure and functioning of the brain. It is
a set of interconnected processing nodes, called neurons, and organized as successions of
layers. Each layer performs a specific function: the first in the input layer, which receives
the input data; intermediate (or hidden) layers perform operations on the output of the
previous one; and the output layer produces the final prediction, that can take multiple
forms, such as a probability distribution, an image, an audio or signal. A neural network is
depicted in Figure 2.2.

1Often shorten as weights for DL models, the distinction is made in Subsection 2.1.2
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Figure 2.2: Schema of a neural network with four hidden layers. Edges can be seen as
weights, biases are not represented.

NNs feature two kind of parameters: weights and biases. Weights, noted W, are
factors multiplied with the input feature, while biases are added to the weighted sum of
the input features and the weights. For a given layer, weights W ∈ Rdin,dout is a matrix
and biases β ∈ Rdout a vector, where din and dout are respectively the number of input
and output features. In other words, each neuron receives input from multiple other
neurons, performs a weighted sum of those inputs, and adds the bias to it. The operation
is described in Equation (2.3) , where β and θ are respectively the bias and weights of the
hidden layer. The set of all parameters of a model is commonly noted θ.

hn = βn +
N∑
i=1

wn,ixi

h = W ∗ x+ β

(2.3)

Weights operations are usually followed by activation functions [7], which introduce
non-linearity and helps to stabilize gradient computations.

Neural networks are used in a wide range of applications, including image and speech
recognition, natural language processing, recommendation systems, and many others.
They are highly flexible and can learn to model complex non-linear relationships in data,
making them powerful to automatically solve many tasks that would be too complex to be
programmed.

In practice, a NN is made of stacked layers of weights and operations, though which
the input is passed successively. The overall combination of layers and operations is called
the architecture. The NN pictured in Figure 2.2 is a succession of fully-connected layers,
and commonly called a Multi-Layer Perceptron (MLP). It is one of the simplest forms
of NN. Modern NN will include more complex operations, among which convolution
(Subsection 2.1.3), attention (2.2) or normalization [11] operations. It is important to
note that for Equation (2.2) to be solvable, each operation of a NN must be differentiable,
otherwise the gradients cannot be calculated and therefore the model’s parameters cannot
be updated.

Training a NN follows the same principles described in Subsection 2.1.1. In practice
however, a lot of recommended techniques are used in order to get a good convergence,
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Figure 2.3: Schema of dropout during training: some inputs are omitted in the calculations
of the next neuron values. In practice, it is common to use a 10% dropout rate.

get reliable predictions and mostly avoid overfitting. Overfitting happens when a model
learns too well on the subset of data it has been trained on, but cannot yield accurate or
reliable predictions on example outside of this subset. This is problematic as the end
goal of such model is to be used in real conditions, where it is expected to encounter
unseen examples. The most common technique to avoid overfitting is dropout. It consists
in randomly dropping a proportion of input features at each layers during the training,
as depicted in Figure 2.3. The model is then trained to yield predictions with reduced
knowledge. This ensures that the remaining connections keep enough information. Other
techniques are often used and combined, such as:

• layer normalization;

• batch normalization;

• residual blocks;

• weight decay;

• weight initialization;

• learning rate scheduling;

• data augmentation.

These methods are presented in books from Goodfellow, Bengio, and Courville [66]
and Zhang et al. [195].

Multilayer perceptrons are however not suited for all types of data, at least when used
alone. For instance, images are composed of multiple channels (for each color component)
of pixels and are represented as 3-dimensional tensors: two for the pixel coordinates, one
for each channel. One way to use feedforward layers on such data would be to flatten
the matrix, but this would result in very large computations that could be intractable and
make the model very inefficient. In the next subsections, we will introduce operations
that address the most common data specifications: convolution for images and continuous
modalities, and recurrent networks for discrete modalities.

2.1.3 Convolution

This subsection introduces the bases of convolution and convolutional neural network
(CNN). For more information, we direct you to the comprehensive guide of Dumoulin
and Visin [46].
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Figure 2.4: Schema of the convolution operation, with an input X, a kernel K of size 3*3,
no padding and a stride of 1. Input values and parameters are represented as integers for
readability, in practice they are decimal values.
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Figure 2.5: Schema of the max-pooling operation over an input X, a kernel of dimension
3*3, no padding and a stride of 1.

A convolutional operation, also known as convolution or filtering, is a fundamental
operation in convolutional neural networks (CNNs), a type of neural network commonly
used with image, video and audio modalities. It have been first pioneered by Le Cun et al.
in the 1990s [111], and grew in popularity to become the backbone operation of most
computer vision (CV) DL models. Its big widespread occurred in the early 2010s after the
publications of CNN models outperforming the state of art on the ImageNet [36] image
classification benchmark. The most impactful work at this time was AlexNet [107], which
used the power of GPUs to be scaled-up and yield a 16% error rate, which was 10% lower
than the state of the art. Before that, CNN were mostly applied on simpler tasks such as
character recognition. From this moment, the research in computer vision boomed and
gave birth to bigger and better models.
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Figure 2.6: Schema of the layers of a CNN: VGG16 [171]. Orange boxes are convolution
layers, red ones are pooling layers, and purple ones are fully-connected layers.
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Convolution is inspired from the neuron connection patterns of the visual cortex of
animals, and operate directly on matrices. The parameters of a convolutional layer is
a matrix called kernel, or also filter. The kernel is "slid", or convolved, over the input
matrix, the dot product between the filter and the local region of the overlapping matrix
is computed for each position. This process results in a new output feature map, which
highlights certain visual patterns or features present in the input image. With a kernel
K ∈ Rm×m, the computation is formulated as:

yi,j =
m−1∑
a=0

m−1∑
b=0

ka,bx(i+a)(j+b) (2.4)

The operation is pictured in Figure 2.4. On this figure, no padding is performed. In
practice padding is commonly performed: the kernel is slid on the edges of the input, and
non-existent values are padded with 0, resulting in an output feature map of the same size
than the input. The notion of padding is better explained and represented in the guide of
Dumoulin and Visin [46].

In practice, an input image is made of several channels: one for each color compo-
nent, green, red and blue. In a convolutional layer, a kernel will in fact have a shape
of (w, h, cin, cout), where w and h are respectively its width and height, cin and cout the
number of channels in input and output. The number of channels is commonly called the
depth.

The convolutional layers in a CNN are usually stacked and separated by activation
functions and pooling layers. An example of a CNN is pictured in Figure 2.6. Pooling
consists in reducing the dimensionality of a feature map. This allows to scale down the
feature currently processed, to focus on the essential patterns while reducing the complexity
of the computations of the following layers. Pooling is performed in a similar manner than
convolution: a window of lower dimension is slid over the feature map, and the output
can be either the maximum value or average of the overlapping values. Max-pooling is
represented in Figure 2.5.

To this day, CNN remains the preferred solution for computer vision tasks. However,
recent research showed how Transformers and attention (introduced in Subsection 2.1.6)
can be adapted to images are yield competitive results [45, 192, 40, 39] or build hybrid
models [122, 187, 51]. In this thesis, we will not experiment with convolution. Symbolic
music is naturally discrete, and other types of models are more suited for this kind of
modality. We will present them in the following subsections.

2.1.4 Embeddings

This section introduces the notion of embedding, also commonly called embedding vector
or word embedding. Embeddings are a key element of the experiments of this thesis, and
are used in association with the sequential models introduced in the next subsections, that
we will also extensively use.

Working with text for NLP tasks imposes to work with a set of finite known words
present within the data, called the vocabulary noted V. The vocabulary is essentially a
look-up table, or dictionary, binding words to unique integer ids. These known words
are also called tokens. Vocabularies are often made of thousands of words, each of them
having a whole variety of meanings and significations. For a DL model to be efficient at
processing these words, it must be able to capture their semantic information, and here is
the goal of embeddings.

An embedding ed is a vector of d dimensions, which represent the semantic information
of the associated word. The embeddings of words are automatically learned by a model,
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Figure 2.7: 2-dimensional visualization of a learned embedding space. Embeddings are
dots, similar embeddings are close within the space.

so that it distributes embeddings with similarities close on specific dimensions, and pushes
away those non-related. In other words, the model learns to project the words of V on a
continuous space of d dimensions. Figure 2.7 shows a embedding space, reduced to two
dimensions.

Embeddings offer a way for models to capture the semantic of words. Language models
(introduced in Subsection 2.1.5 and Subsection 2.1.6) make use of embeddings for their
downstream tasks.

A model learns word embeddings by leveraging their relationships from text data.
During the training, the model’s weights are updated to optimize the embedding vectors
for their ability to predict the context in which words appear. Each dimension in the space
represents a certain feature or attribute of the words of the vocabulary.

In the 2010s, word2vec [128, 129] and Glove [142] were popular word embedding
models. Such models are based on a neural network architecture known as a skip-gram
model or a continuous bag-of-words (CBOW) model. In the skip-gram model, the goal
is to predict the context words surrounding a given target word within a certain window
size. For example, given the sentence "The cat sat on the mat", and a window size of 2, the
target word "sat" would be used to predict the context words "cat", "on", and "the".

The CBOW model is similar, but the roles of the target and context words are reversed:
it has an input layer, a hidden layer, and an output layer. The input layer represents the
target or context words as one-hot vectors. These vectors are then multiplied by a weight
matrix to produce embedding vectors, which are fed to the hidden layer. The hidden layer
then processes the embeddings to predict the probabilities of the context or target words in
the output layer. During training, the model’s weights are adjusted to optimize its ability
to predict the context words given the target word or vice versa. As a result, the weights of
the input layer represent the word embeddings, which capture the semantic meaning of
the words in the training data.

Glove [142] on the other hand relies on both local and global statistics. It is based
on the co-occurrence matrix of words in a dataset, i.e. the frequency with which words
occur together in the same context. It factorizes the co-occurrence matrix into two smaller
matrices, one for the rows and one for the columns. These matrices are then used to
calculate a weighted least squares regression, which optimizes the embeddings to minimize
the difference between their dot product and the log of the co-occurrence count. The
intuition behind GloVe is that words that have similar co-occurrence patterns with other
words are likely to have similar semantic meanings. For example, the words "cat" and "dog"
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Figure 2.8: Schema of an unrolled RNN layer with input embeddings xi and hidden
states hi. The A cell is the same for all operations, that are performed sequentially: h0 is
computed first, then h1... Only one layer is pictured here. The input can be either word
embeddings or the hidden states of the previous layer.

are likely to co-occur with similar words like "pet" or "animal", and thus their embeddings
should be similar in the resulting vector space.

At the time of writing, word embeddings are now mostly constructed contextually, i.e.
directly conditioned on the whole contexts in which they are being used. The benefit of
this method is that it allows to efficiently learn embeddings of word that can have several
meanings. It also allows the models to capture more nuanced meaning in the text and
perform better NLP tasks.

One of the first model based on this is ELMo [143]. ELMo is a bi-directional LSTM
model (Subsection 2.1.5), trained with teacher forcing to predict the next element at each
time step.

Another very popular model is BERT [37]. BERT is a Transformer (Subsection 2.1.6)
trained to predict the original words from masked inputs. It does not use attention mask,
hence all attention scores are computed conditionally to all input words (tokens), i.e. the
whole context. This training is actually called "pre-training", as it does not train the model
to solve any real task, but is performed before training the model a second time (finetuning)
for the downstream tasks this time.

Next, we will introduce the types of sequential models commonly used for NLP tasks,
beginning with recurrent neural networks.

2.1.5 Recurrent neural networks

A Recurrent Neural Network (RNN) [163] is a type of neural network that is particu-
larly useful for modeling sequential data, such as time-series data or Natural Language
Processing (NLP) tasks.

Unlike traditional feedforward neural networks, which process inputs in a strictly linear
fashion, a RNN layer is also commonly called cell, and is conceived to process discrete data
formatted as sequences of discrete elements. A layer receives information from a time step
t, and the previous one t− 1. The concept is depicted in Figure 2.8, and the operation is
described in Equation (2.5) .

ht = tanh
(
xtW

(in) + ht−1w
(past) + β

)
(2.5)

This makes RNN capable of processing sequences of inputs of variable length, and
compute each hidden stated conditioned on the current and previous elements of the input
sequence. A RNN model is usually constituted of stacked RNN layers. A model can can
be designed to make classification operations over whole sequences, or to predict the next
element in the sequence for each position within it. With the latter objective, a model
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Figure 2.9: Schema of a LSTM cell. σ is the sigmoid function, operators in circles are
pointwise: multiplication for

⊗
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⊕
. Inner fully-connected layers are

omitted.

directly learns to predict what is "coming next". It can then be used to generate content
autoregressively, that is one element after another.

Training sequential models such as RNN is often performed with a technique called
"teacher forcing": the whole ground truth sequence is used to calculate the loss. For
example, if we want to train a RNN to generate content, we would need to train it by
feeding it a sequence x0:t−1, and computing the loss with the target sequence x1:t. The
loss is computed for all t− 1 time steps independently, then aggregated by its average or
maximum value.

RNN come however with a big limitation: vanishing gradients [80]. As gradients
are backpropagated through time steps2, they tend to usually become very small, i.e.
vanish, when reaching the first ones, making the weights being updated very slowly. This
can decrease the learning capability of a model, and in the worst scenario prevents it to
further learn. The vanishing gradient problem is particularly problematic for RNNs. If
the gradients in the feedback loop become very small, it can cause the network to have
difficulty learning long-term dependencies, as the information from earlier time steps gets
"washed out" before it can affect the output.

To address this issue, Hochreiter and Schmidhuber designed the Long Short Term
Memory (LSTM) cell [81]. LSTM include an additional gating mechanism that allows
the network to selectively "forget" or "remember" information from previous time steps.
This extra memory, called the "cell" ct, is the sum of the weighted cell of the previous time
step ct−1 and the weighted new information from the input xt. The full operation are
described in Equation (2.6) where i, f , g and o represent respectively the input, forget,
cell and output gates. The overall LSTM cell is depicted in Figure 2.9.

2Backpropagation through time, often abbreviated "BPTT".
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it = σ
(
W(ii)xt + β(ii) +W(hi)ht−1 + β(hi)

)
ft = σ

(
W(if)xt + β(if) +W(hf)ht−1 + β(hf)

)
gt = tanh

(
W(ig)xt + β(ig) +W(hg)ht−1 + β(hg)

)
ot = σ

(
W(io)xt + β(io) +W(ho)ht−1 + β(ho)

)
ct = ft ⊙ ct−1 + it ⊙ gt

ht = ot ⊙ tanh(ct)

(2.6)

The forget gate controls the importance of the previous memory ct−1 in the current
memory ct, the cell gate controls the importance of the input xt in the current memory,
and the output gate controls the importance of the current memory in the current hidden
state ht. From this, we can see that the self-loop in LSTM is conditioned on the context
xt and ht−1 being processed. All gates use the same context, with different weights and
biases.

Thanks to their ability to handle longer dependencies, LSTM models became in-
creasingly popular over RNNs. They are however heavier to run, and a lighter gated-cell
alternative was invented (which we will not cover here): the Gated Recurrent Unit (GRU)
[25].

We also note that all these RNN cells can also be bi-directional: it can receive hidden
states from both the previous and next steps in the sequence being processed. Despite
this, RNNs still process time steps sequentially, and cannot model the inter-dependencies
between all time steps. After being extensively used for many NLP tasks, they became to
be overthrown by a new architecture: the Transformer [177].

2.1.6 Attention mechanism and Transformers

Attention mechanism and the Transformer architecture disrupted the whole DL domain.
It was first used in the NLP field, outperforming previous methods on NLP tasks, and was
quickly adapted to other domains such as computer vision. Transformer progressively
replaced RNNs models. The music field also benefited from these techniques and the
better performances and results they bring.

Attention

Attention is a DL operation that mimics the cognitive attention of humans and other living
beings. When analyzing content, we instinctively pay attention to the relations between
its elements. In the sentence The city of Angers has a very beautiful castle, the relationship
between the words beautiful and castle is more important than between Angers and beautiful
in this context. Attention in DL aims to measure the importance of these relationships to
automatically understand which pairs make sens.

RNNs, which have been the go-to DL architecture before Transformers, "pass" the
hidden states from one time-step to another. This limits the computation of distinct rela-
tionships between the elements of the input sequence. The LSTM cell, while performing
better thanks to its gating and memory mechanism, is however heavier computation-
ally, and still does not model distinct relationships. The attention mechanism was first
introduced for this purpose.

Neural machine translation, the task of translating an input text into an other language,
has often been tackled with "seq2seq" (Sequence to Sequence) model architectures of
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RNNs: an encoder model receives the input sequence and processes it to produce a
fixed-size hidden state called the context, that is fed to a decoder than autoregressively
generates the translated sequence. This fixed-size context however greatly limits the
access of information to the encoder, especially for long input sequences. The attention
mechanism was created to alleviate this issue [13].

Bahdanau et al. introduced a way to dynamically update the context [13]. Rather than
using a static context vector, the attention will update it by leveraging the relationships
between the input and output (target) tokens. These relationships are modeled with
trainable weights. The whole process is described in Equation (2.7) , where L is the input
sequence length, ct is the context computed as the sum of the hidden states H(enc) of the
input sequence weighted by alignment scores a, hdect is the decoder (pθ) output hidden
state at position t, and va and Wa are the attention weights.

score(h1,h2) = v⊤
a tanh(Wa(h1 ⊕ h2))

at,j = softmax({score(h(dec)
t−1 ,h

(enc)
k )}Lk=1)

ct =
L∑
j=1

αt,jh
(enc)
j

h
(dec)
t = pθ(h

(dec)
t−1 , yt−1, ct)

(2.7)

score(·) is actually a feedforward neural network trained simultaneously with other
parameters, which first concatenates hidden states h(dec)t−1 and h

(enc)
k , then multiplies them

with weights before passing the result in a tanh activation for non-linearity. The context is
hence computed according to the encoder hidden states, last decoder hidden state, and
alignment scores between them. Due to the concatenation operation, this attention scheme
could be classified as additive.

This first approach of attention allows to computes dynamically the relations between
input and output prediction, offering better language understanding and more coherent
autoregressive generation. Given this performance improvement, the attention got quickly
extended to other variants, and other fields such as computer vision [186].

Luong et al. [120] described two variants of attention: the "global" and the "local"
attention. The former is similar to the attention proposed by Bahdanau et al. [13]. The
latter first predicts an aligned position pt for the target word. The score at =

∑k2
i=k1

at,i
is then computed from a window of positions P = {k1, k1 + 1, ..., k2} centered around
the position pt of the source sequence. Figure 2.10 shows a visual representation of these
two types of attention. However the most crucial novelty introduced here is the way the
attention is calculated. Luong et al. considered three methods referred in Equation (2.8) ,
where hi and hj are hidden states.

score(hi,hj) =


h⊤
i hj Dot

h⊤
i Wahj General

v⊤
i tanh(Wa(hi ⊕ hj)) Concat

(2.8)

The Concat alignment method is the same the one introduced by Bahdanau et al. [13].
The Dot and General methods introduced here yield better results, leading to a faster
convergence and lower perplexity3. The dot product strategy in particular, is now the base
of the modern usages of attention at the time of writing.

3Measure of the uncertainty of a prediction. A low perplexity exhibits a certainty in the prediction.



2.1. Deep Learning operations and modules 17

Figure 2.10: The "Global" and "Local" attention mechanisms from [120].
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Figure 2.11: Schema of the scaled dot product attention. e′j is the score for the jth element
in the sequence.

Indeed, although these attention techniques brought new ways to efficiently learn
representations in NLP tasks, the real disruption happened in 2017 with the introduction
of the transformer architecture, and its core: the scaled dot product attention mechanism.

The Transformer architecture

In 2017, Vaswani et al. introduced the Transformer architecture [177] and what they
named the scaled dot product attention.

The major novelty resides in the fact that Transformers are only made up of attention
and feed-forward layers, whereas attention was used complementary with RNNs in the
previous works, hence the title of this now famous paper "Attention is all you need".

The scaled dot product attention, described in Equation (2.9) , is similar to the dot prod-
uct attention, but includes an additional 1√

dk
scaling factor, assuring that the dot product

does not grow too much in magnitude for large values of dk, which would push the softmax
function where gradients are extremely small. The scaled dot product attention works with
source and target sequences, that are used with the encoder and decoder respectively. Keys
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K and values V are derived from the source sequence through weight matrices. Queries
Q are derived from the target sequence via the same manner. It is pictured in Figure 2.11.

A distinction is commonly made between what are called self-attention and cross-
attention. The former computes attention between the elements of a sequence themselves
(the source only), the latter between the elements of two distinct sequences (source and
target).

Attention(Q,K,V) = softmax(
QK⊤
√
dk

)V

Q ∈ RT×dk , K ∈ RS×dk , V ∈ RS×dv
(2.9)

In most case, a model yields better results when computing attention separately on
several chunks of the embedding dimension, as shown in Equation (2.10). Vaswani et al.
called this technique multi-head attention.

MultiHeadAttention(Q,K,V) = [head1; ...;headh]W
0

headi = Attention(QWQ
i ,KWK

i ,VWV
i )

WQ
i ∈ Rdmodel×dk , WK

i ∈ Rdmodel×dk , WV
i ∈ Rdmodel×dv

(2.10)

The Transformer architecture was originally used for neural machine translation tasks,
and so introduced as a seq2seq model. An encoder layer is made of self-attention and
a feedforward layer along with a residual block4 and normalizations. A decoder layer is
similar to an encoder one, but includes a cross-attention layer following the self-attention,
receiving the output hidden states of the encoder as queries. The overall architecture is
showed in Figure 2.12.

Non-seq2seq Transformer are actually the equivalent of the encoder in Figure 2.12, i.e.
without cross-attention. Such models, such as BERT [37] are used for language modeling
and understanding, and others like the GPT family [145, 146] use a causal attention mask
and are used autoregressively as a decoder.

Finally, the scaled dot product attention is a permutation invariant operation. This
property can be very useful in some cases where the order of the elements of a sequence
is not important, but is problematic when it is such as with text sequences. To alleviate
this issue, Vaswani et al. added a positional encoding vector to each embedding before
feeding them to the transformer layers. This encoding, described in Equation (2.11)
where i is the position within the sequence and δ the dimension, injects in each embedding
an information on its absolute position within the sequence, allowing the model to learn
and distinguish the order of the given elements. Figure 2.13 shows a 2-dimensional
representation of the absolute positional encoding.

PE(i, δ) =

{
sin( i

100002δ
′/d ) if δ = 2δ′

cos( i
100002δ

′/d ) if δ = 2δ′ + 1
(2.11)

It outperformed other models in neural machine translation tasks with fewer training
cost, and it did not take long for researchers to adapt the Transformer architecture and
scaled dot product attention for other tasks, including music generation. The architecture
itself, the attention and positional encoding has as well been subject to improvements and
variations increasing the efficiency of models and/or leading to better results. We will
specifically focus on these improvements in the next section.

4Residual blocks are "skip connection" parts of a model where a hidden state is passed to a series of
operations, to which the result is added to this same hidden state as: h′ = h + f(h). The method was
introduced by He et al. [74].
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Figure 2.13: 2-dimensional representation of the absolute positional encoding
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Figure 2.14: Left: a vanilla transformer training scheme where sequences are split into
several segments; Right: Transformer-XL’s extended attention span during training. Fig-
ure from Dai et al. [34].

2.2 Transformers

2.2.1 Improved and efficient transformers

This subsection introduces works extending the capacity of the "vanilla" Transformer
architecture.

Transformer-XL

As the scaled dot product complexity grows quadratically with the sequence length, in
many cases one must limit the size of the input data during training and inferring. This
obviously limits the capacity of a transformer to attend to long sequences, and as for RNNs
the model "forgets" what was processed before.

Transformer-XL [34] alleviate this issue with a clever mechanism reusing the previous
hidden states. Transformer-XL is a causal transformer, meaning that a hidden state is
computed from the previous ones only, intended to be used for content generation. With
Transformer-XL, the hidden state hnτ+1 for the (τ + 1)-th segment at the n-th layer is
calculated as in Equation (2.12) where SG means the gradients are fixed and ⊕ is a
concatenation.

h̃n−1
τ+1 = [SG(hn−1

τ )⊕ hn−1
τ+1 ]

qnτ+1,k
n
τ+1,v

n
τ+1 = hn−1

τ+1W
⊤
q , h̃

n−1
τ+1W

⊤
q , h̃

n−1
τ+1W

⊤
q

hnτ = layern(q
n
τ+1,k

n
τ+1,v

n
τ+1)

(2.12)

This formulation allows to compute a hidden state ht based on the previous ones h<t,
which are being stored in memory. This not only speeds-up consequently the inferences,
but also allows to compute each hidden state based on an extended number of previous
hidden states. It allows to compute each token based on a larger past context. Figure 2.14
shows the hidden state reuse of the Transformer-XL.

Additionally, Transformer-XL include a built-in relative and elapsed positional encod-
ing. If using the same positional encoding than the vanilla transformer, i.e. encoding the
absolute positions, the previous hidden states would be assigned to different positions when
being reused, which does not make sense. To make sure the positional information keeps
relevant across segments, Transformer-XL uses the relative distances between elements.
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Different from relative positional encoding, [168, 85], it reformulate the attention with
absolute encoding as in Equation (2.13) , u being the absolute positional information.

ai,j = qik
⊤
j = (xi + ui)W

q((xj + uj)W
k)⊤

= xiW
qWk⊤x⊤

j + xiW
qWk⊤u⊤

j + uiW
qWk⊤x⊤

j + uiW
qWk⊤u⊤

j

(2.13)

From these four terms, Transformer-XL reparametrize the attention calculation as
follows in Equation (2.14) . The positional information of the key pj is replaced with a
relative positional ri−j ∈ Rd, the parameter matrix W k is replaced with two matrices W k

C

and W k
R for content and location information respectively, and uiW

q is replaced with two
parameters u and v for content and location once again.

ai,j = xiW
q Wk⊤

C x⊤
j︸ ︷︷ ︸

content-based addressing

+ xiW
q Wk⊤

R r⊤i−j︸ ︷︷ ︸
content-dependent bias

+ uWk⊤
C x⊤

j︸ ︷︷ ︸
global content bias

+ vWk⊤
R r⊤i−j︸ ︷︷ ︸

global positional bias

(2.14)

The combination of these strategies brought new state of the art results in language
modeling on the WikiText-103 [126] and enwik8 datasets. Note that the Hugging Face
Transformers [183] library natively implements a similar technique for autoregressive
models, allowing to conveniently generate from Transformers very fast.

Transformers for images and localized attention

The attention mechanism was first introduced in the NLP field to process sequential data.
But it did not take long before researchers sought to adapt it to images. A challenge
though, is that images are 2-dimensional data often composed of a large number of pixels,
with several channels (Subsection 2.1.3). Applying the scaled dot product attention over
all of these elements would be consequently costly in time and memory, if tractable. A
first solution would be to segment the data and apply attention independently on several
segments. However the nature of images means that a pixel at position (x, y) should attend
its neighboring pixels to make sens for tasks like classification or generation. Attention
must then be applied not sequentially, but localized depending on (x, y) like convolution.
With this consideration in mind, Image Transformer [138] expressed a way to localize
attention around elements for 2-dimensional data, like images.

The image is split into several non-overlapping blocks of queries. Each query within
can attend to elements in the memory block which contains those within the query block.
This method is showed in Figure 2.15 for 1-dimensional and 2-dimensional applications.
For both methods, images are generated autoregressively, one channel at a time.

Image Transformer, is a seq2seq architecture trained on three tasks: 1) Generate the
empty parts of uncompleted images; 2) Augment the resolution of low-resolution images
(super-resolution); 3) Generate images conditioned on class.

For these three tasks, both 1D and 2D methods produces coherent results, often close
to the expected image, proving that attention can efficiently be used with image data, and
more generally 2 and 3-dimensional data.

Sparse attention

In order to use attention for images efficiently, Child et al. introduced Sparse Attention
[23] a way to factorize the attention patterns across inference steps. This method reduces
the attention range of each inference, while making sure that each element attends others
sequentially. Figure 2.16 shows a visual representation of these attention schemes. The
key idea is to make use of several heads to attend different position sets.
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Figure 2.15: The attention range of Image Transformer. The cyan line marks the attention
scope of the query q. Left: A 1-dimensional attention range, similar than for sequential
data; Right: A 2-dimensional attention range. Figure from [138].

Figure 2.16: The sparse attention schemes. Top rows represents in each cases two heads
and their the previous positions they attend to, bottom rows are the full connectivity
matrices between inputs (columns) and outputs (rows). a) is a standard Transformer, b)
represents the stridden sparse attention, c) the fixed sparse attention. Figure from Child
et al. [23].
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Figure 2.17: The Locality-Sensitive Hashing attention scheme. Queries are gathered into
buckets and sorted before attention is applied causally within. Figure from Kitaev, Kaiser,
and Levskaya [103].

In the case of stridden sparse attention, one head attends to the l last positions, and
another attends to every lth positions. Formally, S1 = {t}it=max(0,i−l) and S2 = {j :

(i− j) mod l = 0}, where l is the stride and set close to
√
L, are the two sets of positions

each head attend to. The authors stated that this method is well suited for continuous data
like images or audio music. In contrast, it performs poorly for discrete data like text.

The fixed sparse attention is on the other hand more suited for discrete modalities.
We have S1 = {j : (floor(j/l) = floor(i/l))} and S2 = {j : j mod l ∈ {t}lt=l−c} where
c is a hyperparameter, and c ∈ {8, 16, 32} for l ∈ {128, 256} in the paper.

The results of the models tested by the authors on image, audio and text modeling
almost reached the one of the vanilla Transformer while being very coherent, but with a
much lower computation time.

Reformer and Locality-Sensitive Hashing attention

Motivated once again to increase the efficiency of Transformers, Kitaev, Kaiser, and
Levskaya introduced improvements to the Transformer architecture [103], by:

• Approximating the scaled dot product attention with locality-sensitive hashing at-
tention, reducing the complexity from O(L2) to O(L log L);

• Using reversible layers, enabling to store only activations of all layers only once
during training, instead of one per layers required with vanilla Transformers.

Locality-sensitive hashing is an algorithmic method that hashes similar inputs together
into a fixed number of buckets. This number is significantly smaller than the number of
inputs, allowing to reduce the dimensionality of sets of inputs. In the case of the Reformer,
attention is calculated with causality between elements of a same bucket, and the first
element of a bucket attends to the whole previous bucket, as shown in Figure 2.17. This
allows to decompose attention into a set of smaller attention calculations.

The hashing strategy used by the Reformer is the same as introduced by [5] [5].
The second major improvement brought by the Reformer are the reversible activation

layers [64]. The main idea is to allow to recover an activation from the following layer. This
way, the model saves memory by recomputing activations during back-propagation rather
than storing them. A standard residual layer can be formally expressed as y = x+ F(x),
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Figure 2.18: Schema of Perceiver and its iterative attention. Figure from Jaegle et al. [89].

whereas the reversible block is decomposed as in Equation (2.15) where the left side is the
forward pass and the right the backward, (x1, x2) is a pair of inputs.

y1 = x1 + F(x2) x1 = y1 −F(x2)
y2 = x2 + G(y1) x2 = y2 − G(y1)

(2.15)

Reformer applies this principle with F as the Attention layer and G as the feed-forward
layer, without needing to store the activations. Experiments on the enwik8 and WMT
English-German datasets showed that the reversible Transformer performs similarly the
vanilla Transformer, but faster.

Iterative Transformer: Perceiver

The Perceiver [89] is one of the first attempts to iteratively apply attention across a set of
input sequences. The architecture, shown in Figure 2.18, iteratively projects sequences of
embeddings onto a latent array Z ∈ RN×d via attention5. This method reduces drastically
the complexity, O(NM), as N ≪M for any input X ∈ RM×C . And the several iterations
can be done using a unique attention and latent transformer (weights are shared between
iterations), or several.

The first motivation for this design choices was to build a model capable to handle
several modalities. The experiments in the paper modeled video and audio modalities,
outperforming state of the art in some tasks or achieving competitive results.

While the Perceiver performs very well on some domains, its output capabilities are
limited, as in all cases sampled from the latent bottleneck. Hence DeepMind introduced
an improvement of the Perceiver architecture, namely Perceiver IO [90]. The new design,
illustrated in fig. 2.19, is in fact a Seq2seq model, conceptually similar to both the original
transformer and perceiver.

The encoder part is the original Perceiver model and works the same. The decoder part
is a standard attention layer, for which the queries come from the sequence Yt ∈ RO×E ,
keys and values from the latent array Z, resulting in the output sequence Yt+1. The
decoder could in fact be replaced by a full transformer layer. This design allows to sample
and auto-regressively generate sequences from Z.

The authors benchmarked Perceiver IO on several tasks including language under-
standing, multimodal audio-video-label auto-encoding, and show competitive results
against state of the art models.

5Called cross-attention in the original paper as the queries comes from the latent and the keys and values
from the inputs.
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Figure 2.19: Perceiver IO, an improvement of the Perceiver architecture. The additional
decoder parts allows to generate auto-regressively flexible output sequences. Figure from
Jaegle et al. [90].

2.2.2 Linear transformers

Despite the great results in many applications, and hence its adoption in many domains,
the “vanilla” transformer architecture suffers from a bottleneck that prevents its adoption
in some cases. As we saw in the last sections, the attention operation first computes the dot
product of the query and keys matrices. This imply calculating a matrix A ∈ RT×S where
S and T are the target sequence and source sequence lengths respectively, resulting in a
O(TS) time and memory complexity, or O(S2) in the case of self-attention in which the
complexity grows quadratically with respect to the input sequence length. When dealing
with short sequences, or if memory and hardware capacity is not an issue, this can not even
be a problem. In many cases however, researchers can easily fall out of memory. When
processing long sequences or large data samples such as images, the memory requirement
of the attention operation can make it intractable on some GPUs, even with an amount of
video memory that would be considered large at time of writing. In order to alleviate this
issue, researchers have since looked for ways to reduce this complexity.

The kernel trick to linearize attention

Katharopoulos et al. [97] expressed the idea of approximating the scaled dot product
attention matrix using the kernel trick. The kernel trick Equation (2.16) is a method
consisting in using a linear classifier to approximate a non-linear operation, dot product
especially. Computing the dot product of large vectors can sometimes be intractable on
some hardware. The kernel trick allows to reduce the time and memory complexity by
linearly approximating the dot product, after projecting the inputs with feature maps ϕ(·).

K(x,y) = ϕ(x)ϕ(y) (2.16)

The approximation of the attention matrix can be done by computing the product of
keys and values first. The overall complexity would grow linearly with the length of the
input sequences. Thanks to the associativity of matrix product, and the fact that the dot
product of the attention operation is applied row-wise, it can be decomposed as shown in
Equation (2.17) where S is the source sequence length.
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Figure 2.20: Left: the scaled dot product attention; Right: The linear attention using the
kernel trick. Figure from [28].

Attention(Q,K,V) = V′ = softmax(
QK⊤
√
dk

)V

v′
i =

∑S
j=1 sim(qi,kj)vj∑S
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sim(q,k) = exp(
q⊤k√
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)

(2.17)

Given a kernel function ϕ(x), we can rewrite Equation (2.17) as follows:

v′
i =

∑S
j=1 ϕ(qi)

⊤ϕ(kj)vj∑S
j=1 ϕ(qi)

⊤ϕ(kj)

v′
i =

ϕ(qi)
⊤∑S

j=1 ϕ(kj)v
⊤
j

ϕ(qi)⊤
∑S

j=1 ϕ(kj)

(2.18)

The numerator can then be rewritten as (ϕ(Q)ϕ(K)⊤)V = ϕ(Q)(ϕ(K)⊤V), and
Figure 2.20 shows a visual comparison of the dot product attention, and its linear approxi-
mation with kernel trick. This formulation implies a O(TS) complexity, T and S being
respectively the target sequence and source sequence lengths. Katharopoulos et al. based
their experiments with a feature map function ϕ(x) = elu(x) + 1.

Compared to a transformer of the same size but with the scaled dot product attention,
the results of the linear transformer for a sequence duplication task are a little lower
(cross entropy value) and with a slower convergence (in number of gradient steps). But
considering the fraction of the memory and time complexity, the linear transformer could
be easily scaled up to a lot more parameters and converges more rapidly as an inference
takes less time to perform. For a same hardware configuration, a linear transformer could
then be much larger than a transformer with scaled dot product attention and possibly give
better results. Finally, a linear transformer can of course handle input sequences of much
larger lengths, and possibly solve tasks that cannot be run on quadratic transformers.

This linear attention formulation was used in some music generation works [68, 119],
showing that this linearization works for such contexts.
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Favor+ and Performers

Following this first approach, Choromanski et al. discussed the way to approximate the
softmax attention [28] and introduced a new method they called Favor+ (for Fast Attention
Via positive Orthogonal Random features).

The Favor+ makes use of random, positive and orthogonal features to approximate the
attention matrix. Although the use of positive random and orthogonal random features
for most kernels are well known methods, Choromanski et al. showed that the use of both
works particularly well for the softmax kernel.

The communicated results showed that Performer (transformer with favor+ attention)
performed equally, sometimes better, than quadratic transformers on tasks such as protein
sequences modeling. More importantly, performers could be trained on large datasets with
consequent input lengths while keeping a good quantity of parameters where quadratic
transformers were limited, and so was their accuracies.

A similar approach was introduced by Peng et al. [141]. Using random features
and normalizing keys and queries, they communicate outperforming results with their
approach over Favor+. However their experimental setup, proofs, article and no code
shared leaves us sceptic.

Benchmarks of linear attention

A few researchers benchmarked the previous attention linearization strategies on various
tasks [166], in order to measure how well they can approximate the scaled dot product
in objective environments. The most popular benchmark at time of writing is the Long
Range Arena [174].

The Long Range Arena measures the performance, memory footprint and capabilities
of efficient transformers. It is built around key ideas such as simplicity, challenge, inputs
length capability. The models are benchmarked on several tasks such as byte-level text
classification, byte-level document retrieval, image classification or Pathfinder [117].

These benchmarks show interesting analysis. Kernel based transformers seems to not
perform very well on hierarchical tasks such as ListOps, but performs really good on text
and images. In terms of performances, we see an improvement in both time and memory,
which is more noticeable when the sequence length is high. Analyzing the other models
also shows us that the Reformer and its locality-sensitive hashing attention is more than
two times slower than the vanilla Transformer, while being two times more effective in
memory consumption. The Performer [28] seems to be the a.t.o.w. the fastest model, and
Linformer [179] the one with the lowest memory consumption.

FlashAttention

FlashAttention [35] is an efficient attention computation process leveraging the GPU’s
memory specifications to reduce the number of reads/writes between its global memory
(VRAM) and cache memory (SRAM). This is done by "tiling" the computation of the
attention matrix: blocks of attention computations are loaded into fast SRAM, the results
are written into VRAM, resulting in about a 7.6 times speedup of the complete attention
computation, and up to 3 times faster training on models such as GPT2 [146] or BERT
[37]. The memory usage is also decreased, allowing to use longer context length (token
sequence length). FlashAttention is now natively integrated in the most popular DL
frameworks and libraries, such as PyTorch [139], Hugging Face Transformers [183] or
DeepSpeed [155].
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2.3 Generative architectures

So far, we have explored the operations and modules that compose modern DL models,
and focused on the Transformer architecture. In this section, we specifically focus on the
architectures that allows to generate content. Even though these architectures are mostly
applied to generate continuous modalities such as images or audio, we still present them
here for the reader’s benefit.

These architectures are conceived to output results on a joint distribution, i.e. are more
suited for continuous modalities. DL models for text and symbolic music generations are
now usually based on the Transformer architecture, to generate tokens autoregressively.

As symbolic music can contains both discrete and continuous features, previous works
still successfully implemented some of the following architectures for symbolic music
generation, while benefiting from their distinct controllability advantages.

2.3.1 Auto-encoders

An auto-encoder is a model architecture, based on en encoder and a decoder, often
being having the same architecture but mirrored, trained to generate content from a
low-dimensional space representation. The model is trained by feeding input data to
the encoder, that outputs a latent vector. The latent vector is fed to the decoder, and
the loss is computed on the ability of the model to reconstruct the original input, often
by mean squared error (MSE) or binary cross-entropy. The encoder is then essentially
trained to project the input into a lower dimensional latent space that will capture the most
important features or patterns in the input data, while the decoder will generate content
from the features of this space. By learning to compress and reconstruct the input data,
auto-encoders effectively learn a compact representation that captures the most salient
features of the data.

Auto-encoders have been used for many applications such as data compression, di-
mensionality reduction, denoising, anomaly detection, and content generation. For the
latter, the latent space can be explored in order to generate content from the decoder. This
has however a few shortcomings:

• Limited interpretability: The latent space is often not easily interpretable, it is often
difficult to identify the distinct features it represent;

• Overfitting: auto-encoders are prone to overfitting, especially with large models and
/ or small datasets;

• Dependency on reconstruction error: Auto-encoders rely on the reconstruction
error between the input and output data as their training objective. While this can
be effective in capturing global patterns, it may not necessarily capture fine-grained
details or subtle variations in the data;

• Discrete nature of the latent space: the latent space is expressed as a 1-dimensional
vector z ∈ Rd, for which each feature is expressed as discrete, thus limiting the range
of expressiveness for the decoder.

The last point in particular, gave birth of the Variational Auto-Encoder (VAE) [100].
The key idea behind VAEs is to learn a probability distribution in the latent space rather
than just learning a fixed encoding. This is achieved by introducing a probabilistic compo-
nent into the latent space. Instead of mapping the input directly to a fixed point in the
latent space, the encoder network outputs the parameters of a probability distribution,
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Figure 2.21: Schema of a GAN.

typically a multivariate Gaussian distribution, that represents the uncertainty in the latent
representation.

A VAE is trained similarly to any auto-encoder. Additionally, it incorporates a regular-
ization term that encourages the learned distribution in the latent space to be close to a
predefined prior distribution, usually a standard Gaussian.

The VAE can generate new samples by sampling from the learned latent space dis-
tribution and passing the samples through the decoder network. By sampling different
points in the latent space, the VAE can generate diverse and novel outputs that capture the
underlying structure of the training data.

Note that as the sampling operation is not differentiable, gradient backpropagation is
assured by the reparametrization trick [102].

VAEs learn a continuous latent space representation, where similar points in the latent
space correspond to similar data points in the input space. This continuous nature allows for
smooth interpolation between different data points and facilitates meaningful exploration
and manipulation of the learned representations. The architecture has been used to create
many generative models, for image [136] and of course music [160, 197, 95].

2.3.2 GANs

Generative Adversarial Networks are a class of models featuring two parts: a generator
gθ which generate data from random noise, and a discriminator dδ which receives data
and predicts if it generated or from the real data distribution. Both parts are trained
adversarially, with the generator trained to fool the discriminator, and the latter to better
distinguish what the generator is predicting from the real data. The architecture is depicted
in Figure 2.21.

During training, when the discriminator fails, its parameters δ are updated. It is trained
to maximize it’s result over real data maxE_x ∼ px(x)[log (dδ(x))], while minimizing the
prediction of generated samples gθ(z), min Ez∼pz(z)[log (1− dδ(gθ(z)))].

When the discriminator succeeds, the generator’s parameters θ are updated. It is
trained to generate samples which maximize their result from the discriminator (fools it),
hence minimizing Ez∼pz(z)[log (1− dδ(gθ(z)))].

This can in turn be written as:

min
θ

max
δ
L(gθ, dδ) = E_x ∼ px(x)[log dδ(x)] + Ez∼pz(z)[log(1− dδ(gθ(z)))]

The generator will progressively produce content closer to pd, and the discriminator
will distinguish real from fake data with smaller differences. Both models are jointly
trained, improving each other.

You see that the generator is directly trained to minimize the distance between its
distribution and the data distribution: min

θ
KL(pθ||pd). This allows to generate original

content which contains the underlying features of the data distribution implicitly.
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GANs have largely been applied to image generation, yielding impressive results, but
also audio, such as StyleGan [96] and GANSynth [47].

Limitations of GANs

GANs are, however, not except of problems and drawbacks. Their training procedure
is less stable than those of counterpart models, and they do not provide an easy direct
control over the generation.

GANs are known to be hard to train, easily falling into mode collapse: during training,
as the generator learns to produce samples close to px which tricks the discriminator most
times, it will likely learn to predict only this specific sample. This is undesirable as we
should expect the generator to predict plausible and various results.

GANs can also suffer from vanishing gradients. If the discriminator begins to converge
and to be optimal, the gradients computed during the backpropagation will naturally have
low values before reaching the generator’s parameters, resulting in weak updates. Learning
then starts to slow, and can stop. These issues can be alleviated using Wasserstein distance
as loss function [8].

Control techniques

Since then, techniques have been developed to control GANs from high level attributes
[170, 96], with a feature classifier [113] or even from text captions and contrastive learning
with VQGAN + CLIP 6.

Efficient sampling

GAN models were originally presented as sampling from the latent space of the generator
to produce content, leaving the discriminator after training. The discriminator however
contains useful information on the data distribution that it would be wasteful not to take
advantage of, as the common generation practice is based on rejecting unsatisfying samples.
Discriminator Driven Latent Sampling (DDLS) [21] proposes to use the discriminator
at inference to efficiently sample from the latent space, by defining the generator and
discriminator as an energy-based model and running Markov Chain Monte Carlo, yielding
results of higher quality and more efficiently.

Ansari et al. proposed a improved and more general framework of sample refinement
strategy they called Discriminator Gradient flow (DGflow) [6]. The main idea is to
iteratively refine the latent sample z by computing the gradient of the f-divergence loss
of dδ(gθ(z)). In other words, we use the generator to generate from z, assess the result
with the discriminator, compute gradients from the score and backpropagate them to z to
refine it. This can be iteratively done until the gθ(z) is satisfying enough. DGflow can be
applied to any latent sampling model like GANs, VAE, Normalizing Flows, and its main
principle is similar to the how Diffusion models work (Subsection 2.3.3).

Application to discrete data

GANs have essentially been applied to continuous domains so far. The reason is because
the output of the generator y is the input of the discriminator, thus every operation in
between must be differentiable. Sequential models however return discrete distributions,
from which we would have to sample y ∼ gθ (x) in order to estimate the result and pass it to
the discriminator. But sampling from a distribution is not a deterministic operation, hence

6https://github.com/nerdyrodent/VQGAN-CLIP

https://github.com/nerdyrodent/VQGAN-CLIP


2.3. Generative architectures 31

not differentiable. This means that during training, the gradients cannot be backpropagated
to the generator.

Even though some attempts have been made, and successively created GANs for text
with tricks such as Gumbel-Softmax [121, 91], the results are always not competitive with
standard autoregressive models [109, 134, 193].

2.3.3 Diffusion models

Diffusion models [77] are a type of generative model designed to model the probability
distribution of high-dimensional data. The core idea behind diffusion models is to model
the process of gradual diffusion or spreading of information over time. During training, in
each diffusion step, the model adds noise to the input data, and is then used backward to
denoise the perturbations just added. The loss is computed on its denoising ability [172].
During inference, the model iteratively refines a high dimensional latent noise distribution,
until it becomes synthetic data.

In practice during training, a data sample x0 from the dataset is iteratively added noise
in T steps, giving noisy samples x1, . . . ,xT . The forward pass of the model pθ is described
in Equation (2.19) , with βt ∈ [0, 1] being a variance schedule over the steps.

pθ(xt|xt−1) = N (xt;
√

1− βtxt−1, βtI) pθ(x1:T |x0) =
T∏
t=1

q(xt|xt−1) (2.19)

x0 gradually becomes noise step after step. Reversing this process, i.e. calculating
pθ(xt−1|xt) allows us to remove the noise just added.

pθ(x0:T ) = p(xT )

T∏
t=1

pθ(xt−1|xt) pθ(xt−1|xt) = N (xt−1;µθ(xt, t),Σθ(xt, t)) (2.20)

The training and inference processes are described in Algorithm 1 and Algorithm 2
(recopied from Ho, Jain, and Abbeel [77]).

Algorithm 1 Diffusion training
1: repeat
2: x ∼ q(x0)
3: t ∼ Uniform({1, ..., T})
4: ϵ ∼ N (0, I)
5: Take gradient descent step on
6: ∇θ ∥ϵ− ϵθ(

√
αtx0 +

√
1− αtϵ, t)∥2

7: until Convergence

Algorithm 2 Diffusion inference

1: xT ∼ N (0, I)
2: for t = T, ..., 1 do
3: z ∼ N (0, I) if t > 1 else z = 0

4: xt−1 =
√
αt

1

(
xt −

√
1−αt

1−αt
ϵθ(xt, t)

)
5: end for
6: return x0
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Figure 2.22: Schema of the framework of generation with classifier guidance.

The inference process of diffusion models make them perfectly suited for generation
tasks. Contrarily to GANs, VAEs or Transformers, the output result is refined to directly
model the data distribution, making it a "generation" only class of model.

To control such type of model, one can compute the loss according to the desired
output during inference. This can be done by using a classifier model estimating the
alignment between an image x and a text description y. The idea have been applied to
GANs in the very popular notebooks VQGAN+CLIP [32] and BigSleep [132]. They used
respectively the VQGAN [51] and BigGAN [19] models as generator, and the CLIP [147]
model as guidance model. The overall process is depicted in Figure 2.22.

This classifier-guidance process comes however with a few shortcomings. Most im-
portantly, as diffusion models iteratively denoise inputs, a classifier used to guide the
generation needs to be able to cope with high noise levels in order to give a reliable feed-
back. In practice, the classifier is trained specifically for the guidance purpose. Even with
a strong classifier, this approach is limited by the fact that xt is not relevant to predict
y. Consequently, using the gradient from the classifier might direct into non-relevant
directions, and fail to produce the expected result.

These limitations are now erased with a method called classifier-free guidance [79].
As the name implies, no external classifier is used in order to compute the alignment
between xt and y. Here, the diffusion model is trained with both a conditional pθ(x)
and a conditional pθ(x|y) objectives. The conditional objective is parametrized with a
score estimator ϵθ(x,y). During training, a linear combination of both scores is done
(1+w)ϵθ(zλ, c)−wϵθ(zλ) where w controls the influence of the guidance. This technique
presents the advantage of relying on the diffusion model’s knowledge, thus assuring a
robust alignment score even with a noisy x. While standard a classifier can ignore most of
the feature of x and still yield competitive results, a conditional generator cannot take such
shortcuts. This makes the resulting gradients more reliable, while having to only train a
single model.

The classifier-guidance process has been applied to diffusion models with GLIDE
[133], DallE-2 [152], Imagen [165], and others [161, 78], to finally become standard.

Diffusion models have gained a lot of attention due to their ability to generate high-
quality samples with a wide range of applications. They have been used to create realistic
images, complete missing parts of images, and generate new text samples that resemble a
given text corpus. Overall, diffusion models provide a powerful framework for generative
modeling by capturing complex data distributions.
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Chapter 3

Music generation with Deep Learning

Music can be represented in several ways. These representations have been developed to
fulfill the needs of musicians to create, compose and analyze music.

We can divide these representations in two major categories: symbolic and audio.
Symbolic music, as its name suggests, represents music by its symbolic content i.e. the
notes, rests, tempos and all their attributes. It is mainly aimed for musicians to read
and write music and relies heavily on music theory. Audio corresponds to the physical
representation of music, when being played, i.e. the waveform signal produced by an
instrument or a singer, traveling in the air or any material. This can be represented by a
waveform, i.e. the amplitude of the sound as a function of time, or a spectrogram.

Audio and symbolic representation, although they can represent the same music, are
very different in their format, the information they contain and how to retrieve it. Symbolic
music obviously is easier to manipulate in a "creative" context where one arrange notes
to form a melody, and voices to create harmony. It lacks however all the information
carried by the sound. Music genres such as Electronic, Pop or Rap heavily rely on the
use of synthesizers offering infinite possibilities of sound creations. The process to create
these sounds has been the theme of many dedicated book [182]. And we could not pass
on the evident and essential role of the mixing and mastering steps of any music creation.
Even though these are steps which often consist to embellish already made up melodies or
arrangements, these can be considered as artistic as they transform sounds with effects,
creating new mixtures which considerably modify the way we appreciate music. Lastly,
nowadays many musicians create music using samples which are for the most part audio
files. DAWs allow to easily manipulate and use both symbolic and audio contents for any
creative purpose. Most musicians and producers uses both formats in the music released.

In this chapter, we first introduce the different music format, then proceed with the
previous works on music generation with DL. It will not be exhaustive, so for a more
comprehensive reading we refer the reader to [18] which present most DL models for
music generation, and [93] present does too but with a approach oriented towards DL
techniques as we will have here.

3.1 Traditional music representations: score and piano roll

The way music is represented evolved with centuries, towards formats widely spreads and
understood allowing musicians to read and write music like one would do with text. The
sheet music is probably what comes first to your mind when thinking about music. Several
systems were developed by different cultures during history, which were progressively
shadowed by the western music notation. A sheet is composed of staves on which are
written notes and bars, to be read from left to right and up to down. The position, form
and color of a note allows a reader to determine its pitch and duration, see Figure 3.1.
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Figure 3.1: A music sheet with two staves of nine bars.

The piano roll was originally a recording medium for operating a mechanical piano,
see Figure 3.2. By rotating the roller at a defined speed, the holes punched in it at different
positions will automatically play the piano at the desired notes.

Although the mechanical original piano roll format is rarely used nowadays, the piano
roll name is still used to describe the visual representation of notes along time that is
commonly used in most DAWs as shown in Figure 3.3. The horizontal axis corresponds
to the time, the vertical to the pitch of the notes. This offers an appealing and flexible
visual representation. Notes can be displayed with visual elements indicating an attribute,
like the color representing the velocity1 in Logic Pro X. Digital supports allow to store
and represent music, which we introduce in the next section.

3.2 Symbolic music digital files

3.2.1 MIDI

MIDI, acronym for Musical Instrument Digital Interface, is a technical standard that
describes a communication protocol, an electrical connector and a digital file format. It
first appeared in the early eighties, when digital instrument manufacturers needed a digital
protocol for communication between devices such as synthesizers and computers. It was
standardized in 1983 by the first specifications, and is currently maintained by the MIDI
Manufacturers Association2. Meanwhile new specifications were made, the two major ones
and still the norm today being the General MIDI 1 (GM1) and General MIDI 23. These
specifications aim to guide the manufacturers to design digital music devices compatible
with the ones from other manufacturers.

The MIDI protocol is event based. It consists of a series of events, which can occur
in multiple channels. Each event is composed of two key information, 1) the delta time
expressed, which is the distance in ticks with the previous event (in the same channel) and
so represents its position in time, 2) a message which represents its content.

The tick is the basic time unit of MIDI. It is a clock signal which its frequency is set
by the time division4, which itself can be express in ticks per quarter note or in ticks per
second, the most popular choice being the first as it bases itself on musical time units and
is tempo independent.

1The term velocity comes from the MIDI format (to be introduced in next paragraph). It indicates the
force with which a note is played, influencing its volume and dynamism.

2MIDI Manufacturers Association website: https://www.midi.org
3GM specifications: https://www.midi.org/specifications
4Also sometimes called resolution.

https://www.midi.org
https://www.midi.org/specifications
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Figure 3.2: A mechanical piano playing from a piano roll.

Figure 3.3: A piano roll view in the Logic Pro X DAW.
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11000101 - 00111001
Program Change, Channel 5 – Instrument 57 (Trumpet)

10010101 - 00111100 - 00110010
Note On, Channel 5 – Pitch 60 – Velocity 50

10000101 - 00111100 - 00000000
Note Off, Channel 5 – Pitch 60 – Velocity 0

Figure 3.4: MIDI message examples, binary values and their significations.

The message express an event or an information. A message is a series of bytes, the
first is the Status byte which specify the type of message and the channel, followed by one
or two data bytes which contain the information. Figure 3.4 shows what a sequence of
MIDI messages can look like. All the messages and their significations are described in the
GM1 and GM2 specifications. For our purposes, the most important and relevant ones
which we will parse to extract the musical information are:

• Note On: a note is being played, specifies its pitch and velocity;

• Note Off: a note is released, specifies the note to stop and the velocity;

• Program Change: specify the instrument to play;

• Control Change: a control parameter is modified or applied. The modulation wheel,
foot sustain pedal, volume control or bank select are for instance effects transcribed
into Control Change messages.

Note that these messages are "voice messages", which means that each of them is
applied within a channel that is specified in its status byte. The MIDI protocol handles
up to sixteen channels which allows to connect multiple instruments that are playing and
communicating all together. The channel 10 is reserved for drums, which is a specific
"program" in which the pitch values corresponds to drum sounds like kicks, snares, or
hi-hats.

The latest evolution of the MIDI protocol is the MIDI Polyphonic Expression (often
shortly called MPE). This new norm allows manufacturers to create MIDI devices on
which a specific channel is assigned to each note allowing the user to apply pitch bend
and modulation on each key independently. These devices are typically built with touch-
sensitive keys. The MIDI Manufacturers Association released the complete specifications
on March 20185.

3.2.2 ABC

The ABC notation is a notation for symbolic music, and a file format with the extension
.abc. Its simplicity has made it widely used to write and share traditional and folk tunes
from Western Europe. Each tune begins with a few lines indicating its title, time signature,
default note length, key and others. Lines following the key represent the notes. A note is
indicated by its letter, followed by a /x or x to respectively divide or multiply its length by
x ∈ N⋆ compared to the default note length. Figure 3.5 show an example of a lead sheet
and its ABC notation. An upper case (e.g., A) means a pitch one octave below than a lower
case (a).

5MPE specifications: https://www.midi.org/midi-articles/midi-polyphonic-expression-mpe

https://www.midi.org/midi-articles/midi-polyphonic-expression-mpe
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X:1
T:Beams
M:C
K:C
A B c d AB cd | ABcd ABc2 | ABcdABcd |

Figure 3.5: An example of the ABC notation, taken from abcnotation.com: above is a lead
sheet, below its corresponding ABC notation.

This notation is originally designed for writing monophonic melodies, as it cannot
represent polyphony outside of specific chord symbols.

3.2.3 MusicXML

MusicXML is an open file format and music notation. Inspired by the XML file format, it
is structured with the same item-hierarchy. Figure 3.6 shows an example. The part-list
references the parts to be written following with the tag part. A measure is defined with
its attributes, followed by notes and their attributes. The common file extensions are .mxl
and .musicxml.

3.3 Audio representations

The two common audio format, used in audio models, that we will present in this sections
are waveform and spectrogram.

3.3.1 Waveform

A waveform represents the signal (its amplitudes) of a sound i.e. vibrations propagating in
a material as a function of time. Figure 3.7 shows a waveform.

A sound as in Figure 3.7, wether from an instrument, a human voice or music ar-
rangement, is a superposition of many periodic waveforms, defined by their wavelength
λ, amplitude α and phase ϕ. The frequency f of a periodic waveform is defined by
f = c

λ = 1
T where c is the celerity and T its period.

Using waveforms with statistical models poses serious challenges. To represent a sound
as a waveform with the fewest loss, the Nyquist-Shannon theorem establish that the sample
rate, expressed in samples/sec, must be at least twice the highest frequency contained
in this sound. As humans can hear frequencies up to 20k Hz, a sample rate for audio
should be higher than 40k samples/sec6. A model processing raw waveform signals would
imply it could be capable to handle n = L× r continuous values where L is the length of
the input in seconds and r the sample rate. For instance a 5 seconds audio input, which
can be considered short, built with a sample rate of 44.1k samples/sec, contains 220,500
samples, which can be considered very high for a DL model a.t.o.w. A DL model handling
raw audio waveforms is in practice possible [38, 135, 33], but a more common practice
consists in extracting features to be used by DL models from audio data. These features are

6A very common rate, used for instance on CDs, is 44100 samples/sec.

abcnotation.com
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<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<!DOCTYPE score-partwise PUBLIC

"-//Recordare//DTD MusicXML 3.1 Partwise//EN"
"http://www.musicxml.org/dtds/partwise.dtd">

<score-partwise version="3.1">
<part-list>

<score-part id="P1">
<part-name>Music</part-name>

</score-part>
</part-list>
<part id="P1">

<measure number="1">
<attributes>

<divisions>1</divisions>
<key><fifths>0</fifths></key>
<time><beats>4</beats><beat-type>4</beat-type></time>
<clef><sign>G</sign><line>2</line></clef>

</attributes>
<note>

<pitch><step>C</step><octave>4</octave></pitch>
<duration>4</duration>
<type>whole</type>

</note>
</measure>

</part>
</score-partwise>

Figure 3.6: A MusicXML code example, representing one measure containing a C4 note.

Figure 3.7: The waveform signal of a sound, as the amplitude as a function of the time.
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Figure 3.8: The spectrogram of a sound, abscissa is time, ordinate is frequency and the
color represents the intensity.

mathematical representations of higher level characteristics of audio, that can be easily used
with DL learning models for a wide variety of tasks including speech recognition, source
separation and many Music Information Retrieval (MIR) related problems. Depending
on the aimed task, these features can have different levels of abstraction and meanings.
High levels of abstraction are features understood and manipulated by humans, includ-
ing rhythm, key, melody and harmony. Mid-level are features we can perceive such as
pitch and note onsets. Low-level are statistical features that only make sense to the machine.

Features can be extracted either from trained ML and DL models or statistical and
ruled-based models.

3.3.2 Spectrogram

A spectrogram is a visual representation of the frequencies of an audio signal. It depicts the
intensity in dB of frequencies through the time. Figure 3.8 shows a spectrogram. It can
be calculated with a Short Time Fourier Transform [67], using popular software libraries
such as TorchAudio [191] or Librosa [124].

Spectrograms are used in many MIR tasks, and are well suited for CNNs as they are
continuous and analogous to monochrome images with foreign patterns [112, 76].

We introduce in the next sections DL models designed to generate music.

3.4 Symbolic music generation with discrete models

Discrete models refer in this thesis to RNNs (Subsection 2.1.5) and Transformers (Sub-
section 2.1.6) which were first designed for natural language tasks. They process sequence
of discrete elements, and output disjoint distributions conditioned on the all or some parts
of the input sequence elements.

One of the first RNN-based model for music generation model is FolkRNN [173],
a simple RNN trained on folk songs. It is followed by DeepBach [69], a bidirectional
LSTM model trained on Bach chorales to perform inpainting with Gibbs sampling. For
each time step, four pitch values are represented, one for each voice. This very efficient
representation is well suited for Bach chorales and shows pleasing results as each voice
plays a note almost all the time.
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A more versatile method to tokenize symbolic music is introduced around the same
time is the MIDI-Like encoding [137], which simply convert MIDI messages into tokens
following the same order. It shows good result and proved that this method works well
for expressive music generation from sequential models. MIDI-Like has also been used
in Music Transformer [85], and other works on music transcription [72, 62]. It however
presents a downside: some NoteOn tokens can be predicted without their corresponding
NoteOff token in the next steps, leading to either notes which does not end (or too long
after) or discarded notes, or notes with a default duration depending on the way to deal
with this issue.

To address this, the authors of the Pop Music Transformer [87] introduced the REMI
encoding, standing for Revamped MIDI. The key difference is a modified time representa-
tion. The NoteOff and TimeShift tokens are replaced with Duration, Bar and Position
tokens indicating respectively the duration of a note, when a new bar is beginning and the
position within a bar. This representation solves the previous problem with note durations,
and the presence of these new time-related tokens marks explicitly the positions of notes,
for instance at the beginning of a beat, allowing a model to very easily learn repetitive and
common music patterns. REMI also proposed to include tokens to specify ongoing chords
(and their quality if known) and tempo tokens.

Hadjeres et al. introduced the Structured tokenization with the Piano Inpainting
Application [68] with the main purpose of sorting tokens types with the same recurring
pattern: Pitch, Velocity, Duration, TimeShift. This way, a model efficiently learns
to predict the good token types. A downside would however be that this strategy cannot
represent two following notes with a distance higher than the maximum TimeShift value
of the chosen vocabulary. In other words it cannot represent the time separating two notes
if it is longer than the maximum time shift value. Therefore this strategy is mostly suited
for single track and continuous performances, in the case of the original paper piano.

MMM [48], standing for Multitrack Music Machine is a multitrack transformer de-
signed for bar-infilling. It represents multiple tracks by concatenating their token sequences,
and is trained to generate the missing part of a section marked to be filled in the input.

These previous tokenizations worked well in their conditions, but all faced a major
challenge inherently to the sequence lengths: the quadratic complexity of transformer
networks, which is discussed in Subsection 2.2.1. To address this challenge, Hsiao et al.
[83] used the associative properties of embeddings to group associated tokens together to
reduce the sequence length. They called their representation Compound Word, using the
same tokens than REMI.

Every token xt is associated to a type k ∈ K, for instance Pitch. The types are divided
into two families: Note which comprise Pitch, Velocity and Duration tokens, and
Metric which comprise Position, Chord and Tempo tokens. Tokens are first transformed
into embeddings independently, of sizes that can vary depending on the token type7. The
associated tokens from the same family (such as from the attributes of a distinct note) and
special Ignore tokens for every other "non-active" types, are concatenated together into a
single fixed size vector ct which is then multiplied to a learned projection matrix8 Win

resulting in a final embedding et as described in Equation (3.1) .

pt,k = Embk(xt) | k ∈ J1,KK

ct = Concat({pt,k}Kk=1)

et = Winct + bin, bin are biases

(3.1)

7The authors decided to transform tokens of a larger types, for instance Pitch which counts 88 tokens,
into embeddings of larger sizes to make them more distinguishable.

8No mention is done about biases, but this could be added to the operation like in common linear layers.
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At decoding, their model predicts first the family of the next token, then the tokens of
types K, as described in Equation (3.2) where Hi refers to the hidden state produced by
the i-st layer, l being the number of layers, wf and {wk}Kk=1 being the parameters of the
K+1 output modules, and ft the predicted family of the time step t.

h
′
l,t = Self-attention(Hl−1)t

ft = Samplef(Softmax(wfh
′
l,t)

houtt = wout[h
′
l,t ⊕ Embk(ft)]

yt,k = Samplek(Softmax(wkh
out
t ))

(3.2)

During training, the losses of each token type are independently computed from each
output layer, then summed to compute the gradients and update the model’s parameters.
However, this approach presents the downside of sampling from multiple distributions
independently from one another during generation, which can add variance and non-
relevant results if the perplexity of the distributions are high.

Introduced with MusicBERT [194], Octuple also aggregates tokens together to form
merged embeddings, reducing the lengths of the processed sequences. Octuple is first
designed to be used in a multitrack context. Each embedding is the aggregation of eight
sub token embeddings: Pitch, Velocity, Duration, Track, current Bar, current Position, Tempo
and Time Signature. The pooling strategy is the same than with Compound Word, expect
that there is no motion here of the lengths of the embeddings of tokens depending on
their types, although it could be easily done. The Bar and Position embeddings can act
as a positional encoding, but the authors still applied a position-wise positional encoding
afterward. The decoding strategy is here more simple as they used eight classifiers to
predict each token type for a time step. Though they did not share the details of how they
built their classifiers, we can assume that there are stacked linear and softmax layers.

Presented with the PopMAG model [158], the MuMIDI encoding is another mul-
titrack MIDI encoding grouping tokens into compound embeddings. Here only note
attribute tokens (Pitch, Velocity and Duration) are aggregated. Bar, Position and Chord tokens
indicate when these respective events happens in the sequence. A Track token indicates the
instrument that plays the next predicted notes. And embeddings of the tempo, current bar
and current position are associated to every embedding the sequence, creating a position
and bar wise positional encoding. In the PopMAG paper, authors distinguishes pitches of
drums from pitches of other instruments with dedicated tokens. They used three linear
layers to predict the six possible token types at each time step.

The latest models, such as FIGARO [164], MTT [43] or MMM [48] put a special
focus on the multitrack capacity of models and their controllability.

3.5 Symbolic music generation with continuous models

Although symbolic music is more intuitively seen as a discrete modality, it has also been
used with continuous and non-autoregressive models.

As symbolic music can be represented as a pianoroll, which is essentially a 2-dimensional
matrix with a time and pitch axis, it can be used with operations such as CNN (Subsec-
tion 2.1.3). In practice though, as convolution works with filters applied on local areas and
the active notes are not directly adjacent in the pianoroll, the filter size has to be carefully
chosen.

This approach has been used in MuseGAN [44] and Coconet [84]. MuseGan is one
of the first research work to generate multi-track symbolic music from a DL model. It is a
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multi-level GAN architecture (Subsection 2.3.2) made of CNN layers, which iteratively
generate bars of music as pianorolls matrices. Several levels of noises are used for the
input: one acting as a global composer and shared for all tracks and bars, one for temporal
alignment shared by all tracks at a given time step, and others exclusive to each track acting
as their individual conditioning.

However, as a pianoroll is not exactly a continuous representation, its application to
continuous operations is not guarantied to yield "efficient" results. It also comes with two
major downsides:

• It can in theory represent information other than notes, such as tempo or chord,
by allocating a dedicated "row" alongside the pitch axis, but the overall continuous
nature of the pianoroll would be further ambiguous and its usage with CNN unlikely
to be efficient;

• It cannot distinguish held notes from repeated notes.

For these reasons, researchers put the pianoroll aside and started to work with other
continuous techniques, coupled with discrete representations. MusicVAE [160] is VAE
(see Subsection 2.3.1) architecture where the decoder is a stack of RNN sub-models,
each of them generating sixteen beats. The latent space of the encoder is used as the
initial hidden state of the RNNs. This proposition of using multiple RNNs is to alleviate
the vanishing gradient problem that very often arises with this type of model, especially
with long sequences. The same architecture has been adapted to be used with diffusion
models [130] (Subsection 2.3.3): the encoder is now a diffusion model generating the
latent embeddings used by the decoders.

Continuous models are however in minority in the symbolic music generation domain.
When applied on discrete domains, they tend to suffer from high variances that make
them unsuitable to be sampled to generate coherent results. As for text, the vast majority
of models are based on discrete sequential models. Some continuous applications can
still be used, as done by Choi et al. [27], which uses an autoregressive Transformer to
generate music, but uses a seq2seq architecture where the encoder encodes the input
into a continuous space, used by the decoder in cross-attention operation to control the
generation.
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Chapter 4

Challenges in music generation

When used with DL, symbolic music is now mostly handled with sequential models,
for their flexibility, greater performances. Using these models requires to first serialize
music into sequences of tokens. Previous work already addressed this topic by introducing
models, mostly for music generation [68, 87, 85, 83], with specific ways of tokenizing
symbolic music. Yet, the topic of how to tokenize music, and its impact on deep learning
models is yet to be explored.

4.1 Easy ways to tokenize music

Even though many previous works share the source code of their experiments [83, 87,
194], their implementations are often non trivial to reuse. The code to tokenize music
is often hidden, using different package dependencies, and preprocessing MIDIs with
various methods. All of this requires time to adapt and fix the code. The barrier to use DL
with symbolic music is relatively high compared to other modalities such as text, image or
audio which benefit from well established softwares. Moreover, this lack of software make
the comparison between music tokenizations unfair, as the preprocessing will be different.

The absence of common or widely used tokenization practice also limits the reuti-
lization pretrained models. In NLP, platforms such as the Hugging Face Hub1 allows to
freely and openly upload and share pretrained models that can be reused by everybody. A
tokenizer is always shared with each model, with which the latter has been trained, that
can encode and decode the data to be used with the model. There is no such thing for
symbolic music. We must state that there are very few pretrained models for symbolic
music that are openly shared (as discussed in Section 4.5) anyway. However, we believe
the reason is partly due to this lack of tokenization standard.

Creating an easy way to tokenize music will hence lower the barrier of using DL with
symbolic music. It would help researchers and engineers and accelerate their productivity,
as well as more easily share their works.

4.2 Music representation

Unlike text, symbolic music can be tokenized in different ways, with greater flexibility.
Time, note durations, or instruments can be represented in different manners as a sequence
of tokens, as such researchers developed various methods to tokenize music [137, 87, 48].
Yet, the previous works do not deeply study the differences between these tokenizations
and their impact on model learning. Moreover, these works mostly focus on music
generation, leaving out other modeling tasks which are equally important when assessing
music tokenization.

1https://huggingface.co/models

https://huggingface.co/models
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Yet, the way the music information is represented can easily influence model per-
formances. Generative models are essentially causal, meaning that the computations
for a given position within the input sequence will be conditioned only on the previous
positions. Hence, generative models have more limited scope and modeling capabilities.
On the other hand, the models for other tasks are mostly bidirectional, meaning that the
computations are conditioned on both the past and future context (tokens). With NoteOff
tokens that indicate the note durations implicitly, a generative model could hence be dis-
advantaged to capture the melody and harmony as some durations cannot be determined
at the token positions before the NoteOff token, whereas a bidirectional model can access
to this information to all the positions.

We can imagine other tokenizations that could combine different representation of
distinct musical features such as time, note duration, instrument or tempo information.
Some models operate differently, and some information might be more important for
different tasks. We can easily identify the possible design choices of symbolic music
tokenization, and all the possible combinations, but we do not know exactly how to choose
them. For these reasons, an analysis of these choices for different types of models and
tasks could bring inside to this field of research, and provide guidance on symbolic music
tokenization.

4.3 Token sequence length

By tokenizing music using single tokens for every note attributes (pitch, velocity, duration)
and time, we end up with fairly long token sequences, in particular when treating music
with several instruments or with high note densities. As a note is serialized into three
tokens, its token sequence length would be at least three times its number of notes, to
which must be added the number of tokens representing time or other information such
as tempo or chords. In all cases, the density of information per token is very low, as each
token only represents an absolute value.

This sequence length is problematic when using Transformer models, as their complex-
ity grows quadratically with the input sequence length. Hence a transformer can handle
a limited input sequence length that contains very little musical information, or in other
words represents few notes or a small number of beats. With larger compute resources, a
model could handle longer sequences, but would however be less efficient, and the costly
compute requirements would grow quadratically too.

Attempts have been made to reduce this sequence length for symbolic music. The
first strategy works by merging the embeddings of tokens that occur simultaneously in
time. CPWord [83] merges the embeddings of note attributes, those of tempos with those
of positions, and time signature with bar. Octuple [194] goes even further by merging
all note attribute embeddings with embeddings representing their absolute time in bar
and position. Another technique to reduce sequence length is to use tokens that combine
several attributes. For example, LakhNES [41] combines instrument tokens with NoteOn
and NoteOff tokens.

However, these methods show significant drawbacks. Merging embeddings imposes
constraints on the software implementation of models, their training and generation.
Generating tokens simultaneously from multiple output distributions unconditionally from
each other adds variance and unstable results. On the other hand, manually combining
tokens yields big vocabularies with a high proportion of tokens not present within the data,
so associated with very little probability by the model. Finally, even with these methods
the sequence length remains fairly long.
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A technique that can efficiently reduce the token sequence length, with few constraints
is still to be found and experimented for symbolic music. Moreover, the current techniques
do not address the following challenge which concerns the information carried by the
tokens.

4.4 Information carried by the tokens

We saw in Subsection 2.1.4 that sequential models contextually learn embedding repre-
sentations of the tokens of the vocabulary. Having well learned embeddings is an essential
feature of these models as they allow to capture the meaning of the data and perform com-
putations solving the tasks they are trained for. To ensure this, the models must be paired
with vocabularies containing tokens which represent semantic information themselves.
The number of tokens, and in turn embeddings to learn, must be chosen accordingly to
the number of dimensions of these embeddings.

Yet, the works addressing symbolic music modeling use small vocabularies, containing
between 200 to 500 tokens, with numbers of embedding dimensions ranging from 512
to 1024. In such configuration, i.e. more dimensions than the number of elements to
represent in the space, only very few of the embedding space will be used. By comparison,
in NLP, the vocabulary sizes can range from 30k to 70k tokens. Moreover, it is important to
note that the tokens representing note and time attributes do not carry semantic information
other than their absolute values.

In order to increase model performances for symbolic music, it is essential to find
better balance between vocabulary size and number of embedding dimensions, while using
tokens carrying more information.

4.5 Open source large music generation model

In the recent years, we have witness a growing trend from researchers to openly share
(pre)trained models on the internet. The Hugging Face Hub https://huggingface.co/
models is the most popular platform for this purpose.

Having performant models publicly available brings noticeable benefits for the entire
research community and users: it promotes transparency, lower the barrier to entry in the
field, drive innovation and make AI fairly accessible to more people. Open models allow
people to inspect them and identify risks, biases and limitations to be addressed and in
turn improve their safety. They can use them for their own research, by finetuning them
or analyzing their behavior, that will in turn profit to other researchers. And as training
large models can be very costly, a large number of organizations cannot afford to do it on
their own. Making models freely accessible allows a fairer access to smaller actors, and
drives innovation and business.

While we can find thousands of models for NLP and CV tasks, there are currently very
few publicly available symbolic music generation models, the existing ones are either small,
bad, too specific towards a genre or instrument, unusable or obsolete. To this day, such
model are not largely used anyway, as they poorly integrate in the workflow of musicians.
Yet, we begin to see software allowing to embed DL models as VST plugins into DAWs
[70]. We believe this is a big step towards a wider adoption of DL models for music
composition, and will lead to more integrations of DL models into DAWs. However, the
lack of good and performant models is still a second obstacle to this adoption. It may
even be a reason for the slow development of DL model integration solutions. As soon as
performant models will be made openly available, these solutions might begin to get more
attention and be updated at a faster pace.

https://huggingface.co/models
https://huggingface.co/models
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Chapter 5

MidiTok

5.1 Introduction

Recent progress in natural language processing (NLP), such as Transformers [177], has
been used with symbolic music for several tasks such as generation [85, 87, 164], un-
derstanding [194], or transcription [72, 62], with state-of-the-art performances. Most
generative deep learning models for symbolic music are nowadays based on LMs. Using
LMs for symbolic music requires, as for natural language, to tokenize the music, i.e. serial-
ize it into sequences of distinct tokens. These tokens will represent note attributes such as
pitch or duration, and time events.

The tokenization of music, i.e. the conversion of notes into sequences of tokens,
is however not a straightforward process. Unlike text, polyphonic music comes with
simultaneous notes, each of them having several properties, and the problem becomes
even more complex if we consider several tracks or instruments. Many recent research
papers introduced different ways to tokenize symbolic music, but few authors share they
source code in an easy way to reproduce, or to just use their methods. Furthermore, music
files, such as MIDIs, need to be properly preprocessed. This step consist in downsampling
its values, such as the onset and offset times of notes, their velocities, duration, or tempo
values among others.

With the motivation to offer a friendly and convenient way to tokenize MIDI files, we
created MidiTok. It implements the most popular tokenizations, under a unified API. It
offers a great flexibility and extended features, so one can easily train and use LMs for
symbolic music, and compare the different tokenizations. MidiTok was first introduced in
late 2021 [55], and in the meantime received multiple updates until it became established
in the community. Today, it is the "go-to" solution for researchers and engineers to use
LMs with symbolic music. MidiTok has been built all along the making of this thesis, and
has been used for most of the results reported in it. MidiTok is a major living contribution
of this thesis, that we believe will continue to evolve.

In the next section, we describe the overall workflow of MidiTok, then the tokenizations
and features it implements, and finally some user insights.

5.2 Tokenizing music

In this section, we introduce the data contained in MIDI files, and the previous works
which tokenized symbolic music.

5.2.1 The data in MIDI files

When thinking about tokenizing symbolic music, we first need to think about what in-
formation present in the MIDI files should be considered. A MIDI file contains several
categories of contents. The most important are: tracks of instruments, tempo changes,
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time signature changes, key signature changes and lyrics. Tracks themselves contain notes
- more precisely their pitch, velocity, onset and offset times - and effects such as sustain
pedal, pitch bend and control changes. You can find the complete MIDI specifications on
the MIDI Manufacturers Association website1.

All of these information come as the form of events that occur a certain moments in
time. The base time unit of MIDIs is the tick, which resolution is called the time division
and expressed in ticks per quarter note (or ticks per beat when the time signature is ∗

4 ).
The time division is usually a multiple of 12 and a high value. Common values are 384
and 480. Hence, these events happen each at certain tick, and we will have to express them
as tokens, along with time tokens that accurately represent them at their occurrence time.

Another important aspect is the precision to which represent this information. Values
such as Program (the id of an instrument), pitch, velocity range from 0 to 127. They
can be considered as "semi-continuous", as 128 is an arguably large number of possible
values. But using all these ranges of possible values with a language model is usually not
optimal, as the later is a discrete model and so could struggle to efficiently capture the
differences between two consecutive values, e.g. a velocity of 100 from a velocity of 101.
It is then usually recommended to "discretize" these values, by downsampling the number
of possible values. The set of velocities could for example be downsampled to 16 values,
equally spaced between 0 to 127. The same downsampling logic should be applied to the
time of all the events: instead of aligning the time with a resolution of e.g. 384 ticks per
beat, we quantize the times of the events to a resolution of e.g. 8 ticks per beat, which
must be sufficiently precise to keep the overall dynamic of the music. An example of time
downsampling is depicted in Figure 5.1. Downsampling these values require a careful
preprocessing, before representing them as tokens.

Finally, this information can be represented by different manners. In the MIDI
protocol, the moments when the notes are played and when their associated key is released
come respectively as the form of NoteOn and NoteOff messages / events. We can then
choose to directly tokenize these events, or to explicitly represent the durations of the
notes by deducing their values from the difference of time between these messages. The
time itself can be represented by using TimeShift tokens indicating time movements, or
placing Bar and Position tokens indicating respectively the beginning of the new bar and
the current position within the current bar. Representing several tracks from different
instruments can also be done by different manners, that we consider a "design" choice.
This liberty led researchers to introduce different symbolic music tokenizations, each with
their benefits, and us to implement them under a unified API in a flexible and user-friendly
library that we called MidiTok.

5.2.2 Previous works

Early works using discrete models for symbolic music, such as DeepBach [69], FolkRNN
[173] or BachBot [115], rely on specific tokenizations specifically designed for the data
being used, for instance for the four voices of Bach chorales. Non-autoregressive models
such as MuseGAN [44] often represent music as pianoroll matrices. Since then, researchers
introduced more universal tokenizations for any kind of music. These strategies represent
note attributes and time in a general way that can be used with any music. The most
commonly used are Midi-Like [137] and REMI [87]. The former tokenizes music by
representing tokens as the same types of events from the MIDI protocol, while the latter
represents time with Bar and Position tokens and note durations with explicit Duration
tokens. Additionally, REMI includes tokens with additional information such as chords
and tempo.

1https://www.midi.org/specifications

https://www.midi.org/specifications
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Figure 5.1: Two pianoroll visualizations of a track of piano: top) original MIDI track, as
performed by a human; bottom) the same track preprocessed, with onset and offset times
aligned to the 8th of beat.

More recently, researchers have focused on improving the efficiency of models with
new tokenizations techniques: Compound Word [83], Octuple [194] and PopMAG [158]
merge embedding vectors before passing them to the model; 2) LakhNES [41] and [140],
SymphonyNet [118] and [56] use tokens combining several values, such as pitches and
velocities.

5.3 MidiTok workflow

We introduce in this section the base functioning of MidiTok.
Any MidiTok tokenizer inherits from the MIDITokenizer class, which implements all

the preprocessing and methods common to all tokenizers. It serves as a global framework,
and greatly simplifies the tokenization process.

A tokenizer has to be created from a TokenizerConfig object. This configuration
holds the parameters defining what type of information will be tokenized, and with which
precision. A user can choose whether to tokenize tempos, time signature, rests... or not.
He can also decide the resolution of values such velocity, time, or the pitch range to
tokenize. From this configuration, the tokenizer will create its vocabulary of tokens. A
tokenizer can be saved as a json file, and loaded back as identical without having to provide
a configuration.

We consider three categories of tokens: 1) Global MIDI tokens, which represent
attributes and events affecting the music globally, such as the tempo or time signature;
2) Track tokens, representing values of distinct tracks such as the notes, chords or effects;
3) Time tokens, which serve to structure and place the previous categories of tokens in
time. The categorization of tokens into these three types is important as it will affect the
way the tokenizer represents the time.

When tokenizing MIDI tracks, we distinct two modes: a "one token stream" mode
which converts all the tracks under a unique sequence of tokens, and a "one stream per
track" mode which converts each track independently. In the former mode, the time
tokens are created for all the global and track tokens at once, while in the later they are
created for each sequence of track token independently.

The tokenization workflow of a MIDI file is as follow:
1. Preprocesses the MIDI object:

- If in "one token stream" mode, merges tracks of the same program / instrument;
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Figure 5.2: A sheet music and several token representations.

- Removes notes with pitches outside the tokenizer’s range;

- Resample the MIDI’s time division, in other words resample the times of the
messages representing the notes, time signature, tempo or other events;

- Deduplicates notes, tempo and time signature changes, and remove empty tracks;

2. Creates global MIDI tokens (tempo...);
3. Creates track tokens (notes, chords);
4. If "one token stream", concatenates all global and track tokens, else concatenates the

global tokens to each sequence of track tokens, them sort them by time of occurrence;
5. Deduces the time tokens for all the sequences of tokens (only one if "one token

stream");
6. Returns the tokens, as a combination of list of strings and list of integers (token ids).
The first and last step are performed the same way for all tokenizers, while other

steps can be performed differently depending on the tokenization. The preprocessing
step is essential as it formats the information of a MIDI to fit to the parameters of the
tokenizer. The onset and offset times of the track and global tokens are aligned to the time
resolution of the tokenizer, as well as their values. This assures us to retrieve the exact
same preprocessed MIDI when detokenizing the tokens.

5.4 Music tokenizations

MidiTok implements the most commonly used music tokenizations:

• MIDILike [137]: represents MIDI messages as tokens. Notes are represented with
NoteOn and NoteOff tokens, indicating their onset and offset times, and time is repre-
sented with TimeShift tokens;
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• REMI [87]: standing for Revamped MIDI, it represents note duration with explicit
Duration tokens in place of the NoteOff offset tokens, and time as a combination of
Bar and Position tokens indicating respectively the beginning of a new bar and the
position of the time within the current bar;

• REMI+ [164]: is an extension of REMI, allowing to also represent note instruments
and time signature;

• Structured [68]: similar to MIDILike, except that it represents note durations explicitly
as REMI and always uses the same scheme of token type succession: Pitch, Velocity,
Duration and TimeShift;

• TSD [56]: standing for TimeShift & Duration, it is identical to MIDILike but with explicit
Duration tokens;

• Compound Word [83]: is similar to REMI, but merges several categories of token em-
beddings in order to reduce the sequence length for the model. For instance, the Pitch,
Velocity and Duration embeddings of a note are first concatenated and projected to
get a merged embedding, and several output layers are used to predict these several
attributes all at once. We qualify such tokenization as multi-vocabulary, as in essence it is
based on several distinct vocabularies;

• Octuple [194]: also a multi-vocabulary tokenization, it works by merged the embeddings
of the attributes of each note, along with the Bar_n and Position_p embeddings
representing its position in time, resulting in a token sequence as long as the number of
notes tokenized;

• MuMIDI [158]: a multi-vocabulary tokenization similar to Compound Word, but also
representing note programs (instruments) along with a built-in positional encoding
mechanism based on the number of elapsed bar and position;

• MMM [48]: a tokenization for multitrack music generation, including inpaining.

Table 5.1 shows a comparative analysis of these tokenizations, and Figure 5.2 shows
different tokenizations applied on an example music sheet melody. In these original works,
the authors praise the benefits of using what we call additional tokens, which represent
information other than the notes and time. Also, multi-vocabulary tokenizations were
introduced with the main goal to reduce the length of the sequence of embeddings pro-
cessed by the model, which can be a bottleneck with Transformer models for which the
complexity grows quadratically with. We built MidiTok to offer users the flexibility to
choose the types of additional tokens they want to use, and also the possibility to use Byte
Pair Encoding for non-multi-vocabulary tokenization to drastically reduce their token
sequence lengths. We introduce these features, and more, in the next section.

Time Note duration

Tokenization TimeShift Bar + Pos. Duration NoteOff Multitrack One stream Multi-voc Chord Rest Tempo Time Sig. Pedal Pit. Bend

MIDI-Like [137]
√

- -
√

† † - ‡ ‡ ‡ ‡ ‡ ‡
REMI [87] -

√ √
- † † - ‡ ‡ ‡ ‡ ‡ ‡

Structured [68]
√

-
√

- † † - - - - - - -
TSD [56]

√
-

√
- † † - ‡ ‡ ‡ ‡ ‡ ‡

CP Word [83] -
√ √

- † †
√

‡ ‡ ‡ ‡ - -
Octuple [194] -

√ √
-

√ √ √
- - ‡ ‡ - -

MuMIDI [158] -
√ √

-
√ √ √

‡ - ‡ - - -
MMM [48]

√ √
-

√ √ √
- ‡ - ‡ ‡ - -

Table 5.1: Comparative table of the tokenizations implemented by MidiTok. †: is true
when the tokenizer is configured to represent Program tokens; ‡: Is optional. In MidiTok,
MMM is implemented using Duration tokens.
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5.5 Features

5.5.1 Additional tokens

MidiTok allows to choose a set of additional tokens to use. These tokens add more musical
information, that can be useful in some cases to model:

• Chord: track tokens describing the chord formed by the following notes. This type of
token can help to explicitly model the harmony formed by chords;

• Programs: track token informing of the program, i.e. instrument, of the following notes.
This token is natively used in some tokenizations;

• Sustain pedal: track token representing the sustain pedal events;

• Pitch bend: track token representing the pitch bend events;

• Tempo: global token informing of the current tempo, indicating the execution speed;

• Time signature: global token informing of the time signature. The value of the time
signature directly impacts the number of beats present in the bars, and the duration of
the beats;

• Rest: time token acting as time-shifts, representing rests when no notes is currently being
played. The rest is an information by itself that is useful to musicians. Representing
it explicitly for a model could likely help it for music modeling tasks, but there is no
current research to support this statement.

Huang et al reports that using Tempo and Chord tokens for a generative Transformer
yielded generated results of better quality, that were preferred from human evaluators
[87]. In Chapter 6, we will see that tokens representing explicit information usually help
the models to learn more efficiently.

5.5.2 Byte Pair Encoding

Byte Pair Encoding (BPE) [59] is a data compression technique. It converts the most
recurrent successive bytes in a corpus into newly created ones. BPE is nowadays largely
used in the NLP field to build the vocabulary, by automatically creating words and sub-
words units from the recurrence of their occurrences within a training corpus [167]. In
practice BPE is learned until the vocabulary reaches a target size. We introduce BPE in
more details in Chapter 7, and show results of its benefits for symbolic music.

MidiTok allows to use BPE for symbolic music in a simple yet powerful way, to create
new tokens that can represent all successive attributes of notes or even successions of notes.
Similarly to text, the vocabulary is learned from a corpus of MIDI files. Here however,
we use the tokenizer’s base vocabulary, that is the set of the basic token representing
the information introduced in Section 5.2, as "bytes". MidiTok rely on Hugging Face’s
tokenizers library 2 for the BPE training and encoding. The library is implemented in
Rust and allow very fast computations. To use it for symbolic music, MidiTok associates
each base token to a unique byte that the library can recognize.

BPE allows to drastically reduce the sequence length, while taking benefit of the
embedding spaces of models such as Transformers, get better results and a faster inference
speed [56]. Table 5.2 shows the sequence length reduction offered by BPE. It also shows
how BPE increases tokenization and detokenization times. This time increase is however
mitigated by the inference speed gains offered by BPE, as the sequence length is drastically
reduced.

2https://github.com/huggingface/tokenizers

https://github.com/huggingface/tokenizers
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Voc. size tokens/beat (↓) Tok. time (↓) Detok. time (↓)

Strategy TSD REMI TSD REMI TSD REMI TSD REMI

No BPE 149 162 18.5 19.1 0.174 0.151 0.031 0.039
BPE 1k 1k 1k 9.3 (-49.5%) 10.4 (-45.3%) 0.187 0.163 0.053 0.063
BPE 5k 5k 5k 7.0 (-62.2%) 8.5 (-55.2%) 0.181 0.165 0.053 0.064
BPE 10k 10k 10k 6.3 (-66.0%) 7.7 (-59.7%) 0.183 0.164 0.052 0.065
BPE 20k 20k 20k 5.8 (-68.9%) 6.9 (-63.9%) 0.184 0.163 0.052 0.063
CP Word 188 8.6 (-54.8%) 0.169 0.034
Octuple 241 5.2 (-72.6%) 0.118 0.035

Table 5.2: Vocabulary size, average tokens per beat ratio, and average tokenization and
decoding times in seconds on the Maestro dataset [73]. CP Word and Octuple are grouped
with REMI as they represent time similarly with Bar and Position tokens.

The method allows to avoid the drawbacks of multi-vocabulary methods, that are to
require to implement multiple input and output modules and use a combination of losses
that can lead to unstable learning, slower training, and code adaptations of models and
training methods.

5.5.3 Hugging Face Hub integration

The Hugging Face Hub3 is a model and dataset sharing platform which is widely used in
the AI community. It allows to freely upload, share and download models and datasets,
directly in the code in a very convenient way. Its interactions rely on an open-source
Python package named huggingface_hub4. As it works seamlessly in the Hugging Face
ecosystem, especially the transformers5[183] or Diffusers libraries6, it stood out and
became one of the preferred way to openly share and download models.

Now when downloading a Transformer model, one will need to also download its
associated tokenizer to be able to “dialog” with it. Likewise, if one wants to share a models,
he will need to share its tokenizer too for people to be able to use it. MidiTok allows to push
and download tokenizers in similar way to what is done in the Hugging Face Transformers
library.

Internally, MidiTok relies on the huggingface_hub.ModelHubMixin component. It
implements the same methods commonly used in the Hugging Face ecosystem:
save_pretrained, load_pretrained and push_to_hub. Relying on this component
allows to easily interact with the hub with as less code and logic as possible, and so a
minimal maintenance cost. MidiTok only deals with the two "bridges" between these
methods and how tokenizers are saved and loaded.

We still note that at the moment or writing, there are few symbolic models shared on the
internet globally, including the Hugging Face hub. Before releasing the interoperability
between MidiTok and the hub, users needed to manually download and upload their
tokenizers. This is inconvenient as these operations are usually performed within some
code pipelines, which are often executed on remote servers. We hence hope that these
feature will encourage people to share their models and use those from the community.

5.5.4 Data augmentation

Data augmentation is a technique to artificially increases the size of a dataset by applying
various transformations on to the existing data. These transformations consist in altering
one or several attributes of the original data. In the context of images, they can include

3https://huggingface.co/
4https://github.com/huggingface/huggingface_hub
5https://github.com/huggingface/transformers
6https://github.com/huggingface/diffusers

https://huggingface.co/
https://github.com/huggingface/huggingface_hub
https://github.com/huggingface/transformers
https://github.com/huggingface/diffusers
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operations such as rotation, mirroring, cropping or color adjustments. This is more tricky
in the case of natural language, where the meaning of the sentences can easily diverge
following how the text is modified, but some techniques such as paraphrase generation or
back translation can fill this purpose.

The purpose of data augmentation is to introduce variability and diversity into the
training data without collecting additional real-world data. Data augmentation can be
important and increase a model’s learning and generalization, as it exposes it to a wider
range of variations and patterns present in the data. In turn it can increases its robustness
and decrease overfitting.

MidiTok allows to perform data augmentation, on the MIDI level and token level.
Transformations can be made by increasing the values of the velocities and durations of
notes, or by shifting their pitches by octaves. Data augmentation is highly recommended
to train a model, in order to help a model to learn the global and local harmony of music.
In large datasets such as the Lakh [148] or Meta [49] MIDI datasets, MIDI files can
have various ranges of velocity, duration values, and pitch. By augmenting the data, thus
creating more diversified data samples, a model can effectively learn to focus on the melody,
harmony and music features rather than putting too much attention on specific recurrent
token successions.

5.5.5 PyTorch data loading

PyTorch is a very popular DL framework, that is widely used in most research and
production works. When training a model, the data must be adequately loaded and
processed before being fed. For natural language, text data is usually loaded and tokenized
on the fly by the CPU, then moved to the GPU on which the model is running. This task is
performed by a Dataset, a DataLoader and a data collator. For symbolic music however,
we cannot find a "commonly" used data loading process as the field is not as developed as
NLP.

MidiTok offers universal Dataset classes to load symbolic music, and data collator to
be used with. DatasetMIDI loads MIDI files and can either tokenize them on the fly when
the dataset is indexed, or pre-tokenize them when creating it and saving the token ids in
memory.

When training a model, a user will likely want to limit the possible token sequence
length in order to not run out of memory. The dataset classes handle such case and can
trim the token sequences. However, it is not uncommon for a single MIDI to be tokenized
into sequences that can contain several thousands tokens, depending on its duration and
number of notes. In such case, using only the first portion of the token sequence would
considerably reduce the amount of data used to train and test a model.

To handle such case, MidiTok provides the pytorch_data.split_midis_for_training()
method to dynamically split MIDI files into chunks that should be tokenized in approxi-
mately a desired number of tokens.

The MidiTok data collator allows to trim token sequences to the desired length and
pad them. Padding can be done on the left side, which can be handy when generating
autoregressively from a model, and required with some libraries such as Transformers
[183].

These methods allows to considerably ease the work of researchers and engineers when
training models.
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Figure 5.3: Daily downloads of MidiTok on PyPi.

5.5.6 Other useful methods

Finally, MidiTok feature other useful MIDI manipulation and data extraction methods
that can be used for other purposes: splitting, concatenating or merging MIDIs, chord
extraction, deduplicating overlapping notes, tracks merging by program or category of
programs, bar count or note deduplication.

5.6 Broader impact

5.6.1 Usage insights

Since its first version in late 2021, MidiTok gained attention as a simple yet flexible way to
tokenize music. It is being used by researchers of the Music Information Retrieval (MIR)
community for their works, independent developers, students, and now industrial actors.

As for March 2024, MidiTok gathered more than 550 stars on GitHub, 70 forks, and
20 external contributors. The GitHub repository page counts an average of 100 daily
visits, and the package is downloaded on average 900 times per week. Figure 5.3 shows
the daily downloads of MidiTok on PyPi, for the february 2023 - august 2023 period.
At the time of writing, it counts more than 90k downloads on PyPi since its first release.
We cannot reliably estimate the number of monthly or yearly projects using MidiTok, but
we can mention that each year a number of research papers published at the recognized
ISMIR proceedings share results obtained thanks to MidiTok.

Finally, MidiTok is used as backbone in Qosmo’s Neutone plugin7, to be used in
DAWs. Neutone allows to use DL models interactively in any DAW as a VST plugin. This
last point may be the most important for the future of MidiTok. As of 2023, the offer of AI
assisted music creation tool has been relatively poor, and most musicians do not use them.
We recently witnessed the apparition of text-to-music models such as AudioGen [106]
or DiffSound [190], capable to generate audio from a text prompt description, but these
models are not widely used to generate complete music. While they can produce coherent
and high quality results, they face challenges to be used by musicians: their controllability
and interactivity are limited, users are not used to create descriptive enough prompts to get
the desired results. Neutone tackles the challenge of interactivity by embedding models
right in the production tools of musicians, which we believe is a big step towards a larger
adoption of DL models in the creation process of musicians.

5.6.2 Involvement with other open-source projects

MidiTok is entirely open-source, and rely on software dependencies that are too. One very
important dependency is the one allowing to load and save MIDI files. Until the version
3.0, MidiTok relied on MidiToolkit 8 for these operations. MidiToolkit was created by

7https://neutone.space
8https://github.com/YatingMusic/miditoolkit/

https://neutone.space
https://github.com/YatingMusic/miditoolkit/
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Wen-Yi Hsiao in 2019 as no Python library allowed to parse MIDI at the "note-level"
and with the native tick time unit. Along the years, some bugs began to stack up. We
collaborated with Wen-Yi Hsiao in order to keep the library updated, by fixing bugs,
optimizing the code and improving its quality and continuous integration.

Although MidiToolkit is a viable, working and established library to parse and save
MIDI files, it is written entirely in Python and is not very fast. The loading time of MIDI
files has been a bottleneck for the tokenization of MIDI files. In particular, the training of
model could be slowed by loading MIDIs, making users first tokenize the whole dataset
into Json files, that would then be loaded. In the absence of a fast and efficient Python
library, Yikai Liao and Zhongqi Luo created Symusic 9, a library written in C++ allowing to
load, save, and perform others operations on MIDIs at a unbeaten speed, about 500 times
faster than miditoolkit. Yikai Liao and Zhongqi Luo contacted us in the early development
of symusic, allowing us to give advices on the directions to take on its design. We also
could progressively test it, in order to improve its usability and making sure it preserves
the data integrity of the read and written files.

5.7 Related works

Other similar projects for symbolic music preprocessing (for deep learning models) have
been developed. MusPy [42] offers diverse features such as downloading and converting
datasets in various formats, analysis and visualization. NoteSeq10 is also built for music
analysis. Both offers methods to tokenize music, but only as MIDILike and with limited
features.

MidiTok is built with a different vision: to focus solely on tokenization by offering the
best features for it, and let the user use other tools better suited for other tasks such as
analysis or evaluation.

5.8 Conclusion

Following the growing usage of deep learning models and generative AI, MidiTok stands
as an fully-implemented and open source library for symbolic music tokenization. It
can easily be used with any other libraries such as Transformers [183], and is built with
powerful and flexible features. It gained attention in the MIR community, and we hope to
keep benefiting from its feedback and contributions to further improve the library.

We address special thanks to Ilya Borovik and Atsuya Kobayashi for their major
contributions, and acknowledge all contributors and people that may have helped in any
way for the development of MidiTok. We also address special thanks to Yikai Liao and
Zhongqi Luo for their work on the symusic project, which is very valuable gift to the
scientific and open-source community and allowed us to make MidiTok significantly faster.

9https://github.com/Yikai-Liao/symusic
10https://github.com/magenta/note-seq

https://github.com/Yikai-Liao/symusic
https://github.com/magenta/note-seq
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Chapter 6

Impacts of tokenization designs

6.1 Introduction

Most tasks involving using deep learning with symbolic music [18] are performed with
discrete models, such as Transformers [177]. To use these models, the music must be first
formatted into sequences tokens.

We saw in Chapter 5 how to tokenize music. Compared to text, tokenizing music
provides greater flexibility, as a musical piece can be played by different instruments and
composed of multiple simultaneous notes, each having several attributes to represent. As
a result, it is necessary to serialize these elements along the time dimension. To achieve
this, researchers have developed various methods of tokenizing music [137, 87, 194, 55].

While these works present model performance comparisons between tokenizations,
their main differences or similarities are not always clearly stated. Moreover, they mostly
focus on music generation, for which evaluations are performed on results obtained
autoregressively, which accumulates biases [82] and is arguably difficult to evaluate [189],
rather than music modeling more broadly. Yet, Transformer models are trained to learn
correlations and make predictions, but not general reasoning. In particular, they struggle
at making logical deduction based on information points in the input data [75, 196], but
perform tasks better when fed with explicit information and instructions [198]. In the
case of symbolic music, it is thus important to study how the ways the music information
is represented impact model performances.

In this chapter, we analyze how the tokenization design choices can impact model
performances, for several tasks. We focus on three important aspects: the representation
of time, note duration and instruments. We believe that they are significant and impactful
design choices for any music tokenization approach. Through experiments on composer
classification, emotion classification, music generation, and sequence representation, we
demonstrate that these design choices produce varying results depending on the task,
model type, and inference process.

We present next the related works, followed by an analysis of music tokenization, exper-
imental results, and finally a conclusion. The source code is available for reproducibility1.

6.2 Related works

We introduced in Chapter 5 most works introducing ways to tokenize music. They mainly
compared tokenization strategies by evaluating models with automatic and sometimes
subjective (human) metrics, but often do not proceed to comparisons between the ways
to represent one of the dimensions we introduced previously. [87] compared results for
the generation task, for the use of Bar and Position tokens versus TimeShift in seconds
and beats.

1https://github.com/Natooz/music-modeling-time-duration

https://github.com/Natooz/music-modeling-time-duration
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To the best of our knowledge, no comprehensive work and empirical analysis have
fairly compared these possible tokenization choices. Conducting such an assessment would
require an extensive survey. In this chapter, we focus on the possibles ways to tokenize
music, and how they impact models learning.

We specifically show the importance of the explicit information carried by the token
types, as they directly impact the performances of models.

In this chapter, we aim to demonstrate the impact of different tokenization choices
on models performances and which combinations are suitable for different tasks. We
introduce next how music tokenization can be decomposed.

6.3 Decomposing music tokenization

When analyzing the possible designs of music tokenization, we can distinguish seven key
dimensions:

• Time: Type of token representing time, either TimeShift indicating time movements,
or Bar and Position indicating new bars and the positions of the notes within them.
We can also consider the unit of Time-Shift tokens, either in beats or in seconds.2

• Notes duration: How notes durations are represented, with either Duration or NoteOff
tokens.

• Pitch: Most works use tokens representing absolute pitch values, although recent
work shed light on the expressiveness gain of representing as intervals instead [98];

• Multitrack representation: The representation of several music tracks in a sequence,
i.e., how are the notes linked to their associated track.

• Additional information: Any additional information such as chords, tempo, rests,
note density. Velocity can also falls in this category;

• Downsampling: How "continuous-like" features are downsampled into discrete sets,
e.g. the 128 velocity values reduced to 16 values;

• Sequence compression: Methods to reduce the sequence lengths, such as merging
tokens and embedding vectors.

Some of these dimensions, such as time or pitch, offer few ways to be represented,
while others offer more freedom. For instance multitrack can be represented by Program
tokens3 preceding notes tokens as in FIGARO [164], distinct tracks sequences separated
by Program tokens as in MMM [48], combined note and instrument tokens as LakhNes
[41] and MuseNet [140], or merging Program embeddings with the associated note tokens
(MMT [43], MusicBert [194]). One could even infer each sequence separately and lately
model their relationships with operations aggregating their hidden states an in ColBERT
[99].

The MIDI protocol supports a set of effects and metadata that can also be represented
when tokenizing symbolic music, such as tempo, time signature, sustain pedal or control
changes. Some works also include explicit Chord tokens, detected with rule-based methods.
Nevertheless, only a few works experimented with such additional tokens so far ([87, 24]).

2In this thesis we only treat of the beat unit. The MIDI protocol represents time in tick unit, which value is
proportional to the time division (in ticks per beat) and tempo. Hence, working with seconds would require a
conversion from ticks.

3Following the conventional programs from the MIDI protocol.
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Sequence length reduction can be also be handled in very flexible ways. Token sequence
length can grow quickly, for dense or multitrack music for instance. However, Transformer
models have a time and space complexity that grows quadratically with the input sequence
length, requiring either more compute power or to reduce the scope of the data being
processed. Reducing the sequence length appears as an appealing solution to increase the
performances of such models. This is usually done by either combining tokens within the
vocabulary, such as in LakhNES [41] or MuseNet [140] which combine the program and
pitch information altogether in a tokens, or by merging the embeddings of tokens to be
grouped, such as with CPWord [83] or Octuple [194]. This last solution requires however
a modified model architecture, as the model has multiple input and output modules.
In Chapter 7, we will focus more in detail on the topic of token sequence length, and
show that Byte Pair Encoding (BPE) is actually the method yielding the best results and
performances.

Previous works have mainly compared tokenization strategies by evaluating models
with automatic and sometimes subjective (human) metrics, but often do not proceed
to comparisons between the ways to represent one of the dimensions we introduced
previously. [87] compared results for the generation task, for the use of Bar and Position
tokens versus TimeShift in seconds and beats.

To the best of our knowledge, no comprehensive work and empirical analysis have
fairly compared these possible tokenization choices. Conducting such an assessment would
require an extensive survey. In this chapter, we will focus on the time, note duration and
multitrack dimensions, as they are the among the most important characteristics present
in every tokenization.

We want to highlight the importance of the explicit information carried by the token
types, as they directly impact the performances of models. TimeShift tokens represent
explicit time movements, and especially the time distances between successive notes. On
the other hand, Bar and Position tokens bring explicit information on the absolute
positions (within bars) of the notes, but not the onset distances between notes. One could
assume that the former might help to model melodies, and the latter rhythm and structure.
For note duration, Duration tokens intuitively express the absolute durations of the notes,
while NoteOff tokens explicitly indicates the offset times. With NoteOff, a model would
have to model note durations from the combinations of previous time tokens.

6.4 TSE: Token syntax error metric

To measure the impact of tokenizations on music modeling, we need metrics that can
relate to the model’s comprehension of the music modality. Previous works often use
human preferences metrics, in combinations with feature similarities between original
and generated samples. Subjective metrics are best to assess the quality of music, hence a
model’s capacity to generate pleasant music, while feature similarity allow to measure to a
certain degree a model’s capability to reproduce similar distributions of features. However,
these metrics does not tell much about a model’s comprehension of the music modality.
Moreover, subjective evaluation are costly and time consuming. In order to tackle the
model’s comprehension, we designed a metric we called Token Syntax Error (TSE).

Every music tokenization has an underlying syntax of token type and value successions,
that can normally happen. For instance, if the last token of an input sequence is of type
Pitch, some tokenization could impose that the next token to be predicted must be of
type Velocity. We could also expect a model to not predict more than once the same
note at a same time, or to not go back in time.
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Figure 6.1: Directed graphs of the token types succession (without additional tokens) for
a) REMI [87] and b) MIDI-Like [137].

Successions of incorrect token types can be interpreted as errors of prediction. These
errors can help us to measure if a model has efficiently learned the music representation
and if it can yield coherent results, or not.

We distinguish five categories of errors:

• TSEtype: the predicted token is of an invalid type regarding the previous one. For
any tokenization, we can draw a directed graph representing the possible token types
successions, such as in Figure 6.1;

• TSEtime: a predicted Position value is inferior or equal to the current one, making
the time going backward;

• TSEdupn (duplicated note): when the model predicts a note that has already been
played at the current moment (by the same instrument);

• TSEnnof (no NoteOff): when using NoteOn and NoteOff, and that a NoteOn token
has been predicted with no NoteOff later to end it, or too distant in time;

• TSEnnon (no NoteOn): when a NoteOff token is predicted but the corresponding
note has not been played.

For a given sequence of tokens, TSE measures the ratio, scaled between 0 and 1, of
errors for these five categories. A TSE of 0 means that there is no error in the sequence,
while a ratio of 1 means only errors were predicted. Our experiments are not concerned
by the last two categories as we do not use NoteOff tokens.

Finally, we should mention that most of these errors can be avoided by a ruled-based
sampling. When predicting a token, one can easily keep track of the time, notes played and
token types to automatically exclude invalid predictions. In practice, this can be achieved
by setting the invalid indices of the predicted logits to −∞ before softmax.

6.5 Time and note duration

Time and note duration can both be represented in two different ways: TimeShift or Bar
/ Position tokens for time, Duration or NoteOff tokens for note durations. We can
then easily classify existing tokenizations based on these criteria, as shown in Table 6.1.

TimeShift tokens represent explicit time movements, and especially the time distances
between successive notes. On the other hand, Bar and Position tokens bring explicit
information on the absolute positions (within bars) of the notes, but not the onset distances
between notes. One could assume that the former might help to model melodies, and the
latter rhythm and structure. For note duration, Duration tokens intuitively express the
absolute durations of the notes, while NoteOff tokens explicitly indicates the offset times.
With NoteOff, a model would have to model note durations from the combinations of
previous time tokens.
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Time Note duration

Tokenization TimeShift Bar + Pos. Duration NoteOff

MIDI-Like [137]
√

- -
√

REMI [87] -
√ √

-
Structured [68]

√
-

√
-

TSD [56]
√

-
√

-
Octuple [194] -

√ √
-

Table 6.1: Time and note duration representations of common tokenizations. Pos. stands
for Position.

6.5.1 Methodology

For all this chapter, we adopt a common methodology. Unless specified, all experiments
will employ the model, model configuration, training procedure and data downsampling
described below.

Models and trainings

For all experiments, we use the GPT2 architecture [146], with the same model dimensions:
12 layers, with dimension of 768 units, 12 attention heads and inner feed-forward layers
of 3072.

For classification and sequence representation, it is first pretrained on 100k steps and a
learning rate of 10−4, then finetuned on 50k steps and a learning rate of 3× 10−5, with a
batch size of 48 examples. An exception is made for the EMOPIA dataset, for which we
set 30k pretraining steps and 15k finetuning steps, as it is fairly small. These models are
based on the BERT [37] implementation of the Transformers library [183]. We use the
same pretraining than the original BERT: 1) from 15% of the input tokens, 80% is masked
with a special MASK token, and 20% is randomized; 2) half of the inputs have 50% of their
tokens (starting from the end) shuffled and separated with a special SEP token, and the
model is trained to detect if the second part is the next of the first.

For generation, the model is based on the GPT2 implementation of the Transformers
library [183]: it uses a causal attention mask, so that for each element in the sequence, the
model can only attend to the current and previous elements. The training is performed
with teacher forcing, the cross-entropy loss is defined as: ℓ = −

∑n
t=1 log pθ(xt|x≤n).

All trainings are performed on V100 GPUs, using automatic mixed precision [127],
the Adam optimizer [101] with β1 = 0.9, β2 = 0.999 and ϵ = 10−8, and dropout, weight
decay and a gradient clip norm of respectively 10−1, 10−2 and 3. Learning rates follow a
warm-up schedule: they are initially set to 0, and increase to their default value during the
first 30% of training, then slowly decrease back to 0.

10% of the data is used for validation during training, and 15% to test models. Inputs
contains 384 to 512 tokens, and begin with a BOS (Beginning of Sequence) token and end
with a EOS (End of Sequence) one.

Tokenizations

We investigate here the four combinations of possible time and note duration representa-
tion. In the results, we refer to them as TS (TimeShift), Pos (Position), Dur (Duration)
and NOff (NoteOff). It is worth noting that TS + Dur is equivalent to TSD [56] and
Structured [68], TS + NOff is equivalent to MIDI-Like [137], and Pos + Dur is equivalent to
REMI (without additional tokens for chords and tempo).
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Figure 6.2: Velocity and duration distributions of the datasets. The duration axis is limited
to 7 beats for better visibility.

Data downsampling

When tokenizing symbolic music, continuous characteristics are usually downsampled to
discrete sets of values [87, 137, 68]. For instance, velocities can be downsampled from
128 to 32 values. These sets should be sufficiently precise to keep the global information.
Downsampling these characteristics helps models to learn more easily, as the values of the
reduced sets will be more distinctive, and will help the model to learn more efficiently.
Figure 6.2 shows the distributions of velocity and duration values of the notes from the
datasets. There is a large proportion of low durations (below two beats). As short notes are
more common in these datasets than longer ones, we decide to quantize the duration of
notes with different resolutions.

We apply different resolutions for Duration and TimeShift token values: those up
to one beat are downsampled to 8 samples per beat (spb), those from one to two beats
to 4 spb, those from two to four beats to 2 spb, and those from four to eight beats to
1 spb. Thus, short notes are represented more precisely than longer ones. Position
tokens are downsampled to 8 spb, resulting in 32 different tokens as we only consider
the 4/* time signature. This allows to represent the 16th note. We only consider pitches
within the recommended range for piano (program 0) specified in the General MIDI
2 specifications4: 21 to 108. We then deduplicate all duplicated notes. Velocities are
downsampled to 8 distinct values. No additional token (e.g., Chord, Tempo) is used.

We perform data augmentation by creating variations of the original data with pitches
increased and decreased by two octaves, and velocity by one value. Finally, following [56],
we use Byte Pair Encoding to build the vocabularies up to 2k tokens for generation and
5k for other tasks. All these preprocessing and tokenization steps were performed with
MidiTok [55].

6.5.2 Generation

For the generative task, we use the POP909 dataset [181]. The models start with prompt
made of between 384 to 512 tokens, then autoregressively generate 512 additional tokens.
Evaluation of generated results remains an open issue [189]. Previous work often perform
measures of similarity of certain features such as pitch range or class, between prompts
and generated results, alongside human evaluations. Feature similarity is however arguably
not very insightful: a generated result could have very similar features to its prompts while
being of poor quality. Human evaluations, while being more reliable on the quality can
also induce biases. Besides, [87] already shows results on an experiment similar to ours.

4Available on the MIDI Manufacturers Association website.

https://www.midi.org/specifications-old/
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Figure 6.3: Histograms of the note onset positions within bars (top-row), note offset
positions within bars (middle-row) and note durations (bottom-row) of the generated
notes. There are 32 possible positions within a bar, numerated from 0 (beginning of bar)
to 31 (last 32th note). The durations are expressed in beats, ranging from a 32th note to 8
beats.

Tokenization TSEtype ↓ TSEtime ↓ TSEdupn ↓ TSEnnon ↓ TSEnnof ↓

TS + Dur < 10−3 - 0.014 - -
TS + NOff < 10−3 - 0.001 0.109 0.040
Pos + Dur 0.002 0.113 0.032 - -
Pos + NOff 0.002 0.127 0.005 0.095 0.066

Table 6.2: Prediction error ratios when performing autoregressive generation. - symbol
stands for not concerned, and can be interpreted as 0.

Hence we choose to evaluate results on the ratios of prediction errors: Token Syntax
Error (TSE) (Section 6.4). This metric is bias-free and directly linked to the design
choices of the tokenizations. It allows us to measure how a model achieves to make reliable
predictions based on the input context and the knowledge it learned.

The results are reported in Table 6.2. We first observe that the type error ratios are
lower than in other categories. This is expected since it is less computationally demanding
to model the possible next types depending solely on the last one, rather than on the value
of the predicted token, for which the validity depends on a the whole previous context.

Position tokens bring almost no type errors, but a noticeable proportion of time
errors. When decoding tokens to notes, this means that the time may go backward, and
resulting in sections of overlapping notes.

Although Duration tokens seem to bring slightly more note duplication errors, the
use of NoteOn and NoteOff tokens results in a considerable proportion of note predic-
tion errors. NoteOff tokens predicted while the associated note was not being played
(TSEnnon) do not have undesirable consequences when decoding tokens to notes, but it
pointlessly extends the sequence, reducing the efficiency of the model, and may mislead the
next token predictions. Additionally, NoteOn tokens predicted without associated NoteOff
(TSEnnof ) result in notes not properly ended. This error can only be handled by applying
a maximum note duration after decoding. Explicit Duration tokens allows to specify
in advance this information, for both short and long notes. Conversely, with NoteOff
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Figure 6.4: Token type succession heatmaps of the generated results. The vertical axis is a
the current token type, the horizontal axis is the next token type following the current one.
All rows are normalized.

tokens, the note duration information is implicit and inferred by the combinations of
NoteOn, NoteOff and time tokens. This can be interpreted as an extra effort for the model.
Consequently, some uncertainty on the duration accumulates over autoregressive steps
during generation. Based on these results, the best tradeoff ensuring good predictions
seems to represent time with TimeShift tokens and note duration with Duration tokens.

In Figure 6.3 we observe the positions within bars and durations of the generated
notes. In all cases, onset positions are more distributed at the beginning of the bars. This
is especially the case with Bar and Position tokens, for which we may find unexpected
rests at the end of bars, when Bar tokens are predicted during the generation before that
the current bar is completed. The TS + Dur combination places note onsets much more
on even positions. The probability mass of TimeShift tokens (especially for short values)
seems to be much higher. However, this is not the case for the TS + NOff combination, as
TimeShift tokens have to be predicted to move the time on odd positions of note offsets.
As shown in Figure 6.4, the model is likely to predict a note (Pitch, Velocity tokens)
after a TimeShift token, resulting in evenly distributed onset distribution.

Finally, the use of NoteOff tokens tends to produce longer note durations, especially
when combined with Position tokens. In this last case, we can assume that the model
might "forget" the notes currently being played, and that it struggles more to model their
durations that have to be implicitly deduced from the past Bar and Position tokens.
These effects are depicted in Figure 6.5 and Figure 6.6. The results of these last figures
were obtained with models not fully trained to emphasize the effect of unended notes,
as the problem is not so visible with our fully-trained models, as supported by the TSE
results of Table 6.2. Such effects can however still be found for smaller models, and should
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Figure 6.5: Piano roll representation of four continuations of the same 8 beats sample.
These results were obtained with models checkpoints at 30% of their total training process.
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Figure 6.6: Distributions of the durations in beat of generated samples. These results were
obtained with models checkpoints at 30% of their total training process.
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Tokenization Top-20 composers ↑ Top-100 composers ↑ Emotion ↑

TS + Dur 0.973 0.941 0.983
TS + NOff 0.962 0.930 0.962
Pos + Dur 0.969 0.927 0.963
Pos + NOff 0.963 0.925 0.956

Table 6.3: Accuracy on classification tasks.

be anticipated.
We hypothesize that the cause of these unended notes results from the higher com-

plexity the use of NoteOff tokens implies. Indeed, to generate accurate note durations
implicitly implies that the model has to predict NoteOff tokens according to the notes
currently being played, considering their pitches, starting time and the time passed since.
The latter is deduced from the cumulated values of TimeShift or Bar / Position tokens.
This extra complexity confuses the models making them struggling to keep up with their
Duration counterpart baselines.

6.5.3 Classification

For classification tasks, symbolic music can better suited than audio depending on the data
and features to identify. This is particularly true for classical music feature classification,
such as composer [104]. Mono-instrument music with complex melodies and harmonies
and no particular audio effect benefit from being represented as discrete for classification
and modeling tasks. Given this, it felt important to us to conduct experiments on such
task.

We choose to experiment with the GiantMIDI [105] dataset for composer classification
and the EMOPIA [88] dataset for emotion classification. The results, as shown in Table 6.3,
indicate that there is very little difference between the various tokenization methods.
However, the combination of TimeShift and Duration consistently outperforms the
others by one point

The classification task involves modeling the patterns from data that are characteristic
to composers or emotions. Here, it seems that the time distance between notes, and their
explicit duration play a role in these task, more than note offsets or onset positions. This
comes with no surprise for the composer classification task, considering that the data is
largely composed of complex music with dense melodies and harmonies, featuring mostly
short successive notes. Intuitively, patterns of note successions and chords are more easily
distinguishable with explicit durations. With implicit note durations, the overall patterns
must be deduced by the combinations of NoteOn and NoteOff tokens while keeping track
of the time.

6.5.4 Music transcription

The transcription task is an important application of symbolic music, which we ought to
include in our experiments. Its purpose is to transcribe an audio sample into its symbolic
equivalent. Recent research built experiment relying on sequence-to-sequence models
[72, 62]. We decided to follow the same strategy, for its ease of implementation and good
performances: the model is a seq2seq Transformer, the encoder taking mel-spectrograms
as inputs, and the decoder autoregressively predicts its symbolic transcription.

Our model is made of 8 layers for both encoder and decoder, an embedding size of
512, 8 attention heads, and inner feedforward layers of size 2048. We used the same audio
processing configuration than [72]: a sample rate of 16kHz, FTT window size of 2048
samples, a hop width of 128 samples and 512 mel bins. However, we used torchaudio
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Tokenization Ons. + Offs. + Vel. ↑ Onset + Offset ↑ Onset ↑

TS + Dur 0.813 0.822 0.924
TS + NOff 0.818 0.826 0.925
Pos + Dur 0.808 0.813 0.928
Pos + NOff 0.812 0.819 0.928

Table 6.4: F1 scores for music transcription. Onset + Offset computes the F1 score based on
the onset and offset (duration) of the notes, while Onset only considers the onset positions.
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Figure 6.7: Density plots of cosine similarities between pairs of original and augmented
token sequences.

[191] to compute melspectrograms and the T5 implementation of the Hugging Face
transformers library [183].

We performed the experiment on the Maestro dataset [73], which is made of 1k
pairs of audio and MIDI files of classical piano performances. To evaluate the generated
transcriptions, we use the mir_eval library [149], with the default parameters except an
onset tolerance of 62.5 ms, which corresponds to an onset tolerance of a quarter of a beat
as the tempo and time division is the same for the whole dataset. mir_eval allows to
calculate the F1 scores between the expected and generated transcriptions, for individual
notes but also for onsets and offsets.

We report the results in Table 6.4. The combinations with the best global performance
(onset + offset + velocity) is TS + NOff. When looking only at onsets, using Bar and
Position tokens seems to bring better performances. However the combinations using it are
underperformed by those using TimeShift tokens, meaning that TimeShift seems to help
the model to predict more accurate note offsets. The scores for the latter are also better
with NoteOff tokens, showing that explicit offset tokens do help the model to predict offset
times. But these offsets time are better predicted when coupled with TimeShift tokens than
Bar and Position. This somehow concurs with our previous results in Subsection 6.5.2,
where Pos + NOff is underperformed by other combinations, as the combination implies
an implicit note duration.

6.5.5 Sequence representation

The last task that we wished to explore is sequence representation. It consists in obtaining
a fixed size embedding representation of an input sequence of tokens pθ : VL 7→ Rd.
Here V ⊂ N denotes the token ids of the vocabulary V , L is the variable input sequence
length, and d the size of embeddings. In other words, the model learns to project an
input token sequence into a embedding space, thus providing a universal representation.
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We find this task interesting and well-suited to assess model performances as it directly
trains it to model the relationships between tokens within the input sequence and between
different representations themselves. While the real-world applications of this task for
symbolic music, such as recommending systems, are currently limited, it serves as a useful
benchmarking technique for measuring how tokenization impacts the learning of models.

This task has previously been addressed in natural language processing by Sentence-
BERT [157] or SimCSE [61]. We adopted the approach of the latter, which uses con-
trastive learning to train the model to learn sequence representations, for which similar
inputs have higher cosine similarities. The sequence embedding is obtained by performing
a pooling operation on the output hidden states of the model. We decided to use the
last hidden state of the BOS token position, as it yielded good results with SimCSE[61]5.
We trained the models with the dropout method: during training, a batch of n sequences
X = {xi}ni=0 is passed twice to the model, but with different dropout masks, resulting
in different output sequence embeddings Z = {zi}Ni=0 and Z̄ = {z̄i}Ni=0. Although the
dropout altered the outputs, most of the input information is still accessible to the model.
Hence, we expect pairs of sequence embeddings (zi, z̄i) to be similar, so having a high
cosine similarity. To achieve this objective, we train the model with a loss function defined
by the cross-entropy for in-batch pairwise cosine similarities (sim):

ℓi = − log
esim(zi,z̄i)/τ∑N
j=1 e

sim(zi,z̄j)/τ
(6.1)

As a result, the model will effectively learn to create similar sequence embeddings for
similar inputs, while pushing apart those with dissimilarities. We kept a 0.1 dropout value
to train the models, and used the GiantMIDI dataset [105].

Evaluation of sequence representation is intuitively performed by measuring the
distances and similarities of pairs of similar sequences. We resort to data augmentation
by shifting the pitch and velocity of the sequences in order to get pairs of similar music
sequences. The augmented data keeps most of the information of the original data. As such,
the models are expected to produce similar embeddings for pairs of original-augmented
sequence. Ideally, the cosine similarity should be high, yet not to be equal to 1, as this
would indicate that the model fails to capture the differences between the two sequences.
The results, presented in Figure 6.7, indicate that Position-based tokenizations perform
slightly better. Therefore, it appears that explicit note onset and offset positions information
facilitates models to obtain a universal musical representation.

Unlike classification, the contrastive learning objective models the similarities and
dissimilarities between examples in the same batch. In this context, note onset and offset
positions appear to be helpful for the models to distinguish music.

We also note the contrasting results when augmenting the velocity. Increasing it by
one unit, which would be equivalent to playing just a little bit louder, have arguably a
very small impact. As a result, the models mostly produces embeddings that are almost
identical for the original and the augmented sequences, but also exhibits uncertainty for a
notable proportion of samples.

To complement these results, we estimated the isotropy of sets of sequence embeddings.
Isotropy measures the uniformity of the variance of a set points in a space. More intuitively,
in an isotropic space, the embeddings are evenly distributed. It has been associated with
improved performances in natural language tasks [180, 15, 116], because embeddings
are more equally distant proportionally to the density of their area, and are in turn more
distinct and distinguishable. We choose to estimate it with the intrinsic dimension of
the sets of embeddings. Intrinsic dimension is the number of dimensions required to

5SimCSE uses a CLS token which is equivalent to BOS in our case.
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Tokenization lPCA ↑ MOM ↑ TwoNN ↑ FisherS ↑

TS + Dur 213 42.6 34.3 17.5
TS + NOff 161 43.7 32.7 17.5
Pos + Dur 146 39.1 33.1 17.1
Pos + NOff 177 45.2 35.6 17.8

Table 6.5: Intrinsic dimension of sequence embeddings, as an estimation of isotropy.

represent a set of points. It can be estimated through several manners [12]. We choose
Principal Component Analysis (PCA) [58], method of moments (MOM) [4], Two Nearest
Neighbors (TwoNN) [53] and FisherS [3]. The results, reported in Table 6.5, show that
the embeddings created from the Pos + NOff combination tends to occupy more space
across the dimension of the model, and are potentially better distributed.

6.6 Multitrack music

6.6.1 Representing multiple tracks for sequential models

To this day, there are only a few existing works of DL models for multitrack symbolic music
generation. Yet, there are various ways to tokenizer multiple tracks of MIDI instruments.
Their goal is to represent a way to associate a note and its attributes to their corresponding
MIDI program, or in other words instrument. We describe the five principle, which we
will refer as:

• Program: a Program token is placed before each Pitch tokens, indicating the instru-
ment of each note [158, 164];

• ProgramChange: a ProgramChange token indicates the instrument of the following
notes;

• TrackPitch: using TrackPitch tokens which specify both the pitch and instrument
of a given note [41, 140];

• Merged: a Program embedding is merged with the ones of the notes (Pitch,
Velocity, Duration), as with Octuple [194];

• Concat: the sequences of several tracks are concatenated and separated with Track-
Start, Program and TrackEnd tokens, as in MMM [48].

One could even infer each sequence separately and lately model their relationships
with operations aggregating their hidden states such as done by ColBERT [99].

Concat is different from the others in the way that it not suited for autoregressive
generation with causal models without a specific and dynamically built attention mask.
As each track token sequence is concatenated, the attention score at a specific position
t within the sequence should be conditioned on the other positions corresponding to
events occurring at times (musically speaking, in beats and bars) prior to this of the event
associated to token at position t. As such, using a causal mask with such representation
would make the attention scores conditioned on all the previous positions, that may include
notes and events, within the tracks previously positioned in the sequence, that occur in "the
future". Autoregressive generation with Concat could be achieved by swapping the order of
the track subsequences within the input sequence in order to autoregressively generate
the tokens of the last one, until it reaches a defined length, and swap again to generate
for another track. Such “chunk-per-chunk” generation would mean that the order of the
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Prog. F1. (↑) Prog. precision (↑) Prog. recall (↑) Note density div. (↓)

Program 0.93 0.95 0.92 1.58
ProgramChange 0.92 0.94 0.92 1.53
ProgramPitch 0.93 0.96 0.92 1.68
Merged 0.87 0.83 0.95 1.78

Table 6.6: Metrics for the different multitrack strategies. Prog. F1, precision and recall are
calculated based on the prompt programs as expected values and generated programs as
the results. The note density divergence is the mean difference between the note density
in notes per beat between the prompt and the generated continuation, calculated per track.

tracks would influence the final result: for a given section st, the first track st,1 would be
generated conditioned on the previous section p (st,1|s<t), and the following tracks could
then be generated by sampling from p (st,i|s<t,<i). Such method would also impose to
use a more complex attention masking strategy in order to let tokens to attend to other
tokens located in the past time, from every tracks. This means that the mask would have to
be built dynamically while keeping track of the absolute time associated with each token. It
is indeed more suited for inpainting tasks, as used in the original work [48] which generate
music by sections of bars and complete tracks. Note that this generation procedure could
be associated with Gibbs sampling as in [69]. For these reasons, we chose to discard it in
this section as it does not fairly compare to the others.

Yet, there is no work presenting analysis and comparing these methods on music
modeling. In this section, we focus on the the four first methods, and their impact on the
music generation task. For Merged, we chose to use the CPWord [83] tokenization, with
note embeddings being also combined with the embedding of their program token. For
the other methods, we chose to represent time with Bar and Position tokens, similarly to
CPWord to have a fair comparison, and to REMI.

6.6.2 Methodology

We used the same model and training procedure as previously in Subsection 6.5.1, except
that we trained the models on 20 epochs and that we used the MMD dataset [49]. It is, to
our knowledge, the biggest MIDI dataset publicly available. It features more than 430k
MIDI files of all genres of music with multiple tracks. Each piece is matched to Spotify
and MusicBrainz ids, allowing to link them with a wide variety of information such as artist
or music genre. In order to get a more quality training corpus, we perform a preprocessing
step which deduplicates the files of the same music and keeps only the best. It is explained
in Appendix A.1, and we impose no requirements on MIDIs before they are added to the
graph.

6.6.3 Impact of multitrack tokenization

Our experiment here aims to measure wether a model is able to coherently produce the
continuation of a music prompt. More specifically, we measure how a model is able to
keep playing the instruments that were present in the prompt. Each prompt is made of
512 tokens, which corresponds to 3 to 10 beats of music in most cases. Considering this
short time, we assume that a model should generate notes from the instruments of the
prompt, as it is unlikely that a one input tracks contains only a few notes at the beginning.

We compute this measure by measuring the precision, recall and F1 score between the
input programs (used as expected) and the generated programs. We report these scores in
Table 6.6. It shows that merging the program and pitch tokens (ProgramPitch) gives the
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Figure 6.8: Difference of instruments between the prompt conditional input and the
results, for the continuation task.

best F1 score and precision. Overall, these methods seem to be better suited to continue
the tracks of the input.

We note that Program and ProgramChange perform almost similarly. It seems that
placing a Program token before each note does not help the model for the generation. In
such case, using ProgramChange tokens could be a better option, as it will give shorter
sequences of tokens. On the other hand, Merged has a good better recall, but has however
a lower precision and F1 score. As a result, the model will easily predict unrelated tracks,
that were not present in the prompt.

We also measured the divergence between the note density of the tracks from the
prompt, and the generated continuations. Although the models perform quite similarly,
we still acknowledge that the ProgramChange and Program methods perform better.

Finally, we plot the difference of number of instruments between the prompt and
the continuation for the four methods in Figure 6.8. These numbers are absolute and
does not consider if the generated tracks were present in the prompt or not. We first note
that Merged tend to generate notes from less instruments that what was in the prompt.
Considering its good recall score, we can assume that Merge focuses on some specific
programs, that are statistically more present in the data. Other strategies perform similarly,
with ProgramPitch tending to predict slightly more new track.

6.7 Conclusion

We have discussed the importance of different aspects of symbolic music tokenization,
and focused on three major ones: the time, note duration and multitrack representations.
We showed that different tokenization strategies can lead to different model performances
due to the explicit information carried by tokens, depending on the task at hand.

Explicitly representing note duration leads to better classification accuracy as it helps
the models to capture the melodies and harmonies of a music. Modeling durations, when
represented implicitly, adds an extra effort to the model as it must deduce them from the
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combinations of time tokens. However, the note offset position information it brings have
been found to be more discriminative and effective in our contrastive learning experiment.

For music generation, the time representation plays a significant role, for which the
note onset and offsets distributions vary due to the successions of token types. Implicit note
durations are less suited for the autoregressive nature of this task, from a prediction error
perspective, and sometimes "forgetting" notes being played resulting in higher durations.
And when dealing with multitrack music, it appears that using Program tokens preceding
notes tokens or ProgramChange tokens to indicate instrument changes lead to a better
respect of the input tracks continuation.

Finally, for music transcription, implicit note durations (note onset and offset) show
greater results. The offset positions seems to help the model to learn to efficiently transcript
the audio. Furthermore, this representation is better suited for cases where the audio
frame contains the end of some notes, but not their onset time. In such case, even an
human can hardly estimate the true duration of such note.

We consider this work as a first step into the study of music tokenization for music
modeling. We hope that our results can help researchers in their choices of tokenization
for symbolic music. We did not experiment with the other music tokenization dimensions
such as the downsampling granularity or additional tokens. Furthermore, we believe that
more musical reasoning tasks and imposing the model to perform logic deductions to
retrieve implicit information from the data, might give more insightful results. Future
research will further explore these questions.
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Chapter 7

Byte Pair Encoding for symbolic
music

7.1 Introduction

When used with deep learning, the symbolic music modality is mostly represented as
discrete and used with language models (LM) such as Transformers [177]. These models
receive sequences of tokens as input, convert them to learned embedding vectors rep-
resenting their semantic features in a continuous space, and process these embeddings
for the task at hand. A token is a distinct element, known within a finite vocabulary. For
natural language, a token can be a word, subword or punctuation mark. For symbolic
music, tokens usually represent note attributes or time events, such as pitch or duration.
Tokenizing music, i.e., converting raw data into tokens, can be achieved by several ways,
as music can be composed of simultaneous tracks, of simultaneous notes with several
attributes such as their pitch and duration. Multiple approaches exist to represent these
features.

Recently, the token representation of symbolic music has been studied, with the
goal to improve 1) the results, e.g. the quality of generated results or the accuracy of
Music Information Retrieval (MIR) tasks, and; 2) the efficiency of the models. The
former is tackled with more expressive representations [87, 98, 164, 55], and the latter by
representations based on either token combinations [140, 41], or embedding pooling [83,
194, 158, 43], which reduce the overall sequence length.

Still, these tokenizations are based on tokens only representing the values of time
events and note attributes. This comes with a big limitation: these tokens do not carry
much information by themselves. We can assume that their embeddings does not either.
By analogy to natural language, these tokens are closer to the character level than word
level. Yet, a powerful feature of LMs is their ability to learn (embedding) representations
of discrete elements such as tokens, and leverage this information for reasoning and
downstream tasks. For natural language, LMs are usually coupled with vocabularies
containing up to 50k tokens, represented on a few hundreds dimensions (often between
512 and 2048). Using a vocabulary containing fewer tokens than the number of dimensions
used to represent them appears as a suboptimal usage of such models. Moreover, the
expressive information carried by music is deduced from the combinations of its notes
and their attributes. Considering the infinite possible music arrangements, we can suppose
that using solely note attribute embeddings imposes to LMs a heavier modeling effort
than embeddings of potential whole note successions that would be more expressive and
explicit.

In this chapter, we show that Byte Pair Encoding (BPE, described in Section 7.3)
applied to symbolic music allows to address the two goals just mentioned, while outper-
forming the previous methods and making the model learn better distributed embeddings.
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To the best of our knowledge, BPE has yet not been studied for the symbolic music modal-
ity, although it can be applied on top of any music tokenization that does not perform
embedding pooling. This work aims at closing this gap by shedding light on the results
and performance gains of using BPE:

• We experiment on four public datasets [181, 105, 49, 88], with two base tokeniza-
tions, on which BPE is learned with several vocabulary sizes, on generation and
classification tasks;

• We compare BPE with other sequence reduction techniques introduced in recent
research;

• We study the geometry of the learned embeddings, and show that BPE can improve
their isotropy and space occupation;

• We show some limits of BPE, such as on the proportion of sampled tokens, and that
the vocabulary size has to be carefully chosen.

The source code is provided for reproducibility1, and we also share a demo website to
listen generated results2.

7.2 Related work

7.2.1 Tokenization of symbolic music

Most deep learning models using symbolic music generation use a specific music tokeniza-
tion. Early research introduced representations specifically tied to the training data being
used, such as DeepBach [69], FolkRNN [173] or BachBot [115]. Non-autoregressive
models such as MuseGAN [44] often represent music as pianoroll matrices.

Since, more universal representations have been studied, allowing to convert any
sequence of (simultaneous) notes into tokens [137, 87, 68, 55]. Some of them are
depicted in Figure 7.1.

7.2.2 Sequence length reduction strategies

More recent works put efforts on the efficiency of the models. As most of them rely
on the Transformer architecture [177] and the attention mechanism, their time and
space complexity grows quadratically with the input sequence length. This bottleneck
led researchers to work on more efficient attention estimations [174], down to linear
complexity. In the field of symbolic music specifically, researchers worked on strategies
to reduce the sequence length in order to increase 1) the efficiency of the models; 2) the
scope of the attention mechanism; 3) the quality of the generated results. These strategies
can be split in two categories:

• embedding pooling such as Compound Word [83] (CPWord), Octuple [194], PopMag
[158], SymphonyNet [118] or MMT [43]. Embeddings of several tokens are merged
with a pooling operation. This is often done by concatenating the embeddings and
projecting the vector, resulting in an aggregated embedding of fixed size.

• token combination such as in MuseNet [140], LakhNES [41] or other recent
works [118, 175], which consists of using a vocabulary of tokens representing several
attributes, e.g., Pitch-x_Dur-y representing both the pitch and velocity information.
BPE can be seen as a learned token combination technique.

1https://github.com/Natooz/BPE-Symbolic-Music
2https://Natooz.github.io/BPE-Symbolic-Music

https://github.com/Natooz/BPE-Symbolic-Music
https://Natooz.github.io/BPE-Symbolic-Music/
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Figure 7.1: Three tokenizations of the same three notes. Tokens are ordered from left
to right, the numbers put below are their integer ids. Top row is REMI [87], middle
correspond to the top row with BPE applied to some tokens, bottom row is a tokenization
similar to Octuple [194] and MMT [43] where the embeddings of the tokens stacked
vertically are merged (pooled).

7.2.3 Limitations

One of the main limitation of the previous work is the suboptimal usage of the embedding
space of LMs. Most of them use models with embeddings represented from 512 to 1024
dimensions, for vocabularies of less than 500 tokens. As the model contextually learns to
gather embeddings along dimensions representing learned features, using a number of
dimensions larger than the number of elements to represent causes embeddings to not take
advantage of all the space of the embedding dimensions, which will stay unoccupied for a
large proportion. For comparison, the same models, when trained on natural language
data, use to learn up to 50k embeddings on 512 to 1024 dimensions.

The sequence length reduction strategies just introduced also have big limitations.
Embedding pooling: 1) requires specific model input and output modules, which can
break compatibility with popular software libraries; 2) requires multiple losses at training,
which increases the complexity; 3) for generation, inferring from such model can be seen
as sampling from a multivariate distribution, which can be very delicate, as 4) the results
can easily degenerate if the pooling does not yield semantically rich embeddings that
represent the underlying tokens. On the other hand, token combinations of entire types
of tokens can lead to large vocabularies with unused tokens and potentially non-optimized
or unbalanced token distributions.

To the best of our knowledge, no work has been conducted on applying BPE (in-
troduced in Section 7.3) to symbolic music generation. Although SymphonyNet [118]
introduced a method named MusicBPE, this technique links weakly with BPE and has a
limited scope. It adds to the vocabulary new tokens for common chords. These tokens
represent pitch value combinations, only for simultaneous notes having the exact same
velocity and duration. Unfortunately, it can only be used for limited proportion of notes
(and in turn tokens), actually less than a quarter when a strong downsampling is applied
(Appendix B.1). As it does not apply on token successions, it cannot capture the contextual
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and probability relations between them, including time dependencies. For these reasons,
we do not compare it with BPE as it would be irrelevant and unfair.

7.3 Byte Pair Encoding

Byte Pair Encoding (BPE) [59] is a data compression technique. It converts the most
recurrent successive bytes in a corpus into newly created ones. For instance, in the character
sequence aabaabaacaa, the sub-sequence aa occurs four times and is the most recurrent
one. Learning and applying BPE on this sequence would replace aa with a new symbol,
e.g., d, resulting in a compressed sequence dbdbdcd. The latter can be reduced again by
replacing the db subsequence, giving eedcd. In practice BPE is learned on a corpus until
the vocabulary reaches a target size. BPE learning is described by the pseudo-code of
Algorithm 3.

Algorithm 3 Learning of BPE pseudo-code

Require: Base vocabulary V , target vocabulary size N , dataset X
1: while |V|< N do
2: Find m = {t1, t2}, the most recurrent token succession from X
3: V ← V + [t|V| : m]
4: Substitute occurrences of m in X with t|V|
5: end while
6: return V

BPE is nowadays largely used in the NLP field as it allows to encode rare words and
segmenting unknown or composed words as sequences of sub-word units [167]. Other
token aggregation, or vocabulary building techniques exist. The two other most commonly
used are Unigram [108] or WordPiece [184], which operations share similarities with
BPE.

For natural language, bytes are the distinct characters composing the text. For symbolic
music, the distinct note and time attributes can be used as the "bytes" to merge. In this
context, BPE can allow to represent a note, or even a succession of notes, that is recurrent in
the dataset, as a single token. For instance, a note that would be tokenized as the succession
of tokens Pitch_D3, Velocity_60, Duration_2.0 could be replaced by a single new one.
Rare note (and attributes) can still be tokenized as non-BPE tokens. The same logic applies
to time tokens, that can also be associated to note tokens.

7.4 Experimental settings

7.4.1 Models and training

As we specifically focus on LMs, we experiment with the state of the art deep learning
architecture for most NLP tasks at the time of writing, the Transformer [177]. We use
the GPT2 [146] and BERT [37] implementations of the transformers library [183] for
respectively music generation and classification. They are made of 12 layers, embedding
sizes of 512, eight attention heads and feed-forward layers of 2048. They count approxi-
mately 40M learned parameters. The generators are trained with teacher forcing with the
target sequence being the input shifted by one to the left. The classifier are first pretrained
to retrieve randomized tokens, and then finetuned to classify the input sequences.

The generator and classifiers are respectively trained and pretrained on 100k steps.
For classifiers pretraining, we use the same objective than done with BERT [37]: 15% of
each input sequences is masked with a special MASK token, 10% of these masked tokens are
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randomized, and the loss is computed on the capacity of the model to recover the original
tokens. Additionally each sequence is divided into two equal parts separated with a special
SEP token, and half of the batch sequences have non-related parts. The model predicts if
the second part is the next part of the first. The input embedding and output pretraining
module weights are tied to improve the performances [144].

The classifiers are then finetuned on 10k steps on the downstream tasks. We feed the
output hidden state of the first position (BOS token) to an output fully connected layer, to
train the model to classify the input sequence.

Trainings are performed on V100 and RTX2080ti GPUs, each time in distributed
setups of pairs of the same GPU model, for a total batch size of 128. All trainings are
done with automatic mixed-precision [127], the Adam optimizer [101] with β1 = 0.9,
β2 = 0.999 and ϵ = 10−8, and dropout, weight decay and a gradient clip norm of
respectively 10−1, 10−2 and 3. We use a one cycle learning rate scheduler: the initial
learning rate is close to 0 and gradually grows for the 30% first steps to 1e − 4 for the
generators and classifier pretraining and 3e− 5 for the classifier fine-tuning, then slowly
decreases down to 0. The model parameters are saved when the validation loss is the
lowest ever observed, and after training the last version saved is used for testing.

All models receive sequences of 256 to 384 tokens, beginning with special BOS (Begin-
ning of Sequence) and ending EOS (End of Sequence) tokens. We split datasets in three
subsets: one only used for training to update the models, one for validation during training,
one used to test the models after training. The last two represent respectively 10% and
15% of the dataset for classification and 2% and 5% for generation.

7.4.2 Tokenization

We experiment with REMI [87] and TSD (for Time Shift Duration) as base tokenizations,
on top of which BPE is applied. Both tokenizations describe notes as a succession of
Pitch, Velocity and Duration tokens. REMI represents time with Bar and Position
tokens, which respectively indicates when a new bar is beginning and at which position
within the time is. TSD represents time with TimeShift tokens, indicating explicit time
movements. For the multitrack MMD dataset, we prepend a Program token before the
Pitch token of each note to represent its instrument.

When tokenizing symbolic music, continuous characteristics are usually downsampled
to discrete sets of values [87, 137, 68]. For instance, velocities can be downsampled from
128 to 32 values. These sets should be sufficiently precise to keep the global information.
Downsampling these characteristics helps models to learn more easily, as the values of
the reduced sets will be more distinctive. Similarly to Subsection 6.5.1, we apply a
downsampling on the note attributes and time. We decided to downsample the Duration
and TimeShift tokens with different resolutions: those up to one beat are downsampled
to 8 samples per beat (spb), those from one to two beats to 4 spb, those from two to four
beats to 2 spb, and those from four to eight beats to 1 spb. This way, short notes are
represented more precisely than longer ones, reducing the vocabulary size. For REMI,
Position tokens are downsampled to 8 spb, resulting in 32 different tokens as we only
consider the 4

∗ time signature. This allows to represent the 16th note. We only consider
pitches within the recommended range for piano (program 0) specified in the General
MIDI 2 specifications3: 21 to 108. We then deduplicate all duplicated notes. Velocities
are downsampled to 8 distinct values. No additional token (e.g., Chord, Tempo) is used.
Finally, as mentioned in Appendix A.1, the set of instruments is downsampled to 13
unique programs.

3Available on the MIDI Manufacturers Association website

https://www.midi.org/specifications-old/
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Figure 7.2: Average and maximum number of token combinations of tokens learned with
BPE in function of the vocabulary size.

Voc. size tokens/beat (↓) Tok. time (↓) Detok. time (↓)

Strategy TSD REMI TSD REMI TSD REMI TSD REMI

No BPE 149 162 18.5 19.1 0.174 0.151 0.031 0.039
BPE 1k 1k 1k 9.3 (-49.5%) 10.4 (-45.3%) 0.187 0.163 0.053 0.063
BPE 5k 5k 5k 7.0 (-62.2%) 8.5 (-55.2%) 0.181 0.165 0.053 0.064
BPE 10k 10k 10k 6.3 (-66.0%) 7.7 (-59.7%) 0.183 0.164 0.052 0.065
BPE 20k 20k 20k 5.8 (-68.9%) 6.9 (-63.9%) 0.184 0.163 0.052 0.063
PVm 1453 1466 13.4 (-27.8%) 13.8 (-27.4%) 0.134 0.123 0.024 0.026
PVDm 28185 28198 8.2 (-55.5%) 8.6 (-54.8%) 0.119 0.106 0.025 0.030
CP Word 188 8.6 (-54.8%) 0.169 0.034
Octuple 241 5.2 (-72.6%) 0.118 0.035

Table 7.1: Vocabulary size, average tokens per beat ratios, and average tokenization and
decoding times in seconds using MidiTok [55] and the Hugging Face tokenizers4libraries,
on the Maestro dataset.

We choose to experiment with five vocabulary sizes: without BPE, 1k, 5k, 10k and
20k tokens.

Finally, we compare BPE with other sequence reduction strategies introduced in
Subsection 7.2.2. We experiment with merging Pitch and Velocity tokens (PVm), and
Pitch, Velocity and Duration together (PVDm). PVm is similar to the strategy used with
MuseNet [140]. We also experiment with embedding pooling strategies - CPWord [83]
and Octuple [194] - that we group with REMI in our experiments as they represent time
similarly. We use the same pooling strategy, and sample independently from the logits of
each output modules. All embeddings have the same size than the model dimension.

7.5 BPE learning

BPE allows to significantly reduce the sequence length. As shown in Figure 7.2, the ratio
of average number tokens representing a beat can be reduced up to more than 50%. As
BPE replaces recurrent pair of bytes in the data, the average number of byte combinations
of the vocabulary tends to first quickly increase, then more slowly grow. The inverse
tendency can be observed on the tokens per beat ratios shown in Table 7.1, while showing
that BPE increase only slightly the tokenization time. The maximum number of byte
combinations varies depending on the data. Here, the MMD dataset allows to learn much
more combined tokens. This shows that the Maestro dataset contain much diverse token

4https://github.com/huggingface/tokenizers

https://github.com/huggingface/tokenizers
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TSEtype(↓) TSEdupn(↓) TSEtime(↓) Hum. Fidelity (↑) Hum. Correctness (↑) Hum. Diversity (↑) Hum. Overall (↑)

Strategy TSD REMI TSD REMI TSD REMI TSD REMI TSD REMI TSD REMI TSD REMI

No BPE 1.53 1.34 4.19 5.59 - 28.93 4.9% 4.0% 2.0% 2.0% 1.0% 0.0% 4.8% 0.0%
BPE 1k 1.59 0.62 3.60 4.16 - 34.65 13.6% 11.9% 11.8% 14.9% 10.8% 6.8% 8.6% 8.6%
BPE 5k 0.31 0.38 3.28 4.10 - 39.25 21.4% 31.7% 20.6% 21.8% 11.8% 11.7% 20.0% 18.1%
BPE 10k 0.49 1.04 3.83 6.39 - 48.16 23.3% 20.8% 29.4% 22.8% 18.6% 20.4% 22.9% 29.5%
BPE 20k 0.38 0.64 4.09 3.60 - 52.00 29.1% 19.8% 29.4% 24.8% 36.3% 34.0% 30.5% 30.5%
PVm 2.45 2.99 16.90 16.33 - 36.31 2.9% 2.0% 2.9% 0.0% 7.8% 2.9% 4.8% 1.0%
PVDm 0.63 6.32 2.84 10.64 - 46.75 4.9% 9.9% 3.9% 11.9% 13.7% 21.4% 8.6% 12.4%
CPWord 6.15 28.55 62.15 0.0% 2.0% 2.9% 0.0%
Octuple - 244.11 305.43 0.0% 0.0% 0.0% 0.0%

Table 7.2: Metrics of generated results. TSE results are all scaled at e−3 for better read-
ability. Hum stand for human, "-" for non-concerned (i.e. 0).

successions, which is not surprising considering that it is made of classical music while
MMD contains many genres, among which some with very repetitive patterns. The
tokenization time with BPE naturally increases, but stays relatively close to the baselines
without BPE.

Appendix B.2 complements this analysis by shedding light on the types of the under-
lying tokens represented by the newly learned tokens.

7.6 Music generation

Music generation is a popular application of deep learning models [18, 17]. We ought to
experiment on this task to demonstrate the benefits of BPE on music modeling. For this
task, we choose to use the Maestro dataset [73], which is made of 1k pairs of audio and
MIDI files of classical piano performances. Each MIDI file is made of one piano track,
with dynamic melodies and complex harmonies. We generate autoregressively the next
512 tokens of input prompts from the test subsets of the Maestro dataset, filtering the
logits by keeping the top p = 0, 95 probability mass (nucleus sampling [82]) and top 15
token probabilities (top-k sampling [54]).

Evaluation of symbolic music is still an open issue [189]. In the absence of automatic
metrics measuring the distances between subsets of data, most works evaluate generated
results with human surveys along with feature similarity metrics. The latter however
cannot capture the quality of music, and is subject to irregularities in case of model over
or underfitting. We decide here to replace them with an metric measuring the errors of
prediction of the models.

7.6.1 Human evaluations

For both TSD and REMI tokenizations, we selected about 130 prompts of 4 bars from the
test subset, and generated continuations of 512 tokens with all models. We gathered nine
participants, among which seven are musicians, to evaluate the results. They were asked to
open the MIDI files with Digital Audio Workstation (DAW) softwares such as Logic Pro
or Ableton, play each track individually and select the best one on four criteria: 1) fidelity
on pitch scale and rhythm regarding the prompt; 2) correctness, i.e. featuring good note
succession and harmony; 3) coherent diversity, i.e. featuring diverse correct melodies and
harmonies; 4) their overall subjective preference. The advantage of using DAW software
is twofold: it allows to conveniently listen the different tracks, and compare them by also
visualizing them as pianorolls. You can find more details on the human evaluations in
Appendix B.3, and all the generated samples used on the demo website (Section 7.1).
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tok/sec (↑) beat/sec (↑) note/sec (↑) Voc. sampled (↑)

Strategy TSD REMI TSD REMI TSD REMI TSD REMI

No BPE 40.2 43.8 4.5 9.9 10.6 10.9 100% 100%
BPE 1k 78.5 67.0 13.0 17.9 20.8 16.8 100% 99.9%
BPE 5k 99.1 83.9 12.8 30.0 26.7 20.7 100% 99.8%
BPE 10k 97.5 85.4 12.5 26.0 26.3 21.3 99.9% 99.9%
BPE 20k 115.6 91.7 12.9 24.9 31.5 22.7 99.4% 99.7%
PVm 59.3 58.1 8.2 12.2 15.9 14.9 99.3% 99.0%
PVDm 89.7 87.3 11.4 17.1 24.7 23.4 75.9% 74.3%
CPWord 75.8 15.2 19.0 76.7%
Octuple - 14.3 58.5 57.4%

Table 7.3: Inference speeds on a V100 GPU and a batch size of 64 and ratio of vocabulary
sampled during generation. For tok/sec (base tokens per second), the results account for
"basic" tokens of note attributes and time. Tok/sec for Octuple is not calculated as the
equivalent number of base tokens is not clearly deducible.

7.6.2 Results and analysis

The TSE error ratios, introduced in Section 6.4, and human preferences results are
reported in Table 7.2.

As BPE creates new tokens that combine several types and values, it also increases the
overall complexity of music modeling when using these tokens. Thus, we initially expected
the generative models to predict higher ratios of errors. But surprisingly, it decreases these
ratios, except for the time errors with REMI. These results show that the models easily
capture the information of the tokens, and that the vocabulary can be scaled consequently.

We gathered total of 814 human preferences, with a bit more than 100 for each
criteria for TSD and REMI. There is a clear preference for results with BPE, especially
with vocabularies of 10k and 20k tokens. Baselines without BPE still accounts for a few
preferences for the fidelity and correctness criteria, but are less preferred overall, especially
with REMI. We note that the PVDm baselines show competitive preferences with BPE
baselines, especially for diversity. Octuple and CP Word perform poorly on the other
hand, which is not surprising as they are not 100% autoregressive, and the sense of the
combinations of tokens sampled unconditionally is likely to degenerate, especially when
time and notes are handled all at once. Overall, BPE helps models to generate more
natural and pleasant music. The new contextually learned embeddings may represent
richer and more explicit information, helping to model the musical information.

Besides results quality, the second big advantage of BPE is the inference speed increase.
We reported three inference metrics - tokens, beat and note per second - in Table 7.3,
along with the proportion of the vocabulary ever sampled by the models.

We first highlight that models with BPE, up to the maximum vocabulary size tested
here, do use most of the tokens of the vocabulary, with a slight decrease as the vocabulary
grows. This also supports that the vocabulary can easily be scaled while keeping tokens
that are still used by the models.

BPE increases all inference speeds measured by at least two times, even with small
vocabularies. We note that the increase of beat/sec does not increase linearly with the
vocabulary size, which also indicates that the models predict a higher number of notes per
beat. CP Word, despite having low tokens per beat ratios (Table 7.1), yields lower tokens
per second generation speeds, due to the additional input and several sampling steps.
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Genre (↑) Artist (↑)

Strategy TSD REMI TSD REMI

No BPE 0.836 0.796 0.907 0.876
BPE 1k 0.882 0.871 0.934 0.920
BPE 5k 0.901 0.875 0.933 0.925
BPE 10k 0.904 0.869 0.937 0.922
BPE 20k 0.851 0.877 0.909 0.923
PVm 0.853 0.810 0.905 0.886
PVDm 0.875 0.818 0.914 0.893
Octuple - 0.923 - 0.941

Table 7.4: Average accuracy of classification models.

Isoscore (↑) PCA ID (↑) FisherS ID (↑)

Gen / Maestro Pt. / MMD Gen / Maestro Pt. / MMD Gen / Maestro Pt. / MMD

Strategy TSD REMI TSD REMI TSD REMI TSD REMI TSD REMI TSD REMI

No BPE 0.899 0.883 0.925 0.730 62 66 44 45 5.4 5.2 8.1 7.9
BPE 1k 0.919 0.953 0.981 0.986 100 99 113 102 7.3 6.7 15.5 12.2
BPE 5k 0.965 0.962 0.989 0.989 131 119 145 119 9.0 8.6 16.7 13.7
BPE 10k 0.973 0.973 0.991 0.993 132 118 164 118 9.8 9.6 18.3 15.2
BPE 20k 0.976 0.981 0.993 0.995 146 122 187 137 10.8 10.5 21.4 16.9
PVm 0.987 0.989 0.961 0.961 71 67 52 52 7.1 6.8 13.9 14.7
PVDm 0.945 0.942 0.898 0.909 38 39 98 87 4.4 4.4 24.1 22.8

Table 7.5: Isoscore, and intrinsic dimension (ID) estimations. Gen. corresponds to the
causal generative models, Pt. to the pretrained bidirectional models.

7.7 Classification

For our classification task, we experiment with the MMD dataset [49]. Similarly to
Section 6.6, we deduplicate the songs of the dataset, but this time by keeping the MIDIs
with a 4

∗ time signature and at least three tracks. The process is described in Appendix A.1.
To handle multiple tracks, we placed Program tokens before each Pitch token of each

note to specify its instrument. This strategy is similar to REMIPlus [164].
We perform genre and artist classification, from the 40 and 100 most present genres

and artist in the MMD dataset. The results, reported in Table 7.4, show that BPE improves
the models performances compared to the baselines without BPE, and outperform the
other token combination techniques. The models seem to benefit from larger vocabulary
sizes. It however shows limits, as the accuracy does not increase from a vocabulary of
10k to 20k tokens. The Octuple baseline outperforms the others. Here, the model is
bidirectional (no attention mask) and we do not sample from multiple distributions. Our
assumption is that the reduced sequence length allows to carry more information within a
same number of tokens, allowing the models to capture more easily the global melody,
harmony and music structure and directly improving their performances.

It concurs with our results, and is explored in the next section by analyzing the geometry
of the learned embeddings.

7.8 Learned embedding spaces

We have shown so far that BPE improves the results of music modeling on the generation
and classification tasks. Our assumption is that, non-only the reduced sequence length
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Figure 7.3: Normalized singular values of the embedding matrices. Pretrained refers to
the (bidirectional) classification models after pretraining, and generators to the (causal)
models for generation after training.
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allows to pack more information (longer music piece) within the same number of tokens,
but mostly the vocabulary can be scaled while making the model efficiently learn and use
the embedding representations of the newly created tokens with BPE.

The embedding space, i.e. the way LMs learn to represent tokens into a continuous
space Rd of d dimensions, has recently been studied [60, 15, 20]. More specifically, it has
been shown that most LMs learn anisotropic embedding distributions [52, 156], despite
that their isotropy have been linked to improved performances on downstream tasks [65,
178, 15, 116, 150].

Isotropy is a measure of the uniformity of the space occupied by a manifold across all
dimensions. A high isotropy is associated with a uniform variance of the distances between
the points of the manifold across all dimensions. In our case the manifold is the collection
of contextually learned embeddings X ∈ RV×d where V is the vocabulary size and d the
model/embedding dimension. An isotropic embedding space can be viewed as a space
where the embeddings are uniformly spaced with uniform densities.

Isotropy is often estimated by different ways: singular value decomposition (SVD)
[15, 60, 116, 178], intrinsic dimension [20], partition function [10, 131], average cosine
similarity [52]. We chose the two firsts, along with IsoScore [162] which alleviates some
of their shortcomings, to have results that complement themselves. We did not measure
isotropy on models using embedding pooling, as it would be untractable considering the
very large number of possible embeddings, and that the low frequency of the majority of
them would result in unreliable results.

SVD, for which results are plotted in Figure 7.3, allows to visualize the relative dom-
ination of some dimensions. Baselines without BPE and PVm and PVDm show quicker
singular value decays, indicating that fewer dominate, whereas baselines with BPE show
more uniformly distributed values.

The intrinsic dimension is an estimation of the minimal number of dimensions n
required to represent a manifold in Rd, d > n. It links with isotropy in the sense that
an isotropic manifold occupies all the dimensions, hence its intrinsic dimension is close
to d. We chose to estimate it with the Principle Component Analysis (PCA) [58] and
FisherS [3] methods as they are insensitive to redundancy, focus on common similarities
and can scale to large number of points and dimensions. As the embedding matrix is often
initialized with a stochastic method around the origin, a simple method can estimate high
intrinsic dimensions even though the points coordinates have been very little or not even
optimized. This can be the case when a large number of tokens has low frequencies or are
absent from the training data, such as with PVDm. The intrinsic dimensions results are
reported in Section 7.8, along with the IsoScores. In all cases, as the vocabulary grows
with BPE, the intrinsic dimension increases, the embeddings occupy more space.

IsoScore is an estimation of isotropy based on the distance of the covariance matrix
of a Principle Component Analysis (PCA) and the identity matrix, and is normalized
between 0 and 1. As for the intrinsic dimension, the isoscore grows with the vocabulary
size, indicating that the embeddings are more uniformly distributed.

We also note that similarly to models trained on natural language [52], our bidirectional
models learn more isotropic embeddings than causal (generative) ones. Appendix B.4
depicts UMAP representations of the embedding, showing the narrow cones and clusters
they form.

7.9 Conclusion

We showed that BPE can increase the quality of results of Transformer models for symbolic
music generation and classification tasks, while significantly improving their efficiency and
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inference speed and making better use of their embedding spaces. BPE can be applied
on top of any tokenization. The tokenization and decoding times are almost not affected
by this extra step, when performed by a well-optimized Rust code. Considering the
considerable benefits and low requirements of this technique, we advise anyone using
Transformer models with symbolic music to use BPE.

There are still questions that remain uncovered. We showed that 40M parameters
models can handle well vocabularies up to 20k tokens with medium-size datasets. We
however do not know what are the limits in vocabulary and dataset sizes over which the
results might not improve. Moreover, we experimented with BPE, but other common
vocabulary building techniques exist, such as Unigram [108] and WordPiece [184]. Recent
work on natural language showed that Unigram yielded higher model performances
than BPE [16], it might also be the case for symbolic music. Future research will study
these questions and hopefully find optimal tokenization guidelines to improve model
performances under more various settings.
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Chapter 8

Scaling Transformers for
autoregressive multitrack symbolic
music generation

8.1 Introduction

Multitrack music generation is a challenging task, as it implies a model to grasp complex
melodic and harmonic features from multiple instruments, while maintaining structure
and rhythm consistency. Moreover, music is multifaceted and is made of hundreds of
genres and instruments which are played and arranged by a multitude of ways.

Overcoming this complexity can bring a lot of benefits for music generation tasks. As
symbolic music is discrete, this format allows a total control and flexibility for musicians
and creators which want to edit and adjust the notes and their attributes. The symbolic
representation can then be synthesized into audio, offering to a music producer a high level
of control. This represent a significant interest for music creation assisted by Artificial In-
telligence (AI). Considering the interest from this public, companies are starting to develop
software allowing to use deep learning models directly into Digital Audio Workstations
(DAW), both for audio and symbolic content.

Music generation has in the recent years mostly been tackled in the audio domain
[106, 1, 30]. Yet, audio samples can only be edited by a fairly limited range of actions,
thus reducing their interest for assisted composition. In this context, the user may need to
prompt a generative model several times until the result satisfies its expectations, which
can be high depending on their level of perfectionism. Additionally, accurate prompts for
audio generation can be hard to formulate [1, 86] and this interface of control remains
high level and show limitations in the degree of accuracy of specific features that can be
expressed with words.

Unfortunately, applications of AI models with symbolic music remains to this day a
niche that receives a fraction of the interest and investment of more popular domains
such as natural language. As such, there are only a limited number of works on multitrack
symbolic music generation. We identify two major gaps in the field, as observed in many
of these works:

1. While these works rightfully highlight the advantages of their models, they often
do not report the training loss values. As such, it is difficult for researchers to find
comparison points to scale their own models, and resort to arbitrary size parameters.
Additionally, we cannot know the extent of overfitting in these models;

2. Many do not share their model weights, or in a non user-friendly manner that
requires researchers and engineers to spend time and effort to get their hands on
ad-hoc code implementations. Consequently, this impedes the reproducibility of
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the studies, complicating the assessment of the models performances and their
comparison, when feasible.

In order to address these limitations, we introduce SMILE (Symbolic MusIc LargE
music model), a large model for multitrack symbolic music generation. Our contributions
are:

• We conduct a study on the scalability of transformer models for autoregressive
symbolic music generation, by scaling SMILE to 125m, 500m and 1.5b parameters;

• We openly share the models in a user-friendly manner1, that can be freely finetuned
for specific data and usages, along with an interactive demonstration application
allowing to easily use the model;

• We analyze the generation performances of the three model sizes, revealing the
limitations of our approach as measured by overfitting and consequent biases towards
the training data.

• We analyze the distribution of token successions for our music dataset and compare it
with those of popular text datasets, highlighting the fundamental diversity difference
between these two modalities.

8.2 Related works

Symbolic music generation with deep learning is a field explored from different angles [17].
In addition, most works focus on a single instrument [85, 87]. Multitrack symbolic music
generation poses a greater challenge due to the necessity for models to grasp multiple
simultaneous notes of different instruments.

MuseGan [44] can be considered one of the first attempts to train a deep learning model
to generate multitrack music. The model is a Generative Adversarial Network representing
five simultaneous instruments as pianoroll matrices. LakhNES [41] is a Transformer model
[177] pretrained on the Lakh dataset [148] and finetuned on Nintendo Entertainment
System (NES) music, capable of generating four different instruments. Multitrack Music
Machine (MMM) [48] is a GPT-2 based Transformer trained for music inpainting handling
all MIDI programs. Multitrack Music Transformer (MMT) [43] is transformer based on a
multi-token strategy merging embeddings to shorten the input sequence length. FIGARO
[164] is also a multitrack model offering controllable features to condition the generation
on.

LakhNES counts 41 million parameters, MMM and MMT 20 million parameters, and
FIGARO counts 44.6 and 43.7 million parameters for its description-to-sequence and
VQ-VAE components respectively.

In these previous works, most of the models are relatively small compared to their
natural language counterparts, which can reach up to billions of parameters. We can hence
wonder how they would scale to larger sizes. We also note that none share the training
losses of their models, and only LakhNES and FIGARO are openly shared2.

To address these gaps, we conduct experiments by scaling the sizes of transformer
models for multitrack music generation and share the models in a user-friendly way.

1Code: https://github.com/Natooz/scaling-transformers-music-gen
Models: https://huggingface.co/Natooz
Demo: https://huggingface.co/Aubay/SMILE

2The weights of MMT [43] were no longer publicly available when conducting this work in February 2024

https://github.com/Natooz/scaling-transformers-music-gen
https://huggingface.co/Natooz
https://huggingface.co/Aubay/SMILE
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Model size Embedding. size Num. layers Num. heads

125m 512 24 8
500m 960 32 12
1b5 1536 40 16

Table 8.1: Differentiating size parameters of SMILE.

8.3 SMILE

We introduce SMILE, standing for Symbolic MusIc LargE music model. We create
three variants of SMILE. This section presents the model’s architecture and the data
tokenization.

8.3.1 Model configurations

The backbone of SMILE is built on the Mistral implementation of the Hugging Face
transformers library3, which features optimizations allowing to increase its attention span.
It is a decoder only transformer, i.e. using causal attention, with two major optimization:
grouped query attention [169, 2] and sliding window attention [14]. With grouped query
attention, the number of heads for keys and values is reduced so that each pair of keys
and values is used for several queries. As the number of calculations is reduced, so is
the computation time and memory footprint of the model. Sliding window attention
is an attention pattern applied as chunks of fixed window sizes across successive layers.
Attention being an operation with a time and space complexity growing quadratically with
the sequence length, decomposing it into smaller chunks allows to significantly reduce the
memory footprint. The combination of these two optimizations allows to considerably
increase the model’s efficiency, allowing to use it with higher sequence sizes, hence longer
musical structure, which in turn can bring better performances thanks to the additional
provided context.

We created three variants of SMILE, counting 125 million, 500 million and 1.5 billion
parameters. Although these sizes are relatively small compared to popular models for
natural language [176, 94], there is at the time of writing no open model nor research
work in the field of symbolic music that match comparable sizes. Our strategy is to start
with a parameter size that aligns closely with those found in the existing works, and to
subsequently scale it by a factor of three, twice. The results show that these sizes are large
enough for the models to effectively learn from the data.

Their differentiating parameters are reported in Table 8.1. For each of them, the
feedforward size is four times the embedding size, the number of key/value heads is half
the number of query (attention) heads, and the sliding window is covers 384 positions4.

8.3.2 Tokenization

We use the TSD tokenization from MidiTok [55]. This tokenization is identical to the
MIDI-Like tokenization [137] used in Music Transformer [85] or MT3 [62], but uses
explicit Duration tokens instead of NoteOff tokens indicating when a specific note ends.
We prepend a Program tokens before each Pitch token to indicate the instrument of each
note. We represent the pitch values from 24 to 109, we downsample the velocity values
into 24 distinct values equally spaced from 0 to 127 included, and a time downsampling

3https://huggingface.co/docs/transformers/model_doc/mistral
4The highest attention causality length for the smallest model hence covers 9216 positions, which slightly

more than twice the maximum sequence length experimented in this paper (4096).

https://huggingface.co/docs/transformers/model_doc/mistral
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Data subset Num. tokens Avg. num. beats Avg. num. notes

Pretrained 2.48b 139.3±90.7 1312.1±498.5
Pop 208m 106.3±49.1 1173.7±406.2
Jazz 24m 114.3±64.3 1162.4±290.0
Rock 155m 129.3±69.3 1368.9±467.8

Table 8.2: Total number of tokens in the dataset after data augmentation and encoded
with BPE, and average number of beats and notes per training sample.

for TimeShift and Duration tokens of 8 frames per beat (fpb) for values between 0 to
1 beat, 4 fpb for values from 1 to 2 beat, 2 fpb for values from 2 to 4 beat and 1 fpb for
values from 4 to 8 beat. This allows to represent notes durations down to the thirty-second
note, however triplets might be represented as non-consecutive note successions separated
by rests. Tempo tokens are added for each tempo change present in the original files, that
we represent with 32 distinct values equally spaced from 50bpm to 200bpm. We add
twenty unused tokens are added for potential finetuning purposes. Finally, we follow
recent research and trained the tokenizer with Byte Pair Encoding (BPE) [56] to build a
vocabulary of 30k tokens that will reduce the sequence lengths.

8.4 Experimental setup

We trained all three model variants for autoregressive symbolic music generation, in order
to study the scalability of this type of model. We introduce here the experimental setup.

8.4.1 Data

We trained and evaluate SMILE on the MetaMIDI Dataset [49], which is to this day the
largest MIDI dataset available for research. It contains 436k MIDI files. Much however
are multiple covers of the same music. A music piece can have more than twenty MIDI
covers, with some of them sometimes almost identical. Using the whole dataset to train a
model would then induce a data imbalance. In order to train SMILE with a more evenly
distributed dataset (song-wise), we deduplicated each MIDI-audio matches provided by
the metadata by computing the matching of the weighted bipartite graph we built from
them. We end up with a total of 51.1k unique MIDI files.

In our experiments, we randomly subtract 2% and 5% of these files the validation and
test subset respectively, the rest constitutes the training subset. Data augmentation is
performed on the training set by increasing and/or decreasing the pitches by one octave,
the velocities by one or two values, and duration by two value.

The total number of tokens that represent the data, for the whole dataset and for
subsets of specific genres used in Subsection 8.5.3, and the average number of beats and
notes per sample are reported in Table 8.2.

8.4.2 Training

Training a large model can be a challenging task depending on the the compute and
memory capacities of the hardware used. Even with Graphic Processing Units (GPU)
featuring an amount of memory considered large today, e.g. 80GB, many considerations
must be taken when training a model on it. The model parameters can take a large
proportion of the memory just by themselves. The gradients for each token in the input
sequence must be also be stored, along with the optimizer states. To handle such memory
usage, we use the ZeRO (Zero Redundancy Optimizer) [151] stage 2 principle: the model
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parameters are redundant across all devices, but the data, gradients and optimizer states
are partitioned across all devices. We use the DeepSpeed [155] library implementation.

The models are trained with a batch size of 64 samples, sequence lengths of 2048
tokens for 20 epochs. The number of beats and notes per training samples are reported
in Table 8.2. With an average training sample of almost 140 beats, SMILE is the music
model trained with highest context length to our knowledge, allowing it to condition its
predictions based on musical content more distant in time.

The AdamW optimizer is used with a 6e−5 learning rate and a warmup corresponding
to 10% of the total training (2 epochs), weight decay (0.01), gradient norm clipping (3)
and dropout (0.1). The models are trained on A100 SXM4 (80GB) GPUs: two for the
125m and eight for the 500m and 1b5 models, with bfloat16 mixed-precision.

8.4.3 Music generation

To analyze the performances of the models, we generate samples from the first 2000
files of the test set, and generate the next 2048 tokens. We use a 0.8 temperature and
sample from the set of tokens with the top-8 probabilities [54], as these parameters allow
to slightly reduce the variance of the results while keeping a degree of diversity.

To benchmark our models against existing ones, we include comparative analysis with
outputs from FIGARO [164], a recently proposed model for symbolic music generation
offering several levels of control, and one of the few openly available5. We use the "expert"
checkpoint.

8.5 Results

8.5.1 Overfitting dynamics

Our first observation highlights the rapid overfitting of the models, as shown by the losses
depicted in Figure 8.1. The cross-entropy loss used here can be seen as the distance
between the probability distribution predicted by a model, for the next token in our case,
and the expected probabilities as a one-hot distribution centered on the expected next
token [123]. A lower loss indicates that the model predicts the next expected token with
greater certainty, and thus correlates with accuracy. The absolute value of the loss naturally
tends to be greater with the number of categories, i.e. the vocabulary size in our case,
which is 30k.

For the 500m and 1b5 models, the validation loss starts to increase after 35k training
steps, at approximately 1.7 epochs. The 125m model demonstrates a lower validation
loss peaking at 72.5k training steps, which corresponds to 3.45 epochs, and a lower final
validation loss.

The training losses for the 500m and 1b5 models approach 0, indicating near-perfect
predictions of the ground-truth next tokens in the training data. In other words, the
models learned the training data, as supported by their higher losses on the validation
subset. Subsequently, we will next assess their capability for data reproduction.

8.5.2 Measuring training data reproduction

Measuring the similarity between two data subsets presents a complex challenge [50]. No
universal approach allows to perform this task, but each type of data has to be treated
considering its specific features. While some studies propose ranking methods operating at

5We initially wanted to include MMT [43] in our study, but the model parameters were not longer publicly
available at the time of our experiments.
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Figure 8.1: Training losses of the SMILE models.

LCStr avg. LCStr max. (↓) Lev. avg. Lev. min. (↑)

SMILE 125m 1.10±0.14 10.09±9.21 0.99±0.00 0.90±0.07
SMILE 125m lvl 1.00±0.14 08.21±5.12 0.99±0.00 0.88±0.08
SMILE 500m lvl 0.95±0.17 8.18±5.41 0.99±0.00 0.88±0.06
SMILE 1b5 1.19±0.13 106.04±381.22 0.99±0.00 0.86±0.21
SMILE 1b5 lvl 0.98±0.18 11.17±25.29 0.99±0.00 0.88±0.07

Table 8.3: Similarity metrics between 100 results generated by SMILE baselines (2048
tokens) and the non-augmented training data. Lev stands for Levenshtein distance.

the MIDI level to measure their similarities [92], such metrics do not directly quantify the
similarity between a model’s raw predictions and its training data. Consequently, we resort
to measure the similarity between the sequences of generated tokens and the sequences
of tokens from the training subset. To do so, we use the Longest Common Substring6

(LCStr) and the Levenshtein distance as an Edit distance. This approach places greater
emphasis on successions of symbols without strictly relying on their positions within the
compared sequences. We compare the model sizes, and analyze the results generated from
their final checkpoints and the checkpoints exhibiting the lowest validation losses (lvl).

However, comparing these subsets with the whole training data is highly compute-
intensive, even for high-performance processors. To make these computations tractable,
we limit our comparison to the non-augmented training samples (47.5k sequences) and
100 generated samples. While imperfect, these results, reported in Table 8.3, still give us
insights on the data reproduction.

The average maximum LCStr length measured increases with the model size. We
highlight in particular the high standard deviations, as some generated samples share no
similarity with any training sample, while others have a LCStr length almost equal to
the number of tokens generated (2048), thus nearly replicating a sample from the data.
Conversely, the average minimum Levenshtein distance remains relatively consistent
accross samples from the final and lvl checkpoints. Larger models also exhibit lower
minimum Levenshtein distances, however the gap between model sizes is smaller than
for maximum LCStr length. However, we note an average LCStr length value for the
1b5 lvl and 500m lvl checkpoints inferior to 1, which we interpret as one of the effect of
their repetitiveness observed in Subsection 8.5.4, as some generated samples might note

6Not to be confused with the Common Longest Subsequence.
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Figure 8.2: Losses when finetuning the SMILE models from the lvl checkpoints on music
genres.
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Figure 8.3: Distributions of the number of generated tokens per sample (2048 tokens)
part of a ngram that is repeated at least four times not consecutively. Additional figures for
other ngrams can be found in our code repository1.

share a single token with most training samples. All the measures are available in our code
repository1.

8.5.3 Effect on finetuning

To measure if the loss momentums previously observed can also be found for smaller sub-
sets of data and shorter trainings, we finetuned the models pretrained at the lvl checkpoints
on three music genres: pop, jazz and rock. The MIDI files constituting these subsets are
selected from the metadata provided from the MetaMIDI dataset. The number of tokens
of each subset is reported in Table 8.2. The models are finetuned with the same training
parameters than for the pretraining, except for the number of epochs which is 10.

The losses, depicted in Figure 8.2, show similar divergences between the training and
validation data. However, it’s noteworthy that the final validation losses are lower on these
subsets than for the whole dataset. This may be attributed to the higher intra-similarity
among the training samples within each genre subset, than among samples across the
entire dataset.
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2gram (↓) 3gram (↓) 4gram (↓) 5gram (↓) 6gram (↓) 7gram (↓) 8gram (↓) 9gram (↓) 10gram (↓) 11gram (↓) 12gram (↓)

MMD (reference) 0.2% 0.0% 0.1% 0.0% 0.2% 0.0% 0.0% 0.0% 0.0% 0.0% 0.1%
SMILE 125m 0.8% 0.6% 1.0% 0.4% 1.3% 0.2% 0.9% 0.6% 0.8% 0.2% 1.2%
SMILE 125m lvl 1.1% 0.7% 1.3% 0.6% 1.6% 0.4% 1.5% 0.7% 1.3% 0.4% 1.9%
SMILE 500m - - - - - - - - - - -
SMILE 500m lvl 2.3% 2.0% 3.9% 1.6% 4.8% 1.4% 4.6% 2.8% 3.4% 1.1% 6.7%
SMILE 1b5 0.3% 0.2% 0.5% 0.2% 0.4% 0.1% 0.5% 0.1% 0.3% 0.1% 0.4%
SMILE 1b5 lvl 1.4% 1.1% 2.1% 0.9% 2.6% 0.7% 2.4% 1.4% 2.0% 0.6% 3.6%
FIGARO MMD 4.6% 5.1% 4.6% 4.7% 4.9% 4.4% 4.4% 4.8% 4.4% 4.3% 4.7%
FIGARO Lakh 4.8% 5.4% 4.7% 4.8% 5.2% 4.5% 4.5% 5.1% 4.5% 4.4% 5.0%

Table 8.4: Percentage of generated tokens part of ngrams repeated at least four times
successively.

8.5.4 Repetitions in predictions

While listening to the generated results, the first noticeable difference felt between the
different baselines is their repetitiveness: non-overfitting models tend to repeatedly predict
the same successions of notes. Although repetition is a fundamental aspect of music, there
is a reasonable expectation for a degree of variation and evolution, respecting a musical
structure. However, in this instance, the non-overfitting models get stuck in repetitive
loops, which is in most cases undesirable [82, 185].

In Figure 8.3, we depict the distributions of the number of generated tokens per sample
(2048 tokens) that are part of ngrams repeated at least four times non-consecutively.
Shorter ngrams, e.g. 3grams or 4grams are naturally more repeated as they represent
shorter token combinations. In every cases, overfitted models produce significantly fewer
repetitions resulting in more diverse token successions.

In Table 8.4 are reported the percentages of generated tokens that are part of ngrams
repeated at least four times consecutively. They represent tiny portion the training data.
While the results from the generated tokens remain relatively low, the tokens gener-
ated from lvl checkpoints show between four to five times more consecutive repetitions
compared to those from final checkpoints.

8.5.5 Interactive demo application

Even though, a subjective evaluation is the best way to assess the quality of a generated
music, we opted to not do conduct one as it is out of the scope of our study. However,
we made available a web-based demonstration application1 that allows to easily use the
model, with an interactive pianoroll interface. We anticipate this tool will assist readers to
better assess the generation performances of the models. The source code is open and
can freely be reused for other models. Additionally, all the generated results can be found
with the models1.

8.6 Discussion on autoregressive music generation and exposure
bias

Symbolic music generation is currently mostly addressed with Transformer models which
are used autoregressively. As such, these models are trained with teacher forcing to predict
the next token at each position of the input sequence, conditioned on the previous ones.
This way of processing information has mostly been borrowed from the research in natural
language processing [26], and applied to music. While the method works in practice, it
also suffers from a discrepancy between the model’s performance on the training data and
the results generated from unseen test data. This effect is called the exposure bias [154]
and is the subject of many research trying to mitigate it [114, 22, 71, 110], although the
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Figure 8.4: Screenshot of the user interface of the SMILE Hugging face Space.
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Figure 8.5: Co-occurrence matrices of the next tokens within music (MIDI) and text
datasets (others). The matrices are downsampled with maxpooling to 200x200 for
MetaMIDI and 70x70 for others, and the first 2k tokens are omitted for text datasets for
better readability. The matrices are normalized, no scale is given. The raw values are in
our code repository1.

current tendency to tackle it is to use larger models and training datasets and finetuning
methods [29].

While exposure bias is documented for natural language [9, 188], we can wonder how
its affects music. Our previous results give some initial insights. Yet, language and music
are different modalities that convey information in different ways. Text tokens usually
represent words or subwords [167], that represent rich semantics, that the models learn
contextually [143, 37, 52]. As such, we can expect for each specific token to be followed
by a restricted set of tokens that contains contextually relevant information, thus forming
pertinent sentences. For music however, the dynamics explaining the token successions
are unclear.

When generating music autoregressively, for either continuation, inpainting or ar-
rangements, a huge number of combinations of notes forming a pleasant music while
conditioned on the provided context can be imagined. On the other hand, natural language
puts stronger constraints to use specific words because of their semantics, hence resulting
in potentially more limited token combinations.

To measure the "intra-compatibility" between tokens, we computed the co-occurrence
matrices of the token successions within the MetaMIDI and GiantMIDI datasets along
with five popular text datasets for comparison: WikiText, CNN Dailymail, BookCorpus,
Yahoo Answers and Yelp Reviews. For each dataset, we trained a tokenizer with byte pair
encoding for fair comparison. The matrices are depicted in Figure 8.5. We instantly
notice that the music datasets have more sparsely distributed occurrences, whereas the
distributions of the text datasets are much more imbalanced with almost all the weight
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Avg. unique next tokens Avg. entropy Avg. variance

MetaMIDI 540.99±823.38 4.59±1.16 0.0006±0.0038
GiantMIDI 549.49±908.02 5.54±0.80 0.0000±0.0002
WikiText 291.12±763.94 3.39±1.19 0.0055±0.0207
CNN Dailymail 417.95±907.86 3.57±1.24 0.0052±0.0209
BookCorpus 604.87±1199.10 3.59±1.17 0.0041±0.0185
Yahoo Answers 290.66±731.08 3.65±1.07 0.0031±0.0138
Yelp Reviews 200.01±589.82 3.29±1.06 0.0053±0.0191

Table 8.5: Token succession metrics for music (MetaMIDI and GiantMIDI) and text
datasets (others), computed on the distributions next tokens in the co-occurrence matrices.
Avg. stands for average and the variance is normalized.

being on the first tokens in the vocabulary, which are likely to be common prepositions.
This suggests that the possible token successions in music are much more diverse, and still
keep high occurrences for all the tokens in the vocabulary.

This observation is supported by the Table 8.5. The distributions of next tokens show
a higher average entropy for music than language, and has a higher number of unique next
tokens. Considering the distribution imbalance found for the text datasets, their average
numbers of next tokens would have been likely much lower if we omitted the first tokens
in the vocabulary. The variance of music distributions are however lower, indicating that
their counts of unique next tokens are more consistent than for language.

These results show that the formation of successions of tokens in music is much
more diverse than for text. The token of the latter are followed by smaller sets of tokens.
Consequently, a music model is likely to predict a higher diversity of combinations of
tokens. This diversity might however make the generation task harder for music models,
as the tokens of the vocabulary represent notes that can more easily be combined together
than tokens from text vocabularies that are less compatible with one another. A greater
number of "compatible" next tokens implies that predicting a succession of good ones that
form relevant combination of notes is less straightforward, when the model is trained to
only predict the next one, thus suffering from exposure bias. It might also explain the
tendency of non-overfitting models to fall into loops of repetitive predictions as repetitions
are common in the data and thus more susceptible to be predicted [71].

8.7 Conclusion

We investigated the scalability of Transformer models for autoregressive symbolic music
generation, up to 1.5 billion parameters. We found that in the simplest training objective of
music modeling, these models tend to overfit quickly. Our analysis reveals the biases in data
reproduction of overfitting models and highlights the repetitions made by non-overfitting
models.

By analyzing the distributions of token successions in the MetaMIDI dataset and
popular language datasets, we show that the music tokens exhibit a larger diversity in
their successions. This fundamental difference likely contributes to the overfitting and
exposure bias we observed. The way music tokens are formed should be considered for
music modeling tasks. Therefore, our forthcoming work will focus on experimenting with
different training objectives, and generation techniques conditioning generation on future
tokens. This approach aims to mitigate this bias with the goal of training generative models
with better extrapolation capacities.
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Finally, we introduce SMILE, the series of models used for our study, which we openly
share with the research and engineering communities. We believe that these resources
will facilitate further reuse and investigation in the field of symbolic music generation.
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Chapter 9

Conclusion

In this thesis, we explored the realms of symbolic tokenization. Our two main goals were
to lower the barriers of entry into the field, and to improve models performances and
efficiency. We will conclude this work by giving a summary of our contributions, followed
by future research directions that could further contribute to the field.

9.1 Summary of contributions

As symbolic music is a discrete modality, recent researches have mainly tackled symbolic
music modeling tasks with discrete models such as Transformers. Such models require to
receive data as the form of sequences of distinct tokens. To use them for symbolic music,
one must hence serialize, i.e. tokenize, music into tokens, that can then be detokenized back
to notes and music. In the previous works, the tokenization process was always performed
with code written by the authors. Hence, most tokenizations were done differently, making
comparisons difficult, and forcing other people to adapt code from repositories. To address
these problems, we developed MidiTok. MidiTok is a Python package providing easy
to use, yet highly flexible and configurable, tokenization methods. It comes with a wide
variety of features, allowing users to easily experiment and design their own tokenizations.
MidiTok gained traction in the MIR community, and benefited from its feedback to
improve itself throughout the years. It is now an established tool, which we hope will
continue to improved and bring features to the community.

As music tokenization can be performed by different methods, it can be difficult
to choose how to do it. In the Chapter 6, we explored different tokenization schemes,
especially on the representation of time, note duration and MIDI instrument, and showed
that the results can vary following the task at hand. This chapter was also the appropriate
place to discuss of what are the tokenization choices, by decomposing music tokenization.
We only explored three of seven of them.

Tokenizing music by only using note attributes and time tokens results in relatively long
token sequences, and tokens that do not carry meaningful musical information. These are
significant problems as the complexity of Transformers models grow quadratically with the
input sequence length, and that they deeply rely on the contextually learned information
of the tokens to process data and perform the tasks they are trained for. Previous works
address the first problem by merging tokens and embedding vectors. We showed that Byte
Pair Encoding, a technique commonly used in natural language processing, can address
these problems when applied to music. It allows to create vocabularies with new tokens that
can represent whole notes and note successions, resulting in much reduced token sequences
lengths. The models trained with such vocabularies perform better, especially for music
generation, while having a reduced inference time. The tokenization time is however
slightly higher due to the BPE encoding and decoding, fortunately this is contained thanks
to efficient Rust implementation.
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Finally, we scaled Transformer models up to 1.5 billion parameters for symbolic music
generation, and release SMILE, the series of associated models. We showed that these
models quickly overfit. We measured the data reproduction of these models and found that
they can moderately reproduce significant parts of the training data. Yet, this overfitting
allows models to predict results of higher quality and far fewer repetitions. We close this
chapter with a discussion on the effects of exposure bias on symbolic music generation,
highlighting that the token successions formation of symbolic music is more diverse and
sparse than text and might explain its the greater discrepancy between train and test results.

9.2 Future directions

We share here some directions that we think could help bring new knowledge to the field,
and lead to better model performances.

MidiTok is a very useful tool. In its current state, it could however benefit from
additional improvements. One of its biggest bottleneck is the reliance on Python code for
operations with high time complexity O. The loading of MIDI files is already performed
in C++. Additional operations such as the preprocessing of the MIDI files and parsing
of the track and MIDI information could also benefit from being performed in a more
efficient programming language. We are also sure that the community will find ways to
further improve it in the future.

In the Chapter 6, we only experimented with four of the music tokenizations dimen-
sions we introduced. We consider that Chapter 7 delve into the last dimension. There are
still tokenization design choices that remain to be explored. One important in particular is
the downsampling. By downsampling, we effectively lose the performance information
present in most MIDI dataset. While this step is necessary and helps the models to learn
more efficiently, we are not aware of any work experimenting comprehensively with dif-
ferent granularity levels. This could bring more insight and help to find more accurate
tradeoff between performance information and model’s learning.

In Chapter 6 and Chapter 7, we showed that the explicit information carried by the
tokens helps the models to learn. We believe that the expressivity of the musical content is
essential in a model’s learning performances. Ultimately, including more expressive tokens
would be likely to bring better performances. In particular, tokens explicitly describing
the texture and structure of music the could bring very useful information to the models.
Some works are being conducted on the analysis of texture in symbolic music [31, 63],
that could be used for symbolic music modeling.

In Chapter 7, we did not deeply explored the nature of the tokens created by BPE.
Yet, as they represent recurrent successive information, analyzing their meanings could
give us information on the nature of the data. Furthermore, other token aggregation
methods similar to BPE could be applied to symbolic music. Namely, Unigram [108] and
WordPiece [184] are commonly used in NLP. Considering they are specifically designed
for words, we could think of similar methods more suited for symbolic music.



101

Part IV

Appendix





103

Appendix A

Data

A.1 MMD preprocessing

With more than 436k MIDI files, the MMD dataset contains many covers of the same
songs, corrupted files and poor quality performances. In order to train our models with a
well balanced dataset composed of pieces of good quality, we performed a preprocessing
step to deduplicate each song, and keep the best versions.

Each MIDI file has a matching score with audio files linked to Spotify and MusicBrainz
ids. Hence, each MIDI file can have high matching scores with several different ids, and
an Spotify or MusicBrainz id can have have high matching scores with several different
MIDI files.

In order to deduplicate the songs, we represented the matching scores as a weighted
bipartite graph, and computed its matching. To build the graph, we first read each MIDI
file, add it to the graph if it is not corrupted, and satisfies some other requirements specific
to our experiments (e.g. on the number of tracks or time signatures). The opposite nodes
are the Spotify ids, and the edges (weights) are the MIDI-audio matching scores. When
the graph is complete, we compute its matching in order to have the maximum sum of
the weights between pairs of distinct and unique MIDIs and Spotify ids. After matching,
we end up with 30k distinct MIDI files.

Finally, among the 128 possible MIDI programs featured in the General MIDI 2
protocol, a large proportion are very similar in the way they are played and sound. For
example, there are eight sorts of pianos, that are very similar. A model could struggle
to capture the differences between these similar programs, especially considering that
the program choices were made by humans and potentially subject to bias or subjective
preferences. So in order to reduce the overall complexity and avoid the model to deal
with distinguishing these instruments, we merge the tracks of the instruments of the same
classes, for the twelfth first categories (programs from 0 to 95) except ensembles (programs
48 to 55), and drums, ending up with twelve distinct programs.
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Appendix B

Analysis related to Byte Pair Encoding

B.1 Proportion of simultaneous notes in common datasets

Table B.1 shows the ratios of notes being played simultaneously (having the same onset
and offset times), with the same velocity, for the datasets used in this paper, as well as
POP909 [181], GiantMIDI [105] and EMOPIA [88].

The proportion of simultaneous note is low, even with a strong downsampling of their
attributes, onset and offset times. Hence, the scope of token aggregation techniques such
as in SymphonyNet [118] is arguably limited.

POP909 Maestro GiantMIDI MMD EMOPIA

Ticks 0.014 0.000 0.002 0.143 0.002
Preprocessed (32nd) 0.124 0.129 0.182 0.203 0.124
Preprocessed (16th) 0.175 0.229 0.236 0.222 0.145

Table B.1: Ratio of notes played simultaneously with the same velocity. Preprocessed
rows means that the onset and offset times in ticks of the notes have been aligned, to the
corresponding portion of bar. For a fair comparison, results for POP909 are for all tracks
being merged, and those for MMD are for the unprocessed (vanilla) dataset.
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Figure B.1: Normalized distributions of the token types of the BPE tokens, per vocabulary
size. Abbreviations in the legend stand for: Pit: Pitch; Vel: Velocity; Dur: Duration; Pos:
Position; TS: TimeShift; Prg: Program.

B.2 Types of learned byte pairs

Figure B.1 shows the distribution of token types combinations of the learned BPE tokens.
The majority of the learned combinations represents single notes in all cases, except
for the case of MMD when tokenized with TSD. In this latter case, most BPE tokens
begin with Velocity base tokens, indicating that the dataset contains a lot of recurrent
Velocity - Duration token successions. With REMI however, the Position token seems to be
more recurrent, showing that the notes have more common onset positions, which is not
surprising considering that the MMD dataset features many music of genre known to have
repeating patterns. As the vocabulary grows, the combinations tend to be more diverse.

B.3 Human evaluations

We report here the human evaluation instructions given to the participants to assess the
generative models:

Each MIDI file contains several music tracks generated from different Deep
Learning models, that are the continuations of the same 4-bars prompt. For
each file, you have to choose the best track on several criteria:

• Fidelity: the track with the best fidelity (coherent) relative to the prompt,
from a tonal and rhythm point of view;

• Correctness: the track with the most correct note successions and har-
monies, contrarily to tracks with dissonant notes or unnatural melodies;

• Diversity: the track with the best coherent diversity, i.e. featuring di-
verse correct melodies, contrarily to a music that would repeat the same
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Figure B.2: Example of MIDI file given to participants for human evaluations, opened
with the Logic Pro DAW.

note patterns. A "bad" or uncertain music (i.e. non-correct) cannot be
considered as diverse;

• Overall preference: the track that you overall prefer subjectively;

Do not answer to all for all the files, as the evaluations can be time-consuming.
Fix yourself a number of files to evaluate, and randomly pick them from the
list.

You will find generated results than can be very similar, even identical some-
times. As such, you might feel uncertain or unable to decide. In such cases,
do not answer for all criteria and just skip to the next file. There is no good or
wrong answer, you just have to answer subjectively. Trust yourself and trust
your musical instinct.

An example of MIDI file open with the Logic Pro DAW is shown in Figure B.2.

B.4 Learned embedding space

UMAP [125] representations shown in Figure B.3, Figure B.4, Figure B.5 and Figure B.6
show the embeddings of the models of the paper, computed with the official UMAP Python
package with default parameters. For each figure, only 1k randomly sampled points are
represented in order to keep them in vector format without adding too much weight in
this file document. We encourage the reader to visualize them on our demo website for a
more convenient readability.

The models learn clusters of embeddings of the same type. The embeddings do not
occupy the space uniformly, but rather have preferred directions following their type and
value. We still note that bi-directional (pretrained) models tends to occupy more space
than causal (generative) ones. This especially noticeable for the PVm and PVDm models.
For generative models, the embeddings tends to be oriented towards common dimensions,
and slightly spread towards orthogonal one.

Pretrained bi-directional models learn more isotropic embedding representations. The
embeddings are spread more uniformly across all directions.

https://ugtqphgirx.github.io/bpe-symbolic-music/
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Figure B.3: UMAP 2d representations of the embeddings of the generators, trained with
the Maestro dataset. Abbreviations in legend stand for: Pi: Pitch; Ve: Velocity; Du:
Duration; Po: Position; TS: TimeShift.
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Figure B.4: UMAP 2d representations of the embeddings of the pretrained bidirectional
models, trained with the Maestro dataset. Abbreviations in legend stand for: Pit: Pitch;
Ve: Velocity; Du: Duration; Po: Position; TS: TimeShift; Pr: Program.
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Figure B.5: UMAP 3d representations of the embeddings of generative models, trained
with the Maestro dataset. Abbreviations in legend stand for: Pi: Pitch; Ve: Velocity; Du:
Duration; Po: Position; TS: TimeShift.
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Figure B.6: UMAP 3d representations of the embeddings of pretrained bidirectional
models, trained with the MMD dataset. Abbreviations in legend stand for: Pi: Pitch; Ve:
Velocity; Du: Duration; Po: Position; TS: TimeShift; Pr: Program.
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Résumé de la thèse

Dans ce résumé, nous introduisons brièvement l’état de l’art de la modélisation de la
musique symbolique par apprentissage automatique, et pointons les enjeux actuels que
nous abordons dans cette thèse. Nous présenterons les contributions apportées, notamment
leurs bénéfices et points d’intérêts, pour enfin introduire des pistes de recherches qui
pourraient davantage contribuer au domaine.

Introduction

La musique a historiquement longtemps été représentée sous forme de partition papier.
Bien que le format de partition soit toujours largement utilisé de nos jours, il a été remplacé
par de nouveaux formats dans certains cas d’usage depuis le siècle dernier. Depuis le siècle
dernier, les projets technologiques ont largement influencé et modifié la façon dont nous
créons, concevons, utilisons et partageons la musique. L’électronique analogique nous
a permis de représenter, stocker et transmettre la musique sous forme d’ondes, sur des
supports tels que les vinyles. Dès lors, il nous a été possible de mixer, amplifier, filtrer,
altérer le son, voire en produire de nouveaux créés par des oscillateurs et autres composants
électronique. Plus récemment, le progrès l’informatique a permis de représenter la musique
sous forme numérique, sous forme de séquences de 1 et 0. De nos jours, nous utilisons
quotidiennement des appareils numériques, que ce soient des ordinateurs, téléphones ou
téléviseurs. Ces appareils sont pour la plupart connectés à internet, par lequel l’information
circule de façon numérique. Nos usages courants ont à nouveau considérablement affecté la
façon dont nous utilisons la musique, qu’il s’agisse de sa création à son écoute. La musique
est aujourd’hui créée à partir de logiciels de création tels que Logic Pro ou Ableton, et est
largement diffusée par internet à travers les services de streaming.

Depuis quelques années, nous assistons à un nouveau changement majeur de notre
usage des technologies. Les avancées portées au domaine des semi-conducteurs nous
permettent de profiter de processeurs de calculs dont les performances ont considérable-
ment augmentées d’année en année. Cette puissance nous a permis de développer des
applications logicielles davantage complexifiées, avec une fréquence de calculs par seconde
grandissante. Plus spécifiquement, les tâches faisant appel à l’apprentissage automatique
en ont grandement bénéficié, jusqu’à faire partie intégrante de notre quotidien à leur tour.
L’apprentissage automatique est une technique par laquelle un système est entraîné à
réaliser une tâche à partir de données servant d’exemple. On compte parmi ces tâches la
reconnaissance d’image ou le traitement automatique du langage naturel. Ces systèmes
sont aujourd’hui présents dans de nombreuses applications que nous utilisons tous les jours,
tels que les moteurs de recherche, le traitement d’image, et demain la conduite autonome.

L’apprentissage automatique permet également de créer des modèles génératifs, capa-
bles de produire du contenu tel que des images, musiques ou vidéos. De grands progrès
on notamment été faits pour la génération d’images, donnant naissance à des modèles
très performants tels que Dall-E [153, 152] ou Stable Diffusion [161]. La génération
de musique pose d’autres challenges et contraintes, mais est toutefois convenablement
réalisée sous forme audio et sous certaines conditions par des modèles tels que MusicLM
[1], MusicGen [30] and AudioGen [106].
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Des méthodes de génération de musique symbolique par apprentissage automatique
font également l’objet de vives recherches. L’avantage de ce format par rapport à l’audio
est la flexibilité et le contrôle qu’il offre sur le résultat généré. En effet, les notes produites
peuvent facilement être modifiées, ainsi que les autres éléments musicaux tels que le tempo.
Ce format perd toutefois des informations importantes, faisant le corps de la musique tel
que le timbre des instruments, effets et tout élément ne pouvant pas être représentés de
façon discrète. La génération de musique symbolique n’a donc pas pour finalité la création
de musique sous forme complète, mais vient davantage s’inscrire dans un contexte d’aide
à la composition musicale. Compte tenu de la grandissante importance de l’intelligence
artificielle dans nos tâches du quotidien, il est raisonnable de penser qu’elle viendra à jouer
un rôle important dans la composition de musique.

Apprentissage automatique et musique symbolique

Représentations continues

La musique symbolique est traditionnellement représentée sous forme de partition, comme
montrée sur la Figure 3.1. Cette notation, qui existe initialement sur support papier, permet
d’inscrire les notes de façon en spécifiant leur hauteur, durée et temps.

Plus récemment, la représentation sous forme de "piano roll", comme montré sur la
Figure 3.3, s’est peu à peu insérée dans les outils de production musicale DAW (Digital
Audio Workstation). Ce format est pratique pour qu’un utilisateur visualize la musique
et l’édite à la souris d’un ordinateur. Il représente la musique sous forme d’une matrice
à deux dimensions, l’une pour le temps (en abscisse) et l’autre pour la hauteur des notes
(en ordonnée). L’intuitivité de ce format a encouragé les chercheurs à l’utiliser dans
des systèmes d’apprentissage automatique, afin d’y accomplir des tâches de MIR (Music
Information Retrieval), mais surtout de génération, tels que MuseGAN [44] et Coconet
[84]. Comme un pianoroll est une matrice, ces modèles sont basés sur des opérations
continues telle que la convolution, et génèrent la musique de façon non-autoregressive.

La musique symbolique peut être néanmoins davantage vue comme discrète que
continue, et comporte des informations, telles que le tempo, qui peuvent être difficilement
représentées dans une matrice à deux voire trois dimensions. Ces modèles, bien que
fonctionnant en pratique avec certains types de données, restent ainsi limités, et ont
encouragé les chercheurs à se tourner vers des représentations discrètes.

Représentations discrètes

La musique symbolique peut en effet également être représentée sous forme de séquence
d’éléments discrets, à l’instar du texte, qu’il soit de la langue naturelle, code de program-
mation ou écritures mathématiques. Ces éléments sont communément appelés "tokens".
Ces séquences de tokens sont ensuite traitées par des modèles discrets, qui vont traiter
l’information qu’elles représentent, par la sémantique des tokens et leurs combinaisons,
formant par exemple des phrases.

Dans le contexte de la musique symbolique, les notes et leurs attributs, ainsi que le
temps doit ainsi être représenté sous forme de tokens. On appelle cette procédure une
tokenization. Pour cela, des premiers travaux tels que FolkRNN [173] ou DeepBach [69],
ont représenté la hauteur des notes sous forme de tokens, ensuite sérialisés sous forme
de séquences traitées par des Réseaux de Neurones Récurrents (RNN). Par la suite, de
nouveaux travaux ont proposé des tokenizations plus universelles capables de représenter
n’importe quel type de musique. Parmi les plus connues figurent MIDI-Like [137] et
REMI [87]. Pour cette première, les notes sont tokenizées par des tokens de NoteOn,
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Velocity et NoteOff, et le temps par des tokens TimeShift avec les mêmes structures
et valeurs que dans la norme MIDI. REMI lui représente explicitement la durée des
notes avec des tokens Duration, et le temps par des tokens Bar et Position indiquant le
commencement d’une nouvelle mesure et la position absolue du temps de celle actuelle.

Ces représentations discrètes menèrent à la création de modèles génératifs plus per-
formants [85, 87, 48], capable de produire des résultats musicaux plus consistants. Elles
permettent également de représenter différentes informations musicales de façon très
flexible, telles que le tempo ou les effets. D’autres informations, notamment labels de
datasets, peuvent également être inclus. La génération de musique se fait de façon autore-
gressive, c’est-à-dire en générant le token suivant le dernier de la séquence d’entrée, qui
sera réintroduit à plusieurs reprises en entrée du modèle pour générer les tokens l’un après
l’autre.

Compte tenu des avantages de la représentation de la musique de façon discrète, les
chercheurs ont proposés récemment différentes manières de la tokenizer, avec différents
avantages et inconvénients et pour plusieurs cas d’usage.

Enjeux actuels

La modélisation de la musique symbolique présente un certain nombre d’enjeux qui
rendent les efforts requis conséquents, et l’efficience des modèles actuels limités. Dans
cette thèse, nous adresserons ceux présentés dans cette section.

Implémentation de tokenization de la musique symbolique

Bien que de nombreux travaux de recherche partagent le code source de leurs expériences
[83, 87, 194], leurs implémentations ne sont souvent pas triviales à réutiliser. Le code
permettant de tokenizer la musique est souvent caché, utilisant différentes dépendances
de packages et pré-traitant les fichiers MIDI avec diverses méthodes. Tout cela demande
du temps pour adapter et corriger le code. L’obstacle à l’utilisation du DL avec de la
musique symbolique est relativement élevé par rapport à d’autres modalités telles que le
texte, l’image ou l’audio qui bénéficient de logiciels bien établis. De plus, ce manque de
logiciel rend la comparaison entre les tokenizations musicales injuste, car le prétraitement
sera différent.

Ce manque limite également le partage et la réutilisation libres de modèles pré-
entraînés. En NLP, des plates-formes telles que le hub Hugging Face1 permettent de
télécharger et de partager librement des modèles pré-entraînés. Chaque modèle discret
(e.g. Transformer) est nécessairement partagé avec son tokenizer, qui permet de convertir
les données en tokens pour son utilisation. Aujourd’hui, très peu de modèles pour la
musique symbolique sont partagé (comme discuté dans la Section 4.5). Nous pensons
l’absence de standards de tokenizers musicaux et méthode de partage peuvent en partie
l’expliquer.

Créer un moyen simple de tokenizer la musique abaissera donc la barrière de l’utilisation
de DL avec de la musique symbolique. Cela aiderait les chercheurs et les ingénieurs, en
améliorant leur productivité et leur permettant de partager plus facilement leurs travaux.

L’impact des choix de tokenization de la musique symbolique

Contrairement au texte, la musique symbolique peut être sérialisée de différentes manières,
et avec une plus grande flexibilité. Il existe plusieurs façons de représenter le temps, la durée
des notes ou les instruments sous la forme d’une séquence de tokens. Les chercheurs ont

1https://huggingface.co/models

https://huggingface.co/models
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développé diverses méthodes pour tokenizer la musique. Pourtant, ces travaux n’étudient
pas en détail les différences entre ces tokenizations et leur impact sur l’apprentissage des
modèles. De plus, ils se concentrent principalement sur la génération de musique, laissant
de côté d’autres tâches de modélisation tout aussi importantes lors de l’évaluation de la
tokenization musicale, telles que la classification ou transcription.

Pourtant, la manière dont les informations musicales sont représentées peut facilement
influencer les performances du modèle. Les modèles génératifs sont essentiellement
causals, signifiant que les calculs pour une position donnée dans la séquence d’entrée seront
conditionnés uniquement par les tokens des positions précédentes. Par conséquent, les
modèles génératifs ont une portée et des capacités de modélisation plus limitées. Les
modèles entraînés pour d’autres tâches sont pour la plupart bidirectionnels, signifiant que
les calculs sont conditionnés à la fois par le contexte passé et celui futur. Avec des tokens
NoteOff indiquant implicitement les durées des notes, un modèle génératif pourrait donc
être désavantagé pour capturer la mélodie et l’harmonie, alors qu’un modèle bidirectionnel
pourrait bénéficier des informations de décalage explicites apportées par de tels tokens.

On peut en effet aussi imaginer d’autres différences avec les différentes combinaisons
d’informations de temps, de durée de note, d’instrument ou de tempo. Certains modèles
fonctionnent différemment et certaines informations peuvent être plus importantes pour
différentes tâches. Nous pouvons facilement identifier les choix de conception possibles en
matière de tokenization de la musique, ainsi que toutes les combinaisons possibles, mais
nous ne savons pas exactement comment les choisir. Pour ces raisons, une analyse de ces
choix pour différents types de modèles et de tâches pourrait approfondir ce domaine de
recherche et fournir des conseils sur la tokenization symbolique de la musique.

Taille des séquences de tokens

En représentant chaque attribut de note (hauteur, vélocité, durée) et temps sous forme
de token distinct, la tokenization de la musique donne des séquences de tokens relative-
ment longues. Étant donné qu’une note est représentée par trois tokens, une musique
tokenizée comptera au moins trois fois son nombre de notes en tokens, sans compter ceux
représentant le temps et autres informations.

La densité d’informations par token est ainsi faible, et cette longueur est problématique
lorsqu’on souhaite utiliser des modèles Transformers, pour lesquels la complexité en temps
et mémoire des calculs augmente quadratiquement avec la longueur de la séquence d’entrée.
Par conséquent, un Transformer ne peut traiter des séquences avec une certaine taille limite.
Compte tenu de la longueur des séquences de tokens de musique, peu d’information, c’est
à dire notes, sera alors traitée par le modèle. Avec des capacités de calcul plus importantes,
un modèle pourrait gérer des séquences plus longues, mais serait cependant moins efficace,
et les exigences de calcul coûteuses augmenteraient également de façon quadratique.

Des tentatives ont été faites pour réduire cette longueur de séquence pour la musique
symbolique. La première stratégie consiste à fusionner les vecteurs d’embedding de
certains tokens. Par exemple, CPWord [83] fusionne les embeddings des attributs de
note, celles des tempos avec celles des positions du temps, et la signature rythmique avec
les tokens de nouvelle mesure. Octuple [194] va encore plus loin en fusionnant tous les
embeddings d’attributs de notes avec ceux représentant le temps absolu en mesure et
position. Une autre technique pour réduire la longueur des séquences consiste à utiliser
des tokens combinant plusieurs attributs. Par exemple, LakhNES [41] combine les tokens
d’instrument avec les tokens NoteOn et NoteOff.

Ces méthodes présentent cependant des inconvénients importants. La fusion des
embeddings impose des contraintes sur la mise en œuvre logicielle des modèles, leur
entraînement et leur génération. La génération simultanée de tokens à partir de plusieurs
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distributions de probabilité produites par le modèle, faite indépendamment les unes
par rapport aux autres, ajoute de la variance et des résultats instables. La combinaison
"manuelle" de tokens produit elle de grands vocabulaires contenant une grande proportion
de tokens non-présents dans les données, donc associés à une faible probabilité par les
modèles. Enfin, même avec ces méthodes, la longueur des séquences reste toujours
relativement longue.

Une technique capable de réduire efficacement la longueur des séquences de tokens,
avec des contraintes très strictes, reste à être expérimentée. De plus, les techniques actuelles
ne répondent pas à l’autre défi suivant qui concerne l’information portée par les tokens.

Information portée par les tokens

Dans la Subsection 2.1.4, nous introduisons le concept d’embedding et comment les
modèles séquentiels apprennent de façon contextuelle ces représentations vectorielles de
tokens. La bonne formation de ces vecteurs est un élément essentiel de ces modèles, car ce
sont ces embeddings qui permettent aux modèles de capturer la signification des données
et d’effectuer des calculs résolvant les tâches pour lesquelles ils sont entraînés. Pour garantir
qu’un modèle fasse bon usage de ces fonctionnalités, il doit ainsi être entraînés avec un
vocabulaire contenant des tokens représentant des sémantiques riches et diverses. Le
nombre de tokens, et donc d’embeddings à apprendre, doit être choisi en fonction du
nombre de dimensions formant les embeddings.

Pourtant, les travaux traitant de la modélisation de la musique symbolique utilisent de
petits vocabulaires, contenant généralement entre 200 et 500 tokens, avec des embeddings
composés de dimensions 512 à 1024 dimensions. Dans une telle configuration, c’est-à-
dire plus de dimensions que le nombre d’éléments à représenter dans l’espace, seulement
très une petite partie de l’espace sera utilisée. L’espace est ainsi largement sous-utilisé. En
comparaison, en NLP, il est courant d’utiliser des vocabulaires contenant de 30 000 à 70
000 tokens. De plus, il est important de noter que les tokens représentant des attributs de
notes et valeurs temporelles ne représente pas d’information sémantique autres que leurs
valeurs absolues.

Afin d’augmenter les performances des modèles de musique symbolique, il est essentiel
de trouver un meilleur équilibre entre la taille du vocabulaire et le nombre de dimensions
d’intégration, tout en utilisant des tokens porteurs de plus d’informations.

Étude de la taille de modèles génératifs multitrack

Ces dernières années, de nombreux modèles d’apprentissage automatique (pré)entraînés
ont été partagés publiquement, notamment sur le hub Hugging Face.

Le partage ouvert de ces modèles contribue considérablement à l’avancée du domaine
de l’IA. Cela favorise notamment la transparence, abaisse les barrières à l’entrée dans le
domaine, stimule l’innovation et rend l’IA accessible de façon équitable à toute la com-
munauté. Les modèles ouverts permettent aux chercheurs de les inspecter et d’identifier
les risques, les biais et les limites à prendre en compte et d’améliorer ainsi leur sécurité.
Ils peuvent les utiliser pour leurs propres recherches, en les peaufinant ou en analysant
leur comportement, ce qui profitera à d’autres chercheurs. Et comme l’entraînement de
grands modèles peut s’avérer très coûteux, un grand nombre d’organisations ne peuvent
pas se permettre de le faire elles-mêmes. Rendre les modèles librement accessibles est
davantage équitable pour les petits acteurs, ce qui stimule l’innovation.

Alors qu’il y a des milliers de modèles entraînés pour des tâches de NLP et CV
partagés librement sur internet, il n’en existe que très peu pour la génération de musique
symbolique. Ceux existants sont soit petits, mauvais, trop spécifiques à un genre ou à un
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instrument, inutilisables ou obsolètes. À ce jour, ces modèles ne sont de toute façon pas
largement utilisés, car ils s’intègrent mal dans le flux de travail des musiciens. Pourtant,
nous commençons à voir des logiciels permettant d’embarquer des modèles DL sous forme
de plugins VST dans les DAW [70]. Nous pensons qu’il s’agit d’un grand pas vers une
adoption plus large des modèles DL pour la composition musicale et que cela conduira à
davantage d’intégrations de ces modèles dans les DAW. Cependant, le manque de modèles
performants libres reste un deuxième obstacle à cette adoption. Cela peut même être
une des raisons de la lenteur du développement des solutions d’intégration de modèles
DL. Dès que des modèles performants seront rendus disponibles, ces solutions pourraient
commencer à attirer davantage d’attention et être mises à jour à un rythme plus rapide.

MidiTok

Constatant l’absence d’outil open-source permettant d’aisément tokenizer la musique, nous
avons été motivés de créer MidiTok afin de permettre au plus grand nombre d’utiliser
les modèles de DL pour cette modalité. MidiTok est un package Python permettant
de tokenizer la musique de plusieurs manières, tout en offrant un grand nombre de
fonctionnalités et une grande flexibilité. Il implémente les tokenizations les plus utilisées
dans le milieu détaillées dans la Section 5.4, et offre la possibilité de contrôler le degré de
précision de représentation de valeurs "semi-continues" telles que le temps ou la vélocité.
MidiTok est la première contribution en date de cette thèse, et servira pour les suivantes.
Comme il s’agit d’une contribution vivante, le package a été régulièrement mis à jour, et
continuera de l’être.

Fonctionnement général

Chaque tokenizer de MidiTok hérite de la classe MIDITokenizer, qui implémente le pré-
traitement des fichiers MIDI et les méthodes communes. Cette classe sert de plateforme
commune et simplifie considérablement les différentes étapes de tokenization.

Un tokenizer est créé à partir d’un objet TokenizerConfig. Cette configuration con-
tient les paramètres définissant quel type d’informations sera tokenizé et avec quelle
précision. Un utilisateur peut choisir de tokenizer les tempos, la signature rythmique, les
silences... ou non. Il peut également décider de la résolution des valeurs telles que la véloc-
ité des notes, le temps ou la plage de hauteur à tokenizer. À partir de cette configuration, le
tokenizer va créer son vocabulaire de tokens. Un tokenizer peut être enregistré sous forme
de fichier json et rechargé à l’identique sans avoir à fournir de configuration.

Nous considérons trois catégories de tokens: 1) Les tokens MIDI globaux, qui représen-
tent des attributs et des événements affectant la musique de manière globale, tels que le
tempo ou la signature rythmique ; 2) tokens de piste, représentant les valeurs de pistes
distinctes telles que les notes, les accords ou les effets ; 3) Les tokens temporels, qui
servent à structurer et à placer les catégories de tokens précédentes dans le temps. La
catégorisation des tokens en ces trois types est importante, car elle affecte la façon dont le
tokenizer représente le temps.

Lors de la tokenization des pistes MIDI, nous distinguons deux modes de fonction-
nement : un mode "flux unique" qui convertit toutes les pistes sous une séquence unique de
tokens, et un mode "un flux par piste" qui convertit chaque piste indépendamment. Dans
le premier mode, les tokens de temps sont créés pour tous les tokens globaux et de piste à
la fois, tandis que dans le second, ils sont créés indépendamment pour chaque séquence
de tokens de piste et tokens globaux.

Le processus de tokenization d’un MIDI est le suivant :
1. Prétraite le MIDI :
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- Si en mode "flux unique", fusionne les pistes du même programme/instrument ;

- Supprime les notes dont la hauteur est en dehors de la plage du tokenizer, sous-
échantillonne les vélocités et temps des notes ;

- Sous-échantillonne les valeurs et les temps de tempo ;

- Sous-échantillonne les temps de signature rythmique ;

- Supprime les notes et changements de tempo et signature rythmique dupliqués,
ainsi que les pistes vides ;

2. Crée les tokens MIDI globaux (tempo...) ;
3. Crée les tokens de piste (notes, accords) ;
4. Si en "flux unique", concatène tous les tokens globaux et de piste, sinon concatène

les événements globaux à chaque séquence d’événements de piste, puis les trie par
temps d’apparition ;

5. Déduit les tokens de temps pour toutes les séquences de tokens (une seule si en "flux
unique");

6. Retourne les tokens, sous la forme d’une combinaison d’une liste de chaîne de
caractères et d’une liste d’entiers (identifiants de token).

La première et la dernière étape sont effectuées de la même manière pour tous les
tokenizers, tandis que les autres étapes peuvent être effectuées différemment en fonction de
la tokenization. L’étape de prétraitement est essentielle, car elle formate les informations
d’un MIDI pour les adapter aux paramètres du tokenizer. Les temps des événements de
piste et globaux sont alignées sur la résolution temporelle du tokenizer, ainsi que sur leurs
valeurs. Cela nous garantit de récupérer exactement le même MIDI pré-traité lors de la
détokenization des tokens.

Autre fonctionnalités

Parmi les fonctionnalités majeures de MidiTok, on note la possibilité d’utiliser une variété
de tokens additionnels apportant différentes informations, notamment les accords, le
tempo, la signature, les silences, la pédale ou encore modulation. Ces tokens peuvent
améliorer les performances des modèles dans certaines conditions [87].

MidiTok offre également la possibilité d’entraîner le tokenizer avec le Byte Pair En-
coding afin de créer un vocabulaire plus riche contenant des tokens représentant des
combinaisons d’informations. Nous montrons dans le Chapter 7 que cette méthode per-
met de considérablement améliorer les résultats des modèles tout en augmentant leur
efficience. Pour cela, MidiTok s’appuie sur la bibliothèque "tokenizers" développée par
Hugging Face 2, qui écrite en langage Rust permet une exécution très rapide. Il s’agit
aujourd’hui de la seule implémentation complète et open-source de BPE pour la musique
symbolique, et nous espérons pouvoir encourager chercheurs et ingénieurs à l’utiliser.

MidiTok offre également une interface avec le hub Hugging Face3, permettant aux
utilisateurs de partager leur tokenizers MidiTok sur la plateforme. Cette intégration est
très importante à nos yeux, comme elle permettra d’encourager les utilisateurs à partager
facilement leurs modèles, mais aussi à expérimenter avec ceux disponible sur la plateforme.

Finalement, MidiTok offre des fonctionnalités d’augmentation de donnée essentielle
à l’l’entraînement de modèles, ainsi que des interfaces PyTorch permettant de charger
efficacement celles-ci pour l’l’entraînement de modèles.

2https://github.com/huggingface/tokenizers
3https://huggingface.co/

https://github.com/huggingface/tokenizers
https://huggingface.co/
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Retour général d’utilisation

Depuis sa première version fin 2021, MidiTok s’est imposé comme une solution sim-
ple, efficace et complète pour tokenizer la musique symbolique. Il est utilisé par les
chercheurs de la communauté Music Information Retrieval (MIR) pour leurs travaux, par
les développeurs indépendants, par les étudiants et désormais par les industriels.

En novembre 2023, MidiTok a rassemblé plus de 470 étoiles sur GitHub, 60 forks
et 20 contributeurs externes. La page du référentiel GitHub compte en moyenne 100
visites quotidiennes et le package est téléchargé en moyenne 900 fois par semaine. La
Figure 5.3 montre les téléchargements quotidiens de MidiTok sur PyPi, pour la période
février 2023 - août 2023. Au moment où nous écrivons, il compte un total de 80 000
téléchargements sur PyPi depuis sa première version. Nous ne pouvons pas estimer de
manière fiable le nombre de projets mensuels ou annuels utilisant MidiTok, mais nous
pouvons mentionner que chaque année, un certain nombre d’articles de recherche publiés
dans le cadre des débats bien reconnus de l’ISMIR utilisent MidiTok comme tokenizer
de base. Enfin, MidiTok est utilisé par le plugin Neutone de Qosmo4, à utiliser dans les
DAW. Neutone permet d’utiliser les modèles DL de manière interactive dans n’importe
quelle DAW en tant que plugin VST.

MidiTok a gagné du terrain dans la communauté MIR et nous espérons continuer à
bénéficier de ses commentaires et contributions pour améliorer encore la bibliothèque.

Analyse de la tokenization de la musique symbolique

Contrairement au texte, la musique symbolique peut être sérialisée de plusieurs manières
et avec une plus grande flexibilité. Une musique peut être jouée par différents instruments
et composée de plusieurs notes simultanées, chacune ayant plusieurs attributs à représenter.
En conséquence, il est nécessaire de sérialiser ces éléments à travers le temps. Pour y
parvenir, les chercheurs ont développé diverses méthodes de tokenization de la musique
[137, 87, 194, 55].

Bien que ces travaux présentent des comparaisons de performances de modèles entre
tokenizations, leurs principales différences ou similitudes ne sont pas toujours clairement
indiquées. Pourtant, les modèles Transformers ont du mal à raisonner, c’est-à-dire à faire
des déductions logiques basées sur des points d’information dans les données en entrée
[75, 196], mais exécutent mieux les tâches lorsqu’on leur fournit des informations et des
instructions explicites [198]. Dans le cas de la musique symbolique, il est donc important
d’étudier comment la manière dont l’information musicale est représentée impacte les
performances du modèle.

Dans le Chapter 6, nous analysons comment les choix de conception de tokenization
peuvent impacter les performances de modèles, pour plusieurs tâches différentes. Nous
nous concentrons sur trois aspects importants : la représentation du temps, la durée des
notes et les instruments.

Décomposition de la tokenization de musique symbolique

En analysant les conceptions possibles de la tokenization musicale, nous pouvons distinguer
sept dimensions clé :

• Temps : type de token représentant le temps, soit TimeShift indiquant les intervalles
de temps entre tokens, soit Bar et Position indiquant les nouvelles mesures et les

4https://neutone.space

https://neutone.space
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positions des tokens à l’intérieur de celles-ci. Nous pouvons également considérer
l’unité des tokens TimeShift, soit en temps musical, soit en secondes5 ;

• Durée des notes : comment les durées des notes sont représentées, avec des tokens
Duration ou NoteOff ;

• Hauteur des notes : la plupart des travaux utilisent des tokens représentant des
valeurs de hauteur absolues, bien que des travaux récents aient mis en lumière le
gain d’expressivité de la représentation sous forme d’intervalles [98] ;

• Représentation multipiste : la représentation de plusieurs morceaux de musique
dans une séquence, c’est-à-dire comment les notes sont liées à leur piste associée ;

• Informations supplémentaires : toute information supplémentaire telle que les
accords, le tempo, les silences, la densité des notes. La vélocité des notes peut
également entrer dans cette catégorie ;

• Sous-échantillonnage : comment les fonctionnalités de type "semi-continu" sont
sous-échantillonnées en ensembles discrets, par exemple les 128 valeurs de vélocité
réduites à 16 valeurs ;

• Compression de séquence : méthodes pour réduire la longueur des séquences, telles
que la fusion de tokens et vecteurs embeddings.

Impact de la représentation du temps et de la durée des notes

Le temps et la durée des notes peuvent tous deux être représentés de deux manières dif-
férentes : les tokens TimeShift ou Bar / Position pour le temps, les tokens Duration
ou NoteOff pour les durées des notes. Les tokens TimeShift représentent explicitement
les intervalles de temps entre tokens, tandis que les tokens Bar et Position apportent des
informations explicites sur les positions absolues (à l’intérieur des mesures) des notes. On
pourrait supposer que le premier pourrait aider à modéliser les mélodies, et le second le ry-
thme et la structure. Pour la durée des notes, les tokens Duration expriment intuitivement
les durées absolues des notes, tandis que les tokens NoteOff indiquent explicitement les
temps auxquels les notes s’arrêtent. Avec des tokens NoteOff, un modèle devrait modéliser
les durées de notes à partir des combinaisons de tokens de temps séparant les tokens.

Nous expérimentons avec les quatre combinaisons de représentations de temps et
durée de notes, sur trois taches différentes : génération de musique, classification par
compositeur, transcription et apprentissage de séquences dans un espace continue à partir
d’apprentissage contrastif.

Génération Lors de la génération, on observe des taux d’erreur différents selon la to-
kenization. Les tokens Position n’apportent presque aucune erreur de type, mais une
proportion notable d’erreurs de temps. Lors du décodage des tokens en notes, cela signifie
que le temps peut revenir en arrière, ce qui peut entraîner des sections de notes qui se
chevauchent. Bien que les tokens Duration semblent apporter un peu plus d’erreurs de
duplication de notes, l’utilisation des tokens NoteOn et NoteOff entraîne une proportion
considérable d’erreurs de prédiction de notes. Les tokens NoteOff prédits alors que la
note associée n’était pas jouée (TSEnnon) n’ont pas de conséquences indésirables lors
du décodage des tokens, mais cela étend inutilement la séquence, réduisant l’efficacité

5Dans cette thèse, nous traitons uniquement de l’unité de temps musical. Le protocole MIDI représente
le temps en unité tick, dont la valeur est proportionnelle à la division temporelle (en ticks par temps) et au
tempo. Par conséquent, travailler avec des secondes nécessiterait une conversion des ticks.



136 Résumé de la thèse

du modèle, et peut induire en erreur les prédictions de tokens suivants. En analysant les
caractéristiques des notes générées par les modèles, on observe que l’utilisation de tokens
de Bar et Position mène à davantage de notes jouées en début de mesure. Cela peut
s’expliquer par la prédiction de nouvelles mesures alors que celle actuelle n’est pas encore
terminée. L’utilisation de tokens NoteOff mène également à des notes ayant des durées
plus longues. Cela s’explique par le fait que les modèles peuvent facilement oublier les
notes ayant été jouées, et donc oublie de prédire un token NoteOff pour les terminer.
Sur la base de ces résultats, il semble préférable d’utiliser des tokens Duration pour la
génération.

Classification Nous choisissons d’expérimenter avec l’ensemble de données GiantMIDI
[105] pour la classification des compositeurs et l’ensemble de données EMOPIA [88] pour
la classification des émotions. Les résultats, comme indiqué dans Table 6.3, indiquent qu’il
y a très peu de différence entre les différentes méthodes de tokenization. Cependant, la
combinaison de TimeShift et Duration surpasse systématiquement les autres d’un point.

Transcription La transcription consiste à convertir un contenu musical audio vers sa
forme symbolique. Des recherches récentes ont construit des expériences en s’appuyant
sur des modèles séquence à séquence [72, 62]. Nous avons décidé de suivre la même
stratégie, pour sa facilité de mise en œuvre et ses bonnes performances. Nous avons réalisé
l’expérience sur l’ensemble de données Maestro [73], qui est composé de 1 000 paires de
fichiers audio et MIDI de performances de piano classique. Pour évaluer les transcriptions
générées, nous utilisons la bibliothèque mir_eval [149], avec les paramètres par défaut
sauf une tolérance d’attaque de 62,5 ms. Nous rapportons les résultats dans Table 6.4. La
combinaison avec les meilleures performances globales (début + décalage + vitesse) est
TS + NOff. En regardant uniquement les débuts, l’utilisation des tokens Bar et Position
semble apporter de meilleures performances. Cependant, les combinaisons qui l’utilisent
sont sous-performées par celles utilisant les tokens TimeShift, ce qui signifie que TimeShift
semble aider le modèle à prédire des décalages de notes plus précis. Les scores pour ces
derniers sont également meilleurs avec les tokens NoteOff, montrant que les tokens de
décalage explicites aident le modèle à prédire les temps de fin de notes.

Apprentissage de séquence La dernière tâche que nous avons souhaité explorer est
la représentation de séquences. Cela consiste à entraîner un modèle à représenter des
séquences de tokens (donc de notes de musique) dans un espace d’embedding continu
universel. Cette tâche a déjà été abordée dans le traitement du langage naturel par Sen-
tenceBERT [157] ou SimCSE [61]. Nous avons adopté l’approche de cette dernière, qui
utilise l’apprentissage contrastif pour entraîner le modèle à apprendre des représentations
de séquence, pour lesquelles des entrées similaires ont des similitudes cosinus plus élevées.
En conséquence, le modèle apprendra efficacement à créer des vecteurs de séquences
similaires pour des entrées similaires, tout en séparant celles présentant des dissimilarités.
Nous avons utilisé l’ensemble de données GiantMIDI [105]. L’évaluation a été effectuée en
mesurant la distance entre le vecteur d’une séquence de référence, et celui d’une séquence
augmentée par rapport à cette référence. Nous avons expérimenté avec plusieurs types
d’augmentation : une hauteur de note, un octave, une valeur de vélocité et une combi-
naison de hauteur et vélocité. Les résultats, présentés dans Figure 6.7, indiquent que les
tokenizations utilisant les tokens Position donnent des similarités légèrement plus élevées.
Par conséquent, il semble que les informations explicites sur les positions d’apparition et
de décalage des notes facilitent l’obtention par les modèles d’une représentation musicale
universelle. Contrairement à la classification, l’objectif d’apprentissage contrastif modélise
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les similitudes et les dissemblances entre les exemples d’un même lot. Dans ce contexte, les
positions d’apparition et de décalage des notes semblent utiles aux modèles pour distinguer
la musique.

Impact de la représentation multipiste pour la génération

À ce jour, il existe peu de modèles traitant la musique symbolique multipiste. Pourtant, il
existe différentes manières de tokenizer plusieurs pistes d’instruments MIDI. Leur but
est d’associer une note et ses attributs à leur programme MIDI, ou en d’autres termes
à leur instrument. Dans la Section 6.6, nous expérimentons avec quatre tokenizations
différentes, visant à mesurer si un modèle est capable de produire de manière cohérente la
suite d’une invite musicale. Plus précisément, nous mesurons comment un modèle est
capable de continuer à jouer des instruments présents dans l’invite.

Nous calculons cette métrique en mesurant la précision, le rappel et le score F1 entre
les instruments en entrée et les instruments générés. Nous rapportons ces scores dans
Table 6.6. Cela montre que la fusion des jetons de programme et de pitch (ProgramPitch)
donne le meilleur score et la meilleure précision F1. Globalement, ces méthodes semblent
mieux adaptées pour poursuivre les traces de la saisie. Les tokens Program et ProgramChange
fonctionnent presque de la même manière. Il semble que placer un jeton Program avant
chaque note n’aide pas le modèle pour la génération. Dans un tel cas, utiliser des jetons
ProgramChange pourrait être une meilleure option, car cela donnera des séquences de
jetons plus courtes. En revanche, Merged a un meilleur rappel, mais a cependant une
précision et un score F1 inférieurs. En conséquence, le modèle prédira facilement les
pistes non liées, qui n’étaient pas présentes dans l’invite.

Nous avons également mesuré la divergence entre la densité des notes des pistes
en entrée et celles générées. Nous trouvons des divergences similaires pour toutes les
stratégies, qui sont toutefois plus basses pour les modèles utilisant des tokens ProgramChange
et Program.

Byte Pair Encoding pour la musique symbolique

Une des principales contributions de cette thèse est l’étude de l’application du "Byte Pair
Encoding" (BPE) à la musique symbolique pour l’apprentissage automatique, menant à de
meilleurs résultats et performances.

Problèmes de tokenizations simples

Jusqu’ici, la majorité des travaux tokenizent la musique symbolique en la représentant à
partir de tokens représentant uniquement les attributs des notes et du temps. Bien que
cela fonctionne, ces méthodes posent deux problèmes majeurs :

1. Les séquences de tokens sont relativement longues, comme chaque note sera représen-
tée par au moins deux tokens. Cela est un problème majeur lorsqu’elles sont utilisées
avec des modèles Transformers, pour lesquels la complexité des calculs croit quadra-
tiquement avec la taille de ces séquences ;

2. L’information portée par les tokens est très pauvre. Ceux-ci ne représentent aucune
sémantique ou information de plus haut niveau, mais uniquement leur propre valeur
absolue. Alors que pour le langage naturel les modèles Transformers fonctionnent
principalement en apprenant contextuellement des représentations vectorielles con-
tinues des tokens du vocabulaire, ce n’est pour la musique pas le cas. Le modèle se
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prive donc de l’apprentissage de représentations plus riches, pourtant essentielles
pour les calculs de tâches pour lesquelles ils sont entraînés.

Le premier problème a notamment été adressé, soit en fusionnant les tokens dans le
vocabulaire [41], soit en fusionnant les vecteurs d’embeddings des tokens à l’entrée du
modèles [83, 194]. Ces méthodes présentent toutefois des contraintes et limites pratiques
importantes. Nous proposons ici l’utilisation de BPE afin d’adresser ces deux problèmes.

Byte Pair Encoding

Le BPE [59] est une technique de compression de données. Il remplace les octets successifs
les plus récurrents d’un corpus par des octets nouvellement créés. Par exemple, dans la
séquence de caractères aabaabaacaa, la sous-séquence aa apparaît trois fois et est la plus
récurrente. Appliquer le BPE sur cette séquence remplacerait aa par un nouveau symbole,
par exemple d, ce qui donnerait une séquence compressée dbdbdcd. Cette dernière peut
être à nouveau réduite en remplaçant la sous-séquence db, donnant eedcd. En pratique,
le BPE s’apprend sur un corpus jusqu’à ce que le vocabulaire atteigne une taille cible.
L’apprentissage du BPE est décrit par le pseudo-code de Algorithm 3.

Le BPE est aujourd’hui largement utilisé en NLP, comme il permet de construire un
vocabulaire contenant des mots et parties de mots, comme ce sont les successions d’octets
les plus récurrentes dans le texte. Les vocabulaires peuvent ainsi être utilisés pour faire
apprendre à des modèles des représentations de mots et parties de mots.

Nouveaux tokens

En l’appliquant à la musique, nous montrons que le BPE permet de créer des nouveaux
tokens qui représentent des notes complètes (succession d’attributs), voire des successions
de notes. À mesure que le vocabulaire grossit, les nouveaux tokens représentent davantage
de combinaisons de tokens de base, comme montré sur la Figure 7.2.

Comme reporté dans la Table 7.1, avec un vocabulaire de 20k tokens appris par BPE,
la taille des séquences de token peut être réduit jusqu’à en moyenne 65%. Les temps de
tokenization et detokenization sont en conséquence légèrement plus grands, cela dû à
l’étape d’encodage-décodage supplémentaire, mais reste toutefois très contenue.

Bénéfices

Nous avons entraînés pour la génération plusieurs modèles avec plusieurs tailles de vo-
cabulaires appris par BPE, allant jusqu’à 20k tokens, ainsi que des modèles implémentant
les techniques de réduction de séquence par fusion de tokens et embeddings de travaux
précédents. Nous avons ensuite généré des suites de musiques avec chacun de ces modèles,
et demandé à des participants humains de choisir leurs préférées selon plusieurs critères :
fidélité, diversité, justesse, et globalement. Il en retourne que la plupart des suites générées
à partir des modèles entraînés avec BPE étaient préférées par les participants. Nous avons
également mesuré les taux d’erreurs de prédiction de ces modèles, et constaté que les
modèles avec BPE ne prédisent pas davantage d’erreurs. Ce résultat confirme le fait que les
modèles apprennent efficacement ces nouveaux tokens, qui pourtant apportent davantage
de complexité. Cette conclusion est aussi appuyée par le fait que presque la totalité de ces
tokens sont générés, donc utilisés, par les modèles lors de la génération. Enfin, le dernier
gros avantage du BPE est le gain de vitesse de génération, allant jusqu’à 300%, mesurée en
tokens, temps et notes par seconde.

Sur une tâche de classification, le BPE permet également d’obtenir de meilleures
précisions, mais est toutefois devancé par d’autres méthodes de fusion d’embedding.
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Pour finir, lorsqu’on analyse l’espace d’embedding de tous ces modèles, ceux entraînés
avec un vocabulaire construit par BPE sont bien mieux utilisés, à la fois en espace total
occupé et en isotropie, c’est-à-dire distribution de la variance des positions des embeddings.

Montée en taille de modèles Transformers pour la génération de
musique symbolique

La génération de musique multipiste reste encore aujourd’hui une tâche difficile. La
musique a de multiples facettes et se compose de centaines de genres et d’instruments
joués et arrangés de multiples façons. La musique en général est complexe. Les modèles
génératifs de musique multipiste sont jusqu’à présent soit relativement spécialisés, soit
souvent limités à des genres ou à des instruments spécifiques [44, 41, 48], et la plupart
des modèles plus sofistiqués [164, 43] ne sont pas partagé de façon ouverte ou facilement
réutilisables. En conséquence, il est laborieux pour les chercheurs et ingénieur de les
utiliser pour leurs propres travaux. De plus, très peu des travaux existants partagent de
données sur les fonctions de coût. Ainsi, ces mêmes cherheurs disposent de peu de points
de repères afin de dimension leurs modèles pour ces tâches.

Dans cette thèse, nous visons à entrainer une série de modèles de grande taille pour la
génération de musique symbolique multipiste et étudier leur mise à l’échelle. Nous nous
basons sur trois versions de tailles différentes - 125 millions, 500 millions et 1.5 milliard -
et analysons leurs capacités d’apprentissage et de génération.

Procédure d’entraînement

Entraîner de larges modèles est une tâche non-triviale. De nombreux paramètres entrent
en jeu pour permettre un entraînement efficace qui puisse être effectué dans une durée
raisonnable, souvent simultanément sur plusieurs GPUs. Les plus importantes sont la
taille du modèle, le nombre de données d’entraînement, et la configuration matérielle sur
laquelle les calculs seront effectués. La gestion de la mémoire est notamment un point
d’attention principal. Pour cela, il est aujourd’hui d’usage de procéder à des optimisations
visant à réduire la redondance de certaines données à travers les appareils sur lesquels sont
entraînés les modèles, notamment les gradients et statuts d’optimizer.

Nous avons bénéficié de l’accès au supercalculateur Jean-Zay, sur lequel sont présents
des GPU nvidia A100 et V100. Nous avons utilisé des GPUs pour pré-entraîner les trois
versions de nos modèles, ainsi que pour les finetuner sur des genres musicaux spécifiques.
Pour ce faire, nous avons fait usage de la bibliothèque DeepSpeed [155], en utilisant le
principe ZeRO [151] de stage 2.

Evaluation

Les courbes d’entrainement (Figure 8.1) montrent que les modèles sur-apprennent rapi-
dement, en témoigne les résultats des fonctions de coûts qui augmentent passé un certain
point sur les données de validation. Les résultats sur données d’entrainement atteignent
des valeurs proches de zero toutefois, montrant que les modèles ont appris à prédire les
tokens suivant des données dans une grande parties des cas. Lorsque évalués à leur point
de fonction de coût de le plus bas, ces modèles montrent toutefois des prediction très
répétitives. Pour finir, nous discutons de l’effet du biais d’exposition sur la modalité de
la musique symbolique. Pour ce faire, nous exposons le nombre de combinaisons de
successions de tokens que forment les tokens pour deux jeux de données musicaux. Nous
les comparons notament à des jeux de données de texte et montrons que les successions de
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tokens musicaux sont plus nombreux et variés, et ce pourrait être une des causes principales
de cet effet.

Utilisation

Nous avons développé une interface, mise à disposition sur le hub Hugging Face6, per-
mettant à tout utilisateur d’utiliser le modèle. L’interface se présente sous la forme d’une
fenêtre affichant un pianoroll, sur lequel l’utilisateur peut ajouter, modifier et supprimer
des notes de plusieurs instruments. Il peut commander la génération de la suite de la
musique présente sur le pianoroll, qui apparaîtra dessus une fois terminée.

Conclusion et perspectives

À travers cette thèse, nous avons abaissé les efforts d’entrée au domaine de la modélisation
de la musique symbolique, en développant de façon open-source une bibliothèque logicielle
permettant de tokenizer la musique de façon simple, flexible et complète.

Considérant la multitude de manières permettant de représenter la musique sous
forme de séquences de tokens, nous nous sommes intéressés à celles-ci et avons définis
les éléments et choix de design de tokenization autour desquelles elles s’articulent. Nous
avons par la suite expérimenté avec les manières de représenter le temps, la durée des
notes et les instruments, pour souligner leurs impacts pour différentes tâches.

Jusqu’ici, la modélisation de la musique symbolique souffrait de deux problèmes
majeurs : la grande taille des séquences de tokens et la faible information portée par ces
tokens. Nous montrons que le BPE, méthode de compression, permet de répondre à
ces deux problèmes en créant des vocabulaire de tokens représentant des combinaisons
de tokens de base, portant davantage d’information. Les modèles entraînés avec ces
vocabulaires sont d’une part bien plus efficients (meilleure vitesse de génération) mais
performent également mieux, donnant de meilleurs résultats.

Nous avons finalement entraînés des modèles de génération de musique multipiste
de grande taille pour en analyser leurs entraînements et capacités de génération. Nous
montrons que ces modèles sur-apprennent rapidement pendant l’entrainement, et sont
notament sujet au biais d’exposition, c’est à dire la différence de performances de modèles
lorsque évalués sur les données d’entrainement contre en condition réelles de génération.

À la suite de ces travaux, nous identifions plusieurs pistes de recherche qui pourraient
permettre de contribuer davantage au domaine. Premièrement, nous n’avons expérimenté
qu’avec quatre des choix de design de tokenization, et il reste à étudier les autres. Leurs
impacts pourraient permettre de guider plus facilement dans le choix de tokenization de
la musique. Deuxièmement, compte tenu de l’importance de l’information portée par les
tokens, il nous semble intéressant d’utiliser des tokens décrivant de l’information musicale
de plus haut niveau, telle que la texture ou la structure. Pour finir, nous avons expérimenté
avec le BPE, mais d’une part nous n’avons que très peu exploré la signification des tokens
nouvellement créés qui nous donnent pourtant des informations sur la nature des données,
mais d’autre part d’autres algorithmes d’agrégation de tokens existent et pourraient donner
lieu à des résultats sur la performance et l’efficience des modèles.

6https://huggingface.co/spaces/Aubay/SMILE

https://huggingface.co/spaces/Aubay/SMILE
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