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Abstract

Proof assistants are software systems that allow for the precise checking of mathematical reasoning. They
can be general purpose (like Coq, Lean, Isabelle...) or more specialized like EasyCrypt. They enable a level of
accuracy which certifies that no error can occur, but remain difficult to use.

We propose a new paradigm for constructing formal proofs through actions performed in a graphical user
interface (GUI), in order to enable a more comfortable and intuitive use. Dubbed Proof-by-Action, our
paradigm builds upon direct manipulation principles, combining both old (Proof-by-Pointing) and new (Proof-
by-Linking) interaction techniques that exploit recent advances in deep inference proof theory. We implement
the paradigm in a web-based GUI called Actema, which we subsequently integrate into the Coq proof assistant
by developing the coq-actema plugin.

We then explore a series of deep inference proof systems that give more structure to the notion of logical goal.
These systems share the ability to represent goals in two alternative ways: either textually through a standard
inductive syntax, or graphically using a metaphorical notation well-suited to direct manipulation.

The first family of systems, called bubble calculi, is a topological reformulation of the theory of nested sequents.
It allows for efficient sharing of hypotheses and conclusions among subgoals, facilitating the factorization
of both forward and backward proof steps. The second system, called flower calculus, is an intuitionistic
refinement of C. S. Peirce’s theory of existential graphs. It is thus purely diagrammatic: there are no symbolic
connectives involved in the representation of logical statements. Both types of systems are shown to be
analytic and fully invertible, making them amenable to proof automation techniques.

We finally go back to practical experimentation by designing and implementing the Flower Prover, another
web-based GUI for interactive proof building based on the flower calculus. An innovative feature of the Flower
Prover is that it works well on modern mobile devices, thanks to its responsive layout and first-class support
for touch interactions.



Résumé

Les assistants de preuve sont des logiciels permettant de vérifier rigoureusement des raisonnements mathéma-
tiques. Ils peuvent être généraux (comme Coq [238], Lean [178], Isabelle [186]...) ou plus spécialisés (comme
EasyCrypt [14]). Ils permettent un niveau de précision qui certifie qu’aucune erreur ne peut se produire, mais
restent difficiles d’utilisation.

Nous proposons un nouveau paradigme de construction de preuves formelles par actions effectuées dans
une interface graphique, afin de permettre une utilisation plus confortable et plus intuitive. Intitulé Proof-by-
Action (PbA), notre paradigme s’appuie sur des principes de manipulation directe, combinant des techniques
d’interactions anciennes comme Proof-by-Pointing (PbP) [18] et plus récentes comme Proof-by-Linking (PbL)
[46]. Toutes les techniques étudiées dans cette thèse sont fondées sur une branche récente de la théorie de
la démonstration dite par “inférence profonde”, introduite pour la première fois sous ce nom par Alessio
Guglielmi dans le cadre de son calcul des structures [110].

Manipulations symboliques

Dans la première partie de cette thèse, nous développons le paradigme PbA dans le contexte des représentations
traditionnelles des buts logiques, en introduisant plusieurs techniques de manipulation directe des formules
symboliques dans les séquents.

Nous commençons au Chapitre 2 par une introduction à PbP et PbL. Nous décrivons comment raisonner avec
des connecteurs logiques, des quantificateurs et des équations par des clics et des actions de glisser-déposer
(DnD) dans un prototype d’interface graphique appelé Actema [69]. En particulier, les actions DnD permettent
de lier deux sous-formules arbitraires du but courant pour les faire interagir, et peuvent être vues comme une
généralisation des tactiques apply et rewrite communes aux langages de preuve impératifs.

Nous établissons au Chapitre 3 la sémantique des actions DnD dans la théorie de la démonstration par inférence
profonde, en concevant une variante intuitionniste du calcul des structures pour la liaison de sous-formules
introduit par Chaudhuri [37]. Notre approche diffère de celle de Chaudhuri principalement par notre notion
de validité d’une liaison, qui permet de filtrer les actions DnD non productives en autorisant uniquement les
liaisons entre sous-formules unifiables.

Nous présentons au Chapitre 4 des techniques plus avancées du paradigme PbA, qui traitent de formes de
raisonnement pervasives dans la pratique mathématique telles que l’utilisation de définitions, le raisonnement
par induction et la simplification d’expressions par calcul automatique. Nous illustrons cela au travers de trois
études de cas sur des problèmes logiques et mathématiques basiques, qui pourraient être donnés en exercices
dans un cours d’initiation à la démonstration formelle.

Nous étudions au Chapitre 5 une extension de PbA aux séquents comportant plusieurs conclusions, par
opposition aux séquents à conclusion unique que l’on trouve dans l’interface de la plupart des assistants de
preuve. Nous soutenons que l’utilisation de la manipulation directe facilite grandement la gestion des conclu-
sions multiples, et introduisons un opérateur d’interaction dite “parallèle” pour modéliser le raisonnement en
logique classique impliquant l’interaction de deux conclusions.

Enfin, nous présentons au Chapitre 6 coq-actema, un plugin qui intègre l’application web Actema en tant que
vue de preuve interactive dans Coq. Nous nous concentrons sur l’architecture et les protocoles qui connectent
les différents composants du système, et donnons un aperçu de la stratégie de compilation qui transforme les
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actions graphiques effectuées dans Actema en termes de preuve Coq. Nous discutons également des lacunes
actuelles de notre approche et des pistes d’amélioration futures, en particulier concernant la question de
l’évolution et de la maintenance des démonstrations.

Manipulations iconiques

Dans la deuxième partie de cette thèse, nous explorons une série de systèmes de démonstration par inférence
profonde qui donnent plus de structure à la notion de but logique. Ces systèmes partagent la capacité de
représenter les buts de deux manières alternatives : soit textuellement au travers d’une syntaxe inductive
standard, soit graphiquement à l’aide d’une notation métaphorique adaptée à la manipulation directe. La
première peut être utilisée comme représentation machine dans le backend d’un assistant de preuve, et la
seconde comme substrat pour une interface graphique dans le frontend.

Nous introduisons dans les deux premiers chapitres une famille de systèmes appelés calculs de bulles. Ils
constituent une extension de la théorie des séquents imbriqués introduite par Brünnler [29], que nous
reformulons comme des systèmes de réécriture locale disposant d’une interprétation graphique et topologique.
Les calculs de bulles permettent un partage efficace des hypothèses et conclusions entre sous-buts, facilitant
la factorisation des étapes de raisonnement avant et arrière dans les démonstrations.

Nous présentons au Chapitre 7 le calcul de bulles asymétrique BJ pour la logique intuitionniste, modelé sur le
calcul des séquents intuitionniste LJ de Gentzen. Nous introduisons la métaphore des bulles comme moyen de
représenter diagrammatiquement la séparation et le partage des hypothèses et conclusions entre sous-buts.

Puis au Chapitre 8 nous affinons BJ en un calcul plus général et symétrique pour la logique classique appelé
système B, où les bulles peuvent être polarisées en plus des formules. Les logiques intuitionniste, dual-
intuitionniste et bi-intuitionniste peuvent être récupérées comme fragments de système B, en interdisant
certaines règles d’inférence qui caractérisent la porosité des bulles. Nous concevons également une variante
entièrement réversible de système B, que nous conjecturons complète.

Dans les deux derniers chapitres, nous étudions deux systèmes basés sur les graphes existentiels de C. S. Peirce,
ce qui nous permet d’atteindre une pleine iconicité : chaque construction logique possède une représentation
diagrammatique associée, éliminant ainsi l’usage des connecteurs et quantificateurs symboliques. Cela devrait
enlever une première barrière dans l’apprentissage de la logique formelle, qui réside dans la correspondance
arbitraire entre les symboles et leur signification.

Nous effectuons au Chapitre 9 un examen approfondi des systèmes originaux de graphes existentiels proposés
par Peirce pour la logique classique propositionnelle et du premier ordre, qui furent systématiquement
négligés dans la littérature sur la théorie de la démonstration. Nous proposons en particulier une nouvelle
caractérisation inductive de la syntaxe des graphes existentiels, ainsi que la première identification d’un
fragment analytique du système Alpha pour la logique propositionnelle qui est complet pour la prouvabilité.

Enfin, nous introduisons au Chapitre 10 le calcul des fleurs, une variante intuitionniste des graphes existentiels
où les énoncés sont représentés métaphoriquement comme des fleurs. Nous partitionnons le système en un
fragment “naturel” où chaque règle est à la fois analytique et réversible, et un fragment “culturel” où chaque
règle est irréversible. Nous prouvons que le fragment culturel est admissible grâce à une preuve de complétude
pour le fragment naturel vis-a-vis d’une sémantique de Kripke. Nous exploitons ces résultats méta-théoriques
pour concevoir le Flower Prover, un prototype d’interface graphique dans le paradigme PbA qui vise à
unifier les concepts de but et de théorie au sein d’une interface modale : les buts correspondent à des fleurs
manipulées avec des règles naturelles en mode Démonstration, tandis que les théories correspondent aux
mêmes fleursmanipulées avec des règles culturelles enmode Édition. À notre connaissance, le Flower Prover

est également la première interface d’assistant de preuve conçue pour appareils mobiles.
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The ultimate meaning of logic is this ability to manipulate.

Jean-Yves Girard, The blind spot, 2011

Proof assistants (PAs) — also called interactive theorem provers (ITPs) —
are software systems that allow to both create and check the correctness
of mathematical proofs. They are based on the idea that mathematical
knowledge can be represented unambiguously inside proof formalisms —
also called proof systems, where the truth of a statement can be reduced to
the mechanical application of symbolic manipulation rules. For instance,
consider the equation

4𝑥 + 6𝑥 = (12 − 2)𝑥

While anymathematicianwould immediately recognize it as true, amiddle
school student learning algebra would have to carry manually some
computations to convince herself (and her teacher) of its validity. A first
step might consist in applying the distributivity of multiplication over
addition on the left-hand side of the equation, yielding the new equation

(4 + 6)𝑥 = (12 − 2)𝑥

Then, computing the sum on the left-hand side and the difference on the
right-hand side gives the final equation

10𝑥 = 10𝑥

which is trivially true. This is a very simple example, but it already shows
the two main aspects of proof formalisms: on the one hand, they allow
to represent mathematical statements in a formal language, here that of
equations between linear univariate polynomials; on the other hand, they
allow to manipulate this representation in order to prove the statements,
here through rewriting rules that transform a valid equation into another
valid equation.

Algebra lends itself particularly well to formalization, as it is arguably the
very study of the rules governing symbolic manipulations in mathematics.
It also heavily relies on computations, which explains why it was the
target of the first, and to this day most popular application of computers
to mathematics: computer algebra systems.

However in this thesis, we are interested in improving the usability of
proof assistants, which have a much broader scope than computer algebra
systems: their ambition is to enable the formalization on computers of
virtually any kind of mathematics. Ultimately, the dream is to provide
a platform that helps humans in creating new mathematics: both novel
solutions and proofs to existing problems, and brand new theories involv-
ing new types of mathematical objects. This seemingly disproportionate
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1: Leibniz himself might have been in-
spired by his predecessor Galileo, who
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Mathematica

ambition is not entirely utopic: it is based on the great discoveries of 19th

and 20th century mathematicians and logicians, in the broad research
area now known as mathematical logic.

1.1. Proof theory

1.1.1. Mathematical logic

Universal language At the dawn of the 20th century, some mathe-
maticians started to realize that it may be possible to formalize not only
specific branches of mathematics like algebra with their own language,
but the whole of mathematics in a single, universal language. This idea
was first intuited in the 17th century by Leibniz with his dream of a
characteristica universalis, an ideal language in which all propositions
— mathematical propositions, but also scientific propositions about the
real world, and even metaphysical propositions — could be expressed and
understood unambiguously by every human. Also, Leibniz introduced the
concept of a calculus ratiocinator, a systematic method for determining
the truth of any proposition expressed in the characteristica universalis,
providing a definitive and objective way to settle any argument through
simple calculations1.

Predicate logic and set theory The possibility of a universal language
for mathematics became credible at the dusk of the 19th century, thanks
to the works of logicians like Boole, Frege and Peirce on one hand [24,
80, 199], and mathematicians like Cantor, Dedekind and Peano on the
other hand [133]. The former laid the groundwork for a formal account
of deduction that greatly improved on Aristotle’s syllogistic, by inventing
notations and rules that can express reasoning about not only properties
of individuals, but also relations between them. The latter invented set
theory, which provided the first setting where a general notion of function
or mapping could be rigorously defined, a notion that became increasingly
central in modern mathematics.

Foundations This formed the basis for a unification of many branches
of mathematics on the same foundation: it was realized that with enough
effort, every mathematical structure could be encoded with the sets of
Cantor, and all the laws governing sets could be expressed with a finite
number of axioms expressed in predicate logic, i.e. the language and cal-
culus of relations devised by 19th century logicians. This crystallized into
two famous axiomatic systems for set theory: the Principia Mathematica
of Russell and Whitehead [249]; and Zermelo-Fraenkel set theory (ZF,
or ZFC with the axiom of choice), which is the most popular foundation
nowadays because of its greater simplicity.

Truth and proofs An axiomatic system specifies the formal language
in which statements about mathematical objects are expressed, as well
as a collection of such statements — the axioms — that are taken to be
true from the outset, without further justification. One does not even
need to speak about truth to define the system: although it can be a
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guiding intuition when designing the system, the fact that axioms denote
true properties of abstract objects in some “mathematical universe” is a
particular philosophical stance (platonism), which has nothing to do with
concrete reasoning on the formal representation.

Traditionally, the branch of mathematical logic that tries to model the
“semantic” content of axioms through the notion of truth is called model
theory. In this thesis, we are concerned with the construction of formal
proofs that derive the consequences of axioms by pure “syntactic” manip-
ulation, through the application of so-called inference rules. Accordingly,
the branch of mathematical logic studying this activity is called proof
theory. We will still do a bit of model theory in a few places (Section 8.6,
Section 10.6), but only as a means to justify the properties of our syntax.
Thus to avoid any unnecessary philosophical commitment, we will only
consider axioms of a given system as ordinary assumptions that can be
used in the course of reasoning, without according any particular status to
their truth. This is very much in line with the formalist school of thought
in philosophy of mathematics, represented by the great mathematician
and main instigator of proof theory David Hilbert.

The real focus throughout this thesis is on the inference rules
used to build (correct) proofs from axioms/assumptions. Those
form the theoretical basis for both the interactive creation, and
the automatic checking of formal proofs in proof assistants. The
branch of proof theory concerned with the study of inference
rules is called structural proof theory.

Axiomatic systems In the very beginnings of proof theory in the 1920s,
under the influence of Hilbert, the axiomatic method was predominant,
and thus proof systems of this era — now called Hilbert systems— featured
very few inference rules. Almost all logical reasoning principles were
encoded as axiom schemas involving generic propositional variables. For
instance, the famous law of excluded middle (LEM), that states that every
proposition is either true or false, is expressed formally by the schema

𝐴 ∨ ¬𝐴

Here, ∨ and ¬ are symbols denoting the logical connectives of disjunction
(“or”) and negation (“not”), and 𝐴 is a propositional variable that can be
substituted with any concrete formula built from atomic propositions and
logical connectives. An atomic proposition is typically a property of a
mathematical object, that does not involve any logical connective. An
example of instance of this schema would be the proposition “𝑛 is prime
or 𝑛 is not prime” with 𝑛 some natural number, which can be written
formally as

prime(𝑛) ∨ ¬prime(𝑛)

Another related principle is the law of non-contradiction, which states that
no proposition can be both true and false at the same time. It is expressed
by the schema

¬(𝐴 ∧ ¬𝐴)
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where ∧ is the symbol denoting conjunction (“and”).

Intuitionistic logic One motivating factor in the development of a
new foundation for mathematics was the discovery of strange theorems
that defy intuition, like the existence of the Weierstraß function which is
continuous everywhere but differentiable nowhere [248], or the Banach-
Tarski paradox which asserts that a ball can be decomposed and reassem-
bled into two exact copies of itself [13]. Somemathematicians like Brouwer
andWeyl rejected the truth of such theorems, on the basis that their proofs
rely on reasoning principles that are not constructive2. In particular, these
principles allow to prove the existence of objects satisfying certain prop-
erties without ever providing a witness, i.e. a concrete object that satisfies
the properties in question. This marked the birth of constructivism in
philosophy of mathematics, whose most famous incarnation is Brouwer’s
intuitionism.

The original intuitionism of Brouwer was strongly opposed to any attempt
at formalizing mathematics, standing against both Frege and Russell’s
logicism that saw mathematics as a mere branch of logic, and Hilbert’s
formalism that reduced mathematics to a game of symbol manipulation.
However, this did not prevent Heyting, one of Brouwer’s students, from
developing an axiomatic system in the style of Hilbert and Frege, in an
attempt to capture formally the objections of Brouwer towards classi-
cal logic — i.e. the logic developed by 19th century logicians that was
at the heart of the new set-theoretical foundations. Heyting’s system
captures what is now called intuitionistic logic, which can be succinctly
summarized as being exactly classical logic, but without the law of ex-
cluded middle. Thus intuitionistic logic is a generalization of classical
logic, where propositions cannot be assigned a truth value a priori: they
are only considered true if they can be proved with direct, constructive
evidence.

To this day, there is no consensus amongmathematicians as to which logic
— intuitionistic or classical — is the right one to found mathematics upon.
Since intuitionistic logic is more restrictive than classical logic, some
fundamental theorems of classical mathematics do not hold anymore,
requiring in the worst cases to recreate entire branches of mathematics
from scratch, like in constructive analysis. This explains why a large
majority of mathematicians still work in classical logic, and are often
even unaware of the existence of constructive mathematics.

To account for this diversity, in this thesis we design proof
systems that support both classical and intuitionistic reasoning.
Because every theorem of intuitionistic logic is also a theorem
of classical logic (but not the converse), we will often focus
first on the intuitionistic “kernel” of our systems, designing the
classical part as an extension of the former.
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1.1.2. Structural proof theory

Inference rules In Hilbert systems, the only inference rule is that of
modus ponens, which is expressed formally with the following figure:

𝐴 𝐴 ⊃ 𝐵
mp

𝐵

Like axioms, it is a schema that involves generic propositional variables 𝐴
and 𝐵, which may be instantiated with arbitrary formulas. It can be read
from top to bottom as follows: for any propositions 𝐴 and 𝐵, if we have a
proof of 𝐴 and a proof of 𝐴 ⊃ 𝐵, i.e. a proof that 𝐴 implies 𝐵, then we can
immediately derive a proof of 𝐵 by virtue of the rule, here designated by
the abbreviated name mp. This reading of the rule corresponds to a form
of forward reasoning: starting from the known premises that 𝐴 and 𝐴 ⊃ 𝐵
are true, it necessarily follows that the conclusion 𝐵 is true.

Conversely, one can also have a bottom-up reading of the rule: to build
a proof of any proposition 𝐵, one way to proceed is to come up with
another proposition 𝐴 such that both 𝐴 and 𝐴 ⊃ 𝐵 are provable. This
reading corresponds to a form of backward reasoning: we start from the
conclusion 𝐵 that we want to reach, also called the goal, and try to find
subgoals 𝐴 and 𝐴 ⊃ 𝐵 that are provable, and hopefully simpler to prove;
then the rule guarantees that proving these subgoals is sufficient to ensure
the truth of the original goal.

Forward reasoning is typically how mathematicians write (informal)
proofs on paper, for the presentation of their proofs to other mathemati-
cians. Indeed, it is more natural for humans to follow an argument by
starting from its premises, because the latter will always contain all the
information required to deduce the conclusion, the argument only serving
as a means to explicate how this information is combined. On the other
hand, backward reasoning is more natural during the construction phase
of a proof, because the information required to reach the conclusion (e.g.
the proposition 𝐴 in the mp rule) is not yet known.

Natural deduction Axiomatic systems can be relatively concise, in
that many logics can be expressed in them with a small number of axioms.
In return, they produce very long and verbose formal proofs that are
hard for humans to follow, and almost impossible to come up with in
most cases. In a series of seminars started in 1926, the Polish logician
Łukasiewicz became one of the first to advocate for a more natural ap-
proach in proof theory, that models more closely the way mathematicians
actually reason [132]. A few years later, in a dissertation delivered to the
faculty of mathematical sciences of the University of Göttingen [88], the
German logician Gerhard Gentzen proposed independently his famous
calculus of natural deduction.

This formalism follows the opposite approach to Hilbert systems: it fea-
tures as few axioms as possible, favoring the use of inference rules to
model the forms of reasoning found in mathematical practice. Those
are divided into two categories: introduction rules define the meaning of
logical connectives, by prescribing how to prove complex formulas from
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In the rules ∀i and ∃e, 𝑥 must not occur free in Γ and 𝐶.

Figure 1.1.: Natural deduction calculus NJ for intuitionistic logic

3: Gentzen simultaneously introduced a
natural deduction calculus named NK for
classical logic, which is just NJ with an
additional rule modelling the principle
of indirect proof — i.e. the possibility to
prove any proposition 𝐴 by deriving a
contradiction from its negation ¬𝐴 (Fig-
ure 1.2). Indeed, this principle can be ex-
pressed by the formula ¬¬𝐴 ⊃ 𝐴which is
strictly equivalent to the law of excluded
middle, in the sense that ¬¬𝐴 ⊃ 𝐴 is (in-
tuitionistically) provable if and only if
𝐴 ∨ ¬𝐴 is.

Γ, [¬𝐴]1
⋅⋅⋅⋅⋅
⊥

[1] ip
𝐴

Figure 1.2.: Rule of indirect proof in nat-
ural deduction

proofs of their components. Dually, elimination rules explain how to use
complex formulas, by giving a canonical way to derive new conclusions
from them. Figure 1.1 shows the complete set of natural deduction rules
for all connectives and quantifiers in intuitionistic logic, that was intro-
duced by Gentzen under the name NJ3 [88]. The most simple example can
be found in the rules for the conjunction connective ∧: the introduction
rule ∧i allows to build a proof of 𝐴 ∧ 𝐵 by combining a proof of 𝐴 and a
proof of 𝐵; while the elimination rules ∧e1 and ∧e2 allow to derive proofs
of 𝐴 and 𝐵 from a proof of 𝐴 ∧ 𝐵.

Remark 1.1.1 Note that the rules for negation ¬ are not present
in Figure 1.1: indeed, it is customary in intuitionistic logic to define
negation by ¬𝐴 ≜ 𝐴 ⊃ ⊥, identifying the negation of any proposition
𝐴 with its implying of a contradiction. Thus the rules for negation are
subsumed by those for implication ⊃ and absurdity ⊥.

All logical reasoning principles that were axiomatized in Hilbert systems
can be derived in natural deduction. For example, Figure 1.3 shows a proof
of the law of non-contradiction, built by composing instances of rules
from Figure 1.1. The composition of a rule instance r1 with another rule
instance r2 simply consists in using the conclusion of r1 as one of the
premisses of r2.
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Γ ⇒ ∃𝑥.𝐴

In the rules ∀R and ∃L, 𝑥 must not occur free in Γ and 𝐶.

Figure 1.4.: Sequent calculus LJ for intuitionistic logic

[𝐴 ∧ ¬𝐴]1
∧e1𝐴

[𝐴 ∧ ¬𝐴]1
∧e2¬𝐴

⊃e
⊥

[1] ⊃i
¬(𝐴 ∧ ¬𝐴)

Figure 1.3.: Proof of the law of non-
contradiction in natural deduction

4: A more involved axiomatic system
was proposed one year earlier by
Dedekind [58]. Less known is that Peirce
had already published in 1881 an equiva-
lent axiomatization of natural numbers
[198].

Sequent calculus In addition to the constructivists’ objections, some
doubts were raised by the discovery of fatal flaws in early attempts at
defining foundational axiomatic systems, the most famous one being
the antinomy of Russell’s paradox caused by the unrestricted axiom of
comprehension in naive set theory. In order to restore absolute trust in
the foundations of (classical) mathematics, Hilbert proposed in the early
1920s to prove mathematically the consistency of the axiomatic system
for arithmetic introduced in 1889 by Peano4, i.e. that no contradiction
can be derived from Peano’s axioms. Indeed, he believed that every math-
ematical truth could be derived from the principles of arithmetic, thus
reducing the problem of the consistency of mathematics to that of arith-
metic. Moreover, Hilbert’s program was to be carried by finitist means,
without resorting to any reasoning principle involving infinite collections
— which were at the heart of the controversy started by constructivists.
This was the initial impulse for developing proof theory, since it provided
a mathematical definition of “mathematical proofs” as finite sequences of
symbols satisfying certain properties.

Gentzen’s work on natural deduction was an integral part of this pro-
gram, as an attempt to render the metamathematics of proof theory more
structured and elegant. However, he could not devise any argument for
consistency in this framework. He thus set out to devise a new formalism
that would be a reformulation of natural deduction with better math-
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⊃L
𝐴, ¬𝐴 ⇒ ⊥
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Figure 1.5.: Proof of the law of non-
contradiction in sequent calculus

5: It is not clear where the terminology
“axiom rule” comes from. It might be be-
cause hypotheses can be considered as
axioms in the sense we introduced ear-
lier, i.e. statements that we assume to be
true. In any case, it would be a misattri-
bution of category to consider the ax rule
itself as an axiom, and some authors like
Girard call it the identity rule or id rule
to avoid the confusion — which also co-
incides with the concept of identity mor-
phism in category theory.

ematical properties, such as symmetries. This gave us sequent calculus,
which is widely regarded as the cornerstone for most developments in
proof theory to this day. Gentzen introduced simultaneously two sequent
calculi: one for classical logic called LK, and one for intuitionistic logic
called LJ. Here we focus on the intuitionistic system LJ, whose rules are
shown in Figure 1.4.

Sequent calculus is based on the observation that some rules in natural
deduction depend crucially on the use of hypotheses that appear “higher”
or earlier in the proof. The prototypical example is the introduction
rule ⊃i for implication: to prove 𝐴 ⊃ 𝐵, it suffices to prove 𝐵 under the
assumption that 𝐴 is true. Then the hypothesis 𝐴 is discharged by the rule
(bracket notation in Figure 1.1), meaning that the conclusion 𝐴 ⊃ 𝐵 holds
unconditionally, without the assumption. In sequent calculus, this relation
of provability of a conclusion 𝐶 under a collection/context of hypotheses
Γ is captured by the expression Γ ⇒ 𝐶, called a sequent. The introduction
rule ⊃i is then expressed by the so-called right introduction rule ⊃R, which
keeps track of the full context of hypotheses by having sequents as premiss
and conclusion, instead of just formulas. Right introduction rules for other
connectives are also obtained straightforwardly from the corresponding
introduction rules in natural deduction, by simply making the contexts Γ
and Δ always explicit.

Following the original presentation of Gentzen, contexts are taken to be
lists of formulas (“Sequenz” in German), i.e. ordered collections where
repetitions are allowed. Still, we really want to see them as sets of formulas,
since it is implicit in mathematical practice that:

1. the order in which hypotheses are listed does not matter;

2. hypotheses may be used more than once in a proof (as in Figure 1.3).

These two conventions are respectively captured by the structural rules xL
of exchange and cL of contraction in Figure 1.4. A third structural rule, wL
for weakening, accounts for the presence of unused assumptions in some
proofs, by allowing the introduction of new hypotheses at will (with a
top-down reading of rules).

The main difference between sequent calculus and natural deduction lies
in its splitting of elimination rules into two parts: left introduction rules,
and the cut rule cut. As their name indicates, left introduction rules serve
a purpose symmetric to right introduction rules: while the latter define
how to introduce a connective in the conclusion of a sequent, the former
define how to introduce a connective in one of its hypotheses. Then,
the only way to use such an hypothesis 𝐴 is through the cut rule, which
erases 𝐴 from the context in the conclusion of the rule, by justifying it
with the proof of 𝐴 given as premiss. The cut rule can also be seen as a
generalization of the modus ponens rule of Hilbert systems, replacing the
logical connective ⊃ of implication by the “structural connective” ⇒ of
sequents. The remaining axiom rule ax is in a sense dual to the cut rule:
while the latter allows justifying a hypothesis by an identical conclusion,
the ax rule allows justifying a conclusion by an identical hypothesis5.
Figure 1.5 shows a proof of the law of non-contradiction in LJ.
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Gentzen managed to prove a powerful result called alternatively Haup-
statz, fundamental theorem (of proof theory), or cut-elimination: every
provable formula in sequent calculus has a cut-free proof, i.e. a proof that
does not make use of the cut rule. Intuitively, it can be understood as
a formal justification for the possibility to inline proofs of lemmas, by
seeing an instance of cut on 𝐴 as a way to invoke the lemma 𝐴 without
duplicating its proof. Moreover, Gentzen’s proof of the Haupstatz is itself
constructive: it describes an algorithm for transforming every sequent
calculus proof into a cut-free one. Thus the cut rule is said to be admissible,
in the sense that any provable sequent can be proved without it.

An important consequence of cut-elimination, which was the original mo-
tivation of Gentzen, is the consistency of the logic (intuitionistic predicate
logic in the case of LJ). This stems from the fact that all rules apart from
the cut rule satisfy the subformula property: every formula 𝐴 appearing in
the premisses is a subformula of some formula 𝐵 in the conclusion, i.e. 𝐴
already occurs inside 𝐵. Thus there cannot exist a proof of the absurd se-
quent ⇒ ⊥, since the only formula that is a subformula of ⊥ is ⊥ itself, and
there is no rule instance with⇒ ⊥ as conclusion that only contains ⊥ in its
premisses. The subformula property is the first occurrence of the concept
of analyticity in proof theory, and can be seen as a technical realization
of the philosophical notion of analyticity first applied to propositions by
Kant, and later to proofs in mathematics by Bolzano [219].

Unfortunately, the proof of cut-elimination for the sequent calculus in-
corporating Peano’s axioms, found by Gentzen a few years after proving
cut-elimination for LJ [89], is not finitist: it makes use of a transfinite
induction up to the ordinal 𝜖0. But the very ideas of cut-elimination and
analyticity will have far-reaching applications in proof theory and beyond,
including many of the results presented in this thesis.

Deep inference Many years after Gentzen’s seminal work, at the ad-
vent of the 21th century, Alessio Guglielmi introduced a newmethodology
for designing proof formalisms called deep inference [110]. The idea was
to overcome some limitations of Gentzen formalisms while preserving
their good properties, by allowing inference rules to be applied anywhere
inside formulas, instead of only at the top-level of sequents6. The first
deep inference system was the calculus of structures (CoS), which can
be succinctly described as a rewriting system on formulas. For instance,
the following switch rule, when read bottom-up (i.e. in backward mode),
indicates that the formula 𝐴 ∨ (𝐵 ∧ 𝐶) may be rewritten into (𝐴 ∨ 𝐵) ∧ 𝐶:

𝑆 (𝐴 ∨ 𝐵) ∧ 𝐶
s

𝑆 𝐴 ∨ (𝐵 ∧ 𝐶)

Importantly, the rule can be applied in any context 𝑆□. A context 𝑆□ is
simply a formula containing a single occurrence of a special subformula
□ called its hole, which can be filled (i.e. substituted) with any formula 𝐴
to give a new formula 𝑆 𝐴 . This notion of context serves two purposes:

▶ it formalizes the ability of rewriting rules to be applied at an arbitrary
depth inside expressions, while retaining all the information available
in the surrounding context;
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7: In the standard system SKS from
where the s rule originates, every con-
text is positive, in the sense that the hole
□ never occurs under a negation ¬ or left-
hand side of an implication ⊃; otherwise
the rule would need to be restricted to
positive contexts to stay valid. See Sec-
tion 9.6 for more details on SKS.

8: For instance, it is well-known that the
problem of provability in predicate logic
is undecidable.

▶ it generalizes the contexts Γ, Δ of sequent calculus, by giving them the
full structure of formulas instead of just flat lists of formulas. Indeed,
a sequent Γ ⇒ 𝐶 can be interpreted as the formula ⋀Γ ⊃ 𝐶, where ⋀Γ
denotes the conjunction of all the formulas in Γ.

Then, a proof of a formula 𝐴 in the calculus of structures is not a tree of
rule instances as in natural deduction and sequent calculus, but a sequence
of rewritings 𝐴 →∗ ⊤ that reduces 𝐴 to the trivially true goal ⊤.

The calculus of structures, as a rewriting system, is closer to the equational
reasoning that mathematicians are accustomed to in algebra. The main
difference is that most rules (including the switch rule s) can only be
applied in a single direction, because the premiss and conclusion are not
equivalent7. When the premiss and conclusion of a rule are equivalent,
we say that the rule is invertible.

All the proof formalisms designed in this thesis are deep infer-
ence rewriting systems in the style of the calculus of structures.

1.2. Proof assistants

Proof assistants are a direct application of proof theory, exploiting the
ability of programming languages to represent and manipulate arbitrary
data structures to give a concrete implementation of proof formalisms.
Crucially, they open the possibility to automate the construction and
verification of formal proofs, by acting on two fronts:

▶ on the human side, the design of high-level interfaces for representing
and manipulating statements and proofs can bridge the gap between
the low-level and very detailed proofs of formal logic, and the informal
proofs of mathematicians;

▶ on the machine side, the design of algorithms that both find proofs of
given statements and ensure their correctness can — to some extent8 —
relieve mathematicians from the burdens of proof-writing and proof-
checking.

Thus the advent of computers gave a new purpose to proof theory, going
beyond its foundational role with the hope to support and change the
everyday practice of mathematicians.

In this thesis, we are concerned mostly with the human side
of the equation: we aim to provide smoother means for the
user to communicate her intent to the proof assistant, and
conversely for the proof assistant to communicate its results
and suggestions on how to solve problems.
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[48]: Church (1940), ‘A Formulation of
the Simple Theory of Types’

1.2.1. Logical frameworks

Type theory The ancestor of all proof assistants was the Automath
project, initiated by Nicolaas Govert de Bruijn as soon as 1967. Citing
Geuvers [90]:

[One] aim of the project was to develop a mathematical lan-
guage inwhich all of mathematics can be expressed accurately,
in the sense that linguistic correctness implies mathematical
correctness. This language should be computer checkable and
it should be helpful in improving the reliability of mathemat-
ical results.

Thus the design of Automath was focused on the automatic verification
of proofs through linguistic means. It introduced many fundamental ideas
that are still at work in manymodern proof assistants, the most prominent
being the use of a type theory to encode formal proofs.

Contrary to predicate logic in traditional proof theory, type theories break
the syntactic hierarchy imposed upon mathematical objects, propositions
and proofs, by giving them a uniform representation as so-called terms
that can be assigned a type. The assertion that a term 𝑡 has type 𝑇 is usually
written with the expression 𝑡 ∶ 𝑇, which has come to be called a typing
judgment after Martin-Löf. For instance, the judgment 3 ∶ ℕ states that
the term 3 has the type ℕ of natural numbers, and 1 + 1 = 2 ∶ Prop states
that the term 1 + 1 = 2 has the type Prop of propositions.

First-order vs. higher-order Almost all type theories are higher-order:
they give a first-class status to functions and predicates, by allowing
them to take other functions and predicates as arguments. This is because
they are based on the 𝜆-calculus of Alonzo Church [47], an intensional
theory of higher-order functions that is now considered to be the first
functional programming language in history. For instance in simply-typed
𝜆-calculus [48], one may type the sum operator over sequences of natural
numbers with the judgment 𝜆𝑢.𝜆𝑛.∑𝑛

𝑖=1 𝑢 𝑖 ∶ (ℕ → ℕ) → ℕ → ℕ, where
𝜆𝑢.𝜆𝑛.∑𝑛

𝑖=1 𝑢 𝑖 is a 𝜆-term encoding the higher-order function that takes a
sequence represented as a function 𝑢 ∶ ℕ → ℕ and a bound 𝑛 ∶ ℕ, and
returns the sum of each of 𝑢’s values at index 1 ≤ 𝑖 ≤ 𝑛 encoded as the
function application 𝑢 𝑖.

By contrast, the predicate logic developed in the 19th century and studied
in traditional proof theory is first-order: functions and predicates can only
take so-called first-order individuals as arguments, which usually model
“non-functional” mathematical objects like numbers and sets.

In this thesis, we exclusively study proof formalisms for first-
order predicate logic (“FOL” hereafter).

We identified a few reasons for working in FOL:

▶ it is a standard and well-understood setting that has received a lot
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9: Almost 100 years younger than FOL if
we ignore Russell’s theory of types (1902),
that was based on a set theory encoded
in FOL.

[123]: Howard (1980), ‘The Formulae-as-
Types Notion of Construction’

10: In fact, Curry had already noticed in
1958 a similar connection between the
types of combinators in his combinatory
logic, and the axioms of Hilbert systems
for implication [54] — hence the mention
of Curry.

[238]: The Coq Development Team
(2022), The Coq Proof Assistant

[178]: Moura et al. (2021), ‘The Lean 4
Theorem Prover and Programming Lan-
guage’

[56]: de Bruijn (1980), ‘A survey of the
project Automath’

[250]: Wiedijk (2000), The De Bruijn Fac-
tor
11: In the case of Mizar, a typed set the-
ory based on FOL.

of attention, allowing us to exploit various existing works from the
structural proof theory literature, and even from some overlooked
theories of 19th century logicians;

▶ by contrast, type theory is a quite recent subject9, which explains why
there is still a great diversity of type theories that differ in subtle and
often incompatible ways;

▶ FOL is a common kernel of virtually every type theory, making our
work directly applicable to all present and future proof assistants;

▶ it is also a simpler setting, that is powerful enough to study the essen-
tial features of logical reasoning, without the idiosyncracies of type
theories aimed at capturing the full complexity of mathematics.

Curry-Howard correspondence De Bruijn came up with the revo-
lutionary idea that propositions could themselves be seen as types, by
having judgments such as 𝑡 ∶ 1 + 1 = 2 where 𝑡 is a proof term repre-
senting a proof of the proposition 1 + 1 = 2. This propositions-as-types
principle was rediscovered independently by Howard in 1978 [123], and
developed further into a proofs-as-programs correspondence — also called
Curry-Howard correspondence or Curry-Howard isomorphism10 — where
𝜆-terms in the simply-typed 𝜆-calculus are put in one-to-one correspon-
dence with proofs in the implicational fragment of the natural deduction
system NJ of Gentzen.

Thus the core of type theory is intuitionistic in nature, and the Curry-
Howard correspondence has fostered many fruitful interactions between
computer science, logic and constructive mathematics, with proof assis-
tants acting as a crucial tool and source of investigations. One influential
development in this direction has been the intuitionistic type theory of
Martin-Löf (MLTT), which formed the basis for the implementation of
many proof assistants like NuPrl, Alf, and most recently Agda [90]. A
system closely related to MLTT, the calculus of inductive constructions
(CoIC), is also implemented in two leading proof assistants: Coq [238]
and Lean [178]. Following the proofs-as-programs correspondence, these
systems support the creation of both proofs and programs that manipulate
and compute mathematical objects, by compiling everything down to
typed terms.

1.2.2. Interfaces

Elaboration Type theories are the logical foundation for the kernel of
proof assistants, i.e. the part of the system that is responsible for checking
formal proofs expressed in a terse, machine-oriented format. But it quickly
became clear that this was not enough to make proof assistants a viable
alternative to paper proofs: de Bruijn estimates that it takes a time factor
of 20 to translate a paper proof into a formalized proof in Automath

[56]. This factor has been estimated to be shrinkable to 4 in the Mizar
proof assistant [250], thanks to the design of high-level languages for
representing mathematical statements and proofs, that sit on top of the
core logical theory11. The process of compiling a high-level proof text
into a low-level proof term is called elaboration.

http://mizar.org/
https://wiki.portal.chalmers.se/agda/pmwiki.php
https://coq.inria.fr/
https://lean-lang.org/
http://mizar.org/
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[11]: Ayers (2021), ‘A Tool for Producing
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12: For a similar approach to
ProofWidgets in the context of
functional programming, see [189].

[12]: Ayers et al. (2021), ‘A Graphical User
Interface Framework for Formal Verifica-
tion’
[243]: Ullrich et al. (2022), ‘Beyond Nota-
tions’

[175]: Milner (1984), ‘The use of ma-
chines to assist in rigorous proof’

Statement languages Any proof assistant must provide the two fol-
lowing features in its statement language:

Logical primitives Naturally, one needs a way to write propositions
formed with logical connectives and quantifiers. This is usually done in
symbolic form, either with a custom ASCII notation, or with Unicode
characters corresponding to the standard symbols in more modern
proof assistants.

Mathematical notations In addition to the logical primitives, one needs
to be able to express mathematical objects and operations in the do-
main of interest, e.g. numbers and arithmetic operators. Contrary to
the logical language that can be hardcoded once and for all in the proof
assistant, the mathematical language needs to be extensible by the user,
so that custom notations can be defined for new mathematical objects.

In this thesis, we focus exclusively on the logical primitives,
because they are found universally in all types of mathematical
reasoning.

We leave aside the question of providing domain-specific languages for
particular branches of mathematics, which is nonetheless as much im-
portant. It has been tackled extensively in Ayers’ thesis [11], and more
specifically in his framework ProofWidgets for user-extensible, inter-
active graphical notations in the Lean proof assistant12 [12]. De Moura
and Ullrich have also designed a powerful macro system for Lean 4, that
supports the elaboration of abstract notations into terms of the underlying
type theory [243].

Proof languages Once one disposes of a convenient way to state math-
ematical propositions, comes the question of how to efficiently write
proofs of these propositions. There have been broadly two approaches in
the design of high-level proof languages:

Imperative proof languages, like imperative programming languages, of-
fer a set of commands or instructions than can be given to the computer
to modify some state stored in memory. The latter is called the proof
state, and corresponds to the partial proof that is built by the system
incrementally through the execution of commands. In the dominant
paradigm, these commands are provided by the user in text form; since
Robin Milner and the LCF theorem prover [175], they are called tactics.
Proof files are literally proof scripts, that is the sequence of tactics typed
in by the user.

Contrary to imperative programming languages, the main execution
paradigm for proof scripts is interactive: the user triggers commands
one at a time, so that she can visualize the intermediate proof states
and determine the next steps to take. In most tactics-based ITPs, only
the statement part of the proof state is shown, in a so-called proof view
or goal view. This corresponds to the goals that the user needs to prove,
and each goal is presented in the form of a sequent Γ ⇒ 𝐶, where 𝐶

https://github.com/leanprover-community/ProofWidgets4
https://github.com/leanprover-community/ProofWidgets4
https://lean-lang.org/
https://lean-lang.org/
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[185]: Nipkow (2002), ‘Structured Proofs
in Isar/HOL’

is the conclusion that must be reached under the assumptions in Γ.
Tactics generally apply to one goal at a time, and the user can choose
which goal to focus at any point during the interaction. When the set
of goals becomes empty, we say that the initial goal or conjecture has
been solved.

Remark 1.2.1 The transformations performed by tactics can be
more or less sophisticated. But, fundamentally, one finds elementary
commands that correspond roughly to the inference rules, generally
of natural deduction or sequent calculus. For instance, a goal Γ ⇒ 𝐴∨𝐵
(resp. Γ ⇒ 𝐴 ∧ 𝐵) can be turned into either a goal Γ ⇒ 𝐴 or a goal
Γ ⇒ 𝐵 (resp. into two goals Γ ⇒ 𝐴 and Γ ⇒ 𝐵), corresponding to the
rules ∨R1 and ∨R2 (resp. ∧R) of LJ in their backward reading (Figure
1.4).

Coq and Lean are examples of state-of-the-art proof assistants in the
imperative paradigm.

Declarative proof languages follow a different approach, by aiming to
provide an explicit, self-contained description of the proof. Although
a goal view is still available to guide the user during the proof con-
struction process, the finished proof must be readable statically by a
human, without relying on the ITP to compute and display interme-
diate proof states. Consequently, declarative proofs are more verbose
and take longer to type than their imperative homologues. But since
they contain more information, they have the advantage of being more
robust to slight changes to definitions or to the statement of the theo-
rem being proved, and are generally easier to debug. They can also be
put in correspondence with some proof-theoretical formalisms, usually
Fitch-style natural deduction [90].

Agda, Mizar and Isabelle (with its Isar proof language [185]) are ex-
amples of state-of-the-art proof assistants in the declarative paradigm.

In this thesis, we focusmostly on exploring newmodalities of in-
teraction in the imperative paradigm. Only in Subsection 10.8.2
do we sketch a possible escape from the imperative/declarative
dichotomy.

Remark 1.2.2 In some rare cases, an additional natural language
layer is added on top of the proof language, to be as close as possible to
informal proofs. With the recent development of large language models
like GPT, such natural language translations are becoming increasingly
convincing (see e.g. Patrick Massot’s work in Lean [166]).

https://coq.inria.fr/
https://lean-lang.org/
https://wiki.portal.chalmers.se/agda/pmwiki.php
http://mizar.org/
https://isabelle.in.tum.de/
https://isabelle.in.tum.de/Isar/
https://lean-lang.org/
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Languages’

1.3. This thesis

1.3.1. Research goals

Universal user interface Many kinds of logical manipulations such
as discharging assumptions, instantiating quantifiers, and composing
lemmas, are conceptually universal; yet, a user wishing to carry out
such manipulations in a particular proof assistant must express the wish
in terms of the specific proof language of the system. A universal user
interface would instead allow performing such manipulations directly
on the goal itself, using physical, reversible, and incremental actions
with immediate feedback. A sequence of user actions should then be
representable in terms of any particular proof language.

Directmanipulation This approach to user interfaces has been termed
direct manipulation by Shneiderman in the 1980s [222]. It is now at the
heart of virtually every modern user interface and is arguably the major
factor in the personal computing revolution. Indeed, it has opened the use of
computing devices to a much wider audience, by allowing users to interact
with them in an intuitive way that resembles interactions with physical
objects in the real world. According to Shneiderman, this contrasts with
the command-line paradigm, where users need to memorize a complex
command language that often varies from one software to another within
the same domain. This induces an unnecessary cognitive burden for
newcomers, especially those unfamiliar with textual interfaces, which
constitute the majority of users of computing devices nowadays; to the
point that the hurdle is too great to overcome for most potential users.

Unfortunately, the user interfaces of state-of-the-art proof assistants are
largely stuck in the pre-80s era of command-line interfaces, making them
reserved to an audience of highly motivated, computer-savvy individuals.
One could argue that like programming languages, this is due to their
inherent abstraction capabilities, that can only be captured through the
symbolic power of language; hence that this state of fact is unavoidable,
and can only be solved through the addition (or improvement) of com-
puter science curricula in primary and secondary education. We do not
agree with this conception: we believe that the current state of user in-
terfaces in ITPs is one of the major obstacles to their wider adoption in
the mathematical community, both by professional researchers, teachers,
and novice students alike.

Our first main working hypothesis is that the direct manipula-
tion paradigm is not only possible, but also crucial for building
formal proofs in ITPs, if they are to become a viable alternative
to paper proofs in mathematics.

In fact, following the proofs-as-programs correspondence, we also believe
that this applies (to some extent) to programming, and that it is only a
matter of time before direct manipulation becomes viable for building
(general-purpose) programs, in the spirit of visual programming languages.
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13: A notable exception is the rewrite
tactic of imperative proof languages,
where the user can specify patterns to
designate particular occurrences of a
term 𝑡 that are to be rewritten into an
equal term 𝑢, usually thanks to an as-
sumed equation 𝑡 = 𝑢. But coming up
with such patterns is a lot slower than di-
rectly pointing at the locations of interest
onscreen.

We do not explore this direction in this thesis, but it is one of our hopes
that some of the techniques we develop will apply to programming as well;
and one of the reasons why we chose to focus so much on intuitionistic
logic.

Graphical deep inference A first attempt to design direct manipu-
lation principles for interactive proof building was made in the 90s by
the team of Gilles Kahn at Inria, where they coined the Proof-by-Pointing
(PbP) paradigm [18]. The idea was to synthesize complex tactics from the
simple act of pointing at specific locations inside expressions occurring
in the goal, typically with a mouse cursor. More recently [37], Kaustuv
Chaudhuri proposed a variation on this idea called subformula linking
(SFL) or Proof-by-Linking (PbL), where instead of selecting expressions in
isolation, one can link two of them together to make them interact.

In both cases, the expressions considered were logical formulas and the as-
sociated actions chains of inferences in FOL. Importantly, both paradigms
rely on the use of deep inference, since the user can point at subformulas
that occur at an arbitrary depth inside the goal. This is in contrast with
the basic commands found in the proof languages of ITPs, where the
user can only designate formulas appearing at the top-level of sequents13.
While the semantics of PbP actions is still based on the shallow inference
rules of sequent calculus, PbL fully embraces the deep inference paradigm
by relying on CoS-style rewriting rules.

All the works presented in this thesis can be seen as a direct
continuation of the research programme initiated by PbP and
PbL. The aim is to replace textual proof languages with gestural
actions performed directly upon goals in a graphical user inter-
face (GUI). To be as general as possible, we call such a paradigm
Proof-by-Action (PbA).

Proof exploration Note that we believe such a replacement to be
useful mostly during the construction or writing phase of proofs. Quoting
Shneiderman [222]:

The pleasure in using these systems stems from the capacity
to manipulate the object of interest directly and to generate
multiple alternatives rapidly.

Thus in the context of ITPs, the major advantage of a (well-designed) GUI
in the PbA paradigm would be to enable the rapid exploration of multiple
paths towards the construction of a complete proof. But once a proof
has been found, the dynamic sequence of actions that led to it could be
“compiled” into a static, textual representation of the proof in the favorite
proof language of the user, to facilitate the reading phase.

As for the modification phase of proofs, the PbA paradigm requires a way
to navigate and edit directly a recorded sequence of actions, and possibly
a mechanism for mapping parts of a static proof object to the actions that
generated them.
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In this thesis, we leave the question of proof evolution in PbA
— i.e. the design of interfaces for the reading and modification
phases, that support a smooth interaction with the writing
phase — for future work. A more detailed discussion can be
found in Subsection 6.6.4.

Iconicity Contrary to a common misconception among logicians, Leib-
niz did not conceive of his characteristica universalis as a symbolic lan-
guage, but rather as an iconic one [52, Chpt. 3]:

The true “real characteristic” [...] would express the compo-
sition of concepts by the combination of signs representing
their simple elements, such that the correspondence between
composite ideas and their symbols would be natural and no
longer conventional. [...] This shows that the real characteris-
tic was for him an ideography, that is, a system of signs that
directly represent things (or, rather, ideas) and not words.

This is to be compared to Frege’s Begriffsschrift, a graphical, two dimen-
sional language and calculus of “pure thought”, whose name has repeat-
edly been translated as ideography [81, 82].

Following the seminal work of Charles Sanders Peirce in semiotics14, we
define an iconic language as one whose signs are mainly icons, i.e. signs
that resemble or share qualities with the objects they denote. This is to be
contrasted with symbolic languages where most signs are just symbols,
i.e. signs that conventionally denote their objects. In his systematic usage
of triads of concepts, Peirce identified a third kind of sign, indexes [9]:

if the constraints of successful signification require that the
sign reflect qualitative features of the object, then the sign is
an icon. If the constraints of successful signification require
that the sign utilize some existential or physical connection
between it and its object, then the sign is an index. And fi-
nally, if successful signification of the object requires that the
sign utilize some convention, habit, or social rule or law that
connects it with its object, then the sign is a symbol.

He even went further by analyzing icons into another trichotomy15:
images that depend on simple quality; diagrams, who share structural
relations among their constituents that are analogous to that of their
object; and metaphors, that denote features of their object by relating
them to features of another object [149].

Interestingly, Peirce held that mathematics relies mostly on diagram-
matic thinking — observation of, and experimentation on, diagrams [122,
Chpt. 6]. This agrees with the contemporary practice of mathematics:
indeed, there is an increasing number of areas in mathematics — the most
prominent one being category theory — where the heart of a proof lies
in the dynamical construction of a diagram capturing the structure of
interest in given mathematical objects. The natural language proof text
is often just a means to explicit the meaning or intuition behind the dia-
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grammatic manipulations, or simply a retranscription of the commentary
that the mathematician would give when unfolding the construction on a
blackboard.

If one views logic as one particular type of mathematical reasoning —
albeit one that is omnipresent in all branches of mathematics, then it
is only natural to expect that some diagrammatic system should exist
for it, that can express in the most natural way most (if not all) logical
arguments. This is the iconicity thesis of Peirce, which motivated his
inquiry into what is arguably the first diagrammatic proof system in
history: the existential graphs (EGs). This will be the subject of Chapter
9, and the basis for the development of a metaphorical proof system in
Chapter 10.

Our second main working hypothesis exploited in the second
part of this thesis, is that iconic representations of logical state-
ments, and the proofs that result from their manipulation, can
play a crucial role in the design of intuitive proof building
interfaces.

1.3.2. Contributions

This thesis proposes several contributions toward the research goals
highlighted above.

Symbolicmanipulations In the first part of this thesis, we substantiate
the PbA paradigm in the context of traditional representations of goals,
by presenting a number of techniques based on the direct manipulation
of symbolic formulas in sequents.

We start in Chapter 2 with an introduction to PbP and PbL, by describing
how to reason with logical connectives, quantifiers and equality through
click and drag-and-drop (DnD) actions in a prototype of GUI called Actema.
In particular, DnD actions can be seen as a generalization of both the
apply and rewrite tactics of imperative proof languages.

In Chapter 3, we ground the semantics of DnD actions in deep inference
proof theory, by designing an intuitionistic variant of the CoS for subfor-
mula linking introduced by Chaudhuri in [37]. Our approach differs from
Chaudhuri’s mainly through our notion of valid linkage, which filters out
unproductive DnD actions by restricting them to unifiable subformulas.

In Chapter 4, we present more advanced techniques in the PbA paradigm,
that handle pervasive forms of reasoning in mathematical practice such
as the use of definitions, reasoning by induction, and the simplification of
expressions through automatic computation. This is illustrated through a
few case studies of basic logical and mathematical problems.

In Chapter 5, we investigate an extension of PbA to sequents withmultiple
alternative conclusions, as opposed to the single-conclusion sequents

https://actema.xyz
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found in the interface of almost every ITP. We argue that the use of direct
manipulation greatly facilitates the management of multiple conclusions,
and introduce a so-called parallel interaction operator to model reasoning
in classical logic that involves the interaction of two conclusions.

Lastly in Chapter 6, we present coq-actema, a plugin that integrates the
Actema web application as an interactive proof view in Coq. We focus
on the architecture and interaction protocols that connect the different
components of the system, and give an overview of the elaboration/compi-
lation strategy that turns graphical actions performed in Actema into Coq
proof terms. We also discuss current shortcomings of our approach and
future directions for improvement, in particular concerning the question
of proof evolution.

Iconic manipulations In the second part of this thesis, we explore a
series of deep inference proof systems that give more structure to the
notion of logical goal. These systems share the ability to represent goals
in two alternative ways: either textually through a standard inductive
syntax, or graphically through a metaphorical notation well-suited to
direct manipulation. The first can be used as a machine representation
in the backend of an ITP, and the latter as the substrate for GUIs in the
frontend.

Bubble calculi In the first two chapters, we introduce a family of sys-
tems called bubble calculi. They are an extension of the theory of nested
sequents first introduced by Brünnler [29], that we reframe as local
rewriting systems with a graphical and topological interpretation. Bub-
ble calculi enable an efficient sharing of contexts between subgoals,
making them well-suited to the factorization of both forward and back-
ward reasoning steps in proofs.

Chapter 7 presents the asymmetric bubble calculus BJ for intuitionistic
logic, modelled after the asymmetric sequents of the intuitionistic se-
quent calculus LJ of Gentzen. It introduces the metaphor of bubbles as
a way to iconically represent the separation and sharing of contexts
between different subgoals.

Chapter 8 refines BJ into a more general and symmetric calculus for
classical logic called system B, where bubbles can be polarized in addi-
tion to formulas. Intuitionistic, dual-intuitionistic and bi-intuitionistic
logic can be recovered as fragments of system B, by forbidding certain
inference rules that characterize the porosity of bubbles. We also devise
a fully invertible variant of system B, that we conjecture to be complete.

Existential graphs In the last two chapters, we study two systems based
on the existential graphs of Peirce, that allow us to achieve full iconicity:
every logical construction has an associated icon, and thus there is no
use anymore for the connectives and quantifiers of symbolic formulas.
Hopefully, this shall remove a first barrier in the learning of formal
logic, which lies in the arbitrary correspondence between symbols and
their meaning.

In Chapter 9, we give a complete review of Peirce’s original systems of
EGs for propositional and first-order classical logic, which have been

https://github.com/Champitoad/coq-actema
https://actema.xyz
https://coq.inria.fr/
https://actema.xyz
https://coq.inria.fr/
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16: One reason might be that EGs have
been invented at the end of the 19th cen-
tury, before the birth of proof theory as a
discipline in the 1920s under the impulse
of Hilbert.

consistently neglected in the proof theory literature16. We propose in
particular a novel inductive characterization of the syntax of EGs, as
well as the first identification of an analytic fragment of the system for
propositional logic that is complete for provability.

Finally, we introduce in Chapter 10 the flower calculus, an intuitionistic
variant of EGs where statements are represented metaphorically as
flowers. We partition the system into a natural fragment where every
rule is both analytic and invertible, and a cultural fragment where
every rule is non-invertible. We prove that the cultural fragment is
admissible thanks to a completeness proof for the natural fragment with
respect to Kripke semantics. We exploit these meta-theoretical results
to design the Flower Prover, a prototype of GUI in the PbA paradigm
that aims to unify the concepts of goal and theory in a modal interface:
goals correspond to flowers manipulated with natural rules in Proof
mode; while theories correspond to the same flowers manipulated with
cultural rules in Edit mode. The Flower Prover is also the first mobile-
friendly interface for ITPs that we know of.

Note

Most of the content of Chapter 2 and Chapter 3 has been previously
published in [67], and the coq-actema system described in Chapter
6 is under active development by us and Benjamin Werner [68]. A
shortened version of Chapter 9 and Chapter 10 has been accepted for
publication at FSCD 2024 [66]. All other chapters present completely
original and personal work.

1.3.3. How to read

Reading order The ordering of chapters in this thesis is mostly chrono-
logical, reflecting the order in which the ideas were developed. For readers
interested in all of the contributions, we thus advise reading all chapters
in order.

Still, the investigations into iconic manipulations in the second part
started as an offshoot of those on symbolic manipulations in the first part,
and were carried mostly in parallel. Although we sometimes reference
ideas from chapters in the first part, the second part can thus be read
mostly independently from the first one.

In all cases, the reader should start with Chapter 2, which gives
a taste of the PbA paradigm explored in all other chapters.

Figure 1.6 shows the precise graph of dependencies between chapters.
Four independent paths can be followed:

The applied road (¯ → ±) If you want to see to what extent the PbA
paradigm can currently be applied for practical theorem proving in real
proof assistants, this is the right path for you.

https://www.lix.polytechnique.fr/Labo/Pablo.DONATO/flowerprover/
https://www.lix.polytechnique.fr/Labo/Pablo.DONATO/flowerprover/
https://github.com/Champitoad/coq-actema
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 Proof-by-Action

® Subformula Linking ¯ Proof-by-Action in Practice

° Parallel Conclusions and Classical Logic ± Integration in a Proof Assistant

² Asymmetric Bubble Calculus ³ Symmetric Bubble Calculi

´ Existential Graphs µ Flower Calculus

Figure 1.6.: Dependency graph between chapters

Digression
We will sometimes develop ideas
loosely related to the main text in
digression boxes such as this one: at
least on first reading, they can be
safely ignored. We distinguish them
from normal side notes, which are
usually shorter and more relevant to
the matter at hand.

Proof theory of SFL (® → °) This path is for readers only interested
in the proof theory of subformula linking, which is the foundation for
the semantics of DnD actions on symbolic formulas.

Bubble calculi (² → ³) This path is for readers only interested in the
proof theory and potential applications of bubble calculi.

Flower calculus (´ → µ) This path is for readers only interested in the
proof theory of the flower calculus, and its applications to automated
and interactive theorem proving.

A last option is to read only Chapter 9, skipping even Chapter 2. This
might be of interest to people looking for an introduction to the existential
graphs of Peirce.

Color Some parts of this document make a heavy, semantic use of colors.
Although all important concepts still have a textual, color-independent
presentation, it is recommended to print this document with a decent
amount of color levels.

Hyperlinks We tend to cross-reference many ideas from different
chapters with the help of hyperlinks. In particular, we use the knowledge
package from Thomas Colcombet to hyperlink occurrences of concepts
and notations to the place where they are introduced.We thus recommend
the usage of a PDF reader that supports at least hyperlink jumping, and if
possible hyperlink preview for a more comfortable reading experience.

https://ctan.org/pkg/knowledge
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[216]: Robinson et al. (1993), ‘Formaliz-
ing a Hierarchical Structure of Practical
Mathematical Reasoning’

[10]: Autexier (2004), ‘Hierarchical Con-
textual Reasoning’

Digression
Note that during most of the period
when window inference was devel-
oped, the terminology of “deep in-
ference” had not been introduced
yet. Indeed, the first article on the
subject appeared in 1999 [110], with
very different motivations in mind:
namely, the development of a proof-
theoretical approach unifying con-
current and sequential computation,
resulting in the calculus of structures
for the logic BV. However, some
proof systems based on deep infer-
ence principles already existed and
inspired researchers in window in-
ference, as witnessed by the refer-
ence to Schütte’s proof theory in the
above quote.

[11]: Ayers (2021), ‘A Tool for Producing
Verified, Explainable Proofs.’

1.4. Related works

Window inference Other researchers have stressed the importance of
being able to reason deep inside formulas to provide intuitive proof steps.
The first and biggest line of research supporting this idea is probably that
of window inference, which started in 1993 with the seminal article of P.J.
Robinson and J. Staples [216], and slowly became out of fashion during
the 2000s. This is well expressed in the following quote from one of its
main contributors, Serge Autexier [10, p. 184–187]:

We believe it is an essential feature of a calculus for intuitive
reasoning to support the transformation of parts of a formula
without actually being forced to decompose the formula. In
that respect the inference rules of Schütte’s proof theory are a
clear contribution. [...] One motivation for the development of
the CORE proof theory was to overcome the need for formula
decomposition as enforced by sequent and natural deduction
calculi in order to support an intuitive reasoning style.

Thus we are not the first to attempt to design new proof systems based
on deep inference principles, with the explicit objective of improving the
usability of ITPs. However, we believe our approach is unique in that it
emphasizes two aspects:

▶ the use of direct manipulation on goals to perform proof steps (although
some pointing interactions were already at work in window inference-
based systems);

▶ in the second part of this thesis, the use of iconic representations for
the proof state, that stray away from traditional symbolic formulas.

Ayers’ thesis More recently, Ayers described in his thesis a new tool
for producing verifiable and explainable (formal) proofs, including both
theoretical discussions of novel concepts and designs for components
of proof assistants, and practical implementations of software evaluated
through user studies [11]. Notable contributions from our point of view
are:

▶ his Box development calculus, which introduces a unified Box data
structure representing at the same time goals and partial proofs, with
the aim to offer more “human-like” interfaces for both the construction
and the presentation of proofs;

▶ and his ProofWidgets framework, that allows to extend the Lean

proof assistant with new interactive and domain-specific notations for
mathematical objects, thus offering a form of end-user programming.

The Box data structure easily lends itself to visualization in a two dimen-
sional graphical notation, while ProofWidgets promises great capabili-
ties for proofs by both direct and iconic manipulation.

However, the work of Ayers focuses mainly on designing a general frame-
work that can integrate modern interfaces for proofs in the Lean proof
assistant, while we focus on exploring various proof calculi that provide

https://github.com/leanprover-community/ProofWidgets4
https://lean-lang.org/
https://github.com/leanprover-community/ProofWidgets4
https://lean-lang.org/
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the foundations for such interfaces at the purely logical level, indepen-
dently of any particular proof assistant. Thus we believe that our work
is quite complementary to Ayers’: it emphasizes different aspects while
sharing a common vision for the future of proof assistants, where mod-
ern graphical interfaces play a crucial role in improving the interaction
between the user and the computer.
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When it is obvious that the goals cannot be reached, don’t adjust the
goals, adjust the action steps.

Confucius

In this chapter, we focus on how both click and drag-and-drop (DnD)
actions upon the formulas of a sequent can implement proof construc-
tion operations corresponding to the core logic; that is how they deal
with logical connectives, quantifiers and equality. We present these core
principles through various illustrations and examples in first-order logic.
The technical and proof-theoretical foundations for the semantics of DnD
actions will be investigated more thoroughly in Chapter 3. More advanced
features of the Proof-by-Action paradigm that go beyond the core logic are
illustrated in Chapter 4, and Chapter 6 explains how it can be integrated
in a mainstream proof assistant.

We have started to implement the paradigm in a prototype named Actema
(for “Active mathematics”) running through a web HTML/JavaScript
interface. At the time of writing, a standalone version of the prototype
(i.e. which does not use an existing theorem prover as its backend) is
publicly available online [69]. This possibility to experiment in practice,
even though yet on a small scale, gave valuable feedback for crafting the
way DnD actions are to be translated into proof construction steps in an
intuitive and practical way. A description of the overall architecture and
implementation design of Actema will be provided in Chapter 6.

The chapter is organized as follows: Section 2.1 briefly outlines its logi-
cal setting. Section 2.2 describes the basic features of a graphical proof
interface based on our principles, and illustrates them with a famous
syllogism from Aristotle. Section 2.3 shows how it can integrate Proof-by-
Pointing capabilities through click actions. The two following sections
explain, through further examples, how drag-and-drop actions work;
first for so-called rewrite actions involving equalities, then for actions
involving logical connectives and quantifiers. We end in Section 2.6 with
a discussion of related works.

2.1. Logical setting

Any proof system must implement a given logical formalism. What we
describe here ought to be applied to a wide range of formalisms, but in this
chapter we focus mainly on the core of intuitionistic FOL with equality.
This allows us to consider sequents where hypotheses are unordered
which, in turn, simplifies the technical presentation. We will thus write
Γ, 𝐴 ⇒ 𝐶 for a sequent where 𝐴 is among the hypotheses.

https://actema.xyz
https://developer.mozilla.org/en-US/docs/Web/HTML
https://developer.mozilla.org/en-US/docs/Web/JavaScript
https://actema.xyz
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The conclusion is red on the right, the two hypotheses blue on the left. The gray dotted arrows have been
added to show the two possible actions.

Figure 2.1.: A partial screenshot showing a goal in the Actema prototype

1: We are well aware that, in later imple-
mentations, this color-based distinction
ought to be complemented by some other
visual distinction, at least for users with
impaired color vision. But in the present
description we stick to the red/blue de-
nomination, as it is conveniently concise.

We use and do not recall the usual definitions of terms and propositions in
FOL. We assume a first-order language (function and predicate symbols)
is given. Provability is defined over sequents Γ ⇒ 𝐶 by the usual inference
rules of natural deduction (Figure 1.1) and/or sequent calculus (Figure
1.4).

Equality is treated in a common way: = is a binary predicate symbol
written in the usual infix notation, together with the reflexivity axiom
∀𝑥.𝑥 = 𝑥 and the Leibniz scheme, stating that for any proposition 𝐴 one
has

∀𝑥.∀𝑦.𝑥 = 𝑦 ∧ 𝐴 ⊃ 𝐴{𝑥/𝑦}.

We will not consider, on paper, the details of variable renaming in sub-
stitutions, implicitly applying the so-called Barendregt convention, that
bound and free variables are distinct and that a variable is bound at most
once.

Extending this work to simple extensions of FOL, like multi-sorted predi-
cate calculus is straightforward (and actually done in the Actema proto-
type). Some interesting points may show up when considering how to
apply this work to more complex formalisms like type theories. We will
not explore these questions here.

2.2. A first example

2.2.1. Layout

One advantage of the PbA paradigm, is that it allows a very lean visual
layout of the proof state. There is no need to name hypotheses. In the
prototype we also dispense with a text buffer, since proofs are solely built
through graphical actions.

Figure 2.1 shows the layout of the system using the ancient example from
Aristotle. A goal appears as a set of items whose nature is defined by their
respective colors1:

https://actema.xyz
https://actema.xyz
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2: For now we ask the user to input tex-
tual data, in an idiosyncratic syntax spe-
cific to the logic of Actema. A desirable
feature would be to provide some elab-
orate input mechanism tailored to the
type of object the user wants to create.
This would obviously require some ex-
tensibility to new domain-specific input
interfaces: typically one could imagine
plugging a tool like GeoGebra to con-
struct geometrical figures [98], or a cate-
gorical diagram editor like YADE [145].
The ProofWidgets framework is partic-
ularly well-suited for this task [12].

▶ a red item which is the proposition to be proved, that is the conclusion;

▶ blue items, which are the local hypotheses;

▶ green items, which are the declared (first-order) objects.

The items are what the user can act upon: either by clicking on them, or
by moving them. Each item can be positioned freely on a so-called proof
canvas, which is depicted by the white background in Figure 2.1.

Often in the course of a proof, one will want to add new items: either a
new conjecture (blue item), or a new object (green item) that would be
helpful to solve the current goal. These can be done respectively with
the blue +hyp and the green +expr buttons, placed in the top-left corner
of the screen in Figure 2.1. When clicked, they prompt the user for the
statement of the conjecture, or the name and expression defining the
object2. The +hyp button will also create a new subgoal requiring to
prove the conjecture within the current context.

Finally, note that each goal is displayed in its own tab, whose title is the
statement of the goal’s conclusion.

2.2.2. Two kinds of actions

In this example, there are two possible actions.

▶ A first one is to bring together by DnD the conclusionMortal(Socrates)
with the conclusion of the first hypothesis Mortal(𝑥). This will trans-
form the goal by changing the conclusion to Human(Socrates).

▶ A second possibility is to combine the two hypotheses; more pre-
cisely to bring together the item Human(Socrates) with the premise
Human(𝑥) of the first hypothesis. This will yield a new hypothesis
Mortal(Socrates).

The first case is what we call a backward step where the conclusion is
modified by using a hypothesis. The second case is a forward step where
two known facts are combined to deduce a new fact, that is an additional
blue item.

In both cases, the proof can then be finished invoking the logical ax-
iom rule. In practice this means bringing together the blue hypothesis
Human(Socrates) (resp. the new blue factMortal(Socrates)) with the iden-
tical red conclusion.

2.2.3. Modelling the mechanism

A backward step involves a hypothesis, here ∀𝑥.Human(𝑥) ⊃ Mortal(𝑥)
and the conclusion, here Mortal(Socrates). Furthermore, the action actu-
ally links together two subterms of each of these items; this is written by
squaring these subterms. The symbol 5, called an interaction operator, is
meant to describe the result of the interaction. Internally, the behavior of

https://actema.xyz
https://github.com/leanprover-community/ProofWidgets4
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3: Note that 5 has lower precedence
than all logical connectives.

this operator is defined by a set of rewriting rules of the form 𝐴 5 𝐵 → 𝐶
given in Figure 2.4. Here is the sequence of rewrites corresponding to the
example3:

∀𝑥.Human(𝑥) ⊃ Mortal(𝑥) 5 Mortal(Socrates)
→ Human(Socrates) ⊃ Mortal(Socrates) 5 Mortal(Socrates) L∀i

→ Human(Socrates) ∧ ( Mortal(Socrates) 5 Mortal(Socrates) ) L⊃2

→ Human(Socrates) ∧ ⊤ id

→ Human(Socrates) neur

Notice that:

▶ These elementary rewrites are not visible for the user. What she sees
is the final result of the action, that is the last expression of the rewrite
sequence.

▶ The definitions of the rewriting rules in Figure 2.4 do not involve
squared subterms. The information of which subterms are squared is
only used by the system to decide which rules to apply in which order.

▶ The last step applies the neur rule defined in Figure 2.5.

In general, the action solves the goal when the interaction ends with the
trivially true proposition ⊤. The base case being the action corresponding
to the axiom/identity rule id: 𝐴 5 𝐴 → ⊤.

A forward step, on the other hand, involves two (subterms of two) hy-
potheses. The interaction operator between two hypotheses is written �.
In the example above, the detail of the interaction is:

∀𝑥. Human(𝑥) ⊃ Mortal(𝑥) � Human(Socrates)
→ Human(Socrates) ⊃ Mortal(Socrates) � Human(Socrates) F∀i

→ ( Human(Socrates) 5 Human(Socrates) ) ⊃ Mortal(Socrates) F⊃1

→ ⊤ ⊃ Mortal(Socrates) id

→ Mortal(Socrates) neul

The final result is the new hypothesis. We come back to the study of the
rewriting rules of 5 and � in Chapter 3.

2.3. Proof steps through clicks

Drag-and-drop actions involve two items. Some proof steps involve only
one item; they can be associated to the action of clicking on this item.
The general scheme is that clicking on a connective or quantifier allows
to “break” or destruct this connective. The results of clicks are not very
surprising, but this feature is necessary to complement drag-and-drop
actions.

▶ Clicking on a blue conjunction 𝐴 ∧ 𝐵 transforms the item into two
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Table 2.1.: Mapping of click actions to
inference rules

Head
connective

Red item Blue item

⊤ ⊤R ⊤L

⊥ ⌀ ⊥L

∧ ∧R ∧L

∨ ∨R1, ∨R2 ∨L

⊃ ⊃R ⊃e

∀ ∀R ⌀

∃ ⌀ ∃L

⊤R
Γ ⇒ ⊤

Γ ⇒ 𝐶
⊤L

Γ, ⊤ ⇒ 𝐶

Γ, 𝐴, 𝐵 ⇒ 𝐶
∧L

Γ, 𝐴 ∧ 𝐵 ⇒ 𝐶

Figure 2.2.: Variants of some sequent
calculus rules

separate blue items 𝐴 and 𝐵.

▶ Clicking on a red conjunction 𝐴 ∧ 𝐵 splits the goal into two subgoals,
whose conclusions are respectively 𝐴 and 𝐵.

▶ Clicking on a blue disjunction 𝐴 ∨ 𝐵 splits the goal into two subgoals
of same conclusion, with 𝐴 (resp. 𝐵) added as a new hypothesis.

▶ Clicking on the left (resp. right)-hand subterm of a red disjunction
𝐴 ∨ 𝐵 replaces this red conclusion by 𝐴 (resp. 𝐵).

▶ Clicking on a red implication𝐴 ⊃ 𝐵 breaks it into a new red conclusion
𝐵 and a new blue hypothesis 𝐴.

▶ Clicking on a red universal quantifier ∀𝑥.𝐴 introduces a new object 𝑥
and the conclusion becomes 𝐴.

▶ Clicking on a blue existential ∃𝑥.𝐴 introduces a new object 𝑥 together
with a blue hypothesis 𝐴.

▶ Clicking on a red equality 𝑡 = 𝑡 solves the goal immediately.

One can see that these actions correspond essentially to the right intro-
duction rules of the head connective for the conclusion, and either the
elimination rule from NJ or the left introduction rule from LJ for hypothe-
ses. The exact mapping between click actions and inference rules is given
in Table 2.1. A few remarks are in order:

▶ In the current implementation of Actema, clicking on a blue item
𝐴 ⊃ 𝐵 will work only if the conclusion is 𝐵, replacing the latter with
𝐴. An alternative is to use the ⊃L rule from sequent calculus, which is
applicable in every context.

▶ There is no action mapped to red ⊥ items, simply because ⊥ does not
have any introduction rule.

▶ There is currently no action mapped to blue ∀ and red ∃ items. The
reason is that one needs additional information about the witness
to be used when instantiating with the ∀L or ∃R rule. This could be
provided with further input (e.g. from a dialog box), but this would
need a change in the communication protocol between the frontend
and backend of Actema. Instead we decompose this in two steps: first
the user can add the witness as a new object by using the +expr

button; then she can drag the corresponding green item and drop it
on the quantified item to instantiate it. It is also possible to select with
the mouse an arbitrary subexpression occurring in any item of the
current goal, and then drag-and-drop the item holding the selected
subexpression instead.

Remark 2.3.1 (Click completeness) From the previous remarks and
the completeness of the cut-free sequent calculus LJ, it follows that
click actions, when combined with new object declarations and DnD
instantiations, provide a sufficient set of interactions to prove any true
formula of (intuitionistic) first-order logic.

It is possible to associate some more complex effects to click actions
performed on locations deeper under connectives. This is the essence of

https://actema.xyz
https://actema.xyz
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[18]: Bertot et al. (1994), ‘Proof by point-
ing’

4: Note that we use the symbol ≡ to de-
note syntactic equality of formulas at the
meta-level, by contrast to the symbol =
denoting equality at the object-level.

Proof-by-Pointing, and [18] provides ample description. Since we here
focus more on drag-and-drop actions, we do not detail further more
advanced PbP features. The version of Actema presented in Chapter 6
provides an implementation of PbP available as a contextual menu action.

2.4. A simple example involving equality

Most interactive theorem provers expose a rewrite tactic that allows
the use of equality hypotheses, that is known equations of the form
𝑡 = 𝑢, in order to replace some occurrences of 𝑡 by 𝑢 (or symmetrically,
occurrences of 𝑢 by 𝑡). This substitution can be performed in the conclusion
or in hypotheses. Specifying the occurrences to be replaced with textual
commands can be quite tedious, since it involves either dealing with some
form of naming/numbering to designate locations of subterms, or writing
manually patterns which duplicate parts of the structure of terms.

In our setting we can provide this replacement operation through drag-
and-drop. The user points at the occurrence(s) of 𝑡 to be replaced, and
then brings them to the corresponding side of the equality.

Figure 2.3 shows a very elementary example where one wants to prove
1 + 1 = 2 in the setting of Peano arithmetic. For any number 𝑛, we write
𝑛⊕1 to denote the application of the successor function to 𝑛; closed terms
are directly written in decimal notation. The proof goes as follows4:

▶ We link the left-hand side 𝑥 + 𝑦⊕1 of the second addition axiom with
1 + 1 in the conclusion, which has the effect of rewriting 1 + 1 into
(1 + 0)⊕1:

∀𝑥.∀𝑦. 𝑥 + 𝑦⊕1 = (𝑥 + 𝑦)⊕1 5 1 + 1 = 2
→ ∀𝑦. 1 + 𝑦⊕1 = (1 + 𝑦)⊕1 5 1 + 1 = 2 L∀i

→ 1 + 0⊕1 = (1 + 0)⊕1 5 1 + 1 = 2 L∀i
≡ 1 + 1 = (1 + 0)⊕1 5 1 + 1 = 2
→ (1 + 0)⊕1 = 2 L=1

▶ We link the right-hand side 𝑥 + 0 of the first addition axiom with 1 + 0
in the conclusion, which rewrites 1 + 0 into 1:

∀𝑥.𝑥 = 𝑥 + 0 5 ( 1 + 0 )⊕1 = 2
→ 1 = 1 + 0 5 ( 1 + 0 )⊕1 = 2 L∀i
→ 1⊕1 = 2 L=2

≡ 2 = 2

We end up with the conclusion 2 = 2, which is provable by a simple click.
Notice how the orientation of the two rewrites is determined by which
side of the equality is selected. Also, in this case, the rewrites correspond
to backward proof steps, because rewriting is performed in the conclusion.
Similar rules (F=1 and F=2) are used to perform rewriting in hypotheses.

https://actema.xyz
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Figure 2.3.: Proving 1 + 1 = 2 in Peano arithmetic

2.5. Drag-and-dropping through connectives

We mentioned in Section 2.3 that it is possible to destruct logical con-
nectives through click actions. In many cases however, this will not be
necessary: because a drag-and-drop involves subterms of the items in-
volved, one can often directly use (resp. act on) the part of the hypothesis
(resp. conclusion) which is of interest.

2.5.1. Conjunction and disjunction

The conjunction is an easy to explain case. A hypothesis of the form 𝐴∧𝐵
can be used directly both as evidence for 𝐴 and as evidence for 𝐵. This is
modeled by the rules L∧1 and L∧2. A very simple action is thus:

𝐴 ∧ 𝐵 5 𝐴 → 𝐴 5 𝐴 L∧1
→ ⊤ id

On the other hand, considering a conjunctive goal 𝐴 ∧ 𝐵, one can simplify
or solve one of the branches by a DnD action. This involves rules R∧1 and
R∧2. For instance:

𝐴 5 𝐴 ∧ 𝐵 → ( 𝐴 5 𝐴 ) ∧ 𝐵 R∧1
→ ⊤ ∧ 𝐵 id

→ 𝐵 neul

Red disjunctions work similarly to conjunctive goals, except that solving
one branch will solve the entire goal. A nice consequence of this, which
is hard to simulate with textual tactics, is that one can just simplify one
branch of a disjunction without comitting to proving it entirely:

𝐴 5 (𝐵 ∧ 𝐴 ) ∨ 𝐶 → ( 𝐴 5 𝐵 ∧ 𝐴 ) ∨ 𝐶 R∨1
→ (𝐵 ∧ ( 𝐴 5 𝐴 )) ∨ 𝐶 R∧2
→ (𝐵 ∧ ⊤) ∨ 𝐶 id

→ 𝐵 ∨ 𝐶 neur

Disjunctive hypotheses also have a backward behavior defined by the
rules L∨1 and L∨2, although in most cases one will prefer the usual subgoal
semantics associated with click actions. More interesting is their forward
behavior with the rules F∨1 and F∨2, in particular when they interact with
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negated hypotheses. For instance:

𝐴 ∨ 𝐵 � ¬ 𝐴 → ( 𝐴 � ¬ 𝐴 ) ∨ 𝐵 F∨1
→ ¬( 𝐴 5 𝐴 ) ∨ 𝐵 F⊃1

→ ¬⊤ ∨ 𝐵 id

→ ⊥ ∨ 𝐵 neul

→ 𝐵 neul

We have noticed that on some examples, such actions could provide a
significant speed-up with respect to traditional textual command provers.
We give a more concrete example in Section 4.1.

Notice that we used rules associated with implication, since negation can
be defined by ¬𝐴 ≜ 𝐴 ⊃ ⊥.

2.5.2. Implication

The implication connective is crucial, because it is not monotone. More
precisely, the roles of hypotheses and conclusions are reversed on the left
of an implication. We start with some very basic examples for the various
elementary cases.

Using the right hand part of a hypothesis 𝐴 ⊃ 𝐵 turns a conclusion 𝐵 into
𝐴.

𝐴 ⊃ 𝐵 5 𝐵 → 𝐴 ∧ ( 𝐵 5 𝐵 ) L⊃2

→ 𝐴 ∧ ⊤ id

→ 𝐴 neul

This can also be done under conjunctions and/or disjunctions:

𝐴 ⊃ 𝐵 5 𝐶 ∧ (𝐷 ∨ 𝐵 ) →∗ 𝐶 ∧ (𝐷 ∨ 𝐴)

An interesting point is what happenswhen using implicationswith several
premisses. The curried and uncurried versions of the implication will
behave exactly the same way:

𝐴 ⊃ 𝐵 ⊃ 𝐶 5 𝐷 ∨ 𝐶 →∗ 𝐷 ∨ (𝐴 ∧ 𝐵)

and
𝐴 ∧ 𝐵 ⊃ 𝐶 5 𝐷 ∨ 𝐶 →∗ 𝐷 ∨ (𝐴 ∧ 𝐵)

As we have seen in Aristotle’s example (Section 2.2), blue implications
can also be used in forward steps, where another hypothesis matches one
of their premisses.

A first nice feature is the ability to strengthen a hypothesis by providing
evidence for any of its premises:

𝐵 ⊃ 𝐴 ⊃ 𝐶 � 𝐴 →∗ 𝐵 ⊃ 𝐶
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5: When viewed as types through the
Curry-Howard isomorphism, 𝐴 ⊃ 𝐵 ⊃ 𝐶,
𝐴∧𝐵 ⊃ 𝐶, 𝐵∧𝐴 ⊃ 𝐶 and 𝐵 ⊃ 𝐴 ⊃ 𝐶 are iso-
morphic types; and Roberto di Cosmo [62]
has also precisely underlined that type
isomorphisms should help to free the
programmer from arbitrary syntactical
choices.

and again the same can be done for the uncurryfied version:

𝐵 ∧ 𝐴 ⊃ 𝐶 � 𝐴 →∗ 𝐵 ⊃ 𝐶.

The two aspects of the implication can be combined:

𝐵 ⊃ 𝐴 ⊃ 𝐶 � 𝐷 ⊃ 𝐴 →∗ 𝐵 ⊃ 𝐷 ⊃ 𝐶

or:
𝐵 ∧ 𝐴 ⊃ 𝐶 � 𝐷 ⊃ 𝐴 →∗ 𝐵 ∧ 𝐷 ⊃ 𝐶.

Note that there is almost no difference in the way one uses different
versions of a hypothesis 𝐴 ⊃ 𝐵 ⊃ 𝐶, 𝐴 ∧ 𝐵 ⊃ 𝐶, but also 𝐵 ⊃ 𝐴 ⊃ 𝐶, in
forward as well as in backward steps5. This underlines, we hope, that our
proposal makes the proof construction process much less dependent on
arbitrary syntactical details, like the order of hypotheses or whether they
come in curryfied form or not.

Also, the rules for implication combined with the rules for equality L=i

or F=i naturally give access to conditional rewriting; we detail this in
combination with quantifiers in the next section.

As for red implications, they also have a backward semantics with the
rules R⊃1 and R⊃2, but most of the time one will want to destruct them
immediately by click. An exception could be if one wants to simplify
some part of an implicative, inductive goal before starting the induction.

2.5.3. Quantifiers

As the first example of this chapter shows, drag-and-drop actions work
through quantifiers and can trigger instantiations of quantified variables.
This is made possible by the rules L∀i and F∀i, which allow the instantiation
of a variable universally quantified in a hypothesis.

Symmetrically, a variable quantified existentially in a conclusion can also
be instantiated. For instance:

𝐴(𝑡) 5 ∃𝑥. 𝐴(𝑥) → 𝐴(𝑡) 5 𝐴(𝑡) L∀i

→ ⊤ id

An interesting feature is the possibility to modify propositions under
quantifiers. Consider the following possible goal:

∀𝑎.∃𝑏.𝐴(𝑓 (𝑎) + 𝑔(𝑏))

where 𝐴, 𝑓 and 𝑔 can be complex expressions. Suppose we have a lemma
allowing us to prove:

∀𝑎.∃𝑏.𝐴(𝑔(𝑏) + 𝑓 (𝑎)).

Switching from one formulation to the other, involves one use of the
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6: This fact should not be too surpris-
ing to the reader familiar with dependent
type theory, where implication is usu-
ally defined as a special case of universal
quantification.

commutativity property ∀𝑥.∀𝑦.𝑥 + 𝑦 = 𝑦 + 𝑥. In our setting, the equality
can be used under quantifiers in one single action:

∀𝑥.∀𝑦. 𝑥 + 𝑦 = 𝑦 + 𝑥 5 ∀𝑎.∃𝑏.𝐴 ( 𝑓 (𝑎) + 𝑔(𝑏) )
→∗ ∀𝑎.∃𝑏.𝐴(𝑔(𝑏) + 𝑓 (𝑎))

Note also that it is possible to instantiate only some of the universally
quantified variables in the items involved. In general, a universally quan-
tified variable can be instantiated when the quantifier is in a negative
position; for instance:

∀𝑥.∀𝑦. 𝑃(𝑦) ⊃ 𝑅(𝑥, 𝑦) � 𝑃(𝑎) →∗ ∀𝑥.𝑅(𝑥, 𝑎)

This last example illustrates how partial instantiation abstracts away
the order in which quantifiers are declared, very much like the partial
application presented earlier for implication6.

Again, in some cases, only some existential quantifiers may be instantiated
following a DnD:

𝑃(𝑎) 5 ∃𝑥.∃𝑦 . 𝑃(𝑦) ∧ 𝑅(𝑥, 𝑦) →∗ ∃𝑥.𝑅(𝑥, 𝑎)

When using an existential assumption, one can either destruct it through
a click, or use or transform it through a DnD; for instance:

∃𝑥. 𝑃(𝑥) � ∀𝑦. 𝑃(𝑦) ⊃ 𝑄(𝑦) →∗ ∃𝑥.𝑄(𝑥)

2.5.4. Dependency between variables

Some more advanced examples yield simultaneous instantiations of exis-
tentially and universally quantified variables. In such cases, the system
needs to check some dependency conditions. For instance, the following
DnD is valid and solves the goal through one action:

∃𝑦.∀𝑥. 𝑅(𝑥, 𝑦) 5 ∀𝑥′.∃𝑦 ′. 𝑅(𝑥′, 𝑦 ′)

→ ∀𝑦. (∀𝑥. 𝑅(𝑥, 𝑦) 5 ∀𝑥′.∃𝑦 ′. 𝑅(𝑥′, 𝑦 ′) ) L∃s

→ ∀𝑦.∀𝑥′. (∀𝑥. 𝑅(𝑥, 𝑦) 5 ∃𝑦 ′. 𝑅(𝑥′, 𝑦 ′) ) R∀s

→ ∀𝑦.∀𝑥′. (∀𝑥. 𝑅(𝑥, 𝑦) 5 𝑅(𝑥′, 𝑦) ) R∃i

→ ∀𝑦.∀𝑥′. ( 𝑅(𝑥′, 𝑦) 5 𝑅(𝑥′, 𝑦) ) L∀i

→ ∀𝑦.∀𝑥′.⊤ id

→∗ ⊤

But the converse situation is not provable; the system will refuse the
following DnD:

∀𝑥.∃𝑦 . 𝑅(𝑥, 𝑦) 5 ∃𝑦 ′.∀𝑥′. 𝑅(𝑥′, 𝑦 ′)

Indeed, there is no reduction path starting from this DnD ending with
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[106]: Grundy (1992), ‘A Window Infer-
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[146]: Långbacka et al. (1995), ‘TkWin-
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the id rule. This can be detected by the system because the unification
of 𝑅(𝑥, 𝑦) and 𝑅(𝑥′, 𝑦 ′) here results in a cycle in the instantiations of
variables7. The system thus refuses this action.

2.5.5. Conditional rewriting

The example given in Section 2.4, although very simple, already combines
the rules for equality and for quantifiers. When also using implication,
one obtains naturally some form of conditional rewriting. To take another
simple example, suppose we have a hypothesis of the form:

∀𝑥.𝑥 ≠ 0 ⊃ 𝑓 (𝑥) = 𝑔(𝑥)

We can use this hypothesis to replace a subterm 𝑓 (𝑡) by 𝑔(𝑡), which will
generate a side-condition 𝑡 ≠ 0:

∀𝑥.𝑥 ≠ 0 ⊃ 𝑓 (𝑥) = 𝑔(𝑥) 5 𝐴( 𝑓 (𝑡) )

→ 𝑡 ≠ 0 ⊃ 𝑓 (𝑡) = 𝑔(𝑡) 5 𝐴( 𝑓 (𝑡) ) L∀i

→ 𝑡 ≠ 0 ∧ ( 𝑓 (𝑡) = 𝑔(𝑡) 5 𝐴( 𝑓 (𝑡) )) L⊃2

→ 𝑡 ≠ 0 ∧ 𝐴(𝑔(𝑡)) L=1

One could similarly do such a rewrite in a hypothesis. Furthermore, the
conditional rewrite can also be performed under quantifiers; for instance:

∀𝑥.𝑥 ≠ 0 ⊃ 𝑓 (𝑥) = 𝑔(𝑥) 5 ∃𝑦.𝐴 ( 𝑓 (𝑦) ) R∃s

→ ∃𝑦. (∀𝑥.𝑥 ≠ 0 ⊃ 𝑓 (𝑥) = 𝑔(𝑥) 5 𝐴( 𝑓 (𝑦) )) L∀i

→ ∃𝑦. (𝑦 ≠ 0 ∧ ( 𝑓 (𝑦) = 𝑔(𝑦) 5 𝐴( 𝑓 (𝑦) ))) L⊃2

→ ∃𝑦. (𝑦 ≠ 0 ∧ 𝐴(𝑔(𝑡))) L=1

2.6. Related works

Window inference We have already mentioned Proof-by-Pointing,
which was part of the CtCoq and Pcoq efforts [4] to design a graphical
user interface for the Coq proof assistant. Another contemporary line of
work was the one based on window inference, also mentioned in Section
1.4. In [216], window inference is described as a general proof-theoretical
framework, which aims to accomodate for the pervasive use of equivalence
transformations throughout mathematics and computer science.

Window inference has been used both for general-purpose logics like
HOL [105], and in more specialized settings like program refinement
[106]. It naturally lends itself to integration in a graphical user interface
[146, 155], where the user can focus on a subexpression by clicking on it.
One is then presented with a new graphical window, holding the selected
expression as well as an extended set of hypotheses exposing information
inferrable from the context of the expression. The user can pick from a
list of valid transformations to be applied to the expression, before closing

https://coq.inria.fr/


2. Proof-by-Action 36

[3]: Ahrendt et al. (2016), ‘Using the KeY
Prover’
[155]: Lüth et al. (2000), ‘TAS—AGeneric
Window Inference System’

[262]: Zhan et al. (2019), ‘Design of Point-
and-Click User Interfaces for Proof Assis-
tants’

[185]: Nipkow (2002), ‘Structured Proofs
in Isar/HOL’

[150]: Lerner et al. (2015), ‘Polymorphic
Blocks: Formalism-Inspired UI for Struc-
tured Connectors’
[27]: Breitner (2016), ‘Visual Theorem
Proving with the Incredible Proof Ma-
chine’
8: http://logitext.mit.edu/main

[34]: Callies et al. (2021), ‘Click and coL-
LecT An Interactive Linear Logic Prover’

the window. This propagates the transformations to the parent window
by replacing the old subexpression by the new one, without modifying
the surrounding context.

This process is quite reminiscent of the rewriting produced by our DnD
actions. One key difference is that window inference rules can be applied
stepwise, while we choose to hide the sequence of rules that justifies a
DnD. The window inference approach gives to the user a precise control
of the transformations to be performed and thus could inspire interesting
extensions of our work.

Other gestural proving interfaces There are other proving interfaces
which include drag-and-drop features. Two of them are the KeY Prover
[3] and TAS [155]. TAS is a window inference system tailored for pro-
gram refinement, and uses DnD actions between an expression and a
transformation, in order to apply the latter to the former. As for the KeY
Prover, its usage of DnD overlaps only a very small portion of usecases
that we hinted at in Section 2.3, namely the instantiation of quantifiers
with objects.

We can also mention the recent work of Zhan et al. [262]. They share
with us the vision of a proof assistant mainly driven by gestural actions,
which requires far less textual inputs from the user. However, they only
consider point-and-click actions, and rely on a text-heavy presentation at
two levels:

1. the proof state, which is a structured proof text in the style of Isar [185];

2. the proof commands, which can only be performed through choices
in textual menus.

Explicit proof objects Finally let us mention various recent implemen-
tations proposing various ways to construct proofs graphically: Building
Blocks [150], the Incredible Proof Machine [27], Logitext8 and Click &
coLLecT [34]. In particular, Logitext and Click & coLLecT exploit the
same idea of associating click actions on head connectives to inference
rules in sequent calculus. But these systems focus more on explicating
the proof object than on making its construction easier.

http://logitext.mit.edu/main
https://isabelle.in.tum.de/Isar/
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Backward

𝐴 5 𝐴 → ⊤ id

𝑡 = 𝑢 5 𝐴{𝑡/𝑥} → 𝐴{𝑢/𝑥} L=1

𝑡 = 𝑢 5 𝐴{𝑢/𝑥} → 𝐴{𝑡/𝑥} L=2

(𝐵 ∧ 𝐶) 5 𝐴 → 𝐵 5 𝐴 L∧1
(𝐶 ∧ 𝐵) 5 𝐴 → 𝐵 5 𝐴 L∧2
𝐴 5 (𝐵 ∧ 𝐶) → (𝐴 5 𝐵) ∧ 𝐶 R∧1
𝐴 5 (𝐶 ∧ 𝐵) → 𝐶 ∧ (𝐴 5 𝐵) R∧2

(𝐵 ∨ 𝐶) 5 𝐴 → (𝐵 5 𝐴) ∧ (𝐶 ⊃ 𝐴) L∨1∗

(𝐶 ∨ 𝐵) 5 𝐴 → (𝐶 ⊃ 𝐴) ∧ (𝐵 5 𝐴) L∨2∗

𝐴 5 (𝐵 ∨ 𝐶) → (𝐴 5 𝐵) ∨ 𝐶 R∨1
𝐴 5 (𝐶 ∨ 𝐵) → 𝐶 ∨ (𝐴 5 𝐵) R∨2

(𝐶 ⊃ 𝐵) 5 𝐴 → 𝐶 ∧ (𝐵 5 𝐴) L⊃2

𝐴 5 (𝐵 ⊃ 𝐶) → (𝐴 � 𝐵) ⊃ 𝐶 R⊃1
∗

𝐴 5 (𝐶 ⊃ 𝐵) → 𝐶 ⊃ (𝐴 5 𝐵) R⊃2
∗

(∀𝑥.𝐵) 5 𝐴 → 𝐵{𝑥/𝑡} 5 𝐴 L∀i
(∀𝑥.𝐵) 5 𝐴 → ∃𝑥.(𝐵 5 𝐴) L∀s
𝐴 5 (∀𝑥.𝐵) → ∀𝑥.(𝐴 5 𝐵) R∀s∗

(∃𝑥.𝐵) 5 𝐴 → ∀𝑥.(𝐵 5 𝐴) L∃s∗

𝐴 5 (∃𝑥.𝐵) → 𝐴 5 𝐵{𝑥/𝑡} R∃i
𝐴 5 (∃𝑥.𝐵) → ∃𝑥.(𝐴 5 𝐵) R∃s

Forward

𝐴{𝑡/𝑥} � (𝑡 = 𝑢) → 𝐴{𝑢/𝑥} F=1

𝐴{𝑢/𝑥} � (𝑡 = 𝑢) → 𝐴{𝑡/𝑥} F=2

𝐴 � (𝐵 ∧ 𝐶) → 𝐴 � 𝐵 F∧1
𝐴 � (𝐶 ∧ 𝐵) → 𝐴 � 𝐵 F∧2

𝐴 � (𝐵 ∨ 𝐶) → (𝐴 � 𝐵) ∨ 𝐶 F∨1
𝐴 � (𝐶 ∨ 𝐵) → 𝐶 ∨ (𝐴 � 𝐵) F∨2

𝐴 � (𝐵 ⊃ 𝐶) → (𝐴 5 𝐵) ⊃ 𝐶 F⊃1

𝐴 � (𝐶 ⊃ 𝐵) → 𝐶 ⊃ (𝐴 � 𝐵) F⊃2

𝐴 � (∀𝑥.𝐵) → 𝐴 � 𝐵{𝑥/𝑡} F∀i
𝐴 � (∀𝑥.𝐵) → ∀𝑥.(𝐴 � 𝐵) F∀s

𝐴 � (∃𝑥.𝐵) → ∃𝑥.(𝐴 � 𝐵) F∃s∗

𝐵 � 𝐴 → 𝐴 � 𝐵 Fcomm

In the rules {L∀s, L∃s, R∀s, R∃s, F∀s, F∃s}, 𝑥 is not free in 𝐴.

Figure 2.4.: Linking rules

Units

⟨⚬, †⟩ ∈ {⟨∧, ⊤⟩ , ⟨∨, ⊥⟩ , ⟨⊃, ⊤⟩} † ⚬ 𝐴 → 𝐴 neul
⟨⚬, †⟩ ∈ {⟨∧, ⊤⟩ , ⟨∨, ⊥⟩} 𝐴 ⚬ † → 𝐴 neur
⟨⚬, †⟩ ∈ {⟨∧, ⊥⟩ , ⟨∨, ⊤⟩} † ⚬ 𝐴 → † absl
⟨⚬, †⟩ ∈ {⟨∧, ⊥⟩ , ⟨∨, ⊤⟩ , ⟨⊃, ⊤⟩} 𝐴 ⚬ † → † absr
⟨◇, †⟩ ∈ {⟨∀, ⊤⟩ , ⟨∃, ⊥⟩} ◇𝑥.† → † absq

⊥ ⊃ 𝐴 → ⊤ efq

Figure 2.5.: Unit elimination rules
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Logic and mathematics seem to be the only domains where
self-evidence manages to rise above triviality; and this it does, in those
domains, by a linking of self-evidence on to self-evidence in the chain
reaction known as proof.

Willard van Orman Quine, The Web of Belief, 1978

In this chapter, we engage in a thorough analysis of the logical semantics
of DnD actions, which were introduced informally through examples
in Chapter 2. We do this mainly from the formal perspective of deep
inference proof theory, following the original work of K. Chaudhuri
on subformula linking [37]. But we always keep in mind the intended
application to proof assistants, by motivating various design choices —
actual or prospective — as ways to improve the user experience (UX) of
interactive proof building.

The chapter is organized as follows: Section 3.1 introduces the notions of
context and polarity, and explains how DnD actions are specified by the
user interactively through schemas called linkages. Section 3.2 explains
how one can identify a subset of linkages that guarantees a productivity
property on DnD actions. Section 3.3 describes the overall structure of
how linkages translate into logical steps, and Section 3.6 discusses some
subtleties of this translation that are related to the concept of focusing in
automated proof search. Section 3.4 shows that the logical steps are sound,
and Section 3.5 states and proves formally the productivity property.
Finally, Section 3.7 shows how DnD actions can be turned into a complete
deductive system without any need for click actions.

3.1. Linkages

Like most rewriting systems on terms (that is, tree-shaped data), the
rewriting rules of Figure 2.4 and Figure 2.5 apply at any depth inside for-
mulas. However logically, the shape of the context in which this rewriting
occurs can provide important information, either to ensure soundness of
the performed transformation (Section 3.4, Section 3.7), or to understand
the status of quantified variables (Subsection 3.2.2).

Definition 3.1.1 (Context) A context, written 𝐴□, is a proposition
containing exactly one occurrence of a special formula written □, called
its hole. Given another proposition 𝐵, we write 𝐴 𝐵 for the proposition
obtained by replacing □ in 𝐴□ by 𝐵. Note that this replacement is not a
substitution because it allows variable capture. For instance ∀𝑥. 𝑃(𝑥) is
the proposition ∀𝑥.𝑃(𝑥).
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Definition 3.1.2 (Path) A path is a proposition where one subformula
has been selected. Formally, a path is a pair (𝐴□, 𝐵) formed by one context
and one proposition:

▶ 𝐴□ is called the context of the path,

▶ 𝐵 is called the selection of the path.

The path (𝐴□, 𝐵) can be viewed as the proposition 𝐴 𝐵 . For readability,
we will generally also write 𝐴 𝐵 for the path (𝐴□, 𝐵).

Definition 3.1.3 (Inversions) Given a context 𝐴□, the number of inver-
sions in 𝐴□, written inv(𝐴□), is the number of subterms of 𝐴□ which
are of the form 𝐶□ ⊃ 𝐷; that is the number of times the hole is on the
left-hand side of an implication. For instance:

inv(𝐷 ∧□) = 0
inv((𝐷 ∧□) ⊃ 𝐸) = 1
inv((□ ⊃ 𝐶) ⊃ 𝐷) = 2

Definition 3.1.4 (Polarity) We will write 𝐴+□ to specify that a context
is positive, meaning that inv(𝐴+□) is even. Symmetrically, 𝐴−□ will be
used for negative contexts, meaning that inv(𝐴−□) is odd.

In addition to the items involved, every DnD action specifies the selection
of a subterm in each item, which can be expressed formally as a path.
We call linkage the combined data of the two items together with the
selection, since the intent is to link the subterms to make them interact
in some way.

Remark 3.1.1 In this thesis we only consider linkages between two
subterms. But as noted in Section 2.4, rewriting equalities is an example
of action that can benefit from allowing multiple selections1 1: A restricted kind of multi-occurrence

rewrite is already available in the stan-
dalone version of Actema: one needs to
enter selection mode, by either toggling
the dedicated button, or holding down
the shift key. Then one can click succes-
sively on all occurrences of a term 𝑡 that
are to be rewritten, in order to add them
to the selection. To perform the rewrit-
ing to some other term 𝑢, the last step is
to drag an equality hypothesis 𝑡 = 𝑢 (or
𝑢 = 𝑡) and drop it on any item holding
one of the selected occurrences of 𝑡.

.

Each kind of DnD action is mapped in the system to a specific form of
linkage, which is designed to hold all the information necessary for the
correct execution of the action. In this way the system can automatically
search for linkages of a certain form, and propose to the user all well-
defined actions associated to these linkages.

Remark 3.1.2 In the future, one can imagine several DnD actions
associated to a given linkage. In this case, the user could be queried
to choose the action to be performed (typically with a pop-up menu).
However with the actions considered in this thesis, such ambiguities
never arise.

On the “items axis”, we already distinguished between backward and
forward linkages, written respectively 𝐴 5 𝐵 and 𝐴 � 𝐵. If the items
types are unspecified, we will write 𝐴@𝐵.

https://actema.xyz
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2: In fact this is more of a limitation of
Actema’s current interface: one cannot
link two subterms that live in the same
item, because dragging actions can only
be performed on entire items. But in the
original formulation and implementation
of subformula linking [37], linkages can
be created between arbitrary subformu-
las. We come back to this issue in Section
3.7.

𝐴 5 𝐵 → 𝐴 ⊃ 𝐵 Brel
𝐴 � 𝐵 → 𝐴 ∧ 𝐵 Frel

Figure 3.1.: Release rules

[37]: Chaudhuri (2013), ‘Subformula
Linking as an Interaction Method’

3: A terminology coming from the line
of works on focusing in proof theory [5],
see also Section 3.6.

Using the “selection axis”, we can specify a further distinction that was
informal up to now: that of logical action and rewrite action.

▶ Logical linkages link two subformulas: they have the form 𝐵 𝐴 @𝐶 𝐴′ .

▶ Rewrite linkages link one side of an equality with a first-order term.
Using liberally the notations from Definition 3.1.1 and Definition 3.1.2,
they thus have the form

𝐵 𝑡 = 𝑢 @𝐶 𝑡′ (or symmetrically 𝐵 𝑢 = 𝑡 @𝐶 𝑡′ )

By forgetting the information of which subterms are selected, one can
see any linkage as a formula whose topmost connective is an interaction
operator @ ∈ {5,�}. Then it is natural to view linkages as the redexes
of the rewriting rules of Figure 2.4, although from the user’s standpoint
linkages only happen at the top-level2.

3.2. Validity

In the original formulation of subformula linking [37], a semantics is
associated to every logical linkage, even when the selected subformulas
𝐴 and 𝐴′ are not unifiable. This is made possible by the addition of so-
called release rules3, which simply turn interaction operators into their
associated logical connective. In our setting this would give the rewriting
rules of Figure 3.1. However in this work we opt for a different approach:
instead we define a validity criterion on linkages, which guarantees that
they give rise to the behaviors described in the previous sections. The
criterion tackles two issues:

▶ Polarity: the selected subterms must have opposite polarities, so that
the negative subterm justifies the positive one;

▶ Identity: the selected subterms must be unifiable, so that after instan-
tiating some quantifiers in their context they can interact through the
id rule or the equality rules L=i, F=i.

One benefit of using this criterion is that it filters out all linkages whose
semantics rely on release rules, capturing intuitively a notion of produc-
tivity: instead of just moving around subformulas, we know for sure that
some “simplification” occurs, either a justification with the id rule on
logical linkages, or a rewriting with the equality rules on rewrite linkages.
This will be stated more formally in Section 3.5.

Validity is very useful to support the suggestion mechanism implemented
in Actema. The idea is that when the user starts dragging an item, this
indicates to the system that she wants to perform a DnD action involving
subterms of this item. Then the system can suggest such possible actions
by highlighting subterms in the goal which form a valid linkage with
the dragged item. Typically in the example of Figure 2.1, dragging the
hypothesis ∀𝑥.Human(𝑥) ⊃ Mortal(𝑥) will have the effect of highlighting
exactly Mortal(Socrates) in the conclusion and Human(Socrates) in the

https://actema.xyz
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other hypothesis as possible drop targets. In this case this corresponds to
all subterms in the goal which are not contained in the dragged item. But
if one were to drag the Human(Socrates) hypothesis instead, then only
the subterm Human(𝑥) in the other hypothesis would be suggested as a
drop target. This could not work with the “release” semantics mentioned
earlier, i.e. all subterms would again be highlighted, providing no useful
information to the user.

We believe that in more complex situations, this filtering can be quite
helpful to guide the user towards the right path to follow in their reason-
ing. Although non-trivial arguments are often based on “guessing” the
right value or lemma to be used, a large part of mathematical reasoning
also consists in “connecting the dots” with information already at hand.
Our DnD actions capture this metaphor quite directly, and thus shall be
especially useful to beginners unfamiliar with proving, who often show
difficulties in understanding how to build a proof from scratch. More
generally, proof assistants have the potential to provide a well-defined
and rigorous methodology in the art of crafting proofs, in the same way
that we have been teaching precise algorithms for solving equations in
calculus classes for centuries. Having a graphical interface that makes
this methodology more intuitive and discoverable is the main goal of this
work, and the notion of valid linkage seems to be a good candidate as a
core principle for such a methodology.

3.2.1. Polarity

The restrictions on polarities are captured formally by the following
condition:

Condition 3.2.1 (Polarity) The following must be true for a logical
linkage 𝐵 𝐴 @𝐷 𝐴′ to be valid:

1. the parity of inv(𝐵□) is:

a) the same as inv(𝐷□) if @ = 5;

b) the opposite of inv(𝐷□) if @ = �;

2. if @ = 5 and inv(𝐷□) = 0, then inv(𝐵□) = 0.

The following must be true for a rewrite linkage 𝐵 𝑡 @𝐷 𝑡′ to be valid:

1. if 𝐵□ holds the equality, then it must be:

a) positive if @ = 5;

b) positive if @ = �;

2. if 𝐷□ holds the equality, then it must be:

a) negative if @ = 5;

b) positive if @ = �.
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One understands that for rewrite linkages, this simply guarantees that the
equality is in negative position. For logical linkages, Clause 1 ensures that
the selected subformulas have opposite polarities, and Clause 2 ensures
that the linkage makes sense in our intuitionistic setting. Indeed one could
imagine the following behavior in classical logic:

( 𝐴 ⊃ 𝐵) ⊃ 𝐶 5 𝐴 →∗ 𝐶 ⊃ 𝐴

which gives a proof of Peirce’s law when replacing 𝐶 with 𝐴. We will
come back to this example in Chapter 5, but for now we can just remark
that there is no way to handle it with the rules of Figure 2.4 because we
lack a rule for redexes of the form 𝐵 𝐴 ⊃ 𝐶 5 𝐷 𝐴′ .

3.2.2. Identity

A context binds variables in the selected proposition. These variables
will be unifiable or not depending upon: (1) the nature of the quantifier
(∀ or ∃), (2) whether they occur in a hypothesis or a conclusion, and (3)
whether they occur on the left-hand of an (odd number of) implication(s).
Therefore, we start by splitting the list of variables bound by a context in
two parts.

Definition 3.2.1 (Positive and negative variables) Given a context 𝐴□
seen as a tree, one can always start from the root and traverse the branch
of 𝐴□ that leads to its hole □. We write 𝑙(𝐴□) the list of all variables
quantified along the way. This list is ordered, the variables closer to the
root coming first.

𝑙(𝐴□) can be seen as the interleaving of two sublists 𝑙+(𝐴□) and 𝑙−(𝐴□)
of positively and negatively unifiable variables, in the following precise
sense: 𝑥 ∈ 𝑙+(𝐴□) (resp. 𝑥 ∈ 𝑙−(𝐴□)) iff there are contexts 𝐵□, 𝐶+□ and
𝐷−□ such that 𝐴□ is either 𝐶+ ∃𝑥.𝐵□ or 𝐷− ∀𝑥.𝐵□ (resp. 𝐷− ∃𝑥.𝐵□
or 𝐶+ ∀𝑥.𝐵□ ).

For instance, if 𝐴□ ≡ ∀𝑥.∃𝑦 .(𝐵 ∧ ((∃𝑥′.∀𝑦 ′.□) ⊃ ∀𝑧.𝐶)), then we have:

𝑙(𝐴□) = [𝑥, 𝑦 , 𝑥′, 𝑦 ′] 𝑙+(𝐴□) = [𝑦, 𝑦 ′] 𝑙−(𝐴□) = [𝑥, 𝑥′]

Definition 3.2.2 (Unifiable variables) The set U(ℒ) of unifiable vari-
ables of a linkage ℒ ≡ 𝐵 𝐴 @𝐶 𝐴′ is:

▶ 𝑙−(𝐵□) ∪ 𝑙+(𝐶□) if @ is 5, and

▶ 𝑙−(𝐵□) ∪ 𝑙−(𝐶□) if @ is �.

The following notions of substitution and unification are the usual ones
and we do not go into details:

Definition 3.2.3 (Substitution) A substitution is a mapping from vari-
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[161]: Martelli et al. (1982), ‘An Efficient
Unification Algorithm’

ables to terms such that {𝑥 | 𝜎(𝑥) ≢ 𝑥} is finite; we call this set the domain
of 𝜎. When 𝜎(𝑥) ≡ 𝑥 we say that 𝑥 is not instantiated by 𝜎. Given a
proposition 𝐴 and a substitution 𝜎, we write 𝜎(𝐴) for the application of 𝜎
to 𝐴 in the usual way.

Definition 3.2.4 (Unification) Given two propositions 𝐴 and 𝐴′ and
a list of variables 𝑙, we say that a substitution 𝜎 unifies 𝐴 and 𝐴′ over 𝑙
when 𝜎(𝐴) ≡ 𝜎(𝐴′) and the domain of 𝜎 is a subset of 𝑙.

If such a substitution exists, we say that 𝐴 and 𝐴′ are unifiable over 𝑙.

Given 𝐴, 𝐴′ and 𝑙, the well-known unification algorithm decides whether
𝐴 and 𝐴′ are unifiable over 𝑙 and constructs the substitution when it
exists [161].

Condition 3.2.2 (Identity) For a linkageℒ ≔ 𝐵 𝐴 @𝐶 𝐴′ to be valid,
the following must be true:

1. There exists a substitution 𝜎 which unifies 𝐴 and 𝐴′ over U(ℒ).

2. Furthermore, the unification respects the order over the variables.
More precisely, we request that there exists a list 𝑙 which is an
interleaving of 𝑙(𝐵□) and 𝑙(𝐶□) such that, given a unifiable variable
𝑥 in the domain of 𝜎, all variables occuring in 𝜎(𝑥) are placed before
𝑥 in 𝑙:

∀𝑦 ∈ fv(𝜎(𝑥)) ∩ (𝑙(𝐵□) ∪ 𝑙(𝐶□)), 𝑦 <𝑙 𝑥.

The last condition ensures acyclicity and will prohibit invalid linkages as
described in Section 2.5.4. More precisely, the list 𝑙 specifies the order in
which the quantifiers will be treated in the proof construction.

Finally we can state the full validity criterion for linkages:

Definition 3.2.5 (Valid linkage) We say that a linkage ℒ is valid if it
satisfies Conditions 3.2.1 and 3.2.2.

One can check that all the examples given up to here were based on valid
linkages.

3.3. Describing DnD actions

We are now equipped to specify how logical and rewrite linkages translate
deterministically to the backward and forward proof steps shown in all
examples.

First some remarks can be made about the rewriting rules of Figure 2.4:
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4: Except for the Fcomm rule which is
just meant to make the � operator com-
mutative; formally, the only infinite re-
duction paths end with an infinite itera-
tion of Fcomm.

▶ The set of rewriting rules is obviously non-confluent.

▶ It is also terminating, because the number of connectives or quantifiers
under � or 5 decreases4.

As for the rules of Figure 2.5, they are both terminating and confluent.
Indeed, they define a function that eliminates redundant occurrences of
the units ⊤ and ⊥.

Here is a high-level overview of the complete procedure followed to
generate a proof step:

1. Selection: the user selects two subterms in two items of the current
goal;

2. Linkage: this either gives rise to a logical linkage 𝐵 𝐴 @𝐶 𝐴′ (resp.

a rewrite linkage 𝐵 𝑡 = 𝑢 @𝐶 𝑡′ ), or does not correspond to a known
form of linkage. In this case the procedure stops here, and the system
does not propose any action to the user;

3. Validity: the system verifies that the linkage is valid, by performing
successively the following checks:

a) Polarity: the linkage must satisfy Condition 3.2.1;

b) Unification: the selected subterms 𝐴 and 𝐴′ (resp. 𝑡 and 𝑡′) must
be unifiable, yielding a substitution 𝜎;

c) Dependencies: the substitution 𝜎 must satisfy Condition 3.2.2.

The procedure stops if it fails at any of the above checks;

4. Linking: the system then chooses a rewriting starting from the link-
age. Thanks to Theorem 3.5.2, this rewriting always ends with a
proposition of the form 𝐷 𝜎(𝐴) 5 𝜎(𝐴′)

(resp. 𝐷 𝜎(𝑡) = 𝑢@𝐶0 𝜎(𝑡′) )

5. Interaction: thus one can apply the id rule (resp. an equality rule in
{L=1, L=2, F=1, F=2});

6. Unit elimination: in the case of a logical action, this creates an
occurrence of ⊤, which is eliminated using the rules of Figure 2.5;

7. Goal modification: the two previous steps produced a formula 𝐸. In
the case of a forward linkage, a hypothesis 𝐸 is added to the goal; in
the case of a backward linkage, the goal’s conclusion becomes 𝐸. In
both cases, the logical soundness is guaranteed by Theorem 3.4.1.

3.4. Soundness

All examples up to now followed the scheme for DnD actions sketched in
Section 2.2:
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▶ Given a blue item 𝐴 and a red item 𝐵, backward proof steps produce
a new conclusion 𝐶 by applying a sequence of rewriting rules 𝐴 5
𝐵 →∗ 𝐶.

▶ Given two blue items 𝐴 and 𝐵, forward proof steps produce a new
hypothesis 𝐶 by applying a sequence of rewriting rules 𝐴 � 𝐵 →∗ 𝐶.

Thus for such actions to be logically sound, we have to make sure that
our rewriting system satisfies the following property:

Theorem 3.4.1 (Soundness)

▶ If 𝐴 5 𝐵 →∗ 𝐶, then 𝐴, 𝐶 ⇒ 𝐵.

▶ If 𝐴 � 𝐵 →∗ 𝐶, then 𝐴, 𝐵 ⇒ 𝐶.

We will need to reason inductively on contexts, and more precisely on
the depth of their hole:

Definition 3.4.1 (Depth) The depth |𝐴□| of a context 𝐴□ is defined
recursively by:

|□| = 0
|𝐴□ ⚬ 𝐵| = |𝐵 ⚬ 𝐴□| = |𝐴□| + 1 for ⚬ ∈ {∧, ∨, ⊃}

|◇𝑥.𝐴□| = |𝐴□| + 1 for ◇ ∈ {∀, ∃}

The following simple covariance and contravariance property will be
used extensively later on:

Lemma 3.4.2 (Variance) If Γ, 𝐴 ⇒ 𝐵, then Γ, 𝐶+ 𝐴 ⇒ 𝐶+ 𝐵 and
Γ, 𝐷− 𝐵 ⇒ 𝐷− 𝐴 .

Proof. By induction on |𝐶+□| and |𝐷−□|.

For each rule, interpreting 5 as ⊃ and � as ∧ is enough to show that the
rule satisfies Theorem 3.4.1 locally. Formally, we can define a mapping
from formulas containing interaction operators to usual formulas where
they have been replaced by their interpretation:

Definition 3.4.2 (Interpretation of interaction operators) The mapping
⌊−⌋ is defined recursively as follows:

⌊𝐴 5 𝐵⌋ = ⌊𝐴⌋ ⊃ ⌊𝐵⌋
⌊𝐴 � 𝐵⌋ = ⌊𝐴⌋ ∧ ⌊𝐵⌋
⌊𝐴 ⚬ 𝐵⌋ = ⌊𝐴⌋ ⚬ ⌊𝐵⌋ for ⚬ ∈ {∧, ∨, ⊃}
⌊◇𝑥.𝐴⌋ = ◇𝑥.⌊𝐴⌋ for ◇ ∈ {∀, ∃}

⌊†⌋ = † for † ∈ {⊤, ⊥}
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5: Indeed an implicit assumption in this
section, which is preserved by all the
rules, is that a formula contains at
most one interaction operator. Thus if
𝐶 𝐴@𝐵 → 𝐷, the only possible redex is
𝐴@𝐵.

⌊𝑎⌋ = 𝑎 for 𝑎 atomic

For rewritings taking place deeper inside a proposition however, we need
to consider the polarity of their context.

Lemma 3.4.3 (Local soundness)

▶ If 𝐶+ 𝐴 5 𝐵 → 𝐷 then ⌊𝐷⌋ ⇒ 𝐶+ 𝐴 ⊃ 𝐵 .

▶ If 𝐶− 𝐴 5 𝐵 → 𝐷 then 𝐶− 𝐴 ⊃ 𝐵 ⇒ ⌊𝐷⌋.

▶ If 𝐶+ 𝐴 � 𝐵 → 𝐷 then 𝐶+ 𝐴 ∧ 𝐵 ⇒ ⌊𝐷⌋.

▶ If 𝐶− 𝐴 � 𝐵 → 𝐷 then ⌊𝐷⌋ ⇒ 𝐶− 𝐴 ∧ 𝐵 .

Proof. First notice that 𝐷 is necessarily of the form 𝐶 𝐷0 where 𝐴@𝐵 →
𝐷0

5. Then by careful analysis of each rule, it is straightforward to show
that ⌊𝐷0⌋ ⇒ 𝐴 ⊃ 𝐵 if @ = 5 or 𝐴 ∧ 𝐵 ⇒ ⌊𝐷0⌋ if @ = �. We can conclude
in each case by applying Lemma 3.4.2.

Remark 3.4.1 For some rules, like R⊃1, the left-hand and right-hand
propositions are equivalent:

𝐴 ⊃ 𝐵 ⊃ 𝐶 ⟺ 𝐴 ∧ 𝐵 ⊃ 𝐶

These rules are thus invertible and their names are tagged by *. This
point will be relevant in Section 3.6.

An easy but important technical point is that rewriting rules preserve the
polarity of contexts around redexes, in the following precise sense:

Fact 3.4.1 (Polarity preservation)

▶ If 𝐶 𝐴 5 𝐵 → 𝐶′ 𝐴′ 5 𝐵′ (resp. 𝐶 𝐴 � 𝐵 → 𝐶′ 𝐴′ � 𝐵′ ) then 𝐶□
and 𝐶′□ have the same polarity.

▶ If 𝐶 𝐴 5 𝐵 → 𝐶′ 𝐴′ � 𝐵′ (resp. 𝐶 𝐴 � 𝐵 → 𝐶′ 𝐴′ 5 𝐵′ ) then 𝐶□
and 𝐶′□ have opposite polarities.

Combining Lemma 3.4.3 and Fact 3.4.1, we obtain the central soundness
result about the rewriting rules:

Lemma 3.4.4 (Contextual soundness)

▶ If 𝐶+ 𝐴 5 𝐵 →∗ 𝐷 then ⌊𝐷⌋ ⇒ 𝐶+ 𝐴 ⊃ 𝐵 .

▶ If 𝐶− 𝐴 5 𝐵 →∗ 𝐷 then 𝐶− 𝐴 ⊃ 𝐵 ⇒ ⌊𝐷⌋.

▶ If 𝐶+ 𝐴 � 𝐵 →∗ 𝐷 then 𝐶+ 𝐴 ∧ 𝐵 ⇒ ⌊𝐷⌋.
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▶ If 𝐶− 𝐴 � 𝐵 →∗ 𝐷 then ⌊𝐷⌋ ⇒ 𝐶− 𝐴 ∧ 𝐵 .

Proof. By induction on the length of the derivation. The base case is trivial
by reflexivity of entailment. We give the proof for the first statement in the
list, other cases work similarly. We can assume without loss of generality
that the derivation has the following shape:

𝐶+ 𝐴 5 𝐵 → 𝐶′ 𝐴′@𝐵′ →∗ 𝐷

Then we reason by case on the interaction operator @:

▶ @ = 5: by Fact 3.4.1, 𝐶′ must be positive. Therefore by induction
hypothesis ⌊𝐷⌋ ⇒ 𝐶′ 𝐴′ ⊃ 𝐵′ . By Lemma 3.4.3 we have 𝐶′ 𝐴′ ⊃ 𝐵′ ⇒
𝐶+ 𝐴 ⊃ 𝐵 . Thus by transitivity ⌊𝐷⌋ ⇒ 𝐶+ 𝐴 ⊃ 𝐵 .

▶ @ = �: by Fact 3.4.1, 𝐶′ must be negative. Therefore by induction
hypothesis ⌊𝐷⌋ ⇒ 𝐶′ 𝐴′ ∧ 𝐵′ . By Lemma 3.4.3 we have 𝐶′ 𝐴′ ∧ 𝐵′ ⇒
𝐶+ 𝐴 ⊃ 𝐵 . Thus by transitivity ⌊𝐷⌋ ⇒ 𝐶+ 𝐴 ⊃ 𝐵 .

Finally, soundness (Theorem 3.4.1) is obtained as the special case where
the rewriting starts in the (positive) empty context.

3.5. Productivity

An important property of the linking step 4 is that there is always a
rewriting sequence that brings together the selected subterms, which
ensures that we can proceed to the interaction step 5.

Because the rewriting rules are terminating, the important point is to
show that one can always apply a rule until one reaches an interaction
rule on the selected subterms. In other words, it is possible to find at least
one rule which preserves Conditions 3.2.1 and 3.2.2 on linkages:

Lemma 3.5.1 (Valid Progress) If a linkage ℒ ≡ 𝐶 𝐴 @𝐶′ 𝐴′ (resp.
𝐶 𝑡 @𝐶′ 𝑡′ ) is valid, then either:

1. ℒ ≡ 𝐴 5 𝐴 (resp. 𝐶□ ∈ {□ = 𝑢, 𝑢 = □} for some 𝑢 and 𝑡 ≡ 𝑡′);

2. or ℒ → 𝐸 ℒ ′ for some 𝐸□, ℒ ′ with ℒ ′ valid.

A detailed proof is given hereafter for the case of logical linkages. It is
not fundamentally difficult, but understandably verbose. The two main
points are:

▶ The rules involving a connective always preserve validity.

▶ When one can apply a rule involving a quantifier ∀𝑥 (resp. ∃𝑥), one
checks whether the substitution produced by unification (Condition
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3.2.2) instantiates 𝑥 or not. In the first case one performs the instanti-
ation rule L∀i or F∀i (resp. R∃i); in the second case the corresponding
switch rule in {L∀s,R∀s, F∀s} (resp. {L∃s,R∃s, F∃s}).

Proof. Let ℒ ≡ 𝐵 𝐴 @𝐶 𝐴′ be a valid linkage.

1. Suppose 𝐵□ ≡ 𝐶□ ≡ □. By Condition 3.2.1, we know that a forward
linkage cannot verify (inv(𝐵□), inv(𝐶□)) = (0, 0), thus ℒ must be a
backward linkage. Also 𝑙(𝐵□) and 𝑙(𝐶□) are empty, hence by Condi-
tion 3.2.2 𝐴 and 𝐴′ are unified by an empty substitution, which entails
that 𝐴 ≡ 𝐴′. Therefore we are in the first case where ℒ ≡ 𝐴 5 𝐴 .

2. Otherwise, either 𝐵□ or 𝐶□ is non-empty. In the following, we show
that we can always apply a rewriting rule that produces a new, valid
linkage ℒ ′ ≡ 𝐵′@′ 𝐶′.

Let 𝜎 and 𝑙 be respectively the substitution and interleaving of the
quantified variables of 𝐵□ and 𝐶□ given by Condition 3.2.2, with 𝑙
decomposed as 𝑥 ∷ 𝑙′.

▶ If 𝑥 is quantified at the head of either 𝐵□ or 𝐶□, then we apply the
associated quantifier rule:

Switch rule (L∀s, L∃s, R∀s, R∃s, F∀s, F∃s) Only if 𝑥 is not in the do-
main of 𝜎. In forward mode and when 𝐵□ binds 𝑥, one must first
apply the rule Fcomm to put 𝐵 𝐴 on the right of �, so that the
switch rule is applicable. Now we show that ℒ ′ is valid:

1. ℒ ′ satisfies Condition 3.2.1 trivially since none of the
switch rules changes the number of inversions.

2. For each switch rule we can show, using the fact that 𝑥
is not in the domain of 𝜎, that U(ℒ ′) = U(ℒ). Since the
selected formulas 𝐴 and 𝐴′ stay untouched by the rule, we
can choose 𝜎 as a valid unifier that ranges over U(ℒ ′).

3. In all switch rules, we have 𝑙(ℒ ′) = 𝑙′ because the quantifier
of 𝑥 is moved in the outer context of the linkage. Thus we
can just take 𝑙′ as interleaving, and Condition 3.2.2 will still
be verified because 𝑙′ is a sublist of 𝑙.

Instantiation rule (L∀i, R∃i, F∀i) Only if 𝑥 is instantiated by 𝜎,
using 𝜎(𝑥) as witness. Again one might need to apply Fcomm
first. Then we check the validity of ℒ ′:

1. ℒ ′ satisfies Condition 3.2.1 trivially since none of the in-
stantiation rules changes the number of inversions.

2. For each instantiation rule we can show, using the fact
that 𝑥 is instantiated by 𝜎, that U(ℒ ′) = U(ℒ) ∖ {𝑥}. Then
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we take as unifier 𝜎 where the binding for 𝑥 is removed,
written 𝜎 ∖ 𝑥.

Now we need to make sure that 𝜎 ∖ 𝑥 is indeed a unifier
for the selected formulas. We consider only the case where
𝐵□ binds 𝑥, the proof being exactly symmetric when 𝐶□
binds 𝑥. Let 𝐵0□ be the direct subcontext of 𝐵□, that is 𝐵□
without the head quantifier binding 𝑥.

First we can assert that 𝐵0 𝐴 {𝜎(𝑥)/𝑥} ≡ 𝐵0{𝜎(𝑥)/𝑥} 𝐴{𝜎(𝑥)/𝑥} .
Indeed, Clause 2 of Condition 3.2.2 guarantees that for any
free variable 𝑦 of 𝜎(𝑥), 𝑦 ∉ 𝑙(𝐵0□), and thus the above in-
stantiation can propagate safely to 𝐴 without capture. To
convince yourself that 𝑦 ∉ 𝑙(𝐵0□), suppose the contrary.
Then 𝑦 ∈ 𝑙(𝐵□), and by Clause 2 𝑦 must be placed before 𝑥
in 𝑙. But this is impossible since 𝑥 is the first element of 𝑙!

So we know that the selected formula on the left of ℒ ′

is 𝐴{𝜎(𝑥)/𝑥}, while it is still 𝐴′ on the right. Thus it only
remains to show that

𝐴{𝜎(𝑥)/𝑥}[𝜎 ∖ 𝑥] ≡ 𝐴′[𝜎 ∖ 𝑥].

On the left we have by definition that 𝐴{𝜎(𝑥)/𝑥}[𝜎 ∖ 𝑥] ≡
𝐴[𝜎], and on the right we have 𝐴′[𝜎 ∖ 𝑥] ≡ 𝐴′[𝜎] because
𝑥 cannot occur in 𝐴′ since it is bound in 𝐵0□ (here we rely
on the Barendregt convention).

3. In all instantiation rules, we have 𝑙(ℒ ′) = 𝑙′ because the
quantifier of 𝑥 is removed by the instantiation. Thus we
can again take 𝑙′ as interleaving.

▶ If 𝑥 is not quantified at the head of 𝐵□ or 𝐶□, then either both heads
are propositional connectives, or one is a propositional connective
and the other is empty. In both cases we can choose either a rule
of the form L⚬i, R⚬i or F⚬i, where ⚬ is the connective and 𝑖 the index
of the direct subcontext where 𝐴 or 𝐴′ occurs, or the Fcomm rule.
Again we check the conditions of Definition 3.2.5:

1. In most rules the number of inversions stays unchanged. The
only exceptions are R⊃1 and F⊃1, which decrease the number of
inversions of the right context 𝐶□ by 1. But since they are also
the only rules that change the interaction operator, the truth
of Clause 1 is preserved: if the parities were opposite (resp.
identical) in ℒ, then ℒ must be forward (resp. backward).
Thus ℒ ′ is necessarily backward (resp. forward), and so the
parities in ℒ ′ must be identical (resp. opposite), which is the
case thanks to the inversion decrement.

For Clause 2, we can distinguish two cases:

• If ℒ is backward, then either we apply the R⊃1 rule and
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ℒ ′ is forward, and thus satisfies Clause 2 trivially; or we
apply another backward rule and ℒ ′ is backward. Now
suppose inv(𝐶′□) = 0. Then we must have inv(𝐶□) =
inv(𝐶′□) = 0 and inv(𝐵□) = inv(𝐵′□) since all backward
rules other than R⊃1 preserve the number of inversions.
And because ℒ satisfies Clause 2 by validity, we can de-
duce that inv(𝐵□) = 0, and thus inv(𝐵′□) = 0.

• If ℒ is forward, then either we apply a forward rule that is
neither F⊃1 nor Fcomm andℒ ′ is forward, and thus satisfies
Clause 2 trivially; or we consider applying either F⊃1 of
Fcomm. There are three cases:

∗ If inv(𝐶□) > 1, then we can safely apply F⊃1 since we
have inv(𝐶′□) = inv(𝐶□) − 1 > 0;

∗ If inv(𝐶□) = 0, then 𝐶□ is empty and we are forced
to apply Fcomm so that we can apply the forward rule
corresponding to the head connective of 𝐵□. Then 𝐶□
ends up on the left of �, thus if we apply F⊃1 for 𝐵□
Clause 2 will be satisfied trivially;

∗ If inv(𝐶□ = 1), then either inv(𝐵□) = 0 and we can
safely apply F⊃1 since inv(𝐵′□) = inv(𝐵□); or inv(𝐵□) >
0, and we cannot apply F⊃1 because we would end
up with inv(𝐶′□) = 0 and inv(𝐵′□) > 0, thus vio-
lating Clause 2. Hence as in the previous case, we
need to apply Fcomm first. Then it cannot be the case
that inv(𝐵□) = 1 because we would have inv(𝐵□) =
inv(𝐶□), which violates Clause 1 from the validity of
ℒ. Thus inv(𝐵□) > 1, which entails that we can safely
apply F⊃1 on 𝐵□ as in the first case.

Notice that whenever we apply the Fcomm rule, it is to
apply the rule corresponding to the head connective of
𝐵□ immediately afterwards: we never enter a loop by
applying Fcomm twice in a row. Thus technically there are
two reduction steps, but we treat them as one.

2. Since we do not deal with quantifiers, we can just take the
same unifier 𝜎.

3. Idem here, we take the same interleaving 𝑙.

Then we can state the following productivity theorem, which is a direct
consequence of the previous lemma and the fact that the rewriting rules
terminate:

Theorem 3.5.2 (Productivity) If ℒ is a valid linkage, then there is a
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6: This remark only applies to logical
linkages however, since rewriting equal-
ities can only produce equivalent state-
ments. Some proof assistants provide fa-
cilities to rewrite arbitrary relations in
subterms of arbitrary depth, such as Coq
with its generalized rewriting mechanism
[227]. This includes non-symmetric re-
lations that can produce non-equivalent
statements, and there is no reason in prin-
ciple it could not be integrated in our
paradigm, in the form of generalized sub-
stitution rules in place of L=i and F=i.

[5]: Andreoli (1992), ‘Logic Programming
with Focusing Proofs in Linear Logic’

7: Interestingly in this case it creates a
dead-end only in intuitionistic logic: in
classical logic both results are provable.

8: A less deterministic version of this
scheme is already present implicitly in
the proof of Lemma 3.5.1.

sequence of reductions with one of the following forms:

ℒ →∗ 𝐷+ 𝐴 5 𝐴

ℒ →∗ 𝐷 𝑡 = 𝑢@𝐴 𝑡 ℒ →∗ 𝐷 𝑢 = 𝑡 @𝐴 𝑡

This is the formal counterpart to the notion of productivity mentioned
in Section 3.2. Intuitively, this theorem ensures non-trivial progress in
the reasoning: we managed to connect some dots in the problem and
actually solve a “subgoal”. That is, either the conclusion is strictly weak-
ened after a backward DnD, or the assumptions are strictly strengthened
after a forward DnD, instead of having just an equivalent goal written
in a different way6. This again contrasts with the release semantics of
subformula linking which do not provide this guarantee of productivity,
or with the logical reasoning tactics of proof assistants based on natural
deduction rules.

3.6. Focusing

A last point to deal with is non-confluence and in particular choosing
between first simplifying the head connective on the right or the left of
� or 5. For instance in 𝐴 ∨ 𝐵 5 𝐵 ∨ 𝐴 one can apply either L∨1 or R∨2.

Interestingly, an answer is provided by focusing. It has been noticed
by Andreoli [5] that, in bottom-up proof search, one should apply the
invertible inference rules first since they preserve provability. In our
framework, this translates into first applying the invertible rewriting
rules (the ones marked by a *). In the case of the example above, this
means performing L∨1 first, which leads to the following behavior:

𝐴 ∨ 𝐵 5 𝐵 ∨ 𝐴 →∗ 𝐵 ⊃ 𝐵 ∨ 𝐴.

This is indeed the “right” choice, since applying R∨2 first would lead to a
dead-end7:

𝐴 ∨ 𝐵 5 𝐵 ∨ 𝐴 →∗ 𝐵 ∨ (𝐵 ⊃ 𝐴).

The general scheme for choosing a rule to apply to a redex 𝐶 𝐴 @𝐷 𝐵
is the following8:

1. If 𝐶□ ≡ 𝐷□ ≡ □, we just apply the id rule (assuming 𝐴 ≡ 𝐵 by Lemma
3.5.1).

2. If only one context is non-empty, say 𝐶□, we look at its head connec-
tive as well as the side where its hole resides:

▶ either 𝐶□ ≡ 𝐶0□ ⚬ 𝐸 for some binary connective ⚬, and we choose
the rule L⚬1 (resp. F⚬1) if @ = 5 (resp. @ = �);

▶ or 𝐶□ ≡ 𝐸 ⚬ 𝐶0□ and we choose the rule L⚬2 (resp. F⚬2) if @ = 5
(resp. @ = �).

In the case where it is 𝐷□ which is non-empty, we apply the same

https://coq.inria.fr/
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[39]: Chaudhuri (2021), ‘Subformula
Linking for Intuitionistic Logic with Ap-
plication to Type Theory’

9: Note that in the current implementa-
tion of Actema, we instead rely on an
arbitrary prioritizing fixed in the system,
which can hinder in some cases the abil-
ity to prove a goal through DnD actions.
In practice, one rarely encounters such
cases in real examples.

logic but with the right rules R⚬i instead of the left rules L⚬i.

3. If both contexts are non-empty, then the previous logic determines
one rule for 𝐶□ and one rule for 𝐷□, giving rise to the ambiguity
described in the above example.

There are three possibilities when analyzing invertibility of the two rules
in the third case:

1. if both are invertible, then the order of application does not matter
since we preserve provability in the end;

2. if only one is invertible, we apply it first following the focusing disci-
pline;

3. if neither are invertible, we want to choose the order that maximizes
the preservation of provability. It turns out that in almost all cases the
two rules commute, that is the formulas obtained in the two orderings
are equivalent. The only exceptions are the critical pairs F∨i/F⊃2 for
𝑖 ∈ {1, 2}, as was noted independently in [39]. In this case, one should
rely on information given by the user to choose the right ordering,
which can be done by exploiting the orientation of the associated
DnD action, that is distinguishing between the source path and the
destination path9.

Remark 3.6.1 Currently we do not have detailed proofs of permutabil-
ity for all pairs of rules. The reason is mostly pragmatic: given the great
number of rules, this would take a lot of time to perform a full case
analysis. Actually our claim of permutability comes from [39] which
uses a subformula linking system almost identical to ours.

3.7. Completeness

To enable a fully graphical approach to theorem proving that does not
rely on a textual proof language, it is important to show that (a subset
of) the set of actions exposed to the user is complete with respect to
provability. That is, any formula 𝐴 which is true in our logic — here
intuitionistic FOL — can be proved by executing a sequence of graphical
actions that reduces it to the empty goal. We noticed in Remark 2.3.1 that
click actions are a sufficient basis for completeness. While we believe
that a combination of both click and DnD actions is more comfortable
to handle a variety of proof situations, it is still interesting to consider
the question of completeness for DnD actions alone. It turns out that
the answer is positive: the mechanism of subformula linking underlying
DnD actions is powerful enough to capture provability in FOL. This has
already been shown by Chaudhuri in [37] for linear logic, and [39] for
intuitionistic logic. Here we give a completeness proof for a system based
on a slight extension of our rewriting rules, following ideas from these
works.

https://actema.xyz
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𝐶+ 𝐴 ⊃ 𝐵 → 𝐶+ 𝐴 5 𝐵 B

𝐶− 𝐴 ∧ 𝐵 → 𝐶− 𝐴 � 𝐵 F

Figure 3.2.: Linkage formation rules

10: This is reminiscent of the adjunction
between products and exponentials in
cartesian closed categories, which respec-
tively interpret conjunction and implica-
tion in the Curry-Howard-Lambek corre-
spondance for intuitionistic logic.

𝐶− 𝐴 → 𝐶− 𝐴 ∧ 𝐴 conn

𝐶− 𝐴 → 𝐶− ⊤ weak

Figure 3.3.: Resource rules

𝐶+ 𝐴 ⊃ 𝐵 → 𝐶+ 𝐴 ⊃ (𝐴 5 𝐵) Bconn

𝐶− 𝐴 ∧ 𝐵 → 𝐶− 𝐴 ∧ (𝐴 � 𝐵) ∧ 𝐵 Fconn

Figure 3.4.: Duplicating linkage forma-
tion rules

Remark 3.7.1 What we prove in this section is a weak form of com-
pleteness: we show that for any true formula, there always exists a
derivation in our subformula linking calculus, but this derivation might
not be constructible deterministically by the focusing procedure out-
lined in Section 3.6. There are two aspects that make the stronger
version hard to prove in practice:

▶ To show that the choices performed by the focusing procedure
always allow to find a proof when there exists one, it would be
necessary to formulate and prove a focusing theorem based on the
permutability of rules mentioned in Remark 3.6.1.

▶ Even then, some additional rules of our subformula linking system
are not simulated in any way by the DnD procedure of Section 3.3.
We will come back to this point soon.

To the rewriting rules of Figure 2.4 and Figure 2.5, we add linkage forma-
tion rules (Figure 3.2), which are a deep generalization of linkage creation
between two formulas of a sequent. Rule B creates a backward linkage
between ⊃-linked formulas in any positive context 𝐶+□, and dually rule
F creates a forward linkage between ∧-linked formulas in any negative
context 𝐶−□10. Note that linkage formation rules are not closed under
arbitrary contexts: indeed the polarity restrictions are necessary to ensure
soundness, as reviewed in Section 3.4. A backward linkage in a sequent
Γ, 𝐷 𝐴 ⇒ 𝐸 𝐵 would be encoded by the instance

𝐶+ 𝐷 𝐴 ⊃ 𝐸 𝐵 → 𝐶+ 𝐷 𝐴 5 𝐸 𝐵

of B where 𝐶+□ ≡ ⋀Γ ⊃ □, while a forward linkage in a sequent
Γ, 𝐷 𝐴 , 𝐸 𝐵 ⇒ 𝐹 would be encoded by the instance

𝐶− 𝐷 𝐴 ∧ 𝐸 𝐵 → 𝐶− 𝐷 𝐴 � 𝐸 𝐵

of F where 𝐶−□ ≡ ⋀Γ ∧□ ⊃ 𝐹.

Another necessary ingredient is the addition of a deep version of the
structural rules of sequent calculus. We already have the Fcomm rule to
handle commutativity of the � operator, which acts as a kind of exchange
rule. Then we add the equivalent of contraction and weakening with
the rules conn and weak (Figure 3.3). These allow to erase and duplicate
hypotheses at will, by identifying any subformula occurring in a negative
context as a hypothesis. Thus once again we need to be careful about
polarity, and cannot close these rules under arbitrary contexts.

An alternative to the full contraction rule conn is to systematically dupli-
cate negative formulas in the linkage formation rules, giving the rules
Bconn and Fconn of Figure 3.4. This models more closely what we do in
Actema, where hypotheses involved in a DnD action are always preserved
in the new goal. This is important from a usability standpoint, because
this ensures the user needs not fret with manual duplication of hypothe-
ses in order to complete a proof. The downside is that the context always
grows bigger, but this can be balanced by exposing the weakening rule in
the interface. In Actema it is mapped to a “delete” button placed next to

https://actema.xyz
https://actema.xyz
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11: Or Kripke models in an intuitionistic
setting.

[127]: Hughes (2006), ‘Proofs without
syntax’

𝑡 = 𝑡 → ⊤ refl

Figure 3.5.: Reflexivity rule for =

Γ, 𝑡 = 𝑡 ⇒ 𝐶
Ref

Γ ⇒ 𝐶

⊤ → 𝑡 = 𝑡 ref

Figure 3.6.: Non-analytic reflexivity
rules

every hypothesis (the little gray trashbin icons in Figure 2.3). In our com-
pleteness proof we will use all the rules in {conn, weak, B, F, Bconn, Fconn},
in order to make derivations more concise.

Because linkages created by rules B and F are not necessarily valid, one
needs to add the so-called release rules already mentioned in Section 3.1
(Figure 3.1). In fact these rules are crucial in order to simulate rules from
sequent calculus, which will be the backbone of our completeness proof as
in [37]. It is interesting to consider the question of completeness without
release rules, especially since we do not use them in the semantics of DnD
actions. We conjecture that it should hold but would require a completely
different argument, maybe of a more semantic nature like the original
proof of Gödel with Tarski models11. Another possibility might be to
use a more canonical representation of proofs that is in-between syntax
and semantics, like the combinatorial proofs of Hughes [127] which are
known to be closely related to deep inference proofs.

Lastly, a trivial but necessary addition is the rule refl of Figure 3.5 stating
the reflexivity of =. It was not introduced before because it is already
handled by click actions on red items in Actema (Section 2.3), but here we
want a self-contained system that models as closely as possible the space
of proofs that can be built through DnD actions only. In this context, one
could imagine restricting the usage of the refl rule to the unit elimination
phase (Section 3.3), where it would play the same role as the rules of Figure
2.5. Thus adding this rule does not correspond morally to modelling a
click action, nor to a modification of the semantics of DnD actions as for
release rules.

Then we simply rely on the completeness of sequent calculus by perform-
ing a proof by simulation. There are many variants of sequent calculi
for intuitionistic first-order logic described in the literature. In our case
the choice mostly does not matter: all we need is that it is analytic, i.e.
satisifies the subformula property. Indeed the very idea of subformula
linking is based on analyticity: one should be able to prove a statement
by the sole act of linking sub-sentences already present in the statement.

We chose the calculus G3i from [183] as our basis, because all structural
rules are admissible in it (but they would be straightforward to simulate
apart from the cut rule). The first modification we do is that we model
hypotheses in sequents as lists instead ofmultisets, tomake the translation
from sequents to formulas completely deterministic. Thus we need to add
the exchange rule exch, which is simulated straightforwardly with the
Fcomm rule as mentioned earlier. The second modification we do is adding
introduction rules =R and =L for equality. The left introduction rule =L
captures Leibniz’s elimination scheme, and is in fact the rule Repl from
[183] (modulo the fact that we use single-conclusion instead of multi-
conclusion sequents). The right introduction rule =R is a 0-ary reflexivity
rule, instead of the Ref rule from [183] (Figure 3.6). The reason is that we
cannot simulate the latter directly without adding its equivalent rule ref
to our calculus (Figure 3.6), which we do not want to do because it would
break the subformula property. We conjecture that using =R instead of
Ref does not break the cut admissibility theorem from [183].

https://actema.xyz
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Theorem 3.7.1 (Completeness of subformula linking) If Γ ⇒ 𝐴 is
provable in G3i + {exch,=R,=L}, then ⋀Γ ⊃ 𝐴 →∗ ⊤.

Proof. By induction on the derivation of Γ ⇒ 𝐴. The base case simulates
the rules ax, ⊤R, ⊥L and =R. Other rules are simulated as usual by com-
posing the derivations obtained from induction hypotheses, making a
crucial use of the release rules Brel and Frel. The full mapping from sequent
calculus rules to derivations in our subformula linking calculus is given
in the following table. Note that we treat conjunctive formulas modulo
associativity to avoid bureaucratic details.

𝑎𝑥
Γ, 𝐴 ⇒ 𝐴 ↦

Γ ∧ 𝐴 ⊃ 𝐴
→ Γ ∧ 𝐴 5 𝐴 B
→ 𝐴 5 𝐴 L∧2
→ ⊤ id

⋅⋅⋅⋅⋅ 𝜋1
Γ, 𝐵, 𝐴, Γ′ ⇒ 𝐶

exch
Γ, 𝐴, 𝐵, Γ′ ⇒ 𝐶 ↦

Γ ∧ 𝐴 ∧ 𝐵 ∧ Γ′ ⊃ 𝐶
→ Γ ∧ (𝐴 � 𝐵) ∧ Γ′ ⊃ 𝐶 F
→ Γ ∧ (𝐵 � 𝐴) ∧ Γ′ ⊃ 𝐶 Fcomm
→ Γ ∧ 𝐵 ∧ 𝐴 ∧ Γ′ ⊃ 𝐶 Frel
→∗ ⊤ 𝐼𝐻(𝜋1)

⊤𝑅
Γ ⇒ ⊤ ↦ Γ ⊃ ⊤

→ ⊤ absr

⋅⋅⋅⋅⋅ 𝜋1
Γ ⇒ 𝐴

⋅⋅⋅⋅⋅ 𝜋2
Γ ⇒ 𝐵

∧𝑅
Γ ⇒ 𝐴 ∧ 𝐵 ↦

Γ ⊃ 𝐴 ∧ 𝐵
→ Γ ⊃ (Γ 5 𝐴 ∧ 𝐵) Bconn
→ Γ ⊃ (Γ 5 𝐴) ∧ 𝐵 R∧1
→ Γ ⊃ (Γ ⊃ 𝐴) ∧ 𝐵 Brel
→∗ Γ ⊃ ⊤ ∧ 𝐵 𝐼𝐻(𝜋1)
→ Γ ⊃ 𝐵 neul
→∗ ⊤ 𝐼𝐻(𝜋2)

⋅⋅⋅⋅⋅ 𝜋1
Γ ⇒ 𝐴𝑖

∨𝑅𝑖Γ ⇒ 𝐴0 ∨ 𝐴1 ↦

Γ ⊃ 𝐴0 ∨ 𝐴1
→ Γ 5 𝐴0 ∨ 𝐴1 B
→ (Γ 5 𝐴𝑖) ∨ 𝐴1−𝑖 R∨i
→ (Γ ⊃ 𝐴𝑖) ∨ 𝐴1−𝑖 Brel
→∗ ⊤ ∨ 𝐴1−𝑖 𝐼𝐻(𝜋1)
→ ⊤ absl

⋅⋅⋅⋅⋅ 𝜋1
Γ, 𝐴 ⇒ 𝐵

⊃𝑅
Γ ⇒ 𝐴 ⊃ 𝐵 ↦

Γ ⊃ 𝐴 ⊃ 𝐵
→ Γ 5 𝐴 ⊃ 𝐵 B
→ (Γ � 𝐴) ⊃ 𝐵 R⊃1

→ Γ ∧ 𝐴 ⊃ 𝐵 Frel
→∗ ⊤ 𝐼𝐻(𝜋1)
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⋅⋅⋅⋅⋅ 𝜋1
Γ ⇒ 𝐴

𝑥 ∉ fv(Γ) ∀𝑅
Γ ⇒ ∀𝑥.𝐴 ↦

Γ ⊃ ∀𝑥.𝐴
→ Γ 5 ∀𝑥.𝐴 B
→ ∀𝑥.(Γ 5 𝐴) R∀s
→ ∀𝑥.Γ ⊃ 𝐴 Brel
→∗ ∀𝑥.⊤ 𝐼𝐻(𝜋1)
→ ⊤ absq

⋅⋅⋅⋅⋅ 𝜋1
Γ ⇒ 𝐴{𝑡/𝑥}

∃𝑅
Γ ⇒ ∃𝑥.𝐴 ↦

Γ ⊃ ∃𝑥.𝐴
→ Γ 5 ∃𝑥.𝐴 B
→ Γ 5 𝐴{𝑡/𝑥} R∃i
→ Γ ⊃ 𝐴{𝑡/𝑥} Brel
→∗ ⊤ 𝐼𝐻(𝜋1)

=R
Γ ⇒ 𝑡 = 𝑡 ↦

Γ ⊃ 𝑡 = 𝑡
→ Γ ⊃ ⊤ refl
→ ⊤ absr

⋅⋅⋅⋅⋅ 𝜋1
Γ ⇒ 𝐶

⊤𝐿
Γ, ⊤ ⇒ 𝐶 ↦

Γ ∧ ⊤ ⊃ 𝐶
→ Γ ⊃ 𝐶 neur
→∗ ⊤ 𝐼𝐻(𝜋1)

⊥𝐿
Γ, ⊥ ⇒ 𝐶 ↦

Γ ∧ ⊥ ⊃ 𝐶
→ Γ ∧ ⊥ 5 𝐶 B
→ ⊥ 5 𝐶 L∧2
→ ⊥ ⊃ 𝐶 Brel
→ ⊤ efq

⋅⋅⋅⋅⋅ 𝜋1
Γ, 𝐴, 𝐵 ⇒ 𝐶

∧𝐿
Γ, 𝐴 ∧ 𝐵 ⇒ 𝐶 ↦ Γ ∧ 𝐴 ∧ 𝐵 ⊃ 𝐶

→∗ ⊤ 𝐼𝐻(𝜋1)
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⋅⋅⋅⋅⋅ 𝜋1
Γ, 𝐴 ⇒ 𝐶

⋅⋅⋅⋅⋅ 𝜋2
Γ, 𝐵 ⇒ 𝐶

∨𝐿
Γ, 𝐴 ∨ 𝐵 ⇒ 𝐶 ↦

Γ ∧ (𝐴 ∨ 𝐵) ⊃ 𝐶
→ Γ ∧ (𝐴 ∨ 𝐵) ⊃ (Γ ∧ (𝐴 ∨ 𝐵) 5 𝐶) Bconn
→ Γ ∧ ⊤ ⊃ (Γ ∧ (𝐴 ∨ 𝐵) 5 𝐶) weak
→ Γ ⊃ (Γ ∧ (𝐴 ∨ 𝐵) 5 𝐶) neur
→ Γ ⊃ (𝐴 ∨ 𝐵 5 𝐶) L∧2
→ Γ ⊃ (𝐴 5 𝐶) ∧ (𝐵 ⊃ 𝐶) L∨1
→ Γ ⊃ (𝐴 ⊃ 𝐶) ∧ (𝐵 ⊃ 𝐶) Brel
→ Γ ⊃ (Γ 5 (𝐴 ⊃ 𝐶) ∧ (𝐵 ⊃ 𝐶)) Bconn
→ Γ ⊃ (Γ 5 𝐴 ⊃ 𝐶) ∧ (𝐵 ⊃ 𝐶) R∧1
→ Γ ⊃ ((Γ � 𝐴) ⊃ 𝐶) ∧ (𝐵 ⊃ 𝐶) R⊃1

→ Γ ⊃ (Γ ∧ 𝐴 ⊃ 𝐶) ∧ (𝐵 ⊃ 𝐶) Frel
→∗ Γ ⊃ ⊤ ∧ (𝐵 ⊃ 𝐶) 𝐼𝐻(𝜋1)
→ Γ ⊃ 𝐵 ⊃ 𝐶 neul
→ Γ 5 𝐵 ⊃ 𝐶 B
→ (Γ � 𝐵) ⊃ 𝐶 R⊃1

→ Γ ∧ 𝐵 ⊃ 𝐶 Frel
→∗ ⊤ 𝐼𝐻(𝜋2)

⋅⋅⋅⋅⋅ 𝜋1
Γ, 𝐴 ⊃ 𝐵 ⇒ 𝐴

⋅⋅⋅⋅⋅ 𝜋2
Γ, 𝐵 ⇒ 𝐶

⊃𝐿
Γ, 𝐴 ⊃ 𝐵 ⇒ 𝐶 ↦

Γ ∧ (𝐴 ⊃ 𝐵) ⊃ 𝐶
→ Γ ∧ Γ ∧ (𝐴 ⊃ 𝐵) ⊃ 𝐶 conn
→ Γ ∧ (Γ � 𝐴 ⊃ 𝐵) ⊃ 𝐶 F
→ Γ ∧ ((Γ 5 𝐴) ⊃ 𝐵) ⊃ 𝐶 F⊃1

→ Γ ∧ ((Γ ⊃ 𝐴) ⊃ 𝐵) ⊃ 𝐶 Brel
→∗ Γ ∧ (⊤ ⊃ 𝐵) ⊃ 𝐶 𝐼𝐻(𝜋1)
→ Γ ∧ 𝐵 ⊃ 𝐶 neul
→∗ ⊤ 𝐼𝐻(𝜋2)

⋅⋅⋅⋅⋅ 𝜋1
Γ, 𝐴{𝑡/𝑥} ⇒ 𝐶

∀𝐿
Γ, ∀𝑥.𝐴 ⇒ 𝐶 ↦

Γ ∧ (∀𝑥.𝐴) ⊃ 𝐶
→ Γ ∧ (∀𝑥.𝐴) ⊃ (Γ ∧ (∀𝑥.𝐴) 5 𝐶) Bconn
→ Γ ∧ (∀𝑥.𝐴) ⊃ (∀𝑥.𝐴 5 𝐶) L∧2
→ Γ ∧ ⊤ ⊃ (∀𝑥.𝐴 5 𝐶) weak
→ Γ ⊃ (∀𝑥.𝐴 5 𝐶) neur
→ Γ ⊃ (𝐴{𝑡/𝑥} 5 𝐶) L∀i
→ Γ ⊃ (𝐴{𝑡/𝑥} ⊃ 𝐶) Brel
→ Γ 5 (𝐴{𝑡/𝑥} ⊃ 𝐶) B
→ (Γ � 𝐴{𝑡/𝑥}) ⊃ 𝐶 R⊃1

→ Γ ∧ 𝐴{𝑡/𝑥} ⊃ 𝐶 Frel
→∗ ⊤ 𝐼𝐻(𝜋1)

⋅⋅⋅⋅⋅ 𝜋1
Γ, 𝐴 ⇒ 𝐶

𝑥 ∉ fv(Γ) ∪ fv(𝐶) ∃𝐿
Γ, ∃𝑥.𝐴 ⇒ 𝐶 ↦

Γ ∧ (∃𝑥.𝐴) ⊃ 𝐶
→ Γ ∧ (∃𝑥.𝐴) ⊃ (Γ ∧ (∃𝑥.𝐴) 5 𝐶) Bconn
→ Γ ∧ (∃𝑥.𝐴) ⊃ (∃𝑥.𝐴 5 𝐶) L∧2
→ Γ ∧ ⊤ ⊃ (∃𝑥.𝐴 5 𝐶) weak
→ Γ ⊃ (∃𝑥.𝐴 5 𝐶) neur
→ Γ ⊃ ∀𝑥.(𝐴 5 𝐶) L∃s
→ Γ ⊃ ∀𝑥.𝐴 ⊃ 𝐶 Brel
→ Γ 5 ∀𝑥.𝐴 ⊃ 𝐶 B
→ ∀𝑥.(Γ 5 𝐴 ⊃ 𝐶) R∀s
→ ∀𝑥.(Γ � 𝐴) ⊃ 𝐶 R⊃1

→ ∀𝑥.Γ ∧ 𝐴 ⊃ 𝐶 Frel
→∗ ∀𝑥.⊤ 𝐼𝐻(𝜋1)
→ ⊤ absq
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[179]: Mulder et al. (2024), ‘Unification
for Subformula Linking under Quanti-
fiers’
[39]: Chaudhuri (2021), ‘Subformula
Linking for Intuitionistic Logic with Ap-
plication to Type Theory’

12: It would be interesting to understand
precisely why it fails, and if this invali-
dates the productivity theorem.

[136]: Jung et al. (2018), ‘Iris from the
ground up’

13: Contrary to our usage in this chap-
ter, they use the terminology “linkage” to
denote derivations of these linking judg-
ments, rather than paths to selected sub-
formulas.

[6]: Andrews (1976), ‘Refutations by Mat-
ings’

[92]: Girard (1987), ‘Linear logic’

[233]: Straßburger (2019), ‘The problem
of proof identity, and why computer sci-
entists should care about Hilbert’s 24th
problem’

14: The difference with matings is that
correctness of a proof structure can be
checked in polynomial instead of expo-
nential time.
[117]: Heijltjes et al. (2019), ‘Intuitionistic
proofs without syntax’
[127]: Hughes (2006), ‘Proofs without
syntax’

⋅⋅⋅⋅⋅ 𝜋1
Γ, 𝑡 = 𝑢, 𝐴{𝑢/𝑥}, 𝐴{𝑡/𝑥} ⇒ 𝐶

=L
Γ, 𝑡 = 𝑢, 𝐴{𝑡/𝑥} ⇒ 𝐶 ↦

Γ ∧ 𝑡 = 𝑢 ∧ 𝐴{𝑡/𝑥} ⊃ 𝐶
→ Γ ∧ 𝑡 = 𝑢 ∧ (𝑡 = 𝑢 � 𝐴{𝑡/𝑥}) ∧ 𝐴{𝑡/𝑥} ⊃ 𝐶 Fconn
→ Γ ∧ 𝑡 = 𝑢 ∧ 𝐴{𝑢/𝑥} ∧ 𝐴{𝑡/𝑥} ⊃ 𝐶 F=1

→∗ ⊤ 𝐼𝐻(𝜋1)

3.8. Related works

Subformula linking under quantifiers Very recently, Mulder and
Krebbers [179] proposed an improvement over both our method of sub-
formula linking implemented in Actema, and the method of Chaudhuri
implemented in the Profint prototype [39]. Like us, they perform a pri-
ori unification on the linked subformulas, both to determine appropriate
substitutions for instantiating quantifiers, and rule out invalid linkages.
But their method improves upon ours by being able to link subformulas
with non-trivial quantifier instantiations, such as the following linkage
that currently fails in Actema12:

(∀𝑥.𝑃(𝑥) ⊃ ∃𝑦. 𝑄(𝑥, 𝑦) ) 5 ∃𝑦.∃𝑧. 𝑄(𝑓 (𝑧), 𝑦)

Because of the intended application of their method to automated the-
orem proving in the Iris framework for program verification in Coq

[136], it is for now limited to backward linkages. They provide a detailed
formalization in Coq that relates their method with those of Actema and
Profint, based on linking judgments of the form 𝐻 ⋏ [𝑂] ⊫ 𝐺 that have a
derivation precisely when 𝐻 5 𝐺 →∗ 𝑂13.

Canonical proofs The idea of reducing a proof to a collection of links
between its dual formulas is not new, and can be traced back to the
matings of Andrews [6] in the context of automated deduction. Matings
are sets of links covering all atomic occurrences, and proofs are matings
satisfying certain conditions. Our work differs in that we are interested in
interactive deduction, and thus consider links as a mechanism of inference
rather than a syntactic criterion to discriminate proofs. Then a proof is
better understood as a list of links, and the atomicity constraint is relaxed
to gain expressivity, since the creation of links is offloaded to the user
instead of the search procedure.

Another line of work, starting with the proof nets of Girard [92], is con-
cerned with the more fundamental problem of proof identity, which re-
quires a canonical notion of proof object [233]. In the case of unit-free
multiplicative linear logic, the absence of any form of duplication/shar-
ing/removal mechanism allows to completely characterize a proof net by
the set of its axiom links14, because of the absence of duplication. This is
because adding additives or exponentials, which can encode intuitionistic
and classical logic, requires additional structure to represent uses of weak-
ening and contraction. The combinatorial proofs of Hughes [117, 127]
are examples of polynomially-checkable proof objects exhibiting such

https://actema.xyz
https://github.com/direct-manipulation/profint
https://actema.xyz
https://iris-project.org/
https://coq.inria.fr/
https://coq.inria.fr/
https://actema.xyz
https://github.com/direct-manipulation/profint
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[128]: Hughes (2019), First-order proofs
without syntax

[242]: Tubella et al. (2019), ‘Introduction
to Deep Inference’

15: Note that invalid linkages still give
rise to CoS-style derivations, but not
proofs since they do not end with ⊤. The
incorrect proof structures of Girard are
in a sense more parallel as they cannot
always be mapped to correct sequent cal-
culus derivations.

[75]: Elliott (2007), ‘Tangible Functional
Programming’

structure, and have recently been extended to handle first-order classical
quantifiers [128] (intuitionistic quantifiers are still an open problem). This
compartmentalization of axiom links and structural rules resembles the
distinction between interaction phases and manual applications of conn
and weak (Figure 3.3), which is itself inspired by the decomposition theorem
of the calculus of structures [242, Theorem 4.1.3].

There is also an analogy between the correctness criterions of proof nets,
and the validity criterion of linkages:

▶ they both identify a subset of valid objects among a larger set of
structures characterized by links on subformulas;

▶ they both allow many different sequential readings, that is sequent
calculus proofs for proof nets, and CoS proofs for linkages15.

Hence, our approach to subformula linking seems to exhibit some prop-
erties of canonical proofs, but at the level of partial proofs: valid linkages
make for compact-parallel-spatial representations of inferences, whose
operational meaning is given by their detailed-sequential-temporal CoS
derivations.

Tangible functional programming We noticed an interesting con-
nection with the work of Conal Elliott on tangible functional programming
[75]. His concept of deep application of 𝜆-terms seems related to the no-
tion of subformula linking, when viewing function and product types as
implications and conjunctions through the formulae-as-types interpreta-
tion. He also devised a system of basic combinators which are composed
sequentially to compute the result of a DnD, though it follows a more
complex dynamic than our rewriting rules. Even if the mapping between
proofs and programs is not exact in this case, it suggests a possible inter-
esting field of application for the Curry-Howard correspondance, in the
realm of graphical proving/programming environments.
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Practical life is not necessarily directed toward other people, as some
think; and it is not the case that practical thoughts are only those which
result from action for the sake of what ensues. On the contrary, much
more practical are those mental activities and reflections which have
their goal in themselves and take place for their own sake.

Aristotle, Politics, VII, 3, 8, 1325b16-20

In the previous chapters, we explained the core principles of our so-called
Proof-by-Action paradigm and especially of its drag-and-drop actions,
first through basic and abstract examples in Chapter 2, and then from
a proof-theoretical perspective in Chapter 3. The goal of this chapter
is to provide a better sense of what proofs by action/DnD look like in
practice, and how they compare to more traditional approaches to inter-
active theorem proving. To that effect, we perform a case study of a few
select examples, unrolling and commenting in details one or many of
their proofs. Although still basic, they are fully fledged, concrete logical
riddles or mathematical problems that one might give as exercise to an
undergraduate student learning formal proofs. Note that our analysis will
stay quite informal and opinionated: a more systematic approach such
as a user study would allow for a better evaluation of our paradigm, but
at the time of writing of this thesis the Actema prototype is not mature
enough to conduct a project of this scale.

The chapter is organized as follows: Section 4.1 studies a proof of a small
logical riddle in Actema, highlighting some benefits of our approach
compared to textual systems. Section 4.2 explores how basic properties
about functions between sets can be proved graphically, introducing the
use of definitions in addition to logical reasoning steps. In Section 4.3 we
prove equations in Peano arithmetic, showing how one can incorporate
additional actions into the paradigm to deal with more specialized forms
of reasoning: induction and automatic computation.

Note

For each example, we provide a Coq proof script that tries to follow
the structure of the graphical proof, for the sake of comparison with a
textual interface. But this would obviously compare differently with
other textual interfaces, like the Isar proof language which is more
declarative, and thus farther from the imperative aspects of PbA.

https://actema.xyz
https://actema.xyz
https://coq.inria.fr/
https://isabelle.in.tum.de/Isar/
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Figure 4.1.: The beginning of an example due to Edukera

[217]: Rognier et al. (2016), ‘Présentation
de la plateforme edukera’

1: https://www.actema.xyz/
courses/edukera

4.1. Forward reasoning

4.1.1. A gestural proof

Our first example is a small logical riddle, which we borrow from a textual
educational system, Edukera [217]. We invite readers to try to perform
the proof themselves in the online version of Actema1. One considers a
population of people, with at least one individual ℎ, together with a single
function mother and one predicate Rich. The aim is to show that the two
following assumptions are incompatible:

∀𝑥.¬Rich(𝑥) ∨ ¬Rich(mother(mother(𝑥))) (4.1)

∀𝑥.¬Rich(𝑥) ⊃ Rich(mother(𝑥)) (4.2)

The original goal thus corresponds to the illustration of Figure 4.1.

It is quite natural to approach this problem in a forward manner, by
starting from the hypotheses to establish new facts. And a first point
illustrated by this example is that DnD actions allow to do this in a smooth
and precise manner. A possible first step is to bring ℎ to hypothesis (4.1),
to obtain a new fact:

¬Rich(ℎ) ∨ ¬Rich(mother(mother(ℎ))) (4.3)

Double-clicking on this new fact yields two cases:

¬Rich(ℎ) (4.4)

¬Rich(mother(mother(ℎ))) (4.5)

Let us detail how one solves the second one. By bringing hypothesis (4.5)
on the premise of hypothesis (4.2) one obtains

Rich(mother(mother(mother(ℎ)))) (4.6)

The next step is a good example where DnD actions are useful. By bringing
this new fact to the right-hand part of hypothesis (4.3) one immediately
obtains a new fact

¬Rich(mother(ℎ)) (4.7)

In textual proof languages, this last step requires a somewhat intricate
tactic line and/or writing down at least the statement of the new fact.

https://edukera.com/
https://www.actema.xyz/courses/edukera
https://www.actema.xyz/courses/edukera
https://edukera.com/
https://actema.xyz
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2: This was already noticed in [18],
where clicking on a subformula can sim-
ulate a sequence of introduction rules of
arbitrary length.

3: This could also be achieved in two
steps in Coq, by using the specialize

tactic instead of the inlined application.

One can then finish the case by combining hypotheses (4.7) and (4.2),
which yields

Rich(mother(mother(ℎ)))

contradicting hypothesis (4.5). These two last steps each correspond to a
simple DnD. The other case, ¬Rich(ℎ), is quite similar.

Note that once a user has understood the proof, the riddle is routinely
solved in less than a minute in Actema, which seems out of reach for
about any user in a tactic-based prover. At least as important is the fact
that the proof can be performed without typing any text, especially no
intermediate statement.

4.1.2. Comparison with a textual proof

To conclude this example, we propose in Figure 4.2 a complete proof
of the riddle formalized in the Coq proof assistant, which follows very
closely the structure of the graphical proof just outlined. To make the
correspondence more visible and ease the comparison, we interspersed
the proof script with comments of the form (** [actions] *), where
[actions] is a sentence describing a sequence of actions in Actema

that produces the same goal transformation as the tactics preceding the
comment. There are a few interesting things to note:

Hypotheses management We chose to namemanually all the hypothe-
ses introduced in the course of the proof. This is generally considered
good practice in the Coq community, because it makes proof scripts
easier to maintain. In our case it also has the advantage of expliciting
which hypotheses are used exactly in the reasoning, something that an
Actema user does with her pointing device when designating the blue
items involved in an action.

It appears clearly in Figure 4.2 that in a moderately long proof like
this based mostly on forward reasoning, one needs to keep track of
a lot of names, which can be overwhelming for many users. This is
especially true for beginners discovering Coq, because the syntax for
assigning names, based on patterns like [H | H] that reproduce the
subgoal structure, can induce a steep learning curve. Of course this
problem is mitigated trivially in Actema, since names are not needed.

Tactics vs. actions There is no exact correspondence between the tac-
tics of Coq and the actions of Actema: some tactics are simulated by
multiple actions, and often a complex sequence of tactics can be simu-
lated by a single action2.

For instance, line 23 does at the same time a specialization of the hypoth-
esis 𝐻2 ∶ ∀𝑥.¬Rich(mother(mother(𝑥))) ∨ ¬Rich(𝑥) to the individual ℎ
with the application (H2 h), and a case analysis with the destruct tac-
tic. In Actema this is performed in two steps, first by drag-and-dropping
ℎ on 𝐻2, and then by clicking on the resulting hypothesis3.

In the other direction, a pattern of reasoning that occurs multiple times
in the proof is the combination of 𝐻2 with another hypothesis which

https://coq.inria.fr/
https://actema.xyz
https://coq.inria.fr/
https://actema.xyz
https://coq.inria.fr/
https://actema.xyz
https://coq.inria.fr/
https://actema.xyz
https://coq.inria.fr/
https://actema.xyz
https://actema.xyz
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contradicts one of the two cases, in order to deduce the truth of the
other case. While it is captured straightforwardly in Actema with a
single DnD between the contradictory statements, it requires in Coq a
decomposition into many administrative steps:

1. first a case analysis with destruct, where the expression instantiat-
ing 𝐻2 (e.g.mother(mother(ℎ))) needs to be written down explicitly,
instead of being inferred automatically from unification;

2. optionally focusing on the subgoal corresponding to the contra-
dictory case if it is the right disjunct (line 56), which requires to
know a somewhat idiosyncratic and infrequently used syntax of
the tactic language;

3. and finally expliciting the contradiction with apply and exact.

Context-sensitivity More generally, the actions of Actema are more
versatile and context-aware than the tactics of Coq. For instance, click
actions have a different effect depending on the main connective of
the formula being clicked, but provide a unique interface for applying
rules of natural deduction/sequent calculus. On the contrary, there is
almost one tactic for dealing with each logical connective in Coq, e.g.
intros for ⊃ and ∀, split for ∧, left and right for ∨, exists for ∃,
etc. The same remark applies to DnD actions, whose functionalities
are provided in Coq by many different tactics: apply _, apply _ in

_, pose proof, specialize, etc.

From this detailed comparison, it appears that the interface offered by
the PbA paradigm might be more suited to forward reasoning than the
tactic language of Coq, at least in some respects. It makes the flow of
argumentation more straightforward to express with DnD actions, and
avoids the overheads of name management and syntax memorization.
This altogether shall prove to be particularly helpful to beginners and
learners of the proof assistant.

https://actema.xyz
https://coq.inria.fr/
https://actema.xyz
https://coq.inria.fr/
https://coq.inria.fr/
https://coq.inria.fr/
https://coq.inria.fr/
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1

2 (* Declaration of constants used in the statement of the riddle *)

3

4 Context (i : Type).

5 Context (Rich : i -> Prop).

6 Context (mother : i -> i).

7 Context (h : i).

8

9 (* Statement of the riddle *)

10

11 Theorem rich_mothers :

12 (forall x, ~Rich(x) -> Rich(mother(x))) ->

13 (forall x, ~Rich(mother(mother(x))) \/ ~Rich(x)) ->

14 False.

15

16 (* Proof of the riddle *)

17

18 Proof.

19 intros H1 H2.

20 (** 2 clicks on the conclusion *)

21

22 destruct (H2 h) as [H | H].

23 (** DnD of [h] onto [H2], then click on the resulting hypothesis *)

24

25 * pose proof (H1 _ H) as H'.

26 (* If one naively uses [apply _ in], then one loses [H] although

27 it is needed later! Hence the use of [pose proof]. *)

28 (** DnD of [H1] onto [H] *)

29

30 destruct (H2 (mother h)) as [H2' | H2'].

31 apply H2'. exact H'.

32 (** DnD of [H'] onto [H2]. Could also be performed stepwise:

33 - Selection of [mother(h)] in [H']

34 - DnD of [H'] onto [H2]

35 - Click on the resulting hypothesis

36 - DnD of [H2'] onto [H'] *)

37

38 apply H1 in H2'.

39 (** DnD of [H1] onto [H2'] *)

40

41 apply H. exact H2'.

42 (** DnD of [H] onto [H2'] *)

43

44 * pose proof (H1 _ H) as H'.

45 (** DnD of [H1] onto [H] *)

46

47 destruct (H2 (mother h)) as [H2' | H2'].

48 2: { apply H2'. exact H'. }

49 (** DnD of [H'] onto [H2] *)

50

51 pose proof (H1 _ H2') as H2''.

52 (** DnD of [H1] onto [H2'] *)

53

54 destruct (H2 (mother (mother h))) as [H2''' | H2'''].

55 apply H2'''. exact H2''.

56 (** DnD of [H2''] onto [H2] *)

57

58 apply H1 in H2'''.

59 (** DnD of [H1] onto [H2'''] *)

60

61 apply H2'. exact H2'''.

62 (** DnD of [H2'] onto [H2'''] *)

63 Qed.

64
Figure 4.2.: Coq proof script formalizing
Edukera’s riddle

https://coq.inria.fr/
https://edukera.com/
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[15]: Bartzia et al. (2023), ‘Proof assistants
for undergraduate mathematics educa-
tion: elements of an a priori analysis’

4: See also Section 6.6 for a discussion
on a higher-order extension of Actema.

4.2. Sets and functions

4.2.1. A simple exercise

Our second example comes from a preprint of Bartzia et al. [15], where
it is chosen specifically for a case study aiming to compare the features
of different proof assistants’ interfaces in an educational setting. It is “a
typical exercise about sets, relations and functions, as commonly found
in introductory courses about reasoning and proof.” (p. 6):

Exercise 4.2.1 Given three sets 𝐴, 𝐵 and 𝐶 such that 𝐶 ⊆ 𝐴 and a
function 𝑓 ∶ 𝐴 → 𝐵, show that:

1. 𝐶 ⊆ 𝑓 −1(𝑓 (𝐶)).

2. If 𝑓 is injective then 𝑓 −1(𝑓 (𝐶)) ⊆ 𝐶.

where 𝑓 (𝐷) and 𝑓 −1(𝐸) denote respectively the direct and inverse image
(or preimage) of sets 𝐷 ⊆ 𝐴 and 𝐸 ⊆ 𝐵 by 𝑓.

Compared to our previous example, this exercise has the particularity of
involvingmultiple definitions, here about sets and functions between them.
There are many possible ways to handle definitions in a formal proof
system. A common one, which might be termed nominal, is to decompose
the definition into a new function or predicate symbol, the definition’s
head, and a universally parametrized equality or equivalence between the
head and the body of the definition. For instance, the concept of injectivity
can be encoded as a unary predicate injective(−) on functions, satisfying
the following equivalence:

∀𝐴. ∀𝐵. ∀𝑓∶𝐴 → 𝐵. injective(𝑓 ) ⇔ ∀𝑥 ∈ 𝐴. ∀𝑦 ∈ 𝐴. 𝑓 (𝑥) = 𝑓 (𝑦) ⊃ 𝑥 = 𝑦

Notice that injective(−) is a higher-order predicate, since it takes any
function as argument. Depending on the underlying logical framework,
this might have an impact on the exact way the definition is encoded.
Here we do not want to bother with such implementation details, and
simply assume that higher-order definitions are possible, even though
Actema is currently limited to first-order logic. In practice this does not
affect the semantics of graphical actions, and we can imagine having a
first-order set theory such as ZF to make everything work behind the
scenes4.

4.2.2. Nominal definitions

Let us now describe how to prove the second question of the exercise in
the PbA paradigm. The first thing we want to do is to unfold the definition
of set inclusion in the conclusion 𝑓 −1(𝑓 (𝐶)) ⊆ 𝐶, so that we can see how
to prove logically such an inclusion. One might imagine multiple kinds
of graphical actions for doing this. In Actema we implemented a general
subterm selection mechanism, where the user can successively point at
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5: Note that the syntax of first-order
logic is unaware of this distinction, since
in both cases the defined concepts are en-
coded as atomic predicates. This is usu-
ally not the case of logical frameworks
found in proof assistants: for instance,
the duality between judgmental (nomi-
nal) and propositional (behavioral) equal-
ity is at the heart of Martin-Löf type the-
ory, and it is used extensively in Coq to
perform automation, both in the compu-
tation of expressions and the matching
of statements modulo definitions.
6: Traditionnally, logicians preferred to
speak of axiom schemas, that is count-
able sets of axioms, rather than higher-
order axioms, in order to stay purely in
a first-order setting. But this does not
make much sense from an implemen-
tation point of view, as a proof engine
will only be able to manipulate a finite
amount of axioms.

different subterms appearing in the goal and then choose from a list of
so-called contextual actions that take the selection as argument. In our
case we can select the whole conclusion, and then choose to apply the
Unfold action:

𝑓 −1(𝑓 (𝐶)) ⊆ 𝐶 (Unfold)

The system will be able to tell that we selected an instance of the two-
place inclusion predicate − ⊆ −, and thus will replace the head of this
definition by its body, instantiating parameters accordingly. This gives
us a new conclusion

∀𝑥.𝑥 ∈ 𝑓 −1(𝑓 (𝐶)) ⊃ 𝑥 ∈ 𝐶

on which we can click twice to introduce a new variable 𝑥 in the context,
together with the new hypothesis

𝑥 ∈ 𝑓 −1(𝑓 (𝐶)) (4.8)

Now there is no available action on the conclusion 𝑥 ∈ 𝐶, because set
membership is a primitive predicate in set theory. But we can still unfold
some definitions in the context, which might suggest further possible
interactions. First we can unfold the definition of preimage used in hy-
pothesis (4.8) by selecting the precise corresponding subterm:

𝑥 ∈ 𝑓 −1(𝑓 (𝐶)) (Unfold)

which, assuming a definition based on set comprehension, gives:

𝑥 ∈ {𝑎 ∈ 𝐴 | 𝑓 (𝑎) ∈ 𝑓 (𝐶)} (4.9)

At this stage, we would like to make the set comprehension in hypothe-
sis (4.9) disappear, by simply deducing 𝑓 (𝑥) ∈ 𝑓 (𝐶) from it. But depending
on the underlying logical framework, the way to perform this deduction
step in PbA will vary.

4.2.3. Axiomatic definitions

In a set theory such as ZF, the meaning of ∈ comes from the various
axioms involving it. One might call this a behavioral (or axiomatic) defi-
nition, since the meaning of the symbol emerges from the way it can be
used in proofs through axioms. This contrasts with the previous nomi-
nal definitions, that have a much simpler semantics captured by Unfold
actions5.

In particular, we can simplify the set comprehension in hypothesis (4.9) by
invoking explicitly the axiom of comprehension, which states the following:

∀𝜙. ∀𝐷. ∀𝑦. 𝑦 ∈ {𝑑 ∈ 𝐷 | 𝜙} ⇔ (𝑦 ∈ 𝐷 ∧ 𝜙{𝑦/𝑑})

Note that this is again a higher-order statement, but this time because it
quantifies over every formula 𝜙6. Thus we assume that the underlying
proof engine can handle such higher-order statements, and in particular
that the axiom of comprehension is available in its database of lemmas.
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[48]: Church (1940), ‘A Formulation of
the Simple Theory of Types’

7: Note that this induces a strict hierar-
chical notion of set as in Russell’s type
theory, where sets containing other sets
have a higher-order type, i.e. they corre-
spond to functions taking other functions
as arguments.

In Actema, one can freely search in this database by typing text in a search
bar, typically in this case the keyword “comprehension”. Then the system
will show a list of lemmas whose names match the keywords, and the
user can click on the lemma she is interested in, in order to add it as a
blue item in the current context.

An alternative and more precise way of retrieving a lemma is to search
by content of the statement instead of searching by name. State-of-the-art
proof assistants usually provide facilities for this: for instance Coq has a
Search command which can take patterns, i.e. terms with so-called holes
or metavariables, in order to filter out results that do not match the given
pattern.

In Actema, we implemented a novel feature which replaces patterns by
a selection of subterms in the current goal, similarly to what is given as
argument to contextual actions like Unfold. Then the system will only
look for lemmas which can be used in a DnD action involving precisely
the current selection of subterms.

Coming back to our proof, selecting the full statement of hypothesis (4.9)
and searching:

𝑥 ∈ {𝑎 ∈ 𝐴 | 𝑓 (𝑎) ∈ 𝑓 (𝐶)} (Search)

should return the comprehension axiom among other lemmas, because
this axiom and hypothesis can interact through the following forward
DnD:

𝑥 ∈ {𝑎 ∈ 𝐴 | 𝑓 (𝑎) ∈ 𝑓 (𝐶)} � ∀𝜙. ∀𝐷. ∀𝑦. 𝑦 ∈ {𝑑 ∈ 𝐷 | 𝜙} ⇔ (𝑦 ∈ 𝐷∧𝜙{𝑦/𝑑})

with the unifying substitution {𝐷 ≔ 𝐴, 𝑑 ≔ 𝑎, 𝑦 ≔ 𝑥, 𝜙 ≔ 𝑓 (𝑎) ∈ 𝑓 (𝐶)}.
Performing this DnDwill finally result in a new hypothesis corresponding
to the intended “unfolding” of set comprehension:

𝑥 ∈ 𝐴 ∧ 𝑓 (𝑥) ∈ 𝑓 (𝐶)

4.2.4. Computational definitions

In type theory, every mathematical object or statement is ultimately en-
coded as a function, in the sense of the 𝜆-calculus. It is Alonzo Church
who first got the idea of representing a set by its characteristic function in
his higher-order logic (HOL), in the form of a 𝜆-term of type 𝜄 → 𝜊 where 𝜄
is the type of individuals and 𝜊 the type of propositions [48]. With this
encoding, the only way to construct a set is by comprehension, and set
membership corresponds to function application; that is, {𝑥 ∈ 𝐴 | 𝜙} is
identified with the characteristic function 𝜆𝑥∶𝐴. 𝜙, and 𝑥 ∈ 𝑡 is the applica-
tion 𝑡 𝑥7. Then if we consider 𝜆-terms modulo 𝛽-equivalence, “unfolding”
the definition of set comprehension just amounts to performing one step
of 𝛽-reduction: hypothesis (4.9) becomes

(𝜆𝑎∶𝐴. 𝑓 (𝐶) 𝑓 (𝑎)) 𝑥 which 𝛽-reduces to 𝑓 (𝐶) 𝑓 (𝑥)
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8: In MLTT, computational definitions
are merged with nominal definitions
in the concept of judgmental equality.
In Coq they are distinguished: compu-
tational and nominal definitions corre-
spond respectively to 𝛽-reduction and 𝛿-
reduction.
9: There are also simp tactics available
in Isabelle and Lean, although they
are not restricted to 𝛽-reduction and can
perform rewriting of arbitrary equalities
and equivalences present in the lemma
database, as long as those are flagged as
simplification rules.

10: In fact one could also use the axiom
of comprehension implicitly by relying
on stronger automation. For example in
Isabelle/Isar, one would write explic-
itly the desired goal 𝑓 (𝑥) ∈ 𝑓 (𝐶), refer to
the axiom by its name in the library, and
then let the engine figure out the details
of how to apply it. But writing statements
manually goes against the philosophy
of PbA, which explores to what extent
proofs can be carried by pure manipula-
tion of the proof state. Of course there is
still an escape hatch for doing this when
strictly necessary or more convenient.

which we can translate back as 𝑓 (𝑥) ∈ 𝑓 (𝐶). One can consider this as a
third kind of definition qualified of computational8.

This encoding of sets has now found its way in the libraries of many
proof assistants based on type theory, and is the one used in the Coq

solution to the exercise provided in annex of [15]. To perform 𝛽-reduction
in Coq, there is a tactic called simpl as in “simplify”9. Coming back
to PbA, one can easily imagine a corresponding Simplify or Compute
contextual action, which performs 𝛽-reduction inside of the selected
subterm. Then the previous transormation is achieved by applying this
action on hypothesis (4.9):

𝑥 ∈ {𝑎 ∈ 𝐴 | 𝑓 (𝑎) ∈ 𝑓 (𝐶)} (Simplify)

4.2.5. Finishing the proof

From a user perspective, the two styles of actions induced by the two
types of definitions (axiomatic and computational) differ mainly in one
respect: while the definition of set comprehension is implicit in the type-
theoretical encoding, it must be manipulated explicitly when using the
axiom of comprehension10. Depending on the user’s background and
context of usage, one might prefer one style over the other. Typically in
an educational setting, having to manipulate explicitly the axiomatic defi-
nition might be more instructive, but also more confusing when carrying
formal proofs for the first time.

Going back to the exercise, we now have the following context of hy-
potheses:

injective(𝑓 ) (4.10)

𝑓 (𝑥) ∈ 𝑓 (𝐶) (4.11)

We can unfold the definition of direct image in hypothesis (4.11) the same
way we did for the inverse image in hypothesis (4.8): first perform the
contextual action

𝑓 (𝑥) ∈ 𝑓 (𝐶) (Unfold)

which gives us

𝑓 (𝑥) ∈ {𝑏 ∈ 𝐵 | ∃𝑎 ∈ 𝐴. 𝑎 ∈ 𝐶 ∧ 𝑏 = 𝑓 (𝑎)}

Then we can simplify the set comprehension with

𝑓 (𝑥) ∈ {𝑏 ∈ 𝐵 | ∃𝑎 ∈ 𝐴. 𝑎 ∈ 𝐶 ∧ 𝑏 = 𝑓 (𝑎)} (Simplify)

which gives us

∃𝑎 ∈ 𝐴. 𝑎 ∈ 𝐶 ∧ 𝑓 (𝑥) = 𝑓 (𝑎) (4.12)

Now since 𝑓 is injective, we should be able to deduce that 𝑥 = 𝑎. First we
unfold the definition of injectivity in hypothesis (4.10):

injective(𝑓 ) (Unfold)

https://coq.inria.fr/
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1

2 Definition Ens {A : Type} := A -> Prop.

3

4 Definition subset {A : Type} (C D : Ens) :=

5 forall (x : A), C x -> D x.

6

7 Infix "⊆" := subset (at level 30).

8

9 Definition image {A B : Type} (f : A -> B) (C : Ens) : Ens :=

10 fun y => exists x, C x /\ y = f x.

11

12 Definition preimage {A B : Type} (f : A -> B) (C : Ens) : Ens :=

13 fun x => C (f x).

14

15 Definition injective {A B : Type} (f : A -> B) :=

16 forall x x', f x = f x' -> x = x'.

17

18 Context (A B : Type).

19 Figure 4.3.: Preliminary definitions in
Coq of an exercise on abstract functions

which gives us

∀𝑦 ∈ 𝐴. ∀𝑧 ∈ 𝐴. 𝑓 (𝑦) = 𝑓 (𝑧) ⊃ 𝑦 = 𝑧 (4.13)

Then we can use injectivity with the following forward DnD between
hypotheses (4.13) and (4.12):

∀𝑦 ∈ 𝐴. ∀𝑧 ∈ 𝐴. 𝑓 (𝑦) = 𝑓 (𝑧) ⊃ 𝑦 = 𝑧 � ∃𝑎 ∈ 𝐴. 𝑎 ∈ 𝐶 ∧ 𝑓 (𝑥) = 𝑓 (𝑎)

which gives us immediately that 𝑥 = 𝑎 in

∃𝑎 ∈ 𝐴. 𝑎 ∈ 𝐶 ∧ 𝑥 = 𝑎 (4.14)

The last steps consist in clicking on hypothesis (4.14) to introduce 𝑎 in
the context together with

𝑎 ∈ 𝐶 ∧ 𝑥 = 𝑎 (4.15)

doing a backward DnD with hypothesis (4.15) to rewrite 𝑥 in the conclu-
sion into 𝑎:

𝑎 ∈ 𝐶 ∧ 𝑥 = 𝑎 5 𝑥 ∈ 𝐶

and finally another backward DnD with hypothesis (4.15) to conclude the
proof:

𝑎 ∈ 𝐶 ∧ 𝑥 = 𝑎 5 𝑎 ∈ 𝐶

For the sake of completeness, we included in Figure 4.3, Figure 4.4 and
Figure 4.5 a Coq formalization of the definitions, solution to the first
question, and solution to the second question of the exercise, respectively.
We simply took the data provided in [15], and added corresponding
Actema actions below tactic invokations, as in the previous section. It is
quite close to the graphical proof just outlined for the second question,
hence we do not add further commentary.
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1

2 Theorem subset_preimage_image (f : A -> B) :

3 forall C, C ⊆ preimage f (image f C).

4 Proof.

5 intros C.

6 (** Click on conclusion *)

7

8 unfold subset.

9 (** Select conclusion, then apply Unfold from contextual action menu *)

10 intros a H.

11 (** Two clicks on conclusion *)

12

13 unfold preimage.

14 (** Select conclusion, then apply Unfold from contextual action menu *)

15 unfold image.

16 (** Select conclusion, then apply Unfold from contextual action menu *)

17 exists a.

18 split.

19 apply H.

20 (** DnD of [H] on [C(x)] in conclusion *)

21 reflexivity.

22 (** Click on conclusion *)

23 Qed.

24 Figure 4.4.: Solution in Coq to the first
question of an exercise on abstract func-
tions

1

2 Theorem preimage_image_subset (f : A -> B) :

3 injective f -> forall C, preimage f (image f C) ⊆ C.

4 Proof.

5 intros Hinj C.

6 (** 2 clicks on conclusion *)

7

8 unfold subset.

9 (** Select conclusion, then apply Unfold from contextual action menu *)

10 intros x H.

11 (** 2 clicks on conclusion *)

12

13 unfold preimage in H.

14 (** Select [H], then apply Unfold from contextual action menu *)

15 unfold image in H.

16 (** Select [H], then apply Unfold from contextual action menu *)

17 destruct H as [x' [H1 H2]].

18 apply Hinj in H2.

19 (** Here we need to unfold [injective] so that Actema detects a possible DnD action:

20 1. Select [Hinj], then apply Unfold from contextual action menu

21 2. Click on [H]

22 3. DnD of [H] on [f x = f x'] in [Hinj] *)

23 rewrite <- H2 in H1.

24 (** DnD of last hypothesis on the leftmost [x] in [H] *)

25 apply H1.

26 (** DnD of last hypothesis on conclusion *)

27 Qed.

28 Figure 4.5.: Solution in Coq to the sec-
ond question of an exercise on abstract
functions

https://coq.inria.fr/
https://coq.inria.fr/


4. Proof-by-Action in Practice 71

11: https://www.actema.xyz/
courses/peano

12: In the standalone version of Actema,
induction is performed by clicking di-
rectly on green items, rather than
through a contextual action.

13: The standalone version of Actema
only supports induction on natural num-
bers, but in a proof assistant like Coq or
Lean one can easily check if a given type
is inductive.

4.3. Peano arithmetic

In our last example, we will analyze a common proof often taught in logic
courses: the commutativity of addition in Peano arithmetic. Once again,
we invite readers to try to perform the proof themselves in Actema11.

The novelty compared to previous examples is that it involves reason-
ing by induction, which usually has special support in mainstream proof
assistants. In the PbA paradigm, it seems natural to map it to a contex-
tual action Induction, whose availability and effect will depend on the
selected subterm. One could also imagine manipulating explicitly induc-
tion schemes as blue items, similarly to how we manipulated the axiom
of comprehension in the previous section. In this section we focus on
describing features of the more convenient contextual action.

First and foremost, it only makes sense to apply induction to a variable
which is quantified universally, either because it appears in the context,
or because it is bound by a ∀ in the conclusion. In the first case, one can
access the contextual action in Actema by selecting the green item corre-
sponding to the variable; in the latter case, by selecting the subterm of the
conclusion whose head connective is the binding ∀12. This could also work
by selecting any occurrence of the variable, since the system can always
infer its binding point. The only condition is that if the variable is bound
by a ∀, it must occur in a strictly positive location, i.e. in the conclusion
and not on the left of an implication ⊃. Obviously the variable should
also be of an inductive type, i.e. one which is mapped to an induction
scheme in the system13. Then the Induction action will simply apply the
associated induction scheme. In our commutativity example, we can thus
start the proof like so:

∀𝑛 ∈ ℕ. ∀𝑚 ∈ ℕ. 𝑛 + 𝑚 = 𝑚 + 𝑛 (Induction)

which performs an induction on 𝑛, generating the two following subgoals:

∀𝑚 ∈ ℕ. 0 + 𝑚 = 𝑚 + 0 and ∀𝑚 ∈ ℕ. 𝑛⊕1 + 𝑚 = 𝑚 + 𝑛⊕1

where the second subgoal has a new variable 𝑛 ∈ ℕ in its context, together
with the induction hypothesis

∀𝑥 ∈ ℕ. 𝑛 + 𝑥 = 𝑥 + 𝑛 (4.16)

The proofs of the two subgoals can be done by induction on 𝑚. We focus
on the second one, which is a bit more involved. As mentioned above,
an alternative way of performing induction is to first introduce 𝑚 in the
context by clicking on the conclusion, and then selecting it to access the
contextual action:

𝑚 ∈ ℕ (Induction)

which generates again two new subgoals:

𝑛⊕1 + 0 = 0 + 𝑛⊕1 and 𝑛⊕1 + 𝑚⊕1 = 𝑚⊕1 + 𝑛⊕1

where the second subgoal has a new variable𝑚 ∈ ℕ in its context, together

https://www.actema.xyz/courses/peano
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14: See Section 3.2 for the notion of va-
lidity of a linkage.

with the induction hypothesis

𝑛⊕1 + 𝑚 = 𝑚 + 𝑛⊕1 (4.17)

Let us now focus on the first subgoal. Once again, as with set compre-
hension in the previous section, the addition operation may have a more
axiomatic or more computational definition, depending on the underly-
ing logical framework and library used. For instance in Coq’s standard
library, it is implemented as a program built by recursion on the left-hand
argument. Thus in this setting, if one performs computation in the whole
conclusion like so:

𝑛⊕1 + 0 = 0 + 𝑛⊕1 (Simplify)

this will give a new conclusion

(𝑛 + 0)⊕1 = 𝑛⊕1

where the addition program was able to automatically evaluate 𝑛⊕1 + 0
to (𝑛 + 0)⊕1 on the left-hand side of the equality, and 0 + 𝑛⊕1 to 𝑛⊕1
on the right-hand side. If the proof engine does not offer such a level of
automation, one can always fallback to using Peano axioms manually,
provided that they are available in the lemma database. As we have
already seen, the most convenient way to do this in the PbA paradigm is
to perform a Search action. For example to evaluate 𝑛⊕1 + 0, one might
first select it in the conclusion and then make a search query:

𝑛⊕1 + 0 = 0 + 𝑛⊕1 (Search)

Among the results which are Peano axioms, one will only find the follow-
ing ones:

(a) ∀𝑥. 0 ≠ 𝑥⊕1

(b) ∀𝑥. ∀𝑦. 𝑥⊕1 = 𝑦⊕1 ⊃ 𝑥 = 𝑦

(c) ∀𝑥. ∀𝑦. 𝑥⊕1 + 𝑦 = (𝑥 + 𝑦)⊕1

because the other axioms do not contain any subterm that could form a
valid backward linkage with the selection14. Of course we are interested
in axiom (𝑐), which we can use through the following backward DnD:

∀𝑥. ∀𝑦. 𝑥⊕1 + 𝑦 = (𝑥 + 𝑦)⊕1 5 𝑛⊕1 + 0 = 0 + 𝑛⊕1

in order to rewrite 𝑛⊕1 + 0 into (𝑛 + 0)⊕1 in the conclusion.

Now notice that the addition program earlier was not able to evaluate
𝑛 + 0 to 𝑛. This is because 0 occurs on the right-hand side of +, and the
program is not aware of the commutativity of addition, which is precisely
what we are trying to prove. Fortunately, we can apply our induction
hypothesis (4.16) on 𝑛, with the following backward DnD:

∀𝑥 ∈ ℕ. 𝑛 + 𝑥 = 𝑥 + 𝑛 5 ( 𝑛 + 0 )⊕1 = 𝑛⊕1

which rewrites 𝑛 + 0 into 0 + 𝑛 in the conclusion:

(0 + 𝑛)⊕1 = 𝑛⊕1
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Now we can continue the computation:

( 0 + 𝑛 )⊕1 = 𝑛⊕1 (Simplify)

and conclude the base case of the induction on𝑚 by reflexivity, by clicking
on the conclusion 𝑛⊕1 = 𝑛⊕1.

The inductive case of the induction on 𝑚 works similarly, but obviously
we will also need to use the induction hypothesis (4.17) on 𝑚. First we
compute everywhere we can in the conclusion:

𝑛⊕1 + 𝑚⊕1 = 𝑚⊕1 + 𝑛⊕1 Simplify

Then we can apply the induction hypothesis (4.16) on 𝑛:

∀𝑥. 𝑛 + 𝑥 = 𝑥 + 𝑛 5 ( 𝑛 + 𝑚⊕1 )⊕1 = (𝑚 + 𝑛⊕1)⊕1

and also the induction hypothesis (4.17) on 𝑚:

𝑛⊕1 + 𝑚 = 𝑚 + 𝑛⊕1 5 (𝑚⊕1 + 𝑛)⊕1 = ( 𝑚 + 𝑛⊕1 )⊕1

Again we compute everywhere:

(𝑚⊕1 + 𝑛)⊕1 = (𝑛⊕1 + 𝑚)⊕1 (Simplify)

apply the induction hypothesis (4.16) on 𝑛 once again:

∀𝑥. 𝑛 + 𝑥 = 𝑥 + 𝑛 5 (( 𝑚 + 𝑛 )⊕1)⊕1 = (𝑛 + 𝑚⊕1)⊕1

and conclude by reflexivity on ((𝑛 + 𝑚)⊕1)⊕1 = ((𝑛 + 𝑚)⊕1)⊕1.

As in previous sections, the interested reader can find a complete Coq for-
malization in Figure 4.6, which follows the same structure as the graphical
proof just outlined. In this case the correspondence between Coq tactics
and graphical actions is almost exact. This suggests that designing a com-
piler from graphical proofs to Coq proof scripts might be a reasonable
endeavor. It will indeed be one of the subjects of Chapter 6.

https://coq.inria.fr/
https://coq.inria.fr/
https://coq.inria.fr/
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1

2 Theorem add_comm :

3 forall (n m : nat), n + m = m + n.

4 Proof.

5 induction n as [|n IHn].

6 (** Select conclusion, then apply Induction from contextual action menu *)

7

8 * induction m as [|m IHm].

9 (** Select conclusion, then apply Induction from contextual action menu *)

10 - reflexivity.

11 (** Click on conclusion *)

12 - simpl.

13 (** Select conclusion, then apply Simplify from contextual action menu *)

14 rewrite <- IHm.

15 (** DnD of [IHm] on conclusion *)

16 reflexivity.

17 (** Click on conclusion *)

18

19 * induction m as [|m IHm].

20 (** Select conclusion, then apply Induction from contextual action menu *)

21 - simpl.

22 (** Select conclusion, then apply Simplify from contextual action menu *)

23 rewrite IHn.

24 (** DnD of [IHn] on conclusion *)

25 reflexivity.

26 (** Click on conclusion *)

27 - simpl.

28 (** Select conclusion, then apply Simplify from contextual action menu *)

29 rewrite IHn.

30 (** DnD of [IHn] on conclusion *)

31 rewrite <- IHm.

32 (** DnD of [IHm] on conclusion *)

33 simpl.

34 (** Select conclusion, then apply Simplify from contextual action menu *)

35 rewrite IHn.

36 (** DnD of [IHn] on conclusion *)

37 reflexivity.

38 (** Click on conclusion *)

39 Qed.

40 Figure 4.6.: Proof of commutativity of
addition on natural numbers in Coq

https://coq.inria.fr/


Γ ⇒ 𝐴, 𝐵, Δ
∨R

Γ ⇒ 𝐴 ∨ 𝐵, Δ

Γ ⇒ Δ
⊥R

Γ ⇒ ⊥, Δ

Figure 5.1.: Multiplicative right intro-
duction rules for disjunction and absur-
dity

ax
𝐴 ⇒ 𝐴

⊥R
𝐴 ⇒ 𝐴, ⊥

⊃R
⇒ 𝐴, ¬𝐴

∨R
⇒ 𝐴 ∨ ¬𝐴

Figure 5.2.: Proof of the excluded middle
in LK

1: Terminology borrowed from linear
logic, where ∨R is exactly the right in-
troduction rule for multiplicative disjunc-
tion `.
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Run parallel to reality, they symbolize it, they squint at it,
They never touch it: consider what an explosion
Would rock the bones of men into little white fragments and unsky the
world
If any mind for a moment touch truth.

Robinson Jeffers, The Silent Shepherds, 1958

In virtually every proof assistant, the goals the user is faced with are
sequents of the form Γ ⇒ 𝐶, with a single conclusion 𝐶 to be proved under
many hypotheses in Γ. Historically, this form of sequent was introduced
by Gentzen to formalize the rules of intuitionistic logic in his sequent
calculus LJ. But his main interest was in classical logic, as intuitionistic
logic was still in its infancy and almost all of mathematics had been
developed in a classical setting. Interestingly, he found that the right
syntax to develop a rich metatheory of his classical sequent calculus LK
consisted in multi-conclusion sequents of the form Γ ⇒ Δ, where Δ is a
list of conclusions that should be read disjunctively. That is, a sequent

𝐴1, … , 𝐴𝑛 ⇒ 𝐶1, … , 𝐶𝑚

has the same meaning as the formula

𝑛
⋀
𝑖=1

𝐴𝑖 ⊃
𝑚
⋁
𝑗=1

𝐶𝑗

One way to get a multi-conclusion sequent in LK is to apply the “multi-
plicative”1 introduction rule ∨R (Figure 5.1). For instance, Figure 5.2 shows
a proof of the law of excluded middle, where for each rule we squared
the principal formula. One could imagine performing the same proof in
Actema by successively clicking on these principal formulas, following a
bottom-up reading of the sequent calculus derivation seen as the trace
of a proof search process. First we decide to prove 𝐴 ∨ ¬𝐴: this amounts
to proving alternatively 𝐴 or ¬𝐴, which now appear as two separate red
items in the same tab. Then we try to prove ¬𝐴, with the usual method of
supposing 𝐴 to find a contradiction. However instead of a contradiction,
we decide to backtrack and prove the alternative conclusion 𝐴, which is
now trivial by assumption. We come back to these multi-conclusion click
actions in Section 5.3.

It is clear in the proof that the negative occurrence of 𝐴 in ¬𝐴 is the one
that becomes the assumption 𝐴 that justifies the conclusion 𝐴 in the last
step. It would be natural to specify this causal relationship by linking
directly the two occurrences of 𝐴, as we do with DnD actions in Actema.
However for this to be possible, we need to introduce a new interaction
operator — let us note it � — that works between two conclusions, where
𝐴 � 𝐵 is obviously interpreted as 𝐴 ∨ 𝐵. Then after clicking on 𝐴 ∨ ¬𝐴 we

https://actema.xyz
https://actema.xyz


5. Parallel Conclusions and Classical Logic 76

2: See for instance [169, Section 5.6].

3: Section 3.1.3 of his thesis [11].

4: Except of course if the user deems the
subgoal too complex to prove in its cur-
rent form, and explicitly wants to back-
track to shape it differently.

[72]: Dragalin et al. (1990), ‘Mathemat-
ical Intuitionism. Introduction to Proof
Theory’

can just finish the proof by connecting 𝐴 and ¬𝐴:

𝐴 � ¬ 𝐴 →∗ ⊤

This would avoid the additional step of clicking on ¬𝐴 to turn it into
an hypothesis, and suggests the possibility of a more general behavior
associated to this � operator for arbitrary logical connectives. This is
what we explore in Section 5.4.

5.1. Backtracking

Interestingly, the classical aspect of the proof of 𝐴 ∨ ¬𝐴 in Figure 5.2
comes exclusively from the backtracking operation during the last step,
a phenomemon which is well known in the folklore around construc-
tive/computational interpretations of classical logic, and is related to the
notion of continuation in programming2. Then one can see the introduc-
tion rules ∨R1 and ∨R2, and the restriction of intuitionistic sequents to one
conclusion, as ways to prevent such backtracking by forcing the choice
of disjunct to prove at an early stage.

In fact backtracking can still be performed in intuitionistic logic, but at
the meta-level of the proof search process instead of the object-level of
inference rules. In an interactive theorem prover, this corresponds to the
ability for the user to undo an inference and go back to a previous proof
state. However keeping track of the times we undo/redo inferences is very
hard to do as humans, and the user interfaces of current proof assistants
do not provide any mechanism that helps in this respect. This has already
been noted by Ayers3, and is a good motivation for trying to design
proof systems where the need for meta-level backtracking is reduced,
or even removed. One way to do this is to maximize the proportion of
inference rules that are invertible, meaning that their premisses always
follow from their conclusion. Indeed when looking at rules as tactics (see
Remark 1.2.1), it means that they will always reduce a provable goal to
provable subgoals, and thus can never induce a backtracking point4. The
∨R rule is an example of invertible rule, and in LK it can replace the other,
non-invertible rules ∨R1 and ∨R2.

But ∨R requires multi-conclusion sequents, and Gentzen restricted their
use to classical logic. It turns out that logicians after Gentzen have pro-
posed various multi-conclusion sequent calculi that work for intuitionistic
logic, the most famous being GHCP from Dragalin [72], which uses ∨R. In
the rest of this chapter, we will consider to what extent one can benefit
from having multiple conclusions in an intuitionistic setting.

5.2. Implementation in theorem provers

Despite the aforementioned benefits of multi-conclusion sequents, we
do not know of any proof assistant, whether classical or intuitionistic,
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5: The current trend is to have user-
chosen or automatically generated
strings for names as in Coq and Lean,
but some provers like HOL Light ask
for the position in the list as an integer
to designate a particular hypothesis.

[100]: Gonthier et al. (2016),A Small Scale
Reflection Extension for the Coq system

6: With the recent advances in natural
language processing and voice recogni-
tion, one could also imagine a system
based on the selection of subterms by
spelling their content. Then click and
DnD actions could be triggered by voice
commands once the subterms they ap-
ply to have been selected. This could be
an important alternative for users with
impaired vision and/or motricity.

Γ, 𝐴 ⇒ 𝐵, Δ
⊃R∗c

Γ ⇒ 𝐴 ⊃ 𝐵, Δ

Γ, 𝐴 ⇒ 𝐵
⊃R∗i

Γ ⇒ 𝐴 ⊃ 𝐵, Δ

Figure 5.3.:Multi-conclusion right intro-
duction rules for implication

that exposes them in its user interface. One reason is that most proof/tac-
tic languages are based on the rules of natural deduction, which use
single-conclusion sequents. Another reason is that having one conclusion
removes the need to designate it with an explicit name or number, as is
the case with hypotheses5. And the explicit handling of names in tactic
invokations is known to be tedious and time-consuming, to the point that
some tactic languages like SSReflect have been designed around this
problem [100]. Thus having multiple conclusions would only double the
effort for no compelling reason.

However in our graphical paradigm based on direct manipulation, hy-
potheses and conclusions are designated by the act of pointing at them
with a mouse, finger or any other pointing device6. This opens up the pos-
sibility of exposing multiple conclusions in the interface with associated
graphical proof actions, as outlined in the introductory example of this
chapter. While we did not implement such an extension in Actema, we ex-
plore in the following sections its design, and the theoretical foundations
that lay behind it.

5.3. Click actions

In Table 2.1, we showed how click actions in Actema are in direct cor-
respondance with the rules of the single-conclusion sequent calculus LJ
for intuitionistic logic. Following the literature mentioned earlier, we just
need to replace two actions/introduction rules to get a multi-conclusion
system capturing either intuitionistic or classical first-order logic:

▶ clicking on a red disjunction 𝐴 ∨ 𝐵 breaks it into two conclusions 𝐴
and 𝐵. This is the dual behavior to click actions on blue conjunctions,
and corresponds to the ∨R rule of Figure 5.1, which is common to both
the intuitionistic and classical variants;

▶ as before, clicking on a red implication 𝐴 ⊃ 𝐵 breaks it into an hypoth-
esis 𝐴 and a conclusion 𝐵. Without further changes, this corresponds
to the right introduction rule from the classical sequent calculus LK
of Gentzen (named ⊃R∗c in Figure 5.3), and our set of actions becomes
a proof system for classical logic. To go back to intuitionistic logic,
one needs the additional behavior that all the other conclusions of
the goal are removed. This corresponds to the right introduction rule
from the GHCP calculus of Dragalin (named ⊃R∗i in Figure 5.3).

Remark 5.3.1 In the special case of intuitionistic sequents with one
conclusion, the two variants ⊃R∗c and ⊃R∗i collapse into the usual ⊃R
rule.

Note that we only modified the behavior of the disjunction ∨ and im-
plication ⊃ connectives; and for the latter, only in the case when there
are at least two parallel conclusions, and thus implicitly a disjunction.
Then it is interesting to notice that the classical behavior of the other con-
nectives (⊥, ∧, ∀, ∃) essentially arises from their interaction with (positive)
disjunctive statements.

https://coq.inria.fr/
https://lean-lang.org/
https://www.cl.cam.ac.uk/~jrh13/hol-light/
https://coq.inria.fr/doc/V8.19.0/refman/proof-engine/ssreflect-proof-language.html?highlight=ssreflect
https://actema.xyz
https://actema.xyz
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7: In Section 8.3, we will see how to over-
come this limitation by using a nested
sequent system.

[183]: Negri et al. (2001), Structural Proof
Theory

Γ, ∀𝑥.𝐴, 𝐴{𝑡/𝑥} ⇒ Δ
∀L∗

Γ, ∀𝑥.𝐴 ⇒ Δ

Γ ⇒ 𝐴{𝑡/𝑥}, ∃𝑥.𝐴, Δ
∃R∗

Γ ⇒ ∃𝑥.𝐴, Δ

Figure 5.4.: Multi-conclusion instantia-
tion rules for quantifiers

8: This is also related to the` connective
of linear logic (LL) which uses the ∨R rule
of Figure 5.1, and whose spelling “par” is
historically motivated by an understand-
ing of the multiplicative fragment of LL
as a logic of parallel computation [92].

If we stick to intuitionistic logic, the benefits of having multiple conclu-
sions are unclear. Indeed while the ∨R rule is invertible, the ⊃R∗i rule is not,
and thus at some point the choice of which conclusion to prove must be
made by the user irreversibly, even if the choice is delayed7. On the other
hand the ⊃R∗c rule is invertible: this is known to allow the formulation of
sequent calculi for classical logic where all rules are invertible, like the
G3c calculus of [183]. In the propositional case, this gives a constructive
decision procedure for the question of provability: given a sequent Γ ⇒ Δ,
one just has to choose any formula in Γ or Δ and apply the introduction
rule associated to its main connective, or the axiom rule whenever possi-
ble. In Actema, this would correspond to having the user click randomly
on blue and red items until all goals are solved. The procedure ends be-
cause all introduction rules destroy the main connective, and none of
them duplicate formulas: thus the total number of connectives in the
sequent decreases strictly after each rule application.

When dealing with quantifiers, the situation is not so simple: if one wants
invertible introduction rules, it is necessary to duplicate the quantified
formula being instantiated, which can be seen as the root cause of unde-
cidability in predicate logic as noted by Girard [94, Section 3.3.2]. This is
already what happens in Actema for the universal quantifier: dropping a
term 𝑡 on a blue item ∀𝑥.𝐴 will produce a new hypothesis 𝐴{𝑡/𝑥}, while
keeping the original ∀𝑥.𝐴 item. This corresponds to the invertible left
introduction rule of G3c (∀L∗ in Figure 5.4). But in the single-conclusion
framework, dropping a term 𝑡 on a red item ∃𝑥.𝐴 necessarily replaces
it by the instantiated conclusion 𝐴{𝑡/𝑥}. Allowing multiple conclusions
circumvents this problem and restores the symmetry between ∀ and ∃,
since we can create a new conclusion for 𝐴{𝑡/𝑥} while preserving the old
one. This corresponds to the invertible right introduction rule of G3c (∃R∗
in Figure 5.4).

5.4. DnD actions

Once we allow for more than one conclusion, it is natural to wonder
whether it makes sense to also allow for DnD actions between two con-
clusions. But we already capture backward reasoning with the 𝐴 5 𝐵
operator between a hypothesis 𝐴 and a conclusion 𝐵, and forward rea-
soning with the 𝐴 � 𝐵 operator between two hypotheses. There does
not seem to be room for a third mode of reasoning, at least in the tra-
ditional way of building proofs we are used to, either on paper or with
proof assistants. However from a purely formal point of view, there is
nothing preventing us from trying to design rewriting rules for a new
interaction operator, by following the same recipe we used for 5 and �.
Furthermore, we already saw earlier in the excluded middle example that
such an operator did seem useful.

When looking for a proof of a sequent with multiple conclusions, un-
less we commit to proving one conclusion and give up on the others
by applying the ⊃R∗i rule, we can switch freely our focus between the
different conclusions. Thus in a way, we are looking for proofs of all
the conclusions in parallel, and we stop as soon as we find one8. Hence

https://actema.xyz
https://actema.xyz
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Backward

𝐵 ⊃ 𝐶 5 𝐴 → (𝐵 � 𝐴) ∧ (𝐶 ⊃ 𝐴) L⊃1

Parallel

𝐴 � (𝐵 ∧ 𝐶) → (𝐴 � 𝐵) ∧ 𝐶 P∧1
𝐴 � (𝐶 ∧ 𝐵) → 𝐶 ∧ (𝐴 � 𝐵) P∧2

𝐴 � (𝐵 ∨ 𝐶) → 𝐴 � 𝐵 P∨1
𝐴 � (𝐶 ∨ 𝐵) → 𝐴 � 𝐵 P∨2

𝐴 � (𝐵 ⊃ 𝐶) → (𝐵 5 𝐴) ∨ 𝐶 P⊃1
∗

𝐴 � (𝐶 ⊃ 𝐵) → 𝐶 ⊃ (𝐴 � 𝐵) P⊃2
∗

𝐴 � (∀𝑥.𝐵) → ∀𝑥.(𝐴 � 𝐵) P∀s∗

𝐴 � (∃𝑥.𝐵) → 𝐴 � 𝐵{𝑥/𝑡} P∃i
𝐴 � (∃𝑥.𝐵) → ∃𝑥.(𝐴 � 𝐵) P∃s∗

𝐵 � 𝐴 → 𝐴 � 𝐵 Pcomm

In the rules {P∀s,P∃s}, 𝑥 is not free
in 𝐴.

Figure 5.5.: Parallel linking rules

� 5 �

F⊃1 L⊃1

R⊃1 P⊃1

Figure 5.6.: Alternating structure be-
tween reasoning modes

9: We do not prove this formally here,
but this can be done by exhibiting intu-
itionistic counter-models in which the
entailments are false, i.e. Kripke struc-
tures or Heyting algebras.

we chose to call this third kind of interaction between two conclusions
parallel reasoning. This justifies the choice of notation for the parallel
interaction operator �, which is suggestive of the parallel composition ∣
from process calculi.

The rules governing � are presented in Figure 5.5. A parallel linkage
can be created either by drag-and-dropping two conclusions together, or
through an instance of the new backward rule L⊃1. It is important to note
that this rule is only sound classically; indeed we can now come back
to the example of Subsection 3.2.1 and give the following derivation of
Peirce’s law with it:

( 𝐴 ⊃ 𝐵) ⊃ 𝐴 5 𝐴 → ( 𝐴 ⊃ 𝐵 � 𝐴 ) ∧ (𝐴 ⊃ 𝐴) L⊃1

→ (( 𝐴 5 𝐴 ) ∨ 𝐵) ∧ (𝐴 ⊃ 𝐴) P⊃1

→ (⊤ ∨ 𝐵) ∧ (𝐴 ⊃ 𝐴) id
→ ⊤ ∧ (𝐴 ⊃ 𝐴) absl
→ 𝐴 ⊃ 𝐴 neul

The other rules of Figure 5.5 handle the rewriting of parallel linkages,
and were conceived as the dual counterpart of forward rules. Indeed,
while a forward linkage combines two negative subformulas in the same
context to produce a new hypothesis, a parallel linkage combines two
positive subformulas in the same context to produce a new conclusion.
Backward linkages can then be seen as mediating between these two
opposite modes of reasoning, by handling the interaction of a positive
and a negative subformula in the same context. A schematic view of the
back and forth between the different modes through the 4 rewriting rules
that change interaction operators is provided in Figure 5.6. Notice that
the latter correspond exactly to the rules that handle interaction with
the antecedant of an implication: this is because it is the only way to
switch polarity when descending into a direct subformula, which is what
triggers the change of mode.

5.5. Metatheory of parallel reasoning

Like backward rules, a parallel rule 𝐴 → 𝐵 will be logically sound if 𝐵
entails 𝐴. Then if one wants to stick to an intuitionistic setting, one has
to remove the rules P⊃1, P⊃2 and P∀s from the system, in addition to the
L⊃1 rule. Indeed those are all sound classically but not intuitionistically9.

Now if we look back at the schema from Figure 5.6, removing L⊃1 and P⊃1 in
particular has the consequence of isolating completely parallel reasoning
from the other modes. But remember from Section 3.3 that we are only
interested in valid linkages, that is those linkages who satisfy productivity
(Theorem 3.5.2) and thus will always terminate on an instance of either
the id rule (backward mode) or the equality rules (backward/forward
modes). Thus if there is no way to reach either forward or backward
mode from a parallel linkage, it has no meaning in our paradigm. Then if
we trust that rules L⊃1 and P⊃1 are necessary to get the intended semantics,
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it seems that parallel reasoning only makes sense in a classical setting.
In the following, we only show that the rules of Figure 5.5 are sufficient
for our purpose, by extending the results of Chapter 3 to the classical,
multi-conclusion setting.

We start by updating the validity criterion on linkages, more specifically
we drop Clause 2 of Condition 3.2.1 about the polarities of linked subfor-
mulas. Indeed it was introduced precisely to forbid behaviors which only
make sense in classical logic, but are now given a semantics with the L⊃1

rule. We also need to add a case for the � operator in the other clauses of
Condition 3.2.1, which gives the following updated condition:

Condition 5.5.1 (Classical Polarity) The following must be true for a
logical linkage 𝐵 𝐴 @𝐷 𝐴′ to be classically valid:

1. the parity of inv(𝐵□) is:

a) the same as inv(𝐷□) if @ = 5

b) the opposite of inv(𝐷□) if @ = �

c) the opposite of inv(𝐷□) if @ = �

The following must be true for a rewrite linkage 𝐵 𝑡 @𝐷 𝑡′ to be clas-
sically valid :

1. if 𝐵□ holds the equality, then it must be:

a) positive if @ = 5;

b) positive if @ = �;

c) negative if @ = �;

2. if 𝐷□ holds the equality, then it must be:

a) negative if @ = 5;

b) positive if @ = �.

c) negative if @ = �.

Then we add the following case to the statement of Theorem 3.4.1:

If 𝐴 � 𝐵 →∗ 𝐶, then 𝐶 ⇒ 𝐴, 𝐵.

and we interpret � as disjunction:

⌊𝐴 � 𝐵⌋ = ⌊𝐴⌋ ∨ ⌊𝐵⌋

We add the two following cases to Lemma 3.4.3 and Lemma 3.4.4:

▶ If 𝐶+ 𝐴 � 𝐵 → 𝐷 then ⌊𝐷⌋ ⇒ 𝐶+ 𝐴 ∨ 𝐵 .

▶ If 𝐶− 𝐴 � 𝐵 → 𝐷 then 𝐶− 𝐴 ∨ 𝐵 ⇒ ⌊𝐷⌋.

The proof of Lemma 3.4.3 is easily extended by inspecting each parallel
rule, and we already mentioned that the backward rule L⊃1 is sound
classically. Note that now sequents have multiple conclusions, thus one



5. Parallel Conclusions and Classical Logic 81

needs to use rules from a multi-conclusion calculus such as G3c [183].

Polarity preservation (Fact 3.4.1) is also true with �, we just need to add
the missing cases from Figure 5.6:

▶ If 𝐶 𝐴 � 𝐵 → 𝐶′ 𝐴′ � 𝐵′ then 𝐶□ and 𝐶′□ have the same polarity.

▶ If 𝐶 𝐴 5 𝐵 → 𝐶′ 𝐴′ � 𝐵′ (resp. 𝐶 𝐴 � 𝐵 → 𝐶′ 𝐴′ 5 𝐵′ ) then 𝐶□
and 𝐶′□ have the same polarity.

The proof of Lemma 3.4.4 is also extended straightforwardly. We only
write the added case for � in the proof of the first statement:

▶ @ = �: by Fact 3.4.1, 𝐶′ must be positive. Therefore by induction
hypothesis ⌊𝐷⌋ ⇒ 𝐶′ 𝐴′ ∨ 𝐵′ . By Lemma 3.4.3 we have 𝐶′ 𝐴′ ∨ 𝐵′ ⇒
𝐶+ 𝐴 ⊃ 𝐵 . Thus by transitivity ⌊𝐷⌋ ⇒ 𝐶+ 𝐴 ⊃ 𝐵 .

Regarding completeness (Theorem 3.7.1), we already noticed that our
rules now allow us to prove Peirce’s law, which is known to be sufficient
to recover classical logic from intuitionistic logic.

The proof of productivity (Theorem 3.5.2) is again extended straightfor-
wardly, by considering the additional case of parallel linkages and using
arguments “dual” to those used for forward linkages. There is even less
work to do regarding the preservation of Condition 3.2.1 since we dropped
the intuitionistic restriction.

Finally about focusing (Section 3.6), we can just remark that some rules
that were not invertible in intuitionistic logic become invertible in classical
logic. Therefore the dynamics of focusing should be different, and it might
be interesting to compare the behaviors of intuitionistic and classical DnD
actions on specific examples.
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God does not care about our mathematical difficulties. He integrates
empirically.

Albert Einstein

In the previous chapters, we introduced the Proof-by-Action paradigm
(Chapter 2), and tried to convince the reader that it is both theoretically
sound with its firm grounding in deep inference proof theory (Chapter 3
and Chapter 5), and practically useful by analyzing proofs of mathemati-
cal problems expressed within it (Chapter 4). We also mentioned multiple
times our prototype of interface implementing PbA called Actema, and
in particular the fact that it exists as a standalone web application with
its own proof engine [69]. This is convenient for distributing it online
as a publicly available website, so that people can immediately try it out
without the hassles of installation procedures. However due to both his-
torical choices in its design and lack of human resources for development,
Actema’s proof engine is quite limited in its features:

▶ it can only handle goals expressed in many-sorted intuitionistic first-
order logic (iFOL), whereas all state-of-the-art PAs support higher-order
logic in one form or another; and higher-order features are crucial for
formalizing many mathematical notions in a concise way, as witnessed
by the example of Section 4.2;

▶ it does not implement a certified kernel for checking proof objects,
which makes it hard to trust and interoperate with;

▶ it has no mechanism for adding new mathematical notations, only ad
hoc support for arithmetical expressions. Thus formulas become very
quickly impossible to read and manipulate;

▶ it has poor support for managing libraries of definitions, lemmas and
proofs, partly because of the previous items.

To address these limitations, and thus enable a confrontation of the PbA
paradigm to real mathematical developments, we decided to build coq-

actema, a Coq plugin that directly connects Actema to a running instance
of the Coq proof assistant [68]. The idea is that Actema should act as an
enhanced graphical, interactive proof view that integrates in the usual text-
based workflow of proof scripts. Thus instead of trying to turn Actema

into a full-fledged PA, we exploit the over 30 years of effort that have
been put in the development of Coq, and limit the role of Actema to that
of a novel frontend for building proofs in Coq. This shall open the way
to more advanced experimentations through the huge body of theories
already developed in Coq, and make the PbA paradigm visible to the large
community of existing users of this popular PA.

https://actema.xyz
https://actema.xyz
https://github.com/Champitoad/coq-actema
https://github.com/Champitoad/coq-actema
https://coq.inria.fr/
https://actema.xyz
https://coq.inria.fr/
https://actema.xyz
https://actema.xyz
https://coq.inria.fr/
https://actema.xyz
https://coq.inria.fr/
https://coq.inria.fr/
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[246]: Vouillon et al. (2014), ‘From byte-
code to JavaScript’

Remark 6.0.1 The same approach should be applicable in principle to
any ITP that supports at least iFOL, and provides an interaction proto-
col for building proofs in a goal-directed manner. This includes other
popular PAs such as Lean and Isabelle, but also more specialized
software like the Why3 platform for deductive program verification [21],
the Meta-F* framework in the proof-oriented programming language
F* [165], or the EasyCrypt toolset for the verification of cryptographic
protocols [14].

The chapter is organized as follows: we start in Section 6.1 by explaining
the architecture of the Actema web application, which follows the stan-
dard conceptual separation between frontend and backend. In Section 6.2,
we reflect on some considerations that led us to the specific choice of a
Coq plugin, in order to integrate Actema with Coq. Then in Section 6.3
we present the architecture of the coq-actema system, which structures
all interactions between the user, Coq and Actema. Section 6.4 describes
in more details the main usage scenario of coq-actema, following the
flow of data and control between the different processes involved. Section
6.5 explains how the various graphical actions performed by the user in
Actema are compiled into Coq tactics, ultimately producing certified proof
terms. Finally in Section 6.6, we discuss possible avenues for extending
the usability of coq-actema to a broader class of Coq goals, as well as
prospective solutions to the problem of proof evolution in our graphical
paradigm.

6.1. Actema

At its core, Actema is a web application made of two components: a
frontend that implements the graphical interface with which the user
interacts, written in HTML/CSS/JavaScript with the Vue.js framework
[240]; and a backend that implements the proof engine, written in OCaml

and compiled to JavaScript (JS) with js_of_ocaml [246]. The two
components interact through an object-oriented API written in OCaml,
which is loaded at runtime in the form of a JS object called engine, and
whose methods can be called from the Vue components in the frontend.

The engine object provides various high-level methods for handling the
current proof state. Common operations include getting the list of open
subgoals, querying available proof actions on a subgoal, or applying a
given proof action. Lower-level methods are also available in other objects
to inspect the data of the proof state. For instance,

engine.subgoals[0].context[0]

will return an object representing the first hypothesis of the first subgoal;
and this object itself exposes an html method, which returns a string
holding the HTML code used to display the statement of the hypothesis.

In the standalone version of Actema, the proof engine takes care of com-
puting the new subgoals stemming from actions performed by the user.
It is thus responsible for defining the semantics of proof actions. It is also

https://lean-lang.org/
https://isabelle.in.tum.de/
https://www.why3.org/
https://fstar-lang.org/papers/metafstar/
https://www.fstar-lang.org/
https://github.com/EasyCrypt/easycrypt
https://actema.xyz
https://coq.inria.fr/
https://actema.xyz
https://coq.inria.fr/
https://github.com/Champitoad/coq-actema
https://coq.inria.fr/
https://actema.xyz
https://github.com/Champitoad/coq-actema
https://actema.xyz
https://coq.inria.fr/
https://github.com/Champitoad/coq-actema
https://coq.inria.fr/
https://actema.xyz
https://developer.mozilla.org/en-US/docs/Web/HTML
https://developer.mozilla.org/en-US/docs/Web/CSS
https://developer.mozilla.org/en-US/docs/Web/JavaScript
https://vuejs.org/
https://ocaml.org/
https://developer.mozilla.org/en-US/docs/Web/JavaScript
https://developer.mozilla.org/en-US/docs/Web/JavaScript
https://ocsigen.org/js_of_ocaml/latest/manual/overview
https://ocaml.org/
https://developer.mozilla.org/en-US/docs/Web/JavaScript
https://vuejs.org/
https://developer.mozilla.org/en-US/docs/Web/HTML
https://actema.xyz
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[85]: Gallego Arias (2016), ‘SerAPI:
Machine-Friendly, Data-Centric Serial-
ization for COQ’

[7]: Arias et al. (2017), ‘jsCoq: Towards
Hybrid Theorem Proving Interfaces’

1: For instance in the ProofWidgets

framework [12], all these tasks are im-
plemented in the meta-programming lan-
guage of Lean (which is Lean itself), mak-
ing it more extensible by (expert) users
of the PA.

in charge of various other tasks that process the logical data of the proof
state, typically checking the validity of linkages during a DnD action,
which requires the use of a unification algorithm (see Section 3.2).

6.2. Why a plugin?

Usually, integrated development environments (IDEs) for Coq live in an
independent process, and exchange data with Coq through a high-level
communication protocol: either the command line interface provided by
coqtop, Coq’s default XML protocol, or its improved superset SerAPI [85].
In particular, SerAPI emerged from the development of jsCoq [7], an
IDE that runs entirely in web browsers by embedding a version of Coq
compiled with js_of_ocaml. Since Actema is also web-based and uses
js_of_ocaml, our first idea was essentially to fork jsCoq and replace
its interface by that of Actema. However as noted by E. J. G. Arias, the
SerAPI protocol — and in fact all the other protocols turn out to be too
high-level for our purpose. Typically we need to (partially) translate Coq
goals into iFOL goals, which can be done much more easily with a direct
access to Coq’s low-level API for manipulating kernel terms.

Now, remember that Actema is not meant as a full-fledged IDE that can
manage the edition and execution states of the proof script, but only as an
enhanced proof view for manipulating already-parsed goals. One should
think of Actema’s actions simply as a graphical frontend for invoking a
new set of tactics. And this is precisely what the plugin system of Coq has
been designed for: extending Coq with new tactics. Thus the solution of a
Coq plugin made a lot more sense, with the important benefit of ensuring
compatibility with all existing IDEs. This would also entail easier adoption
of Actema into existing Coq developments and workflows.

In this setting, it is now the Coq plugin which implements the semantics
of proof actions as new tactics, instead of Actema’s backend. This allows
us to leverage the facilities already provided by Coq to handle the proof
state and generate proof terms in the calculus of inductive constructions.
This does not make the backend of Actema completely irrelevant how-
ever: we still need it so that Actema can maintain its own, first-order
version of the proof state, with additional metadata used to display and
interact graphically with objects and statements. Also tasks related to the
querying of both display data and proof actions, like the html method
and unification algorithm mentioned in the previous section, are at the
time of writing of this thesis still performed in Actema’s backend. It is
unclear to what extent this should rather be a responsibility of the Coq
plugin, relegating Actema to a pure role of frontend to the PA1.

6.3. The coq-actema system

Let us now give the full picture of the coq-actema system that integrates
both Actema and the Coq plugin. A schematic view of its overall architec-
ture, including the various components and their relationships, is provided

https://github.com/leanprover-community/ProofWidgets4
https://lean-lang.org/
https://lean-lang.org/
https://coq.inria.fr/
https://coq.inria.fr/
https://coq.inria.fr/
https://developer.mozilla.org/en-US/docs/Web/XML/XML_introduction
https://github.com/ejgallego/coq-serapi
https://github.com/ejgallego/coq-serapi
https://coq.vercel.app/
https://coq.inria.fr/
https://ocsigen.org/js_of_ocaml/latest/manual/overview
https://actema.xyz
https://ocsigen.org/js_of_ocaml/latest/manual/overview
https://coq.vercel.app/
https://actema.xyz
https://github.com/ejgallego/coq-serapi
https://coq.inria.fr/
https://coq.inria.fr/
https://actema.xyz
https://actema.xyz
https://coq.inria.fr/
https://coq.inria.fr/
https://coq.inria.fr/
https://actema.xyz
https://coq.inria.fr/
https://coq.inria.fr/
https://actema.xyz
https://coq.inria.fr/
https://actema.xyz
https://actema.xyz
https://actema.xyz
https://coq.inria.fr/
https://actema.xyz
https://github.com/Champitoad/coq-actema
https://actema.xyz
https://coq.inria.fr/
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Figure 6.1.: Architecture of the coq-actema system

in Figure 6.1. The different processes/agents involved are represented by
shapes of different colors, and we add a directed arrow whenever two of
them communicate with each other, where the source requests data from
or sends instructions to the target.

The User (pink circle) is the only human agent in the system, and drives
all interactions. She interacts with the Coq and Actema subsystems (trans-
parent rectangles), through the interfaces provided by her Coq IDE of
choice (blue rectangle) and Actema’s Frontend (yellow rectangle). This
will typically take the form of a two-windows layout, as depicted by the
screenshot of Figure 6.2.

6.3.1. Actema web app

The Actemaweb app runs in a process independent from Coq, represented
by the yellow Interface rectangle. We add a third layer to the Frontend
and Backend described in Section 6.1, namely a HTTP Server (orange
rectangle) that handles requests from, and responses to the Coq Plugin.
Thus we implement interprocess communication between Actema and
Coq through the network layer of the operating system, rather than a
more local mechanism such as Unix pipelines. There are a few reasons
behind our choice of the HTTP protocol:

▶ it provides useful abstractions when working with a client/server

https://github.com/Champitoad/coq-actema
https://coq.inria.fr/
https://actema.xyz
https://coq.inria.fr/
https://actema.xyz
https://actema.xyz
https://coq.inria.fr/
https://developer.mozilla.org/en-US/docs/Web/HTTP
https://coq.inria.fr/
https://actema.xyz
https://coq.inria.fr/
https://developer.mozilla.org/en-US/docs/Web/HTTP
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On the left, the usual interactive view of the proof script, in the VsCoq IDE [50]. On the right, the graphical
proof view of Actema.

Figure 6.2.: Graphical layout of the coq-actema system

architecture structured around requests;

▶ it is a widely spread standard, especially in web technologies. Thus
we were able to reduce development time by reusing generic imple-
mentations of both client and server from standard libraries;

▶ more anecdotically, this makes it easy to run Coq and Actema on differ-
ent machines connected on the same network. This could be used for
instance to offload heavy computations in a proof to the machine run-
ning Coq, while still being able to interact with Coq through Actema

on the weaker machine.

The Server runs in a process separate from the Interface, in order to avoid
any delay in the latter. Then we bundle everything in an Electron appli-
cation [195], so that Actema can easily be run locally on most operating
systems. This also allows us to exploit the multi-process architecture of
Electron [194], where the so-called main process runs the server and
has the ability to issue system calls for networking through the Node.js
HTTP library [196]; and the so-called renderer process runs the Interface
in the Chromium browser.

6.3.2. Coq plugin

The Plugin is loaded dynamically in Coq’s Engine (green rectangle) by
executing the following command in a proof script:

From Actema Require Import Loader.

It exposes a single tactic called actema, which can run in two distinct
modes:

Interactive The Plugin sends the current subgoals to Actema, and the
user applies a sequence of actions on them. Each time an action is
performed, it is sent back to Coq, compiled into the appropriate tactic
call, and then executed to generate new subgoals that are sent again to
Actema. The actema tactic finishes its execution either when:

▶ all subgoals are proved (in Actema);

▶ the User decides to stop and give back control to the IDE;

https://github.com/coq-community/vscoq
https://actema.xyz
https://github.com/Champitoad/coq-actema
https://coq.inria.fr/
https://actema.xyz
https://coq.inria.fr/
https://coq.inria.fr/
https://actema.xyz
https://www.electronjs.org/
https://actema.xyz
https://nodejs.org/en
https://developer.mozilla.org/en-US/docs/Web/HTTP
https://www.chromium.org/chromium-projects/
https://coq.inria.fr/
https://actema.xyz
https://coq.inria.fr/
https://actema.xyz
https://actema.xyz
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[228]: Sozeau et al. (2020), ‘The MetaCoq
Project’

2: Indeed, breaking changes are fre-
quently introduced in coq-core with
newer versions of Coq, which requires
more maintenance efforts from plugin
developers.

▶ in some rare cases, an unrecoverable error occurs.

Non-interactive If the actema tactic has already been executed on the
subgoal under focus, then the Plugin automatically saved the sequence
of actions performed by the User in a Database (gray circle). Currently
for ease of development, the Database is implemented as a simple
directory on the local filesystem, where each file encodes an entry as
follows:

▶ the filename is a hash code that uniquely identifies the goal by both
its content, i.e. the statements of the hypotheses and conclusion, and
an optional identifier, which can be given as argument to the tactic
in the form of an arbitrary string;

▶ the contents of the file is a Base64 encoding of the data specifying
each action, whose format will be detailed in Section 6.5.

Then the tactic will load the sequence of actions from the appropriate
file, recompile it into one big tactic, and execute it on the current
subgoal.

One can also force the execution in interactive mode by using a variant of
the tactic named actema_force. We provide details of the complete in-
teraction protocol followed by the actema tactic in the following section.

Regarding the implementation of the Plugin, we chose to do it in the
standard way by interfacing with the coq-core API in OCaml [237], al-
though it has been encouraged in recent versions of Coq to interface
with more stable APIs such as those provided by Coq-Elpi [235] and
MetaCoq [228]2. The main reason is that our plugin performs side effects
by interacting with an external environment: the file system when saving
and retrieving graphical proofs, and the network when issueing HTTP

requests to Actema. Those cannot be implemented in the aforementioned
frameworks.

6.4. Interaction protocol

We will now unroll the details of a complete interaction in coq-actema,
starting from the User calling the actema tactic in her IDE, and ending
with her viewing the new subgoals displayed in the IDE. We chose to
represent this with a sequence diagram, as specified by the UML standard
[254]. This kind of diagram is used to depict runtime behavior of a system,
showing interactions between objects and the messages they exchange
in the order they occur chronologically. In our case, the objects are the
different processes described in the previous section, as well as the User.
Since the full interaction is quite involved, we split the diagram in three
parts: Figure 6.3 includes the beginning of the interaction, focusing on the
non-interactivemode of the actema tactic where the Plugin communicates
with Coq’s kernel and the Database. Figure 6.4 and Figure 6.5 tackle the
interactive mode of the actema tactic: Figure 6.4 focuses on the conditions
for breaking out of the interaction loop, and Figure 6.5 on the interactions
at work when the User performs a proof action in Actema.

https://coq.inria.fr/doc/v8.15/api/coq-core/index.html
https://coq.inria.fr/
https://developer.mozilla.org/en-US/docs/Glossary/Base64
https://coq.inria.fr/doc/v8.15/api/coq-core/index.html
https://ocaml.org/
https://coq.inria.fr/
https://github.com/LPCIC/coq-elpi
https://metacoq.github.io/
https://developer.mozilla.org/en-US/docs/Web/HTTP
https://actema.xyz
https://github.com/Champitoad/coq-actema
https://developer.ibm.com/articles/an-introduction-to-uml/
https://coq.inria.fr/
https://actema.xyz
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Figure 6.3.: Sequence diagram of coq-actema’s interaction protocol — non-interactive mode
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Figure 6.4.: Sequence diagram of coq-actema’s interaction protocol — breaking out of the interaction loop
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Figure 6.5.: Sequence diagram of coq-actema’s interaction protocol — applying an action
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3: The syntax is almost the same as that
of OCaml datatypes, for the reader al-
ready acquainted with this language.

6.4.1. Translating goals

The first task performed by the Pluginwhen calling the actema tactic is to
ask the kernel for the data of the subgoal 𝐺 currently under focus. Then for
the goal 𝐺 to be understandable by the Backend of Actema, the Plugin will
translate it into a new representation J𝐺K in a custom datatype. In order to
share the definition of this datatype across implementations of the Plugin
and Backend, we decided to use the ATD data specification language [163].
It provides a set of tools to automatically generate idiomatic datatype
definitions in a few target languages — including OCaml — along with
(de)serialization and validation helpers. This is particularly fit for our
usecase, where we need to serialize complex data like J𝐺K in order to
transmit it over HTTP messages. Since both the Plugin and Backend are
written in OCaml, it also allows us to share across implementations our
own domain-specific helpers for manipulating this data.

The ATD definition of goals is given by the goal type in Figure 6.73.
It relies on the ATD types form of formulas, and env of environments
of available constants and variables. In our setting, these correspond
respectively to the formulas and signatures of many-sorted FOL, whose
ATD definitions are given in Figure 6.6. But one could imagine using
formulas and environments in higher-order logic instead, and this would
not change the structure of the goal datatype. Note that hypotheses are
encoded with a h_id attribute corresponding to their string identifier in
the Coq goal, even though we do not display it in Actema’s interface. This
is required later by the plugin to compile actions into tactics, because we
need to identify which Coq hypotheses correspond to those designated
graphically by the User.

6.4.2. Retrieving actions

The next step for the Plugin is to check if there already exists a graphical
proof associated to J𝐺K in the Database. If so, then it retrieves it in the
form of a list 𝐴 of actions, whose data format will be precised in Section
6.5. There is also a positive integer 𝑛𝑖 associated to each action 𝐴𝑖 in the
list, corresponding to the index of the goal to which 𝐴𝑖 applies in the list
of subgoals. Then each 𝐴𝑖 is compiled into a tactic ⦇𝐴𝑖⦈, and all the ⦇𝐴𝑖⦈
are composed into a unique tactic 𝜏, which is executed by the kernel on 𝐺
to apply the full sequence of actions.

Remark 6.4.1 Currently the translation J − K is not injective: it might
map two different Coq goals to the same Actema goal, because strictly
higher-order subterms are translated into a dummy atomic predicate/-
function. Thus one might retrieve a proof from a different goal when
calling the actema tactic. However this is not problematic, since the
User cannot perform any actions involving the parts of the two goals
that make them distinct; they might as well be seen as the same goal
from her point of view. It can thus be considered as a feature that
maximizes proof reuse.

https://ocaml.org/
https://actema.xyz
https://atd.readthedocs.io/en/latest/atd-language.html
https://ocaml.org/
https://developer.mozilla.org/en-US/docs/Web/HTTP
https://ocaml.org/
https://atd.readthedocs.io/en/latest/atd-language.html
https://atd.readthedocs.io/en/latest/atd-language.html
https://atd.readthedocs.io/en/latest/atd-language.html
https://coq.inria.fr/
https://actema.xyz
https://coq.inria.fr/
https://coq.inria.fr/
https://actema.xyz
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1

2 (* -------------------------------------------------------------------- *)

3 (** Identifiers *)

4

5 type name = string

6

7 (* -------------------------------------------------------------------- *)

8 (** Types *)

9

10 type type_ = [

11 | TVar of name

12 ]

13

14 type arity = type_ list

15 type sig_ = (arity * type_)

16

17 (* -------------------------------------------------------------------- *)

18 (** Expressions *)

19

20 type expr = [

21 | EVar of name

22 | EFun of (name * expr list)

23 ]

24

25 (* -------------------------------------------------------------------- *)

26 (** Formulas *)

27

28 type logcon = [ And | Or | Imp | Equiv | Not ]

29 type bkind = [ Forall | Exist ]

30

31 type form = [

32 | FTrue

33 | FFalse

34 | FPred of (name * expr list)

35 | FConn of (logcon * form list)

36 | FBind of (bkind * name * type_ * form)

37 ]

38

39 (* -------------------------------------------------------------------- *)

40 (** Terms = Formulas + Expressions *)

41

42 type term = [F of form | E of expr]

43

44 (* -------------------------------------------------------------------- *)

45 (** Environments *)

46

47 (* Body of a variable declaration, holding its type and eventually an expression

48 in the case of a local definition *)

49 type bvar = (type_ * expr option)

50

51 type varenv = (name * bvar) list

52

53 type env = {

54 env_sort : name list; (* Sorts, i.e. atomic types *)

55 env_prp : (name * arity ) list; (* Predicate symbols *)

56 env_fun : (name * sig_ ) list; (* Function symbols *)

57 env_sort_name : (name * name ) list;

58 env_prp_name : (name * name ) list;

59 env_fun_name : (name * name ) list;

60 env_var : varenv; (* Variable declarations *)

61 }

62

63 (* Local environment, only maps abstract variables to their type *)

64 type lenv = (name * type_) list

65
Figure 6.6.: ATD definitions for first-
order formulas and environments

https://atd.readthedocs.io/en/latest/atd-language.html


6. Integration in a Proof Assistant 93

1

2 (* -------------------------------------------------------------------- *)

3 (** Goals *)

4

5 (* Unique identifier *)

6 type uid = string

7

8 (* Hypothesis *)

9 type hyp = {

10 h_id : uid;

11 h_form : form;

12 }

13

14 (* Goal *)

15 type goal = {

16 g_env : env;

17 g_hyps : hyp list;

18 g_concl : form;

19 }

20

21 type goals = goal list

22

23 (* Abstract goal, without the signature *)

24 type agoal = {

25 a_vars : varenv;

26 a_hyps : hyp list;

27 a_concl : form;

28 }

29

Figure 6.7.: ATD definitions for goals

4: In Figure 6.4 and Figure 6.5, we depict
requests as being sent to the Frontend of
Actema. This is an imprecision for trad-
ing in some readability, since as reviewed
in Section 6.3 it is the Server which han-
dles communication with the Plugin, and
in particular forwards requests to the
Frontend.

5: See Section 4.2 for an introductory ex-
ample of contextual action with Unfold.

If there is no saved proof for J𝐺K, then the actema tactic has never been
executed on J𝐺K, and thus we let the User provide a (partial) proof in
Actema. First the Plugin retrieves the list 𝐺𝑠 of all subgoals, instead of just
the one under focus. If 𝐺𝑠 is empty, which would happen after all subgoals
have been solved from Actema, then it sends a QED request to Actema so
that the latter can update its view accordingly, and the interaction loop
with Actema stops here4.

If 𝐺𝑠 is not empty then there is at least one subgoal, and we send an
action HTTP request to Actema, whose body contains the translated
subgoals J𝐺𝑠K. To do this, we chose to serialize J𝐺𝑠K with the Biniou

helpers autogenerated by atdgen, the OCaml backend of ATD. According
to its authors: “Biniou is a binary format extensible like JSON but more
compact and faster to process” [162]. This data is then deserialized and
compiled into a set 𝒢 of HTML DOM nodes by the Backend, so that the goals
can be rendered by the Frontend and exposed to the User. Then the User
has two options:

▶ she can apply either a click, DnD or contextual action5. The precise
protocol followed for applying an action is summarized in Table 6.1.
Let us focus on the more complex case of DnD actions. The Start
column describes how the User starts the action, here by dragging
some item 𝐼 of the current subgoal. Then the Frontend asks the Backend
for the set 𝒜 of all available DnD actions involving 𝐼. The Selection
column describes how the computation of 𝒜 is impacted by the set 𝑆
of subterms that are selected in the current subgoal. For DnD actions,
we essentially filter out all linkages that do not match the selection.
The Render column describes how 𝒜 is rendered to the User: here
we highlight the set 𝑄 of all valid drop targets, which correspond to

https://atd.readthedocs.io/en/latest/atd-language.html
https://actema.xyz
https://actema.xyz
https://actema.xyz
https://actema.xyz
https://actema.xyz
https://developer.mozilla.org/en-US/docs/Web/HTTP
https://actema.xyz
https://atd.readthedocs.io/en/latest/atdgen.html#inspecting-biniou-data
https://atd.readthedocs.io/en/latest/atdgen.html
https://ocaml.org/
https://atd.readthedocs.io/en/latest/atd-language.html
https://developer.mozilla.org/en-US/docs/Web/HTML
https://developer.mozilla.org/en-US/docs/Web/API/Document_Object_Model/Introduction
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Table 6.1.: Protocol for applying an action in Actema

Kind Start Selection 𝑆 Render End

Click Hover item 𝐼 Ignored Highlight 𝑃 ⊆ 𝐼↯ Click on some
𝑝 ∈ 𝑃

DnD Drag item 𝐼

If ∃𝑝 ∈ 𝑆 ∩ 𝐼↯ then match only
𝑝@𝑞 where 𝑞 ∈ 𝐼↯

If ∃𝑞 ∈ 𝑆 ∩ 𝐼↯ then match only
𝑝@𝑞 where 𝑝 ∈ 𝐼↯

Highlight 𝑄 ⊆ 𝐼↯ Drop on some
𝑞 ∈ 𝑄

Contextual Open menu Populate menu only with
actions applicable on 𝑆 Show menu

Choose an
item in the

menu

We introduced some notations for conciseness:

▶ 𝑝, 𝑞 denote paths to subterms of the current goal

▶ 𝑃, 𝑄 and the selection 𝑆 denote sets of paths

▶ 𝐼↯ denotes the set of paths within item 𝐼

▶ 𝐼↯ denotes the complement of 𝐼↯, i.e. all paths in all items 𝐽 ≠ 𝐼
▶ 𝑝@𝑞 is a linkage as introduced in Section 3.1

6: Highlighting is here understood in a
visual sense: in the current implementa-
tion of Actema, subterms are indicated
graphically by squaring them. But one
could imagine other modalities for high-
lighting, typically spelling the subterms
with a speech synthesis algorithm, e.g.
for users with impaired vision.

subterms of the current goal located in other items6. Lastly, the End
column describes how the user chooses a specific action 𝐴 ∈ 𝒜 to
apply, here by dropping 𝐼 on a given target 𝑞. Then 𝐴 is serialized
and sent in the body of the response to the action request, together
with the index 𝑛 of the subgoal under focus in Actema. The Plugin can
therefore compile 𝐴 into a tactic ⦇𝐴⦈ which is executed on the 𝑛th Coq
subgoal, giving a new list of subgoals which is sent again to Actema

for another round of the interaction loop.

▶ or she can click on a Done button in Actema’s interface: this has the
effect of answering the action request from the Plugin with a done
response, and the interaction loop with Actema stops here. This will
happen when the User wants to go back to editing the proof script,
either because she is satisfied with the new subgoals obtained from
previous actions, or because she is stuck and wants to try native Coq
tactics instead. Indeed our protocol is synchronous: the IDE’s interface
is stuck until the actema tactic has finished its execution, and thus
one cannot edit the proof script and build a proof in Actema at the
same time.

6.5. Compiling actions

Once the Plugin has received the actions to execute, either from the
Database or the User, it will compile them with the function ⦇ − ⦈ which
translates any action 𝐴 into a Coq tactic ⦇𝐴⦈. This function actually has
access to some other data: Coq’s goal 𝐺, its Actema translation J𝐺K, and a
bijective mapping Σ between Coq constants in the environment of 𝐺 and
the corresponding Actema symbols in the first-order signature of J𝐺K.

https://actema.xyz
https://actema.xyz
https://actema.xyz
https://actema.xyz
https://actema.xyz
https://coq.inria.fr/
https://actema.xyz
https://coq.inria.fr/
https://coq.inria.fr/
https://actema.xyz
https://coq.inria.fr/
https://actema.xyz
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1

2 (* -------------------------------------------------------------------- *)

3 (** Actions *)

4

5 (* A path refers to a subterm in the current subgoal, through a [handle]

6 identifying an item of kind [kind], and a list of integers [sub] designating

7 the specific subterm of the item *)

8 type pkind = [Hyp | Concl | Var of [Head | Body]]

9 type ctxt = { kind : pkind; handle : uid }

10 type ipath = { ctxt : ctxt; sub : int list }

11

12 (* Trace of a subformula linking, from which the list of rewrite rules to apply

13 can be reconstructed *)

14 type choice = (int * (lenv * lenv * expr) option)

15 type itrace = choice list

16

17 type action = [

18 | AId (* The empty action which does nothing *)

19 | ADef of (name * type_ * expr) (* Introduction of a local definition *)

20 | AIntro of (int * (expr * type_) option) (* Click on a conclusion *)

21 | AExact of uid (* Proof by assumption *)

22 | AElim of (uid * int) (* Click on a hypothesis *)

23 | AInd of uid (* Click on a variable of inductive type *)

24 | ASimpl of ipath (* Simplify contextual action *)

25 | ARed of ipath (* Unfold contextual action *)

26 | AIndt of ipath (* Induction contextual action *)

27 | APbp of ipath (* Proof-by-Pointing contextual action *)

28 | ACase of ipath (* Case contextual action *)

29 | ACut of form (* Click on +hyp button *)

30 | AGeneralize of uid (* Generalization of a hypothesis *)

31 | AMove of (uid * uid option) (* Reordering of a hypothesis *)

32 | ADuplicate of uid (* Duplication of a hypothesis *)

33 | ALink of (ipath * ipath * itrace) (* DnD action for subformula linking *)

34 | AInstantiate of (expr * ipath) (* DnD action for instantiating a quantifier *)

35 ]

36

37 (* An action identifier is a pair of an abstract goal and an arbitrary string identifier *)

38 type aident = (string * agoal)

39

Figure 6.8.: ATD definitions for actions

7: Note that an action’s type is orthog-
onal to what we referred to as its kind
in Table 6.1, that is the interface mecha-
nism through which it is accessible. One
might for example want to map some ac-
tion types to vocal commands instead of
click or DnD gestures.

6.5.1. The action datatype

The action datatype is described thoroughly in the ATD specification
provided in Figure 6.8. It is a big algebraic datatype, where each construc-
tor encodes a specific type of action. An action’s type is equivalent to the
signature of a tactic, i.e. its name and the types of its arguments. In partic-
ular, the translation function ⦇ − ⦈ is defined as a big pattern-matching on
the action’s type7. The arguments in action types rely on most datatypes
defined previously in Figure 6.6 and Figure 6.7, and on two new datatypes:
the type ipath of paths, which is used pervasively to designate subterms
of the current subgoal (that are typically indicated by the User through
pointing); and the type itrace of subformula linking traces, which is used
in the compilation of DnD actions that perform subformula linking, to be
described soon.

Most click and contextual actions have a straightforward translation as
Coq tactics. For instance, the AIntro action that corresponds to a click
on the conclusion 𝐶 will be mapped to the Coq tactic that introduces the
main connective of 𝐶, and is thus defined by case on the latter: intro for
⊃ and ∀, split for ∧, etc. The actions AInd, ASimpl and ARed correspond
respectively to the contextual actions Induction, Simplify and Unfold

https://atd.readthedocs.io/en/latest/atd-language.html
https://atd.readthedocs.io/en/latest/atd-language.html
https://coq.inria.fr/
https://coq.inria.fr/
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8: For reasons of consistency of the logic,
well-known in the literature on type the-
ory.

9: A downside of Ltac is that it is an
untyped language, whose programs are
notoriously hard to debug and maintain.
One might consider a cleaner implemen-
tation with more recent alternatives in
the Coq ecosystem, such as the succes-
sor to Ltac Ltac2 [239], or the MetaCoq
project [228].

introduced in Chapter 4, and are mapped almost directly to the equivalent
Coq tactics induction, simpl and red. The only difference is that they
have a deep inference flavor, since they can all be applied on an arbitrary
subterm selected by the User. This relies on our implementation of deep
inference semantics directly in Coq, that we now briefly describe.

6.5.2. Deep inference semantics

In a deep inference setting, one can reason on subterms located arbitrarily
deep inside statements, usually by applying some kind of rewriting rules
on them. In particular, the semantics of DnD actions described in Chapter
3 are based on the rules of SFL (Figure 2.4). To implement them, we chose
to do a deep embedding of FOL inside CoIC. Here the word “deep” has a
different meaning, related to the fact that we encode the statements of
FOL with our own custom datatypes, instead of reusing the statements of
CoIC. This makes it easier to define the SFL rewriting rules, in particular
because we need to manipulate contexts (Definition 3.1.1) explicitly, and
those are not available for CoIC propositions.

Then we use a technique called computational reflection in order to ap-
ply the embedded deep inference semantics to Coq goals. Originating
from the small scale reflection methodology supported by the SSReflect
framework [100], it consists in:

1. translating Coq objects into their equivalent formulation in the deep
embedding with a reify function;

2. reasoning on the deep embedding with the help of Coq programs (also
called fixpoints);

3. translating objects back into Coq with a reflect function.

It is easy to implement the reflect function because the datatypes in a
deep embedding are almost always defined as inductive types, and thus
one can easily do pattern-matching on them. It is a different story for the
reify function, especially in our case: indeed we want to translate the
statements of Coq goals into first-order propositions. But Coq statements
are objects of type Prop, and thus cannot be pattern-matched on inside
CoIC8. Thus we need to have recourse to a meta-programming language
in order to inspect the structure of Coq goals. Here we use the standard
Ltac language, which provides powerful constructs for pattern-matching
on goals9.

The most complex tactics are those implementing backward and forward
DnD actions, called respectively backward and forward. They rely on
two Coq fixpoints b3 and f3 which respectively compute the new conclu-
sion b3(𝑝, 𝑞, 𝑇 ) from a backward linkage 𝑝 5 𝑞, and the new hypothesis
f3(𝑝, 𝑞, 𝑇 ) from a forward linkage 𝑝 � 𝑞, where 𝑇 is the so-called subfor-
mula linking trace mentioned earlier. Of course the paths 𝑝, 𝑞 and the
trace 𝑇 are all expressed with custom Coq datatypes relying on our deep
embedding of FOL. The role of the trace in particular is to provide the
list of SFL rewriting rules to apply, as well as the Coq terms instantiating
quantifiers that were computed in Actema by unification of the two linked

https://coq.inria.fr/doc/V8.19.0/refman/proof-engine/ltac.html#ltac
https://coq.inria.fr/
https://coq.inria.fr/doc/V8.19.0/refman/proof-engine/ltac.html#ltac
https://coq.inria.fr/doc/V8.19.0/refman/proof-engine/ltac2.html#ltac2
https://metacoq.github.io/
https://coq.inria.fr/
https://coq.inria.fr/
https://coq.inria.fr/
https://coq.inria.fr/doc/V8.19.0/refman/proof-engine/ssreflect-proof-language.html?highlight=ssreflect
https://coq.inria.fr/
https://coq.inria.fr/
https://coq.inria.fr/
https://coq.inria.fr/
https://coq.inria.fr/
https://coq.inria.fr/
https://coq.inria.fr/doc/V8.19.0/refman/proof-engine/ltac.html#ltac
https://coq.inria.fr/
https://coq.inria.fr/
https://coq.inria.fr/
https://actema.xyz
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1

2 Theorem b3_corr : forall p q T,

3 reflect p -> reflect (b3 p q T) -> reflect q.

4

5 Theorem f3_corr : forall p q T,

6 reflect p -> reflect q -> reflect (f3 p q T).

7 Figure 6.9.: Soundness theorems of DnD
fixpoints in Coq

subformulas. Then we formulate in Coq two theorems that guarantee the
logical soundness of b3 and f3 (Figure 6.9), corresponding to Theorem
3.4.1. Note that the theorems are formulated using the native implication
connective -> of Coq, thanks to the reflect function. The final tactics
backward and forward can thus modify the goal by applying these theo-
rems, first reifying the goal with the reify function, and then relying on
the fact (also proved in Coq) that reflect is the inverse of reify.

Remark 6.5.1 There exist a few other approaches to the computer
implementation of deep inference systems. Ozan Kahramanoğulları
has pioneered the field, by implementing various calculi of structures
inside frameworks like Maude [140] and Tom [138] that are dedicated
to the specification of rewriting systems. For an integration within
modern proof assistants, we only know of Chaudhuri’s recent work
[46] [46]: Chaudhuri et al. (2022), Certifying

Proof-By-Linkingthat explores different techniques in addition to reflection, like
combinators and some more powerful usages of metaprogramming.
He also provides an effective implementation of the techniques in his
Profint tool [39], that allows to export subformula linking derivations
built with Profint’s GUI as proof scripts directly executable in various
proof assistants (Coq, Lean, Isabelle/HOL).

6.6. Future works

The coq-actema system described in this chapter has been successfully
implemented and tested on various simple examples, including those of
Section 4.1 and Section 4.3. But there are many Coq goals that cannot
be properly handled in Actema, which still hinders the usability of the
system in real mathematical developments, even in an educational setting.
Typically, the example of Section 4.2 cannot be completely performed
in Actema, in this case because of the lack of support for higher-order
functions and predicates, but also because of the poor support for user-
defined notations. Those are only a few of the current limitations of
coq-actema, and we describe in the following pages how they could be
overcome, both to widen the scope and improve the UX of the system.

6.6.1. Higher-order logic

The importance of being able to express and manipulate higher-order
functions and predicates has been stressed multiple times before. The
fact that Actema is limited to first-order logic is mostly a historical con-

https://coq.inria.fr/
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10: The Coq theory implementing the
tactics for deep inference-based actions
already has partial support for higher-
order goals, thus work remains mostly
on the side of the translation module for
Actema written in OCaml.

[126]: Huet (1973), ‘The undecidability of
unification in third order logic’

11: Apart from expressions in Peano
arithmetic, for which we have ad hoc sup-
port.

12: Section 4.1 of [12].

tingency, motivated by the fact that some algorithms like unification are
more tractable in this setting. But now that we rely on Coq’s proof engine,
there is no fundamental reason for maintaining this choice. Because the
language of statements is at the foundation of a logical framework, many
other components of a proof assistant will depend on it. Thus the switch
to higher-order logic should be done as soon as possible, to limit the
amount of refactoring work to perform in the future. This will require
changes to Actema’s Backend and Frontend, but also to the Coq Plugin10

and the ATD datatype definitions enabling communication between the
two.

One central question in the transition to higher-order logic is how unifi-
cation of subterms will be handled. Algorithms in this setting are known
to be incomplete because of undecidability [126], and their implementa-
tion can be very tricky. The most sensible option seems to rely on the
implementation already provided by Coq, which is the fruit of years of
development and improvements. But this would require changing the
interaction protocol of coq-actema, by allowing the Backend of Actema
to make unification requests to the Plugin. This might be doable without
changing the current client-server architecture, but will probably involve
some intricate design decisions.

A more radical solution would be to replace the actions request from
the Frontend to the Backend by a start response from the Frontend to
the Plugin, with the data of the selection in its body. Then we could
completely delegate the computation of available actions to the Plugin,
allowing us to freely use Coq’s unification. This might not be too hard
since we should be able to directly reuse OCaml code from the Backend,
but is a deeper structural change to the interaction protocol, that makes
the Plugin responsible for an important part of Actema’s behavior. And
this would induce a lot of unnecessary reimplementation efforts if we
were to port the Plugin to other PAs.

6.6.2. Notations

Another big limitation already mentioned in the introduction of this
chapter, is that we do not handle custom notations for displaying terms11.
It is however a crucial feature for making proofs in a specific domain
tractable, especially in the PbA paradigm where one needs to manipulate
directly statements in the goal. Now that we are connected to Coq, we can
in principle reuse the notation system already implemented within Coq.
The coq-core OCamlAPI indeed exposes methods for pretty-printing Coq
terms using their assigned notations. The problem is that these methods
only return strings, but in order to manipulate terms interactively in
Actema we also need access to trees mapping their subterm structure to
the pretty-printed string. At the time of writing there is no support for
the latter, but the Coq development team informed us that they plan to
add this feature. The same problem was met by the developers of the
ProofWidgets framework in Lean, and they had to modify the pretty-
printer of Lean upstream12.

Once one has support for custom notations displayed in an HTML page,
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13: Not very surprisingly, those activi-
ties are commonly found in the context
of programming environments. Thus one
might get insight by cross-pollinating
ideas from both domains, in the spirit
of the Curry-Howard correspondence
(which also underlies the design of Coq).

Digression
One might even argue that think-
ing about the best way to represent
a proof leads to more fundamental
questions, that have been much de-
bated both in proof theory and the
history and philosophy of mathemat-
ics: what is the essence of a proof,
seen as a meta-mathematical object
[233]? What are the roles played by
informal and formal proofs, both in
the teaching of mathematics, and the
social and scientific practice of math-
ematicians [15]?

it is tempting to also allow for arbitrary HTML/JS code, instead of just
textual notations. This opens the space for very rich graphical and in-
teractive representations of mathematical objects, which could greatly
improve the accessibility of PAs, but also their expert usage by enabling
domain-specific interfaces targetting non-standard methods of reasoning.
A typical example is the diagrammatic reasoning pervasive in category
theory, which is very hard and cumbersome to express as manipulation
of logical statements. Actually a system very similar to coq-actema is
currently being developed by Luc Chabassier [36], for the very purpose
of integrating diagrammatic proofs in category theory to the traditional
proof script workflow. One could imagine in the long-term embedding
this system as a subsystem of coq-actema, through an advanced protocol
for interactive notations.

In fact the ProofWidgets framework has been designed with this usecase
in mind from the outset. But they rely on a very different architecture
compared to that of coq-actema, where the methods generating the
HTML/JS code of pretty-printed terms are directly implemented in a DSL
embedded in themeta-programming language of the PA.While this allows
easy access to all meta-programming facilities for manipulating terms,
this makes their framework only usable within Lean, while Actema could
in principle be used with any PA that implements a corresponding plugin
(for example with a lean-actema variant of our system).

6.6.3. Lemma search

We already described in Section 4.2 the lemma search feature of Actema.
Currently it is implemented only in its standalone version. Adding support
for it in coq-actema would require additional efforts compared to other
contextual actions like Induction. Indeed we do not only need access to the
current goal, but also to the full global environment of Coqwhere lemmas
are stored. While in the standalone version we had a toy lemma database
with very few entries, the standard library of Coq contains thousands of
lemmas. And to use our selection-based filtering algorithm implemented
in Actema, we would need to translate the entire library into statements
understandable by Actema’s Backend, and then send it over HTTP. Thus
it will be important to implement some cache mechanism to remember
which lemmas have already been exported to Actema’s own database, to
avoid recomputing the translation each time.

6.6.4. Proof evolution

An important question when designing a proving environment is how
users will be able to manipulate an existing (partial) proof, either one they
have built in the past, one that was built by other people, or a mix of both
in a collaborative context. This is a complex problem spanning various
activities that are involved in the lifecycle of a proof: modifying it while
it is being constructed; reading it for the first time, or many months/years
after it was written; updating it after slight changes to the statement of
its theorem; etc13.

https://coq.inria.fr/
https://developer.mozilla.org/en-US/docs/Web/HTML
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14: See for example section 3.6 of E. Ay-
ers’ thesis [11]. We can also mention on-
going work of Patrick Massot in the Lean
proof assistant [166].

In the literature and community of people designing proof assistants,
these various problematics are generally regrouped under the term of
proof evolution. A fundamental remark about the PbA paradigm, and thus
about the coq-actema system, is that it has not been designed with proof
evolution in mind from the outset. Indeed, a proof built with the actema
tactic will provide the least possible amount of information in the proof
script, since we can just witness the call to that tactic. And currently there
are no facilities to visualize the associated sequence of actions stored in
the Database of graphical proofs.

The first question that should be answered is: how do we represent stat-
ically a sequence of graphical actions, let alone a single action? For a
machine representation, we can just dump the data of the action invoka-
tion, and this is indeed what we do with the Database. But finding a
human-readable representation that an average user can quickly manip-
ulate and reason about is a lot more delicate. The most direct way may
be to abandon text altogether, and just replay the action on the inter-
face through a graphical animation. This is an intrisically temporal and
dynamic representation, akin to a mathematician unfolding her demon-
stration on the blackboard. One could then imagine an interface dedicated
to richly-structured navigation inside this sequence of animations, in the
style of an improved video player.

A more conservative solution would be to find a systematic way to trans-
late a sequence of actions into a proof text. The question of generating
declarative proof texts from imperative proof scripts has already been
explored by some authors, especially in the case of proofs expressed in
natural language14. Our hope is that the structure of proofs in the PbA
paradigm might be well-suited to the generation of readable and concise
proof texts, thanks notably to the subformula linking semantics of DnD
actions that exhibit clearly the flow of argumentation.

An even more pragmatic solution, that should be straightforward to
implement in the short-term, consists in inserting tactic invokations in
the proof script that are in one-to-one correspondence with graphical
actions. Since we actually compile actions into tactics, this is in principle
easy to implement. However, there are currently two drawbacks to this
approach:

Leaking SFL data Since most tactics are deep inference-based, they take
as arguments the paths to manipulated subterms, in the form of lists
of integers. Those are hard to read by humans, and very sensible to
small changes in the shape of the goal. This is even worse for the
backward and forward tactics, because they also take as argument
the subformula linking trace, which is a very complex data structure
expressed in our deep embedding of FOL, and hence should not leak
into the user interface. Hopefully, relying on Coq’s unification instead
of Actema’s should mitigate the complexity of the trace, by removing
the need to incorporate full substitutions. There is also the possibility of
replacing integer-based paths by patterns in the SSReflect language,
which are known to be a more robust way to designate subterms. But
this would require the design of some clever algorithm, able to generate
patterns that correctly generalize the User’s intent from the sole data
of selected paths.
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Editor integration The interaction protocol described in Section 6.4
does not provide any way to send requests to the IDE, which would be
necessary to actually insert the tactic invokation at the right location
in the proof script, and this as soon as the action is performed by the
User. A “brutal” solution would be to reimplement coq-actema as an
extension of a specific IDE, typically VsCoq which is also based on web
technologies. But this would require some big implementation efforts,
in addition to locking the User into this specific IDE. A better option
might be to directly interact with a language server implementing the
Language Server Protocol (LSP) [51]. The coq-lsp project aims to
provide such a server for Coq, but at the time of writing of this thesis
does not implement yet all methods of the LSP standard. The one that
interests us in particular is the textDocument/codeAction method,
for which support is currently planned [86]. Then coq-actema would
stay compatible with all IDEs that run coq-lsp.

https://github.com/Champitoad/coq-actema
https://github.com/coq-community/vscoq
https://microsoft.github.io/language-server-protocol/
https://github.com/ejgallego/coq-lsp/tree/main
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Leibniz sought to make the form of a symbol reflect its content. “In
signs,” he wrote, “one sees an advantage for discovery that is greatest
when they express the exact nature of a thing briefly and, as it were,
picture it; then, indeed, the labor of thought is wonderfully diminished.”

Frederick Kreiling, Leibniz, 1968

We introduce a new kind of nested sequent proof system dubbed bubble
calculus. Inspired by the membrane mechanism of the chemical abstract
machine (Cham) [17]

[17]: Berry et al. (1989), ‘The chemical
abstract machine’

, so-called bubbles internalize the notion of subgoal
inside sequents, rather than through the tree structure induced by tradi-
tional inference rules. This allows for a more hierarchical representation
of the proof state, where contexts can be shared between different sub-
goals. In addition to the usual textual syntax, the bubble calculus can be
expressed in a graphical syntax, where logical meaning is captured by
physical constraints on diagrammatic manipulations, instead of virtual
restrictions on available inference rules.

We start in Section 7.1 with the genesis of the idea of bubble calculus,
coming from the observation that our Proof-by-Action paradigm (Chapter
2) lends itself quite naturally to a metaphorical interpretation, where
actions are seen as chemical reactions. In Section 7.2 we introduce the
concept of bubble as a way to control the scope of hypotheses inside
nested sequents that we call solutions. In Section 7.3 we describe our proof
system for intuitionistic logic dubbed asymmetric bubble calculus, based on
multiset rewriting rules over solutions comprising at most one conclusion.
Finally in Section 7.4, we import ideas from this bubble calculus back to
the realm of GUIs for interactive proof building, analyzing their possible
impact for UX improvements.

7.1. The chemical metaphor

The Proof-by-Action paradigm introduced in Chapter 2 offers multiple
ways to the user to attack the proof of a theorem. DnD actions for subfor-
mula linking and equality rewriting are the main mechanism, but they
only work in a goal comprising multiple items. Since it is customary in
proof assistants to specify the goal to be proved as a single logical formula,
one needs a way to decompose it into many items for further processing
through DnD. This is precisely what the introduction rules for logical
connectives in sequent calculus do, and following the Proof-by-Pointing
paradigm [18] we map them to click actions (see Section 2.3).

So visually, a proof in Actema consists in breaking logical items into
subitems positioned freely in space, and then bringing those subitems
together to make them interact and produce a new item. This is quite

https://actema.xyz
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1: This precise metaphor about the
molecular structure of propositions can
already be found in Russell’s introduc-
tion to Wittgenstein’s Tractatus Logico-
Philosophicus [255, p. 11], which was the
main inspiration to his philosophy of log-
ical atomism [142]. Even earlier in the
history of logic, C. S. Peirce took inspira-
tion from chemical diagrams to devise his
existential graphs — see [214, pp. 17–18]
or our own presentation in Section 9.7
for more details.
2: In predicate logic, onewould also need
the right (resp. left) introduction rule for
∀ (resp. ∃). It might also be the case that
backward DnDs alone are sufficient for
completeness, since a linkage of the form
𝐴 5 𝐵 ⊃ 𝐶will involve a forward phase.
In this case only the right introduction
rules for ⊃ and ∀ would be required.

[17]: Berry et al. (1989), ‘The chemical
abstract machine’

evocative of a chemical reaction controlled by the user, where logical
formulas are akin to molecules made of propositional atoms linked to-
gether by logical connectives1. Click actions are then a mean to “heat”
molecules to the point of breaking these chemical bonds. The most canon-
ical examples are the right introduction rule for implication ⊃R, which
breaks a conclusion/positive ion into a new hypothesis/negative ion and
a new conclusion; and the left introduction rule for conjunction ∧L, which
breaks a hypothesis into two hypotheses. In fact, we strongly conjecture
that these are the only click actions needed to obtain a complete deduc-
tive system for propositional logic: breaking red implications allows for
backward DnDs, and blue conjunctions for forward DnDs2.

Rather than completeness, the issue here is consistency of the user inter-
face: if the user is allowed to decompose red ⊃ and blue ∧, she will assume
naturally that she can also decompose blue ⊃ and red ∧, as well as ∨ of any
color. While red ∨ can be handled by pointing directly at the disjunct to be
proved, other configurations correspond to rules of sequent calculus with
multiple premisses. In Actema, this corresponds to creating a new subgoal
for each premise, where subgoals are displayed one at a time in different
tabs: this new interface mechanism breaks the chemical metaphor. The
root cause lies in the way sequent calculus implements context-scoping:
each subgoal will share the same initial context of hypotheses, but future
hypotheses “buried” in the conclusions must be available only in their
respective subgoals. The tabs mechanism implements this by forcing the
user to focus on exactly one tab/subgoal, thus making it impossible to
display items from different subgoals on the same screen: this renders
interaction between items physically impossible.

7.2. Bubbles and solutions

In order to accomodate context-scoping within the chemical metaphor,
we were led to explore a notion of bubble inspired by the membranes of
the Cham [17]. The latter are used to delineate zones of local interaction,
which are still porous to external data. This is precisely what we want to
do here: let us consider that the user tries to prove the sequent Γ ⇒ 𝐴 ∧ 𝐵.
By clicking on the red item𝐴 ∧ 𝐵, she will break it into two bubbles ⦇ ⇒ 𝐴 ⦈
and ⦇ ⇒ 𝐵 ⦈. Then she might decompose 𝐴 and 𝐵 further into sequents
𝜎𝐴 = Γ𝐴 ⇒ 𝐶𝐴 and 𝜎𝐵 = Γ𝐵 ⇒ 𝐶𝐵, and use hypotheses from Γ by dragging
them inside either ⦇ 𝜎𝐴 ⦈ or ⦇ 𝜎𝐵 ⦈. However, hypotheses from Γ𝐴 and Γ𝐵
cannot be dragged out from their respective bubble, since then they could
be used in the other bubble and violate context-scoping.

This situation is illustrated in Figure 7.1, where bubbles are represented
by gray circles, and possible drag moves of formulas by arrows. More
specifically, green and orange arrows symbolize respectively valid and
invalid moves. Notice how this graphical depiction of bubbles exhibits
their topological behavior: while objects can enter inside bubbles from
the outside, they get blocked by the membrane in the opposite direction.
Indeed the only relevant feature of the circle representation is that it
divides the space into an interior and an exterior. Then the nesting of
circles and the positions of formulas relative to them encode respectively

https://actema.xyz
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Γ

Γ𝐴 𝐶𝐴 𝐶𝐵Γ𝐵

×
× Figure 7.1.: Context-scoping in bubbles

as topological constraints

3: The term “solution” refers here to the
metaphor of a chemical solution made up
of an unordered collection of molecules.
Which is quite ironic, since we use it to
denote goals waiting to be proved, that
is problems lacking a solution…

the tree structure of the proof, and the scope of hypotheses in it.

Bubbles can also be seen as a way to internalize in the syntax of sequents
the notion of subgoal, which requires in turn to allow nesting of sequents
inside each other. The proof state is not a set of subgoals anymore, but
a single nested sequent of this sort, that we call a solution3. In textual
syntax, solutions 𝑆 are generated by the following grammar:

𝑆, 𝑇 , 𝑈 ⩴ Γ ⟨𝑆1 ; … ; 𝑆𝑛⟩ Δ Γ, Δ ⩴ 𝐴1, … , 𝐴𝑛

where the left-hand Γ and right-hand Δ in solutions represent respectively
hypotheses and conclusions, and the 𝐴𝑖 are usual formulas of FOL. Thus
solutions are just like sequents, except that we add a collection of nested
solutions 𝑆𝑖 that will represent subgoals, or premisses of usual inference
rules. To bemore precise, the collections of formulas𝐴𝑖 and solutions 𝑆𝑖 are
multisets, which gives the followingmutually recursive definitions:

Definition 7.2.1 (Ion) An ion is a formula charged either negatively
(hypothesis) or positively (conclusion).

Definition 7.2.2 (Bubble) A bubble is a solution enclosed in a membrane.

Definition 7.2.3 (Solution) A solution 𝑆 is a multiset of ions and bubbles.
It is single-conclusion if it contains at most one positive ion. We will use
letters 𝒮 ,𝒯 ,𝒰 to denote multisets of solutions.

Note that in the above definitions, bubbles play a purely metaphorical role
and could be dispensed with. But it will be useful later on to distinguish
them conceptually from solutions.
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[94]: Girard (2011), The blind spot

7.3. Asymmetric calculus

7.3.1. Interpreting solutions

A natural way to give logical meaning to a solution is to translate it into
a formula. In the following we provide one such translation, which will
play a determining role in the design of inference rules for manipulating
solutions. We qualify it of asymmetric because it only works for single-
conclusion solutions, in the same way that LJ only works for single-
conclusion sequents.

Remark 7.3.1 In this section we only deal with single-conclusion
solutions, but the more general case will be studied in Chapter 8.

Just like a sequent, a solution is semantically equivalent to an implication,
except that we add the conjunction of all subgoals to the consequent:

Definition 7.3.1 (Asymmetric interpretation) The asymmetric inter-
pretation T − U on solutions is defined recursively by:

TΓ ⟨𝑆1 ; … ; 𝑆𝑛⟩ ΔU = ⋀Γ ⊃ (⋀Δ ∧ ⋀
𝑖

T𝑆𝑖U)

Note that we join formulas in Δ conjunctively: since we do not consider
solutions with more than one conclusion, this is just to handle the case
where Δ = ⌀, and thus ⋀Δ = ⊤. This subtle detail is in fact essential to
the way we encode the tree structure of proofs inside solutions:

▶ a solution with one conclusion corresponds to a leaf of the proof tree,
i.e. a subgoal;

▶ a solution with no conclusion corresponds to a node of the proof tree,
i.e. a branching point where we created multiple subgoals.

This will soon become clearer with examples of derivations in our calculus.
In Section 8.2, we will consider a different interpretation of solutions that
entails a different encoding of the proof structure in them.

7.3.2. Sequent-style rules

Our initial idea for a proof system based on solutions was quite simple:
we take the inference rules of LJ, and turn them each into an unary rule
by encoding premisses as bubbles. This gives the basis for the set of rules
presented in Figure 7.2, which defines our asymmetric bubble calculus
for intuitionistic logic dubbed BJ. It is divided in five groups:

▶ The 𝕀dentity, ℝesource and ℍeating groups correspond respec-
tively to the identity, structural and introduction rules of sequent
calculus, following the terminology of [94]. More precisely, rules i↓
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𝕀dentity

Γ ⟨𝒮⟩
i↓

Γ, 𝐴 ⟨𝒮⟩ 𝐴
Γ ⟨𝒮; ⟨⟩ 𝐴; 𝐴 ⟨⟩ Δ⟩

i↑
Γ ⟨𝒮⟩ Δ

ℝesource

Γ ⟨𝒮⟩ Δ
w

Γ, 𝐴 ⟨𝒮⟩ Δ
Γ, 𝐴, 𝐴 ⟨𝒮⟩ Δ

c
Γ, 𝐴 ⟨𝒮⟩ Δ

𝔽low

Γ ⟨𝒮; Γ′, 𝐴 ⟨𝒮 ′⟩ Δ′⟩ Δ
f−

Γ, 𝐴 ⟨𝒮; Γ′ ⟨𝒮 ′⟩ Δ′⟩ Δ

𝕄embrane

Γ ⟨𝒮⟩ Δ
p

Γ ⟨𝒮; ⟨⟩ ⟩ Δ

ℍeating

Γ ⟨𝒮⟩ Δ
⊤−

Γ, ⊤ ⟨𝒮⟩ Δ
Γ ⟨𝒮⟩

⊤+
Γ ⟨𝒮⟩ ⊤

Γ ⟨𝒮⟩
⊥−

Γ, ⊥ ⟨𝒮⟩ Δ

Γ, 𝐴, 𝐵 ⟨𝒮⟩ Δ
∧−

Γ, 𝐴 ∧ 𝐵 ⟨𝒮⟩ Δ
Γ ⟨𝒮; ⟨⟩ 𝐴; ⟨⟩ 𝐵⟩

∧+
Γ ⟨𝒮⟩ 𝐴 ∧ 𝐵

Γ ⟨𝒮; 𝐴 ⟨⟩ Δ; 𝐵 ⟨⟩ Δ⟩
∨−

Γ, 𝐴 ∨ 𝐵 ⟨𝒮⟩ Δ

Γ ⟨𝒮⟩ 𝐴
∨+1Γ ⟨𝒮⟩ 𝐴 ∨ 𝐵

Γ ⟨𝒮⟩ 𝐵
∨+2Γ ⟨𝒮⟩ 𝐴 ∨ 𝐵

Γ ⟨𝒮; ⟨⟩ 𝐴; 𝐵 ⟨⟩ Δ⟩
⊃−

Γ, 𝐴 ⊃ 𝐵 ⟨𝒮⟩ Δ
Γ, 𝐴 ⟨𝒮⟩ 𝐵

⊃+
Γ ⟨𝒮⟩ 𝐴 ⊃ 𝐵

Γ, 𝐴{𝑡/𝑥} ⟨𝒮⟩ Δ
∀−

Γ, ∀𝑥.𝐴 ⟨𝒮⟩ Δ
Γ ⟨𝒮⟩ 𝐴

∀+
Γ ⟨𝒮⟩ ∀𝑥.𝐴

Γ, 𝐴 ⟨𝒮⟩ Δ
∃−

Γ, ∃𝑥.𝐴 ⟨𝒮⟩ Δ

Γ ⟨𝒮⟩ 𝐴{𝑡/𝑥}
∃+

Γ ⟨𝒮⟩ ∃𝑥.𝐴

In the ∀+ and ∃− rules, 𝑥 is not free in Γ, Δ and 𝒮.

Figure 7.2.: Sequent-style presentation of the asymmetric bubble calculus BJ
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⟨⟩
p

⟨ ⟨⟩ ⟩
p

⟨ ⟨ ⟨⟩ ⟩ ⟩
i↓

⟨ ⟨ 𝐵 ⟨⟩ 𝐵 ⟩ ⟩
f−

⟨ 𝐵 ⟨ ⟨⟩ 𝐵⟩ ⟩
∨+2

⟨𝐵 ⟨ ⟨⟩ 𝐴 ∨ 𝐵 ⟩ ⟩
p

⟨ 𝐵 ⟨ ⟨⟩ 𝐴 ∨ 𝐵; ⟨⟩ ⟩ ⟩
i↓

⟨𝐵 ⟨ ⟨⟩ 𝐴 ∨ 𝐵; 𝐶 ⟨⟩ 𝐶 ⟩ ⟩
⊃−

⟨ 𝐵, 𝐴 ∨ 𝐵 ⊃ 𝐶 ⟨⟩ 𝐶 ⟩
p

⟨ ⟨⟩ ; 𝐵, 𝐴 ∨ 𝐵 ⊃ 𝐶 ⟨⟩ 𝐶⟩
p

⟨ ⟨ ⟨⟩ ⟩ ; 𝐵, 𝐴 ∨ 𝐵 ⊃ 𝐶 ⟨⟩ 𝐶⟩
i↓

⟨ ⟨ 𝐴 ⟨⟩ 𝐴 ⟩ ; 𝐵, 𝐴 ∨ 𝐵 ⊃ 𝐶 ⟨⟩ 𝐶⟩
f−

⟨ 𝐴 ⟨ ⟨⟩ 𝐴⟩ ; 𝐵, 𝐴 ∨ 𝐵 ⊃ 𝐶 ⟨⟩ 𝐶⟩
∨+1

⟨𝐴 ⟨ ⟨⟩ 𝐴 ∨ 𝐵 ⟩ ; 𝐵, 𝐴 ∨ 𝐵 ⊃ 𝐶 ⟨⟩ 𝐶⟩
p

⟨ 𝐴 ⟨ ⟨⟩ 𝐴 ∨ 𝐵; ⟨⟩ ⟩ ; 𝐵, 𝐴 ∨ 𝐵 ⊃ 𝐶 ⟨⟩ 𝐶⟩
i↓

⟨𝐴 ⟨ ⟨⟩ 𝐴 ∨ 𝐵; 𝐶 ⟨⟩ 𝐶 ⟩ ; 𝐵, 𝐴 ∨ 𝐵 ⊃ 𝐶 ⟨⟩ 𝐶⟩
⊃−

⟨ 𝐴, 𝐴 ∨ 𝐵 ⊃ 𝐶 ⟨⟩ 𝐶 ; 𝐵, 𝐴 ∨ 𝐵 ⊃ 𝐶 ⟨⟩ 𝐶⟩
f−

𝐴 ∨ 𝐵 ⊃ 𝐶 ⟨𝐴, 𝐴 ∨ 𝐵 ⊃ 𝐶 ⟨⟩ 𝐶 ; 𝐵 ⟨⟩ 𝐶⟩
f−

𝐴 ∨ 𝐵 ⊃ 𝐶, 𝐴 ∨ 𝐵 ⊃ 𝐶 ⟨𝐴 ⟨⟩ 𝐶 ; 𝐵 ⟨⟩ 𝐶⟩
c

𝐴 ∨ 𝐵 ⊃ 𝐶 ⟨𝐴 ⟨⟩ 𝐶 ; 𝐵 ⟨⟩ 𝐶⟩
⊃+

𝐴 ∨ 𝐵 ⊃ 𝐶 ⟨𝐴 ⟨⟩ 𝐶 ; ⟨⟩ 𝐵 ⊃ 𝐶 ⟩
⊃+

𝐴 ∨ 𝐵 ⊃ 𝐶 ⟨ ⟨⟩ 𝐴 ⊃ 𝐶 ; ⟨⟩ 𝐵 ⊃ 𝐶⟩
∧+

𝐴 ∨ 𝐵 ⊃ 𝐶 ⟨⟩ (𝐴 ⊃ 𝐶) ∧ (𝐵 ⊃ 𝐶)
⊃+

⟨⟩ (𝐴 ∨ 𝐵 ⊃ 𝐶) ⊃ (𝐴 ⊃ 𝐶) ∧ (𝐵 ⊃ 𝐶)

Figure 7.3.: Example of sequent-style
proof in BJ

and i↑ correspond to the axiom and cut rules; rules w and c to the
weakening and contraction rules; and every rule of the form ⚬− (resp.
⚬+) to the left introduction rule (resp. right introduction rule) for the
logical connective ⚬.

▶ The 𝔽low and 𝕄embrane groups are new, and define the behavior
of bubbles. More specifically, 𝔽-rules characterize how information
flows inside solutions by specifying what kinds of objects can traverse
bubbles, and in which direction. They play the same role as switch rules
in formalisms based on CoS [110], which includes our own subformula
linking rules (Figure 2.4). In the asymmetric bubble calculus there is
only one 𝔽-rule f− allowing hypotheses to flow inside bubbles.

As their name suggests, 𝕄-rules handle the behavior of the membrane
of bubbles, but independently from other items as opposed to 𝔽-rules.
In the asymmetric bubble calculus there is only one 𝕄-rule p allowing
to pop any empty bubble, which can be interpreted as the action of
dismissing a solved subgoal. In CoS it would correspond to congruence
rules handling the truth unit ⊤, and in subformula linking to the unit
elimination rules (Figure 2.5).

Now that we have rules for manipulating solutions, and since solutions
can be nested through bubbles, we need a notion of context for applying
rules on subsolutions of arbitrary depth:

Definition 7.3.2 (Context) A context 𝑆□ is a solution which contains
exactly one occurrence of a special solution written □, called its hole.
Given another solution 𝑇, we write 𝑆 𝑇 to denote the solution equal to 𝑆□
where □ has been replaced by 𝑇.

Then every rule of Figure 7.2 is applicable in any context 𝑈□. That is:

𝑆
𝑇

should be read as
𝑈 𝑆

𝑈 𝑇
for all 𝑈□

Definition 7.3.3 (Derivation) We write 𝑆 → 𝑇 to indicate a rewrite
step, that is an instance of some rule from Figure 7.2 with 𝑇 as premiss
and 𝑆 as conclusion4

4: The direction of the arrow is from
conclusion to premiss, to stay consistent
with our interactive proof building set-
ting where inference rules are seen as
goal-modifying actions.

. A derivation 𝑆 →𝑛 𝑇 is a sequence of rewrite steps
𝑆0 → 𝑆1… → 𝑆𝑛 with 𝑆0 = 𝑆, 𝑆𝑛 = 𝑇 and 𝑛 ≥ 0. Generally the length
𝑛 of the derivation does not matter, and we just write 𝑆 →∗ 𝑇. Finally,
derivations are closed under arbitrary contexts: for every context 𝑈□,
𝑆 → 𝑇 implies 𝑈 𝑆 → 𝑈 𝑇 . We write 𝑆 ⇀ 𝑇 to denote a shallow step, i.e.
a direct instance of a rule in the empty context.

Definition 7.3.4 (Proof) A proof of a solution 𝑆 in BJ is a derivation
𝑆 →∗⟨⟩ that reduces 𝑆 to the empty solution, which denotes the proof state
where there are no subgoals left.



7. Asymmetric Bubble Calculus 109

[233]: Straßburger (2019), ‘The problem
of proof identity, and why computer sci-
entists should care about Hilbert’s 24th
problem’

5: The idea of proof-as-trace is relatively
common in logic programming [174], but
not so much in deep inference proof the-
ory. It is Jean-Baptiste Joinet who shared
with us his idea of applying it in this set-
ting, based on his own work interpreting
the CoS for MLL as a system for building
multiplicative proof nets [135].

7.3.3. Proof-as-trace

An example of proof in BJ is shown in Figure 7.3, where the focused
subsolution is squared for each inference. Notice that many rules could
have been applied in a different order: for instance all applications of the
p rule could have been postponed to the top/end of the derivation. This is
generally true of all formalisms based on CoS, which is known in the deep
inference literature for its “bureaucracy”. In BJ, ℍ-rules aggravate the
matter by adding all inessential rule permutations from sequent calculus to
those of CoS. As our wording suggests, this is usually perceived negatively
in deep inference proof theory, where a central question is that of finding
canonical representations of proof objects [233].

However in our interactive proof building setting, it should rather be seen
as a desirable property of the system. Indeed, one consequence is that the
user has more freedom to organize her reasoning in whichever order she
wants, in an incremental and guided way. One should remember that in
the Proof-by-Action paradigm, the focus is not the proof object, which is
implicit and hidden to the user, but the process of building it. Then a BJ-
derivation is better understood as the trace of this building process, rather
than the constructed proof5. And the fact that this trace corresponds, or
can be transformed into a more canonical representation is of no concern
to the user. What matters for a good proof building interface is to be as
flexible as possible, in order to match the user’s own mental process of
argumentation.

Of course flexibility comes at a price, and the rules of BJ are probably
too numerous and low-level to be mapped directly into individual proof
actions in a user interface. Some of these concerns will be tackled in
Subsection 8.8.2, but we think a better answer might have been found with
the proof system introduced in Chapter 10, and its associated prototype
of GUI presented in Section 10.8.

7.3.4. Graphical rules

While the sequent-style presentation of BJ clearly shows its filiation with
sequent calculus, its syntax is quite heavy, and obscures an important
property of the rules: they almost always preserve the contexts Γ, Δ of
formulas and 𝒮 of bubbles. That is, the rules of BJ are local. This enables
a more economical and graphical presentation of the rules in Figure 7.4,
where BJ is seen as a multiset rewriting system just like the Cham thanks
to Definition 7.2.3. Instead of relying on a notion of context, we define
formally what it means to be a subsolution:

Definition 7.3.5 (Subsolution) 𝑆 is a subsolution of 𝑇, written 𝑆 ≺ 𝑇, if
either 𝑆 ⊆ 𝑇 or 𝑆 ≺ 𝑇0 for some 𝑇0 ∈ 𝑇, where ⊆ denotes multiset inclusion.

Then a multiset rewriting rule 𝑆 →𝑟 𝑇 can be applied in a solution 𝑈
whenever 𝑆 ≺ 𝑈, by replacing one occurrence of 𝑆 by 𝑇 inside 𝑈. The
notions of derivation (Definition 7.3.3) and proof (Definition 7.3.4) stay
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6: As will become apparent in Section
8.7, BJ itself provides a finer-grained sim-
ulation of the rules of sequent calculus,
which in turn is known to be a more de-
tailed variant of natural deduction. Inter-
estingly through the Curry-Howard iso-
morphism, this would correspond to a
chain of compilation, starting from the
higher-level 𝜆-calculus (natural deduc-
tion), going into abstract machines (se-
quent calculus) [71], down to something
akin to assembly language with jump in-
structions [108, Section 6.3.1].

unchanged, by observing that the rewriting rule 𝑆 →𝑟 𝑇 from 𝑆 to 𝑇 and
the inference rule 𝑟 ∶ 𝑆 → 𝑇 with premiss 𝑇 and conclusion 𝑆 denote the
same rule 𝑟.

Figure 7.5 shows the graphical presentation of the same BJ-proof as in
Figure 7.3. Whereas in Figure 7.3 we squared the whole subsolutions
corresponding to the conclusions of inference rules, here we squared
on each line the redex modified by the associated rewriting rule. This
example highlights the greater locality of the rewriting approach, by
indicating more precisely which parts of the proof state are changed by
the rules.

But it still over-approximates the modifications that really need to be
performed to carry the transformations. Indeed, by only exposing the
data of a redex 𝑆 and a reddendum 𝑇, a rewriting rule 𝑆 →𝑟 𝑇 can only be
interpreted as the deletion of 𝑆 followed by the insertion 𝑇. Taking for
instance the ⊃− rule in Figure 7.4, one can describe its graphical behavior
more finely as resulting from the following sequence of edits:

1. Erase the ⊃ connective;

2. Change the polarity of 𝐴 from hypothesis to conclusion;

3. Insert a new empty bubble;

4. Move 𝐴 in this bubble;

5. Insert a new empty bubble;

6. Move 𝐵 in this bubble;

7. If Δ is not empty, also move Δ in this bubble.

It would be interesting to consider the question of finding a minimal
set of edit operations like these, that can simulate all the rules of BJ6.
Note however that most of the above edits are unsound as reasoning
steps. If not for logical insight, such an edit calculus could still be relevant
computationally, typically by enabling efficient implementations of the
rules with a small memory footprint.
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𝕀dentity

𝐴 𝐴 → i↓

Δ → 𝐴 𝐴 Δ i↑

ℝesource

𝐴 → w

𝐴 → 𝐴 𝐴 c

𝔽low

𝐴 𝑆 → 𝐴 𝑆 f−

𝕄embrane

→ p

ℍeating

⊤ → ⊤− ⊤ → ⊤+

⊥ Δ → ⊥−

𝐴 ∧ 𝐵 → 𝐴 𝐵 ∧− 𝐴 ∧ 𝐵 → 𝐴 𝐵 ∧+

𝐴 ∨ 𝐵 Δ → 𝐴 Δ 𝐵 Δ ∨−
𝐴 ∨ 𝐵 → 𝐴 ∨+1

𝐴 ∨ 𝐵 → 𝐵 ∨+2

𝐴 ⊃ 𝐵 Δ → 𝐴 𝐵 Δ ⊃− 𝐴 ⊃ 𝐵 → 𝐴 𝐵 ⊃+

∀𝑥.𝐴 → 𝐴{𝑡/𝑥} ∀− ∀𝑥.𝐴 → 𝐴{𝑦/𝑥} ∀+

∃𝑥.𝐴 → 𝐴{𝑦/𝑥} ∃− ∃𝑥.𝐴 → 𝐴{𝑡/𝑥} ∃+

In the rules i↑, ⊥−, ∨− and ⊃−, Δ is either empty, or a singleton of one positive ion.
In the rules ∀+ and ∃−, 𝑦 is fresh.

Figure 7.4.: Graphical presentation of the asymmetric bubble calculus BJ
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(𝐴 ∨ 𝐵 ⊃ 𝐶) ⊃ (𝐴 ⊃ 𝐶) ∧ (𝐵 ⊃ 𝐶) ⊃+
→ 𝐴 ∨ 𝐵 ⊃ 𝐶 (𝐴 ⊃ 𝐶) ∧ (𝐵 ⊃ 𝐶) ∧+

→ 𝐴 ∨ 𝐵 ⊃ 𝐶 𝐴 ⊃ 𝐶 𝐵 ⊃ 𝐶 ⊃+

→ 𝐴 ∨ 𝐵 ⊃ 𝐶 𝐴 𝐶 𝐵 ⊃ 𝐶 ⊃+

→ 𝐴 ∨ 𝐵 ⊃ 𝐶 𝐴 𝐶 𝐵 𝐶 c

→ 𝐴 ∨ 𝐵 ⊃ 𝐶 𝐴 𝐶 𝐴 ∨ 𝐵 ⊃ 𝐶 𝐵 𝐶 f−

→
𝐴 𝐶

𝐴 ∨ 𝐵 ⊃ 𝐶
𝐴 ∨ 𝐵 ⊃ 𝐶 𝐵 𝐶 f−

→
𝐴

𝐴 ∨ 𝐵 ⊃ 𝐶 𝐶
𝐵 𝐶

𝐴 ∨ 𝐵 ⊃ 𝐶
⊃−

→
𝐴

𝐴 ∨ 𝐵 𝐶 𝐶
𝐵 𝐶

𝐴 ∨ 𝐵 ⊃ 𝐶
i↓

→
𝐴

𝐴 ∨ 𝐵
𝐵 𝐶

𝐴 ∨ 𝐵 ⊃ 𝐶
p

→ 𝐴 𝐴 ∨ 𝐵
𝐵 𝐶

𝐴 ∨ 𝐵 ⊃ 𝐶
∨+1

→ 𝐴 𝐴
𝐵 𝐶

𝐴 ∨ 𝐵 ⊃ 𝐶
f−

→ 𝐴 𝐴
𝐵 𝐶

𝐴 ∨ 𝐵 ⊃ 𝐶
i↓

→
𝐵 𝐶

𝐴 ∨ 𝐵 ⊃ 𝐶
p

→
𝐵 𝐶

𝐴 ∨ 𝐵 ⊃ 𝐶
p

→
𝐵

𝐴 ∨ 𝐵 ⊃ 𝐶 𝐶
⊃−

→
𝐵

𝐴 ∨ 𝐵 𝐶 𝐶
i↓

→
𝐵

𝐴 ∨ 𝐵
p

→ 𝐵 𝐴 ∨ 𝐵 ∨+2

→ 𝐵 𝐵 f−

→ 𝐵 𝐵 i↓

→ p

→ p

→

Figure 7.5.: Example of graphical proof in BJ
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7: Although there might be some chal-
lenges in implementing an efficient lay-
outing algorithm for bubbles, typically to
make solutions fit into the screen.

8: Not to be confused with the contrac-
tion rule c.
9: This mechanism is quite standard
in GUIs that manipulate duplicable re-
sources like file managers, where one
maintains the CTRL key to enable copy
mode. It was also chosen by K. Chaudhuri
to implement contraction in his Profint
prototype for subformula linking in intu-
itionistic logic [40].

𝐴 𝐵 → 𝐴 � 𝐵 �
𝐴 𝐵 → 𝐴 5 𝐵 5

Figure 7.6.: Linkage creation rules in BJ

7.4. Back to Proof-by-Action

When looking at the BJ-proof of Figure 7.5, the astute reader might have
been reminded of the Proof-by-Action paradigm as introduced in Chapter
2, by seeing redexes as the items involved in a graphical action — there
are always at most two such items. More precisely, ℍ-rules correspond
to click actions on blue (⚬− rules) or red items (⚬+ rules), and the i↓ rule
corresponds to the most basic DnD action between dual occurrences of a
formula.

As mentioned earlier when comparing BJ to LJ, the novelty here lies with
ℍ-rules, 𝔽-rules and 𝕄-rules that deal with bubbles. Remember that the
goal behind the idea of bubble calculus was precisely to provide a new
way to manipulate subgoals through bubbles instead of tabs, which are
more in line with the chemical metaphor. It is quite easy to imagine a
GUI presenting the proof state as a solution, in a graphical layout close to
that of Figure 7.57. Like formulas in blue and red items, whole subgoals
could now be shown on the same screen in their respective bubbles, and
be freely moved around with a pointing device. Following are some ideas
for mapping the remaining rules of BJ in such a GUI:

𝔽low The f− rule plays a special role, in that it would not be mapped to
any particular action. Indeed it captures the way information flows in
solutions, and we already described in Section 7.2 how this is reflected
in the topological behavior of bubbles. Thus it could be implemented
in the graphical interface as a kind of physics engine, like those found
in video games: when dragging an item around the proof canvas, it
would get stuck on the membrane of bubbles, except when the item
is blue and the drag movement goes inward. This of course would
provide a level of interactivity unseen before in a proving interface,
making it very discoverable and playful. It also combines nicely with
DnD actions in general: for instance a sequence of applications of f−
followed by i↓ could be performed as a single DnD action, where the
dragged hypothesis crosses successively the various bubbles on the
way.

𝕄embrane The p rule can be mapped very straightforwardly to the
action of clicking on the area of an empty bubble, in order to pop it. It
could also be entirely automated, by letting the proof engine eagerly
pop empty bubbles as soon as they appear in a solution. Note that in
this graphical setting, the p rule can be understood as resulting from a
process of contraction8 of the membrane into a single point: if the bubble
contains some items Δ, then this process fails because the membrane
gets stuck on the boundaries of Δ. This is a topological way to check
the emptiness of a bubble, which has the benefit of being completely
continous, in addition to being very clear visually.

ℝesource The contraction rule c could be mapped to a specific trig-
gering input when starting to drag a blue item 𝐴 (e.g. a shortkey if a
keyboard is available, or a long press on the item on a touchscreen),
which has the effect of keeping a copy of 𝐴 at its original location in
addition to moving the item9. As for the weakening rule w, it could be
available as a contextual action when selecting blue items.

https://github.com/direct-manipulation/profint
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10: This concern of finding an explicit
graphical representation of the “motions
of reasoning in actu”, and not only the
states of mind, can be found already in
the works of Peirce on his existential
graphs [214, pp. 112–113]. We will come
back to this in Chapter 9.

𝕀dentity Although the i↓ rule only corresponds to the base case of
DnD actions, it would be easy to integrate the full SFL semantics of
DnD actions directly in BJ. Indeed our SFL rules (Figure 2.4) are already
expressed as rewriting rules, just like the graphical rules of BJ (Figure
7.4). Thus it is just a matter of adding linkage creation rules like those
of Section 3.7, but between adjacent formulas in a solution (Figure 7.6).

The cut rule was handled in Actemawith a separate +hyp button, which
adds the cut formula 𝐴 (input by the user in a dialog box) as a new
hypothesis in the current goal, and as the conclusion in a new subgoal
(see Subsection 2.2.1). Since subgoals are now reified as bubbles, the i↑
rule could be mapped instead to a contextual action available on any
red item Δ, which would have the effect of spawning a bubble around
it with a blue item 𝐴, and another bubble nearby it with a red item 𝐴.

ℍeating For ℍ-rules that spawn bubbles like ∧+, it is important that
bubbles stay close to the item being clicked, in order to make the
transformation visually clear. One could even imagine a small animation
that smoothly turns the main connective into bubbles, to convey more
effectively the intuition that heating rules break logical connectives
seen as chemical bonds.

Beyond the recovered uniformity of the user interface in terms of the
chemical metaphor, BJ exhibits some features that are interesting both
on the proof-theoretical and user-experience levels:

Factorization It implements a form of context-sharing between subgoals:
that is, one can perform transformations on shared hypotheses (forward
reasoning) without going back to a proof state anterior to the splitting
of said subgoals. This should simplify the navigation in the proof as
it is being constructed, by avoiding the need to locate these splitting
points. In fact often beginners (but also occasionally seasoned users)
do not have the reflex to do this, precisely because the interface makes
it difficult. This results in proofs with a lot of duplicated arguments,
since splitting goals systematically duplicates the context of hypotheses.
Thus bubbles can be seen as a mechanism that favors by default a style
of proof with better factorization of subproofs.

Parallelism The locality of rewriting rules makes it possible for multiple
users to reason on different subgoals of the same proof state at the same
time, without compromising soundness. Combined with the above
factorization property, this enables asynchronous collaborative setups,
where various users can work on the same proof in parallel (e.g. through
an online web interface), while still benefitting from the knowledge
built by collaborators in shared contexts.

Navigation The tree structure of subgoals is immediately apparent in
the proof state through the nesting of bubbles. Thus part of the infor-
mation on the proof construction process, which was made implicit
and temporal in the proof state history, is now made explicit and spatial
in the proof state itself10.

There are multiple ways to visualize trees on a planar surface, but if
we are to maintain the bubble metaphor, zoomable user interfaces (ZUI)

https://actema.xyz
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11: The only exceptions are clicks on
blue ⊥, ∨ and ⊃, but the only extra item
they involve is the conclusion.

seem to be a right fit: they allow for efficient space management and
navigation, and zooming in intuitively conveys the idea of focusing on
a specific subgoal. One could also zoom out to have an overview of the
different subgoals and their shared context, something which is hard
to do in current proof assistants.

When zoomed in on a subgoal, the shared contexts around it will not be
visible anymore. While this is useful to focus attention and avoid being
distracted by other subgoals, it can quickly become cumbersome for the
user to always have to zoom out in order to retrieve hypotheses from
these shared contexts. One solution would be to rebrand the context
zone of Actema as a global context zone, where all the shared contexts
available in the subgoal under focus are merged in a single list, and
immediately accessible for manipulation. Of course actions performed
in the context zone would be reflected in the proof canvas, and vice
versa.

Goal diffing From a user perspective, the locality of rules means that
applying some action to one or two items will not involve other items11.
Non-local rules are less natural for a beginner because they modify
a global state (here other items and subgoals) which is not clearly
correlated to the transformed data, often because it is not immediately
visible.

For instance in Actema, many users have reported difficulties in un-
derstanding the effect of click actions that create new subgoals. A first
reason that can easily be remedied, is that there was not enough visual
feedback to indicate the newly created tabs. But a deeper limitation is
that the user needs to explicitly focus on these subgoals to show their
content, which they might not do immediately. And then it gets difficult
to keep track of the origin of said subgoals without a way to visualize
the tree structure of the proof.

All these concerns can be addressed within the bubble metaphor: since
bubbles are items freely positioned on the proof canvas, all the new
items produced by an action can stay near the location where the
action was initiated (i.e. the click or drop location); and since all trans-
formations are local, all items not involved in the action can have their
locations preserved. In other words, bubbles make it easier to under-
stand the difference between a goal and subgoals generated by a proof
action, which is crucial when learning the semantics of actions through
practice.

https://actema.xyz
https://actema.xyz
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Each city receives its form from the desert it opposes; and so the camel
driver and the sailor see Despina, a border city between two deserts.

Italo Calvino, Invisible Cities, 1972

In this chapter, we explore to what extent the bubble calculus of Chapter
7 can be made more symmetric, by relaxing the restriction that solutions
must contain at most one conclusion. At a surface level, our approach
is similar to that of Gentzen, who went from his single-conclusion se-
quent calculus LJ to the multi-conclusion calculus LK. Like him, we will
uncover beautiful dualities that were hidden by the asymmetry of the
initial calculus. But by sticking unwaveringly to intuitionism, we will be
led to the exotic territory of bi-intuitionistic logic, an intermediate logic
that conservatively extends intuitionistic logic, and in particular does not
prove the law of excluded middle.

An underlying thread of our investigation will be the quest for a fully
iconic proof system, where all logical connectives can be replaced by
appropriate new kinds of bubbles. This will make us rediscover many
principles already studied in the deep inference literature, with topological
intuitions of the bubble metaphor shedding a new light on them. We will
end up with two symmetric bubble calculi, each with its own tradeoff
on the properties satisfied by inference rules. In particular, the ability of
the calculi to factorize backward in addition to forward proof steps might
prove useful to build concise proofs, all through direct manipulation.

The chapter is organized as follows: in Section 8.1 we motivate our quest
for a system where all introduction rules for logical connectives are
invertible, to reduce non-determinism in proof search and enable a fully
iconic approach to proof building. To that effect, we relax in Section
8.2 the restriction to single-conclusion solutions, which requires a new
distinction between saturated and unsaturated solutions. This gives rise
in Section 8.3 to an extension of the syntax of solutions, where bubbles
can themselves be polarized. In Section 8.4 we identify key properties
that will guide the design of inference rules, some of which were already
aimed for implicitly throughout the evolution of our concept of bubble.

In Section 8.5 we introduce a core symmetric bubble calculus for classical
logic called system B, in reference to the symmetric system L of Herbelin
[118]. Then in Section 8.6 we prove the soundness of system B, and show
that by removing selectively some inference rules that define the porosity
of polarized bubbles, one gets intuitionistic, dual-intuitionistic and bi-
intuitionistic logic as fragments. In Section 8.7 we support this claim by
showing that the bi-intuitionistic fragment is not only sound, but also
cut-free complete with respect to the cut-free nested sequent calculus
DBiInt of Postniece [206].
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[73]: Dyckhoff (1992), ‘Contraction-Free
Sequent Calculi for Intuitionistic Logic’

[108]: Guenot (2013), ‘Nested Deduction
in Logical Foundations for Computation’

1: As far as we know, the admissibility
of introduction rules is not proved, let
alonementioned in [108]. This is our own
observation which lacks a proper formal
proof, and is thus subject to caution.

Finally in Section 8.8, we introduce a fully invertible variant of system B
that we conjecture to be complete, and present a canonical way to search
for proofs in this system. Unfortunately, invertibility does not entail the
full iconicity of the system, and we reflect on the fundamental reasons
that might prevent any variant of system B from being fully iconic.

Note

Although we include rules for quantifiers, in this thesis we only treat
the soundness and completeness of bubble calculi for propositional
logic. Indeed quantifiers would make the algebraic semantics more
involved when proving soundness, and during our literature review
we found very few proof systems for bi-intuitionistic logic supporting
them, at least none suitable for our syntactic completeness proof.
More generally, bi-intuitionistic logic has received less attention in
the setting of FOL, probably because it is not a conservative extension
of intuitionistic FOL, but only of constant-domain intuitionistic FOL
(see [8, 53]).

8.1. Non-determinism and iconicity

In all known sequent calculus formulations of intuitionistic logic, there
are at least two rules which are invariably non-invertible:

1. a left introduction rule for ⊃ (there might be many ones, as in the
calculus LJT of Dyckhoff [73]);

2. the right introduction rule for either:

▶ ∨ when sequents have at most or exactly one conclusion;

▶ ⊃ when sequents have multiple conclusions, e.g. in the multi-
conclusion variant of LJT in [73].

In BJ, this means that click actions on blue ⊃ and red ∨ need to be per-
formed in a specific order to be able to complete proofs.

In his thesis [108], Guenot introduced a specific kind of nested sequent
system where — like in BJ — inference rules can be expressed as rewrit-
ing rules. An interesting feature of these systems is that they satisfy a
decomposability property: all introduction rules for connectives are in-
vertible, and formulas can be completely decomposed by using them until
atoms are reached, before applying other rules. Thus introduction rules
are in a sense admissible in these systems, because every formula can be
translated into an equivalent pure nested sequent with the same number
of atoms1. Non-determinism then arises in the choice of atoms that are to
be connected in axiom rule instances, as well as the choice of subsequents
to be duplicated for reuse.

In our graphical setting, this would translate into an interface where all
click actions are redundant. Although we already considered this possibil-
ity in Section 3.7, it goes further here by making even logical connectives
superfluous, since all other rules work purely on the structure of sequents.



8. Symmetric Bubble Calculi 118

2: Other nested sequent systems for full
intuitionistic logic exist [78, 206], but
they are based on tree-shaped proofs, and
thus ignore the whole raison d’être of our
concept of bubble.

Γ ⇒ 𝐴, Δ Γ ⇒ 𝐵, Δ
∧R∗

Γ ⇒ 𝐴 ∧ 𝐵, Δ

Figure 8.1.:Multi-conclusion right intro-
duction rule for conjunction

𝐴 𝐵 𝐶 𝐷 𝐸
⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑆

𝐴 𝐵 𝐸 𝐶 𝐷 𝐸

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑇

Figure 8.2.: Distributing conclusions in
bubbles

This means that all logical connectives could be replaced by metaphorical
constructs like bubbles, which suggest physically the possible transforma-
tions on the proof state. Unfortunately, the systems in [108] only handle
classical logic, and the implicative fragment of intuitionistic logic. Thus
began our quest for a bubble calculus in the style of Guenot capturing
full intuitionistic logic2.

8.2. Symmetric interpretation

8.2.1. Distributing conclusions

The first direction we followed was to relax the constraint that solutions
must be single-conclusion. Indeed as already noted in Section 5.1, a notable
property of sequent calculi with multiple conclusions is that their right
introduction rule for ∨ is invertible.

The main difficulty lies in the way one should interpret a multi-conclusion
solution 𝑆 as a formula J𝑆K. If we just take the asymmetric interpretation
(Definition 7.3.1) and group conclusions disjunctively instead of conjunc-
tively, we get

JΓ ⟨𝒮⟩ ΔK = ⋀Γ ⊃ ⋁Δ ∧ ⋀
𝑆∈𝒮

J𝑆K (8.1)

But this interpretation breaks on the 0-ary case when Δ is empty: instead
of seeing Γ ⟨𝒮⟩ as a node of the proof tree with hypotheses Γ and subgoals
𝒮, it trivializes it to JΓ ⟨𝒮⟩ K = ⋀Γ ⊃ ⊥, i.e. a goal where one has to find a
contradiction in Γ; which is obviously not what we have in mind.

A key observationwas that in the rules of multi-conclusion sequent calculi,
one usually distributes the context Δ of conclusions in all premisses: this
restores a perfect symmetry with respect to the context of hypotheses Γ,
as illustrated by the ∧R∗ rule (Figure 8.1). Then our idea was that instead of
implementing distribution/sharing of conclusions inside inference rules,
we could do it implicitly in the interpretation of solutions. This is already
what happens in the asymmetric interpretation for hypotheses; indeed
the context Γ is shared among subgoals, because:

1. it appears on the left side of an implication ⊃;

2. bubbles are joined conjunctively;

3. implication distributes over conjunction thanks to the equivalence
𝐴 ⊃ 𝐵 ∧ 𝐶 ≃ (𝐴 ⊃ 𝐵) ∧ (𝐴 ⊃ 𝐶).

But what does it mean precisely to share conclusions among subgoals?
If we consider the two solutions of Figure 8.2, we would like to have
J𝑆K ≃ J𝑇K ≃ (𝐴 ⊃ 𝐵 ∨ 𝐸) ∧ (𝐶 ⊃ 𝐷 ∨ 𝐸). Since disjunction distributes over
conjunction, a first naive try would give the following interpretation,
where we just replace ∧ by ∨ compared to Equation 8.1:

JΓ ⟨𝒮⟩ ΔK = ⋀Γ ⊃ ⋀
𝑆∈𝒮

J𝑆K ∨ ⋁Δ (8.2)
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3: In the terminology of Martin-Löf, we
could say that we now have two distinct
forms of judgment.

But this immediately fails whenever 𝒮 = ⌀, because it trivializes to
⋀Γ ⊃ ⊤ ∨ ⋁Δ ≃ ⊤ instead of ⋀Γ ⊃ ⋁Δ.

8.2.2. Saturated solutions

The only way we found around the above defect was to internalize syn-
tactically a distinction between two kinds of solutions, by assigning them
one of two statuses3:

▶ saturated solutions Γ ⟨𝒮⟩ Δ correspond to branching nodes in the
proof tree, or to closed leaves when 𝒮 = ⌀ (i.e. solved subgoals).
Thus it becomes sensical to have JΓ ⟨⟩ ΔK = ⊤. In the asymmetric
interpretation, saturated solutions were encoded by solutions with no
conclusions;

▶ unsaturated solutions Γ ⇒ Δ correspond to open leaves in the proof
tree (i.e. unsolved subgoals). In the asymmetric interpretation, they
were encoded by solutions with one conclusion.

Then we keep the last proposed interpretation given in Equation 8.2
for saturated solutions, and interpret unsaturated solutions like usual
sequents:

JΓ ⇒ ΔK = ⋀Γ ⊃ ⋁Δ

To be able to abstract from the saturation status of solutions, we reframe
the syntax of solutions with so-called branching operators �:

𝑆, 𝑇 , 𝑈 ⩴ Γ� Δ
�,� ⩴ ⇒ ∣ ⟨𝒮⟩

Graphically, saturated solutionswith no bubbles can be distinguished from
unsaturated solutions by painting their background on the proof canvas
in green, the intent being to suggest that they have already been solved.
A pathological example is the distinction between the saturated empty
bubble and the unsaturated empty bubble , who are interpreted
respectively by J ⟨ ⟨⟩ ⟩ K = ⊤ and J ⟨ ⇒ ⟩ K = ⊥.

Remark 8.2.1 The terminology of “saturation” is also inspired by
chemistry: in this context, a solution is saturated when it has reached
equilibrium, meaning that the chemical reaction of dissolution cannot
happen anymore. The analogy applies to our logical setting: a solution
is saturated when it has reached truth, meaning that the logical reaction
of identity (i↓ rule) cannot happen anymore. More complex reactions
through SFL are still possible though and may produce additional hy-
potheses/conclusions, akin to solid sugar accumulating at the bottom
of a supersaturated container of water.
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4: This was already noticed in [49], with
the linear version (𝐴 ⊸ (𝐵 ` 𝐶)) ⊸
((𝐴 ⊸ 𝐵) ` 𝐶) of 𝐺 called Grishin (a)
and its converse Grishin (b). More pre-
cisely, it is affirmed that while Grishin (b)
is valid in FILL, which is the extension of
intuitionistic multiplicative linear logic
(IMLL) with `, adding Grishin (a) makes
FILL collapse to MLL.

8.2.3. Backward factorization

Now coming back to our motivating example of Figure 8.2, the interpre-
tation of Equation 8.2 still fails, because we associate two non-equivalent
formulas to 𝑆 and 𝑇. To show this, let us try to derive the equivalence
through some algebraic developments:

J𝑆K = ⊤ ⊃ ((𝐴 ⊃ 𝐵) ∧ (𝐶 ⊃ 𝐷)) ∨ 𝐸
≃ ((𝐴 ⊃ 𝐵) ∧ (𝐶 ⊃ 𝐷)) ∨ 𝐸
≃ ((𝐴 ⊃ 𝐵) ∨ 𝐸) ∧ ((𝐶 ⊃ 𝐷) ∨ 𝐸)
≃ (𝐴 ⊃ 𝐵 ∨ 𝐸) ∧ (𝐶 ⊃ 𝐷 ∨ 𝐸) (8.3)

≃ ((𝐴 ⊃ 𝐵) ∧ (𝐶 ⊃ 𝐷)) ∨ 𝐸
J𝑇K = ⊤ ⊃ ((𝐴 ⊃ 𝐵 ∨ 𝐸) ∧ (𝐶 ⊃ 𝐷 ∨ 𝐸)) ∨ ⊥

Wait, we did manage to prove it! The trick resides in Equation 8.3, which
uses twice the equivalence (𝐴 ⊃ 𝐵) ∨ 𝐶 ≃ 𝐴 ⊃ (𝐵 ∨ 𝐶). It turns out that this
equivalence is true in classical logic, but not in intuitionistic logic. More
precisely, it is the implication 𝐺 ≜ (𝐴 ⊃ (𝐵 ∨ 𝐶)) ⊃ ((𝐴 ⊃ 𝐵) ∨ 𝐶) which is
not provable intuitionistically, since it can easily be shown equivalent
to the law of excluded middle4. Thus according to this interpretation, 𝑆
entails 𝑇 but 𝑇 does not entail 𝑆, which means that it is not able to account
for the factorization of common conclusions in distinct subgoals.

To remedy this situation, we opted for a different strategy: instead of find-
ing a logical formula capturing the distributive semantics of conclusions
over subgoals, we hardcode this semantics by defining the interpretation
function over saturated solutions through non-structural recursion. This
gives the following final definitions:

Definition 8.2.1 (Mix operator) The commutative mix operator ⊍ on
solutions is defined by:

(Γ� Δ) ⊍ (Γ′ ⇒ Δ′) = Γ, Γ′ � Δ, Δ′

(Γ ⟨𝒮⟩ Δ) ⊍ (Γ′ ⟨𝒮 ′⟩ Δ′) = Γ, Γ′ ⟨𝒮 ; 𝒮 ′⟩ Δ, Δ′

Definition 8.2.2 (Symmetric interpretation) The symmetric interpre-
tation J − K of a solution is defined recursively by:

JΓ ⟨𝒮⟩ ΔK = ⋀
𝑆∈𝒮

J𝑆 ⊍ (Γ ⇒ Δ)K

JΓ ⇒ ΔK = ⋀Γ ⊃ ⋁Δ

This is the right approach for interpreting solutions with multiple conclu-
sions, as will be demonstrated formally in Section 8.6.
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5: More details will be given in the next
section

Γ, 𝐴� 𝐵, Δ
⊃+c

Γ� 𝐴 ⊃ 𝐵, Δ

Figure 8.3.: Classical multi-conclusion
version of ⊃+

𝐴 𝑆 → 𝐴 𝑆 f−+↓

𝐴 𝑆 → 𝐴 𝑆 f++↓

Figure 8.4.: 𝔽-rules for red bubbles

[78]: Fitting (2014), ‘Nested Sequents for
Intuitionistic Logics’

[49]: Clouston et al. (2013), ‘Annotation-
Free Sequent Calculi for Full Intuitionis-
tic Linear Logic’

6: This corresponds to the 𝐿𝑖𝑓 𝑡 rule of
[78] and 𝑝𝑙1 rule of [49].

8.3. Coloring bubbles

8.3.1. Red bubbles

With our new symmetric interpretation, we can start generalizing the
rules of BJ to multiple conclusions. While for most rules one just has to re-
place single-conclusion (resp. no-conclusion) solutions with unsaturated
(resp. saturated) ones5, the ⊃+ rule stands out as particularly problematic.
Indeed if we content ourselves with the natural generalization ⊃+c of
Figure 8.3, then we can easily build a proof of the excluded middle like
in Figure 5.2, and thus collapse to classical logic. This fact is well-known
in the literature on multi-conclusion intuitionistic sequent calculi, and
the solution is usually to discard the context of conclusions Δ, as in the
⊃R∗i rule of Figure 5.3. But this would make our rule both non-local and
non-invertible.

A better solution comes from the nested sequent systems of Fitting [78]
and Clouston et al. [49], where sequents can appear as conclusions of
other sequents. In our chemical metaphor, this corresponds to having red
bubbles. Then the key idea is to allow hypotheses to flow into sequents that
appear as conclusions6, but to forbid conclusions to do so. Graphically, this
means that blue items can enter red bubbles (rule f−+↓ of Figure 8.4), but
red items cannot: this is reminiscent of the electromagnetic phenomemon
of repulsion between objects charged with the same polarity.

To illustrate why this works, let us consider how one can manipulate with
red bubbles the classical equivalence (𝐴 ⊃ 𝐵) ∨ 𝐶 ≃ 𝐴 ⊃ (𝐵 ∨ 𝐶), that we
already encountered in the previous section. The begginings of the proofs
for both directions of the equivalence are depicted parallely in Figure 8.5.
Indeed both proofs have a very similar structure:

1. the first step is to decompose the conclusion with the new version of
the rules ∨+ and ⊃+. While the former simply splits disjunctions in two,
the latter encapsulates the antecedant and consequent of implications
in a red bubble: the aim is to forbid the use of the antecedant to prove
conclusions other than the consequent, as will become apparent later;

2. then in both cases we want to apply the hypothesis 𝐴 in a forward
step, either with 𝐴 ⊃ 𝐵 or 𝐴 ⊃ (𝐵 ∨ 𝐶). To do so, we need to bring
the two hypotheses together in the same solution. And since items
are trapped within bubbles, the only way to go is to move the blue
hypothesis inside the red bubble with the f−+↓ rule;

3. this time we decompose the hypothesis with the new version of the
rules ∨− and ⊃−. They are basically a local variant of those of BJ:
we encapsulate both subformulas in separate bubbles, but without
touching the conclusions of the ambient solution;

4. now that all formulas have been decomposed, it only remains to bring
together dual atoms for annihilation, and pop all empty bubbles. In
Grishin (b) this is easy, because all necessary movements (indicated
by green arrows) are valid: they only cross gray bubbles inward. In
Grishin (a) this works for 𝐴 and 𝐵, but not for 𝐶 (orange dotted arrow):
it would cross the red bubble, which is expressedly forbidden.



8. Symmetric Bubble Calculi 122

Grishin (b) Grishin (a)

(𝐴 ⊃ 𝐵) ∨ 𝐵

𝐴 ⊃ (𝐵 ∨ 𝐶)
⊃+, ∨+ (𝐴 ⊃ 𝐵) ∨ 𝐶

𝐴 ⊃ (𝐵 ∨ 𝐶)
∨+, ⊃+

→∗

𝐴 𝐵 𝐶

(𝐴 ⊃ 𝐵) ∨ 𝐵

f−+↓ →∗
𝐵

𝐴 ⊃ (𝐵 ∨ 𝐶)

𝐶𝐴
f−+↓

→
𝐴 𝐵 𝐶

(𝐴 ⊃ 𝐵) ∨ 𝐵 ∨−, ⊃− →
𝐵

𝐴 ⊃ (𝐵 ∨ 𝐶)
𝐶

𝐴
⊃−, ∨−

→∗

𝐴 𝐵 𝐶

𝐶𝐴 𝐵 f−↓, f+↓ →∗

𝐵

𝐶

𝐴

𝐴 𝐵 𝐶
f−↓, f+↓

→∗
𝐶
𝐶

𝐴
𝐴

𝐵
𝐵 →∗ 𝐵

𝐶
𝐴
𝐴 𝐵 𝐶

Figure 8.5.: Proof attempts for Grishin (a) and Grishin (b)

Thus in order to prove Grishin (a) and recover classical logic, it suffices
either to add the f++↓ rule allowing red items to enter red bubbles (Figure
8.4), or to use the ⊃+c rule which avoids red bubbles altogether. In the
following we will settle for the first option: we find it more elegant,
because it explains the distinction between intuitionistic and classical
logic as a kind of physical law independent of logical connectives.

8.3.2. Blue bubbles

Now it is only natural to wonder: since bubbles can be colored in red, or
charged positively, would it also make sense to have blue bubbles charged
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𝐴 𝑆 → 𝐴 𝑆 f+−↓

𝐴 𝑆 → 𝐴 𝑆 f−−↓

Figure 8.6.: 𝔽-rules for blue bubbles

7: We ask for the reader’s leniency re-
garding our choice of symbol and termi-
nology: in set theory this would be total
nonsense, since 𝐴 ⊂ 𝐵 would read “𝐴 is
included in 𝐵”. Evenworse, in the boolean
algebra induced by set operations, 𝐴 ⊂ 𝐵
is interpreted as 𝐴 implies 𝐵… But we
want to emphasize the duality between
exclusion and implication by mirroring
the symbol, as it is traditionally done
with conjunction ∧ and disjunction ∨.

𝐴 ⊂ 𝐵 → 𝐴 𝐵 ⊂−

𝐴 ⊂ 𝐵 → 𝐴 𝐵 ⊂+

Figure 8.7.: ℍ-rules for exclusion ⊂

[210]: Rauszer (1974), ‘Semi-Boolean Al-
gebras and Their Applications to Intu-
itionistic Logic with Dual Operations’

[209]: Rauszer (1974), ‘A Formalization of
the Propositional Calculus of H-B Logic’

[211]: Rauszer (1977), ‘Applications of
Kripke Models to Heyting-Brouwer
Logic’

[102]: Goré (2000), ‘Dual Intuitionistic
Logic Revisited’
[245]: Urbas (1996), ‘Dual-Intuitionistic
Logic’

8: Crolard [53] andAschieri [8] have also
explored the computational counterpart
of exclusion through the Curry-Howard
correspondence, which is claimed by the
first author to be a typing operator for
first-class coroutines.

[205]: Pinto et al. (2011), ‘Relating Se-
quent Calculi for Bi-intuitionistic Propo-
sitional Logic’
[207]: Postniece (2010), ‘Proof theory and
proof search of bi-intuitionistic and tense
logic’

negatively? The answer is yes, but we need to broaden our logical view
and consider more exotic beasts: the adequately named dual-intuitionistic
logic, and bi-intuitionistic logic.

For the moment, let us stay at a purely syntactic level. The idea is very
simple, and can be summarized in two words: color swapping. Thus the
law that “blue items can enter red bubbles, but red items cannot” becomes
a new law that “red items can enter blue bubbles, but blue items cannot”,
which is enforced by allowing only the use of the f+−↓ rule in Figure 8.6.
Well this is neat, but will not be of much use if there is no way to spawn
blue bubbles. Be it as it may: we can just craft a new logical connective!
Since red bubbles are produced by the implication connective 𝐴 ⊃ 𝐵, we
define a dual exclusion connective 𝐴 ⊂ 𝐵 (read “𝐴 excludes 𝐵”7), whose
heating rules are those of ⊃where blue and red have been swapped (Figure
8.7).

Not very surprisingly, the exclusion connective has already been studied
in the literature on intuitionistic logic, starting with the seminal paper of
Rauszer on Heyting-Brouwer logic, i.e. intuitionistic logic to which we add
exclusion [210]. In this paper, exclusion was called pseudo-difference, to
evoke its close connection with set-theoretical difference. Indeed given
two sets 𝐴 and 𝐵, one can define the set 𝐴 ∖ 𝐵 by comprehension as
{𝑥 ∣ 𝑥 ∈ 𝐴 ∧ 𝑥 ∉ 𝐵}, which is the set 𝐴 from which all elements of
𝐵 have been excluded. With an interpretation in boolean algebras, this
corresponds to the classical connective defined by the truth table of𝐴∧¬𝐵,
which is dual to the truth table of ¬𝐴 ∨ 𝐵 defining material implication.

While the first paper of Rauszer [210] belongs to the Polish tradition
of algebraic logic, she also explored in later works the proof-theoretic
[209] and model-theoretic [211] sides of the question. Many authors have
then deepened the proof theory of exclusion, whether in isolation from
implication in dual-intuitionistic logic [102, 245], or with both connec-
tives in bi-intuitionistic logic as in Rauszer’s original work8 [205, 207].
In particular, we are going to rely in Section 8.7 on the deep inference
calculus developed by Postniece in her thesis [207] to get completeness
and cut admissibility of our symmetric bubble calculus introduced in the
next section.

8.3.3. Polarized interpretation

Let us now extend the formal definition of bubbles so that they can be
colored:

Definition 8.3.1 (Bubble) A bubble is a solution enclosed in amembrane.
The membrane can be either unpolarized (neutral), charged positively,
or charged negatively.

Neutral bubbles are the usual ones depicted in gray, while positive and
negative bubbles correspond respectively to red and blue bubbles. We
also update the definition of solutions, which can now be unsaturated or
saturated:
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9: Here we took inspiration from the
work of Clouston et al. on nested se-
quents for FILL [49].

Definition 8.3.2 (Solution) A solution is a multiset of ions and bubbles.
It can be either saturated or unsaturated, and unsaturated solutions
cannot contain neutral bubbles. Solutions 𝑆 can be represented textually
with the following syntax:

𝑆, 𝑇 , 𝑈 ⩴ Γ� Δ 𝒮 ⩴ 𝑆1 ; … ; 𝑆𝑛
𝐼 , 𝐽 , 𝐾 ⩴ 𝐴 ∣ 𝑆 Γ, Δ ⩴ 𝐼1, … , 𝐼𝑛
�,� ⩴ ⇒ ∣ ⟨𝒮⟩

In particular, an item 𝐼 can be either a formula 𝐴 or a bubble/solution 𝑆.

Note that in the textual syntax, bubbles are identified with subsolutions
(Definition 7.3.5), and their polarity is determined by their position relative
to branching operators; that is, for any solutions 𝑆, 𝑇 , 𝑈 such that 𝑇 ≺ 𝑈, 𝑆
is either:

▶ neutral if 𝑇 = Γ ⟨𝒮⟩ Δ and 𝑆 ∈ 𝒮;

▶ positive if 𝑇 = Γ� Δ and 𝑆 ∈ Δ;

▶ negative if 𝑇 = Γ� Δ and 𝑆 ∈ Γ.

Then we need to split our symmetric interpretation accordingly, so that
positive bubbles are mapped to implications, and negative bubbles to
exclusions9:

Definition 8.3.3 (Polarized symmetric interpretation) The symmetric
positive interpretation and negative interpretation of solutions J − K+

and J − K− are defined by mutual recursion as follows:

J𝐴K+ = 𝐴 J𝐴K− = 𝐴

JΓ ⟨𝒮⟩ ΔK+ = ⋀
𝑆∈𝒮

J𝑆 ⊍ Γ ⇒ ΔK+ JΓ ⟨𝒮⟩ ΔK− = ⋁
𝑆∈𝒮

J𝑆 ⊍ Γ ⇒ ΔK−

JΓ ⇒ ΔK+ = JΓK− ⊃ JΔK+ JΓ ⇒ ΔK− = JΓK− ⊂ JΔK+

JΓK+ = ⋁
𝐼 ∈Γ

J𝐼K+ JΓK− = ⋀
𝐼 ∈Γ

J𝐼K−

One can easily check that the interpretation of a solution that has no neg-
ative (resp. positive) subsolution will not contain any occurrence of the
exclusion (resp. implication) connective. This will be crucial later to repre-
sent proofs of both intuitionistic, dual-intuitionistic and bi-intuitionistic
logic in the same system.

8.4. Designing for properties

With our new syntax and interpretation of solutions at hand, we can
design a new proof calculus that includes the rules previously discussed
for manipulating polarized bubbles. The rich structure of solutions of-
fers many possibilities in the precise formulation of rules, depending on
the properties we expect from the calculus. We identified six of these
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10: The “in principle” part is important:
more often than not, adding the converse
of a rule only brings unnecessary com-
plexity in proof search, especially in a
user interface that aims for simplicity.

11: Assuming that the calculus is com-
plete (Section 8.7).

12: See also Section 5.1 for a discussion
on this matter.

[242]: Tubella et al. (2019), ‘Introduction
to Deep Inference’

Digression
One could argue that more “seman-
tic” approaches in proof theory have
achieved connective-free explana-
tions of proofs, like strategies in
game semantics or the combinato-
rial proofs of D. Hughes [117]. But
this is more of a side effect than a
goal of these approaches, which in-
tentionally abstract from the syntac-
tic process of building proofs. A no-
table exception is the Girardian line
of works starting from ludics [93]
and culminating in transcendental
syntax [76], where both frameworks
are founded upon the syntacticmech-
anisms of proof search (focusing in
sequent calculus, and unification in
the resolution algorithm of Robin-
son, respectively). Here the aim to
rid proofs of connectives is greatly
emphasized by Girard, but the fo-
cus is again on proofs and not proof
states. Also Girard embraces the full
space of incomplete but also incorrect
proofs, while we still want a frame-
work where proofs are correct by
construction.

[183]: Negri et al. (2001), Structural Proof
Theory

13: Definition 2.1.1 in [242]. The same
definition is used in [241].

14: See the section Globality and locality
in logical systems in [76, Chapter 6].

properties, whose consequences range from aesthetic and theoretical
considerations on paper, to concrete usability matters in a graphical proof
building interface. Let us summarize them, going from the practical to
the theoretical:

Invertibility A rule is invertible when it could in principle be applied in
the converse direction, while staying logically sound10. In other words,
it corresponds to a logical equivalence: when all rules in a (bubble)
calculus are invertible, we get that 𝑆 → 𝑇 implies J𝑆K ≃ J𝑇K. This entails
in particular that a user can apply the rule without fear of turning
a provable goal into an unprovable one11, eliminating an important
source of non-determinism in proof search: the need for backtracking12.

Decomposability We already mentioned this property in Section 8.1 as
one of the main motivations for this chapter: the ability to decompose
all logical connectives “for free”, and thus reason solely on solutions
that comprise only bubbles and atomic formulas. As far as we know, it
has never been identified explicitly in the literature before, although it
can loosely be seen as an extension of the decomposition theorem in the
calculus of structures [242, Theorem 4.1.3].

One reason is that logical connectives are widely considered as primi-
tive in the tradition of mathematical logic: they are the objects of the
reasoning activity, rather than a tool for representing and structur-
ing arguments. Thus the idea of an alternative does not even occur.
But even if it does, it is not clear that it would bring any interesting
viewpoint on the problems usually studied in proof theory. In our case,
it is motivated by a very concrete application: making formal proofs
accessible to a broader audience, by replacing symbolic and linguistic
means of representation by iconic and directly manipulable ones.

Factorizability We say that a proof calculus is factorizable when it
makes it easier to avoid duplicating arguments in subproofs. In Section
7.4, we already remarked that the ability to share hypotheses between
subgoals in BJ enables the factorization of forward reasoning steps at
any stage of the proof construction. With our new symmetric interpre-
tation of multi-conclusion solutions, we will now be able to factorize
backward reasoning steps as well, whichwas in fact themainmotivation
behind the example of Figure 8.2.

Locality There does not seem to be a general consensus onwhat it means
precisely for an inference rule to be local. This terminology has been
employed by various authors in proof theory, in ways that are often
hard to compare. For instance in [183], rules are said to be local because
the contexts of hypotheses involved in a rule are located in the sequents
of that rule, by opposition to natural deduction rules in their labelled
presentation where hypotheses are located in arbitrary distant leaves of
the derivation. In the setting of deep inference, local rules are those that
can be applied without “inspection of expressions of arbitrary size”13.
Finally in his transcendental syntax, Girard evokes a related but more
elusive notion, concerned with the genericity of logical objects involved
in a rule14.

Our conception of locality is related to all the previous ones, although it
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[111]: Guglielmi (2014), Deep Inference

15: Section 4.1 of [18].

16: Whether it is enforced in the syntax
of sequents themselves, or through re-
striction on rules that manipulate conclu-
sions like contraction or the right intro-
duction rule for ⊃.

is guided by the idea of directmanipulation of logical entities by humans,
rather than purely proof-theoretical considerations. For instance, BJ
has some locality in the deep inference sense because all rules are
applicable in arbitrary contexts; but we relax the atomicity constraint
that reduces 𝕀-rules and ℝ-rules to their atomic version, because it
would be unnecessarily restrictive for the purpose of building proofs
manually. Still, we want to avoid as much as possible referring to
generic objects that are not directly related to the manipulated data, in
the spirit of Girard’s locality. A typical example is the elimination rule
∨e for disjunction in natural deduction, corresponding to the ∨− rule
of BJ that involves an arbitrary conclusion Δ. The benefits of locality
from a UX point of view have already been discussed in Section 7.4.

Linearity We consider an inference rule to be linear when it preserves
the number of atomic formulas in solutions. This is a strong require-
ment, which for instance excludes the 𝕀-rules of BJ since they can
insert or remove (even numbers of) atoms. Thus we cannot achieve full
linearity in that sense, but it is still interesting to maximize it.

The first reason ismethodological: by thewords of its creator A. Guglielmi,
“[...] deep inference is obtained by applying some of the main concepts
behind linear logic to the formalisms, i.e., to the rules by which proof
systems are designed.” [111].

The second reason is computational: linearity can enable a measure
on solutions that is strictly decreasing with the application of rules,
avoiding infinite loops during proof search as in the calculus LJT of
Dyckhoff [73].

The third reason is ergonomical: as already remarked by the authors of
the Proof-by-Pointing paradigm15, rules that systematically duplicate
formulas can quickly overload the goal with useless copies, making it
harder to read and navigate.

Symmetry In classical logic, both sequent calculi like LK and deep infer-
ence systems like CoS are known for their very rich symmetries. In fact,
one of our ambitions with bubbles was to bring back the symmetry of
classical logic in a constructive setting, without resorting to linear logic.
This chapter stems in great part from our lack of satisfaction with the
asymmetry at work in the BJ calculus, which looked quite unnatural.
Of course we will not be able to completely eliminate it, but it will be
distilled into the flow rules governing the porosity of bubbles that were
hinted at in Section 8.3, rather than through the arbitrary restriction of
sequents to one conclusion16.

Our treatment of dual-intuitionistic and bi-intuitionistic logic through
blue bubbles is also motivated by this quest for symmetry. It should be
noted that although we use naming conventions for rules that resemble
those of CoS (e.g. with 𝕀-rules), we do not aim for a perfect symmetry
where one can get a complete calculus by simply taking the dual of each
rule. Thus we will content ourselves with the hypothesis/conclusion
symmetry coming from sequent calculus. Interestingly, the calculus
ISgq of Tiu for intuitionistic predicate logic does the opposite, by having
a perfect dual system cISgq, but no symmetries among its switch rules
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[241]: Tiu (2006), ‘A Local System for In-
tuitionistic Logic’

17: Wewill come back to this “paper cuts”
metaphor, first introduced by C. S. Peirce,
in Chapter 9. When saturating the top-
level solution — Peirce called it the sheet
of assertion, the drop expansion process
becomes infinite. I find it to be a beautiful
allegory of the unreachability of global,
unconditional truth: it is only by being
confined to a finite, well-delimited space,
that we can affirm unequivocally our cer-
tainty. As Wittgenstein famously said at
the end of the Tractatus: “Whereof one
cannot speak, thereof one must be silent”.

(the equivalent of our 𝔽-rules) [241].

In the next section we present a core calculus called system B that max-
imizes symmetry, linearity and locality. In our opinion this makes for
a good proof-theoretical foundation, around which variant calculi with
different tradeoffs can be designed.

8.5. Symmetric calculus

8.5.1. Graphical presentation

Like the asymmetric bubble calculus BJ, the rules of system B enjoy both
a sequent-style and a graphical presentation, given respectively in Figure
8.8 and Figure 8.9. The presence of saturated and unsaturated solutions
complicates quite a bit the graphical representation of rules, thus some
explanations are in order:

Saturated solutions In Section 8.2, we mentioned that saturated so-
lutions with no neutral bubbles can be distinguished visually from
unsaturated solutions by painting their background in a different color;
we chose a light green, to suggest that they denote solved subgoals. In
Figure 8.9, we emphasize systematically the distinction by extending
this convention to all saturated solutions.

Generic statuses As can be seen in Figure 8.8, many rules of system B
are generic over branching operators �,�, which determine whether
a solution is saturated or unsaturated, i.e. its status. The challenge is
thus to find an iconic counterpart to the symbols �,�, that fulfills the
same function of meta-variable ranging over solution statuses. Since
we already use the background color to represent the status of concrete
solutions, we chose to do the same with abstract ones: each new color
other than green will stand for the status of the solution associated
to the given location of the canvas. For instance in the f−+↓ rule, the
status of the ambient solution where the rule is applied is denoted by a
light yellow background, while the status of the solution 𝑆 enclosed in
a red bubble is denoted by a light pink background.

Status changes Last but not least, many rules like i↓ change the status
of the ambient solution from unsaturated to saturated: graphically, this
means that the background must become green everywhere, not only in
the portion of the canvas depicted by the rule. At first it might appear
as breaking locality, but it should rather be understood as the result
of a perfectly local and continuous process: one can imagine a literal
drop of green paint that soaks a growing portion of the canvas, until it
reaches an enclosing bubble — for the consistency of the metaphor, let
us say a cut in the papersheet — that stops its progression17.
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𝕀dentity

Γ ⟨⟩ Δ
i↓

Γ, 𝐴 ⇒ 𝐴, Δ
Γ ⟨ ⇒ 𝐴; 𝐴 ⇒ ⟩ Δ

i↑
Γ ⇒ Δ

ℝesource

Γ� Δ
w−

Γ, 𝐼� Δ
Γ� Δ

w+
Γ� 𝐼 , Δ

Γ, 𝐼 , 𝐼� Δ
c−

Γ, 𝐼� Δ
Γ� 𝐼 , 𝐼 , Δ

c+
Γ� 𝐼 , Δ

𝔽low

Γ ⟨𝒮; Γ′ ⟨𝒮 ′⟩ Δ′ ; 𝑆⟩ Δ
f↑

Γ ⟨𝒮; Γ′ ⟨𝒮 ′ ; 𝑆⟩ Δ′⟩ Δ
Γ ⟨Γ′, 𝐼� Δ′ ; 𝒮⟩ Δ

f−↓
Γ, 𝐼 ⟨Γ′ � Δ′ ; 𝒮⟩ Δ

Γ ⟨𝒮; Γ′ � 𝐼 , Δ′⟩ Δ
f+↓

Γ ⟨𝒮; Γ′ � Δ′⟩ 𝐼 , Δ
Γ� (Γ′, 𝐼� Δ′), Δ

f−+↓
Γ, 𝐼� (Γ′ � Δ′), Δ

Γ, (Γ′ � 𝐼 , Δ′)� Δ
f+−↓

Γ, (Γ′ � Δ′)� 𝐼 , Δ
Γ, 𝐼 , (Γ′ � Δ′)� Δ

f−−↑
Γ, (Γ′, 𝐼� Δ′)� Δ

Γ� (Γ′ � Δ′), 𝐼 , Δ
f++↑

Γ� (Γ′ � 𝐼 , Δ′), Δ
Γ, 𝐼� (Γ′ � Δ′), Δ

f−+↑
Γ� (Γ′, 𝐼� Δ′), Δ

Γ, (Γ′ � Δ′)� 𝐼 , Δ
f+−↑

Γ, (Γ′ � 𝐼 , Δ′)� Δ
Γ, (Γ′, 𝐼� Δ′)� Δ

f−−↓
Γ, 𝐼 , (Γ′ � Δ′)� Δ

Γ� (Γ′ � 𝐼 , Δ′), Δ
f++↓

Γ� (Γ′ � Δ′), 𝐼 , Δ

𝕄embrane

Γ ⟨𝒮⟩ Δ
p

Γ ⟨𝒮; ⟨⟩⟩ Δ
Γ ⟨⟩ Δ

p−
Γ, (⟨⟩) ⇒ Δ

Γ ⟨⟩ Δ
p+

Γ ⇒ (⟨⟩), Δ
Γ ⟨𝑆⟩ Δ

a
Γ ⟨⟨𝑆⟩⟩ Δ

Γ, 𝑆� Δ
a−

Γ, (⟨𝑆⟩)� Δ
Γ� 𝑆, Δ

a+
Γ� (⟨𝑆⟩), Δ

ℍeating

Γ� Δ
⊤−

Γ, ⊤� Δ
Γ ⟨⟩ Δ

⊤+
Γ ⇒ ⊤, Δ

Γ ⟨⟩ Δ
⊥−

Γ, ⊥ ⇒ Δ
Γ� Δ

⊥+
Γ� ⊥, Δ

Γ, 𝐴, 𝐵� Δ
∧−

Γ, 𝐴 ∧ 𝐵� Δ
Γ ⟨ ⇒ 𝐴; ⇒ 𝐵 ⟩ Δ

∧+
Γ ⇒ 𝐴 ∧ 𝐵, Δ

Γ ⟨𝐴 ⇒; 𝐵 ⇒ ⟩ Δ
∨−

Γ, 𝐴 ∨ 𝐵 ⇒ Δ
Γ� 𝐴, 𝐵, Δ

∨+
Γ� 𝐴 ∨ 𝐵, Δ

Γ ⟨ ⇒ 𝐴; 𝐵 ⇒ ⟩ Δ
⊃−

Γ, 𝐴 ⊃ 𝐵 ⇒ Δ
Γ� (𝐴 ⇒ 𝐵), Δ

⊃+
Γ� 𝐴 ⊃ 𝐵, Δ

Γ, (𝐴 ⇒ 𝐵)� Δ
⊂−

Γ, 𝐴 ⊂ 𝐵� Δ
Γ ⟨ ⇒ 𝐴; 𝐵 ⇒ ⟩ Δ

⊂+
Γ ⇒ 𝐴 ⊂ 𝐵, Δ

Γ, 𝐴{𝑡/𝑥}� Δ
∀−

Γ, ∀𝑥.𝐴� Δ
Γ� 𝐴, Δ

∀+
Γ� ∀𝑥.𝐴, Δ

Γ, 𝐴� Δ
∃−

Γ, ∃𝑥.𝐴� Δ
Γ� 𝐴{𝑡/𝑥}, Δ

∃+
Γ� ∃𝑥.𝐴, Δ

In the ∀+ and ∃− rules, 𝑥 is not free in Γ, Δ and �.

Figure 8.8.: Sequent-style presentation of system B
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𝕀dentity

𝐴 𝐴 → i↓

→ 𝐴 𝐴 i↑

ℝesource

𝐼 → w− 𝐼 → w+
𝐼 → 𝐼 𝐼 c− 𝐼 → 𝐼 𝐼 c+

𝔽low

𝑇 𝑆 → 𝑇 𝑆 f↑

𝐼 𝑆 → 𝐼 𝑆 f−↓ 𝐼 𝑆 → 𝐼 𝑆 f+↓

𝐼 𝑆 → 𝐼 𝑆 f−+↓ 𝐼 𝑆 → 𝐼 𝑆 f+−↓

𝐼 𝑆 → 𝐼 𝑆 f−−↑ 𝐼 𝑆 → 𝐼 𝑆 f++↑

𝐼 𝑆 → 𝐼 𝑆 f−+↑ 𝐼 𝑆 → 𝐼 𝑆 f+−↑

𝐼 𝑆 → 𝐼 𝑆 f−−↓ 𝐼 𝑆 → 𝐼 𝑆 f++↓

𝕄embrane

→ p

→ p−

→ p+

𝑆 → 𝑆 a

𝑆 → 𝑆 a−

𝑆 → 𝑆 a+

ℍeating

⊤ → ⊤− ⊤ → ⊤+
⊥ → ⊥− ⊥ → ⊥+

𝐴 ∧ 𝐵 → 𝐴 𝐵 ∧− 𝐴 ∧ 𝐵 → 𝐴 𝐵 ∧+

𝐴 ∨ 𝐵 → 𝐴 𝐵 ∨− 𝐴 ∨ 𝐵 → 𝐴 𝐵 ∨+

𝐴 ⊃ 𝐵 → 𝐴 𝐵 ⊃− 𝐴 ⊃ 𝐵 → 𝐴 𝐵 ⊃+

𝐴 ⊂ 𝐵 → 𝐴 𝐵 ⊂− 𝐴 ⊂ 𝐵 → 𝐴 𝐵 ⊂+

∀𝑥.𝐴 → 𝐴{𝑡/𝑥} ∀− ∀𝑥.𝐴 → 𝐴{𝑦/𝑥} ∀+

∃𝑥.𝐴 → 𝐴{𝑦/𝑥} ∃− ∃𝑥.𝐴 → 𝐴{𝑡/𝑥} ∃+

In the ∀+ and ∃− rules, 𝑦 is fresh.

Figure 8.9.: Graphical presentation of system B
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18: If we were to give up on locality, we
could opt for this variant, which gives
better factorizability. In fact we will pre-
cisely do that in Section 8.8.

8.5.2. Sequent rules

Wewill now analyze the various groups of rules of system B, by comparing
them to those of BJ. We start with the groups already found in sequent
calculus:

𝕀dentity A first difference, that we will find in most rules of system B,
is that we rely on the distributive interpretation of conclusions in
solutions. For instance in the i↑ rule, Δ is available potentially in both
subgoals, and we do not need to move it manually: this will be the role
of the 𝔽-rules for red items.

A second difference is that 𝕀-rules are not applicable in arbitrary subso-
lutions, but only unsaturated ones. This will also be the case of some
𝕄-rules and ℍ-rules. In the case of the i↓ rule, it guarantees its locality:
if the conclusion was Γ, 𝐴 ⟨𝒮⟩ 𝐴, Δ, then the distributive semantics
would entail that all subgoals in 𝒮 must be solved at once, despite the
fact that they are not directly related to𝐴18. As for the i↑ rule, restricting
to unsaturated solutions makes the rule invertible, without sacrificing
locality. This will in fact be the case of all rules that create multiple
subgoals.

ℝesource Here we still have weakening and contraction for negative
items (hypotheses), and we also allow them for positive items (conclu-
sions). Note that contrary to the 𝕀-rules which apply only to a formula
𝐴, ℝ-rules apply to an arbitrary item 𝐼, which can either be a formula
or a solution. Combined to the fact that the ambient solution can be
either unsaturated or saturated, this gives the most general and expres-
sive formulation of the rules. We believe that like in CoS, the atomic
version where 𝐼 is restricted to an atomic formula might be sufficient
for completeness.

ℍeating Like the i↑ rule, the ⊥−, ∨− and ⊃− rules become truly local in
system B by letting 𝔽-rules handle the distribution of conclusions in
subgoals. Together with their dual rules ⊤+, ∧+ and ⊃+, they constitute
the saturating ℍ-rules of system B. All other ℍ-rules work in arbitrary
solutions just as in BJ. But thanks to the ability to have multiple conclu-
sions (Section 8.2) and positive bubbles (Section 8.3), both the ∨+ and ⊃+
rules are now invertible: this was the initial motivation for designing
the symmetric bubble calculus.

8.5.3. Bubble rules

We now describe in details the groups of rules that handle specifically the
behavior of bubbles:

𝔽low Compared to BJ where we only had neutral bubbles, the presence
of polarized bubbles in system B creates a mini-combinatorial explo-
sion in the number of possible 𝔽-rules. Indeed, the general scheme is
to consider what polarities of items are allowed to flow through bub-
bles, either inwards or outwards. With 𝑝 item polarities and 𝑏 bubble
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𝑆

𝑆
𝐼

𝑆

𝑆

𝐼

𝐼

𝐼

𝐼

𝐼

𝐼

𝐼

Figure 8.10.: Porosity of bubbles in
system B

20: Hopefully, those are not flaws of our
flow rules, but rather the opposite…

polatities, this makes for a total of 𝑝 × 𝑏 × 2 possible rules. In BJ items
consisted only of positive/negative formulas and neutral bubbles (𝑝 = 3
and 𝑏 = 1), thus we had a total of 6 possible 𝔽-rules. It turns out that
only the f−↓ rule was necessary, and it is also present in system B. Now
with positive and negative bubbles added to the mix (𝑏 = 3), we get
up to a total of 18 possible 𝔽-rules in system B. Out of these, 11 were
identified as being sound logically, and thus we decided to include all
of them in system B.

We have already encountered some of them in Section 8.3: first the f+↓
rule for distributing conclusions in subgoals; but also the f−+↓ and f+−↓
rules, which allow a polarized item to flow into a bubble of opposite
polarity. However to get cut-free completeness, we will also need a
sort of dual of these rules, f++↑ and f−−↑, which allow a polarized item
to flow out of a bubble with the same polarity. Thus in addition to
the duality that swaps polarities (f−+↓ versus f+−↓), we have this new
duality which reverses at the same time the direction of the flow, and
the relationship between polarities (f−+↓ versus f++↑).

Taken together, these 6 rules capture provability in bi-intuitionistic
logic, as will be demonstrated by the soundness and completeness
theorems for system B. By adding any one of the converses to the 4 rules
that define the porosity of polarized bubbles (f−+↑, f+−↑, f−−↓, f++↓),
the system collapses to classical logic. This situation is summarized
in Figure 8.10: as in Figure 7.1, green and orange arrows represent
respectively valid and invalid moves, but in bi-intuitionistic rather than
intuitionistic logic. To recover the latter, one can just ignore all arrows
that cross the blue bubble, which are only useful in dual-intuitionistic
logic. Then the purple arrows represent moves that are valid only in
classical logic. The reader can easily check that there is a total of 18
arrows, and map the green and purple arrows back to the corresponding
𝔽-rules of Figure 8.9.

Remark 8.5.1 Since all polarized items can freely go in and out
of polarized bubbles in classical logic, the latter are useless. In fact,
one could restrict the syntax of solutions to neutral bubbles and
only one polarity of formulas, say conclusions. This corresponds to
the possibility of having one-sided formulations of sequent calculi
for classical logic, by restricting negation to atomic formulas and
extending it to arbitrary formulas through De Morgan dualities19 19: See for instance the one-sided se-

quent calculus in [94]..

In their graphical representation, the bi-intuitionistic 𝔽-rules of system B
are equivalent to the three following topological laws, that we call the
𝔽-laws20:

Fact 8.5.1 (𝔽-laws)

1. Polarized bubbles trap items with a different polarity, and repel
items with the same polarity.

2. Neutral bubbles trap polarized items, and repel neutral items.

3. Polarized bubbles both trap and repel neutral bubbles.
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[25]: Brady et al. (2000), ‘A categorical in-
terpretation of C.S. Peirce’s propositional
logic Alpha’

⟨⟩
p

⟨⟨⟩⟩
p

⟨⟨⟩ ; ⟨⟩⟩
i↓

⟨⟨⟩ ; 𝑞 ⇒ 𝑞⟩
i↓

⟨𝑝 ⇒ 𝑝; 𝑞 ⇒ 𝑞⟩
f+↓

⟨𝑝 ⇒ 𝑝; 𝑞 ⇒ ⟩ 𝑞
f−↓

𝑝 ⟨ ⇒ 𝑝; 𝑞 ⇒ ⟩ 𝑞
⊂+

𝑝 ⇒ 𝑞, 𝑝 ⊂ 𝑞
w+

𝑝 ⇒ 𝑞, 𝑝 ⊂ 𝑞, (⇒)
f++↓

𝑝 ⇒ 𝑞, (⇒ 𝑝 ⊂ 𝑞)
a+

𝑝 ⇒ 𝑞, (⟨ ⇒ 𝑝 ⊂ 𝑞⟩)
p

𝑝 ⇒ 𝑞, (⟨ ⇒ 𝑝 ⊂ 𝑞; ⟨⟩⟩)
i↓

𝑝 ⇒ 𝑞, (⟨ ⇒ 𝑝 ⊂ 𝑞; 𝑟 ⇒ 𝑟⟩)
f−↓

𝑝 ⇒ 𝑞, (𝑟 ⟨ ⇒ 𝑝 ⊂ 𝑞; ⇒ 𝑟⟩)
∧+

𝑝 ⇒ 𝑞, (𝑟 ⇒ ((𝑝 ⊂ 𝑞) ∧ 𝑟))
⊃+

𝑝 ⇒ 𝑞, 𝑟 ⊃ ((𝑝 ⊂ 𝑞) ∧ 𝑟)

Figure 8.11.: A proof of Uustalu’s for-
mula in system B

[204]: Pinto et al. (2009), ‘Proof Search
and Counter-Model Construction for Bi-
intuitionistic Propositional Logic with La-
belled Sequents’

[209]: Rauszer (1974), ‘A Formalization of
the Propositional Calculus of H-B Logic’

In Figure 8.10, the ability of bubbles to trap or repel items correspond
respectively to outward and inward orange arrows. 𝔽-laws are thus
the “negative” counterpart — in the grammatical sense — of 𝔽-rules,
represented by green arrows. The fact that purple arrows are demoted to
orange arrows in bi-intuitionistic logic, can be interpreted as resulting
from their violation of the first 𝔽-law. The second and third 𝔽-laws
characterize the behavior of neutral bubbles, and are respected by all
rules of system B.

In particular, they suggest the addition of a new 𝔽-rule f↑, which allows
to move neutral bubbles out of other neutral bubbles. When looking
at it as a graphical rewriting rule in Figure 8.9, it can be seen as the
act of abstracting the subgoal 𝑇 from its parent subgoal 𝑆, since the
hypotheses and conclusions of 𝑆 cannot be brought to interact with
those of 𝑇 anymore. More generally in bi-intuitionistic logic, all 𝔽-rules
can be understood as abstraction moves, that strengthen the goal by
moving irreversibly an item 𝐼 out of its subgoal 𝑆. In the case of outward
rules (whose name ends with ↑), 𝐼 is brought closer to the root of the
proof tree; and in the case of inward rules (whose name ends with ↓), 𝐼
is brought closer to the leaves of the proof tree.

It would be interesting to try to formalize 𝔽-laws, and more gener-
ally the graphical presentation of system B, with the rigorous tools of
mathematical topology. This has been done for instance in [25] for the
existential graphs of C. S. Peirce (see Chapter 10).

𝕄embrane We still have the popping rule p of BJ, which is now re-
stricted to saturated empty bubbles. We add two popping rules p− and
p+ for popping respectively negative and positive saturated empty bub-
bles. Like the i↓ rule, these have the effect of saturating the ambient
solution, and for the same reasons we thus restrict them to unsaturated
ambient solutions.

The novelty compared to BJ is that we also add so-called absorption
rules {a, a−, a+} for membranes. These rules state that when a bubble
contains only a single neutral bubble, the membrane of the latter can
be absorbed into the membrane of the former. This is mainly useful
when one wants to apply an outward 𝔽-rule to an item that has the
same polarity as the outer bubble, as witnessed by the use of the a+
rule in the proof of Uustalu’s formula in Figure 8.11. This formula was
first introduced in [204] as a counter-example to the cut-elimination
theorem of Rauszer’s sequent calculus for bi-intuitionistic logic [209],
and our initial motivation for introducing absorption rules was precisely
to provide a cut-free proof of this formula in system B.

Later, we realized that there is an interesting symmetry at play between
popping rules and absorption rules. As mentioned in Section 7.4, pop-
ping rules can be understood as resulting from a process of contraction
of membranes into a single point. Dually, absorption rules can be seen
as the result of a process of expansion of the inner bubble towards the
outer bubble. While contraction gets stuck on polarized items because
they cannot cross neutral membranes outwards, expansion gets stuck
on neutral items because they cannot cross neutral membranes inwards.
Thus there is a very natural interplay between 𝕄-rules and 𝔽-laws.
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Bounded Lattices

Heyting
(Intuitionistic)
{f−+↓, f++↑}

Heyting-Brouwer
(Bi-Intuitionistic)

Brouwer
(Dual-Intuitionistic)
{f+−↓, f−−↑}Boolean

(Classical)
{f−+↑, f++↓, f+−↑, f−−↓}

Figure 8.12.: Relationship between the various algebras interpreting system B

8.6. Soundness

8.6.1. Heyting and Brouwer algebras

We are now going to prove the soundness of system B with respect to
various classes of algebras. While the full system is classical and thus
sound only in Boolean algebras, most rules are sound in larger classes
of algebras, namely: Heyting algebras for intuitionistic logic, Brouwer
algebras for dual-intuitionistic logic, and Heyting-Brouwer algebras for
bi-intuitionistic logic. These 4 classes are all instances of bounded lattices,
and their relationship is summarized in the Venn diagram of Figure 8.12.

First we recall the definitions of the various algebras:

Definition 8.6.1 (Bounded lattice) A bounded lattice is a structure
(𝒜 , ≤, ⊤, ⊥, ∧, ∨) such that:

▶ (𝒜 , ≤) is a partial order, i.e. for every 𝑎, 𝑏, 𝑐 ∈ 𝒜 we have:

• 𝑎 ≤ 𝑎;

• if 𝑎 ≤ 𝑏 and 𝑏 ≤ 𝑎 then 𝑎 = 𝑏;

• if 𝑎 ≤ 𝑏 and 𝑏 ≤ 𝑐 then 𝑎 ≤ 𝑐.

▶ ⊥ and ⊤ are respectively the smallest and greatest elements of (𝒜 , ≤),
i.e. for every 𝑎 ∈ 𝒜 we have ⊥ ≤ 𝑎 and 𝑎 ≤ ⊤;

▶ For every pair of elements 𝑎, 𝑏 ∈ 𝒜, 𝑎∨𝑏 is their join (least upper bound)
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and 𝑎 ∧ 𝑏 their meet (greatest lower bound), that is:

• 𝑎 ≤ 𝑎 ∨ 𝑏, 𝑏 ≤ 𝑎 ∨ 𝑏 and 𝑎 ∨ 𝑏 ≤ 𝑐 for all 𝑐 ∈ 𝒜 s.t. 𝑎 ≤ 𝑐 and 𝑏 ≤ 𝑐;

• 𝑎 ∧ 𝑏 ≤ 𝑎, 𝑎 ∧ 𝑏 ≤ 𝑏 and 𝑐 ≤ 𝑎 ∧ 𝑏 for all 𝑐 ∈ 𝒜 s.t. 𝑐 ≤ 𝑎 and 𝑐 ≤ 𝑏.

Remark 8.6.1 As mentioned in the introduction, we only conjecture
the soundness of rules for quantifiers: this would require considering
complete lattices, i.e. with meets and joins for arbitrary sets rather than
just pairs21 21: See for instance [79, Section 4] for a

concise treatment of the soundness and
completeness of intuitionistic and classi-
cal natural deduction for first-order logic
with respect to algebraic semantics.

.

As the notation strongly suggests, the greatest and smallest elements ⊤
and ⊥ will model respectively truth and absurdity, while the meet ∧ and
join ∨ will model conjunction and disjunction. In fact the conditions of
Definition 8.6.1 are very close to the rules of natural deduction for these
connectives, by replacing the sequent operator ⇒ with the partial order
relation ≤. The same idea can be applied to the implication connective,
and adding a corresponding exponential operation ⊃ indeed gives the
definition of a Heyting algebra:

Definition 8.6.2 (Heyting algebra) A Heyting algebra is a structure
(𝒜 , ≤, ⊤, ⊥, ∧, ∨, ⊃) such that (𝒜 , ≤, ⊤, ⊥, ∧, ∨) is a bounded lattice and for
every pair 𝑎, 𝑏 ∈ 𝒜, the exponential 𝑎 ⊃ 𝑏 is the greatest element of the
set {𝑐 ∈ 𝒜 | 𝑐 ∧ 𝑎 ≤ 𝑏}. That is, (𝑎 ⊃ 𝑏) ∧ 𝑎 ≤ 𝑏 and 𝑐 ≤ 𝑎 ⊃ 𝑏 for all 𝑐 ∈ 𝒜
s.t. 𝑐 ∧ 𝑎 ≤ 𝑏.

By dualizing this definition, we get a co-exponential operation ⊂ that
models the exclusion connective, and thus dual-intuitionistic logic in
so-called Brouwer algebras:

Definition 8.6.3 (Brouwer algebra) A Brouwer algebra is a structure
(𝒜 , ≤, ⊤, ⊥, ∧, ∨, ⊂) such that (𝒜 , ≤, ⊤, ⊥, ∧, ∨) is a bounded lattice and for
every pair 𝑎, 𝑏 ∈ 𝒜, the co-exponential 𝑎 ⊂ 𝑏 is the smallest element of the
set {𝑐 ∈ 𝒜 | 𝑏 ≤ 𝑎 ∨ 𝑐}. That is, 𝑏 ≤ 𝑎 ∨ (𝑏 ⊂ 𝑎) and 𝑏 ⊂ 𝑎 ≤ 𝑐 for all 𝑐 ∈ 𝒜
s.t. 𝑏 ≤ 𝑎 ∨ 𝑐.

Then we can model bi-intuitionistic logic, which comprises both impli-
cation and exclusion, by just taking pairs of a Heyting algebra and a
Brouwer algebra on the same bounded lattice:

Definition 8.6.4 (Heyting-Brouwer algebra) A Heyting-Brouwer alge-
bra is a structure (𝒜 , ≤, ⊤, ⊥, ∧, ∨, ⊃, ⊂) such that (𝒜 , ≤, ⊤, ⊥, ∧, ∨, ⊃) is a
Heyting algebra and (𝒜 , ≤, ⊤, ⊥, ∧, ∨, ⊂) is a Brouwer algebra.

Finally, we recover classical logic by collapsing exponentials and co-
exponentials to their classical definitions, giving a characterization of
Boolean algebras:
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[212]: Restall (1997), Extending Intuition-
istic Logic with Subtraction

Definition 8.6.5 A Boolean algebra is a Heyting-Brouwer algebra (𝒜 , ≤
, ⊤, ⊥, ∧, ∨, ⊃, ⊂) such that for every 𝑎, 𝑏 ∈ 𝒜, 𝑎 ⊃ 𝑏 = (⊤ ⊂ 𝑎) ∨ 𝑏 and
𝑎 ⊂ 𝑏 = 𝑎 ∧ (𝑏 ⊃ ⊥).

Remark 8.6.2 Definition 8.6.5 can be shown equivalent to more usual
definitions of Boolean algebras, that are based only on lattice opera-
tions and a primitive complement operation modelling negation; but
including the proof here would lead us out of the scope of this chapter.

In the rest of this chapter, we will freely assimilate formulas with their
interpretation in the various algebras. Indeed, since we only consider the
abstract classes of all algebras and never deal with particular instances,
they will stand in perfect bijection.

Definition 8.6.6 (Semantic entailment) We write 𝐴 ≤X 𝐵 (resp. 𝐴 ≃X
𝐵) to express that 𝐴 ≤ 𝐵 (resp. 𝐴 ≤ 𝐵 and 𝐵 ≤ 𝐴) in every algebra of the
class X . More precisely, X can be one of L, H, B, HB or C, which stand
respectively for bounded lattices, Heyting, Brouwer, Heyting-Brouwer
and Boolean algebras. We write 𝐴 ≤ 𝐵 (resp. 𝐴 ≃ 𝐵) as a shorthand for
𝐴 ≤H 𝐵 (resp. 𝐴 ≃H 𝐵).

8.6.2. Duality

We now prove a number of lemmas that characterize duality both se-
mantically, typically between Heyting algebras and Brouwer algebras,
and syntactically in the rules of system B. This will be useful later on to
shorten some proofs.

Definition 8.6.7 (Dual formula) The dual formula 𝐴† of a formula 𝐴
is defined recursively as follows:

𝑎† = 𝑎

⊤† = ⊥ ⊥† = ⊤

(𝐴 ∧ 𝐵)† = 𝐴† ∨ 𝐵† (𝐴 ∨ 𝐵)† = 𝐴† ∧ 𝐵†

(𝐴 ⊃ 𝐵)† = 𝐵† ⊂ 𝐴† (𝐴 ⊂ 𝐵)† = 𝐵† ⊃ 𝐴†

Fact 8.6.1 (Duality)

▶ 𝐴 ≤H 𝐵 if and only if 𝐵† ≤B 𝐴†

▶ 𝐴 ≤B 𝐵 if and only if 𝐵† ≤H 𝐴†

▶ 𝐴 ≤X 𝐵 if and only if 𝐵† ≤X 𝐴† when X ∈ {HB, C}.

We omit the proof of Fact 8.6.1, but this can easily be obtained from
the soundness and completeness of a symmetric sequent calculus for
bi-intuitionistic logic; see for instance [212, Lemma 2].
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Definition 8.6.8 (Dual solution) The dual solution 𝑆† of a solution 𝑆 is
defined mutually recursively as follows:

(Γ� Δ)† = Δ† �† Γ† (𝑆1 ; … ; 𝑆𝑛)† = 𝑆†1 ; … ; 𝑆†𝑛

𝐴† = 𝐴† (𝐼1, … , 𝐼𝑛)† = 𝐼†1 , … , 𝐼†𝑛

⇒† = ⇒ ⟨𝒮⟩† = ⟨𝒮 †⟩

For contexts, the hole is self-dual: □† = □. This entails in particular that

𝑆† 𝑇† = 𝑆 𝑇
†
.

Graphically, the dual of a solution 𝑆 is 𝑆 where the colors of items have
been swapped — i.e. blue items become red and red items become blue —
and formulas have been dualized (Definition 8.6.7).

Definition 8.6.9 The depth |𝐼| of an item 𝐼 is defined recursively as
follows:

|𝐴| = 0
|Γ ⇒ Δ| = 1 + max

𝐽∈Γ∪Δ
|𝐽|

|Γ ⟨𝒮⟩ Δ| = 1 + max
𝐽∈Γ∪𝒮∪Δ

|𝐽|

Lemma 8.6.1 (Involutivity) 𝐼†† = 𝐼.

Proof. By induction on |𝐼|.

Formula Suppose 𝐼 = 𝐴. Then we conclude by a straightforward induc-
tion on 𝐴.

Unsaturated solution Suppose 𝐼 = Γ ⇒ Δ. Then by definition we have
(Γ ⇒ Δ†)† = (Δ† ⇒ Γ†)† = Γ†† ⇒ Δ††, and we conclude by IH.

Saturated solution Suppose 𝐼 = Γ ⟨𝒮⟩ Δ. Then by definition we have
(Γ ⟨𝒮⟩ Δ†)† = (Δ† ⟨𝒮 †⟩ Γ†)† = Γ†† ⟨𝒮 ††⟩ Δ††, and we conclude by IH.

Lemma 8.6.2 (Shallow rule duality) If 𝑆 ⇀ 𝑇 then 𝑆† ⇀ 𝑇†.

Proof. There is a bijection among the rules of system B, that matches each
rule 𝑟 ∶ 𝑆 → 𝑇 to its dual 𝑟† ∶ 𝑆† → 𝑇†. By involutivity (Lemma 8.6.1), this
bijection is self-inverse: 𝑟†† = 𝑟. It is most easily observed in the graphical
presentation of the rules (Figure 8.9), where looking for the dual rule boils
down to swapping red and blue (and mirroring logical connectives). The
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mapping goes as follows:

i↓ ↔ i↓
i↑ ↔ i↑

w− ↔ w+
c− ↔ c+

f− ↔ f+
f−+↓ ↔ f+−↓
f−−↑ ↔ f++↑
f−+↑ ↔ f+−↑
f−−↓ ↔ f++↓

p ↔ p
p− ↔ p+
a ↔ a

a− ↔ a+

⊤− ↔ ⊥+
⊥− ↔ ⊤+
∧− ↔ ∨+
∨− ↔ ∧+
⊃− ↔ ⊂+
⊂− ↔ ⊃+
∀− ↔ ∃+
∃− ↔ ∀+

Notice that some rules are self-dual, namely the identity rules i↓ and i↑,
and the membrane rules p and a.

Lemma 8.6.3 (Rule duality) If 𝑆 → 𝑇 then 𝑆† → 𝑇†.

Proof. Let 𝑈□, 𝑆0 and 𝑇0 such that 𝑆 = 𝑈 𝑆0 , 𝑇 = 𝑈 𝑇0 and 𝑆0 ⇀ 𝑇0. By

Lemma 8.6.2 we have 𝑆†0 ⇀ 𝑇†0 , and thus 𝑈 † 𝑆†0 → 𝑈 † 𝑇†0 , or equivalently

𝑈 𝑆0
†
→ 𝑈 𝑇0

†
.

Lemma 8.6.4 (Interpretation duality) J𝐼K+† = J𝐼†K− and J𝐼K−† = J𝐼†K+.

Proof. By a straightforward induction on |𝐼|.

Lemma 8.6.5 J𝑆†K+ ≤X J𝑇†K+ if and only if J𝑇K− ≤X J𝑆K− when X ∈
{HB, C}.

Proof. By duality (Fact 8.6.1) we have J𝑇†K+† ≤X J𝑆†K+†, and then by
Lemma 8.6.4 J𝑇††K− ≤X J𝑆††K−. We conclude by involutivity (Lemma
8.6.1).

8.6.3. Shallow soundness

In the following we give a number of (in)equalities that hold in the various
classes of algebras. They can easily be checked by building derivations in
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an adequate sequent calculus.

Fact 8.6.2 (Commutativity) 𝐴 ∨ 𝐵 ≃L 𝐵 ∨ 𝐴 and 𝐴 ∧ 𝐵 ≃L 𝐵 ∧ 𝐴.

Fact 8.6.3 (Idempotency) 𝐴 ∨ 𝐴 ≃L 𝐴 and 𝐴 ∧ 𝐴 ≃L 𝐴.

Fact 8.6.4 (Currying)

𝐴 ⊃ (𝐵 ⊃ 𝐶) ≃ (𝐴 ∧ 𝐵) ⊃ 𝐶
(𝐴 ⊂ 𝐵) ⊂ 𝐶 ≃B 𝐴 ⊂ (𝐵 ∨ 𝐶)

Fact 8.6.5 (Distributivity)

𝐴 ∧ (𝐵 ∨ 𝐶) ≃L (𝐴 ∧ 𝐵) ∨ (𝐴 ∧ 𝐶)
𝐴 ∨ (𝐵 ∧ 𝐶) ≃L (𝐴 ∨ 𝐵) ∧ (𝐴 ∨ 𝐶)
𝐴 ⊃ 𝐵 ∧ 𝐶 ≃ (𝐴 ⊃ 𝐵) ∧ (𝐴 ⊃ 𝐶)
𝐴 ∨ 𝐵 ⊃ 𝐶 ≃ (𝐴 ⊃ 𝐵) ∧ (𝐴 ⊃ 𝐶)
𝐴 ∨ 𝐵 ⊂ 𝐶 ≃B (𝐴 ⊂ 𝐵) ∨ (𝐴 ⊂ 𝐶)
𝐴 ⊂ 𝐵 ∧ 𝐶 ≃B (𝐴 ⊂ 𝐵) ∨ (𝐴 ⊂ 𝐶)

Fact 8.6.6 (Weak distributivity)

(𝐴 ⊃ 𝐵) ∨ 𝐶 ≤ 𝐴 ⊃ (𝐵 ∨ 𝐶)
𝐴 ⊃ (𝐵 ∨ 𝐶) ≤C (𝐴 ⊃ 𝐵) ∨ 𝐶
(𝐴 ∧ 𝐵) ⊂ 𝐶 ≤B 𝐴 ∧ (𝐵 ⊂ 𝐶)
𝐴 ∧ (𝐵 ⊂ 𝐶) ≤C (𝐴 ∧ 𝐵) ⊂ 𝐶

Fact 8.6.7

(𝐴 ∨ 𝐵) ∧ (𝐶 ⊃ 𝐷) ≤ (𝐴 ⊃ 𝐶) ⊃ (𝐵 ∨ 𝐷)
(𝐴 ∨ 𝐵) ∧ (𝐶 ⊃ 𝐷) ≤HB (𝐴 ⊂ 𝐶) ∨ (𝐵 ∨ 𝐷)
(𝐴 ∨ 𝐵) ∧ (𝐴 ⊃ 𝐵) ≃ 𝐵

Fact 8.6.8 (𝐴 ⊂ 𝐵) ⊃ 𝐶 ≤HB 𝐴 ⊃ 𝐵 ∨ 𝐶.

The following definition will be used pervasively to reason by induction
on the tree structure induced by branching operators:

Definition 8.6.10 The depth |� | of a branching operator � is defined
recursively as follows:

| ⇒ | = 0
| ⟨𝒮⟩ | = 1 +max

𝑆∈𝒮
|𝑆|
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Now we can prove a few lemmas that generalize some semantic (in)equal-
ities to the interpretation of solutions with arbitrary branching operators.
All detailed proofs are available in appendix (Section A.1).

Lemma 8.6.6 (Generalized weakening) J𝑆K+ ≤ J𝑆 ⊍ (Γ ⇒ Δ)K+.

Proof. By induction on |� |, with 𝑆 = Γ′ � Δ′.

Lemma 8.6.7 (Generalized contraction) J𝑆 ⊍ (⇒ 𝐼 , 𝐼 )K+ ≃ J𝑆 ⊍ (⇒ 𝐼 )K+

and J𝑆 ⊍ (𝐼 , 𝐼 ⇒)K+ ≃ J𝑆 ⊍ (𝐼 ⇒)K+.

Proof. By induction on |� |, with 𝑆 = Γ� Δ.

Lemma 8.6.8 (Generalized weak distributivity)

JΓ� ΔK+ ∨ J𝐼K+ ≤ JΓ� 𝐼 , ΔK+ (8.4)

JΓ� 𝐼 , ΔK+ ≤C JΓ� ΔK+ ∨ J𝐼K+ (8.5)

JΓ, 𝐼� ΔK− ≤B J𝐼K− ∧ JΓ� ΔK− (8.6)

J𝐼K− ∧ JΓ� ΔK− ≤C JΓ, 𝐼� ΔK− (8.7)

Proof. (8.4) holds by induction on |� |, using the corresponding inequality
from Fact 8.6.6. The proof of (8.5) is the same, except that we use the
converse inequality of Fact 8.6.6 that holds in Boolean algebras. (8.6) and
(8.7) hold by duality from (8.4) and (8.5).

Lemma 8.6.9 (Generalized currying)

JΓ, 𝐼� ΔK+ ≃ J𝐼K− ⊃ JΓ� ΔK+ (8.8)

JΓ� 𝐼 , ΔK− ≃B JΓ� ΔK− ⊂ J𝐼K+ (8.9)

Proof. (8.8) holds by induction on |� |, and (8.9) by duality.

Lastly, we mention a technical property of the rules that will be necessary
for the final proof of soundness to go through:

Fact 8.6.9 (Top-level genericity) If 𝑆 ⇀ 𝑇, then 𝑆⊍(Γ ⇒ Δ) ⇀ 𝑇⊍(Γ ⇒ Δ).

All the previous facts and lemmas can now be used to prove shallow
soundness, i.e. that the interpretation of each rule of system B maps to an
(in)equality in some class of algebras:
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Lemma 8.6.10 (Shallow soundness) If 𝑆 ⇀ 𝑇 then J𝑇 ⊍ (Γ ⇒ Δ)K+ ≤C
J𝑆 ⊍ (Γ ⇒ Δ)K+.

Proof. 𝑆 ⇀ 𝑇 implies J𝑇K+ ≤C J𝑆K+, which is shown by inspection of each
rule of system B (see Section A.1). That we can mix an arbitrary top-level
context Γ ⇒ Δ into 𝑆 and 𝑇 follows from Fact 8.6.9.

Since some rules only hold classically, the statement for the full system is
relative to Boolean algebras. But from the detailed proof in Section A.1,
we can identify two fragments BH and BHB of system B that are sound
respectively for Heyting algebras and Heyting-Brouwer algebras:

Corollary 8.6.11 Let

BHB ≜ B ∖ {f−+↑, f++↓, f+−↑, f−−↓}
BH ≜ BHB ∖ {f+−↓, f−−↑, ⊂−, ⊂+}

Then we have:

▶ 𝑆 ⇀BH 𝑇 implies J𝑇K+ ≤ J𝑆K+

▶ 𝑆 ⇀BHB 𝑇 implies J𝑇K+ ≤HB J𝑆K+

In order to get the last missing fragment BB soundwith respect to Brouwer
algebras, we need dual lemmas that are relative to the negative interpre-
tation J− K− instead of the positive interpretation J− K+, since implication
is replaced by exclusion. To avoid verbosity, we only formulate the main
lemma, and assume that its proof will go through mechanically:

Lemma 8.6.12 (Shallow co-soundness) If 𝑆 ⇀ 𝑇 then J𝑆 ⊍ (Γ ⇒ Δ)K− ≤C
J𝑇 ⊍ (Γ ⇒ Δ)K−.

Then from the (assumed) proof of Lemma 8.6.12 we get:

Corollary 8.6.13 Let BB ≜ BHB ∖ {f−+↓, f++↑, ⊃−, ⊃+}. Then 𝑆 ⇀BB 𝑇
implies J𝑆K− ≤B J𝑇K−.

The full situation is summarized in Figure 8.12.

8.6.4. Contextual soundness

Lemma 8.6.14 (Functoriality) Let X ∈ {H,HB, C}.

▶ J𝐼K+ ≤X J𝐽K+ implies J(⇒ 𝐼 ) ⊍ 𝑆K+ ≤X J(⇒ 𝐽) ⊍ 𝑆K+

▶ J𝐽K− ≤X J𝐼K− implies J(𝐼 ⇒) ⊍ 𝑆K+ ≤X J(𝐽 ⇒) ⊍ 𝑆K+
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Proof. Let 𝑆 = Γ� Δ. We proceed by induction on |� |.

Base case Suppose |� | = 0. Then � = ⇒, and we have

J(⇒ 𝐼 ) ⊍ 𝑆K+ = JΓ ⇒ 𝐼 , ΔK+

= JΓK− ⊃ J𝐼K+ ∨ JΔK+

≤X JΓK− ⊃ J𝐽K+ ∨ JΔK+ (Hypothesis)
= JΓ ⇒ 𝐽 , ΔK+

= J(⇒ 𝐽) ⊍ 𝑆K+

J(𝐼 ⇒) ⊍ 𝑆K+ = JΓ, 𝐼 ⇒ ΔK+

= JΓK− ∧ J𝐼K− ⊃ JΔK+

≤X JΓK− ∧ J𝐽K− ⊃ JΔK+ (Hypothesis)
= JΓ, 𝐽 ⇒ ΔK+

= J(𝐽 ⇒) ⊍ 𝑆K+

Recursive case Suppose | � | > 0. Then � = ⟨𝒮⟩, and for all 𝑆0 =
Γ0 � Δ0 ∈ 𝒮 we have that |� | < |� |. Thus we have

J(⇒ 𝐼 ) ⊍ 𝑆K+ = JΓ ⟨𝒮⟩ 𝐼 , ΔK+

= ⋀𝑆0∈𝒮
J(Γ ⇒ 𝐼 , Δ) ⊍ 𝑆0K+

= ⋀𝑆0∈𝒮
J(⇒ 𝐼 ) ⊍ ((Γ ⇒ Δ) ⊍ 𝑆0)K+

≤X ⋀𝑆0∈𝒮
J(⇒ 𝐽) ⊍ ((Γ ⇒ Δ) ⊍ 𝑆0)K+ (IH)

= ⋀𝑆0∈𝒮
J(Γ ⇒ 𝐽 , Δ) ⊍ 𝑆0K+

= JΓ ⟨𝒮⟩ 𝐽 , ΔK+

= J(⇒ 𝐽) ⊍ 𝑆K+

J(𝐼 ⇒) ⊍ 𝑆K+ = JΓ, 𝐼 ⟨𝒮⟩ ΔK+

= ⋀𝑆0∈𝒮
J(Γ, 𝐼 ⇒ Δ) ⊍ 𝑆0K+

= ⋀𝑆0∈𝒮
J(𝐼 ⇒) ⊍ ((Γ ⇒ Δ) ⊍ 𝑆0)K+

≤X ⋀𝑆0∈𝒮
J(𝐽 ⇒) ⊍ ((Γ ⇒ Δ) ⊍ 𝑆0)K+ (IH)

= ⋀𝑆0∈𝒮
J(Γ, 𝐽 ⇒ Δ) ⊍ 𝑆0K+

= JΓ, 𝐽 ⟨𝒮⟩ ΔK+

= J(𝐽 ⇒) ⊍ 𝑆K+

In order to ease reasoning by induction on contexts, we give a formulation
equivalent to Definition 7.3.2 as a context-free grammar:

Fact 8.6.10 Contexts 𝑆□ are generated by the following grammar:

𝑆□ ⩴ □ ∣ Γ� 𝑆□, Δ ∣ Γ, 𝑆□� Δ ∣ Γ ⟨𝒮; 𝑆□⟩ Δ

Definition 8.6.11 The depth |𝑆□| of a context 𝑆□ is defined recursively
as follows:

|□| = 0
|Γ� 𝑆□, Δ| = |Γ, 𝑆□� Δ| = |Γ ⟨𝒮; 𝑆□⟩ Δ| = 1 + |𝑆□|
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Lemma 8.6.15 (Contextual soundness) If 𝑆 ⇀ 𝑇 then J𝑈 𝑇 ⊍ (Γ ⇒
Δ)K+ ≤C J𝑈 𝑆 ⊍ (Γ ⇒ Δ)K+.

Proof. By induction on |𝑈□|.

Base case Suppose |𝑈□| = 0. Then 𝑈□ = □, and we conclude by shallow
soundness (Lemma 8.6.10).

Positive case Suppose |𝑈□| > 0 and 𝑈□ = Γ′ � 𝑈0□, Δ′. Then by IH we
have J𝑈0 𝑇 K+ ≤C J𝑈0 𝑆 K+, and thus

J(Γ′ � 𝑈0 𝑇 , Δ′) ⊍ (Γ ⇒ Δ)K+ = J(⇒ 𝑈0 𝑇 ) ⊍ (Γ, Γ′ � Δ′, Δ)K+

≤C J(⇒ 𝑈0 𝑆 ) ⊍ (Γ, Γ′ � Δ′, Δ)K+ (Lemma 8.6.14)
= J(Γ′ � 𝑈0 𝑆 , Δ′) ⊍ (Γ ⇒ Δ)K+

Negative case Suppose |𝑈□| > 0 and 𝑈□ = Γ′, 𝑈0□�Δ′. Then by Lemma

8.6.2 we have 𝑆† ⇀ 𝑇†, and thus by IH J𝑈 †
0 𝑇† K+ ≤C J𝑈 †

0 𝑆† K+, or

equivalently J𝑈0 𝑇
†
K+ ≤C J𝑈0 𝑆

†
K+. Then by Lemma 8.6.5 we get

J𝑈0 𝑆 K− ≤C J𝑈0 𝑇 K−, and thus

J(Γ′, 𝑈0 𝑇 � Δ′) ⊍ (Γ ⇒ Δ)K+ = J(𝑈0 𝑇 ⇒) ⊍ (Γ, Γ′ � Δ′, Δ)K+

≤C J(𝑈0 𝑆 ⇒) ⊍ (Γ, Γ′ � Δ′, Δ)K+ (Lemma 8.6.14)
= J(Γ′, 𝑈0 𝑆 � Δ′) ⊍ (Γ ⇒ Δ)K+

Neutral case Suppose |𝑈□| > 0 and 𝑈□ = Γ ⟨𝒮; 𝑈0□⟩ Δ. Then by IH we
have J𝑈0 𝑇 ⊍ (Γ ⇒ Δ)K+ ≤C J𝑈0 𝑆 ⊍ (Γ ⇒ Δ)K+, and thus

JΓ ⟨𝒮; 𝑈0 𝑇 ⟩ ΔK+ = JΓ ⟨𝒮⟩ ΔK+ ∧ J𝑈0 𝑇 ⊍ (Γ ⇒ Δ)K+

≤C JΓ ⟨𝒮⟩ ΔK+ ∧ J𝑈0 𝑆 ⊍ (Γ ⇒ Δ)K+

= JΓ ⟨𝒮; 𝑈0 𝑆 ⟩ ΔK+

Theorem 8.6.16 (Soundness) If 𝑆 → 𝑇 then J𝑇K+ ≤C J𝑆K+.

Proof. By definition of → and Lemma 8.6.15 with Γ = Δ = ⌀.

We also get for free soundness with respect to the negative interpretation,
which we call co-soundness:

Theorem 8.6.17 (Co-soundness) If 𝑆 → 𝑇 then J𝑆K− ≤C J𝑇K−.

Proof. By Lemma 8.6.3 we have 𝑆† → 𝑇†, and thus by soundness J𝑇†K+ ≤C
J𝑆†K+. Then we can conclude by Lemma 8.6.5.
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As for shallow soundness (Corollary 8.6.11 and Corollary 8.6.13), we
can easily generalize the proof of Lemma 8.6.15 to Heyting algebras
and Heyting-Brouwer algebras, and thus extend our soundness result to
intuitionistic and bi-intuitionistic logic:

Corollary 8.6.18

▶ 𝑆 →BH 𝑇 implies J𝑇K+ ≤ J𝑆K+

▶ 𝑆 →BHB 𝑇 implies J𝑇K+ ≤HB J𝑆K+

Proof. Lemma 8.6.10 is the only lemma used in the proof of Lemma 8.6.15
that relies on Boolean algebras. Thus we can easily replace it by Corollary
8.6.11 to get soundness in Heyting-Brouwer algebras.

For soundness in Heyting algebras, we know that the negative case in
the proof of Lemma 8.6.15 will never happen because formulas cannot
contain exclusions. The other cases only depend on Lemma 8.6.10, thus
we can again replace it by Corollary 8.6.11.

Once again in order to extend contextual soundness to dual-intuitionistic
logic, we need to dualize lemmas to the negative interpretation:

Lemma 8.6.19 (Co-functoriality) Let X ∈ {B,HB, C}.

▶ J𝐼K− ≤X J𝐽K− implies J(⇒ 𝐼 ) ⊍ 𝑆K− ≤X J(⇒ 𝐽) ⊍ 𝑆K−

▶ J𝐽K+ ≤X J𝐼K+ implies J(𝐼 ⇒) ⊍ 𝑆K− ≤X J(𝐽 ⇒) ⊍ 𝑆K−

Lemma 8.6.20 (Contextual co-soundness) If 𝑆 ⇀ 𝑇 then J𝑈 𝑆 ⊍ (Γ ⇒
Δ)K− ≤C J𝑈 𝑇 ⊍ (Γ ⇒ Δ)K−.

From the assumed proof of Lemma 8.6.20, we finally get:

Corollary 8.6.21 𝑆 →BB 𝑇 implies J𝑆K− ≤B J𝑇K−.

Combined with the completeness proof of the next section, this will give
us our main result that BH, BB, BHB and B capture exactly provability in
intuitionistic, dual-intuitionistic, bi-intuitionistic and classical logic.

8.7. Completeness

We are now going to prove the completeness of the bi-intuitionistic (and
propositional) fragmentBHB of system B, by simulating the nested sequent
system DBiInt of Postniece. In [206] she shows that this calculus is sound
and complete with respect to another calculus LBiInt, and in Chapter 4



8. Symmetric Bubble Calculi 144

[207]: Postniece (2010), ‘Proof theory and
proof search of bi-intuitionistic and tense
logic’

22: Our presentation of rules is slightly
different from [206]: the contexts in
which rules apply are left implicit, and
thus we do not rely on their polarity. The
counterpart is that rules always apply on
sequents and never on formulas, which
makes them more verbose. Also we do
not rely on the notion of “top-level for-
mulas” of a structure, making the propa-
gation rules yet more verbose.

of her thesis [207] she proves that LBiInt is sound and complete with
respect to the Kripke semantics of bi-intuitionistic logic. Importantly, the
cut rule is shown to be admissible in both systems, through a syntactic
process of cut-elimination in LBiInt. We will rely on this result to obtain
admissibility of the cut rule i↑ in BHB, and by extension in B, BH and 𝐵B. It
might be interesting to have our own internal cut-elimination procedure
for system B, notably to unveil its computational content in the spirit of
the Curry-Howard correspondence. But this would lead us astray from
the purpose of this thesis, and thus we leave this task for future work.

Definition 8.7.1 (Structure) The structures of DBiInt are generated by
the following grammar:

𝑋, 𝑌 ⩴ ⌀ ∣ 𝐴 ∣ (𝑋 , 𝑌 ) ∣ 𝑋 ⇒ 𝑌

The structural connective ‘,’ (comma) is associative and commutative and
⌀ is its unit. We always consider structures modulo these equivalences.

Definition 8.7.2 (Structure translation) The translation 𝑋• of a struc-
ture 𝑋 as a multiset of items Γ is defined recursively as follows:

⌀• = ⌀ (𝑋 , 𝑌 )• = 𝑋•, 𝑌 •
𝐴• = 𝐴 (𝑋 ⇒ 𝑌)• = 𝑋• ⇒ 𝑌•

Note that the translation (−)• is clearly injective: in fact structures are
isomorphic to multisets of items that contain only unsaturated subsolu-
tions. Thus from now on, we will always apply the translation implicitly,
and rely on meta-variables 𝑋, 𝑌 to distinguish structures from arbitrary
solutions when necessary.

The rules of DBiInt are given in Figure 8.13. Note that like bubble cal-
culi, DBiInt is truly a deep inference system, in the sense that rules can
be applied on sequents nested arbitrarily deep inside structures22. The
main difference lies in the fact that proofs in DBiInt are trees built up by
composing traditional inference rules with multiple premisses, while we
use saturated solutions (neutral bubbles) to internalize the tree structure
of proofs inside solutions. This gives a lot of expressive power since sat-
urated solutions can themselves be nested in unsaturated solutions and
thus polarized, a phenomemon which cannot be simulated in DBiInt. This
is why we did not prove soundness in Section 8.6 by simulating directly
system B inside DBiInt, and conversely this will explain the ease with
which DBiInt can be simulated inside system B.

Definition 8.7.3 (Syntactic entailment) We say that Γ entails Δ in a
fragment F of rules of system B, written Γ F Δ, if and only if Γ ⇒ Δ →∗

F⟨⟩.
Similarly, we say that𝑋 entails 𝑌 in a fragment F of rules ofDBiInt, written
𝑋 F 𝑌, if and only if 𝑋 ⇒ 𝑌 has a proof in DBiInt using only rules in F.

Lemma 8.7.1 (Simulation of DBiInt) If 𝑋 DBiInt 𝑌 then 𝑋 BHB∖{i↑}
𝑌.
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Identity

id
𝑋,𝐴 ⇒ 𝐴, 𝑌

Propagation

𝑋,𝐴, (𝑋 ′, 𝐴 ⇒ 𝑌 ′) ⇒ 𝑌
⇒L1𝑋, (𝑋 ′, 𝐴 ⇒ 𝑌 ′) ⇒ 𝑌

𝑋 ⇒ (𝑋 ′ ⇒ 𝐴, 𝑌 ′), 𝐴, 𝑌
⇒R1𝑋 ⇒ (𝑋 ′ ⇒ 𝐴, 𝑌 ′), 𝑌

𝑋 , 𝐴 ⇒ (𝑋 ′, 𝐴 ⇒ 𝑌 ′), 𝑌
⇒L2𝑋,𝐴 ⇒ (𝑋 ′ ⇒ 𝑌 ′), 𝑌

𝑋 , (𝑋 ′ ⇒ 𝐴, 𝑌 ′) ⇒ 𝐴, 𝑌
⇒R2𝑋, (𝑋 ′ ⇒ 𝑌 ′) ⇒ 𝐴, 𝑌

Logic

⊥L𝑋, ⊥ ⇒ 𝑌
⊤R𝑋 ⇒ ⊤, 𝑌

𝑋 , 𝐴 ∧ 𝐵, 𝐴, 𝐵 ⇒ 𝑌
∧L𝑋,𝐴 ∧ 𝐵 ⇒ 𝑌

𝑋 ⇒ 𝐴,𝐴 ∧ 𝐵, 𝑌 𝑋 ⇒ 𝐵,𝐴 ∧ 𝐵, 𝑌
∧R𝑋 ⇒ 𝐴 ∧ 𝐵, 𝑌

𝑋 , 𝐴 ∨ 𝐵, 𝐴 ⇒ 𝑌 𝑋,𝐴 ∨ 𝐵, 𝐵 ⇒ 𝑌
∨L𝑋,𝐴 ∨ 𝐵 ⇒ 𝑌

𝑋 ⇒ 𝐴, 𝐵, 𝐴 ∨ 𝐵, 𝑌
∨R𝑋 ⇒ 𝐴 ∨ 𝐵, 𝑌

𝑋 , 𝐴 ⊃ 𝐵 ⇒ 𝐴, 𝑌 𝑋 , 𝐴 ⊃ 𝐵, 𝐵 ⇒ 𝑌
⊃L𝑋,𝐴 ⊃ 𝐵 ⇒ 𝑌

𝑋 ⇒ (𝐴 ⇒ 𝐵), 𝐴 ⊃ 𝐵, 𝑌
⊃R𝑋 ⇒ 𝐴 ⊃ 𝐵, 𝑌

𝑋 , 𝐴 ⊂ 𝐵, (𝐴 ⇒ 𝐵) ⇒ 𝑌
⊂L𝑋,𝐴 ⊂ 𝐵 ⇒ 𝑌

𝑋 ⇒ 𝐴,𝐴 ⊂ 𝐵, 𝑌 𝑋 , 𝐵 ⇒ 𝐴 ⊂ 𝐵, 𝑌
⊂R𝑋 ⇒ 𝐴 ⊂ 𝐵, 𝑌

Figure 8.13.: Rules of the deep nested sequent system DBiInt

Proof. By induction on the derivation of 𝑋 DBiInt 𝑌. The detailed proof is
available in appendix (Section A.2).

Assuming that the consequence relation of the Kripke semantics used by
Postniece to prove the completeness of DBiInt coincides with the order
relation of Heyting-Brouwer algebras, we have the following fact:

Fact 8.7.1 (Completeness of DBiInt) If 𝐴 ≤HB 𝐵 then 𝐴 DBiInt 𝐵.

Combined with the simulation of DBiInt from Lemma 8.7.1, this gives us
the cut-free completeness of BHB:

Theorem 8.7.2 (Cut-free completeness) If 𝐴 ≤HB 𝐵 then 𝐴 BHB∖{i↑}
𝐵.

In fact there are other rules of BHB that were not used in the simulation,
namely the 𝔽-rule f↑, and all 𝕄-rules other than p. Combined with the
soundness of BHB (Corollary 8.6.18), this gives us the following admissi-
bility theorem:
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⟨⟩
p

⟨⟨⟩⟩
p+

⟨ ⇒ (⟨⟩)⟩
i↓

⟨ ⇒ (𝐴 ⇒ 𝐴)⟩
f++↓

⟨ ⇒ (𝐴 ⇒), 𝐴⟩
f+↓

⟨ ⇒ (𝐴 ⇒)⟩ 𝐴
p

⟨ ⇒ (𝐴 ⇒); ⟨⟩⟩ 𝐴
⊥−

⟨ ⇒ (𝐴 ⇒); ⊥ ⇒ ⟩ 𝐴
⊥+

⟨ ⇒ (𝐴 ⇒ ⊥); ⊥ ⇒ ⟩ 𝐴
⊃+

⟨ ⇒ ¬𝐴; ⊥ ⇒ ⟩ 𝐴
⊃−

¬¬𝐴 ⇒ 𝐴

Figure 8.14.: Proof of DNE in system B

Theorem 8.7.3 (Admissibility) If BHB
𝐴 then

BHB∖{i↑,f↑,p−,p+,a,a−,a+}
𝐴.

Although these rules are admissible, they do not seem to be derivable
from other rules. We believe that they might help in making proofs more
compact by improving factorizability, just like the cut rule does in standard
proof formalisms.

As in sequent calculus, every rule of system B other than i↑ satisfies the
subformula property:

Fact 8.7.2 (Subformula property) If 𝑆 →B∖{i↑} 𝑇 and 𝐴 ≺ 𝑇, then there
is a formula 𝐵 such that 𝐴 is a subformula of 𝐵 and 𝐵 ≺ 𝑆.

Thanks to Theorem 8.7.3, we thus get that BHB is analytic. This has
many nice consequences, a well-known one being that when searching
for a proof of a given solution 𝑆, one does not need to come up with
or “invent” a formula that does not appear in 𝑆. This is crucial when
designing automated decision procedures because it reduces drastically
the search space, but is also desirable in the setting of interactive proof
building. Indeed with our Proof-by-Action interpretation of bubble calculi
(Section 7.4), this means that all logical reasoning can be performed
by direct manipulation of what is already there. Then the cut rule i↑ is
indispensable, but confined to a role of theory building: it allows the
creation of lemmas, in order to make proofs shorter and more tractable
by humans.

As noted in [206], one can simply ignore rules related to the exclusion
connective ⊂ to get a sound and complete system for intuitionistic logic.
In DBiInt, these rules are the introduction rules ⊂R and ⊂L, as well as
the propagation rules ⇒L1 and ⇒R2. Indeed, propagation rules are only
useful in combination with introduction rules, since ⊂L is the only rule
of DBiInt that can introduce nested sequents in negative contexts. The
situation is similar in system B, and in fact the proof of Lemma 8.7.1
shows that the intuitionistic fragment BH is sufficient to simulate DBiInt
without the aforementioned rules. The dual argument can be made for
dual-intuitionistic logic, and thus we obtain (cut-free) intuitionistic (resp.
dual-intuitionistic) completeness of BH (resp. 𝐵B):

Corollary 8.7.4 (Intuitionistic completeness)

▶ If 𝐴 ≤H 𝐵 then 𝐴 BH∖{i↑} 𝐵.

▶ If 𝐴 ≤B 𝐵 then 𝐴 𝐵B∖{i↑}
𝐵.

Figure 8.14 shows a proof of the double-negation elimination law (DNE)
¬¬𝐴 ⇒ 𝐴 in system B. Since BH is intuitionistically complete, the well-
known double-negation embedding of classical logic into intuitionistic
logic tells us that ¬¬𝐴 is provable in BH (and a fortiori in system B) if
𝐴 is a theorem of classical logic. Combining the two previous facts, we
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obtain the classical completeness of system B. In fact the proof of DNE
only relies on the use of the f++↓ rule, so we can make the following
stronger statement:

Corollary 8.7.5 (Classical completeness) If 𝐴 is a theorem of classical
logic, then

BH∪{f++↓} 𝐴.

Proof. By the double-negation embedding, we have BH
¬¬𝐴. Then we

can build the following derivation:

⟨⟩
p

⟨ ⟨⟩ ⟩
DNE

⟨¬¬𝐴 ⇒ 𝐴⟩
f+↓

⟨¬¬𝐴 ⇒ ⟩ 𝐴
p

⟨ ⟨⟩ ; ¬¬𝐴 ⇒ ⟩ 𝐴
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⟨ ⇒ ¬¬𝐴; ¬¬𝐴 ⇒ ⟩ 𝐴

i↑
⇒ 𝐴

Alas this argument makes use of the i↑ rule. Note however that the reason
we chose to prove completeness of 𝐵HB by simulating a rather exotic
system like DBiInt, was that standard sequent calculi for bi-intuitionistic
logic like the one of Rauszer [209] are not cut-free complete; and in our
literature review, DBiInt was the cut-free system closest in its syntax and
rules to system B. But for classical logic we do not have this limitation, and
thus it is straightforward to simulate directly a cut-free sequent calculus
such as G3cp inside system B [183]:

Lemma 8.7.6 (Simulation ofG3cp) If Γ G3cp Δ, then Γ
BH∪{f++↓}∖{i↑} Δ.

Proof. By induction on the G3cp derivation. See Section A.2 for the de-
tailed proof.

Lastly, let us mention a recent result of Goré and Shillito [101], where
they uncover a distinction between a weak and a strong consequence
relation in the semantics of bi-intuitionistic logic. Although they define
the same set of theorems, these two relations have different properties at
the meta-level, and thus the authors argue that they define two distinct
logics, called respectively wBIL and sBIL. At the end of the article, they
conjecture that the various existing calculi in the literature are sound and
complete for wBIL, including a calculus designed by Postniece. Since our
completeness proof is by simulation of the system DBiInt also designed
by Postniece, we follow this conjecture regarding the completeness of
the bi-intuitionistic fragment 𝐵HB of system B. For soundness, we would
need to clarify the relationship between Heyting-Brouwer algebras and
these consequence relations, which stem instead from an analysis of the
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23: Lemma 5.2.4 in Postniece’s thesis
[207].

24: To ensure that it is not invertible, we
would need additionally to find a counter-
model that invalidates the converse in-
equality.

25: For quantifier rules, we conjecture
that as in sequent calculus, the rules
{∀+, ∃−} are invertible, while the rules
{∀−, ∃+} are not. And as in sequent cal-
culus, this can be remedied by system-
atically duplicating the instantiated for-
mula.

Kripke semantics of bi-intuitionistic logic. Since system B offers a very
expressive syntax, it would be interesting to investigate its ability to
capture both wBIL and sBIL, maybe by using distinct sets of 𝔽-rules. Goré
and Shillito suggest that a framework that captures both provability and
refutability “in one shot” would be needed, and we believe system Bmight
just provide this: indeed a derivation 𝑆 →∗⟨⟩ can be read both as a proof
of J𝑆K+ and a refutation of J𝑆K−.

8.8. Invertible calculus

8.8.1. Modifying rules

An important thing to note, is that all the rules of DBiInt are invertible23.
Thus it follows immediately from Lemma 8.7.1 that one can just take the
translation of the rules of DBiInt in system B, and get a complete, fully
invertible calculus. But this would be a waste of the expressive power and
nice properties of system B, like linearity and locality.

Instead, we will target precisely the non-invertible rules of system B, and
modify only those. From the proof of Lemma 8.6.10, we can identify which
rules of system B are invertible, and which are probably not. Indeed if
the soundness of a rule only relies on a chain of equivalences, then it is
necessarily invertible. On the contrary if it relies on an inequality, then it
is probably not invertible24.

Fact 8.8.1 (Invertibility of system B) All rules in the fragment 𝕀 ∪
{c−, c+} ∪ 𝕄 ∪ ℍ ∖ {⊃−, ⊂+} of system B are invertible.

Thus the only remaining rules of system B that are (most probably) not
invertible are the weakening rules {w−,w+}, all the 𝔽-rules, and the ℍ-
rules {⊃−, ⊂+} that apply an implication/exclusion25. In Figure 8.15 we
define the Binv calculus, which results from the following modifications
to the previous rules:

Weakening Here we follow a standard technique in sequent calculus,
that merges the weakening rule in all terminal rules of the calculus
(i.e. rules with no premisses). In bubble calculi, the notion of premiss
is captured by neutral bubbles; thus we incorporate weakenings in all
rules that solve subgoals by saturating solutions. Those are the rules
{i↓, p−, p+}, which for the occasion have also been generalized to arbi-
trary solutions. Indeed in system B we restricted them to unsaturated
solutions to make them local, but here the weakenings break locality
anyway, and the general version improves factorizability by solving
instantly all subgoals inside �.

Flow As shown by the simulation of Lemma 8.7.1, the propagation rules
ofDBiInt combine an instance of contraction followed by the application
of a 𝔽-rule on the duplicated formula. Thus we can make all 𝔽-rules of
system B invertible by systematically duplicating the moved formula,
although this breaks linearity.
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𝕀dentity

⟨⟩
i↓

Γ, 𝐴� 𝐴, Δ

𝔽low

Γ, 𝐼 ⟨Γ′, 𝐼� Δ′ ; 𝒮⟩ Δ
f−↓

Γ, 𝐼 ⟨Γ′ � Δ′ ; 𝒮⟩ Δ
Γ ⟨𝒮; Γ′ � 𝐼 , Δ′⟩ 𝐼 , Δ

f+↓
Γ ⟨𝒮; Γ′ � Δ′⟩ 𝐼 , Δ

Γ, 𝐼� (Γ′, 𝐼� Δ′), Δ
f−+↓

Γ, 𝐼� (Γ′ � Δ′), Δ
Γ, (Γ′ � 𝐼 , Δ′)� 𝐼 , Δ

f+−↓
Γ, (Γ′ � Δ′)� 𝐼 , Δ

Γ, 𝐼 , (Γ′, 𝐼� Δ′)� Δ
f−−↑

Γ, (Γ′, 𝐼� Δ′)� Δ
Γ� (Γ′ � 𝐼 , Δ′), 𝐼 , Δ

f++↑
Γ� (Γ′ � 𝐼 , Δ′), Δ

Γ, 𝐼� (Γ′, 𝐼� Δ′), Δ
f−+↑

Γ� (Γ′, 𝐼� Δ′), Δ
Γ, (Γ′ � 𝐼 , Δ′)� 𝐼 , Δ

f+−↑
Γ, (Γ′ � 𝐼 , Δ′)� Δ

Γ, 𝐼 , (Γ′, 𝐼� Δ′)� Δ
f−−↓

Γ, 𝐼 , (Γ′ � Δ′)� Δ
Γ� (Γ′ � 𝐼 , Δ′), 𝐼 , Δ

f++↓
Γ� (Γ′ � Δ′), 𝐼 , Δ

𝕄embrane

Γ ⟨𝒮⟩ Δ
p

Γ ⟨𝒮; ⟨⟩⟩ Δ
⟨⟩

p−
Γ, (⟨⟩)� Δ

⟨⟩
p+

Γ� (⟨⟩), Δ
Γ ⟨𝑆⟩ Δ

a
Γ ⟨⟨𝑆⟩⟩ Δ

Γ, 𝑆� Δ
a−

Γ, (⟨𝑆⟩)� Δ
Γ� 𝑆, Δ

a+
Γ� (⟨𝑆⟩), Δ

ℍeating

Γ� Δ
⊤−

Γ, ⊤� Δ
Γ� (⟨⟩), Δ

⊤+
Γ� ⊤, Δ

Γ, (⟨⟩)� Δ
⊥−

Γ, ⊥� Δ
Γ� Δ

⊥+
Γ� ⊥, Δ

Γ, 𝐴, 𝐵� Δ
∧−

Γ, 𝐴 ∧ 𝐵� Δ
Γ ⟨ ⇒ 𝐴; ⇒ 𝐵 ⟩ Δ

∧+
Γ ⇒ 𝐴 ∧ 𝐵, Δ

Γ ⟨𝐴 ⇒; 𝐵 ⇒ ⟩ Δ
∨−

Γ, 𝐴 ∨ 𝐵 ⇒ Δ
Γ� 𝐴, 𝐵, Δ

∨+
Γ� 𝐴 ∨ 𝐵, Δ

Γ, 𝐴 ⊃ 𝐵 ⟨ ⇒ 𝐴; 𝐵 ⇒ ⟩ Δ
⊃−

Γ, 𝐴 ⊃ 𝐵 ⇒ Δ
Γ� (𝐴 ⇒ 𝐵), Δ

⊃+
Γ� 𝐴 ⊃ 𝐵, Δ

Γ, (𝐴 ⇒ 𝐵)� Δ
⊂−

Γ, 𝐴 ⊂ 𝐵� Δ
Γ ⟨ ⇒ 𝐴; 𝐵 ⇒ ⟩ 𝐴 ⊂ 𝐵, Δ

⊂+
Γ ⇒ 𝐴 ⊂ 𝐵, Δ

Γ, ∀𝑥.𝐴, 𝐴{𝑡/𝑥}� Δ
∀−

Γ, ∀𝑥.𝐴� Δ
Γ� 𝐴, Δ

∀+
Γ� ∀𝑥.𝐴, Δ

Γ, 𝐴� Δ
∃−

Γ, ∃𝑥.𝐴� Δ
Γ� 𝐴{𝑡/𝑥}, ∃𝑥.𝐴, Δ

∃+
Γ� ∃𝑥.𝐴, Δ

In the ∀+ and ∃− rules, 𝑥 is not free in Γ, Δ and �.

Figure 8.15.: Rules for the invertible bubble calculus Binv
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26: Such rules are sometimes called
super-switch rules in the deep inference
literature, see for instance [108, Chap-
ter 8, Section 2.1].

27: This problem is solved trivially in the
flower calculus (Chapter 10), by formu-
lating a so-called pollination relation.

A downside of propagation rules in the style of DBiInt, is that they
create a lot of unnecessary copies of the moved formula 𝐴. Often, one
will want to move 𝐴 in a subgoal/supergoal at a distance 𝑛 in the proof
tree, with 𝑛 > 1. Usually this would be performed by 𝑛 applications
of 𝔽-rules, which by linearity indeed just move the formula. But with
propagation rules, 𝑛 copies of 𝐴 will be created, with one copy in each
subgoal met on the path to the destination.

To prevent this, one would need a way to copy formulas at an arbitrary
distance. This can be done with inference rules that are doubly deep,
by encoding the path to the destination as a second context inside the
context where the rule is applied26. It turns out to be hard to express in
bubbles, because this requires a syntactic way to describe contexts that
correspond to valid flow paths of arbitrary length27. But in principle
it should be feasible, and would enable a more comfortable use in a
Proof-by-Action setting.

Note also that we removed the f↑ rule of Figure 8.8. Indeed even after
turning it into a propagation rule, the moved copy of the duplicated
subgoal 𝑆 cannot be weakened because it lives in a neutral bubble.
Thus the rule stays non-invertible, and cannot be included in Binv.
Fortunately, we showed that it is admissible in Theorem 8.7.3, so this is
not problematic.

Implication/Exclusion The last source of non-invertibility is the ℍ-
rules ⊃− and ⊂+, that respectively allow to use an implication hypothesis,
and prove an exclusion conclusion. Here we can just duplicate the
implication/exclusion formula, as in the introduction rules of DBiInt.
Also like in DBiInt, we removed the contraction rules c− and c+, which
are now merged with these two rules as well as the 𝔽-rules. Although
contraction rules are invertible, they induce a lot of complexity in proof
search, because it is hard to predict the (occurrences of) formulas that
need to be duplicated, and one can duplicate ad infinitum. Thus it is
preferable to design a calculus where they are admissible. But unlike
what is done in DBiInt, we did not incorporate contraction in other
ℍ-rules. Thus we cannot simulate exactly all the introduction rules of
DBiInt in Binv.

Remark 8.8.1 We also changed the ⊥− and ⊤+ rules, so that they create
polarized, saturated empty solutions. This makes them both local, and
generic with respect to the saturation status of the ambient solution.
The previous version can then be simulated by combination with the
popping rules p− and p+.

These modifications only change superficially the proof of soundness, and
thus we do not redo it. As for completeness, we would need to prove that
the contraction rules are admissible, in order to solve the aforementioned
problem of simulating DBiInt’s introduction rules:

Lemma 8.8.1 (Admissibility of contraction)
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▶ If Binv
𝑆 Γ, 𝐴, 𝐴� Δ , then Binv

𝑆 Γ, 𝐴� Δ .

▶ If Binv
𝑆 Γ� 𝐴,𝐴, Δ , then Binv

𝑆 Γ� 𝐴, Δ .

Note that it is sufficient to prove admissibility of contraction on formulas,
rather than on arbitrary items. Indeed we only need it to simulate the
introduction rules of DBiInt, which always duplicate formulas. For now
we only conjecture completeness of Binv, since it not clear what method
should be used to prove Lemma 8.8.1. In her thesis [207, Lemma 5.2.3],
Postniece does a proof by induction on the depth of the derivation, relying
on the fact that all introduction rules of DBiInt preserve the principal
formula; but this is precisely what we are trying to avoid with our version
of the rules. Of course, if we either give up on this constraint or include
contraction rules in Binv, then we immediately get our desired result:
Binv is a fully invertible calculus, where the same fragments as system B
capture intuitionistic, dual-intuitionistic, bi-intuitionistic and classical
logic.

8.8.2. Semi-automated proof search

In the intuitionistic (propositional) fragment of Binv, a canonical way to
search for a proof of a formula𝐴 consists in the following 5 phases, applied
successively in a loop until the saturated empty solution is reached:

Decomposition Decompose 𝐴 by applying recursively ℍ-rules, until ei-
ther atoms, negative implications ⊃, negative disjunctions ∨, or positive
conjunctions ∧ are reached.

Indeed since the ⊃− rule duplicates the implication, it cannot be used to
decompose it. Regarding the ∨− and ∧+ rules, they can only be applied
when the formula is in an unsaturated solution. A first option is to let the
system automatically distribute them in all unsaturated subsolutions
that are reachable, so that it can keep decomposing them. But this might
create an explosion in the number of created subgoals. Another option
is to let the user manually decompose them. We believe this second
option is preferable, if one wants to keep control over the proof search
process. Indeed, it is only natural that the user should be able to choose
which cases to consider when building a proof.

Absorption Apply the absorption rules {a, a−, a+} wherever possible.
This will prevent atoms from being unnecessarily stuck on neutral
membranes in the next phase. This phase can also be trivially auto-
mated.

Linking Try to bring together every pair of dual atoms, so that they
annihilate each other in an instance of the i↓ rule. This is reminiscent
of our drag-and-drop actions of Chapter 2. In a touch-based GUI, rather
than dragging a complex formula onto another complex formula, one
could pinch together the two atoms: if there is no 𝔽-law stucking one
of the atoms on some membrane (orange arrows in Figure 8.10), then
the pinch succeeds, and the system saturates the subsolution at the
location where the pinch ends by applying the i↓ rule. Thus the user



8. Symmetric Bubble Calculi 152

can choose the subgoal to solve by controlling the destination of the
pinch, which can be seen as a more symmetric and powerful version of
DnD actions. Generally though, one will want to apply the following
rule of thumb (pun intended):

Fact 8.8.2 (Rule of thumb) When linking a pair of dual atoms, follow
these steps:

1. put your thumb on the outermost atom, and your index on the
innermost atom;

2. try to bring your index to your thumb;

3. if you get stuck on a membrane, try to bring your thumb to your
index;

4. if you again get stuck, then give up on this pair.

The point of this heuristic, is that it should maximize the factorization
of the proof: when it succeeds, it will solve the subgoal that is located
closest to the root of the goal, maximizing the size of the pruned branch,
and thus the number of subgoals solved in one go. It can also be used
to completely automate this phase.

Popping Pop every saturated empty bubble in the goal with the rules
{p, p−, p+}. This phase can also be trivially automated, and corresponds
to the unit elimination phase in subformula linking (Section 3.3).

Application When there are no more pairs of dual atoms, or all the
remaining pairs have been given up (last step of the rule of thumb), let
𝑆 be the current goal, and

imp(𝑆) ≜ {(𝑆0□, 𝐴, 𝐵,�, Δ) | 𝑆 = 𝑆0 Γ, 𝐴 ⊃ 𝐵� Δ for some Γ}

If imp(𝑆) = ⌀, then 𝑆 should not be provable, and we can stop the
proof search procedure. Otherwise for each (𝑆0□, 𝐴, 𝐵,�, Δ) ∈ imp(𝑆),
we might need to apply the ⊃− rule on 𝐴 ⊃ 𝐵, either directly in 𝑆0□ if
� = ⇒ andmax𝐼 ∈Δ |𝐼| = 0, otherwise in some subgoal 𝑇 𝑈 ∈ � ∪Δ. This
is where the proof needs insight, because it is not clear if the antecedant
𝐴 will be provable with the context available in 𝑆0□ or in one of the
𝑇□, or if the hypothesis 𝐵 is even needed at all.

A first possibility is to let the user rely on her intuition, by choosing
manually a specific subsolution in imp(𝑆) to apply the ⊃− rule upon.
Additionally, she might need to determine a subgoal 𝑇 𝑈 in which 𝐴 is
provable, and first duplicate 𝐴 ⊃ 𝐵 in 𝑇□ before applying ⊃−. This will
always be possible with the 𝔽-rules f−↓ and f−+↓. Ideally, she would
also pick the most general 𝑇□ to factorize the proof, by minimizing its
depth |𝑇□| (Definition 8.6.11).

A second possibility is to duplicate eagerly every 𝐴 ⊃ 𝐵 of imp(𝑆) in
every unsaturated subsolution of 𝑆 where it can be so, and then apply
⊃− on all the newly created copies. To avoid an explosion of the size
of 𝑆, the system should mark all the copies as used, so that during the
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next Application phases, all the already used copies are ignored, and
only the original occurrence of 𝐴 ⊃ 𝐵 is considered.

Then we can restart the procedure, by applying the Decomposition
phase to every copy of 𝐴 and 𝐵.

Remark 8.8.2 By adopting ℍ-rules in the style of DBiInt’s introduc-
tion rules, we would make the Decomposition phase, and thus the
whole procedure inoperable, since the Linking phase depends crucially
on it. Allowing contraction rules would also jeopardize the potential
completeness of the procedure, because contraction might be needed
at unpredictable moments, and on unpredictable formulas.

A strength of our proof search procedure, compared to the state-of-the-
art in other formalisms, is that most of its automation preserves the size
(number of atoms) and the structure of the goal:

▶ In the Decomposition phase, if we opt out of the automatic distri-
bution of negative ∨ and positive ∧, then the system will only apply
ℍ-rules that split logical connectives, and create a partition of the
atoms of the goal by enclosing them in bubbles. Thus the size of the
goal is kept intact, and the structure modified but in a controlled, local
way.

▶ In theAbsorption phase, we simply merge some membranes together,
preserving both the size and the structure of the goal.

▶ In the Linking phase, the particular way in which we use 𝔽-rules
ensures that we only decrease the number of atoms. Indeed, if we
assume as discussed earlier that we have “super-flow” rules that copy
at a distance, then either:

1. the link is successful, and the two created copies of atoms are
immediately destroyed by the i↓ rule. Then the solved subsolution
is entirely pruned out, decreasing the size of the goal; or

2. the link fails, but then we can instantly “undo” it. Or rather, one
should consider that rules are applied only when the link is suc-
cessful.

▶ In the Popping phase, entire branches of the goal are pruned out,
decreasing the size of the goal.

Then only the automation of the Application phase (and part of the
Decomposition phase) is susceptible of both significantly increasing the
size of the goal, and altering its global structure. But as is the case for every
phase, the user can easily opt out of this automation, and do the reasoning
manually when it is necessary to keep the goal understandable by humans.
Typically in an educational setting, it should be quite instructive to have
the ability to perform Decomposition and Linking by hand (literally).
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⊤ ↦

⊥ ↦

𝐴 ∧ 𝐵 ↦ 𝐴 𝐵

𝐴 ∨ 𝐵 ↦ 𝐴 𝐵

𝐴 ⊃ 𝐵 ↦ ?

𝐴 ⊂ 𝐵 ↦ 𝐴 𝐵

⊤ ↦

⊥ ↦

𝐴 ∧ 𝐵 ↦ 𝐴 𝐵

𝐴 ∨ 𝐵 ↦ 𝐴 𝐵

𝐴 ⊃ 𝐵 ↦ 𝐴 𝐵

𝐴 ⊂ 𝐵 ↦ ?

Figure 8.16.: Mapping of formulas to
equivalent solutions

Γ, (Δ, 𝐴 ⇒ 𝐵) ⇒ 𝐶
e

Γ, (Δ ⇒ 𝐴 ⊃ 𝐵) ⇒ 𝐶

Figure 8.17.: Left introduction rule for ⊃
in JN

8.8.3. Failure of full iconicity

Because of the implicit contraction in the rules ⊃− and ⊂+, one cannot fully
decompose a formula into an equivalent solution by deterministically
applying a sequence ofℍ-rules (and possibly 𝔽-rules, to distribute positive
conjunctions and negative disjunctions). Thus Binv fails to be fully iconic,
because it relies on the symbolic connectives ⊃ and ⊂ to represent logical
statements.

This can be understood as resulting from the inability of solutions to rep-
resent natively negative implications and positive subtractions, although
they can represent natively all other polarizations of connectives. This
is illustrated by the mapping of Figure 8.16 from polarized formulas to
equivalent solutions, which is really just the ℍ-rules of system B (Figure
8.9) where the right-hand solution is enclosed in a bubble of the corre-
sponding polarity. The reader can easily check that if 𝐴 is mapped to 𝑆,
then J𝐴K+ ≃ J𝑆K+.

This seems to be a fundamental limitation of system B, caused by its
symmetric treatment of implication and subtraction. For instance in the
nested sequent calculus JN of Guenot for implicative logic [108, Chapter
3], which is fully decomposable, nested sequents that appear in negative
contexts are interpreted as implications, as illustrated by the left intro-
duction rule e (Figure 8.17). But we cannot do this in system B, because
this would conflict with the subtractive reading of negative solutions,
i.e. J𝐴 ⇒ 𝐵K− = J𝐴K− ⊂ J𝐵K−. In Chapter 10, the problem will also be
solved through an asymmetric treatment of nested sequents, capturing
only intuitionistic logic instead of bi-intuitionistic logic. But this is a small
price to pay, since bi-intuitionistic logic does not (currently) have any
applications in the realm of interactive theorem proving.
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The System of Existential Graphs which I have now sufficiently
described — or, at any rate, have described as well as I know how,
leaving the further perfection of it to others — greatly facilitates the
solution of problems of Logic, as will be seen in the sequel, not by any
mysterious properties, but simply by substituting for the symbols in
which such problems present themselves, concrete visual figures
concerning which we have merely to say whether or not they admit
certain describable relations of their parts. Diagrammatic reasoning is
the only really fertile reasoning. If logicians would only embrace this
method, we should no longer see attempts to base their science on the
fragile foundations of metaphysics or a psychology not based on logical
theory; and there would soon be such an advance in logic that every
science would feel the benefit of it.

Charles S. Peirce, Prolegomena to an Apology for Pragmaticism, 1906

C. S. Peirce is famous for his contributions to symbolic logic, including
among others his eponymous law for classical logic, and his pioneering
work on the algebra of relations and quantification [199]. But far less
widespread are his achievements in the realm of diagrammatic logic,
or iconic logic as Shin calls it [221]. He dedicated a large chunk of his
life to the investigation of graphical systems, starting in 1882 with the
entitative graphs and culminating with the existential graphs (EGs), which
he developed from 1896 until his death in 1914 [214]. Interestingly, Peirce
perceived existential graphs as his “chef d’oeuvre”, and that they “ought to
be the logic of the future”1.

Recent works have started to realize this vision: for example Sowa based
his conceptual graphs for computerized knowledge representation on
EGs [225]; Brady, Trimble [25, 26], Gianluca, Rocco [35] and Haydon,
Sobociński [115] proposed various reconstructions of EGs through the
lens of topology and category theory; lastly, Melliès, Zeilberger [170] and
Bonchi et al. [23] refined respectively the interpretations of [26] and
[115] by making further connections with linear logic [92] and linear
bicategories. The full story has yet to be told, but we hope that our work
will constitute one more step towards the vision Peirce had in mind.

In this chapter, we propose a self-contained exposition of EGs, that tries
at the same time to be faithful to the original presentation of the systems
by Peirce, and more modern in some aspects of their formalization. The
goal will be to familiarize the reader with the unique approach to proofs
inherent to EGs, which can be difficult to relate to more standard frame-
works like Hilbert and Gentzen proof systems, and even deep inference
proof systems like the calculus of structures. This shall prove useful to get
a good understanding of the historical and technical foundations behind
our flower calculus, to be introduced in Chapter 10.
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[202]: Peirce (1906), ‘Prolegomena to an
Apology for Pragmaticism’

[31]: Brünnler et al. (2001), ‘A Local Sys-
tem for Classical Logic’

[261]: Zeman (1964), ‘The Graphical
Logic of C. S. Peirce’

Digression
At the end of his life, Peirce pushed
his experimentations beyond the
scope of logic in the contemporary
sense of the word, with so-called tinc-
tured existential graphs [214, Chap-
ter 6]. Roughly, the idea was to repre-
sent a variety of modes of expression
with different background shades on
the sheet of assertion, not unlike our
graphical depiction of saturated solu-
tions in Figure 8.9, or the background
colors used for the various kinds of
text boxes in this document. In ad-
dition to the usual act of asserting
the truth of a proposition, one could
for instance express a subjective or
objective possibility, or signify an in-
terrogative or imperative mood, all
by using different colors. For print
in publications, he would in fact use
heraldic tinctures instead of colors,
hence the “tinctured” qualificative.
The precise rules, meaning and pur-
pose of tinctured EGs remain elusive
to this day, and might constitute the
most esoteric part of Peirce’s work.

The chapter is organized as follows: we start in Section 9.1 by present-
ing the diagrammatic syntax of the system Alpha of EGs for classical
propositional logic. In Section 9.2, we introduce the inference rules of
Alpha for manipulating EGs, called illative transformations by Peirce. In
Section 9.3, we give an equivalent formulation of the syntax and rules
of Alpha as a multiset rewriting system. In Section 9.4, we formalize a
variant of the (De)iteration principle described by Peirce in [202] that
eliminates the need for the Double−cut principle, and discuss how it was
motivated by Peirce’s quest for illative atomicity. In Section 9.5, we take
advantage of our reformulation to give a simple proof of soundness for
Alpha, based on a direct truth-evaluation of graphs. In Section 9.6 we give
a syntactic proof of completeness for Alpha, by simulating the calculus
of structures SKS of Brünnler and Tiu [31]. In this way, Alpha is shown
to have subsystems that inherit the locality property of SKS, and where
the Deletion and Insertion rules are respectively admissible for provability
and refutability, making Alpha analytic. In Section 9.7, we illustrate the
original mechanism of lines of identity used by Peirce to handle quantifiers
and equality in his Beta system. We end in Section 9.8 by showing how
to recast lines of identity in a more traditional binder-based syntax.

9.1. Alpha graphs

Peirce designed in total three systems of EGs, which he called respectively
Alpha, Beta and Gamma. They were invented chronologically in that or-
der, which also captures their relationship in terms of complexity: Alpha
is the foundation on which the other systems are built, and can today be
understood as a diagrammatic calculus for classical propositional logic.
As we will see in Section 9.7, Beta corresponds to a variable-free repre-
sentation of predicate logic without function symbols, and with primitive
support for equality. The last system Gamma is more experimental, with
various unfinished features that have been interpreted as attempts to
capture modal [261] and higher-order logics.

9.1.1. Icons

Sheet of Assertion The most fundamental concept of Alpha is the sheet
of assertion, denoted by SA thereafter. It is the space where statements
are scribed by the reasoner, typically a sheet of paper, a blackboard, or a
computer display. In a proof assistant, this would either be the buffer of a
text editor where the user writes her theories, or the proof view displaying
goals to be proved, depending on who the reasoner is (the user or the
computer, respectively). This last analogy suggests an important property
of SA: it must offer a virtually infinite amount of space, so that one can
perform as much reasoning as needed. Just like a Turing machine has an
infinite tape, so that one can perform as much computation as needed. In
symbolic logic, this is captured by the fact that formulas, although usually
finite, can have an unbounded size.
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2: Not to be confused with the name
given to instances of the cut rule in se-
quent calculus.

3: Note the resemblance with the trans-
lation of formulas as solutions in Figure
8.16, in particular for negative disjunc-
tions.

[221]: Shin (2002), The Iconic Logic of
Peirce’s Graphs

As its name indicates, scribing a statement on SA amounts to asserting its
truth. Thus very naturally, the empty SA where nothing is scribed will
denote vacuous truth, traditionally symbolized by the formula ⊤.

Juxtaposition As we know from natural deduction, asserting the truth
of the conjunction 𝑎 ∧ 𝑏 of two propositions 𝑎 and 𝑏, amounts to asserting
both the truth of 𝑎 and the truth of 𝑏. In Alpha, there is no need to introduce
the symbolic connective ∧, since one can just write both 𝑎 and 𝑏 at distinct
locations on SA:

𝑎 𝑏

More generally, one might consider any two portions 𝐺 and 𝐻 of SA, and
interpret their juxtaposition 𝐺 𝐻 as signifying that we assert the truth of
their conjunction.

Cuts Asserting the truth of the negation ¬𝑎 of a proposition 𝑎, amounts
to denying the truth of 𝑎. Using the original notation of Peirce, this is
done in Alpha by enclosing 𝑎 in a closed curve like so:

𝑎

Peirce called such curves cuts2, because they ought to be seen as literal
cuts in the paper sheet that embodies SA. Note that they do not need to
be circles: all that matters is that 𝑎 is in a separate area from the rest of
SA. This is precisely the content of the Jordan curve theorem in topology,
and thus we can take cuts to be arbitrary Jordan curves. This entails in
particular that cuts cannot intersect each other, but can be freely nested
inside each other. Then as for juxtaposition, one can replace 𝑎 by any
graph 𝐺 — i.e. any portion of SA — as long as the cut does not intersect
other cuts in 𝐺.

9.1.2. Relationship with formulas

With just these two icons, juxtaposition and cuts, one can therefore assert
the truth of any proposition made up of conjunctions and negations and
built from atomic propositions. Importantly, the only symbols needed for
doing so are letters 𝑎, 𝑏, 𝑐 … denoting atomic propositions, that is “pure”
symbols that do not have any logical meaning associated to them.

Now, it is well-known that {∧, ¬} is functionally complete, meaning that any
boolean truth function can be expressed as the composition of boolean
conjunctions and negations. In particular, the symbolic definitions of
absurdity ⊥ ≜ ¬⊤, classical disjunction 𝐴 ∨ 𝐵 ≜ ¬(¬𝐴 ∧ ¬𝐵) and classical
implication 𝐴 ⊃ 𝐵 ≜ ¬(𝐴 ∧ ¬𝐵) can be expressed by the following three
graphs3:

𝐴 𝐵 𝐴 𝐵

Thus one can easily encode any propositional formula into a classically
equivalent graph. Conversely, one can translate any graph into a classi-
cally equivalent formula, as has been shown for instance in [221]. In fact,
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[159]: Ma et al. (2019), ‘A graphical deep
inference system for intuitionistic logic’

𝑎 𝑏 𝑐

Figure 9.1.: Peirce’s notation for empha-
sizing negative areas

𝑎 𝑏 𝑐

Figure 9.2.: Drawing negative areas lit-
erally in negative

[226]: Sowa (2011), ‘Peirce’s Tutorial on
Existential Graphs’

4: A similar device is used in the deep
inference system ISp of Tiu [241], where
the polarities of substructures are at-
tached to them as explicit labels.

there are usually many possible formula readings of a given graph. One
reason is that juxtaposition of graphs is a variadic operation, as opposed
to conjunction of formulas which is dyadic: thus formulas that only dif-
fer up to associativity are associated to the same graph. Also, thanks to
the topological nature of SA, juxtaposition is naturally commutative: the
locations of two juxtaposed graphs do not matter, as long as they live in
the same area delimited by a cut. The combination of these properties
is called the isotropy of SA in [159], and is captured in traditional proof
theory through the use of (multi)sets for modelling contexts in sequents.

Remark 9.1.1 In a first version of EGs called entitative graphs, Peirce
used juxtaposition to denote disjunction instead of conjunction. Al-
though {∨, ¬} is also functionally complete, Peirce quickly grew un-
satisfied with these entitative graphs, stating that EGs formed “a far
preferable system on the whole” (Ms 280, pp. 21–22). I find it interesting
that more contemporary works in logic have also made the choice to
take conjunction and negation as their primitive operations, like the
tensorial logic of Melliès [168], or the realizability constructions for
linear logic in Girard’s transcendental syntax [77].

9.2. Illative transformations

Deep inference In order to have a proof system, one needs a collection
of inference rules for deducing true statements from other true statements.
In Alpha, inference rules are implemented by what Peirce called illative
transformations on graphs. In modern terminology, they correspond to
rewriting rules that can be applied to any subgraph. By measuring the
depth of a subgraph as the number of cuts in which it is enclosed, we
thus have that the rules of Alpha are applicable on subgraphs of arbitrary
depth. This makes Alpha deserving of the title of deep inference system.

Polarity Before introducing the rules, let us make a small change in
the way we depict the graphs. The idea is that we want to visualize
more clearly the polarity of any subgraph 𝐺, understood as the parity of
the number of cuts (negations) enclosing 𝐺. In one of his unpublished
manuscripts (Ms 514), Peirce did this by shading negative areas — those
enclosed in an odd number of cuts — in gray, as illustrated in Figure 9.1
[226]. Unconstrained by hand-drawing, one could adopt an even more
iconic notation, where negative areas are literally drawn like a negative
in photography, by inverting white and black. The example of Figure 9.1
would then be drawn as in Figure 9.2. However in this thesis, we will stick
to Peirce’s notation, which is both less straining for the eyes by being less
contrasted, and more economical in ink for print.

A nice advantage of these notations is that they remove the need to
count manually the number of cuts starting from the top-level of SA: the
information is immediately apparent in the subgraph, and thus completely
local4.
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5: Of course Peirce did not show com-
pleteness formally in the sense of mod-
ern model theory, although Sowa argues
in [226, Section 4] that he had started to
develop his own model theory equiva-
lent to Tarski’s (but closer to the game-
theoretical semantics of Hintikka [121]).

6: Even though computers did not exist
yet in Peirce’s time! In fact, Martin Irvine
argues in [130] that Peirce anticipated
many developments in computer science
and information technologies, such as
the use of electrical switches to compute
boolean functions, whose invention is
usually attributed to Claude Shannon.

7: This might also be related to the no-
tion of justified move in game semantics,
where the nesting of cuts in the context
𝐻□ corresponds to a sequence of alter-
nating moves between Player and Oppo-
nent.

8: This is closely related to the kind of
factorization at work in bubble calculi.
In particular, the fact that the factorizing
occurence is higher and usually outside
of a cut is very reminiscent of the out-
ward flow rules of system B (those whose
name ends with ↑ in Figure 8.8); and the
deduplicating effect makes Deiteration
even closer to the variant of the same
rules in Binv (Figure 8.15).

Remark 9.2.1 Whereas in bubble calculi the concept of polarity was
understood as a property of objects — i.e. utterances of propositions —
by assigning them opposite colors (blue and red), the previous notations
for graphs suggest that it is instead a property of the space in which
objects reside. This is more natural from the point of view of game
semantics: for instance in a game of chess, the two players can easily
exchange their roles by switching places or rotating the board by 180°,
rather than by repainting laboriously each piece in the opposite color.

Inference rules Quite surprisingly, Peirce showed that one only needs
five inference rules to get a strongly complete system, in the sense that if
the truth of a graph 𝐺 entails the truth of another graph 𝐻, then 𝐺 can
always be rewritten into 𝐻 by applying exclusively instances of these five
rules5. A nice way to understand the rules of Alpha is as edition principles,
like the most basic actions one executes pervasively when editing text on
a computer6. The first two rules are the most powerful and mysterious in
all systems of EGs, and can be applied in areas of any polarity:

Iteration (Copy & Paste) A graph 𝐺 may be duplicated at any depth in-
side of a juxtaposed graph 𝐻. Using our notation for holed contexts
from previous chapters, this can be represented schematically like so:

𝐺 𝐻 → 𝐺 𝐻 𝐺 𝐺 𝐻 → 𝐺 𝐻 𝐺

It can be seen as a deep generalization of the axiom rule of sequent
calculus, where the top-level occurrence of 𝐺 justifies the occurrence of
𝐺 located inside 𝐻□7. Note that while in the axiom rule, the justifying
(resp. justified) occurrence must be a negative hypothesis (resp. a posi-
tive conclusion), the Iteration rule also allows the opposite relationship
of a conclusion justifying a hypothesis, thus exhibiting one aspect of
the cut rule of sequent calculus.

Deiteration (Factorization) Formally, this is the converse of Iteration:

𝐺 𝐻 𝐺 → 𝐺 𝐻 𝐺 𝐻 𝐺 → 𝐺 𝐻

Its interpretation as an edition principle is a bit trickier, but it can be
understood as a form of sharing of information. Indeed, it roughly says
that a subgraph 𝐺 can be erased if it already occurs “higher” on SA.
Also this does precisely the opposite of copy-pasting, which is known
in software engineering as factorization8.

Compared to sequent calculus, it can be seen as a deep generalization
of the contraction rule, the base case where 𝐻□ = □ giving 𝐺 𝐺 → 𝐺.

The applicability of the next two rules depends on the polarity of the
subgraph’s area:

Insertion Any graph 𝐺 may be inserted in a negative area:

→ 𝐺

This is akin to a weakening rule, stating that one might add (useless) hy-
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[241]: Tiu (2006), ‘A Local System for In-
tuitionistic Logic’

9: This is reminiscent of the absorption
rules {a, a−, a+} of system B, as is very
clear in their graphical presentation (Fig-
ure 8.9).

𝑎 𝑏 𝑎𝑎

Insertion
−−−−−−−→ 𝑎 𝑎𝑎

Iteration
−−−−−−−→ 𝑎𝑎

Iteration
−−−−−−−→ 𝑎

Insertion
−−−−−−−→

Double−cut
−−−−−−−−−→

Figure 9.3.: A derivation of Peirce’s law
in Alpha

potheses at will. The closest equivalent we found in the deep inference
literature is indeed the weakening rule wl↓ of ISp in [241].

Deletion Any graph 𝐺 occurring in a positive area may be erased:

𝐺 →

This is exactly the dual of Insertion, stating that if a proposition is
known to be true, then one might as well refrain from asserting it. It
is the only non-analytic rule of the system when reading rules from
conclusion to premiss, since 𝐺 does not already appear in the right-hand
side. It is thus strongly related to the cut rule of sequent calculus, which
it can simulate together with the Deiteration rule.

The last rule is more of a space management principle that works as an
isotopy, i.e. a bidirectional topological deformation:

Double−cut A double-cut may be inserted or erased around any graph 𝐺:

𝐺 ↔ 𝐺 𝐺 ↔ 𝐺

The bidirectional arrow ↔ expresses that the rule can be applied in
both directions. Logically, this corresponds to the classical equivalence
¬¬𝐴 ≃ 𝐴, where in particular the deletion direction ¬¬𝐴 ⊃ 𝐴 is not
true intuitionistically. Topollogically, the double-cut forms a ring, that
separates 𝐺 from the rest of SA while preserving its polarity. Then the
two directions of the rules can be understood as the following dual
homotopies:

Contraction The ring is created by cutting SA around 𝐺, and then
contracting the inner area where 𝐺 resides on itself. This effectively
“pulls apart” 𝐺 from the rest of the sheet, leaving apparent in the
empty space of the ring whatever lies behind SA. Peirce thought
of positive and negative areas as being the recto and verso of SA,
respectively. Thus in the positive version of the rule (on the left), the
ring would represent negative empty space on the verso of SA.

Expansion The ring is erased by expanding the inner area where 𝐺
resides towards the outer border of the ring. Unfolding the metaphor
to its conclusion, the inner area is then “glued back” to the rest of
SA9.

Figure 9.3 shows a derivation of Peirce’s law with the rules of Alpha. Note
that the direction of arrows has been reversed compared to the above
presentation: as usual, we prefer to read rules from conclusion to premiss,
starting from the goal to prove — here the graph associated to the formula
((𝑎 ⊃ 𝑏) ⊃ 𝑎) ⊃ 𝑎 — that we reduce to the empty goal, represented by
the empty SA. Also, the reader unfamiliar with EGs might find it hard to
convince herself that all the steps followed in the derivation are sound
logically. We suggest her to either build a syntactic intuition for the rules
by practicing them on various tautologies of propositional logic, or to
wait until we give a formal semantic proof of soundness in Section 9.5.



9. Existential Graphs 161

10: See for instance the Tree Existential
Graphs of Roberts and Pronovost [215],
or [25, Section 2.2].

[202]: Peirce (1906), ‘Prolegomena to an
Apology for Pragmaticism’

9.3. Graphs as multisets

9.3.1. Syntax

As noted by various authors10, the nesting of cuts on SA induces a tree
structure on graphs: each cut constitutes a node, whose children are either
leaves corresponding to atomic propositions residing in the area of the
cut, or nodes corresponding to nested cuts. Empty cuts have no children,
and thus also form leaves of the tree. Then SA may be seen either as a
forest of atoms and cuts, or as a rooted tree whose root represents SA, and
is distinguished from cut nodes. This can be captured by the following
grammar:

SA ⩴ 𝐺 𝐺, 𝐻 , 𝐾 ⩴ 𝑔1, … , 𝑔𝑛 𝑔, ℎ, 𝑘 ⩴ 𝑎 ∣ [𝐺]

Example 9.3.1 The graph of Figure 9.1 may be written as either one
of the following expressions:

[𝑎, [[𝑏], 𝑐]] [𝑎, [𝑐, [𝑏]]] [[[𝑏], 𝑐], 𝑎] [[𝑐, [𝑏]], 𝑎]

To abstract from the specific order in which nodes are sequenced in this
notation, and thus represent faithfully the isotropy of SA, we formally
define the graphs of Alpha as (recursive) finite multisets:

Definition 9.3.1 (Graph) Given a denumerable set of atomic propositions
𝒜, the sets of nodes 𝐍𝜶 and graphs 𝐆𝜶 are defined mutually inductively
as follows:

(Spot) If 𝑎 ∈ 𝒜, then 𝑎 ∈ 𝐍𝜶;

(Area) If 𝐺 ⊂ 𝐍𝜶 is a finite multiset, then 𝐺 ∈ 𝐆𝜶;

(Enclosure) If 𝐺 ∈ 𝐆𝜶, then [𝐺] ∈ 𝐍𝜶.

The terminologywritten in parentheses is the one used by Peirce to denote
the same concepts in [202]. Note the similarity with the definitions of
bubbles (enclosures) and solutions (areas). The main difference between
graphs and solutions, is that in the former formulas (ions) are restricted
to atoms (spots), and they are not polarized (see Remark 9.2.1).

9.3.2. Rules

The five rules of Alpha can now be formalized as multiset rewriting rules
on graphs. But first, we need a notion of context in which rules apply:

Definition 9.3.2 (Context) A context 𝐺□ is a graph which contains
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Alpha

𝐾 𝐺, 𝐻
Iter

𝐾 𝐺, 𝐻 𝐺

𝐾 𝐺, 𝐻 𝐺
Deit

𝐾 𝐺, 𝐻

𝐾−
Ins

𝐾− 𝐺

𝐾+ 𝐺
Del

𝐾+

𝐾 𝐺
Dcut↓

𝐾 [[𝐺]]

𝐾 [[𝐺]]
Dcut↑

𝐾 𝐺

Figure 9.4.: Inductive presentation of the
rules of Alpha

exactly one occurrence of a special node written □, called its hole. The
hole can always be filled (substituted) with any other graph 𝐻 or context
𝐾□, producing a new graph 𝐺 𝐻 or context 𝐺 𝐾□ . In particular, filling
with the empty graph ⌀ will yield a graph 𝐺 , which is just 𝐺□ with its
hole removed.

Then to reason by induction on contexts, we need to define formally how
to measure their depth. It turns out the only way to increase the depth of
an graph is to insert cuts, and thus the depth of a context coincides with
its number of inversions, i.e. the number of cuts enclosing its hole:

Definition 9.3.3 (Depth) The depth |− | of contexts is defined recursively
by:

|𝐻 ,□| = 0
|𝐻 , [𝐺□]| = |𝐺□| + 1

Definition 9.3.4 (Inversions) The number of inversions of a context
𝐺□ is defined by inv(𝐺□) = |𝐺□|.

Definition 9.3.5 (Polarity) We say that a context 𝐺□ is positive if
inv(𝐺□) is even, and negative otherwise. We denote positive and negative
contexts respectively by 𝐺+□ and 𝐺−□.

The inductive version of the rules of Alpha is given in Figure 9.4, as a set of
unary inference rules on graphs: when read top-down, they correspond to
usual inferences from premiss to conclusion, as we first introduced them
in Section 9.2. But as already mentioned there, we will rather emphasize
their bottom-up reading: then they express the different ways in which
one may choose to simplify a goal.
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[202]: Peirce (1906), ‘Prolegomena to an
Apology for Pragmaticism’

11: We will give a positive answer to the
question of analyticity in Alpha at the
end of Section 9.6.

Definition 9.3.6 (Derivation) We write 𝐺 → 𝐻 to indicate a rewrite
step in Alpha, that is an instance of some rule from Figure 9.4 with 𝐻
as premiss and 𝐺 as conclusion. A derivation 𝐺 →𝑛 𝐻 is a sequence of
rewrite steps 𝐺0 → 𝐺1… → 𝐺𝑛 with 𝐺0 = 𝐺, 𝐺𝑛 = 𝐻 and 𝑛 ≥ 0. Generally
the length 𝑛 of the derivation does not matter, and we just write 𝐺 →∗ 𝐻.

Definition 9.3.7 (Proof) A proof of a graph 𝐺 is a derivation 𝐺 →∗ ⌀.

9.4. Illative atomicity

9.4.1. Insertions and omissions

A remarkable feat of Peirce’s rules, on which he insisted very much,
is that they are only expressed in terms of insertions and omissions of
graphs on SA. He thought that those were the smallest steps in which
reasoning could be dissected, making his system extremely appropriate
for analytical purposes. This is summarized in the following excerpt [202,
p. 533]:

In the first place, the most perfectly analytical system of rep-
resenting propositions must enable us to separate illative
transformations into indecomposable parts. Hence, an illative
transformation from any proposition, A, to any other, B, must
in such a system consist in first transforming A into AB, fol-
lowed by the transformation of AB into B. For an omission and
an insertion appear to be indecomposable transformations
and the only indecomposable transformations.

We already considered this question of decomposing logical inferences
into their most elementary operations, when reflecting on the graphical
presentation of BJ at the end of Section 7.3.4. In this setting, the most basic
insertions and omissions we could find were not logically sound, whereas
in Alpha they are. This is quite promising, and prompts us to reevalute
our conception of illative atomicity, understood precisely as the definition
of what it means for an inference step to be (the most) elementary.

Note that this should be distinguished from the notion of analyticity, as
popularized by Gentzen with the subformula property in sequent calcu-
lus: the latter is concerned with the analysis of propositions into their
constituents through inference rules, while here we are interested in the
analysis of the inference rules themselves11. However there is a concep-
tual bottleneck, because inference rules are usually conceived by definition
as the smallest constituents of proofs in a given proof system; and it is
very hard to formulate objective criteria for comparing rules in different
proof systems.

Apart from Peirce, the only other logician we know of who attempted
to give a non-trivial account of illative atomicity is J.-Y. Girard. In fact it
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[93]: Girard (2001), ‘Locus Solum’

can be argued that it is the main motivation behind most of his works
starting from linear logic, which became explicit in ludics with his slogan
“From the rules of logic to the logic of rules” [93].

9.4.2. Computational aspects

Linearity There is an intriguing remark by Peirce in [202, pp. 536–537]
about the atomicity of the rules presented thus far, that seems to have
gone unnoticed in the literature on EGs. Indeed, Peirce argues that the
principle of Double−cut “cannot be assumed as an undeduced Permission”
— i.e. a primitive rule of the system — because when the double-cut is
removed, the area inside the inner cut becomes identified with the area
outside the outer cut, a transformation that “is not strictly an Insertion or
a Deletion”.

Another way to interpret this, is that Double−cut is the only linear rule of
the system, in the sense that the premiss and conclusion contain exactly
the same atomic graphs. Contrast this with linear logic, which instead
takes linearity as the criterion for illative atomicity, as exemplified by the
linear decomposition of implication 𝐴 ⊃ 𝐵 ≜ !𝐴 ⊸ 𝐵. This might be the
consequence of an opposite treatment given to negation: while in EGs it
is the only primitive constructor of the system — remember that the only
way to increase the depth of a graph is with a cut, in LL negation is the
only defined notion through De Morgan dualities. Thus EGs are closer (at
least syntactically) to type theories, which also take a negative operation
(the arrow or dependent product type) as their sole primitive construct.

Interactivity and Locativity Peirce then suggests a “more scientific
way”, where the principle of Double−cut is subsumed by a restricted
variant of the principles of Iteration and Deiteration. His description of
this “more scientific” (De)iteration principle is based on a relation of local
justification (our terminology) between two areas of a graph, that captures
the fact that the deeper occurrence of 𝐺 in the Iter andDeit rules (Figure 9.4)
is justified by the other occurrence by virtue of their respective locations.
Later in the text, Peirce emphasizes the importance of this locative aspect
of argumentation [202, pp. 544–545]:

[...] when an Argument is brought before us, there is brought
to our notice aprocess whereby the Premisses bring forth the
Conclusion, not informing theInterpreter of its Truth, but
appealing to him to assent thereto. This Processof Transfor-
mation, which is evidently the kernel of the matter, is no more
builtout of Propositions than a motion is built out of position.

Once again, game-theoretical ideas and the concept of space (Remark 9.2.1)
are prominent in this excerpt: Truth is not primitive, but rather a side effect
of the interaction between an Interpreter (Opponent) being lead to agree
with the Graphist (Player), whenever the latter performs a transformation
on the graph under discussion. The soundness of such a transformation
guarantees that this will work for any Interpreter/Opponent, leading to
what is known as a winning strategy in game semantics. Since illative
transformations only consist of insertions and omissions, whose validity
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12: Both Peirce and Girard also shared
the ambition to develop a comprehen-
sive philosophical foundation for logic,
as part of a more general theory of mean-
ing: for Peirce it was his semeiotic, stem-
ming from his overarching doctrine of
pragmaticism [33]; for Girard it was the
theory of programming languages and
their semantics.
13: Although we limit ourselves to
propositional logic in Alpha, while in
[202] Peirce also accounts for the lines of
identity of Beta handling predicate logic,
to be introduced in Section 9.7.

(1)
𝐾0

(2)

𝐾0

𝐾1

(3)

𝐾0

𝐾2

𝐾1

(4)

𝐾0

𝐾1

Figure 9.5.: Graphical representation of
the four conditions of local justification

depends solely on the positions where they occur in the graph, it ensues
that the components of an argumentation can be reduced to “motions”
(moves) that relate pure locations.

It is then interesting to notice that the quest for illative atomicity, who led
Peirce to discover these interactive and locative aspects of logic, also led
Girard to identify these properties as fundamental, in his recent works on
ludics [93] and transcendental syntax [76]. We tend to share the vision put
forth by Boris Eng in his thesis [76, §24.4], that logic is mostly about space
and the shape of objects, while time and dynamics pertain more to the
realm of computation. In this view, Peirce’s systems of EGs are a logico-
computational complex where each aspect can clearly be identified: the
Process of Illative Transformation is an interactive computation among
the Graphist and Interpreter, whose logical nature is determined by the
spatial constraints of the Permissions, that are expressible thanks to the
topology induced by cuts on SA12.

9.4.3. The more scientific way

Let us now go back to the “more scientific” (De)iteration principle pro-
posed by Peirce. With our formalization of graphs as multisets, we can
give a more rigorous formulation than the original natural language
description given by Peirce13. In this setting, a location in a graph is
represented by the hole of a context, thus the relation of local justification
between two areas is defined on contexts:

Definition 9.4.1 (Local justification) Given two contexts 𝐺□ and 𝐻□,
we say that 𝐻□ is locally justified by 𝐺□, written 𝐺□ ⪰0 𝐻□, if and only
if one of the following conditions holds for some 𝐾□, 𝐺0□, 𝐻0□ such that
𝐺□ = 𝐾 𝐺0□ and 𝐻□ = 𝐾 𝐻0□ :

1. 𝐺0□ = 𝐻0□ = 𝐾0,□ for some 𝐾0;

2. 𝐺0□ = 𝐾0, [𝐾1],□ and 𝐻0□ = 𝐾0, [𝐾1,□] for some 𝐾0, 𝐾1;

3. 𝐺0□ = 𝐾0, [𝐾1, [𝐾2]],□ and𝐻0□ = 𝐾0, [𝐾1, [𝐾2,□]] for some𝐾0, 𝐾1, 𝐾2;

4. 𝐺0□ = 𝐾0, [[𝐾1,□]] and 𝐻0□ = 𝐾0,□, [[𝐾1]] for some 𝐾0, 𝐾1.

These four conditions are exactly the formal counterpart of those given
by Peirce in [202]. They might be more easily understood by looking
at their graphical representation in Figure 9.5: the red and blue dots
denote respectively the locations of the holes in the justified context 𝐻□
and justifying context 𝐺□, as suggested by the arrow between them. In
particular, it becomes clear that it is Condition 4 that will account for the
principle of Double−cut.

Then the new rules of iteration Iter+, Iter− and deiteration Deit+, Deit−
are given in a so-called atomic variant of Alpha, that we name Alphaa

in Figure 9.6. As promised, Alphaa only comprises rules that truly are
insertions and omissions of arbitrary graphs14. The atomic (de)iteration
rules are a restriction of the original ones in two respects:
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Alphaa

𝐾− 𝐻𝑆 𝐺 , 𝐻−
𝑇

Iter−
𝐾− 𝐻𝑆 𝐺 , 𝐻−

𝑇 𝐺

𝐾+ 𝐻𝑆 𝐺 , 𝐻+
𝑇

Iter+
𝐾+ 𝐻𝑆 𝐺 , 𝐻+

𝑇 𝐺

𝐾− 𝐻𝑆 𝐺 , 𝐻+
𝑇 𝐺

Deit−
𝐾− 𝐻𝑆 𝐺 , 𝐻+

𝑇

𝐾+ 𝐻𝑆 𝐺 , 𝐻−
𝑇 𝐺

Deit+
𝐾+ 𝐻𝑆 𝐺 , 𝐻−

𝑇

𝐾−
Ins

𝐾− 𝐺

𝐾+ 𝐺
Del

𝐾+

In the rules {Iter+, Iter−,Deit+,Deit−}, we require that 𝐻𝑆□ ⪰0 𝐻𝑇□.
Figure 9.6.: The illatively atomic system
Alphaa

14: The terminology “atomic” might be
a bit confusing: here we think of illa-
tive atomicity in Peirce’s sense, not the
fact that the graphs manipulated by rules
are atomic, which might be termed struc-
tural atomicity. There seems to be a sym-
metric tradeoff when comparing EGs to
the calculus of structures: in the former,
one maximizes illative atomicity by mini-
mizing linearity and structural atomicity;
while in the latter, one maximizes struc-
tural atomicity and linearity by minimiz-
ing illative atomicity. This will become
explicit in Section 9.6, when simulating
the calculus of structures SKS in Alpha.

15: Our notation for justification rela-
tions actually comes from [159], where
the authors define the same notion in-
formally for an intuitionistic variant of
EGs.

16: We suspect however that the more
general (de)iteration rules are still rele-
vant from a computational point of view.

Locality Following Definition 9.4.1, the depth of the justified context
𝐻𝑇□ can be at most 2 in the atomic rules, while it is unbounded in
the original rules. This does not hinder their expressivity however:
global (de)iterations can be simulated by successive applications of
local ones, by erasing intermediate copies with the Ins and Del rules.
This is because the global justification relation ⪰ associated with the
original rules coincides with the transitive closure of the local relation
⪰0, modulo the 4th condition for double-cuts15.

Polarity In the atomic iteration (resp. deiteration) rules, the justified
context must be positive (resp. negative), while it can have an arbitrary
polarity in the original rules. This is expressed by splitting each of
the latter into two rules, one where the outer context 𝐾□ is positive
(Iter+,Deit+), and one where it is negative (Iter−,Deit−). Again, this does
not alter their deductive power: every iteration (resp. deiteration) in
a negative (resp. positive) context can be trivially performed by an
instance of the Ins (resp. Del) rule. Thus atomic rules eliminate a redun-
dancy of Alpha, where many insertions/omissions could be interpreted
as instances of either Iter/Deit or Ins/Del. They also eliminate the possi-
bility for a conclusion to justify a hypothesis, as remarked in Section
9.2 when commenting on the principle of Iteration, making them closer
to the rules of sequent calculus16.

In the rest of this chapter, we settle on the more standard system Alpha,
and leave a more detailed and rigorous study of Alphaa for future work.
But the above informal arguments should convince the reader that there
is little doubt that Alphaa is both sound and complete if and only if Alpha
is, which is the object of the following two sections.
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9.5. Soundness

We are now going to prove formally the soundness of each rule ofAlpha, by
showing that if 𝐺 → 𝐻 and 𝐻 is true, then so is 𝐺. In classical propositional
logic, one can easily evaluate the truth of any formula 𝐴, given a truth-
valuation 𝑣 ∶ 𝒜 → {0, 1} for the atoms of 𝐴. The same applies to graphs:

Definition 9.5.1 (Evaluation) Given a valuation 𝑣 ∶ 𝒜 → {0, 1} and
a graph 𝐺, the evaluation 𝑣(𝐺) of G is defined by mutual recursion as
follows:

𝑣(𝐺) = {
1 if 𝐺 = ⌀
min𝑔∈𝐺 𝑣(𝑔) otherwise

𝑣([𝐺]) = 1 − 𝑣(𝐺)

This follows the standard way to evaluate conjunctions and negations.

To factorize the proof of soundness, we first prove a few lemmas for the
invertible rules of Alpha, that is those who satisfy 𝑣(𝐺) = 𝑣(𝐻) for every
valuation 𝑣 if 𝐺 → 𝐻.

Lemma 9.5.1 (Iteration) For every graph 𝐺, context 𝐻□ and valuation 𝑣,
we have

𝑣 (𝐺, 𝐻 ) = 𝑣 (𝐺, 𝐻 𝐺 )

Proof. By induction on |𝐻□|.

Base case Suppose 𝐻□ = 𝐻 ′,□. Then we have

𝑣(𝐺, 𝐻 ′) = min𝑔∈𝐺∪𝐻 ′ 𝑣(𝑔)

= min𝑔∈𝐺∪𝐻 ′∪𝐺 𝑣(𝑔)

= 𝑣(𝐺, 𝐻 ′, 𝐺)

Recursive case Suppose 𝐻 = 𝐻 ′, [𝐻0□]. Then we have

𝑣 (𝐺, 𝐻 ′, [𝐻0 ]) = min (𝑣(𝐻 ′), 𝑣 (𝐺, [𝐻0 ]))

= min (𝑣(𝐻 ′), 𝑣 (𝐺, [𝐻0 𝐺 ])) (IH)

= 𝑣 (𝐺, 𝐻 ′, [𝐻0 𝐺 ])

Lemma 9.5.2 (Double-cut) For every graph 𝐺 and valuation 𝑣, we have

𝑣([[𝐺]]) = 𝑣(𝐺)
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Proof.

𝑣([[𝐺]]) = 1 − (1 − 𝑣(𝐺)) = {
1 − (1 − 0) = 0 if 𝑣(𝐺) = 0
1 − (1 − 1) = 1 if 𝑣(𝐺) = 1

In both cases we have 𝑣([[𝐺]]) = 𝑣(𝐺).

Since all rules apply in an arbitrary deep context 𝐾□, we will benefit from
the following functoriality lemmas:

Lemma9.5.3 (Variance) For every context𝐾□, graphs𝐺, 𝐻 and valuation
𝑣 such that 𝑣(𝐺) ≤ 𝑣(𝐻), we have:

1. 𝑣 (𝐾 𝐺 ) ≤ 𝑣 (𝐾 𝐻 ) if 𝐾□ is positive;

2. 𝑣 (𝐾 𝐻 ) ≤ 𝑣 (𝐾 𝐺 ) if 𝐾□ is negative.

Proof. By induction on |𝐾□|.

Base case (|𝐾□| = 0)

1. Suppose 𝐾□ = 𝐾 ′,□. Then we have

𝑣(𝐾 ′, 𝐺) = min(𝑣(𝐾 ′), 𝑣(𝐺))

≤ min(𝑣(𝐾 ′), 𝑣(𝐻)) (Hypothesis)

= 𝑣(𝐾 ′, 𝐻 )

2. We have |𝐾□| > 0 since 𝐾□ is negative. Contradiction.

Recursive case (|𝐾□| > 0)

1. Suppose 𝐾□ = 𝐾 ′, [𝐾−
0 □]. Then by IH we have 𝑣 (𝐾−

0 𝐻 ) ≤
𝑣 (𝐾−

0 𝐺 ), and thus 1 − 𝑣 (𝐾−
0 𝐺 ) ≤ 1 − 𝑣 (𝐾−

0 𝐻 ). Therefore

𝑣 (𝐾 ′, [𝐾−
0 𝐺 ]) = min (𝑣 (𝐾 ′) , 1 − 𝑣 (𝐾−

0 𝐺 ))

≤ min (𝑣 (𝐾 ′) , 1 − 𝑣 (𝐾−
0 𝐻 ))

= 𝑣 (𝐾 ′, [𝐾−
0 𝐻 ])

2. Suppose𝐾□ = 𝐾 ′, [𝐾+
0 □]. Then by IHwe have 𝑣 (𝐾+

0 𝐺 ) ≤ 𝑣 (𝐾+
0 𝐻 ),

and thus 1 − 𝑣 (𝐾+
0 𝐻 ) ≤ 1 − 𝑣 (𝐾+

0 𝐺 ). Therefore

𝑣 (𝐾 ′, [𝐾+
0 𝐻 ]) = min (𝑣 (𝐾 ′) , 1 − 𝑣 (𝐾+

0 𝐻 ))

≤ min (𝑣 (𝐾 ′) , 1 − 𝑣 (𝐾+
0 𝐺 ))

= 𝑣 (𝐾 ′, [𝐾+
0 𝐺 ])
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[31]: Brünnler et al. (2001), ‘A Local Sys-
tem for Classical Logic’

Corollary 9.5.4 (Functoriality) If 𝑣(𝐺) = 𝑣(𝐻) then 𝑣 (𝐾 𝐺 ) = 𝑣 (𝐾 𝐻 ).

Theorem 9.5.5 (Soundness) If 𝐺 → 𝐻, then 𝑣(𝐻) ≤ 𝑣(𝐺) for every
valuation 𝑣.

Proof. By inspection of each rule.

Iter, Deit We have 𝑣 (𝐾 𝐺, 𝐻 ) = 𝑣 (𝐾 𝐺, 𝐻 𝐺 ) by Lemma 9.5.1 and

functoriality.

Dcut↓, Dcut↑ We have 𝑣 (𝐾 𝐺 ) = 𝑣 (𝐾 [[𝐺]] ) by Lemma 9.5.2 and func-
toriality.

Ins, Del This follows from the fact that 𝑣(𝐺) ≤ 1 = 𝑣(⌀) and Lemma 9.5.3.

9.6. Completeness

To show the completeness of Alpha, it is standard in the literature on
EGs to simulate an existing proof system for classical propositional logic,
that is itself known to be complete. For instance in [214], completeness is
shown by simulating the Hilbert-style system P of Church, which only
comprises 3 axioms for the (functionally complete) fragment {⊃, ¬}. We
propose in this section a proof by simulation of a deep inference system,
more specifically the calculus of structures SKS first introduced in [31].
This should provide a good overview of the similarities and differences
between the two systems, and in particular of how they exemplify two
distinct approaches to symmetry in a deep inference setting.

Note

This section was written without being aware of the work of Ma and
Pietarinen in [158] [158]: Ma et al. (2017), ‘Proof Analysis of

Peirce’s Alpha System of Graphs’, where they give a simulation of the calculus of
structures SKSg in Alpha, and also conversely a simulation of Alpha
in SKSg. While they do a similar comparison of features between the
two systems, in particular concerning their treatment of symmetry
and polarity, our work differs mainly in two respects:

Locality SKS is the local version of SKSg, thus we briefly comment
on locality in SKS and Alpha and what our simulation says about it;

Analyticity crucially, our objective is to show at the end of this sec-
tion that Alpha is analytic. Ma and Pietarinen discuss this question
very quickly in their paper, by affirming that Alpha is analytic both
in the sense of Gentzen because it can simulate the cut rule, and in
the sense of illative atomicity discussed in Section 9.4. We disagree
with the first claim, and use our simulation to show analyticity in
the proper sense of satisfying a form of subformula property.
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9.6.1. Calculus of structures

As the name indicates, the objectsmanipulated by inference rules in calculi
of structures are so-called structures. In the case of SKS, they correspond
to formulas in negation normal form built from atoms and units {⊤, ⊥}, i.e.
where connectives are restricted to the fragment {∧, ∨}, and negation is
pushed to atoms by relying on De Morgan’s laws.

Definition 9.6.1 (Structure) The structures of SKS are generated by the
following grammar:

𝑆, 𝑇 , 𝑈 , 𝑉 ,𝑊 ⩴ 𝑎 ∣ 𝑎 ∣ ⊤ ∣ ⊥ ∣ 𝑆 ∧ 𝑇 ∣ 𝑆 ∨ 𝑇

Definition 9.6.2 (De Morgan dual) The De Morgan dual of a structure
𝑆 is defined recursively as follows:

𝑎 = 𝑎 𝑎 = 𝑎
⊤ = ⊥ ⊥ = ⊤

𝑆 ∧ 𝑇 = 𝑆 ∨ 𝑇 𝑆 ∨ 𝑇 = 𝑆 ∧ 𝑇

It is customary in CoS to further quotient the set of structures with ad-
ditional equations between them, which account for various algebraic
properties of connectives such as associativity, commutativity and unital-
ity. Here we will rely instead on the formulation of SKS given by Tubella
and Straßburger in [242], where all equations are incorporated in the
system as explicit rules.

The full set of rules of SKS is given in Figure 9.7. All rules are implicitly
applicable in any context 𝑊□ of arbitrary depth, with the usual notion of
context as a structure with a hole.

Definition 9.6.3 (Depth) The depth |𝑆□| of a context 𝑆□ is defined
recursively as follows:

|□| = 0
|𝑆□ ∧ 𝑇| = |𝑇 ∧ 𝑆□| = |𝑆□ ∨ 𝑇| = |𝑇 ∨ 𝑆□| = |𝑆□| + 1

Remark 9.6.1 Contexts for structures are always positive, since nega-
tion is pushed down to atoms. This is the opposite situation from that
of Alpha, where negation is the only construct that can increase the
depth of a graph. This explains why some rules in Alpha need explicit
indications for the polarity of the context in which they apply.

The rules of SKS satisfy two notable properties:

Symmetry Every rule r has a dual rule r, that is 𝑈 𝑆
r
−→ 𝑈 𝑇 if and only

if 𝑈 𝑇
r
−→ 𝑈 𝑆 . For rules whose name ends with ↓, the dual is the rule

with the same name ending with ↑. This corresponds to all rules except
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Symmetric Klassisch Structures

⊤
ai↓

𝑎 ∨ 𝑎
𝑎 ∧ 𝑎

ai↑
⊥

𝑆 ∧ (𝑇 ∨ 𝑈 )
s

(𝑆 ∧ 𝑇 ) ∨ 𝑈

⊥
aw↓

𝑎
𝑎 ∨ 𝑎

ac↓
𝑎

𝑎
ac↑

𝑎 ∧ 𝑎
𝑎

aw↑
⊤

⊥
nm↓

⊥ ∧ ⊥
(𝑆 ∧ 𝑇 ) ∨ (𝑈 ∧ 𝑉 )

m
(𝑆 ∨ 𝑈 ) ∧ (𝑇 ∨ 𝑉 )

⊤ ∨ ⊤
nm↑

⊤

𝑆 ∨ (𝑇 ∨ 𝑈 )
↓

(𝑆 ∨ 𝑇 ) ∨ 𝑈
𝑆 ∨ 𝑇

↓
𝑇 ∨ 𝑆

𝑆 ∧ 𝑇
↑

𝑇 ∧ 𝑆
𝑆 ∧ (𝑇 ∧ 𝑈 )

↑
(𝑆 ∧ 𝑇 ) ∧ 𝑈

𝑆
f↓

𝑆 ∨ ⊥
𝑆

t↓
𝑆 ∧ ⊤

⊥ ∨ 𝑆
t↑

𝑆
⊤ ∧ 𝑆

f↑
𝑆

All rules apply in an arbitrary context 𝑊□.

Figure 9.7.: Inference rules of SKS

the switch rule s and the medial rule m which are self-dual, i.e. s = s and
m = m. In Alpha, duality is captured in the polarity of contexts rather
than through De Morgan’s laws:

Fact 9.6.1 (Duality) 𝐾+ 𝐺
r
−→ 𝐾+ 𝐻 if and only if 𝐾− 𝐻

r
−→ 𝐾− 𝐺 ,

where

Iter = Deit Deit = Iter

Ins = Del Del = Ins

Dcut↓ = Dcut↑ Dcut↑ = Dcut↓

Remark 9.6.2 Contrary to De Morgan duality, the notion of polarity
of a context also exists in intuitionistic logic, and is in fact used in
the same way to obtain dual rules in the intuitionistic calculus of
structures SISa of Tiu [241]. This constitutes one more argument in
favor of the view defended by Ma and Pietarinen in [159] [159]: Ma et al. (2019), ‘A graphical deep

inference system for intuitionistic logic’, that Peirce
had a pre-intuitionistic conception of negation. It also echoes our
observation in Remark 9.1.1, that the choice of negation and conjunc-
tion as primitives is to be connected with the eminently constructive
works of Girard and Melliès, in particular the non-involutive tenso-
rial negation of the latter. The issue of finding seeds of intuitionism
in Peirce’s work will be discussed more in depth in Section 10.2.
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Locality Every rule is local, in the sense that it does not require the
inspection of expressions of arbitrary size (Definition 2.1.1 in [242]).
This is almost the opposite in Alpha: to the exception of the rules Dcut↓
and Dcut↑ (which are best seen as a structural equivalence like those of
CoS), all rules depend heavily on the creation, duplication or deletion
of subgraphs of arbitrary size. This is exemplified by the derivation of
Peirce’s law in Figure 9.3, where not a single rule is instantiated on
atoms. In fact it is quite hard to see how to build a derivation of Peirce’s
law that performs only local transformations.

In light of this, it becomes surprising that we will be able to simulate
SKS in Alpha. Indeed, it means that there is a set AlphaSKS of perfectly
local rules on graphs, corresponding to the translation of the rules
of SKS, and which is entirely derivable in Alpha. Thus by restricting
oneself to the rules of AlphaSKS (and forgetting that they are derived
with non-local rules), one gets a fully local subsystem of Alpha!

9.6.2. Simulation

To formulate the simulation, we need to translate the structures of SKS
into equivalent graphs. This is easily done by exploiting the functional
completeness of {∧, ¬} (see Section 9.1):

Definition 9.6.4 (Structure translation) The translation 𝑆• of a struc-
ture 𝑆 as a graph is defined recursively as follows:

𝑎• = 𝑎 𝑎• = [𝑎]
⊤• = ⌀ ⊥• = []

(𝑆 ∧ 𝑇 )• = 𝑆•, 𝑇 • (𝑆 ∨ 𝑇 )• = [[𝑆•], [𝑇 •]]

As per Remark 9.6.1, the translation of a structure context (where the hole
is translated as itself) will always be positive:

Fact 9.6.2 For every context 𝑆□, 𝑆□• is positive.

Proof. By a straightforward induction on |𝑆□|.

It is easy to show that a structure and its translation as a graph are
semantically equivalent, i.e. 𝑣(𝑆) = 𝑣(𝑆•) for any valuation 𝑣. Thus to
get the completeness of Alpha, it is sufficient to simulate the translation
of each rule of SKS. But first, we need to ensure that Alpha satisfies a
property of contextual closure: this will allow us to ignore the implicit
context 𝑊□ in the rules of Figure 9.7.

Lemma 9.6.1 (Positive closure) If 𝐺 → 𝐻, then 𝐾+ 𝐺 → 𝐾+ 𝐻 .
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Proof. Since all rules of Alpha apply in a context of unbounded depth, we
know that there are some graphs 𝐺0, 𝐻0 and context 𝐾 ′□ such that 𝐺 =
𝐾 ′ 𝐺0 and 𝐻 = 𝐾 ′ 𝐻0 . Then either 𝐾 ′□ is positive, and inv(𝐾+ 𝐾 ′□ ) =
inv(𝐾+□) + inv(𝐾 ′□) is even since it is the sum of two even numbers; or
𝐾 ′□ is negative, and inv(𝐾+ 𝐾 ′□ ) is odd since it is the sum of an even
and an odd number. In both cases 𝐾+ 𝐾 ′□ has the same polarity as 𝐾 ′□,
and thus the same rule can be applied.

Theorem 9.6.2 (Completeness) If 𝑈 𝑆 → 𝑈 𝑇 , then 𝑈 • 𝑆• →∗ 𝑈 • 𝑇• .

Proof. We show that 𝑆• →∗ 𝑇• by simulating each rule of Figure 9.7. The
closure with 𝑈□• follows from Fact 9.6.2 and Lemma 9.6.1.

To make the notation lighter, we implicitly apply the translation (−)• on
substructures. We also add some coloring to put clearly in evidence the
subgraphs manipulated by rules. Assuming that the rules are read from
bottom to top:

(De)iteration In the rules Iter and Deit, the justifying occurrence is
squared in blue . In the Iter (resp. Deit) rule, the erased (resp. space
for the inserted) copy is highlighted in blue .

Insertion/Deletion In the rule Ins (resp. Del), the erased (resp. space for
the inserted) subgraph is highlighted in red .

Double-cut In the rule Dcut↓ (resp. Dcut↑), the space around which the
double-cut is erased (resp. inserted) is highlighted in gray .

We start with the identity rules {i↓, i↑}:

⊤
ai↓

𝑎 ∨ 𝑎 ↦

Dcut↓
[[ ]]

Ins
[[], 𝑎 ]

Iter
[[ 𝑎 ], 𝑎 ]

Dcut↓
[[𝑎], [[ 𝑎 ]]]

𝑎 ∧ 𝑎
ai↑

⊥ ↦

𝑎, [𝑎]
Deit

𝑎 , [ ]
Del

[]
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Then onto weakening {aw↓, aw↑} and contraction {ac↓, ac↑, nm↓, nm↑}:

⊥
aw↓

𝑎 ↦

[]
Ins

[ [𝑎] ]
Dcut↑

𝑎
𝑎

aw↑
⊤ ↦

𝑎
Del

𝑎 ∨ 𝑎
ac↓

𝑎 ↦

[[𝑎], [𝑎]]
Deit

[ [𝑎] ]
Dcut↑

𝑎
𝑎

ac↑
𝑎 ∧ 𝑎 ↦

𝑎
Iter

𝑎 , 𝑎

⊥
nm↓

⊥ ∧ ⊥ ↦

[]
Iter

[] , []
⊤ ∨ ⊤

nm↑
⊤ ↦

[[], []]
Deit

[ [] ]
Dcut↑

For the switch rule s, we give two dual derivations: the first uses the rules
Deit and Ins to move 𝑈 into the cuts enclosing 𝑇, while the second uses the
rules Del and Iter to move 𝑆 out of the cuts of 𝑇.

𝑆, [[𝑇], [𝑈]]
Dcut↓

[[ 𝑆, [[𝑇], [𝑈]] ]]
Ins

[[𝑆, [[𝑇], [𝑈]]], [𝑈] ]
Deit

[[𝑆, [[𝑇] ]], [𝑈] ]
Dcut↑

[[𝑆, 𝑇 ], [𝑈]]

𝑆, [[𝑇], [𝑈]]
Iter

𝑆 , [[ 𝑆 , 𝑇], [𝑈]]
Del

[[𝑆, 𝑇], [𝑈]]

Similarly for the medial rule m, which is the other self-dual rule of SKS,
we have two dual derivations:

[[𝑆, 𝑇], [𝑈 , 𝑉]]
Dcut↓

[[𝑆, 𝑇], [𝑈 , [[ 𝑉 ]]]]
Dcut↓

[[𝑆, [[ 𝑇 ]]], [𝑈 , [[𝑉]]]]
Ins

[[𝑆, [[𝑇]]], [𝑈 , [ [𝑇] , [𝑉]]]]
Ins

[[𝑆, [[𝑇], [𝑉] ]], [𝑈 , [[𝑇], [𝑉]]]]
Ins

[[𝑆, [[𝑇], [𝑉]]], [𝑈 , [[𝑇], [𝑉]]]], [[𝑇], [𝑉]]
Deit

[[𝑆, [[𝑇], [𝑉]]], [𝑈 ]], [[𝑇], [𝑉]]
Deit

[[𝑆 ], [𝑈]], [[𝑇], [𝑉]]

[[𝑆, 𝑇], [𝑈 , 𝑉]]
Iter

[[𝑆, 𝑇], [𝑈 , 𝑉]] , [[𝑆, 𝑇], [𝑈 , 𝑉]]
Del

[[𝑆, 𝑇], [𝑈 , 𝑉]], [[𝑆, 𝑇], [ 𝑉]]
Del

[[𝑆, 𝑇], [𝑈 , 𝑉]], [[ 𝑇], [𝑉]]
Del

[[𝑆, 𝑇], [𝑈 ]], [[𝑇], [𝑉]]
Del

[[𝑆 ], [𝑈]], [[𝑇], [𝑉]]
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17: The name KS comes from SKS, with
the first ‘S’ standing for “symmetric”
dropped.

The other rules correspond to equations on structures: 𝛼 for associativity,
𝜎 for commutativity, and f and t for unitality. Note that all rules involving
∧ and ⊤ are trivially simulated by the isotropy of SA. Simulating the other
rules only requires the double-cut rules, substantiating our claim (based
on Peirce’s own view, see Section 9.4) that the latter should be seen as
expressing a structural equivalence, rather than as bona fide inference
rules.

𝑆 ∨ (𝑇 ∨ 𝑈 )
𝛼↓

(𝑆 ∨ 𝑇 ) ∨ 𝑈 ↦

[[𝑆], [[[𝑇], [𝑈]]]]
Dcut↑

[[𝑆], [𝑇], [𝑈] ]
Dcut↓

[[[ [𝑆], [𝑇] ]], [𝑈]]
𝑆 ∧ (𝑇 ∧ 𝑈 )

𝛼↑
(𝑆 ∧ 𝑇 ) ∧ 𝑈 ↦ 𝑆, 𝑇 , 𝑈

𝑆 ∨ 𝑇
𝜎↓

𝑇 ∨ 𝑆 ↦ [[𝑆], [𝑇]]
𝑆 ∧ 𝑇

𝜎↑
𝑇 ∧ 𝑆 ↦ 𝑆, 𝑇

𝑆
f↓

𝑆 ∨ ⊥ ↦

𝑆
Dcut↓

[[ 𝑆 ]]
Dcut↓

[[𝑆], [[ ]]]
⊤ ∧ 𝑆

f↑
𝑆 ↦ 𝑆

𝑆
t↓

𝑆 ∧ ⊤ ↦ 𝑆
⊥ ∨ 𝑆

t↑
𝑆 ↦

[[[]], [𝑆]]
Dcut↑

[[ 𝑆]]
Dcut↑

𝑆

9.6.3. Analyticity

A powerful result of Brünnler and Tiu [31], is that the whole up-fragment
of SKS (all rules whose name ends with ↑) is admissible: if a structure 𝑆
has a proof 𝑆 →∗ ⊤, then it also has a proof 𝑆

KS
−−→∗ ⊤, with KS defined as

SKS without the up-fragment17. Dually, the whole down-fragment (all
rules whose name ends with ↓) is “co-admissible” : if a structure 𝑆 has a

refutation ⊥ →∗ 𝑆, then it also has a refutation ⊥
KS
−−→∗ 𝑆, with KS defined

as SKS without the down-fragment.

This duality reflects nicely in our simulation: we were careful to always
give derivations for up-rules that mirror closely those for down-rules,
modulo the use of the double-cut principle. Roughly, if the simulation of

𝑆
𝑟
−→ 𝑇 has the shape 𝑆• 𝑟1−→ …

𝑟𝑛−→ 𝑇•, then the simulation of 𝑇
𝑟
−→ 𝑆 has the

shape 𝑇
• 𝑟𝑛−→ …

𝑟1−→ 𝑆
•
(see Fact 9.6.1). An important consequence is that

the deletion rule Del is never used in the simulation of KS, if one chooses
the appropriate derivation among the two provided for the switch and
medial rules s and m. Thus deletion is admissible in Alpha, a result that
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[33]: Burch (2022), ‘Charles Sanders
Peirce’

seems to be novel in the literature on EGs.

Corollary 9.6.3 (Admissibility of Deletion)

If 𝐺 →∗ ⌀, then 𝐺
Alpha∖{Del}
−−−−−−−−−−→∗ ⌀.

Dually, the insertion rule Ins is never used in the simulation ofKS, implying
the co-admissibility of insertion. In fact there is a curious dissymmetry,
in that the rule Dcut↓ of double-cut insertion also never appears in the
simulation of KS, while Dcut↑ is used multiple times in the simulation of
KS:

Corollary 9.6.4 (Co-admissibility of Insertion)

If [] →∗ 𝐺, then []
Alpha∖{Ins,Dcut↓}
−−−−−−−−−−−−−−−→∗ 𝐺.

Corollary 9.6.3 is what allows us to conclude that Alpha is an analytic
system, in a sense very close to that of Gentzen. Because we do not have a
notion of logical connective nor tree-shaped derivations, we must reduce
the subformula property to atomic graphs. Then it is easy to see that all
rules of Alpha except Del satisfy this property:

Definition 9.6.5 (Subgraph) A graph 𝐺 is a subgraph of a graph 𝐻,
written 𝐺 ≺ 𝐻, if there exists a context 𝐾□ such that 𝐻 = 𝐾 𝐺 .

Fact 9.6.3 For every 𝑎 ∈ 𝒜, if 𝐺
Alpha∖{Del}
−−−−−−−−−−→ 𝐻 and 𝑎 ≺ 𝐻 then 𝑎 ≺ 𝐺.

Corollary 9.6.5 (Analyticity) If 𝐺 is provable in Alpha, then it has a
proof 𝐺 → 𝐺1 → … → 𝐺𝑛 → ⌀ where 𝑎 ≺ 𝐺 for all 𝑖 and 𝑎 ∈ 𝒜 such that
𝑎 ≺ 𝐺𝑖.

9.7. Beta graphs

Before working on EGs, Peirce had already developed a deep understand-
ing of the logic of relations of arbitrary arity, inventing the notions of
variables and quantifiers 30 years before the standard Russell-Whitehead
syntax for predicate logic appeared in 1910 [33]. This all stemmed from
his extensive study of relation algebras, first investigated by De Morgan
in 1860. However in his system Beta of EGs, Peirce gives a very different
account of the logic of relations, both in the graphical representation of
relational statements, and the illative transformations that govern them.
In the following, we illustrate informally the principles of Beta, and how
they are able to capture what is identified nowadays in symbolic logic
as purely relational first-order theories (that is, without constant nor
function symbols) equipped with a primitive equality predicate.
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[224]: Smith (2022), ‘Aristotle’s Logic’

18: The use of little diamonds to depict
hooks is our own addition, Peirce never
drew them explicitly.

9.7.1. Syntax

Spots In the propositional system Alpha, atomic graphs represent sen-
tences that can be asserted or denied (or equivalently, assigned a truth
value), but they do not exhibit any internal structure syntactically: they
might as well be depicted just as (distinguished) points on SA. As most
logicians of his time, Peirce was directly influenced by the term logic
of Aristotle, where assertions are decomposed into a subject to which
applies some predicate. However, while Aristotle’s notion of predicate has
a metaphysical flavor, Peirce’s notion is purely grammatical. For instance,
Aristotle rejected the sentence “The person sitting down is Socrates” as a
genuine predication, because Socrates is an individual, and in his view
predicates could only be so-called universals like “humans” or “mortals”
[224]. In Beta there is no such restriction, and the previous sentence can
be represented by the following graph:

The person sitting down Socrates (9.1)

Here both “The person sitting down” and “Socrates” are modelled as
unary predicates. The little diamonds, called hooks by Peirce, represent
placeholders for the arguments (subjects) of each predicate, and the data
of a predicate together with its hooks is called a spot18. Any predicate of
arity 𝑛 can then be represented by a spot with 𝑛 hooks disposed freely
around its periphery. For instance, the sentence “Paris is between London
and Berlin” can be expressed by the graph

betweenParis
London

Berlin

where “between” is modelled as a ternary predicate.

Lines of Identity To assert that there exists an individual who is both
the person sitting down and Socrates in graph (9.1), we connect the two
hooks with a so-called line of identity (LoI). In Peirce’s view, each point
in a LoI denotes an individual of the universe represented by SA. Since
scribing anything on SA means asserting its truth in the universe, then it
suffices to reduce the truth of an individual to its existence, in order to
interpret the marking of LoIs as having existential force. This is actually
the origin of the “existential” qualificative in the denomination “existential
graph”. Note that no information is given but the individual’s existence: in
particular, two distinct points on SA may or may not denote two distinct
individuals, just as two distinct variables 𝑥 and 𝑦 in predicate calculus
may or may not refer to the same object. It is the continuity of a LoI
that signifies, in an iconic way, the identity of every point/individual
constituting, and connected by the line. Hence the following graph

The person sitting down Socrates

expresses that both the person sitting down and Socrates exist, but we do
not know whether they are the same individual.
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[115]: Haydon et al. (2020), ‘Composi-
tional Diagrammatic First-Order Logic’

19: This is our own terminology, chosen
mainly for historical reasons. In [115],
binders and teridentities correspond to
the generators of the monoid-comonoid
pair of a Frobenius algebra.

𝑃 (9.4)

𝑃 (9.5)

𝑃 (9.6)

Figure 9.8.: Universal quantification
∀𝑥.𝑃(𝑥) in Beta

20: From the greek endon (‘within’)
and poros (‘passage, pore’) [203], lit-
erally “that lets through within”. This
physically-flavored terminology is rem-
iniscent of the intuition we developed
within our own bubble calculus and il-
lustrated in Figure 7.1, even though we
were not aware of the existence of EGs
at the time!

First-order logic “The person sitting down is Socrates” might be equiv-
alently expressed in a first-order language as the formula

∃𝑥.PersonSittingDown(𝑥) ∧ Socrates(𝑥) (9.2)

LoIs can then be seen as encoding the concept of existential quantification
over a single variable 𝑥, where the occurrences of 𝑥 correspond to the
extremities of the line connected to the hooks. As inAlpha, the conjunctive
aspect of the sentence is accounted for by the fact that the two spots are
juxtaposed in the same area on SA.

Now if one considers a first-order theory with a predicate symbol = satis-
fying the usual axioms for equality, then our sentence can alternatively
be expressed by the following formula:

∃𝑥.∃𝑦 .PersonSittingDown(𝑥) ∧ Socrates(𝑦) ∧ 𝑥 = 𝑦 (9.3)

9.7.2. Deconstructing identity

In Peirce’s original notation, there is no way to distinguish between the
two formulations (9.2) and (9.3), as they would both be represented by
graph (9.1). However in [115], in order to have a rigorous interpretation
of the syntax of Beta in category theory, the authors propose to analyze
LoIs into essentially two distinct icons, binders and teridentities19, from
which every LoI can be reconstructed:

Binder As we have just seen, one function of LoIs is to quantify over
individuals. For now we have only considered LoIs located at the top-
level of SA, i.e. in a positive area, where they are given existential force. If
we were to negate the graph (9.1) by enclosing it in a cut, we would get
a graph expressing the negation of formula (9.2), which by De Morgan
duality is equivalent to

∀𝑥.¬PersonSittingDown(𝑥) ∨ ¬Socrates(𝑥)

More generally, it is well-known that in classical logic, universal quan-
tification can be defined symbolically by ∀𝑥.𝑃(𝑥) ≜ ¬∃𝑥.¬𝑃(𝑥), and
hence that any formula in the usual language of FOL has a classically
equivalent formula in the fragment {¬, ∧, ∃}. This is precisely how Peirce
expresses universal quantification in Beta, as illustrated for a unary
predicate 𝑃 by the graph (9.4) of Figure 9.8. But in order to interpret
correctly this graph, one needs to adopt what Peirce calls an endopore-
utic20 reading: one should start inspecting the graph from the top-level
of SA, and then descend (recursively) into its various cuts. In particu-
lar, the location of a LoI should be identified with its outermost end,
as illustrated in graph 9.5; if we were to associate it instead with its
innermost end as in graph (9.6), then we would swap the positions of ∃
and ¬ in the associated statement, giving the non-equivalent formula
¬¬∃𝑥.𝑃(𝑥).

From these observations, we get that the type of quantification prformed
by a LoI is fully captured by its location: existential in a positive area,
universal in a negative area. This leads us to analyze the syntax of
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21: Peirce liked to insist that LoIs should
be drawn as heavy lines, to distinguish
them from the normal lines used to depict
cuts.

𝐵𝐴

Figure 9.9.: Implication 𝐴 ⊃ 𝐵 in Alpha

The person sitting down

Socrates

(9.7)

The person sitting down

Socrates

(9.8)

Figure 9.10.: Decomposing lines of iden-
tity

22: A very similar metaphor is brought
up by Girard in [94], where the fact that a
variable can have infinitely many occur-
rences is seen precisely as a consequence
of the possibility to split or “debit” indef-
initely a wire into smaller wires.

Figure 9.11.: Building a two-ended wire
from two teridentities

LoIs into two components: so-called binders that encode quantifiers
as distinguished heavy dots on SA like those of Figure 9.821; and two-
ended wires that connect binders to the hooks of predicates, encoding
the identity between a bound variable 𝑥 and an occurrence of 𝑥.

Remark 9.7.1 The graph of universal quantification (9.5) bears a
striking similarity to that of implication, as illustrated in Figure 9.9.
While the similarity also exists for the symbolic encoding of these
connectives in the fragment {¬, ∧, ∃} captured by Beta, the graphical
representation makes this fact more apparent. In constructive type
theories, both universal quantification ∀𝑥.𝐵 and implication𝐴 ⊃ 𝐵 are
seen as instances of a more general construct, the dependent product
type Π𝑥 ∶ 𝐴.𝐵. Thus retrospectively, one might interpret the above
observation as another manifestation of Peirce’s pre-intuitionistic
conception of logic.

Teridentity Binders and wires are sufficient to express unary predicates
applied to distinct bound variables, but they cannot identify multiple
occurrences of the same variable, and thus cannot account for graph
(9.1). To palliate this, Peirce used a construct that he called teridentity,
that we propose to represent as a black triangle . The three vertices
of the triangle should be seen as three plugs on which one can connect
wires, so that the graph

can be interpreted as the formula ∃𝑥.∃𝑦 .∃𝑧.𝑥 = 𝑦 ∧ 𝑦 = 𝑧. Rather than a
way to express equality between variables, we think it is more useful
however to have an operational understanding of teridentities: their
real purpose is to duplicate wires (e.g. by splitting them), or dually to
merge two wires into a single one. This gives a constructive way to
explain the notion of occurrence of a variable22. Then formulas (9.2)
and (9.3) can be represented faithfully and respectively by the graphs
(9.7) and (9.8) of Figure 9.10.

LoIs (or their decomposition into the above constructs) constitute the
only icons introduced in Beta compared to Alpha.

Iconic atomicity The fact that Peirce took LoIs to be a primitive, un-
analyzed icon can be seen as a consequence (or a cause?) of his view that
only closed sentences should be considered. Indeed in an early exposition
of EGs (Ms 493), he proposed a way to show, if necessary, that “a com-
plete assertion is not intended” [214, p. 49]. That is, he devised a syntax
equivalent in purpose to that of free variables in predicate calculus. Our
analysis into wires that connect hooks, binders and teridentities allows
this, and more generally makes the syntax of graphs closer to predicate
calculus. But in later expositions, Peirce always required every hook to
be filled with a LoI, that is every variable to be quantified.

Now, it is unclear which of those presentations is the more “analytical” or
primitive, when restricting oneself to closed (or in Peirce’s terminology,
complete) assertions. Indeed, consider that we give the force of quantifica-
tion to wires, as Peirce does with LoIs: then one can replace every binder
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Digression
If one wants to keep the wire
metaphor, joining two LoIs can be
interpreted as just putting in con-
tact two wires. Then electrical cur-
rent can flow from one wire to the
other, but the problem resides else-
where, at the illative level: indeed
nothing prevents us from separating
back the two wires, or connecting
two initially disjoint wires. But in
a negative (resp. positive) context,
the former (resp. latter) action corre-
sponds to forgetting a possibly nec-
essary equality hypothesis between
two variables (resp. identifying two
possibly distinct individuals), which
is not valid logically speaking. To pre-
vent this, one needs to do more than
just put the twowires in contact with
eachother (juxtaposition), i.e. solder
them together (teridentity).

23: Thus in a sense, the first-order indi-
viduals denoted by LoIs behave in the
exact same way as the propositions de-
noted by the graphs of Alpha. This can be
interpreted as a manifestation of Peirce’s
psycho-physical monism [33], that blurs
the distinction between the psychologi-
cal level of propositions (concepts) and
the physical level of individuals (objects)
enforced in the language of predicate
logic, and inherited fromAristotle’s meta-
physical conception of predication. Inde-
pendently, Girard has recently been push-
ing the idea further in his transcendental
syntax programme, by proposing to see
individuals as particular kinds of linear
propositions (see [76, §84.3]). And what
is more linear than a line?

by a dangling wire, rendering binders useless in the syntax. Also since
empty hooks and teridentities are forbidden, they will always be filled
with wires. Then couldn’t we just reduce the full syntax of LoIs to wires?

A remarkable insight of Peirce, is that one cannot build the concept of
teridentity from two-ended wires, but that the converse is possible, as
illustrated in Figure 9.11. This is most clearly (and speculatively) under-
stood by seeing LoIs as made out of pipes rather than wires. Indeed, just
gluing one extremity of a two-ended pipe P to the exterior of another pipe
Q will not make P and Q communicate; and there is no reason to interpret
the joining, or (infinitesimally) close juxtaposition of two lines on SA at
one point, as doing more than the gluing of two pipes.

One solution would be to first drill a hole in Q, before glueing P on it.
Another is to have branching pipes as the basic building blocks for our
plumbing, i.e. teridentities. This is how we interpret and justify metaphor-
ically the following enigmatic quote from Peirce [214, p. 116]:

Teridentity is not mere identity. It is identity and identity,
but this ‘and’ is a distinct concept [from that denoted by
the juxtaposition of graphs on SA], and is precisely that of
teridentity.

Then every LoI can be built out of teridentities, which Peirce expressed
like so [214, p. 117]:

Every line of identity ought to be considered as bristling with
microscopic points of teridentity; so that when
magnified shall be seen to be .

9.7.3. Rules

A remarkable fact about Beta is that it does not need any new illative
principle compared to Alpha. Rather, it simply generalizes those of Alpha
to account for LoIs23.

Iteration/Deiteration When a spot is iterated, every hook of the new
copy must be connected to the same hook of the original copy with
a LoI. Conversely, when a spot is deiterated, every LoI of the deleted
copy must be retracted to the corresponding hook of the original copy.
This applies in particular to any binder seen as a unary spot, which
allows to extend (resp. retract) any LoI inside (resp. outside) a cut:

𝐺 ↔ 𝐺

Insertion/Deletion Every pair of binders residing in the same negative
area can be connected and replaced by a wire (Insertion):

→
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[60]: Degtyarev et al. (2001), ‘The Inverse
Method’

Dually, every wire in a positive area can be severed in two, capping off
the newly created ends with two binders (Deletion):

→

By reading the rules from right to left — i.e. in proof search mode,
Insertion and Deletion on LoIs can be understood as capturing respec-
tively the operations of anti-unification and unification on two variables.
That is:

Unification adding a wire between two disconnected binders 𝑥 and 𝑦
is equivalent in purpose to substituting 𝑥 for 𝑦 (resp. 𝑦 for 𝑥) in every
spot/predicate connected by a LoI to 𝑦 (resp. 𝑥);

Anti-unification while severing a wire connected to a binder 𝑧 in two
parts capped by binders 𝑥 and 𝑦 amounts to partitioning the set of
spots connected to 𝑧 in two sets {𝑃𝑖} and {𝑄𝑗}, and substituting 𝑥 for 𝑧
in every 𝑃𝑖, and 𝑦 for 𝑧 in every 𝑄𝑗.

Unification and anti-unification are the heart of many (semi-)decision
procedures implemented in automated and interactive theorem provers,
including the unification of subformulas in our own approach to SFL
(Subsection 3.2.2); thus it is remarkable that they constitute a core
illative principle of Beta.

Remark 9.7.2 In the original Beta system, Peirce enforces the usual
model-theoretic assumption that the universe of discourse must be
non-empty — i.e. contain at least one individual, through an axiom
permitting to “scribe a heavy dot or unattached line on SA” [214, p. 47].
In fact together with the axiom allowing to assert the blank SA, which
was implicit in our notion of proof for Alpha (Definition 9.3.7), these
are the only axioms in all systems of EGs. This is yet another striking
similarity with Girard’s philosophy, who attempted to get rid of axioms
in logic starting with ludics — although in many of his writings, he
actively criticizes the non-empty model assumption.

Figure 9.12 gives a proof of the famous syllogism from Aristotle in Beta,
by reducing the graph associated to the formula

∀𝑥.Socrates(𝑥) ∧ Human(𝑥) ∧ (∀𝑦.Human(𝑦) ⊃ Mortal(𝑦)) ⊃
∃𝑧.Socrates(𝑧) ∧Mortal(𝑧) (9.9)

to the empty SA. Again, we invert the direction of arrows in inference
steps, to follow the proof search reading of rules. Note that in many
steps, we add or remove some teridentities and binders without further
justification: these correspond to splits, merges and rewirings of LoIs, and
a more rigorous set of equations describing these operations can be found
in [115, Section 3: “The algebra of lines of identity”].

The essence of the syllogism lies in the instantiation of the universally
quantified variable 𝑦 by 𝑥 in formula (9.9), captured by the Deletion step
in Figure 9.12. Thus contrary to Alpha, it seems that Deletion is not ad-
missible in Beta anymore. Because of the subterm property of first-order
logic [60], this should not break analyticity: indeed we should only need
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Socrates

Human

Human

Mortal

Socrates

Mortal

Deiteration
−−−−−−−−−→

Socrates

Mortal

Socrates

Mortal

Human

Human

Deletion
−−−−−−−→

Socrates

Mortal

Socrates

Mortal

Human

Human

Iteration
−−−−−−−→

Socrates

Mortal

Socrates

Mortal

Human

Insertion
−−−−−−−→

Socrates

Mortal

Socrates

Mortal

Double−cut
−−−−−−−−−→

Socrates

Mortal

Socrates

Mortal

Iteration
−−−−−−−→

Socrates

Mortal

Insertion
−−−−−−−→

Double−cut
−−−−−−−−−→

Figure 9.12.: A proof of a famous syllogism in Beta
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Socrates(𝑥)
𝑥

Mortal(𝑦)
𝑦

Socrates(𝑧)

Mortal(𝑧)
𝑧

Human(𝑥)

Human(𝑦)

Figure 9.13.: Using variables in EGs

Deletion on LoIs, which connects already existing binders. However one
still needs to find out the binders that must be connected, which we
conjecture to be a major factor in the undecidability of first-order logic.

9.8. Gardens

Ergonomy of LoIs Overall, the example of Figure 9.12 demonstrates
how Beta is particularly well-suited to analyze the fine structure of rela-
tional reasoning: be it at the level of statements, with the complex circuits
resulting from the composition of LoIs; or at the level of proofs, with a
decomposition of such a simple syllogism into 8 distinct inferential steps.
While this is satisfying from the standpoint of meta-logical investigation
originally pursued by Peirce, this syntax seems to be too cumbersome to
form the basis for a practical theorem proving interface, where the user
would perform illative transformations through direct manipulation of
graphs. In the words of Peirce himself [202, p. 544]:

There are a number of deduced liberties of transformation,
by which even much more complicated inferences than a syl-
logism can be performed at a stroke. For that sort of problem,
however, which consists in drawing a conclusion or assur-
ing oneself of its correctness, this System is not particularly
adapted.

Variables Still, the complexity of Beta from a UX perspective stems
mostly from the tedious management of LoIs. Our analysis into binders
and teridentities gives us a hint towards the solution: since we now have
binders, why not just replace the complex circuits of teridentities by
variables? The process is simple:

1. Take any complex LoI connected to 𝑛 binders and 𝑚 hooks;

2. Among the 𝑛 binders, choose one that occurs in the outermost area
of SA, and give it a fresh name 𝑥;

3. Replace the 𝑚 wires connected to the hooks by 𝑚 occurrences of 𝑥;

4. Erase all remaining wires and teridentities.

Thus for instance, both the first and second graphs in Figure 9.12 would
be represented by the graph of Figure 9.13. In fact, Peirce already had the
idea to use a name-based syntactic device similar to, and arguably more
primitive than variables, which he called selectives, in order to avoid the
ambiguity of LoIs crossing cuts [202, p. 531]:

A Ligature crossing a Cut is to be interpreted as unchanged
in meaning by erasing the part that crosses to the Cut and
attaching to the two Loose Ends so produced two Instances
of a Proper Name nowhere else used; such a Proper name (for
which a capital letter will serve) being termed a Selective.

The idea of connecting two locations by marking them with the same
symbol is quite natural, and is implemented for instance in footnotes — or
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[70]: Dorman et al. (2013), ‘A Hierarchy
of Expressiveness in Concurrent Interac-
tion Nets’

Figure 9.14.: A depiction of Peirce’s
Bridge for lines of identity

Source: https://commons.
wikimedia.org/wiki/File:

4CT_Inadequacy_Explanation.svg

24: This is to be opposed to critics of the
syntax of EGs such as Quine, who devised
a notation similar to LoIs, and deemed it
“too cumbersome for practical use” [214,
p. 125].

[104]: Grattan-Guinness (2000), The
Search for Mathematical Roots, 1870-1940:
Logics, Set Theories and the Foundations of
Mathematics from Cantor through Russell
to Godel
[141]: Kempe (1886), ‘A memoir on the
theory of mathematical form’

in this thesis, sidenotes — with the help of numbers rather than capital
letters. Footnotes are a good example, because contrary to variables, they
share with selectives a linearity property, that exactly two occurrences of
the symbol must be present. This is necessary to simulate accurately a
two-ended wire, and it is not surprising that the same device has been
used recently (under the name of ports) to give an algebraic syntax to
interaction nets [70], a model of computation inspired by linear logic and
its graphical, string-diagram like syntax of proof nets [92].

Bridges After introducing selectives, Peirce further remarks on the
next page:

In order to avoid the intersection of Lines of Identity, either a
Selective may be employed, or a Bridge, which is imagined to
be a bit of paper ribbon.

Thus he already identified the problem of readability stemming from
having too many wires crossing eachother, a well-known concern in the
design of graphical programming languages24. The proposed alternative
solution of having so-called bridges is quite interesting, in that it makes
the syntax of EGs three-dimensional, in order to preserve the continuity
of lines. A nice illustration of the bridge is given in Figure 9.14. We found
this picture in the Wikipedia article of the four color theorem [252], which
is no coincidence according to Burch [33]:

Peirce began to research the four-color map conjecture, to
work on the graphical mathematics of de Morgan’s associate
A. B. Kempe, and to develop extensive connections between
logic, algebra, and topology, especially topological graph the-
ory. Ultimately these researches bore fruit in his existential
graphs [...]

Multisets The Wikipedia article on Alfred Kempe also mentions the
following interesting fact [251]:

Kempe (1886) revealed a rather marked philosophical bent,
and much influenced Charles Sanders Peirce. Kempe also
discovered what are now called multisets, although this fact
was not noted until long after his death [104, 141].

As it turns out, we can also give a multiset formalization of the syntax of
graphs inBeta extending that of Section 9.3, and based on the previous idea
of replacing teridentities by variables. Every area will now be equipped
with a set of binders, in addition to the multiset of nodes (i.e. atoms and
cuts). Anticipating our flower metaphor of Chapter 10, we call sets of
binders sprinklers, which can be imagined as irrigating spots on their
hooks by sending water through the (now invisible) LoIs, seen as hoses.
Naturally, the pair formed by a sprinkler and a multiset of nodes is called
a garden.

https://commons.wikimedia.org/wiki/File:4CT_Inadequacy_Explanation.svg
https://commons.wikimedia.org/wiki/File:4CT_Inadequacy_Explanation.svg
https://commons.wikimedia.org/wiki/File:4CT_Inadequacy_Explanation.svg
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Beta

𝐾 𝐺, 𝐻
Iter

𝐾 𝐺, 𝐻 𝐺

𝐾 𝐺, 𝐻 𝐺
Deit

𝐾 𝐺, 𝐻

𝐾−
Ins

𝐾− 𝐺

𝐾+ 𝐺
Del

𝐾+

𝐾+ [𝐱, 𝑦 ⋅ 𝐺]
Unif↓

𝐾+ [𝐱 ⋅ 𝐺{𝑧/𝑦}]

𝐾− [𝐱 ⋅ 𝐺{𝑧/𝑦}]
Unif↑

𝐾− [𝐱, 𝑦 ⋅ 𝐺]

𝐾 𝐺
Dcut↓

𝐾 [ ⋅ [ ⋅ 𝐺]]

𝐾 [ ⋅ [ ⋅ 𝐺]]
Dcut↑

𝐾 𝐺

Figure 9.15.: Inductive presentation of
the rules of Beta

Dcut↓
[ ⋅ [ ⋅ ]]

Unif↑
[𝑥 ⋅ [ ⋅ ]]

Ins
[𝑥 ⋅ Socrates(𝑥),Mortal(𝑥),
[ ⋅ ]]

Iter
[𝑥 ⋅ Socrates(𝑥),Mortal(𝑥),
[ ⋅ Socrates(𝑥),Mortal(𝑥)]]

Unif↑
[𝑥 ⋅ Socrates(𝑥),Mortal(𝑥),
[𝑧 ⋅ Socrates(𝑧),Mortal(𝑧)]]

Dcut↓
[𝑥 ⋅ Socrates(𝑥),
[ ⋅ [ ⋅Mortal(𝑥)]],
[𝑧 ⋅ Socrates(𝑧),Mortal(𝑧)]]

Ins
[𝑥 ⋅ Socrates(𝑥),Human(𝑥),
[ ⋅ [ ⋅Mortal(𝑥)]],
[𝑧 ⋅ Socrates(𝑧),Mortal(𝑧)]]

Iter
[𝑥 ⋅ Socrates(𝑥),Human(𝑥),
[ ⋅ Human(𝑥), [ ⋅Mortal(𝑥)]],
[𝑧 ⋅ Socrates(𝑧),Mortal(𝑧)]]

Unif↑
[𝑥 ⋅ Socrates(𝑥),Human(𝑥),
[𝑦 ⋅ Human(𝑦), [ ⋅Mortal(𝑦)]],
[𝑧 ⋅ Socrates(𝑧),Mortal(𝑧)]]

Figure 9.16.: A proof in the inductive
syntax of Beta

Definition 9.8.1 (Graph) Given a denumerable set of variables 𝒱 and
a denumerable set of predicate symbols 𝒫 together with their arities
ar ∶ 𝒫 → ℕ, the sets of nodes 𝐍𝜷, gardens 𝚪𝜷 and graphs 𝐆𝜷 are defined
mutually inductively as follows:

▶ (Spot) If 𝑝 ∈ 𝒫 with ar(𝑝) = 𝑛, then 𝑝(𝑥1, … , 𝑥𝑛) ∈ 𝐍𝜷;

▶ (Graph) If 𝐺 ⊂ 𝐍𝜷 is a finite multiset, then 𝐺 ∈ 𝐆𝜷.

▶ (Garden) If 𝐱 ⊂ 𝒱 is a finite set and 𝐺 ⊂ 𝐍𝜷 a finite multiset, then
𝐱 ⋅ 𝐺 ∈ 𝚪𝜷;

▶ (Enclosure) If 𝛾 ∈ 𝚪𝜷, then [𝛾] ∈ 𝐍𝜷.

Example 9.8.1 The graph of Figure 9.13 can be written in textual
notation as the following expression:

[𝑥 ⋅ Socrates(𝑥),Human(𝑥),
[𝑦 ⋅ Human(𝑦), [ ⋅Mortal(𝑦)]],
[𝑧 ⋅ Socrates(𝑧),Mortal(𝑧)]]

Note that the ‘⋅’ operator for constructing gardens has lower precedence
than the ‘,’ operator for juxtaposition of graphs. Thus the expression
𝑥 ⋅ Socrates(𝑥),Human(𝑥) is to be read as 𝑥 ⋅ (Socrates(𝑥),Human(𝑥)),
and not (𝑥 ⋅ Socrates(𝑥)),Human(𝑥) (which would be ill-typed anyway).

Inference rules As already suggested earlier, the garden syntax for
graphs quotients the LoI syntax: the first Deiteration step in Figure 9.12
cannot be performed in the garden syntax, because its premiss and con-
clusion are represented by the same graph. In fact, both Iteration and
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Deiteration are automatically handled by the notion of scope for binders,
that results from the endoporeutic reading of graphs. Then it only remains
to account for Insertion and Deletion on LoIs, which is done by capturing
our intuition relating these principles to unification in the rules Unif↓ and
Unif↑ of Figure 9.15, respectively. Thus the inductive version of Beta is
obtained by simply adding these two rules to those of Alpha introduced
in Figure 9.4.

Figure 9.16 gives a derivation of Aristotle’s syllogism in this system. Even
though we do not apply the Deit rule anymore compared to the graphical
proof of Figure 9.12, we need two additional instances of Unif↑ on 𝑧 and 𝑥,
that would correspond to two instances of Del on the associated LoI.

Remark 9.8.1 As in Alpha, graphs 𝐺, 𝐻 , 𝐾 and their one-holed contexts
𝐺□, 𝐻□, 𝐾□ are multisets of nodes. But now they do not correspond
anymore to areas in the graphical notation, which are instead captured
by gardens 𝛾 , 𝛿 , 𝜒. In particular, this entails a subtle difference from
Peirce’s formulation of Beta: because rules apply to graphs and not
gardens, one cannot have binders at the top-level of SA, they must be
enclosed in at least one cut. Thus to be able to reason on (the garden
version of) the graph (9.1), we must first enclose it in a double-cut,
giving the graph

[ ⋅ [𝑥 ⋅ TheSittingPerson(𝑥), Socrates(𝑥)]]

While this choice might seem confusing, it makes the formulation of
rules more uniform with that of Alpha, and will ease the transition to
the flower calculus in Chapter 10.

Note that the rules Unif↓ and Unif↑ rely on the usual notion of capture-
avoiding substitution:

Definition 9.8.2 (Substitution) The capture-avoiding substitution of
a variable 𝑦 for a variable 𝑥 in a graph 𝐺, written 𝐺{𝑦/𝑥}, is defined by
mutual recursion as follows:

𝑝(𝑥1, … , 𝑥𝑛){𝑦/𝑥} = 𝑝(𝑧1, … , 𝑧𝑛) with 𝑧𝑖 = {
𝑦 if 𝑥𝑖 = 𝑥
𝑥𝑖 otherwise

𝑔1, … , 𝑔𝑛{𝑦/𝑥} = 𝑔1{𝑦/𝑥}, … , 𝑔𝑛{𝑦/𝑥}

(𝐳 ⋅ 𝐺){𝑦/𝑥} = {
𝐳 ⋅ 𝐺{𝑦/𝑥} if 𝑥 ∉ 𝐳
𝐳 ⋅ 𝐺 otherwise

[𝛾]{𝑦/𝑥} = [𝛾 {𝑦/𝑥}]

Also, this system supports free variables, and there is no need to forbid
them like Peirce did in his original LoI-based syntax.
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In a certain flower garden, each flower was either red, yellow, or blue,
and all three colors were represented. A statistician once visited the
garden and made the observation that whatever three flowers you
picked, at least one of them was bound to be red. A second statistician
visited the garden and made the observation that whatever three flowers
you picked, at least one was bound to be yellow. Two logic students
heard about this and got into an argument. The first student said: ”It
therefore follows that whatever three flowers you pick, at least one is
bound to be blue, doesn’t it?” The second student said: ”Of course not!”.
Which student was right, and why?

Raymond Smullyan, The Flower Garden, 1985

We introduce the flower calculus, a novel proof system for intuitionistic
predicate logic based on syntactic objects called flowers. We start by
explaining how flowers stem from considerations in graphical logic, and
more specifically from an intuitionistic variant of the existential graphs
of C. S. Peirce proposed by A. Oostra. Then we present our inductive
syntax for flowers, reminiscent at the same time of the nested sequents
of deep inference proof theory, and the geometric/coherent formulas of
categorical logic.

A salient feature of our calculus inherited from EGs, is that it is fully iconic:
it dispenses completely with the traditional notion of symbolic formula,
operating instead as a rewriting system on flowers containing only atomic
predicates. We also propose a notion of proof geared towards analyticity
results à la Gentzen, suggesting new rules absent from other works on
intuitionistic EGs. This allows us to prove admissibility theorems for many
rules, including Peirce’s deletion rule which is a variant of Gentzen’s cut
rule. These results are obtained as a consequence of our soundness and
completeness proofs with respect to Kripke semantics, in the spirit of the
normalization-by-evaluation technique.

Furthermore, the kernel of rules targetted by completeness is fully in-
vertible, a desirable property in both automated and interactive proof
search. This is illustrated by our implementation of the Flower Prover,
an early prototype of GUI for ITPs that uses the rules of the flower calcu-
lus both for direct manipulation of flowers in its frontend, and automated
simplification of goals in its backend.

The chapter is organized as follows: in Section 10.1, we retrace the origin
of Oostra’s syntax for intuitionistic existential graphs (IEGs) as a natural
generalization of the scroll, an icon for implication introduced by Peirce
that inspired the very creation of EGs. In Section 10.2, we explain how
flowers are really just a fun and metaphorical way to draw IEGs, and
proceed to give them an inductive, multiset-based syntax as in Section
9.3. In Section 10.3, we introduce the full set of inference rules of the
flower calculus as well as our notion of proof, and prove a few syntactic

https://www.lix.polytechnique.fr/Labo/Pablo.DONATO/flowerprover/
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[202]: Peirce (1906), ‘Prolegomena to an
Apology for Pragmaticism’

properties, including two deduction theorems. In Section 10.4, we give a
direct Kripke semantics to flowers, avoiding the need for translations to
and from formulas. In Section 10.5, we show that the rules of the flower
calculus are valid with respect to our Kripke semantics, and in Section 10.6
we identify a complete fragment of the system where all rules are both
analytic and invertible. This entails the admissibility of all rules outside
of this fragment, and as a consequence the analyticity of the system. We
exploit these properties in Section 10.7 by describing an algorithm for fully
automated proof search in the propositional fragment; unfortunately, the
current version of the algorithm is neither terminating nor complete. Then
in Section 10.8 we give an overview of the Flower Prover, a prototype
of GUI in the Proof-by-Action paradigm whose actions map directly
to the rules of the flower calculus, and which integrates nicely with (a
restricted version of) our search procedure. We conclude in Section 10.9
by a comparison with some related works, and a discussion of future
works and applications that we envision.

10.1. Intuitionistic existential graphs

10.1.1. The scroll

In Section 9.1, we presented the syntax of existential graphs (EGs) as
stemming from two fundamental icons: the sheet of assertion (SA), with
its ability to represent the conjunction of assertions through juxtaposition,
and cuts in SA that signify the denial or negation of assertions. However as
noted in Remark 9.1.1, the first interpretation of juxtaposition proposed by
Peirce was that of disjunction, in his system of entitative graphs. According
to him, the illative transformations of EGs are a necessary consequence
of the conjunctive interpretation of juxtaposition, as witnessed by the
following excerpt [202, p. 533]:

If you carefully examine the above conventions, you will find
that they are simply the development, and excepting in their
insignificant details, the inevitable result of the development
of the one convention that if any Graph, A, asserts one state
of things to be real and if another graph, B, asserts the same
of another state of things, then AB, which results from setting
both A and B upon the sheet, shall assert that both states of
things are real.

He goes on to notice:

This was not the case with my first system of Graphs, de-
scribed in Vol. VII of The Monist, which I now call Entitative
Graphs. But I was forced to this principle by a series of consid-
erations which ultimately arrayed themselves into an exact
logical deduction of all the features of Existential Graphs.

Thus the conjunctive reading of juxtaposition itself stemmed from “a
series of considerations” that “forced” Peirce to adopt it. While in this

https://www.lix.polytechnique.fr/Labo/Pablo.DONATO/flowerprover/
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Figure 10.1.: Peirce’s scroll

[151]: Lewis (1920), ‘A Survey of Sym-
bolic Logic’

Figure 10.2.: Peirce’s scroll with a blank
antecedant

𝐺

BA
←−−→ 𝐺

Figure 10.3.: The rule of
Blank Antecedant

𝐴

𝐵

𝐶 𝐷

Figure 10.4.: Currying as scroll nesting

article he does not give the full “exact logical deduction of all the features
of Existential Graphs”, he exposes in some details the initial and deter-
mining insight that kickstarted the whole development: the discovery of
the icon called the scroll. Again, I will let Peirce speak for himself [202,
pp. 533–534]:

Accordingly, since logic has primarily in view argument, and
since the conclusiveness of an argument can never be weak-
ened by adding to the premisses or by subtracting from the
conclusion, I thought I ought to take the general form of
argument as the basal form of composition of signs in my
diagrammatization; and this necessarily took the form of a
“scroll”, that is [...] a curved line without contrary flexure
and returning into itself after once crossing itself, and thus
forming an outer and an inner “close”.

Figure 10.1 shows Peirce’s drawing of the scroll as it appears in [202,
Fig. 5]. He defines its intended meaning like so [202, p. 534–535]:

I shall call the outer boundary the Wall; and the inner, the
Fence. In the outer I scribed the Antecedent, in the inner the
Consequent, of a Conditional Proposition de inesse. [...][Thus
the meaning of Figure 10.1 is] that if both A and B are true,
then both C and D are true. [...] a Conditional de inesse (unlike
other conditionals) only asserts that either the antecedent is
false or the consequent is true.

This shows the classical view of Peirce on EGs, who interprets the scroll
as signifying the conditional de inesse — also called nowadays material
implication, and defined here in its disjunctive form, expressed symbol-
ically by 𝐴 ⊃ 𝐵 ≜ ¬𝐴 ∨ 𝐵. This is no coincidence that Peirce based his
most fundamental icon on implication: according to Lewis [151, p. 79],
he was the one who introduced the “illative relation” of implication into
symbolic logic in the first place, by giving it a distinguished symbol, and
studying extensively the algebraic laws that govern it (including Peirce’s
law).

10.1.2. Seeds of intuitionism

Blank Antecedant A first principle that Peirce derives from the scroll
is the following [202, p. 534]:

[...] any insertion [is] permitted in the outer close, and any
omission from the inner close. By applying the former clause
of this rule to [Figure 10.2], we see that this scroll with the
outer close void, justifies the assertion that if no matter what
be true, C is in any case true; so that the two walls of the scroll,
when nothing is between them, fall together, collapse, disap-
pear, and leave only the contents of the inner close standing,
asserted, in the open field.
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𝐴
𝐶

𝐵

BA
−−−→ 𝐴 𝐶𝐵

Ins
−−−→ 𝐴 𝐴 𝐶𝐵

Deit
−−−−→ 𝐴 𝐵 𝐶

Figure 10.5.: Intuitionistic proof of cur-
rying

𝐴 𝐵 𝐶

Ins
−−−→ 𝐴

𝐵 𝐶
𝐵

Deit
−−−−→ 𝐴

𝐶
𝐵

BA
−−−→ 𝐴

𝐶
𝐵

Figure 10.6.: Intuitionistic proof of un-
currying

This first form of “collapsing ofwalls” is called the rule ofBlank Antecedant
in [159], and corresponds symbolically to the equivalence ⊤ ⊃ 𝐴 ≃ 𝐴.
The reader might be tempted to see the “former clause” that permits any
insertion in the outer close as a special case of the Insertion principle of
Alpha (Section 9.1). However, we stress again that Peirce first identified
this clause as a feature of the scroll, seen as the diagrammatic embodi-
ment of the “general form of argument” mentioned in a previous excerpt.
The principle of Insertion only followed as a subsequent generalization,
stemming from the analysis of the scroll into two nested cuts [202, p. 535]:

[...] and you will further see that a scroll is really nothing but
one oval within another.

To emphasize this point, we will from now on depict scrolls as two nested
cuts joined at a single point highlighted in orange, as illustrated in Figure
10.3.

Remark 10.1.1 It is interesting to note that the rule ofBlank Antecedant
is not seen as primitive by Peirce, but as a consequence of a dynamic
potential of the scroll: namely, the ability to insert anything in the outer
close, at will. This is another manifestation of Peirce’s concern for the
question of illative atomicity, and is to be related to the elimination of
the Double−cut rule discussed in Section 9.4.

Currying Peirce was aware of the phenomenon of currying, expressed
symbolically by the equivalence 𝐴 ⊃ 𝐵 ⊃ 𝐶 ≃ 𝐴 ∧ 𝐵 ⊃ 𝐶, as witnessed by
the following passage [202, p. 535]:

Now, Reader, if you will just take pencil and paper and scribe
the scroll expressing that if 𝐴 be true, then it is true that if
𝐵 be true 𝐶 and 𝐷 are true [Figure 10.4], and compare this
with [Figure 10.1], which amounts to the same thing in mean-
ing, you will see that scroll walls with a void between them
collapse even when they belong to different scrolls.

It is remarkable that he comes to this conclusion by a topological argu-
ment, noting that this second form of “collapsing of walls”, now involving
two different scrolls, follows from the scroll beeing composed of two
nested cuts. If we reject this interpretation by requiring that the Fence
(the inner oval) stays glued to the Wall (the outer oval), then one cannot
derive currying through the rule of Double−cut, precisely because the
system only permits to collapse a Wall and a Fence continuously joined
in the same scroll, by the weaker rule of Blank Antecedant. Fear not how-
ever, as one can still derive the currying and uncurrying laws in this
intuitionistic setting, but through the additional use of the insertion and
deiteration rules, as depicted in Figure 10.5 and Figure 10.6. Yet we find
that Peirce’s insight on the topological explanation of currying in the
classical setting remains noteworthy.

Remark 10.1.2 Note that in Figure 10.5 and Figure 10.6, we give for-
ward proofs that rewrite the premiss of the argument into its conclusion,
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𝑏

𝑐𝑓

𝑒

𝑎

𝑑

Figure 10.7.: A curl with five loops

𝐴 𝐵 𝐴 ∨ 𝐵

𝐴 𝐵 𝐴 ⊃ 𝐵

≠

𝐴 𝐵 ¬(¬𝐴 ∧ ¬𝐵)

𝐴 𝐵 ¬(𝐴 ∧ ¬𝐵)

Figure 10.8.:Continuity, disjunction and
implication in IEGs

[2]: Abramsky et al. (1995), Domain The-
ory

rather than backward proofs that rewrite a goal into the empty SA, as
we usually did in previous chapters. Forward proofs correspond to
Peirce’s usage of the illative transformations — and thus to what can
be found in most of the literature on EGs, and have the advantage of
being more economical in space by leaving the goal implicit. One can
easily go from a forward proof to a backward one as shown by the
deduction theorem of Sowa [226, Section 6], which also applies in the
intuitionistic setting by substituting the rule of Double−cut with the
rule of Blank Antecedant.

10.1.3. Parallel conclusions

The 𝑛-ary scroll In [190], A. Oostra proposes to take the above remark
seriously, by reifying the scroll as a primitive icon of EGs (“rizo” in Span-
ish), that exists alongside the cut (“corte”), and is distinguished from it.
In fact he goes further than this, and proposes to generalize both the cut
and the scroll into an 𝑛-ary construction called the curl (“bucle”), where 𝑛
is the number of inner closes, called loops (“lazos”). Figure 10.7 shows an
example of curl with five loops. In [159], the curl is simply called 𝑛-ary
scroll, and is analyzed into the outer area (that enclosed by the Wall)
called the outloop, and the inner areas (those enclosed by the 𝑛 Fences, i.e.
the loops of Oostra) called the inloops. Then cuts and scrolls are indeed
special cases of 𝑛-ary scrolls, respectively with 𝑛 = 0 and 𝑛 = 1.

Like the unary scroll, the 𝑛-ary scroll is to be read as an implication whose
antecedant is the content of the outloop, and consequent the content of
the inloops. The generalization then consists in taking the disjunction of
the contents of all inloops: this reflects nicely the etymological meaning
of the word “disjunction”, since the inloops enclose disjoint areas of the
outloop to which they are attached. Then the 5-ary scroll of Figure 10.7 is
read as the formula 𝑎 ⊃ 𝑏 ∨ 𝑐 ∨ 𝑑 ∨ 𝑒 ∨ 𝑓; and the 0-ary scroll obtained by
removing all inloops from the latter as 𝑎 ⊃ ⊥, since a 0-ary disjunction
is naturally evaluated to its neutral element ⊥. This coincides with the
intuitionistic reading of negation ¬𝐴 ≜ 𝐴 ⊃ ⊥, and is thus consistent with
the interpretation of cuts as negations.

Continuity With this interpretation of the 𝑛-ary scroll, the Alpha en-
codings of disjunction and implication as nested cuts are no longer valid,
because they are not intuitionistically equivalent to the associated binary
and unary scrolls. This is illustrated in Figure 10.8, where the closeness
in meaning is reflected iconically (but not symbolically) in the fact that
the graphs only differ in the continuity (or lack thereof) between inloops
and their outloop. Indeed, contrary to nested cuts, any 𝑛-ary scroll can be
drawn by a continuous movement of the pen, producing a self-intersecting
curve as described by Peirce in [202].

This might be related to other manifestations of the notion of continuity
in the semantics of intuitionistic logic, such as the well-known Stone-
Tarski interpretation of formulas as topological spaces [232], and the
interpretation of proofs as continuous maps in the denotational seman-
tics of Dana Scott [2]. Before the advent of Oostra’s IEGs, Zalamea gave
a detailed analysis of Peirce’s philosophy of the continuum, how it re-
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[193]: Oostra (2022), ‘Advances in
Peircean Mathematics: The Colombian
School’

x1 𝐻1

x2 𝐻2xn 𝐻𝑛

xn−1

𝐱 𝐺

x3 𝐻3𝐻𝑛−1
…

∀𝐱. (⋀𝐺 ⊃ ⋁𝑛
𝑗=1 ∃𝐱𝑗. ⋀𝐻𝑗)

Figure 10.9.: Formula interpretation of
the 𝑛-ary scroll

lates to modern developments in mathematics, and how it is embodied
in existential graphs [259]. Actually according to Oostra [193, p. 162],
“the possibility of developing intuitionistic existential graphs was first
suggested by Zalamea in the 1990s [257, 258]”.

10.1.4. Quantifiers

More generally, a 𝑛-ary scroll with atoms 𝐺 ≔ 𝑎1, … , 𝑎𝑚 in its outloop and

Δ ≔ (
𝑎1,1 … 𝑎1,𝑝1
⋮ ⋱ ⋮

𝑎𝑛,1 … 𝑎1,𝑝𝑛

) in its inloops, where each row 𝐻𝑗 in Δ encodes an

inloop, can be interpreted as the formula

𝑚
⋀
𝑖=1

𝑎𝑖 ⊃
𝑛
⋁
𝑗=1

𝑝𝑛
⋀
𝑘=1

𝑎𝑗,𝑘

If one adds binders to the mix (see Section 9.8) by having 𝛾 ≔ 𝐱 ⋅ 𝐺 as

outloop, and Ξ ≔ (
𝐱1
⋮
𝐱𝑛

) ⋅ Δ as inloops, then the interpretation is extended

into the formula

∀𝐱. (
𝑚
⋀
𝑖=1

𝑎𝑖 ⊃
𝑛
⋁
𝑗=1

∃𝐱𝑗.
𝑝𝑛
⋀
𝑘=1

𝑎𝑗,𝑘)

as depicted in Figure 10.9. Typically, the particular case where 𝛾 ≔ 𝑥 ⋅ ⌀
and Ξ ≔ (⌀) ⋅ (𝑝(𝑥)) encodes the graph

𝑥 𝑝(𝑥)

expressing the universal quantification ∀𝑥.𝑝(𝑥), and the case where 𝛾 ≔
⌀ ⋅ ⌀ and Ξ ≔ (𝑥) ⋅ (𝑝(𝑥)) the graph

𝑝(𝑥)𝑥

expressing the existential quantification ∃𝑥.𝑝(𝑥). The interpretation is
invariant under polarity, meaning that for instance the graphs

𝑥 𝑝(𝑥) and 𝑝(𝑥)𝑥

obtained by enclosing the previous graphs in a cut are interpreted with
the same quantifiers, as the formulas ¬∀𝑥.𝑝(𝑥) and ¬∃𝑥.𝑝(𝑥). In Beta,
we would have exploited the classical equivalences ¬∀𝑥.𝐴 ≃ ∃𝑥.¬𝐴 and
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[148]: Lawvere (1970), ‘Quantifiers and
Sheaves’

[147]: Lawvere (1975), ‘Continuously
Variable Sets; Algebraic Geometry = Ge-
ometric Logic’

[223]: Skolem (1920), ‘Logisch-
Kombinatorische Untersuchungen Über
Die Erfüllbarkeit Oder Bewiesbarkeit
Mathematischer Sätze Nebst Einem
Theorem Über Dichte Mengen’

[74]: Dyckhoff et al. (2015), ‘Geometriza-
tion of First-Order Logic’

[19]: Bezem et al. (2005), ‘Automating Co-
herent Logic’

1: Incidentally, projective geometry was
one of the motivating applications that
led Skolem to identify the class of coher-
ent formulas [19].

[131]: Janičić et al. (2023), ‘Automated
generation of illustrated proofs in geom-
etry and beyond’

¬∃𝑥.𝐴 ≃ ∀𝑥.¬𝐴 (justified by theDouble−cut principle) in order to interpret
them as ∃𝑥.¬𝑝(𝑥) and ∀𝑥.¬𝑝(𝑥), emphasizing the idea that positive and
negative binders encode respectively ∃ and ∀. But this is not possible
anymore with the intuitionistic interpretation of 𝑛-ary scrolls, where
the ∃/∀ duality is replaced by the inloop/outloop distinction. In fact, we
are tempted to further qualify this distinction of adjunction, following a
classical result of Lawvere in the context of categorical logic [148].

10.1.5. Coherent formulas

Lawvere is also known for some contributions to the study of geometric
logic [147], a subset of the formulas of FOL first discovered by Skolem
[223] that is capable of expressing many mathematical theories, and has
close connections to topos theory. Quite remarkably, the interpretation of
𝑛-ary scrolls coincides exactly with the class of coherent formulas, which
are the formulas of geometric logic where infinitary disjunctions are
restricted to finitary ones. There is a difference however: the full syntax
of IEGs allows for arbitrary nestings of 𝑛-ary scrolls inside eachother, i.e.
the multisets 𝐺 and 𝐻𝑗 in Figure 10.9 can contain 𝑛-ary scrolls in addition
to atoms; while coherent formulas are restricted to atoms.

Coherent formulas have some nice properties, which might also apply to
IEGs to some extent. We only mention two important ones:

Completeness Every first-order theory has a coherent conservative
extension, making coherent formulas (and thus non-nested 𝑛-ary scrolls)
in principle as expressive as arbitrary first-order formulas [74].

Automation Coherent formulas benefit from faster proof-search pro-
cedures compared to arbitrary formulas, making automation more
tractable computationally. They also allow the direct encoding of many
reasoning problems, thanks to their use of the full set of connectives
and quantifiers of FOL; and avoiding complex encodings (as can be
found e.g. in SMT solvers) is crucial in interactive theorem proving,
where the user and the computer manipulate the same formulas in
goals [19]. This has been exploited already in some domain-specific
theorem provers, like the Larus prover that automatically generates
illustrated proofs in geometry1 [131].

Remark 10.1.3 Thus with IEGs, one becomes able to reason geomet-
rically on geometric formulas that speak about geometry: another
beautiful incarnation of the reflexivity at work in Peirce’s iconic
logic.

https://github.com/janicicpredrag/Larus
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𝑏

𝑐𝑓

𝑒

𝑎

𝑑

Figure 10.10.: Turning a 5-ary scroll
inside-out

2: As the saying goes: make love, not
war.

Figure 10.11.: Nested flowers

10.2. Flowers

10.2.1. Blooming

As we have seen, the (𝑛-ary) scroll is a powerful icon, because it captures
the distinction between classical and intuitionistic logic as being a matter
of continuity between the space of inputs/hypotheses (outloop) and the
spaces of outputs/conclusions (inloops), reflecting an intuition discovered
much later in the denotational semantics of the 𝜆-calculus. However as
a diagrammatic component to be operated upon through direct manip-
ulation, it has one notable flaw, also shared with the classical cut-based
syntax: it quickly induces heavy nestings of curves in the plane, making
even a simple graph like that of Figure 10.4 hard to read for an untrained
eye.

Before devising an alternative syntax, one should ask: what are the es-
sential features of the scroll that we want to preserve? Following the
previous observations, we identified two of them:

Continuity the scroll is a self-intersecting continuous curve, which can
be drawn in one stroke of the pen;

Polarity this curve delineates two kinds of areas: inloops that have the
same polarity as the area on which the scroll is scribed, and the outloop
which has the opposite polarity.

Fortunately, these two properties are preserved when turning inloops
inside-out, as illustrated in Figure 10.10. This might be because the very
process of turning inside-out can be seen as a continuous movement
in three-dimensional space, where the inloops are rotated around their
intersection points with the outloop. In this way, we have effectively
divided the amount of curve-nesting in scrolls by two. And as an added
bonus, the new icon is reminiscent of a flower, as if it had bloomed from
its curled bud; or as if the pistol cylinder from Figure 10.7 had transformed
into a pistil, and its bullet chambers into petals2.

From that point onwards, we decided to fully embrace the flowermetaphor:
first in our drawing style as witnessed in Figure 10.11, but also in our
syntactic terminology, to be introduced in the next pages. Negative out-
loops are now drawn as yellow pistils for a more colorful experience,
and inloops as transparent petals, i.e. of the same color as the area on
which they are scribed. We also drop the requirement that petals should
intersect their pistil at a single point, for purely aesthetic reasons.

10.2.2. Multisets

Aswe did for classical EGs in Section 9.3 and Section 9.8, we are now going
to distill the syntactic essence of flowers into an inductive, (multi)set-
based data structure. This will allow for a more compact textual notation,
that is better suited to proof-theoretical study.



10. Flower Calculus 195

3: Conversely, every relation can be
faithfully encoded as its characteristic
function, which is the basis for the for-
malization of mathematics in type theo-
ries.

Digression
According to the Merriam-Webster
dictionary [171], theword “corollary”
has botanical etymological roots:

[...] the seed of
corollary was planted
initially by the
Latin noun corōlla
meaning “small
wreath of flowers”,
which later bloomed
into another Latin
noun, corōllārium,
referring to a garland
given as a reward as
well as to a gratuity
or an unsolicited
payment. [...] The
formality of corollary
is thanks to its formal
roots [...]

Then our flower metaphor is a mean-
ingful tribute to these origins: the
petals (corolla) of a flower can liter-
ally be seen as the corollaries of its
pistil, when the latter happens to be
true.

In Section 9.7, we explained how the graphs of Beta allow to represent
purely relational statements, without function symbols. Since functions
are just deterministic relations, one can in principle formalize any first-
order theory in this syntax3. However it is much more convenient to have
a dedicated syntax for functions, and we will thus introduce them as is
usually done in predicate calculus.

Definition 10.2.1 (First-order signature) A first-order signature is a
triplet Σ = (ℱ,𝒫, ar), where ℱ and 𝒫 are respectively the countable sets
of function and predicate symbols of Σ, and ar ∶ ℱ ∪ 𝒫 → ℕ gives an
arity to each symbol.

In the following, we assume given a denumerable set of variables 𝒱 and
a first-order signature Σ.

Definition 10.2.2 (Terms) The set of terms 𝕋 is defined inductively as
follows:

(Variable) If 𝑥 ∈ 𝒱 then 𝑥 ∈ 𝕋;

(Application) If 𝑓 ∈ ℱ and �⃗� ∈ 𝕋ar(𝑓 ), then 𝑓 (�⃗�) ∈ 𝕋.

Definition 10.2.3 (Flowers) The sets of flowers 𝔽 and gardens 𝔾 are
defined mutually inductively as follows:

(Atom) If 𝑝 ∈ 𝒫 and �⃗� ∈ 𝕋ar(𝑝), then 𝑝(�⃗�) ∈ 𝔽;

(Garden) If 𝐱 ⊂ 𝒱 is a finite set and Φ ⊂ 𝔽 a finite multiset, then 𝐱⋅Φ ∈ 𝔾;

(Flower) If 𝛾 ∈ 𝔾 and Δ ⊂ 𝔾 is a finite multiset, then 𝛾 ⫐ Δ ∈ 𝔽.

Any finite set 𝐱 ⊂ 𝒱 of variables is called a sprinkler, finite multiset Φ ⊂ 𝔽
of flowers a bouquet, and finite multiset Γ ⊂ 𝔾 of gardens a corolla. We
will often write gardens as 𝑥1, … , 𝑥𝑛 ⋅ 𝜙1, … , 𝜙𝑚, where the 𝑥𝑖 are called
binders; and non-atomic flowers as 𝛾 ⫐ 𝛿1 ; … ; 𝛿𝑛, where 𝛾 is the pistil,
and the 𝛿𝑖 are called petals. We write {𝐸𝑖}𝑛𝑖 to denote a finite (multi)set of
size 𝑛 with elements 𝐸𝑖 indexed by 1 ≤ 𝑖 ≤ 𝑛. We also omit writing the
empty (multi)set, accounting for it with blank space as is done in sequent
notation or in EGs; in particular, ⋅ stands for the empty garden ⌀ ⋅ ⌀, 𝛾 ⫐
for the flower with no petals 𝛾 ⫐ ⌀, and 𝛾 ⫐ ⋅ for the flower with one
empty petal.

Note that the order of precedence of operators is , < ⋅ < ; < ⫐ so that for
instance, the string

𝑥1, 𝑥2 ⋅ 𝜙1, 𝜙2 ⫐ 𝑦1 ⋅ 𝜓 , (𝛾 ⫐ 𝛿) ; 𝑦2 ⋅ Φ

is parsed as the flower
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Kind Letters
Variables (𝒱) 𝑥, 𝑦 , 𝑧
Terms (𝕋) 𝑡 , 𝑢, 𝑣
Flowers (𝔽) 𝜙, 𝜓 , 𝜉
Gardens (𝔾) 𝛾 , 𝛿
Sprinklers 𝐱, 𝐲, 𝐳

Term vectors �⃗�, �⃗�, �⃗�
Substitutions 𝜎, 𝜏
Bouquets Φ,Ψ, Ξ
Corollas Γ, Δ
Contexts Φ□, Ψ□, Ξ□
Theories T ,U

Table 10.1.: Notational conventions for
meta-variables

𝑦2 Φ𝑥1 𝑥2
𝜙1 𝜙2

𝑦1 𝜓

𝛾 𝛿

Also to improve readability, we will most of the time omit the garden dot
‘⋅’ when the sprinkler is empty, writing Φ instead of ⋅ Φ.

Remark 10.2.1 In some places the choice of letter for meta-variables
will be important to disambiguate the kind of syntactic object we de-
note. Table 10.1 summarizes our chosen notational conventions in this
respect.

As usual, we introduce a depth measure that will allow us to reason
inductively on the structure of flowers:

Definition 10.2.4 (Depth) The depth |− | of a flower or garden is defined
mutually recursively as follows:

|𝑝(�⃗�)| = 0
|𝐱 ⋅ Φ| = max

𝜙∈Φ
|𝜙|

|𝛾 ⫐ Δ| = 1 +max(|𝛾|,max
𝛿∈Δ

|𝛿|)

10.2.3. Substitutions

We now proceed with routine definitions for handling variables and
substitutions of terms in flowers.

Definition 10.2.5 (Free variables) The sets of free variables fv(−) of
a term, flower, bouquet or garden are defined mutually recursively as
follows:

fv(𝑥) = {𝑥} fv(Φ) = ⋃
𝜙∈Φ

fv(𝜙)

fv(𝑓 (�⃗�)) = ⋃
𝑡∈�⃗�

fv(𝑡) fv(𝐱 ⋅ Φ) = fv(Φ) ∖ 𝐱

fv(𝑝(�⃗�)) = ⋃
𝑡∈�⃗�

fv(𝑡) fv(𝐱 ⋅ Φ ⫐ Δ) = fv(𝐱 ⋅ Φ) ∪ ⋃
𝐲⋅Ψ∈Δ

fv(𝐱, 𝐲 ⋅ Ψ)
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We say that a term, flower, bouquet or garden is closed when its set of
free variables is empty.

Remark 10.2.2 Note that the scope of a binder located in a pistil
extends both to the pistil and to all its attached petals, whereas for a
binder located in a petal it is limited to said petal. This is reflected in
the above definition of free variables for (non-atomic) flowers, and is
visually explained by the nesting of curves in an 𝑛-ary scroll.

Definition 10.2.6 (Bound variables) The sets of bound variables bv(−)
of a flower, bouquet or garden are defined mutually recursively as follows:

bv(𝑝(�⃗�)) = ⌀ bv(𝐱 ⋅ Φ) = 𝐱 ∪ bv(Φ)

bv(Φ) = ⋃
𝜙∈Φ

bv(𝜙) bv(𝛾 ⫐ Δ) = bv(𝛾 ) ∪ ⋃
𝛿∈Δ

bv(𝛿)

To avoid reasoning about 𝛼-equivalence, we adopt in this work the so-
called Barendregt convention that all variable binders are distinct, both
among themselves and from eventual free variables. Formally, we assume
that for any bouquet Φ, the two following conditions hold:

1. computing bv(Φ) as a multiset gives the same result as computing it
as a set;

2. bv(Φ) ∩ fv(Φ) = ⌀.

To define substitutions, we introduce a general notion of function update,
which will be useful for the semantic evaluation of flowers in Section
10.4.

Definition 10.2.7 (Function update) Let 𝐴, 𝐵 be two sets, 𝑓 , 𝑔 ∶ 𝐴 → 𝐵
two functions and 𝑅 ⊆ 𝐴 some subset of their domain. The update of 𝑓 on
𝑅 with 𝑔 is the function defined by:

(𝑓 |𝑅 𝑔)(𝑥) = {
𝑔(𝑥) if 𝑥 ∈ 𝑅
𝑓 (𝑥) otherwise

− |− − is left-associative, that is 𝑓 |𝑅 𝑔 |𝑆 ℎ = (𝑓 |𝑅 𝑔) |𝑆 ℎ. Also if 𝑓 or 𝑔 is the
identity function 1 we omit writing it, i.e. 𝑓 |𝑅 = 𝑓 |𝑅 1 and |𝑅 𝑔 = 1 |𝑅 𝑔.

Definition 10.2.8 (Substitution) A substitution is a function 𝜎 ∶ 𝒱 → 𝕋
with a finite support supp(𝜎) = {𝑥 | 𝜎(𝑥) ≠ 𝑥}. By abuse of notation, we
will write 𝜎 ∶ 𝐱 → 𝕋 to denote a substitution 𝜎 whose support is 𝐱.
The domain of substitutions is extended to terms, flowers, bouquets and
gardens mutually recursively as follows:

𝜎(𝑓 (𝑡1, … , 𝑡𝑛)) = 𝑓 (𝜎(𝑡1), … , 𝜎(𝑡𝑛))
𝜎(𝑝(𝑡1, … , 𝑡𝑛)) = 𝑝(𝜎(𝑡1), … , 𝜎(𝑡𝑛))
𝜎(𝜙1, … , 𝜙𝑛) = 𝜎(𝜙1), … , 𝜎(𝜙𝑛)
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𝜎(x ⋅ Φ) = x ⋅ 𝜎|x(Φ)
𝜎(x ⋅ Φ ⫐ 𝛿1 ; … ; 𝛿𝑛) = 𝜎(x ⋅ Φ) ⫐ 𝜎|x(𝛿1) ; … ; 𝜎|x(𝛿𝑛)

Definition 10.2.9 (Capture-avoiding substitution) We say that a substi-
tution 𝜎 ∶ 𝐱 → 𝕋 is capture-avoiding in a bouquet Φ if fv(𝜎(𝑥))∩bv(Φ) =
⌀ for every 𝑥 ∈ 𝐱.

10.3. Calculus

10.3.1. Preliminary definitions

Contexts Equipped with an inductive syntax, we can now express
formally the inference rules of our flower calculus, just as we did for Alpha
(Section 9.3) and Beta (Section 9.8). There, graphs and their contexts were
defined as multisets of nodes, which have now turned into bouquets of
flowers:

Definition 10.3.1 (Context) A context Φ□ is a bouquet which contains
exactly one occurrence of a special flower written □, called its hole. The
hole can always be filled (substituted) with any other bouquetΨ or context
Ξ□, producing a new bouquet Φ Ψ or context Φ Ξ□ . In particular, filling
with the empty bouquet will yield a bouquet Φ , which is just Φ□ with
its hole removed. A flower context 𝜙□ is a context with exactly one flower.

Definition 10.3.2 (Depth) The depth |Φ□| of a context Φ□ is defined
recursively as follows:

|Ψ,□| = 0
|Ψ, (𝐱 ⋅ Φ□ ⫐ Δ)| = 1 + |Φ□|

|Ψ, (𝛾 ⫐ 𝐱 ⋅ Φ□ ; Δ)| = 1 + |Φ□|

Contrarily to EGs (Definition 9.3.4), the number of inversions of a context
does not coincide with its depth, since petals increase depth but preserve
polarity:

Definition 10.3.3 (Inversions) The number of inversions inv(Φ□) of a
context Φ□ is defined recursively by:

inv(Ψ,□) = 0
inv(Ψ, (𝐱 ⋅ Φ□ ⫐ Δ)) = inv(Φ□) + 1

inv(Ψ, (𝛾 ⫐ 𝐱 ⋅ Φ□ ; Δ)) = inv(Φ□)

Definition 10.3.4 (Polarity) We say that a context Φ□ is positive if
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Cross-pollination

Self-pollination

Figure 10.12.: Pollination in flowers

4: Figure 10.12 summarizes visually the
flow of information in flowers, just like
Figure 9.5 summarized the flow of infor-
mation in EGs, and Figure 8.10 in bub-
bles. From a UI point of view, all these fig-
ures can be understood as kind of “cheat-
sheets”, that indicate with arrows the al-
lowed drag-and-drop moves for import-
ing a statement (the source of the DnD)
into a new context (the destination of the
DnD).

5: The same phenomenon is at work
in subformula linking (Chapter 3): self-
pollination and cross-pollination corre-
spond respectively to the backward 5
and forward � interaction operators,
which are collapsed into a single interac-
tion operator ∗ in the original formula-
tion of subformula linking for classical
linear logic [37].

Φ
epis↓

⋅ ⫐ ⋅ Φ

Figure 10.13.: Converse of epis rule

inv(Φ□) is even, and negative otherwise. We denote positive and negative
contexts respectively by Φ+□ and Φ−□.

Pollination In order to formulate the equivalent of the (de)iteration
rules of EGs for flowers, we introduce a pollination relation that captures
the availability of a flower in a given context, akin to the justification
relation of Subsection 9.4.3:

Definition 10.3.5 (Pollination) We say that a flower 𝜙 can be pollinated
in a context Φ□, written 𝜙 ≻ Φ□, when there exists a bouquet Ψ with
𝜙 ∈ Ψ and contexts Ξ□ and Ξ0 such that either:

(Cross-pollination) Φ□ = Ξ Ψ, Ξ0 ;

(Self-pollination) Φ□ = Ξ 𝐱 ⋅ Ψ ⫐ 𝐲 ⋅ Ξ0 ; Δ for some 𝐱, 𝐲, Δ.

A bouquet Ψ can be pollinated in Φ□, written Φ ≻ Φ□, if 𝜙 ≻ Φ□ for all
𝜙 ∈ Φ.

We now employ the metaphor of pollination to speak about (de)iteration
in flowers. This is illustrated in Figure 10.12, where the blue dot marks
the location of the justifying/pollinating occurrence of 𝜙, and the red dots
all the areas that it (locally) justifies/pollinates, and thus where 𝜙 can
be (de)iterated4. We distinguish two cases of cross-pollination and self-
pollination, as botanists do when describing the reproduction of flowers.
This distinction does not exist in classical EGs, because pistils and petals
are both identified as instances of cuts5. If we were to replace binders by
LoIs (lines of identity, see Section 9.7), then the pollination relation would
also prescribe in which areas LoIs can be extended/iterated, providing an
explanation for the scope of binders (Remark 10.2.2).

10.3.2. Rules

As has become standard in this thesis, we define the flower calculus as
a rewriting system on bouquets, presented in Figure 10.14 as a set of
unary deep inference rules: when read top-down, they correspond to
usual inferences from premiss to conclusion, and will be justified by the
soundness theorem of Section 10.5. But the more interesting direction,
and the one around which the calculus has been designed, is when you
read the rules bottom-up: then they are indeed rewriting rules, telling you
the different ways in which you can choose to simplify a goal. This is
how the graphical version of the rules is presented in Figure 10.16 and
Figure 10.17.

Let us now describe the rules in more detail, starting with the fragment
that is a direct adaptation of the rules of Beta (Figure 9.15):

Blank Antecedant (epis) It allows to enclose any bouquet in a petal
attached to an (e)mpty (pis)til. This is one direction of the rule of
Blank Antecedant (Figure 10.3), which is a weaker, intuitionistic version
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of the classical rule Dcut↑ of Alpha and Beta. The other direction (rule
epis↓ in Figure 10.13) is actually admissible, which might be related to
the co-admissibility of Dcut↓ in Alpha (Corollary 9.6.4).

(De)iteration (poll↓, poll↑) Renamed (poll)ination rules, they correspond
to the rules Iter and Deit of Alpha and Beta, but reformulated with the
pollination relation (Definition 10.3.5). In fact in their textual presen-
tation of Figure 10.14, they are more general than (de)iteration rules,
because Definition 10.3.5 allows the pollinating bouquet Φ to be scat-
tered in the context Ξ□, i.e. its flowers need not be located in the same
area. On the contrary in the graphical presentation of Figure 10.16, they
are less general since only one flower can be pollinated at a time, rather
than an entire bouquet of flowers residing in the same area. But it is
easy to see that all these variants are equivalent in deductive power,
since the pollination of a bouquet (however scattered) can always be
simulated by the successive pollinations of each of its flowers.

Insertion/Deletion (grow, crop, pull, glue) They correspond to the rules
Ins and Del of Alpha and Beta, but have doubled in number to account
for the syntactic distinction between pistils and petals. More precisely,
rules grow and crop allow to insert and delete entire flowers, while rules
pull and glue deal with petals. As for pollination rules, manipulating
single flowers/petals (graphical version) or entire bouquets/corollas
(textual version) does not change the deductive power of the rules.

Unification (ipis, ipet, apis, apet) Rules ipis and ipet allow to (i)nstantiate
a sprinkler located respectively in a (pis)til (∀) and a (pet)al (∃) with
an arbitrary substitution, while rules apis and apet do the opposite
operation of (a)bstracting a set of terms by introducing a sprinkler.
They correspond respectively to a generalization of the rules Unif↑ and
Unif↓ of Beta, where the variable substitution {𝑧/𝑦} becomes an arbitrary
substitution 𝜎. Once again, we have twice the amount of rules to account
for the pistil/petal distinction, which is not surprising since in the LoI
syntax of EGs, they are special cases of Insertion/Deletion. Note that
for the instantiation rules ipis/ipet to be invertible, we duplicate the
whole flower/petal where the sprinkler occurs, mirroring what is done
in multi-conclusion sequent calculi (see Figure 5.4).

The last two rules mainly handle the behavior of disjunctive and absurd
statements, i.e. flowers with respectively 𝑛 ≥ 2 and 𝑛 = 0 petals, and are
closer to sequent-style introduction/elimination rules:

Disjunction Introduction (epet) It allows to erase any flower with an
(e)mpty (pet)al. According to Oostra [193, p. 109], Peirce already identi-
fied epet as a component of his decision procedure for Alpha (it is simply
called “Operation 1” in [193]). This is no coincidence, since we precisely
came up with this rule when trying to design a decision procedure for
flowers (see Section 10.7).

Disjunction/Absurdity Elimination (srep) It corresponds to a 𝑛-ary
generalization of the left introduction rule for disjunction in sequent
calculus, the 0-ary case capturing absurdity elimination (ex falso quodli-
bet). The binary case is also used in the IEGs system of [159], together
with its converse. The name srep is short for (s)elf-(rep)roduction, which
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Connective ⊤ ∧ ⊥ ¬ ⊃ ∨ ∀ ∃

Corolla ≥ = < < = > = =

Bouquets
Pistil − < < = ≤ < < <

Petals < > − − = = = =

Sprinklers
Pistil − < < < < < ≥ <

Petals < < − − < < < ≥

Table 10.2.: Fragments of intuitionistic
logic as cardinality constraints on flowers

[256]: Yuan et al. (2023), ‘Live Pattern
Matching with Typed Holes’

6: The only exception seems to be the
rule (ipis) (resp. ipet), whose duplication
of flowers (resp. petals) prevents ∀ (resp.
∃) from being provable without ∧ (resp.
∨). This can be fixed by simply removing
the duplication, and polarizing the con-
text of application as for the rule apis
(resp. apet), at the cost of making the
rule non-invertible.

is more clearly visualized in the graphical version of the rule in Figure
10.16. Through the Curry-Howard correspondence, it can be related
to the pattern-matching generator found in modern editors of some
functional programming languages, such as the Hazel structure editor
and the Agda proof assistant [256].

The rules of the flower calculus have an interesting property: they are
mostly arity-agnostic, i.e. they work uniformly on flowers, bouquets and
gardens with any number of petals, flowers and binders. In particular,
this means that the same rules can be used to capture provability in
almost any fragment of intuitionistic predicate logic, understood as any
subset 𝔉 ⊂ 𝔽 of the set of all flowers6. Table 10.2 shows how all the
usual symbolic connectives can be expressed by cardinality constraints
on set-based syntactic constructs: <, ≤, =, ≥, > correspond respectively to
a cardinality smaller, smaller or equal, equal, greater or equal, and greater
than 1; and ‘−’ denotes the absence of constraint. These constraints are
then taken conjunctively for a single connective (column-wise); and they
can be freely mixed disjunctively (row-wise), in order to capture any
fragment corresponding to a subset of connectives.

10.3.3. Proofs

Our notions of derivation and proof are essentially the same as the ones
given for EGs in Section 9.3, except that we distinguish from the outset
between two kinds of derivations, stemming from our partitioning of the
rules into two sets: the natural rules denoted by ↝, and the cultural rules
denoted by ⊴. In particular, every ↝-rule is both analytic (i.e. every atom
in the premiss already appears in the conclusion) and invertible (this will
be shown in Section 10.5); on the contrary, all ⊴-rules are non-invertible,
and they will be shown to be admissible in Section 10.6.

Definition 10.3.6 (Derivation) Given a set of rules R, we write Φ →R Ψ
to indicate a rewrite step in R, that is an instance of some 𝑟 ∈ R from
Figure 10.14 with Ψ as premiss and Φ as conclusion. We just write Φ → Ψ
to mean Φ →↝∪⊴ Ψ. A derivation Φ →𝑛

R Ψ is a sequence of rewrite steps
Φ0 →R Φ1… →R Φ𝑛 with Φ0 = Φ, Φ𝑛 = Ψ and 𝑛 ≥ 0. Generally the length
𝑛 of the derivation does not matter, and we just write Φ →∗

R Ψ. Finally,
natural derivations are closed under arbitrary contexts: for every context
Ξ□, Φ →↝ Ψ implies Ξ Φ →↝ Ξ Ψ . We write Φ ⇀↝ Ψ to denote a

https://wiki.portal.chalmers.se/agda/pmwiki.php
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Nature ↝

Ξ
poll↓

Ξ Φ

Ξ Φ
poll↑

Ξ

⋅ ⫐ ⋅ Φ
epis

Φ
epet

𝛾 ⫐ ⋅ ; Δ

(𝐱 ⋅ 𝜎(Φ) ⫐ 𝜎(Δ)), (𝐱, 𝐲 ⋅ Φ ⫐ Δ)
ipis

𝐱, 𝐲 ⋅ Φ ⫐ Δ

𝛾 ⫐ 𝐱 ⋅ 𝜎(Φ) ; 𝐱, 𝐲 ⋅ Φ ; Δ
ipet

𝛾 ⫐ 𝐱, 𝐲 ⋅ Φ ; Δ

𝐱 ⋅ Φ ⫐ ⋅ {𝛾𝑖 ⫐ Δ}𝑛𝑖
srep

𝐱 ⋅ Φ, ( ⋅ ⫐ {𝛾𝑖}𝑛𝑖 ) ⫐ Δ

Culture ⊴

Ξ+ Φ
grow

Ξ+

Ξ−
crop

Ξ− Φ

Ξ+ 𝛾 ⫐ Δ
pull

Ξ+ 𝛾 ⫐ Γ ; Δ

Ξ− 𝛾 ⫐ Γ ; Δ
glue

Ξ− 𝛾 ⫐ Δ

Ξ+ 𝐱, 𝐲 ⋅ Φ ⫐ Δ
apis

Ξ+ 𝐱 ⋅ 𝜎(Φ) ⫐ 𝜎(Δ)

Ξ− 𝛾 ⫐ 𝐱, 𝐲 ⋅ Φ ; Δ
apet

Ξ− 𝛾 ⫐ 𝐱 ⋅ 𝜎(Φ) ; Δ

In the rules poll↓ and poll↑, we assume that Φ ≻ Ξ□.
In the rules ipis, apis (resp. ipet, apet), we assume some substitution 𝜎 ∶ 𝐲 → 𝕋 that is capture-avoiding in

⋅ Φ ⫐ Δ (resp. Φ).

Figure 10.14.: Rules of the flower calculus

shallow natural step, i.e. a direct instance of a natural rule in the empty
context.
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The following lemma is the flower calculus equivalent of Lemma 9.6.1 for
EGs:

Lemma 10.3.1 (Positive closure) If Φ → Ψ, then Ξ+ Φ → Ξ+ Ψ .

Proof. In the case of a natural stepΦ →↝ Ψ, this is immediate by definition.
Otherwise we have a cultural step Ξ′ Φ0 →⊴ Ξ′ Ψ0 . Then either Ξ′□ is

positive, and inv(Ξ+ Ξ′□ ) = inv(Ξ+□) + inv(Ξ′□) is even since it is the
sum of two even numbers; or Ξ′□ is negative, and inv(Ξ+ Ξ′□ ) is odd
since it is the sum of an even and an odd number. In both cases Ξ+ Ξ′□
has the same polarity as Ξ′□, and thus the same rule can be applied.

Now we can define our usual “goal-oriented” notion of proof:

Definition 10.3.7 (Proof) A proof of a bouquet Φ is a derivation Φ →∗ ⌀.

In Peircean terms, the empty bouquet is the blank SA. Then proving a
bouquet amounts to erasing it completely from SA, thus reducing it to
vacuous truth. Figure 10.18 shows an example of ↝-proof in the flower
calculus, both in textual and graphical syntax. Note that we used a non-
duplicating version of the rules ipis and ipet, in order to save some space
in the graphical presentation.

If we want to speak about relative truth, i.e. Φ is true under the assumption
that Ψ is, we can simply rely on the existence of a derivation Φ →∗ Ψ
in the full flower calculus. This will be justified by the soundness of all
rules (Theorem 10.5.13) as well as a strong completeness result (Corollary
10.6.7), that relies on the following strong deduction theorem:

Theorem 10.3.2 (Strong deduction) Φ →∗ Ψ if and only if Ψ ⫐ Φ →∗ ⌀.

Proof. Suppose that Φ →∗ Ψ. Then we have:

Ψ ⫐ Φ →∗ Ψ ⫐ Ψ (Hypothesis + Lemma 10.3.1)
→poll↓ Ψ ⫐ ⋅
→epet ⌀
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7: As opposed to higher-order, i.e. nega-
tively nested implications.

In the other direction, suppose that Ψ ⫐ Φ →∗ ⌀. Then we have:

Φ →epis ⫐ Φ
→grow (Ψ ⫐ Φ), (⫐ Φ)
→poll↑ (Ψ ⫐ Φ), ((Ψ ⫐ Φ) ⫐ Φ)
→∗ (Ψ ⫐ Φ) ⫐ Φ (Hypothesis + Lemma 10.3.1)
→grow Ψ, ((Ψ ⫐ Φ) ⫐ Φ)
→poll↓ Ψ, ((⫐ Φ) ⫐ Φ)
→srep Ψ, (⫐ (Φ ⫐ Φ))
→poll↓ Ψ, (⫐ (Φ ⫐ ⋅))
→epet Ψ, (⫐ ⋅)
→epet Ψ

Contrary to full derivability, natural derivability Φ →∗
↝ Ψ is too weak

to satisfy a strong deduction theorem. This is a consequence of the fact
that ↝-rules are invertible, and thus can only relate equivalent bouquets.
Indeed, as soon as Ψ ⫐ Φ is ↝-provable but the converse Φ ⫐ Ψ is not, it
follows from the completeness of ↝-rules that Φ and Ψ are not equivalent:
thus Φ ↛∗

↝ Ψ, contradicting the strong deduction statement.

Ψ ⫐ Φ →∗ ⌀. In fact this is closer to what one would find in sequent
calculus, where hypothetical proofs are closed derivations of hypothetical
sequents, not open derivations. The difference is that sequents capture
only the first-order implicative structure of logic7, while flowers capture
the full structure of intuitionistic predicate logic. This allows for a nice
generalization of the notion of hypothetical provability, which will be
useful in the completeness proof of Section 10.6.

Definition 10.3.8 (Hypothetical provability) Given two bouquets Φ,Ψ,
we say that Φ is hypothetically provable from Ψ in a fragment R of rules,
written Ψ ⊢R Φ, if for every context Ξ□ such that Ψ ≻ Ξ□, Ξ Φ →R Ξ .
We write Ψ ⊢ Φ to denote hypothetical provability in the full flower
calculus.

Lemma 10.3.3 (Reflexivity) For any bouquet Φ, Φ ⊢↝ Φ.

Proof. For any context Ξ□ such that Φ ≻ Ξ□, one has the following
derivation:

Ξ Φ →poll↓ Ξ

There is a subtle but important shift here with respect to the standard
notions of hypothetical provability, as found in Gentzen systems or type
theories: while in these settings it is characterized as the existence of
a proof for a single hypothetical judgment Γ ⇒ 𝐶 which constrains the
space of derivations, here we have the stronger requirement that there
exist proofs for a class of judgments Ξ Φ , whose hypothetical shape
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8: crep stands for (c)ross-(rep)roduction,
mirroring the distinction between cross-
pollination and self-pollination, but with
respect to the (s)elf-(r)eproduction rule
srep.

9: It seems that the question of admis-
sibility of epis is very similar to the
question of admissibility of release rules
discussed in Section 3.7. Both can be
used to enable a local simulation of se-
quent calculus rules, but do not appear in
real proofs because of the global power
of link formation (B,F) and pollination
(poll↓,poll↑) rules.

𝛾 ⫐ {𝐱𝑖 ⋅ Φ𝑖, Ψ}𝑛𝑖
crep

(𝛾 ⫐ {𝐱𝑖 ⋅ Φ𝑖}𝑛𝑖 ), Ψ

Figure 10.15.: Cross-reproduction rule

comes from the condition that Ψ ≻ Ξ□. In practice, the pollination rules
{poll↓, poll↑} and the epis rule make this equivalent to the existence of a
proof for Ψ ⫐ Φ. But we conjecture that the epis rule might be admissible
modulo the addition of the distributivity rule crep89 of Figure 10.15.

Thus our stronger notion of hypothetical provability makes more sense in
the variant ↝∖ {epis} ∪ {crep} of the flower calculus, although it will still be
useful in this work to make meta-theoretical proofs slightly shorter. For
now we allow the epis rule, which renders the deduction theorem trivial:

Theorem 10.3.4 (Deduction) For any pair Φ,Ψ of bouquets, Ψ ⊢↝ Φ if
and only if ⊢↝ Ψ ⫐ Φ.

Proof. Let Ξ□ be some context. If Ψ ⊢↝ Φ, then in particular Ξ′ Φ →↝

Ξ′ for Ξ′□ ≔ Ξ Ψ ⫐ □ . Thus we have:

Ξ Ψ ⫐ Φ →↝ Ξ Ψ ⫐ ⋅ →epet Ξ

In the other direction, let Ξ be some context such that Ψ ≻ Ξ□. If ⊢↝ Ψ ⫐
Φ, then in particular Ξ Ψ ⫐ Φ →↝ Ξ . Thus we have:

Ξ Φ →epis Ξ ⫐ Φ →poll↑ Ξ Ψ ⫐ Φ →↝ Ξ
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Nature ↝

𝛿1
𝛿2

𝛿3 𝛿𝑛−1

𝛿𝑛𝛾

…

poll↓
−−−−→

poll↑
−−−−→

𝛿1
𝛿2

𝛿3 𝛿𝑛−1

𝛿𝑛𝛾

…

Φ
epis
−−−−→ Φ

𝛿𝑖+1

𝛿𝑛 𝛿1

𝛿𝑖𝛾
⋮ ⋮

epet
−−−−→

𝛿1

𝛿2

𝛿3 𝛿𝑛−1

𝛿𝑛𝐱 𝐲
Φ

…

ipis
−−−→

𝜎(𝛿1)

𝜎(𝛿2)

𝜎(𝛿3) 𝜎(𝛿𝑛−1)

𝜎(𝛿𝑛)𝐱
𝜎(Φ)

…

𝛿1

𝛿2

𝛿3 𝛿𝑛−1

𝛿𝑛𝐱 𝐲
Φ

…

𝐱 𝐲
Φ

𝛿𝑖+1

𝛿𝑛 𝛿1

𝛿𝑖𝛾

⋮ ⋮

ipet
−−−→

𝐱 𝐲
Φ

𝐱
𝜎(Φ)

𝛿𝑖+1

𝛿𝑛 𝛿1

𝛿𝑖𝛾

⋮ ⋮

𝛿1

𝛿2

𝛿3 𝛿𝑛−1

𝛿𝑛

𝐱 Φ
…

…

𝛾1
𝛾2

𝛾3 𝛾𝑚−1

𝛾𝑚
srep
−−−−→

𝐱 Φ

𝛾1

𝛾2

𝛾3 𝛾𝑚−1

𝛾𝑚

…

…

…

… …

…

𝛿1
𝛿2

𝛿3 𝛿𝑛−1

𝛿𝑛

𝛿1
𝛿2

𝛿3 𝛿𝑛−1

𝛿𝑛

𝛿1
𝛿2

𝛿3 𝛿𝑛−1

𝛿𝑛

𝛿1
𝛿2

𝛿3 𝛿𝑛−1

𝛿𝑛

𝛿1
𝛿2

𝛿3 𝛿𝑛−1

𝛿𝑛

Figure 10.16.: Graphical presentation of the natural rules
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Culture ⊴

grow
−−−−→

𝛿1
𝛿2

𝛿3 𝛿𝑛−1

𝛿𝑛𝛾

…

𝛿1
𝛿2

𝛿3 𝛿𝑛−1

𝛿𝑛𝛾

…

crop
−−−−→

𝛿
𝛿𝑖+1

𝛿𝑛 𝛿1

𝛿𝑖𝛾
⋮ ⋮

pull
−−−→ 𝛿𝑖+1

𝛿𝑛 𝛿1

𝛿𝑖𝛾
⋮ ⋮

𝛿𝑖+1

𝛿𝑛 𝛿1

𝛿𝑖𝛾
⋮ ⋮

glue
−−−−→

𝛿
𝛿𝑖+1

𝛿𝑛 𝛿1

𝛿𝑖𝛾
⋮ ⋮

𝜎(𝛿1)

𝜎(𝛿2)

𝜎(𝛿3) 𝜎(𝛿𝑛−1)

𝜎(𝛿𝑛)𝐱
𝜎(Φ)

apis
−−−−→

𝛿1

𝛿2

𝛿3 𝛿𝑛−1

𝛿𝑛𝐱 𝐲
Φ

…

𝐱
𝜎(Φ)

𝛿𝑖+1

𝛿𝑛 𝛿1

𝛿𝑖𝛾

⋮ ⋮

apet
−−−−→

𝐱 𝐲
Φ

𝛿𝑖+1

𝛿𝑛 𝛿1

𝛿𝑖𝛾

⋮ ⋮

Figure 10.17.: Graphical presentation of the cultural rules
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(𝑥⋅ ⫐ (𝑝(𝑥) ⫐) ; 𝑞(𝑥)) ⫐ (𝑦 ⋅ 𝑝(𝑦) ⫐ 𝑧 ⋅ 𝑞(𝑧))
→ipet (𝑥⋅ ⫐ (𝑝(𝑥) ⫐) ; 𝑞(𝑥)) ⫐ (𝑦 ⋅ 𝑝(𝑦) ⫐ 𝑞(𝑦))
→poll↑ (𝑥⋅ ⫐ (𝑝(𝑥) ⫐) ; 𝑞(𝑥)) ⫐ (𝑦 ⋅ 𝑝(𝑦), (𝑥⋅ ⫐ (𝑝(𝑥) ⫐) ; 𝑞(𝑥)) ⫐ 𝑞(𝑦))
→ipis (𝑥⋅ ⫐ (𝑝(𝑥) ⫐) ; 𝑞(𝑥)) ⫐ (𝑦 ⋅ 𝑝(𝑦), (⫐ (𝑝(𝑦) ⫐) ; 𝑞(𝑦)) ⫐ 𝑞(𝑦))
→srep (𝑥⋅ ⫐ (𝑝(𝑥) ⫐) ; 𝑞(𝑥)) ⫐ (𝑦 ⋅ 𝑝(𝑦) ⫐ ((𝑝(𝑦) ⫐) ⫐ 𝑞(𝑦)), (𝑞(𝑦) ⫐ 𝑞(𝑦)))
→2

poll↓ (𝑥⋅ ⫐ (𝑝(𝑥) ⫐) ; 𝑞(𝑥)) ⫐ (𝑦 ⋅ 𝑝(𝑦) ⫐ ((⫐) ⫐ 𝑞(𝑦)), (𝑞(𝑦) ⫐ ⋅))
→srep (𝑥⋅ ⫐ (𝑝(𝑥) ⫐) ; 𝑞(𝑥)) ⫐ (𝑦 ⋅ 𝑝(𝑦) ⫐ (⫐ ⋅), (𝑞(𝑦) ⫐ ⋅))
→2

epet (𝑥⋅ ⫐ (𝑝(𝑥) ⫐) ; 𝑞(𝑥)) ⫐ (𝑦 ⋅ 𝑝(𝑦) ⫐ ⋅)
→epet (𝑥⋅ ⫐ (𝑝(𝑥) ⫐) ; 𝑞(𝑥)) ⫐ ⋅
→epet

𝑥𝑝(𝑥) 𝑞(𝑥)

𝑦 𝑝(𝑦)

𝑧 𝑞(𝑧)

→ipet 𝑥𝑝(𝑥) 𝑞(𝑥)

𝑦 𝑝(𝑦)

𝑞(𝑦)

→poll↑ 𝑥𝑝(𝑥) 𝑞(𝑥)
𝑥𝑝(𝑥) 𝑞(𝑥)

𝑦 𝑝(𝑦)

𝑞(𝑦)

→ipis 𝑥𝑝(𝑥) 𝑞(𝑥)
𝑝(𝑦) 𝑞(𝑦)

𝑦 𝑝(𝑦)

𝑞(𝑦)

→srep 𝑥𝑝(𝑥) 𝑞(𝑥)

𝑦 𝑝(𝑦)

𝑝(𝑦)

𝑞(𝑦)

𝑞(𝑦)

𝑞(𝑦)

→2
poll↓ 𝑥𝑝(𝑥) 𝑞(𝑥)

𝑦 𝑝(𝑦)

𝑞(𝑦)

𝑞(𝑦)

→srep 𝑥𝑝(𝑥) 𝑞(𝑥)

𝑦 𝑝(𝑦)

𝑞(𝑦)

→2
epet 𝑥𝑝(𝑥) 𝑞(𝑥)

𝑦 𝑝(𝑦)

→epet 𝑥𝑝(𝑥) 𝑞(𝑥) →epet

Figure 10.18.: A natural proof in the flower calculus



10. Flower Calculus 209

10: It is tempting to draw a parallel be-
tween possible worlds and the petals of
flowers, where the accessibility relation
≤ between worlds might be reflected to
some extent in the pollination relation
illustrated in Figure 10.12.An analogy be-
tween possible worlds and intuitionistic
disjunction is also proposed by Girard in
[96], although as usual he demonstrates
his (free) criticism towards Kripke seman-
tics.

[241]: Tiu (2006), ‘A Local System for In-
tuitionistic Logic’

[1]: Abel (2013), ‘Normalization by Eval-
uation: Dependent Types and Impredica-
tivity’

10.4. Kripke semantics

In Section 8.6, in order to prove the soundness of system B, we gave a
bi-intuitionistic (resp. classical) semantics to bubbles in Heyting-Brouwer
(resp. Boolean) algebras, and in Section 9.5 we interpreted 𝛼-graphs with
simple boolean truth values. For flowers, we use a third kind of models
that is standard in the literature on intuitionistic logic: Kripke structures.
Our goal is not to fill as many pages as possible by introducing new
definitions in each chapter, but rather to find the simplest semantics for
our purposes with the specific proof system at hand. In the case of the
flower calculus, there are a few reasons that led us to the choice of Kripke
structures, detailed hereafter by order of increasing importance:

Generalization of EGs As mentioned in Section 10.1, the syntax of in-
tuitionistic EGs (and thus of flowers) subsumes that of Peirce’s classical
EGs, by seeing the cut as a 0-ary scroll (or a flower with no petals).
Similarly, it is well-known that Kripke structures enable a natural gen-
eralization of truth valuations, where classical valuations are those
limited to “unary” structures with a single possible world10.

Quantifiers It is easy to accomodate quantifiers in Kripke structures,
by interpreting terms as individuals in the domains of the structure’s
worlds. In contrast, extensions of algebraic semantics that account for
quantifiers like polyadic and cylindric algebras are more involved, and
less studied in the literature.

Cut-free completeness Rather than just completeness, we are inter-
ested more specifically in the completeness of the natural fragment ↝

of the flower calculus, where all rules are analytic. In Gentzen systems,
this corresponds to the well-known questions of proof normalization
(natural deduction) and cut admissibility (sequent calculus). Gentzen
originally proved cut admissibility through a syntactic procedure of
cut-elimination, which is very hard to transpose in our deep inference
setting, especially since there is no known internal cut-elimination
procedure in the (sparse) literature on deep inference systems for full
intuitionistic logic. In fact, the requirement that the procedure be inter-
nal is useful when studying the computational content of proofs, but
too strong for our logical study of analyticity. Thus our first attempt
was to devise an external syntactic procedure, based on the simulation
of a cut-free sequent calculus as in [241]; and we do have a working,
verified implementation of this procedure in Coq [63]. However, we
realized a posteriori that this only proves a weak form of completeness,
in the sense that we only guarantee that a true flower is provable if it is
the direct translation of a symbolic formula. But formulas are based on
binary connectives and unary quantifiers, and are thus less expressive
syntactically than flowers and their 𝑛-ary constructs.

To palliate this limitation, we turned to a more semantic (and not so-
well known) strand of analyticity proofs, which nowadays tends to be
labelled normalization-by-evaluation [1]. The idea is to prove complete-
ness of the analytic fragment of the proof system with respect to some
semantic models (in our case, ⊨ 𝜙 implies ⊢↝ 𝜙), and then compose
with the soundness of the full system with respect to the same models

https://coq.inria.fr/
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11: We know of two exceptions: the first
is the (complex) uniform completeness
proof for various logics proposed by
Okada [188] and based on phase spaces,
which are the closest one can get to a
truth-based (or Tarskian) semantics for
linear logic [92]. The second is the re-
cent completeness proof of Frumin for
the logic of Bunched Implications (BI)
[83], a cousin of linear logic at the heart
of separation logic, which is a very pop-
ular framework in contemporary deduc-
tive program verification. It is based on
so-called BI algebras, a kind of Heyting
algebra with additional structure for the
linear part of the logic. We should also
mention the recent normalization proof
for cubical type theory given by Sterling
in his thesis [230], based on a categori-
cal and topos-theoretic generalization of
Kripke structures.

[119]: Herbelin et al. (2009), ‘Forcing-
Based Cut-Elimination for Gentzen-Style
Intuitionistic Sequent Calculus’
[120]: Hermant (2005), ‘Semantic Cut
Elimination in the Intuitionistic Sequent
Calculus’
[129]: Ilik (2010), ‘Constructive Com-
pleteness Proofs and Delimited Control’

Substitution 𝑒 ∶ 𝒱 → 𝕋
Evaluation 𝑒 ∶ 𝒱 → 𝑀𝑤

Figure 10.19.:The syntax-semanticsmir-
ror

(⊢ 𝜙 implies ⊨ 𝜙), giving the desired admissibility result (⊢ 𝜙 implies
⊢↝ 𝜙). And in the case of intuitionistic logics, the models used are most
of the time Kripke structures11 [119, 120, 129].

We now recall the standard definitions, starting with the interpretation
of constants in first-order structures:

Definition 10.4.1 (First-order structure) A first-order structure is a
pair (𝑀, ⟦ ⋅ ⟧) where 𝑀 is a non-empty set, and ⟦ ⋅ ⟧ is a map called the
interpretation that associates to each function symbol 𝑓 ∈ ℱ a function
⟦𝑓⟧ ∶ 𝑀ar(𝑓 ) → 𝑀, and to each predicate symbol 𝑝 ∈ 𝒫 a relation
⟦𝑝⟧ ⊆ 𝑀ar(𝑝).

Definition 10.4.2 (Kripke structure) AKripke structure is a triplet𝒦 =
(𝑊 , ≤, (𝑀𝑤)𝑤∈𝑊), where𝑊 is the set ofworlds, ≤ is a pre-order on𝑊 called
accessibility, and (𝑀𝑤)𝑤∈𝑊 is a family of first-order structures indexed
by 𝑊. Furthermore, we require the following monotonicity conditions to
hold whenever 𝑤 ≤ 𝑤 ′:

▶ 𝑀𝑤 ⊆ 𝑀𝑤 ′ ;

▶ for every 𝑓 ∈ ℱ, ⟦𝑓⟧𝑤 ⊆ ⟦𝑓⟧𝑤 ′ ;

▶ for every 𝑝 ∈ 𝒫, ⟦𝑝⟧𝑤 ⊆ ⟦𝑝⟧𝑤 ′ .

Then we need a way to interpret arbitrary terms with free variables in any
given world 𝑤 of a Kripke structure, which is done through the concept
of 𝑤-evaluation:

Definition 10.4.3 (𝑤-evaluation) Given a Kripke structure 𝒦 and a
world 𝑤 in𝒦, a 𝑤-evaluation is a function 𝑒 ∶ 𝒱 → 𝑀𝑤. The interpretation
map of 𝑀𝑤 is extended to terms and substitutions with respect to any
evaluation 𝑒 as follows:

⟦𝑥⟧𝑒 = 𝑒(𝑥) ⟦𝑓 (�⃗�)⟧𝑒 = ⟦𝑓⟧𝑤(⟦�⃗�⟧𝑒) ⟦𝜎⟧𝑒(𝑥) = ⟦𝜎(𝑥)⟧𝑒

The crux of Kripke semantics is the forcing relation, that captures the
truth-conditions of statements in Kripke structures. While it is usually
defined on formulas, here we adapt the definition to flowers, which in
our opinion makes it simpler and more uniform since flowers can be seen
as built from essentially one big constructor:

Definition 10.4.4 (Forcing) Given some Kripke structure 𝒦, the forcing
relation 𝑤 ⊩ 𝜙 [𝑒] between a world 𝑤, a flower 𝜙 and a 𝑤-evaluation 𝑒 is
defined by induction on |𝜙| as follows:

(Atom) 𝑤 ⊩ 𝑝(�⃗�) [𝑒] iff ⟦�⃗�⟧𝑒 ∈ ⟦𝑝⟧𝑤;

(Flower) 𝑤 ⊩ 𝐱 ⋅ Φ ⫐ {𝐱𝑖 ⋅ Φ𝑖}𝑛𝑖 [𝑒] iff for every 𝑤 ′ ≥ 𝑤 and every 𝑤 ′-
evaluation 𝑒′, if 𝑤 ′ ⊩ Φ [𝑒 |𝐱 𝑒′] then there is some 1 ≤ 𝑖 ≤ 𝑛 and
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𝑤 ′-evaluation 𝑒″ such that 𝑤 ′ ⊩ Φ𝑖 [𝑒 |𝐱 𝑒′ |𝐱𝑖 𝑒
″].

(Bouquet) 𝑤 ⊩ Φ [𝑒] iff 𝑤 ⊩ 𝜙 [𝑒] for every 𝜙 ∈ Φ.

Lastly, we define the notion of semantic entailment Φ ⊨ Ψ on bouquets,
mirroring the syntactic entailment Φ ⊢ Ψ of the last section:

Definition 10.4.5 (Semantic entailment) Let 𝒦 be a Kripke structure,
and Φ,Ψ some bouquets. We say that Φ semantically entails Ψ in 𝒦,
written Φ ⊨𝒦 Ψ, when 𝑤 ⊩ Φ [𝑒] implies 𝑤 ⊩ Ψ [𝑒] for every world 𝑤 ∈ 𝑊
and 𝑤-evaluation 𝑒. This entailment is valid if it holds for any Kripke
structure 𝒦, and in that case we simply write Φ ⊨ Ψ. We say that Φ is
semantically equivalent to Ψ, written Φ ⊨⊨ Ψ, when Φ ⊨ Ψ and Ψ ⊨ Φ.

10.5. Soundness

In this section, we show that every rule of the flower calculus is sound
with respect to our Kripke semantics for flowers, and thus that ⊢ 𝜙 implies
⊨ 𝜙 for every 𝜙. We start with a few trivial facts about Definition 10.2.7:

Fact 10.5.1 (Associativity) 𝑓 |𝑅 𝑔 |𝑆 ℎ = 𝑓 |𝑅∪𝑆 (𝑔 |𝑆 ℎ).

Fact 10.5.2 (Commutativity) If 𝑅 ∩ 𝑆 = ⌀ then 𝑓 |𝑅 𝑔 |𝑆 ℎ = 𝑓 |𝑆 ℎ |𝑅 𝑔.

Fact 10.5.3 (Agreement) If 𝑓 (𝑥) = 𝑔(𝑥) for all 𝑥 ∈ 𝑅 then ℎ |𝑅 𝑓 = ℎ |𝑅 𝑔.

Fact 10.5.4 (Idempotency) 𝑓 |𝑅 𝑓 = 𝑓.

Semantic entailment is obviously a reflexive and transitive relation:

Fact 10.5.5 (Reflexivity) Φ ⊨ Φ.

Fact 10.5.6 (Transitivity) If Φ ⊨ Ψ and Ψ ⊨ Ξ, then Φ ⊨ Ξ.

The two following lemmas will be useful to reason on the forcing relation
(Definition 10.4.4):

Lemma 10.5.1 (Monotonicity) If 𝑤 ≤ 𝑤 ′ and 𝑤 ⊩ 𝜙 [𝑒] then 𝑤 ′ ⊩ 𝜙 [𝑒].

Proof. By a straightforward induction on |𝜙|.
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12: Other instances in this thesis are
Lemma 3.4.2, Lemma 8.6.14, Lemma
8.6.19, and Corollary 9.5.4.

Lemma 10.5.2 (Mirroring) 𝑤 ⊩ 𝜎(𝜙) [𝑒] iff 𝑤 ⊩ 𝜙 [𝑒 |𝐱 ⟦𝜎⟧𝑒] for 𝜎 ∶ 𝐱 → 𝕋
capture-avoiding in 𝜙 and 𝐱 ∩ bv(𝜙) = ⌀.

Proof. By induction on |𝜙|.

(Base case) Suppose 𝜙 = 𝑝(�⃗�). We show that ⟦𝜎(�⃗�)⟧𝑒 ∈ ⟦𝑝⟧𝑤 iff ⟦�⃗�⟧𝑒|𝐱⟦𝜎⟧𝑒 ∈
⟦𝑝⟧𝑤 by proving that ⟦𝑡⟧𝑒|𝐱⟦𝜎⟧𝑒 = ⟦𝜎(𝑡)⟧𝑒 for any term 𝑡 by induction on
|𝑡|.

▶ If 𝑡 = 𝑥, then either:

• 𝑥 ∈ 𝐱, and ⟦𝑥⟧𝑒|𝐱⟦𝜎⟧𝑒 = ⟦𝜎⟧𝑒(𝑥) = ⟦𝜎(𝑥)⟧𝑒; or

• 𝑥 ∉ 𝐱, and ⟦𝑥⟧𝑒|𝐱⟦𝜎⟧𝑒 = 𝑒(𝑥) = ⟦𝑥⟧𝑒 = ⟦𝜎(𝑥)⟧𝑒.

▶ If 𝑡 = 𝑓 (�⃗�), then

⟦𝑓 (�⃗�)⟧𝑒|𝐱⟦𝜎⟧𝑒 = ⟦𝑓⟧𝑤 (⟦�⃗�⟧𝑒|𝐱⟦𝜎⟧𝑒)
= ⟦𝑓⟧𝑤 (⟦𝜎(�⃗�)⟧𝑒) (IH)
= ⟦𝑓 (𝜎(�⃗�))⟧𝑒
= ⟦𝜎(𝑓 (�⃗�))⟧𝑒

(Recursive case) Suppose 𝜙 = 𝐲 ⋅ Φ ⫐ {𝐳𝑖 ⋅ Ψ𝑖}𝑛𝑖 . We show that 𝑤 ⊩
𝐲 ⋅ 𝜎(Φ) ⫐ {𝐳𝑖 ⋅ 𝜎(Ψ𝑖)}𝑛𝑖 [𝑒] implies 𝑤 ⊩ 𝐲 ⋅ Φ ⫐ {𝐳𝑖 ⋅ Ψ𝑖}𝑛𝑖 [𝑒 |𝐱 ⟦𝜎⟧𝑒], the
argument working in both directions. Let 𝑤 ′ ≥ 𝑤 and 𝑒′ a 𝑤 ′-evaluation
such that 𝑤 ′ ⊩ Φ [𝑒 |𝐱 ⟦𝜎⟧𝑒 |𝐲 𝑒′]. Since 𝜎 is capture-avoiding in 𝜙, we know
that fv(𝜎(𝑥))∩𝐲 = ⌀, and thus ⟦𝜎⟧𝑒(𝑥) = ⟦𝜎(𝑥)⟧𝑒 = ⟦𝜎(𝑥)⟧𝑒|𝐲𝑒′ = ⟦𝜎⟧𝑒|𝐲𝑒′(𝑥)
for any 𝑥 ∈ 𝐱. Hence by Fact 10.5.3 𝑤 ′ ⊩ Φ [𝑒 |𝐱 ⟦𝜎⟧𝑒|𝐲𝑒′ |𝐲 𝑒′], and since
by hypothesis 𝐱 ∩ 𝐲 = ⌀ we obtain 𝑤 ′ ⊩ Φ [𝑒 |𝐲 𝑒′ |𝐱 ⟦𝜎⟧𝑒|𝐲𝑒′] by Fact
10.5.2. Then by IH we get 𝑤 ′ ⊩ 𝜎(Φ) [𝑒 |𝐲 𝑒′], and thus by hypothesis
𝑤 ′ ⊩ 𝜎(Ψ𝑖) [𝑒 |𝐲 𝑒′ |𝐳𝑖 𝑒

″] for some 1 ≤ 𝑖 ≤ 𝑛 and 𝑤 ′-evaluation 𝑒″.
Again by IH we get 𝑤 ′ ⊩ Ψ𝑖 [𝑒 |𝐲 𝑒′ |𝐳𝑖 𝑒

″ |𝐱 ⟦𝜎⟧𝑒|𝐲𝑒′|𝐳𝑖𝑒″], and since 𝜎 is
capture-avoiding in 𝜙 we have fv(𝜎(𝑥)) ∩ 𝐳𝑖 = ⌀ for any 𝑥 ∈ 𝐱, and thus
𝑤 ′ ⊩ Ψ𝑖 [𝑒 |𝐲 𝑒′ |𝐳𝑖 𝑒

″ |𝐱 ⟦𝜎⟧𝑒] by Fact 10.5.3. Finally by hypothesis 𝐱∩𝐳𝑖 = ⌀,
thus we can conclude that 𝑤 ′ ⊩ Ψ𝑖 [𝑒 |𝐱 ⟦𝜎⟧𝑒 |𝐲 𝑒′ |𝐳𝑖 𝑒

″] by Fact 10.5.2.

The following functoriality lemma is at the heart of every deep inference
formalism12:

Lemma 10.5.3 (Functoriality) If Φ ⊨ Ψ, then for any Ξ□ either Ξ Φ ⊨
Ξ Ψ if Ξ□ is positive, or Ξ Ψ ⊨ Ξ Φ if Ξ□ is negative.

Proof. By induction on |Ξ□|.

Lemma 10.5.4 (Weakening) Φ ⊨ ⌀.
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Proof. Trivial by Definition 10.4.4.

Lemma 10.5.5 (Co-weakening) 𝛾 ⫐ Δ ⊨ 𝛾 ⫐ Γ ; Δ.

Proof. Let 𝛾 = 𝐱 ⋅ Φ, 𝑤 a world in some Kripke structure 𝒦, 𝑤 ′ ≥ 𝑤, 𝑒 a 𝑤-
evaluation and 𝑒′ a 𝑤 ′-evaluation such that 𝑤 ⊩ 𝛾 ⫐ Δ [𝑒] and 𝑤 ′ ⊩ Φ [𝑒|𝐱 𝑒′].
Then by hypothesis there must exist some 𝐲 ⋅ Ψ ∈ Δ and 𝑤 ′-evaluation 𝑒″

such that 𝑤 ′ ⊩ Ψ [𝑒 |𝐱 𝑒′ |𝐲 𝑒″], and thus we can conclude.

The less obvious rules in terms of soundness are the pollination rules
{poll↓, poll↑}, because of the arbitrary context Ξ□ and reliance on the polli-
nation relation.

Lemma 10.5.6 (Cross-pollination) Φ, Ξ Φ ⊨⊨ Φ, Ξ .

Proof. Let 𝑤 a world in some Kripke structure 𝒦, and 𝑒 a 𝑤-evaluation.
We show that 𝑤 ⊩ Φ, Ξ Φ [𝑒] iff 𝑤 ⊩ Φ, Ξ [𝑒] by induction on |Ξ□|.

Base case Suppose Ξ□ = Ξ′,□. Then we trivially have 𝑤 ⊩ Φ, Ξ′, Φ [𝑒] iff
𝑤 ⊩ Φ, Ξ′ [𝑒] by Definition 10.4.4.

Recursive case We distinguish two cases:

Pistil Suppose Ξ□ = Ξ′, (𝐱 ⋅ Ξ0 ⫐ Δ).

1. Suppose 𝑤 ⊩ Φ, Ξ Φ [𝑒]. Then 𝑤 ⊩ Φ [𝑒], 𝑤 ⊩ Ξ′ [𝑒] and 𝑤 ⊩ 𝐱 ⋅
Ξ0 Φ ⫐ Δ [𝑒]. Thus it remains to show that 𝑤 ⊩ 𝐱 ⋅ Ξ0 ⫐ Δ [𝑒].
Let 𝑤 ′ ≥ 𝑤 and 𝑒′ a 𝑤 ′-evaluation such that 𝑤 ′ ⊩ Ξ0 [𝑒 |𝐱 𝑒′].
By IH we have Φ, Ξ0 ⊨ Φ, Ξ0 Φ , and thus by Lemma 10.5.3
𝐱 ⋅ Φ, Ξ0 Φ ⫐ Δ ⊨ 𝐱 ⋅ Φ, Ξ0 ⫐ Δ. By Lemma 10.5.4 and Lemma
10.5.3 we have 𝑤 ⊩ 𝐱 ⋅ Φ, Ξ0 Φ ⫐ Δ [𝑒], and thus 𝑤 ⊩ 𝐱 ⋅ Φ, Ξ0 ⫐
Δ [𝑒]. Then since 𝑤 ′ ⊩ Ξ0 [𝑒 |𝐱 𝑒′], and since by Lemma 10.5.1
(and the fact that 𝐱 ∩ fv(Φ) = ⌀) we have 𝑤 ′ ⊩ Φ [𝑒 |𝐱 𝑒′], we can
conclude that there are some 𝐲 ⋅ Ψ ∈ Δ and 𝑤 ′-evaluation 𝑒″ such
that 𝑤 ′ ⊩ Ψ [𝑒 |𝐱 𝑒′ |𝐲 𝑒″].

2. Φ, Ξ ⊨ Φ, Ξ Φ holds by the same argument in the other direc-
tion.

Petal Suppose Ξ□ = Ξ′, (𝐱 ⋅ Ψ ⫐ 𝐲 ⋅ Ξ0 ; Δ).

1. Suppose 𝑥 ⊩ Φ, Ξ Φ [𝑒]. Then 𝑤 ⊩ Φ [𝑒], 𝑤 ⊩ Ξ′ [𝑒] and 𝑤 ⊩ 𝐱 ⋅
Ψ ⫐ 𝐲 ⋅ Ξ0 Φ ; Δ [𝑒]. Thus it remains to show that 𝑤 ⊩ 𝐱 ⋅ Ψ ⫐
𝐲 ⋅ Ξ0 ; Δ [𝑒]. Let 𝑤 ′ ≥ 𝑤 and 𝑒′ a 𝑤 ′-evaluation such that 𝑤 ′ ⊩
Ψ [𝑒 |𝐱 𝑒′]. Then we can deduce that there exists a 𝑤 ′-evaluation
𝑒″ such that either:

▶ 𝑤 ′ ⊩ Ψ′ [𝑒 |𝐱 𝑒′ |y′ 𝑒″] for some y′ ⋅ Ψ′ ∈ Δ, and we conclude
immediately;
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▶ or 𝑤 ′ ⊩ Ξ0 Φ [𝑒 |𝐱 𝑒′ |𝐲 𝑒″]. By Lemma 10.5.1 (and the fact that
𝐱 ∩ fv(Φ) = ⌀ and 𝐲 ∩ fv(Φ) = ⌀) we have 𝑤 ′ ⊩ Φ [𝑒 |𝐱 𝑒′ |𝐲 𝑒″],
and thus 𝑤 ′ ⊩ Φ, Ξ0 Φ [𝑒 |𝐱 𝑒′ |𝐲 𝑒″]. Then by IH we have 𝑤 ′ ⊩
Φ, Ξ0 [𝑒 |𝐱 𝑒′ |𝐲 𝑒″], and thus we can conclude in particular
that 𝑤 ′ ⊩ Ξ0 [𝑒 |𝐱 𝑒′ |𝐲 𝑒″].

2. Φ, Ξ ⊨ Φ, Ξ Φ holds by the same argument in the other direc-
tion.

Lemma 10.5.7 (Pollination) If Φ ≻ Ξ□, then Ξ Φ ⊨⊨ Ξ .

Proof. We show that 𝜙 ≻ Ξ□ implies Ξ 𝜙 ⊨⊨ Ξ for any flower 𝜙 and
context Ξ□: then assuming that Φ = 𝜙1, … , 𝜙𝑛, we get

Ξ 𝜙1, … , 𝜙𝑛

⊨⊨ Ξ 𝜙2, … , 𝜙𝑛

⊨⊨ … ⊨⊨ Ξ⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑛 times

and conclude by Fact 10.5.6.

By Definition 10.3.5, there are a bouquet Ψ and two contexts Ξ′□, Ξ0 such
that one of the two following cases holds:

Cross-pollination Ξ□ = Ξ′ Ψ, 𝜙, Ξ0 . Then 𝜙, Ξ0 𝜙 ⊨⊨ 𝜙, Ξ0 by
Lemma 10.5.6, and we conclude by Lemma 10.5.3.

Self-pollination Ξ□ = Ξ′ 𝐱 ⋅ Ψ, 𝜙 ⫐ 𝐲 ⋅ Ξ0 ; Δ for some 𝐱, 𝐲, Δ. Let 𝑤 a
world in some Kripke structure 𝒦 and 𝑒 a 𝑤-evaluation. We show that
𝑤 ⊩ 𝐱 ⋅Ψ, 𝜙 ⫐ 𝐲 ⋅Ξ0 𝜙 ; Δ [𝑒] iff 𝑤 ⊩ 𝐱 ⋅Ψ, 𝜙 ⫐ 𝐲 ⋅Ξ0 ; Δ [𝑒], and conclude
by Lemma 10.5.3.

1. Suppose that 𝑤 ⊩ 𝐱 ⋅ Ψ, 𝜙 ⫐ 𝐲 ⋅ Ξ0 𝜙 ; Δ [𝑒], and let 𝑤 ′ ≥ 𝑤 and 𝑒′ a
𝑤 ′-evaluation such that 𝑤 ′ ⊩ Ψ, 𝜙 [𝑒 |𝐱 𝑒′]. Then we can deduce that
there exists a 𝑤 ′-evaluation 𝑒″ such that either:

▶ 𝑤 ′ ⊩ Ψ′ [𝑒 |𝐱 𝑒′ |y′ 𝑒″] for some y′ ⋅ Ψ′ ∈ Δ, and we conclude
immediately;

▶ or 𝑤 ′ ⊩ Ξ0 𝜙 [𝑒 |𝐱 𝑒′ |𝐲 𝑒″]. Since fv(𝜙) ∩ 𝐲 = ⌀ we have 𝑤 ′ ⊩

𝜙 [𝑒 |𝐱 𝑒′ |𝐲 𝑒″], and thus 𝑤 ′ ⊩ 𝜙, Ξ0 𝜙 [𝑒 |𝐱 𝑒′ |𝐲 𝑒″]. Then by Lemma

10.5.6 we have 𝑤 ′ ⊩ 𝜙, Ξ0 [𝑒|𝐱𝑒′ |𝐲𝑒″], and thus we can conclude

in particular that 𝑤 ′ ⊩ Ξ0 [𝑒 |𝐱 𝑒′ |𝐲 𝑒″].

2. 𝐱 ⋅ Ψ, 𝜙 ⫐ 𝐲 ⋅ Ξ0 ; Δ ⊨ 𝐱 ⋅ Ψ, 𝜙 ⫐ 𝐲 ⋅ Ξ0 𝜙 ; Δ holds by the same
argument in the other direction.

Proving the soundness of rules involving binders (ipis, ipet, apis, apet) is
also quite tedious, which can be understood as stemming from the fact



10. Flower Calculus 215

that substitutions simulate the complex dynamics of the LoIs of EGs in a
global rather than local way. In particular, one needs to be careful about
the scope of bound variables, which in EGs would be handled locally with
(de)iteration rules on LoIs.

Lemma 10.5.8 (Universal instantiation) If 𝜎 ∶ 𝐲 → 𝕋 is capture-
avoiding in Φ ⫐ Δ, then 𝐱, 𝐲 ⋅ Φ ⫐ Δ ⊨ 𝐱 ⋅ 𝜎(Φ) ⫐ 𝜎(Δ).

Proof. Let 𝑤 a world in some Kripke structure 𝒦, 𝑤 ′ ≥ 𝑤, 𝑒 a 𝑤-evaluation
and 𝑒′ a 𝑤 ′-evaluation such that 𝑤 ⊩ 𝐱, 𝐲 ⋅ Φ ⫐ Δ [𝑒] and 𝑤 ′ ⊩ 𝜎(Φ) [𝑒 |𝐱 𝑒′].
Therefore 𝑤 ′ ⊩ Φ [𝑒 |𝐱 𝑒′ |𝐲 ⟦𝜎⟧𝑒|𝐱𝑒′] by Lemma 10.5.2, and thus 𝑤 ′ ⊩ Φ [𝑒 |𝐱∪𝐲
(𝑒′ |𝐲 ⟦𝜎⟧𝑒|𝐱𝑒′)] by Fact 10.5.1. Then by hypothesis, there must be some
𝐳 ⋅ Ψ ∈ Δ and 𝑤 ′-evaluation 𝑒″ such that 𝑤 ′ ⊩ Ψ [𝑒 |𝐱∪𝐲 (𝑒′ |𝐲 ⟦𝜎⟧𝑒|𝐱𝑒′) |𝐳 𝑒

″],
and thus 𝑤 ′ ⊩ Ψ [𝑒 |𝐱 𝑒′ |𝐲 ⟦𝜎⟧𝑒|𝐱𝑒′ |𝐳 𝑒″]. Since 𝜎 is capture-avoiding in
Φ ⫐ Δ, we know that for any 𝑥 ∈ 𝐲 we have fv(𝜎(𝑥)) ∩ 𝐳 = ⌀, and thus
⟦𝜎(𝑥)⟧𝑒|𝐱𝑒′|𝐳𝑒″ = ⟦𝜎(𝑥)⟧𝑒|𝐱𝑒′ . Hence by Fact 10.5.3 and Fact 10.5.2 we get
𝑤 ′ ⊩ Ψ [𝑒 |𝐱 𝑒′ |𝐳 𝑒″ |𝐲 ⟦𝜎⟧𝑒|𝐱𝑒′|𝐳𝑒″], and by Lemma 10.5.2 we conclude that
𝑤 ′ ⊩ 𝜎(Ψ) [𝑒 |𝐱 𝑒′ |𝐳 𝑒″].

Lemma 10.5.9 (Existential instantiation) If 𝜎 ∶ 𝐲 → 𝕋 is capture-
avoiding in Φ, then 𝛾 ⫐ 𝐱 ⋅ 𝜎(Φ) ; Δ ⊨ 𝛾 ⫐ 𝐱, 𝐲 ⋅ Φ ; Δ.

Proof. Let 𝛾 = 𝐳 ⋅ Ξ, and 𝑤 a world in some Kripke structure 𝒦, 𝑤 ′ ≥ 𝑤, 𝑒
a 𝑤-evaluation and 𝑒′ a 𝑤 ′-evaluation such that 𝑤 ⊩ 𝛾 ⫐ 𝐱 ⋅ 𝜎(Φ) ; Δ [𝑒] and
𝑤 ′ ⊩ Ξ [𝑒 |𝐳 𝑒′]. Then by hypothesis, there must be some 𝑤 ′-evaluation 𝑒″

such that either:

▶ 𝑤 ′ ⊩ Ξ′ [𝑒 |𝐳 𝑒′ |𝐳′ 𝑒″] for some 𝐳′ ⋅ Ξ′ ∈ Δ, and we conclude immediately;

▶ or 𝑤 ′ ⊩ 𝜎(Φ) [𝑒 |𝐳 𝑒′ |𝐱 𝑒″]. Then by Lemma 10.5.2 we have 𝑤 ′ ⊩ Φ [𝑒 |𝐳
𝑒′ |𝐱 𝑒″ |𝐲 ⟦𝜎⟧𝑒|𝐳𝑒′|𝐱𝑒″], and thus we can conclude with 𝑤 ′ ⊩ Φ [𝑒 |𝐳 𝑒′ |𝐱∪𝐲
(𝑒″ |𝐲 ⟦𝜎⟧𝑒|𝐳𝑒′|𝐱𝑒″)] by Fact 10.5.3.

We are now equipped with enough lemmas to prove the soundness of
each rule, starting with the shallow version of natural rules. In fact we
are able to prove more: that every ↝-rule is invertible, i.e. its conclusion
entails its premiss.

Lemma 10.5.10 (Shallow soundness) If Φ ⇀ Ψ, then Φ ⊨⊨ Ψ.

Proof. Let 𝑤 a world in some Kripke structure 𝒦, 𝑤 ′ ≥ 𝑤, 𝑒 a 𝑤-evaluation
and 𝑒′ a 𝑤 ′-evaluation. We proceed by inspection of every ↝-rule.

poll↓, poll↑ By Lemma 10.5.7.
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epis

1. Suppose that 𝑤 ⊩ Φ [𝑒]. Then by Lemma 10.5.1 we have 𝑤 ′ ⊩ Φ [𝑒],
and thus we can conclude for instance with 𝑤 ′ ⊩ Φ [𝑒 |⌀ 𝑒′ |⌀ 𝑒].

2. Suppose that 𝑤 ⊩ ⫐ Φ [𝑒]. Then since we trivially have 𝑤 ≥ 𝑤 and
𝑤 ⊩ ⌀ [𝑒 |⌀ 𝑒], we get that 𝑤 ⊩ Φ [𝑒 |⌀ 𝑒 |⌀ 𝑒″] for some 𝑤-evaluation
𝑒″, and thus 𝑤 ⊩ Φ [𝑒].

epet Let 𝛾 = 𝐱 ⋅ Φ. We trivially have that 𝑤 ′ ⊩ ⌀ [𝑒 |𝐱 𝑒′ |⌀ 𝑒], and thus can
conclude.

ipis We trivially have 𝐱, 𝐲 ⋅ Φ ⫐ Δ ⊨ 𝐱, 𝐲 ⋅ Φ ⫐ Δ by Fact 10.5.5, and thus
we can conclude by Lemma 10.5.8.

ipet The first direction is trivial by Lemma 10.5.5. In the other direction,
let 𝛾 = 𝐳 ⋅ Ξ, and suppose that 𝑤 ⊩ 𝛾 ⫐ 𝐱 ⋅ 𝜎(Φ) ; 𝐱, 𝐲 ⋅ Φ ; Δ [𝑒] and
𝑤 ′ ⊩ Ξ [𝑒 |𝐳 𝑒′]. Then there must be some 𝑤 ′-evaluation 𝑒″ such that
either:

▶ 𝑤 ′ ⊩ Ξ′ [𝑒|𝐳𝑒′ |𝐳′ 𝑒″] for some 𝐳′ ⋅Ξ′ ∈ Δ, and we conclude immediately;

▶ 𝑤 ′ ⊩ Φ [𝑒 |𝐳 𝑒′ |𝐱∪𝐲 𝑒″], and we also conclude immediately;

▶ or 𝑤 ′ ⊩ 𝜎(Φ) [𝑒 |𝐳 𝑒′ |𝐱 𝑒″], and we conclude with the same argument
as in the proof of Lemma 10.5.9.

srep Let 𝛾𝑖 = 𝐲𝑖 ⋅ Ψ𝑖 for 1 ≤ 𝑖 ≤ 𝑛.

1. Suppose that 𝑤 ⊩ 𝐱 ⋅ Φ, (⫐ {𝛾𝑖}𝑛𝑖 ) ⫐ Δ [𝑒] and 𝑤 ′ ⊩ Φ [𝑒 |𝐱 𝑒′]. We show
that 𝑤 ′ ⊩ 𝛾𝑖 ⫐ Δ [𝑒 |𝐱 𝑒′] for all 1 ≤ 𝑖 ≤ 𝑛, i.e. for every 𝑤″ ≥ 𝑤 ′ and
𝑤″-evaluation 𝑒″, 𝑤″ ⊩ Ψ𝑖 [𝑒 |𝐱 𝑒′ |𝐲𝑖 𝑒

″] implies that there is some
𝐳 ⋅ Ξ ∈ Δ and 𝑤″-evaluation 𝑒‴ such that 𝑤″ ⊩ Ξ [𝑒 |𝐱 𝑒′ |𝐲𝑖 𝑒

″ |𝐳 𝑒‴].
By assumption, Lemma 10.5.1 and the fact that fv(Φ) ∩ 𝐲𝑖 = ⌀,
we have 𝑤″ ⊩ Φ [𝑒 |𝑥 𝑒′ |𝐲𝑖 𝑒

″]. Also since 𝑤″ ⊩ Ψ𝑖 [𝑒 |𝐱 𝑒′ |𝐲𝑖 𝑒
″] we

immediately get 𝑤″ ⊩⫐ {𝛾𝑖}𝑛𝑖 [𝑒|𝐱 𝑒′], and thus 𝑤″ ⊩⫐ {𝛾𝑖}𝑛𝑖 [𝑒|𝐱 𝑒′ |𝐲𝑖 𝑒
″]

since fv(⫐ {𝛾𝑖}𝑛𝑖 ) ∩ 𝐲𝑖 = ⌀. Thus by Fact 10.5.1 we have 𝑤″ ⊩ Φ, (⫐
{𝛾𝑖}𝑛𝑖 ) [𝑒 |𝐱∪𝐲𝑖 (𝑒

′ |𝐲𝑖 𝑒
″)], and by hypothesis (and the fact that 𝑤″ ≥ 𝑤

by transitivity) we obtain that 𝑤″ ⊩ Ξ [𝑒 |𝐱∪𝐲𝑖 (𝑒
′ |𝐲𝑖 𝑒

″) |𝐳 𝑒‴] for some
𝐳 ⋅ Ξ ∈ Δ and 𝑤″-evaluation 𝑒‴. Then we conclude again by Fact
10.5.1.

2. Suppose that 𝑤 ⊩ 𝐱 ⋅ Φ ⫐ {𝛾𝑖 ⫐ Δ}𝑛𝑖 [𝑒] and 𝑤 ′ ⊩ Φ, (⫐ {𝛾𝑖}𝑛𝑖 ) [𝑒 |𝐱 𝑒′].
Then there must be some 1 ≤ 𝑖 ≤ 𝑛 and 𝑤 ′-evaluation 𝑒″ such
that 𝑤 ′ ⊩ Ψ𝑖 [𝑒 |𝐱 𝑒′ |𝐲𝑖 𝑒

″], and for all 1 ≤ 𝑗 ≤ 𝑛 we know that
𝑤 ′ ⊩ 𝛾𝑗 ⫐ Δ [𝑒 |𝐱 𝑒′]. Thus since 𝑤 ′ ≤ 𝑤 ′ by reflexivity, there must be
some 𝐳⋅Ξ ∈ Δ and 𝑤 ′-evaluation 𝑒‴ such that 𝑤 ′ ⊩ Ξ [𝑒|𝐱𝑒′ |𝐲𝑖 𝑒

″ |𝐳𝑒‴],
and we can conclude with 𝑤 ′ ⊩ Ξ [𝑒 |𝐱 𝑒′ |𝐲𝑖∪𝐳 (𝑒

″ |𝐳 𝑒‴)] by Fact 10.5.1.

Then the soundness of the contextual closure of natural rules follows
immediately from functoriality:

Lemma 10.5.11 (Natural soundness) If Φ →↝ Ψ then Φ ⊨⊨ Ψ.
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[120]: Hermant (2005), ‘Semantic Cut
Elimination in the Intuitionistic Sequent
Calculus’

Proof. By Lemma 10.5.10 and Lemma 10.5.3.

The soundness of cultural rules is straightforward with the previous
lemmas:

Lemma 10.5.12 (Cultural soundness) If Φ →⊴ Ψ then Ψ ⊨ Φ.

Proof. By inspection of every ⊴-rule.

grow, crop By Lemma 10.5.4 and Lemma 10.5.3.

pull, glue By Lemma 10.5.5 and Lemma 10.5.3.

apis By Lemma 10.5.8 and Lemma 10.5.3.

apet By Lemma 10.5.9 and Lemma 10.5.3.

Then it follows that every derivation in the flower calculus is sound:

Theorem 10.5.13 (Soundness) If Φ →∗ Ψ then Ψ ⊨ Φ.

Proof. By Lemma 10.5.11, Lemma 10.5.12 and Fact 10.5.5, Fact 10.5.6.

In particular ⊢ 𝜙 implies ⊨ 𝜙, i.e. every provable flower is true.

10.6. Completeness

In this section, we give a direct completeness proof for the natural frag-
ment ↝ of the flower calculus: every true flower 𝜙 is naturally provable, i.e.
⊨ 𝜙 implies ⊢↝ 𝜙. Since this fragment is analytic, we cannot adapt directly
most of the completeness proofs for standard proof systems that can be
found in the literature. Indeed, most of them exploit the transitivity of
syntactic entailment ⊢, and more precisely the fact that it is easily shown
syntactically with the help of a non-analytic principle for composing
proofs: in Hilbert systems it is the rule of modus ponens mp, in sequent
calculi the cut rule, and in natural deduction the substitution theorem.

Fortunately as mentioned in Section 10.4, a few people have noticed that
with Kripke semantics, it is not too difficult to find completeness proofs
that do not rely on the assumption of transitivity for ⊢, thus allowing
for a semantic proof of cut-elimination. Here we propose an adaptation
of this technique to our flower calculus, based on a completeness proof
for cut-free sequent calculus given by Hermant in [120], which is itself
close to the original completeness proof of Gödel with respect to classical
Tarski models. Quite remarkably, the overall structure of the argument
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is the same, even though both the forcing relation on flowers and the
rules of the flower calculus differ significantly from the forcing relation
on formulas and sequent calculus rules. A novelty of our proof is that it
dispenses completely with the need for Henkin witnesses, thus avoiding
some technicalities involving among others themanipulation of an infinite
hierarchy of first-order languages.

10.6.1. Theories

First we need to generalize our notions of syntactic and semantic entail-
ment to possibly infinite sets of flowers, so-called theories:

Definition 10.6.1 (Theory) Any set T ⊆ 𝔽 of flowers is called a theory.
In particular, a bouquet can be regarded as a finite theory, by forgetting
the number of repetitions of its elements. We say that a bouquet Φ is
provable from a theory T , written T ⊢ Φ, if there exists a bouquet Ψ ⊆ T
such that Ψ ⊢ Φ. Given a Kripke structure 𝒦, a world 𝑤 in 𝒦 and a
𝑤-evaluation 𝑒, we say that T is forced by 𝑤 under 𝑒, written 𝑤 ⊩ T [𝑒], if
𝑤 ⊩ 𝜙 [𝑒] for all 𝜙 ∈ T . Then Φ is a consequence of T , written T ⊨𝒦 Φ,
if 𝑤 ⊩ T [𝑒] implies 𝑤 ⊩ Φ [𝑒] for every world 𝑤 in 𝒦 and 𝑤-evaluation 𝑒.

Lemma 10.6.1 (Weakening) If T ⊆ T ′ and T ⊢ 𝜙, then T ′ ⊢ 𝜙.

Proof. This follows immediately from our definition of provability from
a theory (Definition 10.6.1).

The following notions our crucial to define the completion procedure at
the heart of any Gödel-style completeness proof:

Definition 10.6.2 (𝜓-consistency) A theory T is 𝜓-consistent when
T ⊬↝ 𝜓.

Definition 10.6.3 (𝜓-completeness) A theory T is 𝜓-complete when for
all 𝜙 ∈ 𝔽, either T , 𝜙 ⊢↝ 𝜓 or 𝜙 ∈ T .

Intuitively, a theory T is 𝜓-consistent when one cannot deduce 𝜓 from
it, and 𝜓-complete when it decides any formula 𝜙 when 𝜓 is assumed.
This is better understood by considering the special case where 𝜓 = ⫐
is the absurd flower: then 𝜓-consistency means that one cannot derive
any contradiction from T ; and 𝜓-completeness that T either refutes 𝜙
syntactically with a proof of Φ, 𝜙 ⫐ (⫐) for some Φ ⊆ T , or already
validates it “semantically”, i.e. without the need for a proof since 𝜙 ∈ T .
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10.6.2. Completion

In the following, we suppose some enumeration (𝜙𝑛)𝑛∈ℕ of 𝔽, which
should be definable constructively given the inductive nature of flowers.

Let 𝜓 ∈ 𝔽, and T a 𝜓-consistent theory. We now define the completion
procedure, which constructs an extension Com(T ) ⊇ T with the property
that Com(T ) is 𝜓-consistent and 𝜓-complete.

Definition 10.6.4 (𝑛-completion) The 𝑛-completion Com𝑛(T ) of T is
defined recursively as follows:

Com0(T ) = T

Com𝑛+1(T ) = {
Com𝑛(T ) ∪ 𝜙𝑛 if Com𝑛(T ) ∪ 𝜙𝑛 is 𝜓-consistent
Com𝑛(T ) otherwise

Definition 10.6.5 (Completion) The completion Com(T ) of T is the
denumerable union of all 𝑛-completions:

Com(T ) = ⋃
𝑛∈ℕ

Com𝑛(T )

Lemma 10.6.2 Com(T ) is 𝜓-consistent and 𝜓-complete.

Proof. For 𝜓-consistency, it is immediate by induction on 𝑛 that Com𝑛(T )
is 𝜓-consistent. Then suppose that Com(T ) ⊢↝ 𝜓, that is there is some
bouquet Φ ⊆ Com(T ) such that Φ ⊢↝ 𝜓. For each 𝜙 ∈ Φ, there is some
rank 𝑛 such that 𝜙 ∈ Com𝑛(T ). Let 𝑚 be the greatest such rank. Then Φ ⊆
Com𝑚(T ), and thus by weakening (Lemma 10.6.1) Φ ⊬↝ 𝜓. Contradiction.

For 𝜓-completeness, suppose that there is some 𝜙 such that Com(T ), 𝜙 ⊬↝

𝜓 and 𝜙 ∉ Com(T ), and let 𝜙 = 𝜙𝑛. Then Com(T ) ∪ 𝜙𝑛 is 𝜓-consistent, and
thus by weakening (Lemma 10.6.1) so is Com𝑛(T ) ∪ 𝜙𝑛. This entails that
𝜙𝑛 ∈ Com𝑛+1(T ) ⊆ Com(T ). Contradiction.

10.6.3. Adequacy

The following two propositions constitute the central argument that
allows the completeness proof to go through despite the analyticity of ↝-
rules. They are a direct adaptation of [120, Proposition 7], which Hermant
identifies as “an important property of any 𝐴-consistent, 𝐴-complete
theory, [...] that it enjoys some form of the subformula property”.

Roughly, the first proposition captures the (intuitionistic) truth-conditions
that make a flower valid (i.e. true in every model) by modelling them on
material implication, just like Peirce would do with his scroll (see Section
10.1): 𝜙 is true if the content Φ𝑖 of one of its petals (consequents) is, or if
the content Φ of its pistil (antecedant) is not.
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Proposition 10.6.3 (Analytic truth) Let 𝜓 ∈ 𝔽, T some 𝜓-consistent and
𝜓-complete theory, and 𝜙 = 𝐱 ⋅ Φ ⫐ Δ with Δ = {𝛿𝑖}𝑛𝑖 = {𝐱𝑖 ⋅ Φ𝑖}𝑛𝑖 such that
𝜙 ∈ T . Then for every substitution 𝜎 ∶ 𝐱 → 𝕋, either 𝜎(Φ𝑖) ⊆ T for some
1 ≤ 𝑖 ≤ 𝑛, or T ⊬↝ 𝜎(Φ).

Proof. Suppose the contrary, i.e. there is a substitution 𝜎 such that T ⊢↝

𝜎(Φ) and for all 1 ≤ 𝑖 ≤ 𝑛, there is some 𝜙𝑖 ∈ Φ𝑖 ¬ such that 𝜎(𝜙𝑖) ∉
T . Thus by 𝜓-completeness of T , we get T , 𝜎(𝜙𝑖) ⊢↝ 𝜓. So there are
Ψ ⊆ T and Ψ𝑖 ⊆ T ∪ 𝜎(𝜙𝑖) such that Ψ ⊢↝ 𝜎(Φ)  and Ψ𝑖 ⊢↝ 𝜓 ®.
Now it cannot be the case that Ψ𝑖 ⊆ T , otherwise by weakening and
𝜓-consistency of T we would have Ψ𝑖 ⊬↝ 𝜓. So there must exist Ψ′

𝑖 ⊆ T
such that Ψ𝑖 = Ψ′

𝑖 ∪ 𝜎(𝜙𝑖) ¯. Again by weakening and 𝜓-consistency of
T , we get Ψ,⋃𝑛

𝑖=1 Ψ
′
𝑖 , 𝜙 ⊬↝ 𝜓. Now we derive a contradiction by showing

Ψ,⋃𝑛
𝑖=1 Ψ

′
𝑖 , 𝜙 ⊢↝ 𝜓. Let Ξ□ be a context such that Ψ,⋃𝑛

𝑖=1 Ψ
′
𝑖 , 𝜙 ≻ Ξ °.

Then Ξ 𝜓 →∗
↝ Ξ with the following derivation:

Ξ 𝜓 →epis Ξ ⋅ ⫐ ⋅ 𝜓
→poll↑ Ξ ⋅ 𝜙 ⫐ ⋅ 𝜓 (°)

→ipis Ξ ⋅ ( ⋅ 𝜎(Φ) ⫐ 𝜎(Δ)), 𝜙 ⫐ ⋅ 𝜓

→poll↓ Ξ ⋅ (⋅ ⫐ 𝜎(Δ)), 𝜙 ⫐ ⋅ 𝜓 (, °)

→srep Ξ ⋅ 𝜙 ⫐ ⋅ {𝜎(𝛿𝑖) ⫐ ⋅ 𝜓}𝑛𝑖
= Ξ ⋅ 𝜙 ⫐ ⋅ {𝐱𝑖 ⋅ 𝜎(Φ𝑖) ⫐ ⋅ 𝜓}𝑛𝑖
→𝑛

poll↓ Ξ ⋅ 𝜙 ⫐ ⋅ {𝐱𝑖 ⋅ 𝜎(Φ𝑖) ⫐ ⋅ }𝑛𝑖 (¬, ®, ¯, °)

→𝑛
epet Ξ ⋅ 𝜙 ⫐ ⋅

→epet Ξ

Dually, the second proposition captures the grounds on which a flower
can be deemed invalid (i.e. false in at least one model): 𝜙 is not true if
assuming that its pistil Φ is true is not sufficient to conclude that one of
its petals Φ𝑖 is.

Proposition 10.6.4 (Analytic refutation) Let 𝜓 ∈ 𝔽, T some 𝜓-consistent
and 𝜓-complete theory, and 𝜙 = 𝐱 ⋅ Φ ⫐ Δ with Δ = {𝛿𝑖}𝑛𝑖 = {𝐱𝑖 ⋅ Φ𝑖}𝑛𝑖 such
that T ⊬↝ 𝜙. Then for every 1 ≤ 𝑖 ≤ 𝑛 and substitution 𝜎 ∶ 𝐱𝑖 → 𝕋, there
is some 𝜙𝑖 ∈ Φ𝑖 such that T , Φ ⊬↝ 𝜎(𝜙𝑖).

Proof. Suppose the contrary, i.e. there are some 1 ≤ 𝑖 ≤ 𝑛 and 𝜎 ∶ 𝐱𝑖 → 𝕋
such that T , Φ ⊢↝ 𝜎(Φ𝑖). Therefore there must exist Ψ ⊆ T and Φ0 ⊆ Φ ¬

such that Ψ, Φ0 ⊢↝ 𝜎(Φ𝑖) . By hypothesis, for every Φ′ ⊆ T there

is a context Ξ such that Φ′ ≻ Ξ and Ξ 𝜙 ↛∗
↝ Ξ . We now derive a
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Digression
Note that both Proposition 10.6.3 and
Proposition 10.6.4 are proved indi-
rectly by contradiction, but that the
contradiction is obtained by exhibit-
ing a concrete derivation, exploiting
respectively the universal instantia-
tion of pistils with the ipis rule, and
the existential instantiation of petals
with the ipet rule. Thus there seems
to be some constructive content to
these proofs, despite their use of a
classical reasoning principle. Also,
this is the only place in the complete-
ness proof where we build deriva-
tions, and all ↝-rules (and only them)
seem to be required to conclude.

contradiction by showing Ξ 𝜙 →∗
↝ Ξ for all Ξ such that Ψ ≻ Ξ ®:

Ξ 𝜙 →ipet Ξ 𝐱 ⋅ Φ ⫐ ⋅ 𝜎(Φ𝑖) ; Δ
→poll↓ Ξ 𝐱 ⋅ Φ ⫐ ⋅ ; Δ (¬, , ®)
→epet Ξ

Lastly, we define the so-called universal Kripke structure ⁓(𝜓 ) relative to
a flower 𝜓:

Definition 10.6.6 (Universal Kripke structure) Let 𝜓 ∈ 𝔽. The universal
Kripke structure ⁓(𝜓 ) has:

▶ The set of 𝜓-consistent and 𝜓-complete theories as its worlds;

▶ Set inclusion as its accessibility relation;

▶ For each world T , a first-order structure whose domain is the set of
terms 𝕋, and whose interpretation map is given by:

• ⟦𝑓⟧(�⃗�) = 𝑓 (�⃗�)

• ⟦𝑝⟧ = {�⃗� | 𝑝(�⃗�) ∈ T }

One can easily check that the monotonicity conditions of Kripke structures
hold for ⁓(𝜓 ).

We are now equipped to prove the main adequacy lemma, which relates
forcing in ⁓(𝜓 ) with 𝜓-consistency and 𝜓-completeness:

Lemma 10.6.5 (Adequacy) Let 𝜙, 𝜓 ∈ 𝔽, T a 𝜓-consistent and 𝜓-complete
theory, and 𝜎 a subtitution. Then

1. 𝜎(𝜙) ∈ T implies T ⊩ 𝜙 [𝜎], and

2. T ⊬↝ 𝜎(𝜙) implies T ⊮ 𝜙 [𝜎]

Proof. By induction on |𝜙|.

▶ Suppose 𝜙 = 𝑝(�⃗�).

1. By definition of forcing (Definition 10.4.4) and ⁓(𝜓 ) (Definition
10.6.6), T ⊩ 𝑝(�⃗�) [𝜎] precisely when 𝜎(𝑝(�⃗�)) ∈ T .

2. Suppose that T ⊩ 𝜙 [𝜎], that is 𝜎(𝜙) ∈ T . Then by weakening
(Lemma 10.6.1), we get 𝜎(𝜙) ⊬↝ 𝜎(𝜙). But this is impossible by
reflexivity of ⊢ (Lemma 10.3.3).

▶ Suppose 𝜙 = 𝐱 ⋅ Φ ⫐ {𝐱𝑖 ⋅ Φ𝑖}𝑛𝑖 .

1. Let U ⊇ T be a 𝜓-consistent and 𝜓-complete theory. Obviously
𝜎(𝜙) = 𝐱 ⋅ 𝜎|𝐱 (Φ) ⫐ {𝐱𝑖 ⋅ 𝜎|𝐱∪𝐱𝑖 (Φ𝑖)}𝑛𝑖 ∈ U , and thus by Proposition
10.6.3, for every substitution 𝜏, either |𝐱𝜏 ∘𝜎|𝐱∪𝐱𝑖(Φ𝑖) = 𝜎|𝐱𝜏|𝐱𝑖 (Φ𝑖) ⊆ U
for some 1 ≤ 𝑖 ≤ 𝑛, or U ⊬↝ |𝐱𝜏 ∘ 𝜎|𝐱(Φ) = 𝜎 |𝐱 𝜏 (Φ). In the first case,
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13: Actually it already works for the frag-
ment ↝ ∪ {grow}, thanks to the proof of
Theorem 10.3.2.

we get U ⊩ Φ𝑖 [𝜎 |𝐱 𝜏 |𝐱𝑖 ] by IH. In the second case, we get U ⊮ Φ [𝜎|𝐱𝜏]
by IH. In other words, U ⊩ Φ [𝜎|𝐱𝜏] implies U ⊩ Φ𝑖 [𝜎 |𝐱 𝜏 |𝐱𝑖 ], that is
T ⊩ 𝜙 [𝜎].

2. By Proposition 10.6.4, for every 1 ≤ 𝑖 ≤ 𝑛 and substitution 𝜏, there is
some 𝜙𝑖 ∈ Φ𝑖 such that T , 𝜎|𝐱(Φ) ⊬↝ |𝐱𝑖𝜏 ∘𝜎|𝐱∪𝐱𝑖(𝜙𝑖) = 𝜎|𝐱|𝐱𝑖𝜏 (𝜙𝑖). By the
completion procedure, we get a theory U = Com(T ∪𝜎|𝐱(Φ)) ⊇ T ∪
𝜎|𝐱(Φ) which is both 𝜎 |𝐱 |𝐱𝑖𝜏 (𝜙𝑖)-consistent and 𝜎 |𝐱 |𝐱𝑖𝜏 (𝜙𝑖)-complete.
Then by IH, U ⊩ Φ [𝜎 |𝐱 ] since 𝜎 |𝐱 (Φ) ⊆ U , and U ⊮ 𝜙𝑖 [𝜎 |𝐱 |𝐱𝑖𝜏]
since U is 𝜎 |𝐱 |𝐱𝑖𝜏 (𝜙𝑖)-consistent, that is T ⊮ 𝜙 [𝜎].

As a near-direct consequence, we get:

Theorem 10.6.6 (Completeness) Φ ⊨ Ψ implies Φ ⊢↝ Ψ.

Proof. Let T be a 𝜓-consistent theory. We prove that T ⊭ 𝜓 by showing in
particular that T ⊭⁓(𝜓 ) 𝜓, and more specifically that Com(T ) ⊩ T [1] but
Com(T ) ⊮ 𝜓 [1]. Then it follows by (classical) contraposition that T ⊨ 𝜓
implies T ⊢↝ 𝜓 for any 𝜓 and any T , and thus we can conclude.

▶ Let 𝜙 ∈ T . Then 1(𝜙) = 𝜙 ∈ Com(T ), thus by 𝜓-consistency and
𝜓-completeness of the completion (Lemma 10.6.2), we can apply ade-
quacy (Lemma 10.6.5) to get Com(T ) ⊩ 𝜙 [1].

▶ Similarly, we can apply adequacy to get Com(T ) ⊮ 𝜓 [1].

Combined with strong deduction (Theorem 10.3.2), this also yields a
strong completeness theorem for the full flower calculus13:

Corollary 10.6.7 (Strong completeness) Φ ⊨ Ψ implies Ψ →∗ Φ.

Finally, the composition of the soundness, completeness and deduction
theorems (Theorem 10.5.13, Theorem 10.6.6 and Theorem 10.3.4) gives the
admissibility of ⊴-rules, and thus the analyticity of the flower calculus:

Corollary 10.6.8 (Analyticity) If Φ ⊢ Ψ then Φ ⊢↝ Ψ.

10.7. Automated proof search

10.7.1. Preliminary definitions

Analyticity and invertibility The completeness of ↝-rules (Theo-
rem 10.6.6) suggests that some efficient proof search procedure might be
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14: It is well-known that provability in
intuitionistic propositional logic is de-
cidable, a result first demonstrated by
Gentzen [88].

15: See also Section 5.1 for a discussion
on this topic.

16: The only fully invertible proof sys-
tem for intuitionistic (predicate) logic
that we know of is the labelled sequent
calculus G3IntQ from Lyon’s thesis [156]
(we thank Lutz Straßburger for pointing
that to us). However, a peculiarity of la-
belled sequent calculi is that they need
to incorporate semantical notions like
the worlds and accessibility relation of
Kripke structures into the syntax of se-
quents, in order to make every rule in-
vertible [97]. We do not need such de-
vices in the flower calculus, which will be
crucial from a user interface standpoint
in Section 10.8.
[137]: Kahramanogullari (2014), ‘Interac-
tion and Depth against Nondeterminism
in Proof Search’
[139]: Kahramanoğulları (2006), ‘Reduc-
ing Nondeterminism in the Calculus of
Structures’

17: What we call an occurrence here cor-
responds to our notion of path in Defini-
tion 3.1.2.

devised for the flower calculus, and even a complete one for the propo-
sitional fragment where every sprinkler is empty14. Indeed in sequent
calculi, analyticity (the subformula property) greatly reduces the search
space when looking for a proof of a given sequent, and one might expect
the same to apply in the natural fragment ↝ of the flower calculus. Also,
the invertibility of ↝-rules implies that the procedure will not need to per-
form backtracking, a great source of non-determinism in proof search15,
and particularly so in intuitionistic logic16.

Depth and interaction However, there is another great source of non-
determinism that does not arise in Gentzen systems, but is inherent to
any deep inference formalism: it is precisely the fact that rules can be
applied in contexts of arbitrary depth, thus inducing a number of choices
that is exponential in the latter. Kahramanogullari has proposed some
attempts to tame this problem in [137, 139], and our approach bears some
similarities to his. In particular, we propose in the following a (sketch of a)
proof search algorithm for the propositional flower calculus, whose core
rests on an interaction relation between contexts which is a generalization
of the pollination relation (Definition 10.3.5), and is close to the structural
relation of Kahramanogullari [137, Definition 2.13].

Definition 10.7.1 (Interaction) Let Φ□, Ψ□ be two contexts. We say
that Φ□ can interact with Ψ□ when there exist contexts Ξ□, Φ0, Ψ0 such
that either:

(Cross-interaction)

Φ□ = Ξ Φ0, Ψ0 ⌀

and Ψ□ = Ξ Φ0 ⌀ , Ψ0

In this case we write Φ□ ⋈ Ψ□;

(Self-interaction) there is some Δ such that

Φ□ = Ξ Φ0 ⫐ Ψ0 ⌀ ; Δ

and Ψ□ = Ξ Φ0 ⌀ ⫐ Ψ0 ; Δ

In this case we write Φ□ ∝Ψ□.

It is clear that ⋈ is a symmetric relation, while ∝is not. Also, we write
⋈+ and ∝+ (resp. ⋈− and ∝−) to further specify when Ξ□ is positive (resp.
negative).

Causality Our algorithm will be driven by the search for dual occur-
rences17 of atoms, a recurring idea in this thesis.

Definition 10.7.2 (Occurrence) An occurrence is a pair (Φ□, 𝜙) of a
flower 𝜙 and a context Φ□. It is said to be atomic if 𝜙 is an atom.
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18: Arguably, the linear heart of this phe-
nomenon can be studied in the logic BV,
which adds to the commutative connec-
tive ` a non-commutative or sequential
operator ▷. Interestingly, BV is the logic
that motivated the whole development
of the deep inference methodology by
Guglielmi [110], because it could not be
accurately expressed in shallow Gentzen
formalisms.

Then, two atomic occurrences can interact when their contexts can. In
the (linear) classical setting of [137], there is no preferred direction in the
information flow between two interacting atoms, which can be seen as
the essence of the (linear) law of excluded middle 𝐴` 𝐴⊥. However in
our intuitionistic setting, implication forces a direction from premisses to
conclusions, which is reflected in our distinction between the symmetric
cross-interaction relation ⋈, and the asymmetric self-interaction relation
∝18. In turn, the asymmetry of ∝will impose a causality on atoms, where

one atom can potentially be justified by the other:

Definition 10.7.3 (Justification) A justification is an oriented pair of
atomic occurrences 𝔞 = (Φ□, 𝑎) ↪ (Ψ□, 𝑏).

One can then naturally aggregate justifications into arguments:

Definition 10.7.4 (Argument) An argument is a finite set 𝔄 of justifi-
cations. Every argument 𝔄 can be seen as the set of edges of a directed
graph, whose vertices are the occurrences appearing in the justifications
of 𝔄. Conversely, every directed graph on a set of occurrences can be seen
as an argument, whose justifications are the edges of the graph.

We identify two essential arguments inherent to any bouquet:

Definition 10.7.5 (Vehicle and Anchor) Let Φ a bouquet, and A(Φ) =
{(Ψ□, 𝑎) | Φ = Ψ 𝑎 } its set of atomic occurrences.

The vehicle of Φ is the argument V(Φ) ⊆ A(Φ)×A(Φ) such that (Ψ□, 𝑎)↪
(Ψ′□, 𝑎′) ∈ V(Φ) iff the following conditions hold:

(Identity) 𝑎 = 𝑎′;

(Polarity) Ψ□ is negative and Ψ′□ is positive;

(Interaction) either Ψ□ ⋈− Ψ′□, Ψ□ ∝+ Ψ′□ and Ψ□ = □, or Ψ′□ ∝+

Ψ□.

Dually, the anchor of Φ is the argument

V

(Φ) ⊆ A(Φ) ×A(Φ) such that
(Ψ□, 𝑎) ↪ (Ψ′□, 𝑎′) ∈

V

(Φ) iff the following conditions hold:

(Polarity) Ψ□ is positive and Ψ′□ is negative;

(Interaction) Ψ□ ∝− Ψ′□.

Intuitively, the vehicle of a bouquet Φ is the set of possible justifications
that can be performed by the prover/player, whose goal is to justify every
positive atom; while the anchor is the set of justifications that must be
provided on demand by the environment/opponent, whose task is to be
able to justify every negative atom. The reason that we identify this struc-
ture, is that we want crucially to avoid cycles in our justification attempts
during proof search. These may arise in the dialogical interaction between
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19: It corresponds roughly to a combina-
tion of the application and linking phases
of the proof search algorithm for Binv de-
scribed in Subsection 8.8.2.

the prover and its environment of hypotheses, when justifications of the
former are composed with those of the latter. Formally, this interaction is
expressed by the union of arguments:

Definition 10.7.6 (Compatibility) Given a justification 𝔞 and an argu-
ment 𝔄, we say that 𝔞 is compatible with 𝔄, written 𝔞 ↓ 𝔄, when there is
no cycle in 𝔄 ∪ {𝔞}.

10.7.2. The algorithm

Pollination The vehicle and anchor of any bouquet Φ can easily by
computed, by noticing that the context Ξ□ in Definition 10.7.1 is simply
the least common ancestor of the atoms Ψ 𝑎 and Ψ′ 𝑎′ in the tree repre-
sentation of Φ, which we write lca(Ψ□, Ψ′□). This forms the basis for the
first phase of our algorithm, that we call the pollination phase19. Roughly,
the idea is that given a goal Φ, we want to perform eagerly every justifi-
cation 𝔞 in the vehicle V(Φ), on the condition that 𝔞 is compatible with
the anchor

V

(Φ) and all justifications ℌ of the previous phases. It turns
out that every such justification can be implemented by an instance of
the poll↓ rule, sometimes preceded by an instance of the poll↑ rule. This is
best described by the following imperative procedure, that takes as input
and modifies in-place both the goal Φ, and the history ℌ of justifications
performed so far:

Procedure pollination(Φ,ℌ)

1 foreach 𝔞 = (Ψ□, 𝑎) ↪ (Ψ′□, 𝑎′) ∈ V(Φ) ∖ ℌ do
2 if 𝔞 ↓

V

(Φ) ∪ ℌ then
3 𝜙□ ⟵ the direct child flower context of lca(Ψ□, Ψ′□) where

𝑎 occurs
4 𝜙′□ ⟵ the direct child flower context of lca(Ψ□, Ψ′□)

where 𝑎′ occurs
5 Ξ□ ⟵ Ψ′□
6 if 𝜙□ ≠ □ then
77 append a deep copy of 𝜙′ 𝑎′ to the bouquet located by

Ψ□
8 Ξ□ ⟵ Ψ 𝜙′□

99 remove 𝑎′ from Ξ□
10 add 𝔞 to ℌ

While this might not be obvious at first glance, the two steps of the
pollination procedure that modify the goal Φ are logically sound : in-
deed, the copy operation on line 7 corresponds to an instance of the poll↑
rule, while the remove operation on line 9 corresponds to an instance of
the poll↓ rule.

Reproduction The second phase of our algorithm is the reproduction
phase. As its name suggests, it consists in repeatedly applying the repro-
duction rule srep on the current goal, until there is no more context in
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20: In the algorithm of Subsection 8.8.2,
this corresponds to the part of the de-
composition phase that treats negative ∨
formulas.

21: It corresponds to the popping phase
of bubbles in Subsection 8.8.2, not the
decomposition phase: here the term “de-
composition” refers metaphorically to
the biological process that applies to or-
ganic matter, not to the analysis of for-
mulas into their components.

which it is applicable20. The reproduction phase can be computed by the
following tail recursive procedure:

Procedure reproduction(Φ)

1 foreach 𝜙 = (Ψ ⫐ Δ) ∈ Φ do
2 if there is at least one flower 𝜓 = (⫐ {𝛾𝑖}𝑛𝑖 ) ∈ Ψ then
3 remove 𝜓 from Ψ
4 remove every petal from 𝜙
5 append the petal {𝛾𝑖 ⫐ Δ}𝑛𝑖 to 𝜙
6 reproduction(𝜙)

7 else
8 foreach Ξ ∈ Δ do
9 reproduction(Ξ)

Decomposition The third and last phase of our proof search algorithm,
called decomposition phase, is also the most trivial: it simply consists in ap-
plying the epet rule in every applicable context in the goal, which amounts
to erasing every flower with an empty petal21. Unlike the reproduction
phase, it cannot be computed directly by a tail recursive procedure, be-
cause erasing flowers in the petals of a flower 𝜙 might make one of the
petals of 𝜙 itself empty. One option is to iterate a tail recursive procedure
until a fixpoint is reached, meaning that there are no more flowers with
an empty petal. We give instead a more efficient, but non-tail recursive
solution:

Procedure decomposition(Φ)

1 foreach 𝜙 = (Ψ ⫐ Δ) ∈ Φ do
2 if ⌀ ∈ Δ then
3 remove 𝜙 from Φ

4 else
5 has_empty_petal ⟵ false

6 foreach Ξ ∈ Δ do
7 decomposition(Ξ)
8 if Ξ = ⌀ then
9 has_empty_petal ⟵ true

10 break

11 if has_empty_petal then
12 remove 𝜙 from Φ

13 else
14 decomposition(Ψ)

Cycle of life We can now put together the three phases to form a
so-called lifecycle. We decompose this in two steps:

1. first we perform one pollination phase;

2. then we cycle reproduction and decomposition phases until a fixpoint
is reached.
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(𝑎 ⫐ ((𝑎 ⫐ 𝑏) ⫐ 𝑏))

P
−→ (𝑎 ⫐ ((⫐ 𝑏) ⫐ 𝑏))
RD
−−→ (𝑎 ⫐ (⫐ (𝑏 ⫐ 𝑏)))

P
−→ (𝑎 ⫐ (⫐ (𝑏 ⫐ ⋅)))
RD
−−→

((⫐ 𝑎 ; 𝑏) ⫐ (⫐ 𝑏 ; 𝑎))

P
−→ ((⫐ 𝑎 ; 𝑏) ⫐ (⫐ 𝑏 ; 𝑎))
RD
−−→ (⫐ (𝑎 ⫐ (⫐ 𝑏 ; 𝑎)), (𝑏 ⫐ (⫐ 𝑏 ; 𝑎)))

P
−→ (⫐ (𝑎 ⫐ (⫐ 𝑏 ; ⋅)), (𝑏 ⫐ (⫐ ⋅ ; 𝑎)))
RD
−−→

Figure 10.20.: Life traces for modus ponens (left) and identity expansion of disjunction (right)

⊤• = ⌀
⊥• = ⫐

(𝐴 ∧ 𝐵)• = 𝐴•, 𝐵•
(𝐴 ∨ 𝐵)• = ⫐ 𝐴• ; 𝐵•
(𝐴 ⊃ 𝐵)• = 𝐴• ⫐ 𝐵•

(¬𝐴)• = 𝐴• ⫐
(∀𝑥.𝐴)• = 𝑥 ⋅ ⫐ 𝐴•
(∃𝑥.𝐴)• = ⫐ 𝑥 ⋅ 𝐴•

Figure 10.21.: Translation (−)• of formu-
las into bouquets

Procedure lifecycle(Φ,ℌ)

1 pollination(Φ,ℌ)

2 Φ′ ⟵ deep copy of Φ
3 reproduction(Φ′)
4 decomposition(Φ′)
5 while Φ ≠ Φ′ do
6 Φ ⟵ deep copy of Φ′

7 reproduction(Φ′)
8 decomposition(Φ′)

Note that the specific order in which phases are sequenced does not
matter. The final algorithm, that we call the life procedure, is then the
fixpoint of the lifecycle procedure:

Procedure life(Φ)

1 ℌ ⟵ ⌀
2 Φ′ ⟵ deep copy of Φ
3 lifecycle(Φ′, ℌ)
4 while Φ ≠ Φ′ do
5 Φ ⟵ deep copy of Φ′

6 lifecycle(Φ′, ℌ)

Figure 10.20 shows the traces obtained by executing the algorithm on two
simple tautologies. Lifecycles are separated by horizontal lines, while an
arrow with superscript P (resp. RD) indicates a pollination (resp. repro-
duction/decomposition) phase.

Assuming that the life procedure terminates on every input, the decision
procedure is immediate: if Φ = ⌀ after executing life(Φ), then Φ is a
tautology, otherwise it is not.

10.7.3. Empirical assessments

Implementation We have implemented the life procedure in the
OCaml programming language [64]. In fact, we refined the design of

https://ocaml.org/
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(((((𝑎 ⫐) ⫐) ⫐ 𝑎) ⫐) ⫐)

P
−→ (((((𝑎 ⫐) ⫐) ⫐ 𝑎) ⫐), ((((𝑎 ⫐) ⫐) ⫐ 𝑎) ⫐) ⫐)
RD
−−→ (((((𝑎 ⫐) ⫐) ⫐ 𝑎) ⫐), ((((𝑎 ⫐) ⫐) ⫐ 𝑎) ⫐) ⫐)

P
−→ (((((((((((((𝑎 ⫐) ⫐) ⫐ ⋅) ⫐), 𝑎 ⫐) ⫐) ⫐ ⋅) ⫐), 𝑎 ⫐) ⫐) ⫐ 𝑎) ⫐), ((((((((𝑎 ⫐) ⫐) ⫐ ⋅) ⫐), 𝑎 ⫐) ⫐) ⫐ 𝑎) ⫐) ⫐)
RD
−−→

Figure 10.22.: Life trace for doubly-negated double-negation elimination law

[208]: Raths et al. (2007), ‘The ILTP Prob-
lem Library for Intuitionistic Logic’

the algorithm iteratively, by testing it on a set of 62 tautologies taken
from Edukera’s logic course [217] (the full set is available in Figure
10.23). Since those are expressed with symbolic formulas, we rely on a
straightforward translation of formulas into (bouquets of) flowers, given
in Figure 10.21. Out of the 62 tautologies, 53 were proved by the algorithm,
and among the 9 unproved tautologies, only the 2 formulas ¬¬(¬¬𝐴 ⊃ 𝐴)
and ¬¬(((𝐴 ⊃ 𝐵) ⊃ 𝐴) ⊃ 𝐴) are intuitionistically valid, while the other 7
formulas are only classically valid.

Incompleteness Interestingly on this dataset, the algorithm only fails
on formulas that correspond to the double-negation of a classical law. Of
course, Theorem 10.6.6 guarantees that there must exist proofs for these
formulas, using only ↝-rules. While this may include the epis rules, we
conjecture that it is not actually needed to get a complete decision algo-
rithm. Instead, we have implemented an extension of the life procedure
that accounts specifically for doubly-negated formulas, by first duplicating
the negative negation as a special additional case of the pollination phase.
In the case of the double-negation elimination law ((((𝑎 ⫐) ⫐) ⫐ 𝑎) ⫐) ⫐,
this would give the flower

((((𝑎 ⫐) ⫐) ⫐ 𝑎) ⫐), ((((𝑎 ⫐) ⫐) ⫐ 𝑎) ⫐) ⫐

which is then provable by the algorithm as shown in Figure 10.22.

Encouraged by these positive results, we attempted to validate the al-
gorithm on a more challenging dataset: the ILTP problem library for
intuitionistic logic, version 1.1.2 [208]. Unfortunately, it turns out that
neither the basic life procedure nor its extension are able to prove the
following theorem of intuitionistic logic (problem SYJ106+1):

(((¬(𝑡 ⊃ 𝑟) ⊃ 𝑝) ∧ 𝑠) ⊃ (¬((𝑝 ⊃ 𝑞) ∧ (𝑡 ⊃ 𝑟)) ⊃ (¬¬𝑝 ∧ (𝑠 ∧ 𝑠))))

Worse, the extension seems to loop indefinitely on it.

Non-termination In fact, even the basic version of the life procedure
does not terminate (at least in reasonable time, i.e. less that 3 minutes) on
another intuitionistic theorem (problem SYJ201+1.001):

(((((𝑝3 ⇔ 𝑝1)
⊃ (𝑝1 ∧ (𝑝2 ∧ 𝑝3)))

https://edukera.com/
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22: And also space-inefficient, since the
bottleneck is the pollination phase that
can duplicate flowers in an exponential
fashion.

∧ ((𝑝2 ⇔ 𝑝3) ⊃ (𝑝1 ∧ (𝑝2 ∧ 𝑝3))))
∧ ((𝑝1 ⇔ 𝑝2) ⊃ (𝑝1 ∧ (𝑝2 ∧ 𝑝3))))
⊃ (𝑝1 ∧ (𝑝2 ∧ 𝑝3)))

We did not have the opportunity yet to investigate the sources of in-
completeness and non-termination of our algorithm. Indeed, the analysis
of life traces on formulas of this size is quite time-consuming, if not
untractable for a human. Concerning non-termination, one could hypoth-
esize at this stage, although we find this unlikely, that the algorithm does
terminate theoretically, but is simply extremely time-inefficient22. For
instance, it takes 6 whole seconds on a laptop equipped with an i7-10610U
processor (8 cores, upto 4.90 GHz per core) and 16 GB of RAM to find a
proof of the following formula (problem SYJ107+1004):

(((((((𝑏 ∨ 𝑎) ∨ 𝑏) ∧ (𝑏 ⊃ ((𝑏1 ∨ 𝑎1) ∨ 𝑏1)))
∧ (𝑏1 ⊃ ((𝑏2 ∨ 𝑎2) ∨ 𝑏2))) ∧ (𝑏2 ⊃ ((𝑏3 ∨ 𝑎3) ∨ 𝑏3))) ∧ 𝑎4)
⊃ (𝑎 ∨ ((𝑏 ∧ 𝑎1) ∨ ((𝑏1 ∧ 𝑎2) ∨ ((𝑏2 ∧ 𝑎3) ∨ (𝑏3 ∧ 𝑎4))))))
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Implication

(𝐴 ⊃ (𝐵 ⊃ 𝐴))
(𝐴 ⊃ ((𝐴 ⊃ 𝐵) ⊃ 𝐵))

((𝐵 ⊃ 𝐶) ⊃ ((𝐴 ⊃ 𝐵) ⊃ (𝐴 ⊃ 𝐶)))

Conjunction

(𝐴 ⊃ (𝐵 ⊃ (𝐴 ∧ 𝐵)))
(𝐴 ⊃ (𝐵 ⊃ (𝐶 ⊃ (𝐴 ∧ (𝐵 ∧ 𝐶)))))

((𝐴 ∧ 𝐵) ⊃ (𝐶 ⊃ 𝐴))
((𝐴 ∧ 𝐵) ⊃ (𝐶 ⊃ 𝐵))
((𝐴 ∧ 𝐵) ⊃ (𝐵 ∧ 𝐴))

Disjunction

(𝐴 ⊃ (𝐴 ∨ 𝐵))
(𝐵 ⊃ (𝐴 ∨ 𝐵))

(𝐵 ⊃ (𝐴 ∨ (𝐵 ∨ 𝐶)))
((𝐴 ∨ 𝐵) ⊃ ((𝐴 ⊃ 𝐵) ⊃ 𝐵))

((𝐴 ∨ 𝐵) ⊃ (𝐵 ∨ 𝐴))

Negation

(⊥ ⊃ ¬𝐴)
(¬𝐴 ⊃ (𝐴 ⊃ ⊥))

(𝐴 ⊃ ¬¬𝐴)
(⊥ ⊃ 𝐴)

(¬𝐴 ⊃ (𝐴 ⊃ 𝐵))
(𝐴 ⊃ ((𝐶 ⊃ ¬𝐵) ⊃ ((𝐴 ⊃ 𝐵) ⊃ ¬𝐶)))

(((𝐴 ⊃ 𝐵) ∧ (𝐴 ⊃ ¬𝐵)) ⊃ ¬𝐴)
(((𝐴 ∨ ¬𝐵) ∧ 𝐵) ⊃ 𝐴)
((¬𝐴 ∨ 𝐵) ⊃ (𝐴 ⊃ 𝐵))
((𝐴 ⊃ 𝐵) ⊃ (¬𝐵 ⊃ ¬𝐴))

Constructive logic

((𝐴 ∧ 𝐵) ⊃ (𝐶 ⊃ 𝐴))
((𝐴 ∧ 𝐵) ⊃ (𝐶 ⊃ (𝐵 ∧ 𝐶)))

(𝐴 ⊃ (𝐴 ∧ (𝐴 ∨ 𝐵)))
((𝐴 ∨ (𝐵 ∧ 𝐶)) ⊃ (𝐴 ∨ 𝐵))
((𝐴 ∨ 𝐵) ⊃ ((𝐴 ⊃ 𝐵) ⊃ 𝐵))

((𝐴 ⊃ (𝐵 ⊃ 𝐶)) ⊃ ((𝐴 ⊃ 𝐵) ⊃ (𝐴 ⊃ 𝐶)))
((𝐴 ⊃ (𝐵 ⊃ 𝐶)) ⊃ ((𝐴 ∧ 𝐵) ⊃ 𝐶))

((𝐴 ⊃ 𝐵) ⊃ ((𝐴 ⊃ 𝐶) ⊃ (𝐴 ⊃ (𝐵 ∧ 𝐶))))
((𝐴 ⊃ 𝐵) ⊃ ((𝐴 ∨ 𝐶) ⊃ (𝐵 ∨ 𝐶)))
(((𝐴 ∧ 𝐵) ∨ (𝐴 ∨ 𝐵)) ⊃ (𝐴 ∨ 𝐵))

(((𝐴 ⊃ 𝐶) ∧ (𝐵 ⊃ 𝐶)) ⊃ ((𝐴 ∨ 𝐵) ⊃ 𝐶))
((¬𝐴 ∨ 𝐵) ⊃ (𝐴 ⊃ 𝐵))

((𝐴 ⊃ (𝐵 ⊃ 𝐶)) ⊃ ((𝐴 ∧ 𝐵) ⊃ 𝐶))
(𝐴 ⊃ ((𝐴 ⊃ 𝐵) ⊃ (((𝐴 ⊃ 𝐵) ⊃ (𝐵 ⊃ 𝐶)) ⊃ 𝐶)))

(((𝐴 ∧ 𝐵) ⊃ 𝐶) ⇔ (𝐴 ⊃ (𝐵 ⊃ 𝐶)))
(((𝐴 ∨ 𝐵) ⊃ 𝐶) ⇔ ((𝐴 ⊃ 𝐶) ∧ (𝐵 ⊃ 𝐶)))

Associativity

((𝐴 ∧ (𝐵 ∧ 𝐶)) ⇔ ((𝐴 ∧ 𝐵) ∧ 𝐶))
((𝐴 ∨ (𝐵 ∨ 𝐶)) ⇔ ((𝐴 ∨ 𝐵) ∨ 𝐶))

Distributivity

((𝐴 ∧ (𝐵 ⊃ 𝐶)) ⊃ ((𝐴 ∧ 𝐵) ⊃ (𝐴 ∧ 𝐶)))
((𝐴 ∧ (𝐵 ∨ 𝐶)) ⇔ ((𝐴 ∧ 𝐵) ∨ (𝐴 ∧ 𝐶)))
((𝐴 ∨ (𝐵 ∧ 𝐶)) ⇔ ((𝐴 ∨ 𝐵) ∧ (𝐴 ∨ 𝐶)))
(((𝐴 ⊃ 𝐵) ∧ (𝐴 ⊃ 𝐶)) ⊃ (𝐴 ⊃ (𝐵 ∧ 𝐶)))
((𝐴 ⊃ (𝐵 ∧ 𝐶)) ⊃ ((𝐴 ⊃ 𝐵) ∧ (𝐴 ⊃ 𝐶)))
(((𝐴 ⊃ 𝐵) ∨ (𝐴 ⊃ 𝐶)) ⊃ (𝐴 ⊃ (𝐵 ∨ 𝐶)))
((𝐴 ⊃ (𝐵 ⊃ 𝐶)) ⊃ ((𝐴 ⊃ 𝐵) ⊃ (𝐴 ⊃ 𝐶)))
(((𝐴 ⊃ 𝐵) ⊃ (𝐴 ⊃ 𝐶)) ⊃ (𝐴 ⊃ (𝐵 ⊃ 𝐶)))
(((𝐴 ∨ 𝐵) ⊃ 𝐶) ⇔ ((𝐴 ⊃ 𝐶) ∧ (𝐵 ⊃ 𝐶)))

Classical logic

(((𝐴 ∧ 𝐵) ⊃ (𝐴 ∧ 𝐶)) ⊃ (𝐴 ∧ (𝐵 ⊃ 𝐶)))
((𝐴 ⊃ (𝐵 ∨ 𝐶)) ⊃ ((𝐴 ⊃ 𝐵) ∨ (𝐴 ⊃ 𝐶)))

(𝐴 ∨ ¬𝐴)
(𝐴 ∨ (𝐴 ⊃ 𝐵))

((𝐴 ⊃ 𝐵) ∨ (𝐵 ⊃ 𝐴))
(¬¬𝐴 ⊃ 𝐴)

(((𝐴 ⊃ 𝐵) ⊃ 𝐴) ⊃ 𝐴)
¬¬(𝐴 ∨ ¬𝐴)

¬¬(𝐴 ∨ (𝐴 ⊃ 𝐵))
¬¬((𝐴 ⊃ 𝐵) ∨ (𝐵 ⊃ 𝐴))

¬¬(¬¬𝐴 ⊃ 𝐴)
¬¬(((𝐴 ⊃ 𝐵) ⊃ 𝐴) ⊃ 𝐴)

Figure 10.23.: Testing dataset of tautologies from Edukera

https://edukera.com/
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[55]: Czaplicki et al. (2013), ‘Asyn-
chronous Functional Reactive Program-
ming for GUIs’

23: https://www.lix.
polytechnique.fr/Labo/Pablo.

DONATO/flowerprover/

[154]: Loo (2022), Cross-platform React
app for solving existential graph-based
proofs
[244]: Unknown author (2001), Visual
Logic: Peirce’s Existential Graphs

24: This is not the case currently for
Actema, which does not provide a ver-
tical layout, and has poor support for
touch interactions. While the former is-
sue could be solved easily, the latter
is somehow inherent to the textual na-
ture of formulas: in scenarios where one
needs to refer to a specific subterm, it is
difficult to design a touch-based selection
mechanism that is as precise and straight-
forward as a mouse-based one.

10.8. The Flower Prover

Proof-by-Action While having a complete and efficient proof search
procedure is a nice desideratum, our focus in this thesis is not on full
automation — which is not possible anyway as soon as we leave the
propositional fragment — but rather on automation that integrates well
with, and even improves the experience of building proofs interactively.
More specifically, the paradigm of interactionwe are interested in is that of
direct manipulation in a GUI. This was our initial motivation for studying
the graphical formalism of EGs, and we always kept this objective in mind
when developing the flower calculus. In this section, we present ongoing
work on the Flower Prover, a prototype of GUI in the Proof-by-Action
paradigm based on the direct manipulation of flowers, that builds upon
the various concepts, rules and metatheory of the previous sections.

Note

Currently, the Flower Prover only handles propositional flowerswith
empty sprinklers.

Implementation The prototype is implemented in Elm [55], a modern
functional reactive programming language that is particularly well-suited
for building GUIs that are based on complex compositional data-structures
like flowers. It also natively compiles to HTML and JavaScript, making
it easy to run and test the interface on any device equipped with a web
browser. The source code is available on GitHub [65], and the interface is
currently hosted online as a simple HTML page23. The reader is invited to
try out the Flower Prover in her own browser, although we will try to
give self-contained explanations illustrated through various screenshots.

Originality We are not the first to identify the potential of EGs for
graphical proof building interfaces [154, 244]. However, we believe that
the Flower Prover is highly original in mainly two respects:

Intuitionistic and goal-oriented it is based on the flower calculus,
which proposes a quite unusual, non-exegetic take on EGs. It does
so both at the level of statements, by building upon the intuitionistic
icon of the 𝑛-ary scroll; and at the level of proofs, by focusing on a
goal-oriented reading of rules that emphasizes the importance of invert-
ibility and analyticity in the inference process, through the distinction
between ↝-rules and ⊴-rules.

Mobile-friendly it has been designed from the outset as a responsive,
touch-based, mobile-friendly interface. Responsivity means that it can
be run on screens of varying formats and resolutions, all with the same
layout providing a uniform experience across devices. Touch-based
means that every pointing interaction is optimized for touch in addition
to mouse gestures, so that there is no loss in precision. The combination
of these two properties makes the interface perfectly usable on mobile
devices like phones and tablets24, which are becoming increasingly
ubiquitous in personal computing. While the current generation of
proof assistants targets mostly technical and expert users with text-

https://www.lix.polytechnique.fr/Labo/Pablo.DONATO/flowerprover/
https://www.lix.polytechnique.fr/Labo/Pablo.DONATO/flowerprover/
https://www.lix.polytechnique.fr/Labo/Pablo.DONATO/flowerprover/
https://actema.xyz
https://www.lix.polytechnique.fr/Labo/Pablo.DONATO/flowerprover/
https://www.lix.polytechnique.fr/Labo/Pablo.DONATO/flowerprover/
https://elm-lang.org/
https://developer.mozilla.org/en-US/docs/Web/HTML
https://developer.mozilla.org/en-US/docs/Web/JavaScript
https://developer.mozilla.org/en-US/docs/Web/HTML
https://www.lix.polytechnique.fr/Labo/Pablo.DONATO/flowerprover/
https://www.lix.polytechnique.fr/Labo/Pablo.DONATO/flowerprover/
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25: Another example of modal interface
is the popular text editor vim, with its
normal mode for high-level manipulation
of text through commands and macros,
and its edit mode for low-level insertion
and deletion of characters.

26: The term “vernacular” was used for
the first time in the context of proof as-
sistants by the founder of the field, N. G.
de Bruijn [57].

based, keyboard-driven interactions, we believe that a broadening of
audience — especially in educational settings — if at all possible, will
require a reinvention of our means of interaction with formal proofs,
that is more in phase with contemporary usages of digital devices.

10.8.1. Interaction principles

Modal interface The Flower Prover is organized in two main modes
of interaction, providing different sets of direct manipulation actions on
goals25:

Proof mode this is the main mode, where goals can be proved by re-
ducing them to the empty bouquet ⌀. It corresponds in purpose to the
interactive proof mode of modern proof assistants like Coq, Lean and
Isabelle, and to the interactive proof view provided by Actema. As
will be detailed shortly, there is almost a one-to-one correspondence
between Proof actions, and the ↝-rules of the flower calculus.

Edit mode in this mode, the user can construct arbitrary flowers by
clicking on buttons and filling text fields, or modify the goal by clicking
on and dragging flowers around. It corresponds in purpose to the text
editor used for writing theories in the vernacular language of a proof
assistant26. Edit actions implement exactly the ⊴-rules of the flower
calculus.

Remark 10.8.1 A nice analogy for these two modes can be found in
the video game Minecraft : the survival mode, where the player has to
gather and craft resources to survive, corresponds to the Proof mode,
where the user has to combine and justify existing statements with the
analytic ↝-rules; while the creative mode, where the player can build
and destroy anything instantly with unlimited resources, corresponds
to the Edit mode, where the user can insert or delete arbitrary flowers
with the (synthetic?) ⊴-rules.

Figure 10.24 shows side-by-side the same goal representing the flower
(𝑎 ⫐ 𝑐), (𝑏 ⫐ 𝑐) ⫐ ((⫐ 𝑎 ; 𝑏) ⫐ 𝑐), but viewed through the two different
modes. At any point during a proof, the user can switch between the two
modes by clicking on the corresponding button in the mode selection bar,
located at the bottom of the screen: Proof and Edit modes are mapped
respectively to the left button with a checkmark icon, and the middle
button with a pencil icon.

It is also possible to Undo/Redo any action, whichever mode it was done
in, by clicking on the arrow buttons located on the bottom-right corner
of the screen. This is implemented by a simple stack recording the entire
state of the application, that is updated every time the user performs
an action, and popped/pushed when the user clicks on the Undo/Redo
buttons. Since the application state includes the current interaction mode,
undoing/redoing an action will automatically switch to the mode in which
the action was performed.

https://www.lix.polytechnique.fr/Labo/Pablo.DONATO/flowerprover/
https://coq.inria.fr/
https://lean-lang.org/
https://isabelle.in.tum.de/
https://actema.xyz
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Figure 10.24.: Proof mode (left) and Edit mode (right) of the Flower Prover

27: A similar mechanism is implemented
in Actema, where subterms that are pos-
sible drop targets for DnD actions are
also highlighted (see Section 3.2).

Proof actions Table 10.2a shows the precise mapping of Proof actions
to ↝-rules, together with the associated gestures for triggering them; and
Figure 10.25 shows a sequence of screenshots of the Flower Prover,
capturing the execution of a sequence of Proof actions reducing the
subgoal (⫐ 𝑎 ; 𝑏) ⫐ 𝑐 to 𝑏 ⫐ 𝑐. A few comments are in order:

Pollination The most central actions are those implementing the pol-
lination rules poll↓ and poll↑, called respectively Justify and Import. In
fact, they are less general than those rules: one can only Justify flowers
that are atomic by clicking on them, and Import non-atomic flowers
by dragging and dropping them at the desired location. We conjecture
that these restrictions do not jeopardize the completeness of ↝-rules,
and correspond to the process of 𝜂-expansion in 𝜆-calculus.

Suggestions The fourth screenshot in Figure 10.25 shows the flower
𝜙 ≔ 𝑎 ⫐ 𝑐 being dragged in the process of an Import action. If you
look closely, you will notice that there are many areas whose border is
highlighted with dashed yellow lines: these correspond to all contexts
Ξ□ where 𝜙 can be imported, i.e. such that 𝜙 ≻ Ξ□. This is a first form
of suggestion in the Flower Prover, indicating available valid actions
to the user through visual feedback27.

In fact, every Proof action has an associated visual cue, guiding interac-
tive proof search by suggesting to the user areas of the goal where she
might want to focus her attention. Since every action other than Import
is performed by a click gesture, the area that is highlighted corresponds
precisely to the area that can be clicked for triggering the action: either
a green box enclosing the justifiable atom for Justify actions, an orange
box covering the empty pistil for EFQ, Case and Unlock actions, or a
green box covering the empty petal for QED actions.

https://www.lix.polytechnique.fr/Labo/Pablo.DONATO/flowerprover/
https://actema.xyz
https://www.lix.polytechnique.fr/Labo/Pablo.DONATO/flowerprover/
https://www.lix.polytechnique.fr/Labo/Pablo.DONATO/flowerprover/
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28: In this specific case, one might want
to relax the atomic restriction on Justify
actions, in order to avoid the recourse
to Undo actions, which can only be per-
formed at the top of the history stack.

Fencing We have already mentioned that we suspect that the epis rule
might be admissible. However if it is not, one needs a corresponding
graphical action in Proof mode. While it is currently not implemented,
we plan to add a selection mechanism that allows the user to select a
set of flowers in the goal. Then, we could add a Fence action, whose
effect is to enclose the selected flowers in a petal attached to an empty
pistil. This action could be mapped to a dedicated button in the toolbar
that is visible only in Proof mode, and enabled only when the selected
flowers are juxtaposed in the same garden.

Since every Proof action implements a ↝-rule, it is guaranteed to be
invertible: the user never needs to Undo a Proof action in order to com-
plete a proof, because it always preserves the provability of the goal. Of
course it might still be desirable to do so in specific cases, such as Import
actions that may create unneeded copies of flowers28. Said differently,
Proof actions never strengthen the goal.

Edit actions Table 10.2b shows the precise mapping of Edit actions to
⊴-rules, together with the associated gestures for triggering them. Like
the edit mode of vim, Edit actions are used to insert and delete arbitrary
flowers in the goal:

Insertion The main interface mechanism that is currently implemented
is the Add button: since the grow rule allows to insert any flower in a
positive bouquet (i.e. add a new subgoal, just like the cut rule in sequent
calculus), we expose buttons in all the corresponding areas (blue “+”
buttons in Figure 10.24), that can be clicked to insert a new flower
precisely at the location of the button. There are two usage scenarios:

▶ if the user wants to insert an atomic flower, she can enter the name
of the atom in a text field placed above the button. Clicking on the
button will then insert an occurrence of this atom;

▶ if the user wants to insert a non-atomic flower, she can leave the
text field empty. Clicking on the button will then insert an empty
flower with a single petal.

In both cases, the inserted flower is marked internally by the system
with a grown tag: this means that as long as the user does not leave Edit
mode, she can perform arbitrary insertions and deletions inside of the
grown flower, disregarding any polarity constraint normally imposed
by ⊴-rules.

Dually, the glue rule is implemented by exposing Add buttons in all
negative corollas: those have the effect of growing a new empty petal,
that can be further edited through arbitrary insertions and deletions.

Grown flowers/petals are distinguished visually by having their border
painted in blue. Leaving Edit mode then has the effect of committing
every Edit action, i.e. removing every grown tag in the entire goal.
This mechanism enables an incremental, step-by-step construction of
flowers, that is still sound logically with respect to ⊴-rules.

Deletion Deleting flowers and petals is a more straightforward process:
one just has to click on the corresponding area, which is highlighted in
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red. To avoid overlap, the area of a flower is identified with its pistil.
Thus areas subject to deletion are negative atoms and flowers (crop
rule), positive petals (pull rule), as well as any area marked as grown.

Since every Edit action implements a ⊴-rule, it is guaranteed to be
non-invertible: the user might need to Undo an Edit action in order to
complete a proof, because it may break the provability of the goal. In
other words, Edit actions always (strictly) strengthen the goal.

Navigation mode The reader might have noticed that there is a third
button with a navigation icon on the right of the mode selection bar. It can
be used to enter Navigation mode, the last mode of interaction that we
intend to implement in the future. The idea is that on real-life goals, both
the size and level of nesting of flowers will quickly render the interface
unusable, both for reading/understanding the content and structure of
goals, and manipulating them through pointing.

The purpose of the Navigation mode is then to enable the user to focus
on a specific subgoal, by simply clicking on the corresponding nested
flower. This would make the subgoal take up the whole screen, hiding
the outer context from view. Dually, it should also be possible to unfocus
a previously focused subgoal — e.g. by clicking again on it — so that the
full tree structure of the goal can be freely navigated. Proof-theoretically,
the Navigation mode implements the functoriality of rules, i.e. the fact
that they can be applied in contexts of arbitrary depth.

Remark 10.8.2 This way of navigating tree structures represented as
nested areas is typical of zoomable user interfaces, a strand of GUI that
has been developed by many pioneers in the field of human-computer
interaction such as Ivan Sutherland in his Sketchpad system [234] [234]: Sutherland (1964), ‘Sketchpad: A

Man-machine Graphical Communication
System’

,
and Alan Kay in his Smalltalk system [99]

[99]: Goldberg et al. (1976), SMALLTALK-
72 INSTRUCTION MANUAL

.

Automation The last feature of the Flower Prover that we have im-
plemented is the Auto Proof action. It is similar in purpose to the auto
tactic of Coq, that tries to simplify the goal by performing a limited (but
customizable) amount of automation. The Auto action is mapped to a
dedicated button in the bottom-left corner of the screen, which is only
enabled in Proof mode (see Figure 10.24).

The idea is quite simple: since all click actions available to the user are
pre-computed by highlighting the corresponding areas, there can only be
a finite number of them. So why not try to apply them all automatically?
Applying a click action might generate new ones in the resulting goal,
so we have to perform this until a fixpoint is reached. This is very much
like the reproduction and decomposition phases from the life procedure
of Section 10.7, except that we also apply the poll↓ rule (Justify actions)
wherever possible. The only Proof action that is not considered is the
only DnD action, Import. This is not surprising, since it corresponds to
the poll↑ rule, which is the main source of complexity in the pollination
phase of the life procedure, because of its ability to duplicate flowers of
arbitrary size.

https://en.wikipedia.org/wiki/Sketchpad
https://en.wikipedia.org/wiki/Smalltalk
https://www.lix.polytechnique.fr/Labo/Pablo.DONATO/flowerprover/
https://coq.inria.fr/
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In fact, one could fine-tune the level of automation by considering only a
subset of all types of click actions. This is already what we do by default,
by leaving the application of Case actions to the user. This is motivated
by the fact that the latter can induce an explosion in the size of the
goal. One could even leave the configuration of automated action types
to the user with a dedicated interface. This could include an additional
option for executing Auto systematically after every (other) Proof action,
removing the need to click on the Auto button. In this setting, any proof
in the Flower Prover could be reduced to a sequence of Import and Case
actions.

10.8.2. Towards a unified workflow

Theories and goals In the proof view of modern proof assistants like
Coq and Lean, there is no distinction between local and global contexts:
a subgoal will inherit automatically every hypothesis from its parent
subgoals, which are flattened into a big unstructured list. To recreate this
distinction and reduce the size of goals to a manageable level, the only
interface mechanism offered to the user is to exit interactive proof mode,
and outsource chunks of the local context as additional global lemmas
and definitions in the current theory file.

Thus the user has to juggle between two different interfaces that manipu-
late two distinct data structures: a traditional text editor for modifying
theories, and an IDE for writing and executing proof scripts that modify
goals, themselves visualized in a separate proof view. This results in a
duplication of means to achieve essentially the same things: for instance,
reordering two lemmas will require to cut and paste one of them in the
theory file, while reordering two hypotheses will require the use of a
dedicated move tactic. Other examples can be found for renaming defi-
nitions, applying lemmas, constructing functions, etc. Crucially, the two
interfaces cannot communicate straightforwardly with eachother. In fact,
communication is completely one-way: the user can only invoke defini-
tions and lemmas of the theory from her proof script, by referring to their
names.

The Flower Prover can theoretically solve this divide, because it works
on a single data structure: flowers represent at the same time the current
goal to be proved in Proof mode, and the theories that are being built in
Edit mode. Thus there are still two distinct modes/interfaces, but they
work in unison on the same data. The only (major) current limitation,
is that we do not have any way to save proved lemmas for later reuse,
because proving a flower amounts to erasing it from the current goal. In a
sense, theories built in Edit mode are only transient : they live in working
memory, and are disposed of as soon as they become justified in Proof
mode; while we would like them to be persistent, recorded in long-term
memory along with their justifications (which would stay hidden from the
user by default). We will discuss in Section 10.9 some research directions
that we envision to achieve the latter.

Statements and proofs Our above example of “redundant” manip-
ulations targets imperative tactic languages, but the argument equally

https://www.lix.polytechnique.fr/Labo/Pablo.DONATO/flowerprover/
https://coq.inria.fr/
https://lean-lang.org/
https://www.lix.polytechnique.fr/Labo/Pablo.DONATO/flowerprover/
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29: We will come back to this idea of
merging proofs and statements in the
same data structure in the conclusion,
when discussing development calculi and
the Curry-Howard correspondence. Note
however that it is already at work in de-
pendent type theory, where proof terms
can freely occur inside types. This is
exemplified in the Agda proof assistant,
where all manipulations are done directly
on the partial proof/program text.

30: The first two types of filtering are
already available in most proof assistants,
e.g. the Search command of Coq.

31: Here we imagine something along
the lines of what we did for Actema (see
Section 4.2).

applies to more declarative languages like Isar: the point is that the proof
language, be it imperative or declarative, is separated both conceptually
and through its available means of interaction from the language of state-
ments used to build theories. And this separation between proofs and
statements is a natural one that is hard to question, since it is rooted
in what is arguably the most important inspiration of formal logic, and
also the form in which informal mathematics present themselves: natural
language. Indeed, symbolic formulas reproduce the grammatical structure
of sentences expressing logical propositions, and formal proofs reproduce
the inferential structure of arguments built from sequences of sentences.

Context navigation After this little conceptual aparté, let us come back
to the problem of managing contexts in proofs. In the Flower Prover,
the local context is naturally represented as everything that is displayed on-
screen. This includes hypotheses that are available from pistils at various
levels, but also potentially alternative goals (adjacent petals) and further
subgoals (positively nested flowers). Then rather than being segregated
in a separate interface (the text buffer of the theory), the global context
is simply the entire goal. In fact, there is no reason anymore to make a
terminological distinction between goals and theories: a goal is just a
theory that has yet to be justified, which can itself be identified with a
partial proof (or a “proof term with holes” in type-theoretical parlance)29.

It would still be useful to be able to aggregate automatically the set of
all lemmas, definitions and hypotheses available in a focused subgoal
located in Φ□, so that the user does not need to navigate up and down
the goal/proof tree all the time. This can be done with the help of the
pollination relation (Definition 10.3.5), by defining the set of available
flowers of Φ□ as the the union ctxt(Φ□) ≜ {𝜙 | 𝜙 ≻ Φ□}.

In terms of UI, we could then add a so-called shelf that displays ctxt(Φ□)
in all interaction modes. We anticipate only two kinds of interaction with
any flower 𝜙 ∈ ctxt(Φ□) in the shelf:

Pollination (in Proof mode) the user can perform an Import action
by dragging 𝜙;

Jump to definition (in Navigation mode) the user can focus on the
subgoal where 𝜙 originates by clicking on 𝜙.

Since the shelf might contain a lot of hypotheses, it will be important to
provide efficient ways to filter or search through its content. We imagine
three main ways of doing so30:

By name the user can type the name of a hypothesis in a search bar.
This implies that flowers have the ability to be named by the user.

By structure the user can specify a pattern that must be satisfied by all
hypotheses in the shelf. A pattern is just a flower that contains pattern
variables, which can match any flower. Thus patterns might be built
with the same tools offered in Edit mode.

By selection the user can select subterms of the goal and ask the system
to display only hypotheses that can interact with these subterms31.

https://wiki.portal.chalmers.se/agda/pmwiki.php
https://coq.inria.fr/
https://actema.xyz
https://isabelle.in.tum.de/Isar/
https://www.lix.polytechnique.fr/Labo/Pablo.DONATO/flowerprover/
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Table 10.3.: Graphical actions of the Flower Prover

(a) Proof actions

Action Gesture ↝-rule

Justify Click on 𝑎
Ξ

poll↓
Ξ 𝑎

Import
DnD of 𝜙
into Ξ□

Ξ 𝜙
𝜙 non-atomic poll↑

Ξ

QED
Click on

empty petal
epet

𝛾 ⫐ ⋅ ; Δ

EFQ
Click on

empty pistil

epet
Φ ⫐ ⋅

srep
Φ, (⋅ ⫐) ⫐ Δ

Case
Click on

empty pistil

Φ ⫐ {𝛾𝑖 ⫐ Δ}𝑛𝑖𝑛 ≥ 2 srep
Φ, (⋅ ⫐ {𝛾𝑖}𝑛𝑖 ) ⫐ Δ

Unlock
Click on

empty pistil

Φ,Ψ ⫐ Δ
epis↓

Φ, (⋅ ⫐ Ψ) ⫐ Δ

(b) Edit actions

Action Gesture ⊴-rule

Grow
Add button in

positive bouquet

Ξ+ ⫐ ⋅
grow

Ξ+

Glue
Add button in

negative corolla

Ξ− 𝛾 ⫐ ⋅ ; Δ
glue

Ξ− 𝛾 ⫐ Δ

Insert
Add button in

grown
bouquet/corolla

grow/glue

Delete
Click on grown
flower/petal grow/glue

Crop
Click on negative

flower

Ξ−

crop
Ξ− 𝜙

Pull
Click on positive

petal

Ξ+ 𝛾 ⫐ Δ
pull

Ξ+ 𝛾 ⫐ 𝛿 ; Δ

https://www.lix.polytechnique.fr/Labo/Pablo.DONATO/flowerprover/
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Case
−−−−→

Unlock
−−−−−−→

Import
−−−−−→

Import
−−−−−→

Justify
−−−−−→

Unlock
−−−−−−→

Justify
−−−−−→

QED
−−−−→

Figure 10.25.: A sequence of Proof actions in the Flower Prover

https://www.lix.polytechnique.fr/Labo/Pablo.DONATO/flowerprover/
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𝛾 ⫐ 𝛿 ; Δ
iter

𝛾 ⫐ 𝛿 ; 𝛿 ; Δ

𝛾 ⫐ 𝛿 ; 𝛿 ; Δ
deit

𝛾 ⫐ 𝛿 ; Δ

Figure 10.26.: (De)iteration rules for
petals

[190]: Oostra (2010), Los gráficos Alfa de
Peirce aplicados a la lógica intuicionista

32: “Cualquier lazo puede iterarse ad-
herido al mismo corte” [190, p. 46].

[191]: Oostra (2011),Gráficos existenciales
Beta intuicionistas

33: Thus we reject the claim made in
[159] that their system is “solving the
problem of defining a sequent calculus in
the style of deep inference for intuition-
istic propositional logic”. In our opinion,
flowers are closer to a form of nested se-
quent, although there is no consensus in
the literature on what makes some induc-
tive data structure a nested sequent.

10.9. Conclusion

10.9.1. Related works

Intuitionistic EGs In the original IEGs system of Oostra introduced
in [190], the srep rule is replaced by an extended (de)iteration rule, that
allows to duplicate/merge not only identical flowers, but also identical
petals, under the condition that they are attached to the same pistil32

(rules iter and deit in Figure 10.26). Thus in a sense, (de)iteration on petals
is not as deep as on whole flowers, where the two identical flowers can
be separated by an arbitrary number of layers; which might seem like an
arbitrary restriction. A posteriori, we rationalize this choice by seeing
it as an attempt to stay close to the original system Alpha of Peirce. In
particular, (de)iteration on petals is compatible with the quest for illative
atomicity, where all rules should be expressed in terms of insertions and
omissions (Section 9.4); while the srep rule is not. In our case, this is
justified by our quest for an invertible calculus (natural fragment): indeed
to simulate srep with petal (de)iteration, one also needs the non-invertible
⊴-rule crop (as well as the rule epis↓ of Figure 10.13), as illustrated by the
srep-free proof of Figure 10.27.

In addition to his seminal work in [191], Oostra describes in [191] a natural
extension of intuitionistic Alphawith LoIs, in order to get an intuitionistic
version of Beta. He also gives in [192] formal soundness and completeness
proofs for intuitionistic Alpha, based on a linear notation for graphs.

Ma and Pietarinen have developed in [159] their own system of intuition-
istic EGs for propositional logic, with a different set of inference rules than
Oostra’s. They give a more systematic proof theory, including deduction,
soundness and completeness theorems with respect to Heyting algebras.

Our work brings several new contributions on top of those:

Variadicity Our multiset-based definition of flowers captures faithfully
the variadic nature of juxtaposition and 𝑛-ary scrolls in the diagram-
matic syntax. In contrast, previous formalizations rely on a restricted
inductive syntax which only captures graphs that are isomorphic to
formulas built with binary connectives33.

epet
(𝑎 ⫐ 𝑐), (𝑏 ⫐ 𝑐), 𝑐 ⫐ ⋅

poll↓
(𝑎 ⫐ 𝑐), (𝑏 ⫐ 𝑐), 𝑐 ⫐ 𝑐

epis↓
(𝑎 ⫐ 𝑐), (𝑏 ⫐ 𝑐), (⫐ (⫐ 𝑐)) ⫐ 𝑐

iter
(𝑎 ⫐ 𝑐), (𝑏 ⫐ 𝑐), (⫐ (⫐ 𝑐) ; (⫐ 𝑐)) ⫐ 𝑐

crop
(𝑎 ⫐ 𝑐), (𝑏 ⫐ 𝑐), (⫐ (⫐ 𝑐), 𝑎 ; (⫐ 𝑐), 𝑏) ⫐ 𝑐

poll↓
(𝑎 ⫐ 𝑐), (𝑏 ⫐ 𝑐), (⫐ (𝑎 ⫐ 𝑐), 𝑎 ; (𝑏 ⫐ 𝑐), 𝑏) ⫐ 𝑐

poll↑
(𝑎 ⫐ 𝑐), (𝑏 ⫐ 𝑐), (⫐ 𝑎 ; 𝑏) ⫐ 𝑐 Figure 10.27.: Simulating the srep rule

by iterating petals
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[5]: Andreoli (1992), ‘Logic Programming
with Focusing Proofs in Linear Logic’

[160]: Marin et al. (2022), ‘From axioms
to synthetic inference rules via focusing’

[28]: Brock-Nannestad et al. (2019), ‘An
Intuitionistic Formula Hierarchy Based
on High-School Identities’

34: This is just another name for the sys-
tem LJT of Dyckhoff already mentioned
in Chapter 8.

[11]: Ayers (2021), ‘A Tool for Producing
Verified, Explainable Proofs.’

[167]: McBride (2000), ‘Dependently
Typed Functional Programs and their
Proofs’
[87]: Ganesalingam et al. (2017), ‘A Fully
Automatic Theorem Prover with Human-
Style Output’

Intuitionistic binders While replacing LoIs with binders and variables
has already been done by Sowa in the context of classical EGs [226], it
seems like we are the first to adapt the idea to the intuitionistic setting.

Analyticity To our knowledge, we are the first to give a Kripke semantics
to a syntax based on EGs, and to use this to obtain an analyticity result,
as discussed in Section 10.6.

Invertibility The natural fragment of the flower calculus appears to be
the first proof system based on EGs where all rules are invertible.

Focusing There is a formal connection between the poll↑ rule of the
flower calculus, and the absorption rule [A] of the dyadic system Σ2 of
Andreoli, that handles the focusing behavior of exponentials in linear logic
[5]. Indeed, both rules duplicate a formula available in the (non-linear)
context of the sequent/locationwhere the rule is applied, in order to enable
further usage of the formula at said location. While the absorption rule
removes the need for permutation-equivalences between proofs involving
the contraction rule, the identity rule [𝐼 ] of Σ2 removes the need for the
weakening rule by discarding the non-linear context in one go, just as the
epet rule of the flower calculus renders the crop rule admissible.

Sonia Marin has noticed the connection between bipoles in focused proofs,
and the class of geometric/coherent formulas, where the former are seen
as a generalization of the latter [160]. This is to be related to our own
identification of 𝑛-ary scrolls/flowers as a recursive generalization of
coherent formulas at the end of Section 10.1.

Two years earlier, Brock-Nannestad and Ilik had already made some im-
plicit connections between focused proofs and coherent formulas, through
their exponential normal form for intuitionistic formulas based on Tarski’s
highschool identities [28]. Quite remarkably, first-order formulas in their
exponential normal form have the exact same structure as flowers [28, Def-
inition 4.2]. However, the sequent calculus HS based on them makes the
tradeoff opposite to that of the natural fragment ↝ of the flower calculus:
every inference rule is non-invertible, but the calculus is contraction-free.
One advantage of this tradeoff is that they can easily show termination
of proof search, while we have not found a terminating procedure yet for
the flower calculus. The authors also mention that HS could be turned
into a deep inference calculus in the style of G4ip34.

Development calculi In Section 10.8, we have seen how the rules of
the flower calculus can be understood as a set of (graphical) tactics for
building partial proofs interactively. In Chapter 3 of his thesis [11], Ayers
calls such systems development calculi. In particular, he presents his own
development calculus inspired by McBride’s OLEGs system [167] and
G&G’s prover [87] called the Box calculus, where both goals and partial
proofs are represented by the same Box data structure. Once again, Boxes
seem to share a very similar structure with flowers, which was here moti-
vated by the need to avoid backtracking by having the ability to maintain
a disjunction of goals with so-called disjunctive pairs, corresponding to the
petals of flowers. The main difference is that the Box calculus is based on
dependent type theory instead of first-order logic: this allows to store the



10. Flower Calculus 242

[231]: Sterling et al. (2017), Algebraic
Foundations of Proof Refinement

35: Nested judgments are already consid-
ered in some recent categorical semantics
of type theory, and in particular those in
Sterling’s thesis [230]. See also [125] for
a (technical) introduction to the subject.

36: Also, it conveys nicely the idea that
the vehicle is the fundamental structure
that drives the proof search algorithm.

[95]: Girard (2017), ‘Transcendental syn-
tax I: deterministic case’
[20]: Bibel et al. (2009), ‘Connection
method’
[197]: Otten et al. (1995), ‘A connection
based proof method for intuitionistic
logic’

[37]: Chaudhuri (2013), ‘Subformula
Linking as an Interaction Method’

[32]: Bruscoli et al. (2019), ‘On Analytic-
ity in Deep Inference’

[41]: Chaudhuri et al. (2011), ‘The Fo-
cused Calculus of Structures’
[43]: Chaudhuri et al. (2016), ‘Focused
and Synthetic Nested Sequents’
[107]: Guenot (2011), ‘Nested Proof
Search as Reduction in the Lambda-
Calculus’
[137]: Kahramanogullari (2014), ‘Interac-
tion and Depth against Nondeterminism
in Proof Search’
[139]: Kahramanoğulları (2006), ‘Reduc-
ing Nondeterminism in the Calculus of
Structures’

partial proof terms inside of the Boxes themselves, while this information
is lost during the construction of flowers (but might be reconstructed
from the sequence of graphical actions and the initial goal).

Ayers also mentions the category-theoretical treatment of development
calculi by Sterling and Harper [231], that abstracts from any particular
type of judgment. Thus it might be possible to fit the flower calculus into
this framework, by identifying the set of flowers 𝔽 as a category of nested
judgments35.

Subformula linking Our notion of vehicle (Definition 10.7.5) takes
its terminology from Girard, who started giving this name to the set
of axiom links of a proof structure in his transcendental syntax36 [95].
But the idea of connecting dual occurrences of atoms, and thus forming
a graph with an associated adjacency matrix whose structure can be
exploited in proof search, really dates back to the connection method
developed independently by Bibel and Andrews in the 1970s [20]. Otten
and Kreitz have adapted the connection method to intuitionistic logic
[197], stating that it is especially well-suited in an interactive theorem
proving environment. Thus it might be instructive to learn from their
proof search algorithm to fix ours.

In fact all proof search procedures designed in this thesis, whether for
bubble calculi (Subsection 8.8.2) or the flower calculus (Section 10.7), rest
on the fundamental observation coming from the subformula linking
methodology of Chaudhuri [37], that the construction of proofs in deep
inference systems can be driven efficiently and incrementally by the
connection of dual atoms. With its pollination rules, the flower calculus
allows for a particularly elegant implementation of subformula linking
that abstracts away from the syntactic bureaucracy of symbolic connec-
tives, as witnessed by the pollination phase of our search procedure. In
Subsection 8.8.2, we sketched some ideas that blur the frontier between
automated and interactive proof search, notably with the so-called rule
of thumb which is another manifestation of subformula linking. This
integration of automated and interactive aspects is also at work in the
Flower Prover, and it would be interesting to investigate further how
to incorporate our drag-and-drop proof tactic (Chapter 2), but also other
symbolic manipulation techniques introduced in the first part of this
thesis, into the iconic framework of the Flower Prover.

Analyticity We have not discussed the rationale behind our notion
of analyticity, be it historical or formal arguments explaining its ori-
gins, motivations and consequences. In a recent article [32], Bruscoli and
Guglielmi propose such a detailed discussion around a precise and generic
definition of analyticity for deep inference proof systems (especially the
calculus of structures), which at a glance seems to encompass our own
definition. It would be interesting to study more deeply their work, and
related parts of the deep inference literature concerned with analyticity
and its applications to efficient proof search procedures [41, 43, 107, 137,
139].

https://www.lix.polytechnique.fr/Labo/Pablo.DONATO/flowerprover/
https://www.lix.polytechnique.fr/Labo/Pablo.DONATO/flowerprover/
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[241]: Tiu (2006), ‘A Local System for In-
tuitionistic Logic’

37: A sort of cult-elimination, so to
speak.

[193]: Oostra (2022), ‘Advances in
Peircean Mathematics: The Colombian
School’

10.9.2. Future works

Metatheory In Section 10.3, we already mentioned the variant ↝ ∖
{epis} ∪ {crep} of the natural fragment, that we conjecture to enjoy both
soundness, completeness and a deduction theorem. But these last two
results shall prove particularly harder to prove, and we currently have
very few insights into how to extend the proofs of this chapter to this
setting. Also, this is not withstanding the fact that we do not really see
any practical applications for such results as of yet. Our initial motivation
was to show the admissibility of the epis rule, because it never appears
in concrete proofs. But if this requires adding the crep rule instead, then
it greatly reduces the pratical interest of the whole endeavor, since the
crep rule does not look particularly well-suited to either automated or
interactive theorem proving.

Another line of research would concern properties of locality, in the
sense coined by the deep inference community with systems like SKS (see
Section 9.6). As mentioned in Section 10.8, we conjecture that the poll↓ and
poll↑ rules can be restricted respectively to atomic and non-atomic flowers.
But this is less satisfying than in the calculus of structures, where one
component of poll↑, the duplicating contraction rule, can be restricted to
atomic formulas. This probably comes from the fact that poll↑ also serves
the purpose of moving flowers deeper, as witnessed by the DnD Import
action of the Flower Prover: in the calculus of structures, this role is
fulfilled by switch rules, which cannot be restricted to atomic structures.
The only solution might be to simulate a local calculus of structures for
intuitionistic logic, like the system ISp of Tiu [241].

Lastly, it would be interesting to exhibit an internal, syntactic proce-
dure for eliminating cultural ⊴-rules in proofs, just like Gentzen showed
cut-elimination in sequent calculus37. In this work we preferred a more
semantic approach, because it was simpler and at the right level of ab-
straction for our needs. We might be able to take some inspiration from
the cut-elimination proofs of calculi of structures, which are indeed noto-
riously involved.

Automated proof search We shall investigate the current sources of
non-termination and incompleteness for our life proof search procedure,
through further testing on the ILTP dataset. If we succeed in passing
all tests, the natural continuation will be to provide formal proofs of
termination and completeness. A follow-up direction would be to extend
our algorithm to the first-order setting by adding heuristics for handling
sprinklers, thus losing completeness.

Another direction of research would consist in comparing our algorithm
to existing search procedures for EGs, in particular one that was originally
developed by Peirce, and described by Oostra in [193].

Curry-Howard We have begun to sketch some ideas for a Curry-
Howard correspondence, where flowers and Proof actions for justifying
them (↝-rules) are identified respectively with normal and neutral terms
of the simply-typed 𝜆-calculus. For instance, the computational counter-
part of the rule poll↓ in pistils would be a kind of function application

https://www.lix.polytechnique.fr/Labo/Pablo.DONATO/flowerprover/
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38: Another recent, related incarnation
of this phenomenon is the correspon-
dence uncovered by Haydon between a
linear version of EGs already appearing
in Peirce’s writings, and the proof nets
of Girard for linear logic [114].

[176]: Miquel (2020), ‘Implicative alge-
bras’

[30]: Brünnler et al. (2008), ‘An Algorith-
mic Interpretation of a Deep Inference
System’

[113]: Gundersen et al. (2013), ‘Atomic
Lambda Calculus’

[91]: Gimenez et al. (2013), ‘The Structure
of Interaction’

expressed by the following app rule, which is highly reminiscent of the
instantiation rule ipis:

Ξ 𝑡 𝑢 ∶ (Φ{𝑢/𝑥} ⫐ Δ{𝑢/𝑥})
app

Ξ 𝑡 ∶ (Φ, 𝑥 ∶ 𝜙 ⫐ Δ)

Given a flower 𝜙 and a neutral term 𝑡, i.e. an 𝑛-ary function application of
the form 𝑥 𝑡1… 𝑡𝑛, the expression 𝑡 ∶ 𝜙 is a term annotation, that should be
read in context as “this occurrence of 𝜙 is justified by 𝑡”. Interestingly, 𝜙
itself may contain term annotations, mimicking the fact that normal and
neutral terms can be defined by mutual recursion. Then in the app rule, we
do not just erase the formula 𝜙 as in the poll↓ rule, but also keep track of
the flow of information by appending the argument 𝑢 to the justification
𝑡 (where (𝑢 ∶ 𝜙) ≻ Ξ□), and substituting 𝑢 to every occurrence of the
hypothetical justification 𝑥 of 𝜙 in Φ and Δ.

As of now the syntax of annotated flowers is not yet stable, and it is
unclear what would be the computational interpretation of flowers with
𝑛 ≠ 1 petals. In particular for disjunctive flowers (𝑛 > 1), it seems that we
are closer to a notion of non-deterministic or parallel computation, than
to the usual branching computation of sum or inductive types.

If our intuition is right, then the fact that flowers correspond to (nor-
mal) 𝜆-terms would embody syntactically a recent motto from Miquel
stemming from his study of the foundations of forcing and realizability
in implicative algebras, where “elements can be seen both as truth val-
ues and as (generalized) realizers, thus blurring the frontier between
proofs and types”38 [176]. Or as he put it in a recent talk [177], we get
the ultimate Curry-Howard identification:

Realizer = Program = Formula = Type

This could also form the basis for further studies on the connections
between EGs and (dependent) type theory, and ultimately lead to a tight
integration of the Flower Proverwith proof assistants based on the latter
such as Coq, Lean and Agda. Existing explorations of the links between
type theory and deep inference include, in historical order:

▶ a first attempt by Brünnler and McKinnley to devise a Curry-Howard
correspondence for a simple intuitionistic deep inference calculus with
conjunction and implication [30];

▶ the thesis of Nicolas Guenot, and more precisely the part on ”Nested
Proofs as Programs” where he gives a correspondence between simply-
typed 𝜆-calculi with explicit substitutions at one end, and calculi of
structures (Chapter 6) and nested sequent calculi (Chapter 5) for the
implicational fragment of intuitionistic logic at the other end [108];

▶ the atomic 𝜆-calculus, a simply-typed 𝜆-calculus with explicit sharing
that has a Curry-Howard correspondence with proofs in the formalism
of open deduction [113];

▶ a type system for interaction nets based on a calculus of structures for
Multiplicative Exponential Linear Logic [91];

https://www.lix.polytechnique.fr/Labo/Pablo.DONATO/flowerprover/
https://coq.inria.fr/
https://lean-lang.org/
https://wiki.portal.chalmers.se/agda/pmwiki.php
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[116]: He (2018), ‘The Atomic Lambda-
Mu Calculus’

[220]: Sherratt et al. (2020), ‘Spinal
Atomic Lambda-Calculus’

[109]: Guerrieri et al. (2021), ‘A Deep
Quantitative Type System’

39: Private communication.

40: See also Subsection 6.6.4.

▶ the thesis of Fanny He, that explores a classical variant of the atomic
𝜆-calculus based on Saurin’s Λ𝜇-calculus [116];

▶ the spinal atomic 𝜆-calculus, an extension and improvement on the
atomic 𝜆-calculus based on a computational interpretation of the switch
rule [220];

▶ the collection calculus that subsumes resource, intersection-typed and
simply-typed 𝜆-calculi, with a type system again in open deduction
[109];

▶ Ongoing research by Kaustuv Chaudhuri to extend subformula linking
to dependent type theory39.

The work of Guenot on computational interpretations of nested sequent
calculi seems closest to the syntax of flowers. Indeed, nested sequents are
variadic by nature, and his version of nested sequents in particular exploits
the possibility to have negative occurrences of sequents. Combined with
the dependently-typed Boxes of Ayers mentioned earlier (which cannot
be nested negatively), this should provide great insights for the powerful,
dependently-typed version of the flower calculus that we seek for.

Flower Prover Wehave already describedmany features in Section 10.8
that we intend to implement in the future. This includes the Navigation
mode, the ability to select flowers, the Fence Proof action, and the shelf
mechanism.

The next step would be to support first-order reasoning by adding sprin-
klers and first-order terms, and devising graphical actions for the rules
{ipis, ipet} in Proof mode, and {apis, apet} in Edit mode.

Last but not least, we want to provide a way to save proved lemmas along
with their proof, so that they can be reused and read statically. This will be
crucial for proof evolution40, and will probably rely on the computational,
dependently-typed version of the flower calculus sketched above, where
proof terms can appear inside flowers.

10.9.3. Theory vs. Practice

Finally, it should be noted that Peirce did not think of EGs as a calculus
that could aid in performing reasoning per se, but rather as a tool for
analyzing the finer structure of logical endeavor [214, pp. 110–111]:

[...] the purpose which the system was designed to fulfill was
“to enable us to separate reasoning into its smallest steps so
that each one may be examined by itself” (Ms 455, p. 2). The
aim was not to facilitate reasoning, but to facilitate the study
of reasoning.

The various achievements presented in this chapter incite us to depart
from this conception. Indeed, our particular viewpoint on the illative
transformations, that emphasizes goal-reduction through invertible and
analytic rules, enabled us to design a novel and promising type of graphi-
cal interface for interactive proof building, which integrates easily and
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elegantly some (limited) forms of automation. This was also made pos-
sible by the use of variables instead of lines of identity, trading a heavy
graphical apparatus with local inference rules for a simple, well-known
textual syntax with complex (but automated) global dynamics in the form
of substitutions. Hence we believe the opposite, that EGs can form the
basis for an ergonomic calculus of logical deduction, in addition to being
a powerful tool for meta-logical analysis.
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Lemma A.1.1 (Generalized weakening) J𝑆K+ ≤ J𝑆 ⊍ (Γ ⇒ Δ)K+.

Proof. Let 𝑆 = Γ′ � Δ′. We proceed by induction on |� |.

Base case

JΓ′ ⇒ Δ′K+ = JΓK− ⊃ JΔK+

≤ JΓK− ⊃ JΔK+ ∨ JΔ′K+

≤ JΓ′K− ∧ JΓK− ⊃ JΔK+ ∨ JΔ′K+

= JΓ′, Γ ⇒ Δ, Δ′K+

Recursive case

JΓ′ ⟨𝒮⟩ Δ′K+ = ⋀𝑇∈𝒮 J𝑇 ⊍ (Γ′ ⇒ Δ′)K+

≤ ⋀𝑇∈𝒮 J(𝑇 ⊍ (Γ′ ⇒ Δ′)) ⊍ (Γ ⇒ Δ)K+ (IH)
= ⋀𝑇∈𝒮 J𝑇 ⊍ ((Γ′ ⇒ Δ′) ⊍ (Γ ⇒ Δ))K+

= ⋀𝑇∈𝒮 J𝑇 ⊍ (Γ′, Γ ⇒ Δ, Δ′)K+

= JΓ′, Γ ⟨𝒮⟩ Δ, Δ′K+

Lemma A.1.2 (Generalized contraction) J𝑆 ⊍ (⇒ 𝐼 , 𝐼 )K+ ≃ J𝑆 ⊍ (⇒ 𝐼 )K+

and J𝑆 ⊍ (𝐼 , 𝐼 ⇒)K+ ≃ J𝑆 ⊍ (𝐼 ⇒)K+.

Proof. Let 𝑆 = Γ� Δ. We proceed by induction on |� |.

Base case

JΓ ⇒ 𝐼 , 𝐼 , ΔK+ = JΓK− ⊃ (J𝐼K+ ∧ J𝐼K+) ∨ JΔK+

≃ JΓK− ⊃ J𝐼K+ ∨ JΔK+ (Fact 8.6.3)
= JΓ ⇒ 𝐼 , ΔK+

JΓ, 𝐼 , 𝐼 ⇒ ΔK+ = JΓK− ∧ (J𝐼K− ∧ J𝐼K−) ⊃ JΔK+

≃ JΓK− ∧ J𝐼K− ⊃ JΔK+ (Fact 8.6.3)
= JΓ, 𝐼 ⇒ ΔK+

Recursive case

JΓ ⟨𝒮⟩ 𝐼 , 𝐼 , ΔK+ = ⋀𝑇∈𝒮 J𝑇 ⊍ (Γ ⇒ 𝐼 , 𝐼 , Δ)K+

= ⋀𝑇∈𝒮 J(𝑇 ⊍ (Γ ⇒ Δ)) ⊍ (⇒ 𝐼 , 𝐼 )K+

= ⋀𝑇∈𝒮 J(𝑇 ⊍ (Γ ⇒ Δ)) ⊍ (⇒ 𝐼 )K+ (IH)
= ⋀𝑇∈𝒮 J𝑇 ⊍ (Γ ⇒ 𝐼 , Δ)K+

= JΓ ⟨𝒮⟩ 𝐼 , ΔK+
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JΓ, 𝐼 , 𝐼 ⟨𝒮⟩ ΔK+ = ⋀𝑇∈𝒮 J𝑇 ⊍ (Γ, 𝐼 , 𝐼 ⇒ Δ)K+

= ⋀𝑇∈𝒮 J(𝑇 ⊍ (Γ ⇒ Δ)) ⊍ (𝐼 , 𝐼 ⇒)K+

= ⋀𝑇∈𝒮 J(𝑇 ⊍ (Γ ⇒ Δ)) ⊍ (𝐼 ⇒)K+ (IH)
= ⋀𝑇∈𝒮 J𝑇 ⊍ (Γ, 𝐼 ⇒ Δ)K+

= JΓ, 𝐼 ⟨𝒮⟩ ΔK+

Lemma A.1.3 (Generalized weak distributivity)

JΓ� ΔK+ ∨ J𝐼K+ ≤ JΓ� 𝐼 , ΔK+ (A.1)

JΓ� 𝐼 , ΔK+ ≤C JΓ� ΔK+ ∨ J𝐼K+ (A.2)

JΓ, 𝐼� ΔK− ≤B J𝐼K− ∧ JΓ� ΔK− (A.3)

J𝐼K− ∧ JΓ� ΔK− ≤C JΓ, 𝐼� ΔK− (A.4)

Proof. We only prove (A.1): the proof of (A.2) is the same, except that we
use the converse inequality of Fact 8.6.6 that holds in Boolean algebras.
(A.3) and (A.4) hold by duality from (A.1) and (A.2), i.e. for (A.3) we have

JΔ† �† Γ†K+ ∨ J𝐼†K+ ≤ JΔ† �† 𝐼†, Γ†K+ (A.1)

iff JΔ† �† 𝐼†, Γ†K+† ≤B JΔ† �† Γ†K+ ∨ J𝐼†K+† (Fact 8.6.1)

iff JΓ††, 𝐼†† �†† Δ††K− ≤B JΓ†† �†† Δ††K− ∧ J𝐼††K− (Lemma 8.6.4)

iff JΓ, 𝐼� ΔK− ≤B JΓ� ΔK− ∧ J𝐼K− (Lemma 8.6.1)

We prove (A.1) by induction on |� |.

Base case

JΓ ⇒ ΔK+ ∨ J𝐼K+ = (JΓK− ⊃ JΔK+) ∨ J𝐼K+

≤ JΓK− ⊃ JΔK+ ∨ J𝐼K+ (Fact 8.6.6)
= JΓ ⇒ 𝐼 , ΔK+

Recursive case

JΓ ⟨𝒮⟩ ΔK+ ∨ J𝐼K+ = ⋀(Γ′�Δ′)∈𝒮 J(Γ′ � Δ′) ⊍ (Γ ⇒ Δ)K+ ∨ J𝐼K+

= ⋀(Γ′�Δ′)∈𝒮 JΓ, Γ′ � Δ′, ΔK+ ∨ J𝐼K+

≃L ⋀(Γ′�Δ′)∈𝒮 JΓ, Γ′ � Δ′, ΔK+ ∨ ⋀(Γ′�Δ′)∈𝒮 J𝐼K+ (Fact 8.6.3)
≃L ⋀(Γ′�Δ′)∈𝒮 (JΓ, Γ′ � Δ′, ΔK+ ∨ J𝐼K+) (Fact 8.6.5)
≤ ⋀(Γ′�Δ′)∈𝒮 (JΓ, Γ′ � 𝐼 , Δ′, ΔK+) (IH)
= ⋀(Γ′�Δ′)∈𝒮 J(Γ′ � Δ′) ⊍ (Γ ⇒ 𝐼 , Δ)K+

= JΓ ⟨𝒮⟩ 𝐼 , ΔK+
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Lemma A.1.4 (Generalized currying)

JΓ, 𝐼� ΔK+ ≃ J𝐼K− ⊃ JΓ� ΔK+ (A.5)

JΓ� 𝐼 , ΔK− ≃B JΓ� ΔK− ⊂ J𝐼K+ (A.6)

Proof. We only prove (A.5), as (A.6) holds by duality as in Lemma 8.6.8.
We proceed by induction on |� |.

Base case

JΓ, 𝐼 ⇒ ΔK+ = JΓK− ∧ J𝐼K− ⊃ JΔK+

≃ J𝐼K− ∧ JΓK− ⊃ JΔK+ (Fact 8.6.2)
≃ J𝐼K− ⊃ JΓK− ⊃ JΔK+ (Fact 8.6.4)
= J𝐼K− ⊃ JΓ ⇒ ΔK+

Recursive case

JΓ, 𝐼 ⟨𝒮⟩ ΔK+ = ⋀(Γ′�Δ′)∈𝒮 J(Γ′ � Δ′) ⊍ (Γ, 𝐼 ⇒ Δ)K+

= ⋀(Γ′�Δ′)∈𝒮 JΓ′, Γ, 𝐼� Δ, Δ′K+

≃ ⋀(Γ′�Δ′)∈𝒮 (J𝐼K− ⊃ JΓ′, Γ� Δ, Δ′K+) (IH)
≃ J𝐼K− ⊃ ⋀(Γ′�Δ′)∈𝒮 JΓ′, Γ� Δ, Δ′K+ (Fact 8.6.5)
= J𝐼K− ⊃ ⋀(Γ′�Δ′)∈𝒮 J(Γ′ � Δ′) ⊍ (Γ ⇒ Δ)K+

= J𝐼K− ⊃ JΓ ⟨𝒮⟩ ΔK+

Lemma A.1.5 (Local soundness) If 𝑆 ⇀ 𝑇 then J𝑇 ⊍ (Γ ⇒ Δ)K+ ≤C
J𝑆 ⊍ (Γ ⇒ Δ)K+.

Proof. We show that 𝑆 ⇀ 𝑇 implies J𝑇K+ ≤C J𝑆K+ by inspection of each
rule of system B. That we can mix an arbitrary top-level context Γ ⇒ Δ
into 𝑆 and 𝑇 follows from Fact 8.6.9.

i↓
JΓ ⟨⟩ ΔK+ = ⋀𝑈∈⌀ J𝑈 ⊍ (Γ ⇒ Δ)K+

= ⊤
≃ JΓK− ∧ 𝐴 ⊃ 𝐴 ∨ JΔK+

= JΓ, 𝐴 ⇒ 𝐴, ΔK+

i↑

JΓ ⟨ ⇒ 𝐴; 𝐴 ⇒ ⟩ ΔK+ = JΓ ⇒ 𝐴, ΔK+ ∧ JΓ, 𝐴 ⇒ ΔK+

= (JΓK− ⊃ 𝐴 ∨ JΔK+) ∧ (JΓK− ∧ 𝐴 ⊃ JΔK+)
≃ (JΓK− ⊃ 𝐴 ∨ JΔK+) ∧ (JΓK− ⊃ 𝐴 ⊃ JΔK+) (Fact 8.6.4)

≃ JΓK− ⊃ (𝐴 ∨ JΔK+) ∧ (𝐴 ⊃ JΔK+) (Fact 8.6.5)

≃ JΓK− ⊃ JΔK+ (Fact 8.6.7)

= JΓ ⇒ ΔK+
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w−, w+ By Lemma 8.6.6.

c−, c+ By Lemma 8.6.7.

f↑

JΓ ⟨𝒮; Γ′ ⟨𝒮 ′⟩ Δ′ ; 𝑆⟩ ΔK+ = ⋀𝑇∈𝒮 J𝑇 ⊍ (Γ ⇒ Δ)K+ ∧ JΓ, Γ′ ⟨𝒮 ′⟩ Δ′, ΔK+ ∧ J𝑆 ⊍ (Γ ⇒ Δ)K+

≤ ⋀𝑇∈𝒮 J𝑇 ⊍ (Γ ⇒ Δ)K+ ∧ JΓ, Γ′ ⟨𝒮 ′⟩ Δ′, ΔK+ ∧ J𝑆 ⊍ (Γ, Γ′ ⇒ Δ′, Δ)K+ (Lemma 8.6.6)

= JΓ ⟨𝒮; Γ′ ⟨𝒮 ′ ; 𝑆⟩ Δ′⟩ ΔK+

f−↓

JΓ ⟨Γ′, 𝐼� Δ′ ; 𝒮⟩ ΔK+ = JΓ, Γ′, 𝐼� Δ′, ΔK+ ∧ ⋀𝑆∈𝒮 J𝑆 ⊍ (Γ ⇒ Δ)K+

= JΓ, 𝐼 ⟨Γ′ � Δ′ ; 𝒮⟩ ΔK+

f+↓

JΓ ⟨𝒮; Γ′ � 𝐼 , Δ′⟩ ΔK+ = ⋀𝑆∈𝒮 J𝑆 ⊍ (Γ ⇒ Δ)K+ ∧ JΓ, Γ′ � 𝐼 , Δ′, ΔK+

= JΓ ⟨𝒮; Γ′ � Δ′⟩ 𝐼 , ΔK+

f−+↓ We show that JΓ � (Γ′, 𝐼 � Δ′), ΔK+ ≤ JΓ, 𝐼 � (Γ′ � Δ′), ΔK+ by
induction on |� |.

Base case

JΓ ⇒ (Γ′, 𝐼� Δ′), ΔK+ = JΓK− ⊃ JΓ′, 𝐼� Δ′K+ ∨ JΔK+

≃ JΓK− ⊃ (J𝐼K− ⊃ JΓ′ � Δ′K+) ∨ JΔK+ (Lemma 8.6.9)

≤ JΓK− ⊃ (J𝐼K− ⊃ JΓ′ � Δ′K+ ∨ JΔK+) (Fact 8.6.6)

≃ JΓK− ∧ J𝐼K− ⊃ JΓ′ � Δ′K+ ∨ JΔK+ (Fact 8.6.4)

= JΓ, 𝐼 ⇒ (Γ′ � Δ′), ΔK+

Recursive case

JΓ ⟨𝒮⟩ (Γ′, 𝐼� Δ′), ΔK+ = ⋀(Γ″�Δ″)∈𝒮 J(Γ″ � Δ″) ⊍ (Γ ⇒ (Γ′, 𝐼� Δ′), Δ)K+

= ⋀(Γ″�Δ″)∈𝒮 JΓ″, Γ� (Γ′, 𝐼� Δ′), Δ, Δ″K+

≤ ⋀(Γ″�Δ″)∈𝒮 JΓ″, Γ, 𝐼� (Γ′ � Δ′), Δ, Δ″K+ (IH)

= ⋀(Γ″�Δ″)∈𝒮 J(Γ″ � Δ″) ⊍ (Γ, 𝐼 ⇒ (Γ′ � Δ′), Δ)K+

= JΓ, 𝐼 ⟨𝒮⟩ (Γ′ � Δ′), ΔK+

f+−↓ We show that JΓ, (Γ′ � 𝐼 , Δ′) � ΔK+ ≤HB JΓ, (Γ′ � Δ′) � 𝐼 , ΔK+ by
induction on |� |.

Base case

JΓ, (Γ′ � 𝐼 , Δ′) ⇒ ΔK+ = JΓK− ∧ JΓ′ � 𝐼 , Δ′K− ⊃ JΔK+

≃HB JΓK− ∧ (JΓ′ � Δ′K− ⊂ J𝐼K+) ⊃ JΔK+ (Lemma 8.6.9)

≤HB (JΓK− ∧ JΓ′ � Δ′K− ⊂ J𝐼K+) ⊃ JΔK+ (Fact 8.6.6)

≤HB JΓK− ∧ JΓ′ � Δ′K− ⊃ J𝐼K+ ∨ JΔK+ (Fact 8.6.8)

= JΓ, (Γ′ � Δ′) ⇒ 𝐼 , ΔK+
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Recursive case

JΓ, (Γ′ � 𝐼 , Δ′) ⟨𝒮⟩ ΔK+ = ⋀(Γ″�Δ″)∈𝒮 J(Γ″ � Δ″) ⊍ (Γ, (Γ′ � 𝐼 , Δ′) ⇒ Δ)K+

= ⋀(Γ″�Δ″)∈𝒮 JΓ″, Γ, (Γ′ � 𝐼 , Δ′)� Δ, Δ″K+

≤HB ⋀(Γ″�Δ″)∈𝒮 JΓ″, Γ, (Γ′ � Δ′)� 𝐼 , Δ, Δ″K+ (IH)

= ⋀(Γ″�Δ″)∈𝒮 J(Γ″ � Δ″) ⊍ (Γ, (Γ′ � Δ′) ⇒ 𝐼 , Δ)K+

= JΓ, (Γ′ � Δ′) ⟨𝒮⟩ 𝐼 , ΔK+

f++↑ We show that JΓ � (Γ′ � Δ′), 𝐼 , ΔK+ ≤ JΓ � (Γ′ � 𝐼 , Δ′), ΔK+ by
induction on |� |.

Base case

JΓ ⇒ (Γ′ � Δ′), 𝐼 , ΔK+ = JΓK− ⊃ JΓ′ � Δ′K+ ∨ J𝐼K+ ∨ JΔK+

≤ JΓK− ⊃ JΓ′ � 𝐼 , Δ′K+ ∨ JΔK+ (Lemma 8.6.8)

= JΓ ⇒ (Γ′ � 𝐼 , Δ′), ΔK+

Recursive case

JΓ ⟨𝒮⟩ (Γ′ � Δ′), 𝐼 , ΔK+ = ⋀(Γ″�Δ″)∈𝒮 J(Γ″ � Δ″) ⊍ (Γ ⇒ (Γ′ � Δ′), 𝐼 , Δ)K+

= ⋀(Γ″�Δ″)∈𝒮 JΓ″, Γ� (Γ′ � Δ′), 𝐼 , Δ, Δ″K+

≤ ⋀(Γ″�Δ″)∈𝒮 JΓ″, Γ� (Γ′ � 𝐼 , Δ′), Δ, Δ″K+ (IH)

= ⋀(Γ″�Δ″)∈𝒮 J(Γ″ � Δ″) ⊍ (Γ ⇒ (Γ′ � 𝐼 , Δ′), Δ)K+

= JΓ ⟨𝒮⟩ (Γ′ � 𝐼 , Δ′), ΔK+

f−−↑ We show that JΓ, 𝐼 , (Γ′ � Δ′) � ΔK+ ≤HB JΓ, (Γ′, 𝐼 � Δ′) � ΔK+ by
induction on |� |.

Base case

JΓ, 𝐼 , (Γ′ � Δ′) ⇒ ΔK+ = JΓK− ∧ J𝐼K− ∧ JΓ′ � Δ′K− ⊃ JΔK+

≤HB JΓK− ∧ JΓ′, 𝐼� Δ′K− ⊃ JΔK+ (Lemma 8.6.8)

= JΓ, (Γ′, 𝐼� Δ′) ⇒ ΔK+

Recursive case

JΓ, 𝐼 , (Γ′ � Δ′) ⟨𝒮⟩ ΔK+ = ⋀(Γ″�Δ″)∈𝒮 J(Γ″ � Δ″) ⊍ (Γ, 𝐼 , (Γ′ � Δ′) ⇒ Δ)K+

= ⋀(Γ″�Δ″)∈𝒮 JΓ″, Γ, 𝐼 , (Γ′ � Δ′)� Δ, Δ″K+

≤HB ⋀(Γ″�Δ″)∈𝒮 JΓ″, Γ, (Γ′, 𝐼� Δ′)� Δ, Δ″K+ (IH)

= ⋀(Γ″�Δ″)∈𝒮 J(Γ″ � Δ″) ⊍ (Γ, (Γ′, 𝐼� Δ′) ⇒ Δ)K+

= JΓ, (Γ′, 𝐼� Δ′) ⟨𝒮⟩ ΔK+

f−+↑, f+−↑ Converse of f−+↓ (resp. f+−↓), using the converse inequality
of Fact 8.6.6 which only holds in Boolean algebras.

f++↓, f−−↓ Converse of f++↑ (resp. f−−↑), using the converse inequality
of Lemma 8.6.8 which only holds in Boolean algebras.
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p

JΓ ⟨𝒮⟩ ΔK+ = ⋀𝑆∈𝒮 J𝑆 ⊍ (Γ ⇒ Δ)K+

≃L ⋀𝑆∈𝒮 J𝑆 ⊍ (Γ ⇒ Δ)K+ ∧ ⊤
= ⋀𝑆∈𝒮 J𝑆 ⊍ (Γ ⇒ Δ)K+ ∧ JΓ ⟨⟩ ΔK+

= JΓ ⟨𝒮; ⟨⟩ ⟩ ΔK+

p−
JΓ ⟨⟩ ΔK+ = ⊤

≃ JΓK− ∧ ⊥ ⊃ JΔK+

= JΓ, (⟨⟩) ⇒ ΔK+

p+
JΓ ⟨⟩ ΔK+ = ⊤

≃ JΓK− ⊃ ⊤ ∨ JΔK+

= JΓ ⇒ (⟨⟩), ΔK+

a
JΓ ⟨𝑆⟩ ΔK+ = J ⟨𝑆⟩ ⊍(Γ ⇒ Δ)K+

= JΓ ⟨ ⟨𝑆⟩ ⟩ ΔK+

a−, a+ We only do the proof for a−, the proof for a+ is symmetric. We
show that JΓ, 𝑆� ΔK+ = JΓ, (⟨𝑆⟩)� ΔK+ by induction on |� |.

Base case

JΓ, 𝑆 ⇒ ΔK+ = JΓK− ∧ J𝑆K− ⊃ JΔK+

= JΓK− ∧ J ⟨𝑆⟩ K− ⊃ JΔK+

= JΓ, (⟨𝑆⟩) ⇒ ΔK+

Recursive case

JΓ, 𝑆 ⟨𝒮⟩ ΔK+ = ⋀𝑇∈𝒮 J𝑇 ⊍ (Γ, 𝑆 ⇒ Δ)K+

= ⋀𝑇∈𝒮 J𝑇 ⊍ (Γ, (⟨𝑆⟩) ⇒ Δ)K+ (IH)

= JΓ, (⟨𝑆⟩) ⟨𝒮⟩ ΔK+

⊤−, ⊥+ We only do the proof for ⊤−, the proof for ⊥+ is symmetric. We
show that JΓ� ΔK+ ≃ JΓ, ⊤� ΔK+ by induction on |� |.

Base case
JΓ ⇒ ΔK+ = JΓK− ⊃ JΔK+

≃ JΓK− ∧ ⊤ ⊃ JΔK+

= JΓ, ⊤ ⇒ ΔK+

Recursive case

JΓ ⟨𝒮⟩ ΔK+ = ⋀𝑆∈𝒮 J𝑆 ⊍ (Γ ⇒ Δ)K+

≃ ⋀𝑆∈𝒮 J𝑆 ⊍ (Γ, ⊤ ⇒ Δ)K+ (IH)

= JΓ, ⊤ ⟨𝒮⟩ ΔK+



A. Symmetric Bubble Calculi 254

⊤+
JΓ ⟨⟩ ΔK+ = ⊤

≃ JΓK− ⊃ ⊤ ∨ JΔK+

= JΓ ⇒ ⊤, ΔK+

⊥−
JΓ ⟨⟩ ΔK+ = ⊤

≃ JΓK− ∧ ⊥ ⊃ JΔK+

= JΓ, ⊥ ⇒ ΔK+

∧−, ∨+ We only do the proof for ∧−, the proof for ∨+ is symmetric. We
show that JΓ, 𝐴, 𝐵� ΔK+ = JΓ, 𝐴 ∧ 𝐵� ΔK+ by induction on |� |.

Base case

JΓ, 𝐴, 𝐵 ⇒ ΔK+ = JΓK− ∧ 𝐴 ∧ 𝐵 ⊃ JΔK+

= JΓ, 𝐴 ∧ 𝐵 ⇒ ΔK+

Recursive case

JΓ, 𝐴, 𝐵 ⟨𝒮⟩ ΔK+ = ⋀𝑆∈𝒮 J𝑆 ⊍ (Γ, 𝐴, 𝐵 ⇒ Δ)K+

= ⋀𝑆∈𝒮 J𝑆 ⊍ (Γ, 𝐴 ∧ 𝐵 ⇒ Δ)K+ (IH)

= JΓ, 𝐴 ∧ 𝐵 ⟨𝒮⟩ ΔK+

∧+

JΓ ⟨ ⇒ 𝐴; ⇒ 𝐵⟩ ΔK+ = JΓ ⇒ 𝐴, ΔK+ ∧ JΓ ⇒ 𝐵, ΔK+

= (JΓK− ⊃ 𝐴 ∨ JΔK+) ∧ (JΓK− ⊃ 𝐵 ∨ JΔK+)
≃ JΓK− ⊃ (𝐴 ∨ JΔK+) ∧ (𝐵 ∨ JΔK+) (Fact 8.6.5)

≃ JΓK− ⊃ (JΔK+ ∨ 𝐴) ∧ (JΔK+ ∨ 𝐵) (Fact 8.6.2)

≃ JΓK− ⊃ JΔK+ ∨ (𝐴 ∧ 𝐵) (Fact 8.6.5)

≃ JΓK− ⊃ (𝐴 ∧ 𝐵) ∨ JΔK+ (Fact 8.6.2)

= JΓ ⇒ 𝐴 ∧ 𝐵, ΔK+

∨−

JΓ ⟨𝐴 ⇒; 𝐵 ⇒ ⟩ ΔK+ = JΓ, 𝐴 ⇒ ΔK+ ∧ JΓ, 𝐵 ⇒ ΔK+

= (JΓK− ∧ 𝐴 ⊃ JΔK+) ∧ (JΓK− ∧ 𝐵 ⊃ JΔK+)
≃ (JΓK− ∧ 𝐴) ∨ (JΓK− ∧ 𝐵) ⊃ JΔK+ (Fact 8.6.5)

≃ JΓK− ∧ (𝐴 ∨ 𝐵) ⊃ JΔK+ (Fact 8.6.5)

= JΓ, 𝐴 ∨ 𝐵 ⇒ ΔK+

⊃+, ⊂− We only do the proof for ⊃+, the proof for ⊂− is symmetric. We
show that JΓ� (𝐴 ⇒ 𝐵), ΔK+ = JΓ� 𝐴 ⊃ 𝐵, ΔK+ by induction on |� |.

Base case

JΓ ⇒ (𝐴 ⇒ 𝐵), ΔK+ = JΓK− ⊃ J𝐴 ⇒ 𝐵K+ ∨ JΔK+

= JΓK− ⊃ (𝐴 ⊃ 𝐵) ∨ JΔK+

= JΓ ⇒ 𝐴 ⊃ 𝐵, ΔK+
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Recursive case

JΓ ⟨𝒮⟩ (𝐴 ⇒ 𝐵), ΔK+ = ⋀𝑆∈𝒮 J𝑆 ⊍ (Γ ⇒ (𝐴 ⇒ 𝐵), Δ)K+

= ⋀𝑆∈𝒮 J𝑆 ⊍ (Γ ⇒ 𝐴 ⊃ 𝐵, Δ)K+ (IH)

= JΓ ⟨𝒮⟩ 𝐴 ⊃ 𝐵, ΔK+

⊃−

JΓ ⟨ ⇒ 𝐴; 𝐵 ⇒ ⟩ ΔK+ = JΓ ⇒ 𝐴, ΔK+ ∧ JΓ, 𝐵 ⇒ ΔK+

= (JΓK− ⊃ 𝐴 ∨ JΔK+) ∧ (JΓK− ∧ 𝐵 ⊃ JΔK+)
≃ (JΓK− ⊃ 𝐴 ∨ JΔK+) ∧ (JΓK− ⊃ 𝐵 ⊃ JΔK+) (Fact 8.6.4)

≃ JΓK− ⊃ (𝐴 ∨ JΔK+) ∧ (𝐵 ⊃ JΔK+) (Fact 8.6.5)

≤ JΓK− ⊃ (𝐴 ⊃ 𝐵) ⊃ JΔK+ ∨ JΔK+ (Fact 8.6.7)

≃ JΓK− ⊃ (𝐴 ⊃ 𝐵) ⊃ JΔK+ (Fact 8.6.3)

≃ JΓK− ∧ (𝐴 ⊃ 𝐵) ⊃ JΔK+ (Fact 8.6.4)

= JΓ, 𝐴 ⊃ 𝐵 ⇒ ΔK+

⊂+

JΓ ⟨ ⇒ 𝐴; 𝐵 ⇒ ⟩ ΔK+ = JΓ ⇒ 𝐴, ΔK+ ∧ JΓ, 𝐵 ⇒ ΔK+

= (JΓK− ⊃ 𝐴 ∨ JΔK+) ∧ (JΓK− ∧ 𝐵 ⊃ JΔK+)
≃ (JΓK− ⊃ 𝐴 ∨ JΔK+) ∧ (JΓK− ⊃ 𝐵 ⊃ JΔK+) (Fact 8.6.4)

≃ JΓK− ⊃ (𝐴 ∨ JΔK+) ∧ (𝐵 ⊃ JΔK+) (Fact 8.6.5)

≤ JΓK− ⊃ (𝐴 ⊂ 𝐵) ∨ JΔK+ ∨ JΔK+ (Fact 8.6.7)

≃ JΓK− ⊃ (𝐴 ⊂ 𝐵) ∨ JΔK+ (Fact 8.6.3)

= JΓ ⇒ 𝐴 ⊂ 𝐵, ΔK+

A.2. Completeness

In the following proofs, we will denote a sequence of applications of a set
of rules by a double inference line, and the use of a derivation obtained
by induction hypothesis by a dotted line.

Lemma A.2.1 (Simulation of DBiInt) If 𝑋 DBiInt 𝑌 then 𝑋 BHB∖{i↑}
𝑌.

Proof. By induction on the derivation of 𝑋 DBiInt 𝑌.

id
𝑋,𝐴 ⇒ 𝐴, 𝑌 ↦

⟨⟩
w−,w+

𝑋 ⟨⟩ 𝑌
i↓

𝑋,𝐴 ⇒ 𝐴, 𝑌
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⋅⋅⋅⋅⋅ 𝜋1
𝑋,𝐴, (𝑋 ′, 𝐴 ⇒ 𝑌 ′) ⇒ 𝑌

⇒L1𝑋, (𝑋 ′, 𝐴 ⇒ 𝑌 ′) ⇒ 𝑌 ↦

⟨⟩
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 𝜋1𝑋,𝐴, (𝑋 ′, 𝐴 ⇒ 𝑌 ′) ⇒ 𝑌

f−−↑
𝑋, (𝑋 ′, 𝐴, 𝐴 ⇒ 𝑌 ′) ⇒ 𝑌

c−
𝑋, (𝑋 ′, 𝐴 ⇒ 𝑌 ′) ⇒ 𝑌

⋅⋅⋅⋅⋅ 𝜋1
𝑋 ⇒ (𝑋 ′ ⇒ 𝐴, 𝑌 ′), 𝐴, 𝑌

⇒R1𝑋 ⇒ (𝑋 ′ ⇒ 𝐴, 𝑌 ′), 𝑌 ↦

⟨⟩
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 𝜋1𝑋 ⇒ (𝑋 ′ ⇒ 𝐴, 𝑌 ′), 𝐴, 𝑌

f++↑
𝑋 ⇒ (𝑋 ′ ⇒ 𝐴,𝐴, 𝑌 ′), 𝑌

c+
𝑋 ⇒ (𝑋 ′ ⇒ 𝐴, 𝑌 ′), 𝑌

⋅⋅⋅⋅⋅ 𝜋1
𝑋,𝐴 ⇒ (𝑋 ′, 𝐴 ⇒ 𝑌 ′), 𝑌

⇒L2𝑋,𝐴 ⇒ (𝑋 ′ ⇒ 𝑌 ′), 𝑌 ↦

⟨⟩
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 𝜋1𝑋,𝐴 ⇒ (𝑋 ′, 𝐴 ⇒ 𝑌 ′), 𝑌

f−+↓
𝑋,𝐴, 𝐴 ⇒ (𝑋 ′ ⇒ 𝑌 ′), 𝑌

c−
𝑋,𝐴 ⇒ (𝑋 ′ ⇒ 𝑌 ′), 𝑌

𝑋 , (𝑋 ′ ⇒ 𝐴, 𝑌 ′) ⇒ 𝐴, 𝑌
⇒R2𝑋, (𝑋 ′ ⇒ 𝑌 ′) ⇒ 𝐴, 𝑌 ↦

⟨⟩
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 𝜋1𝑋, (𝑋 ′ ⇒ 𝐴, 𝑌 ′) ⇒ 𝐴, 𝑌

f+−↓
𝑋, (𝑋 ′ ⇒ 𝑌 ′) ⇒ 𝐴,𝐴, 𝑌

c+
𝑋, (𝑋 ′ ⇒ 𝑌 ′) ⇒ 𝐴, 𝑌

⊥L𝑋, ⊥ ⇒ 𝑌 ↦

⟨⟩
w−,w+

𝑋 ⟨⟩ 𝑌
⊥−

𝑋, ⊥ ⇒ 𝑌

⊤R𝑋 ⇒ ⊤, 𝑌 ↦

⟨⟩
w−,w+

𝑋 ⟨⟩ 𝑌
⊤+

𝑋 ⇒ ⊤, 𝑌

⋅⋅⋅⋅⋅ 𝜋1
𝑋,𝐴 ∧ 𝐵, 𝐴, 𝐵 ⇒ 𝑌

∧L𝑋,𝐴 ∧ 𝐵 ⇒ 𝑌 ↦

⟨⟩
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 𝜋1𝑋,𝐴 ∧ 𝐵, 𝐴, 𝐵 ⇒ 𝑌

∧−
𝑋,𝐴 ∧ 𝐵, 𝐴 ∧ 𝐵 ⇒ 𝑌

c−
𝑋,𝐴 ∧ 𝐵 ⇒ 𝑌

⋅⋅⋅⋅⋅ 𝜋1
𝑋 ⇒ 𝐴, 𝐵, 𝐴 ∨ 𝐵, 𝑌

∨R𝑋 ⇒ 𝐴 ∨ 𝐵, 𝑌 ↦

⟨⟩
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 𝜋1𝑋 ⇒ 𝐴, 𝐵, 𝐴 ∨ 𝐵 ⇒ 𝑌

∨+
𝑋 ⇒ 𝐴 ∨ 𝐵, 𝐴 ∨ 𝐵, 𝑌

c+
𝑋 ⇒ 𝐴 ∨ 𝐵, 𝑌
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⋅⋅⋅⋅⋅ 𝜋1
𝑋 ⇒ 𝐴,𝐴 ∧ 𝐵, 𝑌

⋅⋅⋅⋅⋅ 𝜋2
𝑋 ⇒ 𝐵,𝐴 ∧ 𝐵, 𝑌

∧R𝑋 ⇒ 𝐴 ∧ 𝐵, 𝑌 ↦

⟨⟩
p

⟨ ⟨⟩ ; ⟨⟩ ⟩
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 𝜋2
⟨ ⟨⟩ ; 𝑋 ⇒ 𝐵,𝐴 ∧ 𝐵, 𝑌⟩

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 𝜋1
⟨𝑋 ⇒ 𝐴,𝐴 ∧ 𝐵, 𝑌 ; 𝑋 ⇒ 𝐵,𝐴 ∧ 𝐵, 𝑌⟩

f−↓,f+↓
𝑋, 𝑋 ⟨ ⇒ 𝐴; ⇒ 𝐵⟩ 𝐴 ∧ 𝐵, 𝐴 ∧ 𝐵, 𝑌 , 𝑌

c−,c+
𝑋 ⟨ ⇒ 𝐴; ⇒ 𝐵⟩ 𝐴 ∧ 𝐵, 𝑌

∧+
𝑋 ⇒ 𝐴 ∧ 𝐵, 𝐴 ∧ 𝐵, 𝑌

c+
𝑋 ⇒ 𝐴 ∧ 𝐵, 𝑌

⋅⋅⋅⋅⋅ 𝜋1
𝑋,𝐴 ∨ 𝐵, 𝐴 ⇒ 𝑌

⋅⋅⋅⋅⋅ 𝜋2
𝑋,𝐴 ∨ 𝐵, 𝐵 ⇒ 𝑌

∨L𝑋,𝐴 ∨ 𝐵 ⇒ 𝑌 ↦

⟨⟩
p

⟨ ⟨⟩ ; ⟨⟩ ⟩
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 𝜋2
⟨ ⟨⟩ ; 𝑋 , 𝐴 ∨ 𝐵, 𝐵 ⇒ 𝑌⟩

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 𝜋1
⟨𝑋 , 𝐴 ∨ 𝐵, 𝐴 ⇒ 𝑌; 𝑋 , 𝐴 ∨ 𝐵, 𝐵 ⇒ 𝑌⟩

f−↓,f+↓
𝑋, 𝑋 , 𝐴 ∨ 𝐵, 𝐴 ∨ 𝐵 ⟨𝐴 ⇒; 𝐵 ⇒ ⟩ 𝑌 , 𝑌

c−,c+
𝑋,𝐴 ∨ 𝐵 ⟨𝐴 ⇒; 𝐵 ⇒ ⟩ 𝑌

∨−
𝑋,𝐴 ∨ 𝐵, 𝐴 ∨ 𝐵 ⇒ 𝑌

c−
𝑋,𝐴 ∨ 𝐵 ⇒ 𝑌

⋅⋅⋅⋅⋅ 𝜋1
𝑋 ⇒ (𝐴 ⇒ 𝐵), 𝐴 ⊃ 𝐵, 𝑌

⊃R𝑋 ⇒ 𝐴 ⊃ 𝐵, 𝑌 ↦

⟨⟩
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 𝜋1𝑋 ⇒ (𝐴 ⇒ 𝐵), 𝐴 ⊃ 𝐵, 𝑌

⊃+
𝑋 ⇒ 𝐴 ⊃ 𝐵,𝐴 ⊃ 𝐵, 𝑌

c+
𝑋 ⇒ 𝐴 ⊃ 𝐵, 𝑌

⋅⋅⋅⋅⋅ 𝜋1
𝑋,𝐴 ⊂ 𝐵, (𝐴 ⇒ 𝐵) ⇒ 𝑌

⊂L𝑋,𝐴 ⊂ 𝐵 ⇒ 𝑌 ↦

⟨⟩
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 𝜋1𝑋,𝐴 ⊂ 𝐵, (𝐴 ⇒ 𝐵) ⇒ 𝑌

⊂−
𝑋,𝐴 ⊂ 𝐵, 𝐴 ⊂ 𝐵 ⇒ 𝑌

c−
𝑋,𝐴 ⊂ 𝐵 ⇒ 𝑌

⋅⋅⋅⋅⋅ 𝜋1
𝑋,𝐴 ⊃ 𝐵 ⇒ 𝐴, 𝑌

⋅⋅⋅⋅⋅ 𝜋2
𝑋,𝐴 ⊃ 𝐵, 𝐵 ⇒ 𝑌

⊃L𝑋,𝐴 ⊃ 𝐵 ⇒ 𝑌 ↦

⟨⟩
p

⟨ ⟨⟩ ; ⟨⟩ ⟩
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 𝜋2
⟨ ⟨⟩ ; 𝑋 , 𝐴 ⊃ 𝐵, 𝐵 ⇒ 𝑌⟩

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 𝜋1
⟨𝑋 , 𝐴 ⊃ 𝐵 ⇒ 𝐴, 𝑌 ; 𝑋 , 𝐴 ⊃ 𝐵, 𝐵 ⇒ 𝑌⟩

f−↓,f+↓
𝑋, 𝑋 , 𝐴 ⊃ 𝐵, 𝐴 ⊃ 𝐵 ⟨ ⇒ 𝐴; 𝐵 ⇒ ⟩ 𝑌 , 𝑌

c−,c+
𝑋,𝐴 ⊃ 𝐵 ⟨ ⇒ 𝐴; 𝐵 ⇒ ⟩ 𝑌

⊃−
𝑋,𝐴 ⊃ 𝐵, 𝐴 ⊃ 𝐵 ⇒ 𝑌

c−
𝑋,𝐴 ⊃ 𝐵 ⇒ 𝑌
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⋅⋅⋅⋅⋅ 𝜋1
𝑋 ⇒ 𝐴,𝐴 ⊂ 𝐵, 𝑌

⋅⋅⋅⋅⋅ 𝜋2
𝑋, 𝐵 ⇒ 𝐴 ⊂ 𝐵, 𝑌

⊂R𝑋 ⇒ 𝐴 ⊂ 𝐵, 𝑌 ↦

⟨⟩
p

⟨ ⟨⟩ ; ⟨⟩ ⟩
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 𝜋2
⟨ ⟨⟩ ; 𝑋 , 𝐵 ⇒ 𝐴 ⊂ 𝐵, 𝑌⟩

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 𝜋1
⟨𝑋 ⇒ 𝐴,𝐴 ⊂ 𝐵, 𝑌 ; 𝑋 , 𝐵 ⇒ 𝐴 ⊂ 𝐵, 𝑌⟩

f−↓,f+↓
𝑋, 𝑋 ⟨ ⇒ 𝐴; 𝐵 ⇒ ⟩ 𝐴 ⊂ 𝐵, 𝐴 ⊂ 𝐵, 𝑌 , 𝑌

c−,c+
𝑋 ⟨ ⇒ 𝐴; 𝐵 ⇒ ⟩ 𝐴 ⊂ 𝐵, 𝑌

⊂+
𝑋 ⇒ 𝐴 ⊂ 𝐵,𝐴 ⊂ 𝐵, 𝑌

c+
𝑋 ⇒ 𝐴 ⊂ 𝐵, 𝑌

Lemma A.2.2 (Simulation of G3cp) If Γ G3cp Δ, then Γ
BH∪{f++↓}∖{i↑}

Δ.

Proof. By induction on the G3cp derivation.

𝑎, Γ ⇒ Δ, 𝑎 ↦

⟨⟩
w−,w+

Γ ⟨⟩ Δ
i↓

𝑎, Γ ⇒ Δ, 𝑎

⊥, Γ ⇒ Δ ↦

⟨⟩
w−,w+

Γ ⟨⟩ Δ
⊥−

⊥, Γ ⇒ Δ

⋅⋅⋅⋅⋅ 𝜋1
𝐴, 𝐵, Γ ⇒ Δ

𝐿∧
𝐴 ∧ 𝐵, Γ ⇒ Δ ↦

⟨⟩
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 𝜋1𝐴, 𝐵, Γ ⇒ Δ

∧−
𝐴 ∧ 𝐵, Γ ⇒ Δ

⋅⋅⋅⋅⋅ 𝜋1
Γ ⇒ Δ,𝐴, 𝐵

𝑅∨
Γ ⇒ Δ,𝐴 ∨ 𝐵 ↦

⟨⟩
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 𝜋1Γ ⇒ Δ,𝐴, 𝐵

∨+
Γ ⇒ Δ,𝐴 ∨ 𝐵

⋅⋅⋅⋅⋅ 𝜋1
Γ ⇒ Δ,𝐴

⋅⋅⋅⋅⋅ 𝜋2
Γ ⇒ Δ, 𝐵

𝑅∧
Γ ⇒ Δ,𝐴 ∧ 𝐵 ↦

⟨⟩
p

⟨ ⟨⟩ ; ⟨⟩ ⟩
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 𝜋1, 𝜋2
⟨Γ ⇒ Δ,𝐴; Γ ⇒ Δ, 𝐵⟩

f−↓,f+↓
Γ, Γ ⟨ ⇒ 𝐴; ⇒ 𝐵⟩ Δ, Δ

c−,c+
Γ ⟨ ⇒ 𝐴; ⇒ 𝐵⟩ Δ

∧+
Γ ⇒ Δ,𝐴 ∧ 𝐵
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⋅⋅⋅⋅⋅ 𝜋1
𝐴, Γ ⇒ Δ

⋅⋅⋅⋅⋅ 𝜋2
𝐵, Γ ⇒ Δ

𝐿∨
𝐴 ∨ 𝐵, Γ ⇒ Δ ↦

⟨⟩
p

⟨ ⟨⟩ ; ⟨⟩ ⟩
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 𝜋1, 𝜋2
⟨𝐴, Γ ⇒ Δ; 𝐵, Γ ⇒ Δ⟩

f−↓,f+↓
Γ, Γ ⟨𝐴 ⇒; 𝐵 ⇒ ⟩ Δ, Δ

c−,c+
Γ ⟨𝐴 ⇒; 𝐵 ⇒ ⟩ Δ

∨−
𝐴 ∨ 𝐵, Γ ⇒ Δ

⋅⋅⋅⋅⋅ 𝜋1
Γ ⇒ Δ,𝐴

⋅⋅⋅⋅⋅ 𝜋2
𝐵, Γ ⇒ Δ

𝐿⊃
𝐴 ⊃ 𝐵, Γ ⇒ Δ ↦

⟨⟩
p

⟨ ⟨⟩ ; ⟨⟩ ⟩
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 𝜋1, 𝜋2
⟨Γ ⇒ Δ,𝐴; 𝐵, Γ ⇒ Δ⟩

f−↓,f+↓
Γ, Γ ⟨ ⇒ 𝐴; 𝐵 ⇒ ⟩ Δ, Δ

c−,c+
Γ ⟨ ⇒ 𝐴; 𝐵 ⇒ ⟩ Δ

⊃−
𝐴 ⊃ 𝐵, Γ ⇒ Δ

⋅⋅⋅⋅⋅ 𝜋1
𝐴, Γ ⇒ Δ, 𝐵

𝑅⊃
Γ ⇒ Δ,𝐴 ⊃ 𝐵 ↦

⟨⟩
p+

⇒ (⟨⟩)
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 𝜋1⇒ (𝐴, Γ ⇒ Δ, 𝐵)

f++↓
⇒ Δ, (𝐴, Γ ⇒ 𝐵)

f−+↓
Γ ⇒ Δ, (𝐴 ⇒ 𝐵)

⊃+
Γ ⇒ Δ,𝐴 ⊃ 𝐵
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Titre : Inférence Profonde pour la Démonstration Graphique de Théorèmes

Mots clés : Assistants de preuve, Théorie de la démonstration, Interfaces humain-machine, Mathématiques
formelles, Inférence profonde, Manipulation directe

Résumé : Les assistants de preuve sont des logiciels
permettant de vérifier rigoureusement des raison-
nements mathématiques. Ils peuvent être généraux
(comme Coq, Lean, Isabelle...) ou plus spécialisés
(comme EasyCrypt). Ils permettent un niveau de
précision qui certifie qu’aucune erreur ne peut se pro-
duire, mais restent difficiles d’utilisation.
Nous proposons un nouveau paradigme de construc-
tion de preuves formelles par actions effectuées dans
une interface graphique, afin de permettre une utili-
sation plus confortable et plus intuitive. Intitulé Proof-
by-Action, notre paradigme s’appuie sur des prin-
cipes de manipulation directe, combinant des tech-
niques d’interactions anciennes (Proof-by-Pointing)
et récentes (Proof-by-Linking) qui exploitent les
dernières avancées en théorie de la démonstration
par inférence profonde. Nous implantons le para-
digme dans un prototype d’interface graphique appelé
Actema, que nous intégrons par la suite à l’assistant
de preuves Coq en développant le plugin coq-actema.
Puis nous explorons une série de systèmes
d’inférence profonde qui donnent plus de structure
à la notion de but logique. Ces systèmes ont en
commun de pouvoir représenter les buts de deux

manières alternatives : soit textuellement au travers
d’une syntaxe inductive standard, soit graphiquement
à l’aide d’une notation métaphorique adaptée à la ma-
nipulation directe.
La première famille de systèmes, appelée calculs de
bulles, est une reformulation topologique de la théorie
des séquents imbriqués. Elle permet un partage ef-
ficace des hypothèses et conclusions entre sous-
buts, facilitant la factorisation des étapes de raison-
nement avant et arrière. Le second système, appelé
calcul des fleurs, est un raffinement intuitionniste de la
théorie des graphes existentiels de C. S. Peirce. Les
deux types de systèmes sont démontrés analytiques
et complètement réversibles, ce qui les rend adaptés
à des techniques d’automatisation de la preuve.
Nous développons finalement le Flower Prover, un se-
cond prototype d’interface graphique pour la construc-
tion interactive de démonstrations basé sur le calcul
des fleurs. Une caractéristique innovante du Flower
Prover est l’adéquation de son interface aux appareils
mobiles modernes, grâce à sa mise en page adap-
tative et à son support de première classe pour les
interactions tactiles.

Title : Deep Inference for Graphical Theorem Proving

Keywords : Proof assistants, Proof theory, Human-computer interfaces, Formal mathematics, Deep infe-
rence, Direct manipulation

Abstract : Proof assistants are software systems that
allow for the precise checking of mathematical reaso-
ning. They can be general purpose (like Coq, Lean,
Isabelle...) or more specialized like EasyCrypt. They
enable a level of accuracy which certifies that no error
can occur, but remain difficult to use.
We propose a new paradigm for constructing formal
proofs through actions performed in a graphical user
interface (GUI), in order to enable a more comfortable
and intuitive use. Dubbed Proof-by-Action, our para-
digm builds upon direct manipulation principles, com-
bining both old (Proof-by-Pointing) and new (Proof-
by-Linking) interaction techniques that exploit recent
advances in deep inference proof theory. We imple-
ment the paradigm in a web-based GUI called Ac-
tema, which we subsequently integrate into the Coq
proof assistant by developing the coq-actema plugin.
We then explore a series of deep inference proof sys-
tems that give more structure to the notion of logi-
cal goal. These systems share the ability to represent
goals in two alternative ways : either textually through

a standard inductive syntax, or graphically using a me-
taphorical notation well-suited to direct manipulation.
The first family of systems, called bubble calculi, is a
topological reformulation of the theory of nested se-
quents. It allows for efficient sharing of hypotheses
and conclusions among subgoals, facilitating the fac-
torization of both forward and backward proof steps.
The second system, called flower calculus, is an intui-
tionistic refinement of C. S. Peirce’s theory of existen-
tial graphs. It is thus purely diagrammatic : there are
no symbolic connectives involved in the representa-
tion of logical statements. Both types of systems are
shown to be analytic and fully invertible, making them
amenable to proof automation techniques.
We finally go back to practical experimentation by de-
signing and implementing the Flower Prover, another
web-based GUI for interactive proof building based on
the flower calculus. An innovative feature of the Flower
Prover is that it works well on modern mobile devices,
thanks to its responsive layout and first-class support
for touch interactions.

Institut Polytechnique de Paris
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