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Abstract

Laser arrays are key components in many areas of science, technology, and civilian
applications today. A remarkably new domain of application of laser arrays is the
laser solver, which allows to parallelize the computation process spatially. For such
applications a low noise array with identical laser’s characteristics is required. At
the same time, most of the listed applications require a coupling mechanism for the
array. Most commonly, solid-state lasers are used today for such applications.

However, in this work we present a new type of laser array based on the VECSEL
(Vertical External Cavity Surface Emitting Lasers) with the intracavity coupling con-
trol. Such lasers are well known to be extremely low noise lasers. Their dynamics
are a remarkable example of class-A dynamical behavior. Such dynamics is ac-
companied with the filtering of the transferred pump noise above the cavity cut-off
frequency. At the same time the VECSEL is a semiconductor laser, which has dis-
tinguishing peculiarities, when compared with the solid-state laser. For example, it
has a non-negligible Henry factor. Dynamics of such phase-locked VECSEL arrays
have not been studied yet.

This laser is developed with a planar spatially degenerate cavity. Thanks to cavity
degeneracy we transform a multimode VECSEL into an array of independent lasers
with a designed loss mask. Thanks to the method of array development with a mask,
we gain control on the coupling between lasers by the diffraction on the mask. The
coupling is determined by the diffraction on the edges of the mask holes and conse-
quent reflection on the output cavity mirror. Reflected field of each laser is injected
to the neighboring holes. The coupling coefficient is complex. We numerically quan-
tify it and then develop several models for the laser array dynamics description with
considered complexity of the coupling coefficient. Each model characterizes one of
the investigated mask topologies. Changes of the mask position were shown exper-
imentally to change the coupling between lasers from zero to values large enough
to phase-lock the laser array. We performed a noise measurement both for the un-
locked and phase-locked solutions. The measured relative intensity noise spectra
of individual lasers confirmed the class-A dynamics of the developed VECSEL ar-
ray. Based on the cross-correlation on the noises of different lasers we discovered a
clear correlation between phase-locking and a noises spectral correlation. Then, we
could reproduce numerically and analytically the same results based on the models
we developed.

A particular interest of the project was situated on a ring laser array. Such arrays
are known for their discrete series for the phase-difference solutions when phase-
locked. We studied such solutions in our system. Each of them, except for the in-
phase phase-locking, corresponds to a vortex with discrete phase increment between
lasers. Since good quality vortices are extremely needed for particle micromotoring,
information transfer, etc. we deeply studied such solutions in our system. We studied
the limitations dictated by the Henry factor and derived a general analytical criterion
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for the existence of such solutions. We studied asymmetric vortex generation with
non-uniform loss masks.

Additionally, we studied theoretically the influence of optical feedback on the
phase-locking in such a vortex. The noise model of such an array was experimentally
confirmed with three lasers. Based on the model we found a simple method of the
determination of the vortex sign (direction of the phase accumulation) based on the
laser’s noise measurements.
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Résumé

Les réseaux de lasers sont des composants clés dans de nombreux domaines de la
science, de la technologie et des applications civiles aujourd’hui. Un domaine re-
marquablement nouveau d’application des réseaux de lasers est le solveur laser, qui
permet de paralléliser le processus de calcul spatialement. Pour de telles applications,
un réseau de lasers à faible bruit ayant des caractéristiques identiques est nécessaire.
En même temps, la plupart des applications répertoriées nécessitent un mécanisme de
couplage entre les lasers du réseau. Les lasers à état solide sont les plus couramment
utilisés aujourd’hui pour de telles applications.

Cependant, dans ce travail, nous présentons un nouveau type de réseau laser basé
sur les VECSEL (Lasers à Émission de Surface à Cavité Externe Verticale) avec un
contrôle de couplage intra-cavité. De tels lasers sont bien connus pour être des lasers
à très faible bruit. Leurs dynamiques sont un exemple remarquable de comportement
dynamique de classe A. Ces dynamiques s’accompagnent d’un filtrage du transfert
du bruit de pompage au-dessus de la fréquence de coupure de la cavité. En même
temps, le VECSEL est un laser à semi-conducteur, ce qui le distingue des lasers
à état solide. Par exemple, il présente un facteur de Henry non négligeable. Les
dynamiques de ces réseaux de VECSEL verrouillés en phase n’ont pas encore été
étudiées.

Ce laser est développé à partir d’une cavité plan-plan spatialement dégénérée.
Grâce à la dégénérescence de la cavité, nous avons transformé un VECSEL mul-
timode en un réseau de lasers indépendants avec un masque de perte spécialement
conçu dans ce but. Nous avons atteint un contrôle sur le couplage entre les lasers dû à
la diffraction sur le masque. Le couplage est déterminé par la diffraction sur les bords
des trous du masque et la réflexion consécutive sur le miroir de sortie de la cavité. Les
champs réfléchis de chaque laser sont injectés dans les trous voisins. Ce couplage est
complexe. Nous le quantifions numériquement, puis développons plusieurs modèles
pour la description de la dynamique du réseau laser en tenant compte de la complex-
ité du coefficient de couplage. Chaque modèle caractérise l’une des topologies de
masque étudiées. Nous avons montré expérimentalement que changer la position du
masque permet de changer le couplage entre les lasers de zéro à des valeurs suff-
isantes pour verrouiller en phase le réseau de lasers. Nous avons effectué une mesure
du bruit à la fois pour les solutions non verrouillées et verrouillées en phase. Les
spectres de bruit relatif en intensité mesurés des lasers individuels ont confirmé la
dynamique de classe A du réseau de VECSEL développé. Sur la base de la cor-
rélation croisée des bruits des différents lasers, nous avons découvert une corrélation
claire entre le verrouillage en phase et une corrélation spectrale du bruit. Ensuite,
nous avons montré numériquement et analytiquement les mêmes phénomènes basés
sur les modèles développés.
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Un intérêt particulier du projet concernait le réseau laser annulaire. De tels
réseaux sont connus pour générer des solutions sous forme de série discrète de dif-
férences de phase lorsqu’ils sont verrouillés en phase. Nous avons étudié de telles so-
lutions dans notre système. Chacune d’elles, à l’exception du verrouillage en phase,
correspond à un vortex avec un incrément de phase discret entre les lasers. Nous
avons étudié les limitations dictées par le facteur de Henry et dérivé une formule
analytique générale. Nous avons étudié la génération de vortex asymétrique avec
des masques de pertes non uniformes. De plus, nous avons étudié théoriquement
l’influence de la rétroaction optique sur le verrouillage de phase dans un vortex. Le
modèle de bruit d’un tel réseau a été confirmé expérimentalement avec trois lasers.
Sur la base du modèle, nous avons trouvé une méthode simple pour déterminer le
signe du vortex (direction de l’accumulation de phase) basée sur les mesures de bruit
des lasers.
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2 Chapter 1. Introduction

1.1 Laser arrays
Integration of lasers into communication technologies and computational systems is
growing every day. One example of such applications of lasers relies on laser arrays.
During the past few decades, such arrays have already been widely investigated with
different kinds of lasers. The most studied examples of laser arrays include gas
lasers (such as CO2), solid-state lasers (such as Nd:YAG), and semiconductor lasers
[Glova 2003].

Each of the mentioned laser systems has some benefits for specific applications.
Some of the arrays are designed for high output power. More advanced applications
cover beam shaping and optical computations. To clarify the importance of laser
array development and coupling, we can see the main directions of the laser network
applications shown in Fig. 1.1.

FIGURE 1.1: Laser array applications examples.

Both very new applications (such as quantum technologies) can benefit from laser
array development as well as deeply developed applications (such as material pro-
cessing, cutting, welding, and engraving). Laser arrays are highly valuable for optical
sensing and imaging technologies. In the landscape of LiDAR systems, laser arrays
bring new dimensions, enabling 3D mapping and imaging. Medical applications of
laser arrays cover surgical procedures, dermatological treatments, and noninvasive
imaging techniques such as Optical Coherence Tomography (OCT), particularly in
ophthalmology for the retina imaging capabilities. Furthermore, laser arrays are ir-
replaceable in applications such as free-space optical communication. Their utility
extends to defense and security, where they serve in target designation, range find-
ing, and the development of directed energy weapons, delivering precision and con-
trolled energy to designated targets. Beyond pragmatic applications, laser arrays are
also used in entertainment, powering mesmerizing laser light shows, projectors, and
display technologies.

There are many parameters of the laser array that characterize their quality. How-
ever, the equality of parameters of the lasers forming the array is the most valuable
at the end of the day. This is particularly true if the application of the array is meant
to be based on the far-field patterns of the coupled laser array or chaos-based cryp-
tography [Spitz 2021; Spitz 2022].



1.2. Degenerate cavity laser arrays 3

1.2 Degenerate cavity laser arrays
A common approach used to create a laser array with uniform parameters is the
spatially degenerate cavity. It is a class of optical systems, where rays retrace their
path after a round trip between highly reflective mirrors. The field distribution in the
"input" plane (given by the first lens focal distance) is re-imaged to itself after the
round trip propagation inside the cavity.

Degenerate cavity lasers can have different cavity geometries [Arnaud 1969]. A
common solution for degenerate cavity laser array development is the integration of
the planar cavity with a self-imaging telescope. In this case, planar mirrors are placed
at the focal planes of the telescope lenses as shown in Fig. 1.2.

FIGURE 1.2: Planar degenerate cavity

Degenerate cavity lasers have been widely investigated with Nd:YAG crystal and
CO2 gas as active media. The solid-state Nd:YAG laser specifically has a widely
developed background. It is possible to obtain thousands of lasers with the same
crystal thanks to its strong gain. Such cavity geometry allows us to obtain a laser
array and couple it by various techniques.

Before discussing the current state of the laser array development in VECSELs,
we should pay attention to the wide range of possibilities of coupled laser arrays in
general.

1.2.1 Coupled laser arrays applications
There are some applications of the laser array, where the uncoupled array operation
is required (such as a power source or parallel data transmission). Nevertheless, the
widest application area is covered by the coupled laser arrays. Indeed, such a system
of many coupled oscillators recently became a promising device to solve several
types of problems. The applications in total may be classified based on the laser
array usage in its near-field or its far-field.

For example, the laser array near-field emission can find applications in extremely
important areas, such as parallel data transmission [Grobe 2014; Lau 2008], optical
memories [Alexoudi 2020; Gu 2014; Mitsugi 2002; Chen 2011], tweezers for atom
arrays [Anderegg 2019; Burd 2016], and others. In such applications, the laser far-
field is usually not accessible, for example, because the laser output light is coupled to
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a fiber. One thus needs alternative methods to monitor the laser steady-state behavior.
One such method consists of studying the intensity noises of the individual lasers,
which permits in principle to access the laser dynamics and, in particular, the phase-
locking behavior of the laser array.

On the other hand, utilization of the far-field emission of the laser addresses ap-
plications to beam shaping [Pal 2015; Pal 2017; Dev 2021]. The interest in beam
shaping covers medical, material processing, information storage, and analytical ap-
plications. A laser array is a many-oscillator system that tends to find a beneficial
steady-state solution. Then the investigation of the local and global steady-states can
be used to solve complicated optimization problems for different physical systems
[Takata 2012; Takata 2014; Takata 2016; Nixon 2013b; Tradonsky 2019; Pal 2020].
There is already significant progress in this domain, which covers matrix-vector opti-
cal operations, NP problems, and more in all-optical coherent laser solver machines
(developed in LightSolver, group of Yamamoto, group of Nir Davidson, group of
Claudio Conti, and more). Besides, it was recently demonstrated numerically that
coherent laser arrays exhibit collective neural computing capabilities [Saxena 2022;
Miri 2023], where the individual lasers act as the array nodes, and the coupling
strength between the lasers plays the role of the weight coefficients.

Experimental realization of the hundreds and thousands of lasers in a degenerate
cavity has been achieved only in solid slate lasers [Nixon 2011].

1.3 Degenerate cavity VECSELs
In this work, we are interested in the development of a new type of laser array. Verti-
cal external cavity surface emitting laser (VECSEL) has some benefits, that we would
like to study and introduce deeply in the manuscript. This type of laser has a gain
region integrated with a mirror (DBR). The 1/2 VCSEL gain chip is placed in the
front focal plane of the intracavity telescope and the highly reflective mirror is in the
back focal plane as shown in Fig. 1.3.

FIGURE 1.3: Planar degenerate cavity

A description of such laser is given in the chapter 2. Here we would like to
highlight, that there is no real "external" cavity in the scheme. The term is used
historically to distinguish the semiconductor chips with two DBRs (VCSELs) and a
single DBR (VECSEL), i.e. requiring an external mirror (OC).
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Several groups have already developed and studied the VECSELs with degener-
ate cavities in various domains.

VECSEL with controllable coherence

A significant branch of the degenerate cavity laser is dedicated to such VECSELs as
a laser source with controllable spatial coherence. The method of control is shown
in Fig. 1.4.

FIGURE 1.4: [Knitter 2016]. Schematic of the degenerate laser cavity
(not to scale) with VECSEL, lens 1 (high numerical aperture), aper-
ture, lens 2 (reimaging lens), and output coupler (OC) mirror. (a) In
multimode operation locations on the VECSEL will be imaged onto
the OC and vice versa, yielding a large number of independent spa-
tial modes (low spatial coherence). (b) For few-mode operation an
aperture is introduced in the mutual focal plane of lens 1 and lens
2, yielding plane-wave emission through the OC (high spatial coher-

ence).

The cavity is a planar one. The 1/2 VCSEL gain chip is placed in the front
focal plane of the intracavity telescope and the highly reflective mirror is in the back
focal plane. We can control the coherence by the change of the aperture size. The
aperture must be placed in the so-called far-field point of the intracavity telescope,
i.e. in the focal plane of the telescope lenses. In this case, we can control spatial and
spectral properties of the VECSEL output reducing the number of the speckles in the
beam. This creates a powerful tool for laser imaging and holography [Knitter 2016;
Eliezer 2021].

Temporal-localised spatial structures with degenerate cavity VECSEL

In some way the laser arrays can be compared with an array of localized light struc-
tures, which have been known for decades in VCSELS [Barland 2002; Genevet 2009;
Pedaci 2008; Pedaci 2006].
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Only during the last few years, this phenomenon was investigated in VECSELs
[Bartolo 2022; Bartolo González 2022; Vigne 2023]. One of the works of this team is
particularly interesting because it partially covers our future interests. In the series of
the mentioned works the light structures were either exited by different optical pumps
[Bartolo 2022] or by the same pump, but the gain was shaped by the deposited loss
profile [Bartolo 2023]. By this, several pulse-shaped light structures were created
in a degenerate cavity VECSEL. They were shown to work efficiently in the pulsed
regime when the laser cavity is closed by a SESAM instead of the OC. See Fig. 1.5
for the scheme of the setup.

FIGURE 1.5: [Bartolo 2022]. Experimental setup showing the L-
shape VECSEL. d1, the distance between the gain mirror and lens
1; d2, distance between f1 and lens f2; d3, distance between f2 and
lens f3; d4, distance between f3 and lens f4; d5, distance between
f4 and the SESAM; HRM, high-reflectivity beam splitter (>99.5% at
1.06 µm). For the telecentric configuration, the distances are d1 =

f1,d2 = f1 + f2,d3 = f2 + f3,d4 = f3 + f4, and d5 = f4.

This scheme represents a powerful method of developing light structures local-
ized in space in time.

This series of results is very interesting and important. However, our main inter-
est is the development of the CW VECSEL array and a study of the coupling effects
on the VECSEL array phase-locking dynamics.

1.3.1 Coupling between lasers in an array.
There are multiple methods of laser array geometry manipulation and creating the
coupling between lasers. All methods can be divided into two groups. The first group
is the method of near-field manipulations, i.e. in the image planes of the intracavity
telescope. The variations of the loss, gain, and other spatial properties in the input
plane are imaged to the output of the laser and vice versa. The second group of
methods is manipulation in the far-field, i.e. in the Fourier plane between two lenses
of the telescope. Examples of these methods potentially applicable to the degenerate
cavity VECSEL are collected in Fig 1.6.
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far-field point

f2f1

(a)

(d)
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(h)

(e)
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FIGURE 1.6: Examples of different methods to manipulate laser ar-
ray geometry and phase-relation between lasers. Insets are given by
(a) [Cookson 2021a], (b) [Chriki 2018] , (c) [Guo 2023], (d) [Bar-
tolo 2023; Seghilani 2016], (e) [Mahler 2019a], (f) [Tradonsky 2019],
(g) [Piccardo 2022], (h) [Tradonsky 2021]. The laser cavity consists
of a 1/2 VCSEL gain chip, output coupler (OC), and two-lens imaging

telescope.

The near-field manipulation methods illustrated by (a, c, d, h, g) in Fig. 1.6 and
(b,e,f) stand for the far-field.

Methods of the laser array development with a loss-profile

To obtain a laser array different techniques can be used. For example, one can use
pump beam-shaping (a), a loss layer can be deposited at the gain chip (d), or the loss
profile can be introduced by a loss mask at the output coupler (OC) plane (c, h). The
loss mask can be implemented with the help of a spatial light modulator (SLM) (h),
digital micro-mirror device (DMD) (c), or a metal plate with holes.

Not all of the mentioned methods are possible to apply to degenerate cavity VEC-
SEL today. OC can not be changed for DMD (c) or SLM (h) because of two factors:
high precision of the loss boundaries and high reflection at the resonance wavelength
of the VECSEL’s gain chip. Both DMD and SLM must work as the OC and the
high-precision loss pattern. The loss pattern precision is given by the pixel sizes of
the DMD and SLM. The minimal pixel pitches are ∼ 3µm for the most advanced
and expensive devices nowadays. Unfortunately, it is also not possible to find such
devices with enough reflectivity (>99%) for the VECSEL resonance wavelengths.

In our experiment we have a strong motivation to save the possibility of coupling
strength adjustment, thus the mask integration with the gain chip (inset (d)) is not
preferred. Pump shaping is a possible solution. At the same time, the beam-shaping
system decreases the intensity of the pump beam and requires additional expenses.
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Loss mask is the cheapest solution. At the same time, the quality of the mask depends
a lot on the quality of production.

Methods of the laser array coupling

Among numerous laser array coupling methods, we would like to focus on the in-
jection coupling typical of many solutions with laser arrays. The main idea is that
we must create an exchange channel between lasers belonging to the array. These
channels can be realized in various ways inside the optical cavity. They can be real-
ized by the diffraction coupling controlled by the distance between the loss mask and
OC position [Tradonsky 2017], passive or active intracavity element [Reddy 2022;
Mahler 2019a; Chriki 2018; Mahler 2021; Tradonsky 2019] illustrated by (b,e,f,g) in
Fig. 1.6 or some optical feedback configuring [Nixon 2012; Pabœuf 2011; Wang 2022].
Moreover, a single SLM can be used simultaneously to create the laser array, couple
it, and improve the quality of the coupling decreased by some optical aberrations
[Pando 2023].

The laser array can be also coupled outside the cavity to the optical fibers with
the help of a lenslet (array of small lenses), by diffraction grating, beam-combining
optics, waveguides, and more. This kind of coupling technique is passive. Scalability
and flexible coupling realization immediately make those systems bulky. Addition-
ally, these systems struggle with efficient power consumption and transfer and beam
quality [Lau 2008].

1.4 Noise in laser arrays
It is well known that noise plays a crucial role in the dynamics of lasers [Peter-
mann 1991]. The noise can greatly affect the phase-locking of lasers by reducing the
number of phase-locked lasers. This will limit the scalability of the laser array. In
case the laser array is designed as an optical solver, this will limit the capability of
solving large-scale problems. Further, noise can prevent the laser array from phase-
locking to a ground state. Therefore, to improve the performance of a laser array, it
is very important to study the role of noise in such laser arrays.

Moreover, a complete characterization of such noise requires not only measuring
the noise of individual lasers in the array but also their correlations. Such correlations
have, for example, already been shown to play an important role in dual-frequency
lasers used in atomic clock applications [Liu 2018a; Gredat 2018; Gredat 2020b], and
also to be able to reveal the dynamics of lasers, depending in particular on whether
they belong to the class-A or class-B dynamical regime [De 2013a; De 2013b].

Diagnosing the behavior of an array of coupled lasers by using its intensity noise
properties requires to use a relatively quiet laser. However, till now, laser array phase-
locking was mainly investigated in solid-state Nd:YAG lasers [Davidson 2022], fiber
lasers [Fridman 2010a; Fridman 2010b], laser diodes [Kapon 1984; Winful 1988;
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DAmato 1989], and CO2 gas lasers [Glova 2003], which are usually quite noisy sys-
tems. Despite their versatility in the context of arrays of lasers based on degenerate
cavity architectures [Friesem 2013], Nd:YAG lasers are not the best candidates to
achieve low noise operation. Indeed, they are intrinsically very noisy because they
belong to the class-B dynamic class [Arecchi 1984].

On the contrary, VECSELs (Vertical External Cavity Surface Emitting Lasers)
are well known to be extremely quiet lasers, because their class-A dynamical be-
havior filters out the pump noise above the cavity cut-off frequency [Baili 2007;
Baili 2008; Baili 2014]. However, one must take into consideration the fact that
the semiconductor gain medium of VECSELs exhibits a non-negligible Henry α-
coefficient (also called phase-amplitude coupling coefficient or linewidth enhance-
ment factor), which tends to affect the laser phase-locking behavior [Bouchereau 2022].
Indeed, the value of this linewidth enhancement factor in different types of semi-
conductor gain chips typically ranges from 3 to 10 [Zilkie 2008; Consoli 2012;
Fordell 2007; Sinquin 2023] and can even be much larger (up to 60) for shallow quan-
tum wells chips [Stohs 2001]. These values are much larger than those of Nd:YAG
lasers (α ∼ 0.3) [Thorette 2017].

1.4.1 Motivation
Based on the presented review we see an interest in the development of degenerate
cavity VECSEL arrays. There is a strong interest in such optical cavities due to
their unusual spatial properties. They allow us to obtain an array of almost identical
lasers in the geometry determined by the simple loss mask. This is very valuable for
beam-shaping applications including the generation of vortices.

Even more valuable is the class-A dynamics of each laser in the VECSEL array.
Such dynamics of the laser array is unstudied yet. The phase-locking dynamics of
such a system may be very different from the solid-state laser array also due to the
non-negligible Henry factor. We see the interest in the study of the complex coupling
influence on phase-locking and laser array noise characteristics. The main interest
in the class-A laser array is its outstanding low-noise characteristics. Thus, it is also
important to study the noise dependency of the coupling parameters. Especially we
are interested in the study of the noise correlations in this case. One of the potential
applications of the laser array is a laser solver and thus, the noise correlation between
lasers may affect interpretations of the information at the final steady state.

1.4.2 Challenges
The main goal and the main challenge of this work is to develop a degenerate cavity
VECSEL array. We chose an all-optical degenerate cavity scheme (without SLM and
DMD) based on the literature review, which is presented in Fig. 1.7.
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FIGURE 1.7: Degenerate cavity VECSEL: 1/2-VCSEL: optically
pumped gain chip; lens 1, lens 2: lenses; OC: output coupler; M:

mask.

Each part of the presented scheme leads to a corresponding challenge. Some of
them are noted in Fig. 1.7. The pump is chosen to be optical. The array is created by
the metal loss mask placed in the self-imaging cavity. The coupling between lasers
is provided by the diffraction on the mask. Consequently, the coupling adjusting
mechanism results in the adjustment of the distance between the mask and the OC.
The choice of the system dictates a list of the preliminary challenges for the project
listed in the frame below.

Then the main challenges are:

1. Cavity degeneracy;

2. Stable lasing operation of the laser array;

3. Thermal management;

4. Laser power and maximal number of lasers;

5. Mode composition of the single laser from an array;

6. Coupling control between the lasers.

The quality of the laser array is supported by the quality of cavity adjustment, the
gain chip properties, and the loss mask profile precision. The gain chip of a VECSEL
has typically a very low gain, thus the adjustment of the laser can be challenging.
Additionally, those gain chips typically experience thermal lensing and efficiency
rollover. The additional difficulty occurs due to the requirements of self-imaging
telescope integration with a planar cavity. The optical system is on the border of
stability then. The quality of this part of the work determines the coherence and
consequently synchronization dynamics of the laser array.
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Additional challenges occur when the VECSEL is transformed into a laser array
by the mask. The choice of the mask dimensions must allow for obtaining a maximal
number of lasers having the same parameters and preferably oscillating close to the
fundamental mode of the cavity. Additionally, the mask must be movable to control
the coupling between lasers.

1.5 Outline
The manuscript aims to describe both theoretical and experimental study of the laser
array in degenerate cavity VECSEL.

• The manuscript starts with a general description of the VECSEL laser emission
and dynamics description. This information is presented in chapter 2. In this
chapter, the model for the diffraction coupling is presented. A rate-equation
model integration with complex coupling is developed on the example of two
lasers.

• In the chapter 3 we investigate a ring laser array theoretically. Specifically,
the interest of this chapter is concentrated in the steady-states of the phase-
locked ring laser array. Here we discuss what are the vortex solutions and the
characteristics and application of different steady-states.

• Chapter 4 continues the theoretical study of the ring laser arrays with numerical
experiments. Here we investigate probabilities of the phase-locking in different
steady-states. Additionally, we studied methods of the non-uniform coupling
and optical feedback influence on the probabilities of the different steady-state
solutions.

• Experimental realization of the degenerate cavity is presented in Chapter 5.
Here we study stability and degeneracy criteria with ABCD matrix analysis.
We show the stages of the degenerate cavity alignment. We present some ex-
perimental signatures of spatial degeneracy. Finally, we present several exam-
ples of the laser arrays obtained with different masks.

• Chapter 6 presents the experimental, analytical, and numeral noise study in
the array of the two and three lasers. We compare these results and give a
conclusion and perspectives of the VECSEL laser array.

• The manuscript ends with a theoretical concept of the optical computations
presented in the chapter 7. Here we show that boolean operations and infor-
mation storage can be introduced in the developed VECSEL array.

The results of this project were presented at:

1. The Siegman International School on lasers (Poland, June 25-July 2, 2022)
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2. IQFA-XII "Quantum Engineering, Fundamental Aspects to Applications“ (France,
November 16-18, 2022)

3. FRISNO16 “French-Israel Symposium on Non-linear & Quantum Optics” (Is-
rael, January 15-19, 2023)

4. CLEO/Europe-EQEC 2023, (Germany, Munich, June 26 – 30, 2023)

5. 26th International Conference on Noise and Fluctuations (ICNF) (France, Greno-
ble, October 17-21, 2023)

Parts of the thesis have been published in journals and some are currently prepared
for submission:

1. [Bouchereau 2022]: Yann Bouchereau, Sopfy Karuseichyk, Raphael Guitter,
Vishwa Pal, and Fabien Bretenaker, “Effect of linewidth enhancement factor on
the generation of optical vortices in a class-A degenerate cavity semiconductor
laser”. Opt. Express 30.9 (Apr. 2022), pp. 15648–15658;

2. [Karuseichyk 2023]: Sopfy Karuseichyk, Vishwa Pal, Sahil Sahoo, Grégoire
Beaudoin, Isabelle Sagnes, and Fabien Bretenaker, “Investigation of noise cor-
relations in the phase-locked class-A VECSEL array”. Opt. Express 31.25
(Dec. 2023), pp. 41713–41725;

3. In progress: Sopfy Karuseichyk, Vishwa Pal, Ilan Audoin and Fabien Brete-
naker. "Non-symmetrical vortex beam shaping in VECSEL laser arrays".
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This chapter introduces the operational principles of Vertical External Cavity Sur-
face Emitting Lasers (VECSELs) and the description of their dynamics.

The first part provides a general introduction to semiconductor laser architecture,
offering detailed explanations of laser cavity schematics and the modal composition
specific to long-cavity VECSELs. An introduction of the light-matter interaction is
given with a specific focus on the optically pumped (OP)-VECSELs gain chip. The
VECSEL gain chip used in our experiment is based on the InGaAs/GaAs semicon-
ductor structure, incorporating several Quantum Wells (QWs). Thus, a criterion to
reach the VECSEL radiation threshold is given with particular emphasis on the role
played by QWs. This part ends with a description of the Henry factor (α factor) and
its role in VECSELs.

The second part of the chapter starts with the description of the laser dynamics
classes. The main goal of this part is to introduce a general model for the VECSEL
dynamics. A broad spectrum of numerical and analytical results is presented there.
The numerical modeling of VECSEL dynamics is then presented in comparison with
other types of lasers, such as Vertical Cavity Surface Emitting Lasers (VCSELs).
After this, our approach for the injection coupling parameterization is described.
Consequently, the rate equation model for two lasers coupled by the complex-valued
coupling strength is introduced. Finally, the basic principles of the two phase-locked
VECSELs are derived analytically in for most general case.

2.1 VECSEL architecture
The theoretical groundwork for the laser operational principle originates from Ein-
stein’s work from 1917 [Einstein 1917]. In this paper, the concepts of stimulated
and spontaneous emission are introduced. The concept of stimulated emission found
practical application in the 1940s in a framework of spectroscopy and in the 1950s
with the invention of the maser and the laser. The first working laser was built by
Theodore Maiman at Hughes Aircraft Company. Subsequent developments included
the creation of the first diode laser made of GaAs in 1962. Nick Holonyak further ad-
vanced laser technology in the same year by developing the first semiconductor vis-
ible light-emitting diode (LED). The first room-temperature continuous-wave (CW)
operation of VCSELs was realized only in 1988 by Koyama [Iga 1988].

The optically-pumped semiconductor laser with vertical geometry hasn’t been
implemented until 1992 even though the concept of laser geometry with "radiation
mirrors" was proposed in 1966 [Basov 1966]. VECSEL’s architecture is inherited
from thin-disk solid-state lasers [Guina 2017a]. Those lasers involve a thin semi-
conductor gain mirror and an external cavity mirror. The gain chip consists of a
highly reflective mirror and a semiconductor gain region with quantum well (QW)
or quantum-dot (QD) layers separated by spacer or barrier layers. Its mirror is a
semiconductor-distributed Bragg reflector (DBR)1. This combination of the DBR

1Alternatively, it can be replaced with a metallic, dielectric, or hybrid mirror
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and external cavity mirror corresponds to the classic laser cavity architecture with
two mirrors and follows the basic laser principles.

A demonstration of the first high-power, room-temperature VECSEL [Raja 1989]
and its quantum efficiency improvement happened several years later. Thus, this type
of laser still can be considered as a young technology. The gain chips are constantly
improving. Today’s VECSELs demonstrate versatility in covering various wave-
lengths from visible to mid-infrared∼ 300−5300nm [Guina 2017a]. They stand out
for their ability to achieve high output power (up to 100 W), maintain high bright-
ness, operate in a single-frequency mode with low noise, and more. As a result,
VECSELs are recognized as some of the most adaptive lasers today.

2.1.1 Fundamental laser scheme
The basic laser construction consists of an active medium (gain) positioned between
two high-quality mirrors (shown in Fig. 2.1). The active medium needs to be pumped
by an external energy source called a pump. Two mirrors form a laser cavity or
a resonator. Usually, one mirror is highly reflective and the other one is partially
transmitting (R ∼ 99%). The partially transmitting mirror is often called an output
coupler (OC).

Mirror 
with high reflectivity

Mirror 
with  partial transmittion

FIGURE 2.1: Principle scheme of the laser

The key components required for laser emission and their functions are the fol-
lowing:

• Gain. The gain medium is selected based on its ability to amplify light through
stimulated emission.

• Pump. The pump source provides energy to the gain medium to achieve the in-
verted population of energy states. The pump source can be optical, electrical,
thermal, chemical, or other, depending on the type of laser.

• Optical cavity. The cavity serves to reflect light back and forth through the
gain medium, stimulating the emission of more photons and allowing for the
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amplification of the coherent light. The partially transparent mirror allows a
portion of the amplified light to exit the cavity and form the laser beam. The
reflected light within the cavity stimulates further emissions, contributing to
the amplification of the laser beam. This effect accumulates and enhances the
stimulated emission, promoting the coherence and directionality of the laser
beam.

The light propagates in the longitudinal direction of the resonator and is reflected
by the mirrors. The interference of two counter-propagating optical waves with the
same frequency leads to the formation of the standing wave, as illustrated in Fig. 2.2
(a).

�k

�k+1
�k �k+1
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���
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FIGURE 2.2: Illustration of the (a) longitudinal and (b) transverse
modes formation in the laser cavity.

The cavity boundary conditions specify that kλ/2 = L must hold for standing
waves, where k is an integer, λ is the wavelength and L is the length of the laser
cavity. Fig. 2.2 (a) shows the two standing waves of frequencies νk and νk+1 with
k = 5. The frequencies of the k-th mode νk = c0k/2Ln0 = ck/2L, where c0 is the
speed of light in vacuum, n0 is a reflective index of the medium. From this, we can
obtain a very important parameter for a resonator: its free spectral range (FSR):

∆ν = νk+1−νk = c/2L.

This simple relation reveals that the frequencies of the modes are equally spaced. In
the considered case, these standing waves belong to the fundamental mode TEM00,
which corresponds to some specific path in the cavity. However multiple geome-
tries of the stable path can exist in the same laser cavity in the transverse direction.
Different transverse modes accumulate different phases along the propagation. As a
result of this, a set of different spatial patterns can occur Fig. 2.2 shows a series of the
circular transverse modes. The frequencies of those stable field configurations will
differ depending on the longitudinal k and spatial p, l indexes (see Fig. 2.3 ).
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FIGURE 2.3: Spectrum of the transverse modes, where the indexes
p, l of νplk gives the number of nods in the radial and angular profiles

of the circular modes.

Transverse modes associated with a TEM00 axial mode have a frequency that
differs from that of the axial, potentially leading to a broadening of the linewidth (and
decrease in coherence length) for multi-spatial-mode lasers. The cavity resonances
are then defined according to the formula eq. (2.1).

νplk =
c

2L

[
(k+

1
π
(p+ l +1)cos−1

√
(1−L/R1)(1−L/R2)

]
. (2.1)

Here R1 and R2 are the radii of curvature of the cavity mirrors. We can see, that in
the case of the well-aligned planar cavity with R1,2→ ∞, the term with cos−1 goes
to zero, and the transverse resonances are frequency degenerate νplk = νk = ck/2L.

Optical amplification can only occur for a finite range of optical frequencies.
Laser generation occurs in the bandwidth where the gain is larger than the cavity
losses, as illustrated in Fig 2.4. Due to this, not all the cavity modes in Fig 2.2 can
become lasing modes. In addition, the number of oscillating modes also depends on
the mode competition in the considered laser medium.

FIGURE 2.4: Potentially oscillating modes in the laser cavity. Only
the νplk’s can oscillate, which fall in the bandwidth with the gain pre-

vailing losses.

The losses are determined by the absorption and scattering of the cavity mirrors,
optical components (such as lenses and beam-splitters), and gain medium. At the
same time, the gain is determined only by the VECSEL gain chip. The process of
regarding it has to be discussed in more detail in connection with the generation of
laser radiation.
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2.2 Semiconductor gain chips as an active medium
The existence of energy bands distinguishes semiconductor gain chips from other
laser gain materials, such as solid-state, gas, and dye lasers. The laser transition in
this case occurs between the wide energy bands of the host crystal which are differ-
ent from the laser media mentioned above, such as, for example, ruby and Nd:YAG,
which are characterized by the transitions between the narrow energy levels of im-
purity atoms.

The band structure of a crystal is explained by the nearly free electron model,
where band electrons are only weakly perturbed by the periodic potential of the
ion cores [Grundmann 2016]. Energy gaps arise from Bragg’s reflection of elec-
tron waves in crystals. This means that the periodic boundary conditions induce
discontinuities in the electron momentum at the nodes of the crystal lattice, leading
to a band-organized energy diagram structure with a bandgap separating valence and
conducting bands [Kittel 2004].

2.2.1 Light-matter interaction in semiconductors
Light-matter interaction in semiconductors results in the three main processes shown
in Fig. 2.5 (a-c): absorption, spontaneous emission, and stimulated emission. A se-
ries of stimulated emissions results in the amplification of the light propagating in
the laser cavity.

E1

E2

E1

E2E1

E2

FIGURE 2.5: Light-matter interaction mechanism between two en-
ergy levels. Energy values E1 and E2 correspond to the ground state
and excited state, respectively. (a) absorption, (b) spontaneous emis-

sion, (c) stimulated emission, (d) amplification.

The description of the process is the following: process (a) illustrates the absorp-
tion of a photon with energy hν = E2−E1, when a system goes from the ground
state to the excited state; subplot (b) shows spontaneous emission of a photon with
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energy hν = E2− E1, when a system in the excited level goes to the bottom en-
ergy level; process (c) shows stimulated emission when the exited system interacts
with the photon. As a result, the system emits photons with identical characteristics;
and (d) shows the amplification based on series stimulated emission by the photons
thanks to multiple propagation in the cavity.

The flat bandgaps shown in Fig. 2.5 are of course a crude approximation. The
energy difference depends on the electron momentum similar to the diagrams shown
in Fig. 2.6.

FIGURE 2.6: The difference between direct (a) and indirect (b)
bandgap semiconductors. In the first case (a) transition is between
the maximum and the minimum of the conducting and valence bands.
In the case shown in subplot (b) the transition between bands is ac-

companied by phonon absorption.

The photon emission occurs as a result of the electron-hole recombination be-
tween the maximum and minimum of the conduction and valence bands correspond-
ingly. This process is shown in Fig. 2.6 (a). Nevertheless, the band’s extremums
can be not matched for some semiconductors. Then, the photon emission is ob-
served with an additional participation of the phonons. A more detailed scheme of
this process is given in Fig. 2.6. In case recombination occurs directly with the elec-
tron transfer from the "upper" conducting band to the "bottom" valence band - the
semiconductor is a direct bandgap material, otherwise - "indirect".

In a direct bandgap (shown in Fig. 2.6 (a)) semiconductor the top of the valence
band and the bottom of the conduction band lie on top of each other (for exam-
ple, GaAs). In indirect bandgap semiconductors, the valence band maximum and
the conduction band minimum are not on top of each other (shown in Fig. 2.6 (b)).
This makes, for example, Si and Ge indirect bandgap semiconductors. Only direct
semiconductors are successfully used as a base for laser gain chips.
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2.2.2 Quantum Wells
The main role of quantum wells is to confine charge carriers. The carriers can not be
localized within the single semiconductor layer. They “leak” over the entire structure
escaping the recombination area and heating it.

It is proposed to use a combination of semiconductors with different bandgaps
Eg (see Fig. 2.7) to isolate the carriers in the active layer following Herbert Kroe-
mer’s idea. Then, the semiconductor with a wider bandgap acts as a barrier for both
electrons and holes. The lattice constants given by the interatomic distances of those
two semiconductors should be close. Reducing the thickness of the middle layer sig-
nificantly affects the behavior of the electron. The proximity of the barriers on both
sides results in the quantization of the electron’s motion. Then, such a layer behaves
as a quantum well (QW).

(a) (b)

FIGURE 2.7: Illustration of the QW’s energy levels dependency on
the width of the QW. Subplot (a) gives an example of the combina-
tion of semiconductors with different bandgaps and compatible inter-
atomic distances. The barrier layer is introduced by InGaAs and its
width is noted h. Subplot (b) shows the illustration of the lowest en-

ergy levels shift with a change of the QW width.

The main feature of a QW is that electrons cannot be at the very bottom of the
well. The lowest level at which they can be located is the first energy level of the
quantum well, which is illustrated in Fig. 2.7 by a solid purple line EC1. An electron
can also occupy the higher energy levels - the second EC2, the third EC3, and so on.

The depth of the levels varies depending on the width of the quantum well h.
Growing the quantum well layer wider leads to the level dropping deeper and grow-
ing the layer narrower leads to the rise of the energy levels. This means, that the en-
ergy of the laser transition, can be carefully adjusted by slightly changing the width
of the quantum well, and therefore the wavelength of the radiation can be changed.

A typical gain chip architecture for VECSEL consists of DBR and several QWs
incorporated inside. This kind of gain chip is also often called 1/2 VCSEL and a
schematic of its bandgap profile is shown in Fig. 2.8.
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FIGURE 2.8: Adapted from [Guina 2017a]: Example of a bandgap
profile of a VECSEL gain chip with 10 QWs. The red curve illustrates

the intracavity field amplitude.

The physical dimensions of Fig. 2.8 are presented not to scale. A typical thickness
of the QW layer is tens of nm. For example, the gain-chips used in the experiment
have 27 pairs of GaAs/AlAs of total thickness around 1.1µm, while the single QW’s
thickness is 0.06µm. QWs are separated by the barriers and strain-compensating
layers with different thicknesses, and in total the active region is around 1.2µm. The
number of the QW determines the gain of the laser gain-chip, but the dependency is
not linear. The increase in the number of QWs is often accompanied by the increase
of the mechanical strain in the structure, thus affecting the emission properties nega-
tively.

The absorption and stimulated emission mechanisms between the valence band
and the conduction band are induced by the photons of the optical pump. The tran-
sition from the bottom state of QW to the upper state respects the conservation of
the absorbed energy of the photon. Due to extremely rapid intra-band relaxation pro-
cesses, stimulated emission occurs more from the bottom of the valence band. The
charge carriers stimulate the emission necessary for coherent amplification of the
laser field after achieving population inversion when recombining inside the quan-
tum wells.

The electrons obey the Fermi–Dirac statistics. According to this the probability
that an electron state with energy E = hν is occupied is given by:

fc,v =
1

1+ exp
[

E−EFc,Fv
kB T

] . (2.2)

Here kB = 1.38×10−23J/K stands for the Boltzmann constant, T is the temperature
in K, and EFv,Fc are the Fermi energy levels of conducting and valence bands. Fig. 2.9
(a-c) illustrates the changes in the Fermi levels and population from the quantum
well at the thermodynamic equilibrium (a), to the amplification threshold and the
population inversion state (c) on the energy diagram. The Fermi level represents the
energy state with a 50% probability of being filled. Then, the thermal equilibrium
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gives the single Fermi level E = EFC = EFV , and it is situated exactly in the middle
of the bandgap (see Fig. 2.7 (a)).

(b) (c)(a)

FIGURE 2.9: Illustration of the Fermi-levels shift from the thermal
equilibrium to the population inversion of the QW-system.

The rates of absorption Rabs and stimulated emission Rst are linked to the proba-
bilities of occupation by carriers of the energy levels of the transition [Gredat 2020a].
For stimulated emission, an electron should be in the conduction band and a hole in
the valence band. The rates Rabs and Rst are expressed as follows:

Rabs = B fv(1− fc), Rst = B fc(1− fv),

where fc,v are given by the eq. (2.2) and B represents the rate of radiative recombi-
nation. At non-zero temperature, EFC , EFV strongly depend on the level of carrier in-
jection into the quantum wells and differ from each other in the non-thermodynamic
equilibrium situation achieved thanks to pumping. The system shown in Fig. 2.9(a)
is at thermodynamic equilibrium. Then, photons with the energy E ≥ Eg are ab-
sorbed. The Fermi levels of the two bands EFC , EFV shift with the rising energy of the
absorbed photons Fig. 2.9 (b). The difference between the Fermi levels of the two
bands ∆EF = EFV −EFC increases when the carrier number increases. Continuing to
increase, a population inversion and the amplification threshold are obtained under
the effect of enough carrier injection Fig, 2.9 (c).

The amplification condition amounts to imposing a rate of stimulated emission
greater than the rate of absorption leading to:

Rst

Rabs
=

fc(1− fv)

fv(1− fc)
≥ 1.

Then, using a fc,v definition according eq. (2.2) we obtain:

exp
[

1
kBT

(∆EF −hν)

]
≥ 1,

where hν is the energy of a photon to be produced. Then, the amplification condition
is

∆EF ≥ hν ≥ ∆Eg,
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which is known as the Bernard-Duraffourg condition [Bernard 1961]: quasi-Fermi
level separation exceeds the energy of photons, which has a minimal energy of the
bandgap.

In conclusion, we should also mark one of the benefits of semiconductors for
optically pumped systems. Fig. 2.10 shows the absorption spectra for the most com-
monly used semiconductors.
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FIGURE 2.10: Absorption coefficient as a function of the wavelength
and bandgap energy [Benedikovič 2020].

Since the absorption is observed in a wide range, it is easier to choose the appro-
priate wavelength for optical pumping.

Henry factor

Another peculiarity of semiconductor lasers is the linewidth enhancement factor, also
often denoted as α or Henry factor. The fundamental laser linewidth is given by the
Schawlow–Townes expression, which is essentially the contribution to the linewidth
due to phase changes from spontaneous emission processes. The Schawlow–Townes
formula agrees with measurements in the case of certain lasers, such as, for example,
solid-state lasers. However, semiconductor lasers exhibit larger linewidths. Charles
H. Henry found that the increased linewidth is a result of a coupling between intensity
and phase noise, caused by a strong dependence of the refractive index on the carrier
density in the semiconductor [Henry 1982].

The refractive index n depends on the carrier density ∆N. Changes in intensity I
cause changes in ∆N, affecting the complex susceptibility of the active medium. This
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change in refractive index alters the instantaneous frequency [Henry 1982]. In sum-
mary: amplitude-phase coupling can be represented as a chain of variations causing
the consequent variations:

∆I→ ∆N→ ∆n→ ∆φ → ∆ω

(intensity) (carrier density) (refractive index) (phase) (linewidth)

The formula derived by Henry corresponds to eq. (2.3), where ∆n′′ is a variation
of the imaginary part of the refractive index and ∆n′ is a real part of the refractive
index variations.

α =
∆n′

∆n′′
. (2.3)

In standard semiconductor gain chips, the α factor is significant, especially with
weak carrier confinement in quantum wells. Unconfined carriers populate the barri-
ers’ continuum, reducing the differential gain, and increasing α . The Henry factor
enlarges the Schawlow-Townes laser line by 1 + α2, implying a coupling between
the phase and amplitude of the laser field A(z, t). The value of the Henry factor can
vary depending on the number of the QW layers [Alkhazraji 2023], temperature, and
pump regime of the structure. The experimentally estimated value of the linewidth
enhancement factor in different types of semiconductor gain chips typically ranges
from 3 to 10 [Zilkie 2008; Consoli 2012; Fordell 2007; Sinquin 2023] and can even
be much larger (up to 60) for shallow quantum wells [Stohs 2001]. These values are
much larger than those of solid-state lasers, for example, Nd:YAG laser characterized
by (α ∼ 0.3) [Thorette 2017].

2.3 Basic classes of the laser dynamics
Laser dynamics is a result of the coupling between the cavity processes and the pro-
cesses in the active medium. It can be categorized into different classes based on
the relationship between the carrier population decay rate γ∥, the dipolar polarization
relaxation rate γ⊥, and the field decay rate γcav. We consider here the simple set
of so-called dimensionless Lorenz–Haken equations [Khanin 2006], which are suffi-
cient to discuss dynamics classes. The model corresponding to a single-mode laser
is then

dE
dt

=
γcav

2
(P−E), (2.4)

dP
dt

=γ⊥(∆nE−P), (2.5)

d∆n
dt

=γ∥(W −∆n−PE). (2.6)

The variables of this set of equations are the amplitude of the light electric field E,
the amplitude of the medium polarization P, the population inversion per unit volume
∆n, and the pumping parameter W .



2.3. Basic classes of the laser dynamics 25

• Class-A: γcav << γ∥,γ⊥. Class-A lasers are characterized by a long photon life-
time. This type of laser includes atomic gas lasers, dye lasers, and VECSEL.
Based on the difference between decay rates, an adiabatic elimination2 can be
applied to reduce the number of equations. The laser system is then described
with only one differential equation for the field. The evolution of the active
medium variations is supposed to follow the variations of the field instanta-
neously. Both material variables are eliminated from the set of equations. The
dynamical phase space is one-dimensional, and the family of attractors can be
represented only by the fixed points. The transient processes in the laser are
aperiodic.

• Class-B: γ⊥ >> γcav ≥ γ∥. The field decay rate γcav and the carrier decay rate
γ∥ are smaller than the medium polarization relaxation rate γ⊥. Class-B is
the most commonly used nowadays and includes Ruby, Nd: YAG, CO2, and
semiconductor lasers. Adiabatic elimination leads to the system description
with two coupled nonlinear differential equations for the field and the popu-
lation inversion. The transient process to the steady-state is oscillatory and
quasi-periodic. The phase space is two-dimensional and the system trajectory
corresponds to the point, limit cycle, and periodic or quasi-periodic attractors
depending on the pump value.

• Class-C: γcav ∼ γ⊥,γ∥. The class is often referred to as a class of lasers with
chaotic dynamics. All decay rates have the same scales. Most FIR gas lasers
belong to this class. The attractor of the system in the phase space is typically
a strange attractor.

The sketches of the attractors of the mentioned above dynamical classes are
shown in Fig. 2.11 following [Wieczorek 2005].

FIGURE 2.11: Sketches of a typical trajectory approaching a stable
fixed point in class-C, class-B, and class-A free-running lasers [Wiec-

zorek 2005].

2Adiabatic elimination in the context of dynamical systems, is a technique to simplify a complex
system of equations by eliminating rapidly oscillating variables. The term "adiabatic" refers to a
process that occurs slowly compared to the characteristic time scales of the system. The idea behind
adiabatic elimination is to identify variables in a system that evolve much more rapidly than others.
By assuming that these fast variables quickly reach quasi-equilibrium states, their dynamics can be
effectively removed from the equations governing the slower variables.
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• Class-D: γcav >> γ∥,γ⊥. In this case, the field is an inertia-free variable that
follows the state of the atomic system and should therefore be adiabatically
eliminated. The class-D lasers are not yet studied experimentally because they
require very low-Q cavities and, hence, exotic active media with extremely
high spatial density and spectral density of active centers.

The classification is summarised in Table 2.1.

Class Relaxation rates Eliminated Examples
relation variables

A γcav << γ∥,γ⊥ P,n Gas lasers, Dye lasers, VECSEL
B γ⊥ >> γcav >> γ∥ P Ruby, Nd:Yag, CO2 lasers, VCSEL
C γcav ∼ γ⊥,γ∥ − FIR lasers (NH3, CH3F)
D γcav >> γ∥,γ⊥ E molecular beam masers (H2, NH3)

lasers - not yet studied experimentally

TABLE 2.1: Classification of the laser dynamical classes with allowed
variables for eliminating and examples of the laser active media allow-

ing to observe a certain dynamical class

It is important to note that it is not straightforward to determine dynamics based
on the dynamical class. Classification is performed based on the decay parameters
of the system. At the same time, optical feedback (OF), multimode laser opera-
tion, coupling with neighbors, or any other additional nonlinearities make dynamic
classification more complicated. Even the class-A laser (based on the decay rates
classification) reveals chaotic behavior, as reported by [Kuwashima 2001].

2.4 Rate-equation model for OP-VECSELs dynamics
The description of the dynamic properties of VECSEL is based on the tracking of
the electric field variations oscillating at the frequency ω inside the cavity. The field
oscillates as a plane wave due to the fixed direction of polarization. The plane wave
propagating in the cavity along z is given by the formula eq. (2.7).

E (z, t) = E0E(z, t)e−i(ωt−kz)+ c.c. (2.7)

with c.c. designating the complex conjugated term. The quantity E(z, t) is the slowly
varying field complex amplitude. It will be considered dimensionless thanks to the
introduction of the factor E0. VECSELs belong to semiconductor lasers, which re-
quires taking into account some peculiarities for the rate-equation model:

• Active medium polarization P decays rapidly so that it can be adiabatically
eliminated from the differential equation system, that is, dP/dt = 0. Then, at
every instant P(t) can be replaced with its steady-state value.
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• The carrier lifetime of the semiconductor gain chips is typically a few nanosec-
onds. The lifetime is considered constant in the manuscript and is taken to be
equal to 1ns, which corresponds to the value we have in our experiment. At
the same time, the cavity lifetime is given by the formula eq. (2.8), which rep-
resents the relation between the duration of the cavity round trip and the losses
per round trip of the cavity:

τcav =−
n0 Lcav

c0 ln(RDBR ROC(1− ε))
, (2.8)

where Lcav stands for the round-trip cavity length, c0 -speed of light, ε - intra-
cavity losses (diffusion, optical components, diffraction losses etc.), RDBR and
ROC are reflection coefficients of the cavity-forming mirrors: (DBR - with a
distributed Bragg reflector grown as a part of the gain chip and OC - output
coupler closing the external cavity 3).

Thus the length and the losses of the VECSEL cavity critically determine the
VECSEL dynamics.

• One of the fundamental parameters for semiconductor lasers is the above-
mentioned (in section 2.2.2) linewidth enhancement factor α that describes
the coupling between carrier-induced variations of real and imaginary parts of
the media refractive index. This factor couples the equations for phase and
amplitude, thus making phase-locking behave differently from other types of
lasers.

The rate-equation model can be written phenomenologically or derived from the
Maxwell-Bloch equations [Siegman 1986; Erneux 2010] leading to:

dE
dt

=−
(

1
2τcav

− κ

2
(∆n(1+ iα)

)
E, (2.9)

d∆n
dt

=
1
τ
(∆n0−∆n)−κ∆n|E|2. (2.10)

• ∆n is a carrier density per unit volume, ∆n0 is a non-saturated population in-
version per unit volume.

• τcav is the photon lifetime in the cavity.

• κ is a coupling constant of the stimulated emission, given by κ = c0 σ

nVcav
, where

Vcav is a volume of the cavity occupied by the mode, σ - interaction cross-
section.

• τ is the carrier lifetime.
3Notice that a VECSEl has only one cavity, the external one. There is no "internal" cavity in such

structures. The name VECSEL was coined to shred the difference with respect to VCSELs.
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• α is the Henry factor.

The field complex amplitude is defined as E = Aeiφ , where A is the amplitude of
the field and φ is the phase. Both values are supposed to be real numbers. Then, one
can separate the imaginary and real parts of the equation:

dE
dt

=
dA
dt

eiφ + iA
dφ

dt
eiφ= (2.11)

−
(

1
2τcav

− κ

2
∆n(1+ iα)

)
Aeiφ .

We modify eqs. (2.9) and (2.10) by introducing a carrier density at threshold
defined as ∆nth = 1/κτcav and an excitation ratio r = ∆n0κτcav. The excitation ratio
indicates how high the pumping is compared to the threshold, where r = 1. The
saturation photon number is defined as Fsat = 1/(κτ). Then, the basic universal set
of equations for the description of the dynamics of class B and class A is given by
the system (2.12):

dA
dt

=− 1
2τcav

(
1− ∆n

∆nth

)
A,

dφ

dt
=

α

2τcav

∆n
∆nth

,

d∆n
dt

=
r ∆nth

τ
− ∆n

τ
− 1

τ

A2

Fsat
∆n. (2.12)

The order of magnitude of the saturation photon number Fsat magnitude can be
estimated from the experimental parameters:

Calculation of the saturation photon number Fsat.

We measured the output power of the VECSEL without any loss-mask. The
power is equal to P = 50mW at pumping rate r = 2.3. The wavelength of
the radiation is λ = 1.06µm. The length of the cavity is 0.5m and losses are
estimated as 11%. Then, the photon lifetime in the cavity is τcav = 30ns.

The photon flux is defined as Φ =
P

hc0/λ
, where h = 6.62×10−34 is a Planck

constant. This gives the number of the photons in the cavity F = τcavΦ =
Fsat(r−1). Finally, the saturation number of photons is Fsat ∼ 1010.

Let us illustrate the class-A and class-B transient laser behaviors by two exam-
ples. We consider two VECSELs with different cavity lengths. The first one labeled
A corresponds to a cavity length of 0.5m with 11% losses per round trip, which leads
to the photon cavity lifetime τA,cav = 30ns. These parameters correspond to our ex-
perimental values. The second laser labeled B has the same total intracavity losses
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(11%), but a significantly smaller cavity length 0.5mm. This leads to its photon life-
time in the B cavity τB,cav = 30ps. Such a "0.5mm"-cavity length is taken among the
smallest ones and its value is close to the VCSELs’s cavity length [Larisch 2020].
The plots for the transient amplitude dynamics obtained with the model given by the
eq. (2.12) for both cases are shown in Fig. 2.12.
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FIGURE 2.12: Amplitude dynamics of the semiconductor lasers with
different cavity lifetimes are (a) τA,cav = 30ns, (b) τB,cav = 30ps. (a)
represents class-A dynamical behavior, (b) represents class-B dynam-
ical behavior. The plots are calculated with τ = 1ns,α = 4,r =
1.5,Fsat = 1010. The cavity round trip time is 2L/c, where L is the

cavity length.

Fig. 2.12 (a) is a perfect illustration of the monotonous behavior of a class-A
VECSEL, while Fig. 2.12 (b) shows the relaxation oscillations typical for class-B
lasers. Indeed, the VECSEL laser with our experimental characteristics corresponds
to the class-A dynamics without relaxation oscillations. A transition between dy-
namic classes -A and -B in VECSEL has been experimentally observed by varying
the lifetime of the cavity with variations in length [Baili 2009].

Taking τ ≪ τcav, we may remove ∆n from the equation as being equal to its
instantaneous equilibrium value:

∆n(t) =
r∆nth

1+A2/Fsat
=

1
κτcav

r
(1+A2/Fsat)

. (2.13)

Finally, the equations for the class-A laser have the following form:

dA
dt

=− 1
2τcav

(
1− r

1+A2/Fsat

)
A,

dφ

dt
=

α

2τcav

r
1+A2/Fsat

. (2.14)
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The system eq. (2.14) is valid for a single-mode laser corresponding to the class-
A dynamics. To modify the above-developed model for two lasers and later for a
complete VECSEL array, it is necessary to parameterize a coupling mechanism.

2.5 Diffraction coupling in the laser arrays
To introduce the coupling between lasers to the rate equation model, we should fol-
low its physical cause in the laser setup. We create a laser array employing a loss-
mask close to the OC of the planar degenerate cavity VECSEL. The scheme of the
laser cavity is shown in Fig. 2.13.

FIGURE 2.13: Scheme of planar degenerate cavity laser. Spatial de-
generacy is supported by an intracavity telescope of two lenses with
focuses f1, f2. Gain chip and output coupler (OC) placed in the focal
points of the telescope. The loss-mask is placed very close to the OC.

An array of independent lasers can be obtained if the laser cavity is spatially de-
generate (or self-imaging). We can call the cavity degenerate if the gain chip and OC
are placed in the focal points of the intracavity telescope 4. These focal points are
given by the focal points of the first and second lenses consequently, when the lenses
are separated by a distance equal to the sum of their focal lengths. The focal lengths
are f1 = 50mm and f2 = 200mm in our experiment. The cavity stability and degen-
eracy condition are discussed in the sec. 5.3. A loss-mask is an absorbing material,
such as metal, with a set of transparent holes. Alternatively, it can be implemented
using a spatial light modulator (SLM) or glass plate with a deposited loss profile.

We consider the case when the distance between the Mask and OC z is not zero.
Diffraction on the mask leads to an injection coupling between individual lasers. Let
us now consider the diffraction path in detail, for example, with a focus on the laser
created by the hole i. Fig. 2.14 shows the injection principle of the i-th laser radiation
to the closest neighbors. Here, neighbors are the lasers created also by the loss-mask
profile. Propagation of the i-th laser field is schematically illustrated by the red color.

4With assumptions of the perfect alignment and gain chip without thermal lensing and mechanical
deformations.



2.5. Diffraction coupling in the laser arrays 31

FIGURE 2.14: Principle of injecting coupling on the example of the
ring laser array. Self-imaging telescope magnification in the degener-

ate cavity is not illustrated for simplification reasons.

The order of propagation is shown with black arrows. The field diffracts on the
i-th aperture of the mask. Then, diffracted light propagates along the distance z
separating the mask and OC. A significant portion of the light returns to the source
hole. Another portion of the reflected light is directed toward neighboring holes i−1
and i+1. Then, these fields are affected by a portion of the diffracted light from the
i-th hole.

In the diffraction coupling scenario, the coupling strength is proportional to the
spatial overlap of the field between the two considered modes on the mask [Mehuys 1991;
Glova 2003; Ma 2022]. The same process occurs on each hole of the loss-mask. The
part of the setup between the loss-mask and OC is called the diffraction cavity. A
majority of the experiments with solid-state laser arrays are based on a diffraction
cavity in which the loss-mask is placed in the self-imaging position of the telescope.
Depending on z it can behave as an imaging cavity thanks to the Talbot effect. Talbot
effect means that if an optical grating or periodic structure is illuminated with coher-
ent light, the image of the periodic object is self-replicated at certain distances. This
self-replication occurs at regular intervals, known as Talbot distances given by the
multipliers of Talbot length zT :

zT =
2h2

λ
. (2.15)

Here h is a center-to-center separation between the emitters or grating period and λ

is the wavelength of the light illuminating a loss profile. The example of a diffracted
light pattern of a plane periodic profile with a period h is shown in Fig. 2.15.

FIGURE 2.15: "Talbot carpet". Diffracted light forms complicated
periodic patterns at fractions of the Talbot length.
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Fig. 2.15 illustrates multiple fractional Talbot images. The choice of the cavity
length z allows control of the phase of the laser field returning to the degenerate
cavity. The cavity with a round-trip propagation length equal to zT gives an in-
phase self-imaging configuration of the field. This can be seen by comparison of the
bright spots at distance zT with initial emitters configuration at z = 0. Fractions of
Talbot distance never give the "in-phase" image, for example, zT/2 leads to π phase
accumulation, etc. This type of diffraction cavity is then often called a Talbot cavity.
In practice, the same relations are confirmed with solid-state 2D laser arrays, such as
ring-array [Tradonsky 2017; Pal 2015].

2.5.1 Model for diffraction coupling
Let us now consider the case we have in our experiment with VECSEL. Considering
the mask, presented in Fig. 2.16, the period of the circular array of holes is h = σ +a,
where σ is the diameter of the mask’s hole and a is the edge-to-edge distance. Then

the Talbot distance is zT =
2(σ +a)2

λ
.

FIGURE 2.16: Graphical definition of the lass-mask parameters. The
example is given by the mask with n = 8 holes.

The experiment that is performed in this work covers a ring laser array and a pair
of lasers with σ = 200µm and a = 50µm. Then the Talbot distance calculated with
eq. (2.15) is zT = 2(σ + a)2/λ = 62mm. This distance should correspond to the
imaging of the array. At the same time, it would create significant diffraction losses.
Due to this and the small gain of the laser, the laser developed in our work has a
"Talbot-cavity" with a variable length in the range z = 0 . . .2 mm, corresponding to
z < zT/50.

Working at such short distances means that coupling is not zero except at z ∼ 0.
Such a small distance will help us investigate the complex coupling case, which has
not been considered for class-A lasers before.

Light diffracted by a given hole creates a coupling channel due to the overlap
with the other holes all over the loss-mask. To calculate the overlap between the field
diffracted by one aperture and the neighboring aperture we simply suppose that each
laser exhibits a uniform distribution at the degenerate cavity output. The amplitude
of the i-th laser E0,i is defined as shown in Fig. 2.17.
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FIGURE 2.17: Distribution of the E0 field’s amplitude at the mask
hole surface corresponding to the self-imaging cavity output. Blue –

uniform top-hat field’s amplitude profile.

The field of one laser diffracts on the edges of the loss-mask and then it trans-
forms with propagation through the diffraction cavity according to the Huygens-
Fresnel equation [Siegman 1986]:

Es,i(ρ
′) = i

2π

Bλ

σi/2∫
0

E0,iρ exp
{
−i

π

Bλ
(Aρ

2 +Dρ
′2)
}

J0

(
2π

Bλ
ρρ
′
)

dρ, (2.16)

where the ABCD matrix describes propagation from the mask to the mirror and back,
σi is the i-th hole diameter and ρ and ρ ′ are the radial coordinates for the input
and output fields, respectively, described in cylindrical coordinates. Since the output
coupler is flat, the matrix elements correspond only to the free-space propagation,
A = D = 1, C = 0, and B = 2z. Here z is the distance between the mask and the
mirror. It is worth noticing that a similar result would be obtained by considering
propagation of the field in the opposite part of the cavity, i. e. from the mask, through
the lenses to the gain chip, and back to the mask. Here E0,i holds for the definition
of the source field from the hole with a diameter σi. The wavelength of the VECSEL
is taken to be 1µm. The diffracted beam profile is strongly oscillatory and mainly
depends on the hole size σ and propagation distance z.

Taking into account ABCD coefficients, eq. (2.16) becomes:

Es,i(ρ
′) =

iπ
zλ

σi/2∫
0

E0,iρ exp
{
−iπ(ρ2 +ρ ′2)

2zλ

}
J0

(
πρρ ′

zλ

)
dρ . (2.17)

Fig. 2.18 shows a field transformation according to eq. (2.17). The initial field
leaving the degenerate cavity comes from the left aperture. Edges of the mask holes
are shown as black circles.
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FIGURE 2.18: Top-hat beam (E0,s = 1) diffracted on the i-th hole
and propagated a round-trip in the diffraction cavity with z = 500µm.
Balck circles represent the edges of holes i and i+ 1 with diameters
σi, σi+1 and edge-to-edge separation a. Diameters of the mask holes

are σi = 200µm, σi+1 = 200µm.

Coupling parameterization requires investigation of the overlap of the diffracted
laser field with the neighbors. The coupling between the holes is a complex coeffi-
cient that is shown to be equivalent to the mode normalized overlap calculated in the
following way (adapted from the paper [Ma 2022] to cylindrical coordinates):

κi→i+1 =

2π∫
0

dφi+1

σi+1
2∫

0
ri+1dri+1E∗0,i+1(ri+1)Es,i

(√
ρ2

i,i+1 + r2
i+1 +2ρi,i+1ri+1 cosφi+1

)
√√√√2π∫

0
dφi

σi
2∫

0
ridri|E0,i(ri)|2

2π∫
0

dφi+1

σi+1
2∫

0
ri+1dri+1|E0,i+1(ri+1)|2

,

(2.18)

where ρi,i+1 = σ +a, with a the distance between the edges of the two neighboring
holes (see Fig. 2.14 (a)). The (ri,φi) and (ri+1,φi+1) are the cylindrical coordinates
centered on holes number i and i+1, respectively.

We have also supposed that all the laser modes have a cylindrical symmetry and
thus depend only on their radial coordinates ri and ri+1. Then, the denominator of
eq. (2.18) simply becomes a constant πσiσi+1 in case the initial incident field on the
mask holes is a top hat profile.

2.5.2 Dependence on the diffraction cavity length
The dependence of the coupling coefficient κi→i+1 on z is complicated because of
the highly oscillatory behavior of the diffracted field Es,i. The overlap varies with z
according to the curve presented in Fig. 2.19. It shows the evolution of the complex
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overlap coefficient κi→i+1 calculated according to eq. (2.16) and eq. (2.18) with the
propagation distance z between the mask and the OC.

FIGURE 2.19: Evolution of the mode overlap coefficient κi→i+1 ver-
sus propagation distance z between the mask and OC , when the inci-
dent mode E0,i is a top-hat field. Modulus (blue) and argument (red)

of κi→i+1, calculated with eq. (2.18).

This calculation is performed with the parameters of the experiment. The argu-
ment of the overlap κi→i+1 tends to zero at z close to zT . The coupling is then real and
can be easily introduced to the equations for the laser dynamics [Bouchereau 2022;
Glova 2003].

On the contrary, small values of z correspond to fast oscillations of the argument
θ of κi→i+1, which can’t be neglected. Let us consider the range of small values of
z between 200µm and 1000µm more precisely in Fig. 2.20. Distances below 200µm
correspond to rapid changes of the coupling argument θ and very small values of
the coupling strength modulus. The control of the coupling argument then would
require a micrometer precision of the diffraction length z control, which we can not
implement in our experiment today.

FIGURE 2.20: Evolution of the mode overlap coefficient κi→i+1 ver-
sus propagation distance z between the mask and OC for z≪ zT . Mod-
ulus (blue) and argument (red) of κi→i+1, calculated with eq. (2.18).

Indeed, it is easy to see that small z values correspond to a fast increase of the ar-
gument of κi→i+1, while its modulus varies slowly. This fact provides a wide degree
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of freedom to adjust θ , while |κi→i+1| is marginally constant. It stresses the fact, as
well, that the accuracy of z control is critical for the small propagation distances.

2.5.3 Second neighbor influence
Diffraction on the mask can affect more neighbors, than the closest lasers. Thus, it
is important to estimate the influence of loss-mask parameters to build the coupling
model accurately. In the experiment, we use only loss-masks, which create either an
array of two lasers or n-dimensional ring arrays. Considering a ring-array of n lasers,
one can notice that the center-to-center separation with the second neighbor ρi,i±2
increases with array dimension n according to the formula:

ρi,i±2 = 2(a+σ) sin
[

π(n−2)
2n

]
. (2.19)

The center-to-center separation with the closest neighbor remains constant: ρi,i±1 =
a+σ . The limit lim

n→∞
ρi,i±2 = 2(a+σ) is easy to understand since it corresponds to

the in-line laser array geometry. The center-to-center separation with the second laser
ρi,i±2 reaches the neighborhood of its limiting values fast. Thanks to this, overlap
with the second closest hole will not change its value significantly. For example, a
difference between ρi,i±2 for n = 30 and n = 100 is less 1% for our experimental
parameters.

�
i,i+1

�
i,i+2

�
i,i+2

n=5

n    inf

n=20

FIGURE 2.21: Mask edges of the first nearest neighbor, a second near-
est neighbor in the n = 5 and n = 20 laser arrays. The background is
a distribution of the field amplitude originating from the mask hole at
(0,0) after passing a z = 500µm diffraction cavity at the mask plane.
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Fig. 2.21 shows an illustration of the mask edges of the two closest neighbors.
Separation between the i-th hole and the first neighbor is given by ρi,i+1. And the
one for the second neighbor is given by ρi,i+2. The background in this figure is a
diffracted wavefront of the top-hat beam in a z = 500µm cavity on the i-th hole.
The evolution of the complex overlap coefficient with the second neighbor κi→i+2
is shown in Fig. 2.22. It is calculated according to eq. (2.17), and eq. (2.18) for
two different values of z depending on the ring-array dimensions and scaled for the
overlap with the closest neighbor.

FIGURE 2.22: The ratio of the overlap amplitude with the second
nearest neighbor κi→i+2 and the first nearest neighbor κi→i+1 at dif-
ferent z distances: the red line corresponds to z = 1cm, the blue line

corresponds to z = 1mm.

The overlap with a second nearest neighbor gives just several percent of the over-
lap with the first neighbor. Considering the experimental range of z, it will not exceed
5% of κi→i+1. This value is negligible and we don’t consider the second-neighbour
coupling in the upcoming models.

2.6 Phase-locked VECSELs with complex coupling
The coupling coefficient among neighboring lasers might be introduced in the rate
equations as an additive term [Erneux 2010; Siegman 1986; Glova 2003]. For exam-
ple, the system of rate equations for two coupled lasers with identical cavity param-
eters reads:

dE1

dt
=−

(
1

2τcav
− κ0

2
∆n1(1− iα)

)
E1 +

1
2

coupling with nearest neighbor︷ ︸︸ ︷
|κ2→1|eiθ2→1

c0

Lcav
E2 , (2.20)

dE2

dt
=−

(
1

2τcav
− κ0

2
∆n2(1− iα)

)
E2 +

1
2

coupling with nearest neighbor︷ ︸︸ ︷
|κ1→2|eiθ1→2

c0

Lcav
E1 , (2.21)
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d∆n1

dt
=

1
τ
(∆n01−∆n1)−κ0∆n1(A2

1 +

cross-saturation︷ ︸︸ ︷
ξ12A2

2 ), (2.22)

d∆n2

dt
=

1
τ
(∆n02−∆n2)−κ0∆n2(A2

2 +

cross-saturation︷ ︸︸ ︷
ξ21A2

1 ). (2.23)

The notation here is inherited from the single VECSEL laser description in sec-
tion 2.4. Complex amplitudes of the lasers E1,E2 now have additional coupling
terms. The overlapped portion of the diffracted field is injected per each round-trip in
the VECSEL cavity 1/τround-trip = c0/Lcav. Variations of the carrier densities per unit
volume ∆n1,2 are also modified due to the presence of a neighbor. A cross-saturation
parameter ξi j characterizes the competition of the lasers due to the common gain me-
dia when the carriers are shared between lasers. Thanks to the spatial degeneracy of
the laser cavity, the overlap in the gain region is negligible, and the cross-saturation
is taken to be zero: ξi j = 0. For simplicity, we also take identical carrier lifetimes τ ,
photon lifetime in the cavity τcav, κ0 coupling constants of the stimulated emission
and, of course, Henry factor α .

Identical mask-holes lead to symmetry in the fields overlap, i.e. (κ1→2 = κ2→1).
We introduced a new variable to parameterize the coupling strength |κi→ j|c0/Lcav =
|ηi, j|/τcav, which describes the overlap scaled by the intracavity losses. Following
the same methodology as presented in section 2.4 we simplify eq. (2.23) with the
help of adiabatic elimination of ∆ni, whose instant values are defined according to:

∆ni(t) =
∆nth,ir

1+A2
i /Fsat

=
1

κ0τcav

ri

(1+A2
i /Fsat)

, (2.24)

where i = 1,2, pumping rate r = ∆n0τcavκ0 and saturation photon number Fsat =
1/(κ0τ). After substitution of the formula into eq. (2.23), we separate real and imag-
inary parts of the complex field amplitudes E1,E2. Finally, the rate equations for the
two diffraction-coupled lasers in the degenerate cavity take the form:

dA1

dt
= − A1

2τcav

(
1− r

1+A2
1/Fsat

)
+
|η |

2τcav
cos(ψ +θ)A2,

dA2

dt
= − A2

2τcav

(
1− r

1+A2
2/Fsat

)
+
|η |

2τcav
cos(ψ−θ)A1,

dψ

dt
=

α

2τcav

(
r

1+A2
2/Fsat

− r
1+A2

1/Fsat

)
−

− |η |
2τcav

(
A1

A2
sin(ψ−θ)+

A2

A1
sin(ψ +θ)

)
+Ω, (2.25)

where A1 and A2 are the amplitudes of the two laser fields, normalized so that their
squares correspond to the respective photon numbers. The third variable ψ is the
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phase-difference between the lasers and Ω is the detuning between the laser’s free-
running oscillation frequencies.

2.6.1 Critical coupling
Our main interest is to estimate the parameters of the system when two lasers are
phase-locked. This means the system of several oscillators has stabilized phase-
differences and, thus, oscillates together as one. Depending on the coupling strength,
it is known that coupled lasers with non-zero frequency detuning Ω can reveal differ-
ent dynamical regimes [Erneux 2010; Siegman 1986; Glova 2003], which indicate
proximity to phase-locking. Let us first visualize these regimes in the case of a real
coupling (θ = 0). Fig. 2.23 shows results of numerical integration of eqs. (2.25) with
different values of detuning Ω between lasers, but with the same random initial con-
ditions.

FIGURE 2.23: Phase-locking dynamics of two lasers with different
detuning values. The subplots (a,b,c) represent the amplitudes Ai

and the inset subplots (d,e,f) show the phase-difference ψ . Here (a,
d) calculated with Ω = 0, (b,e) with Ω/2π = 100 kHz, and (c, f) -
with Ω/2π = 500 kHz. Coupling strength |η | = 0.005, α = 4,r =

1.2,Fsat = 1010.

Phase-difference ψ stabilizes around constant value ψ = 0 in the system with
zero-detuning (subplot (d) of Fig. 2.23). This means that the lasers oscillate coher-
ently "in-phase". The situation is different in the cases (e) and (f). Subplot (e) shows
a "stairs"-like the behavior of the phase-difference, which tends to be locally sta-
bilized 5. However, the phase-difference constantly increases because the coupling
strength is insufficient to balance the detuning. It is similar to the case (f), but this
one doesn’t have even local stability of the phase-difference. The modulus of the
coupling strength is taken |η | = 0.005, which corresponds to a diffraction coupling
length z around 700µm.

To investigate the border between those regimes, we can numerically calculate
the phase-difference at a fixed time6 (t = 0.1ms) with different values of |η |. The
curves calculated for different detuning values are shown in Fig. 2.24.

5This regime is equivalent to the coherent spikes in class-B lasers [Nixon 2011]
6The time is chosen when the phase-looking is reliably expected.
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| |

�cr�cr

FIGURE 2.24: Phase-difference at t = 0.1ms calculated with sec-
tion 2.6. Different colors of the curves correspond to the different
detuning values. Red - Ω/2π = 200 kHz, Blue - Ω/2π = 400 kHz.
Steady-state phase-difference is ψ = π/2 at the coupling strength
equal to the critical coupling value marked by the vertical dashed lines

of the corresponding color.

It can be noticed that the minimal coupling strength allowing phase-locking cor-
responds to the phase-difference ψ = π/2. This fact is also noticed and reported by
several groups [El-Nashar 2009; Silber 1993] in class-B lasers. Two lasers phase-
locking requires an absolute value of the coupling strength to exceed the critical
coupling value |η | ≥ ηcr = Ωτcav [Fabiny 1993].

The values of the critical coupling calculated with this formula are shown as
dashed lines in Fig. 2.24. They are marked with arrows of color corresponding to
the plotted data. A smaller detuning value is shown in red. This ηcr value is pro-
portionally lower than the one shown in blue for the larger detuning. This formula
is valid in the case where the lasers have identical parameters in terms of pumping
rate, losses, cavity lifetime, and real-valued coupling strength η . To correct the for-
mula ηcr = Ωτcav for the case of the complex coupling we should first consider the
steady-states of the system.

2.6.2 Steady-state solutions
Two lasers are phase-locked in the global steady-state when both amplitudes and the
phase-difference are stabilized, i.e.

dA1

dt
= 0,

dA2

dt
= 0,

dψ

dt
= 0. (2.26)

These derivatives are defined according to eqs. (2.25). One can see that equal am-
plitudes A1,A2 in the steady-state are only possible if the coupling is real, i.e. its
argument is θ = 0 or π . Real coupling leads to the simple analytical solutions for the
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system’s steady-state [Karuseichyk 2023]:

A1,st = A2,st =

√
Fsat

(
r

1−|η |cosψst
−1
)
,

ψst =


arcsin

Ωτ

|η |
+2πm,m ∈ Z, stable for θ = 0

π− arcsin
Ωτ

|η |
+2πm,m ∈ Z, stable for θ = π .

(2.27)

In the general case, we can estimate the steady-state amplitudes using a small cou-
pling approximation. Then, two lasers are phase-locked with different amplitudes
given by the solutions of the first two equations in the system (2.26):

A1,st =
√

Fsat(r−1)
(

r
r−1

|η |
2

cos(ψst +θ)+1
)
+O(|η |2),

A2,st =
√

Fsat(r−1)
(

r
r−1

|η |
2

cos(ψst−θ)+1
)
+O(|η |2). (2.28)

Here the expansion over coupling strength |η | is used, assuming that |η | ≪ 1. We
substitute these solutions into the third equation of the system (2.26) and after a series
of simplifications we obtain an analytical formula for the phase-difference ψst :

ψst =


arcsin

Ωτ

|η |(cosθ +α sinθ)
+2πm,m ∈ Z,

π− arcsin
Ωτ

|η |(cosθ +α sinθ)
+2πm,m ∈ Z.

(2.29)

This expression takes real values indicating phase-locking when the argument of the
arcsine is less than one, i.e.

|η |> Ωτ

(cosθ +α sinθ)
.

Then, a minimal modulus of the coupling strength, that allows the phase-locking is

ηcr =
Ωτ

(cosθ +α sinθ)
, (2.30)

and the phase-difference is ψst = π/2 as it is for the purely real coupling. In these
analytical results we can see a similarity with a relation developed by several groups
[Gao 2018; Dave 2020; Bouwmans 2000] for the micro-lasers and VCSELs.

We found our results comparable, even though these groups studied arrays phase-
locking by different coupling mechanisms, and the dynamical class of their system
is class-B. To check how legitimate is the obtained relation, we compare its values
with numerical solutions of the eqs. (2.25) in Fig. 2.25.
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FIGURE 2.25: Phase-difference dependency of the coupling strength
modulus with different values of the coupling argument. The blue
color gives results of numerical solution eqs. (2.25) for ψ at t = 0.1ms.
The Red color shows the data calculated by approximation formula
eq. (2.29). Subplots calculated with (a) θ = 0, (b) θ = π/6, (c) θ =
π/4. The vertical dashed lines illustrate critical coupling values given

by the eq. (2.30). Here α = 4,Ω/2π = 250 kHz

One can see from Fig. 2.25, that the admitted approximation leads to the accurate
solutions. Phase-difference at the critical coupling strength is equal to ψst = π/2. An
interesting result is that the non-zero coupling argument θ leads to a lower critical
coupling threshold. It means that detuned pairs of lasers are crucially easier to phase-
lock at small z with non-zero θ , which leads to a decrease of Re[η].

Based on eq. (2.30) critical coupling value also depends on the value of the α

factor. Its values characteristic for VECSEL’s gain chips will also lower critical
coupling if compared to solid-state lasers. Amplitudes defined according to eq. (2.28)
with a substitution of eq. (2.30) give a deviation range of less than one percent when
compared with numerical results. Due to this, we consider that the total solution is
accurate.

Finally, the stability of the obtained steady-state must be assessed.
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2.6.3 Stability of the steady-state solutions
Stability analysis of the differential equation system solutions is commonly per-
formed with the help of Jacobian matrix J. We obtain this matrix by linearising
the differential equations system 2.25 around the investigated steady-state solution
A1,st ,A2,st ,ψst:

J(A1,st,A2,st,ψst)≡



∂
dA1
dt

∂A1

∂
dA1
dt

∂A2

∂
dA1
dt

∂ψ

∂
dA2
dt

∂A1

∂
dA2
dt

∂A2

∂
dA2
dt

∂ψ

∂
dψ

dt
∂A1

∂
dψ

dt
∂A2

∂
dψ

dt
∂ψ



∣∣∣∣∣∣∣∣∣∣∣∣∣
A1,st ,A2,stψst

(2.31)

When the steady-state (A1,st,A2,st,ψst) experiences some perturbations, the re-
sponse of the system is determined by the eigenvalues λi of the Jacobian matrix
J(A1,st,A2,st,ψst). In the general case, the eigenvalues are complex, their number is
given by the rank of the Jacobian. Steady-state (A1,st,A2,st,ψst) is stable if all real
parts of λi are negative.

It is easy to understand stability criteria following the changes in systems phase-
trajectory. Instant amplitudes and phase-differences can be added to the three- di-
mensional phase space. It has three dimensions because our system has three vari-
ables A1,A2,ψ and the rank of the Jacobian is three. The distance between the two
sequential points of the phase-trajectory is proportional to a combination of the eλit .
If all real parts of Jacobian eigenvalues λi are negative all eλit converge to the zero
with time. This indicates the stability of the system and says that perturbations are
damped. A positive eigenvalue, on the contrary, leads to the exponential growth eλit

in time. The solution diverges and potential steady-state A1,st,A2,st,ψst is unstable
then.

Steady-state solutions are developed in the previous section.

A1,st =
√

Fsat(r−1)
(

r
r−1

|η |
2

cos(ψst +θ)+1
)
,

A2,st =
√

Fsat(r−1)
(

r
r−1

|η |
2

cos(ψst−θ)+1
)
,

ψst =


arcsin

ηcr

|η |
+2πm,m ∈ Z

π− arcsin
ηcr

|η |
+2πm,m ∈ Z ,

ηcr =
Ωτ

(cosθ +α sinθ)
. (2.32)

It was shown, that there are two solutions for the phase-differences ψst, which we
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would like to investigate. Each solution consequently leads to the corresponding Ja-
cobian matrix and different sets of eigenvalues. Based on the calculated eigenvalues
shown in Fig. 2.26 both steady-states ψst show symmetric stability regions around
|η |= 0 for θ = 0. The eigenvalue are real, when |η | ≥ ηcr.

FIGURE 2.26: Jacobian eigenvalues λ1,λ2,λ3. Subplot (a) represent
stability of steady-state with ψst = π−arcsin ηcr

|η | . Subplots (b,c) shows
eigenvalues for ψst = arcsin ηcr

|η | . Subplots (a, b) are calculated with
Ω = 0. Subplot (c) calculated with Ω/2π = 50 kHz and shows an
unstable region limited by ηcr marked with light-red. Here α = 4,r =

1.2,Fsat = 1010,θ = 0.

The steady-state solution ψst = π−arcsin
ηcr

|η |
is stable if η is negative and ψst =

arcsin
ηcr

|η |
is stable in case η is positive. A non-zero detuning Ω leads to a non-zero

minimal coupling value required for laser phase-locking. This results in a shift of
the stability regions for a constant ηcr (light red region if Fig. 2.26 (c)). At the same
time, it does not affect conclusions regarding the sign of the required positive and
negative coupling.

Among the three eigenvalues presented in Fig. 2.26, only λ3-curve crosses zero
and changes its sign. The global stability of the steady-state thus depends only on
the sign of λ3. Due to this, further plots represent only the values of λ3.

FIGURE 2.27: Dependency of the real parts of the eigenvalue λ3 on
θ . Subplot (a) shows the effect of different |η | values, when when
α = 4 and. Subplot (b) shows the effect of α when |η |= 0.005. Here

r = 1.2,Fsat = 1010,Ω = 0.
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Fig. 2.27 shows the effect of the complex coupling argument and Henry factor on
stability regions for steady-state phase-difference ψst = π − arcsin

ηcr

|η |
. Both α and

|η | change the absolute value of the eigenvalues λ3. More important is the range,
where λ3 is negative. The range doesn’t depend on |η |, but different α weakly
shift the boundaries, as shown in the inset. This shift is connected with the crit-
ical coupling dependency on the Henry factor. All conclusions here are valid for
phase-locked cases, which clearly satisfy condition |η | ≥ ηcr, as mentioned above.
To conclude, we can also look at the signature of the critical coupling value |ηcr|
in λ3 depending on detuning. Fig. 2.28 gives a dependence of Re[λ3] for θ = 0 in
subplot (a) and θ = π/4 in subplot (b) on coupling strength modulus and detuning.

0.50.1   0.2    0.3    0.4

�cr = ��(cos �/4 + � sin �/4)

Re[�3]>0

Re[�3]<0

Re[�3]>0

Re[�3]<0

� cr 
= �
�
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FIGURE 2.28: Real part of the eigenvalue λ3 depending on the
detuning values and the coupling value |η | with fixed parameters
α = 4,r = 1.2,Fsat = 1010,θ = 0. The argument of the complex cou-

pling is (a) θ = 0 and (b) θ = π/4.

The red line in Fig. 2.28 is given by the formula for the critical coupling value ηcr
for correspondent detuning Ω and coupling argument θ . The line separates the region
of positive and negative values of Re[λ3]. Positive values lay below the red curve for
both (a) and (b) subplots and correspond to the unstable region of parameters.

This analysis confirms the analytical results of eq. 2.30. At the same time, θ af-
fects the laser dynamics in a complicated manner. There is a range of parameters
in Fig. 2.28 (b), where the system is stable (Re[λ3] < 0) but the imaginary part of
the eigenvalue λ3 is not equal to zero. A non-zero imaginary part indicates the exis-
tence of oscillation of the system’s parameter around the steady-state on the way to
synchronization. Fig. 2.29 shows the imaginary part of λ3 for θ = 0 in subplot (a)
and θ = π/4 in subplot (b) as a function of the coupling strength modulus |η | and
detuning Ω.
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FIGURE 2.29: Imaginary part of the eigenvalue λ3 depending on the
detuning values and the coupling value |η | with fixed parameters α =
4,r = 1.2,Fsat = 1010,θ = 0. The argument of the complex coupling

is (a) θ = 0 and (b) θ = π/4.

The stable region (above the red line in Fig. 2.29) reveals different valued of
Im[λ3] at fixed |η | and Ω with different θ (θ = 0 in subplot (a) and θ = π/4 in
subplot (b)). Thus, this suggests to expect θ to influence the steady-state reaching
time.

Indeed, Fig. 2.30 shows a difference in the stabilization time of the system’s
amplitudes A1,A2 and phase-difference ψ with different θ values. Here coupling
strength modulus |η | is taken identical among all cases. A two-laser system reaches
its steady-state more rapidly with θ = π/8,θ = π/4, than with θ = 0, i.e. when the
imaginary part of the coupling coefficient increases.

(b)(a)

0.445

0.455

FIGURE 2.30: Phase-locking dynamics of two lasers with different
values of the coupling argument θ shown in different colors. Sub-
figure (a) shows amplitude dynamics A1,A2 and (b) shows dynamics
of phase-difference. α = 4,r = 1.2,Fsat = 1010, |η |= 0.007, Ω/2π =

50 kHz.
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However, physically, different θ values correspond to a different modulus of the
coupling coefficient |η | and this comparison is not very accurate. However, the mod-
eled case can be compared with a value corresponding to a small diffraction distance
length, such as z around 340µm (see Fig. 2.20), where the absolute value of the over-
lap changes much slower than the argument. All curves correspond to the same initial
conditions.

2.6.4 Coupled VECSELs with different cavity parameters
Before, the asymmetry of the two laser systems was introduced only through the
detuning Ω between the lasers. This can be caused by mechanical misalignments
of the optical system, aberrations, and other factors that alter the details of the laser
cavity. Additionally, variations in the pumping rate r may occur due to non-uniform
processes across the semiconductor gain chip. The same factors can impact the losses
in the cavity and lead to variations in the cavity length, thereby influencing the photon
lifetime in the cavity (τcav). In case these laser parameters are different from one laser
to the other, the rate-equation system must be modified. The rate equations for a pair
of lasers with non-symmetrical system parameters read as follows:

dA1

dt
= − A1

2τcav,1

(
1− r1

1+A2
1/Fsat

)
+
|η |

2τcav,1
cos(ψ +θ)A2 ,

dA2

dt
= − A2

2τcav,2

(
1− r2

1+A2
2/Fsat

)
+
|η |

2τcav,2
cos(ψ−θ)A1 ,

dψ

dt
=

α

2

(
r2

(1+A2
2/Fsat)τcav,2

− r1

(1+A2
1/Fsat)τcav,1

)
−|η |

2

(
1

τcav,2

A1

A2
sin(ψ−θ)+

1
τcav,1

A2

A1
sin(ψ +θ)

)
+Ω . (2.33)

The laser phase-locking can still be observed in this case as well if the coupling
strength |η | is large enough to compensate for these differences.

We are interested again in the estimation of the critical coupling strength with
a simple analytical formula. The rate-equation system is more complicated in this
case, however, we repeat the earlier established approach for the approximation of
the amplitude steady-state solution when the coupling is small. Then, the steady-state
amplitudes are given by:

A1,st =

(√
Fsat(r2−1)

r1

r1−1
|η |
2

cos(ψst +θ)+
√

Fsat(r1−1)
)
,

A2,st =

(√
Fsat(r1−1)

r2

r2−1
|η |
2

cos(ψst−θ)+
√

Fsat(r2−1)
)
. (2.34)

Then, we make an additional approximation, considering ψst = π/2 at the critical
coupling. Using this, we obtain a critical coupling value given by the eq.( 2.35).
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ηcr =
α|τ2− τ1|+2τ1τ2Ω(√

r1−1
r2−1

τ1 +

√
r2−1
r1−1

τ2

)
(cosθ +(τ1 + τ2)α sinθ)

. (2.35)

When parameters are identical (r1 = r2 and τ1 = τ1) the formula becomes eq. (2.30).
The phase-difference is based on the same arcsine dependency given by eq. (2.36) on
the updated critical coupling value ηcr.

ψst =


arcsin

ηcr

|η |
+2πm,m ∈ Z

π− arcsin
ηcr

|η |
+2πm,m ∈ Z ,

(2.36)

To validate the obtained formula, we calculate phase-difference at a fixed time
t = 0.5ms with different values of the coupling strength. We are doing this in the
same manner, as we did for identical lasers parameters case (shown in Fig. 2.24).
Numerically calculated phase-differences with eqs. (2.33) are presented in blue and
red color in Fig. 2.31 for three different values of coupling argument θ = 0,π/6,π/4.

FIGURE 2.31: Phase-locking process of two lasers with different
pumping rates (r1 = 1.2,r2 = 1.1) and photon lifetimes in the cav-
ity τ1 = 30.15ns,τ2 = 30ns, Ω/2π = 250kHz. Other parameter

α = 4,Fsat = 1010.

Approximated values with eq. (2.32) and eq. (2.35) are shown in bright blue,
pink, and green colors. These data overlap with numerically calculated curves com-
pletely for θ = π/6 and π/4. Eventually, the maximal difference between approx-
imated and numerically calculated values is given by θ = 0. It occurs because the
phase-difference is notably different from π/2 at the critical coupling value in this
case. This deviation leads to an overestimation of the minimal coupling strength
value with eq. (2.35). Nevertheless, this does not contradict phase-locking criterion
|η |> ηcr.
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2.7 Conclusion to chapter 2
This chapter introduces a first step in the understanding of the VECSEL array phase-
locking dynamics. Herein, we introduced principles governing laser emission gener-
ation in this type of laser.

We highlighted the advantage of VECSEL class-A dynamics over class-B VC-
SEL dynamics due to the absence of relaxation oscillations. Then, we introduced
a list of VECSEL laser peculiarities, such as the Henry factor, which happened to
be dramatically important and affect the phase-locking criterion. More importantly,
we prepared a basis for a many-laser array dynamics description given by the rate
equation model with diffraction coupling. This model was used to develop analytical
relations characterizing phase-locking among these lasers.

These analytical results are summarized in a framed list below.

• Phase-locking between two lasers requires coupling strength modulus
exceeding a critical coupling value.

|η | ≥ ηcr =
α|τ2− τ1|+2τ1τ2Ω(√

r1−1
r2−1

τ1 +

√
r2−1
r1−1

τ2

)
(cosθ +(τ1 + τ2)α sinθ)

.

• Two phase-locked lasers steady-state is given by the formulas:

A1,st =

(√
Fsat(r2−1)

r1

r1−1
|η |
2

cos(ψst +θ)+
√

Fsat(r1−1)
)
,

A2,st =

(√
Fsat(r1−1)

r2

r2−1
|η |
2

cos(ψst−θ)+
√

Fsat(r2−1)
)
,

ψst =


arcsin

ηcr

|η |
+2πm,m ∈ Z, if Re[η]>0,

π− arcsin
ηcr

|η |
+2πm,m ∈ Z , if Re[η]<0.

(2.37)

with a small-coupling approximation.
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This chapter aims at describing theoretically the fundamental regularities of the
ring laser array phase-locking. The ring topology of the loss mask promotes the
widest range of applications among the other topologies. It naturally creates con-
ditions for the phase-locking in a vortex configuration. This was experimentally
and numerically studied in the case of class-B laser dynamics [Pal 2017; Pal 2015;
Cookson 2021b]. At the same time, the system has never been investigated for class-
A lasers with a complex coupling. Vortex solutions correspond to the persistence
of a gradient in the phase differences between the array’s elements. Those optical
structures exhibit a zero intensity in the center of their intensity profile accompanied
by a phase singularity. The chapter starts with the introduction of the rate equations
generalized to describe a ring laser array with n members. The complex coupling be-
tween the nearest-neighbors is introduced in the model. In total, the main goal of the
chapter is to derive analytical formulas for the steady-state solutions and investigate
ring laser array stability.

3.1 Rate equations with near-neighbor coupling in ring ge-
ometry

In a ring configuration with n lasers, each laser field obeys the following set of cou-
pled equations of evolution:

dAi

dt
=− 1

2τcav

(
1− r

1+A2
i /Fsat

)
Ai+

|η |
2τcav

[cos(φi+1−φi +θ)Ai+1 + cos(φi−1−φi +θ)Ai−1] ,

dφi

dt
=

α

2τcav

r
1+A2

i /Fsat
+

|η |
2τcav

[
Ai+1

Ai
sin(φi+1−φi +θ)+

Ai−1

Ai
sin(φi−1−φi +θ)

]
+∆ωi.

(3.1)

Each laser labeled by i = 1 . . .n is described by a field complex amplitude Ei =
Ai(t) eiφi(t). All notations are inherited from the case of only two lasers in chap-
ter 2. We use identical photon lifetime in the cavity τcav and excitation ratio r for
all lasers, ∆ωi is the frequency detuning of the i-th laser from the closest cavity reso-
nance. Henry factor is denoted as α , and Fsat stands for the saturation photon number
(Fsat = 1010). The real amplitude Ai is normalized in such a way that its square cor-
responds to the photon number in the corresponding laser.

The behavior of the system is encapsulated in the phase differences between
neighboring lasers that we denote ψi ≡ φi+1 − φi. We introduce a new variable
Ωi ≡ ∆ωi+1−∆ω1 as a detuning from the first laser. Then the rate equations (3.1)
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expressed in terms of the ψi’s become:

dAi

dt
=− 1

2τcav

(
1− r

1+A2
i /Fsat

)
Ai +

|η |
2τcav

[cos(ψi +θ)Ai+1 + cos(−ψi−1 +θ)Ai−1]

dψi

dt
=

α

2τcav

(
r

1+A2
i+1/Fsat

− r
1+A2

i /Fsat

)
+
|η |

2τcav

(
Ai+2

Ai+1
sin(ψi+1 +θ)−

− Ai

Ai+1
sin(ψi−θ)− Ai+1

Ai
sin(ψi +θ)+

Ai−1

Ai
sin(ψi−1−θ)

)
+Ωi. (3.2)

The steady-state solutions are easy to extract for the case of zero-detuning be-
tween the lasers (Ωi = 0) and identical laser parameters (same r,τcav) following
[Bouchereau 2022]. Identical parameters lead to the phase-locking with the same
amplitude all over the array Ai = Ast for every i given by the eq. (3.3). The phase-
differences are also identical ψi = ψst and given by eq. (3.4).

Ast =
√

Fsat

√
r

1−2|η |cosψst cosθ
−1 , (3.3)

ψst =
2πq

n
, (3.4)

here q ∈ Z is an integer number. The steady-state solutions given by eq. (3.4) are
consistent with the results previously published for class-B lasers [Pal 2017]. The
number q in this case is associated with the topological charge (TC) of the beam
formed by superposing the emission of n lasers.

3.1.1 Topological charge multistability
The term "topological" is used because the properties are preserved under continuous
deformations of the wavefront. The topological charge q is the number of times a 2π-
phase shift accumulates around the center of the beam. This parameter is equivalent
to the orbital angular momentum (OAM) integer index in terms of laser beam topol-
ogy or winding number. The phase accumulates equal portions ∆φ = ψst between
neighboring lasers. The more lasers form a ring array, the smaller portions of the
phase increment for a fixed q, and the smoother the field and the phase distribution.
This leads to a better quality of the vortex intensity profile. The beam becomes closer
to the Laguere-Gaussian beam with the OAM index equal to the TC, i.e. l ≡ q.

An example of the phase relations for a phase-locked array of n = 10 lasers with
different topological charges is presented in Fig. 3.1. Each circle illustrates a laser
according to its position in a ring array. The color of the circle corresponds to the
instant phase when the phase differences are stabilized. The phase-difference incre-
ment for an array of n = 10 lasers corresponds to 2π/10 for TC q = 1 and 4π/10 for
q = 2 for example.
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�

FIGURE 3.1: The steady-states phases φi for the n = 10 laser array
phase-locked with different topological charges. The phase differ-
ences along the array are constant and defined according to eq. (3.3).

Based on the circle’s colors in Fig. 3.1 it is easy to see that q = 0 corresponds
to the "in-phase" oscillation of the laser array. TC-carrying arrays with q = ±1,±2
show a phase gradient. Phase distribution for q =±2 leads to the twice faster phase
accumulation and "in-phase" oscillation of the opposite pairs of lasers.

Let us now investigate phase-locking dynamics for an array of ten lasers (n= 10).
Fig. 3.2 shows numerical solutions of eq. (3.2) with five different sets of initial con-
ditions. Different colors correspond to different sets of initial conditions. Each curve
corresponds to the dynamics of one laser, thus one color represents n curves. The
phase difference solutions include a redundant curve for ψ10(t), which is connected
to the other solutions through ψ10 = φ1−φ10 =−∑

n−1
i=1 ψi.

FIGURE 3.2: Time evolution of the amplitudes Ai normalized to the
zero-TC (q = 0) steady-state value (a) and phase differences ψi (b)
for n = 10 lasers in a ring array. Different sets of initial conditions
correspond to the different colors. Each curve represents the dynamics
of one laser from the array or one phase difference. The different
initial conditions can lead to phase locking with different topological
charges equal to q= 0,−1, +1,−2, and +2. Parameter values: α = 1,

η = 0.005,θ = 0, τcav = 30ns, ri = r = 1.2, Ωi = 0.

We can see that different initial conditions lead to phase-locking with different
TCs q. It is easy to notice in Fig. 3.2 that synchronization time increases with an



3.1. Rate equations with near-neighbor coupling in ring geometry 55

increase of the topological charge. Amplitude and phase-difference stabilization for
|q| = 2 takes longer duration than for |q| = 1. Both cases show longer synchroniza-
tion time then the "in-phase" solution (q= 0). It is also easy to notice that the positive
and negative solutions are degenerate in amplitudes. They can’t be identified based
on power measurements.

Total amplitude degeneracy

The argument θ of the complex coupling coefficient does not affect the steady-state
solution for the phase differences with zero-detuning. They always satisfy ψst =
2πq/n (see eq. 3.4). At the same time, the coupling argument affects the solution
for the amplitudes. The amplitude’s dependency on θ is π−periodic.This leads to
interesting points for θ = π/2±πk,k ∈ Z, where the amplitudes are degenerate for
all q.

Usually, the coherent "in-phase" state, with the ψst(q = 0) = 0 is always charac-
terized by the maximal output power and thus preferred by the system. This means
that q = 0 is always a predominant solution even though stability conditions allow
different values of q to be generated. However, the case θ = π/2 leads to the situa-
tion, where any q has a potentially equal chance to be generated by the array.

Let us investigate this case numerically by solving eqs. 3.2 with θ = π/2. To do
this, we generate a different set of initial conditions, leading to phase-locking with
q = 0,1,−1. Additionally, we introduce a perturbation in the shape of a Gaussian
pulse to the rate equations to check how stable the steady-states are. A Gaussian pulse
of a 1µs full width at half maximum (FWHM) is added at t = 100µs to the equation
for the first laser amplitude as an additive term. Dynamics of the ten amplitudes and
phase-difference stabilization are shown in Fig. 3.3.

q=1

q=0

q=-1

q=-1, 0, 1

Perturbation with a Gaussian pulse

FIGURE 3.3: Time evolution of the amplitudes Ai (a) and phase dif-
ferences ψi (b) for n = 10 lasers. Different colors correspond to dif-
ferent initial conditions: q = 0 yellow, q = 1 green, and q =−1 pink.
The complex coupling argument is θ = π/2. Other parameters have
the same values as in Fig. 3.2. Amplitude of the Gaussian pulse is

8×10−3√Fsat.
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Indeed, these numerical calculations confirm the degeneracy of the amplitudes
for different topological charges if the coupling argument is θ = π/2. Moreover,
all three solutions are shown to be stable and conserve their TC under an additional
perturbation. This kind of system response is observed in all investigated cases when
the amplitude of the perturbation is in a range from 0 to 0.8×10−3√Fsat. The addi-
tional energy brought by the Gaussian pulse to the first laser is transferred between
all lasers in the array and then dissipated. Both transient regimes starting at t ∼ 0µs
and after Gaussian pulse perturbation have the same duration for different q. This
is different from results with any values of θ different from π/2. Thus we conclude
that the difference in the transient time duration is connected only with this amplitude
stabilization mechanism.

3.1.2 Topological charge distinguishibility
How can one distinguish experimentally TC of the phase-locked solution if the am-
plitudes are degenerate in |q|? Even though the cases with different charges q are
indistinguishable based on the power measurements, they have different interference
patterns. The coherent "in-phase" phase-locking ψst = 0 leads to constructive inter-
ference with a strong intensity maximum in the center of the beam. Contrary to this,
any non-zero topological charge leads to destructive interference in the center of the
beam, i.e. to a field singularity. We can model the far-field patterns with correspond-
ing TCs to help their identification.

The far-field region is also known as the Fraunhofer zone. The specific distance
that marks the transition between the near field and the far field of a laser beam de-
pends on the wavelength of the laser light and the characteristics of the optical sys-
tem. It is important to note that this is a general guideline, and the transition between
the near-field and the far-field is not a sharp boundary. The beam characteristics
gradually change over a certain distance. However, a common rule of thumb used to

approximate this transition is the Rayleigh length zR =
πw2

0
λ

, where w0 is beam-waist
and λ is a wavelength of the radiation.

To illustrate this, we can approximate each laser leaving the VECSEL cavity by a
Gaussian beam. The following formula gives the propagation of the Gaussian beam
along z in cylindrical coordinates:

Ei(r,z) = Ei,0
w0

w(z)
exp
{

r2

w(z)2

}
exp
{
−i
(

kz+ k
r2

R(z)
−ψGouy

)}
, (3.5)

Here w0 = 200µm is the beam-waist of the laser beam, λ = 1µm is the wavelength
of the radiation, k = 2π/λ is the wave number, zR is the Rayleigh length, and Gouy
phase-shift is ψGouy = arctan

z
zR

and accumulates with propagation. The beam radius

w(z) and its radius of curvation R(z) depend on the propagation distance according
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to:

w(z) = w0

√
1+
(

z
zR

)2

, R(z) = z

(
1+
(

zR

z

)2
)
. (3.6)

Fig. 3.4 illustrates the far-field patterns of the arrays of n = 5 and n = 10 lasers
phase-locked with different topological charges and with a distance between the cen-
ter of the mask to each hole equal to 350µm.

q=0                   q=1                  q=-1                q=2                  q=-2

(a)

(b)

FIGURE 3.4: Calculated field patterns and phase profiles for (a) n = 5
and (b) n = 10 lasers. Upper row: Calculated far-field intensity pat-
terns for n = 5 lasers with topological charges q = 0,1,−1,2,−2.
Lower row: corresponding phase of the field. The patterns are cal-
culated for λ = 1µm with mask hole diameters equal to 200 µm
and a distance between the center of the mask to the holes equal to
350µm. Propagation distance from the mask: z = 50zR, where zR is

the Rayleigh length.

The patterns in Fig. 3.4 are calculated for z = 50zR and correspond to the far-field
zone. It is easy to notice that in the case when the array has a few members (n = 5
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in subplot (a) of Fig. 3.4), the far-field gives clear information about its topological
charge including its sign. Each intensity pattern is unique. In the case n = 10 (shown
in (b)) the positive and negative q lead to the situation when they are indistinguish-
able. The diameter of the beam increases with the increase of TC. Thanks to this the
modulus of TC |q| can be obtained, but not the sign of it.

The smooth far-field of the n = 10 array is an example of a perfect vortex, but
the unsmooth case n = 5 can be even more valuable. The star-shaped structures in
the center of the patterns corresponding to |q| = 1 are analogous to flower-shaped-
optical vortex arrays (FOVAs) [Fan 2021]. Such structures provide a resource for
complicated manipulation of particles, as evidenced by their distributions of linear
and angular momenta shown in Fig. 3.5.

Indeed, Fig. 3.5 shows that, unlike the usual single Gaussian beam, the consid-
ered ring-shaped array of beams with a non-zero TC carries a non-zero linear mo-
mentum density, which is proportional to the Pointing vector projection, and some
time-averaged angular momentum density. These values are computed with refer-
ence to [Allen 1992]. The projection of these vector fields and the gradient force are
shown in Fig. 3.5 by arrows of different lengths.

(d) (e) (f)

(a) (b) (c)

FIGURE 3.5: Intensity profile of n = 5 laser array (a,b,c) and n = 10
laser array (d,e,f) phase-locked with q = 1, corresponding to the ones
shown in Fig. 3.4. Each subplot illustrates projection of the (a, d)
gradient force G =∇(E⃗E⃗∗), (b, e) Poyting vector P ∝ E⃗×B⃗ and (c, f)
time-averaged angular momentum density profiles M ∝ r×⟨E⃗× B⃗⟩.
The length of the arrows is proportional to the normalized values of

represented parameters.

If a particle is placed inside the laser beam, the change in light intensity creates
a gradient in the radiation pressure (see (a,b) in Fig.3.5). Then, the particle expe-
riences a force pushing it towards the region of higher intensity. Additionally, the
particle will experience a momentum change forcing the particle to propagate along
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the FOVA/OVA light corridor (star-shape or ring in Fig. 3.5). Due to this, such far-
field structures can be potentially useful as micromotors, optical tweezers, etc.

3.1.3 Henry factor influence on the ring laser array phase-locking
Characterization of multi-oscillator systems is often performed with the use of the
order parameter rop defined according to the formula:

rop =
1
n

∣∣∣∣∣ n

∑
i=1

e−iφi

∣∣∣∣∣ . (3.7)

A completely ordered system corresponds to the coherent synchronous "in-phase"
phase-locking of the array given by q = 0 and rop = 1. Any non-zero TC q ̸= 0 leads
to rop = 0.

Let us now follow the order parameter in time, when an array of ten lasers n = 10
tends to be phase-locked. The data for different values of the Henry factor calculated
with the same set of initial conditions are shown in Fig. 3.6.

FIGURE 3.6: Time evolution of order parameter rop for solutions, for
which the laser array is phase-locked with q = 0 for different values
of α . Critical points are shown as black dots. Parameter values: η =

0.005,θ = 0, τcav = 30ns, ri = r = 1.2, Ωi = 0.

From this figure, we can see that the linewidth enhancement factor α plays a
significant role in the stabilization dynamics of the system. The cases presented in
Fig. 3.6 tend to be phase-locked with rop = 1, which means the "in-phase" solution
with |q|= 0. The TC of the steady-state is predefined by initial conditions and none
of the system parameters can affect it. At the same time, the α factor affects the
phase-locking time. One can notice that there is a certain number of critical points
corresponding to the local minima and maxima of each curve. These critical points
are marked with black dots. Their number increases with an increase in the Henry
factor.

These points seem to correspond to an attempt of the laser array to partially
phase-lock when the phase-difference of a certain pair of lasers is ψi ∼ π/2 [El-
Nashar 2009]. The origin of these critical points is complicated to trace as a function
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of some specific parameters. However, we can visualize which pair of lasers has this
difference in a particular case. To do this, we calculate the order parameter again for
α = 7, but different initial conditions. The new curve is plotted in Fig. 3.7 (a). Then,
we extract time moments of these critical points and calculate all phase-differences
ψi at each of them1. The obtained phase-differences are presented in subplot (b) of
Fig. 3.7 by the circles of a certain color in a ring array. The index position i in the
array gives the index of calculated phase-difference ψi.

(a)

(b)

FIGURE 3.7: Time evolution of order parameter rop (a) and phase-
differences ψi at the instants given by the critical points of the order
parameter. Critical points are shown as black dots. Parameters used
for the computations are α = 7, η = 0.005,θ = 0, τcav = 30ns, r =
1.2, Ωi = 0. Solutions for the phase differences ψi are illustrated in
ring arrays according to their indexes i. The black thick edges of the

circles indicate a value |ψi|= π/2.

First of all, one can notice that the new initial conditions leading to the curve
shown in subplot (a) of Fig. 3.7 exhibit a smaller number of critical points than shown
in Fig. 3.6 for the same Henry factor α = 7. This confirms again the strong role of
initial conditions. The thick black border of the circles in subplot (b) of Fig. 3.7
corresponds to the phase differences satisfying |ψi| ∼ ±π/2. The index of the circle
corresponds to the index of the index of phase-difference ψi. We can conclude each
"critical" time moment corresponds to one pair of lasers exhibiting |ψi| ∼ ±π/2.

1Including the redundant curve for ψ10(t), which is connected to the other solutions as ψ10 =
φ1−φ10 =−∑

n−1
i=1 ψi
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3.1.4 Role of the detuning in the ring laser array phase-locking
In this section we investigate phase-locking in the case of a non-zero detuning Ωi
between the lasers. Unfortunately, there are no elegant analytical solutions for the
steady-states of the system 3.2 in this case. Once the lasers in a ring array do not
oscillate at the same frequency the amplitudes and phase-differences Ai,st,ψi,st are
different in steady-state. Even a single laser detuned from the array (Ωi ̸= 0) leads
to the redistribution of the phase-increment asymmetry between all lasers and con-
sequently, to different steady-state phase-differences and amplitudes. This happens
because the ring coupling geometry acts as a transfer bus equalizing the system dis-
turbance. A variation of the lasers phase or amplitude increments immediately affects
the neighbors. None of the laser amplitudes and phase-differences are degenerate,
thus we investigate phase-locking only with the help of numerical modeling.

We choose randomly distributed detuning values Ωi for the ring laser array of
n = 10 laser. The Ω’s are distributed with a zero mean value and standard deviation
∆Ωi/2π = 105 rad/s.

First of all, we investigate the changes of the behavior of the global parameter
characterizing the system phase-locking, i.e. the order parameter rop. Fig. 3.8 shows
its dependence on the Henry factor with the same initial conditions.

FIGURE 3.8: Time evolution of order parameter rop with different
values of α factor. Other parameter values are η = 0.005,θ = 0,

τcav = 30ns, r = 1.2.

We can see that the order parameter is not equal to zero for all cases in Fig. 3.8.
The system with non-zero detuning can be only phase-locked with 0 < rop < 1. The
perfect order of the system (rop = 1) corresponds to zero phase-differences ψi be-
tween all neighbouring lasers. This can’t be achieved unless the detuning impact
is negligible, i.e. it is completely compensated by large enough coupling strength
[El-Nashar 2009].

Fig. 3.8 also shows the impact of the α factor on the steady-state value. The
impact is not the same as with a zero-detuning system (cf. eq. 3.6), for which α

dependence was not observed. This is similar to the results obtained for two lasers
in the preceding chapter. Indeed, the steady-state solution depends on α only in the
presence of different detunings for the different lasers.
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Phase-locked ring laser array at critical coupling

Now, we wish to determine the minimal coupling strength for which a ring laser array
with non-zero detuning can be phase-locked. To this aim we numerically calculate
phase-differences at a fixed time moment2 (t = 1ms) with different values of |η |, but
with the same set of initial conditions. The detuning values are the same as in the
previous subsection. The curves calculated for different detuning values are shown
in Fig. 3.9 for three different values of the α factor.

|    |

(a)

(b)

(c)

q=1

q=0

Not phase-locked

FIGURE 3.9: Phase-difference at t = 1ms calculated with eq. (3.2) as
a dependency on |η | with different α values. Henry factor is α = 2
in subplot (a), α = 4 in (b) and α = 8 in (c). Other parameters are
the same for each subplot: θ = 0, τcav = 30ns, ri = r = 1.2. Different

colors correspond to different lasers

The minimal coupling strength |η | separating the stochastic range of the phase-
difference ψi distribution and phase-locked range gives us a critical coupling value
ηcr. Comparing its values in subplots (a), (b), and (c), it is easy to see that the
increase of α factor destabilizes the phase-locking of the laser array: in (a) ηcr is
close to 0.008, in (b) ηcr is around 0.03 and (c) ηcr reaches 0.048.

Let us first focus on the phase-locked solutions in the coupling range |η | > ηcr.
Subplot (a) in Fig. 3.9 shows us that some |η | values lead to the phase-locking of the

2This duration is taken to be long enough for phase-locking to have time to happen.
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ring array with an average phase-difference associated with TC q = 1. These ranges
of |η | are shown in a light blue background. We cannot see similar results for α = 4
and α = 8. Moreover, when α = 8 (see subplot (c) in Fig. 3.9) some |η | parameters
do not allow our system to phase-lock with chosen initial conditions within a duration
t = 1ms.

Additionally, one can notice that the stochastic range becomes limited in values
of ψi close to ηcr right before the stable phase-differences range. It is of interest to
study this range in more detail for the examples α = 4, and α = 8. These transient
regions of the subplots (b, c) in Fig. 3.9 are given in Fig. 3.10 (a, b) respectively.

I II III I II III

FIGURE 3.10: Phase-difference at t = 1ms calculated with eq. (3.2)
as a dependency on |η | with different α values. These subplots show
detailed parts of Fig. 3.9 (b,c) at the border of the laser array phase-
locking. Henry factor is (a) – α = 4, (b) – α = 8. Parameter values:

θ = 0, τcav = 30ns, ri = r = 1.2.

Three characteristic ranges of coupling strength can be recognized in these plots.
The first region (range number I) corresponds to values of |η | for which the lasers
are not phase-locked.

It corresponds to |η | from 0 to 0.0317 in subplot (a) and |η | from 0 to 0.0488 in
subplot (b). The range in between gives an intermediate regime (range number II) of
coupling strength values, where phase-differences are not stabilized but are limited
in values. This range corresponds to |η | from 0.0317 to 0.0338 in subplot (a) and to
|η | from 0.0488 to 0.0545 in subplot (b). The ranges |η | ≥ 0.0338 in subplot (a) and
|η | ≥ 0.0545 in subplot (b) evidence the laser array phase-locking with unequally
distributed phase-differences ψi (range number III). It is clear that the width of the
stochastic range number I and the intermediate range II increase with an increase of
the α factor.

Dynamical regimes characteristic of each of these ranges can be visualized in
the phase-space of the system. The full phase-space has 2n− 1 dimensions, but
its projection on any pair of variables permits to have an idea of the global attractor
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shape. This projection on the plane based on the values of A1,A2 is shown in Fig.3.11
for α = 8. It illustrates the changes of laser amplitudes A1,A2 within the time period
t from 0.4 ms to 0.5 ms.

FIGURE 3.11: Dynamic trajectories in the A1,A2 phase-space for dif-
ferent values of the coupling strength within the time period t from
0.4 ms to 0.5 ms. Subplot (a) calculated with η = 0.036 (range I),
while subplots (b) with η = 0.051 (range II), and (c) with η = 0.07

(range III). Here α = 8, θ = 0, τcav = 30ns, r = 1.2.

Subplot (a) corresponds to the value of the coupling strength from the range num-
ber I defined in Fig. 3.10 (b). It clearly shows stochastic trajectories without any reg-
ular patterns. The laser array is not phase-locked in this case and this behavior is very
typical for the transient laser dynamics. The opposite case is shown in subplot (c).
Here coupling strength lies in the range number III in Fig. 3.10 (b). Here the transient
regime is over and the amplitudes are constant. The attractor is shown by a single
dot and the system is phase-locked. The intermediate regime is shown in Fig. 3.11
(b). The coupling strength used for this calculation belongs to the range number II in
Fig. 3.10 (b). Here the coupling is not strong enough to allow phase-locking between
the lasers. The amplitudes draw an orbit trajectory in the phase-space. All laser
amplitudes and phase-differences exibit infinite oscillations in this regime without
reaching fixed steady-state.

3.2 Ring laser array stability analysis
In this section, we come back to the investigation of the ring laser array steady-states,
when the detunings are all equal to zero (Ωi = 0). As we have seen in chapter 2, the
analysis of the Jacobian gives a clear picture of the system stability. At the same
time, with an increase in the number of lasers, the rank of the Jacobian increases as
(2n−1), where n is the number of lasers. Then, the analysis requires a study of the
(2n−1) eigenvalues, which is not easy to compute even for n = 10 lasers.

Eventually, the query can be simplified. We can isolate the sub-system consisting
in one of the lasers interacting with its neighbors [Bouchereau 2022]. Let us consider
the steady-state amplitude and phase of the selected laser {Aq,ψq} with a variation
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of its parameters around this steady-state solution according to the rate-equations
eq. (3.2).

The Jacobian matrix obtained by linearization of eq. (3.2) around steady-state is
then:

J(Aq,ψq)≡


∂

dAi
dt

∂Ai
|Aq,ψq

∂
dAi
dt

∂ψi

∣∣∣∣
Aq,ψq

∂
dψi
dt

∂Ai
|Aq,ψq

∂
dψi
dt

∂ψi

∣∣∣∣
Aq,ψq


=

1
2τcav

 r
1−A2

q/Fsat

(A2
q/Fsat+1)

2 −1 −|η |Aq sin
(
ψq +θ

)
2αr Aq/Fsat

(A2
q/Fsat+1)

2 +
|η |(2sin(θ−ψq)+sin(ψq+θ))

Aq
−2|η |cosψq cosθ


(3.8)

As discussed in chapter 2, the steady-state solution is stable if all eigenvalues of
J(Ai,ψi) have a negative real part. When applied to the presented Jacobian, this is
equivalent to claiming that Tr(J)< 0 and Det(J)> 0. Here we consider these criteria
separately.

Trace of Jacobian Tr(J)< 0

The condition for the negative Jacobian trace has the shape of eq. 3.9, when the cal-
culated trace is simplified.

Tr(J · τcav) =
4|η |2 cos2 θ cos2 ψq−4η cosθ cosψq

r
+

1− r
r

< 0, (3.9)

This condition is a quadratic equation of |η | and it leads to the following requirement
for the phase-locking:

−1
2
(√

r−1
) 1

cosψq
< |η |cosθ <

1
2
(√

r+1
) 1

cosψq
. (3.10)

If the coupling is real (θ = 0), this condition is always true [Bouchereau 2022].
Additionally, it is worth mentioning that the factor (

√
r± 1) > 0 is always positive

when the pumping rate is above the laser threshold r > 1. The stable region for η

given by the condition is very broad. Its borders are unreachable in our experiment
and thus the condition is always true in practice.

Nevertheless the left border containing 1
2 (
√

r−1) can be reached in some exotic
cases. Numerically, we checked this case with eq. (3.2). Eventually, this border sep-
arates the region of the global laser array phase-locking with equal phase-differences
ψi =ψq, and the array separates in at least two phase-locked ensembles. Within these
ensembles all lasers have the same amplitude, but the lasers are phase-locked only
within their group of lasers.
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Determinant of Jacobian Det(J)> 0

Let us now consider the condition determined by the Jacobian determinant. Its for-
mula can be simplified considering a small coupling strength, which is typical for a
small length z of the diffraction cavity:

Det(J · τcav) =
|η |(r−1)

(
cosψq(α sinθ +2cosθ)+α cosθ sinψq

)
2r

+O
(
η

2)> 0.

(3.11)

From this, we obtain a new requirement, which says that the stable phase-locking
with ψq is possible with α < αlim given by:

αlim =
2cosθ cosψq

sin
(
ψq−θ

) . (3.12)

It is clear that the limitations are different for different topological charges (ψq =
2πq/n). The limiting value of the α factor is π periodic in θ . A graphical illustration
of the formula is given in Fig. 3.12 for |q| = 1,2,3. The coupling argument θ range
from −π/2 to π/2.

FIGURE 3.12: Dependency of the limiting values of the Henry factor
for different topological charges: pink curve is for |q|= 1, green is for
|q| = 2 and yellow curve is for |q| = 3. Dashed lines cross-sections
with each curve give a limiting value of the Henry factor for a real

positive coupling (θ = 0).

We can see that the choice of θ crucially affects the stability range for each pre-
sented TC q. The α range below the q-curves corresponds to the stability of this
phase-locked solution. Conversely, the α factor values above these curves corre-
spond to a negligible probability of observing the corresponding topological charge.
The eq. 3.12 can be simplified for a long diffraction cavity length z, where the cou-
pling argument θ tends to 0.
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Then, the limiting Henry factor is given by [Bouchereau 2022]:

αlim =
2

tan
2πq

n

, (3.13)

and its simplified expression given by a Taylor expansion is:

αlim =
2

tan 2π

n

≃ n
π
− 2

3
2π

n
+O(

1
n3 ). (3.14)

3.2.1 Orbit solution
The simplified model presented above is approximate. We expect the calculation of
the full set of eigenvalues to provide more detailed information about the dynamical
regimes of the array. For example, this can be done with the simplest ring configu-
ration, such as a three-laser array (n = 3). It is easy to calculate all of the five eigen-
values λi. The first three eigenvalues λ1...3 are always negative, while λ4,5 change
their sign depending on the system’s parameters. Fortunately, the eigenvalues λ4,5
are degenerate, and thus, the stability analysis of the system can be encapsulated into
the behavior of a single parameter, such as λ4. The dependency of the real part of
the eigenvalue λ4 on real-valued coupling strength is shown in Fig. 3.13 for different
steady-states of the system (q = 0,±1) and Henry factors.

FIGURE 3.13: The real part of the eigenvalue λ4 dependency on the
coupling strength for the (a) vortex |q| = 1 and (b) "in-phase" q =
0 steady-state of the system. The curves were calculated with r =
1.2,Fsat = 1010. All curves for different α overlap in subplot (b). The
positive coupling values correspond to θ = 0 and negative to θ = π .

The range of the coupling values for which the solution q ̸= 0 is stable decreases
with an increase of the Henry factor (see subplot (a) of Fig. 3.13). From this, we can
say that the large value of the α factor limits the chances of phase-locking in an OV.
A zero topological charge q = 0 however is always stable in the positive coupling
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range (see subplot (b) in Fig. 3.13), and its stability does not depend on the values of
α .

In the presented case of n = 3 lasers, the choice between the stable OV and the
"in-phase" solution can be done with the choice θ . But the stable coupling range for
|q| = 1 solution shifts to the positive range of coupling strength with an increase in
the number of lasers n. Examples of the real part of the sign-changing eigenvalues
dependencies on coupling value for arrays of three, four, five, and six lasers are
shown in Fig. 3.14

FIGURE 3.14: The real part of the eigenvalues λn,i dependencies on
the coupling strength for the vortex |q|= 1 steady-state of the systems
on n lasers. The curves were calculated with r = 1.1,Fsat = 1010,α =
6. The positive coupling values in this figure correspond to θ = 0 and

negative to θ = π .

The figure shows that the choice between the vortex and in-phase solution is
possible to do in our system only for three lasers. Any other arrays will be multistable
in the positive coupling range. The positive coupling values in this figure correspond
to θ = 0 and negative to θ = π . The case of the vortex solution with four lasers is
exceptional. It is given only by one coupling strength value η = 0. This means that
we will not be able to observe it. Thus the vortex with |q|= 1 can be observed with
three lasers or more than four.

Let us focus on the investigation of the three lasers case. We now investigate the
borders of the stable region in subplot (a) in Fig. 3.13. At the border, the real part of
λ4 is equal to zero but its imaginary part is zero only at zero coupling strength |η |= 0.
Due to this, the left borders of the stable regions (marked with vertical dashed lines in
subplot (a)) correspond to the purely imaginary eigenvalues, i.e. correspond to Hopf
bifurcation. Then, the laser array dynamics is described by the undamped periodic
fluctuations of the amplitudes and phase-differences around their mean values. The
amplitude dynamics are visualized in Fig.3.15 for two different sets of initial condi-
tions. One set of initial conditions leads to the laser array phase-locking with a mean

phase-difference
n
∑

i=1
ψi corresponding to q = −1. This case is shown in the subplot

(a) in Fig. 3.15. Another initial condition leads to phase-locking with q = 1. This
case is shown in subplot (b). In the figure, one can notice a Gaussian pulse (with
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FWHM 1µm at 50µs) added to perturb the amplitude of the first laser A1 to check
how stable the system is with the considered parameters.

FIGURE 3.15: Amplitude dynamics of tree-lasers array with parame-
ters (|η |= 0.008,θ = π,r = 1.2) correspondent to the "orbit" solution
with zero eigenvalues λ4,5, while the rest are negative. The total phase
accumulation between the lasers corresponds to (a)q =−1,(b)q = 1.

The fact that the amplitudes of the three lasers exhibit similar oscillations but with
a phase-shift one with respect to the other shows the existence of a periodic transfer
of power between the lasers. For example, in the case of subplot (a) in Fig. 3.15,
some power is transferred to laser 3, then to laser 2 and back to laser 1. The direction
is reversed in this case of Fig. 3.15 (b).

The solutions are shown to be stable and self-healing in time. We can see that
the array restores the order of laser-to-laser energy transfer after a Gaussian pulse
perturbation during a short transient process. The order gives the direction of the
energy transfer and can be visualized in Fig.3.16.

(a)

(b)

t=54 �s t=56 �s t=58 �s t=60 �s

t=57 �s t=59 �s t=61 �s t=63 �s

FIGURE 3.16: Near-field intensity variations of a n = 3 lasers ring
array around (Ast,|q|=1). (a) q = −1, (b) q = 1. All of the parameters
correspond to the parameters used to calculate (Figs. 3.13, 3.15) |η |=

0.008,θ = π,r = 1.2,α = 6.
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Each laser of the array is approximated with a Gaussian beam (w0 = 1 mm)
located at a distance ρ = 2 mm from the center of the array. The amplitudes and
phases are given by the solution shown in Fig. 3.15. This realization corresponds
to the intensity kink propagating along the laser array with the energy transfer from
laser to laser in time. The direction of the transfer depends on the phase relations,
i.e. TC sign. For example, subplot (a) shows counterclockwise energy transfer and
subplot (b) shows the clockwise direction of the intensity kink travel. If α increases,
we can stay in this periodic solution by decreasing the coupling strength |η | (see
Fig. 3.15). In this case, the amplitude of the oscillations increases. Contrary to this,
the frequency of the oscillations then decreases. Identical solutions exist in the arrays
with larger dimensions. For example, Fig. 3.17 shows the case of vortex and anti-
vortex solutions in the n = 5 laser array.

FIGURE 3.17: A set of intensity variations around (Ast,|q|=1) in the
near field of the laser array of n= 5 lasers. η = 0.0012,r = 1.2,α = 6.

The direction of the kink rotation always corresponds to the TC q. Those "orbit"
solutions give information about the charge without the far-field or interference anal-
ysis. The information is accessible through the intensity fluctuations of the lasers and
its readout requires only power measurement with some spatial resolution.

3.3 Conclusion to chapter 3
To conclude this chapter, we stress the fact that we have developed a generalized
model for a ring laser array with n lasers, where the next-neighbor complex coupling
is introduced. Phase-locking of the array is characterized by a discrete number of
solutions for phase-differences. The amplitudes have equal values for positive and
negative TCs. We also obtained an analytical formula for αlim giving the limit of the
Henry factor where non-zero TC can be observed.

These analytical results are summarized in a framed box below.



3.3. Conclusion to chapter 3 71

• Ring lasers array steady-state is given by the formulas:

Ast =
√

Fsat

√
r

1−2|η |cosψst cosθ
−1 ,

ψst =
2πq

n
q ∈ Z.

• We derived an analytic formula for the critical value of the α factor,
which gives boundaries for the stable phase-locking with TC q and in-
cludes a dependency on the complex coupling argument θ .

αlim =
2cosθ cosψq

sin
(
ψq−θ

) .
We numerically studied the phase-locking dependence of the ring laser array with

non-zero detuning on the α factor and discovered the range of coupling strengths,
where the infinite oscillations, i.e. "the orbit solution" occur. This range increases
with an increase in the Henry factor.

A simple method for TC recognition through the far-field intensity patterns is
introduced. As well, an additional method for TC sign recognition is introduced
based on the periodic intensity changes between the lasers of the array. The second
method requires adjusting coupling strength down to the limit of the phase-locking
stability to see continuous amplitude oscillations.

We also noticed that exceptional points of the coupling argument θ = π/2±
π potentially promise equal chances for all TCs generation. These values of the
coupling argument give zero-limiting Henry factor based on presented dependency
αlim(θ = π/2) = 0. It is complicated to give a conclusion about steady-state stability
in this case and we are interested in continuing the investigation in the next chapter.
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In this chapter, we continue the theoretical study of the ring laser array with a fo-
cus on the probability of phase-locking in a vortex solution (TC q ̸= 0). Those beams
can be very useful in many applications. Such TC-carrying beams show robust-
ness to random perturbations and the ability to conserve their charge [Eshaghi 2021;
Kovalev 2021; Ikonnikov 2020]. They find a wide range of applications for exam-
ple to STED microscopy [Gould 2017], particle manipulation (such as optical trap-
ping, spanners, tweezers, and microscale mass transport [Rafferty 2021; Xiang 2022;
Shen 2021; Zhou 2018; Ambrosio 2012]), for optical communications, improve-
ment of the bandwidth of cryptography protocols [Wang 2016; Yang 2022], and
even coronography [Engay 2020]. These beams are typically formed by passing the
light through a spatially phase-modulating element, such as SLM, birefringent liquid
crystal, axicon, phase-plate [Shen 2019], phase-grating [Harshith 2019], hologram
[Li 2018], or integrating a gain and a loss mask [Seghilani 2016]. Phase-locking
of the laser array with q ̸= 0 has a probabilistic nature. No additional elements are
required then. A generation of topological defects was studied and observed quite
recently in the coupled class-B laser arrays [Mahler 2019b; Pal 2017; Nixon 2013b].
However, the benefits or disadvantages of the VECSEL array for vortex generation
are not clear yet.

In this chapter, we analyze the results of numerical calculations obtained with the
same rate equation system, as investigated in the previous chapter given by eqs. 3.2.
The first part of the chapter investigates the probabilities of the natural phase-locking
to different topological charges q with different parameters of the system. In par-
ticular, we study the influence of the coupling strength and the number of lasers in
the ring array. Additionally, we investigate the effect of the coupling with the next-
nearest neighbor, when each laser is coupled with the four closest lasers. We also
wonder whether the fact that the lasers that we consider here belong to the class-A
dynamical class makes them more robust to the Henry factor than class-B lasers. The
second part of the chapter discusses available methods to force phase-locking with
the desired topological charge. Here we consider a technique of diffraction engineer-
ing when the mask topology is non-uniform and its topology is chosen specifically
for a predetermined solution. A method of the laser array steady-state manipulation
through non-isotropic optical feedback is presented.

The study in this section is performed considering a zero detuning Ωi = 0, and
cavity parameters inherited from the previous section and considered constant (Fsat =
1010,τcav = 30ns). To investigate the probability of laser array phase-locking Pq
with TC q in this chapter we calculate the outcomes with hundreds of randomly
generated sets of different initial conditions. The outcomes are then checked for the
phase-differences stabilization ψi within the t = 10ms time interval (extremely long
comparing the round-trip in the laser cavity). After this, the number of outcomes
with each q is calculated based on the total phase accumulation from laser to laser.
Even though the vortices are highly desired, the beams with TC q = 0 also have a
wide application area thanks to the intense peak in the center of the far field. Thus, a
reliable range of parameters in which any q dominates is of interest.
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4.1 Uniform Coupling
Let us first investigate the possibility of phase-locking with different topological
charges q for a uniformly coupled ring laser array. The coupling is uniform, when
all holes in the array have the same size, and the holes are equally distant from each
other and to the center of the array. The mask should be carefully aligned inside the
laser cavity without tilts.

4.1.1 Influence of the coupling strength
First, we consider only the effect of the coupling strength amplitude |η |, taking the
value of the coupling argument equal to zero θ = 0. For example, this assumption
is legitimate in the case of diffraction cavity length z close to 220µm or 400µm. In
these cases, the coupling is real and positive. The dependence of the overlap on z is
shown in Fig. 2.20 in chapter 2.

The rate equation system (eq. (3.2)) for n = 20 laser array is solved with 1000
random initial conditions to calculate the probability of the different steady-sate so-
lutions. The outcomes of phase-locked cases are sorted according to their TCs. Prob-
abilities to obtain q from −2 to 2 for these cases are shown in Fig. 4.1 for different
values of the real positive coupling strength |η |.

FIGURE 4.1: Probabilities P|q| to obtain a topological charge |q| ver-
sus Henry factor α in a n = 20 lasers array for different values of
the coupling strength |η |: (a) |η | = 0.00125, (b) |η | = 0.0025, (c)

|η |= 0.005 , (d) |η |= 0.025.

The total proportion of phase-locked outcomes is shown as gray dots. This pro-
portion decreases with an increase of the α factor in each subplot in Fig. 4.1. The
value of the coupling strength increases from subplot (a) to subplot (d). We can see
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that the probability of phase-locking with non-zero TC (q ̸= 0) increases for small
values of the coupling amplitude |η | (compare for example (a) and (d)). At the same
time, the probability P|q|=1 of phase-locking in a vortex with |q| = 1 never exceeds
the probability of "in-phase" phase-locking Pq=0. The probabilities of positive and
negative vortices (±q) are equal in all cases. Also, the probabilities to observe non-
zero TC reveal the limit of α parameter, as is predicted with eq. (4.1):

αlim =
2cosθ cosψq

sin
(
ψq−θ

) . (4.1)

The limiting α value gives the maximal value of the Henry factor, where the stable
phase-locking with a certain TC may be observed. The formula gives αlim,|q|=1 = 6.6,
αlim,|q|=2 = 3.6 for n = 20. These values should be compared with the maximum
values of α when phase-locking happens almost every time. Subplots (a) and (b)
agree with the analytical prediction. Nevertheless, eq. (4.1) was obtained with an
assumption of small |η |. This explains the decrease of the numerically obtained αlim
with an increase of the coupling strength in sub-figures (c,d).

4.1.2 Influence of the coupling argument
The above mentioned formula (eq. (4.1)) also predicts a dependence of αlim on the
coupling argument θ . We expect positive values of θ to extend the phase-locking
range of αlim. Conversely, negative values of θ should reduce this range for all TCs.
Probabilities calculated for several coupling argument values are shown in Fig. 4.2.

FIGURE 4.2: Probabilities P|q| to obtain a topological charge |q| ver-
sus Henry factor α in an array of n = 20 lasers for different values
of the coupling argument θ : (a) θ = π/20 (rad), (b) θ = π/10 (rad),
(c) θ = π/2 (rad), (d) θ = −π/20 (rad), (e) θ = −π/10 (rad), (f)
θ =−π/2 (rad). Modulus of the coupling strength is |η |= 0.0025.
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The coupling argument values we used are typical for diffraction coupling length
z around 500 to 600µm. Indeed, the limiting values αlim of the Henry factor change
in agreement with the analytical formula eq. (4.1). In subplots (a), (b), and (c) for
positive θ the limiting values αlim are at least equal to 10. An opposite situation is
shown in subplots (d), (e) and (f) for negative coupling arguments θ . The limiting
Henry factor for |q| = 1 decreases in these cases, such that αlim is close to 4 in sub-
plot (d), αlim is around 2.8 in (e) and αlim is around 0 in (f). The range α from 4 to
10 in subplot (d) and α from 2.8 to 4.6 in subplot (e) gives a negligible chance to see
a phase-locked laser array.

At the same time, subplots (e) and (f) show a new range, where the system phase-
locks close to the out-of-phase solution. The most probable TC is given then by
q = ±10, ψq = ±π , and |q| = 8,9. The portion of the phase-locked cases increases
with the α factor in this case (see α in the range from 5 to 10). The subplots (c) and
(f) show a negligible proportion of phase-locked solution at αlim = 0. However, as
soon as α is more than zero there seems to be no upper limit on α to set a possible
q = 1 solution. The values of α determined numerically for |q| = 1 are plotted in
Fig. 4.3 along with the analytical expression of eq. (4.1).

FIGURE 4.3: Graphical illustration of the limiting Henry factor αlim
for q = 1 calculated according to eq. (4.1) and compared with numer-

ically calculated data from Fig. 4.2.

The analytical formula (4.1) is in good agreement with numerical results. Vertical
dashed lines indicate the coupling argument θ values illustrated in Fig. 4.2. The
point {π/10,12.6} is obtained by extrapolation of the probability data P|q|=1 shown
in Fig. 4.2 (b).

4.1.3 Effect of the number of lasers in the array
In this section, we investigate the influence of the number of lasers in the ring array
on the probability of phase-locking in the vortex (|q| ≠ 0). Eq. 4.1 gives the depen-
dence on n through the steady-state phase-difference ψq = 2πq/n. Thus αlim should
increase with the increase of number n of lasers. Fig. 4.4 shows the evolution of
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P|q| versus α for different numbers of lasers n = 5,10,15,20 in the array for a real
coupling strength |η |= 0.0025. The number of lasers increases from plot (a) to (d).

FIGURE 4.4: Probabilities P|q| to obtain a topological charge |q| ver-
sus Henry factor α for different values of the number n of lasers: (a)

n = 5, (b) n = 10, (c) n = 15, (d) n = 20 with η = 0.0025

The increase in the number of lasers n positively affects probabilities. The range
of α values for non-zero values of probability P|q|=1 increases with a n. For example,
this can be seen when comparing the subplots (a) for n = 5 lasers and (b) for n = 10
lasers, where the peak probability values are Pmax,|q|=1 = 10% and Pmax,|q|=1 = 20%.
At the same time, the vortex probability never exceeds 25% and it is always smaller
than Pq=0, which is shown in Fig. 4.4 as green dots. Furthermore, one can notice that
the high-order vortices with q =±2 have a negligible probability for n from 5 to 10.

We can collect all values of the probability calculated for n from 5 to 20 and stack
them to visualize the border of non-zero probability Pq. Such data are composed in
Fig. 4.5 for |q|= 1 in subplot (a) and |q|= 2 in subplot (b).

(a)
(b)

�lim

�lim

FIGURE 4.5: Probabilities Pq to obtain a topological charge q versus
Henry factor α and n for real positive η = 0.0025. Red curves are
given by the formula eq. 3.13. Plots (a), (b) are for |q|= 1 and |q|= 2.
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Negative topological charges have the same stability regions as the positive TCs.
We can see, that the red line of analytical solution (obtained with eq. 3.13) fits well
the border of the numerically calculated probabilities.

By this, we can conclude, that eq. 4.1 is a good guide to estimate αlim range that
permits obtaining a non-zero TC with a small complex coupling in the ring arrays
with any number of lasers n.

4.1.4 Effect of the next-nearest neighbor
The coupling of the laser indexed i with its second nearest neighbors i± 2 was es-
timated to be small (κi→(i±2) < 0.05κi→(i±1), see Fig. 2.22). This value seems neg-
ligible. Nevertheless, its influence on the probabilities can reveal its influence on
system stabilization in general. The are three subplots in Fig. 4.6 showing the results
of numerical calculations for n = 5,10,15. The coupling with the second neighbor is
taken as 5% of coupling with the nearest neighbor (|η |= 0.0025).

FIGURE 4.6: Probabilities P|q| to obtain a topological charge |q| ver-
sus Henry factor α for different values of the number n of lasers
with 0% (in legend colors) and 5% (in darker legend colors) of
|η | = 0.0025 coupling between next-neighbouring lasers of the ring
array. The nearest-neighbor coupling strength is |η | = 0.0025. Here

(a) n = 5, (b) n = 10, (c) n = 15.

The three corresponding subplots of Fig. 4.4 (a,b,c) without second neighbor in-
fluence are used as backgrounds. Those data are marked by 0%. The data obtained
with 5% coupling are given in a darker color and marked correspondingly. Each of
the calculated cases shows that the influence of the second neighbors is to make q= 0
more probable. At the same time, the corresponding decrease of Pq when one con-
siders coupling to the next-nearest neighbor becomes smaller with an increase of n.
From this, we can also conclude that the smaller the edge-to-edge separation between
the holes, the more phase-locked solutions will have q = 0, because of the increase
of the overlap with the second nearest neighbor. However, we can also notice that an
increase in the number n of lasers makes the laser array less sensitive to the coupling
with the second nearest neighbor. Consequently, most of the time the model can be
kept simple, i.e. one can consider only the coupling with the closest neighbors.
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4.1.5 Comparison with class B lasers
This section addresses the question of whether the class-A dynamical class is more
robust to the Henry factor than class-B lasers. The comparison of the dynamics for
those classes was discussed in section 2.4 for the example of a single laser. Here we
expand the system of the rate equations for class-B lasers with the nearest neighbors
coupling description in the same way as was performed for the class-A VECSEL ring
array. The rate equations system for class-B lasers become:

dAi

dt
=− 1

2τcav

(
1− ∆ni

∆nth

)
Ai +

|η |
2τcav

[cos(φi+1−φi +θ)Ai+1 + cos(φi−1−φi +θ)Ai−1] ,

dφi

dt
=

α

2τcav

∆ni

∆nth
+
|η |

2τcav

[
Ai+1

Ai
sin(φi+1−φi +θ)+

Ai−1

Ai
sin(φi−1−φi +θ)

]
+Ωi ,

d∆ni

dt
=

ri∆nth

τ
− ∆ni

τ
− 1

τ

A2
i

Fsat
∆ni , (4.2)

where τ is the carrier lifetime, ∆ni the carrier density providing gain to laser i, and
∆nth the carrier density at threshold. Results of the simulations with these equations
are shown in Fig. 4.7 for different numbers of lasers and must be compared with
identical simulations for class-A lasers shown in Fig. 4.4.

FIGURE 4.7: Probabilities P|q| to obtain a topological charge |q| ver-
sus Henry factor α with class-B laser array (τcav = 30ps, τ = 1ns)
for different values of the number n of lasers and fixed η = 0.0025.
Sub-figures (a) n = 5, (b) n = 10,(c) n = 15, (d) n = 20 consistent with

Fig 4.4.

The subplots (a-d) in both Fig. 4.7 and Fig. 4.4 correspond to n = 5,10,15,20,
respectively. These simulations show that the probability for a TC q ̸= 0 becomes
much smaller in class-B lasers than in the case of a class-A laser with the same pa-
rameters. For example, Fig. 4.7 (a) shows that with n = 5 it is impossible to generate
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a TC-carrying beam with the class-B laser, while it is observed in ∼ 10% cases with
a class-A laser (see Fig. 4.4 (a)).

Also, by comparing Figs. 4.7 (b) and 4.7 (c) with Figs. 4.4 (b) and 4.4 (c), respec-
tively, one can see that the class-A laser exhibits larger probabilities for TC-carrying
beams to be emitted than the class-B laser. Furthermore, the limiting value αlim of
the Henry factor over which no TC-carrying beam can occur is larger for the class-
A laser than for the class-B laser. This shows the larger interest of class-A lasers
compared with class-B lasers in this context. The probability of generating non-zero
values of q for a class-B laser can be increased by increasing r, as already observed in
[Pal 2017]. For example, probabilities similar to those of a class-A laser with r = 1.2
can be obtained with r > 2.4 in a class-B laser.

4.2 Non-Uniform Coupling
The previous section showed that uniform coupling can’t change the symmetry be-
tween the positive and negative values of TC. It is also unable to provide a "winning"
vortex solution P|q|=1 > Pq=0. The uniform coupling is provided by perfectly sym-
metrical masks. The concept developed in this section is the opposite. Here we
consider the breaking of the array’s rotational symmetry by altering the geometry of
the loss-mask profile.

The difference of such masks with respect to the case of uniform hole parameters
is expected to affect the coupling coefficient between the lasers and thus affect the
dynamics of the system and the choice of the system steady-state. Thus we investi-
gate the generation of asymmetric vortex (AV) beams by introducing different kinds
of asymmetries in the array, called “Gradient", “Random", and “Point defect" masks
and presented in Fig. 4.8.

Uniform Point defect Gradient Random

FIGURE 4.8: Schematic shapes of the different loss-mask patterns,
called Uniform, Point defect, Gradient, and Random. The hole diam-

eters are not to scale.

Here we continue investigations of an array of n = 20 lasers. In the Point defect
case, one of the holes has a smaller or bigger diameter than the rest of the holes. In
the gradient case, the hole diameter increases gradually from the first to the last hole,
while in the random configuration, the hole diameters are randomly chosen around
200µm. The hole diameters in Fig. 4.8 are presented not to scale with the array ge-
ometry. The dimensions are taken in agreement with our experimental possibilities,
the standard hole diameter is taken to be 200 µm, and the center-to-center separation
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between two successive holes is 250 µm. The details of the different masks are given
in Table 4.1.

Hole Index 1 2 10 19 20
“Big" defect 202 200 200 200 200

“Small" defect 197 200 200 200 200
Gradient 197 197.25 199.25 201.5 201.75
Random 197.25 198.25 201 199.5 200

TABLE 4.1: Values of the hole diameters in the different chosen con-
figurations of 20 lasers. The standard deviation of the hole diameters
in the random configuration is chosen equal to 1.5µm, mean value of

200µm.

Coupling between neighboring lasers

Fig. 4.9 shows the computed values of the modulus and argument of coupling coeffi-
cients κi→i+1 in solid lines and κi→i−1 in dashed lines versus laser index i calculated
with eq. (2.18).

0.5

FIGURE 4.9: (a,c,e) Modulus and (b,d,f) argument of the coupling
coefficients between neighboring lasers for the different masks. (a,b)
Uniform and point defect masks studied with z = 500µm; (c,d) Gradi-
ent and Random mask studied both with z= 1000µm and z= 1200µm
(e,f). Solid lines: κi→i+1 ; dashed lines: κi→i−1. The hole diameters

are given in Table 4.1.

Different colors of the lines correspond to the different masks shown in Fig. 4.8,
with the values of the hole diameters given in Table 4.1. The distance between the
centers of the holes is constant and equal h = 250µm. These coupling coefficients
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do not depend on i in the case of the uniform mask, while here we can see how the
variations of the hole diameters affect not only the modulus of the coupling but also
its phase for non-uniform masks. The "Big" and "Small" defect masks are chosen
to observe the positive and negative coupling of the first hole with its neighbors
respectively. These variations around the mean value are large (up to∼ 12%) because
of the small value of the distance z that we have chosen (z = 500µm to 1200µm).
The θi→i±1 are all positive for z = 1200µm, while the distance z = 1000µm leads
to the situation, when the θi→i±1 are negative for certain laser indices i and positive
for others. We have already seen that the θ value determines stability limits and
preferred topological charge.

4.2.1 Phase-locked solutions with non-uniform complex coupling
The final steady-state depends a lot on the initial conditions. At a certain run, it is
possible to generate a vortex solution for each of the loss patterns we investigate.
Phase-difference solution is given in Fig. 4.10 for two different sets of initial condi-
tions, leading to the non-vortex q = 0 (a), (c) and vortex |q|= 1 (b), (d) solutions.

FIGURE 4.10: Phase-differences solutions calculated for different
mask shapes with the coupling values shown in Fig. 4.9. Subplots
(a) and (b) show the phase differences with Uniform and Point defect
masks at diffraction cavity distances z = 500µm. Subplots (c) and
(d) show the phase differences with Gradient and Random masks at
two diffraction cavity distance z = 1000,1200µm. System parameters

used for the calculations are r = 1.2,α = 2.
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The Gradient and Random masks can be investigated for z = 500µm also. But in
this case, only a high-value TC, such as q = 9,8, can be observed. Results for the
cases of q = 9 with Gradient mask and q = 8 with the Random mask are presented in
Fig. 4.11, where the far-field is calculated with the method introduced in Sec.3.1.2.
Each laser is approximated with a Gaussian beam with 200µm beam-waist.

Random RandomGradient Gradient

12

FIGURE 4.11: Intensity patterns and phase distribution patterns cal-
culated for z = 500,750µm for Gradient and Random masks. Phase
difference for the gradient mask corresponds to the topological charge
q= 9 for the Gradient mask and q= 8 for the Random mask. No cases

with q close to ±1 are found.

The phase differences in these cases fluctuate in a wide range and lead to very
complicated far-field intensity patterns inapplicable for regular vortex applications.
Thus, we investigate these topologies at two different distances z= 1000 and 1200µm.
It is important to mention that vortex is always associated with topological charge q
which has two definitions: though the neighboring phase-difference q =

n
2π

(φi+1−

φi) or through the total phase q =
1

2π

n

∑
i=1

arg(E∗i Ei+1) [Pal 2015], where arg takes

values in a range [−π,π]. Non-uniform masks can’t satisfy the first definition. Here
we associate the topological charge with a total phase accumulation. The variance
of the phase distribution depends not only on the mask parameters but also on the
values of the Henry factor and the pumping rate. It increases with the increase of r
and α .

Using the amplitudes and phase differences of the steady states we can visualize
the far field of the VECSEL array with the calculated phase differences. Fig. 4.12
illustrates the far fields of a laser array of n = 20 lasers with non-uniform masks,
where each laser is approximated by a Gaussian beam with 200µm beam-waist (see
section 3.1.2 for details of the method).
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(a) (b) (c)

(d) (e)

(f) (g)

(d) (e)

FIGURE 4.12: Intensity patterns (top row) of the phase-locked laser
array (n = 20, q = 1) with phase differences (bottom row). Sub-
figures named (a-c) correspond to the "Uniform", "Big" defect, and
"Small" defect mask profiles. Sub-figures (d,f) correspond to the Gra-
dient mask at (d) z = 1000µm and (f) z = 1200µm. Far-field profile
with a Random mask with z = 1000µm and z = 1200µm are shown
in sub-figures (e), (g) correspondingly. Intensities normalized to the
beam’s maximum, phase patterns show the phase variation from 0 to
2π . The patterns correspond to solution of the rate-equation with cou-

pling parameters shown in Fig. 4.9.

The doughnut shape and phase singularity are preserved with the non-uniform
masks but with strongly varying qualities. It is easy to see, that the vortices shown in
Fig.4.9 (c), (d), (e) have a better phase profile and a more symmetric intensity beam
profile. These cases are calculated with the mean coupling argument θi→i±1 closer
to 2π/n than other cases, thanks to the coupling argument having both positive and
negative values. The uniform mask leads to the perfectly symmetric beam structure
and perfect vortex phase profile with a phase singularity in the center, even though
θi→i±1 is not zero. As discussed in the previous chapter, the steady-state phase-
differences ψq do not depend on θ with the uniform coupling (see eq. 3.4).

The patterns (b), (f), (g) give an asymmetric beam structure and complicated
phase profiles with a singularity point shifted from the center of the beam with re-
spect to the coupling argument distribution around its mean θi→i±1. For example,
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the strongest deviation of the coupling strength is found for the "Big" defect mask
between the i = 20,1,2 lasers, where the defect hole corresponds to i = 1. This leads
to a spatial shift of the beam topological effect, as can be seen in Fig. 4.12 (b).

Each intensity pattern presented in Fig. 4.12 (b-g) is useful as an asymmetric
vortex (AV). It has been shown that better results in the particle trapping and micro-
motoring domain can be achieved with an AV beam. For example, the rate of micro-
particle motion is shown to increase linearly with the asymmetry of vortex-carrying
Bessel- or Laguerre-Gaussian beams [Kotlyar 2016; Kovalev 2016]. The thermal
damage of the live cells is also reported to be better managed when the OV symmetry
is broken [Kotlyar 2016].

Another example is that the vortex-based information storage using the topo-
logical charge can be improved through additional information encoded in the non-
symmetrical intensity profile [Singh 2023]. The shape of the beam is conserved
through propagation and thus constitutes a unique parameter, similar to the phase
profile of the beam. A strong asymmetry can allow the beam to increase its storage
capacity. However, a strong deformation of the optical vortex can make the informa-
tion carried by the phase profile more difficult to read.

4.2.2 Vortex probability with non-uniform loss-mask profile
Probabilities for the Uniform, "Big" and "Small" defect loss profiles are presented in
Fig. 4.13.

FIGURE 4.13: Probabilities to phase-lock laser array with topologi-
cal charge q. Different subplots correspond to different masks: (a) is

Uniform, (b) "Big" defect, (c) "Small" defect.

The data in Fig. 4.13 are calculated with 500 random initial conditions for each
value of α . The probabilities for the Uniform and "Big" step mask remain very close.
The argument of the coupling has the same sign for each pair of lasers in the array.
The limiting α factor is very high.

A very different case is presented in sub-figure (c) for the "Small" defect. The
limiting Henry factor value αlim = 3.8 is seen only in this subplot. Then, a new
stability range only for q = 0 appears in the range α from 3.8 to 5.3, where 100%
of the phase-locked solutions lead to the "in-phase" array synchronization with q =
0. There is an interesting effect close to α = 2, where 100% of the phase-locked
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cases lead to a non-zero topological charge. The width of the region increases with
a decrease of the coupling strength |η |, but the physical explanation of this effect
requires further investigation. None of these masks changes the symmetry between
the positive and negative values of q.

The influence of the Gradient and Random masks calculated for two different
values of distance z of the diffraction cavity is shown in Fig. 4.14.

(a) (b)

(c) (d)

FIGURE 4.14: Probabilities to phase-lock laser array with topologi-
cal charge q. Subplots (a) and (c) represent the effect of the Gradient
mask, while (b) and (d) show results with the Random holes distri-
bution. Top row (a, b) is calculated with z = 1000µm. The bottom

subplots (c) and (d) are calculated with z = 1200µm.

The first row of the figure is calculated for z = 1000µm, where the sign of θi→i±1
is both positive and negative for different pairs of lasers. The Gradient mask shows
a small symmetry break in the α factor range from 4.5 to 10 in subplot (a). This
symmetry break is given by only several percent of the probabilities Pq=1 > Pq=−1.
Also, a small range α around 0.4 shows destabilization of q = 1 and consequent
symmetry break between positive and negative vortex in subplot (c).

Let us focus on the comparison of the data presented in sub-figures (a), (b). Both
mask geometries show symmetry breaking between +q and −q close to the end of
the α factor stability range. The probability of observing laser array phase-locking
with q = 1 in the range α from 4.8 to 6.3 prevails over Pq=−1. At the same time, the
"in-phase" solution is still more likely to occur. Random mask shows a small range,
where Pq=0 = 0% in the range αlim from 6.8 to 8. The "winning" solution is then
q =−1. At the same time, the number of phase-locked cases decreased dramatically
in this range.

In total, we noticed that there are several cases of dramatic mask geometry im-
pacts. Those cases are shown in Fig. 4.13 (c) for the small "Point defect" mask and
Fig. 4.14 (a,b). Each of the cases occurs when the coupling argument θi→i±1 has
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both positive and negative signs within the same laser array. Other investigated
cases (i.e. Uniform, "Big" defect at z = 500µm and Gradient and Random masks
at z = 2000µm) have only positive values of θi→i±1.

Then in the next step, we investigate a case, when we consider a virtual mask,
which adds θi→i+1 = 2π/n and θi→i−1 =−2π/n between lasers to force the system
phase-locking with an anti-vortex q = −1. The result is shown in Fig. 4.15, where
among the uniformly coupled lasers the condition is satisfied for only one one of
them i = 1 (a), for two lasers with for i = 1,2 (b), for half of the array i ∈ [1,10] (c)
and (d) for each laser in the array i ∈ [1,20].

FIGURE 4.15: Probabilities to obtain topological charge with a
specially designed mask satisfying the criteria θi→i−1 = 2π/n and
θi→i+1 = −2π/n for (a) holes i = 20,1,2, (b) holes i = 20,1,2,3,
(c) half of the array. (d) each hole satisfies the condition. Zero
holes satisfying these criteria correspond to the probability shown in

Fig. 4.13 (a).

Fig. 4.15 shows that this technique indeed allows to increase the value of Pq=−1.
This increase happens thanks to a decrease of Pq=0. Moreover, when one increases
the number of hole pairs for which θi→i±1 = 2π/n, the probability Pq=−1 increases,
as can be seen by comparing Fig. 4.15 (a) where the only value of θi→i+1 is equal
±2π/n, (b) where two holes satisfy θi→i+1 is equal ±2π/n, (c) where half of the
array satisfies θi→i+1 is equal ±2π/n and (d) where the whole array satisfies θi→i+1
is equal ±2π/n. In particular, when the number of lasers for which θi→i+1 is equal
to ±2π/n exceeds n/2, one obtain Pq=−1 ≥ Pq=0. In this case the solution with
non-zero topological charge becomes dominant, like for example in Fig. 4.15 (d).
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4.3 Influence of the optical feedback
There are multiple ways to implement injection feedback for an optically pumped
laser. Here we are interested in optical self-injections of the laser array field with the
help of an external cavity. The main goal of this study is to investigate the role of
optical feedback (OF) in vortex probability manipulation. The OF is known for in-
ducing complicated nonlinear phenomena in laser dynamics [Erneux 2010] including
relatively stable class-A lasers [Kuwashima 2001]. We wish to avoid the investiga-
tion of the unstable dynamics and focus on the selective properties of the external
cavity modes. A simple scheme to obtain non-homogeneous OF, i.e. which is not the
same for all lasers is shown in Fig. 4.16.
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FIGURE 4.16: Optical scheme for the optical feedback realization.
The planar degenerate cavity VECSEL array output is directed to the
phase-plate and OF mirror. The scheme doesn’t show the imaging

optics in the feedback loop.

Let us assume that we have a perfect degenerate cavity in which all lasers oscil-
late with the same frequency close to the cavity resonance. A part of the radiation
leaves a laser cavity and circulates in the external cavity. The external cavity as a
classic Fabry-Perot resonator allows the oscillation at its resonant frequencies. Be-
cause the feedback cavity is very lossy, the feedback can be approximated by con-
sidering just one round-trip in the external cavity. Then, the returning field of each
laser will be decreased in amplitude by the factor γ [Tartwijk 1995; Rogister 2009;
Flunkert 2011]:

γ = (1− r2
1)

r2

r1
, (4.3)

where γ2 is the part of the intensity reflected from the external cavity relative to the
intensity reflected from the laser mirror and γ itself is called the "feed-in" coefficient.
The amplitude reflection coefficient of the laser cavity OC is r1 =

√
R1 and the one

of the external cavity mirror is r2 =
√

R2.
To expand the rate equation model to include the OF, we adapt the Lang-Kobayashi

equations (see [Rogister 2009] eq.2.144) for a class-A laser array. The time delay in
the optical feedback loop is taken τOF = 0. Then, each laser field obeys the following
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set of coupled equations:
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]
+
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A j(t)
Ai(t)

sin(φ j(t)−φ(t)+φOF,i), (4.4)

where notations are inherited from the previous chapters, A j,φ j is the amplitude and
phase of the laser injected into i-indexed laser.

There are several cases, that could potentially lead to the maximization of the
q = 1 probability:

1. Adding a phase=plate inside the OF loop providing an additional phase-difference
−ψOF = φOF,i−φOF,i+11 = 2πq/n between each pair of lasers. This requires
the phase-plate to exhibit an angular gradient phase-shift.

2. Inserting a Dove prism inside the OF. Each laser would then receive a part
of the neighbor radiation. This case can be implemented with an additional
φOF = 0 or −ψOF = φOF,i−φOF,i+1 = 2πq/n.

Fig. 4.17 shows the effect of the feed-in coefficient γ̃ scaled for intracavity losses
γ̃ =

c0τcav

Lcav
γ on the probabilities to obtain different TCs.

FIGURE 4.17: Probability of phase-locking with TC q in a n = 10
laser array system with self-injection (a, b) and injection from the
next-neighbor (c,d). Here (a, c) shows data for ψOF = 0 and (b, d) for

ψOF =−2π/n. The data are calculated with α = 4, |η |= 0.0025.
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Subfigures (a) and (b) correspond to the case of self-feedback, i.e. A j = Ai,φ j =
φi. The second row (c, d) corresponds to the injection from the next nearest neighbor,
i.e. A j = Ai+1,φ j = φi+1. Here are presented both the effect of the injection with a
ψOF = 0 in subplots (a,c) and ψi−ψi+1 = 2π/n in (b,d).

Self-injection (a, b) stabilizes the array phase-locking in the q= 0 solution. There
is no increase in the vortex solution observed both with and without phase-plate. The
situation is very different from this in subplots (c,d). The injection of the signal from
the following neighbor immediately leads to a predominance of vortex solution with
q = 1 over q≤ 0. An increase of γ̃ leads to the predominance of q = 2 etc.

At the same time, a very small value of γ̃ (see (c) with γ̃ less than 0.001) leads to
a small range of unstable dynamics with a small fraction of phase-locked solutions.
Subplot (d) illustrates that the predominant solution can be controlled by the phase
plate. In this case, we add the torsion by injection of the i+1st laser. The phase-shift
induced by the phase-plate is ψOF = −2π/n. Thanks to this, the phase-locking in a
vortex with TC q = 1 is the only predominant solution in the wide range of values of
γ̃ . Fig. 4.18 shows how the probabilities depend on the α factor in these cases of the
injection from the neighbor.

FIGURE 4.18: Probability of phase-locking with TC q in a n = 20
laser array system with a self-injection (a, b) and injection from the
next-neighbor (c,d). Here (a,c) shows data for φOF = 0, (b,d) shows

φOF = 2π/n. The data is calculated with α = 4, |η |= 0.0025.

In both cases of next-neighbor injection with φOF = 0 or −2π/n the symmetry
between the positive and negative vortices is broken. There are signatures of the
different limiting values of the α factor for q = 3, q = 2, and q = 1 around 8, 9, and
10 at the abscissa axis of sub-figure (a). In the second case (b) the limiting factor
for q = 2 has the same value around 9, while q = 1 has a wider phase-locking range
and higher probability than in the case (a). The solution q = 3 can not be observed
anymore in this case. The decrease of the probability Pq=1 in Fig. 4.18 is caused by
the increasing number of phase-locked cases with q > 1.

The method has some common points with the one presented before for two VC-
SELs with injection coupling [Genevet 2010]. It was shown that the stable light
structure can be switched between different steady-states including vortexes having
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different chiralities. This made the light structure to be a so-called addressable vor-
tex. The method was based on the self-injection of the fraction of the same light
structure. In our case, the role of the light structure plays a phase-locked output
beam. Its fracture in our case is well defined. We injected the same rotated light
structure back. But we are also interested in a single laser injection to its neighbor.

We now turn to a smaller number of lasers in the array, namely n = 3 and we
can see the same effect. Fig. 4.19 shows that, in this case, the q = 1 solution has a
prevailing probability in the array phase-locking.

FIGURE 4.19: Probability of phase-locking with TC q in a n = 3
laser array with injection from the next-neighbor as a function of (a)
α factor with γ̃ = 0.0025 and (b) γ̃ with α = 6. Here φOF = 0. The

data are calculated with |η |= 0.0025.

The OV solution probability Pq=1 prevails over others with a value of α more
than 4. The probability slowly increases with γ̃ . Starting from γ̃ equal to 0.003 it
increases affects negatively the probability of OV. In a three-laser array, the TC does
not exceed |q|= 1. This case is potentially the simplest case for the OV generation.
Finally, we inquire whether it is feasible to enhance the probability of phase-locking
in a vortex solely by introducing the neighboring field into a single laser.1. The
calculated results are shown in Fig. 4.20.

FIGURE 4.20: Probability of phase-locking with TC q in a n = 3
laser array with injection from the next-neighbor to the first laser as a
function of (a) α factor with γ̃ = 0.0025 and (b) γ̃ with α = 6. Here

φOF = 0. The data are calculated with |η |= 0.0025.

1I.e. γ̃ = δi,1γ̃ , where δi,1 stand here for Kronecker delta equal to 1, when i = 1, i.e. only for the
first laser and A j = A2,φ j = φ2
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This case is similar to the one shown in Fig. 4.19. However, the probabilities
Pq=0 and Pq=1 are now reach 100%. It is clear that in this case, the large Henry factor
α = 6 permits the vortex solution to be observed in 100% phase-locked cases. Of
course, it occurs if the OF feeding rate is at least equal to 0.0025. Based on a α

factor around 4− 6, we can obtain OV beams in the experiment with quite a weak

OF. For example γ̃ =
c0τcav

Lcav
(1−R1)

√
R2

R1
= 0.005 corresponds to R2 round 1% with

our experimental values (R1 = 99.2%, Lcav = 1m,τcav = 30ns).
By this, we can conclude that a couple of new methods of TC control have been

discovered for the ring laser arrays. The complex coupling is a powerful instrument
to control phase-locking relations between lasers.

4.4 Conclusion to chapter 4
Symmetric ring laser array was shown to always have the maximal probability of
phase-locking with TC q = 0. A decrease in the coupling strength affects positively
the OV probabilities. The same also happens for an increase in the number of lasers.
A ring array with many lasers does not only give a better quality vortex but also has
a higher probability of phase-locking in non-zero TC. We also studied the effect of
the non-zero coupling argument on the probabilities of the different solutions.

One of the most important results is a numerical validation of the analytical for-
mula obtained earlier:

αlim =
2cosθ cosψq

sin
(
ψq−θ

) .
The case of the laser array phase-locking with ±π/2 hasn’t shown the expected

results. Equal intensities was potentially expected to lead to equal probabilities of
phase-locking with different topological charges. However, the numerical calcula-
tions of this case confirmed phase-locking difficulty met in the solid-state lasers with
zero Henry factor [Arwas 2022].

In the remaining part of the chapter, we studied methods of TC modifications.
The study of the impact of non-symmetric complex coupling leads to the following
conclusions. The stabilized phase differences of the phase-locked solution compen-
sate for the variations of the coupling argument. Consequently, significant fluctua-
tions in mask dimensions are detrimental to phase-locking. Diffraction engineering
is a complex tool that cannot be universally applied to every system or application.
In the case of the Random mask, this implies that the standard deviation should not
exceed approximately 2µm at z = 1 mm for investigated mask parameters.

The quality of the vortex beam is found to be strongly dependent on the complex
coupling argument, and it can be effectively characterized by the order parameter.
Contrary to expectations, a Gradient mask profile did not demonstrate any benefits
for vortex beam generation. However, we have established a connection between
the number of lasers satisfying θi→i+1 = 2π/n and θi→i−1 =−2π/n and a dominant
vortex probability.
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The optical feedback showed the most promising results for a phase-locking with
OV. The probability of the OV solution with q = 1 will prevail, in case the optical
feedback allows sending a fraction of the neighboring radiation to each laser. More-
over, a 100% case phase-locked in a vortex with q = 1 was numerically shown to be
achieved in three laser arrays. This occurs when vorticity is only created between
two lasers, i.e. the array phase-locking driven by the second laser injection into the
first one. In total, we showed that even three lasers in the VECSEL array are enough
to implement the method of phase-locking in OV. We believe this method will be
useful for selecting vortex phase-locked solutions in a laser array.
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This chapter describes the experimental realization of the degenerate cavity VEC-
SEL and the development of the VECSEL array. It can be separated into two parts:
laser development and laser characterization. First, the main stages of the degener-
ate cavity VECSEL design and the explanation of key laser component choices are
given. The scheme is inherited from the series of works in the degenerate cavity
laser arrays discussed in the introduction section. It includes an optical pump de-
livery system, a thermally stabilized gain chip, and a planar degenerate cavity. The
experimental scheme of the optically pumped (OP)-VECSEL is shown in Fig. 5.1.

FIGURE 5.1: Scheme of the degenerate cavity VECSEL. The pump
power is delivered by the multimode fiber (∅105µm) to the two lens
system placed in a lens tube. The output coupler is a highly reflective
mirror (R ∼ 99% at λ = 1µm). 1/2 VCSEL gain chip is attached to
the Peltier with thermal paste. Heat excess from the Peltier is dissi-
pated through the metal radiator. The intracavity telescope consists of
two best-form lenses coated with respect to the gain-chip resonance
wavelength (B-coated). The second lens has a four-times longer focal
distance than Lens 1. Thus the telescope provides an enlarged image
of the excited area on the gain chip. The loss mask is a metal plate

with circular holes (σ = 200µm,a = 50µm).

The present chapter sequentially presents the laser development starting from the
optical pump to the VECSEL laser array. It starts with a discussion of the pump
delivery system. We then discuss the pump interaction with the gain chip focusing
on dependent problems, such as the thermal lens effects and thermal rollover of the
laser efficiency. In the same part, the characterization of several VECSEL gain chips
is presented to clarify our choice of the final gain chip samples.

Then, the discussion of the laser cavity schematics and the choice of its elements
is presented. It is accompanied by the corresponding study of cavity stability based
on the ABCD matrix analysis. Finally, we demonstrate the experimental signatures
of spatial degeneracy and our degenerate cavity VECSEL sustaining oscillation of an
array of several lasers.
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5.1 Optical pump
Semiconductor gain chips can be pumped optically or electrically [Guina 2017a].
Electrical pumping is usually characterized by better noise figures than optical ones.
Unfortunately, it cannot provide uniformity in the pumping area, and pump shaping
is not easily applicable in this case either. At the same time, the uniformity of the
gain excitation is highly required for the laser array under study here. Unequal laser
parameters make phase-locking observation and description much more complicated.
Fig. 5.2 shows different possible pumping delivery schemes.

(c)

(a) (b)

Pumping

Gain chip without DBR

Gain mirror

Pumping

Pum
ping

FIGURE 5.2: Typical stable cavity architectures of OP-VECSELs:
(a) linear cavity, (b) DBR-free cavity in transmission, (c) Orthogonal

pumping delivery thanks to a beamsplitter.

The optical pump beam is most often sent under some incidence angle to the
gain chip as shown Fig. 5.2 (a) [Liu 2018b; De 2015; Baili 2009]. Alternatively,
the orthogonal pumping without pumping spot deformation can be delivered using a
beam-splitter as shown in Fig. 5.2 (c) [Bartolo 2022]. However, this would require
inserting the beam splitter inside the cavity at the cost of extra losses. VECSEL gain
chips have a small gain (< 10%), thus the intracavity loss control is critical. Due to
this, inclined pumping is preferable. The incidence angle must be kept smaller than
the Brewster angle to minimize the pump reflection. Moreover, one could think of a
more complicated solution with a shaped pump beam or several pumps.

5.1.1 Pump delivery system
In the experiment, our pump is a diode laser (Aerodiode, LD808-0-0 with a λ =
808nm) with multimode fiber output with a core diameter equal to ∅105µm). The
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pump beam passes a custom two-lens telescope with magnification Γ = 0.8. It is
formed by two best-form spherical lenses (LBF254-040-B, LBF254-050-B). The
best form spherical lenses are double-convex lenses designed with asymmetrical
faces to achieve minimal spherical aberration while still using spherical surfaces to
form the lens. The lenses are mounted using the lens tube. The lens LBF254-040-B
is chosen to be the output lens of the lens tube.

The output of the lens tube corresponds to the image of the facet of the pumping
diode fiber. The beam intensity is decreased with neutral density filters (NDF) and
beam-splitters from the power Ppump = 780mW to 5mW to prevent the saturation
of the camera. The electrical current I = 1.1A . Typically the VECSEL arrays are
investigated around this current value in our experiment. The cross-section of the
pump beam is characterized in the focal plane of the lens tube, i.e. at the focal
distance of the output lens. The output pattern captured by the CCD camera is shown
in Fig. 5.3.

FIGURE 5.3: Experimental pump profile captured by CCD camera in
the focus of the output lens of the lens tube. The camera pixel size is

5.3µm.

The pump spot given by Fig. 5.3 is a multimode beam with a rich speckle struc-
ture. The yellow curve shows the horizontal cut of the cross-section at the maximal
peak intensity of the beam. Its Gaussian fit is shown in red. The curves almost
perfectly overlap. The experimental profile has a tiny top-hat center, which is often
associated with a super-Gaussian beam or a few misplaced Gaussians.

An inclined pump under the angle 53◦ to the normal of the gain chip leads to an
elliptical shape of the pump at the gain chip surface. The average power transmission
coefficient in this case T1/2VCSEL is around 0.67, which can be calculated with the
Fresnel coefficients. The final shape of the excitation area is shown in Fig. 5.3. It
is given by an ellipse with half-axes: a = 50µm, b = 40µm. These are the typical
dimensions at the focus of the pump, i.e. at the focus of the output lens. However,
in the experiment we defocus the pump to increase the spot of the pumping area, i.e.



5.1. Optical pump 99

we move the lens tube away from the structure. In this case, the half-axes of the spot
increase up to a = 75µm, b = 60µm.

5.1.2 Pump induced thermal lens
The pump power absorbed by the gain chip generates both a thermal and an elec-
tronic lens effect on the facet. The carrier profile creates a negative lens effect, while
the thermal profile induces a positive one. This positive converging lens dominates
over the negative electronic lens in VECSELs [Laurain 2009]. The presence of such
a thermal lens has been observed in various works [Laurain 2009; Gredat 2019a;
Bartolo 2022]. The typical temperature distribution induced by the pump beam with
a Gaussian profile has been deeply investigated by [Gredat 2019a]. The profile is
shown in Fig. 5.4.

FIGURE 5.4: [Gredat 2019a]: Calculated steady-state spatial distribu-
tion of the temperature increase in the semiconductor structure. The
longitudinal (respectively radial) temperature profiles at the bottom
(respectively at the right side) of the map are plotted along the blue

and cyan (respectively red and magenta) dotted lines.

Except for the pump beam profile, the temperature profile depends a lot on the
combination of the gain chip material and heat dissipating system [Kemp 2006]. The
formula (5.1) obtained by [Laurain 2009] gives an estimated value of the thermal
lens focal distance fth.

fth ≈
√

π

ln(2)3

(
Lµc

dn
dT

)−1 w3
pκ

εPp
, (5.1)

where Lµc is the wave penetration length in the 1/2-VCSEL structure. The aver-

age refraction index change is
dn
dT

= 2.4× 10−4K−1, κ is the thermal conductivity
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of GaAs, the incident pump power is Pp and ε ∼ 0.3 is the fraction of heat power
generated.

In the experiment, the 1/2-VCSEL structure is optically pumped in a continuous
wave (CW) regime by a commercial fiber-coupled high-power multimode laser diode
within a power range Pp = 0.5− 1.1 W. If the gain chip is excited by the nearly
focused pump beam, the pump spot radius varies from w0 = 40µm to 75µm. Based
on these values, the thermal focal length can vary in a wide range from fth ≈ 40 to
500mm depending on the gain chip distance to the lens tube focus. The existence
of the thermal lens changes the cavity stability. This effect will be considered in
subsection. 5.3.

5.2 VECSEL gain chip
The gain chips are grown by MOVPE in a VEECO-D180 reactor on GaAs substrates
by our collaborators from C2N. The chips consist of a multi-layered semiconductor
structure including a distributed Bragg reflector (DBR), and a gain region contain-
ing different numbers of InGaAs/GaAsP quantum wells. Some of the tested samples
have additional Al layers for improved internal heat redistribution and dissipation.
Heat is extracted from the gain chip by attaching it to a Peltier cooler using a thermal
paste. The Peltier cooler itself is mounted with thermal glue on a copper radiator,
in which cooling water is circulated. The Peltier temperature is maintained at 20◦C
in all of the experiments. Heat dissipation plays a significant role in preventing effi-
ciency rollover [Guina 2017b]. The efficiency rollover limits the output power range
and consequently the number of lasers in the VECSEL array.

A semi-confocal cavity laser setup is built to test the available gain chips for
thermal rollover and efficiency for potential usage in degenerate cavity VECSEL.
Fig. 5.5 shows the output power dependence on the pump power for the several 1/2
VCSEL gain chips.

FIGURE 5.5: Experimental dependencies of the VECSEL output
power PV ECSEL on the pump power Ppump. All gain chips were in-
vestigated in the same cavity configuration. Measurements are made
a the semi-confocal cavity (ROC = 0.99 at 1.064µm) with a Lumics

pump laser diode (808nm, SN02477494)
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A typical value of the pumping rate allowing to stay in the linear regime of a
bare VECSEL is shown to be not much higher than r = 4 for the majority of the
structures. The gain chips have different inner schematics, resonance wavelengths,
and coatings.

The structures labeled GAS864 and VO860C are chosen for the degenerate cavity
VECSEL experiment. These structures have an anti-reflection coating for∼ 1.00µm.
Their central resonance wavelengths are λ = 1.064µm and λ = 1.04µm. Those
lasers have the best efficiency performances. GAS864 has a resonance wavelength
close to the Nd:YAG laser, which has a huge application area. At the same time,
V0860C has a wide range without thermal rollover thanks to the additional Al layers
in the gain chip. The structure used in the particular experiment is specified at the
place where data is presented.

5.3 Stability of degenerate cavity
An optical cavity is spatially degenerate when an arbitrary ray retraces its path after a
single round trip. Spatial degeneracy of the laser cavity could be achieved with a dif-
ferent configuration of intracavity optical elements [Arnaud 1969]. Some examples
of the degenerate cavities are shown in Fig. 5.6.

(a)

(b)

(c)

(d)

FIGURE 5.6: Degenerate cavities geometries. The planar and con-
vex mirrors are shown in gray. Lenses are given in light blue col-
ors. Practically the geometries very widely and successfully imple-
mented are: (a) [Nixon 2013a] and (b) by [Hachair 2008] as degener-
ate cavity VECSELs. (c), (d) are more common as mode converters

[Cheng 2017]

The propagation in this kind of system is associated with equivalent optical paths
for each ray trace. The intensity profile at the input is reproduced at the output.
Due to this, the system is also often referred to as self-imaging. The cavities can
satisfy imaging conditions for a full round trip, as shown in Fig. 5.6 (a-c) or twice for
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a round-trip (Fig. 5.6 (d)). In the first case (a-c), the output is given by the inverted
image of the pumping spot relative to the axis, while in the second case (d) the image
reproduces the object.

Since the main aim of the project is to develop a VECSEL array, one mirror
should be replaced with the 1/2 VCSEL gain chip. Another mirror must be consistent
with the planar loss mask. Only the planar geometry of the cavity shown in Fig. 5.6
(a,d) can satisfy those conditions. The optical pump will excite the field propagating
from the gain toward the output coupler. A mask will be placed in the focal plane of
the intracavity telescope to divide the gain into independent regions.

The planar degenerate cavity is marginally stable and its imaginary properties
are degraded by any lens misalignment and aberration. Thus, the next step is to
investigate the stability and imaging properties of the cavity.

5.3.1 ABCD matrix analysis
The cavity has a cylindrical symmetry and obeys the paraxial approximation. The
stability of the paraxial cavity is easily described by ABCD matrices [Siegman 1986].
The ABCD matrices represent an optical system as a 2×2 matrix, so one can calcu-
late how the optical system affects the path and properties of a beam of light passing
through it.

A ray arriving on an optical element can be parametrized by the coordinates (r,φ),
where r is the distance from the optical center and φ is the angle with respect to the
optical axis. The beam at the output of the system can be calculated by r′ = Mr,
where M is the optical system ABCD matrix of constants:[

r′

φ ′

]
=

[
A B
C D

][
r
φ

]
.

The laser cavity can be presented as a succession of free propagation and lenses.
The reflection on the OC and perfect gain chip will give an identity matrix, while the
transfer matrices of the free propagation and a lens are the following:

• Free propagation on a distance l : MP(l) =
[

1 l
0 1

]
.

• Lens of focal length f : ML( f ) =
[

1 0
−1/ f 1

]
.

Let us now consider a degenerate cavity formed by two planar mirrors and an in-
tracavity telescope (see Fig. 5.7). The alignment parameter l1 represents the distance
between the gain chip and the first lens (with focal lens f1) and l2 gives the distance
between the second lens ( f2) and OC. The misalignment parameter δ is given by the
difference between the distance between the two lenses and the sum of their focal
lengths.
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f1 f2

l1 l2f1+f2+� 

MP(l1) ML(f1) MP(f1+f2+�) ML(f2) Mp(l2)
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FIGURE 5.7: Planar degenerate cavity scheme and graphical notation
of the misalignment parameters l1, l2,δ .

Since we are interested in the parameter of the beam at the output of the VECSEL
at the OC plane, we investigate the beam transformation, when the beam starts its
propagation at the OC, passes the second lens ( f2), it passes the first lens ( f1), reflects
the 1/2 VCSEL gain chip and then pass the same elements in the reversed order.

The propagation matrices in the back (M←) and forward (M→) directions of the
intracavity telescope are given below:

M← = MP(l1).ML( f1).MP( f1 + f2 +δ ).ML( f2).MP(l2) =[
1 l1
0 1

][
1 0

−1/ f1 1

][
1 f1 + f2 +δ

0 1

][
1 0

−1/ f2 1

][
1 l2
0 1

]
, (5.2)

M→ = MP(l2).ML( f2).MP( f1 + f2 +δ ).ML( f1).MP(l1) =[
1 l2
0 1

][
1 0

−1/ f2 1

][
1 f1 + f2 +δ

0 1

][
1 0

−1/ f1 1

][
1 l1
0 1

]
. (5.3)

Then, the full transfer matrix for a round-trip inside the cavity is(
A B
C D

)
= M→.M1/2VCSEL.M← (5.4)

Here the matrix M1/2VCSEL corresponds to the reflection on the gain-chip. The matrix
corresponds to the identity matrix in case the gain chip is not deformed and thermal
lensing is negligible.

The equality of the round-trip ABCD matrix with the identity matrix is the def-
inition of a degenerate cavity. However, in the experiment, we start from a stable
cavity situation to have the laser oscillations. We thus investigate the stability limits
of the cavity given by [Siegman 1986]:

−1≤ A+D
2
≤ 1. (5.5)

The stability criterion eq. (5.5) is met within some range of the mispositioning l1, l2,δ
of cavity elements along the optical axis of the cavity (graphical definition of such
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variables is given in Fig. 5.7). It is important to understand then, what kind of adjust-
ments must be made to reach the proximity of the degeneracy when stable lasing is
achieved. Additionally, it is important to understand, which elements mispositioning
makes more impact the degenerate cavity VECSEL stability.

When solving the stability requirements of the cavity, one finds that the laser is
stable for two bands of focus-to-focus misalignments δ . The values are bounded
between four stability limits, δ1 < δ < δ2 and δ3 < δ < δ4, given by:

δ1 = 0,

δ2 =
f 2
2

l2− f2
,

δ3 =
f 2
1

l1− f1
,

δ4 = δ2 +δ3 =
f 2
2

l2− f2
+

f 2
1

l1− f1
. (5.6)

These stability limits can be named according to the mode size behavior on the cavity
end mirrors as illustrated in Fig. 5.8 (a,b,c,d).

The first solution δ1 (a) is a case where the lenses are separated by f1+ f2, form-
ing a perfect telescope, which produces a collimated beam in both arms. For the next
one δ2 (b) the lenses are separated by f1 + f2 +δ2, such that the focal point between
the lenses is imaged on OC. The third solution δ3 (c) corresponds to a stability limit
for which the lenses are separated by f1 + f2 +δ3, and the focal point between them
is imaged on the gain chip plane. The last one is the δ4 (d) point-point limit, where
the lenses are separated by f1+ f2+δ4, and the focus points of the lenses are imaged
on both cavity ends.

�� 

�� 

�� 

�� 

(b)

(c)

(d)

(a)

FIGURE 5.8: Geometrical representation of the cavity mode at the
stability limits: (a) planar limit; (b) planar-to-point limit; (c) point-to-
planar limit; (d) point-point limit. These results are consistent with

the analysis performed by [Yefet 2013].
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These conditions are stability limits. At the same time, the degeneracy condition
is true only for A = 1,D = 1,B = 0,C = 0. This condition is possible to satisfy with
a lens-to-lens mispositioning equal to δ1 and δ4, when a relation between along-axis
mispositioning of the lenses ∆1 = l1− f1,∆2 = l2− f2 is defined according to:

∆1

f 2
1
=

∆2

f 2
2
.

From this, we can see that the mispositioning of the lens requires an adjustment of

another lens proportional to the square ratio of their focal distances, i.e. ∆2 = ∆1
f 2
1

f 2
2

.
In the experiment, we use lenses with focal lengths f1 = 50mm and f2 = 200mm.
This means, for example, that once the first lens is misaligned (∆1 ̸= 0), the second
one will have to compensate for the misalignment with a factor of 16, i.e. ∆2 =

∆1
f 2
2

f 2
1
= 16∆1. Otherwise, the cavity will not be degenerate.

5.3.2 Thermal lens compensation
As we have already seen, the pump induces a thermal lens effect in the VECSEL
chip affecting cavity stability. The ABCD matrix describing reflection on the 1/2
VECSEL is now:

M1/2VCSEL =

(
1 0

−1/ fth 1

)
, (5.7)

where fth is the focus of the thermal lens. The updated stability criterion is then
bounded between four stability limits covering the effect of the thermal lens:

δ
′
1 =

f 2
1

∆1−2 fth
,

δ
′
2 =

f 2
1

∆1
,

δ
′
3 =

f 2
1

∆1−2 fth
+

f 2
2

∆2
,

δ
′
4 =

f 2
1

∆1
+

f 2
2

∆2
. (5.8)

Stability range of δ are also δ ′1 < δ < δ ′2 and δ ′3 < δ < δ ′4 and can be associated with
graphical illustrations in Fig. 5.8 (a,b,c,d). The degeneracy conditions are modified
as well. The relations between cavity element misalignment δ ,∆1,∆2 are:

∆1 =
f 2
1

δ
+2 fth, ∆2 =

f 2
2

δ
+

f 2
1 f 2

2
2 fthδ 2 . (5.9)
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where ∆1 = l1− f1,∆2 = l2− f2. From this, we can see again that the misalignment
of the lens from its perfect telescopic position requires an adjustment proportional
to the square of the focal distances ratio, as it was shown earlier for the case with
no thermal lensing. Also, it is clear, that the positive thermal lens compensation,
requires a negative δ . I.e. the distance between two lenses must be less, than the sum
of their focuses.

5.3.3 Beam radius dependency on mispositioning of the cavity elements
and thermal lens

As we mentioned, in the experiment, the VECSEL cavity is typically not degenerate
with the primary cavity alignment. A simple parameter helping to estimate proximity
to the spatial degeneracy while aligning is highly valued. The most convenient one is
the radius of the output beam. The Gaussian mode propagating in the cavity can be
represented by the complex beam parameter q. This parameter is obtained through
the ABCD-matrix coefficients as [Siegman 1986; Yefet 2013]:

1
q
=

D−A
2B
∓ i

√
1−m2

|B|
.

The real part of q gives a radius of curvature R and the imaginary part contains the
radius spot size w.

We consider the case when the OC position is fixed and only the position of the
first and the second lenses can be adjusted. Then, we have δ = −(∆2 +∆1). In this
case, the beam radius of the fundamental Gaussian mode varies according to Fig. 5.9.

FIGURE 5.9: The beam radius of the fundamental Gaussian beam
at the output of the cavity as a function of cavity misalignment ∆1,δ .
Here f1 = 50 mm, f2 = 200 mm. Where thermal lens focus is (a) fth =
40 mm, (b) fth = 400 mm and tends to infinity in (c). The blue and
yellow curves represent zero-values of the B and C coefficients of the
ABCD matrix for the one round-trip based on the eq. 5.4. The cross-

section of those lines corresponds to the degeneracy of the cavity.
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The subplots (a,b,c) are calculated for different values of the thermal lens fth.
They illustrate the changes in the output beam radius from the VECSEL. The bor-
ders of the real-valued data of the radius w are marked by two lines of blue and
yellow color. These lines are given by zero-values of the B and C coefficients of the
matrix defined by eq. 5.4 1. The cross-section of these lines corresponds to the cavity
degeneracy.

In the first case, (a) the thermal lens is strong ( fth = 40 mm). Degeneracy in this
case can not be reached in the considered case within the millimeter range of the lens
adjustment. As we mentioned before, the value of its focus fth varies with the pump
variation. In the experiment, when the pump spot is defocused and the thermal lens is
approximately fth = 400 mm for GAS864 at pump power 0.7−0.8 W. Subplot (b) is
calculated for a less-curved thermal lens with focal length fth = 400 mm. We can see,
that the degeneracy condition is now satisfied when ∆1 = 3.3 mm and ∆2 =−0.2 mm.
The first lens must be misplaced away from the gain chip and the second lens must
be moved a little bit towards the first lens. This case corresponds to our experimental
alignment. This case is similar to the one shown in Fig. 5.9 (c) for the negligible
effect of the thermal lens, where no thermal lens correction is needed.

The characterization of the beam radius w is also presented in Fig. 5.10 for dif-
ferent thermal lens focal distances (a) and mispositioning of the intracavity elements
(b).

fth→∞ fth=40 mm fth=400 mm
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-0.4 -0.2 0.0 0.2 0.4
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(b)

FIGURE 5.10: Beam waist w dependency on the thermal lens focal
distance (a) and the OC mispositioning (b). For the subplots calcula-
tions was used (a) ∆1,∆2 = 0mm, (b) δ = 5mm. Degenerate condi-

tions are satisfied with the minimal beam radius size.

In case all elements have no mispositions from the perfect telescope configura-
tion, the beam radius will decrease with an increase of the thermal lens effect (i.e.
fth decrease). This case is shown in subplot (a). The beam radius is minimal in the
point of degeneracy at ∆1 = 0. Subplot (b) illustrates the case when both the OC
can be moved and the coordinate of the second lens can be chosen to adjust the first
lens move to have δ = 0. The distance between lenses then is given by the sum of
their focuses. The beam radius then will be changed according to the subplot (b).

1The dependencies of the matrix coefficients A and D equal to one also separate the real-valued
beam radius values and repeat the borders drawn by B and C lines.
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Here different curves correspond to different values of the misalignment of the OC
for ∆2. We can see, that the degeneracy point (with the minimal beam radius) is then
different from ∆1 equal to 0. In this case, the adjustment of the first lens is needed to
restore the degeneracy of the VECSEL cavity.

By this, we can conclude, that the thermal lens, the same as any misalignment
can be compensated in a reasonable range of adjustments. Also, we find it rational
to adjust the cavity in a way when the first lens position is chosen last. In this case,
we obtain a sixteen times more accurate control on cavity telescope alignment.

5.4 VECSEL with degenerate cavity
All experimental data presented in this thesis were obtained with the same setup with
minor modifications. The experimental setup is shown in Fig. 5.11.

1/2 VECSEL Lens 1 Lens 2

pump Mask
OC

FF branch  

NF branch

FIGURE 5.11: Experimental setup. Lenses 1,2 form an intracavity
telescope ( f1 = 5cm, f2 = 20cm). The metal mask placed at the self-
imaging position forms the laser array. Near-field and far-field of the
array are captured by CCD cameras (u-eye UI-3240 NIR). Fabry-Perot
interferometer (FPI) – FPI100 (FSP – 1 GHz, finesse - 280) is used for

spectral measurements.

Excitation of the chip is provided by optical pumping at 808 nm in a power rang-
ing between 0.3 and 1.1 W. Heat is extracted from the gain chip according to the
method described in section 5.2. The cavity is closed by a planar output coupler with
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a 0.8% transmission at the λ = 1.06µm laser wavelength. An intracavity telescope in
a self-imaging configuration provides spatial degeneracy and stability of the cavity.
Two positive lenses (focal lengths f1 = 5cm and f2 = 20cm) provide a magnification
of 4 in the 50cm long cavity. The setup allows one to capture the near-field, far-field,
and optical spectrum simultaneously with the time synchronization accuracy of elec-
tronic devices. The near-field and far-field images of the laser array emission are
captured by a CCD camera (u-eye UI-3240 NIR, exposition time 9µs). A Fabry-
Perot interferometer (1 GHz free spectral range, finesse = 290) is used for spectral
diagnostics.

5.4.1 Misalignment and mispositioning effects
The alignment of the system is challenging due to the low gain of the laser, small
pumping area, and marginal stability of the cavity. Additionally, the cavity must pro-
vide high-quality imaging. During alignment, we can see various intensity patterns
at the output.

Their interpretation gives a hint of the misalignment type through the aberration
interpretation. The effect of spatial degeneracy affected by spherical aberration is
studied in detail (including the impact on laser dynamics) in several works, such as
[Gurevich 2024]. Our interest is to estimate what kind of misalignments do we have
in the experiment based on the VECSEL output. Consequently, we can estimate what
alignment is required.

An advantageous method of describing aberrations in systems like telescopes,
microscopes, and other optical instruments is a family of orthogonal Zernike poly-
nomials on the unit disc. This family includes both odd and even polynomials:

odd: Zm
n = Rm

n (ρ)cosmφ ,

even: Zm
n = Rm

n (ρ)sinmφ ,

where m and n are non-negative integers with n≥m≥ 0, Rm
n are the radial polynomi-

als defined below. Zernike polynomials have the property of being limited to a range
of −1 to +1, Rm

n (1) = 1 and Rm
n is defined according to:

Rm
n (ρ) =

n−m
2

∑
n=1

2−n (−1)k(n− k)!
k!(n+m

2 − k)!(n−m
2 − k)

ρ
n−2k

Each Zernike polynomial represents a specific type of aberration, such as defocus,
astigmatism, coma, spherical aberration, etc. They provide a convenient and com-
pact way to describe complex wavefront aberrations in terms of a set of coefficients
corresponding to different polynomial terms. They provide a convenient and com-
pact way to describe complex wavefront aberrations in terms of a set of coefficients
corresponding to different polynomial terms.

The aberration type associated with Zernike polynomials Zm
n is shown in Fig 5.12.
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FIGURE 5.12: Zernike polynomials Zm
n associated with aberrations of

different kinds.

The far-field (FF) pattern of the radiation passing through the system with a par-
ticular aberration is given by the Fourier transform of the initial field profile convo-
luted with the polynomial Zm

n . The FF patterns of an elliptic Gaussian beam profile
(similar to the pump beam) affected by optical aberrations of different orders Zm

n are
shown in Fig. 5.13. Here the experimental misalignment is caused only by the first
lens mispositioning along the optical axis and in transverse directions.

FIGURE 5.13: The FF intensity patterns transformed of an elliptic
Gaussian beam by the Zernike polynomials. On the right, the compar-
ison with experimental examples of the spherical aberration and coma

effects are presented.
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For example, an effect similar to spherical aberration (shown in Fig. 5.13) occurs
when the first lens is too close to the gain chip, but the cylindrical symmetry of the
cavity is saved. Experimental results are shown in blue-red colors on the right. In
this case, we have strong on-axis emission and off-axis concentric rings of different
thicknesses. The output is given by a high-order LG beam [Sheng 2022]. The total
radius of the beam increases when the first lens moves closer to the gain chip.

In the case where the lens is vertically or horizontally misaligned or tilted, we
expect to see a coma aberration effect. It is given by the rays from an off-axis emis-
sion imaged by different zones of the lens. The beam, in this case, looks like a comet
spot. The spot has multiple minima and maxima if the lens is simultaneously not
in the focal distance from the gain chip and is transversely misaligned. The output
then corresponds to the superposition of the Hermite-Gaussian modes HGm,n having
different phase accumulations during the round-trip inside the cavity. For example,
Fig. 5.14 shows the effect of both a significant mispositioning of the first lens ( f1)
longitudinal and transverse directions.

FIGURE 5.14: VECSEL laser output patterns when the lens/pumping
is displaced in the vertical and horizontal directions by 0.1 mm. The
on-axial part of the beam can be approximated by HG modes super-

position, such as HG2,0 + expi 3π

8 HG1,1.

In this case, the central part is similar to the superposition of two HG modes with
a 3π/8 phase difference. When the cylindrical symmetric is preserved, the output is
a combination of Laguere-Gaussian beams. Then degeneracy is easy to achieve with
alignment only along the optical axis of the cavity.

Finally, we also noticed an interesting phenomenon driven by the change in the
thermal lens profile. Let us look at the changes in the NF and FF of the aligned laser.

NF

FF

0.5 W 0.7 W 0.8 W 0.9 W

0

100

50

I (a.u.)

FIGURE 5.15: Far field and near-field patterns of the VECSEL output
beam. The pump power increases from 0.5W to 0.9W. The lasing in

the central spot stops with an increase in the pumping power.
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The patterns are given in Fig. 5.15 from left to right for an increasing value of
optical pump power. We can see that the increase in the pumping power leads to an
effect similar to the spherical aberration. The thermal lens effect increases and the
output spot shows different profiles. We detect a decrease in the VECSEL output
power from around 50 mW (at 0.5 W) to almost 12 mW (at 0.9 W).

At some value of the pump power (0.8 W), the central spot (the on-axial emis-
sion) disappears. Potentially this is connected to the non-uniform curvation of the
induced thermal lens. In general, we avoid significant pump power changes when
the VECSEL cavity is aligned.

5.5 Experimental validation of the VECSEL degeneracy
Let us now consider more precisely the changes in the on-axis emission profile close
to degeneracy. The cavity is properly aligned and we manipulate only the first lens
position (with f1 = 50mm) without any intracavity mask. Fig. 5.16 shows the NF
and FF intensity distributions of the beam at the different mispositioning values ∆1
of the first lens along the optical axis from degeneracy2.

FIGURE 5.16: The effect of the first lens mispositioning (∆1) on
the near-field (NF) and far-field (FF) patterns of the output VECSEL

beam.

The first situation is when the first lens is moved along the optical axis in the
negative ∆1 range. Figs. 5.16 (a, b) display dramatically different structures in the
NF and FF. The FF clearly shows an intense on-axis emission and an off-axis family
of concentric rings. In subplot (a) the off-axis emission is almost invisible due to
the NDFs, which were used to prevent on-axis emission saturation. These can be
seen in the inset on the left, where the NDF was removed. The misalignment we
implemented led to the effective diffraction length change and passing from a low-
Fresnel number to a high-Fresnel number configuration [Hachair 2008]. The total
beam diameter increases when ∆1 decreases, and more and more off-axis rings are
observed. Finally, the emission stops with ∆1 close to −2.65mm.

2The cavity is aligned according to the previously determined ∆1 = 3.3 mm and ∆2 =−0.2 mm by
the ABCD-analysis.
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The NF patterns are not Gaussian in these cases as shown in top-row subplots
(a, b) in Fig. 5.16. The NF is given by a set of bright spots aligned around the op-
tical axis of the cavity. This phenomenon has also been detected in several works
[Hachair 2008; Bartolo 2022]. The captured NF is a combination of the on-axis
emission and the off-axis in this experiment. In case the on-axis part is switched
off with an annular aperture, it is possible to see the transition between regular pat-
terns having several leaves to hexagons and more complicated intensity distributions,
such as demonstrated in [Bartolo González 2022; Vigne 2022]. This can be partially
recognized in subplots (a,b) in the top row of Fig. 5.16.

On the other hand, a positive ∆1 misalignment along the optical axis of the cavity
leads to complete extinction of the off-axis emission (Fig. 5.16(d)) in our case. On-
axis beam transforms to the Gaussian beam. The cavity is notably less stable in this
range and emission stops close to ∆1 = 0.5mm.

The closer to degeneracy the lens position (see Fig. 5.16(c)) the closer the cavity
is to a zero-length optical system (B = 0). The NF and FF have similar profiles.
The output power is stronger in this case. The beam has an extremely multimode
structure in this case. A couple more examples of the FF outputs of the degenerate
cavity VECSEL are given in Fig. 5.17.

FIGURE 5.17: Far-field patterns of the degenerate cavity VECSEL
output beam captured with the same alignment at different times.

5.5.1 Degenerate cavity VECSEL output with limited cavity aperture
The easiest practical test for degeneracy is to introduce some partial loss inside the
cavity. In the degenerate configuration, each part of the gain is considered to be able
to act as an independent laser. Then, the partial closing of the laser cavity with a
blade, for example, will not affect the rest of the output beam. Schematically the
idea is shown in Fig. 5.18.

FIGURE 5.18: The scheme of the spatial intracavity losses control-
lable changes by the blade. The blade was installed at 1 millimeter

from the OC. The blade moves parallel to the OC plane.
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The blade sequentially blocks the optical path in the cavity. Fig. 5.19 shows the
changes in the NF and FF when the blade covers the optical path from the right and
the left.

FIGURE 5.19: Near-field (NF) and far-field (FF) patterns of the VEC-
SEL output beam. The cavity is considered to be degenerate.

It is clear, that the two side-ended sub-plots for both sides show laser emission
when the on-axis path is blocked. Blue profiles at the top of Fig. 5.19 represent the
cross-sections of the NF presented just below. The NF profile is almost perfectly
given by the part of the total VECSEL output. The mounts of the blade and OC
do not allow the movement of the blade close enough to the OC plane, thus the NF
contains a part of the scattered light of the blade edge. The blade introduces a simple
method of spatial filtering of the spatial components of the laser output.

This filtering can be also done through the far-field point of the intracavity tele-
scope. A degenerate cavity VECSEL was shown to work as a laser source with a
controllable coherence [Knitter 2016] when a pinhole with variable diameter is in-
troduced at the far-field point. The scheme is shown in Fig. 5.20 (a).
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FIGURE 5.20: Changes in the optical spectrum of the VECSEL when
the pinhole is closed (∼ 300µm) and completely open when the laser
cavity is close to a degenerate configuration. The optical spectrum is

measured with Fabry-Perot interferometer FPI100.
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The measured optical spectra with closed and open pinholes are shown in Fig. 5.20
(b, c) respectively. Both subplots show the blue voltage ramp sawtooth signal and a
black signal giving the optical spectrum. The voltage is applied to a piezo actuator
in the FPI. The change of the applied voltage changes the optical length of the FPI
resonator. Here the ramp parameters are chosen to show the FPI response over a full
free spectral range.

The laser in this work is highly multimode when the pinhole is opened. The
same results are obtained with the electrically pumped VECSEL developed earlier
[Knitter 2016]. Its spatial coherence is low. On the other hand, a closed pinhole with
a diameter around 300µm leads to the single-frequency operation. The spectrum
shows two peaks. Thus we conclude that the laser output is single mode. At the
same time, the spectrum is slightly unstable. The laser oscillates in the free-running
regime and the peaks drift and jump in time.

5.6 VECSEL arrays
The developed rate-equation models assume that each laser operates in a single trans-
verse mode. To ensure this is the case, we determined the optimal parameter of the
mask in the experiment with a "ruler" mask. The ruler mask is an array of holes with
different diameters as shown in Fig. 5.21.

FIGURE 5.21: Mask rule scheme and different mask’s photos.

By trying different masks, we noticed that the number of spatial modes sustained
by each laser and the laser array spectrum significantly depends on the diameter of
the holes. Each hole corresponds to a single nearly Gaussian fundamental mode only
when the hole diameter σ is no larger than 200µm. No stable emission is observed
for the lower diameters. The edge-to-edge separation between holes is chosen to be
a = 50µm. The figure also shows photos of different masks and a mask placed inside
the cavity.

The laser arrays developed with one, two-, three, and five-hole masks according
to the above-mentioned dimensions are shown in Fig. 5.22.
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FIGURE 5.22: VECSEL array with a different number of lasers, when
the mask is placed very close to the OC z∼ 0.

In Fig. 5.22, each laser array emission is not phase-locked as shown by the inco-
herent superposition obtained in the far field. The distance between the loss mask
and OC is less than 50µm, which explains why the coupling is too weak to lock the
lasers. The output power of a single laser is in the range from P = 0.27 to 1mW
depending on the number of lasers and pump power. In all cases, the diameters of
the holes are equal to σ = 200µm with an edge-to-edge separation a = 50µm.

Note on VECSEL polarisation

VECSELs typically have a linearly polarised output along the [110] crystallographic
axis of the gain chip. Thanks to this the polarisation is controlled by the rotation of
the gain-chip around the optical axis of the cavity. Typical VECSEL linear polarisa-
tion indicatrice is shown in Fig. 5.23.

FIGURE 5.23: Polarisation plot of the VECSEL radiation. Power is
normalized to its maximal value.



5.7. Conclusion to chapter 5 117

5.7 Conclusion to chapter 5
In this chapter, we analyzed the degeneracy of the planar cavity of the VESCEL with
the ABCD matrix method taking into account the thermal lens effect of the structure.
We presented the rule of thumb, that a lens misalignment requires a realignment of
the second lens proportional to the square of the ratio of the focal lengths.

The developed experimental setup is presented. The degenerate cavity alignment
is discussed in detail. The pump delivery system, thermal management, and gain
chip choices are explained. Several evidences of spatial degeneracy of the cavity
are demonstrated in this chapter. The evidences are NF and FF intensity analysis,
spatial coherence modified by the pinhole, and the laser oscillation in the presence of
extreme losses (when the on-axis path is closed).

We chose the optimal parameters of the loss mask and demonstrated several non-
phase-locked VECSEL arrays. On this basis, we move forward to the laser array
phase-locking investigation.
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The description of the degenerate cavity VECSEL array continues in this chap-
ter. Here we study the laser noise based on the example of a few lasers. As was
mentioned in the introduction, noise in lasers can act negatively. It can destabilize
phase-locking, decrease the number of lasers, etc. Nevertheless, it also carries valu-
able information on the intrinsic properties of the laser system.

The noise is investigated experimentally, numerically, and analytically in this
chapter. Phase-locking and noise properties an observed for the two- and three-laser
arrays. Both arrays are investigated in two regimes. In one of them, the laser array is
phase-locked and in the second regime, the lasers are not phase-locked.

The investigation aims at connecting the properties of laser array noise corre-
lations with coupling parameters and investigating the role of the Henry factor. We
start with the introduction of the experimental scheme and experimental results. Then
we interpret the obtained experimental results. In the modeling part, we introduce
noise into the rate-equation models obtained for the two-laser array and ring laser
in chapter 2 and chapter 3. We calculate cross-correlation spectra numerically and
analytically. We investigate the influence of the Henry factor on the amplitude of the
laser noise cross-correlations. Finally, we compare these results and comment on the
current experimental state of the developed VECSEL laser array.

6.1 Experimental setup
The experimental scheme is shown in Fig. 6.1.

FIGURE 6.1: Experimental setup. Lenses 1,2 form an intracavity tele-
scope ( f1 = 5cm, f2 = 20cm). Near-field and far-field images of the
array emission are captured by CCD cameras (u-eye UI-3240 NIR).
Fabry-Perot interferometer (FPI) – FPI100 (FSP – 1 GHz, finesse
- 280) is used for the spectral measurements. Noise measurements
are performed with amplified photodiodes PDA015C2/M (380 MHz
bandwidth, 180µm2) with signal amplifiers ZFL-1000LN+ Low Noise

Amplifier (0.1-1000 MHz, 20 dB gain).
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The scheme includes an OP-VECSEL and some characterization schemes to cap-
ture the NF and FF intensity patterns and measure optical spectra, and noise. The cav-
ity is closed by a planar output coupler with a 0.8% transmission at the λ = 1.06µm
laser wavelength. Spatial degeneracy and stability of the cavity are provided by an in-
tracavity telescope in 4f-configuration. Two positive lenses (focal lengths f1 = 5cm
and f2 = 20cm) provide a magnification of 4 in the 50-cm long cavity. The setup
allows one to capture the near-field, far-field, optical spectrum, and intensity signals
simultaneously with the time synchronization accuracy of electronic devices. The
laser array is created using a metal mask placed very close to the output coupler.
It consists of circular holes of diameter σ = 200µm with an edge-to-edge separa-
tion a = 50µm. The near-field and far-field images of the laser array emission are
captured by a CCD camera (u-eye UI-3240 NIR, exposition time 9µs). A Fabry-
Perot interferometer (1 GHz free spectral range, finesse = 290) is used for spectral
diagnostics. Intensity noise measurements are performed with a series of pream-
plified photodiodes PD1, PD2 (Thorlabs PDA015C/M: bandwidth 380 MHz, sensor
area 180µm2) followed by low noise signal amplifiers (Mini-circuits ZFL-1000LN+:
bandwidth 1-1000 MHz, gain 20 dB). The gain chip is GAS864.

6.2 Phase-locking of two and three laser array
The changes in the coupling strength permit control of the phase-locking of the laser
array, as is now going to be evidenced. Fig. 6.2 represents near-field (NF) and far-
field (FF) images of the VECSEL output in different conditions: (a) without any
mask, (b,c) with a mask consisting of two holes, and (d, e) with a mask consisting of
three holes in a triangular geometry.

500 �m(a) (b) (c) (d) (e)

NF FF NF FF NF FF NF FF NF FF

FIGURE 6.2: Near-field (NF) and far-field (FF) images of the laser
emission. (a) No mask, (b) two unlocked lasers, (c) two phase-locked
lasers, (d) three unlocked lasers, (e) three phase-locked lasers. Sub-

plots (c, e) obtained for the distance z∼ 550−600µm.

The coupling between the lasers is changed by translating the mask along the
laser axis. This permits to change from an unlocked (Figs. 6.2 (b,d)) to a locked
(Figs. 6.2 (c,e)) regime, as can be seen from the far-field patterns. To obtain phase-
locking, the distance between the mask and the output coupler is of the order of
400−600µm.
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It is worth mentioning that in all cases the independence of the different lasers of
the array can be checked by blocking each of them individually without affecting the
powers of the other ones. Then, let us study the phase-locked regime in more detail
for two and three lasers separately.

6.2.1 Steady-state interpretation for two phase-locked lasers
When the length z of the diffraction cavity increases the coupling increases. In the
case of two lasers, the intensity of the lasers starts to change its values based on
the NF measurement. The far-field patterns reveal different interference patterns.
Examples of the near-field and far-field intensity distributions are given in Fig. 6.3
for different lengths of diffraction cavity z1 < z2 < z3.

NF

z1 z2 z3

FF NF FF NF FF

FIGURE 6.3: Near-field and far-field patterns, at three different dis-
tances of the diffraction cavity, i.e. mask to OC distances z1 < z2 < z3.

The case z3 corresponds to Fig. 6.2 (c).

In the cases z1 and z2 the intensities of the lasers are different. The smallest of
the presented distances is z1. It has a value around 100−200µm and corresponds to
a low visibility of the FF pattern. This case is at the border of phase-locking. Smaller
distances lead to intensity fluctuations and the optical spectrum is unstable. The
steady-state solution is close to being out-of-phase. Contrary to this, the "in-phase"
solution is observed at a bigger diffraction length z = z2 closer to 300−400µm. The
intensities are quite stable in this case, but not equal. Their difference is around 60%.
Any attempt to equalize the intensities by the mask or the pump realignment leads to
phase unlocking. The laser with a smaller intensity has an output power of less than
0.2 mW. It is extremely difficult to study the noise in this case. The intensities of the
lasers are the same only in the case z3. This case with diffraction length z3 around
500−600µm is chosen for noise investigation.

These experimental results are easy to interpret because we obtained an analyt-
ical steady-state solution dependency on the coupling strength in chapter 2. The
amplitudes in the steady-state are given by eqs. 6.1.

A1,2,st =
√

Fsat(r−1)
(

r
r−1

|η |cos(ψst±θ)+1
)
. (6.1)

Equal intensities for the two lasers A1,st = A2,st may only be observed when the cou-
pling argument is θ = 0 or ±π . The experiment agrees with that statement. The
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corresponding image of equal-intensity lasers is given by the subplot corresponding
to z3. This solution is perfectly symmetric, and the steady-state phase-difference is
around π . The coupling argument θ can be estimated with Fig. 2.20 in chapter 2. For
example z close to 200,300 and 600µm gives a coupling argument θ = ±π . This
explains our experimental results given by "out-of-phase" phase-locking with z1,z3.
The case corresponding to z2 is given by a coupling argument different from 0 and π

and thus the two intensities are different.
In these experiments, we can’t detect a significant effect of detuning between the

lasers. This is also a good sign of conditions close to degeneracy. Approximately the
detuning value can be estimated based on the marginally phase-locked case noted
z1 in Fig. 6.3. We estimate the coupling strength in this case to be at the border of
phase-locking, i.e. close to ηcr. Then, detuning between lasers can’t exceed tens of
kHz: Ω/2π < 15kHz.

6.2.2 Steady-state interpretation for three phase-locked lasers
A laser array of three lasers is characterized by almost equal amplitudes of the lasers
at any distance z in the investigated range. The intensity in the near-field does not
significantly vary with the change of mask position. We managed to see only stable
"in-phase" phase-locking, which is easy to recognize by the strong maximum in the
center of the FF beam. Fig. 6.4 shows the FF image obtained in the experiment at
the same distance z3 as the "out-of-phase" phase-locking of two lasers (z3 ∼ 500−
600µm).

FIGURE 6.4: Laser array output. Black background: experiment. Left
to right: unlocked array FF, NF of the three lasers, FF of the phase-
locked lasers with q = 0. Pictures on the purple background: Model-

ing of the array phase-locking with different topological charges q.

This figure shows the NF and FF when the laser array is unlocked (the FF on the
left) and phase-locked (the FF on the right). In the right inset of the figure three FF
intensity patterns were calculated for different topological charges q. The observed
TC is clearly zero in this case.
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Neglecting the influence of detuning, the steady state solution can be approxi-
mated by eqs. (6.3) obtained in chapter 3:

Ast =
√

Fsat

√
r

1−2|η |cosψst cosθ
−1 , (6.2)

ψst =
2πq

n
, m ∈ Z. (6.3)

In case detuning is not zero, we have already seen with the modeling in chapter 3 that
the order parameter then decreases. The visibility of the FF should decrease too and
the position of maxima will not be symmetrically distributed. In the experiment, we
consider Ω/2π < 15kHz, i.e. the same average detuning as for the two laser arrays.

6.2.3 Optical spectrum of phase-locked laser arrays
In the perfectly degenerate cavity [Mahler 2021], the frequency detuning between
the different lasers is supposed to be close to 0. But in practice, the intracavity
aberrations create some spurious detunings between the lasers.

Nevertheless, when the lasers are phase-locked, they share the same frequency
and operate in a single-frequency regime 1. This is evidenced by the optical spectrum
shown in Fig. 6.5.
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FIGURE 6.5: Black line: the optical spectrum obtained from the FPI
for the array of two phase-locked lasers. Gray line: scan voltage of

ramp applied to FPI. The free spectral range of the FPI is 1 GHz.

The phase-locking of the laser array makes it remarkably robust: the laser single-
frequency operation remains stable without any mode hop for several seconds in a
standard laboratory environment. The same optical spectra are observed for three
laser arrays. On the contrary, in the case where the laser array is unlocked, the laser
spectrum is much more unstable. This single-frequency operation will allow us in
the following to establish a simple analytical model to describe the laser evolution.

Moreover, it simplifies the understanding of the origin of laser noise by excluding
mode beating and other effects related to multimode operation.

1The optical spectrum of the single free-running laser is nearly single-mode but very unstable.
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6.3 Noise of the laser array
The noise is typically weak in VECSELs. As mentioned before, we use amplified
photodiodes (bandwidth 380 MHz, sensor area 180µm2) and additional low-noise
amplifiers (0.1-1000 MHz, 20 dB gain) to detect the intensity fluctuations. This
bandwidth of the noise amplifiers gives a lower limit of the measurement bandwidth.
Also, the frequency range of the measuring noise will be limited by the bandwidth
of the VECSEL cavity transfer function. The high-frequency component is typically
filtered starting from the cavity cut-off frequency.

Cavity cut-off frequency

The cavity cut-off frequency for a class-A laser can be obtained from optical cavity
transfer functions [Baili 2007; Baili 2008] given by the formula:

T( f ) =
1

τ2
cav

1[
1

τcav

r−1
r

]2

+(2π f )2

, (6.4)

and the cut-off frequency is

fcut-off =
1

2πτcav

r−1
r

. (6.5)

Using the photon lifetime we can calculate fcut-off =
1

2πτcav

r−1
r

= 0.48MHz with

r = 1.1,τcav = 30ns for two lasers.
Noise measurement covering the range close to the cavity cut-off frequency al-

lows us to distinguish the dynamical class of the lasers [Baili 2009]. Class-A dynam-
ics never show a kink close to the cuff-off frequency and the attenuation of the noise
happens according to the first-order low-frequency filter. To observe such behavior
in our system we process the measured data in the range from 100 kHz to several
MHz.

6.3.1 Noise spectra in the two laser array
In the next step, we investigate the amplitude noise of the lasers in the unlocked and
phase-locked cases for two-laser and three-laser arrays. Thanks to the small sensor
area, we can dedicate each photodiode to a single laser in the NF. We characterize
the noise by the RIN spectra, defined as:

RINi( f ) =
⟨ ˜|δ Ii( f )|2⟩|

Ii
2 , (6.6)
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where ⟨|δ̃ Ii( f )|2⟩ is the power spectral density obtained by the Fourier transform of
the intensity noise of i-th laser and Ii is i−th laser mean intensity.

We measured the time series of the intensity noise with a time sampling of 2.5ns
and a length of 2 million points each. The measurements of its RIN spectrum are
presented in Fig. 6.6 for both phase-locked and unlocked cases. The noise of the
first laser is presented in the subplot (a) and the noise of the second laser is shown
in subplot (b). As was mentioned, the noise below 100 kHz is filtered by the noise
amplifiers. The upper bandwidth limit was chosen to observe the cavity cut-off fre-
quency around 0.48 MHz.

FIGURE 6.6: Experimental RIN spectra of the lasers in the array of
two lasers. Subplot (a) illustrates the noise spectra for the first laser,
subplot (b) illustrates the spectra for the second laser. Phase-locked
data are shown in blue (laser output power of the order of 2 mW) and
unlocked data are shown in red (laser output power of the order of
0.4 mW). Grey curve: noise floor. Black curve: pump laser RIN. Thin
peaks originate from some spurious modulations of the laser power.

Fig. 6.6 compares the laser RIN when the two lasers are locked (blue line) and
unlocked (red line). Apart from a difference in noise levels, which can be attributed
to several reasons, such as a variation of the laser losses and power between the two
cases, no significant difference appears between the two situations. The difference
between the RIN levels of the locked and unlocked laser arrays in Fig. 6.6 is due
to the presence of extra losses in the unlocked case. Measurements of the pump
noise (black curve in Fig. 6.6) are performed outside the laser setup 2. The pump
spectrum contains frequency components, which affect the noise of the array’s lasers
around f = 300, 420kHz and 1.5MHz and are always present in the spectra. When
one compares the laser RIN spectrum with the pump RIN spectrum (black line in
Fig. 6.6), the filtering effect of the cavity above a 3 dB cut-off frequency of the order
of 480 kHz is visible. The VECSEL cavity indeed behaves as a first-order filter with
a -20 dB/decade attenuation, while class-B attenuation is -40 dB/Hz [Baili 2009]. In
all cases, these spectra are typical of a class-A laser.

2Details of the pump noise measurements are given in subsection 6.3.3
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Noise spectra in two laser array

We also checked that the same kind of RIN spectrum is obtained for an array of three
lasers (see Fig. 6.7). In the case of the three laser arrays, we detect similar noise
characteristics. The RIN of the first (1) and the second laser (2) among three lasers
in total are shown in Fig. 6.7.

FIGURE 6.7: Experimental RIN spectra of two lasers in the array of
three lasers. The unlocked noise spectra are given in subplot (a) by red
and dark-red curves for lasers 1 and 2 marked by corresponding color
in the NF intensity pattern above (laser output power of the order of
0.3 mW). Subplot (b) shows phase-locked noise spectra given by blue
curves for laser 1 and 2 by corresponding color in NF intensity pattern

above, laser output power of the order of 0.6 mW).

The pump-induced spikes are present at the same frequencies ( f = 300, 420kHz
and 1.5MHz). In the unlocked case (a) we can also see that additional laser frequency
components are given by the mods beating induced. The lasing threshold is slightly
different in the case of three lasers. The pumping rate is lower than r=1.07. This
leads to a small modification in the cavity cut-off frequency.

6.3.2 Cross-correlation spectra
Much more information on the laser array behavior can be gained by measuring the
spectrum of the correlations between the intensity noises of the different lasers of the
array. The definition of the cross-correlations coefficient is given by eq. (6.7).

CC(δ̃ I1, δ̃ I2) =
Cov(δ Ĩ1,δ Ĩ2)√

Var(δ Ĩ1)Var(δ Ĩ2)
, (6.7)
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where Var holds for the variance and Cov for the covariance of the intensities Fourier
spectra. The coefficient is a complex value. We refer to its modulus as correlation
amplitude and its argument as correlation phase.

6.3.3 Pump spatial correlations
First of all, it is important to study the pump laser spatial correlations. These corre-
lations of the laser noise can be enhanced due to the partial correlation between the
injected parts of the pump beam. The pump noise measurements scheme is shown in
Fig. 6.8.

FIGURE 6.8: Experimental scheme for the pump laser noise measure-
ments. Photodiodes are Thorlabs PDA15C2 with integrated 50µm
pinholes. Lens 1 and lens 2 have focal distances of 50 mm and

200 mm.

The pump laser is studied at the electrical current j = 1.1A. This value corre-
sponds to the typical value used in the VECSEL arrays studies. The intensity of the
beam was significantly decreased by beam-splitters and NDFs, but this part of the
scheme is not presented in Fig. 6.8. Then, the two-lens imaging system is installed.
The lenses have 50 and 200-mm focal distances (LBF254-50-B and LBF254-200-B).
This telescope repeats the intracavity telescope with a magnification 1/4 to mimic
the edge-to-edge mask separation by the pinholes integrated with photodiodes. The
beam of the pump laser is divided by a 50/50 beam-splitter and directed to the two
amplified photo-diodes. Each photo-diode has an integrated pinhole of 50µm. This
pinhole size was chosen because it corresponds to the edge-to-edge separation of the
holes in the mask. Such size of the edge was chosen to increase the coupling. It is
easier to obtain phase-locking with such separation than for example with 100µm.
Also, the size of the pump spot can be smaller. At the same time, such a small
loss profile can cause the pumping of both lasers by the same spatial mode of the
pump. Then the correlations of the laser noise will depend not only on the laser’s
phase-locking but on the correlations of the injected pump noise.

The initial position of the photodiodes is chosen based on the maximal detected
signal, which corresponds to the central maximum of the Gaussian pump. One of the
photodiodes is fixed, and the transverse position of the second one can be precisely
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varied. We measured twenty spectra of one million points each for several positions
of the second photodiode PD2.

The correlation amplitude decreases with the distance between PD2 and the im-
age of PD1 through the beamsplitter. The translation was performed in both direc-
tions. Then, the cross-correlation spectra for PD1 and PD2 were calculated and their
modulus and arguments are given in Fig. 6.9 as correlation amplitude (a) and phase
(b). The sampling period of the measurement is 2.5 ns. Each point of the presented
curve is obtained by averaging over 250 points. The modulus of the PD2 translation
distance is marked between the subplots.

FIGURE 6.9: Cross-correlation spectra between the pump noise along
the beam cross-section. The PD2 is translated, and the position of the

PD1 is fixed. See Fig. 6.8 for details of the measurement scheme.

The correlation amplitudes decrease fast and they are almost zero for 50µm sepa-
rations. In all cases, the correlations decrease when the noise frequency reaches 3 to
4 MHz which corresponds to the pump laser frequency cut-off. Moreover, the phase
of the correlations is always 0 (see Fig. 6.9 (b): the correlated parts of the pump
noises are all in phase). The variance of the correlation phase increases only in the
frequency range when the noise is very low (close to 3-4 MHz). We can conclude,
that within the VECSEL noise transfer bandwidth, the pump noises seen by differ-
ent lasers are weakly correlated at a distance given by the mask edges (50µm) the
correlations thus become completely negligible between the centers of the holes.

One can notice that the RIN of the pump presented in Fig 6.6 as black dots is
higher than the VECSEL’s RINs. It also exceeds its datasheet value, which is -
130 dB/Hz at 10 kHz and -140 dB/Hz at 1 MHz.

When measuring n uncorrelated spatial modes with the same detector, the vari-
ance of the measurement result scales proportionally to n, meaning the standard de-
viation is proportional to the square root of the number of modes

√
n. Similarly, the

average power is also proportional to n. Consequently, as the number of measured
modes increases, the RIN decreases. Therefore, the RIN measured with a pinhole
is larger than the RIN of the full beam. We use such measurement to characterize
the spectrum of the pump, but we quantify the RIN value by the average datasheet
number, i.e. −135 dB/Hz.
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6.3.4 Noise cross-correlations in the VECSEL array
Knowing that the pump correlation between lasers is negligible, we can characterize
the cross-correlation of the laser noises in the VECSEL array. As we mentioned
the sampling period is 2.5 ns in our measurements and the length of the measured
dataset is 2 million points. This gives us a wider frequency bandwidth (down to kHz)
than we need to characterize the VECSEL cut-off frequency. Thus, we reshape the
datasets to 250 smaller datasets in which low-frequency resolution is given by the
amplifier’s bandwidth of 100 kHz. The cross-correlation value at each frequency is
then obtained by 250 values and averaged over 20 measurements. Fig. 6.10 shows an
example of such measurements for two (a, b) and three lasers (c, d).

FIGURE 6.10: Measured correlation spectra between the intensity
fluctuations of two lasers in the array. (a, c) Amplitude and (b, d)
phase of the correlation. Blue curves: phase-locked laser array, red
curves: unlocked laser array; light gray curves: noise floor. (a, b) ar-

ray of two lasers, (c, d) array of three lasers.

Subplots (a) and (c) of Fig. 6.10 correspond to the amplitude of the normalized
correlation spectrum between the intensity noises of two of the lasers in the array,
while Figs. 6.10 (b) and 6.10 (d) display the phase of this correlation. In each plot,
the blue (red) curve corresponds to the situation where the lasers of the array are
phase-locked (unlocked). Figs. 6.10 (a, b) correspond to an array of two lasers while
Figs. 6.10 (c, d) is obtained for an array of three lasers. A comparison of the two cases
in this figure shows a dramatic difference between phase-locked and independent
lasers. Indeed, while the correlation between the intensity noises between the lasers
cannot be distinguished from noise when the lasers are unlocked (see the red curves
in Fig. 6.10 (a) and 6.10 (c)), these intensity fluctuations become almost completely



6.4. Modeling of the VECSEL array noise 131

correlated when the array is phase-locked (blue curves). This illustrates the fact that
the lasers behave like completely independent oscillators when they are unlocked and
that the laser array behaves like a single super-laser in a single super-mode when the
lasers are phase-locked.

Additionally, we have to pay attention to the phase of the correlations. The phase
is close to zero for the phase-locked cases (blue curve in (b) and (d)) for two and
three lasers. The unlocked case shows more randomness in the correlations phase
distribution (red curve in (b) and (d)). However, it does not correspond to the totally
random situation for the base noise correlation phase (shown as gray dots). This
means, that both lasers have a very small in-phase noise component injected from
the pump laser injected. We have already seen the cause of this in Fig. 6.9, where the
correlations are negligible, but the phase within the laser bandwidth is always around
zero.

In the case of three lasers, the unlocked case (red curves in (c)) corresponds to
a stronger coupling than the so-called "zero coupling" case for two lasers (a). The
argument exhibits less dispersion in this case and it is close to zero. This is caused
by the mask positioning imperfections. Complete zero of the correlations expected,
when there is no gap between the mask and OC. Even though the coupling strength
is not exactly zero, it is not enough to observe the phase-locking of the array.

There are also several peaks, where the correlations increase for each presented
curve in Fig. 6.10. These peaks are transferred from the pump laser to each laser.
Moreover, there is also evidence of anti-phase oscillations around 1.5 MHz, which is
probably excited by the intense pump noise component at this frequency.

6.4 Modeling of the VECSEL array noise
The model used to describe the laser intensity noise is based on a system of rate
equations. In the following, we present how the noise is introduced in the two- and
three- laser models obtained in chapter 2 and chapter 3. First of all, the physical
source of noise has to be defined. Our VECSEL arrays are optically pumped, thus
the pump noise is always present in the system. Additionally, the output is affected
by mechanical and thermal noises and spontaneous emission noise. In case where the
lasers are not single-mode or not phase-locked, we can observe intensity variations
excited by the mode beating, mode hopping, etc. Eventually, we are interested mostly
in the intensity noise and its correlations. We believe that we can use its characteris-
tics for the laser dynamics classification and use it for the laser array phase-locking
investigation.

Fig. 6.11 illustrates the different noise sources’ impacts on intensity and phase
noise components. Black curves illustrate spontaneous emission noise, red curves
are for pump-induced noise, and blue curves are for the shot noise.
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Intensity noise Frequency noise

FIGURE 6.11: Noise origin in the OP VESCEL array. Adapted from
[Myara 2013]. Black curves - spontaneous emission noise, red curves

- pump-induced noise, blue curves - shot noise.

The noise of the optical pump prevails over the noise of spontaneous emission
and shot noise. Thermal noise affects mostly the phase-noise characteristics [Gre-
dat 2019b; Liu 2018a; Gredat 2018; Gredat 2020b; De 2013a; De 2013b]. The laser
exhibits a stable single-frequency output when phase-locked. We thus introduce in-
side our model only the optical pump noise.

6.4.1 Rate equations with pump noise
The pump noise is introduced as a fluctuation δ ri(t) in the pumping rate ri(t) =
r+δ ri(t) of the laser i in the array, where r is the average pumping rate common to
all the lasers.Then, the dynamics of the two laser arrays is governed by the following
rate equations:

dA1

dt
= −A1

2τ

(
1− r1(t)

1+A2
1/Fsat

)
+
|η |
2τ

cos(ψ +θ)A2 ,

dA2

dt
= −A2

2τ

(
1− r2(t)

1+A2
2/Fsat

)
+
|η |
2τ

cos(ψ−θ)A1 ,

dψ

dt
=

α

2τ

(
r2(t)

1+A2
2/Fsat

− r1(t)
1+A2

1/Fsat

)
−|η |

2τ

(
A2

A1
sin(ψ +θ)+

A1

A2
sin(ψ−θ)

)
+Ω , (6.8)

where A1 and A2 are the amplitudes of the two laser fields, normalized in such a way
that their squares correspond to the respective photon numbers. The third variable ψ

is the phase difference between the lasers and Fsat the saturation photon number. The
Henry factor α , mean value of the excitation ratio r, and photon lifetime τcav are the
same, as were used in the previous calculations.

Numerically we can investigate both cases of the phase-locked lasers and the
unlocked case. When the coupling strength is too weak to overcome the detuning
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effect, the noise spectra will exhibit intensity oscillations. The amplitude dynamics
of these oscillations have been studied in chapter 2. In the simplest case where the
lasers have equal pumping rates r1 = r2 and photon lifetimes τ1 = τ2 the value of the
beatnote frequency defined by the detuning between the lasers Ω and the so-called
laser locking frequency ωL given by eq. (6.9):

fbt =
1

2π

√
Ω2−ω2

L, where ωL =
|η |
τcav

. (6.9)

Let us consider this case ( r1 = r2, τ1 = τ2) with uncorrelated pump noises δ r1
and δ r2. Both of these noise components are considered as white noise with a RIN=-
135 dB/Hz given by the mean value of the pump RIN in the datasheet. We are in-
terested in the investigation and comparison of different cases of phase-locked laser
arrays. We want to compare the noise of one of the lasers in the unlocked case with
the phase-locked laser. Additionally, we are interested in the study of the detuning
effect and the influence of the coupling strength.

In total we investigate four cases: zero-coupling |η | = 0; small coupling |η | =
0.0001, which can not overcome detuning between lasers; and strong coupling strength
|η |= 0.11 with two different coupling arguments θ = 0 and θ = 0.95π . Strong cou-
pling is enough to overcome detuning. The corresponding numerically calculated
RIN spectra are shown in Fig. 6.12 for one laser.

FIGURE 6.12: Numerically calculated laser RIN spectra for one of the
lasers in a two laser array. Different colors correspond to the different
values of the coupling strength ( |η |= 0, 0.0001 and 0.11). The pump
noises are fully uncorrelated in the considered frequency range with a
RIN =−135dB/Hz. The presented data correspond to the averaging
of over 100 noise spectra. The spectra are calculated with α = 6,

r = 1.1, τ = 30ns,Ω/2π = 10 kHz.

The input white noise with RIN=-135dB/Hz is shown as black curve. The light
blue curve characterizes the noise of the laser with a very small coupling |η | =
0.0001 lasers with detuning Ω/2π = 10 kHz. There are several peaks that evidence
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intensity oscillations. Their frequencies are given by harmonics of the beatnote fre-
quency fbt = 9.98 kHz. The beatnote frequency decreases if the coupling strength
increases and rises if detuning increases.

On the contrary, when the coupling is zero (red dataset in Fig. 6.12) and when the
lasers are coupled and phase-locked (blue dataset in Fig. 6.12) the noise copies the
input white noise, but with the filtering effect of the cavity. One can notice that these
RIN spectra exhibit the typical first-order filter shape of a class-A laser, as observed
experimentally. Indeed, we can see that the cut-off frequency with experimental pa-
rameters is around 0.5 MHz. The difference between the phase-locked and unlocked
situations consists of a small change in the noise level. The RIN in the phase-locked
case is smaller than in the case with unlocked lasers due to the changes in the mean
intensity value, which depends on the coupling strength.

The difference between the unlocked and phase-locked cases is much more strik-
ing when one considers the correlations between the noises of the two lasers, as
shown by the simulation results reproduced in Fig. 6.13. The cross-correlation spec-
tra are obtained with a thousand noise spectra for each laser. Each value of the cross-
correlation coefficient at a chosen frequency is a cross-correlation coefficient of two
spectral datasets with a length of one thousand points. Here we study four cases
where the lasers are unlocked or phase-locked with different coupling arguments.
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FIGURE 6.13: Amplitude (a) and phase (b) of the noise correlation
spectrum between the intensity noises of the two lasers obtained with
the numerical model. The data were calculated with the same param-
eters as Fig. 6.12. The presented data corresponds to the averaging
of over 1000 noise spectra. The spectra are calculated with α = 6,

r = 1.1, τ = 30ns,Ω/2π = 10 kHz.

The unlocked lasers show negligible correlation amplitude with a completely ran-
dom argument of the correlations. This confirms the increase of the correlation phase
variance in our experimental results. The argument of coupling strength θ affects the
amplitude of the correlation a lot. The amplitude of the correlations for the phase-
locked case is always non-zero. However, it depends a lot on the sign of θ . We study
this phenomenon more precisely with an analytical model in the following.
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6.4.2 Analytical model of the noise
To develop an analytical model, let us introduce a vector S whose three components
are given by the right part of the three rate equations of eqs. 6.8. The fluctuations of
the lasers can be obtained by linearizing the vector components around the steady
state solution given by vector {A1,st,A2,st,ψst}. Following [De 2013a], the three
variables are written in vector form as A = {A1,st,A2,st,ψst}+ δA, where the vec-
tor δA = {δA1,δA2,δψ} contains the fluctuations around the steady-state values
{A1,st,A2,st,ψst}. The pump fluctuations around the average values r = {r, r} are
written as a vector δr = {δ r1,δ r2}.

Then eqs. (6.8) can be formally written as:

Ȧ(t) = S(A,r)(t) = S(Ast +δA,r+δr). (6.10)

Linearization consists of expanding the right-hand side up to the first order in δr
and δA, leading to:

˙δA(t) = RS(r0,Ast)︸ ︷︷ ︸
=0

+
∂S(r,A)

∂A
|r0,AstδA+

∂S(r,A)

∂δr
|r0,Astδr . (6.11)

Here, the partial derivative of a vector S over vector A stands for a matrix with

elements
[

∂S
∂A

]
i j
=

∂Si

∂A j
and over vector δr it is

[
∂S

∂δr

]
i j
=

∂Si

∂δr j
.

Thanks to the Fourier transform of eq. (6.11) we obtain the intensity noise of
the lasers defined according to the eq. 6.12. The full process with details of this
transformation is given in the appendix A.

δ̃ I(ω) = 2Ast

[
iω− ∂S(r,A)

∂A
|r0,Ast

]−1
∂S(r,A)

∂r
|r0,Ast δ̃r(ω) = 2Ast

[
a1 a2
b1 b2

]
δ̃r(ω).

(6.12)

Then, the cross-correlation coefficient has the shape of eq. 6.13:

CC(δ̃ I1, δ̃ I2) =

=
a1b∗1 +a2b∗2 +(a1b∗2 +a2b∗1)CC(δ r1,δ r2)√

|a1|2 + |a2|2 +2Re[a1a∗2]CC(δ r1,δ r2)
√
|b1|2 + |b2|2 +2Re[b1b∗2]CC(δ r1,δ r2))

.

(6.13)

if pump noises are not correlated, CC(δ r1,δ r2) = 0, the formula for the cross-
coefficient is then:

CC(δ I1,δ I2) =
a1b∗1 +a2b∗2√

(|a1|2 + |a2|2)(|b1|2 + |b2|2)
. (6.14)
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6.5 Analytical modeling of the noise in VECSEL arrays
The model developed above allows obtaining the intensity noises of the laser in re-
sponse to any input noise.

We consider the cross-correlation spectra with an assumption that the pump noise
is white and has a constant RIN=-135 dB/Hz. We calculate the cross-correlation
spectra with eq. (6.14) for different values of the coupling argument θ . The results
are shown in Fig. 6.14. The data are presented in a comparison with numerically
calculated values.
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FIGURE 6.14: Amplitude (a) and phase (b) of the correlation spec-
trum between the intensity noises of the two lasers obtained with the
numerical (dots) and analytical solid line model. The data are calcu-
lated for r = 1.1, Fsat = 1010, τ = 30ns,Ω/2π = 10 kHz. Different
colors correspond to the different values of coupling parameters. The
red curve corresponds to the unlocked case, which can not be approx-
imated in our analytical model. Green, light blue and blue curves

correspond to |η |= 0.11 with different θ values.

Indeed, the analytical model accurately reproduces the numerically calculated
correlation spectra. Each of the presented analytical curves shows a slightly smaller
correlation amplitude the the numerically calculated data. We connect this difference
with the small-coupling approximation. One can notice that a negative coupling
argument θ leads to a decrease in the amplitude of the correlations, while a positive
one leads to an increase. In both cases (θ = 0.95π and θ = −0.95π) the real part
of the coupling strength is negative and the phase difference is close to π . Thus the
increase or decrease of the correlations depends on the imaginary part of the coupling
strength.

The phase of the correlation is always zero within the laser cavity bandwidth.
Nevertheless, positive and negative θ lead to the zero and ±π phase after the cut-off
frequency. In total we can see that both the blue numerically calculated dataset and
blue analytical curve are very close to the experimental results. We also notice that
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there is a strong dependence on the correlation spectra on the Henry factor, when θ

is not zero, as shown in Fig. 6.15.

FIGURE 6.15: The amplitude (a) and phase (b) of the correlation
spectrum between the intensity noises of the two lasers obtained with
the analytical model. The data are calculated for θ = 0.95π,r = 1.1,
Fsat = 1010, τ = 30ns, |η | = 0.11,Ω/2π = 10 kHz. Different colors

correspond to the different Henry factor values.

The correlation amplitude increases with an increase of the α factor if the imagi-
nary part of the coupling strength is positive. On the contrary, the correlation ampli-
tude decreases when Im[η ] is negative. The correlations with zero coupling argument
do not depend on the α factor.

The correlation amplitude can be increased or decreased by the coupling strength
|η | variations. The dependency of the coupling strength is shown in Fig. 6.16.

FIGURE 6.16: The amplitude (a) and phase (b) of the correlation
spectrum between the intensity noises of the two lasers obtained with
the analytical model. The data are calculated for θ = 0.95π,r = 1.1,
Fsat = 1010, τ = 30ns,α = 6,Ω/2π = 10 kHz. Different colors corre-

spond to different values of the coupling strength.

The values of the coupling modulus taken to plot Fig. 6.15 are larger than those
obtained by calculating the overlap of the diffracted beam with neighboring lasers
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along the lasers of chapter 2. This discrepancy can be attributed to the fact that the
laser beams are not top-hat and also to uncertainties in the positions of the holes. In
total, we can see that the correlation amplitude is always higher in the phase-locked
case, such as in the experiment. The same results were obtained for the three laser
arrays.

6.6 Three laser array noise correlations
Rate equations for the three laser arrays are the same as those used in chapter 3. We
inject the pump noise to these equations as a fluctuation δ ri(t) in the pumping rate
ri(t) = r+δ ri(t) into each laser.

Then the rate equations for the three laser arrays are:

dAi

dt
=− 1

2τcav

(
1− ri(t)

1+A2
i /Fsat

)
Ai +

|η |
2τcav

[cos(ψi +θ)Ai+1 + cos(−ψi−1 +θ)Ai−1]

dψi

dt
=

α

2τcav

(
ri+1(t)

1+A2
i+1/Fsat

− ri(t)
1+A2

i /Fsat

)
+
|η |

2τcav

(
Ai+2

Ai+1
sin(ψi+1 +θ)−

− Ai

Ai+1
sin(ψi−θ)− Ai+1

Ai
sin(ψi +θ)+

Ai−1

Ai
sin(ψi−1−θ)

)
. (6.15)

where Ai stands for the amplitudes of the three laser fields, normalized in such a way
that their squares correspond to the respective photon numbers. The variables ψi
are the phase differences between the lasers, Fsat the saturation photon number. The
Henry factor α , mean value of the excitation ratio r and photon lifetime τcav are the
same as were used in the previous calculations in chapter 3.

We can follow an identical approach of the analytical model derivation. The
approach is general and it can be applied to any shape of the laser array. Details of
these calculations are also presented in appendix A.

We consider only two lasers out of three-laser phase-locked array, as was done in
the experiment. Those lasers have intensity noises δ I1,δ I2 now have three compo-
nents.

The eq. (6.14) is then replaced by eq. (6.16).

CC(δ I1,δ I2) =
a1b∗1 +a2b∗2 +a3b∗3√

(|a1|2 + |a2|2 + |a3|2)(|b1|2 + |b2|2 + |b3|2)
. (6.16)

Results obtained with this formula are shown in Fig. 6.17 for different coupling
values and different α factor values. In this case, the rate equation system was lin-
earized around the in-phase steady-state solution (q = 0).
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FIGURE 6.17: Amplitude (a) and phase (b) of the correlation spec-
trum between the intensity noises of two lasers from the three-lasers
phase-locked array obtained with the analytical model. The data are
calculated for r = 1.1, Fsat = 1010, τ = 30ns, |η | = 0.11, θ = 0.95π .

Different colors correspond to the different α values.

The amplitude of the correlations increases with the increase of the Henry factor
if the imaginary part of the coupling coefficient is negative Im[η ] < 0. We also
checked that there is no dependency on the Henry factor if θ = 0 and the coupling is
real.

The same conclusions hold for the case of two phase-locked lasers. However, in
the three-laser case, we can see that the correlation amplitude is stronger than for two
lasers. The comparison is shown in Fig. 6.18. Both cases were studied with the same
parameters of the pumping rate, photon lifetime, coupling strength (same |η | and θ ),
etc.

FIGURE 6.18: Amplitude of the correlation spectrum between the
intensity noises of the two lasers obtained with the analytical models
for three phase-locked lasers (red) and two lasers (blue). The data
are calculated for r = 1.1, Fsat = 1010, τ = 30ns, |η | = 0.11, θ =
0.95π,Ω/2π = 0. Different colors correspond to the different number

of lasers.

The increase of the correlation in the ring array of three lasers is associated with
the impact of the coupling with two neighboring lasers. Each laser in our array
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supports and is supported by its neighbors. Each of them receives a fraction of the
neighbor intensity variations. In the case of two lasers, it was only a fraction of one
laser, in the case of three the impact is double.

Also, this analytical model demonstrates good agreement with measurements
presented in Fig. 6.10 for the phase-locked three-laser array.

6.6.1 Noise in the vortex solution
Earlier in chapter 3 we established that there are also vortex and anti-vortex solutions
in which a three-laser array can be phase-locked. Linearization of the rate equation
system around these vortex steady-states leads to new correlation spectra dependen-
cies. An example of the noise correlation spectrum of the phase-locking in vortex
with |η |= 0.11 and θ =−0.55π is shown in Fig. 6.19.
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FIGURE 6.19: Cross-correlation amplitude and phase spectra
CC(δ I2,δ I1) for the phase-locking in a vortex in anti-vortex. Red
color corresponds to the vortex q = 1 and blue data corresponds to
the antivortex. Numerically calculated values are shown as dots and

analytically obtained curves are shown in solid lines.

The correlation spectra in this case differs significantly from the in-phase solu-
tion. Based on the calculations the correlation coefficients are always complex. This
means that the noises are delayed from one to the other. At first, we can see, that
based on the numerical and analytical model, the delay is either positive or negative.
The noise of the first laser is delayed positively from the second laser for the vortex
solution and negatively for the anti-vortex. This occurs within the laser bandwidth,
i.e. at frequencies less than the VECSEL cavity cut-off frequency (∼ 500kHz).

This situation (shown in Figs. 6.19) reminds us of the investigation of the orbit
solution in the chapter 3 (see Fig. 3.15 and Fig. 3.16). In that orbit solution, some
delay between the intensity oscillations was observed. As was mentioned, such de-
layed dynamics can be used to investigate the sign of the vortex charge. It is very
complicated to investigate such an orbit solution experimentally. On the contrary,
the noise measurements are easier to implement and it happens, that they provide the
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same information. In this case, we can identify the sign of the vortex by the noise
measurement, such as was done for the in-phase solution characterization.

We can also see, that close to the cavity cut-off frequency we have an intense
increase in the correlation amplitude localized in two bands. We can see that the
correlation phase experienced a π shift after passing f ∼ 650 kHz. Thus two cor-
relation bands in the amplitudes have orthogonal phases. Such dependencies must
be validated experimentally. The origin of the occurred bands requires further in-
vestigation. Unfortunately, the experimental measurement for this case faced some
difficulties. This study goes beyond the scope of this manuscript. The current exper-
imental state of this study is given in the Perspectives section of chapter 8.

6.7 Conclusions to chapter 6
In this chapter, we have conducted both theoretical and experimental investigations
into the phase-locking and noise characteristics of an array of lasers utilizing a de-
generate cavity VECSEL operating as a class-A laser. Both measurements and theory
demonstrate that the magnitude of correlation strongly depends on the phase-locking.

Additionally, we noticed that the amplitude of the correlations increases with
an increase of the Henry factor if the imaginary part of the coupling coefficient is
negative Im[η ] < 0. There is no dependency if θ = 0 and the coupling is real. The
correlation amplitude decreases if Im[η ]> 0.

The physical explanation behind this α-dependence of the correlation amplitude
when η is complex lies in the fact that a complex coupling coefficient breaks the
system symmetry, while the α factor enhances any system asymmetry. The same
kind of phenomenon can be shown to occur if there is an unbalance between some
parameters of the investigated lasers, such for example the pump fluctuations δ ri.

The model and analytical approach we have developed offer a versatile frame-
work that can be readily applied to arrays of lasers in higher dimensions and with
varying mask topologies. All of the dependencies obtained for two laser arrays are
reproduced in the three laser arrays.

We also started an investigation of the noise in the three laser array phase-locked
in the vortex configuration. It was noticed, that the sign of the cross-correlation phase
of the laser array noises provides information about the sign of the vortex.
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One of the interests of coupled laser arrays is their possible application for optical
computations. This chapter presents the modeling results of potential laser array
applications in this domain. We can call a laser array a network if lasers are coupled.
In this case, the coupling channels are used for information exchange. Different
network topologies, i.e. topology of the mask, are used to solve different problems.
Examples of the network topologies used for computer network classification are
given in Fig. 7.1.

FIGURE 7.1: Examples of the network topologies by IPCisco. Net-
work Certifications of Top Network Vendors - Cisco, Juniper, Nokia

(Alcatel-Lucent), and Huawei.

The most general case is given by the full mesh topology, where each node of the
network is coupled to every other node. This case represents the parallel computing
architecture, known as the Ising model. This model has been widely investigated,
including its all-optical implementation. The particular cases of a mesh topology are
also used for laser solvers ([Tradonsky 2019; Pal 2020], LightSolver). A laser solver
is a laser network aiming at solving optimization problems. The problem, i.e. input
data, is introduced to the laser array through the loss or phase profile (for example
with SLM). Then the lasers phase-lock in the global steady-state. The result readout
is obtained by measuring the output far-field pattern.

Today, we are unable to investigate the full mesh in our experiment. We can im-
plement point-to-point, ring, and star coupling topologies experimentally, as shown
in Fig. 7.2.

FIGURE 7.2: VECSEL laser arrays available in our experiment.
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The point-to-point coupling topology is supported by two lasers, and ring topol-
ogy can be implemented with three and five lasers, while the star one is given by four
lasers, where one laser is created in the center of the ring array of three lasers.

Usually, the full mesh can not be implemented in the optical system without opti-
cal feedback. Nevertheless, each of the already existing arrays can solve some math
problems when phase-locked. Thus, in this chapter, we investigate the properties of
the VECSEL array as an optical data processor.

7.1 Optical computations with VECSEL arrays
The input data can be injected into the laser array solver by the pump modulations.
Each laser will obtain a different logical sequence. For example, this can be done
with a beam-shaped optical pump. The concept of such an optical pump is shown in
Fig. 7.3.

FIGURE 7.3: The concept of the different modulation signal injection
to the VECSEL array through the beam-shaped pump.

Each laser in the array will be pumped above the threshold, but additionally re-
ceive a logical sequence with the pump modulation. The local modulation, i.e. for
a single laser, can be introduced for example by the method described in [Bartolo
González 2022]: the main pumping beam provides an exaltation for the lasing thresh-
old and the hot-spot activation beams can be modulated by choppers.

Thanks to the coupling channels provided by the diffraction of the mask, each
laser output will have an output intensity that should be modified by the logical sig-
nals mixed with a neighboring laser pump. This phenomenon is studied below with
an example of two lasers and a ring laser array of three lasers.
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7.1.1 Boolean math in point-to-point VECSEL network
The dynamics of the two laser arrays is governed by the following rate equations:
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+
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where A1 and A2 are the amplitudes of the two laser fields, normalized in such a way
that their squares correspond to the respective photon numbers. The third variable ψ

is the phase difference between the lasers, Fsat the saturation photon number. Here
we inject two independent logical sequences l1(t), l2(t). Examples of the signals,
such as two square signals are presented in Fig. 7.4.
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FIGURE 7.4: Examples of the logical sequences injected to lasers
through the pumping rates. The amplitudes of the signals are normal-

ized to one.

Applied signals can have any amplitude levels, but allowing for the laser to oper-
ate over the threshold, i.e. their amplitudes must be less than (r−1). Each classical
logical signal in the information theory operates by two states "1" and "0". In our
case "1" corresponds to the li amplitude 1 and "0" with amplitude -1 in Fig. 7.4.

We investigate the time, when we can observe combinations of the l1 and l2 hav-
ing different states, such as "1"+"1", "1"+"0", "0"+"1" and "0"+"0".

Let us investigate the output of the laser array in three cases: when the laser array
is unlocked, almost phase-locked, and phase-locked. Detuning between lasers is
Ω/2π = 200 kHz, Henry factor α = 6, excitation ratio r = 1.1 and photon lifetime in
the cavity τcav = 30 ns. The modulation frequency of the applied signals is f = 100
kHz, their amplitudes are equal to r/1000. The laser amplitudes at the output are
presented in Fig. 7.5 for three different values of real coupling strength.
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FIGURE 7.5: Examples of the logical sequences injected to lasers
through the pumping rates. The amplitudes of the signals are normal-
ized. Subplot (a) illustrates an unlocked case when |η | = 0. Sub-
plot (b) shows the beating between lasers occurred with small cou-
pling |η | = 0.01. The phase-locked case is given in subplot (c) for

|η |= 0.11.

The amplitudes repeat injected signals in the unlocked case as expected when the
coupling is zero. This case is illustrated in subplot (a) of Fig. 7.5. When the coupling
increases, we observe oscillations in subplot (b). These signals are typical when the
coupling does not overcome detuning. This makes the output useless for the inter-
pretation without referring to its Fourier spectra. Finally, the third case illustrates the
existence of four different amplitude levels for each laser. These levels are given by
a combination of the injected signals l1, l2 depending on the laser system parameters.
Due to this dependency, we believe we can use the system for optical computations.

7.1.2 Optical level interpretation
First, we present an example of how the phase-locking of two lasers can be useful
for Boolean data processing.

Boolean algebra operates by the True and False variables, usually denoted as
"1" and "0", on the contrary to the elementary algebra where the values are num-
bers. In classical computers, the values of "0" and "1" are associated with "LOW"
and "HIGH" voltage states. Typically "0" is below 30% and "1" is above 70% of a
maximal digital voltage level for a given data transfer protocol in a nowadays micro-
controllers (standard values of the voltage could be 5V, 3.3V, 1.8V, and more).
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However, there is not a general method of laser intensity interpretation. We can
introduce an optical reference level specific to our system. By this level, we mean a
virtual threshold between the True "1" and False "0" states.

For example Fig. 7.6 (a) shows the amplitudes of the phase-locked solution with
|η |= 0.109 and the chosen optical reference level.

FIGURE 7.6: Amplitudes of the two phase-locked lasers with differ-
ent coupling strengths (a) |η | = 0.109 and (b) |η = 0.11|. And the

amplitude levels interpretation with respect to the reference level.

Subplot (b) shows the same optical reference level, but the amplitudes are ob-
tained with stronger coupling |η |= 0.11.

Let us study only the output of the second laser A2 shown by the thick blue color
within the grey window. This window illustrates the time, when all combinations of
the input l1, l2 signals ("11","10","01","00") can be observed. Subplot (a) gives the
output interpreted as "1000", while subplot (b) gives "1101" within the period from
5 µs to 60 µs. These results are summarized in Table 7.1.

l1 l2 A2 with |η |= 0.109 A2 with |η |= 0.11
1 1 1 1
1 0 0 1
0 0 0 0
0 1 0 1

Boolean AND Boolean OR

TABLE 7.1: Interpretation of the amplitude levels shown in Fig. 7.6
by Boolean variables.

As we can see, the output of the one laser A2 at different coupling strengths can
be used to perform the AND and OR operation among the input signals l1 and l2.
The coupling strength variation is simply performed by the mask positioning.

This is a naive example of one of the wide range of applications. The transfor-
mation of the input li signals by the phase-locked lasers is a non-linear function. It
depends on the Henry factor α , coupling strength η , excitation ratio r, and saturation
number of photons Fsat.
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However, we can estimate the output with a simplified formula. We separate
amplitudes Ai for its constant A1,DC and variable Ai,AC components. The constant
component of amplitude at the steady-state ADC is obtained earlier in chapter 2 and

equal ADC =

√
r

1−|η |cosψ
−1. The variable component Ai,AC is given by eq. ( 7.2)

for real positive coupling.

Ai,AC = c0

(
c1li +

α

2
(c2li + c3l j)

)
(7.2)

Coefficients c0,c1,c2,c3 have a complicated dependency on the laser array parame-
ters. In case detuning is zero (Ω = 0) the coefficients c2 and c3 are equal and corre-
spond to 1. If not, the coefficient changes anti-proportionally to each other. Coeffi-
cients c0,c1 depend mostly on the coupling strength. Examples of results given by
eq. (7.2) are shown in Fig. 7.7.

FIGURE 7.7: Approximation of the variable component of the laser
amplitudes. Here α = 6, η = 0.11, Ω = 0. Coefficients of the approx-

imation are c0 = 0.08, c1 = 8, c2 = c3 = 1.

The approximation with eq. (7.2) gives a good agreement with numerical mod-
eling. However, the exact formula covering dependency on the detuning, coupling
strength, pumping rate, etc. values is undetermined.

7.2 Optical computations in the ring VECSEL array
We investigate the output properties with the simplest case of three lasers. The logical
signals injected into the laser array l1, l2, l3 are shown in Fig. 7.8. The signals are
normalized in different ranges for visualization. Here l1 is normalized in the range
from -1 to 1, l2 has an amplitude of 0.75, and l3 has an amplitude of 0.5. We also add
a phase-shift to the l2 and l3 given respectively by π/3 and 2π/3.
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FIGURE 7.8: Amplitudes of the input logical signals. The modula-
tions have different amplitudes and a phase delay for a quarter of the

signal period. The modulation frequency is f = 100 kHz.

If such modulation li is injected into the ring laser array each laser then obeys
eqs. (7.3).
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We know that the cavity transfer function has a cavity cut-off of around 480 MHz.
The frequency of the modulation is chosen equal to f = 500 kHz to illustrate as well
the cut-off influence. The output amplitudes in the case |η |= 0.04, α = 6 are shown
in Fig. 7.9 (a) for equal amplitude logical signals and (b) for the amplitudes with a
ratio 1/0.75/0.5 of the l1, l2, l3 amplitudes.

FIGURE 7.9: Amplitudes at the output. (a) Injected logical signals
have the same amplitudes of r/1000. Subplot (b) illustrates the impact

of the different li amplitudes. Here |η |= 0.02

The laser array is phase-locked during the time between the logical signal fronts.
We can see that the output signals do not reproduce injection signals. This is easier
to notice in subplot (b), where the amplitudes of the injected logical sequences have
a ratio of 1/0.75/0.5. The output is a linear combination of the applied signals. The
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formula is estimated in the same way as with two lasers:

Ai,AC = c0

(
c1li +

α

2
(c2li− c3li+1− c4li−1)

)
. (7.4)

The estimation sequences superimposed with the first laser amplitude (i = 1) are
given in Fig. 7.10

FIGURE 7.10: Amplitudes at the output of the first laser from the
phase-locked array of three lasers and its approximation with eq. 7.4.
The coefficients of the approximation are c0 = 4,c1 =−0.02, c2 = 1,

c3 = c4 = 1.

The formula also gives a fine approximation. One can notice, that the level inter-
pretation, i.e. is it True "1" or False "0" levels, can be difficult. At the same time,
thanks to Henry factor dependency, we can choose the proper difference between
amplitude levels. The amplitude outputs of the three lasers calculated numerically
with different α values are shown in Fig. 7.11.

FIGURE 7.11: Amplitudes at the output of the first (a), the second (b),
and the third (c) with different values of the Henry factor.

By this, we conclude that the choice of the Henry factor can be used to improve
the contrast between levels.

7.2.1 Conclusions to chapter 7
Phase-locking of the VECSEL laser array creates a powerful method of optical data
processing. Here we presented a potential application of the laser array phase-locking
for two different Boolean operations, where the choice of the operation is based on
the coupling strength control. Indeed, by changing the distance between the loss
mask and OC, we can perform AND and OR operations by measuring the output of
one of the lasers. At the same time, the output of the second laser can be used in
parallel for the other operation.
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We partially obtained an analytical approximation of the injected signal process-
ing in the phase-locked VECSEL array. Even though the approximation is linear,
it was obtained for the implied case for zero detuning. The exact formula for the
general case is undetermined yet.
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CHAPTER 8
Conclusions and perspectives

—————————————————————————————

8.1 Conclusions
The results presented in this thesis address fundamental and practical aspects of
VECSEL array studies. A significant part of this work focused on the dynamics of
laser arrays, investigating phase-locking regularities, and developing a general model
for the investigated array topologies.

For the first time, we introduced several important analytical dependencies. The
first one gives a critical coupling value for phase-locking between two lasers with
a complex coupling coefficient. Phase-locking requires a coupling strength modu-
lus exceeding a critical coupling value. The formula for this value, as well as the
dependency of steady-state amplitude and phase difference on it, is provided in the
conclusions of chapter 2.

Using a generalized model for a ring laser array, we examined its steady-state
solutions. We highlighted that the probability of obtaining a vortex solution in class-
A VECSEL arrays is higher compared to class-B lasers. Another analytical result
presented for the first time is the dependency of steady-state amplitudes and phase
differences of the ring array on the complex coupling value. These formulas are
presented in conclusions of chapter 3. We also showed theoretically the method of
asymmetric vortex creation.

Overall, the manuscript primarily investigates the influence of the Henry factor on
phase-locking. We demonstrated that it enhances the variation in phase-differences,
when the laser array is in the process of stabilization. This leads to longer syn-
chronization times for the laser array with larger Henry factors. Our third important
analytical relation describes the dependency of the limiting Henry factor on the argu-
ment of the complex coupling and topological charge. Different topological charges
are shown to have different limiting Henry factor values. This can be used as a
sorting method for the laser array phase-locked solution. It was presented that the
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Henry factor’s natural tendency to increase asymmetry in the laser system. Differ-
ent pumping rates, photon lifetimes, and detunings are standard parameters causing
this asymmetry. The impact of asymmetry enhancement was further demonstrated
through noise studies and logical signal operations. The correlation of noise was
shown to be increased with a higher Henry factor when phase-locking is close to
being out-of-phase. As a rule of thumb, this dependency can be conceptualized as
the dependency of the amplitude of the cross-correlation on the term proportional to
the Henry factor multiplying the difference of the injected noises ∼ α(δ r1− δ r2).
Similar relations were derived in chapter 7 for the optical sum of a logical sequence.
In the same chapter 7 we also showed an example of the VECSEL array applications
to build an optical boolean computer.

Most importantly we experimentally developed laser arrays with a few lasers
and confirmed some of the predicted analytical relations. Based on the VECSEL
RIN spectra we obtained a class-A laser array. We proved its cavity degeneracy
in several ways in chapter 5. Furthermore, we investigated the phase-locking of
the obtained laser arrays and studied their noise to validate both the numerical and
analytical models.

However, there remain important cases that have not yet been studied experimen-
tally. Numerically we showed that the optical feedback can be realised to control
phase-locking solution. More specifically, the vortex can be supported by the vortic-
ity created between two neighboring lasers, when the fraction of the one is injected
to the second one. The experimental validation was not yet implemented.

The manuscript highlighted a problem with recognizing vortex charge when far-
fields are indistinguishable (for example, see chapter 3, the case for 10 lasers in
Fig. 3.4). We presented two possible solutions to this problem. Both methods rely
on measuring the intensities of VECSELs in the near-field. One method involves
observing the orbit solution discussed in chapter 3. The second one is simpler and
requires measuring the noise correlations of the lasers. These experiments are in-
triguing challenges for future research.

8.2 Perspectives
The presented work faced some experimental difficulties. The obtained laser array is
too small to investigate the whole spectrum of the theoretically predicted phenomena.
This problem requires an update of the gain chip. The chips with higher gain and less
thermal lens effect are extremely valued for our experiment.

Additionally, an update of the systems in terms of intracavity magnification can
be beneficial for the quality of the array. For example, laser magnification would
reduce the role of the defects of the mask, and would be allowed to get more lasers.
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Noise measurement of the vortex steady-state

The noise measurement of the lasers phase-locked in a vortex is fascinating for noise
studies. As was presented in chapter 6 such measurements give information about
the sign of the vortex based on the noise spectra cross-correlation phase.

Unfortunately, the first experimental measurements of this case faced some diffi-
culties. Only in the three and four laser arrays, we can choose vortex solutions in the
experiment by the choice of coupling argument θ 1. Such θ must provide Re[η]<0
and Im[η]<0. I.e. we need θ to be in the range from π/2 to −π . These values corre-
spond to the diffraction coupling distance z either close to 300-400 µm or in the wide
range starting from 600µm. In the experiment with three lasers small distances do
not provide enough coupling strength to observe a phase-locked array. Additionally,
θ varies too fast with z. On the contrary, the coupling is enough, but the losses at
z > 600µm are too big to observe stable phase-locking. Due to this, we changed the
gain chip GAS864 for VO860C.

Indeed, we obtained the far-field (FF) patterns proving as the coexistence of two
vortices with q=−1 and q= 1. Such phase-locking is very unstable. We managed to
extract two of the most contrasting FF patterns shown in the second row of Fig. 8.1.

FIGURE 8.1: Modeling of the far-fields of the laser array phase-
locked with different phase-differences.

To interpret the experimentally obtained far-field patterns we did a modeling of
the FF with different topological charges and the case when OV (q = 1) and AV
(q = −1) coexist. The modeling patterns are shown in the first row of Fig. 8.1. The
FF are similar thus, we are glad to state that we observed vortex solutions in our

1The in-phase and vortex solutions are separable by the coupling choice only for n≤ 4. An increase
in the number of lasers makes the system multistable for any coupling value. In the negative coupling
range, the phase-locking with the highest topological charge becomes beneficial. On the positive the
in-phase is beneficial.
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system. At the same time, the phase-locking is highly unstable and thus it requires
additional study with a careful OF control.

Alternatively, we can study the vortex with |q|= 2 case with four lasers. The vor-
tex and anti-vortex have identical phase-difference distributions and same far-fields.
Thus, the phase-locking would be stable and no phase-locking solutions method is
needed. At the same time, negative coupling leads to the phase-locking with the high-
est possible topological charge. The topological charge will be equal to two (|q|= 2)
for four negatively phase-locked lasers. Then the phase-differences are ψq = 2πq/4
equal to ±π . This fact was studied and detected in numerous works with solid-state
lasers.

Indeed we obtained the corresponding phase-locking in the updated setup shown
in Fig. 8.2.

FIGURE 8.2: Near field and far field patterns of the four lasers phase-
locking with TC q =±2. (a) is modeling and (b) is experimental data.

The neighboring lasers are phase-locked out of phase in this case. This leads to an
in-phase locking of the two lasers along the diagonal of the square. The noise study
of this case hasn’t been performed yet and the experimental noise measurements of
this case are beyond the scope of the manuscript.

Phase-locking of such a square laser array was shown to be useful as an optical
solver. The Hamiltonian of such solid-state laser array was shown possible to map to
the XY Hamiltonian [Pal 2020; Gershenzon 2020]. The mapping can be performed
by assuming that each of the π or 0 phase-difference is associated with a spin orien-
tation of the array element. Such systems are useful for the optimization problem-
solving including NP-hard problem class and modeling of the other XY-Hamiltonian
systems.
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CHAPTER A
Analytical formula for spectral

cross-correlations

A.1 Analytical model of the noise
In this chapter, we provide additional details of the derivation of the analytical for-
mula for the cross-correlation.

In chapter 6 we introduced a vector S whose three components are given by the
right part of the three rate equations of by eqs. 6.8. We did this to obtain an analytical
model for the laser intensity fluctuation and its correlation spectra.

The fluctuations of the lasers can be obtained by linearizing the vector compo-
nents around the steady state solution given by vector {A1,st,A2,st,ψst}. Following
[De 2013a], the three variables are written in vector form as A = {A1,st,A2,st,ψst}+
δA, where the vector δA = {δA1,δA2,δψ} contains the fluctuations around the
steady-state values {A1,st,A2,st,ψst}. The pump fluctuations around the average val-
ues r = {r, r} are written as a vector δr = {δ r1,δ r2}.

Then eqs. (6.8) can be formally written as:

Ȧ(t) = S(A,r)(t) = S(Ast +δA,r+δr). (A.1)

Linearization consists of expanding the right-hand side up to the first order in δr and
δA, leading to:

˙δA(t) = RS(r,Ast)︸ ︷︷ ︸
=0

+
∂S(r,A)

∂A
|r,AstδA+

∂S(r,A)

∂r
|r,Astδr . (A.2)

Here, the partial derivative of a vector S over vector A stands for a matrix with

elements
[

∂S
∂A

]
i j
=

∂Si

∂A j
and over vector r it is

[
∂S
∂r

]
i j
=

∂Si

∂r j
.
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Taking the Fourier transform of eq. (A.2) leads to the following algebraic expres-
sion:

+∞∫
−∞

˙δA(t)exp−iωt dt =
+∞∫
−∞

(
∂S(r,A)

∂A
|r0,Ast δA+

∂S(r,A)

∂r
|r0,Ast δr

)
exp−iωt dt,

iωδ̃A(ω) =
∂S(r,A)

∂A
|r0,Ast

∫ +∞

−∞

δAexp−iωt dt +
∂S(r,A)

∂r
|r0,Ast

∫ +∞

−∞

δrexp−iωt dt,

iωδ̃A(ω) =
∂S(r,A)

∂A
|r0,Ast δ̃A(ω)+

∂S(r,A)

∂r
|r0,Ast δ̃r(ω). (A.3)

Then the amplitude noise of the variables is defined according to the eq. A.5:

iωδ̃A(ω) =
∂S(r,A)

∂A
|r0,Ast δ̃A(ω)+

∂S(r,A)

∂r
|r0,Ast δ̃r(ω), (A.4)

δ̃A(ω) =

δ̃A1(ω)

δ̃A2(ω)

δ̃ψ(ω)

=

[
iω− ∂S(r,A)

∂A
|r0,Ast

]−1
∂S(r,A)

∂r
|r0,Ast δ̃r(ω). (A.5)

where the tilde denotes the Fourier-transformed variables. Let us focus on am-
plitude fluctuation, specifically intensity fluctuations, which can be measured exper-
imentally. The intensity fluctuations δ I(t) of one laser are then obtained from the
amplitude fluctuations. The intensity is defined as a square modulus of the field or

I(t) = |Ast |2 +Ast(δA(t)∗+δA(t))+ |δA(t)|2︸ ︷︷ ︸
small

.

On the other hand, intensity is given by its steady-state value and fluctuation part
I(t)= Ist +δ I(t) then δ I(t)= |A(t)|2+Ast [δA(t)∗+δA(t)] which is given by δ Ĩ(ω)=

Ast [ ˜δA(−ω)
∗
+ δ̃A(ω)] = 2Ast δ̃A(ω) in the frequency domain. Here "*" stands for

complex conjugation.
Finally, the intensity fluctuations in the frequency domain are given by the eq. A.6.

δ̃ I(ω) =

[
δ̃ I1(ω)

δ̃ I2(ω)

]
= 2Ast

[
iω− ∂S(r,A)

∂A
|r0,Ast

]−1
∂S(r,A)

∂r
|r0,Ast δ̃r(ω) , (A.6)

With this formula, one can deduce the RIN spectra of the two lasers and the cross-
correlation spectrum between their amplitude fluctuations, is then defined in the fol-
lowing way:

CC(δ̃ I1, δ̃ I2) =
Cov(δ Ã1,δ Ã2)√

Var(δ Ã1)Var(δ Ã2)
, (A.7)

in which Var holds for the variance and Cov for the covariance.
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Cross-correlation spectrum dependency on the pump correlation

The formula A.7 can be presented through the vector elements directly. The ampli-
tudes are defined as presented below, and can be represented as follows:

δ̃ I(ω) =2Ast

[
δ̃A1

δ̃A2

]
= 2Ast

[
a1 a2
b1 b2

]
δ̃r(ω) =

= 2Ast

[
iω− ∂S(r,A)

∂A
|r0,Ast

]−1
∂S(r,A)

∂r
|r0,Ast δ̃r(ω), (A.8)

I.e. ˜δA1(ω) = a1δ̃ r1(ω)+a2δ r̃2(ω) and δ̃A2 = b1δ̃ r1(ω)+b2δ̃ r2(ω).
The noise components of the pump are characterized by the same standard devi-

ation σ and zero mean value, i.e.

Var(δ r1) = σ
2,δ r1 = 0 and Var(δ r2) = σ

2,δ r2 = 0,

and in the general case, they can be correlated. We name the pump noise cross-
correlation coefficient by CC(δ r1,δ r2). The variances of the amplitude fluctuations
and its covariance are:

Var(δA1) =Var(a1δ̃ r1 +a2δ̃ r2) = |a1|2σ
2 + |a2|2σ

2 +2Re[a1a2]CC(δ r1,δ r2)σ
2,

Var(δA2) =Var(b1δ̃ r1 +b2δ̃ r2 = |b1|2σ
2 + |b2|2σ

2 +2Re[b1b2]CC(δ r1,δ r2)σ
2,

Cov(δA1,δA2) = δA1δA∗2−δA1 δA2︸ ︷︷ ︸
=0

= a1b∗1σ
2 +a2b∗2σ

2 +(a1b∗2 +a2b∗1)CC(δ r1,δ r2)σ
2.

Then, the cross-correlation coefficient has the shape of eq. A.9:

CC(δ̃ I1, δ̃ I2) =
a1b∗1 +a2b∗2 +(a1b∗2 +a2b∗1)pcc√

|a1|2 + |a2|2 +2Re[a1a∗2]CC(δ r1,δ r2)
√
|b1|2 + |b2|2 +2Re[b1b∗2]pcc

.

(A.9)

If pump noises are not correlated, CC(δ r1,δ r2) = 0, the formula for the cross-
coefficient is then

CC(δ I1,δ I2) =
a1b∗1 +a2b∗2√

(|a1|2 + |a2|2)(|b1|2 + |b2|2)
. (A.10)
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A.1.1 Intensity correlations in three lasers array
The approach applied to the array of two lasers is general and we can follow the same
procedure. In the case of the three-laser array, eq. (A.8) becomes:

δ̃ I(ω) = 2Ast

[
iω− ∂S(r,A)

∂A
|r0,Ast

]−1
∂S(r,A)

∂r
|r0,Ast δ̃r(ω) = 2Ast

a1 a2 a3
b1 b2 b3
c1 c2 c3

 δ̃r(ω).

(A.11)

We consider only two lasers out of three-laser phase-locked arrays, as was done
in the experiment. The noise components of the pump we consider uncorrelated.
The choice of the lasers does not play any role in the in-phase solution, the case is
symmetrical. Those lasers have intensity noises δ I1,δ I2, I3. The eq. A.10 is then
replaced by eq. A.13 for the correlation of the first laser with the second one and the
second laser with the third one.

CC(δ I1,δ I2) =
a1b∗1 +a2b∗2 +a3b∗3√

(|a1|2 + |a2|2 + |a3|2)(|b1|2 + |b2|2 + |b3|2)
, (A.12)

CC(δ I2,δ I3) =
b1c∗1 +b2c∗2 +b3c∗3√

(|b1|2 + |b2|2 + |b3|2)(|c1|2 + |c2|2 + |c3|2)
. (A.13)

where a1,a2,a3,b1,b2,b3,c1,c2,c3 -are the δA1,2,3 coefficients at δ r1,2,3. The iden-
tical approach can be applied to any array with two neighbors.
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