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Résumé

La Théorie Quantique des Champs (TQC) est un formalisme riche et complexe qui
s’est avéré remarquablement fructueux au cours des dernières décennies. Multitudes
de travaux ont permis d’améliorer considérablement notre compréhension de la TQC,
même s’il reste encore beaucoup à découvrir. L’objectif de cette thèse de doctorat est
de contribuer à une meilleure compréhension de certains aspects de la TQC, notam-
ment les Théories Effectives des Champs (TEC) en gravité et les anomalies quantiques
(gravitationnelles).

Tout au long de cette thèse, notre principal outil sera l’Intégrale de Chemin, qui est
particulièrement adaptée pour traiter les TEC et les anomalies en gravité. Le pre-
mier chapitre est donc consacré à l’introduction du concept d’Intégrale de Chemin, sa
construction, son interprétation et son utilisation en TQC.

Le paradigme TEC est en plein essor depuis une dizaine d’années en raison de l’absence
de détection directe de nouvelle Physique dans les collisionneurs. Cependant, le Modèle
Standard (MS) de la Physique des Particules présente des énigmes non résolues, qui
pointent vers de la Physique Au-delà du MS. Cela indique par ailleurs que le MS est
une théorie incomplète qui n’est plus valide au-dessus d’une certaine échelle d’énergie,
et est donc par définition une TEC. Les effets de la gravité dans les TEC concernent
de nombreux scénarios (TQC autour des trous noirs, inflation, systèmes de matière
condensée, etc...), cependant, les calculs en gravité peuvent rapidement devenir inex-
tricables. Cela motive le développement d’outils de calcul puissants pour contourner
cette difficulté. Le deuxième chapitre de cette thèse est donc consacré à l’introduction
à la TEC et à la présentation de nos résultats concernant les calculs de TEC en gravité.
De plus, nous comblons un manque dans la littérature concernant les fermions chiraux
en gravité dans l’Intégrale de Chemin, et obtenons de nouveaux opérateurs effectifs qui
étaient omis auparavant.

Le sujet du dernier chapitre de cette thèse est l’étude des anomalies quantiques, qui sont
la brisure de symétries classiques par la quantification d’une théorie. Les anomalies ap-
paraissent dans les TEC à basse énergie, et occupent une place prépondérante en raison
de leur lien aux invariants topologiques. En conséquence, les anomalies topologiques
sont indépendantes de l’échelle d’énergie de la TEC, et fournissent un aperçu direct
des effets à haute énergie. Outre leur nature topologique, elles ont d’importantes im-
plications phénoménologiques, l’exemple historique étant la désintégration des pions en
deux photons. Les anomalies sont centrales dans la compréhension des TQC, et ont
fait l’objet de nombreux débats jusqu’à très récemment. Comme nous le verrons, les
difficultés sont principalement dues à leur lien crucial à des divergences qui nécessitent
une régularisation et une renormalisation. Ces difficultés sont exacerbées en gravité
lorsque plusieurs symétries sont imbriquées. En plus de ces discussions, plusieurs de nos
résultats sont présentés dans le chapitre 3. Nous proposons d’abord une méthode efficace
pour extraire les anomalies des TEC tout en maintenant sous contrôle les symétries non-
anomales. Nous contribuons ensuite à résoudre une controverse concernant la présence
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de violation de parité dans l’anomalie de trace d’un fermion de Weyl. Enfin, nous
étendons notre résultat précédent pour conclure sur l’absence de violation de parité
dans l’anomalie de trace, indépendamment d’un modèle.

Mots clés: Théorie quantique des champs, théories ds champs effectives, intégrale
de chemin, anomalies quantiques, gravité.
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Abstract

Quantum Field Theory (QFT) is a rich and complex formalism that has proved to
be tremendously fruitful over the past decades. Collective endeavor has allowed to
greatly enhance our understanding of QFT, yet there remains much to unravel. The
aim of this Ph.D. thesis is to help achieve a better understanding of some aspects
of QFT, namely Effective Field Theories (EFTs) in curved spacetime and quantum
(gravitational) anomalies.

Throughout this thesis, our main tool will be the Path Integral, which is particularly
suited when dealing with EFTs and anomalies in gravity. The first Chapter is thus ded-
icated to introducing the concept of Path Integral, its construction, its interpretation,
and its use in QFT.

The EFT paradigm has been in full swing for about a decade due to the lack of direct
detection of new Physics in experiments. However, the Standard Model (SM) of Particle
Physics exhibits unsolved puzzles, which call for Beyond the SM (BSM) models to
resolve them. This indicates that the SM is an incomplete theory that breaks down
above some energy scale, which is by definition an EFT. The effects of gravity in EFTs
pertain to many scenarii (QFT around black holes, inflation, condensed matter systems,
etc...), however computations in curved spacetime can quickly become untractable. This
motivates the development of powerful computational tools to circumvent that difficulty.
The second Chapter of this thesis is thus dedicated to introducing the EFT paradigm,
and to presenting our results concerning EFT computations in gravity. As an interesting
novelty, we fill a dearth in the literature concerning chiral fermions in gravity in the
Path Integral, and obtain new effective operators that were omitted before.

The subject of the last Chapter of this thesis is the study of quantum anomalies, which
are the breaking of classical symmetries upon quantisation of the theory. Anomalies oc-
cur in low energy EFTs, and hold a prominent place due to their relation to topological
invariants. As a result, topological anomalies are independent from the energy scale of
the EFT, and provide direct insight into high energy effects. Besides their topological
nature, they have important phenomenological implications, the historical example be-
ing the decay of pions into two photons. Anomalies are central in the understanding of
QFTs, and have been the subject of many debates up until very recently. As we will
see, difficulties are mainly due to their crucial link to divergences that need regularising
and renormalising. These difficulties are exacerbated in curved spacetime when several
symmetries are intertwined. Along with these discussions, several of our results are
presented in Chapter 3. We first propose an efficient method to extract anomalies from
EFTs while keeping non-anomalous symmetries under control. We then help solving a
controversy regarding the presence of parity violating effects in the trace anomaly of
a Weyl fermion. Finally, we extend our previous result to conclude on the absence of
parity violating contributions to the trace anomaly in a model-independent manner.

Key words: Quantum Field Theory, Effective Field Theories, Path Integral, quan-
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tum anomalies, gravity.
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16π2

and the 2
ϵ − γ + log 4π contributions are dropped. 178

A.2 Master integrals useful for 2-loop order computations. We note J̃ijk = Jijk/ i
16π2 and

c1 = −
(

log m2

µ2

)2
+(1 − 2γE + 2 log 4π) log m2

µ2
+3+γE−γ2E +2γE log 4π− log 4π(1+

log 4π). Those master integrals are symmetric in i, j, k, explicitly J̃100 = J̃010 = J̃001,
J̃200 = J̃020 = J̃002 and J̃110 = J̃101 = J̃011. 179

B.1 Commonly-used master integrals with degenerate heavy particle masses. Ĩ = I/ i
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Introduction

Quantum Field Theory is a vast and complex area of Physics, which required decades of work to
build and understand properly. It probably has culminated with the experimental validation of the
Standard Model (SM) of Particle Physics, which closed with the discovery of the Higgs boson in
2012. But from the height of its success, the depth of its shortcomings and intricacies become even
more ostensible. That is, despite the indisputable fact that the SM breaks down at higher energies,
experiments struggle to find disagreements with the SM.

One of the most the difficult puzzles we encountered surely is the theory of quantum gravity,
which has been eluding us for decades. Nevertheless, this does not prevent us to make the most
of the effects of classical gravity on quantum particles, and conversely, to obtain new observables
that complement collider data. After all, it is only thanks to gravitational effects that Dark Matter
(DM) was discovered in the 1930s. Similar observables can arise from cosmology, early universe or
black hole Physics.

Despite that new Physics remain out of reach of the experiments, theoretical physicist have
found ways to probe higher energies, with and without gravity. This thesis is dedicated to the
study of Effective Field Theories (EFTs) in gravity, which aim at describing the effects of high
energy Physics at lower energy on a curved background; and quantum gravitational anomalies,
which have the remarkable property of being independent of the energy scale, and thus provide
direct insight into high energies. Hopefully, our work will help nudge out of the way, even slightly,
the shadows that loom of over some areas of QFT.

There are different manners to study QFTs. The path integral is one of them, and a very
powerful and elegant one. A reformulation of the Schrödinger equation shows that the motion of
a quantum particle can be described by taking into account all the possible paths that a classical
particle could take. Quantum observables can thus be obtained by summing over all possible paths
that a classical particle could follow, which is formally achieved in the path integral. The first Part
of this thesis is dedicated to constructing the path integral, and how it can be interpreted (Chapt.
1). Beyond describing quantum particles, the path integral is particularly well suited to describe
quantum fields, and extract relevant quantities such as Vacuum Expectation Values (VEVs) which
pertain to Physical observables. Although a complete evaluation of the path integral is extremely
difficult to achieve, perturbative computations can be efficiently carried out, such as the Heat Ker-
nel and the Covariant Derivative Expansion (CDE) (Chapt. 2). An example of computation at
two-loop is provided in App. A.

The second Part of this thesis is dedicated to introducing the EFT paradigm. Knowing the
laws of Nature down to the smallest scales is not necessary to be able to do predictions of larger
scales. The boundaries of our understanding of the elementary constituants of Nature have been
pushed further and further, down to the knowledge of the SM, which remains itself an EFT with an
unknown UV completion. The EFT paradigm as two main applications. The first one, the top-down
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approach, assumes a specific UV completion, from which low energy observables are derived. The
second one, the bottom-up approach, considers the most generic low energy theories, and aims at
constraining a wide range of UV completions from low energy measurements (Chapt. 3). The path
integral is particularly well-suited to study the top-down approach, as one can formally integrate
out heavy degrees of freedom to obtain the low energy EFT. This is conveniently achieved using
the CDE, which can lead to the so-called Universal One-Loop Effective Action (UOLEA) (Chapt.
4).

The effects of gravity are described in the context of General Relativity by the curvature of
spacetime. Once we have some basic knowledge of differential geometry and QFT in curved space-
time (Chapt. 5), we may take into account the effects of gravity in EFTs. The aim of our work [3]
was to introduce a novel approach to constructing EFTs in curved spacetime, based on the CDE.
Its main advantages compared to other existing methods, are its relative computational simplicity,
its coordinate-independent momentum representation, which is important when studying gravita-
tional anomalies, and its ability to handle chiral fermions in gravity in the path integral, which was
missing in the literature (Chapt. 6). The main results of our work are the bosonic and fermionic
UOLEA in gravity (Chapt. 7 and 8).

A summary of Part II can be found in Chapt. 9. Details of computations for the CDE in gravity
are deferred to App. B and C.

As mentioned above, quantum anomalies are singular in QFT in that they do not run with the
energy, and thus provide direct measurements of high energy effects. Anomalies are the quantum
breaking of classical symmetries, and play a major role in modern QFT. The most famous one is
the so-called ABJ anomaly, which explains the experimentally observed decay of the neutral pion
into two photons. The formulation of anomalies in the path integral permits to understand their
remarkable topological nature. It also gives a good grasp on the ambiguities that are inherent
to them, whether we consider a global or a gauge anomaly (Chapt. 10). Since global and gauge
anomalies arise elegantly in the path integral, we may as well take advantage of existing powerful
EFT methods to compute them. This was the goal of our work [4], in which an anomaly is
interpreted as the difference between two EFTs. The computation of different types of anomalies
is then efficiently achieved using our novel method (Chapt. 11).

Anomalies also have their saying in curved spacetime, and occur in what we call gravitational
anomalies, that is, the breaking of the symmetries of General Relativity in the presence of quantum
matter. The symmetries at stakes are the diffeomorphism, the Lorentz, and the Weyl groups. The
first two are local symmetries of gravity and should not be violated, whereas the latter is a global
symmetry, whose anomaly is harmless. Once the path integral is properly formulated in curved
spacetime, they can be efficiently computed and understood in the same manner as flat spacetime
anomalies (Chapt. 12). Parity violating effects in the Weyl anomaly, which are important to
many phenomenological models, have been under controversy for about a decade when it comes to
Weyl fermions. In our work [2], we help closing the controversy by showing the absence of parity
violation in the Weyl anomaly of a Weyl fermion, using the path integral, while taking great care to
manipulate only with well-defined quantities, and keeping diffeomorphism and Lorentz symmetries
under control (Chapt. 13). This result was extended to any model in our following paper [1]. In
this work, we constrain the generic form of the Weyl anomaly under requiring the finiteness of
the diffeomorphism and Lorentz anomalies. We are thus able to conclude, for any model which is
compatible with dimensional regularisation, that no parity violation can arise in the Weyl anomaly
(Chapt. 14).

The results of Part III are summarised in Chapt. 15. Details about Weyl fermions in curved
spacetime and computations can be found in App. D, E, F and G.
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Chapter 1

Path Integral in Quantum Mechanics

The path integral was introduced by Dirac [6] and Feynman [7] in the context of Quantum Mechan-
ics. But the basic idea can be traced back to Wiener, who used it to describe Brownian motions
and diffusion [8]. It then proved to be a formidable tool in Quantum Field Theory (QFT), quantum
gravity [9], string theory [10], condensed matter [11–15], statistical [16, 17] and polymer physics
[17, 18], financial market [18], etc. . . In this Chapter, we review the foundation of the path integral
in Quantum Mechanics and Quantum Field Theory (QFT).

In Quantum Mechanics, we have systems that are described by vectors |ψ⟩ in a Hilbert space.
The physical quantities are contained in operators Ô. The Hamiltonian H is such an operator and
measures the energy of the system. It also describes the dynamics of the system via the Schrödinger
equation. The physical quantities we are interested in are quantum average of operators, and the
probability of measuring the quantum system in a specific state. These quantities can be extracted
from the path integral that we will build in this Section.

1.1 Schödinger’s equation

Let us consider a quantum system described by the Hamiltonian H, which can be written as

H(x̂, p̂) =
p̂2

2m
+ V (x̂) . (1.1)

The first term is the kinetic energy operator for a particle of mass m, while the second term is
the potential energy operator. p̂ and x̂ are respectively the momentum and the position operators.
Since x̂ is an hermitian operator, its eigenvectors |x⟩ define an orthonormal basis:

x̂ |x⟩ = x |x⟩ , ⟨x|x′⟩ = δ(x− x′) ,

∫
dx |x⟩ ⟨x| = 1 . (1.2)

The matrix elements of p̂ then follow from the Heisenberg uncertainty principle

[x̂, p̂] = iℏ ⇒ ⟨x| [x̂, p̂] |x′⟩ = (x− x′) ⟨x| p̂ |x′⟩ = iℏ δ(x− x′)

⇒ ⟨x| p̂ |x′⟩ = iℏ
δ(x− x′)

x− x′
= −iℏ ∂x δ(x− x′) . (1.3)

From (1.3) we can verify that p̂ is hermitian, hence the eigenvectors |p⟩ such that p̂ |p⟩ = p |p⟩ define
an orthonormal basis as well. It will be useful later on to use their expression in position space

⟨x|p⟩ =
1√
2πℏ

ei
px
ℏ , (1.4)
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which can be derived from (1.3) and the orthonormality condition ⟨p|p′⟩ = δ(p− p′).

A quantum state |ψ(t)⟩ (in the Schrödinger picture) can be decomposed on each of these basis.
For example we have

|ψ(t)⟩ =

∫
dxψ(t, x) |x⟩ , (1.5)

where ψ(t, x) = ⟨x|ψ(t)⟩ is the associated wave function.

Physically, if |ψ(t)⟩ represents the quantum state of a particle, say an electron, then |ψ(t, x)|2
is the probability of measuring the electron at the position x at the time t. On the other hand,
|⟨p|ψ(t)⟩|2 is the probability of measuring its momemtum to be p at the time t. These two mea-
surements are not independent due to the Heisenberg uncertainty principle, which implies that

σxσp ≥
ℏ
2
, (1.6)

where σO is the variance of the operator Ô

σx =

√
⟨Ô2⟩ − ⟨Ô⟩2 , (1.7)

and ⟨Ô⟩ = ⟨ψ(t)| Ô |ψ(t)⟩ is the average value of Ô at the time t. In practice, (1.6) means that if we
know precisely the position of our electron (i.e σx is small) then we have an important uncertainty
on its momentum (i.e σp ≥ ℏ/σx is large), and conversely.

1.2 Evolution operator

We will now build the path integral describing the motion of the quantum state |ψ(t)⟩. Its time
evolution follows from the Schrödinger equation

iℏ
d

dt
|ψ(t)⟩ = H |ψ(t)⟩ . (1.8)

For simplicity let us suppose that the Hamiltonian bears no explicit dependence in t. This equation
can be solved to obtain

|ψ(tf )⟩ = Û(tf , t0) |ψ(t0)⟩ , (1.9)

where we defined the time evolution operator of the theory

Û(tf , t0) = e−
i
ℏ (tf−t0)H , (1.10)

between the times t0 and tf . In general, a time evolution operator satisfies the following properties

Û(t, t) = 1 , Û(t0, t) = Û(t, t0)
−1 , Û(t0, t) = Û(t, t1)Û(t1, t0), ∀ t1

Returning to the evolution equation Eq. (1.9), let us introduce an intermediary time t0 ≤ t1 ≤ tf
and use the completeness property

∫
dx ⟨x|x⟩ = 1 to write

ψ(xf , tf ) = ⟨xf | Û(tf , t1)Û(t1, t0) |ψ(t0)⟩ =

∫
dx1dx0 U(tf , xf ; t1, x1)U(t1, x1; t0, x0)ψ(x0, t0) ,

where U(tf , xf ; t0, x0) = ⟨xf | Û(tf , t0) |x0⟩.
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This equation relates the wavefunction at (tf , xf ) to the wavefunction at (t0, x0), while consid-
ering that at t1 the particle may have passed by any position x1. This equation can be schemat-
ically represented by Fig. 1.1a. We can iterate the process and add as many intermediary check-
points as we like. For example we can insert N checkpoints at the times tk = k∆t + t0 with
∆t = tk − tk−1 = (tf − t0)/N , and at each checkpoint insert

∫
dxk ⟨xk|xk⟩ = 1 to obtain

ψ(xf , tf ) =

∫
dxN−1 . . . dx0 U(tf , xf ; tN−1, xN−1) . . . U(t1, x1; t0, x0)ψ(x0, t0) , (1.11)

which can be schematically represented by Fig. 1.1b. We have achieved a representation of the
evolution of |ψ(t)⟩ by considering all the paths that are broken lines passing by each of the possible
xk at tk. The goal will be to take the limit ∆t → 0 in order to obtain a sum over all paths x(t)
(Fig. 1.1c).

Let us first refine (1.11) by using the expressions of Û and H. Using the orthonormality of |x⟩
and |p⟩ we may write

U(tk, xk; tk−1, xk−1) = ⟨xk| e−
i∆t
ℏ

p̂2

2m e−i
i∆t
ℏ V (x̂) |xk−1⟩

= ⟨xk|
∫

dpk |pk−1⟩ ⟨pk−1| e−
i∆t
ℏ

p̂2

2m

∫
dx |x⟩ ⟨x| e−i

i∆t
ℏ V (x̂) |xk−1⟩

=

√
2πmℏ
i∆t

e
i∆tℏ

(
1
2
m
(
xk−xk−1

∆t

)2
−V (xk−1)

)
, (1.12)

where we have made use of (1.4). We can then insert (1.12) into (1.11) to obtain

ψ(xf , tf ) =

∫ N−1∏
k=0

(
dxk

√
2πmℏ
i∆t

)
e
i
∑N
k=0

∆t
ℏ

(
1
2
m
(
xk−xk−1

∆t

)2
−V (xk−1)

)
ψ(x0, t0) , (1.13)

The next bold step is to take the continuous limit ∆t → 0, while postponing discussions about
convergence and definiteness, to obtain the path integral

U(tf , xf ; t0, x0) =

∫
Dx(t) e

i
ℏS[x(t)] , (1.14)

where we identified the action functional

S[x(t)] =

∫ tf

t0

dt

(
1

2
mẋ2 − V (x)

)
, (1.15)

and formally

Dx(t) ≡ lim
∆t→0

N∏
k=0

(
dxk

√
2πmℏ
i∆t

)
. (1.16)

Throughout this construction we assumed the Hamiltonian to be time independent, but the same
reasoning can applied without this assumption by introducing the time ordering operator T

T{f(t)g(t′)} =

{
f(t)g(t′) if t ≤ t′

g(t′)f(t) if t′ < t
, (1.17)

and the evolution operator thus reads

Û(tf , t0) = T e
∫ tf
t0

H(t′)dt′ , (1.18)
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from which the path integral can be constructed similarly.

Before moving on, let us say a word about the meaning of the path integral. The evolution
operator U(t, x; t0.x0) describes how a quantum particle propagates. This quantum particle is
not localised as it is represented by a wavefunction ψ(t, x). The path integral representation of
U(t, x; t0.x0) unravels that the propagation of a quantum particle that is measured at (t0, x0) and
then at (t, x), is equivalent to taking into account all the paths that a classical (off-shell, i.e not
solution to its equations of motion) particle could take between these points. The weight of each of
these classical paths x(t) is the phase exp( iℏS[x(t)]). We will see in Sec. 2.1 another interpretation
of this weight.

(a) All broken lines paths with checkpoints at t1. (b) All broken lines paths with checkpoints at
each tk, with ∆t = (tk − tk−1)/N .

(c) All paths obtained in the ∆t → 0 limit. The path
integral also includes discontinuous paths such as the
one in orange.

1.3 Which paths contribute?

We have achieved the construction of the path integral representation of the time evolution operator

U(tf , xf ; t0, x0) =

∫
Dx(t) e

i
ℏS[x(t)] , (1.19)

which consists in a weighted sum over all possible paths x(t) from x(t0) = x0 to x(tf ) = xf . In
particular, this sum includes discontinuous paths, such as the one drawn in orange in Fig. 1.1c.
In fact, in the space of all paths, most paths are not continuous at any point. This comes as a
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(a) Plot of

f(xk) = Re
[
exp

(
i
ℏ∆tm2

(
xk−xM

∆t

)2)]
.

(b) The path that contribute to the path integral
are Brownians.

surprise since we interpreted the path integral as being the sum of the paths of classical particles,
and classical particles follow continuous paths. This interpretation is correct and we will show that
discontinuous paths are suppressed due to the presence of the kinetic term in the weight exp(iS/ℏ).
This Section mostly follows Matthieux Tissier’s lecture “Path Integral and Representation” given
at the Ecole Normale Supérieure of Cachan.

Let us first return to the discretised version of the path integral (1.13) and focus on one point
xk ∫

dxk e
i
ℏ∆t

m
2

(
xk+1−xk

∆t

)2

e
i
ℏ∆t

m
2

(
xk−xk−1

∆t

)2

∝
∫

dxk e
i
ℏ∆t

m
2

(
xk−xM

∆t

)2

=

∫
dxk f(xk) , (1.20)

with obvious definition for f , and xM = (xk+1 − xk−1)/2. We omitted the potential V (xk) for
simplicity, but including it does change the conclusion. We schematically plotted Re [f(xk)] in
Fig. 1.2a. Since the oscillating part is suppressed in the integral, the only points that contribute to
(1.20) are such that

|xk − xM | ∼
√

ℏ∆t

m
. (1.21)

Firstly, since
|xk − xM | ∼

√
∆t −→

∆t→0
0 , (1.22)

we can conclude that only the continuous paths contribute to the path integral. However, the
velocity of the path is divergent

v =
|xk − xM |

∆t
∼
√

ℏ
m∆t

−→
∆t→0

∞ . (1.23)

This is a striking feature of the path integral: the paths that contribute are continuous but not
derivable at any point, that is to say they are Brownian motion (Fig. 1.2b)! Physically, the reason
behind this feature is the Heisenberg uncertainty principle. Indeed, it is possible to show that

⟨xf | [x̂, p̂] |ψ(tf )⟩ = ⟨xf | [x̂, p̂] Û(tf , tf − ∆t) |ψ(tf − ∆t)⟩

∝
∫

dx e
im

2ℏ∆t (xf−x)
2 (xf − x)2

∆t3/2
ψ(x, tf − ∆t) , (1.24)

where we see that if the paths that contribute would be such that |xf − x| ∼ ∆t, the integral
would vanish in the limit ∆t → 0, implying that [x̂, p̂] = 0. However, if the motion is Brownian:
|xf − x| ∼

√
∆t then [x̂, p̂] ̸= 0.
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Chapter 2

Path Integral in Quantum Field
Theory

Quantum Mechanics is a powerful framework to describe the quantum behavior of a single non-
relativistic particle interacting with a potential. However, it does not explain why every electron
in the universe have exactly the same properties (mass, charges, spin), neither can it explain how
particles can annihilate each other to form new particles, or decay. These are the main motivations
behind Quantum Field Theory (QFT), where instead of following a single electron we now have an
electron field over the whole space. Local excitations of the electron field produce electrons, which
all have the same properties since they arise from the same field. On top of that, QFTs naturally
fit in the framework of special relativity. In this Section, we outline the construction of the path
integral for Quantum Fields, and how it can be used to compute the revelant physical observables.

The Hamiltonian of a QFT is written in terms of field operators ϕ̂(x) = ϕ̂(t, x⃗) (in the Heisenberg
picture). We also call a field the eigenvalue of this operator: ϕ̂(x) |ϕ⟩ = ϕ(x) |ϕ⟩, where ϕ(x) is a
function from the base spacetime manifold M to some vector space (depending on the gauge and
spin structures).

The physical processes we are interested in are scattering, that is to say a set of free particles
that arrive from x → −∞, interact, leaving another set of free particles going to x → +∞. By
free particle, we mean that the particles do not interact together since they are too far away from
one another. These processes are encoded in the S-matrix (S for scattering). Schematically, the
S-matrix operator is given by the evolution operator between times −∞ and +∞

S ∼ Û(+∞,−∞) . (2.1)

Using the Lehmann–Symanzik–Zimmermann (LSZ) formula, its matrix elements can be conve-
niently computed via the time-ordered correlation functions

⟨T ϕ̂(x1) . . . ϕ̂(xn)⟩ , (2.2)

where ⟨ · ⟩ denotes the Vacuum Expectation Value (VEV), defined further below. To illustrate this
formula, we consider a theory of a self-interacting scalar field ϕ of mass M . The amplitude of the
transition between the free state ⟨i| corresponding to n scalars coming from −∞ with momenta
{p1, . . . , pn}, and the free state |f⟩ corresponding to m scalars at +∞ with momenta {q1, . . . , qm},
is given by the LSZ formula as

Sfi = ⟨f |i⟩ ∝
n∏
i=1

(
p2i −M2

) m∏
j=1

(
q2j −M2

) ∫ n∏
i=1

(
d4xi e

ipixi
)
⟨T ϕ̂(x1) . . . ϕ̂(xn)⟩ , (2.3)
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up to some known normalisation factor. The probability of this interaction is simply |Sfi|2. We
thus see that knowing the probability of transition between free states amounts to knowing the
correlation functions of the theory.

In the following, we will show how the correlation functions can be extracted from the path
integral for fields.

2.1 Path Integral for fields

Our aim to generalise the path integral (1.14) for fields, that is to say, write the evolution operator
between two configurations |ϕ0(x⃗)⟩ at t0 and |ϕf (x⃗)⟩ at tf . In general it can be expressed as

U(tf , ϕf (x⃗); t0, ϕ0(x⃗)) =

∫
b.c

Dϕ(x) ei×phase[ϕ] , (2.4)

where b.c denotes the boundary conditions: ϕ(t0, x⃗) = ϕ0(x⃗) and ϕ(tf , x⃗) = ϕf (x⃗), where

ϕ̂(t0, x⃗) |ϕ0(x⃗)⟩ = ϕ0(t0, x) |ϕ0(x⃗)⟩ and likewise for ϕf . Note that inside the path integral, there are
no operators but only classical (off-shell) fields, and a path represents a configuration ϕ(x).

From our previous analysis, we can guess the phase to be the action functional. However, we
can adopt a different argument following [19]. Let us assume the phase has a single minimum at
ϕcl. We can thus evaluate the path integral using the stationary phase approximation to obtain
the path that contributes the most to the evolution of ϕ̂

U(tf , ϕf (x⃗); t0, ϕ0(x⃗)) ≃ ei×phase[ϕcl] . (2.5)

Naturally, the configuration that contributes the most must be the classical (on-shell, i.e solution to
its equations of motion) one, which must then be the minimum of phase[ϕ]. The action functional
S[ϕ] fulfills this requirement by principle of least action, hence

phase[ϕ] ∝ S[t0, tf , ϕ] =

∫ tf

t0

d4xL(ϕ(x)) , (2.6)

is the most natural choice. The classical limit (2.5) must be valid insofar as S ≫ ℏ, we thus use
S/ℏ for the phase, and we recover the result from the previous section for fields

U(tf , ϕf (x⃗); t0, ϕ0(x⃗)) =

∫
b.c

Dϕ(x) e
i
ℏSt0,tf [ϕ] , (2.7)

where

St0,tf [ϕ] =

∫ tf

t0

d4xL(ϕ(x)) . (2.8)

2.2 Vacuum Expectation Value

Since we are interested in the transition between states at t0 → −∞ and tf → +∞, we define the
generating functional

Z[J ] =

∫
Dϕ(x) e

i
ℏS[ϕ]+iJ ·ϕ , (2.9)

where the action is integrated from t → −∞ to t → ∞, and the scalar product is J · ϕ =∫
d4xJ(x)ϕ(x) (for real fields). We omit writing the boundary conditions on the path integral,
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but from now on we keep in mind that they are at infinity.1 From Z we can derive VEVs and in
particular correlation functions by taking the derivative with respect to J and then setting J = 0

1

Z[0]

δnZ

δJ(x1) . . . δJ(xn)

∣∣∣∣
J=0

= in ⟨T ϕ̂(x1) . . . ϕ̂(xn)⟩ , (2.10)

where the VEV of an operator O[ϕ̂] is defined by

⟨TO[ϕ̂]⟩ =
1

Z[0]

∫
DϕO[ϕ] e

i
ℏS[ϕ] =

∫
DϕO[ϕ] e

i
ℏS[ϕ]∫

Dϕ e
i
ℏS[ϕ]

. (2.11)

Remarkably, the path integral automatically provides a time-ordered VEV of the operators, due to
the time-discretisation [20].

The reason why the VEV is normalised by Z[0] is because the path integral measure is in fact
defined up to an infinite constant. However, it should not play a role in VEVs which are involved in
physical observables such as probabilities of interactions. The normalisation cancels such irrelevant
constants. Z[0] in fact generates all the vacuum diagrams that are not connected to external legs
and only clutter the physical processes without participating (see Tab. 2.1).

As the name indicates, the VEV of an operator corresponds to the average value of this operator
over the quantum fluctuations, in the vacuum of the theory. Indeed, before taking the t0 → −∞
and tf → ∞ limits, we may write the quantum transition between the states |ϕ0⟩ and |ϕf ⟩ as

⟨TO[ϕ̂]⟩t0,tf = ⟨ϕf |Te−iH∆tO[ϕ̂]e−iH∆t |ϕ0⟩ , (2.12)

where ∆t = tf − t0 (H is taken to be time-independent here). By decomposing the quantum states
on the eigenbasis of the Hamitonian H |n⟩ = En |n⟩ we may write2

e−iH∆t |ϕ0⟩ =
∑
n

e−iEn∆t |n⟩ ⟨n|ϕ0⟩ , (2.13)

and likewise for ⟨ϕf |. Only the ground state |0⟩ 3 with E0 = 0 survives in the ∆t → ∞ limit,
by virtue of the Riemann-Lebesgue lemma which states that for any well-behaved (integrable and
measurable) function f

lim
|∆t|→∞

∫ a

b
dx f(x) ei∆t x = 0 . (2.14)

This leaves us with

⟨TO[ϕ̂]⟩ = ⟨0|TO[ϕ̂] |0⟩ =

∫
DϕO[ϕ] e

i
ℏS[ϕ]∫

Dϕ e
i
ℏS[ϕ]

, (2.15)

which is evaluated in the vacuum of the theory |0⟩, i.e the lowest energy state. In a free theory,
the vacuum corresponds to having no particles at all. This is not true anymore in an interacting
theory where the vacuum has a non-zero energy due to the spontaneous creation and annihilation
of particles, i.e vacuum bubbles.

In terms of Feynman diagrams, the correlation function (2.10) corresponds to all the processes
that involve n external legs (with zero momenta), including disconnected diagrams (see Tab. 2.1).

1In general the boundary conditions should be on the boundary of the base manifold M, which we assume to be
at infinity here.

2Σn is in fact rather a continuous sum
∫
dn.

3Here |0⟩ denotes the vacuum of the full interacting theory. In textbooks it is often denoted by |Ω⟩, while |0⟩ is
the vacuum of the free theory.
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These disconnected diagrams represent scenarii where there is actually no scattering between the
incoming and outgoing particles. For physical observables these diagrams should be subtracted.
This is achieved by the quantum Action W [J ] = −i logZ[J ]

⟨T ϕ̂(x1) . . . ϕ̂(xn)⟩c = (−i)n δnW

δJ(x1) . . . δJ(xn)

∣∣∣∣
J=0

, (2.16)

where c stands for “connected”.

Functional
Examples of generated diagrams for a scalar
interacting theory L = −1

2ϕ(∂2 +m2)ϕ+ gϕ3

Z[J = 0]: vacuum bubbles.

1
Z[0]

δ4Z
δJ4

∣∣∣
J=0

: four-legged diagrams,

no vacuum bubbles.

Includes disconnected diagrams:

δ2W
δJ2

∣∣∣
J=0

: two-legged connected diagrams,

no vacuum bubbles.

δ4W
δJ4

∣∣∣
J=0

: four-legged connected diagrams,

no vacuum bubbles.

Table 2.1: Examples of diagrams generated by each functional.

2.3 Effective action

The quantum Effective Action is defined as the Legendre transform of W [J ]

Γ[φ] = Min
J

{W [J ] − J · φ} = W [Jφ] − Jφ · φ , (2.17)

where Min
x∈I

{f(x)} is the minimum of f over I, and is naturally generalised to functionals. Jφ

minimises W [J ] − J · φ, hence is solution to δW
δJ [Jφ] − φ = 0. W [J ] and Γ[φ] can be understood as

follows: when using W [J ], we fix an external current J and can deduce the associated VEV of ϕ̂

⟨ϕ̂⟩J ≡ δW

δJ
[J ] , (2.18)

whereas when using Γ[φ] we fix the VEV as ⟨ϕ̂⟩Jφ = φ and deduce the external current Jφ that
yields such a VEV, which is solution to

δW

δJ
[Jφ] = φ . (2.19)

From Γ[φ] we define the effective potential

Veff [φ] = −Γ[φ]

V
, (2.20)
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where V is some fiducial spacetime volume. The minima of this potential represent the stable VEV
of ϕ̂. In general, these solutions are constant, i.e independent of x.4

In the context of Effective Field Theory (EFT), we will be interested in the case where the
quantum field ϕ̂ decouples from the other background fields. It means that it reaches its VEV
without external source

φ(x) = ⟨ϕ̂⟩ =
δW

δJ
[J = 0] . (2.21)

Henceforth, in that context, the quantity we are interested in is

Γ[φ = ⟨ϕ̂⟩] = W [J = 0] . (2.22)

In terms of Feynman diagrams, it includes all the diagrams that only have background fields on
the external legs.

2.4 Quantum equations of motion

The path integral allows to obtain the correlation functions while bypassing the traditional quan-
tisation: upgrade the fields to operators on a Hilbert space with their commutation relations, solve
their equations of motion (EoM), compute the correlation functions. Since the quantum fields re-
spect their EoM, so do the correlation functions. For example, if we take the simple case of a real
quantum scalar field

S = −1

2

∫
d4x ϕ̂(∂2 +m2)ϕ̂ , (2.23)

then the quantum EoM impose
(∂2 +m2)ϕ̂ = 0 . (2.24)

Consequently, the two-point function obeys5

(∂2x +m2)⟨T ϕ̂(x)ϕ̂(y)⟩ = −iδ(x− y) . (2.25)

Similar equations can be obtained for n-point correlation functions.
It may thus come as a surprise that no notion of quantum EoM were necessary to obtain the

correlation functions via the path integral. The reason is that the quantum EoM are automatically
included. They follow from the fact that for any functional F [ϕ], its generic variation vanishes
under the integral ∫

Dϕ δF [ϕ] = 0 . (2.26)

In particular, taking F [ϕ] = eiS+iJ ·ϕ and the variation δ/δϕ we obtain the Dyson-Schwinger equa-
tion [21–23] (

δS

δϕ

[
−i δ
δJ

]
+ J

)
Z[J ] = 0 . (2.27)

For the case of the real scalar field, by taking the derivative of (2.27) with respect to J(y) and then
setting it to zero we obtain

(∂2x +m2)⟨T ϕ̂(x)ϕ̂(y)⟩ = −iδ(x− y) , (2.28)

which is identical to (2.25). We thus see that the quantum EoM are indeed automatically enforced
in the path integral formulation.

4Counter-examples are instanton solutions.
5The contact term δ(x− y) arise because ∂2 also acts on the Heaviside functions θ in

⟨T ϕ̂(x)ϕ̂(y)⟩ = ⟨ϕ̂(x)ϕ̂(y)⟩θ(x0 − y0) + ⟨ϕ̂(y)ϕ̂(x)⟩θ(y0 − x0).
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2.5 Path integral methods

The path integral is a formidable tool to extract all the physical quantities we may be interested
into. However, it remains at this stage very formal, and it may seem unclear how to compute
explicitly the integration over paths. In this Section we will show the main methods employed to
compute path integrals. For simplicity, from now on we use the system of units such that ℏ = c = 1.
We also drop the ˆ on the quantum fields.

Computing the path integral exactly is challenging, hence most methods rely on the stationary
phase approximation. It consists in changing the path integral variable to η = ϕ − ϕ0 and then
performing a Taylor expansion of the action

Z[J ] =

∫
Dϕ eiS[ϕ]+iJ ·ϕ

= eiS[ϕ0]+iJ ·ϕ0
∫

Dη ei
1
2
η2· δ

2S
δη2

[ϕ0]+i
∑
n≥3

1
n!
ηn·δnS[ϕ0]

= eiS[ϕ0]+iJ ·ϕ0
∫

Dη e
i
2
η2· δ

2S
δη2

[ϕ0]
∑
m≥0

im

m!

∑
n≥3

1

n!
ηn · δnS[ϕ0]

m

(2.29)

where we used the EoM in the presence of an external source

δS

δϕ
[ϕ0] + J = 0 , (2.30)

This equation can be solved to obtain the propagator Π (or Green function)

ϕ0[J ](x) = −
∫

d4yΠ(x, y)J(y) . (2.31)

The Taylor expansion we performed is an expansion in powers of ℏ, i.e in loops, therefore a good
approximation of Z can be obtained by cropping the expansion at the desired loop order. The
leading order consisting of one-loop diagrams is often sufficient, hence most efforts in the literature
were dedicated to computing one-loop effective actions.

2.5.1 Functional methods: one-loop

In the one-loop approximation, only second order term is kept in (2.29) leaving us with

Z[J ] ≃ eiS[ϕ0]+iJ ·ϕ0
∫

Dη e
i
2
η2· δ

2S
δη2

[ϕ0] . (2.32)

Let us perform what is called in the literature a Wick rotation to Euclidean signature. It consists
in rotating the time variable to the imaginary axis: t→ ±it, and the resulting path integral reads∫

Dη e−
1
2
η2· δ

2S
δη2

[ϕ0] . (2.33)

In analogy with a gaussian integral (with A positive definite)∫
dx⃗ e−

1
2
x⃗T ·A·x⃗ =

√
det(2πA−1) , (2.34)

we obtain

W [J ] = −i logZ[J ] ≃ S[ϕ0] + J · ϕ0 + ics Tr log

(
−δ

2S

δϕ2
[ϕ0]

)
, (2.35)
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after Wick rotating back to Minkowski, and using log det = Tr log, Tr being the functional trace.
The factor cs depends on the spin of ϕ, for example for real scalars, complex scalars, Dirac fermions,
gauge bosons, and Fadeev-Popov ghosts cs = 1/2, 1, −1/2, 1/2, and −1, respectively. The gaus-
sian integration is permitted insofar as δ2S is invertible. For now we assume it is the case, but
the discussion will be particularly relevant when dealing with quantum anomalies in Part III. It
amounts to assuming that the configuration of the external fields is trivial, i.e there are no instanton
configurations, i.e we are a perturbative set-up.

The heart of the computation now consists in calculating a functional determinant (or trace).
We will assume a generic ansatz for the second derivative of the action which is the following

W1-loop[J ] = icsTr log
[
D2 +m2 + U [ϕ0]

]
. (2.36)

where D is a covariant derivative, m a mass and U some matrix that may depend on other fields
and on ϕ0.

From now on we drop the argument ϕ0 of U and keep in mind that the expansion is around
the classical value of the field. To obtain the correlation functions at one-loop, one has to insert
the solution ϕ0[J ] into (2.36), then take the functional derivatives with respect to J before setting
J = 0.

There exists several methods in the literature to compute such a functional determinant, we
briefly outline the two most commonly used in the following.

2.5.1.1 Heat kernel

Historically, the first method to be used was the heat kernel method, introduced by Schwinger and
De Witt [24, 25]. The idea relies on the following identity6

log λ = −
∫ ∞

0

dτ

τ
e−τλ + cte , (2.37)

where cte is an infinite constant independent of λ thus irrelevant here. We extend this formula to
the functional trace

W1-loop[J ] = −ics
∫ ∞

0

dτ

τ
Tr e−τ(D

2+m2+U) . (2.38)

Let us introduce the kernel of a functional operator O(x, y)

K(τ, x, y,O) = e−τO(x,y) (2.39)

It is solution to what is called a heat equation{
(∂τ +O)K(τ, x, y,O) = 0

K(0, x, y,O) = δ(x− y)
. (2.40)

For O0 = ∂2 +m2 it can be solved exactly on a general background manifold. On a flat d-
dimensional manifold its expression is rather simple and reads

K(τ, x, y,O0) =
1

(4πτ)d/2
e−

(x−y)2
4τ

−tm2
. (2.41)

6To prove this relation, one has to differentiate both sides with respect to λ. Setting λ = 1 we obtain the infinite
constant cte =

∫∞
0

dτ
τ
e−τ .
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For a more general operator O, it is possible to express the kernel in a power series in τ

K(τ, x, y,O) = K(τ, x, y,O0)
∑
n≥0

τn bn(x, y,O) . (2.42)

where the bn(x, y,O) are called heat kernel coefficients. The effective action W1-loop can be recovered
from the trace of the kernel

W1-loop[J ] = −ics
∫ ∞

0

dτ

τ
trK(τ, x, x,D2 +m2 + U) , (2.43)

where tr denotes the trace over internal degrees of freedom (spin, gauge indices). The computa-
tion of the functional trace (2.36) now amounts to computing the heat kernel coefficients in their
coincidence limit bn(x, x). It can be showed that they are finite in such limit, and are expressed as
polynomials in the background fields and their derivatives. They can be computed iteratively using
the heat equation (2.40). Since they cannot be solved for n→ ∞, the result can be approximated
by truncating the series (2.42) at some order. In practice, the heat kernel coefficients are of the
form

bn ∝ 1

m2n
, (2.44)

such that the truncation is valid at energies smaller than the mass, which provides the upper validity
bound of the EFT.

Although the heat kernel coefficients are finite, W1-loop bears divergences in d = 4 due to the
τ integration. The divergences at τ → 0 are called ultraviolet (UV) divergences, they need to
be regularised for example by introducing a cut-off on the lower bound of the integral, or more
commonly by using dimensional regularisation. There may also be divergences on the upper bound
of the integral, for τ → ∞. These divergences occur if D2 + m2 + U has negative or vanishing
eigenvalues. These infrared (IR) divergences are of particular relevance when dealing with anomalies
(see Part III).

The heat kernel coefficients have been computed in curved spacetime, in the presence of a
gauge sector, and in the case where U is a simple matrix. This permits to obtain the EFT for
scalar fields, vector-like fermions7 and spin-1 bosons. The case of chiral fermions has not been
treated in a generic manner.

2.5.1.2 Covariant Derivative Expansion

The Covariant Derivative Expansion (CDE) is a more recent approach [26, 27]. This is the method
that we will employ for most of our computations. The main idea is to perform a Taylor expansion
of the functional determinant and then do a truncation to compute it at some order. It has the
advantage of being more transparent and thus more intuitive than the heat kernel method, for which
the computation of the heat kernel coefficients is quite involved. Curved spacetime generalisation
of the CDE is treated in details in Part II. We briefly outline here the CDE in flat spacetime.

We choose the same ansatz as above for the second derivative of the action, which is a diagonal
functional and reads8

δ2S

δϕ(x)δϕ(y)
=
(
D2
x +m2 + U

)
δ(x− y) , (2.45)

7By vector-like fermions we mean fermions for which their left and right-handed chiralities couple identically to
other fields.

8For local UV theories, the UV Lagrangian is always diagonal in position space.
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where Dx ⊃ ∂
∂ x . The functional trace of some functional F (x, y) is defined by

TrF =

∫
d4xF (x, x) . (2.46)

Applied to (2.45), we obtain9

W1-loop[J ] = ics

∫
d4x lim

x→y
log
(
D2
x +m2 + U

)
δ(x− y) . (2.47)

Next we express the Dirac distribution as the Fourier transform of the identity

δ(x− y) =

∫
d4q

(2π)4
eiq·(x−y) , (2.48)

which does not commute with the covariant derivative

[Dx, e
iq·(x−y)] = eiq·(x−y)(Dx + iq) . (2.49)

We thus obtain an expression of W1-loop

W1-loop[J ] = ics

∫
d4xd4q

(2π)4
log
{

(D + iq)2 +m2 + U
}

(2.50)

= ics

∫
d4xd4q

(2π)4
log
{
−∆−1

[
1 − ∆

(
D2 + 2iq ·D + U

)]}
, (2.51)

where ∆−1 = q2 −m2, and we assumed [U, q] = 0. This assumption does not hold for the case of
chiral fermions, which is treated in Part II.

An extra step can be undertaken here, which consists in sandwiching the log with e±iD·∂ / ∂ q.
This trick, proposed by Gaillard and Cheyette [26, 27], has the advantage of stowing the covariant
derivatives D within commutators, hence providing a manifestly covariant expansion. We skip this
step as it makes the computation significantly heavier. Besides, a convenient choice of gauge also
allows to only manipulate covariant quantities all throughout the computation.

The final step is to discard the infinite irrelevant constant log
(
−∆−1

)
, and perform a Taylor

expansion of the logarithm to obtain an expansion in terms of the covariant derivative

W1-loop[J ] = −ics
∫

d4xd4q

(2π)4

∑
n≥1

1

n

[
∆
(
D2 + 2iq ·D + U

)]n
. (2.52)

This last step is slightly modified if [D,∆] ̸= 0, this concerns the cases where m is a matrix (i.e
several fields are integrated out), and curved spacetime.

This quantity has to be regularised, which is conveniently achieved in dimensional regularisation.
All that remains to be done is to compute the expansion up to a given order and form covariant
quantities, which can be greatly simplified by making a convenient choice of gauge. The momentum
integration in dimensional regularisation is given by tabulated master integrals.

9We used the fact that for any diagonal functional we have log (A(x)δ(x− y)) = log (A(x)) δ(x−y), in other words
log1 = 0 where 1(x, y) = δ(x− y).

41



Part I: Path Integral

2.5.2 Functional methods: beyond one-loop

Functional methods beyond one-loop have seen a regrowth in interest recently [28, 29], although
it had been treated before (see e.g [30]). In the following, we outline the computation of the path
integral beyond-one loop, and in App. A we show how to obtain the two-loop β-function in a scalar
ϕ4 theory.

We return to (2.29), and for convenience perform the change of variable χ = Π−1/2 · η where

Π−1(x, y) = − δ2S
δϕ(x)δϕ(y) [ϕ0] is the propagator (Green function) of the theory [28]. The resulting

Jacobian is none other than the one-loop determinant det−cs
[
−δ2S[ϕ0]

]
and we obtain

Z[J ] = e
i
ℏS[ϕ0]+iJ ·ϕ0−csTr log(−δ

2S[ϕ0])
∫

Dχ e
i
2
χ2
∑
m≥0

im

m!

∑
n≥3

ℏn/2−1

n!
(Π1/2 · χ)n · δnS[ϕ0]

m

,

(2.53)
where we reintroduced ℏ to help with the counting.

So far, no approximation was made and this expression is exact, i.e non-perturbative. Although
it looks intricate, the sum in factor of the Gaussian term is simply a series of monomials, and can
be recast as

Z[J ] = e
i
ℏS[ϕ0]+iJ ·ϕ0+iW1-loop[J ]

∫
Dχ e

i
2
χ2
∑
k≥0

ak[ϕ0] · χk , (2.54)

where ak depends on ϕ0 and the backgrounds fields of the theory. To proceed we commute the
integral and the series as such

Z[J ] = e
i
ℏS[ϕ0]+iJ ·ϕ0+iW1-loop[J ]

∑
k≥0

ak[ϕ0] ·
∫

Dχχk e
i
2
χ2
. (2.55)

This step is however non-trivial, since this series is in fact divergent (even when regularised).
Hence (2.54) and (2.55) are not equivalent: whereas (2.54) is exact, (2.55) is only correct in the
perturbative regime and the series has a radius of convergence of zero. This a feature of most QFTs
which are solved perturbatively. Nonetheless, it does not mean that there is no physics to extract
from it. The lowest order terms remain a good approximation of an exact solution, but one has to
keep in mind that summing the terms order by order will start to blow up and drift away from the
non-perturbative result.10

We can thus compute perturbatively the path integral to some finite order using∫
Dχ e

i
2
χ2

n∏
i

χai(xi) =

{
δa1a2δ(x1 − x2) . . . δ

a2p−1a2pδ(x2p−1 − x2p) + permutations, if n = 2p

0, if n = 2p+ 1 ,

(2.56)
where we made the internal indices ai explicit. In the first line, there are (2p)!! terms, it corresponds
to the Wick theorem encountered in the diagrammatic approach.

To help fix the ideas, let us consider a simple model and write down all the terms that contribute
at two-loops. We consider a real scalar field with a ϕ4 self interaction

S[ϕ] =

∫
d4x

1

2
ϕ

[
−∂2 −m2 − λ

12
ϕ2
]
ϕ . (2.57)

10In fact, for generic QFTs solved perturbatively as Sn =
∑n
k≥0 bk where k is the loop order, it is known that

lim
n→∞

Sn = ∞ not only because the bk don’t decrease sufficiently fast (e.g bk ∼
k→∞

1/k), but because {bk} itself is

divergent: lim
k→∞

bk = ∞. In some cases, the non-perturbative result can be obtained from this divergent series via a

Borel resummation.
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The propagator of the theory is

Π(x, y) := (−δ2S[ϕ0])
−1(x, y) =

1

∂2 +m2 + λϕ20/2
δ(x− y) . (2.58)

The expansion will come from

δ3S

δϕ(x1) . . . δϕ(x3)
[ϕ0] = −λδ(x1 − x2)δ(x2 − x3)ϕ0(x1)

δ4S

δϕ(x1) . . . δϕ(x4)
[ϕ0] = −λδ(x1 − x2)δ(x2 − x3)δ(x3 − x4) , (2.59)

and any higher derivatives vanish. At two-loop, i.e at O(ℏ), we obtain the terms

eiW2-loop[J ] =

∫
Dχ e

i
2
χ2

(
iℏ

1!4!
(Π1/2 · χ)4 · δ4S[ϕ0] +

i2ℏ
2!(3!)2

(
(Π1/2 · χ)3 · δ3S[ϕ0]

)2)
. (2.60)

We will not go any further here, but we proceed in App. A and show how to obtain the two-loop
β-function of λ. To the best of our knowledge, such a computation form the path integral is absent
in the literature.
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Chapter 3

Motivation behind Effective Field
Theories

Does one need to know the details of a theory down to the smallest scale to be able to do predictions
at larger scale? Fortunately the answer to this question is negative. If that were the case doing
Physics would not be possible. Let us take for example basic hydrodynamics, described by the
Navier-Stokes equation. This theory successfully describes the motion of water and similar fluids
at our scale, although we do not need to have any knowledge of the microscopic behavior of the
molecules of water, in fact we do not even need to know that water is not continuous but is a
collection of molecules. Obviously, we know that the Navier-Stokes equation is meaningless if
we look at water at the scale of its molecules, which means that our theory breaks down below
some length scale. This is the basic concept of effective theories: it is a theory that is able to do
predictions below some cut-off energy scale Λ, but breaks down at energies larger than Λ due to
our lack of knowledge of Physics beyond Λ.

This Chapter is dedicated to the concept of Effective Field Theory (EFT). We will start by
introducing a historical example of an EFT.

3.1 Fermi’s theory of weak interactions

In 1933, Fermi proposed a model to describe the radioactive β− decay of a neutron into a proton,
an electron and an electron neutrino [31, 32]. It is described by the Lagrangian

LFermi = −GF√
2
J†
µJ

µ , (3.1)

where the current Jµ is

Jµ = ν̄eγ
µPLe+ ūγµPLd . (3.2)

u, d, e and νe are the 4-components spinors of respectively the up quark, the down quark, the
electron and the electron neutrino. The Dirac matrices respect the Clifford algebra

{γµ, γν} = 2ηµν , (3.3)

where η is the Minkowski metric, and we define

γ5 = iγ0γ1γ2γ3 , (3.4)
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which anticommutes with the Dirac matrices: {γ5, γµ} = 0. Since γ25 = 1, we obtain the chiral
projectors

PL =
1 − γ5

2
, PR =

1 + γ5
2

,

P 2
L/R = PL/R , PL PR = 0 . (3.5)

The Fermi constant can be measured experimentally via the muon lifetime

GF = 1, 17.10−5 GeV−2 . (3.6)

Fermi’s theory has a four-fermions interaction Fig. 3.1, which describes the β− decay.

d

u

e

ν̄e

Figure 3.1: Four-fermions interaction that is involved in the β− decay.

Despite successfully predicting decay rates at low energy, this theory suffers shortcomings:

• Firstly, it is a non-renormalisable theory. The propagators of the theory become divergent at
some loop order, and as a result new divergences arise, which require an infinite number of
counterterms to be cancelled. This implies that the theory looses its predictivity above some
energy cut-off Λ.

• The interaction cross-sections rise with the energy σ(E) ∼ G2
FE

2. However, unitarity of the
theory, i.e conservation of probabilities, requires that σ(e) ∼ E−2 at most. Therefore the

theory breaks unitarity when σ(E) > E−2, i.e when E > G
−1/2
F . This provides the cut-off of

the theory Λ = G
−1/2
F .

Fermi’s theory is thus an EFT with cut-off Λ = G
−1/2
F . Non-renormalisability is often encountered

in EFTs. It can be understood by the presence of a dimensionful coupling, GF here which has mass
dimension −2. For the same reason, quantum gravity is non-renormalisable.

The Standard Model (SM) includes a refined description of the interaction that is at stakes here
as we will see, which makes Fermi’s theory an EFT of the SM.

3.2 The Standard Model . . .

In this Section, we review briefly the construction of the SM of Particle Physics. Starting from
Fermi’s theory, attempts to describe the fundamental interactions of nature on elementary particles
led to theories that were a refined version of the previous ones, effectively pushing higher the EFT
cut-off. Eventually, a renormalisable theory was obtained: the SM.

Throughout the 20th century, the elementary constituents of matter were observed experimen-
tally, unraveling that it is constituted of three generations of spin-12 fermion fields (see Fig. 3.1).
These fermions interact with each other via the fundamental interactions, which are carried by
spin-1 bosons.
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1st generation 2nd generation 3rd generation Q

Quarks
u c t 2/3
d s b −1/3

Leptons
e− µ− τ− −1
νe νµ ντ 0

Table 3.1: Fermion fields in the SM. Q is the electromagnetic charge.

Electromagnetic interaction Let us consider a simple fermionic theory

S =

∫
d4x ψ̄i/∂ψ , (3.7)

with the notation /v = γµvµ and ψ̄ = ψ†γ0. If we consider the S-matrix of this theory, it is clear
that it is non-interacting, that is to say a set of fermions and anti-fermions in the in state arriving
with some known momentum, will only lead to the same fermions having the same momentum in
the out state.

It is worth noticing that this action is invariant when transforming the fermions as

ψ → eieθψ , ψ̄ → ψ̄e−ieθ , (3.8)

which is a U(1) transformation, and e is some number. If we try to improve that symmetry to a
local one, i.e take θ(x), then the action is not invariant since we have

δθS = −e
∫

d4x ψ̄(/∂θ)ψ . (3.9)

However, if we modify the action by including a spin-1 field Aµ that transforms as

Aµ → Aµ − ∂µ θ , (3.10)

then the symmetry is restored in the action

S′ =

∫
d4x ψ̄ i(/∂ + ie /A)ψ , δθS

′ = 0 (3.11)

Considering the S-matrix of this new theory S′, we notice that we now have an interacting theory,
that is to say if we consider for example an electron and a positron in the in state with respective
momenta p1 and p2, the out state may consist of an electron and a positron with different momenta
(obviously the sum of the momenta is conserved). These fermions have interacted together via a
creation and annihilation of a boson Aµ, which is diagrammatically represented in Fig. 3.2. This
theory represents the fundamental interaction of fermions charged under a U(1) local symmetry,
with charge e. This in fact describes the electromagnetic interaction of fermions with electric charge
e, with the photon field Aµ. The quantum theory of photons and electrons is called Quantum
Electrodynamics (QED).

We can further note that our theory S′ exhibits an additional invariance. Let us consider the
action

S′′ =

∫
d4x ψ̄ i

(
/∂ + i /A+ i(/∂α)

)
ψ . (3.12)

By transforming the boson as Aµ → Aµ − ∂µ α, we recover the same action as previously S′. This
implies that by adding Aµ to our action S we have introduced an additional degree of freedom,
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e−

e+

e−

e+

e− e−

e+ e+

e−

e−e+

e+

Figure 3.2: Feynman diagrams representing all the classical interactions between the free states:
one electron and one positron. The solid lines represent the electron/positron, while the wavy line
represent the spin-1 boson Aµ.

since we can arbitrarily choose to couple our fermion to Aµ + ∂µ α, ∀α. This degree of freedom
is called a gauge freedom, and physical observables should not depend on it. In fact, all the
fundamental interactions exhibit this gauge freedom. For this reason we call the interaction boson
“gauge bosons”, and they are studied in the framework of gauge theory.

Strong interaction The strong interaction is described by a gauge theory as well, except that
the symmetry group is not U(1), and that only the quarks are charged. Historically, quark were
introduced by Gell-Mann to explain the hadrons spectrum [33]. The baryons are described as
bound states of quarks and anti-quarks. In 1951, a new baryon was discovered [34] (denoted by
∆++(J = 3/2)), which seemed to be composed of three quarks in the same quantum state, hence
violating Pauli’s exclusion principle. An additional quantum number was then postulated, called
the color. The work of Yang and Mills [35] allowed to understand the color number as a gauge
theory of a non-abelian group: SU(3). The gauge boson associated to this symmetry is called the
gluon field. It describes the strong interaction between quarks and explains their confinement in
nucleii. This quantum theory is called Quantum Chromodynamics (QCD).

Weak interaction As described earlier, the theory of weak interaction was introduced to ex-
plain radiative decays. The first attempt being Fermi’s theory, which turned out to break down
above some energy scale. A refined theory was later introduced by Feynman and Gell-Mann [36],
introducing couplings that depend on the chirality of the fermions, hence called V − A (vector –
axial) theory. It was motivated by [37] pointing towards the non-conservation of parity, and then
the experimental breakthrough in the discovery that neutrinos are only left-handed polarised [38].
Similarly as Fermi’s theory, the V − A theory revealed to break down above λ ∼ G−1

F . Later
improvements arose with the work of Glashow [39] called intermediate vector boson theory, who
postulated the presence of new massive electrically charged W± bosons, with a mass of about
100GeV, so that the theory would coincide with the V −A theory at low energy. Another massive
neutral boson Z has to be introduced to cure some divergences. Despite its success, the theory still
lacked an explanation for the origin of the massive bosons, and some further divergences needed
the introduction of a scalar field (the Higgs field) to be cured.

Electroweak interaction It was with the ideas of Spontaneous Symmetry Breaking (SSB) that
the electromagnetic and weak interactions were understood to be unified as the gauge theory of a
SU(2)L ⊗ U(1)Y group (L for left, and Y for hypercharge).

• Spontaneous Symmetry Breaking Inspired from condensed matter work, the concept of
SSB was formalised in QFT [40–42]. It states that if the ground state of a theory breaks a
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symmetry group to a subgroup, then for each generator of the broken symmetry a massless
degree of freedom appears in the theory, called a Nambu-Goldstone boson. Weinberg and
Salam then applied this concept to unify the electromagnetic and weak interactions [43, 44].
They introduced a gauge group SU(2)L ⊗ U(1)Y , that is spontaneously broken below the
electroweak energy scale to a U(1)Q gauge group. Before SSB, the gauge theory includes three
massless gauge bosons, whereas after SSB only one remains, which is the photon associated
to the U(1)Q electromagnetic interaction. The three generators of SU(2)L thus give rise to
three Nambu-Goldstone bosons which are absorbed to give their mass to the three bosons of
the weak interaction: W± and Z.

• Higgs boson This mechanism presents however a caveat: before SSB, the group SU(2)L ⊗
U(1)Y can only be a symmetry of the theory if all fermions are massless. However, after SSB
all the fermions are measured to have a mass. Higgs, Brout and Englert thus postulated the
existence of a scalar field, that would both trigger the the SSB when relaxing to its equilibrium
state, and provide the fermions their mass [45, 46].

Finally, these works led to the construction of the SM, which exhibits a gauge symmetry group

SU(3)c ⊗ SU(2)L ⊗ U(1)Y , (3.13)

before SSB. The particle constent of the SM and their quantum numbers are summarised in Tab. 3.2.

Fields Representation Isospin Electric charges
SU(3)C ⊗ SU(2)L ⊗ U(1)Y I3 Q = Y + I3

Spin 1
2

qL =

(
uL
dL

) (
3,2, 1/6

) (
1/2
−1/2

) (
2/3
−1/3

)
uR

(
3,1, 2/3

)
0 2/3

dR
(
3,1,−1/3

)
0 −1/3

lL =

(
νe,L
eL

) (
1,2,−1/2

) (
1/2
−1/2

) (
0
−1

)
eR

(
1,1,−1

)
0 −1

Spin 0 H =

(
H+

H0

) (
1,2, 1/2

) (
1/2
−1/2

) (
1
0

)

Spin 1

GAµ
(
8,1, 0

)
0 0

W I
µ

(
1,3, 0

) (
1,−1, 0

) (
1,−1, 0

)
Bµ

(
1,1, 0

)
0 0

Table 3.2: Fields and their quantum numbers under the SM gauge group. For simplicity, we omitted
the color and generation indices. The notations

(
8,3,2,1

)
denote the octet, triplet, doublet and

singlet representations of the SU(N) group. I3 stands for the third generator of SU(2)L. The
breaking of electroweak symmetry, SU(2)L ⊗ U(1)Y → U(1)Q implies the relation Q = I3 + Y .
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The Standard Model Lagrangian Before SSB, the SM Lagrangian reads

LSM = −1

4
GAµνG

A,µν − 1

4
W I
µνW

I,µν − 1

4
BµνB

µν (3.14)

+
(
q̄Li /DqL + ūRi /DuR + d̄Ri /DdR + l̄Li /DlL + ēRi /DeR

)
(3.15)

+ (DµH)†(DµH) + µ2H†H − λ

2
(H†H)2 (3.16)

−
(
l̄LΓe eRH + q̄LΓu uRH̃ + q̄LΓd dRH + h.c.

)
, (3.17)

where H̃j = ϵjk(H
∗)k, (i, j, k). We provide some precisions that will be useful in the following

discussions.

• The second line (3.15) includes the kinetic terms of the fermions. D is the covariant derivative
and includes the gauge coupling as in (3.11). For example, if a fermion ψ is charged under
the gauge group with representation (3,2, Y ), its covariant derivative reads

Dµψ = (∂µ +igGGµ + igWWµ + igY Y Bµ)ψ , (3.18)

where gG, gW and gY are dimensionless coupling constants.

• The gauge bosons that appear in the covariant derivative are: the gluon field Gµ = GAµT
A,

where {TA}1≤A≤8 are the generators of the SU(3)c Lie algebra; Wµ = W I
µT

I is the SU(2)L
gauge boson with {T I}1≤I≤3 the generators of its Lie algebra; and Bµ the Abelian gauge
boson of U(1)Y . Their kinetic term is given by their field strength in the first line (3.14) such
that for X = G,W,B

Xµν = ∂µXν − ∂ν Xµ − [Xµ, Xν ] . (3.19)

The commutator vanishes for the Abelian gauge field Bµ. It can be obtained in terms of
components using their associated Lie algebra[

TA, TB
]

= ifABCTA ,
[
T I , T J

]
= iϵIJKTK , (3.20)

f and ϵ being the associated structure constants. The SU(3)c/SU(2)L Lie algebra can be

expressed in terms of the Gell-Mann/Pauli matrices TA = λA

2 / T I = σI

2 .

• The third line (3.16) represents the Higgs kinetic term and self coupling. Its potential is called
the Mexican hat potential

V (x) = µ2x2 − λ

2
x4 . (3.21)

It triggers the SSB when the VEV of the Higgs relaxes at the minimum of the potential.

• The fourth line (3.17) is the Yukawa interactions between the fermions and the Higgs field.
They provide the fermions their mass when the Higgs reaches its equilibrium VEV.

In the quantum theory, an additional line should be added to account for the quantisation of the
gauge fields, to include the gauge fixing and ghosts terms.

As we saw, the description of elementary particles and their interactions went through different
stages of description, each being an EFT of the next one. The completeness of the SM is a legitimate
question, and we will see in the next Section its shortcomings.
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3.3 . . . as an Effective Field Theory

The SM is considerably successful in describing Physics at the level of the strong and electroweak
interactions. It allowed to predict the existence of the W± and Z bosons, which were discovered
thanks to the UA1 experiment at CERN in the 80’s. The Higgs boson was predicted and then
observed in 2012 at the LHC [47], marking a milestone in the history of Particle Physics. Besides
these, the SM has found agreement with numerous experimental measurements, up to very high
precisions.

Nonetheless, the SM has its shortcomings, indicating that the theory is incomplete. Firstly,
gravity is absent of the SM. Its effects are insignificant at energies probed by current experiments
in Particle Physics, but not at energies closer to the Planck scale MPl ∼ 1019 GeV. We know from
our previous discussions that a theory with some energy cut-off is an EFT. The SM is an EFT, and
an upper bound on its cut-off is given by the Planck scale: ΛSM = MPl.

Despite the absence of gravity, the SM has some other unsolved puzzles. Some of them are:

• Hierarchy problem: The mass of the Higgs boson receives radiative corrections, as any
massive interacting particle. However in this case, it can be shown that the loop corrections
to Higgs mass should scale as ∆M2

H ∼ Λ2
SMy

2
t , where only the dominant contribution from

the top quark which couples to the Higgs with coupling constant yt ∼ 1 is taken into account.
This implies that the Higgs mass should lie around the Planck mass ΛSM ∼MPl ∼ 1019 GeV,
whereas it was measured to be about MH = 125 GeV. There is thus a tremendeous hierarchy
between the observed Higgs mass and the Planck mass that is unexplained by the SM.

• Neutrino mass: In the SM, the neutrinos are massless. This is in disagreement with exper-
imental measurement of neutrino oscillations, which predicts a small but non-vanishing mass
[48].

• Strong CP problem: When constructing the Lagrangian of a theory, one should in principle
include all the renormalisable operators that are consistent with the fundamental symmetries
of the theory. For QCD this implies that the topological term

LQCD ⊃ θ

32π2
GAµνG̃

A,µν , (3.22)

should be present, where G is the gluon field strength, and A denotes the color indices.
G̃A,µν = 1

2ϵ
µνρσGAρσ is the dual field strength. Despite being a boundary term, the topology

of the gauge group SU(3)c makes it non-vanishing when integrated against the whole manifold.
Since this operator changes sign under CP transformation, it would give rise to CP -violating
processes in the QCD sector. Such effects are not observed, since in fact the θ angle was
experimentally determined, via measurements of neutron electric dipole moment (nEDM)
[49–51], to be extremely small: θ < 10−10. The SM lacks a mechanism to explain the
smallness of the θ parameter.

Many Beyond the SM (BSM) solutions to these problems were proposed in the literature, often
involving new symmetries and particles at energy scales that were not probed by experiments (>
TeV). Unfortunately, except for some small deviations from SM predictions, no new Physics was
discovered in current experiments since 2012. The possible extensions of the SM are almost limitless,
and current experimental data does not select very specific directions. The EFT paradigm is a well
suited framework for this situation. There are two main approaches: consider a vast range of
BSM operators, and use experimental data to constrain their coefficients (bottom-up approach), or
connect UV models to low energy precision measurements (top-down approach). In the following,
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we will concentrate on the top-down approach, but let us first say a word about the bottom-up
approach.

3.4 Bottom-up approach

An EFT that breaks down at a scale Λ can be expressed in terms of renormalisable operators
independent of Λ, supplemented by non-renormalisable operators suppressed by powers of Λ

LEFT = Lrenorm +
∑
n≥1

1

Λn

∑
i

c
(n)
i O(n)

i , (3.23)

where the c
(n)
i are called Wilson coefficients, and the O(n)

i are effective operators. The Wilson
coefficients depend on the renormalisation energy scale. Whereas the top-down approach consists
in obtaining these effective operators and Wilson coefficients from a specific UV theory, the bottom-
up approach consists in writing down all the possible independent effective operators to cover a wide
range of possible UV completions. The Wilson coefficients are then constrained using experimental
data.

As one would expect, the range of possible effective operators increases tremendously with the
order n of the operator. In practice, the basis can be reduced by considering operators that respect
a chosen gauge symmetry group. There are two main choices of EFTs that have been extensively
studied in the literature.

• The Standard Model Effective Field Theory (SMEFT) is the EFT obtained by intro-
ducing all the possible effective operators built out of the SM fields, while respecting the SM
gauge symmetry group before SSB SU(3)c⊗ SU(2)L⊗U(1)Y . It is a direct generalisation of
the SM. The Higgs field is identical to the SM one, and the only source for the electroweak
SSB. At a given order 1/Λn, it is possible to identify a minimal basis of independent oper-
ators (using EoMs, integrations by parts, Bianchi identities, Fierz transformation and field
redefinitions). Significant effort was put in identifying a basis for dimension 6 operators (i.e
suppressed by 1/Λ2) [52–54].

• The Higgs Effective Field Theory (HEFT) includes effective operators built out of the
SM fields with minimal assumptions, after SSB. It is more generic than the SMEFT, but more
complicated to study. It includes a Higgs field that may not necessarily be identical as in the
SM, such that the Goldstone bosons and the Higgs-like scalar singlet after SSB are indepen-
dent from each other. The gauge symmetry group is only SU(3)c ⊗ U(1)Q, which increases
the variety of effective operators. Finally, the power counting is not as straightfowrard as in
the SMEFT and has been the subject of debates in the literature [55–57].

3.5 Effective Field Theory and gravity

Any renormalisable QFT may exhibit some cut-off scales such as the ones mentionned above for the
SM. These problems may be solved by introducing beyond the SM fields and symmetries. These
BSM models, however elaborate they may be, cannot push the cut-off beyond the Planck scale.
The reason is that beyond the Planck scale, effects of quantum gravity become important, and so
far a complete theory of quantum gravity remains elusive.

Although the largeness of the Planck scale puts quantum gravity way beyond the reach of
experiments, it also means that any EFT including effects of gravity is a very good approximation
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of quantum gravity for a wide range of energies. This includes EFTs of quantum gravity (see e.g
[58, 59] for comprehensive reviews), or EFTs where gravity is treated as a background field.

One example of applications of EFTs with a gravitational background field is the computations
of back-reactions effects, that is to say the effects of quantum fields on a classical gravitational
background. This finds application in very early universe Physics, inflation, quantum black holes,
quark-gluon plasma, dynamical symmetry breaking, etc. . . [60–63]. Other examples of application
arise in condensed matter where the effects of a non-uniform temperature can be described as a
curvature of spacetime [64–66] (see e.g [67] for a recent review). Chapter 6 will be mainly dedicated
to constructing EFTs in a background gravitational field.
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Chapter 4

Effective Field Theory Formalism

In this Section, we present the top-down EFT approach, and delve into the recent functional
methods that led to the Universal One-Loop Effective Action.

The top-down approach consists in comparing the predictions of a UV theory to low energy
measurements. The procedure can be broken down in three steps:

• Matching: Starting from a UV theory, the goal is to build the EFT that matches the UV
theory at the cut-off scale Λ, while removing the heavy degrees of freedom from the UV theory.
In practice, the UV theory can be a BSM model at a new physics scale Λ, and the relevant
EFT will be valid below Λ, where the new BSM states were integrated out. Typically, Λ is
the mass of the BSM fields.

This matching can be performed using Feynman diagrams, but recent developments allow
to efficiently use the path integral directly. In general, it is very difficult to compute the
effective action as a whole, since it is non-local. However, it can be expanded as a series of
local operators and computed up to some power in 1/Λ and some loop order.

The EFT thus obtained includes effective non-renormalisable operators, with their associated
Wilson coefficient at the renormalisation scale µ = Λ: ci(µ = Λ), such as in (3.23). We will
be mostly interested in the effective operators and Wilson coefficients at tree and one-loop
levels, up to 1/Λ4 usually.

• Running: The UV theory and the EFT are matched at the energy scale Λ. The EFT
must then be run down to the energy scale of the experiment (e.g the electroweak scale)
in order to be confronted to experimental measurements. This is done accordingly to the
Renormalisation Group Equations.

• Mapping: Finally, once the EFT is known at the energy scale of the experiments, physical
observables have to be extracted and compared with the experimental data, or the SM pre-
dictions. For example, the decay width of the Higgs singlet into two photons h → γγ in the
SMEFT can be compared to the SM prediction and expressed in terms of the SMEFT Wilson
coefficients [68]

ΓSMEFT
h→γγ

ΓSM
h→γγ

− 1 ∝ (cWW + cBB − cWB) , (4.1)

where the Wilson coefficients are associated with the effective operators are |H|2WµνW
µν ,

|H|2BµνBµν , and (H†σIH)W I
µνB

µν respectively.
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4.1 Matching via Feynman diagrams

Let us present an example of matching using Feynman diagrams. Consider an interacting theory
of a massive real scalar field Φ, and a light fermion ψ

LUV = ψ̄i/∂ψ − 1

2
Φ
(
∂2 +m2

)
Φ − λΦψ̄ψ . (4.2)

Our goal is to find the EFT LEFT built out of the fermion only, and that reproduces the same
S-matrix elements as those from LUV in the limit where external particles have momentum much
smaller than m. For example, let us consider the interaction ψψ → ψψ at tree level. The corre-
sponding tree level amplitude in the UV theory corresponds to the diagrams in Fig. 4.1, and can
be computed to obtain

AUV =
−iλ2

(p1 − p3)2 −m2
ū(p3)u(p1)ū(p4)u(p2) − (p3 ↔ p4) . (4.3)

In the limit p2i ≪ m2, the amplitude can be expanded as

AUV ∼ −iλ2

m2
ū(p3)u(p1)ū(p4)u(p2) − (p3 ↔ p4) + O

(pipj
m2

)
. (4.4)

At the level of the EFT, the scalar field is absent, which means that there should be an effective
4-fermion operator to reproduce this interaction

Ltree
EFT = ψ̄i/∂ψ +

c1
2

(ψ̄ψ)2 , (4.5)

where c1 is a Wilson coeffcient to be determined by matching. This EFT produces a 4-fermion
interaction amplitude

AEFT = [ic1] ū(p3)u(p1)ū(p4)u(p2) − {p3 ↔ p4} . (4.6)

The amplitudes (4.3) and (4.6) should match in the limit p2i ≪ m2, which allows us to identify

c1 =
λ2

m2
. (4.7)

The same procedure can be applied at one-loop, by comparing the one-loop amplitude of the
ψψ → ψψ scattering in the low momentum limit, to obtain the one-loop corrections to c1.

Now if one would like to obtain the EFT from another UV theory, the corresponding Feynman
diagrams would have to computed from scratch. This has to be done not only any time a new UV
theory is considered, but for every effective operator that may arise in the EFT. Needless to say
that this becomes cumbersome quite fast. As we will see now, the path integral approach allows
one to perform the matching once and for all, for very generic classes of UV theories.

Figure 4.1: Tree-level diagrams proportional to λ2 that contribute to ψψ → ψψ scattering process,
Ref. [5].

60



PhD. Thesis: Aspects of Effective Field Theory and Quantum Anomalies in Gravity

4.2 Matching via the path integral

The matching of an EFT onto a UV theory is an exercise where the path integral approach shines in
comparison with a diagrammatic approach. As we will soon see, it allows to unravel the universal
structure of the one-loop effective action, in the so-called Universal One-Loop Effective Action
(UOLEA) [69–73].

Let us start from a UV action

SUV[ϕ,B] =

∫
d4xL[ϕ,B] , (4.8)

which depends on a quantum field ϕ, and some background fields B. The generating functional
reads

ZUV[J,B] =

∫
Dϕ eiSUV+iJ ·B , (4.9)

and WUV[J,B] = −i logZUV[J,B]. Its Legendre transform is

ΓUV[φ,B] = WUV[Jφ, B] − Jφ · φ , (4.10)

where Jφ is solution to
δWUV

δJ
[Jφ, B] = φ . (4.11)

In the EFT framework, we are interested in the case where ϕ decouples at low energy. We consider
the case where it is heavy, such that its mass m is much larger than the typical energy scale reached
by experiments. This implies that the relevant scattering amplitudes involve no heavy field ϕ in the
in and out states, which boils down to taking J = 0 in the generating functional, or equivalently
φ = ⟨ϕ⟩ after the Legendre transform. This leaves us with the effective ation

ΓUV[⟨ϕ⟩, B] = WUV[0, B] . (4.12)

Our goal is then to find the low energy EFT SEFT[B] such that its effective action

ΓEFT[B] = −i log

∫
Dϕ eiSEFT , (4.13)

verifies
ΓEFT[B] = ΓUV[⟨ϕ⟩, B] . (4.14)

Note that ΓUV is called the effective action, which is not the same as the EFT obtained after
integrating out the heavy fields. Nonetheless, we will see that in the absence of external sources
and mixed heavy-light terms ΓUV is in fact also the EFT.

Let us start by evaluating ΓUV at one-loop using the stationary phase approximation introduced
in Part I

ΓUV[⟨ϕ⟩, B] ≃ SUV[ϕc, B] + ics log det

(
−δ

2SUV

δϕ2
[ϕc, B]

)
, (4.15)

where ϕc is solution to the classical EoM

δSUV

δϕ
[ϕc, B] = 0 . (4.16)

In that case, the matching is rather trivial, and we directly find the EFT at tree and one-loop levels

SEFT[B] = ΓUV[⟨ϕ⟩, B] ≃ SUV[ϕc, B] + ics log det

(
−δ

2SUV

δϕ2
[ϕc, B]

)
. (4.17)
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The matching is less straightforward in the presence of a source for a light quantum field

ZUV[Φ, ϕ,B] =

∫
DΦDϕ eiSUV+iJ ·Φ+ij·ϕ , (4.18)

where Φ is a heavy field and ϕ a light field. In that case we find the matching condition

SEFT[ϕ] = SUV[Φc, ϕ] + ics log detQUV[Φc[ϕ], ϕ] − ics log det

(
−δ

2SUV[Φc[ϕ], ϕ]

δϕ2

)
, (4.19)

where QUV is the Hessian (matrix of the second derivatives) of −SUV[Φ, ϕ]. In terms of diagrams,
this formula accounts for loops that includes both light and heavy fields, called mixed heavy-light.
We will now show how the path integral formalism allows to obtain universal results in the simpler
case where there are no mixed heavy-light loops, although it can be done too [71, 72].

4.2.1 Bosonic UOLEA

To obtain the Universal One-Loop Effective Action (UOLEA), we need to assume a generic ansatz
for SUV

1

SUV[ϕ,B] =

∫
d4xϕ

(
D2 +m2 + U [B]

)
ϕ , (4.20)

where D is the covariant derivative that bears the gauge connections, and U is some local operator
that bears no open derivatives acting on the rightmost ϕ. At one-loop, the effective action thus
reads

Seff
1loop = icsTr log

(
D2 +m2 + U

)
, (4.21)

Despite its bosonic form, it is remarkably quite generic. For bosons such as real and complex
scalars, spin-1 and even spin-2 fields, it is straightforward to put the effective action under the form
(4.21). For a vector-like fermion2 with action

SUV[ψ, ψ̄, B] =

∫
d4x ψ̄

(
i /D −m−Q[B]

)
ψ , (4.22)

the one-loop effective action can be squared to obtain a bosonic form such as (4.21)

Seff
1loop = −i log det

(
i /D −m−Q

)
= − i

2
log det

(
i /D −m−Q

)2
= − i

2
log det

(
−i /D −m−Q

)
det
(
i /D −m−Q

)
= − i

2
log det

(
D2 +m2 + Uferm

)
, (4.23)

where Uferm = 1
4 [γµ, γν ]Fµν + 2mQ+Q2 + [i /D,Q], Fµν = [Dµ, Dν ]. In the third line we used the

fact that the trace of an odd number of Dirac matrices vanishes, so that the trace is invariant under
changing the sign of all the Dirac matrices. Note also that this derivation requires that Q has an
even number of Dirac matrices. As we will see below, this does not hold for chiral fermions.

1Note that U can also depend on ϕ, but then the second derivative of the action slightly differs. For example, for

a ϕ4 theory, we have U ∝ ϕ2 and thus δ2S
δϕ4 = D2 +m2 + 12U [ϕc]. To be more generic, the starting ansatz should be

(4.21) rather than (4.20).
2By vector-like fermion, we mean that all other fields couple to it regardless of its chirality, as opposed to a chiral

fermion.
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Eq. (4.21) hence holds for bosonic fields as well as vector-like fermions. U depends on the nature
of the field that is integrated out, and so does the spin factor cs as can be seen in (4.23). For a real
scalar, complex scalar, vector-like fermion, gauge boson or Fadeev-Popov ghost cs = 1/2, 1, −1/2,
1/2 or −1 respectively.

Applying the CDE as described in Part I we obtain

Seff
1loop = −ics

∫
ddx

ddq

(2π)d

∑
n≥1

1

n

[
∆
(
D2 + 2iq ·D + U

) ]n
. (4.24)

Conveniently, a factorisation between the momentum integrals and the operator part occurs which
is the origin of the computation of the UOLEA [69, 70], and allows to derive the Wilson coefficients
in terms of master integrals (App. B). The bosonic UOLEA up to dimension 6 operators reads [69]

Sbos
eff =

cs
16π2

∫
d4x tr

{
−m4 1

2

(
log

(
m2

µ2

)
− 3

2

)
+m2

(
1 − log

(
m2

µ2

))
U

+ log

(
m2

µ2

)[
− 1

6
(□U) − 1

2
U2 − 1

12
F 2

]

+
1

m2

[
1

60
(DµF

µν)2 − 1

90
F ν
µ F ρ

ν F µ
ρ − 1

12
U(□U) − 1

6
U3 − 1

12
UF 2

]
+ O(1/m4)

}
.

(4.25)

The matching step for models involving heavy bosons and vector-like fermions is thus done once
and for all in the UOLEA.

The UOLEA can also be obtained using the CDE when the mass matrix is non-degenerate [70]
(i.e several massive fields of different mass are integrated out), and to encompass mixed heavy-light
loops [71, 72]. A diagrammatic approach also exists to help with the expansion [74].

As mentioned in Part I, there is an optional step that can be undertaken in (4.24) that is called

the Gaillard and Cheyette trick [27]. It consists in sandwiching the sum in (4.24) by e
±iD· ∂

∂ q . This

insertion is allowed since the derivatives in e
±iD· ∂

∂ q act on 1 to the right, and yield a boundary
term on the left, therefore it amounts to sandwich (4.24) with 1. Despite not changing the result,
it changes the organisation of the computation such that all the derivatives are stowed within
commutators, and thus the expansion is manifestly covariant, i.e covariant at every step of the
computation. Sandwiching an operator with e±iv·D for some vector v amounts to doing a covariant
Taylor expansion, for example

eiv·DUe−iv·D =
∑
n≥0

1

n!
(Dµ1 . . . DµnU)vµ1 . . . vµn . (4.26)

In our computation we skip this extra step, although it makes the expansion manifestly covariant, it
also makes it much more tedious. Besides, a convenient use of gauge fixing can provide a manifestly
covariant expansion while simplifying the computation.

4.2.2 Fermionic UOLEA

As mentioned earlier, this bosonic UOLEA does not apply to chiral fermions. In this Section we
show how to deal with them to obtain the fermionic UOLEA [73, 75].
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If we integrate out a massive chiral fermion3 which UV action is

S =

∫
d4x ψ̄

(
i /D −m−Q

)
ψ , (4.27)

we obtain a one-loop effective action of the form

Seff
1loop = −i log det

(
i /D −m−Q

)
. (4.28)

As previously, it can be bosonised by squaring it.4 We split Q into Qe which has an even number
of Dirac matrices and Qo with an odd number,

log det
(
i /D −m−Q

)
=

1

2
log det

(
i /D −m−Qe −Qo

)
det
(
−i /D −m−Qe +Qo

)
=

1

2
log det

(
D2 +m2 +

1

4
[γµ, γν ]Fµν + 2mQe

+Q(Qe −Qo) − [i /D,Qe] + {i /D,Qo}
)
,

(4.29)

where in the first line we used the vanishing of the trace of an odd number of Dirac matrices,
therefore the invariance under flipping their sign.

Eq. (4.29) reduces to a determinant of the form (4.21) only if Qo = 0, with U = 1
4 [γµ, γν ]Fµν +

2mQe + Q2
e − [i /D,Qe]. However, the usual ansatz used in the heat kernel method, previous CDE

approaches [77, 78] and the worldline formalism [79], assumes that e−iq·xUeiq·x = U (i.e no open
derivative), which is not always true depending on Qe (for example if Qe ∝ γ5).

In other words, the usual ansatz (4.21) (used in heat kernel, CDE, worldline methods) does not
encompass chiral fermions since it is not equivalent to (4.29). One could then proceed to work with
(4.29), however it is simpler to directly work with (4.28) using the fermionic CDE. We proceed as
for the CDE presented in Part I to express the functional trace in momentum space. The difference
arises in the form of the propagator ∆

Seff
1loop = −i

∫
ddx

ddq

(2π)d
tr log

(
∆−1

(
1 − ∆

(
−i /D +Q

)) )
= −i

∫
ddx

ddq

(2π)d
tr
∑
n≥1

1

n

[
∆
(
−i /D +Q

) ]n
,

(4.30)

where ∆ = m/(q2 −m2) − /q/(q2 −m2) .
If we assume a general form for Q, namely a scalar W0, pseudo-scalar W0γ5, vector γµVµ and

pseudo-vector part γµAµγ5, we can derive the so-called fermionic UOLEA [73]. The case of UV
theories involving derivative couplings (such as axion models) requires extra care and is treated in
details in [75].

In the following, our goal will be to extend the bosonic and fermionic UOLEA to include the
effects of gravity.

3Let us make a comment on massive chiral fermions. The mass term is a hard breaking source of axial symmetries
(local or global). These symmetries can be made manifest at tree-level by implementing their spontaneous breaking
and introducing their associated Goldstone bosons. Here, we choose for convenience to work within the unitary basis
and loose manifest tree-level axial invariance.

4Note that it can also be bosonised by multiplying by the hermitian conjugate, which amounts to computing the
modulus of the determinant. Compared to the square of the determinant, only a phase is omitted. This phase is
relevant for computing consistent anomalies [4, 76]. We discuss that point further in Part III.
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Chapter 5

Quantum Field Theory in Curved
Spacetime

Before building EFTs in gravity, let us provide an introduction to QFT in curved spacetime.

5.1 A glimpse of differential geometry

Let us start with a brief introduction to differential geometry and General Relativity.

Manifolds The equivalence principle, that is to say the equality of gravitational and inertial
mass, implies that gravity can be entirely described by the curvature of spacetime. The suitable
mathematical object to study curved spacetimes are manifolds.

A differentiable manifold M of dimension d is a topological space provided with an atlas
{(Ui, φi)}i, where the Ui are open sets such that⋃

i

Ui = M , (5.1)

and the φi are smooth bijective maps (homeomorphisms)

φi : M → Rd . (5.2)

The final requirement to have a differentiable manifold is that ∀i, j such that Ui ∩Uj ̸= ∅, ϕi ◦ ϕ−1
j

is infinitely differentiable.
Using a chart (Ui, φi), ∀p ∈ Ui we can associate a vector φi(p) ∈ Rd, which we call coordinates.

It is convenient to write them as φi(p)
µ = xµ, where 1 ≤ µ ≤ d. This simply means that M

resembles Rd locally, which is a mathematical representation of the equivalence principle.
At each point of p ∈ M, we can consider the tangent space at p: TpM, which is a vector space.

Given coordinates xµ, any vector X ∈ TpM can be expressed as

X = Xµ ∂µ . (5.3)

This is called a coordinate basis. We will see an example of a non-coordinate basis when introducing
the tangent frame later on. The dual to TpM is called the cotangent space T ∗

pM. We can also
write its elements on the coordinate basis

θ = θµdxµ . (5.4)
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A tensor is an element of a tensor product of the tangent and cotangent spaces, and can be expressed
as

T = Tµ1...µnν1...νm ∂µ1 ⊗ · · · ⊗ ∂µn ⊗dxν1 ⊗ · · · ⊗ dxνm . (5.5)

We provide M with the metric tensor g, which can be expressed on the coordinate basis as

g = gµν dxµ ⊗ dxν . (5.6)

It defines the inner product of two vectors X,Y ∈ TpM and the norm

X · Y = gµνX
µY ν , X2 = gµνX

µXν . (5.7)

Likewise, its inverse
g−1 = gµν ∂µ⊗ ∂ν , (5.8)

defines the inner product and the norm on the cotangent space. The metric also provides the
manifold with a local volume element

dV(x) =
√

det g(x) ddx , (5.9)

which we use for integration. Note that integration of forms over manifold is performed by decom-
posing the integral over the patches Ui which are mapped onto Rd [80].

Diffeomorphisms If two charts overlap, i.e p ∈ Ui ∩ Uj i ̸= j, then there are two choices of
coordinates possible: φi(p) and φj(p). It goes without saying that physical results should be inde-
pendent from this arbitrary choice. This is compatible with the fact that norms and inner products
of vectors and forms are independent from a choice of coordinate. Changing from a set of coordi-
nates to another is achieved via a diffeomorphism (also called general coordinate transformation).
The diffeomorphism is a group and locally admits two representations [20]

• Passive coordinate transformations: both the tensors and the coordinates are trans-
formed: T (x) → T ′(x′), and the volume element transforms as dV(x) → dV(x′).

• Active coordinate transformations: the coordinates are transformed back, so that only
the tensors are transformed: T (x) → T ′(x), and the volume element is invariant dV(x) →
dV(x).

For example, under an infinitesimal diffeo

x→ x′ = x− ξ(x) , (5.10)

the passive diffeomorphism transformation of tensors is

V ′
µ(x′) = Vν(x)

∂ xν

∂ x′µ
= Vµ(x) + (∂µ ξ

ν)(x)Vν(x) + O(ξ2)

V ′µ(x′) =
∂ x′µ

∂ xν
V ν(x) = V µ(x) − (∂ν ξ

µ)(x)V ν(x) + O(ξ2) , (5.11)

and by Taylor expanding the left-hand side at O(ξ2) we obtain the active diffeomorphism transfor-
mations

δdξVµ = V ′
µ − Vµ = ξν ∂ν Vµ + (∂µ ξ

ν)Vν + O(ξ2)

δdξV
µ = V ′

µ − Vµ = ξν ∂ν V
µ − (∂ν ξ

µ)V ν + O(ξ2) , (5.12)
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where all quantities are evaluated at x. The transformations are easily generalised to higher rank
tensors. For example for the particular case of the metric we find

δdξgµν = ∇µξν + ∇νξµ . (5.13)

Note that the active diffeomorphism δdξ of a tensor is none other than its Lie derivative along ξ.
Diffeo-invariant quantities can be built out of fully contracted tensors. For example, if we take a
vector V = V µ ∂µ ∈ TpM and a vector in the dual space U = Uµdxµ ∈ T ∗

pM, then by definition
U · V ∈ R is a diffeo-scalar, i.e it is invariant under diffeomorphisms.

Covariant derivatives Note that partial derivatives of tensors are not tensors, that is to say
they do not transform covariantly under diffeomorphism transformations. Similarly as for gauge
groups, we thus introduce the covariant derivative ∇ such that ∇T transforms covariantly if T
does. On the manifolds we consider, there exists a unique connection that is both torsion-less1 and
metric compatible

∇g = 0 , (5.14)

which is called the Levi-Civita connection and is expressed in terms of the Christoffel symbols

Γρµν =
1

2
gρλ (∂µ gνλ + ∂ν gµλ − ∂λ gµν) . (5.15)

The covariant derivative of vectors thus reads

∇µVν = ∂µ Vµ − ΓρµνVρ , ∇µV
ν = ∂µ V

ν + ΓνµρV
ρ . (5.16)

It is easily generalised to higher rank tensors.
Note that there is an abuse of notation above. Vµ is just the component of the vector V = Vµdxµ,

hence it is a function. The covariant derivative acting on functions is simply the partial derivative:
∇Vµ = ∂ Vµ. It is when acting on a vector that the connection arises ∇V ̸= ∂ V . In components it
reads

(∇V )µν = ∂µ Vν − ΓρµνVρ , (5.17)

which we write as (∇V )µν ≡ ∇µVν by abuse of notations.

Curvatures On a flat manifold, the covariant derivative is simply the partial derivative, and we
thus have

[∇µ,∇ν ] = [∂µ, ∂ν ] = 0 . (5.18)

This no longer holds on a curved manifold, and we define the Riemann tensor as

[∇µ,∇ν ]V ρ = R ρ
µν σV

σ , (5.19)

where
Rµνρσ = ∂ρ Γµνσ − ∂σ Γµνρ + ΓµρλΓλνσ − ΓµσλΓλνρ . (5.20)

Henceforth, the Riemann tensor is a measure of the local curvature of the manifold.
Rµνρσ is anti-symmetric in exchanging µ ↔ ν, and ρ ↔ σ, and symmetric in exchanging

(µν) ↔ (ρσ). It respects the Bianchi identities, which are purely geometrical identities

Rµ(νρσ) = 0 , Rµν(ρσ;λ) = 0 , (5.21)

1For any vectors X,Y ∈ TpM, the connection is torsion-less if, and only if, ∇XY − ∇YX = [X,Y ] where
∇X = Xµ∇µ is the covariant derivative along X.
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where Rµνρσ;λ ≡ ∇λRµνρσ, and the parenthesis denote the symmetrisation of the indices, e.g
T(µν) = 1

2(Tµν + Tνµ).

From the Riemann tensor we can construct the Ricci tensor and scalar

Rµν = gρσRµρνσ = Rνµ , R = gµνRµν . (5.22)

Tangent frame We will see in the next Section that fermions can only be introduced on a curved
manifold by referring to the tangent frame, which we introduce here.

Since manifolds are locally flat, it is always possible to find at a given point p ∈ M a set of
coordinates {ξa}1≤a≤d (d = dimM) such that the metric at p looks locally flat

gp = ηab dξa ⊗ dξb , (5.23)

η being the Minkowski metric. These inertial coordinates are also referred to as Riemann Normal
Coordinates (RNC). The metric in non-inertial coordinates {xµ}1≤µ≤d is related to the one in
inertial coordinates by a diffeomorphism

gp = gµν dxµ ⊗ dxν = ηab e
a
µe
b
ν dxµ ⊗ dxν , (5.24)

where

eaµ =
∂ ξa

∂ xµ
, (5.25)

are called the vielbein (zweibein in d = 2, vierbein in d = 4). It is conventional to use the greek
indices to refer to the non-inertial coordinates and the latin indices to refer to the inertial ones.
We can introduce the inverse vielbein e µ

a such that

e µ
a e

a
ν = δµν , e µ

a e
b
µ = δba . (5.26)

The vielbein and their inverse define coordinate basis for the cotangent and tangent spaces

ea = dξa = eaµdxµ ∈ T ∗
pM , ea =

∂

∂ ξa
= e µ

a ∂µ ∈ TpM , (5.27)

in which the metric is flat

gp = ηab e
a ⊗ eb . (5.28)

This choice of basis for tensors is called the tangent frame2 and we have for example

V = V µ ∂µ = V aea , V a = eaµV
µ . (5.29)

In practice, greek indices are lowered and raised with the metric g, and latin indices with η.

Let us now perform the following transformation on the vielbein

(e′) aµ = (L−1)abe
b
µ , (5.30)

such that L ∈ SO(1, d− 1), hence satisfies

ηabL
a
cL

b
d = ηcd . (5.31)

2Note that any coordinate system {xµ} defines a basis for the tangent space TpM: {∂µ}. However this basis is not
orthonormal ∂µ · ∂ν = gµν (see the inner product defined in (5.7)). What we call a tangent frame is an orthonormal
basis for the tangent space: ea · eb = ηab.
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We recognise this transformation as being a local Lorentz transformation. It is easy to verify that
the metric is flat as well

gp = ηab (e′)a ⊗ (e′)b , (5.32)

in this (non-coordinate) basis

(e′)a = (e′) aµdxµ = (L−1)ab dξb , (e′)a = Lba
∂

∂ ξb
, (5.33)

This implies that the vielbein are defined up to local Lorentz transformations. This local Lorentz
transformation is physical and theories expressed on a curved manifold should in general respect
it.

Note that although the vielbein transform under local Lorentz transformations, they also trans-
form under diffeomorphism as vectors

e µ
a (x) → (e′) µ

a (x′) =
∂ x′µ

∂ xν
e ν
a . (5.34)

Since V µ = eµaV a, it implies that V a is a diffeomorphism scalar. Likewise, it is possible to show
that V µ is a Lorentz scalar, but V a transforms as a Lorentz vector.

The covariant derivative of tensors can be expressed in the tangent frame as

(∇v) = (∂µ v
ν + Γνµρv

ρ)dxµ ⊗ ∂ν (5.35)

= (∂µ v
ν + Γνµρv

ρ)eaνdxµ ⊗ ea (5.36)

= (∂µ v
a + ω a

µ bv
b)dxµ ⊗ ea , (5.37)

where we introduced the spin-connection defined as

ω a
µ b = −e ν

b ∂µ e
a
ν + eaνe

ρ
bΓ
ν
µρ . (5.38)

which is antisymmetric ωµab = −ωµba. As a result, the vielbein are metric compatible

∇µe
a
ν = ∂µ e

a
ν + ω a

µ be
b
ν − Γρµνe

a
ρ = 0

∇µe
ν
a = ∂µ e

a
ν + ω b

µa e
ν
b + Γνµρe

ρ
a = 0 . (5.39)

The spin-connection will play a crucial role when introducing fermions in curved spacetime. Its
Lorentz transformation can be worked out from the vielbein transformation and reads

ω a
µ b → (L−1)ac ω

c
µ dL

d
b , (5.40)

which will be useful later on. Finally, the diffeomorphism invariant volume element can also be
expressed in the tangent frame

dV = e1 ∧ · · · ∧ ed = e ddx , (5.41)

with e ≡ det(eaµ) =
√

|g| and ∧ is the Wedge product.

General Relativity Let us quickly introduce the theory that describes gravity, namely General
Relativity (GR). As emphasised earlier, the effects of a gravitational field are equivalent to the
curvature of spacetime. It is then natural that the action depends on a measure of the curvature.
Secondly, it should be independent from a choice of coordinates, it must then be built out of diffeo-
invariant quantities. Finally, in the non-relativistic limit, it should reduce to the classical theory of
gravity, which involves Newton’s universal constant G ≃ 6, 7.10−11 N.m2.kg−2. The action should
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thus depend on G, and involve the relativistic scale c which is the speed of light in vacuum. On
dimensional grounds, we thus obtain the Einstein-Hilbert action

Sg[g] =
1

2κ

∫
d4x

√
|g| (R− 2Λ) , (5.42)

where κ = 8πGc−4, and Λ is the so-called cosmological constant.
If we include the action for matter Smat, the equations of motion for the metric are obtained

by minimising the action and read

Rµν −
1

2
gµνR+ Λgµν = κTµν , (5.43)

where
√
|g|Tµν = δSmat/δgµν is the matter energy-momentum tensor.

Let us say a word about coordinate independence and diffeo-invariance, which may be source a
of confusion. Coordinate independence is not a special feature of GR, all laws of physics should be
independent from the choice of coordinates in which we expressed them. Einstein introduced the
theory of General Relativity, referring to it as being background independent, that is to say there
exists “no prior geometry”. This amounts to saying that the metric is dynamical. Sg is invariant
under diffeomorphisms (and the EoM (5.43) is covariant), since the metric is transformed as well.
This is the special feature of GR.

For example, let us consider the action for a real scalar field coupled to a background non-
dynamical metric (which we will detail in the next Section)

S[ϕ] =

∫
d4xL(ϕ(x), x) = −1

2

∫
d4x

√
|g|ϕ

(
gµν ∂µ ∂ν +m2

)
ϕ . (5.44)

This is obviously independent from the coordinates in which we expressed the Lagrangian

S =

∫
d4xL(ϕ(x), x) =

∫
d4x′ L(ϕ(x′), x′) . (5.45)

However, diffeo-invariance is spoiled

δdξS[ϕ] =

∫
d4x δdξϕ

δS

δϕ
̸= 0 , (5.46)

because the metric is a background field that does not transform, i.e the geometry is fixed.

5.2 Fields in curved spacetime

In this Section, we couple matter fields to gravity. Let us introduce some notations that will be
helpful later on. The total covariant derivative is denoted by D, it includes all the connections.
Its commutator is denoted by Fµν = [Dµ,Dν ]. The diffeo-covariant derivative ∇ only includes the
connection that contract Lorentz indices (Christoffel and spin-connection for the tangent frame).
D only includes the gauge connections, and fermionic spin-connection ωµ that we introduce below.
Its commutator is denoted by Fµν = [Dµ, Dν ].

5.2.1 Spin ≤ 1 bosons

Scalar fields Scalar fields are by definition, scalars with respect to passive diffeomorphism trans-
formations3

ϕ(x) → ϕ′(x′) = ϕ(x) . (5.47)

3But they do transform under active diffeomorphism transformation: δdξϕ = ξµ ∂µ ϕ.
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The coordinate-covariant derivative is thus trivial and we have

Dϕ = Dϕ = (∂+iV )ϕ , Fµνϕ = Fµνϕ = (i(∂µ Vν) − i(∂ν Vµ) − [Vµ, Vν ])ϕ , (5.48)

for a scalar field charged under a gauge group with gauge connection V . The action for a complex
field hence takes the form

Sϕ =

∫
d4x

√
|g|ϕ†

(
gµνDµDν +m2 + ξR

)
ϕ , (5.49)

where we may introduce a coupling to the Ricci scalar, since it is allowed on dimensional grounds.

Gauge fields Spin-1 gauge fields are Lie algebra valued vector fields, hence transform as vectors
under the diffeomorphism group. The covariant derivative reads

DµVν = ∂µ Vν − ΓρµνVρ + [Vµ, Vν ] . (5.50)

Their action in gravity is written as

SV =

∫
d4x

√
|g| 1

4
gµρgνσFµνFρσ , (5.51)

where the field strength is4

Fµν = i ∂µ Vν − i ∂ν Vµ − [Vµ, Vν ] . (5.52)

5.2.2 Spin-1
2
fermions

Fermions are trickier to couple to gravity. The reason is that they are represented by spinor fields,
and the Lie algebra of the diffeomorphism group GL(d,R) 5 admits no (finite dimensional) spinor
representation [20]. However, spinors are subject to the Lorentz group, which arises as the freedom
to choose the tangent frame up to local Lorentz transformations. Whereas the actions (5.49) and
(5.51) are directly invariant under Lorentz transformations, the fermionic action in gravity requires
an additional connection to preserve Lorentz invariance.

Under a local Lorentz transformation L(x), the spinors transform with a representation ρ(L(x))

ψ(x) → ρ−1(L(x))ψ(x)

ψ̄(x) → ψ̄(x)ρ(L(x)) . (5.53)

For an infinitesimal Lorentz transformation Lab(x) = δab + αab(x) with αab = −αba, we have

ρ(L(x)) = 1 +
1

2
αabσ

ab , ρ−1(L(x)) = 1 − 1

2
αabσ

ab , σab =
1

4
[γa, γb] . (5.54)

σab are the generators of the spinor representation of the Lorentz group, they satisfy the Lie algebra

[σab, σdc] = ηadσbc − ηacσbd + ηbcσad − ηbdσac . (5.55)

The partial derivative does not transform covariantly under this transformation

∂µ ψ → ρ−1 ∂µ ψ + (∂µ ρ
−1)ψ . (5.56)

4Note that Fµν = i∇µVν − i∇νVµ − [Vµ, Vν ], however F
µν = gµρgνσFρσ ̸= i ∂µ V ν − i ∂ν V µ − [V µ, V ν ].

5For an infinitesimal diffeomorphism x′ = x− ξ(x) we have V ′µ(x′) = V µ(x)− ∂ ξµ

∂ xν
V ν(x) +O(ξ2), so we see that

the generators of the Lie algebra are d dimensional matrices ∂ ξµ

∂ xν
∈ GL(d,R).
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However, if we introduce a connection ω and require that the covariant derivative transforms
covariantly

Dµψ ≡ (∂µ +ωµ)ψ → ρ−1(∂µ +ωµ)ψ , (5.57)

we must have
ωµ → ρ−1 ∂µ ρ+ ρ−1ωµρ , (5.58)

which reminds us the transformation of the spin-connection ω a
µ b (5.40). This is sufficient to identify

ωµ =
1

2
σabωµab , (5.59)

which we call (fermionic) spin-connection.
In order to build a diffeo-invariant action, we need to introduce a vector Gµ to contract with

Dµψ to form a diffeomorphism scalar

G · Dψ = GµDµψ . (5.60)

Obviously, we should recover the flat spacetime limit, so Gµ should depend on the Dirac flat
spacetime matrices γµ which are constant (independent of the coordinate x). Let us naively take
Gµ = γµ, such that Gµ is independent of x. Then in another set of coordinates x′µ, we would have
G′µ(x′) = ∂ xµ

∂ x′ν γ
ν which depends on x′. But if we had started from the coordinates x′µ and defined

G′µ = γµ to be independent of x′, this time we would have Gµ(x) = ∂ x′µ

∂ xν γ
ν depending on x, which

is different from our first choice. Since the choice of coordinate is totally arbitrary, this procedure
is inconsistent.

Let us alternatively take Gµ(x) = e µ
a (x)γa, where again γa are the x-independent flat spacetime

Dirac matrices. After changing coordinates we simply obtain G′µ(x′) = (e′) µ
a (x′)γa, which is the

definition we would have obtained had we started directly from the coordinates x′µ. This choice
is consistent and recovers the flat spacetime limit. Gµ can be seen as the curved spacetime Dirac
matrices, which satisfy the Clifford algebra

{Gµ(x), Gν(x)} = 2gµν(x) . (5.61)

In the following, for simplicity γa refers to the flat spacetime (x-independent) Dirac matrices, and

γµ(x) ≡ Gµ(x) = e µ
a (x)γa , (5.62)

refers to the curved spacetime Dirac matrices. Importantly, they are metric compatible

Dµγ
ν = ∂µ γ

ν + [ωµ, γ
ν ] + Γνµργ

ρ = 0 . (5.63)

Before getting to the fermionic action, let us say a word about ψ̄, the conjugate of ψ. The inner
product of spinors is defined such that ψ̄ψ transforms as a scalar. In flat spacetime, this is achieved
by taking ψ̄ = ψ†γ0. In curved spacetime, ψ̄ψ transforms as a scalar provided ψ̄ = ψ†ϵ with ϵ
satisfying [81]

ϵ− ϵ† = 0 , ϵ γµ − (γµ)†ϵ = 0 , ∇µϵ = 0 . (5.64)

It can be shown that keeping ϵ = γ0 the flat spacetime Dirac matrix is a suitable choice [82].
Finally, we can write down the gauge, diffeomorphism and Lorentz invariant action for fermions

coupled to gravity and a gauge group

Sψ =

∫
d4x

√
|g| ψ̄ (iγµDµ −m)ψ , (5.65)
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where

γµ = eµaγ
a , {γa, γb} = 2ηab

ψ̄ = ψ†γ0

Dµψ = Dµψ = (∂µ +ωµ + iVµ)ψ . (5.66)

Due to the presence of the fermionic spin-connection, a curvature term arises in the fermion field
strength

Fµνψ = Fµνψ =
1

4
γργσRµνρσψ + (i(∂µ Vν) − i(∂ν Vµ) − [Vµ, Vν ])ψ , (5.67)

and we note the useful identity

σµνFµν =
1

4
R . (5.68)

Fortunately, chiral fermions pose no further difficulty to introduce since the flat spacetime γ5
matrix is metric compatible

Dµγ5 = [ωµ, γ5] = 0 . (5.69)

5.3 Quantum Fields in curved spacetime

As emphasised in Part I, the traditional quantisation of fields can be bypassed by writing down
directly the path integral. For any field Φ with action S[Φ, B], where B are some background fields
(i.e not quantised) including the metric, the quantum theory of Φ is given by

Z[B] =

∫
DΦ eiS[Φ,B]+iJ ·Φ . (5.70)

From which the correlation functions

⟨T Φ̂(x1) . . . Φ̂(xn)⟩ , (5.71)

can be obtained. Recall that in the path integral ϕ(x) is a (off-shell) classical field, whereas it is
a quantum operator in the correlation functions. We postpone for Part III discussions about the
definition of the path integral measure, which is particularly interesting in curved spacetime.

Although the quantisation is straightforward, and the curvature of spacetime seems to not play
a role, several very intriguing effects arise when quantisation fields on a curved background.

As shown in Part I, ϕ̂ obeys the quantum EoM

δS

δϕ̂
= 0 . (5.72)

Let us denote the space of solutions to this equation by S.

Notion of particle In flat spacetime, the modes

up⃗ ∝ e−ip·x , (5.73)

define an orthonormal basis of S 6, with positive frequency with respect to ∂t

∂t up⃗ = −ip0up⃗ , p0 > 0 . (5.74)

6It is possible to define an inner product on S [83].
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The solutions to the EoM can then be expressed as

ϕ̂(x) =

∫
d3p

(2π)3
1√
2p0

(
ap⃗up⃗ + b†p⃗u

†
p⃗

)
, (5.75)

where ap⃗ and bp⃗ are annihilation operators and p0 is fixed by the EoM. For simplicity, we take
in the following the case of a scalar field for which ap⃗ = bp⃗. The annihilation operator defines a
vacuum

ap⃗ |0⟩ = 0 , (5.76)

that is Poincaré invariant, and is interpreted as the absence of particles. The positive frequency
modes are intepreted as particles with definite momentum (hence delocalised in space).

Importantly, in flat spacetime there is not a unique vacuum, but there is a preferred vacuum,
and preferred positive frequency modes, on which inertial observers can agree.

In curved spacetime, the main difference is that in general there exists no timelike killing vector
such as ∂t, therefore there is no preferred definition of positive frequency modes, nor of vacuum.

For example, we could choose a set of orthonormal modes up⃗ such that the solution to (5.72)
involves the annihilation operator ap⃗, and this defines a vacuum |0a⟩.

However, another equally valid choice would be another set vp⃗, with annihilation operator bp⃗,
and vacuum |0b⟩. It is possible to relate these two sets of solution by the so-called Bogolyubov
transformations [84].

The problem is that the vacuum in the u modes contains particles in the v modes since

bp⃗ |0a⟩ ≠ 0 , (5.77)

and conversely. This implies that different observers cannot agree on the definition of particles,
and when one observer may see particles, another one may not. Note that this does not in any case
invalidate QFT in curved spacetime, but only makes the concept of particle observer dependent.

Nonetheless, if there exists a timelike killing vector ξ, then there exists a preferred definition
of positive frequency modes, and hence of vacuum, given by the eigenmodes of the Lie derivative
along ξ

Lξup⃗ = −ip0up⃗ , p0 > 0 . (5.78)

This is the case for stationary spacetimes.

Particle creation in non-stationary spacetime An interesting consequence of the arbitrari-
ness of the definition of particles is the creation of particles in non-stationary spacetimes. Let us
consider a globally hyperbolic manifold that is stationary before some time t−, then non-stationary
between t− and t+, then stationary again after t+. The manifold can thus be broken into three
pieces M = M− ∪M0 ∪M+, where M0 is the non-stationary manifold between times t− and t+.

Since M− and M+ are stationary, both admit a preferred choice of positive frequency modes and
vacuum that are different, and that we respectively denote by {u±i }i and |0±⟩, and the annihilation
operators are a±i . Note that we take discrete indices i for simplicity, but in practice they are
continuous. The modes are related by a Bogolyubov transformation

u+i =
∑
j

(Aiju
−
j +Biju

†,−
j ) , (5.79)

where A and B are some transformation matrices.
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If at earlier time there are no particles, the initial state is unambiguous and is |0−⟩. Surprisingly,

at later times t > t+, some particles are measured. The particle number operator N+
i = a†,+i a+i in

the mode i has a non-vanishing expectation value in the inital vacuum

⟨0−|N+
i |0−⟩ = trBB† . (5.80)

This implies that particles were created in the non-stationary transient spacetime. This inter-
pretation in terms of particle creation is possible because the spacetime is stationary at early and
late times. In particular, this process is at the origin of the Hawking radiation and the Unruh effect.

We refer the reader interested in more in depth discussions about QFT in curved spacetime to
[81, 83, 85].
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Chapter 6

Covariant Derivative Expansion in
curved spacetime

Now that we have introduced quantum fields on a curved background manifold, we are ready to
compute EFTs in gravity. In this Chapter, we present our new approach to the CDE in gravity [3],
but let us first say a word about previous existing functional methods in curved spacetime.

Functional methods are well fit to comprise the effects of the curvature of spacetime. It was
undertaken in both the heat kernel [24, 25, 86–92] and the CDE [77, 78]. As opposed to a Feynman
diagram approach (see for example [93, 94]), gravity needs not be linearised to obtain the gravita-
tional loop corrections. Even though they are more attainable, the higher order corrections remain
a computational challenge to obtain.

The previous CDE procedures in curved spacetime relied on the use of the so-called Gaillard-
Cheyette sandwich [27] to form covariant operators. Although it provides a manifestly covariant
expansion, it also makes the computation much more intricate. In the CDE presented in [3], this
step is avoided. Together with the use of convenient choice of gauge and coordinate system, it
makes the computation of higher order corrections in curved spacetime more systematic and thus
easier to compute. For the first time, the non-renormalisable corrections are obtained within the
framework of the CDE, and on a generic spacetime background.

Although a specific choice of coordinates can simplify the computation, our expansion is co-
ordinate independent. Particularly, the question of the Fourier transform in curved spacetime is
treated so as to obtain a diffeomorphism invariant expansion, whereas former approaches were
mostly relying on a specific choice of coordinate, the Riemann Normal Coordinates (RNC), to de-
fine it [77, 81, 95]. As a result, the method can also be used to obtain non-covariant results such
as consistent gravitational anomalies.

Another novelty of [3] is the derivation of a fermionic CDE in curved spacetime. Previous
methods (heat kernel, CDE and more recently using the worldline formalism [79]) always relied
on a generic bosonic form of the functional determinant. It can describe the effective action after
integrating out real and complex scalar fields, massless and massive gauge bosons, the spin-2 metric
field, and even vector-like fermions. Despite its generic form, it cannot describe a chiral fermion,
as was pointed out in [73]. For the first time, a chiral fermion in curved spacetime is integrated
out within the functional approach in a universal form, and leads to new renormalisable and non-
renormalisable operators that were not computed before. It also provides a new alternative to the
use of Feynman diagrams. Besides the computational simplicity that is proper to the path integral
approach with respect to the use of Feynman diagrams, it has the advantage of not needing to
perturb the metric around a flat background, which significantly simplifies the calculations.

Our result is the one-loop action in curved spacetime up to six dimensional operators in the
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bosonic CDE, and up to five in the fermionic CDE, given in a close form universal formula. Our
systematic procedure can be used in practice to obtain much higher dimensional operators. This
Gravitational version of the UOLEA should be significantly useful to study low energy consequences
of the UV completion of gravity, or generical models including heavy degrees of freedom in gravity
(see for example [96]).

6.1 Fourier transform in curved spacetime

As seen in Sections 4.2.1 and 4.2.2 the CDE in flat spacetime is performed using a momentum
representation, that is to say a Fourier transform of the functional determinant. The Fourier
transform in curved spacetime needs to be addressed thoroughly since it presents some difficulties.
The first one is that contrary to flat spacetime, the covariant derivative ∇µ and the momentum qµ
do not commute. Secondly, the Fourier transform is not unique, in fact there are as many choices
of momentum representation as there are choices of coordinate representations. Indeed, consider
a manifold M, provided with an atlas {Ui, φi}. The points in a subspace Ui are mapped into
RdimM, so for the coordinates given by φi there exists a momentum conjugate which is simply
the momentum representation in flat space. Now consider another subspace Uj , j ̸= i, such that
Ui∩Uj ̸= ∅, then φj provides another set of coordinates for the points in Ui∩Uj and hence another
set of momentum conjugates.

Previous literature [77, 81, 95] involving momentum representation in curved spacetime relied
on a specific choice of coordinate, the RNC where spacetime is locally flat around a point, to define
the Fourier transform. However, we would like to define the Fourier transform without relying
on a specific choice of coordinate (which is of relevance when dealing with quantum anomalies for
example). It does not seem trivial to us that the usual Fourier transform in curved spacetime
leads to a coordinate independent result, since the choice of momentum representation depends on
the choice of coordinate. We explain our procedure for defining the Fourier transform in curved
spacetime, and show that it is indeed independent of the choice of coordinate.

6.1.1 Momentum representation on a manifold

We consider a manifold M of dimension d, provided with an atlas {(Ui, ϕi)}. Let p be a point
in M. There exists a chart (U, ϕ) in the atlas such that p ∈ U . ϕ(p) ∈ Rd is the coordinate
representation of p, we note ϕµ(p) = xµ(p). We can choose a set of d functions from Rd → R:
qµ(x), µ ∈ {1, . . . , d}, such that

∂ qµ
∂ xν

= (∂ν qµ) = 0 . (6.1)

This is simply the momentum conjugate to x in the flat space Rd. We can thus provide the points
in U with a momentum representation with

e−iq·x
∂

∂ xµ
eiq·x = ∂µ +iqµ . (6.2)

One would be tempted to define the 1-form Q = qµdx
µ and the vector X = xµ ∂

∂ xµ so that q · x is
coordinate invariant. But X does not define a vector: suppose we have a second chart such that
p ∈ V with a coordinate φµ(p) = yµ(p), then x and y are related by a diffeomorphism yµ = fµ(x)
and we do not have in general yµ = xν ∂ y

µ

∂ xν .

The second chart (V, φ) provides another momentum representation rµ such that ∂ rµ

∂ yν = 0.
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Consider a vector T = Tµ ∂
∂ xµ = T̃µ ∂

∂ yµ . We can write

e−ir.yTeir.y = T̃µe−irνy
ν ∂

∂ yµ
eirνy

ν
= T̃µ

(
∂

∂ yµ
+ irµ

)
. (6.3)

On the other hand

e−ir.yTeir.y = Tµe−irνf
ν(x) ∂

∂ xµ
eirνf

ν(x)

= Tµ
(

∂

∂ xµ
+ i

∂ rν
∂ xµ

fν(x) + irν
∂ fν(x)

∂ xµ

)
= Tµ

(
∂

∂ xµ
+ irν

∂ fν(x)

∂ xµ

)
,

(6.4)

where we used
∂ rν
∂ xµ

=
∂ yρ

∂ xµ
∂ rν
∂ yρ

= 0 . (6.5)

Since we defined the vector Q = rµdy
µ = qµdx

µ, qµ transforms covariantly: qµ = rν
∂ yν

∂ xµ = rν
∂ fν(x)
∂ xµ .

Hence

e−ir.yTeir.y = Tµ
(

∂

∂ xµ
+ iqµ

)
= e−iq·xTeiq·x . (6.6)

In summary, if we have two coordinates {xµ} and {yµ} for a given point p ∈ M, we can define the

vector Q = qµdx
µ = rµdy

µ such that
∂ qµ
∂ xν =

∂ rµ
∂ yν = 0, and we have for a vector T = Tµ ∂

∂ xµ = T̃µ ∂
∂ yµ

e−iq·xTeiq·x = Tµ(
∂

∂ xµ
+ iqµ) = e−ir·yTeir·y = T̃µ(

∂

∂ yµ
+ irµ) . (6.7)

Note however that q · x ̸= r · y

q · x = qµx
µ = rν

∂ yν

∂ xµ
xµ ̸= rνy

ν . (6.8)

Besides since y = f(x), we have

ddy = dy1 ∧ · · · ∧ dyd = d(f1(x)) ∧ · · · ∧ d(fd(x)) = det

(
∂ f(x)

∂ x

)
ddx , (6.9)

and

ddq = d(
∂ fµ1(x)

∂ x1
rµ1) ∧ · · · ∧ d(

∂ fµd(x)

∂ xd
rµd) = det

(
∂ f(x)

∂ x

)
ddr . (6.10)

We thus have the invariance of the measure

ddxddq = ddyddr . (6.11)

Finally, consider a vector T and the two charts (U, ϕ) and (V, φ)with respective coordinate and
momentum (x, q) and (y, r). If they have an intersection V ∩ U ̸= ∅, we have,∫

U∩V
ddx

ddq

(2π)d
e−iq·xTeiq·x =

∫
U∩V

ddy
ddr

(2π)d
e−ir·yTeir·y . (6.12)

This result can be generalised without difficulty to any tensor H = Hµ1...µn ∂µ1 . . . ∂µn by
inserting 1 = e−iq·xeiq·x between each derivative and using the transformation of a rank n tensor
under a diffeomorphism.
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6.1.2 Functional trace on a manifold

We now seek to write the functional trace of the logarithm of an operator O that is covariant. O
is quadratic in covariant derivatives, it can be written under the form O = Aµν ∂µ ∂ν +Bµ ∂µ +C
where A, B and C depend on the connections in the covariant derivative. The logarithm can be
expanded in a series

logO =
∑
n≥0

Tµ1...µnn ∂µ1 . . . ∂µn . (6.13)

Since O is covariant, Tn must be a rank n tensor. According to the previous section

e−iq·x logO(x, i ∂x)eiq·x =
∑
n≥0

Tµ1...µnn (∂µ1 +iqµ1) . . . (∂µn +iqµn) = logO(x, i ∂x−q) , (6.14)

is coordinate independent. By choosing a chart at each point of the manifold, we can write the
functional trace

TrO =

∫
p∈M

ddxi(p)
ddqi

(2π)d
trO(xi(p), i ∂xi −qi) , (6.15)

where i refers to a chart (Ui, ϕi) such that p ∈ Ui, xi(p) = ϕi(p) and qi is the associated momentum.
As shown above, the integration is independent of the choice of chart (i.e coordinate) for each point
p, which allows us to define the functional trace on a generic manifold M

TrO =

∫
p∈M

ddx(p)
ddq

(2π)d
trO(x(p), i ∂x−q) . (6.16)

Throughout the expansion we will extensively use

∂ qµ
∂ xν

= 0 , (∂µ q
2) = (∂µ g

αβ)qαqβ . (6.17)

Note that we have chosen to define the vector Q such that
∂ qµ
∂ xν = 0. But we could have chosen

∂ qµ

∂ xν = 0, which is not equivalent. Suppose we make the second choice: ∂ qµ

∂ xν = 0. We thus have,

e−iq·xTeiq·x = Tµ(
∂

∂ xµ
+ iqν

∂ xν
∂ xµ

)

= Tµ(
∂

∂ xµ
+ iqν

∂ gνρx
ρ

∂ xµ
)

= Tµ(
∂

∂ xµ
+ iqν

∂ gνρ
∂ xµ

xρ + iqµ) ,

(6.18)

which does not yield the desired outcome.

6.2 Bosonic CDE in curved spacetime

We seek to compute a functional trace of the form

Sboson
eff = ics Tr log

(√
|g|(gµνDµDν +m2 + U)

)
, (6.19)

where Dµ is again the general covariant derivative (notations introduced in Sec. 5.2). U is some local
operator without open derivatives, by open derivative we mean derivatives that act on everything
to their right. The trace above is both over internal spaces and spacetime. cs depends on the
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nature of the field that is integrated out (see Sec. 4.2.1). As explained in Sec. 6.1, the functional
trace in curved spacetime is written in a diffeomorphism invariant manner as

Sboson
eff = ics

∫
ddx

ddq

(2π)d
e−iq·xtr log

√
|g|(D2 +m2 + U)eiq·x . (6.20)

Similarly as in the flat spacetime case, we introduce the propagator ∆ = 1/(q2 −m2)

Sboson
eff = ics

∫
ddx

ddq

(2π)d
tr log

√
|g|
(
−∆−1(1 − ∆(D2 + iq · D + D · iq + U)

)
, (6.21)

In curved spacetime one significant novelty and difficulty comes from the fact that ∆ and D do not
commute anymore since

[Dµ,∆] = −(∂µ q
2)∆2 . (6.22)

Therefore one cannot expand the log directly as in flat spacetime. We thus rely on the following
trick to perform the expansion1: we rewrite the log as the primitive of the inverse function (see e.g
[69])

log
√

|g|(D2 +m2 + U(m)) =

∫ m2

dm′2 1

(D2 +m′2 + U(m))
. (6.23)

Note that the spacetime measure
√
|g| disappears in the expansion, it is discarded as an infinite

irrelevant constant. As we will see in Part III, it is related to the choice of path integral measure
and plays a role when dealing with gravitational anomalies. It is then expanded using

1

A−1(1 −AB)
=
∑
n≥0

A(AB)n , (6.24)

which does not require A and B to commute. We thus obtain

Sboson
eff =ics

∫
ddx

ddq

(2π)d

∫ m2

dm′2 tr
1

−∆−1(1 − ∆(D2 + iq · D + D · iq + U)

= − ics

∫
ddx

ddq

(2π)d

∫ m2

dm′2 tr
∑
n≥0

[
∆(D2 + 2iq · D − gµνΓρµνqρ + U)

]n
∆ , (6.25)

where now ∆ = 1/(q2 −m′2). If the masses are non-degenerate, we can multiply the mass matrix
by a parameter and integrate over this parameter instead (see e.g [70]).

We did not use the Gaillard and Cheyette trick mentionned in Sec. 4.2.1 since it makes the
computation more tedious already in flat spacetime. Besides, in curved spacetime, it is not so
simple to apply as shown in [78].

Note that when all the Lorentz indices to the right of a covariant derivative D are contracted
among themselves, the Christoffel connection cancels (i.e (Dµv

νuν) = (∂µ v
νuν)). In Eq. (6.25) the

only covariant derivative that has uncontracted indices to its right is Dµ in D2 = gµνDµDν . Acting
on a field ϕ we have,

D2ϕ = gµνDµDνϕ = gµνDµDνϕ− gµνΓρµνDρϕ . (6.26)

1It is also possible to expand directly the log of non-commuting operators using the Baker-Campbell-Hausdorf
formula.
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Once D2 is written as such, all the D have only contracted indices to their right, hence they can
be replaced by D,

Sboson
eff = −ics

∫
ddx

ddq

(2π)d

∫
dm′2tr

∑
n≥0

[
∆(gµνDµDν − gµνΓρµνDρ + 2iq ·D

− igµνΓρµνqρ + U)

]n
∆ ,

(6.27)

Both (6.25) and (6.27) can be used for the expansion. In the former, D contracts the Lorentz indices
yielding Christoffel connections, but commutes with the metric. In the latter, D does not contract
the Lorentz indices but does not commute with the metric (which in the end yields Christoffel

connections in virtue of (∂µ g
αβ) = −Γαµλg

λβ − Γβµλg
αλ).

Note that both in (6.25) and (6.27), if U ⊃ [γµ, γν ]Fµν from the bosonisation of a vector-
like fermion, it is possible to rewrite it as [γµ, γν ]Fµν since all the indices to the right of Fµν are
contracted.

The master integrals produced by the bosonic expansion are of the form,∫
ddq

(2π)d
qµ1 . . . qµ2l

∫ m2

dm′2 1

(q2 −m′2)n
=
√
|g|J [q2l]n gµ1...µ2l , (6.28)

where gµ1...µ2l is the fully symmetrised metric. They are related to the usual master integrals in
flat spacetime (see App. B).

6.3 Fermionic CDE in curved spacetime

As explained in Sec. 4.2.2, chiral fermions cannot be dealt with using the bosonic CDE and need
the use of the so-called fermionic CDE. We thus seek to perform the CDE on a determinant of the
form

Sfermion
eff = −i log Tr

(√
|g|(i /D −m−Q)

)
. (6.29)

If the fermion has a coupling to an axial (gauge) field, it is convenient to put the axial field in
Q ⊃ /Aγ5 and keep (Dµψ) = (∂µ +iVµ + ωµ)ψ.

The functional trace is expressed as in the bosonic CDE and leads to

Sfermion
eff = −i

∫
ddx

ddq

(2π)d
tr log

√
|g|
(
i /D − /q −m−Q

)
. (6.30)

We make the inverse function appear by integrating over the mass instead of integrating over the
mass squared as previously2

Sfermion
eff =i

∫
ddx

ddq

(2π)d

∫ m

dm′ tr
1

i /D − /q −m′ −Q(m)

=i

∫
ddx

ddq

(2π)d

∫ m

dm′ tr
∑
n≥0

[
∆
(
−i /D +Q

)]n
∆ ,

(6.31)

2Since all Lorentz indices are contracted, we could extract the Christoffel connection as previously and perform
the expansion with D instead of D after writing either /D = γµDµ or /D = Dµγ

µ + Γµµνγ
ν . However it does not

simplify the expansion since [Dµ, γ
ν ] ̸= 0.
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where now ∆ = −1/(/q +m′) , which can be split as

∆ =
m′

q2 −m′2 +
−/q

q2 −m′2 . (6.32)

Again if the mass matrix is non-degenerate one just has to multiply the mass matrix by a parameter
and integrate over this parameter instead.

This expansion will produce master integrals of the form∫
ddq

(2π)d
qµ1 . . . qµ2l

∫ m

dm′ m′k

(q2 −m′2)n
=
√
|g|K[q2l]kn gµ1...µ2l , (6.33)

with n ≥ k. gµ1...µ2l is the fully symmetrised metric. They are related to the usual master integrals
in flat spacetime I (see App. B).

6.4 A systematic procedure

In flat spacetime, a factorisation of the momentum integrals from the operator part occurs, which
is key in deriving a universal formula. In curved spacetime, the momentum dependence does not
commute anymore with the covariant derivatives. Nevertheless, we can recover the factorisation of
the momentum integration after commuting carefully the momentum part through the covariant
derivatives. Using (∂µ qν) = 0, we derive a set of useful commutation relations presented in Tab. 6.1.

General covariant derivative: D Gauge (and spin-connection) covariant
derivative: D

[Dµ, qν ] = −Γρµνqρ

[Dµ, q
ν ] = −gνσΓρµσqρ

[Dµ, γ
ν ] = 0

[Dµ, g
νρ] = 0

[Dµ,Γ
ν
ρσ] = (∇µΓνρσ)

[Dµ, qν ] = 0

[Dµ, q
ν ] = (∂µ g

ρν)qρ

[Dµ, γ
ν ] = (∂µ γ

ν) + [ωµ, γ
ν ] = −Γνµργ

ρ

[Dµ, g
νρ] = (∂µ g

νρ)

[Dµ,Γ
ν
ρσ] = (∂µ Γνρσ)

[Dµ, δ] = [Dµ, δ] = (∂µ δ) = −(∂µ q
2)δ2 = −(∂µ g

αβ)qαqβδ
2

[Dµ,−/qδ] = −γα ((∇µqα)δ + qα(∂µ δ)) = −γα
(
−Γλµαqλ − qα(∂µ g

ρσ)qρqσδ
2
)

Table 6.1: Set of commutation rules. With the notation δ = 1/(q2 −m2).

Once the momentum dependence is commuted to the left of the covariant derivatives, the
integration over momentum and mass can be performed.3 Then the different terms have to be
combined together to form covariant quantities. This last point may seem a tedious task since our
expansion is not manifestly covariant, but we will see in the examples that the use of Riemann
Normal Coordinates (RNC) and Fock-Schwinger (FS) gauge effortlessly provide the result in terms

3The mass integration variable commutes with every operators, so no difficulty arises in that regard.
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of covariant quantities. Besides, the use of RNC from the beginning of the computation greatly
reduces the number of terms to compute, and simplifies the commutations through the covariant
derivatives.

In the following, we give examples to illustrate the systematic procedure to perform the CDE
in curved spacetime: commute the momentum dependence to the left using Table 6.1, perform the
mass and momentum integration, form covariant quantities. We will show that the use of RNC is
not only useful to form covariant curvature quantities, but also from the first step of the procedure
it reduces the number of terms that contribute at a given order, and simplifies the commutation of
the momentum.

6.4.1 Example of computation - Bosonic CDE

We will compute the first order term (∝ m2) of the bosonic UOLEA in curved spacetime to illustrate
the procedure. We will use the expansion from (6.27). For simplicity, we denote D2 = gµνDµDν ,
ΓD = gµνΓρµνDρ, and Γq = gµνΓρµνqρ, and we take U = 0. The contributions at order m2 are

Lbos
eff

∣∣∣
O(m2)

= −ics
∫

ddq

(2π)d

∫ m2

dm′2 tr
(

∆D2∆ + ∆(2iq ·D − ΓD − iΓq)∆(2iq ·D − ΓD − iΓq)∆
)
.

(6.34)

The first step is to commute the momentum dependence to the left, that is to say, commute
the covariant derivatives to the right. For example, consider the first term of Eq. (6.34)

tr ∆D2∆ = tr
(
∆(∆D2 + (D2∆) + 2gµν(Dµ∆)Dν)

)
. (6.35)

We then use the commutation relations from Table 6.1

tr (D2∆) = tr gµν(∂µν ∆) = tr gµν
(
−(∂µν q

2)∆2 + 2(∂µ q
2)(∂ν q

2)∆3
)

tr 2gµν(Dµ∆)Dν = −2gµνtr (∂µ q
2)∆2Dν . (6.36)

Now we can perform the integration over mass and momentum and express it in terms of master
integrals (App. B). The same procedure has to be applied for the 9 other terms from Eq. (6.34).
Once the master integrals are explicitly written, all the terms can be combined together to form
covariant quantities.

As emphasised earlier, since our expansion is diffeomorphism invariant we can choose a specific
coordinate system to simplify the computation. We will use the Riemann Normal Coordinates
(RNC) around a point x0. At x = x0 + y, the metric and the Christoffel symbols can be expanded
around as

gµν(y) = ηµν −
1

3
Rµανβ(x0)y

αyβ + O(y3)

Γµνρ(y) = −1

3
(Rµνρa +Rµρνa)(x0)y

a + O(y2) .

(6.37)

We can use the RNC to help form covariant quantities after the expansion performed above, but
simplifications occur starting from (6.34). Since the Christoffel symbols vanish at x0, only their
derivatives survive. We can thus already rule out from (6.34) the terms that have Christoffel
symbols without derivative to their left

Lbos
eff

∣∣∣
O(m2)

= −ics
∫

ddq

(2π)d

∫ m2

dm′2 tr
(

∆D2∆ + ∆2iq ·D∆(2iq ·D − ΓD − iΓq)∆
)
. (6.38)
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We then commute the momentum dependence to the left in RNC. For the term ∆D2∆, we obtained
Eq. (6.35). But the term including (Dµ∆) is proportional to a first derivative of the metric hence
it vanishes. We are left with∫

ddq

(2π)d

∫ m2

dm′ tr ∆D2∆ =

∫
ddq

(2π)d

∫ m2

dm′tr
(
∆2D2 + (D2∆)

)
=

∫
ddq

(2π)d

∫ m2

dm′tr
(

∆2D2 − ∆2qαqβg
µν(∂µν g

αβ)
)

=
√
|g|tr

(
J [q0]2D2 − J [q2]3

2

3
R

)
. (6.39)

The second term from Eq. (6.38) is also rather simple. Using Table 6.1 in RNC it reduces to∫
ddq

(2π)d

∫ m2

dm′tr ∆2iq ·D∆(2iq ·D − ΓD − iΓq)

=

∫
ddq

(2π)d

∫ m2

dm′tr
(

∆2(2i)2qµqνDµDν − 2iqµgαβ(∂µ Γραβ)Dρ + 2qµgαβ(∂µ Γραβ)qρ

)
=
√
|g|J [q2]3tr

(
4

3
R− 4D2

)
. (6.40)

Note that the integration with an odd power in q in the numerator vanishes.
The next step which is to combine the different terms to form covariant quantities is avoided

as far as the Christoffel part is concerned since the RNC provide directly the covariant quanti-
ties. There remains to form covariant quantities with the covariant derivatives, which can also by
simplified using the Fock-Schwinger (FS) gauge (see details in App. C).

Combining Eqs. (6.39) and (6.40), we obtain the one-loop effective action at order m2

Lbos
eff

∣∣∣
O(m2)

=
√
|g| cs

16π2
m2

(
1 − log

(
m2

µ2

))
tr
R

6
. (6.41)

The remaining trace is over gauge and spin degrees of freedom. µ is the renormalisation scale from
dimensional regularisation. We used the MS scheme, and will do so throughout.

6.4.2 Example of computation - Fermionic CDE

For completion, we briefly outline the computation of the m2 term in the fermionic expansion,
although it is similar to the procedure of the bosonic CDE. We take Q = 0 and omitt the gauge
sector for simplicity, the contribution at this order is

Lferm
eff

∣∣∣
O(m2)

= −i
∫

ddq

(2π)d

∫ m

dm′ tr ∆/D∆/D∆ . (6.42)

We first commute the momentum dependence to the left, we can do it in RNC to keep it simple.
Let us keep in mind that the propagators here bear a Dirac matrix

Lferm
eff

∣∣∣
O(m2)

= −i
∫

ddq

(2π)d

∫ m

dm′ tr (∆γµ∆γν∆DµDν + ∆γµ∆γν(DµDν∆)) . (6.43)

We split the propagators according to (6.32), we denote ∆f = −/q/(q2−m′2) and ∆b = m′/(q2−m′2),
and then commute the momentum dependence to the left. Since the integration with an odd power
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in q in the numerator vanishes, we can only have an even power in ∆f . We then perform the
integration in terms of the fermionic master integrals.

An extra step that arises in the fermionic CDE is to perform the Dirac trace, or at least simplify
the contractions in-between Dirac matrices, in order to be able to form covariant operators. Extra
care must be taken for the terms that bear open covariant derivatives to the right since they carry
the spin-connection.

Let us focus on the first term of (6.43). After splitting the propagators we obtain

− i

∫
ddq

(2π)d

∫ m

dm′ tr
(

(∆bγ
µ∆bγ

ν∆b + ∆fγ
µ∆fγ

ν∆b

+ ∆fγ
µ∆bγ

ν∆f + ∆bγ
µ∆fγ

ν∆f )DµDν

)
= i
√

|g| tr

((
K[q0]33γ

µγν + K[q2]13gαβ

(
γαγµγβγν + γαγµγνγβ + γµγαγνγβ

))
DµDν

)
.

(6.44)

The first possibility is to simplify the contractions among Dirac matrices using the Clifford algebra,
and then form covariant quantities

i
√
|g| tr

(
K[q0]33 /D

2
+ dK[q2]13 /D

2 − 4K[q2]13D2

)

=
√

|g| −1

16π2
m2

2

(
1 − log

(
m2

µ2

))
tr
(
/D2 −D2

)
=
√
|g| 1

16π2
m2

2

(
1 − log

(
m2

µ2

))
R tr1gauge ,

(6.45)

including a factor 4 coming from the trace over spin indices. From the first to the second line we
discarded the pole 2/ϵ̄, although we took care not to forget the finite contribution obtained when
multiplied by d = 4 − ϵ in the first line. From the second to the last line we used (5.68).

Another possibility is to make explicit the spin-connection in (6.44), directly compute the
Dirac trace, and then form covariant quantities with the explicit spin-connections. When the
open derivatives are on the far right we can write: DµDν = (∂µ ων) + ωµων . In RNC it takes a
simple form as explained in Appendix C

DµDν = −1

8
γαγβRνµαβ . (6.46)

Using the RNC for the spin-connection is the most efficient method to get covariant quantities
when the computation involves more terms.

The systematic procedure is the same as for the bosonic CDE: commute momentum dependence
to the left, perform the mass and momentum integrations, then form covariant quantities. The last
step is slighty more involved for the fermionic CDE, but with the use of RNC it is straightforward.
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Chapter 7

Bosonic UOLEA in curved spacetime

As opposed to the fermionic CDE in curved spacetime, the results from the bosonic CDE presented
here are well-known. Indeed our results can be matched for example with those from the heat kernel
approach [92]1, or more recently using the worldline formalism [79]. Nevertheless, the CDE has the
advantage of being systematic and in fact algorithmic, thus the expansion is easy to automatise. In
addition, the CDE being based on an inverse mass expansion, its physical interpretation is always
enlightening compared to a quite formal heat kernel approach.

The CDE in curved spacetime has already been approached in [77, 78]. However, as opposed
to our current method, these works use the Gaillard and Cheyette sandwich mentionned in Section
4.2.1. As explained earlier, it has the advantage of making the computation manifestly covariant,
but at the cost of making the expansion significantly more involved. When the curvature of space-
time is introduced, such computation can quickly become untractable. By avoiding this step, we
make the computation simpler which allows us to compute higher order corrections in a straightfor-
ward way. The computation of non-renormalisable operators (order 1/m2) using the CDE in curved
spacetime are presented for the first time. More than that, our systematic method could easily be
implemented in a code which would allow to generate even higher dimensional operators associated
to generic UV theories involving gravity.2 The drawback of our method would then be to form
the covariant operators at the end, but thanks to the RNC and the FS gauge (see Appendix C for
additional details) it turns out to be straightforward and algorithmic as well. Another advantage of
our method is that it is independent of a choice of coordinate system, as opposed to [77], therefore
it can be used to compute non-covariant quantities such as consistent gravitational anomalies (see
for example [4]).

Note that the result from this section can apply to the integration of a (real or complex) scalar, a
vector-like fermion, massive and massless vector bosons, as well as ghosts [69]. The factor cs and the
content of U depend on the nature of the heavy field. One significant asset of our approach is that
one can straightforwardly incorporate all the improvements on the CDE in flat spacetime EFTs,
such as non-degenerate mass matrix[70], mixed heavy light loops [71] and UV theories involving
derivative couplings [75].3

1Note that due to the difference in conventions in the one-loop effective action of [92], we have m2
HK = −m2

CDE

and SCDE
eff = 2SHK

eff .
2Several codes exists that perform the CDE without gravity, e.g [97–99].
3The covariant diagrams [74] can also be used to enumerate the terms of the expansion, but it does not account

for the commutation of the momentum dependence to the left of the derivatives so most of their properties must be
dropped.
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7.1 Result

We skip computational details and directly write down the bosonic universal one-loop effective
action in curved spacetime, up to dimension 6 operators

Sbos
eff =

cs
16π2

∫ √
|g|d4x tr

{
m2

(
1 − log

(
m2

µ2

))(
1

6
R+ U

)

+ log

(
m2

µ2

)[
− 1

72
R2 +

1

180
RµνR

µν − 1

180
RµνρσR

µνρσ − 1

30
(□R)

− 1

6
RU − 1

6
(□U) − 1

2
U2 − 1

12
F 2

]

+
1

m2

[
− 1

72
RF 2 − 1

90
RµνF

µλF νλ − 1

180
RµνρσF

µνF ρσ

+

(
1

90
− a

2

)
(DµF

µν)2 + aF ν
µ F ρ

ν F µ
ρ +

(
1

360
+
a

4

)
(DµFνρ) (DµF νρ)

− 1

12
U(□U) − 1

36
R(□U) − 1

12
RU2 − 1

6
U3 − 1

12
UF 2 + O(R2)

]
+ O(1/m4)

}
. (7.1)

The result is independent of a which is a freedom in the choice of basis, and only the terms linear
in curvature were computed at order 1/m2. The remaining trace is over gauge and spin indices.
This result is in agreement with [92].

We should comment on the fact that the terms of order m2 and m0 are divergent and these
divergences can be absorbed by the renormalisation as it is well known. We used dimensional
regularisation to compute the divergent momentum integrals with MS scheme, and µ is the renor-
malisation scale. In practice, these contributions can conveniently be used to compute the RGE
running of the EFT operators at one-loop (see [68] for example).

Dimension 6 operators are expressed using the following basis

BD,F = {(DµFνρ) (DµF νρ) , F ν
µ F ρ

ν F µ
ρ , (DµF

µν)2} , (7.2)

which is both diffeomorphism and gauge invariant. We recall that D and F are the gauge and spin-
connection covariant derivative and field strength, whereas D and F bear the gauge connection and
spin-connection as well as the Christoffel connection. Note that the basis

BD,F = {(DµFνρ) (DµF νρ) , F ν
µ F ρ

ν F µ
ρ , (DµF

µν)2} , (7.3)

is not diffeomorphism invariant, and the basis

BD,F = {(DµFνρ) (DµFνρ) ,F ν
µ F ρ

ν F µ
ρ , (DµFµν)2} , (7.4)

is not gauge invariant.
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7.2 Integrating out the graviton

So far the computation were performed on a fixed spacetime background. It is of interest to treat
the metric as a dynamical quantum field, and integrate over its configurations. As we would do
for a spin-1 gauge field, we use the background field method: the metric is split as g + δg, where
g is a fixed background, and δg is a fluctuation integrated over in the path integral. Indices are
lowered and raised with the background metric. The quantum field δgµν inherites a gauge invariance
from the diffeomorphism invariance of the background, which is dealt with using the Fadeev-Popov
procedure. The action is then expanded up to quadratic order in δg so that the path integral can
be performed.4

There is however a discrepancy when dealing with a spin-2 field with respect to fields of smaller
spin: the field-space has a non-trivial metric G. A consequence is that the second derivative of the
action is not a scalar under a redefinition of δg. This issue was solved in [103] by introducing a
field-space covariant derivative. For a generic field ϕ with kinetic term ϕ̇a ·Aab(ϕ)·ϕ̇b, the field-space
metric is Gab(x, y) = Aab(ϕ)δ(x− y) and the connection is Γ̂abc = 1

2(G−1)ad( δGbdδϕc + δGcd
δϕb

− δGbc
δϕd

). We

can directly see that if the action is at most quadratic in ϕ, then Aab is independent of ϕ and Γ̂
vanishes. Therefore, for spin 0, 1/2, 1 and 3/2 matter fields, the second derivative of the action is
a scalar and no field-space covariant derivative is needed.

The one-loop effective action is covariantly defined as

iSeff[g] = log

∫ √
G [Dδg] eiS[g]+

i
2
δg(D̂2S)[g]δg+O(δg3) ≃ iS[g] − 1

2
Tr log

(
−(D̂2S)[g] ·G−1

)
, (7.5)

where the background g is solution to the equations of motion, that is (D̂S)[g] = δS
δgµν

[g] = 0. D̂ is

the field-space covariant derivative such that5

(D̂2S) =
δ2S

δgµνδgρσ
+ Γ̂µν,ρσαβ

δS

δgαβ
. (7.6)

The field-space metric and its inverse are

Gµν,ρσ =
1

4
(gµρgνσ + gµσgνρ − gµνgρσ) and, (G−1

µν,ρσ) = gµρgνσ + gµσgνρ − gµνgρσ . (7.7)

Eq. (7.6) evaluated on g solution to the equations of motion reduces to the usual second derivative
of the action. But if one wanted to vary the background g, then the variation of D̂2S would
cancel exactly against the variation of

√
G from the measure, making the theory invariant under a

redefinition of δg.
We consider the UV theory

S =

∫
d4x
√

|g|
(

1

4κ
(2Λ −R) + Lmat

)
, (7.8)

where κ = 8π/M2
P with MP the Planck mass, and Lmat is the matter Lagrangian. With the

background g on-shell, the second derivative of the action with respect to the metric, including the

4The use of the saddle point approximation is only possible around a background g that is a saddle point of
the space of metric configurations. We assume g fulfills that requirement. The complete gravitational path integral
would then be the sum of the saddle point contributions, supplemented by other non-perturbative configurations,
such as instantons, which cannot be treated following the presented procedure. For recent literature see for example
[100–102]

5We leave implicit the summation over spacetime indices in the second term. (D̂2S)(x, y) remains proportional
to δd(x− y).
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ghosts cµ and c̄µ, and the gauge-fixing in harmonic gauge6, reads∫
d4x

1

2
δg
δ2S

δg2
δg = −

∫
d4x
√

|g| c̄µ(gµνD2 +Rµν)cν

−
∫

d4x
√

|g| δgαβ
(

1

2
gα(ρg

β
σ)D

2 +Rα β
(ρ σ) − gαβRρσ + Λgαβgρσ

)
Gγδ,ρσδgγδ

−
∫

d4x
√

|g|δgαβOαβ
ρσG

γδ,ρσδgγδ , (7.9)

where O corresponds to the matter part. The parenthesis around the indices denotes the sym-
metrisation: T(µν) = Tµν + Tνµ. Including loops of graviton only, O is a local operator and reads

O ·G =
κ√
|g|

(D̂
√

|g|T ) , (7.10)

with T the matter energy-momentum tensor such that
√
|g|T = −2 δSδg . More details about the

derivation can be found in [58, 78]. In practice, O can be computed by taking the second derivative
of the matter action with respect to the metric.

According to Eq. (7.5), the graviton piece must be contracted with G−1, which yields the
identity when contracted against G from Eq. (7.9). Finally, we obtain the one-loop effective action
after integrating out the graviton (first line) and ghost (second line)

Sgraviton
eff =

i

2
Tr log

(
1

2
gµ(ρg

ν
σ)D

2 +Rµ ν
(ρ σ) − gµνRρσ + Λgµνgρσ + Oµν

ρσ

)
− iTr log

(
gµνD2 +Rµν

)
, (7.11)

Both are of the form Tr log
(
1D2 + U

)
, therefore they can be obtained from the bosonic UOLEA

derived previously. Note that the trace is also performed over Lorentz indices. The graviton piece
is traced over by contracting the indices with the identity for order 4 Lorentz tensors

1µνρσ = Gµν,αβ(G−1)αβ,ρσ =
1

2
gµ(ρg

ν
σ) . (7.12)

Note that since the ghost and the graviton are massless, the effective action contains infrared
divergences. They can be regulated by inserting a mass term D2 → D2 + m2 [69]. For loops of
graviton only, O is a local operator and we can apply the results from the bosonic UOLEA (7.1),
with

cgravitons = 1/2 , Ugraviton = Rµ ν
(ρ σ) − gµνRρσ + Λgµνgρσ + Oµν

ρσ (7.13)

cghosts = −1 , Ughost = Rµν . (7.14)

Note that if mixed species loops are allowed, then the bosonic UOLEA does not apply to the
graviton since O includes open derivatives, the CDE has to be performed from scratch following
the mixed heavy-light methods [71, 72, 78].

6Note that it corresponds to the gauge invariance associated to δg. We still have the freedom to choose the
coordinate system, such as the RNC.

90



Chapter 8

Fermionic UOLEA in curved
spacetime

We now turn to the fermionic CDE in curved spacetime. The one-loop effective action that we
obtain after integrating out a fermion is of the form

Sferm
eff = −iTr log

(√
|g|
(
i /D −m−Q

))
, (8.1)

In a similar manner as the bosonic determinant, it can be expanded as

Sferm
eff = i

∫
ddx

ddq

(2π)d

∫ m

dm′ tr
∑
n≥0

[
∆
(
−i /D +Q

)]n
∆ , (8.2)

where ∆ = m′/(q2 −m′2) − /q/(q2 −m′2). The mass dimension of each term is straightforward to
see, contrary to the bosonic expansion, since the n-th term of the sum is proportional to m4−n.

We can split Q = Qe + Qo where Qe (resp. Qo) has an even (resp. odd) number of Dirac
matrices. Following [73], we can assume the general form

Qe = Wo + iW1γ5, Qo = Xµγ
µ + iAµγ

µγ5 . (8.3)

We choose to limit ourselves to the case of a scalar, pseudo-scalar, vector and pseudo-vector term,
but the computation can be performed for any type of operator.

For a chiral fermion coupling to an axial (gauge) field, it is simpler to separate it from the
covariant derivative (Dµψ) = (∂µ +iVµ+ωµ)ψ where ω is the spin-connection and V a vector gauge
field, and include it in Qo ⊃ − /Aγ5.

To compute the traces, we use the Breitenlohner-Maison-’t Hooft-Veltman (BMHV) scheme for
γ5 [104, 105]. The choice of scheme for γ5 can have consequences which should not be disregarded,
especially in the context of quantum anomalies [4].

We emphasise again that others approaches to compute one-loop effective actions in gravity,
such as heat kernel, CDE and worldline formalism [77–79, 92, 106], always applied to a bosonic
determinant, therefore were restrained to Q = W0 + γµXµ, as explained in Section 4.2.2. To our
knowledge, the fermionic Universal One-Loop Effective Action on a general spacetime manifold was
never computed before.

Improvements on the CDE can also be applied (namely, non-degenerate mass matrix[70], mixed
heavy-light [71]). The covariant diagrams can be used to enumerate the terms of the expansion
[74], but it does not account for the commutation of the momentum dependence to the left of the
derivatives so most of their properties must be dropped.
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8.1 Result

Let us skip computational details that can be found in [3] and give directly the fermionic universal
one-loop effective action in curved spacetime up to dimension 5 operators. Displaying only the
curvature dependent operators it reads

Sferm
eff ⊃ −1

16π2

∫ √
|g|d4x tr

{
−m2 1

6
R

(
1 − log

(
m2

µ2

))
+m

1

3
log

(
m2

µ2

)
RW0

+ log

(
m2

µ2

)[
− 1

144
R2 +

1

90
RµνR

µν +
7

720
RµνρσR

µνρσ +
1

60
(□R)

]
+

1

3
RW 2

0

(
1 +

1

2
log

(
m2

µ2

))
+

1

3
RW 2

1

(
−1 +

1

2
log

(
m2

µ2

))
− 2

3
AµAνRµν log

(
m2

µ2

)

+
1

m

[
W1

(
− 1

48
εµνρσR

µν
αβ Rαβρσ

)
+W0

(
1

45
RµνRµν −

1

72
R2 +

7

360
RµνρσRµνρσ +

1

3
(□R)

)
+Rµν

(
−4

3
W0AµAν + i

4

3
Aµ(DνW1) + 2iW1(DµAν)) +

2

3
Aµ[Xν ,W1]

)
+R

(
−1

3
Aµ[Xµ,W1] +

1

9
W 3

0 +
1

3
W0W

2
1 − i

1

3
W1(DµA

µ)

)]
+ O(1/m2)

}
. (8.4)

where εµνρσ =
√
|g|ε̄µνρσ with ε̄µνρσ the Levi-Civita tensor in flat spacetime. The remaining trace

is over gauge degrees of freedom. Note that the computation was performed without specific choice
of coordinates (i.e without use of RNC) to ensure to covariance of the result.

The terms that involve only W0 and curvatures invariants can be recovered from the bosonic
UOLEA (7.1) by bosonising the functional determinant involving vector-like fermions, they are in
agreement with [92]. The rest consist in new operators and involve the curvature invariants and
the fields A and W1, that chiraly couple to the heavy fermion. To the best of our knowledge, these
operators are new and were never computed before.

Let us point out that the covariant derivative bears the gauge vector field V , and X is a generic
vector field. It means that X can also be a gauge field X = V ′, and in that case it seems that
in the last two lines of (8.4) the vector gauge symmetry associated to V ′ is broken. In fact, this
is not the case. If from the start we have a Lagrangian with two vector gauge fields such that
ψ̄(i/∂− /V − /V

′
)ψ, we can choose to proceed with the expansion by keeping i /D ⊃ − /V and deal with

the other gauge field with X = V ′ (recall that in (8.1) Q comes in with a minus sign already).
Using i(DO) = i(∇O) − [V,O] + i[ω,O] for any operator O, and the cyclicity of the gauge trace,
one can show that the last two lines of Eq. (8.4) can be rewritten without the explicit X = V ′

terms and replacing V by V + V ′ in i(DW1) and i(DA). Therefore, the vector gauge symmetry is
preserved.
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One may notice that there are some terms in (8.4) that look like the axial-gravitational and
trace/Weyl anomalies. In Part III, we will see how to extract them from (8.4).
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Chapter 9

Conclusion

In this Part II, we have introduced and motivated the concept of Effective Field Theory (EFT),
with a particular emphasis on EFTs in gravity. After a brief introduction to differential geometry
Quantum Field Theory (QFT) in curved spacetime, we have presented our work [3] in which a
novel method is described to build EFTs in curved spacetime. It relies on the Covariant Derivative
Expansion (CDE) technique, and presents several advantages compared to existing methods.

The main upshot of our method is the relative computational simplicity, systematicity and
transparency, especially when using a convenient choice of gauge for the gravitational and gauge
fields. The method would very fit in a code that performs the CDE such as [97–99].

On top of that, we filled a gap in the literature concerning the integration of chiral fermions in
curved spacetime, via the path integral. This is of great importance since most of the SM fermions
are both massive and chiral. We may thus easily imagine BSM models involving massive chiral
fermions that need to be integrated out. This is the case for example of axion models, which may
introduce new massive chiral fermions (KSVZ model [107, 108]).

Finally, the Fourier transform that we introduced does not rely on a specific choice of coordinate,
which allows the expansion to be performed without picking a gauge. This is particularly useful
in the context on anomalies, which may break diffeomorphism or Lorentz invariance, thus making
illegal to choose specific coordinates such as using the Riemann Normal Coordinates. We will see
in the next Part computations of gravitational anomalies that make use of this.
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Chapter 10

Introduction to Quantum Anomalies

10.1 Global anomalies

The pions {π0, π±} are the Nambu-Goldstone bosons resulting from the spontaneous chiral sym-
metry breaking of QCD, and can be understood in the context of Chiral Perturbation Theory
[109, 110]. Although, the neutral pion π0 does not couple directly to the photon, it can interact
with electrically charged fermions, and indeed, it is found experimentally that the π0 mainly decays
into two photons. Let us have a look at the corresponding amplitude.

We start by writing the coupling of π0 to an SM fermion ψ of mass m coupling to the photon
gauge field via the covariant deriative1

L1 = −1

2
π0(∂2 +m2

π)π0 + ψ̄(i /D −m)ψ + 2i
m

fπ
π0ψ̄γ5ψ , (10.1)

where fπ is the pion decay constant and mπ its mass. We thus find that the neutral pion couples
to fermions via the pseudo-scalar current

P = ψ̄γ5ψ . (10.2)

The matrix element that describes the pion decay into two photon is defined by [20]

⟨Aµ(k1), Aν(k2)|π0(q)⟩ ∝ δ(q − k1 − k2)2mTµν(q, k1, k2) , (10.3)

and the LSZ formula helps us obtain the amplitude in terms of the VEV

Tµν = i

∫
d4xd4yd4z eik1y+ik2z−iqx⟨TP (x)jµ(y)jν(z)⟩ , (10.4)

where the vector current is jµ = ψ̄γµψ. The decay rate of the pion is thus found to be [111]

Γ(π0 → γγ) = 7.77 eV , (10.5)

in agreement with the experimental value 7.773 ± 0.16 eV. We may content ourselves with this
result, but let us dig a bit deeper to unravel something interesting.

If we reparametrise the fermion field as

ψ → ψe
iπ

0

fπ
γ5 ψ̄ → e

iπ
0

fπ
γ5ψ̄ , (10.6)

1In Part II, we used the notation D for the total covariant derivative, whereas D was the covariant derivative on
internal indices only. In Part III here, these different notations are not useful, hence we simply take D to be the total
covariant derivative.

101



Part III: Quantum Anomalies

we obtain after integrating by parts

L2 = −1

2
π0(∂2 +m2

π)π0 + ψ̄(i /D −m)ψ +
1

fπ
π0 ∂µ(ψ̄γµγ5ψ) , (10.7)

and we find that the neutral pion couples to fermions via the divergence of the axial current

jµ5 = ψ̄γµγ5ψ . (10.8)

Similarly, we can obtain the amplitude of the pion decay into two photons

⟨Aµ(k1), Aν(k2)|π0(q)⟩ ∝ δ(q − k1 − k2)q
ρTµνρ(q, k1, k2) , (10.9)

where

Tµνρ = i

∫
d4xd4yd4z eik1y+ik2z−iqx⟨Tj5µ(x)jν(y)jρ(z)⟩ . (10.10)

Eqs. (10.3) and (10.9) imply the Ward identity

qρTµνρ = 2mTµν . (10.11)

As pointed by Sutherland and Veltman [112, 113], the left-hand side vanishes in the q → 0 limit
since Tµνρ has no poles (there exists no physical states between the pion and the vacuum). This
implies that if we neglect the pion mass we find that it cannot decay into two photons

Γ(π0 → γγ, q2 = 0) = 0 , (10.12)

which is in disagreement with (10.5) and the experimental result. If the pion mass mπ is taken
into account, the decay obtained at q2 = mπ is still a 1000 times smaller than the experimental
result. This puzzle is related to the equation of conservation of jµ5 , and is known as the Partially
Conserved Axial Current (PCAC) puzzle. It was solved a few years later with the discovery of the
Adler-Bell-Jackiw (ABJ) anomaly [114, 115] that we present in the following Section.

10.1.1 ABJ anomaly – diagrammatic approach

A great source of debates and confusion in QFT takes its source in the fact that it is not a well-
defined mathematical framework since it is riddled with infinities. These infinities are physically
well-understood and can be dealt with by regularising and renormalising the theory. Let us see
how this pertains to the PCAC puzzle.

Clearly, there is something wrong with (10.11) so let us explicitly compute Tµν and Tµνρ. We
omit most details of calculations which can be found in [20]. Tµν is given by the sum of the diagrams

P

jµ

jν

q
p

k1

k2

P

jµ

jν

q
p

k1

k2

(10.13)

and reads

Tµν = −i
∫

d4p

(2π)4
tr

i

/p−m
γ5

i

/p− /q −m
γν

i

/p− /k1 −m
γµ +

(
k1 ↔ k2
µ↔ ν

)
, (10.14)
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with q = k1 + k2 by conservation of momentum of the external legs. Using

∀qµ,
1

/q −m
=

/q +m

q2 +m2
, (10.15)

and the traces
tr γ5 = tr γ5γ

µγν = 0 , tr γ5γ
µγνγργσ = −4iϵµνρσ , (10.16)

we readily verify that Tµν is finite and of the form Tµν ∝ 1
mϵµνρσq

ρkσ1 .
Let us now turn to Tµνλ which is the tricky one. It is represented by the sum of the diagrams

j5,λ

jµ

jν

q
p

k1

k2

j5,λ

jµ

jν

q
p

k1

k2

(10.17)

and we have

qλTµνλ = i

∫
d4p

(2π)4
tr

i

/p−m
/qγ5

i

/p− /q −m
γν

i

/p− /k1 −m
γµ +

(
k1 ↔ k2
µ↔ ν

)
. (10.18)

Using

/qγ5 = γ5(/p− /q −m) + (/p−m)γ5 + 2mγ5 , (10.19)

we readily obtain
qλTµνλ = 2mTµν +R1

µν +R2
µν , (10.20)

with

R1
µν =

∫
d4p

(2π)4
tr

[
1

/p− /k2 −m
γ5γν

1

/p− /q −m
γµ −

1

/p−m
γ5γν

1

/p− /k1 −m
γµ

]
, (10.21)

and R2 is R1 with k1 ↔ k2 and µ↔ ν. Crucially, R1/2 are of the form

R1/2 ∼
∫

d4p

(2π)4
(
f(p− k2/1) − f(p)

)
, (10.22)

where ∫ +∞

−∞

d4p

(2π)4
f(p) , (10.23)

is linearly divergent, that is to say f converges at infinity with f(±∞) ̸= 0, and ∀n ≥ 1, f (n)(±∞) =
0. Let us take a one-dimensional example to show how to deal with the difference of linearly
divergent integrals

∆(a) =

∫ +∞

−∞
dx (f(x+ a) − f(x)) . (10.24)

By Taylor expanding f(x+ a) around x we find

∆(a) =

∫ +∞

−∞
dx
∑
n≥1

f (n)(x)

n!
an =

∑
n≥1

∫ +∞

−∞
dx
f (n)(x)

n!
an = a (f(+∞) − f(−∞)) , (10.25)
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and we verify that ∆(a) is indeed convergent. Note that commuting the integral and the sum is
allowed since either way the result is finite. However, note that

∆(a) ̸=
∫ +∞

−∞
dx f(x+ a) −

∫ +∞

−∞
dx f(x) , (10.26)

since each term is separately divergent. The same method can be applied in d = 4 to obtain

R1
µν +R2

µν = − 1

4π2
ϵµνρσk

ρ
1k

σ
2 . (10.27)

There is however a problem here, in that the result depends on the arbitrary choice of relative
momentum routing inside the loop between the two diagrams in (10.17). Indeed, if we change the
momentum routing only in the first diagram by

p→ p+ δp , δp = αk1 + (α− β)k2 , (10.28)

for some arbitrary α and β, then we find

R1/2 ∼
∫

d4p

(2π)4
(
f(p+ δp− k2/1) − f(p)

)
, (10.29)

and as the 1-dimensional example shows, the difference of linearly divergent integrals, although
finite, depends on this shift:

R1
µν +R2

µν = − 1 − β

4π2
ϵµνρσk

ρ
1k

σ
2

⇒ qλTµνλ = 2mTµν −
1 − β

4π2
ϵµνρσk

ρ
1k

σ
2 . (10.30)

This is concerning, we have an arbitrariness in the computation, despite being linked to a physical
observable (the pion decay rate). To understand what is happening, let us take a step back and
analyse the meaning of (10.30).

Consider the following theory

S =

∫
d4x ψ̄(i /D −m)ψ . (10.31)

Let us consider two transformations of the fermions. The first one is the U(1)V (V for vector)
transformation

ψ + δV ψ = eiθ(x)ψ , ψ̄ + δV ψ̄ = ψ̄e−iθ(x) , δV S =

∫
d4x θ(x) ∂µ j

µ , (10.32)

with θ(±∞) = 0 so that we can integrate by parts. The other one is the U(1)A (A for axial)
transformation

ψ + δAψ = eiθ(x)γ5ψ , ψ̄ + δAψ̄ = ψ̄eiθ(x)γ5 , δAS =

∫
d4x θ(x) (∂µ j

µ
5 − 2imP ) . (10.33)

We recall
P = ψ̄γ5ψ , jµ = ψ̄γµψ , jµ5 = ψ̄γµγ5ψ . (10.34)

Upon using the EoM of the classical fields ψ̄ and ψ, we find the following relations

∂µ j
µ = 0 , ∂µ j

µ
5 = 2imP . (10.35)
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At the quantum level, we would naively expect to find

⟨∂µ jµ⟩ = 0 , ⟨∂µ jµ5 ⟩ = 2im⟨P ⟩ . (10.36)

However, when taking two derivatives with respect to the gauge field this implies

⟨T (∂µ jµ)(x)jν(y)jλ(z)⟩ = 0 ⇔ kµ1Tµνλ = 0

⟨T (∂λ j5,λ)(x)jµ(y)jν(z)⟩ = 2im⟨TP (x)jµ(y)jν(z)⟩ ⇔ qλTµνλ = 2mTµν , (10.37)

which we identified to be the source of the error, and is in disagreement with the previous compu-
tation

qλTµνλ = 2mTµν −
1 − β

4π2
ϵµνρσk

ρ
1k

σ
2 , (10.38)

Similarly, a direct computation of kµ1Tµνλ with the same choice of momentum routing (10.28) reveals
a disagreement [20]

kµ1Tµνλ =
1 + β

8π2
ϵνλαβk

α
1 k

β
2 . (10.39)

If we trust the direct computation, the quantum conversations laws for the U(1)V and U(1)A are
in fact

⟨∂µ jµ⟩ =
1 + β

32π2
ϵµνρσFµν , ⟨∂µ jµ5 ⟩ = 2im⟨P ⟩ − 1 − β

32π2
ϵµνρσFµνFρσ , (10.40)

where Fµν = i ∂µAν − i ∂ν Aµ.
We now have all keys in hand to understand what is happening here. The conservation laws for

the U(1)V and U(1)A transformations show an anomalous behavior since they are violated at the
quantum level, and there is no choice of momentum routing that allows to recover both of them.
There is however a preferred choice that shows itself. Indeed, the SM and experiments show that
the U(1)V transformation is gauged to become the electromagnetic interaction. If the symmetry
associated with the electromagnetic interaction would be violated at the quantum level, this would
imply that QED is inconsistent, and it would amount to a non-conservation of the electric charge,
which is not observed in nature. We are thus very inclined to enforce the conservation of U(1)V
at the quantum level, hence choosing β = −1 in the momentum routing procedure (10.28). This
results in the quantum anomalous Ward identities, in the presence of the so-called Adler-Bell-Jackiw
(ABJ) anomaly [114, 115]

⟨∂µ jµ⟩ = 0 (10.41)

⟨∂µ jµ5 ⟩ = 2im⟨P ⟩ +
1

8π2
FF̃ . , (10.42)

where we introduce the dual field strength F̃µν = 1
2ϵ
µνρσFρσ.

Let us now return to the decay of the pion into two photons with the correct Ward identities.
Using L1 (10.1), we obtain the correct decay rate as confirmed by experiments. To obtain L2 (10.7),
we performed a U(1)A reparametrisation of the fermions, which we now know to be anomalous. In
fact, we performed an integration by parts before regularising the theory and we missed a crucial
boundary term that is the anomaly [20] (we will see later on that ϵµνρσFµνFρσ is indeed a boundary
term). Nonetheless, the decay rate given by the anomalous Ward identity (10.42) is in agreement
the experimental results, hence solving the PCAC puzzle.2

In the next Section, we will see how to properly perform the axial reparametrisation (10.6) that
misguided us, within the Path Integral and we will show how the anomaly shows itself.

2It was then pointed out that Sutherland and Veltman [112, 113] used the naive Ward identity ⟨∂µ jµ5 ⟩ = 2im⟨P ⟩
in their paper.
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10.1.2 ABJ anomaly - path integral approach

According to the previous Section, the quantum theory given by (10.1)

Z1 =

∫
Dψ̄Dψ ei

∫
d4xL1 , (10.43)

is not equivalent to the quantum theory given by (10.7)

Z2 =

∫
Dψ̄Dψ ei

∫
d4xL2 , (10.44)

because of the anomaly. A reparametrisation of the fermions in the Path Integral turns out to be
a change of variable as in a regular integral, so let us perform the change of variable

ψ′ = eiθγ5ψ , ψ̄′ = ψ̄ eiθγ5 , (10.45)

in Z1, and for θ = π0

fπ
we obtain

Z1 =

∫
Dψ′Dψ̄′ei

∫
d4xL2 . (10.46)

Comparing Z1 and Z2, we see that only the measure differs by a Jacobian

Dψ′Dψ̄′ = J [θ]DψDψ̄ . (10.47)

Since the fields in the Path Integral are classical (i.e not operator valued), the quantum part of the
Path Integral truly comes from the measure, so it would make sense that the anomaly, a purely
quantum feature, arises due to the measure. This guess is correct as was shown by Fujikawa in his
seminal work [116, 117], and we show in the following how the anomaly can be obtained from the
Jacobian of the transformation.

Let us start with the Path Integral

Z =

∫
DψDψ̄ ei

∫
d4x ψ̄(i /D−m)ψ . (10.48)

We first perform a Wick rotation to Euclidean time which is done as follows: we take a vector
u = uµ ∂µ in a spacetime with metric η = diag(−1, 1, 1, 1) such that the norm is u · u = ηµνu

µuν ;
we change the spacetime coordinate xµ such that x4E = ix0 (the spatial components are unchanged
xiE = xi) and ∂0 = ∂

∂ x0
= i ∂

∂ x4
= i ∂4, and by defining u4E = iu0 we have u =

∑
0≤µ≤3 u

µ ∂µ =∑
1≤µ≤4 u

µ
E ∂µ, and consequently the norm is u · u = δµνu

µ
Eu

ν
E where δ = diag(1, 1, 1, 1) is the

Euclidean metric. The spacetime measure is d4x = dx0 ∧ · · · ∧ dx3 = idx1 ∧ · · · ∧ dx4 = id4xE .
The same procedure has to be applied for all vectors, including the Dirac matrices γµ. There

is a freedom in the choice of representation for the Dirac matrices, which obviously does not alter
physical results, and we can find a representation such that they are hermitian [20, 118]

(γµ)† = γµ . (10.49)

As a result, the Dirac operator i /D is hermitian too:

⟨i /Dψ1|ψ2⟩ ≡
∫

d4x (i /Dψ1)
†(x)ψ2(x) (10.50)

=

∫
d4x (i/∂ψ1(x) − /V ψ1(x))†ψ2(x) (10.51)

=

∫
d4xψ1(x)(i /Dψ2)(x) = ⟨ψ1|i /Dψ2⟩ , (10.52)
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where V is some real abelian gauge field under which the fermions are charged (e.g QED).
Omitting the E subscript, the Path Integral is then given by

Z =

∫
DψDψ̄ e−

∫
d4x ψ̄(i /D−m)ψ . (10.53)

Let us motivate the use of the Wick rotation to Euclidean time. There are several advantages
to working in Euclidean time, the most important one is that formal quantities such as the Path
Integral are more well-defined than in Minkowski signature. In Chapter 1 we mentioned that path
Integrals with quadratic action can be computed in analogy with a gaussian integral, we show below
that this analogy holds insofar as spacetime is Euclidean. Secondly, the Dirac operator becomes
hermitian in Euclidean time, which will prove useful.

To compute a gaussian integral we start by diagonalising the matrix in the exponential, which
we do here by introducing the eigenmodes of the Dirac operator

i /Dϕn = λnϕn , λn ∈ R ,

∫
d4xϕ†m(x)ϕn(x) = δmn , (10.54)

where the last two points follow from the hermiticity of i /D. Since the eigenmodes of the Dirac
operator define a basis, we can expand the Path Integral variables as

ψ(x) =
∑
n

anϕn , ψ̄(x) =
∑
n

bnϕ
†
n . (10.55)

Importantly, the an and bn are just (Grassman) numbers and not functions. Note also that the
eigenfunctions are fixed, hence integrating over all the possible functions ψ(x) and ψ̄(x) amounts
to integrating over all possibles values for the an and bn. This allows us to write the measure with
the functional piece factored out. Let us show it by discretising spacetime

Dψ →
∏
x

dψx =
∏
x

∑
n

ϕn,xdan = det(ϕk,x)−1
∏
n

dan . (10.56)

ϕk,x can be understood as a matrix changing from the continuous basis ψ(x) to the discrete basis
an, this is how we can successfully transform the functional integration into a simple integration of
Grassmann numbers. Likewise, we have

Dψ̄ → det
(
ϕ†k,x

)−1∏
n

dbn , (10.57)

and the Path Integral measure reads

DψDψ̄ =
(

detϕ† · ϕ
)−1∏

n

dandbn =
∏
n

dandbn , (10.58)

where we used

det(ϕ† · ϕ)kl = det

∫
d4xϕ†k(x)ϕl(x) = det δkl = 1 , (10.59)

by virtue of the orthonormality of the eigenbasis. The Path Integral can then be computed as a
gaussian integral over Grassman variables (Berezin integral)3

Z =

∫ ∏
n

dandbn e
−

∑
n(λn−m)anbn =

∏
n

(λn −m) ≡ det(i /D −m) . (10.60)

3Note that the minus sign in the exponential, which follows from the Wick rotation, is what allows us to make

the analogy with a gaussian integral
∫
dx⃗ e−

1
2
x⃗T ·A·x⃗ =

√
det(2πA−1).
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This functional determinant still needs to be regularised to obtained a perfectly well-defined quan-
tity.

Without delaying any more, now that we have a definition of the measure, let us compute the
Jacobian of the U(1)A transformation, which was our goal for this Section. We can expand the
transformed variables (10.45) on the eigenbasis as in (10.55) with coefficients that we label a′n and
b′n, which verify

ψ′(x) =
∑
n

a′nϕn =
∑
n

an (1 + iθγ5)ϕn + O(θ2) (10.61)

ψ̄′(x) =
∑
n

b′nϕ
†
n =

∑
n

bnϕ
†
n (1 + iθγ5)ϕn + O(θ2) , (10.62)

for θ infinitesimal. By multiplying on the left/right by ϕ†m/ϕm the first/second line, integrating over
spacetime and using the orthonormality condition (10.54), we obtain the transformation matrices

a′m =
∑
n

Amnan + O(θ2) , Amn = δmn +

∫
d4xϕ†miθγ5ϕn (10.63)

b′m =
∑
n

Bmnbn + O(θ2) , Bmn = δmn +

∫
d4xϕ†niθγ5ϕm , (10.64)

and at last the transformation of the measure

Dψ′Dψ̄′ =
∏
n

da′ndb′n = detA−1 detB−1DψDψ̄ . (10.65)

The determinant can be simplified using det = exp Tr log and Taylor expanding in θ

detA−1 = exp

(
−
∑
n

∫
d4x iθϕ†nγ5ϕn

)
+ O(θ2) = detB−1 , (10.66)

and we finally obtain an expression for the Jacobian

log J [θ] = −2i lim
N→∞

N∑
n=1

∫
d4x θ(x)ϕ†n(x)γ5ϕn(x) . (10.67)

This quantity is a priori divergent because the sum runs over arbitrary large eigenstates. It can
be regularised by introducing a smooth function f that decreases sufficiently fast at infinity

f(0) = 1 , f(x) −→
x→∞

0 , xf ′(x)
∣∣
x=0

= xf ′(x)
∣∣
x→∞ = 0 . (10.68)

and a cut-off Λ such that modes below Λ are unaffected whereas those above are cut. The Jacobian
is then obtained by taking the limit Λ → ∞

log J [θ] = −2i lim
Λ→∞

lim
N→∞

N∑
n=1

f

(
λn
Λ

)∫
d4x θ(x)ϕ†n(x)γ5ϕn(x) (10.69)

= −2i lim
Λ→∞

lim
N→∞

N∑
n=1

∫
d4x θ(x)ϕ†n(x)γ5f

(
i /D

Λ

)
ϕn(x) , (10.70)

where importantly, the limits do not commute. If that were the case, then the regulator would
disappear since limΛ→∞ f

(
λn
Λ

)
= 1. It may come as a surprise that the Jacobian is regularised
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by taking the limit Λ → ∞, since in the end we do not cut any eigenmode. The reason is that,
although it does not converge, the Jacobian is bounded, hence no infinities arise. This is similar to
the difference of linearly divergent integrals that yield a finite result as seen in Sec. 10.1.1. We will
delve further into this specific point in the next Sections.

Since the eigenmodes define a complete basis, the regularised Jacobian can simply be recast as
a functional trace

J [θ] = −2i lim
Λ→∞

Tr θγ5 f

(
i /D

Λ

)
. (10.71)

To continue with the calculation, we need to pick a choice for f , for example we may take f(x) =
e−x

2
or f(x) = 1/(1 + x2) which both verify (10.68). Note that the result is independent of the

choice of function f [118]. Since a computation is detailed later on in this Chapter, we do not dwell
on it. Without surprise, the result is in agreement with the diagrammatic approach and we find

log J [θ] =
−i
8π2

∫
d4x θ(x)FF̃ . (10.72)

After Wick rotating back to Minkowski, the factor −i drops [20]. This computation can be
generalised to non-abelian gauge fields (with θ remaining abelian for now), to obtain the non-
abelian ABJ/singlet anomaly [20]. In (10.72) it amounts to replace FF̃ by trFF̃ where Fµν =
i ∂µAν − i ∂ν Aµ − [Aµ, Aν ].

Let us return to the pion-fermion Lagrangians L1 (10.1) and L2 (10.7). Although these theories
are classically equivalent, at the quantum level the U(1)A transformation that relates them produces
an anomaly that arises in the transformation of the Path Integral measure∫

Dψ̄Dψ ei
∫
d4xL1 =

∫
Dψ̄Dψ ei

∫
d4x

(
L2− i

8π2
π0

fπ
FF̃

)
, (10.73)

using θ = π0/fπ.

10.1.3 Infinities and anomalies

As mentioned above, it is rather striking that the anomaly is finite despite arising from divergent
quantities. In the diagrammatic approach Sec. 10.1.1 it comes from the finite difference between
two linearly divergent integrals, in Sec. 10.1.2 is comes as introducing a cut-off that is pushed to
infinity in the end, such that nothing is really cut. As another example, consider (10.67) which can
be formally written as a functional trace

log J [θ] = −2iTr θγ5 . (10.74)

The functional trace of a functional F (x, y) is given by

TrF =

∫
d4xF (x, x) . (10.75)

In our case, θγ5 is proportional to the identity δ(x− y) such that

log J [θ] = −2i tr γ5

∫
d4x θ(x)δ(0) . (10.76)

This expression, though formal, gives an insight on why the anomaly may be UV finite. Clearly,
the integral is an infinite quantity, however it is multiplied by tr γ5 = 0, where tr denotes the trace
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over internal indices. It is precisely this “0 × ∞” that gives a finite result once regularised. As
pointed out by Fujikawa [118], the anomaly is an ill-defined series of the form

log J [θ] ∼ +1 − 1 + 1 − 1 + 1 − 1 · · · , (10.77)

due to the infinite number of degrees of freedom. Depending on how the calculation is ordered it

may lead to different results. For example one may compute it as (+1−1)+(+1−1)+ . . .
?
= 0, and

one may compute it as 1 + (−1 + 1) + (−1 + 1) . . .
?
= 1 and get a different result. This ambiguity is

the reason why several results may be obtained, as seen in (10.38) and (10.39) with the dependence
on the arbitrary choice of momentum routing, but each result corresponds to different physical
situations.

10.1.4 Topological interpretation

Remarkably, the ABJ anomaly is independent from the mass of the quantum fermion that originates
it, but only depends on the gauge sector. Another striking feature that we did not prove here is
that it is one-loop exact, as was shown by Adler and Bardeen in [119]. Anomalies provide QFT
amplitudes that we can straightforwardly fully compute, whereas usually physical observables are
computed up to some order in perturbation theory. In that context we say the ABJ anomaly
is non-perturbative. It was in the 70s that these aspects were better understood along with the
topological nature of the ABJ anomaly [120–124], which we investigate in this Section.

Firstly, to be more rigorous, we consider the case where the spacetime manifold is compact.
This ensures that the Dirac operator has a discrete spectrum with finite degeneracy. In the case
where θ is constant in (10.67)4 we have

log J [θ] = −2iθ
∑
n

∫
d4xϕ†nγ5ϕn , (10.78)

which is finite on a compact manifold.Using the anticommutation relation {i /D, γ5} = 0, we can
easily show that if ϕn has eigenvalue λn, then γ5ϕn has eigenvalue −λn. Since ϕn and γ5ϕn have
different eigenvalues for λn ̸= 0, they are orthogonal (10.54) and we thus have

⟨ϕn|γ5ϕn⟩ =

∫
d4xϕ†nγ5ϕm = 0 for λn ̸= 0 . (10.79)

This implies that in the Jacobian (10.78) only the zero modes remain. Then, since i /Dϕn = 0 ⇒
i /Dγ5ϕn = 0, we can pick the zero modes to be eigenfunctions of γ5 as well, which has eigenvalues
{+1,−1} depending on the chirality of the field. As a result, we have∫

d4xϕ†nγ5ϕn =

{
0 if λn ̸= 0

±1 if λn = 0 and γ5ϕn = ±ϕn
, (10.80)

and this implies that
log J [θ] = −2iθ (n+ − n−) , (10.81)

where n± is the number of (independent) zero modes of chirality ±.

4Taking θ constant may seem trivial, but it is not. Perturbative (diagrammatic and Path Integral) computations
require to have θ(|x| → ∞) = 0 for integrations by parts. The θ dependence on x is crucial in order to bring in
the bulk the anomaly which is a boundary term (and a trivial one when zero modes are excluded) as we will see
below. Therefore, by taking θ ̸= 0 and constant we assume that we can generalise our perturbative computation to
a non-perturbative one (e.g include instanton configurations).
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To express (10.81) in terms of a topological quantity, let us introduce the chiral projectors
P± = (1 ± γ5)/2 (also called PR/L throughout this manuscript), and the projected Dirac operators

i /DP+ and i /DP− = (i /DP+)†. It is easily proved that i /DP+ϕ = 0 ⇔ P+ϕ = 0 or i /Dϕ = 0.5 In other
words we have

ker i /DP+ = ker i /D ∪ kerP+ , (10.82)

and therefore
dim ker i /DP+ = dim ker i /D + dim kerP+ − n− , (10.83)

where
n− = dim( ker i /D ∩ kerP+) , (10.84)

is the number of zero modes of negative chirality. We follow the same procedure for i /DP− to find

dim ker i /DP− = dim ker i /D + dim kerP− − n+ . (10.85)

Finally, using the fact that dim kerP+ = dim kerP−,6 we find

1

−2iθ
log J [θ] = n+ − n− = dim ker i /DP+ − dim ker i /DP− ≡ Ind i /DP+ , (10.86)

where the index of a differential operator d is defined by

Ind d = dim ker d− dim ker d† . (10.87)

When the index is finite (e.g Fredholm operator) and in compact Euclidean spacetimes, the Atiyah-
Singer index theorem gives the index in terms of the Pontryagin topological invariant [20, 80]

Ind i /DP+ = n+ − n− =
1

16π2

∫
d4x trFF̃ , (10.88)

such that we recover the ABJ anomaly (10.72) for a non-abelian gauge group G [20, 118]. This
relation is remarkable since it relates FF̃ that is locally defined on a manifold, to a topological
invariant n+ − n− which is related to the global structure of the gauge group. A first step in
understanding this is to realise that the Pontryagin density is in fact a boundary term

FF̃ = 4 tr ∂µC
µ , Cµ = ϵµνρσ

(
Aν ∂ρAσ +

2

3
AνAρAσ

)
, (10.89)

where Cµ is the so-called Chern-Simons current [20, 80]. As a result, the Pontryagin density
integrated over the spacetime manifold M is∫

M
d4x trFF̃ =

∫
∂M

d3xn · C , (10.90)

where we used Stokes theorem and n is the vector normal to the boundary ∂M. In this formulation,
we can understand that what is relevant to the anomaly is the configuration of the gauge group
on the boundary, which in a physical set-up is at |x| → ∞. Let us study more closely these

5P+ϕ = 0 or i /Dϕ = 0 ⇒ i /DP+ϕ = 0 is trivial since i /DP+ = P−i /D. For the converse, we suppose i /DP+ϕ =
P−i /Dϕ = 0. It implies that i /Dϕ = 0 or i /Dϕ is of positive chirality, since i /D maps positive onto negative chiralities
and conversely (it is a consequence of {i /D, γ5} = 0) this second point means that ϕ is of negative chirality. Therefore
i /DP+ϕ = 0 ⇒ i /Dϕ = 0 or P+ϕ = 0.

6For P+ = diag(12, 0) and thus P− = diag(0,12), we can take ϕ = (0, 0, a, b)T ∈ kerP+, and the map (0, 0, a, b)T →
(a, b, 0, 0)T from kerP+ to kerP− is a bijection.
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configurations of the gauge field at infinity. Firstly, for the integral (10.90) to be finite, we must
clearly have

lim
|x|→∞

FF̃ = 0 . (10.91)

This, however, is not equivalent to having lim|x|→∞Aµ = 0, but it is equivalent to having a so-called
pure gauge configuration

Aµ −→
|x|→∞

g−1(x) ∂µ g(x) , (10.92)

where g is an element of the gauge group G. A simple configuration of the gauge field that respects
this limit at infinity is the so-called BPST instanton [125] and has the form

Aµ(x) =
|x|2

|x|2 + λ2
g−1(x) ∂µ g(x) , (10.93)

where λ is the size of the instanton. The gauge element g effectively represents a mapping between
the boundary of the spacetime manifold and the gauge group

g : ∂M −→ G , (10.94)

and classifies all the gauge configurations that are inequivalent on the boundary. The relevant
equivalence class is the homotopy group of the map. Configurations that provide a non-trivial
Pontryagin number are called instanton solutions and play a major role in non-abelian gauge
theories. To summarise, instanton configurations of the gauge field are the configurations such that
Indi /DP+ = n+ − n− ̸= 0. For more literature on the subject, our references are [20, 80, 118].

Finally, let us reflect on our comments from the first paragraph of this Section. From the fact
that the anomaly depends only on the structure of the gauge group, we can understand that it
cannot depend on the mass of the fermion. Secondly, the one-loop exactness can be understood from
its topological origin. The anomaly is related to a topological integer (the Pontryagin number).
Higher loop corrections to the anomaly would have to be small corrections, but at the same time
integer quantities, these two points are incompatible.

10.2 Gauge Anomalies

In the previous Section, we introduced quantum anomalies by the ABJ anomaly. In a theory of
vector-like fermions coupled to a gauge group, such as QED, the chiral symmetry U(1)A is broken at
the quantum level. Since the axial symmetry is not gauged, we talk about a global symmetry, and
hence a global anomaly. In this Section, we consider case where we have an axial gauge symmetry.

Consider the following theory

Z =

∫
DψDψ̄ ei

∫
d4x ψ̄i /Dψ , (10.95)

where the fermion is charged under both an SU(N)V and an SU(N)A gauge symmetry

Dµψ = ∂µ ψ + iVµψ + iAµγ5ψ , (10.96)

with Vµ = V a
µ T

a and likewise for A, where T a are the generators of the SU(N) Lie algebra. It is
invariant under the vector

ψ + δVθ ψ = eiθψ , ψ̄ + δVθ ψ̄ = ψ̄e−iθ

δVθ Vµ = −(∂µ θ) − i[Vµ, θ]

δVθ Aµ = −i[Aµ, θ]
. (10.97)
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and axial 
ψ + δAθ ψ = eiθγ5ψ , ψ̄ + δAθ ψ̄ = ψ̄eiθγ5

δAθ Vµ = −i[Aµ, θ]
δAθ Aµ = −(∂µ θ) − i[Vµ, θ]

. (10.98)

gauge transformations, of infinitesimal parameter θ(x) ∈ SU(N). This theory is not exotic at
all since the fermions of the SM are charged under non-abelian chiral gauge symmetries. Both
symmetries are conserved at the classical level and the associated conserved currents are

Dµj
µ
V = 0 , Dµj

µ
A = 0 , (10.99)

with jµV = −i(ψ̄γµT aψ)T a and jµA = −i(ψ̄γµγ5T aψ)T a. Nonetheless, our knowledge of the ABJ
anomaly makes us suspicious concerning their quantum counterparts

⟨Dµj
µ
V ⟩

?
= 0 , ⟨Dµj

µ
A⟩

?
= 0 . (10.100)

Our suspicions are founded since indeed, as for the ABJ anomaly, it is impossible to maintain both
symmetries at the quantum level and we have a gauge anomaly. However, contrary to the ABJ
anomaly where it made sense to enforce the conservation of the vector gauge symmetry and make
the global axial symmetry anomalous, here both symmetries are gauged. This implies that the
anomaly can equally be found in the vector or the axial symmetry.

The vector and axial gauge anomalies have properties in common with the ABJ anomaly. In
particular, they are topological [126] and thus one-loop exact and UV finite. Different results may
occur depending on the regularisation procedure, which correspond to different physical situations.
In particular, the vector and axial symmetries are entangled at the quantum level. Further ambi-
guities occur which do not appear for the ABJ anomaly, that is to say even when one of the two
symmetries is preserved at the quantum level, there remains some ambiguity in the computation,
which gives rise to different forms of the anomalies.

10.2.1 Consistent vs covariant anomalies

Consider a theory with quantum effective action

W[B] = −i log

∫
Dϕ eiS[ϕ,B] , (10.101)

where B is some background gauge field. The theory is classically invariant under the gauge
transformation δgθ

δgθS =

∫
d4x

(
δgθϕ

δS

δϕ
+ δgθ

δS

δB

)
= 0 , (10.102)

where θ(x) is an infinitesimal parameter and θ(|x| → ∞) = 0. Since ϕ is solution to its EoM, the
first term vanishes and we obtain the conserved gauge current

δgθB
δS

δB
= 0 . (10.103)

For example, with the theory (10.95) and the gauge transformations δVθ and δAθ we obtain Eq. (10.99)
after integrating by parts.
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If the gauge symmetry is not a symmetry of the quantum effective action, we have a gauge
anomaly given by

δgθW[B] =

∫
d4x δgθB

δW
δB

=

∫
d4x

〈
δgθB

δS

δB

〉
≡
∫

d4x θ(x)Acons(x) . (10.104)

The anomaly as defined respects some conditions associated with the algebra of the gauge group
as we shall prove. For any functional F , the algebra of the gauge group imposes the following
condition

[δgθ1 , δ
g
θ2

]F [B] = δg[θ1,θ2]F [B] . (10.105)

If we apply this formula to the effective action, we obtain the so-called Wess-Zumino consistency
conditions (WZcc) [127]

δgθ1G(θ2) − δgθ2G(θ1) = G([θ1, θ2]) , (10.106)

where used

G(θ) =

∫
d4x θ(x)Acons(x) , (10.107)

as a shorthand. This anomaly is called the consistent anomaly. The interpretation of the WZcc
(10.106) is very simple, it is a necessary and sufficient conditions for being integrable, i.e

f solution to the WZcc ⇔ ∃F such that δgθF = f . (10.108)

The Wess-Zumino consistency conditions (10.106) take on a very simple form if we upgrade the
gauge parameter θ to an anticommuting Fadeev-Popov “ghosts” v.7 The gauge algebra condition
(10.105) simply becomes

δ2v = 0 , (10.109)

and the WZcc reduce to

δvG(v) = 0 . (10.110)

Basically, the commutators that occur in (10.106) are automatically taken into account by the
anticommutation of the ghosts.

For the vector-axial theory (10.95), the computation of the consistent anomaly of the axial
current while the vector current remains conserved was first performed by Bardeen in [130] using
Feynman diagrams. The computation is rather involved and we just provide the result here

Aa
cons =

1

16π2
ϵµνρσtrT a

[
F VµνF

V
ρσ +

1

3
FAµνF

A
ρσ

+
8

3

(
AµAνF

V
ρσ +AµF

V
νρAσ + F VµνAρAσ

)
+

32

3
AµAνAρAσ

]
, (10.111)

where the Bardeen curvatures are

F Vµν = i ∂µ Vν − i ∂ν Vµ − [Vµ, Vν ] − [Aµ, Aν ]

FAµν = i ∂µAν − i ∂ν Aµ − [Vµ, Aν ] − [Aµ, Vν ] . (10.112)

7Ghosts are introduced in the context of Fadeev-Popov gauge field quantisation [87, 128] and BRS symmetry [129].
When a gauge field is quantised, it is necessary to introduce the ghost and gauge fixing terms. The latter breaks
gauge invariance, however its upgraded version, the so-called BRS transformation, is a symmetry of the gauge fixed
action.
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For the particular case of a purely left-coupled gauge field

S =

∫
d4x ψ̄(i/∂ − /LPL)ψ , (10.113)

i.e taking V = L/2 and A = −L/2 in (10.96), the anomaly has almost the same expression as for
the ABJ anomaly given in terms of the Chern-Simons current in (10.89)

⟨Dµj
a
5,µ⟩ = Aa

cons =
1

24π2
trT aϵµνρσ ∂µ

(
Aν ∂ρAσ +

1

2
AνAρAσ

)
. (10.114)

One may remark that the consistent anomaly is not covariant, and we may wonder what happens if
we use a regularisation procedure that enforces covariance all throughout. In that case, the gauge
anomaly that is obtained is indeed covariant and differs from (10.111)

Aa
cov =

1

16π2
ϵµνρσtrT a

(
F VµνF

V
ρσ + FAµνF

A
ρσ

)
. (10.115)

This result was the one found by several authors, e.g Fujikawa in [131] (and [76] for gravitational
anomalies).

Note that both the consistent and the covariant anomalies can be computed using the Fujikawa
method. There is however an obstruction in that the Dirac operator

i /D = i(/∂ + i /V + i /Aγ5) , (10.116)

is not hermitian due to the presence of the axial field. The main difficulty consists in obtaining an
hermitian operator that shares the same spectrum as the Dirac operator. This can be achieved in
two manners (at least). One possibility is to perform an analytic continuation A → iA to restore
the hermiticity of i /D [132–137]. This clearly does not modify the spectrum and thus provides an
adequate hermitian operator to work with. The path integral variables can then be expanded using
its eigenfunctions. This procedure leads to the consistent form of the anomaly. The other main
approach is to use the hermitian conjugate of i /D to obtain a set of two hermitian operators (i /D)†i /D
and i /D(i /D)† [138–141]. It is straighforward to show that these hermitian operators have the same
spectrum as i /D. They provide two sets of eigenfunctions, one is used to expand ψ while the other
is used for ψ̄. This procedure leads to the covariant form of the anomaly. Other similar methods
have been applied in [131, 142].

The gauge anomalies also have a topological interpretation as was shown in [20, 142, 143], but
we will not expand further on it.

In the next Section, we explain this ambiguity in the form of the gauge anomaly, and how the
covariant and consistent anomalies are related to each other.

10.2.2 Ambiguities

There are several level of ambiguities in the computation of gauge anomalies.

Effective action counterterms The first one is related to the renormalisation of the theory.
As emphasised earlier, the anomaly needs to be regularised to be properly computed, however it
is finite after regularisation, i.e there are no infinities to remove by renormalisation. Nonetheless,
other physical quantities that arise in the same theory may need the theory to be renormalised.
The renormalisation of a theory is performed by introducing counterterms Wct at the level of the
effective action W

Wren = W + Wct , (10.117)
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such that Wren is fully finite. These counterterms have to be local polynomials of the background
fields. A gauge anomaly defined by the variation of the renormalised effective action may obtain
contributions from the counterterms∫

d4x θA = δθWren = δθW + δθWct . (10.118)

In general, we consider that an anomaly arising in δθW that can be cancelled by a local polynomial
in Wct is a spurious anomaly, that is to say it is not a true anomaly since a specific choice of
renormalisation may cancel it. For example, suppose

δθW ⊃
∫

d4x θAspurious , (10.119)

such that Aspurious integrates into a local polynomial P

δθP =

∫
d4x θAspurious , (10.120)

then taking Wct ⊃ −P will cancel Aspurious in δθWren. Spurious anomalies are said to be trivial
solutions to the Wess-Zumino consistency conditions. A true anomaly is a non-trivial solution, i.e
it integrates into a non-local quantity such as the effective action.

It may not always be an easy task to find which piece of an anomaly is spurious and which is
not. Suppose two computations of the same anomaly, with different renormalisation lead to two
different results A1 and A2. How can we determine whether they differ by a spurious anomaly or
not, i.e

A1 = A2 + Aspurious ? (10.121)

In a mathematical language, we are interested in the equivalence class [A1], such that ∀A2 ∈ [A1]

∃Aspurious : A1 −A2 = Aspurious . (10.122)

In the ghost formalism (10.110), this simply translates to

∃P local polynomial: G1(v) −G2(v) = δvP . (10.123)

By luck, δv defines a boundary operator since δ2v = 0 (10.110), and therefore the set of all equivalence
classes defined as above is a cohomology group, and they have been extensively studied in the
context of anomalies [144–149].

When several symmetries are at play, such as for theory (10.95), the renormalisation countert-
erms will also shift the anomaly between different currents. For example, the Bardeen anomaly
(10.111) is obtained while the vector symmetry is conserved, but we may as well obtain an anoma-
lous vector symmetry and a conversed axial symmetry.

Current counterterms The choice of counterterms to the effective action may explain some
discrepancies in different computations of anomalies, but not all of them. There are ambiguities
that arise in the regularisation by itself, and that are decoupled from a choice of renormalising
counterterms. This is the case of the consistent and covariant anomalies. In fact, Bardeen and
Zumino showed in [150] that this ambiguity shows itself as the addition of a local polynomial at
the level of the variation of W, which is called the Bardeen-Zumino (BZ) polynomial P∫

d4x θAcov = δθW +

∫
d4x θDµPµ , (10.124)
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where

δθW =

∫
d4x θAcons . (10.125)

Importantly, there exists no local polynomial P such that

δθP =

∫
d4x θDµPµ . (10.126)

This is the reason why the BZ polynomial is not equivalent to a choice of renormalising counterterm.
In Sec. 11, we will compute the covariant and consistent anomalies from the Path Integral, using
dimensional regularisation. We will in particular show that the BZ polynomial arises via the
ambiguity in defining γ5 in dimensional regularisation.

In the next Section, we give physical insight into each type of anomalies, and their implications
in a quantum theory.

10.3 Physical interpretation of the gauge anomalies

Ambiguities in the calculation of anomalies should be fixed upon physical considerations, in par-
ticular by enforcing symmetries. Usually, we will enforce the conservation of the vector current.
But as we saw above, this does not suffice to fix the ambiguities, and we may as well obtain the
consistent or the covariant anomaly. It is clear that the covariant anomaly is obtained by enforcing
the gauge covariance of the gauge anomaly. So which symmetry should be enforced in order to
obtain the consistent anomaly? To answer this question, let us briefly return to the case of the
ABJ anomaly. The anomaly is computed from Tµνλ which is represented by the diagram

j5,λ

jµ

jν

q
p+ δp

k1

k2

(10.127)

and the one with the legs jµ and jν swapped, and δp is the arbitrary choice of momentum routing
defined in (10.28). As we showed, the anomaly is distributed between qλTµνλ and kµ1Tµνλ = kν2Tµνλ.
This means that the anomaly can be distributed among the different vertices of the diagram. The
situation is similar for the gauge anomaly. The Bardeen anomaly is given by several diagrams
(triangle, square and pentagons), but we can reason on the triangle diagrams only. Firstly, the
vector gauge anomaly involves the triangle diagrams

jV,λ

Vµ, Aµ

Vν , Aν . (10.128)

This includes the diagrams with (Vµ, Vν), (Vµ, Aν), (Aµ, Vν) or (Aµ, Aν) as external legs. We can fix
some of the ambiguity in the computation by choosing a regularisation and renormalisation schemes
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that preserve the vector gauge symmetry ⟨Dµj
µ
V ⟩ = 0, such that the above diagram vanishes, as

well as the associated square and pentagon diagrams.

As explained earlier, there remains some ambiguity in the computation of ⟨Dµj
µ
A⟩, which involves

the triangle diagram

jA,λ

Vµ, Aµ

Vν , Aν . (10.129)

Since we want to preserve the vector gauge symmetry, the vertices that involve V should not be
anomalous. This means that the anomaly should be distributed among the A vertices and the jA
vertex.

Physically, we may interpret the axial transformation δAθ as an external global symmetry, i.e
not the gauge symmetry. In that case, we can preserve the axial gauge symmetry by putting all
the anomaly in the external current jA. This procedure leads to the covariant form of the anomaly,
and is quite similar to the ABJ anomaly, since all the anomaly is directed to an external global
symmetry.

On the other hand, if we consider that the axial transformation that we performed is the axial
gauge transformation, then jA should be treated on equal footing with the A legs. In that case, the
anomaly should be evenly distributed between all the axial (A and jA) vertices, which amounts to
enforcing the Bose symmetry. This procedure leads to the consistent form of the anomaly.

In practice, this means that if we have a vector-axial theory (10.95) supplemented by a global
SU(N) symmetry (e.g a non-abelian axion), then the theory should have a covariant anomaly. Such
a global anomaly is not harmful for the theory. If there is no global symmetry, then the theory
should have a consistent anomaly. Such a gauge anomaly is harmful for the theory, it implies
a loss of unitarity of the theory. But let us be more precise, what actually happens is that the
theory becomes non-renormalisable. One may wonder whether it is so harmful, after all we have
encountered plenty of non-renormalisable theories which we called EFTs. So to be precise, a theory
with a gauge consistent anomaly is only inconsistent above some cut-off [141, 151]. Schematically,
the argument is as follows. Consider a UV theory with fermions chirally coupled to massless gauge
bosons, and a Higgs field. The fermion species are such that all the gauge anomalies cancel. When
the Higgs takes its VEV, some of the gauge fields become massive, as well as some of the fermions.
In the IR, i.e below the fermions mass ∼ m, the theory is described by the EFT obtained after
integrating out the massive fermions. The EFT is composed of the remaining light fermions, the
massless and the massive bosons (their mass is ∼ gm < m where g < 1 is the coupling of the
fermions to the gauge bosons), and effective operators inherited from the massive fermions. Among
these effective operators there is indeed the gauge anomaly that cancels against the gauge anomaly
of the light fermions. However, if we start from the IR, and have no knowledge of massive fermions,
we will only see light fermions that have uncancelled gauge anomalies. According to the previous
reasoning, if we also have massive gauge bosons in the IR, we should not directly conclude that the
theory is inconsistent, but that the theory requires the presence of heavy chiral fermions that will
cancel the gauge anomalies.

That being said, what conclusions can we draw on the SM? As we know, the SM fermions are
chiral and thus produce gauge (consistent anomalies). Fortunately, the fermions species conspire
beautifully to cancel any gauge anomaly that may occur. The SM is thus free from any harmful
anomaly and is, as announced before, a renormalisable theory. This is truly remarkable that the
three families of fermions are charged such that all the gauge anomalies cancel. This also implies
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that any BSM model should preserve the gauge symmetries at the quantum level, lest it is itself
an EFT of some higher energy theory. This provides very useful constraints when building BSM
theories.
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Chapter 11

Anomalies from an Effective Field
Theory Perspective

In this Section, we present our work [4], in which we propose a novel method to compute anomalies
within the path integral. Instead of computing directly the Jacobian of the transformation, as we
did previously using the Fujikawa procedure, we identify the Jacobian as the ratio of two EFTs. We
may then use the EFT methods presented in Part II, and in particular the CDE. This procedure
allows to short-circuit considerations of Dirac operator spectrum and hermiticity. The ambiguities
intrinsic to anomalies are them dealt with by enforcing the desired Ward identities.

In the following, we detail the method applied to the calculation of the ABJ anomaly. We then
outline how the procedure should be applied to obtain covariant or consistent gauge anomalies.

11.1 Outline of the new method

In this section we explain our method for the simple case of the ABJ anomaly.

11.1.1 Functional determinant and Jacobian

Let us start with a Dirac fermion field involved in a vector gauge theory with the following path
integral,

Z ≡
∫

DψDψ̄ exp

(
i

∫
d4xψ̄(i/∂ − /V −m)ψ

)
=

∫
DψDψ̄eiS = det

[
i/∂ − /V −m

]
, (11.1)

with V a gauge field, element of SU(N) ≡ G. Let us consider an infinitesimal chiral reparametri-
sation of the fermionic field, of parameter θ(x) ∈ SU(N), under which the measure produces a
Jacobian

ψ → eiθ(x)γ5ψ, ψ̄ → ψ̄eiθ(x)γ5 , DψDψ̄ → J [θ]DψDψ̄. (11.2)

Since the path integral is unchanged under a reparametrisation of its integration variables we obtain

Z =

∫
J [θ]DψDψ̄ exp

(
iS − i

∫
d4x ψ̄

[
2imθγ5 + ( /Dθ)γ5

]
ψ

)
= J [θ] det

[
i/∂ − /V −m− 2imθγ5 − ( /Dθ)γ5

]
. (11.3)

with ( /Dθ) = (/∂θ) + i[ /V , θ] and the parenthesis indicates the local derivative. In the second line,
we used the fact that the Jacobian is fully determined by the structure of the gauge groups of the
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theory, hence does not depend on the fermionic field and can be commuted out of the integral.
Using (11.1) and (11.3) we obtain the Jacobian expressed as the difference between two EFTs

log J [θ] = log det
[
i /D −m

]
− log det

[
i /D −m+ i{θγ5, i /D −m}

]
≡
∫

d4xA(x) . (11.4)

11.1.2 The ABJ anomaly from the Covariant Derivative Expansion

For the ABJ anomaly, we take θ(x) to be abelian, and the ABJ anomaly thus reads∫
d4xA(x) = −Tr log

(
i /D −m− 2imθγ5 − (/∂θ)γ5

)
+ Tr log

(
i /D −m

)
. (11.5)

For clarity, we will first present the evaluation of the first functional trace in (11.5) that we label
Aθ, before combining both needed to compute the ABJ anomaly A. Using the CDE presented in
Part II, we straightforwardly obtain

Aθ =

∫
ddq

(2π)d

∞∑
n=1

1

n
tr

[
−1

/q +m

(
−i /D + 2imθγ5 + (/∂θ)γ5

)]n
. (11.6)

If we now apply the very same treatment to the other contribution, Tr log(i /D −m) of (11.5), in
order to evaluate the anomaly, we find that the terms which do not involve the θ parameter cancel
with each other

A =

∫
ddq

(2π)d

∞∑
n=1

1

n
tr

[
−1

/q +m

(
−i /D + 2imθγ5 + (/∂θ)γ5

)]n∣∣∣∣∣
carrying θ dependence

. (11.7)

Alternatively, it can be written as 1

A =

∫
ddq

(2π)d
tr
(
2imθγ5 + (/∂θ)γ5

) ∞∑
n=0

[
−1

/q +m

(
−i /D

)]n −1

/q +m
. (11.8)

Since we are only interested in the terms linear in θ in Eq. (11.7), the anomaly can be expressed
as A = Amγ5 + A/∂γ5 with

Amγ5 =

∫
ddq

(2π)d

∞∑
n=1

1

n
tr

[
−1

/q +m

(
−i /D + 2imθγ5

)]n∣∣∣∣∣
O(θ)

,

A/∂γ5 =

∫
ddq

(2π)d

∞∑
n=1

1

n
tr

[
−1

/q +m

(
−i /D + (/∂θ)γ5

)]n∣∣∣∣∣
O(θ)

. (11.9)

The terms which contribute to A involve, here, exactly one γ5 matrix and there can be no contri-
bution from orders greater than n = 5, within the CDE approach, since they would carry a mass
dependence. An explicit proof would rely on the fact that mass dependent terms, both coming
from Amγ5 and A/∂γ5 , are all finite.

As expected from the computation of anomalies, some of the integrals in (11.9) are divergent.
They are regularised using dimensional regularisation d = 4 − ϵ. The Dirac traces have to be
performed in d = 4 − ϵ as well, and they will yield ϵ factors, that will cancel the poles 1/ϵ from

1This follows from using the cyclicity trace, which remains under control even in ambiguous computation, thanks
to our procedure for γ5 in dimensional regularisation, as will see later on.
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the integrals to produce the expected finite anomaly. Note that the treatment of γ5 in dimensional
regularisation is ambiguous [104], since it is an intrinsically 4-dimensional object. There exists
different schemes that may produce different outcomes (see for examples Refs. [152, 153]). This
will be the heart of the computation of the gauge anomalies, but for now we simply adopt a specific
scheme, the Breitenlohner-Maison-’t Hooft-Veltman (BMHV) scheme, to treat γ5. This scheme is
known to be compatible with the conservation of the vector current.

We follow through with the CDE presented in Part II. A/∂γ5 contains both a finite

A/∂γ5
n=4,fin = − 1

32π2
tr
(
/D /D /D(/∂θ)γ5

)
=

i

8π2
ϵµνρσtr(DµDνDρ(∂σθ)) , (11.10)

and a divergent contribution

A/∂γ5
n=4,div =

−i
16π2

(
ε

2

ε
+ O(ε)

)
ϵµνρσtr(DµDνDρ(∂σθ)) −−−→

ε→0
− i

8π2
ϵµνρσtr(DµDνDρ(∂σθ)) ,

(11.11)
such that it actually vanishes

A/∂γ5
n=4 = A/∂γ5

n=4,div + A/∂γ5
n=4,fin = 0 . (11.12)

Note that by finite and divergent, we mean that there are finite or divergent integrals, but indeed
the result is finite.

On the other hand, Amγ5 only has finite integrals and reads

Amγ5
n=5 = − i

16π2
ϵµνρσθ tr (FµνFρσ) , (11.13)

where the convention for the field strength is Fµν = [Dµ, Dν ].
Within the CDE approach, this is the only surviving contribution, and it matches the well-

known result for the axial current anomaly in a vector gauge field theory [116, 118, 130]

A = Amγ5 + A/∂γ5 = Amγ5
n=5 = − i

8π2
θ tr
(
FµνF̃

µν
)
, (11.14)

where the convention for the dual tensor is F̃µν = 1/2 ϵµνρσFρσ, with the choice ϵ0123 = +1.
One may be a bit surprised by the fact that the anomaly ends up extracted from a non-divergent

integral, for which no regularisation is needed. Let us stress though that the crucial step was to
show that the A/∂γ5 term gives no contribution in that particular case at order m0.

Following a similar strategy, we will now discuss more generalities and details of the evaluation
of the covariant and consistent anomalies in QFT based on a careful regularisation.

11.2 Anomalies in vector-axial gauge field theory

In this Section, we are interested in the computation of the covariant and consistent gauge anoma-
lies. This time, we carefully deal with the ambiguity in the definition of γ5 in dimensional regular-
isation, which we fix by enforcing the adequate symmetry.

11.2.1 Definiteness and regularisation

We consider the vector-axial theory

L = ψ̄(i/∂ − /V − /Aγ5 −m)ψ , (11.15)
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with Vµ and Aµ elements of SU(N). Note that we have now introduced a mass for the chiral fermion,
which is necessary for the CDE. The mass term is a hard breaking source of axial symmetries (local
or global). In order to make manifest those symmetries at tree-level one can evidently implement
their spontaneous breaking introducing then their associated Goldstone bosons. We chose to work
within the unitary basis and loose manifest tree-level axial invariance in order to deal with simpler
functional determinants. Consequently, one should not be surprised if we discuss an anomalous
global symmetry which looks naively already broken at tree-level. 2

Under the axial reparametrisation of the fermions with θ(x) ∈ SU(N), we obtain the Jacobian

J [θ] =
det(i /D −m)

det(i /D −m− ( /Dθ)γ5 − 2imθγ5)
. (11.16)

As emphasised in Sec. 10.2.1, depending on how this Jacobian is handled, it may lead to different
results, depending on which symmetry is enforced. We may in principle have the anomaly in the
vector or the axial current, and we may obtain a result that is covariant or respects the Wess-Zumino
consistency conditions.

We will propose two methods of regularising the Jacobian (11.16). The first method consists
in working with the formal determinant in dimensional regularisation and, throughout the compu-
tation, deal with the ambiguity related to γ5 using free parameters [75, 154]. The second method
consists in bosonising the determinant, making it finite, hence fixing the ambiguity before the cal-
culation. The first method can be seen as more general (or maybe näıve and brutal) as one first
regularises an ill-defined quantity inserting as much freedom as needed and secondly call for coher-
ence (covariance, integrability). We believe that a remarkable advantage of this approach is that
its derivation is smooth and self-consistent within the path integral formalism. The second method
works the opposite way, as one firstly calls for a well defined theory (free of any ambiguity) and sec-
ondly perform the regularisation. As we will see, each have their own advantages and disadvantages
and we find it illuminating to present them both. We should also notice that while we believe the
first method is novel in its approach, the bosonisation method is well-known [20, 69, 140], however
its combined used with the CDE to evaluate anomalies, is new and since this offers a powerful tool
and interesting implications for EFTs related topics, it deserves to be duly studied here.

11.2.2 Ambiguities and free parameters

In d dimensions, γ5 is ill-defined. One cannot maintain both the cyclicity of the trace and Clifford
algebra. There exist many ways of defining γ5 in d dimensions consistently [104, 105, 152–154],
although they may yield different results. The ambiguity in the Jacobian of Eq. (11.16) lies in the
dependence on the choice of the γ5 regularisation scheme.

In a diagrammatic approach, the amplitude of a diagram is dictated by the Feynman rules.
However, it does not specify by which vertex we should start writing the amplitude of the diagram,
which results in different possible positions for γ5 in the traces. Since in d dimensions, the different
positions of γ5 are not equivalent, we have an ambiguity in its position.

Nonetheless, it is possible to compute traces of γ5 in d dimensions while keeping track of the
ambiguity by introducing free parameters [154]. We outline the method in the following.

Consider the trace
tr (γ5γ

µγνγργσ) . (11.17)

In 4 dimensions, one can use Clifford algebra to move the γ5 at different positions,

tr (γ5γ
µγνγργσ) = tr (γµγνγ5γ

ργσ) = tr (γµγνγργσγ5) . (11.18)

2A detailed discussion on the parametrisation of local and global anomalous symmetries can be find in Ref. [75].
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However, this may not be true anymore in d dimensions. For example if we use BMHV scheme [105],
we maintain the cyclicity of the trace but we have to abandon Clifford algebra. The trick presented
in Ref. [154] consists in implementing all the positions for γ5 that are equivalent in 4 dimensions,
with a free parameter for each

tr (γ5γ
µγνγργσ) → α tr (γ5γ

µγνγργσ) + β tr (γµγνγ5γ
ργσ) + δ tr (γµγνγργσγ5) , (11.19)

with the condition α+ β + δ = 1, so that we recover tr (γ5γ
µγνγργσ) in 4 dimensions.

The introduction of those free parameters with all the equivalent positions (in 4 dimensions) of
γ5 makes the trace regularisation scheme independent. Therefore, we can choose a specific scheme
to compute each separate trace. If the result depends on the free parameters in the end, it means
that the initial trace itself is ambiguous.

For the example above, we compute each separate trace using the BMHV scheme to get

tr (γ5γ
µγνγργσ) →α tr (γ5γ

µγνγργσ) + β tr (γµγνγ5γ
ργσ) + δ tr (γµγνγργσγ5)

=(α+ β + δ)(−4iϵµνρσ) = −4iϵµνρσ , (11.20)

where we have used the condition α+ β + δ = 1 to match with the result in 4 dimensions. It turns
out that this trace is non-ambiguous.

However, consider the following trace with one contraction among the Dirac matrices

tr (γ5γ
µγνγaγργσγa)

→αtr (γ5γ
µγνγaγργσγa) + βtr (γµγνγ5γ

aγργσγa) + γtr (γµγνγaγργ5γ
σγa) + δtr (γµγνγaγργσγaγ5)

=(−1 + 2γ) 4i(d− 4)ϵµνρσ . (11.21)

It is ambiguous because even after enforcing the condition α+β+γ+δ = 1, the result still depends
on a free parameter. Actually, insofar as there is more than one contraction among the Dirac
matrices, the trace will be ambiguous. As a consequence, when computing the anomaly, the final
result depends on free parameters. Those free parameters are then fixed under physical constraints,
for example by enforcing gauge invariance and vector current conservation.

Although the positions of γ5 in the computation of the path integral Jacobian are not arbitrary,
as opposed to the diagrammatic approach, it may still bear traces that depends on the choice of
γ5 scheme. Despite the absence of arbitrariness in the position of γ5 we will still rely on the free
parameters trick to compute the ambiguous Jacobian, since it allows us to compute the traces in a
γ5 scheme independent way.

11.2.3 A well-known treatment : the bosonisation

Before delving into the expansion of the determinant, it is possible to regularise it. One way of
achieving a regularised Jacobian is to bosonise it. The Dirac operator for the vector-axial theory is

i /D −m = i/∂ − /V − /Aγ5 −m. (11.22)

This operator does not have a well-defined eigenvalue problem, the presence of the axial field spoils
the hermiticity. It is however crucial to have a well-defined eigenvalue problem to make sense of
the determinant, which is the product of the eigenvalues of the operator. One way to obtain a
hermitian operator is to use the following Laplace operators

/D
† /D and /D /D

†
. (11.23)
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which thus have a well-defined eigenvalue problem. They preserve the spectrum of the theory (see
for example Ref. [20]), hence do not change the value of the determinants (aside squaring them).
The Jacobian, or rather its modulus, can thus be expressed as

|J [θ]|2 =
det
(
−(i /D)†i /D +m2

)
det
(
−(i /D)†i /D +m2 + f(θ)

) , (11.24)

where

f(θ) = 4im2θγ5 − i[θ,−D2]γ5 −
1

2
[σ.F V , θ]γ5 −

1

2
[σ.FAγ5, θ]γ5 . (11.25)

F V and FA are the Bardeen curvatures defined in (10.112).
In [4], we showed by direct computation that this bosonised determinant is finite and hence

unambiguous, and leads to the covariant form of the anomaly. The fact that it is the phase and
not the modulus of the determinant which is ambiguous is well-known [76].

On the other hand, if we want to compute the consistent anomaly, we can try to use the
bosonisation as in the vector gauge theory. However, the operator /D

2
+ m2 is still not hermitian.

We palliate this problem using the analytic continuation Aµ → iAµ that restores the hermiticity of

i /D, hence of /D
2

+m2. The Jacobian will then be written as

J [θ]2 =
det( /D

2
+m2)

det( /D
2

+m2 + {i /D, ( /Dθ)γ5} + 4im2θγ5)
. (11.26)

Unfortunately, this does not suffice to fix the ambiguity, and does not necessarily lead to the
consistent anomaly.

We do not dwell further on the bosonisation and refer the interested reader to the article instead
[4]. Similarly, we put the focus on anomalies with conserved vector symmetry and anomalous axial
symmetry, even though the converse is treated in [4].

11.3 Covariant anomaly

The Jacobian produced by the axial reparametrisation in the vector-axial theory is

J [θ] =
det
(
i /D −m

)
det eiθ(x)γ5

(
i /D −m

)
eiθ(x)γ5

=
det
(
i /D −m

)
det
(
i /D −m− 2imθγ5 − ( /Dθγ5)

) . (11.27)

As emphasised in the previous sections, this Jacobian is ill-defined. The next step is to explicitly
compute it, according to the methods proposed in section 11.2.1.

We are now in the situation where we are looking to evaluate an equivalent of (11.7) for a vector
and axial gauge field theory

A =

∫
ddq

(2π)d
tr
(
( /Dθ)γ5 + 2imθγ5

)∑
n≥0

[
−1

/q −m
(−i /D)

]n −1

/q −m
, (11.28)

where θ belongs to SU(N) and the covariant derivative is Dµ = ∂µ +iVµ + iAµγ5.
Let’s start by computing contributions from the mass term 2imθγ5, which is finite and un-

ambiguous. It turns out to contribute for exactly the Bardeen anomaly (with conserved vector
current), that is to say the consistent anomaly

Amγ5 =
−i

16π2
ϵµνρσtr θaT a

(
F VµνF

V
ρσ +

1

3
FAµνF

A
ρσ +

8

3

(
AµAνF

V
ρσ +AµF

V
νρAσ + F VµνAρAσ

)
+

32

3
AµAνAρAσ

)
= ABardeen .

(11.29)
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Now let us focus on the derivative term ( /Dθ)γ5

A/∂γ5 =

∫
ddq

(2π)d
tr ( /Dθ)γ5

∑
n≥0

[
−1

/q −m
(−i /D)

]n −1

/q −m
. (11.30)

Among others, the following term is involved

iI[q4]4tr
(

( /Dθ)γ5[γ
a /Dγb /Dγc /Dγdgabcd]

)
, I[q4]4gµνρσ =

∫
ddq

(2πd)

qµqνqρqσ
(q2 −m2)4

, (11.31)

and is divergent. gµνρσ is the fully symmetrised metric. Therefore, the associated trace is am-
biguous. We use the trick described in section 11.2.2 to keep track of the ambiguity, and all the
contributions from the derivative term may be expressed as a sum of operators with a free pa-
rameter for each (after integrating by parts). The result can thus be written fully in terms of free
parameters associated with each possible operator (the finite contributions will just combine with
a fixed parameter that can be absorbed in the free parameter). We may therefore write

A/∂γ5 =
−i

16π2
ϵµνρσtr θaT a

(∑
i

aiXi, µνρσ

)
, (11.32)

where Xi are all the possible operators of the form O1O2O3O4 with O1≤i≤4 ∈ {V,A, ∂} that can be
formed, provided it has an even number of A fields (the number of γ5 must be odd). Note that the
operators with a partial derivative to the right vanish, and those with consecutive partial derivatives
vanish due to the contraction with the ϵ tensor. This leaves us with 22 possible operators and as
many free parameters ai. We then fix them by enforcing the covariance of Amγ5 + A/∂γ5 under the
vector and axial gauge transformations{

Vµ → Vµ + (DV
µ εV ) + i[Aµ, εA]

Aµ → Aµ + i[Aµ, εV ] + (DV
µ εA)

, (11.33)

where DV = ∂+iV . In fact it turns out that considering only the axial gauge transformation
associated with ϵA will prove sufficient to fix the free parameters.

The constraints are easily obtained by enforcing that the operators must transform covariantly,
that is to say as

δAϵAO = [ϵA,O] . (11.34)

In practice, we enforce that the terms with derivatives of ϵA vanish, and also that ϵA must appear
either at the beginning or at the end of each operator. It turns out that enforcing these conditions
fixes 21 free parameters out of 22. We label β the remaining free parameter. To fix β, we may
consider the limit A → 0. This scenario corresponds to having an axial global (non-abelian)
symmetry in a vector-like theory, and the anomaly should then take the same form as the ABJ
anomaly. Setting A = 0 we are left with

−i
16π2

(1 + β)ϵµνρσ F Vµν
∣∣
A=0

F Vρσ
∣∣
A=0

, (11.35)

with F Vµν
∣∣
A=0

= i ∂µ Vν− i ∂ν iVµ− [Vµ, Vν ]. Eq. (11.35) is covariant regardless of the normalisation,
this is why it needs to be compared with the anomaly in a vector-like theory to fix β. Note that
this procedure amounts to enforcing the conservation of the vector current. We thus deduce that
β = 0 and, restoring A, we obtain the covariant anomaly in the axial current

A = Amγ5 + A/∂γ5 =
−i

16π2
ϵµνρσtr θaT a

(
F VµνF

V
ρσ + FAµνF

A
ρσ

)
, (11.36)
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with F V and FA the Bardeen curvatures as defined in (10.112). Note that the relative coefficient
between F V F̃ V and FAF̃A was fixed by requiring the covariance of the result, since F V F̃ V +b FAF̃A

is not covariant unless b = 1.
The ambiguity in the derivative term A/∂γ5 was fixed by requiring that the mass term and

derivative term together are gauge covariant, that is to say, that the gauge variation of the derivative
term cancels exactly the gauge variation of the unambiguous mass term. Since the mass term
coincides with the consistent anomaly, then the derivative term is by definition the divergence of
the BZ polynomial introduced in Sec. 10.2.2

A/∂γ5 = θa(DµPµ)a

=
−i

16π2
ϵµνρσtr θ

(
2

3
FAµνF

A
ρσ +

8

3

(
AµAνF

V
ρσ +AµF

V
νρAσ + F VµνAρAσ

)
− 32

3
AµAνAρAσ

)
.

(11.37)

11.4 Consistent anomaly

We now apply the same procedure, except instead of enforcing the covariance of the result, we
enforce the WZcc. The Jacobian of the axial reparametrisation is given in (11.28), and we recall it
here

A =

∫
ddq

(2π)d
tr (2imθγ5 + ( /Dθ)γ5)

∑
n≥0

[(
−1

/q +m

)
(−i /D)

]n( −1

/q +m

)
. (11.38)

As we saw above, the mass term matches the Bardeen anomaly

Amγ5 = ABardeen . (11.39)

With the same arguments, the divergent contributions from ( /Dθ)γ5 can be put under the form

A/∂γ5 =
−1

16π2
ϵµνρσtr θaT a

(∑
i

aiXiµνρσ

)
, (11.40)

where Xi are all the possible operators of the form O1O2O3O4 with O1≤i≤4 ∈ {V,A, ∂} that can
be formed, provided it has an even number of A fields (the number of γ5 must be odd). This leaves
us with 22 possible operators, and their 22 associated free parameters ai.

We outline the procedure here. We first take the limit A→ 0 as we did previously. In that case,
we enforce the conservation of the vector gauge symmetry, that is to say we fix the parameters such
that all the vector gauge fields are stowed inside curvatures F Vµν

∣∣
A=0

= i ∂µ Vν − i ∂ν Vµ − [Vµ, Vν ].
We then restore the axial gauge field A. As emphasised in their original paper [127], the Wess-
Zumino consistency conditions fix uniquely all the coefficients of the operators with respect to the
coefficient of the ϵµνρσF VµνF

V
ρσ term. This allows us to directly conclude that upon enforcing the

vector gauge invariance and the Wess-Zumino consistency conditions, we must have

A/∂γ5
= αABardeen , (11.41)

where we still have one free parameter left, α.
Now let’s put together the contributions from the mass term and the derivative term

A = (1 + α)ABardeen . (11.42)

The Wess-Zumino consistency conditions allow us to fix the coefficients of all the operators with
respect to the coefficient of the term F VµνF

V
ρσ, this is why we still have a remaining freedom at
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the end. The coefficient of F VµνF
V
ρσ can be fixed by comparing the result with the anomaly in a

vector-like gauge theory as suggested in [127]. That is to say, we set A→ 0 again, and can therefore
identify our result with the ABJ anomaly (with θ ∈ SU(N)), which immediately sets α to zero,
leaving the expected result.

11.5 Scale anomaly

Let us pave the way for the next Section and introduce the scale anomaly.
It is well-known that there are two main categories of symmetries which are broken by the

quantisation of a theory. The first is the axial symmetry associated with Dirac’s γ5, the chiral
anomaly, that we have just treated in details. The other is the scale transformation, which changes
the length scale of space-time, keeping local angles invariant [155–159]. In the next Section, we will
detail the difference between the scale, conformal and Weyl transformations. Here, we propose to
evaluate the scale anomaly following the prescription described in Section 11.1 and for pedagogical
reasons we stick to the case of QED

L = ψ̄(i/∂ − /V −m)ψ − 1

4e2
F 2 . (11.43)

Scale invariance is classically broken by the fermion mass term, and the divergence of the Noether
current Jµ associated to the scale transformation, i.e the trace of the symmetric energy-momentum
tensor T̃µµ , reads

∂µJ
µ = T̃µµ = mψ̄ψ . (11.44)

This relation is also broken at the quantum level by the renormalisation of the coupling e. The
scale transformation xµ → x′µ = eσxµ induces

∂

∂xµ
→ ∂

∂x′µ
= e−σ

∂

∂xµ
,

ddx→ ddx′ = edσddx ,
(11.45)

and the fields transformation

ψ(x) → ψ′(x′) = e−(d−1)σ/2ψ(x) ,

ψ̄(x) → ψ̄′(x′) = e−(d−1)σ/2ψ̄(x) ,

Aµ(x) → A′
µ(x′) = Aµ(x′) = e−σAµ(x) ,

(11.46)

where d is the dimension of space-time. Note that the gauge field does not transform by itself, it
only transforms due to its dependence on x [118].

Using the invariance of the path integral under the relabelling of the path integral variables,
and the invariance of the space-time integral under relabelling the spacetime variable, we may write∫

(Dψ)′(Dψ̄)′ exp

(
i

∫
ddx′L[x′, ψ′(x′), Aµ(x′)]

)
=

∫
DψDψ̄ exp

(
i

∫
ddxL[x, ψ(x), Aµ(x)]

)
.

(11.47)
On the other hand we know how the action transforms, and we can assume that the transformation
of the measure produces a Jacobian∫

(Dψ)′(Dψ̄)′ exp

(
i

∫
ddx′L[x′, ψ′(x′), Aµ(x′)]

)
=

∫
J [σ]DψDψ̄ exp

(
i

∫
ddxL[x, ψ(x), Aµ(x)] +

∫
ddx

(
ψ̄(−id− 1

2
(/∂σ) −mσ)ψ

))
.

(11.48)
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As previously, since the two Path Integrals are equal, we obtain

J [σ] =
det(i /D −m)

det(i /D −m− σm− id−1
2 (/∂σ))

. (11.49)

The term proportional to (/∂σ) requires to be regularised but no γ5 is involved, hence the compu-
tation remains unambiguous. At order m0, the divergent contribution from −id−1

2 (/∂σ) vanishes,
only the finite contribution from σm remains and yields the scale anomaly [118]

Ascale =
σ

24π2
trF 2 . (11.50)

We omit the details of calculation that can be found in the article [4]. However, higher order terms
(terms of order 1/mk, with k > 0) involve contributions from both σm and d−1

2 (/∂σ) which should
cancel one another.

We may then relate the anomaly to the β-function. At tree level the coupling e does not
transform. It however transforms at one loop level, and by definition of the β-function we have

e→ e+ σβ(e) , (11.51)

in (11.43) at one-loop, i.e

Stree+1loop =

∫
ddx

(
ψ̄(i /D −m)ψ − 1

4e2
F 2 + σ

β(e)

2e3
F 2

)
.

By identification with the term produced at one loop by the Jacobian, we can deduce the expression
of the one loop β-function

β(e) =
e3

12π2
, (11.52)

which corresponds to the well-known QED β-function.
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Gravitational Anomalies

We introduced QFT in curved spacetime in Part II, and we saw that it is associated with two
local symmetries: the diffeomorphism and Lorentz groups. After realising that vector and axial
symmetries, whether global or gauge, can be broken at the quantum level, it is legitimate to ask
ourselves whether the same can occur to the symmetries of gravity. In this Chapter, we discuss
gravitational anomalies, and in which theories they may occur. In addition, we will also discuss the
Weyl symmetry of gravity, which is the generalisation of scale invariance to curved spacetime. In
particular, we dedicate significant efforts to dealing with chiral fermions in gravity and how they
impact the Weyl anomaly, thus helping solving a recent controversy in the literature. Finally, we
pursue this work to address the question of parity violating Weyl anomalies in a model-independent
manner.

12.1 Axial-gravitational anomaly

Before delving into the symmetries of spacetime, we may first have a look at matter field symmetries
in curved spacetime. As was shown in Sec. 10.1.1, the axial transformation of a vector-like fermion
is anomalous in the presence of a background gauge field. In fact, this also holds for a background
gravitational field, and it is the so-called axial-gravitational anomaly [160, 161]. In our work [3],
we provide a computation via the path integral, using the EFT interpretation. It can also be found
in details in [20, 118] and we only display the result here

⟨∂µ jµ5 ⟩ =
−i

192π2
RR̃ , (12.1)

where

RR̃ =
1

2
ϵµνρσRαβµνRαβρσ , (12.2)

is the topological Pontryagin density for gravity. It is the equivalent of FF̃ for gravity, and will
be the subject of discussion in the following Sections, especially regarding its place in the Weyl
anomaly (to be introduced below).

We do not label such an anomaly a gravitational anomaly since it is not associated with a gravi-
tational symmetry per se, but it is worth mentioning and has many phenomenological implications.
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12.2 Diffeomorphism and Lorentz anomalies

It was Álvarez-Gaumé and Witten who first noticed that the symmetries of General Relativity may
be broken by quantum fermionic fields [76]. In particular they studied left-handed Dirac fermion1

SL[e, ψ, ψ̄] =

∫
ddx

√
|g|ψ̄i /DPLψ . (12.3)

Classical invariance This theory is classically invariant under the (active) diffeomorphism trans-
formation of infinitesimal parameter ξµ(x)

δdξψ = ξµ ∂µ ψ , δdξ ψ̄ = ξµ ∂µ ψ̄ ,

δdξ e
µ
a = ξν ∂ν e

µ
a − eνa ∂ν ξ

µ , δdξ e = (∂µ eξ
µ) = e(Dµξ

µ) ,

δdξωµ = ξν ∂ν ωµ + ων ∂µ ξ
ν , (12.4)

and the Lorentz transformation of infinitesimal parameter αab = −αba

δLαψ = − 1

2
αabΣ

ab ψ , δLα ψ̄ =
1

2
αab ψ̄Σab , δLαe

µ
a = eµbα

b
a , δLαe = 0 ,

δLαωµ =
1

2
[Dµ, αabΣ

ab] =
1

2
Σab[Dµ, αab] , (12.5)

where ωµ = 1
2Σabωµab is the spin-connection introduced in Part II and Σab = 1

4 [γa, γb]. And when
the fermion is solution to its EoM, we obtain the conserved quantities

δdξSL[e, ψ, ψ̄] =

∫
ddx δdξ e

a
µ

δS

δeaµ
=

∫
ddx ξν

(
DµTµν − ωνabT

ab
)

= 0 ,

δLαSL[e, ψ, ψ̄] =

∫
ddx δLαe

a
µ

δS

δeaµ
= −

∫
ddxαabT

ab = 0 , (12.6)

where the energy-momentum tensor (EMT) is

Tµa =
1√
|g|

δS

δeaµ
, Tµν = gνρeaρT

µ
a . (12.7)

Anomalies In [76], it is showed that these relations are broken at the quantum level in d = 2+4k
(k ∈ N) dimensions, but not in d = 4 + 4k. In d = 2 + 4k, the effective action W is a priori neither
diffeomorphism nor Lorentz invariant, and we define the anomalies by∫

d4x e ξµAµ
diffeo = − δdξW =

∫
d4xe ξν

〈
ωνabT

ab −DµTµν

〉
,∫

d4x eαabAab
Lorentz = − δLαW =

∫
d4xeαab⟨T ab⟩ . (12.8)

The diffeomorphism anomaly takes on a different expression in the presence of a gauge field, which
is not diffeomorphism invariant [1].

Note that, as the vector and axial gauge anomalies, the presence of a diffeomorphism or Lorentz
anomaly implies that the theory is inconsistent, or at least that it should be understood as an EFT

1In Sec. 13.1, we will make an important distinction between a left-handed Dirac fermion, and a Weyl fermion.
This distinction is crucial in the definition of the path integral, but we postpone it for later.
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following [141, 151]. In d = 4, theories involving quantum chiral fermions are free from diffeomor-
phism and Lorentz anomalies, which makes possible to couple the SM to a classical gravitational
background.

Another similarity with the vector and axial gauge anomalies, is that the diffeomorphism and
Lorentz anomalies exist both under a covariant and a consistent form, which are related by the
Bardeen-Zumino (BZ) local polynomial Pµν [20, 150]. As for axial gauge anomalies, the BZ poly-
nomial does not arise at the level of the renormalising counterterms, i.e at the level of the effective
action, but at the level of the effective action variation, i.e the EMT. The anomalies written in
(12.6) arise from the effective action variation, hence respect the Wess-Zumino consistency condi-
tions. The covariant anomalies are obtained using the modified energy momentum tensor

⟨T̃µν⟩ = ⟨Tµν⟩ + Pµν , (12.9)

and the BZ polynomial is obtained by canceling the diffeo-variation of the diffeomorphism anomaly.
An example in d = 2 can found in [20], for the consistent and covariant diffeomorphism anomaly
in the absence of Lorentz anomaly

Dµ⟨Tµν⟩ =
1

192π2
ϵabωνabR , Dµ⟨T̃µν⟩ =

1

96π2
ϵµνDµR , (12.10)

where R is the Ricci scalar, and ϵµν is the Levi-Civita tensor.

Finally, the Lorentz and diffeomorphism anomalies are also topological anomalies [76, 162], and
enjoy the same interesting properties as the ABJ and the gauge anomalies, that is to say they are
mass independent and one-loop exact.

Relation between diffeomorphism and Lorentz anomalies In [126, 150], a relation is found
between the diffeomorphism and the Lorentz anomalies. They introduce a local counterterm to the
effective action that yields a symmetric EMT, and results the vanishing of the Lorentz anomaly,
but not the diffeomorphism anomaly. Likewise, this counterterm can be used to obtain a vanishing
diffeomorphism anomaly but non-vanishing Lorentz anomaly. This term is obtained by introducing
an interpolating vierbein

et = 1 + (t− 1)e , t ∈ [0; 1] , (12.11)

where e is the vierbein field, with components eaµ. The following counterterm in then added to the
action

Wct =

∫
ddx

∫
dt C2d+1(ω[et] + vt) , (12.12)

where ω[et] is the spin-connection built with the interpolating vierbein et and

vt = (et)−1 ∂t e
t . (12.13)

C2d+1 is the Chern-Simons current, whose divergence is the Pontryagin density. We have encoun-
tered already in (10.89) for the gauge field and in d = 4. For gravity in d = 4 it is expressed
as

Cµ[Γ] = ϵµνρσ
(

Γανβ ∂ρ Γβσα +
2

3
ΓανβΓβρδΓ

δ
σα

)
, RR̃ = 2DµC

µ[Γ] . (12.14)

In (12.12), it is evaluated with connection ω[et] + vt. More details can be found in [20].

If we have built an effective action W which is free from Lorentz anomaly but has a diffeomor-
phism anomaly, then W + Wct is free from diffeomorphism anomaly but has a Lorentz anomaly.
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In [126, 150], the authors claim that this counterterm implies that Lorentz and diffeomorphism
anomalies are in fact equivalent. It was however pointed out by Leutwyler [163, 164], the countert-
erm in (12.12) is in indeed local, in the sense that it has a finite power in the background fields, but
also non-polynomial due to the integral over an extra dimension. This implies that it lies outside
of the class of legal counterterms that can be introduce for renormalising the theory.

12.3 Path integral measure in curved spacetime

As advertised in Part II, the path integral measure requires a careful treatment in gravity. The
reason is that the measure that we use in flat spacetime is not diffeo-invariant in curved space-
time. In this Section we show how to naturally obtain the correct path integral measure in curved
spacetime.

12.3.1 Diffeo-invariant measure

Naively, we are tempted to write the fermion path integral as

Z =

∫
DψDψ̄ ei

∫
d4x

√
|g| ψ̄(i /D−m)ψ . (12.15)

The measure DψDψ̄ is however not the correct one, as was pointed out by [118]. The correct
construction of the measure was then understood in [165]. To obtain the correct measure, let us
consider the simple case of a finite N dimensional vector space with some metric E, such that the
inner product is

(u, v) =
N∑

i,j=1

uiEijvj . (12.16)

In that case, the invariant volume element is defined by

dµ(v) = (detE)1/2dNv . (12.17)

This is the same procedure that we follow to define the invariant spacetime measure
√
|g|d4x on a

4-dimensional manifold.
We then consider the case of field theory, which is an infinite (uncountable) dimensional vector

space. The inner product of two scalar fields with internal indices i is defined as

(ϕ, φ) =

∫
d4xd4y ϕi(x)Gij(x, y)φj(y) , (12.18)

where the field-space metric is diagonal

Gij(x, y) = ρij(x)δ(x− y) . (12.19)

The associated invariant volume element is

dµ(ϕ) =
∏
x

(
(deti ρ(x))1/2

∏
i

dϕi(x)

)
, (12.20)

where deti is the determinant on internal indices only, since we left the product on x explicit.
Now let us apply this to the case at hand: a field in curved spacetime. The diffeomorphism

invariant inner product of two scalar fields is

(ϕ, φ) =

∫
d4x

√
|g|ϕi(x)φi(x) , (12.21)
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where |g| is the modulus of the determinant of the metric which is a determinant on the Lorentz
indices, and we can identify the field-space metric to be

Gij(x, y) = |g(x)|1/2 δijδ(x, y) . (12.22)

This implies that the diffeomorphism invariant measure is

dµ(ϕ) =
∏
x

(
|g(x)|1/4

∏
i

ϕi(x)

)
= Dϕ̃ , (12.23)

where we defined ϕ̃ = |g|1/4ϕ. The same can be applied to fermions to obtain the diffeo-invariant
measure

dµ(ψ) = Dψ̃D ˜̄ψ , (12.24)

where

ψ̃ = |g(x)|1/4ψ , ˜̄ψ = |g|1/4ψ̄ . (12.25)

Note that since ψ̃ has a different weight than ψ, the covariant derivative acts differently on them

Dµψ̃ = Dµ|g|1/4ψ = |g|1/4Dµψ = |g|1/4(∂µ +ωµ)ψ , (12.26)

where we used [Dµ, |g|] = 0, and commuting the metric determinant to the left we obtain

Dµψ̃ =

(
∂µ +ωµ −

∂µ
√
e√
e

)
ψ̃ , (12.27)

where we used the vierbein determinant e =
√
|g|.

This choice of variables is in agreement with the path integral measure advocated by Fujikawa
in [158], up to a small caveat. Fujikawa claims that the correct variables to use in the path integral
should be the weight −1/2 fields (12.25), which lead to the measure (12.24). However, as emphasised
by Toms in [165], we may take any weight for the path integral variables, e.g

ϕw = |g|−w/2ϕ , (12.28)

which transforms under the diffeomorphism x→ x′ as

ϕ′(x′) = det

∣∣∣∣∂ x′µ∂ xν

∣∣∣∣w ϕ(x) , (12.29)

the path integral measure will not be affected

dµ(ϕw) =
∏
x

(
|g(x)|

w
2
+ 1

4

∏
i

ϕw(x)

)
=
∏
x

(
|g(x)|1/4

∏
i

ϕ(x)

)
= dµ(ϕ) . (12.30)

Note that for fields of higher spin, the invariant measure involves the determinant of the metric
with powers different than 1/4. More details can be found in [118].
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12.3.2 Effective action

The effective action for fermions using the naive measure is

W = −i log

∫
DψDψ̄ eiS = − i

2
log det

(√
|g|(i /D −m)

)
, (12.31)

whereas the one obtained using the diffeo-invariant measure is

W̃ = −i log

∫
Dψ̃D ˜̄ψ eiS = − i

2
log det

(
i /D −m

)
, (12.32)

such that the difference between the two simply is

W̃ −W =
i

2
log det

√
|g| . (12.33)

This difference is relevant for gravitational anomalies since it is not invariant under a diffeomorphism

δdξW̃ ≠ δdξW , (12.34)

nor under a Weyl transformation. This implies that gravitational anomalies are impacted by the
choice of measure. In fact, it was showed in [118, 158] that the naive path integral measure for
vector-like fermions yields a spurious diffeomorphism anomaly, and the wrong Weyl anomaly. Let
us show explicitly that the naive measure is not diffeo-invariant, using the Fujikawa procedure.

The naive path integral variables transform under a diffeomorphism as

δdξψ = ξµ ∂µ ψ , δdξ ψ̄ = ξµ ∂µ ψ̄ . (12.35)

Following the same procedure as in Sec. 10.1.2, we obtain the Jacobian of the transformation

log J [ξ] = −
∑
n

∫
d4x

(
ϕ†nξ

µ ∂µ ϕn + ξµ(∂µ ϕ
†
n)ϕn

)
=
∑
n

∫
d4x (∂µ ξ

µ)ϕ†nϕn ̸= 0 , (12.36)

where we integrated by parts using ξµ(|x| → ∞) = 0. On the other hand, using the diffeomorphism
invariant path integral variables with transformations

δdξ ψ̃ = ξµ ∂µ ψ̃ +
1

2
(∂µ ξ

µ)ψ̃ , δdξ
˜̄ψ = ξµ ∂µ

˜̄ψ +
1

2
(∂µ ξ

µ) ˜̄ψ , (12.37)

we obtain the Jacobian

log J [ξ] = −
∑
n

∫
d4x

√
|g|
(
ϕ†n

(
ξµ ∂µ +

1

2
(∂µ ξ

µ)

)
ϕn + ξµ

(
∂µ ϕ

†
n +

1

2
(∂µ ξ

µ)ϕ†n

)
ϕn

)
= 0 ,

(12.38)
after integrating by parts.

Note that since the metric determinant is Lorentz invariant, both the naive and the diffeo-
invariant measures are Lorentz invariant. Only the diffeomorphism and the Weyl anomalies (intro-
duced below in Sec. 12.4) are affected by the choice of measure.
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12.3.3 Back to the covariant derivative expansion

One may legitimately remark that in the CDE in curved spacetime in Part II, the path integral
was defined using the naive measure. This is correct, however, during the CDE procedure the
log det

√
|g| term is eliminated, which amounts to using the diffeomorphism invariant measure.

The fermionic effective action that we used is

W = −i log

∫
DψDψ̄ei

∫
d4x

√
|g|ψ̄(i /D−m−Q)ψ , (12.39)

and the one-loop part can be expressed as

W1−loop = −i
∫

ddx
ddq

(2π)d
tr log

√
|g|
(
i /D − /q −m−Q

)
, (12.40)

where ∆−1 = −(/q +m). At this stage, the only difference with W̃1−loop is the
√
|g| factor. Then,

since [Dµ,∆] ̸= 0, we cannot straightforwardly expand the logarithm, and we instead write

W1−loop = i

∫
ddx

ddq

(2π)d

∫ m

dm′tr

√
|g|√

|g|
(
i /D − /q −m−Q

) , (12.41)

so that we may then use
1

A−1(1 −AB)
=
∑
n≥0

A(AB)n , (12.42)

which holds for [A,B] ̸= 0. We notice that in (12.41), the factor
√
|g| cancels, and we obtain the

same quantity as if we had used the diffeo-invariant measure.
In fact, we have been a hasty in writing the logarithm as the integral of the inverse function,

and to be precise, from (12.40) we should use

d

dm
tr log

√
|g|
(
i /D − /q −m−Q

)
= − tr

1

i /D − /q −m−Q

⇔ tr log
√
|g|
(
i /D − /q −m−Q

)
= −

∫ m

m0

dm′tr
1

i /D − /q −m−Q
− C (12.43)

= − tr log
i /D − /q −m−Q

i /D − /q −m0 −Q
− C (12.44)

where C is independent of m. We see that the equality holds by taking

C = tr log
(
i /D − /q −m0 −Q

)
+ tr log

√
|g| . (12.45)

In practice, to derive the UOLEA in curved spacetime we used

C = tr log
(
i /D − /q −m0 −Q

)
, (12.46)

which amounts to ignoring the factor
√
|g|, and is equivalent to using the diffeo-invariant measure.

12.4 Weyl symmetry

In Sec. 11.5, we encountered a symmetry of massless fields in flat spacetime that is the scale
symmetry. It is the invariance of the theory under rescaling both the fields and the spacetime. One
may wonder what happens to this symmetry in curved spacetime.
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We may attempt to perform a similar transformation of the fields and of spacetime on a general
background manifold, however the rescaling of the spacetime coordinates simply becomes a diffeo-
morphism. It thus appears that the scale symmetry is not well suited to curved spacetime since it
is a mix of a diffeomorphism and a rescaling of the fields.

Instead of rescaling the spacetime coordinates, we could rescale the metric, which would result
in transforming fields only. This is how the Weyl transformation is obtained, and it can be seen as
the generalisation of the scale transformation to curved spacetime.

12.4.1 Weyl vs conformal transformations

In this paragraph we would like to outline the difference between the Weyl and conformal symme-
tries that are often confused with one another in the literature.

In flat spacetime, a theory may exhibit an invariance under the scale transformation defined
in Sec. 11.5. This transformation is however a subgroup of a more general group known as the
conformal group. In flat spacetime, and only in flat spacetime, a conformal transformation can be
decomposed in a combination of a Lorentz transformation, a translation, the scale transformation,
and the special conformal transformation.

As mentionned above, in curved spacetime, the scale transformation becomes a mix of a diffeo-
morphism and a rescaling of the matter fields. It is instead generalised as a Weyl transformation
denoted δWσ , where σ(x) is the infinitesimal parameter of the transformation, under which the
metric is rescaled

δWσ gµν = 2σgµν . δWσ g
µν = −2σgµν . (12.47)

Let us then consider a diffeomorphism transformation along a vector field ξµ such that the metric
is transformed as

δdξgµν = Dµξν +Dνξµ =
2

d
(Dλξ

λ)gµν . (12.48)

Although this is a diffeomorphism, the metric is effectively rescaled, as for a Weyl transformation.
Vectors that respect the condition (12.48) are called Conformal Killing Vector Fields (CKVF),
and they produce the conformal transformations in curved spacetime. An important caveat is
that most manifolds do not admit any CKVF. It is known that two-dimensional manifolds always
exhibit CKVF, however in d ̸= 2, only manifolds of constant curvature admits CKVF, which is very
restrictive. One should keep in mind that although conformal and Weyl transformations both rescale
the metric, the conformal transformation is a diffeomorphism, whereas the Weyl transformation is
a change of metric, i.e a transformation of the manifold.

12.4.2 Classical Weyl invariance

The Weyl transformation of the metric is given in (12.47). The metric determinant transforms as

δWσ
√
|g| = d σ

√
|g| , (12.49)

with d the dimension of the manifold. Matter fields transform according to their canonical mass
dimension w

δWσ ϕ = wσϕ , (12.50)

except for the gauge fields which are Weyl invariant [118].
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Scalar field Let us consider first a real scalar field

S = −1

2

∫
ddx

√
|g|φ(□ + αR)φ , (12.51)

where □ = D2 and the covariant derivative may include a gauge field. We also introduced a
coupling to the Ricci scalar since it is allowed dimensionally. Scalars have mass dimension 1 and
transform as

δWσ φ = σφ . (12.52)

The scalar theory is Weyl invariant only for α = αd = − d−2
4(d−1) .

Spin-1 field The action for a spin-1 field Aµ is given by

S =

∫
ddx

√
|g| gµρgνσtrFµνFρσ , (12.53)

with Fµν = i ∂µAν − i ∂ν Aν − [Aµ, Aν ]. Since δWσ Aµ = 0, the Weyl variation of the action reads

δWσ S = (d− 4)

∫
ddx

√
|g| trF 2 , (12.54)

and is only invariant in d = 4. This also applies to abelian fields.

Fermion field Let us turn to the case of a fermionic theory

S =

∫
ddx ψ̄γae µ

a iDµψ , (12.55)

where the covariant derivative includes the spin-connection and possibly gauge fields, and e =
√
|g|

is the vierbein determinant. This theory is invariant under the Weyl transformation

δWσ e
µ
a = − σ eµa , δWσ e = d σ e , δWσ ωµ =

d− 1

2
(∂µ σ) ,

δWσ ψ = − d− 1

2
σ ψ , δWσ ψ̄ = − d− 1

2
σ ψ̄ . (12.56)

Conserved current When the matter fields are solution to their EoM, we obtain the conserved
current associated with the Weyl transformation

δWσ S[gµν , ϕ] =

∫
ddx δWσ gµν

δS

δgµν
=

∫
ddx

√
|g|Tµµ , (12.57)

δWσ S[eaµ, ϕ] =

∫
ddx δWσ e

a
µ

δS

δeaµ
=

∫
ddx

√
|g|Tµµ , (12.58)

where ϕ denotes a generic matter field.

Note that massive matter fields spoil Weyl invariance since the mass introduces an intrinsic
scale.
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12.4.3 Weyl anomaly

It was Capper and Duff that first discovered the anomalous behavior of the Weyl symmetry [166].
Its expression was then worked out in dimensional regularisation in [167], and importantly they
discovered that the anomaly is not ⟨Tµµ ⟩, which vanishes for a classically Weyl invariant theory,
but is ∫

d4x
√
|g|σAWeyl = δWσ W =

∫
d4x

√
|g|σgµν⟨Tµν⟩ . (12.59)

This anomaly is also called trace anomaly in the literature. This formula has to be amended in the
presence of explicit breaking, for example when fields are massive. We will dwell further on that
point in Sec. 14.1.

In Sec. 11.5, we derived the scale anomaly in flat spacetime, which is the same as the Weyl
anomaly in the flat spacetime limit. In this limit, the Weyl anomaly in a theory of a vector-like
fermion (11.43) takes the form

AWeyl =
σ

24π2
trF 2 =

β(eg)

2e3g
trF 2 , (12.60)

where eg is the coupling between the fermions and the gauge field, and β(eg) the one-loop β-function
that describes its running with the renormalisation scale. In general, β-functions are not one-loop
exact, and receive corrections from higher loops up to any order. This is the first hint that the
Weyl anomaly, contrary to all the other anomalies we have encountered so far, is not topological.

Let us confirm our intuition with an analysis à la Fujikawa. We consider the quantum theory

Z =

∫
Dψ̃D ˜̄ψ ei

∫
d4x ˜̄ψi /Dψ̃ , (12.61)

where the Dirac operator is

i /D = i/∂ + i/ω − i
/∂
√
e√
e

− /V , (12.62)

and we used the diffeo-invariant measure introduced in Sec. 12.3.1. As emphasised earlier, it
was showed in [118, 158] that the naive measure leads to the wrong value for the Weyl anomaly,
and to a spurious diffeomorphism anomaly. Indeed, the improved variables have a different Weyl
transformation than the naives ones, and can be worked out from (12.56)

δWσ ψ̃ =
1

2
σ ψ̃ , δWσ

˜̄ψ =
1

2
σ ˜̄ψ . (12.63)

The orthonormal eigenvectors of the Dirac operator are

i /Dϕ̃n = λnϕ̃n , λn ∈ R , (12.64)

where we may include the factor |g|1/4 in the eigenvectors. We then decompose the path integral
variables on the eigenbasis

ψ̃ =
∑
n

anϕ̃n ,
˜̄ψ =

∑
n

bnϕ̃
† , (12.65)

and likewise for the Weyl transformed variables. We then deduce the transformation matrices of
the coefficients an and bn

Amn = δmn +

∫
d4x

σ

2
ϕ̃†mϕ̃n , Bmn = δmn +

∫
d4x

σ

2
ϕ̃†nϕ̃m , (12.66)
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and finally obtain the Jacobian of the transformation

log JWeyl[σ] = log detA−1B−1 =
∑
n

∫
d4xσ(x)ϕ̃†nϕ̃n + O(σ2) . (12.67)

To understand why this is not a topological invariant, let us recall that the Jacobian from the ABJ
anomaly2 is similar except for the presence of the γ5 matrix

log JABJ[θ] =
∑
n

∫
d4x θ(x)ϕ̃†nγ5ϕ̃n + O(θ2) . (12.68)

The argument was the following: since the eigenvectors are orthonormal, and since γ5ϕn has the
eigenvalue −λn whereas ϕn has eigenvalue λn, then, unless λn = 0, γ5ϕn and ϕn have a different
eigenvalues are are thus orthogonal. As a result, only the zero-modes remain in (12.68), which
leaves a sum over a finite number of eigenvalues

log JABJ[θ] = θ(n+ − n−) , (12.69)

in the limit θ constant, with n± the number of (independent) zero-modes with chirality ±. Let us
now return to the Weyl anomaly. In the limit σ constant we obtain

log JWeyl[σ] = σ
∑
n

∫
d4xϕ†nϕn = σ

∑
n

1 = σ
∑
n

N(λn) , (12.70)

where N(λn) is the number of (independent) eigenvectors with eigenvalue λn. The Weyl anomaly
involves a sum over all the eigenvalues, up to arbitrary large values. As a result it is not finite,
and hence will be renormalised. This implies that it will receive corrections from any loop order,
as opposed to a topological anomaly.

The Weyl anomaly is obtained at lowest order by cutting the non-zero eigenvalues using the
Fujikawa regulator

log JWeyl[σ] −→ σ lim
Λ→∞

∑
n

f

(
λn
Λ

)∫
d4xϕ†nϕn = σ

∑
n

N(λn)f

(
λn
Λ

)
, (12.71)

where we are now working with a convergent series∑
n

N(λn)f

(
λn
Λ

)
<∞ . (12.72)

In practice, we compute the anomaly perturbatively (i.e σ(x) vanishing at infinity) using

log JWeyl[σ] = lim
Λ→∞

∑
n

∫
d4xσϕ†nf

(
i /D

Λ

)
ϕn = Trσf

(
i /D

Λ

)
. (12.73)

We may then choose a specific function f , e.g f(x) = 1/(1 + x2) is suitable, and use the CDE in
gravity to obtain the Weyl anomaly of a vector-like fermion with gauge sector

AWeyl =
1

16π2

(
1

72
R2 − 1

45
RµνR

µν − 7

360
RµνρσR

µνρσ − 1

30
□R+

2

3
trF 2

)
. (12.74)

Note that the □R sign depends on the convention for the metric, we adopt the metric convention
from [168]. The Weyl anomaly still arises from terms of the form “0 × ∞”, e.g in dimensional
regularisation d = 4 − ϵ, terms of the form ϵ1ϵ . This is because the regulator f truly cuts off
some eigenmodes, whereas for topological anomaly its cuts off non-zero eigenmodes that do not
contribute anyway. The Weyl anomaly in (12.74) is thus a perturbative incomplete result. The full
anomaly would require a non-perturbative computation that includes all the eigenmodes and up to
any loop.

2In fact in gravity this is the axial-gravitational anomaly mentionned in Sec. 12.1.
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12.4.4 Generic form of the Weyl anomaly

Since several operators may occur in the Weyl anomaly, as in (12.74), it is interesting to study
its the generic structure. On dimensional grounds, and omitting a gauge sector for now, we may
express the anomaly in d = 4 as

AWeyl = aE + bR2 + cW 2 + d□R , (12.75)

where we chose a different basis of operators than in (12.74)

E = RµνρσR
µνρσ − 4RµνR

µν +R2 ,

W 2 = RµνρσR
µνρσ − 2RµνR

µν +
1

3
R2 . (12.76)

These operators have interesting properties. E is called the Gauss-Bonnet term, and matches with
the Euler density in d = 4. It is a topological operator, and as the Pontryagin density was associated
with the Pontryagin number, the Euler density is associated with the Euler number χ, also called
Euler characteristic ∫

M
d4x

√
|g|E = 8π2 χ(M) . (12.77)

If M is a polyhedron with nv vertices, ne edges and nf faces, then

χ(M) = nv − ne + nf . (12.78)

If M is a topological space, any polyhedron that is homeomorphic3 to M has the same Euler
number as M, making it a topological invariant (see Fig. 12.1 for an example). The other operator

Figure 12.1: A polyhedron that is homeomorphic to a torus. It has a Euler characteristic of
χ = 16 − 32 + 16 = 0, and so does the torus.

is the Weyl tensor squared W 2, where the Weyl tensor in d > 2 dimensions is

Wµνρσ = Rµνρσ +
1

d− 2
(Rµσgνρ−Rµρgνσ +Rνρgµσ−Rνσgµρ) +

1

(d− 1)(d− 2)
R (gµρgνσ− gµσgνρ) .

(12.79)
Note that both the Euler density, the Weyl tensor squared and □R are Weyl invariant

δWσ Wµνρσ = δWσ E = δWσ □R = 0 , (12.80)

contrary to the Ricci scalar.
Let us return to the study of the generic form of the anomaly (12.75). In a classic paper

[169], Duff shows using dimensional regularisation that in a classically Weyl invariant theory, the
coefficients are in fact not independent but obey

b = 0 ,
2

3
c = d . (12.81)

3Two topological spaces are homeomorphic if there exist a bijective continuous map between them, and its inverse
is continuous as well.

142



PhD. Thesis: Aspects of Effective Field Theory and Quantum Anomalies in Gravity

These relations are important when one considers the running of the Weyl anomaly with the
renormalisation scale, which pertains to QCD for example.

Note that the constraint b = 0 implies that the R2 is absent in (12.75), and therefore that the
Weyl anomaly is Weyl invariant. Since the Weyl anomaly is itself the Weyl variation of the effective
action, this implies

δWσ1 δ
W
σ2W = 0 , (12.82)

which is none other than the WZcc for the Weyl transformation. It takes a simpler form than the
WZcc for the non-abelian axial gauge group because the Weyl group is abelian.

One may notice that an operator that we have encountered several times now is missing in
(12.75), although it has the correct mass dimension to be included and was shown to respect the
WZcc [147]. This operator is the P -violating Pontryagin density RR̃. In principle there is no reason
to exclude it. The presence of the Pontryagin density has been the subject of debates in the recent
literature, especially when considering the Weyl anomaly of a Weyl fermion in gravity. This will
be the subject of the following Sections.
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Chapter 13

Weyl Anomaly for Weyl Fermions

As emphasised at the end of the last Section, the most generic form of the Weyl anomaly include
the Pontryagin density

gαβ⟨Tαβ⟩ = aE4 + bR2 + cW 2 + d□R+ eRR̃ . (13.1)

The Pontryagin density has been subject to debates in the recent literature. It has been found to be
non-vanishing in [170] and is known to satisfy the Wess-Zumino consistency condition [147]. Over
the last few years a controversy has spanned in the literature since some authors have obtained a
non-vanishing coefficient e [170–177] whereas others have found it to be vanishing [178–182]. Weyl
fermions are subtle and probe spacetime in their own way as in d = 2 (mod 4) they give rise to
gravitational (diffeomorphism and Lorentz) anomalies [76], or more definitely to Lorentz anomalies
[163, 164]. In the specific determinations of e ̸= 0 there is something similarly unsettling in that
the authors found it to be purely imaginar in Lorentzian signature. This in fact implies that its
contribution is CPT -violating since T ◦ i = −i which would indicate a CPT anomaly. Whereas
it was noted that an imaginary e would violate unitarity [170], the CPT -violation itself seems
to have been overlooked. This would either mean that such theories have to be discarded [170]
or supplemented by new particles such as three right-handed neutrinos in the Standard Model.
This, together with the fact that an RR̃-term with real coefficient in the context P - and or CP -
violation is of importance for phenomenological reasons (see for example the discussion in [183]),
e.g. baryogenesis or gravitational waves as reviewed in [184], and could be observed experimentally
[185], we consider it important to clarify the nature of this anomaly.

In this Section, we present our work [2], in which we show that e = 0 for Weyl fermions, from the
path integral. The definition of the Weyl determinant is carefully worked out, building on earlier
work by Leutwyler [163, 164, 186, 187]. The key idea is that it is the variation of the determinant,
which is well-defined, that enters both of our approaches i) proper time regularisation and ii) the
Fujikawa method adapted to Weyl fermions. In both cases this is combined with the CDE in curved
spacetime presented in Part II, which has already proven useful to derive covariant and consistent
anomalies in the context of effective field theories. The diffeomorphism, the Lorentz and the Weyl
anomalies are entangled by regularisation, since they can be related by local counterterms (see end
of Sec. 13.1 for further details); we therefore consider it essential to explicitly evaluate all three
quantities.
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13.1 Technical preliminaries

13.1.1 The determinant of the Weyl operator

There are several challenges in defining the determinant for a Weyl fermion. For example if one
starts with a Dirac fermion with only left-handed components then its associated Dirac operator
i /DPL, where PL projects on left-handed fermions, cannot be inverted. This problem can be avoided
if one starts directly with a two-component Weyl fermion ψL. The Weyl operator D, which is the
Dirac operator acting on a Weyl fermion, is given by

DψL = iσ̄µ(∂ + ωL)µψL , (13.2)

where σ̄µ = eµaσ̄a, σ̄a = (1,−σ⃗) the Pauli matrices, and ωL is the spin-connection for Weyl fermions
(D.6); more precise definitions can be found in the App. D. Hereafter we work in Euclidean space
as it is technically more convenient. The determinant of the Weyl operator appears formally in the
effective action

W = − log detD , (13.3)

after performing the Gaussian path integral. Unfortunately, detD is ill-defined, as emphasised by
Álvarez-Gaumé and Witten [76], since it maps left onto right handed fermions which have different
Hilbert space, i.e. D : (12 , 0) → (0, 12) and vice versa. This makes the phase of the functional
determinant ambiguous, whereas the modulus is unaffected (and is also gauge invariant). However,
the determinant itself is not an observable. Leutwyler and Mallik [163, 164, 186, 187] pointed out
that the variation of (13.3)

δ log detD = Tr δDD−1 , (13.4)

which formally holds for any operator, is well-defined since it maps fermions to fermions of the
same chirality: δDD−1 : (0, 12) → (0, 12). This is in line with the observation that the relative phase
between two operators is well-defined [76]. In both the proper time regularisation and the Fujikawa
method adapted for Weyl fermion it will be the formula (13.4) and not the determinant itself which
will form the starting point of the evaluation.

The zero modes of D consist in another problem for the definition of the determinant. In what
follows we will assume that there are no zero modes, as is often done [187, 188], which is believed to
be true in the realm of perturbation theory. Note that in the absence of zero modes, the topological
anomalies become trivial, i.e the Pontryagin density

∫
d4xRR̃ = 0. As mentioned in Sec. 10.1.4,

this is not an issue since the x dependence of the parameter of the transformation, e.g θ(x), ensures
that

∫
d4x θ(x)RR̃ ̸= 0.

On top of this, the operator D−1 is singular, as apparent from perturbation theory at short
distances, but can be regularised, which we will turn to in Secs. 13.2 and 13.3 respectively.

13.1.2 Path integral formulation

The path integral measure is defined following Sec. 12.3.1, which is free from spurious gravitational
anomalies (i.e that can be removed by local counterterms) in any even dimension. It has been shown
for Dirac fermions [118, 158] and in this paper we show that it equally holds for Weyl fermions.

The Weyl fermion invariant measure is therefore D ˜̄ψLDψ̃L where

ψ̃L = g1/4ψL ,
˜̄ψL = g1/4ψ̄L , (13.5)

and similarly as for the Dirac fermion (12.27), the Weyl operator reads

Dψ̃L = iσ̄µ
(
∂µ +ωLµ − ∂µ

√
e√
e

)
ψ̃L . (13.6)
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The corresponding path integral assumes the form

ZWeyl =

∫
D ˜̄ψLDψ̃Le−

∫
d4x ˜̄ψLDψ̃L , (13.7)

where the ψ̃L and ˜̄ψL variables are to be treated as vierbein-independent.

As seen above, the gravitational anomalies follow from a variation of the effective quantum
action (13.3) with respect to a symmetry. Concretely, applying δα(x) to (13.3), using (13.4), the
associated anomaly A is formally defined by

δαW = −Tr δαDD−1 = −
∫

d4x eα(x)A . (13.8)

We are interested in the Weyl (trace), diffeomorphism and Lorentz anomalies which we recall here∫
d4x e σAtrace = − δWσ W =

∫
d4xe σ eaµ⟨Tµa ⟩ ,∫

d4x e ξµAµ
diffeo = − δdξW =

∫
d4xe ξν

〈
ω ab
ν Tab −DµTµν

〉
,∫

d4x eαabAab
Lorentz = − δLαW =

∫
d4xeαab⟨T ab⟩ , (13.9)

with the EMT e Tµa = δS/δeaµ, obtained by treating ψ̃, ˜̄ψ as vierbein-independent.

As mentionned in Sec. 12.2, the diffeomorphism and Lorentz anomalies are absent in d = 4.
However, we are not safe from spurious diffeomorphism or Lorentz anomalies as the consequence
of our regularisation procedure. In light of the controversy, we evaluate all three anomalies.

13.2 Proper time regularisation

In order to perform a concrete computation the singular operator D−1, in (13.4), has to be regu-
larised. Following [164] we use the proper time regularisation1

D−1|Λ =

∫ ∞

Λ−2

dtD†e−tDD†
, (13.10)

which is convergent in the infrared, that is t → ∞, since DD† is a manifestly positive operator,
but still requires an ultraviolet regulator Λ. Inserting this expression above, the integral easily
evaluates to

δ log detD|Λ = Tr δD
∫ ∞

Λ−2

dtD†e−tDD†
= Tr δDD−1e−

DD†
Λ2 . (13.11)

It is well-known that the anomalies are exactly marginal, that is Λ0-terms. The divergences in Λ4

and Λ2 are of no special interest and will therefore not be discussed any further. In what follows
we will apply this regularisation to a Dirac and a Weyl fermion. The Dirac case is beyond doubt
in the literature but serves to test and illustrate the method.

1Alternatively, D−1|Λ =
∫∞
Λ−2 dt e

−tD†DD† could have been chosen.
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13.2.1 Dirac fermion

For a Dirac fermion the operator D assumes the form

D → ieµaγ
aDµ = i /D , (13.12)

where Dµ is given by (12.27), when acting on ψ̃. The fact that it is hermitian D† = D, makes this

case particularly simple since the regulator e−tDD†
= e−tD

2
then commutes with both D and D−1.

The Weyl variation reads

δWσ D = −σD − 1

2
[D, σ] . (13.13)

Therefore the trace anomaly is given by

δWσ W = lim
Λ→∞

Tr

(
σD +

1

2
[D, σ]

)
D−1e−

D2

Λ2 (13.14)

= lim
Λ→∞

Tr

(
σe−

D2

Λ2 − 1

2
σ[D,D−1e−

D2

Λ2 ]

)
= lim

Λ→∞
Trσe−

(i /D)2

Λ2 ,

where the cyclicity of the functionl trace has been used. To evaluate the last term we use the CDE
and obtain

ADirac
trace =

1

16π2

(
1

72
R2 − 1

45
RµνR

µν − 7

360
RµνρσR

µνρσ − 1

30
□R

)
, (13.15)

which is in agreement with our Fujikawa computation from Sec. 12.4.3. It remains to verify that
there are no spurious Lorentz and diffeomorphism anomalies. Using δLαD = 1

2 [D, αabΣab], the
Lorentz-variation reads

δLαW|Λ = −Tr δLαDD−1e−
D2

Λ2 = Tr
1

2
αabΣ

ab[D,D−1e−
D2

Λ2 ] = 0 , (13.16)

and thus Aab
Lorentz = 0 follows. The diffeo-variation of D reads

δdξD = −[D, ξµ]∇µ − ξµ[D,∇µ] − 1

2
[D, (Dµξ

µ)] , (13.17)

where ∇ is the covariant derivative deprived of spin-connection2

∇µ = Dµ − ωµ . (13.18)

The diffeo-variation reads

δdξW|Λ = − Tr δdξDD−1e−
D2

Λ2 (13.19)

= − Tr

{
ξµ[D,∇µD−1e−

D2

Λ2 ] − ξµ[D,∇µ]D−1e−
D2

Λ2 +
1

2
(∇µξ

µ)[D,D−1e−
D2

Λ2 ]

}
= − Tr

{
ξµD∇µD−1e−

D2

Λ2 − ξµ∇µe
−D2

Λ2 − ξµD∇µD−1e−
D2

Λ2 + ξµ∇µe
−D2

Λ2

}
= 0 .

It is noted that both the Lorentz and diffeomorphism anomalies are vanishing prior to taking
the limit Λ → ∞. That the Lorentz and diffeomorphism symmetry are not anomalous for Dirac
fermions in any even dimension is a known result and further validates the method. For example,

had we used the standard path integral measure DψDψ̄, instead of Dψ̃D ˜̄ψ, we would have obtained
a non-vanishing but spurious diffeomorphism anomaly and the wrong trace anomaly [118]. The
correct one would then be obtained by adding a local counterterm that removes the spurious
diffeomorphism anomaly and leads to the correct trace anomaly. Note that no spurious Lorentz
anomaly would arise since the determinant of the vierbein is Lorentz-invariant.

2∇ only contracts indices in the tangent and base spaces, e.g Dµξ
ν = ∇µξ

ν = ∂µ ξ
ν +Γνµρξ

ρ and Dµξ
a = ∇µξ

a =
∂µ ξ

a + ω a
µ bξ

b, but ∇µψ = ∂µ ψ ̸= Dµψ.
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13.2.2 Weyl fermion

In this section and the remaining part of the paper, D is the Weyl operator and is given by (13.6). In
order to compute the variation of the Weyl operator δD it is easier to evaluate its Dirac counterpart
δi /D as in the previous section and then project it in the left-right basis using Eq. (D.8). We obtain

δWσ D = − σD − 1

2
[D, σ] , (13.20)

δdξD = − [D, ξµ]∇µ − ξµ[D,∇µ] − 1

2
[D, (Dµξ

µ)] ,

δLαD = [D, 1

2
αabµ

ab] +
1

2
αab(µ

ab − λab)D ,

where µab and λab are defined in App.D, and we note that their form is similar to the Dirac case
except for the Lorentz transformation.

Let us first verify that the diffeomorphism and Lorentz anomalies vanish, such that the regu-
larisation induces no spurious gravitational anomaly. The diffeomorphism anomaly is given by

δdξW = − lim
Λ→∞

Tr δdξDD−1 e−
DD†
Λ2 = − lim

Λ→∞
Tr

(
ξµ∇µ +

1

2
(Dµξ

µ)

)(
e−

DD†
Λ2 − e−

D†D
Λ2

)
,

(13.21)
where the cyclicity of the trace, Eq. (D.7) and

D−1e−
DD†
Λ2 D = e−

D†D
Λ2 , (13.22)

have been used. Noting that

i /D =

(
0 D
D† 0

)
, e−

(i /D)2

Λ2 =

e−DD†
Λ2 0

0 e−
D†D
Λ2

 , (13.23)

we can recast Eq. (13.21) in Dirac space

δdξW = − lim
Λ→∞

Tr

(
γ5

(
ξµ∇µ +

1

2
(Dµξ

µ)

)
e−

(i /D)2

Λ2

)
. (13.24)

A direct computation using the CDE in curved spacetime shows that it vanishes. Importantly, the
diffeomorphism anomaly may a priori not be covariant since ∇ in (13.24) is not the total covariant
derivative. This is where our CDE [3] presented in Part II is useful since it easily allows for an
expansion that is not manifestly covariant; with more details in App. E. It is noted that the heat
kernel with Seeley-DeWitt coefficients [25, 86, 87] and former CDE in curved spacetime approaches
[77, 78] are designed to compute traces involving a quadratic operator, such as Tr a(x)e−D

2
where

a is not a differential operator. With some work a trace of the form (13.24) can be brought to this
form, but it is not straightforward and involves lengthy manipulations [164].

The Lorentz anomaly is given by

δLαW = − lim
Λ→∞

Tr
1

2
αab

(
µabe−

D†D
Λ2 − λabe−

DD†
Λ2

)
, (13.25)

and once again it can be rewritten as a trace in Dirac space

δLαW = lim
Λ→∞

Tr
1

2
αabΣ

abγ5e
− (i /D)2

Λ2 . (13.26)
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The direct computation using the CDE shows that it equally vanishes.
We now turn to the trace anomaly. Using (13.22) one obtains

δWσ W =
1

2
lim
Λ→∞

Trσ

(
e−

D†D
Λ2 + e−

DD†
Λ2

)
=

1

2
lim
Λ→∞

Trσe−
(i /D)2

Λ2 , (13.27)

which is half the trace anomaly of a Dirac fermion

AWeyl
trace =

1

2
ADirac

trace , (13.28)

without spurious gravitational anomalies

Aµ
diffeo = Aab

Lorentz = 0 . (13.29)

In particular there is no Pontryagin density RR̃. We wish to emphasise that each term in (13.27) has
an RR̃-component, but it cancels in the sum of the two. This is in agreement with the computation
of the heat kernel coefficient b4 of the representation (1/2, 0) of the Lorentz group [162], and we
just showed that the trace anomaly of a Weyl fermion is determined by b4(1/2, 0) + b4(0, 1/2). We
further note that the second term in (13.27) originates from the second one in Eq. (13.20) which
in turn is due to the spin-connection.

We note that this result has previously been obtained in a similar setting by Leutwyler and
Mallik [164]. The main difference is in the evaluation of the expression in (13.24) for which they use
the heat kernel which is rather laborious. In addition they use the fact that the Lorentz anomaly
is not present in d = 4 and do not proceed to evaluate the corresponding term. Hence we improve
on their work in verifying the vanishing of the Lorentz anomaly explicitly and can do so in an
economic manner.

13.3 Fujikawa method adapted to Weyl fermions

The same results can be obtained adapting the path integral derivation of anomalies by Fu-
jikawa [116, 158] (cf. also [20, 118]) to two-components Weyl fermions. As far as we know, only
Dirac fermions with a projector PL are considered in the literature, which suffer from an ill-defined
path integral due to the non-invertibility of i /DPL. In the path integral, the anomaly arises from a
non-trivial Jacobian which can be written as a fraction of determinants [4]3

J [α] = e−
∫
d4x eα(x)A(x)

=
det(D)

det(D − δαD )
=

1

det(1− δαDD−1)
= exp(Tr[δαDD−1] + O(α2)) , (13.30)

and when expanded assumes the same form as in (13.4). This guarantees that it is well-defined, that
is to say the global phase of the determinant cancels in this expression and the operator δαDD−1

maps into the same Hilbert space as mentioned previously.
We proceed to construct the path integral measure. The Weyl operator (13.6) is not hermitian

and does not have a well-defined eigenvalue problem. However, since i /D is hermitian and i /D :
(12 , 0) ⊕ (0, 12) → (12 , 0) ⊕ (0, 12), the eigenvalue problem i /Dϕn = λnϕn is well-posed. In particular

3Let us comment on the sign in det (D − δαD). In the Fujikawa approach one transforms the path integral variables

only and since δαS[ψ̃,
˜̄ψ, e] = δαψ̃

δS

δψ̃
+ δα

˜̄ψ δS

δ ˜̄ψ
+ δαe

µ
a
δS
δe

µ
a
= 0, this then implies that it is −δαD, which stems from

δαe
µ
a
δS
δe

µ
a
, that appears under the α-variation.
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λn ∈ R and the eigenfunctions {ϕn} define a complete orthonormal basis. These functions can be
decomposed as follows

ϕn =

(
ϕRn
ϕLn

)
, (13.31)

where {ϕR,Ln } define orthonormal eigenbases of right- and left-handed Weyl fermions respectively .
The eigenvalue equations become

DϕLn = iσ̄µ(∂ + ωL)µϕ
L
n = λnϕ

R
n , D†ϕRn = iσµ(∂ + ωR)µϕ

R
n = λnϕ

L
n . (13.32)

We thus decompose the path integral measure into these eigenbases

ψ̃L =
√
e
∑
n

anϕ
L
n ,

˜̄ψL =
√
e
∑
n

b̄n
(
ϕRn
)†
, (13.33)

for which the measure assumes the form4

Dψ̃LD ˜̄ψL =
∏
n

dandb̄n . (13.34)

In order to evaluate the Jacobian, we need to determine how a variation δα acts on the Weyl

fermion ψ̃′
L ≡ ψ̃L + δαψ̃L and its barred counterpart. We expand ψ̃′

L and ˜̄ψ′
L into the eigenbases as

in (13.33) to obtain

a′m =
∑
n

(δmn +Amn) an , b̄′m =
∑
n

(δmn +Bmn) b̄n . (13.35)

where A and B are of O(α), and the resulting Jacobian of the Grassmann variables reads

log J = −TrA− TrB + O(α2) . (13.36)

Using the orthonormality of the eigenbasis, we obtain the Jacobians of the transformations δWσ , δdξ
and δLα ,

log Jtrace[σ] = −
∫

d4x e
σ

2

∑
n

(
(ϕRn )†ϕRn + {R↔ L}

)
,

log Jdiffeo[ξ
µ] = −

∫
d4x e

∑
n

(
(ϕRn )†(ξµ∇µ +

1

2
(Dµξ

µ))ϕRn − {R↔ L}
)
,

log JLorentz[αab] = −
∫

d4x e
1

2
αab

∑
n

(
(ϕRn )†λabϕRn − {R, λ↔ L, µ}

)
. (13.37)

These expression are ultraviolet divergent. They can be regularised by introducing e−
λ2n
Λ2 into

the sums, following Fujikawa. Note that Jdiffeo and JLorentz are fully determined by the zero modes
whereas Jtrace is determined by the zero modes only at lowest order of the loop expansion [118]. This
means that the diffeomorphism and Lorentz anomalies are of topological nature and determined at
the one-loop level, as also argued by [76].

Using the eigenvalue equation Eq. (13.32) the following replacement can be made

e−
λ2n
Λ2 ϕLn = e−

D†D
Λ2 ϕLn , e−

λ2n
Λ2 ϕRn = e−

DD†
Λ2 ϕRn , (13.38)

4This change of variable is defined up to a phase. As emphasised in Sec. 13.1.1, this phase is irrelevant when
dealing with the covariant form of anomalies which is the case here [118].
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where D is the Weyl operator (13.6). As in the previous section the Jacobians can be recast in
Dirac space using Eq. (13.23)

log Jtrace[σ] = − δWσ W = − 1

2
lim
Λ→∞

Trσe−
(i /D)2

Λ2 ,

log Jdiffeo[ξ] = − δdξW = +
1

2
lim
Λ→∞

Tr γ5

(
ξµ∇µ +

1

2
(Dµξ

µ)

)
e−

(i /D)2

Λ2 = 0 ,

log JLorentz[α] = − δLαW = − 1

2
lim
Λ→∞

TrαabΣ
abγ5e

− (i /D)2

Λ2 = 0 . (13.39)

These results are identical to Eqs. (13.24), (13.26) and (13.27) found in the proper time regulari-
sation and can thus be seen as a confirmation.

13.4 Dimensions other than 4

In d = 4 we concluded that for free Weyl fermions the RR̃-term is absent in the trace anomaly.
It is therefore natural to ask whether P - and or CP -odd terms could be present in any other
even dimension.5 In fact up to Eqs. (13.24), (13.26) and (13.27) the expressions are independent
of the dimension in our approach. In particular the factor 1

2 in (13.27) makes it clear that the
trace anomaly of a Weyl fermion remains half the trace anomaly of a Dirac fermion in any even
dimensional spacetime. Even in the absence of concrete computations one can make interesting
observations and come to the same conclusion:

• It is important to distinguish d = 2 (mod 4) and d = 4 (mod 4) as their (Euclidean) Weyl rep-
resentation are complex and real respectively [76]. For example, Lorentz and diffeomorphism
anomalies cannot arise in d = 4 (mod 4) dimensions since the reality of the representation
allows for a Pauli-Villars regulator mass term which is symmetry-preserving and this means
that no diffeomorphism and Lorentz anomaly can appear [76]. Another way to look at it is
that in d = 4 (mod 4), unlike in d = 2 (mod 4), the CPT operation flips the chirality such
that the Weyl fermions effectively look vector-like [76] (and [190] for more detail).

• In d = 2 (mod 4) a P - and CP -odd term should not violate CPT since the appearance of the
factor of i is dimension-dependent. For example in Minkowski space one has Tr[γαγβγ5] =
2ϵαβ in d = 2 whereas Tr[γαγβγγγδγ5] = 4iϵαβγδ in d = 4, and this is related to the complex
and real representations mentioned above. Hence in d = 2 (mod 4) we would not expect an
imaginary prefactor and thus no CPT -violation.

• However, one can argue that in d = 2 (mod 4) one cannot write down a P - or CP -odd diffeo-
invariant scalar of mass dimension d (which is relevant for the trace anomaly). Firstly, let
us note that due to the Bianchi identity, ϵ...µνρRαµνρ = 0 holds in any dimension, that is to
say the Levi-Civita tensor cannot contract more than two indices of a Riemann tensor. For
concreteness let us first focus on d = 6. Using the Bianchi identities one can show that a
parity-odd operator of mass dimension 6 can only be of the form,

ϵα1...α6Rα1α2..Rα3α4..Rα5α6.. . (13.40)

The only way to contract these Riemann tensors together is

ϵα1...α6R ν
α1α2µ Rα3α4ρνR

ρµ
α5α6

= 0 , (13.41)

5Odd dimensional spaces are beyond the scope of this paper and we refer the reader to [189] for intricate relations
with the even dimensional case.
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which vanishes since ϵα1...α6R ν
α1α2µ Rα3α4ρν is symmetric under µ ↔ ρ whereas R ρµ

α5α6 is
antisymmetric. On the other hand, in d = 8 for example, there is an even number of Riemann
tensors, which can then be contracted in pairs

ϵα1...α8Rα1α2µνR
µν

α3α4
Rα5α6ρσR

ρσ
α7α8

̸= 0 . (13.42)

This generalises straightforwardly to any even dimension

ϵα1...α2nRα1α2.. . . . Rα2n−1α2n..

{
= 0 , d = 2 (mod 4)
̸= 0 , d = 4 (mod 4)

, (13.43)

since it involves an odd number of Riemann tensors in d = 2 (mod 4) but an even number
in d = 4 (mod 4). In fact, the absence of such a term in d = 6 has been inferred from a
cohomology-type argument given a long time ago [147].

In summary the absence of parity-odd terms can be established in d = 2 (mod 4) without explicit
computation whereas in d = 4 (mod 4) a computation is required.
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Chapter 14

Generic approach to the Weyl
anomaly

In the previous Section, we computed the Weyl anomaly specifically for a Weyl fermion, and
concluded that the Pontryagin density is absent.

In this Section, we present our work [1] in which we investigate in a model-independent manner
the generic form of the Weyl anomaly, including P -odd operators

gαβ⟨Tαβ⟩ = aE + bR2 + cW 2 + d□R+ eRR̃+ fF 2 + hFF̃ . (14.1)

As seen in Sec. 12.4.4, some constraints on these coefficients were worked out in [169], but only
concern the P -even operators, and classically Weyl invariant theories.

In our work [1], we derive the vanishing e = 0 and h = 0 from the decomposition of the
EMT-counterterms and our results hold for all theories whose symmetries are compatible with
dimensional regularisation, which includes the spin-3/2 case (and also spin-2) [83, 162, 191–198].
In addition we consider the case of explicit breaking of Weyl symmetry. Constraints are implied
by the finiteness of the diffeomorphism (diffeo) and Lorentz anomalies.

In the following, we demonstrate the commonly used expressions for the Weyl anomaly with
and without explicit breaking, hence filling a gap in the literature concerning the expression of Weyl
anomaly with explicit breaking. We then describe how to use the finiteness of the diffeomorphism
and Lorentz anomalies to constrain the form of the Weyl anomaly and conclude on the absence of
the RR̃ term. The same procedure can be applied in the presence of a gauge sector to conclude on
the absence of the FF̃ term, although we do not detail it here. We refer the interested reader to
the article [1] for more details.

14.1 The Weyl anomaly with and without explicit breaking

In Sec. 12.4.3 we claimed that in dimensional regularisation, the Weyl anomaly in a classically Weyl
invariant theory is given by [167]

AWeyl = gµν⟨Tµν⟩ . (14.2)

In this Section, we provide a different proof of this formula.

In a theory with explicit breaking of the Weyl symmetry, for example a theory of a massive
field, this formula has to be amended to isolate the quantum breaking from the explicit breaking
and reads [199–202]

AWeyl = gµν⟨Tµν⟩ − ⟨Tµµ ⟩ . (14.3)
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To the best of our knowledge, this generally accepted formula was never proved. We proceed to
demonstrate it in a model-independent manner.

14.1.1 Preliminary definitions

Let us consider a theory where quantum fields are collectively denoted by ϕ, and the metric is
considered as an external field. In a space with Euclidean signature the quantum effective action
W is given by

W[gµν ] = − log

∫
Dϕ e−S[gµν ,ϕ] . (14.4)

It is a divergent quantity that we regularise using dimensional regularisation, and by introducing
renormalising counterterms. The renormalised effective action is

Wren(d) = W(d) + Wct(d) , (14.5)

and is finite when the regulator is removed, i.e d → 4. The separate pieces W(d) and Wct(d)
contain 1

d−4 -terms at leading order (LO) [169]

Wct(d) =
1

d− 4

∫
ddx

√
|g|
(
aE(d) + bR2(d) + cC(d)

)
, (14.6)

and the integrand is a local polynomial in the background fields. Note that no □R-term is included
at the level of the action since it is a total derivative. The possibility of adding a P and CP -
violating term RR̃ will be discussed in Sec. 14.4. For a classically Weyl invariant theory, the Weyl
consistency conditions imply b = 0 [169]. The remaining two terms E and C are given by

E(d) = RµνρσR
µνρσ − 4RµνR

µν +R2 ,

C(d) = RµνρσR
µνρσ − 2RµνR

µν +
1

3
R2 , (14.7)

where E(4) reduces to the topological Euler density and C(4) to the Weyl tensor squared that we
have encountered in Sec. 12.4.4. The curvature invariants in non-integer dimension are understood
as power series in the metric [167].

As previously, the (unrenormalised) EMT and its VEV are given by

Tµν =
2√
|g|

δS

δgµν
, ⟨Tµν⟩ =

2√
|g|

δW
δgµν

. (14.8)

The Weyl variation of the action yields the (classical) trace of the EMT (TEMT) when ϕ is on-shell

δWσ S =

∫
d4x

√
|g|σ T ρρ . (14.9)

Our goal is to demonstrate the form of the anomaly with explicit breaking1

AWeyl = g(4)µν ⟨Tµν⟩ − ⟨g(d)µν T
µν⟩ , (14.10)

within dimensional regularisation.2

1The superscript denotes the dimension in which the metric lives and we have g
(d)
µν = g

(4)
µν +O(d− 4). When the

superscript is omitted d-dimensional tensors are assumed.
2A new definition of the anomaly beyond dimensional regularisation has very recently been proposed in [203].
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14.2 Weyl anomaly with classical Weyl invariance

Let us first consider the case of a theory which is classically Weyl invariant: δWσ S = 0. To define
the anomaly from the unrenormalised EMT bears an ambiguity in that the Weyl variation can

be performed in four or d dimension: g
(4)
µν ⟨Tµν⟩ ̸= ⟨Tµµ ⟩. This ambiguity is absent if one directly

defines the Weyl anomaly from the renormalised effective action∫
d4x

√
|g|σAWeyl ≡ δWσ lim

d→4
Wren(d) = lim

d→4
δWσ Wren(d) , (14.11)

since the finiteness of Wren guarantees that the Weyl variation and the d → 4 limit commute.
Applying the first definition results in3

δWσ lim
d→4

Wren(d) ≡
∫

d4xσ g(4)µν

[
δWren(d)

δgµν

]
d=4

=

∫
d4xσ

√
|g| g(4)µν ⟨Tµν⟩ , (14.12)

since classical Weyl invariance implies [169][
g(4)µν

δWct

δgµν

]
d=4

= 0 . (14.13)

If we apply the second definition we obtain, the expression used in [169],

lim
d→4

δWσ Wren(d) ≡
∫

d4xσ

[
g(d)µν

δWren(d)

δgµν

]
d=4

=

∫
d4xσ

[
g(d)µν

δWct(d)

δgµν

]
d=4

, (14.14)

since [
g(d)µν ⟨Tµν⟩

]
d=4

=
[
⟨Tµµ ⟩

]
d=4

= 0 , (14.15)

by classical Weyl invariance, with more details in App. F. This demonstrates formula (14.10) for a
classically Weyl invariant theory and clarifies why the Weyl anomaly can be obtained in different
ways. Similar reasonings have been applied in [202] (cf. Sec. 1.2.3.) to show that the anomaly can
be obtained in both ways.

Note that the form of the anomaly is constrained by the Wess-Zumino consistency conditions
[127] in a classically Weyl invariant theory, since it is given by the variation of a functional (14.11).4

This aspect will be exploited in Sec. 14.4.2.
Anomalies are obtained by the variation of the bare effective action W and since they are finite,

the variation of Wct does not enter in general. We will use this invariance of Wct under the diffeo,
Lorentz and gauge transformations later on. For the Weyl anomaly, it manifests itself in (14.13).
On the other hand, the Weyl anomaly is known to be related to the renormalisation of the theory
(e.g [118, 204]). This is apparent in the second expression of the Weyl anomaly (14.14), which is
finite since the d-dimensional variation produces a term proportional to d− 4.

14.3 Weyl anomaly without classical Weyl invariance

We turn to the case of a theory with explicit Weyl symmetry breaking: δWσ S ̸= 0. In that case,
formula (14.11) is amended5∫

d4x
√

|g|σ (AWeyl + EWeyl) = δWσ lim
d→4

Wren(d) = lim
d→4

δWσ Wren(d) , (14.16)

3This expression of the anomaly was found in [167] in d = 2 − ϵ using a Taylor expansion in ϵ. This assumes
continuity of the tensors which may not always hold, as we will discuss in Sec. 14.4.

4The Wess-Zumino consistency conditions for the Weyl transformation have been investigated for a Weyl invariant
theory in full generality some time ago [204].

5Note that (14.16) equals to
[
g
(4)
µν ⟨Tµν⟩

]
fin

with “fin” referring to the finite part.
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to include a term that parametrises the explicit breaking. It is worthwhile to emphasise that both
AWeyl and EWeyl are finite quantities. The results in the previous section, that is Eqs. (14.13) and
(14.15), will not apply as Wct does not need to consist of Weyl invariant terms. Applying the two
definitions one gets

δWσ lim
d→4

Wren(d) =

∫
d4xσ

[√
|g|g(4)µν ⟨Tµν⟩ + g(4)µν

δWct(d)

δgµν

]
d=4

,

lim
d→4

δWσ Wren(d) =

∫
d4xσ

[√
|g|⟨Tµµ ⟩ + g(d)µν

δWct(d)

δgµν

]
d=4

, (14.17)

upon using Eq. (14.5). In each line, both terms are separately divergent but finite in their sum.
The main idea is to define EWeyl from the finite part of ⟨Tµµ ⟩ and, using the second line of (14.17),
this further implies6

EWeyl ≡ ⟨Tµµ ⟩fin , AWeyl =
1√
|g|

[
g(d)µν

δWct(d)

δgµν

]
fin

, (14.18)

where the subscript fin (div) indicates that only the finite (divergent) part is taken. Combining
with the first line of (14.17) one gets

AWeyl = g(4)µν ⟨Tµν⟩ − ⟨Tµµ ⟩fin +
g
(4)
µν√
|g|
δWct(d)

δgµν
. (14.19)

If we further use

g(4)µν

δWct(d)

δgµν
= −⟨Tµµ ⟩div (14.20)

which follows from the fact that the left-hand side vanishes in a classically Weyl invariant theory,
we then get

AWeyl = g(4)µν ⟨Tµν⟩ − ⟨Tµµ ⟩ , (14.21)

the formula (14.10) which we promised to obtain by derivation. More details are provided in App. F.
This formula is valid to all order in perturbation theory in dimensional regularisation and can be
expected to be valid non-perturbatively. Note that now the Weyl anomaly is not the variation of a
functional anymore, due to the explicit breaking in (14.16). In that case, the Weyl anomaly does
not generally respect the Wess-Zumino consistency conditions.

14.4 Curved-space anomaly constraints on the Weyl anomaly

The goal of this Section is to extend the results in [169] to theories without classical Weyl invariance
and to consider the possibility of adding the P - and CP -odd term

RR̃ ≡ 1

2
ϵµνρσRαβµνRαβµν , (14.22)

to the counterterm action given in (14.6).7 Unlike the other operators the extension of RR̃ to d-
dimension is ambiguous since the Levi-Civita tensor is intrinsically tied to d = 4. We may however

6 Note that we assumed a purely divergent Wct (i.e minimal subtraction scheme). (14.18) has to be amended if
we include a finite piece in Wct, but the anomaly remains unaffected (see App. F).

7In another approach, the parity-odd term is investigated in a conformal field theory [205] and it is found that it
could appear in 3-point correlators with a marginal operator. We stress that this is a consistency constraint and not
a proof of its existence.
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proceed formally, without committing to a specific extension, as follows

Wct,odd =
1

d− 4

∫
ddx

√
|g| Lodd(d) , (14.23)

with Lodd(4) ∝ RR̃ as this is the only possible parity-odd term in d = 4 (cf. Ref.[2]). Owing to its
topological nature one has

δ

δg
(4)
αβ

∫
d4x

√
g(4) Lodd(4) = 0 . (14.24)

Note that (14.24) does not imply that Lodd(d) is of O(d − 4). For example, the extension of the
P -even topological Euler density to d dimensions of is discontinuous around d = 4 [206, 207].
However, we may parametrise the metric variation of Wct,odd in terms of a continuous (d−4)×Vαβ
and a discontinuous piece Uαβ

1√
|g|

δ

δgαβ

∫
ddx

√
|g| Lodd(d) = (d− 4)Vαβ(4) + Uαβ(d) + O

(
(d− 4)2

)
. (14.25)

The 2-tensors Vαβ(4) and Uαβ(d) are parity-odd, of mass dimension four, and one has

Uαβ(4) = 0 , Uαβ(4 − 2ϵ) ̸= O(ϵ) , (14.26)

owing to (14.24). Using Bianchi identities, algebra, and intrinsically 4-dimensional identities [208–
210] one can show that the only possible operator (cf. App. G) at d = 4 is

Vαβ(4) = e gαβRR̃ , (14.27)

where e is a constant to be determined. For our purposes it is not necessary to specify the extension
of the ϵ-tensor to d dimensions in parametrising Uαβ (this is similar to [4, 154] whereby one uses
free parameters in order to remain independent of a specific γ5-scheme) Using Bianchi identities,
which are d-independent, we may write

Uµν(d) = e1 g
µνRR̃(d) + e2 P

µν(d) + e3Q
(µν)(d) + e4 S

(µν)(d) , (14.28)

where round brackets denote symmetrisation t(µν) = 1
2(tµν + tνµ) and

gαβRR̃(d) = gαβ
1

2
ϵµνρσRγδµνR

γδ
ρσ , Pαβ(d) = ϵµνρσRαλµνR

λ
β ρσ ,

Qαβ(d) = ϵ νρσ
α RβνγδR

γδ
ρσ , Sαβ(d) = ϵ νρσ

α RβλρσR
λ
ν ,

and any other P -odd symmetric 2-tensor is related to these by algebra and Bianchi identities (see
App. G). At d = 4, the Schouten identity reduces all these tensors to

Pµν(4) = Qµν(4) =
1

2
RR̃(4) , Sµν(4) = 0 , (14.29)

and thus Uαβ(4) = 0 implies the constraint

2 e1 + e2 + e3 = 0 . (14.30)

As expected, this defines a tensor that vanishes at d = 4, but does not scale as O(d− 4).
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Similarly, we can choose a basis of independent P -even operators, and then write a general
ansatz for the metric variation of Wct as follows

T αβ
ct =

1√
|g|
δWct

δgαβ
=e gαβRR̃+

1

d− 4

{
e1 g

αβRR̃+ e2 P
αβ + e3Q

(αβ) + e4 S
(αβ)

+ a1 g
αβR2 + a2 g

αβRµνR
µν + a3 g

αβRµνρσR
µνρσ + a4 g

αβ□R

+ b1RR
αβ + b2R

αλRβλ + b3RµνR
µανβ + b4R

αλµνRβλµν

+ c1D
αDβR+ c2□R

αβ

}
, (14.31)

We would like to add the following remarks:

• The coefficients {ai, bi, ci} are function of the parameters in Wct and can depend on d, such

that the parity-even part T αβ
ct can contain finite pieces despite the global 1/(d− 4)-factor.

• The coefficients {e, ei} depend on the parameters in Wct and the scheme chosen for the ϵ-
tensor. For convenience, the ei are taken to be independent of d, since this would only amount
to relabel e.

• It is possible to write δWct/δgαβ under this form because the counterterms Wct allowed by
renormalisation are local polynomials. This is not the case of the effective action W which is
non-local, e.g. [167].

• The ansatz is valid for both theories with and without classical Weyl invariance.

• We only included tensors in Tct, i.e covariant quantities. This does not amount to the absence
of diffeomorphism and Lorentz anomalies, but restricts them to their covariant form [20].

We may trace Tct in (14.31), using g
(d)
µν g(d)µν = d, to obtain

g
(d)
αβT

αβ
ct = (4 e+ e1)RR̃+ a1R

2 + a2RµνR
µν + a3RµνρσR

µνρσ + a4□R

+
1

d− 4

{
(4 a1 + b1)R

2 + (4 a2 + b2 + b3)RµνR
µν

+ (4 a3 + b4)RµνρσR
µνρσ + (4 a4 + c1 + c2)□R

}
, (14.32)

where we used
g(d)µν P

µν(d) = g(d)µνQ
µν(d) = 2RR̃(d), g(d)µν S

µν(d) = 0 , (14.33)

upon using the Bianchi identities only. Incidentally, we see that there remains no P -odd term in
the divergent part upon using (14.30). In other words, the topological nature of the P -odd term
in Wct (Eq. (14.24)), forbids the presence of P -odd divergent terms in the trace of Tct.

From (14.32) we can compute the Weyl anomaly. That is

AWeyl = [g
(d)
αβT

αβ
ct ]d=4 classically Weyl invariant ,

AWeyl = [g
(d)
αβT

αβ
ct ]fin,d=4 classically Weyl non-invariant , (14.34)

which follow from Eqs. (14.14) and (14.18) respectively. In Sec. 14.4.1 and Sec. 14.4.2 the param-
eters {e, ei} and {ai, bi, ci} will be subjected to diffeomorphism constraints and the Wess-Zumino
consistency conditions.
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14.4.1 Constraints from the diffeomorphism anomaly

The diffeo-variation of the effective action is given by

δdξW =

∫
d4x δdξgµν

δW
δgµν

= −
∫

d4x
√
|g| ξµDν⟨Tµν⟩ , (14.35)

where δdξ is the (active) diffeomorphism transformation, and we used δdξgµν = Dµξν + Dνξµ. Note
that, Eq. (14.35) may be non-zero but remains finite and one-loop exact (it is non-zero in theories
in d = 2 + 4k with Weyl fermions for example [76]). Since it is finite, it should not be altered by
Wct as there is no divergence to remove, and therefore

δdξWct =

∫
ddx δdξgµν

δWct

δgµν
= −

∫
ddx

√
|g| ξµDνT µν

ct = 0 , (14.36)

must hold. We thus compute the divergence of Tct and then enforce

DνT µν
ct = 0 . (14.37)

The P -odd and -even pieces are independent of each other. Enforcing (14.37) on the P -even sector
yields seven constraints

4 a1 + b1 = 0 , 4 a2 + b2 + b3 = 0 , 4 a3 + b4 = 0 ,

4 a1 + a2 + a4 = 0 , 8 a3 − b2 = 0 , 2 a2 + 8 a3 + c2 = 0 ,

4 a4 + c1 + c2 = − 12 a1 − 4 a2 − 4 a3 . (14.38)

Remarkably, the same procedure applied to the P -odd sector only admits the trivial solution

e = e1 = e2 = e3 = e4 = 0 , (14.39)

which implies the absence of P -odd operators in both the counterterms to the EMT, and the Weyl
anomaly, for both classically Weyl invariant and non-invariant theories. We stress that this result
is independent of both, the underlying theory and the ϵ-tensor scheme. In our previous work [2] we
have obtained the same result specifically for a theory with a Weyl fermion only. Inserting these
constraints in (14.32) we obtain

g
(d)
αβT

αβ
ct =

a2 + 4 a3
2

W 2 − a2 + 2 a3
2

E +
3 a1 + a2 + a3

3
R2 + (14.40)(

−(4 a1 + a2) −
4

d− 4
(3 a1 + a2 + a3)

)
□R ,

an expression in terms of the three coefficients a1,2,3. The 1/(d− 4)-term is addressed just below.

14.4.2 Constraints from classical (non-)invariance

As noted earlier anomalies are finite and thus the 1/(d− 4)-term in (14.40) ought to vanish.

Classical Weyl invariance (2 anomaly coefficients) The Weyl anomaly for a classically
Weyl invariant theory is given by Eq. (14.34) and must respect the Wess-Zumino consistency
condition. In Eq. (14.40) it is only the R2-term which does not respect the consistency conditions
[144, 147, 204, 211, 212] and therefore

3 a1 + a2 + a3 = 0 , (14.41)
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must hold which indeed removes the divergent □R-term. The result assumes the form

AWeyl = a1R
2 + a2RµνR

µν − (3 a1 + a2)RµνρσR
µνρσ − (4 a1 + a2)□R , (14.42)

which depends on the two parameters a1 and a2 which are model-dependent. This is the result
obtained by Duff in [169], supplemented by the additional constraint that RR̃ is absent.

The question that poses itself is whether the results apply beyond LO. We would think that the
answer is affirmative to all orders in perturbation theory for theories whose non-anomalous sym-
metries are compatible with dimensional regularisation.8 Beyond LO, Wct and the ansatz (14.31)
contains higher order poles in d− 4. However, since the Weyl anomaly is finite, their contributions
have to cancel in analogy to the computation of an anomalous dimension of a parameter or an
operator (e.g . [215]).

Broken classical Weyl symmetry (3 anomaly coefficients) In a theory that explicitly breaks
Weyl invariance, the Wess-Zumino conditions do generally not apply. However, since the Weyl
anomaly can be obtained as in Eq. (14.34), it is automatically given by the finite part and thus

AWeyl = a1R
2 + a2RµνR

µν + a3RµνρσR
µνρσ − (4 a1 + a2)□R , (14.43)

the Weyl anomaly depends on the three parameters a1,2,3 which are again model-dependent. Note
that the □R-term is fixed in terms of others which we believe to be a new observation in the
presence of explicit breaking. With regards to the validity beyond LO the same remarks apply as
in the previous section.

14.4.3 Constraints from the Lorentz anomaly

In the ansatz (14.31), the assumption is made that the EMT is symmetric in its indices. To remain
the most generic, we should assume that the theory may exhibit a Lorentz anomaly, which is the
breaking of rotational symmetry at the quantum level and manifests itself in the antisymmetry of
⟨Tµν⟩. In practice, the antisymmetry can arise in the presence of fermions since then the vierbein
eaν replace the metric, and the EMT is not automatically symmetric by metric-variation but follows
from √

|g|⟨Tµν⟩ = eaν
δW
δeaµ

[eaµ] , (14.44)

where eaα = gαβeaβ with latin indices referring to the tangent frame. The Lorentz anomaly is then
defined by ∫

d4x
√

|g|αabAab
Lorentz = δLαW[eaµ] =

∫
d4x

√
|g|αab⟨T ab⟩ , (14.45)

where αab(x) = −αba(x) is the Lorentz transformation parameter, and δLαe
a
µ = −αabebµ [20] was

made use of. Note that since the vierbein is not diffeomorphism invariant, the diffeomorphism
anomaly becomes

δdξW[eaν ] = −
∫

d4x
√
|g| ξν

(
Dµ⟨Tµν⟩ − ωνab⟨T ab⟩

)
, (14.46)

where ωµab = −ωµba is the spin-connection.

8Supersymmetry might be such a counter-example since it is well-known to be incompatible with dimensional regu-
larisation and also its supersymmetry-improved version of dimensional reduction [213] (despite ongoing developments
[214]).
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The same argument as for the diffeomorphism anomaly applies: since the Lorentz anomaly is
finite, the counterterms must not contribute (i.e δLαWct = 0) yielding the Lorentz constraint

T αβ
ct = T βα

ct . (14.47)

Enforcing the Lorentz constraint is equivalent to considering directly the metric variation as was
done in this Section and Sec. 14.1, since the vierbein variation can be split into its symmetric and
antisymmetric parts δeaν = 1

2δgµνe
aµ−αabebν [164]. Besides, the diffeomorphism constraint (14.37)

is unchanged when the Lorentz constraint is verified.

14.4.4 The non-removable □R-term

The constraints on the Weyl anomaly in the case of a classically Weyl invariant theory imply that
the coefficient of the □R is fixed with respect to the coefficients of R2, RµνR

µν and RµνρσR
µνρσ

(14.42) which has been known since a long time [169]. We believe that it is a new result that the
same holds true for a theory which is not classically Weyl invariant (14.43). Further notice that
the usual ambiguity in □R, due to the possibility of adding a local term

SR2 =

∫
d4x

√
|g|αR2 , Tµµ ⊃ 2√

|g|
gµν

δ

δgµν
SR2 = −α

3
□R , (14.48)

in the action, which shifts □R, is not present in the case at hand since this term cancels in the
formula (14.21). This is the case since the term in (14.48) enters the explicit breaking EWeyl and not
the anomalous breaking in (14.8). That is (14.48) is intrinsically 4-dimensional and independent of
the quantum fields, hence only affects the EMT at tree level.

The finding that the term (14.48) does not alter the anomalous part is related to the possibility
that a □R flow theorem may exist [216]. However, for the latter there is a problem when one
considers the flow of QCD. Pions cannot be coupled conformally, that is a quadratic term L ⊃
1
2(DαπD

απ + ξRπ2) with ξ = 1
6 (or any ξ ̸= 0) is not allowed by the shift symmetry for Goldstone

bosons. However ξ ̸= 1
6 renders the integral for the flow term infrared divergent. In the purely

anomalous part the non-conformal terms would drop out and suggest that it might be worthwhile to
consider whether one can formulate flow theorems in terms of the anomalous part only.9 Effectively
the infrared divergence is then shifted into the explicit breaking part which has no relevance for
the definition of the (pure) Weyl anomaly.

Since we believe that the □R-anomaly is calculable, the constraints on □R in (14.42) and (14.43)
have to hold when computed with other regularisations provided they respect the non-anomalous
symmetries of the theory. For example, the ζ-function regularisation employed in [118, 158] satisfies
the constraint for a spin-1/2 fermion and a spin-1 vector in the (12 , 0) ⊕ (0, 12) and (12 ,

1
2) Lorentz

representations respectively. This is sometimes difficult to see when it is the total breaking AWeyl +
EWeyl that is given. That is the case for example for the spin 0 scalar given in [83] (Tab. 1 in chapter
5). However, since ξ = 1

6 removes the explicit breaking it is readily verified that in this case the
constraint is satisfied. In [200], uniquely AWeyl is determined, and the constraint is satisfied for any
ξ. Similarly, it was pointed in [202] that the heat kernel leads to a different definition to (14.10) in

the presence of explicit breaking (the second term is replaced by ⟨g(4)µν Tµν⟩), and a different value
for the □R. According to our derivation in Sec. 14.3, this implies that some explicit breaking is
included in the heat kernel anomaly definition. Furthermore, since ghosts and gauge fixing may

9Another alternative is that the theory has another Goldstone boson, the dilaton due to conformal symmetry
breaking, in which case the pions can be coupled conformally [217]. Whether or not this is the case for low energy
QCD is an open question and not generally believed to be the case.
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affect explicit breaking they require careful assessment as well. Hence, care must be taken when
comparing the literature. Note also that the sign of □R is dependent on the sign convention of the
metric.
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Chapter 15

Conclusion

This final Part was dedicated to quantum anomalies and their role in Quantum Field Theory (QFT)
and Particle Physics. Both global and gauge and gravitational anomalies were introduced, as well
as their ambiguities and topological interpretation.

After some classical diagrammatic and path integral computations, we presented our novel
computational method [4] that relies on Effective Field Theory methods. The ambiguities inherent
to anomalies are carefully treated, so as to obtain either the consistent of the covariant form of the
gauge anomalies. We also encounter a new anomaly: the quantum breaking of scale invariance.

We then returned to QFT in curved spacetime and introduced the gravitational anomalies. We
particularly dwelt on the Weyl symmetry, which is the curved spacetime generalisation of scale
invariance. This symmetry is also anomalous and, in response with a recent controversy in the
literature, we dedicated significant effort in determining the role of the Pontryagin density RR̃ in
the Weyl anomaly. We first dealt with the specific and non-trivial case of the Weyl anomaly for
Weyl fermions via the path integral following our work [2], which require careful definition and
manipulations of the path integral. We were then able to help solve the controversy by proving
that the Pontryagin density is absent from the Weyl anomaly of a Weyl fermion.

We then extended this result with a model-independent approach, in which the generic form of
the Weyl anomaly is constrained using the finiteness of the Lorentz and diffeomorphism anomalies,
based upon our work [1]. We were able to conclude on the absence of any parity violation in the
Weyl anomaly in any theory which is compatible with dimensional regularisation. We also argue
that there is a misconception in the literature regarding the role of the □R term. Our claim is that
it is non-removable in the Weyl anomaly, when carefully taking only the quantum breaking into
account. In the article, we showed that we arrive at the same conclusion when including a gauge
sector.
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Part IV

Summary, conclusion and outlook
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The Part I of this thesis was dedicated to introducing the abstract object that is the path
integral. Efforts were to make it seem less abstract and unravel the physical insight that it provides.
We showed how to extract physical Quantum Field Theory (QFT) observables from the path
integral, and the most common perturbative methods used to compute it.

Part II was dedicated to introducing and motivating the concept of Effective Field Theory
(EFT). We showed the different approaches, and how well fit is the path integral to build EFTs.
After an introduction to differential geometry and QFT in curved spacetime, we presented our
novel method to perform path integral computations in gravity [3], and explained its advantages
compared with existing methods.

In Part III, we provided an overall look at quantum anomalies. We started with the case of
global anomalies, and detailed some computations, and how to understand their topological origin.
Ambiguities intrinsic to anomalies were investigated, in particular for the gauge anomalies. We
then presented our work [4] in which we rely on powerful EFT methods to compute various types
of anomalies, while keeping non-anomalous symmetries under control. We then turn to the case of
gravitational anomalies, introducing the diffeomorphism, Lorentz, and Weyl anomalies, and how
to properly deal with them in the path integral. In light of the recent controversy concerning the
presence of the parity violating Pontryagin density in the Weyl anomaly of a Weyl fermion, we
presented out work [2] in which we prove the absence of such a term. Our computation relies on
a careful definition of the anomaly via the path integral, while preserving the diffeomorphism and
Lorentz symmetries. In a following paper [1], we were able to conclude on the absence of parity
violation in the Weyl anomaly for any theory that is compatible with dimensional regularisation.
This was achieved by considering the most generic form of the Weyl anomaly, and then constraining
by enforcing the finiteness of the diffeomorphism and Lorentz anomalies.

The take away of this thesis is probably the impossibility to have a parity violating Weyl
anomaly, in models that are compatible with dimensional regularisation, and when we define the
anomaly by carefully excluding any explicit breaking contributions.

The consequences of this result should be investigated further, both on a formal and phenomeno-
logical side. Our path integral computation methods can surely find powerful applications in other
domain of Physics, such as in condensed matter Physics where anomalies and even gravitational
anomalies play a role. I believe that condensed matter systems are promising since experimental
realisations are much more attainable than in high energy Physics.
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Appendix A

Two-loop β-function in ϕ4 theory

In this Appendix, we detail the computation of the β-function of λ in the following theory

S[ϕ] =

∫
d4x

1

2
ϕ

[
−∂2 −m2 − λ

12
ϕ2
]
ϕ . (A.1)

At one-loop, β-functions can be extracted from W1-loop[0] following [68]. Our aim is to extend the
method at two-loops. This calculation was performed in collaboration with Baptiste Filoche and
Wanda Isnard, from IP2I Lyon.

The bare coupling λ and the renormalised coupling λr are related by λ = µϵλr(µ), where µ is
the renormalisation scale. λr is the coupling associated to the ϕ4 operator in the two-loop effective
action. Since λ is independent from the renormalisation scale µ we must have

0 =
d

dµ
µϵλr(µ) ⇒ βλ(µ) ≡ µ

d

dµ
λr = −ϵλr . (A.2)

We can therefore compute βλ via the order one pole 1/ϵ in λr. We are thus interested in the 2-loops
corrections to the ϕ4 operator in the Effective Theory. The corrections to the kinetic term will also
come into play to normalise the β-function.

The Effective Action reads

W [0] = Γ[⟨ϕ̂⟩] = −i log

∫
Dϕ eiS , (A.3)

and the propagator of the theory is

Π(x, y) = (−δ2S)−1(x, y) =

[
1

∂2 +m2 + λϕ2/2
δ(x− y)

]
, (A.4)

where the derivatives act within the brackets. Following the CDE method, it can be expressed in
momentum space as

Π(x, y) =

∫
d4q

(2π)4
eiq·(x−y)Oq , (A.5)

where

Oq =
1

(∂ + iq)2 +m2 + λϕ2/2
= −

∑
n≥0

(
δ

(
∂2 +2iq · ∂+

λ

2
ϕ2
))n

δ , (A.6)

with δ−1 = q2 −m2 (note that Oq acts on 1 here, after doing the expansion there remains no open
derivatives). Π(x, x) is divergent and we regularise it by performing the momentum integration in
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d = 4 − ϵ dimensions. Since it is essentially the CDE at one-loop, we give directly the relevant
contributions in terms of one-loop master integral

Π(x, x) = −

(
I1 + I2

λ

2
ϕ2 + I3

(
λ

2
ϕ2
)2

+ . . .

)
, (A.7)

where the Ii are the one-loop master integral given in A.1. The higher derivatives of the action
read

δ3S

δϕ(x1) . . . δϕ(x3)
= −λδ(x1 − x2)δ(x2 − x3)ϕ(x1)

δ4S

δϕ(x1) . . . δϕ(x4)
= −λδ(x1 − x2)δ(x2 − x3)δ(x3 − x4)

δnS = 0 , ∀n ≥ 5 . (A.8)

The two-loop contributions (in Euclidean signature) are the following

e−W2-loop[0] =

∫
Dχ e−

1
2
χ2

(
−1

1!4!
(Π1/2 · χ)4 · δ4S +

(−1)2

2!(3!)2

(
(Π1/2 · χ)3 · δ3S

)2)
, (A.9)

where the derivatives of the action are evaluated at ϕ0[J = 0] = ϕcl which is solution to the EoM
without source

δS

δϕ
[ϕcl] = 0 . (A.10)

We split the action in the two following terms

Z1 =
−1

4!

∫
Dχ e−

1
2
χ2

(Π1/2 · χ)4 · δ4S (A.11)

Z2 =
1

2!(3!)2

∫
Dχ e−

1
2
χ2
(

(Π1/2 · χ)3 · δ3S
)2

, (A.12)

Such that the two-loop effective action reads

e−W2-loop[0] ⊃ Z1 + Z2 . (A.13)

Computation of Z1

Let us write explicitly the integrals in Z1 and insert the expression of δ4S

Z1 =
−1

4!

∫
dx1 . . . dx4dy1 . . . dy4 Π1/2(x1, y1) . . .Π

1/2(x4, y4)δ
4S(x1, . . . , x4)

∫
Dχ e−

1
2
χ2
χ(y1) . . . χ(y4)

=
λ

4!

∫
dxdy1 . . . dy4 Π1/2(x, y1) . . .Π

1/2(x, y4)

∫
Dχ e−

1
2
χ2
χ(y1) . . . χ(y4) , (A.14)

where dx ≡ d4x. We then perform the integral over χ using (2.56). This will contract the propa-
gators together and using Π1/2(x, y) = Π1/2(y, x) along with

(Π1/2 · Π1/2)(x, z) =

∫
dyΠ1/2(x, y)Π1/2(y, z) = Π(x, z) , (A.15)

we obtain

Z1 =
3λ

4!

∫
dxΠ(x, x)2 . (A.16)
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This term does not contribute to the kinetic term but only to the ϕ4 operator. Using (A.7) we
obtain

Z1 ⊃
λ3

32

∫
dxϕ4cl

(
I2
2 + 2I1I3

)
⊃ −κ2 λ

3

16ϵ

(
1 + 2 log

(
m2

µ2

))∫
dxϕ4cl(x) , (A.17)

where we extracted the piece proportional to 1/ϵ that is relevant for the β-function, and κ =
−1/(16π2).

Diagrammatically, the piece proportional to I2
2 corresponds to first diagram of Fig. A.1, whereas

the piece proportional to I1I3 corresponds to the second diagram.

Figure A.1: Diagrams correponding to Z1. The solid lines corresponds to ϕ loops with propagator
δ, whereas the dashed lines correspond to an insertion of ϕcl.

Computation of Z2

Whereas Z1 essentially looks like 1-loop squared, Z2 is slightly more intricate. As we will see it
gives quantum corrections to both the ϕ4 and the kinetic terms. Using the expression of δ3S we
can reduce Z2 to

Z2 =
λ2

72

∫
dxdyϕcl(x)ϕcl(y)dy1 . . . dy6 Π1/2(x, y1) . . .Π

1/2(x, y3)Π
1/2(y, y4) . . .Π

1/2(y, y6)

×
∫

Dχ e−
1
2
χ2
χ(y1) . . . χ(y6) . (A.18)

And performing the path integration we obtain

Z2 =
λ2

72

∫
dxdy ϕcl(x)ϕcl(y)

(
6 Π(x, y)3 + 9 Π(x, x)Π(x, y)Π(y, y)

)
. (A.19)

In terms of diagrams without external legs, the first term in Π(x, y)3 corresponds to a sunset
diagram (see Fig. A.2 left), whereas the term in Π(x, x)Π(x, y)Π(y, y) corresponds to the one in
Fig. A.2 right. This second diagram is not 1PI and will cancel in the effective action due to the
Legendre transform [28], which corresponds to taking the logarithm when J = 0 (A.13). We thus
drop the second piece and are left with

Z2 ⊃
λ2

12

∫
dxdy ϕcl(x)ϕcl(y) Π(x, y)3 . (A.20)

We now face a difficulty that does not arise in one-loop computations: Z2 seems to be delocalised
due to the integration over both x and y. There are two ways this can be handled to extract to the
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x y x y

Figure A.2: Diagrams correponding to Z2. The solid lines represent the propagator Π. The diagram
on the right is not 1PI and will cancel due to the Legendre transform.

contributions to ϕ4 and to the kinetic term. The first possibility is to Taylor expand ϕcl(y) around
x. The other equivalent possibility that we follow is to use (A.4) and perform an integration by
parts to release a Dirac

Z2 ⊃
λ2

12

∫
dxdy ϕcl(x)ϕcl(y)

[
1

∂2x +m2 + λϕ2cl/2
δ(x− y)

]
Π(x, y)2 (A.21)

=
λ2

12

∫
dxdy ϕcl(y)δ(x− y)

[
1

∂2x +m2 + λϕ2cl/2
ϕcl(x) Π(x, y)2

]
, (A.22)

where ∂x in the inverse function acts on everything inside the brackets.1 Using dq ≡ ddq/(2π)d as
a shorthand we obtain

Z2 =
λ2

12

∫
dxϕcl(x) dy δ(x− y)

∫
dpdq ei(q+p)·(x−y)

1

(∂+iq + ip)2 +m2 + λϕ2b/2
ϕb(y) [Oq] [Op]

=
λ2

12

∫
dxϕcl(x)

∫
dqdpOq+pϕcl(x) [Oq] [Op] , (A.24)

where Oq is defined in (A.6). The relevant contributions finally are

Z2 ⊃
λ2

12

∫
dx

(
−λϕ4cl/2(J100 + J010 + J001) + ϕcl(∂

2 ϕcl)

(
4

d
J [002]002 − J001

))
⊃ −κ2λ

3

4ϵ

(
1 + log

(
m2

µ2

))∫
dxϕ4cl + κ2

λ2

12ϵ

∫
dxϕcl(x) ∂2 ϕcl(x) , (A.25)

where we scalarised the momentum in the numerator by replacing (q+p)µ(q+p)ν by (q+p)2ηµν/d,
and displayed in the last line the 1/ϵ terms only. The two-loop master integrals are defined and
computed in Sec. A.2. Remarkably, all the two-loop integrals that appear in the two-loops effective
action can easily be computed analytically.

In terms of diagrams, the ϕ4 and kinetic terms are represented in Fig. A.3.

One-loop counter-terms

In order to properly obtain renormalisation of λ at two-loop, one must account for the contribution
of the one-loop counter-terms at order one-loop.

1Note that Π can be written as

Π(x, y) =
1

∂2 +m2 + λϕ2
cl/2

δ(x− y) =
1

m2

∑
n≥0

(−1)n
(
∂2 +λϕ2

cl/2

m2

)n
δ(x− y) , (A.23)

and then integrated by parts order by order up to infinity, or at least up to the required order for the operators we
wish to compute.
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Figure A.3: Z2 contribution to the ϕ4 operator on the left and to the kinetic term on the right.
The solid lines represent a ϕ loop with propagator δ, the dashed lines represent an insertion of ϕcl.

The one-loop effective action is given by the UOLEA [70]. Both the mass and λ receive correc-
tions

W1-loop[J = 0] ⊃ κ

2

∫
d4x

{
m2

(
1 +

2

ϵ
− log

(
m2

µ2

))
λ

2
ϕ2cl +

1

2

(
2

ϵ
− log

(
m2

µ2

))(
λ

2
ϕ2cl

)2
}
.

(A.26)
The poles must be absorbed in the counter-terms at tree level such that

Stree =

∫
d4x

1

2
ϕcl

(
− ∂2−(m+ δm)2 − λ+ δλ

12
ϕ2cl

)
ϕcl ⊃

∫
d4x

(
−mδmϕ2cl −

δλ

24
ϕ4cl

)
, (A.27)

where λ, m are the bare couplings and δλ, δm are the one-loop counterterms. They are defined
such that Stree + W1-loop is finite.2 We thus readily obtain

δm = κ
mλ

2ϵ
, δλ = κ

3λ2

ϵ
. (A.28)

In order to obtain the contribution of the one-loop counterterms at one-loop, we just replace the
bare couplings in Eq. (A.26) by the renormalised couplings: λ → λ+ δλ and m → m+ δm. After
expanding the log to extract δm we obtain at order O(1/ϵ)

Wct = κ2
1

16

∫
d4xϕ4cl

(
−λ

3

ϵ
− 6

λ3

ϵ
log

(
m2

µ2

))
. (A.29)

The first term comes from the renormalisation of λ and can be represented by the first diagram of
Fig. A.4, whereas the second term comes from the renormalisation of the mass and corresponds to
the second diagram.

Figure A.4: One-loop contribution with insertions of one-loop counter-terms that contribute to the
ϕ4 operator at two-loops.

2In fact we follow the MS scheme where the counterterms also absorb the γE − log 4π pieces. It plays no role in
the computation hence we decided to ignore it for simplicity.
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Result

We combine all the above contributions to have the two-loop corrections to the ϕ4 and kinetic terms
at order 1/ϵ

W2-loop +Wct ⊃ κ2
λ3

ϵ

[(
1

16
+

1

4
− 1

16

)
+

(
2

16
+

1

4
− 6

16

)
log

(
m2

µ2

)]
− κ2

λ2

12ϵ

∫
d4xϕcl ∂

2 ϕcl

= κ2
λ3

4ϵ

∫
d4xϕ4cl − κ2

λ2

12ϵ

∫
d4xϕcl ∂

2 ϕcl , (A.30)

Notice that the terms of the form ϵ−1 log
(
m2

µ2

)
cancel as expected in dimensional regularisation,

otherwise it would mean that the two-loop counterterms would depend on log
(
m2

µ2

)
. This result

was obtained via Feynman diagrams in [218] in agreement with us. The two-loops β-function can
then be straightforwardly derived from this result to obtain

β
(2)
λ = − 1

(16π2)2
17

3κ2
λ3 . (A.31)

The procedure is described in great details in [218].

A.1 One-loop Master Integrals

Ĩ[q2nc ]nii nc = 0 nc = 1 nc = 2

ni = 1 M2
i

(
1 − log

M2
i

µ2

) M4
i
4

(
3
2 − log

M2
i

µ2

) M6
i

24

(
11
6 − log

M2
i

µ2

)
ni = 2 − log

M2
i

µ2
M2
i
2

(
1 − log

M2
i

µ2

) M4
i
8

(
3
2 − log

M2
i

µ2

)
ni = 3 − 1

2M2
i

−1
4 log

M2
i

µ2
M2
i
8

(
1 − log

M2
i

µ2

)
ni = 4 1

6M4
i

− 1
12M2

i
− 1

24 log
M2
i

µ2

ni = 5 − 1
12M6

i

1
48M4

i
− 1

96M2
i

Table A.1: Commonly-used master integrals with degenerate heavy particle masses. Ĩ = I/ i
16π2

and the 2
ϵ − γ + log 4π contributions are dropped.

In this appendix, we discuss the master integrals and tabulate some of them that are useful in
practice. In this paper our results are written in terms of master integrals I, defined by

∫
ddq

(2π)d
qµ1 · · · qµ2nc

(q2 −M2
i )ni(q2 −M2

j )nj · · ·
= gµ1···µ2ncI[q2nc ]

ninj ···
ij··· (A.32)

In the mass degenerate case, the master integrals, I[q2nc ]
ninj ...
ij... , reduce to the form I[q2nc ]nii , for

which the general expression reads,

I[q2nc ]nii =
i

16π2
(
−M2

i

)2+nc−ni 1

2nc(ni − 1)!

Γ( ϵ2 − 2 − nc + ni)

Γ( ϵ2)

(2

ϵ
−γ+log 4π− log

M2
i

µ2

)
, (A.33)
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where d = 4− ϵ is the space-time dimension, and µ is the renormalisation scale. In the MS scheme,

we replace,

(
2

ϵ
− γ + log 4π − log

M2
i

µ2

)
by

(
− log

M2
i

µ2

)
in the final result. We factor out the

common prefactor, I = i
16π2 Ĩ (I = −1

16π2 Ĩ in Euclidean) and present a table of Ĩ[q2nc ]nii for various
nc and ni, needed in our computations, in Table B.1.

A.2 Two-loop Master Integrals

In this appendix, we discuss the master integrals at 2-loop order and tabulate some of them that
are useful in practice. The conventions we follow are the same as in App. A.1. The master integrals
J are defined by:

Jijk =

∫
ddk1d

dk2
(2π)4

1

(k21 −m2)i+1

1

(k22 −m2)j+1

1

((k1 + k2)2 −m2)k+1
, (A.34)

with d = 4 − ϵ. These integrals can be computed from

I(x, z, y) =
(µ2)2ϵ

(2π)d

∫
ddk ddq

(k2 + x)(q2 + y)((k + q)2 + z)
, (A.35)

by taking derivatives with respect to x, y or z. I(x, y, z) can be found analytically in [219] (they
use d = 4 − 2ϵ).

The integrals with momentum in the numerator are denoted,

J [2li, 2lj , 2lk]ijk =

∫
d4k1d

4k2
(2π)4

k2li1

(k21 −m2)i+1

k
2lj
2

(k22 −m2)j+1

(k1 + k2)
2lk

((k1 + k2)2 −m2)k+1
. (A.36)

They can be computed from previous integrals. From example, in the calculation of the kinetic
term the following integral occurs

J [002]002 = J001 +m2J002 . (A.37)

J̃ij0 i = 1 i = 2

j = 0 2
ε

(
1 + γE + log m2

µ2
− log 4π

)
+ c1

1
εm2 + 1 − γE − log m2

µ2
+ log 4π

j = 1 1
2m2

1
4m4

Table A.2: Master integrals useful for 2-loop order computations. We note J̃ijk = Jijk/ i
16π2 and

c1 = −
(

log m2

µ2

)2
+(1 − 2γE + 2 log 4π) log m2

µ2
+3+γE−γ2E +2γE log 4π− log 4π(1+log 4π). Those

master integrals are symmetric in i, j, k, explicitly J̃100 = J̃010 = J̃001, J̃200 = J̃020 = J̃002 and
J̃110 = J̃101 = J̃011.
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Master integrals in Curved Spacetime

Master integrals in curved spacetime

In flat spacetime (latin indices), we define the master integrals I, J and K as∫
ddq

(2π)d
qa1 · · · qa2nc
(q2 −m2)n

= ηa1···a2ncI[q2nc ]n (B.1)∫
ddq

(2π)d

∫ m2

dm′2 q
a1 · · · qa2nc

(q2 −m′2)n
= ηa1···a2ncJ [q2nc ]n (B.2)∫

ddq

(2π)d

∫ m

dm′m′k q
a1 . . . qa2nc

(q2 −m′2)n
= ηa1...a2ncK[q2nc ]kn , (B.3)

where in general the integral over the mass must be performed before the integral over momentum.
ηa1...a2nc is the fully symmetrised Minkowski metric.

The master integrals, I are defined by the general expression

I[q2nc ]n =
i

16π2
(
−m2

)2+nc−n 1

2nc(n− 1)!

Γ( ϵ2 − 2 − nc + n)

Γ( ϵ2)

(2

ϵ
− γ + log 4π − log

m2

µ2

)
, (B.4)

where d = 4− ϵ is the spacetime dimension, and µ is the renormalization scale. In the MS scheme,

we replace,

(
2

ϵ
− γ + log 4π − log

m2

µ2

)
by

(
− log

m2

µ2

)
in the final result. We factor out the

common prefactor, I = i
16π2 Ĩ and present a table of Ĩ[q2nc ]n for various nc and n, needed in our

computations, in Table B.1.

I and J are related by integrating the mass

J [q2nc ]n =
1

n− 1
I[q2nc ]n−1 . (B.5)

The fermionic master integrals K are trickier to compute. The dimensionful integrals are
computed in Eq. (B.15). The dimensionless integrals (i.e ∝ m0) can however be obtained using
Eqs. (B.19) and Eq. (B.20).

We can relate the integrals in curved spacetime to those in flat spacetime using a tangent frame
that is orthonormal everywhere in the whole manifold. We relate the flat metric η and the metric
g using the vierbein

gµν = e a
µ e

b
ν ηab . (B.6)

181



Appendices

Ĩ[q2nc ]n nc = 0 nc = 1 nc = 2

n = 1 m2
(
1 − log m2

µ2

)
m4

4

(
3
2 − log m2

µ2

)
m6

24

(
11
6 − log m2

µ2

)
n = 2 − log m2

µ2
m2

2

(
1 − log m2

µ2

)
m4

8

(
3
2 − log m2

µ2

)
n = 3 − 1

2m2 −1
4 log m2

µ2
m2

8

(
1 − log m2

µ2

)
n = 4 1

6m4 − 1
12m2 − 1

24 log m2

µ2

ni = 5 − 1
12m6

1
48m4 − 1

96m2

Table B.1: Commonly-used master integrals with degenerate heavy particle masses. Ĩ = I/ i
16π2

and the 2
ϵ − γ + log 4π contributions are dropped.

The latin indices refer to the orthonormal frame, while the greek indices refer to the initial frame.
The momenta are expressed in the orthonormal frame using the vierbein and its inverse E

pµ = e a
µ qa qa = E µ

a pµ . (B.7)

We can now relate the master integrals with momenta pµ to the master integrals in flat spacetime
by doing the change of variable pµ = e a

µ qa. The momentum space measure is defined with the

covariant vector pµ, thus the jacobian of the change of variable is det(e) =
√
|g|. We thus have

∫
ddp

(2π)4

∫ m2

dm′2 p
µ1 · · · pµ2nc

(p2 −m′2)n

=

∫
det(e)

ddq

(2π)4

∫ m2

dm′2Eµ1a1 · · ·E
µ2nc

a2nc

qa1 · · · qa2nc
(q2 −m′2)n

=
√
|g|Eµ1a1 · · ·E

µ2nc
a2nc η

a1···a2ncJ [q2nc ]n

=
√
|g|gµ1···µ2ncJ [q2nc ]n ,

(B.8)

and likewise for K and I.

Momentum and mass integration

The master integrals with integration over the mass should be computed by integrating over the
mass first, and then over momentum. In general commuting the integration is not true for divergent
integrals. However, we will show that it stands true for dimensionful integrals.

The discussion below is not very relevant for the bosonic integrals J since we are able to perform
the integration over the mass and then over momentum, as it should be done. However, it is not
so simple for the fermionic integrals, therefore commuting the integrals will prove useful.

Let’s reason on the bosonic integrals which are simpler to compute explicitly. Without com-
muting the integrals, we can perform the integration over the mass to obtain the correct result

J [q2l]n =
1

n− 1
I[q2l]n−1 . (B.9)
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If we commute the integrals, then we obtain for 2 + l − (n− 1) ̸= 0

J ′[q2l]n =

∫ m2

dm′2I[q2l]n(m′)

=
i

16π2
(m2)2+l−(n−1)

2 + l − (n− 1)

(−1)l−n

2l(n− 1)!

Γ( ϵ2 − 2 − l + n)

Γ( ϵ2)

(
1

2 + l − (n− 1)
+

2

ϵ̄
− log

(
m2

µ2

))
.

(B.10)

Note that the integration constant vanishes by dimensional analysis since by definition it must be
independent of the mass, but the integral is dimensionful for 2 + l − (n − 1) ̸= 0. We defined
2/ϵ̄ = 2/ϵ− γ + log 4π.

If (n − 1) − l − 2 > 0, then both I[q2l]n−1 and J [q2l] are finite in d = 4 dimensions. The
commutation of the integral is thus correct, and we can indeed verify that Eqs. (B.9) and (B.10)
are equal.

However, we can show that the commutation of the integrals remains true if (n− 1)− l− 2 < 0.
Using for N ≥ 0

Γ( ϵ2 −N)

Γ( ϵ2)
=

(−1)N

N !

(
1 +

ϵ

2

N−1∑
k=1

1/k + O(ϵ2)

)
, (B.11)

and the expression of I in Eq. (B.4), we can show that Eqs. (B.9) and (B.10) remain equal.

A discrepancy between J [q2l]n and J ′[q2l]n however happens when (n− 1)− l− 2 = 0 since we
have

J [q2l]n =
i

16π2
1

2l(n− 1)!

(
2

ϵ̄
− log

(
m2

µ2

))
, (B.12)

whereas

J ′[q2l]n =
i

16π2

∫ m2

dm′2 −1

2l(n− 1)!m′2 + O(ϵ) =
i

16π2
−1

2l(n− 1)!
log

(
m2

µ2

)
+ F , (B.13)

where F is an integration constant that cannot be ruled out by dimensional analysis like before.

Now Eqs. (B.12) and (B.13) are not equal. Note however, that the coefficient of the logarithm
in Eq. (B.13) is correct, and the difference lies in the undetermined integration constant.

As explained earlier, commuting the integrals is not useful for the bosonic integrals since we
are able to easily perform the integration over the mass then over momentum. However, some
fermionic integrals are much easier to compute if we are allowed to commute the integrals.

The fermionic integrals K are more cumbersome to compute in general because the integration
is over the mass instead of the mass square. For example, after Wick rotation, the integration over
the mass of K[q2l]01 yields

K[q0]01 ∝
∫

ddq

(2π)d
q2l
∫ m

dm′ 1

q2 −m′2 = −i
∫

ddq

(2π)d
q2l−1Arctan

(
m

q

)
, (B.14)

where q =
√
q2 is well-defined since q2 ≥ 0 in Euclidean. The integration over momentum is then

not trivial to perform in dimensional regularisation.

However, as shown for the bosonic integrals, the integration over mass and momentum can be
commuted provided K is dimensionful 1.

1We do not prove it for the fermionic integrals, we assume it behaves similarly.
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Hence, for k + 2l − 2n+ 5 ̸= 0 (i.e for dimensionful integrals), we have

K[q2l]kn =

∫ m

dm′m′kI[q2l]n

=
i

16π2
(−1)l−nm5+k+2l−2n

2l(n− 1)!(5 + k + 2l − 2n)

Γ( ϵ2 − 2 − l + n)

Γ( ϵ2)

(
2

5 + k + 2l − 2n
+

2

ϵ̄
− log

(
m2

µ2

))
.

(B.15)

The dimensionless integrals can be computed using recursion formulae which can be obtained
by integration by parts over the mass integration

K[q2l]kn =
mk−1

2(n− 1)
I[q2l]n−1 − k − 1

2(n− 1)
K[q2l]k−2

n−1 (B.16)

K[q2l]kn =
mk−1

2n− k − 1
I[q2l]n−1 − k − 1

2n− k − 1
(d+ 2l)K[q2(l+1)]k−2

n (B.17)

K[q2l]kn =
2n

2n− k − 1
(d+ 2l)K[q2(l+1)]kn+1 −

mk+1

2n− k − 1
I[q2l]n , (B.18)

where d is the dimension of spacetime 2.
Using repeatedly Eq. (B.16), we obtain

K[q2l]2k+1
n =

1

2

k∑
i=1

(−1)k−i
k!

i!

(n− 2 − k + i)!

(n− 1)!
m2iI[q2l]n−1−k+i

+ (−1)kk!
(n− k − 1)!

(n− 1)!
K[q2l]1n−k ,

(B.19)

and for n− k > 1 3, we have,

K[q2l]1n−k =
1

2(n− k − 1)
I[q2l]n−k−1 . (B.20)

Note however, that integrals of the form K[q2l]2kn remain troublesome to compute even using the
iterative formulae. For example, using Eqs. (B.17) and (B.18) repeatedly, K[q2l]2kn can be related
to K[q2l

′
]01 from Eq. (B.14), which is not trivial to compute.

The dimensionless integrals only occur in our expansion in the term∫
ddq

(2π)d

∫ m

dm′ [∆(−i /D +Q)
]4

∆ . (B.21)

Since the number of propagators is odd, and the power in q in the numerator must be even lest the
integral vanishes, then the power in m′ in the numerator is odd. Therefore, these integrals can be
computed using Eqs. (B.19) and (B.20).

2It arises due to the scalarisation of the vectors q. In the momentum integrals, qµ1 . . . qµ2l is traded for clq
2lgµ1...µ2l

where c−1
l = d(d+ 2) . . . (d+ 2(l − 1)).

3In our expansion, the integrals K[q2kl]pn are such that n ≥ p, so if p = 2k + 1, n− k = 1 can only be realised for
n = 1 which contributes as a tadpole to the effective action.
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Riemann Normal Coordinates and
Fock-Schwinger gauge

In this Appendix, we provide the expansion of the metric, the Christoffel symbols and the spin-
connection in RNC, as well as the expansion of the gauge fields in FS gauge, around x0, with
x = x0 + y. Note that in this Appendix, D denotes the total covariant derivative.

Fock-Schwinger gauge In the FS gauge around x0, the gauge fields are expressed as follows

Vµ(x0) = −
∑
n≥0

1

n!(n+ 2)
yνyα1 . . . yαn

[
Dα1 ,

[
Dα2 ,

[
. . . [Dαn , Fµν ] . . .

]]]
(x0) . (C.1)

We must then upgrade the covariant derivatives D to the general covariant derivatives D to
have a diffeomorphism covariant expression. For example, in RNC and FS gauge we have

[Dµ, [Dν , Fρσ]]yµyνyσ = [Dµ,
(

[Dν , Fρσ] + ΓλνρFλσ + ΓλνσFνλ

)
]yµyνyσ

=
(

[Dµ, [Dν , Fρσ]] + (∂µ Γλνρ)Fλσ + (∂µ Γλνσ)Fρλ

)
yµyνyσ

=

(
[Dµ, [Dν , Fρσ]] +

1

3
R λ
µρ νFλσ

)
yµyνyσ .

(C.2)

We thus obtain for the first orders the combination of FS gauge and RNC as in [220, 221]

Vµ = −1

2
Fµν(x0) y

ν − 1

3
(DαFµν)(x0) y

νyα − 1

8

(
(DαβFµν) +

1

3
R λ
αµ βFλν

)
(x0) y

αyβyν + O(y4) .

(C.3)
We do not consider the case of an axial gauge field in the covariant derivative as throughout

the computation we put the axial gauge field in Qo rather than in D. More crucially, we expect
the axial gauge invariance to be broken depending on the choice of scheme for γ5 in dimensional
regularisation, therefore it makes no sense to choose a gauge for the axial gauge field.

Riemann Normal Coordinates The metric and the Christoffel symbols are expressed around
x0 as

gµν(x) =ηµν −
1

3
Rµανβ(x0) y

αyβ − 1

6
Rµανβ;γ(x0) y

αyβyγ

+

(
− 1

20
Rµανβ;γδ +

2

45
RαµβλR

λ
γνδ

)
(x0) y

αyβyγyδ + O(y5) ,
(C.4)
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gµν(x) =ηµν +
1

3
Rµ ν

α β(x0) y
αyβ +

1

6
Rµ ν

α β;γ(x0) y
αyβyγ

+

(
1

20
Rµ ν

α β;γδ +
1

15
R µ
α βλR

λ ν
γ δ

)
(x0) y

αyβyγyδ + O(y5) ,
(C.5)

and

Γµνρ = − 1

3

(
Rµνρα +Rµρνα

)
(x0) y

α

− 1

12

(
2Rµνρα;β + 2Rµρνα;β +Rµαρβ;ν +Rµανβ;ρ −R µ

ναρβ;

)
(x0) y

αyβ

+

[
1

18
Rµ λ

α βy
αyβ

(
−Rργλδ(∂ν yγyδ) −Rνγλδ(∂ρ y

γyδ) +Rνγρδ(∂λ y
γyδ)

)
+

(
1

45
RαρβλR

λ µ
γ δ −

1

40
R µ
αρβ ;γδ

)
(∂ν y

αyβyγyδ)

∣∣∣∣
sym µ↔ν

−
(

1

45
RανβλR

λ
γρδ −

1

40
Rανβρ;γδ

)
gµχ(∂χ y

αyβyγyδ)

]
(x0) + O(y4)

(C.6)

Higher order expansions in RNC can be found in [222].
For example, in the limit y → 0, we have

(∂µ g
αβ) = 0

(∂ρσ g
µν) =

1

3
Rµ ν

α β

(
gαρg

β
σ + gασg

β
ρ

)
=

1

3

(
Rµ ν

ρ σ +Rµ ν
σ ρ

)
.

(C.7)

It is also possible to apply the RNC to the spin-connection since it depends on the vierbeins
and the Christoffel connection. It boils down to using a FS gauge for the spin-connection as if it
were a regular gauge field

ωµ = − 1

8
γα1(x0)γ

α2(x0)Rµνα1α2(x0) y
ν − 1

12
γα1(x0)γ

α2(x0)(∇αRµνα1α2)(x0) y
νyα

− 1

32
γα1(x0)γ

α2(x0)

(
(∇αβRµνα1α2) +

1

3
R λ
αµ βRλνα1α2

)
(x0) y

αyβyν + O(y4) .
(C.8)

Note that the partial derivatives of ω only apply on y, since the Dirac matrices are at x0 they
commute with ∂ = ∂

∂ y .

Example: DµDνDρDσ Expanding open covariant derivatives in terms of the Christoffel connec-
tion, spin-connection and gauge connection and their derivatives can become a heavy computation
very quickly. Then forming the covariant quantities adds to the complexity of the task. Using the
RNC and the FS gauge drastically simplify this task.

Using Eq. (C.3), we can express the partial derivatives of V in terms of field strengths, and
likewise for the spin-connection using Eq. (C.8).

If we denote X = V + ω for simplicity, we have

DµDνDρDσ = DµDνDρXσ

= DµDν

(
(∂ρXσ) − ΓλρσXλ +XρXσ

)
= (∂µνρXσ) + (∂µXν)(∂ρXσ) − (∂µ Γλνρ)(∂λXσ) − (∂µ Γλνσ)(∂ρXλ)

+

[
(∂µXρ)(∂ν Xσ) − (∂µ Γλρσ)(∂ν Xλ)

]∣∣∣∣
sym µ↔ν

.

(C.9)
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We can then explicit X = V +ω and use Eqs. (C.3), (C.6) and (C.8) to form the covariant quantities.
Finally we obtain the 4 open covariant derivatives DµDνDρDσ in a covariant form. Obviously,

DµDνDρDσ is not covariant by itself, but all the contributions to this operators that arise in the
expansion combine together so that the result is covariant. The use of RNC and FS gauge is merely
a shortcut to get to the final covariant form.
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Appendix D

Weyl Fermions in Curved Spacetime

The Dirac matrices can be expressed as

γa =

(
0 σ̄a

σa 0

)
, γ5 =

(
12 0
0 −12

)
, (D.1)

where σa = (12, σ
i), σ̄a = (12,−σi), and σi=1,2,3 are the Pauli matrices. As for the Dirac matrices,

we have σµ = eµaσa. In an Euclidean space, it is possible to choose a representation of the σ-
matrices such that σ̄µ = (σµ)†, i.e (γµ)† = γµ which is the convention used throughout. From
{γµ, γν} = 2gµν14 one deduces

σµσ̄ν + σν σ̄µ = σ̄µσν + σ̄νσµ = 2gµν12 . (D.2)

The generator of rotations can be written as

Σab =
1

4
[γa, γb] =

(
λab 0
0 µab

)
, (D.3)

where

λab =
1

4
(σ̄aσb − σ̄bσa), µab =

1

4
(σaσ̄b − σbσ̄a) . (D.4)

Using Dµψ = (∂µ +1
2ωµ,abΣ

ab)ψ and decomposing ψ and Dµ as1

ψ =

(
ψR
ψL

)
, Dµ =

(
DR
µ 0

0 DL
µ

)
, (D.5)

one obtains

DR
µ ψR = (∂µ +ωRµ )ψR = (∂µ +

1

2
ωµ,abλ

ab)ψR ,

DL
µψL = (∂µ +ωLµ )ψL = (∂µ +

1

2
ωµ,abµ

ab)ψL . (D.6)

The Weyl operator, used in the main text, can be identified from the second line. Note that when
acting on a scalar with Lorentz index such as ξµ one has (DR

µ ξ
ν) = (DL

µ ξ
ν) = (Dµξ

ν) = (∇µξ
ν) =

(∂µ ξ
ν) + Γνµρξ

ρ.

1Dµ is diagonal since it does not change the chirality of fermions.
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From the compatibility with Dirac matrices [Dµ, γ
ν ] = 0 one obtains

DR
µ σ̄

ν = σ̄νDL
µ , DL

µσ
ν = σνDR

µ . (D.7)

Finally, since

i /D =

(
0 iσ̄µDL

µ

iσµDR
µ 0

)
, (D.8)

is hermitian in Euclidean space, it follows that(
iσ̄µDL

µ

)†
= iσµDR

µ . (D.9)
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Appendix E

Covariant Derivative Expansion –
Gravitational Anomaly Computations

In this Appendix, we outline the computation of the anomalies of a Weyl fermion using the CDE in
curved spacetime [3]. In this Appendix, D denotes the Weyl operator, and D is the total covariant
derivative.

Let us first note that we regularised the functional traces using the function e−x in both sections.
The result is however independent of this choice. In fact, any smooth function f such that

f(0) = 1 , f(x) −→
x→∞

0 , xf ′(x)
∣∣
x=0

= xf ′(x)
∣∣
x→∞ = 0 . (E.1)

This is well-known for Fujikawa’s approach [118] and we establish it here for Leutwyler’s approach.
For a function f satisfying the criteria above the following equation holds

D−1 = D†
∫ ∞

0
dt f ′(tDD†) , (E.2)

for which (13.10) is a special case.
Having established this universality in the function f we turn to the CDE for which it is

convenient to use f(x) = 1/(1 + x). We thus consider the following functional traces1

T1[a] = lim
Λ→∞

Tr

[
a(x)f

(
(i /D)2

Λ2

)]
= lim

Λ→∞
Tr

[
a(x)

Λ2

− /D
2

+ Λ2

]
, (E.3)

T2[b] = lim
Λ→∞

Tr

[
bµ(x)∇µ f

(
(i /D)2

Λ2

)]
= lim

Λ→∞
Tr

[
bµ(x)∇µ

Λ2

− /D
2

+ Λ2

]
,

where a(x) and bµ(x) are local functions. As in the main text it is understood that the Λ2- and
Λ4-divergences are subtracted.

Computation of the trace and Lorentz anomalies

From T1 the trace and the Lorentz anomalies of a Weyl fermion follow

δWσ W =
1

2
T1 [σ] , δLαW =

1

2
T1

[
αabΣ

abγ5

]
. (E.4)

1Note that if we had chosen a representation of the Dirac matrices such that (γµ)† = −γµ in Euclidean space,

we would obtain f
(
/D2

Λ2

)
instead of f

(
(i /D)2

Λ2

)
= f

(
/D2

−Λ2

)
. The anomaly being of order Λ0 does not depend on that

choice.
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The functional trace can be recast in momentum space as

T1[a] = lim
Λ→∞

∫
d4x

d4q

(2π)4
tr a(x)Λ2 1

−( /D + i/q)2 + Λ2
(E.5)

= − lim
Λ→∞

∫
d4x

d4q

(2π)4
tr a(x)(−Λ2)

∑
n≥0

[
∆
(
D2 + gµν{Dµ, iqν} + Σ · F

)]n
∆ ,

where ∆ = 1/(q2 + Λ2), Σµν = [γµ, γν ]/4, and tr denotes the trace in internal space. Note that we
can maintain ∂µ qν = 0, but contrary to the CDE in flat spacetime we have Dµqν = −Γρµνqρ ̸= 0
and [Dµ,∆] ̸= 0 [3]. F is the fermion field strength due to the spin-connection such that for any
fermion ψ̃ we have [Dµ, Dν ]ψ̃ = Fµνψ̃ with2

Fµν =
1

4
γργσRµνρσ , Σ · F = −R

4
1Dirac . (E.6)

The expansion is then carried out with the help of Mathematica and the package xAct [223]. The
result reads

T1[a] =
1

16π2

∫
d4x tr a(x)

{
− 1

6
□ (Σ · F ) − 1

12
F 2 − 1

72
R2 +

1

180
RµνR

µν (E.7)

− 1

180
RµνρσR

µνρσ − 1

30
□R− 1

6
RΣ · F − 1

2
(Σ · F )2

}
,

from which, by using (E.4) and (E.6), the trace anomaly and the vanishing of the Lorentz anomaly
follows.

In fact once we know, from (E.7), that the Lorentz anomaly is covariant we can infer its vanishing
in yet another way in d = 4. It can be shown, using intrinsically 4-dimensional identities [208–210],
that the only parity-odd (covariant) 2-tensor of mass dimension 4 is gµνRR̃, which is symmetric in
its indices and thus vanishes when contracted with the Lorentz parameter αµν . In particular, one
has in d = 4

1

2
gαβRR̃ = ϵανρσRβ λχ

ν Rρσλχ = ϵµνρσRαλµνR
β
λρσ , (E.8)

and
ϵανρσRβλρσRνλ = 0 , (E.9)

for the Ricci-tensor contraction. Every other parity-odd 2-tensor of mass dimension 4 is related to
these by Bianchi identities and algebra.

Computation of the diffeomorphism anomaly

The diffeomorphism anomaly is given by

δdξW = −T2[ξγ5] −
1

2
T1[(Dµξ

µ)γ5] , (E.10)

a sum of a T1- and a T2-term (E.3). Let us focus on the T1-term first. Using (E.6) the only term
that is non-vanishing under the Dirac trace in T1[(Dµξ

µ)γ5] is

T1[(Dµξ
µ)γ5] =

−1

16π2

∫
d4x e (Dµξ

µ) tr γ5

(
− 1

12
F 2

)
(E.11)

=
−1

16π2

∫
d4x e ξµ tr γ5

(
1

12
[Dµ, F

2]

)
,

2Note that ψ and ψ̃ have the same field strength.
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where integration by parts was applied using the fact that ξµ(x) vanishes at infinity.
Finally, let us turn to the T2-term which is less straightforward. In Eq. (E.3), it is convenient

to rewrite ∇ = D − ω, such that

T2[b] = lim
Λ→∞

Tr

[
bµ(x)Dµ

Λ2

− /D
2

+ Λ2

]
− lim

Λ→∞
Tr

[
bµ(x)ωµ

Λ2

− /D
2

+ Λ2

]
. (E.12)

We can notice that the second term is the Lorentz anomaly with αab = bµωµab (with bµ ∝ γ5),
hence vanishes as we just verified. We are left with

T2[b] = lim
Λ→∞

Tr

[
bµ(x)Dµ

Λ2

− /D
2

+ Λ2

]
(E.13)

= lim
Λ→∞

∫
d4x

d4q

(2π)4
tr bµ(x)(Dµ + iqµ)(−Λ2)

∑
n≥0

[
∆
(
D2 + gµν{Dµ, iqν} + Σ · F

)]n
∆ .

The computation must not be carried out in a manifestly covariant manner, and one cannot use a
specific choice of coordinate (for example Riemann normal coordinates). Since the diffeomorphism
anomaly involves bµ(x) = ξµ(x)γ5, the computation can be simplified using Tr γ5 = Tr γµγνγ5 = 0,
and noticing that the only source of Dirac matrices are in the covariant derivatives via the spin-
connection. We finally obtain a very compact result

T2[ξγ5] =
−1

16π2

∫
d4x e ξµ tr γ5

(
− 1

24
[Dµ, F

2]

)
, (E.14)

as every other term vanishes by lack of Dirac matrices.
Using (E.10), (E.11) and (E.14) we see the canceling of terms and finally conclude that the

diffeomorphism anomaly of a Weyl fermion vanishes.
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Appendix F

Weyl Anomaly Definition

In Appendix, we add precisions about the derivation of the expressions for the Weyl anomaly with
and without explicit breaking. We also address questions about explicit breaking, counterterms,
and the role of □R. D denotes the total covariant derivative.

The Weyl variation of Wren(d) is defined by (14.16) with explicit symmetry breaking, and
(14.11) without. Either way, if we take the limit before the Weyl variation we obtain

δWσ lim
d→4

Wren(d) =

∫
d4xσg(4)µν

δ

δgµν
[Wren(d)]d=4 =

∫
d4xσ

[
g(4)µν

δW(d)

δgµν
+ g(4)µν

δWct(d)

δgµν

]
d=4

,

where we used the fact that Wren(4) is finite to commute the metric variation and the metric
contraction inside the limit. Alternatively, the Weyl anomaly can be written by taking the limit
after the Weyl variation

lim
d→4

δWσ Wren(d) =

∫
d4xσ

[
g(d)µν

δWren(d)

δgµν

]
d=4

=

∫
d4xσ

[
g(d)µν

δW (d)

δgµν
+ g(d)µν

δWct(d)

δgµν

]
d=4

.

In the following we prove some identities on the counterterms that are used in the derivation of
Eqs. (14.12), (14.14), (14.18) and (14.21).

Classical Weyl invariance

The most generic form of the counterterms in a classically Weyl invariant theory reads [169]

Wct(d) =
1

d− 4

∫
ddx

√
|g|
(
aE(d) + cC(d) + f trF (d)2

)
, (F.1)

where we included only P -even terms. We omit P -odd operator since we have showed that they
must be absent at the level of the metric variation of Wct. One can show that [169]

2√
|g|
g(d)µν

δ

δg
(d)
µν

∫
ddx

√
|g|C = (d− 4)

(
C +

2

3
□R

)
,

2√
|g|
g(d)µν

δ

δg
(d)
µν

∫
ddx

√
|g|E = (d− 4)E ,

2√
|g|
g(d)µν

δ

δg
(d)
µν

∫
ddx

√
|g|F 2 = (d− 4)F 2 . (F.2)
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Whereas contracting with the metric in d = 4 one obtains [169]

2√
|g|
g(4)µν

δ

δg
(d)
µν

∫
ddx

√
|g|C = 0 ,

2√
|g|
g(4)µν

δ

δg
(d)
µν

∫
ddx

√
|g|E = 0 ,

2√
|g|
g(4)µν

δ

δg
(d)
µν

∫
ddx

√
|g|F 2 = 0 , (F.3)

which then can be used to deduce that[
g(4)µν

δWct

δgµν

]
d=4

= 0 , (F.4)

holds in a classically Weyl invariant theory. For example for the Euler density we find

δ

δg
(d)
µν

∫
ddx

√
|g|E =8RµαRνα − 4RµνR+ 8RαβRµ ν

α β − 4RµαβδRναβδ

+ gµν(R2 − 4RαβR
αβ +RαβγδR

αβγδ) , (F.5)

where all the tensors are in d. We then obtain the above result for E upon using

g(d),µνg
(d)
µν = d and g(4),µνg

(d)
µν = 4.

Classical Weyl non-invariance

The Weyl variation after and before taking the d→ 4 limit read

δWσ lim
d→4

Wren(d) =

∫
d4xσ

[√
|g|g(4)µν ⟨Tµν⟩ + g(4)µν

δWct(d)

δgµν

]
d=4

lim
d→4

δWσ Wren(d) =

∫
d4xσ

[√
|g|⟨Tµµ ⟩ + g(d)µν

δWct(d)

δgµν

]
d=4

, (F.6)

where in each line, the sum is finite but each term is separately divergent. Let us separate

⟨Tµµ ⟩ = ⟨Tµµ ⟩div + ⟨Tµµ ⟩fin

g(d)µν

δWct(d)

δgµν
=

[
g(d)µν

δWct(d)

δgµν

]
div

+

[
g(d)µν

δWct(d)

δgµν

]
fin

, (F.7)

into their finite and divergent pieces. We then identify the explicit breaking with

EWeyl ≡ ⟨Tµµ ⟩fin , (F.8)

from which we can deduce the expressions for the anomaly in terms of Wct

AWeyl =
1√
|g|

[
g(d)µν

δWct(d)

δgµν

]
fin

, (F.9)

or equivalently in terms of the effective action W

AWeyl = g(4)µν ⟨Tµν⟩ − ⟨Tµµ ⟩ . (F.10)

196



Appendices

Finite piece in Wct Let us first provide more details about the comment in footnote 6. One
may argue regarding (F.9) that introducing a finite piece in Wct will alter the expression of the
anomaly. In fact (F.9) and (F.8) have to be amended if we include a finite piece in Wct. In the
derivation of Eqs. (F.9) and (F.8) we assumed that the counterterms are in minimal subtraction
form

Wct(d) =
1

d− 4

∫
ddxA(d) . (F.11)

We may parametrise finite counterterms by

W ′
ct(d) = Wct(d) +

∫
d4xB(4) , (F.12)

leading to

W ′
ren(d) = W(d) + W ′

ct(d) , (F.13)

where the effective action is defined from

W(d) = − log

∫
Dϕ e−S[ϕ] . (F.14)

Firstly, the addition of the 4-dimensional term B(4) only amounts to introducing a classical (i.e
independent of ϕ) term in the UV action

W ′
ren(d) = W ′(d) + Wct(d) , (F.15)

with

W ′(d) = − log

∫
Dϕ e−S[ϕ]−

∫
d4xB(4) , (F.16)

hence cannot alter the anomaly, even if it is not Weyl invariant (it would then just be an explicit
breaking).

If we were to proceed with the counterterms W ′
ct instead of Wct, the explicit breaking and

anomaly formulae would need to be amended to

EWeyl ≡ ⟨Tµµ ⟩fin +
1√
|g|
gµν

δ

δgµν

∫
d4xB(4) , AWeyl =

1√
|g|

[
g(d)µν

δ

δgµν

1

d− 4

∫
ddxA(d)

]
fin

,

which are exactly the same as in Eqs. (F.9) and (F.8). The anomaly given in terms of the EMT
(F.10) is unchanged whether we use ⟨Tµν⟩ = 1√

|g|
δW
δgµν

or ⟨T ′µν⟩ = 1√
|g|

δW ′

δgµν
.

The irrevelance of finite terms of Wct regarding the anomaly is the reason why we may use the
tensor

C(d) = RµνρσR
µνρσ − 2RµνR

µν +
1

3
R2 , (F.17)

in (14.6), which reduces to the Weyl tensor squared C(4) = W 2(4) in four dimensions, instead of
the natural extension of the Weyl tensor squared to d dimensions

W 2(d) = RµνρσR
µνρσ − 4

d− 2
RµνR

µν +
2

(d− 2)(d− 1)
R2 . (F.18)

Indeed, this second choice of analytic continuation will only amount to finite terms in Wct since

1

d− 4
W 2(d) =

1

d− 4
C(d) + O(1) . (F.19)
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Explicit breaking counterterms Let us prove a relation that we use regarding the contribution
from Wct that cancels the divergence of the explicit breaking. Since (F.6) is finite we have√

|g|⟨Tµµ ⟩div = −
[
g(d)µν

δWct(d)

δgµν

]
div

. (F.20)

On the other hand, we also use (14.20)

g(4)µν

δWct(d)

δgµν
= −

√
|g|⟨Tµµ ⟩div , (F.21)

in the derivation of (14.21). This relation follows from the fact that g
(4)
µν

δWct(d)
δgµν

= 0 in a classically
Weyl invariant theory. Therefore, in an explicitly broken theory this is exactly the contribution
from Wct that cancels the divergence of the explicit breaking ⟨T ρρ⟩.

When combined, these last two equations imply

g(4)µν

δWct(d)

δgµν
=

[
g(d)µν

δWct

δgµν

]
div

. (F.22)

Let us show this equality explicitly. The most generic form of the counterterms, including again
only P -even operators, is

Wct(d) =
1

d− 4

∫
ddx

√
|g|
(
aE(d) + bR(d)2 + cW (d)2 + f trF (d)2

)
, (F.23)

where the R2-term is introduced since Weyl symmetry is explicitly broken. As shown above, in a

classically Weyl invariant theory we have g
(4)
µν

δWct(d)
δgµν

= 0 (F.3) and g
(d)
µν

δWct
δgµν

is finite (F.2). Hence,

only the R2-term may contribute in (F.22). Let us consider its variation under a generic metric
variation δgµν

1√
|g|
δ
√

|g|R2 =
1

2
gµνR2δgµν − 2RRµνδgµν + 2Rgµν

(
DαδΓ

α
µν −DµδΓ

α
να

)
, (F.24)

where

δΓσµν =
1

2
gσλ (Dνδgµλ +Dµδgνλ −Dλδgµν) . (F.25)

In order to perform the metric differentiation the last term of (F.24) is integrated by parts, using
δgµν(x) −→

x→∞
0. We obtain

δ

δgµν

∫
ddx

√
|g|R2 =

1

2

√
|g|R (gµνR− 4Rµν) + 2

√
|g| (DµDνR− gµν□R) . (F.26)

Finally, using g
(d)
µν g(d),µν = d and g

(4)
µν g(d),µν = 4, as well as (F.2) and (F.3) we obtain

1√
|g|
g(4)µν

δWct(d)

δgµν
= − 6 b

d− 4
□R

1√
|g|
g(d)µν

δWct(d)

δgµν
= X(a, c, f) +

b

2
R2 − 2 b□R− 6 b

d− 4
□R , (F.27)

where X(a, c, f) denotes the contributions from the E, C and F 2 terms which are finite (F.2). As
expected, we confirm (F.22)

g(4)µν

δWct(d)

δgµν
= − 6 b

d− 4
□R =

[
g(d)µν

δWct

δgµν

]
div

. (F.28)

This is the contribution from Wct that cancels the divergence of the explicit breaking ⟨T ρρ⟩. Once
again, this relation still holds when P -odd operators are included in Wct since they vanish at the
level of δWct/δgµν .
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Constraints on the
Energy-momentum Tensor

In this appendix, we discuss the basis of P -odd operators, and we detail how to enforce the diffeo-
Lorentz constraints. D denotes the total covariant derivative.

Let us recall the generic ansatz (14.31)

T αβ
ct =

1√
|g|
δWct

δgαβ
=e gαβRR̃+

1

d− 4

{
e1 g

αβRR̃+ e2 P
αβ + e3Q

(αβ) + e4 S
(αβ)

+ a1 g
αβR2 + a2 g

αβRµνR
µν + a3 g

αβRµνρσR
µνρσ + a4 g

αβ□R

+ b1RR
αβ + b2R

αλRβλ + b3RµνR
µανβ + b4R

αλµνRβλµν

+ c1D
αDβR+ c2□R

αβ

}
, (G.1)

with the symmetrisation of indices t(µν) = 1
2(tµν + tνµ) . The P -odd coefficients are constrained by

(14.24)
2 e1 + e2 + e3 = 0 . (G.2)

Parity-odd operators basis

Let us try to write all possible parity-odd 2-tensors of mass dimension four depending only on
curvature invariants. Firstly, by enumeration it is possible to show that there exists no P -even
antisymmetric 2-tensor, therefore we have ϵαβµνOµν = 0 where O is a P -even 2-tensor. Secondly,
due to the Bianchi identities one has ϵανρσRβνρσ = 0 and ϵµνρσDνRαβρσ = 0. Using this result, any
operator can be related to these by Bianchi identities and algebra

gαβRR̃ = gαβ
1

2
ϵµνρσRγδµνR

γδ
ρσ , (G.3)

Pαβ = ϵµνρσRαλµνR
λ
β ρσ ,

Qαβ = ϵ νρσ
α RβνγδR

γδ
ρσ ,

Sαβ = ϵ νρσ
α RβλρσR

λ
ν = −ϵ νρσ

α DνDγR
γ
β ρσ .

However, upon using the intrinsically four-dimensional Schouten identity [208], we obtain

Pαβ = Qαβ =
1

2
gαβRR̃ , Sαβ = 0 , (G.4)
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showing that these operators are not independent in d = 4. These relations can also directly be
obtained from Ref.[210], or from useful applications of the Schouten identities (e.g. [209]).

Diffeomorphism anomaly constraint

The finiteness of diffeomorphism anomaly is ensured by

DαT αβ
ct = 0 . (G.5)

Using Bianchi identities and algebra, it is possible to write the P -even part of the divergence of Tct
in terms of independent operators as

DαT αβ
ct

∣∣∣
P−even

= (a4 + c1 +
1

2
c2)□D

βR+ (−a4 + b1 +
1

2
b2 +

1

2
c2)R

βµDµR (G.6)

+ (2 a2 + b3 − c2)R
µνDβRµν + (2 a1 +

1

2
b1)RD

βR

+ (2 a3 +
1

2
b4)R

µνρσDβRµνρσ + (b2 − b3 + 2 c2)R
µνDµR

β
ν

+ (−b3 − 2 b4 + 2 c2)R
β
νρσD

σRνρ .

Note that it is not allowed to use integrations by parts at this level (besides DαT αβ
ct is itself a

boundary term). Imposing DαT αβ
ct

∣∣∣
P−even

= 0 yields seven constraints on the ten parameters

associated to the P -even operators. They can be recast to obtain (14.38).
Concerning the P -odd part, it is possible to write the divergence as

DνT µν
ct |P−odd = 2 eWµ(4) +

1

d− 4

{
2 e1W

µ + e2 (2V µ +Wµ)

+
e3
2

(2Xµ + Y µ +Wµ) +
e4
2

(Xµ + V µ + 2Zµ)

}
= 0 , (G.7)

where

V µ = ϵαβγδRµλαβDγRλδ , Wµ = ϵαβγδRωλγδDωR
µ
λαβ ,

Xµ = ϵµλαβR γδ
αβ DγRδλ , Y µ = ϵµλαβRωλγδDωR

γδ
αβ , Zµ = ϵµλαβRγλDαR

γ
β .

Some of these operators may be related by the Schouten identity in d = 4 only. They are not
related by Bianchi identities either and are thus independent. Additionally, the pole and the finite
parts in (G.7) are independent. Contrary to the P -even part, the system (G.7) is overconstrained
leaving the sole solution

e = e1 = e2 = e3 = e4 = 0 . (G.8)
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[207] M. Gürses, T.c. Şişman and B. Tekin, Is there a novel Einstein–Gauss–Bonnet theory in
four dimensions?, Eur. Phys. J. C 80 (2020) 647 [2004.03390].

[208] E. Remiddi and L. Tancredi, Schouten identities for Feynman graph amplitudes; The Master
Integrals for the two-loop massive sunrise graph, Nucl. Phys. B 880 (2014) 343 [1311.3342].

211

https://doi.org/10.1016/0003-4916(85)90383-5
https://doi.org/10.1016/0370-2693(78)90857-2
https://doi.org/10.1016/0550-3213(78)90450-9
https://doi.org/10.1016/0370-2693(78)90472-0
https://doi.org/10.1103/PhysRevD.17.2567
https://doi.org/10.1103/PhysRevD.18.1849
https://doi.org/10.1016/0370-2693(82)90723-7
https://doi.org/10.1016/0550-3213(83)90022-6
https://doi.org/10.1016/0370-1573(85)90138-3
https://doi.org/10.1016/0370-1573(85)90138-3
https://doi.org/10.1088/0264-9381/11/6/004
https://arxiv.org/abs/hep-th/9308075
https://doi.org/10.1016/j.physletb.2018.10.034
https://arxiv.org/abs/1809.06681
https://doi.org/10.1088/1751-8121/ab956d
https://arxiv.org/abs/2003.02688
https://arxiv.org/abs/2312.07666
https://doi.org/10.1140/epjc/s10052-023-11984-z
https://arxiv.org/abs/2307.03038
https://doi.org/10.1007/JHEP07(2020)027
https://arxiv.org/abs/2004.09472
https://doi.org/10.1140/epjc/s10052-020-8200-7
https://arxiv.org/abs/2004.03390
https://doi.org/10.1016/j.nuclphysb.2014.01.009
https://arxiv.org/abs/1311.3342


Bibliography

[209] M. Chala, A. Dı́az-Carmona and G. Guedes, A Green’s basis for the bosonic SMEFT to
dimension 8, JHEP 05 (2022) 138 [2112.12724].

[210] Y. Chung, C.-O. Hwang and H.S. Yang, Algebraic Properties of Riemannian Manifolds,
2206.08108.

[211] A. Cappelli and A. Coste, On the Stress Tensor of Conformal Field Theories in Higher
Dimensions, Nucl. Phys. B 314 (1989) 707.

[212] A. Cappelli, D. Friedan and J.I. Latorre, C theorem and spectral representation, Nucl. Phys.
B 352 (1991) 616.

[213] W. Siegel, Inconsistency of Supersymmetric Dimensional Regularization, Phys. Lett. B 94
(1980) 37.

[214] D. Stockinger, Regularization by dimensional reduction: consistency, quantum action
principle, and supersymmetry, JHEP 03 (2005) 076 [hep-ph/0503129].

[215] S.J. Hathrell, Trace Anomalies and λϕ4 Theory in Curved Space, Annals Phys. 139 (1982)
136.

[216] V. Prochazka and R. Zwicky, On the Flow of □R Weyl-Anomaly, Phys. Rev. D 96 (2017)
045011 [1703.01239].

[217] R. Zwicky, The Dilaton Improves Goldstones, 2306.12914.

[218] L. Sartore, Multi-scale theories beyond tree-level and the renormalisation group : Theory
and applications, Ph.D. thesis, LPSC, Grenoble, 2022.

[219] C. Ford, I. Jack and D.R.T. Jones, The Standard model effective potential at two loops,
Nucl. Phys. B 387 (1992) 373 [hep-ph/0111190].

[220] L. Alvarez-Gaume, D.Z. Freedman and S. Mukhi, The Background Field Method and the
Ultraviolet Structure of the Supersymmetric Nonlinear Sigma Model, Annals Phys. 134
(1981) 85.

[221] F.A. Dilkes and D.G.C. McKeon, Off diagonal elements of the DeWitt expansion from the
quantum mechanical path integral, Phys. Rev. D 53 (1996) 4388 [hep-th/9509005].

[222] L. Brewin, Riemann Normal Coordinate expansions using Cadabra, Class. Quant. Grav. 26
(2009) 175017 [0903.2087].
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