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Actions rationnelles de schémas en groupes infinitésimaux

Résumé : Cette thèse porte sur l’étude des actions (rationnelles) des schémas en
groupes infinitésimaux, avec un accent particulier sur les schémas en groupes infinitésimaux
commutatifs unipotents et les actions génériquement libres et les actions fidèles. Pour tout
k-schéma en groupes fini G agissant rationnellement sur une k-variété X, si l’action est
génériquement libre, alors la dimension de l’algèbre Lie(G) est majorée par la dimension
de la variété. Nous montrons que c’est la seule obstruction lorsque k est un corps parfait
de caractéristique positive et que G est infinitésimal commutatif trigonalisable. Si G
est unipotent, nous montrons aussi que toute action rationnelle génériquement libre sur
X du noyau de (toute puissance du) Frobenius de G s’étend à une action rationnelle
génériquement libre de G sur X. De plus, nous donnons des conditions nécessaires pour
avoir des actions rationnelles fidèles de schémas en groupes infinitésimaux commutatifs
trigonalisables sur des variétés, et des conditions suffisantes (différentes) dans le cas
unipotent sur un corps parfait.

L’étude des actions fidèles des schémas en groupes sur une variété X fournit des
informations sur les sous-groupes représentables du foncteur-groupe des automorphismes
AutX de X. Pour tout corps k, PGL2,k représente le foncteur-groupe des automorphismes
de P1

k et donc les sous-schémas en groupes de PGL2,k correspondent aux actions fidèles sur
P1
k. De plus, PGL2,k(k) coïncide avec le groupe de Cremona en dimension un, c’est-à-dire

les morphismes birationnels de P1
k, puisque toute application rationnelle d’une courbe

projective non singulière dans elle-même s’étend à la courbe entière. En caractéristique
positive, la situation est complètement différente si l’on considère les actions rationnelles
de schémas en groupes infinitésimaux. La plupart des actions infinitésimales fidèles sur la
droite affine ne s’étendent pas à P1

k. Si la caractéristique d’un corps k est impaire, tout
sous-schéma en groupes infinitésimal de PGL2,k se relève à SL2,k. Ceci n’est pas vrai en
caractéristique 2 et, dans ce cas, nous donnons une description complète, à isomorphisme
près, des sous-schémas en groupes infinitésimaux unipotents de PGL2,k.

Enfin, nous prouvons un résultat qui donne une description explicite de tous les
k-schémas en groupes infinitésimaux commutatifs unipotents avec algèbre de Lie unidi-
mensionnelle définis sur un corps algébriquement clos k, montrant qu’il y a exactement n
tels schémas en groupes non isomorphes d’ordre fixé pn.

Mots-clés : schémas en groupes ; actions rationnelles ; torseurs ; algèbres de Hopf ;
opérateurs différentiels ; algèbre de Lie ; smash product.
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Rational actions of infinitesimal group schemes

Abstract: This thesis focuses on the study of (rational) actions of infinitesimal
group schemes, with a particular emphasis on infinitesimal commutative unipotent group
schemes and generically free actions and faithful actions. For any finite k-group scheme
G acting rationally on a k-variety X, if the action is generically free then the dimension
of Lie(G) is upper bounded by the dimension of the variety. We show that this is the
only obstruction when k is a perfect field of positive characteristic and G is infinitesimal
commutative trigonalizable. If G is unipotent, we also show that any generically free
rational action on X of (any power of) the Frobenius kernel of G extends to a generically
free rational action of G on X. Moreover, we give necessary conditions to have faithful
rational actions of infinitesimal commutative trigonalizable group schemes on varieties,
and (different) sufficient conditions in the unipotent case over a perfect field.

Studying faithful group scheme actions on a variety X yields information on rep-
resentable subgroups of the automorphism group functor AutX of X. For any field k,
PGL2,k represents the automorphism group functor of P1

k and thus subgroup schemes of
PGL2,k correspond to faithful actions on P1

k. Moreover, PGL2,k(k) coincides with the Cre-
mona group in dimension one, i.e. birational self-maps of P1

k, since any rational self-map
of a projective non-singular curve extends to the whole curve. In positive characteristic,
the situation is completely different if we consider rational actions of infinitesimal group
schemes. Most of the faithful infinitesimal actions on the affine line do not extend to
P1
k. If the characteristic of a field k is odd, any infinitesimal subgroup scheme of PGL2,k

lifts to SL2,k. This is not true in characteristic 2 and, in this case, we give a complete
description, up to isomorphism, of infinitesimal unipotent subgroup schemes of PGL2,k.

Finally, we prove a result that gives an explicit description of all infinitesimal com-
mutative unipotent k-group schemes with one-dimensional Lie algebra defined over an
algebraically closed field k, showing that there are exactly n non-isomorphic such group
schemes of fixed order pn.

Keywords: group schemes; rational actions; torsors; Hopf algebras; differential operators;
Lie algebra; smash products.
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Résumé substantiel en français

Cette thèse se concentre sur l’étude des actions (rationnelles) des schémas en groupes
infinitésimaux, avec un accent particulier sur les schémas en groupes infinitésimaux
commutatifs unipotents et sur les actions génériquement libres et les actions fidèles. Ces
schémas en groupes n’existent qu’en caractéristique positive et des exemples apparaissent
en regardant la p-torsion des variétés abéliennes.

L’intérêt pour ce sujet a de multiples motivations. Soit k un corps et X un k-schéma.
Le foncteur en groupes des automorphismes AutX de X qui associe à tout k-schéma S
le groupe des S-automorphismes AutS(X ×k S) n’est pas représentable en général. Cet
objet a été largement étudié : on sait par exemple que si X est propre, alors AutX est
un k-schéma en groupes localement de type fini [MO67]. Si K/k est une extension finie
purement inséparable, le schéma en groupes des automorphismes AutK := AutSpec(K) a
été étudié par exemple par [Beg69] et [Cha72].

Pour G un k-schéma en groupes, il existe une bijection entre les G-actions G×kX → X
sur X et les homomorphismes de foncteurs en groupes G→ AutX . Si l’action de G est
fidèle, alors G est un sous-foncteur en groupes de AutX . L’étude des actions fidèles des
schémas en groupes fournit alors des informations sur les sous-groupes représentables de
AutX . Lorsque Y est le point générique d’une variété X (schéma séparé, géométriquement
intègre de type fini) et que G est un k-schéma en groupes fini, se donner une G-action sur
Y = Spec(k(X)) équivaut à se donner une G-action rationnelle sur X. L’étude de telles
actions rationnelles fidèles apporte alors des connaissances sur le foncteur en groupes des
automorphismes AutK des extensions séparables finiment engendrées K/k.

Lorsque K = k(t1, . . . , tn) est une extension transcendante pure de k, alors AutK(k)
coïncide avec le groupe de Cremona Crn(k) = Birk(Pnk) en dimension n, qui est par
définition le groupe des automorphismes birationnels de Pnk . Le groupe de Cremona
a été profondément étudié en caractéristique zéro, alors qu’il a été moins étudié en
caractéristique positive (voir par exemple l’étude [Dol10]). Dolgachev a formulé la
conjecture suivante pour le groupe de Cremona sur un corps de caractéristique positive.

Conjecture. Si k est un corps de caractéristique p > 0, le groupe de Cremona Crn(k) ne
contient pas d’élément d’ordre ps pour s > n [Dol10, Conjecture 37].

La conjecture est vraie pour n = 1 puisque PGL2(k) ≃ Autk(k(t)) ne contient pas
d’élément d’ordre p2 si car(k) = p > 0. De plus, cette conjecture a été prouvée pour
n = 2 [Dol09]. La conjecture peut être reformulée de la manière suivante : s’il existe une
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action rationnelle fidèle d’un p-groupe commutatif fini G sur Pnk alors pnG = 0, où pG est le
morphisme de multiplication par p sur G. En effet, il existe une correspondance bijective
naturelle entre les actions fidèles d’un p-groupe commutatif fini G sur k(t1, . . . , tn) et les
actions rationnelles fidèles du schéma en groupes constant correspondant sur Pnk .

Dans cette thèse, nous nous intéressons aux actions rationnelles des schémas en
groupes infinitésimaux. L’analogue de la conjecture de Dolgachev pour les schémas
en groupes unipotents commutatifs infinitésimaux apparaît naturellement de l’une des
manières suivantes : si k est un corps de caractéristique p > 0 et G est un k-schéma en
groupes infinitésimal commutatif unipotent, s’il existe une action rationnelle fidèle de
G sur Pnk , alors pnG = 0 (ou peut-être V n

G = 0, où VG est le morphisme de décalage de
G). Les deux options s’avèrent fausses. En effet, par exemple, toute courbe admet des
actions rationnelles fidèles de la pn-torsion E[pn] d’une courbe elliptique supersingulière E
(puisque dans ce cas E[pn] est un k-schéma en groupes infinitésimal commutatif unipotent
avec algèbre de Lie unidimensionnelle et donc le Théorème 1 s’applique) mais VE[pn] ≠ 0,
et pE[pn] ̸= 0 si n > 1.

Ce qui est vrai, c’est que s’il existe une action rationnelle fidèle de G sur une k-variété
de dimension n, alors V n

ker(FG) = 0. Nous donnons une preuve de ce résultat dans la section
3.3 du chapitre 3. L’implication inverse n’est pas toujours vraie : nous montrons que par
exemple il n’existe pas d’action rationnelle fidèle de la p-torsion d’une variété abeliénne
superspéciale de dimension au moins 2 sur des courbes. De plus, nous montrons qu’il
existe des actions rationnelles fidèles de tout schéma en groupes infinitésimal commutatif
unipotent G défini sur un corps parfait sur toute variété de dimension n si V n

G = 0.
Nous nous intéressons plus précisément aux actions rationnelles qui sont génériquement

libres. En effet, en caractéristique positive, toutes les actions fidèles n’admettent pas un
sous-ensemble ouvert et dense U ⊆ X qui soit G-stable et tel que l’action de G sur U soit
libre. Pour tout k-schéma en groupes fini G agissant rationnellement sur une k-variété
X, si l’action est génériquement libre, alors la dimension de l’algèbre de Lie de G Lie(G)
est majorée par la dimension de la variété. Dans l’un des principaux résultats de cette
thèse, nous montrons que cette inégalité est la seule obstruction lorsque k est un corps
parfait de caractéristique positive et que G est infinitésimal commutatif trigonalisable. Si
G est unipotent, nous montrons aussi que toute action rationnelle génériquement libre
sur X du noyau de (toute puissance du) Frobenius de G s’étend à une action rationnelle
génériquement libre de G sur X.

Théorème 1. Soit k un corps parfait de caractéristique p > 0 et G un k-schéma en
groupes infinitésimal commutatif unipotent avec algèbre de Lie de dimension s. Alors pour
toute k-variété X de dimension ≥ s il existe des actions rationnelles génériquement libres
de G sur X. De plus, pour tout r ≥ 1, toute action rationnelle génériquement libre de
ker(F rG) sur X peut être étendue à une action rationnelle génériquement libre de G sur
X.

La preuve que nous donnons est constructive et permet d’écrire explicitement de telles
actions : nous terminons la section 3.2 du chapitre 3 avec plusieurs exemples le montrant
concrètement. La difficulté est de construire des actions en basse dimension, c’est-à-dire
proche de la dimension de Lie(G).
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Remarquons que si un k-schéma en groupes infinitésimal commutatif unipotent G
avec algèbre de Lie de dimension n peut être plongé dans un groupe algébrique lisse
connexe G de dimension n, alors G agit de manière génériquement libre sur G (par
multiplication). Brion a demandé si, déjà dans le cas unidimensionnel, il y a des exemples
différents qui apparaissent [Bri22] et de plus si ces schémas en groupes sont toujours
commutatifs (voir aussi [Fak20, Remark 2.10]). Nous répondons à ces questions en
montrant qu’il existe des actions rationnelles génériquement libres sur des courbes de
schémas en groupes infinitésimaux commutatifs unipotents qui ne sont pas des sous-
groupes d’un groupe algébrique unidimensionnel lisse et connexe et qu’il existe des actions
rationnelles génériquement libres de schémas en groupes infinitésimaux non-commutatifs
sur des variétés.

En général, il n’est pas facile de décrire explicitement les schémas en groupes unipotents
commutatifs infinitésimaux. Par exemple, ceux qui proviennent de la p-torsion d’une
variété abélienne (avec p-rang zéro) ne sont pas complètement compris et augmentent en
complexité lorsque la dimension croît. Une description explicite de ces schémas en groupes,
par exemple en termes de leur algèbre de Hopf, est utile pour construire des actions de ces
schémas en groupes sur les variétés. Dans cette thèse, on donne une description explicite
de tous les k-schémas en groupes infinitésimaux commutatifs unipotents avec algèbre de
Lie unidimensionnelle définie sur un corps algébriquement clos k, répondant partiellement
à une question de Fakhruddin (voir [Fak20, Remark 2.10]). Précisément, nous montrons
que :

Théorème 2. Si k = k est un corps de caractéristique p > 0, pour tout n ≥ 1, il existe
exactement n k-schémas en groupes infinitésimaux commutatifs unipotents non-isomorphes
d’ordre pn et avec algèbre de Lie unidimensionnelle. Il s’agit des schémas en groupes de
la forme

Wn
n [V − F i] := ker(V − F i : Wn

n →Wn
n )

pour i = 1, . . . , n.

Ce résultat est connu pour les schémas en groupes infinitésimaux commutatifs unipo-
tents d’ordre ≤ p3 grâce à [Oor66, (15.5)] et [NWW15, Théorème 1.1].

Parmi ces schémas en groupes, les seuls qui soient contenus dans un groupe algébrique
unidimensionnel lisse et connexe sont αpn et Wn

n [F − V ] (le premier est un sous-schéma
en groupes de Ga et le second est contenu dans la pn-torsion d’une courbe elliptique
supersingulière) pour tout n ≥ 1. Tous les autres sont des exemples de schémas en groupes
infinitésimaux qui agissent de manière génériquement libre sur toute courbe, mais ne sont
pas des sous-schémas en groupes d’un groupe algébrique unidimensionnel lisse et connexe.
En outre, Wn

n [F − V ] est le seul schéma en groupes self-dual de la liste. Si l’on considère
des schémas en groupes infinitésimaux commutatifs unipotents avec algèbre de Lie de
dimension supérieure, ce n’est plus le cas : en effet, la p-torsion de toute variété abélienne
principalement polarisée de dimension g et de p-rang zéro, est un schéma en groupes
infinitésimal commutatif unipotent, et il existe pg−1 classes d’isomorphisme différentes de
telles variétés.
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Fakhruddin a prouvé que si G est infinitésimal et Y est une courbe projective normale
avec une action rationnelle de G, s’il existe une variété projective normale X avec une
action de G et une application rationnelle dominante G-équivariante X 99K Y , alors
l’action rationnelle de G sur Y s’étend de façon unique à une action de G sur Y [Fak20,
Proposition 2.2]. En particulier, dans la situation ci-dessus, si Y est la droite projective et
que l’action est fidèle, alors G est un sous-schéma en groupes de PGL2,k. La plupart des
schémas en groupes infinitésimaux unipotents avec algèbre de Lie unidimensionnelle ne
sont pas contenus dans PGL2,k, mais pour tous ceux-ci, il existe des actions rationnelles
génériquement libres sur la droite projective. Par conséquent, la plupart de ces actions
rationnelles sur la droite projective ne sont pas induites par des actions, définies partout,
sur des variétés normales projectives de dimension supérieure.

Si la caractéristique d’un corps k est impaire, tout sous-schéma en groupes infinitésimal
de PGL2,k se relève à SL2,k. Une partie de cette thèse est consacrée à montrer que ce n’est
plus vrai en caractéristique 2 et nous donnons une description complète, à isomorphisme
près, des sous-schémas en groupes infinitésimaux unipotents de PGL2,k. Nous considérons
également le cas infinitésimal trigonalisable.

Dans son article [Bea10], Beauville a classifié, à conjugaison près, tous les sous-groupes
finis de PGL2(k) d’ordre premier à la caractéristique. Nous nous intéressons ici au cas
opposé, les sous-schémas en groupes infinitésimaux. Il semble que ce soit un fait accepté
que tout sous-schéma en groupes infinitésimal de PGL2,k se relève à GL2,k. En particulier,
tout sous-schéma en groupes infinitésimal unipotent de PGL2,k serait un sous-schéma
en groupes de Ga,k, et il serait donc isomorphe à αpn,k pour un certain n ≥ 0. Nous
prouvons que ce n’est pas vrai si la caractéristique du corps est 2. Le résultat est par
contre vrai si la caractéristique est impaire et nous en donnons une preuve.

Pour tout corps k, PGL2,k représente le foncteur en groupes des automorphismes de
P1
k. L’étude des sous-schémas en groupes correspond donc aux actions fidèles sur P1

k. De
plus, PGL2,k(k) coïncide avec le groupe de Cremona en dimension un, c’est-à-dire les
transformations birationnelles de P1

k, puisque toute application rationnelle d’une courbe
projective non-singulière s’étend à la courbe entière. En caractéristique positive, la
situation est complètement différente si l’on considère les actions rationnelles des schémas
en groupes infinitésimaux. La plupart des actions infinitésimales fidèles de la droite affine
ne s’étendent pas à P1

k. Par exemple, toutes les actions fidèles de αnp , avec n ≥ 4, sur A1
k

ne s’étendent pas à P1
k, puisque PGL2,k a dimension 3 et que l’algèbre de Lie de αnp a

dimension n. Le résultat que nous montrons est le suivant :

Théorème 3. Soit k un corps de caractéristique 2.

1. Les sous-schémas en groupes infinitésimaux unipotents de PGL2,k sont exactement,
à isomorphisme près, les sous-schémas en groupes du produit semi-direct α2n,k⋊α2,k,
avec n ≥ 1, où l’action de α2,k sur α2n,k est donnée par a · b = b+ ab2

2. Si k est parfait, tout sous-schéma en groupes infinitésimal trigonalisable, non unipo-
tent, de PGL2,k est isomorphe à µ2l,k ou au produit semi-direct de µ2l,k, pour un
certain l ≥ 1, par l’un des deux schémas en groupes unipotents
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(a) le produit semi-direct α2n,k ⋊ α2, avec ≥ 1, où l’action de α2,k sur α2n,k est
donnée par a · b = b+ ab2.

(b) α2n,k

pour une action non-triviale de µ2l,k.

Une description explicite de tous ces schémas en groupes sera donnée. Alors que
le théorème ci-dessus donne une classification complète des sous-schémas en groupes
infinitésimaux unipotents de PGL2,k, pour les schémas en groupes trigonalisables nous ne
savons pas si, pour toute action non-triviale de µ2l,k sur les schémas en groupes unipotents
apparaissant en (a), le produit semi-direct associé agit fidèlement sur P1

k. Nous prouvons
qu’il existe au moins une action de µ2l,k sur tout schéma en groupes unipotent qui apparaît
dans (a) de telle sorte que le produit semi-direct associé agisse fidèlement sur P1

k. Dans le
cas commutatif et sur un corps algébriquement clos, on obtient la classification complète
suivante :

Corollaire. Soit k un corps algébriquement clos de caractéristique 2. La liste des sous-
schémas en groupes commutatifs infinitésimaux de PGL2,k, à isomorphisme près, est la
suivante :

1. α2n,k, pour n ≥ 0,

2. α2,k ×k α2,k,

3. la 2-torsion d’une courbe elliptique supersingulière,

4. µ2n, pour n > 0.

Dans [Kno95] Knop a classifié les sous-schémas en groupes de SL2,k. Bien sûr, il serait
possible d’en déduire nos résultats en calculant le quotient de tous les sous-schémas en
groupes infinitésimaux trigonalisables de SL2,k. En fait, dans notre approche, il suffit
de connaître les sous-schémas en groupes infinitésimaux unipotents de SL2,k, ce qui est
beaucoup plus facile.

Il y existe un lien entre ce travail et la notion de dimension essentielle. De manière
informelle, la dimension essentielle d’un objet algébrique est un entier qui mesure sa
complexité. Cette notion a été introduite par Buhler et Reichstein dans [BR97] pour les
groupes finis et a ensuite été étendue par Merkurjev pour les foncteurs de la catégorie des
extensions de corps d’un corps de base fixé k vers la catégorie des ensembles [BF03].

Pour un k-schéma en groupes G, sa dimension essentielle edk(G) calcule, en gros, le
nombre de paramètres nécessaires pour définir tous les G-torseurs sur tous les schémas sur
k. Tossici a conjecturé que si k est un corps de caractéristique positive et G un k-schéma
en groupes fini commutatif unipotent, alors edk(G) ≥ nV (G) où nV (G) est l’ordre de
nilpotence du morphisme de décalage de G [Tos19, Conjecture 1.4]. On sait que cette
conjecture est vraie pour nV (G) = 2 d’après Fakhruddin [Fak20, Théorème 1.1]. L’espoir
est que les résultats de cette thèse permettront de progresser dans la démonstration de
cette conjecture dans le cas infinitésimal.
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Dans l’appendice de ce travail, nous nous concentrons sur l’algèbre du smash-produit,
un objet non-commutatif intéressant qui apparaît naturellement lors de l’étude des actions
des schémas en groupes commutatifs finis. Un exemple de smash-produit est donné par
l’algèbre des polynômes d’Ore K[X; θ, ∂] où θ est un automorphisme du corps K, ∂ est
une θ-dérivation (∂(ab) = θ(a)∂(b) + ∂(a)b pour tout a, b ∈ K) et la loi de multiplication
est donnée par Xa = θ(a)X + ∂(a) pour tout a ∈ K.

La motivation principale pour le contenu de l’appendice provient de notre intérêt à
pouvoir faire des calculs avec des dérivations et des opérateurs différentiels, ce qui est
nécessaire lorsqu’on traite des actions de schémas en groupes infinitésimaux commutatifs
unipotents. Il s’avère que faire des calculs de ce type est équivalent à les faire dans une
algèbre de smash-produit définie de manière appropriée. L’utilisation du formalisme des
smash-produits s’est avérée très utile pour mieux comprendre et avoir des intuitions à ce
niveau.

Les smash-produits ont également un lien avec la théorie du codage. Les polynômes
d’Ore y trouvent des applications importantes et sont utilisés pour construire les codes de
Gabidulin [Gab85] et les codes de Reed-Solomon linéarisés [Mar18]. Ces deux familles de
codes sont la contrepartie, respectivement dans la rank metric et dans la sum-rank metric,
des codes de Reed-Solomon [RS60], qui sont l’une des familles de codes linéaires les plus
utilisées dans la métrique de Hamming (centrale depuis les années 50 dans la théorie de
la correction d’erreurs). Les codes dans la rank metric ont été introduits pour la première
fois par Delsarte [Del78], tandis que ceux dans la sum-rank metric sont de définition plus
récente (une référence pour la théorie des codes en sum-rank metric est [MSK22]).

Les codes en géométrie algébrique, une généralisation des codes de Reed-Solomon,
ont été introduits par Goppa [Gop82] et sont construits en évaluant les espaces de
fonctions en des points rationnels sur des courbes algébriques. Dans [BC23] Berardini et
Caruso définissent les codes en géométrie algébrique linéarisés, la première construction
géométrique de codes dans la sum-rank metric à partir de courbes algébriques. Leur
définition est obtenue en considérant des torseurs sous le k-schéma en groupes commutatif
constant fini G = Z/rZ. Des constructions similaires peuvent être réalisées pour les
torseurs sous n’importe quel k-schéma en groupes commutatif fini. Ceci pourrait nous
fournir un plus grande collection de codes en géométrie algébrique linéarisés.

Les principaux résultats contenus dans l’appendice concernent l’étude des endomor-
phismes de certaines algèbres de smash-produits, ainsi qu’une généralisation des résultats
de Chase et Sweedler [CS69, Theorems 9.3] et Gamst et Hoechsmann [GH69] autour des
smash-produits qui sont des algèbres d’Azumaya.
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Introduction

This thesis focuses on the study of (rational) actions of infinitesimal group schemes,
with a particular emphasis on infinitesimal commutative unipotent group schemes and
generically free actions and faithful actions. These group schemes exist only in positive
characteristic and examples arise looking at the p-torsion of abelian varieties.

The interest in this topic has multiple motivations that we will explain in this
introduction. Let k be a field and X be a k-scheme. The automorphism group functor
AutX of X that associates to every k-scheme S the group of S-automorphisms AutS(X×k
S) is not representable in general. This object has been extensively studied: it is known
for example that if X is proper then AutX is represented by a k-group scheme locally of
finite type [MO67]. If K/k is a finite purely inseparable field extension, the automorphism
group scheme AutK := AutSpec(K) has been studied for example by [Beg69] and [Cha72].

For G a k-group scheme, there is a bijection between G-actions G ×k X → X on
X and group functor homomorphisms G → AutX . If the G-action is faithful, then
G is a subgroup functor of AutX . Studying faithful group scheme actions yields then
information on representable subgroups of AutX . When Y is the generic point of a
variety X (separated, geometrically integral scheme of finite type) and G is a finite
k-group scheme, to give a G-action on Y = Spec(k(X)) is equivalent to giving a rational
G-action on X. Studying such faithful rational actions imparts then knowledge on the
automorphism group functor AutK of separable finitely generated extensions K/k.

When K = k(t1, . . . , tn) is a purely transcendental extension of k, then AutK(k)
coincides with the Cremona group Crn(k) = Birk(Pnk) in dimension n, that is by definition
the group of birational automorphisms of Pnk . The Cremona group has been deeply studied
in characteristic zero, while it has been less investigated in positive characteristic (see for
example the survey [Dol10]). Dolgachev made the following conjecture for the Cremona
group over a field of positive characteristic.

Conjecture. If k is a field of characteristic p > 0, the Cremona group Crn(k) does not
contain elements of order ps for s > n [Dol10, Conjecture 37].

The conjecture is true for n = 1 since PGL2(k) ≃ Autk(k(t)) does not contain elements
of order p2 if char(k) = p > 0. Moreover, it was proven for n = 2 [Dol09]. The conjecture
can be rephrased in the following way: if there exists a faithful rational action of a
finite commutative p-group G on Pnk then pnG = 0, where pG is the multiplication by
p morphism on G. Indeed there is a natural correspondence between faithful actions

15
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of a finite commutative p-group G on k(t1, . . . , tn) and faithful rational actions of the
corresponding constant group scheme on Pnk .

In this thesis we are interested in rational actions of infinitesimal group schemes.
The analogous of Dolgachev’s conjecture for infinitesimal commutative unipotent group
schemes arises naturally in one of the following ways: if k is a field of characteristic p > 0
and G is an infinitesimal commutative unipotent k-group scheme, if there exists a faithful
rational G-action on Pnk , then pnG = 0 (or maybe V n

G = 0, where VG is the Verschiebung
morphism of G). Both options turn out not to be true. Indeed, for example any curve
admits faithful rational actions of the pn-torsion E[pn] of a supersingular elliptic curve
E (since in this case E[pn] is an infinitesimal commutative unipotent k-group scheme
with one-dimensional Lie algebra and thus Theorem 3.2.13 applies) but VE[pn] ̸= 0, and
pE[pn] ̸= 0 if n > 1.

What is indeed true is that if there exists a faithful rational G-action on a k-variety
X of dimension n, then V n

ker(FG) = 0. More precisely:

Proposition 3.3.6. Let G be an algebraic k-group scheme with commutative Frobenius
kernel and X be a k-variety of dimension n. If there exists a faithful rational G-action on
X, then s = dimk(Lie(ker(FG)

m)) ≤ n and V n−s
ker(FG)u = 0, where ker(FG)

m is the maximal
k-subgroup scheme of multiplicative type of ker(FG) and ker(FG)

u := ker(FG)/ ker(FG)
m.

We give a proof of this result in Section 3.3 of Chapter 3. The inverse implication of
Proposition 3.3.6 does not always hold true, see Example 3.3.7. In the diagonalizable case,
these actions are well understood and the converse statement is known. Moreover, we
show that there exist faithful rational actions of any infinitesimal commutative unipotent
group scheme G defined over a perfect field on any variety of dimension n if V n

G = 0
(Proposition 3.3.10). As a consequence, the converse of Proposition 3.3.6 holds true over
a perfect field for infinitesimal commutative unipotent k-group schemes of height one.

We are more precisely interested in rational actions which are generically free. Indeed
in positive characteristic not all faithful actions admit an open dense subset U ⊆ X that
is G-stable and such that the action of G on U is free. For any finite k-group scheme G
acting rationally on a k-variety X, if the action is generically free then the dimension of
Lie(G) is upper bounded by the dimension of the variety. One of the main results of this
thesis is the following Theorem, which proves that this bound is the only obstruction to the
existence of generically free rational actions for infinitesimal commutative trigonalizable
group schemes over a perfect field (see Remark 3.2.14). If G is unipotent, we also show
that any generically free rational action on X of (any power of) the Frobenius kernel of G
extends to a generically free rational action of G on X. The proof we give is constructive
and enables one to explicitly write such actions: we end Section 3.2 of Chapter 3 with
several examples showing it concretely.

Theorem 3.2.13. Let k be a perfect field of characteristic p > 0 and G be an infinitesimal
commutative unipotent k-group scheme with Lie algebra of dimension s. Then for every
k-variety X of dimension ≥ s there exist generically free rational actions of G on X.
Moreover, for any r ≥ 1, any generically free rational action of ker(F rG) on X can be
extended to a generically free rational action of G on X.
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The difficulty is to construct actions in low dimension, i.e. close to the dimension
of Lie(G). Indeed, it is not so difficult to construct actions in high dimension for any
infinitesimal trigonalizable group scheme (see Corollary 3.2.6). Combining Theorem
3.2.13 and the diagonalizable case treated by Brion in [Bri22, Section 3] the converse of
Proposition 3.3.6 is true, over a perfect field, for infinitesimal commutative trigonalizable
k-group schemes with Lie algebra of dimension upper bounded by the dimension of
the variety (in particular, if s = dimk(Lie(ker(FG)

d)) and dimk(Lie(G)) ≤ n, then
V n−s
ker(FG)u = 0).

Notice that if an infinitesimal commutative unipotent k-group scheme G with Lie
algebra of dimension n can be embedded in a smooth connected n-dimensional algebraic
group G, then G acts generically freely on it (by multiplication). Brion asked [Bri22] if,
already in the one-dimensional case, there are examples different from these that arise and
moreover if these group schemes are always commutative (see also [Fak20, Remark 2.10]).
Proposition 2.3.12 and Example 2.3.13 combined with Theorem 3.2.13 answer to these
questions. The former shows that there are generically free rational actions on curves of
infinitesimal commutative unipotent group schemes that are not subgroups of a smooth
connected one-dimensional algebraic group. The latter shows that there exist generically
free rational actions of non-commutative infinitesimal group schemes on varieties.

In general, it is not easy to describe explicitly infinitesimal commutative unipotent
group schemes. For example, already those arising as the p-torsion of some abelian
variety (with p-rank zero) are not completely understood and increase in complexity as
the dimension grows. To have an explicit description of such group schemes, for example
in terms of the Hopf algebra representing them, is useful in order to construct actions
of these group schemes on varieties (see for example Proposition 3.1.17). The following
result gives an explicit description of all infinitesimal commutative unipotent k-group
schemes with one-dimensional Lie algebra defined over an algebraically closed field k,
answering partially to a question of Fakhruddin (see [Fak20, Remark 2.10]).

Theorem 2.3.1. Let k be an algebraically closed field of characteristic p > 0. For any
n ≥ 1, there are exactly, up to isomorphism, n infinitesimal commutative unipotent
k-group schemes of order pn and with one-dimensional Lie algebra. They are the group
schemes of the form

Wn
n [V − F i] := ker(V − F i : Wn

n →Wn
n )

for some i = 1, . . . , n.

This result is known for infinitesimal commutative unipotent group schemes of order
≤ p3 thanks to [Oor66, (15.5)] and [NWW15, Theorem 1.1].

Of these group schemes, the only ones that are contained in a smooth connected
algebraic group are αpn and Wn

n [F − V ] (the former is a subgroup of Ga and the latter is
contained in the pn-torsion of a supersingular elliptic curve) for any n ≥ 1, see Proposition
2.3.12. All the others are examples of infinitesimal group schemes that act generically
freely on any curve (by Theorem 3.2.13), but are not subgroups of a smooth connected
one-dimensional algebraic group. Notice moreover that Wn

n [F − V ] is the only self-dual
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group scheme of the list. If one considers infinitesimal commutative unipotent group
schemes with higher dimensional Lie algebra, this is not the case anymore: indeed the
p-torsion of any principally polarized abelian variety of dimension g and p-rank zero,
is an infinitesimal commutative unipotent group scheme, and there exist pg−1 different
isomorphism classes of such varieties (see [Pri08]).

Fakhruddin proved that if G is infinitesimal and Y is a normal projective curve with a
rational action of G, if there exists a normal projective variety X with an action of G and
a G-equivariant dominant rational morphism X 99K Y , then the rational action of G on
Y extends uniquely to an action of G on Y [Fak20, Proposition 2.2]. In particular, in the
above situation, if Y is the projective line and the action is faithful, then G is a subgroup
scheme of PGL2,k. Most unipotent infinitesimal group schemes with one-dimensional
Lie algebra are not contained in PGL2,k, but for all of them there exist generically free
rational actions on the projective line. Therefore, most of these rational actions on the
projective line are not induced by actions, defined everywhere, on projective normal
varieties of higher dimension.

If the characteristic of a field k is odd, any infinitesimal subgroup scheme of PGL2,k

lifts to SL2,k. In the last section of Chapter 3, whose content comes entirely from [GT24],
we prove that this is not true in characteristic 2 and we give a complete description,
up to isomorphism, of infinitesimal unipotent subgroup schemes of PGL2,k. Also, the
infinitesimal trigonalizable case is considered.

In his paper [Bea10], Beauville classified, up to conjugacy, all finite subgroups of
PGL2(k) of order coprime with the characteristic. Here we are interested in the opposite
case, infinitesimal subgroup schemes. It seems that it is quite an accepted fact that
any infinitesimal subgroup scheme of PGL2,k lifts to GL2,k. In particular any unipotent
infinitesimal subgroup scheme of PGL2,k would be a subgroup scheme of Ga,k, and so
it would be isomorphic to αpn,k for some n ≥ 0. We prove that this is not true if the
characteristic of the field is 2. The result is instead true if the characteristic is odd and
we give a proof of it (see Proposition 3.4.4).

For any field k, PGL2,k represents the automorphism group functor of P1
k. So the

study of subgroup schemes corresponds to faithful actions on P1
k. Moreover PGL2,k(k)

coincides with the Cremona group in dimension one, i.e. birational self-maps of P1
k, since

any rational self-map from a projective nonsingular curve extends to the whole curve. In
positive characteristic, the situation is completely different if we consider rational actions
of infinitesimal group schemes. Most of the faithful infinitesimal actions on the affine line
do not extend to P1

k. For instance, all the faithful actions of αnp , with n ≥ 4, on A1
k do

not extend to P1
k, since PGL2,k has dimension 3 and the Lie algebra of αnp has dimension

n. The main result of this section is the following.

Theorem 3.4.1. Let k be a field of characteristic 2.

1. The infinitesimal unipotent subgroup schemes of PGL2,k are exactly, up to isomor-
phism, the subgroup schemes of the semi-direct product α2n,k ⋊ α2,k, with n ≥ 1,
where the action of α2,k on α2n,k is given by s · t = t+ st2.

2. If k is perfect, any infinitesimal trigonalizable, not unipotent, subgroup scheme of
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PGL2,k is isomorphic to µ2l,k or to the semi-direct product of µ2l,k, for some l ≥ 1,
by one of the two unipotent group schemes

(a) the semi-direct product α2n,k ⋊ α2, with n ≥ 1, where the action of α2,k on
α2n,k is given by s · t = t+ st2

(b) α2n,k

for some non-trivial action of µ2l,k.

An explicit description of all these group schemes will be given. While the above
Theorem gives a complete classification of infinitesimal unipotent subgroup schemes of
PGL2,k, for trigonalizable group schemes we do not know if, for any non-trivial action
of µ2l,k over the unipotent group schemes in (a), the associated semi-direct product
acts faithfully on P1

k. We prove that there exists at least one action of µ2l,k over any
unipotent group scheme which appears in (a) such that the associated semi-direct product
acts faithfully on P1

k. In the commutative case, we get a complete classification over an
algebraically closed field.

Corollary 3.4.2. Let k be an algebraically closed field of characteristic 2. The list
of infinitesimal commutative subgroup schemes of PGL2,k, up to isomorphism, is the
following:

1. α2n,k, for some n ≥ 0,

2. α2,k × α2,k,

3. the 2-torsion of a supersingular elliptic curve,

4. µ2n, for some n > 0.

The Corollary follows from Theorem 3.4.1 using Lemma 3.4.7. In [Kno95] Knop
classified subgroup schemes of SL2,k. Of course, it could be possible to deduce our results
by computing the quotient of all infinitesimal trigonalizable subgroup schemes of SL2,k.
In fact, in our approach, we just need to know infinitesimal unipotent subgroup schemes
of SL2,k, which is much easier.

Let us spend also a few words on the existing link between this work and the notion of
essential dimension. Informally speaking, the essential dimension of an algebraic object
is an integer that measures its complexity. This notion was introduced by Buhler and
Reichstein in [BR97] for finite groups and was then extended by Merkurjev for functors
from the category of field extensions of a fixed base field k to the category of sets [BF03].

For a k-group scheme G, its essential dimension edk(G) computes, roughly speaking,
the number of parameters needed to define all G-torsors over all schemes over k. Tossici
conjectured that if k is a field of positive characteristic and G is a finite commutative
unipotent k-group scheme, then edk(G) ≥ nV (G) where nV (G) is the order of nilpotency
of the Verschiebung morphism of G [Tos19, Conjecture 1.4]. The conjecture is known
to be true for nV (G) = 2 after Fakhruddin [Fak20, Theorem 1.1]. Our hopes are that
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Theorem 3.2.13 might lead to further progress in the proof of this conjecture in the
infinitesimal case.

In the appendix of this work we focus on the smash product algebra, an interesting
non-commutative object that arises naturally when studying actions of finite commutative
group schemes. An example of smash product is given by the algebra of Ore polynomials
K[X; θ, ∂] where θ is an automorphism of the field K, ∂ is a θ-derivation (∂(ab) =
θ(a)∂(b)+∂(a)b for all a, b ∈ K) and the multiplication law is given by Xa = θ(a)X+∂(a)
for any a ∈ K.

The main motivation for the content of the appendix arises from our interest in
being able to do computations with derivations and differential operators, something
that is necessary when dealing with actions of infinitesimal commutative unipotent group
schemes. It turns out that doing computations of this kind is equivalent to doing them in
an appropriately defined smash-product algebra. Using the formalism of smash-products
proved itself of great help in order to have a better understanding and having intuitions
at this level.

Smash-products have also a tight link to coding theory. Ore polynomials have
important applications in it and are used to construct Gabidulin [Gab85] and linearised
Reed-Solomon codes [Mar18]. These two families of codes are the counterpart respectively
in the rank metric and in the sum-rank metric of Reed-Solomon codes [RS60], which form
one of the most used families of linear codes in the Hamming metric (central since the
50’s in the theory of error correction). Codes in the rank metric where first introduced
by Delsarte [Del78], while those in the sum-rank metric are of more recent definition (a
reference for the theory of sum-rank metric codes is [MSK22]).

Algebraic Geometry codes, a generalization of Reed-Solomon codes, were introduced
by Goppa [Gop82] and are constructed by evaluating spaces of functions at rational
points on algebraic curves. In [BC23] Berardini and Caruso define Linearised Algebraic
Geometry codes, the first geometric construction of codes in the sum-rank metric from
algebraic curves. Their definition arises from considering torsors under the finite constant
commutative k-group scheme G = Z/rZ. Similar constructions can be done for torsors
under any finite commutative k-group scheme. Doing this could provide us with a larger
panel of linearized Algebraic Geometry codes.

The main results contained in the appendix involve the study of the endomorphisms
of certain smash-product algebras (see Proposition A.1.4), along with a generalization of
results of Chase and Sweedler [CS69, Theorems 9.3] and Gamst and Hoechsmann [GH69]
around smash-products being Azumaya algebras (see Proposition A.2.11).

A consistent part of the contents of this thesis appears already in the papers [Gou23]
and [GT24] (joint with Dajano Tossici): more precisely the results appearing in Section
1.2 of Chapter 1, Section 2.2 of Chapter 2 and Sections 3.2 and 3.3 of Chapter 3 are the
content of the first cited paper, while the second cited paper is presented in Section 3.4.
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Outline

Here is an outline of the contents of this work.
In Chapter 1 we begin by recalling the definitions of some basic algebraic structures,

ending with the definition of a Hopf algebra. We then move to (co)-module algebras
and smash products, objects that have a tight link with actions of group schemes (see
Proposition 3.1.17). In the second section of this chapter we deal with nilpotent derivations,
which are often encountered when studying actions of infinitesimal group schemes (see
Proposition 3.1.18 and Example 3.1.19). Moreover, we study p-bases of finite field
extensions and we prove Corollary 1.2.7 describing when some systems of differential
equations admit a solution. This result plays an important role in the proof of Theorem
3.2.13.

In Chapter 2 we start by recalling some notions and results around finite (commutative)
group schemes, with a strong emphasis on infinitesimal commutative unipotent group
schemes. We also introduce the socle of a finite group scheme, an object which proves
itself helpful when studying generically free or faithful actions of a finite group scheme
(see for example Proposition 3.2.1 and Proposition 3.3.1). Moreover, we prove Proposition
2.2.30 giving a description of the Hopf algebra of an infinitesimal commutative unipotent
group scheme over a perfect field. This result is another of the building blocks needed
for the proof of Theorem 3.2.13. The last section is devoted to proving Theorem 2.3.1,
which describes explicitly all infinitesimal commutative unipotent group schemes with
one-dimensional Lie algebra over an algebraically closed field k.

The first section of Chapter 3 is devoted to generalities on (rational) actions of finite
group schemes on varieties and their algebraic counterpart given by module algebra
structures, introduced already in Chapter 1. In Section 3.2 we deal with generically free
actions. In the first part we prove the existence part of Theorem 3.2.13 in the case of
commutative trigonalizable group schemes of height one (Proposition 3.2.4). We then
proceed with the proof of the general case. We end the section with some examples to
show more concretely how to deal with the construction of these actions.

Section 3.3 is devoted to Dolgachev’s conjecture revisited for infinitesimal group
schemes and, more generally, to studying faithful rational actions of infinitesimal group
schemes. Proposition 3.3.6 gives necessary (but not sufficient, see the counterexample
3.3.7) conditions for the existence of faithful rational actions of infinitesimal commutative
trigonalizable group schemes. Moreover, we show that there exist faithful rational actions
of any infinitesimal commutative unipotent group scheme G defined over a perfect field
on any variety of dimension n if V n

G = 0 (Proposition 3.3.10). We illustrate our results
about faithful rational actions in the case of the connected part of the p-torsion of abelian
varieties.

Section 3.4 has as content the work [GT24], joint with Dajano Tossici, where unex-
pected subgroup schemes of PGL2,k in characteristic 2 are studied. If the characteristic of
a field k is odd any infinitesimal group scheme of PGL2,k lifts to SL2,k. We prove that this
is not true in characteristic 2 and we give a complete description, up to isomorphism, of
infinitesimal unipotent subgroup schemes of PGL2,k. Also, the infinitesimal trigonalizable
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case is considered.
Appendix A contains a deeper study of smash-products. In the first section we

study the endomorphisms of the smash-product algebra. In Section A.2, inspired by
the results of Chase and Sweedler [CS69, Theorems 9.3] and Gamst and Hoechsmann
[GH69], we give a generalization around smash-products being Azumaya algebras (see
Proposition A.2.11). In Section A.3 we introduce a universal object that allows us to
doing computations in a universal smash-product algebra, helping us at simplify and have
insights on computations involving derivations and differential operators (which was our
main motivation for investigating smash-product). In the last section of the appendix we
revisit some results already known in literature, and that we recover and generalize also
in the previous section, around the reduced norm of some Ore polynomials, giving also
alternative proofs.



Chapter 1

Hopf algebras and nilpotent
derivations

In the first part of this chapter we recall the definitions of some basic algebraic structures,
ending with the definition of a Hopf algebra. These objects are interesting on their own
but they moreover occupy a central role in the theory of group schemes since any affine
group scheme is encoded by a commutative Hopf algebra. We then move to (co)-module
algebras and smash products, which have a tight link with actions of group schemes
(see Proposition 3.1.17) and thus play a key part in this work. The second section
of this chapter is devoted to nilpotent derivations, which are often encountered when
studying actions of infinitesimal group schemes (see Proposition 3.1.18 and Example
3.1.19). Proposition 1.2.6 and Corollary 1.2.7 will play an important role in the proof of
Theorem 3.2.13, which is one of the main results of this work.

1.1 Algebraic structures

Some references for this section are [Swe69, Chapter VII] and [Mon93, Chapter 4].

Algebras, coalgebras and Hopf algebras

Let R be a commutative ring.

Definition 1.1.1 (Algebra). An R-algebra is a triple (A,m, u) where A is an R-module
and m : A⊗R A→ A (multiplication) and u : R→ A (unit) are R-linear morphisms such
that the following diagrams commute:

A⊗R A⊗R A A⊗R A

A⊗R A A,

m⊗1

1⊗m m

m

A⊗R A

R⊗R A A⊗R R

A.

m

u⊗1

1⊗u

23
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Notice that the first diagram tells us that the multiplication m is associative but we don’t
ask (a priori) for it to be commutative and that the second diagram tells us in particular
that the image of R in A is contained in its center (u(R) ⊆ Z(A)). An R-algebra A is
said to be commutative if the following diagram commutes:

A⊗R A A⊗R A

A

m

τ

m

where we denote by τ the switch morphism, τ : x⊗ y 7→ y ⊗ x for any x, y ∈ A.

Definition 1.1.2 (Coalgebra). An R-coalgebra is a triple (C,∆, ε) where A is an R-
module and ∆: C → C ⊗R C (comultiplication) and ε : C → R (counit) are R-linear
morphisms such that the following diagrams commute:

C ⊗R C ⊗R C C ⊗R C

C ⊗R C C,

∆⊗1

1⊗∆ ∆

∆

C ⊗R C

R⊗R C C ⊗R R

C.

1⊗ε
ε⊗1

∆

Notice that the first diagram tells us that the comultiplication ∆ is coassociative but
we don’t ask (a priori) for it to be cocommutative. An R-coalgebra C is said to be
cocommutative if the following diagram commutes:

C ⊗R C C ⊗R C

C

τ

∆
∆

where τ is the switch morphism.

Definition 1.1.3 (Coideal). Let C be an R-coalgebra. A coideal is an R-submodule I of
C such that:

1. ∆(I) ⊆ I ⊗R C + C ⊗R I;

2. ε(I) = 0.

Definition 1.1.4 (Primitive element). Let C be an R-coalgebra. An element x ∈ C is
primitive if ∆(x) = x⊗ 1 + 1⊗ x.

Remark 1.1.5.

(i) For any primitive element x of an R-coalgebra C it holds ε(x) = 0.
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(ii) Let A and B be R-algebras, then A⊗R B is an R-algebra with multiplication

mA⊗RB : (A⊗R B)⊗R (A⊗R B)
id⊗τ⊗id−→ A⊗R A⊗R B ⊗R B

mA⊗mB−→ A⊗R B

(where τ is the switch morphism) and unit

uA⊗RB : R ≃ R⊗R R
uA⊗uB−→ A⊗R B.

(iii) Let C and D be R-coalgebras, then C⊗RD is an R-coalgebra with comultiplication

∆C⊗RD : C ⊗R D
∆C⊗∆D−→ C ⊗R C ⊗R D ⊗R D

id⊗τ⊗id−→ (C ⊗R D)⊗R (C ⊗R D)

and counit
εC⊗RD : C ⊗R D

εC⊗εD−→ R⊗R R ≃ R.

(iv) Let (A,m, u) be an R-algebra and (C,∆, ε) be an R-coalgebra. Then HomR(C,A)
is an R-algebra where multiplication and unit are respectively given by

f ⊗ g 7→ f ∗ g := m ◦ (f ⊗ g) ◦∆, and u ◦ ε.

The multiplication of this algebra is often referred to as convolution product. Notice
that the associativity of the convolution product follows from the associativity of m
and the coassociativity of ∆.

Definition 1.1.6 (Bialgebra). An R-bialgebra is a tuple (H,m, u,∆, ε) such that

1. (H,m, u) is an R-algebra;

2. (H,∆, ε) is an R-coalgebra;

3. one of the following equivalent conditions holds true:

(a) m and u are morphisms of coalgebras;

(b) ∆ and ε are morphisms of algebras;

(c) the following diagrams commute:

H ⊗R H H H ⊗R H

H ⊗R H ⊗R H ⊗R H H ⊗R H ⊗R H ⊗R H,

m

∆⊗∆

∆

id⊗τ⊗id

m⊗m

H ⊗R H R⊗R R

H R,

ε⊗ε

m

ε
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H H ⊗R H

R R⊗R R,

∆

u u⊗u

H

R R.

ε u

Notice that the commutativity of the first and second diagram tells that m is
a morphism of coalgebras (recall that mH⊗RH = m⊗m ◦ (id⊗ τ ⊗ id)), the
commutativity of the first and third that ∆ is a morphism of algebras (recall
that ∆H⊗RH = (id⊗ τ ⊗ id) ◦∆⊗∆), the commutativity of the second and
fourth tells that ε is a morphism of algebras and the commutativity of the
third and fourth tells that u is a morphism of coalgebras and that ∆ is unitary.

Example 1.1.7. Let k be a field and (A,m, u,∆, ε) be a finite dimensional k-bialgebra,
then A∨ := Homk(A, k) is a finite dimensional k-bialgebra with multiplication and
comultiplication respectively given by the convolution product

m∨ : A∨ ⊗k A∨ → A∨

f ⊗ g 7→ (A
∆→ A⊗k A

f⊗g→ k ⊗k k ≃ k)

and

∆∨ : A∨ → A∨ ⊗k A∨

φ 7→ (A⊗k A
m→ A

φ→ k)

and unit and counit respectively given by the dual morphisms of ε and u.

Definition 1.1.8 (Bi-ideal). Let H be an R-bialgebra. A bi-ideal is an R-submodule I
of H which is an ideal and a coideal.

Definition 1.1.9 (Antipode). Let H be an R-bialgebra. An antipode is an element
S ∈ HomR(H,H) which is a multiplicative (right and left) inverse to the identity, that is
id ∗ S = S ∗ id = u ◦ ε (where ∗ is the convolution product).

Definition 1.1.10 (Hopf algebra). An R-Hopf algebra is a bialgebra which has also an
antipode.

Definition 1.1.11 (Hopf ideal). Let H be an R-Hopf algebra. A Hopf ideal is a bi-ideal
I such that S(I) ⊆ I.

Proposition 1.1.12. There is an anti-equivalence of categories between the category of
commutative R-Hopf algebras and the category of affine group schemes over Spec(R) given
by assigning any R-Hopf algebra H to Spec(H).

Proof. See [Mil17, Chapter 3, Proposition 3.6]



1.1. Algebraic structures 27

Module algebras, comodule algebras and smash products

Let R be a commutative ring and A be an R-bialgebra.

Definition 1.1.13 (Module algebra). We say that an R-algebra B is a (left) A-module
algebra if:

1. B is a (left) A-module via ψ : A⊗R B → B, a⊗ b 7→ a · b;

2. the morphism η : B → HomR(A,B), b 7→ (a 7→ a · b) is a (unital) morphism of
R-algebras.

We can give the same definition on the right as well.

The following remark is of key importance for the way in which we will view module
algebras throughout this whole work.

Remark 1.1.14. Notice that the first condition of the above definition is equivalent to
giving a map

v : A→ EndR(B), a 7→ (b 7→ a · b)

which is a morphism of R-algebras, while the second request corresponds to asking that v
satisfies the following properties:{

v(a)(1) = ε(a)
v(a)(fg) = mB(v ⊗ v ◦∆(a))(f ⊗ g) (1.1)

for any a ∈ A and f, g ∈ B. Here ε denotes the counit of A, ∆ its comultiplication
and mB the multiplication of B. We will refer to (1.1) as the property of compatibility
with products. The first statement is straightforward. For the second one, recall that
HomR(A,B) has a structure of R-algebra (Remark 1.1.5) with multiplication given by
the convolution product

ϕ⊗ χ 7→ mB ◦ ϕ⊗ χ ◦∆

and unit
R→ HomR(C,B), x 7→ (c 7→ ε(c)1B(x)).

Moreover η(b)(a) = v(a)(b). Therefore, η is a morphism of (unital) R-algebras if and only
if

η(fg) = mB ◦ η(f)⊗ η(g) ◦∆ and η(1) = 1HomR(A,B)

for all f, g ∈ B if and only if

v(a)(fg) = η(fg)(a) = mB ◦ η(f)⊗ η(g) ◦∆(a) = mB(v ⊗ v ◦∆(a))(f ⊗ g)

and
v(a)(1) = η(1)(a) = ε(a)

for any a ∈ A. Finally, notice that, if we denote by I := ker(ε) the augmentation ideal of
A, then by what we just showed it holds v(a)(1) = 0 for any a ∈ I.
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Example 1.1.15. Let G be a finite group and B be an R-algebra. Consider moreover
the group-algebra R[G] on G which is a R-bialgebra if we turn any element of G into a
group-like element, that is we define ∆(g) = g ⊗ g and ε(g) = 1 for all g ∈ G (and extend
∆ and ε to morphisms of R-algebras on R[G]). There is a one-to-one correspondence
between actions of the group G on B and R[G]-module algebra structures on B. Indeed,
any action G→ AutAlgR

(B) of G on B extends naturally to a morphism of R-algebras
R[G]→ AutAlgR

(B) which respects also the property (1.1) by the bialgebra structure on
R[G].

Definition 1.1.16 (Morphism of module algebras). Let A and A′ be R-bialgebras,
φ : A→ A′ be a morphism of algebras and B and B′ be respectively an A-module algebra
and an A′-module algebra via ψ : A⊗RB → B and ψ′ : A⊗RB′ → B′. We call morphism
of module algebras (with respect to φ) a morphism of algebras f : B → B′ that respects
the module algebra structures, that is the following diagram commutes

A⊗R B B

A′ ⊗R B′ B′.

ψ

φ⊗f f

ψ′

Remark 1.1.17. In the above definition, when B and B′ are both A-module algebras,
one can take φ to be the identity on A. We then have that a morphism of A-module
algebras B → B′ is just a morphism of A-algebras.

Remark 1.1.18. Let B be an A-module algebra via v : A→ EndR(B) and consider

ker(v) = {a ∈ A | a · b = 0 ∀b ∈ B}.

In general ker(v) is not a bi-ideal (nevertheless, in the Appendix A we will be interested
in the case in which ker(v) is a Hopf ideal). Take for example A = R[T ], the Hopf algebra
representing the additive group scheme Ga, that is ∆(T ) = T ⊗ 1 + 1⊗ T , with R a ring
of positive characteristic p > 2, B = R[X]/(Xp+1) and consider the A-module algebra
structure on B given by

v : R[T ]→ EndR(B)

T 7→ Xp∂

where ∂ is a non-zero derivation on B. Then we have T 2 ∈ ker(v), in fact ∂(Xp) = 0 and
Xp2 = 0 in B and thus Xp∂ ◦Xp∂ = Xp2∂2 = 0. On the other hand,

∆(T 2) = T 2 ⊗ 1 + 2T ⊗ T + 1⊗ T 2

does not lie in ker(v)⊗R A+A⊗R ker(v) since char(k) ̸= 2.

Definition 1.1.19 (Comodule algebra). We say that an R-algebra C is a (right) A-
comodule algebra if:
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1. C is a (right) A-comodule via ρ : C → C ⊗R A;

2. ρ is a morphism of algebras.

We can give the same definition on the left as well.

If A is a commutative R-Hopf algebra and C is a commutative R-algebra, then saying
that C is a (right) A-comodule algebra is equivalent to saying that there is a (right)
schematic action of the affine group scheme Spec(A) on the affine scheme Spec(C).

Remark 1.1.20.

1. Notice that the second condition of the above definition is equivalent to asking that
the multiplication mC and unit uC of C are morphisms of (right) A-comodules.

2. When A is finite-dimensional one sees that B is a left A-module algebra if and only
if it is a right A∨-comodule algebra (and the same holds with left and right reversed).
If in addition A is a cocommutative Hopf algebra and B is commutative, this is also
equivalent to giving a schematic action Spec(B)×R Spec(A∨)→ Spec(B).

3. A together with its comultiplication ∆: A→ A⊗RA is a (left and right) A-comodule
algebra.

Definition 1.1.21 (Morphism of comodule algebras). Let A and A′ be R-bialgebras,
φ : A → A′ be a morphism of algebras and C and C ′ be respectively an A-comodule
algebra and an A′-comodule algebra via ρ : C → C ⊗R A and ρ : C ′ → C ′ ⊗R A. We call
morphism of comodule algebras (with respect to φ) a morphism of algebras g : C → C ′

that respects the comodule algebra structures, that is the following diagram commutes

C C ′

C ⊗R A C ′ ⊗R A′.

g

ρC ρC′

g⊗φ

Remark 1.1.22. In the above definition, when C and C ′ are both A-comodule algebras,
one can take φ to be the identity on A. We then have that a morphism of A-comodule
algebras g : C → C ′ is an A-linear morphism of algebras, where now A-linearity means

that the diagram
C C ′

C ⊗R A C ′ ⊗R A

g

ρ ρ′

g⊗id

commutes.

Starting from a left A-module algebra B and a left A-comodule algebra C, one can
always construct an algebra B#C called the smash product of B and C, defined as follows.

Definition 1.1.23 (Smash product). Let B be a (left) A-module algebra via

ψ : A⊗R B → B
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and C be a (left) A-comodule algebra via

ρ : C → A⊗R C.

We define the R-linear map

ϕ : A⊗R C ⊗R B → B ⊗R C
a⊗ c⊗ b 7→ ψ(a⊗ b)⊗ c = a · b⊗ c.

For f ∈ A⊗R C and b ∈ B we will denote f ⋆ b := ϕ(f ⊗ b). The smash product algebra
B#C is defined as follows:

1. as an R-module B#C = B ⊗R C;

2. the multiplication is given by

(b⊗ c)× (β ⊗ γ) = (b⊗ 1)(ρ(c) ⋆ β)(1⊗ γ)

for any b, β ∈ B and c, γ ∈ C.

Example 1.1.24. For B an A-module algebra, one can for example consider the smash
product B#A. This will often be the case.

Proposition 1.1.25. Let A and A′ be R-bialgebras, φ : A → A′ be a morphism of
algebras, B and B′ be respectively an A-module algebra and an A′-module algebra, C and
C ′ be respectively an A-comodule algebra and an A′-comodule algebra, f : B → B′ and
g : C → C ′ be respectively morphisms of (left) module and comodule algebras (with respect
to φ). Then f ⊗ g : B#C → B′#C ′ is a morphism of algebras.

Proof. For c ∈ C let us write ρC(c) =
∑

i ai⊗ci where ρC : C → A⊗RC is the A-comodule
structure on C. Recall then that since g is a morphism of module coalgebras it holds
ρC′(g(c)) =

∑
i φ(ai)⊗ g(ci). Now take b⊗ c, β ⊗ γ in B#C. Then

(f ⊗ g)((b⊗ c)× (β ⊗ γ)) = (f ⊗ g)

(∑
i

b(ai · β)⊗ ciγ

)
=
∑
i

f(b(ai · β))⊗ g(ciγ) =

∑
i

f(b)(φ(ai)) · f(β)⊗ g(ci)g(γ) = (f(b)⊗ g(c))× (f(β)⊗ g(γ))

as wished.

Appendix A is devoted to going more in the details of the study of the smash product
algebra and of its utility in the context of this work.
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Examples around Ore polynomials

This part is devoted to show how the algebra of Ore polynomials (introduced by Ore
[Ore33]) can be obtained as a smash product. Let us begin by recalling its definition.

Definition 1.1.26 (θ-derivation). Let R be a commutative ring and θ : R → R be
a morphism of rings. We call θ-derivation a linear morphism ∂ : R → R such that
∂(ab) = θ(a)∂(b) + ∂(a)b for all a, b ∈ R. So if θ = id, then ∂ is a derivation in the usual
sense.

Definition 1.1.27 (Algebra of Ore polynomials). Let R be a commutative ring, θ : R→ R
be a morphism of rings and ∂ : R→ R be a θ-derivation. The R-algebra of Ore polynomials
R[X; θ, ∂] has for elements polynomials in X with coefficients in R and multiplication
law a×X = aX and X × a = θ(a)X + ∂(a) for every a ∈ R.

Example 1.1.28. Let R be a ring of positive characteristic p and take θ = FR the
Frobenius morphism on R and ∂ = 0. Then, there is a ring isomorphism

R[X;FR] ≃ R[T ]lin∑
i∈N

aiX
i 7→

∑
i∈N

aiT
pi

where R[T ]lin is the ring of linearised polynomials with coefficients in R, that is polynomials
of the form

∑
i∈N aiT

pi with operations given by the sum and composition of polynomials
(these are also known as additive or p-polynomials).

Example 1.1.29.

• Ga-action. Consider A = R[T ] the Hopf algebra representing the additive group
scheme Ga,R, that is

∆(T ) = T ⊗ 1 + 1⊗ T, ε(T ) = 0, S(T ) = −T.

To give an A-module algebra B is equivalent to defining

v : R[T ]→ EndR(B)

T 7→ ∂

where ∂(fg) = ∂(f)g+f∂(g), that is it is equivalent to giving an R-linear derivation
∂ : B → B. The R-algebra structure on the smash product B#A is given by

(1⊗ T )× (b⊗ 1) = ∆(T ) ⋆ b = (T ⊗ 1 + 1⊗ T ) ⋆ b = ∂(b)⊗ 1 + b⊗ T

for any b ∈ B. Therefore B#A ≃ B[T ; ∂], the algebra of Ore polynomials where
multiplication is indeed defined by Tb = ∂(b) + bT for any b ∈ B.
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• Gm-action. Consider A = R
[
T, 1

T

]
the Hopf algebra representing the multiplicative

group scheme Gm,R, that is

∆(T ) = T ⊗ T, ε(T ) = 1, S(T ) =
1

T
.

To give an A-module algebra B is equivalent to defining

v : R

[
T,

1

T

]
→ EndR(B)

T 7→ θ

where θ is invertible, that is an automorphism of B. The R-algebra structure on
the smash product B#A is given by

(1⊗ T )× (b⊗ 1) = ∆(T ) ⋆ b = (T ⊗ T ) ⋆ b = θ(b)⊗ T

for any b ∈ B. Notice that the algebra of Ore polynomials B[T ; θ], where multipli-
cation is defined by Tb = θ(b)T for any b ∈ B, is a subalgebra of B#A.

• Ga,R ⋊Gm,R-action. Let us consider the semidirect product Ga,R ⋊Gm,R (where
the action of Gm,R on Ga,R is given by multiplication on the left). This group
scheme is represented by the Hopf algebra A = R

[
T, 1

T , S
]

with comultiplication
∆(T ) = T ⊗ T and ∆(S) = S ⊗ 1 + T ⊗ S. To give an A-module algebra B is
equivalent to defining

v : R

[
T,

1

T
, S

]
→ HomR(B,B)

T 7→ θ,

S 7→ ∂

where θ is an automorphism of B and ∂(fg) = ∂(f)g + θ(f)∂(g) for every f, g ∈ B,
that is ∂ is a θ-derivation. The R-algebra structure on the smash product B#A is
given by

(1⊗ T )× (b⊗ 1) = ∆(T ) ⋆ b = θ(b)⊗ T

and

(1⊗ S)× (b⊗ 1) = ∆(S) ⋆ b = (S ⊗ 1 + T ⊗ S) ⋆ b = ∂(b)⊗ 1 + θ(b)⊗ S.

Notice that the algebra of Ore polynomials B[S; ∂, θ], where multiplication is defined
by

Sb = ∂(b) + θ(b)S

for any b ∈ B, is a subalgebra of B#A.
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1.2 Nilpotent derivations and p-bases

This part will be devoted to nilpotent derivations, which are often encountered when
studying actions of infinitesimal group schemes (see Proposition 3.1.18 and Example
3.1.19). Some of the results appearing here might be known to experts, we have included
their proof for lack of a reference. Proposition 1.2.6 and Corollary 1.2.7 will play an
important role in the proof of Theorem 3.2.13. A background reference for p-bases is
[Bou90, V.§13].

For K a field and D a derivation on K, we denote by KD the subfield of elements of
K annihilated by D, that is

KD := {x ∈ K | D(x) = 0}.

A derivation D of K is said to be nilpotent of nilpotency index r if Dr = 0 and Dr−1 ̸= 0,
where for any natural n we denote by Dn the composite of D with itself iterated n times.
We begin by recalling a fundamental result [Smi68, Theorem 2] showing that nilpotent
derivations on fields appear only in characteristic p > 0 and that nilpotency indices are
always p-powers.

Theorem 1.2.1. Let D be a non-zero nilpotent derivation of nilpotency index r on a
field K. Then K has characteristic p ̸= 0 and r = pt.

Proof. By Leibniz formula for every a, b ∈ K we have

0 = Dr(ab) =
r∑
i=0

(
r

i

)
Di(a)Dr−i(b).

Take a ∈ K such that D(a) ̸= 0 and D2(a) = 0: for example one can take a = Dr−2(x)
where x ∈ K is such that Dr−1(x) ̸= 0, which exists since Dr−1 ̸= 0. Then

0 = Dr(ab) = rD(a)Dr−1(b)

for all b ∈ K and thus r = 0. Therefore K has characteristic p ≠ 0 and p divides r. Write
then r = qp. If q = 1 we are done. Suppose then that q > 1. Then Dp is a non-zero
nilpotent derivation on K of index q and repeating the reasoning we deduce that p divides
q. Iterating this for a finite number of steps gives the result.

Definition 1.2.2 (Order of a derivation). Let D be a derivation on a field K. We say
that D has order r if it is nilpotent of index r.

By Theorem 1.2.1 we have that, if p is a prime number and t ≥ 1, a derivation D on
a field K has order pt if and only if Dpt−1

≠ 0 and Dpt = 0. From now on K will be a
field of characteristic p > 0 such that the field extension K/Kp is finite (this is the case
for example if we take K to be the function field of a variety over a perfect field).

Lemma 1.2.3. Let D be a derivation on K of order pn. Then the field extension K/KD

has order pn, there exists t ∈ K such that D(t) = 1 and Im(Di) = ker(Dpn−i) for any
i = 1, . . . , pn.
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Proof. We have thatD is a nilpotentKD-linear map with one-dimensional kernel generated
by 1. Therefore there is a unique block in the normal Jordan form of D and it has size pn,
computed with respect to a basis, which we can suppose that contains 1. This implies that
dimKD K = pn and there exists t such that D(t) = 1. Moreover, since there is only one
nilpotent Jordan block, it is clear that Im(Di) = ker(Dpn−i) for any i = 1, . . . , pn.

Definition 1.2.4 (p-basis). Let K/L be a finite field extension such that Kp ⊆ L. A
p-basis of K/L is a sequence (t1, . . . , tn) ∈ Kn such that the monomials tm1

1 . . . tmn
n with

0 ≤ m1, . . . ,mn ≤ p− 1 form an L-basis of K.

Remark 1.2.5.

1. Notice that for any p-basis (t1, . . . , tn) of K/L, a derivation D in DerL(K) is zero
if and only if D(ti) = 0 for all i = 1, . . . , n.

2. A sequence (t1, . . . , tn) is a p-basis of K/L if and only if {dt1, . . . , dtn} is a basis
of the K-vector space of Kähler differentials Ω1

K/L [Bou90, V.§13, Theorem 1].
Consider the dual basis {∂1, . . . , ∂n}, which gives a basis of the K-vector space of
derivations DerL(K) = HomK(Ω

1
K/L,K). The ∂i’s commute pairwise and satisfy

∂pi = 0 for all i = 1, . . . , n. Moreover ∂i(tj) = δij .

In the following, we construct special p-bases that can be obtained any time we have
a generically free rational action of an infinitesimal commutative unipotent group scheme
of height one on a variety (these objects will be defined and the link will be made clear in
the following chapters).

Proposition 1.2.6. Let D1, . . . , Dn be derivations on K commuting pairwise. Set
K0 = K and Kj = KD1,...,Dj for all j = 1, . . . , n. If Di has order p on Ki−1 for all
i = 1, . . . , n then

1. there exists a p-basis (t1, . . . , tn) of K/Kn such that Di(ti) = 1 and Di(tj) = 0 for
all j > i. Moreover, Di(tj) belongs to Kj for all i and j, and

2. {D1, . . . , Dn} is a basis of DerKn(K).

Proof.

1. Consider the tower of extensions

Kn ⊆ Kn−1 ⊆ Kn−2 ⊆ · · · ⊆ K1 ⊆ K.

By Lemma 1.2.3, for every i = 1, . . . , n the extension Ki ⊆ Ki−1 has degree p and
there exists ti ∈ Ki−1 such that Di(ti) = 1, so by degree reasons Ki−1 = Ki(ti).
Therefore the first statement follows. The second statement is a direct consequence
of the first one together with the commutativity hypothesis. Indeed, for every i, j
and h ≤ j we have

Dh(Di(tj)) = Di(Dh(tj)) = Di(δhj) = 0

where δhj is the Kronecker delta. Hence Di(tj) belongs to Kj as claimed.
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2. In particular, we see that [K : Kn] = pn. As remarked above, DerKn(K) has then
dimension n over K, hence it is enough to show that D1, . . . , Dn are K-linearly
independent. Suppose that they are not and take a1, . . . , an in K such that

a1D1 + · · ·+ anDn = 0.

Let i0 = max{i = 1, . . . , n | ai ̸= 0}. Then

0 = (a1D1 + · · ·+ anDn)|Ki0−1
= ai0Di0 |Ki0−1

.

By assumption Di0 has order p on Ki0−1, so in particular it is different from zero.
Thus ai0 = 0, which gives a contradiction.

We introduce some notation in order to prove the following Corollary that gives
necessary and sufficient conditions for some systems of differential equations to have
solution. It will play a crucial role for the existence of the generically free actions of
Theorem 3.2.13. Let D1, . . . , Dm be differential operators on K (see Definition 3.1.16,
here the formal definition is not needed, in the following result we will just use the fact
that restricted to a certain subfield of K they are derivations) commuting pairwise and
a1, . . . , am be elements of K such that

Di(aj) = Dj(ai)

for all i, j = 1 . . . ,m. Consider moreover a polynomial F ∈ (X1, . . . , Xm) k[X1, . . . , Xm]
and write

F = X1Q1 + · · ·+XmQm.

We define the differential operator on K

F̃ (a1, . . . , am) :=

m∑
i=1

aiQi(D1, . . . , Dm).

Notice that it does not depend on the choice of the Qi’s since Di(aj) = Dj(ai) for every
i, j.

Corollary 1.2.7. Let D1, . . . , Dm be differential operators on K as above and set K0 = K
and Kj = KD1,...,Dj for any j = 1, . . . ,m. Suppose moreover that Di is a derivation of
order pli on Ki−1 for any i = 1, . . . ,m and that

Dpli
i = Fi(D1, . . . , Di−1)

for some polynomial Fi ∈ (X1, . . . , Xi−1)k[X1, . . . , Xm]. Then the system
D1(x) = a1

...
Dm(x) = am
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admits a solution in K, which is unique modulo Km, if and only if

Dpli−1
i (ai) = F̃i(a1, . . . , ai−1)

for every i = 1, . . . ,m.

Proof. Suppose that there exists z ∈ K solution of the above system: then

Dpli−1
i (ai) = Dpli

i (z) = Fi(D1, . . . , Di−1)(z) = F̃i(a1, . . . , ai−1)

for every i = 1, . . . ,m. For the other way around, notice that the uniqueness modulo Km

of the solution is clear by the additivity of differential operators: if x and y are both
solutions of the system, then 0 = Di(x)−Di(y) = Di(x− y) for all i = 1, . . . ,m, meaning
that the two solutions differ by an element of Km. Let us prove its existence by recursion.
Let Si be the system given by just the first i lines for any i = 1, . . . ,m. Let us show that
if Si has a solution xi, then Si+1 has a solution. Any solution of Si is of the form xi + yi
with yi ∈ Ki, therefore we wish to find such an element satisfying

Di+1(xi + yi) = ai+1.

This equation is satisfied if and only if

Di+1(yi) = ai+1 −Di+1(xi).

For every j = 1, . . . , i we have

Dj(Di+1(xi)) = Di+1(Dj(xi)) = Di+1(aj) = Dj(ai+1),

that is ai+1 −Di+1(xi) lies in Ki. Moreover,

Dpli+1−1
i+1 (ai+1 −Di+1(xi)) = Dpli+1−1

i+1 (ai+1)−Dpli+1

i+1 (xi) =

F̃i+1(a1, . . . , ai)−Dpli+1

i+1 (xi) = 0

and thus by Lemma 1.2.3 there exists the solution yi in Ki we were looking for.



Chapter 2

Finite group schemes

In this chapter we recall some notions and results around finite (commutative) group
schemes, with a strong emphasis on infinitesimal commutative unipotent group schemes
which have a central role in this thesis (the main background references are [DG70] and
[Mil17]). We also introduce the socle of a finite group scheme, an object which proves itself
helpful when studying generically free or faithful actions of a finite group scheme (see for
example Proposition 3.2.1 and Proposition 3.3.1). Moreover, we prove Proposition 2.2.30
giving a description of the Hopf algebra of an infinitesimal commutative unipotent group
scheme over a perfect field; this somehow explicit description will further on play a central
role for the proof of Theorem 3.2.13 and is very useful in general for constructing actions
of this class of group schemes. This first part appears in [Gou23]. The last section is
devoted to proving Theorem 2.3.1, which describes explicitly all infinitesimal commutative
unipotent group schemes with one-dimensional Lie algebra over an algebraically closed
field k.

2.1 Generalities on group schemes

From now on k will denote a ground field of characteristic p > 0 and k an algebraic closure
of k. Moreover, for every k-algebra R and k-scheme X, we denote by XR the R-scheme
X ×Spec(k) Spec(R). By k-algebraic scheme we mean a k-scheme of finite type and we
call k-algebraic group a k-algebraic group scheme. All the group schemes considered will
be algebraic groups. By k-variety we mean a separated, geometrically integral k-scheme
of finite type and we call curve (resp. surface) any k-variety of dimension 1 (resp. 2).
If X is a k-variety of dimension n, then its function field K = k(X) is a separable,
finitely generated extension of k of transcendence degree n. For G = Spec(A) an affine
k-group scheme represented by the Hopf algebra A, we denote by ∆: A → A ⊗k A its
comultiplication and by ε : A → k its counit. For G an affine k-group scheme, we also
denote by k[G] the Hopf algebra representing it.

Definition 2.1.1 (Absolute Frobenius). Let X be a k-scheme. The absolute Frobenius
morphism σX : X → X acts as the identity map on the underlying topological space |X|

37
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while on the sections of OX over an open subset U ⊆ X it acts as the map

OX(U)→ OX(U),

a 7→ ap.

Definition 2.1.2 (Relative Frobenius). Let X be a k-scheme and X(p) = X ×k,f Spec(k)
be the base change with respect to the Frobenius morphism f : k → k, c 7→ cp of k. The
relative Frobenius morphism FX : X → X(p) is defined by the diagram

X

X(p) X

Spec(k) Spec(k).

σX

FX

σSpec(k)

We will refer to the relative Frobenius morphism just as the Frobenius morphism.

Remark 2.1.3.

1. The assignment X 7→ FX is functorial, compatible with fiber products and commutes
with extensions of the base field.

2. If X is a scheme over Fp, then X(p) ≃ X and the relative Frobenius FX coincides
with the absolute Frobenius σX . Moreover, for any extension k ⊇ Fp we have
X

(p)
k ≃ Xk and FXk

= σX × idk.

3. When G is a k-group scheme, then G(p) is also a k-group scheme and the Frobenius
morphism FG : G→ G(p) is a homomorphism of group schemes [DG70, II.§7, 1]. If
FnG = 0 for some n ≥ 1, then G is said to have height ≤ n and its height is the
nilpotency index ht(G) of FG.

Proposition 2.1.4. For any k-variety X, the Frobenius twist X(p) is geometrically
integral. Moreover the relative Frobenius FX : X → X(p) induces a finite extension of
function fields k

(
X(p)

)
⊆ k(X) of degree pdim(X) and an isomorphism of k

(
X(p)

)
with

the composite of the fields k and (k(X))p.

Proof. See [Liu02, Chapter 3, Corollary 2.27].

Definition 2.1.5 (Lie algebra). Let G be an affine k-group scheme and denote by
IG = ker(ε) its augmentation ideal (where ε is the counit map ε : k[G]→ k). We define
the Lie algebra of G to be Lie(G) = Homk(IG/I

2
G, k). As a k-vector space Lie(G) is the

tangent space of G at the identity element eG and it has an additional structure of Lie
algebra (see for example [DG70, II.§4, 4]).

Remark 2.1.6. Let G be a k-group scheme and FG : G→ G(p) its Frobenius morphism.
Then Lie(G) = Lie(ker(FG)) (see [DG70, II.§7, 1.4]).
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Definition 2.1.7 (Infinitesimal group scheme). A k-group scheme G = Spec(A) is said
to be infinitesimal if its augmentation ideal IG = ker(ε : A→ k) is nilpotent.

Example 2.1.8. Two important examples of infinitesimal k-group schemes are given by
the kernel of (a power of) the Frobenius morphism of the multiplicative k-group scheme
Gm and of the additive k-group scheme Ga. We obtain respectively

µpn := ker(Fn : Gm → Gm) = Spec
(
k[T ]/(T p

n − 1)
)

and
αpn := ker(Fn : Ga → Ga) = Spec

(
k[T ]/(T p

n
)
)

for any n ≥ 1. Notice that µpn and αpn are isomorphic as k-schemes but not as k-group
schemes. Moreover, αpn is defined only over fields of positive characteristic p, while the
subgroup scheme µn = Spec (k[T ]/(Tn − 1)) of Gm is always well-defined and is étale if
char(k) = 0 or (n, char(k)) = 1.

Notice that non-trivial infinitesimal group schemes exist only over fields of positive
characteristic: indeed, by Cartier’s Theorem, in characteristic zero all algebraic groups
are smooth. Moreover, infinitesimal k-group schemes are group schemes that topologically
are just a point: indeed IG is nilpotent if and only if the topological spaces |SpecA| and
eG = |SpecA/IG| are isomorphic (and we always have A/IG ≃ k). The structure of the
underlying scheme of an infinitesimal group scheme over a perfect field is well-known: we
recall it in the following Theorem.

Theorem 2.1.9. Let k be a perfect field of characteristic p > 0 and G be an infinitesimal
k-group scheme. Then

k[G] ≃ k[T1, . . . , Tr]/(T p
e1

1 , . . . , T p
er

r )

for some integers e1, . . . , er ≥ 1. In particular r = dimk(Lie(G)).

Proof. See [Mil17, Theorem 11.29].

Definition 2.1.10 (Unipotent group scheme). A k-algebraic group G is said to be
unipotent if it is isomorphic to an algebraic subgroup of the k-algebraic group of upper
triangular unipotent matrices Un for some n ≥ 1.

Definition 2.1.11 (Diagonalizable group scheme/of multiplicative type). An affine k-
group scheme G is said to be diagonalizable if it is represented by the group-algebra
k[M ] for some abstract abelian group M , where the k-Hopf algebra structure is given by
∆: m 7→ m⊗m and ε : m 7→ 1 for every m ∈M (see also Example 1.1.15). It is said to
be of multiplicative type, if Gksep is diagonalizable for some separable closure ksep of k.

Definition 2.1.12 (Trigonalizable group scheme). A k-group scheme G is said to be
trigonalizable if it is affine and it has a closed normal unipotent subgroup scheme Gu such
that G/Gu is diagonalizable (see for example [DG70, IV.§2, Definition 3.1]).



40 Chapter 2. Finite group schemes

Let us recall the Theorem of decomposition of commutative affine k-group schemes.

Theorem 2.1.13. Let G be a commutative affine k-group scheme. Then:

(i) G has a maximal k-subgroup scheme Gm of multiplicative type and G/Gm is unipo-
tent;

(ii) if k is perfect, G has a maximal unipotent k-subgroup scheme Gu and G ≃ Gu×kGm.
In particular, G is trigonalizable if and only if Gm is diagonalizable.

Proof. See [DG70, IV.§3, Theorem 1.1].

2.2 Finite commutative group schemes

Let G = Spec(A) be an affine commutative k-group scheme and

FA : A
(p) = A⊗k,f k → A, a⊗ x 7→ xap

be the relative Frobenius morphism of A, where f denotes the Frobenius morphism of k.
For any k-vector space V , consider the k-vector space of symmetric tensors of order p,
(V ⊗p)

Sp ⊆ V ⊗p. Notice that, since G is commutative, A is cocommutative and thus we
the map given by the comultiplication A→ A⊗p factors via (A⊗p)

Sp :

A A⊗p

(A⊗p)
Sp .

Let s : A⊗p → (A⊗p)
Sp , a1 ⊗ · · · ⊗ ap 7→

∑
σ∈Sp

aσ(1) ⊗ · · · ⊗ aσ(p) be the symetrization

map. By [DG70, IV.§3, 4.1], (A⊗p)
Sp is the direct sum of s(A⊗p) and of the submodule

generated by {a⊗ · · · ⊗ a}a∈A. Moreover the canonical map(
A⊗p)Sp /s(A⊗p)→ A⊗k,f k

a⊗ · · · ⊗ a 7→ a⊗ 1

is a bijection.

Definition 2.2.1 (Verschiebung). The Verschiebung morphism VA of A is by definition
the composite

A −→
(
A⊗p)Sp λA−→ A⊗k,f k = A(p)

where λA is the unique k-linear map sending a ⊗ · · · ⊗ a 7→ a ⊗ 1 for any a ∈ A. The
Verschiebung morphism VG : G(p) → G is the homomorphism of group schemes induced
by VA.
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Notice that λA is well-defined for what was said previously. The assignment G 7→ VG
is functorial, compatible with fiber products and commutes with extensions of the base
field. The Frobenius and the Verschiebung morphisms have both key roles in the theory
of finite commutative group schemes.

Remark 2.2.2. For any k-algebra B the multiplication morphism (B⊗p)
Sp → B is given

by the composite (
B⊗p)Sp λB−→ B(p) FB−→ B.

Moreover, for any k-linear morphism φ : B → C we have the commutative diagram

(B⊗p)
Sp B(p)

(C⊗p)
Sp C(p).

λB

φ⊗p φ(p)

λC

For more details see [DG70, IV.§3, 4.2]: in loc. cit. the second fact is stated for morphisms
of k-algebras but can actually be generalized for any k-linear morphism.

Recall that if (A,∆, ε) and (B,m, u) are respectively a coalgebra and an algebra
over k, then Homk(A,B) has a k-algebra structure with multiplication given by the
convolution product

ϕ⊗ χ 7→ m ◦ ϕ⊗ χ ◦∆

and unit
k → Homk(A,B), 1 7→ u ◦ ε.

Lemma 2.2.3. Let G = Spec(A) be an affine commutative k-group scheme, B be a
k-algebra and let C denote the k-algebra of k-linear morphisms Homk(A,B). For every
element g ∈ C(p), it holds

FC(g) = FB ◦ g ◦ VA.

Proof. Since FC is a morphism of k-algebras, it is enough to show the result for g of the
form f ⊗ 1 = f (p) with f ∈ C = Homk(A,B). We then have FC(f ⊗ 1) = fp and we thus
wish to show that

fp = FB ◦ f (p) ◦ VA.

Using the definition of the convolution product (which is the multiplication law of the
algebra C) one sees that the power fp is equal to the composite

A
comult−→

(
A⊗p)Sp f⊗p

−→
(
B⊗p)Sp mult−→ B.

By Remark 2.2.2 we obtain the commutative diagram

A (A⊗p)
Sp (B⊗p)

Sp B

A(p) B(p)

comult

VA

f⊗p

λA λB

mult

f (p)

FB
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and thus the statement.

Recall that a finite k-group scheme is a k-group scheme that is finite as a k-scheme
and that the category of finite commutative group schemes over a field k is abelian. We
call order o(G) of a finite k-group scheme G = Spec(A) the dimension of A as a k-vector
space.

Lemma 2.2.4. Let G = Spec(A) be a finite (commutative) k-group scheme. Then the
dual of A as a k-vector space

A∨ = Homk(A, k)

is a finite dimensional (commutative) k-Hopf algebra.

Proof. [DG70, V.§1.2.10]

Definition 2.2.5 (Cartier dual). Let G be a finite commutative k-group scheme. We
call Cartier dual of G the finite commutative k-group scheme

G∨ = Spec(A∨).

Remark 2.2.6. The Cartier dual gives an exact contravariant functor from the category
of finite commutative k-group schemes to itself. When G is a finite commutative k-group
scheme one can verify that the Verschiebung morphism VG : G(p) → G coincides with the
dual of the Frobenius morphism FG∨ : G∨ → (G∨)(p) ≃ (G(p))∨ of the Cartier dual G∨.
Moreover it holds VG ◦ FG = pG and FG ◦ VG = pG(p) (see [DG70, IV.§3, 4.9–10] for these
two facts).

As we will see in the next chapter, to be able to compute the Cartier dual of a finite
group scheme is quite important if we want to explicitly write an action on a variety (see
Proposition 3.1.17 and the proof of Theorem 3.2.13). We illustrate a couple of examples
to get our hands on how Cartier duals are computed. We start by recalling that if A is a
finite dimensional k-Hopf algebra with multiplication m and comultiplication ∆, then
the multiplication and comultiplication of A∨ are respectively given by the convolution
product

m∨ : A∨ ⊗k A∨ → A∨

f ⊗ g 7→ (A
∆→ A⊗k A

f⊗g→ k ⊗k k ≃ k)

and

∆∨ : A∨ → A∨ ⊗k A∨

φ 7→ (A⊗k A
m→ A

φ→ k).
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Example 2.2.7.

i) Let us start by computing the dual of αp = Spec (k[T ]/(T p)) where ∆(T ) =
T ⊗ 1 + 1 ⊗ T . A basis of k[αp] as a k-vector space is given by {1, T, . . . , T p−1}.
We then have a dual basis {1, T ∗, . . . , (T p−1)∗} of k[α∨

p ] over k. Let us compute the
comultiplication of U := T ∗. Using the definition of ∆∨ we see that

∆∨(U)(T i ⊗ T j) =
{

1 if i+ j = 1
0 otherwise

where i, j = 0, . . . , p− 1. Therefore, we have ∆∨(U) = U ⊗ 1 + 1⊗ U . Using the
definition of m∨ we moreover see that U j(T i) = j!δij (where δij is the Kronecker
delta), that is U j = j!(T j)∗. As a consequence, it holds Up = 0 and moreover U
generates k[α∨

p ] as a k-algebra. We thus obtain k[α∨
p ] = k[U ]/(Up) with ∆∨(U) =

U ⊗ 1 + 1⊗ U , that is αp is self-dual.

ii) Consider now G = Spec (k[X,Y ]/(Xp, Y p −X)) with

∆: X 7→ X ⊗ 1 + 1⊗X,

Y 7→ Y ⊗ 1 + 1⊗ Y −
p−1∑
k=1

1

p

(
p

k

)
Xk ⊗Xp−k.

This is the p-torsion of a supersingular elliptic curve when k is algebraically closed
(this seems to be a known fact, but we also provide a proof, see Corollary 2.3.10).
We see that αp = Spec (k[Y ]/(Y p)) is a k-subgroup scheme of G and thus k[U ]/(Up)
is a k-Hopf subalgebra of k[G∨] for U = Y ∗. Consider then V := X∗. Using the
definition of ∆∨ we see that

∆∨(V )(Y i ⊗ Y j) =

{
1 if i+ j = p
0 otherwise

where i, j = 0, . . . , p2 − 1. Therefore, we have

∆∨(V ) = V ⊗ 1 + 1⊗ V +

p−1∑
k=1

(Y k)∗ ⊗ (Y p−k)∗

= V ⊗ 1 + 1⊗ V +

p−1∑
k=1

1

k!(p− k)!
(Y ∗)k ⊗ (Y ∗)p−k

= V ⊗ 1 + 1⊗ V −
p−1∑
k=1

1

p

(
p

k

)
(Y ∗)k ⊗ (Y ∗)p−k.

Moreover one sees that V j = j!(X∗)j for j = 1, . . . , p− 1 and that V p = Y ∗: indeed

V p(Y ) = m(V ⊗ V p−1(∆(Y ))) = m(V ⊗ V p−1(−X ⊗Xp−1)) = 1
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and V p(Y j) = 0 for j ̸= 1. We have thus shown that k[G∨] = k[U, V ]/(Up, V p−U),
that is G is also self-dual.

iii) Let M be a finite abstract abelian group and k[M ] be the group-algebra with
its Hopf algebra structure ∆: m 7→ m ⊗ m for every m ∈ M . A basis of k[M ]
as a k-vector space is given by {m | m ∈ M} and thus, if we consider its dual
k[M ]∨, a basis is given by {em : k[M ]→ k, n 7→ δmn}, where δmn is the Kronecker
delta. Using the definition of ∆∨ we see that ∆∨(em) =

∑
n∈M en ⊗ em−n. So we

showed that the dual of any finite diagonalizable k-group scheme Spec (k[M ]) is the
constant k-group scheme Mk = Spec

(
kM
)
. For example, for any n ≥ 2, we have

µ∨n,k = (Spec k[Z/nZ])∨ ≃ Z/nZ
k
.

For G a finite commutative k-group scheme, we denote by G0 the k-subgroup scheme
of G given by the connected component of the identity element and by Gred the reduced
closed subscheme of G with the same support. If k is perfect, then Gred is a k-subgroup
scheme of G and G ≃ G0 ×k Gred. We say that G is local (equivalently infinitesimal or
connected) if G = G0 and that it is reduced (equivalently étale) if G = Gred. Moreover, we
say that G is of x-y type if G has the property of being x and its dual has the property of
being y. For finite commutative group schemes over a perfect field we have the following
decomposition result.

Theorem 2.2.8. Let k be a perfect field of positive characteristic p. For G a finite
commutative k-group scheme, there is a unique functorial decomposition

G = Grr ×k Grl ×k Glr ×k Gll

where the direct summands are of reduced-reduced, reduced-local, local-reduced, local-local
type respectively.

Proof. The decomposition G ≃ G0×kGred is functorial, therefore G∨ ≃ (G0)∨×k (Gred)∨.
Decomposing each factor in its connected and reduced components and dualizing back we
obtain the claim.

We also have the following characterizations.

Proposition 2.2.9. Let G be a finite commutative k-group scheme.

1. The following are equivalent:

(a) G is étale,

(b) FG is an isomorphism,

(c) VG∨ is an isomorphism,

(d) G∨ is of multiplicative type.

2. The following are equivalent:

(a) G is infinitesimal,

(b) FG is nilpotent,

(c) VG∨ is nilpotent,

(d) G∨ is unipotent.

Proof. See [DG70, IV.§3, 5.3].
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Therefore, over a perfect field, we have that

G is of type reduced-reduced if and only if it is étale of multiplicative type
reduced-local if and only if it is étale unipotent
local-reduced if and only if it is infinitesimal of multiplicative type
local-local if and only if it is infinitesimal unipotent.

Infinitesimal commutative unipotent group schemes

We begin with a useful lemma on infinitesimal group schemes.

Lemma 2.2.10. Let G be an infinitesimal k-group scheme of order pn for some n ≥ 0.
Then:

i) max (dimk(Lie(G)),ht(G)) ≤ n;

ii) n ≤ dimk(Lie(G))× ht(G) ≤ n×min (dimk(Lie(G)),ht(G));

iii) if G is also commutative and unipotent then also V n
G = 0, where VG is the Ver-

schiebung morphism.

Proof. We can suppose that k is perfect. Then by Theorem 2.1.9 we have

k[G] ≃ k[T1, . . . , Ts]/(T p
e1

1 , . . . , T p
es

s )

as k-algebras where 1 ≤ e1 ≤ · · · ≤ es, e1+ · · ·+es = n, es = ht(G) and s = dimk(Lie(G)).
The first two points then follow, indeed

i) n = e1 + · · ·+ es ≥ s = dimk(Lie(G)) and n = e1 + · · ·+ es ≥ es = ht(G) yielding
that n ≥ max(dimk(Lie(G)),ht(G)); and

ii) n = e1+ · · ·+ es ≤ s× es = dimk(Lie(G))×ht(G) ≤ n×min (dimk(Lie(G)), ht(G))
where the second inequality follows from the first point.

iii) If G is infinitesimal commutative unipotent, then its dual G∨ is also such and has
order pn. Then, applying the first statement, we have FnG∨ = 0 and thus V n

G = 0.

Remark 2.2.11. Notice that, by the second statement of the above Lemma, we have in
particular that dimk(Lie(G)) = 1 if and only if ht(G) = n and that ht(G) = 1 if and only
if dimk(Lie(G)) = n.

The group scheme of Witt vectors W over a perfect field k of positive characteristic p
plays a central role in the study of unipotent commutative k-group schemes. We thus
recall here some of its main properties that will be used freely later on. A reference for
this is [DG70, V.§1 and §4]. As a k-scheme, W coincides with AN

k and it is endowed with
a structure of ring scheme coming from Witt polynomials. We will mostly be interested
in its structure of group scheme. We denote by Wn the k-subgroup scheme of W of
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Witt vectors of length ≤ n and by Wm
n the kernel of Fm : Wn → Wn (where F is the

Frobenius morphism of Wn). As a k-scheme, Wn coincides with Ank and we denote by
k[T0, . . . , Tn−1] its k-Hopf algebra. Notice that if we want to consider r copies of Wn we
will use the notation (Wn)

r with the parenthesis. The k-group scheme Wm
n is the Cartier

dual of Wn
m for every n,m ≥ 1. If for example we consider (x0, x1) and (y0, y1) two Witt

vectors of length 2, then their sum is given by

(x0, x1) + (y0, y1) = (x0 + y0, x1 + y1 + S1(x0, y0))

where S1(x0, y0) = −
∑p−1

k=1
1
p

(
p
k

)
xk0y

p−k
0 . In general the expression for the sum of Witt

vectors gets more complicated with the increasing of the length. One important property
is that, if we give weight pj to the jth coordinate for any j ∈ N, then the polynomial
expressing the ith term of the sum is homogeneous of degree pi; moreover it involves just
the coordinates of the vectors up to the index i. Notice that W is defined over Fp and
thus W (p) ≃W . Let V be the Verschiebung morphism of Wn. On points F and V act as
follows:

F ((x0, x1, . . . , xn−1)) = (xp0, x
p
1, . . . , x

p
n−1)

and
V ((x0, x1, . . . , xn−1)) = (0, x0, x1, . . . , xn−2).

Moreover F ◦ V = V ◦ F = p · id, therefore

p · (x0, x1, . . . , xn−1) = (0, xp0, x
p
1, . . . , x

p
n−2).

Proposition 2.2.12. If k is perfect, then every infinitesimal commutative unipotent
k-group scheme G can be embedded in (Wm

n )r for some n,m, r ≥ 1.

Proof. See [DG70, V.§1, Proposition 2.5].

Remark 2.2.13. Recall that a finite commutative k-group scheme is infinitesimal unipo-
tent if and only if its Frobenius and Verschiebung morphisms are both nilpotent (Proposi-
tion 2.2.9). In particular, in Proposition 2.2.12 one can take m and n to be respectively
their nilpotency indices (this is a direct consequence of the functoriality of the Frobenius
and Verschiebung morphism).

The collection of Wm
n becomes a direct system with index set N× N via the homo-

morphisms

Wm
n Wm+1

n

Wm
n+1 Wm+1

n+1

v

i

v

i

where v and i are the monomorphisms induced naturally by the Verschiebung and the
inclusion respectively. Let σ : W (k)→W (k) be the ring endomorphism induced by the
Frobenius morphism F .



2.2. Finite commutative group schemes 47

Definition 2.2.14. We will denote by E the ring of non-commutative polynomials over
the ring W (k) in two variables F and V subject to the following relations:

• F · ξ = σ(ξ) · F for all ξ ∈W (k);

• V · σ(ξ) = ξ · V for all ξ ∈W (k);

• FV = VF = p.

Notice that E is a free left (or right) W (k)-module with basis {. . . ,V2,V, 1,F,F2, . . . }
(see [DG70, V.§1, 3]).

Proposition 2.2.15. There exists a unique ring homomorphism E → End(Wm
n ) for

all n,m such that F and V act as the Frobenius and the Verschiebung morphisms and
ξ ∈W (k) acts through multiplication by σ−n(ξ). These actions of E are compatible with
the homomorphisms i and v of the directed system.

Proof. See [DG70, V.§1, 3.4].

Definition 2.2.16 (Dieudonné module). For any infinitesimal commutative unipotent
k-group scheme, we define

M(G) := lim−→
n,m

Hom(G,Wm
n )

with left E-module structure given by the action of E on Wm
n , called Dieudonné module of

G. Then M is a left exact additive functor from the category of infinitesimal commutative
unipotent k-group schemes to that of left E-modules.

Theorem 2.2.17. The functor M induces an anti-equivalence of categories between the
category of infinitesimal commutative unipotent k-group schemes to that of left E-modules
of finite length with F and V nilpotent.

Proof. See [DG70, V.§1, Theorem 4.3] or [Pin05, Theorem 23.2].

The socle of a finite group scheme

In the context of group theory, the socle of a finite abstract group G is the subgroup
generated by the non-trivial minimal normal subgroups of G. We introduce here a
generalization to finite group schemes of this classical definition; for this idea we are
thankful to Michel Brion.

Definition 2.2.18 (Socle). For G a finite k-group scheme, we define the socle of G,
denoted soc(G), to be the k-subgroup scheme generated by the non-trivial minimal normal
k-subgroup schemes of G.

The following Lemma describes some properties of the socle of a finite group scheme.

Lemma 2.2.19. Let G be a finite k-group scheme.
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1. G is non-trivial if and only if soc(G) is non-trivial.

2. soc(G) is a normal k-subgroup scheme of G.

3. soc(G)×G H is non-trivial for any non-trivial normal k-subgroup scheme H of G.

4. If G is commutative, then soc(H) = soc(G)×GH for any k-subgroup scheme H ⊆ G,
in particular soc(soc(G)) = soc(G).

5. If G is infinitesimal, then soc(G) ⊆ soc(ker(FG)). If in addition G is commutative,
then soc(G) = soc(ker(FG)).

6. If G1 and G2 are finite commutative k-group schemes, then

soc(G1 ×k G2) = soc(G1)×k soc(G2).

7. For any morphism of finite commutative k-group schemes G1 → G2, the induced
morphism soc(G1)→ G2 factors via soc(G2).

Proof.

1. Since G is normal in itself and it is finite, there exist non-trivial minimal normal
subgroup schemes.

2. Clear by definition since the socle is generated by non-trivial normal subgroup
schemes.

3. Since G is finite we may suppose that H is minimal, hence soc(G)×G H = H.

4. Notice that since G is commutative any of its subgroup schemes is normal. A
non-trivial minimal k-subgroup scheme of H is also a minimal k-subgroup scheme of
G. Therefore soc(H) ⊆ soc(G)×G H. Let N be a non-trivial minimal k-subgroup
scheme of G. By minimality, either N is a k-subgroup scheme of H or N ×G H is
trivial. Suppose the former. Then N is also a minimal k-subgroup scheme of H.
Therefore the equality.

5. Let N be a non-trivial minimal normal k-subgroup scheme of G. Since G is
infinitesimal, then N ×G ker(FG) = ker(FN ) is a non-trivial normal k-subgroup
scheme of G. Therefore, by minimality, N is a k-subgroup scheme of ker(FG). Hence
soc(G) ⊆ soc(ker(FG)). If G is commutative, by the previous point also the other
inclusion holds.

6. Clearly soc(G1 ×k G2) is contained in soc(G1) ×k soc(G2). Take now N1 ×k N2

with Ni non-trivial minimal k-subgroup scheme of Gi. Then Ni is also a minimal
k-subgroup scheme of G1×kG2 (notice that again we are using the assumption that
the Gi’s are commutative). Therefore, by definition of the socle subgroup scheme,
N1 ×k N2 ⊆ soc(G1 ×k G2) and thus also the inverse inclusion holds true.
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7. Let N be a non-trivial minimal k-subgroup scheme of G1, then N is mapped to a
minimal k-subgroup scheme of G2.

Before giving the following definitions, let us recall that End(αp) = k and End(µp) =
Fp. As a consequence, we have that Hom(αp, G) and Hom(µp, G) have respectively a
natural structure of k-vector space and of Fp-vector space, for any k-group scheme G.

Definition 2.2.20 (a-number). Let k be perfect and G be a commutative trigonalizable
k-group scheme. The a-number of G is dimk(Hom(αp, G)).

Remark 2.2.21. Notice that the a-number of G coincides also with the maximal natural
number r such that G contains a k-subgroup scheme isomorphic to αrp. In addition to
that, the a-number of G is zero if and only if G is diagonalizable, since any non-trivial
unipotent group scheme contains a k-subgroup scheme isomorphic to αp.

Definition 2.2.22 (p-rank). Let k be perfect and G be a commutative trigonalizable
k-group scheme. The p-rank of G is dimFp(Hom(µp, G)).

Remark 2.2.23. Notice that the p-rank of G coincides also with the maximal natural
number n such that G contains a k-subgroup scheme isomorphic to µnp . In addition to
that, the p-rank of G is zero if and only if G is unipotent.

Lemma 2.2.24. If k is perfect and G is an infinitesimal commutative unipotent k-group
scheme, then the following are equivalent:

(i) r is the a-number of G;

(ii) r is the minimal natural number such that for any closed immersion G ⊆ (Wm
n )s

there exists a projection (Wm
n )s ↠ (Wm

n )r, which forgets s − r copies of Wm
n ,

inducing an immersion of G in (Wm
n )r.

Moreover the following facts hold true:

(a) soc(G) ≃ αrp and, in particular, soc(G) is the maximal k-subgroup scheme of ker(FG)
with trivial Verschiebung;

(b) r ≤ min (dimk(Lie(G)),dimk(Lie(G
∨)) and dimk(Lie(G)) = r if and only if ker(FG)

is isomorphic to αrp.

Proof.

(i)⇒ (ii) Let r be the a-number of G, that is r is the maximal natural number r such that
G contains a k-subgroup scheme H isomorphic to αrp. By Proposition 2.2.12 there
exists an embedding G ⊆ (Wm

n )s for some s ≥ 1. Notice that since H ⊆ G is
annihilated both by the Frobenius and the Verschiebung, then

αrp ≃ H ⊆
(
W 1

1

)s
= αsp
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and thus s ≥ r. If s = r we are done. Suppose that s > r, then there exists a
projection (Wm

n )s ↠ (Wm
n )s−1 forgetting a copy of Wm

n which induces an immersion
G ↪→ (Wm

n )s−1. Indeed, suppose that all the projections

πi : G→ (Wm
n )s−1

have non-trivial kernel ker(πi). Then ker(πi) is a non-trivial k-subgroup scheme
of G for every i = 1, . . . , s and thus it contains a k-subgroup scheme isomorphic
αp. Since each ker(πi) lies in a different copy of Wm

n , we therefore have s linearly
independent homomorphisms αp ↪→ G, contradicting the fact that the a-number
of G is r < s. Now again, if s− 1 = r we are done, otherwise we repeat the same
reasoning until reaching r. Clearly r is minimal for this property since αrp is not
isomorphic to a k-subgroup scheme of (Wm

n )r−1.

(ii)⇒ (i) By minimality of r all the projections

πi : G→ (Wm
n )r−1

have non-trivial kernel ker(πi). Then ker(πi) is a non-trivial k-subgroup scheme of
G for every i = 1, . . . , s and thus it contains a k-subgroup scheme isomorphic to
αp. So for every i = 1, . . . , r we have a different copy of αp contained in G, since
each ker(πi) lies in a different copy of Wm

n . Therefore G contains a k-subgroup
scheme isomorphic to αrp and clearly r is maximal for this property since αr+1

p is
not isomorphic to a k-subgroup scheme of (Wm

n )r.

(a) Let r be the a-number of G. Then there are r linearly independent homomorphisms
αp ↪→ G and each αp is a minimal normal k-subgroup scheme of G. Therefore
soc(G) = soc(ker(FG)) contains a k-subgroup scheme isomorphic to αrp. On the
other hand, all the minimal normal subgroups of ker(FG) are copies of αp (see
[DG70, VI.§2, Proposition 2.5]), thus soc(ker(FG)) = αsp for some s ≥ 1. Combining
the previous inclusion and the maximality of r we obtain the equality. Suppose that
H is a k-subgroup scheme of ker(FG) with trivial Verschiebung. Then H ⊆ Gs′

a

for some s′ ≥ 1 (see [DG70, IV.§3, Theorem 6.6]) and by the first point we can
suppose that s′ is the maximal natural number such that H contains a k-subgroup
scheme isomorphic to αs

′
p . Since H ⊆ ker(FG), then H = ker(FH). Moreover

dimk(Lie(H)) = s′ and thus by order reasons we have H = ker(FH) ≃ αs
′
p . By

maximality of r, H ⊆ soc(G) ≃ αrp.

(b) Let r be the a-number of G, then dimk(Lie(G)) ≥ r. By assumption G contains a
k-subgroup scheme H isomorphic to αrp. Dualizing, we obtain the faithfully flat
homomorphism

G∨ ↠ H ≃ αrp
and thus r ≤ dimk(Lie(G

∨)). The inequality is given by [BM11, Proposition 2.5]
which states that if we have a flat local morphism A → B of Noetherian local
rings with maximal ideal and residue field respectively mA,mB and κ(A), κ(B),
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then dimκ(A)

(
mA/m

2
A

)
≤ dimκ(B)

(
mB/m

2
B

)
. For the last statement, clearly if

ker(FG) ≃ αrp then dimk(Lie(G)) = r. Now, by assumption we have αrp ≃ H ⊆ G,
so in particular αrp ≃ H ⊆ ker(FG), and if dimk(Lie(G)) = r the equality must hold
since in this case H and ker(FG) have both order pr.

As a direct consequence, along with Lemma 2.2.10, we have the following.

Corollary 2.2.25. If k is perfect, G is an infinitesimal commutative unipotent k-group
scheme of order pn, G∨ its Cartier dual and

min(dimk(Lie(G)),dimk(Lie(G
∨))) = 1,

then both G and G∨ embed in just one copy of the k-group scheme of Witt vectors, more
precisely in Wn

n .

Lemma 2.2.26. Let G be an infinitesimal commutative k-group scheme.

1. If ker(FG) is diagonalizable, then soc(G) = ker(FG) = µnp , where n is the p-rank of
G.

Moreover, if k is perfect and G is trigonalizable:

2. soc(G) ≃ αrp ×k µnp , where r is the a-number of G and n is the p-rank of G. In
particular,

soc(G) = (ker(FG)×G ker(VG(1/p)))×k ker(FG/Gu).

3. soc(G)×k K = soc(GK) for any field extension K/k.

Proof.

1. By assumption ker(FG) = µnp where n is the maximal natural number such that
µnp ⊆ G. Then, by Lemma 2.2.19, soc(G) = soc(ker(FG)) = µnp .

2. Since k is perfect, then G ≃ Gu ×k G/Gu and by Lemma 2.2.19

soc(G) ≃ soc(Gu)×k soc(G/Gu).

Therefore the first part of the statement follows by 1. and Lemma 2.2.24. We have
already proved that soc(G/Gu) = ker(FG/Gu). It is then enough to prove that

αrp ≃ soc(Gu) = ker(FG)×G ker(VG(1/p)).

The left to right inclusion is clear. By Lemma 2.2.24, Gu ⊆ (Wm
n )r. Hence,

ker(FG)×G ker(VG(1/p)) ⊆ (W 1
n)
r ×(Wm

n )r (W
m
1 )r = (W 1

1 )
r = αrp.

The claimed equality then holds.
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3. If K is perfect, the statement is a direct consequence of the compatibility of
Frobenius and Verschiebung kernels with respect to base change. For the general
case, clearly soc(G)×k K ⊆ soc(GK). Let Kperf be the perfect closure of K. Then
we have

soc(G)×k Kperf ↪→ soc(GK)×K Kperf ↪→ soc(GKperf )

and the first and last term coincide. Therefore soc(G)×kKperf ≃ soc(GK)×KKperf

and so the inclusion soc(G)×k K ⊆ soc(GK) is in fact an equality.

Remark 2.2.27. Let k be perfect, G be a commutative trigonalizable k-group scheme
and Gu be its maximal unipotent k-subgroup scheme. The a-number of G coincides with
the dimension of Lie(soc(Gu)).

Example 2.2.28.

1. soc ((Wm
n )s) = αsp for all n,m, s ≥ 1 and soc(G) = αp for any non-trivial G ⊆Wm

n

and the a-numbers are respectively s and 1.

2. Let k be algebraically closed and A be an abelian variety of dimension g defined
over k. The p-torsion A[p] is a finite commutative k-group scheme annihilated by p
with rank p2g. The p-rank of A is

f = dimFp(Hom(µp, A[p])).

The a-number of A is
a = dimk (Hom(αp, A[p])) .

Let A[p]0 be the identity component of A[p] and A[p]0,u its unipotent part. It is
known that

A[p] = A[p]0,u ×k µfp ×k (Z/pZ)f

(see for example [Mum08, p. III.15]). Then soc(A[p]) = αap ×k µ
f
p × (Z/pZ)f and

the a-number of A coincides with dimk

(
Lie
(
soc
(
A[p]0,u

)))
or equivalently it is the

maximal natural number a such that A[p] contains a k-subgroup scheme isomorphic
to αap.

Young diagrams for commutative unipotent group schemes of height one

Let k be perfect and G be a commutative unipotent k-group scheme of height one, then
G ≃

∏s
i=1W

1
ni

for some s, ni ≥ 1 (see [DG70, IV.§2, 2.14]). Moreover, we may suppose
that n1 ≥ · · · ≥ ns. We can then encode any such group scheme by a Young diagram
τ(G), namely the one of shape (n1, . . . , ns). For example

τ(αp) = , τ(W 1
3 ×k αp) = , τ(W 1

2 ×k W 1
2 ) = .

The following lemma lists some straightforward properties, we thus omit the proof.
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Lemma 2.2.29.

• Two commutative unipotent k-group schemes of height one are isomorphic if and
only if their Young diagrams coincide.

• The first column of τ(G) coincides with τ(soc(G)).

• The first n columns represent τ(ker(V n
G )) and the length of the nth column corre-

sponds to the maximal r such that G contains a k-subgroup scheme isomorphic to(
W 1
n

)r.
• The dimension of the Lie algebra of G and logp(o(G)) both coincide with the number

of boxes of τ(G).

Given G1, . . . , Gl commutative unipotent k-group schemes of height one, the small-
est commutative unipotent k-group scheme G of height one containing all of them
corresponds to the smallest Young diagram containing τ(Gi) for all i. Explicitly, if
τ(Gi) = (n1i, . . . , nsii) for some si ≥ 1 and for i = 1, . . . , l then τ(G) = (n1, . . . , ns) where
s = max{s1, . . . , sl} and nj = max{nj1, . . . , njl} for every j = 1, . . . , s. For example, if

we take G1 =W 1
3 ×k αp and G2 =W 1

2 ×kW 1
2 , then τ(G) = and G =W 1

3 ×kW 1
2 .

Algebraic description of infinitesimal commutative unipotent group
schemes

In the last part of this section we give a description of the Hopf algebra of an infinitesimal
commutative unipotent group scheme over a perfect field. This result will be crucial
for the proof of Theorem 3.2.13. Let k be perfect and G be a commutative unipotent
k-algebraic group. Then V n

G = 0 for some nilpotency index n ≥ 1. We then have the
cofiltration

G = G/ Im(V n
G )→ G/ Im(V n−1

G )→ · · · → G/ Im(VG)→ 0.

We call Gi the k-group scheme G/ Im(V i
G) and Hi the kernel of the map Gi → Gi−1.

Notice that then Hi = Im(V i−1
G )/ Im(V i

G) and thus is killed by the Verschiebung. If G is
infinitesimal, then Hi ≃

∏ri
j=1 αplij for some ri ≥ 1 and li1, . . . , liri ≥ 1. Moreover, there

are epimorphisms H(p)
i → Hi+1 induced by VG :

(
Im(V i−1

G )
)(p) → Im(V i

G). In particular,
the order and the dimension of the Lie algebra of the Hi’s are decreasing (the latter is
given by [BM11, Proposition 2.5], applied as explained at the end of the proof of Lemma
2.2.24).

Proposition 2.2.30. Let k be perfect, G be an infinitesimal commutative unipotent k-
group scheme and n be the nilpotency index of VG. For all i = 1, . . . , n let Gi = G/Im(V i

G),
Hi = Im(V i−1

G )/Im(V i
G) and ri = dimk(Lie(Hi)). Then, for all i = 1, . . . , n, there exist

integers li1, . . . , liri ≥ 1, a k-group scheme Gi and a commutative diagram



54 Chapter 2. Finite group schemes

0 0 0

0 Hi Gi Gi−1 0

0 Gri
a Gi Gi−1 0

0 Gri
a Gri

a 0

0 0

id

ϕ

id

with exact rows and columns, where ϕ = (F
lij
Ga

). Moreover, the k-Hopf algebra of Gi is

k[Gi] = k[Gi−1][Ti1, . . . , Tiri ]

with comultiplication extending that of k[Gi−1] and such that

∆(Tij) = Tij ⊗ 1 + 1⊗ Tij +Rij

where Rij is an element of k[Gi−1]⊗k k[Gi−1].

Proof. It is enough to prove the statement for G = Gn and we set r := rn. By Proposition
2.2.12, G ⊆ (Wn)

s for some s ≥ 1. We then have the following commutative diagram with
vertical maps being closed immersions

0 Hn G Gn−1 0

0 Gs
a (Wn)

s (Wn−1)
s 0.π

Now,

Hn = Im(V n−1
G ) ≃

r∏
j=1

α
plj
⊆ Gr

a

for some 1 ≤ r ≤ s and l1, . . . , lr ≥ 1. By Lemma 2.2.24 there exists a projection

ρ : (Wn)
s ↠ (Wn)

r

such that the composite
Hn ↪→ (Wn)

s ↠ (Wn)
r

is a monomorphism and thus Hn ↪→ Gr
a. Consider the commutative diagram given by the

schematic images of ρ:
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0 Hn ρ(G) ρ(Gn−1) 0

0 Gr
a (Wn)

r (Wn−1)
r 0.π

Its vertical maps are closed immersions and they factor in the following way

0 Hn ρ(G) ρ(Gn−1) 0

0 Gr
a π−1(ρ(Gn−1)) ρ(Gn−1) 0.π

(2.1)

Notice that π−1(ρ(Gn−1)) = ρ(Gn−1) ×k Ark as k-schemes with structure of k-group
scheme given by the embedding π−1(ρ(Gn−1)) ↪→ (Wn)

r . In particular

k[π−1(ρ(Gn−1))] = k[ρ(Gn−1)][T1, . . . , Tr],

with comultiplication extending that of k[ρ(Gn−1)] and such that

∆(Ti) = Ti ⊗ 1 + 1⊗ Ti +Ri

where Ri is an element of k[ρ(Gn−1)]⊗kk[ρ(Gn−1)]. Since ρ(G)→ ρ(Gn−1) andG→ Gn−1

are both Hn-torsors and G→ ρ(G) is Hn-equivariant, the commutative diagram

G Gn−1

ρ(G) ρ(Gn−1)

is indeed a pull-back diagram. Therefore,

G = Gn−1 ×ρ(Gn−1) ρ(G),

which is a closed subgroup scheme of Gn := Gn−1 ×ρ(Gn−1) π
−1(ρ(Gn−1)). Moreover

k[Gn] = k[Gn−1]⊗k[ρ(Gn−1)] k[π
−1(ρ(G))]

= k[Gn−1]⊗k[ρ(Gn−1)] k[ρ(Gn−1)][T1, . . . , Tr]

= k[Gn−1][T1, . . . , Tr]

with comultiplication extending that of k[Gn−1] and such that

∆(Ti) = Ti ⊗ 1 + 1⊗ Ti +Ri

where Ri is an element of k[Gn−1]⊗k k[Gn−1] as wished. Pulling back the exact sequences
in (2.1) and by the Snake Lemma, we have a zig-zag map as in the following diagram:
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0 0

0 Hn G Gn−1 0

0 Gr
a Gn Gn−1 0

Gr
a/Hn Q 0

π

which concludes the proof.

Remark 2.2.31. Let us point out that the important result of the above Proposition is
that the k-Hopf algebra structure of

k[Gi] = k[Gi−1][Ti1, . . . , Tiri ]

extends that of k[Gi−1] and is such that

∆(Tij) = Tij ⊗ 1 + 1⊗ Tij +Rij

where Rij is an element of k[Gi−1]⊗k k[Gi−1]. We also translate here the above statement
at the level of algebras, since it will be useful in the proof of Theorem 3.2.13. The short
exact sequence

0→ Gi → Gi → Gri
a → 0

corresponds to

0→ (S1, . . . , Sri)→ k[Gi−1][Ti1, . . . , Tiri ]→ k[Gi]→ 0

Si 7→ Pi

where k[Gri
a ] = k[S1, . . . , Sri ]. Therefore

k[Gi] = k[Gi−1][Ti1, . . . , Tiri ]/(P1, . . . , Pri)

where the polynomials Pj are primitive elements of k[Gi−1][Ti1, . . . , Tiri ]. Notice moreover

that the polynomials Pj are congruent to T p
lij

ij for some lij ≥ 1 modulo the augmentation
ideal of k[Gi−1] for every j = 1, . . . , ri by the short exact sequence

0→ IGi−1 → k[Gi−1][T1, . . . , Tri ]→ k[T1, . . . , Tr]→ 0

Pj 7→ T p
lij

ij .

Example 2.2.32. Let us illustrate also via an example the proof of Proposition 2.2.30.
Consider the k-group scheme G = αp ×k W 1

2 . Then VG has nilpotency index 2 and
G ⊆ (W2)

2 . We then have the commutative diagram with vertical maps being closed
immersions
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0 H2 G G1 0

0 G2
a (W2)

2 (W1)
2 0π

where
H2 = Im(VG) ≃ αp ⊆ Ga

and G1 ≃ αp ×k αp. Notice that H2 is the copy of αp contained in W 1
2 ⊆ G given by the

image of the Verschiebung (of W 1
2 ). As a consequence, the projection on the second factor

ρ : (W2)
2 ↠W2

is such that the composite
H2 ↪→ (W2)

2 ↠W2

is a monomorphism. Taking the schematic images of ρ we obtain the commutative diagram
given by:

0 H2 ρ(G) ρ(G1) 0

0 Ga W2 W1 0π

where ρ(G) = W 1
2 and ρ(G1) ≃ αp. Its vertical maps are closed immersions and they

factor in the following way

0 H2 ρ(G) ρ(G1) 0

0 Ga π−1(ρ(G1)) ρ(G1) 0.π

(2.2)

Notice that π−1(ρ(G1)) = ρ(G1)×kA1
k ≃ αp×kA1

k as k-schemes with structure of k-group
scheme given by the embedding π−1(ρ(G1)) ↪→ (W2)

2 . In particular

k[π−1(ρ(G1))] = k[ρ(G1)][T1] = k[T0]/(T
p
0 )[T1],

with comultiplication extending that of k[ρ(G1)] and such that

∆(T1) = T1 ⊗ 1 + 1⊗ T1 + S1(T0 ⊗ 1, 1⊗ T0).

Now, as in the proof, we have

G = G1 ×ρ(G1) ρ(G),

which is a closed subgroup scheme of G2 := G1 ×ρ(G1) π
−1(ρ(G1)). Moreover

k[G2] = k[G1]⊗k[ρ(G1)] k[π
−1(ρ(G))]
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= k[G1]⊗k[ρ(G1)] k[ρ(G1)][T1]

= k[G1][T1] = k[S0, T0]/(S
p
0 , T

p
0 )[T1]

with comultiplication extending that of k[G1] and such that

∆(T1) = T1 ⊗ 1 + 1⊗ T1 + S1(T0 ⊗ 1, 1⊗ T0)

and
k[G] = (k[S0, T0]/(S

p
0 , T

p
0 )) [T1]/(T

p
1 ).

2.3 Infinitesimal commutative unipotent group schemes with
one-dimensional Lie algebra

In general, it is not easy to describe explicitly infinitesimal commutative unipotent group
schemes. For example, already those arising as the p-torsion of some abelian variety (with
p-rank zero) are not completely understood and increase in complexity as the dimension
grows. To have an explicit description of such group schemes, for example in terms
of the Hopf algebra representing them, is useful in order to construct actions of these
group schemes on varieties (see for example Proposition 3.1.17). In this section, we deal
with this problem for the case of infinitesimal commutative unipotent group schemes
with one-dimensional Lie algebra defined over an algebraically closed field k, proving the
following result.

Theorem 2.3.1. Let k be an algebraically closed field of characteristic p > 0. For any
n ≥ 1, there are exactly, up to isomorphism, n infinitesimal commutative unipotent
k-group schemes of order pn and with one-dimensional Lie algebra. They are the group
schemes of the form

Wn
n [V − F i] := ker(V − F i : Wn

n →Wn
n )

for some i = 1, . . . , n.

This result is known for infinitesimal commutative unipotent group schemes of order
≤ p3 thanks to [Oor66, (15.5)] and [NWW15, Theorem 1.1].

We see that, of these group schemes, the only ones that are contained in a smooth
connected one-dimensional algebraic group are αpn and Wn

n [F − V ] (the former is a
subgroup of Ga and the latter is contained in the pn-torsion of a supersingular elliptic
curve) for any n ≥ 1, see Proposition 2.3.12. All the others are examples of infinitesimal
group schemes that act generically freely on any curve (by Theorem 3.2.13 in Chapter
3), but are not subgroups of a smooth connected one-dimensional algebraic group. We
answer in this way to a question of Brion (see [Bri22]). Notice moreover that Wn

n [F − V ]
is the only self-dual group scheme of the list. If one considers infinitesimal commutative
unipotent group schemes with higher dimensional Lie algebra, this is not the case anymore:
indeed the p-torsion of any principally polarized abelian variety of dimension g and p-rank
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zero, is a self-dual infinitesimal commutative unipotent group scheme, and there exist
pg−1 different isomorphism classes of such varieties (see [Pri08]).

The commutative group schemes of Theorem 2.3.1 are infinitesimal unipotent since
their Frobenius and Verschiebung morphisms are both nilpotent (see Remark 2.2.13) and
they have one-dimensional Lie algebra since for all of them the Frobenius kernel is αp
(see Remark 2.1.6). As recalled in Proposition 2.2.12, if the base field k is perfect, every
infinitesimal commutative unipotent k-group scheme G can be embedded in (Wm

n )r for
some n,m, r ≥ 1. When either G or its Cartier dual has one-dimensional Lie algebra,
then they both embed in just one copy of the group scheme of Witt vectors (Corollary
2.2.25), but this is not the only case as we see in Lemma 2.3.4. Until the end of 2.3 we
will assume that k is a perfect field. Moreover W will denote the group scheme of Witt
vectors over k, Wn the k-group scheme of Witt vectors of length ≤ n and Wm

n the kernel
of the morphism Fm : Wn →Wn.

In the following Lemma we compute the Hopf algebra representing certain infinitesimal
commutative unipotent group schemes which will play a key role further on.

Lemma 2.3.2. For every integer r, s ≥ 1 and m ≥ 2 let d = lcm(r, s) and consider the
k-group scheme G =Wmd

md [F
r − V s]. Then

(i) G =Wn′
n [F r − V s] where n = min

(
smd

r ,md
)

and n′ = min
(
rmd

s ,md
)
, and

(ii) the k-Hopf algebra of G is

k[G] = k[T0, . . . , Tn−1]/(T
pr

0 , . . . , T p
r

s−1, T
pr

s − T0, . . . , T
pr

n−1 − Tn−s−1)

where k[T0, . . . , Tn−1] is the k-Hopf algebra k[Wn] of Witt vectors of length ≤ n,
that is the comultiplication on k[G] is given by that of Witt vectors.

Proof. For the first statement, the inclusion Wn′
n [F r − V s] ⊆ G is clear since n, n′ ≤ md.

For the other inclusion, notice that s | n and r | n′ and thus

V n
G = (V s

G)
n
s = (F rG)

n
s = 0 and Fn

′
G = (F rG)

n′
r = (V s

G)
n′
r = 0.

For the second statement, notice that for any k-algebra R we have

G(R) ={
a ∈Wn(R) |

(
ap

r

0 , . . . , a
pr

s−1, a
pr

s , . . . , a
pr

n−1

)
= (0, . . . , 0, a0, . . . , an−s−1) and ap

n′

i = 0 ∀i
}

=

{
a ∈Wn(R) |

(
ap

r

0 , . . . , a
pr

s−1, a
pr

s − a0, . . . , a
pr

n−1 − an−s−1

)
= 0 and ap

n′

i = 0 ∀i
}

=
{
a ∈Wn(R) |

(
ap

r

0 , . . . , a
pr

s−1, a
pr

s − a0, . . . , a
pr

n−1 − an−s−1

)
= 0
}

where a = (a0, . . . , an−1) and the last equality is due to the fact that n′ ≥ 2r: indeed

clearly ap
n′

i = 0 for every i = 0, . . . , s− 1 since in this case ap
r

i = 0 and for i = s, . . . , n− 1

we have ap
n′

i = ap
n′−r

i−s = 0.
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Example 2.3.3. Notice that in general it is slightly more difficult to write explicitly the
Hopf algebra representing the group scheme Wn

n [F
r−V s] for any n ≥ 1 and r, s = 1, . . . , n.

Take for example
G =W 3

3 [V − F 2] =W 3
2 [V − F 2].

Notice that G = ker(F 3
H) where H =W 4

4 [V − F 2] =W 4
2 [V − F 2] = Spec(A) and

A = k[T0, T1]/(T
p2

0 , T p
2

1 − T0)

by Lemma 2.3.2. Therefore,

k[G] = A/(T p
3

0 , T p
3

1 ) = k[T0, T1]/(T
p2

0 , T p
2

1 − T0, T
p3

0 , T p
3

1 ) = k[T0, T1]/(T
p
0 , T

p2

1 − T0).

In the following we see that there are many examples of infinitesimal commutative
unipotent group schemes G that embed in just one copy of the group scheme of Witt
vectors but neither G nor G∨ have one-dimensional Lie algebra.

Lemma 2.3.4. For every integer r, s ≥ 1 and m ≥ 2 let d = lcm(r, s), n = min
(
smd

r ,md
)

and n′ = min
(
rmd

s ,md
)
. The Dieudonné module of the k-group scheme

G =Wmd
md [F

r − V s] =Wn′
n [F r − V s]

is
M(G) = E/(E(Fr − Vs) + EFn

′
).

Moreover, the Cartier dual of G is

G∨ =Wn
n′ [V r − F s].

Proof. Set En′
n :=M(Wn′

n ) = E/(EFn′
+ EVn). The short exact sequence

0→ G→Wn′
n → Im(F r − V s)→ 0

yields the short exact sequence of E-modules

0→ En
′

n (Fr − Vs)→ En
′

n →M(G)→ 0

and thus M(G) = E/(E(Fr − Vs) + EFn′
) as stated. Consider now the Cartier dual G∨

of G. First of all, let us show that G∨ embeds in just one copy of the k-group scheme
of Witt vectors. Indeed, if this was not the case, by Corollary 2.2.24, G∨ would contain
αp ×k αp as a k-subgroup scheme. As a consequence, we would have a surjection

G↠ αp ×k αp,

implying that k[αp×kαp] = k[U1, U2]/(U
p
1 , U

p
2 ) is a k-Hopf subalgebra of k[G]. This is not

the case since there exists a unique, up to scalar multiplication, element x ∈ k[G] such that
∆(x) = x⊗1+1⊗x and xp = 0 (this element is T p

r−1

0 with the notation of the description
of k[G] given in Lemma 2.3.2), while k[αp×k αp] has two k-linearly independent elements
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with this property. Therefore G∨ ⊆Wn
n′ . Moreover, V r

(G∨)(1/p)
−F sG∨ = (F rG−V s

G(1/p))
∨ = 0

and thus
G∨ ⊆Wn

n′ [V r − F s].

By Lemma 2.3.2,

o (Wn
n′ [V r − F s]) = psn

′
= prn = o(G) = o(G∨),

hence the equality.

Example 2.3.5. Notice that in general it is not true that an infinitesimal commutative
unipotent k-group scheme and its Cartier dual are contained in the same (minimal) number
of copies of Witt vectors. Consider for example the k-subgroup scheme of W2×kW2 given
by

G = Spec (k[T0, T1, U0, U1]/(T
p
0 , T

p
1 − U0, U

p
0 , U

p
1 − T0))

and the quotient

G↠ H = Spec (k[T0, T1, U0]/(T
p
0 , T

p
1 − U0, U

p
0 )) ≃ Spec

(
k[T0, T1]/(T

p
0 , T

p2

1 )
)
.

Then H is a k-subgroup scheme of W2 but its dual is not. Indeed, one can see that G is
self-dual setting T̃0 = T ∗

1 , T̃1 = U∗
0 , Ũ0 = U∗

1 , Ũ1 = T ∗
0 and, as a consequence, we have

H∨ = Spec
(
k[T̃0, T̃1, Ũ1]/(T̃

p
0 , T̃

p
1 , Ũ

p
1 − T̃0)

)
≃ Spec

(
k[X,Y ]/(Xp2 , Y p)

)
with comultiplication

∆: X 7→ X ⊗ 1 + 1⊗X,
Y 7→ Y ⊗ 1 + 1⊗ Y + S1(X

p, Xp)

where S1(a, b) = −
∑p

k=1
1
p

(
p
k

)
akbp−k. We also remark that ker(FH) ≃ W 1

2 , while
ker(FH∨) ≃ αp ×k αp. One can show that indeed G is isomorphic to

ker(F − V : W2 →W2)
2 = Spec (k[X0, X1, Y0, Y1]/(X

p
0 , X

p
1 −X0, Y

p
0 , Y

p
1 − Y0)) .

The isomorphism is explicitly given by

X0 7→ T0 + U0,

X1 7→ T1 + U1 + S1(T0, U0),

Y1 7→ −T1 + U1 + S1(T0,−U0),

Y0 7→ T0 − U0.

As shown later on (see Corollary 2.3.10), over an algebraically closed field, this is the
product of two copies of the p-torsion of a supersingular elliptic curve over k.

Lemma 2.3.6. Let G be an infinitesimal commutative unipotent k-group scheme of order
pn with one-dimensional Lie algebra. Then, up to (canonical) isomorphism, the Dieudonné
module of ker(Fn−1

G ) is given by the quotient M(G)/M(G)Fn−1.
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Proof. We start by remarking that, by Lemma 2.2.10, G has height n. Moreover, by
Theorem 2.1.9, G ≃ Spec(k[T ]/(T p

n
)) as schemes and thus

Fn−1
G (G) ≃ Spec(k[T p

n−1
]/(T p

n
)) ≃ Spec(k[U ]/(Up)).

Since Fn−1
G (G) is still unipotent, then Fn−1

G (G) ≃ αp. Therefore, we have the short exact
sequence

0 −→ H −→ G
Fn−1
G−→ αp −→ 0

where H := ker(Fn−1
G ). Applying the (exact contravariant) Dieudonné functor we obtain

the short exact sequence

0 −→M(αp)
M(Fn−1

G )
−→ M(G) −→M(H) −→ 0.

Now, Fn−1 is zero in M(H) and thus we have the factorization

M(G)/M(G)Fn−1 ↠M(H).

Therefore M(G)Fn−1 is contained in the kernel of M(G)→M(H) that is (isomorphic to)
M(αp). Finally, since M(G)Fn−1 ̸= 0 and M(αp) has length one, then also M(G)Fn−1

has length one (and M(G)Fn−1 ≃M(αp)). Therefore M(G)/M(G)Fn−1 is isomorphic to
M(H).

Proposition 2.3.7. Let k be algebraically closed and n ≥ 3. Then for every a ∈W (k)
and i = 1, . . . , n− 2 we have an isomorphism of E-modules

E/
(
E(V− Fi − aFn−1) + EFn

)
≃ E/

(
E(V− Fi) + EFn

)
.

Moreover, for every a ∈W (k)× it holds

E/
(
E(V− aFn−1) + EFn

)
≃ E/

(
E(V− Fn−1) + EFn

)
as E-modules.

Proof. We will show that for any i = 1, . . . , n− 2

φ : E/
(
E(V− Fi − aFn−1) + EFn

)
→ E/

(
E(V− Fi) + EFn

)
1 7→ 1 + cFn−1−i

is an isomorphism for a good choice of c ∈ W (k). First, we have to find under what
conditions on c is φ well-defined. This is the case if and only if φ(V− Fi − aFn−1) = 0.
Now

φ(V− Fi − aFn−1) = (V− Fi − aFn−1)(1 + cFn−1−i) =

V− Fi − aFn−1 + (V− Fi − aFn−1)cFn−1−i = −aFn−1 + σ−1(c)VFn−1−i − σi(c)Fn−1 =

−aFn−1 + σ−1(c)Fn−1 − σi(c)Fn−1 = (−a+ σ−1(c)− σi(c))Fn−1
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where σ is the Frobenius morphism on W (k). Let us note γ := −a + σ−1(c) − σi(c).
Since Fn = 0, it is enough to find c such that γ = 0 mod p. We take c = [c0] to be the
Teichmüller lift of a non-zero solution c0 of the polynomial X −Xpi+1

= ap0, which exists
since k is algebraically closed. Therefore, the morphism φ is well-defined. Let us show
that φ is injective. Since in the source of φ we have V = Fi + aFn−1, a general element of
the source is of the form

∑n−1
k=0 akFk with ak ∈ W (k). Moreover, since k is perfect, for

any α = (α0, α1, . . . ) ∈W (k) we have

α = [α0] + (0, α1, α2, . . . ) = [α0] + p
(
α
1/p
1 , α

1/p
2 , . . .

)
= [α0] +

(
α
1/p
1 , α

1/p
2 , . . .

)
p

and thus

αFk = [α0]Fk +
(
α
1/p
1 , α

1/p
2 , . . .

)
VFk+1 = [α0]Fk +

(
α
1/p
1 , α

1/p
2 , . . .

)
Fk+1+i.

Since Fn = 0, repeating the argument for
(
α
1/p
1 , α

1/p
2 , . . .

)
Fk+1+i we obtain that for a

general element
∑n−1

k=0 akFk in the quotient we can suppose that ak is the Teichmüller
lift of some element of the base field for any k = 0, . . . , n− 1. Suppose now that such an
element maps to zero. Then we have

0 =

(
n−1∑
k=0

akFk
)
(1 + cFn−1−i) =

n−1∑
k=0

akFk +
n−1∑
k=0

akFkcFn−1−i =

n−1∑
k=0

akFk +
n−1∑
k=0

akσ
k(c)Fn−1−i+k =

n−1∑
k=0

akFk +
i∑

k=0

akσ
k(c)Fn−1−i+k

that is
n−1∑
k=0

akFk = −
i∑

k=0

akσ
k(c)Fn−1−i+k.

Multiplying recursively on the right by Fn−j for j = 1, . . . , n− 1 one obtains akFn−1 = 0
and since ak is a Teichmüller lift, this implies that ak = 0 for all k = 0, . . . , n − 1.
Therefore φ is injective and since both the E-modules E/

(
E(V− Fi − aFn−1) + EFn

)
and E/

(
E(V− Fi) + EFn

)
have length n then φ is an isomorphism. Let us conclude the

proof showing that

E/
(
E(V− aFn−1) + EFn

)
≃ E/

(
E(V− Fn−1) + EFn

)
when a ∈W (k)×. Notice that in both E-modules we have p = FV = VF = 0 since Fn = 0
and V = aFn−1 or V = Fn−1. We can then suppose that a = [a] is the Teichmüller lift of
some element a ∈ k. We define the morphism ψ sending 1 to the Teichmüller lift b = [b]
of a non-zero root b of the polynomial apXpn −X, which exists since k is algebraically
closed. Remark that ψ is well-defined since

V− aFn−1 7→ (V− aFn−1)b = σ−1(b)V− aσn−1(b)Fn−1 = (σ−1(b)− aσn−1(b))Fn−1 = 0.
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In fact, once more VFn−1 = 0 and thus it is enough to verify that δ0 = 0 where
δ := σ−1(b)− aσn−1(b), which holds true since

δ0 =
(
b− apbp

n)1/p
= 0.

Finally, ψ is surjective, since
b−1 =

[
b
−1
]
7→ 1

and thus an isomorphism.

We are now ready to prove Theorem 2.3.1.

Proof of Theorem 2.3.1. We argue by induction on n. For n = 1 the only infinitesimal
commutative unipotent group scheme of order p with one-dimensional Lie algebra is αp
and its Dieudonné module is E/(EV+ EF). Suppose now that the statement is true for
n− 1 and let G be an infinitesimal commutative unipotent k-group scheme of order pn

and one-dimensional Lie algebra. Consider then the short exact sequence

0→ ker(Fn−1
G )→ G→ Fn−1

G (G) ≃ αp → 0.

Then ker(Fn−1
G ) is a subgroup scheme of G of order pn−1 so by inductive hypothesis

ker(Fn−1
G ) =Wn−1

n−1 [V − F
i]

for some i = 1, . . . , n− 1. Equivalently we have a surjection

M(G) ↠M(G)/M(G)Fn−1 ≃ E/
(
E(V− Fi) + EFn−1

)
(2.3)

where M(G) is the Dieudonné module corresponding to G and we know that M(G) is
an E-module of length n (the isomorphism is given by Lemma 2.3.6). The kernel of this
surjection is thus M(G)Fn−1 = kFn−1, where the equality is due to the fact that Fn = 0.
Therefore, by (2.3), it holds V− Fi = aFn−1 in M(G) for some a ∈ W (k) (and we can
take a = [a] for some a ∈ k). As a consequence we have the surjection

E/(EVn + EFn) ↠M(G)

coming from the fact that G ⊆Wn
n (by Corollary 2.2.25) factors via

E/
(
E(V− Fi − aFn−1) + EFn

)
↠M(G).

Finally, both the E-modules M(G) and E/
(
E(V− Fi − aFn−1) + EFn

)
have length n

and thus
M(G) ≃ E/

(
E(V− Fi − aFn−1) + EFn

)
.

The statement follows by Proposition 2.3.7.
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Remark 2.3.8. Notice that as a consequence of the proof of Theorem 2.3.1 we have
that, for i = 1, . . . , n− 2, Wn

n [V − F i] is the only infinitesimal commutative unipotent
group scheme of order pn and with one-dimensional Lie algebra that is an extension of αp
by Wn−1

n−1 [V − F i]. On the other hand, there are exactly two infinitesimal commutative
unipotent group schemes of order pn and with one-dimensional Lie algebra that are an
extension of αp by αpn−1 : Wn

n [V − Fn−1] and αpn .

As direct consequences of Theorem 2.3.1 and Lemma 2.3.4 we have the following two
corollaries, that respectively describe (over algebraically closed fields) all infinitesimal
commutative unipotent k-group schemes whose dual have one-dimensional Lie algebra,
and the pn-torsion of supersingular elliptic curves. The latter is probably well-known, but
we are not aware of a reference for it.

Corollary 2.3.9. Let k be algebraically closed. For any n ≥ 1, there are exactly n
non-isomorphic infinitesimal commutative unipotent k-group schemes G of order pn such
that dimk(Lie(G

∨)) = 1. They are the group schemes of the form

Wn
n [F − V i] := ker(F − V i : Wn

n →Wn
n )

for some i = 1, . . . , n.

Proof. The classification is a direct consequence of Theorem 2.3.1 along with Lemma
2.3.4.

Corollary 2.3.10. Let k be algebraically closed and E/k be a supersingular elliptic curve.
Then, for every n ≥ 1 its pn-torsion is E[pn] =W 2n

2n [V − F ].

Proof. The pn-torsion E[pn] of a supersingular elliptic curve E over an algebraically
closed field of characteristic p > 0 is a finite commutative unipotent (see [Sil09, Theorem
3.1]) self-dual (see [Mum08, III.15, Theorem 1]) k-group scheme of order p2n with one-
dimensional Lie algebra. By Theorem 2.3.1 and Lemma 2.3.4, the only such k-group
scheme is W 2n

2n [F − V ].

Notice that if an infinitesimal commutative unipotent k-group scheme G with n-
dimensional Lie algebra can be embedded in a smooth connected n-dimensional algebraic
group G, then G acts freely on it (by multiplication). Brion [Bri22, §1] asked if there
are examples of generically free rational actions on curves of infinitesimal commutative
unipotent group schemes that are not subgroup schemes of a smooth connected one-
dimensional algebraic group. Recall that if G is a smooth connected one-dimensional
k-algebraic group, then either G is affine and Gk ≃ Gm,k or Gk ≃ Ga,k or G is an elliptic
curve. The following proposition explains that if k is algebraically closed, very few
infinitesimal commutative unipotent k-group schemes with one-dimensional Lie algebra
are contained in smooth connected one-dimensional algebraic groups. All the others
are examples of infinitesimal group schemes that act generically freely on any curve (by
Theorem 3.2.13 in Chapter 3), but are not subgroup schemes of a smooth connected
algebraic group.

We need a small preliminary lemma.
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Lemma 2.3.11. Let n > 2 be an integer then n
2 > ⌈

n
3 ⌉.

Proof. For every real number x we have

x ≤ ⌈x⌉ < x+ 1.

It is then enough to show that n
2 ≥

n
3 + 1. This holds if and only if n ≥ 6. One can check

by hand that for n = 3, 4, 5 the statement holds true as well.

Proposition 2.3.12. Let k be algebraically closed and G be an infinitesimal commutative
unipotent k-group scheme with one-dimensional Lie algebra. Then G is contained in a
smooth connected one-dimensional algebraic group if and only if either G ≃ αpn for some
n ≥ 1 (in this case G ⊆ Ga) or G ≃ Wn

n [V − F ] (in this case G is contained in the
pn-torsion E[pn] =W 2n

2n [V − F ] of a supersingular elliptic curve E).

Proof. By Theorem 2.3.1, G ≃Wn
n [V − F i] for some n ≥ 1 and i = 1, . . . , n. Let us start

by considering the cases i = 1, n for any n ≥ 1. For i = 1 we have G ≃Wn
n [F − V ] which

is contained in W 2n
2n [F − V ] and the latter is the pn-torsion of a supersingular elliptic

curve (Corollary 2.3.10). For i = n, then G ≃Wn
1 = αpn ⊆ Ga.

Let us show that if n > 2 and i = 2, . . . , n− 1 then G is not contained in a smooth
connected one-dimensional algebraic group. Under these assumptions, clearly G is not a
subgroup neither of Gm (since G is unipotent) nor of Ga (since VG ≠ 0). Therefore if G is
a subgroup of a smooth connected one-dimensional algebraic group then it is a subgroup
of an elliptic curve E. Notice that p = VGFG = F iGFG = F i+1

G and thus ps = 0 for
s = ⌈ n

i+1⌉. Then, G is contained in the ps-torsion E[ps] of E. Since n > 2 and i+ 1 ≥ 3,
by Lemma 2.3.11 we have n

2 > s. This gives a contradiction since E[ps] has order p2s (see
for example [Mum08] page 137) while G has order pn with n > 2s.

The question arises if all infinitesimal unipotent group schemes with one-dimensional
Lie algebra are commutative (see both [Fak20, Remark 2.10] and [Bri22, §1]). The
following example shows that it is not the case.

Example 2.3.13. Consider the infinitesimal unipotent non-commutative k-group scheme
G = Spec(A) where

A = k[T0, T1]/
(
T p

n

0 , T p1 − T0
)

with n ≥ 2 an integer and comultiplication given by

∆(T0) = T0 ⊗ 1 + 1⊗ T0

and
∆(T1) = T1 ⊗ 1 + 1⊗ T1 + T p

n−1

0 ⊗ T p
n−2

0 .

In this case
A∨ =

k⟨U0 . . . , Un⟩/(Up0 , . . . , U
p
n, UiUj − UjUi, UnUn−1 − Un−1Un − U0)i,j=0,...n,(i,j),(j,i)̸=(n,n−1)
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where U0(T1) = 1 and Ui(T
pi−1

0 ) = 1 and zero elsewhere. The Hopf algebra A∨ is non-
commutative: the only non-commutative relation is given by UnUn−1 − Un−1Un = U0,
while its comultiplication is defined on the Ui’s as for the Witt vectors (notice that this
makes sense since U0, . . . , Un−1 commute). These examples arise as closed subgroup
schemes of non-commutative extensions of Ga by itself (see [DG70, II.§3, 4]) and there are
many of them. Other examples can be found in Section 3.4 of Chapter 3. In particular
G is a subgroup scheme of PGL2,k when k has characteristic 2 and n = 3 (see Theorem
3.4.1).
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Chapter 3

Infinitesimal rational actions

The content of this chapter comes entirely from [Gou23] and [GT24].
Section 3.1 is devoted to generalities on (rational) actions of finite group schemes on

varieties and their algebraic counterpart given by module algebra structures, introduced
already in Chapter 1 (as background references we refer to [Mil17], [DG70], [SGA3],
[Swe69], [Mon93]).

Section 3.2 deals with generically free rational actions of infinitesimal group schemes
and contains one of the main results of this thesis (Theorem 3.2.13): in the first part of
the section we prove the existence part of Theorem 3.2.13 in the case of commutative
trigonalizable group schemes of height one (Proposition 3.2.4). We then proceed with
the proof of the general case. We end the section with some examples to show more
concretely how to deal with the construction of these actions.

Section 3.3 is devoted to Dolgachev’s conjecture revisited for infinitesimal group
schemes and, more generally, to studying faithful rational actions of infinitesimal group
schemes. Dolgachev’s conjecture [Dol10, Conjecture 37] can be rephrased in the following
way: if there exists a faithful rational action of a finite commutative p-group G on Pnk
then pnG = 0, where pG is the multiplication by p morphism on G. Proposition 3.3.6 gives
necessary (but not sufficient, see the counterexample 3.3.7) conditions for the existence
of faithful rational actions of infinitesimal commutative trigonalizable group schemes.
Moreover, we show that for any infinitesimal commutative unipotent group scheme G
defined over a perfect field and any variety X of dimension n, if V n

G = 0 there exist
faithful rational G-actions on X (Proposition 3.3.10).

Section 3.4 has as content the work [GT24], joint with Dajano Tossici, where unex-
pected subgroup schemes of PGL2,k in characteristic 2 are studied. For any field k, PGL2,k

represents the automorphism group functor of P1
k and thus subgroup schemes of PGL2,k

correspond to faithful actions on P1
k. Moreover, PGL2,k(k) coincides with the Cremona

group in dimension one, i.e. birational self-maps of P1
k, since any rational self-map of

a projective non-singular curve extends to the whole curve. In positive characteristic,
the situation is completely different if we consider rational actions of infinitesimal group
schemes. Most of the faithful infinitesimal actions on the affine line do not extend to
P1
k. If the characteristic of a field k is odd any infinitesimal group scheme of PGL2,k
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lifts to SL2,k. We prove that this is not true in characteristic 2 and we give a complete
description, up to isomorphism, of infinitesimal unipotent subgroup schemes of PGL2,k.
Also, the infinitesimal trigonalizable case is considered.

3.1 Actions of finite group schemes

The first part of this section is devoted to recalling the main definitions around (rational)
actions of finite group schemes on varieties, with a focus on faithful and (generically) free
actions. The second part is centered on their algebraic counterpart which is given by
module algebra structures (see Definition 1.1.13).

Actions and rational actions

Let G be a k-group scheme, X be a k-scheme equipped with a G-action G×k X → X
and ρ : G→ AutX be the corresponding group functor homomorphism.

Definition 3.1.1 (Centralizer). For any closed k-subscheme Y of X, the centralizer
CG(Y ) of Y in G is the subgroup functor that associates to any k-scheme S the set of
g ∈ G(S) inducing the identity on the S-scheme Y ×k S. The kernel of ρ is the centralizer
CG(X) of X in G.

Definition 3.1.2 (Faithful action). Let G be a k-group scheme and X be a k-scheme
equipped with a G-action ρ : G→ AutX . The G-action is said to be faithful if its kernel
is trivial.

Theorem 3.1.3. Let G be a k-group scheme acting on a k-variety X. The centralizer
CG(Y ) of any closed k-subscheme Y of X is represented by a closed k-subgroup scheme
of G.

Proof. See [SGA3, VIB, Example 6.2.4.e)].

Lemma 3.1.4. Let G be a k-group scheme and X be a k-variety endowed with a G-action.
The G-action is faithful if and only if the induced Gk-action on Xk is faithful.

Proof. The Gk-action on Xk is faithful if and only if CGk
(Xk) ≃ CG(X)k is trivial and

this holds true if and only if CG(X) is trivial.

Definition 3.1.5 (Free action). Let G be a finite k-group scheme and X be a k-scheme
equipped with a G-action ρ : G×k X → X. Let x : Spec(k(x))→ X be a point of X and
consider the composite ψ : G ×k Spec(k(x))

id×x−→ G ×k X
ρ×id−→ X ×k X. The stabilizer

StabG(x) of the point x is the pull-back of the diagram

StabG(x) Gk(x)

Spec(k(x)) X ×k X

ψ

diag
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where the bottom arrow is the diagonal morphism. The G-action is said to be free at
x ∈ X if StabG(x) is trivial. The G-action is said to be free if it is free at any point. We
denote by Xfr the subset of free points of X, which is an open G-stable subset of X.

Remark 3.1.6. Notice that, by universal property of pull-backs, if H is a k-subgroup
scheme of G, then

StabH(x) = StabG(x)×Gk(x)
Hk(x).

Proposition 3.1.7. Let G be a finite k-group scheme and X be an irreducible k-scheme
with a G-action. The following are equivalent:

1. Xfr ̸= ∅;

2. the generic point η of X belongs to Xfr;

3. Xfr is dense in X.

Proof. As we recalled above, Xfr is an open G-stable subset of X. The statement is a
direct consequence of this and of the fact that X is irreducible.

Definition 3.1.8 (Generically free action). Let G be a finite k-group scheme and X be
an irreducible k-scheme with a G-action. We say that the action is generically free if it
satisfies one of the above equivalent conditions.

Remark 3.1.9. When G is a finite constant group acting on a variety, if the action is
faithful then it is automatically generically free. This fails in general for G a finite k-group
scheme. For example the action α2

p×kA1
k → A1

k given by (a, b) ·x 7→ x+axp+ b is faithful
(there is no non-trivial k-subgroup of α2

p acting trivially) but not generically free, in fact
the stabilizer of the generic point η is StabG(η) = Spec (k(x)[S, T ]/(xpS + T, Sp, T p)).
Faithful actions coincide with generically free actions also for diagonalizable k-group
schemes (this is known and we also give a proof in Corollary 3.3.2). Moreover, we show
that this property holds, for instance, for infinitesimal commutative unipotent subgroup
schemes of the k-group scheme of Witt vectors (see Remark 3.3.3).

Proposition 3.1.10. Let G be a k-group scheme and X be a k-variety with a G-action.
The G-action is generically free if and only if the induced Gk-action on Xk is generically
free.

Proof. Let η : Spec(k(η)) → X be the generic point of X. Since X is geometrically
integral, then the generic point of Xk is the base change η : Spec

(
k(η)⊗k k

)
→ Xk (see

for example [Liu02, Chapter 3, Corollary 2.14]). Therefore, by general properties of the
base change, we have that the stabilizer of η is

StabGk
(η) ≃ StabG(η)k ≃ StabG(η)×Spec(k(η)) Spec

(
k(η)⊗k k

)
where StabG(η) is the stabilizer of η. Now, since k(η) ↪→ k(η)⊗k k is faithfully flat (it is a
field extension since X is geometrically integral), then StabGk

(η) is trivial (i.e. isomorphic
to Spec

(
k(η)⊗k k

)
) if and only if StabG(η) is trivial (i.e. isomorphic to Spec(k(η))), as

wished.
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Before giving the definition of rational action, we recall what we mean by a rational
(and birational) map between schemes.

Definition 3.1.11 (Rational map). A rational map f : Y 99K Z of k-varieties is an
equivalence class of pairs (U,φ), where U is a schematically dense open subset of Y , and
φ : U → Z is a morphism; two pairs (U,φ) and (V, ψ) are equivalent if there exists a
schematically dense open subset W ⊆ U ∩ V such that φ|W = ψ|W . Every rational map
f : Y 99K Z has a unique representative (U,φ), where U is maximal; then U is the domain
of definition dom(f) of f . The rational map f is birational if it admits a representative
(U,φ) such that φ is an isomorphism onto a schematically dense open subset of Z.

Definition 3.1.12 (Rational action). Let G be a finite k-group scheme and X a k-variety.
A rational action of G on X is a rational map ρ : G×k X 99K X such that:

(i) the rational map (π1, ρ) : G×k X 99K G×k X, (g, x) 799K (g, g · x) is birational;

(ii) the following diagram commutes

G×k G×k X G×k X

G×k X X

idG×ρ

m×idX

ρ

ρ

where m : G×k G→ G denotes the multiplication morphism of G.

Let us stress that the two compositions of rational maps in the above diagram make
sense. Indeed, as a consequence of (i), ρ is dominant, since it is the composition of the
birational map (π1, ρ) with the second projection. Therefore, the image of ρ contains
a dense open subset W ⊆ X and thus the image of idG × ρ contains G ×k W . Let V
denote the domain of definition of ρ; then the composite ρ ◦ (idG × ρ) is defined on the
open (idG × ρ)−1(V ∩ (G×kW )). Moreover, the composite ρ ◦ (m× idX) is defined since
m× idX is a morphism.

Remark 3.1.13. Let X be a k-variety. There is a bijection between rational actions of
G on X and G-actions on the generic point of X(see [Bri22, Corollary 3.4]).

Definition 3.1.14 (Faithful rational action). Let G be a finite k-group scheme and X be
a k-variety equipped with a rational action ρ : G×k X 99K X. We say that it is a faithful
rational action if the corresponding action on the generic point of X is faithful.

The following is a known result (see for example [TV13, Section 2]), we include the
proof for the sake of completeness. The proof we give can be deduced from [Bri22, Lemma
5.3] where the case of curves is treated.

Proposition 3.1.15. Let G be a finite k-group scheme and X be a k-variety endowed
with a generically free rational G-action. Then

dimk(Lie(G)) ≤ dim(X).
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Proof. Let U be an open subset of X on which the action is defined (see for example
[Bri22, Proposition 3.2]). Suppose first that char(k) = 0, then G is étale, thus

0 = dimk(Lie(G)) = dim(G)

and the statement follows. Suppose then that char(k) = p > 0 and let G1 be the kernel of
the Frobenius morphism FG : G→ G(p). Then G1 is an infinitesimal k-subgroup scheme
of G and Lie(G) = Lie(G1). If the G-action on U is generically free, then the same
holds for G1. We can thus suppose that G = G1 and, by Proposition 3.1.10, that k is
algebraically closed. By Proposition 3.1.7, the G-action is generically free if and only if
Xfr is dense in X and thus there exists (since X is geometrically integral and k = k) a
smooth closed point x ∈ U with trivial stabilizer StabG(x). Since G is infinitesimal, then
also StabG(x) is such, hence StabG(x) is trivial if and only if Lie(StabG(x)) is trivial.
Now, Lie(StabG(x)) is the kernel of the natural map Lie(G)→ TxU (see [DG70, III.§2,
2.6]) and therefore if the action is generically free this map is an injection and thus the
statement.

Actions of finite group schemes and module algebras

Some references for this part are [DG70, II.§4, 5], [Swe69, Chapter VII] and [Mon93,
Chapter 4]. Until the end of the section, G = Spec(A) will be a finite k-group scheme.

We begin by recalling the definition of differential operator, a central object when
studying actions of infinitesimal group schemes. Let X = Spec(B) be an affine k-scheme.
Every element f ∈ B defines a map

ad (f) : Endk(B)→ Endk(B)

φ 7→ (g 7→ fφ(g)− φ(fg)).

Definition 3.1.16 (Differential operator). A k-linear endomorphism φ of B is said to be
a differential operator of order ≤ n if

ad (f0) . . . ad (fn)φ = 0

for all f0, . . . , fn ∈ B. Differential operators form a k-subalgebra Diffk(B) of Endk(B).

Notice that differential operators of order ≤ 0 are B-linear endomorphisms and that
differential operators φ of order ≤ 1 such that φ(1) = 0 are derivations on B.

Recall, from Definition 1.1.13 and Remark 1.1.14 in Chapter 1, that for A a k-Hopf
algebra and B a k-algebra, B is said to be an A-module algebra if there exists

v : A→ Endk(B), a 7→ (b 7→ a · b)

which is a morphism of k-algebras satisfying the property of compatibility with products:{
v(a)(1) = ε(a)
v(a)(fg) = mB(v ⊗ v ◦∆(a))(f ⊗ g)

for any a ∈ A and f, g ∈ B, where ε denotes the counit of A, ∆ its comultiplication and
mB the multiplication of B. Module algebras are very useful when studying actions of
finite k-group schemes, thanks to the following result.
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Proposition 3.1.17. Let G = Spec(A) be a finite k-group scheme and X = Spec(B) be
an affine k-scheme. There is a bijection between the set of right actions of G on X and
the set of left A∨-module algebra structures on B.

Proof. The bijection is obtained associating to any coaction ρ : B → B⊗kA the A∨-module
algebra structure

v : A∨ → Endk(B)

α 7→ (B
ρ−→ B ⊗k A

idB⊗α−→ B ⊗k k ≃ B).

For more details see for example [Mon93, §4.1].

When dealing with infinitesimal group schemes, one can specialize Proposition 3.1.17
and prove that to give an action of these group schemes amounts to exhibiting a certain
number of differential operators respecting some relations.

Proposition 3.1.18. Let G = Spec(A) be an infinitesimal k-group scheme and X =
Spec(B) be an affine k-scheme. There is a bijection between the set of right actions of G
on X and the set of homomorphisms of k-algebras v : A∨ → Diffk(B) such that

v(µ)(fg) = mB(v ⊗ v ◦∆(µ))(f ⊗ g) (3.1)

for any µ ∈ A∨ and f, g ∈ B, where ∆ and mB denote respectively the comultiplication
of A and the multiplication of B.

Proof. See [DG70, II.§4, Proposition 7.2].

Example 3.1.19.

1. Consider the self-dual infinitesimal k-group scheme αp = Spec(k[T ]/(T p)) whose
group structure is given by

∆(T ) = T ⊗ 1 + 1⊗ T.

To give an action of αp on a k-scheme X = Spec(B) is equivalent to giving a k-linear
derivation ∂ : B → B such that ∂p = 0.

2. Consider the purely transcendental extension k(t)/k. The algebra of differential
operators Diffk(k(t)) is a k(t)-vector space with basis given by

{
∂
∂ti

}
where

∂

∂ti
(tr) =

{ (
r
i

)
tr−i if r ≥ i
0 otherwise.

If k has characteristic zero, then ∂
∂ti

= 1
i!

(
∂
∂t

)i. On the other hand, if k has
characteristic p > 0 this does not make sense for i = 0 mod p. In this case if i = jps

for some s ≥ 0 with j ̸= 0 mod p, then

∂

∂ti
=

∂

∂tjps
=

1

j!

(
∂

∂tps

)j
.

We will denote by ∂ps the differential operator ∂
∂tps

.
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3.2 Generically free rational actions

We begin this section with a useful criterion in order to determine when an action of an
infinitesimal group scheme is generically free.

Proposition 3.2.1. Let G be an infinitesimal k-group scheme and X an irreducible
k-scheme endowed with a G-action. Then:

1. the G-action is generically free if and only if the induced ker(FG)-action is generically
free;

2. if in addition k is perfect and G is commutative, the G-action is generically free if
and only if the induced action of soc(G) is generically free.

Proof.

1. Clearly if the G-action is generically free then also the induced ker(FG)-action is
generically free. Suppose that the G-action on X is not generically free. Let η be
the generic point of X and K = k(η). Then StabG(η) is a non-trivial subgroup
scheme of GK and thus

ker(FGK
)×GK

StabG(η) = ker(FG)K ×GK
StabG(η)

3.1.6
= Stabker(FG)(η)

is non-trivial. Therefore the action of ker(FG) on X is not generically free.

2. Clearly if the G-action is generically free then also the induced soc(G)-action is
generically free. For the other way around, by Proposition 3.1.10 and Lemma 2.2.26
we may suppose that k = k. Then G is trigonalizable. Suppose by contradiction
that the G-action on X is not generically free. Let η be the generic point of X and
K = k(η). Then StabG(η) is a non-trivial subgroup scheme of GK and thus

soc(StabG(η))
2.2.19
= soc(GK)×GK

StabG(η)
2.2.26
=

soc(G)K ×GK
StabG(η)

3.1.6
= Stabsoc(G)(η)

is non-trivial by Lemma 2.2.19. Therefore the action of soc(G) onX is not generically
free which gives a contradiction.

Recall the following definition.

Definition 3.2.2 (Solvable group scheme). A k-group scheme G is said to be k-solvable
if it is affine and it admits a composition series with quotients isomorphic either to Ga,k

or to Gm,k (see for example [DG70, IV.§4, Definition 3.1]).
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Proposition 3.2.3. Let G be a k-group scheme.

1. If G is k-solvable, then G is trigonalizable and its maximal unipotent k-subgroup
scheme Gu is k-solvable. Moreover G is isomorphic as a k-scheme to Gn−r

m,k ×k G
r
a,k

where n = dim(G) and r = dim(Gu).

2. If k is perfect and G is trigonalizable, smooth and connected, then G is k-solvable.

Proof. See for example [DG70, IV.§4, Proposition 3.4 and Corollary 3.8].

The following Proposition proves the existence part of Theorem 3.2.13 in the case of
commutative trigonalizable group schemes of height one (see Remark 3.2.5).

Proposition 3.2.4. Let G be a k-solvable group scheme of dimension n, consider G =
ker(F sG : G → G) for some s ≥ 1 and let X be a k-variety of dimension ℓ. Then there exist
generically free rational actions of G on X if and only if n ≤ ℓ.

Proof. Suppose that there exists a generically free rational action of G on X. Then, by
Proposition 3.1.15,

n = dim(G) = dimk(Lie(G)) ≤ dim(X) = ℓ.

For the converse, let us start by proving that any variety X of dimension ℓ admits a
generically free rational action of G if n = ℓ. By Proposition 3.2.3, G is a subscheme of

G ≃ Gn−r
m,k ×k G

r
a,k

where r = dim(Gu) and thus there is a natural generically free G-action on Gn−r
m,k ×k G

r
a,k

by multiplication, since G is a subgroup scheme of G. We then have the G-torsor given
by the Frobenius

F s : Gn−r
m,k ×k G

r
a,k → Gn−r

m,k ×k G
r
a,k.

Let K = k(X) and take any point x ∈
(
Gn−r
m,k ×k G

r
a,k

) (
kKps

)
,

x = (x1, . . . , xn) : Spec
(
kKps

)
→ Gn−r

m,k ×k G
r
a,k.

Then we have a G-torsor

Yx = Spec
(
kKps [T1, . . . , Tn]/(T

ps

i − xi)i=1,...,n

)
−→ Spec(kKps)

given by the pull-back diagram

Yx Spec(kKps)

Gn−r
m,k ×k G

r
a,k Gn−r

m,k ×k G
r
a,k.

x

F s
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Let {y1, . . . , yn} be a p-basis for K/kKp and x = (x1, . . . , xn) ∈
(
Gn−r
m,k ×k G

r
a,k

) (
kKps

)
be the point with coordinates xi = yp

s

i for i = 1, . . . , n. Let us show that there is an
isomorphism

kKps [T1, . . . , Tn]/(T
ps

i − xi)i=1,...,n ≃ K,Ti 7→ yi.

First of all, let us see that kKps [T1, . . . , Tn]/(T
ps

i − xi)i=1,...,n is a field. We can see this
by induction on n: in fact,

kKps [T1]/(T
ps

1 − x1)

is a field since T p
s

1 −x1 is irreducible in kKps [T1] since y1 ̸∈ kKp. Without loss of generality
we can then suppose by induction that

L := kKps [T1, . . . , Tn−1]/(T
ps

i − xi)i=1,...,n−1

is a field and consider
L[Tn]/(T

ps

n − xn).
The polynomial T p

s

n − xn is irreducible in L[Tn] since yn ̸∈ kKp and thus the claim.
Consider the morphism of rings

ψ : kKps [T1, . . . , Tn]/(T
ps

i − xi)i=1,...,n → K

Ti 7→ yi,

then, since the objects are fields, it is an injection and since the two fields have the
same degree over kKps then ψ is an isomorphism, as wished. Therefore we constructed
a G-torsor Yx = Spec(K)→ Spec(kKps), that is there exists a generically free rational
action of G on X, as claimed. For the general case, consider

H = ker(F s : G ×k Gℓ−n
a → G ×k Gℓ−n

a ).

By what we have just proved, there exists a generically free rational action of H on X,
since

dim(G ×k Gℓ−n
a ) = ℓ = dim(X).

Notice that G = ker(F s : G → G) is a k-subgroup scheme of H, indeed it is the kernel of
the projection

π2 : H → Gℓ−n
a .

As a consequence, there exists also a generically free rational action of G on X, as wished.

Remark 3.2.5. If k is perfect and G is a commutative trigonalizable k-group scheme of
height one, then

G ≃
t∏
i=1

W 1
ni
×k µlp = ker

(
F :

t∏
i=1

Wni ×k Gl
m →

t∏
i=1

Wni ×k Gl
m

)
for some t, l, ni ≥ 1 (see for example [DG70, IV.§2, 2.14]) and

∏t
i=1Wni ×k Gl

m is a
k-solvable group scheme of dimension equal to dimk(Lie(G)). Hence, Proposition 3.2.4
applies in this case with n = dimk(Lie(G)).
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The following is an asymptotic result for the dimension of varieties endowed with
generically free rational actions of infinitesimal unipotent group schemes. This result will
be made more precise in the commutative case and over a perfect field with Theorem
3.2.13.

Corollary 3.2.6. For every infinitesimal trigonalizable k-group scheme G there exists an
integer r > 0 such that for every variety X of dimension ≥ r there exist generically free
rational actions of G on X.

Proof. Any trigonalizable k-group scheme G has a closed immersion in the smooth k-
algebraic group Tn of upper triangular matrices for some n. This k-group scheme is
k-solvable. Moreover, if G is infinitesimal, it is contained in the kernel of some power of
the Frobenius of Tn. Therefore, by the previous Proposition, any variety of dimension
greater than or equal to the dimension of Tn admits a generically free G-action.

Remark 3.2.7. Notice that, as a consequence of the above Proposition 3.2.4, we have
that for every variety X of dimension n and for any j ≤ n, there exists a nilpotent k-linear
derivation D on K = k(X) of order pj . Indeed, consider a generically free rational action
of W 1

j on X which corresponds to a module algebra structure

k[T ]/(T p
j
)→ Derk(K)

T 7→ D

where k[T ]/(T pj ) represents αpj , the Cartier dual of W 1
j . Then Dpj = 0 and, by [DG70,

III.§2, Corollary 2.7], D,Dp, . . . , Dpj−1 are K-linearly independent, hence D has order j.

Proof of Theorem 3.2.13

We begin this part with three technical results that are the building blocks for the
construction of generically free rational actions done in the proof of Theorem 3.2.13: the
main idea of the proof is to show that for G an infinitesimal commutative unipotent
k-group scheme of height n, a generically free rational action of Gn−1 = ker(Fn−1

G ) on a
variety X can be extended to a rational action of G. Lemma 3.2.8 tells us that if Gn−1

acts on X, then G acts already on X(p). Lemma 3.2.10 shows that to extend a rational
action of Gn−1, it is enough to define it on a p-basis of the fraction field K = k(X)/kKp.
Lemma 3.2.11 shows that under certain commutativity assumptions, some commutators
are indeed derivations on K.

Lemma 3.2.8. Let G be an infinitesimal k-group scheme of height n and let us denote
Gi := ker(F iG) for all i = 1, . . . , n − 1. Any action of Gn−1 on a k-variety X induces
naturally an action of G/Gi on X(pi) for i = 1, . . . , n− 1. Moreover, if the Gn−1-action
on X is faithful, the same holds true for the induced G/Gi-action on X(pi).

Proof. Let Gn−1 ×k X → X be a faithful action. Then we have a naturally induced
faithful action G(pi)

n−1 ×k X(pi) → X(pi) obtained by base change (the proof is the same as
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that of Lemma 3.1.4) and therefore also of

G/Gi ≃ Im(F iG) ⊆ G
(pi)
n−1

on X(pi).

Remark 3.2.9.

• In the above setting, the composite

G×k X(p) → G/ ker(FG)×k X(p) → X(p)

provides us naturally with an action of G on X(p), via FG : G→ G(p).

• Algebraically, this means that if we have a module algebra structure

k[G∨
n−1]→ Endk(B)

this induces a module algebra structure

v : k[G∨]→ Endk(Im(FB)).

Let η : Im(FB) → Homk (k[G
∨], Im(FB)) be the corresponding morphism of alge-

bras. Explicitly we then have that for every a ∈ k[G∨] and β ∈ B(p) it holds

η(FB(β))(a) =
(
FHomk(A,B) ◦ η(p)(β)

)
(a) =

FB ◦ η(p)(β) ◦ VA(a) = FB(v
(p)(VA(a))(β))

where the first equality holds by functoriality of the Frobenius and the second one
by Lemma 2.2.3.

Let k be perfect, G be an infinitesimal commutative unipotent k-group scheme of
height n and Gn−1 = ker(Fn−1

G ). In order to simplify the notation we denote by G∨
n−1 its

dual, that is G∨
n−1 := (Gn−1)

∨ = coker(V n−1
G∨ ) = G∨/ Im(V n−1

G∨ ). In Proposition 2.2.30,
we showed that there exists a structure of k-group scheme on G := G∨

n−1 ×k A
rn
k where

rn = dimk(Lie(Im(V n−1
G∨ ))) such that

0→ Grn
a → G → G∨

n−1 → 0.

Moreover, G∨ embeds in G realizing the exact sequence

0→ G∨ → G → Grn
a → 0.

At the level of algebras, this is rephrased by saying that

k[G] = k[G∨
n−1][T1, . . . , Trn ]
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can be endowed with a structure of k-Hopf algebra (coming from that of Witt vectors)
such that

∆(Tj) = Tj ⊗ 1 + 1⊗ Tj +Rj

where Rj is an element of k[G∨
n−1]⊗k k[G∨

n−1]. Moreover,

k[G∨] = k[G∨
n−1][T1, . . . , Trn ]/(P1, . . . , Prn)

where the polynomials Pj are primitive elements of k[G∨
n−1][T1, . . . , Trn ] congruent to T p

lj

j

for some lj ≥ 1 modulo the augmentation ideal of k[G∨
n−1] for every j = 1, . . . , rn.

For any r ≤ dimk(Lie(Im(V n−1
G∨ ))), consider the commutative k-Hopf algebra

k[G∨
n−1][T1, . . . , Tr]

corresponding to G∨
n−1 ×k Ark with k-group scheme structure induced by that of G.

Consider the non-commutative k-algebra k[G∨
n−1]⟨T1, . . . , Tr⟩ where the variables Ti

don’t commute neither among them nor with the commutative subalgebra k[G∨
n−1].

We endow k[G∨
n−1]⟨T1, . . . , Tr⟩ of a k-Hopf algebra structure (which extends that of

k[G∨
n−1]) defined as follows: one first takes the non-commutative free algebra Γ =

k⟨Tij , T1, . . . , Tr⟩1≤i≤n−1,1≤j≤s where s is minimal such that G∨
n−1 ⊆ (Wn−1)

s (notice
that the Tij ’s are the variables needed to define k[G∨

n−1] , while the r additional variables
T1, . . . , Tr will each play the role of the nth coordinate in the corresponding copy of Witt
vectors). We define ∆ : Γ → Γ ⊗k Γ, sending each variable to the element of Γ ⊗k Γ
given by the comultiplication of commutative Witt vectors and then extending this map
to a morphism of algebras. Finally we quotient Γ by the two-sided ideal given by the
commutators of the variables Tij for 1 ≤ i ≤ n − 1, 1 ≤ j ≤ s and by the two-sided
ideal defining k[G∨

n−1]. In this way, ∆ defines a comultiplication on k[G∨
n−1]⟨T1, . . . , Tr⟩

(before taking the quotient ∆ was not a priori coassociative). In this setting, we have the
following results.

Lemma 3.2.10. Let X be a k-variety of dimension s with fraction field K and p-basis
(t1, . . . , ts) of K/kKp. Then for any set {xih | i = 1, . . . , r, h = 1, . . . , s} of elements of
K and any module algebra structure

ṽ : k[G∨
n−1]→ Diffk(K)

there exists a unique module algebra structure

v : k[G∨
n−1]⟨T1, . . . , Tr⟩ → Diffk(K)

extending ṽ and such that v(Ti)(th) = xih for every i and h.

Proof. Let us begin with the existence. Since v|k[G∨
n−1]

= ṽ, it is enough to show that we
can define Di = v(Ti) satisfying the property of compatibility with products (1.1) and
such that Di(th) = xih for every i and h. By Proposition 2.2.30 we have

∆(Ti) = Ti ⊗ 1 + 1⊗ Ti +
∑
j

αij ⊗ βij
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with αij and βij lying in k[G∨
n−1] for all i, j. Therefore we need to define Di in such a way

that
Di(fg) = Di(f)g + fDi(g) +

∑
j

v(αij)(f)v(βij)(g)

for all f, g ∈ K. Recall that for (t1, . . . , ts) to be a p-basis of K/kKp means that

{tm1
1 . . . tms

s | 0 ≤ m1, . . . ,ms ≤ p− 1}

is a basis of K as kKp-vector space. By assumption Gn−1 acts on the generic point
Y = Spec(K) of X and thus, by Lemma 3.2.8, G acts on Y (p) = Spec(kKp). Therefore,
the differential operator Di := v(Ti) is defined on kKp for every i = 1, . . . , r. We then
define

Di(ath) = Di(a)th + axih +
∑
j

v(αij)(a)v(βij)(th)

and
Di(thtl) = xihtl + thxil +

∑
j

v(αij)(th)v(βij)(tl)

for every a ∈ kKp and h ≤ l = 1, . . . , s. Applying recursively the formula

Di(fg) = Di(f)g + fDi(g) +
∑
j

v(αij)(f)v(βij)(g)

we define Di on all the monomials of the form atm1
1 . . . tms

s with a ∈ kKp and 0 ≤
m1, . . . ,ms ≤ p− 1 and extend it by linearity to every element of K. The fact that Di

is well-defined is a consequence of the coassociativity and cocommutativity of the Hopf
algebra structure on k[G∨

n−1]⟨T1, . . . , Tr⟩. The uniqueness of the module algebra structure
comes by construction.

Given two strings of natural numbers I = (i1, . . . , in) and J = (j1, . . . , jn), we say
that I is smaller than J with respect to the lexicographic order, and we write I <LEX J ,
if there exists k ∈ {1, . . . , n} such that (i1, . . . , ik−1) = (j1, . . . , jk−1) and ik < jk.

Lemma 3.2.11. Let A := k[G∨
n−1]⟨Tn1, . . . , Tnrn⟩ be as above. Moreover, write

k[G∨
j ] = k[G∨

j−1][Tj1, . . . , Tjrj ]/(Pj1, . . . , Pjrj )

as in Remark 2.2.31 for every j ≤ n− 1. Let

v : A→ Endk(B)

be an A-module algebra structure on a k-algebra B and let Djh := v(Tjh) for every
j = 1, . . . , n and h = 1, . . . , rj. It holds that for any h = 1, . . . , rn and (s, t) <LEX (n, h),
if Dnh commutes with every element of v (k[Gs−1]) then DnhDst−DstDnh is a derivation.
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Proof. Recall that, by Proposition 2.2.30, for every j = 1, . . . , n and h = 1, . . . , rj

∆(Tjh) = Tjh ⊗ 1 + 1⊗ Tjh +
∑
q

αqjh ⊗ β
q
jh

where αqjh and βqjh lie in k[G∨
j−1] for all q. Now

∆(TnhTst) = ∆(Tnh)∆(Tst) =

TnhTst ⊗ 1 + 1⊗ TnhTst + Tnh ⊗ Tst + Tst ⊗ Tnh+∑
q

αqnhTst⊗β
q
nh+

∑
q

αqnh⊗β
q
nhTst+

∑
q′

Tnhα
q′

st⊗β
q′

st+
∑
q′

αq
′

st⊗Tnhβ
q′

st+
∑
q,q′

αqnhα
q′

st⊗β
q
nhβ

q′

st

and
∆(TstTnh) = ∆(Tst)∆(Tnh) =

TstTnh ⊗ 1 + 1⊗ TstTnh + Tnh ⊗ Tst + Tst ⊗ Tnh+∑
q

Tstα
q
nh⊗β

q
nh+

∑
q

αqnh⊗Tstβ
q
nh+

∑
q′

αq
′

stTnh⊗β
q′

st+
∑
q′

αq
′

st⊗β
q′

stTnh+
∑
q,q′

αq
′

stα
q
nh⊗β

q′

stβ
q
nh.

Therefore
∆(TnhTst − TstTnh) =

(TnhTst − TstTnh)⊗ 1 + 1⊗ (TnhTst − TstTnh)+∑
q

αqnhTst ⊗ β
q
nh +

∑
q

αqnh ⊗ β
q
nhTst +

∑
q′

Tnhα
q′

st ⊗ β
q′

st +
∑
q′

αq
′

st ⊗ Tnhβ
q′

st

−
∑
q

Tstα
q
nh ⊗ β

q
nh −

∑
q

αqnh ⊗ Tstβ
q
nh −

∑
q′

αq
′

stTnh ⊗ β
q′

st −
∑
q′

αq
′

st ⊗ β
q′

stTnh.

If (s, t) <LEX (n, h), using the hypothesis that Dnh commutes with every element of
v (k[Gs−1]) we obtain that

(DnhDst −DstDnh)(fg) = m ◦ (v ⊗ v ◦∆(TnhTst − TstTnh))(f ⊗ g) =

m ◦ (v ⊗ v ◦ (TnhTst − TstTnh)⊗ 1 + 1⊗ (TnhTst − TstTnh))(f ⊗ g)

for every f, g ∈ B. Hence the statement.

We give now an example, showing how to construct explicitly generically free rational
actions of the pm-torsion of a supersingular elliptic curve on any curve. The aim is that
the understanding of this baby case will help in getting through the proof of Theorem
3.2.13.
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Example 3.2.12. Take the self-dual infinitesimal commutative unipotent k-group scheme

G = ker(F − V : Wn
n →Wn

n ) = Spec (k[T1, . . . , Tn]/(T
p
1 , T

p
2 − T1, . . . , T

p
n − Tn−1)) .

If k is algebraically closed, and n = 2m, G is the pm-torsion of any supersingular elliptic
curve over k (see Corollary 2.3.10). Let X be any curve over k and K = kKp(t) be its
function field, with p-basis {t} over kKp. Since G is self-dual, to give a rational G-action
on X is equivalent to giving a module algebra structure

v : Spec (k[U1, . . . , Un]/(U
p
1 , U

p
2 − U1, . . . , U

p
n − Un−1))→ Diffk(K).

We know that there exist generically free rational actions of the Frobenius kernel

ker(FG) = Spec(k[Tn]/(T
p
n)) ≃ αp

on X. In particular, any such action corresponds to choosing a non-zero derivation D1 on
K of order p (see Definition 1.2.2) or, equivalently, to giving a module algebra structure

v : Spec (k[U1]/(U
p
1 ))→ Diffk(K).

We want to show that any such action can be extended to a generically free rational
action of G on X. To do so we show that for any i = 2, . . . , n any generically free rational
action of ker(F i−1

G ) on X extends to a generically free rational action of ker(F iG). Notice
that

ker(F iG) = Spec
(
k[Tn−i+1, . . . , Tn]/(T

p
n−i+1, T

p
n−i+2 − Tn−i+1, . . . , T

p
n − Tn−1)

)
and that to give a rational action of ker(F iG) on X is equivalent to defining a module
algebra structure

v : Spec (k[U1, . . . , Ui]/(U
p
1 , U

p
2 − U1, . . . , U

p
i − Ui−1))→ Diffk(K).

Suppose then that we have a generically free rational action of ker(F i−1
G ) given by

differential operators D1, . . . , Di−1 where Dj = v(Tj) for every j = 1, . . . , i−1. To extend
it to a rational action of ker(F iG) is equivalent to defining a differential operator Di = v(Ti)
such that:

1. Di respects the property of compatibility with products (1.1);

2. Di commutes with Dj for every j = 1, . . . , i− 1;

3. Dp
i = Di−1.

By Lemma 3.2.8, Di is defined on kKp. In particular,

Di(β
p) = v(Ti)(β

p) = (v(V (Ti))(β))
p = (Di−1(β))

p

for every β ∈ K. By Lemma 3.2.10, we then have that Di is defined using property 1,
provided we choose x = Di(t). Therefore, the first property is respected by definition
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and we need to show that there exists x such that also properties 2 and 3 are satisfied.
By Lemma 3.2.11 and the fact that T pi − Ti−1 is a primitive element, we have that
DiDj −DjDi and Dp

i −Di−1 are derivations for every j = 1, . . . , i− 1. Applying Remark
1.2.5, we obtain that Di commutes with Dj for every j = 1, . . . , i− 1 and Dp

i = Di−1 if
and only if the system {

Dj(x) = DiDj(t) j = 1, . . . , i− 1

Dp−1
i (x) = Di−1(t)

admits a solution x = D(t). Notice first of all that the system is well-defined, that is Di

is defined on Dj(t). In fact, by Corollary 1.2.3 we can suppose that D1(t) = 1, therefore
D1Dj(t) = DjD1(t) = Dj(1) = 0, that is Dj(t) belongs to kKp, on which Di is defined.
Let aj := DiDj(t) for j = 1, . . . , i− 1. By induction, the set {D1, . . . , Di−1} is an ordered
set of pairwise commuting differential operators and such that Dj is a derivation of order
p on the subfield KD1,...,Dj−1 . Moreover,

Dj(al) = Dl(aj)

for all j, l = 1, . . . , i− 1, indeed by induction

DjDl(t) = DlDj(t)

and thus

Dj(al) = DjDiDl(t) = DiDjDl(t) = DiDlDj(t) = DlDiDj(t) = Dl(aj)

as wished (we used the fact that Di satisfies properties 2 and 3 on kKp). Moreover,
Dp
j = Dj−1. By Corollary 1.2.7 we then know that a solution of the system

S =


D1(x) = a1

...
Di−1(x) = ai−1

exists if and only if
Dp−1
j (aj) = aj−1

for all j = 1, . . . , i− 1. The relation indeed holds true, in fact

Dp−1
j (aj) = Dp−1

j DiDj(t) = DiD
p
j (t) = DiDj−1(t) = aj−1

where again we used the fact that Dj(t) ∈ kKp and that Di commutes with the other
differential operators on kKp. We are left to find a solution of S which satisfies also the
last equation

Dp−1
i (x) = Di−1(t).

Let then z be a solution of S: we are looking for another solution of S of the form
x = z + y with y ∈ KD1,...,Di−1 . Therefore x is solution of

Dp−1
i (x) = Di−1(t)
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if and only if
Dp−1
i (y) = Di−1(t)−Dp−1

i (z).

Notice that the right hand side belongs to KD1,...,Di−1 ⊆ kKp on which Di is a derivation
of order p. Indeed, for every j = 1, . . . , i− 1 it holds

DjD
p−1
i (z) = Dp−1

i Dj(z) = Dp−1
i DiDj(t) = Dp

iDj(t) = Di−1Dj(t) = DjDi−1(t)

as wished. Therefore, by Lemma 1.2.3, y exists if and only if Di(Di−1(t)−Dp−1
i (z)) = 0

which is satisfied since
Dp
i (z) = Di−1(z) = DiDi−1(t).

Notice that the action constructed is generically free since it extends the generically free
action of soc(G) (see Proposition 3.2.1).

We are now ready to prove our result in full generality.

Theorem 3.2.13. Let k be a perfect field of characteristic p > 0 and G be an infinitesimal
commutative unipotent k-group scheme with Lie algebra of dimension s. Then for every
k-variety X of dimension ≥ s there exist generically free rational actions of G on X.
Moreover, for any r ≥ 1, any generically free rational action of ker(F rG) on X can be
extended to a generically free rational action of G on X.

Proof. We begin by proving that if X is a k-variety of dimension s = dimk(Lie(G)), then
X admits a generically free rational action of G. By Proposition 3.2.4 and Remark 3.2.5,
there exists a generically free rational action of ker(FG) on X. Consider the filtration

G1 ⊆ G2 ⊆ · · · ⊆ Gn−1 ⊆ Gn = G

where Gi := ker(F iG) and n is the height of G.

First recurrence (on i):
To show that there exists a generically free rational action of G on X, we will prove

that for every i = 2, . . . , n any generically free rational action of Gi−1 on X extends to
a generically free rational action of Gi on X. Moreover, we will consider any possible
extension of the actions. As a consequence, the second part of the statement will be
satisfied by construction. Let K = k(X) be the function field of X. By Proposition 3.1.18,
to give a rational action of Gi on X is equivalent to endowing K with a k[G∨

i ]-module
algebra structure, where G∨

i is the Cartier dual of Gi. By Proposition 2.2.30,

k[G∨
i ] = k[G∨

i−1][Ti1, . . . , Tiri ]/(Pi1, . . . , Piri)

where
G∨
i−1 = coker(V i−1

G∨ ) =
(
ker(F i−1

G )
)∨
,

ri = dimk (Lie (Hi)) with Hi = Im(V i−1
G∨ )/ Im(V i

G∨), Pij = T p
mij

ij − Qij are primitive
elements of k[G∨

i−1][Ti1, . . . , Tiri ], Qij are polynomials with coefficients in the augmentation
ideal of k[G∨

i−1] and
∆(Tij) = Tij ⊗ 1 + 1⊗ Tij +Rij
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where Rij is an element of k[G∨
i−1]⊗k k[G∨

i−1] for every j = 1, . . . , ri. We then want to
show that a k[G∨

i−1]-module algebra structure on K extends to a k[G∨
i ]-module algebra

structure on K. A k[G∨
i−1]-module structure on K is given by a morphism of algebras

v : k[G∨
i−1]→ Diffk(K)

respecting the property of compatibility with products (see Proposition 3.1.18). If we
want to extend v to

k[G∨
i ] = k[G∨

i−1][Ti1, . . . , Tiri ]/(T
pmi1

i1 −Qi1, . . . , T p
miri

iri
−Qiri)→ Diffk(k(X))

we need to define v(Tij) = Dij for every j = 1, . . . , ri in such a way that the above map
is a k[G∨

i ]-module algebra structure on K, that is the following properties are satisfied
for every j = 1, . . . , ri:

1. Dij respects the property of compatibility with products;

2. Dij commutes with Dkl for every (k, l) <LEX (i, j);

3. Dpmij

ij = v(Qij).

Notice that
ker(FG) ≃

∏
j∈I

W 1
m1j

where I is a finite set and
∑

j∈I m1j = s which is the dimension of Lie(G). Then

(ker(FG))
∨ ≃

∏
j∈I

αpm1j

and thus, by [DG70, III.§2, Corollary 2.7], to give a generically free rational action
of ker(FG) on X corresponds to giving a set of derivations {D1j}j∈I on K commut-
ing pairwise and with D1j of order pm1j for every j ∈ I, such that all the p-powers
of these derivations are K-linearly independent. Let {E1, . . . , Es} be the ordered set{
Dpkj

1j | 0 ≤ kj < m1j , j ∈ I
}
. This family satisfies the hypothesis of Proposition 1.2.6

and therefore there exists a p-basis {t1, . . . , ts} of K/kKp such that Ei(ti) = 1 and
Ei(tj) = 0 for all j < i and i = 1, . . . , s. By Lemma 3.2.8, the rational action of Gi is
defined on X(p) ∼

99K X/ ker(FG). Notice that the rational isomorphism is a consequence
of the fact that both the field extensions Kker(FG) ⊆ K and kKp ⊆ K have degree ps (in
the first case because the rational action of ker(FG) on X is generically free and ker(FG)
has order ps and in the second case by Proposition 2.1.4) and moreover kKp ⊆ Kker(FG).
In particular

Dij(FK(β)) = v(Tij)(FK(β)) = FK(v(VG∨
i
(Tij))(β))

for every β ∈ kKp. By Lemma 3.2.10, for any j = 1, . . . , ri, we then have that Dij is
defined using property 1, provided we choose xijh = Dij(th) for h = 1, . . . , s. Therefore
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the first property is respected by definition. We will show that we can choose xijh for
every h and j in such a way that also properties 2 and 3 are satisfied.

Second recurrence (on j):
We show that if Dkl is defined for all (k, l) <LEX (i, j) then we can define Dij . Recall

that for the moment Dij is defined on kKp which is the function field of X(p), so we have
that the rational action of Gi is defined on X(p) ∼

99K X/ ker(FG) and we want to extend
it to a rational action on X.

Third recurrence (on h):
We will show that if Dij is defined on kKp(t1, . . . , th−1), then we can extend its

definition to kKp(t1, . . . , th)
1. The base step is satisfied since Dij is defined on kKp. We

will show that if Dij is defined on kKp(t1, . . . , th−1) then the system

Nh =

{
DklDij(th) = DijDkl(th), (k, l) <LEX (i, j)

Dpmij

ij (th) = Qij(Dk′l′)(k′,l′)<LEX(i,j)(th)

has a solution where the unknown is xijh = Dij(th). Remark that, for the system to admit
a solution is equivalent to having properties 2 and 3 satisfied on kKp(t1, . . . , th). Indeed,
by Lemma 3.2.11 and the fact that Pij = T p

mij

ij − Qij is a primitive element, we have

that DklDij−DijDkl and Dpmij

ij −Qij(Dk′l′)(k′,l′)<LEX(i,j) are derivations. Applying then
Remark 1.2.5, we obtain that Dij commutes with Dkl for every (k, l) <LEX (i, j) and
that Dpmij

ij = v(Qij) as claimed. Notice that, in particular, xklh′ = Dkl(th′) is a solution
of the analogous system for every (k, l, h′) <LEX (i, j, h) by the assumption that Dkl is
defined on K for all (k, l) <LEX (i, j) and that Dij is defined on kKp(t1, . . . , th−1). We
will first show that the system

Sh =

{
DklDij(th) = DijDkl(th), (k, l) <LEX (i, j)

obtained by removing the last equation has a solution and then prove that there exists
a solution of it which is also a solution of the last equation of the system Nh. Remark
that, for the system Sh to admit a solution is equivalent to having property 2 satisfied on

1Geometrically here we are taking a filtration of ker(FG) with successive quotients isomorphic to αp

and considering subquotients of X. For example, in the case in which ker(FG) ≃ W 1
s with generically

free rational action on X given by a derivation D1 of order ps, we have the tower

KD1 ⊆ KD
p
1 = KD1(t1) ⊆ · · · ⊆ KD

ps−1

1 = KD1(t1, . . . , ts−1) ⊆ K = KD1(t1, . . . , ts)

corresponding to
X 99K X/αp 99K X/W 1

2 99K · · · 99K X/W 1
s−1 99K X/W 1

s

and

αp = soc(ker(FG)) ⊆ W 1
2 = ker(FG)×k ker(V

2
G) ⊆ · · · ⊆ W 1

s−1 = ker(FG)×k ker(V
s−1
G ) ⊆ W 1

s = ker(FG).

Notice that this phenomenon did not occur in Example 3.2.12 since there the Frobenius kernel was just
αp.
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kKp(t1, . . . , th). First of all, notice that the system Sh is well-defined, that is that Dij is
defined on Dkl(th) for (k, l) <LEX (ij): indeed

EiDkl(th) = DklEi(th) = 0

for every i ≥ h, and thus, by Proposition 1.2.6, Dkl(th) belongs to kKp(t1, . . . , th−1) on
which Dij is defined. Let akl := DijDkl(th), therefore we are looking for a solution of the
system

Sh =

{
Dkl(x) = akl, (k, l) <LEX (i, j).

By induction the set {Dkl | (k, l) <LEX (i, j)} is an ordered set of pairwise commuting
differential operators and such that Dkl is a derivation of order pmkl on the subfield

{a ∈ K | Dk′l′(a) = 0 ∀(k′, l′) <LEX (k, l)}

by Lemma 3.2.8. Moreover,
Dkl(ak′l′) = Dk′l′(akl)

for all (k, l), (k′, l′) <LEX (i, j), indeed by induction

DklDk′l′(th) = Dk′l′Dkl(th)

and thus
Dkl(ak′l′) = DklDijDk′l′(th) = DijDklDk′l′(th) =

DijDk′l′Dkl(th) = Dk′l′DijDkl(th) = Dk′l′(akl)

as wished. Notice that we used the fact that Dkl(th) lies in kKp(t1, . . . , th−1) and that, by
induction, on this subfield Dij commutes with the previous (LEX-order wise) differential
operators. In addition, Dpmkl

kl = Qkl(Dk′l′)(k′,l′)<LEX(k,l) where Qkl is an element of
k[Tk′l′ ](k′,l′)<LEX(k,l) with vanishing constant coefficient. By Corollary 1.2.7, we then know
that a solution of the system Sh exists if and only if

Dpmkl−1
kl (akl) = Q̃kl(ak′l′)(k′,l′)<LEX(k,l)

for all (k, l) <LEX (i, j). Write the polynomial Qkl as

Qkl(Tk′l′)(k′,l′)<LEX(k,l) =
∑

(α,β)<LEX(k,l)

ραβ(Tk′l′)(k′,l′)<LEX(k,l)Tαβ.

Then
Q̃kl(ak′l′)(k′,l′)<LEX(k,l) =

∑
(α,β)<LEX(k,l)

ραβ(Dk′l′)(k′,l′)<LEX(k,l)aαβ =

∑
(α,β)<LEX(k,l)

ραβ(Dk′l′)(k′,l′)<LEX(k,l)DijDαβ(th) =

Dij

∑
(α,β)<LEX(k,l)

ραβ(Dk′l′)(k′,l′)<LEX(k,l)Dαβ(th) = DijQkl(Dk′l′)(k′,l′)<LEX(k,l)(th) =
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DijD
pmkl

kl (th) = Dpmkl−1
kl DijDkl(th) = Dpmkl−1

kl (akl)

as needed, that is the system Sh admits solution. We are left to show that there exists a
solution of Sh that satisfies also the equation

Dpmij−1
ij (z) = Qij(Dk′l′)(k′,l′)<LEX(i,j)(th).

Notice that we are looking for a solution of the form

xijh = x+ y

with y in

K{Dkl|(k,l)<LEX(i,j)} = {a ∈ K | Dkl(a) = 0 ∀(k, l) <LEX (i, j)}

and x a solution of Sh. Moreover, notice that x lies in kKp(t1, . . . , th−1), indeed we
remarked that if Sh has solution then Dij commutes with Dkl for every (k, l) <LEX (i, j)
on kKp(t1, . . . , th), so in particular it commutes with E1, . . . , Es which, we recall, are the
p-powers of the derivations D1j , j ∈ I. Hence

Eη(x) = EηDij(th) = DijEη(th) = 0

for all η ≥ h. Therefore x+ y is a solution of the equation if and only if

Dpmij−1
ij (y) = Qij(Dk′l′)(k′,l′)<LEX(i,j)(th)−D

pmij−1
ij (x).

Let us show that the term on the right hand side lies in K{Dkl|(k,l)<LEX(i,j)}. Indeed, for
any (k, l) <LEX (i, j) it holds

DklD
pmij−1
ij (x) = Dpmij−1

ij Dkl(x) = Dpmij−1
ij DijDkl(th) = Dpmij

ij Dkl(th) =

Qij(Dk′l′)(k′,l′)<LEX(i,j)Dkl(th) = DklQij(Dk′l′)(k′,l′)<LEX(i,j)(th)

where we used the fact that x,Dkl(th) ∈ kKp(t1, . . . , th−1) and that x is a solution of the
system Sh. Notice that K{Dkl|(k,l)<LEX(i,j)} is a subfield of kKp = K{D1j |j∈I} and that
Dij is a derivation of order pmij on K{Dkl|(k,l)<LEX(i,j)}. Therefore, by Lemma 1.2.3, y
exists if and only if

Dij

(
Qij(Dk′l′)(k′,l′)<LEX(i,j)(th)−D

pmij−1
ij (x)

)
= 0

which is satisfied since

Dpmij

ij (x) = Qij(Dk′l′)(k′,l′)<LEX(i,j)(x) =
∑

(α,β)<LEX(i,j)

ραβ(Dk′l′)(k′,l′)<LEX(i,j)Dαβ(x)

∑
(α,β)<LEX(i,j)

ραβ(Dk′l′)(k′,l′)<LEX(i,j)DijDαβ(th) = DijQij(Dk′l′)(k′,l′)<LEX(i,j)(th),
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where the first equality is again a consequence of the fact that x ∈ kKp(t1, . . . , th−1).
Notice that the action constructed is generically free since it extends the generically free
action of soc(G) (see Proposition 3.2.1).

For the general case of a variety X of dimension dim(X) = ℓ ≥ s, consider the
infinitesimal commutative unipotent k-group scheme G×k αℓ−sp where s = dimk(Lie(G)).
Then dimk(Lie(G×k αℓ−sp )) = ℓ and thus by what we just proved X admits a generically
free rational action of G×k αℓ−sp . In particular, it admits a generically free rational action
of its subgroup G. Moreover, any generically free rational action of ker(F rG) on X extends
to a generically free rational action of ker(F rG) ×k αl−sp in the following way: consider
the set of derivations {E1, . . . , Es} defining the action of ker(FG) on K = L(t1, . . . , ts)
where L = k (X/ ker(FG)) as described in the first part and complete it to a basis
{E1, . . . , Es, ∂s+1, . . . , ∂ℓ} where the ∂i’s are as in Remark 1.2.5. One checks easily that
the elements of this basis commute pairwise and that this implies that the ∂i’s commute
with every differential operator defining the rational action of ker(F rG) on X. By the case
treated previously, the rational action of ker(F rG) ×k αl−sp extends to a generically free
rational action of G×k αℓ−sp and thus, in particular, to a generically free rational action
of G.

Remark 3.2.14. Brion shows that for any l, n ≥ 1 there exist generically free rational
actions of µn

pl
on any variety X of dimension ≥ n [Bri22, Remark 3.8]. Putting together

Brion’s result and Theorem 3.2.13 one can prove that if k is perfect andG is an infinitesimal
commutative trigonalizable k-group scheme with Lie algebra of dimension s, then for
every k-variety X of dimension ≥ s there exist generically free rational actions of G on
X. Briefly, one considers a set of derivations {E1, . . . , Es1} defining a generically free
rational action of ker(FGu) on K = L(t1, . . . , ts1) where L = k (X/ ker(FGu)) as described
in the first part of the proof of the Theorem and complete it to a K-linearly independent
set {E1, . . . , Es1 , ts1+1∂s1+1, . . . , ts1+s2∂s1+s2}, with ∂i’s as in Remark 1.2.5. One checks
easily that the elements of this basis commute pairwise and they thus define a generically
free rational action of ker(FG). Moreover, we can extend it as before to a generically free
rational action of ker(F rG) (and so also of G) on X for any r ≥ 1.

Examples

We conclude this section with some examples to show more concretely how to deal with
the construction of actions of infinitesimal group schemes.

Example 3.2.15. Let G =W 2
2 [F −V ] = Spec (k[S0, S1]/(S

p
0 , S

p
1 − S0)) . We aim to show

that we can construct naturally a generically free G-action on a curve. Notice that G
is a k-subgroup scheme of W 2

2 = Spec
(
k[T0, T1]/(T

p2

0 , T p
2

1 )
)

and that we have a natural
action of W 2

2 on W2 ≃ A2
k given by translation, that is

ρ :W 2
2 ×k A2

k → A2
k

((a, b), (x, y)) 7→ (a+ x, b+ y + S1(a, x))
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where S1(a, x) = −
∑p

j=1
1
p

(
p
j

)
ajxp−j . We then have an induced action of G on A2

k given
by

((bp, b), (x, y)) 7→ (bp + x, b+ y + S1(b
p, x)).

Consider now the affine line given by Spec (k[x, y]/(yp − x)) ≃ A1
k inside A2

k. The
restriction of ρ to G×k A1

k induces an action of G on A1
k: indeed

(b+ y + S1(b
p, x))p = bp + yp + S1(b

p2 , xp) = bp + x

where we used the fact that bp2 = 0. This provides us in a natural way with a generically
free action of G on a curve.

Let us now show how to express these actions in terms of differential operators, that is
show which are the corresponding module algebra structures. Let A = k[T0, T1]/(T

p2

0 , T p
2

1 ),
then ρ corresponds to the coaction

k[x, y]→ A⊗k k[x, y]
x 7→ T0 ⊗ 1 + 1⊗ x,
y 7→ T1 ⊗ 1 + 1⊗ y + S1(T0 ⊗ 1, 1⊗ x)

and the associated A∨-module algebra structure on k[x, y] is given by

v : A∨ → Diffk(k[x, y])

φ 7→ (k[x, y]
ρ−→ A⊗k k[x, y]

φ⊗id−→ k ⊗k k[x, y] ≃ k[x, y])

(see Proposition 3.1.17). Now A∨ is isomorphic to A, where the isomorphism is given by

T ∗
0 7→ T0,

T ∗
1 7→ T p0 ,

(T p0 )
∗ 7→ T1,

(T p1 )
∗ 7→ T p1 .

We then see that v(T0)(x) = 1 and v(T0)(y) = −xp−1, implying that v(T0) = ∂x−xp−1∂y.
Similarly we obtain that v(T1) = ∂xp − (xp)p−1∂yp . The invariants of this action are given
by Spec

(
k[xp

2
, yp

2
]
)
. The module algebra structure corresponding to the action of G on

A2
k is obtained by considering the composite

k[G]∨ ↪→ A∨ v→ Diffk(k[x, y]).

The group scheme G is also self-dual and the inclusion is given by

S0 7→ T p0 ,

S1 7→ T p1 + T0.

We thus obtained that the k[G∨]-module algebra on k[x, y] is defined by

v(S0) = v(T0)
p = ∂y and v(S1) = v(T1)

p + v(T0) = ∂yp + ∂x − xp−1∂y
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and the invariants are Spec (k[xp, x+ yp]) . If we restrict to A1
k ≃ Spec (k[x, y]/(yp − x)),

the module algebra structure is given by v(S1) = ∂yp − (yp)p−1∂y and its invariants are
Spec(k[yp]).

Example 3.2.16. Consider the k-group scheme

G =W 3
2 [F

2 − V ] = Spec
(
k[T0, T1]/(T

p
0 , T

p2

1 − T0)
)
.

It has one-dimensional Lie algebra so by Theorem 3.2.13 we know that we can find a
generically free rational action of G on any curve. Its dual is the k-group scheme

G∨ =W 2
3 [F − V 2] = Spec (k[U0, U1, U2]/(U

p
0 , U

p
1 , U

p
2 − U0))

where U0 = T ∗
1 , U1 = (T p1 )

∗, U2 = T ∗
0 . Notice that G×k G∨ is the p-torsion of an abelian

variety of dimension 3 with p-rank 0 and a-number 2 (see [Pri08] where this group
scheme is denoted I3,2). The filtration of G given by the kernel of the Frobenius powers,
Gi = ker(F iG), is

G1 = Spec (k[T1]/(T
p
1 )) ⊆ G2 = Spec

(
k[T1]/(T

p2

1 )
)
⊆ G

corresponding to the cofiltration

G∨ ↠ G∨
2 = Spec (k[U0, U1]/(U

p
0 , U

p
1 )) ↠ G∨

1 = Spec (k[U0]/(U
p
0 )) ↠ 0

where G∨
i = coker(V i

G∨). A generically free rational action of G on a curve with function
field K = kKp(t) is given for example by

U0 7→ ∂t,

U1 7→ ∂tp ,

U2 7→ ∂
tp2
−
(
tp

2
)p−1

∂t.

Say now that we want to study rational actions of G∨. Notice that its Lie algebra has
dimension 2, hence we know that we can find a generically free rational action of G∨ on
any k-variety of dimension at least 2 (but not on curves). The filtration of G∨ given by
the kernel of Frobenius powers is now

Spec (k[U1, U2]/(U
p
1 , U

p
2 )) ⊆ G

∨

and corresponds to the cofiltration

G↠ Spec
(
k[T0, T

p
1 ]/(T

p
0 , T

p2

1 − T0)
)
↠ 0.

If we denote by V0 = T p1 we have G↠ Spec
(
k[V0]/(V

p2

0 )
)

and

k[G] = k[V0, T1]/(V
p2

0 , T p1 − V0)
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where the comultiplication is

V0 7→ V0 ⊗ 1 + 1⊗ V0,
T1 7→ T1 ⊗ 1 + 1⊗ T1 + S1(V

p
0 ⊗ 1, 1⊗ V p

0 ).

A generically free rational action of G∨ on a k-surface with function field K = kKp(x, y)
is given for example by

V0 7→ D0 = ∂x − xp−1∂y,

T1 7→ ∂yp − (yp)p−1(D0 + (yp
2
)p−1Dp

0).

Example 3.2.17. Let k = k be a field of characteristic 2, E be a supersingular elliptic
curve over k and consider its 2-torsion

E[2] = Spec
(
k[T0, T1]/(T

2
0 , T

2
1 − T0)

)
(see Corollary 2.3.10). The k-group scheme E[2] is self-dual, that is

E[2]∨ = Spec(k[U0, U1]/(U
2
0 , U

2
1 − U0))

where U0 = T ∗
1 and U1 = T ∗

0 . We are interested in studying actions of E[2] on P1
k. By

Theorem 3.2.13 and by the assumption on the characteristic, all the generically free
rational actions of E[2] on P1

k are given by

v : k[U0, U1]/(U
2
0 , U

2
1 − U0) 7→ Diffk(k(t))

U0 7→ ∂t,

U1 7→ ∂t2 + (t2 + g(t4))∂t

corresponding to

ρ : E[2]×k P1
k 99K P1

k

(a, t) 7→ t+ a+ (t2 + g(t4))a2

where g ∈ k(t). Which of these rational actions extend to a regular action of E[2] on P1
k?

First of all, if we want ρ to be defined on A1
k = Spec(k[t]) we need for g to lie in k[t]. Let

us now show that ρ extends to an action on P1
k if and only if g is constant. Notice that(

t+ a+ (t2 + g(t4))a2
)4

= (t2 + a2)2 = t4

and thus (
t+ a+ (t2 + g(t4))a2

)−1
=

1

t4
(t+ a+ (t2 + g(t4))a2)(t2 + a2) =

1

t
+
a

t2
+

(
1 +

g(t4)

t2
+
a2

t3

)
a2 +

a3

t4
.
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Hence (
a,

1

t

)
7→ 1

t
+
a

t2
+

(
1 +

g(t4)

t2
+
a2

t3

)
a2 +

a3

t4

which defines an action on A1
k = Spec

(
k
[
1
t

])
if and only if g is constant. Recall that for

A a local k-algebra, the exact sequence of group schemes

1→ Gm,k → GL2,k → PGL2,k → 1

yields the short exact sequence of groups

1→ Gm,k(A)→ GL2,k(A)→ PGL2,k(A)→ 1,

that is every element of PGL2,k(A) is represented by a matrix in GL2,k(A). The action
E[2] → AutP1

k
≃ PGL2,k given by t 7→ t + a + (t2 + c)a2 corresponds to a point of

PGL2,k(E[2]) and is therefore represented by a matrix which is(
1 +
√
ca2 a2

a+ ca2 +
√
ca3 1 +

√
ca2 + a3

)
.

Indeed

(1 +
√
ca2)t+ a+ ca2 +

√
ca3

a2t+ 1 +
√
ca2 + a3

= ((1+
√
ca2)t+ a+ ca2 +

√
ca3)(a2t+1+

√
ca2 + a3) =

t(a2t+ 1 +
√
ca2 + a3) +

√
ca2t+ a3t+ a+

√
ca3 + ca2 +

√
ca3 =

a2t2 + t+ a+ ca2 = t+ a+ (t2 + c)a2.

Notice that we showed that in characteristic 2 the 2-torsion E[2] of a supersingular elliptic
curve is a subgroup scheme of PGL2,k (its subgroup schemes will be more thoroughly
studied in the last section of this chapter). On the other hand, in characteristic p > 2
no rational action of E[p] on P1

k extends to a regular action, indeed in this case every
infinitesimal subgroup scheme of PGL2,k lifts to GL2,k (see Proposition 3.4.4) and, in
particular, the infinitesimal commutative unipotent subgroup schemes of PGL2,k are all
isomorphic to αpn for some n ≥ 1.

The following example (which is also an example of a subgroup scheme of PGL2,k in
the particular case p = 2 and n = 3, see Theorem 3.4.1) goes in the direction of studying
also generically free rational actions on curves of non-commutative group schemes.

Example 3.2.18. Consider the infinitesimal unipotent non-commutative k-group scheme
G = Spec(A) of Example 2.3.13 where

A = k[T0, T1]/
(
T p

n

0 , T p1 − T0
)

with n ≥ 2 an integer and comultiplication given by

∆(T0) = T0 ⊗ 1 + 1⊗ T0
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and
∆(T1) = T1 ⊗ 1 + 1⊗ T1 + T p

n−1

0 ⊗ T p
n−2

0 .

Recall that in this case
A∨ =

k⟨U0 . . . , Un⟩/(Up0 , . . . , U
p
n, UiUj − UjUi, UnUn−1 − Un−1Un − U0)i,j=0,...n,(i,j),(j,i) ̸=(n,n−1)

where U0(T1) = 1 and Ui(T
pi−1

0 ) = 1 and zero elsewhere. The Hopf algebra A∨ is non-
commutative: the only non-commutative relation is given by UnUn−1 − Un−1Un = U0,
while its comultiplication is defined on the Ui’s as for the Witt vectors (notice that this
makes sense since U0, . . . , Un−1 commute). Let X/k be a curve and K = k(X) = kKp(t)
be its function field, for t a p-generator of K over kKp. A generically free rational
action of G on X is given by defining an A∨-module algebra structure on K setting
v(Ui) = Di = ∂pi for i = 0, . . . , n − 1 and v(Un) = Dn = ∂pn − tp

n−1
∂1. Notice that

∂pn(t
pn−1

) = 0 and thus ∂pn commutes with tpn−1
∂1. Therefore

Dp
n = ∂ppn − (tp

n−1
∂1)

p = ∂ppn − tp
n
∂p1 = 0

where for the second equality we used that also ∂1(t
pn−1

) = 0 and for the last that
∂ppn = ∂p1 = 0. Of course this rational action can be extended to a generically free rational
action of G on any variety of positive dimension.

3.3 Faithful rational actions

This section is devoted to Dolgachev’s conjecture revisited for infinitesimal group schemes
and more generally to studying faithful rational actions of infinitesimal group schemes.
Dolgachev made the following conjecture for the Cremona group over a field of positive
characteristic.

Conjecture. If k is a field of characteristic p > 0, the Cremona group Crn(k) does not
contain elements of order ps for s > n [Dol10, Conjecture 37].

The conjecture is true for n = 1 since PGL2(k) ≃ Autk(k(t)) does not contain elements
of order p2 if char(k) = p > 0. Moreover, it was proven for n = 2 [Dol09]. The conjecture
can be rephrased in the following way: if there exists a faithful rational action of a
finite commutative p-group G on Pnk then pnG = 0, where pG is the multiplication by p
morphism on G. Indeed there is a natural correspondence between faithful actions of a
finite group G on k(t1, . . . , tn) and faithful rational actions of the corresponding constant
group scheme on Pnk . In fact, an action G× k(t1, . . . , tn)→ k(t1, . . . , tn) can be extended
naturally to a k[G]-module algebra structure k[G]→ Endk(k(t1, . . . , tn)), where k[G] is
the group algebra over G with its Hopf algebra structure (see also Example 1.1.15) and
this gives a faithful rational action of the constant group scheme G on Pnk . The analogous
of Dolgachev’s conjecture in our context is given by Proposition 3.3.6, that we will now
prove after a couple of preliminary results.
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Proposition 3.3.1. Let G be a finite k-group scheme and X a k-scheme endowed with a
G-action. The action is faithful if and only if the induced action of soc(G) is faithful.

Proof. The G-action is faithful if and only if the centralizer CG(X) is trivial. By Lemma
2.2.19, since CG(X) is a normal k-subgroup scheme of G, the centralizer is trivial if
and only if soc(G)×G CG(X) = Csoc(G)(X) is trivial, that is if and only if the induced
soc(G)-action is faithful.

The following result generalizes [Bri22, Lemma 5.3].

Corollary 3.3.2. Let G be an infinitesimal commutative k-group scheme, acting rationally
on a k-variety X. Then the rational G-action is generically free if and only if it is faithful
and the induced action of soc((Gk)

u) is generically free, where (Gk)
u is the maximal

unipotent subgroup scheme contained in Gk. In particular, if soc((Gk)
u) ⊆ αp, then the

G-action is faithful if and only if it is generically free.

Proof. By Lemma 3.1.4 and Proposition 3.1.10, we may suppose k = k. The only if
part is clear. We prove the other implication. We first prove the case G diagonalizable.
In this case, we have to prove that if the G-action is faithful then it is generically free.
By the anti-equivalence of categories between diagonalizable group schemes and abelian
groups, if the stabilizer of the generic point Spec(K) of X is not trivial over K, then it
comes from a non-trivial subgroup of G over k, which then acts trivially, meaning that
the action is not faithful.

Now we pass to the general case. Since k = k then G is isomorphic to Gu ×k Gd,
where Gd is diagonalizable. Since the soc(Gu)-action is generically free, the stabilizer
at the generic point Spec(K) should be contained in GdK , but this is not possible since
the Gd-action is generically free by the diagonalizable case. For the last sentence we
observe that if soc(Gu) is a subgroup scheme of αp and the G-action is faithful, then the
soc(Gu)-action is generically free. So we can apply the first part of the corollary.

Remark 3.3.3. The above Corollary applies, for instance, to any infinitesimal subgroup
scheme G of Wn, for some n: indeed in this case soc(G) = αp (see Example 2.2.28).

In the following corollary we essentially get the second part of [Bri22, Lemma 3.7]

Corollary 3.3.4. Let G be an infinitesimal k-group scheme acting faithfully on a k-variety
of dimension r. If H is a normal k-subgroup scheme of G of multiplicative type such that
dimk(Lie(H)) = r, then G is of multiplicative type and dimk(Lie(G)) = r.

Proof. By [DG70, IV, §1, Corollary 4.4] we have that H is central in G. Now we can
suppose that k is algebraically closed, then H is diagonalizable. If G is not diagonalizable
then G contains a k-subgroup scheme isomorphic to αp ([DG70, IV §3, Lemma 3.7]).
Then H ′ = H ×k αp is contained in G since H is central. Now H ′ is commutative,
soc(H ′) = kerFH ×k αp and soc((H ′)u) = αp. Therefore, by Corollary 3.3.2, the action
of H ′ is generically free, but this is impossible since dimk(Lie(H

′)) > r. So G is
diagonalizable, its action is generically free (again by Corollary 3.3.2), and dimk(Lie(G))
can not be bigger than r.
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Example 3.3.5. The condition on the normality of H is crucial. Consider for example
the k-group scheme G = αp ⋊ µp (where the action of µp on αp is given by multiplication
on the left) and the action on the affine line G×k A1

k → A1
k given by (a, b) · x 7→ ax+ b.

The G-action is faithful but not generically free (see Proposition 3.1.15). The stabilizer
of the generic point η is

StabG(η) = Spec (k(x)[T, 1/T, S]/(xT + S − x, T p − 1, Sp))

with comultiplication given by ∆(T ) = T ⊗ T and ∆(S) = S ⊗ 1 + T ⊗ S. This is also a
counterexample to Corollary 3.3.2 in the non-commutative case. Indeed soc(G) = αp and
αp acts freely. It is then necessary, in the non-commutative case, to look at the action of
ker(FG), as seen in the first statement of Proposition 3.2.1.

Proposition 3.3.6. Let G be an algebraic k-group scheme with commutative Frobenius
kernel and X be a k-variety of dimension n. If there exists a faithful rational G-action on
X, then s = dimk(Lie(ker(FG)

m)) ≤ n and V n−s
ker(FG)u = 0, where ker(FG)

m is the maximal
k-subgroup scheme of multiplicative type of ker(FG) and ker(FG)

u := ker(FG)/ ker(FG)
m.

Proof. We may suppose that G is infinitesimal of height one and that k is algebraically
closed. Then

G ≃ Gu ×k Gm =
∏
i∈I

W 1
ni
×k µsp.

Clearly s = dimk(Lie(G
m)) ≤ n since a faithful rational µsp-action is generically free. Let

l = maxi∈I{ni}. By Corollary 3.3.2 the induced faithful rational action of W 1
l ×k µsp on

X is generically free. Hence l + s ≤ n and thus V n−s
Gu = 0.

Notice that if k is a perfect field, then the above Proposition tells us that if G is
an infinitesimal commutative trigonalizable k-group scheme such that there exists a
faithful rational G-action on a k-variety of dimension n, then ker(FG)

u ⊆
(
W 1
n−s
)l for

some l ≥ 1 where s = dimk(Lie(G
d)). In particular, if there exists a faithful rational

G-action on a curve, then ker(FG)
u ⊆ αlp for some l ≥ 1. The converse implication of

Proposition 3.3.6 does not always hold true. In the diagonalizable case, these actions
are well understood and the converse statement is known. Notice that by Remark 3.2.14
the converse of Proposition 3.3.6 holds as well, over a perfect field, for infinitesimal
commutative trigonalizable k-group schemes with Lie algebra of dimension upper bounded
by the dimension of X. In particular, if s = dimk(Lie(ker(FG)

d)) and dimk(Lie(G)) ≤ n,
then V n−s

ker(FG)u = 0. We will now give a counterexample to the converse implication of
Proposition 3.3.6: we exhibit an infinitesimal commutative unipotent k-group scheme G
such that Vker(FG) = 0 but for which there are no faithful rational G-actions on any curve.
We then keep investigating other cases in which the converse of Proposition 3.3.6 holds.

Example 3.3.7. Consider the k-subgroup scheme G of W2 ×k W2 represented by the
Hopf algebra

k[T0, T1, U0, U1]/(T
p
0 , T

p
1 − T0, U

p
0 , U

p
1 − U0).
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The group scheme G is self-dual and, if k is algebraically closed, G ≃ E[p]×k E[p] for E
a supersingular elliptic curve over k (that is G is the p-torsion of a superspecial abelian
surface). Moreover, dimk(Lie(G)) = 2 and Vker(FG) = 0. Therefore, by Proposition 3.1.15,
we know that there is no generically free rational G-action on any curve. Let us show
that moreover there is no faithful rational G-action on any curve either. Let X be a curve
and K = k(X) be its function field. Suppose that there exists a faithful rational G-action
on X defined by the module algebra structure

v : k[T0, T1, U0, U1]/(T
p
0 , T

p
1 − T0, U

p
0 , U

p
1 − U0)→ Diffk(K).

The differential operator v(T0) is a derivation on K of order p, thus, by Lemma 1.2.3, there
exists x ∈ K such that v(T0)(x) = 1. Then, v(T0) = ∂x, the only k-linear derivation on
K = kKp(x) such that ∂x(x) = 1. As a consequence, v(U0) = f1∂x for some f1 ∈ K since
Derk(K) is one-dimensional over K. Moreover, f1 lies in kKp since the v(T0) and v(U0)
commute, and is non-constant since the action is faithful and thus v(T0) and v(U0) must
be k-linearly independent. Now, v(T1)(x) = x1 for some x1 ∈ kKp, since v(T1) commutes
with ∂x. Moreover v(T1)|kKp is a derivation of order p and v(T1)(xp) = (v(T0)(x))

p = 1
(see Remark 3.2.9). The differential operator v(T1) commutes also with v(U0) = f1∂x,
hence

v(T1)(f1) = f1∂x(x1) = 0

that is f1 must lie in kKp2 . Moreover, x1 is such that

v(T1)
p−1(x1) = v(T p1 )(x) = v(T0)(x) = 1.

Consider now v(U1): as before, v(U1)(x) = x2 for some x2 ∈ kKp because of the
commutativity with ∂x, v(U1)|kKp is a derivation of order p and by Remark 3.2.9 we have
v(U1)(x

p) = (v(U0)(x))
p = fp1 . Hence v(U1)|kKp = fp1 v(T1)|kKp . The differential operator

v(U1) commutes also with v(T1), thus

v(T1)(x2) = v(T1)v(U1)(x) = v(U1)v(T1)(x) = v(U1)(x1) = fp1 v(T1)(x1) = v(T1)(f
p
1x1).

Finally,
f1 = v(U0)(x) = v(Up1 )(x) = (fp1 )

p−1v(T1)
p−1(x2) =

(fp1 )
p−1v(T1)

p−1(fp1x1) = fp
2

1 v(T1)
p−1(x1) = fp

2

1

and this condition contradicts the fact that f1 had to be non constant. Therefore there is
no faithful rational G-action on any curve. Notice that we nevertheless showed that there
exist faithful rational actions on any curve of the subgroup scheme H of G represented
by the Hopf subalgebra

k[T0, T1, U1]/(T
p
0 , T

p
1 − T0, U

p
1 ),

that is H ≃ E[p]×k αp over k = k. Actually, this kind of behaviour takes always place as
shown in the following result.

The following Proposition generalizes a result of Brion [Bri22, Lemma 3.6] stating
that every variety of positive dimension admits a faithful rational action of αℓp for any
ℓ ≥ 1.
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Proposition 3.3.8. Let k be perfect, G be an infinitesimal commutative unipotent k-group
scheme and X be a k-variety of dimension n. If dimk(Lie(G)) ≤ n, then for every ℓ ≥ 0
there exists a faithful rational action of G×k ker(FG)ℓ on X.

Proof. Let s = dimk(Lie(G)) and K = k(X) be the function field of X. Then ker(FG)
corresponds to a certain Young diagram (m1, . . . ,mh) for some h ≥ 1,

∑h
i=1mi = s

and ker(FG)
∨ ≃

∏h
i=1 αpmi . We know (Proposition 3.2.4) that there exist generically

free rational actions of ker(FG) on X. By [DG70, III.§2, Corollary 2.7], to give such a
rational action corresponds to giving a set of derivations {D1, . . . , Dh} on K commuting
pairwise, with Di of order pmi for every i = 1, . . . , h and such that all the p-powers of
these derivations are K-linearly independent. Moreover, by Theorem 3.2.13 this action
can be extended to a generically free rational G-action on X. Let L = KG be the function
field of X/G. Take non-constant k-linearly independent elements

{fi1, . . . , fih | i = 1, . . . , ℓ}

in L. Then {fi1D1, . . . , fihDh} is still a set of derivations defining a generically free rational
action of ker(FG) on X. Consider then the induced rational action of G ×k ker(FG)ℓ
on X and notice that it is faithful by Proposition 3.3.1. Indeed the rational action of
ker(FG×kker(FG)ℓ) = ker(FG)

ℓ+1 is given by the set of derivations

{D1, . . . , Dh, fi1D1, . . . , fihDh | i = 1, . . . , l}

whose p-powers are k-linearly independent and thus it is faithful.

Remark 3.3.9. Notice that as a direct consequence we have that for any infinitesimal
commutative unipotent k-group scheme G of height one, there exist faithful rational
Gℓ-actions on any k-variety of dimension ≥ dimk(Lie(G)) for any ℓ ≥ 1. In the proof we
actually prove something more. Indeed we construct a faithful rational action of Gℓ such
that the induced action of any copy of G is generically free.

Proposition 3.3.10. Let k be perfect, G be an infinitesimal commutative unipotent
k-group scheme and X be a k-variety of dimension n. If V n

G = 0 then there exists a
faithful rational G-action on X.

Proof. It is enough to prove that there exists a faithful rational action of (Wm
n )r on X

for any m, r ≥ 1. By Proposition 3.2.4, there exist generically free rational actions of Wm
n

on X for any m ≥ 1 and to give such an action corresponds to giving a set of differential
operators {D0, . . . , Dm−1} on the function field k(X) of X commuting pairwise, with
Di of order pi and pn-nilpotent (Dpn−1

i ̸= 0) for every i = 0, . . . ,m − 1. Let L be the
function field of X/Wm

n . Take k-linearly independent elements {f1, . . . , fr} in L. Then{
fiD0, f

p
i D1, . . . , f

pm−1

i Dm−1 | i = 1, . . . , r
}

gives a faithful rational action of (Wm
n )r on

X. Indeed, since we took the f ′is in L, these differential operators all commute pairwise
and are moreover pn-nilpotent. In addition, by the weighted homogeneity of Witt vectors,
they respect the property of compatibility with products. Finally, the action is faithful
because the action of the Frobenius kernel is faithful, since we chose f1, . . . , fr linearly
independent over k.
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Recall from Chapter 2 that if we take G1, . . . , Gl commutative unipotent k-group
schemes of height one, there exists a smallest commutative unipotent k-group scheme G of
height one containing all of them. Precisely, G corresponds to the smallest Young diagram
containing all the Young diagrams τ(Gi) for all i. Explicitly, if τ(Gi) = (n1i, . . . , nsii) for
some si ≥ 1 and for i = 1, . . . , l then τ(G) = (n1, . . . , ns) where s = max{s1, . . . , sl} and
nj = max{nj1, . . . , njl} for every j = 1, . . . , s. For example, if we take G1 = W 1

3 ×k αp

and G2 =W 1
2 ×k W 1

2 , then τ(G) = and G =W 1
3 ×k W 1

2 .
Using this, we obtain a sort of converse of Proposition 3.3.8 in the case of group

schemes of height one. The following Proposition shows that if G1 ×k · · · ×k Gl acts on
a variety X and the action restricted to every Gi is generically free, then there exists a
generically free G-action on X.

Proposition 3.3.11. Let k be perfect, H =
∏l
i=1Gi be an infinitesimal commutative

unipotent k-group scheme of height one and X be a k-variety of dimension n. Then there
exists a faithful rational H-action on X which induces generically free Gi-actions for every
i = 1, . . . , l if and only if there exists an infinitesimal commutative unipotent k-group
scheme G of height one such that dimk(Lie(G)) ≤ n and Gi ↪→ G for all i = 1, . . . , l.

Proof. The ’if’ part is clear by Remark 3.3.9. Suppose now that there exists a faithful
rational H-action on X which induces generically free Gi-actions for every i = 1, . . . , l
and let K denote the function field of X. By assumption, every Gi is of height one
and thus corresponds to a Young diagram τ(Gi) = (n1i, . . . , nsii) for some si ≥ 1 and
nsii ̸= 0. Recall that si corresponds to the length of the first column of τ(Gi), that is
dimk(Lie(soc(Gi)) (see Lemma 2.2.29). The H-action is determined by a set of derivations
Dji, with i = 1, . . . l and j = 1, . . . , si, such that they commute pairwise and Dpnji

ji = 0.
The fact that each Gi-action is generically free is equivalent to the fact that

Si =
{
Dpnji−1

ji | j = 1, . . . , si

}
is linearly independent over K for any i = 1, . . . , l. Indeed Si represents the action induced
by soc(Gi). Let G be the smallest infinitesimal commutative unipotent group scheme of
height one containing Gi for all i. Then τ(G) = (n1, . . . , ns) where s = max{s1, . . . , sl}
and nj = max{nj1, . . . , njl} for every j = 1, . . . , s. We also fix a function

f : {1, . . . , s} 7→ {1, . . . , l}

such that nj = njf(j). This means that for the j-th line of the Young diagram of G we
are choosing the j-th line of Gf(j). Now we want to construct an action of G on X, or
equivalently a set of derivations Ei which commute pairwise and such that Ep

ni

i = 0
for any i = 1, . . . , s. We define E1 := D1f(1). Now suppose we have defined Er, with
1 ≤ r ≤ s− 1, such that the set

Cr =
{
Ep

nk−1

k | k = 1, . . . , r
}
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is linearly independent over K, then we define Er+1 in such way that it does not belong
to the space generated by Cr. We remark that τ(Gf(r+1)) has at least r + 1 lines which
have at least nr+1 squares. Now{

Dpnk−1

kf(r+1) | k = 1, . . . , r + 1
}

is a set of r+1K-linearly independent derivations, therefore there exists k0 ∈ {1, . . . , r+1}
such that Dp

nk0
−1

k0f(r+1) does not belong to the K-vector space generated by Cr. We define

Er+1 := Dp
nk0−pnr+1

k0f(r+1) . Its order is pnr+1 . Therefore we constructed an action of G on X.
By construction we have that the set{

Ep
ni−1

i | i = 1, . . . , s
}

is K-linearly independent. This set corresponds to the induced action of the socle of G.
Hence the action of the socle of G is generically free, and the same is true for the action
of G by Proposition 3.2.1. This implies, by Proposition 3.1.15, that dimk(Lie(G)) ≤ n,
as wanted.

Remark 3.3.12. Notice that actually in the above proof we never used the fact that
the H-action was faithful. Moreover we remark that the condition on the existence of
such actions is purely combinatorial and it is equivalent to asking, using the notation
of the proof, that dimk(Lie(G)) =

∑s
j=1 nj ≤ n. For example, if we take G1 and G2

corresponding respectively to

and

then

G =

and the Proposition implies that even if there exist generically free actions of Gi on every
variety of dimension 4, there is no action of G1 ×k G2 on a variety of dimension 4 which
is generically free when restricted to Gi for i = 1, 2. On the other hand, there exist such
actions on every variety of dimension ≥ 5.

Let us illustrate the above results in the case of the connected part of the p-torsion of
abelian varieties.

Example 3.3.13. Let k be algebraically closed and A be an abelian variety defined over
k of dimension g, p-rank f and a-number a. If there exists a faithful rational action of
A[p]0 on a curve, then by Proposition 3.3.6, f ≤ 1 and either A[p]0,u is trivial (if f = 1)
or Vker(FA[p]0,u )

= 0 (if f = 0). In either case, it holds soc(A[p]0) = ker(FA[p]). As a
consequence one has that a+ f = g. We then have the following two cases.



102 Chapter 3. Infinitesimal rational actions

• If f = 1, then f = 1 = g, that is A is an ordinary elliptic curve and faithful rational
actions of A[p]0 = µp on any curve always exist.

• If f = 0, then a = g that is A is a superspecial abelian variety. Superspecial abelian
varieties are always isomorphic to products of supersingular elliptic curves [Oor75,
Theorem 2]. In Example 3.3.7 we saw that there is no faithful rational action of
E[p]×k E[p] on any curve, for E supersingular.

Therefore, we can conclude that there exists a faithful rational action of A[p]0 on a curve
if and only if A is an elliptic curve. More generally, if there exists a faithful rational action
of A[p]0 on a variety of dimension n, then 0 ≤ g − f ≤ a(n− f). Indeed, by Proposition
3.3.6, we have f ≤ n and V n−f

ker(FA[p]0,u )
= 0 (if f = n then there is no unipotent part). This

means that

ker(FA[p]) ≃
a∏
i=1

W 1
ni
×k µfp

where ni ≤ n− f for every i ∈ I. As a consequence, g − f =
∑

i∈I ni ≤ a(n− f).
Notice that if g ≤ n we don’t get any interesting information and moreover by Remark

3.2.14 there exist always generically free rational actions of A[p]0 on varieties of dimension
n. Nevertheless, such faithful rational actions may occur even when g > n (if n > 1, as
seen in the first part). For example, by Proposition 3.3.10, there exist faithful rational
actions of the p-torsion of a superspecial abelian variety of any dimension on any variety
of dimension ≥ 2 (but not on curves).

The numerical condition g − f ≤ a(n − f) holds true for any G ≃ Gu ×k Gd in-
finitesimal commutative trigonalizable k-group scheme with a faithful rational action
on a variety of dimension n, with a = dimk(Lie(soc(G

u))), f = dimk(Lie(soc(G
s))) and

g = dimk(Lie(G)).

3.4 Subgroup schemes of PGL2,k in characteristic 2

The content of this section comes entirely from [GT24]. If the characteristic of a field
k is odd any infinitesimal subgroup scheme of PGL2,k lifts to SL2,k. In this last section,
we prove that this is not true in characteristic 2 and we give a complete description,
up to isomorphism, of infinitesimal unipotent subgroup schemes of PGL2,k. Also, the
infinitesimal trigonalizable case is considered.

In his paper [Bea10], Beauville classified, up to conjugacy, all finite subgroups of
PGL2(k) of order coprime with the characteristic. Here we are interested in the opposite
case, infinitesimal subgroup schemes. It seems that it is quite an accepted fact that
any infinitesimal subgroup scheme of PGL2,k lifts to GL2,k. In particular any unipotent
infinitesimal subgroup scheme of PGL2,k would be a subgroup scheme of Ga,k, and so
it would be isomorphic to αpn,k for some n ≥ 0. We prove that this is not true if the
characteristic of the field is 2 (see also Example 3.2.17). The result is instead true if the
characteristic is odd and we give a proof of it (see Proposition 3.4.4).
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We recall that, for any field k, represents the automorphism group functor of P1
k. So

subgroup schemes of PGL2,k correspond to faithful actions on P1
k. Moreover PGL2,k(k)

coincides with the Cremona group in dimension one, i.e. birational self-maps of P1
k, since

any rational self-map of a projective non-singular curve extends to the whole curve. In
positive characteristic, the situation is completely different if we consider rational actions
of infinitesimal group schemes. Most of the faithful infinitesimal actions of the affine line
do not extend to P1

k. For instance, all the faithful actions of αnp , with n ≥ 4, on A1
k do

not extend to P1
k, since PGL2,k has dimension 3 and the Lie algebra of αnp has dimension

n. See, for instance, [Bri22, Lemma 3.6] and Proposition 3.3.10.
The main result of this section is the following.

Theorem 3.4.1. Let k be a field of characteristic 2.

1. The infinitesimal unipotent subgroup schemes of PGL2,k are exactly, up to isomor-
phism, the subgroup schemes of the semi-direct product α2n,k ⋊ α2,k, with n ≥ 1,
where the action of α2,k on α2n,k is given by s · t = t+ st2.

2. If k is perfect, any infinitesimal trigonalizable, not unipotent, subgroup scheme of
PGL2,k is isomorphic to µ2l,k or to the semi-direct product of µ2l,k, for some l ≥ 1,
by one of the two unipotent group schemes

(a) the semi-direct product α2n,k ⋊ α2, with n ≥ 1, where the action of α2,k on
α2n,k is given by s · t = t+ st2

(b) α2n,k

for some non-trivial action of µ2l,k.

An explicit description of all these group schemes will be given further on. While the
above Theorem gives a complete classification of infinitesimal unipotent subgroup schemes
of PGL2,k, for trigonalizable group schemes we do not know if, for any non-trivial action
of µ2l,k on the unipotent group schemes in (a), the associated semi-direct product acts
faithfully on P1

k. At the end of this section, we prove that there exists at least one action
of µ2l,k on any unipotent group scheme which appears in (a) such that the associated
semi-direct product acts faithfully on P1

k. In the commutative case, we get a complete
classification over an algebraically closed field.

Corollary 3.4.2. Let k be an algebraically closed field of characteristic 2. The list
of infinitesimal commutative subgroup schemes of PGL2,k, up to isomorphism, is the
following:

1. α2n,k, for some n ≥ 0,

2. α2,k × α2,k,

3. the 2-torsion of a supersingular elliptic curve,

4. µ2n, for some n > 0.
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The Corollary follows from Theorem 3.4.1 by using Lemma 3.4.7. In [Kno95] Knop
classified subgroup schemes of SL2,k up to conjugacy. Of course, it could be possible
to deduce Theorem 3.4.1 by computing the quotient of all infinitesimal trigonalizable
subgroup schemes of SL2,k. In fact, in our approach, we just need to know infinitesimal
unipotent subgroup schemes of SL2,k, which is much easier.

Infinitesimal subgroup schemes of PGL2,k in characteristic p > 2

Let k be a field of characteristic p. If p > 2 and G is an infinitesimal subgroup scheme of
PGL2,k, since SL2,k → PGL2,k is an étale covering, then G lifts to SL2,k. This result is
known and, for instance, it is mentioned in Fakhruddin [Fak20]. We, however, report here
the details of the proof, which are not present in the aforementioned paper. We have the
following lemma.

Lemma 3.4.3. Any short exact sequence of algebraic group schemes over a field k

1−→H i−→ G −→ Q −→ 1,

such that H is étale and Q is infinitesimal, splits and the semi-direct product is in fact
direct.

Proof. We firstly observe that G is necessarily a finite group scheme. Let us consider the
connected-étale sequence

1 −→ G0 −→ G
π−→ π0(G)→ 1.

We remark that G0 is infinitesimal, since G is finite. Let us consider the morphism
π ◦ i : H → π0(G). We claim that this is an isomorphism. Indeed, since H and π0(G)
are étale, it is enough to prove that H(k)→ π0(G)(k) is an isomorphism, where k is an
algebraic closure of k. Now we have the factorization

H(k)
i(k)−→ G(k)

π(k)−→ π0(G)(k).

By [Mil17, Corollary 5.48], the morphism i(k) (resp. π(k)) is an isomorphism since
Q(k) (resp. G0(k)) is trivial. So π ◦ i is an isomorphism and let f be its inverse. Then
f ◦ π : G→ H is a left inverse of i and therefore the exact sequence in the statement is
split and the extension is isomorphic to the natural extension of the direct product.

Proposition 3.4.4. If k is a field of characteristic p and p does not divide n then any
infinitesimal subgroup scheme of PGLn,k lifts to SLn,k.

Proof. We consider the exact sequence

1→ µn,k → SLn,k
π→ PGLn,k → 1.

Since p does not divide n then µn,k is an étale group scheme. Let G be an infinitesimal
subgroup scheme of PGLn,k. Then π−1G is an extension of G by µn,k. By the previous
Lemma the extension is trivial, so G lifts to SLn,k.

In particular the above Proposition applies when n = 2 and p > 2.
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Infinitesimal unipotent subgroup schemes of GL2,k

In this subsection, we give an explicit description of all infinitesimal unipotent subgroup
schemes of GL2,k, where k is a field of positive characteristic p. The following result will
be used in the proof of Theorem 3.4.1.

Proposition 3.4.5. Any infinitesimal unipotent subgroup scheme of GL2,k is one of the
following subgroup schemes of SL2,k

Hs1,s2,n = {( x11 x12x21 x22 ) ∈ kerFnSL2,k
|si(xii − 1) + sj(xij) = 0, x22 = 2− x11 for i ̸= j},

for some [s1 : s2] ∈ P1(k) and n ≥ 1.

Proof. Any infinitesimal unipotent subgroup scheme of GL2,k is isomorphic to αpn,k, for
some n, since by [DG70, IV.§2, Proposition 2.5(iv)], up to conjugation, it is contained
in the subgroup of upper triangular unipotent matrices, which is isomorphic to Ga,k.
Moreover any unipotent subgroup scheme H of GL2,k is contained in SL2,k since, over
a field, any homomorphism from a unipotent group scheme to a diagonalizable group
scheme is trivial, so the restriction of the determinant to H is trivial. We now observe
that

Homgr(αpn,k, SL2,k) ⊆ SL2,k(k[T ]/(T
pn))

and it consists of matrices A(T ) such that

A(S + T ) = A(S)A(T )

in SL2,k(k[S, T ]/(S
pn , T p

n
). Since A(0) = id we have

A(T ) =

pn−1∑
i=0

AiT
i

with Ai ∈M2(k) for any 0 ≤ i ≤ pn − 1 and A0 = id. Now

A(S + T ) =

pn−1∑
i=0

i∑
j=0

(
i

j

)
AiS

jT i−j

and

A(S)A(T ) =

pn−1∑
i,j=0

AiAjS
iT j .

Therefore for any 0 ≤ i, j < pn we have(
i+ j

j

)
Ai+j = AiAj

where we set Ak = 0 if k ≥ pn. Then

Api =

(
2i

i

)
· · ·
(
pi

i

)
Api =

(pi)!

(i!)p
Api
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for any 0 ≤ i ≤ pn − 1. Now

vp

((pi)!
(i!)p

)
= i− (p− 1)vp(i!) > 0,

so
Api = 0.

Moreover Ai commutes with Aj for any 0 ≤ i, j ≤ pn − 1. It is known that if two
non-zero nilpotent matrices of size 2 commute then one is a multiple of the other.
Therefore there exists a nilpotent matrix B ∈ M2(k) and f(T ) ∈ k[T ]/(T pn) such that
A(T ) = id+Tf(T )B. Now it is easy to verify that f(T ) is additive. Then the matrix A(T )
belongs to Hs1,s2,n(k[T ]/(T

pn)), where (s1, s2) ∈ kerB \ {(0, 0)}. So any infinitesimal
unipotent subgroup scheme of GL2,k is contained in Hs1,s2,n for some [s1 : s2] ∈ P1(k).
On the other hand, for any [s1 : s2] ∈ P1(k) the matrix

A(T ) = id + T
(
s1s2 −s21
s22 −s1s2

)
gives an isomorphism between αpn,k and Hs1,s2,n.

Some non-commutative infinitesimal unipotent group schemes

In this subsection we explicitly describe the group schemes appearing in Theorem 3.4.1.

Definition 3.4.6. Let k be a field of characteristic p and consider the action of αp,k, by
group scheme automorphisms, on Ga,k given by s · t = t+ stp. We define the associated
semi-direct product E = Ga,k ⋊ αp,k.

1. For any n ≥ 0 we define the subgroup scheme Dn of E as the induced semi-direct
product αpn ⋊ αp,k.

2. For any a ∈ k and n ≥ 1, we define Ha,n as the kernel of the morphism

(−aFn−1, i) : Dn → Ga,k

where i is the inclusion i : αp,k → Ga,k, that is Ha,n =
{
(t, s) ∈ Dn | s = atp

n−1
}

.

Explicitly we have that Dn is isomorphic to Spec(k[S, T ]/(Sp, T p
n
) where the comul-

tiplication is given by
S 7→ S ⊗ 1 + 1⊗ S

and
T 7→ T ⊗ 1 + 1⊗ T + S ⊗ T p.

We observe that, for p = 2, this is the group that appears in the statement of Theorem
3.4.1. The previous group scheme is equally isomorphic to Spec k[S, T ]/(Sp, T p

n
), where

the comultiplication is given by

S 7→ S ⊗ 1 + 1⊗ S
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and
T 7→ T ⊗ 1 + 1⊗ T + T p ⊗ S.

The two group schemes are isomorphic via S 7→ S, T 7→ T +ST p. We will need this second
presentation in the proof of Theorem 3.4.1.

Moreover Ha,n is isomorphic to Spec k[T ]/(T p
n
) where the comultiplication is given

by
T 7→ T ⊗ 1 + 1⊗ T + aT p

n−1 ⊗ T p.

Notice that for n > 2 and a ̸= 0, these are all examples of infinitesimal unipotent group
schemes that are not commutative. We collect some easy results that will be freely used
further on.

Lemma 3.4.7. Let k be a field of characteristic p.

1. D0 is isomorphic to αp,k and D1 is isomorphic to αp,k × αp,k.

2. For any n ≥ 2, H0,1 is the center of Dn and Dn/H0,1 is isomorphic to αpn−1,k×αp,k.

3. Ha,n is commutative if and only if n ≤ 2 or a = 0.

4. H0,n is isomorphic to αpn,k and Ha,1 is isomorphic to αp,k.

5. If a ̸= 0, Ha,2 is isomorphic to αp2,k if p > 2, and to a form of the 2-torsion of a
supersingular elliptic curve if p = 2.

6. If n ≥ l ≥ 0, Dl is a closed subgroup scheme of Dn, and if l ≥ 1, Dl = kerF lDn
.

Proof. All the proofs, except (5), are straightforward. If char(k) > 2, Ha,2 is isomorphic
to αp2,k via the isomorphism T 7→ T − aT 2p

2 . If char(k) = 2 and k algebraically closed,
Ha,2 is isomorphic to H1,2, via T 7→ cT where c is a cubic root of a (see also Lemma
3.4.11 for more details). And H1,2 is isomorphic to ker(F − V : W2,k → W2,k), where
W2,k is the group scheme of Witt vectors of length 2 and V is the Verschiebung. This
group scheme is known to be isomorphic to the 2-torsion of a supersingular elliptic curve
(we also give a proof of this in Chapter 2, see Corollary 2.3.10).

Remark 3.4.8. If n ≥ 3 and a ̸= 0, Ha,n is a subgroup scheme of the non-abelian
extension of Ga by Ga given by the cocycle aT pT ′pn−1 (see [DG70, II, §3, 4.6]).

Lemma 3.4.9. Let n ≥ 0. Any closed subgroup scheme of Dn is equal to Dl, with
0 ≤ l ≤ n, or to Ha,m, for some a ∈ k and 1 ≤ m ≤ n.

Proof. The result is clear for n ≤ 1. So we suppose n ≥ 2. In particular, Dn is not
commutative. Let H be a closed subgroup scheme of Dn. If H ⊆ kerF lDn

, for some
0 ≤ l < n, then H is a closed subgroup scheme of Dl. Up to taking a minimal 0 ≤ l ≤ n
such that F lH = 0, we can suppose that Fn−1

H ≠ 0. In particular, if H is a proper subgroup
scheme of Dn, then H has order pn (otherwise iterating n− 1 times the Frobenius, which
has a kernel of order at least p, we will get the trivial morphism). Suppose that H
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does not contain the center H0,1 of Dn. Then, by dimension reasons, the natural map
H ×H0,1 → Dn is an isomorphism. Hence H ≃ Dn/H0,1 ≃ αpn−1,k × αp,k, which would
imply that Dn is commutative. Therefore H contains the center of Dn. As a consequence,
H/H0,1 is a closed subgroup scheme of Dn/H0,1 ≃ αpn−1,k × αp,k. In particular, H/H0,1

is a normal subgroup scheme of Dn/H0,1, which implies that H is a normal subgroup
scheme of Dn. So H is obtained as the kernel of a morphism from Dn to αp. Any such a
morphism is given by an element

P (S, T ) =
∑

0≤i<p,0≤j<pn
aijS

iT j ∈ k[S, T ]/(Sp, T pn)

such that P (S, T )p = 0 and∑
0≤i<p
0≤j<pn

aij(S⊗1+1⊗S)i(T ⊗1+1⊗T +T p⊗S)j =
∑

0≤i<p
0≤j<pn

aij(S
iT j⊗1+1⊗SiT j) (3.2)

in k[S, T ]/(Sp, T p
n
)⊗ k[S, T ]/(Sp, T pn). We can suppose a00 = 0. If we reduce modulo

(T )⊗ (1) we get∑
0≤i<p
0≤j<pn

aij(S ⊗ 1 + 1⊗ S)i(1⊗ T j) =
∑

0≤i<p
0<j<pn

aij(1⊗ SiT j) +
∑

0<i<p

ai0(1⊗ Si + Si ⊗ 1).

in k[S]/(Sp)⊗ k[S, T ]/(Sp, T pn). Therefore aij = 0 if 1 < i < p or i = 1 and j > 0. So

P (S, T ) = a1,0S +Q(T ).

If we reduce (3.2) modulo (1)⊗ (S) we find that Q(T ) is additive. Since P (S, T )p = 0
we get that P (S, T ) = a10S + a0pn−1T p

n−1 . Moreover, a10 ̸= 0 since we supposed that
Fn−1
H ̸= 0. So we have that H is isomorphic to Ha,n, with a =

a0pn−1

a10
.

Lemma 3.4.10. Let G be an infinitesimal unipotent group scheme with one-dimensional
Lie algebra over a field of characteristic p. An action, as a group scheme automorphism,
of an infinitesimal group scheme H of multiplicative type on G is faithful if and only if
the induced action on kerFG is faithful. And, if this happens, H has one-dimensional Lie
algebra.

Proof. The ’if’ part is obvious. We prove the ’only if’ part. We can suppose that H
is of height 1 since the kernel of any action of an infinitesimal group scheme has a
non-trivial Frobenius kernel. We also remark that dimk(Lie(H)) = dimk(Lie(kerFH)).
Therefore, by [DG70, III, §6, Proposition 7.1], H is a subgroup scheme of Aut1(G) =
ker(Aut(G)→ Aut(G/ kerFG)). Moreover, kerFG ≃ αp is contained in the center since
a unipotent group scheme has a non-trivial center, and, since G is infinitesimal unipotent,
the intersection with the kernel of the Frobenius is non-zero. Therefore the induced action
of G/ kerFG on kerFG is trivial, then, by [DG70, III, §6, Proposition 7.4], we have an
exact sequence

0→ Homgr(G/ kerFG, αp) −→ Aut1(G) −→ Autgr(kerFG) ≃ Gm,k.
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Remark that Homgr(αp, αp) ≃ Ga,k, so, by dévissage, we get that Homgr(G/ kerFG, αp)
is a unipotent group scheme. Since H is of multiplicative type, its intersection with
Homgr(G/ kerFG, αp) is trivial. As a consequence, H embeds in Autgr(kerFG) ≃ Gm,k,
that is H acts faithfully on kerFG. Moreover, since we showed that H is a k-subgroup
scheme of height 1 of Gm,k, then H is isomorphic to µp,k and so its Lie algebra is
one-dimensional.

Lemma 3.4.11. Let k be a field of characteristic p and let n > 2 or (n = 2 and p = 2).

1. Any action of µp,k on H0,n ≃ αpn,k, as group scheme automorphism, is conjugate to
v · t = vit, for some 0 ≤ i ≤ p− 1. Therefore, for any non-trivial action of µp,k on
αpn,k, all semi-direct products αpn,k ⋊ µp are isomorphic.

2. If a, b ∈ k\{0}, then Ha,n is isomorphic to Hb,n if and only if b/a is a (pn+p−1)-th
power.

3. There are no non-trivial actions, as group scheme automorphism, of infinitesimal
group schemes of multiplicative type on Ha,n, for any a ∈ k \ {0}.

Proof.

1. It is easy to see that the homomorphism Autgr(Ga)→ Autgr(αpn) admits a section.
Therefore any action of µp,k on αpn,k extends to an action on Ga,k. Now, by [DG70,
III, §6, Corollaire 7.9], we have that any action of µp,k on Ga,k is given by

v · x = vix+ (vi − 1)
s∑
l=1

alx
pl

for some s ≥ 1, 0 ≤ i ≤ p− 1 and ai ∈ k for any 1 ≤ l ≤ s. Therefore any action of
µp,k on αpn,k is given by

v · x = vix+ (vi − 1)

pn−1∑
l=1

alx
pl

for some ai ∈ k for any 1 ≤ l ≤ pn−1 − 1 and 0 ≤ i ≤ p − 1. But this action is
conjugated to the action v · x = vix via the automorphism x 7→ x+

∑pn−1
l=1 alx

pl . If
the action is non-trivial, then i > 0. Moreover, v 7→ vi is an automorphism of µp,k,
therefore all the associated semi-direct products are isomorphic.

2, 3. We recall that the Hopf algebra of Ha,n is isomorphic to k[T ]/(T p
n
), where the

comultiplication is given by T ⊗ 1 + 1 ⊗ T + aT p
n−1 ⊗ T p. We now consider an

element of Isom(Ha,n,Hb,n)(R), with R a k-algebra. An isomorphism from Ha,n,R
to Hb,n,R is given by an element P (T ) =

∑pn−1
i=1 aiT

i ∈ R[T ]/(T pn) such that a1 ∈ R
is invertible and

pn−1∑
i=1

ai(T
i ⊗ 1 + 1⊗ T i) + a(

p−1∑
i=1

ap
n−1

i T ip
n−1

)⊗ (

pn−1−1∑
i=1

apiT
ip) =
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pn−1∑
i=1

ai(T ⊗ 1 + 1⊗ T + bT p
n−1 ⊗ T p)i.

Since it induces an isomorphism on the kernels of the pn−1-th power of the Frobenius,
which are isomorphic to αpn−1,R, we get that ai = 0 if 1 < i < pn−1 and i is not a
power of p. Moreover, ai = 0 if i > pn−1 and i is not divisible by p (one can see it
by differentiating both sides). So we get

pn−1−1∑
r=pn−2+1

apr(T
pr ⊗ 1 + 1⊗ T pr) + aap

n−1

1 T p
n−1 ⊗ (

n−2∑
r=0

apprT
pr+1

) =

pn−1−1∑
r=pn−2+1

apr(T
p ⊗ 1 + 1⊗ T p)r + a1bT

pn−1 ⊗ T p.

If n > 2 and a ̸= 0, comparing the coefficients of T p ⊗ T pn−1 , we get apn−1+p = 0

and, comparing the coefficients of T pn−1 ⊗ T p, we get aap
n−1+p

1 = a1b, which means
that a1 is a (pn−1 + p− 1)-th power of b/a. If n = 2 and p = 2 the above equality
reduces to

aa2+2
1 T p ⊗ T p = a1bT

p ⊗ T p,

so a1 is a cubic root of b/a. If R = k this proves that Ha,n is isomorphic to Hb,n if
and only if b/a is a (pn+p−1)-th power. But this also proves that, if a ̸= 0, the image
of the map Aut(Ha,n)→ Aut(kerFHa,n) is contained in µpn−1+p−1,k. Let H be an
infinitesimal group scheme of multiplicative acting on Ha,n via ρ : H → Aut(Ha,n).
Then the image of ρ(H) via Aut(Ha,n)→ Aut(kerFHa,n) lies in µpn−1+p−1,k, that
is it is trivial, since µpn−1+p−1,k is étale and ρ(H) infinitesimal. As a consequence,
the induced faithful action of ρ(H) on ker(FHa,n) is trivial and thus, by Lemma
3.4.10, also the faithful action of ρ(H) on Ha,n (and thus that of H) is trivial.
Therefore, any infinitesimal group scheme of multiplicative type acts trivially on
Ha,n if a ̸= 0. On the other hand, if a1 ∈ k is such that ap

n+p−1
1 = b/a then the

polynomial P (T ) = a1T gives an isomorphism for any n ≥ 1 and any prime p.

Proof of Theorem 3.4.1

We start with a Lemma.

Lemma 3.4.12. Let k be a field of characteristic 2 and G be a unipotent subgroup scheme
of PGL2,k. Then

1. kerFG is isomorphic to α2,k or to α2,k × α2,k;

2. ImFG is isomorphic to α2n,k, for some n.
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Proof.

1. We observe that in characteristic 2 we have the following exact sequence of restricted
p-algebras

0→ Lie(G2
a)→ pgl2 → Lie(Gm)→ 0.

Therefore Lie(kerFG) is necessarily contained in Lie(G2
a), which implies that kerFG

is a subgroup scheme of G2
a. So we are done.

2. Let G̃ := π−1G, where π : SL2,k → PGL2,k is the projection. Then we have an
exact sequence

1→ µ2,k → G̃→ G→ 1

which yields the following commutative diagram

1 // µ2,k //

Fµ2,k

��

G̃ //

F
G̃
��

G //

FG

��

1

1 // µ2,k // G̃(p) // G(p) // 1

where the vertical maps are the relative Frobenius. Since the Frobenius is trivial on
µ2,k, we get that FG factorizes as

G
α→ G̃(p) → G(p).

Since G is unipotent then α(G) is a unipotent subgroup of G̃(p) ⊆ SL2,k. Therefore
α(G) is isomorphic to α2n,k, for some n. So the statement follows.

We now continue with the proof of Theorem 3.4.1. Let G be a unipotent subgroup
scheme of PGL2,k. Let us consider G̃ := π−1G ⊆ SL2,k. For any n ≥ 1, we apply the
Snake Lemma to this commutative diagram with exact rows

1 // µ2,k //

Fn
µ2,k

��

G̃ //

Fn
G̃
��

G //

Fn
G

��

1

1 // µ2,k // G̃(pn) // G(pn) // 1

and we get an exact sequence

1→ µ2,k → kerFn
G̃
→ kerFnG → 1,

since there are no non-trivial morphisms from a unipotent group scheme to a diagonalizable
group scheme. We also observe that kerFn

G̃
= π−1(kerFnG).

Let us firstly suppose that dimk(LieG = 2). Then kerFG has order 22, so kerF
G̃

has order 23 and therefore it coincides with kerFSL2,k
. Now, ImFG = ImF

G̃
, and, by
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Lemma 3.4.12, they are both isomorphic to α2n for some n ≥ 0. So we have the following
commutative diagram with exact rows

1 // kerFSL2,k
//

id

��

G̃ //

��

αpn //

��

0

1 // kerFSL2,k
// kerFn+1

SL2,k

FSL2,k // kerFnSL2,k
// 0.

The diagram is a pull-back since it is a morphism of extensions. By Lemma 3.4.5, any
unipotent subgroup of kerFnSL2,k

is

Hs1,s2,n = {( x11 x12x21 x11 ) ∈ kerFnSL2,k
|si(x11 − 1) + sj(xij) = 0, for (i, j) = (1, 2), (2, 1)}

for some [s1 : s2] ∈ P1(k). We are going to prove that, for any [s1 : s2] ∈ P1(k),
G = F−1

SL2,k
(Hs1,s2,n)/µ2,k is isomorphic to Dn. This would also prove the Theorem

in the case dimk(Lie(G)) = 1, since G̃ is contained in the pull-back F−1
SL2,k

(Hs1,s2,n),
therefore G is a subgroup scheme of F−1

SL2,k
(Hs1,s2,n)/µ2,k ≃ Dn. We firstly remark that

F−1
SL2,k

(Hs1,s1,n)/µ2,k has order pn+2. The Hopf algebra of F−1
SL2,k

(Hs1,s2,n) is k[Xij ]1≤i,j≤2

quotiented by the ideal(
(Xii − 1)2

n+1
, X2n+1

ij , (Xii −Xjj)
2, XiiXjj −XijXji − 1, si(X

2
ii − 1) + sj(X

2
ij))

)
i ̸=j

and the comultiplication is induced by

Xij 7→ Xi1X1j +Xi2X2j

for any 1 ≤ i, j ≤ 2. Now we compute the invariant ring by the natural action of µ2,k.
We let Yijkl = XijXkl. Consider the subalgebra A of k[F−1

SL2,k
(Hs1,s2)] generated by Y1112

and Y2122. We suppose s1 ̸= 0. If not, s2 ̸= 0 and a similar argument works. Looking at
the comultiplication we have

Y1112 7→(X11 ⊗X11 +X12 ⊗X21)(X11 ⊗X12 +X12 ⊗X22) =

Y1111 ⊗ Y1112 + Y1112 ⊗ Y1122 + Y1112 ⊗ Y1221 + Y1212 ⊗ Y2122 =
Y1111 ⊗ Y1112 + Y1112 ⊗ (Y1122 + Y1221) + Y 2

1112 ⊗ s1Y2122 =
Y1112 ⊗ 1 + 1⊗ Y1112 + Y 2

1112 ⊗ (s1Y2122 + s2Y1112)

and

Y2122 7→(X21 ⊗X11 +X22 ⊗X21)(X21 ⊗X12 +X22 ⊗X22) =

Y2121 ⊗ Y1112 + Y2122 ⊗ Y1122 + Y2122 ⊗ Y1221 + Y2222 ⊗ Y2122 =
Y2121 ⊗ Y1112 + Y2122 ⊗ (Y1122 + Y1221) + Y2222 ⊗ Y2122 =

Y2212 ⊗ 1 + 1⊗ Y2212 + Y 2
1112 ⊗ (s2Y2122 +

s22
s1
Y1112)
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where we used that Y1122 + Y1221 = 1, s1Y
2
1112 = Y1212, s1Y2121 = s22Y

2
1112 and Y2222 =

Y1111 = 1+ s2Y
2
1112, which are easy to verify. The antipode is the identity, so A is a Hopf

algebra contained in k[(F−1
SL2

(Hs1,s2)]
µ2,k . We also stress that

(s1Y2122 + s2Y1112) 7→ (s1Y2212 + s2Y1112)⊗ 1 + 1⊗ (s1Y2212 + s2Y1112)

and s1Y2122 + s2Y1112 is not zero. Indeed for example the element ( 1 0
a 1 ), with a2 = 0 and

a ̸= 0, belongs to F−1
SL2

(Hs1,s2). This means that s1Y2122+s2Y1112 generates a Hopf algebra
B isomorphic to α2,k. Therefore there is an epimorphism H = SpecA → SpecB. The
kernel of this map is the spectrum of the algebra generated by the class of Y1112 modulo
s1Y2122 + s2Y1112. This group scheme is isomorphic to α2n+1 , since Y 2n

1112 = X2n
11 Y

2n
12 ̸= 0.

Here we use that s1 ̸= 0. If s1 = 0, we would have Y 2n
2212 ̸= 0. So H has order 2n+2.

Since it has the same order as F−1
SL2

(Hs1,s2,n), the natural map F−1
SL2

(Hs1,s2 , n) → H is
an isomorphism. Moreover H is isomorphic to Dn via the isomorphism

S 7→ s1Y2122 + s2Y1112

and
T 7→ Y2122.

Finally let us suppose that k is a perfect field. Then any infinitesimal trigonalizable group
scheme T is a semi-direct product U ⋊D, where U is unipotent and D is diagonalizable
(see [DG70, IV, §2, Proposition 3.5]). If T is infinitesimal, not unipotent, and a closed
subgroup scheme of PGL2,k, that is T acts faithfully on P1

k, then also D acts faithfully
on P1

k. Faithful actions of diagonalizable group schemes are generically free (see Corollary
3.3.2) and thus, by Proposition 3.1.15, dimk(Lie(D)) ≤ 1 that is D ≃ µ2l,k, for some
l ≥ 1. Moreover, by Corollary 3.3.4, D is a normal subgroup scheme of T if and only if U
is trivial; if it is not the case, then the action of D on U must be non-trivial. Therefore,
by the first part of the Theorem and by Lemma 3.4.11(3), U is isomorphic to Dn or to
α2n,k, for some n ≥ 1.

Actions of trigonalizable group schemes on P1
k

In Theorem 3.4.1 we proved that if k is a perfect field of characteristic 2, any trigonalizable,
not unipotent nor diagonalizable, infinitesimal subgroup scheme of PGL2,k is a semi-direct
product of µ2l,k by Dn or α2n , for some n, l ≥ 0. In this section, we say something more
about which semi-direct products can appear.

Proposition 3.4.13. Let k be a field of characteristic 2 and recall that E = Ga,k ⋊ α2,k

where the action is given by s · t = t+ st2. There exists a non-trivial action, as a group
scheme automorphism, of Gm,k on E such that E ⋊Gm,k acts faithfully on P1

k. Moreover,
we can choose the action of Gm,k such that, for any n ≥ 0, it preserves Dn and H0,n. We
then obtain, by restriction, faithful actions of the induced semi-direct products Dn ⋊ µ2l,k
and H0,n ⋊ µ2l,k on P1

k, for any l ≥ 1.
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Proof. Let us consider the action of Gm,k = Spec k[V, V −1] on E given by v · (s, t) =
(v−1s, vt). Then we define the action of E⋊Gm,k on A1

k = Spec k[X] given by the coaction

X 7−→ V X + V 2SX2 + T.

And we get

1

X
7−→ 1

T + V X

(
1 +

V 2SX2

T + V X

)
=

S +
1

T + V X
+

T 2S

(T + V X)2
∈ k[X,T, V ±1, (T + V X)−1][S]/(S2).

Therefore, by gluing, we get a faithful action of E ⋊Gm,k on P1
k.

Remark 3.4.14.

1. The group scheme kerFPGL2,k
is isomorphic to the semi-direct product α2

2,k ⋊ µ2,k,
where the action is given by v · (s, t) = (vs, vt). Indeed it coincides with the kernel
of the Frobenius of the group scheme constructed in the Proposition.

2. We remark that taking V = 1 in the proof of the Proposition, we get an explicit
faithful action on P1

k of any infinitesimal unipotent subgroup scheme of PGL2,k,
since, as proved in the Theorem, they are all subgroup schemes of E .

We finally mention the following Lemma.

Lemma 3.4.15. Let k be a perfect field of characteristic 2. Up to isomorphism, there is
a unique infinitesimal trigonalizable subgroup scheme of PGL2,k extension of µ2 by α2n,
for any n > 0.

Proof. This follows from Theorem 3.4.1 and Lemma 3.4.11(1).
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Appendix A

Smash products and Azumaya
algebras

This appendix focuses on the smash product algebra. As seen in Chapter 1, an example
of smash product is given by the algebra of Ore polynomials. Along with linearised
polynomials, Ore polynomials have important applications in coding theory and are used
to construct Gabidulin [Gab85] and linearised Reed-Solomon codes [Mar18]. These two
families of codes are the counterpart respectively in the rank metric and in the sum-rank
metric of Reed-Solomon codes [RS60], which is one of the most used families of linear
codes in the Hamming metric (central since the 50’s in the theory of error correction).
Codes in the rank metric were first introduced by Delsarte [Del78], while those in the
sum-rank metric are of more recent definition (a reference for the theory of sum-rank
metric codes is [MSK22]).

Algebraic Geometry codes, a generalization of Reed-Solomon codes, where introduced
by Goppa [Gop82] and are constructed by evaluating spaces of functions at rational
points on algebraic curves. In [BC23] Berardini and Caruso define Linearised Algebraic
Geometry codes, the first geometric construction of codes in the sum-rank metric from
algebraic curves.

Let X/k be an algebraic curve (smooth, projective, geometrically connected variety of
dimension one) and K = k(X) be its function field. Consider the finite constant commu-
tative k-group scheme G = Z/rZ whose Cartier dual is G∨ = µr = Spec (k[T ]/(T r − 1)).
To give a generically free rational action of G on X is equivalent to choosing an automor-
phism θ of K of order r (see also Example 1.1.29). In fact, this choice defines the module
algebra structure

k[T ]/(T r − 1)→ Endk(K)

T 7→ θ

corresponding to the G-action. Let KG = {a ∈ K | θ(a) = a} be the subfield of fixed
points and for any x ∈ (KG)× consider the µr-torsor

fx : Spec
(
KG[T ]/(T r − x)

)
→ Spec(KG).

117
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Then we have the smash product

DK,x := K#
(
KG[T ]/(T r − x)

)
≃ K[T ; θ]/(T r − x)

and the evaluation morphism

ev : DK,x → Endk(K)

(if G is a finite commutative group scheme and G∨ its Cartier dual, one can define the
smash product and ev morphism as described below given any pair of G-torsor and G∨-
torsor [GH69]). Starting from this setting, linearized Algebraic Geometry codes are defined
in [BC23]. The latter can be considered as an extension of Goppa’s Algebraic Geometry
codes [Gop82] to a non-commutative framework, and to the sum-rank metric. The same
construction can be done for G any finite commutative k-group scheme, G×k X 99K X a
generically free rational action and f : Spec(B)→ Spec(KG) a G∨-torsor, providing us
with a larger panel of linearized Algebraic Geometry codes.

The first section of this appendix has as objective to study the endomorphisms of
B#A when A is a finitely generated cocommutative bialgebra and B is a commutative
A-module algebra (see Proposition A.1.4). Chase and Sweedler showed that X = Spec(B)
is a torsor under a finite group scheme G if and only if

ev : B#k[G]∨ → Endk(B)

is an isomorphism of k-algebras [CS69, Theorem 9.3]. This implies that B#k[G]∨ is an
Azumaya algebra and this holds more generally for the smash product of two Galois
objects (see Theorem A.2.9 of Gamst and Hoechsmann [GH69]). Inspired by these results,
in the second section we show that if A is a commutative and cocommutative Hopf algebra
and B is a commutative A-module algebra via v : A → Endk(B) such that ker(v) is a
Hopf ideal of A and A/ ker(v) is finite, then the smash product B#A is an Azumaya
algebra over its center (that one can describe explicitly) (see Proposition A.2.11).

As seen in the main body of this work, we were particularly interested to be able of
doing computations with derivations and differential operators in a greater generality.
This is the main motivation that lead us to investigate smash-products: indeed, thanks
to the evaluation morphism, doing computations in the algebra Endk(B) is the same as
doing them in the smash-product algebra B#A.

The last two sections of this appendix contain some results that were proven in order
to better understand how to do certain computations involving derivations and differential
operators: using the formalism of smash-products helped us at better understanding and
having intuitions at this level. In Section A.3 we show that when dealing with A-module
algebras we can always define a universal object T (A) and that in T (A)#A we have some
universal expressions that we can then "evaluate" in B#A for any A-module algebra
B (see Corollary A.3.4). In Section A.4, we compute the reduced norm of some Ore
polynomials and, as a consequence, we obtain Proposition A.4.13 which shows clearly
how this helps in deducing computations involving derivations.



A.1. Study of the endomorphisms of smash products 119

Let us recall the definition of the smash-product algebra Let R be a commutative ring,
A be an R-bialgebra and B and C be R-algebras. If B is a (left) A-module algebra via

ψ : A⊗R B → B

and C is a (left) A-comodule algebra via

ρ : C → A⊗R C,

the smash product algebra B#C is defined as follows:

1. as an R-module B#C = B ⊗R C;

2. the multiplication is given by

(b⊗ c)× (β ⊗ γ) = (b⊗ 1)(ρ(c) ⋆ β)(1⊗ γ)

for any b, β ∈ B and c, γ ∈ C.

where f ⋆ b := ϕ(f ⊗ b) for any f ∈ A⊗R C and b ∈ B and ϕ is the R-linear map

ϕ : A⊗R C ⊗R B → B ⊗R C
a⊗ c⊗ b 7→ ψ(a⊗ b)⊗ c = a · b⊗ c.

One can take for example C = A. In this case, one can consider the evaluation map (the
name of this map comes indeed from the coding theory setting previously discussed)

ev : B#A→ EndR(B)

b⊗ a 7→ ℓb ◦ v(a)

where ℓb is the endomorphism of left multiplication by b on B and v : A → EndR(B)
defines the A-module algebra structure on B.

Lemma A.0.1. The evaluation map defined above is a morphism of B-algebras.

Proof. It is a direct consequence of the property (1.1) of the morphism v.

In the following section we will encounter generalizations of the evaluation morphism
obtained when considering arbitrary smash products.

A.1 Study of the endomorphisms of smash products

In this section we study the endomorphisms of B#A when A is a finitely generated
cocommutative bialgebra and B is a commutative A-module algebra (see Proposition
A.1.4). We start with a proposition describing all the B-algebras that are B#C-modules.
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Proposition A.1.1. Let B and C be respectively (left) A-module and A-comodule algebras
via

v : A→ EndR(B) and ρ : C → A⊗ C,

D be a B-algebra and
u : B#C → EndR(D)

be a B-linear map such that u|C is a morphism of R-algebras (where u|C is the composite
of u with the natural map C → B#C). Then u is a morphism of left B-algebras if and
only if for every c ∈ C, b ∈ B and d ∈ D it holds

u(c)(bd) = mD(v ⊗ u ◦ ρ(c))(b⊗ d).

Proof. For every b ∈ B we denote by ℓb the endomorphism of left multiplication by b on
B. Now, u is a morphism of left B-algebras if and only if u(c× b) = u(c) ◦ u(b) for every
c ∈ C and b ∈ B. This holds true if and only if for every d ∈ D we have

u(c)(bd) = u(c) ◦ ℓb(d) = u(c) ◦ u(b)(d) = u(c× b)(d).

Now c× b = ρ(c) ⋆ b =
∑

i,j v(ai)(b)cj where ρ(c) =
∑

i,j ai ⊗ cj . Hence

u(c× b)(d) = u

∑
i,j

v(ai)(b)cj

 (d) =
∑
i,j

u(v(ai)(b)) ◦ u(cj)(d) =

∑
i,j

ℓv(ai)(b) ◦ u(cj)(d) =
∑
i,j

v(ai)(b)u(cj)(d) = mD(v ⊗ u ◦ ρ(c))(b⊗ d)

as claimed.

Corollary A.1.2. Let B and C be respectively (left) A-module and A-comodule algebras
via

v : A→ EndR(B) and ρ : C → A⊗ C

and
u : B#C → EndR(B)

be a B-linear map such that u|C is a morphism of R-algebras. Then u is a morphism of
left B-algebras if and only if for every c ∈ C and b, β ∈ B it holds

u(c)(bβ) = mB(v ⊗ u ◦ ρ(c))(b⊗ β).

In particular we have

u(c)(b) =
∑
i,j

v(ai)(b)u(cj)(1) =
∑
i,j

v(ai)(1)u(cj)(b)

for every c ∈ C and b ∈ B where ρ(c) =
∑

i,j ai ⊗ cj .
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Proof. Take D = B in Proposition A.1.1

Corollary A.1.3. Let A be a cocommutative bialgebra and B be a commutative (left)
A-module algebra via v : A → EndR(B). We then have that for every morphism of left
B-algebras

u : B#A→ EndR(B)

it holds

u(a) = ev

∑
i,j

u(ai)(1)aj


for every a ∈ A where ∆(a) =

∑
i,j ai ⊗ aj .

Proof. By Corollary A.1.2 for every b ∈ B it holds

u(a)(b) =
∑
i,j

v(ai)(b)u(aj)(1) =
∑
i,j

u(aj)(1)v(ai)(b) =
∑
i,j

u(ai)(1)v(aj)(b)

where for the first equality we used the commutativity of B and for the second one the
cocommutativity of A.

Let B be an A-module algebra via v : A→ EndR(B) and I = ker(ε) be the augmen-
tation ideal of the bialgebra A. We denote

BI := {b ∈ B | I · b = 0} = {b ∈ B | a · b = ε(a)b ∀a ∈ A}

which is an R-subalgebra of B. We then have that v factorizes via A→ EndBI (B), indeed

v(a)(b) = a · b = ε(a)b = bv(a)(1)

for every a ∈ A and b ∈ BI .

Proposition A.1.4. Let A be a finitely generated cocommutative bialgebra and {x1, . . . , xn}
a set of generators for A and let B be a commutative A-module algebra. There is an
injection

σ : MorAlgB
(B#A,EndBI (B))→ MorAlgB

(B#A,B#A)

u 7→

θu : xk 7→∑
I,J

αkIJu(x
I)(1)xJ



for k = 1, . . . , n where ∆(xk) =
∑

I,J α
k
IJx

I ⊗xJ and xI , xJ are monomials in x1, . . . , xn.
Moreover, σ has a left inverse given by the post-composition with the evaluation morphism
ev : B#A → EndBI (B). Finally, every endomorphism of B#A is of the form θ(xk) =∑

I,J α
k
IJu(x

I)(1)xJ mod ker(ev).
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Proof. Let u : B#A→ EndBI (B) be a morphism of B-algebras, then its image via σ is

θu : xk 7→
∑
I,J

αkIJu(x
I)(1)xJ ,

which is a morphism of algebras by definition (we define it on the generators of A and
extend it to a morphism of B-algebras). Moreover, by Corollary A.1.3,

ev ◦ θu(xk) = ev

∑
I,J

αkIJu(x
I)(1)xJ

 = u(xk)

for every k = 1, . . . , n that is composing by ev is a left inverse of σ and σ is an injection.
Now, let θ ∈ EndB(B#A) and write θ(xk) =

∑
S γSx

S . Since ev : B#A→ EndBI (B) is
a morphism of B-algebras, the composite uθ = ev ◦ θ is a morphism of B-algebras, that
is, by Corollary A.1.3,

uθ(xk) = ev

∑
I,J

αkIJu(x
I)(1)xJ


but also

uθ(xk) = ev ◦ θ(xk) = ev

(∑
S

γSx
S

)
and the claim follows.

Corollary A.1.5. Consider the Hopf algebra A = k
[
T, 1

T , S
]

with ∆(T ) = T ⊗ T and
∆(S) = S ⊗ 1 + T ⊗ S and let K be a field extension of k along with an automorphism θ
and a θ-derivation ∂ : K → K (which define on K an A-module algebra structure). Then
K#k

[
T, 1

T , S
]

contains the algebra of Ore polynomials K[S; θ, ∂] (see Example 1.1.29)
and

u : K#k

[
T,

1

T
, S

]
→ Endk(K)

is a morphism of K-algebras if and only if u(T ) = cθ and u(S) = ∂ + c′θ for some
constants c, c′ ∈ K.
Proof. By Corollary A.1.2 we know that for every morphism of K-algebras

u : K#k

[
T,

1

T
, S

]
→ Endk(K)

it holds
u(T )(x) = θ(x)u(T )(1)

and
u(S)(x) = ∂(x) + θ(x)u(S)(1)

for every x ∈ K, hence the statement.

These kind of morphisms are studied and used in the context or Reed-Solomon codes,
see for example [CD23].
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A.2 Smash products and Azumaya algebras

We start this section by recalling some known facts about central simple algebras and
Azumaya algebras. As a reference for central simple algebras and Azumaya algebra we
refer to the books [GS06] and [Mil80]. Let k be a field.

Definition A.2.1 (Central simple algebra). A finite-dimensional k-algebra A is called
simple if it does not have non-trivial two-sided ideals. A central simple k-algebra is a
simple k-algebra A whose center is exactly k.

Fact A.2.2.

• The center of any simple algebra is a field. Therefore any simple algebra is a central
simple algebra over its center.

• Let A be a central simple k-algebra. Then there exists a finite separable extension
L/k such that A⊗k L ≃Mn(L). Therefore one can consider the following composite

Nrd : A ↪→ A⊗k L ≃Mn(L)
det→ L.

The image of Nrd lies in k, moreover Nrd depends neither on the choice of L nor on
the isomorphism A⊗k L ≃Mn(L). We then have a well-defined map

Nrd : A→ k

called reduced norm.

Let R be a commutative ring.

Definition A.2.3 (Azumaya algebra). A finite locally free R-algebra A is said to be
an Azumaya algebra if A⊗R Frac(R/p) is a central simple Frac(R/p)-algebra for every
p ∈ Spec(R).

There is a well-defined notion of reduced norm also for Azumaya algebras (see [Sal80]).
Azumaya algebras are also sometimes referred to as central separable algebras (see for
example [AG60] and [DI71]). For what concerns the reduced norm, it was defined in
[EW67] and has some foundation in the work of Goldman [Gol61] on determinants for
projective modules. Let Λ be an Azumaya algebra over a commutative ring R. Then
there exist S a commutative R-algebra and P a finitely generated, faithful, projective
S-module such that Λ⊗R S ≃ HomS(P, P ). Such an S is called splitting ring for Λ and
it is called proper if R ⊆ S. Via the isomorphism Λ⊗R S ≃ EndS(P ) we can compute a
characteristic polynomial (trace and discriminant) for any element of Λ and one sees that
they do not depend on the choice of S, P or the isomorphism (see [EW67, Proposition
3.1]). These are what we will call reduced characteristic polynomial, trace and norm.

Let us recall the definition of a torsor under the action of a group scheme and of its
algebraic counterpart, Galois objects. Let S be a scheme, G be an S-group scheme and
X → Y be a (right) G-torsor, that is

X ×S G→ X ×Y X
(x, g) 7→ (x, x · g)
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is an isomorphism. More explicitly, if we denote by ρ : X ×S G→ X the (right) action of
G on X, the isomorphism is given by the composite

X ×S G
diag×id−→ X ×Y X ×S G

id×ρ−→ X ×Y X.

If we are in the affine case, with S = Spec(R) for R a commutative ring, G = Spec(A)
for A an R-Hopf algebra, X = Spec(B) for B a C-algebra, Y = Spec(C) and we still
denote by ρ : B → B ⊗R A the corresponding co-action, then the above isomorphism is
equivalent to saying that the following composite is an isomorphism of R-algebras (and
even of B-algebras)

B ⊗C B
id⊗ρ−→ B ⊗C B ⊗R A

mB⊗id−→ B ⊗R A

and we say that B is an A-Galois object. When A and B are finite locally free over R,
then we have the following isomorphisms given by adjunction:

HomAlgR
(B,B ⊗R A) ≃ HomAlgR

(B,HomR(A
∨, B)) ≃

{v : A∨ → EndR(B) with property A.1}{
v(φ)(1) = ε(φ)
v(φ)(fg) = mB(v ⊗ v ◦∆(a))(f ⊗ g) (A.1)

and

{ρ : B → B⊗RA structure of A-comodule } ≃ {ψ : A∨⊗RB → B structure of A∨-modules}

≃ HomAlgR
(A∨,EndR(B)).

Corollary A.2.4. We have the following natural bijection:

{(mB⊗id)◦(id⊗ρ) : B⊗RB → B⊗RA | ρ : B → B⊗RA structure of A-comodule algebra}

≃ {ev = id⊗ v : B#A∨ → EndR(B) | morphisms of algebras}.

Remark A.2.5. From the above result, we deduce that when we are looking at an
A-module algebra B, the right requirement that plays the counterpart of being a torsor
or a Galois object is asking that

ev : B#A→ EndBI (B)

is an isomorphism. We have in fact the following result:

Theorem A.2.6. Let A be a finite locally free commutative R-Hopf algebra and B be
a commutative A-comodule algebra (that is there is an action of Spec(A) on Spec(B)).
Then the following are equivalent:

1. B is a Galois A-object (that is Spec(B) is a Spec(A)-torsor);
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2. B is a finitely generated faithful projective R-module and the evaluation map

ev : B#A∨ → EndR(B)

is an isomorphism of R-algebras.

If the above conditions hold true, then B is both a projective left D = B#A∨-module and
a projective left A∨-module and DA := {w ∈ D | 1 ⊗ a × w = ε(a)w ∀a ∈ A} = JD

where J = A∨A∨
:= {x ∈ A∨ | fx = ε(f)x ∀f ∈ A∨} = Ann(ker εA∨).

Proof. See [CS69, Theorem 9.3 and 9.6].

Corollary A.2.7. Let A be a finite locally free commutative R-Hopf algebra and B be a
commutative A-comodule algebra. If B is a Galois A-object, then B#A∨ is an Azumaya
algebra.

Lemma A.2.8. Let S be an R-algebra. Then

ϕ : (B#C)⊗R S → (B ⊗R S)#(C ⊗R S)
b⊗ c⊗ 1 7→ b⊗ 1⊗ c⊗ 1

is an isomorphism of S-algebras.

Proof. First of all let us show that ϕ is a morphism of algebras: for any b, β ∈ B and
c, γ ∈ C

ϕ((b⊗ c⊗ 1)× (β ⊗ γ ⊗ 1)) = ϕ(
∑

bai · β ⊗ ciγ ⊗ 1) =∑
bai · β ⊗ 1⊗ ciγ ⊗ 1 = (b⊗ 1⊗ c⊗ 1)× (β ⊗ 1⊗ γ ⊗ 1)

where we wrote ρC(c) =
∑
ai⊗ ci. Moreover the two objects are isomorphic as S-modules

via ϕ since
B ⊗R S ⊗S A⊗R S ≃ B ⊗R A⊗R S,

so they are also isomorphic as algebras.

Theorem A.2.9 ([GH69]). Let R be a commutative ring, A be a commutative finite
locally free R-Hopf algebra, B be a commutative finite locally free (right) A∨-Galois object
over R and C be a commutative finite locally free (left) A-Galois object over R. Then
the smash product B#C is an Azumaya algebra over R, in particular (B#C)⊗R C and
EndC(B ⊗R C) are isomorphic as C-algebras.

Proof. This is a known result for C = A the trivial torsor (by Corollary A.2.7): in this case
B#A ≃ EndR(B) as R-algebras. Now, being C a (left) A-Galois object, C⊗RC ≃ A⊗RC
thus

(B#C)⊗R C ≃ (B ⊗R C)#(C ⊗R C) ≃ (B ⊗R C)#(A⊗R C) ≃ EndC(B ⊗R C)

where the first isomorphism holds true by Lemma A.2.8 and for the last isomorphism we
used the trivial-torsor case.
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Our objective is to show that B#A is an Azumaya algebra over its center under some
less restrictive hypothesis. The setting will be the following: let A be a commutative and
cocommutative R-Hopf algebra, B a commutative A-module algebra via v : A→ EndR(B)
such that A/ ker(v) is a finite locally free Hopf algebra and denote H = Spec (A/ ker(v)).
Suppose moreover that B is a (right) (A/ ker(v))∨ ⊗R BI -Galois object over BI , where
BI = {b ∈ B | I · b = 0} and I denotes the augmentation ideal of A. Notice moreover
that A is a (left) AH ⊗R A/ ker(v)-Galois object over AH via

∆: A
∆→ A⊗R A→ A/ ker(v)⊗R A,

where AH = {a ∈ A | a 7→ 1 ⊗ a, A
∆→ A ⊗R A → A/ ker(v) ⊗R A} represents the

quotient Spec(A)/H.
Now, we want to do appropriate base changes in order to have a common base ring:

B⊗RAH is a (right) (A/ ker(v))∨⊗RBI⊗RAH -Galois object over BI⊗RAH and BI⊗RA
is a (left) BI ⊗R AH ⊗R A/ ker(v)-Galois object over BI ⊗R AH .

Therefore, we can consider the smash product (B ⊗R AH)#(BI ⊗R A).

Lemma A.2.10. In the above setting, (B ⊗R AH)#(BI ⊗R A) and B#A are isomorphic
as (BI ⊗R AH)-algebras.

Proof. We claim that the isomorphism is given by

ψ : B#A→ (B ⊗R AH)#(BI ⊗R A)
b⊗ a 7→ (b⊗ 1)⊗ (1⊗ a),

bβ ⊗ aα←[ (b⊗ a)⊗ (β ⊗ α).

First of all notice that for a ∈ A and β ∈ B it holds ∆(a) ⋆ β = ∆(a) ⋆ β since ∆ is
defined by going modulo ker(v) on the left and x · β = 0 for all x ∈ ker(v). This is all
we need to see that the morphism we defined is a morphism of R-algebras. Indeed, if we
write ∆(a) =

∑
aijei ⊗ ej , then we have

(b⊗ a)× (β ⊗ α) =
∑

aijbei · β ⊗ ejα

and thus
ψ((b⊗ a)× (β ⊗ α)) =

∑
aijbei · β ⊗ 1⊗ 1⊗ ejα.

Moreover
ψ(b⊗ a)× ψ(β ⊗ α) = (b⊗ 1⊗ 1⊗ a)× (β ⊗ 1⊗ 1⊗ α) =

(mB ⊗ ev ⊗mA) ◦ (id⊗ ρB ⊗∆⊗ id)(b⊗ 1⊗ β ⊗ 1⊗ 1⊗ a⊗ 1⊗ α) =

(mB ⊗ ev ⊗mA)(b⊗ 1⊗ (
∑

ei · β ⊗ 1⊗ e∨i ⊗ 1)⊗ (
∑

aij1⊗ ei ⊗ 1⊗ ej)⊗ 1⊗ α) =∑
aijbei · β ⊗ 1⊗ 1⊗ ejα
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as wished. To show that the two maps are mutually inverse, notice that one way it is
immediate. For the other way around, since (B⊗RAH)#(BI⊗RA) is a BI⊗RAH -algebra,
then we have

(b⊗ a)⊗ (β ⊗ α) = (β ⊗ a)(b⊗ 1⊗ 1⊗ α) = bβ ⊗ 1⊗ 1⊗ aα

that shows that the second map is a right inverse of ψ. This also proves that ψ is
BI ⊗R AH -linear and thus the statement is proved.

Proposition A.2.11. The smash product B#A is an Azumaya algebra over BI ⊗R AH ,
which is its center. In particular

(B#A)⊗BI⊗RAH (BI ⊗R A) ≃ EndBI⊗RA(B ⊗R A)

and
(B ⊗R AH)⊗BI⊗RAH (B#A) ≃ EndB⊗RAH (B ⊗R A).

Proof. This is immediate by applying Theorem A.2.9 to (B ⊗R AH)#(BI ⊗R A) and
using the isomorphism of the Lemma A.2.10.

This result provides us with a reduced norm.

Definition A.2.12 (Reduced norm). Consider the following composite:

B#A ↪→ (B#A)⊗BI⊗RAH (BI ⊗R A) ≃ EndBI⊗RA(B ⊗R A)
det→ BI ⊗R A.

By results on Azumaya algebras (see for example [EW67]), this composite does not
depend neither on the trivialization nor on the isomorphism and moreover it factorizes
via BI ⊗R AH . So considering the composite

B#A ↪→ (B ⊗R AH)⊗BI⊗RAH (B#A) ≃ EndB⊗RAH (B ⊗R A)
det→ B ⊗R AH

gives the same image of a chosen element b ⊗ a in the smash product B#A. We call
reduced norm the map

Nrd : B#A→ BI ⊗R AH

obtained.

Lemma A.2.13. For any element b⊗ a in the smash product B#A, its image through
the isomorphism

(B#A)⊗BI⊗RAH (BI ⊗R A) ≃ EndBI⊗RA(B ⊗R A)

is the endomorphism ℓb⊗a of multiplication on the left by b⊗ a, while via

(B ⊗R AH)⊗BI⊗RAH (B#A) ≃ EndB⊗RAH (B ⊗R A)

is the endomorphism rb⊗a of multiplication on the right by b⊗ a.
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Proof. Let us write explicitly the image of an element b⊗ a in the smash product B#A
through the isomorphisms of Proposition A.2.11. In the first case we have:

(B#A)⊗BI⊗RAH (BI ⊗R A)
A.2.10≃

(
(B ⊗R AH)#(BI ⊗R A)

)
⊗BI⊗RAH (BI ⊗R A)

b⊗ a⊗ 1⊗ 1 7→ (b⊗ 1)⊗ (1⊗ a)⊗ (1⊗ 1)

A.2.8≃
(
(B ⊗R AH)⊗BI⊗RAH (BI ⊗R A)

)
#
(
(BI ⊗R A)⊗BI⊗RAH (BI ⊗R A)

)
7→ (b⊗ 1)⊗ (1⊗ 1)⊗ (1⊗ a)⊗ (1⊗ 1)

A.2.10+torsor≃ (B ⊗R A)#
((
BI ⊗R AH ⊗R A/ ker(v)

)
⊗BI⊗RAH (BI ⊗R A)

)
7→

∑
i,j(b⊗ 1)⊗ (1⊗ 1⊗ ai)⊗ (1⊗ aj)

ev≃ EndBI⊗RA(B ⊗R A)

7→ (β ⊗ α 7→
∑

i,j b(ai · β)⊗ ajα)

where we wrote ∆(a) =
∑

i,j ai ⊗ aj . Notice that∑
i,j

b(ai · β)⊗ ajα = (b⊗ a) · (β ⊗ α) = ℓb⊗a(β ⊗ α),

so the first statement holds true.
On the other hand, using the second trivialization we obtain:

(B ⊗R AH)⊗BI⊗RAH (B#A)
A.2.10≃ (B ⊗R AH)⊗BI⊗RAH

(
(B ⊗R AH)#(BI ⊗R A)

)
1⊗ 1⊗ b⊗ a 7→ (1⊗ 1)⊗ (b⊗ 1)⊗ (1⊗ a)

A.2.8≃
(
(B ⊗R AH)⊗BI⊗RAH (B ⊗R AH)

)
#
(
(B ⊗R AH)⊗BI⊗RAH (BI ⊗R A)

)
7→ (1⊗ 1)⊗ (b⊗ 1)⊗ (1⊗ 1)⊗ (1⊗ a)

A.2.10+torsor≃
(
(B ⊗R AH)⊗BI⊗RAH

(
(A/ ker(v))∨ ⊗R BI ⊗R AH

))
#(B ⊗R A)

7→
∑

i(ei · b⊗ 1)⊗ (e∗i ⊗ 1⊗ 1)⊗ (1⊗ a)
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ev≃ EndB⊗RAH (B ⊗R A)

7→ (β ⊗ α 7→
∑

i β(ei · b)⊗ (e∗i · α)a).

Recall that the relation between the A/ ker(v)-comodule structure

∆: A→ A/ ker(v)⊗R A

and the (A/ ker(v))∨-module structure

A⊗R (A/ ker(v))∨ → A

is given by ∆(α) =
∑
ei ⊗ e∗iα for every α ∈ A, where {ei} is a fixed base of the finite

algebra A/ ker(v). We then have

rb⊗a(β ⊗ α) = (β ⊗ α) · (b⊗ a) = (β ⊗ 1)(∆(α) ∗ b)(1⊗ a)

= (β ⊗ 1)(∆(α) ∗ b)(1⊗ a) =
∑
i

β(ei · b)⊗ (e∗i · α)a

as stated.

Corollary A.2.14. The reduced norm Nrd : B#A→ BI⊗RAH coincides with the classical
norm N(B#A)/C : x 7→ det(mx) where mx is the matrix associated to the endomorphism
of multiplication by x and C can be either BI ⊗R A or B ⊗R AH .

Proof. This is a direct consequence of the previous Lemma.

A.3 Universal object in the category of module algebras

In this section we show that when dealing with A-module algebras we can always define
a universal object T (A) and that in T (A)#A we have some universal expressions that we
can then "evaluate" in B#A for any A-module algebra B (see Corollary A.3.4). This
can be helpful in order to doing computations in any smash-product algebra and, as a
consequence, in the algebra Endk(B).

Proposition A.3.1. Let R be a commutative ring, A an R-bialgebra and V an A-module
via ν : A → EndR(V ). Then the tensor algebra T (V ) of V as R-module has a natural
structure of A-module algebra.

Proof. Let

η : V → HomR(A, V )

v 7→ (a 7→ a · v).

be the R-linear morphism corresponding to the A-module structure on V and consider
the natural inclusion

HomR(A, V ) ↪→ HomR(A, T (V )).
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Then, since HomR(A, T (V )) is an associative algebra, by the universal property of the
tensor algebra the composite V η→ HomR(A, V ) ↪→ HomR(A, T (V )) factors naturally
through a morphism of algebras

T (V )→ HomR(A, T (V ))

which corresponds also to
ν ′ : A→ EndR(T (V ))

extending ν and respecting the property of compatibility with products (1.1). We wish to
see that ν ′ is also a morphism of algebras. It is enough to show it for elementary tensors
v1 ⊗ · · · ⊗ vk, moreover, once shown for v1 ⊗ v2, the general case follows by induction.
Take a1, a2 in A and call α = a1a2. Let ∆(ak) =

∑
i,j aki ⊗ akj for k = 1, 2. Then

∆(α) = ∆(a1)∆(a2) =
∑
i,j,s,t

a1ia2s ⊗ a1ja2t

and thus, by compatibility with products,

ν ′(α)(v1 ⊗ v2) = ν ′(α)(v1 ⊗ 1 · 1⊗ v2) =
∑
i,j,s,t

ν ′(a1ia2s)(v1)⊗ ν ′(a1ja2t)(v2) =

∑
i,j,s,t

ν ′(a1i)(ν
′(a2s)(v1))⊗ ν ′(a1j)(ν ′(a2t)(v2)) =

ν ′(a1)

(∑
s,t

ν ′(a2s)(v1)⊗ ν ′(a2t(v2))

)
= ν ′(a1) ◦ ν ′(a2)(v1 ⊗ v2).

Therefore T (V ) has a natural structure of A-module algebra

Remark A.3.2. If A is cocommutative then it holds that the symmetric algebra Sym(V )
has a natural structure of A-module algebra. Indeed the image of

V
η−→ HomR(A, V ) ↪→ HomR(A,Sym(V ))

is commutative since for any v, w ∈ V

η(w) ∗ η(v) = mV ◦ η(v)⊗ η(w) ◦ τ ◦∆A

(using the fact that multiplication in V is commutative) and by cocommutativity of A
the diagram

A A⊗R A A⊗R A V ⊗R V V
∆A

∆A

τ η(v)⊗η(w) mV
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commutes, that is η(w) ∗ η(v) = η(v) ∗ η(w). Hence, by the universal property of the
symmetric algebra, we obtain naturally a morphism of algebras

Sym(V )→ HomR(A,Sym(V ))

corresponding to
A→ EndR(Sym(V ))

which, as above, is seen to be a morphism of algebras too.

The following proposition shows that T (A) is a universal object in the category of
A-module algebras.

Proposition A.3.3. The functor T : ModA → ModAlgA from the category of A-modules
to that of A-module algebras is left adjoint to the forgetful functor.

Proof. This is a direct consequence of the fact that the tensor algebra functor T : ModA →
AlgA is left adjoint to the forgetful functor and that morphisms of A-module algebras are
just morphisms of A-algebras (see Remark 1.1.17).

Notice that in particular we have the natural isomorphism

HomModAlgA(T (A), B)→ B

φ 7→ φ(1)

(φb : a 7→ a · b)←[ b.

Applying Proposition 1.1.25 we obtain directly the following:

Corollary A.3.4. For every A-module algebra B and b ∈ B,

φb ⊗ id : T (A)#A→ B#A

is a morphism of algebras.

The above statement is useful in order to have some "universal expressions" when
doing computations in B#A for any choice of an A-module algebra B.

Proposition A.3.5. Let A be a cocommutative R-bialgebra. Then we have a morphism
of algebras

Sym(A)#A→ Sym(A⊗R A)#A⊗R A

induced by the comultiplication ∆ of A.

Proof. By the universal property of Sym(A), the morphism ∆: A → A ⊗R A extends
naturally to a morphism of algebras

∆̃ : Sym(A)→ Sym(A⊗R A).

Endowing Sym(A ⊗R A) with the A ⊗R A-module algebra structure induced by the
multiplication, we have that ∆̃ is a morphism of module algebras with respect to ∆: A→
A⊗R A, indeed the diagram
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A⊗R Sym(A) Sym(A)

A⊗R A⊗R Sym(A⊗R A) Sym(A⊗R A)
∆⊗∆̃

m̃A

∆̃
m̃A⊗RA

commutes (we just use the fact that ∆ is a morphism of algebras), where m̃A and
m̃A⊗RA are respectively the A-module algebra and the A⊗R A-module algebra structures
induced by the respective multiplications on Sym(A) and on Sym(A⊗R A). Moreover,
∆: A → A ⊗R A is a morphisms of comodule algebras (with respect to ∆) where the
comodule structures are given by ∆ on A and by ∆A⊗RA on A ⊗R A (we recall that
∆A⊗RA = τ23 ◦∆⊗∆ where τ23 switches the elements in second and third position in an
elementary tensor, see Remark 1.1.5), indeed the diagram

A A⊗R A

A⊗R A A⊗R A⊗R A⊗R A

∆

∆

∆A⊗RA

∆⊗∆

commutes (we use the fact that A is cocommutative). We then have, by Proposition
1.1.25, that

∆̃⊗∆: Sym(A)#A→ Sym(A⊗R A)#A⊗R A

is a morphism of algebras.

The case of Ore polynomials

Let R be a commutative ring of characteristic p, A = R[X] with ∆(X) = X ⊗ 1 + 1⊗X.
Then Sym(A) = R

[
X̃i
]
i≥0

and it is an A-module algebra where the structure is induced

by the multiplication of A on itself, that is, it corresponds to the derivation

Sym(A)→ Sym(A)

X̃i 7→ X̃i+1.

Lemma A.3.6. Let us give to every X̃i weight i for all i ≥ 0. Then Sym(A)#A is a
graded ring where the grading is given by homogeneous polynomials of degree d in X, X̃i

for i ≥ 0.

Proof. We just need to verify that the gradation is respected by products but this is okay
since

XX̃i = X̃i+1 + X̃iX

for every i ≥ 0.

Corollary A.3.7. Products of homogeneous polynomials in Sym(A)#A are homogeneous
(of degree the sum of the degrees of the factors).
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Definition A.3.8 (Additive polynomial). We say that a polynomial Q(X, X̃i)i≥0 in
Sym(A)#A is additive if

Q(∆(X), ∆̃(X̃i))i≥0 = Q(X ⊗ 1, X̃i ⊗ 1)i≥0 +Q(1⊗X, 1̃⊗Xi)i≥0.

Lemma A.3.9. A polynomial Q(X, X̃i)i≥0 in Sym(A)#A is additive if and only if it is
of the form ∑

k≥0

akX
pk +

∑
s,t≥0

ast

(
X̃ps

)pt
(A.2)

where the coefficients are in R.

Proof. The if part is clear by the definition of the comultiplication. For the converse, it
suffices to show the claim for monomials and again using the definition of the comulti-
plication it is clear that the only additive monomials are those of the form appearing in
(A.2).

Proposition A.3.10. In Sym(A)#A we have (X + X̃)p
k
= Xpk +

∑k
j=0

(
X̃pj

)pk−j

for
every integer k ≥ 0.

Proof. First of all remark that the polynomial Q(X, X̃i)i≥0 = (X + X̃)p
k is homogeneous

of degree pk in the variables X, X̃, . . . , X̃pk . Let us show that Q is additive. By Proposition
A.3.5, ∆̃⊗∆ is a morphism of rings, therefore

Q(∆(X), ∆̃(X̃), . . . , ∆̃(X̃pk)) = (∆̃⊗∆)((X + X̃)p
k
) =

((∆̃⊗∆)(X + X̃))p
k
= (X ⊗ 1 + 1⊗X + X̃ ⊗ 1 + 1̃⊗X)p

k
.

Now, X ⊗ 1 + X̃ ⊗ 1 and 1⊗X + 1̃⊗X commute, indeed

(X⊗1+X̃ ⊗ 1)(1⊗X+1̃⊗X) = X⊗X+X⊗1·1̃⊗X+(X̃ ⊗ 1)(1⊗X)+(X̃ ⊗ 1)(1̃⊗X) =

X ⊗X + (X ⊗ 1⊗ 1⊗ 1+ 1⊗ 1⊗X ⊗ 1) ⋆ 1̃⊗X + (X̃ ⊗ 1)(1⊗X) + (X̃ ⊗ 1)(1̃⊗X) =

X ⊗X + X̃ ⊗X + (1̃⊗X)(X ⊗ 1) + (X̃ ⊗ 1)(1⊗X) + (X̃ ⊗ 1)(1̃⊗X)

while

(1⊗X+1̃⊗X)(X⊗1+X̃ ⊗ 1) = X⊗X+1⊗X·X̃ ⊗ 1+(1̃⊗X)(X⊗1)+(1̃⊗X)(X̃ ⊗ 1) =

X ⊗X + (1⊗X ⊗ 1⊗ 1+ 1⊗ 1⊗ 1⊗X) ⋆ X̃ ⊗ 1+ (1̃⊗X)(X ⊗ 1) + (1̃⊗X)(X̃ ⊗ 1) =

X ⊗X + X̃ ⊗X + (X̃ ⊗ 1)(1⊗X) + (1̃⊗X)(X ⊗ 1) + (1̃⊗X)(X̃ ⊗ 1).

Therefore

(X ⊗ 1 + 1⊗X + X̃ ⊗ 1 + 1̃⊗X)p
k
= (X ⊗ 1 + X̃ ⊗ 1)p

k
+ (1⊗X + 1̃⊗X)p

k
=
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Q(X ⊗ 1, X̃ ⊗ 1, . . . , X̃pk ⊗ 1) +Q(1⊗X, 1̃⊗X, . . . , ˜1⊗Xpk)

that is Q is an additive polynomial. By Lemma A.3.9 and by degree reasons we then
have that Q must be of the form

aXpk +
k∑
j=0

aj

(
X̃pj

)pk−j

where the coefficients are in R. One can easily see that all the coefficients are 1.

Corollary A.3.11. Let Z(T ) = T p
r
+ zr−1T

pr−1
+ . . . z1T

p + z0T be any linearised
polynomial with coefficients in R. Then in Sym(A)#A it holds

Z(X + X̃) = Z(X) +
r∑

k=0

k∑
j=0

zk

(
X̃pj

)pk−j

(where by convention zr = 1).

Proof. This is a straightforward consequence of Proposition A.3.10.

Corollary A.3.12. Let Z(T ) = T p
r
+ zr−1T

pr−1
+ . . . z1T

p + z0T be any linearised
polynomial with coefficients in R. Then in Sym(A)#A it holds

Z
(
X + 1̃

)
= Z(X) +

r∑
k=0

k∑
j=0

zk

(
X̃pj−1

)pk−j

(where by convention zr = 1).

Proof. Consider the morphism of R-algebras

ψ : R
[
X̃i
]
i≥0

#R[X]→ R
[
X̃i
]
i≥0

#R[X]

X̃i 7→ X̃i+1,

X 7→ X.

Notice that ψ is injective. Moreover,

ψ
(
Z
(
X + 1̃

))
= Z

(
X + X̃

)
= Z(X) +

r∑
k=0

k∑
j=0

zk

(
X̃pj

)pk−j

= ψ

Z(X) +
r∑

k=0

k∑
j=0

zk

(
X̃pj−1

)pk−j


and thus, by injectivity,

Z
(
X + 1̃

)
= Z(X) +

r∑
k=0

k∑
j=0

zk

(
X̃pj−1

)pk−j

.
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Corollary A.3.13. Let Z(T ) = T p
r
+ zr−1T

pr−1
+ . . . z1T

p + z0T be any linearised
polynomial with coefficients in R and B be an R-algebra which is an R[X]-module algebra
via v : R[X]→ EndR(B), that is v(X) = ∂ : B → B is a derivation. Then in the ring of
Ore polynomials B[X; ∂]and for any f ∈ B it holds

Z (X + f) = Z(X) +
r∑

k=0

k∑
j=0

zk

(
∂p

j−1(f)
)pk−j

(where by convention zr = 1).

Proof. By Corollary A.3.4

φf ⊗ id : R
[
X̃i
]
i≥0

#R[X]→ B#R[X] = B[X; ∂]

is a morphism of algebras. Therefore

Z (X + f) = Z
(
φf ⊗ id

(
X + 1̃

))
= φf ⊗ id

(
Z
(
X + 1̃

))
=

φf ⊗ id

Z(X) +

r∑
k=0

k∑
j=0

zk

(
X̃pj−1

)pk−j
 = Z(X) +

r∑
k=0

k∑
j=0

zk

(
∂p

j−1(f)
)pk−j

Notice that for example applying the result to the linearised polynomial Z(T ) = T p

we obtain that for any f ∈ B it holds

(X + f)p = Xp + ∂p−1(f) + fp

in the ring of Ore polynomials B[X; ∂], which is a result that we will re-obtain also in
the last section of this appendix.

Corollary A.3.14. Let Z(T ) = T p
r
+ zr−1T

pr−1
+ . . . z1T

p + z0T be any linearised
polynomial with coefficients in R. Then in Sym(A)#A for all i ≥ 0 it holds

Z
(
X + X̃i

)
= Z(X) +

r∑
k=0

k∑
j=0

zk

(
X̃pj−1+i

)pk−j

(where by convention zr = 1).

A.4 Reduced norm of a monic polynomial of degree 1 in the
ring of Ore polynomials K[X; ∂] with ∂p = 0

The setting will be the following. Let k be a field of characteristic p, K be a k-algebra
which is also a field and

v : k[X]→ Endk(K)

X 7→ ∂
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inducing a k[X]-module algebra structure on K, where ∆(X) = X ⊗ 1 + 1⊗X, so ∂ is a
k-linear derivation on K. Denote F = {x ∈ K | ∂(x) = 0} and suppose that φ(∂) = 0 for
some linearised polynomial φ ∈ k[X]lin, so we actually have that v : k[X]/(φ)→ EndF (K)
and k[X]/(φ) is a Hopf algebra. Therefore, the module algebra structure corresponds to
a comodule algebra structure

ρ : K → K ⊗k (k[X]/(φ))∨

and we require that this makes K into a (k[X]/(φ))∨-Galois object over F , that is Spec(K)
is a torsor under the action of some finite k-group scheme. Recall that k[X;Frob] ≃ k[X]lin
(see Example 1.1.28). We denote by Ann(∂) the non-zero polynomial in k[X;Frob]
corresponding to φ. We then have that K[X; ∂] is an Azumaya algebra over its center
F [φ(X)] and thus we have a well-defined reduced norm on it.

The goal of this section is to prove the following result. We will give two proofs of it,
the first one more direct using tools of combinatorics, the second one more constructive.

Proposition A.4.1. Consider the ring of Ore polynomials K[X; ∂] where ∂ : K → K is
a derivation of order p. Then for any f ∈ K we have

Nrd(X − f) = Xp − (fp + ∂p−1(f)).

Combinatorial proof

We begin with two lemmas of combinatorics for which we wish to thank Francesco Viganò
for the key ideas.

Lemma A.4.2. Let N be a positive integer and (λ1, . . . , λk) be a partition of N , that is
a list of positive integers such that

λ1 + · · ·+ λk = N,

then ∑
σ∈Sk

(
λσ(1) + λσ(2) − 1

λσ(1)

)(
λσ(1) + λσ(2) + λσ(3) − 1

λσ(1) + λσ(2)

)
. . .

(
N − 1

λσ(1) + · · ·+ λσ(k−1)

)

=

(
N

λ1, . . . , λk

)
where the multinomial

(
N

λ1,...,λk

)
counts the number of ways of arranging N elements

{1, . . . , N} in exactly k subsets Γ1, . . . ,Γk of cardinality respectively λ1, . . . , λk.

Proof. Suppose that N is in Γk, then we can choose in(
N − 1

λk − 1

)
=

(
N − 1

λ1 + · · ·+ λk−1

)
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ways the remaining λk − 1 elements of Γk from the remaining N − 1 elements. Now set

M := max{i ∈ {1, . . . , N} | i ̸∈ Γk}

and suppose that M ∈ Γk−1, then we can choose in(
N − λk − 1

λk−1 − 1

)
=

(
λ1 + · · ·+ λk−1 − 1

λ1 + · · ·+ λk−2

)
ways the remaining λk−1 − 1 elements of Γk−1 from the remaining N − λk − 1 elements.
Iterating the reasoning we obtain(

N − (λ2 + · · ·+ λk)− 1

λ1 − 1

)
. . .

(
N − λk − 1

λk−1 − 1

)(
N − 1

λk − 1

)
=

(
λ1 − 1

0

)(
λ1 + λ2 − 1

λ1

)(
λ1 + λ2 + λ3 − 1

λ1 + λ2

)
. . .

(
N − 1

λ1 + · · ·+ λk−1

)
arrangements. In order to obtain all of them we have to consider all the possible
permutations of the indices 1, . . . , k that is(

N

λ1, . . . , λk

)
=

∑
σ∈Sk

(
λσ(1) + λσ(2) − 1

λσ(1)

)(
λσ(1) + λσ(2) + λσ(3) − 1

λσ(1) + λσ(2)

)
. . .

(
N − 1

λσ(1) + · · ·+ λσ(k−1)

)
as stated.

Lemma A.4.3. Consider the matrix with coefficients in a ring of positive characteristic
p defined as follows:

Aij =


(
j
i

)
aj−i i ≤ j

1 i = j + 1
0 i > j + 1

for i, j = 0, . . . , p− 1. Then, det(A) = ap0 + ap−1.

Proof. By definition,

det(A) =
∑
σ∈Sp

sgn(σ)

p−1∏
j=0

Aσ(j)j .

Now, since Aij = 0 for i > j + 1, it suffices to reduce the above summation to the subset

T = {σ ∈ Sp | σ(j) ≤ j + 1 ∀j = 0, . . . , p− 1} ⊆ Sp.

Notice that all the permutations in T , when written as products of disjoint cycles, have
as factors cycles made of consecutive numbers (for example for p = 7 we can have the
permutation (0)(123)(4)(56)). Moreover T has cardinality 2p−1: for example for p = 3 it
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holds T = {(012), (01), (12), e} while (021) and (02) do not belong to T since 0 cannot
have 2 as image. Now every permutation determines a monomial in the ai’s in det(A) and
we wish to study the coefficients of such monomials. For example the identity determines
the monomial ap0 and the p-cycle (012 · · · p) determines the monomial ap−1 (and moreover
these monomials are not determined by any other permutation of the fixed subset). So
actually we would like to show that the coefficients of all the other monomials appearing
in the polynomial det(A) are zero.

Thanks to the nice form assumed by the permutations in T we can always write their
cyclic decomposition with the numbers in order, with 0 being the first appearing and
p − 1 the last. Now, let us fix a permutation λ which is neither the p-cycle in T nor
the identity, let k be the number of disjoint cycles composing λ and (λ1, . . . , λk) be the
k-tuple of lengths of the disjoint cycles of λ (for example for λ = (0)(123)(4)(56) we have
k = 4 and (λ1, . . . , λ4) = (1, 3, 1, 2)). We can see that the monomial determined by λ is

k∏
s=1

aλs−1 =

p∏
i=1

ami
i−1

where mi is the number of cycles of length i appearing in λ. We therefore notice that
permutations having the same number of cycles of a certain length determine the same
monomial. Moreover these permutations have all the same sign. One also sees that the
coefficient of the monomial determined by λ is(

λ1 − 1

0

)(
λ1 + λ2 − 1

λ1

)(
λ1 + λ2 + λ3 − 1

λ1 + λ2

)
. . .

(
p− 1

λ1 + · · ·+ λk−1

)
.

The other coefficients are given by permutations having k-tuple (λσ(1), . . . , λσ(k)) for
σ ∈ Sk, but we don’t want to consider multiple times the same k-tuple, so they are in
total k!

m1!...mp!
(notice that we are never dividing by p since we assumed that λ is not the

identity and thus mi < p for every i). All this tells us that the coefficient we are studying
is exactly

1

m1! . . .mp!

∑
σ∈Sk

(
λσ(1) + λσ(2) − 1

λσ(1)

)
. . .

(
p− 1

λσ(1) + · · ·+ λσ(k−1)

)
=

1

m1! . . .mp!

(
p

λ1, . . . , λk

)
= 0

where the first equality holds by Lemma A.4.2

We are now ready to give a proof of Proposition A.4.1.

Proof of Proposition A.4.1. We recall that we wish to show that for the ring of Ore
polynomials K[X; ∂] where ∂ : K → K is a derivation of order p, it holds that for any
f ∈ K

Nrd(X − f) = Xp − (fp + ∂p−1(f)).
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By Lemma A.2.13 it holds

Nrd(X − f) = det(r(X−f))

where r(X−f) : K[X; ∂]→ K[X; ∂] is the K[Xp]-linear endomorphism of multiplication on
the right byX−f in the ring of Ore polynomialsK[X; ∂].We fix the basis {1, X, . . . ,Xp−1}
for the free K[Xp]-module K[X; ∂] and we obtain that the matrix corresponding to r(X−f)
is

Aij =


Xp − ∂p−1(f) (i, j) = (0, p− 1)

−
(
j
i

)
∂j−i(f) i ≤ j, (i, j) ̸= (0, p− 1)

1 i = j + 1
0 i > j + 1

where i, j = 0, . . . , p− 1. Then, by Lemma A.4.3 we deduce that det(r(X−f)) = (−f)p +
Xp − ∂p−1(f) and thus the claim is proved.

Alternative proof

We start by recalling some results we need in the following, a reference for them is [Car18,
Chapter 4].

Lemma A.4.4. Let φ : A→ B be a surjective homomorphism of rings. Then the image
of the center of A lies in the center of B.

Proof. Let a ∈ Z(A) be a central element of A and take b ∈ B. Since φ is surjective
b = φ(α) for some α ∈ A. Therefore

φ(a)b = φ(a)φ(α) = φ(aα) = φ(αa) = φ(α)φ(a) = bφ(a)

that is φ(a) lies in the center of B.

Lemma A.4.5. Consider the ring of Ore polynomials K[X; ∂] where ∂ : K → K is a
non-zero derivation such that Ann(∂) has degree m ≥ 0 and let r = pm. Then for any
P ∈ K[X; ∂] it holds

deg(Nrd(P )) = r deg(P ).

Proof. See [Car18, Proposition 4.3.6].

Lemma A.4.6. For any P ∈ D = K[X; ∂] and Q ∈ F [Annlin(X)] = Z(D) (the center
of D) where F = {x ∈ K | ∂(x) = 0} it holds that RGCD(P,N) = 1 if and only if
GCD(Nrd(P ), Q) = 1 (where RGCD denotes the right greatest common divisor).

Proof. See [Car18, Lemme 4.3.8].

Lemma A.4.7. For any irreducible polynomial P ∈ D it holds that Nrd(P ) is, up to a
constant, a power of an irreducible polynomial in Z(D).

Proof. See [Car18, Corollaire 4.3.9].
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Proposition A.4.8. Consider the ring of Ore polynomials K[X; ∂] where ∂ : K → K is
a derivation of order p. Then for any f ∈ K we have

Nrd(X − f) = (X − f)p.

Proof. Consider the isomorphism of rings

ψ : K[X; ∂]→ K[X; ∂]

X 7→ X − f.

We know that the center of the ring of Ore polynomials K[X; ∂] is F [Xp] where F =
{x ∈ K | ∂(x) = 0}. Therefore, by Lemma A.4.4, since Xp is a central element, it holds
that ψ(Xp) = (X − f)p is central as well. By Lemma A.4.5, Nrd(X − f) has degree p.
Moreover by Lemma A.4.6 we have, for P ∈ K[X; ∂] and N ∈ F [Xp], RGDC(P,N) = 1
if and only if GCD(Nrd(P ), N) = 1 (where RGCD denotes the right greatest common
divisor). Choosing P = X − f and N = ψ(Xp) = (X − f)p we obtain that

GCD(Nrd(X − f), ψ(Xp)) ̸= 1.

By Lemma A.4.7, Nrd(X − f) is irreducible, up to a constant, in F [Xp]. Moreover it is
monic (see [Car18, Proposition 4.3.11]), therefore we have

GCD(Nrd(X − f), ψ(Xp)) = Nrd(X − f)

and since they both have degree p it holds Nrd(X − f) = ψ(Xp) = (X − f)p.

A reference for the following results that we need in order to give the alternative proof
of Proposition A.4.1 can be found in [Put95], for convenience we also report here their
proofs. I am thankful to Raphaël Pagès for pointing out this reference to me and for the
helpful discussions we had.

Let K be a field of characteristic p and ∂ : K → K be a derivation of order p. We
denote by D = K[X; ∂] the ring of Ore polynomials. Let M be a D-module that has
dimension 1 over K and let us denote by {e} a basis of M over K. Then we have
Xe = be for some b ∈ K. We define τ(b) by Xpe = τ(b)e (for example, for p = 2 we have
X2e = X(be) = (∂(b) + bX)e = (∂(b) + b2)e that is τ(b) = ∂(b) + b2). Notice that

Xp+1e = Xp(be) = bXpe = bτ(b)e

but also
Xp+1e = X(τ(b)e) = (∂(τ(b)) + τ(b)b)e

from which we deduce that τ(b) ∈ F = {x ∈ K | ∂(x) = 0}. We can define τ(b) for every
b ∈ K in the following way:

τ : K → {D −mod of dimK = 1 with a base} → Kp

b 7→ (Ke,Xe = be) 7→ coefficient of Xpe
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Lemma A.4.9. The map τ : K → Kp is additive.

Proof. Let Kei be D-modules of dimension 1 over K such that Xei = biei for i = 1, 2.
Then also Ke1⊗KKe2 is a D-module of dimension 1 over K with the action X(m⊗n) =
X(m)⊗ n+m⊗X(n). Therefore

X(e1 ⊗ e2) = (b1 + b2)e1 ⊗ e2.

Moreover

τ(b1 + b2)e1 ⊗ e2 = Xp(e1 ⊗ e2) = Xp(e1)⊗ e2 + e1 ⊗Xp(e2) = (τ(b1) + τ(b2))e1 ⊗ e2,

hence the claimed linearity.

Lemma A.4.10. Let K have the structure of D-module given by X(1) = b, then

Xn(y) = (∂ + bidK)n(y)

for every y ∈ K and n ≥ 0. In particular (∂ + bidK)p is K-linear and

τ(b) = (∂ + bidK)p(1).

Proof. Let us argue by induction on n. One sees that the equality holds for example for
n = 0, 1, 2. Now let us suppose it holds true for n and show that then it is true for n+ 1.
Let c = (∂ + bidK)n(y) = Xn(y), then

Xn+1(y) = X(c) = (∂(c) + cX)(1) = ∂(c) + cb = (∂ + bidK)(c) = (∂ + bidK)n+1(y),

as wished.

Proposition A.4.11. In the ring of Ore polynomials K[X; ∂] with ∂ a derivation of
order p, it holds

(X − b)p = Xp − τ(b)

for every b ∈ K.

Proof. Let

D → End(K)

X 7→ (1 7→ b)

be a structure of D-module on K. This induces

F [Xp]→ End(K)

Xp 7→ (1 7→ τ(b))

whose kernel is the ideal (Xp − τ(b)). Moreover, as seen in Proposition A.4.8, (X − b)p
is an element of F [Xp] and lies in the kernel as well. Now, since both polynomials are
monic and share the same degree they must be equal (notice that F [Xp] is a unique
factorization domain).
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Alternative proof of Proposition A.4.1. By assumption ∂ is a derivation of order p, hence
[K : K∂ ] = p and thus K = K∂(t) for any t ∈ K\K∂ . Moreover, by Proposition A.4.8
and A.4.11 we have

Nrd(X − b) = (X − b)p = Xp − τ(b)

and thus, since τ is additive, it is enough to show the result for b = cti for c ∈ K∂ and
i = 0, . . . , p− 1. Now

(X − cti)p = Xp − cptpi − cp−1fp−1,i(t)− · · · − c2f2,i(t)− cf1,i(t)

where the fj,i(t) are some polynomials in t over K∂ . Now, since c 7→ τ(cti) is additive,
the only polynomial that can occur is f1,i. This summand appears in

(X − cti)p = (X − cti)(X − cti) . . . (X − cti)(X − cti)

computing Xp−1cti = cXp−1ti and one sees that the constant term of this polynomial in
X is c∂p−1(ti). The claim is thus proved.

Corollary A.4.12 (Jacobson identity). For every b ∈ K it holds

τ(b) = ∂p−1(b) + bp.

Proof. Putting altogether Propositions A.4.1, A.4.8 and A.4.11 we have

Xp − bp − ∂p−1(b) = Nrd(X − b) = (X − b)p = Xp − τ(b)

hence the statement.

Proposition A.4.13. Let ∂ : K → K be any derivation on K a field of characteristic p.
For any f ∈ K it holds

(∂ + f idK)p = ∂p + (fp + ∂p−1(f))idK .

Proof. We begin by noticing that

(∂ + f idK)p = ∂p +

p−1∑
i=0

Qi(f, ∂(f), . . . , ∂
p−1(f))∂i

where the Qi are some universal polynomials in Fp[X0, . . . , Xp−1]. We can thus show the
result for ∂ such that ∂p = 0. Now, by Lemma A.4.10 along with Corollary A.4.12, we
have that (∂ + f idK)p is K-linear and

(∂ + f idK)p(1) = fp + ∂p−1(f)

and the statement follows, since two K-linear endomorphisms of K with same image of 1
are the same.
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Example A.4.14. In the same context as above, that is the ring of Ore polynomials
K[X; ∂] with ∂p = 0, let us compute Nrd(fX) for f ∈ K×. By Lemma A.2.13 we have

Nrd(fX) = det(rfX)

where rfX is the multiplication on the right by fX on K[X; ∂] over K[Xp]. We fix the
basis {1, X, . . . ,Xp−1}. Then we have

Xj(fX) =

j∑
i=0

(
j

i

)
∂j−i(f)Xi+1

for every j = 0, . . . , p− 1 that is the matrix associated to rfX is

A =



0 0 0 fXp

f ∂f ∂2f .
0 f 2∂f ·

f
· ·
f (p− 1) ∂f


or more precisely

Aij =


fXp (i, j) = (0, p− 1)
0 (i = 0, j < p− 1) and for i > j + 1(
j
i−1

)
∂j−i+1(f) for 0 < i ≤ j + 1.

We then deduce that
Nrd(fX) = fpXp.

Proposition A.4.15. Let ∂ : K → K be any derivation on K a field of characteristic p.
For any f ∈ K it holds

(f∂)p = fp∂p − f∂p−1(fp−1)∂ = fp∂p − fp+1∂p−1

(
1

f

)
∂.

Proof. We begin by noticing that

(f∂)p = fp∂p +

p−1∑
i=0

Qi(f, ∂(f), . . . , ∂
p−1(f))∂i

where the Qi are some universal polynomials in Fp[X0, . . . , Xp−1]. In particular, we can
thus deal with the case ∂p = 0. Now, (f∂)p is a derivation and thus the only Qi that can
occur is Q1. Consider the evaluation morphism

K [X; ∂]→ EndZ(K)

X 7→ ∂.
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We then have (fX)p = fpXp +Q1X. Since 1 and fX commute, the Newton binomial
formula holds and we have

(fX + 1)p = (fX)p + 1 = fpXp +Q1X + 1.

Now, using Proposition A.4.1, we see that

Nrd(fX+1) = fpNrd

(
X +

1

f

)
= fp

(
Xp +

1

fp
+ ∂p−1

(
1

f

))
= fpXp+1+fp∂p−1

(
1

f

)
.

Moreover, (fX +1)p and Nrd(fX +1) are both divisible by (fX +1), which then divides
the difference

(fX + 1)p −Nrd(fX + 1) = Q1X − fp∂p−1

(
1

f

)
that is

Q1X − fp∂p−1

(
1

f

)
= c(fX + 1).

Comparing the coefficients we see that c = −fp∂p−1
(

1
f

)
and Q1 = cf = −fp+1∂p−1

(
1
f

)
.

The result follows.
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