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Introduction

The intellectual output of Georges Bouligand during the interwar period represents

a rich corpus consisting not only of mathematical articles and texts in divers areas

of the discipline but also his published ideas on the epistemology of mathematics -

on his views regarding mathematical methods, how mathematical theories should

be formulated and how mathematics should be taught. In addition, as a member of

the mathematical community in France who was well connected with some of the

most prominent mathematicians not only of his own generation but of the academic

generation before and after, a study of Bouligand and his works enables us to add

a modest brush stroke to the currently available picture of the French mathematical

scene of the day. Our study may shed some further light on these mathematicians

and on certain ideas and trends - such themes that will arise include, for example,

debates on rigour and intuition and the emergence of Cantor’s set theory in France;

looking at Bouligand’s contributions enables us to bring to light further examples of

the manifestation and influence of these trends during the interwar period.

We will elaborate below on these key points and we will present the chosen approach

and scope of our study. Before proceeding, we emphasise first that, despite the clear

interest of a somewhat in depth study of Bouligand, relatively little work exists today

giving us an insight into this figure of 20th century French mathematics.

A note on existing works on Bouligand.

The most detailed accounts of Bouligand’s contributions are to be found in his own

published notes, one published towards the end of his career in 1961 [101] and an

earlier summary covering the period 1912 to 1937 [95], shortly before he moved

from Poitiers to Paris. Besides Bouligand’s own accounts, perhaps the most detailed

historical elements are to be found in the impressive thesis of Juliette Leloup [170],

which studies interwar mathematics in France through the lens of all doctoral theses

defended during this period. A section of twelve pages [170, 119-131] is dedicated to

Bouligand’s influence in Poitiers through the doctoral students guided by him during

the interwar period. While this account provides precious insights upon which we will

draw here regarding Bouligand’s role in the mathematical community and regarding

1



2 CONTENTS

his influence on doctoral students, Leloup’s goal was clearly not to provide a more

detailed presentation specifically of Bouligand and his works. A further available

source focussing on Bouligand is Henri Poncin’s obituary of five pages in honour of

Bouligand [202]. Although Poncin’s article provides valuable insights into Bouligand

as a person, his role in the mathematical community in Poitiers and to his mathematical

contributions, it by no means represents an in depth study. Roland Brasseur’s fascinat-

ing online Dictionnaire des professeurs de mathématiques spéciales [106] contains many

precious gems of information on Bouligand which have been extracted from relevant

archives, although we stress that Brasseur’s goal was not to provide a formalised and

elaborated account.

The 1999 doctoral thesis of Dorothée Bessis [9] introduces in some detail the tools

of Bouligand’s theory of direct infinitesimal geometry (to which we dedicate two

chapters below), as well as commenting on its motivations, possible influencing factors

and translating concepts into more modern terms. However, Bessis’ thesis belongs

clearly to mathematics itself and introduces only one key area of Bouligand’s work,

whose exposition is not her main goal. Also from a modern mathematical perspective,

Rockefellar and Wets refer quite extensively to Bouligand and highlight certain of his

contributions in their text on variational analysis [204]. They focus specifically on

concepts dealt with in Bouligand’s direct infinitesimal geometry and their presentation

of Bouligand’s ideas remain as insightful references in the broader context of a modern

text on variational analysis.

Finally we note that perhaps the most detailed exploration of Bouligand’s ideas in

the epistemology of mathematics is to be found in the work of Paolo Mancosu on

mathematical explanation, in his 2001 article on the topic [176]. Here he draws on

several articles of Bouligand to illustrate Bouligand’s concepts of causal and non-causal

proofs and alludes briefly to the concepts of domain of causality and direct versus non-

direct methods. It is interesting to note that philosopher Albert Lautman commented

briefly in the 1930s on Bouligand’s ideas in the context of a discussion on axiomatics

and generalisation [164]. We have not however found any thorough presentation of

Bouligand’s core concepts in the epistemology of mathematics and no work on the

interaction between his mathematics and his epistemological reflections.

We note that quite extensive work exists on the Swiss mathematician and contemporary

of Bouligand, Ferdinand Gonseth (1890-1975). While we do not attempt to go too far

with the analogy here, Gonseth could perhaps be seen in a similar light as Bouligand

in terms of the diversity of his academic output and the fact that he dealt both

with mathematics and his philosphical reflections. Like Bouligand, Gonseth was
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well connected in the mathematical and institutional community of his time. We

see, in comparison to Gonseth, a clear lack of work presenting Bouligand and his

mathematical and philosophical output.

0.1 Key motivating factors for the present account

0.1.1 Bouligand as a mathematician active in publishing his epis-

temological ideas in France

Far from being two distinct themes of research, Bouligand’s mathematics and his

ideas on the epistemology of mathematics evolved, to a certain extent, hand-in-hand.

Bouligand appears as a mathematician who was particularly active in publishing his

epistemological ideas about mathematics. While it is beyond the scope of the present

account to provide a survey of the work of French mathematicians during the 1920s

and 30s on the epistemology of mathematics, we can gain at least some rough measure

of Bouligand’s activity by considering the two main journals in which he published

his ideas, namely the Revue générale des sciences pures et appliquées and the Revue

scientifique.

A brief survey of the Revue Scientifique in the interwar years in which Bouligand

published approximately nine articles dealing with his epistemological reflections

(each year from 1927 to 1933, excluding 1931), then we see that other contributions

relating to mathematics are few and far between. In the 1927 volume, Emile Borel

published an article on Les lois physiques et les probabilités and the other volumes

collectively contain only a handful of other articles dealing with mathematics. For

example, the Italian mathematician and astronomer Giovanni Boccardi (whose articles

in this journal are published under the name of Jean Boccardi), a correspondent of

the Bureau des Longitudes published a small number of articles providing a largely

historical account on topics such as geodesics and probability. Other articles relating to

mathematics include a paper on mathematical statistics by the mathematician Robert

de Montessus de Ballore and an account by Madame Paul Tannery (the name under

which Marie-Alexandrine, the wife of the mathematician Paul Tannery, published her

work) of historical correspondence between mathematicians - both of these were of a

predominantly historical nature.

In the volumes of the Revue Générale des Sciences Pures et Appliquées published between

1930 and 1936 (the years in which Bouligand published his ideas in approximately

six articles in this journal) again, articles relating to mathematics are relatively few.
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The authors of the several articles relating to mathematics include Boccardi and de

Montessus de Ballore mentioned above each of whom publish once. Maurice d’Ocagne

(1862-1938) - a French mathematician and engineer whose who is considered to be

the founder of nomography, appears as a more regular contributor to this journal

within the time period, publishing for example on geometrical constructions in two

articles of 1933 and 1934. It is also worth noting a single publication during this time

period by Nikolai Krylov (1879-1955) - an eminent Russian mathematician whose

work focussed on the area of differential equations and non-linear mechanics. The

article is co-authored by the Russian mathematician and theoretical physicist Nikolay

Bogolyubov (1909-1992) and discusses problems in non-linear mechanics. Besides

a short article of 1936 by Z. Rupeika on analytic geometry 1, we mention an article

by Jean-Louis Destouches of 1935 on Les acquisitions récentes des mathématiques

applicables à la physique which draws significantly on Bouligand’s ideas regarding

a concept he referred to as the stability of mathematical theorems, which will be

explored in greater depth in the present account.

0.1.2 Bouligand as an actor embedded in the mathematical com-

munity

Bouligand was well connected with some of the most prominent mathematicians of

his time. During his education at lycée, in his mathématiques spéciales class, Bouligand

was taught by Paul Montel and Maurice Fréchet [101, p. 6]. Particularly with Fréchet,

Bouligand maintained close contact and regular written correspondence throughout

his career and which we will draw upon at various points in the present account.

During his education at the Ecole Normale Supérieure, Bouligand was taught by many

of the most eminent mathematicians, including Jules Tannery, Emile Borel, Edouard

Goursat, Gaston Darboux, Jacques Hadamard, Emile Picard, Henri Lebesgue and Ernest

Vessiot [101, p. 6]. It was perhaps Jacques Hadamard who had the greatest influence

on Bouligand at the very start of his mathematical career by orienting him towards

certain areas of research in potential theory. It is also worth noting that Bouligand

participated in the famous seminars named after Jacques Hadamard, in which he was

influenced by the ideas of prominent mathematicians.

In the chapter regarding Bouligand’s contribution to the Dirichlet problem, we will re-

veal an interaction between Bouligand and Lebesgue leading towards a generalisation

of this problem, a generalisation to which Norbert Wiener first formulated a complete

solution. It was in this context that Bouligand first came into contact with Wiener and

1It seems likely that the author is Zigmas Rupeika (1898-1973) - a Lithuanian mathematician and
teacher of mathematics.
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subsequently collaborated on questions relating to the generalised Dirichlet problem.

This collaboration is highlighted in the available written correspondence between

Wiener and Bouligand, to which we will refer in the chapter below on Bouligand’s

contribution to the Dirichlet problem. It was also in the context of Bouligand’s work

on the Dirichlet problem and potential theory that he carried out a research visit to the

University of Krakow in 1925, hosted by the Polish mathematician Stanislaw Zaremba.

As a result of this research visit, Bouligand was strongly influenced by the Polish school

of mathematicians, which represents a factor leading to the development of his direct

infinitesimal geometry and the ideals it sets out to achieve.

Elie Cartan is a further figure who will appear in the present account in the context of

Bouligand’s direct infinitesimal geometry. While the available written correspondence

between Cartan and Bouligand is limited, Elie Cartan nevertheless appears as one of

the first prominent members of the French mathematical community to acknowledge

and support Bouligand’s work in this area.

Regarding mathematicians of the next academic generation, Gustave Choquet appears

as a notable example of a mathematician who was influenced by Bouligand’s ideas

on direct infinitesimal geometry. While we do not explore this correspondence in the

present account, we note that quite extensive correspondence is available between

Bouligand and Marcel Brelot, relating to potential theory2.

Bouligand’s participation in certain key conferences represents a further angle from

which we gain an insight into the broader mathematical and scientific community at the

time. Major conferences at which Bouligand presented his work include the Conférence

internationale de topologie, held in Geneva in 1935 and in which he presented ideas

relating to his theory of direct infinitesimal geometry, the Congrès international de

philosophie scientifique and the Congrès international de philosophie of 1937 both

held in Paris and in which Bouligand presented certain ideas in the epistemology of

mathematics.

0.1.3 Bouligand in the context of trends in mathematics and the

epistemology of mathematics

As mentioned above, A study of Bouligand’s work centered around his ideas on the

epistemology of mathematics leads us to placing certain of his key ideas in the context

of broader trends in mathematics, thus providing further examples of the manifestation

2Available at the time of writing at the Bibliothèque de Sorbonne Université, Section Mathématiques
Informatique Recherche.
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and influence of these trends during the interwar period. Bouligand’s first articles re-

lating to intuition in mathematics will be placed in the context of the debates on rigour

and intuition taking place in France and abroad, for example the debates sparked by

the reception of Peano’s work on mathematical logic between 1904 and 1907. Perhaps

the trend in mathematics which is of most central importance to the present account

is that of the emergence of Cantor’s set theory in France. As will be explored in the

chapters dealing with Bouligand’s theory of direct infinitesimal geometry, Bouligand’s

work is motivated partly by his desire to implement in differential geometry a set-based

approach following the example of the theory of functions - the context in which set

theory was first widely adopted in France.

0.2 The scope and focus of the present account

0.2.1 Bouligand’s core reflections on the epistemology of mathe-

matics as the connecting thread

The entire mathematical and epistemological works of Georges Bouligand represent

a considerable corpus, spanning diverse areas of mathematics and its applications

over approximately half a century, a corpus which we could not hope to address in

the present thesis. The present account will therefore focus on a specific theme and

on a time period, both chosen with the aim of bringing to light a significant body of

Bouligand’s main mathematical contributions while faithfully representing what could

be considered as the key ideas and motivations of his lengthy mathematical career.

The theme representing a common thread running throughout our account will be

Bouligand’s reflections on causality in geometry and in mathematical and physical

theories as well as his closely related concept of direct methods. The approach we

have chosen of bringing to light certain key areas of his mathematical contributions

which interact closely with his epistemological views is in agreement with Bouligand’s

own motivations. The following comment of Bouligand illustrates this point:

Contrairement à une tendance fréquente, j’ai évité de m’abandonner à une

spécialisation trop marquée. J’ai préféré chercher quelque unité de conception

dans les régions assez vastes de la science mathématique, unité susceptible de

favoriser mes propres travaux et de permettre à d’autres chercheurs de suivre

mon sillage [95, p. 2].

[Contrary to a frequent trend, I have avoided devoting myself to an exces-

sive specialisation. I have preferred to search for something of a unity of

conception in quite broad regions of mathematical science - a unity which



0.2 The scope and focus of the present account 7

is likely to favour my own works and to allow other researchers to follow

in my footsteps].

We will aim to focus our account on the mathematical works of Bouligand which are

most intimately connected with his epistemological views. On the other hand, we have

chosen to focus on the concepts relating to causality and direct methods as these are

precisely the themes belonging to Bouligand’s epistemological reflections which tie in

most closely with his mathematical output. This choice is one factor in leading us to

focus on a specific time period during Bouligand’s career, namely the interwar period,

a choice upon which we expand below.

We emphasise that Bouligand’s epistemological reflections relating to causality and

direct methods do not represent an isolated or marginal area of his academic activity.

On the contrary, these ideas are seen to be present both in purely mathematical works

as well as in a significant corpus of a more epistemological nature. Regarding the

interplay between his mathematics and his epistemology, the most striking example is

that of his theory of direct infinitesimal geometry - which represents one of the areas of

mathematical research to which he dedicated most efforts and which has as a central

goal to apply the concepts of causality and direct methods.

0.2.2 Focussing on the interwar period (1918-1939)

The choice has been made to focus the present account mainly on the mathematical

and epistemological works of Bouligand between the two World Wars, that is between

1918 and 1939. In addition to this being a period in the history of mathematics which

still warrants further study, we outline a number of other factors motivating this choice.

First, although it may not be reasonable to claim a causal relationship, we observe that

the majority of Bouligand’s mathematical output occurred during the interwar period.

Furthermore, it is during this period that his mathematical output most intimately

linked with the concepts of causality and direct methods was first introduced, including

his work on a generalised version of the Dirichlet problem (starting from 1923) and

his theory of direct infinitesimal geometry and its applications, an area of research

which began in approximately 1927 and which was first expressed as a comprehensive

theory in 1932. We note that Bouligand did not have a significant academic output, in

terms of publications during the second World War. After this period, a much larger

proportion of Bouligand’s output is dedicated to the epistemology of mathematics. His

articles in this area after 1945 relate less specifically to causality and direct methods

and tend to deal with topics of a broader nature. To illustrate this, we can consider for

example his article on La nature des choses en mathématiques [The nature of things

in mathematics] [98], or his 1955 publication entitled Perspectives mathématiques

[Mathematical perspectives] [100]. As we might speculate from the titles of these
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works, the dynamic interaction here with his mathematical works is not so clear as it is

during the interwar period in relation to his reflections on causality and direct methods.

The establishment of the Polish school of mathematics represents a factor directly

linked to the ending of the First World War which reinforces our choice to focus on

the interwar period. We see in the chapter dealing with direct infinitesimal geometry

that Bouligand was greatly impressed and also influenced by the Polish school of

mathematicians which emerged after the First World War, a school which focussed

on topics in set theory, topology and the foundations of mathematics. Indeed, the

founding of this school took place in the context of - and was connected to - the

end of the war and the independence of Poland. After 123 years, Poland regained

independence in 1918 and, as Murawski comments [187, p. 91], ‘The state and

its institutions, in particular the entire scientific and educational system had to be

restored’. Consequently, universities were re-established in Krakow, Lvov and Vilnius

and other universities were opened or newly established for example in Warsaw and

Lublin. Murawski comments that ‘The interwar period (1918-1939) was a time of

intensive development for scientific research and education in Poland’ [187, p. 91].

It was in this context that the founding of the school of mathematicians specialising

in set theory, topology and the foundations of mathematics took place, including the

founding of a new mathematical journal dedicated to these topics, named Fundamenta

Mathematicae, by Zygmunt Janiszewski, Wacław Sierpiński and Stefan Mazurkiewicz.

Janiszewski played a key role in establishing the new school of Polish mathematics

in Warsaw after independence [187, p. 113] and in a 1917 article ‘On the needs of

mathematics in Poland’ argued in favour of placing specific areas of expertise at the

centre of Polish mathematics, such as set theory and related areas including topology

and the theory of real functions [187, p. 113]. Murawski comments that this article

‘became a program for a whole generation of Polish mathematicians’ [187, p. 113]. In

summary, the historical circumstances related to the end of World War I and Polish

independence had an impact on Bouligand, his mathematics and his epistemological

views, thanks notably to his 1925 visit to the University of Krakow.

0.2.3 Outlining the structure of the following account

The present account consists of five main chapters. In the first chapter, we introduce

Bouligand’s work on and towards what he referred to as the generalised Dirichlet

problem. As we will see in greater depth in this chapter, Bouligand was led to this topic

through the research in the area of potential theory which he started at the beginning

of his mathematical career, initially oriented in this field by one of his mentors, Jacques

Hadamard. It is in the context of Bouligand’s mathematical work on the generalised
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Dirichlet problem that certain key elements of his epistemological views first occur

explicitly. Specifically, an approach involving organising or classifying mathematical

results and concepts according to their level of generality features explicitly in this

context and is clearly akin to the concept of a domain of causality, which he introduced

and explored in depth in later epistemological, mathematical and pedagogical works.

It was also in this context that he first considered the local dimensional properties

of sets in Euclidean space - representing a later component of his direct infinitesimal

geometry. A local and set-focussed approach (we will expand upon what this means

later on) to the study of the geometry of sets represents a central pillar of Bouligand’s

direct infinitesimal geometry.

Our presentation of Bouligand’s direct infinitesimal geometry will include a discussion

on the factors influencing the emergence of this work, notably the broader trend of

the emergence of set theory in France together with influence of the Polish school of

mathematics and certain other individual mathematicians. In addition, we will discuss

Bouligand’s efforts to disseminate his ideas as well as presenting key examples of the

uptake of his work.

In the subsequent chapter, we will introduce the first topic in the epistemology of

mathematics upon which Bouligand published his reflections, namely the concept of

intuition in mathematics. The main significance of Bouligand’s ideas on intuition are

of great interest in the present account as they help to illuminate certain views and

preferences of Bouligand regarding the way in which mathematics should be practiced,

formulated and taught. Exploring his views on intuition will help to understand his

later concepts of causality and direct methods. As will be explored, for Bouligand,

intuition was understood predominantly in terms of making connections with objects

or concepts in the physical environment or with geometrical concepts. To place these

ideas in context, we will explore debates occurring around the start of the twentieth

century regarding rigour and logic versus intuition, involving eminent French mathe-

maticians such as Henri Poincaré and of the following generation, Hadamard, Borel,

Lebesgue and Baire. Also of relevance here was a national educational reform in

France adopted in 1902.

While the generalised Dirichlet problem represents the context in which certain of his

epistemological ideas about mathematics first occur, it was his later work on direct

infinitesimal geometry which represents the most striking example of the implementa-

tion of such ideas to his mathematical work. Our account on this topic will be split

into two chapters - the first focussing on Bouligand’s motivations, influences and the

mathematical formulation, while the second will discuss applications, dissemination
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and uptake. Direct infinitesimal geometry was a term introduced by Bouligand for his

approach to certain concepts and problems in differential geometry in which he sought

to avoid the need for assumptions regarding, for example, the differentiability of

functions representing curves and surfaces. Informally speaking Bouligand’s approach,

as we will see, was an approach focused more towards sets than functions. He relies

on certain concepts of topology and favours a local study of the geometrical properties

of sets in Euclidean space. He seeks to avoid parametric representation as far as

possible - we therefore see why his theory was referred to as ‘direct’. Bouligand’s

work on potential theory including in particular his work on the Dirichlet problem

from a more mathematical point of view also represents a key factor leading him to

formulate his direct infinitesimal geometry. In the context of the generalised Dirichlet

problem, Bouligand was led to characterise certain types of sets of points on the

boundary in question from a local geometrical point of view. Specifically, this involved

investigating the dimensional properties of sets in Euclidean space - an approach which

was later incorporated into his direct infinitesimal geometry. Before Bouligand gave

a comprehensive formulation of his direct infinitesimal geometry, he published his

broader reflections regarding the need for a new approach in infinitesimal geometry

and outlined what he saw as the main tools and ingredients of such an approach. Our

later discussion of direct infinitesimal geometry will therefore also place the theory

in the context of this programme of research founded upon Bouligand’s epistemo-

logical views on geometry. Notably, these principles include reducing the number of

assumptions made to a minimum, in particular avoiding assuming differentiability

and continuity properties of functions representing the curves and surfaces being

studied. In addition, Bouligand seeks to restore causality to differential geometry by

emphasising the study of concepts in the context of groups of transformations under

which they are invariant - a group which he refers to as a domain of causality.

The final chapter will explore the development of Bouligand’s epistemological ideas

after the introduction of his theory of direct infinitesimal geometry. We will see that

the concepts of causality and direct methods initially introduced in the context of

geometry were later considered and developed in the broader setting of mathematical

and physical theories. The key ideas explored will include direct methods and their

unity, from Bouligand’s point of view, the idea of a causal proof and finally the idea

of a domain of causality and related concepts regarding what Bouligand referred

to as the stability of mathematical propositions - here no longer exclusively in the

context of geometry but in mathematical and physical theories more generally. We

will investigate the way in which these ideas were circulated by Bouligand both in

a scientific and a pedagogical context and we will briefly situate Bouligand’s work

in relation to a few major landmarks in the epistemology of mathematics during the
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interwar period, namely in relation to the work of Emile Borel, Albert Lautman and

Jean Cavaillès.

0.2.4 A running theme - Bouligand’s focus on pedagogy and math-

ematics education

While Bouligand’s core concepts of causality and direct methods represent the common

thread of this thesis, we highlight a further recurring theme which adds to the interest

in studying Bouligand in greater depth - namely the strong connection between his

mathematical and epistemological output and the teaching of mathematics as well as

a pedagogical approach to presenting mathematical research. Indeed, each chapter

contains at least one short section dealing with the pedagogical aspect of the topic at

hand. One of the clearest examples of the interaction between Bouligand’s research

and teaching will arise in the context of his work on direct infinitesimal geometry

- a research programme in which he initiated doctoral students to whom he also

transmitted the epistemological considerations motivating his theory. In the chapter

dealing with Bouligand’s work on the Dirichlet problem, we note the importance of a

lecture course he gave in Krakow in 1925, in which key new concepts in his research

were presented. In addition, we come across certain key publications relating to the

Dirichlet problem and potential theory in which pedagogical considerations are central.

Regarding his ideas in the epistemology of mathematics, again pedagogical consider-

ations are prominent: for example, his concepts of causality and direct methods are

included in his mathematical textbooks and he comments explicitly on his opinion of

the relevance of these ideas for mathematics education.

0.2.5 Areas of Bouligand’s mathematical output not included in

this account

In Bouligand’s 1961 Titres et travaux scientifiques de M. Georges Bouligand, he presents

and categorises the academic output of his lengthy career, highlighting three broad do-

mains, namely analyse et physique mathématique [analysis and mathematical physics],

géométrie différentielle [differential geometry] and principes d’enseignement, méthodes

et heuristique [principles of teaching, methods and heuristics]. Regarding the first area

of analysis and mathematical physics, if we consider Bouligand’s articles relating to the

generalised Dirichlet problem together with work which later fed into this topic and

articles which were inspired by work on the generalised Dirichlet problem, then we

have one of the most substantial - if not the most substantial - subset of his published

work within the broader category mentioned during the interwar period. Regarding

the second theme of differential geometry, this area is clearly dominated during the
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interwar period, in terms of the volume of published articles, by Bouligand’s work on

direct infinitesimal geometry, including applications of these concepts and work which

was later integrated into Bouligand’s theory.

Which areas belonging to the two broader domains of mathematics and mathematical

physics are not dealt with in this account? To answer this question, it is useful to refer

to Bouligand’s earlier 1937 Notice sur les travaux scientifiques de M. Georges Bouligand,

in which he details and classifies his mathematical output between 1912 and 1937,

therefore covering most of the interwar period. The chapters corresponding to the

main areas of his research here are, in the order presented by Bouligand:

1. Fonctions harmoniques, problème généralisé de Dirichlet, équations du type ellip-

tique [harmonic functions, generalised Dirichlet problem, elliptic equations]

2. Application de la notion de flux et problèmes divers [application of the concept of

flux and divers problems]

3. Recherches de géométrie des ensembles suggérées par la théorie du potentiel [re-

search into the geometry of sets suggested by potential theory]

4. Systématisation: la création de méthodes directes en géométrie infinitésimale [sys-

tematisation: the creation of direct methods in infinitesimal geometry]

5. Recherches sur la méthodologie directe [research into the direct methodology]

6. Applications de la géométrie infinitésimale directe aux équations différentielles,

ordinaire ou partielles [applications of infinitesimal geometry to ordinary and

partial differential equations]

7. Recherches d’hydrodynamique et sujets connexes [research into hydrodynamics

and related topics].

First we note that points 3, 4 and 6 all related to Bouligand’s direct infinitesimal ge-

ometry, representing the most substantial chapter of the present account. In addition,

point 6 seems to represent applications of direct infinitesimal geometry to analysis. We

cover elements of Bouligand’s work in point 3, which is a precursor to his formalised

theory, such as the concept studying the dimensional properties of sets in Euclidean

space. However, our emphasis is in presenting the main ideas of Bouligand’s structured

theory in point 4, focussing on how his theory puts into practice key ideas in his

epistemology of mathematics. While we do touch on applications of Bouligand’s theory

as well as the connection of these significance of these applications in relation to his

epistemological work, we do not enter into any great depth in point 6.
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We can view points 1, 2 and 7 above as constituting, more or less, Bouligand’s output

in the broader theme of analysis and mathematical physics (mentioned above) during

the interwar period. We have chosen to focus, for all of the reasons outlined already,

on the key topic of the generalised Dirichlet problem, mentioned in point 1, which

includes considering certain concepts and articles in the areas of harmonic functions.

We do not enter into the topic of elliptic equations. Perhaps the most substantial area

(in terms of volume of published articles) not covered in any detail within the broader

theme of analysis and mathematical physics is that of fluid mechanics, including points

2 and 7 above. That said, we will encounter briefly in the present account, interac-

tions and influences between these topics and the themes selected for more detailed

investigation.

Finally, regarding point 5 above, this can be seen as a natural progression in Bouli-

gand’s ideas in the epistemology of mathematics relating to direct methods as seen in

his work on direct infinitesimal geometry. We will consider briefly his ideas here in the

context of the last chapter on the evolution of Bouligand’s epistemological work.

Additional topics of research are present in Bouligand’s published work which are

perhaps less prominent in terms of volume of published articles and which we do

not deal with in this account. For example, Bouligand’s applied work during the

interwar period is more varied than the topics mentioned in points 1 to 7 above.

For example, on the topic of percussion, see [27]. In terms of textbooks on applied

topics, we refer the reader to, for example, Bouligand’s Précis de mécanique rationnelle

[31]. In the broader theme of differential geometry, higlighted in [101], Bouligand

lists his published articles under the heading Géométrie différentielle et thèmes divers

[differential geometry and divers themes] and includes a small number of papers

dealing with vector geometry (see for example [21], [22]). To this theme, we associate

Bouligand’s textbook Leçons de géométrie vectorielle, préliminaires a l’étude de la théorie

d’Einstein [Lessons in vector geometry preliminary to the study of Einstein’s theory]

[26]. Another example of a more minor theme identified by Bouligand [95, p. 27]

corresponding to a small set of articles is that of the theory of functions of a complex

variable (see for example [84]).

0.2.6 The main objectives of the present account

The main objective of the present account is to bring to light key areas of Bouligand’s

work during the interwar period with an emphasis on the interaction between his epis-

temological ideals and his mathematical work. In addition we wish to bring Bouligand

himself to life, as it were, in the context of interwar French mathematics. This will be
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achieved through the biographical elements of this account, by presenting his efforts

to communicate his ideas in the mathematical and broader scientific community, as

well as - in the case of his theory of direct infinitesimal geometry - presenting key

examples of the initial reception of his work. In certain cases we situate his ideas in

relation to major known landmarks in the mathematics or its philosophy, however

we highlight that we have opted for an approach clearly centered around Bouligand.

Given the lack of literature currently available on Bouligand, an account of this nature

aims to facilitate the work of future researchers who wish go to further in situating

and interpreting Bouligand in the context of key trends or figures in mathematics and

its philosophy.



Chapter 1

Georges Bouligand, a brief biography

Before launching into our account as outlined above, we first paint a picture of

Georges Bouligand through a short biography, giving an insight into his life, education

and career. I believe that this will help to bring Bouligand to life for the reader

and will enrich and contextualise the subsequent account of his mathematical and

epistemological contributions.

1.1 Early years and family

Georges Louis Bouligand1 was born on 13 October 1889 in the town of Lorient, in

the Morbihan, at 23 rue de la Corderie. Georges was an only child and his father

was Louis Marie François Bouligand, born on 7 May 1860 in Cordemais, where he

worked as a veal merchant. By 1889, he was a garde-stagiaire d’artillerie in the navy

and subsequently garde. He died on 16 August 1896 in Madagascar, after having

contracted an endemic disease, while Georges was only six years old. Georges was

therefore brought up by his mother, Adolphine Marie Armelle Bonard, who was born

on 10 March 1863 in Lorient, where her father was a caulker at the city’s port. She

lived until the age of 78 - she died on the 3 May 1941, in her son’s home in Paris.

According to Poncin [202], Georges also benefited from the guidance of his uncle

during his early years.

In November 1920, Georges married Jeanne Augustine Marie Glain (17 December

1890 - 7 August 1981), who was a childhood friend who he had met through his

uncle. Her father was Pierre Génulphe Glain and her mother Céline Marie Josseau,

a teacher. Little information is available regarding Jeanne Glain, besides Poncin’s

comments [202] where he described the simplicité charmante with which Madame

1We acknowledge here the impressive Dictionnaire des professeurs de mathématiques spéciales of
Roland Brasseur [106] which contains a considerable amount of information about Georges Bouligand.
This rich resource led me on to the original sources often cited below

15
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Bouligand received him when he was invited to their home to work on mathemat-

ics problems. Georges and Jeanne had nine children, all of whom were born in Poitiers:

• Anne Marie (21 March 1922 - 26 April 2011), a journalist for the Dauphine Libéré

• Jeannette Radegonde, born on 22 May 1924, who died two days later on 24 May.

• Pierre Adolphe Marie Louis (20 May 1925 - 23 January 2007), a jesuit.

• Hélène Marie Thérèse (6 January 1927) - a lawyer and later a magistrate

• Paulette Marie Louise Radegonde (12 January 1928 - 13 April 2007) - a social

worker

• Marie Thérèse Augustine (22 août 1929 - 10/09/2016); Professeur de Lettres

• Georges Marie Marcel (9 October 1930) - PhD in the physical sciences, engineer

at the Centre d’Energie Atomique

• Marcelle Josèphe Marie (31 October 1932). A benedictine nun (mère Maria

Assumpta)

• Yves Jean Marie (8 May 1935 - 21 January 2011) - PhD in natural sciences,

Director of the laboratoire d’histo- et cytophysique at the Ecole Pratique des

Hautes Etudes from 1972 to 2001

The following short passage [202] was prepared by Bouligand’s children and gives an

insight into his personality and role as a family man:

Son affection à l’égard de son épouse et de sa famille était évidente, mais

toujours réservée et discrète...il était sévère à notre égard, et en particulier,

exigeait le silence le plus absolu pendant son travail ; mais, en dehors de ce

travail, il devenait un bon vivant, créant autour de lui une atmosphère très

détendue. Il chantait souvent en s’accompagnant de quelques notes sur le

piano et récitait des vers. Il possédait aussi un réel talent de chansonnier et les

divers évènements de sa famille donnait lieu à des couplets nouveaux. Il aimait

la marche à pied dans la campagne, connaissait très bien les champignons

et, parfois, pratiquait la pêche à la ligne. Il possédait une quantité de petits

carnets et y notait ses réflexions à tout moment. Pour lui-même il se contentait

de peu. A Paris, son bureau était la plus petite pièce de l’appartement et, dans

sa propriété de Quiberon, il se réfugiait dans une petite cabane de 2 m x 2 m

construite au fond du jardin. Il confiait toutes les questions d’argent à son

épouse, se contentant de très peu d’argent de poche (il arrivait parfois qu’il
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n’en avait plus assez pour acheter un journal!)...

[His affection for his wife and family was obvious, but always reserved

and discreet...he was strict with us, and in particular, demanded absolute

silence while he was at work. But when he wasn’t at work, he became

a bon vivant, creating a very relaxed atmosphere around him. He often

sang, accompanying himself with a few notes on the piano, and recited

verses. He also had a real talent for song, and his family’s various events

gave rise to new verses. He enjoyed walking in the countryside, was very

knowledgeable about mushrooms and sometimes went angling. He had

a number of little notebooks in which he jotted down his thoughts at any

given moment. For himself, he was content with very little. In Paris, his

office was the smallest room in his apartment, and on his property in

Quiberon, he took refuge in a little hut measuring 2 m x 2 m built at the

bottom of the garden. He entrusted all money matters to his wife, making

do with very little pocket money (it sometimes happened that he didn’t

have enough to buy a newspaper!)].

1.2 Lycée and higher education

Georges studied at the Lycée de Lorient until 1906 and he took his Baccalauréat in 1905

and 1906 in Rennes. He later took his classes spéciales at the Lycée de Nantes from 1906

to 1909, where one of his teachers was the mathematician Maurice Fréchet (during

the academic year 1907/1908) - an influential figure for Bouligand who would also

become a long-term friend and correspondent. Georges showed promising academic

results coming in first place in the entrance examination for the Ecole Polytechnique

but preferred to attend the Ecole Normale Supérieure. Poncin [202] quotes Bouligand

sharing his thoughts on this decision:

Moins brillamment admis à l’Ecole...j’optai cependant pour elle car je savais

que je pourrais y travailler plus à ma guise. C’est ainsi que, en seconde année,

ignorant tout encore de l’hydrodynamique, j’accueillis avec joie une proposition

de J. Hadamard: faire un diplôme sur les ondes liquides et approfondir les

résultats qu’il venait de donner à ce sujet...

[Although I was less brilliantly admitted to the Ecole... I nevertheless opted

for it because I knew that I would be able to work there more in my own

style. So, in my second year, still knowing nothing about hydrodynamics,

I was delighted to receive a proposal from J. Hadamard: to do a degree
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on fluid waves and expand on the results he had recently given on this

subject].

Bouligand’s contemporary at the Ecole Normale Supérieure, Maurice Janet gives us an

interesting glimpse into Bouligand’s character [202]:

En dehors de son travail, Bouligand manifestait une certaine fantaisie, tant

pour les mathématiques que pour le chant. Je me souviens qu’il essayait, à

partir d’un dessin simple, de trouver une équation pouvant le représenter....A

sa sortie de l’Ecole...il avait organisé, avec quelques camarades, leurs sœurs et

leurs cousines, une chorale qui n’hésitait pas à s’attaquer à des chœurs assez

difficiles.

[Outside his work, Bouligand showed a certain sense of fantasy, both for

mathematics and for singing. I remember him trying to find, based on a

simple drawing, an equation to try to represent it.... When he left school...

he organised a choir with a few friends, their sisters and their cousins, who

didn’t hesitate to tackle some fairly difficult choruses].

Georges passed his agrégation in mathematics in 1912 (an examination qualifying

him to teach mathematics as a civil servant within certain institutions including the

lycées and in universities), coming in third place. He became Docteur ès sciences on

13 June 1914, having defended his thesis entitled Sur les fonctions de Green et de

Neumann du cylindre. The jury was composed of Emile Picard (presiding member)

Emile Borel and Jacques Hadamard. In the report on Bouligand’s thesis, Picard

notes that ‘Ce mémoire témoigne d’une grande ingéniosité, en même temps que d’une

connaissance approfondie des travaux récents sur les équations aux dérivées partielles

de la physique mathématique’ [195]. Given their prominence in the mathematical

community at the time and their direct influence on Bouligand, it is worth briefly

introducing the mathematicians mentioned above2. Emile Picard (1894-1937), made

contributions to differential equations (including introducing the famous method of

successive approximations), the theory of functions, analytic geometry and analysis as

well as dealing with applications such as heat and elasticity. He was also influential

in the circulation of ideas regarding the theory of relativity and it is believed he was

responsible for training more than 10000 engineers in mechanics. A mathematician

and politician, Emile Borel (1871-1956) made fundamental contributions to measure

and probability theory as well as contributing to many other areas of mathematics,

2We note that these brief introductions to mathematicians, as well as those featuring later in this
thesis, draw frequently (though not exclusively) from the University of St Andrews MacTutor History of
Mathematics Archive
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from the theory of functions to mathematical physics. He also published ideas on topics

of a more pedagogical and philosophical nature, such as the role of intuition and rigour

in mathematics. He founded the Institut Henri Poincaré in 1928. Jacques Hadamard -

a prolific contributor to mathematics who worked in diverse fields including number

theory - in which he proved the famous prime number theorem, partial differential

equations (including the Dirichlet problem), mechanics, functional analysis, differential

geometry. Hadamard also famously published his ideas on the psychology of invention

in mathematics.

1.3 Bouligand’s early career as a mathematics teacher

(1914-1920)

Bouligand was exempt from military service in 1910 and was again exempt at the

start of the First World War in 1914. His exemption was maintained in 1915 and

again in 1917, due to faiblesse générale [general weakness]. Throughout the war,

Bouligand worked as a mathematics teacher, first at the Lycée Descartes, in Tours

and then at the Lycée de garçons de Rennes (today known as the Lycée Emile-Zola

de Rennes). In Tours, as of July 1914, he taught a class of mathématiques spéciales

and a première class (the second of the three years of lycée). From 1915, at the same

lycée he taught a preparatory class for students aiming to be admitted to the Saint-Cyr

military school. From August 1916 and for the rest of the war, Bouligand taught the

spéciales mathematics class at the Lycée de garçons de Rennes. He seems to have been

well appreciated by his colleagues and students alike for his professional and personal

qualities. For example:

I.G. Niewenglowski, March 1917 : "M. Bouligand est un professeur d’avenir"

IA, April 1917 "Très calme et maître de soi, M. Bouligand est en même temps un homme

du monde que la société rennaise a eu vite fait d’apprécier."

Proviseur, March 1918: "respecté pour son savoir, aimé pour son dévouement et son

attachement à ses élèves”

IA March 1918: "Homme poli, délicat, attentionné, sans la moindre morgue"

Proviseur, mars 1919 "Jeune maître très posé ; très estimé pour son savoir et pour son

dévouement et pour son caractère... Brillant professeur de spéciales"
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1.4 Bouligand at the Faculté des Sciences de Poitiers

(1920-1938)

After a brief period, between March 1920 and April 1921, working as a Maître de

Conférences at the Faculté des Sciences de Rennes, Bouligand started a position as

Professeur de Mécanique Rationnelle et Appliquée replacing René Garnier. He was also

responsible for teaching mathématiques générales for two lessons per week for one

year, starting from November 1921. Nearly ten years after his arrival at the Faculté des

Sciences de Poitiers, Bouligand became Professeur de calcul différentiel et intégral, as of

16 November 1931, a position which he held until he left Poitiers in 1938.

1.4.1 Bouligand as a teacher

Leloup presents a comprehensive study of all doctoral theses in mathematics defended

between 1914 and 1945 in France [170] and includes a significant section on the

influence of Georges Bouligand at the Faculté des Sciences de Poitiers. Leloup notes that

Bouligand’s appears to be a particularly active figure in terms of guiding students in

their doctoral studies. She highlights the significant role Bouligand played in orienting

his student’s research - specifically by guiding them in pursuing questions arising from

his own research and also points out the personal nature of the acknowledgements

included in his students’ manuscripts. With Leloup, we cite the acknowledgement

included in the 1934 thesis of Jean Capoulade [110] :

Je tiens à remercier M. Le Professeur Bouligand des utiles directions qu’il m’a

données et qui m’ont permis d’aboutir dans ce travail ; mais je lui suis surtout

reconnaissant de l’affectueuse sympathie avec laquelle il a encouragé mes

efforts, de son rôle d’animateur toujours bienveillant. Je suis particulièrement

fier d’être son Élève et d’avoir eu le plaisir et l’honneur de développer une

question dont il avait le premier aperçu toute l’importance.

[I would like to thank Professor Bouligand for the useful orientation and

advice he gave me, which enabled me to succeed in this work. But I am

especially grateful to him for the affectionate sympathy with which he

encouraged my efforts, and for his ever benevolent role as a guide. I am

particularly proud to be his pupil and to have had the pleasure and honour

of elaborating on a topic whose importance he first recognised].

Bouligand himself expresses the convergence of his teaching and his research in Poitiers

in his NOTICE sur les recherches faites, inspirées ou dirigées de 1919 à 1931, submitted
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to the Comité de la Section des Sciences Mathématiques de la Caisse nationale des Sciences

on 13 May 1931 and available at the Archives Nationales [61]. The following quotation

illustrates this and the nature of the relationship between Bouligand and his students:

J’ai dû, en raison des nécessités locales, consacrer beaucoup de temps à

l’enseignement. Mais j’ai toujours fait en sorte de rapprocher le plus étroite-

ment possible mes occupations didactiques et scientifiques. Peut-être cette

manière de voir m’a t-elle justement assuré les nombreux disciples dont je

parlerai tout à l’heure.

[Because of local needs, I had to devote a lot of time to teaching. But

I have always tried to bring together as closely as possible my teaching

and scientific activities as. Perhaps this approach has given me the many

disciples I will talk about in a moment].

The convergence of Bouligand’s teaching and research is also reflected by his significant

output while in Poitiers in terms of mathematics textbooks covering themes in his own

research. Bouligand highlights six different texts in the period 1919-1931 [61], listed

hereafter, commenting that, ‘En rédigeant ces livres, une fois pour toutes, j’ai gagné du

temps pour moi-même et j’ai orienté mes élèves dans la voie de l’effort personnel’. These

are: Cours de géométrie analytique (1919); Leçons de geéométrie vectorielle, prélim-

inaires à l’étude de la théorie d’Einstein (1924); Précis de mécanique rationnelle à

l’usage des élèves des Facultés des sciences (1925); Initiation aux méthodes vectorielles

et aux applications géométriques de l’analyse (by G. Bouligand and G. Rabaté) (1926);

Notions sur la géométrie réglée et le complexe quadratique (1929); Compléments

et exercises sur la mécanique des solides : cinématique: frottement, systèmes non

holonomes ; choc et percussions avec frottement, liasions unilatérales (1929).

Bouligand was proactive in offering extra learning opportunities for his students, for

example, Poncin reports [202] that Bouligand volunatarily organised preparation ses-

sions for students who aimed to take the agrégration, for which no formal preparation

was offered at the Faculté at that time. In addition, he organised working sessions

followed by discussion about certain questions relating to geometry.

1.4.2 In institutional life

There were seven professors at the Faculté des Sciences de Poitiers [202] (Poncin uses

the term professeur) in the early 1920s, among which two mathematicians who had no

assistant or secretary to support them with administrative tasks. Bouligand evidently
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was instrumental in gaining additional resources and recognition for the mathematics

department:

Il n’était pas question d’obtenir quoi que ce fût de l’administration centrale;

aussi essaya-t-il de convaincre les assemblées municipales et départementales

de l’intérêt que présentait le développement de la Faculté de Poitiers. Il y

parvint et obtint la création d’un emploi d’assistant et de deux maîtres de

conférences ainsi que des crédits complémentaires permettant de rétribuer un

certain nombre de chargés de cours. Enfin il obtint que Poitiers figurât sur la

liste des centres d’enseignement de mécanique des fluides créés par le ministère

de l’Air aux environs de 1930.

[There was no question of obtaining anything from the central administra-

tion, so he tried to convince the municipal and departmental assemblies

of the importance of developing the Faculté de Poitiers. He succeeded and

obtained the creation of an assistant position and two maîtres de conférences,

as well as additional funds to pay a certain number of chargés de cours.

Finally, he got Poitiers included on the list of fluid mechanics teaching

centres created by the Ministry of Air around 1930].

During the 18 years Bouligand spent at the Faculté des Sciences de Poitiers, he was

presented with opportunities to move his mathematical career elsewhere. For example,

in two letters of 1927, Bouligand declines for the second time an invitation made by

Maurice Fréchet to join the Université de Strasbourg. Bouligand had to decline the offer

due to family reasons, more specifically relating to the health of his mother who lived

with him at that time as well as for financial reasons, his mother’s pension amounting

to only 5000 francs and the cost of living in Strasbourg being higher than in Poitiers.

According to Markovitch, an official member of the International Education Board

and as reported by Reinhard Siegmund-Schulze [206], Bouligand was considered as

a possible replacement for Goursat, after the latter’s retirement from the Faculté de

Paris in 1931 but it was decided that Bouligand was to remain in Poitiers as a founding

figure of a pole of high quality mathematical research [170]. We see in a number of

letters addressed from Bouligand to René Garnier, that Bouligand aspired to move to

the Sorbonne well before his appointment at the Faculté des Sciences de Paris as of 1

October 1938.

Bouligand seems to have been a central figure in scientific life at the Faculté des Sciences

de Poitiers. For example, in addition to the working sessions mentioned above, he

organised research seminars which attracted numerous academics from France and

from abroad, including G.D. Birkhoff, O.D. Kellogg, Norbert Wiener, D. Pompeiu and F.
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Vasilesco [61].

Bouligand became a member of a number of academic institutions in France and

abroad. We note specifically that he was made Correspondant of the Académie Polonaise

des Sciences et Lettres in 1928 and in 1933 he was awarded the same title within the

Société Royale des Sciences de Liège and the Académie des Sciences de Paris in 1937.

1.5 At the Sorbonne (1938-1961)

Bouligand was appointed Maître de Conférences at the Faculté des Sciences de Paris in

1938, honoris causa due to his long service and status as professor at Poitiers. He was

later appointed as professeur sans chaire in 1939. He was appointed professeur titulaire

d’application de l’analyse à la géométrie in 1947, a position he held until his retirement

in 1961, almost 50 years after his agrégation. Poncin comments on the significance of

this position in the context of Bouligand’s lengthy career [202]:

...ce fut certainement une très grande satisfaction pour lui, car c’était l’aboutissement

de ses efforts qu’il avait entrepris dès son entrée dans l’enseignement supérieur.

[...it was certainly a source of great satisfaction for him as it was the fruit

of the efforts which he had made since the time he first entered into higher

education].

His teaching responsibilities during this time included for example classes in mathéma-

tiques complémentaires and classes and conferences in mathématiques supérieures and

géométrie supérieure. The author of this work had the good fortune of interviewing

Rudolf Bkouche (1934-2016) - mathematician, historian of mathematics and former

student of Bouligand during the 1950s, who commented,

J’ai suivi ses cours en 54. Donc il avait un cours de géométrie différentielle,

dans lequel il racontait ce qu’il raconte dans les leçons de géométrie vectorielle.

Et puis. . . il avait un cours où il parlait de tout...Mais en fait, un des grands

thèmes, c’était les fonctions implicites, les théorèmes des fonctions implicites...il

racontait sa vision des mathématiques.

[I followed his classes in ’54. So he had classes in differential geometry in

which he talks about what he discussed in the leçons de géométrie vectorielle.

And then...he had a class where he spoke about everything. But actually,

one of the main themes was that of implicit functions, the theorems on

implicit functions...he spoke about his vision of mathematics].
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Dr Bkouche highlighted the rich nature of the content of Bouligand’s teaching, while

noting that it could however become somewhat difficult to follow.

Working at the hub of intellectual life in France, Bouligand’s time at the Sorbonne

provided him with opportunities to interact with high-level academics from different

disciplines and to pursue his epistemological ideas about mathematics from different

angles. A prominent example of this is to be found in the work of the physicists and

philosophers Jean-Louis Destouches (1909-1980) and Paulette Février-Destouches

(1914-2013), at the time students of the eminent physicist Louis de Broglie (1892-

1987). For example, Jean-Louis Destouches, under the inspiration of Bouligand,

generalises a concept of Bouligand referred to as the stability of mathematical proposi-

tions and examines its application in the context of quantum physics [127].

Bouligand played an active role in academic, scientific and cultural life while in Paris.

He became a member of the Comité national de l’Histoire et de Philosophie des Sciences

(Académie des Sciences de Paris) from 1938 and later, from 1956, a member of the

Commission des Mathématiques for the Palais de la Découverte. He was instrumental in

the organisation of the jubilé scientifique of Paul Montel, which took place in 1947. In

terms of honours and distinctions received during this period, he was made Officier

de la Légion d’Honneur in January 1954 and received an honorary doctorate from the

Université de Louvain in February 1956.

We note that Bouligand participated in a number of conferences in the philosophy of

science, namely the Congrès international de philosophie des sciences in Paris in 1949

and in numerous meetings of the Société Française de Philosophie between 1950 and

1968, which covered a highly diverse range of topics, both related and unrelated to

mathematics.

1.6 A brief overview of the development of Bouligand’s

academic output (1919-1939)

We base the aspects of the present summary relating to Bouligand’s mathematical

output partly on his own summary note [61] covering the period 1919 to 1931. While

we are identifying predominant trends, we emphasise that these trends may not nec-

essarily cover all topics dealt with during the periods outlined. From 1919 to 1926,

Bouligand’s mathematical activity focused almost exclusively on the interrelated areas

of harmonic functions, the Dirichlet problem and potential theory. These efforts culmi-

nated in significant contributions to formulating and characterising the solution to a
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generalised version of the Dirichlet problem, which was first introduced by Norbert

Wiener. This topic will be discussed in depth below, we note here that Bouligand used

notably an extended notion of Green’s function, provided in three articles of 1919

in the Comptes Rendus ([18], [19] and [20]) as well as the concept he referred to as

prolongement fonctionnel (extending the domain of a functional as far as possible while

preserving certain continuity conditions) discussed for example in two 1923 articles in

the Bulletin des Sciences Mathématiques ([24], [25]) and a study of the dimensional

properties of certain sets of points on the boundary (see for example [33]). As will be

discussed later, Bouligand’s results regarding a more general approach to the Dirichlet

problem in 1924 coincided with closely related but more complete results of Norbert

Wiener. Initially unaware of each other’s work, a rapprochement between French and

American efforts occurred, as well as a personal friendship between Bouligand and

Wiener.

Between 1926 and 1928, Bouligand focused predominantly on problems in fluid

mechanics which had originally motivated his doctoral thesis. We note that Bouligand’s

work in hydrodynamics interrelates in a number of publications with his research on

the Dirichlet problem. Between 1928 and 1931, Bouligand focuses his mathematical

output around a new approach to differential geometry which he eventually called la

géométrie infinitésimale directe [direct infinitesimal geometry] - a theory aiming to rid

infinitesimal geometry of hypotheses introduced for convenience for certain methods

to be employed. This theory aims to put into practice the main ideals laid out by

Bouligand in his epistemological reflections and relies on the mathematical concepts of

contingent and paratingent, which will be explored below. Bouligand comments on the

motivation behind this new area of research as well as its connection to his previous

work on the Dirichlet problem and his epistemological views about mathematics [61]:

Mes recherches sur le problème de Dirichlet m’ont convaincu de la nécessité

d’une refonte de la géométrie infinitésimale, ayant pour effet de la débarrasser

des hypothèses de commodité, et par là même d’y remettre la causalité en

pleine lumière.

[My research into the Dirichlet problem convinced me of the necessity

to reformulate infinitesimal geometry in a way that rids it of hypotheses

introduced for convenience thereby bringing causality fully to light].

Bouligand initiated a number of his students into his programme of research in

géométrie infinitésimale directe, as will be explored in depth below. He also began, in

this period, to apply his new theory to problems in applied mathematics and mathe-
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matical physics (see for example [50]).

The most predominant themes of research between 1932 and 1937 were those of

géométrie infinitésimale directe and mathematical and epistemological considerations

relating to direct methods more generally. The mathematical works included creating

new methods in géométrie infinitésimale directe and applying them for example in

the context of differential equations and problems in mathematical physics. Notably,

in 1932, Bouligand published his textbook Introduction à la Géométrie Infinitésimale

Directe [75], presenting in a systematic and didactic way the methods developed thus

far. We also see, during this period, a greater focus on direct methods themselves.

For example, in an essay of 88 pages entitled Sur l’unité des méthodes directes [79]

Bouligand examines what he interprets to be direct methods in other areas of math-

ematics, notably in the calculus of variations, and argues that these methods are

unified by certain common characteristics. Bouligand maintained a similar focus for

the remainder of the period in question (up until 1939), perhaps with a broadening of

topics dealt with in the epistemology of mathematics.

1.6.1 Focussing in on the development of Bouligand’s reflections

on the epistemology of mathematics

As of 1927, Bouligand began publishing his reflections on topics in the epistemology

of mathematics, focusing on the concepts including intuition, methods and teaching of

geometry, and notions he referred to as direct methods and causality. These articles

were often published in the Revue Scientifique and the Revue Générale des Sciences,

while a small number of articles with a pedagogical focus were published for example

in Enseignement Mathématique. Bouligand’s reflections were occasionally published

abroad, for example in the Rivista hispano-americana di matematica (Madrid), Scientia

(Bologna) and, notably, in the Belgian journals Bulletin de l’Académie royale de Bel-

gique and Bulletin de la Société royale des Sciences de Liège. As we will see below, his

epistemological reflections interrelated with his mathematical works. His reflections

were inspired by trends in the development of mathematics during and prior to his

time and by his own prior mathematical contributions. In turn, his methodological

reflections, notably regarding infinitesimal geometry, led him to outline and pursue,

together with a significant number of students, a programme of mathematical research.

We are able to identify predominant trends in Bouligand’s work on the epistemology of

mathematics during different time periods, although we should emphasise that these

trends do not necessarily encompass all of his work. From 1927 to 1930, Bouligand’s

reflections focused equally on two distinct topics of intuition and methodology in
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geometry (particularly differential geometry), the latter of which went hand-in-hand

with the development of his mathematical works on géométrie infinitésimale directe.

From 1931 to 1933, Bouligand focused on illustrating the applicability of the founding

concepts of his géométrie infinitésimale directe to areas of mathematical physics (for

example relating to hydrodynamics and the uncertainty principle) and he reflected on

the philosophical significance of these applications from his point of view. After 1933

and for the remainder of the period in question (up until 1939), Bouligand focused

on both compiling and going some way towards formalising his concepts of causality

and direct methods, which had played a central role in his approach to differential

geometry, examining these concepts in a more general setting of mathematical and

physical theories, as well as in relation to logic (through the a concept he called the

stability of mathematical propositions). As mentioned above, after 1937 we also see

a broadening of topics dealt with by Bouligand including for example reflections on

the use of a finitist approach without relying on irrational numbers [93] and works

in which his ideas are presented in a broader setting. Regarding the latter, we take

for example his 1937 volume on the Structure des théories, problèmes infinis [96]

or his work in which he connects his reflections with his views on the teaching of

mathematics [91].



Chapter 2

Bouligand’s work in relation to the

generalised Dirichlet problem

2.1 Introduction

The Dirichlet problem - and specifically a generalisation of this problem - represents

an area of mathematics to which Bouligand made a significant contribution which has

been recognized by influential mathematicians in this field such as Norbert Wiener

[220] as well as in historical accounts such as Landkof’s in [162]. This area of research

is central to the present account of Bouligand’s mathematical and epistemological

work as it is in this context that he first implemented certain tools and concepts

which would subsequently have a decisive influence on the development of both

his epistemological views about mathematics and mathematical practice and on his

later theory of direct infinitesimal geometry. Regarding his work in the epistemology

of mathematics, key ingredients of Bouligand’s later ideas on causality and direct

methods first appear - specifically the concepts of prolongement fonctionnel and that of

structuring a mathematical theory by investigating its propositions at an appropriate

level of generality. In addition, Bouligand indicates [95] that it was his work on

the Dirichlet problem which was pivotal in inspiring him to formulate his theory of

direct infinitesimal geometry - which perhaps most fully and intentionally embodies

his ideals of causality and direct methods. These points will be explored in greater

detail in the following chapters. We note here that, in the context of his work on the

Dirichlet problem, Bouligand is led to investigating the geometry of sets, for example

by examining their dimensional properties, and through a mathematical object called

the contingent - both of these ideas are key mathematical tools of his later theory of

geometry.

In the following section, we will see that Bouligand became involved in potential

theory (a broader area of mathematics to which the Dirichlet problem belongs) at the

28
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beginning of his mathematical career - unsurprisingly given the prominence of this

area of research at the time. The Dirichlet problem is introduced formally below.

2.1.1 The problem and the context of Bouligand’s work

Peter Gustav Lejeune Dirichlet (1805-1859) made profound contributions to various ar-

eas of mathematics - in addition to being considered as one of the first mathematicians

to formally define the concept of a function, he is considered as the founder of the

study of Fourier series and made contributions to analytical number theory, potential

theory and mechanics. In his lectures on potential theory in 1856/7, he was interested

in the question below [210, p. 233], which is intimately linked with broad classes

of applications, for example in electrostatics, studying the electrical flow through a

conductor, or in thermodynamics, studying the distribution of heat for a given surface.

Formal definition of the Dirichlet problem. Given a domain D, for example in three-

dimensional Euclidean space and a continuous function f defined on the boundary δD

of our domain, the Dirichlet problem consists of finding a function V defined on D∪δD

which is harmonic in D and which takes on the same values as f on the boundary δD.

We recall that a function U is harmonic in D if U is a solution of Laplace’s equation in

D, i.e., in three dimensions this is given by:

∇2U =
∂2U

∂x2
+

∂2U

∂y2
+

∂2U

∂z2
= 0.

In this chapter, we will refer to the above problem as the Dirichlet problem or the

classical Dirichlet problem, so as to highlight the distinction with the generalised

Dirichlet problem, which will be introduced below. The Dirichlet problem is, as we

can see above, a problem which depends on the boundary conditions, given by the

function f and on the shape of the boundary itself - its complexity or regularity.

The context of Bouligand’s work. The Dirichlet problem and related questions in

potential theory represented an active field of research at the start of Bouligand’s

mathematical career. The solution of this problem in the general case was one of

Hilbert’s famous 23 unsolved mathematical problems, published in 1900. Indeed,

problem 20 is entitled ‘Dirichlet problem in the general case’ and is formulated as

follows1 [150, p. 46]:

Does each regular problem in the calculus of variations have a solution, pro-

vided that certain hypotheses are satisfied in relation to the given boundary

1The translation from French to English is my own.
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conditions, in relation for example to continuity and the possibility of differ-

entiating the functions in question successively a greater or lesser number of

times, and also necessarily provided that the notion of solution be suitably

generalised?

With this in mind, together with the fact that potential theory represented an active

area of research for Bouligand’s own mentors such as Emile Picard and Jacques

Hadamard, it is perhaps unsurprising that he became active in this area at the start

of his academic career and subsequently took an interest in extending the Dirichlet

problem. The starting point of his research in potential theory came even before the

publication of his doctoral thesis in 1914. He notes [95, p. 2] that it was Jacques

Hadamard who guided him towards a problem in fluid dynamics, which involved

harmonic functions and which led to his first published paper in 1912 [16]. Specifically

the problem in question related to the small oscillations of a heavy non-viscous liquid in

a container with fixed walls - a problem to which Hadamard had previously dedicated

his own efforts. In Bouligand’s own words,

M. Hadamard m’avait primitivement orienté vers un problème d’hydrodynamique,

l’étude des petites oscillations d’un liquide pesant, non visqueux, dans une auge

à parois fixe, problème dont il avait réussi, le premier, la mise en équations

; par là, mon attention s’était en même temps trouvée sollicitée vers divers

problèmes de théorie du potentiel [95, p. 2].

[Mr Hadamard had originally oriented me towards a problem in hydrody-

namics, the study of the small oscillations of a heavy non-viscous liquid

in a container with fixed walls - a problem which he had been the first to

have put into equations. By this route, my attention was at the same time

drawn towards various problems of potential theory].

Subsequently, Bouligand’s thesis entitled Sur les fonctions de Green et de Neumann du

cylindre [17], focuses on concepts in potential theory including the Dirichlet problem -

specifically he studies Green’s function and Neumann’s function for an infinite cylindri-

cal domain. As it is a central component of Bouligand’s contribution to the Dirichlet

problem, we note that Green’s function, developed by George Green in 1828, was the

key ingredient in a direct constructive approach to solving certain cases of the Dirichlet

problem. This function is defined with reference to a specific point P of the domain in

question and has certain key properties, namely it is equal to zero on the boundary

and becomes infinite at the point P . Neumann’s function (fonction de Neumann), a

term used by Hadamard for example in [145] is a harmonic function which plays a

role analogous to that of Green’s function [145, p. 307] for the Neumann problem2.
2Neumann problem (problème de Neumann) is a term used for example by Bouligand in [17]
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Instead of finding a harmonic function V coinciding with a given continuous boundary

function f as with the Dirichlet problem, the Neumann problem involves finding a

solution V whose normal derivative is equal to f on the boundary.

Having introduced the Dirichlet problem and the context of Bouligand’s interest in

this area of research, the following sections will explore the theme of generalising

the Dirichlet problem. As we will see below, it was discovered towards the end of

the first decade of the twentieth century that the Dirichlet problem does, in fact, not

always have a solution. As such, it is perhaps natural to wonder if the problem can

be extended in some meaningful way so that a unique and appropriate solution does

always exist. Bouligand was led to work towards the generalisation of the Dirichlet

problem via a concept he referred to as prolongement fonctionnel.
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2.2 Bouligand on prolongement fonctionnel and the

need to generalise the Dirichlet problem

The method introduced in this section, referred to by Bouligand as prolongement

fonctionnel [functional extension] plays a significant role in the present account of

his mathematical and epistemological work. Below, we consider this concept as one

of the factors leading Bouligand to seek a generalisation of the Dirichlet problem. In

addition to this, prolongement fonctionnel will appear later in this chapter as a key

method in his approach to the generalised Dirichlet problem. Finally and of central

importance to our account, prolongement fonctionnel is later considered by Bouligand

as a means of successfully studying a problem in its appropriate domain, informally

speaking, or its appropriate level of generality - a concept he later formulated under

the name of a ‘domain of causality’. This theme, and the influence of Bouligand’s work

on the generalised Dirichlet problem on his epistemological views more generally, will

be explored in greater depth in the following chapters. Below, we first present in brief

the context behind the generalisation of the Dirichlet problem, namely the discovery

that the classical Dirichlet problem is not always solvable.

2.2.1 The context - examples of the impossibility of solving the

Dirichlet problem

According to O.D. Kellogg in [157, p.603], it was generally believed until the end

of the first decade of the twentieth century that the classical Dirichlet problem was

always solvable - mathematicians were thus focused on finding sufficient methods of

solving the problem in different settings. We note that Oliver Kellogg (1878-1932) was

an American mathematician most active in the field of potential theory, including the

Dirichlet problem3. This changed with specific examples of cases for which there is no

solution. Notably, as reported by Kellogg [157, p.603], Zaremba showed in an article

of 1911 [223], which expanded upon ideas presented at the Congrès international

de mathématiciens in Rome in 1908, that the Dirichlet problem for a domain whose

boundary contains an isolated point has no solution. Henri Lebesgue went on to

provide a further example in 1913 [167], of a domain with a yet more well-behaved

nature, for which the Dirichlet problem cannot be solved. Lebesgue’s example involved

3Kellogg was a major contributor to the generalised Dirichlet problem as formulated by Wiener.
Landkof, in his 1972 textbook on potential theory [162], identifies Kellogg as one of the main contrib-
utors to the characterisation of irregular points in the generalised Dirichlet problem, together with
Bouligand and primarily Wiener himself. In this chapter, we will also refer to Kellogg’s insights of a more
historical nature regarding the development of the generalised Dirichlet problem. These are present
notably in his 1926 article [157]. Kellogg also published a textbook on potential theory in 1929 [158]
to which we will refer in order to describe certain mathematical concepts used by Bouligand from a
perspective which is representative of mathematics at the time.
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a domain bounded by a surface [214, p. 89], whose boundary contained an inward

projecting spine at the point of which any potential solution of the Dirichlet problem

could not fulfil the boundary conditions [157, p.603]. The fact that the Dirichlet

problem does not always have a solution may naturally give rise to the question as to

whether the problem may be reformulated or extended in such a way that a unique

solution does always exist and which would coincide with the solution to the classical

problem whenever the latter is solvable. As is outlined below, Bouligand became

interested in the generalisation of the classical Dirichlet problem through his prior

research in this field and through his work on the concept of prolongement fonctionnel.

2.2.2 Prolongement fonctionnel and Bouligand’s motivation for

extending the Dirichlet problem

The noun ‘functional’, or fonctionnelle in French, was first proposed by Hadamard

in 1904 or 1905, according to Taylor in [209, p. 250] - Hadamard comments in a

letter to his student Fréchet that he had decided to use this term to refer to functions

of functions (‘fonctions de fonctions’) or functions of lines (‘fonctions de lignes’). As

also noted by Taylor, functionals, in this sense, were first systematically studied by

Vito Volterra in 1887, notably in [215] and [216]. The eminent mathematician Vito

Volterra (1860-1940) in addition to contributing to the early formation of the study

of functionals, worked in areas including partial differential equations and integral

equations. In accordance with the above, Bouligand uses the term fonctionnelle to refer

to a function whose variables are themselves functions.

Bouligand comments in [24] that his investigations into the concept of prolongement

fonctionnel - the extension of functionals - were inspired by the 1922 textbook of Paul

Lévy on functional analysis [174]. Paul Lévy (1886-1971) was also a former student

of Hadamard and made important contributions to the areas of functional analysis and

probability theory. In his textbook [174], Lévy sets out to generalise certain concepts

of differential calculus, the theory of partial differential equations and the concept of a

multiple integral [174, p. 8]. The main area of application subsequently considered

relates to functionals involved in the Dirichlet problem for the Laplace equation [174,

p. 8], such as, for example, Green’s function.

Lévy’s work inspired Bouligand to consider the following question: given a functional

defined over a certain domain and with certain continuity properties, what continuity

will the functional and its derivatives have if we extend the domain over which it is

defined? Bouligand referred to the process of extending the domain of functionals

while ensuring that certain continuity properties are retained as prolongement fonc-
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tionnel. He considers the generalisation of the integral by Lebesgue as an example of

a prolongement fonctionnel with respect to the Riemann integral, since the Lebesgue

integral generalises the concept of area under a curve enabling it to be defined for a

broader class of functions than the Riemann integral.

Bouligand first studies the concept of prolongement fonctionnel from a theoretical

point of view, publishing his results notably in [24]. Subsequently, in [25], Bouligand

applies his results to the area of potential theory and indicates for example how a

prolongement fonctionnel can be applied so as to generalise Green’s function. He argues

in this paper against overly restrictive definitions of certain functionals in potential

theory and speculates that a prolongement fonctionnel of the Dirichlet problem may

well be possible and of interest. The arguments given by Bouligand here for such an

extension are twofold - first in relation to physical applications, he expresses that such

a generalisation would seem to be necessary:

Il n’est pas douteux qu’on puisse (plus ou moins commodément) prolonger le

problème de Dirichlet comme MM. Lebesgue et Denjoy ont prolongé l’intégrale.

Sans préjuger l’intérêt de cette généralisation, on peut remarquer cependant

qu’elle apparaît, au point de vue physique, comme une néccessité. [25, p. 396]

[It is not doubtful that we may (more or less conveniently) extend the

Dirichlet problem as Lebesgue and Denjoy extended the integral. Without

prejudging the interest of this generalisation, we can see that it appears,

however, as a necessity from a physical point of view].

He illustrates this point by referring to the example of the problem of finding the

thermal equilibrium of a homogeneous domain - a problem which can be directly

translated as a Dirichlet problem. He comments that this problem always has a solution

from the point of view of the physical reality, even if the boundary surface is such that

the corresponding Dirichlet problem has no solution from a mathematical point of view.

Secondly, Bouligand expresses that the extension of the Dirichlet problem seems to be a

necessity in order to bring greater coherence to the results of this area of mathematical

investigation:

Si cette recherche semble offrir, a priori un intérêt relatif, tout au moins serait-

elle nécessaire pour donner aux études sur la dépendance entre une fonction

harmonique et les données de Dirichlet dont elle provient, une forme plus

synthétique et plus facilement maniable [25, p. 397].
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[If this research seems to offer, a priori, a relative interest, at least it would

be necessary to give to the studies on the dependence between a harmonic

function and the Dirichlet data from which it comes, a more synthetic and

more easily manageable form].

In order to establish an extended version of the Dirichlet problem, Bouligand comments

that it is necessary to find a way of characterising a set of points on the boundary

which can be considered acceptable in this more extended setting, even if they would

exclude the possibility of a solution in the classical sense [25, p. 397]. We will see later

on that Bouligand responded to this requirement through his concept of improper sets.

Having expressed a need to generalise the Dirichlet problem, Bouligand goes on to

attempt such a generalisation the following year, in 1924. As we will see below, his

generalisation nevertheless assumed certain assumptions regarding the boundary and

therefore did not apply to an arbitrary domain. Simultaneously, it was the American

mathematician Norbert Wiener who first formulated the generalised Dirichlet problem

in a somewhat definitive form, without restrictions regarding the boundary - Wiener’s

ideas will be explored later in this chapter.
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2.3 Bouligand’s initial efforts towards a generalised

Dirichlet problem

Having identified a programme of research to extend the Dirichlet problem, it would

appear that Bouligand communicated on this topic with Henri Lebesgue. As explored

in this section, Lebesgue subsequently provided Bouligand with references to prior

work on the classical Dirichlet problem in which a generalisation could be said to be

present implicitly. In 1924, Lebesgue highlights this point in his own work and brings

out the concepts of regular and irregular boundary points for the Dirichlet problem.

As explained below, a mutual influence between Lebesgue and Bouligand towards the

generalisation of the Dirichlet problem can be identified. We will briefly explore all of

these ideas before introducing Bouligand’s first attempt at the generalisation of the

Dirichlet problem.

2.3.1 The generalised Dirichlet problem in seed form

In 1924, in [168] Lebesgue clearly distinguishes between two separate stages in the

resolution of the Dirichlet problem present in well-established methods to date, namely

first finding a harmonic function V associated with the boundary function f and then

investigating the behaviour of V in the neighbourhood of the boundary:

Dans toutes les méthodes de résolution du problème de Dirichlet, celle que j’ai

donnée dans les Rendiconti du Cercle de Palerme exceptée, on peut distinguer

deux parties: la construction d’une fonction V harmonique dans le domain

considéré D, attachée à une fonction continue f donnée sur la frontière F de D,

et l’étude de la continuité de V au voisinage de cette frontière F [168, p. 349].

[In all the methods for solving the Dirichlet problem, except the one I gave

in the Rendiconti du Cercle de Palerme, we can distinguish two parts: the

construction of a harmonic function V in the domain D, attached to a

continuous function f given on the boundary F of D, and the study of the

continuity of V in the neighbourhood of this boundary F ].

According to Florin Vasilesco (1897-1958)4 - a Romanian mathematician who spent

much of his mathematical career in France and who contributed to the generalised

Dirichlet problem after Wiener and Bouligand - in his 1936 article [214, p. 93], which

gives a partly historical account of the development of the generalised Dirichlet prob-

lem, Lebesgue was the first to draw attention to this distinction. In the context of the

4For more information regarding Florin Vasilesco, see [206, p. 68-72].
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second of these two steps, Lebesgue goes on to explicitly define two types of boundary

points: regular and irregular points. [168, p. 350]: a regular point is one at which

the function V is continuous and equal to f , for any continuous boundary function f ,

otherwise this point is said to be irregular. We note that if all points on the boundary

are regular, then V is a solution to the classical Dirichlet problem. If the boundary

contains an irregular point, then V cannot be a solution to the classical Dirichlet prob-

lem. Lebesgue emphasises that in investigating the regularity or irregularity of points

on the boundary, conditions can be formulated which do not require considering the

boundary function f , but only the shape of the boundary itself in the neighbourhood

of the boundary point in question [169, p. 1053] thereby highlighting the local nature

of regularity and irregularity.

In the same vein as Lebesgue’s comment above, in [214] Vasilesco presents a number

of earlier methods for solving the classical Dirichlet problem, including methods due

to Poincaré, Zaremba and Lebesgue, commenting that each of these methods involved,

even if implicitly, these two main steps but that the harmonic function obtained in the

first step was not studied in its own right as a solution to a generalised version of the

Dirichlet problem:

Quelques-uns des procédés que l’on avait donnés pour resoudre le probleme de

Dirichlet définissent bien une fonction harmonique V, attachée à des valeurs

frontières données f , et cela dans le cas d’un domaine général - défini sim-

plement comme un ensemble ouvert. Mais, soit que leurs auteurs eussent

pour objectif simplement la résolution du problème de Dirichlet classique, soit

que les critères de régularité ou d’irrégularité que l’on donnait ne permissent

pas de connaître le comportement de la fonction V en tous les points de la

frontière...une telle fonction V n’a jamais été désignée pour être solution d’un

problème de Dirichlet plus étendu que le problème classique, devant remplacer

celui-ci dans les cas où il est impossible [214, p. 94].

[Some of the procedures we used to solve the Dirichlet problem define

a harmonic function V, attached to given boundary values f , and this in

the case of a domain defined simply as an open set. However, either the

authors’ objective was simply to solve the classical Dirichlet problem, or the

criteria of regularity or irregularity given did not allow the behaviour of the

function V to be known at all points on the boundary...such a function V

has never been designated as the solution to a Dirichlet problem which is

more general than the classical problem, and which is intended to replace

the latter in cases where it is impossible to solve it].
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After Bouligand took an interest in extending the Dirichlet problem, it would appear

that Lebesgue subsequently took an interest in Bouligand’s research in this direction

and provided him with certain references in which the situation described by Vasilesco

above is present. This can be seen in Bouligand’s comments in [25]:

M.H. Lebesgue a bien voulu s’intéresser à mes recherches et me signaler dans

cet ordre d’idées certains travaux5 de MM. B. Levi, Fubini...et Zaremba... [25,

p. 387]

[Mr H. Lebesgue took an interest in my research and indicated to me certain

works along these lines due to B. Levi, Fubini...and Zaremba...].

It is interesting to note that the mutual influence between Bouligand and Lebesgue

regarding their work on the Dirichlet problem is again seen in the 1924 article of

Lebesgue referred to above [168], in which Lebesgue comments that it was Bouligand’s

ideas in [29] which provided him with an opportunity to publish his own results re-

garding conditions for regularity, irregularity and impossibility of the classical Dirichlet

problem:

L’occasion de faire connaître ces diverses conditions m’est fourni par une Note

fort intéressante dans laquelle M. Bouligand retrouve une condition de régu-

larité, obtenue par M. Zaremba, puis la généralise considérablement [168,

p. 350].

[The opportunity to make these divers conditions known is provided to me

by a highly interesting Note in which Mr Bouligand finds a condition for

regularity obtained by Mr Zaremba, then generalises it considerably].

2.3.2 Bouligand’s first attempt to extend the Dirichlet problem -

Sur le problème de Dirichlet harmonique (January 1924)

In January 1924 [29], Bouligand sets out to apply the concept of prolongement fonction-

nel to formulate an extended version of the Dirichlet problem. His approach centered

around the extended version of Green’s function which he had first considered in [18].

Given the central role of Bouligand’s extended Green’s function in the present paper

and in his subsequent work on the generalised Dirichlet problem, it is worth elaborat-

ing briefly on this point. As can be seen from the results of Lebesgue in [167] and as

reported by Tazzioli in [210, p. 236], Green’s function does not exist for all domains
5The works of Levi and Fubini mentioned above can be found for example in [172] and [139].

Zaremba’s article referred to above by Bouligand is [222].
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and boundaries and was defined by Green with reference to regular domains [210,

p. 235], that is bounded by surfaces which do not contain any non-differentiable lines.

Bouligand shows in [18] how a generalisation of Green’s function can be obtained for

a domain D without such restrictions imposed on the boundary. This function is the

limit of the Green’s functions of a sequence of nested regular domains whose union is

D.

Bouligand sets out the main goal of his paper - that is applying the method of pro-

longement fonctionnel to extend the Dirichlet problem as follows in the opening lines

of [29]:

L’idée d’envisager une fonctionnelle dans le champ le plus large, où la continu-

ité permet de l’étendre, s’applique au problème de Dirichlet, et permet dans

les cas d’impossibilité signalés par M. Henri Lebesgue, de définir une solution,

susceptible, en restant bornée, d’enfreindre parfois la condition aux limites en

certains points de la frontière [29, p. 55].

[The idea of considering a functional in the broadest field, where continuity

allows for extension, applies to the Dirichlet problem, and makes it possible,

in the cases of impossibility pointed out by Mr Henri Lebesgue, to define

a solution which, while remaining bounded, may sometimes violate the

boundary condition at certain points of the boundary].

We note however that Bouligand’s results in [29] involved certain assumptions regard-

ing the nature of the boundary, in particular he assumes that the boundary is such

that Fredholm’s method - a method for solving integral equations seen as functional

equations, applicable to the Dirichlet problem6 - can be applied at everywhere except

at isolated points or at a finite number of line segments of the boundary [29, p. 55].

The specific form of Bouligand’s generalised solution is given below and is a slight

rewording of his results in [29, p. 56]. However, the precise form is not of central

importance to the present account and the reader is as such invited to skip the details.

Theorem. Let D be a domain with boundary δD. Let M be a regular point of the

boundary. Then Bouligand argues that:

1. The normal derivative of the extended Green’s function for the point M , denoted by
dGM

A

dnM
dSM is well-defined and equal to 4π for any point A ∈ D.

6For more information on this method, see [2].
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2. The integral, I of the following function is harmonic in D and bounded7:

f(M)

4π

dGM
A

dnM

dSM

3. If M0 is a regular boundary point, then I tends towards f(M0) as A tends towards

M0.

The integral I is defined by Bouligand to be the generalised solution of the Dirichlet

problem and it can easily be seen from the above to coincide with the solution to the

classical Dirichlet problem whenever such a solution exists. Building on results of his

own previous work and of Zaremba, Bouligand goes on to give conditions for an irreg-

ular boundary point to be prohibitive [29, p. 56], that is, a boundary point at which

Bouligand’s generalised solution I is not continuous. The geometrical characterisation

provided is, Bouligand highlights, of a purely local nature. He subsequently uses his

results to provide a condition for the solubility of the classical Dirichlet problem. We

omit the details of this theorem and refer the reader to [29, p. 57].

As mentioned above, at the same time as Bouligand’s generalisation, Norbert Wiener

formulated a more complete generalisation of the Dirichlet problem which did not

assume extra restriction on the boundary. It is worth exploring briefly Wiener’s

formulation of the generalised Dirichlet problem as it was to this theory that Bouligand

subsequently made significant contributions - once he had become aware of Wiener’s

work, incorporating both new ideas and those brought out in his previous publications.

7Bouligand does not explicitly define the function f(M) here but it would seem reasonable to
speculate that it denotes the given continuous boundary function for the Dirichlet problem for the
domain D.
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2.4 Wiener’s formulation of the generalised Dirichlet

problem (January 1924)

Norbert Wiener (1894-1964) was an American mathematician who is known for his

contributions to potential theory and probability. He was also active in areas outside of

mathematics having made, for example, key contributions to the development of cyber-

netics. Marcel Brelot (1903-1987), who himself later made significant contributions to

potential theory, comments in [108] that it was Norbert Wiener who gave a ‘definitive

form of the generalized solution of the Dirichlet problem for a continuous given boundary

function’ [108, p. 39]. This is echoed by Vasilesco who comments further in [214,

p. 95] that Wiener’s procedure for finding a harmonic function V to be considered

the generalised solution was independent of the idea of solving the classical Dirichlet

problem. Wiener showed that the function he considered a solution always existed

and was unique. No extra assumptions were placed on the boundary and Wiener’s

solution coincided with the classical solution whenever the latter exists. These results

were published [218] in the same month of 1924 as Bouligand’s work discussed above,

however, as discussed below, the two were at that point unaware of each other’s work.

2.4.1 Wiener’s theorem

As described by Marcel Brelot in [108], Wiener’s solution was the limit of the classical

solutions for an increasing nested sequence of open sets Dn ⊂ D (where ∪Dn = D) for

which the Dirichlet problem is solvable. The boundary function taken for each Dn is

the restriction to the boundary of Dn of a continuous extension of the initial boundary

function f . We express Wiener’s theorem formally below. This is a slight rewording of

the theorem as expressed by Wiener in [218].

Theorem. Let D be an open domain (i.e. an open connected set) in n-dimensional

Euclidean space with boundary δD. Let f be a continuous function defined on δD. Then

we have:

1. There is a continuous function F defined on D and δD, which when restricted to

the boundary δD coincides with f .

2. There exists a sequence of nested domains D1 ⊆ D2 ⊆ D3 ⊆ ... which converges

towards D and for which the Dirichlet problem is solvable in the classical sense.

3. For each k ≥ 1 construct the function Vk which is the solution to the Dirichlet

problem associated with the domain Dk. and the continuous function fk, where

fk is the restriction of f to the boundary of Dk. Then the sequence of functions Vk

converges uniformly to a harmonic function V over any closed subset of D.
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4. The existence of this function V is independent of the choice of function F and of

the choice of domains and boundaries Dk and δDk.

This function V is defined to be the solution to the generalised Dirichlet problem. One

of the natural questions that arise at this point is - in the context of the generalised

Dirichlet problem - how do we characterise the conditions under which the classical

Dirichlet problem is soluble? As we see below, Wiener used his generalised solution to

introduce the notion of the capacity of closed sets and used this concept to characterise,

in a somewhat geometrical way, the regularity of boundary points - that is, the property

of a boundary point whereby it does not exclude the possibility of a solution to the

classical Dirichlet problem.

Before moving on, we first note here that the term ‘generalised Dirichlet problem’ has

also been used to refer to the Dirichlet problem for general equations of which the

Laplace equation is a specific case. For example, Archibald and Tazzioli in [2] refer to

the generalised Dirichlet problem for elliptic equations of the following form:

∂2u

∂x2
+

∂2u

∂y2
+ a

∂u

∂x
+ b

∂u

∂y
+ cu = f,

a, b, and c being functions of x and y. As noted by Archibald and Tazzioli, this problem

was studied near the beginning of the 20th century, for example by Picard in [194]

and by Italian mathematicians such as Almansi, Lauricella, Boggio and Marcolongo.

The topic is dealt with for example by Marcolongo in the context of elasticity theory in

[179].

2.4.2 Wiener’s concept of capacity for sets

In addition to proving the existence and uniqueness of a solution to a generalised

Dirichlet problem, in [218], Wiener generalises the concept of the electrostatic capacity

of a conductor to define the capacity of an arbitrary subset of Rn. For simplicity, we

express Wiener’s concept of capacity in the form provided by Kellogg in [157]:

Let B be a bounded set. Let B′ be the set consisting of B and its limit points. Kellogg

comments that B′ will certainly contain the entire boundary δD of a domain D

extending to infinity. We denote The solution of the generalised Dirichlet problem

for D and the boundary values 1 on δD by ν, referred to by Kellogg as the conductor

potential of B. The capacity of B is obtained by taking the following integral over any

smooth simple surface containing B:
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1

4π

∫∫
dν

dn
dS

Wiener used this concept of capacity to study the regularity of boundary points in this

more general setting of the generalised Dirichlet problem. As indicated for example, in

[219, p. 1052], Wiener uses capacity to provide a new, quasi-geometric necessary and

sufficient condition for the regularity of a boundary point [214, p. 95] - thus providing

a necessary and sufficient condition for the solubility of the classical Dirichlet problem:

Theorem. ‘Let O be a point of the boundary C of a an open set D in three-dimensional

space. Let λ be a positive number smaller than 1. Let γn be the capacity of the set of all

points Q which do not belong to D, such that

λn ≤ OQ ≤ λn−1.

Then O is regular or irregular according to whether

γ1
λ

+
γ2
λ2

+ . . .+
γn
λn

+ . . .

converges or diverges’ [219, p. 1052].

In [219, p. 1052], Wiener compares the above result to a necessary and sufficient

condition for regularity previously provided by Lebesgue in [168, p. 353], which was

of a less geometrical nature. He comments, regarding Lebesgue’s result:

Quoique cette condition soit nécessaire et suffisante, comme elle manque cepen-

dant de caractérisation géométrique, on ne peut pas la considérer comme une

solution définitive du problème de Dirichlet [219, p. 1052].

[Although this condition is necessary and sufficient, since it lacks however a

geometric characterisation, it cannot be considered as a definitive solution

to the Dirichlet problem].

We will see below that Bouligand also contributed to the geometrical characterisation

of boundary points in the context of the generalised Dirichlet problem, through his

concepts of dimension and improper sets.

2.4.3 Concluding remarks

Wiener was the first to the give what can be viewed as a complete and definitive form of

the problem towards which Bouligand had been working - a generalised version of the

Dirichlet problem which has a solution for any domain and corresponding continuous
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boundary conditions, the key idea being to define the solution in terms of the solutions

to a sequence of nested domains for which the problem is soluble in the classical sense.

Wiener’s formulation of the concept of electrostatic capacity for sets provided a tool for

studying the nature of boundary points in a somewhat geometrical manner. This tool

provided a method applicable from this new standpoint of the generalised problem

which helped to characterise the cases in which the classical Dirichlet problem has a

solution.

Having presented Wiener’s formulation of the generalised Dirichlet problem, we will

go on to present a number of Bouligand’s contributions to this theory. In what way

was Bouligand led to contribute to Wiener’s theory, having himself worked towards his

own generalisation? Wiener and Bouligand were initially mutually unaware of each

other’s work on the generalisation of the Dirichlet problem, published around the same

time. However, shortly after the publications of 1924 explored above, a rapprochement

between the French and American protagonists took place which led to collaborative

exchanges between Wiener and Bouligand and to Bouligand’s contribution to the

elaboration of the theory formulated by Wiener. After first presenting Bouligand’s

work, this rapprochement will be explored in more depth below.

Before considering the above questions, we will first place our account in context by

introducing Bouligand’s 1925 visit to the University of Krakow, in Poland. We will

draw significantly from the paper which arose from this visit to present Bouligand’s

contributions to Wiener’s theory. The relevance of this context goes further: Bouligand’s

visit influenced his work on potential theory as well as the later development of his

direct infinitesimal geometry and the epistemological views motivating it.
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2.5 Bouligand’s visit to Poland in 1925 and his connec-

tion with Polish mathematics

Bouligand was invited in 1925 to the University of Krakow by the eminent Polish

mathematician Stanisław Zaremba. Zaremba’s research included notably partial

differential equations, potential theory, including the Dirichlet problem, and more

applied considerations in mathematical physics. Zaremba had strong connections with

the French mathematical community, within which he was highly respected, and spent

11 years teaching and researching in France. During Bouligand’s stay in Poland, he

taught a course from mid October to mid December (the first trimester of the academic

year 1925/1926) on recent advances in the Dirichlet problem, including notably the

work of Norbert Wiener and Bouligand’s own original results. The subject matter of

Bouligand’s course and the new results generated by him around this time led to his

1926 publication in the Annales de la Société Polonaise de Mathématique entitled Sur le

problème de Dirichlet [36]. He was subsequently made Correspondant de l’Académie

Polonaise des Sciences et Lettres and he was highly interested in cultivating scientific

collaborations between France and Poland, as indicated in his letter to René Garnier

dated 10 November 1925:

...Pour ma part, je souhaite de voir se développer ces relations intellectuelles

franco-polonaises... [For my part, I hope to see the development of these

Franco-Polish intellectual relations] [136].

Bouligand’s interest and involvement in Franco-Polish scientific relations later led to

his involvement in French initiative in 1945 to re-establish cultural relations with

Poland. Poncin comments [202],

...la notoriété acquise en Pologne grâce à ses leçons de Cracovie, restées célèbres,

devait, en 1945, le désigner pour participer à un haut niveau à la mission

chargée de rétablir des relations culturelles avec ce pays...

[the fame acquired in Poland thanks to his lessons in Krakow, which have

remained famous, meant that in 1945 he was chosen to take part at a high

level in the mission for re-establishing cultural relations with that country].

We also note that Bouligand identified his encounter with the Polish school of mathe-

matics as an influential event in spurring his epistemological reflections. This is seen

in a letter addressed to Maurice Fréchet dated 24 November 1938 [135] - a letter in

which Bouligand retraces the development of his ideas relating to the concept he refers

to as causality. He comments in the opening lines, ‘Quand je suis allé à Cracovie, fin
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1925, j’ai été très frappé par l’esprit de l’Ecole polonaise’. We will further explore this

influence in the following chapter.
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2.6 Bouligand’s contributions in the context of the

generalised Dirichlet problem as formulated by

Wiener

In his 1925 paper [220], Norbert Wiener comments that, from his point of view at the

time, the generalised Dirichlet problem had reached a high level of ‘completeness and

definitiveness’. He identifies three main stages of progress which led to this situation

as follows and indicates the significant contribution of Bouligand:

In this development there have been three principal stages or moments: (1)

the envisagement of the first boundary value problem (which, as Lebesgue has

shown, need not always admit a solution) as a special case of a more general

linear problem which is always soluble for continuous boundary conditions;

(2) the precise determination of the types of boundaries for which the solution

of this more general problem for any continuous boundary condition is ipso

facto a solution of the first boundary-value problem in the classical sense; (3)

the extension of the solution to very general cases of discontinuous boundary

conditions. Stage (1) has been clearly outlined by Lebesgue, and has been

developed in detail by Bouligand and Wiener, who have likewise obtained

what may be regarded as a substantially complete theory of stage (2). In stage

(3), the furthest developments thus far obtained are those of Evans8 and of

Wiener... [220, p. 21]

Thus we see that Wiener identifies Bouligand as a major contributor to the formulation

of the generalised Dirichlet problem and to the characterisation - in the setting of

the generalised problem - of the boundaries for which the classical Dirichlet problem

always has a solution. Further, Landkof’s comments in [162] reinforce Bouligand’s

recognized contribution to this problem:

At the beginning of the 20th century the work of S. Zaremba and especially

of H. Lebesgue attracted the attention of mathematicians to the unsolvable

cases of the classical Dirichlet problem. Through the efforts of O. Kellogg, G.

Bouligand, and primarily N. Wiener, by the middle of the 20th century the

problem of characterizing the so-called irregular points of the boundary of a

region (i. e. the points at which the continuity of the solution of the Dirichlet

8We note that Griffith Evans (1887-1973) was an American mathematician whose areas of con-
tribution included potential theory, functional analysis and integral equations. He was an important
institutional figure in mathematics in America as chairman of mathematics at Berkeley during the 1930s
and 1940s and for some time as the vice-president of the American Mathematical Association and of
the Mathematical Association of America.
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problem may be violated) was completely solved and a procedure to obtain a

generalized solution to the Dirichlet problem was described.

In this section, we will focus on three main aspects of Bouligand’s contribution drawing

predominantly from papers between 1924 and 1928. We will first present briefly cer-

tain of his efforts towards the characterisation of regular and irregular boundary points

in the context of the generalised Dirichlet problem. This theme of research can be

seen as belonging to the second stage in the development of the generalised Dirichlet

problem outlined by Wiener above and in the context of which he identifies Bouligand

as a main contributor - namely characterising the types of boundaries for which the

solution to the generalised Dirichlet problem is necessarily a solution of the classical

problem. Indeed, if the boundary has no irregular points, then the classical Dirichlet

problem has a solution. Secondly, we will explore a concept referred to by Bouligand as

an improper boundary set - an idea he introduced in an effort to study the distribution

of regular and irregular points. In addition to the fact that this represents an original

contribution by Bouligand, this concept is central to our account as he uses it to classify

different types of result in the study of the generalised Dirichlet problem according to

their level of generality. This relates closely to aspects of his epistemological ideas he

subsequently expressed in the following years, starting with two articles of 1927 and

1930 explored in the following chapter. Next, we will explore Bouligand’s approach

to characterising improper sets through the concept of dimension. As is explained

in the corresponding subsection, these ideas again relate closely to Bouligand’s later

epistemological and mathematical theories as well as representing an area of his work

broadly cited today.

We have chosen to present Bouligand’s contributions from the single standpoint of

the generalised Dirichlet problem. This includes the presentation of certain ideas

which were initially published by Bouligand in the context of the classical Dirichlet

problem and which were later incorporated into the generalised setting. We have

chosen to proceed in this manner as the unifying theme of this thesis is to explore the

interrelation between the development of Bouligand’s ideas on the epistemology of

mathematics and his mathematical works. As we will see in the following chapters,

the development of the generalised Dirichlet problem and Bouligand’s work in this

area had a decisive influence on his epistemological reflections.

The presentation below draws considerably from elements of Bouligand’s 1926 article

entitled Sur le problème de Dirichlet [36], which represents, as mentioned above, a

major part of the contents of the lecture course he taught at the University of Krakow

during the first trimester of the academic year 1925-1926. Bouligand refers at various
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points in this article to his own prior work on the Dirichlet problem between 1919

and 1924, thus situating his own contributions in the context of the new theory. In

addition, he presents a number of new noteworthy results. Again, in this article, the

concept of prolongement fonctionnel appears in the foreground:

Dans le problème de Dirichlet, notre méthode sera une méthode de prolonge-

ment fonctionnel. Cette Méthode, telle que nous allons l’exposer, peut être

regardée comme la résultante des travaux de M. Norbert Wiener...et des

nôtres... [36, p. 60]

[In the Dirichlet problem, our Method will be a method of prolongement

fonctionnel. This method, as we will present it here, may be regarded as

resulting from the work of Norbert Wiener...and from our own work...]

As is seen below, another key tool in Bouligand’s results was his extension of Green’s

function introduced above. In addition to the results mentioned below, Bouligand

comments in [95, p. 9] this tool enabled him to provide a simplification of the proof of

Wiener’s theorem ([36, p. 74-76]).

2.6.1 The characterisation of regular and irregular points of the

boundary in the generalised Dirichlet problem

In the setting of the generalised solution to the Dirichlet problem, a regular point is

a point Q on the boundary Σ for which the solution V of the generalised Dirichlet

problem tends towards f(P ) when P → Q in whatever manner [36, p. 88]. Bouligand

used his generalised version of Green’s function to introduce a new way of characteris-

ing regular points in the context of the generalised Dirichlet problem. Specifically, he

showed first in [28, p. 1054], (once already aware of Wiener’s work) that the following

theorem holds:

‘In order that a point Q of Σ be regular, it is necessary and sufficient that the

Green’s function G(A,P ) tends to zero as P tends in whatever manner to the

point Q.’ [36, p. 88]

The following result gives a different necessary and sufficient condition which, Bouli-

gand states, brings to light in a more immediate manner the local nature of the property

of the regularity of a boundary point:

‘In order that a point Q0 of Σ be regular, it is necessary and sufficient that one

can find, in the portion Ωρ of Ω inside a sphere of centre Q0 and radius ρ a
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harmonic function H(P ) which is positive or zero (but not ≡ 0) in Ωρ, and

which tends to zero as the point P tends to Q0 in an arbitrary manner.’ [36,

p. 88]

Bouligand also provided results helping to characterise irregular points in the context

of the generalised Dirichlet problem. To give one example considered as noteworthy

by Bouligand in his later note on his own works [95, p. 10] we reproduce the following

necessary condition for irregularity:

‘In order that a point Q0 of Σ be irregular, it is necessary that we have

lim
ρ→0

σ

4πρ2
= 1

where σ denotes the area of the open domain consisting of the points of Ω

which are on the surface of the sphere with centre Q0 and radius ρ.’

Bouligand’s proof of the above result in [36, p. 89], relies on Wiener’s theorem regard-

ing the existence of the solution to the generalised Dirichlet problem.

A further method for characterising irregular points. Regarding criteria for the irreg-

ularity of boundary points in the generalised Dirichlet problem, Bouligand comments

in [61, p. 3]

...rejetant à l’infini, par la transformation de Lord Kelvin, le point frontière

dont on veut éprouver l’irrégularité, je réussis à obtenir un critère offrant aussi

un grand degré de généralité...

[...sending to infinity, by means of Lord Kelvin’s transformation, the bound-

ary point for which we wish to verify the irregularity, I succeeded in

obtaining a criterion which also offers a great degree of generality...]

In order to convey a basic understanding of Bouligand’s work in this direction, it is

useful to briefly outline the concepts of inversion and the Kelvin transform, from the

point of view of mathematics during the 1920s. We stress that the details are not

central to our account. The Kelvin transform is a commonly used tool of potential

theory, used in the investigation of the Dirichlet problem, and is defined in terms

of the concept of an inversion. Kellogg states in [158, p. 231] that two points, for

example in three-dimensional space, ‘are said to be inverse in a sphere...if they are on

the same ray from the center, and if the radius of the sphere is a mean proportional

between their distances from the center.’ As such, an inversion is a function which sends
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every point within a sphere to its inverse, in the above sense of the word. The Kelvin

transform then, is a transformation which sends a harmonic function which is defined

for a domain d and boundary δd to another harmonic function defined on the inverse

domain and boundary D and δD. If O is a boundary point in δd and is the centre of

the inversion in question, then the Kelvin transform sends O to infinity. For further

details regarding the Kelvin transform, in relation to the time period in question, we

refer the reader to Kellogg’s account in [158, p. 231-233]. The result mentioned by

Bouligand would seem to be the following, provided in [28, p. 1054]

...selon que O est ou non point irrégulier (ou prohibitif) de d, le domaine

inverse D, qui s’étend à l’infini, est ou non capable d’une fonction harmonique

bornée et prériphériquement nulle.

[...depending on whether or not O is an irregular (or prohibitive) point

of d, the inverse domain D, which extends to infinity, is or is not capable

of having a harmonic function which is bounded and equal to zero on the

boundary].

Bouligand calls inverse domains for which such a function does exist exceptional

domains and refers to inverse domains for which there is no such function normal

domains. He goes on in [28] to provide a number of criteria for a domain to be normal

or exceptional. Kellogg highlights such results of Bouligand, obtained via the Kelvin

transform, commenting in [157, p. 615] that ‘Bouligand has given special attention to

the character of the infinite point as a boundary point.’. Results in this direction can also

be found in [30] and in [36, p. 97-101].

2.6.2 Bouligand’s improper sets and capacity

As seen above, Bouligand indicates in [29, p. 55] that, in order to pursue the study

of a generalised version of the Dirichlet problem, it is necessary to find a way of

characterising sets of points on the boundary which may well exclude the possibility of

a solution for the classical Dirichlet problem but which we could consider acceptable

in the context of the generalised problem. To this end, In 1925 in [36, p. 78] he

introduces the concept of improper sets and shows that his improper sets are the same

as Wiener’s sets of capacity zero [36, p. 82]. Bouligand defines improper sets in [37,

p. 250] as follows as those consisting entirely of points for which the limit inferior of

Green’s function is greater than zero.

Definition. Let D be a domain with boundary δD and let S be a subset of δD. If for all
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(fixed) points A in S we have that lim infP→AG(A,P ) > 0, 9then we say that S is an

improper set. Here G(A,P ) is the Green’s function corresponding to the point A and P in

D is variable.

We note that Bouligand emphasises that the concept of improper set is intrinsic:

Il faut observer que la notion d’ensemble imropre est une notion intrinsèque:

autrement dit, le fait que σ1 est une portion impropre de la frontière Σ n’est

nullement spécial à celle-ci [36, p. 79].

[It should be noted that the notion of an improper set is an intrinsic notion:

in other words, the fact that σ1 is an improper portion of the boundary Σ is

in no way specific to that portion].

The basic idea of Bouligand’s improper sets is that of a set of points on the boundary

which can be removed from the boundary without altering the solution to the gener-

alised Dirichlet problem [37, p. 250]. As such, Bouligand emphasises that improper

sets, or sets of zero capacity, play the same role in the Dirichlet problem as do zero

measure sets in the theory of integration [36, p. 82], that is, ‘...les informations portées

par de tels ensembles peuvent être arbitrairement altérés sans que la solution s’en trouve

modifiée (en maintenant ces données bornées)...’ [36, p. 82]

A new emphasis regarding sets of zero capacity. It would appear that Bouligand was

the first to emphasise the analogy between zero capacity sets and sets of zero measure

in the theory of integration, and the first to highlight the concept of a frontière réduite

when studying the distribution of regular and irregular points on the boundary - that

is a boundary for which all improper sets have been removed. Indeed, he comments in

[95, p. 10],

En abordant pour la première fois le difficle problème de la distribution des

points réguliers et irréguliers sur la frontière d’un domaine, j’ai attiré le

premier l’attention sur la nécessité d’éliminer les ensembles impropres pour

aboutir à la définition d’une frontière réduite.

[When I first tackled the difficult problem of the distribution of regular

and irregular points on the boundary of a domain, I was the first to draw

attention to the need to eliminate improper sets in order to arrive at the

definition of a reduced boundary].
9In fact Bouligand writes lim infPA→0 G(A,P ) > 0. The above appears to be a reasonable interpre-

tation.
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This is reinforced by Vasilesco’s comments in [213, p. 83]:

M. Bouligand s’étant proposé d’étudier la solution du problème de Dirichlet

généralisé à la frontière du domaine, et plus particulièrement la fonction

de Green généralisée, qu’il avait définie dès 1919....a été conduit à l’idée

de débarrasser la frontière du domaine de certains ensembles de points, en

lesquels la fonction de Green n’avait pas de singularités. Ces ensembles fermés

et de capacité nulle, M. Bouligand les appelait impropres...

[Mr Bouligand, having set out to study the solution of the generalised

Dirichlet problem at the boundary of the domain and in particular the

generalised Green’s function that he had defined as early as 1919...was led

to the idea of ridding the boundary of the domain of certain sets of points

at which Green’s function had no singularities. Mr Bouligand called these

closed sets of zero capacity improper sets...]

Using improper sets to categorise results according to their level of generality.

While the ideas included under this heading do not necessarily represent a key mathe-

matical contribution of Bouligand to the generalised Dirichlet problem, they certainly

do shed light on his views later expressed on the epistemology of mathematics, views

which were also implemented in his approach to mathematics. He highlights in [36,

p. 77] two categories of mathematical results in the context of the generalised Dirichlet

problem. Results which are of the first type (première espèce) are defined as those

which hold for an arbitrary boundary, or in Bouligand’s words, sans restriction à la

généralité de la frontière). Results of the first type would include, for example, Wiener’s

theorem regarding the existence of the solution to the generalised Dirichlet problem,

it’s uniqueness and the various general properties of this solution that can be estab-

lished. Bouligand goes on to suggest that, if we wish to investigate the behaviour of the

solution V of the generalised Dirichlet problem in the neighbourhood of the boundary

and in relation to the boundary conditions given by the boundary function f , then it

is necessary to operate in a less general setting. For Bouligand, these propositions of

the second type (de seconde espèce), are defined as those which involve assuming that

the boundary of the domain in question is a reduced boundary (one which contains

no improper sets). For example, he identifies the following result regarding Green’s

function as a theorem of the second kind:

Theorem. Assume that Σ contains no improper sets. Then there exists a unique function

G(A,P ) such that the function 1
AP

− G(A,P ) is harmonic in Ω and such that for any

point Q on Σ, the smallest limit of G(A,P ) at Q is equal to zero. This function is the

Green’s function of the generalised Dirichlet problem. [36, p. 82]
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We note that the distinction between results of the first and second type by Bouligand

plays no active mathematical role in [36]. As such, this distinction seems to appear

purely as a means of organising mathematical ideas into categories based on their

level of generality. This theme will be expanded upon in the following chapter, in the

context of Bouligand’s views on studying geometrical concepts at the appropriate level

of generality, or within the correct domain of causality.

2.6.3 Dimensional properties of sets

As we have seen above, the idea of improper sets represent one of the central con-

tributions of Bouligand in the study of the generalised Dirichlet problem. Here, we

elaborate on a way in which Bouligand went about characterising these sets, namely

by studying the dimensional properties of the boundary. Here we outline in brief the

details of the mathematical formulation of these ideas. In addition to their role in

relation to improper sets, it seems relevant to explore these ideas for three other main

reasons. First, Bouligand’s work on the concept of dimension is today broadly known

in the context of the modern study of fractal geometry. Secondly, as we will see below,

Bouligand highlights that his concept of dimension is invariant under a particular type

of transformation and therefore labels it as belonging to the area which he refers to

as topologie restreinte du premier ordre, which we will define below. The point we

wish to highlight here is that this is an example of an effort on Bouligand’s part to

identify a setting in which a concept or problem should be studied - a theme upon

which he later reflects in his epistemological articles under the heading of domains

of causality or natural domains of existence. Finally, Bouligand’s ideas regarding the

dimensional properties of sets represent one factor which inspired certain methods in

his later theory of direct infinitesimal geometry.

In order to characterise improper sets in the generalised Dirichlet problem, Bouligand

adopted a geometrical approach which relied on studying the dimensional properties

of the boundary. Bouligand published his first results on this topic in [33], initially

submitted to the Comptes Rendus in a sealed envelope10 in 1924, later opened and

published the following year. Further results appear in a more elaborated form in

the following articles published in consecutive years between 1926 and 1929: [36],

10The sealed envelope (pli cacheté) was traditionally a means of proving precedence, for example
for work which was not yet necessarily fully polished. It would seem that Bouligand does not explain
his motivation for submitting this article in a sealed envelope. However, Wiener states in his autobio-
graphical work [221] published much later in 1956 that ‘...Bouligand obtained some extremely important
results which he had not yet had time to polish up. He took council with Lebesgue, who advised him to
submit these results to the academy in a sealed envelope, after a custom sanctioned by centuries of academy
tradition’. However, as will be seen later in this chapter, Wiener’s account of events taking place much
earlier is potentially partially inaccurate and it is not clear whether he is indeed referring to Bouligand’s
work in [33] or not.
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[37] (in which a more pedagogical presentation is given), [43] and [45]. Bouligand

comments regarding his motivation:

Il est important d’étudier l’allure d’un potentiel d’après la structure de l’ensemble

potential et les caractères de la répartition des masses sur cet ensemble [37,

p. 240].

[It is important to study the allure of a potential according to the structure

of the potential set and the characteristics of the distribution of masses on

this set].

Here we note that an example of the potential described above could be the solution

to the generalised Dirichlet problem, where the ensemble potentiant is the boundary of

the domain in question. In addition, Bouligand comments regarding improper sets:

C’est précisément pour discriminer ces ensembles que j’ai songé à introduire le

nombre dimensionnel [It is precisely in order to distinguish these sets that I

thought to introduce the dimension number] [37, p. 250].

While considering the origins and motivations of Bouligand’s study of the dimensional

properties of the boundary, we note that Bouligand recounts in [36, p. 106] that

it was an example provided by Kellogg in [156] which inspired him to explore this

approach11.

Following Bouligand’s account of his result in [37], we note that he first obtained

results which enabled him to characterise improper sets in terms of mass distributions

on that set. He then introduces the dimension number, allowing him to translate these

theorems in such a way that brings to light the geometrical properties of the sets with

which they deal [33, p. 39]. We will omit the details of the theorems formulated in

terms of mass distribution and focus rather on the characterisation of improper sets in

terms of dimension.

The essential ingredient of Bouligand’s approach to dimension was that of comparing

the way in which functions tend to zero. Informally, he considered a natural volume

function at scale ρ and examined how this measurement behaves as ρ → 0. Bouligand’s

approach leads to the possibility of non-integer dimensions. He provided both the

concept of the global dimension of a closed set as a whole and the local dimension
11Kellogg’s 1923 article [156], published a year prior to Wiener’s formulation of the generalised

Dirichlet problem, focuses on an example of a domain for which the then established methods of
solving the classical Dirichlet problem did not apply. While Bouligand states that he was inspired by this
example, we note that Kellogg was not working in the context of the generalised Dirichlet problem and
his work does not represent a somewhat systematic study of the dimensional properties of sets as did
Bouligand’s work cited above.
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of a closed set at a point. These definitions rely on what Bouligand referred to as the

Cantor-Minkowksy construction, as defined below. The presentation of Bouligand’s

concepts below borrows significantly from the present author’s work on this topic in

[115], which focuses on Bouligand’s ideas in [43]. As commented in [115], Bouli-

gand’s motivation in these two articles is predominantly related to potential theory

and the Dirichlet problem. As such, his ideas on dimension do not appear as a fully

elaborated theory. A certain degree of interpretation was therefore necessary.

In [43], Bouligand’s splits his work into three main sections, the first dealing with the

dimensional properties of closed sets, the second dealing with the application of these

ideas to the study of improper sets in the generalised Dirichlet problem and the third

section dealing with extending these applications to a broader class of problems in the

calculus of variations. Our account below focusses on the first of these three sections,

relating to the dimensional properties of sets, although we cite two theorems proved

by Bouligand from the second section relating to the characterisation of improper

sets. We briefly outline three main themes contained in the first section, starting with

what Bouligand refers to as the construction de Cantor-Minkowsky [Cantor-Minkowsky

construction], which represents the natural volume function which we referred above.

Secondly, we introduce a tool presented by Bouligand for obtaining an upper bound

for the dimension of a set. We use the term ‘global dimensional order’ below, although

Bouligand did not name the concept as such. Thirdly, we introduce Bouligand’s method

for evaluating the dimension of a set at a point, which he described as a local method -

we have classified these ideas under the heading ‘local dimensional order’. We note

that we have largely followed Bouligand’s notation below.

The Cantor-Minkowksy construction. Let E be a closed set in three-dimensional

Euclidean space. From each point Q of the set E, draw a sphere of radius ρ. By E(ρ),

we denote the ρ-neighbourhood of E, i.e. the set of points contained in these spheres.

By f(ρ) we denote the volume of the set E(ρ). Bouligand refers to this procedure as

the Cantor-Minkowsky construction of the set E(ρ) starting from E. Examining how

f(ρ) behaves as ρ → 0 is the key idea in Bouligand’s approach to dimension.

Global dimensional order. Bouligand comments in [43, p. 322] that a lack of homo-

geneity of a set may mean that is not possible to ascribe a single dimension number

to that set. To see this point, we can think of the set which is the union of a circle

and a line for example. The following tool introduced by Bouligand enables us to say

in what way the local dimension of a set is bounded above (in the same way as the

dimension of a set consisting of a line and a circle is bounded above by the number 2).
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Suppose there is a function f1(ρ) such that, for sufficiently small values of ρ, we have∣∣∣∣ f(ρ)f1(ρ)

∣∣∣∣ ≤ c

for some real number c. Then Bouligand states ‘If the function f1(ρ) has a well defined

infinitesimal order α1, one can say that the dimensional order of the set is [less than or

equal to]12 3− α1’. In addition, ‘in the special case when the above ratio tends to zero we

will say that the dimensional order is < 3− α1’ [43, p. 323].

The infinitesimal order described above is not defined explicitly by Bouligand. We

interpret the infinitesimal order of a function f(ρ) in the following way. We say that

f(ρ) has infinitesimal order α (where α is a real number) whenever we have, for all

ϵ > 0:

limρ→0
f(ρ)

ρα−ϵ
= ∞

and

limρ→0
f(ρ)

ρα+ϵ
= 0

With the above definition in hand, the goal is to find the best possible upper bound for

the dimensional order of the set, through the wisest possible choice of the comparison

function f1. We note that the above definition, which implicitly formulates dimension

in terms of a function on the real numbers, allows for the possibility of non-integer

dimensions.

Local dimensional order. Bouligand introduces a local dimensional order of a set at a

specific point. This tool can be used to express in what way the dimension of a set is

bounded below. Bouligand achieves this by defining the dimensional order of the set

E at a point Q at scale ϵ (where ϵ is a positive real number), before letting ϵ tend to

zero. We omit the details here and simply note that the key concept is similar to the

case of the global dimensional order - that is examining the way in which a natural

volume function (in this case defined at a point Q and at scale ϵ) tends towards zero.

His definition enables us to say that the dimensional order of E at the point Q is less

than, or greater than the infinitesimal order of chosen comparison functions.

Characterising improper sets by their dimensional properties. The following two

12Here Bouligand write < 3− α,1
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theorems [43, p. 333] illustrate how Bouligand was able to characterise improper sets

and reduced boundaries in the generalised Dirichlet problem in terms of dimension:

Theorem. ‘Soit un ensemble fermé E, de l’espace euclidien à n dimensions si son nombre

dimensionnel est ≤ n− 2...cet ensemble E est impropre.’

[Let E be a closed set, in Euclidean space of n dimensions. If the dimension number of E

is ≤ n− 2...then the set E is improper.]

Theorem. ‘Si h est un nombre positif fixe, d’ailleurs quelconque, et si le nombre dimen-

sionnel de E surpasse en chaque point n− 2 + h, alors l’ensemble E supposé dépourvu de

points intérieurs forme une frontière réduite.’

‘If h is a fixed positive number, which is arbitrary, and if the dimension number of E is

at every point greater than n− 2 + h, then the set E assumed to have no interior points

forms a reduced boundary’.

Regarding these results Bouligand concludes as follows,

‘...la considération du nombre dimensionnel d’un ensemble permet, d’une

manière incomplète, mais suffisante dans beaucoup d’applications, de carac-

tériser les ensembles impropres du problème de Dirichlet’ [37, p. 242].

[...the consideration of the dimensional number of a set allows, in a way

which is incomplete but sufficient in many applications, to characterise

improper sets in the Dirichlet problem].

We note that further results relating to the characterisation of improper sets and

reduced boundaries are provided by Bouligand in [43], where he also goes some way

in generalising his ideas in a broader setting within the calculus of variations than that

of the generalised Dirichlet problem. Given that the above two theorems are presented

by Bouligand as two of his main results on the topic, and as the focus of this chapter is

on the generalised Dirichlet problem, we omit the details.

Classifying the concept of dimension in terms of invariance. As it will become

a significant recurring theme, we note that Bouligand emphasises the nature of his

concept of dimension as an invariant under certain types of transformation. In par-

ticular, he comments that the dimensional order is not a topological invariant (i.e.

invariant under homeomorphisms) but is always invariant under homeomorphisms

with continuous first derivative. Bouligand refers to concepts which are invariant

under this type of transformation as belonging to topologie restreinte du premier ordre
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(restricted topology of the first order) [43, p. 321]. Bouligand highlights this point, at

least in part, to distinguish between his concept of dimension and the type de dimen-

sion of Maurice Fréchet, which is a topological invariant [43, p. 321]. The following

comment of Bouligand in [95] sheds further light on the origins of this classification

with reference to previous ideas of René Baire:

‘...prolongeant le point de vue de Baire isolant les propriétés purement topologique

(dénomés par lui descriptives13), je me suis appliqué à classer les propriétés

infinitésimales suivant leurs champs d’invariance respectifs en retenant, avec

les transformations ponctuelles correspondantes, ceux de ces champs auxquels

s’attachent les dénominations que voici: topologie restreinte du premier ordre,

topologie restreinte du second ordre’ [95, p. 3].

[...extending the point of view of Baire, isolating purely topological prop-

erties (which he named descriptive properties), I set about classifying

infinitesimal properties according to their respective fields of invariance,

retaining the fields with the following denominations and their correspond-

ing point transformations: first order restricted topology, second order

restricted topology].

Secondly, we noted above that Wiener provided a quasi-geometric characterisation

of the regularity of boundary points by means of his concept of capacity. In light of

the relationship between capacity and Bouligand’s improper noted above, Bouligand’s

ideas can be seen as a step further in the geometric characterisation of boundary points.

To this effect, in [157, p. 625] Kellogg refers to Boulgand’s ideas in [33] in answer to

the question of ‘whether it is possible to express conditions for regularity in some even

more purely geometric form than those in terms of capacity’.

13It is not clear to which source Bouligand is referring implicitly here. We speculate that he may be
referring to Baire’s ensembles de première catégorie as defined in [4, p. 78]. Lebesgue distinguished in
[166, p. 99-100] between properties he called descriptives and those he called constructives.
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2.7 A rapprochement between Bouligand and Wiener

in the context of the generalised Dirichlet problem

In order to place the rapprochement between Bouligand and Wiener in context, it is

interesting to consider briefly the American mathematical scene, from an institutional

point of view. We note that the firm establishment of American universities took place

much later than academic institutions in European countries such as Germany, France

and Great Britain. As Parshall and Rowe comment in [189],

The major institutional structures and research tradition of American math-

ematics stood firmly in place by the end of the first decade of the twentieth

century, when the United States began to make its presence felt on the inter-

national mathematical scene [189, p. 431].

Further, Parshall and Rowe highlight Wiener’s own role in making Cambridge Mas-

sachusetts a main hub of American mathematical research during the period in ques-

tion:

Sparked by Birkhoff and Wiener, the Cambridge area emerged as America’s

foremost center for mathematical research by the mid-1920s [189, p. 448].

In light of the later institutional establishment of American mathematics, it is perhaps

unsurprising that it was common for promising American mathematicians to travel to

Europe to collaborate and receive instruction. Accordingly, Wiener, after the comple-

tion of his PhD, visited Göttingen, where he studied differential equations with David

Hilbert, and Cambridge, England, where he was a student of Bertrand Russell and

G.H. Hardy. In 1920, he attended the International Congress of Mathematicians in

Strasbourg, and collaborated with Maurice Fréchet.

Although Wiener’s formulation of the generalised Dirichlet problem was published in

[218] in the same month of 1924 in which Bouligand’s attempt to extend the Dirichlet

problem was published in the Comptes Rendus [29], it would appear that Bouligand

and Lebesgue on one side and Wiener on the other were mutually unaware of each

other’s work until approximately March 1924. Lebesgue commented on this in a short

note regarding Wiener’s article [219], in which Wiener summarises his own results,

situating them in relation to the results of Lebesgue published earlier the same year in

[168]. Lebesgue comments:

En janvier dernier, un article de M. G. Bouligand m’a fourni l’occasion de don-

ner quelques résultats obtenus au cours de recherches sur les cas d’impossibilité
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du problème de Dirichlet, recherches qui remontent à 1913. M. Wiener parle

longuement de ma publication ; ce qu’il ne dit pas et que je tiens à dire, c’est

que, dans ces dernières années, le problème de Dirichlet avait été, à mon

insu, l’objet de recherches fécondes, due à divers savants américains et en

particulier à M. Wiener. Leurs théorèmes dépassent souvent les miens et ils ont

si bien abordé les diverses questions qui m’ont occupées que, si j’avais connu

leurs travaux, j’aurais sans doute jugé inutile de revenir sur mes résultats de

1913...Les travaux des Savants américains avaient aussi échappé à M. Bouli-

gand ; il convient d’ajouter que, par contre, l’importante Note publiée par M.

Bouligand, en 1919, semble être restée inconnue des Américains. Maintenant

que ces efforts parallèles ne s’ignorent plus, on peut espérer qu’ils seront plus

fructueux encore... [169, p. 1052]

[Last January, an article by Mr G. Bouligand gave me the opportunity to

give some results obtained in the course of research into the impossible

cases of the Dirichlet problem, research which goes back to 1913. Mr

Wiener speaks at length about my publication; what he does not say and

what I would like to say is that, in recent years, the Dirichlet problem

had been, unbeknownst to me, the subject of fruitful research, due to

various American scientists and in particular to Mr Wiener. Their theorems

often surpassed mine and they dealt so well with the various questions

that occupied me that, had I known of their work, I would probably have

considered it unnecessary to go back to my results of 1913... The work of

the American scientists had also escaped Mr. Bouligand; it should be added

that, on the other hand, the important Note published by Mr. Bouligand in

1919 seems to have remained unknown to the Americans. Now that these

parallel efforts are no longer unknown to each other, we can hope that they

will be even more fruitful].

It is interesting to consider Wiener’s later account in his autobiographical work of 1956

[221], in which he recounts the simultaneous efforts of his and of Bouligand. While

this account may not be completely accurate, it illustrates well Wiener’s point of view

regarding the work of Bouligand in relation to his own and regarding the simultaneous

nature of the efforts of Bouligand and Lebesgue in the same direction as his own.

....I added a considerable number of new and sharply definable concepts to

the armament of potential theory. When I applied these to the old problem

of Zaremba, which still had not reached a final solution, I found that they

fitted. This was at about the time at which Comptes Rendus of the French

Academy of Sciences began to be filled with papers on the theme of the
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Zaremba theory. These were written by Lebesgue himself and by a young pupil

of his, G. Bouligand. In many scientific subject there comes a time when the

sharpness and definiteness of the new papers indicate that an important goal

is about to be achieved. So it was with the work of Lebesgue and Bouligand. I

knew that if I did not put forth a maximum effort, the whole topic was soon

to be crossed off the account books of mathematics as one finally resolved.

Accordingly I put forth a maximum effort, employing those new tools which

I had made my own, and I was delighted to find that I had achieved what

was from the standpoint of research at that time a complete solution to the

problem....What followed is a coincidence of a sort much commoner in the

history of discovery and invention than one might suppose. While my letter

was crossing the ocean, Bouligand obtained some extremely important results

which he had not yet had time to polish up. He took council with Lebesgue,

who advised him to submit these results to the academy in a sealed envelope,

after a custom sanctioned by centuries of academy tradition. The very next

day, my paper came in and Bouligand’s sealed envelope was opened. The two

papers appeared side by side in the next number of the Comptes Rendus, with

a preface by Lebesgue covering both of them14. While they were expressed

in different mathematical language, the main idea of the two was identical.

However, the logic of Bouligand’s paper was not as complete as mine, owing to

the fact that what he had sent in was only a preliminary communication for

purposes of record, and not a polished and finished job. This was even more

of a dead heat than my previous double discovery of Banach space. Both the

Banach space competition and that with Bouligand turned out to be extremely

friendly. Bouligand was even more ready than I was to admit the somewhat

greater completeness of my paper, and we made arrangements to meet when I

should come to France and visit.

Following the rapprochement mentioned above, a number of letters and postcards

were exchanged between Wiener and Bouligand between 1924 and 1930 (and pre-

dominantly between 1924 and 1925). The letters sent by Bouligand, in French, are

available in the Norbert Wiener papers, kept at the Massachusetts Institute of Tech-

nology Libraries [122]. It is worth emphasising certain main recurring themes in this

correspondence. First, Bouligand clearly expresses recognition of the importance and
14It is possible that Wiener’s account of events having taken place more than 30 years earlier was

not completely accurate. The simultaneous and less complete results of Bouligand to which Wiener
is refering are most probably those in [29]. This paper of Bouligand it seems was not submitted as a
sealed envelope - in fact the later publication of Bouligand [33] was submitted as a sealed envelope
but was written after Wiener’s formulation of the generalised Dirichlet problem, to which Bouligand
refers in this article. In addition, Bouligand’s paper [29] did appear in the same volume of the Comptes
Rendus as Wiener’s article [219] but did not appear side by side. Bouligand’s paper [28] appeared side
by side with Wiener’s article, with Lebesgue’s comment in between.
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completeness of Wiener’s results and seems to have made efforts to communicate this

to colleagues and students. This is seen in the following two extracts, the first of his

letter of February 1924:

Votre théorème I, (du mémoire Certain Notions in pot. th.) établit l’existence

de la solution au sens large du problème de Dirichlet, dans les condtions

les plus générales, alors que M. Zaremba ne l’établissait que moyenant une

restriction "Ad Fini". Je vous félicite du grand progrès que vous avez ainsi

accompli.

[Your theorem I (of the article Certain Notions in pot. th.) established

the existence of the solution in the broad sense of the Dirichlet problem

in the most general conditions, while Mr Zaremba only established the

solution by means of an "Ad Fini" restriction. I congratulate you on this

great progress that you have accomplished].

In addition, in Bouligand’s letter of 5 April 1928, Bouligand relates to Wiener how he

emphasised the importance of Wiener’s results to students during a course he taught

at the University of Krakow in 1925, having been invited by Zaremba and in an article

covering a part of the contents of his course [36]:

J’ajoute qu’appelé à Cracovie par M. Zaremba...j’ai eu l’occasion de vous

rendre publiquement hommage, et que cela est d’ailleurs relaté dans la pub-

lication partielle de mon cours parue au tôme IV des Annales de la Société

Polonaise de Math...

[I add that, having been called to Krakow by Mr Zaremba...I had the

opportunity to pay tribute to you publicly and that this was recounted in

the partial publication of my course published in volume IV of the Annales

de la Société Polonaise de Math...]

The correspondence also clearly indicates an element of collaboration between Wiener

and Bouligand on the generalised Dirichlet problem. For example, in his letter of

November 1924, Bouligand sends his own work to Wiener and thanks him for having

put him in contact with Kellogg:

Je vous adresse les tirés à part et mes deux derniers mémoires du Bulletin. Je

vous remercie vivement de m’avoir mis en relation avec M. Kellogg, qui m’a

adressé aussi ses beaux travaux.
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[I am sending you the offprints and my last two memoirs from Le Bulletin.

Thank you very much for putting me in contact with Mr Kellogg, who has

also sent me his fine works].

This collaboration is seen yet more clearly in Bouligand’s letter of December 1924:

En attendant que je trouve le temps de publier, sur le thème de cette note, un

mémoire un peu détaillé, j’en livre le contenu à votre méditation. Dites-moi

ce que vous en pensez! Si cela peut hâter la solution du problème que nous

cherchons, j’en serais fort heureux!

[While I am waiting for the time to publish a detailed memoir on the subject

of this note, I’ll leave you to ponder its contents. Tell me what you think of

it! If it can hasten the solution to the problem we are seeking, I would be

delighted!]

Thus we see that Bouligand and Wiener were actively collaborating towards a com-

mon goal. We also note that Wiener visited Bouligand in Poitiers in 1924. This is

reflected in the tone of Bouligand’s letters, which becomes clearly amicable, personal

and family-oriented as well as mathematical.

Having retraced the path leading Bouligand towards the generalisation of the Dirichlet

problem and having seen a number of his contributions to Wiener’s formulation

of this problem, it is interesting to situate this area of Bouligand’s research in the

broader setting of his research in potential theory. We will address this below as well

as briefly drawing attention to further themes of Bouligand’s research in potential

theory which developed later and which were linked to his work on the generalised

Dirichlet problem. Due to the fairly diverse nature of Bouligand’s research in potential

theory and perhaps due to the nature of this topic, which bridges theoretical and

applied considerations, we are naturally led to attempting to classify his work under

broader headings. Was Bouligand mainly working in the setting of pure mathematics

in the context of this area of research? Did some areas of his work belong more to

mathematical physics? The inherent danger of such questions would be to impose our

modern perspective and labels on ideas generated during the 1920s. As such, a brief

discussion is included below on the classification of research topics which, we hope,

provide a perspective which is somewhat faithful to the situation as it was during the

time of Bouligand’s research.
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2.8 Further directions of Bouligand’s research in

potential theory

We note that Bouligand’s work on the generalised Dirichlet problem together with his

research leading him in this direction (i.e. studying the classical Dirichlet problem in

relation to the boundary) [95, p. 9] represents one of the main themes in his research

in the more general area of potential theory, and the predominant theme at least until

around 1926, once his main ideas on this topic had been published. Another theme of

research prior to this date included harmonic functions and their singularities more

generally, for example in [23] and [32]. Bouligand comments in [47, p. 4] that his

work on the topic of harmonic functions and the Dirichlet problem prior to his visit

to the University of Krakow in 1925 had been undertaken ‘indépendamment de toute

préocuppation d’ordre concret’. As we see below, certain other themes of research within

the area of potential theory are associated to greater degrees with physical problems.

Influenced by his work on the generalised Dirichet problem and his collaboration with

Zaremba in Krakow, Bouligand later worked on extending the Neumann problem,

which involved using an extended notion of flux in fluid mechanics. The extract below

of Bouligand in his 1930 article [47, p. 4] highlights these ideas:

...j’ai échangé des idées, de la manière la plus fructueuse, avec un puissant

géomètre polonais, M. Stanislas Zaremba. Pendant un séjour à l’Université

de Cracovie où j’avais exposé, sur son invitation, les recherches que j’avais

consacrées (indépendamment de toute préoccupation d’ordre concret) à la

question du prolongement fonctionnel, aux, flux, au principe de Picard, au

problème de Dirichlet, je rentrai en France avec la conviction que le problème

de Neumann pouvait participer lui-même de cet esprit nouveau, qu’il admettait

un prolongement fonctionnel, et qu’on devait le découvrir à partir de cette idée

: le mouvement irrotationnel d’un liquide diffère peu dans deux vases dont

les parois, de configuration peu différentes, ont des mouvements qui diffèrent

peu...

[I had a most fruitful exchange of ideas with a powerful Polish geometer,

Mr Stanislas Zaremba. During a stay at the University of Krakow where, at

his invitation, I had presented the research I had devoted (independently

of any concrete concerns) to the question of functional extension, flux, the

Picard principle and the Dirichlet problem, I returned to France with the

conviction that the Neumann problem could itself participate in this new

approach, that it admitted a functional extension, and that it should be



66 Bouligand’s work in relation to the generalised Dirichlet problem

discovered on the basis of this idea: the irrotational motion of a liquid

differs little in two vases whose walls, with similar configuration, have

motions that differ little].

His ideas on this topic are summarised in detail and in a pedagogical style in [47]

and were also published for example in [35] - an article appearing side by side with a

paper of Zaremba and which illustrates clearly their collaboration - as well as in [39].

Another strand of Bouligand’s research relating to potential theory, which we will not

explore in more detail here, deals directly with questions in the field of hydrodynamics.

This can be seen in Bouligand’s first mathematical publication [16] and for example

later in [53].

A further direction of Bouligand’s research that later developed combined potential

theory and probability for chains of events. As Bouligand comments in [95, p. 10]

these developments took place notably through the orientation of the 1937 doctoral

thesis of his student A. Fouillade [137], which builds upon ideas of Bouligand in [38].

Finally, we note a theme of research focusing on the Dirichlet problem for more general

equations than the Laplace equation, in particular certain classes of elliptical equations.

Here Bouligand was able to extend for example his concept of improper sets and his

results can be found notably in [56], [57], [70] and [78]. He comments in [95, p. 12]

that it was his orientation of J. Capoulade’s thesis which was the starting point for this

line of investigation.

2.8.1 Classifying Bouligand’s work; areas of mathematics and its

applications.

It is interesting to situate Bouligand’s work on the Dirichlet problem and potential

theory in relation the different subdivisions of mathematics and its applications as they

existed at the time Bouligand was publishing. To this end, we first refer to Leloup’s

account in [170, p. 88-95] where she uses notably key words extracted from the sub-

division of the various chapters and sections of the Jahrbuch über die Fortschritte der

Mathematik, during the interwar period, supporting these also with information con-

tained in thesis reports for dissertations defended during the interwar period in France.

Leloup identifies four main headings for mathematical publications in France during

that period, namely:

• Arithmetic and algebra - here Leloup identifies dissertations belonging to two

main areas - first between 1914 and 1926, the study of forms (i.e. homogeneous
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polynomials) and secondly between 1928 and 1944, the theory of ideals [170,

p. 153].

• Geometry - including differential geometry, algebraic geometry, topology (a key

word appearing from 1925) and analytical geometry

• Analysis - including the theory of functions and differential and integral calculus.

Of relevance to our account here, we note that she identifies within the latter,

the theory of ordinary and partial differential equations, elliptic differential

equations and potential theory.

• Applied mathematics - comprising publications classed under the headings of

mechanics and of mathematical physics.

Leloup notes that the classification of subtopics under either mechanics or mathemati-

cal physics is found to be frequently evolving back and forth throughout the interwar

period. The two together include the topics of fluid mechanics, the mechanics of

solids, kinematics, the theory of relativity, astronomy, geodesics and geophysics and

the théorie des quantas (which preceded quantum physics). Leloup notes that the

boundary between certain areas of analysis and applied mathematics is also somewhat

porous in France during this period, particularly in the case of differential equations.

Specifically, papers dealing with differential equations are sometimes placed within

mechanics or mathematical physics, rather than within analysis.

We also note that Leloup identifies a further chapter of the Jahrbuch entitled ‘Fonde-

ments des mathématiques. Theorie des ensembles’, which conserves this name until 1939

(i.e. the period of interest in the present account) before théorie des ensembles is later

included within analysis, leaving a separate chapter entitled fondements. She notes,

further, that probability and its applications are classed under analysis until 1939,

before being included as a separate chapter in its own right [170, p. 91-92].

It is interesting to compare Leloup’s analysis briefly outlined above with the structure

of the Encycloplédie des sciences mathématiques pures et appliquées [185] - an enlarged

version in French of the German encyclopedia edited by Felix Klein and others, first

published in 1898. The French version was published in seven volumes between 1904

and 1916 and the numerous contributors included mathematicians such as Elie Cartan,

Emile Borel, Jacques Hadamard, Paul Painlevé - members of the previous generation

of mathematicians to Bouligand who certainly had an influence on his education

and/or mathematical work. While the chapter structure of the encyclopedia provides

an overview of mathematics and its application based on significantly less data than
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Leloup’s detailed analysis, it nevertheless provides an interesting perspective of a num-

ber of top mathematicians at a time which coincides with Bouligand’s mathematical

education. As we see below, a further advantage is the inclusion of a separate chapter

on physics, giving a tentative insight into the boundary between physics and applied

mathematics at the time. The seven volumes are as follows:

• Arithmetic and Algebra - including arithmetic, algebra, number theory, and

probability, the theory of error and related applications

• Analysis - including functions of a real variable, functions of a complex variable,

ordinary differential equations, partial differential equations series expansions

and the calculus of variations

• Geometry - comprising the foundations of geometry and general geometry, de-

scriptive geometry and elementary geometry, planar algebraic geometry, algebraic

geometry in space

• Mechanics - including general mechanics, deformable systems (includes hydro-

dynamics), ballicstics and hydraulics

• Physics - including thermodynamics, molecular physics, physical principals of

electricity, physical principals of optics

• Geodesics and geophysics

• Astronomy

Based on Leloup’s subdivision and on the above, we may say, using the appropriate

terminology of the interwar period, that Bouligand’s work on the Dirichlet problem

and potential theory more generally belongs predominantly in the area of analysis -

in particular his work on and towards the generalised Dirichlet problem. A number

of his papers however are in the area of mechanics (within Leloup’s broader area of

applied mathematics), such as those dealing with hydrodynamics. It is reasonable

to say that Bouligand’s ideas interact to a certain extent with physics (in particular

thermodynamics and electricity) - for example in his motivation to extend the Dirichlet

problem based on a physical necessity (justified through an example relating to ther-

modynamics) as seen above, and in the context of mathematical generalisations of

physical concepts such as electrostatic capacity.

2.8.2 Pedagogical efforts and contributions to the circulation of

knowledge to the mathematical community

While the points presented under this heading do not represent a further direction of

research as such, pedagogical efforts and those relating to the circulation of knowledge
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in the mathematical community represents nevertheless a direction in which Bouli-

gand’s efforts and ideas evolved. He made efforts to communicate his ideas on the

Dirichlet problem in a pedagogical manner, notably through his lecture course at the

University of Krakow in 1925 and the subsequent publication mentioned above. We

note in addition that [37], focusing on ideas relating to improper sets and dimension

was published in L’Enseignement Mathématique, which placed a strong emphasis on

mathematics education and which included in addition a number of book reviews.

Further, as mentioned by Barbut, Locker and Mazliak in [175, p. 34] Bouligand’s 1926

article [34] which represented the eleventh volume of the Mémorial des sciences mathé-

matiques, provides a broad survey of progress to date in potential theory, including but

not limited to the Dirichlet problem. As such, we note that, in this instance, Bouligand

was proactive in the circulation of knowledge within the mathematical community

beyond the publication of his own results. This point is perhaps reinforced by the fact,

as mentioned in [61] that he organised research seminars in Poitiers which attracted

high-level mathematicians including Wiener and Kellogg. It is reasonable to specu-

late that a research seminar organised by Bouligand in which these mathematicians

participated was most likely related to the Dirichlet problem and potential theory.



Chapter 3

Bouligand’s reflections on the concept

of intuition in mathematics

Exploring Bouligand’s ideas on intuition in mathematics will help to clarify certain

key concepts of his epistemological reflections, namely those of direct methods and

causality, which will be discussed later on. More broadly speaking, his ideas on

intuition help us to understand Bouligand’s preferences regarding the practice and

teaching of mathematics. In addition, examining the nature of his ideas about intuition

will later facilitate positioning and differentiating Bouligand with respect to relevant

landmarks in the epistemology of mathematics during the interwar period.

3.1 The concept of intuition in mathematics in France

at the start of the 20th century (some background)

Before exploring Bouligand’s reflections regarding intuition in mathematics, it is

instructive to first briefly present the context in which these ideas came about. Below is

an introduction to certain discussions regarding intuition at the start of the 20th century

in France, in the context of debates regarding the formalisation and foundations of

mathematics and a major educational reform implemented between 1902 and 1905.

We do not attempt a detailed and comprehensive exploration of debates regarding

intuition at the turn of the 20th century but focus instead on some ideas and sources

with which Bouligand was most likely to have come into contact.

3.1.1 The dichotomy between logic/rigour and intuition

Henri Poincaré on logic versus intuition

In his 1902 article on the role of intuition and logic in mathematics [197] Poincaré

70
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explores the dichotomy between intuition and logic in mathematics and between

intuitive mathematicians (such as Riemann) versus logicians (such as Weierstrass),

acknowledging the necessary role of both and the insufficiency of each alone. In-

tuition, Poincaré states, cannot provide certainty and logic alone cannot allow the

mathematician to grasp how each element relates to each other and to the whole:

Or, pour comprendre un plan, il faut en apercevoir à la fois toutes les

parties, et le moyen de tout embrasser dans un coup d’oeil d’ensemble, c’est

l’intuition seule qui peut nous le donnerDans ces édifices compliqués élevés

par les maîtres de la Science mathématique, il ne suffit pas de constater la

solidité de chaque partie et d’admirer l’oeuvre du maçon, il faut comprendre

le plan de l’architecte.

Or, pour comprendre un plan, il faut en apercevoir à la fois toutes les parties,

et le moyen de tout embrasser dans un coup d’oeil d’ensemble, c’est l’intuition

seule qui peut nous le donner [197, p. 125].

[In these complicated edifices constructed by the masters of mathematical

Science, it is not enough to notice the solidity of each part and to admire the

work of the builder, it is necessary to understand the architectural plan. Yet,

to understand the plan, it is necessary to perceive simultaneously all of the

parts and the way of encompassing everything in a single view. It is intuition

alone that can provide us with this].

Logic and logicians are associated in this article to a certain extent with analysis,

whereas intuition is associated more with geometry. Logic is associated with mathe-

matical demonstration whereas intuition is associated with mathematical invention.

Poincaré identifies different types of intuition - first that which calls upon the senses

and the imagination, secondly that which is associated with generalisation by induction

and finally that which he refers to as l’intuition du nombre pur [197, p. 122]. Do

logicians also take recourse to intuition for mathematical invention? For Poincaré,

there is a rare type of intuition which enables certain logicians to have a ‘sentiment

direct de ce qui fait l’unité d’un raisonnement, de ce qui en fait pour ainsi dire, l’âme et

la vie intime’ [197, p. 128] - he associates this type of intuition with the intuition du

nombre pur.

The debate on rigour and intuition in the context of the reception of Peano’s

mathematical logic (1904-1907)
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Giuseppe Peano’s Formulario Mathematico was a textbook first published in 1895 and

a project which set out to formulate all known mathematical theorems and methods

using the symbolic notation of mathematical logic. In [173], Erika Luciano gives a

detailed account of heated debates on rigour and intuition ensuing from a presentation

given by the philosopher Louis Couturat at the second International Congress of

Philosophy in Geneva in 1904, Sur l’utilité de la logique algorithmique, advocating

Peano’s movement and emphasising the utility of logic in mathematics. Couturat

was strongly opposed by the philosopher Pierre Boutroux, nephew of Henri Poincaré.

Luciano comments that Boutroux,

‘...expressed strong reservations on the possibility that logic could ground

mathematics, and made harsh criticism on the expectation of reducing

mathematics to logic, isolating the minimum number of axioms and elimi-

nating (thanks to ideography) any resort whatsoever to intuition’. [173,

p. 196]

These opposing views led to the involvement of a number of the most eminent math-

ematicians during this debate taking place during the period 1904-1907 and led to

numerous publications on the topic notably in the Revue de Métaphysique et de Morale.

Poincaré became centrally involved in the debates, defending the position of Emile

Boutroux. For example in [199], while expressing that Hilbert is always preoccu-

pied with preserving the role of intuition in his work, Poincaré strongly criticises

certain aspects of logicist theories, strongly opposing the view that logical elements

can be isolated from mathematical reasoning and that intuition can be removed from

mathematics and mathematical reasoning. Hadamard, Borel, Baire and Lebesgue

also became involved to varying degrees, as did Peano himself, together with other

eminent Italian mathematicians, and Bertrand Russell. As these mathematicians have

not yet been introduced, and as they are influential in relation to Bouligand, we

note that Henri Lebesgue (1875-1941), another key figure in French mathematics

during the period in question, was one of the founders of the theory measure and

his contributions also included introducing the Lebesgue integral, which generalises

the Riemann integral. René Baire (1874-1932) was also a highly prominent figure

in French mathematics and made important contributions to the theory of functions

and the concepts of limits and continuity. Luciano comments in [173] that the debate

came to an end in 1908 when Poincaré and Russell finally came to an agreement that,

‘...logic is an auxiliary of intuition and that, like mathematics, it is marked

out by an inextricable weaving of intuition and rigour, induction and

deduction.’ [173, p. 199]
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We refer the reader to [173] for a full account of the debates on rigour and intuition

between 1904 and 1907 and simply underline here their high-profile and level of

controversy.

3.1.2 Mathematical intuition in the context of an educational re-

form

A national reform of the lycées, first adopted in 1902, led to a major reorganisation

of the structure and content of the education provided by these institutions. We base

our brief introduction to this event on Hélène Gispert’s account in [140]. The aim of

the reform was to modernize the education provided by these institutions in line with

the economic and industrial needs of the day, thus moving away from an exclusively

abstract or theoretical training. This reform led to expanding the role of the sciences

and of mathematics in particular and also let to revising the contents and methods in

the teaching of these subjects. A number of eminent mathematicians were involved

to varying degrees in designing and promoting the reform in relation to mathematics.

For example, Gaston Darboux headed the commission responsable for revising the

teaching of the sciences. Henri Poincaré and Emile Borel supported the reform in

relation to mathematics and were invited to speak at the Musée pédagogique in Paris in

1904 and 1905, where the reform was presented to teachers.

Henri Poincaré’s presentation, entitled les définitions générales en mathématiques

[198], explores the question of mathematical definitions best suited to the needs of

students. This presentation is based in part on the Poincaré’s shorter publication

of 1899 [196] and includes a discussion regarding the roles of logic versus that of

intuition in mathematics education, through the lens of definitions. It is relevant in

relation to the work of Bouligand discussed below to explore a few main points that

arise in Poincaré’s presentation on the topic of intuition.

Poincaré presents a trade-off between rigour and intuition in mathematics. Increased

rigour and the developments in the foundations of mathematics allowed, on one

hand, to progress beyond errors made by previous generations of mathematicians

due to a reliance on intuition in the absence of rigour. For example, for Poincaré,

intuition teaches us mistakenly that every curve has a tangent and that, therefore, every

continuous function has a derivative [198, p. 262], whereas the rigorous approach to

the concept of continuity achieved by that time prevented such mistakes. However,

Poincaré expresses a sacrifice associated with the rigour gained in the mathematics of

his day. He comments that,

Ce qu’elles ont gagné en rigueur, elles l’ont perdu en objectivité[198, p. 263].
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[What has been gained in rigour has been lost in objectivity].

The extract below elaborates on this point in the context of definitions, comparing past

and contemporary practices.

On possédait une notion vague, formé d’éléments disparates, les uns a pri-

ori, les autres provenant d’expériences plus ou moins digérées; on croyait en

connaître, par l’intuition, les principales propriétés. Aujourd’hui on rejette

les éléments empiriques en ne conservant que les éléments a priori C’est très

bien, mais il reste à prouver que cette propriété, qui est devenue une définition,

appartient bien aux objets réels que l’expérience nous avait fait connaître et

d’où nous avions tiré notre vague notion intuitive. Pour le prouver, il faudra

bien en appeler à l’expérience, ou faire un effort d’intuition, et si nous ne

pouvions le prouver, nos théorèmes seraient parfaitement rigoureux, mais

parfaitement inutiles [198, p. 263]

[We had a vague notion, made up of disparate elements, some a priori,

others derived from more or less processed experiences; we thought we

knew, through intuition, the main properties. Today we reject the empirical

elements retaining only the a priori elements. This is all very well, but we

still have to prove that this property, which has become a definition, does

in fact belong to the real objects that experience had made known to us

and from which we had derived our vague intuitive notion. To prove it,

we will have to appeal to experience, or make an effort of intuition, and if

we are not able to prove it, our theorems would be perfectly rigorous, but

perfectly useless].

We note in addition from the above a connection made by Poincaré between intuition,

the physical world and what he refers to as the objectivity of mathematics. The roles

of logic and intuition are further discussed later in this article when Poincaré portrays

logic as the aspect of mathematics that, for example, enables one to decompose a

proof into a sequence of correct formal operations, whereas intuition enables the

mathematician or student to be able to grasp the ‘je ne sais quoi qui fait l’unité de la

démonstration’ [198, p. 264]. He emphasises that,

...cette vue d’ensemble, la logique pure ne peut nous la donner, c’est à l’intuition

qu’il faut la demander...[198, p. 264]

[...pure logic cannot give us this holistic view, it is to intuition that we must

appeal...]
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To illustrate this point, Poincaré refers again to the definition of a continuous function:

the initial image is of a line drawn on a blackboard. The process of formalisation

leads us to formulate an abstracted version of this intuition, ultimately leading to the

formal definition of continuity. However, Poincaré recommends that the teacher should

then re-establish the connection between the formal definition and the initial image.

In the same vein, he presents logic as that which enables one to see if a particular

combination is correct and intuition as that which enables one to choose among all of

the possible combinations [198, p. 267], otherwise formulated,

...il faut voir le but de loin, et la faculté qui nous apprend à voir, c’est l’intuition.

[198, p. 267].

[...you have to see the goal from afar and the faculty which teaches us to

see is that of intuition].

For Poincaré, logic is associated here with proof, and intuition with mathematical inven-

tion: ‘c’est par la logique qu’on démontre, c’est par l’intuition qu’on invente’ [198, p. 267].

Regarding the role of intuition in the teaching of mathematics, the following illustrates

well Poincaré’s views while emphasising its connection with his views above on the

objectivity of mathematics:

Le but principal de l’enseignement mathématique est de développer certaines

facultés de l’esprit et parmi elles l’intuition n’est pas la moins précieuse. C’est

par elle que le monde mathématique reste en contact avec le monde réel...

[198, p. 266].

[the main goal of mathematical education is to develop certain mental

faculties and among these, intuition is not the least precious. It is through

intuition that the mathematical world remains in contact with the real

world...]

What practical measures does Poincaré suggest regarding intuition in mathematics

education? He recommends that, for future engineers, not too much time should be

spent on formal logical considerations (‘chercher la petite bête’). For students consider-

ing later becoming teachers of mathematics, Poincaré recommends both an in depth

and rigorous teaching of first principles but also stresses the importance of cultivating

intuition. For those who aspire to become professional geometers (le géomètre pur),

he emphasises intuition as essential given its role in mathematical invention: ‘Savoir

critiquer est bon, savoir créer est mieux’ [198, p. 266].
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Emile Borel’s presentation at the Musée Pédagogique, entitled les exercices pratiques

de mathématiques dans l’enseignement secondaire [11] did not focus so explicitly on

intuition. However, in his later article of 1907 entitled la logique et l’intuition en

mathématiques [13], he reflects in part of this publication upon the role of intuition

in the teaching of mathematics in light of the reform of 1902. In his concluding

remarks, Borel suggests that both logic and intuition should be taught. However, to

avoid confusion among students learning elementary mathematics, he suggests that

some mathematical disciplines be taught more from a more logical point of view and

others more from an intuitive point of view. Specifically, he recommends an intuitive

approach to teaching geometry, thus calling for a reform in the teaching of geometry

more radical than the recent reform of 1902 [13, p. 283]. How does Borel define

intuition in mathematics? While no attempt is made to give a definition, an aspect

of Borel’s idea of intuition is reflected in his comments in this article regarding the

development of the theory of functions of a complex variable. He comments that the

difficulties of extending the rules of differential and integral calculus to this theory,

once resolved, were formulated in a rigorous deductive form by Weierstrass. However,

Borel expresses that it was Riemann’s geometrical representation using manifolds that

was essential in allowing intuition to come back into play:

...avec Riemann, l’intuition reprend ses droits; la représentation géométrique

de la variable complexe joue un rôle essentiel; cette représentation est général-

isée; au lieu d’un plan simple, on considère une sphère à plusieurs feuillets,

réunis par des coupures, et les propriétés géométriques de cette surface com-

pliquée dominent la théorie des fonctions algébriques... [13, p. 281]

[...with Riemann, intuition regained its rights; the geometric representation

of the complex variable plays an essential role; this representation is

generalised. Instead of a simple plane, we consider a sphere with several

layers, joined by cuts, and the geometric properties of this complicated

surface dominate the theory of algebraic functions...]

As such, Borel’s view of intuition seems to be, in this case, connected with facilitating

mathematical practice through the use of concrete geometrical representations.

We saw above Poincaré’s views regarding logic as that which enables one to see if a

certain combination is correct and intuition as that which enables one to choose fruitful

combinations. In a similar vein, Borel emphasises the insufficiency of logic alone,

particulary for ‘questions dont l’intérêt réside dans le rapprochement établi entre deux

ordres de recherche en apparence différents’, adding later that ‘...l’on ne confond pas le

tailleur de pierres avec l’architecte’. [13, p. 279]. We note that, although intuition is not



3.1 The concept of intuition in mathematics in France at the start of the . . . 77

explicitly mentioned here, the title of the article seems to be a reasonable justification

for identifying intuition as the element in the above that provides, for Borel, what

logic alone does not.
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3.2 Bouligand on the concept of intuition in mathemat-

ics

Bouligand addressed the concept of intuition mainly in four articles published between

1927 and 1930 in La Revue Scientifique - a journal aimed at a scientific but non-specialist

audience and covering a wide range of subjects, from mathematics and chemistry to

the application of science to industry. The four articles in question are listed below,

each with a short description of the main focus:

1. Aperçus intuitifs sur les mathématiques usuelles - 1927 [40]. This article was

Bouligand’s first non-mathematical publication and it presents his view on how

existing mathematics can be presented and understood in a way that allows

the student’s intuition (in Bouligand’s sense of the word which will be explored

below) to come into play.

2. L’intuition et le symbolisme mathématiques - 1928 [44]. Here the interplay and

opposition between algebraic/algorithmic methods and intuition is explored,

highlighting notably the dangers according to Bouligand of an excessive reliance

on method to the exclusion of intuition, as well as the rewards of allowing

intuition to play a central role.

3. L’intuition mathématique, son mécanisme, ses aspects variés - 1929 [46]. Here

Bouligand explores and exemplifies in greater depth the concept of intuition itself

and its role in the mathematical discovery process, focusing on two different

aspects of intuition, which he refers to as intuition prolongée and contre-intuition.

4. Autour de l’intuition mathématique - 1930 [54]. Here Bouligand explores the

interplay between intuition and formalisation from a subjective viewpoint of the

individual mathematician - thinking in terms of a space of mathematical concepts,

facts and intuitions (l’espace des réalités mathématiques et des intuitions). In this

article he attempts for the first time an explicit definition of intuition and of

intuition prolongée. The concepts of objectivity and beauty in mathematics are

very briefly explored.

For Bouligand, the concept of intuition in mathematics is, above all, identified in

terms of making connections with familiar concepts from one’s perception of

the physical environment or with geometrical concepts. This main message is

seen from different angles and elaborated on to varying degrees in the four articles

listed above. We will take a thematic approach in understanding Bouligand’s views on

intuition.
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3.2.1 Intuition from a pedagogical point of view

In Bouligand’s 1927 article [40], he stresses the important role of intuition in math-

ematics education. This view is perhaps most clearly summarised in the following

extract of this article:

...malgré les erreurs que peut faire naître son usage exclusif, l’intuition mérite-

t-elle dans l’enseignement une large place. Dans une simple formation de

culture générale, cette place peut, sans inconvénient, être prédominante. Dans

la préparation des ingénieurs, il faut développer l’exercice de l’intuition et du

calcul en les associant étroitement. Enfin, dans l’instruction des théoriciens, il

y a lieu d’initier en outre aux procédés de construction scientifique, par voie

purement déductive...[40, p. 132]

[...despite the errors that can arise from its exclusive use, intuition deserves

a significant place in education. In a simple general education course, this

role can, without disadvantage, be predominant. In the preparation of

engineers, the exercise of intuition and calculation should be developed by

closely associating them. Finally, in the training of theorists, there is also a

need to initiate them into the processes of scientific construction, using a

purely deductive approach].

In the above, we see that Bouligand seems to place intuition in the foreground of

mathematics education. The addition of methods and formalisation are suggested to

varying degrees based on the level of technical manipulation necessary.

As stated above, the focus of this article is on illustrating how intuition can help non-

specialists gain a better grasp on existing mathematical concepts. In order to achieve

this, Bouligand presents how a sequence of increasingly sophisticated mathematical

concepts can be associated with familiar geometrical or physical concepts. For example,

the concept of distance in mathematics can be associated naturally with a straight line,

a taut wire or a ray of light [40, p. 132]. Sums and differences can be represented

by juxtaposing line segments; products and quotients can be represented (Bouligand

uses the word concrétisées) by the relationship between the area of a rectangle and the

length of its sides. He emphasises the greater simplicity brought about through such

associations:

Ces relations originelles sont associées dans le monde de figures, à des pro-

priétés géométriques très simples [40, p. 133].
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[In the world of figures, these original relationships are associated with

very simple geometric properties].

In a similar way, the derivative can be associated with the slope of a curve and the

integral in terms of the area under a curve. Given the focus of this section on the

concept of intuition itself, we omit the details of the associations mentioned above

as well as further examples given by Bouligand, including the concept of a function,

Cartesian geometry and partial derivatives.

In addition to illustrating how mathematical concepts such as those mentioned above

can be understood in terms of geometrical/physical concepts or images, Bouligand also

expresses the usefulness of this approach for students in their practice of mathematics.

A simple example provided is that of solving a cubic equation, x3 − 3x− 10 = 0 . This

could, Bouligand comments, be approached by trying different values of x , however,

the situation is made more ‘palpable’ by taking recourse to a graphical representation

- that is sketching the equation in the Cartesian plane and seeing where the curve

crosses the x axis so as to infer the roots [40, p. 133].

We have seen above that Bouligand is in favour of formulating mathematical concepts

in terms of familiar geometrical/physical concepts and that he believes this will be of

use for those learning mathematics. However, the concept of intuition is not explicitly

defined in [40] but is implicitly understood to require a certain input in order to

function, this input being in the form of mental associations with geometrical or

physical concepts/objects. The concept of a necessary input for intuition and the

nature of this input is perhaps most simply illustrated in the opening lines as follows:

Une des premières données de l’intuition est l’espace où sont situés et où se

meuvent les corps [40, p. 132].

[One of the first inputs for intuition is the space in which bodies are located

and move].

The concept of intuition and its mechanics are explored in greater depth when consid-

ering intuition in the context of mathematical discovery.

3.2.2 Intuition as a tool in the mathematical discovery process

In [46], Bouligand stresses the role of intuition as the essential tool in the process of

mathematical discovery [46, p. 289]. He explores three aspects of this concept which

he refers to as intuition, intuition prolongée (extended intuition) and contre-intuition
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(counter-intuition). We will first introduce intuition and intuition prolongée through an

example provided by Bouligand, namely the famous realisation by Henri Poincaré of

the occurrence of non-Euclidean geometry in the theory of complex functions, specifi-

cally in the study of so-called Fuchsian functions. This example is used by Bouligand

on more than one occasion and provides a well known context within which we may

explore the idea of intuition prolongée.

Intuition and intuition prolongée

Fuchsian functions, which Poincaré had been studying in 1879 and had named after

the German mathematician Lazarus Fuchs, had arisen in the context of differential

equations. He had not yet succeeded in understanding them analytically and the

key realisation came in the form of ‘unexpected geometrical inspiration’, borrowing

Stillwell’s expression in [208, p. 493]. Poincaré later recounts his moment of realisation

in [200, p. 8]:

...A ce moment, je quittai Caen, que j’habitais alors pour prendre part à une

course géologique entrepirse par l’Ecole des Mines. Les péripéties du voyage

me firent oublier mes travaux mathématiques ; arrivés à Coutances, nous

montâmes dans un omnibus pour je ne sais quelle promenade ; au mooment

où je mettais le pied sur le marche-pied, l’idée me vint, sans que rien dans

mes pensées antérieures parût m’y avoir préparé, que les transformations dont

j’avais fait usage pour définir les fonctions fuchsiennes étaient identiques à

celles de la géométrie non euclidienne....

[...At that time, I left Caen, where I lived at the time, to take part in a

geological excursion organised by the Ecole des Mines. The events of

the journey made me forget my mathematical work; when we arrived in

Coutances, we boarded an omnibus for I don’t know what ride.The moment

I placed my foot on the step, the idea came to me, without anything

in my previous thoughts seeming to have prepared me for it, that the

transformations I had used to define Fuchsian functions were identical to

those of non-Euclidean geometry...].

This realisation provided a familiar geometric reference - namely the non-Euclidean

disk of Beltrami - enabling Poincaré to better explore and understand the new analyti-

cal concepts at hand. Bouligand comments that this analogy between non-Euclidian

geometry and Fuchsian functions provided a ‘support intuitif merveilleusement adapté

à l’édification de sa mémorable théorie des groupes fuchsiens’ [46, p. 290]. For a more
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detailed and contextualised explanation of Poincaré’s use of non-Euclidean geometry

in the study of Fuchsian functions, we refer the reader to Jeremy Gray’s account in

[144, p.179].

Thus, intuition prolongée is in [46] described by Bouligand as a ‘réédition spontanée de

quelque intuition immédiate, mais sur un terrain beaucoup plus large’. We infer here that

the intuition immédiate is the association between the geometrical representation of

Beltrami’s disk and the theory of non-Euclidean geometry it represents. The intuition

prolongée is the re-association of the geometrical framework of Beltrami’s disk in a

new context - that of Fuchsian functions. Bouligand goes on in [54], where intuition

is considered from a subjective viewpoint, to attempt a definition of what he refers to

above as intuition immédiate and of intuition prolongée:

Nous dirons maintenant que chaque connexion entre un groupe de réalités

sensibles et un groupe de notions mathématiques est une intuition ; une

connexion (très proche parente) établie entre un premier groupe de notions

mathématiques et un second, sera pareillement une intuition prolongée [46,

p. 290].

[We will now say that each connection between a group of tangible realities

and a group of mathematical concepts is an intuition; a (very closely

related) connection established between a first group of mathematical

concepts and a second will similarly be an intuition prolongée (extended

intuition)].

Therefore, intuition is the mental process of connecting or associating sensory ex-

perience with mathematical concepts; intuition prolongée is the mental process of

connecting a first set of mathematical ideas with a second set. It is instructive to refer

here to two further examples provided by Bouligand so as to clarify the definitions

above. As an example of basic intuition provided in [46, p. 290], Bouligand considers

a moving fluid with a steady flow (i.e. at any given point, all molecules passing

through that point do so with the same velocity). If we consider transformations in

the configuration of the fluid from a moment in time to a later moment in time then

we note, with Bouligand, that these transformations are continuous and the set of

these transformations is closed under composition. Therefore, Bouligand states that

this situation corresponds to a continuous group.1 The intuition here is the connection

between the mental picture of a moving fluid with the mathematical concept of a

1We deduce that, at the time of writing, that Bouligand’s use of the word ‘group’ may not be
equivalent to the modern use of this word. Specifically, not all of the four properties are explicitly of the
operation in question are included in the definition, only the property of closure under composition.



3.2 Bouligand on the concept of intuition in mathematics 83

continuous group. A further example, this time of intuition prolongée, is the use of

higher dimensional geometries as a means of working with certain algebraic systems,

such as systems of linear equations of n unknowns. Bouligand comments,

On a élaboré la géométrie à un nombre quelconque de dimensions et cette

construction s’est montrée extrêmement féconde, en donnant un support imagé

à des généralisations que leur aridité eût rendues impraticables [44, p. 261].

[Geometry of an arbitrary number of dimensions was developed and this

construction proved itself to be extremely productive by providing a visual

backdrop for generalisations whose aridity had made them unusable].

Here the intuition prolongée is the connection made between, for example, a system

of linear equations with n variables and n dimensional space - a connection between

two different mathematical constructs, which mirrors the connection that can be made

between, for example, a system of linear equations in at most 3 unknowns with 3

-dimensional Cartesian space.

Contre-intuition

In [46], the concept of contre-intuition is presented, which represents the ‘possibilité,

pour l’inuition, de rectifier, elle-même ses jugements hâtifs’ [54, p. 193]. For example,

it may seem intuitive, based on one’s familiar geometrical associations, to adopt the

following reasoning: every continuous function represents a curve, every curve admits

a tangent, therefore every continuous function has a derivative. To test the truth of

this reasoning, one may appeal to contre-intuition. To see why the assumption that

every curve admits a tangent is false, Bouligand invites the reader to imagine a jagged

section of the coastline in Brittany where, no matter how powerful a microscope one

uses, the contour always appears as jagged and thus would seem never to admit a

tangent. He then outlines how this ‘donnée intuitive’ can inspire the construction of

a mathematical object with a similar property. In particular, Bouligand specifies the

following iterative process: take a line AB and separate it into thirds. On the middle

third, construct a square. If we repeat this process in a specific way for each of the

new line segments, Bouligand shows how we can use this construction to deduce

the existence of a continuous function without a derivative, with the characteristic of

jaggedness as in the Breton coastline to which we referred above. While the details

are not central to the question at hand, this example illustrates well the concept of

contre-intuition as a mechanism whereby intuition, in Bouligand’s sense of the word, is

kept in check. As such, the mathematical discovery seems to involve for Bouligand an
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interplay between intuition, intuition prolongée and contre-intuition.

Finally, to reinforce the importance attributed by Bouligand to intuition as the central

tool in the mathematical discovery process, we quote this view expressed in [54] from

the subjective point of view of what he refers to as the espace de réalités mathématiques

et des intuitions:

Dans ce schème, la découverte apparaît comme une liaison brusquement

établie, par des intuitions nouvelles, entre des domaines primitivement dis-

tants dans l’espace des réalités mathématiques et des intuitions [54, p. 194].

[In this framework, discovery appears as an abruptly established connection,

established through new intuitions, between primitively distant domains

and the space of mathematical realities and intuitions].

Therefore, not only does Bouligand consider intuition as central for discovery in

mathematics but goes one step further by actually defining discovery in terms of

intuition.

3.2.3 Intuition versus formalisation and methods

While in [44], Bouligand explores the interplay and opposition between algebraic/algorithmic

methods and intuition, in [54], he explores the roles of intuition and formalisation and

does so from the point of view of the mental processes of the individual mathematician.

These two articles have been grouped under the same heading as certain similar ideas

appear from a different angles.

Intuition versus algebraic and algorithmic methods

Although in [44] Bouligand raises diverse points including interesting asides which we

will return to later, we will highlight two main messages here. First, Bouligand seems

to express a negative view on what he saw as an excessive reliance on methods or sym-

bolism2 which did not allow intuition, in his sense of the word, to come into play. The

second point we will explore is that, even when mathematics develops predominantly

in the form of methods, Bouligand gives examples to show that intuition nevertheless

can and does have a profound influence, through geometrical or physical associations,

on the formal side of the area of mathematics in question.

2In [44], Bouligand refers variously to éléments de nature combinatoire, symbolisme mathématique,
algèbre and calcul.
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Perhaps the example on which Bouligand places the most emphasis for the first of

these main points is to be found in his comments regarding Cartesian geometry:

...il y a eu sans interruption contact et rivalité entre intuitifs et partisans

du calcul. Descartes, par sa méthode analytique, avait assuré aux uns une

victoire éclatante; mais il s’en trouva d’autres pour récriminer contre le recours

aux axes, et les intermédiaires trop longs qui masquaient les véritables liens

entre les prémisses et la conclusion. D’où une scission entre la géométrie

élémentaire, ou tout était clair, et ce qu’on appelait par opposition, encore

tout récemment, les mathématiques supérieures: d’une manière plus ou moins

consciente, on désignait par là une sorte de champ touffu, où l’on marchait

souvent à l’aveugle [44, p. 258].

[...there has been constant contact and rivalry between those in favour

of intuition and proponents of calculation. Descartes, with his analytical

method, had ensured a resounding victory for the former but there were

others who recriminated against the use of axes, and the excessively long

intermediaries that masked the true links between premises and conclusion.

This led to a split between elementary geometry, where everything was clear,

and what until quite recently was called, by contrast, higher mathematics:

more or less consciously, this was used to designate a sort of confused field

where we often walked blindly].

Although the views expressed above regarding Cartesian geometry are not in them-

selves unusual or original for the time, implicit here are some new insights into

Bouligand’s views of intuition. First, he sees taking recourse to axes to solve certain

problems in geometry as being opposed to his notion of intuition. We will see in

the section below on geometry and causality that Bouligand sees this approach as

being extrinsic rather intrinsic, dealing directly with the objects being studied. We

see in the above therefore that an extrinsic approach is in conflict with Bouligand’s

concept of intuition. This is a new dimension, even if expressed implicitly: we have

seen that geometrical and physical associations are at the heart of his interpretation of

intuition and clearly, the use of axes in Cartesian geometry does have a geometrical

representation. As such, for Bouligand, the choice of geometrical/physical associations

with which intuition can work matters and that dealing with mathematical objects

directly, or in an intrinsic manner, is one factor for determining this choice. In addition,

seeing the connection between the initial definitions/conditions and the conclusions

of a mathematical argument appear above as being connected to intuition. Again this

is a theme which will be revisited in the next section. Finally, in the above, intuition is

related to a broader area of mathematics (such as elementary geometry) having the
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quality of being somehow clear to the mathematician or student.

Bouligand’s second main message which we highlight is the influence of intuition on

the development areas of mathematics where methods appear to be predominant.

An example to which Bouligand attributes particular importance in [44] relates to

imaginary numbers. He recalls the context in which imaginary numbers were first

introduced, namely that of finding real solutions to polynomial equations by radicals.

He considers the example of the equation x3 = 15x + 4 which, when applying the

formula for solving cubic equations, leads to the consideration of the square root

of −121. This is an intermediate step in the application of the formula and we

subsequently obtain the real roots of the polynomial. Bouligand comments that this

sort of approach led to working with complex numbers of the form a+ bi and applying

familiar rules of algebra when manipulating them. Bouligand comments that this

led to valuable mathematical results but that, without a concrete representation,

the introduction of imaginary numbers appeared mysterious and based on uncertain

foundations:

...on était donc assuré de suivre une route propice aux applications; mais on

s’engageait sur un terrain où semblait compromise cette impression de sécu-

rité qui régnait ailleurs. L’imaginaire apparut sous un jour mystérieux, tant

qu’on ne fut pas à même d’en donner une représentation concrète...[44, p.259]

[...we were thus assured of following a path that was conducive to appli-

cations but we were entering a field where the impression of security that

prevailed elsewhere seemed to be compromised. The imaginary appeared

in a mysterious light until we were able to give it a concrete representa-

tion...]

Bouligand emphasises that the geometrical representation of complex numbers in the

plane, today known as the Argand diagram, allowed the mathematician to see why the

formal algebraic rules already adopted, for example in the addition and multiplication

of complex numbers, were indeed justified.

Bouligand raises a further point through this example of the imaginary numbers which,

although not so directly related to the topic of intuition, is part of a theme which later

becomes central in his epistemological views about mathematics. Specifically, he goes

on to present the following example of a key difference between real numbers and

complex numbers, seen through the lens of the geometrical representations of these

sets of numbers - the real line and the complex plane respectively. The key difference
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in question is the property of the real line whereby a point on the line can be said

to be situated between two other given points. This is, Bouligand notes, related to

the notion of inequalities, which is not present in the same way in the complex plane.

He comments that the greater generality of the complex plane, in which this concept

of inequalities is not present, allows for the validity of the fundamental theorem of

algebra, which states that a polynomial of degree n with complex coefficients has n

roots. He comments:

...dans le champ réel, le nombre des racines était déterminé par des conditions

d’inégalité ; on conçoit que la disparition des inégalités, qui accompagne le

passage au domaine complexe, ait pour conséquence naturelle de faire dis-

paraître les effets variés qu’elles engendreaient dans le champ réel, pour nous

conduire d’un Algèbre disloquée à une Algèbre permanente. Autrement dit, on

met en évidence le rôle causal des inégalités [44, p. 260].

[In the field of the reals, the number of roots was determined by conditions

relating to inequalities. It is conceivable that the disappearance of inequali-

ties, which accompanies the transition to the complex field, has the natural

consequence of eliminating the varied effects that they would generate in

the real field, leading us from a dislocated Algebra to a permanent Algebra.

In other words, we highlight the causal role of inequalities].

It is of interest to draw attention to the use of the expression causal role in the above.

This idea will be explored in detail in the following subsections but we note here that

it seems to be the first occurrence of the world causal in Bouligand’s work.

The following extract summarises best Bouligand’s views regarding the roles of intu-

ition and symbolism in mathematics:

En résumé, il y a en nous-même deux aptitudes bien distinctes, l’une à prélever

sur le concret, par intuition, des éléments susceptibles d’acquérir la forme

mathématique, l’autre à combiner ces éléments. De ces tendances, l’intution

détient une priorité marquée, l’autre ne s’exerce qu’après coup pour organiser

le terrain conquis, pour grouper les résultats et les faire rentrer dans le cadre

du calcul...Par l’ordre qu’elle apporte, l’Algèbre régénère sans cesse l’intuition

et facilite la conquête de vérités nouvelles... [44, p. 291].

[To sum up, there are two quite distinct aptitudes within us, one for

intuitively extracting elements from the concrete that are likely to acquire

mathematical form, and the other for combining these elements. Of these
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tendencies, intuition has a marked priority, while the other is exercised

only after the fact, to organise the ground we have conquered, to group

the results together and make them fit into the framework of calculation...

Through the order it brings, Algebra constantly regenerates intuition and

facilitates the conquest of new truths].

Thus, while Bouligand seems to attribute greater importance to intuition as the pri-

mary element in creating new mathematics, he sees intuition and symbolism as two

necessary and complementary aspects of mathematical practice.

Intuition and formalism in a subjective setting

In [46], the opposition and interplay between the formal and intuitive aspects of

mathematics are explored in the context of what Bouligand refers to as the espace

des réalités mathématiques et des intuitions [54, p. 194]. In this imagined mental

space portrayed (but not exemplified) by Bouligand, mathematical concepts already

acquired are considered as points in the space and mathematical results or theorems

are represented as paths connecting these points. Acquired concepts are also connected

in this space to intuitions (i.e. associated with concepts derived directly from sensory

perception) and may be connected one to another by intuitions prolongées. The paths

connecting different points in the space may be made up of a combination of logical

deductions, intuitions and intuitions prolongées. In addition, Bouligand discusses a

notion of distance between concepts in this space in terms of the subjective impression

of the length of the paths connecting them. He emphasises a path perceived as short

from an intuitive point of view may well involve lengthy and complex logical deduc-

tions. On the other hand, Bouligand expresses that certain mathematical results, such

as fundamental theorems in the theory of numbers and the theory of functions, are

often lengthy from both an intuitive and formal point of view.

Bouligand’s views on the interplay between intuition and the formal aspect of mathe-

matics are also brought out here in relation to mathematical proof. He states that,

...démontrer consiste à réduire un système comportant des liaisons intuitives

à un autre ne mettant plus en jeu que des liaisons logiques...[proof consists

of reducing a system comprising intuitive connections to another which

brings into play only logical connections] [54, p. 194].

He adds that this reduction to a system of logical connections is necessary as intuitions

only provide an incomplete knowledge of the espace des réalités mathématiques - the

extent to which a judgement based on intuition is valid, Bouligand comments, is not
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clear in advance and significant work involving both intuition and counter-intuition is

often necessary before checking that these ideas satisfy the requirements of logic.

The following extract illustrates the same principle of removing intuitive connections

but this time with regard to the formalisation and organisation of mathematical

knowledge in field of geometry. In addition, Bouligand expresses here his views on the

way in which this should be done in relation to both axiomatization and intuition:

Pour la synthèse de tout ensemble de faits géométriques, il faudra, non seule-

ment, opérer la suppression de toute liaison intuitive, mais encore chercher, au-

tant que possible, à simplifier la structure du système des liaisons logiques met-

tant en connexion les faits du système : l’idée se présente ainsi naturellement

d’ordonner ces liaisons, de remonter à leurs racines, en un mot d’entreprendre

une élaboration axiomatique : au cours de celle-ci, tenant compte de la faculté

de l’intuition de s’adapter à toutes les formes de la réalité mathématique, on

a grand avantage à choisir, si possible, des liaisons logiques susceptibles de

se superposer à des liaisons intuitives. On a là un principe directeur pour

orienter le goût, indispensable en mathématique, autant, sinon plus encore

qu’en tout autre domaine [54, p. 198].

[For the synthesis of any set of geometrical facts, it will be necessary

not only to eliminate all intuitive connections, but also to try, as far as

possible, to simplify the structure of the system of logical connections

between the facts of the system. In this process, taking into account

the ability of intuition to adapt to all forms of mathematical reality, it is

highly advantageous to choose, if possible, logical connections that can be

superimposed on intuitive connections. This provides a guiding principle

to orient our chosen style, which is as essential in mathematics as in any

other field, if not more so].

Therefore, the process of formalisation should, for Bouligand, aim to simplify as far

as possible the network of logical connections. The axiomatic approach is seen as the

means of achieving the desired formalisation and organisation of mathematical ideas.

We note that he encourages adopting an axiomatic approach in such a way that the

chosen formalisation can be easily married with intuitive associations. An example of

how this might be achieved is not provided at this stage. It is not made explicitly clear

whether the associations intuitives above correspond to intuition (in Bouligand’s sense

of the word) or intuitions prolongée or perhaps both.
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3.2.4 Further types of intuition

In his contribution to the 1935 book Sur l’évolution des sciences physiques et math-

ématiques [103], which collates the contributions of several speakers at a series of

conferences co-organised by Bouligand at the Faculté des Sciences de Poitiers, Bouligand

also briefly identifies another type of intuition, which he calls intuition finitiste [103,

p. 135], although he does not explore this concept here. This type of intuition is based

on the ideas first presented in his 1928 article entitled Le finitisme et son efficacité

dans la recherche mathématique [42], although this article does not refer explicitly to

intuition finitiste. Finitism, for Bouligand, seems to refer to an approach to infinite

problems by looking at finite approximations. In [42], he discusses the advantages

and limitations of such an approach, its connection with his concept of intuition and

with his idea of Cantorian form in geometry, which will be explored in the following

section.

The following is a slight rewording of an example given in [103] and illustrates the

idea of a finitist approach and its connection with Bouligand’s concept of intuition.

Consider the following theorem: the surface S generated by the half-tangents to a skew

curve C (one which does not lie in only one plane) is developable. Bouligand states

that this well-known result is made intuitive if we consider, instead of C, a polygonal

line Lc made by joining certain points lying on C. If we extend the lines making up Lc

in a specific way, we can obtain a surface with polyhedral faces of infinite area. If we

define Lc with points of C that are increasingly close together, thus approximating C

with greater and greater precision, then the polyhedral surface mentioned can be seen

to tend towards S. The fact that each polyhedral surface in the sequence is clearly

developable (because it is made up of segments of the plane), for Bouligand, makes

the theorem intuitive.

A question that may come to mind here is to understand the difference between

Bouligand’s intuition prolongée and what he later referred to as intuition finitiste.

Considering the example above and the definition of intuition prolongée, could we not

consider intuition finitiste as a special case of intuition prolongée? Bouligand does not

address this question but does, in [103], seem to relate the two when commenting, à

côté de l’intuition prolongée, il y aurait beaucoup à dire de l’intuition finitiste... [103,

p. 133].
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3.2.5 Bouligand’s stance on intuition in relation to the debate on

space and non-Euclidean geometry?

A reader familiar with the debates taking place from the end of the 19th century

regarding the nature of space, in relation to the rise of non-Euclidean geometries, may

wonder what Bouligand’s position was in this regard, in the context of his ideas on

intuition. We will see that Bouligand did not address these questions and we will

suggest that this is due to the motivation behind his epistemological work, which was

centered primarily around mathematical methods.

As Nabonnand comments in [188, p. 220] at the beginning of the 19th century, the

concept of space was taken as a given. With Nabonnand, we cite Federigo Enriques

(1871-1946) - an eminent Italian mathematician who also contributed his ideas to the

philosophy and history of mathematics - who stated that at the end of the 19th century,

the growing acceptance of non-Euclidean geometries led to,

‘...cette idée nouvelle et remarquable que l’espace physique pourrait être dif-

férent de l’image que nous en fournit notre intuition habituelle’ [185].

[...this new and remarkable idea that physical space could be different to the

image provided by our usual intuition.’]

In this context, explains Nabonnand, mathematicians became directly involved in

philosophical debates regarding the axioms of geometry and the status and origins of

concepts of space and geometry. Such debates included considerations of Emmanuel

Kant’s ideas - and of those who later followed and interpreted his ideas - for example

regarding his concept of an a priori intuition of space3. In France, Henri Poincaré was

centrally involved in these debates and, as noted by Nabonnand, he saw the axioms

of geometry not in terms of a priori intuition, or as an experimental fact, but simply

as a matter of convention. He considered that it is a matter of choosing the most

convenient convention for representing the physical world. In [201, p. 67], Poincaré

states,

la géométrie euclidienne est et restera la plus commode...Parce qu’elle est la

plus simple; et elle n’est pas telle seueement par suite de nos habitutdes de

l’esprit ou de je ne sais quelle intuition directe que nous aurions de l’espace

euclidien; elle est la plus simple en soi de même qu’un polynôme du premier

degré est plus simple qu’un polynôme du second degré...

3For more details, we refer the reader to [151]
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[Euclidean geometry is and will remain the most convenient...Because it is

the most simple; and it is the most simple not only as a result of the habits

of our mind or some sort of direct intuition we may have of Euclidean

space; it is the most simple in itself, in the same way as a polynomial of the

first degree is simpler than a polynomial of the second degree...]

As we see from the above discussion - intuition, and in particular intuition of space,

was a key ingredient in the philosophical debates on non-Euclidean geometries and

the nature of space. Did Bouligand take a stance in such debates in the context of his

discussion of intuition? Despite the fact that he was almost certainly aware of these

debates, it would seem that Bouligand did not explore these questions in his published

work and did not make active efforts to put forward his own stance. As we have seen

in this section, for Bouligand, intuition is considered first and foremost as an important

tool in the process of mathematical discovery and progress and is also considered with

reference to the teaching of mathematics. In Bouligand’s later article of 1944 [97]

- which includes an account of some of his ideas on intuition introduced above - he

comments regarding different systems of geometry within mathematics,

La pluralité des systèmes de géométrie,...atteste qu’il n’y a pas en mathéma-

tiques de vérités absolues. Ce qu’on y peut trouver, ce sont des propositions

qui sont vraies, sous la condition d’admettre tel ou tel faisceaux de prémisses,

exempt de contradiction... [97, p. 98].

[The plurality of systems of geometry...shows that there are no absolute

truths in mathematics. What we can find in mathematics are proposition

which are true if we admit a certain collection of assumptions which is free

from contradiction...]

Although the above comment is not made explicitly with reference to Euclidean versus

non-Euclidean geometries and questions regarding the nature of space, this would

seem to be compatible with Poincaré’s view that no system of geometry is inherently

more true than any other. However, Bouligand does not express any position here on

what the best system of geometry may be for representing physical space, or on the

role of intuition in this question. In particular he does not assert or imply Poincaré’s

view regarding Euclidean geometry being the most convenient system for representing

space, nor does he comment on intuition in relation to the nature of space.

Bouligand’s main focus on mathematical practice in the context of his ideas on intuition

reflects a broader theme - that is, a focus on mathematical methods and progress

within mathematics as a key motivation behind his works of a more philosophical

nature. This theme will be brought out more fully later on in our account. We note
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at this stage that this point is made explicit in Bouligand’s 1961 account of his own

works [101], in which this aspect of his work is included under the heading principes

d’enseignement, méthodes et heuristique [principles of teaching, methods and heuristics]

[101, p. 54].



Chapter 4

Bouligand’s theory of Direct

Infinitesimal Geometry: motivations,

influences and mathematical

formulation

Following his work on the generalised Dirichlet problem and potential theory, Bouli-

gand began to focus as of 1928 on constructing and promoting an approach to

differential geometry which he referred to, as of 1932, as géométrie infinitésimale

directe [direct infinitesimal geometry]. This theory was inspired to a great extent by

his encounter with the generalised Dirichlet problem and the methods he employed

therein. Bouligand’s theory will appear as a central element in this account as it is tied

up intimately with his ideas in the epistemology of mathematics. Indeed, his theory

can be viewed as the implementation of his reflections on certain faults, as he perceives

them, in the differential geometry of the time and of the principles and methods he

puts forward to attempt to remedy these faults. These reflections are published for

example in his 1927 paper [41] and his article of 1930 [51], which will be introduced

below. This area of Bouligand’s work represents a conscious attempt at bringing his

concept of causality into differential geometry and at implementing direct methods -

both of these concepts will be explored in greater depth in the following chapter.

In addition to being a central element of the present account, Bouligand himself

viewed this theory as representing a major part of his contribution to mathematics.

In his 1937 note on his own mathematical works [95], three out of eight sections

are related to direct infinitesimal geometry (recherches de géométrie des ensembles

suggérées par la théorie du potentiel; systématisation: la création de méthodes directes en

géométrie infinitésimale; applications de la géométrie infinitésimale directe aux équations

94
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différentielles, ordinaires ou partielles). In addition, in his 1961 note on the works of

his entire career, one of three main sections, ‘géométrie différentielle et thèmes divers’

deals mainly with concepts belonging to this theory. Direct infinitesimal geometry was

identified by other mathematicians as one of the main defining works of Bouligand.

For example, Gustave Choquet comments:

‘Le nom de Bouligand restera attaché à la géométrie infinitésimale directe,

c’est-à’dire à l’étude des propriétés différentielles des ensembles quelconques de

l’espace par des méthodes intrinsèques. C’est la théorie du potentiel et, plus

précisémment, l’étude de la régularité des points frontières dans le problème

de Dirichlet qui le conduisit à créer deux outils importants, le contingent et le

paratingent, pour aborder un cadre plus général que le cadre des fonctions

différentiables...’ [202, p. 38]

[Bouligand’s name will remain attached to direct infinitesimal geometry,

that is the study of differential properties of arbitrary sets in space by means

of intrinsic methods. It is potential theory and more precisely the study of

the regularity of boundary points in the Dirichlet problem which led him to

create two important tools, the contingent and the paratingent, for dealing

with a more general setting than that of differentiable functions...]

We note that Gustave Choquet (1915-2006) was a French mathematician who con-

tributed to potential theory, functional analysis, topology and measure theory. He

also identified direct infinitesimal geometry as one of his own areas of mathematical

research, particularly between 1941 and 1946 [120, p. 158,160].

The ideas in this chapter will be split into five main sections as follows:

1. We will first consider Bouligand’s epistemological reflections regarding geometry

between 1927 and 1930 in which he attempts an initial presentation of the

principles and main tools and methods of his approach to differential geometry.

Here we will highlight the influence of Bouligand’s prior work on the Dirichlet

problem.

2. To place Bouligand’s theory in context, we will also review the ideas of certain

mathematicians which had a direct influence on the development of Bouligand’s

theory, or which are closely related and cited by Bouligand.

3. We will illustrate the contents of Bouligand’s theory of direct infinitesimal ge-

ometry by exploring some key concepts and examples contained in his textbook
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Introduction à la géométrie infinitésimale directe [Introduction to direct infinites-

imal geometry], which represents the first comprehensive presentation of his

theory. In this part, we will also connect the main ideas of Bouligand’s theory

with the principles brought to light in 1.

4. We will briefly introduce efforts to demonstrate applications of his theory.

5. Finally, we will explore the close connection between direct infinitesimal ge-

ometry and Bouligand’s role as a teacher of mathematics. Along with these

pedagogical aspects, this section will deal with Bouligand’s efforts to circulate

his ideas through various publications, contributions to conferences and through

the orientation of his students in his own area of research.

We highlight that in the second section indicated above, we will comment on a

particularly important broader trend in mathematics in which Bouligand’s theory

has to be placed, namely that of the uptake of concepts of set theory in France. We

will see that Bouligand himself viewed his approach to differential geometry as an

attempt at recreating the success, as he perceived it, of the application of sets in

the theory of functions - arguably the first area of mathematics in which set theory

penetrated in France. This success is seen, from Bouligand’s point of view, in terms of

his philosophical views regarding regarding causality in the context of geometry.

4.1 On the need for a new approach to infinitesimal

geometry

In his 1927 article Sur l’évolution des idées géométriques [41] and his 1930 publication

Sur quelques points de méthodologie géométrique [51], Bouligand outlines the need,

from his point of view, for a new approach in the area of geometry. He presents both

what he sees as the faults prevailing in infinitesimal geometry at the time and begins

to outline new tools and methods to remedy these faults. It is in this context that

he first brings out his ideas about causality in geometry - more precisely, what he

refers to as causal relations between a mathematical result and that premises upon

which it is based, and the concept of a domain of causality - these concepts will be

introduced below. In later works, these concepts are considered by Bouligand in the

more general settings of mathematical and physical theories, including mathematical

proofs. Bouligand’s ideas in [41] and [51] regarding the form and methods of geometry

which he considers desirable combine a number of interrelated concepts, which we

will list as follows:

• Domains of causality - an appropriate domain in which a geometrical concept

or fact should in Bouligand’s view be studied
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• Achieving maximum generality or removing unnecessary hypotheses

• Preferring a direct approach over one whose methods are further dissociated

with the concepts or objects being studied.

Conversely, the absence of the above, for Bouligand, corresponds as we will see to an

undesirable approach. We will consider these points below one by one for maximum

clarity and completeness but we emphasise that these are merely different angles from

which we can understand the same ideas, rather than being separate ingredients of a

theory or definition. Bouligand does not necessarily separate these ideas in this way in

his own work. First we briefly introduce the two articles from which we construct our

account in this section:

• Sur l’évolution des idées géométriques (1927) [41] - focusing in this instance

on the three dimensional Euclidean setting, Bouligand outlines his views regard-

ing the need for a new approach to differential geometry - one which formulates

its problems and methods in what he refers to as la forme Cantorienne (Cantorian

form). Although the term Cantorian form is later abandoned by Bouligand, this

article outlines the start of a programme of research in geometry which later

culminates in his theory of géométrie infinitésimale directe and also expresses in

seed form certain of his main epistemological ideas about mathematics upon

which he later elaborated.

• Sur quelques points de méthodologie géométrique (1930) [51] - this article

can be seen as an elaboration of [41] and is Bouligand’s first publication in

which concepts relating to causality in geometry appear explicitly. In particular,

Bouligand explores for the first time the concept of a domain of causality. This

article deals extensively with mathematical tools and methods which aim to

enable him to put into to practice the principles he had laid out - tools and

methods which are later essential ingedients in his géométrie infinitésimale directe.

The article appears in two parts - the first part being focussed more on principles

and the second being focussed more on mathematical tools.

Before investigating Bouligand’s ideas according to the three themes outlined above,

we first give a broad summary of the main ideas. Bouligand’s main objective here

is to take an approach which allows the mathematician and the student to better

understand geometry. In [51, p. 43], he highlights the possibility for an ‘effort sys-

tématique POUR MIEUX COMPRENDRE LA GEOMETRIE’ [a systematic effort aimed

at BETTER UNDERSTANDING GEOMETRY]. Put differently, he promotes adopting

methods which allow us to appreciate the ‘simplicité souvent cachée’ [the often hidden
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simplicity] [41, p. 589] of a geometrical result or theory. Essential in achieving this,

for Bouligand, is introducing a way of considering geometrical concepts in their proper

setting and at the correct level of generality. This is achieved through the notion of a

domain of causality which, as we will see below, is closely connected to the concept of

a mathematical group. It is also achieved by seeking to avoid unnecessary hypotheses

which can be seen as hiding the true cause of a given fact in geometry. Bouligand’s

notion of prolongement fonctionnel will also be presented below as a technique for

departing from an overly restrictive set of initial hypotheses to a more general setting,

although we note that this technique is not emphasised in his subsequent work in

the context of his theory of direct infinitesimal geometry. Finally, Bouligand sees

the use methods of a more algorithmic nature, involving lengthy calculations, or

which are dissociated conceptually from the problem or object being studied as an-

other factor that obscures the link between the initial hypotheses and the proven result.

4.1.1 The need to eliminate unnecessary hypotheses and achieve

maximum generality

In [41], Bouligand raises certain objections to the analytical geometry of Descartes,

notably that it leads to introducing what he considers as unnecessary assumptions

present only to ensure the applicability of the Cartesian methods at hand. This

would include for example the assumption that lines or surfaces being studied may

be represented by functions which are differentiable up to a certain order. Bouligand

comments in this regard,

‘La commodité de ce point de vue le fit adopter universellement et bientôt, tout

exposé géométrique commença par un préambule de cette nature : soit une

ligne, ou une surface, définie par des formules dérivables jusqu’à un ordre

qui sera précisé ultérieurement ; les conditions déterminantes qui fixaient cet

ordre étaient de pure commodité et visaient à une application des méthodes

cartésiennes’ [41, p. 586-587].

[The convenience of this point of view led to its universal adoption and

soon any reasoned argument in geometry would begin with a preamble of

the following kind: consider a line or a surface defined by formulae which

are differentiable up to a certain order which will be specified later. The

conditions which determined this order were chosen purely according to

convenience and aimed at enabling the application of Cartesian methods].

The effect of relying on assumptions introduced for convenience, in Bouligand’s view,
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is to obscure the connection between the essential principles upon which a result is

based and the geometrical result itself. This is expressed well in [51, p. 39]:

‘...Le résultat obtenu n’est donc plus le produit causale des hypothèses initiales.’

[...The result obtained is therefore no longer the causal consequence of the

initial hypotheses].

An example given by Bouligand of this situation relates to the work of Henri Lebesgue,

in his doctoral thesis of 1902 [165]. It useful to consider the following opening lines of

Lebesgue’s thesis, which illustrate both the content of the thesis and the relevance this

work in relation to the present discussion about eliminating unnecessary hypotheses

and achieving greater generality.

‘Dans ce travail j’essaie de donner des définitions aussi générales et précises que

possible de quelques uns des nombres que l’on considère en Analyse: intégrale

définie, longueur d’une courbe, aire d’une surface’ [165, p. 232]

[In this work I attempt to give the most general and precise definitions

possible for certain numbers considered in Analysis: definite integral,

length of a curve, area of a surface].

A section of Lebesgue’s thesis deals with developable surfaces. In this context, he

comments that one common understanding of developable surfaces at the time was

that of a surface which can be decomposed into cones, cylinders and surfaces generated

by the tangents of a non-planar curve [165, p. 330]. He goes on, however, to show that

these are not necessary or sufficient conditions for developability. Lebesgue provides

precise necessary and sufficient geometric conditions for each of these three types of

surface (conical, cylindrical and those generated by the tangents of a planar curve) to

be developable. With regard to the common assumption prior to Lebesgue’s results,

Bouligand comments,

En réalité, on n’a pas ainsi la solution complète, mais seuelement une solution

restreinte qui se sépare grâce à l’hypothèse de commodité de la continuité des

premières dérivées [41, p. 587].

[In reality, we do not have in this way a complete solution but only a re-

stricted solution that becomes apparent thanks to the hypothesis introduced

for convenience that the first derivatives are continuous].

In other words, Bouligand’s view is that the assumption of continuous first derivatives -

adopted to facilitate the application of Cartesian methods - led to the false impression



100 Bouligand’s theory of Direct Infinitesimal Geometry: motivations, . . .

that a complete solution to the problem at hand was available. As such, Bouligand

emphasises, in relation to this example, that the question of assumptions introduced

for convenience are not merely a matter of aesthetics:

Le recours à des restrictions de commodité peut bouleverser complètement

l’aspect d’un problème.

[Taking recourse to restrictions introduced for convenience can completely

change the face of the problem].

The concept of a domain of causality

Unnecessary assumptions and natural domains of existence. We have seen above

that Bouligand views the reliance on extra assumptions introduced to facilitate the

application of methods as an undesirable feature of geometry. A lack of generality in a

geometrical theory or argument, for Bouligand, is closely connected with the absence

of what he refers to as a causal structure - an idea that will be explored below. The

other side to the same coin is that he connects achieving the right level of generality by

eliminating extra assumptions with reinstating a causal structure. The main concept

through which Bouligand expresses these ideas is a domain of causality, although he

initially uses the term natural domain of existence in [41], as we will see below. The

connection between eliminating unnecessary assumptions and studying geometrical

concepts or objects in an appropriate setting is perhaps most explicitly present in the

following:

‘Si l’on veut rompre avec les restrictions de commodité, c’est-à-dire étudier

les faits géométriques dans leur domaine naturel d’existence...moyennant un

minimum d’hypothèses, on se rallie à une tendance nouvelle, fréquente dans

les travaux récents, et en faveur de laquelle Georges Cantor semble avoir

opté l’un des premiers, en étudiant précisément la définition qu’il convient de

donner d’une courbe’ [41, p. 587].

[If we want to break away from restrictions introduced for convenience,

that is study geometrical facts in their natural domain of existence...by

means of a minimum set of hypotheses, we join a new trend, frequent in

recent works and in favour of which Georg Cantor seems to be one of the

first to have opted by studying the precise definition that should be given

for a curve].
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A discussion of the methods presented by Bouligand to achieve the ideals he lays

out here will be presented later in this chapter, including this ‘new trend’ - which

we interpret here as referring to an approach to differential geometry based on

concepts orginating in Cantor’s work on set theory (including concepts which we

would today identify with the area of topology). The term domaine naturel d’existence

[natural domain of existence], Bouligand comments, originates in an article of Pavel

Urysohn [212] published posthumously in 1925. Pavel Urysohn (1898-1924) was

a Soviet mathematician who made contributions to dimension theory and topology.

Urysohn’s work here focusses on introducing in the context of topology certain familiar

geometrical notions (such as lines and surfaces) in a purely geometrical manner, also

focussing on intrinsic definitions. Urysohn also concentrates here on the possibility of

generalising as far as possible such notions. When justifying the setting in which he

chooses to operate, namely compact metric spaces and the corresponding assumptions

made about these spaces, he comments:

‘...toute nouvelle restriction imposée à l’espace ne simplifierait d”aucune

manière ni les énoncés ni les démonstrations: elle resterait tout simplement

sans emploi. Or l’introduction d’une restriction qui n’intervient nulle part me

semble assez mal motivée’ Ursohn adds on this point, ‘C’est là, il me semble,

un fait général: toute théorie mathématique possède un domaine naturel

d’existence, c. à d. une classe d’individus auxquels ses résultats s’étendent

d’eux-mêmes tandis que toute généralisation ultérieure n’est que partielle et

demande des recherches nouvelles et presque toujours bien compliquées’ [212,

p. 41].

[‘...any new restriction imposed on the space would in no way simplify the

propositions nor the proofs: it would quite simply be without use. The

introduction of a restriction which plays no role seems quite ill justified...It

is therein, it seems, that we find a general fact: any mathematical theory

has a natural domain of existence, that is a class of individual objects to

which its results extend for which any further generalisation is only partial

and requires new and almost always highly complicated research’].

Bouligand’s comment regarding a need to study concepts in geometry in their natural

domain of existence was brought up in [41] in the context of his views on an excessive

reliance on extra assumptions in the analytical geometry of Descartes and in vector

geometry. The following illustrates this view in relation to the teaching of vector

geometry:

La géométrie vectorielle, telle que qu’on l’enseigne aujourd’hui, a conservé cet

opportunisme. Qu’il s’agisse d’un point ou d’un vecteur, fonction géométrique
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d’un ou deux paramètres, on se hâte de supposer à cette fonction des propriétés

de dérivabilité, afin d’écarter, pour la suite, certaines difficultés...la géométrie

vectorielle reste cartésienne dans sa manière de poser les problèmes ; elle

les délimite, artificiellement parfois, pour permettre à un certain mécanisme

opératoire de s’exercer [41, p. 587].

[Vector geometry as it is taught today maintains the same opportunistic

quality. Whether it be a point or a vector, a geometric function of one

or two parameters, we hasten to assume that this function has properties

of differentiability in order to clear the way of later difficulties...vector

geometry remains Cartesian in its manner of posing problems; it delimits

the problem sometimes artificially so as to allow for a certain operational

mechanism to be applied].

Bouligand’s expression regarding the artificial delimitation of the problem at hand in

vector geometry highlights the link between assumptions introduced for convenience

with that of failing to consider the problem in its appropriate domain.

Groups, structure, domains of causality. Next, we note that, fundamental to Bouli-

gand’s ideas with regard to finding the appropriate domain mentioned above is the

concept of a mathematical group. In [41], he comments regarding the new principles

and methods in differential geometry which he is promoting,

Tout d’abord la construction systématique dont nous avons montré l’opportunité

sera dominée par des considérations de groupes, qui en fixeront la structure

dans ses grandes lignes. Chaque proposition sera classé d’après son degré de

généralité, ou ce qui revient au même, suivant son groupe d’invariance [41,

p. 588]. He adds that ‘L’intérêt de cette classification est de constituer par

elle-même un programme de recherches.’

[First of all the systematic construction for which we have illustrated the

opportunity, will be dominated by considerations relating to groups which

will fix the structure in its broad outlines. Each proposition will be classified

according to its level of generality, or equivalently, according to its group of

invariance...The interest in this classification is to constitute a programme

of research in its own right].

Again, here we see the connection for Bouligand between the structure of a geometrical

theory and that of the concept of a natural or appropriate domain in which we consider

a given problem or concept - a setting expressed in terms of invariance under groups of
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transformations. An example Bouligand provides in [41] of the classification of a math-

ematical proposition according to its level of generality and its group of invariance is

as follows. Consider the theorem stating that, given a simple closed curve in the plane,

this curve separates the plane into two distinct regions. This Bouligand considers as a

topological statement, as it is invariant under the group of continuous bijections 1, i.e.

we may apply any continuous bijection to the simple closed curve in question and the

result will remain true. Bouligand also considers the theorem stating that a rectifiable

curve has a tangent almost everywhere (by almost everywhere, we mean that the

set of points for which this is not true has measure zero). This theorem is invariant

under the group of continuous bijections which are also continuously differentiable.

Bouligand refers to this setting as topologie restreinte du premier ordre and comments

that we could, in a similar way, consider statements belonging to topologie restreinte of

order 2, 3 and so on.

A further example provided by Bouligand in [51, p. 41] is that classification of different

systems of geometry by Felix Klein in his Erlanger Programm according to invariance

under groups of transformations. In addition to the connections he established be-

tween geometry and group theory, Felix Klein (1849-1925), a German mathematician

and a key figure in the history of mathematics, contributed notably to non-Euclidean

geometry and function theory. Klein’s Erlanger Programm, first pubished as a booklet

in 1872 [159] is widely considered as a major event in mathematics in the nineteenth

century and provides a systematic way of organising various branches of geometry

existing at the time. The main concept is that a system of geometry consists of what

Klein then referred to as a manifold2, a group of transformations defined on that set

and a collection of properties which are invariant under the group of transformations.

For example, in Euclidean geometry, given a shape in two-dimensional space, we can

see that side-lengths and angles are invariant under translations and reflections. This

way of formulating geometry leads for example to the possibility of organising differ-

ent systems of geometry in relation to one another, for example, Euclidean geometry

can be seen as being included within projective geometry. For a more comprehen-

sive and detailed account of the Klein’s Erlanger Program, we refer the reader to [211].

A final noteworthy example of studying a concept in relation to a certain field of invari-

ance relates to topologie restreinte du premier ordre, discussed above. Bouligand notes

[51, p. 42] that his concept of dimension used in the context of studying improper

sets in the generalised Dirichlet problem, introduced above, belongs to this field of

1Bouligand refers in [41, p. 588] to continuous bijections, although it is not clear whether he
intended to refer to homeomorphisms - a type of function which today characterises topological
invariance.

2For more details, see [211]
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invariance.

Bouligand refers such fields of invariance domains of causality, commenting,

‘Tout système de propriétés invariantes (relatif à un certain groupe) est un

DOMAINE DE CAUSALITE. Si l’on préfère: des causes intérieures à ce domaine

entraînent aussi des effets intérieurs à ce domaine [51, p. 42].’

[‘Any system of invariant properties (in relation to a certain group) is a

DOMAIN OF CAUSALITY. Or, if one prefers: causes within this domain lead

to effects within this domain’].

In this line of thinking, Bouligand sees the application of the concept of a domain of

causality as a means of achieving what he refers to as causal structure in geometry:

Pour restaurer la structure causale, il faut d’abord bien séparer les champs

d’invariance [51, p. 41].

[In order to restore causal structure, it is first necessary to properly separate

the fields of invariance].

4.1.2 Favouring a direct approach

In his view of differential geometry, Bouligand expresses objections against an approach

which involves methods which are detached in some sense from the concepts or objects

being studied. He sees such methods and those involving unnecessarily lengthy

calculations as a further factor in obscuring the connection between a fact in geometry

and the basic principles which lead to that result. These ideas are perhaps most clearly

expressed by Bouligand in relation to the use of axes in the analytical geometry of

Descartes to deal with certain geometrical problems:

‘L’inauguration par Descartes de la méthode analytique a marqué une étape

mémorable, en donnant des procédés permanents pour la résolution de ques-

tions jusqu’alors hasardeuses. Toutefois, le recours à des axes, étrangers au

problème étudié, la longueur fréquente des calculs à effectuer, en même temps

que leur absence d’apparentement logique avec le but poursuivi, ont suscité

une réaction qui a fait naître le calcul géométrique, et plus récemment a

conduit à l’édification d’une véritable doctrine à laquelle on peut donner le

nom de géométrie vectorielle...’ [41, p. 586-587]
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[‘The inauguration by Descartes of the analytical method marks a mem-

orable step [in the evolution of geometry], by providing permanent pro-

cedures to solve questions which where hitherto problematic. However,

the reliance on axes which are foreign to the problem being studied, the

frequently lengthy calculations to be carried out and at the same time their

lack of a logical relationship with the sought goal, led to a reaction which

gave rise to the birth of‘ geometric calculus and more recently has led

to the elaboration of a veritable doctrine which we may name vectorial

geometry...’]

Here Bouligand is clearly objecting to the ‘foreign’ nature of the method in relation

to the geometrical problems and it is this aspect we wish to emphasise in relation to

a preference for a direct approach. The quotation also illustrates how the different

aspects of Bouligand’s views on differential geometry are closely connected and often

considered together. For example, above, Bouligand combines his objection to the use

of axes dissociated with the problem at hand with the lack of a logical connection

between the methods and the concepts being studied. Regarding the latter, it seems we

could equate this with Bouligand’s comment above in favour of studying geometrical

facts in their natural domain of existence, or domain of causality.

We see in the above that Bouligand views the development of vector calculus as a step

of progress away from the faults of the analytical geometry of Descartes, even if, as

we noted earlier, he sees vector calculus as retaining certain faults of the Cartesian

approach. We note here that this view regarding vector calculus as an improvement

upon analytical geometry in terms of dealing with the concepts being studied in a more

geometrical and intuitive way was certainly not unique to Bouligand. The following

from Leveugle’s 1920 textbook illustrates a similar point of view:

L’Analyse ne met pas toujours suffisamment en lumière le sens géométrique

des propriétés qu’elle étudie; au contraire, la méthode vectorielle réalise un

double bénéfice, celui de simplifier considérablement l’écriture, et de reserrer le

lien qui existe entre les propriétés synthétiques et analytiques. Algébriques par

leurs symboles, les transformations du calcul vectoriel ont une signification

géométrique intuitive qui permet d’interpréter constamment les opérations et

leurs résultats. [171, p. V]

[Analysis does not always sufficiently bring to light the geometrical meaning

of the properties studied. On the contrary, the vectorial method achieves a

double benefit, that of considerably simplifying the writing and reinforcing

the link that exists between synthetic and analytical properties. Algebraic

in terms of their symbols, the transformations of vector calculus have an
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intuitive geometrical meaning which allows for a constant interpretation of

the operations and their results].

Leveugle goes on to describe geometric calculus as follows:

‘méthode d’Algèbre générale qui permette de faire entrer directement dans le

Calcul les éléments géométriques des figures, sans l’aide de nombres étrangers

à la question que l’on a en vue, tels que les coordonnées cartésiennes ou autres.’

[171, p. VII]

[a method of general Algebra which enables bringing the geometric ele-

ments of figures directly into Calculus without the help of numbers which

are foreign to the question at hand such as Cartesian coordinates or other-

wise].

A further example provided by Bouligand in [51] relates to the study of geodesics

(i.e. paths which give the shortest distance between two points). He comments in this

regard,

...chaque fois qu’il est question des lignes géodésiques d’une surface (c’est-à-

dire donnant le plus court chemin entre deux de leurs points, suffisamment

proches) on pense presque infailliblement, à l’équation différentielle du second

ordre définissant ces lignes : cet auxiliaire s’impose à l’esprit d’une manière

tellement imperieuse qu’on éprouve de la difficulté à s’en passer : la vraie

raison pour laquelle, au moins dans des cas étendus, il part, d’un point d’une

surface des géodésiques dans toutes les directions issues de ce point, n’est pas

aisée à apercevoir [51, p. 42].

[...whenever we are interested in the geodesic lines on a surface (that is,

those giving the shortest path between two points on the surface, suffi-

ciently close) we think almost invariably of the second order differential

equation which defines these lines. This auxiliary is imposed on the mind

in such a compelling way that it seems difficult to do without it. The real

reason for which, at least in extended cases, geodesics go out from a point

of a surface in all directions is not easy to see].

Bouligand’s use of the word ‘auxiliary’ seems to imply taking recourse to a method

which is somehow external or secondary in relation to the problem at hand - in this

case the use of differential equations which, we note, do not represent a geometrical

method. The consequence of this, Bouligand states above, is that the ‘real reason’ for

the result is not brought to light in an obvious way.
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4.1.3 Summary of Bouligand’s motivations

We have explored the main principles and desiderata motivating Bouligand in later

formulating his theory of direct infinitesimal geometry. Above we have extracted and

introduced separately three interrelated key aspects of the approach to differential

geometry desired by Bouligand, namely one in which extra hypotheses are avoided,

where results are considered in an appropriate domain by means of the concepts

of groups and invariance and finally in which a direct approach is favoured, for

example by avoiding relying on coordinates or differential equations. The main tools

and methods for putting into practice the principles Bouligand lays out in the two

articles dealt with above are expressed in a comprehensive way in his Introduction à

la géométrie infinitésimale directe - addressed later on in this chapter. First, beyond

Bouligand’s views and ideals which led him to express the need to formulate his theory,

we explore below the external influences which had the greatest impact on his work in

this direction as well as certain related works which Bouligand identified as having

common elements in terms of either their goals of methods.

4.2 Factors influencing direct infinitesimal geometry -

the emergence of set theory in France, the Polish

School and other related works

It is interesting to consider the influences behind Bouligand’s direct inifinitesimal

geometry and to ask whether other works of a similar nature existed and of which

Bouligand was aware. Fortunately, Bouligand himself comments explicitly on the

origins and influences of his theory as well as on works of a similar nature. These

comments are to be found both in his notes regarding his own mathematical works, for

example in [95] and in the introductions to the main expositions of his theory, notably

in [75] and in [87]. The influences and related works emphasised the most can be

split into three groups. First, we will consider the influence of French mathematicians

of the previous academic generation, notably Lebesgue and Baire. We will situate these

influences in the context of a broader trend in the history of mathematics, namely

the adoption of set theory in France first in the theory of functions. Secondly, we

will consider the influence of the Polish school of mathematicians established in the

1920s focussing on set theory, topology and foundational questions and finally we will

introduce briefly the ideas of Christian Juel as presented by Paul Montel on what was

referred to in France as la géométrie finie.
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4.2.1 The emergence of set theory in France through the theory of

functions

Cantor’s set theory. Initial opposition in France. While other mathematicians had

considered point sets in their work, it was famously the German mathematician Georg

Cantor who first ‘systematically developed the myriad implications of point sets in general,

and who produced an entirely new field of mathematical research in the process’ [125,

p. 6]. His work on sets and transfinite numbers was first published in a number

of articles in 1870 and this research occurred in the context of a problem relating

to trigonometric series. It was, according to Dauben, at least partially, a response

to Riemann’s research in this area and in the closely related study of discontinuous

functions [125, p. 6]. It is well known that Cantor’s work was met with contrasting

reactions and that, in France, the criticism of Cantor’s theory by Henri Poincaré was

particularly strong. Dauben comments,

Intuitionists like Poincaré argued that most of the ideas of Cantorian set

theory should be banished from mathematics once and for all...Transfinite

set theory, Cantor’s great contribution to mathematics, involved nothing in

Poincaré’s view but contradictory and therefore meaningless concepts [125,

p. 266].

.

When discussing the rising adoption of concepts in Cantor’s set theory in France, we

have not focussed in our account on the controversies which occurred in France in

1905 around transfinite numbers and specifically a proof proposed by Zermelo that

every set could be well-ordered. This theorem relied on and is equivalent to the

axiom of choice in set theory. For a fuller account of these events, which involved

a strong reaction in France, for example from mathematicians such as Borel, Baire,

Lebesgue and Hadamard, we refer the reader to Dauben’s account in [125, p. 253-259].

We can identify different factors later leading to the wider acceptance and adoption

of set theory in France. Notably, Gispert identifies Poincaré’s own encounter with a

specific type of set studied by Cantor as a factor in leading to a transformation in

the acceptance and use of set theory in France [141, p. 52]. Specifically, Poincaré

encountered perfect sets which are dense in no interval and used their properties in

the context of his research on curves defined by a differential equation [141, p. 52].

In [125], Dauben emphasises other major events leading to an increase in the interest

in set theory, including in France. Notably, Dauben emphasises the talk given by

Hurwitz during the First International Congress for Mathematicians in Zürich, 1897,

in which Hurwitz highlighted the significance of Cantor’s work [125, p. 247]. Further,
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Dauben emphasises the address of Hilbert to the Second International Congress for

Mathematicians in Paris in 1900, in which he included Cantor’s continuum hypothesis

as the first of the major unsolved problems in mathematics. Dauben associates such

events with an increasing interest in set theory and connects this with the subsequent

appearance of various books by eminent French mathematicians which used basic

concepts of Cantor’s theory:

Indicative of this growing interest, books soon began to appear which

employed the basic ideas of Cantor’s set theory in new ways. Here the

French were particularly active, at least initially, and Couturat, Baire, Borel,

and Lebesgue were representative of those who were influenced by, or who

began to develop, certain aspects of Cantor’s work [125, p. 161].

Another factor identified and evaluated by Gispert in [141, p. 48-51] which was influ-

ential in terms of the uptake of concepts in set theory in France is the second edition of

the cours d’analyse taught by Jordan at the Ecole Polytechnique and published in 1893

[154], which included a chapter entitled Ensembles. We comment that this edition was

likely to have inspired mathematicians such as Borel, Baire and Lebesgue (those who

had perhaps the most direct influence on Bouligand) in their use of set theory.

The emergence of set theory in France in the theory of functions. In [141] Gispert

investigates the way in which set theory was first adopted in France and also highlights

the specificity of this adoption to French mathematics. Gispert highlights that set

theory was first adopted in France in the theory of functions and it is this point which

is of greatest relevance for the purposes of the present thesis. Gispert comments

regarding the use of set theory in the theory of functions in France:

Loin d’être marginale, la théorie des ensembles devient à partir de la fin des

années 1890 un outil nécessaire et privilégié de ces nouvelles recherches et

s’insère ainsi dans l’activité mathématique classique du milieu français [141,

p. 41].

[Far from being marginal, from the 1890s, set theory became a necessary

and favoured tool of this new research and became part of classical French

mathematical activity].

This phenomenon, of concepts of set theory first entering into the theory of functions

in France, after an initial period of resistance, can also be found in the account of

Nicolas Bourbaki in [104]:
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Les idées de Cantor avaient d’abord rencontré une assez vive opposition...Du

moins sa théorie des ensembles de points sur la droite et dans le plan fut-elle bi-

entôt utilisées et largement répandue par les écoles françaises et allemandes de

théorie des fonctions (Jordan, Poincaré, Klein, Mittag-Leffler, puis Hadamard,

Borel, Baire, Lebesgue, etc.) : les premiers volumes de la collection Borel,

en particulier, contiennent chacun un exposé élémentaire de cette théorie. . .

[104, p. 178].

[Cantor’s ideas had initially met with rather lively opposition...At least his

theory of sets of points on a line and in the plane was soon used and widely

disseminated by the French and German schools of function theory (Jordan,

Poincaré, Klein, Mittag-Leffler, then Hadamard, Borel, Baire, Lebesgue,

etc.): the first volumes of the Borel collection, in particular, each contain

an elementary exposition of this theory].

The Collection Borel referred to above by Bourbaki constitutes a major example consid-

ered by Gispert of the adoption of concepts in set theory first in the theory of functions.

This collection is the Collection de monographies sur la théorie des fonctions, created in

1898, of which the first volumes included Borel’s Leçons sur la théorie des fonctions of

1898 [10], Baire’s Leçons sur les fonctions discontinues of 1905 [4], which focusses on a

part of the work presented in his thesis of 1899 and Lebesgue’s Leçons sur l’intégration

et la recherche des fonctions primitives of 1904 [166].

Borel’s Leçons is focussed on the application of set theory to the theory of functions.

With Gispert, we note that Borel expressed his goal as being ‘d’exposer d’une manière

élémentaire, certaines recherches qui, bien que relativement récentes, prennent chaque

jour une importance considérable...De ce nombre, est la théorie des ensembles’ [to expose

in an elementary manner certain areas of research which, although relatively recent,

are with each day becoming increasingly important...Among these is set theory] [10,

p. VII-VIII]. The goal of Baire’s work is summarised as follows:

Me proposant de rechercher toutes les fonctions discontinues représentables

par des séries de fonctions continues, j’étudie en détail, à mesure qu’elles se

présentent, toutes les notions et les théories qui me sont utiles pour donner la

solution de ce problème [4, p.VII].

[Proposing to search for all discontinuous functions that can be represented

by series of continuous functions, I study in detail, as they arise, all the

concepts and theories that are useful to me in order to give the solution of

this problem].
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In [141, p. 55], Gispert comments regarding the use of concepts in set theory in France

prior to 1905 and in relation to Baire’s work in [4] that Baire was ‘...un de ceux - sinon

celui - qui recourut le plus systématiquement et le plus complètement à la théorie des

ensembles’ [one of the mathematicians if not the mathematician who took recourse to

set theory in the most systematic and complete way]. Accordingly, a significant part

of Baire’s exposition in [4] serves to introduce the concepts in set theory useful in

obtaining the desired results.

As indicated by Gispert [141, p. 62], in Lebesgue’s Leçons, he includes a note entitled

Sur les nombres transfinis, the first sections of which explores the concepts of set theory

which he utilises in his work relating to integration and the mesure of sets [166,

p. 314-319].

The influence on Bouligand’s theory. The adoption of concepts of set theory in the

theory of functions in France appears to be a key theme influencing Bouligand’s project

to introduce a direct infinitesimal geometry. This is perhaps most clearly captured

in the following passage of his 1931 article on Les courants de pensée Cantorienne et

l’hydrodynamique [58]:

On sait que les idées de Cantor sur la théorie des ensembles ont pénétré d’une

manière profonde dans le champ de la théorie des fonctions et l’ont consid-

érablement enrichi. Ces idées ont également influencé la géométrie, surtout

en ce qui concerne les problèmes consistant à définir en générale une ligne,

une surface, un domaine, etc...., ou bien à évaluer les longueurs, les aires, les

volumes. Mais on peut prévoir...que cette influence des courants de la pensée

cantorienne sur la géométrie ne s’en tiendra pas là, car on aperçoit déjà, dans

cette voie, la possibilité de se passer des représentations analytiques et des

dérivées qu’elles mettent en jeu, autrement dit de constituer une GÉOMÉTRIE

INFINITÉSIMALE DIRECTE [58, p. 103].

[We know that the ideas of Cantor on set theory have penetrated in a

profound way into the field of function theory and have considerably

enriched this field. These ideas have also influenced geometry, most notably

in relation to problems which consist of giving a general definition of a line,

a surface, a domain, etc. . . ., or consisting of evaluating lengths, areas or

volumes. But we can predict...that this influence of the trends of Cantorian

thought on geometry will not end here, as we can already glimpse, in this

direction, the possibility of doing without analytical representations and

the derivatives they involve. In other words, the possibility of constituting
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a DIRECT INFINITESIMAL GEOMETRY].

We can speculate with relative certainty that Bouligand was familiar with the Collec-

tion de Monographies on function theory including the volumes contributed by Borel,

Lebesgue and Baire. Indeed, Bouligand refers explicitly to Baire’s Leçons when referring

to a ‘besoin de travaux géométriques d’un esprit nouveau analogue à celui de la théorie

des fonctions’ [need for geometrical works taking a new perspective analogous to that

of the theory of functions] [95, p. 17].

Although this point appears only implicitly in Bouligand’s work, it would seem that he

considered function theory as an example of an area of mathematics in which causality,

in his sense of the word, had been achieved to a greater extent than in infinitesimal

geometry. He comments for example in [51, p. 41], after presenting a number of

examples including a discussion on the theory of functions:

Il y a donc, dans la Mathématique, des domaines très vastes où l’on peut

regarder la crise de la causalité comme conjurée. Cependant, n’en est-il pas

ainsi en géométrie infinitésimale?

[There is therefore, in Mathematics, vast areas in which we can consider

the crisis of causality as being resolved. However, is it not the same for

infinitesimal geometry?]

While the connection is not made explicitly by Bouligand, it seems highly reasonable

based on the juxtaposition of these ideas in various works that he viewed the use of

set theory in the theory of functions as a factor leading to resolving what he calls the

‘crisis of causality’ in this area of mathematics and that the adoption of such ideas in

infinitesimal geometry is a likely candidate for helping to achieve his goals in that area

of mathematics. A further key characteristic of the works mentioned above, such as

the Leçons of Baire which seems to have influenced Bouligand in relation to his theory

is the emphasis they place on eliminating unnecessary assumptions and achieving the

greatest possible generality. For example, in [41, p. 40], where Bouligand first presents

his programme of research towards what is later referred to as his direct infinitesimal

geometry, he comments as follows in relation to the preface of Baire’s Leçons:

...cette préface est-elle un programme orienté vers la recherche de généralité la

plus grande possible et laissant déjà préssentir “l’avènement d’une Physique

mathématique dans laquelle la part de l’hypothèse serait réduite au minimum

[41, p. 40].
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[...this preface is a programme oriented towards the search for the greatest

possible generality, which heralds the “arrival of a new mathematical

Physics in which the role of hypotheses would be reduced to a minimum.”]

The theme of minimising unnecessary hypotheses in the works of Lebesgue and

Baire. In the above we see the idea of achieving greatest generality in a mathematical

theory by eliminating unnecessary hypotheses - one of the key goals of Bouligand’s

direct infinitesimal geometry. In Bouligand’s comments on this theme, the names of

Lebesgue and Baire are the most prominent, with the work of Lebesgue appearing to

have the greatest and most direct influence in relation to Bouligand’s theory.

Bouligand explicitly identifies the theme of getting rid of unnecessary hypotheses in

the context of Baire’s contribution to the Collection Borel:

Au début de la célèbre monographie dont il a enrichi la Collection Borel, Baire

aspire, à se débarrasser des restrictions, sans cesse introduites dans les cours

d’analyse...[77, p. 266].

[At the start of the famous monograph with which he enriched the Collection

Borel, Baire aspires to get rid of restrictions constantly introduced in texts

on analysis...]

Since, as we have discussed above, Bouligand made efforts to translate and apply his

theory to mathematical physics, it is also interesting to note in passing that he cites

Baire’s ideas in relation to an approach to physics based on a minimal set of hypotheses.

This comment is again made in relation to the preface of Baire’s contribution to the

Collection Borel, as seen in the above citation [41, p. 40].

When discussing contributions of other mathematicians to the theme of avoiding

unnecessary hypotheses, Bouligand places greatest emphasis on the doctoral thesis of

Lebesgue. For example, in [87, p. 51], he comments,

...la méthode directe n’est pas l’apanage de telle ou telle partie des mathéma-

tiques, elle tend à les dominer à peu près toutes. Et si l’on cherche, en analyse

infinitésimale, à préciser les origines de cette évolution, c’est sans nul doute à

la Thèse de Lebesgue qu’il faut remonter.

[...the direct method does not belong exclusively to this or that part of

mathematics, rather it tends to dominate more or less all parts. And if we

seek to specify, in infinitesimal analysis, the origins of this evolution, it is

without doubt to the thesis of Lebesgue that we must trace back].
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The idea of direct methods being a common feature of various areas of mathematics

will be expanded upon in the following chapter. Here we simply emphasise the

influence of Lebesgue’s ideas in relation to Bouligand’s approach to direct infinitesimal

geometry. Bouligand adds regarding this influence and in relation to Lebesgue’s

contribution to ‘infinitesimal analysis’,

La Thèse de Lebesgue est le premier ouvrage qui ait montré l’influence pertur-

batrice des hypothèses accessoires... [87, p. 51].

[The Thesis of Lebesgue is the first work which demonstrated the distorting

influence of unnecessary hypotheses].

While Bouligand does not explicitly exemplify this comment in [87], in [75] he

connects the idea that Lebesgue’s thesis illustrates the influence of unnecessary as-

sumptions with the example explored above regarding developable surfaces. We

recall that, in this example, Bouligand stressed that the assumption of continuous

first derivatives, in his view, had led to a distorted view of the solution, namely that a

developable surface is one which can be decomposed into cones, cylinders and surfaces

generated by the tangents of a non-planar curve. Lebesgue’s thesis brought this error

to light and gave necessary and sufficient conditions for each of these three objects to

be a developable surface. The connection between this aspect of Lebesgue’s work and

the motivation for Bouligand’s direct infinitésimal geometry is perhaps most explicitly

expressed in [95, p. 2]:

Il me semble que la pointe hardie poussée par M. Henri Lebesgue dans le

problème de la détermination des surfaces applicables sur le plan révélait la

nécessité de restaurer tout l’édifice classique de la géométrie infinitésimale en

lui donnant un nouveau style.

[It seems to me that the bold progress achieved by Mr Henri Lebesgue in

the problem of the determination of surfaces which are developable on

the plane revealed the necessity of restoring the entire classical edifice of

infinitesimal geometry by formulating it in a new style].

4.2.2 The influence of topologists and the Polish school

In his letter to Fréchet dated 24 November 1938 [135], Bouligand elaborates in detail

on the origins and development of his reflections on the concept of causality, including

factors which influenced him in his goal of formulating ideas in differential geometry

in a way which brings to light causality and avoids unnecessary hypotheses. He recalls,

regarding his visit to the University of Krakow and to Zaremba in 1925,
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Quand je suis allé à Cracovie, fin 1925, j’ai été très frappé par l’esprit de

l’Ecole polonaise, et je me suis abonné à Fundamenta, l’un des mémoires qui

m’atteignirent le plus fût celui d’Urysohn sur les Multiplicités Cantoriennes (t.

VII, 1925).

[When I went to Krakow at the end of 1925, I was very struck by the

approach of the Polish school and I subscribed to Fundamenta. One of the

articles which made the greatest impression on me was that of Urysohn on

Cantorian multiplicities].

Here Bouligand is referring to Urysohn’s paper discussed above [212]. Fundamenta

Mathematicae was a journal founded in Poland in 1920 by Zygmunt Janiszewski, Ste-

fan Mazurkiewicz and Waclaw Sierpinski [161, p. 1] and focussed exclusively on set

theory and related problems and applications. Early contributors included mathemati-

cians such as Stefan Banach, Janiszewski, Kazimierz Kuratowski, Mazurkiewicz and

Sierpinksi - mathematicians who are most likely included in what Bouligand referred

to as the Polish School, with whose approach he was so impressed. For further details

regarding this journal, we refer the reader to [161], upon which the brief introduction

here is based.

It is worthwhile, at this point, introducing Janiszewski, one of the founders of Fun-

damenta Mathematicae, and his works as they are frequently cited by Bouligand in

relation to his direct infinitesimal geometry. Zygmunt Janiszewski (1888-1920) was

a Polish mathematician whose mathematical contribution focussed on topology and

the foundations of mathematics. He is considered as one of the founding members

of the Polish school of mathematics established after the First World War, specialising

in set theory, topology and the foundations of mathematics. He completed his higher

education in various locations in Europe and studied under a number of eminent

mathematicians. His doctoral thesis of 1911 Sur les continus irréductibles entre deux

points was completed in Paris and supervised by Lebesgue. Favouring an intrinsic

approach, Janiszewski’s thesis studies, for example in n-dimensional Euclidean space,

the concept of a curve from a set-theoretic and topological point of view. The following

extract paints a picture of the context and motivations of his work:

Les notions fondamentales de la Géométrie pure ne sont pas encore toutes

rigoureusement définies et analysées. Seule l’étude de la notion de la droite est

amenée à un degrée de perfection dans les célèbres Grundlagen der Geometrie

de M. Hilbert...Quelles propriétés doit posséder un ensemble de points pour

mériter d’être appelé courbe, surface, etc...C’est le premier de ces problèmes
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que je traite dans cette thèse. [153, p. 79].

[The fundamental concepts of pure Geometry are not yet all rigorously

defined and analysed. Only the study of the concept of a straight line

has been brought to a degree of perfection in the famous Grundlagen der

Geometrie of Mr Hilbert...Which properties must a set of points possess to

warrant being called a curve, a surface, etc...It is the first of these problems

that I address in this thesis].

What influence did Janiszewski’s thesis have upon Bouligand’s direct infinitesimal

geometry? The most explicit influence is the frequent use by Bouligand in [75] of

certain concepts in topology, namely the ensemble limite [limit set]3 and the ensemble

d’accumulation [accumulation set]4. The connection between Janiszewski’s thesis and

Bouligand’s knowledge of these concepts is clearly stated by Bouligand in [75, p. 154].

In addition, Bouligand uses certain results provided by Janiszewski in order to obtain

the desired results in his direct infinitesimal geometry. For example, the following

theorem is used a number of times:

Une collection infinie de continus dont l’ensemble limite contient deux points

distincts A et B a pour ensemble d’accumulation un continu. [75, p. 157].

[An infinite collection of continua of which the limit set contains two

distinct points A and B has an accumulation set which is a continuum].

While these are the most explicitly visible influences, we might also speculate that

Bouligand’s lengthy discussion in [75] regarding the appropriate definitions to use

in relation to curves and surfaces, in the context of his theory may also have been

inspired by Janiszewski’s work. We might also speculate that Janiszewski’s preference

for an intrinsic and local approach which focusses, in addition, on rigorous definitions

without extra assumptions may also have reinforced the choice of style in which

Bouligand formulated his own ideas.

3In [75, p. 155], Bouligand defines the ensemble limite as follows: ‘Nous dirons qu’un point L fait
partie de l’ensemble limite J d’une collection infinie d’ensembles ponctuels s’il n’y a qu’un nombre fini
d’ensembles de la collection dont la distance à L dépasse ϵ, et cela, si petite soit la longueur ϵ’ [We will
say that a point L belongs to the limit set J of an infinite collection of point sets if there is only a finite
number of sets of the collection for which the distance to L is greater than ϵ, provided the length ϵ is
sufficiently small].

4In [75, p. 155], Bouligand defines the accumulation set as follows: ‘Nous dirons qu’un point H
fait partie de l’ensemble d’accumulation d’une collection infinie d’ensembles ponctuels s’il existe une
infinité d’ensembles de la collection dont le point H soit à une distance moindre que ϵ, et cela, si petite
soit la longueur ϵ’. [We will say that a point H belongs to the accumulation set of an infinite collection
of point sets if there exists infinitely many sets of the collection for which the point H is at a distance of
less than ϵ if ϵ is sufficiently small.
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Regarding Janiszewski’s thesis and the ideas of the Polish school more generally, having

emphasised their importance in relation to his own goals with regard to differential

geometry, Bouligand distinguished between their goals and his own as follows:

...cette école s’attache spécialement à l’Analysis situs elle-même, c’est-à-dire à

l’étude des invariants des déformations continues et biunivoques, plutôt qu’à

la géométrie dans son ensemble [51, p. 40].

[...this school is associated specifically with Analysis situs itself, that is the

study of invariants of continuous and bijective deformations, rather than

with geometry as a whole].

However, Bouligand goes on to cite an exception to the above by referring to Janiszewski’s

1910 article regarding the geometry of planar curves [152]. The following two main

theorems provided in Janiszewski’s paper are clearly concerned with geometrical

properties. Informally speaking, they deal with curves in a local and non-parametric

manner and therefore illustrate a qualitative similarity with results of Bouligand’s

direct infinitesimal geometry:

Theorem A. Soit C une courbe plane, qui a au plus un nombre limité de

points ou de segments communs avec chaque segment de longueur finie d’une

droite arbitraire; je dis que C a au moins une tangente en chaque point [152,

p. 606].

[Let C be a planar curve which has at most a finite number of points and

segments in common with each segment of finite length of an arbitrary

straight line. Then we have that C has at most one tangent at each point].

Theorem B. Une courbe C, n’ayant, dans un domaine fini quelconque, qu’un

nombre fini K de points multiples et jamais plus de N (entier positif fixe)

points communs avec une droite quelconque parallèle à l’une de deux direc-

tions fixes α et β, est rectifiable [152, p. 607]

[A curve C which, in an arbitrary finite domain, has only a finite number

K of multiple points and never more than N (fixed positive integer) points

in common with an arbitrary straight line that is parallel to one of the two

fixed directions α and β, is rectifiable].



118 Bouligand’s theory of Direct Infinitesimal Geometry: motivations, . . .

4.2.3 A related theme - the finite geometry of Christian Juel and

the work of Paul Montel

In Bouligand’s 1937 note on his own mathematical works [61], when introducing the

chapter entitled ‘Systématisation: la création de méthode directes en géométrie infinitési-

male’ [systematisation: the creation of direct methods in infinitesimal geometry], he

notes that work in the desired direction in geometry existed already. Here he refers

again to the ideas of Lebesgue, mentioned above, and adds to this reference the work

of Christian Juel (1855-1935) on ‘géométrie finie’ [finite geometry]. We note that

Juel was a Danish mathematician and geometer who contributed, for example, to

projective geometry. His ideas referred to by French mathematicians as géométrie finie

were first published in 1899 in Danish [155]. In Bouligand’s account here, it would

appear that his attention was brought to these ideas through a presentation given by

Paul Montel in 1923 at the séminaire Hadamard [95, p. 17]5, published subsequently

in [186] in which Montel presented Juel’s ideas. It is worth introducing briefly the

French mathematician Paul Antoine Aristide Montel (1876-1975): an influential figure

in the French mathematical scene during his time, whose work focussed for example

on the theory of analytic functions of a complex variable and holomorphic functions.

Given that Bouligand’s attention was drawn to these ideas through the work of Montel,

it is interesting and relevant to consider the following description by Montel of Juel’s

finite geometry:

La géométrie infinitésimale étudie les propriétés locales ou générales des

courbes et des surfaces en admettant l’analyticité des fonctions introduites, ou

au moins l’existence pour ces fonctions, de différentielles d’un ordre assez élevé.

Les courbes et les surfaces algébriques ont été longtemps presque les seules

à permettre un examen complet de leurs caractères locaux ou régionaux. Si

l’on suppose seulement la continuité dans la variation de l’élément de contact,

on est conduit à des recherches géométriques dont l’ensemble forme ce que

Darboux a appelé la “Géométrie finie” [186, p. 109].

[Infinitesimal geometry studies the local or general properties of curves and

surfaces assuming that the functions introduced are analytical or at least

assuming the existence for these functions of derivatives of a sufficiently

5As described by Audin [3], the séminaire Hadamard was the first seminar of mathematics in France,
starting in 1913 and continuing again after the war in 1920 until Hadamard’s retirement in 1937. It
took place at Collège de France in Paris and dealt with diverse topics in all areas of mathematics. With
Audin, we refer to Fréchet’s account of the seminar [138] in which he emphasises its success, eventually
attracting researchers worldwide. The format seemed to involve the presentation of papers, the analysis
of these papers by the participating audience and a final presentation given in summary by Hadamrd
himself. According to Fréchet, there was an element of selection for the auditors of the seminar.
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high order. Algebraic curves and surfaces have long been the only curves

and surfaces that allow a complete investigation of there local or regional

characteristics. If we assume only the continuity in the variation of the

contact element, we are led to geometrical research which, as a whole

forms what Darboux referred to as “finite Geometry”].

It would seem, from Montel’s account, that an example of the continuity of the contact

element referred to above would be ‘l’existence d’une tangente qui varie avec le point

de contact d’une manière continue’ [the existence of a tanget which varies with the

point of contact in a continuous manner] [186, p. 110]. Montel gives a number of

examples of results in geometry known at the time which are shown by Juel to require

less restrictive assumptions than commonly utilized at the time. We give just one

example below and refer the reader to [186, p. 110] for further examples.

Une courbe plane du troisième degré a, en général, trois points d’inflexion

réels : ce résultat est encore exact pour une courbe plane du troisième ordre,

c’est-à-dire rencontrée en trois points au plus par toute droite du plan [186,

p. 110].

[A planar curve of third degree has in general three real points of inflection:

this result is still correct for a planar curve of third order, that is met at

three points at most by any straight line in the plane].

As such, there is at least a clear similarity between Juel’s ideas, as recounted by Montel

and Bouligand’s direct infinitesimal geometry in the sense that both seek to reduce the

number of assumptions introduced so as to obtain certain results in a broader setting.

The following comment of Montel with regard to the examples of which we quoted

one above reinforce the similarity between the spirit of Juel’s work, at least as seen by

Montel, and that of Bouligand:

Bien des propositions, établies par le calcul, demeurent liées dans notre esprit

à leur support algébrique. Or, dans beaucoup de cas, le caractère algébrique

ne sert qu’à faciliter la démonstration analytique : les hypothèses nécessaires

pour l’exactitude du résultat ont un caractère synthétique beaucoup moins

apparent [186, p. 110].

[Many propositions established through calculation remain connected,

in our minds, with the algebraic medium [used to obtain the results].

However, in many cases, the algebraic character serves only to faciliate the

analytical proof. The necessary hypotheses for the vaidity of the result have

a synthetic chacater which is far less apparent].
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We note here the similarity to Bouligland’s criticism of the introduction of extra as-

sumptions to facilitate the use of Cartesian methods. What then are the key differences

between the ideas of Juel, as presented by Montel and Bouligand’s theory? Bouligand

reflects on this point in [95] and identifies two main differences - first the group

of invariance involved in géométrie finie and secondly the means by which certain

geometrical objects studied are characterised:

Au lieu d’adopter, comme le faisait Juel, une sélection a priori du matériel

géométrique, j’ai opéré la sélection au moyen de conditions simples supposées

remplies par le paratingent ordinaire, conditions qui conduisent à ce que j’ai

appelées les lemmes d’univocité. A ce titre, la géométrie infinitésimale directe

diffère déjà de la géométrie finie de Juel : la différence la plus essentielle réside

en ce fait que le champ d’invariance de la géométrie finie se limite au groupe

projectif [95, p. 4].

[Instead of adopting an a priori selection, as did Juel, of the geometric

material, I carried out the selection by means of conditions assumed to

be satisfied by the ordinary paratingent, conditions which lead to what I

called the uniqueness lemmas. In this way, one can already see that direct

infinitesimal geometry differs from the finite geometry of Juel: the most

essential difference residing in the fact that the field of invariance of finite

geometry is limited to the projective group].

4.2.4 A further related theme - the work of Karl Menger on dis-

tance geometry

It is worth noting that Bouligand identified his theory of direct infinitesimal geometry

as belonging, in some sense, to the same trend as the work of Karl Menger on

distance geometry. Karl Menger (1902-1985) was an Austrian born mathematician

and son of the economist Carl Menger. He contributed to various areas of mathematics

including dimension theory, the theory of curves, algebra and geometry. Beyond

mathematics, Karl Menger also contributed to social sciences. Menger is considered as

one of the influential figures in the founding of what is referred to today as distance

geometry. His work in this direction includes for example his 1928 article on what he

referred to as allgemeine Metrik [general metric] [180] and his 1931 article on the New

foundation of Euclidean geometry [181]. In Menger’s research, he was interested in the

‘characterisation of the n-dimensional Euclidean space among general semi-metrical

spaces in terms of relations between the distances of its points’ [181, p. 721].

We note that in the 1935 Conférences internationales de topologie in Geneva, Bouligand
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presented his theory of direct infinitesimal geometry, while Menger presented his work

on ‘La géométrie des distances et ses relations avec les autres branches des mathématiques’

[the geometry of distances and its relationship with other branches of mathematics].

In the following, we see that Bouligand viewed Menger’s work as being a different

approach to achieving direct methods in infinitesimal geometry. Bouligand comments

regarding Menger:

Si ce géomètre a donné une autre conception de méthodes directes en géométrie

infinitésimale, mes vues sur l’unité des méthodes directes...ne s’en trouvent

que renforcées [95, p. 21].

[If this geometer gave a different conception of direct methods in infinitesi-

mal geometry, my views on the unity of direct methods are found only to

be reinforced].

Here Bouligand is referring in particular to Menger’s ideas on Allgemeine Metrik as

expressed in his article submitted in the context of the Conférences internationales

de topologie of 1935 [182]. Here we focus on the first part of Bouligand’s comment

- identifying Menger’s work as an alternative approach to direct methods. Menger

describes the motivation behind his approach to differential geometry in the following

passage, which exhibits certain clear similarities with Bouligand’s views.

Malgré son importance historique et ses nombreux avantages on ne doit

cependant pas oublier...que d’un point de vue purement géométrique l’étude

des modèles arithmétiques au moyen de l’analyse n’est qu’un procédé entre

plusieurs possible; ce procédé impose par ailleurs aux recherches des restric-

tions assez considérables qui ne sont pas inhérentes à la nature des figures

spatiales. [182, p. 348].

[Despite its historical importance and its numerous advantages, we must

however not forget. . . that from a purely geometrical point of view the study

of arithmetic models by means of analysis is but one among many possible

procedures. Besides, this procedure imposes considerable restrictions upon

research which are not inherent to the nature of figures in space].

The above is not dissimilar to Bouligand’s views explored already regarding the

potential dangers of a purely analytic or algorithmic approach to geometry, including

notably the introduction of extra unnecessary restrictions. Further, Bouligand’s idea

of a direct approach could potentially be compared with Menger’s comment above

regarding the inherent nature of figures in space. Menger goes on to describe his

approach:
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J’ai été ainsi conduit depuis quelques années à développer une géométrie qui

se passe des modèles arithmétiques, tout en s’occupant de problèmes relatifs

aux notions classiques: convexité, courbure, géodésiques, etc. Les points ne

sont alors pas nécessairement définis par des coordonnées, ni les figures par

des équations. La géométrie des distances ou géométrie métrique est basée sur

la donnée d’un ensemble d’éléments de nature quelconque assujettis à la seule

condition que deux d’entre eux corresponde toujours un certain nombre [182,

p. 349].

[I have thus been led, for the past several years, to developing a geometry

which forgoes arithmetic models, while still dealing with problems related

to classical concepts: convexity, curvature, geodesics, etc. Points are not

necessarily defined by coordinates, nor are figures necessarily defined by

equations. The geometry of distances or metric geometry is based on a set

of elements being given, which are of arbitrary nature subject only to the

condition that two elements always correspond to a certain number].

Therefore, a further similarity between Menger’s work and that of Bouligand is the

goal of studying certain concepts in differential geometry while avoiding any reliance

on coordinates or representation by means of differential equations. How may we

describe the key differences between Bouligand’s direct infinitesimal geometry and

Menger’s ‘géométrie des distances’? These differences are summarised as below by

Christian Pauc (1911-1981), who completed a doctoral thesis dealing with both the

direct infinitesimal geometry of Bouligand the work of Karl Menger. We introduce

Pauc in greater detail later in this chapter.

La différence principale entre la géométrie infinitésimale directe de M. Bouli-

gand et la géométrie des distances de M. Menger est que celle-ci étudie des

espaces distanciés généraux et celle-là des ensembles euclidiens; la première

suit parfois d’assez près la géométrie infinitésimale classique...alors que la

seconde s’en écarte fréquemment, non seulement par les raisonnements mais

aussi par les résultats. . . [191, p. 83].

[The main difference between the direct infinitesimal geometry of Mr.

Bouligand and the geometry of distances of Mr. Menger is that the latter

studies general distanced spaces whereas the former studies Euclidean sets.

The first often follows classical infinitesimal geometry quite closely. . . while

the second deviates quite frequently, not only in its reasoning but also in

its results].
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4.3 The formulation of Bouligand’s theory of direct

infinitesimal geometry

The first comprehensive presentation of Bouligand’s ideas as a theory was in his 1932

textbook entitled Introduction à la géométrie infinitésimale directe. This book groups

together a number of different tools, ideas and results published in several articles

starting from 1928 while aiming to do this in a way which is accessible to students of

mathematics and young researchers who might be encouraged to pursue their own

mathematical research in the area of direct infinitesimal geometry. While the target

audience of the book is not explicitly stated, the presence of numerous exercises as

well as the fact that basic concepts of set theory and topology are introduced in the

early chapters would seem to support this interpretation of the target readership. Elie

Cartan’s wish included at the end of his preface, ‘Puisse ce livre susciter de nombreuses

vocations !’ [p. VII][75] [May this book inspire many vocations!’] would reinforce

the assertion that Bouligand’s book is intended to inspire new research into direct

infinitesimal geometry.

The first eight of the 16 chapters are largely dedicated to introducing basic concepts

and results necessary as background to the introduction of Bouligand’s theory. These

include, for example, basic operations on sets, basic concepts in topology, the Cantor-

Minkowksy construction which we encountered previously and certain theorems

employed later on. We will focus on the core concepts of Bouligand’s theory, providing

the necessary background understanding as and when necessary.

4.3.1 Selecting an appropriate setting (domain of causality) for

direct infinitesimal geometry

After presenting these preliminary elements, Bouligand dedicates a chapter to the

‘indications fournies par la théorie des groupes pour l’édification de la géométrie

infinitésimale directe’ [indications provided by group theory for the construction of

direct infinitesimal geometry] [75, p. 60]. In this chapter, Bouligand provides a de-

tailed discussion regarding the appropriate setting in which we should be working

in direct infinitesimal geometry. That is, he addresses the question of what group of

transformations we should consider, under which certain key geometrical properties

will remain invariant.

The setting in which Bouligand wishes to work in his direct infinitesimal geometry

is that of a group of transformations closely related to that of topologie restreinte du

premier ordre, encountered in the previous chapter. Specifically, he proposes including
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one extra condition, namely that the transformations in question have a positive and

non-zero Jacobian determinant6. As such, Bouligand chooses to consider the group of

transformations in three-dimensional Euclidean space which are continuous bijections

with non-zero Jacobian determinant. With Bouligand, we will refer to this set of

transformations as γ. What is the reason for choosing this setting? We will see in

the following subsections that certain key properties of the geometrical concepts with

which Bouligand works are invariant under these transformations, thus shedding

further light on this choice. In addition, he comments on reasons for not considering

certain other sets of transformations as the causal domain for direct infinitesimal

geometry. In particular, Bouligand views the set of all continuous bijections, which

he refers to as the ‘domaine causal de la topologie pure’ [the causal domain of pure

topology]. However, he considers this class of transformations to be far too broad for

the purpose at hand:

Au point de vue de la théorie des lignes ou des surfaces, nous serions ainsi

conduits à faire l’étude de classes de variétés beaucoup trop étendues [75,

p. 60].

[From the point of view of the theory of lines and surfaces, we would as

such be led to carry out the study of a classes of manifolds which are far

too broad].

Bouligand considers also the more restricted setting of topologie restreinte du premier

ordre - that is continuous bijections with continuous first derivative. However, he

comments that this class of transformations does not form a mathematical group.

In particular, in order for a set of functions to form a group, it is necessary that

for each function in the set, its inverse is also in the set - a condition which is not

satisfied in the setting of topologie restreinte du premier ordre. The added condition that

the transformations in question have a positive and non-zero Jacobian determinant

remedies this problem, meaning that γ does form a mathematical group with respect

to the operation of the composition of functions.

6In [75, p. 64] Bouligand in fact refers to the ‘déterminant fonctionnel’. A reasonable interpretation
seems to be that this a historical term referring to the Jacobian determinant of a function.
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4.3.2 Introducing two key tools of direct infinitesimal geometry -

the contingent and the paratingent

The central tools of Bouligand’s direct infinitesimal geometry are certain sets of lines

defined at accumulation points of sets in Euclidean space. The two main tools of this

type are referred to by Bouligand as the contingent and the paratingent, concepts

which are closely related to the idea of a derivative. These tools allow for an approach

which avoids parametric representations and enable us to operate in a setting where

the assumption of the differentiability of functions representing curves or surfaces in

Euclidean space is avoided. Informally speaking, as we will see below, the contingent,

the paratingent and other related concepts enabled Bouligand to define certain fa-

miliar types of curves and surfaces in a more direct or intrinsic manner compared to

parametric representation and they enabled him to undertake a geometric study of

sets in Euclidean space.

Introducing the contingent As Bessis comments in [9, p. 1] the contingent is a

generalisation of the idea of a tangent to a curve, or a planar tangent to a surface. The

contingent proves to be of considerable use to Bouligand in the geometrical study of

sets in Euclidean space. In order to define the contingent, Bouligand first defines a

half-tangent to a set E at a point O of this set.

Une demi-droite OT , issue du point d’accumulation O de l’ensemble E, sera

dite une demi-tangente au point O, si tout cône droit à base circulaire, de

sommet O et d’axe OT , contient...un point de l’ensemble E distinct du point

O [75, p. 66]

[A half-line OT , starting from an accumulation point O of the set E, will be

called a half-tangent at the point O if every right circular cone with vertex

O and axis OT , contains...a point of the set E distinct from the point O].

We note that in the setting in which Bouligand is working, an accumulation point O of

a set E is a point for which any sphere centered around O, no matter how small the

diameter, always contains another point of E other than the point O. Bouligand then

goes on to define the contingent as follows:

L’ensemble de toutes les demi-tangentes à l’ensemble E en un même point

d’accumumlation sera appelé, moyennant une désignation abrégée conforme

à l’étymologie, le contingent de l’ensemble E au point O. [75, p. 66]
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[The set of all half-tangents of the set E at a particular accumulation

point will be called, using an abbreviation which is in accordance with the

etymology7 , the contingent of the set E at the point O].

A key property of the contingent with respect to the group γ Bouligand emphasises

an invariance property of the contingent with respect to the group of transformations γ

which becomes a key tool in mathematical arguments in direct infinitesimal geometry.

The covariance of the contingent is expressed through the following theorem:

Lorsqu’on effectue sur un ensemble ponctuel une transformation ponctuelle

du groupe (γ), on obtient un nouvel ensemble ponctuel ; en des points cor-

respondants, les contingents se correspondent par la transformation linéaire

tangente. [75, p. 67]

[When we apply a point transformation of the group (γ) to a point set, we

obtain a new point set. At corresponding points, the contingents correspond

to one another via the linear tangent transformation].

As Bouligand notes that this property would not hold, for example, in the broader

setting of all continuous bijections, this represents a further justification of the choice

of γ as the causal domain of direct infinitesimal geometry.

Background and origins of Bouligand’s use of the contingent. Bouligand reports

in [95, p. 15-16] that he first used the concept of the contingent in the context of his

work on harmonic functions, in [34, p. 20]. Specifically, he considered this concept

in the context of the following theorem which he formulated during his visit to the

University of Krakow in 1925 and upon which he commented in [87, p. 57] in relation

to his later explicit formulation of the contingent:

Une suite de fonctions harmoniques dans le domaine D, bornées dans leur en-

semble, converge dans D vers une fonction harmonique, si elle converge en une

infinité de points de D, ayant un point O de D comme point d’accumulation

pourvu qu’à l’intérieur d’un cône droit (limité) de sommet O, tout autre cône

droit (si petites soient son ouverture et sa hauteur) contienne des points de

covergence (ce qui revient à dire : il existe, dans le ctg, des rayons jouant le

rôle d’éléments intérieurs).

7It does not seem completely clear what Bouligand intended by this reference to etymology. He
comments in a footnote [75, p. 66] that the word contingent has both philosophical and military
connotations. We note that, in philosophy and in language more generally, the adjective contingent is
ascribed to something whose existence is not necessary. Perhaps this corresponds to the fact that the
contingent of a set at a point may be empty.
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[A sequence of harmonic functions in the domain D, all bounded, converge

in D to a harmonic function if the sequence converges at infinitely many

points of D having the point O in D as an accumulation point, provided

that inside a right (bounded) cone with vertex O, every other right cone (if

its opening and height are sufficiently small) contains points of convergence

(which equates with saying: the ctg contains lines assuming the role of

interior elements)].

He comments in [95, p. 4] that the contingent is a generalisation of the concept of the

set of derivative numbers (nombres dérivés) and in [87] emphasises Arnaud Denjoy’s

1915 paper on derivative numbers [126] as an important influence for his own ideas

relating to the contingent. As explained by Bessis in [9, p. 1], the set of derivative

numbers studied by Denjoy for a real-valued function f8 at a point x0 is the set of

adherent points as x → x0 of
f(x)− f(x0)

x− x0

.

As Bessis comments, the contingent used by Bouligand can be seen as a generalisa-

tion of the geometric representation of the set of nombres dérivés. Specifically, if we

let E denote the graph of the function f in two-dimensional Euclidean space, then

the set of derivative numbers can be represented as the set of the directions of the

half-tangents of E at the point ((x0), f(x0)). Bouligand’s contingent can be seen as a

generalisation of this to an arbitrary set in Euclidean space. Bouligand focusses on the

three-dimensional setting in [75] but this could easily be translated to n dimensions).

Finally, we note that Bouligand does not claim to be the first to consider this concept.

He comments in [87, p. 57]:

L’importance des notions de ctg et de ptg est telle qu’on les retrouve sans doute

d’une manière plus ou moins explicite et sous des dénominations diverses.

[The importance of the concepts of ctg and ptg is such that they can no

doubt be found more or less explicitly and under various names].

To give just one example, Bouligand refers to the works of Francesco Severi, for ex-

ample in [205] in which, like Bouligand, Severi considers differentiability in terms

of mathematical objects comprising certain tangents. For further details and for an

account containing additional historical information regarding the characterisation of

differentiability in terms of tangency, we refer to the reader to [128].

8We note that in [126], Denjoy is interested in working with continuous functions.
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Introducing the paratingent. Bouligand’s use of the contingent inspired him to

introduce a second key tool of direct infinitesimal geometry [95, p. 4] - the paratingent

of a set E at an accumulation point O in E, defined in a similar manner to the

contingent:

Nous dirons qu’une droite RS passant par un point d’accumulation O de

l’ensemble ponctuel E appartient au paratingent de E en O...si l’on peut trou-

ver une suite de segments PiQi (non nuls) dont les extémités appartiennent

à E, tendent vers O et dont les droites supports tendent vers la droite RS ou

bien coïncident avec elles [75, p. 72].

[We will say that a straight line RS passing through an accumulation point

O of the point set E belongs to the paratingent of E at O...if we can find a

sequence of (non-empty) segments PiQi whose endpoints belong to E, tend

towards O and for which the lines in which the segments are contained

either tend towards the line RS or coincide with it].

We note that Bouligand refers to a line which belongs to the paratingent of the set E

at the point O as a paratingente.

Two key properties of the paratingent. Like the contingent, Bouligand demonstrates

the covariance of the paratingent with respect to the group of transformations γ, as

such we can consider it as being associated with the causal domain chosen for direct

infinitesimal geometry. In addition to the covariance of the paratingent, we will note

with Bouligand one further property which he refers to as ‘semi-continuité supérieure

d’inclusion’ [upper semi-continuity with respect to inclusion]. We choose to note this

property here since, first, it plays a central role in Bouligand’s mathematical arguments

in direct infinitesimal geometry. Secondly, it is worth noting as Bouligand is stated by

later mathematicians as being one of the earliest mathematicians to study the concept

of the semi-continuity of set-valued mappings, for example in [204, p. 192]. Bouligand

defines the upper semi-continuity of the paratingent of the set E at a point M with

respect to inclusion as follows:

...étant donné une suite quelconque de points Mi tendant vers le point M ,

toute droite d’accumulation de paratingentes en Mi est une paratingente en

M [85, p. 249].

[...given an arbitrary sequence of points Mi tending towards the point M ,

any accumulation line of paratingentes at Mi is a paratingente at M].
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While it is not explicitly stated by Bouligand, we assume that the above definition

applies for all i > k where k is some sufficiently large natural number. Bouligand does

not define what is meant for a line belonging to the paratingent at a point P to be

an accumulation line. It would seem reasonable to interpret this as follows: we will

say that a line L0 of the paratingent at P is an accumulation line if for all δ > 0 there

exists a line L belonging to the paratingent at P which is δ close to L0.

We also note that dealing with semi-continuity of functions is, for Bouligand, associated

with bringing to light causality. He comments:

Pour bien mettre en lumière la causalité, il nous sera commode de considérer

la continuité comme la coexistence de deux propriétés, la semi-continuité

inférieure et la semi-continuité supérieure [75, p. 16].

[To effectively bring causality to light, it will be convenient to consider

continuity as the coexistence of two properties, lower semi-continuity and

upper semi-continuity].

4.3.3 Selecting lines and surfaces through criteria relating to the

paratingent

Having introduced the above main tools of direct infinitesimal geometry, Bouligand

illustrates how the paratingent can be used to characterise certain classes of lines and

surfaces in Euclidean space which are of interest in the study of differential geometry.

This approach avoids the need for parametric representation. For example, he estab-

lishes the following results [75, p. 79-83]

Consider a bounded continuum9 K in the plane such that for all accumulation points

O in K, there is at least one straight line passing through O which is not in the

paratingent of K at O. If K contains no endpoint, then Bouligand demonstrates that

K is a simple closed curve10. On the other hand, if K contains at least one endpoint,

then he shows that K is a simple arc. We note that a curve, for Bouligand in this

context, is what he refers to as a continu de Jordan [Jordan continuum] which in

two-dimensional Euclidean space is defined here as the image of an interval under a

continuous function. In other words, a Jordan continuum in two dimensions can be

represented by the equations [75, p. 55]:

9For Bouligand, a continuum is in this setting a closed set which cannot be represented as the union
of two disjoint closed sets.

10In fact Bouligand uses the term ‘cycle simple’, which we have interpreted as above.
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x = f(t), y = g(t)

where the functions f and g are continuous and where t runs through the interval

a ≤ t ≤ b. For a surface, we can simply include an extra function z = h(t) where h is

also continuous11.

Bouligand shows that a similar approach can be used to obtain familiar lines in three-

dimensional space. If K is a bounded continuum in three-dimensional space such

that for any accumulation point O of K, there exists a plane passing through O which

contains no line belonging to the paratingent of K at O. The Bouligand considers the

same two cases - either K has an endpoint or K has no endpoint. If K has no endpoint,

then again it is a simple closed curve (this time in three-dimensional space). If K has

an endpoint, then it is a simple arc. Bouligand provides the following interpretation of

the significance of such results:

Il est bien entendu qu’en considérant les continus dont le paratingent en

chaque point laisse échapper toutes les directions d’un plan, nous ne par-

venons qu’à une classe particulière de lignes. Mais ces lignes sont définies

par une condition infinitésimale directe (c’est-à-dire pouvant se formuler sans

recourir à une représentation analytique préalable) [75, p. 81].

[We acknowledge that by considering continua for which the paratingent

at each point excludes all directions in a plane, we obtain only a specific

class of lines. But these lines are defined by a direct infinitesimal condition

(that is, one which can be formulated without relying on a given analytical

representation)...]

Bouligand highlights the following advantages of this characterisation of the lines

specified above:

La condition qui sert à les définir est invariante par les transformations du

group γ ; et elle est telle qu’un pont se trouve immédiatement jeté entre le

point de vue infinitésimal direct, dont procède la définition, et le point de vue

de la représentation analytique.

[The condition which serves to define them is invariant under transforma-

tions of the group γ and is such that a bridge is immediately established
11A detailed discussion is in included in [75, p. 46-59] regarding the most suitable definition for

a curve or a surface in the context of direct infinitesimal geometry. Ultimately, Bouligand chooses to
focus predominantly on Jordan continua as he felt first they provided a sufficiently rich class of objects
for direct infinitesimal geometry, including familiar geometrical objects and secondly that this class
excludes certain undesirable cases presented by certain alternative definitions [75, p. 55]
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connecting the direct infinitesimal point of view, from which the definition

is introduced and the point of view of analytical representation].

Having shown how criteria involving the paratingent can be used to introduce certain

simple classes of lines in two and three dimensions, Bouligand goes on to show how

certain classes of surfaces in three dimensional space can be introduced by means of a

direct infinitesimal approach. First, he shows that the following assumptions about a

bounded continuum lead to a surface, that is a continu de Jordan in three dimensions,

as introduced above:

‘1. en chaque point O d’un tel continu K existe au moins une direction Oz

exclue du paratingent en ce point.

2. toute parallèle à cette direction qui se rapproche indéfiniment du point O

de K finit par contenir un point de K qui tend vers le point O.’

[1. at each point O of such a continuum K there exists at least one direction

Oz excluded from the paratingent at this point.

2. every parallel to this direction which approaches indefinitely the point

O of K ends up containing a point of K which tends towards the point O.]

More specific types of surfaces are constructed by Bouligand by modifying the above

assumptions. For example, by modifying condition 2. above so that the condition is

satisfied by all parallels except a finite number of continua whose paratingent at each

point excludes every direction of a plane, Bouligand characterises a class of bounded

portions of surfaces with a finite number of edges.

4.3.4 Introducing contingents and paratingents of different order

To the contingent and paratingent already introduced, Bouligand adds a number of

related concepts. Together, all of these are referred to as the méthodes infinitésimales

directes [direct infinitesimal methods] of Bouligand’s theory [75, p. 109]. We cite his

definitions below together with examples of results formulated in terms of some of

these tools.

Introducing the planar contingent:

...nous dirons qu’un demi-plan issu de la droite portant OT appartient au

contingent d’osculation ou contingent planaire relatif au point O et à la demi-

droite OT s’il est limite d’une suite de demi-plans déterminés par OT et les

points Mi d’une suite extraite de E tendant vers O, dont aucun ne se trouve
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sur OT ni son prolongement [75, p. 115].

[...we will say that a half-plane starting from the line containing OT belongs

to the contingent of oscillation or the planar contingent with respect to the

point O and the half-line OT if that half-plane is the limit of a series of

half-planes determines by OT and the points Mi of a sequence extracted

from E and tending towards O where no point Mi is situated on OT nor

its extension].

The circular contingent.

Un cercle appartiendra de même au contingent circulaire relatif à O et à OT

s’il est limite d’une suite de cercles tangents en O à OT , passant respectivement

par les points Mi d’une suite extraite de E, tendant vers O, dont aucun ne se

trouve sur OT ni son prolongement [75, p. 115].

[A circle will in the same way belong to the circular contingent with respect

to O and OT if it is the limit of a sequence of circles tangent at O to OT ,

passing respectively through the points Mi of a sequence extracted from E,

tending towards O where no point Mi is situated on OT nor its extension].

The spherical contingent.

Soit maintenant ΓOT un cercle du contingent circulaire relatif à O et à OT .

Nous dirons qu’une sphère appartient au contingent sphérique relatif aux

éléments O, OT , ΓOT si elle est limit d’une suite de sphères passant toutes par

ΓOT et respectivement par les points Mi d’une suite extraite de E, tendant vers

O et dont aucun point ne soit sur le cercle ΓOT [75, p. 115].

[Now let ΓOT be a circle of the circular contingent with respect to O and

OT . We will say that a sphere belongs to the spherical contingent with

respect to the elements O, OT , ΓOT if it is the limit of a sequence of spheres

all passing through ΓOT and passing respectively through the points Mi of

a sequence extracted from E, tending towards O and where no point Mi is

on the circle ΓOT ].

Applying the four contingents to the study of curves

The following results included in Bouligand’s account illustrate the application of the

four contingents to the study of curves12. If we let OL be a Jordan continuum which
12Bouligand’s results here apply to what he refers to as ‘courbes de Jordan’ [Jordan curves]. While it

is not stated explicitly, it would seem that this refers to a Jordan continuum as defined above
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is a simple half-arc with origin OL and if OT is an arbitrary half-tangent to OL at O,

then we have:

Si le contingent planaire relatif à O et à OT contient au moins deux demi-

plans P et Q, tout plan passant par OT et tel que P et Q soient de part et

d’autre de ce plan coupe OL en une infinité de points dont le point O est un

point d’accumulation [75, p. 116].

[If the planar contingent relative to O and OT contains at least two half-

planes P and Q, any plane passing through OT such that P and Q are on

either side of this plane intersects OL at an infinite number of points of

which the point O is an accumulation point].

Bouligand goes on to formulate similar results in terms of the circular and spherical

contingents. Below is the above result formulated in terms of the circular contingent:

Si le contingent circulaire relatif à O et à OT contient au moins deux cercles,

toute sphère de rayon fini ou infini tangente en O à OT , et telle que les cercles

lui sont l’un intérieur et l’autre extérieur, coupe OL en une infinité de points

dont le point O est un point d’accumulation [75, p. 116].

[If the circular contingent with respect to O and OT contains at least two

circles, then every sphere of finite or infinite radius which is tangent at O

to OT and such that one of the circles is inside the sphere and the other

is outside, cuts OL at infinitely many points of which the point O is an

accumulation point].

4.3.5 Introducing paratingents of different rank

In addition to introducing the various concepts above inspired by the definition and

application of the contingent, Bouligand also defined a concepts inspired by the

paratingent. Below we introduce the paratingents of rank k (where k is a natural

number, the usual paratingent introduced earlier being of rank 1). Again, we refer to

examples provided by Bouligand of results which can be formulated in terms of these

new concepts. The paratingent of rank k is defined as follows:

Soit un ensemble ponctuel E. Nous dirons qu’une droite D appartient au

paratingent de rang k de cet ensemble au point M si l’on peut trouver une

suite de divisions rectilignes, formées chacune de K + 1 points distincts de E,

tendant simultanément vers M , en même temps que les droites supportant ces



134 Bouligand’s theory of Direct Infinitesimal Geometry: motivations, . . .

divisions tendant vers D, si elles ne coïncident avec cette droite. [75, p. 127]

[Let E be a point set. We will say that a line D belongs to the paratingent

of rank k of this set at the point M if we can find a sequence of rectilinear

divisions, each formed by K + 1 distinct points of E which tend simultane-

ously towards M at the same time as the lines in which these divisions are

contained tend towards D, if they do not coincide with this line].

The result below relates to a local geometrical property of a set based on the assumption

that the paratingents of certain orders are either empty or not.

Supposons qu’en O le paratingent de rang k de l’ensemble E soit vide, celui de

rang k − 1 contenant au moins une droite. On peut alors trouver une sphère

de centre O et de rayon ρ suffisamment petit pour qu’à l’intérieur de cette

sphère il se trouve au plus k points de E en ligne droite. [75, p. 128]

[Suppose that at O the paratingent of rank k of the set E is empty and that

the paratingent of rank k − 1 contains at least one line. Then we can find a

sphere with centre O and radius ρ sufficiently small such that within this

sphere there are at most K points of E situated along a straight line].

A further example relates to a geometrical property of a set E whose paratingent of

rank k is empty at every point of the derived set of E. Assuming E to be a bounded

set with this property, Bouligand establishes:

...il existe un entier N tel que le nombre de points de E susceptibles de se

trouver sur une droite quelconque soit inférieur ou égal à N . [75, p. 130]

[...there exists an integer N such that the number of point of E which may

be situated on an arbitrary straight line is less than or equal to N .]

Bouligand notes that, while the contingent and paratingent are covariant (in the sense

defined above) with respect to the group γ, the closely related concepts of planar,

circular and spherical contingents as well as paratingents of higher rank do not retain

this property [75, p. 109].

4.3.6 Dimensional properties of sets seen as part of direct infinites-

imal geometry

A short chapter of [75] is dedicated to the topic of ‘la recherche de caractères dimension-

nels d’ensembles fermés’ [research into the dimensional properties of closed sets]. This
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section of Bouligand’s book presents an accessible and pedagogical introduction to

the concepts of dimension discussed in the previous chapter on the Dirichlet problem,

concepts which Bouligand first studied in the context of characterising improper sets

in the generalised Dirichlet problem. Here, applications to the Dirichlet problem are

not discussed, rather Bouligand focusses on introducing the Cantor-Minkowsky order

of a closed set (described below) as well as certain variants of this concept. He also

emphasises that the Cantor-Minkowksy order of a set is invariant under transforma-

tions of the group γ.

Defining the Cantor-Minkowksy order. As in the previous chapter, the main idea is

that of studying the dimensional properties of a set by considering a natural volume

function at scale ρ and then examining how that function behaves as ρ tends to zero.

Let E be a closed set in three-dimensional Euclidean space and let E(ρ) denote the set

obtained by applying the Cantor-Minkowsky construction (introduced in the previous

chapter) to the set E, with spheres of radius ρ. Let f(ρ) denote the volume of the set

E(ρ). Then the Cantor-Minkowsky order of E is defined by Bouligand as the number

3− α where α is a real number such that

f(ρ)

ρα

remains finite and non-zero. By this, we mean that there is a real number c such that

for sufficiently small values of ρ, we have

0 <

∣∣∣∣f(ρ)ρα

∣∣∣∣ ≤ c

The Cantor-Minkowksy order, Bouligand shows has properties which would be ex-

pected of a function associated with dimensional properties, for example the number

α can never be greater than 3. We note that what we referred to in the last chapter as

the global dimensional order of a set can be seen as a generalisation of the Cantor-

Minkowsky order above13 and still exists in cases where the Cantor-Minkowsky order

does not.

4.3.7 Remarks regarding prolongement fonctionnel - a key con-

cept not implemented in the context of direct infinitesimal

geometry

A further technique highlighted by Bouligand [41] for achieving Cantorian form is that

of prolongement fonctionnel - an idea we have encountered in the previous chapter

13To see this, replace the function f1 in the global dimensional order by ρα.
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in context of his work on the generalised Dirichlet problem. However, we note that

prolongement fonctionnel does not appear explicitly in Bouligand’s theory of direct

infinitesimal geometry as it is introduced in [75] - the first comprehensive account

of his theory. The concept does, on the other hand, figure in Bouligand’s later epis-

temological ideas developed during the interwar period and after the publication of

his direct infinitesimal geometry. The term prolongement fonctionnel, as we will see

in the final chapter, is no longer used but we can clearly identify an elaboration of

the same ideas in the context of what he refers to as the stability of mathematical

results. It is worth noting at this stage the significance of prolongement fonctionnel

from Bouligand’s point of view as well as his opinion regarding the role of this concept

in achieving Cantorian form.

Prolongement fonctionnel in the context of Bouligand’s ideas on a new approach

to geometry. In his later accounts of his own work and in his written correspondence

to other mathematicians, Bouligand highlights strongly the concept of prolongement

fonctionnel as a concept of great significance in mathematics. He considers the explicit

emphasis he placed on this concept as a noteworthy contribution of his own. In [95,

p. 9] he comments regarding his contribution to the generalised Dirichlet problem:

Si je n’ai su donner un résultat aussi complet que celui du M. Norbert Wiener

(paru en 1924), cela m’a-t-il du moins fourni l’occasion, en examinant certains

énoncés de M. Paul Lévy, d’attirer systématiquement l’attention sur la notion

de prolongement d’une fonctionnelle par continuité. . . .Peu de temps après,

MM. Fréchet, Banach, Cacciopoli, Flamant, et d’autres géomètres publiaient

des travaux systématiquement consacrés à divers problèmes de prolongement

fonctionnel.

[If I was not able to give as complete a result as that of Mr Norbert Wiener

(published in 1924), that [my attempt at extending the Dirichlet problem]

at least provided me with a chance, by examining certain propositions

of Mr Paul Lévy, to systematically draw attention to the concept of the

extension of a functional by continuity...Shortly thereafter, Mr Fréchet,

Banach, Cacciopoli, Flamant and other geometers published works aimed

systematically at divers problems of functional extension].

In [41, p. 588], Bouligand identifies prolongement fonctionnel - a concept which

emerged and played a central role in the context of his contribution to the generalised

Dirichlet problem - as one means of achieving Cantorian form. He comments in this

regard:
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...la poursuite systématique du prolongement fonctionnel sera un moyen

d’atteindre la forme cantorienne...étant donné un problème géométrique quel-

conque, supposons-le résolu dans un champ restreint, c’est-à-dire moyennant

certaines hypothèses de commodité sur les données ; supposons encore que

l’on sache étudier, dans ce champ, comment une variation des données affecte

la solution. Si certaines conditions de continuité sont remplies, on pourra

passer du champ restreint à un champ plus large. En somme, la solution est

considérée ici comme une fonction des données du problème...c’est donc une

fonction au sens de l’Analyse foncionnelle, ou précisément encore, avec le degré

de généralité donné par M. Maurice Fréchet à ce terme, dans ses profonds

travaux sur les ensembles abstraits

[...the systematic pursuit of functional extension will be a means of achiev-

ing Cantorian form...given an arbitrary geometric problem, assume it to

be solved in a restricted setting, that is by virtue of certain hypotheses

introduced for convenience. Suppose in addition that we know how to

study, within this setting, how a variation of the initial conditions affect

the solution. If certain continuity conditions are fulfilled, we will be able

to pass from the restricted setting into a broader setting. In summary,

the solution is considered here as a function of the initial conditions of

the problem...it is therefore a function in the sense of Functional Analysis

or, more precisely, with the degree of generality given to this term by Mr

Maurice Fréchet in his profound works on abstract sets].

Bouligand does not give an example of the principle above in [41] and we do not

attempt to give a precise interpretation of the above as the ideas are elaborated and

exemplified later in the context of his reflections on the stability of mathematical

propositions.

4.3.8 Concluding remarks

In this section, we have explored the main ingredients of Bouligand’s theory of direct

infinitesimal geometry, as they are presented in his first comprehensive account of

this topic, published in the form of a textbook [75]. We have seen that this theory

puts into practice certain epistemological views, such as the need, from Bouligand’s

point of view, to deal with mathematical concepts and results in some sort of natural

context, called a domain of causality, which is defined in terms of invariance under a

group of transformations. Concretely, Bouligand justified the selection of a group of

transformations which represent the domain of causality of his theory. Indeed, the key
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tools of his direct infinitesimal geometry - the contingent and the paratingent - both

possess a particular type of invariance under the transformations in questions. The

contingent, which was first used by Bouligand in the context of his work on harmonic

functions, generalises the idea of a tangent to a curve and, together with the closely

related paratingent, allows for an approach to the study of sets in Euclidean space

which does not require, for example, that the functions representing the surfaces being

studied be differentiable. Therefore, these tools, together with the various contingents

and paratingents of different order, help to put into practice the principle promoted by

Bouligand of eliminating as far as possible extra assumptions in differential geometry.

Regarding the paratingent, we have seen how Bouligand used criteria relating to this

set of lines to characterise certain familiar classes of lines and surfaces. A further

ingredient of direct infinitesimal geometry is the study of the dimensional properties

of sets by means of a concept of dimension similar to that first used by Bouligand in

the study of improper sets in the context of the generalised Dirichlet problem. As was

emphasised by Bouligand himself, his work on the Dirichlet problem - which involved

a local geometrical study of sets of points in Euclidean space - inspired to a great

extent the his theory of direct infinitesimal geometry.



Chapter 5

Bouligand’s theory of Direct

Infinitesimal Geometry: applications,

dissemination and uptake

5.1 Direct infinitesimal geometry and classical mathe-

matical physics (1935), the example of Meusnier’s

theorem

In a lengthy article of 1935 entitled Géométrie infinitésimale directe et physique mathé-

matique classique [Direct infinitesimal geometry and classical mathematical physics]

[87], Bouligand outlined the extension of the principles of his direct infinitesimal

geometry to certain considerations in or related to mathematical physics (as this area

of research was perceived at the time). Numerous mathematical and epistemological

ideas are highlighted. Here, we wish simply to highlight the following three points:

first that Bouligand extended and applied his direct infinitesimal geometry to the area

he then termed as mathematical physics; secondly we wish to highlight the significance

of these applications for Bouligand in terms of justifying or legitimising his theory and

lastly, we will focus on a specific example, namely that of Meusnier’s theorem. As

will be explored below in greater depth, the example of Bouligand’s formulation of

Meusnier’s theorem aims at illustrating how by removing assumptions and applying his

direct infinitesimal approach, mathematical results can be viewed in a more general

setting, or using Ursyohn’s terms as borrowed by Bouligand, in their natural domain

of existence.

In this article, he outlines two main themes - the first of these revolves around the

concept of a group of transformations being seen as a domain of causality. He describes

139
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this theme as follows:

Rôle primordial des groupes pour la restauration de la causalité logique en

géométrie différentielle aussi bien qu’en physique mathématique [87, p. 3].

[The primordial role of groups for the restoration of logical causality in

differential geometry as well as in physics].

This idea was encountered at length in [75] but here Bouligand considers these ideas

not only in the context of differential geometry but also in the context of mathematical

physics. Secondly, throughout his exposition, Bouligand seeks to illustrate that direct

methods are present in different areas of mathematics and its applications and that

these methods can be seen in a unified manner:

Communauté d’essence des méthodes directes, d’une part dans le calcul des

variations, mode d’expression très courant des lois physiques, d’autre part, en

géométrie différentielle [87, p. 3].

[The essential commonality of direct methods, on one hand in the calculus

of variations, a very common mode of expression of physical laws and on

the other hand in differential geometry].

Regarding this second objective, Bouligand aims to show throughout his work that

it is by virtue of certain shared characteristics that direct methods in different areas

can be seen as unified. Perhaps most central to these common features is the concept

of distance. Here, we will focus predominantly on outlining the first of Bouligand’s

two objectives and on the extension and application of certain ideas introduced in

the previous section. We will briefly discuss the unity of direct methods in the next

chapter.

Bouligand’s exposition is split into three main chapters. The first introduces a number

of main concepts in direct infinitesimal geometry, including contingents and paratin-

gents, their key properties and the characterisation of certain types of curves and

surfaces by means of the paratingent. Examples of how direct infinitesimal can be

applied are provided, for example in the context of extending Meusnier’s theorem

and Euler’s theorem in differential geometry. The second chapter is predominantly

dedicated to the idea of a group of transformations as a domain of causality and

more specifically, to introducing the main groups of this type which are relevant to

direct infinitesimal geometry and its applications. Also discussed at length in this

chapter is the idea of what Bouligand refers to as a causal proof in mathematics and



5.1 Direct infinitesimal geometry and classical mathematical physics . . . 141

mathematical physics - we will discuss this concept in greater depth in the next chapter.

The third chapter of Bouligand’s article sets up the necessary mathematical results in

order to demonstrate an application of direct infinitesimal geometry to the study of

wave propagation, based on a tool defined by Bouligand called the intégrale contingente

[the contingent integral].

5.1.1 Examples of the extension of key ideas in direct infinitesimal

geometry

As we have seen, a central theme or building block of Bouligand’s direct infinitesimal

geometry is the idea of a domain of causality, or a group of transformations under

which certain objects or properties are invariant. As we illustrate below, Bouligand not

only related this concept to applications but also saw this connection as a motivating

factor for research in direct infinitesimal geometry. He comments for example:

La recherche des groupes intéressant la géométrie infinitésimale est inspirée

par le souci d’appliquer le même principe de découverte dans des conditions

plus larges [87, p. 29].

[The search for groups of interest in infinitesimal geometry is inspired by

the concern of applying the same discovery principle in broader conditions].

As in [75], Bouligand includes a discussion on invariance under different collections

of transformations, again emphasising the group of transformations referred to as γ

in the previous section. Regarding the interest of this specific group in relation to

applications, Bouligand notes,

Au point de vue de la physique mathématique, le groupe γ1 a une importance

capitale1, car il coincide avec celui des déformations envisagées dans la théorie

classique de l’élasticité et plus généralement dans la mécanique de milieux

continus [87, p. 29].

[From the point of view of mathematical physics, the group γ1 is of vital

importance as it coincides with that of the deformations envisaged in the

classical theory of elasticity and more generally in continuum mechanics].

The above provides a brief indication of the way in which Bouligand perceived the

connection between groups of invariance in mathematical physics and in direct in-

finitesimal geometry. A second central theme of Bouligand’s theory for which he
1We note that the group of transformations γ1 here corresponds to the group γ in [75].
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considered physical applications is the characterisation of certain geometrical objects,

such as curves or surfaces, by means of criteria formulated in terms of the paratingent.

Regarding this way of characterising surfaces, Bouligand exemplifies the relevance to

physical applications by referring to the properties of the fracture of certain minerals:

Les surfaces qu’on est conduit à distinguer de la sorte ont d’ailleurs un intérêt

physique; leurs propriétés expliquent l’aspect macroscopique, d’une certaine

régularité relative, de la cassure des minéraux à grain très fin [87, p. 4].

[The surfaces that we are led to distinguish in this manner are of interest

from a physical point of view. Their properties explain the macroscopic

appearance of a certain relative regularity of the fracture of very fine-

grained minerals].

We simply note here that, based on some basic assumptions regarding the nature of

the fracture, namely that it is what Bouligand refers to as a ‘cassure stable’ [stable

fracture] (one for which the shape of the mineral is not altered when subjected to

a shock less powerful than that which caused the initial fracture) he deduces basic

geometric properties of the mineral. These properties imply that, at any point of the

surface in question representing the fracture, there must be at least one line which

does not belong to the paratingent. Here Bouligand does not elaborate in any depth -

as such the example would seem to be intended simply to outline how the principle

of the characterisation of a surface by means of the paratingent can be seen to be

applicable in a physical context. Regarding the significance of this application from

Bouligand’s point of view, the following provides a particular clear insight:

Nous trouvons de la sorte, à propos d’une question de morphologie macro-

scopique, la classe de surfaces que la théorie des ensembles nous avait conduit à

sélectionner, pour des raisons géométriques simples. En résumé, il y a donc un

intérêt manifeste à poursuivre l’unification de la géométrie infinitésimale et la

théorie des ensembles, si la seconde permet de mieux comprendre la première,

celle-ci, par son incorporation à une doctrine, regardée jadis comme purement

philosophique, lui assigne des objectifs de recherche qui la rapprochent de la

physique [74, p. 492].

[We find in this way, in relation to a question in macroscopic morphology,

the class of surfaces that the theory of sets had led us to select for simple

geometrical reasons. In summary, there is therefore an evident interest in

pursuing the unification of infinitesimal geometry and the theory of sets.

The second enables a better understanding of the first which, through its
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incorporation into a theory [the theory of sets] considered purely philo-

sophical in the past, assigns to that theory objectives which bring it closer

to physics].

As such, from Bouligand’s point of view, this example of a physical application of

direct infinitesimal geometry helps to justify taking a set-based approach to differential

geometry.

5.1.2 The application of direct infinitesimal geometry to Meusnier’s

theorem

Bouligand comments that a main theme of his direct infinitesimal geometry is the

unification of set theory with geometrical concepts usually considered, at that time, in

the context of differential calculus [87, p. 2]. He goes on to describe the usefulness of

this approach as follows:

...cette unification révèle en matière d’ensembles l’opportunité de notions nou-

velles, grâce auxquelles des propositions (exemple : le théorème de Meusnier),

indissolublement liées (semblait-il) à la théorie des surfaces, s’affirment val-

ables dans un champ beaucoup plus vaste... [87, p. 3].

[...this unification reveals in terms of sets the opportunity for new concepts,

thanks to which propositions (example: Meusnier’s theorem) which were

inextricably linked (it seemed) to the theory of surfaces now appear as

valid in a much broader setting].

The new concepts to which Bouligand is referring include the contingent, the paratin-

gent and the other tools belonging to direct infinitesimal methods introduced in the

previous section. The above shows that the ability of direct infinitesimal geometry

to reveal mathematical results as applicable in a more general setting justifies for

Bouligand the usefulness of his theory. In relation to Meusnier’s theorem, which

we will introduce below, he states that, through direct infinitesimal approach, the

‘véritable signification’ [the true meaning] [87, p. 4] of this result becomes apparent.

Below we introduce Meusnier’s theorem and Bouligand’s formulation of it using tools

of direct infinitesimal geometry.

Meusnier’s theorem in differential geometry states that for a surface S and a point

x on S, all curves lying on S and passing through x which have the same tangent

line, also have the same normal curvature at the point x. Moreover, the osculating

circles of these curves form a sphere. In [83], Bouligand provides an equivalent form
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of Meusnier’s theorem as follows. Consider a surface S and a point O on S. Let OT

be a tangent to S at the point O. Let OZ be the normal to S at the point O. We also

consider a point M on S which tends towards O. Bouligand formulates Meusnier’s

theorem as below:

...toute position limite du cercle tangent en O à OT et passant par M (cercle

qui est sur la sphère engendrée par CM tournant autour de OZ) se trouve

nécessairement sur la sphère engendrée par C tournant autour de OZ. [83,

p. 32]

[...Every limit position2 of the tangent circle at O of OT passing through

M (a circle which is on the sphere generated by turning CM about OZ) is

necessarily situated on the sphere generated by turning C about OZ].

For clarity, we will refer to the statement above as Meusnier’s theorem (*). Bouligand

next states that if we make the following assumption, then we are able to deduce that

Meusnier’s theorem (*) holds.

...M tendant vers O sur la surface de manière que l’angle MOT tende vers

zéro, il existe dans le plan ZOT une position limite unique C pour le demi-

cercle CM contenant le point M et dont le diamètre, porté par OZ, a une

extêmité en O [83, p. 32].

[...if M is tending towards O on the surface such that the angle MOT tends

towards zero, there exists in the plane ZOT a unique limit position C for

the semi-circle CM which contains the point M , and which has its diameter

lying on OZ and has O as an endpoint].

In fact, in order to deduce Meusnier’s theorem (*) from the assumption above, Bouli-

gand states that it is not necessary for S to be a surface. We can apply the same

reasoning if we replace S with an arbitrary set E in three-dimensional Euclidean space

provided we assume the following two conditions are satisfied.

Au point O, la demi-droite OT sera une demi-tangente de cet ensemble, c’est-à-

dire qu’il existe une suite de points M de l’ensemble tendant vers O de manière

que l’angle MOT tende vers zéro (ce qui implique pour O le fait d’être point

d’accumulation) [83, p. 33].

2Here we assume that the limit is with respect to M tending towards O.
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[Pour une certaine direction OZ orthogonale à OT , il y a unicité, dans le

plan ZOT , de la limite pour un demi-cercle CM passant par M et dont le

diamètre, porté par OZ, a une extêmité O].

The first of these assumptions means that OT is a line belonging to the contingent of

E at O while the second assumption corresponds to that made above in order deduce

Meusnier’s theorem (*). In this new setting, working with the set E, the statement

of the theorem can be slightly reworded in terms of what Bouligand refers to as the

semi-circular contingent, defined in the same way as the circular contingent introduced

above but replacing circles with semi-circles3 [71, p. 482].

The semi-circular contingent of E with respect to O and OT is necessarily situated entirely

on the sphere generated by turning C about OZ4.

Regarding the significance of this result from Bouligand’s perspective, it is interesting

to consider the following comment:

Grâce à l’introduction de deux contingents formés de demi-cercles, le théorème

de Meusnier, issu de la théorie des surfaces et prolongeable, comme il est connu,

aux trajectoires orthogonales des champs de vecteurs, prend sa forme la plus

simple et la plus large en théorie des ensembles [63, p. 138].

[Thanks to the introduction of two contingents formed of semi-circles,

Meusnier’s theorem, which originates in the theory of surfaces and which

is extendable, as it is known, to orthogonal trajectories of vector fields,

assumes its most simple and broad form in the theory of sets].

We might question Bouligand’s comment above as the theorem stated in the context of

sets depends on certain assumptions which are not required in order for Meusnier’s

theorem to hold for surfaces. It could be speculated that Bouligand considered the class

of sets in Euclidean space which satisfy the required conditions as broad enough for

the result to belong, in some sense, to this broader setting. In [83], he emphasises that

considering Meusnier’s theorem in the context of sets allows us to add substantially to

the existing class of objects to which the result applies:

3Explicitly, the definition of the semi-circular contingent of a set E with respect to an accumulation
point O and a half-line OS would be as follows: a semi-circle belongs to the semi-circular contingent
with respect to O and a half-line OS if it is the limit of a sequence of semi-circles tangent at O to OS,
passing respectively through the points Mi of a sequence extracted from E, tending towards O where
no point Mi is situated on OS nor its extension

4The wording used here is not exactly Bouligand’s. It is a combination of his wording of Meusnier’s
theorem above and the statement of the extended result in the context of sets as given in [71, p. 482]
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Ici, nous avons supprimé l’hypothèse que l’ensemble est une surface. Et cela

nous ramène à faire l’adjonction, aux surfaces de l’énoncé primitif, de certains

ensembles ponctuels, répondant aux deux conditions ci-dessus [83, p. 33].

[Here, we have removed the assumption that the set is a surface. And

that leads us to adjoining, to the surfaces to which the original statement

applies, certain point sets satisfying the two conditions above].

5.1.3 A note on further applications

The applications outlined above serve to illustrate the fact that Bouligand envisaged

and applied his direct infinitesimal geometry in different areas, including the theory

of surfaces and in even more concrete physical applications. These examples have

illustrated how Bouligand saw his theory and the epistemological concepts behind it as

achieving their initial objectives and also how he saw physical applications as a factor

justifying further research into direct infinitesimal geometry. The diverse applications

of direct infinitesimal geometry investigated by Bouligand to problems in analysis and

in more applied settings are too lengthy a topic to explore in the present account,

therefore we simply outline a few further references below.

Further examples in [75] relate to the study of envelopes introduced by means of

the Cantor-Minkowski construction [75, p. 102-103] as well as the study of convex

surfaces [75, p. 88-106]. We could also cite, similar to the above example relating

to Meusnier’s theorem, Bouligand’s formulation of Euler’s theorem in differential

geometry which, in the same way, serves to illustrate that taking a direct infinitesimal

approach can allow us to view certain results in what he views as a broader setting5.

In [95, p. 22-25], Bouligand dedicates a short section to ‘Applications de la géométrie

infinitésimale directe aux équations différentielles, ordinaires ou partielles’ [applications

of direct infinitesimal geometry to ordinary and partial differential equations]. Here

Bouligand seems to consider these applications as being predominatly in the area

of analysis. The following confirms this point and shows Bouligand’s conceptual

explanation behind the possibility for such applications:

A l’encontre de la notion de différentielle, valable pour certaines catégories de

fonctions, le contingent ordinaire et le paratingent ordinaire s’appliquent à

tous ensembles ponctuels d’un espace cartésien (ou même d’espaces vectoriels

très généraux)...On comprend donc que l’introduction systématique du contin-

gent et du paratingent appelle la révision de certains chapitres de l’Analyse

5Here we refer the reader to [75, 174] or [87, p. 23] for full details of this example.
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[95, p. 22].

[Contrary to the concept of a derivative, valid for certain categories of

functions, the ordinary contingent and the ordinary paratingent apply to all

point sets of a cartesian space (or even to very general vector spaces)...We

understand therefore that the systematic introduction of the contingent

and of the paratingent call for the revision of certain chapters of Analysis].

For more details regarding a direct infinitesimal approach to certain problems related

to ordinary differential equations, we refer the reader for example to the notes in-

cluded at the end of [75], notably that of his student Georges Durand entitled ‘Sur

la recherche d’une condition de planéité d’un arc simple à partir du contingent’, which

builds on a previous article by Bouligand. For an example of the application of direct

infinitesimal geometry to partial differential equations, we refer the reader to [92]. For

an account focussed on the application of direct infinitesimal geometry to mechanics,

we refer the reader for example to [88] and [89].

In [80], Bouligand outlines some broad ideas, without entering into any mathematical

details, regarding how an approach in the spirit of direct infinitesimal geometry6

might be applied in the characterisation of the recently introduced phenomenon of

uncertainty, as encapsulated by Heisenberg’s uncertainty principle. A main point of

emphasis in this article is the potential usefulness of the application of geometrical

methods based on the theory of sets to the physical phenomenon of uncertainty.

As such, Bouligand comments that these reflections may interest mathematicians,

philosophers and physicists alike [80, p. 737].

6Bouligand does not refer explicitly in the body of the article to direct infinitesimal geometry but
the approach highlighted is a local geometrical one in which the concept of tangency is key. Concepts
such as that of limit sets (also prevalent in his direct infinitesimal geometry) are at the forefront and
[75] is cited.
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5.2 Efforts to circulate and popularise the ideas of di-

rect infinitesimal geometry

It is clear that Bouligand put a great deal of energy into publishing and popularising

the methods and principals of his direct infinitesimal geometry, perhaps more so than

any other area of research in his long mathematical career. These publications served

different purposes, including communicating his theory to the mathematical research

community, communicating the tools of his theory in a more pedagogical manner and

popularising the principles of his theory to a broader scientific audience. Regarding his

mathematical research papers on direct infinitesimal geometry, we will see below that

these were published not only in French journals but also, notably, a significant number

of papers were published in Polish journals. In addition to published articles, direct

infinitesimal geometry represented a central part of Bouligand’s teaching activities

(we will expand upon this point below). He established a strong following of students

who undertook research into direct infinitesimal geometry, although this point will be

covered in the following section on the reception of Bouligand’s work.

5.2.1 Research papers published in Polish journals

The year 1932 appears as the most intensive year for publishing mathematical papers

on direct infinitesimal geometry and is the year in which Bouligand published his

Introduction. In addition to this book, at least seven articles on various concepts and

problems relating to direct infinitesimal geometry were published in French mathe-

matical journals, including four short papers in the Comptes Rendus, submitted by Elie

Cartan [67], [68], [69], [71], two in the Journal de Mathématiques Pures et Appliquées

(see [63] and [64]) focussing on the application of direct infinitesimal geometry to

Meusnier’s theorem and one in the Bulletin de la Société Mathématique de France [66].

In addition to his output of articles in the most popular French journals such as these,

it is interesting to highlight that Bouligand published quite a significant number of

papers on direct infinitesimal geometry in Polish journals. Specifically, these include

approximately seven articles relating to direct infinitesimal geometry published at the

same time and shortly before the publication of Bouligand’s Introduction, between

1930 and 1932. Two articles [52], [60] were published in Fundamenta Mathematicae,

introduced above, two in the Annales de la Société Polonaise de Mahématique [48], [49]

and three papers relating to direct infinitesimal geometry in the Bulletin international

de l’Académie polonaise des sciences et des Lettres [55], [62], [76].

In addition to presenting the mathematical tools, results and applications of direct

infinitesimal geometry, Bouligand also emphasises, for example in [55] the theme
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of applying set theory to infinitesimal geometry, highlighting how this had already

occurred in the theory of functions. In this article, Bouligand also emphasises the

intrinsic nature of his approach:

...on voit s’ouvrir une voie où la Géometrie Infinitésimale pourrait se dévelop-

per d’une manière complètement intrinsèque [55, p. 420].

[...we see a path opening up by which Infinitesimal Geometry could be

developed in a completely intrinsic manner].

It is interesting to note that this article appears in the section of the journal entitled

théorie des ensembles [set theory]. Bouligand emphasises the ideas of applying set

theory to infinitesimal geometry and the possibility of taking an intrinsic approach here

but does not emphasise certain other main principles of direct infinitesimal geometry,

such as the concept of a domain of causality. We can speculate that this choice was

made bearing in mind the ideas likely to have the greatest impact on the readership of

Polish journals at the time.

In addition to publishing a significant number of articles related to direct infinitesimal

geometry in Polish journals, it is worth noting that Bouligand published in a number

of other foreign journals, perhaps the next most significant example being that of

Belgian journals such as the Bulletin de la Société Royale des Sciences de Liège in which

he published several papers during the time period in question (see for example

[88], [89]). We note, in addition, a small number of articles published in Italian

journals such as the Annali della Scuola Normale Superiore di Pisa (see for example

[81]) and the Rendiconti della reale Accademia dei Lincei (see for example [102]) and

finally an article published in the Romanian journal Bulletin Scientifique de l’École

polytechnique de Timi̧soara (see [82]). This distribution of publications can be seen

as being representative of Bouligand’s efforts to communicate his mathematical work

more generally in foreign journals during the interwar period.

5.2.2 Articles published in L’Enseignement Mathématique and

Bouligand’s participation in the international topological

conference of 1935

In addition to the fact that the first comprehensive account of Bouligand’s direct

infinitesimal geometry appeared in the form of a textbook [75] aimed at a general

mathematical audience, it is also worth noting that he published a handful of articles

on topics relating to direct infinitesimal geometry in the journal L’Enseignement Math-

ématique. Three of these articles [59], [72], [73] appeared in 1931 and 1932 and
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dealt with specific aspects of direct infinitesimal geometry, one focussing on the the

concept of an ensemble d’accumulation [accumulation set] [59], as discussed above,

including the utility of this concept for example in the context of the local geometrical

study of sets in Euclidean space by means of tools in direct infinitesimal geometry such

as the contingent and paratingent. A second [72] article deals with semi-continuity

with respect to inclusion - a concept also considered in Bouligand’s Introduction, which

had been published earlier the same year. These articles focus first on the broader use

and utility in mathematics of the concepts of accumulation set and of semi-continuity

respectively before illustrating their application in terms of the tools of direct infinitesi-

mal geometry. A third article [73] in L’Enseignement Mathématique deals briefly with

the theme of characterising certain curves by means of conditions placed upon the

paratingent.

While the above three articles in L’Enseignement Mathématique deal with specific as-

pects of direct infinitesimal geometry, a later article of 1937 [94] contains the ideas

presented by Bouligand during the Conférence Internationale de Topologie held at the

University of Geneva between 21 and 25 October 1935. The conference in Geneva

was the second international topological conference, the first having been held at the

University of Moscow in September of same year. Both conferences were attended

by prominent mathematicians from different countries, for example in Geneva the

attendees included Elie Cartan, the Polish mathematician Kazimierz Kuratowski, Karl

Menger, Paul Finsler and two founding members of the Bourbaki group, André Weil

and Charles Ehresmann. A larger representation of Polish and Soviet mathematicians

can be seen in the first conference in Moscow, together with prominent American

participants such as John von Neumann and Garrett Birkhoff.

Bouligand’s article includes an introduction of the main tools and concepts of direct

infinitesimal geometry and is particularly focussed on the invariance of these concepts

with respect to certain groups of transformations, including but not restricted to

the group γ introduced above, as well as the results that can be derived through

these properties. Bouligand again considers Meusnier’s theorem as an example of

the applications of his theory but considers this theorem here not only in a Euclidean

setting but in the setting of other metric spaces endowed with certain types of metric,

namely a Riemannian metric and a Finsler metric. It is worth noting that Bouligand

also highlights his epistemological views in this presentation:

...devant l’abondance des résultats mathématiques, une oeuvre de coordination

se poursuit, pour préciser les hypothèses et dégager le pourquoi des faits...Pour

les questions de causalité ainsi posées, l’idée de groupe donne un guide [94,
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p. 7]

[...with the abundance of mathematical results, an effort of coordination

is being pursued in order to specify the hypotheses and reveal the why

behind the results...For questions of causality posed as such, the idea of a

group provides a guide].

5.2.3 Direct infinitesimal geometry as a part of Bouligand’s teach-

ing activities

In addition to his publications in Enseignement Mathématique, direct infinitesimal

geometry appears to have been a core part of Bouligand’s teaching activities. While

our account is focussed on the interwar period, it is instructive nevertheless to note

that this theory still formed a central part of his teaching more than two decades after

its inception. Bouligand notes in [101, p. 7]

...Arnaud Denjoy, quand il occupa la chaire de Géométrie supérieure, m’y

demanda des conférences de géométrie infinitésimale directe. Je les continuai

jusqu’en 1957, où cette branche devient l’unique objet de mon cours.

[...Arnaud Denjoy, when he held the chair for advanced Geometry7, asked

me to give lectures on direct infinitesimal geometry. I continued these until

1957, when this branch became the sole subject of my course].

Did direct infinitesimal geometry also represent an active area of teaching during the

interwar period including Bouligand’s time at the faculté des Sciences de Poitiers ? As

will be explored in the following section, Bouligand certainly guided doctoral students

in carrying out their own research in this area. We are not aware of direct infinitesimal

geometry being a central part of Bouligand’s teaching programme in Poitiers, where

he held first the position of Professeur de Mécanique Rationnelle et Appliquée and

subsequently that of Professeur de calcul différentiel et intégral. Given Bouligand’s active

role in the scientific life of the university, we can reasonably speculate that advanced

seminars might have been organised on the topic but we have yet to find evidence of

this.

7Here Bouligand is referring to Denjoy’s position as chair for advanced geometry at the faculté des
Sciences de l’Université de Paris in the 1940s.
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5.2.4 Concluding remarks

We have seen that Bouligand made intensive efforts to popularise his direct infinitesimal

geometry, efforts which were most concentrated around the time at which he published

his Introduction. These efforts were targeted at the mathematical community not only

through French journals but notably through Polish journals - in which his presentation

seems to be adapted to the main themes of research of the Polish school. Direct

infinitesimal geometry continued to represent a central teaching activitiy throughout

his career. Finally, we highlight that the articles in which Bouligand first presented his

programme of research which culminated in his direct infinitesimal geometry [41],

[51] were published respectively in the Revue Scientifique and the Revue Générale des

Sciences Pures et Appliquées - journals which were both targeted at a broad scientific

audience. These articles were discussed in greater depth at the beginning of this

chapter.

5.3 The uptake of Bouligand’s ideas on direct infinites-

imal geometry.

In what way was Bouligand’s theory received by the mathematical community? It

would seem that Bouligand’s theory was not considered as part of the mainstream of

mathematical research during the interwar period. This is implied, for example, by the

introductory remarks of Christian Pauc’s doctoral thesis of 1939, supervised by Fréchet

and introduced below, in which Pauc describes Bouligand’s ideas on direct infinitesimal

geometry as ‘encore insuffisamment connues’ [still insufficiently known] [191, p. 5].

In this section, we will survey the positive of reception Bouligand’s work following

the publication of his Introduction in 1932 and during the remainder of the interwar

period, focussing on mathematicians who were directly influenced by Bouligand’s own

work.

A key figure to consider when evaluating the reception of Bouligand’s ideas is Elie

Cartan. Although Cartan was not active as a researcher in the area of direct infinitesi-

mal geometry, we will establish below that he played an influential role in circulating

Bouligand’s ideas and took an active interest in this theory. Below, we will also explore

the reception of Bouligand’s work through the research of doctoral students guided by

him in their research relating to direct infinitesimal geometry. We will see in this case

that certain students adopted not only Bouligand’s mathematical ideas but also echoed

his more philosophical motivations regarding causality. Finally, we will explore the

active uptake of direct infinitesimal geometry by mathematicians between 1932 and
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1939, including notably Christian Pauc, Otto Haupt and André Marchaud. We include

just one exception regarding the time period set of 1932-1939 by considering the work

of Gustave Choquet on direct infinitesimal geometry. Choquet interacted directly with

Bouligand and his work in this area represents perhaps one of the most prominent

examples of the uptake of direct infinitesimal geometry.

5.3.1 Elie Cartan’s interest in direct infinitesimal geometry and

his role in circulating Bouligand’s ideas

Perhaps the most striking indication of Elie Cartan’s interest in Bouligand’s theory and

his most substantial contribution to its promotion came in the form of his preface to

Bouligand’s Introduction à la géométrie infinitésimale directe of 1932. Cartan reinforces

both the mathematical relevance of the tools of Bouligand’s theory, such as the con-

tingent and the paratingent ‘dont M. Bouligand montre l’importance fondamentale’ [of

which M. Bouligand shows the fundamental importance] [75, p. VI] and emphasises

the epistemological aspects of Bouligand’s work, notably the belonging of the concepts

of direct infinitesimal geometry to specific groups of invariance. Regarding the latter,

Cartan comments for example that the contingent and paratingent belong to the area

of ‘topologie restreinte’ [75, p. VI-VII]. He highlights, furthermore, the aspect of Bouli-

gand’s theory which seeks to eliminate unnecessary hypotheses, describing Bouligand’s

Introduction as,

...un exposé didactique servant d’introduction à une nouvelle géométrie dif-

férentielle libérée des restrictions artificielles que l’ancienne s’imposait par

raison de commodité [75, p. VI].

[...a didactic exposition serving as an introduction to a new differential ge-

ometry freed from the artificial restrictions that the former theory imposed

upon itself for convenience].

This point of view is echoed in Cartan’s 1937 article on the role of analytic geometry

in the evolution of geometry, representing his contribution to the ninth Congrès

International de Philosphie of 1937. Cartan comments,

Il existe maintenant tout un ensemble de recherches, constituant ce que

M. Bouligand appelle la géométrie infinitésimale directe, dans lesquelles les

géomètres cherchent à résoudre les problèmes sans y mettre plus que ce que

contient leur énoncé. Ils s’écartent ainsi de la géométrie différentielle classique

[112, p. 153].
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[There now exists a whole body of research constituting what Mr Bouligand

calls direct infinitesimal geometry in which geometers seek to solve prob-

lems without putting in more than their statement contains. This research

differs therefore from classical differential geometry].

Coming back to Cartan’s preface of Bouligand’s Introduction, we note finally that he

provides an informal historical account in which he places Bouligand’s work. Notably,

Cartan emphasises that the effect of the development of recent ideas in set theory

and the theory of functions were slow to penetrate into infinitesimal geometry and

portrays Bouligand’s theory as being part of this trend [75, p. VI].

We also recall that it was Cartan who submitted Bouligand’s articles on direct infinites-

imal geometry to the Comptes Rendus journal in the period in question, for example

the following articles of 1932 [67], [68], [69], [63]. We find however an example of

Cartan’s more direct involvement in Bouligand’s direct infinitesimal geometry in his

note [111] on a 1935 paper of Bouligand [90] regarding Meusnier’s theorem from the

point of view of direct infinitesimal geometry (more specifically certain properties of

the sphere formed by the osculating featuring in this theorem). In Cartan’s note, he

provides an alternative proof for a result given by Bouligand.

Finally, as a minor point reinforcing the view that Cartan took a keen interest in

direct infinitesimal geometry, we note that, in the Elie Cartan archives available at the

archives of the Académie des Sciences [134], Cartan records in a rough notebook, certain

elements under the heading ‘géométrie différentielle directe’. These appear to be,

potentially, rough notes taken by Cartan purely for his own reference, regarding recent

developments in this area of mathematics. He includes brief notes on Bouligand’s work

and on the work of Pauc introduced briefly below.

5.3.2 Bouligand’s influence on doctoral students

In Elie Cartan’s preface to Bouligand’s Introduction, he comments regarding direct

infinitesimal geometry that Bouligand ‘...a su aiguiller dans cette voie toute une équipe

de jeunes chercheurs...’ [was able to guide a whole team of young researchers in this

direction] [75, p. VI]. It is fair to say that the adoption of Bouligand’s concepts and

programme of research represent a significant part of doctoral research in mathematics

taking place in Poitiers during the interwar period. To this effect, Leloup comments in

[170, p. 126] regarding Bouligand’s influence on doctoral theses during the interwar

period:

Mise à part la thèse de Marie Charpentier, Bouligand apparaît comme le
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dénominateur commun à tous les doctorats soutenus à Poitiers. Cette étude

révèle en outre le rôle d’organisateur de la recherche joué par Bouligand. Il

impose et fait travailler ses propres thématiques de recherche aux étudiants de

Poitiers. De plus, cette influence dépasse le cadre de la seule faculté de Poitiers.

[Apart from the thesis of Marie Charpentier, Bouligand appears as the

common denominator of all doctorates defended in Poitiers. This study

reveals the role played by Bouligand as an organiser of research. He

imposes his own themes of research and initiates work therein by students

at Poitiers. In addition, this influence goes beyond the university of Poitiers

alone].

Leloup subsequently refers to the doctoral theses completed between 1931 and 1938

of ten young mathematicians influenced by Bouligand, many of which were defended

in Poitiers, others in Paris or Toulouse. A majority of these doctorates related to themes

of direct infinitesimal geometry. The thesis of Georges Durand, defended in Paris in

1931 [129] and that of Gaston Rabaté [203], defended in Toulouse are clear examples

of doctoral students being guided in Bouligand’s own programme of mathematical

research. Moreover, these two young mathematicians echoe Bouligand’s epistemolog-

ical ideas in their work. The introduction to Durand’s thesis Sur une généralisation

des surfaces convexes cites several of the same mathematicians and concepts which

influenced Bouligand in formulating his theory and which were considered above -

these include Baire’s reflections regarding the need for achieving greater generality,

Lebesgue’s doctoral thesis and the works of Janiszewski and Juel. The first section of

Durand’s introduction ends with the following conclusion regarding a perceived need

to restore causality in geometry:

Beaucoup de théories géométriques nécessitent à l’heure actuelle une révision

à la faveur de laquelle la causalité, masquée par les restrictions de commodité,

soit remise en pleine lumière... [129, p. 2].

[Many geometrical theories require, at the present time, to be revised so

that causality, which is masked by restrictions introduced for convenience,

may be brought back to light fully].

In the same vein, the introduction of Rabaté’s thesis Sur les notions originelles de la

géométrie infinitésimale directe begins as follows:

Dans ses recherches récentes procédant du souci de restaurer la causalité

en Géométrie Infinitésimale, M. G. Bouligand a introduit le contingent et le
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paratingent d’un ensemble ponctuel en un point d’accumulation.... [203, p. 1].

[In his recent research which seeks to restore causality in Infinitesimal

Geometry, Mr G. Bouligand introduced the contingent and the paratingent

of a point set at an accumulation point...]

While they do not reflect on the epistemological motivations behind the theory, the

works of Lucien Chamard [116], Jean Mirguet [184], Charles Brunold [109], Show-

Lien Chow [121] and Louis Pasqualini [190] are all centered around certain aspects

of direct infinitesimal geometry or its applications. Of the students mentioned above,

Bouligand was involved in the thesis defense jury (either as a member or as president)

for Chamard, Brunold, Show-Lien Chow and Pasqualini. Mirguet, Brunold, Show-Lien

Chow and Pasqualini all dedicate their work to Bouligand in the thesis acknowledge-

ment. Regarding Durand and Rabaté, Bouligand is not a member of the jury but it is

clear that Bouligand is the main guide and influence. For a more detailed account of

these doctoral theses in relation to Bouligand’s academic influence in Poitiers during

the interwar period, we refer the reader to Leloup’s account in [170, p. 122-131].

5.3.3 Notable examples of the uptake of direct infinitesimal geom-

etry

In Bouligand’s 1961 note on his mathematical and epistemological works [101, p. 6],

he refers briefly to several notable examples of mathematicians who took an active

interest in direct infinitesimal geometry or in tools introduced in the context of this

theory. Among these mathematicians are notably Gustave Choquet, André Marchaud,

Christian Pauc and Otto Haupt. We will briefly comment on the involvement of these

mathematicians in direct infinitesimal geometry as well as exploring briefly the contri-

butions of S.K. Zaremba. Given the connection from Bouligand’s perspective between

direct infinitesimal geometry and the work of Karl Menger, highlighted above, it is also

interesting to explore briefly certain comments made by Menger regarding Bouligand’s

theory.

The work of Gustave Choquet. Gustave Choquet (1915-2006) was a French mathe-

matician whose research interests included potential theory, topology, measure theory

and functional analysis. In [131] Edwards comments,

His work in functional analysis and potential theory profoundly marked the

development of mathematical analysis in the second half of the twentieth

century. In particular, he created the theory of capacities, as well as that of

integral representations in convex sets [131, p. 341].
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In Choquet’s account of his own mathematical works, he specifically identified direct

infinitesimal geometry as one of his research interests [120, p. 10]. Here, Choquet

identifies his interactions with Bouligand as one of the factors influencing his doctoral

thesis Application des propriétés descriptives de la fonction “contingent” à la théorie des

fonctions de variable réelle et à la théorie différentiele des variétés cartésiennes, defended

in 1946 and published in 1947 [118]. As described by Edwards, Choquet’s doctoral

thesis ‘is a study of the differentiability properties of subsets of Euclidean spaces, and

is a pioneering contribution to non-smooth analysis which reveals profound relations

between certain differentiable and topological structures’. Edwards comments that the

key result of Choquet’s thesis is the so-called contingent-paratingent theorem [131,

p. 346], which is formulated in terms of generalisations of the tools introduced by

Bouligand. For a detailed account of this result, we refer the reader to [131, p. 346]

or [120, p. 13-18]. In [120, p. 13], Choquet identifies a specific problem of direct

infinitesimal geometry posed by Bouligand:

En 1943, Georges Bouligand avait posé le problème de déterminer si, dans

la classe des surfaces de R3 qui sont C1 (i.e. à plans tangents continus), les

portions de sphère sont caractérisées par la propriété d’avoir en tout point

un contingent sphérique réduit à une seule sphère. Je réussis, par une étude

géométrique de la courbure, et grâce au fait que cette courbure est une fonction

de 1ère classe de Baire, à donner une réponse positive au problème, tout en

affaiblissant encore ses hypothèses...

[In 1943, Georges Bouligand had posed the problem of determining

whether, in the class of suraces in R3 which are C1 (i.e. which have

continuous planar tangents), the portions of sphere are characterised by

the property of having at every point a spherical contingent reduced to a

single sphere. I succeeded, by a geometrical study of the curvature and

thanks to the fact that the curvature is of the 1st class of Baire, in giving a

positive response to the problem while further weakening the hypotheses].

Choquet’s results were published in the Revue Scientifique[117], the same journal in

which Bouligand published several of his articles focussed on his epistemological ideas.

Choquet comments that his experience with Bouligand’s problem provided him with

inspiration [120, p. 13] in solving a further problem dealt with in his thesis which

had been posed by Lebesgue in his Leçons sur l’intégration. Specifically, the problem

was that of determining the real continuous function f given α and g where f and

α are real continuous functions on the unit interval and g is the derivative of f with

respect to α [131, p. 346] . Another example of a publication by Choquet which uses

concepts of direct infinitesimal geometry is [119], which for example extends the
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contingent-paratingent theorem of his doctoral thesis [120, p. 58]. For a more detailed

account of Choquet’s work on direct infinitesimal geometry including his generalisation

of the concepts of contingent and paratingent, for example in the context of a general

metric space, we refer the reader to the doctoral thesis of Bessis [9].

Christian Pauc’s research relating to direct infinitesimal geometry.

Christian Pauc (1911-1981) was a French mathematician who was a student of Ernest

Vessiot [107, p. 258] and of Maurice Fréchet, who was the advisor for Pauc’s doctoral

thesis [191]. According to Krickerberg in [160] Pauc came to Germany in the early

1940s as a prisoner of war. The Erlangen mathematician Otto Haupt managed to have

Pauc released so as to collaborate with him in Erlangen. Pauc’s doctoral thesis of 1939

[191], completed under Fréchet, dealt with Les méthodes directes en calcul des variations

et en géométrie différentielle. The jury consisted of Arnaud Denjoy as presiding member

and of Fréchet and Bouligand as examiners. Pauc’s thesis was split into two parts: the

first dealing with direct methods in the calculus of variations and the second part deals

with direct methods in the area of direct infinitesimal geometry. In the first section,

Pauc is influenced, notably, by the work of Karl Menger and Bouligand’s ideas are

strongly present in the second section. Pauc comments in the introduction,

On trouvera dans ce qui suit le résultat des études de l’auteur sur les méthodes

directes en Calcul des Variations et en Géométrie Différentielle. Nous avons

cru rendre service en encadrant celles-ci dans un exposé d’ensemble de très

importantes recherches sur ces sujets dues principalement à MM. Bouligand et

Menger et encore insuffisamment connues [191, p. V].

[We find in the following the results of the author’s research on direct meth-

ods in the Calculus of Variations and in Differential Geometry. We believe

we have done a service [to the mathematical community] by placing this

research in the context of a comprehensive exposition of highly important

research on these subjects due to Mr Bouligand and Mr Menger which are

still not sufficiently known].

Pauc’s results relate for example to continua in Euclidean space defined by certain

criteria formulated in terms of the contingent and the paratingent. For example ‘les

continus euclidiens dont le contingent en chaque point est non connexe’ [Euclidean con-

tinua whose contingent at each point is non connected] or those whose paratingent at

each point contains only one line [191, p. VIII].

The reception of Bouligand’s ideas by Otto Haupt.
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The German mathematician Otto Haupt (1887-1988) is a notable example of a math-

ematician outside of France who took up Bouligand’s ideas on direct infinitesimal

geometry. Haupt was based for a significant part of his career at the University of

Erlangen and his research focusses notably on geometry and real analysis. He also pro-

duced a significant output in the form of mathematical textbooks. Haupt demonstrated

a positive reception of Bouligand’s work both through a review of Bouligand’s Intro-

duction and by incorporating tools of direct infinitesimal geometry into his own work.

In Haupt’s review in German of Bouligand’s Introduction à la géométrie infinitésimale

directe, he comments,

...führt das Buch in diejenigen Untersuchungen ein, bei welchen die moderne

mengentheoretische Geometrie für die Differentialgeometrie nutzbar gemacht

wird [146].

[...the book introduces those investigations whereby modern set-theoretic

geometry is made usable for differential geometry].

Haupt expresses similar views to Bouligand regarding the classical approach to dif-

ferential geometry relying heavily on calculation, thus reducing the generality of the

results. Further, in addition to describing Bouligand’s approach, Haupt cites results

obtained by Bouligand in the theory of surfaces under more general assumptions,

namely Meusnier’s theorem and Euler’s theorem. Haupt thus portrays Bouligand’s

work in a positive light and describes it as ‘leicht verständlich geschrieben’ [written

in an easily understandable way] as well as ‘eine sehr anregende Einführung’ [a very

stimulating introduction].

As mentioned, Haupt also employs tools of Bouligand’s direct infinitesimal geometry

and takes inspiration from research problems identified by Bouligand. For example, in

a 1936 paper [147] Über ebene Punktmengen mit überall unendlicher Krümmung [On

planar point sets with infinite curvature everywhere], Haupt investigates the structure

of certain sets in two-dimensional Euclidean space which are noted by Bouligand in

a section of [75] entitled ‘sujets de recherche’ [research topics]. Haupt explicitly cites

Bouligand in this respect; we refer the reader to [75, p. 221-222] and to [147] for

further details. Furthermore, in a 1939 paper [148], Haupt extensively employs the

paratingent, citing Bouligand with regard to this concept, in the context of his study of

ruled surfaces in three-dimensional projective space.

The work S.K. Zaremba on paratingent equations. Stanisław Krystyn Zaremba

(1903-1990), the Polish mathematician and son of the Stanisław Zaremba encoun-

tered earlier in this account, also conducted research, published in French, involving



160 Bouligand’s theory of Direct Infinitesimal Geometry: applications, . . .

concepts of direct infinitesimal geometry, citing Bouligand extensively. For example,

his 1936 work [225] deals with a generalisation of the concept of a system of ordinary

differential equations by means of the paratingent, a topic also dealt with more briefly

in an earlier article of 1934 published in the Comptes Rendus and submitted by Elie

Cartan [224]. While it is outside of the scope of the present account, it is interesting to

note that quite a significant number of papers authored by Polish mathematicians were

published in the 1960s dealing with Zaremba’s équations au paratingent [paratingent

equations]. While there may well be external factors leading to a renewed interest in

these concepts, there is nonetheless is a clear link to Zaremba’s work. For example,

Krzyzowa’s 1963 article [226] establishes this connection via the work of A. Bielecki.

André Marchaud’s use of the contingent in the study of differential equations.

André Marchaud (1887-1973) also undertook research using concepts of direct in-

finitesimal geometry, explicitly citing Bouligand. Marchaud was strongly influenced by

Paul Montel [170, p. 236] and his research interests included for example differential

geometry and géométrie finie (as introduced earlier in the present account). During

the period in question, Marchaud authored a number of papers involving concepts

of direct infinitesimal geometry. For example, in a 1934 article [177] Marchaud uses

the contingent in the context of his research on first order differential equations of

a real variable, explicitly citing Bouligand with regard to this tool. In a 1936 paper

[178], he uses the contingent and the contingent integral, again citing Bouligand, in

the conext of his research on a concept of integration for certain types of convex sets,

also comparing his results to those of Bouligand.

Karl Menger on the connections between direct infinitesimal geometry and the

‘géométrie des distances’.

We noted above that Bouligand considered his direct infinitesimal geometry as be-

longing in some sense to the same trend - one of the emergence of direct methods

in differential geometry. Menger himself comments in his contribution to the 1935

Conférences internationales de topologie on Bouligand’s work, praising his efforts while

also putting forward the view that the géométrie des distances perhaps goes even further

than Bouligand’s theory along the path towards a differential geometry dissociated

from coordinates by operating in the setting of more general spaces:

Et même M. BOULIGAND qui a eu le mérite en créant sa Géométrie infinitési-

male directe d’introduire l’analyse moderne, en particulier la théorie des

fonctions de variable réelle dans l’étude des propriétés géométriques locales

- se borne à l’étude d’espaces où chaque point est (ou pourrait être) carac-

térisé par un système de coordonnées. L’idée d’une géométrie différentielle
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sans coordonnées semble encore aujourd’hui presque absurde à la plupart des

géomètres ; cependant la géométrie des distances a déjà résolu le problème...

[182, p. 362].

[And even Mr. BOULIGAND who has the merit, by creating his direct

infinitesimal Geometry, of introducing modern analysis and in particular

the theory of functions of a real variable in the study of local geometric

properties - limits himself to the study of spaces where each point is (or

could be) characterised by a system of coordinates. The idea of a differential

geometry without coordinates still seems, today, almost absurd to most

geometers; however the geometry of distances has already resolved the

problem. . . ]

Although they took place after the time period in question, it is worth noting a series

of presentations given by Menger at the Sorbonne in the Spring of 1951 [183], for

which Bouligand and Fréchet, it would appear, participated in the organisation. In the

corresponding article, Menger refers to Bouligand a handful of times and identifies

for example the fundamental motivations behind his own work as being the same as

those motivating Bouligand’s direct infinitesimal geometry - namely the goal of taking

a local approach to the study of objects in space which does not rely on coordinates

[183, p. 15-16]. In other words, this shared goal was avoiding an approach to such a

study where ‘la fin n’est justifiée que par les moyens’ [the end is justified only by the

means] [183, p. 15-16].



Chapter 6

The development of Bouligand’s

epistemological ideas

from 1932 to 1939

We saw in the previous chapter that Bouligand’s theory of direct infinitesimal geometry

was the culmination of a progamme of research which was motivated substantially

by his epistemological views regarding geometry. The following three key concepts

were interrelated but again could be considered separately as follows. First, Bouli-

gand promoted the idea of considering mathematical results in natural or appropriate

domain, which for him is achieved by means of the concept he referred to as a do-

main of causality - in this case characterised in terms of invariance under a certain

group of transformations. In addition, Bouligand emphasised eliminating unneces-

sary hypotheses to achieve greater generality and finally he promoted taking a more

intrinsic or ‘direct’ approach, which in the case of differential geometry involved for

example avoiding parametric representations. Certain elements of these ideals and

the mathematical tools through which Bouligand sought to put them into practice

were present earlier in his work on the generalised Dirichlet problem, in particular

the idea of classifying mathematical results according to their level of generality as

well as mathematical tools such as those used by Bouligand to study the dimensional

properties of sets in Euclidean space.

The purpose of this final chapter is to consider the way in which Bouligand’s epistemo-

logical ideas about mathematics evolved after the publication of his Introduction à la

géométrie infinitésimale directe in 1932 and for the remainder of the interwar period.

In keeping with the central theme of the present account - namely concentrating on

Bouligand’s mathematical and epistemological concepts which interrelate most closely,

we will focus on a few key ideas. Specifically, we will focus on the concepts which

directly evolved from the epistemological views already introduced in the context of
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the previous two chapters. For the interested reader, we will briefly outline other

questions considered by Bouligand during this period which are not quite so central to

our account. It will become apparent in this chapter that certain views communicated

earlier by Bouligand in the context of differential geometry were later considered

in a broader setting. We will focus here on the following three main concepts: first

what Bouligand referred to as causal demonstrations of mathematical results, secondly

Bouligand’s elaboration of the concept of a domain of causality and finally his reflec-

tions on direct methods. As well as introducing these concepts and providing examples,

we will also bring to light the efforts made by Bouligand to communicate these ideas

to the mathematical and scientific community as well as in a pedagogical setting.

Connections between Bouligand’s earliest epistemological reflections on intuition and

his later ideas of causality and direct methods are also highlighted below, mainly in

the context of direct methods.

Bouligand’s published output expressing his ideas on the epistemology of mathematics

between 1932 and 1939 includes approximately 15 publications on various topics,

predominantly but not exclusively connected with causality, direct methods and re-

lated concepts. While his views regarding intuition and geometry considered in the

earlier chapters were published in La Revue Scientifique and La Revue Générale des

Sciences Pures et Apliquées, the channels used for communicating his later ideas were

more varied. In addition to several articles published in these two journals during

the time period in question, Bouligand’s work was also published in the Actualités

Scientifiques et Industrielles a series of books, published by Hermann and covering a

wide range of topics in science, technology and industry. The Actualités Scientifiques

included collections on different topics under the direction of an expert in the domain

in question. For example, Bouligand’s 1934 account on La Causalité des Théories Math-

ématiques [83] was part of the exposés de philosophie collection of Louis de Broglie.

Bouligand’s 1937 work on Structure des Théories, problèmes infinis was part of Abel

Rey’s collection on the history and philosophy of science. It is interesting to note that

three publications of Bouligand’s ideas during this period are based on presentations

given at conferences and later published as part of a book. Two of these were published

in the Actualités Scientifiques et Industrielles and related respectively to Bouligand’s

contributions to the Congrès international de philosphie scientifique in 1935 and the

ninth Congrès International de Philosophie of 1937. The third example of this kind is to

be found in [103] which was published by Flammarion as a book in the Bibliothèque de

Philosophie Scientifique series and containing presentations given at the University of

Poitiers in 1935 in the context of a conference which appears to have been organised

by Bouligand and his former student Charles Brunold. Further channels used by

Bouligand for communicating his ideas include the journal Thalès, which focusses on

the history of science, the Bulletin de l’Académie Royale des Sciences de Belgique and
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one article in each of the Comptes Rendus of the French Académie des Sciences and

L’Enseignement Mathématique. In the following presentation of Bouligand’s ideas, we

will take a thematic approach, drawing from the most relevant sources for each of the

main topics outlined: causal demonstrations, domains of causality and direct methods.

6.1 Bouligand on causal demonstrations

Bouligand’s concept of a causal proof represents a component of his concept of causality

which is elaborated on in several different articles during the period in question and

interrelates with his concepts of domain of causality and direct method. He briefly

mentions the idea of a démonstration causale of mathematical results prior to the time

period of interest in the present chapter, specifically in a paper of 1930 [51, p. 369],

although the concept is elaborated on in greater depth in later accounts, upon which

we will base the present discussion.

6.1.1 Causal demonstrations defined in terms of their ability to

reveal the ‘reason why’

In [77], Bouligand gives an account of causal demonstrations based on an example

which we will discuss below which emphasises, as the key defining feature, the

explanatory nature of the proof. The example relates to the following fact in geometry.

If we consider a parabolic object rolling without sliding on a flat surface, then the

focus of the parabola traces out a curve known as a catenary. Bouligand states that

this result could be proven using an analytic method but that this approach would

not be enlightening with respect to understanding why the result holds. Bouligand

comments regarding this problem:

En le soumettant à une méthode analytique permanente, l’on obtient une

chaînette. Mais, le calcul ainsi réalisé ne nous apprend rien sur les relations de

cause à effet, c’est-à-dire sur la manière dont la forme parabolique du profil et

la position spéciale de la particule sur la plaque...interviennent pour imposer

en fin de compte la trajectoire de cette particule de rentrer dans la catégorie

particulière des chaînettes [77, p. 257].

[By applying to it a permanent analytic method, one obtains a catenary. But

the calculation carried out as such teaches us nothing about the relation-

ships of cause and effect, that is regarding the way in which the parabolic

shape of the profile and the particular position of the particle on the rolling
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plate...intervene so as ensure that the trajectory of the particle belongs to

the specific category of catenaries].

What proof can be given then which, from Bouligand’s point of view, does provide a

more enlightening demonstration of the theorem in question? Bouligand emphasises

selecting a specific definition of a catenary which can be seen, through an elementary

geometric argument, to correspond to the geometrical nature of the trajectory of the

parabola’s focus. In Bouligand’s own words:

...la trajectoire du foyer, on le montre par un raisonnement élémentaire, est

une ligne dont la tangente reste à distance constante du pied de la verticale

menée par son point de contact...On se ramène donc ainsi à l’une des défini-

tions de la chaînette... [77, p. 257-258]

[...the trajectory of the focus, we show through elementary reasoning, is

a line whose tangent remains at a constant distance from the base of the

vertical led through its contact point...We therefore arrive in this way at

one of the definitions of a catenary...]

Here, Bouligand goes on to emphasise the importance of selecting appropriate defini-

tions which lend themselves well to establishing causal proofs:

Cet exemple est instructif. On y voit l’influence d’une option convenable parmi

les définitions équivalentes...d’une même entité mathématique. La propriété

de la chaînette par laquelle nous venons de la distinguer se présente le plus

simplement possible, car elle revêt la forme d’une équation différentielle al-

gébrique du premier ordre, c’est-à-dire d’ordre minimum, à laquelle satisfait

cette courbe. Et cela nous confirme que nous avons bien atteint, dans cette

voie, la cause profonde du théorème énoncé. [77, p. 258].

[This example is instructive. We see the influence of a suitable choice

among the equivalent definitions...of the same entity. The property of the

catenary by which we have distinguished it appears in the most simple

way possible as it assumes the form of a first order algebraic differential

equation, that is of minimum order. And this confirms that we have have

indeed reached, in this way, the underlying reason for the stated theorem].

Regarding Bouligand’s above statement about having reached the underlying reason

for the theorem, no further explanation is provided in this article. We speculate that

Bouligand is emphasising that only first order differentiability is involved in the proof
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and not extra assumptions regarding higher order differentiability of the function

characterising the catenary. We see above that Bouligand discusses simplicity in the

context of causal proofs, in the sense of a reliance on the minimum set of assumptions.

However, he goes on to emphasise that a causal proof is not necessarily an easy proof:

Deux démonstrations d’un même théorème peuvent être également inat-

taquables, mais il peut se faire que l’une soit causale et l’autre non...[77,

p. 258].

[Two proofs of the same theorem may be equally unassailable but it may

be that one is causal and the other is not...]

6.1.2 Causal demonstrations characterised in terms of generality

While the above shows that Bouligand initially characterised causal proofs in terms of

their ability to reveal the reason why behind a result, the most recent definition in the

time period in question, in [103] defines a causal demonstration purely in terms of

generality. His definition in [103, p. 170] is as follows:

Il peut arriver que l’énoncé d’un théorème aboutissant à une conclusion fixée

par avance, ne contienne aucune hypothèse superflue, toute réduction des

prémisses étant de nature à compromettre cette conclusion. C’est dans ces con-

ditions, rarement réalisées, que la démonstration sera dite: causale.....C’est en

cherchant les conditions les plus larges dans lesquelles un théorème déterminé

est valable qu’on parvient à sa démonstration causale. Autrement dit, le souci

de généralité va de pair avec celui de la causalité.

[It can happen that the statement of a theorem leading to a conclusion

fixed in advance contains no superfluous assumptions. Any reduction of the

assumptions would compromise the conclusion. It is in these conditions,

rarely achieved, that the proof will be called causal...It is in searching for

the broadest possible conditions in which a given theorem is valid that we

reach a causal demonstration. In other words, the issue of generality goes

hand in hand with that of causality].

As such, in the above account, Bouligand equates causal proofs with those which are

based on the minimal set of initial assumptions. He goes on to provide examples of

causal demonstrations, referring notably to his formulation of Meusnier’s theorem

taking recourse to concepts in direct infinitesimal geometry. As seen in the previous

chapter, these concepts allow Bouligand to enlarge the class of objects for which
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Meusnier’s theorem holds by adding a certain class of sets to the familiar surfaces

which lead to this result. We note that in [103], Bouligand does not attempt to justify

his formulation of Meusnier’s theorem discussed in the previous chapter being the most

general formulation. It is not clear whether, by referring to this example, Bouligand is

claiming that his formulation of Meusnier’s theorem is the most general, or perhaps

that the most general setting in which one can consider the theorem is a set-theoretic

setting, rather than merely considering surfaces. Based on Bouligand’s comments

relating to Meusnier’s theorem considered in the previous chapter, the author of the

present account would speculate that the latter would perhaps be the best interpreta-

tion. It is also worth emphasising that this example was provided here in the context

of a conference aimed at a general and multidisciplinary academic audience, as such

the examples may have been chosen to illustrate intuitively the main ideas behind

Bouligand’s views on causal proofs.

A further example provided by Bouligand in [103] is that of Pythagoras’ theorem. It

can be easily seen that the familiar formulation of Pythagoras’ theorem is equivalent

to the following. Consider a right angle triangle ABC with hypotenuse BC. The

area of the square constructed on BC is equal to the sum of the areas of the squares

constructed on AB and AC. This result can be generalised to any set of three similar

polygons constructed on the sides of the triangle ABC. Regarding this fact, Bouligand

comments in relation to Pythagoras’ theorem:

...et la vraie raison s’en dégage. Car si le théorème est vrai pour un type de

figure tracé sur BC, il sera pour tous les autres types, et il suffit de le vérifier

pour une configuration particulière, qu’on obtient en prenant le triangle ABC

lui-même... [103, p. 172]

[...And the true reason [for the validity of of Pythagoras theorem] is re-

vealed. Since, if the theorem is true for one type of figure drawn on BC,

it will also be true for all other types of figure and it suffices to verify this

for a particular configuration that is obtained by taking the triangle ABC

itself].

A further aspect of Bouligand’s views of causal proofs in relation to generality is seen

by referring back to the example above regarding the trajectory of the focus of a rolling

plate. He comments that, whether or not a particular proof is causal depends on

the level of generality of the result in question. To clarify this point, he considers

again the example of the rolling parabolic shape and states that, had we have posed a

more general question to begin with, the analytic method which he did not consider
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as providing a causal proof in the above example, may well have provided a causal

demonstration:

...il suffit souvent de s’élever d’une question à une autre dont la première

soit un cas particulier pour que l’axe de la causalité soit complètement dé-

placé...Lorsque qu’une plaque se meut dans son plan , le mode de calcul

permanent qui détermine la trajectoire d’un point de la plaque revêt, ipso

facto, un caractère causal, précisément en raison de la généralité du problème,

où l’on abstrait telle ou telle spécialisation imposée au profil de la plaque. Mais

dans notre exemple particulier, ce profil était une parabole...et nous devions

expliquer comment ces circonstances impliquaient pour la trajectoire la forme

chaînette. D’où un déplacement important de la causalité [77, p. 258].

[...it often suffices to rise from one question to another of which the

first is a specific case in order for the axis of causality to be completely

shifted...When a plate is moving in its plane, the permanent method of

calculation which determines the trajectory of a point has, ipso facto a

causal character, due precisely to the generality of the problem where

we abstract a particular specificity imposed upon the plate. But in our

particular example, the profile was a parabola...and we had to explain how

these circumstances implied that the shape of the trajectory would be a

catenary. From this, we see a significant shift of causality].

6.2 An elaboration of the concept of domain of causal-

ity and the related concept of the stability of a

mathematical proposition

In the context of Bouligand’s epistemological reflections on geometry leading up to

his theory of direct infinitesimal geometry, and in the theory itself, he discusses the

importance, from his point of view, of the concept of a domain of causality. We

have seen that, for Bouligand, this concept represents, intuitively, an appropriate

setting or domain in which a mathematical result should be placed. The domain of

causality is, in addition, closely tied up with the goal of viewing a given mathematical

result in a general setting, getting rid of unnecessary assumptions. Perhaps the most

central concept in Bouligand’s characterisation of domains of causality is that of a

mathematical group. In his direct infinitesimal geometry, Bouligand equates the

domain of causality with a group of transformations under which certain properties

are invariant. During the interwar years following the publication of his Introduction à
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la géométrie infinitésimale directe, Bouligand made considerable efforts in elaborating,

abstracting and to some extent formalising his ideas about domains of causality. Before

exploring his ideas in greater detail, we emphasise the centrality of the concept of

a group, from Bouligand’s point of view. This is conveyed strikingly in a letter from

Bouligand to Maurice Fréchet dated 24 November 1938 [135], in which Bouligand

outlines the development of some of his main ideas to date regarding causality:

Pour ce qui concerne les questions de causalité, Destouches1 m’en avait dit un

mot ces jours-ci, je crois intéressant de vous en retracer l’histoire...

[Regarding questions of causality, Destouches spoke to me about it re-

cently; I believe it is of interest to retrace, for you, the history of these

questions].

Bouligand emphasises, as the first step in the development of his ideas on causality,

the influence of the Polish school and the articles featuring in the journal Fundamenta

Mathematicae, including the ideas of Urysohn discussed in the previous chapter. How-

ever, he emphasises that in the work of Urysohn, as is also the case of the French

mathematicians mentioned below, the emphasis is placed on eliminating unnecessary

assumptions in order to view mathematical results in their domaine naturel d’existence,

which is only one aspect of Bouligand’s reflections regarding causality. Urysohn’s

account does not focus, according to Bouligand, on the concept of a mathematical

group. While Bouligand notes the influence of the ideas of Urysohn and the Polish

school on his own work (‘L’influence de tout ce courant d’idées sur mes propres recherches

est très nette’ [the influence of this whole trend of ideas on my own research is very

clear]), he nevertheless emphasises that there is a key ingredient of his own ideas on

causality which is not present in the work of Urysohn:

Voilà des remarques d’une profonde psychologie...mais où n’apparait aucune

trace du rôle de la NOTION DE GROUPE. Urysohn jette surtout un anathème

contre les hypoth. parasites. C’est ce que vous avez déjà fait vous-même. C’est

aussi ce que Baire avait fait dans la Préface de ses Leçons sur les Fonctions

Discontinues. J. Tannery n’avait-il pas eu, d’une manière certes beaucoup

moins marquée, des mouvements dans ce sens....?

[These remarks illustrate a profound psychology...but they show no trace

of the role of the CONCEPT OF A GROUP. Urysohn denounces parasitic

hypotheses. This is what you yourself have done. It is also what Baire

did in the preface of his Leçons sur les Fonctions Discontinues. Did J.

1Here Bouligand is referring to Jean-Louis Destouches.
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Tannery not also make efforts, albeit in a much less pronounced way, in

this direction....?]

As such, Bouligand appears to be emphasising to Fréchet the distinct component of

his ideas on causality which relates to the characterisation of domains of causality in

terms of mathematical groups. With this in mind, we will briefly present Bouligand’s

ideas together with examples.

6.2.1 Defining domains of causality

Having outlined informally the main ideas behind Bouligand’s concept of domains of

causality, we will now consider the way in which he went some way in elaborating

and formalising this concept. In [96, p. 21-22], the following definition is provided.

Soit, dans un champ défini de prémisses, une proposition P dont l’énoncé a

été préalablement formulé. Supposons P vraie pour un choix des objets qu’elle

met en relation.

[Under circumstances which have been defined, let P be a proposition

whose statement has been formulated. Assume P to be true for a choice of

objects which P relates together].

To clarify the above, we note that in [94, p. 7], Bouligand states that these circum-

stances could for example be that we are working in Euclidean space. Next, Bouligand

goes on to consider the modifications which could be performed on these objects and

states that the collection of all such possible modifications form a group.

Les modifications auxquelles on peut soumettre ces objets, pour passer à un

cas d’exactitude de P à un nouveau cas d’exactitude de P , forment une famille

qui présente ces deux caractères importants:

1. avec une modification, elle contient toujours la modification inverse

2. avec deux modifications, elle contient leur résultante.

Une telle famille est donc un groupe, au sens classique de ce terme [96, . 22].

[The modifications to which we may subject these objects to go from one

correct version of P to another correct version of P form a family which

has the following two important characteristics:

1. for any given modification, the family always contains the inverse

modification
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2. for two modifications, the family contains their composition.

Such a family is therefore a group, in the classical sense of the term].

In [94, p. 7], Bouligand notes that it is by reducing the set of hypotheses of the

proposition P (consisting of hypotheses and a conclusion) that we reach the above

group. Based on the above, Bouligand goes on to justify why he refers to the family of

modifications introduced above as the domain of causality of P :

Puisque c’est la recherche des conditions les plus larges de validité de P qui

fait apparaître ce groupe, je l’ai dénommé le domaine de causalité de P [96,

p. 22].

[Since it is the search for the broadest conditions in which P is valid that

leads us to this group, I have called it the domain of causality of P ].

Here Bouligand is referring to the idea previously encountered in the last chapter that

by eliminating unnecessary hypotheses and considering a mathematical result in a

more general setting, we thus are able to appreciate to a greater extent the relationship

between the initial assumptions and the conclusion. As we have seen, he associates

the ability to perceive this connection with the term causality.

It is worth noting that Bouligand considered the idea of a domain of causality not

only in relation to individual mathematical theorems but also in relation to systems of

mathematical results:

Ce qui vient d’être dit pour une proposition isolée s’applique sans changement

à un système de propositions, les éléments communs à plusieurs groupes for-

mant un groupe [96, p. 22].

[What has just been said about an isolated proposition can also be applied

without modification to a system of propositions, as the elements common

to multiple groups form a group].

What examples of domains of causality are provided by Bouligand? In [96, p. 22-23],

he refers to the example of Bézout’s theorem in the context of planar algebraic curves,

which states that a curve of degree m intersects a curve of degree n in mn points

[208, p. 109]. In order to establish this result without exceptions, it is not sufficient to

operate within the real or the complex plane, whereas the result does become true in

general in the complex projective plane, by enabling both intersection points at infinity

(thanks to operating in a projective space), as well as, for example, intersection points
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with the same location in the real plane but with a different imaginary part. Bouligand

comments as follows regarding this example and regarding the connection between

the idea of domains of causality and the structure of mathematical theories:

Dans cette question, le champ réel ne conduisait pas à des résultats perma-

nents. Il a fallu d’abord modifier les prémisses par l’introduction des éléments

imaginaires...Toutefois, ce résultat comportait-il des cas d’exception...Cet exem-

ple me paraît propice à l’acquisition d’une idée capitale : celle de la structure

d’une théorie, structure que les chercheurs sont obligés de respecter. Pour

édifier d’une manière satisfaisante la théorie...des intersections, en géométrie

algébrique...L’espace projectif complexe s’est-il donc imposé comme domaine

de causalité [96, p. 22-23].

[In relation to this question, the field of the reals did not lead to permanent

results. It was necessary first to modify the conditions by introducing imag-

inary elements...However, the result still allowed certain exceptions...This

example seems to me to be conducive to acquiring a key idea: that of the

structure of a theory, a structure which researchers are obliged to respect.

To build a theory of intersections in algebraic geometry in a satisfactory

way...the complex projective space was established as the domain of causal-

ity].

Bouligand does not include any detailed explanation of the connection between this

example and the preceding definition. It is relevant to bear in mind in relation to

this point that the Actualités scientifiques is likely to be targeted at a broad scientific

readership.

A further example provided by Bouligand following the same definition of the domain

of causality is available in [94, p. 8], where he again cites for example the group

of transformations constituting the topologie restreinte du premier ordre introduced

in the last chapter as the domain of causality in relation to certain properties of the

tools of direct infinitesimal geometry, such as the invariance of the intersection of the

paratingent of two sets under transformations of this group.

To gain a further insight into Bouligand’s ideas regarding domains of causality, we note

that the above example is situated in the context of a discussion regarding the search

for domains of causality in geometry. Bouligand outlines two possible approaches that

could be taken to arriving at a situation in which mathematical results in differential

geometry are placed within their domains of causality and expresses a clear preference
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for one of these approaches. He notes that one could attempt to consider each specific

theorem and generalise it to the most general space possible. Here he alludes to

certain geometrical results valid in Euclidean space which can be generalised to metric

spaces endowed with certain types of metric [94, p. 8]. However, Bouligand does not

advocate this approach:

Mais la méthodologie disjonctive ralentirait le travail. Il vaut mieux encadrer

les résultats dans des groupes familiers, inclus dans le groupe topologique

général G des transformations ponctuelles continues et biunivoques opérant

entre portions d’espaces cartésiens (on se limite ici au point de vue local, ce

qui dispense de distinguer G du groupe analogue extrait d’une variété de

Riemann)...

[But the disjunctive method would slow the work. It is better to frame the

results in familiar groups included in the general topological group G of

continuous and bijective point transformations operating between portions

of Cartesian spaces (we are limiting ourselves here to the local point of

view, which removes the need to distinguish G from the analogous group

extracted from a Riemannian manifold)...]

Therefore, regarding the way in which we attempt to place results in differential

geometry in their domains of causality, Bouligand favours the approach of searching

first for the appropriate groups of invariance, potentially in a less general space such as

Euclidean space. He justifies this approach by stating that the nature of this approach

enables one to easily translate the domain of causality in the less general setting to an

analogous domain of causality in a more general space.

6.2.2 The stability of mathematical propositions - a concept closely

related to domains of causality

Closely related to Bouligand’s ideas regarding domains of causality is his concept of

the stability or instability of a mathematical proposition. Together with domains of

causality, Bouligand views the concept of stability as a further tool in establishing and

understanding the structure of a mathematical theory [96, p. 28]. While the domain

of causality of a proposition equates with finding a setting in which a fixed conclusion

is invariant under a family of modifications to the initial hypotheses, the stability of a

proposition relates to the way in which a conclusion might vary when the hypotheses

are varied in a certain way. In Bouligand’s own words:

Les considérations qui précèdent sont relatives à l’équilibre d’un énoncé propo-

sitionnel donné [considérations relatives aux domaines de causalité], équilibre



174 The development of Bouligand’s epistemological ideas from 1932 to 1939

maintenu pour certaines modifications des objets que cet énoncé met en rela-

tion. Au lieu d’étudier l’état permanent du dit énoncé devant ces modifications,

on peut en rechercher les conditions de variance [en étudiant la stabilité ou

instabilité d’une proposition] [91].

[The preceding considerations [considerations relating to domains of causal-

ity] relate to the equilibrium of a given proposition, an equilibrium which

is maintained for certain modifications of the objects which this proposition

relates together. Instead of studying these modifications, we can search

for the variance conditions [by studying the stability or instability of a

proposition].

To further clarify Bouligand’s view on the distinction between the role of domains of

causality, the following assessment provides a similar insight in different words:

...la notion de groupe offre...un cadre à la classification des théorèmes pris

isolément, tandis que la stabilité donnera prise sur les propositions à conclu-

sion variables [91, P. 588].

[...the concept of a group offers a framework for the classification of

theorems taken in isolation, whereas stability will enable us to get a hold

on propositions with a variable conclusion].

How does Bouligand go about defining the stability or instability of a mathematical

proposition? The basic idea here is that of considering a theorem to be made up

of assumptions and a conclusion and to view the conclusion as a function of the

assumptions. Bouligand defines a proposition as stable if this function is in some sense

continuous and also considers in detail how this continuity could be defined. As such,

he comments regarding the concept of stability:

De la sorte, on introduit en logique le point de vue de la théorie des fonctions

[91, p. 583].

[In this way, we introduce, in the field of logic the point of view of the theory

of functions].

The following proposition is an example provided by Bouligand of a stable mathemati-

cal proposition: zero slope implies constant (in a given interval) [96, p. 26]. Here,

Bouligand explains, continuity has been defined by means of a specific ‘module de

déplacement’ (a unit of distance) for the assumptions and for the conclusion. In this
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case, the unit of distance for the assumptions is the maximum of the absolute value

of the slope of the function in question and the unit of distance for the conclusion is

defined in terms of the oscillation of the function in question within the interval [96,

p. 26]. He notes, further, that the converse of this theorem (constant function implies

zero slope) is true but not stable. However, Bouligand emphasises that the stability

of a mathematical proposition depends on the way in which we define units of distance.

As we have seen above, Bouligand defines stability in terms of continuity - the con-

tinuity of a function that maps initial assumptions onto a conclusion. In the above

example, this is achieved by means of the definition of the continuity of a function in

terms of the concept of distance. However, Bouligand states that we may also use a

topological definition of the continuity of the function in question, that is involving

the concept of the neighbourhoods of a point. As noted by Bouligand [91, p. 583] this

point of view appears to have been developed by a young Jean-Louis Destouches under

Bouligand’s guidance and operating in the setting of the espaces abstraits [abstract

spaces] of Maurice Fréchet [138]. We refer the reader to [91] for a far more detailed

account by Bouligand of the concept of stability.

6.2.3 Connecting Bouligand ideas regarding functional extension

to the later concept of stability

In the earlier chapter regarding Bouligand’s efforts towards the generalised Dirichlet

problem, we encountered the concept referred to by Bouligand as prolongement

fonctionnel [functional extension]. We have seen that Bouligand’s interest in such

questions stemmed from his encounter with a 1923 texbook of Paul Lévy on functionals.

In this setting, we recall that functional extension, for Bouligand, referred to the the

process of extending the domain of functionals while ensuring that certain continuity

properties are retained. He applied his results on this problem, for example, to

extending Green’s function in potential theory. He was subsequently motivated to carry

out what he considered a functional extension of the Dirichlet problem - a task which

Bouligand considered achieved with Norbert Wiener’s formulation of the generalised

Dirichlet problem.

In the previous chapter on Bouligand’s direct infinitesimal geometry, it was seen that

Bouligand identified prolongement fonctionnel, in articles of 1927 [41] and 1930 [51]

as one of the methods for achieving what he initially referred to as Cantorian form

in geometry - a way of formulating differential geometry which brought causality, in

Bouligand’s sense of the word, to light. In what way does the concept of functional

extension relate to Bouligand’s later philosophical reflections, between 1932 and 1939?

It would appear reasonable to identify Bouligand’s ideas regarding the stability of
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mathematical propositions as an effort to formalise the earlier concept of prolongement

fonctionnel in the broader setting of mathematical propositions. Based on the above

account of the idea of stability, this can be seen by recalling the following comments of

Bouligand in his 1927 paper [41] which provides the initial programme of research

later culminating in his direct infinitesimal geometry:

...la poursuite systématique du prolongement fonctionnel sera un moyen

d’atteindre la forme cantorienne...étant donné un problème géométrique quel-

conque, supposons-le résolu dans un champ restreint, c’est-à-dire moyennant

certaines hypothèses de commodité sur les données ; supposon encore que

l’on sache étudier, dans ce champ comment une variation des données affecte

la solution. Si certaines conditions de continuité sont remplies, on pourra

passer du champ restreint à un champ plus large. En somme, la solution est

considérée ici comme une fonction des données du problème, qui peuvent être

très complexes : c’est donc une fonction au sens de l’Analyse fonctionnelle, ou

plus précisément encore, avec le degré de généralité donné par M. Maurice

Fréchet à ce terme, dans ses profonds travaux sur les ensembles abstraits...

[41, p. 588].

[...the sytematic pursuit of functional extension will be a way of reaching

Cantorian form...given any geometrical problem, assume it to be solved in

within a restricted setting, that is by virtue of assumptions introduced for

convenience regarding the inputs to the problem. Assume, furthermore,

that we know how to study, within this setting, how a variation of the

inputs to the problem affects the solution. If certain continuity conditions

are satisfied, it will be possible to go from a restricted setting to a broader

setting. In short, the solution is considered here as a function of the inputs

to the problem: it is therefore a function in the sense of Functional Analysis,

or more precisely yet, [it is a function] with the degree of generality given

to this term by Mr Maurice Fréchet, in his profound works on abstract

sets...]

The above citation provides us with at least two key insights. First, we see that the

concept referred to by Bouligand as prolongement fonctionnel in the context of his

programme of research to reformulate differential geometry was later considered and

somewhat formalised in the context of mathematical propositions under the name

of the stability or instability of mathematical results. Secondly, we gain a further

insight into Bouligand’s concept of stability - namely that it has its origins in the idea

of extending the setting in which we consider a given result in order to reach its most
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suitable domain - the latter concept being formalised through Bouligand’s domains of

causality.

6.2.4 The elaboration of Bouligand’s ideas on direct methods

Bouligand qualified his approach to differential geometry as being direct, as this ap-

proach seeks to avoid parametric representation, favouring a more geometric study of

the local properties of sets in Euclidean space. Between 1932 and 1939, Bouligand

elaborated on, in a handful of published works, the concept of a direct method. He

considers direct methods not only in differential geometry but in diverse areas of math-

ematics. This concept interrelates closely with his ideas regarding causality, causal

proofs and with his earlier reflections on intuition in mathematics.

In contrast with Bouligand’s reflections on domains of causality and the stability of

mathematical results, he does not attempt to formalise the idea of a direct method.

Bouligand’s account of direct methods are of a more conceptual and discursive na-

ture. There does not appear to be a definition, provided by Bouligand of direct

methods, although we can explore the way in which he described and exemplified

this concept. Given that no definition is provided, it would seem advisable not to

interpret the following elements of Bouligand’s discussion of direct methods as sepa-

rate components which must all be present in order to qualify a method as being direct.

Consistently present in Bouligand’s discussion of direct methods is the close connection

with the concept of causality. In short, direct methods contribute to achieving causality

in a mathematical theory. This basic idea is encapsulated well in the following:

Les méthodes directes, en géométrie ou ailleurs, visent à remettre en lumière

la causalité, masquée par l’exclusif recours aux procédés analytiques [65,

p. 499].

[Direct methods in geometry or elsewhere aim to bring causality back to

light, which is hidden by the exclusive use of analytic methods].

The above highlights not only the connection between direct methods and causality

but also indicates another main theme emphasised by Bouligand, namely the contrast

between direct methods and analytic or algorithmic methods. As examples of algorith-

mic methods, Bouligand specifies Picard’s method of successive approximations - an

iterative method for solving first order differential equations by means of increasingly

accurate approximatons. In addition, Bouligand cites methods for solving problems

in mathematical physics which rely on integral equations and the use of methods in
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geometry and mechanics which rely on coordinates [79, p. 4]. Although Bouligand

describes direct methods by contrasting them with algorithmic methods, he does not

consider them as mutually exclusive:

Loin d’exclure les méthodes de calcul, les méthodes directes tendent plutôt à

les discipliner en les orientant vers le meilleur rendement...L’agorithme sera

dans telle catégorie de problèmes un a postieri dont l’examen direct aura

préalablement révélé la meilleure adaptation [83, p. 7].

[Far from excluding methods of calculation, direct methods tend rather

to discipline them by orienting them towards the most productive out-

come...The algorithm will appear a posteriori in a given category of prob-

lems for which a direct examination will have already revealed the best

adaptation].

Bouligand’s idea of direct methods relates to his earlier reflections on intuition in

mathematics. This principle is encapsulated clearly by Bouligand in the following:

...en présence de deux éléments extrêmes, l’intuition et la logique, l’attitude du

mathématicien, en optant pour le méthodes directes, procède du souci de ne ja-

mais rompre, au cours de ses déductions, le contact avec l’intuition [83, p. 13].

[...in the presence of two extreme elements, intuition and logic, the attitude

of the mathematician in opting for direct methods stems from the concern of

never losing contact, throughout the course of his or her logical deductions,

with intuition].

Here Bouligand refers the reader to his articles on intuition discussed earlier and

published in the Revue Scientifique [44], [46], [54], thereby clearly establishing the

connection with his earlier reflections on this concept. We recall that, in Bouligand’s

characterisation of intuition, making connections with geometrical concepts or objects

from the physical world is key. The link between this aspect of his characterisation of

intuition and the concept of direct methods is present in the following:

...l’état d’esprit qui s’attache à la recherche de méthodes directes est insépara-

ble d’une conviction profonde de l’objectivité des mathématiques [83, p. 12].

[...the mindset associated with the search for direct methods is inseparable

in relation to a profound conviction of the objectivity of mathematics].
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A natural question in considering Bouligand’s idea of direct methods is that of the

difference between this concept and his reflections on causal proofs. The answer would

appear to be that a direct method is considered as an approach to a fairly broad area

of mathematics (such as differential geometry or the calculus of variations) whereas a

causal proof relates to a specific mathematical result. Bouligand advocates the use of

causal proofs as a part of establishing direct methods, stating that the mathematician

searching for direct methods,

...poursuivra sa tâche par la recherche d’une démonstration causale, mettant

bien en évidence le rôle de chaque hypothèse et abandonnant les suppositions

parasites [83, p. 13].

[...will pursue his or her task through the search for a causal demonstration,

making apparent the role of each hypothesis and abandoning parasitic

assumptions].

Having considered divers ways in which Bouligand described direct methods, it is

instructive to consider a few examples of existing areas of mathematics in which

Bouligand considered direct methods as being present. Given that he did not attempt

to formalise the concept of a direct method itself, it is unsurprising that explicit efforts

are not made to connect these examples back to the descriptions of direct methods

above.

Three examples of direct methods in mathematics identified by Bouligand. Per-

haps the origin of Bouligand’s use of the term ‘direct method’ [65, p. 498] and also

a key example he provides is the approach to problems in the calculus of variations

based on what are commonly referred to as direct methods in the calculus of variations

[65, p. 498]. The calculus of variations is an area of mathematics with diverse appli-

cations which deals with minimising (or maximising) functionals. For example, the

brachistochrone problem in classical mechanics can be regarded as a problem in the

calculus of variations: given a starting point A and an end point B in a vertical plane,

determine the curve traced out by a point which is acted on only by gravity and which

goes from A to B in the shortest time. Techniques of direct methods in the calculus

of variations were introduced at the start of the 20th century, for example by Hilbert

and Lebesgue. The previously existing methods, referred to as the classical approach,

relied on introducing differential equations. In contrast, direct methods do not require

the introduction of differential equations and deal directly with the functional we wish

to minimise or maximise 2.

2For further details regarding direct methods in the calculus of variations including historical
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A further example given by Bouligand [79, p. 10] of an area of mathematics in which

direct methods are present is the approach to studying the solubility of polynomial

equations originating in the work of Evariste Galois (1811-1832), who is considered

to be one of the founders of modern abstract algebra. Prior to the ideas of Galois,

the classical approach to solving polynomial equations was that of searching for a

certain type of formula know as a radical expression (otherwise referred to as solving

by radicals). Formulas of this type exist for quadratic, cubic and quartic equations but

no such general formula exists for quintic polynomial equations. Galois’ ideas, which

were published posthumously and which were later developed into a formal theory,

provide a general method for determining whether or not a given polynomial equation

can or cannot be solved by radicals without having to find any such formulas. In its

more modern form, Galois theory is formulated in the setting of mathematical fields.

While the mathematical terms are not central in the present account, we note that the

key idea revolves around studying the group of automorphisms of a field extension

obtained by adjoining the roots of the equation in question to the field in which the

coefficients of the polynomial belong. If this group has certain properties, then we can

deduce whether or not the equation is solvable by radicals. For an in depth account of

Galois theory and information regarding its historical development, see [6], [207].

We cite one further example of what Bouligand considered to be a direct method,

namely a technique in differential equations which he refers to as intégration qual-

itative [qualitative integration] and which belongs to what is referred to today as

the qualitative theory of differential equations. Bouligand explicitly identifies this

approach as a direct method [83, p. 32-39]. The qualitative approach was introduced

around the end of the 19th century, for example in the work of Henri Poincaré, as

reported by Petrovitch [193]. The basic premise motivating this approach is that,

in the majority of all possible cases, differential equations cannot be integrated by

means of known functions. The qualitative approach does not involve searching for a

solution of the differential equation but rather involves studying directly the properties

that a solution must have, for example its shape, its points of intersection and so

forth. In addition to techniques in analysis, this approach incorporates topological and

geometric methods.

Bouligand on the unity of direct methods. In the above examples, Bouligand

elements, see [124]. While the details of this method are not important in the context of the present
account, we note that the basic idea of direct methods in the calculus of variations is that of constructing
what is referred to as a minimizing sequence of functions - that is, if J [y] is the functional we wish
to minimize, then we must construct a sequence of functions yn such that lim J [yn] = µ where µ is
equal to the infimum of J [y]. If yn has a limit function y∗ and if our function J [y] has the property of
being lower semi-continuous at y∗, then the minimising function we are looking for is indeed y∗, that is
J [y∗] = µ.
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identified what he considered as direct methods in diverse areas of mathematics. Did

he make any attempt at further justifying giving the same name of direct methods to

diverse techniques? Indeed, Bouligand wrote extensively on what he referred to as the

unity of direct methods in a lengthy essay published in 1933 entitled ‘Essai sur l’unité

des méthodes directes’ [79], whose content originated in three conferences given by

Bouligand at the University of Liège in May that year. Bouligand’s approach in this

work was to consider methods in differential equations, the calculus of variations and

differential geometry (specifically his own methods in direct infinitesimal geometry)

and to show that these methods, which he considered as direct, shared certain common

characteristics. These common characteristics consist, for example, of concepts in

topology such as the limit sets and accumulation sets encountered briefly in the

previous chapter, as well as certain metrics and the concept of semi-continuity.

6.3 Placing Bouligand’s reflections in the context of

three landmarks in French epistemology of mathe-

matics: Borel, Cavaillès and Lautman

In order to place Bouligand’s epistemological reflections in better context, it is useful

to briefly consider a few different major landmarks in the epistemology of mathematics

in France. We have chosen to introduce some of the main ideas of Emile Borel, Jean

Cavaillès (1903-1944) and Albert Lautman (1908-1944). It is interesting to review

the ideas of Borel as he represents, like Bouligand, a mathematician who took an

interest in the epistemology of mathematics with a practical purpose related to the

advancement of mathematics itself, and its applications. Borel was a prominent figure

of the French mathematical community with whose ideas Bouligand certainly came

into direct contact. Lautman and Cavaillès, who we introduce briefly below, were

philosophers of mathematics rather than mathematicians. However, both famously

had a highly advanced grasp of the subject and their works represent landmarks in the

epistemology of mathematics.

6.3.1 Emile Borel

Certain of Borel’s epistemological reflections about mathematics have been encoun-

tered in earlier chapters. We have seen already that Borel reflected on the roles of logic

versus intuition in mathematics, in particular in relation to the educational reform of

1902. It was seen that he promoted an intuitive approach to the teaching of geometry

(although intuition was not defined) and emphasised geometrical representations as a

means of facilitating mathematical practice by allowing intuition to operate. Regarding
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set theory, we have seen that Borel, through his Leçons sur la théorie des fonctions and

the related collection of publications for which he was scientific director, highlighted

the usefulness of set theory in the theory of functions and other areas of mathematics.

Caroline Ehrhardt explores in detail [132] the way in which Borel used the Collection de

monographies as an ‘intermediary between teaching and research’ - therefore his views

regarding the fruitfulness of set theory in the theory of functions is communicated in

a pedagogical way, with a view to increasing the uptake of such ideas in a research

setting.

In addition to the elements of Borel’s views already encountered, we elaborate briefly

below on his reflections regarding the status of mathematics in relation to physics and,

very much within the same theme, his contributions to what is referred to today as the

philosophy of approximation.

Borel on the role of mathematics in relation to physics. In Borel’s reflections, he

promotes a clearly empiricist and utilitarian view of mathematics which is closely tied

to applications in physics. Borel explores this theme in some depth, for example, in

his Introduction géométrique à quelques théories physiques [geometrical introduction to

certain physical theories] [14], published in 1914. Here he emphasises for example

that:

La Science mathématique toute entière doit son origine et la plupart de ses

progrès à l’observation et à l’expérience; cette origine ne doit pas être mécon-

nue [14, p. V].

[The entirety of mathematical Science owes its origin and most of its

progress to observation and experiment; this origin must not be ignored].

Borel goes further than this in stating that the goal of mathematical theories is defined

in relation to their applications:

...le but propre de la discipline mathématique est d’abstraire les éléments

communs aux réalités diverses, de manière à créer des théories dont le champ

d’application soit aussi large que possible [14, p. V].

[...the goal of the mathematical discipline is to abstract the elements com-

mon to diverse realities in such a way that leads to creating theories whose

field of application is as broad as possible].

Therefore Borel sees the mathematician’s role as that of serving physics:
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Epurer les concepts mathématiques qui sont suggérés par les théories physiques

nouvelles, les vider de leur contenu physique pour les étudier en eux-mêmes,

voilà la tâche propre du mathématicien. Il travaille ainsi à fournir au physi-

cien des instruments de travail adéquats à ses besoins futurs [14, p. VI].

[To refine the mathematical concepts that are suggested by new physical

theories, emptying them of their physical content in order to study them in

themselves, this is the task of the mathematician. He works in this way to

provide working tools to the physicist which are adequate for their future

needs].

Further to Borel’s view that mathematicians should develop mathematical theories as

tools for the physicist, he also emphasises the importance, from his point of view, of

focussing sufficiently on newer, less well studied mathematical theories which may

correspond to newly discovered physical theories or phenomena. Specifically, he em-

phasises the importance of elaborating not only classical mathematical theories such as

differential and integral calculus applied to the study of physical phenomena for which

continuity is assumed but also emphasises developing mathematical theories which

lend themselves to areas of physics in which continuity is not assumed. These include

for example settings in which we are dealing with atoms or molecules. Therefore, Borel

promoted placing more attention on theories such as statistical mechanics, which can

be applied in such settings, for example in the study of gases. This position promoted

by Borel can be found in the final note of [14, p. 116-137] on Les théories moléculaires

et les mathématiques [Molecular theories and mathematics], to which we refer the

reader for a more complete account including Borel’s interpretation of the context in

the history of mathematics in which his views are being put forward.

Borel on the philosophy of approximation.

As a mathematician who contributed to the development of the theory of probability,

Borel also wrote extensively in this context on his epistemological views regarding the

approximative approach to knowledge. These views are expressed in relation to the

interplay between mathematics and physics and are dealt with in depth by Barberousse

in [5] to which we refer the reader for a detailed account in which Borel’s views are

compared for example with those of the physicist Pierre Duhem. Borel’s reflections,

Barberousse reports, are published as of 1906 and until the end of his life. These

articles and books deal centrally with, for example, the theory of probability [15],

[130] or focus on the application of probabilistic methods to mathematical physics,

such as in [12].
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In summary, Borel proposes a ‘théorie originale de la connaissance, dans laquelle la

notion de connaissance approchée est première, et celle de connaissance exacte seconde’

[an original theory of knowledge, in which the concept of approximated knowledge

is primary and that of exact knowledge is secondary] [5, p. 56]. Borel criticises the

concept of there being ideal, exact knowledge in physics, considering for example the

idea of an exact value corresponding to physical entity as being purely a mathematical

abstraction.

6.3.2 Albert Lautman

Albert Lautman (1908-1944) was a French philosopher of mathematics. Well known

for his strong mathematical culture, he was influenced by mathematicians such as

Jacques Herbrand and Gaston Julia and was friends with two of the founding members

of the Bourbaki group, Charles Ehresman and Claude Chevalley. He was a student of

the idealist philosopher Léon Brunschvicg (1869-1944) and was also influenced, for

example, by the German philosopher Martin Heidegger.

Lautman defended his doctoral thesis in 1937, which included a main thesis and

a secondary thesis - his main thesis was entitled Essai sur les notions de structure

et d’existence en mathématiques [Essay on the concepts of structure and existence

in mathematics] and his secondary thesis was entitled Essai sur l’unité des sciences

mathématiques dans leur développement actuel [Essay on the unity of mathematical

sciences in their current development]; both were later republished together in [163].

As the title of his primary thesis might suggest, Lautman had a structural conception

of mathematics which relates to the same trend of thought as Hilbert’s axiomatic view

[192] and which is in the same style as the structuralism of Bourbaki [149]. Lautman

was opposed to the reductionist aspect of logical empiricism [149]. To see this, it

is helpful to consider, as does Petitot [192], the following explanation of Lautman

regarding his view on the axiomatic approach which he states,

substitue à la méthode des définitions génétiques celle des définitions axioma-

tiques, et loin de vouloir reconstruire l’ensemble des mathématiques à partir

de la logique, introduit au contraire...de nouvelles variables et de nouveaux ax-

iomes qui élargissent à chaque fois le domaine des conséquences [163, p. 26].

[substitutes the method of genetic definitions by that of axiomatic defini-

tions and, far from wanting to reconstruct all of mathematics starting from

logic, introduces on the contrary...new variables and new axioms which

expand the domain of consequences each time].
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As well as having an axiomatic and structural view, Lautman also promoted a dynamic

view of mathematics, the latter of which he associates with the evolution in time

of mathematical theories. With Petitot [192], it is useful to consider the following

explanation of Lautman to illustrate his view on the distinction between these two

points of view both of which were integrated into his philosophy of mathematics:

...la conception structurale et la conception dynamique des mathématiques

semblent de prime abord s’opposer: l’une tend en effet à considérer une théorie

mathématique comme un tout achevé, indépendant du temps, l’autre au con-

traire ne la sépare pas des étapes temporelles de son élaboration... [163,

p. 27].

[the structural conception and the dynamic conception of mathematics

seem at first sight to be opposed to one another: one tends to consider a

mathematical theory as a completed whole, independent of time, the other

on the contrary does not separate the theory from the temporal stages of

its elaboration].

Lautman characterises mathematical reality in terms of four different elements, or

points of view: mathematical facts, mathematical beings (or entities), mathematical

theories and the ideas behind these theories [192, p. 86]:

Loin de s’opposer, ces quatres conceptions s’intègrent naturellement les unes

dans les autres: les faits consistent dans la découverte d’êtres nouveaux, ces

êtres s’organisent en théories et le mouvement de ces théories incarne le schéma

des liaisons de certaines Idées [163, p. 135].

[Far from being opposed to one another, these four conceptions integrate

naturally with one another: facts consist of the discovery of new beings,

these new beings are organised into theories and the movement of these

theories embodies the pattern of connections of certain Ideas].

We will not attempt to explore in depth Lautman’s views regarding the unity of

mathematics - a topic which figures in the title of his secondary thesis. However, it is

interesting in relation to our account of Bouligand’s work to note that, in the context

of the development of theories and connections between ideas, Lautman discusses the

concept of unity. As quoted by Petitot [192, p. 86], Lautman states:

Des résultats partiels, des rapprochements arrêtés à mi-chemin, des essais qui

ressemblent encore à des tâtonnements s’organisent sous l’unité d’un même
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thème, et laissent apercevoir dans leur mouvement une liaison qui se dessine

entre certaines idées abstraites... [163, p. 28].

[Partial results, rapprochements halted midway, and attempts that still

resemble trial and error become organized in a unified way under a com-

mon theme. They reveal in their movement a connection that takes shape

between certain abstract ideas...]

Regarding Lautman’s broader vision of mathematics from the point of view of philoso-

phy, as expressed by Zalamea [164]3,

Les théories mathématiques sont une matière et la tâche du philosophe est

conçue comme effort pour dégager la réalité idéale à laquelle elles participent.

[Mathematical theories form a subject and the task of the philosopher is

conceived as an effort to reveal the ideal reality in which they participate].

In addition, Zalamea identifies three broader themes with which Lautman’s ideas could

be identified. First, mathematical creation in terms of,

...approfondissements d’oppositions dialectiques au sens platonicien entre des

contraires tels que le Continu et le Discontinu, le Même et l’Autre, l’Essence et

l’Existence

[elaborations of dialectical oppositions in the Platonic sense between op-

posites such as the Continuous and the Discontinuous, Same and Other,

Essence and Existence].

Secondly, Zalamea identifies the theme of the fundamental unity of mathematics and

finally the theme of the profound harmony between mathematical theories and the

emergence of quantum physics and relativity.

6.3.3 Jean Cavaillès

The philosopher of mathematics Jean Cavaillès, a friend of Lautman and fellow student

of Léon Brunschvicg, is also known for his mathematical erudition - acquired perhaps

in part due to his close connections with mathematicians such as Emmy Noether - the

influential German algebraist who made fundamental contributions to the study of

rings and with whom he collaborated during an extended stay in Germany. Cavaillès

3See [164], back cover.
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also completed two doctoral dissertations in 1938, the titles of which give a brief

glimpse into his areas of research relating to the foundations of mathematics and

the emergence of set theory: the primary thesis was entitled Méthode axiomatique et

formalisme, essai sur le problème du fondement des mathématiques [Axiomatic method

and formalism, essay on the problem of the foundation of mathematics] [113] and

his secondary thesis was entitled Remarques sur la formation de la théorie abstraite des

ensembles [Remarks on the formation of abstract set theory] [114].

As commented by Granger [142], Cavaillès bases his work on an in depth study of

mathematical examples or results in order to interpret them from a broader philosoph-

ical point of view, or as Benis-Sinaceur explains,

Il y a chez Jean Cavaillès une solidarité étroite entre l’étude de l’activité math-

ématique et une philosophie d’ordre plus général qu’il qualifie lui-même de

‘théorie de la raison’ [7, p. 6].

[There is, in the work of Jean Cavaillès, a strong solidarity between the

study of mathematical activity and a philosophy of a more general order

which he qualifies as the ‘the theory of reason’].

In addition to the works of mathematicians such as Cantor, Dedekind and Hilbert

on set theory and the axiomatic approach to mathematics, abstract algebra is also

at the basis of the philosophical works of Jean Cavaillès, inspired for example by

his interactions with Emmy Noether. With Benis-Sinaceur, we note that Cavaillès

considered mathematics as done by algebrists as the ‘modèle par excellence de l’activité

de la raison’ [model par excellence for the activity of reason] [7, p. 6].

As emphasised by Benis-Sinaceur, two prominent themes in the epistemology of

mathematics of Cavaillès are those of structure and concept in mathematics. While we

will not examine these ideas in depth, we note with Benis-Sinaceur that, for Cavaillès,

‘la structure préside à l’organisation du savoir’ [structure presides over the organisation

of knowledge] and is therefore considered as a ‘principe de mouvement, de progrès’ [a

principle of movement, of progress] [7, p. 26]. Cavaillès was in favour of creating a

philosophy of mathematics centered around concepts. As Benis-Sinaceur details,

Le modèle mathématique de la philosphie du concept c’est la dialectique ob-

jective des contenus mathématiques qui agissent et réagissent les uns sur les

autres spontanément, dans un mouvement dont la conscience mathématici-

enne n’est qu’une détermination extrinsèque, au même titre que les données

de culture ou de société [7, p. 29].
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[The mathematical model for the philosophy of concept is the objective

dialectic regarding the contents of mathematics whose elements act and

react on each other spontaneously, in the context of an evolution with

respect to which the mathematician’s consciousness is only an extrinsic

factor, like the influence of culture or society].

Cavaillès was well informed regarding the intuitionist view of mathematics and, as

we learn in the biography of Cavaillès by his sister Gabrielle Ferrières [133, p. 161],

he even presented his thesis to the founder of intuitionism, the Dutch mathematician

L.E.J. Brouwer and his student Arend Heyting, also one of the major proponents of

this school of thought. However, Cavaillès was opposed to what he considered an

overly dogmatic approach to intuitionism [7, p. 21], particularly regarding the role of

axiomatisation and formalisation in the process of mathematical creation or discovery

[7, p. 29].

As explained by Heinzmann [149], in Cavaillès’ secondary thesis, he is interested in

mathematical creation and the way in which this creation evolves:

...la construction mathématique (créations), qui, maintenant, se trouve placée

dans son évolution autonome, c’est-à-dire indépendamment de la physique et

de l’histoire de la philosophie... [149].

[mathematical construction (creations) which is placed within its own

autonomous evolution, that is, independent with respect to physics and the

history of philosophy].

6.3.4 Concluding remarks.

There are certain clear similarities between the subject matter, goals and target reader-

ship of Borel’s epistemological reflections and those of Bouligand. The ideas of Borel

encountered thus far have had either a predominantly pedagogical focus, or else seem

to be aimed towards mathematicians with a view to promoting a particular focus in

the development of mathematics (such as that of placing primary emphasis on the

development of those theories in mathematics which are of greatest use to physics).

In addition, as we have seen, intuition and and its connection with a geometrical

approach is present in the work of both mathematicians, as is an emphasis on the

utility of set theory.

There are also clear differences between Borel and Bouligand. First, there are obvious

differences in terms of the key themes with which they deal, to list a few: the philoso-
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phy of approximation is not central for Bouligand as it is for Borel; Bouligand goes

further in elaborating on his concept of intuition than Borel; geometry is at the heart

and origin of Bouligand’s reflections. We also highlight the distinct nature of Bouli-

gand’s work relating to causality. Principles intially expressed in a more qualitative

way were later both concretised by Bouligand in terms of mathematical tools (such

as the contingent, paratingent and specific groups of invariance) and to some extent

formalised in the direction of mathematical logic, as was the case for Bouligand’s

concept of the stability of mathematical results.

Regarding Cavaillès and Lautman, we find in their work several broad themes which

are also found in the reflections of Bouligand, such as: the concept of structure in

relation to mathematical theories; the unity of mathematics; set theory, axiomatics

and the foundations of mathematics. However, Cavaillès and Lautman were both

philosophers of mathematics and their work was undertaken from a broader philo-

sophical standpoint, not necessarily with a view to guiding mathematicians in their

practice or helping to initiate new mathematicians into the discipline, which were

central goals for Bouligand. While Lautman and Cavaillès were both highly erudite

with regard to the content of mathematics, they also qualified their views in relation

to the thinking of other philosophers, such as for example Wittgenstein, Carnap or

Heidegger and in relation to philosophical theories such as Platonism or intuitionism -

such qualifications do not figure significantly in the work of Bouligand.
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6.4 Bouligand’s efforts to communicate and popularise

his ideas

We have reviewed, in the introduction to this chapter, the various articles, journals

and conferences through which Bouligand communicated his ideas on the themes

in the epistemology of mathematics explored above. In this section, we introduce

briefly Bouligand’s contribution to two significant conferences during the period in

question, namely the Congrès international de philosphie scientifique in 1935 and the

ninth Congrès International de Philosophie of 1937. Secondly, we will discuss the way

in which Bouligand locates his own ideas regarding causality, for example, in the

context of major landmarks in the development of mathematics and physics - with a

view, we could speculate, to further popularising his contribution. Finally we comment

briefly on examples of the way in which Bouligand communicated his ideas in the

epistemology of mathematics with a pedagogical goal.

6.4.1 Situating ideas in relation to landmarks in the development

of mathematics

In addition to the channels through which Bouligand communicated his ideas on

causality, direct methods and the related concepts discussed above, it is also worth

commenting on the way in which he presented his ideas as part of an attempt, we

could speculate, to enhance the reception of his work. We have seen already that

Bouligand presented his epistemological ideas regarding causality and direct methods

in a way that related his ideas to major trends in mathematics - such as the theory of

Galois or more recent work of the previous generation of French mathematicians such

as Lebesgue and Baire. A further recurring theme in certain of Bouligand’s articles

during the period in question dealing with epistemological reflections is that of the

theory of relativity in relation to causality. Bouligand refers to the theory of relativity in

relation to causality even earlier than 1932-1939 - in his earliest published reflections

of 1927 [41]. He comments in the opening lines,

On a beaucoup insisté, et avec juste raison, sur l’influence profonde exercée

récemment sur le cours de la pensée géométrique par les doctrines relativistes.

Mais cet aspect de l’évolution scientifique ne peut en faire oublier certains

autres, dont nous allons nous occuper ici [41, p. 586].

[The profound influence that the relativist doctrines have had recently on

the development of thought in geometry has been greatly emphasised and
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rightly so. But this aspect of scientific evolution should not lead us to forget

certain other developments which we will address here].

We interpret the above as meaning that, while the theory of relativity may seem to

perturb one’s intuitive understanding of space and time, we may nevertheless retain a

concept of causality that can continue to exist together with this theory. We do not

interpret the theory of relativity as a primary motivating factor behind Bouligand’s ideas

regarding causality. Indeed, as already discussed, Bouligand identified his motivations

rather in the context of trends and influences within mathematics itself: the influence

of the Polish school of topologists and set theorist; the work of mathematicians of the

previous generation in France such as Lebesgue; the utility of concepts from set theory

and topology demonstrated in other disciplines such as the theory of functions. The

view we put forward here is that the theory of relativity appears rather as part of the

packaging, so to speak, of Bouligand’s reflections on the epistemology of mathematics.

This packaging reappears in greater detail in later articles, for example in his 1933

paper on causality in mathematics and physical theories [77] in which he discusses

causality with reference to the concepts of group and invariance in the context of

special relativity:

L’étroite liaison entre groupe et causalité semble avoir guidé le courant d’où

est issue la Mécanique de la Relativité restreinte. Les aspirations à l’unité de la

Physique venaient de se heurter à une constatation inattendue : le fait, pour

les équations de la Dynamique newtonienne d’une part, et celles de l’électro-

magnétisme d’autre part d’appartenir à des champs d’invariance biens distincts,

attachés à des groupes différents...D’où une discordance dans la causalité, qui

faisait conclure à l’impossibilité de mettre, dans une même synthèse logique,

l’électro-magnétisme en prolongement de la Mécanique. Pour faire cesser cette

incompatibilité, et restaurer l’unité d’essence des lois physiques, il suffisait de

retoucher les équations de la Dynamique...Cette retouche s’attachait à soumet-

tre la Dynamique au groupe de l’électro-magnétisme...On considérait donc

désormais un groupe comme un cadre délimitant la prétendue causalité...et on

pouvait traduire cet état d’esprit, en disant: pour le physico-mathématicien,

les groupes font partie du matériel causal. . . [77, p. 262-263].

[The close connection between group and causality seems to have guided

the trend from which the Mechanics of Special Relativity emerged. Aspi-

rations towards the unity of Physics had come up against an unexpected

observation: the fact that the equations of Newtonian Dynamics on the

one hand, and those of electromagnetism on the other hand, belong to

quite distinct fields of invariance, attached to different groups...thus a



192 The development of Bouligand’s epistemological ideas from 1932 to 1939

discordance of causality, which led to the conclusion that it is impossible to

include, in the same logical synthesis, electromagnetism as an extension

of Mechanics. To put an end to this incompatibility and to restore the

essential unity of the laws of physics, it was enough to alter the equations

of Dynamics...This alteration involved subjecting Dynamics to the group

of electromagnetism...A group was henceforth considered as a framework

which defines and delimits the alleged causality...and one could translate

this way of thinking by saying: for the physico-mathematician, groups are

part of the causal toolkit. . . ]

Therefore we see that Bouligand emphasises the role of groups, from his point of view,

as providing a framework within which causality is achieved in the context of the

theory of special relativity. We note that Bouligand describes this causality as prétendue

[alleged, claimed] and goes on to emphasise the provisional nature of this framework,

which ‘en matière d’analyse causale, ne vise pas à être complète’ [in the way of causal

analysis, does not aim to be complete] [77, p. 263].

6.4.2 Bouligand’s contribution to the eighth Congrès international

de philosophie

The following background provided regarding this conference is based on the intro-

duction to volumes 22 and 23 of Philosophia Scientiæ [105], dedicated entirely to

various topics relating to the event. Preceded by the huitième Congrès international de

philosophie in Prague, the ninth Congrès international de philosophie took place in Paris,

from 15-23 September 1935 and aimed at addressing reflections on the sciences as a

whole. The conference was organised under the auspices of a number of organisations,

namely the Institut international de coopération intellectuelle, the organising committee

of the Encyclopédie française, the Cité des sciences, the Institut d’histoire des sciences et des

techniques and the Centre international de synthèse. Among the eminent figures from

abroad taking part in the conference were Bertrand Russell and Federigo Enriques,

both of whom gave an opening address. The proceedings of the conference were

published in eight volumes by Hermann, reflecting the main topics of the conference:

• Philosophie scientifique et empirisme logique [philosophy of science and logical

empiricism];

• Unité de la science [unity of science];

• Langage et pseudo-problèmes [language and pseudo-problems];

• Induction et probabilités [induction and probability];
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• Logique et expérience [logic and experiment];

• Philosophie des mathématiques [philosophy of mathematics];

• Logistique [logistics];

• Histoire de la logique et de l’empirisme logique [history of logic and of logical

empiricism].

Bouligand’s contribution to the conference was published as part of the sixth volume on

the philosophy of mathematics, together with for example contributions by the Swiss

mathematician Ferdinand Gonseth (1890-1975) and by Albert Lautman. Bouligand’s

article, Quelques aspects de l’étude des propositions mathématiques [Certain aspects of

the study of mathematical propositions] [1, p. 34-40], after an introduction to the

main ideas regarding his reflections on causality as already explored, focusses on

elaborating his concept of the stability of mathematical statements. He comments that

the aim of his presentation is:

...montrer l’opportunité de recherches dans un secteur intermédiaire entre la

logique et les mathématiques proprement dites, recherches dont l’enseignement

pourrait bénéficier d’une manière assez immédiate [1, p. 34-40].

[...to demonstrate the research opportunities in an intermediate sector

between logic and mathematics itself, research thanks to which education

could benefit in quite an immediate manner].

6.4.3 Bouligand’s efforts to communicate his epistemological ideas

of 1932-1939 in a pedagogical setting

In the context of a textbook on group theory.

Bouligand dedicated considerable efforts to presenting his epistemological ideas in a

pedagogical setting. Perhaps the most significant example of this, as we have seen

already, is to be found in his Introduction à la géométrie infintésimale direct - a textbook

representing the first comprehensive presentation of his theory which included also

his epistemological reflections on geometry motivating his work. A further example

during the time period in question is to be found in Bouligand’s 1935 textbook on

group theory [86]. The first chapter on ‘Généralités sur l’idée de groupe’ [generalities

relating to the idea of a group], focusses on Bouligand’s epistemological views on

groups, which are centered around the concepts of domain of causality and causal

proof - two subsections are included on ‘le groupe, domaine de causalité’ [a group as a

domain of causality] and démonstrations causales [causal proofs]. Here, he introduces
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the idea of a domain of causality as follows, before going on to give the examples of

different systems of geometry, such as metric geometry, projective geometry and so on:

...domaine de causalité, vu que des hypothèses (ou causes) invariantes par

les modifications du groupe engendrent des conclusions (ou effets) qui se

conservent aussi par ces modifications [86, p. 3].

[...domain of causality, given that hypotheses (or causes) invariant under

modifications of the group lead to conclusions (or effects) which are also

preserved under these modifications].

Again, Bouligand stresses the role, from his point of view, of groups seen as domains

of causality as a means of better understanding geometry. He comments, regarding

the concept of a domain of causality,

Une fois ces points bien compris, on pénètre d’une manière profonde la struc-

ture de l’édifice géométrique [86, p. 4].

[Once these points are well understood, we penetrate profoundly into the

structure of the edifice of geometry].

In a subsection entitled ‘Comment les groupes révèlent l’armature logique d’une théorie’

[how groups reveal the logical framework of a theory], Bouligand goes on to describe

the more general conception of a domain of causality (which he sees as a group) in the

context of mathematical propositions and systems of mathematical facts, as explored

already in the present account. He also specifies that, although he always considers a

domain of causality to be a group, the converse statement is not necessarily true, i.e.

he does not consider that a group is always a domain of causality:

..à un groupe correspond toujours un domaine de causalité dont on peut faire

à volonté une géométrie, mais une géométrie peut...constituter quelque chose

de plus complexe que le domaine de causalité d’un groupe qu’on envisage

isolément... [86, p. 4].

[...to a group there always corresponds a domain of causality with which

we may choose to introduce a geometry but a geometry can...constitute

something more complex than the domain of causality of a group that we

envisage in a isolated manner...].

As mentioned above, Bouligand introduces briefly causal proofs, linking the concept to

domains of causality. He describes them as those which are most ‘éducatives’ and which
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rely on no superfluous assumption before going on to provide a concrete example [86,

p. 6].

Bouligand’s views on the relevance of domains of causality and stability in the

context of mathematics education.

Bouligand’s 1936 article ‘Sur la répercussion de quelques courants d’idées géométriques

en matière de logique et d’enseignement’ [on the repercussion of certain trends of

geometrical thought in logic and teaching] [91] focusses on the concepts of domain

of causality and a detailed exploration of the concept of stability. A final section is

dedicated to exploring the importance of these concepts, from Bouligand’s point of

view, in the teaching of mathematics. He expresses his view on the change needed in

mathematics educations as follows:

...refondre l’enseignement de l’Analyse mathématique, dans un esprit nouveau,

qui soit à la fois substantiel, éducatif, souciuex des contacts entre l’Analyse et

d’autres branches de la Science [91, p. 587].

[to redesign the teaching of mathematical Analysis in a new way which

is both substantial and educative, concerned with the contacts between

analysis and other branches of Science].

As we will see below, Bouligand views the concepts brought out earlier in the article,

notably those of domains of causality and stability as a central part in moving towards

such an approach. In his view, an ideal approach to the teaching of mathematics would

start with an introduction to general concepts found throughout mathematics and

logic:

Quelques leçons d’un caractère très général trouveront donc place utile au

début du cours, leçons où l’on ne craindra pas de mettre en évidence l’idée de

fonction sous sa forme la plus large...l’idée de groupe; toutes idées communes

à la mathématique d’une part, à la logique d’autre part. [91, p. 587].

[A few lessons of a very general nature will usefully find their place at the

start of the course - lessons in which we do not fear bringing to light the

idea of a function in its most general form...the idea of a group; all ideas

common to mathematics on one hand and logic on the other].

After the step of focussing on such general concepts, Bouligand highlights the role of

the concepts of domains of causality and stability:
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A la suite de ces préliminaires, les théories particulières pourront être dévelop-

pés en profondeur, avec une aisance plus grande. Leur mise en ordre sera

facilitée. En même temps qu’elle prélude à la formation des algorithmes, la

notion de groupe offre en effet un cadre à la classification des théorèmes

pris isolément, tandis que la stabilité donnera prise sur les propositions à

conclusion variable... [91, p. 588].

[Following these preliminaries, the specific theories can be developed

in depth, with greater ease. Putting them in order will be facilitated.

While it preludes the formation of algorithms, the concept of group also

offers a framework for the classification of theorems taken first in isola-

tion, while stability enables getting a grasp of propositions with variable

conclusion...]4.

6.5 A brief note on further topics in the epistemology

of mathematics dealt with by Bouligand between

1932 and 1939

In the above account, we have focussed on the concepts which interact most closely

with Bouligand’s mathematical output presented and which evolved from the ideas

encountered in the earlier chapters. We have also briefly encountered Bouligand’s

reflections, from the time period in question, on the applications of direct infinitesimal

geometry to the phenomenon of uncertainty including his speculations regarding the

potential interest of these reflections for mathematicians, philosophers and physicists

alike [80]. For the interested reader, we highlight briefly one further topic which fea-

tured in Bouligand’s work in the epistemology of mathematics between 1932 and 1939.

The possibility and merits of the finitist approach in mathematics without irra-

tional numbers

We have already briefly met Bouligand’s views regarding the connection between a

finitist approach and intuition. In the context of the ninth Congrès International de

Philosphie in Paris in 1937, Bouligand presented a paper [93] in which he explores the

consequences and merit of what he calls the ‘style finitiste’ in mathematical analysis

without the use of irrational numbers. For Bouligand, the style finitiste is an approach

which,

4Variable conclusions or ambiguous propositions for Bouligand refer to propositions which are
stable with respect to the cases for which the conclusion holds (in the sense introduced earlier on) and
not stable with respect to the cases where the statement does not hold.
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...répond à la préoccupation de substituer à un problème infini certaines col-

lections de problèmes finis, par chacun desquels le problème infini soit serré

de plus en plus près... [93, p. 175].

[...responds to the concern of substituting an infinite problem by certain

collections of finite problems each of which approaches the infinite problem

more and more closely...].

Bouligand contrasts this approach with the ‘sytle totalitaire’ which ‘rappelle la tendance

dominante de la théorie des ensembles à raisonner sur les totalités’ [which recalls

the dominant trend in the theory of sets to reason on totalities]. The context and

motivation for Bouligand is captured in his own words:

Devant l’intuitionisme, on conçoit un cours d’analyse amputé du nombre

irrationnel. Des théorèmes qui semblent liés à l’arithmétisation du continu

subsistent pourtant, dans le style finitiste, remplaçant le style totalitaire. Cette

idée révèle des domaines de non-contradiction et favorise les efforts de coordi-

nation... [93, p. 174].

[In the direction of intuitionism, we conceive of an exposition of anal-

ysis without irrational numbers. Theorems which seem connected with

the arithmetisation of the continuum nevertheless subsist in the ‘style

finitiste’, replacing the ‘style totalitaire’. This idea reveals domains of

non-contradiction and facilitates efforts [towards greater] coordination...].

More concretely, Bouligand discusses the consequences of omitting the irrational

numbers in the context of a finitist approach and the conditions under which familiar

results can be translated into the style finitiste, for example in relation to finding the

integral of a first order differential equation. He then goes someway in evaluating

the resulting theory by means of his concept of domain of causality and that of the

stability of a mathematical result in order, we could speculate, to assess the extent to

which a greater level of ‘coordination’ is achieved. Bouligand explored the same topics

as those presented here at greater length during the same year [96, p. 45-57]. Our

objective here regarding this area of Bouligand’s reflections is merely to highlight the

subject matter for the interested.



Conclusion

Looking predominantly at Bouligand’s work between 1919 and 1926 (with a strong

focus around 1924), we have seen, first, that he made a significant contribution to

the formulation of generalisation of the Dirichlet problem as provided by Norbert

Wiener as well as the characterisation, in this context, of the boundaries for which

the classical Dirichlet problem always has a solution. Initially unaware of Wiener, he

reports to have been motivated to work towards a generalisation by both physical

applications and in order to bring greater coherence to the results in this area of

research. We also have seen a mutual influence between Bouligand and Lebesgue in

this direction. Published almost simultaneously with respect to Wiener’s formulation,

Bouligand’s formulation of a generalised Dirichlet problem, which implemented the

concept he referred to as prolongement fonctionnel, retained certain restrictions. After

becoming aware of Wiener’s more complete formulation through Lebesgue, we saw

a rapprochement between Bouligand and Wiener including written correspondence,

mutual support and an element of mathematical collaboration. We have seen that key

elements of Bouligand’s later ideas on causality and direct methods are first encoun-

tered - specifically the concepts of prolongement fonctionnel and that of structuring

a mathematical theory by investigating its propositions at an appropriate level of

generality. In addition, we have seen that Bouligand’s work on the Dirichlet problem

was influential in terms of bringing his attention to mathematical tools which would

play a role in his later theory of direct infinitesimal geometry. Specifically, to give

one example, he investigates the geometry of sets by looking at their dimensional

properties.

Regarding Bouligand’s reflections on intuition in mathematics between 1927 and 1930,

we saw that he identified this concept in terms of making connections with familiar

concepts from one’s perception of the physical environment or with geometrical con-

cepts. We identified three main themes: namely the importance of intuition from

a pedagogical point of view; the interplay between algebraic/algorithmic methods

and intuition and finally the role of intuition in the mathematical discovery process.

Regarding the first of these themes, we learned that Bouligand saw intuition as a cen-

tral element in mathematics education. In the context of the mathematical discovery

198
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process, Bouligand identifies different types of intuition which come into play, namely

intuition, extended intuition and counter-intuition and he goes someway in defining

these concepts. Regarding the relationship between intuition and methods, he saw the

two as complementary and necessary aspects of mathematical practice and promotes

taking an axiomatic approach in such a way that the formalisation of the ideas at hand

can be easily married with intuitive associations.

Drawing from sources between approximately 1928 and 1935 (with a strong focus

around 1932), Bouligand’s theory of direct infinitesimal geometry has been seen as

a central theme of his research and as the area in which he seeks to implement his

ideas in the epistemology of mathematics relating to geometry. He wrote extensively

on his views on the need for a new approach, the three main goals being to avoid

unnecessary hypotheses, to consider results and concepts in their suitable domain by

means of the concepts of groups and invariance and finally favouring a direct approach

(for example by avoiding relying on differential equations). We have explored the

main ingredients of Bouligand’s theory of direct infinitesimal geometry as presented

in his comprehensive account of 1932: first he highlighted and justified a group of

transformations representing what he considered the domain of causality of his theory.

The key mathematical tools for his set-based approach to the study of sets in Euclidean

space were the contingent and paratingent and closely related concepts, allowing for

the study of sets in Euclidean space which does not require, for example, that the

functions representing the surfaces being studied be differentiable. We have seen that

Bouligand worked actively on exploring applications of his theory and that he viewed

these applications as justifying or legitimising his work.

Two key influences leading the Bouligand’s formulation of direct infinitesimal geometry

were identified. First we identified the influence of the previous generation of French

mathematicians, notably in the work of Lebesgue and Baire, which we placed within

the broader theme of the emergence of set-theory in France, emerging first in the

theory of functions. Secondly, the influence of the Polish school of mathematicians

established in the 1920s appeared as a crucial influence both in terms of mathematical

tools employed and in terms of the epistemological principles motivating his theory.

We identified, in addition, links recognised by Bouligand between his theory and

certain aspects of Juel’s finite geometry and Menger’s distance geometry. We have seen

that Bouligand made intensive efforts to popularise his direct infinitesimal geometry:

targeting the mathematical community through French and Polish journals; targeting

students by including the topic as a central part of his teaching activities throughout

his career and targeting a broader scientific readership through articles published in

the Revue Scientifique and the Revue Générale des Sciences Pures et Appliquées. What
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was the result of these efforts? While Bouligand’s theory was not considered as part of

the mainstream of mathematical research during the interwar period, we highlighted

notable examples of the uptake of his theory: the key figure here was Elie Cartan, who

played an influential role in disseminating Bouligand’s ideas and who took an active

interest in this theory. Moreover, we saw that a number of doctoral students pursued

research in this field. Those who actively carried out research in direct infinitesimal

geometry included Gustave Choquet, Christian Pauc, André Marchaud and - outside of

France - Otto Haupt and S.K. Zaremba.

Our exploration of Bouligand’s work in the epistemology of mathematics between

1932 and 1939 - after the publication of his comprehensive text on direct infinitesimal

geometry in 1932 - was focussed around the concepts of causality (causal proofs and

domains of causality) and direct methods, which were considered beyond the context

of geometry in which they were originally discussed by Bouligand. Causal proofs were

described by Bouligand as being able to reveal the reason why behind a mathematical

result and were characterised in terms of relying on a the minimal set of assumptions.

Bouligand also went further in defining domains of causality in a semi-formal manner,

in terms of a group of transformations which are considered as modifications made

to a given proposition. The concept of domain of causality and the related concept

of the stability of a mathematical proposition (this stability being related to Bouli-

gand’s earlier idea of prolongement fonctionnel) are viewed by Bouligand as tools to

help understand the structure of a mathematical theory. While the concept of direct

methods were not formalised, Bouligand considers direct methods in different areas of

mathematics, such as in the calculus of variations and in qualitative integration for

example. Bouligand explicitly connects direct methods with intuition: direct methods

do not allow for losing contact with intuition in formal mathematical reasoning. As

well as the interplay between the formal aspect of mathematics and the intuitive aspect,

his ideas on direct methods mirror another key aspect of his earlier work on intuition,

namely the centrality of ‘objectivity’ or put differently, connections with geometrical

concepts/objects from the physical world. Finally, we noted that Bouligand worked

on explicitly arguing for the unity of direct methods as he identified them in different

areas of mathematics, by means of certain common mathematical concepts belonging,

for example, to topology.

We briefly situated Bouligand’s ideas in the epistemology of mathematics with those of

Borel, Cavaillès and Lautman. While similarities did not extend far, common to Borel

and Bouligand were certain key topics, target readership and goals. For example, the

pedagogical emphasis and goal of orienting the development of mathematical work.

While Bouligand reflects on certain themes of interest to Cavaillès and Lautman (struc-
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ture, unity, set theory,...), his work clearly did not belong to the field of philosophy

and was not situated in relation to key landmarks of this discipline. His goals included

guiding mathematicians in their practice or helping to initiate new mathematicians

into the discipline - goals which we do not find in the work of Cavaillès and Lautman.

Finally we emphasise the strong presence in our account of Bouligand’s pedagogical

efforts. In the context of his work in the generalised Dirichlet problem, he communi-

cated his ideas during his 1925 lecture course at the Univeristy of Krakow, as well as

publishing work with a strong pedagogical dimension in L’Enseignement Mathématique.

In the context of intuition, as mentioned above, Bouligand viewed this aspect of

mathematical practice as central for mathematics education. Regarding direct infinites-

imal geometry, we reiterate Bouligand’s pedagogical efforts in the context of teaching

activities and in the presentation of his work in a comprehensive text. Bouligand made

significant efforts to communicate his ideas in the epistemology of mathematics in a

pedagogical way - through integrating these ideas in his books on group theory and

direct infinitesimal geometry and by commenting explicitly on the relevance of his

ideas for mathematics education.

Certain areas for future consideration

Bouligand in relation to modern mathematics. Certain themes often associated with

the modernist transformation of mathematics have been encountered to a greater or

lesser extent at certain points in our account on Bouligand, namely the themes of the

use of concepts in set theory, the strong emphasis on the use of concepts in topology,

the use of an axiomatic approach, the emphasis on dealing with mathematical objects

in a more direct (to borrow Bouligand’s terminology) or intrinsic manner and the

concept of structure in mathematics.

First, the trend of the emergence of set theory was encountered as a key influencing

factor behind the formulation of Bouligand’s direct infinitesimal geometry, drawing in-

spiration from the example of the penetration of set theory into the theory of functions

in France. Concepts in topology were strongly present in Bouligand’s direct infinitesi-

mal geometry and represented the backbone of his argument for the unity of direct

methods. We recall that these direct methods show clearly Bouligand’s preference for

dealing with mathematical concepts or objects in themselves, without having to rely

for example on parametric representation or differential equations.

To a certain extent, the axiomatic approach to mathematics has also arisen in our

account. In the context of his reflections on intuition in mathematics, Bouligand advo-
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cates taking an axiomatic approach in such a way that enables the chosen formalisation

of facts in geometry can be easily married with intuitive associations. Furthermore,

the idea of operating under a minimum number of assumptions is highly present in his

concept of causal proofs and in his direct infinitesimal geometry, where for example a

central point is that of avoiding unnecessary assumptions about the differentiability of

functions.

The concept of structure is clearly present in our account of Bouligand’s work, first in

his organisation of ideas according to level generality in the context of his work on

the Dirichlet problem but most prominently in his concept of a domain of causality.

A key goal, through implementing the concept of domains of causality in directing

infinitesimal geometry was to establish a structure for this theory in which mathemat-

ical facts and concepts are their appropriate setting or level of generality - in short,

what Bouligand calls a causal structure. In addition, his concept of the stability of

a mathematical fact is seen as a further tool in establishing and understanding the

structure of a mathematical theory.

Jeremy Gray argues that mathematics underwent a modernist transformation between

1890 to 1930 [143], therefore overlapping with Bouligand’s time. A question for fur-

ther consideration could be to understand how we might situate Bouligand’s ideas in

relation to this much broader phenomenon. In addition, Leo Corry has researched the

idea of mathematical structures in twentieth century mathematics, which he identifies

as central during this period [123]. For example, Corry investigates structure in the

work of Hilbert and Bourbaki, viewing it as an image of mathematics. In what way can

we situate Bouligand’s views and of structure and their implementation in his work in

relation to, for example, to the work of Hilbert and Bourbaki? Do we view Bouligand’s

comments on structure as being part of an image of mathematics? Having mentioned

Bourbaki, we highlight a further area of potential future investigation helping us to

situate Bouligand in relation to modern mathematics: comparing Bouligand’s ideas

in the philosophy of mathematics with the views of the Bourbaki group during the

interwar period. We comment that the founding members of Bourbaki belonged to the

next generation of mathematicians in France after Bouligand. While we are not aware

of Bourbaki having referred to Bouligand’s views on mathematics, Bouligand did on

certain occasions write actively about Bourbaki (see for example [99]).

Situating Bouligand in relation to Hermann Weyl. German mathematician Hermann

Weyl (1885-1955) represents one of the major landmarks in 20th century mathematics

and contributed to diverse areas of mathematics and mathematical physics including

differential geometry, topology, space-time theory and the foundations of mathematics.
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Weyl made major contributions to the mathematical foundations of relativity theory,

including from the point of view of differential geometry and the close interaction

between his philosophical reflections and his mathematical works in this area are well

known, for example in his 1919 text Raum-Zeit-Materie [Space-Time-Matter] [217].

For an account on this interaction, we refer the reader to Julien Bernard’s work (see

for example [8]). A potential area for future research is therefore to address the

question of how we situate Bouligand - as a mathematician who a developed a theory

in differential geometry based on epistemological ideals - in relation to Hermann Weyl.

Extending the present account around our central theme. It would be possible to

extend our account of Bouligand remaining centered on the theme of his mathematical

works which interacted closely with his concepts of causality and direct methods. First

this could be done be investigating Bouligand’s work on vector geometry. Although, as

mentioned in the introduction, this does not represent an area of significant output in

terms of published articles, it is potentially an area where Bouligand’s later ideas in

the epistemology of mathematics could be identified. For example, in his 1924 text

Leçons de géométrie vectorielle préliminaires à l’étude de la théorie d’Einstein [Lessons in

vector geometry preliminary to the study of Einstein’s theory], he comments,

Ne pas limiter la portée des méthodes vectorielles à une simplification des

calculs, plus étroitement soudés aux figures, tel fut à leur origine le but de ces

Leçons. Les principes même de ces méthodes les font solidaires de l’axiomatique,

dont les théories relativistes avaient révélé toute la puissance constructive.

Or, cette puissance est aujourd’hui confirmé du calcul fonctionnel vers des

méthodes se réclamant de l’intervention d’espaces auxilaires. Dans la for-

mation mathématique, la géométrie vectorielle devient à ce titre un rouage

indispensible [26, p. IX].

[The original aim of these lessons was to not limit the scope of vectorial

methods to a simplification of calculations, which were more closely related

to figures. The very principles of these methods make them integral to

axiomatics, the constructive power of which had been revealed by relativis-

tic theories. Today, however, this power has been confirmed by functional

calculus which is in favour of methods which avoid the involvement of aux-

iliary spaces. In this respect, vector geometry is becoming an indispensable

component of mathematical training].

In the chapter on Bouligand’s direct infinitesimal geometry, we touched on applications

to mathematical physics and the significance of these applications from Bouligand’s

perspective in terms of legitimising and motivating his work in this area. A further area



204 The development of Bouligand’s epistemological ideas from 1932 to 1939

of investigation which would enable us to expand on the present account would be

to carry out a comprehensive survey of Bouligand’s work more applied mathematical

work which relates to or implements in an explicit way his ideas in the epistemology

of mathematics. To give just two examples, we refer to Bouligand’s on article on Les

courants de pensée Cantorienne et l’hydrodynamique [Cantorian trends of thought and

hydrodynamics] [58] and his 1933 text on Relations d’incertitude en géométrie et en

physique, with a preface by Louis de Broglie.
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Les œuvres mathématiques et épistémologiques de Georges Bouligand 

Résumé 

La production intellectuelle de Georges Bouligand pendant l'entre-deux-guerres représente un riche corpus 
composé non seulement d'articles et de textes mathématiques dans divers domaines de la discipline, mais aussi de 
ses idées publiées sur l'épistémologie des mathématiques - sur ses opinions concernant les méthodes 
mathématiques, la manière dont les théories mathématiques devraient être formulées et la manière dont les 
mathématiques devraient être enseignées. En outre, en tant que membre de la communauté mathématique en 
France qui était en contact avec certains des mathématiciens les plus éminents, non seulement de sa propre 
génération mais aussi de la génération académique qui l'a précédée et suivie, l'étude de Bouligand et de ses 
œuvres nous permet d'ajouter une modeste contribution à la connaissance de l'activité mathématique en France 
pendant l'entre-deux-guerres.  Malgré l'intérêt évident d'une étude plus approfondie de Bouligand, il existe 
aujourd'hui relativement peu permettant de mieux connaître cette figure des mathématiques françaises du XXe 
siècle. Le présent exposé se concentrera sur un thème spécifique représentant un fil conducteur, à savoir les 
réflexions de Bouligand sur ce qu'il appelait la causalité en géométrie et dans les théories mathématiques et 
physiques, ainsi que sur son concept étroitement lié de méthodes directes. Les domaines de production 
mathématique au cœur du présent exposé sont ses travaux sur une généralisation du problème de Dirichlet et sa 
théorie de la géométrie infinitésimale directe. 
 
Mots-clés : mathématiques ; histoire des mathématiques ; philosophie des mathématiques, épistémologie des 
mathématiques ; 20ème siècle ; géométrie ; l’entre-deux-guerres 

The mathematical and epistemological works of Georges Bouligand 

Summary 

The intellectual output of Georges Bouligand during the interwar period represents a rich corpus consisting not 
only of mathematical articles and texts in diverse areas of the discipline but also his published ideas on the 
epistemology of mathematics - on his views regarding mathematical methods, how mathematical theories should 
be formulated and how mathematics should be taught. In addition, as a member of the mathematical community 
in France who was well connected with some of the most prominent mathematicians not only of his own 
generation but of the academic generation before and after, a study of Bouligand and his works enables us to add 
a modest brush stroke to the currently available picture of the French mathematical scene of the day. Despite the 
clear interest of a somewhat in-depth study of Bouligand, relatively little work exists today giving us an insight 
into this figure of 20th century French mathematics. The present account will focus on a specific theme 
representing a common thread running, namely Bouligand’s reflections on what he referred to as causality in 
geometry and in mathematical and physical theories as well as his closely related concept of direct methods. The 
areas of mathematical output which will figure centrally in the present account are his work on a generalisation of 
the Dirichlet problem and his theory of direct infinitesimal geometry. 
 
Keywords : mathematics; history of mathematics; philosophy of mathematics; epistemology of mathematics; 
twentieth century; geometry; interwar period 
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