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Abstract

Quantum metrology presents numerous promising prospects, showing the poten-
tial for significant enhancing of the measurement precision across various domains,
from imaging to gravitational wave detection. However, assessing whether a given
measurement scheme effectively extracts all the available information, as predicted
by the quantum Cramer-Rao bound, remains challenging in practical scenarios. Ad-
ditionally, constructing computationally feasible data-processing algorithms that fully
exploit the measured data poses another challenge in multiparameter estimation.

To address these challenges, this thesis adopts the Method of Moments approach
to multiparameter estimation — a data-processing technique leveraging the first sta-
tistical moments of measurement results. This method provides straightforward es-
timators with associated sensitivity bounds, facilitating easy computation and relax-
ing demands on the detection system.

Using this approach, we explore the classical problem of resolving point sources
of light and extend its scope to scenarios where bright sources exhibit mutual coher-
ence. Our investigation includes models with diverse statistics and coherence prop-
erties, including instances of non-classical statistics or separation-dependent mutual
coherence of the sources. By analyzing multiple parameters such as sources’ sep-
aration, relative and absolute brightness, and phase, we compare the sensitivity of
the moment-based spatial mode demultiplexing technique, direct imaging, and the
quantum Cramer-Rao bound. Our findings demonstrate a practical estimation ap-
proach that often achieves quantum-optimal performance.

Furthermore, we apply the moment-based technique to efficiently characterize
Gaussian states using homodyne detection data. We devise an optimal unbiased
estimator through algebraic transformations of measured data, providing a simpler
alternative to traditional optimization-based methods that are computationally in-
tensive.





v

Acknowledgments

First and foremost, I wish to express my deepest gratitude to my supervisors, Nico-
las Treps and Mattia Walschaers, for their incredible support throughout the three
years of my doctoral studies. I felt your moral, psychological, and personal sup-
port even before meeting you in person, while I was still in another country. You
provided attentive scientific guidance while also granting me the freedom to choose
my research topics and methods. I am deeply thankful for the warm and friendly
atmosphere within our group and for the sense of freedom and equality. Thank you
for the engaging scientific discussions where authority was never used as an argu-
ment and everyone remained open to changing their opinions. Thank you for the
trust you put in me, for your valuable time, advice, and the resources you provided;
for the professional experience I gained under your guidance and for the wonderful
moments we shared outside the university; for your help in integrating me into the
laboratory team and into French society and culture; and, of course, for your active
involvement and assistance in shaping my future career, which I will pursue after
leaving the LKB nest. I sincerely hope our professional and personal connection will
continue in the future and that our fruitful collaboration will endure.

I would also like to express my gratitude to my colleagues, with whom I spent
these wonderful three years, both within the university walls and beyond. Without
hesitation, I want to start this long list with Clémentine, who was not only an excel-
lent office mate but also my guide into the world of experimental physics, keeping
my theoretical research grounded in reality. It was always a pleasure to communi-
cate with you, and I learned a great deal from our interactions. I would also like
to thank Giacomo, who, along with Manuel, was one of the pioneers laying the
groundwork for this research. Thank you for the fascinating scientific discussions,
your ability to clearly explain complex concepts, your attention to detail, and your
readiness to provide quick and helpful advice, even when working in another coun-
try. Antonin and Alexander, I am confident that the PESTo project is in good hands
with you; it was a pleasure working and not working with you! Nilse, you did an
amazing job all these years, bringing humor and life into our daily routines. I was
also very happy to work with you on a joint scientific project – it was easy, enjoy-
able, and productive. Valentina, Claude, David, Carlos, Yann, Leonardo, Bastian,
Massimo, Johan, Iris, Francesca, Guilherme, David again, and many other LKB col-
leagues: each of you has left a mark on my life, and with each of you, I have shared
memorable experiences for which I am truly grateful, from you I learned new things
about science and life and shared my thoughts and concerns. Thanks to the labo-
ratory management for ensuring smooth operations and shielding us from much of
the bureaucracy. A special thanks to Stéphanie and David, who were always efficient
and helpful. I am also grateful to Sorbonne University, which prepared my contract
in record time and demonstrated a flexible approach to bureaucratic procedures,



vi

adapting them to various non-standard situations. I would also like to acknowledge
the PAUSE program, which partially financed my studies and provided invaluable
support. My sincere regards go to my colleagues at Thales – Arnaud, Romain, Luc,
and of course, Maxime – thank you for the enriching and fruitful experience of sci-
entific collaboration. I would also like to thank my former colleagues from CQOQI
– Vlad, Dmitri, Alexander, and others – for their support and the many valuable
lessons they provided during the early stages of my research career.

I am deeply thankful to the members of the PhD jury for taking the time to read
this manuscript and for attending the defense in person. Ivano, thank you for the
stimulating scientific discussions at numerous conferences. Milena, thank you for
organizing the excellent summer school in Bari, where I met many remarkable peo-
ple and gained valuable knowledge. And of course, my special thanks go to Dmitri,
whose recommendations enabled me to join this remarkable research group in the
first place. Dmitri, your scientific curiosity, enthusiasm, and unwavering ethical
standards have always been an example for me to follow.

Undoubtedly, I could not have accomplished this task without the support of
my family and friends. My wife, Sonya, has always inspired me to achieve new
heights while surrounding me with care and love. I am endlessly grateful for your
presence in my life and for everything you do for me. I am also thankful to my
parents for their constant support, inexhaustible interest, and patience, for the many
pieces of valuable advice, and, of course, for all the hard work they invested in me.
My heartfelt thanks go to my friends – Vlad, Marina, Anton, Lyuda, Vova, Misha,
Pasha, Nadya, Sergey, and Margo – for being by my side during these years and al-
ways being ready to share happy moments or to support me with action or advice in
any difficult situation. I deeply appreciate everyone who supported me and stayed
in touch; sometimes fate separates us by great distances, but your support remains
invaluable.



vii

Contents

Introduction 1

1 Modes, States and Coherence in Quantum Optics 7
1.1 Modes in classical optics . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.1.1 Mode transformation . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.1.2 Transverse modes . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.1.3 Classical coherence . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.2 Quantum light . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.2.1 Electric field operator in any mode basis . . . . . . . . . . . . . 12
1.2.2 Quantum states . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.2.3 Quantum coherency matrix . . . . . . . . . . . . . . . . . . . . . 16
1.2.4 Optical elements and detection . . . . . . . . . . . . . . . . . . . 17

1.3 Continuous variable representation of quantum states . . . . . . . . . . 21
1.3.1 Quadrature operators . . . . . . . . . . . . . . . . . . . . . . . . 22
1.3.2 Wigner function . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
1.3.3 Quadrature covariance matrix . . . . . . . . . . . . . . . . . . . 26
1.3.4 Quadrature measurements . . . . . . . . . . . . . . . . . . . . . 27

2 Parameter estimation theory 31
2.1 General parameter estimation scheme . . . . . . . . . . . . . . . . . . . 32

2.1.1 Characteristics of the estimators . . . . . . . . . . . . . . . . . . 33
2.2 Classical parameter estimation theory . . . . . . . . . . . . . . . . . . . 34

2.2.1 Fisher information and Cramér–Rao bound . . . . . . . . . . . . 34
2.2.2 Method of moments . . . . . . . . . . . . . . . . . . . . . . . . . 38
2.2.3 Relation between the FI and the MoM sensitivity . . . . . . . . 45
2.2.4 Example: loss estimation. . . . . . . . . . . . . . . . . . . . . . . 47
2.2.5 FI and MoM in the Poissonian limit . . . . . . . . . . . . . . . . 51

2.3 Quantum parameter estimation theory . . . . . . . . . . . . . . . . . . . 54
2.3.1 Quantum Fisher information and quantum Cramér–Rao bound. 54
2.3.2 Geometrical sense of the QFI and some particular case examples 55
2.3.3 QFI calculation through state diagonalization . . . . . . . . . . 57
2.3.4 Saturability of the QCRB . . . . . . . . . . . . . . . . . . . . . . . 58

2.4 Quantum state characterization . . . . . . . . . . . . . . . . . . . . . . . 59
2.4.1 Inverse Radon transformation . . . . . . . . . . . . . . . . . . . 61
2.4.2 Statistical reconstruction . . . . . . . . . . . . . . . . . . . . . . . 62
2.4.3 Other tomographic methods . . . . . . . . . . . . . . . . . . . . 63
2.4.4 Moment-based quantum state characterization . . . . . . . . . . 63



viii

3 Separation estimation problem 65
3.1 Elements of the imaging . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

3.1.1 Model of the optical system . . . . . . . . . . . . . . . . . . . . . 66
3.1.2 Aperture and PSF . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
3.1.3 Losses in the imaging system . . . . . . . . . . . . . . . . . . . . 73

3.2 Formulation of the source resolving problem . . . . . . . . . . . . . . . 74
3.2.1 State of the emitted light . . . . . . . . . . . . . . . . . . . . . . . 75
3.2.2 Light transformation in the imaging system . . . . . . . . . . . 76
3.2.3 Measurement techniques . . . . . . . . . . . . . . . . . . . . . . 78
3.2.4 Background of the SPADE technique . . . . . . . . . . . . . . . . 84

3.3 Fully coherent sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
3.3.1 Model of the sources . . . . . . . . . . . . . . . . . . . . . . . . . 88
3.3.2 The moment matrix . . . . . . . . . . . . . . . . . . . . . . . . . 90
3.3.3 Single-parameter estimation . . . . . . . . . . . . . . . . . . . . 91
3.3.4 Resolving sources with unknown brightness . . . . . . . . . . . 92
3.3.5 Sensitivity of relative intensity measurements Mε . . . . . . . . 93
3.3.6 Sensitivity of total intensity measurement MD . . . . . . . . . . 98
3.3.7 Comparison with Quantum Fisher information . . . . . . . . . 100
3.3.8 Unknown mutual phase and power imbalance . . . . . . . . . . 102
3.3.9 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

3.4 Partially coherent sources . . . . . . . . . . . . . . . . . . . . . . . . . . 109
3.4.1 Constant mutual coherence . . . . . . . . . . . . . . . . . . . . . 110
3.4.2 Parameter-dependent coherence . . . . . . . . . . . . . . . . . . 113
3.4.3 Finite coherence width of the illumination . . . . . . . . . . . . 114
3.4.4 Interacting emitters . . . . . . . . . . . . . . . . . . . . . . . . . . 116
3.4.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

4 Gaussian states characterization 127
4.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
4.2 Measurement statistics of the squeezed Gaussian states . . . . . . . . . 128
4.3 Sensitivity of state characterization . . . . . . . . . . . . . . . . . . . . . 130

4.3.1 The method of moments . . . . . . . . . . . . . . . . . . . . . . . 130
4.3.2 Fisher information . . . . . . . . . . . . . . . . . . . . . . . . . . 132
4.3.3 Quantum Fisher information . . . . . . . . . . . . . . . . . . . . 132

4.4 Estimators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
4.4.1 Minimal and maximal variance . . . . . . . . . . . . . . . . . . 133
4.4.2 Least squares method and Fourier estimator . . . . . . . . . . . 134
4.4.3 Moment-based estimator . . . . . . . . . . . . . . . . . . . . . . 138
4.4.4 Other estimators . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

4.5 Fidelity of the reconstructed state . . . . . . . . . . . . . . . . . . . . . . 142
4.6 Requirements for experimental implementation . . . . . . . . . . . . . 143
4.7 Heterodyne measurement . . . . . . . . . . . . . . . . . . . . . . . . . . 144
4.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

Conclusion and perspectives 149

Bibliography 151



ix

List of Abbreviations

(Q)CRB (Quantum) Cramér-Rao bound
CV Continuous variable
DI Direct imaging
EM Expectation-Maximization
(Q)FI (Quantum) Fisher information
HG mode Hermite-Gaussian mode
LO Local oscillator
LS List squares
MLE Maximum likelihood estimation
MoM Method of moments
MSE Mean squared error
PSF Point spread function
SLD Symmetric logarithmic derivative
SPADE Spatial-mode demultiplexing





1

Introduction

Physics, as a science, revolves around measuring phenomena in our surroundings.
With advancing technology enabling the exploration of increasingly complex sys-
tems, the demand for precise measurements continues to grow. The science and
practice of measurement, including all theoretical and practical aspects related to
measurement, is called metrology. It involves the development of measurement stan-
dards, techniques, and methodologies to ensure accuracy, consistency, and reliability
in measurements across diverse fields.

Often, the characteristics of interest within a system cannot be directly observed
and must be inferred from indirect measurements. Within the realm of optics, a
field at the forefront of this thesis, direct measurement is typically limited to light-
intensity detection. At the same time, optical metrology proves to be one of the most
advanced approaches, offering unparalleled speed and precision of measurements
[Gåsvik 2003; Yoshizawa 2017]. In general, indirect inference of unknown parame-
ters from the measurement result is called parameter estimation [Kay 1998; Trees 2001].

Classical metrology, analyzing the precision of the parameter estimation, pri-
marily addresses noise arising from experimental imperfections and limitations in
measurement devices. The limitation on the estimation precision, coming from the
detection noise, is often expressed through statistical bounds like the Cramér–Rao
bound (CRB) [Cramér 1946; Rao 1994], based on the Fisher information [Fisher 1925].
Semi-classical approaches also incorporate the shot noise into the detection statis-
tics, acknowledging discrete properties of light, which reflects the quantum nature
of light and matter. This intrinsic noise can not be eliminated by improving the mea-
surement devices, the only way to decrease it within the semi-classical model is to
obtain higher measurement statistics.

A fully quantum approach to metrology accounts for arbitrary quantum statis-
tics of the measured objects. The statistics of the noise in this case can span be-
yond the Poissionian model of the shot noise, which opens new possibilities for the
optimization of metrological schemes. In the context of optical quantum metrol-
ogy, an appropriate choice of quantum states of the probe light pulses and of the
measurement scheme can significantly increase the sensitivity of the metrological
scheme and even achieve better scaling of the sensitivity with the number of photons
[Giovannetti 2006; Giovannetti 2011; Demkowicz-Dobrzański 2012; Barbieri 2022;
Huang 2024].

However, assessing whether a given measurement scheme effectively extracts all
available information from the probe often remains a challenging task in practical
scenarios. This challenge stems from the complexity of obtaining full measurement
statistics, making the calculation of FI demanding. Additionally, constructing com-
putationally feasible data-processing algorithms that fully exploit the measured data
poses another challenge in multiparameter estimation.
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The sensitivity of specific metrological schemes, given by the CRB, can be chal-
lenging to determine due to difficulties in obtaining full measurement statistics.
Constructing an estimator that saturates this bound while remaining computation-
ally feasible poses an even greater challenge [Kay 1998]. To address these issues, this
thesis focuses on a specific class of estimators based on the first statistical moments
of measured observables. This approach, often referred to as the method of moments
(MoM), offers several advantages: such estimators are fast and easy to compute,
sensitivity bounds for them are easier to determine and saturate, and they relax
requirements for the detection system as they don’t necessitate high temporal res-
olution of detection if based on mean measured signals [Kay 1998; Gessner 2019;
Gessner 2020b]. We provide a detailed analysis of the properties of this approach in
chapter 2.

One of the fundamental examples of the metrological problems, that we briefly
consider in section 2.2.4 using the MoM is the estimation of losses in a bosonic chan-
nel. Loss estimation proved to be significantly more precise when employing probes
with non-classical statistics [Monras 2007; Adesso 2009; Losero 2018; Nair 2018]. In
our study, we illustrate that the moment-based approach maintains the benefits of
non-classical probe statistics in the majority of scenarios while offering a simple es-
timator and sensitivity bound.

Optical imaging represents another crucial metrological task, closely linked with
the problem of loss estimation. Its objective is to accurately depict the spatial shape
of remote or microscopic objects, often being constrained by the diffraction effect
within the optical imaging system. Traditionally, improving imaging quality entails
making the image (i.e., the measured signal) as similar as possible to the studied
object. The initial step in this process involves optimizing the imaging setup itself
[Masters 2021]. This optimization includes increasing the numerical aperture (by
moving closer to the object, using larger lenses, and employing immersive tech-
niques) and minimizing aberrations, among other strategies. These efforts enable
the achievement of resolutions beyond the wavelength of light, with the resolution
of the most advanced optical microscopes reaching as low as 200 nm [Villiers 2016].

Another approach to improving optical resolution is often referred to as active
imaging [Laurenzis 2019]. This set of techniques involves controlling certain proper-
ties of light coming from the studied object.

A significant subset of active imaging techniques relies on fluorescent labeling of
the object [Huang 2009; Leung 2011]. One well-established method in this category
is stimulated emission depletion (STED) [Hell 1994; Klar 1999]. STED exploits the
non-linear response of fluorescent labels to selectively deactivate some labels, en-
abling fluorescence from only a tiny spot. This allows for precise localization of emit-
ting spots and estimation of emitter density there, achieving imaging resolutions
up to 50 nm. A related technique, called photoactivated localization microscopy
(PALM) [Betzig 2006; Hess 2006; Lee 2012], involves active optical switching be-
tween fluorescent and non-fluorescent states of labels. This approach enables indi-
vidual activation and precise localization of emitters. Some imaging techniques rely
on stochastic switching between label states, such as stochastic optical reconstruction
microscopy (STORM) [Rust 2006; Betzig 2006; Huang 2008; Geissbuehler 2011] and
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superresolution optical fluctuation imaging (SOFI) [Dertinger 2009; Dertinger 2013;
Vlasenko 2020; Sroda 2020]. In STORM, emitters are individually localized using
frames with only one emitter active within the diffraction range. SOFI, on the other
hand, enhances overall image sharpness by computing temporal cumulants of a se-
ries of images, leveraging independent stochastic switching of sources.

Another example of active imaging relies on controlling the illumination of the
object. One well-developed technique in this domain is structured illumination imag-
ing [Gustafsson 2000; Gustafsson 2008; Saxena 2015; Ströhl 2016; Heintzmann 2017;
Classen 2017; Lim 2024]. In this approach, the studied object is illuminated with
spatially structured light in various configurations, allowing for a higher spatial res-
olution to be achieved by processing the set of obtained images.

Similar approaches are based on correlations of the illumination. These can uti-
lize classical correlations [Valencia 2005; Gatti 2004], as well as quantum spatial
and temporal correlations [DAngelo 2005a; Brida 2010; Lopaeva 2013; Meda 2017;
Samantaray 2017; Mikhalychev 2019; Berchera 2019; Peshko 2019; Mikhalychev 2021;
Defienne 2022] to enhance resolution and contrast while reducing background noise
and detection noise. Other correlation-based techniques such as ghost imaging [DAn-
gelo 2005b; Shapiro 2008; Erkmen 2010; Shapiro 2012; Chiuri 2022] and undetected
photons imaging [Lemos 2014; Shapiro 2015; Lemos 2022] allow probing the object
with lower frequency light while detecting light with higher frequency, thereby en-
hancing detection efficiency.

There are numerous other optical imaging techniques, such as confocal microscopy
[Tata 1998; Price 2011; Gatto Monticone 2014], imaging with the nearfield probing
[Guerra 1990; Ohtsu 1995; Hecht 2000]. Each of these techniques offers unique in-
sights into the studied object, along with their own set of advantages and limitations.

Active imaging techniques can achieve remarkable nanometer-scale resolution,
but their application range is often limited to microscopy. To utilize these techniques,
one typically needs to attach fluorescent labels to the object or control the illumina-
tion of the object. This may not always be feasible, especially in remote imaging
scenarios. In such cases, one must extract the most information from the light natu-
rally emitted or reflected by the object, which is known as passive imaging.

Sometimes, the imaging resolution can be enhanced by processing the image cap-
tured by the camera using techniques known as computational imaging [Heide 2013;
Altmann 2018]. These methods may involve inverting the imaging system transfor-
mation with deconvolution algorithms such as Lucy-Richardson [Lucy 1974; Kun-
dur 1996; Sibarita 2005; Khetkeeree 2020], employing neural networks [Xu 2014;
Rivenson 2017; Higham 2018; Barbastathis 2019; Belthangady 2019; Hoffman 2021],
or other approaches.

The aperture synthesis technique is also closely related to computational imaging.
This approach is typically used in radio astronomy, where the phase and ampli-
tude of the observed electromagnetic field are measured simultaneously with sev-
eral remote telescopes [Jennison 1958; Roggemann 1997; Kellermann 2001; Collabo-
ration 2019]. The resolution limit of this approach is defined by the baseline (distance
between the telescopes) and significantly exceeds the resolution of individual tele-
scopes. However, realizing this approach in the optical spectral range is challenging
due to the difficulty of optical phase synchronization in remote observatories. Thus,
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in the optical domain, direct interference of light from each telescope is used by
gathering the light in one place with the help of vacuum tubes [Hand 2010]. The
baseline of optical astronomical interferometers is limited to several hundred me-
ters, while in the radio domain, it can reach over 100,000 km thanks to satellite-based
telescopes [Schuh 2012]. A similar measurement approach, introduced by Hanbury
Brown and Twiss, relies on detecting intensity correlations in passive imaging of
thermal sources [Brown 1954; Brown 2013; Rosenberg 2022]. This technique allows
for determining the angular size of stars with high precision.

Capturing the intensity and direction of light, a technique known as plenoptic
imaging (or light-field imaging), enables more flexible image processing effects such
as refocusing and changing perspective after the image is captured [Wetzstein 2011;
DAngelo 2016; Pepe 2017; Di Lena 2018; Massaro 2023; Paniate 2024]. It can also
help increase the resolution of imaging in practical scenarios.

Often, the object under study can be fully characterized by a finite set of pa-
rameters, such as its moments, Fourier components, local properties in the pixel
basis, or positions of point emitters [Helstrom 1967; Kolobov 2000; Beskrovnyy 2005;
Motka 2016; Zhou 2019a; Mikhalychev 2019; Tsang 2019c; Pushkina 2021; Fiderer 2021;
Köse 2022; Köse 2023]. In such cases, the imaging can be framed as a parameter esti-
mation problem. Consequently, the primary objective of this approach is not to ob-
tain measurement results that resemble the object but to acquire measurement data
containing the most information about the parameters of interest. Besides, it enables
the utilization of quantum metrology tools to find the ultimate bound for imaging
precision and compare it to the sensitivity of the specific measurements employed
in practice.

The majority of the previously mentioned techniques rely on detecting light in-
tensity (or correlations of intensities) in a pixel basis using a conventional camera.
However, the analysis of the quantum Fisher information shows that this measure-
ment does not extract the full information available in the field. At the same time, the
parameter estimation approach opens up the possibility of optimizing an additional
degree of freedom that has not been discussed so far — the measurement basis. Our
group, specializing in multimode quantum optics, has a rich history of exploring
this approach [Fabre 2000; Treps 2003; Treps 2004; Treps 2005; Delaubert 2006a; De-
laubert 2006b]. This strategy involves analyzing the informational content of differ-
ent modes and selecting the most useful mode for measurement, while also strategi-
cally allocating quantum resources (like squeezing) in the probe based on this anal-
ysis. Initially, this approach was mainly used for the transverse positioning of a
beam or single-point source until 2016 when it was generalized to address the prob-
lem of resolving incoherent point sources [Tsang 2016]. The developed method was
termed spatial mode demultiplexing (SPADE). It has demonstrated the potential to sig-
nificantly increase the information about the separation of two close point sources
and saturate the quantum bound in many scenarios. We delve into the details of
this approach in section 3.2.3 and provide an overview of a diverse range of recent
studies on this topic in section 3.2.4.

Just like with other parameter estimation problems, determining the CRB for
the SPADE measurement and constructing a practical estimator that saturates this
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bound can be challenging. Most studies on this topic have been conducted under the
assumption of faint sources (Poisson limit), which is not always applicable in prac-
tical scenarios. In chapter 3, we employ the MoM to study the resolving of bright
sources and comprehensively analyze the impact of coherence on resolution, a topic
that has been the subject of intense debate in recent years [Larson 2018; Tsang 2019d;
Larson 2019; Hradil 2019; Hradil 2021; Liang 2021; Kurdzialek 2022; Liang 2023b;
Wang 2023]. Our investigation includes models with diverse statistics and coherence
properties, including instances of non-classical statistics or separation-dependent
mutual coherence of the sources. By analyzing multiple parameters such as sources’
separation, relative and absolute brightness, and phase, we compare the sensitiv-
ity of the spatial mode demultiplexing technique, direct imaging, and the quantum
Cramer-Rao bound. Our findings demonstrate a practical estimation approach that
often achieves quantum-optimal performance.

In addition to efficiently quantifying the sensitivity, the MoM also offers simple
estimators that are easy to compute. This characteristic can be valuable in domains
where the computational complexity of parameter estimation is critical. One of the
examples of such a problem is the characterization of quantum states (or quantum
tomography). The setting of this problem and existing approaches to its solution are
discussed in section 2.4. In chapter 4, we employ the MoM to construct a compu-
tationally efficient estimator that saturates the CRB for characterizing single-mode
Gaussian states.
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Chapter 1

Modes, States and Coherence in
Quantum Optics
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This chapter provides a concise introduction to fundamental concepts in both
classical and quantum optics. Its primary aim is to familiarize readers with key
terms and notations that will be utilized in the following chapters, rather than offer-
ing an exhaustive tutorial on the subject. The content of this chapter draws heavily
from papers [Fabre 2020] and [Glauber 1963], in which interested readers can find
more detailed information.

1.1 Modes in classical optics

The behavior of light, as understood through the lens of classical electrodynamics,
finds its comprehensive description in Maxwell’s equations. These equations de-
scribe the interplay between electric and magnetic fields and give us a way to grasp
how light travels and evolves. When light propagates through empty space (without
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charges), these equations take a specific form, helping us to comprehend the basic
rules that govern light without any material medium:

∇⃗ · E⃗(⃗r, t) = 0, ∇⃗ × E⃗(⃗r, t) = −∂B⃗(⃗r, t)
∂t

, (1.1)

∇⃗ · B⃗(⃗r, t) = 0, ∇⃗ × B⃗(⃗r, t) = µ0ε0
∂E⃗(⃗r, t)

∂t
. (1.2)

With this system of equations, it is straightforward to demonstrate that the ampli-
tude of the electric (and magnetic) field follows the standard wave equation:

∆E⃗(⃗r, t)− 1
c2

∂2E⃗(⃗r, t)
∂t2 = 0, (1.3)

where c = (µ0ε0)−1/2. This equation governs the wave-like evolution of light prop-
agation.

Any field configuration E⃗(⃗r, t) as a function of space and time coordinates can be
represented by a Fourier integral:

E⃗(⃗r, t) =
∫ ∞

−∞
E⃗ω (⃗r, ω)e−iωtdω. (1.4)

We define the positive frequency part of this integral as:

E⃗(+) (⃗r, t) =
∫ ∞

0
E⃗ω (⃗r, ω)e−iωtdω, (1.5)

and the negative frequency part:

E⃗(−) (⃗r, t) =
∫ 0

−∞
E⃗ω (⃗r, ω)e−iωtdω =

∫ ∞

0
E⃗∗

ω (⃗r, ω)eiωtdω, (1.6)

where we used the property E⃗ω (⃗r,−ω) = E⃗∗
ω (⃗r, ω), which follows from the fact that

electric field E⃗(⃗r, t) is a real-valued function.
All subsequent analyses will be conducted for the complex positive frequency

part E⃗(+) (⃗r, t) of the electric field, bearing in mind that the real field can be expressed
as:

E⃗(⃗r, t) = E⃗(+) (⃗r, t) + E⃗(−) (⃗r, t), (1.7)

and that E⃗(−) (⃗r, t) = (E⃗(+) (⃗r, t))∗, as follows from eq. (1.4) and eq. (1.6). By construc-
tion of the positive-frequency part of the electric field E⃗(+) (⃗r, t), it is also a solution
of Maxwell’s equations.

Given the linearity of Maxwell’s equations, any linear combination of its solu-
tions is also a solution. If we confine our analysis to cases where the field of interest
is enclosed in a spatial box of size V, we can identify a discrete set of orthonormal-
ized solutions { f⃗m (⃗r, t)} that can serve as a basis for decomposing any other solution
satisfying the chosen boundary conditions. Each individual solution f⃗m (⃗r, t) from
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this set is called a mode of the electromagnetic field and follows the Maxwell equations(
∆ − 1

c2
∂2

∂t2

)
f⃗m (⃗r, t) = 0, ∇⃗ · f⃗m (⃗r, t) = 0, (1.8)

and orthonormality conditions

1
V

∫
V

d⃗r f⃗ ∗m (⃗r, t) · f⃗n (⃗r, t) = δmn. (1.9)

If the set of functions { f⃗m (⃗r, t)} is complete, any solution of Maxwell equations can
be decomposed over it:

E⃗(+) (⃗r, t) = ∑
m
Em f⃗m (⃗r, t). (1.10)

The set of complex amplitudes Em fully defines the state of the classical electromag-
netic field.

1.1.1 Mode transformation

As with any linear space, we are not limited to one specific basis, i.e., a chosen set of
modes. If we perform a unitary transformation:

g⃗n (⃗r, t) = ∑
m

Unm f⃗m (⃗r, t), (1.11)

with Unm being elements of a unitary matrix, we arrive at another complete or-
thonormal mode basis {g⃗n (⃗r, t)}. Decomposing the field over this new basis we
arrive at

E⃗(+) (⃗r, t) = ∑
m
Gm g⃗m (⃗r, t), (1.12)

where new amplitudes Gm can be found as

Gn = ∑
m

U∗
nmEm. (1.13)

One can easily show that elements Unm of the unitary matrix can be expressed as

Unm =
1
V

∫
V

d⃗r g⃗n (⃗r, t) · f⃗ ∗m (⃗r, t). (1.14)

1.1.2 Transverse modes

For many practical problems, such as imaging for example, a common approach in-
volves considering fields that result from the superposition of plane waves with
wave vectors close to a mean value k⃗0 (paraxial approximation) and frequencies
close to a central frequency ω0 = c|⃗k0| (narrow-band approximation). We choose
our coordinate system such that k⃗0 is parallel to the z-axis, which will coincide with
the optical axis of the imaging apparatus. We consider the field with fixed linear
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polarization, which can be effectively described using a scalar function

E(+) (⃗r, t) = ei(k0z−ω0t) ∑
m
Vmvm (⃗r, t), (1.15)

where ei(k0z−ω0t) represents the carrier plane wave, and vm (⃗r, t) are the envelope
functions of the different modes, which are slowly varying functions of time at the
scale of the optical period 2π/ω0 and of the position at the scale of the wavelength.

In the following, we constrain the basis selection to cases that are factorized into
transverse and longitudinal components. Specifically, when describing light emitted
during a brief time period between tm and tm + τ by sources with fixed properties
within this time, located in the plane z = 0, one can use the mode basis in the form:

vm (⃗r, t) = um(x, y, z) rect[tm,tm+τ](t − z/c), (1.16)

where we define a normalized rectangular function as

rect[a,b](x) =


0, if x < a
1

√
b − a

, if a < x < b

0, if x > b.

(1.17)

The function um(x, y, z) defines the spatial shape of mode vm (⃗r, t), while the function
rect [tm, tm + τ](t − z/c) describes its temporal shape and propagation along the z-
axis. The set of functions {um(x, y, z)} is not linearly independent. For example, the
two modes vm1 (⃗r, t) and vm2 (⃗r, t) can have the same spatial structure um1(x, y, z) =
um2(x, y, z) but be localized at different time moments |tm1 − tm2 | ≥ τ.

To identify modes satisfying the constraints outlined in eq. (1.8), one can choose
an orthonormal set of functions fm(x, y) in any transverse plane z = z0. These modes
need to exhibit slow variations on the wavelength scale, enabling the use of the
paraxial approximation. It is often convenient to normalize this function to 1. The
propagation of such modes along the z-axis in the paraxial approximation can be
characterized using the Huygens-Fresnel integral [Born 1999; Goodman 2005]

um(x, y, z) ∝
∫

dx0 dy0 fm(x0, y0) exp
[

ik0
(x − x0)2 + (y − y0)2

2(z − z0)

]
, (1.18)

with proper normalization, adhering to the conditions specified in eq. (1.9).
Therefore, to establish a basis describing the electromagnetic wave emanating

from a narrow-band source with time-independent properties using a paraxial ap-
proximation, it suffices to select a set of transverse modes denoted as fm(x, y). These
modes propagate in the direction of the z-axis according to eq. (1.18) and evolve in
time as governed by eq. (1.16) and eq. (1.15). Due to the linearity of the connection
between fm(x, y) and vm (⃗r, t) one can find the unitary transformation matrix be-
tween the mode basis constructed from the functions { fm(x, y)} and another mode
basis constructed from the functions {gm(x, y)} (given that they are defined in the
same plane z = z0) as

Unm =
∫

dxdy gn(x, y) f ∗m(x, y). (1.19)
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A practical strategy entails selecting a set of transverse modes based on the specific
geometry of the situation, encompassing only those modes that are excited.

1.1.3 Classical coherence

In the cases when the classical field is deterministically defined, its normalized spa-
tiotemporal shape can be considered as the initial mode in a mode basis. The de-
composition in eq. (1.10) then consists of a single term, as any perfectly coherent
classical field essentially represents a single mode. However, in most practical sce-
narios, fields are not perfectly mastered; they exhibit some level of randomness or
"incoherence" through amplitude and phase fluctuations in both space and time. In
such cases, the complex coefficients Em in eq. (1.10) become stochastic variables.

The degree of coherence of the field is characterized by the probability distribu-
tions of the complex amplitudes Em and the correlations between different ampli-
tudes Em and Em′ .

The elements Γ(1)E
mn of the first-order coherency matrix, as defined by Wiener

[Wiener 1928], in the mode basis { f⃗m (⃗r, t)} are given by

Γ(1)E
mn = E∗

mEn (1.20)

with the bar indicating an ensemble average. The diagonal elements of this matrix
represent the energy of the modes, while non-diagonal elements indicate correla-
tions between different modes.

When considering an arbitrary pair of modes f⃗1(⃗r, t) and f⃗2(⃗r, t) we define the
normalized correlations between them as the mutual coherence:

γ =
Γ(1)E

12√
Γ(1)E

11 Γ(1)E
22

. (1.21)

This characteristic resides within the unit circle of the complex plane, i.e., |γ| ≤ 1.
When |γ| = 1, the coherency matrix is degenerate, and we characterize the pair of
modes as fully coherent. In such instances, the field can be accurately described using
only one mode, often called principle mode

g⃗(⃗r, t) ∝
√

Γ(1)E
11 f⃗1(⃗r, t) + eiϕ

√
Γ(1)E

22 f⃗2(⃗r, t), (1.22)

with eiϕ = γ. This holds true, for example, when amplitudes E1 and E2 are pre-
cise (non-stochastic) numbers or stochastic numbers that are entirely correlated with
each other. In this case, the field configuration can be obtained from a single source
using only linear operations (see section 1.2.4).

Now let us consider the modes f⃗1(⃗r, t) and f⃗2(⃗r, t) being two subsequent rectan-
gular temporal modes with the same spatial structure, i.e. u1(x, y, z) = u2(x, y, z)
and t1 + τ = t2 in eq. (1.16). If these two modes are mutually coherent (γ = eiϕ),
one can describe the field using only one mode g⃗(⃗r, t) as in eq. (1.22). When the ra-
diation source maintains constant properties within the described period, implying
identical intensity Γ(1)E

11 = Γ(1)E
22 and no phase jumps γ = eiϕ = 1, the principal mode



12 Chapter 1. Modes, States and Coherence in Quantum Optics

takes the form of a longer rectangular temporal mode:

g(⃗r, t) = u1(x, y, z) rect[t1,t1+2τ](t − z/c). (1.23)

This process can be iterated several times, at the time range of deterministic behavior
of the radiation source (absence of random phase or amplitude jumps), i.e. within
the coherence time of the source τc, resulting in a temporal mode with a duration
τ = τc. It is important to remember that two modes with uncorrelated complex
amplitudes cannot be represented as a single mode. Consequently, in practical sit-
uations, it is often advantageous to select temporal modes with durations matching
the coherence time of the field, since a description with longer non-overlapping tem-
poral modes is not possible, and with shorter modes is not practical.

1.2 Quantum light

Let us now explore quantum fields in a vacuum, adopting the conventional ap-
proach of quantum electrodynamics [Grynberg 2010]. This approach involves intro-
ducing the electric field operator, denoted as ⃗̂E(+) (⃗r, t), which serves as the quantum
extension of the classical complex field E⃗(+) (⃗r, t). This operator can be expanded
into the basis of monochromatic plane wave modes, represented by v⃗l (⃗r, t):

⃗̂E(+) (⃗r, t) = ∑
l
E (1)

l âl v⃗l (⃗r, t), (1.24)

v⃗l (⃗r, t) = ϵ⃗lei(⃗kl ·⃗r−ωl t), E (1)
l =

√
h̄ωl

2ϵ0V
, (1.25)

where ϵl is a unit polarization vector, E (1)
l is the single-photon electric field and âl

is the annihilation operator of a photon in the plane wave modem. These operators
adhere to the commutation relations:

[âm, â†
m′ ] = δmm′ , [âm, âm′ ] = 0, (1.26)

where Â† denotes the Hermitian conjugate of the operator.

1.2.1 Electric field operator in any mode basis

Let us once again employ the narrow-band approximation, where ωl ≈ ω0. In this
context, any unitary mode transformation can be expressed as:

f⃗m (⃗r, t) = ∑
l

Uml v⃗l (⃗r, t), (1.27)

corresponds to the analogous transformation of the photon creation operators

b̂†
m = ∑

l
Uml â†

l , (1.28)
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where photon creation operator b̂†
m corresponds to the new mode basis f⃗m (⃗r, t). The

transformation of the photon annihilation operators is found through simple Her-
mitian conjugation of the operators:

b̂m = (b̂†
m)

† = ∑
l

U∗
ml âl . (1.29)

Further, we will identify a particular mode either by the associated annihilation op-
erator b̂m or the spatiotemporal structure f⃗m (⃗r, t) of the mode (or equivalently its
cross-section fm(x, y) using the approximations discussed in section 1.1.2).

The unitarity of the transformation Uml guarantees the preservation of the oper-
ators’ commutation relations:

[b̂m, b̂†
m′ ] = δmm′ , [b̂m, b̂m′ ] = 0. (1.30)

The total energy of the field given by

Ĥ = ∑
l

h̄ω0

(
â†

l âl +
1
2

)
= ∑

m
h̄ω0

(
b̂†

mb̂m +
1
2

)
, (1.31)

is also preserved throughout the mode basis transformation.

1.2.2 Quantum states

Pure states

The state of an isolated quantum system is fully characterized by the normalized
vector |ψ⟩ belonging to a Hilbert space. The normalization condition ensures that
⟨ψ|ψ⟩ = 1. Each physically measurable quantity, referred to as an observable in quan-
tum physics, is associated with a self-adjoint operator Â† = Â acting on that Hilbert
space. The potential outcomes of a measurement are determined by the eigenvalues
λi of the operator Â. According to the Born rule, the probability of measuring a spe-
cific eigenvalue λi is given by the mean value of the projection P̂i onto the eigenspace
of Â corresponding to λi:

p(λi) = ⟨ψ|P̂i|ψ⟩. (1.32)

The simplest example of the state of the optical mode â is the minimal energy
state, known as the vacuum state |0⟩, corresponding to the ground state of the system.
No photons can be subtracted from the vacuum state, i.e.

â|0⟩ = 0. (1.33)

Applying the photon creation operators â† to the vacuum state generates a se-
quence of Fock states:

|n⟩ = (â†)n
√

n!
|0⟩. (1.34)

These states are the eigenstates of the photon number operator N̂ = â† â and the
field Hamiltonian eq. (1.31), representing a fixed number of photons in the mode.
Measuring the number of photons in this state will always yield the exact result n.
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The set of Fock states constitutes the complete basis of quantum states for the mode:

∑
n
|n⟩⟨n| = Î, (1.35)

where Î is the identity operator.
Another important example of a quantum state is a coherent state |α⟩, describing

the light generated by an ideal laser. This state is an eigenstate of the annihilation
operator, corresponding to the eigenvalue α, an arbitrary complex number:

â|α⟩ = α|α⟩. (1.36)

This state can be obtained from a vacuum state with a displacement operator:

|α⟩ = D̂(α)|0⟩ = exp
[
αâ† − α∗ â

]
|0⟩. (1.37)

Two different coherent states are not orthogonal to each other:

⟨β|α⟩ = exp
[
−1

2
(|β|2 + |α|2 − 2β∗α)

]
̸= 0. (1.38)

The set of coherent states forms an overcomplete basis:∫
d2α|α⟩⟨α| = π Î. (1.39)

The coherent state can be expressed in the Fock basis as:

|α⟩ = e−
|α|2

2 ∑
n

αn
√

n!
|n⟩. (1.40)

Using the Born rule and projectors on the Fock state P̂n = |n⟩⟨n|, we can determine
the photon-number statistics for this state:

p(n) = e−|α|2 (|α|2)n

n!
, (1.41)

representing a Poisson distribution with parameter λ = |α|2. The mean number of
detected photons in this state is N = |α|2, and its variance is ∆2N = N = |α|2. This
degree of uncertainty in the number of photons, where the variance equals the mean,
is commonly known as shot noise or Poisson noise.

Mixed states

If the state of the mode is not perfectly controlled, i.e. there is a set of classical proba-
bilities pk (with ∑ pk = 1) of obtaining the mode in the states |ψk⟩, the measurement
statistics can be described using the density operator ρ̂:

ρ̂ = ∑
k

pk|ψk⟩⟨ψk|. (1.42)
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By construction, the density operator ρ̂ is Hermitian, positive semi-definite and has
a unit trace:

ρ̂† = ρ̂, ρ̂ ≥ 0, Tr ρ̂ = 1. (1.43)

The Born rule for the density operator description can be obtained using the full
probability formula:

p(λi) = ∑
k

pk⟨ψk|P̂i|ψk⟩ = Tr(P̂iρ̂), (1.44)

and the mean value for any operator Â is defined as:

⟨A⟩ = ∑
k

pk⟨ψk|Â|ψk⟩ = Tr(Âρ̂). (1.45)

The trace of the squared density operator is referred to as the purity of the quan-
tum state:

P = Tr ρ̂2. (1.46)

If the state can be represented as a vector |ψ1⟩, i.e., p1 = 1 and ρ̂1 = |ψ1⟩⟨ψ1|, it has
unit purity:

P = Tr ρ̂2 = Tr ρ̂ = 1. (1.47)

Such a state is called a pure state. In general, the purity has values smaller or equal
to one P ≤ 1, characterizing how much a state is mixed.

Another example of a situation where the system under study can only be de-
scribed with the density operator is when it is entangled with an external system. If
we consider an entangled pair of modes â and b̂ sharing only one photon:

|ψ⟩âb̂ =
|0⟩â|1⟩b̂ + |1⟩â|0⟩b̂√

2
, (1.48)

the mode â can be individually described only with a density operator:

ρ̂â = Trb̂

(
|ψ⟩⟨ψ|âb̂

)
=

|0⟩⟨0|â + |1⟩⟨1|â
2

, (1.49)

which is a maximally mixed state in the subspace of Fock states |0⟩â and |1⟩â, with
its purity equal to P = 1/2.

An important example of a mixed state is a thermal state, which describes the
statistics of black body radiation. This state can be represented as a classical mixture
of Fock states weighted with probabilities given by the Bose-Einstein distribution:

ρ̂th =
1

N + 1 ∑
n

(
N

N + 1

)n

|n⟩⟨n|, (1.50)

where N = ⟨N̂⟩ = Tr(ρ̂thN̂) is the mean number of photons in the state, and the
photon-number variance is

∆2N = N + N2. (1.51)

The purity of the thermal state equals P = 1/(1 + 2N).
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The photon number statistics, with the variance being higher than the average
∆2N > N, is often referred to as Super-Poissonian statistics. In the limit N ≪ 1,
i.e., when the average emitted number of photons per coherence time of the thermal
source is very small, one can neglect the N2 term in eq. (1.51). In this case, the
statistics of the thermal source is close to Poissonian, i.e., ∆2N ≈ N, which is called
the Poissonian limit, or sometimes we will refer to it as faint source approximation. Note
that natural thermal sources have a very short coherence time, and thus often can be
considered using a "faint source" approximation. It’s important to clarify that this
does not imply a low flux of photons from these sources but rather a small number
of photons emitted during the coherence time of the source, i.e. their short coherent
time.

Even in the Poissonian limit, where the photon number statistics of thermal light
are equivalent to those of coherent light, a fundamental difference persists between
these two cases, arising from the phase noise of the thermal state. This difference is
described in detail in the following section.

1.2.3 Quantum coherency matrix

The quantum coherency matrix Γ(1)â
mn is an extension of the classical coherency matrix

given by eq. (1.20). In what follows, we will refer to it simply as the coherency
matrix. In a given mode basis u⃗l (⃗r, t) with corresponding field operators âl , it has
elements:

Γ(1)â
mn =

〈
â†

m ân

〉
. (1.52)

The diagonal part of this matrix defines the average numbers of photons at each
mode Γ(1)â

mm =
〈

N̂m
〉
=
〈

â†
m âm

〉
, while the non-diagonal elements are responsible for

the field correlations.
The mutual coherence between the two modes â1 and â2 is defined analogously

to a classical case eq. (1.21):

γ =
Γ(1)â

12√
Γ(1)â

11 Γ(1)â
22

=
⟨â†

1 â2⟩√
⟨â†

1 â1⟩⟨â†
2 â2⟩

. (1.53)

Note that γ is a complex number, and its complex phase defines the phase difference
between the modes â1 and â2. Thus, if one swaps the order of modes to the opposite
one â1 ↔ â2, the mutual coherence will change to its conjugate γ → γ∗.

Using eqs. (1.28) and (1.29), one can observe that in another mode basis {b̂l}, the
coherency matrix takes the form:

Γ(1)b̂
mn =

〈
b̂†

mb̂n

〉
= ∑

m′n′
Umm′Γ(1)â

m′n′U∗
n′n , (1.54)

i.e. it changes like a normal matrix under the transformation Umm′ .
Now, let us consider a coherency matrix of a two-mode coherent state. If the

phase between the modes â and b̂ is fixed the two-mode coherent state can be written
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as |ψ⟩â1 â2 = |α⟩â1 |β⟩â2 . The coherency matrix of this state is

Γ(1)â =

(
|α|2 α∗β
αβ∗ |β|2

)
. (1.55)

This is a degenerate matrix, and mutual coherence between the two modes has a
unit absolute value |γ| = 1. One can find a transformation of the form of eq. (1.22),
that diagonalizes the coherency matrix, such that only one mode of a new basis {b̂l}
is excited:

Γ(1)b̂ =

(
|α|2 + |β|2 0

0 0

)
. (1.56)

Thus a pair of modes â1,2 in coherent states can be represented as a single mode b̂1,
which is called a principal mode of the field. The same is true for an arbitrary number
of coherent modes, i.e. coherent field is a single mode in essence. In this way the
coherent states are always mutually coherent to each other, however, it does not
mean that the pair of modes can be mutually coherent without being in the coherent
state (see section 1.2.4).

Now let us consider a pair of independent thermal emitters ρ̂â1 â2 = ρ̂th
â1

ρ̂th
â2

. The
coherency matrix in this case is already diagonal and non-degenerate

Γ(1)â =

(
N1 0
0 N2

)
, (1.57)

where N1,2 are the mean numbers of photons in the modes â1,2 respectively. One can
see, that the pair of thermal sources does not have mutual coherence, i.e. γ = 0, and
this field configuration cannot be represented as a single mode.

Thus, the faint coherent state |α⟩â and the faint thermal state ρ̂th
â can have al-

most identical photon number statistics. But having a phase reference or a pair of
each state one can observe the difference between these two cases, coming from the
coherence properties.

1.2.4 Optical elements and detection

In this section, we explore some fundamental optical elements and their quantum
optics descriptions.

Phase shifter

The most basic passive linear optical element is a phase shifter, characterized by the
unitary transformation:

R̂(ϕ) = eiϕâ† â. (1.58)

In the Heisenberg picture, the action of this element leads to the following operator
transformation:

â → R̂†(ϕ)âR̂(ϕ) = eiϕ â, â† → R̂†(ϕ)â†R̂(ϕ) = e−iϕ â†. (1.59)
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Consequently, the phase shift introduces a complex phase factor to the field opera-
tors.

Beamsplitter

Another important optical element is a linear beamsplitter. This device has two in-
put and two output ports. If two modes â and b̂ have the same spatial and temporal
profile, their interaction on a beamsplitter is described by the operator

T̂ab = eiθ(â† b̂+âb̂†), (1.60)

where the parameter θ characterizes the beamsplitter. This operation leads to the
following operator transformation in the Heisenberg picture:

âout =T̂†
ab âT̂ab = â cos θ + ib̂ sin θ,

b̂out =T̂†
abb̂T̂ab = b̂ cos θ + iâ sin θ.

(1.61)

It is important to note that in practical situations, the phase shifts of the transmitted
and reflected beams depend on the material and geometry of the beamsplitter. With
the freedom to choose a phase reference for each mode, it is often practical to choose
it in a way so that the transformation takes the form of a rotation in the space of field
operators:

âout =â cos θ + b̂ sin θ,

b̂out =b̂ cos θ − â sin θ.
(1.62)

In the following, we will stick to this choice of the phase reference.
Let us consider one important example: the combination of a pair of coherent

states |α⟩a and |β⟩b on a beamsplitter. Since coherent states are eigenstates of anni-
hilation operators, they transform as follows under a beamsplitter transformation:

T̂ab|α⟩a|β⟩b = |α cos θ + β sin θ⟩a|β cos θ − α sin θ⟩b. (1.63)

This corresponds also to the transformation of classical field amplitudes on the beam-
splitter.

It’s important to note that the interaction of two coherent states on a beamsplitter
results in two independent coherent states, represented as a direct product of states
of individual modes. This signifies that any measurements conducted on modes âout
and b̂out yield independent (uncorrelated) outcomes. This is a distinctive character-
istic of coherent states and does not hold for the interaction of arbitrary states on a
beamsplitter.

Optical losses (attenuation)

When a light beam propagates through a medium and encounters various optical
elements, a portion of it can be lost through undesired reflection and absorption. If
we focus only on the light that successfully passes through the optical system, the
transformation describing the losses does not take the form of a unitary operation
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since the system is opened in this case. In this context, losses are often characterized
by the Lindblad Master Equation [Manzano 2020].

However, this non-unitary process can be represented as unitary in an expanded
space of modes [Fabre 2023]. Intuitively, this can be grasped by imagining that all
the lost light is reflected into some unobserved mode. Thus, by incorporating the
reflected light into the model, one gets a closed system with unitary dynamics.

Let us consider the pure state |ψ⟩a experiencing losses, characterized by the trans-
missivity factor κ < 1. It means that the mean energy of the state gets multiplied by κ:

E0 = a⟨ψ|Ĥ|ψ⟩a
loss−−→ E f = κE0. (1.64)

This process can be represented in a unitary manner by introducing an additional
mode b̂ to the scenario. Assuming that all light from mode â is reflected into mode
b̂, this can be described by a straightforward beamsplitter transformation given by
eq. (1.60):

|ψ f ⟩ab = T̂ab(θ)|ψ0⟩a|0⟩b, (1.65)

where cos2 θ = κ. Typically, the mode b̂ is considered to be initially in the vacuum
state. However, if the optical system’s temperature is high enough to have a non-
negligible number of thermal photons, or if there is strong ambient light entering
the system, the initial state of mode b̂ may be considered as, for example, a thermal
state. This process is called thermalisation.

It is important at this point to exclude mode b̂ from the consideration. This ex-
clusion is necessitated by the unavailability of lost light, making it impossible to
measure or manipulate. Consequently, the state of the mode after the losses can be
expressed as:

ρ̂a = Trb

[
|ψ f ⟩⟨ψ f |ab

]
. (1.66)

In the general scenario, this state is not pure due to the presence of entanglement
between modes â and b̂ in the state |ψ f ⟩ab. In the exceptional case where the initial
state is a coherent state |α⟩a, it remains a pure coherent state |α

√
κ⟩a after the losses.

The discussed approach is readily extendable to initially mixed states.
Often, the most convenient method of describing loss involves representing the

beamsplitter transformation in the Heisenberg picture, as outlined in eq. (1.62) —
that is, describing it as the transformation of the field operator rather than the states:

âout =
√

κâ +
√

1 − κb̂. (1.67)

This allows to describe the transformation of the Fock state |N0⟩a (1.34) under losses
as follows:

|N0⟩a =
(â†)N0

√
N0!

|0⟩a
loss−−→ |ψ f ⟩ab =

(
√

κâ† +
√

1 − κb̂†)N0

√
N0!

|0⟩ab. (1.68)

Tracing out the mode b̂, as outlined in eq. (1.66), we obtain the output state of mode
â as:

ρ̂a =
N0

∑
m=0

(
m
N0

)
κm(1 − κ)N0−m|m⟩⟨m|a, (1.69)
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where (m
n) = m!/(n!(m − n)!) represents binomial coefficients.

Thus starting from the arbitrary state ρ̂0 with photon number statistics

pn = ⟨n|ρ̂0|n⟩, (1.70)

after the losses, one obtains the state ρ̂ f with the photon number statistics given by
[Kelley 1964; Vogel 2006]

qn = ⟨n|ρ̂ f |n⟩ =
∞

∑
m=n

(
m
n

)
κn(1 − κ)m−n pm, (1.71)

This transformation is often referred to as the Bernoulli transformation [Kiss 1995]. It
has a clear physical interpretation: for each term in the sum, starting from m pho-
tons (with corresponding probability pm), it is multiplied by κn — the probability of
n photons being transmitted, and (1 − κ)(m−n) — the probability of m − n photons
being lost. The binomial coefficients take into account that photons are indistin-
guishable and that there are (m

n) possibilities to select m − n lost and n transmitted
photons from m.

Photodetection

Finally, we delve into the process of light detection. For now, our focus will be on
direct photodetection, while field measurements such as homodyne and heterodyne
detection will be addressed in the next section. Today, a diverse range of technolo-
gies for photon detection is available, including classical semiconductor photodi-
odes, avalanche photodiodes, photomultiplier tubes, charge-coupled devices, su-
perconducting nanowire single-photon detectors, quantum dot detectors, transition
edge sensors, bolometers, and more. Each technology comes with its set of advan-
tages and excels in specific conditions and requirements, such as flux and spectrum
of the detected light, detection efficiency and noise level, necessary temporal and
spatial resolution, operating temperature, and so forth. Nevertheless, the ultimate
goal of these devices in most cases is to measure the energy of the field, essentially to
count the number of photons. Many detectors used in quantum optics are so-called
on-off detectors, meaning they do not resolve the number of photons. The response of
these detectors does not depend on the number of absorbed photons if it is not zero.
However, in this study, we primarily focus on photon number-resolving detectors,
which produce different responses when absorbing different amounts of photons.
Examples include photodiodes in the linear regime for intense light, charge-coupled
devices [Lesser 2015], superconducting nanowire single-photon detectors [Esmaeil
Zadeh 2021; Tao 2019], and transition edge sensors [Morais 2022], among others.
In cases where the analyzed field is very weak and its two-photon component is
negligible, on-off detectors do not become saturated and can be used on par with
photon-number-resolving detectors.

The observable N̂(⃗r, t) associated with photodetection conducted on a small area
around point r⃗ and at time t on a given beam is proportional to Ê(⃗r, t)†Ê(⃗r, t)
[Glauber 1963; Fabre 2020]. Then, the number of photons detected in volume VD
(given by the spatial resolution of the detector) within the time interval t ∈ [0, tD]
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(temporal resolution of the detector) is given by

N̂ =
1
V

∫
VD

d⃗r
∫ tD

0
dt ∑

m,n
b̂†

mb̂n f ∗m (⃗r, t) fn (⃗r, t). (1.72)

It’s important to note that this observable generally contains cross-terms such as
b̂†

mb̂n. Therefore, if the detector has sufficient spatial or temporal resolution, the pho-
todetection signal is sensitive to the coherence between different modes.

Now, let us consider the situation where the set of modes with numbers m ∈ D is
entirely contained within the detection volume (VD, tD), while the rest of the modes
are localized outside of the detection volume. In this case, the orthogonality of the
modes leads to the detected number of photons given by

N̂ = ∑
m∈D

b̂†
mb̂m. (1.73)

This implies that the measurement result in this scenario solely comprises the num-
ber of photons in the modes belonging to D and does not depend on any correla-
tions. Therefore, if one aims to directly measure the energy of the subset of modes
D, it is necessary to localize it in a spatial-temporal volume away from the other
modes. This sorting procedure is referred to as mode demultiplexing. In this study,
we are interested in spatial (transverse) mode demultiplexing, often referred to as
SPADE [Tsang 2016], the methods of performing this operation are discussed in sec-
tion 3.2.3.

In practical scenarios, the statistics of measurement outcomes may not perfectly
follow the quantum statistics of the measured state. Firstly, various fluctuations
within the measurement setup introduce additional noise. Secondly, detectors typ-
ically exhibit finite photodetection efficiency, which is equivalent to experiencing
losses before the detection. Additionally, detectors may generate false detection
events due to ambient light or thermal fluctuations in the electronics. All these ef-
fects may result in a difference in the mean detected signal, from the mean number of
photons in the state. However, by appropriately calibrating the detector and assum-
ing its parameters remain stable, one can always correct for this difference (coming
from losses, dark counts, etc.) and rescale the mean measured number of photons
to approximate the mean number of photons in the state, i.e., Ndetected = ⟨N̂⟩. It’s
noteworthy that this compensation often amplifies the noise in the measurement
results.

Therefore, the primary challenge lies in the additional noise present in the detec-
tion statistics:

∆2Ndetected = ∆2N + ∆2NEN . (1.74)

The term ∆2NEN is often referred to as detection noise or electronic noise. Properly
accounting for this noise is often critical in metrological applications.

1.3 Continuous variable representation of quantum states

In a general scenario, the density operator ρ̂ (or the state vector |ψ⟩) characterizing
the quantum state of the mode possesses infinite dimensions when expressed in a
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discrete basis. Consequently, it may not always be the most practical tool, particu-
larly in numerical computations. Rather than employing a discrete basis, one can
opt for the eigenvectors of operators with a continuous spectrum. In this section, we
introduce such operators, commonly utilized in quantum optics, and elucidate the
continuous variable (CV) representation of quantum states.

1.3.1 Quadrature operators

In classical optics, the state of the mode f⃗m (⃗r, t) is entirely described by the complex
amplitude Em introduced in eq. (1.10), encompassing its real and imaginary parts. In
quantum optics, corresponding observables known as quadrature operators are con-
structed:

q̂m = âm + â†
m, (1.75)

p̂m = i(â†
m − âm). (1.76)

Using these notations, the electric field operator takes the form:

⃗̂E(+) (⃗r, t) = ∑
l
E (1)

l
q̂m + i p̂m

2
u⃗l (⃗r, t) (1.77)

The quadrature operators are Hermitian and correspond to observables. Each of
them has a continuous spectrum

q̂m|q⟩m = q|q⟩m, (1.78)

that constitutes a full continuous orthonormal basis

m⟨q|q′⟩m = δ(q − q′), (1.79)∫
dq |q⟩⟨q|m = 1. (1.80)

Two quadrature operators of the same mode do not commute:

[q̂m, p̂m] = q̂m p̂m − p̂mq̂m = 2i. (1.81)

Thus, following the Heisenberg uncertainty principle, they cannot be defined simul-
taneously:

∆q2
m∆p2

m ≥ 1
4
|⟨[q̂m, p̂m]⟩|2 = 1. (1.82)

The quadrature operators of different orthogonal modes commute, i.e. for m ̸= n:

[q̂m, p̂n] = [q̂m, q̂n] = [ p̂m, p̂n] = 0. (1.83)

The generalized quadrature operator can defined as

q̂θ
m = q̂m cos θ + p̂m sin θ = âme−iθ + â†

meiθ . (1.84)
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The commutation relation for this case can be written as

[q̂θ
m, q̂θ+π/2

m ] = 2i. (1.85)

One can observe that the phase shift R̂(θ) defined in eq. (1.58), transforms the q̂
quadrature into a generalized quadrature q̂θ

m. In other words, a phase shift induces
a rotation in the phase space.

For a single-mode coherent state |α⟩, the mean values of the quadratures are:

⟨α |q̂| α⟩ = 2 Re α, ⟨α | p̂| α⟩ = 2 Im α. (1.86)

Note that different normalization conventions for the definition of quadratures exist.
Here, we intentionally use the one that leads to the variances of the two quadratures
of the coherent state being

∆2q =
〈
α
∣∣q̂2∣∣ α

〉
− ⟨α |q̂| α⟩2 = 1, (1.87)

∆2 p =
〈
α
∣∣ p̂2∣∣ α

〉
− ⟨α | p̂| α⟩2 = 1. (1.88)

As evident, the variances of both quadratures are unity and independent of the
state’s amplitude in the case of a coherent state. Therefore, the coherent state can
be fully characterized through the mean values of its quadratures. However, this is
not the case for more general states.

Besides, the coherent states achieve the saturation of the inequality (1.82), signi-
fying the minimum attainable product of quadrature uncertainties. These findings
also encompass the vacuum state |0⟩ since it can be regarded as a coherent state with
zero amplitude. Consequently, the variances of both quadratures in a vacuum state
also equal 1. Remarkably, for some states, the variance of certain quadratures can
be less than 1, indicating that the quadrature noise can be smaller than in a vacuum
state. Such states are referred to as squeezed states.

Squeezed states

In a broad sense, any state with the smallest variance of generalized quadrature
below the vacuum noise level is called a squeezed state:

min
θ

∆2qθ = min
θ

[
⟨(q̂θ)2⟩ − ⟨q̂θ⟩2

]
< 1. (1.89)

The corresponding minimum quadrature qθs is termed a squeezed quadrature. This
advantageous property always comes at the expense of the orthogonal quadrature,
which becomes "antisqueezed", ensuring the uncertainty inequality:

∆2qθs ∆2qθs+π/2 ≥ 1. (1.90)

To generate a squeezed state, one must leverage a non-linear process, such as
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optical parametric amplification [Andersen 2016]. The squeezing process can be ef-
fectively described using the Stoler squeeze operator [Stoler 1970]:

Ŝ(ξ) = exp
[
−1

2

(
ξ(â†)2 − ξ∗ â2

)]
, (1.91)

where the complex number ξ = rei2θs determines the degree of squeezing r > 0 and
the orientation of the squeezed quadrature θs. Since the operator Ŝ(ξ) is unitary, it
preserves the purity of the state. The state

|ξ⟩ = Ŝ(ξ)|0⟩ (1.92)

is known as the squeezed vacuum. The mean quadratures of this state are zero,

⟨ξ|q̂|ξ⟩ = 0, ⟨ξ| p̂|ξ⟩ = 0, (1.93)

similar to a vacuum state. However, the variances of the quadratures differ from the
vacuum noise:

∆2q =
〈
ξ
∣∣q̂2∣∣ ξ

〉
− ⟨ξ |q̂| ξ⟩2 = e−2r, (1.94)

∆2 p =
〈
ξ
∣∣ p̂2∣∣ ξ

〉
− ⟨ξ | p̂| ξ⟩2 = e2r, (1.95)

where the direction of squeezing is chosen to be θs = 0. Since r > 0 the q̂ quadrature
is squeezed, while the p̂ quadrature is antisqueezed. The product of the variances
satisfies the Heisenberg inequality, establishing the squeezed vacuum as a minimum
uncertainty state. It’s essential to note that the squeezing operation does not conserve
the energy of the system:

⟨ξ|â† â|ξ⟩ = sinh2 r ̸= 0, (1.96)

indicating that the squeezing process requires an additional source of energy.
To analyze a general squeezed state, it is instructive to examine the action of the

Stoler operator Ŝ† on the quadrature operators. Assuming θs = 0, the following
transformation is observed:

Ŝ†(ξ)q̂Ŝ(ξ) = e−r q̂, Ŝ†(ξ) p̂Ŝ(ξ) = er p̂. (1.97)

This indicates that the operator Ŝ(ξ) squeezes the phase space in one direction and
expands it in another direction.

1.3.2 Wigner function

Utilizing a complete continuous basis of states with well-defined quadrature q̂ al-
lows for the decomposition of the density operator ρ̂. However, this approach is not
frequently employed in practical applications. The basis vectors |q⟩ do not represent
physical states (as they do not belong to a Hilbert space). In experiments, measure-
ments typically involve not only the quadrature q̂ but also the quadrature p̂ and
their linear combinations. Therefore, a robust representation should symmetrically
incorporate all quadratures to enhance operational significance. This advantage is
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commonly attained by employing a quasiprobability distribution to characterize the
quantum state.

In the single-mode case, the quasiprobability distribution is a function of real
coordinates (q, p) in the phase space. One of the most useful quasiprobability distri-
butions is the Wigner function. It can be mapped with the density operator with the
following transformation

Wρ̂(q, p) =
1

2π

∫ ∞

−∞
eivp ⟨q − v| ρ̂ |q + v⟩ dv (1.98)

where the state |q+ v⟩ is an eigenstate of the quadrature operator q̂ with correspond-
ing eigenvalue q + v.

The Wigner function is real and normalized to 1:∫
dq dp Wρ̂(q, p) = Trρ̂ = 1. (1.99)

Its marginal distributions give the probability distributions of the quadratures q
and p ∫

dp Wρ̂(q, p) = ⟨q|ρ̂|q⟩ = P(q) (1.100)∫
dq Wρ̂(q, p) = ⟨p|ρ̂|p⟩ = P(p). (1.101)

Note that both quadratures cannot be measured at the same time, since their opera-
tors do not commute. Thus, the Wigner function is a quasiprobability but not a joint
probability distribution. For some states Wρ̂(q, p) can get negative values.

In general, the mean value of an arbitrary operator Â can be calculated as

⟨Â⟩ρ̂ = Tr(ρ̂Â) = 2π
∫

R2
Wρ̂(q, p)WÂ(q, p) dq dp, (1.102)

where Wρ̂(q, p) and WÂ(q, p) are defined according to eq. (1.98). This property can
be used to determine the elements of the density matrix ρmn in any basis {|vm⟩} from
the Wigner function using Â = |m⟩⟨n|.

The Wigner function of a coherent state |α⟩ is given by

Wρ̂(q, p) =
1

2π
e−((q−2 Re α)2+(p−2 Im α)2)/2. (1.103)

It exhibits the shape of a symmetric two-dimensional Gaussian bell distribution with
unit variance, having a mean at (2 Re α, 2 Im α). States characterized by Gaussian
Wigner functions are referred to as Gaussian states. Thermal states and squeezed
vacuum states exhibit Gaussian Wigner functions, as illustrated in fig. 1.1. Opera-
tions that maintain the Gaussianity of the state are termed Gaussian operations. This
encompasses linear operations (phase shifts, displacements, and beamsplitters) as
well as squeezing. Losses also maintain Gaussianity, since they can be represented
as a beamsplitter operation with another Gaussian state (typically vacuum).
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FIGURE 1.1: Wigner functions for (a) coherent state, (b) thermal state
and (c) squeezed vacuum state.

In the K-mode case, the Wigner function depends on 2K real coordinates R⃗ =
(q1, q2, ...qK, p1, p2, .., pK)

T of the phase space and can be defined as [Walschaers 2021]

Wρ̂(R⃗) =
1

(2π)K

∫
R2K

Tr
(

ρ̂ eiR⃗′T ⃗̂Q
)

e−iR⃗T R⃗′
dR⃗′, (1.104)

with ⃗̂Q being the vector composed of the quadrature operators

⃗̂Q = (q̂1, q̂2, ...q̂K, p̂1, p̂2, .., p̂K)
T. (1.105)

In a multimode scenario, a general Gaussian state is associated with the follow-
ing Wigner function:

Wρ̂(R⃗) =
1

(2π)K
√

det ΓQ
exp

[
−
(

R⃗ −
〈
⃗̂Q
〉)T

Γ−1
Q

(
R⃗ −

〈
⃗̂Q
〉)]

. (1.106)

The matrix ΓQ is commonly known as the quadrature covariance matrix and is
defined in the next section. Hence, any Gaussian state is fully characterized by

the mean values of quadratures
〈
⃗̂Q
〉

, commonly known as the mean field, and the
quadrature covariance matrix ΓQ. The purity P of a Gaussian state is simply related
to the covariance matrix by

P =
1

det ΓQ
. (1.107)

1.3.3 Quadrature covariance matrix

The quadrature covariance matrix [Simon 1994] is real 2K × 2K matrix defined on a
given mode basis as

ΓQ =
1
2

〈
⃗̂Q ⃗̂QT +

(
⃗̂Q ⃗̂QT

)T
〉

, (1.108)

with ⃗̂Q defined in eq. (1.105). Using this notation, the multimode version of the
Heisenberg inequality can be formulated as

ΓQ +

(
0K i 1K

−i 1K 0K

)
> 0, (1.109)
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where 0K and 1K represent the zero and identity matrices of size K × K, and the
inequality indicates that the matrix is positive-definite.

Due to the structure of the covariance matrix, combining the Williamson
[Arvind 1995] and Bloch-Messiah [Bloch 1962; Braunstein 2005] reductions, it can
be represented as

ΓQ = O1KO2ΓWOT
2 KOT

1 , (1.110)

where the diagonal matrix

ΓW = diag(κ1, ..., κK, κ1, ..., κK), (1.111)

is composed from the Williamson eigenvalues κi ≥ 1. A quadrature covariance
matrix equal to ΓW would correspond to the thermal state of all modes, with the
parameters κi defining the thermal energy of each mode. In the case of Gaussian
states this matrix defines the purity of the state P = 1/ ∏i κi.

The matrix K is also diagonal

K = diag(σ1, ..., σK, σ−1
1 , ..., σ−1

K ), (1.112)

with real and positive elements σi > 0 responsible for the squeezing of quadratures.
It is evident that the transformation K squeezes one of the quadratures for each
mode and expands the orthogonal quadrature. In essence, it describes a squeezing
operation.

The orthogonal matrices O1,2 are defined as

O1,2 =

(
Re U1,2 Im U1,2

− Im U1,2 Re U1,2

)
, (1.113)

where U1,2 are the unitary matrices K × K. These matrices describe general basis
transformation between the modes and can be represented with a set of beamsplit-
ters and phaseshifts.

In the case of a single mode (K = 1), the Williamson matrix ΓW becomes propor-
tional to the identity matrix, and as a result, it commutes with the matrix O2. Con-
sequently, the transformation O2 does not impact the quadrature covariance matrix
in this scenario. Thus, the quadrature covariance matrix of the single mode can be
parameterized using these three variables:

• Williamson eigenvalue κ, which characterizes the purity (or thermality) of the
state.

• Parameter σ, responsible for the squeezing. For convenience, further we will
use the parameter s = σ2.

• Parameter ϕs (arising from the 1 × 1 unitary U1 = eiϕs ), defining the direction
of squeezing.

1.3.4 Quadrature measurements

Another essential type of measurement in quantum optics is field measurements,
providing direct access to the quadratures of the optical field. Originating initially in
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the early 20th century for radio-frequency applications, this measurement technique
became exceptionally valuable in the optical domain with the invention of coherent
optical sources, the lasers.

Homodyne detection

The most widely employed experimental procedure for conducting quadrature mea-
surements on an optical state is homodyne detection. The fundamental scheme of
homodyne detection is illustrated in fig. 1.2. It involves combining the state to be
measured (mode â) with a reference field (mode b̂) on a balanced beamsplitter and
subsequently calculating the difference between intensity measurements at both out-
puts.

FIGURE 1.2: Schemes of the phase space measurements. (a) Homo-
dyne detection, (b) double homodyne (heterodyne) detection. The
dashed red lines represent beamsplitters, blue cylinders — the pho-

todetectors, LO stands for Local Oscillator.
Adapted from [Chabaud 2021].

The observable operator for this measurement is given by:

δî = â†
out âout − b̂†

outb̂out = â†b̂ + âb̂†, (1.114)

where the beamsplitter transformation (1.62) was employed. If the reference field,
also known as a local oscillator (LO), is prepared in the coherent state |β⟩b, with β =
|β|eiϕ, then the mean value of the observable δî is proportional to the mean value of
the generalized quadrature q̂ϕ

a :

⟨δî⟩ = |β|⟨â†eiϕ + âe−iϕ⟩ = |β|⟨q̂ϕ
a ⟩. (1.115)

Thus, by adjusting the phase ϕ of the LO, one can select which quadrature is being
measured.
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Moreover, for strong LOs |β| ≫ 1 higher moments of the observable δî are ap-
proximately proportional to the corresponding moments of the generalized quadra-
ture q̂ϕ

a :
⟨δîn⟩ ≈ |β|n⟨(q̂ϕ

a )
n⟩. (1.116)

This observation verifies that homodyne detection with a strong LO not only ac-
curately measures the mean of the quadrature but also its variance and higher mo-
ments1. In essence, it projects the state onto the eigenstate |qϕ⟩a of the quadrature op-
erator q̂ϕ

a . Homodyne detection finds widespread practical applications, especially
in scenarios involving squeezed states.

Double homodyne detection

Double homodyne detection, sometimes also referred to as heterodyne detection, involves
measuring both quadratures of a single-mode state ρ̂. This process includes splitting
the state on a beamsplitter and conducting two homodyne detections, one on each
output with a π/2 phase shift between them, as illustrated in fig. 1.2(b). This proce-
dure comes at a cost — a vacuum entering the system introduces additional noise to
the measurements. The measured quadrature q̂1 is related to the quadrature q̂ of the
state as:

q̂1 =
q̂ + q̂v√

2
, (1.117)

where q̂v is a quadrature of the vacuum state, i.e. ⟨q̂v⟩ = 0, ⟨q̂v p̂v⟩ = 0 and ⟨q̂2
v⟩ = 1.

To account for losses on the beamsplitter, one needs to multiply the measurement
results by

√
2:

q̂′1 =
√

2q̂1 = q̂ + q̂v. (1.118)

While the mean value of this observable coincides with the mean value of the quadra-
ture q̂:

⟨q̂′1⟩ = ⟨q̂⟩, (1.119)

the measured noise is higher than the original quadrature noise:

∆2q′1 = ⟨q̂2 + 2q̂q̂v + q̂2
v⟩ − ⟨q̂⟩2 = ∆2q + 1. (1.120)

Similarly, it can be shown that

p̂′2 =
√

2p̂2 = p̂ − p̂v, and ∆2 p′2 = ∆2 p + 1. (1.121)

Operators q̂′1 and p̂′2 commute, and these observables can be measured (and are mea-
sured) simultaneously.

Note that the measured quadrature covariance comes without an extra noise:

cov(q′1, p′2) = ⟨q̂ p̂ − q̂ p̂v + q̂v p̂ − q̂v p̂v⟩ − ⟨q̂ + q̂v⟩⟨ p̂ − p̂v⟩ = cov(q, p). (1.122)

1This property is often described by the approximate equality of the operators δî ≈ |β|q̂ϕ
a , which

holds true only when averaged over strong coherent states of the LO, where |β| ≫ 1.
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Therefore, the measured covariance matrix Γ(q̂′1, p̂′2) differs from the quadrature co-
variance matrix by the identity matrix I:

Γ(q̂′1, p̂′2) = ΓQ + I. (1.123)

Each measurement outcome (q′1, p′2) of double homodyne detection can be com-
bined into a complex number α = (q′1 + ip′2)/2, effectively projecting the measured
state onto a coherent state |α⟩. Consequently, it facilitates the sampling of the Husimi
Q function of the state, defined as:

Q(α) =
1
π
⟨α|ρ̂|α⟩. (1.124)

The Husimi function is another quasiprobability distribution that fully characterizes
the state ρ̂. It is linked to the Wigner function through the transformation:

Q(α) =
∫

d2β Wρ̂(β)W0(β − α), (1.125)

where W (α) = 4Wρ̂(q, p), and α = (q + ip)/2. Here, W0 represents the Wigner
function of the vacuum state, which can be derived from eq. (1.103).

The advantage of double homodyne detection, as opposed to homodyne detec-
tion, lies in its ability to directly sample the Husimi function, which contains all the
information about the state. In contrast, for homodyne detection, the Wigner func-
tion holds all the information about the state, but it cannot be directly sampled. Ho-
modyne detection samples its marginals instead, and to fully characterize the state,
one needs to vary the phase of the LO, i.e. change the quadrature being measured,
as shown in section 2.4.
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The objective of numerous physical experiments is to learn specific physical char-
acteristics of the studied system. In many cases, the characteristics of interest cannot
be directly accessed and must be inferred indirectly from the measurement results.
It is crucial to bear in mind the presence of inevitable noise in real measurement
outcomes. This noise arises both from imperfect control of experimental conditions
and the quantum nature of measurements. While the former can, in principle, be
mitigated through improved experimental techniques, the latter stems from intrin-
sic fundamental properties of nature. However, optimizing the probing strategy can
also contribute to reducing quantum noise.

In this chapter, we provide an overview of some aspects of parameter estimation
theory. Broadly, it can be defined as a branch of statistics and information theory
that addresses the estimation of unknown parameters in statistical models based on
observed data. In conjunction with metrology, parameter estimation theory analyzes
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potential sources of noise, and looks for optimal strategies for probing, measuring,
and data processing.

The first section of this chapter introduces some general concepts of parame-
ter estimation. The second section, drawing from the textbook [Kay 1998], articles
[Gessner 2019; Gessner 2020b], and some original studies, presents key bounds in
classical parameter estimation theory. Here, we introduce and discuss the primary
tool employed in this research — the method of moments for parameter estimation.
The third section delves into quantum parameter estimation theory, following the
detailed review [Liu 2019]. In the final section of this chapter, we provide a brief
overview of approaches to the characterization of quantum states, focusing particu-
larly on continuous-variable tomography [Lvovsky 2009]. We demonstrate the sim-
ilarity between quantum state characterization and parameter estimation problems,
enabling us to address these issues using the same set of instruments in chapter 4.

2.1 General parameter estimation scheme

FIGURE 2.1: The fundamental steps of inferring parameters.

In a general scenario, to determine the values of parameters θ⃗ = (θ1, θ2, ...)T

characterizing a physical system, a series of operations are typically performed, as
schematically depicted in fig. 2.1:

• In the next step, the probe interacts with the studied system. As a result, pa-
rameters of interest θ⃗ are encoded in the state of the probe: ρ̂0 → ρ̂(⃗θ). The
actual values of parameters θ⃗ are referred to as the ground truth. We presup-
pose that the parameters θ⃗, although unknown, are deterministically defined:
they are fixed and can be exactly determined. Working with random param-
eters, which will not be covered here, is the subject of Bayesian estimation
theory [Kay 1998; Trees 2001]. Nevertheless, the Bayesian approach can also
provide useful techniques for estimating deterministic parameters when prior
information is accessible.

• After the interaction, the probe undergoes a set of commuting measurements
⃗̂X = (X̂1, X̂2, ...)T. It is important to note that the measurement result x⃗ =
(x1, x2, ...)T is a stochastic vector as it includes measurement noise. Choosing
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an appropriate set of measurements can significantly improve the performance
of the scheme. The ultimate limit for the estimation precision, which can not
be overcome by detection optimization is given by the Quantum Cramér–Rao
bound discussed in section 2.3.

• In the final step, the values of parameters need to be estimated from the mea-
surement results x⃗. To achieve this, a data processing algorithm g⃗(x⃗) is em-
ployed. The resulting values ⃗̃θ = g⃗(x⃗) of the data processing are termed an
estimator. Note that as the measurement results x⃗ are inherently random, the
value of the estimator ⃗̃θ = g⃗(x⃗) is also random. The main purpose of the pa-
rameter estimation theory is to find an estimator that takes the measured data
to a set of parameters that lies as close as possible to the ground truth.

2.1.1 Characteristics of the estimators

Let us consider the main characteristics of the estimator ⃗̃θ. Its mean deviation from
the ground truth

B⃗(⃗θ̃) = ⟨⃗θ̃ − θ⃗⟩ (2.1)

is termed the bias of the estimator. If B⃗(⃗θ̃) = 0, the estimator ⃗̃θ is labeled as unbiased.
As the size of the measurement sample increases, unbiased estimators tend to con-
verge to the ground truth, whereas this is not always the case for biased estimators.

The fluctuations of the estimator are determined by the covariance matrix

cov⃗̃θ =
〈 (

⃗̃θ − ⟨⃗θ̃⟩
) (

⃗̃θ − ⟨⃗θ̃⟩
)T 〉

. (2.2)

The diagonal elements of this matrix represent the variances of each estimated pa-
rameter:

∆2θ̃α =
[
cov⃗̃θ

]
αα

=
〈 (

θ̃α − ⟨θ̃α⟩
)2
〉

, (2.3)

which signifies how much the estimations of θα are spread around the average value.
Here and throughout, Greek indices (α, β,...) are utilized to enumerate the parame-
ters of interest. The off-diagonal elements govern the correlation between the esti-
mates of θα and θβ.

A low variance of a biased estimator does not necessarily indicate the high qual-
ity of the estimator. For instance, the trivial estimator ⃗̃θ = 0⃗ has zero variance, but
it does not utilize measured data, and its values are not correlated with the ground
truth θ⃗.

To assess the overall efficiency of estimating parameter θα, both the bias and
the variance can be combined into a single metric, known as the mean squared error
(MSE):

MSE θ̃α =
〈
(θ̃α − θα)

2
〉
= ∆2θ̃α + B2(θ̃α). (2.4)

If one’s primary concern is parameter θα, the goal should be to minimize its MSE.
However, it is essential to recognize that minimizing the MSE for one parameter
may come at the cost of increasing the MSE for others. In some cases, the MSE for
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all parameters can be aggregated into a single value:

MSE⃗̃θ = ∑
α

MSE θ̃α, (2.5)

which characterizes the overall efficiency of the estimator ⃗̃θ. It is important to note
that this metric is defined up to an arbitrary normalization of each parameter θα,
especially if different parameters have different physical senses and units, and thus,
should be used with caution.

It is worth noting that in certain instances, biased estimators may offer advan-
tages. For example, considering physical limitations on the parameters often leads
to biased estimators. The resulting MSE of such an estimator is typically smaller
than the MSE of its unbiased counterparts [Eldar 2008]. However, throughout this
research, we primarily concentrate on unbiased estimators, as their mathematical
description is simpler and more firmly established in general cases. Thus, the main
characteristic of our unbiased estimator is the covariance matrix (2.2).

2.2 Classical parameter estimation theory

Classical parameter estimation theory focuses on studying estimators, which are
based on the measurement results x⃗ of given observables ⃗̂X. One key finding in
classical parameter estimation is the minimal bound on the noise of unbiased esti-
mators — the Cramér–Rao bound (CRB).

2.2.1 Fisher information and Cramér–Rao bound

We initiate our exploration with the single-parameter estimation problem. Let p(x⃗|θ)
be the probability density function for observing measurement outcome x⃗ given the
parameter value θ, with normalization∫

dx⃗ p(x⃗|θ) = 1. (2.6)

This function p(x⃗|θ) is often referred to as the statistical model. To quantify the infor-
mation that observables ⃗̂X carry about the unknown parameter θ in a given setup,
one can leverage the concept of Fisher information (FI) [Fisher 1925]:

F (θ, ⃗̂X) =
∫

dx⃗
1

p(x⃗|θ)

(
∂p(x⃗|θ)

∂θ

)2

=
∫

dx⃗ p(x⃗|θ)
(

∂ ln p(x⃗|θ)
∂θ

)2

. (2.7)

The FI quantifies how quickly the probability distribution p(x⃗|θ) changes with small
variations δθ in the parameter θ [Braunstein 1994]:

F (θ, ⃗̂X) = 8 lim
δθ→0

H2
(

p(x⃗|θ), p(x⃗|θ + δθ)
)

δθ2 , (2.8)
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where H2(p(x⃗), q(x⃗)) is the Hellinger distance, quantifying the similarity between the
probability distributions p(x⃗) and q(x⃗) [Hellinger 1909]. It is defined as:

H2(p(x⃗), q(x⃗)) =
1
2

∫
dx⃗
(√

p(x⃗)−
√

q(x⃗)
)2

= 1 −
∫

dx⃗
√

p(x⃗)q(x⃗). (2.9)

The physical significance of FI becomes particularly evident through the CRB, which
establishes a lower limit for the variance of unbiased estimators [Cramér 1946; Rao 1994;
Kay 1998]

∆2θ̃ ≥ 1

µF (θ, ⃗̂X)
, (2.10)

where µ is the number of repetitions of the parameter estimation procedure outlined
in fig. 2.1, i.e. using µ probes.

Proof. To prove the inequality (2.10), we start with the unbiasedness condition of the
estimator θ̃ = g(x⃗):

B(θ̃) =
∫

dx⃗ (g(x⃗)− θ)p(x⃗|θ) = 0. (2.11)

Taking the derivative with respect to θ, we obtain:∫
dx⃗ (g(x⃗)− θ)

∂p(x⃗|θ)
∂θ

−
∫

dx⃗ p(x⃗|θ) = 0. (2.12)

Using the probability normalization condition eq. (2.6) and the chain-derivative prop-
erty ∂p

∂θ = p ∂ ln p
∂θ we get:∫

dx⃗ (g(x⃗)− θ)p(x⃗|θ)∂ ln p(x⃗|θ)
∂θ

= 1. (2.13)

At this point, we can use a Cauchy-Schwarz inequality in the form(∫
dx⃗ f (x⃗)h(x⃗)

)2

≤
∫

dx⃗ f 2(x⃗)
∫

dx⃗ h2(x⃗), (2.14)

with f (x⃗) = (g(x⃗) − θ)
√

p(x⃗|θ) and h(x⃗) =
√

p(x⃗|θ) ∂ ln p(x⃗|θ)
∂θ . This results in the

following inequality:

∫
dx⃗ (g(x⃗)− θ)2 p(x⃗|θ)

∫
dx⃗ p(x⃗|θ)

(
∂ ln p(x⃗|θ)

∂θ

)2

≥ 1. (2.15)

The first integral corresponds to the MSE of the estimator, as defined in eq. (2.4).
The MSE coincides with the variance when dealing with unbiased estimators. The
second integral represents the FI as defined in eq. (2.7). Thus, we have successfully
demonstrated that for a single iteration of the estimation procedure, the lower bound
for the variance of an unbiased estimator is given by:

∆2θ̃ ≥ 1

F (θ, ⃗̂X)
. (2.16)
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Now, let’s examine the FI associated with two independent sets of measure-

ments, denoted as ⃗̂X and ⃗̂Y. Independence, in this context, implies that the mea-
surement outcomes form independent random vectors x⃗ and y⃗. Consequently, the
probability density of obtaining the outcomes x⃗ and y⃗ can be expressed as follows:

p(x⃗, y⃗|θ) = pX(x⃗|θ)pY (⃗y|θ). (2.17)

Computing the FI for this pair of measurements yields:

F (θ, (⃗̂X, ⃗̂Y)) =
∫

dx⃗dy⃗ pX(x⃗|θ)pY (⃗y|θ)
(

∂ ln pX(x⃗|θ)
∂θ

+
∂ ln pY (⃗y|θ)

∂θ

)2

= F (θ, ⃗̂X) +F (θ, ⃗̂Y) + 2
∫

dx⃗pX(x⃗|θ)∂ ln pX(x⃗|θ)
∂θ

∫
dy⃗pY (⃗y|θ)

∂ ln pY (⃗y|θ)
∂θ

. (2.18)

One of the last integrals can be transformed as∫
dx⃗pX(x⃗|θ)∂ ln pX(x⃗|θ)

∂θ
=
∫

dx⃗
∂pX(x⃗|θ)

∂θ
=

∂

∂θ

∫
dx⃗pX(x⃗|θ) = ∂

∂θ
1 = 0. (2.19)

Thus the FI of independent measurements is additive:

F (θ, (⃗̂X, ⃗̂Y)) = F (θ, ⃗̂X) +F (θ, ⃗̂Y). (2.20)

When employing µ probes, each followed by a set of measurements denoted as ⃗̂X,
the FI for the overall result becomes µF (θ, ⃗̂X), since the measurements over distinct
probes give statistically independent results. This characteristic, coupled with the
inequality (2.16), proves the CRB as expressed in eq. (2.10).

Multiparameter Cramér–Rao bound

In the context of multiparameter estimation, the information within the measure-
ment set ⃗̂X is quantified using the FI matrix, defined by elements [Kay 1998]

Fαβ (⃗θ, ⃗̂X) =
∫

dx⃗
1

p(x⃗|⃗θ)
∂p(x⃗|⃗θ)

∂θα

∂p(x⃗|⃗θ)
∂θβ

. (2.21)

The FI matrix is a symmetric positive-valued and positive-semidefinite matrix.
The CRB in the multiparameter scenario establishes a limit for the estimator co-

variance matrix, as expressed in eq. (2.2):

cov(⃗θ̃) ≥ 1
µ
F−1(⃗θ, ⃗̂X), (2.22)

where the matrix inequality A ≥ B implies that A − B is positive-semidefinite.
Since the diagonal elements of positive-semidefinite matrix are non-negative, the
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variances of the estimators θ̃α are limited by the diagonal elements of the FI matrix:

∆2θ̃α ≥ 1
µ
[F−1]αα. (2.23)

The total MSE eq. (2.5) of an unbiased estimator ⃗̃θ is constrained by the trace of the
inverse FI:

MSE⃗̃θ ≥ 1
µ

TrF−1. (2.24)

If the FI matrix is degenerate, meaning there is no inverse matrix, it suggests that
the selected set of observables ⃗̂X is not adequate for estimating all parameters θ⃗. In
this case, all the measurement results are independent of some linear combination of
the parameters θ⃗, thus all parameters can not be uniquely identified simultaneously.
To solve this issue, expanding the set of observables ⃗̂X is necessary. This expansion
may involve adding more compatible observables to ⃗̂X in some cases. Alternatively,

it might be more practical to select an additional set of observables ⃗̂Y (or multiple
sets) to be measured independently (on independent probes). Then, by utilizing the
additivity property (2.20), the degeneracy of the FI matrix can be resolved.

The CRB serves as a lower bound on the variance of an unbiased estimator, of-
fering a benchmark against which the performance of any unbiased estimator can
be assessed. Achieving the CRB indicates that an estimator is efficient, meaning it
attains the best possible precision given the available information in the data.

While finding an efficient estimator is generally challenging for finite datasets
[Kay 1998; Trees 2001], the CRB can always be asymptotically (in the limit of an infi-
nite number of measurements) saturated by the maximum likelihood estimator (MLE):

⃗̃θML = arg max
θ⃗

ln p(x⃗|⃗θ), (2.25)

where arg maxθ⃗ denotes the values of the parameters θ⃗ where the function ln p(x⃗|⃗θ)
has its maximum, i.e. the probability of a given outcome x⃗ is maximal for the pa-
rameters ⃗̃θML.

The MLE is a powerful and widely used method in statistics due to its many
strengths. Nevertheless, it is not without drawbacks and constraints. A primary
limitation lies in its computational complexity: determining the MLE necessitates
addressing intricate optimization problems, and the associated computational load
can be substantial. Addressing this challenge becomes especially noticeable in high-
dimensional parameter spaces, where the likelihood function (2.25) may display
multiple maxima or, in some instances, lack a maximum altogether.

Another difficulty of the MLE approach lies in the complexity of building the full
statistical model p(x⃗|⃗θ) and computing the FI itself, in case of a large space of out-
comes x⃗. Therefore, the general approach to parameter estimation, utilizing the MLE
for parameter extraction and the CRB for precision benchmarking, is not universally
applicable or convenient in practical scenarios. In numerous cases, opting for sim-
pler estimators, accompanied by their own bounds, can be advantageous. A widely
adopted approach with a simpler estimation procedure is the method of moments.
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2.2.2 Method of moments

The method of moments (MoM) constructs parameter estimators from the statistical
moments derived from the measured data [Kay 1998]. In our description, we focus
solely on the first moments of the set of operators ⃗̂X, that are measured simulta-
neously. This set may include not only operators of physical observables but also
their higher powers and various products. This approach enables us to extract all
necessary statistical moments of physical observables from the first moment of ⃗̂X.

In the following sections, we analyze the bounds for the MoM estimators in the
single- and multiparameter estimation scenarios and provide a practical way to sat-
urate these bounds (i.e. achieve the minimal variance of the estimation).

Single observable MoM

We begin our exploration of the MoM by considering the simplest scenario: estimat-
ing a single parameter θ based on the measurement outcomes of a single observable
Ŷ. When utilizing µ probes, the measurement yields outcomes y⃗ = (y1, ..., yµ)T. The
sample mean of these data is calculated as follows:

y(µ) =
1
µ

µ

∑
i=1

yi. (2.26)

The anticipated mean value ⟨Ŷ⟩θ for the observable Ŷ can be determined theo-
retically through

⟨Ŷ⟩θ = Tr[ρ̂(θ)Ŷ], (2.27)

where subscript θ reflects dependence on the parameter. Notably, finding ⟨Ŷ⟩θ typ-
ically does not necessitate determining the complete measurement statistic p(y|θ).
The function ⟨Ŷ⟩θ is commonly referred to as the calibration curve, and it can also
be determined experimentally by measuring a large dataset of Ŷ across a range of
unknown parameter values.

The MoM constructs an estimator θ̃ by seeking a parameter value such that the
expected value of the observable ⟨Ŷ⟩θ̃ matches the measured sample mean:

⟨Ŷ⟩θ̃ = y(µ). (2.28)

This equality is the central core of the MoM. It is often credited to Pafnuty Chebyshev
who introduced this approach in his proof of the central limit theorem back in 1887
[Fischer 2010].

The law of large numbers states that as the sample size increases, the sample
mean converges to the expected value:

lim
µ→∞

y(µ) = ⟨Ŷ⟩θ . (2.29)

This ensures that the moment-based estimator θ̃ is asymptotically unbiased. How-
ever, it is essential to recognize that the unbiasedness of the moment-based estimator
is not guaranteed for finite statistics µ.
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Note that eq. (2.28) may have multiple solutions in general case. Hence, we typ-
ically assume that if the calibration curve is non-monotonic, then we possess pre-
liminary information about the parameter’s value range, where only one solution of
eq. (2.28) exists. The degeneracy of the eq. (2.28) by itself and methods to resolve it
constitute an interesting topic for further research, and are only slightly addressed
in this thesis.

Finding the solution θ̃ = g(y(µ)) of the algebraic equation (2.28) may require the
use of numerical methods. Hence, the MoM does not always yield an explicit esti-
mator as an analytical function of the measured data y⃗. However, the mathematical
complexity of solving this single algebraic equation is typically much lower than
tackling the optimization problem for the MLE (2.25) , especially when dealing with
a large dataset size µ.

To assess the efficiency of the MoM estimator, we examine the propagation of
uncertainty in eq. (2.28). Assuming the calibration function ⟨Ŷ⟩θ is approximately
linear within the confidence interval θ̃ ± ∆θ̃, the variance of the estimator is given
by:

∆2θ̃ =
∆2y(µ)(
∂⟨Ŷ⟩θ

∂θ

)2 . (2.30)

In the following, we assume that the dataset is sufficiently large, so, following the
law of large numbers, the variance of the sample mean is:

∆2y(µ) =
∆2Y

µ
, (2.31)

where ∆2Y represents the variance of the observable Ŷ:

∆2Y = Tr[ρ̂(θ)Ŷ2]− Tr[ρ̂(θ)Ŷ]2. (2.32)

Therefore, the variance of the estimator is given by:

∆2θ̃ =
1
µ

∆2Y(
∂⟨Ŷ⟩θ

∂θ

)2 =
1

µ M(θ, X̂)
, (2.33)

where we introduce

M(θ, X̂) =

(
∂⟨Ŷ⟩θ

∂θ

)2

∆2Y
(2.34)

which we refer to as the moment-based sensitivity, or simply sensitivity. In the case
where only one observable is considered, it corresponds directly to the signal-to-
noise ratio. This measure determines the variance of the moment-based estimator
θ̃ = g(y(µ)).

Note that the assumed linearity of the calibration curve within the confidence
interval θ̃ ± ∆θ̃ is assured for a sufficiently large µ. Hence, due to the convergence
and unbiasedness of the estimator, the derivative ∂⟨Ŷ⟩θ

∂θ can be calculated either at the
estimated parameter value θ̃ or at the true value of parameter θ, depending on the
specific needs. In the subsequent discussions, all expressions dependent on θ are
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generally presumed to be evaluated at the ground truth values of the parameters,
unless explicitly stated otherwise.

Multiobservable MoM with single parameter

The next step is to generalize the estimation with the MoM to the case where multi-
ple observables ⃗̂X = (X̂1, X̂2, ...)T are being measured simultaneously for each probe,
and a single parameter θ is estimated from the measurement results. In this context,
we continue to view the estimator as a function of the sample means x(µ)j of all ob-
servables:

θ̃ = f (x(µ)1 , x(µ)2 , ...). (2.35)

Our objective is to construct a straightforward estimator, formulated as the so-
lution to a single algebraic equation, akin to eq. (2.28). To achieve this, we create a
linear combination of the measured sample means expressed as:

y(µ) = ∑
j

cjx
(µ)
j . (2.36)

Subsequently, we optimize the linear coefficients cj to attain the highest precision for
the estimator

θ̃ = g(y(µ)). (2.37)

In section 2.2.3 we demonstrate that this estimator, with the optimal choice of coeffi-
cients cj, is not less precise than the general MoM estimator (2.35), in the asymptotic
limit.

Due to linearity of quantum mechanics, the linear combination y(µ) can be re-
garded as a sample mean of observable Ŷ given by

Ŷ = ∑
j

cjX̂j = c⃗T ⃗̂X, (2.38)

where c⃗ = (c1, c2, ...)T. The expectation value of Ŷ is expressed as:

⟨Ŷ⟩θ = c⃗T⟨⃗̂X⟩θ , (2.39)

and its variance is given by:

∆2Y = ⟨⃗cT ⃗̂X ⃗̂XT c⃗⟩θ − ⟨⃗cT ⃗̂X⟩θ⟨⃗̂XT c⃗⟩θ = c⃗T Γ⃗c, (2.40)

where Γ is the covariance matrix of the observables, defined by its elements:

Γjk = ⟨X̂jX̂k⟩θ − ⟨X̂j⟩θ⟨X̂k⟩θ . (2.41)
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Thus, the problem is reduced to the previous example of a single observable MoM,
with the estimation variance defined in eq. (2.33):

∆2θ̃ =
1
µ

∆2Y(
∂⟨Ŷ⟩θ

∂θ

)2 =
1
µ

c⃗T Γ⃗c(⃗
cT ∂⟨⃗̂X⟩θ

∂θ

)2 . (2.42)

The whole estimation procedure with the MoM is schematically represented in
fig. 2.2: observables ⃗̂X are measured µ times, yielding measurement results for each
observable X̂m, which are aggregated to form sample means x(µ)m . These sample
means are then combined with weights cm to obtain the value y(µ). Subsequently,
the parameter θ is estimated from this value using the calibration curve ⟨Ŷ⟩θ .

FIGURE 2.2: Schematic of the MoM estimation: observables ⃗̂X are
measured µ times, yielding measurement results for each observable
X̂m, which are aggregated to form sample means x(µ)m . These sample
means are then combined with weights cm to obtain the value y(µ).
Subsequently, the parameter θ is estimated from this value using the
calibration curve ⟨Ŷ⟩θ . The red area visualizes the propagation of

noise from y(µ) to the estimator θ̃.
Scheme adapted from [Sorelli 2021a].

Now, to analyze the eq. (2.42), and find minimal achievable noise of the estima-
tion, we use Cauchy-Schwarz inequality in the form

|u⃗T v⃗|2 ≤ |u⃗T u⃗||⃗vT v⃗|, (2.43)

and introduce the vectors

u⃗ = Γ1/2⃗c, v⃗ = Γ−1/2 ∂⟨⃗̂X⟩θ

∂θ
(2.44)
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Consequently, the variance of the estimator can be expressed as:

∆2θ̃ =
1
µ

|u⃗T u⃗|
|u⃗T v⃗|2 ≥ 1

µ

1
|⃗vT v⃗| =

1
µ

1
∂⟨⃗̂XT⟩θ

∂θ Γ−1 ∂⟨⃗̂X⟩θ

∂θ

. (2.45)

We refer to the denominator as the moment-based sensitivity, or simply sensitivity:

M(θ, ⃗̂X) =
∂⟨⃗̂XT⟩θ

∂θ
Γ−1 ∂⟨⃗̂X⟩θ

∂θ
. (2.46)

Inequality (2.45) establishes the precision bound for estimators of the form in eq. (2.37),
represented as:

∆2θ̃ ≥ 1
µ

1

M(θ, ⃗̂X)
. (2.47)

A higher value of the sensitivity M(θ, ⃗̂X) corresponds to a more precise (less noisy)
estimator, and vice versa. In section 2.2.3, we demonstrate that this bound is appli-
cable to a more general estimator, as defined in eq. (2.35).

Analyzing the expression (2.46), it is evident that the sensitivity M has non-
negative values due to the positivity of the covariance matrix Γ. One can also show
that the sensitivity of uncorrelated measurement sets ⃗̂X(1) and ⃗̂X(2) is additive, ow-
ing to the block-diagonal structure1 of the covariance matrix Γ (and, consequently,
of its inverse Γ−1):

M(θ, (⃗̂X(1), ⃗̂X(2))) = M(θ, ⃗̂X(1)) + M(θ, ⃗̂X(2)). (2.48)

This property is especially useful in cases where measurements ⃗̂X(1) and ⃗̂X(2) are
performed over independent sets of probes. This can be necessary in situations
where these two sets of measurements are incompatible and cannot be measured
simultaneously.

One can note, that inequality (2.47) resembles the CRB (2.10), with the sensitiv-
ity M(θ, ⃗̂X) serving as an analog to the FI. However, the MoM approach considers
a limited class of moment-based estimators (2.37), while the CRB encompasses all
possible estimators. Thus the following inequality holds true:

M(θ, ⃗̂X) ≤ F (θ, ⃗̂X). (2.49)

The next step is to find the optimal linear coefficients c⃗opt, that minimize the noise
of the estimation. The Cauchy-Schwarz inequality (2.43) is saturated (i.e., attains its
equality) when two vectors are collinear, meaning that u⃗ = C0v⃗, where C0 is any real
number. This constant factor C0 does not affect the estimator, so it is often practical to
choose C0 = 1. Consequently, the minimum variance of the estimator θ̃ is achieved

1cov(X̂(1)
j , X̂(2)

k ) = 0, ∀j, k
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for the linear combination y(µ) with coefficients

c⃗opt = Γ−1 ∂⟨⃗̂X⟩θ

∂θ
. (2.50)

The estimator θ̃ is constructed as a solution to the algebraic equation ⟨Ŷ⟩θ̃ = y(µ),
where the calibration curve ⟨Ŷ⟩θ is defined in eq. (2.39). The experimental results
are combined in a linear combination y(µ) as per eq. (2.36).

It is important to note that the optimal linear coefficients c⃗opt, as defined in
eq. (2.50), depend on the value of the unknown parameter θ. Therefore, the estima-
tion procedure typically begins by establishing an initial assumption θ̃(0) regarding
the parameter θ. Subsequently, the linear coefficients are determined as

c⃗opt(θ̃(0)) =

(
Γ−1 ∂⟨⃗̂X⟩θ

∂θ

) ∣∣∣∣∣
θ̃(0)

. (2.51)

The coefficients c⃗opt(θ̃(0)) are generally different from the optimal coefficients c⃗opt(θ̃)
calculated with the true value of the parameter θ, and the corresponding estimator
will not saturate the bound in eq. (2.47). However, this estimator is unbiased, and
with sufficient measurement statistics µ, it produces the result θ̃(1) close to the true
value of parameter θ. Subsequently, one can repeat the estimation using θ̃(1) as the
initial assumption on the parameter value and obtain a more precise estimator value
θ̃(2). It is noteworthy that the same experimental data are used in both steps, requir-
ing no additional measurements. This procedure can be repeated several times until
the sequence θ̃(i) converges to some value θ̃ and stops alternating, typically within a
very few iterations. The observed value of θ̃ is then considered as the result of the
iterative procedure, and its variance asymptotically saturates the bound in eq. (2.33).
Note that we do not assume that the initial guess θ̃(0) is close to the ground truth θ,
its value only affects the number of iterations before the convergence.

Thus the MoM not only establishes the bound (2.47) for the moment-based single
parameter estimator (2.35), but also offers a straightforward approach to reach this
bound by combining the measured sample means x(µ)j with optimal coefficients c⃗opt

(2.50).

Multiparameter MoM

The next step is to consider the most general case: estimation of Np parameters

θ⃗ = (θ1, ..., θNp)
T from the measurement results of multiple observables ⃗̂X. In this

situation, the quality of the estimation procedure is described by the covariance ma-
trix of the estimator cov⃗̃θ defined in eq. (2.2). The covariance matrix of the moment-
based multiparameter estimators

⃗̃θ = f⃗ (x(µ)1 , x(µ)2 , ...) (2.52)
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is bounded by the following inequality:

Σ = cov⃗̃θ ≥ 1
µ

M−1. (2.53)

The moment matrix M is defined by its elements [Gessner 2020b]

Mαβ (⃗θ, ⃗̂X) =
∂⟨⃗̂XT⟩θ⃗

∂θα
Γ−1 ∂⟨⃗̂X⟩θ⃗

∂θβ
, (2.54)

where the measurement covariance matrix Γ is defined in eq. (2.40). The proof of the
inequality (2.53) is provided in section 2.2.3. The diagonal elements of this inequality
give the bounds for the variances of the estimators

∆2θ̃α ≥ 1
µ

[
M−1

]
αα

=
1
µ

1
Sα

, (2.55)

where Sα = 1/
[
M−1]

αα
is referred to as sensitivity to the parameter θα. For the sin-

gle parameter estimation S1 = M11, while in multiparameter scenario the sensitivity
to the parameter θα is decreased due to possible correlation of the estimator θ̃α to
other unknown parameters [Suzuki 2020]:

Sα =
1

[M−1]αα

≤ Mαα. (2.56)

Now we are looking for an optimal moment-based estimator ⃗̃θ that saturates the
bound (2.53). For this one needs to build a set of linear combinations

y(µ)α = ∑
j

cαjx
(µ)
j , (2.57)

with coefficients

c⃗α = Γ−1 ∂⟨⃗̂X⟩θ⃗

∂θα
. (2.58)

The linear combinations eq. (2.57) corresponds to sample mean of the observables
Ŷα = c⃗T

α
⃗̂X, which have a covariance matrix:

cov(Ŷα, Ŷβ) = c⃗T
α Γ⃗cβ =

∂⟨⃗̂XT⟩θ⃗

∂θα
Γ−1 Γ Γ−1 ∂⟨⃗̂X⟩θ⃗

∂θβ
= Mαβ. (2.59)

Following the law of large numbers:

cov(y(µ)α , y(µ)β ) =
1
µ

cov(Ŷα, Ŷβ) =
1
µ

Mαβ. (2.60)
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To build an estimator ⃗̃θ one needs to solve the system of equations:

y(µ)α = ⟨Ŷα⟩⃗̃θ , α = 1...Np. (2.61)

Considering the right part of this equation as a function of random variables ⃗̃θ, we
use the noise propagation formula in the linear approximation, and arrive to the
following expression for the covariances:

cov(y(µ)α , y(µ)β ) = ∑
α′,β′

∂⟨Ŷα⟩⃗̃θ
∂θα′

cov(θ̃α′ , θ̃β′)
∂⟨Ŷβ⟩⃗̃θ

∂θβ′
= [J Σ JT]αβ, (2.62)

where the Jacobian matrix J

Jαα′ =
∂⟨Ŷα⟩⃗̃θ

∂θα′
= c⃗T

α

∂⟨⃗̂X⟩⃗̃θ
∂θα′

=
∂⟨⃗̂XT⟩θ⃗

∂θα
Γ−1 ∂⟨⃗̂X⟩θ⃗

∂θα′
= Mαα′ (⃗θ, ⃗̂X), (2.63)

equals the moment matrix M .
Combining equations (2.60–2.63), we arrive at

1
µ

M = M Σ M T, (2.64)

and finally, considering that the matrix M is symmetric and non-degenerate, we
establish that the estimator, derived from optimal linear combinations in eq. (2.57),
asymptotically achieves the limit defined in eq. (2.53) :

cov⃗̃θ = Σ =
1
µ

M−1. (2.65)

2.2.3 Relation between the FI and the MoM sensitivity

The multiparameter CRB, defined in eq. (2.22), limits the quality of an arbitrary es-
timator, which is based on the measurement results of observables ⃗̂X. To analyze
the performance limit of the moment-based estimator eq. (2.52) with the CRB we
consider the statistics of the sample means x(µ)j . Following the central limit theorem,

for sufficiently large statistics µ ≫ 1 the sample means x(µ)j follow the multivariate

Gaussian distribution N (⟨⃗̂X⟩θ⃗ , 1
µ Γ). The probability density of the K-dimensional

normal distribution N (m⃗, C) is defined as

p(x⃗) =
1

(2π)K det C
exp

[
−1

2
(x⃗ − m⃗)TC−1(x⃗ − m⃗)

]
. (2.66)

The FI matrix for the observation with such statistics is given by the following ex-
pression [Kay 1998]:

Fαβ =
∂m⃗T

∂θα
C−1 ∂m⃗

∂θα
+

1
2

Tr
[

C−1 ∂C
∂θα

C−1 ∂C
∂θβ

]
, (2.67)
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where the derivatives of the vectors and matrices are defined elementwise.
For the measurement statistics N (⟨⃗̂X⟩θ⃗ , 1

µ Γ) it takes the form:

F (µ)
αβ (⃗θ, x⃗) =

∂⟨⃗̂XT⟩θ⃗

∂θα

(
1
µ

Γ

)−1 ∂⟨⃗̂X⟩θ⃗

∂θβ
+

1
2

Tr

( 1
µ

Γ

)−1 ∂
(

1
µ Γ
)

∂θα

(
1
µ

Γ

)−1 ∂
(

1
µ Γ
)

∂θβ

 =

= µMαβ (⃗θ, ⃗̂X) +
1
2

Tr
[

Γ−1 ∂Γ

∂θα
Γ−1 ∂Γ

∂θβ

]
.

(2.68)

For µ ≫ 1 the contribution of the first term dominates over the second which conse-
quently can be neglected, thus the FI matrix of the sample mean of µ samples equals
the moment matrix of these measurements

F (µ)
αβ (⃗θ, x⃗) = µMαβ (⃗θ, ⃗̂X). (2.69)

It is practical to calculate the FI matrix per one probe, i.e.

F (⃗θ, x⃗) =
1
µ
F (µ) (⃗θ, x⃗) = M (⃗θ, ⃗̂X). (2.70)

This means, that inequality (2.53) in its essence is the CRB for any first-moment
based estimator eq. (2.52). Moreover, the estimator based on Np optimal linear com-
binations of the sample means

⃗̃θ = g⃗(y(µ)1 , y(µ)2 , ..., y(µ)Np
), (2.71)

saturates this bound, as shown in eq. (2.65). Thus, no estimator (2.52), based on
the measured first moment of observables ⃗̂X, can provide higher accuracy than the

estimator (2.71) based on optimal linear combinations y⃗
(µ)

.
In general case, considering higher statistical moments of the measured data may

enhance the quality of estimation, i.e. the following inequality holds between the FI
matrix and the moment matrix [Gessner 2020b]:

F (⃗θ, ⃗̂X) ≥ M (⃗θ, ⃗̂X). (2.72)

The rigorous proof of this inequality is provided in [Stein 2014], where the matrix
(2.54) was introduced as a lower bound for the FI. The MoM sensitivity offers several
advantageous aspects:

• It serves as a lower bound for the FI, often being significantly easier to com-
pute. Additionally, it provides a lower bound for the quantum Fisher informa-
tion, as elaborated further in section 2.3.

• The MoM sensitivity establishes a bound for the estimator based on the sample
mean. In some practical situations, for example when the detection system
is slow and does not resolve individual probes, one does not have access to
individual measurement results but only observes the sample means.
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• The MoM approach provides a clear algorithm for an optimal estimator that
saturates the MoM bound (2.53) and does not rely on any optimization proce-
dures.

It is not always obvious, whether the first moment of the observables ⃗̂X con-
tains all the useful information about the parameters θ⃗ and if the inequality (2.72) is
saturated, or higher statistical moments should be included in the consideration to
increase the estimation accuracy. One of the approaches to this question lies in the
context of quantum metrology and is discussed in section 2.3. Here, to demonstrate
the difference between the FI and the MoM sensitivity we consider the problem of
loss estimation.

2.2.4 Example: loss estimation.

In this section, we apply the concepts introduced above to the specific problem of
loss estimation. This example aims to provide intuition regarding the differences
and similarities between the CRB (2.22) and the MoM bound (2.53).

Estimating the loss parameter of a bosonic channel is a crucial practical task,
closely linked to the separation estimation problem [Lupo 2016] (and imaging in
general [Chiuri 2022]), which constitutes the main focus of this thesis. The princi-
pal scheme of this procedure is illustrated in fig. 2.3: probe light in the state ρ̂0 is
transmitted through the lossy channel with an unknown transmissivity κ. As a con-
sequence of the losses, the state of the probe is altered to ρ̂(κ). The probe is then
detected using a photon number resolving detector, where the observable N̂ = â† â
is measured. Subsequently, the parameter κ is estimated from the measurement re-
sults.

FIGURE 2.3: Scheme for the estimation of the loss parameter of a
bosonic channel probed by the state ρ̂0. The channel is characterized
by the transmissivity κ. The output state ρ̂(κ) is measured with a pho-

ton number resolving detector.

The photon number statistics of the probe state is defined by the diagonal ele-
ments of the density matrix ρ̂0 in the Fock basis:

pn = ⟨n|ρ̂0|n⟩. (2.73)
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After the losses, the photon number statistics pn transforms according to the Bernoulli
transformation (1.71) into qn:

qn = ⟨n|ρ̂(κ)|n⟩ =
∞

∑
m=n

(
m
n

)
κn(1 − κ)m−n pm, (2.74)

that correspond to the probabilities of detecting n photons.

Loss estimation with the MoM

We begin the analysis of this problem with the MoM approach, based on the first
moment of the observable N̂. To construct the MoM estimator, one only needs to
know the mean number of photons in the state ρ̂(κ):

⟨N̂⟩κ = Tr
[
ρ̂(κ)N̂

]
= κN0, (2.75)

where
N0 = Tr

[
ρ̂0N̂

]
= ∑

n
npn (2.76)

represents the average number of photons in the probe.
To evaluate the variance of the estimator, one also needs to know the second

moment of the observable N̂. Using eq. (2.74) one can show that:

∆2N = Tr
[
ρ̂(κ)N̂2]− ⟨N̂⟩2

κ = ∑
n

n2qn − ⟨N̂⟩2
κ = κ2∆2N0 + κ(1 − κ)N0, (2.77)

with
∆2N0 = Tr

[
ρ̂0N̂2]− N2

0 = ∑
n

n2 pn − N2
0 , (2.78)

being the photon number variance in the probe state. Eq. (2.77) can be readily
demonstrated using the Heisenberg picture â →

√
κâ +

√
1 − κv̂ for the description

of losses.
The MoM sensitivity, being simple error propagation in this case, takes the form

Mρ̂0(κ, N̂) =

(
∂⟨N̂⟩κ

∂κ

)2 1
∆2N

=
N2

0
κ2∆2N0 + κ(1 − κ)N0

. (2.79)

Indeed, one of the significant advantages of MoM in this case is its ability to analyze
estimation sensitivity for arbitrary input states, given only the knowledge of the first
two moments of the probe’s photon number statistics. I.e. it is not even necessary to
know the full photon statistics pn of the probe.

Upon examining eq. (2.79), it becomes evident that for MoM estimation, an opti-
mal probe should exhibit low photon-number noise ∆2N0 and a high mean number
of photons N0. Therefore, the Fock state |N0⟩ serves as the most suitable choice for
estimating the losses [Adesso 2009].

In fig. 2.4 we compare the MoM sensitivity of loss estimation with photon num-
ber resolving detection for different probe states:

• Fock state |N0⟩ with zero photon-number variance ∆2N0 = 0.
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• Coherent state |α⟩ with |α|2 = N0. The corresponding noise is ∆2N0 = N0.

• Thermal state ρ̂th(N0) with ∆2N0 = N2
0 + N0.

• Superposition of the vacuum and Fock states |ψs⟩ = |0⟩+|2N0⟩√
2

with ∆2N0 = N2
0 .

In all cases, the mean number of photons is set to N0 = 2.
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FIGURE 2.4: MoM sensitivity of loss estimation for different probe
states: Fock state |N0⟩ (blue line), coherent state |α⟩ (green line), ther-
mal state ρ̂th(N0) (red line), and superposition of the vacuum and

Fock states |ψs⟩ (black dashed line). For all curves, N0 = 2.

One can observe that estimating small losses (i.e., the transmissivity κ ≈ 1) with
the MoM estimator poses a challenge with most probes, except for the Fock state. It
is interesting to note the behavior of sensitivity with the Fock probe: it decreases for
intermediate losses while remaining high for small κ ≈ 1 and high κ ≈ 0 losses. This
occurs because the signal ∂⟨N̂⟩κ

∂κ = N0 does not depend on κ, while the noise ∆2N is
minimal for small and large losses, where the output state ρ̂(κ) is close to Fock states
|N0⟩ and |0⟩ respectively.

CRB for loss estimation

To determine the CRB for loss estimation from the results of the measurement we
employ the standard formula for the FI for discrete statistics:

Fρ̂0(κ, N̂) = ∑
n

1
qn

(
∂qn

∂κ

)2

, (2.80)

with detection probabilities qn defined in eq. (2.74). This expression does not sim-
plify further in the general case; therefore, we examine several specific examples of
probe statistics:

• For the probe in the Fock state |N0⟩ the photon number statistics is pn = δnN0 ,
the FI (2.80) coincides with the MoM sensitivity (2.79)

F|N0⟩(κ, N̂) = M|N0⟩(κ, N̂) =
N0

κ(1 − κ)
. (2.81)
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This result suggests that using the Fock probe and measuring only the mean
energy, for example with a slow detector that does not resolve individual probes,
suffices to construct the MoM estimator and saturate the CRB.

• The photon number statistics of a probe in a coherent state |α⟩ is given by
eq. (1.41). The resulting FI for a coherent probe also coincides with the MoM
sensitivity:

F|α⟩(κ, N̂) = M|α⟩(κ, N̂) =
N0

κ
. (2.82)

• The photon number statistics of the thermal probe ρ̂th(N0) is defined by the
diagonal part of the density operator represented in the Fock basis (1.50). In
this case, the FI is:

Fρ̂th(κ, N̂) = Mρ̂th(κ, N̂) =
N0

κ(1 + N0κ)
. (2.83)

It is also saturated by the MoM sensitivity. At this point, one may assume, that
it is always enough to measure the mean energy of the output state ρ̂(κ) to
optimally estimate the channel transmissivity κ. However, the next example
disproves such a hasty conclusion.

• The superposition of the vacuum and Fock states |ψs⟩ = |0⟩+|2N0⟩√
2

has photon

number statistics pn = 1
2 (δn 0 + δn 2N0). The FI calculated with eq. (2.80) yields:

F|ψs⟩(κ, N̂) =
N0

κ(1 − κ)

(
1 − 2N0

κ

(1 − κ)

(1 − κ)2N0

1 + (1 − κ)2N0

)
. (2.84)

The FI for the probe |ψs⟩ is smaller than that of the optimal (Fock state) probe:
F|ψs⟩ < F|N0⟩. However, for small losses κ ≈ 1, the performance of the superposi-
tion probe is nearly optimal (see fig. 2.5). This occurs because the state |2N0⟩ after
small losses κ ≈ 1 has almost no vacuum component. Thus, by filtering out de-
tection events with zero photons (i.e. around 50% of the outcomes) one obtains the
measurement results that correspond to the probe |2N0⟩, resulting in average infor-
mation per probe being

F|ψs⟩(κ
∣∣
κ≈1, N̂) ≈ 1

2
F|2N0⟩(κ, N̂) = F|N0⟩(κ, N̂), (2.85)

since the FI F|N0⟩ in this case is linear with respect to N0.
The MoM estimator relies solely on the mean transferred energy and does not

have access to individual measurement outcomes. Consequently, post-selection of
non-zero detected photon numbers is unavailable within this approach. As a result,
in the case of the superposition probe |ψs⟩ and weak losses κ ≈ 1, the MoM estimator
loses a significant portion of information:

M|ψs⟩(κ, N̂) =
N0

κ(1 − κ)

(
1 − κ

1 + κ(N0 − 1)

)
< F|ψs⟩(κ, N̂). (2.86)

Its comparison with the FI is illustrated in fig. 2.5.
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FIGURE 2.5: Loss estimation with the superposition probe state |ψs⟩:
the FI (purple line), the MoM sensitivity with the first moment X̂ = N̂
(dashed line), with the second moment X̂ = N̂2 (green line), and the

first two moments ⃗̂X = (N̂, N̂2)T (red line). The FI for the Fock probe
|N0⟩ is shown in blue (coincides with the MoM sensitivity).

To enhance the performance of the MoM estimation, we also explore estimators
based on the second moment X̂ = N̂2 (green line in fig. 2.5) and the first two mo-
ments ⃗̂X = (N̂, N̂2)T (red line) of the photon number operator N̂. To calculate the
MoM sensitivity in these cases, we use eq. (2.46). Interestingly, neither the first nor
the second moment alone provides good sensitivity for small losses κ ≈ 1. However,
the combination of the first two moments yields a sensitivity M|ψs⟩(κ, (N̂, N̂2)T) close
to the FI of the full measurement statistics F|ψs⟩(κ, N̂). This suggests that useful in-
formation in the case of small losses lies in the correlation of the different moments
rather than in the first or second moments individually.

It is noteworthy that the photon number statistics of the superposition state |ψs⟩
is identical to the statistics of the classical mixture ρ̂s = 1

2 (|0⟩⟨0| + |2N0⟩⟨2N0|).
Therefore, these two probes perform identically for the loss estimation problem with
photon number measurement. The mixed state ρ̂s corresponds to the source of the
probe pulses, emitting the Fock state |2N0⟩ with 50% probability. Hence, as indi-
cated by the previous analysis, with such a probabilistic source of the Fock state, it
is necessary to detect each probe individually to construct an efficient estimator in
the case of small losses. Conversely, for a deterministic source of the Fock (or coher-
ent/thermal) states, the detection system does not have to resolve individual probes,
as the estimator based on the mean transferred energy saturates the CRB.

2.2.5 FI and MoM in the Poissonian limit

In this section, we explore another significant example: Poisson statistics of mea-
surement, and we compare the FI with the MoM sensitivity in this scenario. This
case holds considerable importance in quantum optical metrology. Given any initial
state ρ̂0, after undergoing sufficiently strong losses (κ ≪ 1 and κ Tr[N̂ρ̂0] ≪ 1), it can
be approximated within the zero and single photon sub-space. This approximation
neglects contributions from terms with higher photon numbers. The photon number
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statistics in such a case can be represented as follows:

p1 = 1 − p0, p1 ≪ p0 < 1, and pn>1 ≈ 0. (2.87)

According to the Poisson limit theorem, these statistics can be approximated by the
Poisson distribution [Papoulis 2002]:

pn(λ) = e−λ λn

n!
, (2.88)

with λ = p1 ≪ 1. If photon number measurements are conducted in multiple
orthogonal modes, the outcomes of measurements in individual modes can always
be treated as independent in this scenario.

One more important example of Poissonian statistics of the observables is metrol-
ogy employing a single-mode coherent state probe ρ̂0 = |α⟩⟨α|. Under linear oper-
ations, this state remains coherent and maintains Poisson photon number statistics.
Consequently, if the system is linear, the photon number statistics of the output state
ρ̂(θ) are also Poissonian, even in cases of weak losses (κ ≲ 1). This outcome holds
across any measurement basis. The detection events in orthogonal modes are always
uncorrelated because coherent states remain a product state under linear transfor-
mations, as demonstrated in eq. (1.63).

We begin our exploration with single-parameter estimation derived from the
measurement outcomes of the single observable N̂. Assuming the measurement
statistics follow the Poisson distribution (2.88), with the parameter of interest θ en-
coded into λ = ⟨N̂⟩θ , the FI of this measurement, computed using a discrete version
of eq. (2.7), is expressed as:

F (θ, N̂) = ∑
n

1
pn(λ)

(
∂pn(λ)

∂θ

)2

=
1

⟨N̂⟩θ

(
∂⟨N̂⟩θ

∂θ

)2

. (2.89)

For a collection of independent observables N̂m with Poisson statistics, the FI accu-
mulates as follows:

F (θ, ⃗̂N) = ∑
m

1
⟨N̂m⟩θ

(
∂⟨N̂m⟩θ

∂θ

)2

. (2.90)

The covariance matrix of these observables is diagonal:

Γmn = δmn ∆2Nm = δmn⟨N̂m⟩θ . (2.91)

Consequently, the MoM sensitivity, calculated with eq. (2.46), gives

M(θ, ⃗̂N) = ∑
m

1
⟨N̂m⟩θ

(
∂⟨N̂m⟩θ

∂θ

)2

= F (θ, ⃗̂N), (2.92)

yielding the same result as the FI. Thus, in cases of Poisson statistics of observables,
an optimal estimator can be constructed based on the first moment of observables ⃗̂N.

Now to develop better intuition on why the sensitivity based on the first moment
saturates the FI in this case, let us revisit a single observable problem to consider
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it in more detail. If µ probes are used, the measurement results are given by the
vector (n1, ..., nµ)T. Interestingly, even though the sample mean n(µ) contains all
useful information about the state with Poissonian statistics, one can still devise an
estimator solely based on the second moment. The sensitivity of this estimation is
given by:

M(θ, N̂2) =
1

⟨N̂4⟩θ − ⟨N̂2⟩2
θ

(
∂⟨N̂2⟩θ

∂θ

)2

= (2.93)

=

(
1

⟨N̂⟩θ

− 2
1 + 6⟨N̂⟩θ + 4⟨N̂⟩2

θ

)(
∂⟨N̂⟩θ

∂θ

)2

< M(θ, ⃗̂N) (2.94)

which is smaller than that for the first moment estimator, yet the difference is at most
20%.

Now, it is interesting to have a look at the estimator based on the first two mo-
ments ⃗̂X = (N̂, N̂2)T. The covariance matrix of these observables is given by

Γ = ⟨N̂⟩θ

(
1 1 + 2⟨N̂⟩θ

1 + 2⟨N̂⟩θ 1 + 6⟨N̂⟩θ + 4⟨N̂⟩2
θ

)
. (2.95)

This covariance matrix is non-degenerate, indicating that the moments ⟨N̂⟩θ and
⟨N̂2⟩θ are not fully linearly correlated (although this does not guarantee their statis-
tical independence). However, the sensitivity of the first two moments,

M(θ, (N̂, N̂2)T) = M(θ, N̂), (2.96)

does not surpass the sensitivity of the first moment estimation2. Moreover, in this
scenario, the optimal coefficients (2.50) for linear combination (2.36) are

c⃗ = (1, 0)T, (2.97)

meaning the optimal linear combination of the measurement results solely includes
the sample mean and disregards higher moments.

It is also intriguing to examine the MLE (2.25) in the context of Poisson statistics.
It can be derived as:

θ̃ML = arg max
θ

µ

∑
i=1

ln pni(λ(θ)). (2.98)

Utilizing eq. (2.88), we can readily demonstrate that:

∂

∂θ

µ

∑
i=1

ln pni(λ(θ)) =
∂λ(θ)

∂θ

µ

∑
i=1

(
ni

λ(θ)
− 1
)

, (2.99)

that equals 0 when

λ(θ̃ML) =
1
µ

µ

∑
i=1

ni = n(µ). (2.100)

2This is expected since M(θ, N̂) already saturates the CRB.
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Hence, the likelihood maximization approach in the case of Poisson statistics yields
an estimator that solely depends on the sample mean of the observable. This fact
explains the optimality of the MoM estimator for Poisson statistics.

All conclusions drawn in this section remain valid for the multiparameter esti-
mation case: estimators based on the sample means of Poissonian observables sat-
urate the CRB, and the moment matrix (2.54) aligns with the FI matrix (2.21). This
equivalence can be demonstrated by carefully examining the matrix generalizations
of eqs. (2.89) and (2.92) in the multiparameter scenario, element by element. Con-
sequently, the FI and MoM approaches are shown to be equivalent for Poissonian
measurement statistics.

2.3 Quantum parameter estimation theory

In the previous section, we analyzed the efficiency of different estimators, that are
based on the given measurement results, which is a primary task of classical param-
eter estimation theory. In contrast, quantum parameter estimation, as a component
of quantum metrology, establishes the sensitivity bound for arbitrary measurements
(and subsequent parameter estimation) conducted on the parameter-dependent state
ρ̂(⃗θ).

2.3.1 Quantum Fisher information and quantum Cramér–Rao bound.

The fundamental quantity in quantum parameter estimation is the quantum Fisher
information (QFI) matrix FQ, defined by its elements [Helstrom 1969; Liu 2019]:

FQ
αβ (⃗θ) =

1
2
〈
{L̂α, L̂β}

〉
θ⃗

, (2.101)

where {Â, B̂} = ÂB̂ + B̂Â is the anti-commutator and L̂α is the symmetric logarithmic
derivative (SLD), implicitly defined as

∂ρ̂(⃗θ)

∂θα
=

1
2
{ρ̂(⃗θ), L̂α}. (2.102)

Similarly to its classical counterpart, the QFI matrix is real, symmetric, positive
semidefinite, and additive for independent probes that are measured independently.
It establishes the ultimate, fundamental bound for any arbitrary estimator based on
arbitrary measurement:

cov⃗̃θ ≥ 1
µ
FQ (⃗θ)−1, (2.103)

where µ is the number of repetitions of the parameter estimation procedure. This
inequality is referred to as the quantum Cramér–Rao bound (QCRB).

Since the QFI is optimized over all possible measurements, the following chain
of inequalities holds true:

FQ (⃗θ) ≥ F (⃗θ, ⃗̂X) ≥ M (⃗θ, ⃗̂X). (2.104)
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Thus, on the one hand, the QFI FQ serves as an upper bound for both the FI F (⃗θ, ⃗̂X)

and the moment matrix M (⃗θ, ⃗̂X). If a given set of measurements ⃗̂X saturates the first
inequality, i.e. F (⃗θ, ⃗̂X) = FQ (⃗θ), these measurements are called optimal. In this case,
no further improvement in the estimation quality can be achieved by optimizing the
measurement scheme. Only optimizing the probe state ρ̂0 or the parameter-encoding
procedure can further enhance the information about the parameters.

In some cases, calculating the FI of specific practical measurements ⃗̂X can be
challenging. For instance, it is known that the statistics p(x⃗|⃗θ) of multimode photon
number-resolving measurements of multi-photon states (which are the main mea-
surement types for this thesis) is hard or even impossible to calculate with classical
computer [Aaronson 2014]. However, the ultimate precision bound, given by the
QFI, can sometimes be calculated in this case using the specific properties of the
state, such as Gaussianity [Sorelli 2022]. In this scenario, calculating the moment
matrix and demonstrating that it even saturates the QFI (M (⃗θ, ⃗̂X) = FQ (⃗θ)) con-
firms the optimality of the measurement ⃗̂X. Additionally, in this case, the MoM sug-
gests a practical estimation strategy that saturates the ultimate bound. Using this
approach in Chapter 3, we demonstrate the optimality of the spatial mode demul-
tiplexing measurement for the source separation estimation problem, considering a
wide class of source statistics.

Finally, the moment matrix M (⃗θ, ⃗̂X) can be considered as a lower bound for both
the FI and QFI matrices. Depending only on the first two moments of the statistics of
the observables ⃗̂X, the moment matrix is often much easier to compute for a general
class of probe states ρ̂0, while the computation of the QFI and FI matrices strongly
depends on the structure of the state ρ̂(⃗θ). Thus, when the QFI is challenging to
compute, one can draw useful conclusions by computing its lower bound in the
form of the moment matrix.

2.3.2 Geometrical sense of the QFI and some particular case examples

The QFI matrix illustrates the rate at which the state ρ̂(⃗θ) changes with variations
in the parameters θ⃗. This change is captured by the Bures distance , which quanti-
fies the disparity between two quantum states ρ̂ and σ̂. It is defined as [Liu 2019;
Sidhu 2020]:

DB(ρ̂, σ̂) =
√

2(1 − F(ρ̂, σ̂)), (2.105)

where the fidelity F(ρ̂, σ̂) between the two states is given by:

F(ρ̂, σ̂) = Tr
√√

ρ̂σ̂
√

ρ̂. (2.106)

It is worth noting that there are various conventions for defining fidelity and Bures
distance. Here, we adhere to the definitions outlined in [Liu 2019].

If we consider two sets of parameters θ⃗ and θ⃗ + d⃗θ that are infinitesimally close,
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and assuming that ρ̂(⃗θ) and ρ̂(⃗θ + d⃗θ) have the same rank, the squared Bures dis-
tance can be expressed as [Liu 2019]:

D2
B

(
ρ̂(⃗θ), ρ̂(⃗θ + d⃗θ)

)
=

1
4

d⃗θTFQd⃗θ. (2.107)

This ratio establishes a connection between the geometry of the manifold of quan-
tum states ρ̂(⃗θ) and the QFI matrix, offering deeper insights into the fundamental
properties of the QFI matrix. This property also provides an alternative method for
calculating the QFI matrix:

FQ
αβ (⃗θ) = −4

∂2F
(
ρ̂(⃗θ), ρ̂(Θ⃗)

)
∂Θα∂Θβ

∣∣∣∣∣
Θ⃗=θ⃗

, (2.108)

which reveals that the QFI matrix measures how rapidly the state ρ̂(θ) changes with
alterations in the parameters. The more sensitive the state ρ̂(⃗θ) to the change in the
parameter θα, the higher the corresponding QFI element FQ

αα is.
This form of QFI computation can also prove valuable for practical purposes, as

demonstrated below.

QFI for Gaussian states

The geometric approach becomes particularly valuable in the case of Gaussian states.
The fidelity between two Gaussian states, characterized by the mean-field vectors
Q⃗(1,2) and quadrature covariance matrices Γ

(1,2)
Q respectively, can be expressed as

[Scutaru 1998]:

F2(ρ̂1, ρ̂2) =
2 exp

[
− 1

2 (Q⃗
(1) − Q⃗(2))T(Γ

(1)
Q + Γ

(2)
Q )−1(Q⃗(1) − Q⃗(2))

]
√

det(Γ(1)
Q + Γ

(2)
Q ) + T −

√
T

, (2.109)

with T =
(
1 − det Γ

(1)
Q

)(
1 − det Γ

(2)
Q

)
. One can use this expression for fidelity, and

QFI formula (2.108) to demonstrate that in the case of a single-mode Gaussian state
with a mean-field vector Q⃗(⃗θ) and a 2 × 2 quadrature covariance matrix ΓQ (⃗θ), the
corresponding QFI matrix can be found as [Pinel 2013]:

FQ
αβ (⃗θ) =

1
2

1
1 + P2 Tr

[
Γ−1

Q
∂ΓQ

∂θα
Γ−1

Q
∂ΓQ

∂θβ

]
+

2
1 − P4

∂P
∂θα

∂P
∂θβ

+
∂QT

∂θα
Γ−1

Q
∂Q
∂θβ

, (2.110)

where the purity is P = 1/ det ΓQ. This expression provides an explicit way of
calculating the QFI for Gaussian states, which is further analyzed in chapter 4.

QFI for pure states

Another interesting particular case is the case of pure states. If the probe state is pure
ρ̂0 = |ψ0⟩⟨ψ0|, and it remains pure after parameter encoding ρ̂(⃗θ) = |ψ(⃗θ)⟩⟨ψ(⃗θ)|,
then the encoding procedure can be described by a unitary transformation |ψ(⃗θ)⟩ =
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Û(⃗θ)|ψ0⟩. In a small region of the parameter space, the encoding operator can always
be represented in the linear approximation as Û(⃗θ) = exp

[
i ⃗̂HT θ⃗

]
.

The fidelity (2.106) between two pure states |ψ⟩ and |ϕ⟩ is simplified to

F(|ψ⟩⟨ψ|, |ϕ⟩⟨ϕ|) = |⟨ψ|ϕ⟩|. (2.111)

Using this property, and linear unitary encoding

|ψ(⃗θ)⟩ = exp
[
i ⃗̂HT θ⃗

]
|ψ0⟩, (2.112)

one can show that the QFI matrix in this case is defined as the covariance matrix of
the generators ⃗̂H:

FQ
αβ (⃗θ) = 4

(
1
2
⟨ψ0|{Ĥα, Ĥβ}|ψ0⟩ − ⟨ψ0|Ĥα|ψ0⟩⟨ψ0|Ĥβ|ψ0⟩

)
. (2.113)

In the single-parameter estimation case, the QFI is simplified to

FQ (⃗θ) = 4
(
⟨ψ0|Ĥ2|ψ0⟩ − ⟨ψ0|Ĥ|ψ0⟩2) = 4∆2H. (2.114)

The same result can be obtained with the definition of the QFI (2.101), since for
the pure states ρ̂2(⃗θ) = |ψ(⃗θ)⟩⟨ψ(⃗θ)|ψ(⃗θ)⟩⟨ψ(⃗θ)| = ρ̂(⃗θ) and subsequently

∂ρ̂(⃗θ)

∂θα
=

∂ρ̂2(⃗θ)

∂θα
=

∂ρ̂(⃗θ)

∂θα
ρ̂(⃗θ) + ρ̂(⃗θ)

∂ρ̂(⃗θ)

∂θα
=

1
2

(
L̂αρ̂(⃗θ) + ρ̂(⃗θ)L̂α

)
. (2.115)

Thus the SLD for pure state equals to

L̂α = 2
∂ρ̂(⃗θ)

∂θα
, (2.116)

which, combined with encoding (2.112) and definition (2.101) gives eq. (2.113).

2.3.3 QFI calculation through state diagonalization

Another commonly used technique for calculating the QFI involves diagonalizing
the state ρ̂(⃗θ) in its eigenbasis:

ρ̂(⃗θ) =
rank ρ̂(⃗θ)

∑
i=1

λi|ui⟩⟨ui|. (2.117)

Assuming that ρ̂(⃗θ) is full rank in the Hilbert space containing SLDs, the SLDs can
be represented in this eigenbasis as [Liu 2019]:

L̂α =
rank ρ̂(⃗θ)

∑
i,j=1

2
λi + λj

〈
ui

∣∣∣∂ρ̂(⃗θ)

∂θα

∣∣∣uj

〉
|uj⟩⟨ui|. (2.118)
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Substituting this result into eq. (2.101), one obtains

FQ
αβ (⃗θ) =

rank ρ̂(⃗θ)

∑
i,j=1

2
λi + λj

Re

[〈
ui

∣∣∣∂ρ̂(⃗θ)

∂θα

∣∣∣uj

〉〈
uj

∣∣∣∂ρ̂(⃗θ)

∂θβ

∣∣∣ui

〉]
. (2.119)

This expression can be adapted for cases where ρ̂(⃗θ) is not full rank. In such in-
stances, one must exclude the diverging summation terms, i.e., those for which
λi + λj = 0.

The diagonalization method is commonly employed in the literature. However,
its implementation in practice is often challenging, especially for CV states since they
are described by the infinite-size density matrix3.

2.3.4 Saturability of the QCRB

Having the QCRB (2.103) and the expression (2.101) for the QFI, one may wonder
how to find a quantum optimal measurement that saturates the inequality (2.104).
To answer this question, we initially examine the single-parameter estimation case.
Firstly, we determine the eigenbasis of the SLD operator

L̂|lk⟩ = lk|lk⟩, (2.120)

which constitutes a complete basis since the SLD operator is Hermitian. Subse-
quently, we construct an observable X̂ with identical eigenvectors:

X̂|lk⟩ = ak|lk⟩. (2.121)

Then, the measurement statistics can be derived as follows:

p(ak|θ) = ⟨lk|ρ̂(θ)|lk⟩, (2.122)

and the corresponding FI is given by [Liu 2019]:

F (θ, X̂) = ∑
k

1
p(ak|θ)

(
∂p(ak|θ)

∂θ

)2

= (2.123)

= ∑
k

1
⟨lk|ρ̂(θ)|lk⟩

〈
lk

∣∣∣∣∣ L̂ρ̂(θ) + ρ̂(θ)L̂
2

∣∣∣∣∣ lk

〉2

= ∑
k

l2
k ⟨lk|ρ̂(θ)|lk⟩. (2.124)

It is straightforward to show, that the FI of observable X̂ equals to the QFI:

FQ(θ) = Tr
[
ρ̂(θ)L̂2] = ∑

k
⟨lk|ρ̂(θ)L̂2|lk⟩ = ∑

k
l2
k ⟨lk|ρ̂(θ)|lk⟩. (2.125)

Therefore, any observable X̂, that is diagonal in the SLD eigenbasis, is considered
quantum optimal. This conclusion can be extended to multiple observables, bearing

3The density matrix can be truncated, however its dimension for CV states is typically high
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in mind the fundamental principle of quantum physics that non-commuting observ-
ables cannot be simultaneously measured. If SLDs commutes

[L̂α, L̂β] = 0, (2.126)

they can all be simultaneously diagonalized. Consequently, observables constructed
from their eigenbasis are compatible with each other and saturate QCRB. There ex-
ists a relaxed condition for the achievability of the QCRB [Ragy 2016; Demkowicz-
Dobrzański 2020]:

Tr
[
ρ̂(θ)[L̂α, L̂β]

]
= 0. (2.127)

However, if the condition in Equation (2.126) is not met, determining optimal mea-
surements generally poses a challenge.

In cases where the QCRB is not saturable, the lower bound for the total mean
square error of the estimator can be determined using the Holevo bound [Holevo 1973;
Demkowicz-Dobrzański 2020], which is at most twice the trace of the inverse QFI
matrix. The achievability of the Holevo bound in the limit of large sample sizes has
been demonstrated in [Gill 2013; Demkowicz-Dobrzański 2020].

In summary, quantum metrology establishes a fundamental bound (2.103) for
the precision of parameter estimation. When condition (2.126) is satisfied, it also
provides observables (2.121) that achieve this bound. However, implementing these
specific measurements, suggested by the eigenbasis of the SLDs, is often challeng-
ing in practice. Moreover, these optimal measurements can often be parameter-
dependent. Consequently, without prior knowledge of the parameter values, an
adaptive measurement scheme becomes necessary: initially estimating the parame-
ters with a preliminary non-optimal measurement and then adjusting the measure-
ment scheme to extract more information from subsequent measurements, repeating
this process iteratively if needed. Implementing such an approach can be particu-
larly challenging, especially when aiming for a short measurement time. Moreover,
the initial iterations in this approach may not yield all possible information.

In reality, an approach employing a fixed measurement scheme to estimate the
parameters in a wide range of values may prove more practical. Additionally, prac-
tical constraints often limit the class of measurements feasible for a given level of
technology. Hence, it is valuable to assess the information content of practically
available measurements and compare it with the ultimate QCRB. This comparison
constitutes one of the objectives of this thesis.

2.4 Quantum state characterization

The primary challenge in quantum metrology arises from the inherently probabilis-
tic nature of measurement in quantum physics. Even when the state of the system
ρ̂ is defined up to a single unknown parameter θ, multiple copies of this state ρ̂(θ)
are typically required to conduct measurements, gather outcome statistics, and es-
timate θ. This challenge intensifies when no prior information about the state ρ̂ is
accessible, necessitating the complete reconstruction of the state ρ̂ from the measure-
ment outcomes. This process is known as quantum state tomography [Lvovsky 2009]
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or shorter quantum tomography [DAriano 2003; Artiles 2005]. The name originates
from the fact that the full state ρ̂ is reconstructed from its various "projections" — the
probability distributions of different measurement results. Consequently, the prob-
lem mathematically resembles classical tomography methods, such as CT scans in
medical imaging or other 3D imaging techniques, that reconstruct 3D objects from
their 2D projections.

In this section, we provide a brief overview of known techniques for realizing
quantum state tomography, with a specific emphasis on the states of light. This
task holds particular practical importance for the characterization of non-classical
light sources. We consider a single-mode scenario where the spatial and temporal
mode of the light is known, and the goal is to determine the quantum state ρ̂ of this
mode. It is important to note, however, that one of the major challenges in quantum
tomography is the scaling of the complexity with an increasing number of modes.

There are various measurement strategies employed in quantum tomography.
Methods utilizing photon-number resolving detection [Olivares 2019] are particu-
larly suited for the tomography of states localized near vacuum in the Fock space.
Other techniques, such as compressed sensing [Smith 2013; Kyrillidis 2018], have
proven to be efficient for tomography of quantum states that exhibit sparsity in a
certain basis or possess a low-rank structure. In this brief overview, our primary
focus is on tomography methods relying on measurements of continuous variables,
as this methodology is better suited for characterizing general CV states with high
photon-number components [Lvovsky 2009].

One of the known approaches to CV state tomography is based on the double ho-
modyne detection [Chabaud 2021]. A double homodyne (or heterodyne) detection
method can be employed to sample the Husimi function Q(α), as briefly mentioned
in 1.3.4 [DAriano 2003]. Subsequently, the Husimi function can be transformed into
either the Wigner function W(α) or the density operator ρ̂, enabling a comprehen-
sive description of the state under study. The main advantage of this approach is
the ability to reconstruct the single-mode state using a fixed measurement setup.
However, this technique necessitates a sophisticated detection scheme and is highly
sensitive to the noise in the measured data.

Another well-established approach to optical state tomography is the homodyne
tomography. This method reconstructs the state ρ̂ from the statistics of homodyne de-
tection. For a comprehensive characterization of the state, it is crucial to perform
homodyne detection with different phases of the local oscillator, thereby acquir-
ing statistics of numerous quadratures. The probability distribution for an arbitrary
quadrature q̂θ (1.84) is obtained by integral projection of the Wigner function along
the corresponding direction [Artiles 2005]:

P(qθ , θ) =
∫

dpθ Wρ̂(qθ cos θ − pθ sin θ, qθ sin θ + pθ cos θ), (2.128)

this integral is known as Radon transform.
These marginal distributions P(qθ , θ) can be obtained experimentally. To achieve

this, one needs to collect quadrature samples for various phases θ of the local oscil-
lator, i.e. accumulate a set of pairs (qm, θm). By organizing this measured data into
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bins, one can estimate the probabilities P(qθ , θ) from the frequencies of different out-
comes. In the following sections, we analyze several methods for characterizing the
quantum state ρ̂ based on this data.

2.4.1 Inverse Radon transformation

The most straightforward way to obtain the Wigner function from the homodyne
detection results is to invert the Radon transform (2.128) using the back-projection
algorithm [Herman 2009]:

W(q, p) =
1

2π2

∫ π

0
dθ
∫ ∞

−∞
dqθ P(qθ , θ)K(qθ cos θ + pθ sin θ − qθ), (2.129)

with the integration kernel

K(x) =
1
2

∫ ∞

−∞
|ξ| exp[iξx]dξ. (2.130)

By applying the inverse Radon transform (2.129) to the measured probabilities P(qθ , θ),
the Wigner function of the state can be recovered. If necessary, it can be further trans-
formed to determine the density operator ρ̂, for instance, using eq. (1.102).

The intermediate step of binning the data and calculating individual marginal
distributions associated with each phase can be bypassed if the phases θm are uni-
formly spread over the 2π interval. It can be achieved by directly using the acquired
pairs (qm, θm) in the summation [Lvovsky 2002]:

W(q, p) =
1

2π2N

N

∑
m=1

K(q cos θm + p sin θm − qm). (2.131)

It is worth noting that the kernel K(x) is infinite at x = 0. Therefore, in numerical
implementations of the inverse Radon transformation, it undergoes low-pass filter-
ing: the infinite integration limits in eq. (2.130) are replaced by ±kc, with constant
kc chosen to mitigate numerical artifacts associated with the reconstruction while
preserving the main features of the Wigner function. This approach is commonly
known as the filtered back-projection algorithm [Lvovsky 2009]. It operates under the
assumption of a certain smoothness of the Wigner function, effectively filtering out
high-frequency components in its spectrum.

Thus, performing a series of homodyne measurements, one can use the trans-
formation (2.131) to reconstruct the Wigner function of the state. However, this
approach is highly sensitive to the measurement noise, and it can be challenging
to estimate the resulting error of the reconstruction [Butucea 2007]. The inverse
Radon transform performs well only when these uncertainties are negligible, i.e.,
in the limit of a very large number of data points and very precise measurements
[Lvovsky 2009]. Otherwise, errors in the right side of the transformation (2.129) can
result in inaccurate or unphysical features in the reconstructed state. For instance,
negative values may appear on the diagonal of the reconstructed density matrix,
and its trace is not guaranteed to equal one. For this reason, the inversion method is
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rarely used in modern homodyne tomography, and the statistical inference methods
are used instead [Lvovsky 2009].

2.4.2 Statistical reconstruction

Statistical methods in quantum tomography are closely related to parameter esti-
mation theory. Within this framework, the components of the density matrix ρnm

(typically in the Fock basis) are regarded as unknown parameters θ⃗. To reduce the
number of parameters, the state ρ̂ is often assumed to be localized in the chosen ba-
sis, and therefore it is fully described by a truncated density matrix of finite size.
Subsequently, MLE (2.25) can be employed to determine the density matrix that
maximizes the probability of the observed measurement results. Unlike the direct
inversion approach, the use of statistical reconstruction enables the specification of
the parameter space ρnm in such a way that it always corresponds to a valid density
matrix (i.e., unit-trace and positively defined). Note that constraining the parameters
in this manner can lead to biased estimators and render the CRB (2.22) inapplicable
for evaluating the accuracy of the state reconstruction.

Maximizing the likelihood function straightforwardly is typically challenging for
a large size of the density matrix. The optimization needs to be performed over a
considerable number of parameters, while also taking into account the constraints
on these parameters. The iterative Expectation-Maximization (EM) algorithm is often
employed to address this issue [Lvovsky 2009].

To introduce the EM algorithm for homodyne tomography, first, let us consider
the measurement of the observables with discrete spectrum and eigenvectors |ψj⟩.
Assume there are N repetitions of the measurement, with each corresponding out-
come occurring f j times. Then, an iterative procedure can be constructed using an
operator [Hradil 1997]

R̂(ρ̂) =
1
N ∑

j

f j

⟨ψj|ρ̂|ψj⟩
|ψj⟩⟨ψj|. (2.132)

Starting from an initial guess ρ̂(0) for the density matrix, we can construct a sequence
of operators [DAriano 2003]:

ρ̂(k+1) = N
[

R̂(ρ̂(k))ρ̂(k)R̂(ρ̂(k))
]

, (2.133)

where the operation N denotes the normalization to ensure the unit trace of the
density operator. This sequence preserves the positivity of the density matrix and
demonstrates fast convergence in many cases. However, there exists a counterex-
ample of a state for which the sequence (2.133) diverges [Řeháček 2007]. Therefore,
there remains a risk that the algorithm could fail for a particular experiment. In such
cases, one can use the so-called "diluted" algorithm [Řeháček 2007]:

ρ̂(k+1) = N
[

1 + ϵR̂(ρ̂(k))
1 + ϵ

ρ̂(k)
1 + ϵR̂(ρ̂(k))

1 + ϵ

]
, (2.134)
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which depends on a single parameter ϵ that determines the "length" of the step in
the parameter space associated with one iteration. For ϵ → ∞, we recover the iter-
ative scheme (2.133). On the other hand, in the limit of ϵ → 0, the likelihood will
monotonically increase, and the iterations will converge to the maximum-likelihood
state, as shown in [Řeháček 2007]. Thus, if the standard iterative scheme (2.133) does
not converge, one can use its diluted generalization (2.134) and choose sufficiently
small ϵ to ensure the convergence.

The generalization of this approach to continuous-spectrum homodyne detection
is given by [Lvovsky 2009]:

R̂(ρ̂) = ∑
m

1
⟨qθm |ρ̂|qθm⟩ |q

θm⟩⟨qθm |, (2.135)

where |qθ⟩ is an eigenvector of the quadrature operator q̂θ (1.84) and the summa-
tion is performed over each sample (qm, θm) of the homodyne data. This operator,
combined with the iterative scheme (2.134), offers a powerful tool for maximum-
likelihood homodyne tomography of the density matrix.

In addition to MLE tomography, other parameter estimation techniques, such
as least-square-based methods [Haah 2016; Acharya 2019; Guţă 2020] have demon-
strated their ability to offer fast and efficient estimators for quantum states.

2.4.3 Other tomographic methods

Having some prior information about the state, one might find a Bayesian approach
to quantum tomography [Blume-Kohout 2010; Chapman 2022] to be a valuable tool.
This approach, grounded in Bayesian statistics, not only allows for efficient use of
prior knowledge about the state but also inherently quantifies uncertainty in the
reconstructed density matrix.

While both the Bayesian and maximum-likelihood (particularly EM) approaches
to quantum tomography have proven efficient in many practical scenarios, their
computational complexity can be significant, and the convergence rate can be low.

Another promising and rapidly evolving technique in quantum tomography is
based on neural networks [Tiunov 2020; Lohani 2020; Koutný 2022]. This approach
offers several advantages, including computational efficiency and robustness against
noise. However, similar to other applications of neural networks, efficient utilization
of this technique requires a large training dataset and significant computational re-
sources during the training step. Additionally, neural networks are susceptible to
overfitting, and interpreting the results of neural network computations, as well as
assessing the quality of these results, can be challenging. On the other hand, by care-
fully selecting the training set, it is possible to incorporate additional information
about the class of studied states. For example, training the network specifically on
Gaussian states [Hsieh 2022b] can enhance its performance for this specific problem.

2.4.4 Moment-based quantum state characterization

If the studied states belong to a limited class of states (for example Gaussian states),
they can typically be parameterized with a finite number of parameters θ⃗. In this



64 Chapter 2. Parameter estimation theory

scenario, state tomography can be efficiently formulated as a traditional parameter
estimation problem with the measured state ρ̂(⃗θ). Having a good parametrization
ensures that ρ̂(⃗θ) always remains a physical density operator. Limitations on the pa-
rameters θm are typically set individually, allowing the parameters to be considered
independent of each other (unlike the elements of the density matrix).

For instance, a single-mode Gaussian state can be parametrized with five real-
valued parameters: the mean quadratures ⟨q̂⟩ and ⟨ p̂⟩, and the three parameters of
the quadrature covariance matrix (κ, s, ψs), which define the purity, squeezing, and
the direction of squeezing, as introduced in section 1.3.3. The physical constraints
dictate that κ ≥ 1 and s > 0. Therefore, if the parameters are sufficiently far from
these boundaries, they can be considered unbounded, allowing for the construction
of asymptotically unbiased estimators. In chapter 4 we employ the MoM to de-
velop simple and efficient estimators for these parameters. We demonstrate that this
estimator effectively utilizes the homodyne measurement data while requiring rela-
tively low computational power, compared to optimization methods, such as MLE.
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Separation estimation problem
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In this chapter, we introduce and analyze the central problem of this thesis: re-
solving two point-like sources of light. This problem, representing the simplest ver-
sion of imaging, provides valuable insights into the role of coherence effects, quan-
tum statistics of light, and the selection of measurement techniques for imaging.

The chapter begins with a general introduction to optical imaging, presenting
important concepts such as the point-spread function, numerical aperture, and the
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Rayleigh limit, following the classical textbooks on Fourier optics [Goodman 2005]
and imaging [Barrett 2004]. Then, we formulate the problem of point source re-
solving and describe different approaches to the detection of light, namely direct
imaging and spatial mode demultiplexing. We provide a review of the studies, that
use the spatial mode demultiplexing for various imaging problems.

In the subsequent sections, we employ parameter estimation techniques to ana-
lyze the information content of different measurements in various scenarios. First,
we study the resolving of a pair of mutually coherent sources, reproducing our re-
sults presented in [Karuseichyk 2022]. In the last section, we examine sources with
partial mutual coherence, including cases of separation-dependent coherence and
brightness of the sources [Karuseichyk 2024].

3.1 Elements of the imaging

3.1.1 Model of the optical system

To describe optical imaging, first, let us consider how light transforms as it travels
through free space and lenses. In this study, we focus on analyzing quasi-monochromatic
light with a fixed polarization. We start by describing a classical light beam local-
ized near the optical z-axis in the plane z = 0, with wave vectors clustered around
k⃗0, parallel to the z-axis (paraxial approximation). According to Fourier optics, the
propagation of light to the plane z can be described by the Huygens-Fresnel diffrac-
tion integral [Goodman 2005]:

Ez (⃗ρ, t) ∝
∫

dρ⃗′ exp
[

ik0
|⃗ρ′ − ρ⃗|2

2z

]
E0(⃗ρ

′, t − z/c), (3.1)

where ρ⃗ and ρ⃗′ represent transverse vectors in the planes z and z = 0 respectively,
and k0 = |⃗k0| = 2π/λ denotes the magnitude of the wave vector of the considered
light beam. For simplicity, constant factors are omitted. Additionally, we’ll disre-
gard the time dependence, as our focus lies on imaging objects with properties that
remain constant over time.

When examining propagation over distances significantly greater than the beam
size (i.e., max(|⃗ρ|2)/(λz) ≪ 1), known as the far field regime, the following approxi-
mation can be employed [Goodman 2005]:

Ez (⃗ρ) ∝ exp
[

iπ
|⃗ρ|2
λz

] ∫
d⃗ρ′ exp

[
−i 2π

ρ⃗ · ρ⃗′

λz

]
E0(⃗ρ

′) =

= exp
[

iπ
|⃗ρ|2
λz

]
F
[
E0(⃗ρ

′)
] ( ρ⃗

λz

)
, (3.2)

where
F[ f (⃗ρ′)](ρ) =

∫
dρ′ exp

[
−i 2πρ⃗ · ρ⃗′

]
f (ρ′) (3.3)

represents the two-dimensional Fourier transform. Thus, the paraxial propagation
of light to the far field corresponds to the Fourier transform of the field distribu-
tion, with an additional quadratic phase factor. The phase factor corresponds to the
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curvature of the wavefront and it is often neglected when the field is studied in the
vicinity of the optical axis [Barrett 2004].

When a large lens with focal length f is positioned at the plane z = 0, it intro-
duces to the propagating field an additional phase factor, that quadratically depends
on |⃗ρ′|:

∆ϕ = −π |⃗ρ′|2
λ f

. (3.4)

Consequently, eq. (3.1) transforms to:

Ez (⃗ρ) ∝
∫

d⃗ρ′ exp
[

iπ
|⃗ρ′ − ρ⃗|2

λz

]
exp

[
−iπ

|⃗ρ′|2
λ f

]
E0(⃗ρ

′). (3.5)

If the observation plane aligns with the focal plane of the lens (z = f ), eq. (3.5)
simplifies to eq. (3.2). Therefore, the evolution of the field passing through the lens
to the focal plane is also represented by a Fourier transform (3.2), with an additional
quadratic phase factor.

Now, let us explore the conceptual imaging scheme illustrated in fig. 3.1. Despite
its simplicity, this scheme can effectively describe nearly any passive far-field linear
imaging. In this setup, the field distribution EO (⃗ρO) in the object plane (z = 0)
gets imaged by the lens to the image plane (z = z1 + z2). The lens is positioned in
the plane z = z1 and is constrained by the aperture. The aperture modulates the
transferred field by a position-dependent loss factor A(⃗ρA) ≤ 1.

FIGURE 3.1: Fundamental imaging scheme. The optical field, de-
scribed by the electric field distribution EO (⃗ρO) in the object plane
z = 0, propagates over a distance z1 in free space. It then passes
through a lens, constrained by the aperture A(⃗ρA), before further
propagating over a distance z2 to reach the image plane. The result-

ing field distribution in the image plane is denoted by E(⃗ρ).

The position of the image plane is given by the lens equation

1
f
=

1
z1

+
1
z2

. (3.6)
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Hence, if the object is positioned sufficiently far from the lens (z1 → ∞)1, the image
is formed in the focal plane of the lens, meaning z2 = f .

In this scenario, the field undergoes transformation (3.2) while propagating through
the large distance z1. It is then modulated by the aperture A(⃗ρA) before undergoing
another transformation (3.5) as it propagates through the lens to the image plane
[Goodman 2005]. Neglecting the square phase factors the field distribution in the
image plane takes the form

E(⃗ρ) ∝ F
[

A(⃗ρA)F [EO (⃗ρO)]

(
ρ⃗A

λz1

)](
ρ⃗

λz2

)
. (3.7)

In what follows, without loss of generality, we use a transformation to the coordi-
nates r⃗, assuming that the corresponding length units in the object, aperture, and
imaging planes are selected to compensate for the magnification factor M = z2/z1
of the imaging system, as well as for the factors λz1 and λz2 in eq. (3.7). Then, using
the properties of the Fourier transform, it becomes straightforward to demonstrate
that:

E(⃗r) ∝
∫

d⃗r′u0(⃗r − r⃗′)EO (⃗r′) = u0(⃗r) ∗ EO (⃗r), (3.8)

where ∗ denotes the convolution operation. The function

u0(⃗r) ∝ F [A(⃗ρA)] (⃗r) (3.9)

represents the point spread function (PSF) of the imaging system. Typically, for conve-
nience, it is normalized as ∫

d⃗r|u0(⃗r)|2 = 1. (3.10)

This function describes the image of a point source, meaning that for EO (⃗r) ∝ δ(⃗r −
r⃗s), the field distribution in the image plane is E(⃗r) ∝ u0(⃗r − r⃗s). Since each point
of the object is imaged to a finite-sized spot, the images E(⃗r) of the objects EO (⃗r)
typically appear more blurred and less contrasted than the original objects.

Note that the transformation (3.8) by construction appeared to be translational
invariant. This means that for a shifted object EO (⃗r + a⃗), the corresponding image
also shifts as E(⃗r + a⃗) without any distortions. This characteristic is specific to far-
field imaging. Outside of the far-field scenario, when objects are sufficiently close
to the lens, translational invariance does not hold perfectly all along the object and
image planes. In such cases, various aberrations arise when the object is shifted
far enough from the optical axis, and the transformation (3.8) no longer accurately
describes the imaging process. Nevertheless, for objects localized close to the opti-
cal axis, the transformation (3.8) still provides a reasonably accurate description of
the imaging, even when the objects are not located in the far field from the imag-
ing setup. Some modifications to the definition of the PSF (3.9) are required in such
cases [Goodman 2005]. In what follows, we will focus on far-field translationally-
invariant imaging with the PSF defined in eq. (3.9). Note that breaking this approx-
imation and introducing optical aberrations to the model may potentially increase

1The following analysis can also be performed for finite z1, yielding analogous results, as discussed
in section 6.3 of [Goodman 2005] and section 9.6 of [Barrett 2004].



3.1. Elements of the imaging 69

the resolution of the system, as it introduces an additional mechanism for parameter
encoding [Liang 2023a]. However, this effect lies outside the scope of this research.

3.1.2 Aperture and PSF

First, let us note that for real central-symmetric aperture functions, or at least when
A(−ρA) = A∗(ρA), the PSF (3.9) for far-field imaging is real-valued, u0(⃗r) ∈ R,
which follows from the properties of the Fourier transform (3.3).

In most practical cases, the aperture of the imaging system takes on a circular
form:

A(⃗r) = rect[0,1]

(
2|⃗r|
D

)
, (3.11)

where the rectangular function is defined in (1.17), and D represents the diameter of
the aperture. This type of aperture is often referred to as a sharp aperture, owing to a
sharp change of transmission at the boundary of the aperture. Due to the rescaling
of coordinates in the aperture plane, the diameter in corresponding units is given by

D =
2NA

λ
, (3.12)

where NA stands for the numerical aperture of the imaging system. The numerical
aperture is given by the following expression:

NA = n sin α, (3.13)

with n being the index of refraction of the medium in which the lens is working, and
α is the half-angle of the maximum cone of light that can enter or exit the lens.

The corresponding PSF, given by the normalized Fourier transform of the eq. (3.11),
is

u0(⃗r) =
1√
π

J1(2π NA
λ |⃗r|)

|⃗r| , (3.14)

where J1(r) is the first order Bessel function of the first kind. This function is often
referred to as Airy PSF, and its square as Airy disk. One can see that for larger val-
ues of the numerical aperture, the PSF is more localized, signifying a higher quality
imaging system, with smaller blurring of the image.

Rayleigh limit

A point source of light, located in the position r⃗s of the object plane, produces the
following intensity distribution in the image plane

I0(⃗r) ∝ |u0(⃗r − r⃗s)|2, (3.15)

with |u0(⃗r) being the PSF defined in (3.9).
In the case of two incoherent point sources, their individual intensity distribu-

tions are summed up, since no interference is present. Thus, the image of two
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equally bright incoherent sources located in positions r⃗1,2 = (±d/2, 0) is

I (⃗r) ∝ |u0(⃗r − r⃗1)|2 + |u0(⃗r − r⃗2)|2. (3.16)

We present the crosssections of this image, taken along the y-axis, for different source
separations d on fig. 3.2.

d=1.34dR
-2 -1 1 2

x
dR

I(x,0)

d=1.dR
-2 -1 1 2

x
dR

I(x,0)

d=0.77dR
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x
dR

I(x,0)

FIGURE 3.2: The cross-section of an image of two incoherent sources
with different separations: classically resolved sources (left), sources
on the border of Rayleigh criteria (middle), and sources not resolvable

according to Rayleigh criterion (right).

As the separation d becomes smaller, the images of the sources merge, making it
harder to distinguish individual sources. The heuristic bound, introduced by Lord
Rayleigh 145 years ago claims that the smallest resolvable separation is the one for
which the central maximum of one source’s image coincides with the first minimum
of another source’s image [Rayleigh 1879; Villiers 2016]. Thus, using the first root of
the Bessel function J1(3.83...) = 0, one can show that the Rayleigh limit is given by

dR = 1.22
λ

2 NA
. (3.17)

This separation corresponds to ∼ 20% dip in the intensity distribution, as shown on
the middle plot in fig. 3.2.

The Rayleigh criterion is based on limitations to the resolving capabilities of the
human visual system and to provide sufficient contrast for an observer to distin-
guish two separate objects in the image. The Rayleigh criterion is therefore not a
fundamental physical law and instead a somewhat arbitrarily defined value. This
was clearly stated by Rayleigh himself in 1879 [Rayleigh 1879]:

This rule is convenient on account of its simplicity; and it is sufficiently
accurate in view of the necessary uncertainty as to what exactly is meant
by resolution.

There are other visual heuristic criteria. For example, the Sparrow limit [Spar-
row 1916], initially introduced for spectroscopy, is defined as the separation between
two point emitters when the total PSF exhibits no dip in intensity at the midpoint,
but instead displays an intensity plateau. The Sparrow limit is, therefore, smaller
than that defined by Rayleigh and is given by:

dS = 0.94
λ

2 NA
= 0.77 dR. (3.18)
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The image of the sources separated by dS is presented on the right plot of the fig. 3.2.
Another example of a resolution criterion is Abbe limit [Abbe 1873], defined sim-

ply as

dA =
λ

2 NA
= 0.82 dR. (3.19)

A more practical definition of imaging resolution is to use the full width at half maxi-
mum (FWHM) of the point spread function, in the case of Airy PSF (3.14) it is equal
to:

dFWHM = 1.02
λ

2 NA
= 0.84 dR. (3.20)

The advantage of using the FWHM is that it can be easily measured in the lab by
imaging a pseudo-point emitter, thus serving as a comparison metric for real micro-
scope systems.

Note that all these visual criteria are defined for incoherent sources of equal
brightness. For a pair of sources sharing arbitrary mutual coherence γ defined in
eq. (1.21), the intensity distribution in the image plane takes the form:

I (⃗r) ∝ |u0(⃗r − r⃗1)|2 + |u0(⃗r − r⃗2)|2 + 2 Re[γ u0(⃗r − r⃗1)u∗
0 (⃗r − r⃗2)]. (3.21)
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FIGURE 3.3: The cross-section of an image of two mutually coher-
ent sources with different separations. The top row depicts in-phase
sources (γ = 1), and the bottom row depicts anti-phase sources
(γ = −1). Red lines correspond to the individual images of the
sources, and blue lines represent the images of both sources inter-

fering with each other.

We present several examples of images of mutually coherent sources in fig. 3.3.
As one can see from this figure, it is more challenging to visually resolve sources
that constructively interfere, i.e., when γ = 1. In this case, an analogous criterion to
the Rayleigh limit for coherent sources can be formulated to give approximately the
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same 20% intensity dip between the two peaks of intensity, which corresponds to:

d(γ=1)
R = 1.64

λ

2 NA
= 1.34 dR. (3.22)

The analogous analysis can be performed for any value of mutual coherence γ. For
example, sources with an imaginary value of mutual coherence γ ∈ I (correspond-
ing to a phase shift of π/2) result in the same intensity distribution as for incoherent
sources. If the sources have opposite phases (γ = −1), they interfere destructively,
and there is always a dark line separating their images (see the bottom row of plots
in fig. 3.3). Thus, from the perspective of visual resolution criteria, anti-phase co-
herent sources are always resolvable. However, this conclusion does not account
for the decrease in intensity due to destructive interference, indicating that visual
criteria may fall short in this example.

The Rayleigh criterion, like other visual criteria, describes the perception of the
image by the human eye. It does not imply any post-processing of the image or
alternative ways of measuring the light in the image plane, different from straight-
forward intensity detection. By approaching this problem with a wider array of
instruments, one may aim to resolve sources that are considered unresolvable by
visual criteria. This problem is traditionally referred to as sub-Rayleigh imaging or
super-resolution imaging. One of the ways to surpassing the Rayleigh limit is to con-
sider the imaging problem as a parameter estimation problem, which is the main
approach used in this chapter.

Gaussian PSF

The widely used approximation for the PSF in imaging is a Gaussian approximation.
Since the central spot of the Airy disk contains most of the light, and its shape resem-
bles the Gaussian function, researchers often employ the Gaussian model of the PSF
[Zhang 2007]. This Gaussian PSF is mathematically represented by the equation:

u0(⃗r) =

√
1

2πσ2 exp
[
− |⃗r|2

4σ2

]
, (3.23)

where
σ = 0.42

λ

2 NA
= 0.34 dR. (3.24)

A comparison between the Airy PSF (3.14) and the Gaussian PSF (3.23) is de-
picted in fig. 3.4.

The Gaussian PSF model is widely used in the literature due to its numerous ad-
vantageous mathematical properties, which simplifies analytical calculations. Within
this thesis, many results are obtained for an arbitrary (yet real and central symmet-
ric) shape of the PSF, but final calculations for plots are mostly performed using the
Gaussian PSF. The Gaussian PSF model is often referred to as soft aperture approxi-
mation because the aperture responsible for this PSF has a Gaussian profile, making
it smoother compared to a sharp circular aperture (3.11). Note that numerical aper-
ture is strictly defined only for sharp apertures. In what follows we use the width
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FIGURE 3.4: The comparison between the Airy PSF (red line) and the
Gaussian PSF (blue line).

of the Gaussian PSF σ as the primary characteristic of the optical system’s resolution
(given a particular wavelength).

PSF factorization

One of the advantageous properties of the Gaussian function is its factorizability:

u0(x, y) =

√
1

2πσ2 exp
[
− (x2 + y2)

4σ2

]
= u0(x) u0(y), (3.25)

where

u0(x) =
1

(2πσ2)1/4 exp
[
− x2

4σ2

]
. (3.26)

Thus, when considering imaging of point sources located on the x-axis, the field
distribution over the y-axis will always be represented as a separate factor u0(y).
Consequently, the problem can consistently be reduced to a single dimension x, as
we demonstrate in more detail in section 3.3.

3.1.3 Losses in the imaging system

When light propagates through a diffraction-limited imaging system, a part of it gets
absorbed by the aperture. Typically, we consider the imaging of point-like sources
that emit light uniformly in all directions. Consequently, the energy transmissivity
κ of the imaging setup is determined by the solid angle of the aperture ΩA, and can
be expressed as

κ =
ΩA

4π
= sin2 α

2
≈ NA2

4
, (3.27)

where we assume that imaging is conducted in air or vacuum (i.e., the index of
refraction n ≈ 1), the point source is situated sufficiently close to the optical axis,
and the numerical aperture of the lens is small (NA ≪ 1).

In a general scenario, the reflection and absorption of light on the lenses can
introduce additional losses. Moreover, the finite efficiency of the detection system
can also be considered at this stage by integrating the detectors’ efficiency into κ.
Thus, in the following, we simply use constant κ to account for all the losses in
the system. Since we employ a translationally symmetric model of imaging, the
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transmissivity κ remains constant regardless of the position of the point source. It is
interesting to note that the total transferred energy may still depend on the position
of point sources when several mutually coherent sources are imaged (see section 3.3).

Now, we can formulate the description of the imaging transformation using the
language of quantum physics. If a point source located at position r⃗s emits light into
mode ŝ with the spatial transverse profile δ(⃗r − r⃗s), it excites mode ĉ in the image
plane with the spatial profile u0(⃗r − r⃗s). This implies that losses on the aperture
not only transform the state of light but also alter the spatial shape of modes. Re-
ferring to the description of losses introduced in section 1.2.4, passing through the
imaging system corresponds to the following transformation of the field operators
[Lupo 2016]:

ĉ =
√

κŝ +
√

1 − κv̂, (3.28)

where v̂ corresponds to the field operator of the vacuum mode. Hereafter we refer
to the mode ŝ as the source mode, and the mode ĉ as the image mode.

3.2 Formulation of the source resolving problem

Now we have all the necessary tools to formulate the central problem of this the-
sis: the imaging of two point-like sources of light. The conceptual scheme of this
problem is illustrated in fig. 3.5.

FIGURE 3.5: The imaging of two point sources. The sources emit
light into the modes ŝ1,2, with the joint quantum state of the emitted
light denoted as ρ̂s1s2 . The emitted light passes through a diffraction-
limited imaging system with transmissivity κ and PSF u0 (⃗r). The re-
sulting state of light is represented in the pair of non-orthogonal im-
age modes ĉ1,2, or in the set of orthogonal measurement modes {âm}.

In the considered imaging scheme, the two point sources are located at posi-
tions r⃗1,2. The parameter of primary interest is the separation between these sources
d = |⃗r2 − r⃗1|. In the subsequent discussion, we refer to the determination of the
separation d as the resolving of the sources. This terminology slightly deviates from
its traditional meaning, which typically involves choosing between two hypothe-
ses: whether there is one or two sources in the image plane. Although these two
problems are closely intertwined and share many common techniques [Lu 2018;
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Schlichtholz 2024; Wadood 2024], this research primarily focuses on the task of esti-
mating the separation.

Following the conventional approach, we assume that the position of the cen-
troid of the sources, denoted by r⃗c = (⃗r1 + r⃗2), is known [Tsang 2016; Lupo 2016;
Sorelli 2021a]. For the sake of simplicity in the presentation, we further assume that
the sources lie along the x-axis, i.e., r⃗1,2 = (x1,2, 0)T.

3.2.1 State of the emitted light

The sources emit light into two spherical modes ŝ1,2, which are orthogonal to each
other. The temporal profile of the modes ŝ1,2 is defined by the coherence time τc
of the sources. The joint quantum state of the emitted light, represented by ρ̂s1s2,
determines both the individual statistics of the sources and their correlations. The
coherency matrix (1.52) of the emitted field is Hermitian and has dimensions of 2x2,
allowing it to be parameterized with four real parameters:

Γ(1)ŝ
jk =

〈
ŝ†

j ŝk

〉
ρs1s2

=

(
NS p NS

√
p(1 − p) γ0eiϕ

NS
√

p(1 − p) γ0e−iϕ NS(1 − p)

)
jk

. (3.29)

Here, NS = Tr Γ(1)ŝ represents the total number of emitted photons per coherence
time τc, 0 ≤ p ≤ 1 denotes the power imbalance between the sources (where they
are equally bright if p = 1/2), and γ = γ0eiϕ is the mutual coherence (1.53) between
the sources. We naturally refer to the parameter γ0 = |γ| as the absolute value of the
mutual coherence and to ϕ as the mutual phase between the sources, even if they are
not in a coherent state.

As we demonstrate in the following sections, all the field characteristics after
passing through the imaging system contain the parameter NS only in combination
with the transmissivity factor κ. Thus the important parameter of this problem is the
combination κNS, which defines the brightness2 of the sources imaged with a given
optical system. We define sources with κNS ≪ 1 as faint sources. Note, however,
that the number of photons emitted by such sources per unit time or per integration
time of the detection system can still be large if the coherence time of the sources is
short, or if transmissivity κ is low. Unlike most research on this topic, our approach
also allows for studying bright sources with κNS > 1, demonstrating the non-trivial
scaling of the separation estimation sensitivity with this parameter.

Depending on the problem’s setup, some or all of parameters (Ns, p, γ0, ϕ) of
the state may be known before measurement. In certain cases, we treat them as
unknown parameters, however, we always assume to know the absolute degree of
mutual coherence γ0

3. Consequently, the problem naturally divides as follows: fully
coherent sources (γ0 = 1) are addressed in section 3.3, and partially coherent sources
(0 ≤ γ0(d) ≤ 1) in section 3.4.

The coherency matrix (3.29) does not entirely define the state ρ̂s1s2 . In general, it
depends on infinitely many parameters. However, our primary focus lies on passive
imaging, where the sources emit light without external illumination. Consequently,

2We assume the coherence time of the sources τc to be fixed. Thus the number of photons per
coherence time is proportional to the number of photons per unit time.

3This parameter can also be estimated from the measurement [Liang 2021].
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the sources lack any external phase reference, and their state is phase-averaged over
the global phase. As a result, all the averages that do not contain an equal amount
of creation and annihilation operators vanish:

⟨ŝj⟩ = ⟨ŝj ŝk⟩ = ⟨ŝ†
j ŝk ŝl⟩ = ... = 0. (3.30)

In section 3.4 we also assume the statistics of the sources to be Gaussian. In this case,
the eqs. (3.29) and (3.30) fully define the state ρ̂s1s2 . In section 3.3 we explore a more
general case, accounting for arbitrary statistics of the sources.

3.2.2 Light transformation in the imaging system

Now let us consider how the emitted light passes through a diffraction-limited imag-
ing system with transmissivity κ and PSF u0(⃗r). In the image plane two image modes
ĉ1,2 with spatial profiles u0(⃗r − r⃗1,2) are excited

ĉ1,2 =
√

κŝ1,2 +
√

1 − κv̂1,2. (3.31)

Note that the vacuum modes v̂1,2 are not generally orthogonal to each other, as the
sources experience losses to overlapping modes. Consequently, the modes ĉ1,2 also
become non-orthogonal to each other. This non-orthogonality can also be observed
through the overlap of their spatial profiles:

δ =
∫

d⃗r u0(⃗r − r⃗1)u∗
0 (⃗r − r⃗2) ̸= 0. (3.32)

Thus, while the light in the imaging plane can be represented by the pair of
image modes ĉ1,2, it is not always convenient due to their non-orthogonality and
dependence on the positions of the sources. One solution to this challenge is to
use symmetric and anti-symmetric combinations of the image modes [Lupo 2016;
Sorelli 2021b; Sorelli 2022]:

u± (⃗r) =
u0(⃗r − r⃗1)± u0(⃗r − r⃗2)

2(1 ± δ)
. (3.33)

This pair of modes is typically advantageous for calculating the QFI since it consti-
tutes the smallest set of orthogonal modes capable of representing the state of light
in the image plane. However, when computing the FI and the MoM sensitivity of
specific measurements the state should be represented in the same mode basis as the
measurements are performed.

Let us examine the measurements of light in the image plane, conducted within
the set of orthogonal modes âm with spatial profiles fm (⃗r). These modes are referred
to as the measurement modes. The imaging system under consideration performs a
linear transformation of the field, allowing the field operators âm to be expressed as:

âm = z(1)m ŝ1 + z(2)m ŝ2 + v̂′m, (3.34)

where z(1,2)
m are complex coefficients, and v̂′m represents vacuum modes’ field opera-

tors, which we do not normalize for the simplicity of the presentation.
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We determine the coefficients z(1)m by considering the scenario where mode ŝ2 is
in the vacuum state. In this case, the field in the image plane is fully described by
the single mode ĉ1 with the spatial profile u0(⃗r − r⃗1). This mode can be decomposed
over the orthogonal set of measurement modes fm (⃗r). Hence, following the mode
transformation rule (1.29), the field operators of the measurement modes in the case
of a single light source ŝ1 are represented as:

â(1)m =

(∫
d⃗r f ∗m (⃗r)u0(⃗r − r⃗1)

)
ĉ1 + v̂(1)m = βm (⃗r1)ĉ1 + v̂(1)m , (3.35)

where v̂(1)m are the field operators of the non-excited (vacuum) modes in the image
plane. Substituting expression (3.31) for ĉ1 into this equation and comparing the re-
sult to eq. (3.34), we arrive at z(1)m =

√
κβm (⃗r1), where βm (⃗r1) are the spatial overlaps

of the first source image mode with the measurement mode fm (⃗r)

βm (⃗r1) =
∫

d⃗r f ∗m (⃗r)u0(⃗r − r⃗1). (3.36)

Similarly, we find coefficients z(2)m =
√

κβm (⃗r2) by considering mode ŝ1 in the vac-
uum state, yielding the final result [Karuseichyk 2022]:

âm =
√

κ ∑
j

βm (⃗rj) ŝj + v̂′m. (3.37)

The vacuum contribution here arises from two origins: modes v̂1,2 enters the system
due to the losses on the aperture described in eq. (3.31), and modes v̂(1,2)

m correspond-
ing to non-excited modes in the image plane, as given by eq. (3.35).

The contribution of the vacuum modes in this expression can be eliminated for
the averages of the operators in the normal order. The normal order of the operator
corresponds to the form where all creation operators are to the left of all annihilation
operators in the products. For example, the operator â† â is normally ordered, and
the operator ââ† is not. The latter can be transformed into the normal order by using
the commutation relations (1.26)4

ââ† = â† â + Î. (3.38)

If the operator in the normal order contains one or several field operators of the
vacuum modes, its mean value equals zero, since

v̂|0⟩ = 0, and ⟨0|v̂† = 0. (3.39)

Thus if one is interested in finding the average of some operator g({â†
m}, {ân}),

this operator should be transformed using the commutation relations (1.26) into the
normal-ordered form gN({â†

m}, {ân}) = g({â†
m}, {ân}). Then, the mean value of this

4This transformation to normal order should not be confused with the normal ordering operation :
X̂ : [Scully 1997]. The latter changes the order of the field operators to normal order, without respecting
the commutation rules, i.e., : ââ† := â† â, which, in the general case, changes the operator : ââ† : ̸= ââ†.
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operator can be calculated without considering any additional vacuum modes:

⟨ gN({â†
m}, {ân})⟩ = ⟨ gN({

√
κ ∑

j
β∗

m (⃗rj)ŝ†
j }, {

√
κ ∑

j
βm (⃗rj)ŝj})⟩ρs1s2

, (3.40)

with βm (⃗rj) (3.36) containing all the geometry of the problem. This useful property
allows us to build an analytical description of the moment-based parameter estima-
tion throughout this research.

Now let us consider the case when the PSF model u0(⃗r) and the measurement
modes fm (⃗r) are factorable over the coordinates x and y, i.e. u0(⃗r) = u(x)

0 (x)u(y)
0 (y)

and fm (⃗r) = f (x)
m (x) f (y)m (y). In this case the overlap coefficients (3.36) can be repre-

sented as

βm (⃗rj) =

(∫
dx f (x)∗

m (x)u(x)
0 (x − xj)

)(∫
dy f (y)∗m (y)u(y)

0 (y − yj)

)
. (3.41)

Then, if the sources are located on the x-axis (yj = 0), and the spatial profile of

the measurement modes along the y-axis matches the profile of the PSF f (y)m (y) =

u(y)
0 (y), then the second integral in eq. (3.41) always equals 1, and the problem be-

comes single dimensional.

3.2.3 Measurement techniques

There are two main types of measurements that can be performed on individual
optical modes âm: intensity measurement (see section 1.2.4) and quadrature mea-
surements (see section 1.3.4). Quadrature measurements require the presence of
the local oscillator (LO), i.e., a strong coherent field that is phase locked with the
sources. However, as discussed in section 3.2.1, in our case, we usually do not have
a phase reference to the sources. Therefore, the emitted light is considered to be
phase-averaged, and quadrature measurements are not very efficient in this sce-
nario. Although useful information can still be extracted from the second moment
of the measured quadratures, this approach has been shown to be not quantum-
optimal even in the simplest cases [Yang 2017; Len 2020; Datta 2021].

In this thesis, our primary focus is on the measurement of light intensity

X̂m = N̂m = â†
m âm. (3.42)

This represents the most fundamental optical measurement, as even quadrature de-
tection involves several of such photodetectors (see fig. 1.2). Moreover, ideal inten-
sity detection, when combined with an optimized choice of measurement modes,
has been demonstrated to saturate the QCRB for the separation estimation between
incoherent sources [Tsang 2019b; Sorelli 2021b]. Therefore, the next step is to select
the measurement mode basis fm (⃗r).
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Direct imaging

The most straightforward method for examining the light distribution in the image
plane is to employ a camera, which consists of an array of small localized photode-
tectors. This approach is called direct imaging (DI). This measurement corresponds
to intensity detection in the pixel modes, which are rectangular modes of size lx × ly:

f DI
m (x, y) = rect

[xpix
m −lx/2,xpix

m +lx/2]
(x) rect

[ypix
m −ly/2,ypix

m +ly/2]
(y), (3.43)

where xpix
m and ypix

m represent the coordinates of the center of pixel with index m, and
the rectangular function is defined in eq. (1.17). If the size of the pixels is sufficiently
smaller than the PSF width, lx,y ≪ σ, the measurement modes can be approximated
with delta-functions

f DI
m (x, y) =

√
lxδ(x − xpix

m )
√

lyδ(y − ypix
m ). (3.44)

This approximation works since the field does not change significantly on the scale
of the pixel size lx,y, thus it can be just sampled in the center of the pixel, instead of
averaging over the pixel.

In this case, the overlaps (3.36) reduce to

βDI
m (xj, yj) =

√
lxly u0(xpix

m − xj, ypix
m − yj). (3.45)

The mean number of photons, detected in the pixel m is given by eq. (3.40):

Nm = ⟨â†
m âm⟩ = κlxly⟨(u∗

0(xpix
m − x1, ypix

m − y1)ŝ†
1 + u∗

0(xpix
m − x2, ypix

m − y2)ŝ†
2)

× (u0(xpix
m − x1, ypix

m − y1)ŝ1 + u0(xpix
m − x2, ypix

m − y2)ŝ2)⟩. (3.46)

By defining the light intensity as an average detected number of photons per unit
square I (⃗rpix

m ) = Nm/(lxly), we reproduce a classical formula for intensity distribu-
tion from two sources with coherency matrix (3.29):

I (⃗r) = κNS
(

p |u0(⃗r − r⃗1)|2 + (1 − p)|u0(⃗r − r⃗2)|2 + 2 Re[γu∗
0 (⃗r − r⃗1)u0(⃗r − r⃗2)]

)
.

(3.47)
Often it is convenient to consider DI in the continuous limit of infinitely small

pixels lx,y → 0. In this case, the summation over the index m of the measurement
mode is changed to the integration over the positions of pixels

∑
m

g1(Nm) =
∫

d⃗r
1

lxly
g1(I (⃗r)lxly) =

∫
d⃗r g1(I (⃗r)), (3.48)

where the size of the pixel lxly cancels out for the first-order homogenous functions
g1(ax) = ag1(x).

This continuous approximation is often referred to as continuous direct imaging. It
is important to note that this idealized model may tend to overestimate the perfor-
mance of real cameras, which have pixels of finite size and are subject to detection
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noise. However, it serves as a useful upper bound for the performance of any cam-
era, enabling comparison of other measurement techniques to this idealized DI.

The DI technique is a widely used and well-established approach to imaging. It
offers numerous advantages, from the availability of cameras to translational covari-
ance of the measurement in the xy-directions. Thus, we often use the sensitivity of
DI as a reference for comparison.

It is important to note that information about the separation of incoherent sources,
provided by DI measurements, vanishes as the separation decreases to zero. This
phenomenon has been recently termed Rayleigh’s curse [Tsang 2016]. It is a specific
feature of DI measurement and is not replicated in the QFI behavior. In other words,
DI is not a quantum-optimal measurement for resolving two closely located incoher-
ent sources [Tsang 2016]. Thus, let us consider more general measurement modes.

Mode demultiplexing and its realization

A more generalized approach to measuring light in the image plane extends beyond
localized pixel modes, enabling access to modes with arbitrary spatial shapes. An il-
lustrative example of mode-selective measurement is homodyne detection, wherein
the spatial (and temporal) profile of the measured mode is determined by the mode
profile of the LO. Thus, by altering the spatial profile of the LO, one can select the
mode being measured. Theoretical analyses of this approach to resolving of the
point sources have been conducted [Len 2020; Datta 2021; Datta 2020], and experi-
mental implementations have been achieved [Pushkina 2021; Costa Filho 2021]. A
limitation of this technique is its ability to access only one spatial mode at a time.
Moreover, as previously noted, homodyne measurement is not quantum-optimal
for the separation estimation problem.

Thus within this thesis, we are focused on the mode-selective intensity measure-
ments. One can not perform the intensity measurement in the spatially extended
modes if they overlap with each other, as we discussed in section 1.2.4. Conse-
quently, it is necessary to perform some operation, that separates different spatial
modes in space (or time). This operation is in general referred to as mode sorting, or
specifically for spatial modes it is called spatial mode demultiplexing (SPADE).

One of the types of devices with spatial mode sorting capabilities are the pho-
tonic lanterns [Leon-Saval 2013; Birks 2015]. These devices consist of single-mode
fiber cores being gradually reduced until they cannot confine the light anymore. The
light is then coupled into the multimode waveguide (see fig. 3.6). In the reverse di-
rection it can work as a spatial mode sorter. Note that designing a photonic lantern
that can decompose the light in a specific basis of spatial modes can be a challenging
task.

Another technology for spatial mode sorting is known as multi-plane light con-
version [Labroille 2014; Kupianskyi 2023; Zhang 2023b]. It operates on the principle
that any spatial unitary transformation can be achieved by cascading a finite number
of phase masks and Fourier transforms [Morizur 2010]. Typically, N phase masks
are needed to transform N modes. However, with the recently developed "magic
mapping," demultiplexing of 1035 modes was achieved using only 14 phase masks
[Fontaine 2021].
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FIGURE 3.6: Photonic lantern implementations [Leon-Saval 2013].

FIGURE 3.7: Multi-plane light converter [Kupianskyi 2023].

Multi-plane light conversion is often implemented using several reflections on a
spatial light modulator (SLM), allowing programmable unitary transformations, i.e.
adaptive choice of the mode decomposition basis (see fig. 3.7). However, in efforts
to reduce losses and price, devices can also use reflective phase plates with fixed
properties [Bade 2018].

The multi-plane light conversion technique offers high precision of the mode de-
composition, and it can be applied to any spatial-mode transformation. Thanks to
these remarkable features, multi-plane light conversion is a preferred tool for vari-
ous applications, especially in fibered and free-space communications, but also for
point sources resolving [Rouvière 2024; Santamaria 2024; Tan 2023b; Boucher 2020].

Another recent promising mode-sorting technique leverages the intricate spatial
mode mixing process within a multimode fiber [Defienne 2020] (fig. 3.8). Remark-
ably, this method demonstrated the decomposition of over 25 spatial modes using
just one phase mask. However, it is noteworthy that the reported conversion effi-
ciency of this approach was approximately 20%.

The final approach to SPADE that we mention is rooted in nonlinear optics. It
has been shown that by tuning the spatial shape of the pump, mode-selective con-
version of light can be achieved through a sum-frequency generation process [Seph-
ton 2019; Kumar 2021]. When combined with spectral filtering, this method can
facilitate spatial-mode-selective measurement.
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FIGURE 3.8: Spatial mode sorting with SLM and multimode fiber
[Defienne 2020].

Mathematical description of SPADE

Now equipped with the tools to conduct SPADE, we can investigate its application to
the point source resolving problem. In the subsequent discussions, we consider sym-
metric, real, and factorable PSF u0(x, y) = u0(x)u0(y) = u∗

0(x, y). If the sources are
located along the x-axis, i.e., r⃗1,2 = (x1,2, 0), the problem can be effectively reduced to
one dimension, by choosing the measurement basis as fm(x, y) = fm(x)u0(y), m =
1...K, as demonstrated in eq. (3.41).

It has been demonstrated in [Rehacek 2017] that arbitrary measurement basis
with the symmetry

f (s)m (−x) = (−1)m f (s)m (x), m = 1...K (3.49)

saturates the QCRB for resolving faint incoherent sources in the limit of K → ∞, i.e.
when the measurement basis is full. Note that this measurement basis is efficient
only when it is aligned to the centroid of the sources. This means that the sources
should be positioned symmetrically with respect to the origin of the chosen coordi-
nate system, i.e. r⃗1 = −⃗r2. Following the conventional approach, we maintain this
assumption in subsequent calculations. Achieving the sensitivity of the centroid-
aligned measurement can be challenging in practical cases, but this example serves
as a valuable lower bound for the FI and QFI.

The positions of sources r⃗1,2 = (±d/2, 0) are incorporated into the problem
through the overlaps:

βm = βm

(
d
2

)
=
∫

dx u0

(
x − d

2

)
f (s)m (x), (3.50)

Due to the symmetry of the PSF function u0(−x) = u0(x), this overlap preserves the
symmetry and parity of the measurement modes:

βm(−x0) = (−1)mβm(x0). (3.51)

The overlaps βm can be viewed as elements of the normalized vector u0 (x − d/2)
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in the orthonormal basis f (s)m (x). The specific choice of basis (as long as it is symmet-
ric) often does not affect the final results of calculations if the basis is complete

K

∑
m=1

f (s)m (a) f (s)m (b) −−−→
K→∞

δ(a − b). (3.52)

Using the completeness property, we present some expressions that remain invariant
across measurement bases and will be used throughout the subsequent sections:

A =
K

∑
m=0

β2
m −−−→

K→∞
1 (3.53)

A′ =
∂A
∂d

= 2
K

∑
m=0

βm
∂βm

∂d
−−−→
K→∞

0 (3.54)

δ =
K

∑
m=0

β2
m(−1)m −−−→

K→∞

∫
u0

(
x − d

2

)
u0

(
x +

d
2

)
dx, (3.55)

δ′ =
∂δ

∂d
= 2

K

∑
m=0

(−1)mβm
∂βm

∂d
, (3.56)

∆k2 = 4
K

∑
m=0

(
∂βm

∂d

)2

−−−→
K→∞

∫ (
∂u0(x)

∂x

)2

dx, (3.57)

β = −4
K

∑
m=0

(
∂βm

∂d

)2

(−1)m −−−→
K→∞

∫
∂u0(x − d/2)

∂x
∂u0(x + d/2)

∂x
dx. (3.58)

Here, A describes the portion of the image intensity captured in the given measure-
ment basis (in the full basis, all the light is being measured), δ stands for the overlap
of the two images, ∆k2 describes the norm of the PSF derivative, and β represents
the overlap between the derivatives of the two image modes.

These characteristics can be explicitly computed for the Gaussian PSF (3.26),
yielding:

δ = exp
[
− d2

8σ2

]
, ∆k2 =

1
4σ2 , (3.59)

β =
σ2 − (d/2)2

4σ4 exp
[
− d2

8σ2

]
. (3.60)

Most of our subsequent results are independent of the measurement basis. However,
in certain instances where numerical computations with a limited number of modes
are conducted, we opt for the HG mode basis.

It was shown in [Rehacek 2017], that for the Gaussian PSF (3.26) the optimal
choice of modes are the Hermite-Gaussian (HG) modes with width matched to the
width of the PSF. The mode profile of HG modes is given by

f HG
m (x) =

1√
2mm!

Hm

(
x√
2 σ

)
u0(x), (3.61)
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where Hn are Hermite polynomials. This measurement basis offers localization of in-
formation in the first modes, in case of resolving closely located incoherent sources.
Achieving equivalent sensitivity in alternative symmetric mode bases requires mea-
suring a greater number of modes.

The overlap (3.50) of the image mode u0(x − x0) with the HG mode f HG
m (x) is

given by

βHG
m (x0) =

∫
dx u0(x − x0) f HG

m (x) = exp
[
−1

2

( x0

2σ

)2
]

1√
m!

( x0

2σ

)m
. (3.62)

3.2.4 Background of the SPADE technique

Leveraging the SPADE approach for resolving incoherent sources was suggested in
[Tsang 2016]. In this seminal paper, it was demonstrated that the QFI, associated
with the estimation of the separation between two faint incoherent sources, in fact,
does not depend on the separation itself (see fig. 3.9). At the same time, the FI of
direct imaging (DI) vanishes for estimating small separations, which was nicknamed
the "Rayleigh’s curse". This implies that DI is not an optimal measurement as it does
not extract the full information available in the field and has particular difficulties in
resolving closely separated sources. An optimal measurement was suggested in the
form of intensity measurement in the HG modes, mode-matched to the PSF width
and aligned to the centroid between the sources. A simplified SPADE approach
called binary SPADE was suggested in the same paper [Tsang 2016]. Within this
approach, the mode HG00 is extracted from the image, while all the remaining light is
being detected with a bucket detector. This approach is optimal for resolving closely
separated sources d ≪ σ, but provides less information in case of large separation.

FIGURE 3.9: Comparison of the QFI (blue line), FI of the SPADE in
full HG basis (coincide with QFI), FI of binary SPADE in HG mode
basis (green dashed line), and FI of the direct imaging (red dot-dashed

line). Adapted from [Tsang 2016].

The SPADE approach got a lot of attention and was intensively studied in various
generalizations [Tsang 2019b]. Several techniques, somewhat analogous to binary
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SPADE were suggested in the literature. SPLICE (super-resolved position localiza-
tion by inversion of coherence along an edge) manages to extract the first order mode
via a π phase shift done by a phase plate in the image plane [Nair 2016; Tham 2017]
and SLIVER (super localization via image-inversion interferometry) does the same
with an image-inversion interferometer [Bonsma-Fisher 2019; Sajjad 2024]. These
techniques approach the quantum limit in perfect conditions for separation estima-
tion in the sub-Rayleigh regime. Similar approaches, based on PSF shaping, also
proved to be perspective direction [Paúr 2018; Paúr 2019].

The resolving of intense thermal sources was examined by studying the QFI
[Lupo 2016; Nair 2016; Sorelli 2022] and the moment-based sensitivity of the com-
plete SPADE measurement [Nair 2016; Sorelli 2021a]. Directly calculating the FI
in this scenario is a challenging task, but one can calculate the sensitivity with the
method of moments (MoM). If MoM sensitivity saturates the QFI, it immediately
provides the FI matrix through the chain inequality (2.104). These studies showed
that the information per photon decreases when resolving intense thermal sources,
particularly if their separation is approximately equal to the width σ of the PSF (see
Figure 3.10).

FIGURE 3.10: Comparison of the QFI (blue line), DI (dot-dashed red
line), and lower bound of the FI of the SPADE in Q-mode HG basis
for resolving thermal sources with NS = 1.5 photons per coherence

time. Reprinted from [Nair 2016].

Various imperfections of the SPADE measurement have been considered, in-
cluding detection noise [Len 2020; Lupo 2020a; Oh 2021], demultiplexing crosstalk
[Gessner 2020a; Linowski 2023], measurement basis misalignment from the centroid
[Tsang 2016; Almeida 2021], and a combination of all these factors [Sorelli 2021a;
Sorelli 2021b]. These studies have shown the resurgence of the Rayleigh curse in
the presence of measurement imperfections, although the estimation of large sepa-
rations was not significantly affected. It has been later demonstrated that resolving
large separations is not susceptible to small measurement imperfections of any kind,
whereas resolving closely separated sources can be easily corrupted by imperfect
measurements [Kurdziałek 2023].

Homodyne and heterodyne detection in HG modes, instead of intensity detec-
tion, have been extensively studied in several publications [Yang 2017; Datta 2020;
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Datta 2021; Costa Filho 2021; Gosalia 2023]. This method was found to be not par-
ticularly efficient for passive imaging, especially with faint sources, as there is no
phase reference to the measured field. However, it may prove useful for active co-
herent imaging where a phase reference is available.

One of the crucial assumptions underlying SPADE models is that the measure-
ment basis aligns with the centroid of the sources. Therefore, if the centroid is un-
known, additional preliminary measurements are necessary to determine it. This
measurement can be conducted independently of the separation estimation only for
a pair of incoherent equally bright sources. Alternatively to a preliminary centroid
estimation, a multi-stage algorithm can be employed: alternating SPADE (for esti-
mating the separation) with DI (to refine the centroid position) [Grace 2020]. An-
other approach involves simultaneously estimating the centroid and separation us-
ing Hong-Ou-Mandel interference [Parniak 2018]. The quantum bounds for simul-
taneous estimation of both sources’ positions were studied in the following papers
[Ang 2017; Rehacek 2017].

Estimating axial displacements of sources [Koutný 2021; Zhou 2019b] and simul-
taneously positioning multiple sources in all three dimensions [Tsang 2015; Back-
lund 2018; Yu 2018; Prasad 2020; Napoli 2019] are other intriguing problems that
have gained significant attention in recent years.

The point source resolving problem has also been explored beyond the equally
bright sources approximation through multiparameter QFI analysis [Řehaček 2017;
Řeháček 2018] and by calculating the FI of the SPADE measurement [Costa Filho 2021;
Linowski 2023; Santamaria 2024; Li 2024]. It has been shown that in a somewhat
artificial single-parameter setting (where only the separation is estimated, assum-
ing all other parameters to be known), the power imbalance of the sources does
not affect the sensitivity of the SPADE measurement but does improve the resolu-
tion of DI, eliminating the Rayleigh curse. However, in a more realistic scenario
with multiparameter estimation, the Rayleigh curse is present even at the quantum
bound, indicating that no measurement with finite statistics can resolve arbitrarily
small separations in the multiparameter case. Nonetheless, the SPADE approach
still demonstrates considerably higher sensitivity over DI even in this case.

Imaging of multiple incoherent sources was also studied extensively in multiple
publications [Bisketzi 2019; Lupo 2020b; Fiderer 2021; Bao 2021; Costa Filho 2021;
Liao 2022], bringing the problem closer to realistic imaging setting [Pushkina 2021;
Costa Filho 2021]. It has been shown that regardless of the number of sources, the
QFI matrix of their one-dimensional positioning retains only two nonzero eigenval-
ues as the source separations approach zero. This means that one can extract at
most two independent combinations of the positions of sources along one axis if the
sources are strongly grouped. This finding aligns with existing results on moment
estimation [Zhou 2019a; Tsang 2019c; Tsang 2019a; Tsang 2020; Tsang 2021], high-
lighting the harsh quantum limits to imaging beyond centroid and size estimation.

The SPADE approach has also been investigated in the context of hypothesis test-
ing for "one-versus-two" source determination [Lu 2018; Huang 2021; Huang 2023;
Deshler 2024; Wadood 2024; Schlichtholz 2024] and pattern recognition [Grace 2022;
Ortolano 2023], demonstrating a clear advantage over approaches base on the DI
[Acuna 1997; Shahram 2006] and approaching the quantum bound [Helstrom 1973].
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Moreover, it has been combined with other statistical methods such as the Bayesian
approach [Tsang 2018; Lee 2022] or biased estimation [Tsang 2016], showcasing pre-
cision beyond the CRB.

The straightforward generalization of the SPADE technique to imaging in the
time-frequency domain represents another field of active theoretical and experi-
mental studies [Donohue 2018; Ansari 2021; Kumar 2021; De 2021], where unprece-
dented temporal resolution is demonstrated.

In addition to theoretical studies, numerous experiments have been conducted
using SPADE and analogous techniques to demonstrate source resolution beyond
the Rayleigh limit [Paúr 2016; Tang 2016; Yang 2017; Tham 2017; Parniak 2018;
Zhou 2019a; Boucher 2020; Pushkina 2021; Zanforlin 2022; Greenwood 2023; Santa-
maria 2023; Tan 2023a; Rouvière 2024; Santamaria 2024]. While a convincing demon-
stration of the practical utility of this approach is still pending, we firmly believe it
is a matter of the near future.

One of the significant recent debates on point source resolving concerns partially
coherent sources [Larson 2018; Tsang 2019d; Larson 2019; Hradil 2019; Tsang 2019b;
Hradil 2021; Liang 2021; Kurdzialek 2022; Sorelli 2022; Liang 2023b; Wang 2023].
Different studies have reached different conclusions regarding the value of the QFI
in this scenario. This discrepancy stems from different representations of the light’s
state in the image plane. Traditionally, when dealing with incoherent sources within
the Poissonian limit, the state of light is often depicted in the single-photon sub-
space. This approach describes detection statistics by focusing solely on success-
ful detection events, omitting outcomes where no photons are detected. However,
due to the interference of partially coherent sources, the overall photon detection
frequency may depend on estimated parameters (such as separation between the
sources). Hence, it is crucial to incorporate detection probability into the model and
accurately account for losses in the imaging system. In other words, the descrip-
tion should include the vacuum component, as discussed in detail in [Tsang 2019d;
Kurdzialek 2022; Liang 2023b].

This debate on the effects of coherence has inspired the research presented in
this chapter. Despite the scientific community largely converging on a common
understanding in this discussion, the practical implications of coherence on point
source resolving have not been comprehensively studied to date. In this research,
we broaden the scope of this problem beyond the simple Poissonian limit. In sec-
tion 3.3, we investigate bright mutually coherent sources with arbitrary statistics,
ranging from entangled sub-Poissonian to thermally correlated super-Poissonian
sources. Additionally, in section 3.4, we explore sources with partial mutual coher-
ence, including cases of separation-dependent mutual coherence and brightness of
the sources. The latter case is particularly relevant for resolving interactive emitters
and reflective particles under external illumination. We demonstrate that separation-
dependent coherence, which emerges in this scenario, can significantly enhance op-
tical resolution.
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3.3 Fully coherent sources

First, we study the resolving of a pair of mutually coherent sources, i.e. the case
of |γ| = γ0 = 1. Most of the results in this section, except for section 3.3.8, were
presented in [Karuseichyk 2022] in slightly different notations.

3.3.1 Model of the sources

For the mutually coherent sources, the coherency matrix (3.29) is degenerate and
its rank is equal to 1. Thus, we can find the principle mode ŝ0, defined by the first
eigenvector of the coherency matrix, that fully describes the light emitted from this
pair of sources. The mode basis ŝ1,2 is connected with the mode ŝ0 with unitary
mode transformation. Omitting the global phase, the most general 2 × 2 unitary
transformation can be represented as(

ŝ1
ŝ2

)
=

(
1 0
0 eiϕ

)(
cos θ − sin θ
sin θ cos θ

)(
ŝ0
v̂0

)
, (3.63)

where v̂0 is the field operator of a vacuum mode. The first matrix sets the mutual
phase between the two modes and can be represented as a phase-shifting element
ϕ in one of the modes (see fig. 3.11). The second matrix sets the imbalance between
the sources cos θ =

√
p, and it can be physically represented as a beamsplitter (1.62)

(which does not introduce an additional phase to the modes). For concreteness,
we assume the source ŝ1 to be brighter, i.e. the parameter θ to be within a range
0 ≤ θ ≤ π/4, where θ = π/4 corresponds to equally bright sources (p = 1/2), and
θ = 0 to all light in mode ŝ1 (p = 1).

𝜙

ො𝜌0: 𝑁𝑆, Δ𝑁𝑆

𝜃Ƹ𝑠0 Ƹ𝑠1

Ƹ𝑠2

𝑑

𝜅 ො𝑎1

ො𝑎𝑚

Source model

Imaging system

FIGURE 3.11: On the left: conceptual scheme for generating a general
two mutually coherent modes based on a beam splitter with transmis-
sivity T = cos2 θ = p and a phase shifting element ϕ. On the right:

optical scheme for the estimation of the sources’ separation.

Since the problem is, in essence, single mode, eq. (3.40) for normally ordered
averages can be further simplified using the eq. (3.63) to

⟨gN(â†
m, ân)⟩ = ⟨gN(A∗

m ŝ†
0, An ŝ0)⟩, (3.64)
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with Am being an overlap of the principal image mode, associated with ŝ0, and an
arbitrary real measurement mode fm (⃗r):

Am =
√

κ
∫

d⃗r fm (⃗r)
[
u0(⃗r − r⃗1) cos θ + u0(⃗r − r⃗2)eiϕ sin θ

]
=

√
κ
(

βm (⃗r1) cos θ + βm (⃗r2)eiϕ sin θ
)

. (3.65)

Since we are interested in intensity measurements in the modes âm, we can use
the property (3.64) to calculate the mean number of photons in the measurement
modes

Nm = ⟨N̂m⟩ = ⟨â†
m âm⟩ = |Am|2⟨ŝ†

0 ŝ0⟩ = |Am|2NS. (3.66)

To calculate the covariance matrix of the measurements N̂m we transform it to
the normal order

Γmn = ⟨N̂mN̂n⟩ − ⟨N̂m⟩⟨N̂n⟩ = ⟨â†
m âm â†

n ân⟩ − NmNn = ⟨â†
m â†

n âm ân⟩+ δmnNm − NmNn
(3.67)

and again use the property (3.64)

⟨â†
m â†

n âm ân⟩ = |Am|2|An|2⟨ŝ†
0 ŝ†

0 ŝ0ŝ0⟩ = |Am|2|An|2(⟨ŝ†
0 ŝ0ŝ†

0 ŝ0⟩ − NS)

=
Nm

NS

Nn

NS
(∆2NS + N2

S − NS), (3.68)

where
∆2NS = ⟨ŝ†

0 ŝ0ŝ†
0 ŝ0⟩ − ⟨ŝ†

0 ŝ0⟩⟨ŝ†
0 ŝ0⟩ (3.69)

is the photon number variance in the principal mode ŝ0.
We try to represent further expressions in terms of mean photon numbers Nm, as

these quantities are directly measured in experiments and possess a clear physical
sense. At this point, we do not use any explicit properties of coefficients Am (3.65),
and only exploit the linearity of the imaging system. Thus, as we will discuss later,
our conclusions can be generalized to a wide class of problems.

Combining eqs. (3.67) and (3.68) we find the elements of the photon number
covariance matrix

Γmn = δmnNm + hNmNn, (3.70)

where the parameter h = (∆N2
S − NS)/N2

S = g(2) − 1 with g(2) the degree of second-
order coherence of the principal mode ŝ0 [Scully 1997]. For the Poisson statistics
of the source mode ∆N2

S = NS and h = 0 (g(2) = 1), for sub-Poissonian statistics
∆N2

S < NS and h < 0 (anti-bunched states), and for super-Poissonian ∆N2
S > NS

and h > 0 (bunched states). Further, we will consider these examples in more detail.
In eq. (3.70) we considered only the quantum noise of light, assuming that no

extra noise comes from the detectors. This allows us to perform most of the calcu-
lations analytically, and study the upper bound of the sensitivity for the practical
moment-based approach. We also aim to compare the results of MoM sensitivity
computation to the QFI, which does not include any measurement imperfections (as
it typically does not consider the measurement process at all). In the general case, the
presence of the detection noise requires the following modification of the covariance
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matrix:
ΓDC

mn = Γmn + NDCδmn, (3.71)

where NDC is the average number of dark counts per coherence time of the sources
τc. In eq. (3.71), the dark counts are assumed to have Poisson statistics, being un-
correlated from each other and the measured signal. There are no difficulties in
reproducing the results of our further analytical computations with numerical meth-
ods, taking into account the modification (3.71). As demonstrated in [Sorelli 2021b;
Len 2020; Kurdziałek 2023], typically the detection noise influences only the resolv-
ing of very closely located sources and causes the appearance of the Rayleigh curse
for SPADE measurement. However, since we are mostly focused on the fundamen-
tal properties of different imaging approaches, in most cases we avoid going into
detailed consideration of technical effects, such as detection noise and imperfections
of the SPADE (including misalignment from the centroid).

3.3.2 The moment matrix

To calculate the moment matrix (2.54) of the given measurements for characteriza-
tion of the estimation of the parameters θ⃗, one needs to inverse the measurement
covariance matrix (3.70). Due to its specific structure, one can inverse it analytically
with the help of the Sherman-Morrison formula [Sherman 1950]:(

B + u⃗v⃗T
)−1

= B−1 − B−1u⃗v⃗TB−1

1 + v⃗TB−1u⃗
. (3.72)

Using Bmn = δmnNm, um = hNm and vn = Nn we immediately obtain[
Γ−1

]
mn

= δmnN−1
m − h

1 + hND
, (3.73)

where
ND = ∑

m
Nm (3.74)

is the total number of detected photons. Note that due to the coherence of the
sources, this quantity generally depends on the separation d. The moment matrix
(2.54) can be expressed as

Mαβ = ∑
mn

[
Γ−1

]
mn

∂Nm

∂θα

∂Nm

∂θβ
= ∑

m

1
Nm

∂Nm

∂θα

∂Nm

∂θβ
− h

1 + hND
∑
mn

∂Nm

∂θα

∂Nm

∂θβ
. (3.75)

This expression takes a more physical meaning by introducing the notion of the
relative measured photon numbers

εm =
Nm

ND
=

|Am|2

∑m |Am|2
. (3.76)
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These quantities do not depend on the state ρ̂0 of the principle source mode ŝ0. By
substituting Nm = ND εm to eq. (3.75) we arrive at

Mαβ = ND ∑
m

1
εm

∂εm

∂θα

∂εm

∂θβ
+

1
∆N2

D

∂ND

∂θα

∂ND

∂θβ
, (3.77)

with
∆N2

D = ∑
mn

Γmn = ND(1 + hND) (3.78)

being the variance of the total number of detected photons. To understand the mean-
ing of the two terms in this expression let us consider two specific examples.

3.3.3 Single-parameter estimation

If all parameters except for the separation d between the sources are known, i.e.
θ⃗ = (d), the moment matrix reduces to a single number

M(d) = ND ∑
m

1
εm

(
∂εm

∂d

)2

+
1

∆N2
D

(
∂ND

∂d

)2

. (3.79)

The sensitivity Sd (2.56) of the separation estimation in this case coincides with M(d):

Sd(d) =
1

[M−1(d)]11
= M(d) = ND Mε + MD. (3.80)

This expression has two terms, the first term equals ND Mε, where

Mε = ∑
m

1
εm

(
∂εm

∂d

)2

(3.81)

does not depend on the state ρ̂0 of the principle mode ŝ0 (but still depends on the
state of the sources which is also determined by θ and ϕ) but strongly depends on
the measurement basis { fm (⃗r)}. Mε is the sensitivity per detected photon of relative
intensity measurements.

The second term

MD =
1

∆N2
D

(
∂ND

∂d

)2

(3.82)

does not depend on the individual signals Nm, but only on the total number of de-
tected photons ND, thus it stays the same for any measurement basis { fm (⃗r)} as long
as all photons in the image plane are detected. This additional sensitivity MD occurs
due to the interference of mutually coherent sources and the subsequent dependence
of the total number of registered photons ND on the separation d. The variance of
the total number of detected photons (3.78) depends on the quantum statistics of the
source and grows with source bunching.

Expression (3.82) has a self-consistent structure representing the simple error-
propagation formula. Below we show that the sensitivity MD, coming from the total
number of detected photons, vanishes if the sources’ brightness NS is unknown.
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3.3.4 Resolving sources with unknown brightness

Now let us consider the two-parameter problem, where both the separation d and
the emitted number of photons NS are unknown and treated as parameters to be
estimated. The moment matrix (3.77) for the estimation of the parameters θ⃗T =
(d, NS) reads

M (d, NS) =


ND Mε + MD

1
∆N2

D

ND

NS

∂ND

∂d

1
∆N2

D

ND

NS

∂ND

∂d
1

∆N2
D

(
ND

NS

)2

 , (3.83)

where the linearity of eq. (3.66) is taken into account, which yields ∂ND/∂NS =
ND/NS and ∂εm/∂NS = 0. In this case the sensitivity to separation d can be found
by inverting the matrix (3.83) yielding:

Sd(d, NS) =
1

[M−1(d, NS)]11
= ND Mε. (3.84)

This formula shows that without knowing the number of emitted photons NS one
can benefit only from measurements of relative intensities εm. Comparing it to
eq. (3.80) one can see that knowing the number of emitted photons NS increases
the sensitivity of separation estimation by the sensitivity MD obtained from the total
detected number of photons. This fact fits well with the conclusions of the discus-
sion about the effect of the partial coherence of thermal sources on the resolution
[Tsang 2019d; Kurdzialek 2022]. From eq. (3.84) one can conclude that ignorance
of the sources’ brightness NS wipes out any possible advantage from non-classical
statistics of the sources that are only present in term MD.

Now, let us consider the bucket detection that corresponds to the detection of
all the photons in the image plane. In this particular case, it can be described as
a single-mode measurement in the principal mode. Since only one observable is
measured, the only relative intensity ϵ0 = 1 does not depend on the parameter, thus
Mϵ = 0. One can not estimate separation from this measurement without knowing
the number of emitted photons NS. If NS is known then, as expected, full sensitivity
of bucket detection is provided by total photon number detection M(d) = MD.

Note that even though the structure of the sensitivity expression (3.77) is quite
intuitive, it was derived specifically for the single mode (fully coherent) case and
does not necessarily hold for other cases.

It is worth mentioning that the used property (3.64) is valid for a quite gen-
eral class of parameter estimation schemes, where the parameters are encoded in
an arbitrary number of mutually coherent modes, that are subjected to correlated
parameter-dependent linear losses. Therefore, eq. (3.77) for the moment matrix of
photon counting is valid for this wider class of systems, since the explicit form of
coefficients Am (3.65) was never used so far. Thus the developed approach can be
used for other problems like coherent imaging [Ferraro 2011] or quantum sensing in
a continuous variable entangled network in the single-mode regime [Guo 2020].
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Moreover, in certain cases, the developed approach can be directly applied even
beyond the fully coherent scenario. For instance, it was subsequently used by
[Zhang 2023a] to examine the resolving of entangled point sources, with entan-
glement generated by optical parametric amplification with arbitrary statistics of
the pump. In this instance, the field operators of the sources are given by [Agar-
wal 2013]: (

ŝ1
ŝ†

2

)
=

(
1 0
0 eiϕ

)(
cosh θ − sinh θ
− sinh θ cosh θ

)(
ŝ0
v̂†

0

)
, (3.85)

which allows the use of the results of this section with the corresponding modifica-
tion of coefficients Am (3.65).

3.3.5 Sensitivity of relative intensity measurements Mε

Now let us consider separately the two parts of the separation estimation sensitivity
(3.80). The sensitivity of the relative intensity measurement Mε does not depend on
the quantum state ρ̂0, but strongly depends on the measurement basis { fm (⃗r)}. As
we already mentioned, it equals zero for bucket detection in the image plane. Here,
we consider two other measurement bases.

Direct imaging

We start by considering the traditional approach, i.e. direct imaging (DI). Assuming
the real-valued PSF function u0(⃗r) ∈ R, and taking into account

√
p = cos θ and

γ = eiϕ we rewrite the intensity distribution (3.47) as

I (⃗r) = κNS
[
u2

0(⃗r − r⃗1) cos2 θ + u2
0(⃗r − r⃗2) sin2 θ

+ u0(⃗r − r⃗1)u0(⃗r − r⃗2) sin 2θ cos ϕ
]
. (3.86)

Using the continuous limit (3.48), we can find the total number of detected photons:

ND =
∫

I (⃗r)d⃗r = κNS(1 + χδ), (3.87)

where we introduced the parameter

χ = sin 2θ cos ϕ, (3.88)

which represents the amplitude of the interference term in eq. (3.86). The overlap
δ is defined in eq. (3.55). Variable NDd (3.87) defines the total number of photons,
arriving at the image plane (it is independent of the measurement basis).

Again using the continuous limit (3.48) the sensitivity Mε (3.81) of a relative in-
tensity measurement with DI can be calculated as

MDI
ε =

∫ 1
i(⃗r)

(
∂i(⃗r)

∂d

)2

d⃗r, (3.89)
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with i(⃗r) = I (⃗r)/ND. This integral can be calculated analytically in the cases of
in-phase (ϕ = 0) and anti-phase (ϕ = π) sources, giving

MDI
ε

∣∣∣∣∣
ϕ=0,π

=
1

1 + χδ

(
∆k2 − χβ − (χδ′)2

1 + χδ

)
, (3.90)

where coefficients δ, δ′, ∆k2 and β are defined in eqs. (3.55) to (3.58). Another exam-
ple, where MDI

ε can be calculated analytically is the case of fully asymmetric sources
θ = 0 (i.e. p = 1, which is equivalent to a single source positioning) giving the
well-known result [Tsang 2016; Chao 2016]

MDI
ε

∣∣∣∣∣
θ=0

= ∆k2. (3.91)

For other values of ϕ and θ the sensitivity MDI
ε is calculated numerically.

The variable Mϵ corresponds to the sensitivity per detected photon. The sen-
sitivity per emitted photon is instead given by ND Mϵ/NS. We perform numerical
computations for a Gaussian PSF (3.26) and additionally normalize the sensitivity
value over transmissivity κ and multiply by 4σ2 to remove dependence on these
parameters. A plot of the resulting normalized sensitivity

Mε =
4σ2

κ

ND Mε

NS
(3.92)

for the case of DI is presented in fig. 3.12.
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FIGURE 3.12: Normalized sensitivity per emitted photon of rela-
tive intensity distribution direct measurement MDI

ε . The left panel
corresponds to the sources with equal intensity and parameter χ =
{1, 1/2, 0,−1/2,−1,−0.99}, the right panel shows the asymmetric

case, and χ = {0.87, 0.43, 0,−0.43,−0.87,−0.86}.

On the left panel of fig. 3.12 one can see that direct measurement of the relative
intensity distribution in the case of equally bright sources leads to low sensitivity
for small separations and, as expected, to “Rayleigh’s curse”, i.e. vanishingly small
sensitivity for infinitesimally small d.

In the case of asymmetric sources the first moment of the intensity distribution,
i.e. the center of mass (or barycenter) of the image, does not coincide with the ge-
ometrical center between sources. Assuming the position of the geometrical center
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between the sources and both sources’ brightness to be known, one can recover the
separation between the sources from the center of mass of the image, which can
be accurately measured with direct imaging. Accordingly, Rayleigh’s curse does
not occur for DI of asymmetric sources (right of fig. 3.12), although the sensitivity
is relatively small for small separations unless the sources are nearly in anti-phase
configuration.

Spatial-mode demultiplexing

Now we analyze the sensitivity of the SPADE approach with a symmetric measure-
ment basis f (s)m (x), which has a parity (3.49). Calculating the overlaps with the image
modes we find that the coefficients Am (3.65) are given by

Am =
√

κ
(

cos θ + (−1)meiϕ sin θ
)

βm

(
d
2

)
. (3.93)

This allows us to find the mean photon numbers in the measurement modes (3.66)

Nm = κNS

(
1 + (−1)mχ

)
β2

m, (3.94)

where we omit the argument of the overlaps βm(d/2). The measured number of
photons in the mode m can be normalized with respect to the total number of de-
tected photons ND (3.87) to calculate the sensitivity Mε (3.81) of the separation esti-
mation from the measured relative photon numbers

εm =
1 + (−1)mχ

1 + χδ
β2

m. (3.95)

The derivatives of these values are given by

∂εm

∂d
= εm

(
2

β′
m

βm
− χδ′

1 + χδ

)
. (3.96)

Then, the sensitivity Mε (3.81) reads

Mε =
1

A + χδ

(
∆k2 − χβ − (χδ′)2

A + χδ

)
. (3.97)

We do not use any additional indices, further assuming that Mε stands for the sensi-
tivity SPADE, while MDI

ε corresponds to DI. Note that in this case Mε depends only
on the combination χ of the parameters θ and ϕ.

In fig. 3.13 we plot the normalized sensitivity (3.92) of the relative intensity mea-
surement in the full symmetric basis, calculated for a Gaussian model of the PSF.
One can see that Rayleigh’s curse is still present for the symmetric in-phase (χ = 1)
and anti-phase (χ = −1) cases, and SPADE for these cases is as sensitive as DI. Note,
however, that even a small deviation from the symmetric anti-phase case (χ = −1)
leads to a significant sensitivity increase for small separations (see dashed line in
fig. 3.13).



96 Chapter 3. Separation estimation problem

0.0 0.5 1.0 1.5 2.0 2.5 3.0

d

2 σ

0.5

1.0

1.5

2.0
ℳε

χ = 1

χ =
1

2

χ = 0

χ = -
1

2

χ = -1

χ = -0.99

FIGURE 3.13: Normalized sensitivity per emitted photon of relative
intensity measurements with SPADE Mε.

The sensitivity (3.97) in the case χ = 0 (that corresponds to the mutual phase
ϕ = π/2) does not depend on the separation d. It coincides with the sensitivity in the
case of weak uncorrelated thermal sources [Sorelli 2021b], which in turn coincides
with QFI [Lupo 2016] in this limit. However, for incoherent thermal sources the
QFI per emitted photon drops with a growing number of photons, when Mε for
correlated sources does not depend on NS for any photon statistics of the source. We
discuss this effect in more detail in section 3.4.

Comparison of the SPADE and DI sensitivities

We observe that the expression for the sensitivity of SPADE Mε (3.97) coincides with
the sensitivity of DI MDI

ε in cases of in-phase, anti-phase (3.90), and fully asymmetric
sources (3.91). Here we demonstrate that in the general case

Mε ≥ MDI
ε , (3.98)

i.e. separation estimation sensitivity with SPADE measurements outperforms DI for
any pair of mutually coherent sources. The inequality (3.99) is saturated only in
cases ϕ = 0, ϕ = π or θ = 0.

Proof. To proof the inequality (3.98) we analyze the following difference

∆M = Mε − MDI
ε = M(d)− MDI(d), (3.99)

with the objective to proof that ∆M ≥ 0. We use the full sensitivity M(d) in the form
given by eq. (3.75):

M(d) = ∑
m

1
Nm

(
∂Nm

∂d

)2

− h
1 + hND

(
∂ND

∂d

)2

. (3.100)

The second term in the expression is independent of the measurement basis. Then

∆M = M0(θ, ϕ)− MDI
0 (θ, ϕ), (3.101)
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where

M0(θ, ϕ) = ∑
m

1
Nm

(
∂Nm

∂d

)2

. (3.102)

From the equality MDI
ε

∣∣
ϕ=0 = Mε

∣∣
ϕ=0 follows that

MDI
0 (θ, 0) = M0(θ, 0), (3.103)

since the difference between Mε and M0 is basis independent. At the same time,
M0 depends only on the parameter combination χ = sin 2θ cos ϕ. Then, for any
ϕ ≤ π/2, one can use the following chain of equalities:

M0(θ, ϕ) = M0(θ1, 0) = MDI
0 (θ1, 0), (3.104)

where sin 2θ1 = sin 2θ cos ϕ. One can redo all the following analysis for ϕ ≥ π/2
using the fact that MDI

ε

∣∣
ϕ=π

= Mε

∣∣
ϕ=π

, therefore results are true for any value of ϕ.
Thus the difference in sensitivity can be expressed as

∆M = MDI
0 (θ1, 0)− MDI

0 (θ, ϕ). (3.105)

For continuous DI the formula (3.102) takes the form

MDI
0 (θ, ϕ) =

∫ 1
Iθ,ϕ (⃗r)

(
∂Iθ,ϕ (⃗r)

∂d

)2

d⃗r (3.106)

where Iθ,ϕ (⃗r) = |Eθ,ϕ (⃗r)|2 and

Eθ,ϕ (⃗r) =
√

κ
(

u0(⃗r − r⃗1) cos θ + u0(⃗r − r⃗2)eiϕ sin θ
)

. (3.107)

A simple transformation leads to

MDI
0 (θ, ϕ) = 2 Re

[ ∫ (E∗
θ,ϕ (⃗r)

Eθ,ϕ (⃗r)
(E′

θ,ϕ (⃗r))
2 +

∣∣∣E′
θ,ϕ (⃗r)

∣∣∣2)d⃗r

]
, (3.108)

where E′
θ,ϕ (⃗r) stands for the derivative with respect to the separation d. Using the

inequality

Re
[∫

g(x)dx
]
≤
∫

|g(x)|dx, (3.109)

for the first term in (3.108) we find that

MDI
0 (θ, ϕ) ≤ 4

∫ ∣∣∣E′
θ,ϕ (⃗r)

∣∣∣2 d⃗r. (3.110)

Since Eθ1,0(⃗r) ∈ R, then (3.108) in this special case simplifies to

MDI
0 (θ1, 0) = 4

∫ ∣∣E′
θ1,0(⃗r)

∣∣2 d⃗r. (3.111)

By using the explicit expression for the electric field (3.107), we can calculate the
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integral from the right part of (3.110). The result depends only on χ = sin 2θ cos ϕ.
This means that the right parts of (3.110) and (3.111) are equal, resulting in

∆M
4

≥
∫ ∣∣E′

θ1,0(⃗r)
∣∣2 d⃗r −

∫ ∣∣∣E′
θ,ϕ (⃗r)

∣∣∣2 d⃗r = 0. (3.112)

The inequality (3.109) is only saturated if g(x) = |g(x)|, i.e.

E∗
θ,ϕ (⃗r)

Eθ,ϕ (⃗r)
(E′

θ,ϕ (⃗r))
2 =

∣∣∣∣∣E
∗
θ,ϕ (⃗r)

Eθ,ϕ (⃗r)
(E′

θ,ϕ (⃗r))
2

∣∣∣∣∣ (3.113)

for any r⃗. This equality holds only in cases ϕ = 0, ϕ = π or θ = 0.
On the fig. 3.14 you can find a comparison of the DI and SPADE sensitivities,

built with fixed combinations χ = sin 2θ cos ϕ but with a different ratio between
parameters ϕ and θ. These plots illustrate all given relations between Mε and MDI

ε .
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FIGURE 3.14: Sensitivity per emitted photon of relative intensity
measurement. Comparison DI and SPADE technique.

3.3.6 Sensitivity of total intensity measurement MD

Having an expression for the total number of detected photons (3.87) we analytically
determine the total photon number sensitivity (3.82)

MD = κNS
(χδ′)2

(1 + δχ) + hκNS(1 + δχ)2 . (3.114)

Since the total intensity is basis invariant, the sensitivity from measuring it does not
depend on the detection basis either. Expression (3.114) also includes all quantum
states of the sources (as long as the sources are mutually coherent) via the coefficient
h = g(2) − 1 = (∆N2

S − NS)/N2
S . From (3.114) it is obvious that anti-bunched states

of ŝ0 (h < 0), leading to entanglement in modes ŝ1,2, provide a better sensitivity than
bunched states (h > 0) of ŝ0, which corresponds to classical correlations in ŝ1,2. This
is a natural result since a lower photon number variance in ŝ0 leads to a smaller
variance of ND and hence a higher sensitivity of the ND measurement.

Here we consider the sensitivity of separation estimation from a measured total
intensity ND for different quantum statistics of the sources. We are interested in the
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normalized sensitivity per emitted photon

MD =
4σ2

κ

MD

NS
. (3.115)

The characteristics of the source statistics only appear in the combination hκNS. Fur-
thermore, MD also depends on χ and the separation d. To explore the impact of the
source statistics we study various common initial states.
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FIGURE 3.15: Normalized sensitivity of total photon number detec-
tion MD for Fock (κ = 0.2), coherent and thermal state (NS = 1.5/κ)

of the mode ŝ0.

Fock state. We consider first the most sensitive case, when the mode ŝ0 is maxi-
mally anti-bunched, i.e. it is in the Fock state, resulting in the entanglement of the
modes ŝ1,2. In this case h = g(2) − 1 = −1/NS, and the combination hκNS = −κ. On
the first panel of fig. 3.15, we plot the sensitivity MD (3.115) with κ = 0.2 (the used
model of linear losses requires κ ≪ 1). Note that, for the Fock state, the sensitivity
per emitted photon does not depend on the number of photons NS.

Coherent state. If the mode ŝ0 is in the coherent state, then the states of the modes
ŝ1,2 are uncorrelated. For this case the parameter h = 0. Although coherent and
Fock states have very different statistical properties, in both cases after propagation
through a loss channel, the photon number variance is linear over the initial number
of photons, thus the sensitivity per emitted photon does not depend on the source
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intensity for both of these cases. The normalized sensitivity for the case of coherent
source is plotted on the second panel of fig. 3.15.

Thermal state. Finally, we consider a thermal state of the mode ŝ0, that leads to
correlated thermal states in modes ŝ1,2. For thermal statistics h = 1. In the small
photon number limit (NS → 0) the sensitivity per emitted photon MD coincides
with the coherent case, and for high photon number (NS → ∞) it vanishes (MD →
0). We plot the normalized total photon-number sensitivity for correlated thermal
sources for κNS = 1.5 on the third panel of fig. 3.15.

For all the considered cases the total photon number sensitivity is high in the case
of small separation between symmetric anti-phase sources (χ = −1). This occurs
due to destructive interference of mutually coherent anti-phase sources, which leads
to zero intensity in the image plane if equally bright sources coincide, and non-zero
total intensity in the presence of finite separation between the sources. For any other
case, the sensitivity MD vanishes for zero separation. In the case of χ = 0 the total
photon number ND (3.87) does not depend on the parameter and MD = 0.

3.3.7 Comparison with Quantum Fisher information

Here we analyze the full separation estimation sensitivity M(d) = ND Mε + MD and
its normalized version

M =
4σ2

κ

M(d)
NS

= Mε +MD. (3.116)

We compare the sensitivity of SPADE, which proved to be always better or equal
to that of DI, with the ultimate limit set by the QFI. Note that computing FI in the
general case of bright sources is a highly challenging task due to correlations of the
detection events in different modes. However, knowing that MoM sensitivity is a
lower bound for the FI and that the QFI is its higher bound, we can draw some
interesting conclusions by analyzing these bounds.

Fock state. The first example we consider is a Fock state of the mode ŝ0. Plots of
the SPADE sensitivity for split Fock states are presented on the first panel of fig. 3.16.

Of particular interest are the examples of the Fock state split on a symmetric
beam splitter (θ = π/4) with added phase ϕ = 0 or π. Then the states of the sources
take the form

|ψ⟩(±)
s1s2 =

1√
2NS

NS

∑
j=0

√(
NS

j

)
(±1)NS−j|j⟩s1 |NS − j⟩s2 . (3.117)

The analytical expression obtained for the SPADE sensitivity M(d) coincides with
the QFI for these states [Lupo 2020b]. Note that one of these states corresponds
to the maximal QFI of separation estimation (as seen from the fig. 3.16 for small
separations state |ψ⟩(−)

s1s2 is optimal, for larger |ψ⟩(+)
s1s2) [Lupo 2020b]. For other values

of the mutual phase ϕ, or asymmetrically split Fock states, the QFI has not been
calculated explicitly to the best of our knowledge.
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FIGURE 3.16: Normalized full separation estimation sensitivity M
via SPADE in HG basis for Fock (κ = 0.2), coherent and thermal state
(NS = 1.5/κ) of the mode ŝ0. Cases with known QFI are highlighted

with gray, QFI and M(d) coincide for all of them.

Coherent state. Since for Poisson photon number statistics different detection events
are independent, we can consider results in the small photon number limit without
loosing any generality. The QFI for an arbitrary mutual coherence γ was explic-
itly calculated in the single-photon subspace [Kurdzialek 2022; Tsang 2019d], and
its analytical expression for any γ = eiϕ fully coincides with the sensitivity M(d)
calculated for Poisson statistics (h = 0). The same result was recently obtained for
arbitrarily bright coherent sources [Sorelli 2022]. The dependence of the normalized
QFI and M on the separation are presented in the second panel of fig. 3.16, coincid-
ing with each other.

We also plot the sensitivity of DI for symmetric sources with Poisson statistics
in fig. 3.17. Comparing this plot to the third panel of fig. 3.16 we clearly see that
the choice of symmetric modes (SPADE) results in a significant advantage over DI
(comparison of the two plots are presented in fig. 3.18). The special case of sym-
metric anti-phase sources (χ = −1) leads to the collapse of the DI sensitivity and to
Rayleigh’s curse once the mutual phase slightly deviates from π.

Thermal state. Another example we consider is that of correlated thermal sources.
The QFI for arbitrarily bright correlated thermal sources that are in-phase or anti-
phase is calculated in [Lupo 2016]. A more general case with arbitrary Gaussian



102 Chapter 3. Separation estimation problem

0.0 0.5 1.0 1.5 2.0 2.5 3.0

d

2 σ

0.5

1.0

1.5

2.0
ℳDI

hκNS=0

tan2 θ=1
χ = 1

χ =
1

2

χ = 0

χ = -
1

2

χ = -1

χ = -0.99

FIGURE 3.17: Normalized full separation estimation sensitivity of DI
MDI for equally bright sources with Poisson statistics.

sources is considered in [Sorelli 2022]. The QFI obtained in these papers coincides
with the sensitivity M(d) introduced here. With increasing intensity of the correlated
thermal source, the sensitivity per photon M drops tending to Mε (fig. 3.13).

Fig. 3.16 shows that source statistics do not strongly influence the sensitivity if
the sources are mutually coherent. We notice that the resulting sensitivity of SPADE
M is continuous as a function of χ, which is not the case for DI.

3.3.8 Unknown mutual phase and power imbalance

Now, let us consider the scenario where the mutual phase ϕ and the power imbal-
ance p = cos2 θ are also unknown parameters.

SPADE

In the SPADE approach, parameters ϕ and θ only appear in the form of the com-
bination χ = sin 2θ cos ϕ. On one hand, this implies that they cannot be estimated
separately. On the other hand, it means that there is one less parameter to estimate,
and the list of estimated parameters can be reduced to θ⃗ = (d, χ, NS), as we keep the
assumption of the known centroid position.

For simplicity, we consider this case in the Poissonian limit, i.e. h = 0. Then the
moment matrix eq. (3.75) simplifies to

Mαβ = ∑
m

1
Nm

∂Nm

∂θα

∂Nm

∂θβ
, (3.118)
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with Nm given by eq. (3.94) Nm = κNS(1 + (−1)mχ) β2
m. The derivatives of Nm with

respect to the parameters θ⃗ = (d, χ, NS) are given by

∂Nm

∂d
= κNS

(
1 + (−1)mχ

)
2βmβ′

m, (3.119)

∂Nm

∂χ
= κNS (−1)m β2

m, (3.120)

∂Nm

∂NS
= κ

(
1 + (−1)mχ

)
β2

m. (3.121)

Using these expressions most of the elements of the moment matrix (3.118) can be
found without difficulties. The only non-trivial case is the calculation of M22, where
the summation index in the denominator is not reduced:

M22 = ∑
m

1
Nm

(
∂Nm

∂χ

)2

= ∑
m

κNSβ2
m

1 + (−1)mχ
= κNS

(
∑
m

β2
2m

1 + χ
+ ∑

m

β2
2m+1

1 − χ

)
. (3.122)

The even and odd sum of the overlaps can be found as

∑
m

β2
2m =

1
2 ∑

m

(
β2

m + (−1)mβ2
m
)
=

1
2
(A + δ), (3.123)

and likewise

∑
m

β2
2m+1 =

1
2 ∑

m

(
β2

m − (−1)mβ2
m
)
=

1
2
(A − δ). (3.124)

Thus, the M22 element of the moment matrix reads

M22 =
κNS

2

(
A + δ

1 + χ
+

A − δ

1 − χ

)
= κNS

A − δχ

1 − χ2 . (3.125)

Note that this expression becomes singular for |χ| = 1. This occurs because the
parameter χ is constrained by construction to |χ| ≤ 1, meaning that an unbiased
estimator for parameter values lying on the boundary of this range (|χ| = 1) does
not exist. Further, we avoid this pathological case.

The full moment matrix of the SPADE measurement is then given by

M (d, χ, NS) = κNS


∆k2 − χβ

∂δ

∂d
χ

NS

∂δ

∂d
∂δ

∂d
A − δχ

1 − χ2
1

NS
δ

χ

NS

∂δ

∂d
1

NS
δ

1
N2

S
(A + δχ)

 . (3.126)



104 Chapter 3. Separation estimation problem

Direct imaging

As before, the sensitivity of the DI is calculated numerically. For this purpose, we
use the continuous limit of the expression for the moment matrix (3.118):

MDI
αβ =

∫
d⃗r

1
I (⃗r)

∂I (⃗r)
∂θα

∂I (⃗r)
∂θβ

, (3.127)

where the intensity distribution I (⃗r) is defined in eq. (3.86). Generally, the measured
signal in this case depends on four parameters: θ⃗ = (d, p, ϕ, NS). In this section, we
study approximately balanced sources p ≈ 1/2 which is typically the most challeng-
ing scenario for DI. The results of the numerical computations are presented in the
next section.

Sensitivity of the separation estimation Sd in the multiparameter setting

The inverse moment matrix establishes the bound (2.53) for the covariance matrix
of the moment-based estimators. We assume our primary interest lies in estimating
the separation d, while other parameters are unknown but not of interest to us (such
parameters are often referred to as nuisance parameters [Suzuki 2020]). The sensitivity
to the separation d is given by the following expression

Sd (⃗θ) =
1[

M−1(⃗θ)
]

11

, (3.128)

where the parameters in the list θ⃗ are unknown, and all other parameters are as-
sumed to be known exactly.

In this section, we sequentially expand the list of unknown parameters θ⃗ to track
the change in the separation estimation sensitivity Sd (⃗θ) with less and less prior
information about the studied system. For building the plots we use the normalized
version of the sensitivity

Sd (⃗θ) =
4σ2

κ

Sd (⃗θ)

NS
. (3.129)

This normalization eliminates dependence on the parameters σ (except for the ratio
d/σ), κ, and NS, simplifying the analysis.

We begin with the simplest case θ⃗ = (d), which was already studied above.
In this case, we assume that the separation is the only unknown parameter. The
separation estimation sensitivity then coincides with the first element of the moment
matrix Sd(d) = M11 (3.118):

Sd(d) = κNS
(
∆k2 − χβ

)
. (3.130)

The direct comparison of the normalized sensitivity of SPADE and DI for θ⃗ = (d)
is shown in fig. 3.18. This figure essentially reproduces the fig. 3.16 and fig. 3.17
together for easier comparison.
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FIGURE 3.18: Normalized separation estimation sensitivity Sd(d) of
SPADE (solid) and DI (dashed).

Another case, that was also analyzed before is the estimation of two parameters
θ⃗ = (d, NS). In this case the separation estimation sensitivity of SPADE is given by

Sd(d, NS) =
1

[M−1(d, NS)]11
= ND Mε = M(d)− κNS δ′2

χ2

A + δχ
, (3.131)

and is plotted in fig. 3.13. The DI sensitivity for this case is presented in fig. 3.12.

In the next example, we consider θ⃗ = (d, χ), where in the context of SPADE, this
corresponds to having no prior information about the power imbalance p = cos2 θ
and/or the relative phase ϕ. The separation estimation sensitivity of SPADE in this
case is expressed as follows:

Sd(d, χ) =
1

[M−1(d, χ)]11
= M(d)− κNS δ′2

1 − χ2

A − δχ
. (3.132)

Figure 3.19 illustrates the decrease in the sensitivity of SPADE caused by the pres-
ence of the nuisance parameter χ. It is interesting to note that this drop only occurs
for intermediate separations, while for very small (d ≪ σ) and sufficiently large
(d > 5σ) separations, not knowing χ does not complicate the estimation process.
This happens because the image overlap δ (3.55) weakly depends on the separation
for large and small d, i.e. δ′(d) ≈ 0 for d ≪ σ or d ≫ σ.

Figure 3.20 compares the sensitivity of the SPADE and DI approaches. It is in-
teresting to note that not knowing the relative phase and power ratio of the sources
decreases the sensitivity of the DI mostly in the range 2σ < d < 6σ. Another interest-
ing property is that knowing the relative power p (but not knowing the phase ϕ) of
approximately balanced sources (p ≈ 1/2) does not provide any useful information
for the separation estimation with DI: SDI

d (d, p, ϕ)|p=0.5 = SDI
d (d, ϕ).

Finally, we consider the case where we know neither the total power NS nor the
relative brightness p and phase ϕ of the sources. This corresponds to estimating
three parameters with SPADE θ⃗ = (d, χ, NS). The separation estimation sensitivity



106 Chapter 3. Separation estimation problem

0.0 0.5 1.0 1.5 2.0 2.5 3.0
d/2σ

0.5

1.0

1.5

2.0
d

d(d)
d(d, χ) χ=-0.99

χ=-0.5

χ=0.

χ=0.5

χ=0.99

FIGURE 3.19: Normalized separation estimation sensitivity of
SPADE Sd(d) (solid) and Sd(d, χ) (dashed).

0.0 0.5 1.0 1.5 2.0 2.5 3.0
d/2σ

0.5

1.0

1.5

2.0
d(d, χ)

SPADE
DI

χ=-0.99

χ=-0.5

χ=0.

χ=0.5

χ=0.99

FIGURE 3.20: Normalized separation estimation sensitivity Sd(d, χ)
of SPADE (solid) and DI (dashed).

of the SPADE in this case is given by:

Sd(d, χ, NS) =
1

[M−1(d, χ, NS)]11
= M(d)− κNS δ′2

A − δχ

A2 − δ2 . (3.133)

As one can see in fig. 3.21, this case corresponds to the presence of the Rayleigh
curse for SPADE measurements, even though the measurement basis is perfectly
aligned to the centroid of the sources. The measurement result of the DI depends
on four parameters θ⃗ = (d, p, ϕ, NS), however the sensitivity of the separation esti-
mation again does not depend on accessibility of p when sources are approximately
balanced p ≈ 1/2, i.e. SDI

d (d, p, ϕ, NS)|p=0.5 = SDI
d (d, ϕ, NS)|p=0.5.

It is interesting to note that in this case, SPADE works better for in-phase sources
ϕ ≈ 0 (red line) compared to antiphase ϕ ≈ π (purple line), regardless of the sepa-
ration d. At the same time, the sensitivity of DI very weakly depends on the mutual
phase ϕ.

For both techniques, SPADE and DI, the sensitivity goes to zero for small separa-
tions. Therefore, we also plot it in a double logarithmic scale on the right of fig. 3.21,
to observe its scaling with the separation. The sensitivity of SPADE (3.133) scales like
Sd(d, χ, NS) ∝ O(d2), while numerical analysis shows the scaling of the DI sensitivity
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to be SDI
d (d, ϕ, NS) ∝ O(d6). Thus one needs substantially lower measurement statis-

tics to resolve two mutually coherent sources with unknown brightness and relative
phase (but known centroid position) when using SPADE measurement, compared
to the DI.

3.3.9 Conclusion

In this section, we presented a general approach to analyze parameter estimation
problems based on photon counting in mutually coherent modes. The sensitiv-
ity measure based on the method of moments showed to be a very efficient and
practical tool for analyzing this class of problems. In contrast to the traditional ap-
proach based on Fisher information, moment-based sensitivity allows to consider
the sources with arbitrary quantum statistics and provide a simple estimator for the
parameters that does not require measurement of high-order moments. These re-
sults can be applied to other parameter estimation problems with mutually coherent
or single-mode sources, like coherent imaging or distributed quantum sensing with
mutually coherent probes.

Specifically, we have considered in detail the problem of separation estimation
of two mutually coherent sources. Calculating the moment-based sensitivity, we
analytically proved an advantage of SPADE over direct imaging for the considered
class of states. Moreover, we showed that the sensitivity of SPADE saturates the
QFI for all cases for which the latter is known. This even includes some examples
of non-Gaussian entangled states, although they are not fully described by the first
two moments, that we used to compute the sensitivity.

We showed that in this case the sensitivity (3.79) consists of two terms that corre-
spond to the measurement of relative photon numbers and total number of detected
photons, respectively. The first term only depends on the measurement basis, while
the second one depends on the quantum statistics of the sources. Moreover, the sec-
ond term vanishes in the case of unknown brightness of the sources, wiping out any
advantage from non-classical statistics of the sources. The sensitivity from the total
photon number measurement is also negligible for intense bunched states, due to
the high noise in the total number of photons.
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We demonstrate that the presence of other nuisance parameters, such as the rela-
tive phase and power ratio of sources, reduces the sensitivity of SPADE and, in some
cases, even leads to a resurgence of the Rayleigh curse. However, the scaling of sen-
sitivity with small separation d stays significantly better for SPADE measurement
compared to the DI approach.
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3.4 Partially coherent sources

In this section, we study the resolving of a pair of equally bright sources (p = 1/2)
with Gaussian statistics and arbitrary mutual coherence γ = γ0eiϕ. Most of the
text of this section is adapted from [Karuseichyk 2024] with some modification of
notations. In the considered case the coherency matrix (3.29) takes the form

Γ(1)ŝ
jk = ⟨ŝ†

j ŝk⟩ =
1
2

(
NS γNS

γ∗NS NS

)
. (3.134)

In this section, we also consider cases where the brightness NS and mutual coherence
γ of the sources depend on the separation d.

In this part, we only describe the SPADE measurement in the symmetric basis
f (s)m (x) with parity (3.49), and do not consider the DI approach. Using the property
(3.40) we find the average photon numbers in the measurement modes to be

Nm = ⟨N̂m⟩ = ⟨â†
m âm⟩ = κNSβ2

m (1 + (−1)mγ0 cos ϕ) = ξm + ζmγ0 cos ϕ, (3.135)

where
ξm = κNSβ2

m, ζm = κNSβ2
m (−1)m. (3.136)

The second term in (3.135) accounts for light interference arising from partial co-
herence. The reader may notice that the average detected photon numbers depend
solely on the real part of the degree of mutual coherence, Re γ = γ0 cos ϕ. However,
as we show in the following, the imaginary part Im γ does influence the photon
counting statistics and, consequently, changes the sensitivity of the parameter esti-
mation.

The total number of photons detected in K measurement modes equals

ND =
K

∑
m=0

Nm = κNS(A + δγ0 cos ϕ), (3.137)

where measurement basis completeness A and overlap δ are defined in eqs. (3.53)
and (3.55) respectively. The total number of detected photons ND (3.137) depends
on the separation d through the overlap δ, and possibly through NS(d) and γ(d).
One can leverage these dependencies to achieve a more accurate estimation of the
separation d, only provided that the losses are correctly accounted for in the model
[Tsang 2019d; Kurdzialek 2022; Liang 2023b], thus lossless models tend to underes-
timate the sensitivity in this case [Larson 2018; Larson 2019; Liang 2021; Hradil 2021;
Hradil 2019; Wang 2023].

To find the photon number covariance matrix

Γmn = ⟨N̂mN̂n⟩ − ⟨N̂m⟩⟨N̂n⟩ = ⟨â†
m âm â†

n ân⟩ − NmNn (3.138)

we use the following property of non-displaced Gaussian states [Phillips 2019]5:

⟨â†
m âm â†

n ân⟩ = ⟨â†
m âm⟩⟨â†

n ân⟩+ ⟨â†
m â†

n⟩⟨âm ân⟩+ ⟨â†
m ân⟩⟨âm â†

n⟩. (3.139)

5This property is an analog of Wick’s theorem [Wick 1950] for quantum optics.
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Taking into account global phase averaging of the emitted state (3.30), the second
term in this expression vanishes and we find that

Γmn = ⟨â†
m ân⟩⟨âm â†

n⟩ = Γ(1)â
mn

(
δmn + Γ(1)â

mn

)
(3.140)

with
Γ(1)â

mn = ⟨â†
m ân⟩ (3.141)

being the coherency matrix calculated in the measurement mode basis. Since it is the
normal ordered average, we compute this matrix using the property (3.40), yielding

Γ(1)â
mn =

κNS

2
βmβn

(
1 + (−1)m+n + γ(−1)n + γ∗(−1)m) . (3.142)

One can recover the photon numbers (3.135) from the diagonal part of this matrix as
Nm = Γ(1)â

mm .
Substituting eq. (3.142) to the eq. (3.140), after some mathematical transforma-

tions we arrive at the following expression for the photon number covariance ma-
trix:

Γ = diag
(

Z⃗1 + Z⃗2

)
+ Z⃗1Z⃗T

1 + Z⃗2Z⃗T
2 +

1 − γ2
0

2
sin2 ϕ ζ⃗ζ⃗T, (3.143)

where diag(x⃗) is a diagonal matrix with diagonal elements equals xn and

Z⃗1,2 =
1 ± γ0

2

(
ξ⃗ ± ζ⃗ cos ϕ

)
, (3.144)

with ξ⃗ and ζ⃗ defined in eq. (3.136).
In the limit of faint sources, κNS ≪ 1, one can neglect (κNS)

2 and the covari-
ance matrix (3.143) becomes diagonal Γnm = δnmNm, that corresponds to the Pois-
sonian limit, discussed in section 2.2.5. In this case, the MoM sensitivity M (2.46)
coincides with the FI and it only depends on the real part of the mutual coherence
Re γ = γ0 cos ϕ. In the more general scenario, determining the sensitivity M requires
inverting the non-diagonal photon number covariance matrix Γ (3.143). It is possible
to do this analytically by applying the Sherman-Morrison formula (3.72) three times,
but the resulting general expressions are very bulky. Therefore, in the following sec-
tions, we focus on several special cases for which the inversion simplifies.

3.4.1 Constant mutual coherence

Real-valued coherence (γ = γ0)

First, we consider separation-independent real-valued coherence γ = γ0 ∈ R, i.e.
ϕ = 0. For this case, the photon number covariance matrix reduces to:

Γ = diag
(

Z⃗1 + Z⃗2

)
+ Z⃗1Z⃗T

1 + Z⃗2Z⃗T
2 . (3.145)

The inversion of this matrix gives

Γ−1
mn = δmn(ξn + γ0ζn)

−1 − tmn, (3.146)
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where

tmn =


2/h1, if m and n are both even
2/h2, if m and n are both odd

0, otherwise,
(3.147)

with
h1,2 = 2 + κNS(1 ± γ0)(A ± δ), (3.148)

and A and δ are defined in Eqs. (3.53) and (3.55).
If the mutual coherence γ and the brightness NS are independent of the separa-

tion, i.e. ∂γ0/∂d = 0, and ∂NS/∂d = 0, the derivative of the measured signal (3.135)
is

∂Nm

∂d
= 2

Nm

βm

∂βm

∂d
. (3.149)

Then, using the expression (2.46), the normalized sensitivity of the separation esti-
mation can be found as

MRe

κNS
= ∆k2 − γ0β − κNS(A′ + δ′)2

(
(1 + γ0)2

2h1
+

(1 − γ0)2

2h2

)
, (3.150)

where parameters A, δ, ∆k2, β are defined in eqs. (3.53) to (3.58). The sensitivity
(3.150) coincides with the quantum Fisher information [Lupo 2016; Sorelli 2022],

which implies the possibility of constructing an estimator d̃({N(µ)
m }) based solely

on the observed sample mean numbers of counts N(µ)
m in any basis with the par-

ity defined in eq. (3.49) and achieving the ultimate resolution limit dictated by the
quantum Cramér-Rao bound.
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FIGURE 3.22: The normalized sensitivity MRe = MRe4σ2/κNS for
different real values of the mutual coherence γ and numbers of emit-

ted photons NS vs. separation d.



112 Chapter 3. Separation estimation problem

The sensitivity calculated with eq. (3.150) for a Gaussian PSF (3.26) and full mea-
surement basis (K → ∞) is shown in fig. 3.22. The first plot corresponds to a small
number of detected photons and matches other results obtained in the Poissonian
limit [Tsang 2019d; Kurdzialek 2022]. With an increasing number of photons, there
is a reduction in the sensitivity for the separations d ≈ σ. This reduction is also
present in the QFI and occurs due to the quadratic term of the noise in the thermal
statistics [Lupo 2016]. However, as we show in the next section, this drop does not
occur even for bright thermal states, if their mutual coherence degree γ is an imagi-
nary number.

Imaginary coherence ( γ = iγ0)

Another interesting example that we consider is that of a purely imaginary degree of
coherence γ = iγ0 ∈ I, which corresponds to a relative phase ϕ = π/2 between the
sources. In this case, the measured mean photon numbers Nm (3.135) do not contain
an interference term, i.e. it is the same as for a pair of incoherent sources. However,
the presence of coherence does influence the covariance matrix

Γ = diag
(

ξ⃗
)
+

1 + γ2
0

2
ξ⃗ ξ⃗T +

1 − γ2
0

2
ζ⃗ ζ⃗T, (3.151)

which only depends on γ2
0 and thus is not affected by its sign. The inverse of this

matrix with Sherman-Morrison formula (3.72) gives

Γ−1
mn = δmnξn −

(−1)m+nη1 + η2 − κNSδ((−1)n + (−1)m)

η1η2 − (κNSδ)2 , (3.152)

where η1,2 = κNS A + 2(1 ± γ2
0)

−1. Calculating the sensitivity (2.46) with the deriva-
tive vector (3.149), we obtain

MIm

κNS
= ∆k2 − κNS

η1(δ
′)2 + η2(A′)2 − κNSδA′δ′

η1η2 − (κNSδ)2 . (3.153)

This sensitivity calculated for Gausian PSF (3.26) is plotted in fig. 3.23 for different
values of the mutual coherence and sources’ intensities.

One can see that in the limit of faint sources (Poissonian limit) the sensitivity

MIm

κNS

κNS→0−−−−→ ∆k2 (3.154)

is the same for any imaginary degree of mutual coherence, including the case of
incoherent sources.

However, for bright incoherent thermal sources the sensitivity per photon drops
significantly in the sub-Rayleigh region d < σ, while for sources with imaginary
mutual coherence, this drop is smaller or doesn’t occur at all for perfect coherence
γ = i. Generally, if imaginary coherence is close to the complex unity then the
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FIGURE 3.23: The normalized sensitivity MIm = MIm4σ2/κNS for
different imaginary values of the mutual coherence γ and numbers of

emitted photons NS vs. separation d.

sensitivity can be expressed as

MIm

κNS
= ∆k2 − κNS(δ

′)2 (1 − γ0) + O((1 − γ0)
2). (3.155)

This means that the presence of correlations between sources can improve the sensi-
tivity of the separation estimation even in cases when no interference is visible in the
mean values Nm. One can use a simple intuition to interpret this observation: two
incoherent thermal sources do not share any correlations, while mutually coherent
sources are correlated in the number of photons, even if they do not interfere due to
the mutual phase ϕ = π/2, since the interference term is zero in this case. Utilizing
these correlations allows to cancel part of the intensity noise in the measurement
modes, resulting in a more precise estimation of the separation.

3.4.2 Parameter-dependent coherence

Now let us consider the situation when the mutual coherence γ depends on the sep-
aration d of the sources. Below we will discuss in detail physical examples of such
systems, but first, we analyze the general case of real-valued separation-dependent
mutual coherence γ(d) = γ0(d) ∈ R.

This dependence leads to an additional term in the derivative of the mean mea-
sured numbers of photons (3.135):

∂Nm

∂d
= 2

Nm

βm

∂βm

∂d
+

∂γ0

∂d
ζm. (3.156)
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Then, an extra term also appears in the sensitivity of the separation estimation

Mγ0(d) = MRe + ∆Mγ0(d). (3.157)

where

∆Mγ0(d)

κNS
= 2γ′

0

[
δ′
(

1
h1

+
1
h2

)
+ A′

(
1
h1

− 1
h2

)]

+
(
γ′

0
)2

[
A − δγ0

1 − γ2
0

− κNS

(
(A + δ)2

2h1
+

(A − δ)2

2h2

)]
, (3.158)

with γ′
0 = ∂γ0/∂d and MRe is defined in eq. (3.150).

The additional sensitivity ∆Mγ0(d) originates from the fact that in the case of
separation-dependent coherence, the measurement results change faster with chang-
ing separation, and one can do estimation with higher precision. The extra sensitiv-
ity ∆Mγ0(d) typically has maxima around the maxima of γ′

0, i.e. in the regions of
fast-changing mutual coherence.

In the limit of faint sources, the additional sensitivity takes the form

∆Mγ0(d)

κNS

κNS→0−−−−→ 2γ′
0δ′ + (γ′

0)
2 A − γ0δ

1 − γ2
0

. (3.159)

This expression is valid for an arbitrary complex value of the mutual coherence γ if
one replaces γ0 with Re γ.

3.4.3 Finite coherence width of the illumination

In the first example, we investigate the estimation of separation between two re-
flective objects. When illuminated with light of finite coherence width, the mutual
coherence of the reflected light becomes dependent on the separation between the
reflectors (see fig. 3.24).
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FIGURE 3.24: Objects reflect the light from the common thermal illu-
mination source with finite coherence width ωc.



3.4. Partially coherent sources 115

In many cases, the transverse coherence of the illuminating light can be effec-
tively approximated by a Gaussian function. In such scenarios, the field reflected by
two small reflectors exhibits mutual coherence

γ0(d) = exp
[
− d2

2ω2
c

]
, (3.160)

where the coherence width ωc can be adjusted by changing the optical parameters
of the illumination system.

Using the Gaussian PSF (3.26), we calculate the full sensitivity (3.157) of the re-
flectors’ separation estimation (fig. 3.25). The red lines on the plots correspond to the
spatially coherent illumination. One can see that separation-dependent coherence,
compared to the fully coherent case (ωc = ∞), results in significantly higher sen-
sitivity for the separations close to the coherence width of the illumination source
d ≈ ωc, thus it is desirable to use illumination with coherence width of the order
of the measured separations. A similar increase in the resolution, when the coher-
ence width of the source matches the size of the features of the studied object, was
observed earlier experimentally and numerically for the case of quantum imaging
with pseudo-thermal light [Mikhalychev 2019].
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FIGURE 3.25: Normalized sensitivity Mγ0(d) = Mγ0(d)4σ2/κNS in
case of the separation-dependent mutual coherence with Gaussian

profile (3.160).

The coherence width of the light expands as it passes through a diffractive imag-
ing system. Thus, if the same optical system (with PSF width σ) is used for the
imaging and the illumination of the object, the minimal achievable coherence width
of the illumination is ωc ≥ 2σ. This case was considered in the independent work
[Wang 2023] in the faint source limit, where an analogous increase of the QFI was
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demonstrated for the separations around the Rayleigh limit (in comparison to spa-
tially coherent illumination). However, as we show in fig. 3.25, for brighter sources
this increase is much less noticeable. In the extreme case of very bright sources,
additional sensitivity per photon (3.158) vanishes

∆Mγ0(d)

κNS
−−−→
NS→∞

0. (3.161)

This is important to take into account for practical imaging with pseudo-thermal
sources since this scenario often does not fit into the faint sources approximation.
Therefore, it is crucial to aim for the utilization of an illumination source with a short
coherence time to ensure that the number of photons NS reflected by each imaged
object per coherence time is small.

One could achieve better sensitivity in the sub-Rayleigh regime via a smaller co-
herence width, which is achievable in two possible scenarios: using an independent
illumination scheme with narrower PSF (for example, if the illumination source is lo-
cated closer to objects than the detection apparatus) or in the case of sources’ mutual
coherence originating from their interaction, which is considered in the next section.

3.4.4 Interacting emitters

Another possible scenario where the mutual coherence of the emitted light depends
on the distance between the sources is the case of interacting emitters (see fig. 3.26).
As an example, we consider two identical, dipole-dipole interacting two-level sys-
tems prepared initially in their excited states. In this scenario, each dipole emits
precisely 1 photon during the decay of the excited state (sources decay freely, with-
out additional pump during the emission process). For simplicity, we assume that
the dipole moments are parallel to each other.

Ƹ𝑠1

Ƹ𝑠2

𝑑

ො𝑎1

ො𝑎𝑚

𝜎

𝜅

𝑔12

FIGURE 3.26: Dipoles emit partially coherent light due to the inter-
action.

The time evolution of the quantum state of the two coupled dipoles in the inter-
action picture can be described by the following master equation [Lehmberg 1970;
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Agarwal 1974]

d
dt

ρ̂ = −i f12[σ̂
+
1 σ̂−

2 + h.c., ρ̂]

+
1
2

2

∑
j,l=1

gjl

(
2σ̂−

j ρ̂σ̂+
l − σ̂+

j σ̂−
l ρ̂ − ρ̂σ̂+

j σ̂−
l

)
+

2

∑
j=1

ηj

(
2σ̂+

j σ̂−
j ρ̂σ̂+

j σ̂−
j − σ̂+

j σ̂−
j ρ̂ − ρ̂σ̂+

j σ̂−
j

)
, (3.162)

where σ̂±
j are the dipoles’ transition operators. The first term in eq. (3.162) is pro-

portional to the collective frequency shift f12 of the energy levels [Agarwal 1974;
James 1993]. The second term describes the spontaneous emission of the individual
emitters (j = l) and their collective radiative decay (j ̸= l). In the case of identical
dipoles,

g11 = g22 = 1/τ, (3.163)

g12 =
3
2

1
τ

(
sin z

z
+

cos z
z2 − sin z

z3

)
, (3.164)

where τ is the natural lifetime of the excited state of an individual dipole, and z =
2πd/λ, with λ the wavelength of the dipole transition.

The final term in the master equation accounts for the dephasing of the dipoles
with the rates ηi (i = 1, 2), due to their potentially different local environments.

Coherency matrix of dipole emission

Now let us analyze the property of the light, emitted by the pair of interacting
dipoles. In the far field of the dipole, the positive-frequency part of the emitted
field operator in point r⃗ reads [Scully 1997; Mikhalychev 2018]

ˆ⃗E(⃗r, t) ∝
r⃗ × [⃗r × p⃗]

|⃗r|3 σ̂−(t), (3.165)

where p⃗ is a dipole moment. This emission mode does not have spherical symmetry,
however, in the far field, it is locally indistinguishable from a spherical wave. Thus
in the paraxial approximation, dipole emitters can be considered as point sources
and the model developed in the previous sections can be applied to the problem of
resolving dipoles.

In contrast to our previous models, the state of the light emitted by the dipoles is
time-dependent. We describe it in the transient temporal modes ŝ1,2(t), of duration
∆t ≪ τ, centered around time t. Due to the proportionality (3.165) between the
emitted field operator ˆ⃗E and the dipole transition operators σ̂−, the time-dependent
coherency matrix of the emitted field can be expressed through the atomic dipole
correlators as

Γ(1)ŝ(t)
jk = ⟨σ̂+

j σ̂−
k ⟩∆t

τ
, (3.166)
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where all the constant geometrical factors, are omitted since they will later be in-
cluded in the transmissivity factor κ. In this case, κ represents the coupling between
the emission modes and image modes of individual sources. It implicitly accounts
not only for losses of the imaging system but also for the directional profile of the
emission.

The diagonal part of the coherency matrix Γ(1)ŝ(t)
jk defines the mean number of

photons emitted by each dipole during the time interval ∆t. Thus the emission rate
is given by

Ṅ = τ Γ(1)ŝ(t)
11 /∆t = ⟨σ̂+

1 σ̂−
1 ⟩ = ⟨σ̂+

2 σ̂−
2 ⟩, (3.167)

where we multiplied it by τ to make it unitless. The degree of mutual coherence γ
as defined by eq. (1.53) is given by

γ =
Γ(1)ŝ

12√
Γ(1)ŝ

11 Γ(1)ŝ
22

=
⟨σ̂+

1 σ̂−
2 ⟩

Ṅ
. (3.168)

Both the unitless emission rate Ṅ and the mutual coherence γ depend on both
time and dipoles’ separation, however, we will not explicitly indicate it in our nota-
tions.

Model without dephasing (η1 = η2 = 0)

First, we examine the evolution of the dipoles’ state without taking into account the
dephasing process (ηi = 0). By solving analytically the master equation (3.162), we
find that

Ṅ =
e−g11t

2
(

g2
11 − g2

12

)( (g11 + g12)
2e−g12t + (g11 − g12)

2eg12t − 4g2
12e−g11t

)
, (3.169)

Ṅγ =
e−g11t

2
(

g2
11 − g2

12

)( (g11 + g12)
2e−g12t − (g11 − g12)

2eg12t − 4g11g12e−g11t
)

, (3.170)

where gjl is defined in eqs. (3.163) and (3.164). One can see, that in the non-interacting
limit g12 −→ 0 the emission rate decay exponentially Ṅ = e−t/τ and the mutual co-
herence does not appear γ = 0. Note that the unitary component of the master equa-
tion (3.162), featuring a collective frequency shift f12, does not impact the coherency
matrix of the excited modes. Nevertheless, the spectra of the excited modes are in-
fluenced by f12. Consequently, in instances of frequency-resolving measurement,
the dependence f12(d) introduces an additional mechanism for parameter encoding
and, in general, enhances sensitivity.

The associated emission rate Ṅ (3.169) and the degree of mutual coherence γ
(3.170) for different time instances t are depicted in fig. 3.27 as functions of the sepa-
ration d normalized by the wavelength λ.

One can see that at an early stage of the emission (t = 0.02τ) the dipoles flu-
oresce almost independently, with the emission rate close to that of an individual
dipole, Ṅ ≈ e−t/τ, and with almost no coherence, γ ≈ 0. However, after some
time, the dipole-dipole interaction creates correlations and the difference with the
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FIGURE 3.27: Properties of the dipoles radiation: the normalized
emission rate Ṅ and the degree of mutual coherence γ vs. separa-
tion d. The dashed line corresponds to the time t = 0.02τ, solid line

t = 5τ. No dephasing (η = 0).

individual dipole emission becomes evident in both the emission rate [DeVoe 1996]
and the mutual coherence. Crucially, this difference depends on the separation be-
tween the dipoles, which allows for a measurement of the separation with higher
accuracy. Without accounting for the decoherence process, the mutual coherence
exhibits a particularly strong dependence on separation during the late emission
stages (t > τ) for separations d ≈ n λ

2 , n ∈ N. Therefore, we can expect heightened
sensitivity in estimating separation around these points. Note that due to the geo-
metrical symmetry of the problem the mutual coherence γ stays real at any moment,
i.e. γ(t) ∈ R ∀t. However, all the conclusions below can be generalized to the case
of the complex degree of mutual coherence by replacing γ0 with Re γ.

Thus, the mean number of photons Nm, detected in the symmetric mode âm(t) of
a temporal duration ∆t is given by eq. (3.135) with

NS = 2Ṅ∆t/τ. (3.171)

Considering short time intervals (∆t ≪ τ) and high losses of the paraxial optical
system (κ ≪ 1), we obtain that NS ≪ 1. Therefore, irrespective of the sources’ statis-
tics, the detection statistics can be described by a Poisson distribution which also
approximates that of faint thermal sources discussed earlier. Note that in this case,
we assume that the detectors have high temporal resolution, and can distinguish
photo-counts in different time intervals ∆t.

Now we need to calculate the derivatives of the detected signals ∂Nm/∂d. The
only modification required to eq. (3.156) is the addition of an extra term, associated
with the separation-dependent emission rate:

∂Nm

∂d
= 2

Nm

βm

∂βm

∂d
+

∂γ0

∂d
ζm cos ϕ +

Nm

NS

∂NS

∂d
. (3.172)
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This extra-dependence results in an additional term ∆MNS(d) in the sensitivity. In
the limit κNS = 2κṄ∆t/τ ≪ 1 it takes the form

∆MNS(d) =
κN′

S
NS

[
N′

S(A + γδ) + 2NS(A + γδ)′
]
, (3.173)

where X′ = ∂X/∂d. Combining all the contributions we get the normalized sensi-
tivity per unit of time (or sensitivity rate) in the form

Ṁ =
4σ2

κ

τ

∆t

(
MRe + ∆Mγ0(d) + ∆MNS(d)

)
. (3.174)

This quantity characterizes how much information about the separation one obtains
per unit of time. It is plotted in fig. 3.28 and 3.29.
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FIGURE 3.28: Normalized sensitivity rate Ṁ (3.174) of two dipoles’
separation estimation vs. time t. The light blue line corresponds to
σ = 5λ, the red line to σ = λ, and the dashed line to non-interacting

dipoles.

As one can expect, at an early stage of emission the problem resembles the re-
solving of two incoherent sources (i.e. non-interacting emitters). In the context of
independent emitters, the sensitivity per unit of time is directly proportional to the
emission rate, exhibiting an exponential decrease, as indicated by Ṅ ≈ e−t/τ (de-
picted by the dashed black lines in fig. 3.28 and 3.29). On the contrary, in the case
of interacting emitters, the sensitivity rate may even increase over time due to the
cumulative effects of interaction. The specific values of the sensitivity depend on the
ratio between the separation d, PSF width σ, and the wavelength λ. We present plots
for the cases of σ = λ and σ = 5λ. In the paraxial approximation, the PSF width
of the imaging system typically significantly exceeds the wavelength, i.e. σ > λ.
Therefore, the case σ = λ stretches the boundaries of our model. Nevertheless, we
investigate this case to explore the model’s limits and offer an illustrative example
that is easy to analyze.

In fig. 3.29, one can observe a pronounced enhancement in sensitivity within
regions where the emission characteristics (the mutual coherence and the emission
rate) exhibit rapid changes with a change in separation. Meanwhile, the sensitivity
remains low around the extrema of the emission characteristics. In typical cases, the
sensitivity for interacting dipoles is significantly larger and decaying significantly
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FIGURE 3.29: Normalized sensitivity rate Ṁ (3.174) of two dipoles’
separation estimation vs. separation d. The light blue line corre-
sponds to σ = 5λ, the red line to σ = λ, and the dashed line to

non-interacting dipoles. No dephasing (η = 0).

slower compared to non-interacting dipoles. Even after more than 15 lifetimes of
the excited state, when the probability of photon detection is very low, the average
sensitivity rate remains notably high due to the substantial amount of information
in late detection events.

It is important to note that the moment-based sensitivity provides a limit for a
local estimation strategy. The presence of multiple narrow peaks in the sensitivity
plot signals the potential degeneracy of the estimator. Therefore, when dealing with
a low-resolution optical system (σ ≫ λ), one may require an increased number of
measurement repetitions to reach the saturation of the bound (2.53).

In general, the interaction between the emitters induces an entanglement be-
tween them [Tanaś 2004] and creates temporal correlations of the emitted light
[Peshko 2019]. However, if the losses in the imaging system are large κ ≪ 1, the
detection events for different time intervals can be considered independent. The
sensitivity of independent detection events is additive thus the total sensitivity can
be calculated as

MTot =
1
τ

∫ ∞

0
Ṁ dt, (3.175)

where Ṁ is defined in (3.174). The result of this calculation is shown in fig. 3.30. One
can see that the interaction effects can increase the total sensitivity of the separation
estimation by several orders of magnitude around the points d ≈ n λ

2 , n ∈ N, where
the mutual coherence of the emission strongly depends on the separation, if the de-
phasing effect is not present. In between these points, for the separations around
d ≈

(
n − 1

2

)
λ
2 , n ∈ N, both the emission rate and mutual coherence exhibit extrema.
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Consequently, the sensitivity is not heightened by the separation-dependent emis-
sion characteristics around these specific points.
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FIGURE 3.30: Normalized total sensitivity MTot (3.175) of two
dipoles’ separation estimation vs. separation d. The light blue line
— σ = 5λ, the red line — σ = λ, the dashed line — non-interacting

dipoles. No dephasing (η = 0).

Model with dephasing (η1, η2 ̸= 0)

In realistic scenarios, the process of building up coherence through the dipole-dipole
interactions competes with the coherence loss caused by dipoles’ individual dephas-
ing. The master equation (3.162) with dephasing can be solved analytically with
computer algebra packages, however, the solution is too long and cumbersome to
be presented here. Nevertheless, it demonstrates that the coherency matrix for our
system only depends on the average dephasing rate η = (η1 + η2)/2 of the dipoles.
In the following, we discuss the impact of dephasing for different values of η. Fig-
ure 3.31 illustrates the emission characteristics (the emission rate and the mutual
coherence) at the time instance t = 5τ. In the weak dephasing regime (η = 0.2/τ),
where the dephasing time is substantially longer than the natural lifetime of the
excited state τ, the effect of dephasing has a limited influence on the emission pro-
cess. On the other hand, when the dephasing process is faster than the emission
(η = 2.0/τ), one can observe a significant decrease in the mutual coherence γ. As
the dephasing rate η increases, the emission characteristics approach those of non-
interacting emitters.

As expected, the reduction in emission coherence due to the dephasing effect
leads to a weaker sensitivity boost. In fig. 3.32 we plot the total sensitivity of the
separation estimation defined in eq. (3.175). The left plot highlights the robustness
of the considered scheme to weak dephasing, where the sensitivity is only mini-
mally affected, compared to the dephasing-free case, shown in fig. 3.30. Conversely,
the right plot in fig. 3.32 reveals that strong dephasing significantly diminishes the
sensitivity boost arising from dipole interaction. However, even in this scenario, the
sensitivity can be several times higher compared to non-interacting dipole emission.
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FIGURE 3.31: Emission characteristics: normalized emission rate Ṅ
and degree of mutual coherence γ at the time moment t = 5τ. The
red line corresponds to the dephasing-free model η = 0, the light blue
line – weak dephasing η = 0.2/τ, the grey line – strong dephasing
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FIGURE 3.32: Normalized total sensitivity MTot (3.175) for the model
with dephasing. Right inset – weak dephasing η = 0.2/τ, left inset –
strong dephasing η = 2.0/τ. The light blue line — σ = 5λ, the red

line — σ = λ, the dashed line — non-interacting dipoles.

Model with detection noise

Another factor that can potentially significantly reduce sensitivity is the presence of
detection noise. If the detection system produces dark counts or detects background
light, then late rare detection events may be dominated by these false counts. To
address this effect, we modify the detection covariance matrix (3.143) as suggested
by eq. (3.71)

ΓDC
mn = Γmn + NDCδmn. (3.176)

Here, the dark counts are assumed to have Poisson statistics, being uncorrelated
from each other and the measured signal.

Using the modified covariance matrix of noisy detection (3.176), we numerically
calculate the sensitivity (2.46), taking into account the separation-dependent emis-
sion rate (3.169) and mutual coherence (3.170) of dipoles. We consider detection in
the first four Hermite-Gauss modes and express the rate of dark counts relative to
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the rate of real counts at the early stages Ṅ0 = 2κ. Note that the rate of real detec-
tion events exponentially decreases with time, while the rate of dark counts remains
constant.

The sensitivity rate for noisy detection is presented in fig. 3.33. Here we consider
strong detection noise, with the dark count rate being 50% of the initial rate of real
counts ṄDC = 0.5Ṅ0. Comparing this plot to the ideal case (fig. 3.28), one can observe
a significant decrease in the sensitivity rate for late detection events. After t = 5τ
one obtains almost no information about the separation of dipoles. This decrease
occurs because the dark count rate is much higher than the rate of real counts for
these late stages. As a result, in this case, most of the useful information comes from
the early and intermediate radiation stages (t < 5τ).

0 2 4 6 8 10

t
τ

10-4

0.001
0.010
0.100

1
10

ℳ


d = 0.1 σ

N

DC = 0.5N


0

σ = 5 λ

σ = 1 λ

No interaction

FIGURE 3.33: Normalized sensitivity rate Ṁ of two dipoles’ separa-
tion estimation vs. time t in case of noisy detection ṄDC = 0.5Ṅ0.
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FIGURE 3.34: Normalized total sensitivity MTot vs. separation d for
the model with detection noise. Left inset — low rate of the dark

counts, right inset — intense noise.

Integrating the sensitivity rate over time we obtain the total sensitivity for noisy
detection and present it in fig. 3.34. As expected, compared to the ideal case (fig. 3.30),
the sensitivity is suppressed in the presence of the detection noise. However, this is
also the case for non-interacting dipoles. Thus, one can still see a significant increase
in the sensitivity (around three orders of magnitude for small separations) coming
from the dipole interaction, even for relatively intense detection noise ṄDC = 0.5Ṅ0.

Curiously, in all the considered cases the sensitivity boost is more pronounced
for smaller separations, where the interaction between the emitters is stronger. As
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a result, in the context of single-parameter estimation, one can achieve higher preci-
sion in estimating smaller separations compared to larger ones.

Finally, we note that in the case of frequency-resolved measurements, the col-
lective frequency shift f12 may come into play, such that one may be able to locally
estimate the dipoles’ separation via the emission spectrum. Therefore, by integrat-
ing spectral and spatial approaches, the sensitivity could be further enhanced by
introducing frequency-resolving detection into our scheme.

3.4.5 Conclusion

In this section, we have analyzed the effects of coherence on the problem of resolv-
ing point sources with SPADE measurement. We employed the method of moments,
which allowed us to make no assumptions about the brightness of the sources. We
have found analytical expressions for the sensitivity including the cases of separation-
dependent mutual coherence and emission rate. We studied two specific exam-
ples of separation-dependent coherence: a reflection of light coming from a finite-
coherence-width illumination source and creating mutual coherence due to the in-
teraction of the emitters. In both cases, we demonstrate the possibility of a significant
boost in the separation estimation sensitivity due to the additional mechanism of the
parameter encoding to the problem. Our analysis shows that for efficient resolving
of the reflecting objects one needs to use an illumination source with a narrow co-
herence width (on the order of the reflectors’ separation) and a short coherence time.
This ensures the full advantage of the separation-dependent coherence of the re-
flected light. Examining the interacting emitters, we demonstrate that the sensitivity
of separation estimation can be increased by several orders of magnitude compared
to independent emitters. This enhancement arises from the separation-dependent
mutual coherence and emission rates of the interacting dipoles. The effect remains
robust in the presence of weak dephasing of dipoles. Although strong dephasing de-
creases the observed resolution boost, it does not eliminate it entirely. We have also
demonstrated that the presence of detection noise reduces sensitivity but preserves
the relative boost caused by the interaction of dipoles.
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In this chapter, we employ the method of moments for the characterization of
quantum states. Specifically, we focus on a simple, but commonly encountered prac-
tical scenario —- the characterization of single-mode Gaussian states. As discussed
in section 1.3.3, states in this class are described by a pair of mean quadratures and
three parameters of the quadrature covariance matrix. Thus, following the approach
introduced in section 2.4.4, we undertake the characterization of such states using
parameter estimation techniques, specifically employing the method of moments.

Within the scope of this chapter, we introduce a straightforward moment-based
strategy that efficiently utilizes homodyne (and heterodyne) detection data to esti-
mate the parameters of a Gaussian state. This approach does not necessitate complex
optimization operations or heavy computations, relying instead on simple algebraic
transformations. Consequently, it can be applied for the dynamic characterization of
sources with drifting parameters, where computational complexity in data process-
ing is critical and only a limited number of measurements are available.
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4.1 Motivation

We have previously discussed the complexity and significance of the quantum state
characterization problem in section 2.4. In this chapter, we focus on characteriz-
ing the state from a specific class — Gaussian squeezed states (as introduced in
section 1.3.1). These states are arguably the most readily accessible non-classical
states, having been utilized in numerous quantum optics laboratories for over 35
years [Andersen 2016]. They found their application in various branches of quan-
tum metrology [Dodonov 2002; Schnabel 2017; Lawrie 2019] ranging from phase
estimation [Bondurant 1984; Combes 2004; Pezze 2014; Yu 2020], including gravita-
tional wave detection [Grote 2013; Barsotti 2018; Tse 2019; Virgo Collaboration 2019;
McCuller 2020], to spatial [Kolobov 1993; Soh 2023] and temporal [Patera 2019]
imaging, displacement measurement [Treps 2003; Treps 2004], clock synchroniza-
tion [Giovannetti 2001], etc. They are also known to be valuable for quantum com-
munication [Gottesman 2003; Usenko 2018; Laudenbach 2018; Derkach 2020; Piran-
dola 2020] quantum teleportation [Furusawa 1998; Bowen 2003] and other quantum
information protocols [Braunstein 2005; Yonezawa 2010; Weedbrook 2012].

For certain applications, knowing the precise characteristics of states generated
by a particular source can be crucial. These characteristics can often change over
time due to fluctuations in temperature and other properties of the source. There-
fore, it is essential for the characterization procedure to be fast enough to be repeated
frequently (potentially to adjust the parameters of the source via a feedback loop).
We will show in sections 4.4.1 and 4.4.2, that traditional methods for characterizing
squeezed states use the measured data in an inefficient way. As a result, more mea-
surements are required to accurately characterize the state, leading to longer mea-
surement time (often on the order of seconds [Fainsin 2023; Kouadou 2023; Roman-
Rodriguez 2024]). One approach to address this is to frame the problem as parameter
estimation and use universal optimal estimators (like MLE) to exploit the full poten-
tial of the measured data. However, the data processing complexity can be signifi-
cant in this case, and longer computation times may offset any gains from reduced
acquisition time. Thus, in this chapter, we develop a straightforward moment-based
estimator that effectively utilizes homodyne detection data to estimate the parame-
ters of the single-mode Gaussian state. Our fast estimator, based on simple algebraic
transformation, has the potential to dynamically characterize sources with varying
parameters, enabling feedback control for stabilization of such sources.

4.2 Measurement statistics of the squeezed Gaussian states

Any Gaussian state is fully characterized by the mean-field vector Q⃗ and the quadra-
ture covariance matrix ΓQ (1.108). In the case of a single-mode state, the decomposi-
tion (1.110) of the quadrature covariance matrix takes the form

ΓQ =

(
cos ϕs sin ϕs
− sin ϕs cos ϕs

)(
κ 0
0 κ

)(
s 0
0 s−1

)(
cos ϕs − sin ϕs
sin ϕs cos ϕs

)
. (4.1)
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The physical sense of the parameters θ⃗ = (s, κ, ϕs)T, defining this matrix, is discussed
below.

In this case, the probability density of obtaining measurement result qψ when
measuring the generalized quadrature q̂ψ (1.84) (i.e. the phase of the LO equals
ψ), given the mean-field vector Q⃗ = (⟨q⟩, ⟨p⟩)T and quadrature covariance matrix
defined by parameters θ⃗ = (s, κ, ϕs)T, follows the Gaussian distribution

P(qψ|ψ, Q⃗, θ⃗) = N
(

Qψ, X(ψ, θ⃗)
)

, (4.2)

where the explicit probability density is defined in eq. (2.66). The mean value Qψ is
given by

Qψ = (cos ψ, sin ψ) · Q⃗ (4.3)

and the variance

X(ψ, θ⃗) = ∆2qψ = κ

(
s cos2[ψ − ϕs] +

sin2[ψ − ϕs]

s

)
=

κ

2s

(
1 + s2 − (1 − s2) cos[2(ψ − ϕs)]

)
. (4.4)

Here, κ ≥ 1 defines the thermal part of the state (the purity of the state is P = 1/κ), ϕs
defines the squeezed quadrature, and s is responsible for the amount of squeezing.
To remove the degeneracy, we set the parameters in such a way that 0 < s ≤ 1 and
0 ≤ ϕs < π. Consequently, the quadrature with the smallest variance

min
ψ

∆2qψ = κs (4.5)

corresponds to ψ = ϕs. We term it the squeezed quadrature, although its noise can
in general exceed the vacuum noise. The amount of squeezing below the vacuum
noise is often expressed in Decibel (dB) as

Ls = −10 log10[κs] dB, (4.6)

then 50% of vacuum noise corresponds to 3 dB of squeezing, and 10% — to 10 dB.
States with levels of squeezing up to 15 dB have already been demonstrated ex-
perimentally [Vahlbruch 2016; Andersen 2016]. The antisqueezed quadrature ψ =
ϕs + π/2 has a variance of κ/s, which is always not less than 1.

One can sample the quadrature q̂ψ (1.84) using homodyne detection with the
phase of the LO ψ. In section 4.6 we discuss the requirements for the measurement
apparatus.

In what follows, we assume that the studied state does not contain any mean-
field

Q⃗ = 0, (4.7)

meaning we consider non-displaced squeezed thermal states. Thus, the parameters
of the state to be estimated are the parameters of the quadrature covariance matrix
θ⃗ = (s, κ, ϕs)T. If the mean-field is present, it can be readily estimated from the
first moments of the measured quadratures and subtracted from the measured data
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during post-processing, effectively displacing the state to a zero mean-field configu-
ration. This process, however, influences the estimation precision of the covariance
matrix parameters, as demonstrated in [Řeháček 2015; Teo 2017]. Nevertheless, we
leave the problem of the mean-field beyond the scope of this research and instead
concentrate on constructing efficient estimators for the parameters θ⃗ = (s, κ, ϕs)T of
the covariance matrix in zero mean-field configuration.

4.3 Sensitivity of state characterization

Now, let us examine the precision bounds for estimating the parameters θ⃗ = (s, κ, ϕs)T.
We begin by exploring the sensitivity of the moment-based approach.

4.3.1 The method of moments

The smallest non-trivial statistical moment of the quadrature operator q̂ψ is the sec-
ond moment X̂ψ = q̂2

ψ, thus we construct the MoM based on it. The expected value
of the operator X̂ψ is

⟨X̂ψ⟩θ⃗ = ⟨q̂2
ψ⟩θ⃗ = X(ψ, θ⃗) (4.8)

and its variance is
∆2Xψ = ⟨q̂4

ψ⟩θ⃗ − ⟨q̂2
ψ⟩2

θ⃗
= 2X2(ψ, θ⃗), (4.9)

where the final equality follows from the Gaussian statistics of q̂ψ (4.2), and X(ψ, θ⃗)
is given by eq. (4.4).

The moment matrix (2.54) of the measurement of a single quadrature q̂ψ is given
by

Mαβ(ψ, θ⃗) =
1

2X2(ψ, θ⃗)

∂X(ψ, θ⃗)

∂θα

∂X(ψ, θ⃗)

∂θβ
. (4.10)

This matrix is a direct product of two vectors, i.e. it has rank 1, meaning one cannot
estimate all three parameters θ⃗ = (s, κ, ϕs)T by measuring only one quadrature q̂ψ.
Thus, we need to change the phase of the LO and measure various quadratures. For
this purpose, we choose the set of LO phases {ψj}, j = 1...Nψ.

The minimal set of phases required to estimate all three parameters of the quadra-
ture covariance matrix is Nψ = 3. Typically, quadratures with phases ψ = 0, π/4,
and π/2 are measured for this purpose [DAuria 2009]. Subsequently, the parameters
θ⃗ = (s, κ, ϕs)T are determined from the variances of these three quadratures through
simple algebraic transformations. However, this approach has a drawback: it ne-
cessitates precise control over the phase of the LO. It must remain constant during
the measurement of each quadrature and then be rapidly adjusted to a new value,
which can be hard to achieve in practice.

In practical scenarios, the phase of the LO is frequently continuously "scanned".
Then each new measurement corresponds to a slightly different quadrature. As-
suming a large number of measurements Nψ, we can describe the set of LO phases
continuously with a density function p(ψ). As quadrature measurements with dif-
ferent ψ are performed over distinct probes, they are independent, and the moment



4.3. Sensitivity of state characterization 131

matrix is additive. In other words, the moment matrix of all the measurements can
be expressed as:

Mαβ =
Nψ

∑
j=1

Mαβ(ψj, θ⃗) = Nψ

∫ 2π

0
p(ψ)Mαβ(ψ, θ⃗) dψ. (4.11)

Having some preliminary information about the angle of squeezing ϕs one can opti-
mize the choice of the measured quadratures p(ψ) to increase the sensitivity. How-
ever, here we consider the most general and the most simple case, where we do
not have (or do not use) any preliminary information about the parameters while
making the measurement. Thus, conveniently, the measurement procedure will be
always the same. In this case, the best choice of the LO phases has a uniform distri-
bution

p(ψ) =
1

nπ
, 0 ≤ ψ < nπ, n ∈ N. (4.12)

Consequently, the moment matrix (4.11) for estimating the parameters θ⃗ = (s, κ, ϕs)T

reads

M = Nψ



1 + s2

2s2(1 + s)2
−(1 − s)

2κs(1 + s)
0

−(1 − s)
2κs(1 + s)

1
2κ2 0

0 0
(1 − s)2

s

 . (4.13)

One can notice, that this matrix is independent of ϕs. This could be expected since
many quadratures q̂ψ, 0 ≤ ψ < nπ were measured, and the absolute direction of
squeezing ϕs only shifts the results of measurements along ψ. Note that the matrix
(4.13) corresponds to the measurement of Nψ quadratures, to calculate the average
moment matrix per measurement one can divide M by Nψ.

The inverse of the matrix (4.13) sets the bound for the estimator covariance (2.53),
and can be found to be

M−1 =
1

Nψ


s(1 + s)2 κ(1 − s2) 0

κ(1 − s2) κ2 1 + s2

s
0

0 0
s

(1 − s)2

 . (4.14)

The sensitivities Sα to the parameter θα are defined by the inverse diagonal elements
of the matrix M−1, as given by eq. (2.56):

∆2θ̃α ≥ 1
µSα

=
1
µ

[
M−1

]
αα

, (4.15)

where µ denotes the number of repeated measurements of each quadrature q̂ψj .
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4.3.2 Fisher information

To compare the efficiency of the moment-based approach to a more general param-
eter estimation strategies, such as the maximum likelihood estimation, we also cal-
culate the FI of the quadrature measurement. The FI matrix in the case of Gaussian
measurement statistics (4.2) is given by eq. (2.67). If only one observable q̂ψ is mea-
sured, while ∂⟨q̂ψ⟩θ⃗/∂θα = 0 and ∆2qψ = X(ψ, θ⃗), the FI matrix takes the form

Fαβ(ψ, θ⃗) =
1
2

X−1(ψ, θ⃗)
∂X(ψ, θ⃗)

∂θα
X−1(ψ, θ⃗)

∂X(ψ, θ⃗)

∂θβ
= Mαβ(ψ, θ⃗). (4.16)

Thus, in this case, the FI matrix equals the moment matrix (4.10). This could be ex-
pected, due to the fact, that the first two moments of Gaussian distribution contain
all the information about its parameters. This equality also holds for a set of mea-
surements of different quadratures q̂ψj since both the FI and moment matrices are
additive. Therefore, the CRB (2.22) for estimation of the parameters θ⃗ totally coin-
cides with MoM bound (2.53), i.e. the second moments of quadratures contain all the
information about the parameters (s, κ, ϕs). Thus the estimator based solely on the
second moment is optimal, it does not lose any relevant information. At the same
time, the computational complexity of the moment-based approach is significantly
smaller, than the complexity of the MLE, which is usually used to saturate the CRB.

4.3.3 Quantum Fisher information

To benchmark the measurement scheme used we calculate the QFI matrix for es-
timating the parameters θ⃗ = (s, κ, ϕs)T. Since we consider single-mode Gaussian
states, the QFI can be calculated with eq. (2.110) giving the diagonal QFI matrix

FQ = diag
(

1
s2

κ2

κ2 + 1
,

1
κ2 − 1

,
(1 − s2)2

s2
κ2

κ2 + 1

)
. (4.17)

As discussed in section 2.3.4 the diagonality of the QFI matrix indicates that the
QCRB (2.103) is saturable, i.e. measurements that saturate the inequality are com-
patible with each other.

The inverse of diagonal QFI matrix (4.17) is easy to find as

(
FQ)−1

= diag
(

s2 κ2 + 1
κ2 , κ2 − 1,

s2

(1 − s2)2
κ2 + 1

κ2

)
. (4.18)

Comparing it to MoM sensitivity eq. (4.14) normalized per measurement, it is straight-
forward to show that[(

FQ)−1
]

αα
< Nψ

[
M−1

]
αα

= Nψ

[
F−1

]
αα

, (4.19)

for any κ ≥ 1 and 0 < s ≤ 1. This implies that measuring a uniform set of quadra-
tures is never the quantum optimal approach to the characterization of Gaussian
states. However, it is important to note that optimal measurements are generally
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challenging to implement experimentally, and they are only effective within a lim-
ited range of parameter values. In contrast, the measurement of the uniform set of
quadratures is straightforward to implement in experiments and remains univer-
sally applicable across all parameter values. By choosing the uniform distribution
for the LO phase ψ we unavoidably measure some quadratures, that are more sensi-
tive to the parameters, and some that are less so. Thus, we pay the price of a reduc-
tion in the average sensitivity and, in return, get a universally applicable method.

4.4 Estimators

The next step involves studying different estimators for the parameters θ⃗ = (s, κ, ϕs)T.
We consider the estimators based on a large set of measured quadratures with phases
{ψj}, j = 1, ..., Nψ evenly distributed within a 4π range1, and Nψ ≳ 102. In the gen-
eral case, each quadrature q̂j = q̂ψj is measured µ times, leading to a total number
of measured samples N = µNψ. However, since we consider the continuous scan of
the LO phase, we assume obtaining only one measurement sample per quadrature,
i.e., µ = 1 and N = Nψ. We denote the outcome of measuring q̂j as qj, and samples
of the observables X̂j = q̂2

j are, accordingly, xj = q2
j .

Typical homodyne data for a squeezed thermal state are illustrated in fig. 4.1
(obtained through numerical simulation). Each point represents a single sample
of the quadrature, with the left plot depicting N = 104 samples, and the right
plot showing N = 106 samples. The parameter values used for the simulations
are (s, κ, ϕs) = (0.3, 1.2, 2.5). These plots demonstrate variations in measurement
noise across different phases of the LO. In the upcoming sections, we will discuss
the strategies for inferring specific values of the parameters θ⃗ from this data.

FIGURE 4.1: Simulated results of homodyne measurement qj with
N = 104 samples and N = 106 samples. True values of the parame-

ters (s, κ, ϕs) = (0.3, 1.2, 2.5).

4.4.1 Minimal and maximal variance

The standard practical approach for estimating the squeezing of the state involves
dividing the measured data into bins, corresponding to δψ range of the phase and

1The range of 4π is chosen for aesthetic reasons in the plots; it could be any integer multiple of π.
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calculating the sample variances of these bins

∆2qψ = Var{qψj}, with ψj ∈ [ψ − δψ/2, ψ + δψ/2]. (4.20)

The sample variances calculated for the data from fig. 4.1 are shown in fig. 4.2. Sub-
sequently, the minimum value of the sample variance corresponds to the squeezed
quadrature κs, while the maximum value corresponds to the antisqueezed quadra-
ture κ/s. The positions of the minima and maxima define the angle of squeezing
ϕs. Most often in practice, the plots 4.2 are directly experimentally obtained with the
spectrum analyzer, which automatically bins the data and calculates the variance
[Sansavini 2023; Kaiser 2016; Fainsin 2023; Roman-Rodriguez 2024].

FIGURE 4.2: Sample variance of the homodyne measurement, ob-
tained by binning the data from fig. 4.1. 103 (left plot) and 105 (right

plot) samples are divided into bins δψ = 4π/50.

This approach gives a simple and useful estimator, that does not rely on precise
control2 of the LO phase ψ for estimating the parameters κ and s. However, this es-
timator clearly underutilizes the information available in the measurement results.
In this scenario, the estimators rely solely on the data bins, corresponding to mini-
mal and maximal variances, while disregarding the remaining data. Consequently,
this estimation approach yields noisy results if the data bins contain an insufficient
amount of samples. Simultaneously, enlarging the size of the bins δψ results in in-
creased bias of the estimator, since larger bins are averaging the variance of different
quadratures and plots 4.2 become smoother.

4.4.2 Least squares method and Fourier estimator

A more developed approach involves fitting the plots 4.2 by the function X(ψ, θ⃗)
(4.4). Furthermore, to decrease the bias of the estimation it makes sense to abandon
binning and fit the squared quadrature samples xj = q2

j directly by their expected

values function X(ψ, θ⃗) as given by eq. (4.8). This fitting can be done using the
classical least squares (LS) method, which minimizes the square difference between

2It is only necessary to change the phase ψ of the LO within the range of at least π, but precise
control of it is not required.
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data samples and the expected values of the statistical model [Kay 1998]:

⃗̃θLS = arg min
θ⃗

Nψ

∑
j=1

(q2
j − X(ψj, θ⃗))2. (4.21)

To perform the minimization analytically we choose another parametrization of the
function X(ψ, θ⃗) (4.4):

X(ψ, C⃗) = C0 + C2e2iψ + C∗
2 e−2iψ, (4.22)

where

C0 = κ
1 + s2

2s
, C2 = −κ

1 − s2

4s
e−2iϕs . (4.23)

Representation (4.22) corresponds to the complex Fourier series of X(ψj, C⃗). It is
straightforward to perform analytical minimization (4.21) for the parameters C⃗:

∂

∂C0

Nψ

∑
j=1

(q2
j − X(ψj, θ⃗))2 = −

Nψ

∑
j=1

(q2
j − X(ψj, θ⃗)) = 0 (4.24)

which yields

C̃LS
0 =

1
Nj

Nψ

∑
j=1

q2
j , (4.25)

i.e. LS estimator of C0 is given by zero Fourier component of the dataset {q2
j }.

Likewise, one can show that the same is true for the second Fourier component
[Kay 1998]:

C̃LS
2 =

1
Nj

Nψ

∑
j=1

q2
j e−2iψj . (4.26)

One can construct an estimator for parameters θ by inverting the parameter trans-
formation (4.23):

s̃F =

√
C̃0 − 2|C̃2|
C̃0 + 2|C̃2|

, κ̃F =

√
C̃0 − 2|C̃2|

(C̃0 + 2|C̃2|)−1
, ϕ̃F

s = −1
2

Arg C̃2. (4.27)

This intuitive estimator can be developed without using the LS approach, instead us-
ing straightforward Fourier analysis of the plots 4.2. That is why we use the shorter
notation ⃗̃θF = ⃗̃θLS.

Note that due to the statistical noise, the expressions under the square roots in
eq. (4.27) can occasionally yield negative values C̃0 − 2|C̃2| < 0. This indicates a
negative estimation of squared parameters s2 and κ2, signifying that the estimator
fails to produce physically valid parameter values. The frequency of these outcomes
is plotted in the fig. 4.3 for datasets of N = 104 and N = 106 samples.

In the event of the LS estimator failure, one can choose to either discard the corre-
sponding measurement dataset and repeat the measurement or utilize the minimum
values of the parameters s and κ, estimated from certain physical characteristics of
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FIGURE 4.3: Rate of LS approach failures. Each point is obtained with
500 simulated datasets of N = 104 (circles) and N = 106 (triangles)

samples with κ = 1.2.

the source, such as losses within the system (we adopt s ≥ 10−3 and κ ≥ 1 + 10−4).
However, both approaches introduce bias into the estimators, and a high failure rate
indicates inadequate statistical data to perform an estimation with the selected esti-
mator. We present the variance and the bias of the LS estimator ⃗̃θF in fig. 4.4.

From the plots in fig. 4.4 one can see, that LS estimator is close to the CRB for
s > 0.5 (i.e. squeezing below 3 dB) for all of the parameters. For stronger squeez-
ing (smaller s) the variance of this estimator does not saturate the CRB. With further
increase in squeezing, variance continues growing and estimators s̃F and κ̃ f become
increasingly biased. As long as bias (defined in eq. (2.1)) stays significantly lower
than the variance of the estimator, i.e. B(θα)2 ≪ ∆2θα, the confidence interval for the
estimator contains the ground truth value of the parameter θα with high probability.
Contrary, if B(θα)2 ∼ ∆2θα, the estimator is significantly biased, and the estimation
interval may not contain the true parameter value. One can see that this is the case
for LS estimation of parameters s and κ if the squeezing is strong enough, especially
for the lower measurement statistics. At the same time, the estimator ϕ̃ f stays unbi-
ased, and its variance does not grow with increasing squeezing, exceeding the CRB
by no more than 1-2 orders of magnitude. Further, we use the value of ϕ̃ f estimator
as a good zero approximation for the moment-based approach.

It is interesting to note that failures of the LS estimator are not the only sources
of bias. For instance, the estimation of a 12 dB squeezed state with N = 106 samples
does not yield imaginary values of the estimator, as shown in fig. 4.3. However, the
right plots in fig. 4.4 reveal noticeable bias in the estimators s̃F and κ̃ f in this scenario.
Hence, increasing the statistics N does not necessarily result in the full elimination of
estimation bias, though the bias is significantly decreased for larger N and typically
stays below the level of noise.
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FIGURE 4.4: Performance of the LS (Fourier) estimator. Hollow
markers correspond to the variance of the estimators ∆2θ̃α multiplied
by N, filled markers — to the squared bias B2(θ̃α), given by eq. (2.1),
multiplied by N. Each point is obtained with 500 simulated datasets
of N = 104 (left) and N = 106 (right) samples with κ = 1.2. Black
lines correspond to the MoM limit per one measurement (4.15) (coin-

cide with the CRB), dashed red line represents the QCRB (4.18).
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In general, the LS estimator is optimal and unbiased when data is normally dis-
tributed around the mean with constant variance [Kay 1998]. However, neither of
these conditions is met in the considered case, which is why optimality and unbi-
asedness of the LS estimator are not guaranteed, even in the asymptotic limit. A
more rigorous and precise approach would involve accounting for different vari-
ances corresponding to different quadratures in eq. (4.21), a concept often referred
to as errors-in-variables models. However, in this scenario, optimization would neces-
sitate numerical methods, which compromises the simplicity of the approach.

Here, we present a couple of reconstruction results, beginning with the scenario
depicted in fig. 4.1:

θ⃗ =

0.300
1.200
0.900

 , ˜⃗θF
104 =

0.299 ± 0.015
1.19 ± 0.05

0.900 ± 0.013

 ,

√
1
Sα

=

0.007
0.023
0.008

 , (4.28)

i.e. for the given parameter values, the LS estimator exhibits nearly unbiased be-
havior, although its standard deviation is approximately twice that of the CRB. With
stronger squeezing (9.2 dB), the non-optimality of the LS becomes more pronounced:

θ⃗ =

0.100
1.200
0.900

 , ˜⃗θF
104 =

 0.09 ± 0.04
1.26 ± 0.27

0.899 ± 0.011

 ,

√
1
Sα

=

0.004
0.038
0.004

 , (4.29)

providing little to no information about the parameter κ and wide and biased inter-
vals for s. Despite this, LS estimation can still be used for characterizing this state
with larger statistics (e.g., N = 106), although the estimation interval remains 10
times wider than the CRB. For characterizing even stronger squeezing (over 10 dB),
the statistics required for LS estimation quickly become impractical.

In conclusion, we note that the LS estimator is not optimal for squeezing stronger
than 3 dB, and its variance increases rapidly with the squeezing. Besides, the LS
method provides biased estimations for squeezing levels above 7-8 dB, with a grow-
ing rate of non-physical estimation outcomes, which requires increased measure-
ment statistics. Therefore, this approach may not be the most suitable choice for
characterizing highly squeezed states.

4.4.3 Moment-based estimator

Finally, we consider the moment-based estimator of the parameters θ⃗ = (s, κ, ϕs)T,
following the approach introduced in section 2.2.2. The estimator ⃗̃θ is based on the
following linear combination of the measurement results (xj = q2

j ):

yα (⃗θ0) =
1

Nψ

Nψ

∑
j=1

cα(ψj, θ⃗0) xj, (4.30)
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with the coefficients (2.58)

cα(ψj, θ⃗0) =

(
1

2X2(ψj, θ⃗)

∂X(ψj, θ⃗)

∂θα

) ∣∣∣⃗
θ=θ⃗0

, (4.31)

where we took into account, that the measurements performed over separate probes
are not correlated, and θ⃗0 being the initial guess about the parameters.

It is important to note that since each quadrature q̂j is measured only once, and
observables X̂j = q̂2

j do not follow Gaussian statistics, our typical assumptions for
the validity of the MoM are not met. However, one can use the Lyapunov condition
for the central limit theorem [Ash 2000] to demonstrate that yα (⃗θ0) is distributed
normally for sufficiently large Nψ. The Lyapunov condition is satisfied if for some
δ > 0

lim
Nψ→∞

1(
∑

Nψ

j=1 2c2
α(ψj, θ⃗0)X2(ψj, θ⃗)

)1+δ/2

×
Nψ

∑
j=1

∫
q

dq P(q|ψj, θ⃗)
∣∣∣cα(ψj, θ⃗0)(q2 − X(ψj, θ⃗))

∣∣∣2+δ
= 0, (4.32)

where the statistics of quadratures P(q|ψj, θ⃗) is defined in eq. (4.2). The validity of
this limit is straightforward to demonstrate for δ = 2, as both sums in eq. (4.32) are
proportional to Nψ, resulting in the overall expression being proportional to N−1

ψ .

This is a direct consequence of the coefficients cα(ψj, θ⃗0) and the moments of the
distribution P(q|ψj, θ⃗) being finite for all j and all physical values of parameters θ⃗.

Therefore, if the number of measured quadratures Nψ is sufficiently large we can
apply the MoM to this problem, even in cases where each quadrature is measured
only once (µ = 1). The MoM constructs the estimators ⃗̃θ as a solution of the system
of 3 equations

yα (⃗θ0) = Yα (⃗θ0,⃗̃θ), α = 1, 2, 3, (4.33)

where

Yα (⃗θ0,⃗̃θ) =
1

Nψ

Nψ

∑
j=1

cα(ψj, θ⃗0) X(ψj,⃗̃θ). (4.34)

In the limit of large Nψ this sum can be replaced with an integral and calculated
analytically. Again assuming uniform sampling of the LO phase we obtain

Y⃗(⃗θ0, θ̃) = − κ̃(1 − s̃2)

2κ0(1 + s0)2s̃


cos 2(ϕs0 − ϕ̃s)

(1 + s0)2

2κ0

(1 + s̃2)

(1 − s̃2)
− (1 − s2

0)

2κ0
cos 2(ϕs0 − ϕ̃s)

(1 − s2
0) sin 2(ϕs0 − ϕ̃s)

 . (4.35)

Now the system (4.33) can be solved analytically, but the solution is quite bulky.
Therefore we start with the initial approximation for the phase ψs given by the
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Fourier analysis ϕs0 = ϕ̃F
s (4.27). Since ϕ̃F

s is an unbiased estimator, the difference
ϕs0 − ϕ̃s is typically small, that can be used for simplifying eq. (4.35). The solution of
the simplified system (4.33) reads

 s̃
κ̃
ϕ̃s

 =



√√√√∣∣∣∣∣y1(⃗θ0)s0(1 + s0) + y2(⃗θ0)κ0

y1(⃗θ0)(1 + s0)− y2(⃗θ0)κ0

∣∣∣∣∣
2κ0

√√√√∣∣∣∣∣ y1(⃗θ0)s0(1 + s0) + y2(⃗θ0)κ0

(y1(⃗θ0)(1 + s0)− y2(⃗θ0)κ0)−1

∣∣∣∣∣
ϕs0 −

1
2

y3(⃗θ0)

y1(⃗θ0)(1 − s2
0)


. (4.36)

These moment-based estimators are expected to saturate the bound (4.15) if the ini-
tial guess is close to the true values of the parameters θ⃗0 ≈ θ⃗, i.e. to build an optimal
estimator one needs to have a good initial guess θ⃗0. However, this limitation can be
easily overcome using an iterative approach: i.e. starting from random initial guess
θ⃗0 = (s0, κ0, ϕs0 = ϕ̃sF), one should use estimated values of the parameters as a new
initial guess, to estimate parameters more precisely. The procedure can be repeated a
couple of times, however, in most cases, it converges from any random initial guess
θ⃗0 within a very few iterations3.

The variance and bias of the moment-based estimator (4.36) are illustrated in
fig. 4.5. Each data point on the plot is derived from 500 simulated datasets of N = 104

samples with κ = 1.2. It is apparent that the moment-based estimator is practically
unbiased, and its variance saturates the CRB, indicating that it is an optimal estima-
tor.

Repeating the same simulations for dataset sizes ranging from N = 103 to N =
107 samples produces analogous results. Even though we observe a minor difference
in the bias, the latter consistently remains negligible.

When reconstructing the same state as described in eq. (4.29), we find that the
moment-based estimator effectively handles this task:

θ⃗ =

0.100
1.200
0.900

 , ˜⃗θ104 =

0.100 ± 0.004
1.20 ± 0.04

0.900 ± 0.004

 ,

√
1
Sα

=

0.004
0.038
0.004

 , (4.37)

While the computational complexity of the moment-based estimator, and the re-
quired number of iterations for the convergence of the scheme are to be more rigor-
ously studied in the future, we want to point out that this estimator is built on simple
algebraic transformation without any optimization involved. For large datasets the
longest part of the computation is a calculation of the sum (4.30) and the coefficients
cα(ψj, θ⃗0) (4.31). The complexity of this part scales at worst like O(Nψ) (without
proper optimization and caching). With further optimization of the method, like

3When using initial values θ⃗0 provided by the Fourier estimator ⃗̃θF (4.27), the scheme typically
converges within 1-2 iterations.



4.4. Estimators 141

0.05 0.10 0.50 1

0.001

0.010

0.100

1

10

0481216

s

κs, dB

θα=s

0.05 0.10 0.50 1
1

10
100

1000
104

105

0481216

s

κs, dB

θα=κ

0.05 0.10 0.50 1

0.001

0.010

0.100

1

10

0481216

s

κs, dB

θα=ϕs N/Sα

1/ℱ Q
α

N Δ2θ

α

N B2(θ

α)

FIGURE 4.5: Performance of the moment-based estimators (4.36).
Hollow markers correspond to the variance of the estimators ∆2θ̃α

multiplied by N, filled markers — to the squared bias B2(θ̃α) mul-
tiplied by N. Each point is obtained with 500 simulated datasets of
N = 104 samples with κ = 1.2. Black lines correspond to the MoM
limit per one measurement (4.15) (coincide with the CRB), dashed red

line represents the QCRB (4.18).

data partition, the computational complexity of the proposed approach can scale
better than O(Nψ).

4.4.4 Other estimators

As mentioned earlier, the CRB can always be asymptotically saturated with the
MLE (2.25). The challenge with this approach lies in its computational complex-
ity: it involves a 3-parameter optimization of the sum of N terms, which typically
necessitates numerous iterations of computing the probability distribution for each
quadrature on different values of parameters.

Another approach to characterizing Gaussian states is based on machine learn-
ing [Hsieh 2022b; Hsieh 2022a]. While this method can provide rapid and efficient
estimators, it also has several disadvantages, as discussed in section 2.4.3. The main
drawback is the inability to assess the quality of the results, as neural networks pro-
duce estimators without providing error bars on them. The unbiasedness of neural
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network estimation is also not guaranteed, and training it with large data samples
(Nψ ≳ 104) can also be challenging.

4.5 Fidelity of the reconstructed state

Using the estimated values of the parameters ⃗̃θ, one can construct the covariance
matrix Γ̃Q (1.110) and the corresponding quantum state. To assess how closely this
estimated state matches the real one, we calculate the fidelity as defined in (2.106),
computed for a Gaussian state using (2.109). The results of these calculations for
simulated data are presented in fig. 4.6, where we plot the infidelity 1− F multiplied
by number of measurements N.
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QCRB

MoM estimator
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FIGURE 4.6: Infidelity of the reconstructed state. Blue circles corre-
spond to the moment-based estimator (4.36), yellow — to the LS (4.27)
(averaged from 500 simulated datasets with N = 106, κ = 1.2). The
solid black line corresponds to the CRB (4.40), and the dashed red line

corresponds to the quantum limit (4.39).

When the fidelity is calculated on two close sets of parameters θ⃗ and ⃗̃θ, with the
latter one being an unbiased estimator for θ⃗, the expected fidelity can be decomposed
into the Taylor series around ⃗̃θ = θ⃗, resulting in

F ≈ 1 +
1
2 ∑

α,β

∂2F(ρ̂θ⃗ , ρ̂θ⃗+δ⃗θ)

∂(δθα)∂(δθl)

∣∣∣∣∣
δ⃗θ=0

cov(θ̃α, θ̃β). (4.38)

One can mention that the derivatives in this equation are proportional to the ele-
ments of the QFI matrix (2.108). Therefore the quantum bound for fidelity is given
by

FQ = 1 − 1
µ

3
4

, (4.39)

where we took into account that QCRB is saturable due to the diagonality of the QFI
matrix (4.17). This bound is depicted by a dashed red line in fig. 4.6.
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For the estimator based on the homodyne measurement results, its covariance is
limited by the inverse moment matrix (4.14), and minimal fidelity takes the form

F = 1 − 1
N

κ4(3 + 4s + 3s2)− κ2(1 + 4s + s2)

4s(κ4 − 1)
, (4.40)

that is plotted in black in fig. 4.6. To achieve the state reconstruction fidelity of 99 %
it is enough to use 103 − 104 homodyne samples, combined with the moment-based
estimator. While using the LS estimator may require 3− 4 orders of magnitude larger
statistics to obtain the same reconstruction fidelity.

4.6 Requirements for experimental implementation

In our theoretical description, we modeled homodyne detection without considering
losses or additional noise from the electronics or the LO. In real experiments, these
effects are inevitably present. However, even with these imperfections, the measure-
ment statistics remain Gaussian with modified parameters κ and s. Therefore, one
can always estimate the parameters of the state assuming the detection system to
be ideal, and any detection imperfections can be addressed later by adjusting the
estimated parameters accordingly.

Additionally, our analysis was conducted in a single-mode setting. Therefore,
to attain the calculated sensitivity (4.15) in practice, the homodyne detection should
access individual temporal modes of the source. This implies that the integration
time of the homodyne detector τint should match the coherence time τc or pulse rate4

of the source. In this scenario, the detection system directly samples the quadratures
of the field without averaging over several temporal modes.

In cases where homodyne detection fails to resolve individual temporal modes
of the sources (τint > τc), the measurement statistics (4.2) can be modified by replac-
ing the measurement variance X(ψ, θ⃗) with τc

τint
X(ψ, θ⃗), accounting for the averag-

ing property of Gaussian random variables. The constant factor τc
τint

does not alter
the moment matrix (4.10), which defines the sensitivity of a single measurement.
Thus, eqs. (4.13) and (4.14), and the parameter estimation sensitivity S⃗ (4.15) remain
unchanged. It’s important to note that with a slower detector, one requires τint

τc
Nψ

samples of the states to accumulate Nψ measurement samples. Consequently, the to-
tal measurement time needed to achieve the same sensitivity with slow homodyne
detection is τint

τc
times longer than with a fast detector (τint = τc).

Another crucial requirement for the measurement scheme is precise control of
the LO phase5. Since the developed moment-based algorithm uses the LO phase
ψj to calculate the weights cα(ψj, θ⃗0) for each data sample xj, accurate knowledge
of the phase ψj for each homodyne sample is necessary. Furthermore, the direction
of squeezing ϕs should remain constant throughout the data acquisition process.
Therefore, it is essential that the source and the LO are either phase-locked or the
measurement is conducted fast enough to prevent significant drift in the phase ϕs.
The latter seems feasible, as obtaining 103 − 105 homodyne samples, required for

4If the source of the states is pulsed.
5The same requirement applies to LS and MLE estimators.
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high-quality estimation of the state parameters, can typically be achieved within
10−5 − 10−3 seconds (for a 100 MHz pulse repetition rate), falling within the stability
time of most sources of squeezed light [Andersen 2016].

4.7 Heterodyne measurement

We also briefly examine another measurement commonly used for state charac-
terization — a heterodyne (or double homodyne) measurement introduced in sec-
tion 1.3.4. This measurement corresponds to the detection of two observables: q̂′1 =
q̂ + q̂v and p̂′2 = p̂ − p̂v, where q̂v and p̂v are quadrature operators of the vacuum
mode. The first moments of these observables are zero, so the method of moments
is built based on the second moments, i.e.

⃗̂X =
(
q̂′1

2, p̂′2
2, q̂′1 p̂′2

)T
(4.41)

and

⟨⃗̂X⟩θ⃗ =

 〈q̂′12〉
θ⃗〈

p̂′2
2〉

θ⃗
⟨q̂′1 p̂′2⟩θ⃗

 =

[ΓQ]11 + 1
[ΓQ]22 + 1
[ΓQ]12

 , (4.42)

whith quadrature covariance matrix ΓQ defined in eq. (4.1). Using the properties of
Gaussian states one can show that the covariance matrix between the second mo-
ments is given by

Γ =


2⟨X̂1⟩2

θ⃗
2⟨X̂3⟩2

θ⃗
2⟨X̂1⟩θ⃗⟨X̂3⟩θ⃗

2⟨X̂3⟩2
θ⃗

2⟨X̂2⟩2
θ⃗

2⟨X̂2⟩θ⃗⟨X̂3⟩θ⃗

2⟨X̂1⟩θ⃗⟨X̂3⟩θ⃗ 2⟨X̂2⟩θ⃗⟨X̂3⟩θ⃗ ⟨X̂1⟩θ⃗⟨X̂2⟩θ⃗ + ⟨X̂3⟩2
θ⃗

 . (4.43)

Then the moment matrix of the heterodyne detection can be calculated as:

MHet
αβ =

∂⟨⃗̂XT⟩θ⃗

∂θα
Γ−1 ∂⟨⃗̂X⟩θ⃗

∂θβ

=
1
2


κ2(s4+2κ2s2+2κ(1+s2)s+1)

s2(κ+s)2(1+κs)2 − κ(1−s2)(s2+2κs+1)
s(κ+s)2(1+κs)2 0

− κ(1−s2)(s2+2κs+1)
s(κ+s)2(1+κs)2

s2

(1+κs)2 +
1

(κ+s)2 0

0 0
2κ2(1−s2)

2

s(κ+s)(1+κs)


αβ

. (4.44)

As one might expect the moment matrix of the heterodyne detection does not de-
pend on the direction of squeezing ϕs and has rank 3. Thus all the parameters can
be estimated from the series of the measurements of the same observables ⃗̂X (4.41).
Note, however, that the direction of squeezing ϕs should still remain constant during
the measurement process. Therefore, the source should either be phase-locked with
the LO, or the acquisition time should be kept short.
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The covariance matrix of the moment-based estimators is bounded by the inverse
moment matrix

(
MHet)−1

=


s4+2κs3+2κ2s2+2κs+1

2κ2
(1−s2)(s2+2κs+1)

2κs 0
(1−s2)(s2+2κs+1)

2κs κ2 + s2

2 + 1
2s2 + κs + κ

s 0
0 0 s(κ+s)(1+κs)

κ2(1−s2)
2

 . (4.45)

The statistics of the heterodyne detection is given by the two-dimensional Gaus-
sian distribution with the mean vector m⃗ = 0 and the covariance matrix C = ΓQ + I,
as given by eq. (1.123). Thus, the FI matrix of this measurement can be determined
using eq. (2.67), resulting in a matrix identical to the moment matrix eq. (4.44). This
signifies that the moment-based estimator optimally uses all the information con-
tained in the heterodyne detection results and saturates CRB. This result is antici-
pated given the properties of Gaussian statistics of quadratures.

In fig. 4.7, we compare the CRB for homodyne and heterodyne detection. One
can see, that for states with high purity (low κ, depicted in the left column of plots),
heterodyne detection is the preferable choice as it offers lower noise in parameter es-
timation. Conversely, one should opt for heterodyne detection to analyze states with
a stronger thermal contribution (higher κ, shown in the right column of plots 4.7),
except in scenarios where squeezing is high. This observation aligns with the well-
known phenomenon in purity estimation of thermal states, where homodyne detec-
tion is preferred for low-energy thermal states, while heterodyne detection yields
better results for higher-energy states [Cenni 2022].

An analogous advantage of homodyne detection for estimating the covariance
matrix of squeezed single-mode Gaussian states with high purity has been demon-
strated in [Kumar 2022; Teo 2017; Řeháček 2015] through FI analysis. This behavior
arises from the presence of an additional vacuum mode introduced into the system
with heterodyne detection, resulting in additional noise. However, if the purity of
the initial state is low, the noise in its quadratures is already high, and the additional
vacuum noise does not significantly impact the measurement statistics. In such
cases, measuring two quadratures (with heterodyne detection) instead of one (with
homodyne detection) becomes advantageous. Besides, heterodyne detection often
demonstrates an advantage in estimating the mean field [Teo 2017; Kumar 2022].

In [Kumar 2022] another measurement scheme is analyzed, wherein the studied
state interacts with two squeezed vacuum probes. This measurement scheme, often
referred to as the Arthurs-Kelly measurement scheme [Arthurs 1965], is shown to
offer more comprehensive information about the studied state (especially about the
mean-field [Kumar 2022]). However, its practical implementation is challenging.
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FIGURE 4.7: Parameter estimation sensitivity bounds for homo-
dyne (black lines) and heterodyne (blue lines) detection. The ulti-
mate bound, given by the QFI, is represented by the dashed red line.
The left column of plots corresponds to the states with high purity
(κ = 1.05, P = 0.95), the right one — to the states with low purity

(κ = 3, P = 0.33).

Moment-based estimator

Constructing the estimator from the heterodyne measurement is a straight forward
task. Since we build the estimator for three parameters, using the three moments
(4.41), there is no need to construct linear combinations of the measurement results.
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The estimator can be found as a solution of the three equations

⟨X̂α⟩⃗̃θ = x(µ)α , α = 1, 2, 3, (4.46)

where x(µ)α are sample means of the observables X̂α (4.41). The solution of this system
reads:

 s̃
κ̃
ϕ̃s

 =



√
1+2x(µ)1 (x(µ)1 −1)+2x(µ)2 (x(µ)2 −1)+4x(µ)3

2
−2(x(µ)1 +x(µ)2 −1)

√
(x(µ)1 −x(µ)2 )2+4x(µ)3

2

1−2(x(µ)1 +x(µ)2 −2x(µ)1 x(µ)2 )−4x(µ)3

2

(
(x(µ)1 + x(µ)2 − 1) +

√
(x(µ)1 − x(µ)2 )2 + 4x(µ)3

2)
s̃

arctan[x(µ)2 − x(µ)1 +

√
(x(µ)1 − x(µ)2 )2 + 4x(µ)3

2
, −2x(µ)3 ],


(4.47)

For this measurement scheme one does not need to have an initial guess about the
parameters or process the data iteratively, it can be done in one step.

This procedure arises from the fact that the covariance matrix Γ(q̂′1, p̂′2) of the
heterodyne observables q̂′1 and p̂′2 is linked to the quadrature covariance ΓQ by a
simple relation (1.123): Γ(q̂′1, p̂′2) = ΓQ + I. Consequently, the estimators for the
elements of the covariance matrix are given by

(
[
Γ̃Q
]

11 ,
[
Γ̃Q
]

22 ,
[
Γ̃Q
]

12) = (x(µ)1 − 1, x(µ)2 − 1, x(µ)3 ). (4.48)

And eq. (4.47) simply transforms the set of parameters ([ΓQ]11 , [ΓQ]22 , [ΓQ]12) to
(s, κ, ϕs).

4.8 Conclusion

In this chapter, we introduced a moment-based estimator for the parameters of the
quadrature covariance matrix of a single-mode Gaussian state. We constructed the
estimator for the outcomes of scanning-homodyne (and heterodyne) measurements,
demonstrating its optimality and unbiasedness. Concurrently, we illustrated that
the intuitive Fourier estimator (which coincides with the LS estimator, fitting the
variance curve) falls short in providing satisfactory estimation results for states with
significant squeezing.

The developed estimator relies on straightforward algebraic transformations of
the measured data and avoids the need for computationally intensive optimization
methods like MLE. Low computational complexity and efficient use of the measured
data make it promising for dynamic estimation of state parameters, in cases when
the properties of the squeezed states source drift with time. This suggests potential
applications in implementing real-time feedback control of such sources. For more
efficient practical use in the dynamic setting, this approach may be further combined
with the Bayesian parameter estimation, to account for the previous estimation re-
sults on each new step.
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Another potential extension of this study involves generalizing the results to
multi-mode Gaussian states. This presents a significant challenge for analytical in-
vestigation, as even the two-mode covariance matrix depends on 8 parameters. Fur-
thermore, one might wish to analyze the 4 parameters (in the case of two modes)
related to the mean field. Developing a moment-based estimator in this scenario
will require numerical inversions of relatively large matrices and solving systems
of nonlinear algebraic equations. However, the computational complexity of MLE
in this case is also very high, and the reduction in complexity with the MoM can
potentially be even greater than in the single-mode case.
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Conclusion and perspectives

We started this thesis by presenting the theoretical concepts behind optical metrol-
ogy, introducing the classical and quantum descriptions of the multimode electro-
magnetic field. We overviewed some existing approaches to the problem of param-
eter estimation and focused our attention on the approach based on the statistical
moments of the measured data. We demonstrated that estimators based on the first
moments of the observables often turned out to be optimal while being simple to
calculate (along with the corresponding error bars) and to use in practice.

Using this approach, we have analyzed the problem of resolving point sources,
expanding its traditional scope to include bright sources, sources with arbitrary
statistics, and sources with separation-dependent mutual coherence and emission
rate. We have studied the sensitivity of moment-based spatial mode demultiplex-
ing, demonstrating not only its advantage over direct imaging but also its quantum
optimality in many scenarios. For interactive dipoles and reflective particles under
external illumination, we have shown that separation-dependent coherence, which
arises in such scenarios, can significantly enhance the resolution capabilities.

We also considered the cases of simultaneous estimation of the separation, bright-
ness, and relative phase of the sources. While in some instances we observed the
resurgence of the Rayleigh curse in multiparameter scenarios, we demonstrated that
SPADE sensitivity scales better with the separation compared to direct imaging.

Another application of the moment-based approach, that we analyzed in this the-
sis, is the problem of quantum state characterization. We constructed the moment-
based estimator for the parameters of a single-mode Gaussian state based on the
outcomes of scanning-homodyne (and heterodyne) measurements, demonstrating
the optimality and unbiasedness of this approach.

This research only scratches the surface of the dynamically developing approach
to the imaging problem, framed as parameter estimation with optimization of the
measurement basis. In the context of microscopy, one can anticipate the extension
of the model used in this thesis to optical systems with high numerical apertures,
characterized by complex PSF and various aberrations. Addressing the challenge of
realistic imaging necessitates studying multiple sources and objects with complex
shapes, where coherence effects may yield even more unexpected results compared
to incoherent imaging, which is typically considered at present. We acknowledge the
pioneering steps towards the application of the SPADE approach, combined with
neural network-based data processing, to the imaging of complex objects [Pushk-
ina 2021; Costa Filho 2021] and foresee active development of both theoretical and
experimental studies in this direction.

Developing adaptive approaches, based on the optimization of the measurement
basis for imaging of the specific scene, naturally requires a Bayesian approach to the
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description, especially in the dynamic setting, when the imaging object is not static.
Thus, combining the moment-based approach with Bayesian analysis may prove
practical for this and many other tasks.

The method of moments, employed in this research, holds promise to signifi-
cantly expand its application scope. One of the interesting and practically useful
directions of its development is the construction of moment-based estimators in the
presence of nuisance parameters. Specifically in the context of realistic imaging, the
total number of unknown parameters is usually very large, however, the number of
parameters of interest is often limited. In this scenario, the moment-based analysis
may help to find both the sensitive measurements and practical estimators, indepen-
dent of values of nuisance parameters.

Another interesting statistical problem in this context is to develop some simple
criteria for the optimality of the moment-based estimation. This may help to better
understand the observation of this thesis, that the first-moment-based estimators of-
ten saturate the CRB in practical situations. Certainly, a more rigorous comparative
study of the moment-based estimator with other standard estimation techniques, es-
pecially from the point of view of computational complexity, can further disseminate
this approach, and it will find its application far beyond the scope of this thesis.

The tiny step we took towards moment-based state characterization may lead
further research to numerous avenues in the world of quantum tomography. Our
immediate next step goes undoubtedly in the direction of experimental testing of the
developed approach. Subsequent generalizations may involve efficient characteri-
zation of multimode states, extension of the class of considered states and measure-
ments, partial characterization of the state via the nuisance parameters approach,
and addressing many other emerging challenges that may not even exist yet.
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totic quantum statistical inference”. From Probabil-
ity to Statistics and Back: High-Dimensional Models
and Processes – A Festschrift in Honor of Jon A. Well-
ner. Vol. 9. Institute of Mathematical Statistics, Jan.
2013, pp. 105–128. DOI: 10.1214/12-IMSCOLL909
(cit. on p. 59).

[Giovannetti 2001] Vittorio Giovannetti, Seth Lloyd, and Lorenzo Mac-
cone. “Quantum-enhanced positioning and clock
synchronization”. Nature 412.6845 (July 2001), pp. 417–
419. DOI: 10.1038/35086525 (cit. on p. 128).

[Giovannetti 2006] Vittorio Giovannetti, Seth Lloyd, and Lorenzo Mac-
cone. “Quantum Metrology”. Physical Review Let-
ters 96.1 (Jan. 2006), p. 010401. DOI: 10.1103/PhysRevLett.
96.010401 (cit. on p. 1).

https://doi.org/10.1103/PhysRevA.70.013802
https://doi.org/10.1103/PhysRevLett.113.143602
https://doi.org/10.1103/PhysRevLett.113.143602
https://doi.org/10.1364/BOE.2.000408
https://doi.org/10.1103/PhysRevLett.122.090503
https://doi.org/10.1103/PhysRevLett.125.100501
https://doi.org/10.1038/s41467-020-17471-3
https://doi.org/10.1038/s41467-020-17471-3
https://doi.org/10.1214/12-IMSCOLL909
https://doi.org/10.1038/35086525
https://doi.org/10.1103/PhysRevLett.96.010401
https://doi.org/10.1103/PhysRevLett.96.010401


Bibliography 161

[Giovannetti 2011] Vittorio Giovannetti, Seth Lloyd, and Lorenzo Mac-
cone. “Advances in quantum metrology”. Nature
Photonics 5.4 (Apr. 2011), pp. 222–229. DOI: 10.1038/
nphoton.2011.35 (cit. on p. 1).

[Glauber 1963] Roy J. Glauber. “The Quantum Theory of Optical
Coherence”. Physical Review 130.6 (June 1963), pp. 2529–
2539. DOI: 10 . 1103 / PhysRev . 130 . 2529 (cit. on
pp. 7, 20).

[Goodman 2005] Joseph W. Goodman. Introduction to Fourier Optics.
Roberts and Company Publishers, 2005 (cit. on pp. 10,
66, 68).

[Gosalia 2023] Ronakraj K. Gosalia et al. Quantum Super-Resolution
with Balanced Homodyne Detection in Low-Earth-Orbit.
June 2023 (cit. on p. 86).

[Gottesman 2003] Daniel Gottesman and John Preskill. “Secure Quan-
tum Key Distribution using Squeezed States”. Quan-
tum Information with Continuous Variables. Ed. by
Samuel L. Braunstein and Arun K. Pati. Dordrecht:
Springer Netherlands, 2003, pp. 317–356. DOI: 10.
1007/978-94-015-1258-9_22 (cit. on p. 128).

[Grace 2020] Michael R. Grace et al. “Approaching quantum-
limited imaging resolution without prior knowl-
edge of the object location”. JOSA A 37.8 (Aug. 2020),
pp. 1288–1299. DOI: 10.1364/JOSAA.392116 (cit.
on p. 86).

[Grace 2022] Michael R. Grace and Saikat Guha. “Identifying Ob-
jects at the Quantum Limit for Superresolution Imag-
ing”. Physical Review Letters 129.18 (Oct. 2022), p. 180502.
DOI: 10.1103/PhysRevLett.129.180502 (cit. on
p. 86).

[Greenwood 2023] Alexander B. Greenwood, Ruth Oulton, and Henk-
jan Gersen. “On the impact of realistic point sources
in spatial mode demultiplexing super resolution
imaging”. Quantum Science and Technology 8.1 (Jan.
2023), p. 015024. DOI: 10.1088/2058-9565/aca0b7
(cit. on p. 87).

[Grote 2013] H. Grote et al. “First Long-Term Application of Squeezed
States of Light in a Gravitational-Wave Observa-
tory”. Physical Review Letters 110.18 (May 2013), p. 181101.
DOI: 10.1103/PhysRevLett.110.181101 (cit. on
p. 128).

https://doi.org/10.1038/nphoton.2011.35
https://doi.org/10.1038/nphoton.2011.35
https://doi.org/10.1103/PhysRev.130.2529
https://doi.org/10.1007/978-94-015-1258-9_22
https://doi.org/10.1007/978-94-015-1258-9_22
https://doi.org/10.1364/JOSAA.392116
https://doi.org/10.1103/PhysRevLett.129.180502
https://doi.org/10.1088/2058-9565/aca0b7
https://doi.org/10.1103/PhysRevLett.110.181101


162 Bibliography

[Grynberg 2010] Gilbert Grynberg, Alain Aspect, and Claude Fabre.
Introduction to Quantum Optics: From the Semi-classical
Approach to Quantized Light. Cambridge University
Press, Sept. 2010 (cit. on p. 12).

[Guerra 1990] John M. Guerra. “Photon tunneling microscopy”.
Applied Optics 29.26 (Sept. 1990), pp. 3741–3752. DOI:
10.1364/AO.29.003741 (cit. on p. 3).

[Guo 2020] Xueshi Guo et al. “Distributed quantum sensing
in a continuous-variable entangled network”. Na-
ture Physics 16.3 (Mar. 2020), pp. 281–284. DOI: 10.
1038/s41567-019-0743-x (cit. on p. 92).

[Gustafsson 2000] M. G. L. Gustafsson. “Surpassing the lateral resolu-
tion limit by a factor of two using structured illu-
mination microscopy”. Journal of Microscopy 198.2
(2000), pp. 82–87. DOI: 10.1046/j.1365- 2818.
2000.00710.x (cit. on p. 3).

[Gustafsson 2008] Mats G. L. Gustafsson et al. “Three-Dimensional
Resolution Doubling in Wide-Field Fluorescence Mi-
croscopy by Structured Illumination”. Biophysical
Journal 94.12 (June 2008), pp. 4957–4970. DOI: 10.
1529/biophysj.107.120345 (cit. on p. 3).
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[Řeháček 2018] J. Řeháček et al. “Optimal measurements for quan-
tum spatial superresolution”. Physical Review A 98.1
(July 2018), p. 012103. DOI: 10.1103/PhysRevA.98.
012103 (cit. on p. 86).

[Rivenson 2017] Yair Rivenson et al. “Deep learning microscopy”.
Optica 4.11 (Nov. 2017), pp. 1437–1443. DOI: 10 .
1364/OPTICA.4.001437 (cit. on p. 3).

[Roggemann 1997] Michael C. Roggemann, Byron M. Welsh, and Robert
Q. Fugate. “Improving the resolution of ground-
based telescopes”. Reviews of Modern Physics 69.2
(Apr. 1997), pp. 437–506. DOI: 10.1103/RevModPhys.
69.437 (cit. on p. 3).

[Roman-Rodriguez 2024] Victor Roman-Rodriguez et al. Multimode Squeezed
State for Reconfigurable Quantum Networks at Telecom-
munication Wavelengths. Feb. 2024. DOI: 10.48550/
arXiv.2306.07267 (cit. on pp. 128, 134).

[Rosenberg 2022] Jason S. Rosenberg et al. “Observation of the Han-
bury Brown–Twiss effect with ultracold molecules”.
Nature Physics 18.9 (Sept. 2022), pp. 1062–1066. DOI:
10.1038/s41567-022-01695-9 (cit. on p. 4).

[Rouvière 2024] Clémentine Rouvière et al. “Ultra-sensitive sepa-
ration estimation of optical sources”. Optica 11.2
(Feb. 2024), pp. 166–170. DOI: https://doi.org/
10.1364/OPTICA.500039 (cit. on pp. 5, 81, 87).

[Rust 2006] Michael J. Rust, Mark Bates, and Xiaowei Zhuang.
“Sub-diffraction-limit imaging by stochastic opti-
cal reconstruction microscopy (STORM)”. Nature
Methods 3.10 (Oct. 2006), pp. 793–796. DOI: 10.1038/
nmeth929 (cit. on p. 2).

[Sajjad 2024] Aqil Sajjad, Michael R. Grace, and Saikat Guha.
“Quantum limits of parameter estimation in long-
baseline imaging”. Physical Review Research 6.1 (Feb.
2024), p. 013212. DOI: 10.1103/PhysRevResearch.
6.013212 (cit. on p. 85).

[Samantaray 2017] Nigam Samantaray et al. “Realization of the first
sub-shot-noise wide field microscope”. Light: Sci-
ence & Applications 6.7 (July 2017), e17005–e17005.
DOI: 10.1038/lsa.2017.5 (cit. on p. 3).

https://doi.org/10.1103/PhysRevA.96.062107
https://doi.org/10.1103/PhysRevA.96.062107
https://doi.org/10.1103/PhysRevA.98.012103
https://doi.org/10.1103/PhysRevA.98.012103
https://doi.org/10.1364/OPTICA.4.001437
https://doi.org/10.1364/OPTICA.4.001437
https://doi.org/10.1103/RevModPhys.69.437
https://doi.org/10.1103/RevModPhys.69.437
https://doi.org/10.48550/arXiv.2306.07267
https://doi.org/10.48550/arXiv.2306.07267
https://doi.org/10.1038/s41567-022-01695-9
https://doi.org/https://doi.org/10.1364/OPTICA.500039
https://doi.org/https://doi.org/10.1364/OPTICA.500039
https://doi.org/10.1038/nmeth929
https://doi.org/10.1038/nmeth929
https://doi.org/10.1103/PhysRevResearch.6.013212
https://doi.org/10.1103/PhysRevResearch.6.013212
https://doi.org/10.1038/lsa.2017.5


176 Bibliography

[Sansavini 2023] Francesca Sansavini. “Time and Frequency Mul-
tiplexing for Continuous-Variable Quantum Net-
works”. PhD thesis. Sorbonne Université ; Helsin-
gin yliopisto (Finland), Dec. 2023 (cit. on p. 134).

[Santamaria 2023] Luigi Santamaria et al. “Spatial-mode demultiplex-
ing for enhanced intensity and distance measure-
ment”. Optics Express 31.21 (Oct. 2023), pp. 33930–
33944. DOI: 10.1364/OE.486617 (cit. on p. 87).

[Santamaria 2024] Luigi Santamaria, Fabrizio Sgobba, and Cosmo Lupo.
“Single-photon sub-Rayleigh precision measurements
of a pair of incoherent sources of unequal inten-
sity”. Optica Quantum 2.1 (Feb. 2024), pp. 46–56.
DOI: 10.1364/OPTICAQ.505457 (cit. on pp. 81, 86,
87).

[Saxena 2015] Manish Saxena, Gangadhar Eluru, and Sai Siva Gor-
thi. “Structured illumination microscopy”. Advances
in Optics and Photonics 7.2 (June 2015), pp. 241–275.
DOI: 10.1364/AOP.7.000241 (cit. on p. 3).

[Schlichtholz 2024] Konrad Schlichtholz et al. “Practical tests for sub-
Rayleigh source discriminations with imperfect de-
multiplexers”. Optica Quantum 2.1 (Feb. 2024), pp. 29–
34. DOI: 10.1364/OPTICAQ.502459 (cit. on pp. 75,
86).

[Schnabel 2017] Roman Schnabel. “Squeezed states of light and their
applications in laser interferometers”. Physics Re-
ports. Squeezed states of light and their applica-
tions in laser interferometers 684 (Apr. 2017), pp. 1–
51. DOI: 10.1016/j.physrep.2017.04.001 (cit. on
p. 128).

[Schuh 2012] H. Schuh and D. Behrend. “VLBI: A fascinating
technique for geodesy and astrometry”. Journal of
Geodynamics 61 (Oct. 2012), pp. 68–80. DOI: 10.1016/
j.jog.2012.07.007 (cit. on p. 4).

[Scully 1997] Marlan O. Scully and M. Suhail Zubairy. Quantum
Optics. Cambridge University Press, Sept. 1997 (cit.
on pp. 77, 89, 117).

[Scutaru 1998] H. Scutaru. “Fidelity for displaced squeezed ther-
mal states and the oscillator semigroup”. Journal
of Physics A: Mathematical and General 31.15 (Apr.
1998), p. 3659. DOI: 10.1088/0305-4470/31/15/
025 (cit. on p. 56).

https://doi.org/10.1364/OE.486617
https://doi.org/10.1364/OPTICAQ.505457
https://doi.org/10.1364/AOP.7.000241
https://doi.org/10.1364/OPTICAQ.502459
https://doi.org/10.1016/j.physrep.2017.04.001
https://doi.org/10.1016/j.jog.2012.07.007
https://doi.org/10.1016/j.jog.2012.07.007
https://doi.org/10.1088/0305-4470/31/15/025
https://doi.org/10.1088/0305-4470/31/15/025


Bibliography 177

[Sephton 2019] Bereneice Sephton et al. “Spatial mode detection
by frequency upconversion”. Optics Letters 44.3 (Feb.
2019), pp. 586–589. DOI: 10.1364/OL.44.000586
(cit. on p. 81).

[Shahram 2006] M. Shahram and P. Milanfar. “Statistical and Information-
Theoretic Analysis of Resolution in Imaging”. IEEE
Transactions on Information Theory 52.8 (Aug. 2006),
pp. 3411–3437. DOI: 10.1109/TIT.2006.878180
(cit. on p. 86).

[Shapiro 2008] Jeffrey H. Shapiro. “Computational ghost imaging”.
Physical Review A 78.6 (Dec. 2008), p. 061802. DOI:
10.1103/PhysRevA.78.061802 (cit. on p. 3).

[Shapiro 2012] Jeffrey H. Shapiro and Robert W. Boyd. “The physics
of ghost imaging”. Quantum Information Processing
11.4 (Aug. 2012), pp. 949–993. DOI: 10.1007/s11128-
011-0356-5 (cit. on p. 3).

[Shapiro 2015] Jeffrey H. Shapiro, Dheera Venkatraman, and Franco
N. C. Wong. “Classical Imaging with Undetected
Photons”. Scientific Reports 5.1 (May 2015), p. 10329.
DOI: 10.1038/srep10329 (cit. on p. 3).

[Sherman 1950] Jack Sherman and Winifred J. Morrison. “Adjust-
ment of an Inverse Matrix Corresponding to a Change
in One Element of a Given Matrix”. The Annals of
Mathematical Statistics 21.1 (Mar. 1950), pp. 124–127.
DOI: 10.1214/aoms/1177729893 (cit. on p. 90).

[Sibarita 2005] Jean-Baptiste Sibarita. “Deconvolution Microscopy”.
Microscopy Techniques: -/-. Ed. by Jens Rietdorf. Berlin,
Heidelberg: Springer, 2005, pp. 201–243. DOI: 10.
1007/b102215 (cit. on p. 3).

[Sidhu 2020] Jasminder S. Sidhu and Pieter Kok. “Geometric per-
spective on quantum parameter estimation”. AVS
Quantum Science 2.1 (Feb. 2020), p. 014701. DOI: 10.
1116/1.5119961 (cit. on p. 55).

[Simon 1994] R. Simon, N. Mukunda, and Biswadeb Dutta. “Quantum-
noise matrix for multimode systems: U(n) invari-
ance, squeezing, and normal forms”. Physical Re-
view A 49.3 (Mar. 1994), pp. 1567–1583. DOI: 10 .
1103/PhysRevA.49.1567 (cit. on p. 26).

[Smith 2013] A. Smith et al. “Quantum state tomography by con-
tinuous measurement and compressed sensing”. Phys-
ical Review A 87.3 (Mar. 2013), p. 030102. DOI: 10.
1103/PhysRevA.87.030102 (cit. on p. 60).

https://doi.org/10.1364/OL.44.000586
https://doi.org/10.1109/TIT.2006.878180
https://doi.org/10.1103/PhysRevA.78.061802
https://doi.org/10.1007/s11128-011-0356-5
https://doi.org/10.1007/s11128-011-0356-5
https://doi.org/10.1038/srep10329
https://doi.org/10.1214/aoms/1177729893
https://doi.org/10.1007/b102215
https://doi.org/10.1007/b102215
https://doi.org/10.1116/1.5119961
https://doi.org/10.1116/1.5119961
https://doi.org/10.1103/PhysRevA.49.1567
https://doi.org/10.1103/PhysRevA.49.1567
https://doi.org/10.1103/PhysRevA.87.030102
https://doi.org/10.1103/PhysRevA.87.030102


178 Bibliography

[Soh 2023] Daniel Soh and Eric Chatterjee. “Label-free quan-
tum super-resolution imaging using entangled multi-
mode squeezed light”. New Journal of Physics 25.9
(Sept. 2023), p. 093001. DOI: 10.1088/1367-2630/
acf2ba (cit. on p. 128).

[Sorelli 2021a] Giacomo Sorelli et al. “Moment-based superreso-
lution: Formalism and applications”. Physical Re-
view A 104.3 (Sept. 2021), p. 033515. DOI: 10.1103/
PhysRevA.104.033515 (cit. on pp. 41, 75, 85).

[Sorelli 2021b] Giacomo Sorelli et al. “Optimal Observables and
Estimators for Practical Superresolution Imaging”.
Physical Review Letters 127.12 (Sept. 2021), p. 123604.
DOI: 10.1103/PhysRevLett.127.123604 (cit. on
pp. 76, 78, 85, 90, 96).

[Sorelli 2022] Giacomo Sorelli et al. “Quantum limits for resolv-
ing Gaussian sources”. Physical Review Research 4.3
(Aug. 2022), p. L032022. DOI: 10.1103/PhysRevResearch.
4.L032022 (cit. on pp. 55, 76, 85, 87, 101, 102, 111).

[Sparrow 1916] C. M. Sparrow. “On Spectroscopic Resolving Power”.
The Astrophysical Journal 44 (Sept. 1916), p. 76. DOI:
10.1086/142271 (cit. on p. 70).

[Sroda 2020] Aleksandra Sroda et al. “SOFISM: Super-resolution
optical fluctuation image scanning microscopy”. Op-
tica 7.10 (Oct. 2020), pp. 1308–1316. DOI: 10.1364/
OPTICA.399600 (cit. on p. 3).

[Stein 2014] Manuel Stein, Amine Mezghani, and Josef A. Nossek.
“A Lower Bound for the Fisher Information Mea-
sure”. IEEE Signal Processing Letters 21.7 (July 2014),
pp. 796–799. DOI: 10.1109/LSP.2014.2316008 (cit.
on p. 46).

[Stoler 1970] David Stoler. “Equivalence Classes of Minimum
Uncertainty Packets”. Physical Review D 1.12 (June
1970), pp. 3217–3219. DOI: 10.1103/PhysRevD.1.
3217 (cit. on p. 24).

[Ströhl 2016] Florian Ströhl and Clemens F. Kaminski. “Frontiers
in structured illumination microscopy”. Optica 3.6
(June 2016), pp. 667–677. DOI: 10.1364/OPTICA.3.
000667 (cit. on p. 3).

[Suzuki 2020] Jun Suzuki, Yuxiang Yang, and Masahito Hayashi.
“Quantum state estimation with nuisance param-
eters”. Journal of Physics A: Mathematical and Theo-
retical 53.45 (Oct. 2020), p. 453001. DOI: 10.1088/
1751-8121/ab8b78 (cit. on pp. 44, 104).

https://doi.org/10.1088/1367-2630/acf2ba
https://doi.org/10.1088/1367-2630/acf2ba
https://doi.org/10.1103/PhysRevA.104.033515
https://doi.org/10.1103/PhysRevA.104.033515
https://doi.org/10.1103/PhysRevLett.127.123604
https://doi.org/10.1103/PhysRevResearch.4.L032022
https://doi.org/10.1103/PhysRevResearch.4.L032022
https://doi.org/10.1086/142271
https://doi.org/10.1364/OPTICA.399600
https://doi.org/10.1364/OPTICA.399600
https://doi.org/10.1109/LSP.2014.2316008
https://doi.org/10.1103/PhysRevD.1.3217
https://doi.org/10.1103/PhysRevD.1.3217
https://doi.org/10.1364/OPTICA.3.000667
https://doi.org/10.1364/OPTICA.3.000667
https://doi.org/10.1088/1751-8121/ab8b78
https://doi.org/10.1088/1751-8121/ab8b78


Bibliography 179

[Tan 2023a] Xiao-Jie Tan and Mankei Tsang. “Quantum limit to
subdiffraction incoherent optical imaging. III. Nu-
merical analysis”. Physical Review A 108.5 (Nov. 2023),
p. 052416. DOI: 10.1103/PhysRevA.108.052416
(cit. on p. 87).

[Tan 2023b] Xiao-Jie Tan et al. “Quantum-inspired superreso-
lution for incoherent imaging”. Optica 10.9 (Sept.
2023), pp. 1189–1194. DOI: 10.1364/OPTICA.493227
(cit. on p. 81).
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