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Abstract

In this work, we propose an automated protocol design technique called protocol emer-

gence. In protocol emergence, the network nodes exchange control messages in order to

coordinate to deliver data across the network, but without any prior agreement on the mean-

ing of those messages. This can be seen as a joint signaling and network optimization tech-

nique. With protocol emergence, it is possible to reduce the signaling overhead, appealing to

massive machine-type communications (mMTC) scenarios, and design application-tailored

protocols, which can be useful for somewhat stable scenarios such as indoor factory.

Firstly, the fundamentals of protocol emergence are presented by introducing a frame-

work describing methods of protocol performance evaluation, characterization, cross-node

coordination and interpretation. This framework is studied in a slotted multiple-access prob-

lem.

In the second part of this work, we evaluate the performance of protocol emergence

in a scenario involving contiguous resource allocation. This scenario is used to evaluate

the learning capabilities and limitations of protocol emergence, illustrating the robustness

to some parameters and the challenges involved with user equipment (UE) scalability, for

example.

In the third part of this work, we evaluate protocol emergence under signaling con-

straints, in a non-contiguous allocation scenario with intermittent signaling. In this study,

we focus on producing a method in which the control bit-rate used by the protocol can be

controlled. The results highlight the effect of the signaling cost on reducing the control

bit-rate and the effect it has on coordination and performance.

In conclusion, this thesis frames the protocol emergence problem, making progress on

how to autonomously learn an effective control signaling scheme, while also addressing

some of the challenges in protocol design and opening new and exciting avenues for future

research. Such progress include a framework for producing and studying emergent proto-

cols, a deep analysis of the learning capabilities and limitations of such methods and how to

control the amount of signaling used by the emerged protocols.

Keywords— Multi-Agent Reinforcement Learning, Protocol Emergence, Wireless Com-

munications, Scheduling
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1.1 Background

Wireless communications became an integral component of the modern world, as

society got more interconnected over time. The progress of wireless networks is moti-

vated by the need to enhance not only the current performance in existing applications,

but also in response to emerging use-cases and their associated requirements [1]. The

evolutionary tree of cellular networks starts in the 1980s with the analog signals for

voice call used in first generation (1G). In the 1990s, the digital system of second gen-

eration (2G) global system for mobile communications (GSM) integrated services such

as text messages and digital voice. The third generation (3G) arrived in the early 2000s

1
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and provided services such as video calls, locating services and mobile television, with

its first standard, universal mobile telecommunications system (UMTS), being released

in 2001. The advent of fourth generation (4G) around the 2010s allowed high data rates

applications, such as video streaming and high definition (HD) television, while fifth

generation (5G) diversified mobile services beyond humans, to connect things [2], [3].

For the purpose of accommodating multiple services and requirements, the sys-

tems need to operate in orderly manner, while also providing a degree of flexibility. A

communication protocol is a set of rules and conventions dictating how data is trans-

mitted and received in a network. For the intricate protocols used in cellular networks,

it is important that the nodes exchange system information and coordinate, thus en-

suring that the system operates efficiently and reliably. This communication of the

nodes is done by means of control signaling, which is an integral part of protocols.

The communication protocols define the structure of control signaling messages, their

exchange process, and the responses triggered by particular control signals.

As the communication systems evolve and employ more techniques, the control

signaling and protocols need to be updated in order to accommodate these new tech-

niques. For example, the evolved 2G in general packet radio service (GPRS) introduced

adaptive coding (AC), which later evolved into adaptive modulation and coding (AMC)

used in 2G Enhanced Data Rates for GSM Evolution (EDGE) [4], and, initially it was

done at the receiver side with the modulation and coding scheme (MCS) decision being

informed to the transmitter [5]. This procedure changed in 3G high-speed packet ac-

cess (HSPA), with the decision being taken by the base station (BS) even in downlink,

with the user equipment (UE) indicating its channel conditions by a channel quality

indicator (CQI) carried via uplink control signaling, while the chosen MCS is informed
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in a downlink control message [6]. Although multiple-input multiple-output (MIMO)

was present in previous releases, it became a key technology in 4G long term evolution

(LTE), leading to modifications in the control signaling, as the number of transmission

layers and antenna-ports needed to be coordinated [7]. In 5G new radio (NR), the

support for MIMO increased, requiring a higher degree and flexibility, leading to an

increase in the signaling necessary to support it.

This system advancement poses a significant challenge in terms of protocol design,

as the systems need more information exchanged to perform well while also having

flexibility to accommodate different services and requirements. To illustrate this, the

first release of LTE had 7 downlink control information (DCI) formats [8], while the

current release of NR, 17.6.0, has a total of 19 DCI formats [9]. In release 14 of LTE,

the control and user plane separation (CUPS) was introduced [10], which allowed the

control plane and user plane to be decoupled. This feature allows more flexibility to

the control plane, which is responsible for the exchange of the control-relevant infor-

mation, and, in terms of protocol design, it enabled the independent scaling of control

and user planes.

Protocol Design

Although the control signaling and communication protocols remain an integral

part of cellular systems, traditional protocol design approaches are often based on

static and predetermined rules. With the new services provided by 5G and the fu-

ture challenges for sixth generation (6G), general-purpose protocols may struggle to

the dynamic demands of future applications, while application-tailored protocols can

provide superior performance. Considering this, automated design of protocols is a
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promising subject, with learning based methods being of particular interest. The cur-

rent thesis explores this idea by leveraging machine learning (ML), more specifically

multi-agent reinforcement learning (MARL), to be able to emerge wireless communi-

cation protocols. It explores the intersection of protocol design and MARL, with the

goal of enabling autonomous, adaptive, and intelligent protocol emergence.

MARL and Communication Emergence

MARL enables protocol emergence through the use of learning to communicate

(L2C) techniques, also called emergent communication [11]. In reinforcement learning

(RL), an agent has to solve a task while optimizing a reward function related to the task,

while MARL extends this paradigm to a scenario with multiple agents. L2C is most

often applied in fully cooperative setting, where all agents receive the same reward,

and communication is used as a means to help them coordinate and achieve their goals.

Although previous research in L2C existed [12], [13], research in this field gathered

more attention after 2016 due to the seminal works Foerster et al. [14] and Sukhbaatar

et al. [15].

The L2C techniques are of particular interest to protocol emergence since they

enable the jointly learning of communication, or language, and of a cooperative task.

As both are learned together, the emerged communication is optimized to the specific

task. In wireless communications, we view the control signalling as the language of the

network, allowing the nodes to solve their task. As such, protocol emergence can be

seen as learning a network language together with the network optimization problem,

in the current thesis case, scheduling. Due to this, L2C techniques and MARL are the

framework of choice for protocol emergence.
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Protocol Emergence and Multiple-Access

In this thesis, protocol emergence is applied to uplink multiple-access problems [16],

as such, this work studies medium access control (MAC) protocol emergence. Multiple-

access techniques determine how different devices can access the communication chan-

nel, transmit their data and avoid interference with one another, enabling multiple de-

vices to share the same wireless medium simultaneously. Since the wireless spectrum

is limited, an efficient and organized usage of resources is critical in wireless networks.

This problem is interesting to protocol emergence due to the degree of coordination

needed, as the network has to coordinate the multiple transmitting devices through

control signaling, orchestrating the resource sharing.

Research Significance

The overarching idea in the present thesis is to let the meaning of signaling mes-

sages emerge in a reinforced manner at the network nodes while they perform a com-

munication task. By meaning of messages we mean a mapping between the control

messages received at time 𝑡 < 𝑡 ′ and the actions (control signaling actions, as well as

channel-access actions) taken at time 𝑡 ≥ 𝑡 ′. As the signaling is jointly learned with

the task, a task-specific protocol can be produced this way. We expect protocol learn-

ing techniques to contribute increasingly to the native intelligence of the air interface,

whose main advantages are:

• Automation: Reproducibility and speed can be achieved with automated proto-

col generation.

• Customization: The ability to design application-tailored protocols.
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• Optimality: Automated search of the signaling space, enabling the selection of

protocols with the lowest overhead.

1.2 State-of-the-Art

The related research presented in this section is divided into topics, as this thesis

touches on a number of different subjects.

Control Signaling

In [17], a scheme to reduce signaling in a scheduling problem is proposed by ex-

ploring the correlation between the channel state information (CSI) reports and the

scheduling decisions. In proposed scheme, the UEs make tentative scheduling them-

selves and the BS, instead of transmitting scheduling assignments, it transmits agree-

ment maps, which need less resources to be transmitted, therefore reducing the amount

of signaling needed for scheduling. The scheduling assignment correlation between

UEs is exploited in [18] in order to reduce the signaling traffic. It exploits the fact that

a single UE is scheduled per resource and that all UEs can listen to the information

sent by the BS, in downlink, thus enabling the high signal-to-noise ratio (SNR) UEs to

infer their resources from the information gathered from the other UEs assignments.

An example of a method for designing a protocol reducing the control signaling can

be found in [19], in which a MAC protocol for collaborative sensing is designed by

finding closed form solutions for the probability of detection and then choosing the

best parameters for minimizing signaling overhead.



7 Chapter 1. Introduction

Emergent Communication

In [14], two solutions for learning discrete communication protocols to carry out

a cooperative task are proposed. The first, reinforced inter-agent learning (RIAL) is

based on deep recurrent Q-networks (DRQNs) combined with independent learners

with the action depending on the observation and communication message. Differen-

tiable inter-agent learning (DIAL) adds the relaxation to allow the messages to become

differentiable, thus, during execution the messages are discrete, while during training

they are relaxed to a continuous valued. In [15], a method allowing the learning of

purely continuous communication protocols is proposed, with results indicating that

agents learn to encode the meaningful information in a sparse communication proto-

col. In both works, the communication messages are broadcasted to all agents.

Attention mechanisms were applied to L2C to allow agents to determine with

whom, when and what to communicate. For example, in [20], a selective communi-

cation approach is utilized to allow agents to decide when communication is needed,

form collaborative groups to communicate with and how to select the information

needed. In [21], a multi-round communication architecture is proposed, where agents

have to carry out a cooperative task, learn what messages to send and whom to ad-

dress them to. An architecture to control when to communicate is proposed for mixed

cooperative-competitive setting in [22], where a gating mechanism allows agents to

block their communications.

Although task performance may increase when adding communication capabili-

ties to the agents, an evaluation of the communication abilities of the agents is needed.

In [23], the authors study metrics that measure the quality of the learned communi-

cation and provided recommendations on their use. In this context, [24] uses similar
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metrics not to evaluate communication, but as means to introduce inductive biases for

positive signaling and listening, as such, such metrics serve as an optimization objec-

tive.

Goal-oriented Communications

In [25], [26], L2C is used to emerge a coding scheme by joint learning of com-

munication and cooperation to solve a task with the help of a noisy communication

channel. The proposition of both works is to emerge a coding scheme that is tailored to

the application. This idea is expanded further in [27], allowing the learning of a phys-

ical layer (PHY) in an effective communication scenario, by learning both the channel

coding and a modulation. In [28], a MARL solution with a message module, a commu-

nication module and an action module is proposed for a task-oriented communication

scenario in which the channel allocation is also considered. It uses an attention mech-

anism to enable an agent to pay more attention to messages more relevant to itself,

enabling a more efficient use of communication.

Multiple-Access and RL

RL has been applied to random access schemes in a number of scenarios, such

as machine-type communication [29], [30], satellite networks [31] and ad-hoc net-

works [32]. A listen-before-talk protocol based on MARL is proposed for distributed

channel access in [33].
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MAC Protocol Design

An example of a classical approach for MAC protocol design is the meta-MAC

method proposed in [34], which combines any group of MAC protocols into a unique

upper layer protocol. Other examples include the self-adjusting approach employed

in [35] and the adaptive distributed method in [36].

RL has also been used for MAC protocol design. For instance, [37] proposes a meta-

protocol to decide which MAC protocol to use. [38] proposes another algorithm to

decide which protocol features to use. Unlike this previous research, protocol learning

and protocol emergence are concerned with learning a channel access policy and its

signaling.

Protocol Learning and Emergence

In [39], the idea of using MARL to learn a predefined control signaling and a new

channel access policy was first proposed. This idea was extended in [40], where state

abstraction is used to improve the generalization and scalability of the produced pro-

tocols. However, in both papers the agents only learn to use an already known MAC

signaling, rather than developing a new one.

Emerging a control signaling while learning a channel-access policy is studied

in [41] and its scalability in [42]. In [43], a semantic protocol is produced by reducing

the redundancy in the control messages of emerged protocols through merging.
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Contributions

In light of this related research, the present thesis contributes to protocol emer-

gence, by providing its fundamentals and the steps to study emerged protocols. It also

studies the learning capabilities, illustrating the main scalability challenges and the

adaptability advantages.

In terms of problem formulation, this thesis provides two new formulations, which

model the contiguous and the non-contiguous resource allocation as MARL problems.

In terms of signalling, both persistent signalling and intermittent signaling are studied.

1.3 Objectives and Thesis Structure

Objectives

The main objectives of this work are:

1. Provide the fundamentals for protocol emergence to enable future advancements

in this area for next-generation communication systems.

2. Introduce MAC protocol emergence, highlighting the different challenges and

advantages introduced by it.

3. Develop a framework for MAC protocol emergence that enables not only pro-

ducing new protocols, but also the comparison of different protocols and the

interpretation of the signaling messages.

4. Study the performance of MAC protocols in a challenging resource allocation

problem, evaluating its learning capabilities under different system conditions.

5. Provide a formulation for controlling the amount of signaling exchanges, allow-
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ing fine-grained control of the signaling throughput.

6. Indicate directions for future research in the field, both on the study of protocol

emergence and other applications.

Thesis Structure and contributions

Chapter 2 presents an overview of the main wireless communication and RL con-

cepts explored in this thesis. More specifically, it gives a short description of multiple-

access schemes, highlighting the scheduling procedure employed in 5G NR and the

signaling involved in it, while also providing an overview of some fundamental con-

cepts of RL and MARL. Chapter 3 introduces a framework for MAC protocol emer-

gence, which focus not only on producing protocols, but also on coordination eval-

uation, protocol characterization and signaling interpretation. The performance of

the MAC protocol emergence method is studied deeply in chapter 4 with a frequency

resource allocation problem examined to compare the learning capabilities of the pro-

posed method. In chapter 5, MAC protocol emergence is studied under signaling con-

straints in a non-contiguous resource allocation problem, by leveraging an intermittent

signaling formulation. At last, chapter 6 summarizes the main conclusions of this work

and give directions for future research.

1.4 Tools and Methods

Regarding the tools used during this PhD research, we highlight the following

software libraries:

• Pytorch
1

[44]: A library for deep learning. It was used in the RL algorithms and

deep learning techniques.

1https://pytorch.org/

https://pytorch.org/
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• Gym
2

[45]: An application programming interface (API) for RL environments,

that is mainly used to model the partially observable Markov decision processs

(POMDPs) in this thesis.

• Sacred
3

[46]: A software library to manage experiments. It provides tools to

configuration, logging, organization and reproduce experiments. It was used in

this thesis to help keep track of the thousands of experiments done throughout

this research period, which were saved in a database.

• Incense
4
: A toolbox to query the sacred database and select experiments. It was

used to access the experiments and select the results.

• Joblib
5
: A set of tools providing pipelining in Python. It was used to provide

parallelization.

In terms of hardware, the computational workflow involved simulations on remote

multi-core servers. Although GPUs were available, the neural networks used were

shallow enough (4 layers maximum) that no benefit was observed from using them

and the multiple CPUs were used instead.

1.5 Scientific Contributions

Although this thesis contains only currently unpublished and original work, this

PhD research produced two related conference publications. It also led to a collabora-

tion with the University of Oulu that produced a conference paper with an extending

journal paper in writing, and a submitted survey on communication and control co-

design.

2https://gymnasium.farama.org/
3https://github.com/IDSIA/sacred
4https://github.com/JarnoRFB/incense
5https://joblib.readthedocs.io

https://gymnasium.farama.org/
https://github.com/IDSIA/sacred
https://github.com/JarnoRFB/incense
https://joblib.readthedocs.io
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The bibliographic information of the published papers is:
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In the first paper, protocol emergence is introduced in a multiple-access task where

the UEs have to deliver a fixed number of packets as fast as possible to the BS. The

results illustrate the benefits of protocol emergence while highlighting the importance

of communication and a multi-agent technique, as both non-communicating solution

and a independent learners solution are unable to perform well in this task. The second

paper, extends the previous one by modifying the task to a Bernoulli traffic model,

where the task is to deliver as many packets as possible under a fixed horizon. The

results analyze the scalability issues in terms of traffic and number of UEs.

The third conference paper applies protocol emergence to a joint task offloading

decision and scheduling of computation tasks in an industrial internet-of-things (IIoT)

scenario. The simulation results indicate the effectiveness of the learned protocols in

maintaining highly efficient task offloading and maximizing the number of successfully

computed tasks within the deadline constraint compared to traditional approaches.
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It is worth mentioning that this thesis was developed under the context Marie

Sklodowska-Curie actions (MSCA-ITN-ETN 813999 WINDMILL) in which 2 technical

reports have been delivered.
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This chapter provides some basic concepts that serve as a background to the sub-

sequent chapters. Section 2.1 gives an overview of the relevant wireless communica-

tion concepts, namely multiple-access schemes and scheduling. In section 2.2, some

fundamental concepts of reinforcement learning (RL) and multi-agent reinforcement

learning (MARL) are briefly surveyed.

15



16 Chapter 2. Theoretical Framework

2.1 Wireless Multiple Access and Scheduling

Multiple access schemes allows a set of user equipments (UEs) to share a trans-

mission medium, in the case of this thesis, a wireless communication channel. Such

techniques enable the sharing of resources, such as frequency and time, by using mul-

tiplexing division schemes. In cellular networks, the medium access control (MAC)

protocol is responsible for controlling the access to the physical medium. MAC proto-

cols can be categorized by the topology used [47]:

• Centralized: A central node coordinates channel access, by allocating resources

to the UEs sharing the medium. Due to the high degree of coordination of this

topology, collisions can be totally avoided.

• Distributed: In this approach, the nodes take decisions by themselves and co-

ordination is distributed. In the case of multi-hop networks, the nodes are not

only in charge of transmitting their own traffic, but also of forwarding data from

other nodes [48].

Another common approach to categorize multiple access protocols is with respect to

the channel access method: contention-based, contention-free or hybrid [49].

In contention-based protocols, also known as random access methods, the trans-

mitting nodes attempt to access the same channel to transmit their data, as such, they

are competing for the ownership of the medium. The receiving nodes will detect the

possible collisions or receptions and inform the transmitting node through either an

acknowledgement (ACK) or a negative acknowledgement (NACK). A collision happens

if two or more nodes simultaneously transmit data. In case of collision or channel error,

retransmission is attempted accordingly to the protocol used. As there is no central
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decision, contention-based protocols have either minimal or non-existent coordina-

tion [50].

In contention-free protocols, collision are avoided by ensuring that each node ac-

cess their allocated resources exclusively. As such, coordination between nodes is nec-

essary to ensure that each one knows the which resources to use. Usually, as for exam-

ple in fifth generation (5G), the resource allocation is decided by a central entity and

this information is reported to the nodes through control signaling.

The hybrid protocols mix the contention-based and contention-free approaches,

combining their positive points and mitigating their negatives. For example, a hy-

brid approach can use contention-based access in low traffic scenarios and switch to

contention-free mode when traffic increases. This would profit of the reduced delay of

contention-based protocols in low traffic and of the reduced collision and higher rate

of contention-free in high traffic.

It is also possible to classify MAC protocols with respect to the techniques used,

such as by the multiplexing division used or by the channel access mechanism used.

Multiplexing Divisions

Multiplexing techniques enable the division of the medium for transmission of

different signals to/from multiple nodes. Protocols that leverage multiplexing to pro-

vide multiple-access, separating sub-channels for each node, are usually categorized

as channelization protocols and are mostly centralized [51]. The division of the

medium depends on the multiplexing technique used. Examples of divisions are [52]:

• Sub-band for frequency division: Used in frequency division multiplexing (FDM).

FDM divides the bandwidth into different sub-bands which are allocated to dif-
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ferent signals. The different sub-bands are separated with guard bands to protect

against interference.

• Time-slot for time division: Used in time division multiplexing (TDM), where

the time is divided into slots, which are used to transmit a single signal. Time

synchronization is needed, and guard times are used to avoid collisions.

• Subcarrier for orthogonal frequency division: Used in orthogonal frequency-

division multiplexing (OFDM). In OFDM, the frequency band is divided into

small parts called subcarriers. The subcarriers are orthogonal to each other and

there are no guard bands, which provides better spectral efficiency than FDM.

However, guard intervals are introduced in the time-domain to protect against

inter-symbol interference. The frequency spacing between adjacent subcarriers

is called subcarrier spacing (SCS).

• Code for code division: Used in code division multiplexing (CDM). In CDM, mul-

tiple signals are transmitted simultaneously over the same band by leveraging

the spread spectrum technique [53] and a special coding scheme. Different sig-

nals are encoded using with either orthogonal codes or pseudo-random spread-

ing sequences.

• Beam for spatial division: In space division multiplexing (SDM), different data

streams are transmitted by different antenna-ports or different beams. In theory,

if the transmitter has 𝑁𝑡 antennas and the receiver 𝑁𝑟 antennas, the number of

parallel streams that can be transmitted is min(𝑁𝑡 , 𝑁𝑟 ).
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Access Mechanisms

A common classification of MAC protocols is to divide them by the access mech-

anism used [52], [54]. Examples of access mechanisms include:

• Free access: The communication medium can be accessed anytime. ALOHA is

an example of protocol using this technique.

• Slotted access: Time is divided into slots and transmission occur only at the

beginning of slots. It reduces collision between an ongoing transmission and a

new transmission attempt.

• Probabilistic access: Each node has a probability of accessing the medium.

• Back-off: A transmitting node waits an amount of time before accessing the

medium. It is used together with other access methods, for example, a random

backoff period is used in the event of a collision in ALOHA.

• Carrier sensing: The nodes sense the medium to identify if it is idle or busy and

can only transmit if the medium is idle. Similarly to slotted access, it reduces the

collision between ongoing transmissions and new attempts, but collisions due to

simultaneous attempts can still occur.

• Polling: A central node sends a pool packet, which indicates the node that was

selected to transmit, triggering its data transmission. The pool packet is broad-

casted to all nodes, but only the selected one transmits. It is usually implemented

together with reservation requests, or request-to-send, in order to avoid pooling

nodes without data to transmit.

• Reservation: A reservation period is separated for the nodes to indicate if they
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have data to transmit, reserving their transmissions. The nodes then transmit in

the reserved times according to some priority. Reservation methods are usually

implemented with slotted-time division.

• Messaging: A message carrying explicit information is sent from a node to oth-

ers.

• Handshake: A more sophisticated messaging scheme in which the receiver must

reply to the transmitter according to a predefined procedure.

• Cross-layer design: The design of the MAC takes into consideration information

or functions from other layers, such as the physical layer (PHY).

2.1.1 Multiple Access Schemes

In this section, some relevant multiple-access schemes are detailed, with a selected

few being illustrated in fig. 2.1.

2.1.1.1 ALOHA

In pure ALOHA, whenever a node has data it transmits immediately. As the trans-

mitters share a single channel in this scheme, there is a potential for collisions. The

transmitters rely on ACKs from the receiver, and if an ACK is not received after a time-

out, a retransmission is issued after a back-off time. In pure ALOHA, the back-off time

is random and a common method used is the binary exponential back-off.

The ALOHA protocol includes other variants, such as:

• Slotted ALOHA: Introduces discrete time-slots, leading to fewer collisions, as

transmissions can only start at the beginning of a time-slot.

• Reservation ALOHA [55]: Further builds on top of slotted ALOHA while adding

reservation period. The reservation period follows a slotted-ALOHA approach,
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where stations compete to acquire reservations.

2.1.1.2 Protocols based on channelization schemes

Channelization schemes divide the channel into sub-channels according to the

multiplexing division used. In their most simple form, which is fixed allocation, the

protocol divides the resources between devices and each multiplexing division is allo-

cated to one device. Taking the time division multiple access (TDMA) as an example,

the frame would be divided into 𝑁 time-slots and each UE would receive one slot to

transmit while remaining silent during the non-allocated slots, with this process re-

peating every frame. However, dynamic allocation is also possible, with the central

node dynamically allocating resources based on the system conditions, therefore, al-

lowing the number of resources allocated to be different for each UE and to vary frame

by frame [56].

Frequency-division multiple access (FDMA) Each frequency sub-band is as-

signed to a single UEs. Frequency-division multiple access (FDMA) has low implemen-

tation complexity, and it improves the distribution of resources in frequency selective

channels. It was the main scheme used in first generation (1G) [57, p. 9], in which the

device retained the sub-band for the whole duration of the call [58].

Time division multiple access (TDMA) Each time-slot is allocated to a sin-

gle UE to receive or transmit data, and the devices share the frequency bandwidth.

TDMA was used in second generation (2G), for example in global system for mobile

communications (GSM) [59].

Code division multiple access (CDMA) Each UE is assigned a unique coding

sequence used to encode the data, which has low cross-correlation with the other UEs.

Each UE occupies the whole bandwidth, like TDMA, however, it can also transmit con-
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tinuously like FDMA [60]. It has a higher receiver complexity compared with TDMA

and FDMA. It was the main scheme used third generation (3G) systems [61].

Orthogonal frequency-division multiple access (OFDMA) Each UE is as-

signed to a subset of time-frequency resources, with the resource grid being 2D regions

over time and frequency. Over time, the division is done in terms of OFDM symbols

and the frequency is divided into subcarriers [62]. It was the scheme of choice for both

fourth generation (4G) and 5G systems [3].

Space-division multiple access (SDMA) Precoding matrices are used to op-

timize the radiation patterns of the receiver and transmitter antennas [63], allowing

UEs within the same cell to use the same radio channel depending on their spatial

disposition [64]. Space-division multiple access (SDMA) was a prominent technology

employed in 4G and 5G to exploit spatial diversity and increase the capacity [65].

Channelization schemes can be used together, and for some schemes, such as

SDMA, this is the most common approach. For example, FDMA was used together

with TDMA in 2G and with code division multiple access (CDMA) in 3G even if it was

not the main scheme [66, p. 54].

2.1.2 5G-NR Scheduling

In the 5G-NR, multiple-access is based mainly on orthogonal frequency-division

multiple access (OFDMA), with multi-user (MU)-multiple-input multiple-output (MIMO)

being enabled through SDMA. For uplink transmission, single carrier frequency-division

multiple access (SC-FDMA) can also be used [67]. The scheduling procedure involves

the assignment of the resources by a central scheduler. The information needed by

the scheduler is sent through the uplink control channel and the scheduling decision

is contained in the downlink control information (DCI) and transmitted through the
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Figure 2.1: Illustration of multiple-access schemes.

downlink control channel.

In TS 38.300 [68], the basic scheduler operation is described. The MAC in the

base station (BS) includes dynamic resource scheduling in order to allocate the PHY

resources. The scheduler operation takes into account the following information:

• UE buffer status.

• UE quality of service (QoS) requirements.

• Radio conditions.

• Power headroom reports.
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Although the multiple-access problems studied in this thesis can be seen as similar

to random-access, there are some differences involved. In the context of 5G-NR, the

random-access procedure is triggered in the following cases [68]:

1. Initial access.

2. Connection Re-establishment procedure.

3. Handover.

4. downlink (DL) or uplink (UL) data arrival when UL is non-syncronised.

5. Transition from inactive.

6. To establish time alignment.

7. Request for other system information.

8. Beam failure recovery.

As such, random-access is used to provide system connection, reconnection, recovery

or some information. The present work addresses uplink data transmission, as such, it

is mainly interested in the uplink shared channel (UL-SCH).

2.1.2.1 Resource Grid

The scheduling procedure allocates resources both in time domain and frequency

domain. As such, an overview of the new radio (NR) resource grid is needed. In terms

of time-domain, the NR has a frame structure divided into frames, subframes, slots and

OFDM symbols, with variable number of symbols in a slot depending on the numerol-

ogy:

• Frame: A radio frame in NR has a fixed duration of 10 ms and consists of 10

subframes.



25 Chapter 2. Theoretical Framework

• Subframe: A subframe has a fixed duration of 1 ms and consists of a variable

number of slots, depending on the numerology used.

• Slot: A slot with normal cyclic prefix contains 14 OFDM symbols and a slot with

extended prefix contains 12 symbols.

The NR supports a total of five numerologies 𝜇 ∈ {0, 1, 2, 3, 4} and the number of slots

in a subframe, 𝑁 sh

symb
, depends on the numerology according to:

𝑁 sh

symb
= 2

𝜇
. (2.1)

The slot format indicates how the symbols within the slot are used, for example, slot

formats 0 and 1 use all symbols for downlink and uplink, respectively. There are a total

of 56 slot formats predefined in TS 38.213 [69], with extra 199 reserved formats and one

format indicating that the UE determines the slot format based on other configurations.

In the frequency domain, the smallest unit is the OFDM subcarrier, however, the

definition of resource elements (REs), resource blocks (RBs), resource block groups

(RBGs) is important to understand the resource allocation procedure in NR.

• Resource element (RE): It is the smallest physical resource, and it is made up of

one subcarrier in the frequency domain and one OFDM symbol in time domain.

• Resource block (RB): Defined as 12 consecutive subcarriers in frequency domain.

Resource block group (RBG): A group of consecutive virtual resource blocks

(VRBs). The number of RBs in a RBG depends on the bandwidth part size and

the configuration used and may be not constant for all RBGs.

Differently from long term evolution (LTE), where the RB is defined as 12 subcarriers

in frequency domain and one slot in time domain, the NR defines a RB only for the
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Table 2.1: Effect of numerology

𝜇 SCS Bandwidth per RB 𝑁 sh

symb
𝑁 subframe

slot
𝑁 frame

slot
Slot duration

0 15kHz 180kHz 14 1 10 1ms

1 30kHz 360kHz 14 2 20 500µs

2 60kHz 720kHz 14 4 40 250µs

3 120kHz 1440kHz 14 8 80 125µs

4 240kHz 2880kHz 14 16 160 625µs

frequency domain. The allocation is done in terms of VRBs and not in terms of physical

resource blocks (PRBs), and the mapping of VRBs-to-PRBs is either interleaved or non-

interleaved. This means that a continuous set of VRBs maps to a continuous set of PRBs

in the non-interleaved case, but it can also map to a non-continuous set of PRBs in the

interleaved case.

Another important concept to define is the bandwidth part (BWP), which is a spe-

cific subset of the overall carrier bandwidth allocated to a UEs operation. This provides

power savings, as the UEs have to monitor a narrower band, and also flexibility in the

spectrum use.

Table 2.1 shows how the numerology, 𝜇 affect different parameter of the system,

both in the frequency domain due to the change in the subcarrier spacing (SCS), and

in the time domain due to the change in symbol duration.

2.1.2.2 Resource Allocation

The NR supports three types of resource allocation in the frequency domain, which

are detailed in TS 38.214 [70]:

• Type 0: Non-contiguous allocation using a bitmap.

• Type 1: Contiguous allocation defining the start RB and number of RBs.
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Table 2.2: RBG size 𝑃

BWP size Configuration 1 Configuration 2

1 − 36 2 4

37 − 72 4 8

73 − 144 8 16

145 − 275 16 16

• Dynamic switch: The allocation is determined at transmission time through the

DCI.

In the DCI, the frequency domain resource assignment field specifies the resources

allocated to an UE, depending on the allocation type used. Under dynamic switch, this

field includes an extra bit used to indicate the allocation type, 0 or 1, for that scheduled

transmission, but the allocation follows either type 0 or 1.

Type 0 allocation

When under type 0 allocation, the frequency domain resource assignment field in

the DCI follows a bitmap format indicating which RBGs are allocated to that UE. The

RBG size depends on the configuration used and on the BWP size. The RBG configu-

ration is a higher layer parameter with two possible values, and it is informed through

a radio resource control (RRC) message. The BWP size represents the number of PRBs

there are in that BWP. Table 2.2 shows how the RBG size 𝑃 is calculated.

The total number of RBGs 𝑁RBG in a given BWP of size 𝑁 size

BWP
PRBs starting at PRB

𝑁 start

BWP
can be calculated as:

𝑁RBG =

⌈
𝑁 size

BWP
+
(
𝑁 start

BWP
mod 𝑃

)
𝑃

⌉
. (2.2)
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The size of the first RBG is:

RBG
size

0
= 𝑃 − 𝑁 start

BWP
mod 𝑃 . (2.3)

The last RBG size is calculated as:

RBG
size

last
=


(
𝑁 size

BWP
+ 𝑁 start

BWP

)
mod 𝑃 , if

(
𝑁 start

BWP
+ 𝑁 size

BWP

)
mod 𝑃 > 0

𝑃 , otherwise.

(2.4)

And the size of all other RBGs is 𝑃 .

With respect to the signaling, the bitmap has size 𝑁RBG with one bit per RBG, and

the RBGs are indexed in order of frequency. If the bit corresponding to a RBG has a

value of 1, this RBG is allocated to the UE.

Type 1 allocation

In the case of allocation following type 1, the frequency domain resource assign-

ment field in the DCI indicates a set of contiguously allocated VRBs. The mapping

of VRB to PRB is always non-interleaved under this allocation type. The assignment

field contains a resource indicator value (RIV) identifying the starting RB RBstart and

the length in terms of contiguously allocated RBs 𝐿RBs. The RIV is calculated as follows:

RIV =


𝑁 size

BWP
(𝐿RBs − 1) + RBstart , if (𝐿RBs − 1) ⌊𝑁 size

BWP
/2⌋

𝑁 size

BWP

(
𝑁 size

BWP
− 𝐿RBs + 1

) (
𝑁 size

BWP
− RBstart − 1

)
, otherwise

(2.5)
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with 1 ≤ 𝐿RBs ≤
(
𝑁 size

BWP
− RBstart

)
. The calculation above is a way of compressing the

starting RB and the length into a single value.

Release 16 introduced type 1 allocation with RBGs instead of RBs, reducing the

number of bits used in the resource assignment field. This allocation happens when

the DCI follows format 0_2, and it is mostly used for ultra-reliable and low-latency

communications (uRLLC) use-cases. The calculation for the RIV is similar, just chang-

ing from RB to RBG.

2.1.2.3 Scheduling Objectives

A scheduler is the logical entity responsible for the resource allocation. In order

to design and compare schedulers and protocols, it is important to highlight some of

the performance metrics that are taken into consideration [71]:

• Delay: The average time needed for a packet to be successfully transmitted since

it has been received by the MAC layer.

• Goodput: The amount of useful data successfully transmitted by the nodes.

• Fairness: Evaluates if the radio resources are being similarly or fairly shared

between the UEs.

• Energy consumption: As most wireless devices have limited battery, power con-

sumption has to be taken into consideration when evaluating MAC protocols.

Other possible performance metrics include reliability, stability and QoS [72].

Although it would be optimal for a protocol to minimize delay, maximize goodput,

provide fairness guarantees and maximize energy efficiency, there can be trade-offs in-

volved [73]. Therefore, a scheduler design has to take into consideration the use-case

in order to optimize for the most suited performance metric. For instance, delay is a
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key performance metric for uRLLC use-cases, while not being as important for mas-

sive machine-type communications (mMTC) use-cases, which must prioritize energy

efficiency [74].

2.1.2.4 Scheduler Examples

In this section, we illustrate some schedulers used in dynamic allocation with chan-

nel state information. Such schedulers, also known as opportunistic schedulers, can

leverage the channel information to provide channel-dependent scheduling [75]. A

more comprehensive list of scheduling algorithms can be found in [76].

Maximum signal-to-noise ratio (SNR)

In this scheduling solution, the objective is to greedily maximize the rate. It allo-

cates the resources to the UE with the best radio conditions. However, this scheduler

is not fair, as in a system with two UEs, one close to the BS and another at the edge,

the closest UE will most likely receive more resources than the one at the edge.

Proportional fairness scheduler

The proportional-fair (PF) scheduling algorithm aims to improve fairness while

maintaining a good cellwide rate [77]. For each scheduling slot, the algorithm uses

the achievable data rate and the average throughput to select the UE or UEs. The

achievable data rate of a UE 𝑢 at a given time-slot 𝑡 , 𝑅𝑢 (𝑡), is the rate that the channel

of UE 𝑢 currently supports. In a scheduling slot 𝑡 and with average throughput of UE

𝑢 represented as 𝐺𝑢 (𝑡), the algorithm selects UE 𝑢★ such that:

𝑢★ = argmax

𝑢

𝑅𝑢 (𝑡)
𝐺𝑢 (𝑡)

(2.6)
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Figure 2.2: Basic diagram of a RL scheme

The average throughput is updated according to:

𝐺𝑢 (𝑡 + 1) =


(
1 − 1

𝑡𝑐

)
𝐺𝑢 (𝑡) + 1

𝑡𝑐
𝑅𝑢 (𝑡), 𝑢 = 𝑢★(

1 − 1

𝑡𝑐

)
𝐺𝑢 (𝑡), 𝑢 ≠ 𝑢★,

(2.7)

where the parameter 𝑡𝑐 defines the averaging time window and 𝑢★ is the selected UE.

The above algorithm is defined under single-user scheduling, but a multi-user PF

scheduler is proposed in [78], by selecting a set of UEs, 𝐼★, instead of a single UE, 𝑢★,

in (2.6) and (2.7). The PF scheduler is known to maximize the sum of the logarithmic

average rates [79].

2.2 Reinforcement Learning

RL refers to the problem encountered by an agent that must learn behavior by

engaging in trial-and-error interactions with a dynamic environment [80]. However,

RL can also refer to the machine learning (ML) technique used in such problems [81].

As such, RL refers to both the problem, the class of methods to solve this problem,

while also referring to the field that studies the problem and its solutions [82].
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2.2.1 RL: The Problem

The main elements in a basic model of a RL problem are: the environment’s state,

the agent’s action and the reward generated from this action. Figure 2.2 shows a simple

block diagram of the RL problem depicting the interaction between an agent, which is

the learner and decision maker, and its environment through the execution of actions.

The environment is affected by the agent’s actions and transitions to a new state. The

reward received by the agent is a scalar signal associated with the transition. The be-

havior of the agent should aim to take actions that maximize the accumulated reward.

In light of this, we highlight some basic components of a RL problem and solution:

State space S

Set of all possible states of the environment. The environment’s state at time

step 𝑡 is denoted 𝑠𝑡 , with 𝑠𝑡 ∈ S.

Action Space A

Set of all actions that can be taken by the agent. The action taken at time step 𝑡

is denoted 𝑎𝑡 , with 𝑎𝑡 ∈ A.

Transition Function P(𝑠𝑡+1 |𝑠𝑡 , 𝑎𝑡 ) : S × A × S → [0, 1]

The transition function P(𝑠𝑡+1 |𝑠𝑡 , 𝑎𝑡 ) describes the dynamics of the system. It

expresses the probability of transitioning to state 𝑠𝑡+1 after taking action 𝑎𝑡 in

state 𝑠𝑡 .

Reward Function 𝑅(𝑠𝑡 , 𝑎𝑡 ) : S × A → R

The stochastic reward function 𝑅 describes the immediate payoff from taking an

action 𝑎𝑡 in a state 𝑠𝑡 . The reward received by the agent at time step 𝑡 , which is

sampled from 𝑅(𝑠𝑡 , 𝑎𝑡 ), is denoted 𝑟𝑡 .
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At each time step 𝑡 , the agent observes the state of the environment 𝑠𝑡 ∈ S, and

based on that chooses an action 𝑎𝑡 ∈ A. As consequence of its action, the environment

transitions to a new state, 𝑠𝑡+1, and the agent receives a reward 𝑟𝑡+1. A RL problem is

commonly framed as a Markov decision process (MDP), because the probability of the

next state depends only on the last state and action, ensuring the Markov property:

P(𝑠𝑡+1 |𝑠𝑡 , 𝑎𝑡 , . . . , 𝑠0, 𝑎0) = P(𝑠𝑡+1 |𝑠𝑡 , 𝑎𝑡 ) (2.8)

Full Observability and Partial Observability

In fully observable MDPs the agent observes the state of the environment or a

function of it that maintains the Markov property. However, in partially observable

Markov decision processs (POMDPs) [83] the state of the environment is not directly

observed by the agent. Instead, the agent receives an observation 𝑜 ∈ O according to

an observation function 𝑂 (𝑠, 𝑎) : S × A → O [84], [85].

A POMDP is a MDP in which the true state is clouded and the agent receives an

ambiguous observation that does not ensure the Markov property. As such, the agent

needs to keep track of the action-observation history ℎ in order to make decisions, the

action-observation history up to time-step 𝑡 is denoted ℎ0:𝑡 = {𝑜0, 𝑎0, . . . , 𝑜𝑡−1, 𝑎𝑡−1, 𝑜𝑡 }.

An agent may not need the full action-observation history, ℎ0:𝑡 , but just few 𝑘 sam-

ples, ℎ(𝑡−𝑘):𝑡 , for instance, the proposed architecture in the deep Q-network (DQN)

paper [86] uses the past 4 frames.

Although the action-observation history can be used to solve a POMDP, it can also

be used with the environment dynamics to generate a belief state [87]. However, due to

needing the environment dynamics [88], belief states can only be used in model-based
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RL. The action-observation history is commonly used in POMDPs, but other versions

of the history are commonly used in other RL problems, such as meta-RL [89], [90]

that also includes the reward and termination. The interested reader can look at [88]

for more information on leveraging the history for other RL problems.

2.2.2 RL: Agent Modeling

The goal of the agent is to optimize its policy, 𝜋 , in order to maximize the expected

discounted return R. The expected return given the policy of the agent induces the

definition of value-functions, for which the action-value function, 𝑄 , is of particular

interest for this thesis. As such, the policy and the discounted return are defined as:

Policy 𝜋 (𝑎𝑡 |𝑠𝑡 ) : S × A → [0, 1]

The policy 𝜋 (𝑎𝑡 |𝑠𝑡 ) is the function mapping states to the probability distributions

of actions. In case of deterministic policies, the policy is a function of states to

actions, 𝜋 (𝑠𝑡 ) : S → A.

Discounted Return R𝑡

The discounted return is given by R𝑡 =
∑∞

𝑘=0
𝛾𝑘𝑟𝑡+𝑘+1 = 𝑟𝑡+1 + 𝛾R𝑡+1 [80].

Q-function 𝑄𝜋 (𝑠𝑡 , 𝑎𝑡 ) = E
[∑∞

𝑘=0
𝛾𝑘𝑟𝑡+𝑘+1 | 𝑠𝑡 , 𝑎𝑡 , 𝜋

]
Called action-value function, is the overall expected reward for taking an action

𝑎𝑡 in a state 𝑠𝑡 and then following a policy 𝜋 . It can also be simply denoted as

𝑄 (𝑠𝑡 , 𝑎𝑡 ).

The parameter 𝛾 is called discount factor, or discount rate, with 0 ≤ 𝛾 < 1. The

discount factor is used to control the importance given to future rewards in comparison

with immediate rewards. The infinity sum

∑∞
𝑡=0 𝛾

𝑡𝑟𝑡+1 has a finite value if𝛾 ≤ 1, as long

as the sequence {𝑟𝑘} is bounded [91]. The process is called undiscounted if 𝛾 = 1.
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2.2.3 Multi-Agent Reinforcement Learning

In this thesis, we will be considering multi-agent scenarios. More specifically, we

consider fully cooperative scenarios with communication. This can be formalized with

a decentralized partially observable Markov decision processs (Dec-POMDPs) [92] aug-

mented with communication.

A Dec-POMDP for 𝑛 agents is defined by the global state space S, an action space

A1, . . . ,A𝑛 , and an observation space O1, . . . ,O𝑛 for each agent. In a Dec-POMDP,

the agent observation does not fully describe the environment state. In a cooperative

setting, all agents share the same reward. Furthermore, the action space of each agent

is subdivided into one environment action space and a communication action space.

The communication action represents the message sent by an agent, and it does not

affect the environment directly, but it may be passed to other agents. This setting is

illustrated in fig. 2.3.

MARL introduces some new challenges, such as partial observability and non-

stationarity [93]. Communication addresses the partial observability, by providing

agents with the ability to communicate their information to other agents. Across

this thesis, the agent’s internal state, 𝑥 , comprises not only the current observation,

but also previous observations, actions and received messages, similarly to the action-

observation history. The non-stationarity comes from the perception of one agent that

the transition model of the environment changes whenever another agent changes its

policy, because the environment transition depends on the actions of all agents.
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Figure 2.3: Illustration of cooperative MARL with communication.

2.2.4 Multi-agent deep deterministic policy gradient

In this work, we adopt the multi-agent deep deterministic policy gradient (MAD-

DPG) algorithm [94], an extension of the deep deterministic policy gradient (DDPG)

algorithm [95] to multi-agent problems with centralized training and decentralized ex-

ecution (CTDE). It addresses the non-stationarity problem by using a centralized critic.

Each agent has an actor network that depends only on its own agent’s state in

order to learn a decentralized policy 𝜔𝑖 with parameters 𝜃𝑖 . During the training, each

agent has a centralized critic that receives the agent states and actions of all agents

in order to learn a joint action value function 𝑄𝑖 (𝒙, 𝒂) with parameters 𝜑𝑖 , where

𝒙 = (𝑥1, 𝑥2, . . . , 𝑥𝑛) is a vector containing all the agents’ states and 𝒂 = (𝑎1, 𝑎2, . . . , 𝑎𝑛)

contains the actions taken by all the agents.

The critic network parameters 𝜑 are updated by minimizing the loss given by the

temporal-difference error

𝐿𝑖 B E𝒙,𝒂,𝑟 ,𝒙′∼D
[
𝑦𝑖 −𝑄𝑖 (𝒙, 𝒂;𝜑𝑖)

]
(2.9)
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whereD denotes the experience replay buffer in which the transition tuples (𝒙, 𝒂, 𝑟 , 𝒙′)

are stored. The temporal-difference target 𝑦𝑖 is given by

𝑦𝑖 B 𝑟 + 𝛾𝑄′𝑖 (𝑥′, 𝑎′1, . . . , 𝑎′𝑛;𝜑′𝑖 )
��
𝑎′
𝑘
=𝜇′

𝑘
(𝑥𝑘 ) (2.10)

where 𝑄′ and 𝜔′ represent the target critic network and the value of the target actor

network, with parameters 𝜑′ and 𝜃 ′, respectively, and 𝛾 is the discount factor. The

actor network parameters 𝜃 are updated using the sampled policy gradient

∇𝜃𝑖 𝐽 = E𝑥,𝑎∼D
[
∇𝑎𝑖𝑄𝑖 (𝒙, 𝒂)∇𝜃𝑖𝜔𝑖 (𝑥𝑖) | 𝑎𝑖 = 𝜔𝑖 (𝑥𝑖)

]
. (2.11)

The target networks parameters are updated as

𝜑′𝑖 ← 𝜄𝜑𝑖 + (1 − 𝜄)𝜑′𝑖 (2.12)

𝜃 ′𝑖 ← 𝜄𝜃𝑖 + (1 − 𝜄)𝜃 ′𝑖 (2.13)

where 𝜄 ∈ [0, 1] is the soft-update parameter. Smaller values of 𝜄 lead to slow target

network changes and are generally preferred [95].

2.2.4.1 Other Techniques

The basic MADDPG algorithm is incremented with two techniques in this thesis,

namely the Gumbel-Softmax [96], [97] and deep dense architecture for reinforcement

learning (D2RL) [98].

Gumbel-Softmax. The Gumbel-Softmax is a continuous distribution that al-

lows sampling from a categorical distribution in the forward pass of a neural network.

This allows the DDPG to be used with discrete action spaces, as in its original form it
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can only be used with continuous actions due to the gradient of 𝑄 (𝑠, 𝑎) w.r.t the ac-

tions. The MADDPG is originally implemented for discrete action spaces and uses the

Gumbel-Softmax distribution in [94].

D2RL. The D2RL technique modifies the multilayer perceptron (MLP) architec-

tures commonly used in deep RL with dense connections (input concatenations). This

improves the feature extraction and allows increasing the number of hidden layers

without losing performance as it usually happens in simple feed-forward architectures

used in RL. It is done by concatenating the input of the network for every hidden layer

of the network except the output layer. As such, the input of a hidden layer is the

output of the previous layer concatenated with the input of the network, in this case

the state for the actor or state-action for the critic. The difference in architecture is

illustrated in fig. 2.4.

JSRL. Another improvement used is the jump-start reinforcement learning (JSRL) [99],

which leverages a prior policy to improve the learning performance. JSRL is a meta-

algorithm that uses a pre-existing policy to bootstrap an RL algorithm. It uses two

policies:

1. Exploration-policy 𝜋𝑒
: An RL policy that is trained from the experience gathered
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(a) A standard feed-forward architecture.
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(b) The D2RL architecture making use of dense

connections.

Figure 2.4: Difference between the standard feed-forward and the D2RL architectures.
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Exploration-policyGuide-policy

Vanilla RL JSRL

Curriculum stage 1 Curriculum stage 2 Curriculum stage 3

Figure 2.5: Difference between the vanilla reinforcement learning and JSRL. The goal of the

agent is to reach the star. In JSRL, the guide-policy takes the agent closer to the goal and the

exploration-policy in training only has to learn a simpler version of the original task.

from the environment.

2. Guide-policy 𝜋𝑔 : The pre-existing policy that is not updated during training.

The guide-policy only requirement are that is better than random exploration

and that it can select actions based on environment observations.

Initially, the agent follows the guide-policy to reach states closer to the goal. Then, it

switches to the exploration-policy, which continues to act to reach the goal. As the

exploration-policy gains proficiency, the guide-policy becomes less active, until the

exploration-policy takes full control. This process effectively creates a learning cur-

riculum, allowing the exploration-policy to focus on mastering gradually more chal-

lenging tasks.

In a task with horizon 𝐻 , we roll 𝜋𝑔 for a number of ℎ steps and then let 𝜋𝑒
take

over the extra𝐻 −ℎ steps, until the goal or the horizon𝐻 is reached. The data collected

from both policies is used to train 𝜋𝑒
and then, the combined policy is evaluated. If

the performance evaluation achieves a threshold 𝛽 , the number of guide-policy steps

is reduced, this decreasing ℎ. In summary, as 𝜋𝑒
improves, it should take over the task
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earlier until only 𝜋𝑒
is used.
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In this chapter, we focus on the study of protocol emergence within a multiple-

access problem. The main goals of this chapter are to lay the foundations for protocol

emergence, investigate its benefits, discuss how to effectively study protocols and sug-

gest future research directions. As such, the main contributions of this chapter are:

1. Comparison of different methods to learn a protocol.

2. Vocabulary size study: We evaluate the capabilities of protocol emergence to

reduce the amount of signaling used.

3. Protocol characterization: We propose new key performance indicators (KPIs)

and metrics to compare the emerged protocols and to interpret them using in-

formation theory.

4. Protocol interpretation: We study the usage of the control messages by the

emerged protocol.

3.1 System Model

Consider a single cell with a base station (BS) serving𝑈 user equipments (UEs) in a

uplink slotted shared channel (USC), where each UE needs to deliver data to the BS. For

the frequency domain, the available bandwidth is contained in a single resource. Each

UE has a transmission buffer of capacity 𝐵 service data units (SDUs) initially empty.

The SDU arrival is modeled as a Poisson process with probability of arrival 𝑝a. So, at

each time step, a new SDU of size 𝐿TB is added to the buffer with probability 𝑝a, until a

maximum number 𝑇 steps is achieved. The average number of SDUs arriving at each
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UE 1
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Downlink Control1
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Transmit

Delete

Hold

Shared
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Figure 3.1: System model scheme for the multiple-access problem. The buffer and decisions of

each UE are highlighted besides it. The wireless channel is shown besides the BS, indicating

the state of the wireless channel, in this case, it indicates that it received data from UE 1.

UE’s buffer in any given episode of duration 𝑇 is then:

𝜆 = 𝑝a𝑇 . (3.1)

The BS and UEs constitute the nodes of the system who act as independent agents.

The network nodes can exchange information using messages through the control

channels. In the remainder of this chapter, we refer to the UE medium access control

(MAC) agents and the BS MAC agent as UE and BS , respectively.

The channel for the uplink data transmission is modeled as a packet erasure chan-

nel, where a transport block (TB) is incorrectly received with a probability referred to

as the transport block error rate (TBLER). The UEs use the same frequency resources
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on the uplink shared channel (UL-SCH), where collisions may occur. The downlink

control messages (DCMs) and uplink control messages (UCMs) are transmitted over

the downlink (DL) and uplink (UL) control channels respectively, which are assumed

to be dedicated and error free, so without any contention or collision.

We assume that the sets of possible DL and UL control messages have cardinality

𝑉DCM and 𝑉UCM, respectively. For a DL (resp. UL) control vocabulary of size 𝑉DCM, the

bitlength ΥDL is equal to ⌈
(
log

2
𝑉DCM

)
⌉, where ⌈·⌉ represents the ceiling function.

At each time step 𝑡 of duration 𝑇TTI, the BS can send one control message to each

UE and each UE can send one control message to the BS. Furthermore, the UEs can also

a send protocol data units (PDUs) through the UL-SCH or delete a SDU from its buffer

at each time step. Figure 3.1 illustrates the system model, highlighting the decisions

taken by each UE and its effect on the system.

3.1.1 Network KPIs

In order to evaluate and compare different protocols, let us introduce the following

KPIs. The cellwide goodput is the main KPI for the task above, but it is not sufficient.

We propose also to evaluate additional metrics linked to the reliability, the latency or

the energy efficiency.

The cellwide goodput 𝐺 (in Mbit s
−1

) is the number of information bits received

by the BS per unit of time.

𝐺 =
𝑁RX 𝐿TB

𝑇 𝑇TTI
(3.2)

where 𝑁RX represents the number of SDUs received by the BS serviced by the MAC

layer and the SDUs received by the BS several times are only counted once. The

collision-rate Γ is the number of steps in which a collision happened divided by the
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total number of time steps:

Γ =
𝑁c

𝑇
. (3.3)

where 𝑁c represents the total number of time steps in which at least two SDUs collided.

Energy efficiency (EE) is defined as the number of received SDUs divided by the total

number of transmissions attempted by the UEs 𝑁TX:

EE =
𝑁RX

𝑁TX

. (3.4)

It is important to highlight that 𝑁TX includes retransmissions, even in the case of suc-

cessful receptions. As such, 𝑁TX ≠ 𝑁RX + 𝑁lost.

The amount of signaling overhead in bits per transmission time interval (TTI) Υ is

defined as the sum of the number of symbols used in the DL and UL control vocabu-

laries:

Υ = ΥDL + ΥUL. (3.5)

Since we are evaluating a MAC protocol, a useful definition of delay would be the

average time it takes for an SDU to be received once it is generated. The delay, Δ, is

defined as the time difference between the TTI in which an SDU 𝑠 is received, 𝜉𝑠 and

the TTI that this SDU was generated, 𝜏𝑠 .

Δ𝑠 = 𝜉𝑠 − 𝜏𝑠 . (3.6)

As such, the average delay Λ (in ms) is defined as:

Λ =

∑
Δ𝑠

𝑁RX

. (3.7)
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Lastly, it is important to evaluate the reliability of a protocol. The reliability Ψ can

be defined as the number of unique SDUs received, 𝑁RX, divided by the sum of the

number of SDUs lost, 𝑁lost, and 𝑁RX:

Ψ =
𝑁RX

𝑁RX + 𝑁lost

. (3.8)

3.1.2 Coordination Metrics

Network KPIs provide a way to evaluate and compare channel-access policies.

However, these KPIs are not the best way to evaluate cross-node coordination through

signaling because a protocol could, for example, perform better based on a superior

channel-access policy only. To illustrate this, imagine two contention-based protocols

relying on acknowledgements (ACKs), but with two different transmission probabili-

ties. As such, their goodputs will be different, however, their use of the information

and the meaning of it is the same.

Hence, metrics that evaluate the use of the communication and the degree of co-

ordination of the system are needed. To evaluate the level of coordination between

agents, we make use of emergent communication metrics as proposed in [23], [100].

The metrics used in this chapter are derived from the mutual information. Given two

random variables 𝑋 , 𝑌 defined on discrete sets X and Y, the mutual information is

defined as

𝐼 (𝑋,𝑌 ) =
∑︁
𝑥∈𝑋

∑︁
𝑦∈𝑌

P𝑋𝑌 (𝑥,𝑦) log2
(

P𝑋𝑌 (𝑥,𝑦)
P𝑋 (𝑥) P𝑌 (𝑦)

)
(3.9)

The two metrics used in this chapter are:

1. Instantaneous coordination (IC): Introduced in [100]. Quantifies the relation-
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ship between an agent’s environment action and the message it received from

other agents. This is defined as the mutual information between the received

message and the environment action.

2. Immediate reply (IR): We introduce this metric to quantify the dependence

between a signaling message received by a node, and subsequent signaling mes-

sage emitted by the node. This is defined as the mutual information between the

received message and the communication action.

Formally:

IC = 𝐼 (𝑀,𝐴) (3.10)

and

IR = 𝐼 (𝑀,𝐶), (3.11)

where, 𝑀 , 𝐴 and 𝐶 are discrete random variables representing the received message,

environment action and communication action.

The IC depends on environment actions and is used for the UEs, whereas the IR

metric is used for the BS, since the BS works as an orchestrator for the UL transmission

task. These metrics can be generalized to model relationships across varying time

offsets (i.e., between the received message and the selected action).

Both metrics measure the coordination degree of a protocol. In terms of the system

model studied in this chapter, the IC measure the influence of the BS in the decisions of

the UEs while the IR measuring the degree in which the BS communication instruction

is affected by the received UL message. In applications were a tighter coordination is

desired, protocols with higher coordination metrics should be preferred. In [100], a

method to motivate higher IC is proposed and it would be interesting to evaluate how
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this approach can be useful when both IC and IR are considering in a multiple-access

problem.

3.2 Emerging a MAC Protocol with MARL

3.2.1 MARL Formulation

We formulate the problem defined above as a multi-agent reinforcement learning

(MARL) cooperative task, where the MAC layers of the network nodes (UEs and BS)

are reinforcement learning (RL) agents that need to learn how to communicate with

each other to solve an uplink transmission task. In addition, the UE agents need to

learn when to send data through the UL-SCH and when to delete an SDU, in other

words, to learn how to correctly manage the buffer. To decide how to act, an agent

needs to consider the messages received from the other agents. Furthermore, the UEs

also take into account their buffer status when taking actions, while the BS takes into

account the state of the UL-SCH, i.e. idle, busy or collision-free reception.

We model this problem as a decentralized partially observable Markov decision

process (Dec-POMDP) [92], augmented with communication. A Dec-POMDP for 𝑛

agents is defined by the global state space S, an action space A1, . . . ,A𝑛 , and an ob-

servation space O1, . . . ,O𝑛 for each agent. In Dec-POMDP, the agent observation does

not fully describe the environment state.

All agents share the same reward and the action space of each agent is subdivided

into one environment action space and a communication action space. The commu-

nication action represents the message sent by an agent and it does not affect the

environment directly, but it may be passed to other agents. In this chapter, the agent

internal state 𝑥𝑖 may comprise not only the agent’s current observation, but also pre-
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vious observations, actions and received messages. We assume the episode ends when

a maximum number of steps 𝑇 is reached.

We use the following notations:

• 𝑜u𝑡 : Observation received by the 𝑢th
UE at time step 𝑡 .

• 𝑜b𝑡 : Observation received by the BS at time step 𝑡 .

• 𝑛u𝑡 : The UCM sent from the 𝑢th UE at time step 𝑡 .

• 𝑚u

𝑡 : The DCM sent to the 𝑢th UE at time step 𝑡 .

• 𝑎u𝑡 : Environment action of the 𝑢th UE at time step 𝑡 .

• 𝑥u𝑡 : Agent state of the 𝑢th UE at time step 𝑡 .

• 𝑥b𝑡 : Agent state of the BS at time step 𝑡 .

Observations

The observation 𝑜u𝑡 ∈ {0, . . . , 𝐵} is an integer representing the number of SDUs in

the buffer of the UE 𝑢 at that time 𝑡 . Similarly, the observation 𝑜b𝑡 received by the BS

is a discrete variable with 𝑈 + 2 possible states:

𝑜b𝑡 =



0, if the UL-SCH is idle

u, if the UL-SCH is detected busy with a single PDU from UE u

correctly decoded

𝑈 + 1, non-decodable energy in the UL-SCH,

(3.12)

where u ∈ {1, . . . ,𝑈 }.
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Actions

The environment action 𝑎u𝑡 ∈ A𝑒 = {0, 1, 2} is interpreted as follows:

𝑎u𝑡 =



0: do nothing

1: transmit the oldest SDU in the buffer

2: delete the oldest SDU in the buffer.

(3.13)

Communication actions

We highlight that the DCM and UCM messages, 𝑚 and 𝑛, are communication ac-

tions that the agents select while also being information available to the other agent’s

state as received message. The BS communication action is the vector comprising the

DCMs sent to all UEs 𝒎𝑡 ∈ D𝑈
, with D = {0, . . . ,𝑉DCM − 1} and D𝑛

denotes the n-

ary cartesian power of set D. The communication action of a UE 𝑢 is a single UCM

𝑛𝑢𝑡 ∈ U = {0, . . . ,𝑉UCM − 1} and the vector of all sent UCMs is 𝒏𝑡 .

Input states

The agent state at time step 𝑡 is a tuple comprising the most recent 𝑘 observations,

actions and received messages, and it represents the input of the policy to determine

the next action.

• UE u: 𝑥u𝑡 = (𝜒u𝑡 . . . , 𝜒u𝑡−𝑘), where 𝜒u𝑡 = (𝑜u𝑡 , 𝑎u𝑡 , 𝑛u𝑡 ,𝑚u

𝑡 ). Highlighting that 𝑜u is the

local observation of that UE, 𝑎u is the environment action taken, 𝑛u represents

the communication action taken and𝑚u
is the received DCM.
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• BS: 𝑥b𝑡 = (𝜒b𝑡 . . . , 𝜒b𝑡−𝑘), where 𝜒b𝑡 = (𝑜b𝑡 , 𝒏𝑡 ,𝒎𝑡 ), with 𝒏 and 𝒎 containing the

messages to and from all UEs.

This formulation is illustrated in fig. 3.2 for the BS and UE policies, highlighting the

observations and actions.

Given the above definitions, the size of the input and output layers for the actors

are:

• UE: Input size is 𝑘 (𝑉DCM +𝑉UCM +4), as it has 3 possible actions and the observa-

tion is a single scalar. Output size is 3+𝑉UCM, corresponding to the environment

actions and the UCM.

• BS: Input size is 𝑘 (2+𝑈 +𝑈𝑉UCM+𝑈𝑉DCM), as the observation is a one-hot vector

of size 2 +𝑈 . Output size is𝑈𝑉DCM, corresponding to communication actions to

all UEs.

The critic input size is the sum of all nodes actors inputs and outputs.

Reward

The reward function adopted tries to maximize the goodput while also trying to

maximize the reliability. The reward is the same for all agents and it is calculated as

the sum of contributions of each UE:

𝑟𝑡 =
∑︁

𝑟𝑢𝑡 (3.14)
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Figure 3.2: Scheme of the inputs and outputs of the policy network of the UE and BS in the

multiple-access problem. The information contained in the observation is highlighted, while

also indicating the other input information. The different actions are shown as outputs of the

policies.

The reward term associated with each UE at each time step is:

𝑟𝑢𝑡 =



+𝜅, if a new SDU from UE 𝑢 is received by the BS

−𝜅, if UE 𝑢 deletes a SDU not received by the BS

0, else,

(3.15)

where 𝜅 is a positive integer. This choice of reward is possible by leveraging the cen-

tralized training and decentralized execution (CTDE). During the centralized training,

a centralized reward system can be used to observe the buffers of the BS and UEs in

order to assign the reward.
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Coordination Metrics

With the above definitions, we can revisit the IC and IR equations, highlighting

that the IC is defined for the UEs and the IR for the BS. The IC is the mutual information

between the received DCM𝑚𝑢
𝑡−1 and the action 𝑎𝑢𝑡 , since the communication action of

a node is the received message of another node at the next time-step, it measures the

influence of the communication of an agent in the action taken by another. Hence,

omitting the indexes:

IC =
∑︁
𝑚∈D

∑︁
𝑎∈A𝑎

P(𝑚,𝑎) log
2

(
P(𝑚,𝑎)

P(𝑚) P(𝑎)

)
(3.16)

Similarly, the IR is the mutual information of the vector of received messages 𝒏𝑡−1 and

the communication action 𝒎𝑡 :

IR =
∑︁
𝒏∈U𝑈

∑︁
𝒎∈D𝑈

P(𝒏,𝒎) log
2

(
P(𝒏,𝒎)

P(𝒏) P(𝒎)

)
(3.17)

where 𝑈 is the number of UEs.

To calculate the maximum values of the IC and IR we use the fact that the mutual

information of finite countable discrete random variables 𝑋 and 𝑌 is bounded as:

𝐼 (𝑋,𝑌 ) ≤ min (H (𝑋 ), H (𝑌 )) (3.18)

where H (𝑋 ) is the entropy of the discrete random variable 𝑋 . For a discrete random

variable 𝑋 with 𝑛𝑥 categories:

max (H (𝑋 )) = log
2
𝑛𝑥 (3.19)
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Hence, for the IC:

IC ≤ min

(
log

2
𝑉DCM, log2 3

)
(3.20)

since the cardinality of A𝑒 is 3. Similarly for the IR:

IR ≤ 𝑈 ·min

(
log

2
𝑉UCM, log2𝑉DCM

)
(3.21)

3.2.2 Training Algorithm

The RL solution used in this chapter is based on the multi-agent deep determin-

istic policy gradient (MADDPG) algorithm [94]. This algorithm is well suited to Dec-

POMDP when strong coordination is needed, due to its centralized critic architecture.

Each agent has its own actor network that depends only on this agent’s state in order

to learn a decentralized policy 𝜔𝑖 parametrized by 𝜃𝑖 . Each agent also has a centralized

critic network that receives the agent states and actions of all agents in order to learn a

joint action value function 𝑄𝑖 (𝑥, 𝑎) parametrized by 𝜑𝑖 , where 𝑥 = (𝑥1, 𝑥2, . . . , 𝑥𝑛) con-

tains all the agents’ states and 𝑎 = (𝑎1, 𝑎2, . . . , 𝑎𝑛) contains the actions taken by all of

the agents. The critic networks are only used during the centralized training. For more

details of this algorithm, the interested reader can find it on the original paper [94].

Similarly to the original work [94], we use the Gumbel-softmax [96] trick to soft-

approximate the discrete actions to continuous ones. The Gumbel-softmax reparame-

terization also works to balance exploration and exploitation. The exploration-exploitation

trade-off is controlled by the temperature factor 𝜁 .

We use the MADDPG as the reference training algorithm and propose some im-

provements to it. First, we make use of parameter sharing [14] for similar network

nodes, in this case the UEs, meaning that these nodes have the same actor and critic
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networks parameters.

Because of parameter sharing and also that UE index is not included in the agent’s

state, any policy that leverages the agent’s identity is not capable of effectively solv-

ing the task due to the parameter sharing, because it would lead to collisions. This

approach is employed as our goal is to learn a generic channel access policy, rather

than a customized one. Although UE customized access policies might be interesting

in some scenarios, such as indoor factories, for mobile phones it is preferred to have

the access policy as general as possible. An example of a policy that leverages the

agent’s identity would be a round-robin policy.

Secondly, we modify the neural networks architectures by using deep dense archi-

tecture for reinforcement learning (D2RL) [98]. The main idea of D2RL is to use dense

connections to pass the input of the network before every hidden layer, improving

feature extraction and allowing deeper networks.

The actor and critic networks have the same architecture; a fully connected multi-

layer perceptron (MLP) with two hidden layers when D2RL is disabled and four hidden

layers when using it. Each hidden layer has 64 neurons and their activation function

is the rectified linear unit (ReLU).

Another improvement used is the jump-start reinforcement learning (JSRL) [99],

which leverages an expert policy to improve the learning performance. The idea is that,

with episodes duration of 𝑇 , during the first 𝑡jsrl steps, the expert policy is used and

the learning agent policy is only used on the last𝑇 − 𝑡jsrl steps. When the performance

of this composite policy surpasses a threshold, 𝑡jsrl is decreased until only the learning

agent policy is used. We use JSRL on top of a MADDPG algorithm improved with

D2RL.
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3.3 Results

3.3.1 Baseline Solutions

We compare the proposed solution with a contention-free (i.e. BS-controlled, sched-

uled) and a contention-based (i.e. grant-free) baseline.

In the contention-free protocol, the UE sends a scheduling request (SR) if its trans-

mission buffer is not empty and it only transmits if it has received a scheduling grant

(SG). Similarly, it only deletes a TB from the transmission buffer after the reception of

an ACK. At each time step, the BS receives zero or more SRs. It then chooses one of the

requesters at random to transmit in the next time-step, sending a SG to the selected

UE. However, if the UE had made a successful data transmission simultaneously with

an SR, the BS will send an ACK to this UE and its SR is ignored.

In the contention-based protocol, each UE transmits with probability 𝑝𝑡 if its trans-

mission buffer is not empty. Similarly to the contention-free baseline, the UE only

deletes a TB after the reception of an ACK. At each time step, the BS sends an ACK to

a UE if it receives a TB from the UE. For each experiment, the transmission probability

chosen is the one that performs better in terms of goodput.

3.3.2 Simulation Procedure and Parameters

The transmission buffer of each user starts empty and the SDU arrival probability

𝑝a is fixed and remains constant for all UEs. The system is trained for a fixed number

of episodes 𝑁train. During training, we evaluate the policy on a fixed set of 𝑁eval eval-

uation episodes with disabled exploration and disabled learning to assess the current

performance of the communication protocol. We then select the historical best pro-

tocol, which is the best performing one on the evaluation episodes during the whole
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Table 3.1: Simulation Parameters

Parameter Symbol Value

Number of UEs 𝑈 [2, 4]
Size of transmission buffer 𝐵 20

Avg. number of SDUs per UE 𝜆 8

SDU arrival probability 𝑝a [0.16, 0.33]
Transport block error rate TBLER

[
10
−1, 10−2, 10−3, 10−4

]
Transport block size (bit) 𝐿TB 1024

DCM vocabulary size 𝑉DCM 3

UCM vocabulary size 𝑉UCM 2

Duration of episode (TTIs) 𝑇 24

TTI duration (ms) 𝑇TTI 0.1

Reward function parameter 𝜅 3

Number of training episodes 𝑁train 100k

Number of evaluation episodes 𝑁eval 500

Number of test episodes 𝑁test 5000

Number of randomized repetitions 𝑁rep 8

training procedure and its performance is further assessed in 𝑁test episodes with ex-

ploration and learning disabled, this is the final testing phase. This whole procedure

represents a single training repetition.

We evaluate a total of 𝑁rep repetitions, each with a different random seed. After

training finishes, we have successfully trained a population of 𝑁rep protocols, and we

can select the best performing protocol on the training episodes, which is the histori-

cal best across all repetitions. This selection step can be seen as a survival-of-the-fittest

approach because only one protocol of the population of 𝑁rep is chosen going forward.

A summary of the main simulation parameters is provided in table 3.1, while the pa-

rameters of the MARL training algorithms is listed in table 3.2.
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Table 3.2: Training Algorithm Parameters

Parameter Symbol Value

Memory length 𝑘 3

Replay buffer size 10
5

Batch size 1024

Number of neurons per hidden layer 64

Interval between updating policies 96

Number hidden layers [2, 4]
Activation function of hidden neurons ReLU

Optimizer algorithm Adam

Learning rate 10
−3

Discount factor 0.9

Policy regularizing factor 10
−3

Gumbel-softmax temperature factor 𝜁 1

Target networks soft-update factor 10
−3

3.3.3 Emerging or Learning?

As discussed in section 3.1.2, a new protocol could achieve higher performance

due to, e.g. a better channel-access policy. In this case, the merit for the gains would

not be on the learned signaling. Hence, to evaluate if holistic protocol emergence

can outperform protocol learning, we compare them next in a channel-access learning

setup. Let us first introduce some definitions:

• Protocol emergence: Both control-plane vocabulary, policies and channel-access

policies of UEs and the BS are learned.

• Protocol learning: The control-plane and channel-access policies of the UEs

are learned, while the BS follows the grant-based baseline and an a-priori fixed

control-plane vocabulary.

• Channel-access learning: Only the medium access policy of the UEs is learned

while their control-plane and the BS follow the grant-based baseline and an a-
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priori fixed control-plane vocabulary.

The MARL learning algorithm we used is MADDPG with D2RL.

In fig. 3.3, these three different ways of producing protocols are compared together

with the contention-free baseline. Figure 3.3a shows that convergence is faster with

channel-access learning and protocol learning, and that protocol emergence produces

better performing protocols. Figure 3.3b shows that even though the channel-access

and protocol learning solutions have better performance than the baseline, they have a

ceiling when training under different TBLERs scenarios, whereas protocol emergence

is capable of continously improve and produce better protocols for scenarios with re-

duced TBLER.

The performance of channel-access learning is limited by the control-plane signal-

ing used, as it has a similar performance than the baseline used for its control-plane.

However, protocol learning allows a higher degree of freedom when compared with

the channel-access learning, which leads to a increase in performance. Protocol emer-

gence further improves on this allowing the design of better performing protocols.

In general terms, the control-plane of the channel-access learning has to follow

the rules set by the pre-defined protocol. Protocol learning allows breaking some of

the control-plane rules, whilst protocol emergence allows new control-plane rules to

emerge.

3.3.4 Producing a Protocol

MARL algorithm design

In fig. 3.4 we compare the performance of three different techniques for emerging a

protocol and of the baselines on two scenarios, an easy one with 2 UEs and a harder one
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Figure 3.3: Comparison of different ways to produce a protocol. For the learning curve in

(a), the solid lines indicate average performance in the evaluation episodes, the shaded region

depict the 95% confidence interval (CI) and the boxplots compare the performance of the best

historical protocol on the test episodes. The training is done for different TBLERs and the

final performance of the best protocol produced for each TBLER is compared in (b). The mean

number of SDUs in the cell per episode fixed is 𝑈 · 𝜆 = 16 ; UL and DL vocabulary sizes are

𝑉UCM = 2 and 𝑉DCM = 3.
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with 4 UEs. On the easy task, the emerged protocols all have similar learning curves

and produce similar performing protocols at the end. However, on the harder task the

benefits of adding the D2RL become apparent and, although the end performance is

the same, using JSRL on top of the already improved algorithm hastens learning even

further. For the remainder of this chapter, we will focus on the harder task.

Leveraging an expert

The results in fig. 3.4 indicate that using a expert policy to accelerate learning,

JSRL, is a good practice as it hastens learning. This idea can not only be used as a way

of leveraging a general-purpose protocol to help emerge an application-tailored one,

but also for improving an already well defined application-tailored protocol. How-

ever, this approach limits the vocabulary sizes to the same as the expert, hindering the

search of protocols across the signaling spaces. JSRL is one technique that can be used

to accelerate learning with prior knowledge, others include learning from demonstra-

tions [101], imitation learning [102] and supervised self-play [103]. JSRL is used in

this chapter because it is compatible with any RL algorithm, it uses the expert policy

directly instead of needing a dataset and it showed faster convergence compared with

other imitation learning techniques.

How much signaling is needed?

One of the benefits of emerging a protocol from scratch with MARL is that it can

produce protocols with different amounts of signaling by varying the UL and DL vo-

cabulary sizes. This allows a search across the protocol space in order to control the

trade-off between signaling and performance or to search for the minimum amount of
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Figure 3.4: Comparison of learning curves during the training procedure in terms of goodput.

Three training solutions for emerged protocols are compared with the baselines: MADDPG,

MADDPG with D2RL and MADDPG with D2RL and JSRL. The solid lines show the average

performance in the evaluation episodes and the shaded areas represent the 95%CI. The boxplots

compare the performance of the best historical protocol on the test episodes. Avg. number of

SDUs in the cell per episode fixed: 𝑈 · 𝜆 = 16 ; TBLER = 10
−1

; UL and DL vocabulary sizes are

𝑉UCM = 2 and 𝑉DCM = 3.



63 Chapter 3. Framework for MAC Protocol Emergence

signaling needed for a specific task. Figure 3.5 illustrates such study, which indicates

that the only constraint in terms of vocabulary size to effectively solve this particular

task is 𝑉DCM ≥ 2. More complex tasks may need larger vocabularies, making auto-

matic protocol emergence appealing, since the minimum amount of signaling needed

is unknown beforehand.

3.3.5 Coordination Analysis

Studying the Coordination

To effectively produce a protocol with good performance, the network nodes have

to coordinate with one another contructively. Hence, one important step of protocol

emergence is the analysis of the coordination and how it correlates with the other

network KPIs. In this chapter, we are mainly interested in the IR and IC metrics, which

are calculated empirically for the whole set of test episodes. The IR is the mutual

information between the messages received and the communication action, so, it is

calculated for the BS. The IC is the mutual information between the received message

and the environment action taken and it is calculated for the UEs.

Effect of coordination

Figure 3.6 illustrates the correlation between IC and IR and the effect of coordi-

nation on network performance. A key observation is that tighter signaling-based

coordination across radio nodes leads to improved performance for the emerged pro-

tocols, as illustrated in the increase in goodput in fig. 3.6a. This is even more prominent

in fig. 3.6b, where the effect signaling coordination on collision-rate is illustrated, as

coordination is necessary to avoid collisions between the UEs. It is also important to

highlight that random initializations of the protocol models and learning algorithms
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Figure 3.5: Study of signaling vocabulary size and its impact on performance. The values rep-

resent the average of all repetitions on the final test episodes. The annotations indicate the

mean value and 95% CI. The training algorithm used is the MADDPG with D2RL. Avg. number

of SDUs per UE: 𝜆 = 4; Arrival rate: 𝑝a = 0.16; Number of UEs: 𝑈 = 4; TBLER = 10
−1

.
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Figure 3.6: Study of the correlation between the coordination metrics with themselves and with

some network KPIs. For the emerged protocols the UL and DL vocabulary sizes are 𝑉UCM = 2

and 𝑉DCM = 3. Avg. number of SDUs per UE: 𝜆 = 4; Arrival rate: 𝑝a = 0.16; Number of UEs:

𝑈 = 4; TBLER = 10
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. The error bars show the 95% CI.
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will produce a large and heterogeneous collection of protocols for the same hyperpa-

rameters. This variance is illustrated by the error bars in fig. 3.6 and is the main reason

for the survival-of-the-fittest approach to protocol selection discussed in section 3.3.2.

We highlight that it is possible to motivate the agents to achieve better coordina-

tion by adding a term related to the coordination to the reward of an agent, as in [100].

For example, the IR could be added to the reward for the BS and the IC for the UEs.

This idea may be important for some scenarios where a higher degree of coordination

is absolutely necessary and maybe difficult to achieve.

3.3.6 Profiling the Protocols

In order to compare protocols, we characterize them in terms of network KPIs

and coordination metrics. This way, it is possible to draw a profile of each protocol.

For example, in table 3.3 we compare the best protocol of each RL solution with the

baselines.

At the top of table 3.3, we compare the different ways of designing protocols and

on the bottom, different solutions for protocol emergence. We add the protocol with

least signaling that obeys the constrain from the vocabulary size study illustrated in

fig. 3.5a with 𝐷 = 2 and 𝑈 = 1 and labeled D2RL-MS. A variation of the MADDPG

with D2RL is also compared, labeled D2RL-EE, where the reward function is modified

with a penalization for collisions. In this case, the penalization is equal to the number

of UEs that collided. The scenario in consideration is the same as in fig. 3.4b.

Comparing protocols

When comparing multiple protocols like this, one can select the best-suited proto-

col in terms of multiple constraints. For example, the JSRL is the most well-rounded,
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Name Goodput (Mbit s
−1

) Collision-rate Delay Λ (ms) EE Reliability Ψ Signaling Overhead Υ IR IC

Protocol Emergence 0.52 5% 2.80 0.76 99.98% 3.00 1.01 0.40

Protocol Learning 0.50 2% 3.18 0.84 100% 3.00 1.85 0.70

Channel-Access Learning 0.46 4% 3.45 0.62 99.85% 3.00 1.93 0.51

Contention-Free 0.44 0.0 4.47 0.90 100% 3.00 1.95 0.80

Contention-Based 0.29 25% 5.08 0.34 100% 1.00 0.0 0.37

MADDPG 0.49 9% 3.14 0.68 1.00 3.00 0.64 0.41

JSRL 0.53 3% 2.72 0.83 99.98% 3.00 0.87 0.45

D2RL 0.52 5% 2.80 0.76 99.98% 3.00 1.01 0.40

D2RL-EE 0.50 0.0 3.13 0.90 99.99% 3.00 1.49 0.49

D2RL-MS 0.50 5% 3.07 0.77 99.99% 1.00 0.0 0.36

Table 3.3: Protocol profiles. For the solutions at the top, the MADDPG with D2RL is used as

the learning architecture.

whereas if the interest is on the best goodput with low signaling, then the emerged

protocol with minimum signaling, D2RL-MS, would be the best protocol.

Effect of reward

One of the advantages of designing a protocol with RL is the potential to influ-

ence its characteristics through the objective function, in this case, the reward func-

tion. This is illustrated in table 3.3 by the difference between D2RL-EE and the other

emerged protocols in terms of the trade-off between collision-rate and delay. By chang-

ing the reward function, the emerged protocol lowers the collision-rate, improving the

EE while increasing the delay.

3.3.7 Interpreting the Protocols

On emerged protocols, the control messages initially have no assigned meaning.

However, as the training goes on, the agents agree upon how should they communicate

and behave, thus defining the meaning of the messages and how they are used by

their policies. Thus, studying the meaning of these messages is a necessary step for

interpreting and explaining the emerged protocol. For simplicity, we will focus on the

study of the downlink messages and how they influence the UE behavior.
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We use the conditional probability of a control message 𝑚 being the received one

given that action 𝑎 was taken, P(𝑚 |𝑎), to assess how the control messages are used by

a protocol. The probabilities are calculated empirically through the transitions across

𝑁test episodes.

Deriving the meaning

This approach is illustrated in fig. 3.7 for the baseline approaches, contention-free

and contention-based and fig. 3.8 for emerged protocols. As an example on how to

derive the meaning from the probabilities, in fig. 3.7a, the delete action is only taken

when message𝑚 = 2 is received. This suggests that message𝑚 = 2 behaves as an ACK.

A similar approach can be used to indicate that𝑚 = 1 is the SG for the contention-free

baseline and that𝑚 = 1 is the ACK for the contention-based solution in fig. 3.7b.

Meaning on emerged protocols

When we analyze the meaning of the messages for the JSRL protocol, we notice

that it is very similar to the contention-free baseline, which is used as the expert, the

ACK is related to 𝑚 = 2 and the SG to 𝑚 = 1. This behavior is the same for all the

repetitions with JSRL. However, we can see that there are some cases that𝑚 = 2 leads

to a transmission, so its meaning is not only of ACK. This meaning fluidity is even

more noticeable on a protocol emerged from scratch, as in fig. 3.8b where 𝑚 = 0 is

the only message interpreted as ACK, but it also can lead to a transmit action on some

cases. This meaning fluidity leads to contextual meaning, as the meaning of a message

is not firmly defined and depends on the context.
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Figure 3.7: Study of the meaning of the downlink messages for the reference protocols. Avg.

number of SDUs per UE: 𝜆 = 4; Arrival rate: 𝑝a = 0.16; Number of UEs: 𝑈 = 4; TBLER = 10
−1
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Figure 3.8: Study of the meaning of the downlink messages for the emerged protocols. The UL

vocabulary size is 𝑉UCM = 2. Avg. number of SDUs per UE: 𝜆 = 4; Arrival rate: 𝑝a = 0.16;

Number of UEs: 𝑈 = 4; TBLER = 10
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.
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Contextual meaning

The ability to derive a contextual meaning is an important feature of emerged

protocols and it explains the signaling constraint of 𝑉DCM ≥ 2, for the vocabulary

size study as illustrated in fig. 3.8c. The emerged protocol, D2RL-MS, uses this feature

in order to have the same control message leading to a delete action in some cases,

similarly to an ACK, and to a transmit action on others, as a SG. Because of this, the

BS can orchestrate the UEs and effectively control the system even with less signaling,

while the UE can use other information such as its previously transmitted UCM and

its buffer status to determine which action to take.

3.4 Chapter Summary

In this chapter, we have proposed a novel framework for the study of emergent

protocols, which includes the protocol production, coordination analysis, protocol pro-

filing and interpretation. We have shown how, using protocol emergence techniques,

radio nodes can learn the signaling vocabulary and policy, as well as the channel-access

policy, which is equivalent to physical layer (PHY) control by the agents.

We have shown that the average emerged protocol outperforms two very differ-

ent baselines (contention-free and contention-based), and highlighted the strengths of

these methods for searching the vast space of signaling vocabularies to achieve solu-

tions with low signaling overhead. The second step of our framework is concerned

with the relationship between coordination and network performance. Our results

indicate that a better learning algorithm achieves better performance not necessarily

only through a superior channel-access policy, but also thanks to improved coordina-

tion through signaling.
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The third step of our framework lets us compare different protocols in terms of

network KPIs and coordination metrics. This creates a protocol profile that is useful to

evaluate the trade-off when selecting one protocol over another in a specific scenario.

The last step discusses interpretability, presenting a simple way of understanding how

the control messages are used through conditional probability.



Chapter 4
MAC Protocol Emergence for

Contiguous Resource Allocation

Contents
4.1 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.1.1 Network KPIs . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.2 MARL Problem Formulation . . . . . . . . . . . . . . . . . . . . 78
4.2.1 MARL Formulation . . . . . . . . . . . . . . . . . . . . . . . 78

4.2.2 Training Algorithm . . . . . . . . . . . . . . . . . . . . . . . 83

4.3 Results and discussion . . . . . . . . . . . . . . . . . . . . . . . . 84
4.3.1 Baseline Solutions . . . . . . . . . . . . . . . . . . . . . . . 84

4.3.2 Simulation Procedure and Parameters . . . . . . . . . . . . 85

4.3.3 Learning Capabilities . . . . . . . . . . . . . . . . . . . . . . 87

4.3.4 Effect of vocabulary sizes . . . . . . . . . . . . . . . . . . . 91

4.4 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . 92

In this chapter, we focus on studying the performance of protocol emergence in a

more challenging problem, evaluating its learning capabilities, scalability, and limita-

tions. Differently from chapter 3, the scenario of this study involves multiple frequency

73



74 Chapter 4. MAC Protocol Emergence for Contiguous Resource Allocation

UE 1

BS

Downlink Control1

Downlink Control2

Downlink Control3

Uplink Control1

Uplink Control3

Uplink Control2

UE 2

UE 3

Uplink Data1

2 3 4 5 6 7 81

RBs

Uplink Data2
RBs

2 3 4 5 6 7 81 4

Uplink Data3

2 3 4 5 6 7 81

RBs

2
3
4
5
6
7
8

1

RBs

Figure 4.1: System model scheme with contiguous resource allocation. The buffer and decisions

of each user equipment (UE) are highlighted besides it. The wireless channel is shown besides

the base station (BS), highlighting the frequency resource axis on that time slot, indicating the

resource blocks (RBs) used by each UE.

resources in a scheduling problem with contiguous frequency-domain resource allo-

cation.

4.1 System Model

Consider a single cell with a BS serving 𝑈 UEs in a uplink slotted shared channel

(USC), where each UE needs to deliver data to the BS. For the frequency domain, the

available bandwidth is divided into 𝑀 RBs. Time domain is assumed slotted with a

fixed time-step duration of 𝑇TTI. We assume an episode of duration 𝑇 𝑇TTIs.
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The BS and UEs constitute the nodes of the system who act as independent agents.

The network nodes can exchange information, using messages through the control

channels. In the remainder of this paper, we refer to the UE medium access control

(MAC) agents and the BS MAC agent as UE and BS, respectively.

Each UE has a transmission buffer of capacity 𝐵 in bits initially empty. Data ar-

rives in service data units (SDUs) of fixed size 𝐿SDU. The SDU arrival is modeled as a

Bernoulli process with probability of arrival 𝑝a. So, at each time step, a new SDU of

size 𝐿SDU is added to the buffer with probability 𝑝a, until a maximum number 𝑇 steps

is achieved. The average number of information bits arriving at each UE’s buffer in

any given episode of duration 𝑇 is then:

𝜆𝑢 = 𝑝a𝑇𝐿SDU (4.1)

We assume that a automatic repeat request (ARQ) process is used by the network nodes

to handle the buffer management, as such, upon successful reception of a transport

block (TB) by the BS, the UE remove those bits from its buffer.

The system is channel-aware, with each UE having a signal-to-noise ratio (SNR)

given by:

SNR𝑢 =
| ˜ℎ𝑢
√
𝜌𝑢 |2

𝜎2
𝑝𝑡 , (4.2)

where
˜ℎ𝑢
√
𝜌𝑢 is the effective channel of UE 𝑢, with

˜ℎ denoting the complex gain and 𝜌

denoting the path loss. The path loss and gains are assumed constant for the episode

duration, due to its short duration. A time-correlated flat channel with Rayleigh fading

based on the Jakes model is assumed for the complex gain calculations [104].

Given a SNR𝑢 , a modulation and coding scheme (MCS) is chosen by a look-up table
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link adaptation method. The method chooses the highest MCS with an average error

rate lower than the target transport block error rate (TBLER) for that SNR. The spectral

efficiency, 𝜂, is the maximum number of information bits in a resource element (RE),

given by the product of the code rate 𝜈𝑟 and the modulation order 𝜚𝑚:

𝜂 = 𝜚𝑚𝜈𝑟 . (4.3)

With a selected MCS and given the number of RBs for transmission, 𝑛RB, it is possible

to calculate the maximum number of information bits that can be transmitted, which

is the maximum transport block size (TBS), as:

TBSmax = 𝑛RB𝑁
RB

sc
𝑁 sh

symb
𝜚𝑚𝜈𝑟 , (4.4)

where 𝑁 RB

sc
is the number of subcarriers in a RB and 𝑁 sh

symb
is the number of symbols in

a slot. The slot follows format 1, that is, all orthogonal frequency-division multiplex-

ing (OFDM) symbols within a slot are used for uplink shared channel (UL-SCH) data

transmission. Transmission errors affect the whole TB.

The channel for the uplink data transmission is modeled as a packet erasure chan-

nel, where a TB is incorrectly received with a probability referred to as the TBLER. As

contiguous resource allocation is assumed, data transmission occurs in adjacent RBs

for a given UE. Collisions may happen if more than one UE transmit over the same

resource, in this case the whole TBs are not received correctly. The downlink con-

trol messages (DCMs) and uplink control messages (UCMs) are transmitted over the

downlink (DL) and uplink (UL) control channels respectively, which are assumed to be

dedicated and error free, so without any contention or collision. In this scenario, the
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DCMs are usually used to indicate the resource allocation of choice and the UCMs are

usually used to indicate the amount of traffic or priority of a UE.

We assume that the sets of possible DL and UL control messages have cardinality

𝑉DCM and 𝑉UCM, respectively. For a DL (resp. UL) control vocabulary of size 𝑉DCM, the

bitlength ΥDL is equal to ⌈
(
log

2
𝑉DCM

)
⌉, where ⌈·⌉ represents the ceiling function.

At each time step 𝑡 of duration𝑇TTI, the BS can send one control message to each UE

and each UE can send one control message to the BS while being able to send protocol

data units (PDUs) through the UL-SCH. The PDU contains a TB and the UE has to select

the RBs for transmission, which is done by deciding the initial RB and also the number

of RBs. It is important to differentiate the SDU and PDU, the SDU is the packet that

arrives on the MAC from the upper layers, while the MAC PDU is represents the TB

sent to the physical layer (PHY). As such, a MAC PDU can contain multiple SDUs or

even a part of a SDU. Figure 4.1 illustrates the system model, highlighting the decisions

taken by each UE and its effect on the system.

4.1.1 Network KPIs

Differently from chapter 3 where performance was mainly compared in terms of

bit-rate, the goal for this task is to produce good protocols in terms of fairness. As

such, defining the goodput 𝐺𝑢 (in Mbit s
−1

) of an UE 𝑢 as the number of information

bits received by the BS from UE 𝑢 per unit of time:

𝐺𝑢 =
𝑁RX

𝑇 𝑇TTI
(4.5)
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The main performance metrics of interest are the average goodput, its geometric mean

and the Jain’s fairness index (JFI) [105], defined as:

JFI =

(∑
𝑢
𝐺𝑢

)
2

𝑈
∑
𝑢
(𝐺𝑢)2

. (4.6)

The collision-rate Γ is the total number of resources in which a collision happened

divided by the total number of resources in the grid:

Γ =
𝑁c

𝑇𝑀
. (4.7)

where 𝑁c represents the total number of resources in which at least two SDUs collided.

The other metrics used in chapter 3 such as delay, reliability, and coordination

metrics will not be evaluated here as the goal of this chapter is not a deep study and

comparison of protocols, but of the capabilities and limitations of the proposed method

of joint learning signaling and scheduling. Signaling overhead will be mainly evaluated

from the DL and UL vocabulary sizes.

4.2 MARL Problem Formulation

4.2.1 MARL Formulation

The problem defined above is formulated, similarly to the chapter 3, as a multi-

agent reinforcement learning (MARL) cooperative task. The UE agents need to learn

when to send data and in which RBs. Differently from the previous chapter, the UEs

do not need to learn the buffer management, as this handled by an ARQ process. Both

the UEs and BS also learn how to communicate with each other through the control
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channel, sending the relevant information in order to cooperate and avoid collisions,

which is used as input by the network nodes to decide how to act. The BS also takes

into account the spectral efficiencies of the MCS of each UE, the normalized amount

of data received from each UE and the state of each RB, i.e. idle, busy or collision-free

reception. Aside from the control messages, the UEs takes into consideration their

buffer status in order to inform its decision.

This problem is modeled as a decentralized partially observable Markov decision

process (Dec-POMDP) [92], augmented with communication. The action space of each

agent is subdivided into one environment action space and a communication action

space. The communication action represents the message sent by an agent, and it does

not affect the environment directly, but it may be passed to other agents. We also as-

sume that this is a cooperative problem, as such, all agents share the same reward. In

this thesis, the agent internal state 𝑥𝑖 may comprise not only the agent’s current ob-

servation, but also previous observations, actions and received messages. We assume

the episode ends when a maximum number of steps 𝑇 is reached.

We use the following notations:

• 𝑜𝑡 : Observation received by the agent at time step 𝑡 .

• 𝑛u𝑡 : The UCM sent from the 𝑢th UE at time step 𝑡 .

• 𝑚u

𝑡 : The DCM sent to the 𝑢th UE at time step 𝑡 .

• 𝑎u𝑡 : Environment action of the 𝑢th UE at time step 𝑡 .

• 𝑥𝑡 : Agent state at time step 𝑡 .
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Observations

The UE observation𝑜u𝑡 is an integer representing the integer division of the number

of bits in the buffer of the UE 𝑢 and its current spectral efficiency at that time 𝑡 . This

value represents the number RBs needed to send all the data.

The observation 𝑜b𝑡 received by the BS is a combination of three vectors, the chan-

nel information 𝒄 , the received data information 𝒈 and the spectral efficiency informa-

tion 𝜼:

𝑜b𝑡 = [𝒄 𝒈 𝜼] . (4.8)

The vector 𝒄 contains the channel information relative to each RB, 𝑐𝑖 , which is a discrete

variable with 𝑈 + 2 possible states:

𝑐𝑖 =



0, if the RB 𝑖 is idle

𝑢, if successfully received data from UE 𝑢 on RB 𝑖

𝑈 + 1, non-decodable energy in the RB 𝑖,

,∀𝑖 ∈ {1, . . . , 𝑀} (4.9)

where 𝑢 ∈ {1, . . . ,𝑈 }. The received data information is the normalized amount of bits

received from each UE

𝑔𝑢 =
𝑁𝑢
RX

max

𝑖
𝑁 𝑖
RX

(4.10)

and 𝜼 contains the current spectral efficiency of the MCS of each UE, 𝜂𝑢 .

Actions

Since the UE decision involves selecting the initial RB and the number of RBs for

transmission, we model the action as vector containing the main action, 𝑎m and two
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action parameters, 𝑎idx and 𝑎off , similarly to the action design in [106]. The main action

𝑎m ∈ A𝑒 = {0, 1} is interpreted as follows:

𝑎m =


0: do nothing

1: transmit data

(4.11)

The first action parameter 𝑎idx ∈ {1, · · · , 𝑀} indicates the initial RB for the contiguous

allocation and the second action parameter 𝑎off ∈ {1, · · · , 𝑀}, represents the number

of RBs allocated for transmission, also called the offset.

When compared with the formulation of chapter 3, the above formulation intro-

duces the two new action parameters, while removing one main action, the delete

option. In terms of parameters for the actor network, this action formulation has a

total size of 2 + 2𝑀 .

Communication actions

The DCM and UCM messages,𝑚 and 𝑛, are communication actions that the agents

select while also being information available to the other agent’s state as received mes-

sage. The BS communication action is the vector comprising the downlink messages

sent to all UEs 𝒎𝑡 ∈ D𝑈
, with D = {0, . . . ,𝑉DCM − 1} and D𝑛

denotes the n-ary

Cartesian power of set D. The communication action of a UE 𝑢 is a single UCM

𝑛𝑢𝑡 ∈ U = {0, . . . ,𝑉UCM − 1} and the vector of all sent UCMs is 𝒏𝑡 .

Input states

The agent state at time step 𝑡 is a tuple comprising the most recent 𝑘 observations,

actions and received messages.
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• UE u: 𝑥u𝑡 =
[
𝜉u𝑡 . . . , 𝜉

u

𝑡−𝑘
]
, where 𝜉u𝑡 =

[
𝑜u𝑡 , 𝑎

u

𝑡 , 𝑛
u

𝑡 ,𝑚
u

𝑡

]
.

• BS: 𝑥b𝑡 = (𝜉b𝑡 . . . , 𝜉b𝑡−𝑘), where 𝜉b𝑡 = (𝑜b𝑡 , 𝒏𝑡 ,𝒎𝑡 ), with 𝒏 and 𝒎 containing the

messages to and from all UEs.

This formulation is illustrated in fig. 4.2 for the BS and UE policies, highlighting the

observations and actions.

Given the above definitions, the size of the input and output layers for the actors

are:

• UE: Input size is 𝑘 (1 +𝑉DCM +𝑉UCM + 2 + 2𝑀), as the action has size 2 + 2𝑀 and

the observation is a single scalar. Output size is 2 + 2𝑀 + 𝑉UCM, corresponding

to the environment actions and the UCM.

• BS: Input size is 𝑘 ((2+𝑈 )𝑀 + 2𝑈 +𝑈𝑉UCM +𝑈𝑉DCM), as the observation has size

(2 +𝑈 )𝑀 + 2𝑈 . Output size is𝑈𝑉DCM, corresponding to communication actions

to all UEs.

The critic input size is the sum of all nodes actors inputs and outputs.

Reward

The reward function adopted is the same for all agents and defined as the geometric

mean of the goodputs of all UEs:

𝑟𝑡 =
𝑈

√√√
𝑈∏
𝑢=1

𝐺𝑢 (4.12)

The case in which 𝐺𝑢 = 0 is handled by assuming that at least one bit was received

from each UE, that is, if for an UE 𝑁RX = 0, then the reward is calculated using 𝑁 ′
RX

=
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Figure 4.2: Scheme of the inputs and outputs of the policy network of the UE and BS in the

contiguous allocation problem. The information contained in the observation is highlighted,

while also indicating the other input information. The different actions are shown as outputs

of the policies.

1 instead. This correction is only done for the reward calculation, not affecting the

network performance calculations, which are done using 𝑁𝑢
RX

.

4.2.2 Training Algorithm

Similarly to chapter 3, the reinforcement learning (RL) solution used in this chap-

ter is based on the multi-agent deep deterministic policy gradient (MADDPG) algo-

rithm [94]. Each agent has its own actor network that depends only on this agent’s

state in order to learn a decentralized policy 𝜔𝑖 parametrized by 𝜃𝑖 . Each agent also

has a centralized critic network that receives the agent states and actions of all agents

in order to learn a joint action value function 𝑄𝑖 (𝑥, 𝑎) parametrized by 𝜑𝑖 , where

𝑥 = (𝑥1, 𝑥2, . . . , 𝑥𝑛) contains all the agents’ states and 𝑎 = (𝑎1, 𝑎2, . . . , 𝑎𝑛) contains

the actions taken by all the agents.
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Similarly to the original work [94], we use the Gumbel-softmax [96] trick to soft-

approximate the discrete actions to continuous ones. The Gumbel-softmax reparame-

terization also works to balance exploration and exploitation. The exploration-exploitation

trade-off is controlled by the temperature factor 𝜁 .

Even though we use the MADDPG as the base training algorithm, we add some

improvements to it. First, we make use of parameter sharing [14] for similar network

nodes, in this case the UEs, meaning that the UEs have the same actor and critic net-

works parameters.

Secondly, we modify the neural networks architectures by using D2RL [98]. The

main idea of D2RL is to use dense connections to pass the input of the network before

every hidden layer, improving feature extraction and allowing deeper networks.

The actor and critic networks have the same architecture; a fully connected mul-

tilayer perceptron (MLP) with four hidden layers. Each hidden layer has 64 neurons

and their activation function is the rectified linear unit (ReLU).

4.3 Results and discussion

4.3.1 Baseline Solutions

We compare the proposed solution with a request-grant proportional-fair (PF) pro-

tocol. In this protocol, the UE sends a scheduling request (SR) if its transmission buffer

is not empty. The UCM sent indicates how many resources are needed by that UE, 𝑛̃RB,

varying from 0 to 𝑀 . At each time step, the BS receives zero or more SRs. The resource

allocation is done by selecting the UE 𝑢 with the largest

𝜂𝑢

𝐺𝑢

(4.13)
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Table 4.1: Simulation Parameters

Parameter Symbol Value

Number of UEs 𝑈 [2, 4, 6, 8]
Number of RBs 𝑀 [2, 4, 6, 8, 10, 12]
Size of transmission buffer 𝐵 ∞
SDU arrival probability 𝑝a [0.15, 0.3, 0.6, ]
Transport block error rate TBLER 10

−1

DCM vocabulary size 𝑉DCM [1, 2, 4, 8, 16, 32, 37, 48]
UCM vocabulary size 𝑉UCM [1, 2, 4, 8, 9, 12, 16]
Duration of episode (TTIs) 𝑇 [24, 36, 48, 96, 192]
TTI duration (ms) 𝑇TTI 0.5

Numerology 1

Number of training episodes 𝑁train 100k

Number of evaluation episodes 𝑁eval 500

Number of test episodes 𝑁test 1000

Number of randomized repetitions 𝑁rep 8

and allocating either the number of requested resources 𝑛̃RB or the remaining unal-

located RBs and repeating this selection until either all RBs or all the requesters are

allocated. The ratio in Eq. (4.13) is the achievable rate for one RE divided by the good-

put. The allocation is informed to the UE through a DCM that contains a bit-field for

scheduling grant (SG) and a field for the RB allocation, that maps to the initial RB and

the total number of RBs.

4.3.2 Simulation Procedure and Parameters

For the performance evaluation, the transmission buffer of each UE starts empty

and the traffic model is homogeneous across UEs, with SDU arrival probability 𝑝a

and the size of a SDU 𝐿SDU both are constant for all UEs. The buffer size of each

UE is assumed to have infinite capacity. The system is trained for a fixed number of

episodes 𝑁train. During training, we evaluate the policy on a fixed set of 𝑁eval eval-

uation episodes with disabled exploration and disabled learning to assess the current
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Table 4.2: Training Algorithm Parameters

Parameter Symbol Value

Memory length 𝑘 3

Replay buffer size 10
5

Batch size 1024

Number of neurons per hidden layer 64

Interval between updating policies 96

Number hidden layers 4

Activation function of hidden neurons ReLU

Interval between updating policies 96

Optimizer algorithm Adam

Learning rate 10
−3

Discount factor 0.9

Policy regularizing factor 10
−3

Gumbel-softmax temperature factor 𝜁 1

Target networks soft-update factor 10
−3

performance of the communication protocol. We then select the historical best pro-

tocol, which is the best performing one on the evaluation episodes during the whole

training procedure and its performance is further assessed in 𝑁test episodes with ex-

ploration and learning disabled, this is the final testing phase. This whole procedure

represents a single training repetition.

We evaluate a total of 𝑁rep repetitions, each with a different random seed. After

training finishes, we have successfully trained a population of 𝑁rep protocols, and we

can select the best performing protocol on the training episodes, which is the histori-

cal best across all repetitions. This selection step can be seen as a survival-of-the-fittest

approach because only one protocol of the population of 𝑁rep is chosen going forward.

A summary of the main simulation parameters is provided in table 4.1, while the pa-

rameters of the MARL training algorithms is listed in table 4.2.
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Figure 4.3: Comparison of final performance for different traffic. Parameters: Number of UEs

𝑈 = 4; number of resources 𝑀 = 8; episode length 𝑇 = 24 ; UL and DL vocabulary sizes are

𝑉UCM = 9 and 𝑉DCM = 37.

4.3.3 Learning Capabilities

In this first set of results, we evaluate the capabilities of the proposed solution to

learn protocols for different scenarios, by evaluating its performance across different

traffic models, number of RBs, number of UEs and objective.

Traffic Scalability

Figure 4.3 shows the performance of the emerged protocols produced by training

under different traffic models, with the x-axis representing the average total data ar-

riving in an episode, 𝜆total = 𝜆𝑢𝑈 . Due to how 𝜆𝑢 is calculated eq. (4.1), 𝜆total depends

on the arrival probability and the size of each arrival. In low traffic densities, the per-

formance gain from protocol emergence is small. However, the improvement over the

compared baseline increases both with arrival probability, and with total arrival in bits.
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Scalability with RBs

Figure 4.4a illustrate the final performance of emerged protocols when varying the

number of RBs while maintaining other values fixed. In the case of traffic, as increasing

the number of RBs allows more data to be transmitted, the traffic density is fixed. In

this case, the overall system traffic is assumed to have a density of 100%, that is, the

arrival bit-rate on average is equal to the amount of bits needed to fill the resource grid.

We observe the overall final performance difference between the proposed technique

and the PF baseline remains constant when increasing the number of RBs.

Scalability with UEs

In fig. 4.4b, scalability with UEs is evaluated by comparing the performance of

protocol emergence with the baseline. Since the overall traffic density in the system is

constant, when increasing the number of UEs the arrival probability is constant and the

size of arriving SDUs decrease. Increasing the number of UEs reduces the performance

gain from using protocol emergence, as the grant-based PF protocol performs well for

a high number of UEs.

It is important to highlight that scalability, both in terms of number of agents and

size of the state and action spaces, is currently a challenge in MARL [107]. This is

mainly due to the increased challenge in coordination and of the exploration. More-

over, this an important issue due to the architecture and formulation used in this work,

as increasing the number of UEs directly affects the input and output size of the BS

neural networks.
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Figure 4.4: Scalability on terms of UEs and RBs.

Learning capabilities for different objectives

One of the advantages of protocol emergence is the ability to change the objective

that the protocol should optimize for. In order to analyze the performance of protocols

emerged with different objectives, the reward function is modified in order to produce

four sets of protocols emerged for different objectives, geometric mean of goodput,

average goodput, minimum goodput and JFI. The best protocol of each set with respect

to its objective is selected, and they are compared on a set of episodes, together of the

PF baseline. The JFI objective is not purely the JFI, but it also includes the average

goodput, otherwise it would produce protocols with very low rates, but similar rates

for the UEs. Figure 4.5 highlights the performance of these protocols.

From fig. 4.5, we observe that the PF baseline is a well-rounded protocol with high

fairness, high overall goodput. However, protocol emergence allows the design of pro-

tocols that outperform it on terms of cellwide goodput, minimum service and fairness,

both in terms of JFI and geometric mean of goodput. The maxmin of goodput seems a
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Figure 4.5: Comparison of the performance of protocols emerged with different objectives.

Number of RBs is constant, 𝑀 = 8 and traffic is assumed to have a density of 100% with arrival

probability 𝑝a = 0.33 and arrival size 𝐿SDU = 18kbit. Number of UEs is 𝑈 = 6 and episode

duration 𝑇 = 96.

difficult objective to maximize as the solution training with this reward function does

not perform very well even for its objective, only outperforming the direct goodput

objective in terms of minimum service. The protocol trained to maximize the average

goodput performs really for its objective, but is a very unfair protocol, as expected.

The fairness-based objectives produce the best protocols in terms of its selected met-

ric, while performing better than the baseline even on terms of minimum service as

shown in fig. 4.5c.
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4.3.4 Effect of vocabulary sizes

For studying the effect of the UL and DL vocabulary sizes, a different scenario is

analyzed, in which the channel of each UE varies over time according to a Jakes fading

model. Also, the arrival rates of each UE is different, and these values change from

episode to episode. The arrival rates are random, with their average being constant.

A time-variant channel is important for the DL signaling, as the resource allocation

should adapt to channel changes. The heterogeneous traffic is important for the UL

signaling, so that the BS needs traffic information from the UE instead of learning the

traffic pattern.

The results of such experiments are highlighted in fig. 4.6. In fig. 4.6a, we observe

that it is possible to produce good performing protocols with any value of UL vocabu-

lary size, but in general, learning is better for values between four and ten. Increasing

the vocabulary size beyond that point makes learning more difficult, as it makes the
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(a) UL vocabulary study with values in the set
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𝑉UCM ∈ [1, 2, 4, 8, 16, 32, 37, 48]. Baseline vocab-
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2
+ 1.

Figure 4.6: UL and DL vocabulary studies. Number of RBs is constant, 𝑀 = 8 and traffic is

assumed to have a density of 100% with arrival size 𝐿SDU = 9kbit. Number of UEs is𝑈 = 6 and

episode duration 𝑇 = 96.
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signaling space too large without it being useful.

The main learning constraint is the DL vocabulary, as shown in fig. 4.6b. For low

values, even the best protocol in the population is unable to perform well, only produc-

ing well performing protocols with𝑉DCM ≥ 4. Differently from the UL case, increasing

the DL vocabulary size does not hamper learning.

4.4 Chapter Summary

In this chapter, we have evaluated the capabilities of the proposed protocol emer-

gence technique in a problem more complex than that of chapter 3, namely a con-

tiguous resource allocation problem. We provided a RL formulation for tackling this

problem, with a policy method selecting the starting RB and the total number of RBs

allocated, while also learning the signaling necessary for coordination between BS and

UEs.

The proposed solution is compared with a grant-based PF scheduler. We highlight

that the PF scheduler maximizes the sum of the logarithmic average user rates [79],

which is equivalent to maximizing the geometric mean of the average user goodput.

Due to this, frequency-domain resource allocation for the PF scheduler is optimal for

geometric mean maximization and any performance gain of the proposed solution

must come from an improved signaling and better use of time-domain resources.

Overall, protocol emergence is robust to the scaling of the system. The main con-

clusion of the learning capabilities analysis are:

1. Traffic: The proposed technique is robust to different traffic, learning well in

both low, medium and high traffic scenarios. However, the benefits of protocol

emergence are more clear on medium-high load scenarios, as shown in fig. 4.3.
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2. RBs: Again, the proposed technique is robust to scalability of RBs. However,

differently from the traffic analysis, there is no scenario that is shown to perform

better with the difference in performance being similar as shown in fig. 4.4a.

3. UEs: The challenge in terms of scalability is in terms of UEs, as highlighted in

fig. 4.4b. Scaling with traffic and RBs slightly increases the required training

time, however the training time increases significantly with the number of UEs,

needing a larger number of training episodes to converge. Besides this, the ben-

efit in terms of performance diminishes, as the grant-based baseline is optimized

for a large number of UEs.

4. Objective function: Protocol emergence has shown the capabilities of producing

well performing protocols for different objectives, as highlighted in fig. 4.5. This

is one of its biggest strengths, as it is possible to search in the protocol space for

protocols optimizing even joint objectives, for example, a protocol maximizing

goodput constrained by a minimum level of service.

The vocabulary size study was conducted with experiments designed in a way that

coordination between the nodes is necessary. This analysis showed that, although it is

possible to produce well performing individual protocols with low signaling, providing

a reasonable level of granularity to the UL and DL signaling helps produce a better set

instead of a few good ones.



Chapter 5
Protocol Emergence under Signaling

Constraints

Contents
5.1 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5.1.1 Performance Metrics . . . . . . . . . . . . . . . . . . . . . . 98

5.2 MARL Problem Formulation . . . . . . . . . . . . . . . . . . . . 100
5.2.1 MARL Formulation . . . . . . . . . . . . . . . . . . . . . . . 100

5.2.2 Training Algorithm . . . . . . . . . . . . . . . . . . . . . . . 106

5.3 Results and discussion . . . . . . . . . . . . . . . . . . . . . . . . 107
5.3.1 Baseline Solutions . . . . . . . . . . . . . . . . . . . . . . . 107

5.3.2 Simulation Procedure and Parameters . . . . . . . . . . . . 108

5.3.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

5.4 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . 111

In this chapter, protocol emergence is used to minimize the volume of control-

plane traffic in a non-contiguous resource allocation scenario. As such, instead of per-

sistent signaling as in chapter 3 and chapter 4, this chapter introduces an intermittent

signaling scenario where the nodes decide if they will send a control message or not.

94
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As a consequence of the intermittent signaling, it is possible to reduce the amount of

data that goes through the control channels.

5.1 System Model

Consider a single cell with a base station (BS) serving𝑈 user equipments (UEs) in

a uplink slotted shared channel (USC), where each UE needs to deliver data to the BS.

For the frequency domain, the available bandwidth is divided into 𝑀 resource block

groups (RBGs). A RBG is a set of consecutive resource blocks (RBs). Time domain

is assumed slotted with a fixed time-step duration of 𝑇TTI. We assume an episode of

duration 𝑇 𝑇TTIs.

The BS and UEs constitute the nodes of the system who act as independent agents.

The network nodes may exchange information, using messages through the control

channels. The decision of sending a control message is taken by the network nodes.

For example, in a given time slot, the BS may decide to send a downlink control message

(DCM) to UE 1, but not to UE 2, while only UE 2 sends a uplink control message (UCM).

Each UE has a transmission buffer of capacity 𝐵 in bits initially empty. Data ar-

rives in service data units (SDUs) of fixed size 𝐿SDU. The SDU arrival is modeled as a

Bernoulli process with probability of arrival 𝑝a. So, at each time step, a new SDU of

size 𝐿SDU is added to the buffer with probability 𝑝a, until a maximum number 𝑇 steps

is achieved. The average number of information bits arriving at each UE’s buffer in

any given episode of duration 𝑇 is then:

𝜆𝑢 = 𝑝a𝑇𝐿SDU (5.1)

We assume that a automatic repeat request (ARQ) process is used by the network nodes
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Figure 5.1: System model scheme with non-contiguous resources allocation. The buffer and

decisions of each UE are highlighted besides it. The wireless channel is shown besides the BS,

highlighting the frequency resource axis on that time slot, indicating the RBGs used by each

UE. Sending a control message is also a decision taken by the UEs and BS, this is highlighted

in how for UEs 2 and 3 the uplink (UL) and downlink (DL) control messages are not sent,

respectively.

to handle the buffer management, as such, upon successful reception of a transport

block (TB) by the BS, the UE remove those bits from its buffer.

The system is channel-aware, with each UE having a signal-to-noise ratio (SNR)

given by:

SNR𝑢 =
| ˜ℎ𝑢
√
𝜌𝑢 |2

𝜎2
𝑝𝑡 , (5.2)

where
˜ℎ𝑢
√
𝜌𝑢 is the effective channel of UE 𝑢, with

˜ℎ denoting the complex gain and 𝜌

denoting the path loss. The path loss and gains are assumed constant for the episode



97 Chapter 5. Protocol Emergence under Signaling Constraints

duration, due to its short duration. An uncorrelated flat channel with Rayleigh fading

is assumed for the complex gain calculations.

Given a SNR𝑢 , a modulation and coding scheme (MCS) is chosen by a look-up table

link adaptation method. The method chooses the highest MCS with an average error

rate lower than the target transport block error rate (TBLER) for that SNR. The spectral

efficiency, 𝜂, is the maximum number of information bits in a resource element (RE),

given by the product of the code rate 𝜈𝑟 and the modulation order 𝜚𝑚:

𝜂 = 𝜚𝑚𝜈𝑟 . (5.3)

With a selected MCS and given the number of RBs for transmission, 𝑛RB, which de-

pends on the number of RBGs, it is possible to calculate the maximum number of

information bits that can be transmitted, which is the maximum transport block size

(TBS), as:

TBSmax = 𝑛RB𝑁
RB

sc
𝑁 sh

symb
𝜚𝑚𝜈𝑟 , (5.4)

where 𝑁 RB

sc
is the number of subcarriers in a RB and 𝑁 sh

symb
is the number of symbols in

a slot. The number of RBs in a RBG depends on the bandwidth part size. Transmission

errors affect the whole TB.

The channel for the uplink data transmission is modeled as a packet erasure chan-

nel, where a TB is incorrectly received with a probability referred to as the TBLER. As

non-contiguous resource allocation is assumed, in which the UEs decide which RBGs

will carry its transmission. Collisions may happen if more than one UE transmit over

the same resource, in this case the TBs are not received correctly. The DCMs and

UCMs are transmitted over the DL and UL control channels respectively, which is not
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error-free, having an error probability given by control block error rate (CBLER). In

this scenario, the DCMs are usually used to indicate the resource allocation of choice

and the UCMs are usually used to indicate the amount of traffic or priority of a UE.

We assume that the sets of possible DL and UL control messages have cardinality

𝑉DCM and 𝑉UCM, respectively. For a DL (resp. UL) control vocabulary of size 𝑉DCM,

the bitlength ΥDL is equal to ⌈
(
log

2
𝑉DCM

)
⌉, where ⌈·⌉ represents the ceiling function.

One of the messages in a vocabulary is used to indicate if a control message was not

received, although not exclusively, as this same message is also available to be sent

directly as a control message too.

At each time step 𝑡 of duration𝑇TTI, the BS may send one control message to each

UE and each UE may send one control message to the BS while being able to send

protocol data units (PDUs) through the uplink shared channel (UL-SCH). The PDU

contains a TB and the UE has to select the RBGs for transmission, which is done by

directly deciding if it will use a RBG or not. Figure 5.1 illustrates the system model,

highlighting the decisions taken by each UE and its effect on the system. The BS and

UEs have an extra action that decides if the control message will be transmitted or not,

per time-step.

As the nodes do not need to send a control message at every step, this formulation

introduces intermittent signalling. In chapters 3 and 4, the nodes had to send a control

message at every step, which means that the control signalling was persistent in both

scenarios.

5.1.1 Performance Metrics

The performance metrics evaluated in this chapter are related to the received bit-

rate, or goodput. The goodput of an UE 𝑢,𝐺𝑢 (in Mbit s
−1

), is defined as the number of
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information bits received by the BS from UE 𝑢 per unit of time:

𝐺𝑢 =
𝑁RX

𝑇 𝑇TTI
(5.5)

We are mainly interested in the geometric mean of the goodput, as it provides a notion

of fairness:

𝐹 =
𝑈

√√√
𝑈∏
𝑢=1

𝐺𝑢 . (5.6)

Another metric of interest is the collision-rate Γ defined as the total number of

resources in which a collision happened divided by the total number of resources in

the grid:

Γ =
𝑁c

𝑇𝑀
. (5.7)

where 𝑁c represents the total number of resources in which at least two SDUs collided.

Due to the intermittent signaling, the control channel throughput, 𝑅cp, is the main

performance metric regarding the signaling overhead. It is defined as the total number

of bits transmitted in the control channel by all nodes per unit of time. It is calculated

(in kbit s
−1

) as:

𝑅cp =
𝑁DCMΥDL + 𝑁UCMΥUL

𝑇 𝑇TTI
, (5.8)

where 𝑁DCM and 𝑁UCM represent the total number of transmitted DL and UL control

messages.
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5.2 MARL Problem Formulation

5.2.1 MARL Formulation

The problem defined above is formulated, similarly to chapters 3 and 4, as a multi-

agent reinforcement learning (MARL) cooperative task. The UE agents need to learn

when to send data and in which RBGs. The medium access control (MAC) agents also

learn how and when to communicate with each other through the control channel,

sending the relevant information in order to cooperate and avoid collisions, which is

used as input by the network nodes to decide how to act. The how to communicate

is decided as a communication action indicating which control message to send. The

when to communicate is decided by an extra action that indicates if the control mes-

sage will be transmitted or not, this action is called communication control action.

The BS also takes into account the spectral efficiencies of the MCS of each UE, the

normalized amount of data received from each UE and the state of each RBG, i.e idle,

busy or collision-free reception. Aside from the control messages, the UEs takes into

consideration their buffer status in order to inform its decision.

Similarly to the previous chapters, this problem is modeled as a decentralized par-

tially observable Markov decision process (Dec-POMDP) [92], augmented with com-

munication. The action space of each agent is subdivided into one environment action

space and a communication action space. The communication action represents the

message sent by an agent, and it does not affect the environment directly, but it may

be passed to other agents. Unlike chapters 3 and 4, the transmission of the control

action depends on the extra communication control action. We also assume that this

is a cooperative problem, as such, all agents share the same reward. In this chapter, the
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agent internal state 𝑥𝑖 may comprise not only the agent’s current observation, but also

previous observations, actions and received messages. We assume the episode ends

when a maximum number of steps 𝑇 is reached.

We use the following notations:

• 𝑜𝑡 : Observation received by the agent at time step 𝑡 .

• 𝑛u𝑡 : The UCM sent from the 𝑢th UE at time step 𝑡 .

• 𝑚u

𝑡 : The DCM sent to the 𝑢th UE at time step 𝑡 .

• 𝑎u𝑡 : Environment action of the 𝑢th UE at time step 𝑡 .

• 𝑎b𝑡 : Environment action of the BS at time step 𝑡 .

• 𝑥𝑡 : Agent state at time step 𝑡 .

Besides the reward and the action modeling, the problem formulation is similar to

chapter 4.

Observations

The UE observation 𝑜u𝑡 is an integer representing integer division of the number

of bits in the buffer of the UE 𝑢 and its current spectral efficiency at that time 𝑡 .

Similarly to chapter 4, the observation 𝑜b𝑡 received by the BS is a combination

of three vectors, the channel information 𝒄 , the received data information 𝒈 and the

spectral efficiency information 𝜼:

𝑜b𝑡 = [𝒄 𝒈 𝜼] . (5.9)

The vector 𝒄 contains the channel information relative to each RBG, 𝑐𝑖 , which is a
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discrete variable with 𝑈 + 2 possible states:

𝑐𝑖 =



0, if the RBG 𝑖 is idle

𝑢, if successfully received data from UE 𝑢 on RBG 𝑖

𝑈 + 1, non-decodable energy in the RBG 𝑖,

,∀𝑖 ∈ {1, . . . , 𝑀} (5.10)

where 𝑢 ∈ {1, . . . ,𝑈 }. The received data information is the normalized amount of bits

received from each UE

𝑔𝑢 =
𝑁𝑢
RX

max

𝑖
𝑁 𝑖
RX

(5.11)

and 𝜼 contains the current spectral efficiency of the MCS of each UE, 𝜂𝑢 .

Actions

The environment action of the UE comprises the data transmission action and the

UCM control action. The environment action of the BS contains just the DCMs control

actions.

For the UE action regarding the transmission of data, the UE decision involves

the selection the RBGs used for data transmission. We model the action as vector

containing the main action, 𝑎m and an action parameter, 𝑎bmp, similarly to the action

design in [106]. The main action 𝑎m ∈ A𝑒 = {0, 1} is interpreted as follows:

𝑎m =


0: do nothing

1: transmit data.

(5.12)

The action parameter is a bitmap indicating if a RBG is used for transmission or not.
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If bit𝑚 of the bitmap has value 1, the UE will use RBG𝑚 for transmission.

Both the UEs and BS have an action, 𝑎c, determining the transmission of the control

message, called DCM or UCM control actions. For the UE, this action is interpreted as

follows:

𝑎c =


0: do not transmit the UCM

1: transmit the UCM.

(5.13)

For the BS, this action is a vector controlling the transmission of each of the𝑈 DCMs.

The interpretation of each element of this action vector is similar to the UE case.

Communication actions

Coinciding with the chapter 4, the DCM and UCM messages, 𝑚 and 𝑛, are com-

munication actions that the agents select while also being information available to the

other agent’s state as received message. The BS communication action is the vector

comprising the downlink messages sent to all UEs𝒎𝑡 ∈ D𝑈
, withD = {0, . . . ,𝑉DCM − 1}

and D𝑛
denotes the n-ary Cartesian power of set D. The communication action of a

UE 𝑢 is a single UCM 𝑛𝑢𝑡 ∈ U = {0, . . . ,𝑉UCM − 1} and the vector of all sent UCMs is

𝒏𝑡 .

Input states

The agent state at time step 𝑡 is a tuple comprising the most recent 𝑘 observations,

actions and received messages.

• UE u: 𝑥u𝑡 =
[
𝜉u𝑡 . . . , 𝜉

u

𝑡−𝑘
]
, where 𝜉u𝑡 =

[
𝑜u𝑡 , 𝑎

u

𝑡 , 𝑛
u

𝑡 ,𝑚
u

𝑡

]
.

• BS: 𝑥b𝑡 = (𝜉b𝑡 . . . , 𝜉b𝑡−𝑘), where 𝜉b𝑡 = (𝑜b𝑡 , 𝒏𝑡 ,𝒎𝑡 ), with 𝒏 and 𝒎 containing the
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messages to and from all UEs.

This formulation is illustrated in fig. 5.2 for the BS and UE policies, highlighting the

observations and actions.

Given the above definitions, the size of the input and output layers for the actors

are:

• UE: Input size is 𝑘 (1 +𝑉DCM +𝑉UCM + 2 +𝑀 + 2), as the action has size 2 +𝑀 + 2,

corresponding to the main action, the action parameter and the communication

control action. The observation is a single scalar. Output size is 2+2𝑀 +2+𝑉UCM,

corresponding to the environment actions and the UCM.

• BS: Input size is 𝑘 ((2+𝑈 )𝑀 +2𝑈 +𝑈𝑉UCM+𝑈𝑉DCM+2𝑈 ), as the observation has

size (2+𝑈 )𝑀 +2𝑈 . Output size is𝑈𝑉DCM+2𝑈 , corresponding to communication

actions to all UEs and the communication control actions.

The critic input size is the sum of all nodes actors inputs and outputs.

Reward

The reward is divided into two components, the performance objective, 𝑟𝑔, and the

signaling penalization, 𝑟𝑠 .

𝑟𝑡 = 𝑟𝑔 − 𝜅𝑟𝑠 , (5.14)

where 𝜅 denotes the signaling cost. The performance objective is the geometric mean

of the goodput:

𝑟𝑔 =
𝑈

√√√
𝑈∏
𝑢=1

𝐺𝑢 . (5.15)
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Figure 5.2: Scheme of the inputs and outputs of the policy network of the UE and BS in the non-

contiguous allocation problem. The information contained in the observation is highlighted,

while also indicating the other input information. The different actions are shown as outputs

of the policies.

Similarly to chapter 4, the case in which 𝐺𝑢 = 0 is handled by assuming that at least

one bit was received from each UE, and this correction is used only for the reward cal-

culation, not for the performance evaluations, as such, the calculation of 𝑟𝑔 is different

from 𝐹 .

The cost is fixed per message, and it does not depend on whether it is a DCM or

UCM, as such, each message costs the same, even if they have different bitlengths.

Also, differently from the performance objective, the signaling penalization is instan-

taneous, only counting the penalization regarding the current time step. The signaling
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penalization is calculated as:

𝑟𝑠 =
𝑁 𝑡

UCM
+ 𝑁 𝑡

DCM

2𝑈
, (5.16)

where 𝑁 𝑡
UCM

and 𝑁 𝑡
DCM

represent the number of uplink and downlink control messages

transmitted at time-step 𝑡 . As 𝑟𝑠 ∈ [0, 1], 𝑟𝑔 is also normalized to be under the same

interval, with 𝜅 controlling the effect of the signaling cost.

5.2.2 Training Algorithm

Similarly to chapters 3 and 4, the reinforcement learning (RL) solution used in

this chapter is based on the multi-agent deep deterministic policy gradient (MAD-

DPG) algorithm [94], improved with deep dense architecture for reinforcement learn-

ing (D2RL), as explained in section 2.2.3. Each agent has its own actor network that de-

pends only on this agent’s state in order to learn a decentralized policy𝜔𝑖 parametrized

by 𝜃𝑖 . Each agent also has a centralized critic network that receives the agent states and

actions of all agents in order to learn a joint action value function𝑄𝑖 (𝑥, 𝑎) parametrized

by 𝜑𝑖 , where 𝑥 = (𝑥1, 𝑥2, . . . , 𝑥𝑛) contains all the agents’ states and 𝑎 = (𝑎1, 𝑎2, . . . , 𝑎𝑛)

contains the actions taken by all agents.

Similarly to the original work [94], we use the Gumbel-softmax [96] trick to soft-

approximate the discrete actions to continuous ones. Additionally, we add some tech-

niques to the MADDPG that improve its learning capabilities. First, we make use of

parameter sharing [14] for similar network nodes, in this case the UEs, meaning that

the UEs have the same actor and critic networks parameters. We also make use of

D2RL [98] as the architecture of choice, using dense connections to pass the input

of the network before every hidden layer, improving feature extraction and allowing



107 Chapter 5. Protocol Emergence under Signaling Constraints

Table 5.1: Simulation Parameters

Parameter Symbol Value

Number of UEs 𝑈 4

Number of RBGs 𝑀 4

Number of RBs per RBG 1

Size of transmission buffer 𝐵 ∞
SDU arrival probability 𝑝a 0.3

Transport block error rate TBLER 10
−1

Control block error rate CBLER

[
0, 10−1

]
DCM vocabulary size 𝑉DCM 37

UCM vocabulary size 𝑉UCM 9

Duration of episode (TTIs) 𝑇 24

TTI duration (ms) 𝑇TTI 0.5

Numerology 1

Number of training episodes 𝑁train 100k

Number of evaluation episodes 𝑁eval 500

Number of test episodes 𝑁test 1000

Number of randomized repetitions 𝑁rep 8

deeper networks. The actor and critic networks have the same architecture; a multi-

layer perceptron (MLP) with four hidden layers with dense connections. Each hidden

layer has 64 neurons and their activation function is the rectified linear unit (ReLU).

5.3 Results and discussion

5.3.1 Baseline Solutions

We compare the proposed solution with a request-grant proportional-fair (PF) pro-

tocol, in which the UE sends a scheduling request (SR) if its transmission buffer is not

empty. The UCM sent indicates how many RBGs are needed by that UE, 𝑛̃RB, vary-

ing from 0 to 𝑀 . At each time step, the BS receives zero or more SRs. The resource
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allocation is done by selecting the UE 𝑢 with the largest

𝜂𝑢

𝐺𝑢

(5.17)

and allocating either the number of requested resources 𝑛̃RB or the remaining unal-

located RBGs and repeating this selection until either all RBGs or all the requesters

are allocated. The ratio in Eq. (5.17) is the achievable rate for one RE divided by the

goodput. The allocation is informed to the UE through a DCM that contains a bit-field

for scheduling grant (SG) and a bitmap for the RBG allocation.

5.3.2 Simulation Procedure and Parameters

For the performance evaluation, the transmission buffer of each UE starts empty,

while the traffic model is homogeneous across UEs, with the SDU arrival probability

𝑝a and the size of a SDU 𝐿SDU both being constant for all UEs. For simplicity and

ease of comparison with chapter 4, we assume that each RBG contains one RB. The

buffer size of each UE is assumed to have infinite capacity. The system is trained for a

fixed number of episodes 𝑁train. During training, we evaluate the policy on a fixed set

of 𝑁eval evaluation episodes with disabled exploration and disabled learning to assess

the current performance of the communication protocol. We then select the historical

best protocol, which is the best performing one on the evaluation episodes during the

whole training procedure and its performance is further assessed in 𝑁test episodes with

exploration and learning disabled, this is the final testing phase. This whole procedure

represents a single training repetition.

We evaluate a total of 𝑁rep repetitions, each with a different random seed. After

training finishes, we have successfully trained a population of 𝑁rep protocols, and we
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Table 5.2: Training Algorithm Parameters

Parameter Symbol Value

Memory length 𝑘 3

Replay buffer size 10
5

Batch size 1024

Number of neurons per hidden layer 64

Interval between updating policies 96

Number hidden layers 4

Activation function of hidden neurons ReLU

Interval between updating policies 96

Optimizer algorithm Adam

Learning rate 10
−3

Discount factor 0.9

Policy regularizing factor 10
−3

Gumbel-softmax temperature factor 𝜁 1

Target networks soft-update factor 10
−3

can select the best performing protocol on the training episodes, which is the histori-

cal best across all repetitions. This selection step can be seen as a survival-of-the-fittest

approach because only one protocol of the population of 𝑁rep is chosen going forward.

A summary of the main simulation parameters is provided in table 5.1, while the pa-

rameters of the MARL training algorithms is listed in table 5.2.

5.3.3 Results

In the following set of experiments, we train a population of protocols for differ-

ent values of signaling cost. In fig. 5.3, the effect of the signaling cost is highlighted

in contrast to different metrics. The main conclusions we can draw from this set of

experiments are:

• Protocol emergence with intermittent signaling can produce protocols with good

performance in terms of fairness as illustrated in fig. 5.3a, however, increasing
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Figure 5.3: Performance evaluation for different values of the signaling cost. Parameters: Num-

ber of UEs 𝑈 = 4; number of resources 𝑀 = 4; episode length 𝑇 = 24 ; UL and DL vocabulary

sizes are 𝑉UCM = 5 and 𝑉DCM = 16.

the signaling cost leads to a decrease in performance and a higher variance.

• Protocol emergence with persistent signaling outperforms both the protocol emer-

gence with intermittent signaling in terms of geometric mean of the goodput.

• Increasing the signaling cost leads to reducing the signaling used by the emerged

protocol, as illustrated in fig. 5.3b, moreover, even with zero cost, the emerged

protocol still uses intermittent signaling instead of a persistent signaling.



111 Chapter 5. Protocol Emergence under Signaling Constraints

• The control channel bit-rate decreases with the collision rate, as shown in fig. 5.3c.

This is natural, as reducing the amount of control exchanges leads to a lower co-

ordination, which can be perceived by the increase in collisions.

An interesting observation from fig. 5.3b is that even at zero cost, the emerged

protocol does not use persistent signalling. This happens because there is no incentive

to do so, as it achieves a low collision-rate and a good performance, even if below the

persistent-signalling approach, thus, choosing only to communicate when needed.

5.4 Chapter Summary

In this chapter, we have proposed a RL formulation for protocol emergence where

the nodes can decide if they will transmit a control message, which can reduce the con-

trol channel bit-rate. The scenario studied is a non-continguous resource allocation.

The results indicate the capabilities of the MARL framework to produce protocols

with reduced signaling, which can be controlled by the reward function with a sig-

naling cost weight. However, reducing the signaling bit-rate leads to a lower level of

coordination, reducing the overall network performance and increasing the collision-

rates. The proposed idea together with a vocabulary size variation can lead to the

design of protocols with very low signaling overhead, which might be of interest in

some scenarios with reduced bandwidth, reducing the amount of resources used for

control signaling and increasing the resources used for data transmission.
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6.1 Thesis Summary

The main goals of this thesis was to provide the foundations to protocol emergence,

highlighting the challenges involved with it, study its learning capabilities and its abil-

ity to control the amount of signaling used. In addition, it also aimed at providing an

overview of multiple-access and the procedures involved with it in fifth generation

(5G) new radio (NR).

Regarding the proposed studies and their performance evaluations, on one hand,

chapter 3 provided a framework for protocol emergence based on multi-agent rein-

forcement learning (MARL), with results highlighting its superior performance when

compared with other protocol design techniques. Besides, it also described methods for

performance evaluation, interpretation, cross-node coordination and signaling over-

112
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head quantification, with the results reinforcing the utility of such framework. On

the other hand, chapter 4 applied the protocol emergence idea to a more challenging

problem of contiguous resource allocation, showing its robust learning capabilities for

different traffic densities and for different objective functions. Moreover, it showed

its scaling capabilities in terms of user equipments (UEs) and resource blocks (RBs),

while also showing that providing a reasonable degree of signaling granularity helps

producing a better set of protocols. Lastly, chapter 5 proposed a intermittent signal-

ing formulation, in which the nodes decide if a control message will be sent, instead of

always sending a control message. The results showed that the proposed MARL frame-

work can produce protocols with reduced signaling and the signaling throughput can

be controlled by a signaling cost weight added to the reward function, although reduc-

ing the signaling throughput can lead to lower coordination and worst performance.

6.2 Future Directions

In terms of future perspectives, the idea of jointly learning the control signaling

and the network control optimization can be extended to some different problems in

wireless communications. Such problems include: adaptive modulation and coding

(AMC) [108]–[110], uplink power control [111], [112], link adaptation [113], uplink

transmission precoder selection [114] and beam management [115]–[117]. These prob-

lems and the signaling used to support it are highlighted in table 6.1.

Besides applying to protocol emergence to new problems, scheduling is still an in-

teresting avenue for protocol emergence, where it can be applied to scenarios such as

non-orthogonal multiple access [56], [118], ultra-reliable and low-latency communica-

tions (uRLLC) [119], vehicle-to-everything (V2X) [120] and extended reality (XR) [121],

[122]. Moreover, protocol emergence can be extended to goal-oriented communica-
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Table 6.1: Possible problems and the signaling involved.

Wireless Problem Signaling Messages

Uplink power control
Power headroom report (PHR) and

transmit power control (TPC) command

Adaptive modulation and coding
Channel quality indicator (CQI) and

modulation and coding scheme (MCS) index

Downlink link adaptation

Channel quality indicator (CQI),

rank indicator (RI),

precoding matrix indicator (PMI) and

modulation and coding scheme (MCS)

Uplink precoder selection Transmit precoding matrix indicator (TPMI)

Beam management
Sounding reference signal (SRS) and

channel state information (CSI) requests

tions [123], [124] providing the means to produce goal-oriented protocols [125].

Another axis for perspectives relates to the fundamentals for protocol emergence

and on the study of protocols. Possible directions include:

1. Studying coordination: Propose additional metrics for evaluation of the control-

plane or use such metrics during training to achieve better coordination, as pro-

posed by [100].

2. Profiling the protocols: Compare the effect of different reward functions and

different system models on the characteristics of the protocol.

3. Protocol interpretation: Focusing on better tools to interpret the emerged com-

munication, such as explainable artificial intelligence (XAI) [126] based on Shap-

ley values [127] or causal models [128].

Scalability is currently a challenge in MARL [107], [129], both in terms of number

of agents and size of the state and action spaces. Naturally, this is also a challenge for

protocol emergence, which calls for learning algorithms able to handle this challenge

or engineering techniques employed to deal with scalability.
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Moreover, the system models addressed in this thesis are simplistic, as it assumes

a dedicated control channel for all UEs. For a low number of UEs, that assumption is

possible to be made, as the amount of control channel information exchanged is much

smaller than the data exchanged, thus, very few resources in the system need to be

separated for control. However, a more realistic scenario can be interesting, where the

total number resources is shared between control and data and this approach can be

compared with a separation approach, which would ensure dedicated resources for the

control signalling.

On terms of reinforcement learning (RL) methods, other architectures can be pro-

posed to deal better with the intricacies of wireless protocols. Of particular interest, we

highlight attention mechanisms [130], decision transformers [131] and model-based

RL [132], [133].

6.3 Main Contributions

The present thesis makes advancements in wireless communications and protocol

design through the exploration of protocol emergence. It provides the fundamentals

for protocol emergence through a framework for producing and studying such proto-

cols. The ability to autonomously optimize protocols is pertinent to the development

of self-organizing and self-optimizing networks, while also being crucial for adapting

to dynamic and complex wireless environments. Moreover, insights from this research

can contribute to future wireless communication standards, as the end goal of protocol

emergence research would be the generation of a fully learned communication system.

Additionally, it studies the learning capabilities, limitations, and scalability chal-

lenges for the proposed protocol emergence, while also highlighting its performance

benefits when applied to resource allocation. The improved resource management
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and signaling utilization is fundamental to enhancing the performance and capacity

of wireless systems. Furthermore, the adaptive nature of protocol emergence can be

key to handling diverse traffic scenarios and different objective functions, making it a

versatile solution to be used across a wide range of scenarios.

It also makes contribution to control signaling optimization, as protocol emergence

provides the means to produce a optimized control-plane, reducing signaling overhead

while maintaining an effective performance. Reducing signaling overhead is important

both to conserve energy and to allow more resources to be used for data transmission.

In summary, this thesis contributes to advancing the autonomy, efficiency, and

adaptability of wireless protocols. It provides understanding of protocol emergence by

autonomously learning effective control signaling schemes, addressing protocol design

challenges, and paving the way for future research in emergent protocols. As such,

this research may be of interest for both telecommunications and artificial intelligence

communities.
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Appendix A
Résumé en Français

A.1 Contexte

L’idée principale de la présente thèse est de laisser émerger le sens des messages

de signalisation de manière renforcée au niveau des nœuds du réseau pendant qu’ils

effectuent une tâche de communication. Par sens des messages, nous entendons une

correspondance entre les messages de contrôle reçus au temps 𝑡 < 𝑡 ′ et les actions

(actions de signalisation de contrôle, ainsi que les actions d’accès au canal) prises au

temps 𝑡 ≥ 𝑡 ′. Comme la signalisation est apprise conjointement avec la tâche, un

protocole spécifique à la tâche peut être produit de cette manière. Nous nous attendons

à ce que les techniques d’apprentissage de protocole contribuent de plus en plus à

l’intelligence native de l’interface radio, dont les principales propriétés sont :

• Automatisation: La reproductibilité et la rapidité peuvent être atteintes avec la

génération automatisée de protocoles.

• Personnalisation: La capacité de concevoir des protocoles adaptés à une appli-

cation spécifique.

134
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• Optimalité: Recherche automatisée de l’espace de signalisation, permettant la

sélection de protocoles avec le moins de surcharge.

Les principaux objectifs de ce travail sont les suivants :

1. Fournir les fondements de l’émergence de protocoles pour permettre des avancées

futures dans ce domaine pour les systèmes de communication de prochaine généra-

tion.

2. Introduire l’émergence de protocoles de la couche de contrôle d’accès au sup-

port (medium access layer - MAC), mettant en évidence les différents défis et

avantages qui y sont associés.

3. Développer un cadre pour l’émergence de protocoles MAC qui permet non seule-

ment de produire de nouveaux protocoles, mais aussi de comparer différents pro-

tocoles et d’interpréter les messages de signalisation.

4. Étudier les performances des protocoles MAC dans un problème difficile d’allocation

de ressources, évaluant ses capacités d’apprentissage dans différentes conditions

système.

5. Fournir une formulation pour contrôler la quantité d’échanges de signalisation,

permettant un contrôle fin du débit de signalisation.

6. Indiquer des orientations pour les futures recherches dans le domaine, à la fois

sur l’étude de l’émergence de protocoles et sur d’autres applications.
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A.2 Cadre pour l’émergence de protocoles MAC

A.2.1 Introduction

Le principal objectif du cadre proposé est d’établir les fondements de l’émergence

de protocole, d’investiguer son bénéfice par rapport à d’autres techniques de concep-

tion de protocole et de discuter de la manière d’étudier efficacement les protocoles.

Ainsi, les nouvelles connaissances obtenues à partir de cela concernent :

• Comparaison de différentes méthodes pour apprendre un protocole.

• Étude de la taille du vocabulaire: Nous évaluons les capacités de l’émergence

de protocole à réduire la quantité de signalisation utilisée.

• Caractérisation des protocoles: Nous proposons de nouveaux indicateurs clés

de performance (key performance indicators - KPIs) et des métriques pour com-

parer les protocoles émergents et les interpréter en utilisant la théorie de l’information.

• Interprétation du protocole: Nous étudions l’utilisation des messages de con-

trôle par le protocole émergent.

L’analyse de performance est effectuée dans un problème d’accès multiple en liaison

montante.

A.2.2 Modèle du Système

Dans une cellule unique avec une station de base (base station - BS) desservant

𝑈 équipements utilisateurs (user equipments - UEs) dans un canal partagé montant à

fentes, où chaque UE doit transmettre des données à la BS. On suppose que les tampons

de chaque UE sont initialement vides et ont une capacité de 𝐵 unités de données de

service (service data units - SDUs). Le modèle de trafic pour les arrivées de SDU suit
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un processus de Bernoulli. La tâche de transmission a un horizon fixe 𝑇 en termes de

créneaux horaires.

Les nœuds du réseau, les UE et les BS, sont considérés comme des preneurs de

décision capables d’échanger des informations à l’aide de messages via le canal de

contrôle. Ces messages sont transmis via des canaux de contrôle supposés dédiés et

exempts d’erreurs. L’ensemble des messages de contrôle possibles en liaison montante

et descendante a une cardinalité de 𝑉UCM et 𝑉UCM respectivement. À chaque pas de

temps, la BS peut envoyer un message de contrôle à chaque UE, et chaque UE peut

envoyer un message de contrôle à la BS. De plus, les UE peuvent également envoyer

des unités de données de protocole (protocol data units - PDUs) via le canal partagé ou

supprimer une SDU de leur tampon.

En termes de métriques de performance, le débit utile est la principale métrique

de performance d’intérêt. Le débit utile est calculé comme la quantité de données

d’information reçue par le BS pendant toute la durée de la tâche de transmission de 𝑇

créneaux temporels. En plus de cela, le taux de collision et la fiabilité sont également

utilisés pour comparer les protocoles. Enfin, deux métriques basées sur l’information

mutuelle sont proposées, dont l’une est une nouveauté, afin de mesurer le degré de

coordination du protocole. Ces métriques quantifient la relation entre une action d’UE

et le message qui a été récemment reçu du BS, ainsi que la relation entre le message

envoyé par le BS et les messages reçus par les UEs.

A.2.3 Formulation du Problème comme MARL

Le problème est formulé comme une tâche coopérative d’apprentissage par ren-

forcement multi-agent (multi-agent reinforcement learning - MARL), où les couches

MAC des nœuds du réseau sont des agents RL qui doivent apprendre à communiquer
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entre eux pour résoudre une tâche de transmission en liaison montante. De plus, l’UE

doit apprendre quand envoyer des données par le biais du canal partagé et quand sup-

primer une SDU. Pour décider comment agir, les agents doivent prendre en compte les

messages reçus des autres agents.

En termes de formulation d’apprentissage par renforcement (reinforcement learn-

ing - RL), les observations sont définies comme suit:

• Observation de la BS: L’état du canal, c’est-à-dire inactif, occupé ou réception

sans collision. L’état occupé se produit lorsque la BS ne peut pas décoder l’information

reçue, soit en raison d’une collision, soit en raison des conditions du canal. À son

tour, la réception sans collision se produit lorsque la BS peut décoder avec succès

la PDU reçue et sa valeur représente de chaque UE la PDU décodée provient.

• Observation de l’UE: Le nombre de SDUs dans le tampon à un moment donné. Il

représente l’état du tampon d’une UE donnée.

Alors que l’UE a trois actions possibles à choisir:

• Ne rien faire: Elle ne transmet pas une PDU ni ne supprime une SDU.

• Transmettre: Elle transmet la plus ancienne SDU dans le tampon.

• Supprimer: Elle supprime la plus ancienne SDU dans le tampon.

De plus, les nœuds ont une action supplémentaire, appelée action de communica-

tion. Elle est représentée par les messages de contrôle en liaison montante ou descen-

dante à transmettre tout en étant également disponible à l’état de l’autre agent en tant

que message reçu. Pour le BS, cette action est un vecteur contenant tous les messages

de liaison descendante envoyés à toutes les UE, tandis que pour l’UE, c’est une seule

valeur avec le message à envoyer au BS.
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La récompense est la même pour tous les agents, car il s’agit d’une tâche coopéra-

tive, et elle vise à maximiser le bon débit tout en cherchant à maximiser la fiabilité.

La fonction est une somme des contributions de chaque UE, et pour chaque UE, une

pénalisation est attribuée si elle supprime une SDU qui n’a pas été reçue par la BS et

une récompense est attribuée si la BS reçoit avec succès de nouvelles données de cette

UE.

L’algorithme d’apprentissage choisi est le gradient de politique déterministe multi-

agent (multi-agent deep deterministic policy gradient - MADDPG). Deux modifications

sont ajoutées à cet algorithme:

• Départ RL (jump-start RL): Une méthode pour tirer parti d’une politique d’expert

pour améliorer les performances d’apprentissage.

• D2RL: Une modification de l’architecture qui améliore les performances globales

des réseaux de neurones RL en utilisant des connexions denses.

A.2.4 Résultats de Simulation

Les techniques d’apprentissage sont comparées à deux baselines basés sur des rè-

gles, une baseline sans contention basée sur des autorisations et une baseline basée

sur la contention. Un ensemble d’expériences est réalisé avec plusieurs résultats afin

d’étudier les avantages de l’émergence de protocole et comment étudier de tels proto-

coles.

Les techniques d’apprentissage sont comparées à deux références basées sur des

règles, une basée sur une attribution sans contention et une autre basée sur la con-

tention. Une série d’expériences est menée avec plusieurs résultats afin d’étudier les

avantages de l’émergence de protocole et la manière d’étudier de tels protocoles.
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Le premier ensemble d’expériences compare différentes méthodes de conception

de protocoles:

1. Émergence de protocole: Le vocabulaire du plan de contrôle, les politiques et les

politiques d’accès au canal des UEs et des BS sont appris.

2. Apprentissage de protocole: Les politiques de plan de contrôle et d’accès au canal

des UE sont apprises, tandis que la BS suit une référence basée sur une attribution

avec une politique de plan de contrôle fixe.

3. Apprentissage d’accès au canal: Seule la politique d’accès au canal des UE est

apprise, tandis que leur plan de contrôle et la BS suivent la référence basée sur

une attribution.

Les résultats montrent que, bien que l’émergence de protocole prenne plus de temps à

apprendre que les autres approches, elle présente des performances supérieures une

fois stabilisée par rapport aux autres approches. Les résultats illustrent également

l’adaptabilité de l’émergence de protocole dans des scénarios de taux d’erreur réduit.

Alors que les autres approches de conception de protocoles atteignent un plateau lors

de la réduction du taux d’erreur, les performances de l’émergence de protocole contin-

uent d’augmenter.

Le deuxième ensemble de résultats concerne la production de protocoles avec

l’émergence de protocoles. Il compare différentes algorithmes d’entraînement et dif-

férentes configurations de vocabulaire. Les points importants sont les suivants :

1. Tirer parti d’un expert peut être bénéfique: cela accélère l’apprentissage, bien

que cela ait l’inconvénient de limiter le vocabulaire du plan de contrôle pour

qu’il soit identique à celui de l’expert, limitant la recherche dans l’espace de sig-
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nalisation.

2. L’émergence de protocoles permet de réduire la signalisation: Comme l’émergence

de protocoles peut être utilisée avec différentes quantités de signalisation en

modifiant les tailles de vocabulaire, l’avantage de cette technique devient clair.

Elle permet de produire des protocoles avec moins de signalisation que les base-

lines comparées, tout en maintenant les performances.

Cela est suivi par des résultats montrant la comparaison des protocoles en termes

de coordination et également en termes de différentes métriques de performance du

réseau. Les résultats de la coordination montrent qu’une coordination basée sur une

signalisation plus stricte conduit à une performance accrue. La caractérisation des

protocoles en termes de métriques vise à fournir un profil des protocoles mettant en

évidence les différents compromis tels que le délai, le taux de collision, le débit et la

fiabilité. De plus, cela montre également que le profil d’un protocole peut être contrôlé

par la fonction de récompense en concevant un protocole qui vise à être plus économe

en énergie.

Enfin, la probabilité conditionnelle est utilisée pour étudier et interpréter le sens

des messages de contrôle. Cette étude montre qu’il est possible de comprendre le sens

de la communication émergente tout en illustrant également que ce sens peut être flu-

ide, le sens d’un message pouvant changer en fonction du contexte. Cette signification

contextuelle est ce qui permet aux protocoles émergents de bien performer même avec

une signalisation réduite.

A.2.5 Conclusion

En résumé, nous avons proposé un nouveau cadre pour l’étude des protocoles

émergents, comprenant la production de protocoles, l’analyse de la coordination, le
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profilage des protocoles et leur interprétation. Nous avons démontré comment, en

utilisant des techniques d’émergence de protocoles, les nœuds radio peuvent appren-

dre le vocabulaire et la politique de signalisation, ainsi que la politique d’accès au canal,

équivalente au contrôle de la couche physique par les agents. Nous avons également

montré que le protocole moyen émergé surpasse deux baselines très différentes (sans

contention et basée sur la contention) et mis en évidence les forces de ces méthodes.

A.3 Émergence de Protocole pour l’Allocation de Ressources Con-

tiguës

A.3.1 Introduction

Dans ce chapitre, l’accent a été mis sur l’étude des performances de l’émergence

de protocoles dans un problème plus complexe, évaluant ses capacités d’apprentissage,

sa scalabilité et ses limitations. Le scénario étudié concerne la planification avec une

allocation de ressources dans le domaine fréquentiel de manière contiguë.

A.3.2 Modèle du Système

Dans une seule cellule avec une base station (BS) desservant 𝑈 UEs sur un canal

partagé à fentes en liaison montante, où chaque UE doit transmettre des données à la

BS. La bande passante disponible dans le domaine fréquentiel est divisée en blocs de

ressources (resource blocks - RBs), tandis que le domaine temporel est supposé être en

fentes avec une durée de pas de temps fixe. On suppose que les tampons de chaque

UE sont initialement vides et ont une capacité de 𝐵 bits. Le modèle de trafic pour les

arrivées des SDUs suit un processus de Bernoulli, et les SDU ont une taille constante

en bits. Un processus de demande de répétition automatique (automatic repeat request

- ARQ) est utilisé par les nœuds du réseau pour gérer les tampons, ainsi, lors de la
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réception réussie d’un bloc de transport par la BS, l’UE retire ces bits du tampon. La

tâche de transmission a un horizon fixe𝑇 en termes de fentes temporelles. Le système

est conscient du canal, chaque UE ayant un rapport signal/bruit (signal-to-noise ratio

- SNR), en supposant un canal plat et corrélé dans le temps avec un évanouissement

de Rayleigh.

Les nœuds du réseau, UEs et BS, sont supposés être des décideurs capables d’échanger

des informations en utilisant des messages via le canal de contrôle. Ces messages sont

transmis par des canaux de contrôle supposés dédiés et sans erreur. L’ensemble des

messages de contrôle possibles en liaison montante et en liaison descendante a une

cardinalité de 𝑉UCM et 𝑉UCM. À chaque pas de temps, la BS peut envoyer un message

de contrôle à chaque UE, et chaque UE peut envoyer un message de contrôle à la BS. De

plus, les UEs peuvent également envoyer un bloc de transport à travers le canal partagé,

en décidant quels RB utiliseront pour la transmission. La transmission se fait à travers

des RB adjacents, et des collisions peuvent survenir si plusieurs UEs transmettent sur

la même ressource, auquel cas le bloc de transport entier est perdu.

En termes de métriques de performance, la moyenne géométrique des débits utiles

est la principale métrique de performance d’intérêt, car elle fournit une mesure de

l’équité. Le débit utile est calculé comme la quantité de données d’information reçue

par la BS pendant toute la tâche de transmission de 𝑇 fentes temporelles.

A.3.3 Formulation du Problème comme MARL

Le problème est formulé comme une tâche coopérative d’apprentissage par ren-

forcement multi-agent. Les agents UE doivent apprendre quand envoyer des données

et dans quels RB. Les UEs et la BS apprennent également comment communiquer entre

eux via le canal de contrôle, en envoyant les informations pertinentes pour coopérer et
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éviter les collisions, utilisées en entrée par les nœuds du réseau pour décider comment

agir.

En termes de formulation RL, les observations sont définies comme suit :

• Observation de la BS: Un vecteur avec les rendements spectraux du schéma de

modulation et de codage (modulation and coding scheme - MCS) de chaque UE,

la quantité normalisée de données reçues de chaque UE et l’état de chaque RB,

c’est-à-dire, libre, occupé ou réception sans collision de quel UE.

• État de l’UE: Le nombre de RB nécessaires pour transmettre l’ensemble des don-

nées du tampon à un moment donné, compte tenu de son MCS. Il représente

l’état du tampon d’une UE donnée en termes de RB nécessaires.

Alors que l’action de l’UE est divisée en 3 composantes, une action principale et deux

paramètres d’action, chacun ayant un nombre de valeurs possibles :

• Action principale: Ne rien faire ou transmettre des données

• Paramètre d’action 1: Indique le RB initial pour l’allocation contiguë.

• Paramètre d’action 2: Représente le nombre de RB alloués pour la transmission.

De plus, les nœuds ont une action supplémentaire, appelée action de communica-

tion. Elle est représentée par les messages de contrôle en liaison montante ou descen-

dante à transmettre tout en étant également disponible à l’état de l’autre agent en tant

que message reçu. Pour la BS, cette action est un vecteur contenant tous les messages

de liaison descendante envoyés à toutes les UEs, tandis que pour l’UE, c’est une seule

valeur avec le message à envoyer à la BS.

La récompense est la même pour tous les agents, car il s’agit d’une tâche coopéra-

tive, et elle vise à maximiser l’équité. Elle est définie comme la moyenne géométrique
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des débits utiles de toutes les UEs.

L’algorithme d’apprentissage choisi est le gradient de politique déterministe multi-

agent avec D2RL.

A.3.4 Résultats de Simulation

La solution proposée est comparée à un schéma de planification basé sur l’ordonnanceur

à équité proportionnelle. Plusieurs expériences sont menées pour évaluer les capacités

d’apprentissage des méthodes proposées.

Les premières expériences évaluent la scalabilité de l’émergence de protocoles en

termes de scénarios de trafic, de nombre d’UE et de nombre de RB disponibles. L’étude

de la scalabilité du trafic montre que dans les régimes de trafic faible, l’émergence de

protocoles a des performances similaires à la baseline, mais la surpasse à mesure que

la densité de trafic augmente. Les résultats illustrent également la scalabilité avec la

bande passante, l’écart de performance entre l’émergence de protocoles et la baseline

étant similaire lors de l’augmentation de la bande passante. La scalabilité avec les UEs

est plus difficile, car le protocole basé sur l’octroi est conçu pour bien fonctionner dans

des scénarios avec de nombreuses UEs, et la performance dans de tels scénarios est

presque la même en termes d’équité.

La deuxième série d’expériences évalue les capacités d’apprentissage pour dif-

férentes fonctions objectives. L’ensemble des fonctions objectives comprend : le débit

utile moyen, la moyenne géométrique du débit utile, le débit utile minimal et l’indice de

justice de Jain (JFI). Ces résultats montrent que la baseline PF est un protocole équilibré

avec un débit utile global élevé et une grande équité. Cependant, l’émergence de pro-

tocoles permet la conception de protocoles qui la surpassent en termes de débit utile

global, de service minimal et d’équité.
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La troisième série d’expériences étudie l’effet des tailles de vocabulaire, en conce-

vant des expériences avec des modèles de trafic hétérogènes pour les UEs et un canal

variable. Les résultats de ces expériences montrent qu’il est possible de produire des

protocoles performants avec n’importe quelle valeur de taille de vocabulaire en liaison

montante, mais en général, l’apprentissage est meilleur pour des valeurs entre quatre

et dix. Augmenter la taille du vocabulaire au-delà de ce point rend l’apprentissage plus

difficile, car cela rend l’espace de signalisation trop grand sans qu’il soit utile. La prin-

cipale contrainte d’apprentissage est le vocabulaire en liaison descendante, car pour

des valeurs très basses, l’émergence de protocoles est incapable de produire des pro-

tocoles avec de bonnes performances, ne produisant que des protocoles performants

après un certain point. Contrairement au cas en liaison montante, augmenter la taille

du vocabulaire en liaison descendante n’entrave pas l’apprentissage.

A.3.5 Conclusion

En résumé, nous avons évalué les capacités de la technique proposée d’émergence

de protocoles dans un problème plus complexe, à savoir un problème d’allocation de

ressources contiguës. Nous avons fourni une formulation RL pour aborder ce prob-

lème, avec une méthode de politique sélectionnant le RB de départ et le nombre to-

tal de RB alloués, tout en apprenant également la signalisation nécessaire pour la

coordination entre la BS et les UEs. Les résultats mettent en évidence les capacités

d’apprentissage et les limitations de la méthode proposée.



147 Appendix A. Résumé en Français

A.4 Émergence de Protocole sous Contraintes de Signalisation

A.4.1 Introduction

Dans ce chapitre, l’émergence de protocoles a été utilisée pour adapter la densité de

la signalisation de contrôle dans un scénario de planification impliquant une allocation

de ressources non contiguë. Ainsi, au lieu d’une signalisation persistante comme dans

les chapitres 3 et 4, ce chapitre introduit un scénario de signalisation intermittente où

les nœuds décident s’ils vont envoyer un message de contrôle ou non. En conséquence

de la signalisation intermittente, il est possible de réduire la quantité de données qui

transite par les canaux de contrôle.

A.4.2 Modèle du Système

Dans une seule cellule avec une BS desservant𝑈 UEs sur un canal partagé à fentes

en liaison montante, où chaque UE doit transmettre des données à la BS. La bande

passante disponible dans le domaine fréquentiel est divisée en RBs, qui sont regroupés

en groupes de blocs de ressources (resource block group - RBG), tandis que le domaine

temporel est supposé être en fentes avec une durée de pas de temps fixe. On suppose

que les tampons de chaque UE sont initialement vides et ont une capacité de 𝐵 bits. Le

modèle de trafic pour les arrivées des SDUs suit un processus de Bernoulli, et les SDUs

ont une taille constante en bits. Un processus ARQ est utilisé par les nœuds du réseau

pour gérer les tampons, ainsi, lors de la réception réussie d’un bloc de transport par

la BS, l’UE retire ces bits du tampon. La tâche de transmission a un horizon fixe 𝑇 en

termes de fentes temporelles. Le système est conscient du canal, chaque UE ayant une

SNR, en supposant un canal plat et corrélé dans le temps avec un évanouissement de

Rayleigh.
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Les nœuds du réseau, UEs et BS, sont supposés être des décideurs capables d’échanger

des informations en utilisant des messages via le canal de contrôle. Ces messages sont

transmis par des canaux de contrôle supposés dédiés et sans erreur. L’ensemble des

messages de contrôle possibles en liaison montante et en liaison descendante a une

cardinalité de 𝑉UCM et 𝑉UCM. À chaque pas de temps, la BS peut envoyer un message

de contrôle à chaque UE et chaque UE peut envoyer un message de contrôle à la BS.

Importamment, les nœuds décident s’ils vont transmettre un message de contrôle ou

non, permettant un régime de signalisation intermittente. De plus, les UEs peuvent

également envoyer un bloc de transport à travers le canal partagé, en décidant quels

RBG elles utiliseront pour la transmission, de manière non contiguë. Des collisions

peuvent se produire si plusieurs UEs transmettent sur la même ressource, auquel cas

le bloc de transport entier est perdu.

En termes de métriques de performance, la moyenne géométrique des débits utiles

est la principale métrique de performance d’intérêt, car elle fournit une mesure de

l’équité. Le débit utile est calculé comme la quantité de données d’information reçue

par la BS pendant toute la tâche de transmission de 𝑇 fentes temporelles. Le débit de

signalisation est une autre métrique importante à suivre, ainsi que le taux de collision.

A.4.3 Formulation du Problème comme MARL

Le problème est formulé comme une tâche coopérative d’apprentissage par ren-

forcement multi-agent. Les agents UE doivent apprendre quand envoyer des données

et dans quels RBG. Les UEs et la BS apprennent également comment et quand commu-

niquer entre eux via le canal de contrôle.

En termes de formulation RL, les observations sont définies comme suit :

• Observation de la BS : Un vecteur avec les rendements spectraux du MCS de
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chaque UE, la quantité normalisée de données reçues de chaque UE et l’état de

chaque RBG, c’est-à-dire, libre, occupé ou réception sans collision de quel UE.

• État de l’UE : Le nombre de RBG nécessaires pour transmettre l’ensemble des

données du tampon à un moment donné, compte tenu de son MCS. Il représente

l’état du tampon d’une UE donnée en termes de RBG nécessaires.

L’action d’une UE comprend l’action de transmission de données et l’action de

contrôle UCM. L’action de transmission de données est divisée en deux composantes,

l’action principale et un paramètre d’action :

• Action principale: Ne rien faire ou transmettre des données

• Paramètre d’action: Une bitmap indiquant si un RBG est utilisé pour la trans-

mission ou non.

L’action de contrôle UCM a deux valeurs possibles, interprétées comme :

• Transmettre l’UCM.

• Ne pas transmettre l’UCM.

La BS n’a que l’action de contrôle DCM, qui est un vecteur contrôlant la transmission

de chacun des𝑈 DCMs. L’interprétation de chaque élément de ce vecteur d’action est

similaire au cas de l’UE.

De plus, les nœuds ont une action supplémentaire, appelée action de communi-

cation. Elle est représentée par les messages de contrôle en liaison montante ou de-

scendante à transmettre, en fonction de l’action de contrôle DCM ou UCM, tout en

étant également disponible à l’état de l’autre agent en tant que message reçu, s’il a été

transmis. Pour la BS, cette action est un vecteur contenant tous les messages de liaison

descendante envoyés à toutes les UEs, tandis que pour l’UE, c’est une seule valeur avec
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le message à envoyer à la BS.

La récompense est la même pour tous les agents, car il s’agit d’une tâche coopéra-

tive, et elle vise à maximiser l’équité tout en compensant la quantité de signalisation

utilisée. Elle est définie comme la moyenne géométrique des débits utiles de toutes les

UEs, soustraite d’une pénalisation de signalisation. La pénalisation de signalisation est

le produit d’un coût de signalisation et de la quantité de messages de contrôle envoyés

en une étape temporelle.

A.4.4 Résultats de Simulation

La solution proposée est comparée à un schéma de planification basé sur des octrois

équitables proportionnels. Un ensemble d’expériences est mené pour évaluer comment

la quantité de signalisation peut être contrôlée et son effet sur les performances.

Les principales conclusions que l’on peut tirer de cet ensemble d’expériences sont

:

• L’émergence de protocoles avec signalisation intermittente peut produire des

protocoles avec de bonnes performances en termes d’équité. Cependant, l’augmentation

du coût de signalisation entraîne une diminution des performances et une plus

grande variance.

• L’émergence de protocoles avec signalisation persistante surpasse à la fois l’émergence

de protocoles avec signalisation intermittente en termes de moyenne géométrique

du débit utile.

• Augmenter le coût de signalisation conduit à une réduction de la signalisation

utilisée par le protocole émergent. De plus, même avec un coût nul, le protocole

émergent utilise toujours une signalisation intermittente au lieu d’une signali-
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sation persistante.

• Le débit binaire du canal de contrôle diminue avec le taux de collision. Cela est

naturel, car réduire la quantité d’échanges de contrôle conduit à une coordina-

tion plus faible, perceptible par l’augmentation des collisions.

A.4.5 Conclusion

En résumé, une formulation RL a été proposée pour l’émergence de protocoles

où les nœuds peuvent décider s’ils vont transmettre un message de contrôle, ce qui

peut réduire le débit binaire du canal de contrôle. Les résultats indiquent les capac-

ités du cadre MARL à produire des protocoles avec une signalisation réduite, qui peut

être contrôlée par la fonction de récompense avec un poids de coût de signalisation.

Cependant, réduire le débit binaire de signalisation conduit à un niveau inférieur de

coordination, diminuant les performances globales du réseau et augmentant les taux

de collisions.

A.5 Réflexions Finales

Les principaux objectifs de cette thèse étaient de fournir les fondements de l’émergence

de protocoles, en mettant en évidence les défis qui y sont associés, d’étudier ses capac-

ités d’apprentissage et sa capacité à contrôler la quantité de signalisation utilisée. De

plus, elle visait également à donner un aperçu de l’accès multiple et des procédures qui

y sont impliquées dans le cadre de la 5G NR.

En ce qui concerne les études proposées et leurs évaluations de performances,

d’une part, le chapter 3 a fourni un cadre pour l’émergence de protocoles basé sur le

MARL, avec des résultats mettant en évidence ses performances supérieures par rap-

port à d’autres techniques de conception de protocoles. De plus, il a décrit des méth-
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odes d’évaluation des performances, d’interprétation, de coordination entre les nœuds

et de quantification des surcharges de signalisation, les résultats renforçant l’utilité

d’un tel cadre. D’autre part, le chapter 4 a appliqué l’idée d’émergence de protocole à

un problème plus difficile d’allocation de ressources contiguës, montrant ses robustes

capacités d’apprentissage pour différentes densités de trafic et différentes fonctions ob-

jectifs. De plus, il a montré ses capacités d’évolution en termes d’UEs et de RBs, tout en

montrant qu’une granularité raisonnable de la signalisation aide à produire un meilleur

ensemble de protocoles. Enfin, le chapter 5 a proposé une formulation de signalisation

intermittente, dans laquelle les nœuds décident si un message de contrôle sera envoyé,

au lieu d’envoyer toujours un message de contrôle. Les résultats ont montré que le

cadre MARL proposé peut produire des protocoles avec une signalisation réduite et

que le débit de signalisation peut être contrôlé par un poids de coût de signalisation

ajouté à la fonction de récompense, bien que la réduction du débit de signalisation

puisse entraîner une coordination moindre et de moins bonnes performances.

En termes de perspectives futures, l’idée d’apprendre conjointement la signalisa-

tion de contrôle et l’optimisation du contrôle du réseau peut être étendue à différents

problèmes en communications sans fil. Ces problèmes comprennent: modulation et

codage adaptatifs, le contrôle de puissance en liaison montante, la sélection du pré-

codeur de transmission en liaison montante et la gestion de faisceaux.

Cette thèse contribue aux avancées dans les communications sans fil et la con-

ception de protocoles grâce à l’exploration de l’émergence de protocoles. Elle fournit

les fondements de l’émergence de protocoles à travers un cadre pour la production et

l’étude de tels protocoles. La capacité d’optimiser de manière autonome les protocoles

est pertinente pour le développement de réseaux auto-organisés et auto-optimisants,
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tout en étant cruciale pour s’adapter à des environnements sans fil dynamiques et

complexes. De plus, les idées issues de cette recherche peuvent contribuer aux futures

normes de communication sans fil, l’objectif final de la recherche sur l’émergence de

protocoles étant la génération d’un système de communication entièrement appris.
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