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Summary

Noise and trainability in Quantum Machine Learning

This thesis is devoted to the exploration of the interface between quantum computing
and machine learning, with an emphasis on the effects of noise and decoherence. In the
first part, we investigate the use of open quantum systems to tackle classical pattern
recognition tasks. In particular, we study the impact of noise on quantum kernel ma-
chines in a reservoir computing setup. The models we consider are based on the use of
a large and uncontrolled quantum system, the reservoir, that is excited with an input
signal to be processed. Measurements are then performed on the system, and a linear
combination of the outcomes is optimized to achieve the desired processing task. Within
the theoretical framework associated with kernel methods, we analyze the effect of dis-
sipation on the expressive power of these models. We show that the noise affecting the
reservoir can act as an implicit regularization that helps to prevent over-fitting. These
findings are supported by a numerical study of a set of noisy kernel machines based on
driven-dissipative chains of spins exhibiting decoherence and whose Markovian evolution
is described by a Lindblad master equation. The second part of the thesis focuses on vari-
ational quantum algorithms. There, we present an efficient classical simulation scheme to
estimate the trainability of a parameterized quantum circuit. We first study the quantum
channels associated with the averages of random Z-rotations of one and two qubits. Upon
some assumptions, we show that these average rotation channels can be decomposed into
convex sums of Clifford channels. This result, which can be interpreted as an artificial
decoherence induced by the random choice of the rotation angles, allows us to derive our
efficient estimation scheme based on the celebrated Gottesman-Knill theorem. Among
other figures of merits, this method enables to efficiently estimate the average amplitude
of the cost-function gradient through classical simulations. This method is scalable and
can be used to certify trainability for variational quantum circuits and explore design
strategies that can overcome the barren plateau problem.

Keywords: open quantum systems, quantum information, machine learning, kernel
methods, reservoir computing, decoherence, quantum computing, variational quantum
algorithms, Clifford circuits



Résumé

Bruit et entraînabilité en apprentissage automatique quantique

Cette thèse est consacrée à l’exploration de l’interface entre l’informatique quantique et
l’apprentissage automatique, en mettant l’accent sur les effets du bruit et de la décohé-
rence. Dans la première partie, nous étudions l’utilisation de systèmes quantiques ouverts
pour la réalisation de tâches classiques de reconnaissance des formes. En particulier, nous
nous intéressons à l’impact du bruit sur les machines à noyau quantique dans une configu-
ration de calcul à réservoir. Les modèles que nous considérons sont basés sur l’utilisation
d’un système quantique de grande taille et non contrôlé, un réservoir, qui est excité par
un signal d’entrée à traiter. Des mesures sont ensuite effectuées sur le système et une
combinaison linéaire des résultats est optimisée afin de réaliser la tâche souhaitée. Dans
le cadre théorique associé aux méthodes à noyau, nous analysons l’effet de la dissipation
sur l’expressivité de ces modèles. Nous montrons que le bruit affectant le réservoir peut
agir comme une régularisation implicite qui aide à prévenir l’ajustement excessif. Ces ré-
sultats sont accompagnés d’une étude numérique d’un ensemble de machines à noyaux
bruitées basées sur des chaînes de spins quantiques sujets à de la décohérence, et dont
l’évolution markovienne est décrite par une équation maîtresse de type Lindblad. Dans la
deuxième partie de la thèse, nous nous concentrons sur les algorithmes quantiques varia-
tionnels. Nous y présentons un schéma de simulation classique efficace pour estimer des
quantités moyennées à la sortie d’un circuit quantique paramétré dont les paramètres de
rotation sont choisis aléatoirement. Nous étudions d’abord les canaux quantiques associés
aux moyennes de rotations aléatoires d’un et de deux qubits autour d’un axe Z. Sous
certaines hypothèses, nous montrons que ces canaux peuvent être décomposés en sommes
convexes de canaux associés à des transformations unitaires de Clifford. Ce résultat peut
être interprété comme un effet de décohérence artificiel induit par le choix aléatoire des
angles de rotation. Il nous permet construire un schéma de simulation efficace basé sur
le célèbre théorème de Gottesman-Knill. Cette méthode permet notamment d’estimer ef-
ficacement l’amplitude moyenne du gradient de la fonction de coût par des simulations
classiques avec une complexité polynomiale en le nombre de qubits. Elle peut donc être
utilisée pour explorer des stratégies de conception de circuits variationnels quantiques
permettant d’éviter les difficultés d’entrainement due à une disparition du gradient.

Mots-clés : systèmes quantiques ouverts, information quantique, intelligence artificielle,
apprentissage automatique, méthodes à noyau, informatique de réservoir, décohérence,
calcul quantique, algorithmes quantiques variationnels, circuits Clifford
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General introduction

Since its advent at the dawn of the 19th century, quantum mechanics has had a strong
impact on our societies. The first quantum revolution brought the technologies in which
the current age of information is rooted, namely transistors, lasers and atomic clocks [1].
The invention of the transistor by Bardeen, Shockley and Brattain [2, 3] in 1947 paved the
way to the miniaturization of computers and to the exponential rise of the computational
power that began in the late 1960’s. Lasers developed at the end of the 1950’s, following
the works of Kastler on optical pumping [4], have found numerous applications and are
nowadays crucial for transferring ever larger amounts of data at sufficient rates [1].

Besides its technological outcomes, quantum mechanics has dramatically changed our
understanding of Nature. The development of the quantum theory required to abandon
some rather natural assumptions inherent to a classical description of the universe. This
led Einstein, Podolsky and Rosen to propose in their famous 1935 article that quantum
mechanics might be incomplete [5]. Thirty years later, Bell proved the celebrated inequal-
ities that would allow to adress this hypothesis experimentally [6, 7]. The experimental
verification of the violation of Bell’s inequalities by Clauser and Shimony in 1978 [8, 9]
and Aspect in 1982 [10, 11] showed the bewildering implications of quantum mechanics
to be features of Nature rather than artifacts of an incomplete theory.

In the same period, the first proposals to use quantum systems to process and transmit
information appeared, giving birth to the field of quantum information [12]. In 1980, Paul
Benioff formalized the notion of quantum computer by introducing the first model of
quantum Turing machine [13, 14]. Soon after, Feynman and Manin proposed to use such
quantum computers to simulate quantum systems [15, 16], a task requiring an exponential
amount of ressources on a classical device. In the years following these proposals, the idea
of a quantum computer blossomed, and the field of quantum computing started to define
itself as a discipline, at the interface of quantum mechanics and computer science. In
particular, the first theoretical quantum speedups over classical algorithms were proven
with the works of Deutsch, Vazirani, Bernstein, Simon, Lloyd, Grover and Shor [17–22],
culminating in the celebrated Shor’s quantum algorithm for the factorization of prime
numbers. All these results proved that the features specific to the quantum world could
be used as a resource for technological purpose, thereby igniting the so-called second
quantum revolution [23].

The existence of quantum algorithms able to solve problems that are practically out of
reach of classical methods has generated a great deal of interest in quantum computing.
Over the past thirty years, a lot of efforts have been made to build actual quantum
computers able to demonstrate such a quantum advantage [24, 25]. However, constructing
a quantum computer is a daunting task. On the one hand, quantum algorithms rely on



2 General introduction

the use of delicate quantum coherent states [26]. As a result of the interactions of the
devices with their environment, these coherences are progressively destroyed [27]. To
avoid this decoherence mechanism, it is thus necessary to efficiently isolate the quantum
systems. On the other hand, executing a quantum algorithm requires to manipulate the
device state and to perform measurements on it, which can only be done through precisely
controlled interactions. To meet this technological challenge, several hardware platforms
have been proposed, including quantum dots [28, 29], quantum optical systems [30, 31],
nuclear magnetic resonance platforms [32, 33], and the promising trapped ions [34–36]
and superconducting circuits [37, 38]. In recent years, experimental demonstrations of a
quantum advantage for specific tasks have been realized on some of these devices [39–41].

The search for a quantum advantage is a difficult task, and over the past decades
significant advances have been made. It is clear that for a quantum algorithm to provide
an advantage over classical methods, the algorithm outcomes must be hard to simulate
with a classical computer. Hence, in the quest for a quantum advantage, an important
effort has been devoted to finding ways to efficiently simulate quantum algorithms and
systems using only classical resources. Efficient classical simulation schemes have been
found for many cases [42–53], and some of these results have led to the questioning of
the recent quantum advantage experiments [54, 55]. As a consequence, the range of cases
where a quantum advantage remains possible has narrowed considerably.

As of today, we remain in the NISQ era described by Preskill five years ago [56], and
the available quantum devices are noisy and limited in size. The detrimental effects of
noise have been envisioned early in the history of quantum computing [57], and methods
of quantum error corrections have been largely developed over the last decades [58–61].
Unfortunately, as for classical error correction, these methods rely on a redundant encod-
ing of the information, which is difficult to implement given the quality and the size of the
current devices. Despite their imperfect characteristics, current and near-term quantum
devices may be able to provide a useful quantum advantage. Understanding their poten-
tial and limits and finding ways to exploit their power is a challenge, and much work has
been devoted to this task over the last decade [62].

In parallel of the second quantum revolution, another field has enjoyed spectacular
growth: machine learning. This field has faced multiple periods of stagnation, the so-
called AI winters, that lasted until the end of the 1990s [63]. Machine learning has seen
a revival at the beginning of the 21th century, pushed by the increase of computational
power and the novel use of GPUs for machine learning calculations. The popularity of
machine learning methods really exploded in the 2010s with impressive successes of Deep
Learning techniques [64, 65]. Since then, the field has continued to develop, culminating
in recent advances in reinforcement learning [66, 67], computer vision [68, 69], gener-
ative models [70–75] and large language models [76, 77]. Machine learning techniques
have already deeply changed our societies, and they have largely diffused in other fields,
including physics [50, 78–80].

Given this popularity and the current development of quantum technologies, the in-
teraction between machine learning and quantum computing has naturally emerged as
an exciting area of research. This new domain of research encompasses two dual ap-
proaches [81]. From one angle, machine learning methods could be of great use in de-
veloping a fault-tolerant quantum computer. For instance, reinforcement learning al-
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gorithms have already shown potential in the context of quantum control and quantum
error correction [82–93], and they have allowed striking recent experimental results in er-
ror correction [94]. Machine learning methods have also inspired the variational quantum
algorithms [95], which are a class of versatile and shallow models that hold promise for
harnessing the power of near-term devices.

The second approach, often called Quantum Machine Learning [96], focuses on a
potential quantum advantage for machine learning related tasks. In this perspective,
quantum algorithms have been envisioned to speed-up linear algebra sub-routines of clas-
sical machine learning algorithms [97]. Quantum generalizations of many existing machine
learning methods have also been investigated, ranging from quantum neural networks to
quantum kernel machines [95, 96, 98], with the hope that such quantum models could
benefit from the large dimensions of the states spaces. Most of the proposed methods
include a classical optimization step, a reason for which they are sometimes referred to
as hybrid quantum-classical algorithms. A lot of progresses have been made in the un-
derstanding of the power and the limitations of these new algorithms [98–103]. However,
despite the large amount of research dedicated to these topics, the potential advantage of
these methods over their classical counterparts remains uncertain.

This thesis is devoted to the exploration of the interface between machine learning and
quantum computing, with an emphasis on the role of noise and decoherence. It gathers
results obtained during my PhD research on several topics and approaches described in
the following.

Noisy quantum kernel machines
Kernel methods, also called Kernel machines, constitute a class of simple and versatile
classical machine learning algorithms that are widely used in pattern analysis [104–106].
A prominent example of such methods are the Support Vector Machines, whose first
quantum generalizations have been considered at the beginning of the 2000s [107]. The
core idea of kernel methods is to extend linear classification techniques to non-linear
setups, by making use of a set of non-linear transformations, or feature maps. The
quantum analog of kernel methods, the so-called quantum kernel machines, have been
widely studied [102, 108–117], and it has been shown that these methods encompass
many supervised quantum machine learning algorithms [102, 114]. In the first part of
this manuscript, we study the impact of the physical noise affecting current devices on
the performances of quantum kernel machines. The main effect of noise is to reduce
the expressive power of the kernel machines. This effect can be seen as an implicit
regularization mechanism 1, for which we provide analytical evidences. We illustrate this
phenomenon in a context of reservoir computing [118]. In this setup, the feature maps
associated to the kernel machines are obtained by performing measurements on a quantum
system, the reservoir, that is excited with a driving encoding an input signal to process.
The previous effect is illustrated through numerical simulations of this scheme, where we
take a set of one-dimensional driven-dissipative chains of coupled qubits as reservoirs.

1As such, this effect helps to avoid the well-known issue of over-fitting.
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Trainability in Variational Quantum Algorithms
The second part of this thesis focuses on variational quantum algorithms [95]. These
hybrid quantum-classical algorithms use the output of a parameterized quantum circuit
as a variational ansatz. Depending on the task at hand, a cost function is measured
on the circuit output, and the parameters of the ansatz are trained as to minimize the
cost function using classical optimization techniques. This paradigm is well suited for
near-term devices because it adapts easily to hardware constraints and allows the use
of shallow quantum circuits, which limits the impact of the decoherence. Unfortunately,
these algorithms can be difficult to train for large-scale problems due to the notorious
barren plateaus phenomenon [119], in which the gradient of the cost function vanishes
exponentially with the size of the circuit. This phenomenon has been extensively studied
in the literature and has been shown to be caused by a wide variety of factors [120–123].
In this manuscript, we present an efficient classical method that allows to estimate the
trainability, along with many figures of merit, for a specific class of variational quantum
algorithms. This scheme is based on the celebrated Gottesman-Knill theorem [42, 45], a
fundamental result which states that quantum algorithms associated with the so-called
Clifford circuits can be simulated efficiently on a classical computer. The method is illus-
trated on a prototypical example of appearance of barren plateaus, and some limitations
are identified. We also discuss the new prospects opened up by these results.

Structure of the manuscript
Chapter 1 provides an overview of the theory of open quantum systems and introduces
the theoretical tools that will be used in the rest of this manuscript. We first revisit
the statistical interpretation of quantum mechanics, and provide some reminders on the
framework of quantum channels and density operators. The decoherence mechanism is
then discussed through two simple models for a two-level system. We derive the master-
equations describing the system’s dynamics in these models, and we briefly discuss some
of the conditions under which this description is valid.

Chapter 2 is devoted to the study of the impact of noise and decoherence on the
performances of quantum kernel machines based on our work [α]. This chapter begins
with the introduction of a general scheme of noisy quantum kernel machines relying on a
reservoir computing approach. The role of noise and decoherence on the performances of
these kernel machines is investigated analytically, and we show that the effect of noise can
be seen as an intrinsic regularization of the corresponding models. Finally, these findings
are supported by a numerical study of a class of noisy quantum kernel machines using
driven-dissipative one-dimensional chains of spins.

Chapter 3 presents the results in our work [γ]. There we introduce a method to effi-
ciently estimate the initial trainability of a class of variational quantum circuits through
classical simulations. The general framework of variational quantum and trainability is-
sues associated with these methods are introduced in the beginning. Then we presents
technical results regarding quantum channels associated with random single-qubit rota-
tions, on which our method is based. Building on these results we derive our method and
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we prove its efficiency. The limits of the method are then discussed and the results are
supported by a simple numerical study.

Finally, the general conclusion summarize the main results and discuss the perspectives
and the ongoing research associated with the presented results.



1 Theory of open quantum systems

Perfectly isolated quantum systems are idealizations and in practice quantum systems are
always interacting with their environment. This interactions can result from an imperfect
isolation of the system or, more trivially, from the need to manipulate and measure it. In
many situations, these couplings have a non-negligible effect on the system’s dynamics.
Understanding these effects is crucial as noise severely limits the practical applications of
quantum devices, be it sensors or computer.

To model the dynamics of an open quantum system, it is both intractable and ir-
relevant to carry a complete microscopic description of the environment, which is often
vast and uncontrolled. Fortunately, under fairly general assumptions one can provide
a statistical descriptions of the system that allows the environment degrees of freedom
to be removed. The theory of open quantum systems provides a general framework for
describing this effective dynamics.

In this chapter we briefly review this framework with the underlying objective of
introducing the theoretical tools that will be used through this thesis. In Sec. I we
revisit the statistical interpretation of quantum mechanics and remind some useful results
of classical probabilities. Sec. II then gives an overview of the framework of density
operators and quantum channels, which allow to describe generic quantum systems. At
last, in Sec. III we introduce the Lindblad master equation through the study of two
simple models of decoherence.

I Classical probabilities and observables
In classical physics, the state of a system is described by a point in the phase space, whose
coordinates represent physical quantities. It is sometimes useful to turn this description
into a probabilistic one, for example if we need to take into account undesired interactions
with the environment or uncertainties on the initial configuration of the system. In that
case, the previous physical quantities are considered as random variables and the state of
the system is represented by a joint probability of these variables.

In this view, quantum mechanics is fundamentally a statistical theory, as it provides
such a probabilistic description for the outcomes of measurements made on a system.
However, depending on both the measurements considered and the system state one
might not be able to provide a classical joint probability law for the outcomes, a feature
that distinguishes the quantum theory from a classical one.
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In this section, we provide an overview of this statistical interpretation of quantum
mechanics and introduces some of the mathematical notations and results that will be
used through the text.

I.1 Mathematical preliminaries and notations
Let X be a real-valued random variable. We denote PX its associated probability law.
The expectation (or expected value) of a function h of X is denoted

E [h(X)] =
∫
R
h(x) dPX(x) . (1.1)

and the characteristic function of X is written

φX(t) = E
[
eitX

]
, ∀t ∈ R. (1.2)

The characteristic function uniquely determines the law of X [124]. If X admits a dens-
ity fX with respect to the Lebesgue measure dx, i.e. if dPX(x) = fX(x)dx, then the
characteristic function is simply the Fourier transform of fX .

These definitions generalize to real random vectors taking values in Rn with n ∈ N.
For quantities depending on a random vector, the variables against which the expectation
is taken are indicated in subscript. For example, for a function h(X, Y ) of the random
vector (X, Y ) we denote

EY [h(X, Y )] =
∫
R
h(X, y) dPY (y) , (1.3)

where PY is the marginal probability of Y . The characteristic function of a random vector
X with value in Rn becomes

φX(t) = E
[
eitT X

]
, ∀t ∈ Rn, (1.4)

where tT is the transpose of t.

I.2 Observables and statistical interpretation of quantum mechanics
The physical state of an isolated quantum system S is represented by a unit vector |ϕ⟩
belonging to a Hilbert space HS. In the canonical view of quantum mechanics, |ϕ⟩ encodes
all the information about S and it is said to be a pure state [125]. A physical quantity
A is represented by a self-adjoint operator Â on HS, and both A and Â are referred as
observables. According to the von Neumann spectral theorem [126], any observable Â can
be uniquely written as

Â =
∫
R
λdµ̂A(λ), (1.5)

where µ̂A is a projection-valued probability measure on R. This allows to map any state
|ϕ⟩ to a classical probability distribution PA on R defined by

PA (E) = ⟨ϕ| µ̂A (E) |ϕ⟩ , ∀E = [a,+∞[ , a ∈ R . (1.6)
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In the standard interpretation of quantum mechanics, this distribution is seen as the
law of a real-valued random variable A representing the outcome of a measurement of
the considered quantity. In particular, it holds that for any sufficiently well-behaved
function f :

E [f(A)] =
∫
R
f(λ)dPA(λ)

= ⟨ϕ| f(Â) |ϕ⟩ .
(1.7)

Moreover, the characteristic function of A can be written

φA(t) = ⟨ϕ| eitÂ |ϕ⟩ . (1.8)

Considering a set of n observables of the system gathered in a vector Â = (Â1, . . . , Ân),
it is natural to ask whether one can find a random vector A = (A1, . . . , An) with a
joint probability distribution PA that would generalize the previous equations in some
way. Extending Eq. (1.6) or Eq. (1.7) straightforwardly is fine if the Âi do commute.
However, as emphasized by von Neumann in his foundational work [127], this extension
is problematic for non-commuting observables, as in that case the order of the products
of operators appearing in the generalized equations has an impact on the results, which
is at odds with the corresponding classical expressions.

A potential workaround to this issue is to consider a generalization of Eq. (1.8) to Â
using Eq. (1.4). In fact, defining the joint probability by its characteristic function would
lift the ambiguity on the order of the operators products. This option is addressed by
Nelson’s theorem [128], according to which there exists a classical joint probability law
which characteristic function generalizes Eq. (1.8) for every quantum state if and only if
the observables commute. In particular, Nelson’s theorem does not imply that for a set
of non-commuting observables one can never find a classical joint probability satisfying
Eq. (1.8) 1, but that there always exists a quantum state for which this is impossible.
This impossibility is often seen a distinguishing feature of quantum mechanics [129], and
it has remarkable connections with the existence of non-classical correlations in bipartite
systems [130–132]. Specifically, it has been shown that for every set of non-commuting
observables, there exists a bipartite system and a quantum state such that some Clauser-
Horne-Shimony-Holt inequalities [8] involving the observables are violated [131]. On the
other hand, a Bell-type experiment can result in a violation of Bell’s inequalities only if
the involved observables do not admit a joint probability [130].

Although questioning the existence of a coherent classical probabilistic description for
the outcomes of measurements is an important aspect of the statistical interpretation of
quantum mechanics, it does not tell much about the possibility of measuring different
quantities in a real life experiment. The usual approach to this issue is to invoke Heisen-
berg’s uncertainty theorem [125, 133], which imposes a shared constraint on the variances
of non-commuting observables. Invoking to the wave-function collapse postulate, one sees
that representing simultaneous measurements on a system by non-commuting observables
is inconsistent, as it would result in a post-measurement state violating Heisenberg’s in-

1For a quantum particle on the real line in a Gaussian state, the particle’s Wigner function yields a
valid joint probability distribution for the particle position and momentum.
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equality 2. With that regard, the theory only allows to jointly measure observables that
commute, in which case they are said to be compatible. The previous argument heavily
rely on the projection postulate. However, the general description of measurements uses
positive operator valued measures rather than the projection operator valued measures
considered above [137, 138]. In this framework, it is possible to define fuzzy measurements
associated to non-commuting observables that can be performed jointly, in agreement with
Heisenberg’s principle [139].

Nevertheless, quantities associated to non-commuting observables can still be meas-
ured through independent experiments. To describe this setup, we consider that each
observable acts on a separate copy of the system with the same state |ϕ⟩, thereby enfor-
cing them to commute. As expected, this yields a joint law that is equal to the product of
the probabilities given by Eq. (1.6) for each observable in the set, so that the observables
are uncorrelated.

From the above, one can see that the randomness in the outcomes of measurements
realised on quantum systems cannot be fully represented by means of classical probabil-
ities. In the following, we stress this particularity by adopting the usual convention for
quantum expectations and denote

⟨Â⟩ = ⟨ϕ| Â |ϕ⟩ . (1.9)

II Density operators and quantum channels
Like in classical physics, it is sometimes useful to turn a deterministic description of
a system into a probabilistic one. For a quantum system, this statistical description
takes the form of a classical mixture of pure states. These statistical ensembles and
their evolution can be represented in the theoretical framework of density operators and
quantum channels, which we briefly review in this section.

II.1 Density operators
A system S whose exact state is uncertain can be represented by a statistical mixture of
pure states {|ϕi⟩ , i ∈ I} where to each state |ϕi⟩ is assigned a probability pi. Such a
system is said to be in a mixed state and it is described by a density operator

ρ̂ =
∑
i∈I

pi |ϕi⟩⟨ϕi| . (1.10)

As before, we denote ⟨Â⟩ the expectation of the measurement of an observable Â on S,
and we have

⟨Â⟩ =
∑
i∈I

pi ⟨ϕi| Â |ϕi⟩ = Tr
[
Âρ̂
]
, (1.11)

2If Heisenberg’s theorem is often seen as the signature of an unavoidable back-action due to the
measurements, its exact interpretation and consequences on general joint measurements is a delicate
topic [134–136]
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so that ρ̂ encodes all the statistical information on the system. From a probabilistic point
of view, the previous statistical mixture is a random variables |φ⟩ taking values in the set
of pure states of HS, and the density operator is given by:

ρ̂ = Eφ [|φ⟩⟨φ|] . (1.12)

For a pure state |ϕ⟩, taking ρ̂ = |ϕ⟩⟨ϕ| in Eq. (1.11) gives back Eq. (1.9). Therefore,
density operators provide the most general mathematical representation of a quantum
system. To define a bona fide density operator, a bounded operator ρ̂ on HS must present
the following properties [137]:

• Self-adjointness: ρ̂ = ρ̂†

• Positivity: ρ̂ ≥ 0, that is ∀ |ϕ⟩ ∈ HS, ⟨ϕ| ρ̂ |ϕ⟩ ≥ 0

• Unit trace: Tr [ρ̂] = 1

We write B(HS) the vector space of bounded operators and S(HS) the set of density
operators. The space B(HS) can be equipped with the Hilbert-Schmidt inner product
that makes it a Hilbert space3 [140]. This inner product and the associated norm4 are
given by: 〈

Â, B̂
〉

HS
= Tr

[
Â†B̂

]
, ∥Â∥2 =

√
Tr
[
Â†Â

]
. (1.13)

Mixed states entropies

The space of density operators S(HS) is a convex subspace of B(HS). Pure and mixed
states in S(HS) can be distinguished through their purity Tr [ρ̂2] since for pure states we
have that Tr [ρ̂2] = 1, while for mixed states Tr [ρ̂2] < 1. From a geometric point of view,
pure states are on the boundary of S(HS), while mixed states are in its interior. As a
consequence, mixed states admit infinitely many convex decompositions of the form given
in Eq. (1.10), whereas for pure states such decomposition is unique (up to a phase). The
previous distinction can be seen from a probabilistic angle. Density operators can always
be diagonalized into a countable sum of orthogonal pure states [137], taking the form:

ρ̂ =
∞∑

i=0
λi |ϕi⟩⟨ϕi| , ⟨ϕi|ϕj⟩ = δij, (1.14)

where the eigenvalues {λi, i ∈ N} form a probability distribution. From this, one have
that

− log
(
Tr
[
ρ̂2
])

= − log
( ∞∑

i=1
λ2

i

)
. (1.15)

3In the general case, this is only true for the subspace of B(H) composed of the so-called Hilbert-
Schmidt operators for which Tr

[
Â†Â

]
is well-defined and finite. In the following we will mostly consider

finite dimensional spaces, for which every operator is both bounded and Hilbert-Schmidt.
4The Hilbert-Schmidt is the 2-norm of the broader familly of the Schatten p-norms, hence the nota-

tion [141].
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The right-hand side of this equation is the second Rénye entropy of the previous probabil-
ity distribution. The purity is thus measure of the degree of uncertainty in the statistical
ensemble of perfectly distinguishable states associated to ρ̂. In the same spirit, one defines
the von Neumann entropy S(ρ̂) as the Shannon entropy associated to the λi:

S(ρ̂) = −Tr [ρ̂ log (ρ̂)] = −
∞∑

i=1
λi log (λi) (1.16)

Like the purity, the von Neumann entropy provides information on how much the state ρ̂
is mixed.

Entanglement measures

Density operators allow to describe systems whose states are uncertain, a situation that
is ubiquitous when dealing with components of composite systems.

Let us consider a bipartite system composed of two subsystems A and B, with asso-
ciated Hilbert spaces HA and HB. The density operator describing A is derived from the
system state ρ̂ ∈ S (HA ⊗ HB) by taking a partial trace over the degrees of freedom of B,
that is ρ̂A = TrB [ρ̂], and likewise for B [125]. The whole system is said to be in a separ-
able state with respect to the partition (A,B) whenever ρ̂ can be written as a convex sum
of product states of the form ρ̂A ⊗ ρ̂B. Otherwise, one says that the state is entangled.
Entangled states are non-classical, in the sense that for these states the whole system
contains more information than the partition’s subsystems altogether. In particular, if
the whole system is in a pure entangled state, the subsystems are necessary mixed. To
see this, one can use the Schmidt decomposition theorem [142] which guarantee that any
pure state of the global system |ϕ⟩ ∈ HA ⊗ HB can be decomposed into:

|ϕ⟩ =
∑

i

λi

∣∣∣φA
i

〉
⊗
∣∣∣φB

i

〉
, λi ≥ 0 ,

∑
i

λ2
i = 1 , (1.17)

where {
∣∣∣φA

i

〉
} and {

∣∣∣φB
i

〉
} are orthonormal basis of HA and HB respectively. As a con-

sequence of the theorem, the states ρ̂A and ρ̂B share the same eigenvalues, and hence have
the same von Neumann entropy. This entropy is called the entanglement entropy and it is
a measure of the entanglement of the whole system. This measure of entanglement relies
on the Schmidt decomposition, that only holds for pure states. For this reason, in the
following we use a different entanglement witness, the negativity [143, 144], which is cheap
to compute and adapted to mixed states. The negativity of a state ρ̂ ∈ S (HA ⊗ HB) with
respect to the partition (A,B) is given by:

N (ρ̂) = 1
2
(
∥ρ̂TA∥1 − 1

)
, (1.18)

where ∥A∥1 = Tr
[√
A†A

]
5, and ρ̂TA is the partial transpose of the density operator with

respect to the degrees of freedom of the subsystem A.
5This is the trace norm, which is also the Schatten 1-norm.
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II.2 Quantum channels
A quantum channel [141] is a map Φ : B(HS) 7→ B(HS) 6 that is:

• Linear: Φ (λρ̂+ σ̂) = λΦ (ρ̂) + Φ (σ̂),

• Trace preserving: Tr [Φ (ρ̂)] = Tr [ρ̂],

• Completely positive: For any extra system E with associated Hilbert space HE

and IE the identity on B (HE), the map (Φ ⊗ IE) : B (HS ⊗ HE) 7→ B (HS ⊗ HE)
is positive.

Maps with these properties are said to be completely-positive trace-preserving (CPTP).
These maps represent physically acceptable transformations of quantum systems, and the
CPTP properties ensure that for any state ρ̂ ∈ S(HS), Φ(ρ̂) is a well-defined quantum
states. In particular, the complete positivity requirement stems from the fact that any
system can be seen as a component of a larger system, whose state must remains positive
under a physical transformation.

Kraus and Choi representations

Quantum channels can be represented in different ways. Here we recall two theorems that
will be used in the rest of this manuscript, namely the Kraus and the Choi representation
theorems [141].

According to the Kraus theorem, every CPTP map Φ : B(HS) 7→ B(HS) can be
decomposed in the following Kraus form:

Φ(ρ̂) =
∑
i∈I

K̂iρ̂K̂
†
i ,

∑
i∈I

K̂†
i K̂i = 1̂ , (1.19)

where {K̂i, i ∈ I ⊆ N} is a countable 7 set of operators in B(HS), called the Kraus
operators, and 1̂ is the identity on HS. This decomposition is not unique, but one can
show that two set of Kraus operators {K̂i}, {M̂j} correspond to the same quantum map
Φ if and only if there exists a unitary matrix (uij) such that K̂i = ∑

j uijM̂j [137].
In the case where HS is of finite dimension D ∈ N, the Choi theorem provides an

alternative representation. Given an orthonormal basis {|i⟩ , i ∈ J1, DK} of HS, this
theorem states that any map Φ : B(HS) 7→ B(HS) is uniquely represented by the following
operator

Λ(Φ) =
D∑

i,j=1
|i⟩⟨j| ⊗ Φ(|i⟩⟨j|) ∈ B(HS ⊗ HS) , (1.20)

which is positive if and only if Φ is completely positive. The set {|i⟩⟨j| ⊗ |k⟩⟨l|} forms
an orthonormal basis of B(HS ⊗ HS) for the Hilbert-Schmidt inner product, so we can
decompose Λ(Φ) as follow:

Λ(Φ) =
∑

i,j,k,l

Λ(Φ)ijkl |i⟩⟨j| ⊗ |k⟩⟨l| , (1.21)

6In full generality, a quantum channel can map operators acting on the Hilbert spaces of two different
systems, but we will not consider that case in the following.

7If dim (HS) = D < ∞, the channel can be represented with at most D2 Kraus operators.
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where the coefficients are given by:

Λ(Φ)ijkl =
〈
|i⟩⟨j| ⊗ |k⟩⟨l| ,Λ(Φ)

〉
HS

= ⟨k| Φ(|i⟩⟨j|) |l⟩ . (1.22)

Mixed unitary channels

Among the simplest examples of quantum channels are the unitary channels of the form

ρ̂ 7→ Û ρ̂Û † , (1.23)

for some unitary operator Û ∈ B(HS). Such channel typically describe the evolution
of a closed system under a Hamiltonian Ĥ(t) over a given time interval [0, T ], in which
case [137]

Û = Û(T, 0) = T
[
exp

(
−i
∫ T

0
Ĥ(t)dt

)]
, (1.24)

with T the time-ordering superoperator and ℏ = 1. In the following, we will be inter-
ested in a related class of quantum channels, namely the mixed-unitary channels. The
latter represent statistical ensembles of unitary transformations. As such, they are to
unitary channels what density operators are to pure states. Considering a statistical en-
semble of unitary transformation {Ûi , i ∈ I} with associated probabilities {pi , i ∈ I},
the corresponding mixed-unitary channel is given by:

Φ(ρ̂) =
∑
i∈I

piÛiρ̂Û
†
i . (1.25)

As for density operators, it is equivalent to consider the mixed-unitary channel as the
expectation value of a random variable Û taking value in the set of unitary transform-
ations, so that Φ(ρ̂) = EÛ

[
Û ρ̂Û †

]
. If HS is of finite dimension D ∈ N, one can show

that any mixed-unitary channel 8 can be decomposed as a finite convex sum of at most
D4 − 2D2 + 2 unitary channels [141].

Pauli channels

Mixed-unitary channels are widely used in the theory of quantum information, as they
provides a simple and effective way to model the physical noise affecting quantum devices.
Before introducing a generic model of such channels, we set some conventions for two level
systems, or qubits, that will be used through the rest of this text. Let us consider a single
qubit and choose a computational basis {|0⟩ , |1⟩} of its associated Hilbert space. The
Pauli matrices in this basis are written:

X̂ =
(

0 1
1 0

)
, Ŷ =

(
0 −i
i 0

)
, Ẑ =

(
1 0
0 −1

)
. (1.26)

Depending on the context, we will sometimes use the old-fashioned notations σ̂x, σ̂y and
σ̂z. Fig. 1.1 recall the Bloch sphere representation of a qubit pure state. A generic qubit
state ρ̂ can always be decomposed in a similar way, as

ρ̂ = 1
2
(
1̂ + rT σ̂

)
, (1.27)

8Including mixed unitary channels associated to unitary ensemble that are not countable.
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Figure 1.1: Bloch sphere representation of a qubit state |ϕ⟩ = cos
(

θ
2

)
|0⟩ + eiφ sin

(
θ
2

)
|1⟩.

with σ̂T = (σ̂x, σ̂y, σ̂z) and r = Tr [ρ̂σ̂]. That representation extends to states of multiple
qubits. For a set of N qubits, we call Pauli strings (or Pauli words) the elements of
{1, X̂, Ŷ , Ẑ}⊗N . The generalization of the previous equation then reads

ρ̂ = 1
2N

∑
P̂ ∈{1,X̂,Ŷ ,Ẑ}⊗N

Tr
[
ρ̂P̂
]
P̂ . (1.28)

Noise models for qubits often belong to the large class of the so-called Pauli channels.
These are mixed unitary channels associated to ensembles of Pauli words, which can be
written:

ρ̂ 7→
M∑

i=1
piP̂iρ̂P̂i , P̂i ∈ {1, X̂, Ŷ , Ẑ}⊗N . (1.29)

Let us remind the following three well-known examples of single qubits error channels in
this class [142], for a probability of error p ∈ [0, 1]:

• Bit flip channel:
ρ̂ 7→ (1 − p)ρ̂+ pX̂ρ̂X̂ , (1.30)

• Phase flip channel:
ρ̂ 7→ (1 − p)ρ̂+ pẐρ̂Ẑ , (1.31)

• Depolarizing channel 9:
ρ̂ 7→ (1 − p)ρ̂+ p

2 1̂ . (1.32)
9This is indeed a Pauli channel as we have

(
ρ̂ + X̂ρ̂X̂ + Ŷ ρ̂Ŷ + Ẑρ̂Ẑ

)
/4 = 1̂/2.
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Among these channels, the bit flip and the phase flip channels stands out by the fact
that they act trivially on the eigenstates of respectively X̂ and Ẑ. The existence of these
preferential bases of states is characteristic of the physical phenomenon of decoherence on
which we will focus in the next section.

III Qubit subject to decoherence

As explained in the introduction of this chapter, to represent the evolution of an open
quantum system we often rely on a set of simplifying assumptions that enable to evacuate
the environment degree’s of freedom from the system’s effective description. In cases
where these conditions are fulfilled, the system’s evolution is effectively described by a
master equation. As for a classical system, this master equation can be unravelled into
a set of stochastic equations of motion 10. Such decomposition constitutes a stochastic
unravelling of the master equation, and it provides an efficient means of simulating open
quantum system [145–147].

In this section we provide an overview of these concepts through the study of a simple
two-level system exhibiting decoherence. This choice is motivated by the fact that for
many systems decoherence acts on time scales that are much shorter than the time scales
associated to other types of noise, such as damping [137, 142]. In addition, decoherence
will be helpful to interpret the results presented in the third chapter of this thesis.

III.1 Dynamics of a qubit under stochastic driving

We present a first simple model of decoherence for of a qubit, which is inspired by lecture
notes of J. Preskill [148]. In this model, the qubit is driven by an external classical
stochastic driving (ξ(t))t∈R+ . The system Hamiltonian takes the form

Ĥ(t) = −1
2ω0σ̂z − 1

2ξ(t)σ̂z . (1.33)

This simple Hamiltonian is manifestly diagonal in the basis {|0⟩ , |1⟩} of the eigenstates
of σ̂z. This allows to provide an intuitive description of the decoherence mechanism.
Consider that the system is initially on the equator of the Bloch sphere, for instance we can
take |ϕ(t = 0)⟩ = |+⟩ = 1√

2 (|0⟩ + |1⟩). After an evolution over a time duration T , the state
will acquire a relative phase φ(t) = ω0t+

∫ t
0 ξ(s)ds and the resulting pure state will have

a random position on the equator of the Bloch sphere of Fig. 1.1. Averaging over multiple
realizations, the radius of the mean state will thus shrink and the corresponding state will
become mixed. Clearly, that effect only concerns states in a coherent superposition of |0⟩
and |1⟩, which are turned into incoherent mixtures of these states, hence the terminology.

10In a classical context, a simple example is given by a gaz of particles, which density evolves according
to a diffusion equation. The density can then be decomposed using an average over a set of particles
evolving according to a Langevin equation.
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Evolution for a Gaussian noise

Let us now derive the evolution channel associated with this model. In this section
we work in the interaction picture, which allows us to get rid of the bare Hamiltonian
Ĥ0 = −1

2ω0σ̂z. The transformations associated with the corresponding change of reference
frame are recalled in App. A. We denote ρ̂ξ(t) the system’s state at a time t associated
with a given realization ξ of the driving. In the interaction picture, the system’s evolution
is given by the following Liouville stochastic equation:

dρ̂ξ

dt = iξ(t)2 [σ̂z, ρ̂ξ(t)] . (1.34)

Here we assume that at t = 0 the system is in an initial state ρ̂0 that is independent of
ξ. Integrating Eq. (1.34), we obtain the evolved state at a time t through the associated
unitary channel:

ρ̂ξ(t) =
(

exp
( i

2 σ̂z

∫ t

0
ξ(s)ds

))
ρ̂0

(
exp

(
− i

2 σ̂z

∫ t

0
ξ(s)ds

))
. (1.35)

where ρ̂ξ,0 = ρ̂ξ(t = 0). In the following we denote Λξ
(t,t′) the quantum channel mapping

an initial system state at a time t to the corresponding evolved state at a later time
t′ for a given realization of ξ. Importantly, this channel describes the system evolution
assuming that the initial state is independent of the driving. Using this notations and
writing Π̂i = |i⟩⟨i| , i ∈ {0, 1}, we have σ̂z = Π0 − Π1 and the previous evolved state can
be written as

ρ̂ξ(t) = Λξ
(t,0) (ρ̂0) = Π̂0ρ̂0Π̂0 + Π̂1ρ̂0Π̂1 + exp

(
i
∫ t

0
ξ(s)ds

)
Π̂0ρ̂0Π̂1 + h.c.11 . (1.36)

Since we have assumed that ρ̂0 is independent of the driving, averaging the previous
equations with respect to the driving yields a quantum channel Λ(t,0) that maps ρ̂0 to the
average state

ρ̂(t) = E [ρ̂ξ(t)] = E
[
Λξ

(t,0) (ρ̂0)
]

= Λ(t,0) (ρ̂0) . (1.37)
To obtain an explicit expression of this state, a more precise characterization of the driving
is required. For simplicity we assume that ξ(t) is a centered Gaussian process. As such,
it is uniquely determined by its covariance function K : R2

+ 7→ R, and for every finite
sequence of times S = (t1, . . . , tn) ∈ Rn

+ the vector ξS = (ξ(t1), . . . , ξ(tn)) is a centered
Gaussian vector with covariance matrix (KS)ij = K(ti, tj) 12. In particular, we have

E [ξ(t)] = 0 , E [ξ(t)ξ(s)] = K(t, s) , ∀t, s ∈ R+ , (1.38)

and in cases where KS is non-singular, the vector ξS admits the usual Gaussian density

p(x) = 1√
(2π)n|KS|

exp
(

−1
2xT K−1

S x
)
. (1.39)

11In the rest of this manuscript, h.c. stands for the hermitian conjugate.
12The only constraint on the choice of K is that KS must be a positive semi-definite matrix for every

time sequence S.
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For this simple noise, one can obtain an explicit expression for the expectation

E
[
exp

(
i
∫ t

0
ξ(s)ds

)]
=

+∞∑
k=0

(i)k

k! E
[(∫ t

0
ξ(s)ds

)k
]
. (1.40)

Each term on the right-hand-side of the previous equation can be computed using Isserlis’
theorem [149], which states that for a centered Gaussian vector (ξ(s1), . . . , ξ(sk)) we have

E
[

k∏
i=1

ξ(si)
]

=


∑

p∈P2
k

∏
(i,j)∈p

E [ξ(si)ξ(sj)] for k even,

0 for k odd,
(1.41)

where P2
k denote the set of partitions of J1, kK into disjoint pairs. Hence we have for every

k even:
E
[(∫ t

0
ξ(s)ds

)k
]

=
∫

[0,t]k
E
[

k∏
i=1

ξ(si)
]

ds

=
∑

p∈P2
k

∫
[0,t]k

 ∏
(i,j)∈p

K(si, sj)
 ds

=
∑

p∈P2
k

∏
(i,j)∈p

∫ t

0

∫ t

0
K(si, sj)dsidsj

=
∑

p∈P2
k

(∫ t

0

∫ t

0
K(s1, s2)ds1ds2

)k/2

= k!
2k/2(k/2)!

(∫ t

0

∫ t

0
K(s1, s2)ds1ds2

)k/2
.

(1.42)

The last expression follows from the fact that the set P2
k contains k!

2k/2(k/2)! pairs. Injecting
this expression into Eq. (1.40), we have

E
[
exp

(
i
∫ t

0
ξ(s)ds

)]
= exp

(
−1

2

∫ t

0

∫ t

0
K(s1, s2)ds1ds2

)
. (1.43)

We are now in position to give an explicit expression for the average system state.
Using Eqs. (1.36), (1.37) and (1.43), we can write

ρ̂(t) =Π0ρ̂0Π0 + Π1ρ̂0Π1 + e− 1
2

∫ t

0

∫ t

0 K(s1,s2)ds1ds2 (Π0ρ̂0Π1 + Π1ρ̂0Π0) . (1.44)

As expected, the average evolution results in a decay the non-diagnonal terms, i.e. the
coherences, of the initial density operators by a factor

f(t) = e− 1
2

∫ t

0

∫ t

0 K(s1,s2)ds1ds2 = e−Γ(t) , (1.45)

where we have introduced the so-called the decoherence function [137]

Γ(t) = 1
2

∫ t

0

∫ t

0
K(s1, s2)ds1ds2 . (1.46)
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Using the equalities
1
2 (σ̂zρ̂σ̂z − ρ̂) = Π0ρ̂Π1 + Π1ρ̂Π0 ,

1
2 (σ̂zρ̂σ̂z + ρ̂) = Π0ρ̂Π0 + Π1ρ̂Π1 ,

(1.47)

we can rewrite Eq. (1.44) as follow:

ρ̂(t) = Λ(t,0) (ρ̂0) = 1
2 (1 + f(t)) ρ̂0 + 1

2 (1 − f(t)) σ̂zρ̂0σ̂z . (1.48)

The channel Λ(t,0) that describes the average system evolution over the time interval [0, t]
is thus a phase-flip channel of the form of Eq. (1.31), with a flipping probability

p(t) = 1
2
(
1 − e−Γ(t)

)
. (1.49)

Markov assumption and Lindblad master equation

Let us now derive the master equation associated with the previous model. We simplify
the problem further and assume that the noise is stationary. We can write

K(t, s) = K(t− s) =
∫ +∞

−∞
e−iω(t−s)K̃(ω)dω

2π , (1.50)

where we have introduced the Fourier transform of the noise covariance, also known as
the spectral density of the noise. As we consider a real classical noise, the covariance is
an even function, as is the spectral density. With this assumption, we have∫ t

0

∫ t

0
K(s1, s2)ds1ds2 = 1

2π

∫ t

0

∫ t

0

∫ +∞

−∞
e−iω(s1−s2)K̃(ω)dωds1ds2

= t2

2π

∫ +∞

−∞
K̃(ω)

(
sinc

(
ωt

2

))2
dω ,

(1.51)

where the sinc function is defined as sinc(x) = sin(x)
x

. The squared sinc function appearing
in the integral quickly vanishes outside of the interval

[
0, 2π

t

]
. Thus for t sufficiently large

we have
t2

2π

∫ +∞

−∞
K̃(ω)

(
sinc

(
ωt

2

))2
dω ≃ K̃(ω = 0)t

∫ +∞

−∞
sinc (x)2 dx

π
= 2γt , (1.52)

where we denote γ = K̃(0)/2. In this regime, the decoherence function is thus simply
given by

Γ(t) = γt . (1.53)
Roughly, we expect the characteristic noise correlation function K(τ) to vanish for times
|τ | greater than some correlation time τc, or equivalently, that the spectral density is
mostly supported by [−ωc, ωc] with ωc = 1/τc. In this case, the previous approximation
holds if we consider times that are large in front of the noise correlation time t ≫ τc, in
which case we have

ρ̂(t) = 1
2
(
1 + e−γt

)
ρ̂0 + 1

2
(
1 − e−γt

)
σ̂zρ̂0σ̂z . (1.54)
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In the foregoing discussion, we can safely replace the interval [0, t] by the interval [t, t+ δt]
and replace ρ̂0 by ρ̂(t). Provided we have τc ≪ δt, the previous equation now reads

ρ̂(t+ δt) = 1
2
(
1 + e−γδt

)
ρ̂(t) + 1

2
(
1 − e−γδt

)
σ̂zρ̂(t)σ̂z . (1.55)

Assuming that γδt ≪ 1, we have

ρ̂(t+ δt) ≃
(

1 − γ

2 δt
)
ρ̂0 +

(
γ

2 δt
)
σ̂zρ̂0σ̂z

= ρ̂(t) + γ

2 δt (σ̂zρ̂(t)σ̂z − ρ̂(t))
(1.56)

up to the second order in γδt. To obtain this expansion, we need to use the coarse grained
time scale

τc ≪ δt ≪ 1/γ . (1.57)
In particular, this time scale only exists if the decay rate of the system 1/γ is suffi-
ciently large in front of the noise coherence time τc. This is the condition underlying
the Markov assumption [137], which states that for the considered time scale, the noise
is roughly memory-less and the system does not evolve much under its influence. As a
consequence, it is possible to approximate the noise by a delta-correlated Gaussian white
noise, i.e. K(t− s) ≃ γδ(t− s). Under these conditions, the evolution of the density op-
erator on the coarse grained time scale is given in the interaction picture by the following
master equation:

dρ̂(t)
dt ≃ 1

δt
(ρ̂(t+ δt) − ρ̂(t)) = γ

2D [σ̂z] (ρ̂(t)) , (1.58)

where we have introduced the dissipator associated with a given jump operator Â

D
[
Â
]

= Âρ̂Â† − 1
2
(
Â†Âρ̂+ ρ̂Â†Â

)
. (1.59)

Eq. (1.58) is an example of a generic Lindblad master equation of the form
dρ̂
dt = L(t) (ρ̂) = −i

[
Ĥ(t), ρ̂(t)

]
+
∑

k

γk(t)D
[
Âk(t)

]
(ρ̂) , (1.60)

where L denotes the system’s Lindbladian, Ĥ is the system Hamiltonian and the factors
{γk} the system dissipation rates. It is possible to show 13 that for a system evolving
according to a time-dependent Lindblad equation of the previous form, if the dissipation
rates are positives, the corresponding evolution channels Λ(t,t′) satisfy the relations [150]

Λ(t2,t1)Λ(t1,t0) = Λ(t2,t0) , ∀t0 ≤ t1 ≤ t2 . (1.61)

This condition is sometimes called the divisibility condition. In cases where the Lindblad
master equation is time-independent, the previous relations are turned into the stronger
conditions {

Λ(t2,t1) = Λ(t2−t1) , ∀t1,≤ t2

Λ(τ1)Λ(τ2) = Λ(τ1+τ2) , ∀τ1, τ2 ≥ 0,
(1.62)

13At least in the finite dimensional case.
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along with some adequate notion of continuity in time. A family {Λ(τ), τ ∈ R+} satisfying
these conditions constitutes a so-called dynamical semi-group. The time-independent
version of the result above was first proven by Gorini, Kossakowski and Sudarshan [151]
and Lindblad [152], and it has played a fundamental role for the development of the theory
of open quantum systems [153]. For the current thesis we will only deal with systems
evolving according to a Lindblad equation with time-independent jump operators and
dissipation rates.

The Lindblad master equation is intimately related to the notion of Markovianity.
However, the very notion of Markovian evolution has multiple non-equivalent definitions
in the literature [154–160]. One approach to this question lies in the previous notion of
divisibility, and some authors defines Markovian systems as systems which evolution is
given by a Lindblad equation with positive dissipation rates 14 [155, 156, 158]. With some
adequate choice of driving, the previous model can exhibit a non-Markovian behavior, in
the sense that we have just outlined. We provide such an example in App. B.

III.2 Coupling to a bosonic reservoir
We now turn to a fully quantum version of the previous model, where the classical
stochastic driving is replaced by a bath of bosonic fields at thermal equilibrium. This
model was first used in [57, 161] and here we follow the derivations of refs. [137] and [148]
Consider a system composed of a qubit and a reservoir of harmonic oscillators, which
Hamiltonian in the Schrödinger picture reads

ĤS = ω0

2 σ̂z +
∑
k∈N

ωkb̂
†
kb̂k +

∑
k∈N

σ̂z

(
gkb̂

†
k + g∗

k b̂k

)
, (1.63)

where b̂†
k, b̂k are respectively the creation and annihilation operators associated to the

different bosonic modes, which satisfy the commutation relations:[
b̂k, b̂

†
k′

]
= δkk′ . (1.64)

As before, we work in the interaction picture to eliminate the bare Hamiltonian

Ĥ0 = ω0

2 σ̂z +
∑
k∈N

ωkb̂
†
kb̂k . (1.65)

We take t = 0 as a the time reference. Using the commutation relations we have

eiĤ0tb̂ke
−iĤ0t = b̂ke

−iωkt . (1.66)

The Hamiltonian in the interaction picture is thus given by

Ĥ(t) =
∑
k∈N

σ̂z

(
gke

iωktb̂†
k + g∗

ke
−iωktb̂k

)
. (1.67)

14To a given Liouvillian can correspond multiple sets of jump operators and dissipation rates. To lift
this uncertainty, one requires that the jump operators form a basis of the set of the traceless observables.
This uniquely fixes a corresponding set of rates, and asking for this rates to be positive gives a well-defined
condition of Markovianity. The Lindblad equation, when expressed with these specific dissipation rates
and jump operators, is said to be in the canonical form [158].
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Denoting ρ̂(t) the density operator of the whole system in the interaction picture and
ρ̂0 = ρ̂(t = 0), we have

ρ̂(t) = Û(t)ρ̂0Û
†(t) , (1.68)

where Û(t) is the evolution operator whose form is given by Eq. (1.24). This operator
satisfy the Schrödinger equation

dÛ
dt = −iĤ(t)Û(t) . (1.69)

Unlike the case of a classical noise, the interaction Hamiltonian does not commute with
itself at different times. If this was the case, the evolution operator would have been
simply given by exp

{
−i
∫ t

0 Ĥ(s)ds
}
. Let us look for a solution of Eq. (1.69) of the form

Û(t) = Ĉ(t)e−i
∫ t

0 Ĥ(s)ds . (1.70)

The operator Ĉ(t) then satisfies

dĈ
dt = dÛ

dt e
i
∫ t

0 Ĥ(s)ds + Û(t) d
dt

(
ei
∫ t

0 Ĥ(s)ds
)
. (1.71)

The time derivative of the exponential operator of the right-hand side of this equation is
given by

d
dt

(
ei
∫ t

0 Ĥ(s)ds
)

=
+∞∑
n=0

in
n!

d
dt

((∫ t

0
Ĥ(s)ds

)n)
. (1.72)

We have

d
dt

((∫ t

0
Ĥ(s)ds

)n)
=

n−1∑
k=0

(∫ t

0
Ĥ(s)ds

)k

Ĥ(t)
(∫ t

0
Ĥ(s)ds

)n−1−k

. (1.73)

The commutator of the interaction Hamiltonian at different times can be written[
Ĥ(s), Ĥ(t)

]
=

∑
k,k′∈N

gkg
∗
k′ei(ωks−ωk′ t)

[
b̂†

k, b̂k′

]
+ h.c.

= −2i
∑
k∈N

|gk|2 sin (ωk(s− t)) ,
(1.74)

which is a simple complex valued function. We denote

G(t) =
∫ t

0

∑
k∈N

|gk|2 sin (ωk(s− t))
 ds , (1.75)

and we have [∫ t

0
Ĥ(s)ds, Ĥ(t)

]
= −2iG(t) . (1.76)

From this we obtain[(∫ t

0
Ĥ(s)ds

)k

, Ĥ(t)
]

= −2kiG(t)
(∫ t

0
Ĥ(s)ds

)k−1
, (1.77)
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such that Eq. (1.73) can be written

d
dt

((∫ t

0
Ĥ(s)ds

)n)
= nĤ(t)

(∫ t

0
Ĥ(s)ds

)n−1
− in(n− 1)G(t)

(∫ t

0
Ĥ(s)ds

)n−2
. (1.78)

Injecting this expression in Eq. (1.72), we have

d
dt

(
ei
∫ t

0 Ĥ(s)ds
)

=
(
iĤ(t) − iG(t)

)
ei
∫ t

0 Ĥ(s)ds . (1.79)

Using Eqs. (1.71) and (1.69), we can write

dĈ
dt = −iG(t)Ĉ(t) . (1.80)

As G(t) is a real valued function this equation is easily integrated, and the time evolution
operator is given by

Û(t) = e−i
∫ t

0 G(s)dse−i
∫ t

0 Ĥ(s)ds . (1.81)

In the following, we will denote

r̂k(t) = 2
(
gke

iωktb̂†
k + g∗

ke
−iωktb̂k

)
,

r̂(t) =
∑
k∈N

r̂k(t) . (1.82)

The state of the whole system at time t can be written

ρ̂(t) =
(

exp
( i

2 σ̂z ⊗
∫ t

0
r̂(s)ds

))
ρ̂0

(
exp

(
− i

2 σ̂z ⊗
∫ t

0
r̂(s)ds

))
. (1.83)

Reservoir in a thermal state

Let us now assume that the system is initially in a product state ρ̂0 = ρ̂S,0 ⊗ ρ̂th, where

ρ̂th =
⊗
k∈N

(
1 − e−βωk

)
e−βωk b̂†

k
b̂k (1.84)

is a thermal state of the bosonic bath at temperature T = 1/β. We write ρ̂S(t) = TrB [ρ̂(t)]
the reduced density operator of the system. By taking the partial trace over the bath
degrees of freedom in the previous equation, and using the same decomposition as in the
classical case, we obtain

ρ̂S(t) = Π̂0ρ̂S,0Π̂0 + Π̂1ρ̂S,0Π̂1 + Tr
[
ρ̂the

i
∫ t

0 r̂(s)ds
]

Π̂0ρ̂S,0Π̂1 + h.c. . (1.85)

This is analog to the previous case, with the expectation over the classical noise replaced
by the quantum average with respect to the bath thermal state:

E
[
ei
∫ t

0 ξ(s)ds
]

−→
〈
ei
∫ t

0 r̂(s)ds
〉

th
. (1.86)
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As for the classical case, the quantum noise for a bath in a thermal state is Gaussian, and
we can write〈

exp
(

i
∫ t

0
r̂(s)ds

)〉
th

= exp
(

−1
2

∫ t

0

∫ t

0
⟨r̂(s1)r̂(s2)⟩th ds1ds2

)

= exp
−1

2
∑
k∈N

∫ t

0

∫ t

0
⟨r̂k(s1)r̂k(s2)⟩th ds1ds2

 .
(1.87)

A detailed proof of this result is provided in App. C. If we denote 15

Kk(t− s) = ⟨r̂k(t)r̂k(s)⟩th ,

K(t− s) =
∑
k∈N

Kk(t, s) , (1.88)

then we have

Kk(t− s) = 4|gk|2
(
eiωk(t−s)

〈
b̂†

kb̂k

〉
th

+ e−iωk(t−s)
〈
b̂kb̂

†
k

〉
th

)
(1.89)

A simple calculation gives 16

〈
b̂†

kb̂k

〉
th

= 1
2 coth

(
βωk

2

)
− 1

2 ,〈
b̂kb̂

†
k

〉
th

= 1
2 coth

(
βωk

2

)
+ 1

2 .
(1.90)

We can then approximate the discrete set of modes by a continuum with an associated
frequency density ∑

k∈N
|gk|2 −→

∫ +∞

0
J(ω)dω , (1.91)

and we have 17

K̃(ω) =
∫ +∞

−∞
K(τ)eiωτ dτ =


πJ(ω)

(
coth

(
βω

2

)
+ 1

)
if ω > 0 ,

πJ(ω)
(

coth
(
βω

2

)
− 1

)
if ω < 0 .

(1.92)

Unlike for the classical noise, the spectral density of the quantum noise is asymetric. This
asymetry results from the non-commutativity of the field operators, and it corresponds
to the Kubo-Martin-Schwinger condition

K̃ (−ω) = e−βωK̃ (ω) , (1.93)

which the bath state must satisfy to be a stationary state [137].
15The quantum noise is stationary since the reservoir is in a thermal stationary state.
16coth(x) = ex+e−x

ex−e−x .
17Here J(ω) is defined as the continuous approximation of |gk|2, such that J(ω) = J(−ω).
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Short-time regime Vacuum regime Thermal regime

t ≪ Ω−1, τB Ω−1 ≪ t ≪ τB τB ≪ t

Γ(t) ≃ A
2 Ω2t2 Γ(t) ≃ A ln (Ωt) Γ(t) ≃ At/τB

Table 1.1: Different regimes for the decoherence function.

Thermal and vacuum regimes

Let us now estimate the decoherence function for this model. Using Eqs. (1.51) and (1.92)
we obtain

Γ(t) =
∫ +∞

0
J(ω)t

2

2 sinc
(
ωt

2

)2
coth

(
βω

2

)
dω . (1.94)

In the following we take
J(ω) = Aωe−ω/Ω , (1.95)

where Ω is a high-frequency cutoff and the linear increase in ω corresponds to a quantum
optical regime for which gk ∝ √

ωk. The decoherence function can be decomposed in
a vacuum part Γvac(t) corresponding to a zero temperature and a thermal part Γth(t).
Denoting τB = β/π and assuming τB ≫ Ω−1, we have 18

Γvac(t) = A

2 ln
(
1 + Ω2t2

)
, Γth(t) = A ln

(
sinh (t/τB)

t/τB

)
. (1.96)

Three time regimes can be identified from these expressions, which are summarized in
Tab. 1.1. In the short-time regime, the fluctuations of the bath are negligible and the
system is barely affected by decoherence, as Γ(t) ∝ (Ωt)2 ≪ 1. In the vacuum regime, the
decoherence is mainly due to the vacuum fluctuations of the bosonic fields. The thermal
regime corresponds to times larger than the bath auto-correlation time τB = 1/ (πkBT ),
where the decoherence is mostly thermal. This last regime is Markovian 19, as it yields a
constant decoherence rate γ = A/τB. As in the classical case, we can derive a Lindblad
master equation in this regime for the coarse-grained time scale τB ≪ δt ≪ γ−1 which
only exists if A ≪ 1, which is a condition of weak-coupling between the system and the
bath.

Decoherence

The models presented in this section are models of decoherence. As such, they are char-
acterized by the fact that they single out a specific basis of states, which is determined
by the coupling between the system and its environment. This basis of states remains
unaffected by the noise, while superpositions of these states are progressively destroyed.
The decoherence mechanism thus provides physical explanation to the transition from

18The proofs of these formulas can be found in App. C.
19In the sense that it yields a constant dissipation rate. The instantaneous dissipation rate is positive

in the three time regimes, so in that sense all the regimes could be called Markovian.
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quantum superpositions to classical mixtures, an effect that has been observed experi-
mentally [162]. This mechanism is crucial in measurement theory to explain the existence
of macroscopic measurement appartus measuring given appartus 20 [137, 163].

Decoherence has also an impact on the computational complexity associated with the
simulation of a quantum system on a classical computer. To store and modify the dens-
ity operator of a given quantum system requires an amount memory and computational
resources that scales exponentially in the number of degrees of freedom of the system.
Roughly, if the system considered is subject to large enough decoherence, many of the
non-diagonal entries of the density operator vanishes and the system can be approxim-
ately described by a density operator with a small number of non-zero entries. Put in
another way, the decoherence destroys entanglement and coherences, typically rendering
the system more classical and easier to simulate [44, 54, 161].

20When a measurement is realized, a macroscopic appartus couples to the system to measure. A given
coupling can corresponds to the measurements multiple incompatible observables, but the decoherence
affecting the measurement appartus distinguish the effectively measured observable.



2 Noisy quantum kernel machines

In recent years, machine learning has blossomed in a wide variety of fields and delivered
a large number of applications driven by the achievements of deep artificial neural net-
works [64, 65]. However, the growing demand for computational resources and energy for
training such deep architectures on ever-increasing amounts of data makes its long-term
sustainability uncertain [164]. In this context, devolving computationally demanding
tasks to machine-learning devices with suitable physical systems acting as hardware is
emerging as a relevant alternative. Unfortunately, while the neural-network sequential
architecture is well suited for software implementations on standard computers, the great
number of parameters to be tuned during training remains in practice an obstacle to
physical implementations. A simpler alternative approach is provided by the category of
“shallow models”, such as reservoir-computing [118] or extreme learning machines [165],
which have led to physical proposals [166, 167] and experimental realizations [168, 169].
In such machines, the input data are encoded in the dynamics of a physical system and
the associated predictions are obtained by considering a linear combination of measured
observables, weighted by a set of trainable parameters to be optimized by training 1. Im-
portantly, this is done while keeping the parameters of the physical system fixed, hence
requiring hardly any degree of control over the system. Kernel machines, whose trial
functions can be represented in terms of positive semi-definite and symmetric kernel func-
tions [104], belong to this category. More generally, kernel theory has proved to be a very
useful tool to understand a wide range of machine-learning algorithms. Recently, a close
connection between kernel machines and deep neural networks in the infinite width limit
has been established [170], further extending the relevance of these methods.

With the emergence of the field of quantum machine learning, quantum “shallow” ma-
chines have also been put forward, such as those based on quantum reservoir-computing,
extreme learning and quantum kernels [102, 103, 111–117, 171–175]. Most often, the in-
vestigations of these models have been focusing on isolated quantum systems with unitary
dynamics. At present, however, most quantum devices within practical reach are subject
to a significant degree of dissipation and/or decoherence. An important problem is there-
fore to understand the impact of realistic noise on these settings. The literature on the
subject is yet in its very infancy. For time-dependent tasks, one study on quantum reser-
voir computing suggested that dissipation increases the processing capacity and the non-

1In the litterature different names correspond to this type of approach. The general trend seems to
be to call such a scheme a reservoir computing method whenever the task to tackle is time-dependent,
and to call them extreme learning methods when it is not.



I. General scheme 27

linearity of the embedding, at the price of a reduced memory capacity of the system [176].
An advantageous scaling of the performance of a quantum reservoir-computing scheme,
as compared to its classical counterpart, was recently reported [177]. For quantum neural
networks, noise have been linked the existence of trainability issues [120], at topic which
is discussed in chapter 3. Regarding quantum kernel machines, a recent work have showed
that noise induces a concentration of the kernel functions, leading to trainability issues of
the same kind [117].

This chapter presents the results in our work [α], which investigate the use of open
quantum systems as noisy quantum kernel machines. It is structured as follows. In Sec. I,
we describe a general noisy quantum kernel machine scheme based on a reservoir com-
puting approach. In Sec. II, we analyze this scheme within the kernel-theory framework.
In particular we study the link between the kernel spectrum and important properties of
machine-learning models, such as the expressive power and the generalization capacity.
We introduce and study the effective kernel rank. Within a statistical-learning approach,
we provide an upper-bound on the generalization error for noisy quantum kernels. In
Sec. III, we describe a class of noisy quantum kernel machines based on driven-dissipative
chains of spins. We report a comprehensive study of the dependence of the performance
metrics on the system size and noise for this class of models in section III.2. Finally,
conclusions and perspectives are drawn in Sec. IV.

I General scheme
In this section we present a scheme of noisy quantum kernel machine based on a
reservoir computing approach, in a supervised learning setup. The objective of super-
vised learning is to approximate a causal relation between elements x of an input set
X and some target quantities y ∈ Y , based upon a set of known training examples
S = {(xi, yi) | i ∈ J1, NtrainK}. The input features are considered as independent realiza-
tions of a random variable following a probability distribution p(x) on X . Upon assuming
the inputs and target quantities are related according to an unknown ground-truth func-
tion yi = y(xi), we aim to approximate it using a trial function f parameterized by w,
to be optimized using the training set S. The specific form of f depends on the con-
sidered model architecture. Here, we describe noisy quantum kernel machines exploiting
the dynamics of open quantum systems to generate such a trial function. This scheme is
summarized pictorially in Fig. 2.1.

I.1 Encoding on the quantum system
Let us consider a system S initially prepared in a state ρ̂0 at t = 0. For each element of
the input space, represented by a vector x ∈ X , a procedure can be defined to encode
it into the non-unitary dynamics of a generic open quantum system. As will be shown
in Sec. III, this can be achieved, for instance, by encoding the input vector in a proper
modulation of the driving fields acting on the system.

We consider an open quantum system S whose dynamic can be described by a time-
independent Lindblad master equation of the form given in Eq. (1.60). This master
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ρ̂0 M(x) ρ̂(x) =M(x)[ρ̂0] φ(x) =
(
1,Tr[ρ̂(x)Ô1], · · · ,Tr[ρ̂(x)ÔP ]

)T

x φ(x)
φ

feature map
fw : x 7→ wTφ(x)

w

linear weights

Dynamical
map

Initial
state

Evolved
density matrix

Measured
feature vector

Input space X Feature space F Trial function to train

Figure 2.1: Scheme of a noisy quantum kernel machine. An element x of the input space
X is encoded into a density matrix ρ̂(x) obtained by evolving in time a fixed initial state
described by the density matrix ρ̂0 [see Fig. 2.2 for a specific example of the encoding
process described by the evolution map M(x)]. The measured features are represented
by a vector of observables ϕ(x) (with an added 1 corresponding to the unity operator
as first element to create an offset term) that belongs to the feature space F . The trial
function is obtained by applying a linear transformation to the feature vector (depending
nonlinearly on x) with a vector of weights w that is optimized via the training procedure
described in the main text.

equation describes the evolution from the initial density matrix into a final density matrix:

ρ̂(x, t) = M(x, t)[ρ̂0], (2.1)

where M(x, t) is the quantum channel representing the evolution of ρ̂0. It depends on
x via the encoding procedure: If the input is encoded in driving fields, as we will con-
sider later, the Hamiltonian, and consequently the density matrix at any time, bears a
dependence on the input. In principle, one could also encode the input into a modula-
tion of the loss rates, although we will not treat this case here 2. In what follows, when
considering a fixed final time tf for the time-evolution, we denote M(x) = M(x, tf ) and
ρ̂(x) = ρ̂(x, tf ) to simplify the notation.

I.2 Decoding through measurements
At time tf , after the encoding procedure, we extract the processed information by per-
forming a set of measurements of the system. Given the density matrix ρ̂(x) and a set of
system observables O = {Ôj | j = 1, . . . , P}, information about the response of the open
quantum system to the input x is contained in the following vector

ϕ(x) ≡
(
1, ⟨Ô1⟩x, . . . , ⟨ÔP ⟩x

)T
, (2.2)

2Using the models presented in Chap. 1, such an encoding could be realized using a random driving
which amplitude and correlation function would depend on the input x.
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where
⟨Ôj⟩x = Tr

[
Ôj ρ̂(x)

]
. (2.3)

The vector ϕ(x) belongs to the feature space F ⊆ RP and depends on the input x,
generally in a nonlinear fashion. Note that the constant component 1, which ensures that
the trial function can fit a biased target function, can be seen as the measurement of the
identity observable, since the density matrix ρ̂(x) always has unit trace.

Finally, the trial function f of the noisy quantum kernel machine is given by the affine
transformation:

f : x 7→ wT ϕ(x), (2.4)

where the vector w ≡ (b, w1, . . . , wP )T ∈ RP +1 contains the parameters of the linear
transformation and b represents the bias term. An alternative approach to the construc-
tion of the feature vector, based on time-multiplexing measurements, will be presented in
Sec. III.

I.3 Training procedure
The previous trial function characterized will be optimized using the l2-regularized least-
squares loss function over a training set (xi, yi) ∈ S consisting of Ntrain inputs xi ∈ X
and labels yi ∈ Y , namely:

L (w | S) := 1
2Ntrain

Ntrain∑
i=1

(
yi − wT ϕ(xi)

)2
+ λ

2 ∥w∥2
2 . (2.5)

The second term in Eq. (2.5) is a regularization penalty that helps to prevent over-fitting.
The strength of this penalty is controlled by the corresponding regularization parameter λ.
Adding such a regularization bias is on average equivalent to adding a centered Gaussian
noise of variance λ to the measurement features before the optimization [65].

Such a classifier is sometimes referred to as a least-square support-vector classifier [178] 3.
Although most classification problems are commonly treated with other loss functions [105],
using the least-squares loss function allows us to perform the optimization analytically 4.
Indeed, upon introducing the (P + 1) ×Ntrain matrix Φ, whose columns are the quantum
feature vectors ϕ(xi) associated to the training input xi, and y, the column vector of size
Ntrain containing the corresponding labels, the optimal weights are given by 5

w∗ =
(
ΦΦT +Ntrainλ1

)−1
Φy . (2.6)

3More generally, models using a l2-regularized least square loss function are called ridge regression
models in the literature [105].

4Usually, the choice of the loss function is guided by type of task to be performed, since a given loss
can be associated with a probabilistic model of the relationship between the inputs and the targets. This
link is briefly reminded in App. D

5Note that in certain scenario, one may prefer to exclude the first component of w⃗, which is a constant
intercept term, in the regularization. Then it suffices to replace the (1, 1) entry of 1 by 0 in Eq. (2.6) to
obtain the optimal weights. This is equivalent to using a centered kernel, as discussed in App. E.
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II Quantum kernel and decoherence
The generic encoding-decoding scheme encompasses a large class of quantum machine-
learning models. Here, we describe a decoding based on a linear combination of measure-
ments, but other decoding methods were proposed in the literature. In particular, it was
recently shown that quantum neural networks with alternated encoding and parameter-
ized layers can be mapped to models with an encoding/decoding structure [179], where
the decoding is achieved by optimizing a single parameterized measurement.

Models described by the previous scheme can be analyzed in the framework of kernel
theory, which provides useful tools to understand properties such as expressivity, train-
ability and capacity to generalize to a test sample of unseen data. In this section we first
concisely introduce the kernel framework. A overview of classical kernel methods is given
in App. F. We then specialize our discussion to noisy quantum kernels, and show how we
can link the role of dissipation and decoherence to the kernel’s main figures of merit.

We aim at determining the largest class of functions that can be approximated by our
trial function f . This class depends on the type of decoding used, that is on the specific
set of measurements that are performed on the quantum system. When measuring a set
O of observables, this function space reads

H(O) = {f : x 7→ Tr
[
ρ̂(x)Â

]
| Â ∈ Span(O)} . (2.7)

In this case, the feature vector ϕ(x) gives rise to a positive semi-definite and symmetric
function which we call the feature kernel:

kO(x,x′) = ϕ(x)T ϕ(x′). (2.8)

This kernel function, together with the probability distribution p of inputs x ∈ X 6,
uniquely determines a specific set of real-valued functions, the so-called reproducing kernel
Hilbert space (RKHS):

Span{f : x 7→ kO(x,x′) | x′ ∈ X }. (2.9)

The RKHS associated to kO can be shown to be exactly the space of hypothesis functions
H(O) (see App. F and the references therein.). Hence, the study of the kernel function
allows one to investigate the structure of H(O). In particular, it follows that one can use
the eigendecomposition of the kernel function as a basis of the class of functions that can
be represented by our model. This useful property motivates the adoption of a kernel
standpoint in what follows.

II.1 Quantum kernel
In order to discuss the expressive power of our model, we introduce the largest class of
transformations Hfull that can be achieved for a given encoding strategy [101]:

Hfull = {f : x 7→ Tr
[
ρ̂(x)Â

]
| Â ∈ B (HS) , Â = Â†} . (2.10)

6The probability measure p on the input space X is important here as it determines the scalar product
on the space of real-valued functions on X through ⟨f, g⟩ = Ex∼p [f(x)g(x)]. The reproducing property,
crucial to link the RKHS and its kernel, relies on such a well-defined scalar product.



II. Quantum kernel and decoherence 31

The class of transformation yielded by a set of measurements O is necessarily included in
this maximal class H(O) ⊆ Hfull; the equality holds whenever O spans the set of all the
system’s observables. In the following, we will use the term “full tomography” to refer to
this ideal implementation. It turns out that Hfull is the RKHS of a particular kernel, the
quantum kernel, that solely depends on the feature map ρ̂(x) 7 [102, 114]:

k(x,x′) = Tr [ρ̂(x)ρ̂(x′)] . (2.11)

This kernel arises naturally from the Hilbertian structure of the space of quantum states.
As it represents the maximal achievable class of transformation an encoding can give, the
quantum kernel provides insight on the expressive power of our model. Note that this
kernel can be identified with the previous feature kernel kO provided that the measure-
ments O form an orthonormal basis B = {Bj}j of the space of observables, i.e. k = kB

with Tr
[
B̂iB̂j] = δij

]
and we impose B̂0 ∝ 1̂ by convention.

In what follows, it will be useful to work with a “centered” version of the quantum
kernel. Centering the kernel is equivalent to working with hypothesis functions that have
zero mean value on the input set. As we will show, this is convenient for interpreting some
of the key quantities we will introduce in terms of probabilistic quantities. In App. E, we
show that, at least for balanced data, the use of the L2 loss function allows us to work
with a centered version of the quantum kernel without lack of generality. We define the
centered version of a quantity f(x) as

δf(x) = f(x) − Ep [f ] . (2.12)

With this notation, the centered kernel is given by

kc(x,x′) = Tr [δρ̂(x)δρ̂(x′)] , (2.13)

and the corresponding RKHS is

Hk,c = Span{f : x 7→ kc(x,x′) | x′ ∈ X } . (2.14)

The constant feature we introduced in Eq. (2.2) becomes irrelevant when using centered
quantities, so we drop it and define

δϕ(x) ≡
(
δ⟨Ô1⟩x, . . . , δ⟨ÔP ⟩x

)T
. (2.15)

We can also correspondingly drop the weight term b, so that the weight vectors can be
redefined as w = (w1, . . . , wP )T ∈ RP . The space Hk,c can be rewritten as

Hk,c = {f : x 7→ wT δϕ(x), w ∈ RP }, (2.16)

where the centered quantum kernel reads

kc(x,x′) = δϕ(x)T δϕ(x′) (2.17)

with the choice of O = B. The quantum feature matrix Φ is then replaced by a P ×Ntrain
matrix δΦ, whose columns are the centered feature vectors δϕ(xi).

7For a closed system, this quantum kernel can be directly evaluated through measurement [112] and
the trial function can be expressed in terms of the quantum kernel and optimized in an equivalent way.
This corresponds to the dual picture approach, which is reminded in App. F.
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II.2 Kernel eigen-decomposition
Under general assumptions, the centered quantum kernel admits a decomposition into an
orthonormal family of eigenfunctions [180]:

kc(x,x′) =
∑

i

λiδψi(x)δψi(x′) , Ep [δψiδψj] = δij , (2.18)

where {λi}i are positive eigenvalues sorted in a decreasing order, namely λi+1 ≤ λi, ∀i.
When necessary, we can complete this orthonormal family into a basis with eigenfunctions
associated to zero eigenvalues. In the case of the uncentered quantum kernel, the kernel
eigenfunctions correspond to an orthonormal basis of system observables [103]. When
the kernel is centered, the basis of kernel eigenfunctions corresponds to an orthonormal
basis {Êi}i of the space of zero-trace observables, which we call eigenobservables. Such
operators satisfy the following properties:

Tr
[
ÊiÊj

]
= δij , Tr

[
Êi

]
= 0 . (2.19)

The eigenfunctions are given by

δψi(x) = 1√
λi

Tr
[
δρ̂(x)Êi

]
= 1√

λi

δ⟨Êi⟩x . (2.20)

The corresponding eigenvalues are then given by the variances of the eigenobservable
measurements over the input set, namely:

λi = Ep

[
δ⟨Êi⟩2

x

]
= Varp

[
⟨Êi⟩x

]
. (2.21)

One can see this eigen-decomposition of the kernel as a principal-component analysis in
the space of quantum features, as it yields an orthogonal basis of measurement functions
ordered by their variances on the input set. We stress that these are variances of the
observables expectation values over the quantum states representing the different inputs,
and thus are very different from the quantum variance of the corresponding observable
for a specific state.

The previous decomposition of the kernel is very useful for grasping the learning
mechanism and the model expressivity. Upon working with centered features, the loss
function introduced in Eq. (2.5) becomes

Lc (w | S) = 1
2Ntrain

Ntrain∑
i=1

(
yi − wT δϕ(xi)

)2
+ λ

2 ∥w∥2
2 . (2.22)

Following [105], we can decompose the trial function f(x) = wT δϕ(x) in the basis of the
kernel eigenfunctions, namely as f(x) = ∑

j βjδψj(x). Exploiting such decomposition,
the loss function becomes

Lc (β | S) = 1
2Ntrain

Ntrain∑
i=1

[
yi −

∑
j

βjδψj(xi)
]2

+ λ

2
∑

j

β2
j

λj

. (2.23)

Note that in the regularization term the components of the trial function on the eigen-
basis are weighted by the corresponding kernel eigenvalues. The lower the variance of an
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eigenobservable, the more the corresponding eigenfunction is penalized. Hence the regu-
larization parameter λ acts as a smooth cutoff on the basis of the kernel eigenfunctions,
which are then used to approximate the target function.

The spectrum of the kernel characterizes the generalization capacity and the expressiv-
ity of our model. It also finds applications in understanding many other machine learning
scenarios. For instance, in the context of classical neural networks it has links with learn-
ing curves [181, 182]. Moreover, the kernel (or the neural tangent kernel in the context
of classical and quantum neural networks [170, 174, 183]) shares its spectrum with the
Fisher information matrix, of particular relevance for quantum neural networks [100].

II.3 Role of decoherence on expressivity and generalization error
The exponential growth of the Hilbert space dimension with the number of qubits in a
network and the complex dynamics of quantum systems have created hope for a quantum
advantage in the field of quantum machine learning. However, it is known that having a
very high-dimensional feature space does not necessarily guarantee high machine-learning
performances [105, 184]. Indeed, recent investigations within the quantum kernel frame-
work somehow mitigated the hope for a general quantum advantage [99, 103, 113]. Yet, a
clear quantum advantage has been demonstrated for some specific tasks [174, 175], again
by exploiting the quantum-kernel formalism. In order for a quantum-kernel-based model
to perform well on a given task, the set of transformations achieved must be well “aligned”
with the target function y(x). This notion of alignment is mathematically encapsulated in
the kernel-target-alignment measure [185] which reads, for the centered quantum kernel,

A(kc, y) = Ep [y(x)kc(x,x′)y(x′)]
Ep [kc(x,x′)2]1/2 Ep [y(x)2]

=
∑

i λiEp [δψi(x)y(x)]2

(∑i λ
2
i )1/2Ep [y(x)2] .

(2.24)

Although the kernel-target alignment measures how well a kernel and the associated
embedding fits a specific function, in this article we introduce another figure of merit
that does not depend on a specific task, namely the “effective kernel rank” Reff(k), which
quantifies the effective number of independent transformations that a given kernel can
yield. Such a quantity is defined as:√

Reff(kc) =
∑

j

A(kc, gj) , (2.25)

where {gj}j is any orthonormal basis of functions on the input space. As shown in App. I,
for the centered quantum kernel, the effective kernel rank can be also expressed in terms
of variances of the quantum expectation values of the measured observables:

√
Reff(kc) =

∑P
i=1 Varp

[
⟨Ôi⟩x

]
(∑P

i,j=1 Covp

[
⟨Ôi⟩x, ⟨Ôj⟩x

]2) 1
2
. (2.26)
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Note that the denominator acts as a normalization and can be seen as a measure of the
redundancy of the embedding when expressed in terms of Ôi. In Sec. III.2, we will
investigate in a rather general class of physical models how the kernel effective rank scales
with the system size and with noise.

In App. I, we also provide the proof showing that the kernel effective rank can be
expressed in terms of the kernel spectrum:

√
Reff(k) =

∑
i λi√∑
i λ

2
i

. (2.27)

This expression is reminiscent of the reciprocal of the inverse participation ratio. The
kernel effective rank provides information about the size of its support. Moreover, we
have the following inequality:

Reff(k) ≤ |{λi ̸= 0}| . (2.28)

This is saturated when all the non-zero eigenvalues are all equal. The numerator in the
expression for the square-root of the effective kernel rank is the kernel trace, which can
be rewritten as: ∑

i

λi = Ep

[
Tr
[
ρ̂(x)2

]]
− Tr

[
Ep [ρ̂(x)]2

]
. (2.29)

In this expression, we recognize the difference between the average purity of the embedded
density matrices over the input space and the purity of the average embedding matrix. The
first term is of great relevance to our study, as it crucially depends on the dissipation and
decoherence affecting the noisy quantum system: indeed, a low purity is the consequence
of the openness of the quantum system. The second term instead measures the diversity
of the embedding map; its importance is discussed in [103].

We emphasize that the kernel trace also appears to be relevant when investigating the
ability of the model to perform well on unseen data, hence on its generalization properties.
To measure the performance of a model on a binary classification task we use the accuracy
A. Given a prediction function f , the accuracy is given by the fraction of samples for
which f assigns the right label and it can be defined as the expectation of a 0-1 loss
function:

A(f) = E
[
1y(x)f(x)≥0

]
. (2.30)

Since during the training we only have access to the data set S and not to the true distribu-
tion p, expectations values can only be approximated using the empirical distribution p̂ on
S. The corresponding empirical expectations are given by Ep̂ [f(x)] = 1

Ntrain

∑Ntrain
i=1 f(xi).

From this, we can define the empirical accuracy A on the training set S and the true
accuracy A∗. Correspondingly, we can introduce the risk R∗, also called error or inaccur-
acy, as R∗ = 1 − A∗ (its empirical counterpart is defined analogously). It is convenient to
introduce slightly modified versions of the risk and inaccuracy that depend on a margin-
parameter η > 0. We introduce the η-margin loss as:

Φη(y) =


1 if y ≤ 0
1 − y

η
if 0 ≤ y ≤ η

0 if η ≤ y

. (2.31)
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Correspondingly, we can introduce the empirical η-margin risk as:

Rη(f) = Ep̂ [Φη(y(x)f(x))] . (2.32)

The η-margin-risk and the risk satisfy the following inequality:

R(f) ≤ Rη(f) ≤ Ep̂

[
1y(x)f(x)≤η

]
. (2.33)

The ability of the model to generalize well on unseen data is then quantified by the
generalization error:

E = R∗ − R . (2.34)
For kernel methods with kernel k, the generalization error admits an upper-bound in-
volving the Ntrain × Ntrain empirical kernel matrix K whose entries are defined as Kij =
k(xi,xj). This bound depends on the specific task under consideration and on the exact
space of trial functions used (details on the bound used and its derivation can be found
in [186] and in App. II).

To derive the upper-bound, we fix a class of trial functions of the form f : x 7→
wT δϕ(x) where δϕ(x) corresponds to measurements of an orthonormal basis of observ-
able: δϕi(x) = δ⟨B̂i⟩x. We further constrain this class by choosing a parameter Λ ≥ 0,
and require that the trial function’s parameters w satisfy ∥w∥2Λ ≤ 1. By exploiting
Eq. (2.29), we get that, for such functions, the following inequality holds with probability
at least 1 − δ on the training set S:

R∗(f) − Rη(f) ≤ 2
η

Ep̂ [Tr [ρ̂2]] − Tr
[
Ep̂ [ρ̂]2

]
NtrainΛ


1
2

+ 3

√√√√ log(2
δ
)

2Ntrain
. (2.35)

Other generalization bounds can be established, in particular the authors of [187] found
another bound using a quantum information theory standpoint, and their conclusions are
in agreement with our results. Let us make a few important comments on the meaning
of this inequality. The inequality has a probabilistic character controlled by δ > 0. If
we set this parameter to 0+, the bound is always satisfied although it becomes trivial.
The same goes with the margin parameter η: as η → 0+ the margin-error Rη(f) tends
to the training error R(f), but again the right-hand side of the inequality diverges. The
parameter Λ is another sort of regularization parameter, as the parameter λ: if Λ → 0+,
the norm of the weight vector ∥w∥ can be arbitrarily large and over-fitting is not limited.
Correspondingly, the right-hand side diverges and the bound becomes trivial. The most
important crucial physical quantity involved in the upper bound is the kernel trace given
in Eq. (2.29). Such a quantity accounts for the model expressivity. This duality between
expressivity and generalization is crucial in machine learning [105]. What is relevant to
our study is that this expressivity measure involves the mean purity of the embedded
states and hence is affected by dissipation and decoherence acting on the noisy quantum
kernel machine. The appearance of the regularization parameter Λ in this upper bound
is also relevant as it allows us to establish a link with experimental constraints, such as
imperfect measurements. In fact, as we will see in Section III.2, adding a Gaussian error
of standard deviation σ to the observable measurements is equivalent to working with an
infinitely precise measurement apparatus while replacing the regularization parameter λ
with λ+ σ2 [65].



36 Chapter 2. Noisy quantum kernel machines

III Noisy quantum kernel machines with driven-dissipative
spin chains

As an illustrative example, we here numerically simulate noisy quantum kernel machines
based on 1D chains of spins subject to both driving and decoherence. The simulation of
such an open quantum system for a large number of inputs, various choices of the number
of sites and distinct disorder realizations is a computationally daunting task 8. Indeed,
this requires to exactly integrate a large set of corresponding Lindblad master equations
of the form of Eq. (1.60). Hence, we have considered a simplified classification task
involving only a subset of the MNIST dataset, namely classifying images of handwritten
digits corresponding to the digits 3, 6 and 8, which share common shapes.

III.1 Encoding and decoding methods
Encoding through driving

A schematic description of the task and of the feature encoding through driving of the
considered physical system is presented in Fig. 2.2. The original MNIST dataset consists of
28 × 28-pixel images. Encoding such high-dimensional features in the state of a quantum
system is not an easy task. Therefore, we first linearly down-sample the raw images
from 28 × 28 to 8 × 8 pixels, thereby reducing the dimension of the input features. The
down-sampled images, viewed as vectors, are then multiplied by a random 82 × 10 matrix
W, whose entries are uniformly drawn over the interval [−1, 1], yielding vectors x′ =
(x′

1, . . . , x
′
M)T of M = 10 random-projection features. These are finally normalized by

3 times the standard deviation of the set {x′
i | i = 1, . . . ,M, x ∈ S}. At the end of

this procedure, every image in the dataset is represented by a vector x of size M = 10,
which will be used as inputs in the following. These are computed only once and reused
throughout this article, except in section III.2.

This encoding is designed so as to fix the amount of information fed to the system,
independently from its number of sites. It allows us to perform a fair comparison of
models associated to quantum systems of increasing sizes. In particular, this ensures that
any observed increase of the performance with the system size is solely due to an intrinsic
enhancement of the model expressive power. In Section III.2, we lift the above-defined
“information bottleneck” and use a different encoding, where the number of encoded
featuresM scales with the system sizeN . Therein, we show that this results in competitive
performances, as compared to classical reservoir-computing settings involving hundreds
to thousands of degrees of freedom [166, 168].

In what follows, we denote X ⊆ RM the input space consisting of the random-
projection features representing the images to classify, and Y = {3, 6, 8} the set of corres-
ponding labels. Our dataset consists of 17,000 images, which we split into a training set
of Ntrain = 15,000 images and a testing set of Ntest = 2000 images. As before, the training
set is denoted as S = {(xi, yi) ∈ X × Y | i = 1, . . . , Ntrain}.

8In total, the results presented in this work required approximately 800,000 scalar hours (∼ 90 years) of
computation and 5 terabytes of storage on the acknowledged French National High Performance Comput-
ing facility (GENCI). During the simulations, we used approximately up to 30, 000 cores simultaneously.
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Figure 2.2: Schematic representation of the encoding procedure for the MNIST classific-
ation task. The input grayscale image, of original size Np × Np, with Np = 28, is first
downsampled to a size of N ′

p × N ′
p (or N ′2

p × 1 when viewed as a column vector), with
N ′

p = 8, and linearly transformed by a fixed N ′2
p ×M random projection filter W to yield

the vectors x′ containing M = 10 random-projection features. Those features are nor-
malized by 3 times the standard deviation over the set of all features for all images in the
training set, and we denote x the normalized vectors representing the images. The vector
x is then encoded into a sequence of driving pulses ξ(t), where the amplitude of the ith
pulse (at time ti) is proportional to the input’s ith component xi. Finally, the pulses are
used to drive a spin chain (initially prepared in the state ρ̂0), where the driving amplitude
at site j is Fj(t) = ηjξ(t) with ηj a random site-dependent scale factor. We define the
state of the spin chain immediately after the driving sequence to be the encoded state,
represented by its density matrix ρ̂(x).

The system in which we encode the previous features is a driven-dissipative one-
dimensional chain ofN spins-1/2 described by the following Heisenberg XYZ Hamiltonian:

Ĥ(t; x) = ℏ
2

N∑
i=1

(
Fi(t; x)σ̂i

x + ∆iσ̂
i
z

)
− ℏ

2
∑
⟨i,j⟩

(Jx
ijσ̂

i
xσ̂

j
x + Jy

ijσ̂
i
yσ̂

j
y + Jz

ijσ̂
i
zσ̂

j
z), (2.36)

with Fi(t; x) an input-dependent driving field, ∆i an on-site frequency detuning, and Jk
ij

the symmetric coupling rate between nearest neighbors. Here, indices ⟨i, j⟩ run over all
pairs of nearest neighbors. Parameters Jk

ji and ∆i are uniformly drawn at random in the
interval [0, 2J ]. 1/J will be used as unit of time in the numerical plots. We prepare the
system in an initial state with all spins down ρ̂0 = ⊗N

i=1 |0⟩⟨0|.
The encoding of the input x corresponding to a given image into the system state is

performed by driving the system with a series of M = 10 sharp Gaussian pulses, whose
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M(x)
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Figure 2.3: Equivalent circuit of the encoding procedure for the MNIST classification
task. If the driving pulses are sharp enough, the encoding process of Fig. 2.2 can be
equivalently seen as a quantum circuit, where the i-th driving pulse on site j is effectively
a single-qubit X-rotation gate RX(ηjxi), and the pulses at different times are separated
by the gate G generated by the free dynamics of the spin system in the absence of the
drive. Note that the entire process between ρ̂0 and ρ̂(x) serves as the dynamical map
M(x) shown in Fig. 2.1.

amplitudes are proportional to the input vector elements, as illustrated in Fig. 2.2. We
first define a generic driving ξ(t; x) from the feature x:

ξ(t; x) =
N∑

k=1

xk√
2πσ

exp
(

−(t− tk)2

2σ2

)
,

tk = (k − 1)∆t+ 10σ, ∀k = 1, . . . ,M ,

(2.37)

where the time interval between two successive pulses is ∆t = 1/(2J) and the width of
each pulse is σ = 1/(50J). Then the driving on site i is taken to be proportional to this
generic driving:

Fi(t; x) = ηiξ(t; x), (2.38)
where the ηi are random factors uniformly distributed in the interval [−π, π]. Under these
driving conditions, the coherent part of the system dynamics can be thought of as that of
an equivalent quantum circuit alternating between a set of local X-rotation gates, of the
form RX

i (ηixk), and a deep block generating entanglement among qubits 9, as illustrated
in Fig. 2.3. The scaling factors ηi prevent the spins from rotating all together. This
procedure, where a random-projection feature is fed to the system every ∆t, is in close
analogy with the repeated-encoding prescription in variational quantum circuits, which is
known to improve the expressivity of a model [101].

Shortly after the last pulse of the driving ends, at time τ = 30σ+M∆t, we get the final
encoded state represented by the density matrix ρ̂(x). This encoding procedure acts as a
non-linear map from the input space of images to the high-dimensional space of N -spin
mixed quantum states.

9This can be explicitly expressed as a D-deep circuit via Trotterization as G =[∏N
i=1 RZ

i

(
− 2∆i∆t

D

)∏
⟨i,j⟩

∏
K∈{X,Y,Z} RKK

ij ( 2JK
ij ∆t

D )
]D

+ O(J2
0 ∆t2/D2)
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Concerning the non-unitary dynamics due to the openness of the quantum kernel ma-
chine, we will consider spin dephasing as the source of decoherence. Within the Lindblad
master equation formalism [Eq. (1.60)], this process is described by the jump operators
Âj = σ̂j

z, and we consider a uniform dephasing rate for each site γi = γ, ∀i ∈ {1, · · · , N}.
Note that while the considered illustrative task involves three classes, it can be reduced

to a set of binary classification problems by changing the labels y ∈ {3, 6, 8} into vector la-
bels of the form (y1, y2, y3)T with yj ∈ {−1, 1}3. For example an outcome (−0.3,−0.2, 0.9)
would correspond to the digit 8. This “One-vs-Rest” approach is equivalent to training
three binary classifiers, one for each class, and takes the highest output among the three
classifiers as a prediction. However, for the sake of simplicity, we will use binary classific-
ation notations in the following, and consider that the labels belong to {−1, 1}.

Regarding the measurements of the system observables, we will consider two measure-
ment protocols:

(i) A full tomography of the output density matrix. In this case we consider that
the measurements are made without delay after the end of the encoding, and the
extracted features are exactly the components of the generalized Bloch vector ϕ(x)
by considering a complete set of observables.

(ii) A time-multiplexing measurement protocol, where the output is obtained by sequen-
tial measurements at different times of a set of local observables.

Full tomography

Any Hermitian operator of the considered spin system can be decomposed on the ortho-
gonal (for the Hilbert-Schmidt inner product) basis of Pauli strings. For a system of N
spins, we write this basis {Ôi | i = 0, . . . , P}, with P = 4N − 1. The corresponding
observables are such that

Ôi =
N⊗

k=1
σ̂k

ik
, ik ∈ {0, 1, 2, 3};

Tr
[
Ô†

i Ôj

]
= 2Nδij, ∀i, j ,

(2.39)

with Ô0 = 1̂, and thus any observable Â is decomposed in this basis through the expansion:

Â = 1
2N

(
Tr
[
Â
]
1̂ +

P∑
i=1

Tr
[
ÔiÂ

]
Ôi

)
. (2.40)

The density matrix associated to the input x can also be decomposed into this basis:

ρ̂(x) = 1
2N

(
1̂ +

P∑
i=1

⟨Ôi⟩xÔi

)
, (2.41)

and hence any density matrix is uniquely characterized by its associated generalized Bloch
vector. For the full-tomography decoding we take these Bloch vectors as the quantum
features, which is equivalent to rescaling the quantum kernel function [Eq. (2.11)] by a
constant factor of 2N .
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The encoding method we use leads to embedded states that exhibit entanglement.
Fig. 2.4a shows that the average entanglement negativity quickly increases during the
encoding, and then eventually decays at a rate depending on γ. In parallel, as we see
from Fig. 2.4b, there is a finite von Neumann entropy of the system due to mixed character
of the state. In Section III.2, we will show how these processes affect the performances of
noisy quantum kernel machines.

Time multiplexing measurements

A simplified and experimentally less demanding decoding is obtained by measuring all the
single-site observables (i.e., the three local Pauli spin operators) at different times after
the end of the encoding. In the following, we will denote Nrep the number of repetitions
of these measurements. Hence, for a system of N spins, a total number 3N × Nrep of
measurements have been performed after Nrep repetitions. We use measurements of the
on-site observables for each spin, which correspond to the components of the Bloch vectors
of the reduced density matrices on each site. We consider corresponding observables in
the Heisenberg picture. The new feature vector ϕ̃(x) in the time-multiplexing protocol
have entries of the form ⟨Bi(t + kδtm)⟩x with 1 ≤ i ≤ 3N, 1 ≤ k ≤ Nrep, where δtm is
the time interval between two consecutive measurements. Similar methods were used in
previous works to perform an approximate tomography of the system state [188, 189].
Note that the time-multiplexing procedure can only decrease the model expressive power
when compared to the full tomography, as information leaks into the system’s environment
as the system evolves between successive measurement times (see App. III).

III.2 Numerical results
In this section, we discuss the numerical results on the noisy quantum kernel machines
obtained by considering the model spin Hamiltonian, dephasing channels, input encoding
via driving, decoding protocol through measurement and the classification task detailed
in the previous section.

Performances, noise and system size

The main goal is to determine how the performance of the noisy quantum kernel machine
scales with the amount of noise and the number of chain sites, i.e. network nodes. To
provide a fair comparison, it is necessary to ensure that the same amount of information is
fed into the system for all the system sizes. This is achieved by keeping fixed the number
M of projections and resolution of the images. As it will be shown in Section III.2, the
performance can be greatly enhanced when this information bottleneck is lifted and the
amount of encoded information is varied.

The first point to address is the trainability and generalization properties. In Fig. 2.5,
we show the dependence of the training and testing errors on the generalization parameter
λ. The curves in (a) are obtained assuming a full tomography and ideal measurements.
Panel (b) instead presents the same results, but with imperfect measurements (see caption
for more details). In panel (a), the training error (dashed lines) drops to zero as λ → 0+;
this is a manifestation of over-fitting and indicates that, thanks to the high dimensionality
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Figure 2.4: Time dynamics of the average entanglement negativity N (ρ̂) (a) and the
average von Neumann entropy S(ρ̂)(b) in presence of pure dephasing with different values
of the corresponding rates γ. At the initial time t = 0 the system is in the pure state
ρ̂0 defined in the text. Note that the driving sequence finishes at the time Jt ≃ 5
indicated by the vertical dotted lines on the figures. The time is expressed in units of
1/J where J is the average value of the spin coupling. We define N (ρ̂) as the average
over all the sites of the negativities associated to the system partitions having the form
{{site i}, {site j | j ̸= i}}. This quantity is averaged over 20 inputs x ∈ X , 5 disordered
configurations of spin couplings and for a chain of N = 5 spins. The filled areas correspond
to a one standard deviation confidence interval.

of the quantum feature space, the system is able to completely fit the training data.
Instead, the testing error (solid lines and markers) has a minimum value for some optimal
value of λ, which depends on the dephasing rate γ (different markers denote different
rates). For large enough values of λ the testing and training error curves eventually
overlap. For increasing γ the minimum shifts to vanishing values of λ. A remarkable
result is that the minimal testing error is very little affected by the dephasing rate. As
shown in Fig. 2.5b, the situation changes in the presence of imperfect measurements.
Indeed, the minimum of the testing error is obtained for a finite value of λ even for large
values of γ. Importantly, the minimum error increases with increasing dephasing noise.

In panels (c) and (d) of Fig. 2.5, we report the dependence of the minimal testing
error as a function of the number of spins N for increasing values of the dephasing rate.
Again, panel (c) corresponds to ideal measurements, while curves in panel (d) are obtained
under imperfect measurements. Panel (c) shows that the testing error diminishes as a
function of the number of spins and increases with dephasing rate. Note that also for very
small dephasing rate the minimal testing error appears to saturate at large system sizes.
This is hardly surprising as the input images have been preprocessed and considerably
down-sampled. This deliberate choice aims at making the task harder in order to gauge
the expressivity of the machine without overloading the input information. As shown in
panel (d) of Fig. 2.5, by considering imperfect measurements the role of dephasing is
dramatically amplified.

As we have described in the analytical discussion in Section II, the quantum kernel
spectrum allows us to assess the capacity of our model independently from the specific task
one wants to achieve. Fig. 2.6a shows the dependence of the quantum kernel’s effective
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Figure 2.5: (a) Training error R (dashed lines) and testing error R∗ (solid lines and
markers) as a function of the regularization parameter λ for a chain with N = 7 spins in
the presence of pure dephasing for different values of the corresponding rate γ (different
markers in the legend) in units of the average spin coupling J . Measurements are assumed
to be ideal . (b) Same as (a) with an extra random Gaussian noise of width σ = 10−3

added to the observable expectation values to account for imperfect measurements. For
each value of λ the corresponding errors are averaged over 15 disordered configurations,
and the error bars are bootstrap estimates of the standard deviation for the estimated
mean values. We use 10 bootstrap sets, each consisting of 15 samples randomly drawn
with replacement from the original set of 15 disorder realizations. (c) Minimal testing
error as a function of the number of spins N for different values of the dephasing rate γ.
For each disorder configuration, the regularization parameter λ is chosen to minimize the
testing error and the resulting minimum is averaged over the disorder. The error bars are
derived using the same bootstrap procedure. Number of disorder configurations: 50 for
N = 2 to N = 5 spins, 25 for N = 6, 15 for N = 7 and 5 for N = 8. (d) Same as (c) with
an extra random Gaussian noise of width σ = 10−3 added to the observable expectation
values to account for imperfect measurements.
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Figure 2.6: (a) Kernel effective rank for the full tomography decoding as a function of
the number of spins N and for different values of the dephasing rate γ. We have used the
empirical representation of the kernel matrix on the training set. The results are averaged
over over the same numbers of disorder realizations as for Fig. 2.5. (b) Kernel empirical
spectrum for the full tomography decoding, N = 6 spins and for different values of the
dephasing rate γ. The markers correspond to the optimal generalization parameter λ.
The curves have been obtained via the kernel empirical representation on the training set.
Results are averaged over 25 disorder configurations. The filled area corresponds to twice
the estimated standard error on the averaged value, using the same bootstrap method as
for Fig. 2.5.

rank Reff(Kc) on the system size and noise strength. For vanishing values of the dephasing
rate γ, we see that this figure of merit first increases exponentially with the number of
spins before saturating. For increasing γ, the effective quantum kernel rank decreases
approaching one in the limit of very large γ.

The same behavior is observed in the empirical spectrum in Fig. 2.6b as the noise
rate is varied. For increasing values of γ, we observe a faster decrease of the empirical
kernel eigenvalues as a function of the eigenvalue number. For comparison, we have in-
dicated with markers the largest eigenvalue below the optimal generalization parameter.
This gives a rough estimate of the number of kernel eigenfunctions required to correctly
approximate the target function. Note that in the context of imperfect measurements the
generalization parameter is bounded from below, and hence some of the kernel eigenfunc-
tions becomes out-of-reach. This shows a clear link between the kernel eigenvalues and
the expressivity of the machine.

The results discussed relied on full tomography. As we have explained in Section III, it
is possible to design a simplified and less expensive measurement protocol based on a time-
multiplexing procedure where a set of local spin observables are measured at Nrep different
times. The results obtained with such an approach are summarized in Fig. 2.7. As
appears from Fig. 2.7a, by increasing the number of repetitions Nrep the error diminishes.
For small enough values of dephasing γ, the error converges to the value in the ideal
case of full-tomography. For increasing γ, however, the saturating value departs from
the ideal one given by full tomography, showing that the time-multiplexing expressivity
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Figure 2.7: (a) Minimal testing error as a function of the number of repetitions Nrep of
all the local spin measurements for N = 6 spins and different values of the dephasing
noise γ. The regularization parameter value is chosen to minimize the testing error. The
horizontal dashed lines represent the errors obtained using a full tomography decoding for
the corresponding dephasing rates. The results are averaged over 50 disorder realizations.
(b) Difference between the testing error of the time-multiplexing decoding and the one
for full tomography as a function of the number Nmeas = 3NNrep of local measurements
performed for Nrep = 50, dephasing rate γ/J = 0.01 and different values of the number N
of spins. For each realization of the disorder, the regularization parameter value is chosen
to minimize the testing error. The results are averaged over 25 disorder realizations.

deteriorates more than that of the full tomography for larger noise. This trend is further
elucidated in Fig. 2.7b, where the difference between the time-multiplexing error and
the full-tomography error is reported as a function of the total number of measured
observables. By increasing the number of spins and hence the dimension of the Hilbert
space for a given dephasing rate, the required number of repetitions increases.

Optimizing the encoding

In this section we investigate an alternative encoding scheme for which the amount of
information fed to the system scales with the system size. The embedding studied in the
previous sections involved a set of M = Npulse random-projection features derived from
the down-sampled images. Here we derive a number M = N × Npulse of such features
and split them in N sequences of Npulse features, which we use to drive the N sites. In
particular, the driving sequences sent to different sites are unique, while for the previous
encoding those sequences were proportional to each other. The new encoding procedure
is presented in Fig. 2.8 in the form of its equivalent circuit. In Fig. 2.9 we report the
evolution of the performances given by this new encoding as a function of the number
of driving pulses. As the number of pulses rises the corresponding number of encoded
features M = N ×Npulse increases and so does the amount of encoded information. The
corresponding maximal testing accuracy reaches an optimum of 94.5% for Npulse = 3. For
large number of pulses Npulse the performances drop. This effect is due to the fact that
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Figure 2.8: Equivalent circuit of the encoding with the information bottleneck removed.
Instead of injecting a single random projection feature xi per time step as represented in
Fig. 2.3, where a total number of M = Npulse random projection features are fed into the
kernel machine, here we inject N random projection features in each time step, with a
total number of M = N × Npulse random projection features injected by the end of the
encoding sequence.
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Figure 2.9: Optimal testing accuracy as a function of the number of driving pulses, for
the encoding presented on Fig. 2.8, N = 6 spins and γ/J = 0.01. The regularization
parameter is chosen as to maximize the testing accuracy. Note that for this encoding
the number of features M yielded by the preprocessing is M = N × Npulse. The results
are shown for 10 realizations of the disorder on both the preprocessing and the system
parameters. The maximal accuracy obtained is 94.5% for Npulse = 3. The boxes extend
from the first to the third quartile of the distributions, the middle line indicates the
median and the wiskers indicates the extreme values of the distributions.

for such parameters the transformations yielded by the encoding are poorly adapted to
the task at hand, i.e. the kernel and the target function become less “aligned”. Note that
the performance is very sensitive to both the encoding method and the physical system
parameters. While controlling the physical parameters might be hard, it appears that a
careful design of the encoding procedure can significantly boost the performances. This
makes the research of tailored encoding procedures a promising avenue of research.
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IV Conclusion
In this chapter, we have presented a quantum machine-learning model based on the
quantum-kernel paradigm. Within the formalism of kernel theory, we have character-
ized the expressivity and generalization capacity of this model. We have linked the rel-
evant figure of merits to the spectrum of the associated centered quantum kernel. In
particular, we presented an upper bound on the generalization error involving the aver-
age purity of quantum states representing the data to classify. This upper-bound shows
that dissipation and decoherence act as a regularization for the quantum kernel machines.
By considering an illustrating example of a driven-dissipative spin chain as the noisy
quantum kernel machine, we have shown how the expressivity and generalization capa-
city are controlled by both the dephasing rate and by experimental uncertainties on the
measurements. Moreover, we have shown how the performances of the noisy quantum
kernel machines are modified when the full-tomography measurement protocol is replaced
by a time-multiplexing procedure requiring only local observables, and how the openness
of the system mitigates the efficiency of this protocol. We observed a qualitative improve-
ment in the processing performance of our model when going from a scenario where the
system is fed a constant amount of information to one where the inputs are encoded at a
finite information rate that scales extensively with the system size. How to design tailored
encoding strategies able to harness the full power of quantum kernel machines remains an
open question. In particular, investigating encoding schemes that would allow to inject
information at a rate scaling exponentially in the system size seems promising. The con-
cepts presented here and the unavoidable role of the decoherence in any realistic physical
system are relevant for a wide range of quantum machine-learning models, ranging from
quantum extreme-learning machines to quantum neural networks.



3 Efficient estimation of trainability
for VQC

Inspired by the success of machine-learning methods, variational quantum algorithms [78,
95, 98] have emerged as a promising way to harness the power of quantum computing in
various domains ranging from quantum chemistry [190–192] to combinatorial optimization
problems [193–195]. These algorithms use the output of parameterized quantum circuits
as variational ansätze, whose parameters are classically optimized through gradient-based
methods. In the emerging field of quantum machine learning, a large amount of work
has been devoted to finding quantum analogs to neural-network models [196, 197], and
variational quantum circuits have appeared as natural candidates for such a generaliz-
ation [198]. Thus, these models are sometimes called quantum neural networks in this
context [199].

Variational quantum circuits can suffer from trainability issues caused by the existence
of barren plateaus [119], a limitation that has been extensively studied in the recent
literature [120–123, 200–221]. It is characterized by an exponential vanishing of the cost
function’s gradient with the system size that makes training variational quantum circuits
impossible for a large number of qubits. Although many strategies have been proposed
to avoid barren-plateaus [201–215], tackling this fundamental issue remains an important
theoretical challenge.

In this chapter, we propose an alternative approach to the problem by providing an
efficient method to estimate the average gradients and their variance for a wide class of
variational quantum algorithms. The associated results are gathered in our work [γ]. This
chapter is structured as follows. Sec. I introduces the theoretical framework of variational
quantum algorithms, and we provide a brief review of the existing results related to
the barren plateaus. In Sec. II we give an overview of the efficient simulation scheme
presented in this chapter and discuss its conditions of applicability. In addition, we show
some numerical experiments to illustrate our method on examples of random circuits and
faithfully reproduce the exponential suppression of the variance first found in Ref. [119]
with polynomial resources. The technical results are then presented in Secs. III and IV.
We study the general quantum channel associated to a random single-qubit rotation in
Sec. III. There, we prove that under some simple conditions the first and second moments
can be expressed as mixed-unitary channels [141] composed of Clifford gates [142]. Then,
in Sec. IV, we demonstrate that upon some additional general assumptions for the random
angles distribution, this decomposition allows to exactly map randomly initialized circuits
composed of Clifford gates and parameterized rotations to an ensemble of Clifford circuits.
Moreover, we prove that the obtained ensemble can be efficiently sampled to compute
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quantities of interest, such as the variance of the gradient or the average of the cost
function over the initial random parameters. Making use of the celebrated Gottesman-
Knill theorem [42, 45], we analytically prove the efficiency of our method that can be
implemented on a classical computer with a complexity scaling polynomially in both the
number of variational parameters and the system size.

I Theoretical framework
In this section we introduce the framework associated with variational quantum algorithms
along with a prompt discussion of the barren plateaus phenomenon. We also define the
notions of first- and second-order averaged quantities that will be used in this chapter.

I.1 Variational problem

In variational quantum algorithms, a parameterized unitary transformation Û(θ) acting
on n qubits is used as a variational ansatz to achieve a task expressed as the minimization
of a cost function

C(θ) = Tr
[
Û(θ)ρ̂Û †(θ)Ô

]
(3.1)

for some observable Ô and some initial n-qubit state ρ̂. This formulation is general
and encompasses typical tasks, such as the preparation of a target state |ψ⟩ (setting
Ô = − |ψ⟩⟨ψ|) or ground state search for some Hamiltonian Ĥ (setting Ô = Ĥ).

The considered parameterized unitaries are typically composed of a succession of para-
meterized gates and fixed layers. Here we consider a generic ansatz of the form

Û(θ) =
M∏

i=1
Ûi(θi)Ŵi , Ûi(θi) = e−i θi

2 P̂i , (3.2)

where each unitary Ûi(θi) is a single qubit rotation associated to a given Pauli operator
P̂i ∈ {X̂, Ŷ , Ẑ}, while the Ŵk are fixed layers composed of a sequence of unparameterized
gates that can act on multiple qubits. Upon absorbing Clifford gates in the fixed layers,
we can transform all the parameterized gates into Z rotations. In fact, let us denote Ĥ
the Hadamard gate and Ŝ the phase gate, whose matrices in the computational basis
{|0⟩ , |1⟩} reads

Ĥ = 1√
2

(
1 1
1 1

)
, Ŝ =

(
1 0
0 i

)
. (3.3)

Both of these gates belong to the Clifford group, and we have that

X̂ = ĤẐĤ† ,

Ŷ = (ŜĤ)Ẑ(ŜĤ)† ,
(3.4)

so that we can write
e−i θi

2 X̂ = Ĥe−i θi
2 ẐĤ† ,

e−i θi
2 Ŷ = (ŜĤ)e−i θi

2 Ẑ(ŜĤ)† .
(3.5)
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Hence, if Ûi(θi) is a X-rotations, we can replace Ŵi and Ŵi+1 respectively by ĤŴi and
Ŵi+1Ĥ to get another ansatz with the same form as the original one and with only Y and
Z rotations. Proceeding likewise for Y -rotations, we obtain an equivalent ansatz with
only Z rotations 1. As result, there is no loss of generality to consider ansatz based only
on Z-rotations, and in the following we will focus on this class of circuits.

The unitary transformation Û(θ) depends on M continuous parameters gathered in
the vector θ = (θ0, . . . , θM−1). These rotation parameters can be optimized using classical
gradient-descent techniques. The gradient of the cost function with respect to the k-th
parameter can be conveniently estimated using the parameter-shift rule [171, 222]:

∂kC(θ) = 1
2

(
C(θ + π

2 ek) − C(θ − π

2 ek)
)
, (3.6)

where ek is the canonical vector along the component k. It is worth noticing that the
±π/2 shifts in the parameter θk can be factored out and seen as an extra Clifford gate
added to the fixed layer Ŵk. In fact, remarking that

Ŝ = ei π
4 e−i π

2 Ẑ , (3.7)

and assuming P̂k = Ẑ, we have:

Ûk(θk + π/2)Ŵk = e−i θk
2 Ẑe−i π

2 ẐŴk = e−i π
4 Ûk(θk)ŜŴk . (3.8)

We define
Ŵk,+ = e−i π

4 ŜŴk , Ŵk,− = e+i π
4 Ŝ†Ŵk , (3.9)

such that we can write
Ûk(θk ± π/2)Ŵk = Ûk(θk)Ŵk,± . (3.10)

We denote
Û±(θ) = Û

(
θ ± π

2 ek

)
(3.11)

the shifted unitaries appearing in the parameter-shift-rule. From what preceeds we have

Û±(θ) =
M∏

i=1
Ûi(θi)V̂i,± , with V̂i,± =

 Ŵk,± if i = k ,
Ŵi otherwise .

(3.12)

I.2 Unitary ensembles and t-fold channels
To start the optimization process the rotation angles are randomly initialized according
to some probability distribution p(θ). The initialized circuit can then be represented by
a unitary ensemble U = {Û ,P(Û)}, where P is a probability measure on U. One is often
interested in computing averages of quantities that are polynomial of a given order t in
the entries of Û . Such quantities can be completely determined by the knowledge of the
t-fold channel [223]

Φ(t)
U (ρ̂) =

∫
U
Û⊗tρ̂Û †⊗tdP(Û), (3.13)

1Note that in the case of the last layer one of the extra gates must be absorbed in the cost function
observable to get the same ansatz structure.
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where ρ̂ is an initial state of t copies of the original n-qubit system.
In this chapter, we will be primarily interested in the unitary ensemble arising from

the random initialization of the ansatz parameters, which we write

U =
{
Û(θ), RM ∋ θ ∼ p(θ)

}
. (3.14)

We denote Φ(t)
θ the t-fold channel associated with this ensemble. In the following, we will

give examples of quantities involving the 1- and 2-fold channels, and we introduce the
related first- and second-order quantities.

More generally, one can characterize the expressivity of a given ansatz by comparing its
t-fold channels to ones obtained for a Haar (uniform) distribution over the whole unitary
group [123, 183, 224]. Unitary ensemble whose t-fold channel matches the t-fold channels
for the Haar measure, the so-called t-designs, have played a crucial role in the original
discovery of the barren plateaus phenomenon [119]. Moreover in multiple cases random
quantum circuits are approximate t-designs [225–227].

I.3 Barren Plateaus
As mentioned earlier, variational quantum algorithms can suffer from trainability issues
caused by an exponential vanishing of the cost function’s gradient with the system size.
This issue, known as the Barren Plateaus phenomenon, can originate from various and
fundamentally different phenomena. Its emergence was first shown in Ref. [119] for 2-
designs (random unitary transformation matching the Haar distribution up to the second
moment). Recent works linked barren plateaus to the expressibility of the ansatz [123]
as well as noise [120] and entanglement. In particular, the authors of Ref. [122] showed
that for architectures that can be split into a hidden and a visible subsystem, such as
quantum Boltzmann machines or feed-forward quantum neural networks, an excess of
entanglement between the two subsystems would result in a highly mixed state for the
visible subsystem. This can lead to a flat landscape for the cost function. The effect of the
structure of the cost function on the appearance of barren plateaus was also investigated
in other works [121, 200], and it was shown that global cost functions are more prone
to exhibit barren plateaus. Note that shallow models such as quantum kernel machines
[101, 108, 179] and reservoir computing models [167, 169, 228, 229], while often easier to
train than variational quantum algorithms, might also suffer from trainability issues of a
similar nature [117].

For a unitary ensemble U that describes parameterized ansätze Û(θ) with random
continuous parameters θ and a possibly random architecture, a cost function C(Û(θ)) is
said to exhibit a barren plateau if the probability of obtaining a gradient that deviates
from zero by some ϵ > 0 vanishes exponentially with the system size n. More precisely,
PU(|∂kC| > ϵ) ≤ O(exp(−αn)) for some α > 0.

In many cases, the average value of the gradient vanishes exactly, for instance when
the rotation parameters are initialized uniformly in [−π, π]. However this does not imply
a vanishing of the gradient amplitude on average, and thus does not tell much about the
trainability of the model. In this unbiased case, the variance is a relevant quantity. Due
to the Chebyshev inequality, one has PU(|∂kC| > ϵ) ≤ Var [∂kC] /ϵ2, so that a vanishing
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variance implies the existence of a barren plateau. On the other hand a non-vanishing
variance guarantees large fluctuations and thus a good trainability, independently of the
gradient bias. Higher-order moments may also help diagnose the trainability of variational
quantum algorithms [230].

Numerous investigations have proposed strategies to address the barren-plateau issue.
In the context of entanglement-induced barren plateaus, most strategies rely on limiting
the amount of entanglement [201–206]. Other methods make use of tailored distributions
of the initial circuits parameters and carefully designed circuits architectures [207–213].
Yet, only a handful of configurations offer trainability guarantees and robustness against
barren plateaus [214, 215]. It is worth noticing that some authors argue that barren plat-
eaus do not always hinder an efficient training of the ansatz [231]. Also, other challenges
related to the optimization of variational quantum algorithms remains [232, 233].

I.4 First- and second-order quantities
First-order quantities

Let us denote
Ui(θi)(ρ̂) = Ûi(θi)ρ̂Û †

i (θi) , Wi(ρ̂) = Ŵiρ̂Ŵ
†
i , (3.15)

the unitary channels associated to the different layers of the circuit. With these notations,
the whole circuit unitary transformation reads

U(θ)(ρ̂) = UM(θM) ◦ · · · ◦ W1(ρ̂)

=
M

⃝
i=1

(Ui(θi) ◦ Wi) (ρ̂).
(3.16)

The cost function can be written

C(θ) = Tr
[
U(θ)(ρ̂)Ô

]
(3.17)

and its expectation with respect to θ is given by

Eθ [C(θ)] = Eθ

[
Tr
[
U(θ)(ρ̂)Ô

]]
= Tr

[
Eθ [U(θ)(ρ̂)] Ô

]
= Tr

[
Eθ

[
Û(θ)ρ̂Û †(θ)

]
Ô
]

= Tr
[∫

RM
Û(θ)ρ̂Û †(θ)p(θ)dθÔ

]
= Tr

[
Φ(1)

θ (ρ̂)Ô
]
.

(3.18)

Here, we used both the linearity of the expectation and the definition of the 1-fold channel
from Eq. (3.13). The cost function expectation can thus be obtained from the knowledge
of the complete 1-fold channel Φ(1)

θ . Assuming that the angles {θi} are independent from
each other, the expectation against θ can be factored in expectations against the θi’s,
which allows to write:

Φ(1)
θ (ρ̂) = Eθ [U(θ)(ρ̂)] =

M

⃝
i=1

(Eθi
[Ui(θi)] ◦ Wi) (ρ̂). (3.19)
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As explained in the foregoing discussion, we can consider without loss of generality all
the rotations to be Z-rotations. Then the channels Eθi

[Ui(θi)] are exactly 1-fold channels
associated to a Z-rotation acting on a single qubit. In the following, we will refer to
quantities that can be obtained from the knowledge of the 1-fold channels associated to
each rotations of the ansatz as first-order quantities. Hence the average cost function
Eθ [C(θ)] is a first-order quantity.

Another example of an interesting first-order quantity is the average of the gradient.
Using Eq. (3.6) and the linearity of the expectation, we have:

Eθ [∂kC(θ)] = 1
2Eθ

[
C
(

θ + π

2 ek

)]
− 1

2Eθ

[
C
(

θ − π

2 ek

)]
. (3.20)

Denoting
Vi,±(ρ̂) = V̂i,±ρ̂V̂

†
i,± (3.21)

the channels associated with the unitary transformations of Eq. (3.12), we can write

Eθ

[
Û±(θ)ρ̂Û †

±(θ)
]

= Eθ

[
M

⃝
i=1

(Ui(θi) ◦ Vi,±) (ρ̂)
]

=
M

⃝
i=1

(Eθi
[Ui(θi)] ◦ Vi,±) (ρ̂).

(3.22)

The average gradient is therefore a first-order quantity, namely depending on 1-fold chan-
nels only.

Second-order quantities

We now turn our attention to the mean value of the squared cost function. This is given
by

Eθ

[
C(θ)2

]
= Eθ

[
Tr
[
U(θ)(ρ̂)Ô

]2]
= Eθ

[
Tr
[(

U(θ)(ρ̂)Ô
)⊗2

]]
= Eθ

[
Tr
[
U (2)(θ)(ρ̂⊗2)Ô⊗2

]]
.

(3.23)

For every state ρ̂ of a system of 2n qubits (i.e., a doubled version of the original system
where the copy is not connected by gates to the original circuit), we define

U (2)(θ)(ρ̂) = Û⊗2(θ)ρ̂Û †⊗2(θ). (3.24)

Likewise we can define the doubled version of the circuit layers as

U (2)
i (θi)(ρ̂) = Û⊗2

i (θi)ρ̂Û⊗2
i (θi) ,

W(2)
i (ρ̂) = Ŵ⊗2

i ρ̂Ŵ⊗2
i ,

(3.25)

giving
U (2)(θ)(ρ̂) =

M

⃝
i=1

(
U (2)

i (θi) ◦ W(2)
i

)
(ρ̂). (3.26)
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Thus for independent rotations we have

Φ(2)
θ (ρ̂) = Eθ

[
U (2)(θ)(ρ̂)

]
=

M

⃝
i=1

(Eθi

[
U (2)

i (θi)
]

◦ W(2)
i )(ρ̂) .

(3.27)

As for first-order quantities, we refer to quantities that can be obtained from the know-
ledge of the average 2-fold channels of the rotations layers Eθi

[
U (2)

i (θi)
]

as second-order
quantities.

The average of the squared cost function is thus a second-order quantity, and as for
the first order case, we can show that the squared gradient is also a second-order quantity.
In fact, by making use of the parameter-shift rule, we see that to obtain the average of
the squared gradient we have to compute the following four terms

Eθ [C(θ + a1ek)C(θ + a2ek)] , a1, a2 ∈
{
π

2 ,−
π

2

}
. (3.28)

As before, it suffices to replace the W(2)
i in Eq. (3.27) with

V(2)
i,a1,a2(ρ̂) =

(
V̂i,a1 ⊗ V̂i,a2

)
ρ̂(V̂ †

i,a1 ⊗ V̂ †
i,a2). (3.29)

As a result, the gradient variance can be computed as

Varθ [∂kC(θ)] = Eθ

[
∂kC(θ)2

]
− Eθ [∂kC(θ)]2 , (3.30)

which is the sum of a first and a second-order quantity.

II Overview of the results and discussion
The main finding of this theoretical work is that under some rather general assumptions
on the distribution of the rotation parameter θ, it is possible to map the 1-fold and 2-
fold channels of a random rotation R̂Z(θ) to a finite unitary ensemble of Clifford gates.
Moreover, we prove that such mapping allows us to estimate quantities of interest such
as the gradient variance using only Clifford circuits. Finally, we illustrate our rigorous
proofs through numerical experiments. The detailed mathematical proofs are presented
in Secs. III and IV.

II.1 Exact mapping and efficient sampling
As mentioned earlier, we will focus on the class of variational quantum circuits composed
of fixed Clifford gates alternated with single qubit parameterized rotations along the X, Y
or Z directions, such as the one depicted in Fig. 3.1. As explained in Sec. I.1, we will
restrict our study to rotations along Z, as we can obtain the cases of rotations along Y
and X by adding extra Clifford gates to the different fixed layers of the considered ansatz.
Let us consider a rotation along the Z-axis with a distribution that is symmetric about
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Figure 3.1: A schematic representation of the mapping from a parameterized quantum
circuit with random parameters to Clifford approximant circuits for first-order quantities
(quantities that requires only the knowledge of the rotation 1-fold channels to be com-
puted, see App. I.4). For a circuit with M parameters, a sample size of the order of M/ϵ2

is enough to get an approximation of the average on the initial circuit with a precision ϵ
on the observables mean values (see App. IV).

the θ = 0 angle 2. We will show in Sec. III that the 1-fold channel corresponding to a
first order average can be written as a convex sum of the unitary channels associated to
the identity and the Pauli Z gates, as schematically represented on the upper part of
Fig. 3.2. Note that this result has been derived and used in [234] in the case of a uniform
probability distribution for θ in order to analyze a variational ansatz through the lens of
ZX-calculus.

Estimation of first order quantities

To compute the 1-fold channel for the randomly initialized ansatz of the form given
in Eq. (3.2) with independent rotation parameters, one can simply compose the 1-fold
channels associated to each rotation, interwined with the unitary channels associated to
the fixed gates Wk. We find that the 1-fold channel of the ansatz is a convex sum of 2M

Clifford unitary channels, where M is the number of rotations. One can view this convex
sum as an average over a finite ensemble of Clifford approximant circuits. Examples of
such circuits are provided in App. H for a simple architecture similar to the one in Fig. 3.1.
Although the number of Clifford approximant circuits in this ensemble is exponential in
the number of parameters, we will show in Sec. IV.2 that a number of samples polynomial
in M/ϵ2 is sufficient to approximate the average of an observable expectation value (or
more generally of any first-order quantity) to any desired precision ϵ. This result relies

2This encompasses distributions that are symmetric about the angle kπ/2 for k ∈ Z. In this case the
bias can be factored out in the form of an extra fixed Clifford gate.
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Figure 3.2: Schematic representation of the mapping rules from Z-rotations with a random
parameter to unitary ensembles composed of Clifford gates. Panels (a) and (b) respectively
are for first and second-order averages. The mapping here is for probability distributions
that are even with respect to θ: we denote r1 = Eθ [cos(θ)] and r2 = Eθ [cos(2θ)]. The
coefficients pi are the probabilities dictating how the corresponding Clifford circuits are
sampled.

on a classical concentration argument, and is schematically represented in Fig. 3.1 for a
simple circuit at the first order. From this, one can estimate the expectation value of
the gradient, as it suffices to replace Û(θ) by Û±(θ) (as defined in Sec. I.1) in the 1-fold
channel definition to obtain the expectation of C(θ ± π/2). This gives the expectation of
the gradient thanks to the parameter-shift rule.

Estimation of second order quantities

As we will prove in Sec. III, the 2-fold channel associated to a random Z-rotation is
also a linear combination of Clifford channels, provided that the probability distribution
is an even function of θ. This result is depicted in Fig. 3.2(b). When the inequalities
Eθ [f+(θ)] ≥ 0 and Eθ [f+(θ)] ≥ 0 with f±(θ) = cos θ(cos θ ± 1) are satisfied, the previous
linear combination is in fact a convex sum. Equivalently, the 2-fold channel of a Z-rotation
with an even angular probability distribution is a Clifford mixed-unitary channel if

Eθ

[
cos2 θ

]
≥ |Eθ [cos θ]|. (3.31)
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The zeros of f+, f− are the angles {kπ/2, k ∈ Z} for which R̂Z(θ) matches a Clifford
gate (see Sec. III). Indeed, if the distribution of θ is a convex sum of Dirac distributions
at these angles, the average over θ becomes a discrete average over the corresponding
Clifford unitaries. Hence, the associated 2-fold channel is indeed a convex sum of Clifford
channels. One can also verify that the previous conditions are satisfied for distributions
that are both even with respect to the angle θ and π-periodic. For example, the uniform
distribution is included. In the case of a centered Gaussian distribution, the previous
conditions are satisfied if and only if the corresponding width is large enough.

Provided the distributions of the rotation angles satisfy the conditions discussed
above, the scheme can be extended to the second order, allowing to approximate second-
order quantities such as the average of the squared cost function Eθ [C(θ)2] using a set
of Clifford approximant circuits. By the parameter-shift rule, the expectation of the
squared gradient can be calculated from the knowledge of four quantities of the form
Eθ [C(θ ± (π/2)ek)C(θ ± (π/2)ek)]. The latter can be estimated with Clifford approx-
imants by replacing the Û⊗2 term in the definition of the 2-fold channel by Û± ⊗ Û±.
Hence the scheme covers the estimation of the gradient variance. Note that at the second
order, the approximant circuits are obtained by replacing the rotation 2-fold channels by
one of the four 2-qubit Clifford gates depicted on Fig. 3.2, yielding an ensemble of 4M

possible Clifford circuits. As for first-order quantities, a number of samples scaling in M is
enough to guarantee convergence. These rigorous results are summarized in the following
theorem, whose detailed proof is shown in Secs. III and IV.

Theorem II.1. For a variational ansatz composed of fixed Clifford gates and of M para-
meterized rotations along the X,Y or Z direction, if the random variational parameters
(θ1, . . . , θM) are independent and symmetric with respect to one of the Clifford angles, i.e.
∈ {0, π

2 , π,
3π
2 }, then for any error ϵ > 0 and a probability 1 − δ to meet such accuracy,

any first-order quantity can be computed using

K ≥ O
(
M

ϵ2 log
(2
δ

))
Clifford approximant circuits. Moreover, if the distribution of θi satisfies the inequality

Eθi

[
cos2(θi − Eθi

[θi])
]

≥ |Eθi
[cos(θi − Eθi

[θi])]| , ∀i ∈ {1, . . . ,M}

then the same holds for any second-order quantity.

Finally, making use of the Gottesman-Knill theorem, which states that for a Clifford
unitary Û and an observable Ô acting non-trivially on NO qubits, the expectation value
Tr
[
|0⟩⟨0|⊗n Û †ÔÛ

]
can be classically computed with a polynomial complexity in both

n and NO. Our method inherits this complexity, and in particular we can classically
estimate the gradient expectation and variance with a polynomial complexity in n, NO

and M .

Extensions of the scheme

In Sec. III, we present different expressions for the general case of t-fold channels associated
with random Z-rotations. In particular, we show that in the case where the distribution of
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the random angle does not satisfy the convex condition of Eq. (3.31), the 2-fold channels
can still be expressed as a linear combination of Clifford channels. In that case, it is
still possible to use Clifford approximant circuits to estimate second-order quantities,
but this comes at the price of an exponential complexity in the number of variational
parameters M , as shown in Sec. IV. This result is based on a standard sampling method
of quasi-probability distributions [235, 236]. In that context, the method allows to trade
an exponential complexity in the system size for an exponential complexity in the number
of variational parameters M . This added complexity results from the existence of negative
terms in the Clifford-channels decomposition of the circuits [235].

We also provide two decompositions of the N -fold channel associated to random Z-
rotations in Sec. III. The first decomposition enables to write the N -fold channel as a
linear combination of Clifford unitary channels. From this decomposition, we derive a
condition for the N -fold channel to be a convex sum of Clifford unitaries by imposing
the coefficients of the combination to be positive. However we show that the obtained
decomposition is not unique, so that the derived condition is sufficient but not necessary.
Moreover, we have no guarantee that the derived condition can indeed be fulfilled, and
finding a sufficient and necessary condition on the distribution of a random angle that
guarantees that the corresponding N -fold unitary is a Clifford mixed unitary remains an
open problem. We give a second decomposition of the N -fold channel into a discrete sum
of Z-rotations that generalizes some of the formulas found for the 2-fold channel.

II.2 Numerical simulations
To illustrate the applications of our exact mapping and the ensuing estimation method,
we have performed numerical experiments on concrete examples. Let us consider a simple
variational quantum circuit composed of layers of single-qubit rotations along either the
X, Y or Z axes, alternated with fixed layers of Control-Z gates. Such an ansatz is shown
for three qubits in Fig. 3.1. We further assume that the rotation angles are independent
and identically distributed according to the uniform law over [0, 2π]. Moreover, we assume
that the cost function is of the form in Eq. (3.1) with Ô = |0⟩⟨0|⊗n.

We consider these architectures with random directions of the rotation gates. Up
to a different fixed first layer, such random circuits have been showed to exhibit barren
plateaus in Ref. [237]. Note that in this particular case the averaging was done on both the
rotations angles and the rotations directions. Here we reproduce this result using Clifford
approximants. To do so we sample both the exact circuit architecture by randomly
selecting the rotation directions uniformly from {X, Y, Z}, and then we either sample
the rotation angles directly or we sample a Clifford approximant circuit. For a uniform
distribution we have ∀k ∈ Z, Eθ [cos kθ] = 0 so the sampling of the replacement Clifford
gates is uniform (as represented on Fig. 3.2 for r1 = r2 = 0). Moreover, by the parameter-
shift rule (Eq. 3.6) it is clear that for uniformly distributed rotations the average gradient
is analytically zero, thus it suffices to estimate the average of the squared gradient as
Varθ [∂kC(θ)] = Eθ [∂kC(θ)2].

In Fig. 3.3 the estimations of the average squared gradient using either direct evalu-
ations or by sampling Clifford approximants are shown. Note that the average is taken
over both the random rotation angles and the variable architecture (i.e. the random
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Figure 3.3: Estimated average of the squared gradient of the cost function with respect
to the first variational parameter versus the number n of qubits. We emphasize that
derivatives with respect to the other angles θk give similar results (not shown). The
results are for random circuits composed of a single layer of gates, with one rotation per
qubit. Such rotations are randomly chosen among RX , RY , RZ . The rotation layer is
followed by a layer of alternated CZ gates (note that this is the same type of architecture
as that represented on Fig. 3.1). The random rotation angles are independent and follow
the uniform probability distribution on the interval [0, 2π]. In order to get the estimation,
we have randomly sampled 500 different circuit architectures. For each gate architecture,
we have computed the average of the squared gradient assuming a uniform distribution of
the rotation angles, using both a direct estimation and our method based on the mapping
to Clifford approximant circuits. In particular, we have sampled 500 vectors of angle
parameters for the direct estimation and 500 Clifford circuits for our method. Note that
for the uniform distribution the average gradient vanishes, thus estimating the squared
gradient is equivalent to estimate the gradient variance.

direction of the rotation gates). The estimation obtained from Clifford approximants
accurately matches the direct estimation and the average squared gradient vanishes expo-
nentially with the number of qubits, as expected. In addition, the evolution of the bias of
the Clifford estimation with the number of approximant circuits K is shown in Fig. 3.4.
The bias decreases polynomially with K. As appears in Fig. 3.5, the same trend holds for
the variance of the Clifford estimators. These results are in agreement with the analytical
scaling derived in Sec. IV.

It is worth noticing that probing an exponential vanishing of the cost function gradient
requires to simulate an exponential number of Clifford approximant circuits. This is a
direct consequence of the scaling provided in Thm. II.1. Although this might seems like
an important constain, we argue that on an hardware platform the gradient estimation
would be limited to some experimental precision ϵexp. As a result, any variational quantum
circuits exhibiting an average gradient amplitude below ϵexp would be hard to train. More
generally, estimating quantities to this experimental accuracy is sufficient for all practical
purpose.
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Figure 3.4: Squared statistical bias of the estimator considered in Fig. 3.3 for random
circuits with n = 5 qubits versus the number K of Clifford approximant circuits. The
results have been obtained with 500 randomly drawn circuit architectures. For each
sample size K, we consider a bootstrap batch of 100 estimators (each estimator is obtained
by sampling K circuits from a set of 2000 Clifford approximant circuits for each choice
of the rotation directions). Then for each K, the statistical bias is derived from the
bootstrap batch. The estimator true expected value is provided by the direct estimation
of the average squared gradient with 4000 samples. The shaded area corresponds to the
interval between the 20 and 80 percentiles of the estimated biases for the 500 random
architectures.
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Figure 3.5: Variance of the estimator of the expected squared gradient with respect to
the first parameter θ0 versus the number K of Clifford approximant circuits. Same type
of random circuits as in Fig. 3.3 with n = 5 qubits. We have used the same bootstrap
procedure as in Fig. 3.4. The shaded area corresponds to the interval between the 20 and
80 percentiles of the estimated biases for 500 random architectures.
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III t-fold channels of a random Z-rotation
In this section we study the t-fold channels associated with random Z-rotations. The
rotations around the X and Y axis can then be obtained by combination with Hadamard
and phase gates.

III.1 1-fold channel

As in Sec. III, we denote Π̂0 := |0⟩⟨0| and Π̂1 := |1⟩⟨1|. We have

R̂Z(θ) = e−i θ
2 Π̂0 + ei θ

2 Π̂1 , (3.32)

such that
R̂Z(θ)ρ̂R̂†

Z(θ) = Π̂0ρ̂Π̂0 + Π̂1ρ̂Π̂1 + eiθΠ̂1ρ̂Π̂0 + e−iθΠ̂0ρ̂Π̂1 . (3.33)

Averaging over the random angle, we obtain

Eθ

[
R̂Z(θ)ρ̂R̂†

Z(θ)
]

= Π̂0ρ̂Π̂0 + Π̂1ρ̂Π̂1 + Eθ

[
eiθ
]

Π̂1ρ̂Π̂0 + Eθ

[
e−iθ

]
Π̂0ρ̂Π̂1 . (3.34)

We recognize the characteristic function of the distribution of θ, namely

ϕ(t) := Eθ

[
eitθ
]
.

Even distribution

Assuming this probability distribution is even in θ, we have ϕ(t) ∈ R, ∀t and we can
define r1 = ϕ(1) = ϕ(1)∗ = ϕ(−1). As we have 1 = Π̂0 + Π̂1 and Ẑ = Π̂0 − Π̂1, we get

ρ̂ =
(
Π̂0ρ̂Π̂0 + Π̂1ρ̂Π̂1

)
+
(
Π̂1ρ̂Π̂0 + Π̂0ρ̂Π̂1

)
,

Ẑρ̂Ẑ =
(
Π̂0ρ̂Π̂0 + Π̂1ρ̂Π̂1

)
−
(
Π̂1ρ̂Π̂0 + Π̂0ρ̂Π̂1

)
,

(3.35)

and hence
1 + r1

2 ρ̂+ 1 − r1

2 Ẑρ̂Ẑ = Eθ

[
RZ(θ)ρ̂R†

Z(θ)
]
. (3.36)

As expected, the 1-fold channel for the considered random Z-rotation is a dephasing chan-
nel. This result is the time-independent analog of Eq. 1.48 obtained for the decoherence
model studied in Sec. III. In the present case, the decoherence is artificially induced by
the random choice of the rotation angle θ.

The channel of Eq. (3.36) is a convex sum of Clifford channels under the condition
that r1 ∈ [−1, 1], which is always satisfied. For distributions that are symmetric with
respect to a Clifford angles ∈ {kπ/2, k ∈ {0, 1, 2, 3}}, we can factor out the corresponding
rotation, which is (up to a phase) a Clifford gate. This way we can fall back to the case
of an unbiased even distribution, i.e. symmetric with respect to the zero angle. Note that
in the particular case of the uniform distribution over [0, 2π], we have r1 = 0.
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Generic distribution

Here we provide a generalization of the previous expressions to the case of a generic
distribution of the rotation angle. Let us denote Eθ

[
eiθ
]

:= r1 + is1, where we have
introduced s1 = Eθ [sin θ]. Eθ

[
e2iθ

]
:= r2 + is2. Developing Eq. (3.34), we get:

Eθ

[
R̂Z(θ)ρ̂R̂†

Z(θ)
]

= Π̂0ρ̂Π̂0 + Π̂1ρ̂Π̂1 + (r1 + is1)Π̂1ρ̂Π̂0 + (r1 − is1)Π̂0ρ̂Π̂1

= 1 + r1

2 E [1](ρ̂) + 1 − r1

2 E [Ẑ](ρ̂) + s1

2 E [Ŝ](ρ̂) − s1

2 E [Ŝ†](ρ̂) ,
(3.37)

where Ŝ = Π̂0 + iΠ̂1 is the phase gate, and one can use this definition together with
Eq. (3.35) to verify the equation above.

Here, the parameter s1 can be understood as a measure of asymmetry in the probability
distribution of θ. In the symmetric case, we have s1 = 0 and the sum reduces to the
convex one given by Eq. (3.36). If s1 ̸= 0, one can still decompose the 1-fold channel as
a non-convex combination of Clifford gates.

III.2 2-fold channel
We now turn our attention to the 2-fold channel. In this section we will make use of
the Choi representation of quantum channels, which is reminded in Sec. II. This allows
to represent channels acting on two-qubits states by 16 × 16 matrices. For a quantum
channel E , the Choi operator is defined by:

Λ(E) =
1∑

i,j,k,l=0
|ij⟩⟨kl| ⊗ E (|ij⟩⟨kl|) . (3.38)

Its corresponding matrix entries are:

Λ(E)(ijkl),(mnpq) =Tr
[
Λ(E)† (|ij⟩⟨kl| ⊗ |mn⟩⟨pq|)

]
=Tr

[
E (|ij⟩⟨kl|)† |mn⟩⟨pq|

] (3.39)

In the following, we will write
E [Û ](ρ̂) := Û ρ̂Û † (3.40)

for the quantum channel associated to a unitary transformation Û . We assume that Û is
diagonal in the computational basis, so that we can write

Û =
1∑

i,j=0
λijΠ̂ij , (3.41)

where we define the projectors Π̂ij := Π̂i ⊗ Π̂j. For Û unitary, we have

Û Û † = 1̂ =
∑
i,j

λijλ
∗
ijΠ̂ij , (3.42)
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and hence λij = eiθij , ∀i, j. Therefore we have

E [Û ](|ij⟩⟨kl|) =
∑

m,n,p,q

λmnλ
∗
pqΠ̂mn |ij⟩⟨kl| Π̂pq

= λijλ
∗
kl |ij⟩⟨kl|

= ei(θij−θkl) |ij⟩⟨kl| .

(3.43)

Thus the Choi matrix of E [Û ] is diagonal whenever Û is of the form given in Eq. (3.41).
We can represent it by a 4 × 4 matrix M , whose entries are defined by

M(ij),(kl) := Λ(ijkl),(ijkl). (3.44)

Note that the matrix M is Hermitian and that its diagonal entries are always equal to one,
due to Eq. (3.43). In the following we will represent each channel E whose Choi matrix
is diagonal by its associated matrix M(E) in the basis (00), (01), (10), (11). If E = E

[
Û
]
,

we simply write M(Û).
As done earlier, we will focus on rotations around the Z axis. We have

Φ(2)
Z (ρ̂) := Eθ

[
(R̂Z(θ) ⊗ R̂Z(θ))ρ̂(R̂†

Z(θ) ⊗ R̂†
Z(θ))

]
(3.45)

and

R̂Z(θ) ⊗ R̂Z(θ) =
(
e−iθΠ̂0 ⊗ Π̂0 + eiθΠ̂1 ⊗ Π̂1

)
+
(
Π̂0 ⊗ Π̂1 + Π̂1 ⊗ Π̂0

)
. (3.46)

Defining
Γθ =

(
e−iθΠ̂00 + eiθΠ̂11

)
,

Ξ = Π̂01 + Π̂10,
(3.47)

we can write

Φ(2)
Z (ρ̂) = Eθ

[
Ξρ̂Ξ†

]
+ Eθ

[
Γθρ̂Γ†

θ

]
+ Eθ

[
Γθρ̂Ξ†

]
+ Eθ

[
Ξρ̂Γ†

θ

]
. (3.48)

Uniform distribution

For θ uniformly distributed in [0, 2π], we have Eθ

[
e±iθ

]
= Eθ

[
e±2iθ

]
= 0, and thus:

Eθ

[
Γθρ̂Ξ†

]
= 0 ,

Eθ

[
Γθρ̂Γ†

θ

]
= Π̂00ρ̂Π̂00 + Π̂11ρ̂Π̂11 ,

Eθ

[
Ξρ̂Ξ†

]
= Π̂01ρ̂Π̂01 + Π̂10ρ̂Π̂10 + Π̂01ρ̂Π̂10 + Π̂10ρ̂Π̂01 .

(3.49)

Finally, we get

Φ(2)
Z (ρ̂) = Π̂00ρ̂Π̂00 + Π̂11ρ̂Π̂11 + Π̂01ρ̂Π̂01 + Π̂10ρ̂Π̂10 + Π̂01ρ̂Π̂10 + Π̂10ρ̂Π̂01 . (3.50)
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We can represent Φ(2)
Z by its associated matrix

M(Φ(2)
Z ) =


1 0 0 0
0 1 1 0
0 1 1 0
0 0 0 1

 . (3.51)

One can verify that the following channels also have a diagonal Choi matrix, and we can
use the same representation of their diagonals, giving

M(Ŝ ⊗ Ŝ) =


1 i i −1

−i 1 1 i
−i 1 1 i
−1 −i −i 1

 ,

M(Ŝ† ⊗ Ŝ†) =


1 −i −i −1
i 1 1 −i
i 1 1 −i

−1 i i 1

 ,

M(Ẑ ⊗ Ẑ) =


1 −1 −1 1

−1 1 1 −1
−1 1 1 −1

1 −1 −1 1

 ,

M(1) =


1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

 .
(3.52)

Gathering all together, we have

M(Φ(2)
Z ) = 1

4
(
M(1) +M(Ẑ ⊗ Ẑ) +M(Ŝ ⊗ Ŝ) +M(Ŝ† ⊗ Ŝ†)

)
. (3.53)

The final result presented in Sec. II then follows by linearity and uniqueness of the Choi
matrix.

Even distribution

Let us consider an even probability distribution of θ (i.e. a distribution for which θ has the
same law as −θ). For such distributions we again have that ϕθ(t) = ϕθ(−t) ∈ [−1, 1] ⊂ R
for all t ∈ R and thus

ϕθ(t) = 1
2 (ϕθ(t) + ϕθ(−t)) = Eθ [cos(tθ)] . (3.54)

Defining r1 = ϕθ(1) and r2 = ϕθ(2), we can write

Eθ

[
Γθρ̂Ξ†

]
= r1

(
Π̂00 + Π̂11

)
ρ̂
(
Π̂01 + Π̂10

)
,

Eθ

[
Γθρ̂Γ†

θ

]
= Π̂00ρ̂Π̂00 + Π̂11ρ̂Π̂11 + r2

(
Π̂00ρ̂Π̂11 + Π̂11ρ̂Π̂00

)
,

Eθ

[
Ξρ̂Ξ†

]
= Π̂01ρ̂Π̂01 + Π̂10ρ̂Π̂10 + Π̂01ρ̂Π̂10 + Π̂10ρ̂Π̂01.

(3.55)

Hence we obtain:

M(Φ(2)
Z ) =


1 r1 r1 r2
r1 1 1 r1
r1 1 1 r1
r2 r1 r1 1

 . (3.56)
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We can express M(Φ(2)
Z ) as a linear combination of the matrices of Eq. (3.52), giving

M(Φ(2)
Z ) = aM(1) + bM(Ẑ ⊗ Ẑ) + c

2
(
M(Ŝ ⊗ Ŝ) +M(Ŝ† ⊗ Ŝ†)

)
. (3.57)

The coefficients a, b, c can be found by solving the linear system
a+ b+ c = 1
a− b = r1

a+ b− c = r2

, (3.58)

and one finds
M(Φ(2)

Z ) = 1
4 (1 + r2 + 2r1)M(1)

+ 1
4 (1 + r2 − 2r1)M(Ẑ ⊗ Ẑ)

+ 1
4 (1 − r2)M(Ŝ ⊗ Ŝ)

+ 1
4 (1 − r2)M(Ŝ† ⊗ Ŝ†).

(3.59)

Therefore, the associated channel is

Φ(2)
Z (ρ̂) = 1

4 (1 + r2 + 2r1) ρ̂

+ 1
4 (1 + r2 − 2r1)

(
Ẑ ⊗ Ẑ

)
ρ̂
(
Ẑ ⊗ Ẑ

)
+ 1

4 (1 − r2)
(
Ŝ ⊗ Ŝ

)
ρ̂
(
Ŝ† ⊗ Ŝ†

)
+ 1

4 (1 − r2)
(
Ŝ† ⊗ Ŝ†

)
ρ̂
(
Ŝ ⊗ Ŝ)

)
.

(3.60)

Remark. Defining CZ = Π̂0 ⊗1+Π̂1 ⊗ Ẑ the control-Z gate and CZX = (X̂⊗X̂)CZ(X̂⊗
X̂), we have

M(CZ) =


1 1 1 −1
1 1 1 −1
1 1 1 −1

−1 −1 −1 1

 , M(CZX) =


1 −1 −1 −1

−1 1 1 1
−1 1 1 1
−1 1 1 1

 , (3.61)

and thus
E [Ŝ ⊗ Ŝ] + E [Ŝ† ⊗ Ŝ†] = E [CZ] + E [CZX ]. (3.62)

Therefore the decomposition of Φ(2)
Z into a convex sum of Clifford channels of Eq. (3.60)

is not unique.
The decomposition obtained in Eq. (3.60) is a convex sum if one assume that

(1 + r2 − 2r1) ≥ 0 and (1 + r2 + 2r1) ≥ 0 . (3.63)
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−π −π/2 0 π/2 π

θ

0

1Z ZS† S

f−(θ)

f+(θ)

Figure 3.6: Plot of f±(θ) = cos θ(cos θ±1) versus θ. The condition in Eq. (3.65) is fulfilled
if and only if Eθ [f+(θ)] ≥ 0 and Eθ [f−(θ)] ≥ 0. Ŝ is the phase gate.

This condition holds if and only if

Eθ

[1
2(1 + cos 2θ) ± cos θ

]
≥ 0, (3.64)

namely if and only if
Eθ

[
cos2 θ

]
≥ |Eθ [cos θ]|. (3.65)

It is fulfilled for the distributions that are π-periodic, as in that case we have Eθ [cos θ] = 0.
Another example of distribution that satisfy this constraint is a Gaussian distribution with
a large enough variance. In fact for a centered Gaussian distribution of variance σ2, we
have r1 = e−σ2/2 and r2 = e−2σ2 , so that the condition becomes

1 + e−2σ2 − 2e−σ2/2 ≥ 0. (3.66)

One can show that this condition is equivalent to σ2 ≥ σ2
0 for some specific σ0 ∈ R,

yielding a requirement on the width of the gaussian.
Let us remark that, again, the effect of the averaging over random angles is to artifi-

cially introduce decoherence. In fact, the two-fold channel corresponding to the matrix in
Eq. (3.56) is a time-independent version of the evolution channel of an open two-qubits
system of the same type as the ones presented in Sec.. III. The general evolution equations
for such model can be found in [137].

Generic distribution

We now generalize the previous discussion to the case of a generic distribution of θ.
We write s2 = Eθ [sin 2θ]. The 2-fold channel for a single-qubit Z-rotation is given by
Eq. (3.48):

Φ(2)
Z (ρ̂) = Eθ

[
Ξρ̂Ξ†

]
+ Eθ

[
Γθρ̂Γ†

θ

]
+ Eθ

[
Γθρ̂Ξ†

]
+ Eθ

[
Ξρ̂Γ†

θ

]
. (3.67)
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For a generic probability distribution of θ, we have

Eθ

[
Ξρ̂Ξ†

]
= Π̂01ρ̂Π̂01 + Π̂10ρ̂Π̂10 + Π̂01ρ̂Π̂10 + Π̂10ρ̂Π̂01 ,

Eθ

[
Γθρ̂Ξ†

]
= r1

(
Π̂00 + Π̂11

)
ρ̂
(
Π̂01 + Π̂10

)
+ is1

(
Π̂11 − Π̂00

)
ρ̂
(
Π̂01 + Π̂10

)
,

Eθ

[
Γθρ̂Γ†

θ

]
= Π̂00ρ̂Π̂00 + Π̂11ρ̂Π̂11 + r2

(
Π̂00ρ̂Π̂11 + Π̂11ρ̂Π̂00

)
+ is2

(
Π̂11ρ̂Π̂00 − Π̂00ρ̂Π̂11

)
.

(3.68)

As one can verify, the Choi representation of the above terms are all diagonal, so that
their sum can be represented via the M matrix as before:

M(Φ(2)
Z ) =


1 r1 + is1 r1 + is1 r2 + is2

r1 − is1 1 1 r1 + is1
r1 − is1 1 1 r1 + is1
r2 − is2 r1 − is1 r1 − is1 1

 . (3.69)

This can again be decomposed as a weighted sum of the channels E [1], E [Ẑ⊗ Ẑ], E [Ŝ⊗ Ŝ]
and E [Ŝ† ⊗ Ŝ†] given in Eq. (3.52) and of the following Clifford channels:

M
(
1 ⊗ Ŝ

)
=


1 i 1 i

−i 1 −i 1
1 i 1 i

−i 1 −i 1

 ,

M
(
Ŝ ⊗ 1

)
=


1 1 i i
1 1 i i

−i −i 1 1
−i −i 1 1

 ,

M
(
Ẑ ⊗ Ŝ

)
=


1 i −1 −i

−i 1 i −1
−1 −i 1 i

i −1 −i 1

 ,

M
(
Ŝ ⊗ Ẑ

)
=


1 −1 i −i

−1 1 −i i
−i i 1 −1

i −i −1 1

 ,

M
(
1 ⊗ Ŝ†

)
=


1 −i 1 −i
i 1 i 1
1 −i 1 −i
i 1 i 1

 ,

M
(
Ŝ† ⊗ 1

)
=


1 1 −i −i
1 1 −i −i
i i 1 1
i i 1 1

 ,

M
(
Ẑ ⊗ Ŝ†

)
=


1 −i −1 i
i 1 −i −1

−1 i 1 −i
−i −1 i 1

 ,

M
(
Ŝ† ⊗ Ẑ

)
=


1 −1 −i i

−1 1 i −i
i −i 1 −1

−i i −1 1

 .

(3.70)

Note that the channels listed above are all diagonal in the Choi representation and hence
the M matrices capture all their nonzero entries. Following the same reasoning as above,
we solve a linear system to obtain the following decomposition:

Φ(2)
Z (ρ̂) = s2

8
(
E
[
Ŝ ⊗ 1

]
(ρ̂) + E

[
1 ⊗ Ŝ

]
(ρ̂) + E

[
Ẑ ⊗ Ŝ†

]
(ρ̂) + E

[
Ŝ† ⊗ Ẑ

]
(ρ̂)
)

− s2

8
(
E
[
Ŝ† ⊗ 1

]
(ρ̂) + E

[
1 ⊗ Ŝ†

]
(ρ̂) + E

[
Ẑ ⊗ Ŝ

]
(ρ̂) + E

[
Ŝ ⊗ Ẑ

]
(ρ̂)
)

+ 1 − r2 + 2s1

4 E
[
Ŝ ⊗ Ŝ

]
(ρ̂) + 1 − r2 − 2s1

4 E
[
Ŝ† ⊗ Ŝ†

]
(ρ̂)

+ 1 + r2 + 2r1

4 E [1] (ρ̂) + 1 + r2 − 2r1

4 E
[
Ẑ ⊗ Ẑ

]
(ρ̂) .

(3.71)
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Remark. Denoting
ĈNOT = Π̂0 ⊗ 1 + Π̂1 ⊗ X̂

the CNOT gate and
ĈNOTX := (X̂ ⊗ X̂)ĈNOT (X̂ ⊗ X̂)

its conjugation by the X̂ ⊗ X̂ gate, we have

M
(
ĈNOT (Ŝ ⊗ Ŝ)ĈNOT

)
=


1 i −1 i

−i 1 i 1
−1 −i 1 −i
−i 1 i 1

 ,

M
(
ĈNOTX(Ŝ ⊗ Ŝ)ĈNOTX

)
=


1 −i 1 i
i 1 i −1
1 −i 1 i

−i −1 −i 1

 .

(3.72)

Again, by solving a linear system one finds another decomposition of the two-fold channel
that involves the above channels, namely:

Φ(2)
Z (ρ̂) = s2

4
(
E
[
ĈNOT (Ŝ ⊗ Ŝ)ĈNOT

]
(ρ̂) + E

[
ĈNOTX(Ŝ ⊗ Ŝ)ĈNOTX

]
(ρ̂)
)

− s2

4
(
E
[
Ẑ ⊗ Ŝ

]
(ρ̂) + E

[
1 ⊗ Ŝ†

]
(ρ̂)
)

+ 1 − r2 + 2s1

4 E
[
Ŝ ⊗ Ŝ

]
(ρ̂) + 1 − r2 − 2s1

4 E
[
Ŝ† ⊗ Ŝ†

]
(ρ̂)

+ 1 + r2 + 2r1

4 E [1] (ρ̂) + 1 + r2 − 2r1

4 E
[
Ẑ ⊗ Ẑ

]
(ρ̂) .

(3.73)

III.3 N -fold channel
In this section we give two decompositions of the N -fold channel associated with a generic
random Z-rotation. First, we provide a decomposition into a real sum of Clifford unitary
channels. We also exhibit a sufficient condition on the distribution of the random angle
θ for the decomposition to be a convex one. Then we provide a decomposition into a
discrete convex sum of common Z-rotations of the N qubits on which the channel acts.

Decomposition into Clifford channels

In Eq. (3.37) we obtained a decomposition of the 1-fold channel of a Z-rotation in terms
of Clifford unitary channels for a generic distribution of the random angle, namely

Eθ

[
R̂Z(θ)ρ̂R̂†

Z(θ)
]

= 1 + r1

2 E [1](ρ̂) + 1 − r1

2 E [Ẑ](ρ̂) + s1

2 E [Ŝ](ρ̂) − s1

2 E [Ŝ†](ρ̂). (3.74)

More generally, we have that

R̂Z(θ)ρ̂R̂†
Z(θ) = 1 + cos θ

2 E [1](ρ̂) + 1 − cos θ
2 E [Ẑ](ρ̂)

+ sin θ
2 E [Ŝ](ρ̂) − sin θ

2 E [Ŝ†](ρ̂),
(3.75)
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for any θ ∈ R. This can be seen as a consequence of Eq. (3.74) for a Dirac probability
measure centered at θ. On can directly generalize this equation to obtain an expression
of the N -fold channel as a real sum of Clifford unitary channels, as

R̂⊗N
Z (θ)ρ̂R̂⊗N†

Z (θ) =
∑

I=(i1,...,in)
λI(θ)E

[
⊗N

j=1Ûij

]
(ρ̂) (3.76)

where the sum goes over all the multi-indices I = (i1, . . . , iN) ∈ {0, 1, 2, 3}, and Û0 = 1,
Û1 = Ẑ, Û2 = Ŝ† and Û3 = Ŝ. The coefficient λI(θ) for a multi-index I representing a
product of numbers mi of the Ûi gates is given by

λI(θ) = 1
2N

(1 + cos θ)m0 (1 − cos θ)m1 sinm2 (−θ) sinm3 (θ) , (3.77)

with m0 + m1 + m2 + m3 = N . As a result, the N -fold channel is given by a real
combination of 4N unitary Clifford channels that are composed of products of the gates
1, Ẑ, Ŝ and Ŝ†. This gives us a trivial sufficient condition for the N -fold channel to be a
convex sum of Clifford unitary channels, namely it suffices that the expectation values of
all the coefficient Eθ [λI(θ)] be positive.

Although this condition is sufficient, it is not necessary. In particular, in the case of
the 2-fold channel, the expectation of coefficients associated to the multi-indices (2, 3)
and (3, 2) is given by Eθ [− sin2 θ], which is always negative. However, we proved that a
convex decomposition exists for the uniform distribution. This is due to the fact that the
decomposition of Eq. (3.76) is not unique. In fact, the family of channels

P := {E [Û ⊗ V̂ ] : Û , V̂ ∈ {1, Ẑ, Ŝ, Ŝ†}} (3.78)

is not linearly independent. Consider two single qubit unitaries Û and V̂ that are diagonal
in the computational basis. As we are free to chose the global phase of these unitaries,
we can always write them as Û = eiθU /2Π̂0 + e−iθU /2Π̂1 and V̂ = eiθV /2Π̂0 + e−iθV /2Π̂1. We
saw in App. III that the product unitary Û ⊗ V̂ can be represented by the diagonal of the
associated Choi matrix, written as a 4-by-4 matrix M:

M(Û ⊗ V̂ ) =


1 e−iθV e−iθU e−i(θU +θV )

eiθV 1 e−i(θU −θV ) e−iθU

eiθU ei(θU −θV ) 1 e−iθV

ei(θU +θV ) eiθU eiθV 1

 . (3.79)

This shows that for a tensor product of single-qubit unitaries, the matrices M in the
basis ((00), (01), (10), (11)) are symmetric with respect to the anti-diagonal transposition.
Therefore, the channels in P belong to a real vector space of dimension 9 (1 dimension
for the diagonal, 2 × 3 dimensions for the complex exponentials of the first row, and 2
dimensions for the third term of the second row). As there are 16 channels in P , the
family is not linearly independent. The condition that all the Eθ [λI(θ)] be positive is
clearly too restrictive. One way to extend it to find back the condition we previously
derived is to use the fact that

E [1] + E [Ẑ] = E [Ŝ] + E [Ŝ†] (3.80)

to absorb the Eθ [− sin2 θ] factors into the coefficients associated to other channels.
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Remark. To obtain the previous relation, we used the following channels:

M
(
1 ⊗ Ẑ

)
=


1 −1 1 −1

−1 1 −1 1
1 −1 1 −1

−1 1 −1 1

 ,

M
(
Ẑ ⊗ 1

)
=


1 1 −1 −1
1 1 −1 −1

−1 −1 1 1
−1 −1 1 1

 ,

M
(
Ŝ ⊗ Ŝ†

)
=


1 −i i 1
i 1 −1 i

−i −1 1 −i
1 −i i 1

 ,

M
(
Ŝ† ⊗ Ŝ

)
=


1 i −i 1

−i 1 −1 −i
i −1 1 i
1 i −i 1

 .

(3.81)

We showed that the N -fold channel associated to Z-rotations can always be decom-
posed as a real linear combination of diagonal Clifford unitary channels. However, it
remains an open problem to find necessary and/or sufficient conditions under which the
N -fold channel can be decomposed a convex combination of Clifford unitaries, i.e. con-
ditions under which the N -fold channel is as a Clifford mixed-unitary channel 3. The
knowledge of such conditions could allow to extend the scheme proposed in this work to
ansätze with correlated rotation parameters.

Decomposition into Z-rotations

It is possible to derive another general formula for the N -fold channel that extends the
previous results. The single Z-rotation unitary is given by Eq. (3.32), namely

R̂Z(θ) = e−i θ
2 Π̂0 + ei θ

2 Π̂1 . (3.82)

The N -th tensor power of this unitary can be written

R̂Z(θ)⊗N =
N⊗

k=1

(
e−i θ

2 Π̂k
0 + ei θ

2 Π̂k
1

)
=

∑
α∈{0,1}N

ei θ
2 (2|α|−1)Π̂α ,

(3.83)

where |α| is the Hamming weight of α, namely its number of non-zero entries, Π̂k
i is the

projector Π̂i on the k-th qubit, and

Π̂α =
N⊗

k=1
Π̂k

αk
. (3.84)

From this we obtain

E
[
R̂Z(θ)⊗N

]
(ρ̂) = R̂Z(θ)⊗N ρ̂R̂†

Z(θ)⊗N

=
∑

α,β∈{0,1}N

eiθ(|α|−|β|)Π̂αρ̂Π̂β .
(3.85)

3In general, estimating the degree of “stabilizerness” of a quantum channel is difficult. This issue has
been investigated in [238, 239].
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Taking the expectation of this equation, we get

Φ(N)
Z (ρ̂) =

∑
α,β∈{0,1}N

ϕθ (|α| − |β|) Π̂αρ̂Π̂β , (3.86)

where ϕθ is the characteristic function of θ. Since α,β ∈ {0, 1}N , the difference between
the Hamming weights of α and β is an integer in J−N,NK. As a result the N -fold channel
can be expressed from the sole knowledge of the restriction of ϕθ to the set J−N,NK. Let
us denote ϕ̃θ this restriction. Taking the discrete Fourier transform of this restriction, we
have

ϕ̃θ(k) = 1
2N

N−1∑
n=−N

cne
i knπ

N , ∀k ∈ J−N,NK , (3.87)

with
cn =

N−1∑
k=−N

ϕ̃θ(k)e−i knπ
N . (3.88)

Recall that this decomposition is a direct consequence of the identity

1
2N

N−1∑
k=−N

ei k(n−m)π
N = δn,m . (3.89)

Injecting the previous decomposition in Eq. (3.86), we get

Φ(N)
Z (ρ̂) = 1

2N

N−1∑
n=−N

cn

 ∑
α,β∈{0,1}N

ei (|α|−|β|)nπ
N Π̂αρ̂Π̂β


= 1

2N

N−1∑
n=−N

cnE
[
R̂Z

(
nπ

N

)⊗N
]

(ρ̂) ,
(3.90)

where we have used Eq. (3.85). As a result, the N -fold channel of a random Z-rotation
can be decomposed into a linear combination of the N -qubits Z-rotation channels

E
[
R̂Z

(
nπ

N

)⊗N
]
, n ∈ J−N,N − 1K . (3.91)

For N = 1 and N = 2, the previous equation reduces to a decomposition of the
1- and 2-fold channel into Clifford gates. In fact, up to a phase, the Z-rotations with
angles nπ

2 , n ∈ {−1, 0, 1, 2} are respectively the gates Ŝ†,1, Ŝ and Ẑ. Moreover, assuming
the distribution of θ is even, Eq. (3.90) allows to recover the decomposition provided in
Eqs. (3.36) and (3.60).

For the N ≥ 3, the rotations involved in Eq. (3.90) are not Clifford gates, and it is
unclear whether this decomposition can be used to provide an efficient sampling scheme.

IV Sampling of Clifford circuits and efficiency
In this section we prove that to obtain an estimation of any first or second-order quantity
for a given ansatz up to a precision ϵ and probability δ ∈ [0, 1] to meet this precision,
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it suffices to sample a number of Clifford approximant circuits K ∼ log(2δ)M/ϵ2. By
invoking the Gottesman-Knill theorem, we then obtain an estimation of any first- or
second-order quantity with a complexity polynomial in both the size of the system and
the number of variational parameters of the considered ansatz.

IV.1 Details on the mapping
Here we give details on the mapping of the randomly initialized parameterized circuit to
Clifford approximants.

Remark. We use the notations adapted to first-order quantities. The generalization to
the second order and the shifted versions is straightforward as it suffices to replace each
channel by its doubled and/or shifted version, as done in Sec. I.4.

Assuming that the θi are independent from each other, averaging U(θ) over θ amount
to replace each rotation channel Ui(θi) by a convex sum of m Clifford unitary channels
Uij with associated weight pij. Thus Eθ [U(θ)(ρ̂)] is replaced by a discrete average over
mM Clifford unitary channels (with m = 2 for the 1-fold channel and m = 4 for the 2-fold
channel):

Eθ [U(θ)(ρ̂)] =
M

⃝
i=1

 m∑
j=1

pijUij ◦ Wi

 (ρ̂). (3.92)

As we want to sample from that sum, we can define for each i a discrete random variable
Xi taking values in {1, . . . ,m} such that P(Xi = j) = pij. This represents a choice of
a given unitary in the previous convex sum. Gathering these for all k we get a random
vector X = (X1, . . . , XM) ∈ {1, . . . ,m}M that completely defines a unique unitary U(X)
through:

U(j1, . . . , jM) =
M

⃝
i=1

Uiji
◦ Wi. (3.93)

Thus we have:
Eθ [U(θ)(ρ̂)] = EX [U(X)(ρ̂)]

=
M

⃝
i=1

(
m∑

j=1
pijUij ◦ Wi)(ρ̂).

(3.94)

The main idea is now to approximate the k-fold channels by an empirical average over K
samples of the previous Clifford circuits, namely:

Φ̂(ρ̂) := 1
K

K∑
i=1

U(X i)(ρ̂). (3.95)

IV.2 Sampling efficiency
Our result relies on classical arguments for the sampling of bounded functions depending
on a set of random variables using the McDiarmid’s concentration inequality [186, 240],
which we remind below.
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Definition IV.1 (Bounded difference property). A function f : X M → R satisfies the
bounded difference property if and only if there exists coefficients (ci)i∈J1,MK ∈ RM

+ such
that ∀i ∈ J1,MK, ∀ (xk)k∈J1,MK:

sup
x

′
i∈X

∣∣∣f(x1, .. , xi, .. , xM) − f(x1, .. , x
′

i, .. , xM)
∣∣∣ < ci .

Theorem IV.1 (McDiarmid’s inequality). Let f : X M → R satisfy the bounded difference
property with bounds {c1, . . . , cM}, and a random vector X = (X1, . . . , XM) taking values
in X M , then ∀ϵ > 0

P (|f(X) − EX [f(X)]| ≥ ϵ) ≤ 2exp
(

− 2ϵ2∑M
i=1 c

2
i

)
.

We will show that the quantities we want to estimate satisfy the bounded difference
property and apply the McDiarmid’s inequality to prove that our previous sampling is
efficient. In the following we define

f(x) = Tr
[
U(x)(ρ̂)Ô

]
, (3.96)

where Ô is the cost function observable defined in the main text and, as in the previous
section, U(x) the unitary channel associated to a given Clifford approximant circuit that is
completely specified by a discrete vector x = (x1, . . . , xi, . . . , xM) ∈ {1, . . . ,m}M . By the
Cauchy-Schwarz inequality for the Hilbert-Schmidt inner product, f is upper-bounded:

|f(x)| ≤ ∥ρ̂∥2∥Ô∥2 (3.97)

with ∥A∥2 =
√

Tr [A†A] the Hilbert-Schmidt norm. Defining a second vector for which
only the i-th component is changed x′ = (x1, . . . , x

′
i, . . . , xM), we get by using the triangle

inequality ∣∣∣f(x) − f(x′)
∣∣∣ ≤ |f(x)| + |f(x′)|

≤ 2∥Ô∥2∥ρ̂∥2.
(3.98)

Hence f satisfies the bounded difference property with ci = c = 2∥Ô∥2∥ρ̂∥2, and we can
apply McDiarmid’s inequality, which gives almost the desired result. To go further, we
define

fK(x1, . . . ,xK) =
K∑

j=1
f(xj1, . . . , xjM)

=
K∑

j=1
Tr
[
U(xj)(ρ̂)Ô

]
= KTr

[
Φ̂(ρ̂)Ô

]
.

(3.99)

Clearly, fK satisfies the bounded difference property with the same bound c 4. Thus
4To see this, we take all xij equal except for xkl, and it follows that the difference

fK(x1, . . . , xK) − fK(x′

1, . . . , x
′

K) is simply f(xk) − f(x′

k).



IV. Sampling of Clifford circuits and efficiency 73

McDiarmid’s inequality applies to fK , which is a function of KM parameters:

P(|fK(X) − EX [fK(X)]| ≥ Kϵ) = P
(∣∣∣∣ 1
K
fK(X) − EX

[ 1
K
fK(X)

]∣∣∣∣ ≥ ϵ
)

= P
(∣∣∣Tr

[
Φ̂(ρ̂)Ô

]
− Eθ

[
Tr
[
U(θ)(ρ̂)Ô

]]∣∣∣ ≥ ϵ
)

≤ 2exp
(

− 2K2ϵ2

KMc2

)

= 2exp
(

− Kϵ2

2M∥ρ̂∥2
2∥Ô∥2

2

)
.

(3.100)

Therefore, choosing a precision ϵ > 0 and a probability 1−δ ∈ [0, 1] to meet this precision,
we get

P
(∣∣∣Tr

[
Φ̂(ρ̂)Ô

]
− Eθ

[
Tr
[
U(θ)(ρ̂)Ô

]]∣∣∣ ≤ ϵ
)

≥ 1 − δ (3.101)

whenever the number of sampled Clifford circuits K is

K ≥ 2
ϵ2 log

(2
δ

)
M∥ρ̂∥2

2∥Ô∥2
2 = O (M) . (3.102)

Note that in Eq. (3.100), replacing the observable Ô by its normalized counterpart Ô/∥Ô∥
with an associated precision ϵ̃ gives the same scaling for K, as in that case ϵ̃ = ϵ/∥Ô∥.
Hence we can always work with a normalized observable. However, if one is interested
in the scaling with the system size n, we have to consider a sequence of observables Ôn,
whose norms can present a particular scaling in n, so the presence of the norm of Ô
in Eq. (3.102) allows to keep track of this effect. In many situations of interest, the
observables considered scale polynomialy in the system size, and so does K. Finally, one
can use the Gottesman-Knill theorem which states that for a Clifford unitary Û and an
observable Ô acting non-trivially on NO qubits, the expectation value Tr

[
|0⟩⟨0|⊗n Û †ÔÛ

]
can be classically computed with a complexity polynomial in both NO and the number of
qubits n [210]. Our scheme inherits this scaling and we can estimate the gradient variance
Varθ [∂kC(θ)] for each k with a classical computer in a complexity in O (npN q

OM) with
M the number of parameters in the variational quantum circuit.

IV.3 Generalizations to the nonconvex cases
Relations to previous works

In this section we extend the previous scheme to more general distributions. The method
we present have been proposed by the authors of [235] and [236], and it falls in the more
general class quasi-probability methods [241, 242].

We first discuss the scaling of the sampling complexity with the convexity condition re-
laxed, i.e. where we no longer require the decomposition of the 2-fold channel [Eq. (3.60)]
to be a convex sum and only assume that the distribution of θ is even. Then, we study
the case of an arbitrary distribution of the rotation angles, which is not necessarily sym-
metrically distributed. Finally, we show that our previous scheme still applies at the
price of an exponential factor in the number of variational parameters M in the number
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of Clifford approximant circuits to be sampled. Compared to a brute-force simulation,
this method can be used to trade an exponential complexity in the system size for an
exponential complexity in the number of variational parameters.

Even distributions

Here we consider distributions of rotation angle θ that are even, but do not satisfy the
convexity condition of Eq. (3.65). In this case, our decomposition of the 1-fold channel
remains convex while the 2-fold channel becomes a nonconvex sum, hence the coefficients
for the Clifford channels can no longer be interpreted as probabilities. We first show
how one can still estimate such nonconvex sums via probabilistic sampling [235, 236].
Denoting

Eθ [U(θ)(ρ̂)] =
M

⃝
k=1

(
m∑

j=1
qkjUkj ◦ Wk)(ρ̂) , (3.103)

we hereby assume

qkj ∈ R ,
M∑

j=1
qkj = 1 , ∀k . (3.104)

Defining
γk := ΣM

j=1|qkj| , p̃kj := |qkj|/γk , (3.105)
Eq. (3.103) can be rewritten in terms of convex sums:

Eθ [U(θ)] =
M

⃝
k=1

m∑
j=1

p̃kj [γk sgn(qkj)] Ukj ◦ Wk . (3.106)

Similar to Sec. IV.1, we now define the random vector X̃ = (X̃1, . . . , X̃M) ∈ {1, . . . ,m}M ,
with probabilities P(X̃k = j) = p̃kj, and the rescaled random unitary channel Ũ(X̃)
through

Ũ(j1, . . . , jM) =
M

⃝
k=1

[γk sgn(qkjk
)] Ukjk

◦ Wk . (3.107)

Therefore, we recover the form of an expectation value similar to Eq. (3.94):

Eθ [U(θ)(ρ̂)] = EX̃

[
Ũ(X̃)(ρ̂)

]
. (3.108)

This allows us to apply the same arguments as in Sec. IV.2 by considering the function

f̃(x) = Tr
[
Ũ(x)(ρ̂)Ô

]
(3.109)

instead of f(x) defined in Eq. (3.96). The function bound (3.97) should be rescaled
accordingly: ∣∣∣f̃(x)

∣∣∣ ≤ γ∥ρ̂∥2∥Ô∥2 , (3.110)
where the scaling factor is defined as

γ :=
M∏

k=1
γk . (3.111)
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The number of sampled Clifford circuits previously derived in Eq. (3.102) should therefore
be scaled with the same factor:

K ≥ 2
ϵ2 log

(2
δ

)
γM∥ρ̂∥2

2∥Ô∥2
2 . (3.112)

Note that the factor γk ≥ 1 can be regarded as a measure of “nonconvexity” in the
decomposition of the k-th channel. In the case of a convex sum, where qkj > 0, ∀k, j, the
scaling factor is simply γ = 1M = 1 and we recover the previous results.

We now show that γk is upper-bounded. Following our discussion in Sec. III, it suffices
to consider the 2-fold channel for a single-qubit Z-rotation, where the decomposition can
be possibly nonconvex. Without loss of generality, let us rewrite Eq. (3.60) as

Φ(2)
Z (ρ̂) = qk1ρ̂+ qk2 (Z ⊗ Z) ρ̂ (Z ⊗ Z) + qk3CZρ̂CZ + qk4CZX ρ̂CZX (3.113)

for some k, where
qk1 = Eθ

[1
4 (1 + cos 2θ + 2 cos θ)

]
,

qk2 = Eθ

[1
4 (1 + cos 2θ − 2 cos θ)

]
,

qk3 = qk4 = Eθ

[1
4 (1 − cos 2θ)

]
.

(3.114)

Defining the non-negative function

φ(θ) :=
∣∣∣∣14 (1 + cos 2θ + 2 cos θ)

∣∣∣∣+∣∣∣∣14 (1 + cos 2θ − 2 cos θ)
∣∣∣∣+2×

∣∣∣∣14 (1 − cos 2θ)
∣∣∣∣ , (3.115)

We then get
γk = |qk1| + |qk2| + |qk3| + |qk4|

≤ Eθ [φ(θ)]

≤ Eθ

[
sup

θ′
φ(θ′)

]
= sup

θ′
φ(θ′)

= 5
4 .

(3.116)

Here the function φ(θ) reaches its maximum for θ = ±π
3 ,±

2π
3 . Therefore, the factor γk

reaches its upper bound 5
4 if the distribution of θ is a sum of Dirac-delta distributions

peaked at θ = ±π
3 and/or θ = ±2π

3 , in which case we obtain the worst-case scaling of the
number of sampled Clifford circuits (3.112):

K ≥ 2
ϵ2 log

(2
δ

)
γM∥ρ̂∥2

2∥Ô∥2
2 = O(γM) , γ ≤

(5
4

)M

. (3.117)

Combining the above result with the Gottesman-Knill theorem, for a cost-function ob-
servable Ô acting non-trivially on NO qubits, our scheme implies a complexity of at most
O
(
npN q

O(5
4)MM

)
for the estimation of gradient variance Varθ [∂kC(θ)] for each k on a
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classical computer in the general scenario, where n is the number of qubits, M is the num-
ber of parameters in the variational quantum circuit and p, q are some constants inherited
from the Gottesman-Knill theorem.

From the above, it is clear that the negativity of the considered quasi-distribution
strongly impact the complexity of the method, which has been highlighted by the authors
of [235]. More generally, the role of the negativity in general quasi-probability methods
have been investigated in [243–245].

Let us now, we extend our scheme to the most generic case, by considering an arbitrary
probability distribution for the rotation angles θ, and derive the corresponding sampling
complexity. As before, one needs only to consider the one- and two-fold channels for a
single-qubit Z-rotation gate.

1-fold channel

Consider the decomposition of the 1-fold channel for a generic distribution that is given
by Eq. (3.37), namely:

Eθ

[
R̂Z(θ)ρ̂R̂†

Z(θ)
]

= 1 + r1

2 E [1](ρ̂) + 1 − r1

2 E [Ẑ](ρ̂) + s1

2 E [Ŝ†](ρ̂) − s1

2 E [Ŝ](ρ̂) , (3.118)

Following the same procedure as above, this decomposition allows to express the 1-fold
channel of the ansatz as a (possibly nonconvex) linear combination of Clifford channels,
which can be estimated via sampling. As before the number of required samples should
be scaled, according to the nonconvexity of the sum, by a factor γ = ΠM

k=1γk
5. We now

derive an upper bound for γ(1)
k , the scaling factor associated to a single (the k-th) 1-fold

Z-rotation channel. We proceed by applying the same argument as in Eqs. (3.113)-(3.116):

γ
(1)
k =

∣∣∣∣1 + r1

2

∣∣∣∣+ ∣∣∣∣1 − r1

2

∣∣∣∣+ ∣∣∣∣s1

2

∣∣∣∣+ ∣∣∣∣−s1

2

∣∣∣∣
=
∣∣∣∣∣Eθ

[
1 + cos θ

2

]∣∣∣∣∣+
∣∣∣∣∣Eθ

[
1 − cos θ

2

]∣∣∣∣∣+ |Eθ [sin θ]|

≤ Eθ

[∣∣∣∣∣1 + cos θ
2

∣∣∣∣∣+
∣∣∣∣∣1 − cos θ

2

∣∣∣∣∣+ |sin θ|
]

≤ sup
θ

{∣∣∣∣∣1 + cos θ
2

∣∣∣∣∣+
∣∣∣∣∣1 − cos θ

2

∣∣∣∣∣+ |sin θ|
}

= 2 .

(3.119)

This implies that the number of samples K(1) required for the estimation of the generic
1-fold channel [see Eq. (3.117)] scales as

K(1) ∼ O(γ(1)M) , γ(1) =
M∏

k=1
γ

(1)
k ≤ 2M . (3.120)

Note that the bound derived above depends on the specific choice of the Clifford channels
in the decomposition. As the Clifford group does not form a linearly independent set, it
should be possible to find a different decomposition that yields a different upper bound
and further optimize the complexity.

5See definition in Eqs. (3.103)-(3.105) and Eq. (3.111)
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2-fold channel

Similar to our treatment with the 1-fold channel, let us derive an upper bound for γ(2)
k ,

the scaling factor for the number of samples required for the estimation of the generic
2-fold k-th Z-rotation channel:

γ
(2)
k = 4

∣∣∣∣s2

8

∣∣∣∣+ 4
∣∣∣∣−s2

8

∣∣∣∣
+
∣∣∣∣1 + r2 + 2r1

4

∣∣∣∣+ ∣∣∣∣1 + r2 − 2r1

4

∣∣∣∣
+
∣∣∣∣1 − r2 + 2s1

4

∣∣∣∣+ ∣∣∣∣1 − r2 − 2s1

4

∣∣∣∣
= |Eθ [sin 2θ]|

+
∣∣∣∣∣Eθ

[
1 + cos 2θ + 2 cos θ

4

]∣∣∣∣∣
+
∣∣∣∣∣Eθ

[
1 + cos 2θ − 2 cos θ

4

]∣∣∣∣∣
+
∣∣∣∣∣Eθ

[
1 − cos 2θ + 2 sin θ

4

]∣∣∣∣∣
+
∣∣∣∣∣Eθ

[
1 − cos 2θ − 2 sin θ

4

]∣∣∣∣∣.
≤ sup

θ
{|sin 2θ|

+
∣∣∣∣∣1 + cos 2θ + 2 cos θ

4

∣∣∣∣∣
+
∣∣∣∣∣1 + cos 2θ − 2 cos θ

4

∣∣∣∣∣
+
∣∣∣∣∣1 − cos 2θ + 2 sin θ

4

∣∣∣∣∣
+
∣∣∣∣∣1 − cos 2θ − 2 sin θ

4

∣∣∣∣∣
}

= 1 +
√

2 .

(3.121)

This implies that the number of samples K(2) required for the estimation of the generic
2-fold channel scales as

K(2) ∼ O(γ(2)M) , γ(2) =
M∏

k=1
γ

(2)
k ≤ (1 +

√
2)M , (3.122)

which is dominant over the complexity of the estimation of the 1-fold channel [Eq. (3.120)]
since 1 +

√
2 > 2.

Again, combining the above result with the Gottesman-Knill theorem, for a cost-
function observable Ô acting non-trivially on NO qubits, our scheme implies a com-
plexity of no more than O

(
npN q

O(1 +
√

2)MM
)

for the estimation of gradient variance
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Varθ [∂kC(θ)] for each k on a classical computer in the most generic case, where n is the
number of qubits, M is the number of parameters in the variational ansatz and p, q are
some constants inherited from the Gottesman-Knill theorem.

V Conclusions and perspectives
In this chapter, we presented a classically efficient method to estimate first and second-
order expectation values for a large class of randomly initialized variational quantum
circuits. This includes estimating the average gradient of the cost function and its vari-
ance, which can be used to estimate the trainability. Our method applies to the large
class of circuits whose architecture is composed of fixed Clifford gates and single-qubit
parameterized rotations, provided that the rotation angles are independent and that their
distribution are symmetric with respect to an angle θ0 ∈ {kπ/2, k ∈ Z} and satisfy
Eθ [cos2 (θ − θ0)] ≥ |Eθ [cos (θ − θ0)]|. The method relies on an exact mapping of ran-
domly initialized variational quantum circuits to ensembles of Clifford circuits and on the
Gottesman-Knill theorem. We provide rigorous convergence guarantees, and in particular
we show that the complexity of the method scales polynomially in both the system size
and the number of parameters of the considered ansatz. We investigated the generaliza-
tion of the proposed scheme to the case of N -fold channels, and showed that the N -fold
average of random Z-rotations can be expressed either as a real combination of diagonal
Clifford unitaries or as a discrete sum of N -qubits Z-rotations. However, such a decom-
position is not unique, and finding a sufficient and necessary condition for the considered
N -fold channel to be a Clifford mixed-unitary channel remains an open problem. Solving
this problem is of great interest as it could allow to generalize the scheme presented in
this work to ansätze with correlated variational parameters.

We believe that such a tool will prove very useful in future applications, as it could
be employed to conduct classical optimization of architectures and initialization of large
scale variational quantum circuits. As the absence of barren plateaus can be guaranteed
by a large enough variance of the gradient, regardless of the exact origin of the potential
barren plateaus, this method could be used to certify trainability for system with a very
large number of qubits.



General conclusion

In this manuscript, we have explored the rich interface between machine learning and
quantum computing, with an emphasis on the effects of noise and decoherence. This
work was structured around two main axes of research:

• the study of noisy quantum kernel machines exploiting open quantum systems,

• an efficient classical estimation of the trainability of variational quantum circuits.

In Chap. 1, we provided a brief overview of the theory of open quantum systems. Along
the path, we promptly discussed the statistical interpretation of quantum mechanics and
we introduced the theoretical tools that were used in the different chapters. We presented
the decoherence phenomenon through the analysis of two simple models. The first model
involved a single qubit subject to a random classical driving, while the second model
replaced the driving by an interaction with a bosonic bath in a thermal state. We derived
in details the reduced dynamic of the qubit in both cases, and we discussed the conditions
under which this dynamics can be described by a Lindblad master equation. We also
discussed the connections between both models as well as the links between the Lindblad
equation and the notion of Markov evolution.

Following this introductory chapter, Chap. 2 presented the results of our work [α].
In this work, we introduced a scheme of noisy quantum kernel machine. In this setup,
we considered models with an encoding-decoding structure, where the encoding proced-
ure is described by a mapping of the input data to a dynamical map characterizing the
evolution of the quantum device. The decoding part then consists in an optimization of
a linear combination of observables of the evolved system. We analyzed the expressivity
and the generalization capacity of the proposed scheme in the framework of kernel the-
ory. In particular, we introduced a figure of merit based on the eigen-spectrum of the
model kernel, the kernel effective rank, that allowed us to quantify the model expressivity.
From this, we showed how the noise affecting the device contributes to the reduction of
the model expressive power. Using an adequate classical bound on the generalization
error, we showed that the noise can play the role of an intrinsic regularization, which
helps avoiding over-fitting by diminishing the model expressiveness. This theoretical in-
vestigation was supported by a numerical study of models involving driven-dissipative
chains of spins subject to decoherence, with an encoding consisting in the application of a
series of driving pulses with properly modulated amplitudes. We considered two decoding
methods: a first method based on a full tomography of the evolved state, and a second
one using series of independent measurements at different times. The obtained numerical
results are in agreement with our theoretical heuristics. Surprisingly, these results shows
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similar performances for both decoding schemes. In this regard, it would be interesting to
investigate further decoding procedures based on repeated measurements in light of the
recent breakthroughs associated with the use of random measurements and the classical
shadows procedure [246–249]. More generally, the investigation of tailored embedding and
decoding strategies able to harness the power of current quantum devices is a promising
research avenue [98].

Then, we presented the results of our work [γ] in Chap. 3. There, we provided an effi-
cient classical simulation scheme to estimate the initial trainability of a class of variational
quantum algorithms. To derive our method, we studied the 1- and 2-fold quantum chan-
nels associated with averages of random single-qubit Z-rotations. Under some conditions
on the random angle distribution, we showed that these channels can be decomposed as
convex sums of Clifford channels. The existence of such a decomposition can be inter-
preted as a consequence of an artificial decoherence induced by the random selection of the
rotation angle. For a variational circuit composed of fixed Clifford gates and independent
single-qubit rotations, this result allows to map the ensemble of unitary associated with
random choices of the rotation parameters to an ensemble of Clifford circuits. Relying on
a standard concentration inequality, we then showed that this Clifford ensemble can be
efficiently sampled to estimate averages of first and second-order quantities measured on
the output of the considered variational. Making use of the Gottesman-Knill theorem, we
proved the efficiency of this method that can be implemented on a classical computer with
a complexity scaling polynomially in both the number of variational parameters and the
system size. In particular, our methods provides a scalable way to estimate the average
of the gradient of the cost function and its variance, which can be used to evaluate the
initial trainability of a given ansatz. The method we proposed can be applied to a wide
class of independent random rotations. Using existing quasi-probability sampling meth-
ods, we extended our scheme to the case of generic independent rotations, at the price of
an additional exponential complexity in the number of rotations. We also investigated the
generalization of the results obtained for the 1- and 2-fold Z-rotation channels to the gen-
eral case of a N -fold channel. However, although we obtained interesting decomposition,
finding such a decomposition or proving its nonexistence remains an open problem. Solv-
ing this problem is of great interest as it could allow to generalize the presented scheme
to ansätze with correlated variational parameters.

The results obtained in Chap. 3 allow to obtain information on the trainability of a
given ansatz in a scalable way. This could be very useful to conduct classical optimization
of architectures of large scale variational quantum circuits. In particular, reinforcement
learning methods have recently proved very useful for multiple task related to quantum
computing [82–94], and in particular for the optimization of quantum circuits [90, 91].
However, the training procedure of these algorithms often requires large quantities of
data, which could render the presented methods impractical. Our scheme could provide
a solution to this scalability issue for the optimization of the architectures of variational
ansätze with reinforcement learning. This proposal is the object of current investigations.



A Interaction picture

This appendix briefly recall the transformations associated with the Schrödinger and the
interaction pictures. Consider a quantum system which Hamiltonian in the Schrödinger
picture is given by

ĤS(t) = Ĥ0 + Ĥ int
S (t) , (A.1)

where Ĥ0(t) and Ĥ int
S are the bare and the interaction Hamiltonian respectively. Denoting

ρ̂S(t) the density operator of the system in Schrödinger’s picture, the Liouville equation
reads

dρ̂S

dt = −i
[
ĤS(t), ρ̂S(t)

]
. (A.2)

We choose t = 0 as a reference time at which the descriptions in the Schrödinger and in
the interaction picture coincide. The unitary operator associated with the evolution for
the bare Hamiltonian is given by

Û0(t) = e−iĤ0t . (A.3)

Writing ρ̂I(t) for the system density operator in the interaction picture, we have

ρ̂I(t) = Û †
0(t)ρ̂S(t)Û0(t) . (A.4)

The time evolution in the interaction picture is thus given by

dρ̂I

dt = i
[
Ĥ0, ρ̂I(t)

]
+ Û †

0(t)dρ̂S

dt Û0(t)

= i
[
Ĥ0, ρ̂I(t)

]
− iÛ †

0(t)
[
Ĥ0(t) + Ĥ int

S , ρ̂S(t)
]
Û0(t)

= i
[
Ĥ0, ρ̂I(t)

]
− i

[
Û †

0(t)
(
Ĥ0(t) + Ĥ int

S

)
Û0(t), ρ̂I(t)

]
= −i

[
ĤI(t), ρ̂I

]
,

(A.5)

where
ĤI(t) = Û †

0(t)Ĥ int
S (t)Û0(t) (A.6)

is the Hamiltonian in the interaction picture.



B Example of non-Markovian
evolution

In this appendix we give an example of a non-Markovian system based on the simple
model developed in Sec. III of the main text. The method used in this appendix rely
on the formalism of time-convolutionless master equations [137]. Let us start from the
general evolution channel of Eq. (1.48), which we recall below:

ρ̂(t) = Λ(t,0) (ρ̂0) = 1
2 (1 + f(t)) ρ̂0 + 1

2 (1 − f(t)) σ̂zρ̂0σ̂z , (B.1)

where f(t) = e−Γ(t) = e− 1
2

∫ t

0

∫ t

0 K(s1,s2)ds1ds2 . Deriving this equation with respect to the
time t gives

dρ̂
dt = γ(t)

2 f(t) (σ̂zρ̂0σ̂z − ρ̂) , (B.2)

with
γ(t) = ∂tΓ(t) =

∫ t

0
K(t, s)ds . (B.3)

As a linear map, the channel Λ(t,0) is invertible, although its inverse is not necessarily trace
preserving nor completely positive. Notice that we have 0 < f(t) < 1, and a calculation
gives

ρ̂0 = Λ−1
(t,0) (ρ̂(t)) = 1

2

(
1 + 1

f(t)

)
ρ̂(t) + 1

2

(
1 − 1

f(t)

)
σ̂zρ̂(t)σ̂z . (B.4)

Injecting this equation in Eq. (B.2), we obtain

dρ̂
dt = γ(t)

2 (σ̂zρ̂(t)σ̂z − ρ̂(t)) (B.5)

This equation is a time-dependent Lindblad equation with an associated instantaneous
dissipation rate γ(t) =

∫ t
0 K(t, s)ds. The jump operator σ̂z belongs to the Pauli basis of

the single qubit traceless observables, so that the previous equation is in the so-called
standard form. Hence, if γ(t) < 0 for some time t, the system will exhibits a non-
Markovian behavior (in the sense briefly discussed in the main text).

Let us remark that we obtained the Lindblad equation above without using any ap-
proximation. In particular, it seems that assuming that t ≫ τc, one can proceed as in the
main text and approximate∫ t

0

∫ t

0
K(s1, s2)ds1ds2 ≃ K̃(ω = 0)t = 2γt , (B.6)



83

and recover the Lindblad equation of the main text from the sole assumption that t ≫ τc,
thereby dropping the constrain δt ≪ 1/γ. However, the two equations do not describe the
same thing. In the main text, we obtained the master equation starting from the evolved
state at a time t′ = t+ δt

ρ̂(t′) = Λ(t′,t)(ρ̂(t)) . (B.7)
This state corresponds to the assumption that the evolution started at time t from an
initial state ρ̂(t) independent of the driving. In term of trajectories, the corresponding
state is computed as

ρ̂(t′) = E
[
Λξ

(t′,t)

]
(ρ̂(t)) . (B.8)

On the contrary, the master equation we just derived describes the evolution of the system
when assuming that the initial state ρ̂0 at t = 0 is independent of the driving. In this
case, the state at a time t′ is given by

ρ̂(t′) =


E
[
Λξ

(t′,t) (ρ̂ξ(t))
]
,

E
[
Λξ

(t′,0)

]
(ρ̂0) .

(B.9)

For the two pictures to agree, we must have
E
[
Λξ

(t′,t) (ρ̂ξ(t))
]

= E
[
Λξ

(t′,t) (E [ρ̂ξ(t)])
]
, (B.10)

which is approximately ensured (up to the second order in t′ − t = δt) if we work with the
coarse grained time scale of the main text. This can be seen as a classical equivalent of
the Born-Markov approximation, where the Born approximation is the assumption that
in the case where the classical noise is replaced by a quantum reservoir, the state of the
global system is well approximated by the tensor product of the reduced states of the
system and the reservoir.

To obtain a non-Markovian behavior in the previous model, we have to chose a cov-
ariance function of the noise that yields a negative rate γ(t). A covariance function that
enables to do so is the following linear kernel

K(t, s) = (t− 1)(s− 1) . (B.11)
This kernel provides a well defined covariance, as we have ∀S = (s1, . . . , sn) ∈ Rn

+, ∀x =
(x1, . . . , xn) ∈ Rn:

xT KSx =
n∑

i,j=1
xixj(si − 1)j(sj − 1) =

(
n∑

i=1
xi(si − 1)

)2

≥ 0 . (B.12)

The associated dissipation rate is given by

γ(t) = (t− 1)
(
t2

2 − 1
)
< 0 , ∀t ∈ (1,

√
2) . (B.13)

Physically, the considered noise presents an anti-correlation for the times greater and
lower than 1, i.e.

E [ξ(t)ξ(s)] < 0 , 0 ≤ s < 1 , t > 1 . (B.14)
The effect of this anti-correlation is to partially cancel the random relative phase acquired
by the qubit, thereby restoring a part of the coherence lost under the influence of the
random driving. Other examples of non-Markovian behaviors for the present model with
non-Gaussian noises have been studied in [250].



C Quantum thermal noise

Characteristic function for the quantum thermal noise

We provide a proof of the form of the characteristic function for a quantum thermal noise.
This material is inspired of [251]. Let us recall some notations introduced in Sec. III.2:

r̂k(t) = 2
(
gke

iωktb̂†
k + g∗

ke
−iωktb̂k

)
r̂(t) =

∑
k∈N

r̂k(t) (C.1)

We also write ∫ t

0
r̂k(s)ds = 1

i
(
αk(t)b̂†

k − α∗
k(t)b̂k

)
. (C.2)

where αk(t) = 2gk (eiωkt − 1) /ωk. The reservoir is assumed to be in a thermal state at
temperature T = 1/β:

ρ̂th =
⊗
k∈N

(
1 − e−βωk

)
e−βωk b̂†

k
b̂k . (C.3)

The noise characteristic function can be written

Tr
[
ρ̂the

i
∫ t

0 r̂(s)ds
]

= Πk∈N

((
1 − e−βωk

)
Tr
[
e−βωk b̂†

k
b̂kei

∫ t

0 r̂k(s)ds
])

. (C.4)

Thus we simply need to determine the single-mode characteristic function, which reads
(dropping the index k):

χth(α) =
(
1 − e−βω

)
Tr
[
e−βωb̂†

k
b̂keαb̂†−α∗b̂

]
. (C.5)

Using the Baker-Campbell-Hausdorff formula, we have

eαb̂†−α∗b̂ = eαb̂†
e−α∗b̂e− |α|2

2 . (C.6)

Inserting a resolution of the identity and expanding the exponentials, the trace appearing
in Eq. (C.5) can be rewritten

Tr
[
e−βωb̂†

k
b̂keαb̂†

e−α∗b̂
]

=
+∞∑

n,m=0
e−βω ⟨n| eαb̂† |m⟩⟨m| e−α∗b̂ |n⟩

=
+∞∑

n,m,k,l=0
(−1)lα

∗l

l!
αk

k! e
−βω ⟨n|

(
b̂†
)k

|m⟩⟨m|
(
b̂
)l

|n⟩ .
(C.7)
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Recall that the powers of creation and annihilation operators acts on the Fock states as
follow: 

(
b̂
)l

|n⟩ =
√

n!
(n− l)! |n− l⟩ ,

(
b̂†
)k

|m⟩ =
√

(m+ k)!
m! |m+ k⟩ .

(C.8)

Hence we have

⟨n|
(
b̂†
)k

|m⟩⟨m|
(
b̂
)l

|n⟩ =

√√√√n!(m+ k)!
(n− l)!m! ⟨n|m+ k⟩ ⟨m|n− l⟩

= n!
(n− k)!δm,n−kδk,l

(C.9)

and the previous trace reads

Tr
[
e−βωb̂†

k
b̂keαb̂†

e−α∗b̂
]

=
+∞∑
n=0

e−βωn
n∑

k=0
(−1)k |α|2k

k!

(
n

k

)
(C.10)

The sum appearing on the right handside of this equation is the Laguerre polynomial of
order n:

Ln

(
|α|2

)
=

n∑
k=0

(−1)k |α|2k

k!

(
n

k

)
. (C.11)

We have

Tr
[
e−βωb̂†

k
b̂keαb̂†

e−α∗b̂
]

=
+∞∑

n,k=0
e−βωn(−1)k |α|2k

k!

(
n

k

)
1(0,+∞] (n− k)

=
+∞∑

m,k=0
e−βω(m+k)(−1)k |α|2k

k!

(
m+ k

k

)

=
+∞∑
k=0

e−βωk(−1)k |α|2k

k!

+∞∑
m=0

(
e−βω

)m
(
k +m

m

)

=
+∞∑
k=0

e−βωk(−1)k |α|2k

k!
1

(1 − e−βω)k+1 ,

(C.12)

where 1(0,+∞] is the indicator function of (0,+∞], m = n − k and we have used the
identity

+∞∑
m=0

xm

(
k +m

m

)
= 1

(1 − x)k+1 . (C.13)

The single-mode characteristic function can therefore be written

χth(α) = exp
(

−|α|2

2

(
1 + 2 e−βω

(1 − e−βω)

))

= exp
(

−|α|2

2 (1 + 2⟨n̂⟩th)
)

= exp
(

−|α|2

2
〈
{b̂†, b̂}

〉
th

) (C.14)
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and the multi-mode characteristic function follows:

Tr
[
ρ̂the

i
∫ t

0 r̂(s)ds
]

= e− 1
2
∑

k∈N |αk|2⟨{b̂†
k

,b̂k}⟩th . (C.15)

Then, we have∫ t

0

∫ t

0
⟨r̂(s1)r̂(s2)⟩th ds1ds2 =

∑
k,k′∈N

∫ t

0

∫ t

0
⟨r̂k(s1)r̂k′(s2)⟩th ds1ds2

=
∑
k∈N

〈∫ t

0

∫ t

0
r̂k(s1)r̂k(s2)ds1ds2

〉
th

=
∑
k∈N

〈(∫ t

0
r̂k(s)ds

)2〉
th

=
∑
k∈N

|αk|2
〈
{b̂†

k, b̂k}
〉

th
,

(C.16)

where we have used the equalities ⟨r̂k(s)⟩th = 0 and [r̂k(s), r̂k(s′)] = 0 ∀s, s′. Finally, we
obtain

Tr
[
ρ̂the

i
∫ t

0 r̂(s)ds
]

= e− 1
2

∫ t

0

∫ t

0 ⟨r̂(s1)r̂(s2)⟩thds1ds2 . (C.17)

Vacuum and thermal decoherence functions

Here we prove the forms of the vacuum and thermal parts of the decoherence function for
the density 1

J(ω) = ωe−ω/Ω . (C.18)
The vaccum and thermal decoherence functions are defined as follow:

Γvac(t) =
∫ +∞

0
J(ω)t

2

2 sinc
(
ωt

2

)2
dω ,

Γth(t) =
∫ +∞

0
J(ω)t

2

2 sinc
(
ωt

2

)2 (
coth

(
βω

2

)
− 1

)
dω .

(C.19)

For the vacuum part, we have

Γvac(t) =
∫ +∞

0

(1 − cos (ωt))
ω

e−ω/Ωdω

=
∫ +∞

0

(+∞∑
k=1

(−1)k t
2k

2k!ω
2k−1e−ω/Ω

)
dω

=
+∞∑
k=1

(−1)k t
2k

2k!

∫ +∞

0

(
ω2k−1e−ω/Ω

)
dω

=
+∞∑
k=1

(−1)k (Ωt)2k

2k! Γ (2k)

= 1
2

+∞∑
k=1

(−Ω2t2)k

k

= 1
2 ln

(
1 + Ω2t2

)
,

(C.20)

1We take A = 1 in this appendix.
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where we have used the power series

cos(x) =
+∞∑
k=0

(−1)k x
2k

2k! ln(x) =
+∞∑
k=1

xk

k
, (C.21)

and the Gamma function evaluated at k ∈ N:

Γ(k) =
∫ +∞

0
tk−1e−tdt = (k − 1)! . (C.22)

For the thermal part, we follow [137]. Setting x = βω, we have

Γth(t) =
∫ +∞

0

(1 − cos (ωt))
ω

(
coth

(
βω

2

)
− 1

)
e−ω/Ωdω

= 1
β

∫ +∞

0

(∫ t

0
sin

(
sx

β

)
ds
)(

coth
(
x

2

)
− 1

)
e−x/(βΩ)dx .

(C.23)

As in the main text, we assume βΩ ≫ 1, so that for x ≫ βΩ we have
(
coth

(
x
2

)
− 1

)
≃ 0,

and the term e−x/(βΩ) can be neglected. In this regime we obtain

Γth(t) ≃ 1
β

∫ +∞

0

(∫ t

0
sin

(
sx

β

)
ds
)(

coth
(
x

2

)
− 1

)
dx

= 1
β

∫ t

0

(∫ +∞

0
sin

(
sx

β

)(
coth

(
x

2

)
− 1

)
dx
)

ds

= 2
β

∫ t

0

(∫ +∞

0

sin (sx/β)
(ex − 1) dx

)
ds

(C.24)

Using the series expansions 2

sin(x) =
+∞∑
n=0

(−1)n x2n+1

(2n+ 1)! ,
1
2

(
coth (x) − 1

x

)
=

+∞∑
n=1

(
x

x2 + π2n2

)
, (C.25)

we calculate∫ +∞

0

sin (sx/β)
(ex − 1) dx =

+∞∑
n,k=0

(−1)n (s/β)2n+1

(2n+ 1)!

∫ +∞

0
x2n+1e−x(k+1)dx

=
+∞∑

n,k=0

(−1)n

k + 1

(
s

β(k + 1)

)2n+1 ∫+∞
0 x2n+1e−xdx

(2n+ 1)!

=
+∞∑

n,k=0

(−1)n

k + 1

(
s

β(k + 1)

)2n+1

=
+∞∑
k=0

s

β(k + 1)2
1

1 + s2/(β(k + 1))2

=
+∞∑
k=1

s/β

s2/β2 + k2

= π

2

(
coth

(
πs

β

)
− β

πs

)
.

(C.26)

2The serie expansion for coth(x) can be obtained from the Fourier series expansion of eax over (−π, π).
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From this we get

Γth(t) = π

β

∫ t

0

(
coth

(
πs

β

)
− β

πs

)
ds

=
∫ t/τB

0

(
coth(x) − 1

x

)
dx ,

(C.27)

where we have introduced τB = π/β. This last integral is easily calculated and we obtain

Γth(t) = ln
(

sinh (t/τB)
t/τB

)
. (C.28)



D Probabilistic model and loss
function

This appendix recalls the probabilistic modeling associated with a choice of trial function
and loss function. The loss function l(y,x,w) represents the discrepancy between the
trial function f and the target y for the input x, where f depends on the parameters
w. In general, the choice of the loss and the trail functions is guided by probabilistic
considerations. In fact, the loss function can be interpreted as a negative log-likelihood

l(y,x,w) = − log p(y|x,w) , (D.1)

with p(y|x,w) is the conditional probability density of y knowing the input x and for a
given set of weights w. With this identification, choosing a loss function amount to chose a
model for the conditional probability distribution of the targets knowing the inputs [105,
252]. In a supervised setting, the optimal weights are then chosen as to minimize the
average loss function on the training set:

L (w|S) = 1
Ntrain

Ntrain∑
i=1

l(yi,xi,w) . (D.2)

In this view, the optimization procedure of the trial function is a maximum likelihood
estimation for the conditional probability density p(y|x) with respect to the training set
S = {(xi, yi) | i = 1, . . . , Ntrain}.

For example, for a logistic regression model associated with a binary classification task
with target space Y = {0, 1}, the loss function is given by the cross-entropy

l(y,x,w) = −y log (f(x)) − (1 − y) log (1 − f(x)) , (D.3)

with the associated trial function

f(x) = 1
1 + e−wT x

. (D.4)

Using Eq. (D.1), we have

p(y|x,w) = f(x)y(1 − f(x))1−y , (D.5)

from which we can identify {
p(y = 1|x,w) = f(x) ,
p(y = 0|x,w) = 1 − f(x) .

(D.6)
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This usually motivates the choice of the cross-entropy loss function for classification prob-
lems, but other types of loss can be chosen.

From the above, using a least square loss function amount to modeling the conditional
probability of the targets knowing the inputs as a Gaussian distribution of the form

p(y|x,w) = 1√
2πσ2

exp
(

− 1
2σ2

(
y − wT x

))
. (D.7)

In that case, adding a l2-regularization to the least square loss can be seen as a choice of
a Gaussian prior distribution for the weights [252]. In fact, using Bayes rules we have

p(w|y,x) = p(y|x,w)p(x,w)
p(y|x) . (D.8)

Assuming w to be independent of x, we get

log(p(w|y,x)) = log(p(y|x,w)) + log(p(w)) + C(x, y) , (D.9)

where the terms independent of w are absorbed in C(x, y). Identifying the left-hand
side of this equation with the opposite of the l2-regularized least square loss (2.5), and
injecting Eq. (D.7) in the right-hand side, we obtain:

log(p(w)) ∝ −λ

2 wT w , (D.10)

which is the desired result.



E Intercept and kernel centering

The initial optimization problem is to find a weight vector w = (b, w1, . . . , wP )T that
minimizes the regularized loss function of Eq. (2.5). We slightly change our notation and
drop the first constant term of the embedding map ϕ(x) to explicitly seperate the bias b
from the weight w, so that the loss can be rewritten:

L (w, b | S) = 1
2Ntrain

Ntrain∑
i=1

(
yi − wT ϕ(xi) − b

)2
+ λ

2 ∥w∥2
2 . (E.1)

The optimal intercept b is found by imposing ∂L
∂b

= 0. The solution reads:

b∗ = 1
Ntrain

Ntrain∑
i=1

yi − wT

 1
Ntrain

Ntrain∑
i=1

ϕ(xi)
 . (E.2)

We see that the optimal intercept consists of two terms: one that has the effect of centering
the labels, while the other centers the features. Assuming the dataset we use are balanced,
we have ∑Ntrain

i=1 yi ≃ 0. Plugging back the optimal intercept into the previous regularized
loss function, we get a new effective loss:

L∗(w | S) = 1
2Ntrain

Ntrain∑
i=1

(
yi − wT (ϕ(xi) − Ep̂ [ϕ])

)2
+ λ

2 ∥w∥2
2 . (E.3)

If the data are not balanced one can simply replace the labels yi by their centered coun-
terpart y′

i = yi − 1
Ntrain

∑Ntrain
i=1 yi such that ∑Ntrain

i=1 y′
i = 0. Note that this might lead to

issues when using the accuracy metric with unbalanced labels. This issue can be fixed,
e.g. by changing the metric used for a balanced one. Thus, working with the quantum
kernel without regularizing the intercept term is equivalent to working with the centered
kernel and centered labels.



F Kernel methods in a nutshell

This appendix provides some elementary results on kernel methods. The discussion in
this appendix is inspired by the references [105, 180, 186, 253]. Kernel methods allow to
extend algorithms using linear models to a non-linear setup, by transforming (sometimes
implicitly) the original input data into new features in a non-linear way. Here we illustrate
some basic results associated with these methods on a simple example of a linear ridge
regression of the same type as the one used in the main text.

Linear Ridge Regression

Recall that we work in a supervised learning setup, where one tries to represent a relation
between an input variable x ∈ X ⊂ RM+1 and a target variable y ∈ Y ⊂ R based upon
a training set S = {(xi, yi) | i = 1, . . . , Ntrain}. Assuming that the relationship between
inputs and targets is affine, we can use a linear model whose trial function takes the
form 1:

f(x) = wT x . (F.1)
We consider a simple linear ridge regression model [105], for which the loss function is a
l2-regularized least-square loss that reads

L (w | S) := 1
2Ntrain

Ntrain∑
i=1

(
yi − wT xi

)2
+ λ

2 wT w . (F.2)

Define the (M + 1) ×Ntrain input features matrix X whose columns are the input features
xi. The optimal weights w∗ 2 for this model can be derived analytically, and we have

w∗ =
(
XXT +Ntrainλ1

)−1
Xy . (F.3)

Primal and dual pictures

The optimal function f ∗ corresponding the weights w∗ can be written as a linear com-
bination of the form

f ∗ (x) = α∗T XT x =
Ntrain∑

i=1
α∗

i xT
i x , (F.4)

1For the sake of simplicity, we proceed as in Sec. I.3 and assume that the inputs x have a constant
first coordinate equal to one, so that the intercept can be absorbed in the weights vector.

2In this appendix the ∗ symbol denotes optimal quantities and should not be confused with a complex
conjugate.
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Primal picture Dual picture

Trial function f(x) = wT x f(x) = αT XT x

Model parameters w = Xα α

Regularization term λ
2 wT w λ

2 αT Kα

Dimension M + 1 Ntrain

Table F.1: Primal and dual picture for the Linear Ridge Regression model.

where we have 3

α∗ =
(
XT X +Ntrainλ1

)−1
y , (F.5)

such that
w∗ = Xα∗ . (F.6)

As a consequence, the optimal trial function can be obtained by solving another optim-
ization problem expressed in terms of the new weights α, namely by minimizing the loss
function

L̃ (α | S) := 1
2Ntrain

Ntrain∑
i=1

(
yi − αT XT xi

)2
+ λ

2 αT Kα , (F.7)

where we have introduced the kernel matrix K = XT X. Both optimization models are
equivalents, and they define the so-called primal and dual pictures. These are summarized
in Tab. F.1. The optimization problems in these two pictures have different dimensions.
Depending on the problem at hand, one might prefer to work in a picture or the other,
usually choosing the picture with the lowest dimension. Crucially, the optimization prob-
lem in the dual picture only requires the knowledge of the kernel matrix K, while the
primal picture optimization rely on the knowledge of input features.

Feature space embedding

A straightforward way to generalize the ridge regression model to a non-linear setup is
to transform the original input variables x ∈ X into new variables ϕ(x) belonging to
some feature space F . This transformation is achieved through a non-linear feature space
embedding ϕ : X 7→ F . This is the approach followed in the main text. Assuming that
the feature space F is a finite dimensional inner-product space, the generalization then
simply consists in replacing the inner products on RM+1 by the inner product on F . In
particular, denoting

〈
,
〉

F
the inner product on F , the trial function reads

f(x) =
〈
w̃,ϕ(x)

〉
F
, w̃ ∈ F , (F.8)

3This is a direct consequence of the trivial identity X(XT X + 1) = (XXT + 1)X.
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and the kernel matrix becomes

Kij =
〈
ϕ(xi),ϕ(xj)

〉
F
. (F.9)

If the dimension of the feature space is too large, the optimization of this model in the
primal picture can become impractical. In this case, the dual picture offers a valuable
alternative.

Kernel functions, RKHS and the Mercer theorem

Another way to generalize the linear ridge regression algorithm to a non-linear setup
is to work in the dual picture. In this approach, instead of using a transformation of
the input variables, we replace the kernel matrix. To do so, one uses a kernel function
k : X × X 7→ R that yields a positive symmetric matrix

Kij = k(xi,xj) (F.10)

for every set of inputs (x1, . . . ,xN) ∈ X N , N ∈ N 4. The corresponding trial function in
the dual picture is given by

f(x) =
Ntrain∑

i=1
αik(x,xi) . (F.11)

This function belongs to the real vector space

H̃ = Span ({f : x 7→ k(x,x′) | x′ ∈ X }) , (F.12)

which be equipped with the following inner product:〈
h, g

〉
H̃

=
∑
i,j

αiβjk(xi,xj) ,

for h : x 7→
∑

i

αik(x,xi) , g : x 7→
∑

j

βjk(x,xj) .
(F.13)

The completion of H̃ yields the Reproducing Kernel Hilbert Space (RKHS) 5 associated
with k [253], which we write H. Introducing the RKHS allows to see the choice of the
kernel k in the dual picture as a choice of a feature space embedding in the primal picture.
In fact, identifying F = H in the previous paragraph, we can define the feature space
embedding

Φ : x 7→ k( · ,x) ∈ H . (F.14)
The kernel function can then be rewritten

k(x,x′) =
〈
Φ(x),Φ(x′)

〉
H
, (F.15)

and the trial function is the primal picture reads:

f(x) =
〈
w,Φ(x)

〉
H
, w ∈ H . (F.16)

4This is the same requirement as for the covariance function introduced in Sec. III of Chap. 1.
5By the Moore-Aronszajn theorem, the RKHS associated to a kernel k is unique [180].
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Feature space H ℓ2 (R)

Embedding map ϕ(x) = k(·,x) ϕ(x) =
(√

λiφi(x)
)

i∈J1,NHK

k(x,x′)
〈
Φ(x),Φ(x′)

〉
H

∑NH
i=1 λiφi(x)φi(x′)

Table F.2: Feature space embeddings associated with a kernel function k.

Therefore the dual picture generalization allows, through the introduction of an adequate
kernel function, to effectively optimize a linear form on a feature space of potentially infin-
ite dimension. The RKHS H being an abstract functional space, the previous realization
of the feature space embedding associated with a choice of k is not practical. The Mercer
theorem provides a more concrete embedding [180, 253]. Let NH denotes the dimension
of H. The Mercer theorem states that, under some quite general assumptions, the kernel
k admits an eigen-decomposition

k(x,x′) =
NH∑
i=1

λiφi(x)φi(x′) , (F.17)

where (φi)i∈J1,NHK is an orthonormal basis of L2
p (X ) 6 and λi+1 ≥ λi ≥ 0. Thus, provided

that the Mercer theorem is valid, the kernel k yields an embedding in the space of square-
integrable real sequences F = ℓ2 (R):

Φ : x 7→
(√

λiφi(x)
)

i∈J1,NHK
. (F.18)

The two embedding maps presented here are summarized in Tab. F.2.

The representer theorem and the kernel trick

The ongoing discussion can be generalized to a large class of models beyond the ridge re-
gression. Indeed, the representer theorem [186] guarantees that for a generic loss function
L : RN 7→ R+ ∪ {+∞}, a non-decreasing function G : R 7→ R and a kernel k on X with
an associated RKHS H, the optimization problem

argmin
f∈H

((L (f (x1) , . . . , f (xN))) +G (∥f∥H)) , (F.19)

admits a solution of the form

f ∗(x) =
N∑

i=1
α∗

i k(x,xi) . (F.20)

6The Hilbert space of read square-integrable functions on X for the probability density p(x), which
inner-product is given by 〈

h, g
〉

L2
p(X ) =

∫
X

h(x)g(x)p(x)dx .
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Hence, provided that the trial function lies in a RKHS H and that the regularization term
is a suitable function of ∥f∥H, one can always perform the optimization in the dual picture.
Moreover, for such optimization problem the kernel can be freely chosen, a feature known
as the kernel trick.



G Expressivity and generalization for
noisy quantum kernels

I Expressivity and kernel effective rank
To measure the ability of a kernel k to learn a function y(x), we have introduced in
Eq. (2.24) the kernel target alignment A(k, y). We then defined the kernel effective rank
Reff by considering a set of orthonormal basis functions {gi}, that gives the following
equalities: √

Reff(k) =
∑

j

A(k, gj)

= 1
(∑i λ

2
i )1/2

∑
j

∑
i

λiEp [ψi(x)gj(x)]2

= 1
(∑i λ

2
i )1/2

∑
i

λiEp

[
ψi(x)2

]
=

∑
i λi

(∑i λ
2
i )1/2 .

(G.1)

Note that the final expression concerns only the spectrum of the kernel and is independent
of the choice of the basis functions {gi}. From the Cauchy-Schwarz inequality, we have

Reff(k) ≤ |{λi ̸= 0}| , (G.2)

where the equality is attained if and only if all non-zero eigenvalues of the kernel are
equal. Therefore, it provides information about the flatness of the spectrum of the kernel.

Given a training sample of size Ntrain, the kernel spectrum can be empirically computed
using the Ntrain × Ntrain kernel matrix K associated to the kernel k, whose entries are
Kij = k(xi,xj). The eigenvalues λi of the kernel k can then be approximated by those of
the matrix K/Ntrain [254]. For the centered quantum kernel kc with the associated kernel
matrix Kc, we can compute the effective rank empirically as:

√
Reff(Kc) = Tr [Kc]√

Tr [K2
c ]

=
∑

i λ̂i√∑
i λ̂

2
i

, (G.3)

where the λ̂i are the empirical eigenvalues 1.
1The hat symbol is used for estimators such as the empirical eigenvalues, as customary in statistical

theory. The hat must not confused with the one used for the quantum operators
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The numerator can be expressed using the empirical kernel eigenobservables. In order
to keep light notations we use the same notations as in the main text, i.e. the empirical
kernel eigenobservables are denoted Êi. Whether this notation refers to the exact or the
empirical observable should be clear from the context. We have for the numerator:

∑
i

λ̂i = Ep̂

[∑
i

δ⟨Êi⟩2
x

]
= Ep̂

[∑
i

Tr
[
δρ̂(x)Êi

]2]
. (G.4)

Since Tr [δρ̂(x)] = 0, δρ̂(x) can be decomposed onto the eigenobservable basis {Êi}
through the expression:

δρ̂(x) =
∑

i

Tr
[
δρ̂(x)Êi

]
Êi . (G.5)

Consequently, the squared Hilbert-Schmidt norm reads:

Tr
[
δρ̂(x)2

]
=
∑

i

Tr
[
δρ̂(x)Êi

]2
. (G.6)

Eq. (G.4) therefore becomes:

∑
i

λ̂i = Ep̂

[
Tr
[
δρ̂(x)2

]]
= Tr

[
Ep̂

[
(ρ̂(x) − Ep̂ [ρ̂(x)])2

]]
= Ep̂

[
Tr
[
ρ̂(x)2

]]
− Tr

[
Ep̂ [ρ̂(x)]2

]
,

(G.7)

giving Eq. (2.29) in the main text (as the same relation holds between the true eigenvalues
λi and the distribution p). This quantity can also be written in terms of the measured
observables (note that O = B for a quantum kernel):

∑
i

λ̂i =Tr [Kc]
Ntrain

= 1
Ntrain

∑
i

kc(xi,xi)

= 1
Ntrain

∑
i

∑
k

δϕk(xi)δϕk(xi)

=
∑

k

(
1

Ntrain

∑
i

δϕk(xi)δϕk(xi)
)

=
∑

k

Ep̂

[
δϕk(x)2

]
=
∑

k

Ep̂

[
δ⟨Ôk⟩2

x

]
=
∑

k

Varp̂

[
⟨Ôk⟩x

]
.

(G.8)
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Similarly, in the denominator of Eq. (G.3), we get:
∑

i

λ̂2
i = Tr [K2

c ]
N2

train

= 1
N2

train

∑
i,j

kc (xi,xj)2

= 1
N2

train

∑
i,j

(∑
k

δϕk(xi)δϕk(xj)
)2

=
∑
k,l

(
1

Ntrain

∑
i

δϕk(xi)δϕl(xi)
)2

=
∑
k,l

Ep̂

[
δ⟨Ôk⟩xδ⟨Ôl⟩x

]2
=
∑
k,l

Covp̂⟨Ôk⟩x, ⟨Ôl⟩x

2
.

(G.9)

Finally, we get the general expression:
√
Reff(Kc) =

∑P
i=1 Varp̂⟨Ôi⟩x(∑P

i,j=1 Covp̂⟨Ôi⟩x, ⟨Ôj⟩x

2
) 1

2
. (G.10)

Note that this relation also holds for the true (non-empirical) effective rank Reff(kc)
provided that the variances and the covariances are taken with respect to the true prob-
ability distribution p instead of the empirical one p̂.

II Generalization and Rademacher complexity
Here we give the detailed derivation of Eq. (2.35) using methods of statistical learning
theory applied to the specific case of a noisy centered quantum kernel [186].

As in the main text, we work in a standard statistical learning setup, where the inputs
x ∈ X are considered as a random variable following a probability distribution p(x). We
define the target function y : X 7→ Y that assigns to each input its right label. We will
consider the case of a binary classification, for which Y = {−1, 1}. In practice the true
distribution p of the inputs is unknown and during the training we only have access to
a finite training dataset S = {(xi, yi) | i = 1, . . . , Ntrain}. The elements of the dataset
are considered as realizations of a set of independent and identically distributed random
variables following p. The empirical distribution associated to this training set is given
by:

p̂(x) = 1
Ntrain

Ntrain∑
i=1

δ(x − xi) . (G.11)

We rely on this empirical distribution to evaluate expectations of any function f(x),
namely:

Ep [f(x)] =
∫

X
f(x)p(x)dx . (G.12)
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The expectation value is approximated by its empirical counterpart:

Ep̂ [f(x)] =
∫

X
f(x)p̂(x)dx = 1

Ntrain

Ntrain∑
i=1

f(xi) (G.13)

A common question in statistical learning is to know how a model trained on a given set
of data will perform on any other set of unseen data. For a binary classification task with
balanced data one can use the accuracy as measure of the model performance. Given a
trial function f(x) = wT ϕ(x) that has been optimized using the training set S, we define
the corresponding prediction function as f̃(x) = sign[f(x)]. An input x is correctly
classified if f̃(x) = y(x). The true accuracy A∗(f) is defined as the probability that any
input in X is correctly classified by f̃ :

A∗(f) = Ep

[
1y(x)=f̃(x)

]
= Ep

[
1y(x)f(x)≥0

]
= 1 − Ep

[
1y(x)f(x)≤0

]
= 1 − R∗(f) ,

(G.14)

where we define the risk (also called error or inaccuracy) as R∗(f) = 1 − A∗(f). The
corresponding empirical quantities A(f) and R(f) are defined in an analogous way using
the empirical distribution p̂ instead of p. The ability to perform well on new data is
measured by the generalization error:

E(f) = R∗(f) − R(f) . (G.15)

Statistical learning theory provides probabilistic upper-bounds on the generalization error
depending on the type of task at hand and on the specific model used to tackle it. In order
to find such an upper bound for a binary classification tasks, it is convenient to consider a
relaxed version of the risk, the η-margin-risk Rη(f) defined in the main text. The upper
bound on the generalization properties involves the empirical Rademacher complexity of
a class of trial functions H with respect to the training sample S. It is defined as:

RS (H) = Eσ

 sup
f∈H

1
Ntrain

Ntrain∑
i=1

σif(xi)
 (G.16)

where σ is a vector of Rademacher variables that are discrete, independent and identically
distributed following a uniform law over {−1, 1}. The Rademacher complexity measures
the ability of a hypothesis class H to fit noise, and as such it is a measure of the expressivity
of H. We now give a upper-bound on the generalization error (Theorem 5.8 in [186]):

Theorem II.1. Let H be a set of trial functions and η > 0. Then ∀δ > 0, with probability
at least 1 − δ, we have ∀f ∈ H:

R∗(f) ≤ Rη(f) + 2
η
RS(H) + 3

√√√√ log(2
δ
)

2Ntrain

This upper-bound can be specialized to the case of kernel methods where the hy-
pothesis class is the RKHS of a kernel k. In this the Rademacher complexity is upper
bounded by a quantity that depends only on the trace of the empirical kernel matrix K
(Theorem 6.12 in [186]):
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Theorem II.2. Let H by the RKHS associated to a given kernel k. For Λ ≥ 0 consider
the set of hypothesis functions HΛ = {f : x 7→ wT δϕ(x), ∥w∥2Λ ≤ 1} ⊆ H. Then we
have:

RS (HΛ) ≤ 1
Ntrain

√
Tr [K]

Λ .

Injecting this result in the previous upper bound, we get the desired result. In partic-
ular, using the centered noisy quantum kernel kc and Eq. (G.7), we get Eq. (2.35).

III Time-multiplexing and model expressivity
The maximal class of trial functions Hfull (see Sec. II) associated to a given embedding
is obtained by performing a complete tomography of the embedded quantum states ρ̂(x)
right after the end of the encoding procedure. The system evolution after time τ according
to a Lindblad master equation with a constant Hamiltonian and disspator for a given
duration δtm can be expressed into a set of Kraus operators {Ŵi} [137] satisfying:∑

i

Ŵ †
i Ŵi = 1̂ . (G.17)

The evolved density matrices ρ̂(x; δtm) are given by:

ρ̂(x; δtm) =
∑

i

Ŵiρ̂(x)Ŵ †
i . (G.18)

In the Heisenberg picture, the observables evolve in time following an adjoint master
equation [137]. Hence, we can see the non-unitary evolution of the open quantum system
as a simple change in the set of observables that are measured on the state ρ̂(x). Suppose
that we want to measure observables from the orthonormal basis introduced in section ??
after the previous evolution. We define the (P + 1) × (P + 1) matrix Ξ whose elements
are:

Ξkl = Tr
[∑

i

Ŵ †
i ÔkŴiÔl

]
. (G.19)

The measurement at time τ + δtm of the observable Ôl can now be expressed using the
decomposition in Eq. (2.41) and the elements of Ξ as:

Tr
[
ρ̂(x; δtm)Ôl

]
= 1

2N

(
Ξ0l +

∑
k

Tr
[
ρ̂(x)Ôk

]
Ξkl

)
. (G.20)

Thus the embedding map ϕ(x) is transformed by the non-unitary evolution during δtm
and becomes:

ϕ(x; δtm) = Ξϕ(x) . (G.21)

Assuming we only make measurements on a subset of the basis {Ôi}, then we can write
for the feature vector:

ϕ(x; δtm) = DΞϕ(x) , (G.22)
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where D is a diagonal (P + 1) × (P + 1) matrix whose diagonal entries i are 1 if Ôi

is measured and 0 otherwise. When we repeat the measurements at different times, we
can stack the previous vectors at each time steps. For Nrep repetitions, we denote Λ the
Nrep(P + 1) × (P + 1) matrix of the form:

Λ =


DΞ
DΞ2

...
DΞNrep

 . (G.23)

The final vector reads:
ϕ̃(x) = Λϕ(x) . (G.24)

Hence, by performing repeated measurements in-between non-unitary evolutions amount
to performing a restricted number of measurements on the encoded states ρ̂(x) at time τ .
This implies that the time-multiplexing decoding lowers the model expressivity. The dif-
ference between the models obtained from the full tomography and the time-multiplexing
decoding is encapsulated in the matrix Λ.



H Examples of Clifford approximant
circuits

In this appendix we provide a sample of Clifford approximant circuits for the estimation of
Eθ [C(θ)] and Eθ [C(θ)2] for the simple circuit depicted in Fig. H.1. The generalisation to
Clifford approximants for other quantities, such as the expectation of the squared gradient,
can be derived from that example as it suffices to introduce the adequate Clifford gates to
the fixed layers to obtain the right estimators (see Sec. I.1 and I.4). This circuit acts on
three qubits and is composed of two layers of rotations that are alternated with fixed two-
qubits Control-Z gates. To obtain a first order approximant for these circuits it suffices
to randomly replace each rotation by either the identity gate (a wire) or the Pauli gate
corresponding to the direction of the concerned rotation gate. Three examples of first
order Clifford approximant are represented in Fig. H.2. The second order approximant
are derived by first mapping each rotation along X or Y to a rotation along Z, making
use of the identities X̂ = Ĥ†ẐĤ and Ŷ = (ŜĤ)Ẑ(ŜĤ)† where Ĥ, Ŝ are respectively the
Hadamard and phase gates. As a result we get the ansatz with layers of Z rotations
alternated with fixed layers composed of Clifford gates represented on Fig. H.3. This
circuit is then doubled vertically to give a circuit acting on six qubits. Finally, each
pairs of rotations sharing the same angle is randomly replaced by two single-qubit gates
according to the scheme of Fig. 3.2.

RZ(θ0)

RX(θ1)

RZ(θ2)

RX(θ3)

RY (θ4)

RY (θ5)

Figure H.1: Initial variational circuit with random rotation angles.
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Figure H.2: Examples of first-order Clifford approximant circuits for the ansatz of Fig. H.1.
Assuming the probability distribution of the angles is even, we replace each rotation by
a Clifford gate that is sampled according to Eq. (3.36).

H

RZ(θ0)

RZ(θ1)

RZ(θ2)

H S†

S†

H

H

H RZ(θ3)

RZ(θ4)

RZ(θ5)

H

H

H

S

S

Figure H.3: Equivalent form of the initial circuit with Z-rotations only.
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Figure H.4: Examples of second-order Clifford approximant circuits for the ansatz of
Fig. H.1.



I Résumé substantiel

Cette thèse est consacrée à l’exploration de l’interface entre l’informatique quantique et
l’apprentissage automatique, en mettant l’accent sur les effets du bruit et de la décohé-
rence. Elle s’articule autour de deux axes de recherche principaux :

• l’utilisation de systèmes quantiques ouverts pour la réalisation de tâches classiques
de reconnaissance de formes, au travers d’algorithmes d’apprentissage automatique
hybrides classiques-quantiques (chapitre 2) ;

• l’estimation de la capacité d’entrainement d’algorithmes variationnels quantiques
grâce à un schéma de simulation efficace basé sur un phénomène de décohérence
artificielle et sur le théorème de Gottesman-Knill (chapitre 3).

Le chapitre 1 contient l’essentiel des bases théoriques sur lesquelles sont construits les
résultats présentés dans la suite du texte. En particulier, les outils nécessaires à la descrip-
tion des systèmes quantiques ouverts y sont réintroduits et illustrés sur deux exemples
classiques de systèmes à deux niveaux sujets à de la décohérence. L’état d’un système
quantique à un temps t est représenté par un opérateur densité ρ̂(t). Pour un système
fermé, l’évolution du système est donnée par l’équation de Liouville [137], qui s’écrit dans
le système d’unité naturelles (ℏ = 1) :

dρ̂
dt = −i

[
Ĥ, ρ̂

]
, (I.1)

avec Ĥ le hamiltonien du système. Dans un premier temps, on considère un système à deux
niveaux, ou qubit, soumis à une excitation classique aléatoire ξ(t) et dont le hamiltonien
s’écrit

Ĥ(t) = −1
2ω0σ̂z − 1

2ξ(t)σ̂z . (I.2)

On suppose par ailleurs que l’excitation ξ(t) est donnée par un processus stochastique
gaussien. À chaque réalisation de ξ correspond un état ρ̂ξ du système. En écrivant ρ̂ = Eξ [ρ̂ξ]
l’état du système moyenné sur les réalisations de l’excitation, on montre que l’évolution
moyenne du système est donnée par l’équation maîtresse

dρ̂(t)
dt = −i

[
Ĥ0, ρ̂

]
+ γD [σ̂z] (ρ̂(t)) , (I.3)
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où l’on a introduit Ĥ0 = ω0
2 σ̂z, le dissipateur D

[
Â
]

d’un opérateur Â défini par

D
[
Â
]

(ρ̂) = Âρ̂Â† − 1
2
(
Â†Âρ̂+ ρ̂Â†Â

)
, (I.4)

ainsi que le taux de dissipation γ dont l’expression exacte dépend des caractéristiques
de l’excitation ξ(t). On considère ensuite un modèle analogue où l’excitation aléatoire
classique est remplacée par une interaction avec un environnement constitué d’un ensemble
de modes bosoniques dans un état thermique. L’évolution du système global est dictée
par l’équation (I.1) et le hamiltonien

Ĥ = ω0

2 σ̂z +
∑
k∈N

ωkb̂
†
kb̂k +

∑
k∈N

σ̂z

(
gkb̂

†
k + g∗

k b̂k

)
, (I.5)

où b̂†
k et b̂k sont respectivement les opérateurs création et annihilation du mode k. L’état du

qubit est obtenu en prenant la trace de l’opérateur densité du système global par rapport
aux degrés de liberté de l’environnement. Cela revient à considérer la version quantique
de la moyenne sur les réalisations du modèle précédent. À nouveau, on montre que dans
ces conditions l’évolution du qubit est donnée par l’équation (I.3). Cette équation est un
exemple d’équation maîtresse de type Lindblad, de la forme

dρ̂
dt = L(t) (ρ̂) = −i

[
Ĥ(t), ρ̂(t)

]
+
∑

k

γk(t)D
[
Âk(t)

]
(ρ̂) , (I.6)

où les Âk sont des opérateurs de saut quantique et γk les taux de dissipation associés.
Plus généralement, il est possible de montrer que, sous certaines conditions sur les inter-
actions entre un système et son environnement, l’évolution d’un système quantique ouvert
peut toujours s’écrire sous cette forme [137]. Par ailleurs, l’évolution temporelle d’un sys-
tème quantique peut être décrite en terme d’applications associant l’opérateur densité du
système à un temps t1 à celui à un temps ultérieur t2 > t1. Afin qu’elle représente une
transformation physique acceptable, une telle application doit être complètement posi-
tive et préserver la trace des opérateurs, auquel cas elle appartient à la classe plus large
des canaux de communication quantiques [141]. Dans les exemples précédents, l’évolution
entre le temps t = 0 et le temps t > 0 est donnée (dans la représentation d’interaction,
voir l’annexe A) par le canal de décohérence [142]

ρ̂(t) = Λ(t,0)(ρ̂0) = 1
2
(
1 + e−γt

)
ρ̂0 + 1

2
(
1 − e−γt

)
σ̂zρ̂0σ̂z , (I.7)

avec ρ̂0 = ρ̂(0).
Le chapitre 2 est consacré à l’étude de l’utilisation de systèmes quantiques ouverts

pour la réalisation de tâches classiques de reconnaissance de formes dans un contexte
d’apprentissage supervisé. Plus précisément, on s’intéresse aux modèles de machines à
noyaux quantiques utilisant des systèmes dissipatifs. Les méthodes d’apprentissage su-
pervisé visent à approximer une relation causale entre les éléments x d’un ensemble de
données d’entrée X et les éléments cibles y d’un ensemble d’arrivée Y , en se basant sur un
jeu d’entrainement S = {(xi, yi) | i ∈ J1, NtrainK}. En supposant que la relation entre les
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entrées et les cibles est donnée par une fonction inconnue f telle que y = f(x), on cherche
à approximer f par une fonction fw dépendant d’un ensemble de paramètres w. On consi-
dère ici des modèles de calcul par réservoir présentant une structure d’encodage-décodage.
Dans un premier temps, une donnée d’entrée x est encodée de façon non-linéaire dans
l’état ρ̂(x) d’un système quantique ouvert, que l’on appelle réservoir. On mesure ensuite
un ensemble d’observables du système

{
Ô1, . . . , ÔM

}
, dont les valeurs moyennes forment

un vecteur de caractéristiques

ϕ(x) =
(
1,Tr

[
ρ̂(x)Ô1)

]
, . . . ,Tr

[
ρ̂(x)ÔM)

])
. (I.8)

Finalement, l’information sur l’élément cible y est décodée en considérant une combinaison
linéaire des résultats des mesures, et on définit :

fw(x) = wT ϕ(x) . (I.9)

Les poids w de la combinaison linéaire sont entrainés à partir des données d’entrainement
et d’une fonction de perte associée à la tâche à accomplir. Cette approche de décodage,
caractéristique du calcul par réservoir, a l’avantage de permettre un entrainement peu
coûteux, voire analytique. D’autre part, l’étape d’encodage dans la dynamique du réser-
voir et les mesures subséquentes génèrent un ensemble de transformations non linéaires
des données d’entrées. Ces transformations ne sont pas entrainées, ce qui évite d’avoir
à contrôler précisément la dynamique système. Les modèles considérés appartiennent à
l’ensemble plus large des machine à noyaux. En particulier, à l’ensemble des observables
mesurées est associée la fonction noyau

k(x1,x2) = ϕ(x1)T ϕ(x2) . (I.10)

Dans le cas où
{
Ô1, . . . , ÔM

}
forme une base de l’ensemble des observables du système,

le noyau se reformule [171]

k(x1,x2) = Tr [ρ̂(x1)ρ̂(x2)] . (I.11)

La fonction noyau caractérise l’ensemble des transformations qui peuvent être obtenue à
partir d’une méthode d’encodage donnée et des mesures des observables considérées. La
théorie des fonctions noyaux fournit des outils permettant d’analyser l’expressivité et la
capacité de généralisation des modèles étudiés [186, 253]. Dans ce cadre, nous évaluons
l’impact du bruit et de la décohérence affectant le système physique sous-jacent sur les
performances des modèles. En particulier, nous montrons que le bruit physique peut aider
à lutter contre le phénomène de sur-ajustement, agissant ainsi comme un processus de
régularisation. Ces résultats sont confirmés par une étude numérique, où l’on considère
des réservoirs composés de chaines de qubits couplés et dissipatifs évoluant selon une
équation de Lindblad. L’encodage est réalisé par une excitation temporelle des qubits dont
l’amplitude dépend des données d’entrée à traiter. L’ensemble des résultats théoriques et
numériques présentés dans ce chapitre sont issus de notre publication [α].

Le chapitre 3 présente les résultats de notre publication [γ]. On y introduit une mé-
thode permettant l’évaluation efficace de l’entrainabilité d’une large classe d’algorithmes
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quantiques variationnels. Ces algorithmes quantiques polyvalents sont inspirés des mé-
thodes d’apprentissage automatique, et sont des candidats prometteurs à un avantage
quantiques pour des tâches variées, allant de l’optimisation combinatoire à la chimie quan-
tique [95]. Ils reposent sur l’utilisation de circuits quantiques variationnels dont les para-
mètres sont optimisés par des techniques de descente de gradient. En général, la tâche à
accomplir est présentée sous la forme d’une minimisation d’une énergie moyenne associée
à un hamiltonien Ĥ agissant sur un système de n qubits. On cherche alors un état |ϕ⟩ du
système de qubits minimisant l’énergie moyenne ⟨Ĥ⟩ϕ = ⟨ϕ| Ĥ |ϕ⟩. Pour cela, on utilise
un circuit variationnel définissant une transformation unitaire paramétrée Û(θ), θ ∈ RM .
En supposant que les qubits sont dans un état initial |ϕ0⟩, on obtient en sortie du circuit
un état variationnel

|ϕ(θ)⟩ = Û(θ) |ϕ0⟩ . (I.12)
On définit alors la fonction de coût à minimiser :

C(θ) = ⟨ϕ(θ)| Ĥ |ϕ(θ)⟩
= ⟨ϕ0| Û(θ)†ĤÛ(θ) |ϕ0⟩ .

(I.13)

On s’intéresse ici aux circuits variationnels présentant une structure par couches, com-
posées de transformations fixes Ŵi et de rotations à un seul qubit Ûi(θi) de générateurs
Pi ∈

{
X̂, Ŷ , Ẑ

}
, telle que

Û(θ) =
M∏

i=1
Ûi(θi)Ŵi , Ûi(θi) = e−i θi

2 P̂i . (I.14)

Les angles des rotations sont entrainés selon un algorithme de descente de gradient. Dans
le cas le plus simple, le vecteur θk+1 des angles de rotation à l’itération k + 1 est donné
par

θk+1 = θk − η∇θC(θk) . (I.15)
Les composantes du gradient sont obtenues grâce à la règle des paramètres translatés,
selon laquelle

∂kC(θ) = 1
2

(
C(θ + π

2 ek) − C(θ − π

2 ek)
)
, (I.16)

où l’on note ∂kC(θ) = ∂C
θk

(θ) et ek le vecteur de la base canonique associé à la compo-
sante k. Lors de l’exécution d’un tel algorithme sur une plateforme de calcul quantique,
les quantités apparaissant dans le terme de droite de l’équation (I.16) sont mesurées sur
le système quantique considéré. La précision du gradient obtenu dépend donc des limita-
tions expérimentales, et notamment du nombre de répétition de chaque mesure. Or, les
algorithmes quantiques variationnels souffrent parfois d’un phénomène de disparition du
gradient évoluant exponentiellement avec le nombre de qubits, connu dans la littérature
sous le nom de barren plateaus [237]. La présence de barren plateaus rend le coût d’une
évaluation précise du gradient prohibitif, ce qui empêche d’entrainer efficacement le mo-
dèle. Pour un circuit variationnel donné, les angles initiaux sont choisi aléatoirement selon
une loi de probabilité fixée P. On dit qu’un circuit souffre de barren plateaus s’il existe
un α > 0 tel que

P(|∂kC| > ϵ) ≤ O(exp(−αn)) . (I.17)
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Dans de nombreux cas, la valeur moyenne de C(θ) est nulle, par exemple lorsque les com-
posantes de θ sont indépendantes et de loi uniforme sur [0, 2π]. L’inégalité de Bienaymé-
Tchebytchev pour ϵ > 0 donne alors

P(|∂kC| > ϵ) ≤ Var [∂kC] /ϵ2 . (I.18)

Ainsi, un système dont la variance du gradient disparait exponentiellement avec le nombre
de qubits n présentera des barren plateaus. Réciproquement, une large variance du gra-
dient garantit des fluctuations importantes du gradient initial. La variance du gradient
apparait donc comme une mesure adéquate de l’existence de barren plateaus. On pro-
pose ici une méthode permettant d’estimer efficacement cette variance sur un ordinateur
classique, et ainsi de garantir l’entrainabilité d’un circuit variationnel donnée. Cette mé-
thode est basée sur l’utilisation de circuits quantiques de Clifford, dont la transformation
unitaire associée peut-être simulée classiquement avec une complexité polynomiale en n,
d’après le théorème de Gottesman-Knill [42, 142]. On considère d’abord le canal quantique
E qui représente la transformation moyenne d’un état initial ρ̂ pour un choix aléatoire de
θ :

E (ρ̂) = Eθ

[
Û(θ)ρ̂Û(θ)†

]
=
∫

[0,2π]M
Û(θ)ρ̂Û †(θ)P(dθ) .

(I.19)

On montre que, pour un circuit variationnel composé de transformations de Clifford fixées
et de rotations d’angles aléatoires, sous certaines conditions sur la distribution P des
angles, le canal quantique E peut se réécrire comme une somme convexe de canaux de
Clifford

E (ρ̂) =
∑

i

piĈiρ̂Ĉ
†
i , (I.20)

avec pi ≥ 0, ∑i pi = 1, et Ĉi des transformations de Clifford. Ce résultat est déduit de
considérations sur le cas d’une rotation d’axe Z et d’angle aléatoire θ agissant sur un
unique qubit. Par exemple, en supposant que θ est distribué uniformément dans [0, 2π],
il est facile de montrer que

Eθ

[
R̂Z(θ)ρ̂R̂†

Z(θ)
]

= 1
2 ρ̂+ 1

2Ẑρ̂Ẑ , (I.21)

où R̂Z(θ) = e−i θ
2 Ẑ . Ainsi, dans ce cas simple, le canal quantique moyen obtenu est un

canal de décohérence. Puisque les transformations Ẑ et l’identité sont des transforma-
tions de Clifford, ce résultat est bien cohérent avec l’équation (I.20). En généralisant ce
raisonnement à des circuits à n et à des moyennes quadratiques, on obtient une méthode
qui permet d’estimer des quantités telles que l’énergie moyenne ou la variance du gradient
avec un algorithme classique de complexité polynomiale. D’un point de vue physique, ce
résultat est la conséquence d’une décohérence artificiellement induite par le choix aléa-
toire des angles de rotations. Finalement, notre méthode pourrait permettre d’optimiser
l’architecture de circuits variationnels quantiques tout en garantissant leur entrainabilité,
notamment au travers d’algorithmes d’apprentissage automatique.
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