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Abstract

GC-biased gene conversion (gBGC) is a genetic mechanism associated with
recombination that skews the segregation ratio of AT:GC polymorphisms in the
gametes of heterozygotes. Since its discovery in the 1980s, much effort has been
devoted to describing how this process affects base composition, rate of evolution and
fitness of many eukaryotes, particularly humans. In particular, gBGC has been shown
to be the major driver of variation in GC content along the human genome. In
addition, it induces the fixation of GC alleles independently of their effect on fitness
and can therefore cause a significant deleterious burden. However, the discovery of
gBGC is relatively recent and our understanding of its role in genome evolution is still
in its infancy. In this thesis, I first characterised the dynamics of gBGC both across
genomes and across lineages. I showed that in mammals, there are some hotspots of
gBGC in the genome that are evolutionary stable and therefore largely shared between
species. I then showed that these stable hotspots can be subject to positive selection
when they disappear, which can confound tests of adaptive evolution. Finally, I showed
that the levels of gBGC currently found in eukaryotes can be positively selected for,
despite inducing a substantial burden at the population level. Overall, this thesis
provides novel insights into the dynamics of recombination landscapes, selection and
the drivers of gBGC evolution.

Résumé

La conversion génique biaisée vers GC (gBGC) est un mécanisme génétique associé à la
recombinaison qui biaise la répartition des polymorphismes AT:GC dans les gamètes des
hétérozygotes. Depuis sa découverte dans les années 1980, de nombreux efforts ont été
consacrés à décrire la manière dont ce processus affecte la composition en bases, le taux
d’évolution et la fitness de nombreux eucaryotes, en particulier de l’humain. Notamment,
il a été démontré que la gBGC est le principal moteur de la variation du contenu en GC le
long du génome humain. En outre, il induit la fixation d’allèles G ou C indépendamment
de leur effet sur la fitness et peut donc avoir un effet délétère important. Cependant, la
découverte de la gBGC est relativement récente et notre compréhension de son rôle dans
l’évolution du génome n’en est qu’à ses débuts. Dans cette thèse, j’ai d’abord caractérisé
la dynamique de la gBGC à la fois à travers les génomes et à travers les lignées de
mammifères. J’ai montré que chez les mammifères, il existe des points chauds de gBGC
dans le génome qui sont stables au cours de l’évolution et donc largement partagés
entre espèces. J’ai ensuite montré que ces points chauds stables peuvent faire l’objet
d’une sélection positive lorsqu’ils disparaissent, ce qui peut fausser les tests d’évolution
adaptative. Enfin, j’ai montré que les niveaux de gBGC que l’on observe actuellement
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chez les eucaryotes peuvent faire l’objet d’une sélection positive, bien qu’ils induisent
un fardeau substantiel au niveau de la population. Dans l’ensemble, cette thèse apporte
un éclairage nouveau sur la dynamique des paysages de recombinaison, la sélection et
les moteurs de l’évolution de la gBGC.

Résumé étendu
La fécondation conduit au regroupement et la coexistence de deux génomes parentaux
distincts et séparés dans la même cellule oeuf. Ces deux génomes vont rester séparés
pendant toute la vie de l’individu. La recombinaison méiotique, bien moins connue du
grand public, est l’étape pendant laquelle les deux génomes parentaux s’entremêlent
dans les cellules sexuelles de leurs descendants, pour être transmis aux petit enfants.
La recombiaison méiotique est donc l’essence véritable de la reproduction sexuée, ou
deux parties d’individus n’en forment plus qu’un. Les lois qui régissent la façon dont
deux génomes s’entremêlent lors de la formation des cellules sexuelles vont donc avoir
une importance toute particulière sur quelle partie de l’information génétique va être
transmise à la génération suivante, et donc sur le cours de l’évolution.

Une de ces lois décrit la chance qu’une base de l’ADN (A,T,C ou G), à un endroit
donné du génome, soit transmise à la génération suivante. Selon les lois de la génétique
énoncées par Gregor Mendel à la fin du XIXème siècle, cette probabilité est de 50% en
moyenne. En d’autre terme, dans une population, pour chaque base du génome, il y a
en moyenne 50% de chance qu’elle vienne du géniteur, et 50% de chance qu’elle vienne
de la génitrice. Cette loi est largement vérifiée la plupart du temps. Cependant, lors
des évènements de recombinaison, à l’endroit ou les chromosomes fusionnent (qui change
à chaque nouvelle cellule sexuelle), les bases guanines et cytosines (G et C) ont plus
de chances de passer à la génération suivante que les bases adénine et thymine (A et
T). C’est ce qu’on appelle la conversion génique biaisée vers GC (gBGC en anglais).
Dans les régions du génome fortement susceptibles de recombiner, ce processus conduit
à la transmission biaisée des bases G et C au cours des générations, et eventuellement
à leur fixation dans les populations. Ce phénomène n’est pas anectodique : c’est le
déterminant majeur de la variation de la composition en base G et C le long du génome
humain. Aussi, les bases G et C sont transmises peu importe leur effet sur la capacité
reproductive des individus (la fitness en anglais). Ce phénomène interfère donc avec la
séléction naturelle en favorisant la transmission de mutations potentiellement délétères.

Depuis sa découverte dans les années 80, de nombreux efforts ont été déployés pour
décrire la manière dont la gBGC affecte la composition en bases, le taux d’évolution et
la fitness chez de nombreux eucaryotes et en particulier chez l’humain. Cependant, la
découverte de la gBGC est relativement récente et notre compréhension de son rôle dans
l’évolution des génomes n’en est qu’à ses balbutiements. Pour comprendre l’impact global
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de la gBGC sur l’évolution, nous devons d’abord caractériser précisément ses variations
le long du génome. En supposant que l’intensité de la distorsion de ségrégation est
relativement uniforme à travers le génome, les variations de l’intensité de la gBGC sont
principalement le résultat des variations du taux de recombinaison. Dans cette thèse,
nous avons développé une méthode pour estimer les taux de recombinaison à partir
des signatures de gBGC afin de mieux comprendre la distribution à fine échelle des
événements de recombinaison le long du génome.

En particulier, des travaux précédents ont démontré que la plupart des évènements
de recombinaiosns étaient concentrées dans un petit nombre de séquences : les points
chauds de recombinaison. Chez l’humain et la souris, la position des points chauds de
recombinaison est déterminée par une protéine appelée Prdm9 qui se lie à un motif
spécifique de l’ADN (e.g. AATTCATACTT). Lorsque cette protéine est absente, les
points chauds de recombinaison sont relocalisés vers des zones de l’ADN portant des
marques épigénétiques caractéristiques du début de la plupart des gènes chez l’humain.
Ce schéma est observé chez la grande majorité des Eucaryotes dépourvus de cette
protéine. Il a donc été proposé que le rôle de cette protéine était de diriger les points
chauds de recombinaison loin de ces séquences appelées points chauds par défaut. En
utilisant notre méthode basée sur la gBGC sur 52 espèces de mammifères placentaires,
nous avons montré que l’humain et la souris ne sont pas représentatifs des autres
espèces. En effet, pour certaines espèces, même si le gène Prdm9 semble être actif, les
points chauds par défaut reçoivent autant d’évènements de recombinaisons que ceux
des espèces dépourvues de Prdm9.

Deuxièmement, nous avons établi un cadre théorique pour comprendre l’impact du
gBGC sur la dynamique de la sélection naturelle. Nous montrons qu’en favorisant la
fixation de mutations délétères vers GC, la gBGC éloigne les gènes de leur optimum de
fitness. Par conséquent, ces gènes ont plus d’opportunités pour des mutations
bénéfiques. Si le taux de recombinaison diminue, ces mutations sont efficacement
sélectionnées. Ainsi, paradoxalement, même si la gBGC est principalement délétère, ses
fluctuations induisent de la sélection positive. Dans certaines conditions, nous
montrons que ce phénomène peut conduire à une sélection positive plus élevée dans les
gènes à forte recombinaison, et donc imite un effet bénéfique de la recombinaison sur
l’efficacité de la sélection.

Finalement, à l’aide de modèles théoriques, nous montrons qu’en dépit du fait que
le gBGC augmente le fardeau de mutations délétères moyen dans la population, en
convertissant des mutations fortement délétères fraîchement arrivées vers AT, il donne
toujours un avantage net positif en termes de fitness au niveau individuel. Cela peut
expliquer pourquoi le gBGC n’est pas contre-sélectionné et universellement présent chez
les eukaryotes. L’existence du gBGC pourrait donc résulter d’une tragédie des communs,
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où l’avantage individuel de biaiser la transmission des allèles GC conduit à une réduction
globale de la capacité reproductive de la population.

C’est un bon rappel que la séléction naturelle n’optimise pas la reproduction et la
survie des espèces dans leur environement, mais des individus, ce qui peut
paradoxalement décroître celle de l’espèce dans son ensemble.
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Part I

General introduction



1
The laws of inheritance

1.1 Inheritance and reproductive system . . . . . . . . . . . . . . . 2
1.2 Sexual reproduction . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Mendel’s law of inheritance . . . . . . . . . . . . . . . . . . . . 5

1.1 Inheritance and reproductive system

In its broad sense, inheritance, can be defined as the process through which anything
passes from one generation to the next. In several human and non human societies,
social status, culture, traditions or habitat can be passed on from one generation to
the next. From a biological perspective, we also inherit DNA, the cytoplasmic content
of our parents, DNA or histone methylation, and many other epigenetic marks. The
link between two generations of individuals is a reproduction event, which is more or
less a copy/paste of heritable information. A mutation, in its evolutionary sense, can be
defined as an error in this copy/paste event. Without heritable information, there cannot
be mutations, only damages. Similarly, if a trait cannot be transmitted, it cannot be
selected for. Without heredity, there cannot be natural selection. Inheritance is therefore
at the core of Darwinian evolution, and the different processes that govern reproduction
and heritability deeply affect the course of evolution.

In human societies, there are different political systems, in which sets of laws describe
more or less precisely what wealth or goods can or cannot be inherited from parents to
children, and in what proportions. Similarly, in biology, there are different reproductive
systems in which the laws of inheritance dictate how genetic information is passed from
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one generation to the next. A reproductive system can therefore be defined as a set
of laws of inheritance. There can be a reproductive system for any type of heritable
information, but throughout this manuscript we will focus on the inheritance of DNA.

The reproductive system which by far underlies most reproductive events throughout
the tree of life is DNA replication of the whole genome with a small number of errors.
Offspring thus get the integrity of the genome of a single parent, except for a usually
small number of mutations. This is also called clonal, or asexual reproduction. It
is the major reproductive system of many unicellular organisms including eubacteria
and archaea, and the reproductive system of the cells of many multicellular Eukaryotes
(i.e. mitosis). However, for most eukaryotes, clonal reproduction of cells by mitosis
is an evolutionary dead-end. Instead, the long-term persistence of genetic information
through time is ensured by sexual reproduction.

1.2 Sexual reproduction

Sexual reproduction regroups several reproductive systems that all share two essential
steps in eukaryotes. It starts with the fusion of two genomes within one cell (syngamy),
and ends with the distribution of those two genomes in several cells with a single genome
(meiosis). It is thus a cycle with a haploid phase (one genome) and a diploid phase (two
genomes). Of note, between syngamy and meiosis, or between meiosis and syngamy, there
can be a long period of time with a large number of mitotic clonal reproduction events. It
is still not entirely clear why sexual reproduction is so prevalent compared to completely
asexual or clonal reproduction. Indeed, it comes with several substantial costs, such as
finding and securing a partner for syngamy, exposure to predators during mating, or the
transmission of diseases and genetic parasites (Otto and Lenormand, 2002).

One convincing hypothesis for the prevalence of sex is a substantial increase in fitness
owed to an efficient masking of deleterious mutations, called the sheltering or the masking
hypothesis (Kondrashov and Crow, 1991; Otto and Lenormand, 2002). As explained
before, mutations between two reproduction events are virtually inevitable. Even if some
mutations provide a selective advantage, most new mutations are deleterious. However,
many deleterious mutations are also recessive, meaning that when only one genome
carries the deleterious mutation, the fitter phenotype can be maintained by the wild-type
allele on the other genome. The presence of two genotypes in a cell that do not carry the
same mutations can therefore provide increased robustness to the fitness cost induced by
deleterious mutations (the mutation load, or genetic load). Interestingly, some species
spend most their time with one genome, with the diploid phase being only transient,
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meaning that meiosis immediately follows syngamy. In these species, the sheltering
hypothesis cannot explain the long-term maintenance of sex, because species spend most
their time unsheltered. Instead, the crucial advantage of sexual reproduction could come
from the elimination of deleterious mutations through the shuffling of genetic material
during reproduction, and particularly through a process called meiotic recombination.

Figure 1.1: Schematic view of the impact of recombination on the efficiency of selection.
Left: Without recombination, the most fit existing haplotype rises in frequency and reach
fixation. Right: Recombination allows for the creation of an even fitter haplotype, increasing
the frequency of beneficial mutations, and decreasing that of deleterious mutations.

In its broad sense, meiotic recombination is the exchange of genetic material
between the two parental genomes during meiosis. This exchange can be very local (at
the scale of few kilobases) and is called gene conversion or non-crossover (NCO)
(Winkler, 1930; Roman, 1985), or instead, chromosomes can exchange large pieces of
DNA through crossovers (COs). A major consequence of recombination is that
offsprings receive genetic information from both parents. This also creates new
combination of alleles on which natural selection can act. Some combinations will carry
the most deleterious alleles of the two parental genome, and will therefore be less fit,
but others will have the most beneficial alleles, and will be more fit (Figure 1.1).
Importantly, this phenomenon does not increase the mean fitness of offsprings, but only
the variance. The fitness advantage of recombination is therefore not direct. Because
non-recombining lineages cannot explore higher levels in the fitness landscape (because
of the small variance in offsprings’ fitness), at one point they will be outcompeted by
the fittest individuals from the pool of offsprings that have recombined (Hill and
Robertson, 1966). It is generally accepted that in a finite population with mostly
deleterious mutations, meiotic recombination provides an indirect fitness advantage
that is sufficiently high to be efficiently selected for (Felsenstein, 1974; Hickey and
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Golding, 2018; Roze, 2021).

Even if sexual reproduction is widespread in eukaryotes, it can take several forms,
and many laws dictate more specifically how DNA is inherited. Importantly, these laws
are not written in marble, and can evolve. Notably, the choice of the mating partners
varies widely across organisms. In some systems, not all individuals can mate with
each other. There are mating types (often called sexes), which are mostly DNA
encoded, and only gametes with different mating type/sex can fuse into one. In some
species, the likelihood of two individuals mating may depend on phenotypic similarity,
with individuals preferring to mate with their relatives, while in others incest is
actively avoided.

During meiosis, a particular law of inheritance that is central to evolutionary theory
describes the chances that a given allele will be passed on to the gametes (haploid phase).

1.3 Mendel’s law of inheritance

Mendelian genetics is based on the principle that if a diploid individual is heterozygous for
an allele, the probability of that allele being transmitted to a gamete is 0.5 (Carothers,
1913). With a very large population size, this maintains genetic variation on which
selection can act for a very long time (Hardy, 1908; Weinberg, 1908). Under Mendel’s
law, the evolution of the frequency of a perfectly neutral allele in a population is totally
random and is called genetic drift. And thus, natural selection can be detected as a
deviation from this random evolution. In the end, almost all evolutionary theory is
based on Mendel’s 50:50 law (Lyttle, 1991; Hurst, 2019).

Under Mendel’s law, a given genome will only transmit half of itself to the next
generation. It appears clearly that if somehow an allele provided to this genome a
"cheating" advantage that would allow it to be transmitted more often, let’s say 0.5 + ϵ,
this allele and its neighbours should establish easily in the population (Lyttle, 1991).
Several evidences for such loci exist in several eukaryotic organisms, and are called
segregation distorters (reviewed in Lyttle (1991); Taylor and Ingvarsson (2003)). The
phenomenon by which segregation distorters find themselves in more than half of the
gametes is called meiotic drive. In this manuscript, we will adhere to the definition of
Bengtsson and Uyenoyama (1990), which distinguishes segregation distorters that can
induce non-Mendelian segregation at any site from meiotic drivers that cause their own
non-Mendelian segregation.
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Some segregation distorters operate at the chromosome scale. In the mammalian
female meiosis, only one of the meiotic products will become the egg, and therefore
homologous chromosomes that are addressed more often to the egg than to the polar
cells will be transmitted to the next generation more often. This can happen when
a chromosome of a given pair is more mobile, because of its smaller size or its more
compacted chromatin state (reviewed in Clark and Akera (2021)). One major category of
segregation distorters are sex ratio distorters. They bias the sex ratio by producing more
gametes with either sex-determining alleles/chromosomes. Such sex-linked chromosome
drive have been reported in white campion, lemmings, mosquitoes, butterflies, and fruit
flies (reviewed in Lyttle (1991)). Another extreme example of segregation distortion
occurs in wild mice, where chromosome 17 can carry the t-haplotype that is transmitted
99% of the time instead of 50% in males (Bruck, 1957). This t-haplotype is lethal when
homozygous, and despite this, it is maintained in the population (Bruck, 1957).

In this thesis, I will first study how two central recombination-associated laws of
inheritance affect natural selection, and conversely, I will assess to what extent these
two laws of inheritance evolve through natural selection. The first law of inheritance
describes how recombination events are distributed along the genome at fine scale
(fine-scale recombination landscape). The second law of inheritance describes the
extent to which AT:GC polymorphism segregation in gametes deviate from the 50:50
Mendel’s law at the location of recombination events; a special segregation distortion
known as GC-biased gene conversion.
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2.1 Recombination and meiosis success

The most commonly cited hypothesis for the long-term maintenance of recombination
is its advantage in increasing the fitness variance of offsprings. However, meiotic
recombination is also a fundamental step of sexual reproduction because it is
mandatory for meiosis success and fertility for a vast majority of eukaryotes.

2.1.1 The obligatory cross-over

In meiosis, two genomes in one cells are dispatched in two cells with one genome. The
different chromosomes that constitute these two genomes are mixed in the cell’s
nucleus, and the first requirement to be able to pass on complete individual genomes to
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the gametes is to properly segregate homologous chromosomes. An incapacity to
properly segregate homologous chromosome often leads to meiotic arrest and infertility
(Baker et al., 1976; Hassold et al., 2007; Brick et al., 2012; Davies et al., 2016; Mihola
et al., 2019, 2021). In most eukaryotes, the initiation of meiotic recombination is
crucial for this chromosome pairing (reviewed in Baker et al. (1976)). In the early
stages of meiosis, chromosomes are organised into loop arrays around a proteinaceous
chromosome axis (Moses, 1956; Fawcett, 1956). Meiotic recombination starts with
several programmed double-strand breaks (DSBs) performed by SPO11, an
evolutionary conserved proteins in eukaryotes, on the chromosomal axis (Keeney et al.,
1997; Bergerat et al., 1997; Blat et al., 2002). Instead of a clear cut, it erases part of
the sequence on both strands symmetrically around the cut, from 5′ to 3′ (Szostak
et al., 1983). The DNA is thus locally single-stranded at this location. With the help of
mediator proteins such as RAD51 and DMC1, the single-stranded DNA (called the
nucleoprotein filament) will find its match on the homologous chromosome and
hybridise (Camerini-Otero and Hsieh, 1995). They will then be repaired either as a CO,
or a NCO. On each chromosome, a subset of the DSBs repaired as a CO will attract the
so-called synaptonemal complex which stabilizes the interaction between homologous
chromosome and coordinates their placement on the polar axis, for further segregation
in the second division of meiosis (Baker et al., 1976). COs are therefore crucial for the
production of offsprings. The requirement of at least one CO per chromosome arm put
strong constraints on the genome-wide recombination rate, and is largely responsible
for the differences of recombination rate (per bp) between chromosomes of different
sizes (Pardo-Manuel de Villena and Sapienza, 2001; Stapley et al., 2017; Brazier and
Glémin, 2022). However some species (mostly insects) do not require COs for correct
chromosome segregation (reviewed in Gerton and Hawley (2005)). These so-called
achiasmate meiosis are often sex-specific, and are likely due to the peculiar structure of
chromosomes in those species (Nokkala et al., 2004; Cabral et al., 2014).

2.1.2 The intractable problem of homology search

For a DSB to be repaired, and chromosomes to correctly segregate, the nucleoprotein
filament needs to find its homologous sequence among sometimes billions of base pairs. It
has been shown that the nucleoprotein filament takes a lot of time to probe for homology,
sliding on the target DNA. As a consequence, if the entire genome had to be searched,
meiosis would take unreasonable amount of time (Barzel and Kupiec, 2008; Weiner et al.,
2009). This search of homology is therefore facilitated, for instance by premeiotic pairing
between homologs (Chikashige et al., 1994; Fung et al., 1998), or by restricting the
zones of the genome that are susceptible to receive DSBs (e.g. euchromatin) (Renkawitz
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et al., 2014; Peñalba and Wolf, 2020).

In this context, the concentration of recombination events into a small fraction of
the genome appears to be a good way to restrict homology search, and therefore to
increase the success of meiosis. Interestingly, in many species, some short sequence
(1kb) experience a much higher recombination rate than their regional background
(Lichten and Goldman, 1995; Petes, 2001; Choi and Henderson, 2015). We call these
loci recombination hotspots. Recombination hotspots have been observed in a wide
range of eukaryotes, with the notable exception of Drosophila melanogaster
Caenorhabditis elegans and Apis mellifera (Chan et al., 2012; Kaur and Rockman,
2014; Wallberg et al., 2015). Whether the raison d’être of these recombination hotspots
is solely to accelerate meiosis is still not clear, and many other hypothesis have been
formulated (Webster and Hurst, 2012; Brick et al., 2012). To answer this question,
considerable insights can be gained by studying the molecular mechanisms that
determines them.

2.2 Prdm9-dependent recombination hotspots

2.2.1 Basic principle

In humans, mice and chimps, the location of recombination hotspots is determined by
the protein Prdm9 (Myers et al., 2010; Parvanov et al., 2010; Baudat et al., 2010).
This protein contains a zinc finger array that directly binds DNA. When Prdm9 binds
DNA, it modifies the methylation states of histones, which allows the bound sequence
to be tethered to the chromosomal axis where it will receive a DSB by SPO11 (Brick
et al., 2012; Eram et al., 2014; Powers et al., 2016; Davies et al., 2016; Grey et al.,
2017; Hinch et al., 2019; Li et al., 2019). The zinc finger usually targets a motif of
a dozen of base pair, which depends on the amino-acid residues at key sites of each
zinc finger (Myers et al., 2005; Smagulova et al., 2016). Therefore, two individuals of a
population carrying different Prdm9 alleles for the zinc finger domain will have different
recombination hotspots (Pratto et al., 2014; Smagulova et al., 2016; Alleva et al., 2021).
The zinc finger array is extremely polymorphic in mice and humans (Buard et al., 2014;
Kono et al., 2014; Alleva et al., 2021), due to its high mutation rate (Jeffreys et al.,
2013). Indeed the zinc finger array is a mini-satellite sequence that experiences high
duplication, deletion and conversion rate among zinc fingers (Jeffreys et al., 2013). For
the same number of individual zinc finger sequences, this induces a high copy number
variation, which increases the diversity of zinc finger arrays. This high mutation rate
is allowed by a very low divergence between zinc fingers inside an array, which is quite
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unusual compared to the other zinc finger domains of other proteins (Baker et al., 2017).
Therefore Prdm9-directed hotspots are fast-evolving and largely differ between species
(Auton et al., 2012; Munch et al., 2014). The maintenance of this high allelic diversity
is usually explained by the so-called intragenomic red-queen dynamic of Prdm9.

2.2.2 The red queen hypothesis

If at a given site of the DNA, an individual is heterozygous for the DNA motif targeted
by its Prdm9 allele, the DSB will always be initiated on the chromosome that carries
the recognized DNA motif (hot allele) (Nicolas et al., 1989; Schultes and Szostak, 1991;
Detloff et al., 1992). This DSB will be repaired using the other chromosome where the
motif is absent as a template (cold allele). This will therefore favour the transmission of
the cold allele to the gametes (Nicolas et al., 1989; Schultes and Szostak, 1991; Detloff
et al., 1992; Boulton et al., 1997). Consequently, cold alleles segregate above the 50:50
of Mendel’s law. With this process, any mutation that alters a Prdm9 binding motif
will spread rapidly in the population as a meiotic driver (Boulton et al., 1997). Through
this process, Prdm9 alleles progressively lose their targets (Baker et al., 2015; Smagulova
et al., 2016), which should lead to a decrease in fertility due to an impaired capacity
of correctly creating COs. The fitness of a Prdm9 allele therefore decreases with its
age and its historical activity (Úbeda and Wilkins, 2011). New Prdm9 alleles with
new targets are therefore positively selected (Úbeda and Wilkins, 2011) because their
capacity to generate COs is higher. This leads to a red-queen dynamic between Prdm9
alleles and their targets where new alleles are systematically favoured by natural selection
(Úbeda and Wilkins, 2011). This summarises the basic assumptions of Prdm9’s red-
queen hypothesis, but several models exist which mainly differ in the causes of the
fertility loss following the decrease in the number of targets.

The model of Latrille et al. 2017

In the model of Latrille et al. (2017), there is an arbitrary function that connects the
fitness of a given individual to the number of targets of its Prdm9 alleles, either a
power law or an exponential. This model is therefore phenomenological, not modelling
explicitly the mechanisms through which fertility is decreased with the decrease in the
number of targets. This model already allowed to characterize two different regimes
depending on Prdm9’s mutation rate, and the speed of target erosion. The succession
regime is characterized by a low population-scaled mutation rate of Prdm9 (2Nµ). In
this regime, the population is dominated by one major Prdm9 alleles, while others are
at low frequency (Figure 2.1A). As the major allele reaches high frequency, it erodes its
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targets quickly, leading to positive selection on more recent low frequency alleles. One
of these alleles increases in frequency and becomes the new major allele. This regime
reflects the diversity of humans Prdm9 alleles, where one allele is major in all human
populations, with many lower frequency alleles (Alleva et al., 2021). On the other hand,
the polymorphic regime is characterized by a high population-scaled mutation rate of
Prdm9. In this regime, several alleles segregate at intermediate frequency (Figure 2.1B).
This regime reflects the diversity of mice Prdm9 alleles, where several alleles segregate
at intermediate frequency (Buard et al., 2014; Kono et al., 2014).

The model of Baker et al. 2022

In the past few years, experimental evidences revealed the mechanism through which
DSB repair as CO is impaired when the number of Prdm9 targets decreases. In fact
instead of the raw number of targets, it is the number of homozygous targets that is
critical for fitness. Several recent studies showed that when sequences are
symmetrically bound by Prdm9, the probability that the induced DSB will be repaired
as a CO increases (Hinch et al., 2019; Li et al., 2019). Indeed, when Prdm9 binds
symmetrically on both homologs, it tethers both homologous sequence to the
chromosomal axis (Hinch et al., 2019; Li et al., 2019). As spatial proximity is crucial
for efficient homology search (Renkawitz et al., 2014), one can imagine that this
symmetrical binding will accelerate DSB repair and increase the probability of making
a CO. Two new factors will therefore be key to understand the fertility decrease
following target erosion. The first one is the distribution of target affinity, and the
second one is the concentration of Prdm9 in the meiotic cell.

The model of Baker et al. (2022) assumes that the concentration of Prdm9 is
limiting in the cell, which leads to the competition between two kinds of hotspots, a
small number of hotspots of high affinity, and a large number of hotspots of low
affinity. Low affinity targets will titrate Prdm9 but without symmetrical binding and
will provide the main explanation for which symmetrical binding is limited in the few
high affinity targets. In this context, the key factor that decreases the probability of
symmetrical binding and therefore fitness is the presence of low affinity targets and the
limited concentration of Prdm9 in the cell. The model of Baker et al. (2022) allows to
reconcile the red queen hypothesis with empirical evidence that clearly demonstrated
that the number of target is not limiting (Kauppi et al., 2013; Baker et al., 2014;
Diagouraga et al., 2018), and therefore cannot explain the decrease in fitness of old
Prdm9 alleles. Baker et al. (2022) argue that limiting the number of hotspots (low
affinity ones) could provide a selective advantage by increasing the probability of
symmetrical binding and therefore increase the success of meiosis.
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The model of Genestier et al. 2023

The model of Genestier et al. (2023) extends the previous one by relaxing simplifying
assumptions, notably regarding the distribution of affinity of Prdm9 targets, the
concentration of Prdm9 in meiotic cells, and the expected behaviour of Prdm9 in
heterozygotes through the impact of genetic dosage. The results reflect the previous
one but with some important new insights. The first one is that Prdm9 need not to be
limiting in the cell to explain a red-queen dynamic. The red-queen only emerges as a
function of the number of those targets that are affine enough to be symmetrically
bound, regardless of the number of low affinity targets.

  
Number of generations

A

B

C

Figure 2.1: A) Illustration of the succession regime (panel taken from Latrille et al. (2017)).
At each time only one allele segregate at high frequency and is being replaced by new alleles
when they arrive. B) Illustration of the polymorphic regime (panel taken from Genestier et al.
(2023)). A lot of alleles segregate at intermediate frequency. C) Illustration of the eviction
regime (panel taken from Genestier et al. (2023)). New alleles are under negative selection
until the homozygous targets of the major allele become too scarce, and are therefore positively
selected.

In this view, there is no selection to limit the total number of hotspots but rather
a selection to increase the number of high affinity ones.

12



On top of the succession regime and the polymorphic regime observed by Latrille
et al. (2017), both models highlight a third regime for the evolution of Prdm9. The
eviction regime is characterized by a difference in the probability of symmetrical binding
between homozygotes and heterozygotes (Figure 2.1C). This effect is amplified when the
genetic dosage of Prdm9 is taken into account, namely that the concentration of a given
Prdm9 allele in the cell is divided by two in heterozygotes. In the eviction regime, new
alleles that appears in a heterozygous states are less likely to have symmetrical binding,
and new alleles are negatively selected. Positive selection occurs only when the old major
allele has eroded enough of its high affinity target to be less fit than heterozygotes. This
is in bright contrast with the model of Latrille et al. (2017) where every new allele was
immediately positively selected. In particular, in the eviction regime, both Prdm9’s
diversity and the speed of the turnover drastically decrease.

Empirical evidences

The critical aspect that is necessary for the red queen to operate is the decrease of fitness
of old alleles. Indeed, if the mutation rate of the zinc finger is high enough such that
old alleles mutate before being old enough to decrease in fitness, therefore there is no
red queen. There is evidence that hybrids carrying two different alleles of Prdm9 can be
infertile (Gregorová and Forejt, 2000; Mihola et al., 2019). This fertility can be rescued
by introducing a new Prdm9 allele (Davies et al., 2016; Gregorova et al., 2018). This
supports the prediction of purifying selection on heterozygotes. However, no decrease in
fertility has been observed in Prdm9-homozygous mice so far for any allele tested. The
only evidence of the red-queen hypothesis is the high amino-acid diversity observed at the
positions of the zinc fingers that interacts with DNA (Oliver et al., 2009; Thomas et al.,
2009; Ponting, 2011; Baker et al., 2017; Damm et al., 2022). This suggests that selection
in favour of new zinc fingers may have occurred in the history of Prdm9-carrying animals.

2.2.3 Prdm9 phylogenetic distribution

Prdm9 is found in a wide range of animals such as sponges and mammals (Ponting,
2011), but absent in other kingdoms. It is therefore probable that it arose at the base
of the tree of animals. Interestingly, it has been lost many times, notably in the
ancestor of nematodes, holometabolous insects (Laurent Duret personal
communications), Neoteleostei which contain most fishes, Amphibia and archosaurs
(dinosaurs, pterosaurs and crocodiles) (Cavassim et al., 2022). Finally in mammals, it
has been lost in canids (dogs, wolves and foxes), which corresponds to the most recent
loss of Prdm9 reported so far (Oliver et al., 2009; Axelsson et al., 2012). Of note,
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assessing the absence of Prdm9 in one species is difficult because the absence of the
gene in the assembly is not an evidence for its absence in the species (Baker et al.,
2017; Cavassim et al., 2022). In turn the presence of Prdm9 does not guarantee that
the gene has the same functions as in humans and mice.

2.3 Prdm9-independent recombination hotspots

In birds and canids, which both lost Prdm9, recombination hotspots are found at the
subset of gene promoters that contain a CpG island (Auton et al., 2013; Singhal et al.,
2015; Kawakami et al., 2017). These sequences are characterized by very low rates of
CpG methylation, high CpG and GC content, H3K4Me3 histone marks and open
chromatin (Bird, 1980; Cooper et al., 1983; Shin Voo et al., 2000; Klose and Bird,
2006). Interestingly, outside of animals, in plants and fungi, recombination are also
associated to gene promoters, H3K4Me3 marks and DNA hypomethylation (reviewed
in Lichten and Goldman (1995) and Choi and Henderson (2015)). However, the
mechanism that is responsible for the location of hotspots in gene promoter when
Prdm9 is absent is still controversial, and might not be the same between species
(Borde et al., 2009; Sommermeyer et al., 2013; He et al., 2017; Choi et al., 2018).
Contrarily to Prdm9-dependent hotspots, Prdm9-independent hotspots seem to be
conserved between closely related species (Axelsson et al., 2012; Singhal et al., 2015;
Lam and Keeney, 2015; Schield et al., 2020; Hoge et al., 2023). A Knock-out
experiment of the gene Prdm9 in mice and rats also leads to the redirection of DSB
hotspots in gene promoters that exhibit hypomethetylated cytosines and H3K4Me3
histone marks (Brick et al., 2012; Mihola et al., 2021). This strongly suggest that
Prdm9-independent hotspots are the "default" recombination hotspots shared and
conserved in Eukaryotes and that Prdm9 hijacks the recombination machinery away
from those default hotspots (Brick et al., 2012).

2.4 Hotspot detection

There are several methods to detect recombination hotspots at different temporal scale,
but in this section, I will mainly focus on two of the most precise methods to detect
recombination hotspots, which allowed to infer the positions of recombination hotspots
of mice and dogs used in chapter 6.
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2.4.1 Linkage disequilibrium

Let us consider a locus with an ancestral allele A and a derived allele a located on the
same chromosome as another locus with an ancestral allele B and a derived allele b. If the
mutation B 7→ b appears on the genotype containing allele A, without recombination,
b will always be co-transmitted with A. Therefore, the haplotype ab will never be
observed. We say that b is genetically linked to A. Now, if there is very large number
of recombination events between A and b, and the population is not structured, we
say that the two loci are independent. The frequency of haplotypes Ab and ab will
directly be the product of the frequency of allele A times the frequency of allele b and
the frequency of allele a times the frequency of allele b respectively. In between these two
extreme scenarios lies a gradient of linkage disequilibrium (LD) which depends on the
local recombination rate. By examining the amount of linkage observed between pairs of
bi-allelic polymorphisms in natural populations, one can infer the distribution of the sex-
averaged recombination rate in the history of the population. By using sliding windows,
one can detect short sequences that display a recombination rate significantly higher
than the regional background: recombination hotspots (Auton and McVean, 2007; Chan
et al., 2012; Spence and Song, 2019).

These methods offer a great spatial resolution because both the density of markers
between which one can infer a recombination rate and the number of recombination
events that occurred between these markers are high. However, this method suffers
several drawbacks. The first type of drawback is due to the model’s simplifying
assumptions of constant population size, no selection, no population structure and no
gene flow. (Auton and McVean, 2007; Chan et al., 2012; Spence and Song, 2019;
Samuk and Noor, 2022). The second type is methodological, for instance, two regions
that are in close physical distance in the genome assembly but in different
chromosomes in reality (e.g. because of poor assembly quality) will show unusually low
levels of linkage, which will be interpreted as a high recombination rate. Overall, for
many reasons, these methods can produce a high level of false positive (see Raynaud
et al. (2023) for details). Moreover, once loci are totally independent, these methods
struggle to make a difference between high recombination rate and very high
recombination rate (Chan et al., 2012). In species for which the background
recombination rate is already very high relative to the mutation rate, LD-based
methods are underpowered to detect hotspots (Raynaud et al., 2023).
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2.4.2 DMC1 ChIP-Seq

Another category of method to map recombination hotspots consists in isolating
sequences that are physically associated to proteins involved in meiotic recombination.
The most efficient method to my knowledge consists in marking DMC1, a protein that
coats the single stranded DNA posterior to DSB, with an antibody in male meiotic
cells, then isolate the complex DMC1-antibody using Chromatin-ImunoPrecipitation
and finally sequence the single-stranded DNA that is associated to this complex
(Smagulova et al., 2011; Brick et al., 2012). This procedure allows a very precise
mapping of the hotspots. This method detects hotpots at the individual level,
therefore, it allows to capture variation in hotspot location between individuals.
Naturally, this approach is not sensitive to the violation of the assumptions of the LD
approach regarding demography, selection or gene flow. However, this approach
requires a large number of meiotic cell to have enough statistical power to detect
hotspots (Smagulova et al., 2011; Brick et al., 2012). In mammals it can only be
applied to males, and there are no guarantee that recombination hotspots inferred by
ChIP-seq are used in females. While recombination hotspots detected with LD
approaches mainly correspond to CO hotspots, the hotspots identified by ChIP-seq of
DMC1 correspond DSB hotspots which can be repaired either as a CO, NCO, or with
the sister chromatid, leaving no trace of the DSB in offsprings.
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3.1 Basic principle

During a recombination event, at the precise location where the two parental single
stranded DNA hybridise (the so-called heteroduplex), if the two parents had different
alleles (i.e. the individual is heterozygous), it will lead to a non Watson and Crick
pairing that can be detected as a mismatch by the DNA repair machinery (Winkler,
1930; Roman, 1985). In many eukaryotes, when this mismatch involves an A/T allele
paired to a G/C allele, it is repaired more often as a G paired with a C than as an A
paired to a T (discovered by Brown and Jiricny (1987), reviewed in Duret and Galtier
(2009) and illustrated in Figure 3.1). This phenomenon is therefore called GC-biased
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gene conversion (gBGC).

This mechanism increases the transmission of GC alleles to the gametes. Thus,
the recombination and DNA repair machineries act as segregation distorters (Nagylaki,
1983; Bengtsson, 1986; Hurst, 2019). Without gBGC, the probability for a GC allele to
be transmitted to the gametes is 0.5 (following Mendel’s law). When there is gBGC,
this becomes 0.5 + b. Where b is called the gBGC coefficient (Nagylaki, 1983). This
gBGC coefficient depends on two parameters. The first one is the probability for a given
heterozygous site to be involved in a recombination event which is r, the recombination
rate per base pair, times l, the length of the conversion tract in base pair (Duret and
Galtier, 2009). The second one is the repair bias towards GC (b0). If a mismatch has a
70% chance of being repaired towards GC, then b0 = 2(0.7−0.5) = 0.4 (Nagylaki, 1983).
This deviation from the Mendelian segregation ratio can be quantified at different scales.

Figure 3.1: Schematic representation of the mechanism of GC-biased gene conversion in
meiosis. © Laurent Duret

3.2 Direct quantification from meiotic products

The most direct quantification of the repair bias measures the deviation from the 50:50
ratio in meiotic products. By sequencing at least three generations of individuals, one
can detect COs and non-COs respectively as a global and local change in ancestry along
the chromosome of the last generation. Inside the conversion tracts, one can directly
measure how often the GC allele is transmitted compared to the AT one. This approach
successfully detected a GC-bias in gene conversion events in humans (Williams et al.,
2015; Halldorsson et al., 2016), mice (Li et al., 2019), yeasts (Mancera et al., 2008;
Lesecque et al., 2013), and flycatchers (birds) (Smeds et al., 2016). This kind of measure
provides the most direct evidence that gene conversion is biased towards GC. However,
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when b0 is small, it requires the sequencing of many individuals to obtain sufficient
statistical power. But in turn very small biases can be due to methodological artifacts
such as mapping or sequencing errors (Liu et al., 2018; Hurst, 2019).

3.3 Indirect quantification from genetic variation

Instead of focusing on direct observation of transmission bias in meiotic product,
population geneticists have derived expectations regarding how the transmission bias
towards GC affects changes in allelic frequency and the probability of fixation of
mutants in populations.

3.3.1 The Wright-Fisher model with gBGC

The Wright-Fisher model describes the evolution of the frequency of two alleles (here W

and S) at a given locus, in a panmictic populations of infinite size with non-overlapping
generations. The inclusion of gBGC in the Wright-fisher model that will be presented
in this section has been derived by Nagylaki (1983). The frequency of the derived allele
S is noted x, and thus the frequency of W is 1 − x. We further assume that this
mutation from W to S is neutral (i.e. a change from W to S does not affect fitness).
Without gBGC, at the Hardy Weinberg equilibrium (under panmixia), the frequency
of each genotype can be written as follows:


f(SS) = x2

f(WS) = 2x(1 − x)
f(WW ) = (1 − x)2

(3.1)

3.3.2 Change in allelic frequency

Let us assume that W is a A or T allele and S is a G or C allele. Under gBGC,
let us consider how the frequency of S changes at the next generation. Homozygotes
SS will produce only gametes carrying S. Heterozygotes WS will produce (1 + b)/2
gametes carrying S, and (1 − b)/2 gametes carrying W . Finally, homozygotes WW

won’t produce any gamete carriyng S. If we neglect mutations from S to W between
two generations, we can thus write:
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x′ = x2 + 2x(1 − x)(1 + b)/2 (3.2)

which simplifies to

x′ = x2 + x(1 − x)(1 + b) (3.3)

We can now compute the expected change in allelic frequency from one generation
to another ∆x = x′ − x by simplifying the previous equation to:

∆x = bx(1 − x) (3.4)

In practice, population size is finite, and the evolution of allelic frequency is best
described as a stochastic process. Let us consider a population of size N , with gametes
being drawn randomly from the previous generation. In this setting, from a given
generation t, the probability to obtain i gametes carrying the S allele at generation
t + 1 follows a Binomial law with parameters x′ and N .

Under the assumption that the conversion bias is weak (b << 1), the expected
change of allelic frequency is the same as equation 3.4. And thus:

E[∆x] = bx(1 − x) (3.5)

The variance in the change of allelic frequency is given by:

V[∆x] = x′(1 − x′)
2N

(3.6)

Again, under the assumption of a weak conversion bias, and thus small changes in
allelic frequency between two generations, this is well approximated by

V[∆x] ≃ x(1 − x)
2N

(3.7)
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3.3.3 Fixation probability

When the population size is very large, and the conversion bias very weak, we can
approximate the discrete changes in allelic frequencies by a continuous diffusion process.
Using Kolmogorov backward equations, we can thus compute the fixation probability of
a mutant allele starting in the population at frequency 1/2N (Nagylaki, 1983):

Pfix = 1 − e−2b

1 − e−4Nb
(3.8)

Conversely, if the mutant allele is A/T and the ancestral allele is G/C, the fixation
probability of the mutant allele becomes

Pfix = 1 − e2b

1 − e4Nb
(3.9)

In practice, populations are not panmictic, such that not all individual have the
same probability of contributing to the next generation. We can define an effective
population size Ne such that the number of derived alleles in the next generation can
be approximated by a binomial sampling among Ne individuals from the previous
generation. This does not affect the expected change in allelic frequency, but the
variance changes to x(1 − x)

2Ne

, with Ne being usually smaller that N .

The fixation probability of an A/T to G/C mutation then becomes:

Pfix = 1 − e−2bNe/N

1 − e−4Neb
(3.10)

And the fixation probability of a G/C to A/T mutation then becomes:

Pfix = 1 − e2bNe/N

1 − e4Neb
(3.11)

3.3.4 Quantification of gBGC from substitutions patterns

Let us consider again a locus with two state W and S, W corresponding to an A/T allele
and S to a G/C allele. In an origination-fixation framework, the substitution rate per
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generation can be defined as the product between the mutation rate and the probability
of fixation of new mutations (Kimura, 1962; Nagylaki, 1983).

QW 7→S = 2NµW 7→S
1 − e−2bNe/N

1 − e−4Neb
(3.12)

With 2NµW 7→S the number of new mutations per generation in a diploid population
of size N . Under the assumption that the conversion bias is weak, this simplifies to

QW 7→S = 2NµW 7→S
2bNe/N

1 − e−4Neb
(3.13)

which gives:

QW 7→S = µW 7→S
4Neb

1 − e−4Neb
(3.14)

From this equation it appears clearly that the substitution rate depends on the
product of the effective population size Ne, and the transmission bias b. We thus define
a population-scaled gBGC coefficient which writes B = 4Neb. The substitution rate
from W 7→ S can therefore be written:

QW 7→S = µW 7→S
B

1 − e−B
(3.15)

Similarly, the substitution rate from S 7→ W can be written:

QS 7→W = µS 7→W
B

eB − 1 (3.16)

From these theoretical expectations, one can fit a substitution model to alignments
of DNA between different species to estimate the magnitude of the population-scaled
gBGC coefficient (B). This approach has been applied to mammals, with estimations
being made either in a Maximum Likelihood (Galtier, 2021) or a Bayesian framework
(Lartillot, 2013).

These empirical studies revealed an ample variation of the population-scaled gBGC
coefficient (B) in mammals (Lartillot, 2013; Galtier, 2021). Of note, the
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population-scaled gBGC coefficient correlates positively both with other estimates of
effective population size, and with estimates of genome-wide recombination rates,
which is expected given that B = 4b0lNer.

However, from this indirect measure only, it is not possible evaluate the magnitude
of the repair bias as in direct measures from meiotic products. The intensity of gBGC
always appears as a product between the repair bias, the recombination rate and the
effective population size.

3.3.5 Quantification of gBGC from the site frequency spectrum

Similarly to the fixation probability, for a given WS polymorphic site we can derive the
probability of observing a derived W or S allele at frequency x (Muyle et al., 2011):

HS(x) = 1 − eB(1−x)

(1 − e−B)(1 − x) (3.17)

And

HW (x) = 1 − e−B(1−x)

(1 − eB)(1 − x) (3.18)

In a given population, the number of polymorphism observed at each frequency
represents the site frequency spectrum (SFS). Instead of focusing on fixed changes, it is
thus possible to fit the model to a SFS (Muyle et al., 2011; Glémin et al., 2015). This
approach has been applied to a wide range of animals and several plants (Muyle et al.,
2011; Glémin et al., 2015; Clément et al., 2017; Galtier et al., 2018; Barton and Zeng,
2021; Boman et al., 2021). Interestingly, neither in animals nor in angiosperms has the
relationship between B and Ne been recovered (Clément et al., 2017; Galtier et al.,
2018; Boman et al., 2021). Despite a wide range of variation of Ne, only a small range
of variation of B is observed. The potential reasons for this small range of variation are
discussed in chapter 11 and 12.
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3.4 A widespread phenomenon in eukaryotes

Even without a precise quantification, it is still possible to assess qualitatively whether
gene conversion is biased towards GC in different species. A convincing observation is
an intragenomic correlation between recombination rate and GC content (Meunier and
Duret, 2004; Webster et al., 2006; Duret and Arndt, 2008). When the recombination
landscape is not available, one can still use the premise that shorter chromosome
experience higher recombination rates, and therefore should be more GC rich (Pessia
et al., 2012; Figuet et al., 2015). This qualitative assessment suggests that gBGC is
present in all major clades of eukaryotes (Pessia et al., 2012), and even suggests that it
is present in bacteria (Lassalle et al., 2015).

3.5 The molecular mechanism of gBGC

Despite great efforts to quantify gBGC and unravel its impact on genome evolution,
the molecular mechanism of gBGC is still poorly understood. In particular, the
proteins that are responsible for the GC bias in heteroduplexes are still unknown. In
somatic cells, in the presence of mismatches, two repair pathway can intervene,
depending on the nature of the mismatches.

3.5.1 DNA repair pathways

The short patch repair pathway is associated with base excision repair (BER), the
primary function of which is to correct DNA lesions resulting from oxidation,
deamination or alkylation (reviewed in Krokan and Bjørås (2013)). These lesions cause
slight distortions in the three-dimensional structure of DNA, which are recognised and
repaired by specific enzymes called DNA glycosylases. These glycosylases cut one of
the bases of the mismatch, leaving an abasic site (a single-stranded lesion or nick),
which is repaired by DNA polymerases and ligated by ligases. These BER pathway
therefore acts on a short stretch of DNA, affecting only the excised base, or sometimes
a few base pair around it.

The second pathway corrects mismatches that affect larger stretches of DNA and
is mostly represented by the Mismatch repair (MMR) (reviewed in Spies and Fishel
(2015)). Mismatches in the double helix, caused by errors in DNA polymerisation during
replication or spontaneous lesions, are detected by the MMR, which erases one of the
two strands and re-synthesises it.
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3.5.2 The role of BER in gBGC

Interestingly, among the DNA glycosilases that belong to the BER pathway, some can
excise thymine and adenine but none can excise guanine or cytosine (Krokan and
Bjørås, 2013). Moreover, it has been demonstrated in bacteria that the absence of the
BER pathway is strongly associated to low GC content (Teng et al., 2022). Finally, in
mice, it appears that only mismatches that are alone in the heteroduplex are repaired
in a biased way (Li et al., 2019). This is consistent with the action of an enzyme that
targets single mismatches.

In yeasts, the mechanism seems different, with only those mismatches found at the
extremities of the conversion tract being repaired in a biased way (Lesecque et al., 2013).
This has been interpreted as a biased action of the MMR (Lesecque et al., 2013), but
some evidence suggest that even in the case of multiple mismatches, the erase of the
DNA can be initiated by the BER (Grin and Ishchenko, 2016). One can imagine that if
the strand that will be erased corresponds to the one that contains the bases that can
be excised by the BER (A or T), therefore the first base is repaired in a biased way,
using the G or C as a template while the other mismatches are not. Overall, the action
of DNA repair enzymes strongly suggest that the BER could be responsible for gBGC,
but no direct evidence has been provided yet.

3.6 The Achilles’ heel of genomes

By many aspects, gBGC is very different from other kinds of meiotic drive. Most
segregation distorters only bias the transmission of a specific locus or at maximum of a
chromosome (Lyttle, 1991; Taylor and Ingvarsson, 2003; Lindholm et al., 2016). On the
other hand, the transmission bias produced by gBGC affects the whole genome.
Moreover, it is the only form of transmission bias (natural selection included) that
never generates hitchhiking of neighbor loci. Indeed, gBGC promotes the transmission
of GC alleles at the resolution of a single base-pair (Lesecque et al., 2013; Halldorsson
et al., 2016; Li et al., 2019).

Most segregation distorters observed in nature are thought to be deleterious (Lyttle,
1991). The main reason for that is probably that segregation distorters that provide
a fitness advantage are fixed very quickly, and are rarely observed at the heterozygous
state. On the other hand, segregation distorters that are deleterious struggle to fix, and
can be maintained at intermediate frequency for a very long time. Overall, segregation
distorters that we can observe are a biased sample of those that might exist. Whether

25



gBGC is advantageous or deleterious is still not clear, and has been the focus of several
empirical and theoretical studies (Bengtsson, 1986, 1990; Berglund et al., 2009; Galtier
et al., 2009; Glémin, 2010; Necşulea et al., 2011).

3.6.1 Deleterious or advantageous?

Biased gene conversion promotes the fixation of GC alleles no matter their effect on
fitness. In section 3.3.4, I explained how gBGC increases the substitution rate from Weak
to Strong (AT to GC) and decreases the substitution rate from Strong to Weak (GC to
AT), but I assumed that these alleles were selectively neutral. When the Strong allele
is deleterious, under the assumption of weak bias and weak selection ((b − hs) << 1),
the expected change in allele frequency becomes:

E[∆x] = (b − hs)x(1 − x) + sx(1 − x)(1 − 2h) (3.19)

where s is the difference in fitness between allele Strong and allele Weak, and h the
dominance coefficient: the fitness of WW is 1, the fitness of SS is 1 − s, and the fitness
of WS is 1 − hs (Nagylaki, 1983; Glémin, 2010).

When h = 0.5 (i.e. the fitness of the heterozygote is perfectly intermediate between
the two homozygotes), the expected change in allele frequency simplifies to:

E[∆x] = (b − s

2)x(1 − x) (3.20)

The variance of the change in allelic frequency (V[∆x]) remains however unchanged.

With selection, and in the co-dominant scenario (h = 0.5), the fixation probability
of a deleterious Strong derived allele, derived by Nagylaki (1983) is given by:

Pfix = 1 − e(−2b+s)Ne/N

1 − e−2Ne(2b−s) (3.21)

For a simpler writing of the equations, in the co-dominant case, the fitness of the
heterozygote is usually noted 1 − s and the homozygote 1 − 2s. This allows us to
re-write equation 3.21:
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Pfix = 1 − e−2(b−s)Ne/N

1 − e−4Ne(b−s) (3.22)

This way it is clearer that the fate of the new mutation will depend on the
difference of its transmission bias induced by gBGC b, and the transmission bias
induced by selection s.

Even before the discovery of gBGC, it had been predicted that if gene conversion
could be biased towards a class of mutations that is more numerous, it should reduce the
mutation load (Bengtsson, 1986). However, if the bias is too strong, it can substantially
increase it (Bengtsson, 1990; Glémin, 2010). Overall, it is not clear whether gBGC
is more deleterious than advantageous at the intensity observed in living species, and
it will be the object of chapter 11.

3.6.2 Empirical evidences

For now, empirical evidence tend to point toward a deleterious effect of gBGC.
However, the number of studies that evaluate the effect of gBGC on the genetic load
are scarce and are mainly centered on human. Galtier et al. (2009) and Berglund et al.
(2009) showed that bursts of gBGC episodes could lead to the rapid fixation of GC
alleles in human exons. Based on the conservation of these exons in other mammals,
these substitutions are likely to be deleterious. However those fixation events
correspond to the most extreme levels of gBGC, inside recombination hotspots.
Necşulea et al. (2011) and Lachance and Tishkoff (2014) showed that gBGC maintains
disease-causing polymorphism at high frequency in human populations, particularly in
regions of high recombination rate, unravelling a significant impact of gBGC on public
health. However, diseases that are observed in humans are likely to belong to a specific
part of the distribution of fitness effects: those mutations that are deleterious enough
to be noticed, but not deleterious enough to be lethal. Some of them might also affect
health but not fitness, for instance mutations that have a negative impact on health
only at old ages. Overall, a complete analysis of the impact of gBGC on fitness both
across the genome, and across fitness effects is still missing.
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Detecting the footprints of past selection in genomes is a challenging task. When a
new mutation occurs in a population that brings a selective advantage/disadvantage to
its bearer, it has several characteristics that distinguish it from a neutral one.

First, if a new mutation is beneficial, it will rise in frequency more often than if it
was neutral in a population, and be observed at higher frequency on average. Second,
beneficial mutations will fix in the population more often than neutral ones, and
therefore will have a higher substitution rate. Finally, when reaching fixation,
beneficial mutations will bring their neighbour with them, creating a signal of local
depletion of diversity (Smith and Haigh, 1973). On the other hand, if a mutation is
deleterious, it will segregate at lower frequency, be fixed less often and will also create a
local decrease in diversity (Charlesworth et al., 1993) whose pattern differs from that of
beneficial mutations (Elyashiv et al., 2016).

To be able to detect signatures of selection from the genome, one needs to have a
neutral expectation, such that the departure from this expectation can be interpreted
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as an effect of natural selection. To detect selection from intragenomic variations in
diversity, population geneticists usually use the rest of the genome, or the regional
value of diversity as a neutral expectation without selection. In protein coding genes,
the redundancy of the genetic code provides mutations that do not affect the sequence
of a protein (synonymous mutations). By considering that these mutations are
selectively neutral, one can therefore compare the frequency, substitution rate and
diversity depletion between non-synonymous mutations (that affect the sequence of the
protein) and synonymous mutations (Miyata and Yasunaga, 1980; Nei and Gojobori,
1986).

As natural selection is the object of a vast majority of evolutionary studies, a very
large number of methods have been designed to detect their hallmarks in protein-coding
genes. In this chapter, I will give a brief introduction of the methods that have been
used and discussed in this thesis.

4.1 Evolutionary rates

The dN/dS ratio, first introduced by Miyata and Yasunaga (1980), measures the
substitution rate of non-synonymous mutations over synonymous mutations. In an
origination fixation model, where we consider that the substitution rate is the product
of the mutation rate and the probability of fixation, the dN can be written:

dN = 2NcµNPN
fix (4.1)

where Nc is the census population size, µN the mutation rate of non-synonymous
mutations and PN

fix is the fixation probability of the derived amino-acid (Spielman and
Wilke, 2015). Assuming that the fitness difference between the heterozygote for the
derived and ancestral allele and the homozygote for the ancestral allele is s and that
the mutation is co-dominant:

PN
fix = 1 − e−2sNe/Nc

1 − e−4Nes
(4.2)

where Ne is the effective population size (see section 3.3.3 for a definition in this
context). In turn, considering that synonymous changes are neutral, we can write:
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dS = µSNc/Ne (4.3)

Therefore the dN/dS ratio can be written:

dN/dS = 2Ne
µN

µS

PN
fix (4.4)

The standard neutrality test is to compare the dN/dS ratio to one. If new non-
synonymous mutations in a gene are deleterious, dN/dS should be inferior to one and if
they are beneficial, the dN/dS ratio should be superior to one, and if perfectly neutral
it should be equal to one. From equation 4.4, it appears clearly that this is only true
if we assume that the mutation rate of synonymous mutations is equal to the mutation
rate of non-synonymous ones. In practice, it is not the case as more mutations are
non-synonymous compared to synonymous. Therefore, for the dN/dS to be a correct
estimator of the selection exerted on proteins, we need to multiply the raw dN/dS ratio by
a correction factor equal to µS/µN . Moreover in practice, most new mutations in protein-
coding genes are deleterious. Therefore, when comparing the average dN/dS between
different sites and/or different genes, the dN/dS ratio is most often inferior to one even if
some beneficial mutations also occur. The test of dN/dS > 1 is therefore underpowered
to detect positive selection (Latrille et al., 2023a). Finally, when comparing the dN/dS

ratio between two genes, one cannot know if one is higher because it experiences more
beneficial mutations or more deleterious ones.

4.2 SFS-based methods

At the population level, the strength of selection in protein-coding genes can be
inferred from the SFS. By assuming a certain distribution of fitness effects (DFE) of
new mutations, one can derive the expected SFS. By fitting this SFS to empirical ones,
one can therefore estimate the parameters of the DFE. This approach has first been
developed by Eyre-Walker et al. (2006) considering only deleterious and neutral
mutations. It was then improved to correct for the distortion induced by the
demography (Eyre-Walker and Keightley, 2009) using the SFS of synonymous
mutations, and to account for weakly advantageous mutations and errors when
inferring the ancestral states of mutations (Galtier, 2016; Tataru et al., 2017).
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4.3 Phylogenetic conservation score

Both dN/dS and SFS-based methods are able to capture the strength and sometimes the
sign of selection, but they are unable to estimate the direction of selection, meaning they
cannot tell at a given site which amino-acids are favoured by natural selection and which
ones are disfavoured. This inference can however be made by looking at the occurrence
of a given amino-acid at a given site in a multi-species protein alignment. Indeed, if at
a given position of a gene, one amino-acid is present in all eukaryotes, this is a strong
indication that this amino-acid is more fit than the others. By looking at the frequency of
an amino-acid at large time scales, we can infer the preference of selection for any given
amino-acid. This hint gave rise to methods that attribute a score for each given amino-
acid at each site of a protein based on its frequency and some prior about the biochemical
properties of proteins (e.g. Kumar et al. (2009)). This score is supposed to reflect fitness.

While dN/dS across sites can reflect selection on a specific branch and SFS-based
methods infer selection at the population level, conservation scores are supposed to detect
selective constraints at a broader phylogenetic scale. However, phylogenetic scores do
not use neutral expectation for the frequency of different amino-acids in an alignment.
Therefore, what they measure is any phenomenon that can favour an amino-acid over
another, which can be the number of codons it is coded by, mutation biases, or gBGC. In
addition, it assumes that all sequences are independent realisation of the same process,
and do not account for phylogenetic inertia.

4.4 Mutation-selection models

Just like phylogenetic conservation scores, mutation-selection models infer fitnesses at
the level of phylogenies, leveraging the signal of site-wise amino-acid frequencies.
However, mutation-selection models are rooted in population genetic theory and offer a
flexible framework to disentangle the relative contributions of mutation, selection and
drift to molecular evolution. It also takes into account the phylogenetic relationships
between species.

The mutation-selection formalism uses a dN/dS-like approach to disentangle
mutation from selection by assuming that synonymous mutations are selectively
neutral (Halpern and Bruno, 1998). The substitution rate from codon i to codon j at a
given site l (q(l)

i 7→j) can be written:
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q
(l)
i 7→j = 0 if codons i and j are more than one mutation away,

q
(l)
i 7→j = µi 7→j if i 7→ j is synonymous

q
(l)
i 7→j = µi 7→j

4Ne(f (l)
i − f

(l)
j )

1 − e4Ne(f (l)
i −f

(l)
j )

if i 7→ j is non-synonymous

(4.5)

where µi 7→j is the mutation rate from codon i 7→ j and f
(l)
i the fitness of codon i.

By fitting this model to a protein coding-gene alignment and a gene tree, one can
infer the mutation matrix per gene, and the fitness of every amino-acid per site.
Mutation-selection models allow us to have access to the fitness landscape of a given
clade. However they are still limited by several simplifying assumptions: population
size is usually assumed constant (but see Latrille et al. (2021)), the fitness landscape is
site specific (no epistasis), and the fitness landscape is stable (no adaptation).

Therefore, mutation-selection models represent a null model without epistasis and
adaptation while accounting for nearly neutral processes on a fixed fitness landscape
(Latrille et al., 2023a).
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The evolution of genomes results from a balance between different evolutionary
forces such as mutation, natural selection, drift, recombination, migration etc... The
fields of molecular evolution and population genetics seek to investigate how those
forces affect genome evolution and affect each other to form the patterns of genetic
diversity present in living organisms. Mutation, recombination and migration most
often create genetic variation, while drift and selection erode this variation. In the 80’s,
a new potential recombination-associated evolutionary force was acknowledged: biased
gene conversion (BGC) (Nagylaki, 1983; Bengtsson, 1986, 1990; Bengtsson and
Uyenoyama, 1990). BGC constitute an exception to Mendel’s law of inheritance, by
distorting the segregation ratio of heterozygous sites during a recombination-induced
gene conversion event. Around the same time, experimental evidence for it was found
in the form of GC-biased gene conversion (gBGC) (Brown and Jiricny, 1987, 1988).
Since then, many researchers have shown that this phenomenon has a profound effect
on base composition (Meunier and Duret, 2004; Webster et al., 2006; Duret and Arndt,
2008), rate of evolution (Berglund et al., 2009; Galtier et al., 2009; Ratnakumar et al.,
2010; Bolívar et al., 2016, 2019) and fitness (Necşulea et al., 2011; Lachance and
Tishkoff, 2014), confirming its legitimacy at the level of evolutionary force. When
acknowledging gBGC, the distribution of recombination events along the genome
appears to be crucial, as recombination hotspots will likely strongly affect both local
base composition and selection dynamics (Lartillot, 2013; Glémin et al., 2015; Galtier,
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2021). However, as the discovery of gBGC is relatively recent, our understanding of its
influence on evolution is still in its infancy.

5.1 The evolution of fine-scale recombination landscapes

Fine-scale recombination landscapes have been generated for very few species, and
their diversity is still poorly understood. In the first part of this thesis, we leverage the
effect of gBGC on base composition to gain insight into the determinants and the
dynamics of recombination hotspots in placental mammals. We develop a method to
measure relative recombination rates along terminal branches based on neutral
substitution patterns. We apply this method to gain insights into the determinants of
the position and the dynamics of recombination hotspots in the genome of 52 placental
mammals. I then discuss more generally the evolutionary origins and reasons for the
existence of recombination hotspots in eukaryotes in the light of their impact on both
the success of meiosis and on the genetic load they imply.

5.2 The role of beneficial back-mutations in molecular
evolution

If the discovery of gBGC is relatively recent, natural selection has been described much
earlier (Darwin, 1859), and in fact, biologists did not wait for the discovery of genomes
to unravel its impact on the evolution of populations and species. Despite this, there is
still considerable disputes and controversies about its contribution to genome evolution.
Most of these disputes stem from misunderstandings on the definitions of neutrality,
nearly-neutrality, different forms of selection and adaptation, which vary across sub-
fields of evolutionary biology, and the philosophical perception of linked selection. In the
second part of this manuscript, we empirically show how we could gain in interpretive
capability on the processes affecting genome evolution by distinguishing positive selection
from adaptive evolution. I then show that this distinction is fundamental if we are to
understand the joint action of natural selection, recombination and gBGC on genome
evolution. Finally I try to (re)establish a conceptual framework that will hopefully
help us to distinguish non-adaptive from adaptive evolution in genomes, to improve our
understanding of the interplay between molecular and ecological adaptation.
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5.3 The evolutionary origin of GC-biased gene conversion

Even if a lot of attention has been drawn to the consequences of gBGC on genome
evolution, much less has been given to the evolution of gBGC itself. In the last part of
this manuscript, using a modeling approach, we estimated the strength of selection that
acts on a modifier of the intensity of gBGC to identify the factors that may influence its
evolution. Finally, I discuss how the molecular mechanisms of gBGC might explain the
variation of its intensity in eukaryotes, without involving natural selection.
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Part II

The evolution of fine-scale
recombination landscapes
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6
High prevalence of

Prdm9-independent recombination
hotspots in placental mammals
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Context

As presented in the introduction, intragenomic variations of gBGC intensity often reflect
variation of recombination rate (Pessia et al., 2012; Auton et al., 2013; Clément and
Arndt, 2013; Lartillot, 2013; Munch et al., 2014; Glémin et al., 2015; Figuet et al.,
2015; Bolívar et al., 2016; Charlesworth et al., 2020). We therefore used substitution
patterns to explore the diversity of fine-scale recombination landscape in mammals, and
in particular the use of stable Prdm9-independent hotspots. To this day, they always have
been presented as inactive in mammals, solely based on what has been observed in few
species (mostly humans and mice) (Brick et al., 2012; de Massy, 2013; Smagulova et al.,
2016; Schield et al., 2020; Hoge et al., 2023). However, in a clade comprising no less that
∼ 6,000 species (Burgin et al., 2018), one primate and one rodent is not what one would
call a very dense phylogenetic sampling. I must confess that our first intention was not to
gain further insight into the use of Prdm9-independent recombination hotspots, as I too
had blind faith in mice and humans. In the middle of my last year of PhD, for a different
project, the friends that co-author this manuscript and I found ourselves assessing the
stability of recombination hotspots in canids. As a sanity check, we looked at signatures
of gBGC in regions orthologous to dog hotspots in the southern elephant seal. Since
seals have Prdm9, they should not display any gBGC activity in loci orthologous to the
dog hotspots. What a surprise to see that instead, equilibrium GC content was through
the roof. I then decided to use signatures of gBGC to estimate recombination activity in
Prdm9-independent recombination hotspots in 52 species of boreoeutherian mammals.
The idea was to check if the southern elephant seal was one very curious animal, or if
human and mice were misleading us since the beginning. The title speaks for itself.

Detailed contributions

I designed the study, selected the species, developed the code for calling substitutions
in peer-coding with Djivan and developed the method to quantify relative
recombination rates from substitution patterns. Alexandre generated the whole genome
alignments for 19 carnivore species. Théo annotated protein-coding genes for all 19
species and generated a phylogeny (not included in the paper). Laurent annotated the
Prdm9 allele present in the reference genome of all 52 mammals of this study, and
investigated signatures of positive selection on the zinc finger of two of them. All
authors helped with ideas and discussions. I wrote the first draft of the paper, which
was then intensively revised by all co-authors. This manuscript has not been submitted
to any journal yet.
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Abstract

In many mammals, recombination events are concentrated into hotspots directed by a se-
quence specific DNA-binding protein named Prdm9. This protein facilitates chromosome
pairing and its inactivation has been shown to induce fertility losses in mice and rats. In-
triguingly, Prdm9 has been lost several times in vertebrates, and notably among mammals,
it has been pseudogenized in the ancestor of canids (dogs, wolves foxes). When this gene is
inactive, either naturally in dogs, or through knock-out experiments in mice, recombination
hotspots still exist, but they tend to occur in promoter-like features such as CpG islands. It
has thus been proposed that one role of Prdm9 could be to direct recombination away from
those Prdm9-independent hotspots. However, the ability of Prdm9 to direct recombination
hotspots has been assessed only in a handful of species, and a clear picture of how much
recombination occurs outside of Prdm9-directed hotspots in mammals is still lacking. In
this study, we derived an estimator of past recombination activity based on signatures of
GC-biased gene conversion in substitution patterns. We applied it to quantify recombina-
tion activity in Prdm9-independent hotspots in 52 species of boreoeutherian mammals. We
observed a wide range of recombination rate at these loci: several species (such as mice,
humans, some felids or cetaceans) show a deficit of recombination, while a majority of mam-
mals display a clear peak of recombination. Our results demonstrate that Prdm9-directed
and Prdm9-independent hotspots can co-exist in mammals, and that their co-existence seem
to be the rule rather than an exception.
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Introduction

Meiotic recombination is a crucial step in the production of gametes for a large majority of eukaryotes. It is
initiated by programmed double-strand breaks (DSBs), that can be resolved in two types of recombination
events, using the homolog as a template: crossovers (COs), where there is a reciprocal exchange of chromo-
some arms, and non crossovers (NCOs), where DSB repair leads to gene conversion around the DSB site
without reciprocal exchange. In most eukaryotes, at least one CO per chromosome is necessary to ensure
correct segregation between homologs and is therefore mandatory for meiosis success (Page and Hawley,
2003; Gerton and Hawley, 2005). In many vertebrates, recombination events are not uniformly distributed
along the genome (reviewed in Stapley et al. (2017); Zelkowski et al. (2019)). Instead, they tend to be
concentrated in so-called recombination hotspots (Lichten and Goldman, 1995; Tock and Henderson, 2018).

In many mammals, the position of recombination hotspots is determined by the zinc-finger protein Prdm9,
which binds specific DNA motifs and recruits the DSB machinery through histone methylation (Baudat et al.,
2010; Myers et al., 2010; Parvanov et al., 2010; Diagouraga et al., 2018). This gene is highly polymorphic
and hundreds of alleles have been reported in mice and humans (Buard et al., 2014; Kono et al., 2014; Alleva
et al., 2021). Most allelic diversity is concentrated on residues of the zinc fingers that interact with the
DNA, leading to changes in DNA sequence specificity. Therefore, the position of recombination hotspots
varies within a population and between species (Auton et al., 2012; Smagulova et al., 2016; Alleva et al.,
2021). Additionally, Prdm9 tends to erode its targets through gene conversion (Baker et al., 2015; Smagulova
et al., 2016). As the available targets for a given Prdm9 allele become scarce, its ability to generate enough
COs for meiosis to succeed is compromised. A new allele with more targets will then be positively selected
leading to a red-queen dynamic accelerating the turnover of recombination hotspots (Úbeda and Wilkins,
2011; Latrille et al., 2017; Baker et al., 2022; Genestier et al., 2023). It has also been proposed that when
Prdm9 binds symmetrically both homologs, it facilitates the repair of DSBs as COs and thereby contributes
to the success of meiosis (Davies et al., 2016; Li et al., 2019; Hinch et al., 2019). Indeed, experiments in mice
and rats showed that an inactivation of this protein drastically reduces fertility (Mihola et al., 2019, 2021;
Brick et al., 2012).

Despite its central role in recombination, Prdm9 has been repeatedly lost in vertebrates. (Baker et al.,
2017; Cavassim et al., 2022). Among amniotes, one loss occurred in the ancestor of archosaurs (crocodiles and
birds) (Singhal et al., 2015; Cavassim et al., 2022), and another one in the ancestor of canids (dogs, wolves
and foxes) (Oliver et al., 2009; Axelsson et al., 2012; Auton et al., 2013). In dogs and several passerines,
studies based on linkage disequilibrium (LD) showed that recombination hotspots tend to occur in CpG
islands, and more specifically in hypomethylated ones in dogs (Auton et al., 2013; Berglund et al., 2015;
Singhal et al., 2015; Kawakami et al., 2017). Likewise, the DSB hotspots of a mouse whose Prdm9 has
been inactivated through a knock-out (PRDM99/9) also occur in promoter-like features (Brick et al., 2012).
Interestingly, an increase of recombination rate near promoters has also been observed in plants and yeasts,
which lack Prdm9 (Petes, 2001; Marand et al., 2017).

Those observations led to the conclusion that there exist two types of recombination landscapes in verte-
brates. The first one is Prdm9-dependent, fast evolving with recombination targeted away from functional
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elements, while the second is relatively stable, with recombination occurring in promoter-like feature such
as CpG islands. However, a recent finding in snakes challenged this binary view. In rattle snakes and corn
snakes, which still possess a functional Prdm9, some hotspots are directed by Prdm9, but others are directed
toward CpG islands (Schield et al., 2020; Hoge et al., 2023). It was first proposed that Prdm9 could have
a different role in rattle snake and direct recombination towards CpG islands (Schield et al., 2020), but
other observations suggest that the recombination landscapes in these snakes rather reflects the inefficiency
of their Prdm9-dependent pathway to direct DSBs away from CpG islands (Hoge et al., 2023). Altogether,
the two studies concur on the fact that the recombination landscape in snakes differs from what is observed
in mammals, despite the presence of Prdm9 (Schield et al., 2020; Hoge et al., 2023).

Most of our knowledge about Prdm9 function and evolution has been acquired in a handful of mammals
(mostly human and mice). In mice, Smagulova and colleagues analyzed the position of DSB hotspots in
strains carrying different Prdm9 alleles (Smagulova et al., 2016). Those strains showed differences in their
capacity to target DSBs away from the hotspots of the Prdm99/9 mouse (hereafter referred to as ’MDH’,
for ’Mouse Default Hotspots’). Some strains show a significant deficit of DSB hotspots at MDH loci, while
others, carrying less dominant Prdm9 alleles, show up to a 6-fold DSB hotspot enrichment at these loci, even
though they represent a small proportion of all recombination hotspots (∼7%) (Smagulova et al., 2016). This
shows that even when Prdm9 is present, Prdm9-independent hotspots can be active in mammals. However,
this activity could just be the reflection of a specific Prdm9 deficiency in some mice strains and overall,
we still have no clear idea on how prevalent the usage of Prdm9-independent hotspots is in mammals. A
comprehensive understanding would require measures of fine-scale variations in recombination rate for a wide
range of mammalian species, and ideally across long periods of time.

Recombination hotspots can be mapped directly in meiotic cells (e.g. by chromatin immunoprecipitation
with antibodies to DMC1 (Brick et al., 2012; Pratto et al., 2014; Smagulova et al., 2016; Alleva et al., 2021)),
but these molecular approaches are tedious and only amenable for a few model organisms. High-resolution
recombination maps can also be inferred from patterns of linkage disequilibrium (LD). This approach is more
scalable and provides information on sex-averaged historical recombination activity at the population scale.
However, this approach remains laborious and expensive (it requires the sequencing of at least 10 individuals
per species (Auton and McVean, 2007; Chan et al., 2012)), and it is sensitive to various sources of errors
(Spence and Song, 2019; Samuk and Noor, 2022; Raynaud et al., 2023). Hence, for now, such LD-based
recombination maps are available only for a very limited number of species.

Alternatively, substitution patterns have been found to be informative about past recombination rates.
In particular, it has been shown in mammals that recombination induces a transmission bias of GC alleles
through the process of GC-biased gene conversion (gBGC). This eventually leads to an elevation of the WS
substitution rate (AT to GC), and a decrease of the SW substitution rate (GC to AT) (Nagylaki, 1983;
Duret and Arndt, 2008; Glémin, 2010). The substitution rate matrix can be conveniently summarized by a
single parameter, the equilibrium GC-content (hereafter noted GC∗), which corresponds to the GC-content
that sequences would reach if the pattern of substitution observed in that branch remained constant over
time (Duret and Arndt, 2008). GC∗ correlates well with the strength of DSB hotspots in mice (Clément and
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Arndt, 2013), with the LD-based recombination rates in humans (Munch et al., 2014; Glémin et al., 2015),
and with the LD-based strength of recombination hotspots in dogs (Axelsson et al., 2012; Auton et al., 2013).
Moreover, GC∗ reflects the recombination activity along the entire branch where substitution patterns are
analyzed, and hence can inform about past recombination events that are no longer detectable with methods
measuring recombination in individuals or populations (Lesecque et al., 2014; Munch et al., 2014). This
provides insights on the long term use of Prdm9-independent hotspots, integrated over long periods of time,
probably encompassing the rise and fall of several Prdm9 alleles. However, variation in GC∗ between species
cannot be directly interpreted as variations in recombination rates alone, since GC∗ also depends on the
mutation bias towards AT, the repair bias towards GC, the effective population size and the mean length of
the conversion tracts (Eyre-Walker, 1999; Glémin, 2010).

In this study, we present an estimator of relative recombination rates based on substitution patterns that
allows us to directly compare fine-scale recombination rate variations in a wide range of species using only
3 genomes (one focal genome, a sister species and an outgroup). We then use it to assess the recombination
activity at MDH loci in 52 species spanning the diversity of boreoeutherians. We reveal a high heterogeneity
in the use of these Prdm9-independent hotspots. We show that Prdm9 alleles in humans and mice have
been particularly efficient at directing DSBs away from Prdm9-independent hotspots but that these two
species are not representative of all mammals. Finally, we show that three species, namely the southern
elephant seal, the ring-tailed lemur and the daurian ground squirrel, have used Prdm9-independent hotspots
as much as Prdm9-deficient canids. This shows that the two kinds of hotspots-regulation mechanisms that
have been described so far in vertebrates are not mutually exclusive and that the fine-scale recombination
landscapes of many mammals are much closer to those of birds and other Prdm9-lacking amniotes than
previously thought. We further show that the recombination activity observed at MDH loci in Prdm9-
containing mammals depends on the conservation of their DNA methylation pattern, which suggests a link
between the evolution of DNA methylation and of Prdm9-independent recombination landscapes.

Results

Conservation of recombination hotspots between Prdm9-deficient mammals

In finches and flycatchers, the fine-scale recombination landscape has been shown to be stable through time,
as a large proportion of hotspots are shared between closely related species (Singhal et al., 2015; Kawakami
et al., 2017). To test whether loci corresponding to Prdm9-independent hotspots are also evolutionary stable
in mammals, we analyzed the overlap between recombination hotspots detected in dogs, which naturally lack
Prdm9, and those identified in the Prdm99/9 mutant mouse (MDH). Among the 30,929 MDH, 15,009 (49%)
could be assigned to one-to-one orthologous loci in the dog genome. Among the 7008 dog hotspots identified
in the LD-based recombination map of dogs (Auton et al., 2013), 34% overlap with MDH loci (Suppfig.
S1)(compared to 0.06% expected by chance, given that dog hotspots and MDH loci cover respectively 2%
and 3% of the dog genome). Although this enrichment is very strong, it should be noted that 42% of the
dog hotspots that could be mapped on the mouse genome occur outside of MDH loci (1809/3109) (Suppfig.
S1). This number is difficult to interpret because it has been shown that LD-based methods can produce
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a high number of false positives (Raynaud et al., 2023). Moreover, DSB hotspots are obtained on males
only, while LD maps are sex-averaged. It is also possible that some MDH loci have not been identified as
hotspots in dogs simply because they did not meet the threshold criteria to be defined as such. To avoid
the problem of the arbitrary threshold, we computed the LD-based recombination rate in dogs (from Auton
et al. (2013)) as a function of the distance to the closest MDH loci (Fig. 1A&B) (Auton et al., 2013). We
divided the 30,929 mouse Prdm99/9 hotspots into three equally sized categories of strength, based on DMC1
ChIP-seq read counts (Smagulova et al., 2016). Respectively 5,266 strong MDH, 4,961 medium MDH and
4,781 weak MDH could be mapped on the dog genome. There is a sharp peak of recombination centered on
MDH loci in dogs. This peak is higher for strong MDH and weaker for medium and weak ones (Fig. 1A).
This confirms that many recombination hotspots are conserved between Prdm99/9 mice and dogs, but it does
not rule out the existence of species-specific recombination hotspots. To explore factors that might drive the
evolution of Prdm9-independent hotspots, we analyzed their DNA methylation level in the germline. Indeed,
indirect evidences suggested that recombination hotspots in dogs are associated to germline hypomethylated
regions (HMRs) (Berglund et al., 2015). Using HMRs identified by bi-sulfite sequencing in dog sperm (Qu
et al., 2018), we observed that 74% of dog hotspots are located inside HMRs, which represent only 3.7% of
the dog genome. In mice, the overlap is even stronger: using HMRs identified in mouse sperm (Hammoud
et al., 2014), we observed that out of the 30,929 hotspots found in the Prdm99/9 mutant, 93% are located
within HMRs, which cover only 4.6% of the mouse genome (see methods for details). This indicates that
Prdm9-independent hotspots are associated with DNA hypomethylation both in Prdm99/9 mutant mice and
in canids. Interestingly, 48% of MDH loci are methylated in dog sperm if we restrict the definition of hotspots
to their midpoint (7,186/15,009). This shows that many MDH loci are specifically hypomethylated in mice
but not in dogs. This is consistent with previous observations showing that murid genomes have accumulated
many new HMRs compared to other mammals (Qu et al., 2018). To test whether these shifts in methylation
levels are associated with changes in recombination activity, we computed the LD-based recombination rate
in dogs as a function of the distance to the closest MDH locus, separating those whose midpoints overlap a
HMR in dogs (7,186), and those that do not (7,283)(Fig. 1B). There is a high and pronounced recombination
peak at MDH loci that are hypomethylated in dog sperm (Fig. 1B). In contrast there is almost no elevation
of recombination at MDH loci that are methylated in dogs (Fig. 1B). This confirms that methylation is
clearly associated to recombination hotspots in the absence of Prdm9, and that many Prdm9-independent
recombination hotspots are species-specific.

Equilibrium GC content is a good predictor of past recombination activity

To assess whether equilibrium GC content could be used as a proxy of recombination rate in other species,
we repeated the above analyses using GC∗ instead of LD-based recombination rate (Fig. 1C&D). Strikingly,
the profile of GC∗ perfectly mirrors the LD-based recombination rate profile. It should however be noticed
that the GC∗ peaks are slightly sharper than the LD-based ones (Fig. 1C&D), as are the peaks of DMC1
ChIP-seq read coverage in the Prdm99/9 mouse (Suppfig. S2). This suggests that GC∗ is able to capture
signals of past recombination with a higher spatial resolution than LD.
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Figure 1: A) Dog LD-based recombination rate as a function of the distance to the closest MDH loci. MDH
were divided in three equally sized categories of strength: strong hotspots in red (10-190 FPKM), medium
hotspots in orange (5-10 FPKM) and weak hotspots in blue (0-5 FPKM). The line directly correspond to the
mean value of LD-based recombination rate in a 100 bp window. B) Same as A but MDH loci were divided
in two categories depending on their methylation level in dog sperm. MDH loci that are found outside
hypomethylated regions in dogs are in grey and those found inside hypomethylated regions are in black. C)
& D) Equilibrium GC content in dogs as a function of the distance to the closest MDH loci. Using the same
partitions of hotspots as A) and B). Points correspond to the mean value of GC∗ in a 100 bp window. The
line correspond to a smoothing of the data with a loess function.

Estimation of the relative recombination rate in Prdm9-independent hotspots

Following a large body of literature, we showed that GC∗ can be very informative on intra-genomic recom-
bination rate variations (Pessia et al., 2012; Auton et al., 2013; Clément and Arndt, 2013; Lartillot, 2013;
Munch et al., 2014; Glémin et al., 2015; Singhal et al., 2015; Figuet et al., 2015; Boĺıvar et al., 2016; Galtier
et al., 2018; Charlesworth et al., 2020). However, the height of the GC∗ peak in hotspots is difficult to
interpret in term of recombination rate because it is also affected by other parameters (the length of gene
conversion tracts, the mutation bias towards AT, the mismatch repair bias towards GC and the effective
population size), which can vary between species (Lartillot, 2013; Galtier et al., 2018; Galtier, 2021). We
thus derived an estimator that can capture the relative recombination rate at Prdm9-independent hotspots
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that controls for those parameters and is therefore comparable between species. Using the probability of
fixation of AT and GC alleles in presence of gBGC derived by Nagylaki (1983), we obtained an expression
of the ratio of the recombination rate within hotspots relative to their flanking regions (see details in the
Methods). This relative recombination rate only depends on GC∗ inside hotspots and in flanking regions,
and on the mutation bias (GCµ).

rhot

rflank
= logit(GC∗

hot) − logit(GCµ)
logit(GC∗

flank) − logit(GCµ) (1)

where rhot is the recombination rate in hotspots, rflank the recombination rate in flanking regions and
GCµ the GC content expected under mutation only. It should be noted that rhot and rflank encompass all
recombination events that can lead to gBGC (potentially COs and/or NCOs).
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Figure 2: Overview of the method for inferring relative recombination rates in Prdm9-independent hotspots.
A) We call substitutions using parsimony on trios of closely related species after having masked CpG din-
ucleotides. B) We compute GC∗ in 400 bp windows centered on the midpoint of the Prdm9-independent
hotspots, and GC∗ in the flanking regions (from 5 to 8 kb upstream and downstream of the center of the
Prdm9-independent hotspot. C) We compute the distribution of GC∗ in 200 kb windows and take the 1st

percentile as the GC∗ of new mutations. D) Using the probability of fixation of AT and GC alleles in pres-
ence of gBGC derived by Nagylaki (1983), we compute the relative recombination rate as a function of the
three values of GC∗ (see methods).

For the rest of the study, hotspots are defined as the 400 bp regions centered on their midpoint, and
flanking regions as those spanning from 5 to 8 kb upstream and downstream of the hotspots (Fig. 2A).
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Using the three values GC∗
hot, GC∗

flank and GCµ, it is possible to compute a measure of the relative
recombination rate within hotspots compared to their flanking regions, which can then be compared between
species. Equation 1 holds true under the assumption that the other four parameters affecting the strength
of gBGC (effective population size, mismatch repair bias, length of the conversion tract and the mutation
bias) do not differ between the hotspots and their flanking regions (see Methods). As shown in the previous
section, Prdm9-independent hotspots are often hypomethylated. This implies that the mutation rate from
CpG to TpG or CpA in hotspots is lower than in the flanking regions, which violates our assumption of a
constant mutation bias. To avoid this problem, we excluded CpG sites from all the analyses.

GC∗
hot and GC∗

flank can easily be computed from the substitutions in Prdm9-independent hotspots and
their flanking region but GCµ is more difficult to estimate. Interestingly, it has been shown that genome-
wide variations of GC∗ are mainly the result of gBGC, and that GCµ is quite constant along chromosomes,
despite large-scale variation in mutation rates (Smith et al., 2018). An approach to estimate GCµ consists
in measuring variation in substitution patterns along the genome, and to consider the regions of the genome
with the lowest GC∗ as a proxy for GCµ (Lartillot, 2013). Following this logic, we divided the genome of
each species in windows of 200kb, and defined GCµ as the value of the first percentile of the distribution of
GC∗ to avoid outliers (Fig. 2B) (see methods for detailed justifications). This method allows us to estimate
GCµ for a wide range of species, simply based on substitution patterns in the terminal branch.

Prdm9-independent recombination hotspots are active in most mammals

Using this estimator of relative recombination rate, we assessed whether MDH loci showed an enrichment of
recombination in other mammals. We identified MDH orthologous loci in the genome of 51 other mammals
and estimated the relative recombination rates at these loci using the method described above (gBGC-
based relative recombination rates). Around 75% of the species (39/52) show a significant enrichment of
recombination in MDH loci compared to flanking regions (Fig. 3). In 77% of those species (30/39), the
recombination activity at MDH loci is conserved, with strong MDH loci showing a significantly higher
recombination enrichment than weak ones (Fig. 3). The remaining 23% of species (9/39) show a lower
recombination activity in Prdm9-independent hotspots. Therefore, we might be lacking statistical power to
confirm a conservation of hotspot strength in those species (Fig. 3). Interestingly, in 10% of species (5/52),
including mice, there is less recombination in strong Prdm9-independent hotspots compared to weak ones,
which is consistent with the active deviation of recombination away from those sites observed in those mice
having the most dominant Prdm9 alleles (Smagulova et al., 2016). The causes for this active deviation are
however not clear (Smagulova et al., 2016).

To test whether as in dogs, methylation plays a role in determining hotspots in other mammals, we
separated MDH loci in two subsets: loci for which the hypomethylation pattern is conserved between mice
and dogs (and thus likely to be consistently hypomethylated in other mammals as shown in Qu et al. (2018)),
and loci that are hypomethylated in mouse but not dogs (a majority of which corresponding to mouse-specific
HMRs (Qu et al., 2018)). For MDH loci whose hypomethylation pattern is not conserved, we observed a
very weak increase in recombination in all species (Suppfig. S4).
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Figure 3: Relative recombination rates at at loci orthologous to mouse Prdm99/9 DSB hotspots (MDH loci)
in 52 mammals. MDH loci were binned in 3 equally sized categories of strength based on the number of
DMC1 Chip-seq reads of Prdm99/9 DSB hotspots. The number of MDH loci for each category varied from
∼4,000 in Myotis brandtii to ∼9,000 in Mus spretus (see details in Supplementary Table 1). The tree has
been retrieved from TimeTree5 (Kumar et al., 2022). Species with a complete Prdm9 are written in black,
in grey species for which we failed to find a complete Prdm9 in the reference genome assembly, and in red
the 5 canids (where Prdm9 is a pseudogene). Error bars correspond to a 95% confidence interval obtained
by bootstrapping the substitutions for computing GC∗

flank and GC∗
hot. We considered the recombination

enrichment to be significant if the confidence interval is above one.
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Conversely, MDH loci with a conserved hypomethylation pattern, show contrasting levels of recombina-
tion activity: 25% of species (13/52, including mice and humans) show a deficit of recombination at these
loci, 12% (6/52) show no elevation of recombination, whereas 63% (33/52) show a strong recombination
activity. This indicates that DNA hypomethylation is associated with a deficit of recombination in some
species (such as mice and humans), while it is associated with recombination hotspot in others. This latter
group includes the 5 canids (which all lack Prdm9), but also many other mammals with an intact Prdm9.
This shows that DNA hypomethylation can be associated with recombination hotspots even in the presence
of Prdm9.

To get further insight into the evolution of Prdm9-independent hotspots in mammals, we measured the
relative activity at loci orthologous to dog LD-based recombination hotspots (DRH for ’Dog Recombination
Hotspots’) in the 51 other mammals. We observed a strong correlation between the recombination activity
at MDH loci and DRH loci (Suppfig S5), which is expected since they largely overlap. Nevertheless, species
that are phylogenetically closer to dogs show higher recombination activity in DRH loci whereas those
phylogenetically closer to mouse show higher recombination activity in MDH loci (Suppfig S5). This confirms
that despite a general conservation, Prdm9-independent hotspots are still evolving in mammals.

Canids, which all lack Prdm9, dominate the list of species that exhibit the highest recombination levels at
MDH loci, holding top ranks out of 52 (Fig. 4A). This finding both shows that the recombination landscape
is stable in canids as it is in passerines, and validates our relative recombination rate estimator (Fig. 4A).
Interestingly, there are several other mammals that show a similar enrichment of recombination activity at
MDH loci. Notably, three species show a recombination activity at MDH loci significantly higher than some
of the canids: ring-tailed lemurs (Lemur catta), southern elephant seals (Mirounga leonina) and daurian
ground squirrels (Spermophilus dauricus) (Fig. 4A).

It should be noted that these three species encode a full-length Prdm9, encompassing the four protein
domains (KRAB, SSXRD, SET and the zinc finger array). The Prdm9 allele represented in the reference
genome assembly contains 11 zinc fingers in daurian ground squirrels, and 14 zinc fingers in ring-tailed
lemurs. For the southern elephant seal, there is only one complete zinc finger represented in the reference
genome because of an assembly gap within the array. In ring-tailed lemurs and daurian ground squirrels,
the comparison of zinc finger sequences showed an excess of amino-acid changes relative to the neutral
expectation, particularly at positions -1, 3, and 6 that are involved in DNA binding, (SuppFig. S6).

This suggests that Prdm9 has been subject to positive selection in these two lineages, which is suggestive
of the red-queen dynamic that is expected when Prdm9 determines the location of recombination hotspots.
Thus, Prdm9 does not show any sign of pseudogenization or functional change in these three species where
Prdm9-independent hotspots appear to have been particularly active.

As an illustration of our substitution-based approach, we plotted GC∗ as a function of the distance to
the closest strong MDH loci in dogs, humans, mice and the three outlier species (Fig. 4B). We observed no
elevation of GC∗ in humans and mice in strong MDH loci, confirming that very little recombination occurred
in their lineage (Fig. 4B). In dogs, ring-tailed lemurs, southern elephant seals and daurian ground squirrels,
there is a pronounced peak of GC∗ at strong MDH loci (Fig. 4B).
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Figure 4: (A): Sorted relative recombination rate in strong DSB hotspots (>10 FPKM) of a Prdm9 -/-
mouse in 52 mammals. Error bars correspond to a 95% confidence interval obtained by bootstrapping the
substitutions for computing GC∗

flank and GC∗
hot. (B): GC∗ as a function of the distance to the center of

the closest MDH locus for humans, mice, dogs, and the three outlier species. Each point corresponds to an
estimation of GC∗ in a 100 bp window.

Discussion

The current paradigm is that vertebrates either possess a full-length functional Prdm9, recombine away
from promoter-like features, and display a fast evolving recombination landscape, or they lack a functional
Prdm9 in which case they consistently recombine in CpG islands (e.g. in canids, birds or the swordtail
fish) (Baker et al., 2017). Our results revealed that there is a continuum between these two types of
recombination landscapes and that despite the presence of Prdm9, some species use Prdm9-independent
hotspots as much as canids. We showed that the activity of those Prdm9-independent hotspots is highly
dependent on DNA hypomethylation. This implies that despite a general conservation, Prdm9-independent
recombination hotspots are evolving slowly, in concert with germline DNA hypomethylation (Qu et al., 2018;
Berglund et al., 2015).

From a methodological perspective, while signatures of gBGC have been commonly used in studies of
recombination landscapes (Axelsson et al., 2012; Auton et al., 2013; Munch et al., 2014; Lesecque et al.,
2014; Singhal et al., 2015; Charlesworth et al., 2020; Hoge et al., 2023), the approach presented here allows
to quantify gBGC-based relative recombination rates along a branch that are comparable between species.
The analysis of gBGC signatures only requires the genome of three closely related species, and is able to
detect recombination activity at a given set of loci with a very high spatial resolution, even better than LD-
based methods (compare Fig. 2D and 2B). It thus offers the possibility for large-scale comparative studies
of fine-scale recombination landscapes. However, this approach requires a large number of substitutions to
estimate GC∗ precisely and is therefore not appropriate to measure recombination at a single locus.
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Moreover, it should be noted that our estimation of recombination activity using gBGC does not allow
one to conclude on the nature of recombination events (COs or NCOs) that we detect at Prdm9-independent
hotspots. In humans, there is evidence that both COs and NCOs induce gBGC but in mice, only NCOs
appear to do so (Williams et al., 2015; Arbeithuber et al., 2015; Halldorsson et al., 2016; Li et al., 2019).
This suggests that the type of recombination events triggering gBGC can vary among mammals. Thus,
it is possible that while a large number of DSB occur at Prdm9-independent hotspots in our three outlier
species, COs still tend to be associated to Prdm9-directed hotspots. Altogether, while the enrichment of
recombination events in Prdm9-independent hotspots is very clear in numerous mammals, the way they are
repaired remains to be explored.

On the maintenance of a default hotspot regulation mechanism

It had been previously demonstrated that both Prdm9-dependent and Prdm9-independent pathways coexist
in two snakes genera (Hoge et al., 2023). The authors suggested that a change in the binding affinity of a gene
which operates downstream of Prdm9 could explain this coexistence (Hoge et al., 2023), and that selection
may be operating to fine-tune the usage of Prdm9-independent hotspots in vertebrates (Hoge et al., 2023).
However, these explanations were given based on observations of four closely related species of colubroids
(a subgroup of snakes). Variations observed in a wider range of taxonomic levels is needed to prove the
existence of a continuum and to give insight into the determinant of Prdm9-independent hotspot usage in
species possessing Prdm9.

In placental mammals we revealed that the coexistence of both Prdm9-dependent and Prdm9-independent
pathways to direct DSBs is pervasive. We showed that those pathways determine recombination hotspots
with varying proportions across species. Interestingly, these variations do not show a strong phylogenetic
structure, suggesting that this evolution can be very rapid. Furthermore, the species with the highest levels
of Prdm9-independent hotspot usage have quite contrasted life history traits, which they mostly share with
sister species with lower Prdm9-independent hotspot usage. Thus, selective reasons for which their Prdm9-
independent hotspot usage is that high are difficult to imagine. Moreover, in mice, even if the usage of
Prdm9-independent hotspots is quite low overall, there exist substantial variations that seem to depend only
on Prdm9 alleles (Smagulova et al., 2016).

These observations rather suggest an alternative explanation for the variations in the usage of Prdm9-
independent hotspots in boreoeutherians. Overall, proper chromosome pairing can be achieved through the
two different pathways mentioned above (Prdm9-dependent or Prdm9-independent). When the efficiency
of one pathway is altered, better chromosome pairing can be restored either by a mutation restoring the
efficiency of the altered pathway, or by a mutation increasing the efficiency of the other pathway. For the
Prdm9 pathway, we know that alleles inevitably decrease in efficiency due to the erosion of their high affinity
targets, which reduces the probability of symmetrical binding, and thus impairs efficient chromosome pairing
(Baker et al., 2015, 2022; Latrille et al., 2017; Genestier et al., 2023). This efficiency can be restored either
by a new Prdm9 allele inducing a red-queen dynamic (Úbeda and Wilkins, 2011; Latrille et al., 2017; Baker
et al., 2022; Genestier et al., 2023), but also by a mutation increasing the efficiency of the Prdm9-independent
pathway. Every mutation increasing the efficiency of the Prdm9-independent pathway lessens the deleterious
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effect of a mutation that reduces Prdm9 efficiency. Conversely, new efficient Prdm9 alleles will lessen the
deleterious effect of a mutation that decreases the efficiency of the Prdm9-independent pathway.

Of note, if this dynamic reaches a point where the Prdm9-independent pathway becomes sufficient for
correct chromosome pairing, Prdm9 can be lost without strong fitness consequences. Under this model,
Prdm9 is lost through the accumulation of small effect mutations which reduce its utility, rather than a
sudden loss that would imply very inefficient selection. The continuum in the use of Prdm9-independent
hotspots we observe in mammals could reflect different stages along this path, and despite still having a fully
functional Prdm9, our three outlier species could be on their way of losing it. It is also possible that their
Prdm9 have only been going through a temporary inefficient phase, which have been compensated by the
Prdm9-independent pathway, but has now been rescued by a new efficient Prdm9 allele.

The recombination landscape of amniotes

Overall, our results suggest that in addition to Prdm9-directed hotspots, many mammals share some of their
recombination hotspots with other amniotes, (Axelsson et al., 2012; Singhal et al., 2015; Schield et al., 2020;
Hoge et al., 2023), and therefore the fine-scale recombination landscapes of mammals, birds and snakes is
probably more similar than previously thought (Baker et al., 2017). However, the determinants of Prdm9-
independent hotspots usage remain unclear. Interestingly DNA methylation has also been found to be a
suppressor of recombination in a fungi hotspot (Maloisel and Rossignol, 1998), in plants (He et al., 2017;
Choi et al., 2018), and in honey bees (Wallberg et al., 2015), which suggests that local hypomethylation is a
common determinant of recombination hotspots in eukaryotes. However, the association between hypomethy-
lation and recombination has not been formally established in non-mammalian amniotes and remains to be
tested. Moreover, this association need not be causal, as the potentially diverse molecular mechanisms of
Prdm9-independent recombination in amniotes remain largely unknown. In particular, the results presented
here suggest that despite having lost Prdm9, red foxes (Vulpes vulpes) and african wild dogs (Lycaon pictus)
have only a mild recombination enrichment in Prdm9-independent hotspots compared to other canids. It has
been previously noted that the number of recombination hotspots varies between Prdm9-deficient amniotes.
Notably in finches and flycatchers, only few LD-based hotspots have been reported compared to dogs (Auton
et al., 2013; Singhal et al., 2015; Kawakami et al., 2017). Altogether, it is still not clear what drives the
concentration of recombination events in absence of Prdm9, and why some species have numerous hotspots
and others less.

Finally, the widespread use of Prdm9-independent recombination hotspots demonstrated in the present
study is likely to have important consequences for genome evolution. In particular, the fact that gBGC is
stronger in hypomethylated regions in numerous mammals and in several passerines provides a convincing
explanation for the widespread GC-richness of CpG islands in amniotes.
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Material & Methods

Prdm9-independent hotspots and DNA methylation datasets

Data on the location of DSB hotspots in Prdm99/9 knock-out mice , detected by DMC1 ChIP-seq experiment,
were retrieved from the study by Smagulova et al. (2016). The dog LD-based recombination map and the
position of hotspots were retrieved from the study of Auton et al. (2013). We excluded hotspots that were
larger than 20 kb as they do not fit the definition of hotspots. Data sets of hypomethylated regions in mouse
and dog sperm (identified using Bi-sulfite sequencing) were retrieved from the literature (Hammoud et al.,
2014; Qu et al., 2018). Even though methylation data on spermatocytes would have been more fit for the
task at hand, only sperm is available in the literature for dogs.

Whole genome alignments

For most mammals except canids, felids and phocids, whole genome alignments (WGAs) were obtained from
Genereux et al. (2020). In order to get further phylogenetic resolution in canids, and in closely related
outgroups, we generated a WGA of high quality genomes for 19 carnivores downloaded from NCBI (Supple-
mentary Table 3), using the Progressive Cactus aligner (v1.3.0) (Armstrong et al., 2020). We first defined a
”guide” species tree using the topology obtained from TimeTree5 (Kumar et al., 2022). To streamline the
computational process, we ran Progressive Cactus separately for canids, felids and phocids species, using
different ”–root” options on the same guide tree. We created a root alignment by running Progressive Cactus
with the inferred ancestral genome of each of the three clades. We obtained the final WGA using the ”ha-
lAppendSubtree” command to iteratively include the three sub-alignments at the corresponding ancestral
nodes (Hickey et al., 2013).

Defining orthologous regions

To find the orthologous regions of the Prdm9-independent hotspots in the genomes of other mammals we
used halLiftover (Hickey et al., 2013). We first made a liftover from the mouse/dog genome to the target
genome using the midpoint of each feature and removed multi-mapping features. Then we lifted back the
single-mapping features from the target genome to the dog/mouse genome and again removed multi-mapping
features. This approach ensures that all orthologous loci were one-to-one.

Hotspots overlap

We considered hotspots to be overlapping if their midpoint was at less than 5 kb one from another. This is
equivalent to a strict overlap for hotspots defined as 5 kb windows centered on their midpoint. Using this
approach, we calculated the percentage of the genome covered by the hotspots by multiplying the number
of hotspots by 5,000, and dividing by the assembly size. For the overlap with HMRs we defined hotspots as
the 5 kb windows centered on their midpoint and kept the size of HMRs defined in the study of Qu et al.
2018 (Qu et al., 2018). The percentage of the genome covered by HMRs was computed as the sum of all
HMR sizes divided by the assembly size.
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Substitution mapping

We selected trios of closely related species such that the divergence between the three species was low enough
to avoid double substitutions, but with an outgroup distant enough to avoid incomplete lineage sorting based
on the guide tree used in the Zoonomia WGA (Genereux et al., 2020). We tried to take trios spanning the
diversity of boreoeutherians, avoiding over-sampling of disproportionately represented groups (primates and
artiodactyles). A complete list of the trios used are available in Supplementary table 4. A posteriori, it
appeared that there were substantial variations between the branch lengths used to map substitutions, but
we showed that the divergence was still low enough ( < 2.5%) and did not influence our result (Suppfig.
S7). Genome quality was very variable. We thus controlled that genome quality (approximated by the
N50 statistics) did not influence our results (Suppfig. S8). To call substitutions, we retrieved multispecies
alignment using hal2maf (Hickey et al., 2013). We excluded alignment blocks which size was inferior to 50
bp to avoid poorly aligned regions, and duplicated regions. We then excluded CpG sites (sites for which at
least one of the three species has a CpG) to avoid convergent mutations. Finally, we called substitutions
using parsimony as depicted in Fig. 2.

Measures of equilibrium GC content

We compute the equilibrium GC content as follows:

GC∗ = WS/W

WS/W + SW/S
(2)

With W the AT content of the region (CpG masked), S the GC content of the region (CpG masked),
WS the number of Weak to Strong substitutions and SW the number of Strong to Weak substitutions.

LD-based recombination rate and GC∗ profiles around hotspots

We cut the genome in windows of 100 bp. We extracted the LD-based recombination rate for each window.
We also computed the distance between the midpoint of the window and the closest midpoint of a hotspot
using bedtools closest (Quinlan and Hall, 2010). We then made bins of distances to the closest hotspot
every 100 bp. For GC∗, we repeated the same procedure, but we computed the counts of WS and SW
substitution for each window, and then computed GC∗ using the total substitutions count for all windows
in each distance bin as described in the previous section.

Estimation of the mutation bias

Germline mutations rates have been measured by sequencing parent–offspring trios in 36 mammalian species
(Bergeron et al., 2023). However, for most species, the number of detected mutations is too limited (typically
less than 100 de novo mutations) to estimate GCµ accurately. Thus, measures of GCµ based on empirical
data are associated with very large confidence intervals (Wong et al., 2016; Milholland et al., 2017; Wang
et al., 2020). Even when there is enough statistical power, the results vary substantially between different
datasets (Wong et al., 2016; Milholland et al., 2017). In addition to the issue of reproducibility, it has been
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demonstrated that the mutation spectra can vary rapidly within human populations (Harris and Pritchard,
2017). Therefore, GCµ estimated from living individuals may not necessarily reflect the average GCµ in
the terminal branch. We therefore took a similar approach to (Lartillot, 2013). We divided the genomes in
windows of 200 kb and took the value of the first percentile of GC∗ as an estimate of GCµ. To ensure that
our results were not sensitive to our estimation of GCµ, we used different thresholds to compute it (Suppfig.
S3B&C), and recovered the same results. We also controlled that our gBGC-based relative recombination
rates were not correlated to our estimations of GCµ (Suppfig. S3A).

Estimation of relative recombination rates from GC∗

Using a Wright-Fischer diffusion approximation and assuming that mutations are selectively neutral, the
rate of Weak-to-Strong substitution in a given branch can be written as follows (Nagylaki, 1983)

qW S = 2NeµW S
2b

1 − e−4Neb
T (3)

where µSW is the mutation rate per generation from W to S, b the gBGC coefficient, T the divergence
time from the ancestral node in generations, and Ne the effective population size.

The gBGC coefficient is directly linked to the recombination rate, with b = b0rl where r is the recombi-
nation rate per base pair per meiosis, b0 the repair bias, and l the length of the conversion tract in base pair.
It should be noted that r encompasses all recombination events that can lead to gBGC (CO and/or NCO)

Similarly, the rate of Strong-to-Weak substitutions can be written as follows:

qSW = 2NeµSW
2b

e4Neb − 1T (4)

The equilibrium GC content can be written as follows:

GC∗ = qW S

qW S + qSW
(5)

Thus, we can write:

GC∗

1 − GC∗ = qW S

qSW
(6)

Simplifying the previous equations we obtain:

GC∗

1 − GC∗ = µW S

µSW
e4Neb (7)

Thus, the population-scaled gBGC coefficient. (B = 4Neb) can be written as:

B = log( GC∗

1 − GC∗ ) − log(µW S

µSW
) (8)
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or:
B = logit(GC∗) − logit(GCµ) (9)

where GCµ is the equilibrium GC content under the mutational bias only (GCµ = µW S

µSW +µW S
).

Let us note Bhot the population-scaled gBGC coefficient within hotspots:

Bhot = logit(GC∗
hot) − logit(GCµ

hot) (10)

And Bflank the population-scaled gBGC coefficient in their flanking regions (defined here as 3kb-long
segments, located at 5-kb of the hotspot center, Fig. 2A)

Bflank = logit(GC∗
flank) − logit(GCµ

flank) (11)

B depends on b0, Ne, land r (B = 4Nerb0l). The first three parameters ( b0, Ne, l) are not expected to
differ between the hotspot and their flanking regions. Thus, the ratio between the recombination rate within
hotspot (rhot) over the recombination rate in their flanking regions (rflank) can be written as:

rhot

rflank
= Bhot

Bflank
(12)

And thus, under the assumption that the mutational bias does not differ between hotposts and their
flanking regions (i.e. GCµ

hot = GCµ
flank = GCµ)

rhot

rflank
= logit(GC∗

hot) − logit(GCµ)
logit(GC∗

flank) − logit(GCµ) (13)

Annotation of Prdm9 in mammals

We investigated the presence of Prdm9 homologs in each of the 52 species analyzed. The full-length Prdm9
isoform encompasses four domains (KRAB, SSXRD, SET and the zinc finger array). It is encoded by 10 exons
(corresponding to exons 2 to 11 of human Prdm9, exon 1 being within the 5’UTR): exons 3 and 4 encode the
KRAB domain, exon 7 encodes the SSXRD domain, exons 8-10 encode the SET domain, and exon 11 encodes
the zinc finger array. We first searched for Prdm9 homologs by sequence similarity (Camacho et al., 2009)
against mammalian proteins annotated in RefSeq (https://www.ncbi.nlm.nih.gov/blast/), using the human
protein (NP 001363829.1) as a query. We performed a multiple alignment of the strongest hits, to assess
their completeness: homologs where considered as complete if they encompassed the 10 protein-coding exons,
from the start codon, up to the beginning of the zinc finger array. By this approach, we identified complete
Prdm9 homologs in 16 species (Supplementary Table 2). For the 36 other species, we further analyzed the
corresponding reference genome to identify potential Prdm9 homologs. We performed a TBLASTN search
against reference genomes, using the 16 previously identified Prdm9 as queries, and extracted loci presenting
hits with the zinc finger domain and with at least 2 other Prdm9 exons, within less than 100 kb. Then,
for each candidate genomic fragment, we used GeneWise (Birney et al., 2004) to annotate protein-coding
regions by similarity with a representative complete Prdm9 protein taken from a closely related species. Of
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note, GeneWise does take frameshifts into account, and is therefore appropriate to annotate both genes and
pseudogenes. In most species we identified one single candidate locus per genome. When several loci were
found, we retained the one(s) encoding the most complete protein. By this approach, we identified Prdm9
loci in all 36 species, 25 of which encode a complete Prdm9 protein. Thus, in total, we identified complete
Prdm9 proteins in 41 of the 52 species analyzed. In agreement with previous reports ((Axelsson et al.,
2012; Auton et al., 2013)), we found Prdm9 to be pseudogenized in the 5 canids (Lycaon pictus, Canis lupus
familiaris, Vulpes lagopus, Vulpes vulpes, Nyctereutes procyonoides). In the 6 remaining cases, we failed to
annotate a complete Prdm9 protein: either several exons were missing (Myotis lucifugus, Myotis brandtii,
Leptonychotes weddellii, Colobus angolensis), or the gene contained one exon with a frameshifting mutation
(respectively in exon 8 in Saimiri boliviensis and in exon 10 in Lipotes vexillifer). In absence of data from
more individuals, it is difficult to state whether these cases result from sequencing errors or assembly artefacts
or if they correspond to bona fide pseudogenes. We therefore tentatively annotate these 6 cases as ‘partial’
Prdm9. The number of zinc fingers in the annotated proteins vary from 0 to 14. This number should however
be considered with caution because the zinc finger array is encoded by a highly polymorphic minisatellite
repeat, which is prone to errors during genome assembly. The detailed list of Prdm9 sequences is given in
Supplementary Table 2 and the corresponding protein multiple alignment is given in Supplementary Data 1.
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7.1 Two types of recombination hotspots in
eukaryotes

In the previous chapter, we showed that two types of recombination hotspots coexist in
placental mammals. They correspond to the only two types of hotspots that have been
described in eukaryotes to my knowledge. The first ones were first discovered in yeast,
where a clustering of gene conversion events was observed in 5’ of genes such as ARG4
and HIS4 (reviewed in Lichten and Goldman (1995)). This observation was extended
later to crossovers in many other promoters of protein-coding genes, and is thought to
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be linked to open chromatin (again reviewed in Lichten and Goldman (1995)). Studies
in angiosperms, passerines, snakes and some mammals revealed a very similar pattern,
with recombination hotspots occurring in promoters of protein-coding genes (Brick et al.,
2012; Auton et al., 2013; Choi and Henderson, 2015; Singhal et al., 2015; Kawakami
et al., 2017). Those hotspots appear to be shared by closely related species and are thus
evolutionary stable (Axelsson et al., 2012; Singhal et al., 2015; Lam and Keeney, 2015).
They have been reported in all major clades of eukaryotes, and are therefore thought to be
ancestral to all eukaryotes. In this section, they will be referred to as ancestral hotspots.

The second type of hotspots, which are active in almost all mammals with the notable
exception of canids, are directed by the protein Prdm9 (Parvanov et al., 2010; Baudat
et al., 2010; Myers et al., 2010). This protein first binds a specific DNA motif with its
C2H2 zinc finger array (Parvanov et al., 2010; Baudat et al., 2010; Myers et al., 2010).
Second, it marks histones with H3K4Me3 and H3K6Me36 marks (Brick et al., 2012;
Eram et al., 2014; Powers et al., 2016; Davies et al., 2016; Grey et al., 2017). This signal
is thought to be recognized by a protein (unknown so far) that brings back the motif
to the chromosomal axis, where it will receive a DSB (Baker et al., 2015; Davies et al.,
2016; Li et al., 2019; Hinch et al., 2019). Importantly, when Prdm9 binds its targets on
both homologs, the sequence that do not receive the DSB is also brought back to the
chromosomal axis, thus close to its broken homolog (Baker et al., 2015; Davies et al.,
2016; Li et al., 2019; Hinch et al., 2019). This symmetrical binding enhances the repair
of DSBs as COs, potentially bringing a significant advantage for meiosis success (Baker
et al., 2015; Davies et al., 2016; Li et al., 2019; Hinch et al., 2019; Baker et al., 2022).
The C2H2 zinc finger of Prdm9 having one of the highest mutation rate in the genome,
the protein is extremely polymorphic (Buard et al., 2014; Kono et al., 2014; Alleva et al.,
2021). As different zinc finger arrays usually have different binding motifs, the position of
Prdm9-directed recombination hotspots are usually not conserved between closely related
species (Auton et al., 2012; Lartillot, 2013; Smagulova et al., 2016; Galtier, 2021).

In this section, I will discuss the evolutionary scenarios that may have given rise (or
not) to these different types of hotspots, and what evolutionary forces contributed to
their long-term maintenance.

7.2 The hotspot paradox

In yeasts, when deleting the ARG4 or HIS4 recombination hotspot on one homologous
chromosome only, several studies reported that DSBs systematically occurred on the
intact copy which was systematically converted by the other (Nicolas et al., 1989; Schultes
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and Szostak, 1991; Detloff et al., 1992). This observation revealed whats is called now
the hotspot paradox: if a mutation were to inactivate the functioning of a hotspot, it will
systematically convert the intact copy, and spread quickly in the population (Boulton
et al., 1997). This is another type of biased gene conversion, driven by biased initiation of
DSB (dBGC). Using simulations, Boulton and colleagues showed that this drive was so
strong that neither indirect selection on selection efficiency, nor direct selection for correct
chromosome pairing were sufficient to counteract it (Boulton et al., 1997). In summary,
in the face of mutations, recombination hotspots should not exist. Two different processes
have or may have helped to maintain hotspots despite the hotspot paradox.

As previously said, in many vertebrate species, recombination hotspots are directed
by the protein Prdm9 in specific DNA motifs (Parvanov et al., 2010; Baudat et al.,
2010; Myers et al., 2010). In mice, several studies demonstrate that Prdm9 erodes its
targets through the mechanism of dBGC, leading to hotspot extinction (Baker et al.,
2015; Smagulova et al., 2016). However, mutations on the DNA-binding zinc-finger array
will often change the binding motifs, and therefore provide new targets (Buard et al.,
2014; Smagulova et al., 2016; Alleva et al., 2021). As long as the mutation rate of
Prdm9’s zinc finger is sufficiently high such that new hotpots appear faster than hotspot
erosion, the system stays afloat (Genestier et al., 2023). If the mutation rate is not high
enough, individuals carrying old Prdm9 alleles suffer the fertility cost of this system,
leading to positive selection on new alleles (Oliver et al., 2009; Ponting, 2011; Latrille
et al., 2017). This phenomenon induces a Red Queen-like dynamic, where new alleles
are under pervasive positive selection (Úbeda and Wilkins, 2011; Latrille et al., 2017).

The second option would be to target an epigenetic mark which is more robust
to mutations, and more dependent on context than on the underlying DNA sequence
(Lichten and Goldman, 1995). As we will see in the following section, this appears to
be the case for ancestral hotspots.

7.3 The evolutionary origin of ancestral
recombination hotspots

7.3.1 Selection to maximize Hill-Robertson interference
dissipation

The position of recombination hotspots close to selectively constrained sequences
(protein-coding genes) is a nice way to optimize genetic shuffling between regions that
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have strong effects on fitness. Interestingly, when considering distance as gene counts
rather than physical distance, Brazier and Glémin (2022) showed that the
recombination landscape becomes strikingly uniform in several plant species . It is thus
tempting to interpret this pattern as an evidence for an indirect selective pressure on
the recombination landscape to maximize Hill-Robertson interference dissipation where
it matters most. But if we take a closer look at the mechanisms that determine the
positions of these hotspots, several other interpretations are possible.

7.3.2 Opportunist recombination hotspots in open chromatin
regions

In yeasts, almost all DSB hotspots are sensitive to DNase I and micrococcal nuclease
(Wu and Lichten, 1994, 1995; Ohta et al., 1994). Therefore, it seems that a primary
condition for being a recombination hotspot is nucleosome depletion and open
chromatin (Lichten and Goldman, 1995). This is also true for Prdm9-directed hotspots
outside of gene promoters. Prdm9 has indeed been shown to modify chromatin state
through histone methylation, further stabilized by the histone modification reader
ZCWPW1 (Brick et al., 2012; Davies et al., 2016; Eram et al., 2014; Powers et al.,
2016; Diagouraga et al., 2018; Yuan et al., 2022). For both categories of hotspots, open
chromatin is required for DSB formation. It seems very plausible that in the absence of
a Prdm9-like system that actively opens chromatin prior to DSB formation, hotspots
will naturally occur where the chromatin is already open: in gene promoters. The
location of DSB hotspots would not be the result of an indirect selection pressure, but
a natural consequence of the requirements of protein complexes that need access to
DNA.

7.3.3 Selection to reduce ectopic recombination events

It is worth noting that not all open chromatin regions correspond to recombination
hotspots (Lichten and Goldman, 1995). In dogs and passerines, which both lack Prdm9,
only gene promoters that contain a CpG island are recombination hotspots, suggesting
an association between recombination and DNA methylation (Singhal et al., 2015; Auton
et al., 2013). Despite a general conservation of recombination hotspots between dogs and
a mutant mouse with an inactivated Prdm9, we showed in chapter 6 that the mutant
mouse hotspots that are methylated in dog sperm are inactive in dogs. In Ascobolus
fungi, experimentally induced methylation of the b2 hotspot also leads to its inactivation
(Maloisel and Rossignol, 1998). Finally, in honey bees, genes that are methylated display
a lower rate of cross-overs (Wallberg et al., 2015).
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Methylation of CpG dinucleotides is a widespread mechanism for transposable
elements (TEs) repression in eukaryotes (reviewed in Goodier (2016)). In the plant
Arabidopsis thaliana, but also in the fungi Neurospora crassa, methylation of TEs in
meiosis is thought to be mediated by an interfering double-stranded RNA which
recruits a methyltransferase that methylates CpG dinucleotides (Okamoto and
Hirochika, 2001; Shiu et al., 2001). In vertebrates, a well-diversified family of C2H2
zinc finger proteins (the KRAB-ZNFs) recognize specific motifs associated to TEs, and
eventually recruit a protein that methylates CpG dinucleotides (reviewed in Yang et al.
(2017)). It has been hypothesized that this methylation decreases the risk of ectopic
recombination event by preventing the recombination machinery from accessing
repeated elements (Langley et al., 1988; Maloisel and Rossignol, 1998). It is also very
clear that DNA methylation not only prevents DSBs from occuring in TEs, but
represses TE expression and contributes to limiting the transposition-induced mutation
load in the germline (Hancks and Kazazian, 2016). Altogether both consequences of
DNA methylation are thought to have a positive effect on fitness, and could explain its
persistence (Langley et al., 1988; Maloisel and Rossignol, 1998; Charlesworth et al.,
1997; Roze, 2023). Moreover, even if the main driver of selection for TE methylation is
the minimization of the mutational load through transcription repression, a
recombination machinery that avoids the hallmarks of DNA methylation should in
principle be selected for, as it should drastically reduce non homologous pairing and
ectopic recombination events (Roze, 2023).

The exact nature of the mechanism that keeps recombination away from single copy
hypomethylated regions is stil debated, and can differ between species. It has been
demonstrated that the histone mark H3K4Me3, which is largely localized in
hypomethylated regions, is clearly associated to recombination hotspots (Brick et al.,
2012; Auton et al., 2013; Petes, 2001). In yeast, an inactivation of the H3K4 methylase
Set1 leads to a severe reduction of DSB formation at recombination hotspots (Borde
et al., 2009; Sommermeyer et al., 2013). However, a causal role of H3K4Me3 in the
positioning of hotspots is much more debated in plants (Choi et al., 2018; He et al.,
2017). In fact, in vertebrates, it is hard to dissociate the role of H3K4Me3 marks and
DNA hypomethylation since they virtually always co-localize (Klose and Bird, 2006).
However, in dogs, H3K4Me3 peaks that do not overlap a CpG island show little
increase of recombination, whereas CpG islands devoid of H3K4Me3 marks still
correspond to recombination hotspots (Auton et al., 2013).

If the absence of DNA methylation is the major driver of recombination hotspots, and
not H3K4Me3 marks, species that exhibit low or no DNA methylation should recombine
everywhere, and largely lack recombination hotspots (Zamudio et al., 2015). Intriguingly,
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D.melanogaster and C.elegans, which show negligible levels of methylation display little
fine scale variation of recombination rate (Chan et al., 2012; Kaur and Rockman, 2014).
Second, in mice with a DNA methylation deficient background, the concentration of
DMC1 (indicating DSB activity) increases in TEs, outside of canonical recombination
hotspots. Mugal et al. (2015) also showed that birds’ genome were much less methylated
than those of mammals or fishes. It is thus interesting to note that passerines show
much less recombination hotspots than dogs, based on LD recombination maps (Auton
et al., 2013; Singhal et al., 2015; Kawakami et al., 2017). Finally, in many mammals,
oocytes are much less methylated than the male germline (Bourc’his and Proudhon, 2008;
Zamudio et al., 2015). It is again interesting to note that female dogs use recombination
hotspots significantly less than males (Campbell et al., 2016). All these observations
could suggest that the usage of ancestral recombination hotspots in many vertebrates is
a direct consequence of the genome-wide methylation level. A strong testable prediction
of this hypothesis is that hotspots density in Prdm9-lacking species should correlate
positively with genome-wide levels of DNA methylation.

Overall, the position of recombination hotspots in single copy open chromatin regions
in many eukaryotes could result from selection to avoid methylated repeated regions,
leading to a reduction of harmful ectopic recombination events.

7.3.4 Opportunist recombination hotspots in replication
origins

Another promoter-associated feature that imposes constraints on DSB formation is
replication origins. In several eukaryotes, it has been shown that DNA replication and
DSB initiation are coupled (Borde et al., 2000; Martin et al., 2011; Murakami and
Nurse, 2001; Pratto et al., 2021). In yeasts, Borde et al. (2000) showed that there is a
tight timing of 1.5 to 2 hours between the passage of the replication fork and the
formation of DSB (Borde et al., 2000). When replication is delayed, so is DSB
formation, keeping a constant time interval between the two (Borde et al., 2000). In
humans and mice, it has been shown that DSB formation was favoured in early
replicated regions, no matter the hotspot density (Pratto et al., 2021). In plants,
humans, mice and chicken, replication origins are enriched in promoters, but also
slightly enriched in transcription ending site, consistent with the recombination
patterns observed in several plants and yeasts (Lichten and Goldman, 1995; Choi and
Henderson, 2015; Massip et al., 2019; Pratto et al., 2021).

Overall, the existence of ancestral recombination hotpots could only reflect the
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concentration of replication initiation in promoters.

7.4 The evolutionary advantage of Prdm9-directed
recombination hotspots

An intact version of Prdm9 has been found in all major animal clades (Oliver et al.,
2009; Ponting, 2011). It is therefore very likely that it was present in the ancestor of all
animals. Whether it kept the same function during the 600 Mys that separates us from
this ancestor is still unknown. Evidence from salmonids’ CO and DSB maps strongly
suggest that Prdm9 is also involved in determining the position of recombination hotspots
in this family (Raynaud et al. personal communications). Its function would therefore
be traced back to the ancestor of Euteleostomi (∼420 Mya) (Kumar et al., 2022).

The inactivation of this gene by KO experiments in male mice and rats leads to a
drastic decrease in fertility due to an inability to efficiently repair DSBs generated at the
ancestral location of hotspots (near gene promoters) (Brick et al., 2012; Mihola et al.,
2019, 2021). Both its persistence through time and lineages, and the direct evidence
in murids suggest that this gene is under strong selective constraints and should thus
provide a critical fitness advantage. In this section, I will discuss several hypothesis that
have been formulated for the evolutionary advantage of Prdm9 in regards of the recent
literature on model and non-model species, and new insights from the present PhD work.

7.4.1 Selection to limit the deleterious effects of recombination
in functional elements

Even before the role of Prdm9 in meiosis was understood, it was noticed that in
humans and mice, unlike in plants and fungi, recombination hotspots occurred mainly
outside functional elements(Lichten and Goldman, 1995). In regard of the damage that
recombination can induce via its mutagenic effect, or biased gene conversion, it has
been naturally formulated that one evolutionary advantage of Prdm9 could be to
deviate recombination away from these functional elements, hence reducing the
genome-wide genetic load (Brick et al., 2012; Webster and Hurst, 2012). In this sense,
it has been demonstrated that COs were depleted in the body of meiotically
transcribed genes both in humans and mice (Necsulea et al., 2009; McVicker and
Green, 2010; Pouyet et al., 2017; Jin et al., 2021; Schwarzkopf and Cornejo, 2022). It
has been further proposed that the depletion of Prdm9-directed COs in the body of
genes could be an advantage to reduce conflicts between the transcription and the
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recombination machinery which both need access to DNA in meiosis (Schwarzkopf and
Cornejo, 2022). However, in mice, while the CO rate is lower in highly meiotically
expressed genes, the DSB rate is higher (Jin et al., 2021). Since the role of Prdm9 is to
determine the position of DSBs, it suggests that Prdm9 is not involved in the deficit of
CO observed in mice highly expressed genes. Moreover, we can observe the same deficit
in dogs that have lost Prdm9 (Figure 7.1). It is thus very unlikely that Prdm9 plays
any role in an avoidance mechanism of the transcription machinery, at least not
directly. However, it is still possible that Prdm9 reduces the load in potentially
functional hypomethylated regions, which are often promoters of highly expressed
genes, a role that may have contributed to its maintenance.
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Figure 7.1: Distribution of CO rate inside genes. Each dot represents a 1kb window. All
dot between the TSS and TES are inside a protein coding gene. We distinguished 3 equal sized
categories of genes regarding their expression in testis for dog and in ovary for humans. We
kept only genes that are expressed in dog testis or human ovary (Dog : 23,107 Humans: 22,074)

7.4.2 Prdm9 and transposable elements

While ancestral hotspots might increase the genetic load in selectively constrained
hypomethylated regions, they at least provide a way to avoid ectopic recombination

70



events in repeated elements. Because Prdm9 targets short, specific DNA motifs
throughout the entire genome, it cannot offer this guarantee. On the contrary, in
humans, there is an enrichment of recombination hotspots in transposable elements.
(Myers et al., 2005). In mice, Buard et al. (2014) reported that predicted binding
motifs of several Prdm9 alleles were enriched in transposable elements. Here, using the
DMC1 ChIP-seq data for 6 different Prdm9 alleles, I show that this enrichment also
concerns true DSB hotspots.
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Figure 7.2: Enrichment of DSB hotspots in repeated elements. Random expectation was
computed as the mean of the overlap of repeated elements and 40 sets of random hotspots (see
methods). If the value of the true overlap lies between those of the 40 sets of random hotspots,
the enrichment is not significant (NS). Numbers correspond to the difference between the true
number of overlap and the expected number of overlap. Fold-enrichment correspond to the ratio
between the true number of overlap and the expected number of overlap.

I computed the overlap of hotspots with repeated elements for each of the six alleles
of the study of Smagulova et al. (2016). I then randomised the position of the hotspots
to estimate whether they were more likely to occur near some TE families than by
chance. We can see that hotspots of all alleles are depleted around L1 and ERVK TEs
(Figure 7.2). This could reflect the fact that those TEs are in regions difficult to access
for the DSB machinery. On the other hand, the hotspots of all alleles are enriched in
the MIR family. Interestingly, we can see that the hotpots of 13R are enriched in 8 out
of 12 families of TEs, and 2 to 4 out of 12 for other alleles (Figure 7.2). It is
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particularly enriched in the MaLR family which are responsible for around 1,200
additional hotspots for 13R. We can also see that the hotspots of CAST are strongly
enriched in the ERV1 TE family (twice more than by chance) (Figure 7.2). In bright
contrast, ancestral hotspots (KO) are clearly depleted in all repeat families except for
low complexity repeats for which there is a clear enrichment (Figure 7.2). Pratto and
colleagues showed that half of the disease-associated non-allelic homologous structural
variants reported in humans occur in the hotspots of the Prdm9A allele, and that most
of them occur within low copy repeats Pratto et al. (2014). We therefore have direct
evidence that Prdm9-directed hotspots increase the load when targeting repeated
elements. The fitness advantage of deviating recombination away from single copy
functional elements is therefore not very obvious.

One other major shortcoming of Prdm9-directed hotspots is their short lifespan.
Indeed, because of dBGC, a new Prdm9 allele progressively loses its target, potentially
negatively impacting the fertility of its bearers. It has thus been proposed that targeting
actively duplicating elements could be a way for an allele to never run short of targets
(Yamada et al., 2017). Additionally, eroding active transposable elements could provide
a way to control their expansion (Yamada et al., 2017). However, it is not clear how those
weak indirect advantages scale with the direct deleterious effect of ectopic recombination
events in repeated sequences (Charlesworth et al., 1997; Roze, 2023).

7.4.3 The advantage of coupling DSB formation and repair

In yeast, the PHD finger module of Spp1 is able to read H3K4Me3 epigenetic marks, and
tethers the DNA to the chromosomal axis where it will receive a DSB (Sommermeyer
et al., 2013). In mice, it would seem that Prdm9-bound sites are also brought back to
the chromosomal axis. The proteins involved in this process remain however unknown
(Baker et al., 2015; Jin et al., 2021). Prdm9 often binds its target symmetrically on both
homologs (Baker et al., 2015; Smagulova et al., 2016; Li et al., 2019; Hinch et al., 2019).
By doing so, Prdm9 brings both the sequence that will receive the DSB, and the sequence
it will be repaired with on the chromosomal axis. Prdm9 would therefore confer a strong
advantage in coupling DSB formation to its repair as a cross-over (Renkawitz et al.,
2014; Davies et al., 2016; Li et al., 2019; Hinch et al., 2019). A strong binding of Prdm9
might be key for this process, as the probability of symmetrical binding directly depends
on the affinity of the DSB-directing protein for its target, as well as its concentration
in the cell (Baker et al., 2022; Genestier et al., 2023).

Interestingly, ancestral hotspots still exist in wild mice, but they are very weak
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compared to the Prdm9-directed ones (Smagulova et al., 2016). Importantly, they also
correspond to the strongest hotspots found in the Prdm9-/- mouse (Smagulova et al.,
2016). This suggests that the protein involved in the direction of ancestral hotspots in
mice has a much lower affinity for its targets. Whether this low affinity is inherent to
targeting epigenetic marks rather than DNA motifs, or it is the result of the
degeneration of this protein in mice could be tested with in vitro kinetics, provided that
the protein involved is identified, and compared to a fully functioning protein such as
yeast Spp1. Overall, Prdm9 might have acted as a booster of the DSB repair efficiency,
allowing faster meiosis, with potentially less resources invested in DSB formation
(Hinch et al., 2019; Mihola et al., 2019, 2021; Baker et al., 2022; Genestier et al., 2023).

It is interesting to note that after 600 Mys, the ancestral pathway has not disappeared,
and still plays a significant role in determining recombination hotspots in species with a
fully functional Prdm9 (Schield et al., 2020; Hoge et al., 2023). If this ancestral pathway
is completely opportunistic and does not require any additional steps other than those
of the Prdm9 system, its persistence could simply be passive. However, as highlighted
before, the direct link to DNA methylation and H3K4Me3 marks, and the evidence for
an active mechanism in yeasts rather suggest an active maintenance (Borde et al., 2009;
Sommermeyer et al., 2013). In the previous chapter, we proposed an explanation for
the maintenance of the ancestral pathway: the decrease in fitness of old alleles that
fuels the Red Queen dynamic also maintains an alternative mechanism (detailed in the
previous chapter). In any individual who struggles to make enough CO because of an
old, inefficient allele, a mutation that increases the efficiency of the ancestral pathway
will be positively selected. This might partly explain why Dapper and Payseur (2019)
found pervasive positive selection on multiple recombination genes in mammals .

Overall, Prdm9 may have been selected for as a DSB repair facilitator, and not
so much for deviating recombination away from functional elements. The fluctuating
position of Prdm9-directed hotspots may therefore be a byproduct of the system, rather
than a selected trait conferring an independent fitness advantage.

7.5 Conclusions and future directions

The location of hotspots near gene promoters could simply be the result of
opportunistic behaviour of the recombination machinery, which needs open chromatin
to access DNA (Lichten and Goldman, 1995). This location could also be constrained
by the location of replication origins (Borde et al., 2000; Murakami and Nurse, 2001;
Martin et al., 2011; Pratto et al., 2021). In either case, the positioning of hotspots is
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unrelated to the costs and benefits of recombination. Alternatively, the strong
association between recombination hotspots and hypomethylation could suggest that
positive selection to avoid repeated elements may have played a role in their
maintenance (Berglund et al., 2015; Wallberg et al., 2015; Choi et al., 2018). The
observation of many disease-associated ectopic recombination events in low-copy
repeats in humans supports this hypothesis (Pratto et al., 2014).

In turn, the main advantage of Prdm9 would be to promote efficient coupling between
DSB formation and repair, thanks to the high affinity of Prdm9 for its targets (Hinch
et al., 2019; Baker et al., 2022). As this gene’s first discovered role was to determine the
position of recombination hotspots mainly outside of functional elements, it has been
hypothesized that it could reduce the recombination-induced genetic load (Webster and
Hurst, 2012; Brick et al., 2012; de Massy, 2013). Here, I first confirmed that PRDM9
was not involved in the deviation of recombination away from gene body, and obviously
could not have been selected for that, as previously thought. In addition, it seems unclear
whether the load induced by recombining within hypomethylated regions is higher than
that of recombining outside, risking increased ectopic recombination events (Pratto et al.,
2014). My personal take would be that Prdm9 is more of a facilitator of DSB repair,
and this could be the reason for its prevalence in animals.

This belief relies on the assumption that Prdm9 has intrinsically more affinity for its
target that any protein that binds histone marks or unmethylated CpG dinucleotides.
This could be tested in vitro by approaches such as the ones of Patel and colleagues for
Prdm9 in humans (Patel et al., 2016), and He and colleagues for Spp1 in yeasts (He
et al., 2019). In addition, if it exists, the molecular system involved in the positioning
of the ancestral hotspots in species with a functional Prdm9 remains to be identified.
The load induced by recombining inside or outside functional elements also remains to
be investigated. To answer this question, we need theoretical and empirical studies that
can compare the burden of recombination-induced mutagenic effects with the fitness cost
of ectopic recombination. In addition to the mutagenic effect, GC-biased gene conversion
(gBGC) is another often cited source of load induced by recombination. Nevertheless,
as we will see in chapter 11, a significant gBGC load of slightly deleterious mutations
in the population does not mean that gBGC is negatively selected. It is thus not clear
whether gBGC could play a role in the evolution of recombination landscapes.

Material and methods
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Expression datasets and recombination maps

The expression data in humans were obtained from the RNA-seq experiment from (EBI
accession number E-MTAB-1733) on human ovaries Fagerberg et al. (2014);
Kryuchkova-Mostacci and Robinson-Rechavi (2015), extracted from the supplementary
data of (Pouyet et al., 2017). The dog expression data is from the RNA-seq experiment
of Chen et al. 2018 on male testis Chen et al. (2019) (GEO accession number
GSE106077). The expression were not measured particularly on meiotic cells but it is
the closest transcription profile to a meiotic one which is available on GEO for dogs.
The recombination rates in humans were estimated with linkage disequilibrium in
Frazer and Consortium (2007) (RRID: SCR_002846). The dog recombination map was
also estimated from linkage disequilibrium in Auton et al. (2013).

Enrichment in repeated elements

DSB hotspots were retrieved from the study of Smagulova et al. (2016) (GEO accession
number GSE75419). The dataset contains the positions of hotspots called on DMC1
Chip-seq experiments in meiotic cells on seven individuals, six homozygous for a given
Prdm9 allele, and one whose Prdm9 has been inactivated with a knock-out. The positions
of repeated elements on the mm10 reference genome were downloaded from the UCSC
Table Browser. For each allele, we computed the overlap between each family of repeated
elements and the center of hotspots ± 100 bp. We then created 40 instances of control
sequences by shuffling the hotspots in the genome. If a region of the genome of more
than 2kb had zero SSDS reads in the ChIP-seq reads, this region was excluded from the
potential random hotspots because it is likely that hotspots would not be callable even
if they existed. We also excluded the ChIP-seq blacklisted regions from the ENCODE
project (Landt et al., 2012), which had been excluded in the original study because it
resulted in spurious ChIP-seq peaks. The overlap expected by chance was taken as the
mean of the overlap between the 40 sets of random hotspots and repeated elements. If
the true value of the overlap was within the values of the 40 sets of random hotspots,
the enrichment was not considered as significant.
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The role of beneficial
back-mutations in molecular
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Mammalian protein-coding genes

exhibit widespread beneficial
mutations that are not adaptive

77



Context

After having demonstrated the existence of the two kinds of recombination hotspots
in mammals, we will be able to address their consequences on selection dynamics via
gBGC. But first, we will demonstrate the substantial role of non-adaptive beneficial
mutations in molecular evolution, which will be critical for understanding the interplay
between recombination hotspots, gBGC and natural selection. We started this project in
collaboration with Thibault Latrille, a former PhD student of the lab and then received
help from Diego Hartasánchez, a former postdoc of the lab and their postdoc advisor
Nicolas Salamin, all working in the University of Lausanne. Thibault came to me in
the middle of my second year of PhD with an unused fitness landscape he estimated
on mammals for one of his postdoc paper. He wanted to know if I had some ideas
regarding questions about natural selection we could answer with this fitness landscape.
This came out to be a great coincidence as I was in search of such a fitness landscape to
assess the benefits and costs of recombination in species with contrasted recombination
landscapes. As a first step, we evaluated whether the fitness landscape was correct using
orthogonal validations. The results turned out to be very surprising and by themselves
required to be communicated in an independent article. At first, I was uncomfortable
including a paper that did not contain the words meiotic recombination or gBGC in
a thesis on meiotic recombination and gBGC. But with the months passing by, and
the number of projects that resulted in unsatisfactory outcomes increasing, Laurent
righteously suggested me to find a way to include it anyway, if I wanted anything to
be written in my PhD. In the end, the findings articulated quite well with the other
chapters, and I am quite satisfied of its contribution to the scientific narrative of this
PhD. I hope the reader gets as excited by the results as I was.

Detailed contributions

This study was co-designed by Thibault and I. We jointly analysed the data and
interpreted the results. However, codes were written by Thibault as his coding skills
were (and still are) way greater than mine. We benefited from the advices of Nicolas
Salamin, and Diego Hartasánchez. We jointly wrote the first draft with Thibault, and
benefited from the substantial help of Nicolas and Diego for improving the writing.
The manuscript is currently in the second phase of review in PNAS.

78



Mammalian protein-coding genes exhibit widespread
beneficial mutations that are not adaptive

T. Latrille1† , J. Joseph2† , D. A. Hartasánchez1 , N. Salamin1

1Department of Computational Biology, Université de Lausanne, Lausanne, Switzerland
2Laboratoire de Biométrie et Biologie Evolutive, UMR5558, Université Lyon 1, Villeurbanne, France
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Abstract

Mutations can be beneficial by bringing innovation to their bearer, allowing them to adapt
to environmental change. These mutations are typically unpredictable since they respond
to an unforeseen change in the environment. However, mutations can also be beneficial
because they are simply restoring an ancestral sequence of higher fitness that was lost due
to genetic drift. In contrast to adaptive mutations, these beneficial back-mutations can be
predicted if the underlying fitness landscape is stable and known. The contribution of such
beneficial back-mutations to molecular evolution has been widely neglected mainly because
their detection is very challenging. We have here reconstructed protein-coding-gene fitness
landscapes shared between mammals, using mutation-selection models and a multi-species
alignments across 87 mammals. These fitness landscapes have allowed us to predict the
fitness effect of polymorphisms found in 28 mammalian populations. Using methods that
quantify selection at the population level, we have confirmed that beneficial back-mutations
are indeed positively selected in extant populations. Our work confirms that deleterious
substitutions are accumulating in mammals and are being reverted, generating a balance in
which genomes are damaged and restored simultaneously at different loci. We observe that
beneficial back-mutations represent between 15% and 45% of all beneficial mutations in 24
of 28 populations analyzed, showing that a substantial part of ongoing positive selection is
not driven by adaptation to environmental change in mammals.

Keywords Adaptation · Back-mutations · Phylogenetics · Population-genetics · Codon models



Significance statement

The extent to which adaptation to changing environments is shaping genomes is a central question in molec-
ular evolution. To quantify the rate of adaptation, population geneticists have typically used signatures of
positive selection. However, mutations restoring an ancestral sequence of higher fitness lost by genetic drift
are also positively selected, but they do not respond to a change in the environment. In this study, we
have managed to distinguish beneficial mutations that are due to changing environments and those that are
restoring pre-existing functions in mammals. We show that a substantial proportion of beneficial mutations
cannot be interpreted as adaptive.

Introduction

Adaptation is one of the main processes shaping the diversity of forms and functions across the tree of
life (Darwin, 1859). Evolutionary adaptation is tightly linked to environmental change and species responding
to this change (Merrell, 1994; Gavrilets and Losos, 2009). For adaptation to occur, there must be variation
within populations, which mostly appears via mutations in the DNA sequence. While neutral mutations will
not impact an individual’s fitness, deleterious mutations have a negative effect, and beneficial mutations
improve their bearer’s fitness. A beneficial mutation is thus more likely than a neutral mutation to invade
the population and reach fixation, resulting in a substitution at the species level. Upon environmental
change, because adaptive beneficial mutations toward new fitness optima are more likely, the number of
substitutions also increases (fig. 1A). An increased substitution rate is thus commonly interpreted as a sign
of adaptation (McDonald and Kreitman, 1991; Smith and Eyre-Walker, 2002; Welch, 2006). The availability
of large-scale genomic data and the development of theoretical models have enabled the detection and
quantification of substitution rate changes across genes and lineages (Yang and Bielawski, 2000; Eyre-Walker,
2006; Moutinho et al., 2019). These approaches, now common practice in evolutionary biology, have helped
better understand the processes underpinning the rates of molecular evolution, contributing to disentangling
the effects of mutation, selection and drift in evolution (Lynch, 2023). However, a collateral effect has been
conflating beneficial mutations with adaptive evolution when adaptive evolution is not the only process that
can lead to beneficial mutations (Charlesworth and Eyre-Walker, 2007; Mustonen and Lässig, 2009; Jones
et al., 2017).

In a constant environment, a deleterious mutation can reach fixation by genetic drift (Ohta, 1992). A
new mutation restoring the ancestral fitness will thus be beneficial (fig. 1B), even though the environment
has not changed (Gillespie, 1995; Hartl and Taubes, 1996; Sella and Hirsh, 2005; Mustonen and Lässig, 2009;
Cvijović et al., 2015). The restoration of the ancestral fitness can either happen through a mutation at a
different locus – called a compensatory mutation (Hartl and Taubes, 1996; Mustonen and Lässig, 2009), or
at the locus of the initial mutation – called a beneficial back-mutation (Piganeau and Eyre-Walker, 2003;
Charlesworth and Eyre-Walker, 2007). While compensatory mutations change the sequence and thus induce
genetic diversification, beneficial back-mutations reduce genetic diversity and do not contribute to genetic
innovation. Although Tomoko Ohta considered beneficial back-mutations negligible in her nearly-neutral the-
ory (Ohta, 1992), their importance has now been acknowledged for expanding populations (Charlesworth and
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Eyre-Walker, 2007). However, differentiating between an adaptive mutation and a beneficial back-mutation
remains challenging (Chi et al., 2020). Indeed, an adaptive mutation responding to a change in the envi-
ronment and a beneficial back-mutation have equivalent fitness consequences for their bearer (Charlesworth
and Eyre-Walker, 2007). Similarly, at the population level, both types of mutations will result in a positive
transmission bias of the beneficial allele. However, at the macro-evolutionary scale, the consequences of these
two types of mutations are fundamentally different.
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Figure 1: (A & B) For a given codon position of a protein-coding DNA sequence, amino acids (x-axis) have
different fitness values (y-axis). Under a fluctuating fitness landscape (A), these fitnesses change with time.
The protein sequence follows the moving target defined by the amino-acid fitnesses. Since substitutions are
preferentially accepted if they are in the direction of this target, substitutions are, on average, adaptive.
At the phylogenetic scale (C), beneficial substitutions are common (positive signs), promoting phenotype
diversification across species. Under a stable fitness landscape (B), most mutations reaching fixation are either
slightly deleterious reaching fixation due to drift or are beneficial back-mutations restoring a more optimal
amino acid. At the phylogenetic scale (D), deleterious substitutions (negative signs) are often reverted via
beneficial back-mutations (positive signs), promoting phenotype stability and preserving well-established
biological systems. Even though, individually, any back-mutation might have a small beneficial effect on
its bearer, we expect beneficial back-mutations to be scattered across the genome and the genome-wide
signature of beneficial back-mutations to be detectable and quantifiable.

While adaptive mutations promote phenotype diversification (fig. 1C), beneficial back-mutations pro-
mote phenotype stability and may help preserve well-established biological systems (fig. 1D). Additionally,
the direction of adaptive evolution is unpredictable because it is caused by an unforeseen change in the
environment and, hence, in the underlying fitness landscape (Bazykin, 2015). On the other hand, benefi-
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cial back-mutations are predictable because, under a stable fitness landscape, any change from non-optimal
to optimal amino acids will move back the site towards the equilibrium expected under the fitness land-
scape (Moses and Durbin, 2009; Fischer et al., 2011; Chen et al., 2021). It can then be distinguished from
truly novel beneficial mutations because the latter are not expected to mutate mutate towards the amino
acids of higher fitnesses defined by the stable fitness landscape but rather mutate to amino acids showing a
diversified pattern (fig. 1).

Fitness landscape reconstruction

The mutation-selection framework permits to link the patterns of substitution along a phylogenetic tree
with the underlying fitness landscape (Halpern and Bruno, 1998; McCandlish and Stoltzfus, 2014). Such
mutation-selection models applied to protein-coding DNA sequences at the codon level allow us to estimate
relative fitnesses for all amino acids for each site of the sequence, explicitly assuming that the underlying
fitness landscape is stable along the phylogenetic tree (Rodrigue and Philippe, 2010; Tamuri and Goldstein,
2012; Rodrigue and Lartillot, 2017). Moreover, effective population size (Ne) is considered constant along the
phylogenetic tree precisely because of the fixed fitness landscape assumption, the consequences of which are
detailed in the Discussion. Importantly, because mutation-selection codon models at the phylogenetic scale
are based on population-genetics equations, their estimates of selection coefficients are directly interpretable
as fitness effects at the population scale; and because they work at the DNA level, we are able to account
for mutational bias in DNA and structure of the genetic code. The model further integrates the shared
evolutionary history between samples and their divergence, which, together, allow us to estimate fitness
effects in mammalian phylogenetic trees even though sequences are not independent samples and might
not represent the equilibrium distribution of amino acids (see section 1.2 in Materials & Methods, model
parameters in section S1).

Theoretically, we can thus use large-scale genomic data to assess whether the fitness estimated at the
phylogenetic scale predict the fitness effect at the population scale for both deleterious and beneficial back-
mutations. The placental mammals represent an excellent study system to perform such analysis. Having
originated ∼102 million years ago, they diversified quickly (Foley et al., 2023). Additionally, polymorphism
data are available for many species (Howe et al., 2021), as are high quality protein-coding DNA alignments
across the genome (Ranwez et al., 2007; Scornavacca et al., 2019). By performing our analysis on 14,509
orthologous protein-coding genes across 87 species, we focus on genes shared across all mammals in our
dataset and not newly functionalized genes in a lineage.

For each gene, fitting the mutation-selection model to the multi-species sequence alignment, assuming that
the underlying fitness landscape is stable along the phylogenetic tree, allows us to obtain relative fitnesses for
all amino acids for each site of the alignment (fig. 2A). Given these relative fitnesses (F ) for each amino acid,
the difference in fitness between a pair of amino acids is the scaled selection coefficient (S0 = ∆F ), which is
formally the product of the selection coefficient at the individual level (s) and the effective population size
(Ne), as S0 = 4Ne ×s. The value of S0 informs us on the strength of selection exerted on amino acids changes.
Thus, according to its S0 value, we can classify any mutation as either a deleterious mutation toward a less fit
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amino acid (D0 := S0 < −1), a nearly-neutral mutation (N0 := −1 < S0 < 1) or a beneficial back-mutation
toward a known fitter amino acid (B0 := S0 > 1).

Having identified which potential DNA changes represent beneficial back-mutations (fig. 2B), we retrieved
polymorphism data from 28 wild and domesticated populations belonging to 6 genera (Equus, Bos, Capra,
Ovis, Chlorocebus, and Homo) to assess the presence of beneficial back-mutations at the population scale. We
focused on mutations currently segregating within populations and substitutions in the terminal branches,
and checked if any of these observed changes were beneficial back-mutations (fig. 2C-E). A similar approach
demonstrated the presence of beneficial back-mutations in humans (Moses and Durbin, 2009; Fischer et al.,
2011) and in plants (Chen et al., 2021). However, the model used to reconstruct the static fitness landscape
in these studies can only be applied to deeply conserved protein domains in the tree of life, which corre-
sponds to a subpart of the proteome that evolves slowly. The mutation-selection model used in the present
work integrates phylogenetic relationships, and thus allows us to estimate the fitness landscape in shallower
phylogenetic trees, and therefore can be applied almost genome-wide (Rodrigue et al., 2010).

We first quantified the likelihood of any DNA mutation to be a beneficial back-mutation, that is, whenever
a DNA mutation increases fitness under a stable fitness landscape (B0). Subsequently, by quantifying the
total amount of beneficial mutations in the current population across all types of DNA mutations (D0, D0

and B0), we could tease apart beneficial back-mutations from beneficial adaptive mutations resulting from a
change in the fitness landscape. Altogether, in this study, by integrating large-scale genomic datasets at both
phylogenetic and population scales, we propose a way to explicitly quantify the contribution of beneficial
back-mutations to positive selection across the entire exome of the six genera (figs. 2F-G).

Results

Selection along the terminal branches

First, we assessed whether fitness effects derived from the mutation-selection model at the phylogenetic scale
predict selection occurring in terminal branches. We recovered the mutations that reached fixation in the
terminal branches of the six genera. We only considered mutations fixed in a population as substitutions in
the corresponding branch by discarding mutations segregating in our population samples. We classified each
substitution identified in the terminal branches as either D0, N0, or B0 depending on its S0 value obtained at
the phylogenetic scale (fig. 2A-C). Importantly, the mammalian alignment used to estimate the amino-acid
fitness landscape did not include the genera for which we estimated selection at the population scale as this
would bias the estimate of the fitness landscape and generate circular reasoning. Because S0 was based on
estimating fitness effects at the phylogenetic scale for all mammals, substitutions with S0 > 1 (B0) bring
the population toward an amino acid predicted to be fitter in mammals. These changes are thus considered
as beneficial back-substitutions rather than a species-specific adaptive change. Among all the substitutions
found in each terminal branch, between 10 and 13% were B0, while instead beneficial back-mutations rep-
resent between 0.9 and 1.2% of all non-synonymous mutations (table S1 and fig. 3A-B for humans). In
principle, beneficial back-mutations are bound to reach fixation more often than neutral mutations. Hence,
we calculated the dN /dS ratio of non-synonymous over synonymous divergence for all terminal lineages,
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Figure 2: Selection coefficients at the phylogenetic and population scales. At the phylogenetic scale (A),
we estimated the amino-acid fitness for each site from protein-coding DNA alignments using mutation-
selection codon models. For every possible mutation, the difference in amino-acid fitness before and after the
mutation allows us to compute the selection coefficient at the phylogenetic scale (S0). Depending on S0 (B)
mutations can be predicted as deleterious (D0), nearly-neutral (N0) or beneficial back-mutations (B0) toward
a fitter amino acid and repairing existing functions. At the population scale, each observed single nucleotide
polymorphism (SNP) segregating in the population can also be classified according to its S0 value (C).
Occurrence and frequency in the population of non-synonymous polymorphisms, contrasted to synonymous
polymorphisms (deemed neutral) is used to estimate selection coefficients (D-E) at the population scale (S),
for each class of selection (D0, N0, B0). We can thus assess whether S0 predicts S and compute precision
(F) and recall (G) for each class. The recall value for class B0 is the probability of back-mutations among
all beneficial ones (G).

focusing on the non-synonymous changes predicted as beneficial back-mutations (dN (B0)/dS). We obtained
values between 1.17 and 1.75 in the different lineages (table S2), implying i) that B0 mutations reached
fixation more frequently than synonymous mutations that are supposed to be neutral, and ii) that these
back-mutations are effectively beneficial.

This result further indicated that using dN /dS as an estimate of adaptation is biased due to the presence
of beneficial back-mutations among the non-synonymous substitutions. By discarding all beneficial back-
mutations we can obtain an estimate of dN /dS which is not inflated. By comparing these two ways of
calculating dN /dS (see section 1.5 in Materials & Methods), we calculated that beneficial back-mutations
inflate dN /dS values by between 9 and 12% across genera while only representing between 0.9 and 1.2% of
non-synonymous mutations (table S3).
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Selection in populations

Second, we assessed whether our calculated S0 values predicted at the phylogenetic scale were also indicative
of the selective forces exerted at the population level. We retrieved single nucleotide polymorphisms (SNPs)
segregating in 28 mammalian populations. To determine if SNPs were ancestral of derived, we reconstructed
the ancestral exome of each population. We then classified every non-synonymous SNP as either D0, N0, or
B0 according its S0 value (fig. 2B-C).

In humans, some SNPs have been associated with specific clinical prognosis terms obtained by clinical
evaluation of the impact of variants on human Mendelian disorders (Landrum et al., 2018). Although this
classification also relies on deep protein alignments and therefore cannot be considered an independent result
from our own, it does provide a consistency check if the effect of a mutation on human health is in line with
its fitness effect predicted by our method. Therefore, we investigated whether the non-synonymous SNPs
classified as D0 or B0 showed enrichment in specific clinical terms compared to SNPs classified as N0. Our
results show that SNPs predicted as deleterious are associated with clinical terms such as Likely Pathogenic
and Pathogenic, implying that, in general, the selective pressure of a mutation exerted across mammals is
also predictive of its clinical effect in humans (table S4) (Sullivan et al., 2023). Conversely, back-mutations
are associated with clinical terms such as Benign and Likely Benign, which shows that back-mutations are
less likely to be functionally damaging (table S5).

In addition to clinical prognosis, frequencies at which SNPs are segregating within populations provide
information on their selective effects. For instance, deleterious SNPs usually segregate at lower frequencies
because of purifying selection, which tends to remove them from the population (fig. 3C for humans). By
gathering information across many SNPs, it is possible to estimate the distribution of fitness effects (DFE)
at the population scale, taking synonymous SNPs as a neutral expectation (Eyre-Walker et al., 2006; Eyre-
Walker and Keightley, 2009; Galtier, 2016; Tataru et al., 2017). From the estimated DFE, we can derive
the proportion of beneficial mutations (P[B]), nearly-neutral mutations (P[N ]) and deleterious mutations
(P[D]) at the population scale (see section 1.6 in Materials & Methods). These approaches offer a unique
opportunity to contrast selection coefficients estimated at the population scale (S) and at the phylogenetic
scale (S0).

Across our selection classes (D0, N0 and B0), one can ultimately estimate the proportion of correct and
incorrect predictions, leading to an estimation of precision and recall (fig. 2F-G and section 1.7 in Materials
& Methods). Across 28 populations of different mammal species, mutations predicted to be deleterious at the
phylogenetic scale (P[D]) were indeed purged at the population scale, with a precision in the range of 90–97%
(table 1 and fig. 3D for humans). Conversely, a recall in the range of 96–100% implied that mutations found
to be deleterious at the population scale were most likely also predicted to be deleterious at the phylogenetic
scale (table 1). Altogether, purifying selection is largely predictable and amino acids with negative fitness
across mammals have been effectively purged away in each population.

Mutations predicted as N0 were effectively composed of a mix of neutral and selected mutations with
varying precision (36–63%) and recall (32–45%) across the different populations (table 1, fig. 3D for humans).
The variable proportions between populations can be explained by the effective number of individuals in the
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Figure 3: (A) Distribution of scaled selection coefficients (S0), predicted for all possible non-synonymous
DNA mutations away from the ancestral human exome (section 1.4). Mutations are divided into three classes
of selection: deleterious (D0), nearly-neutral (N0) and beneficial (B0, supposedly beneficial back-mutations)
(B) Distribution of scaled selection coefficients (S0) for all observed substitutions along the Homo branch after
the Homo-Pan split (section 1.5). If there are fewer substitutions than expected, this class is thus undergoing
purifying selection, as is the case for D0. (C) The site-frequency spectrum (SFS) in humans of African descent
for a random sample of 16 alleles (means in solid lines and standard deviations in color shades) for each class
of selection and for synonymous mutations, supposedly neutral (black). The SFS represents the proportion
of mutations (y-axis) with a given number of derived alleles in the population (x-axis). At high frequencies,
deleterious mutations are underrepresented. (D) Proportion of beneficial P[D], nearly-neutral P[N ], and
deleterious mutations P[B] estimated at the population scale for each class of selection at the phylogenetic
scale (section 1.6). Proportions depicted here are not weighted by their mutational opportunities.

population (Ne), a major driver of selection efficacy. Moreover, estimates of mutation rate per generation (u),
from Bergeron et al. (2023) and Orlando et al. (2013), and Watterson’s θ obtained from the synonymous SFS
as in Achaz (2009) allow us to obtain Ne through Ne = θ/(4 × u). Using correlation analyses that accounted
for phylogenetic relationship (see section 1.8 in Materials & Methods), we found that higher Ne was associated
with a smaller proportion of nearly-neutral mutations (r2 = 0.31, p = 0.001, fig. 4A). This result follows
the prediction of the nearly-neutral theory and suggests that in populations with higher diversity (e.g., Bos
or Ovis), discrimination between beneficial and deleterious mutations is more likely to occur (figs. S1-S3).
Conversely, many more mutations are effectively neutral in populations with lower diversity (e.g., Homo).
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Figure 4: Populations in circles, mean of the species across the populations as squares. (A) Proportion
of nearly-neutral mutations at the population scale (P[N ] in the y-axis), shown as a function of estimated
effective population size (Ne in the x-axis). (B) Proportion of beneficial back-mutations among all beneficial
mutations (P[B0 | B] in the y-axis), shown as a function of Ne in x-axis. Correlations account for phylogenetic
relationship and non-independence of samples, through the fit of a Phylogenetic Generalized Linear Model
(see section 1.6 in Materials & Methods).

Finally, mutations predicted to be beneficial back-mutations based on the selection coefficients at the
phylogenetic scale (B0) were indeed beneficial for individuals bearing them, with a precision (fig. 2F) in
the range of 19–87% (table 1 and fig. 3D for humans). This result confirms that selection towards amino
acids restoring existing functions is ongoing in these populations. Importantly, the recall value in this case,
computed as P[B0 | B], is the probability for a beneficial mutation at the population scale to be a ben-
eficial back-mutation, i.e., going toward a fitter amino acid (fig. 2G, table S6). In other words, the recall
value quantifies the number of beneficial mutations restoring damaged genomes instead of creating adaptive
innovations. Across the 28 populations, this proportion is in the range of 11–82% (table 1).

Because the phylogenetic mutation-selection codon model should fit better for genes with uniformly
conserved functions, as a control, we filtered out genes under pervasive adaptation (Latrille et al., 2023), and
indeed we found an increase in the proportion of beneficial back-mutations (P[B0 | B]), consistent with our
expectation (Wilcoxon signed-rank, s = 80, p = 0.002, table S7).

Discussion

Beneficial mutations are not necessarily adaptive

This study represents an essential step toward integrating the different evolutionary scales necessary to
understand the combined effects of mutation, selection, and drift on genome evolution. In particular, we have
been able to quantify the proportion of beneficial back-mutations among all beneficial mutations, which has
only been achievable by combining genome-wide data from both phylogenetic and population scales. At the
phylogenetic scale, codon diversity at each site of a protein-coding DNA alignment allows for reconstructing
an amino-acid fitness landscape, assuming that this landscape is stable along the phylogenetic tree. These
amino-acid fitness landscapes allow us to predict any mutation’s selection coefficient (S0) along a protein-
coding sequence. We can compare these selective effects to observations at the population level (figs. S4-6).
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Deleterious mutations
D := S < −1

D0 := S0 < −1

Nearly-neutral mutations
N := −1 < S < 1

N 0 := −1 < S0 < 1

Beneficial mutations
B := S > 1

B0 := S0 > 1

Population Species Ne
Precision
P[D | D0]

Recall
P[D0 | D]

Precision
P[N | N 0]

Recall
P[N 0 | N ]

Precision
P[B | B0]

Recall
P[B0 | B]

Equus c. Equus caballus 7.5 × 104 0.923 0.972 0.570 0.341 0.648 0.536
Iran Bos taurus 5.6 × 104 0.915 1.000 0.632 0.358 0.873 0.243
Uganda Bos taurus 1.3 × 105 0.951 0.969 0.495 0.414 0.576 0.415
Australia Capra hircus 1.7 × 105 0.944 0.971 0.527 0.437 0.368 0.177
France Capra hircus 1.9 × 105 0.946 0.971 0.508 0.423 0.368 0.190
Iran (C. aegagrus) Capra hircus 1.9 × 105 0.948 0.969 0.486 0.444 0.368 0.165
Iran Capra hircus 2.3 × 105 0.953 0.966 0.425 0.407 0.368 0.193
Italy Capra hircus 1.9 × 105 0.947 0.971 0.551 0.439 0.368 0.243
Morocco Capra hircus 2.2 × 105 0.950 0.970 0.527 0.440 0.368 0.245
Iran Ovis aries 3.8 × 105 0.961 0.961 0.452 0.415 0.205 0.407
Iran (O. orientalis) Ovis aries 4.5 × 105 0.964 0.960 0.420 0.445 0.193 0.190
Iran (O. vignei) Ovis aries 3.7 × 105 0.967 0.959 0.361 0.470 0.190 0.110
Various Ovis aries 4.1 × 105 0.962 0.962 0.433 0.440 0.229 0.222
Morocco Ovis aries 4 × 105 0.962 0.961 0.462 0.424 0.211 0.514
Barbados Chlorocebus sabaeus 1.1 × 105 0.935 0.975 0.565 0.402 0.648 0.293
Central Afr. Rep. Chlorocebus sabaeus 1.7 × 105 0.948 0.971 0.508 0.423 0.535 0.275
Ethiopia Chlorocebus sabaeus 1.4 × 105 0.935 0.975 0.580 0.416 0.552 0.245
Gambia Chlorocebus sabaeus 1.4 × 105 0.944 0.975 0.654 0.437 0.577 0.821
Kenya Chlorocebus sabaeus 1.5 × 105 0.946 0.972 0.538 0.453 0.588 0.257
Nevis Chlorocebus sabaeus 1 × 105 0.933 0.976 0.629 0.412 0.599 0.358
South Africa Chlorocebus sabaeus 1.8 × 105 0.944 0.971 0.548 0.423 0.574 0.341
Saint Kitts Chlorocebus sabaeus 1.2 × 105 0.936 0.975 0.586 0.402 0.598 0.336
Zambia Chlorocebus sabaeus 1.7 × 105 0.945 0.971 0.512 0.432 0.585 0.250
African Homo sapiens 5.6 × 104 0.911 0.976 0.579 0.325 0.721 0.349
Admixed American Homo sapiens 4.5 × 104 0.902 0.978 0.584 0.299 0.690 0.345
East Asian Homo sapiens 4 × 104 0.905 0.978 0.585 0.325 0.688 0.249
European Homo sapiens 4.2 × 104 0.906 0.978 0.584 0.329 0.688 0.248
South Asian Homo sapiens 4.4 × 104 0.908 0.978 0.584 0.342 0.691 0.224

Table 1: Precision and recall for estimated selection coefficient of mutations given by mutation-selection
models (S0). Precision is the estimation of the selection coefficient at population scale (S) given that S0 is
known. Conversely, recall is the estimation of S0 given selection coefficient at the population scale (S) is
known. Recall for beneficial mutations (P[B0 | B]) is thus the proportion of beneficial back-mutations among
all beneficial mutations. Ne is the estimated effective population size for each population.

By doing so, we confirmed that mutations predicted to be deleterious (D0 := S0 < −1) are purified away in
extant populations. Our results concur with previous studies showing that SIFT scores (Ng and Henikoff,
2003; Vaser et al., 2016), based on amino acid alignments across species, also inform on the deleterious
fitness effects exerted at the population scale (Chen et al., 2021). However – contrary to SIFT scores – our
mutation-selection model is parameterized by a fitness function such that changes are directly interpretable
as fitness effects. In this regard, an interesting prediction of our model is that back-mutations are beneficial
because they revert previous deleterious changes. We have tested this hypothesis and found that these back-
mutations (B0 := S0 > 1) are indeed beneficial in extant populations. We estimated that between 11 and 82%
of all beneficial mutations in mammalian populations have not been driven by adaptation but instead have
reversed deleterious substitutions which have accumulated along the phylogenetic tree. More specifically, in
24 out of 28 populations analyzed, the percentage of beneficial mutations estimated to be back-mutations
falls between 15 and 45%. These results suggest that many beneficial mutations are non-adaptive but rather
restore ancestral states of higher fitness. Hence, we can correctly estimate the extent of adaptive evolution
only if we account for the number of beneficial back-mutations (Keightley and Eyre-Walker, 2010; Rice
et al., 2015). Altogether, we argue that we should dissociate positive selection from adaptive evolution and
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limit the use of adaptive mutations to those that are associated with adaptation to environmental change as
such (Charlesworth and Eyre-Walker, 2007; Mustonen and Lässig, 2009).

Interpreting the proportion of beneficial back-mutations

Across the genome, beneficial-back mutations and deleterious mutations reaching fixation create a balance
in which genomes are constantly damaged and restored simultaneously at different loci. Since the probability
of fixation of mutations depends on the effective population size (Ne), the history of Ne plays a crucial role
in setting the number of beneficial back-mutations compensating for deleterious mutations (Latrille et al.,
2021). For example, a population size expansion will increase the efficacy of selection, and a larger proportion
of mutations will be beneficial (otherwise effectively neutral), thus increasing the number of beneficial back-
mutations. On the other hand, a population that has experienced a high Ne throughout its history should
be closer to an optimal state under a stable fitness landscape, having suffered fewer fixations of deleterious
mutations and therefore decreasing the probability of beneficial back-mutations (Huber et al., 2017). Overall,
we expect the proportion of beneficial back-mutations to be more dependent on Ne’s long-term expansions
and contractions than on the short-term ones (Charlesworth and Eyre-Walker, 2007; Huber et al., 2017).
Accounting for phylogenetic relationships, we found no correlation between the proportion of back-mutations
and Ne (r2 = 0.00, p = 0.772, fig. 4B)

The exact estimation of the contribution of beneficial back-mutations to positive selection relies on some
hypotheses at both the phylogenetic and population scales and is sensitive to methodological limitations.
Indeed, to be conservative, we considered that any mutation under positive selection at the population scale
(B) but not predicted as such at the phylogenetic scale (not B0) is potentially an adaptation. However,
adaptation is not the only factor hindering the detection of beneficial back-mutations; data quality and
potentially inadequate modeling choices of both the fitness landscape and the DFE might also lead to missed
predictions.

Our model assumes that amino-acid fitness landscapes are site-specific and also independent of one
another, whereas under pervasive epistasis, the fitness effect of any mutation at a particular site would
depend on the amino acids present at other sites. Epistasis has been shown to play a role in the evolution
of protein-coding genes, with amino-acid residues in contact within a protein or between proteins tending to
co-evolve (Morcos et al., 2011; Marks et al., 2012; Starr and Thornton, 2016). Particularly, the residues in
contact co-evolve to become more compatible with each other generating an entrenchment (Goldstein et al.,
2015; Goldstein and Pollock, 2017; Park et al., 2022). Epistasis therefore allows for compensatory mutations,
which restore fitness through mutations at loci different from where deleterious mutations took place. It
therefore, represents another case case of non-adaptive beneficial mutations, but one which is not accounted
for by our method. Therefore, the beneficial mutations that we classify as putatively adaptive might in
fact be compensatory mutations, making our estimation of the rate of non-adaptive beneficial mutations
conservative.

Despite epistasis being an important factor in protein evolution, several deep mutational scanning labo-
ratory experiments have revealed that a site-specific fitness landscape is a reasonable approximation of the
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fitness landscape of proteins, and even predicts the evolution of sequences in nature (Ashenberg et al., 2013;
Doud et al., 2015; Bloom, 2017). Additionally, the fact that we observe such a high proportion of beneficial
back-mutations suggests that the underlying assumptions of our model, namely site-independence, implying
no epistasis, and a static fitness landscape, are a reasonable approximation for the underlying fitness land-
scape of proteins. Our results imply that the fitness effects of new mutations are mostly conserved across
mammalian orthologs, in agreement with other studies showing that for conserved orthologs with similar
structures and functions, models without epistasis provide a reasonable estimate of fitness effects in protein
coding genes (Youssef et al., 2020; Vigué et al., 2022).

Moreover, because our model assumes a fixed landscape, it implicitly assumes that Ne is constant along
the phylogenetic tree. Fluctuations due to changes in the fitness landscape or in Ne will be averaged out
by the assumption of the current model that Ne is constant across lineages. It was recently shown (Latrille
et al., 2021), using highly computer intensive mutation-selection models with fluctuating Ne, that relaxing
the assumption of a constant Ne results in more extreme estimates of amino-acid fitnesses than with the
standard model used in this study. In other words, by assuming a constant Ne, we are underpowered to detect
beneficial back-mutations since amino acids will have more similar fitnesses. As a consequence, mutations
that would otherwise fall into B or D will be classified as N , resulting ultimately in lower estimates of the
proportion of beneficial back-mutations (P[B0 | B]). Given this inflation of missed predictions due to change
in population sizes (Lanfear et al., 2014; Jones et al., 2017; Platt et al., 2018), our estimated proportion
of beneficial back-mutations among adaptive ones is likely to therefore be an underestimation. In practice,
advantageous mutations can be depleted in the N0 and D0 class in some species but pervasive in others,
depending on the model used to infer the DFE at the population scale (tables S8-12). It appears that
our estimation can be quite sensitive to model misspecification and overall, while we provide an order of
magnitude for the contribution of beneficial back-mutations to positive selection, further methodological
development on the estimation of the distribution of fitness effects is needed to increase the confidence on
this value.

Detecting adaptation above the nearly-neutral background

A long-standing debate in molecular evolution is whether the variations we observe between species in protein-
coding genes are primarily due to nearly-neutral mutations reaching fixation by drift or primarily due to
adaptation (Kimura, 1968; Jensen et al., 2019; Gillespie, 1994; Ohta, 1992). Here we provide evidence that
in mammalian orthologs, many substitutions occur through fixation of both deleterious mutations and ben-
eficial back-mutations. However, detecting adaptation above this background of nearly-neutral substitutions
remains a central question (Kimura, 1968; Ohta and Gillespie, 1996).

One first strategy is precisely to use a nearly-neutral substitution model as a null model of evolution.
Under a strictly neutral evolution of protein-coding sequence, we expect the ratio of non-synonymous over
synonymous substitutions (dN /dS) to be equal to one. Deviations from this neutral expectation, such as
dN /dS > 1, which can be generated by an excess of non-synonymous substitutions, is generally interpreted
as a sign of adaptation. However, as shown in this study, a dN /dS > 1 is not necessarily a signature of
adaptation but can be due to beneficial back-mutations. So, by relaxing the strict neutrality and assuming
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a stable fitness landscape instead, one can predict the expected rate of evolution, called ω0 (Spielman and
Wilke, 2015; Dos Reis, 2015). Adaptation can thus be considered as evolution under a changing fitness
landscape and tested as such by searching for the signature of dN /dS > ω0 (Cvijović et al., 2015; Rodrigue
and Lartillot, 2017; Rodrigue et al., 2021). Using a stable fitness landscape as a null model of evolution, thus
accounting for selective constraints exerted on the different amino acids, increased the statistical power in
testing for adaptation (Latrille et al., 2023). Instead of relying solely on summary statistics (such as dN /dS or
ω0), another strategy to detect adaptation is to include changes in the fitness landscapes inherently within
the mutation-selection framework (Tamuri and dos Reis, 2021). Such mechanistic models could be more
general than site-specific fitness landscapes, including epistasis and changing fitness landscapes (Goldstein
and Pollock, 2017; Stolyarova et al., 2020).

Here, we have provided empirical evidence that an evolutionary model assuming a stable fitness landscape
at the mammalian scale allows us to predict the fitness effects of mutations in extant populations and indi-
viduals, acknowledging the balance between deleterious and beneficial back-mutations. We argue that such
a model represents a null expectation for the evolution of protein-coding genes in the absence of adaptation.
In that sense, to avoid conflating beneficial mutations with adaptive evolution, the term “adaptation“ should
retain its original meaning associated with a change in the underlying fitness landscape and be modelled as
such.

1 Materials & Methods

1.1 Phylogenetic dataset

Protein-coding DNA sequence alignments in placental mammals and their corresponding gene trees come
from the OrthoMaM database and were processed as in Latrille et al. (2023). OrthoMaM contains a total of
116 mammalian reference sequences in v10c (Ranwez et al., 2007; Douzery et al., 2014; Scornavacca et al.,
2019).

Genes located on the X and Y chromosomes and on the mitochondrial genome were discarded from the
analysis because the level of polymorphism – which is necessary for population-based analyses – is expected to
be different in these three regions compared to the autosomal genome. Sequences of species for which we used
population-level polymorphism (see section 1.3) and their sister species, were removed from the analysis to
ensure independence between the data used in the phylogenetic and population scales. Sites in the alignment
containing more than 10% of gaps across the species were discarded. Altogether, our genome-wide dataset
contains 14, 509 protein-coding DNA sequences in 87 placental mammals.

1.2 Selection coefficient (S0) in a phylogeny-based method

We analyzed the phylogenetic-level data using mutation-selection models. These models assume the protein-
coding sequences are at mutation-selection balance under a fixed fitness landscape characterized by a fitness
vector over the 20 amino acids at each site (Yang and Nielsen, 2008; Halpern and Bruno, 1998; Rodrigue
and Philippe, 2010). Mathematically, the rate of non-synonymous substitution from codon a to codon b

91



(q(i)
a7→b) at site i of the sequence is equal to the rate of mutation of the underlying nucleotide change (µa7→b)

multiplied by the scaled probability of mutation fixation (P(i)
a7→b). The probability of fixation depends on the

difference between the scaled fitness of the amino acid encoded by the mutated codon (F (i)
b ) and the amino

acid encoded by the original codon (F (i)
a ) at site i (Wright, 1931; Fisher, 1930).

The rate of substitution from codon a to b at a site i is thus:
q

(i)
a7→b = 0 if codons a and b are more than one mutation away,

q
(i)
a7→b = µa 7→b if codons a and b are synonymous, and

q
(i)
a7→b = µa 7→b

F
(i)
b − F

(i)
a

1 − eF
(i)
a −F

(i)
b

if codons a and b are non-synonymous.

(1)

Fitting the mutation-selection model on a multi-species sequence alignment leads to an estimation of the
gene-wide 4 × 4 nucleotide mutation rate matrix (µ) as well as the 20 amino-acid fitness landscape (F (i)) at
each site i. The priors and full configuration of the model are given in section S1. From a technical perspective,
the Bayesian estimation is a two-step procedure (Rodrigue et al., 2008). The first step is a data augmentation
of the alignment, consisting in sampling a detailed substitution history along the phylogenetic tree for each
site, given the current value of the model parameters. In the second step, the parameters of the model can
then be directly updated by a Gibbs sampling procedure, conditional on the current substitution history.
Alternating between these two sampling steps yields a Markov chain Monte-Carlo (MCMC) procedure whose
equilibrium distribution is the posterior probability density of interest (Lartillot, 2004; Rodrigue et al., 2008).
Additionally, across-site heterogeneities in amino-acid fitness profiles are captured by a Dirichlet process.
More precisely, the number of amino-acid fitness profiles estimated is lower than the number of sites in the
alignment. Consequently each profile has several sites assigned to it, resulting in a particular configuration of
the Dirichlet process. Conversely, sites with similar signatures are assigned to the same fitness profile. This
configuration of the Dirichlet process is resampled through the MCMC to estimate a posterior distribution of
amino acid profiles for each site specifically (Rodrigue et al., 2010; Lartillot, 2013). From a more mechanistic
perspective, even though not all amino acids occur at every single codon site of the DNA alignment, we
can nevertheless estimate the distribution of amino-acid fitnesses by generalizing the information recovered
across sites and across amino acids based on the phylogenetic relationship among samples. In particular,
synonymous substitutions along the tree contain the signal to estimate branch lengths and the nucleotide
transition matrix, while non-synonymous substitutions contain information on fitness difference between
codons connected by single nucleotide changes (Rodrigue et al., 2010).

The selection coefficient for a mutation from codon a to codon b at site i is defined as:

S
(i)
0 (a 7→ b) = ∆F (i) = F

(i)
b − F (i)

a . (2)

In our subsequent derivation the source (a) and target (b) codons as well as the site (i) are implicit and thus
never explicitly written.

We used the Bayesian software BayesCode (https://github.com/ThibaultLatrille/bayescode,
v1.3.1) to estimate the selection coefficients for each protein-coding gene in the mammalian dataset. We
ran the MCMC algorithm implemented in BayesCode for 2, 000 generations as described in Latrille et al.
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(2023). For each gene, after discarding a burn-in period of 1, 000 generations of MCMC, we obtained poste-
rior mean estimates (over the 1, 000 generations left of MCMC) of the mutation rate matrix (µ) as well as
the 20 amino-acid fitness landscape (F (i)) at each site i.

1.3 Polymorphism dataset

The genetic variants representing the population level polymorphisms were obtained from the follow-
ing species and their available datasets: Equus caballus (EquCab2 assembly in the EVA study PR-
JEB9799 (Al Abri et al., 2020)), Bos taurus (UMD3.1 assembly in the NextGen project: https://projects.

ensembl.org/nextgen/), Ovis aries (Oar v3.1 assembly in the NextGen project), Capra hircus (CHIR1 as-
sembly in the NextGen project), converted to ARS1 assembly with dbSNP identifiers (Sherry et al., 2001)),
Chlorocebus sabaeus (ChlSab1.1 assembly in the EVA project PRJEB22989 (Svardal et al., 2017)), Homo
sapiens (GRCh38 assembly in the 1000 Genomes Project (Zheng-Bradley et al., 2017)). In total, we analyzed
28 populations across the 6 different species with polymorphism data. The data was processed as described
in Latrille et al. (2023).

Only bi-allelic single nucleotide polymorphisms (SNPs) found within a gene were in our polymorphism
dataset, while nonsense variants and indels were discarded. To construct the dataset, we first recovered
the location of each SNP (represented by its chromosome, position, and strand) in the focal species and
matched it to its corresponding position in the coding sequence (CDS) using gene annotation files (GTF
format) downloaded from Ensembl (ensembl.org). We then verified that the SNP downloaded from Ensembl
matched the reference in the CDS in FASTA format. Next, the position in the CDS was converted to
the corresponding position in the multi-species sequence alignment (containing gaps) from the OrthoMaM
database (see section 1.2) for the corresponding gene by doing a global pairwise alignment (Biopython
function pairwise2). This conversion from genomic position to alignment position was only possible when
the assembly used for SNP-calling was the same as the one used in the OrthoMaM alignment, the GTF
annotations, and the FASTA sequences. SNPs were polarized using the three closest outgroups found in the
OrthoMaM alignment with est-usfs v2.04 (Keightley and Jackson, 2018), and alleles with a probability of
being derived lower than 0.99 were discarded.

1.4 Mutational opportunities

The mutational opportunities of any new mutation refer to its likelihood of falling into a specific category
(synonymous, deleterious, nearly-neutral, or beneficial). Deriving such opportunities is necessary to esti-
mate the strength of selection exerted at the population scale since different categories might have different
mutational opportunities, and thus polymorphism and divergence need to be corrected accordingly (see sec-
tions 1.5, 1.6, and 1.7). To calculate mutational opportunities, we reconstructed the ancestral exome of each
of the 28 populations by using the most likely ancestral state from est-usfs (see section 1.3), which differs
from the corresponding species reference exome since it accounts for the variability present in the specific
population.
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From the reconstructed ancestral exome, all possible mutations were computed, weighted by the instan-
taneous rate of change between nucleotides obtained from the mutation rate matrix (µ, see section 1.2),
summing to µtot across the whole exome, and to µsyn when restricted to synonymous mutations. Finally, the
mutational opportunities for synonymous mutations were computed as the total number of sites across the
exome (Ltot) weighted by the proportion of synonymous mutations among all possible mutations as:

Lsyn = Ltot
µsyn

µtot
. (3)

Similarly, for non-synonymous mutations, the total mutation rate for each class of selection x ∈
{D0, N0, B0}, called µ (x), was estimated as the sum across all non-synonymous mutations if their selec-
tion coefficient at the phylogenetic scale is in the class S0 ∈ x. Accordingly, the mutational opportunities
(L (x)) for each class of selection coefficient (x) was finally computed as the total number of sites across the
exome (Ltot) weighted by the ratio of the aggregated mutations rates falling in the class µ (x):

L (x) = Ltot
µ (x)
µtot

. (4)

Finally, P[x] is the probability for a non-synonymous mutation to be in the class x, thus computed as:

P[x] = L (x)∑
y∈{D0,N0,B0} L (y) . (5)

1.5 Substitution mapping and dN /dS in the terminal branch

We inferred the protein-coding DNA sequences for each node of the 4-taxa tree containing the focal species
and the three closest outgroups species found in the OrthoMaM alignment by applying the M5 codon model
(gamma site rate variation) as implemented in FastML.v3.11 (Ashkenazy et al., 2012). Consequently, for
each focal species we reconstructed the protein coding DNA sequence of the whole exome at the base of
the terminal branch before the split from the sister species. We considered Ceratotherium simum simum as
Equus caballus’ sister species; Bison bison bison as Bos taurus’ sister species; Pantholops hodgsonii as Ovis
aries’ sister species; Pantholops hodgsonii as Capra hircus’ sister species; Macaca mulatta as Chlorocebus
sabaeus’ sister species and finally, we considered Pan troglodytes as Homo sapiens’ sister species. From this
reconstructed exome, we determined the direction of the substitution occurring along the terminal branch
of the phylogenetic tree toward each extant population. SNPs segregating in the population were discarded,
and the most likely ancestral state from est-usfs (see section 1.3) was used as the reference for each extant
population. For each substitution, we recovered its S0 value as calculated through the phylogeny-based
method (see section 1.2). Finally, the rate of non-synonymous over synonymous substitutions for a given
class of selection coefficient (x ∈ {D0, N0, B0}) was computed as:

dN (x) = D (x)
L (x) ,

dS = Dsyn

Lsyn
,

(6)

where D (x) was the number of non-synonymous substitutions in class x, Dsyn was the number of synonymous
substitutions across the exome, while L (x) and Lsyn were the numbers of non-synonymous and synonymous

94



mutational opportunities, respectively, as defined in section 1.4. δ(dN /dS) was computed as the difference
between dN /dS computed over all substitutions and dN /dS when we removed beneficial back-mutations
dN (S0 < 1)/dS , normalized by dN /dS . Note that the quantities δ(dN /dS) and δ(dN ) are equivalent due to
the simplification of the factor dS :

δ(dN /dS) = dN /dS − dN (S0 < 1)/dS

dN /dS
= dN − dN (S0 < 1)

dN
= δ(dN ). (7)

1.6 Scaled selection coefficients (S) in a population-based method

To obtain a quantitative estimate of the distribution of selection coefficients for each category of SNPs, we
used the polyDFE model (Tataru et al., 2017; Tataru and Bataillon, 2020). This model uses the count of
derived alleles to infer the distribution of fitness effects (DFE). The probability of sampling an allele at a given
frequency (before fixation or extinction) is informative of its scaled selection coefficient at the population
scale (S). Therefore, pooled across many sites, the site-frequency spectrum (SFS) provides information on the
underlying S of mutations. However, estimating a single S for all sampled mutations is biologically unrealistic,
and a DFE of mutations is usually assumed (Eyre-Walker et al., 2006; Eyre-Walker and Keightley, 2009).
The polyDFE(Tataru et al., 2017; Tataru and Bataillon, 2020) software implements a mixture of a Γ and
exponential distributions to model the DFE of non-synonymous mutations, while synonymous mutations are
considered neutral. The model estimates the parameters βd, b, pb and βb for non-synonymous mutations as:

ϕ (S; βd, b, pb, βb) =

(1 − pb) fΓ(−S; −βd, b) if S ≤ 0,

pbfe(S; βb) if S > 0,
(8)

where βd ≤ −1 is the estimated mean of the DFE for S ≤ 0; b ≥ 0.2 is the estimated shape of the Γ
distribution; 0 ≤ pb ≤ 1 is the estimated probability that S > 0; βb ≥ 1 is the estimated mean of the DFE
for S > 0; and fΓ(S; m, b) is the density of the Γ distribution with mean m and shape b, while fe(S; m) is
the density of the exponential distribution with mean m.

PolyDFE requires one SFS for non-synonymous mutations and one for synonymous mutations (neutral
expectation), as well as the number of sites on which each SFS was sampled. For populations containing
more than 8 individuals, the SFS was subsampled down to 16 chromosomes (8 diploid individuals) without
replacement (hyper-geometric distribution) to alleviate the effect of different sampling depths in the 28 pop-
ulations. Altogether, for each class of selection (x ∈ {D0, N0, B0}) of non-synonymous SNPs, we aggregated
all the SNPs in the selection class x as an SFS. The number of sites on which each SFS was sampled is
given by L(x) for the non-synonymous SFS and Lsyn for the synonymous SFS respectively. For each class
of selection x, once fitted to the data using maximum likelihood with polyDFE, the parameters of the DFE
(βd, b, pb, βb) were used to compute P[D | x], P[N | x], and P[B | x] as:
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P[D | x] = P[S < −1 | x] = (1 − pb)
∫ +∞

1
fΓ(S; −βd, b)dS, (9)

P[N | x] = P[−1 < S < 1 | x] = pb

∫ 1

0
fe(S; βb)dS + (1 − pb)

∫ 1

0
fΓ(S; −βd, b)dS, (10)

P[B | x] = P[S > 1 | x] = pb

∫ +∞

1
fe(S; βb)dS. (11)

1.7 Precision and recall

For readability, we give here precision and recall for beneficial mutations (B0 and B), but it can be obtained
using the same derivation for the deleterious mutations (D0 and D) and nearly-neutral mutations (N0 and
N ).

Precision is the proportion of mutations correctly predicted as beneficial (P[B ∩ B0]) out of all predicted
as beneficial back-mutations (P[B0]), which can be written as a conditional probability:

P[B ∩ B0]
P[B0] = P[B | B0]. (12)

Namely, precision corresponds to the probability for a back-mutation (B0) to be effectively beneficial at the
population level (B). This probability, computed from eq. 11, is obtained by restricting our analysis to SNPs
that are predicted to be beneficial back-mutations (yellow fill for the category B0 in fig. 3D).

Recall is the proportion of mutations correctly predicted as beneficial (P[B ∩ B0]) out of all beneficial
mutations (P[B]), which can be written as a conditional probability:

P[B ∩ B0]
P[B] = P[B0 | B]. (13)

Namely, recall corresponds to the probability for a beneficial mutation at the population level (B) to be a
beneficial back-mutation (B0). Using Bayes theorem, recall can be re-written as:

P[B0 | B] = P[B | B0] × P[B0]
P[B] , (14)

where P[B | B0] and P[B0] can be calculated using equations 12 and 5, respectively, and P[B] is the
probability of a mutation to be beneficial at the level of the population, which can be computed from the
law of total probabilities as:

P[B] =
∑

x∈{D0,N0,B0}

P[B | x] × P[x]. (15)

1.8 Correlation with effective population size (Ne)

Genetic diversity estimator Watterson’s θS was obtained for each population from the synonymous SFS as
in Achaz (2009). For each popuation, Ne was estimated from the equation Ne = θS/(4 × u), where u is the
mutation rate per generation. Estimates for u were averaged per species across the pedigree-based estimation
in Bergeron et al. (2023) for Homo, Bos, Capra and Chlorocebus. For Ovis we used the estimated u of Capra.
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For Equus, we used u as estimated in Orlando et al. (2013) (u = 7.24 × 10−9). Because a correlation must
account for phylogenetic relationship and non-independence of samples, we fitted a Phylogenetic Generalized
Linear Model in R with the package caper (Orme et al., 2013). The mammalian dated tree was obtained
from TimeTree (Kumar et al., 2017) and pruned to include only the species analysed in this study, with
multi-furcation of the different populations from each species placed at the same divergence time as the
species (section S4.1).

Data availability

The data underlying this article are available at https://doi.org/10.5281/zenodo.7878954. Snakemake
pipeline, analysis scripts and documentation are available at github.com/ThibaultLatrille/SelCoeff.
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Context

Although it fits best as a third chapter, this work was actually done at the end of my last
year of PhD. During the whole PhD, I found it unsatisfactory to use the dN/dS ratio
to assess the costs and benefits of recombination. Personally, I found that an approach
based on fitness was more straightforward, but I did not take the time to fully explore
my distrust of the dN/dS. As the pile of new projects was growing taller and taller, I
did not take the time to look at it more properly. But when working on another project
with Thibault, using the fitness landscape described in chapter 8, a contradiction was
puzzling me: while highly recombining proteins appeared to be under more positive
selection in humans, they were less fit than others, but had a lower dN/dS. I realized
that after more than two years of PhD on evolution, I had still a poor understanding of
natural selection. Shortly afterwards, at a conference, I heard Nicolas say something to
a colleague on an unrelated matter: "Why not actually model the biological processes we
are assuming for a change?". I therefore decided to do just that. I have to say I pursued
this work alone not because of a profound aversion for the company of my peers, but
if I had told my supervisors and collaborators that I was going to start a new project
without having finished the others at the end of the last year of my PhD, they would
have been (righteously) very annoyed (out of concern, of course!). I hope the reader
will enjoy the results of this risky endeavour.

Detailed contributions

As the short list of authors suggests, I did most of the work, but I benefited from advices
and reviews of Nicolas Lartillot, Carina Farah Mugal and Laurent Duret on a first version
of this manuscript. This manuscript has not been submitted to any journal yet.
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Abstract

It is commonly thought that the long-term advantage of meiotic recombination is to dissi-
pate genetic linkage, allowing natural selection to act independently on different loci. It is
thus theoretically expected that genes with higher recombination rates evolve under more
effective selection, and can adapt more easily to environmental change. On the other hand,
recombination is often associated with GC-biased gene conversion (gBGC), which theoret-
ically interferes with selection by promoting the fixation of deleterious GC alleles. To test
these predictions, several empirical studies assessed whether highly recombining genes ex-
perienced higher rates of positive selection (due to dissipation of genetic linkage) or higher
fixation of deleterious GC alleles (due to gBGC), assuming a fixed distribution of fitness ef-
fects (DFE) for all genes. In this study, I directly derive the expected shape of the DFE from
the evolutionary history of a gene (shaped by mutation, selection, drift and gBGC) under
empirical fitness landscapes. I show that genes that have known high levels of gBGC have
a DFE shifted towards positive values. Only a slight decrease in the genome-wide intensity
of gBGC therefore leads to true positive selection specifically in highly recombining genes,
but with AT-biased substitutions. This shows that even truly increased positive selection
in highly recombining genes is not necessarily an evidence for a beneficial effect of recombi-
nation. Additionally, I show that the death of a long-lived recombination hotspots can lead
to a higher dN/dS than its birth, but with substitutions patterns biased towards AT, and
only at selected position. This shows that controlling for a substitution bias towards GC
is therefore not sufficient to rule out the contribution of gBGC to signatures of accelerated
evolution.

Keywords Recombination · gBGC · DFE · back-mutations · positive selection · dN/dS · fitness landscape



1 Introduction

Meiotic recombination is a key cellular process with major consequences for evolution. In the vast majority
of sexually reproducing species, the formation of a crossing over is required for the proper segregation of
homologs during meiosis (Baker et al., 1976; Davis and Smith, 2001; Pardo-Manuel de Villena and Sapienza,
2001; Gerton and Hawley, 2005). Failure of this process often leads to meiotic arrest or the formation of
aneuploid gametes with missing or extra chromosomes (Hassold et al., 2007; Handel and Schimenti, 2010;
Székvölgyi and Nicolas, 2010; Brick et al., 2012; Mihola et al., 2019).

From an evolutionary perspective, the most commonly cited hypothesis for the long-term maintenance of
recombination is its effect on genetic linkage (Felsenstein, 1974; Otto and Barton, 1997; Otto and Lenormand,
2002; Keightley and Otto, 2006). By creating new combinations of alleles, recombination events dissociate
the selective pressures exerted on different loci, dissipating the so-called Hill-Robertson interference (Hill and
Robertson, 1966; Smith and Haigh, 1973; Charlesworth et al., 1993; Roze and Barton, 2006). A large number
of theoretical studies have explored conditions under which recombination can have a positive, negative or no
effect on the efficacy of natural selection. As a result, it is now generally accepted that in populations of finite
size and where new mutations are mostly deleterious, increased recombination rates enhance the efficacy of
both purifying and positive selection (Felsenstein, 1974; Hickey and Golding, 2018; Roze, 2021). To test this
theoretical result, several empirical studies tried to quantify signatures of selection across regions of different
recombination rate, with mixed results (Bullaughey et al., 2008; Gossmann et al., 2014; Hussin et al., 2015;
Boĺıvar et al., 2016; Castellano et al., 2016; Corcoran et al., 2017; Rousselle et al., 2019; Castellano et al.,
2020; Murga-Moreno et al., 2019).

One of the reasons for these mixed results is that recombination has another effect on genomes that
has been largely overlooked in theoretical studies: GC-biased gene conversion (gBGC) (Brown and Jiricny,
1987; Duret and Galtier, 2009). The very mechanism of recombination requires hybridisation between the
two single-stranded parental DNAs. If an individual is heterozygous at this position, this will cause a
mismatch in the resulting double-stranded DNA (heteroduplex) that can be repaired in the direction of
either allele. One allele thus converts the other and this phenomenon is therefore called gene conversion
(Winkler, 1930) (reviewed in Roman (1985)). In many Eukaryotes including vertebrates, plants and fungi,
recombination-associated gene conversion is biased towards GC alleles (Pessia et al., 2012; Galtier et al.,
2018). The evolutionary consequences of this mechanism is the rapid spread of GC alleles in regions of high
recombination rates, eventually leading to their rapid fixation in the population.

As the main methods of inference of positive selection rely on the detection of rapid fixation events
(McDonald and Kreitman, 1991), the pervasive fixation of GC alleles acts as a confounding factor (Galtier
et al., 2009; Ratnakumar et al., 2010). Ratnakumar et al. (2010) estimated that ∼20% of protein-coding
genes showing a rapidly increasing dN/dS ratio in the human branch were likely to be the result of the birth
of a gBGC hotspot, and did not correspond to adaptation to the new human environment as previously
hypothesized (Kosiol et al., 2008). This proportion was estimated using the fact that increased gBGC
skews substitution patterns towards GC, even in non coding sequence, which is not expected under positive
selection only (Ratnakumar et al., 2010).
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However, it is not clear whether contrasting positive selection across genes with different recombination
rates is a suitable way to test for the beneficial effect of recombination, even when controlling for the rapid
fixation of GC alleles. Indeed, even true positive selection in highly recombining genes is not necessarily the
result of a higher selection efficacy. In fact, the rate of positive selection is the product of the number of ben-
eficial mutations per generation, times their fixation probability (Kimura, 1962). By interpreting increased
positive selection as a sign of increased selection efficacy, a strong hypothesis is implicitly made: genes that
evolved under different recombination rates have the same number of opportunities for beneficial mutations.
Alternatively stated, the above-mentioned empirical studies implicitly (or sometimes explicitly) assume an
invariant distribution of fitness effects (DFE) of new mutations across recombination rate categories (Bul-
laughey et al., 2008; Gossmann et al., 2014; Hussin et al., 2015; Boĺıvar et al., 2016; Castellano et al., 2016;
Corcoran et al., 2017; Rousselle et al., 2019; Castellano et al., 2020; Murga-Moreno et al., 2019).

The DFE of new mutation is a key parameter in evolution, and largely depends on the fitness landscape.
Indeed, in a gene that is strongly selectively constrained, most new mutations will be deleterious. Conversely
in a non-functional pseudogene, all mutations will be neutral. Moreover, the DFE will be affected by the
position of a sequence in its fitness landscape. Indeed, in a gene that is close to its fitness optimum, most
mutations will be deleterious. Conversely, in a gene that is far from its fitness optimum, many mutations
will be beneficial. In a more formal phrasing, the DFE can be seen as the local derivative of the fitness
landscape at the position of a sequence in it, and can be computed as such (Martin and Lenormand, 2006).

As the fitness landscape is usually difficult to access, it is a common practice in population genetics to
consider the DFE as a fixed parameter (e.g. Boĺıvar et al. (2016) and Corcoran et al. (2017) for theoretical
models of gBGC), even though the DFE is supposed to depend on the other parameters of the model. In
particular, the position of the sequence in a fitness landscape is driven by natural selection, mutation, drift
and gBGC.

In this paper, I used a simple mutation-selection model to compute the expected DFE in genes that
have evolved under different recombination rates, under a collection of experimental and empirical fitness
landscapes. I show that by promoting the fixation of many deleterious mutations, gBGC drives sequences
away from their optimal fitness, which directly creates more opportunities for beneficial back-mutations and
skews the DFE towards positive values in highly recombining genes. Upon a decrease of the repair bias
towards GC, or a decrease of the genome-wide recombination rate (keeping the recombination landscape
constant), those beneficial back-mutations eventually get fixed by positive selection. This creates a true
signal of positive selection in highly recombining genes that does not imply either higher selection efficacy
or increased adaptation. Finally, I show that the death of a long-lived recombination hotspot can generate
an even higher dN/dS than its birth. Of note, in this case, substitution patterns are biased towards AT,
and only at selected positions. Importantly, this increase in dN/dS is due to positive selection, but is not
a signature of an adaptation to changing environments. Therefore, these genes potentially add to the list
of false positives when using accelerated evolution or signatures of positive selection to test for adaptive
evolution (Hartl and Taubes, 1996; Galtier and Duret, 2007; Mustonen and Lässig, 2009; Jones et al., 2017).
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2 Results

2.1 Impact of gBGC on the equilibrium DFE of new mutations

As stated in the introduction, the DFE of new mutations depends both on the fitness landscape, and on the
position of a given individual in it. A total of six fitness landscapes were used in this study: one mammalian
fitness landscape obtained by fitting a mutation-selection model to multi-species alignments of 14,509 protein-
codon genes in (Latrille et al., 2023), four fitness landscapes obtained from deep mutational scanning (DMS)
experiments in Influenza (Thyagarajan and Bloom, 2014; Doud et al., 2015), E.coli (Stiffler et al., 2015), and
S.cervisae (Kitzman et al., 2015), and a concatenate of the four previous DMS fitness landscapes. As the
fitness landscapes are fixed, I therefore study selection dynamics in the absence of adaptation. Moreover,
because the fitness landscapes are site-specific, I thus neglect epistatic interactions. The consequences of
this latter assumption are discussed below. The position of a sequence in these fitness landscapes depends
on its evolutionary history. In particular, this position will result from an equilibrium between mutation,
selection, drift and gBGC (Nagylaki, 1983; Hartl and Taubes, 1998; Sella and Hirsh, 2005; Mustonen and
Lässig, 2009). Using a mutation-selection model, one can compute the equilibrium frequency for each codon
at each site for all the fitness landscapes (details in methods).
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Figure 1: Distribution of fitness effects of new mutations at equilibrium separately for WS (red) and SW
(blue) mutations. Equilibrium frequencies were computed for each fitness landscape with B = 0 left and
B = 2 right. From top to bottom: 2000 sites randomly sampled from the mammalian fitness landscapes,
the concatenate of the DMS fitness landscapes (1389 sites), the fitness landscape of the influenza protein
NP (498 sites), the influenza protein HA (564 sites), the S.cervisae protein Gal4 (64 sites) and the E.coli
protein β-lactamase (263 sites).

At mutation-selection-drift-gBGC equilibrium, by sampling all possible mutations, weighted by the equi-
librium frequency of the ancestral codon and their mutation rate, and associating them with their fitness

109



effect, one directly obtains a DFE of new mutations (see details in methods). I computed the DFE sep-
arately for WS (from AT 7→ GC) and SW (from GC 7→ AT) mutations, using a population-scaled gBGC
coefficient (B = 4Neb) of 0 (no gBGC) or 2. For the sake of clarity, I computed equilibrium frequencies
with a Jukes Cantor mutation matrix (which assumes that all bases have equal mutation rates), such as to
avoid the confounding effect of mutation biases on the distribution of fitness effects studied in Latrille and
Lartillot (2022) and to focus on the effect of gBGC. For all the DFEs presented in this study, I considered
only non-synonymous mutations. To be able to compare fitness landscapes, I rescaled them such that the
mean population-scaled selection coefficient from the fittest codon (S = 4Nes) is 20. This ensures that the
selective pressure on protein is high enough such that most sites are little influenced by gBGC, as expected
in reality (Duret and Galtier, 2009).

B = 0 B = 2
Fitness landscape All mutations WS SW All mutations WS SW

Mammalian 1.25% 1.11% 1.30% 1.64% 0.35% 2.97%
Concatenated DMS 3.04% 2.68% 3.33% 3.22% 0.79% 5.39%

NP (Influenza) 0.61% 0.68% 0.54% 0.71% 0.15% 1.27%
HA (Influenza) 1.42% 1.15% 1.74% 1.73% 0.29% 3.35%

Gal4 (S.cervisae) 1.57% 1.33% 1.83% 1.93% 0.43% 3.84%
β-lactamase (E.coli) 11.9% 10.8% 12.4% 12.11% 4.47% 16.2%

Table 1: Proportion of beneficial mutations under the two equilibrium conditions B = 0 and B = 2 for all
the fitness landscapes of the study.

In the absence of gBGC, the positive part of the DFE is almost identical between WS and SW mutations
(Fig.1 and Table 1). However, even in the absence of gBGC or mutational bias, there appears to be slightly
more opportunity for deleterious mutations towards GC than towards AT (Fig.1). This can be partly
explained by the structure of the genetic code: a majority of amino-acids have an obligatory A or T in first
or second position of codons. Indeed, when randomly switching amino-acids in the fitness landscape of a
given site, there are still more deleterious mutations towards GC (Fig.S1).

When the sequence has evolved under gBGC (B = 2), the DFE of WS mutations is skewed towards
negative values, while the DFE of SW mutations is skewed towards positive values (Fig.1). Indeed, at
equilibrium, GC alleles that were slightly deleterious have been fixed because of gBGC, and SW mutations
are therefore more beneficial on average (Table 1). Conversely, most WS mutations that were slightly
advantageous have already been fixed by both positive selection and gBGC. Therefore, only WS mutations
that cannot fix because they are deleterious enough to be wiped out by purifying selection even when helped
by gBGC remain available as mutational opportunities (Table 1). It is also important to note that when
B = 2, one always expects more beneficial back-mutations in total than without gBGC (Table 1).
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Figure 2: Distribution of fitness effects of new substitutions separately for WS (red) and SW (blue)
substitutions under the concatenated DMS fitness landscape. A) Equilibrium frequencies were computed
with B = 0 and the substitution rate also with B = 0 (no gBGC). B) Equilibrium frequencies were computed
with B = 2 and the substitution rate also with B = 2. C) Equilibrium frequencies were computed with
B = 2 and the substitution rate also with B = 3 (increase in gBGC). D) Equilibrium frequencies were
computed with B = 2 and the substitution rate also with B = 1 (decrease in gBGC). The panel A&B
therefore represent substitution rates at equilibrium, while panels C&D represent substitution rates out of
equilibrium.

2.2 Impact of gBGC fluctuations on selection dynamics

Similarly to the DFE of new mutations, by sampling all possible mutations weighted by the equilibrium
frequency of the ancestral codon and their substitution rate, and by associating them to their fitness effect,
one directly obtains a DFE of substitutions (see details in methods). I computed this DFE of substitutions
at equilibrium for B = 0 and B = 2. As the results are almost identical for all fitness landscapes, I only
represented results obtained on the concatenate of DMS fitness landscapes in Fig.2, and presented the other
ones in Supplementary Fig.S2. For B = 0, there are as many beneficial substitutions as deleterious ones
(Fig.2A and Fig.S2). Additionally, there are as many WS substitutions as SW ones (Fig.2A and Fig.S2).
This is expected since the sequence is at equilibrium both for fitness and base composition. For B = 2, the
exact same conditions are met: there are as many beneficial substitutions as deleterious ones and there are as
many WS substitutions as SW ones, again, the sequence is at equilibrium (Fig.2B and Fig.S2). However, as
hinted from the DFE of new mutations, WS substitutions are more often deleterious, while SW substitutions
are more often beneficial (Fig.2B and Fig.S2). To gain insight on selection dynamic out of equilibrium, I
computed the equilibrium frequencies of codons under B = 2, and computed the substitution rates from
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this equilibrium sequence either with B = 1 or B = 3 (Fig.2C&D and Fig.S2). When gBGC increases
(B = 2 7→ B = 3), there is an increase in the fixation of deleterious GC alleles (Fig.2D and Fig.S2), as
predicted by theoretical models, and observed empirically in diverse organisms (Nagylaki, 1983; Bengtsson,
1990; Galtier et al., 2009; Glémin, 2010; Necşulea et al., 2011; Boĺıvar et al., 2016; Rousselle et al., 2019).
Conversely, when gBGC decreases (B = 2 7→ B = 1), there is an equivalent increase in the fixation of
beneficial AT alleles (Fig.2C and Fig.S2).
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Figure 3: Row 1: Proportion of the substitutions (Psub) contributed by WS deleterious (bright red), SW
deleterious (bright blue), WS beneficial (light red) ans SW beneficial (light blue) mutations as a function
of the population-scaled gBGC coefficient under the concatenated DMS fitness landscape in three scenarios:
Equilibrium frequencies are computed with B, and substitutions from this equilibrium sequence are computed
with 0.7 × B (A), B (B) and 1.3 × B (C). Row 2: Relative fitness (f) of sequences as a function of the B

they are evolving under (black dots). Red arrows correspond to the fitness evolution of the sequences after
A) a decrease of B by 30%, or C) after an increase of B by 30%. Row 3: Proportion of positively selected
substitutions (P(S¿0) in the three scenarios described above. Row 4: Proportion of strongly beneficial
substitutions (P(S¿4) in the three scenarios described above.

I then computed equilibrium codon frequencies under a wide range of gBGC intensity, mimicking genes
evolving under different recombination rates. I then computed the DFE of substitutions in two scenarios.
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The first one corresponds to an increase of gBGC by 30% for all genes, the second to a decrease by the
same amount. These scenario mimic either a change in the genome-wide recombination rate, or a change in
the meiotic repair bias. To visualize the displacement of the sequence in the fitness landscape, I computed
the relative fitness of the sequence for all equilibrium states (see details in methods). I represented the
proportions of beneficial, deleterious, WS, and SW substitutions in (Fig.3 row 1 and Fig.S3). When gBGC
increases, genes that evolved under stronger gBGC show the higher proportion of deleterious substitutions
towards GC (Fig.3C1 and Fig.S3). Conversely, when gBGC decreases, genes that previously evolved under
gBGC show higher levels of beneficial substitutions towards AT than others (Fig.3A1 and Fig.S3).

Positive selection can be quantified by the estimator α, which measures the proportion of positively
selected substitutions (for all mutation types) among all substitutions. At equilibrium, without adaptation,
we can see that α = 0.5. This is indeed expected at equilibrium, where the fitness is static. However, when
gBGC increases, α decreases, substitutions are more deleterious, and the sequences falls down the fitness
landscape (Fig.3C2&3 and Fig.S4). Conversely, when gBGC decreases α increases. This is due to the fact
that a sequence that has previously experienced higher levels of gBGC climbs larger distances in the fitness
landscape when gBGC is relaxed (Fig.3A2&3 and Fig.S4).

Usually, mutations with |Nes| < 1 are not included in α, since they are considered effectively neutral
(Eyre-Walker, 2002). This is because α is usually intended to capture the proportion of adaptive substitu-
tions, assuming that only adaptation (i.e. a change in the fitness landscape) can lead to strongly beneficial
mutations (McDonald and Kreitman, 1991). Indeed, on a fixed fitness landscape and without gBGC, when
effectively neutral mutations are discarded, α ≃ 0 (Figure 3 row 4). However, at equilibrium, α increases
with the strength of gBGC because gBGC induces the fixation of substitutions that are increasingly deleteri-
ous, and therefore compensated by substitution that become strongly beneficial (Figure 3B4). When gBGC
decreases, α increases even more with gBGC, because it compensates the fixation of strongly deleterious
mutation previously fixed under higher levels of gBGC while current levels of gBGC do not fix as many
deleterious mutations (Figure 3A4). Finally, when gBGC increases, we still observe an increase of α with
the strength of gBGC (lower than at equilibrium though) (Figure 3C4). While gBGC fixes more deleterious
mutations than at equilibrium, the proportion of compensating strongly beneficial mutations is still higher
than without gBGC, where almost every mutation is effectively neutral. Therefore, paradoxically, genes that
experience the highest α show the steeper decrease in fitness at the same time (Figure 3C2). The results
presented above represent the expectation of the true impact of gBGC on positive selection and coding
sequence evolution.

2.3 Impact of gBGC fluctuations on the rate of coding sequence evolution

It has also been shown that gBGC can alter our ability to detect selection in protein-coding genes, mainly
through incorrect interpretation of the dN/dS ratio (Berglund et al., 2009; Galtier et al., 2009; Ratnaku-
mar et al., 2010; Boĺıvar et al., 2016). Originally, the dN/dS ratio was designed to quantify the selective
constraints exerted on the sequence of a protein (Miyata and Yasunaga, 1980; Nei and Gojobori, 1986). It
represents the probability of fixation of a mutation that alters the sequence of a protein, relative to a mu-
tation that do not alter it, supposedly neutral (Spielman and Wilke, 2015). There are two key assumptions
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under which the dN/dS ratio serves its purpose: 1) allelic frequency changes of synonymous mutations are
supposed to be due to drift only and 2) mutation rates of synonymous and non-synonymous changes within
a gene are supposed to be identical, such that the ratio of substitution rates represent only differences in
fixation probability (Spielman and Wilke, 2015). In the presence of gBGC, both those assumptions are vio-
lated: 1) synonymous mutations do not evolve only by drift but under a directional force that affects their
substitution rate (Nagylaki, 1983), and 2) as the base composition differs at the three nucleotides of a codon
(typically with the third codon showing higher GC-content in highly recombining genes), and SW mutation
rates being usually higher that WS, mutation rates at synonymous and non-synonymous sites within a gene
are different (Boĺıvar et al., 2016; Latrille and Lartillot, 2022). It appears therefore natural that the intensity
of gBGC influences the dN/dS ratio (Berglund et al., 2009; Galtier et al., 2009; Ratnakumar et al., 2010;
Boĺıvar et al., 2016).

To tackle this question in a fitness landscape framework, I used a realistic mutation matrix for humans
to compute both equilibrium frequencies and substitution rates instead of the Jukes-Cantor. This allows me
to capture the effect of the second violation of the assumptions of the dN/dS ratio: mutation rates between
synonymous and non-synonymous changes are different, due to differences in base composition and base-
specific mutation rates. Then, I computed the dN , dS and dN/dS for sequences that reached equilibrium
under B = 0 and that subsequently accumulate substitutions under B = 0 7→ 10, mimicking the sudden
birth of a recombination hotspot (Fig.4 and Fig.S5). Similarly, I computed dN , dS and dN/dS for sequences
that reached equilibrium under B = 0 7→ 10 and that subsequently accumulate substitutions under B = 0,
mimicking the sudden death of a recombination hotspot (Fig.4 and Fig.S5).

The ratio dN/dS is higher at equilibrium than during the death of a hotspots (from B = 10 7→ B = 0),
than during its birth (from B = 0 7→ B = 10) (Fig.4C). In both cases dN is high, either because of the
fixation of deleterious GC alleles or because of the fixation of beneficial back-mutations towards AT (Fig.4A).
The difference of dN/dS mainly stems from the different behaviour of the dS (Fig.4B). During the birth
of a hotspot, dS is very high because of the rapid fixation of neutral GC alleles under strong gBGC. But
when it dies, the increase of dS is small, and only due to the higher mutation rates of GC nucleotides,
which are more abundant after a strong gBGC episode. Because the behaviour of the dN/dS are mainly
the result of the impact of gBGC on the dS, the results presented here do not differ much with those of
Boĺıvar et al. (2016) where the dS is modelled in the same way. However, Boĺıvar et al. (2016) predict a
decrease of the dN when a sequence goes from a high GC content to a lower one (mimicking a decrease in
gBGC), while the present model predicts an increase because of beneficial back-mutations. Overall, under
all fitness landscapes, beneficial back-mutations affect the dN/dS ratio, and the death of a recombination
hotspot induces a higher dN/dS than its birth.

3 Discussion

In this study, I estimated the impact of beneficial back-mutations on the dynamics of natural selection in
the presence of gBGC. I showed that gBGC induces a shift towards positive values in the DFE of new
mutations. When the intensity of gBGC decreases, this leads to an increase of beneficial substitutions, and a
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Figure 4: dN (A), dS (B), and dN/dS (C) as a function of the population scaled gBGC coefficient B in
three scenarios: Equilibrium codon frequencies are computed without gBGC, and substitutions subsequently
accumulate under a population-scaled gBGC coefficient of B (orange line), mimicking the birth of a recombi-
nation hotspot. Equilibrium codon frequencies are computed under a population-scaled gBGC coefficient of
B, and substitutions subsequently accumulate without gBGC (orange line), mimicking the death of a recom-
bination hotspot. And finally, equilibrium codon frequencies are computed under a population-scaled gBGC
coefficient of B, and substitutions subsequently accumulate at equilibrium, under B (green line). From top
to bottom: the concatenate of the DMS fitness landscapes (1389 sites), 2000 sites randomly sampled from
the mammalian fitness landscapes and the E.coli protein β-lactamase (263 sites).

decrease of deleterious ones. If not properly investigated, this selection dynamic can be misinterpreted as a
beneficial effect of recombination, when paradoxically it is fuelled by its deleterious consequences. Moreover,
I showed that one can also expect an increase of the dN/dS due to these beneficial-back mutations. My
results strengthens those of previous studies demonstrating that in the presence of gBGC, the dN/dS ratio
is not a correct estimator of the selective pressure exerted on proteins (Berglund et al., 2009; Galtier et al.,
2009; Ratnakumar et al., 2010; Boĺıvar et al., 2016, 2019). Importantly, the present result highlights that
the absence of a substitution pattern skewed towards GC, affecting both coding and non-coding sequences
does not allow the interpretation of local accelerated evolution as an adaptation to changing environments.
It appears therefore unwise to infer adaptive evolution from the dN/dS ratio of a given gene without prior
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information on gBGC, the fitness landscape, the local recombination dynamic or an external corroboration
(e.g. correlation with phenotypic evolution).

3.1 Comparison with empirical results

In several studies, it was observed that genes richer in GC3 (supposedly having experienced higher recombi-
nation rates) have a lower dN/dS. Some of these studies interpreted this pattern as higher selection efficacy
due to the dissipation of Hill-Robertson interference (Gossmann et al., 2014; Rousselle et al., 2019), while
another argued that it was a consequence of gBGC (Boĺıvar et al., 2016). The rationale behind the latter
claim is that when a sequence is strongly constrained, the dN will be little affected by gBGC while the dS

will rise quickly, leading to a lower dN/dS (Boĺıvar et al., 2016). Here, we do not observe a regime when
the dN/dS decreases, because the dS decreases always faster than the dN , leading to an increase of the
dN/dS. However, both the present model and that of Boĺıvar et al. (2016) predict a decrease of the dS at
equilibrium, while empirical data suggest an increase (Boĺıvar et al., 2016; Corcoran et al., 2017; Rousselle
et al., 2019). This increase is usually attributed to a mutagenic effect of recombination (Boĺıvar et al., 2016;
Rousselle et al., 2019; Castellano et al., 2020), not modelled here, although there are many properties that
are correlated with GC3 that can explain an increase of the synonymous divergence. It is indeed difficult to
interpret correlations between dN/dS and GC3 in empirical data, because genes with different GC3 might
also evolve under different fitness landscapes and different mutational processes that are not directly linked
to gBGC or recombination.

3.2 The equilibrium assumption in regards of hotspot dynamics

In this study, for mathematical convenience, I chose to model out of equilibrium dynamics by first computing
codon frequencies under equilibrium conditions and then computing substitution rates under new conditions.
In mammals, for instance, as most of the genome has a rather low recombination rate, it is reasonable to say
that most genes are around equilibrium for a rather low strength of gBGC. In this case, the birth of a strong
hotspot will indeed leave a clear signature of gBGC in substitution patterns (Berglund et al., 2009; Galtier
et al., 2009; Ratnakumar et al., 2010). However, in humans and mice, the vast majority of hotspots are
short-lived (Auton et al., 2012; Smagulova et al., 2016; Pratto et al., 2014; Alleva et al., 2021). Therefore,
they do not have time to reach equilibrium, and the signatures of the death of a hotspot in the dN/dS might
not be strong enough to be observed in these species. On the other hand, many species including most
placental mammals, passerine birds, colubroid snakes, budding yeasts and many angiosperm plants exhibit
recombination hotspots in 5’ of genes that are relatively long-lived (Axelsson et al., 2012; Choi and Henderson,
2015; Singhal et al., 2015; Lam and Keeney, 2015; Kawakami et al., 2017; Schield et al., 2020; Hoge et al.,
2023). In a previous study, we showed that those hotspots are vastly shared in placental mammals (chapter
6). Interestingly we also showed that they co-evolve slowly with DNA methylation (chapter 6). When those
long-lived hotspots stop to be hypomethylated, they usually die (Maloisel and Rossignol (1998) chapter 6).
Thus, they should leave a strong signal of positive selection, that do not correspond to an adaptive response
of the gene to changing environments.
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Altogether, both fast and slow hotspot dynamics should lead to pervasive fixation of deleterious mutations
because of gBGC, compensated by positive selection. Even if this positive selection can be weak at a given
gene when hotspots are short-lived, it should still have a significant impact throughout the genome.

3.3 Beneficial back-mutations versus compensatory mutations

The fitness landscapes used in this study are simplistic, in the sense that they imply that each amino-
acid evolves independently, and does not interact with others (no epistasis). However, numerous studies
found that epistasis plays an important role in protein evolution (Bonhoeffer et al., 2004; Breen et al., 2012;
Starr and Thornton, 2016; Miton and Tokuriki, 2016). Let us consider the simple example of two residues
interacting such that the optimal state of the protein requires either an alanine at one site and a valine at
the other, or a lysine at one site and an arginine at the other. If the first residue mutates from alanine to
lysine, optimal protein state can either be restored by a beneficial back-mutation from lysine to alanine, or
a compensatory mutation at the other site from valine to arginine. In this simple case, it is easy to see that
the fixation of a deleterious amino-acid does not always lead to an opportunity for positive selection at the
same site. In the end, with epistasis, the deleterious effect of gBGC at one site/gene can be compensated
by positive selection at another site/gene. Of note, if compensatory mutations occur preferentially in the
same gene, one still expects a decrease of the genome-wide strength of gBGC to increase positive selection
in highly recombining genes.

Interestingly, deep mutational scanning experiments showed that in some proteins, the site-specific fitness
landscape can remain unchanged even in divergent lineages and predicts quite accurately the evolution of
sequences in natura (Ashenberg et al., 2013; Doud et al., 2015; Bloom, 2017). This suggests that contrarily
to the previous example, fitness at one site does not always depends on the amino-acids present at other
sites. In this sense, there is also accumulating evidence for convergent adaptation at the molecular level
(Christin et al., 2007; Zhen et al., 2012; Davies et al., 2012; Wu et al., 2020; Duchemin et al., 2023),
suggesting that there is sometimes a limited number of mutations that can lead to a given phenotype, and
thus limited opportunities for compensatory mutations. Moreover, an important role of beneficial back
mutations have been reported in plants (Chen et al., 2021) and mammals (Moses and Durbin, 2009; Latrille
et al., 2023). Recently, we demonstrated that beneficial-back mutations constitute an important fraction
of beneficial mutations in several mammals (between 20% and 40%) (Latrille et al., 2023). Finally, several
human accelerated genes show a remarkably strong AT-biased substitution pattern (Galtier et al., 2009), but
they have not been more deeply investigated, and have been left unchecked in other studies (Ratnakumar
et al., 2010; Kostka et al., 2012).

Altogether, while epistasis can spread throughout the genome the compensatory response to a strong
gBGC episode, this compensation might not always be possible, and beneficial back-mutations are therefore
expected to leave a signature of positive selection upon a decrease of gBGC. Still, the relative contribution of
beneficial back-mutations and compensatory mutations to stabilizing selection in general is an open question
that remains to be investigated, and the burst of fixation of deleterious mutations induced by gBGC could
in fact be an interesting case study to investigate it.
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3.4 Incorporating beneficial back-mutations into evolutionary thinking

In population genetics, the infinite site model approximation inherently excludes the possibility of beneficial
back-mutations (Kimura, 1969; Ohta, 1992). This approximation can be very reasonable mathematically
at a very short timescale, and is widely used in population genetics. Nevertheless, all sequences are the
product of a very long evolutionary history. With a finite genome and longer evolutionary time, beneficial
back-mutations are expected to occur (Gillespie, 1995; Hartl and Taubes, 1996; Piganeau and Eyre-Walker,
2003; Sella and Hirsh, 2005; Charlesworth and Eyre-Walker, 2007; Mustonen and Lässig, 2009). Under a
slowly evolving fitness landscape, they largely contribute to molecular evolution (Chen et al., 2021; Latrille
et al., 2023). Modelling evolution as the displacement of a sequence on a fitness landscape, determined by
natural selection and nonadaptive evolutionary forces, instead of modelling selection with a constant DFE
is therefore more relevant to study selection dynamics (Halpern and Bruno, 1998; Rodrigue et al., 2010;
Tamuri et al., 2012; Rodrigue and Lartillot, 2014; Jones et al., 2017; Tamuri and dos Reis, 2022; Latrille
et al., 2023).

Using this framework, I showed that signatures of positive and negative selection cannot be used to
conclude on a beneficial or negative effect of recombination. For species where meiotic gene conversion
is biased towards GC, this seriously questions all the previous interpretations of this beneficial effect (or
its absence) that are based on the dN/dS or other methods contrasting non-synonymous and synonymous
changes (Bullaughey et al., 2008; Gossmann et al., 2014; Castellano et al., 2016; Boĺıvar et al., 2016; Rousselle
et al., 2019; Murga-Moreno et al., 2019; Hämälä and Tiffin, 2020). In presence of gBGC, it is thus important
to account for beneficial back-mutations.

Even without gBGC, using the same framework, previous theoretical studies demonstrated that the nearly
universal mutation bias towards AT necessarily induces a fixation bias towards GC in selectively constrained
sequence, also because of beneficial back-mutations (Latrille and Lartillot, 2022; Kaj et al., 2023). This calls
for a re-interpretation of results from several studies that interpreted the fact that GC alleles segregate at
higher frequency at non-synonymous sites as an evidence for the negative impact of gBGC on adaptation
(Hämälä and Tiffin, 2020; Liang et al., 2022). For the same reasons that increased positive selection in highly
recombining genes is not an evidence for a beneficial effect of recombination, a fixation bias towards GC at
non-synonymous sites is not an evidence for the presence of gBGC.

Incorporating beneficial back-mutations into evolutionary thinking is therefore essential for understanding
selection dynamics in the presence of biases, and should prevent the spread of many misinterpretations and
erroneous conclusions.

4 Material and methods

4.1 Fitness landscapes

The mammalian fitness landscape was reconstructed by fitting a mutation-selection model to a multispecies
alignment of 14,509 protein-coding genes of 87 mammalian species in Latrille et al. (2023). This fitness
landscape is site-specific: the fitness of amino-acids at one site does not depend on amino-acids at other
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sites (epistasis is neglected). Importantly, mutation-selection models cannot disentangle selection coeffi-
cients from effective population sizes (Rodrigue et al., 2010). The model can only estimate scaled fitness
differences, assuming a constant effective population size throughout the mammalian evolutionary history.
The experimental fitness landscapes were taken from Deep mutational scanning studies on the virus Influenza
(Thyagarajan and Bloom, 2014; Doud et al., 2015), on the bacteria E.coli (Stiffler et al., 2015) and on the
yeast S.cervisae (Kitzman et al., 2015). Except for yeasts, the experimental fitness landscapes have therefore
not been obtained in organisms that are particularly subject to gBGC (Mancera et al., 2008), but still reflect
selective pressures exerted on proteins in general. These experimental fitness landscapes were retrieved from
the study of Bloom (2017).

4.2 Codon equilibrium frequencies

Using a Wright-Fisher diffusion approximation, for a given site l, one can compute the substitution rates
from codon i to codon j (q(l)

i 7→j) (Nagylaki, 1983; Halpern and Bruno, 1998).



q
(l)
i 7→j = 0 if codons i and j are more than one mutation away,

q
(l)
i 7→j = µi 7→j if s

(l)
i,j + b = 0

q
(l)
i 7→j = µi 7→j

4Ne(s(l)
i,j + b)

1 − e4Ne(s
(l)
i,j

+b)
if s

(l)
i,j + b ̸= 0.

(1)

Here, µi 7→j is the mutation rate from codon i to codon j, Ne the effective population size, s
(l)
i,j the

difference of fitness between codon i and codon j at site l, and b the gBGC coefficient. When codon i and
j are separated by a synonymous mutation, I consider that si,j = 0. The gBGC coefficient is the product
of the repair bias towards GC, the recombination rate per base pair and the length of the conversion tract.
A local increase of recombination rate thus directly increases the intensity of gBGC. If the mutation that
separates codon i from codon j is from AT to GC (WS), b is positive, if it is from GC to AT (SW), b

is negative, and if it is GC conservative (A ↔ T or C ↔ G), b = 0. Two mutation matrices have been
used: a Jukes-Cantor mutation matrix where all mutation rates are equal, and an empirical mutation matrix
estimated from singletons of the human’s chromosome 1 extracted from the human 1000 genomes project
(Gazal et al., 2015).

One can then build a 61x61 transition matrix for each pair of codons Q(l). The diagonal of this matrix
is the negative sum of the qi,j :

q
(l)
i,i = −

∑
j ̸=i

q
(l)
i,j (2)

From this transition matrix, the vector of equilibrium frequencies of each codon X(l) can be calculated
by solving the following system:

Q(l)X(l) = 0 (3)
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4.3 DFE of new mutations

At equilibrium, the probability for observing a mutation from codon i to codon j is x
(l)
i µi 7→j where x

(l)
i is the

equilibrium frequency of codon i at site l. For the whole sequence, the DFE of new mutations represented
in Fig.1 has been computed as:

ϕnm(s) =
∑

l

∑
i

∑
j

x
(l)
i µi 7→jK(s − s

(l)
i,j) (4)

where K is a Gaussian kernel function.

4.4 DFE of substitutions

Similarly to the DFE of new mutations, at equilibrium, the probability of observing a substitution from
codon i to codon j is x

(l)
i q

(l)
i 7→j . For the whole sequence, the DFE of substitutions represented in Fig.2 has

been computed as:

ϕsub(s) =
∑

l

∑
i

∑
j

x
(l)
i q

(l)
i 7→jK(s − s

(l)
i,j) (5)

4.5 Relative fitness

The relative fitness at a given site is defined as the average fitness of all codons weighted by their equilibrium
frequency, divided by the fitness of the fittest codon. The relative fitness of the sequence f is just the average
of the relative fitnesses of all sites:

f = 1
L

∑
l

∑
i x

(l)
i f

(l)
i

max(f (l)
i )

(6)

where f
(l)
i is the fitness of codon i at site l, and L the total number of sites.

4.6 dN/dS

I computed dN/dS as the ratio between the rates of non-synonymous over synonymous substitutions given
by:



dN (l) =
∑

i

∑
j

x
(l)
i q

(l)
i 7→j{i 7→ j non-synonymous}

dS(l) =
∑

i

∑
j

x
(l)
i q

(l)
i 7→j{i 7→ j synonymous}

dN/dS = κ
∑

l

dN (l)

dS(l)

(7)

where κ is a constant normalisation factor corresponding to the ratio of the number of possible synony-
mous mutations over the number of possible non-synonymous mutations from the equilibrium sequence.
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Chen, J., Bataillon, T., Glémin, S., and Lascoux, M. (2021). Hunting for beneficial mutations: conditioning
on SIFT scores when estimating the distribution of fitness effect of new mutations. Genome Biology and
Evolution, (evab151).

Choi, K. and Henderson, I. R. (2015). Meiotic recombination hotspots – a comparative view. The Plant
Journal, 83(1):52–61.

Christin, P.-A., Salamin, N., Savolainen, V., Duvall, M. R., and Besnard, G. (2007). C4 Photosynthesis
Evolved in Grasses via Parallel Adaptive Genetic Changes. Current Biology, 17(14):1241–1247.

Corcoran, P., Gossmann, T. I., Barton, H. J., The Great Tit HapMap Consortium, Slate, J., and Zeng, K.
(2017). Determinants of the Efficacy of Natural Selection on Coding and Noncoding Variability in Two
Passerine Species. Genome Biology and Evolution, 9(11):2987–3007.

Davies, K. T. J., Cotton, J. A., Kirwan, J. D., Teeling, E. C., and Rossiter, S. J. (2012). Parallel signatures
of sequence evolution among hearing genes in echolocating mammals: an emerging model of genetic
convergence. Heredity, 108(5):480–489.

Davis, L. and Smith, G. R. (2001). Meiotic recombination and chromosome segregation in Schizosaccha-
romyces pombe. Proceedings of the National Academy of Sciences, 98(15):8395–8402.

Doud, M. B., Ashenberg, O., and Bloom, J. D. (2015). Site-Specific Amino Acid Preferences Are Mostly
Conserved in Two Closely Related Protein Homologs. Molecular Biology and Evolution, 32(11):2944–2960.

Duchemin, L., Lanore, V., Veber, P., and Boussau, B. (2023). Evaluation of Methods to Detect Shifts in
Directional Selection at the Genome Scale. Molecular Biology and Evolution, 40(2):msac247.

122



Duret, L. and Galtier, N. (2009). Biased Gene Conversion and the Evolution of Mammalian Genomic
Landscapes. Annu. Rev. Genom. Hum. Genet., 10(1):285–311.

Eyre-Walker, A. (2002). Changing Effective Population Size and the McDonald-Kreitman Test. Genetics,
162(4):2017–2024.

Felsenstein, J. (1974). The evolutionary advantage of recombination. Genetics, page 20.

Galtier, N. and Duret, L. (2007). Adaptation or biased gene conversion? Extending the null hypothesis of
molecular evolution. Trends in Genetics, 23(6):273–277.
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Mustonen, V. and Lässig, M. (2009). From fitness landscapes to seascapes: non-equilibrium dynamics of
selection and adaptation. Trends in Genetics, 25(3):111–119.

Nagylaki, T. (1983). Evolution of a finite population under gene conversion. Proceedings of the National
Academy of Sciences, 80(20):6278–6281.
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10.1 The definition of adaptation

The adaptation of species to their environment is a fascinating phenomenon for both
evolutionary biologists and the general public. After centuries of natural history
discoveries, we are still amazed at how life has colonised and adapted to almost every
environment on our planet. Moreover, understanding how it will continue to do so
under the drastic environmental changes we are facing is currently of paramount
importance. In the XIXth century, it was proposed that heritable adaptations are made
possible by mutations (Lamarck, 1815) and natural selection (Darwin, 1859). When
the environment changes, if there is functional variation within a population (provided
by mutations), individuals that can reproduce more will pass on their heritable traits,
causing a shift towards those traits that best fit the new environment at the population
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level (Darwin, 1859). While I anticipate that this definition of evolutionary adaptation
will be agreeable to readers from all fields of biology, there is actually a second one that
is used almost exclusively in the literature of molecular evolution and population
genetics. In this second definition, any mutation advantageous for its bearer is called
adaptive, regardless of whether the reason for this mutation being beneficial is
changing environments. However, these definitions are not equivalent, and the second
one disconnects studies evaluating the rate of adaptation at the DNA level with the
biological processes driving adaptation at the ecological level. The earliest use of the
second definition that I could find dates back to the pioneering work of Sewall Wright
on the concept of the adaptive landscape (Wright, 1932).

10.1.1 Adaptive landscape

The adaptive landscape, also referred to as the fitness landscape, describes all the
combinations of genotypes possible and the possibility of evolution from one to another
by means of mutation and natural selection. The fitness landscape can be represented
as a graph where each genotype is a node defined by a fitness in a given environment.
For a given genotype, neighbours are any other genotype that can be accessed with one
mutation. For a given individual, any mutation that goes towards a genotype of higher
fitness is more likely to reach fixation in the population. By means of mutations and
natural selection, at the population level, the population climbs this adaptive
landscape through an "adaptive walk" towards a fitness peak (Figure 10.1).
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Figure 10.1: Schematic representation of a 4 sites bi-allelic fitness landscape. The black
arrows represent an example of a so-called adaptive walk.
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In the adaptive landscape model, "adaptive" is merely used as a synonym of
"positively selected", that only means that the allele favoured by selection is the one
produced by a new mutation, which allows the individual to "climb" the fitness
landscape. Under certain assumptions, the equality between adaptation to changing
environments and positive selection is justified: if species are always at the top of a
fitness peak in a stable fitness landscape, therefore the only reason for a species to find
itself below a peak and climb up is a change in the fitness landscape. However, when
acknowledging the influence of genetic drift or other evolutionary forces on genome
evolution, this assumption is misleading. In fact, populations or individuals find
themselves at an equilibrium between mutation, selection, drift and other non-adaptive
evolutionary forces such as biased gene conversion (BGC) (Hartl and Taubes (1998);
Sella and Hirsh (2005) chapter 9). This equilibrium is necessarily below the fitness
peak. Climbing up towards this peak can either be due to a change in the fitness
landscape (resulting from a change in the environment), or a change in the
non-adaptive forces that define this equilibrium (Charlesworth and Eyre-Walker, 2007;
Jones et al., 2017).

10.1.2 Distinction between adaptation and positive selection

The vocabulary that evolutionary biologists can rely on to describe evolutionary
processes is rich but usually not very well defined. This is a natural consequence of the
emergence of new concepts that appeared independently at different times and in
different fields. There is no need to have a clear definition of a concept until we reach
the point where we need to refine our understanding of that concept to understand how
it articulates with others.

With the dramatic increase in genomic and phenotypic data, in addition to
quantifying the footprints of natural selection, we can now investigate the ecological,
demographic or genetic processes that affected the evolution of species and left those
footprints of natural selection in their genomes. We have therefore reached a point
where we can interpret the signatures of positive selection found in substitutions,
polymorphisms or even time series in terms of the biological generating process, and
this process is not necessarily a response to changing environments. It is therefore more
important than ever to clarify what we call adaptive and non-adaptive evolution to
facilitate cross-talk between ecology and molecular evolution.

Distinguishing adaptation-driven from non-adaptation-driven positive selection is of
particular importance for understanding the impact of positive selection on evolution
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at macro-evolutionary scales. Positive and negative selection, at the micro-evolutionary
scale, describe the fate of a mutant in a population.

The new mutant is either favoured (positively selected) or disfavoured (negatively
selected). In fact, when there is natural selection, there is always one allele that is
favoured and another one that is disfavoured, whether we call it positive or negative
selection only depends on the ancestral state. In the fitness landscape framework, while
positive selection elevates the population in the fitness landscape, negative selection
theoretically eliminates deleterious mutants and maintains the population at the same
position. In practice, the efficiency of negative selection is limited by drift and
non-Mendelian segregation, leading to the fixation of deleterious mutants, and the
descent of individuals in the fitness landscape (Nagylaki, 1983). As individuals do not
indefinitely fall down in the fitness landscape, there is necessarily positive selection at
the same time but potentially at other sites, that maintains the individuals at a given
equilibrium, in a constant environment (Gillespie, 1995; Hartl and Taubes, 1996; Sella
and Hirsh, 2005; Charlesworth and Eyre-Walker, 2007; Mustonen and Lässig, 2009;
Razeto-Barry et al., 2012; Jones et al., 2017).

Adaptive evolution is the phenomenon that generated (and still generates) the great
diversity of form and functions in the tree of life. Indeed, even if functional variation is
expected to occur under a stable fitness landscape, it is only transient, as selection will
eventually bring back the phenotype at equilibrium (Martin and Lenormand, 2006;
Silander et al., 2007; Tenaillon et al., 2007; Amado and Bank, 2023). For functional
and phenotypic diversity to be created and maintained over macro-evolutionary
timescales, fitness landscapes are necessarily variable, which is induced by variations in
the species’ environment (Hietpas et al., 2013; Bajić et al., 2018; Amado and Bank,
2023). Of note, genes under adaption during environmental changes are necessarily
functionally linked to the new environment of the species. On the other hand, I
propose to define purifying selection, at the macro-evolutionary scale (to be
distinguished from negative selection at the population scale) as the selection that
continuously purifies away misfit genotypes in a fixed fitness landscape whether they
are ancestral or derived, leading to either positive or negative selection in a population
(Hartl and Taubes, 1996; Mustonen and Lässig, 2009; Jones et al., 2017). In this view,
purifying selection is the molecular equivalent of stabilizing selection on a phenotype.
Of note, in a fixed fitness landscape, genes under positive selection can have any
function that is not necessarily linked to the species-specific environment.

At the molecular level, by using the term adaptation for both positive selection under
a changing environment and under a non-changing environment, we put under the same
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name processes that generates phenotypic and functional diversity (adaptive evolution)
with processes that deplete it (purifying positive selection).

In fact, in the macro-evolution literature, this distinction is already clearly made:
a classical test of adaptive evolution on a trait consists in assessing whether species
that evolve in different environments evolve towards different traits optima (Hansen,
1997; Grabowski et al., 2023). If all species seem to evolve under a unique optima,
the adaptive hypothesis is rejected, and it is usually concluded that this trait is under
stabilizing selection. Calling beneficial back-mutations adaptive would be equivalent to
say that, under purely stabilizing selection on a trait, the part of the Brownian noise
that brings the trait closer to the selective optima is a signature of adaptive evolution.
If we are to understand how natural selection has shaped the diversity of forms and
function of living organisms, we also need to clarify the distinction between adaptive
evolution and stabilizing selection at the molecular level.

10.2 The detection of adaptation to changing
environments at the molecular level

In practice, it is already difficult to estimate correctly the prevalence of positive
selection from molecular data. Estimating the contribution of adaptation to positive
selection is therefore even more challenging (Latrille et al., 2023b). A common
approach, named "the forward genetics of adaptation" in Bomblies and Peichel (2022),
consists in detecting adaptation at the phenotypic level, and then identifying genomic
changes that are associated with this adaptive evolution of the trait: the genetic
architecture of adaptation.

It is indeed easier to detect adaptive evolution on a macroscopic trait rather than
DNA. In the best case scenarios, one has direct observations that the value or state of
the trait in population 1 increases fitness in its environment, while the value or state of
the trait in population 2 increases fitness in another environment. However, these
approaches also face several important challenges, mainly because population structure
and heterogeneity in recombination rates can artefactually increase the number of
regions/loci associated with the adaptive phenotype. Theses approaches have been
extensively reviewed (e.g. Bomblies and Peichel (2022)), and are not the main focus of
this discussion. Indeed, we do not seek to detect adaptation at the phenotypic level,
but at the molecular level. The main advantage of this latter approach called the
"reverse genetics of adaptation" is that it does not look at adaptation on a particular
phenotype, but instead assesses the role of adaptation to changing environments in
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shaping our genomes more generally (Bomblies and Peichel, 2022). For this, one can
use the different signatures left by the rise of a beneficial allele on genomes, while
making sure that they cannot be explained by the action of non-adaptive forces in a
fixed environment.

10.2.1 Selective sweeps

When an allele is strongly beneficial, it can increase in frequency so rapidly that
recombination do not have time to break the haplotype leading to a local depletion in
diversity around the allele after fixation; which is called a selective sweep (reviewed in
Stephan (2019)). For a sweep to be detected, mutations need to be beneficial enough to
deplete diversity in a large region. Beneficial back-mutations revert previous
deleterious fixed changes. Deleterious fixed changes are usually only slightly
deleterious, otherwise they would not have fixed (Hartl and Taubes, 1996;
Charlesworth and Eyre-Walker, 2007), and thus, beneficial back-mutations are usually
weakly beneficial. Therefore, I believe a strong selective sweep still suggests an
adaptive fixation rather than one induced by a beneficial back-mutation. Soft sweeps,
on the other hand is not an evidence of polygenic adaptation to changing environment.
However, local depletion of diversity could also result from population size contraction
or population structure (Moinet et al., 2022; Schlichta et al., 2022). Thus, one might
want to be careful when interpreting a local diversity drop as evidence for adaptation,
without information on the population demographic history and structure.

10.2.2 Signatures of accelerated evolution

Measuring the rate of adaptation has been central to inform the neutralist-selectionist
debate with empirical data. In particular, the estimator α was designed to quantify the
proportion of non-synonymous substitutions that have been fixed because they
provided a fitness advantage, in contrast to those that have been fixed by drift,
whether they were neutral or slightly deleterious (McDonald and Kreitman, 1991). α

has been shown to vary between species, but mainly because of differences in the
substitution rate of slightly deleterious mutations which decreases in species with high
effective population sizes, and mechanically increase the proportion of adaptive
ones (Galtier, 2016). Another parameter that could be more informative on the role of
adaptation in molecular evolution is ωa, which represent the rate of fixation of
beneficial non-synonymous mutations compared to synonymous ones supposedly
neutral. This estimator was first introduced by McDonald and Kreitman (1991) in the
so-called MK-test, and was then progressively extended (Eyre-Walker and Keightley,
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2007; Galtier, 2016; Tataru et al., 2017).

The general idea behind the test is to compare the dN/dS ratio (substitutions) to the
πN/πS ratio (polymorphisms) McDonald and Kreitman (1991). The πN/πS is supposed
to provide a nearly-neutral expectation of the rate of evolution under negative selection.
Adaptive substitutions are assumed to be fixed very rapidly and therefore not observed
in polymorphism. The difference between the dN/dS and the πN/πS should therefore be
explained by adaptive substitutions. One major issue with this approach is the time lapse
between the dN/dS estimated on a branch, and the πN/πS estimated at the tip. If the
mutation-selection-drift-BGC equilibrium has shifted, because of an increase/decrease of
population size or genome-wide recombination rate, then, πN/πS is no longer a correct
estimate of the strength of purifying selection, which can lead to weirdly negative α

or ωa (Eyre-Walker, 2002; Latrille et al., 2023a). Moreover, as previously said and
shown in chapter 5, dN/dS (and probably πN/πS) are poor measures of the efficiency
of selection in the presence of gBGC.

Overall, a genome-wide estimate of ωa is difficult to compare between species, because
it is influenced by long-term fluctuations of effective population size (Eyre-Walker, 2002;
Charlesworth and Eyre-Walker, 2007; Soni et al., 2022; Latrille et al., 2023a). But this
"rate of adaptation" can still prove to be useful when compared across genes of a same
genome. Indeed, as a first approximation, changes in effective population size will affect
equally all genes. Instead of focusing on the parameter ωa, one can compute the deviation
of ωa from the genome average (∆ωa) (Latrille et al., 2023a). However, to have enough
statistical power, this needs to be performed on several genes (for instance genes involved
in a function suspected to have changed along the branch of a given species) for which
we want to test if they were accelerated.

Altogether, in the face of changes in mutation-selection-drift-gBGC equilibrium,
signatures of accelerated evolution do not allow us to evaluate the genome-wide rate of
adaptation of a species in a given branch, because they cannot disentangle the
signatures of adaptive evolution with those of non-adaptive processes. However,
considering that non-adaptive forces affect the genome equally, comparing ωa across
genes could still provide useful information on potential adaptations (Latrille et al.
(2023a) but see Soni et al. (2022) and chapter 5).
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10.2.3 Modelling the changes in fitness landscapes

Alternatively, understanding the impact of environmental change to molecular evolution
can be achieved by estimating the rate at which fitness landscapes evolve. When looking
at the genome-wide scale, the fitness landscape is probably changing all the time because
of all kinds of fluctuating selection. Therefore, the question of how fast the genome-wide
fitness landscape changes is of very limited interest. A more interesting question concerns
how fast the fitness landscape of a given site, gene or set of genes evolve. For instance, in
a given clade, what proportion of genes/sites have conserved the same fitness landscape?
Are there genes that change fitness landscape all the time? Can we associate the change
in the fitness landscape of a given gene/site to a phenotypic innovation?
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Figure 10.2: Schematic representation of a 2 phenotype Fisher’s fitness landscape. © Thibault
Latrille

By explicitly modelling the fitness landscape, and integrating the contribution of both
fitness differences and non-adaptive forces to the probability of a switch between states,
mutation-selection models provide an appropriate modelling framework to answer these
questions at large time scales (Halpern and Bruno, 1998; Rodrigue et al., 2010; Tamuri
et al., 2012; Rodrigue and Lartillot, 2014; Latrille et al., 2021; Latrille and Lartillot, 2022;
Tamuri and dos Reis, 2022). These models represent an approximation of Wright’s fitness
landscape in the case where the amino-acid fitness landscapes at each site of a protein
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are independent. The fitness of the sequence is therefore described by the additive effects
of the fitness at all sites. This site-independent model approximation is quite convenient
mathematically, and proved to be a reasonable approximation of the fitness landscape
of protein-coding genes (Ashenberg et al., 2013; Doud et al., 2015; Bloom, 2017; Latrille
et al., 2023b). However, where possible, I think it is always better to model selection
explicitly at the level of phenotypes, where one expects it to act.

Fisher’s geometric model provides a valuable framework for achieving this
goal (Fischer, 1930). In Fisher’s geometric model, instead of associating fitness to
genotype, fitness is defined at the phenotypic level. The traits of an individual are
projected on a n-dimensional continuous phenotypic space. This space is characterized
by an optimum and a function that describes the decrease in fitness with the distance
from this optimum. Mutations have a given distribution of effect size on the
phenotypes through which they affect fitness. On top of providing a modelling
framework closer to the representation we have of natural selection, this framework
genuinely accounts for fitness interactions between sites: epistasis (Tenaillon, 2014).

10.2.4 Consequences of epistasis

Epistasis can arise when the fitness of a given mutation of the genome depends on the
genotype at other loci. To account for this, some studies have used the statistical
framework of direct coupling analysis (DCA) to not only estimate the site-specific
fitness landscape, but also to estimate the fitness interactions between sites to some
extent (Weigt et al., 2009; Baldassi et al., 2014; Bisardi et al., 2022; Vigué et al., 2022).
However, these models assume that sites are at their equilibrium frequencies and do not
account for the influence of phylogenetic inertia or biased gene conversion. Moreover,
the computational cost of evaluating interaction only allows for testing interaction
within a gene, or between two genes but is not applicable to detect interactions
genome-wide. Despite these limitations, I think there is room for improvement, and the
features of the model we used in chapter 4 could be included in DCA. Without an
explicit phenotype-genotype-fitness map, this framework could be valuable to measure
the evolution of fitness landscapes, while accounting for interdependence between sites.

From a conceptual perspective, under a gene-centered view of evolution, one can
consider that epistasis is the adaptation of genes to changes elsewhere in the genome
by considering the states at other interacting genes as part of the gene’s environment.
The same reasoning can be applied to different interacting sites in a given protein.
In turn, under an individual-centered view, even if a change at one site impacts the
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fitnesses at other sites, the overall fitness landscape has not changed. In the end, whether
we can call a compensatory change due to epistasis adaptive depends on the scale at
which we define the fitness landscape. This ambivalent status of epistasis takes it roots
in the more fundamental difficulty to define the object of selection and therefore its
environment. This definition might depend on the biological question of the study. For
instance, if the insertion of transposable elements (TEs) generates a selective response
at other genes to limit their spread in the genome, one might want to call this response
adaptive by considering the TE as a pathogen which is part of the environment. Now,
if the same insertions slightly disrupt the function of genes, which is compensated by
substitutions at other sites of these genes, one might consider that the selective response
arises from epistasis rather than adaptation.

Altogether, whether we include compensatory responses in adaptation depends on
the context, and this problem is much less of a problem if the environment that
generates the adaptive response is clearly defined. In contrast, beneficial
back-mutations do not occur because of the change elsewhere in the genome, but
because of a deleterious substitution at the same site. Because the environment is
defined as everything outside of a system, a nucleotide cannot be part of its own
environment. Therefore, contrarily to compensatory mutations, beneficial
back-mutations cannot be considered as adaptive. Of note, epistatic compensatory
mutations still induce inter-specific genetic diversity by encoding the same phenotype
under different genotypes, while beneficial back-mutations reduce genetic diversity by
replacing rare deleterious nucleotides by common advantageous ones.

10.3 Conclusion

Altogether, to describe the rise in frequency of a new beneficial allele, allowing
populations to climb in the fitness landscape, I think it is best to stick to the term that
is perfectly adapted: positive selection. And I suggest we restrain our use of adaptation
or adaptive to the cases when we have some evidence that the fitness advantage of the
new allele is induced by changing environments (which have to be defined). With this
definition, we will be able to understand how positive selection at the DNA level
contributes to between species trait diversification in diverse environments. I am aware
that the use of adaptation as positive selection has a long history in molecular
evolution and population genetics. I hope that if after reading this piece, population
geneticists are still not convinced that the benefits of distinguishing adaptation from
positive selection outweigh the costs of breaking with this long-lasting tradition, they
will at least clearly define adaptation or adaptive in their study to avoid
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misinterpretation or erroneous conclusions across different fields of evolutionary
biology.
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Part IV

The evolutionary origin of
GC-biased gene conversion
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The evolution of GC-biased gene

conversion by means of natural
selection
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Context

While reading this manuscript, at some point, I hope that the reader has begun to think,
as I have, about how much better we could be without gBGC and to wonder why we
have to suffer this burden anyway. During my last follow-up comity, at the beginning
of my final year of PhD, we put on the table all the potential adaptive and nonadaptive
arguments we could think of to explain the existence of gBGC. Unfortunately, it appeared
that nonadaptive arguments were quite difficult to test. On the other hand, modelling
the effect of natural selection on a modifier of gBGC to see what value it evolved to, why,
and what burden it implied, seemed a much more achievable goal. Therefore, Nicolas
and I decided to propose the subject to a very enthusiastic intern from the ENS de Lyon
(Augustin Clessin). In only four months, he had time to learn to code in C++, code
a simulator and derive semi-analytical approximations for the action of selection on a
modifier of gBGC (which is a great amount of work). As he did not have enough time
to do more, Nicolas and I performed the subsequent analysis and wrote a manuscript,
which I hope the reader will enjoy.

Detailed contributions

This study was co-designed by Nicolas, Augustin and myself. Augustin developed the
simulator and derived equations to compute the selective pressure exerted on a modifier
of gBGC. Most analysis were then performed by Nicolas, and I performed the analysis
on the genetic load. Nicolas and I wrote a first draft of the results and materials and
methods of the analysis we each carried out. I wrote the first draft of introduction,
abstract, and nearly all the discussion. We jointly revised all the parts of the manuscript.
This manuscript has not been submitted to any journal yet.
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Abstract

GC-biased gene conversion (gBGC) is a recombination-associated evolutionary force that
biases the segregation ratio of AT:GC polymorphisms in the gametes of heterozygotes, in
favour of GC alleles. This non-adaptive process is the major determinant of base compo-
sition in humans and can be the cause of a substantial burden of GC deleterious alleles.
While the importance of GC-biased gene conversion in molecular evolution is increasingly
recognised, the reasons for its existence and its variation between species remain largely
unknown. Using simulations and semi-analytical approximations, we investigated the evo-
lution of gBGC as a quantitative trait evolving by mutation, drift and natural selection.
We show that in a finite population where most mutations are deleterious, gBGC is under
weak stabilising selection around a positive value that depends on the intensity of the muta-
tion bias and on the selective constraints exerted on the genome. Importantly, the levels of
gBGC that evolve by natural selection do not minimize the load in the population, and even
increase it substantially in regions of high recombination rate. Therefore, despite reducing
the population’s fitness, levels of gBGC that are currently observed in humans could in fact
be positively selected: a genetic tragedy of the commons.

Keywords gBGC · Recombination · Modifier · Genetic load · Mutation bias · Natural selection

1 Introduction

In meiosis, during the repair of double strand breaks (DSBs), the single stranded DNA from the broken
chromosome invades the other such that the two form a double stranded DNA chimera (heteroduplex) of the
two parental chromosomes. At this location, if the individual is heterozygous, there will be a mismatch (non
Waston and Crick pairing). This mismatch can be resolved by repairing either parental allele with the other.
This phenomenon therefore induces gene conversion (Winkler, 1930; Roman, 1985). In the late 80’s Brown



and Jiricny (1987) found that in human and green monkey cells, gene conversion was biased towards GC
alleles. Since then, direct and indirect evidence for this bias have been found in a wide range of eukaryotes
(Mancera et al., 2008; Duret and Galtier, 2009; Pessia et al., 2012; Smeds et al., 2016; Clément et al., 2017;
Galtier et al., 2018; Boman et al., 2021). GC-biased gene conversion (gBGC) is therefore a special case of
non-Mendelian segregation where recombination and DNA repair machineries act as segregation distorters
(Nagylaki, 1983; Bengtsson and Uyenoyama, 1990). Most methods that detect selection or infer demography
from genetic data are based on the assumption of Mendelian segregation, and gBGC therefore confounds
both selection and demography inference (Galtier and Duret, 2007; Ratnakumar et al., 2010; Kostka et al.,
2012; Pouyet et al., 2017, 2018; Boĺıvar et al., 2019). Moreover, it has been demonstrated, notably in humans
and birds, that gBGC is the major determinant of GC content variations along the genome (Galtier et al.,
2001; Meunier and Duret, 2004; Webster et al., 2006). Despite its major impact on genome evolution, the
evolutionary origins of gBGC and the reasons for its maintenance remain quite uncertain. Bengtsson (1986)
made the prediction that if gene conversion could be biased against the most common class of mutations,
it could provide an advantage by reducing the genetic load. GC 7→ AT mutations being the most common
type in most species (Long et al., 2018), it has thus been naturally hypothesized that gBGC could have
been selected as a correction mechanism that counteracts the almost universal mutational bias towards AT
(Glémin, 2010). However, Glémin (2010) demonstrated that the levels of gBGC that should minimize the
load are very weak compared to empirical values observed in regions of high recombination rate.

In fact, empirical studies so far are quite unanimous on a mostly deleterious effect (Berglund et al.,
2009; Galtier et al., 2009; Necşulea et al., 2011; Lachance and Tishkoff, 2014; Boĺıvar et al., 2016). Having
a mechanism that seems to be mostly deleterious being so widespread in eukaryotes is therefore quite
paradoxical. Interestingly, both in angiosperms and animals, studies observed a negative correlation between
the transmission bias b, and effective population size (Clément et al., 2017; Galtier et al., 2018). Galtier
et al. (2018) proposed that this pattern could be explained by a drift barrier hypothesis, whereby gBGC is
a deleterious process which can be efficiently counter-selected only in species whose effective population size
is high. However, as the way mutation, drift and selection affect the evolution of gBGC lacks theoretical
expectations, this argument is verbal and requires theoretical validation. Bengtsson and Uyenoyama (1990)
investigated the evolution of a modifier of biased gene conversion (BGC) under different scenarios, and
recovered that a positive value of BGC evolves naturally when mutation is biased. However, this study
was conducted under the approximation of infinite population sizes and at a single strongly selected locus.
Therfore, this study do not allow to explain the variations of gBGC between species of different population
sizes.

To tackle this question in a more realistic setting, we developed a model in which the intensity of gBGC
evolves freely as a quantitative trait that affects the whole genome in a finite population. We confirm that in
the presence of a mutational bias towards AT, gBGC naturally evolves towards positive values (Bengtsson and
Uyenoyama, 1990). As expected, the equilibrium value of the transmission bias towards GC depends both on
the intensity of the mutational bias towards AT and on the magnitude of selective constraints exerted on the
genome. Interestingly, we predict that the equilibrium value of the transmission bias correlates negatively
with effective population size, suggesting that high levels of gBGC are not only more efficiently counter
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selected in high-Ne species, but also more deleterious. Importantly, we show that even if gBGC leads to a
higher deleterious burden at the population level, this does not mean that it is negatively selected, even in
high Ne species. In the present model, high gBGC intensity results from a tragedy of the commons where
the short-term advantage of converting AT deleterious alleles in heterozygotes leads to a higher deleterious
burden in the population. Overall, by capturing the selective pressures acting on gBGC under empirically
realistic conditions, this model provides insight into the role of natural selection in shaping the evolution of
gBGC in eukaryotes.

2 Results

Model summary

A model for the evolution of biased gene conversion was designed and implemented as a simulation program.
The model is meant to represent a population of randomly-mating diploid individuals, of fixed size N ,
evolving under a typical nearly-neutral regime, that is, under purifying selection against deleterious mutations
susceptible to occur over a broad (gamma-distributed) range of selective effects, from very weak to very
strong (Ohta, 1992; Eyre-Walker and Keightley, 2007). Those mutations occur over a set of bi-allelic loci,
with allelic states W , or Weak (corresponding to AT), and S, or Strong (corresponding to GC). The model
assumes a mutation bias λ, which will be typically in favour of Weak alleles (so as to mimic the mutational
bias in favour of AT seen across many eukaryotic species (Long et al., 2018)). Selection, on the other hand,
is statistically balanced with respect to either W or S, in the sense that, for each locus, either W or S is
randomly chosen to be the deleterious allele with probability 1/2.

On top of this nearly-neutral background, the model invokes a modifier locus, encoding an additive
quantitative trait modulating biased gene conversion. Specifically, the locus determines the value of the
conversion bias parameter β, which will play during meiotic recombination as follows: in addition to a
unique cross-over uniformly chosen along the chromosome, a certain fraction of the genome undergoes gene
conversion at rate α per nucleotide position. If a position somewhere in the genome is heterozygous and
happens to undergo gene conversion, then the W allele is converted into the S allele with probability (1+β)/2,
and conversely, the S allele is converted into the W allele with probability (1 − β)/2. As a result, the net
strength of biased gene conversion, defined as the net excess of transmission of S alleles, relative to W , at a
WS heterozygous position, is b = αβ.

The basal rate of gene conversion, α, is assumed to be fixed, possibly because of specific constraints related
to the molecular mechanisms of meiosis. The conversion bias β, on the other hand, is allowed to evolve,
by introducing mutant alleles at the modifier locus (at rate w) contributing a small shift, either positive or
negative, in the value of β. As a result of this mutational input, biased gene conversion is susceptible to
show variation among individuals. The whole question is then whether this genetically-encoded variation in
gBGC is in turn subject to indirect selection, and whether this results in predictable patterns of evolution
of gBGC in the long run.
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Biased gene conversion is under stabilizing selection

Typical trajectories of the population-mean of biased gene conversion (b) under the model are shown in
Figure 1. Here, a mutational bias of λ = 3 is considered (bias in favour of Weak, or AT alleles), with a basal
mutation rate of u = 10−4 (for W to S mutations), a population size of N = 1000, a genome consisting
of L = 10000 selected loci, with a gamma distribution of selective effects of mean h̄s = 0.01 and shape
0.2. Two alternative settings are considered for the dominance effect of those mutations: either co-dominant
(h = 0.5) or partially recessive (h = 0.1). In both cases, the modifier locus undergoes mutations at a rate of
w = 10−3 per generation, with effect sizes of mean 0.1 on β. Finally, the basal gene conversion rate is equal
to α = 0.1. Of note, these parameter values are not meant, at that stage, to match any specific empirical
situation. Instead, the aim is to reveal the inner workings of the model, and how its output relates to the
input parameter values.
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Figure 1: Evolution of the strength of gBGC (mean of b over the population) over the generations, for the
co-dominant (A) and recessive (B) cases. Red horizontal line: mean over the entire run; blue horizontal line:
equilibrium value predicted by the analytical approximation; light-blue shaded area: predicted equilibrium
variance.
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Running the model under these parameter values results in a population-level gBGC evolving towards
positive value of b, reaching an evolutionary equilibrium with a long-term mean of the order of b ≃ 0.003
(Figure 1). There is a substantial evolutionary variance, such that the population still spends about 10% of
the time with negative values of b. Nevertheless, this variance remains much smaller than what is observed
when inactivating all selection (i.e. by setting s̄ = 0), in which case the population visits, over evolutionary
times, the entire range of values of b that can be realized by the underlying genetic architecture, that is, from
−α to α, with α = 0.1 (not shown). These experiments show that gBGC is susceptible to spontaneously
evolve in favour of Strong (GC) alleles. They also more specifically suggest the existence of some form
of stabilizing selection acting on gBGC, driving the population towards, and maintaining it around, an
evolutionary equilibrium.

The mutation-segregation tradeoff between AT- and GC-deleterious mutations

The observations gathered in the last section call for a deeper understanding of what drives the equilibrium
value of b, and its variance. Given a mutation bias towards W , it seems relatively straightforward that a
conversion mechanism playing blindly against W alleles during meiosis should be error-correcting on average
and could therefore be selected (Bengtsson, 1986). What is perhaps less obvious is why selection induced
on gBGC modifiers is stabilizing rather than extremal, resulting in an optimal value of b. The fundamental
reason for this lies in the feedback of the evolution of gBGC on the segregation frequencies at the selected
loci across the genome.

Consider a population initially devoid of gBGC. In this context, modifiers increasing gBGC are selectively
favoured due to their error-correcting effect on deleterious polymorphisms, which are primarily towards W.
Such modifiers will therefore invade. As a consequence, however, the population starts to live and reproduce
under increasingly high levels of gBGC. This in turn changes the frequency at which S and W alleles
segregate, increasing the frequency of S and decreasing the frequency of W alleles in the population. This
shift in the segregation frequencies of deleterious alleles in favour of S tends to compensate for the mutation
bias in favour of W . The balance between these two opposing effects, mutation versus segregation bias, is
reached for an intermediate value of b.

This mutation-segregation tradeoff can be mathematically formalized under the assumption that gBGC
evolves slowly and that most of the selection induced on gBGC is fundamentally contributed by selected
loci that are not strongly linked to the modifier locus (these assumptions are discussed below). The detailed
derivation is given in the Methods. Here, the main intuitions are presented and graphically illustrated.

The key is to express the mean selective effect induced on a modifier increasing the value of gBGC by
an amount δb, in a population at equilibrium under a strength of gBGC equal to b. This induced selection
is here more precisely defined as the difference between the mean fitness of the offspring of an individual
bearing the modifier (and thus implementing a gBGC of strength b + δb in its meiosis) and the mean fitness
of the offspring of an individual not bearing the modifier. For small δb, this difference is proportional to δb

and can be written:

δlnf = G(b)δb. (1)
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If G(b) is positive, then modifiers increasing b will be favoured, and conversely if G(b) is negative. Considering
W and S alleles separately, G(b) can be expressed as the difference between the net gain upon converting
W alleles GW (b), and the cost of converting S-deleterious alleles, GS(b):

G(b) = GW (b) − GS(b). (2)

Both terms are positive, and the sign of G(b) will thus be determined by which of these two contributions,
gain or cost, is largest.

Since the selection induced on gBGC is contributed by the entire genome, both GW (b) and GS(b) can be
expressed as averages over the distribution of selective effects of the mean selective impact of gene conversion
events, scaled by the number of positions under selection, which is L/2 for both cases:

GW (b) = L

2 ⟨HW (s, b)⟩, (3)

GS(b) = L

2 ⟨HS(s, b)⟩, (4)

Here, HW (s, b) and HS(s, b) denote the mean selective impact of gene conversion events at loci with selection
coefficient s, at equilibrium under a gBGC equal to b. The angle brackets stand for an expectation over the
gamma distribution of selective effects.

Finally, in order to account for the stochastic fluctuations in the segregation frequencies of selected loci,
the functions HS(s, b) and HW (s, b) are themselves expectations over the frequency distribution for W and
S alleles, of the expected selective differences contributed in the offspring by conversion events occurring
during meiosis on the selected positions that happen to be heterozygous in a typical individual. Thus, taking
the case of W -deleterious alleles, let x denote the frequency at which the allele segregates in the population.
Under random mating, an individual will be heterozgous for this allele with probability

P = 2x(1 − x), (5)

in which case, accounting for all possible genotypes for the other parent, the mean gain induced by a
conversion event at that position in the offspring will be equal to (see methods):

C = s

2 [h + x(1 − 2h)] . (6)

At mutation-selection-conversion balance, x is a random variable drawn from an equilibrium frequency
distributions noted ϕW

s,b(x), and thus, overall, the mean gain will amount to:

HW (s, b) = EϕW
s,b

[P × C] (7)

The same derivation can be conducted in the case of S-deleterious loci. For bi-allelic loci, the equilibrium
distributions ϕW

s,b(x) and ϕS
s,b(x), for both W and S loci, can be explicitly written, up to a normalization

constant, such that expectations over these distributions can be computed numerically (see methods).

Predicting the equilibrium mean and variance strength of gBGC

The value of G(b) = GW (b) − GS(b) can be plotted as a function of the population-level b (Figure 2). This
function is decreasing, crossing 0 at an intermediate, positive value of b∗. Numerically solving for the value
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Figure 2: Strength of selection induced on gBGC modifiers, G(b), as a function of b (blue curve), under the
co-dominant (A) and recessive (B) settings. Dark blue dotted vertical line: numerically estimated value of
b∗, for which G(b) = 0; orange line: numerically estimated tangent at b∗; light blue dotted vertical lines:
predicted standard deviation around b∗.

b∗ such that G(b∗) = 0 gives b∗ = 0.0036 in the co-dominant case, and b∗ = 0.0031, which is close to
the mean value observed in the simulation (b̄ = 0.0033 and b̄ = 0.0027, respectively). The numerical and
simulation-based estimates are both represented as a blue and red lines, respectively, in Figure 1.

A rough quantitative estimate of the evolutionary variance can also be obtained, based on the slope γ of
the tangent to the curve at b∗ (Figure 2A). Specifically, the equilibrium evolutionary variance is predicted
to be approximately equal to veq ≃ 1

2NLγ (reported as a shaded area on Figure 1). Of note, the selective
response shows a steeper slope at the equilibrium point in the recessive case, resulting in a smaller predicted
evolutionary variance than in the co-dominant case.

The drivers of gBGC

The behaviour of the simulation model, along with the analytical approximation just introduced, were further
investigated by plotting the predicted equilibrium value of the strength of gBGC, b∗, as a function of several
key parameters (mutation bias, mean strength of purifying selection, number of positions under selection
and mutation rate). The case of the response of b∗ to changes in effective population size is examined further
below.

Not surprisingly, the mean equilibrium strength of gBGC is directly related to the strength of the mu-
tational bias (Figure 3A). Owing the symmetry of the problem, running the model with λ < 1, i.e. under
a mutational bias in favour of the Strong alleles results in a population evolving towards a mean conversion
bias in favour of Weak (left side of Figure 3A). The mean equilibrium strength of biased gene conversion
is also directly influenced by the mean strength of the purifying selection acting over the genome (Figure
3B),thus clearly indicating that its evolutionary dynamics is a direct consequence of the selective effects in-
duced by converting non-neutral polymorphisms in the germ-line. The mean equilibrium value is insensitive
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Figure 3: Mean equilibrium b∗ and standard deviation, as a function of λ (A), hs̄ (B), L (C) and u (D),
under the co-dominant (blue) and the recessive (orange) case, obtained by simulations (dots and associated
vertical bars) and predicted by the analytical approximation (curve and associated shaded area).

to the number L of selected loci, but its evolutionary variance, on the other hand, is affected, showing a clear
decreasing trend with L, which corresponds to the scaling in 1/L predicted by the analytical approximation
(Figure 3C).

Finally, the strength of gBGC responds very weakly to the mutation rate, except for very high mutation
rates (4Nu >> 1), in which case it shows a sharp increase (Figure 3D). For low 4Nu, not so much the
mean than the evolutionary variance of gBGC is impacted by the mutation rate, with larger variances being
observed under lower mutation rates. In this respect, the response of the model to variation in u is not unlike
its response to variation in L (Figure 3C). This similar behaviour can be understood by noting that any
indirect selective effect acting on the modifier locus can only be mediated by heterozygous positions. Thus,
the strength of induced selection will be directly determined, not just to L, but more fundamentally, by the
mean number of selected positions at which a typical individual is heterozygous. The mean heterozygosity
in the population is in turn directly impacted by the mutation rate, and this, under most selective regimes.
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In the limit of very low mutation rates, gene conversion just does not have much on which to act across the
genome, and as a consequence, is not experiencing any meaningful induced stabilizing selection.

The analytical approximation (plain lines in Figure 3) are globally in good agreement with the simulation
results (filled circles), except for large s̄ or large u, where the analytical prediction appears to be an under-
estimate. These corresponds to regimes where the diffusive approximation used for deriving the analytical
predictions is not valid, owing to a large variance in genome-wide log-fitness between individuals. In practice,
these regimes are far from empirical reasonable conditions. As for the analytical variance estimate (shared
areas in Figure 3), they are correct for low u or low L but appear to be underestimates in all other cases,
when compared to simulation-based variance estimates (bar plots). This could be a consequence of the linear
approximation implicit in estimating the variance based on the slope of the G function at the equilibrium
set point (see above). Alternatively, this could be due to the fact that the analytical approximation assumes
an instantaneous equilibration of the genome to the current population mean value of b. In practice, the
selected loci show some inertia in their response to the variation in b at the level of the population. This in
turn is expected to result in a delay in how the strength of the balancing selection acting on b responds to
the fluctuations of this variable, ultimately resulting in an increased variance.

Finally, across all scaling experiments shown in Figure 3, the stabilizing selection induced on b appears
to be globally tighter in the partially recessive case, for which both the response of the equilibrium value of
b to changes in parameter values and the equilibrium variance are less pronounced than in the co-dominant
case.

Which class of mutations contribute to stabilizing selection on gBGC ?

As the mean fitness effect of deleterious mutations is a key parameter for the evolution of intermediate levels
of gBGC, it appears probable that under a DFE, not all mutations contribute equally to it. To further
investigate this point, the analytical approximation was recruited to examine how the mean frequency at
which W -deleterious alleles (Figure 4A&B) and S-deleterious alleles (Figure 4C&D) segregate in a population
at equilibrium as a function of their selection coefficient, and how this segregation is modulated by slight
variations in b (the dotted, plain, and dashed lines correspond to increasingly larger values of b). The bottom
panels show the corresponding expected fitness gain HW (s, b) incurred by converting W -deleterious alleles
(blue curves, above 0), and the expected fitness cost HS(s, b) incurred by converting S-deleterious alleles (red
curves, below 0), both weighted by the distribution of selective effects (DFE). These are plotted as functions
of s, for 3 different values of b. Weighting H by the DFE gives a better sense of the relative contributions of
mutations with different selection coefficients to the total cost and gain. Also, with this weighting, averaging
HW and HS over the DFE simply amounts to computing the area under the two curves, which thus directly
correspond to GW (b) and GS(b), respectively. The parameter values used for Figure 4 correspond to the
simulation trajectory displayed in Figure 1, for the co-dominant and recessive cases.

As b increases, W alleles segregate at a lower frequency (Figure 4A&B) and S alleles at a higher frequency
(Figure 4C&D). Correlatively, the expected gain contributed by converting W alleles (Figure 4E&F, blue
curves) decreases, and the cost contributed by converting S alleles (red curves) increases with population-
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Figure 4: Mean segregation frequency of W alleles (A&B), S alleles (C&D), and induced selection (E&F),
as a function of s, under the co-dominant (A,C&E) and recessive (B,D&F) settings, for different values of b:
plain lines correspond to the equilibrium value of b, long stretches correspond to a slightly increased b, and
dots correspond to a slightly decreased b. Blue lines correspond to W alleles, while red line correspond to S
alleles.

level b. The intermediate value of b used in Figure 4 is precisely the one for which the areas under the two
curves in panel C are equal (shaded areas in blue and red) – it is thus the predicted evolutionary optimum
(of note, the areas under the two curves may not look equal to each other on the figure, in particular in the
recessive case, but this is only because the two curves extend much further to the right than is shown).

Importantly, the way the two compartments, Weak and Strong, react to changes in population-level
b is very different. On one side, W -deleterious polymorphisms are only moderately affected, and this,
mostly in the range of small selective effects. In contrast S-deleterious polymorphisms are strongly affected.
More specifically, increasing b leads to a surge in the segregation of S-deleterious mutations of intermediate
strength, for which gBGC and selection are of the same order of magnitude. This surge translates into a peak
in the expected cost (red curve, bottom panel), whose area increases with b. Translating these observations
in terms of the net selection acting on gBGC, the fitness advantage is mostly contributed by converting W

strongly-deleterious mutations, and is essentially a constant. The fitness cost, on the other hand, is mostly
contributed by S mutations of selective effects of the order of b. This fitness cost varies strongly with b and
is the main factor responsible for modulating the selection induced on gBGC modifiers, as a function of the
population b.
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Of note, the exact patterns differ between the co-dominant and the recessive cases. In the co-dominant
case, the peak in the conversion cost is around s ≃ b/h, the value for which gBGC and selection exactly
compensate each other. In the recessive case, the peak is broader and covers most of the range b/(1 − h) ≤
s ≤ b/h, or equivalently hs ≤ b ≤ (1 − h)s. This is the range for which the strength of gBGC is stronger
than selection against the heterozygote but weaker than selection against the homozygote for the deleterious
mutant. As a result, these GC-deleterious polymorphisms tend to segregate at intermediate frequencies, as
if they were over-dominant (i.e. advantageous when in one copy, deleterious when in two copies), resulting
in a higher fraction of heterozygotes in the population, and thus a substantial cost against gBGC (Glémin,
2010). This can explain why the strength of selection around the equilibrium value of b is higher in the
partly recessive case.

gBGC is partially buffered against changes in population size

A somewhat paradoxical consequence of gBGC is the extreme sensitivity of equilibrium base composition
to even mild variation in its population-scaled intensity B = 4Nb (Eyre-Walker, 1999). Quantitatively, the
neutral equilibrium GC/AT composition ratio scaling exponentially with B, which can quickly lead to very
large GC content even for moderate increase in N . For instance, based on the current estimate of b in
humans, increasing effective population size by a factor 10 would imply a long-term neutral equilibrium GC
content greater than 99% in the 10% most highly recombining fraction of the genome. How to explain, then,
that gBGC does not more often lead to diverging base composition across species?

Implicit in the argument just exposed is that the strength of gBGC is fixed, while population size varies, or
at least, that there is no internal mechanism for tuning the raw intensity of gBGC (b) depending on effective
population size (N), so as to somehow guarantee that B = 4Nb never becomes too large. Yet, if gBGC
is under stabilizing selection, this raises the possibility for such an internal mechanism to spontaneously
emerge. This fundamentally depends on how the evolutionary optimum b∗ scales with population size.

To examine this point, the optimal value b∗ predicted by the model was computed (using the semi-
analytical approximation) over a broad range of values of N between 102 and 106. For this experiment, a
mutation rate of u = 10−8 was assumed (for S → W mutations), and a bias of λ = 2. Both the co-dominant
case (h = 0.5) and the partially recessive case (h = 0.1 and h = 0.01) were considered.

In all cases (Figure 5), whether co-dominant or recessive, b∗ decreases with N . The trend is moderate
in the co-dominant case but more pronounced in the recessive case. In both cases, the decrease is less
than linear, such that B = 4Nb still increases as a function of N . This increase is quite substantial in
the co-dominant case, with B reaching values above 10 for population sizes of N = 104 and above 100 for
N > 3.105. In the recessive case, on the other hand, B is much less responsive to changes in population
size, ranging from B ≃ 3 for N = 102 up to B ≃ 15 for N = 106 – barely a 5-fold increase over 4 orders of
magnitude for N .

Interestingly, a mixture of 50% co-dominant and 50% partially recessive (h = 0.1) essentially behaves like
the pure partially recessive case (all mutations with h = 0.1). Even a small proportion of 10% of partially
recessive positions, mixed with 90% of co-dominant positions, shows substantially more stable levels of gBGC
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Figure 5: Scaling of b∗ (A) and B∗ = 4Nb∗ (B) as a function of N , under the co-dominant (h = 0.5) and
recessive (h = 0.1 and h = 0.01) settings (plain curves), or assuming a mixture of co-dominant and recessive
mutations (dashed curves).

as a function of N (Figure 5, dashed lines). Recessive mutations thus appear to represent an efficient buffer
against changes in population-scaled gBGC induced by changes in population size.

The fundamental reason why b∗ decreases with N can be understood by examining the structure of the
induced selective response (Figure 6). As mentioned above, the mutation-segregation balance essentially
takes the form of a tradeoff between, on one side, a net error-correcting effect on strongly deleterious muta-
tions (more often deleterious towards W than towards S) and, on the other side, a conversion load mostly
contributed by S-deleterious mutations with selection coefficients of the order of b. The first component,
being in the strong selection regime, is essentially insensitive to N (Figure 6E&F, blue curves). The sec-
ond component, on the other hand, precisely because of the compensation between gBGC and selection,
is effectively in a regime dominated by drift, and thus, in many respects, has an evolutionary dynamics
resembling nearly-neutral evolution. As such, its mean heterozygosity is strongly influenced by changes in
effective population size, and more precisely, will tend to increase with N . Since biased gene conversion
is in direct proportion to the amount of heterozygosity, the conversion cost itself will also increase with N

(Figure 6E&F, red curves). Altogether, GC-deleterious mutations with selective effects of the order of b are
efficiently mobilized (i.e. contribute more to standing variation) upon an increase in N and thus represent
a key force buffering B∗ against changes in population size.

Of note, and as already explored above (Figure 4), in the co-dominant case (Figure 6, A,C&E), the range
of GC-deleterious mutations that are mobilized consists of a relatively narrow peak around b/h. In contrast,
in the recessive case, a good fraction of the range comprised between b/(1 − h) and b/h (the two dotted
vertical lines on Figure 6B,D&F), corresponding to the co-dominant regime, is mobilized, thus contributing
a much more responsive buffer against changes in N – which can easily dominate the overall response even if
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Figure 6: Mean segregation frequency of W alleles (A&B), S alleles (C&D), and induced selection (E&F),
as a function of s, under the co-dominant (A,C&E) and recessive (B,D&F) settings, for different values of
N : plain lines correspond to the equilibrium value of b, long stretches correspond to a slightly increased N ,
and dots correspond to a slightly decreased N . Blue lines correspond to W alleles, while red line correspond
to S alleles. Green lines correspond to the deterministic approximation (Ns very large).

recessive mutations represent a minority of the total standing variation, as observed above (Figure 6, dashed
lines).

gBGC and the genetic load

gBGC is often depicted as a force that interferes with selection, and that causes a significant deleterious
burden (Galtier and Duret, 2007; Berglund et al., 2009; Galtier et al., 2009; Necşulea et al., 2011). On
the other hand, our results reflect those of previous studies showing that BGC confers a significant fitness
advantage by correcting the most common class of mutations (here S 7→ W ) (Bengtsson and Uyenoyama,
1990). But as pointed out by Glémin (2010), the levels of gBGC that evolve naturally are not necessarily
the ones that minimize the average genetic load of a population. The average genetic load of a population
can be decomposed into the load of W deleterious alleles:

LW = ⟨EϕW
s,b

[
2hsxW (1 − xW ) + sx2

W

]
⟩γ (8)

Where x is a random variable drawn from the equilibrium frequency distribution of W alleles ϕW
s,b(x), and

that of S deleterious alleles:
LS = ⟨EϕS

s,b

[
2hsx(1 − x) + sx2]

⟩γ (9)
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Where x is a random variable drawn from the equilibrium frequency distribution of S alleles ϕS
s,b(x).
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Figure 7: A&B: average deleterious load in a population as a function of b. The black lines shows the
value equilibrium value of b and the grey line shows the value of b that minimizes the average load. C&D:
frequency of W and S alleles as a function of b. E&F: heterozygosity for W ans S alleles as a function of
their deleterious effect s under the value of b that minimizes the load. A,C&E: h = 0.5. B,D&F: h = 0.1

Using a population size of N = 10, 000, a mutation rate of u = 10−8 and a mean selection coefficient
hs = 0.01, we computed the average genetic load as a function of b for h = 0.5 and h = 0.1 (Figure 7A&B).
The load is minimized for a very small value of b compared to the one that naturally evolves. The level of
gBGC that minimizes the average genetic load corresponds to the level that equalizes the frequencies of W

and S alleles, leading to a average GC content of 0.5 (Figure 7C&D). It is worth noting that when the average
frequencies of W and S alleles are equal, it does not mean that they are distributed evenly in heterozygotes.
In fact, W deleterious alleles are more often heterozygous (Figure 7 E&F), because they are numerous due
to a high S 7→ W mutation rate, but at low frequency because of gBGC. Conversely, S deleterious alleles
are less numerous due to a high S 7→ W mutation rate, but more often at high frequency because of gBGC
and thus more often homozygous. Therefore, when the mean load in the population is minimal, there still
is an individual advantage to convert W deleterious alleles more often for heterozygotes.
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Empirical calibration

Overall, the modeling work presented thus far suggests that biased gene conversion in favour of GC can in
principle evolve as a consequence of the mutation bias towards AT and that its intensity can also be modulated
in an adaptive manner as a function of key parameters, in particular effective population size. An important
question that remains is whether it provides quantitatively reasonable predictions when confronted to current
empirical knowledge about the strength of gBGC in various species.

Humans and the mouse represent good cases to consider. One important problem to address, however,
is that the model considered thus far assumes a uniform recombination landscape. Yet most mammals,
and many other eukaryotes, have recombination hotspots, such that 90% of the recombination is typically
concentrated in about 10% of the genome (Smagulova et al., 2011; Pratto et al., 2014). In the presence of
hot spots, most of the selection induced on gBGC will be contributed by the highly recombining regions.
This can be reasonably well approximated by considering that only the highly recombining regions are being
explicitly modeled.

Assuming that ∼10% of the genome is under selection (Rands et al., 2014), and 10% of those selected
loci are in highly recombining regions, for a genome of total size 3 Gb, this gives L = 3.106. In humans,
the mutation rate is u = 3.10−8 per base pair and per generation. In the mouse, the mutation rate is a bit
lower u = 10−8. Here, only u = 3.10−8 is considered. The mutation bias is in both cases of the order of
λ = 2, the value used here. Current estimates of the DFE suggest a shape parameter a between 0.2 and 0.3.
Here, a = 0.2 is used. The mean selection coefficient under this DFE is difficult to estimate. In humans,
recent estimates are of the order of hs̄ = 0.01 to 0.05, both of which were tried in what follows. Finally, the
co-dominant and partially recessive cases are considered, as well as the 50:50 and 90:10 mixtures of these
two dominance regimes, with population sizes varying from N = 104 to N = 106, so as to cover most of the
range of what can be expected more generally in mammals.

The estimates of B∗ = 4Nb∗ returned by the numerical approach under these parameter values are
reported in Table 1. Of note, since only highly recombining regions are modeled, this should be interpreted
as the value of B prevailing in those regions, which is thus about 100 times higher than the strength of gBGC
in the remaining 90% of the genome. Under co-dominant selection, the predicted values for B∗ range from
11 to 300, showing quite some sensitivity to both effective population size and mean selection strength across
the genome. In contrast, assuming partially recessive mutations return a much narrower range of estimates,
from 7 to 30. Fitting the model assuming a mix of co-dominant and recessive mutations (last rows of Table
1) suggests that a moderate fraction of recessive mutations is sufficient to make B less responsive to changes
in N .

Empirical estimates of gBGC in Humans are of the order of B = 0.3 for the genome-wide mean, and
around B = 5.2 to 6.5 in the top 20% regions of high recombination (Duret and Arndt, 2008). The theoretical
predictions (Table 1) are globally higher than these empirical estimates, although they get reasonably close
to them (predicted B < 10) for the lower values of s̄ or assuming the presence of recessive mutations. This,
together with the rather extreme results obtained for the largest population size under the co-dominant case,
suggest that recessive mutations may play a role in buffering gBGC.
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hs̄ = 0.01 hs̄ = 0.05
h N B∗

h stdev p(B < 0) B∗
h stdev p(B < 0)

104 11 8 0.07 25 12 0.02
0.5 105 36 15 0.009 89 14 0.01

106 157 11 < 0.001 297 6 < 0.001
104 7 4 0.04 9 4 0.01

0.1 105 11 4 0.005 13 4 < 0.001
106 24 7 0.002 31 8 < 0.001
104 8 5 0.05 11 5 0.009

50% 0.1 : 50% 0.5 105 13 5 0.004 16 5 < 0.001
106 32 9 < 0.001 45 10 < 0.001
104 10 6 0.05 16 6 0.005

10% 0.1 : 90% 0.5 105 20 7 0.001 26 7 < 0.001
106 65 13 < 0.001 104 12 < 0.001

Table 1: Numerical estimates of B∗
h (scaled conversion strength in hot spots), equilibrium standard deviation

and probability of a negative gBGC, for different parameter values for N , h, hs̄.

Finally, the predicted evolutionary variance is substantial for low population size, such that b∗ can take
on values very close to 0 or even negative, around 1 to 5% of the time. This suggests that induced selection on
gBGC may not be sufficiently powerful to guarantee a bias towards Strong over the whole range of molecular
evolutionary regimes susceptible to be observed across mammals – although, even then, it may still represent
a sufficiently strong selective force preventing gBGC to become unreasonably large.

3 Discussion

In this study, we developed a model to characterize the evolution of gBGC by means of natural selection. We
first showed that in the presence of a mutation bias towards AT, gBGC was under relatively weak stabilizing
selection around a positive value of the transmission bias, in agreement with a previous study (Bengtsson and
Uyenoyama, 1990). The equilibrium value of the transmission bias (b∗) corresponds to the one that equalizes
the fitness gain of converting strongly deleterious AT mutations in heterozygotes and the fitness cost of
transmitting slightly deleterious GC mutations to offsprings. This balance depends both of the strength of
the mutation bias towards AT, but also on the mean fitness and dominance effects of deleterious mutations.
When even few deleterious mutations are recessive, the cost of transmitting slightly deleterious GC alleles
becomes quickly higher, and b∗ decreases. Importantly, b∗ is negatively correlated to effective population
size. In fact, the fitness gain of correcting strongly deleterious AT mutations is essentially independent of
effective population size, while the cost of transmitting slightly deleterious GC alleles increases quickly with
it. This could contribute to the absence, or the weak positive correlation between the population-scaled
gBGC coefficient (B = 4Neb) and effective population size (Ne) reported in several clades of eukaryotes
(Lartillot, 2013; Clément et al., 2017; Galtier et al., 2018; Galtier, 2021; Boman et al., 2021).
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A tragedy of the commons

gBGC is often described as an evolutionary force that antagonizes natural selection. It has even earned
the nickname of ”Achilles’ heel of genomes” (Galtier and Duret, 2007). When the impact of an intrinsically
deleterious biological process still can be limited to a minimum by natural selection, it leads to a drift-barrier
behaviour, where the effect of this biological process is limited by increasing effective population size. This is
thought to be the case for the evolution of mutation rates (Sung et al., 2012), or for splicing errors (Bénitière
et al., 2023). Galtier et al. (2018) proposed that the negative relationship between gBGC and effective
population size observed in angiosperms and animals could also arise from a drift-barrier hypothesis. Here
we show that despite a deleterious effect at the population level, gBGC is still (weakly) positively selected.
Therefore, the levels of gBGC observed in animals may not be counter-selected at all. In this view, the
pervasive existence of gBGC in eukaryotes is not explained by a limited efficiency of negative selection due
to drift, but by a tragedy of the commons where the short-term advantage of biasing gene conversion towards
GC limits the long-term reproductive capacity of the population as a whole.

The strength of selection acting on gBGC

Of note, the strength of stabilizing selection on gBGC according to our model is weak and the expected
variance of b around its equilibrium value depends on several assumptions. First, we only considered the
direct conversion gain/cost in fitness in one generation, while in fact, a gBGC modifier will be statistically
linked to half of the deleterious AT alleles it corrects in the next generation, and again half of it in the next
etc... By considering only the direct gain/cost at one generation, we might be underestimating the strength
of selection acting on a modifier, and thus overestimating the evolutionary variance. However, when linkage
is taken into account (in the simulations), the evolutionary variance is higher than under the semi-analytical
approximations. This can be explained by a strong assumption of the semi-analytical model: the population
has time to reach mutation-selection-drift-gBGC equilibrium between each modification of b (low mutation
rate at modifier loci). When the number or the effects of loci that can influence the strength of gBGC is high
enough such that the population does not have time to reach mutation-selection-drift-gBGC equilibrium
between two consecutive modifications of b, the short term benefit/cost of converting with a bias b is not
coupled to its long term benefit/cost. In this case, we might observe increased oscillations around b∗, and
thus increased evolutionary variance.

Essentially, the results obtained here give the best-case scenario among all possible genetic architectures
for gBGC, i.e. the scenario for which stabilizing selection on b is tightest.

The penetrance of a somatic repair bias in meiosis

It is very likely that the mechanisms that bias DNA repair towards GC in meiosis are the same as those that
operate in somatic cells. Most single nucleotide DNA damages involve wrongly incorporated As, Ts, or even
Us. Repair enzymes that minimize the somatic mutation rate should therefore be GC-biased. In this sense,
in mammals, the base excision repair pathway has DNA glycosilases for excising adenines and thymines,
but none for guanine or cytosine (Krokan and Bjør̊as, 2013). This leads to a re-interpretation of the results
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presented here: fundamentally suggesting that there is enough selection for limiting the penetrance of the
somatic repair bias in meiosis, if this ever leads to overly strong gBGC (deleterious at the individual level).
In this view, the expected strength of gBGC should lie between the somatic repair bias (strongly GC biased)
and b∗. This could explain why meiotic gene conversion appears to be universally GC-biased, despite the
weak selection preventing it from being AT-biased (Table 1). Of note, even if selection to limit the penetrance
of the somatic repair bias is maximally effective, the expected value of b still induces a substantial load at
the population level.

gBGC and effective population size

In mammals, there is a (weak) correlation between effective population size Ne and the population-scaled
gBGC coefficient (B = 4Neb) (Lartillot, 2013; Galtier, 2021). This correlation is also observed among human
populations (Glémin et al., 2015; Subramanian, 2019), and effective population size seems to explain the
difference in B between two passerine species (Barton and Zeng, 2021). However, in Leptidea butterflies
there is no relationship between B and genetic diversity, suggesting that the transmission bias b is lower in
species/populations of higher effective population size (Boman et al., 2021). Finally, no correlation has been
observed between B and Ne in 29 species (Galtier et al., 2018), or in 11 species of angiosperms (Clément
et al., 2017).

The most probable hypothesis so far is that in animals and plants, there is a negative correlation between
the repair bias b0 and effective population size (Galtier et al., 2018). Several arguments have been proposed
to explain this negative relationship. As previously said, Galtier et al. (2018) proposed a drift-barrier
hypothesis: assuming that gBGC is deleterious, it can be more efficiently counter-selected in species with
higher Ne, and thus b0 should be negatively correlated with Ne.

On the other hand, it has been shown that depending on the repair mechanisms, the intensity of the bias
could be negatively correlated with heterozygosity (Lesecque et al., 2013; Li et al., 2019). As heterozygosity
is supposed to be proportional to Ne, this can also explain why we observe no correlation between B and Ne

(Clément et al., 2017; Galtier et al., 2018; Boman et al., 2021), while we still expect one under selection only.
However, the switch to such heterozygosity-dependent mechanisms could also be an adaptive response to the
increasing cost of gBGC, and the two hypotheses are not mutually exclusive. Nevertheless, these hypothesis
remain verbal, and a proper modelling of the molecular mechanisms of gBGC and their selective advantage
is needed to put them to the test.

Empirical relevance

We highlighted that gBGC being deleterious at the population level is not an indicator that it is negatively
selected. It is therefore unclear whether the levels of gBGC currently found in eukaryotes are actually
negatively selected. Here, we computed the expected b∗ under empirically realistic parameters, and recover
a rather high b∗. It is important to note that this estimation is sensitive to parameters that are very difficult
to estimate reliably. Notably, the size of the genome that is under selection(Rands et al., 2014), the DFE
and more specifically the size of the compartment of strongly deleterious mutations. Moreover, b∗ is strongly
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sensitive to the distribution of dominance effects, about which little is known (Billiard et al., 2021). Finally,
it relies on the assumption that half the genome under selection has a GC allele as optimal and the other
half an AT allele. This assumption is intuitive and is made in almost all models of gBGC (Bengtsson, 1990;
Glémin, 2010; Boĺıvar et al., 2016; Corcoran et al., 2017) However, when using empirical fitness landscapes
in protein coding genes instead of an arbitrary distribution of selective effects, it appears that AT encoded
amino-acids are more often optimal than GC-ones, which is due to the structure of the genetic code (chapter
9). Under this scenario, a slight mutational bias is actually beneficial, and thus b∗ should be lower.

Overall, while the present model significantly improves our understanding of the selective pressures
exerted on gBGC, it is by no mean an attempt to accurately predict the strength of gBGC in vivo.

4 Methods

4.1 Model

The model assumes a population of fixed size N diploid individuals, randomly mating and with non-
overlapping generations. The genome is composed of a single chromosome. Since neutral loci don’t have
any impact on the evolution of gBGC, they are not explicitly modeled. As a result, the chromosome is
assumed to consist of L bi-allelic positions, with two alternative alleles, W (weak) or S (strong), that are
all under selection with locus-specific selective strengths. The model also invokes a modifier locus placed
somewhere along the chromosome (in the experiments conducted here, at one third of the total length of the
chromosome).

For a given selected position i, 1 ≤ i ≤ L, either the W allele or the S allele is considered deleterious with
probability 1/2, in which case the selection strength si acting on the deleterious allele is randomly drawn
from a gamma distribution of mean s̄ and shape parameter a. All selected loci share the same dominance
coefficient h. In the following, the co-dominant case h = 1/2 and the recessive case 0 < h < 1/2 are both
considered. The selective effects are assumed additive over loci. Thus, assuming locus i is such that W is
the deleterious allele, then the log-fitness contribution is 0 for genotype SS, hsi for genotype SW and si for
genotype WW (and conversely for loci for which S is the deleterious allele). Letting Q1

ij , Q2
ij ∈ {0, 1}2 stand

for the genotype of diploid individual j at position i, with the convention that 1 stands for the deleterious
allele (which can be either S or W depending on the locus), the total Malthusian (log) fitness of individual
j is then given by:

ln Wj = −
L∑

i=1

(
Q1

ij(1 − Q2
ij) + Q2

ij(1 − Q1
ij)

)
hsi + Q1

ijQ2
ijsi.

The selected positions undergo recurrent mutations between W and S. Allele W mutates towards S at rate
u, and allele S mutates towards W at rate λu per generation.

The modifier locus encodes an additive quantitative trait controlling the bias of gene conversion. For
individual j, with genotype (z1

j , z2
j ) ∈ R2 at the modifier locus, the bias is then equal to:

βj = 1
2

(
z1

j + z2
j

)
.
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How this bias exactly impacts gene conversion during meiosis is described below. The modifier locus mutates
are rate w, in which case the quantitative contribution of the mutant allele is equal to that of its parent,
plus a normally distributed increment, of mean 0 and standard deviation ∆z:

z′ ∼ N(z, ∆z2).

A simplified version of meiosis is implemented as follows. Consider individual j. First, each selected
position that happens to be heterozygous in this individual undergoes gene conversion with probability α,
in which case conversion is towards the S allele with probability (1 + βj)/2 and towards the W allele with
probability (1 − βj)/2, with βj such as defined above (equation..). Second, a cross-over point is chosen
uniformly at random over the chromosome, and two recombinant chromosomes are produced by swapping
the segments on both sides of the cross-over point. Thus, both the rate of cross-over and the rate of gene
conversion are considered fixed and invariant across individuals, while the bias of the gene conversion events
is allowed to vary between individuals, based on the genotype at the modifying locus. Of note, a positive
(resp. negative) value for βj results in biased gene conversion towards S (resp. towards W ). Quantitatively,
at a given selected position at which individual j is heterozygous, the net proportions of gametes produced
by this individual bearing the S allele is:

qS = (1 − α)1
2 + α

1 + β

2 = 1 + αβ

2 = 1 + b

2 ,

with b = αβ. Similarly, the proportion of gametes with the W allele is qW = 1−b
2 .

The overall life cycle runs as follows. First, all individuals of the current generation undergo mutations
both at the modifying and at the selected loci, with mutation rates such as given above. Next, each individual
of the next generation is produced by first randomly choosing two parents in the current generation, each
with a probability proportional to is fitness W (such as given by eq. above). Each of the two chosen
individuals then undergoes a meiosis, producing a pair of gametes, one of which is randomly picked out and
paired with the gamete produced by applying the same procedure to the other individual. Of note, only one
gamete per meiosis is kept for the next generation, the other one being discarded.

Altogether, the parameters of the model are:

N : population size

L: number of loci under selection

s̄: mean selection strength at the selected loci

a: shape of the distribution of selection strengths across loci

h: dominance coefficient

u: basal mutation rate at the selected loci

λ: mutation bias (S → W relative to W → S)

w: mutation rate at the modifier locus

∆z: mean effect size of the mutations at the modifier locus

α: gene conversion rate (per generation and per selected locus)
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4.2 Theory / Analytical approximation

Here, a semi-analytical approximation is derived for determining the equilibrium value of the net strength
of biased gene conversion b as well as its evolutionary variance. This derivation assumes a low mutation
rate at the modifier locus (low w), such that the population is, at any time, approximately monomorphic for
the strength of gBGC, and all selected loci are at mutation-selection-drift-conversion equilibrium under this
value of gBGC. The derivation also assumes that linkage both among selected loci and between the modifier
and the selected loci is negligible. The first condition implies that background selection is weak, and that the
mutation-selection-drift-conversion equilibrium can be determined independently at each locus. The second
is motivated by the fact that, in practice, most selected loci are sufficiently far from the modifier, such that
most of the induced selection is contributed by loci that not tightly linked with the modifier.

Consider a population monomorphic at the modifier locus for an allele of strength β, at equilibrium under
a gBGC of strength b = αβ. In this population, a mutant at the modifier locus, of size 2δβ appears in an
individual. This individual thus has a gBGC strength of b′ = b+δb in its germline, with δb = α δβ. We want
to determine the net selective advantage or disadvantage incurred by this individual, owing to its departure
from the population-level gBGC. This selection will be indirectly contributed by the effect of biased gene
conversion on the selected loci across the genome. Therefore, in the following, this will be called the selection
induced on the gBGC modifier, or induced selection for short.

Under efficient linkage dissipation, induced selection is the sum of the contributions of all selected loci.
Consider in a first step a single locus at which W is the deleterious allele, with selection s, dominance h and
segregating in the population at frequency x. Given x, the probability for the individual to be heterozygous
at this position is:

P (x) = 2x(1 − x),

in which case the S and W allele are transmitted in the gametes with probability 1+b′

2 and 1−b′

2 , respectively.
In a random mating population, this will result in an average fitness gain in the offspring of:

ln fW (x, s, h) = 1 + b′

2 ((1 − x) × 0 + x × (−hs)) + 1 − b′

2 ((1 − x) × (−hs) + x × (−s))

= b′ s

2 [h + x(1 − 2h)]

= b′ C(s, h, x),

where:

C(s, h, x) = s

2 [h + x(1 − 2h)].

Of note, if b′ > 0, this is indeed a gain, since on average, S alleles, which have a higher fitness at that position,
are over-transmitted. Next, to assess the fate of the gBGC mutant, one should discount the equivalent gain,
but under a gBGC equal to b in the population, such that the average selective advantage contributed by
the selected position under consideration to the individual bearing the mutant allele for the modifier (now
accounting for the probability for this individual to be a heterozygote at the selected locus) is:

δ ln fW (x, s, h) = P (x) C(s, h, x) δb.
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Equation 10 gives the cost conditional on the frequency x of the W allele at the focal selected position and
conditional on the selection coefficient s. This needs to be averaged over x at mutation-selection-conversion-
drift equilibrium (here noted ϕW

s,b) and then summed over the distribution of selective effects across the L/2
loci being deleterious towards the W allele:

GW (b) = δ ln fW

δb

= L

2 ⟨HW (s, b)⟩,

where the angle brackets stand for the expectation over s under the DFE, and,

HW (s, b) = EϕW
s,b

[P × C]

is the expectation over x under ϕW
b,s of P (x) C(s, h, x). In other words, it is the net gain induced by conversion

events at loci that are W -deleterious, with selection coefficient s and dominance coefficient h. In turn, the
distribution ϕW

b,s is given by (Wright, Glemin):

ϕW
b,s(x) = 1

ZW
b,s

x4Nv−1(1 − x)4Nu−1e−4Nx(b+s(h(1−x)+x(1−h))),

where ZW
b,s is the normalization constant:

ZW
b,s =

∫
x4Nv−1(1 − x)4Nu−1e−4Nx(b+s(h(1−x)+x(1−h)))dx.

A similar derivation is done for a locus at which W is the deleterious allele, which, by symmetry, gives:

GS(b) = δ ln fS

δb

= −L

2 ⟨HS(s, b)⟩,

where

HS(s, b) = EϕS
s,b

[P × C]

and

ϕS
b,s(x) = 1

ZS
b,s

x4Nu−1(1 − x)4Nv−1e−4Nx(−b+s(h(1−x)+x(1−h))),

with normalization constant:

ZS
b,s =

∫
x4Nvu1(1 − x)4Nv−1e−4Nx(−b+s(h(1−x)+x(1−h)))dx.

Of note, P (x) and C(s, h, x) are positive for all x, and thus, increasing biased gene conversion towards the
strong alleles results in a net gain over W -deleterious loci, but a net a loss over S-deleterious loci. Whether
the mutant for gBGC is favoured by this induced selection will depend on the balance between these two
components. In other words, the total selection induced on the modifier is:

δ ln f

δb
= G(b)

= GW (b) − Gs(b).
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4.3 Implementation

The model was implemented in C++, using openMP for parallelizing the computations. For all results
presented here, it was run under population sizes of size N = 1000, with L = 10000 selected loci, for a
total of 210 000 generations, discarding the first 10 000 generations (burn-in) and subsampling 1 every 100
generations, upon which averages and standard deviations for quantities of interest were computed on the
remaining 2000 points.

Numerical integration and solving was done in Python, using the scipy library for numerical integration
over the allele frequency distributions. For integrating over the gamma distribution of selective effects, the
gamma distribution was discretized into n = 300 points, corresponding to the mid-points of the successive
1/n quantiles, and then the integral over the distribution was approximated as the equal-weighted average
of the integrand over these n values for hs.
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L., Ardisson, M., Bacilieri, R., Besnard, G., Berger, A., Cardi, C., Bellis, F. D., Fouet, O., Jourda,
C., Khadari, B., Lanaud, C., Leroy, T., Pot, D., Sauvage, C., Scarcelli, N., Tregear, J., Vigouroux, Y.,
Yahiaoui, N., Ruiz, M., Santoni, S., Labouisse, J.-P., Pham, J.-L., David, J., and Glémin, S. (2017).
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12.1 The relationship between gBGC and effective
population size

In the previous section, we modelled the influence of natural selection on the evolution of
gBGC. We identified parameters that can induce a shift in gBGC optimal value, giving
insights into the potential causes for variations in its strength across the tree of life. When
investigating the relationship between Ne and the equilibrium value of the transmission
bias towards GC, we recovered a negative relationship between b∗ and Ne, but still a
positive one between B∗ and Ne. While this result is consistent with observations in
mammals (Lartillot, 2013; Subramanian, 2019; Galtier, 2021), it is not what has been
observed either in butterflies, where no correlation has been found for closely related
Leptidea species (Boman et al., 2021), or in a relatively large sample of 29 animals
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spanning a wide range of effective population sizes (Galtier et al., 2018), or in a sample
of 11 angiosperms (Clément et al., 2017). As said in chapter 11, this observation might
be due to an intrinsic negative correlation between b0 and Ne that might be explained by
a direct dependency between the DNA repair machineries and heterozygosity (Lesecque
et al., 2013; Li et al., 2019). Those explanations remain however verbal and it is not clear
which patterns to expect exactly if those mechanism were to be modelled (Galtier et al.,
2018). In this section, I therefore explicitly model how the repair mechanisms described
so far can influence the correlation between B and Ne, and discuss the relevance of
investigating the evolution of gBGC through the lens of those repair mechanisms.

12.1.1 Gene conversion models

Let us consider three models of gene conversion with two different kinds of AT/GC
mismatches. Some mismatches are repaired in a biased way towards GC with a
probability (1 + b0)/2, while others are repaired in a unbiased way towards GC with
probability 1/2.

M
d M

y M
m

Biased 
mismatch

Unbiased 
mismatch

b
d
=b

0
rl b

m
=b

0
rlπ(1-π)l-1b
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=b

0 
(2-(2+π(l-2))(1−π)l−1r
π

Figure 12.1: Schematic view of the different gene conversion models. Md All mismatches are
biased. My: Only mismatches at the extremity of the conversion tract are biased. Mm: Only
mismatches that are alone in the conversion tract are biased.

The default conversion model

In the first model (Md), all mismatches found in heteroduplexes are repaired towards
GC with probability (1 + b0)/2 (Figure 12.1). In this model, the transmission bias bd is
equal to b0rl. This is the model we assumed in chapter 11.
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The mouse conversion model

In the second model (Mm), only mismatches that are alone in the heteroduplex are
repaired with probability (1 + b0)/2 (Figure 12.1). The probability for a mismatch to
be alone in the heteroduplex will depend on the density of heterozygous sites (π =
4Neµ where µ is the mutation rate per generation) and the size of the heteroduplex
approximated by the length of the conversion tract l.

Let us call K a random variable that describes the number of mismatches that are
expected in a given heteroduplex. Assuming that heterozygous site are evenly distributed
in the genome, K follows a binomial law of parameter π and l. The probability for a
heterozygous site to be converted with bias can be written:

Pbiased = r

π
P (K = 1) (12.1)

Where r is the recombination rate per base pair and P (K = 1) = lπ(1 − π)l−1. The
genome-wide effective transmission bias bm will be:

bm = b0rl(1 − π)l−1 (12.2)

This model describes the mechanism found in mice by Li et al. (2019).

The yeast conversion model

In the third model (My), only mismatches that are at the extremity of a conversion
tract are biased (Figure 12.1). This means that when conversion tracts involve two
mismatches or more, only two mismatches are repaired in a biased way, and the rest
are repaired without bias. Thus:

Pbiased = r

π
(1 × P (K = 1) + 2 × P (K ≥ 2)) (12.3)

Which gives:

by = b0
r

π
(2 − (2 + π(l − 2))(1 − π)l−1 (12.4)
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This model describes the mechanism found in the budding yeast COs by Lesecque
et al. (2013).

12.1.2 Empirical calibration
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Figure 12.2: Top: Proportion of conversion tracts with no, one, two or more mismatches as
a function of effective population size. Middle: gBGC coefficient (b) as a function of effective
population size with the model Md in green, Mm in blue and My in orange. Bottom: Population-
scaled gBGC coefficient (B) as a function of effective population size with the model Md in
green, Mm in blue and My in orange. Left: Using the mouse set of empirical parameters
values. Right: Using the D.melanogaster set of empirical parameters values.

I assume that the recombination rate (r), the mutation rate (µ) and the length of
the conversion tract (l) are fixed parameters. I consider two sets of empirical values for
these parameters. The first one corresponds to empirical values estimated in mice:
rNCO = 6 × 10−8, rCO = 6 × 10−9, µ = 5.4 × 10−9, lNCO = 50 and lCO = 400 (Cox et al.,
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2009; Cole et al., 2014; Adewoye et al., 2015; Long et al., 2018; Li et al., 2019). The
second one corresponds to empirical values estimated in Drosophila melanogaster :
rNCO ≃ rCO = 2.2 × 10−7, µ = 5.5 × 10−9, lNCO = 400 and lCO = 1000 (Miller et al.,
2016; Long et al., 2018).

I consider the repair bias of the bias-inducing DNA repair pathway fixed at
b0 = 0.68, which correspond to the bias of single mismatches in humans and mice
(Halldorsson et al., 2016; Li et al., 2019).

12.1.3 An intrinsic negative correlation between b and Ne

I can then compute the expected value of the transmission bias as a function of the
effective population size Ne for all three gene conversion models, in the two sets of
empirical parameters (Figure 12.2). It appears that when the effective population size
is small, and thus π is small, the three mechanisms lead to the same transmission bias
(Figure 12.2). This can be seen analytically: when computing limπ→0 bm and limπ→0 by,
one directly obtains bd. Using the mouse set of empirical parameters, as Ne increases,
increasing numbers of conversion tracts include two mismatches or more and are therefore
not biased in the model Mm, and less biased in the model My (Figure 12.2). This leads
to a decrease of the transmission biases bm and by with Ne, and therefore a saturation
of B = 4Neb with Ne (Figure 12.2). Of note, under this set of empirical parameters and
for this range of Ne variation, even if there is a negative correlation between b and Ne,
we still expect a positive correlation between B and Ne (Figure 12.2).
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Figure 12.3: Zoom on the relationship between the population-scaled gBGC coefficient B
and effective population size Ne, using the D.melanogaster set of empirical parameters values.
The grey areas correspond to the range of Ne variations of D.melanogaster African populations
taken from the study of Kapopoulou et al. (2018), and Leptidea butterflies taken from the study
of Boman et al. (2021). For butterflies I used heterozygocity that I transformed to effective
population size with Ne = π/4µ, using the mutation rate of D.melanogaster.
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Using the D.melanogaster set of empirical parameters, Bd becomes very large for
large values of Ne (Figure 12.2). On the other hand, By seems to saturate. This can be
explained by the fact that with large π and long conversion tracts, almost every
conversion tract includes more than 2 mismatches (Figure 12.2). Even if the number of
heterozygous sites increases with increasing effective population size, the number of
sites that will be converted with bias stays still, and by ≃ 2b0r/π, which gives
By ≃ 2b0r/µ. Therefore, for large Ne and large l, By does not depend on Ne anymore.
Nevertheless, under the yeast model and for this range of Ne variation, even if there is
a negative correlation between b and Ne, we still expect a positive correlation between
B and Ne (Figure 12.2).

Finally, under the mouse gene conversion model (Mm) and the D.melanogaster set
of empirical parameters, as Ne becomes large, there is almost no conversion tracts with
only one mismatch and thus bm ≃ 0 (Figure 12.3). Interestingly, there is only weak
evidence for gBGC in D.melanogaster except for some parts of its genome (Galtier et al.,
2006; Robinson et al., 2014; Jackson and Charlesworth, 2021). If in fact D.melanogaster
shared its gene conversion mechanism with mice and humans, we would not expect any
gBGC, only because wild populations of fruit flies have very high effective population
size (≃ 3 × 106 for African populations) (Kapopoulou et al., 2018). However, other
Drosophila species with lower Ne could have gBGC and paradoxically, in the range of
Ne = 105 → 106, we should even expect a negative correlation between B and Ne

(Figure 12.3). Consistent with this prediction, the two Leptidea species/populations
with the lowest genetic diversity are also the ones with the highest population-scaled
gBGC coefficient (Boman et al., 2021).

12.2 Decoupling somatic vs meiotic repair bias

In the previous chapter, we hypothesised that the meiotic gene conversion bias towards
GC could be under negative selection to limit the penetrance of the somatic repair bias
in meiosis. If this repair bias is strongly biased towards GC such as to minimize the
somatic mutation rate, it could lead to a very strong fitness cost because of gBGC. In
this case, there is a selective advantage to decouple the somatic and the meiotic repair
bias. One way to achieve this could be to underexpress the enzymes that are responsible
for this bias in meiosis. However, meiotic cells are a priori just as susceptible to single
base pair damage as somatic cells. In E.Coli, the inactivation of the adenine DNA
glycosilase MutM leads to a multiplication by 80 of the GC 7→ AT mutation rate (Foster
et al., 2015). Inactivating this bias-inducing repair enzyme in meiosis is therefore quite
risky given the increase of the mutation rate it implies for meiotic cells and might not
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be the optimal way to increase fitness.

Alternatively, the mechanisms presented in the previous section provide a simple
way to decouple somatic DNA repair from the ones involved in the repair of mismatches
in the context of a heteroduplex. If we consider that at a given time, single-base-pair
damages are relatively rare, they should be relatively isolated. If cells treat isolated
damages with biased enzymes (such as DNA glycosilases), the mutation rate should be
limited. In turn, depending on the heterozygosity, one can expect several mismatches
in a single heteroduplex and therefore they should be more often clustered. Treating
clustered mismatches with an unbiased machinery (such as the MMR) could therefore
provide a way to treat differently somatic DNA damages and mismatches caused by a
heteroduplex. Importantly this trick does not require any change in expression of DNA
repair enzymes between mitotic and somatic cells and ensures both a heavily biased
DNA damage repair and a relatively unbiased meiotic gene conversion. I showed that
at equal levels of heterozygosity, this decoupling can be achieved by a change in the size
of the heteroduplex. Interestingly, rather than the expression of DNA repair enzymes,
the size of the heteroduplex may be the quantitative trait that regulates the strength of
gBGC, especially in large populations where both the cost of gBGC and the probability
of having clustered mismatches are higher.

Of note, there is an advantage to decouple somatic and meiotic DNA repair bias only
if the somatic repair bias is inducing a b higher than b∗. Whether this is true empirically
is however difficult to assess, mainly because b∗ is quite sensitive to parameters that
are themselves difficult to estimate precisely (see chapter 11). Moreover, it can also be
that DNA repair models described above (Mm and My) correspond to the models that
limit the somatic mutation rate better than Md, and there is no need to invoke any
selection on biased gene conversion to explain their existence. The limitation of gBGC
with increasing effective population size could just be a coincidence.

12.3 Conclusions and future directions

12.3.1 The diversity of the molecular mechanisms of gBGC

So far, only three molecular mechanisms for GC-biased gene conversion have been
described. Two of them imply a direct negative correlation between the strength of
gBGC b and genetic diversity. Interestingly, (Li et al., 2019) showed that conditional to
having only one mismatch in the conversion tract, the intensity of the repair bias in
humans and mice are equal, and the authors suggest that they share the same repair
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mechanism. However, these results were found by excluding a subset of crossovers in
humans, which show a strong GC-bias (Laurent Duret personal communications). This
could suggest that the differences of b0 we observe between species are strongly shaped
by differences in heterozygosity and/or the size of the heteroduplex. However, our
hypothesis are as good as the variations we can observe and interpret. Indeed, only
three mechanisms have been observed so far, but they have been investigated only in a
handful of species. Therefore, behind those three mechanisms may hide plenty of
others. However, identifying those mechanisms remains challenging and even with
decreased sequencing costs, whole genome sequencing of pedigrees over several
generations remain scarce. Moreover for the mouse mechanism to be observed, there is
a need for at least some recombination events to have isolated mismatches, which is
difficult to observe when heterozygosity is high and heteroduplexes are large. On the
other hand, inbred line strains (when viable) could in fact provide a good test on
whether b0 depends on heterozygosity. Despite all the difficulties, I am deeply
convinced that a better understanding of the evolution of gBGC will certainly be
achieved through a clearer vision of the diversity of repair mechanisms in eukaryotes.

12.3.2 The genetic architecture of gBGC

Even if there are some insight on the type of mismatches that are converted in a biased
way, the proteins involved in this bias and its variation have not been identified yet
even in model species. Several approaches could allow us to identify those proteins.
When one wonders how a phenotypic trait is genetically encoded, several questions
arise: how many loci are involved ? what are their effect sizes on the phenotype ? are
those effects additive ?

To answer those questions, the most common approach is the so-called Genome-Wide
Association Studies (GWAS) (see Uffelmann et al. (2021) for a review). The idea is to
find statistical associations between the genotype at each locus to a continuous trait. This
method can only detect loci involved in variations that exist inside a population, missing
a important part of the genetic architecture: large effect loci. Li et al. (2019) showed
that the difference in the strength of the bias between humans and mice was mainly
due to different heterozygocity. There is therefore not much hope for the strength of
gBGC to be very variable inside a single populations, but it is not impossible. When the
effect sizes are small, this approach requires sequencing and phenotyping a very large
cohort of individuals to get enough statistical power. Unfortunately, measuring gBGC
in one individual represent a substantial investment in time and money, and for all these
reasons this method is for now not applicable to gBGC with reasonable costs and efforts.
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Alternatively, several methods use association between genotype and phenotype
across a phylogeny of much more distant species (Mayrose and Otto, 2011; Pease et al.,
2016; Levy Karin et al., 2017; Kowalczyk et al., 2019; Partha et al., 2019; Duchemin
et al., 2023; Fukushima and Pollock, 2023). One of the more robust method uses a shift
in the site-specific amino-acid fitness profiles associated to the phenotype to infer
association between the evolution of a site and the evolution of the phenotype
(Duchemin et al., 2023). This method is for now only applicable to discrete
phenotypes, but a continuous version is already in development (Bastien Boussau and
Philippe Veber personal communications).

However, given that fitness profiles are estimated at the amino-acid level, they are
sensitive to gBGC (Duchemin et al., 2023). And if the trait for which we seek phenotype-
genotype association is gBGC, nearly all sites that are found in highly recombining genes
will be associated to the trait, which is problematic. There are two options: the first is to
estimate fitness profiles at the DNA level, as we did in chapter 8. Those profiles should
be robust to gBGC because they control for non-selective substitution patterns, but they
are not in practice (ongoing work). This method could be however modified to explicitly
account for gBGC, but it is far more costly in computation resources to estimate fitness
profiles at the DNA level in a Bayesian framework compared to the method presented
above (Duchemin et al., 2023). A fast and integrated approach to identify sites that co-
evolve with gBGC would therefore require substantial development. Another trick could
be to identify the predictable signature that gBGC leaves on fitness profiles (it increases
the fitness of GC-encoded amino-acids) to a posteriori exclude sites whose changes in
inferred fitness landscape is solely due to gBGC. However, two major problem remain.

First, if gBGC is driven by heterozygosity, we should not expect any particular locus
to be associated to the strength of gBGC. The second problem is that the transmission
bias b0 is not available for many species. The only measure that is readily accessible
with existing methods is B, but it is confounded with recombination rate and effective
population size. When looking for candidate loci, we will not be able to distinguish
those that are truly involved in the evolution of gBGC from those that are involved in
the evolution of recombination rates or Ne-related traits such as body size or lifespan.
Multivariate methods that can account for several traits jointly could be a way forward
to resolve this problem and disentangle the part of the variance that is explained by
recombination rate or effective population size from that of the repair bias towards GC.
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Part V

Conclusion
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This PhD was funded by ANR project "HotRec" whose aim was to understand the
raison d’être of the diversity in fine-scale recombination landscapes in animals. Within
this project, my task was to evaluate the role of natural selection in shaping this
diversity. More specifically, I was to investigate whether the beneficial effects of
recombination (dissipation of genetic linkage), and its deleterious effects (gBGC and
the mutagenic effect) could have played a role in selecting one type of recombination
landscape over another.

Even though I did not provide any definitive answer to this question, I believe that
chapter 6, 7 and 11 yield some valuable insights. Of note, during this PhD, I did not test
or quantify the beneficial effect of recombination on the efficacy of selection. Indeed, in
chapter 9, I showed that current methods did not allow to test for a beneficial effect of
recombination by comparing signatures of adaptive or purifying selection between genes
that have evolved under different recombination rates in presence of gBGC. Overall,
given the results of this thesis and the recent literature, I believe that recombination
landscapes most likely reflect constraints on the efficiency of chromosome pairing rather
than indirect selection to optimise genetic shuffling or to reduce the deleterious load due
to gBGC or the mutagenic effect of recombination.

Second, I believe that the present work contributes to a better understanding of
positive selection, its causes and its dynamics across the genome in presence of gBGC. I
hope that chapter 9 has convinced that modelling the evolution of a sequence on a fitness
landscape can reveal surprising patterns that are not accounted for using a fixed DFE.

Finally, I investigated the factors influencing the evolution of gBGC. Chapter 12
revealed that it is not trivial to determine whether gBGC should be positively or
negatively selected, even if the overall consequences on the genome appear to be
deleterious. Anyway, I believe that constraints linked to the way DNA is repaired
might be the primary factors influencing the evolution of gBGC, although selection on
the DNA repair machinery cannot be completely excluded either.

Overall, although I have not been able to complete the original task that I was given
by the ANR, I believe that this thesis still represents an important step forward in our
understanding of several aspects of molecular evolution.
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1Laboratoire de Biométrie et Biologie Evolutive, Université Lyon 1, CNRS, UMR 5558, Villeurbanne, France
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the mouse genome, mouse Prdm99/9 hotspots and mouse HMRs in the mouse genome. Features were considered to

overlap if their midpoint were less than 5 kb apart. The numbers indicated in the circles correspond to the number of

HMRs that overlap the other features, and dog hotspots in intersections between Prdm99/9 mouse hotspots and dog

hotspot.
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Figure S2: DMC1 ssds read coverage as a function of the distance to the closest MDH in the mouse genome. Hotspots

were divided in three equally sized categories of strength: strong hotspots in red (10-190 FPKM), medium hotspots

in orange (5-10 FPKM) and weak hotspots in blue (0-5 FPKM). The line directly correspond to the mean value of

DMC1 ssds read coverage in a 100 bp window.
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Figure S3: A) Relative recombination rate in lifted-over mouse Prdm99/9 hotspots as a function of the estimated

GC∗ of new mutations in all 52 species of mammals. B) and C) Relative recombination rate in lifted-over mouse

Prdm99/9 hotspots using different thresholds to estimate GC∗
mut (0.5% in B and 2% in C) as a function of the relative

recombination rate in lifted-over mouse Prdm99/9 hotspots using the 1% threshold used throughout the study in all

52 species of mammals. Red points correspond to canids, the green point indicate ring-tailed lemurs, the purple point

northern elephant seals, the blue point mice, the brown point daurian ground squirrels, and the orange point humans.
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Leptonychotes weddellii
Mirounga leonina
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Phoca vitulina
Mus musculus
Mus spretus
Spermophilus dauricus
Ictidomys tridecemlineatus
Eulemur flavifrons
Lemur catta
Pan troglodytes
Homo sapiens
Chlorocebus sabaeus
Macaca fascicularis
Piliocolobus tephrosceles
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Callithrix jacchus
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Figure S4: Relative recombination rates at MDH loci in 52 mammals. The hotspots were splited in two categories

depending on their methylation level in dog sperm. The number of lifted features for each categories varied from ∼4,000

in Myotis brandtii to ∼9,000 in Mus spretus. Detailed numbers of mapped features are presented in Supplementary

Table XX. The tree have been retrieved from TimeTree5 Kumar et al. (2022). Error bars correspond to a 95%

confidence interval obtained by bootstrapping the substitutions for computing GC∗
flank and GC∗

hot.
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Figure S5: Relative recombination rate in lifted-over dog LD-based hotspots as a function of the relative recombination

rate in MDH loci. Red points correspond to canids, the green point indicate ring-tailed lemurs, the purple point northern

elephant seals, the blue point mice, the brown point daurian ground squirrels, and the orange point humans.
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Figure S6: Sequence diversity of zinc finger arrays of the Prdm9 allele present in the reference genome of Spermophilus

dauricus (A) and Lemur catta (B). Amino-acid variants are highlighted by a colored background. Synonymous variants

are written in red. The number of non-synonymous and synonymous variants is indicated at each position. In both

species, amino-acid variants are enriched at positions -1, 3, and 6 that are involved in DNA binding. Under neutral

evolution, one would expect approximatively one third of variants to be synonymous and two thirds to be non-

synonymous. In both species, the number of non-synonymous variants exceeds the neutral expectation, which is

suggestive of positive selection. Lemur catta Prdm9: RefSeq protein accession number: XP 045389275.1 1, genomic

coordinates of the exon encoding the zinc finger array: complement(NC 059147.1: 34824301..34826009). Spermophilus

dauricus Prdm9: the protein is not annotated in RefSeq, genomic coordinates of the exon encoding the zinc finger

array: KZ296155.1: 118252..119699.
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Figure S7: Relative recombination rate in lifted-over mouse Prdm99/9 hotspots as a function of the estimated length of

the branch used to compute GC∗ in substitutions per/site. Total number of sites were computed with sites for which

all threes species (target sister and outgroup) were genotyped and aligned, excluding CpG dinucleotides. Red points

correspond to canids, the green point indicate ring-tailed lemurs, the purple point northern elephant seals, the blue

point mice, the brown point daurian ground squirrels, and the orange point humans.
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Figure S8: Relative recombination rate in lifted-over mouse Prdm99/9 hotspots as a function of the genome quality

summarized by the log of the N50 metric. Red points correspond to canids, the green point indicate ring-tailed lemurs,

the purple point northern elephant seals, the blue point mice, the brown point daurian ground squirrels, and the orange

point humans.
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1 Mutation-selection codon models

1.1 Prior distributions and parameters of the model

The parameterization of the models is described as a Bayesian hierarchical model, including the prior distributions and

the parameters of the model. This hierarchical model is formally represented as directed acyclic graph of dependencies

between variables, depicted below. Nodes of the directed acyclic graph are the variables, and edges are the functions.

Hyper-parameters are depicted in red circles, random variables in blue circles, and transformed variables in black.

Blue dashed line denotes a drawing from a random distribution, and black solid lines denote a function. All the nodes

pointing toward a given node (upstream) are its dependencies which determines its distribution. The other way around,

following the arrows in the DAG (downstream), simple prior distributions are combined together to form more complex

joint prior distribution which ultimately defines the prior distribution of the model.

P (j,i)

q(j,i)

R

l(j) λ, τ

F (i)

ρ

σ

ϕ(k)

κ (i)

1, 1, 1, 1, 1, 1

1, 1, 1, 1

α,γ

θ β

S.14

S.13

S.1

S.11

S.12

S.3

S.4

S.8

S.9 S.6,S.7

1.2 Nucleotide mutation rates

The generalized time-reversible (GTR) nucleotide mutation rate matrix R is a function of the nucleotide frequencies σ

and the symmetric exchangeability rates ρ [1]. σ = (σA, σC , σG, σT ) is the equilibrium base frequency vector, giving the

frequency at which each base occurs at each site. ρ = (ρAC , ρAG, ρAT , ρCG, ρCT , ρGT ) is the vector of exchangeabilities

between nucleotides. Altogether, the rate matrix is:

R =

A C G T A − ρACσC ρAGσG ρATσT

C ρACσA − ρCGσG ρCTσT

G ρAGσA ρCGσC − ρGTσT

T ρATσA ρCTσC ρGTσG −
(S.1)

By definition, the sum of the entries in each row of the nucleotide rate matrix R is equal to 0, giving the diagonal

entries:

Ra,a = −
∑

b ̸=a,b∈{A,C,G,T }

Ra,b (S.2)

The prior on the exchangeabilities ρ is a uniform Dirichlet distribution of dimension 6:

ρ ∼ Dir (1, 1, 1, 1, 1, 1) . (S.3)

The prior on the equilibrium base frequencies σ is a uniform Dirichlet distribution of dimension 4:

σ ∼ Dir (1, 1, 1, 1) (S.4)
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The general time-reversible nucleotide matrix is normalized with a total flow of 1:∑
a∈{A,C,G,T }

−σaRa,a = 1, (S.5)

such that we expect 1 substitution per unit of branch length.

1.3 Site-specific amino-acid fitness profiles

Site-specific amino-acid fitness profiles are assumed i.i.d. from a mixture model, itself endowed with a truncated

Dirichlet process prior. Specifically, the mixture has K components (K = 30 by default). The prior on component

weights (θ) is modeled using a stick-breaking process, truncated at K and of parameter β = 1:

θ ∼ StickBreaking (K, β)

⇐⇒ θk = ψk ·
k−1∏
l=1

(1 − ψl) , k ∈ {1, . . . ,K},
(S.6)

where ψk are i.i.d. from a beta distribution

ψk ∼ Beta (1, β) , k ∈ {1, . . . ,K}. (S.7)

Of note, the weights decrease geometrically in expectation, at rate β, such that lower values of β induce more hetero-

geneous distributions of weights.

Each component of the mixture defines a 20-dimensional fitness profile ϕ(k) (summing to 1), for k ∈ {1, . . . ,K}.

These fitness profiles are i.i.d. from a Dirichlet of center γ = 1 and concentration α = 1:

ϕ(k) ∼ Dir (γ, α) , k ∈ {1, . . . ,K}. (S.8)

Site allocations to the mixture components κ (i) ∈ {1, . . . ,K}, for i ∈ {1, . . . ,N} running over the N sites of the

alignment, are i.i.d. multinomial of parameter θ:

m ∼ Multinomial (θ) , (S.9)

where mk =
∑

i∈{1,...,N}

1κ(i)=k (S.10)

For a given parameter configuration for the mixture, the scaled fitness F (i) at site i, are obtained by taking the

logarithm of fitness assigned to this site:

F (i) = ln
(

ϕ(κ(i))
)
, i ∈ {1, . . . ,N}. (S.11)

1.4 Branch length

The topology of the rooted phylogenetic tree is supposed to be known and is not estimated by the model. The branch

lengths l(j) are defined as the expected number of neutral substitutions per DNA site along a branch, each from a

Gamma distribution of mean λ = 0.1 and scale τ = 1:

l(j) ∼ Gamma (λ, τ) . (S.12)
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1.5 Codon substitution rates

The mutation rate between codons a and b, denoted µa 7→b depends on the underlying nucleotide change between the

codons. First, if codons a and b are not nearest-neighbours, µa7→b is equal to 0. Second, if codons a and b are only one

mutation away, µa 7→b is given by the underlying nucleotide relative rate (Ra7→b).

For a given site i, the codon substitution rate matrix q(i) is given by:

q
(i)
a 7→b = 0 if codons a and b are not nearest-neighbors,

q
(i)
a 7→b = µa7→b if codons a and b are synonymous,

q
(i)
a 7→b = µa7→b

F
(i)
b − F

(i)
a

1 − eF
(i)
a −F

(i)
b

if a and b are non-synonymous,

q(i)
a,a = −

61∑
b ̸=a,b=1

q
(i)
a7→b.

(S.13)

Together, the probability of transition between codons for a given branch j and site i is:

P (j,i) = el(j)q(i)
, (S.14)

which are the matrices necessary to compute the likelihood of the data (D) given the parameters of the model using

the pruning algorithm.

1.6 Bayesian implementation

Bayesian inference was conducted using Markov Chain Monte Carlo (MCMC). Most phylogenetic MCMC samplers

target the distribution over the model parameters given the sequence alignment, which means that they have to

repeatedly invoke the pruning algorithm to recalculate the likelihood which is most often the limiting step of the

MCMC. An alternative, which is used here, is to do the MCMC conditionally on the detailed substitution history H,

thus doing the MCMC over the augmented configuration (H, D), under the target distribution obtained by combining

the mapping-based likelihood with the prior over model parameters. The key idea that makes this strategy efficient

is that the mapping-based likelihood depends on compact summary statistics of H, leading to very fast evaluation of

the likelihood. On the other hand, this requires to implement more complex MCMC procedures that have to alternate

between:

1. sampling H conditionally on the data and the current parameter configuration.

2. re-sampling the parameters conditionally on H.

To implement the mapping-based MCMC sampling strategy, we first sample the detailed substitution history H

for all sites along the tree. Several methods exist for doing this [2, 3], which are used here in combination (first trying

the accept-reject method of Nielsen, then switching to the uniformization approach of Rodrigue et al if the first round

has failed).

Then, we write down the probability of H given the parameters, and finally, we collect all factors that depend

on some parameter of interest and make some simplifications. This ultimately leads to relatively compact sufficient

statistics allowing for fast numerical evaluation of the likelihood [4, 5].
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1.7 BayesCode software
In BayesCode (github.com/ThibaultLatrille/BayesCode, v1.3.1), we ran the mutation-selection codon models mut-
selomega for 2000 points of MCMC with the options:

mutselomega ---omegashift 0.0 --ncat 30 -a my_alignment.phy -t my_tree.newick -u 2000 my_genename

The collection of site-specific fitness profiles (F (i),∀i) are then obtained by running readmutselomega, reading 1000
points of MCMC (first 1000 are considered as burn-in) with the options:

readmutselomega --every 1 --until 2000 --burnin 1000 --ss my_genename

The gene-specific 4×4 nucleotide mutation rate matrix (µ) is also obtained by running readmutselomega, reading 1000
points of MCMC (first 1000 are considered as burn-in) with the options:

readmutselomega --every 1 --until 2000 --burnin 1000 --nuc my_genename
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2 Beneficial mutations in the terminal lineages and populations

2.1 Summary tables

2.1.1 Probability of mutations and substitutions to be D0, N0 or B0

Table S1: Probability of mutations and substitutions to be D0, N0 or B0.

Population Species P[D0] P[N0] P[B0] Pdiv [D0] Pdiv [N0] Pdiv [B0]

Equus c. Equus caballus 0.923 0.065 0.012 0.462 0.419 0.118
Iran Bos taurus 0.924 0.065 0.011 0.515 0.362 0.123
Uganda Bos taurus 0.924 0.065 0.011 0.514 0.361 0.125
Australia Capra hircus 0.923 0.066 0.011 0.494 0.386 0.121
France Capra hircus 0.923 0.066 0.011 0.494 0.386 0.120
Iran (C. aegagrus) Capra hircus 0.923 0.066 0.011 0.493 0.386 0.120
Iran Capra hircus 0.923 0.066 0.011 0.492 0.387 0.121
Italy Capra hircus 0.923 0.066 0.011 0.494 0.386 0.120
Morocco Capra hircus 0.923 0.066 0.011 0.491 0.387 0.122
Iran Ovis aries 0.922 0.067 0.012 0.568 0.323 0.109
Iran (O. orientalis) Ovis aries 0.922 0.067 0.011 0.573 0.320 0.108
Iran (O. vignei) Ovis aries 0.922 0.067 0.012 0.567 0.325 0.109
Various Ovis aries 0.922 0.067 0.011 0.572 0.321 0.107
Morocco Ovis aries 0.922 0.067 0.012 0.570 0.321 0.108
Barbados Chlorocebus sabaeus 0.926 0.065 0.009 0.485 0.393 0.122
Central Afr. Rep. Chlorocebus sabaeus 0.926 0.065 0.009 0.485 0.391 0.124
Ethiopia Chlorocebus sabaeus 0.926 0.065 0.009 0.484 0.393 0.124
Gambia Chlorocebus sabaeus 0.926 0.065 0.009 0.483 0.394 0.123
Kenya Chlorocebus sabaeus 0.926 0.065 0.009 0.485 0.392 0.123
Nevis Chlorocebus sabaeus 0.926 0.065 0.009 0.484 0.393 0.123
South Africa Chlorocebus sabaeus 0.926 0.065 0.009 0.480 0.394 0.125
Saint Kitts Chlorocebus sabaeus 0.926 0.065 0.009 0.483 0.394 0.123
Zambia Chlorocebus sabaeus 0.926 0.065 0.009 0.485 0.393 0.123
African Homo sapiens 0.925 0.065 0.010 0.561 0.341 0.099
Admixed American Homo sapiens 0.925 0.065 0.010 0.561 0.340 0.099
East Asian Homo sapiens 0.925 0.065 0.010 0.560 0.341 0.098
European Homo sapiens 0.925 0.065 0.010 0.562 0.340 0.098
South Asian Homo sapiens 0.925 0.065 0.010 0.561 0.341 0.099

• P[D0] (eq. 5) is the probability for a new mutation to be a deleterious. These mutations have a selection coefficient

predicted at the phylogenetic-scale lower than -1, thus toward a less fit amino-acid.

• P[N0] (eq. 5) is the probability for a new mutation to be a nearly-neutral. These mutations have a selection

coefficient predicted at the phylogenetic-scale between -1 and 1.

• P[B0] (eq. 5) is the probability for a new mutation to be a beneficial back-mutation. These mutations have a

selection coefficient predicted at the phylogenetic-scale larger than 1, thus toward a more fit amino-acid.

• Pdiv[D0] is the proportion of substitutions in the terminal branch that are D0.

• Pdiv[N0] is the proportion of substitutions in the terminal branch that are N0.

• Pdiv[B0] is the proportion of substitutions in the terminal branch that are B0.
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2.1.2 dN/dS for D0, N0 or B0

Table S2: dN/dS for D0, N0 or B0.

Population Species dN /dS dN (D0)/dS dN (N0)/dS dN (B0)/dS

Equus c. Equus caballus 0.129 0.065 0.832 1.267
Iran Bos taurus 0.114 0.063 0.629 1.280
Uganda Bos taurus 0.116 0.064 0.638 1.328
Australia Capra hircus 0.108 0.058 0.631 1.169
France Capra hircus 0.109 0.058 0.635 1.172
Iran (C. aegagrus) Capra hircus 0.108 0.058 0.632 1.170
Iran Capra hircus 0.108 0.058 0.632 1.178
Italy Capra hircus 0.109 0.058 0.636 1.171
Morocco Capra hircus 0.108 0.058 0.633 1.183
Iran Ovis aries 0.128 0.079 0.619 1.215
Iran (O. orientalis) Ovis aries 0.129 0.080 0.619 1.212
Iran (O. vignei) Ovis aries 0.127 0.078 0.619 1.201
Various Ovis aries 0.129 0.080 0.620 1.201
Morocco Ovis aries 0.129 0.080 0.621 1.217
Barbados Chlorocebus sabaeus 0.118 0.062 0.713 1.521
Central Afr. Rep. Chlorocebus sabaeus 0.119 0.062 0.717 1.559
Ethiopia Chlorocebus sabaeus 0.118 0.062 0.716 1.549
Gambia Chlorocebus sabaeus 0.119 0.062 0.719 1.537
Kenya Chlorocebus sabaeus 0.119 0.062 0.716 1.546
Nevis Chlorocebus sabaeus 0.118 0.062 0.715 1.532
South Africa Chlorocebus sabaeus 0.119 0.062 0.720 1.577
Saint Kitts Chlorocebus sabaeus 0.118 0.062 0.715 1.539
Zambia Chlorocebus sabaeus 0.118 0.062 0.716 1.537
African Homo sapiens 0.170 0.103 0.885 1.744
Admixed American Homo sapiens 0.170 0.103 0.884 1.742
East Asian Homo sapiens 0.170 0.103 0.888 1.742
European Homo sapiens 0.170 0.103 0.884 1.733
South Asian Homo sapiens 0.170 0.103 0.886 1.745

• dN/dS (eq. 6) is the ratio of non-synonymous over synonymous substitutions estimated for all the non-synonymous

substitutions in the terminal branch.

• dN (D0)/dS (eq. 6) is the ratio of non-synonymous over synonymous substitutions, when restricted to non-

synonymous substitutions in the terminal branch that are D0.

• dN (N0)/dS (eq. 6) is the ratio of non-synonymous over synonymous substitutions, when restricted to non-

synonymous substitutions in the terminal branch that are N0.

• dN (B0)/dS (eq. 6) is the ratio of non-synonymous over synonymous substitutions, when restricted to non-

synonymous substitutions in the terminal branch that are B0.
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2.1.3 dN/dS over-estimation due to beneficial back-mutations

Table S3: dN/dS over-estimation due to beneficial back-mutations.

Population Species dN /dS dN (S0 < 1)/dS δ(dN /dS)

Equus c. Equus caballus 0.129 0.115 10.7
Iran Bos taurus 0.114 0.101 11.3
Uganda Bos taurus 0.116 0.102 11.5
Australia Capra hircus 0.108 0.096 11.1
France Capra hircus 0.109 0.097 11.0
Iran (C. aegagrus) Capra hircus 0.108 0.096 11.1
Iran Capra hircus 0.108 0.096 11.2
Italy Capra hircus 0.109 0.097 11.0
Morocco Capra hircus 0.108 0.096 11.2
Iran Ovis aries 0.128 0.115 9.894
Iran (O. orientalis) Ovis aries 0.129 0.117 9.740
Iran (O. vignei) Ovis aries 0.127 0.115 9.822
Various Ovis aries 0.129 0.116 9.663
Morocco Ovis aries 0.129 0.116 9.805
Barbados Chlorocebus sabaeus 0.118 0.104 11.4
Central Afr. Rep. Chlorocebus sabaeus 0.119 0.105 11.5
Ethiopia Chlorocebus sabaeus 0.118 0.105 11.5
Gambia Chlorocebus sabaeus 0.119 0.105 11.4
Kenya Chlorocebus sabaeus 0.119 0.105 11.5
Nevis Chlorocebus sabaeus 0.118 0.105 11.4
South Africa Chlorocebus sabaeus 0.119 0.105 11.7
Saint Kitts Chlorocebus sabaeus 0.118 0.104 11.5
Zambia Chlorocebus sabaeus 0.118 0.105 11.4
African Homo sapiens 0.170 0.154 8.996
Admixed American Homo sapiens 0.170 0.155 8.978
East Asian Homo sapiens 0.170 0.155 8.966
European Homo sapiens 0.170 0.155 8.926
South Asian Homo sapiens 0.170 0.155 8.986

• dN/dS (eq. 6) is the ratio of non-synonymous over synonymous substitutions estimated for all the non-synonymous

substitutions in the terminal branch.

• dN (S0 < 1)/dS (eq. 6) is the ratio of non-synonymous over synonymous substitutions, when restricted to non-

synonymous substitutions in the terminal branch that are not B0. This is the estimated divergence when we

removed beneficial back-mutations.

• δ(dN/dS) (eq. 7) is the fraction of the divergence (dN/dS) that is over-estimated, dN/dS is compared to the

estimated divergence when we removed beneficial back-mutations dN (S0 < 1)/dS .

We estimated that between 9 and 11% of dN/dS is over-estimated, corresponding to beneficial back-mutation inflating

the dN/dS statistic.
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3 Clinically related terms for mutations

3.1 Terms associated with deleterious mutations D0

Table S4: Terms associated with deleterious mutations D0

SNP clinical ontology nObserved nExpected Odds ratio pv pv−adjusted

Benign 2969 4043.0 0.734 1.000 1.000
Likely benign 2994 3399.8 0.881 0.999 1.000
Risk factor 102 118.2 0.863 0.798 1.000
Likely pathogenic 221 68.5 3.226 1.7 × 10−8 6.7 × 10−8∗

Pathogenic 560 193.6 2.893 4.2 × 10−17 2.1 × 10−16∗

In humans, non-synonymous SNPs in the test group (D0) are contrasted to SNPs in the control group (N0). For each

clinical term, a 2x2 contingency tables is built by counting the number of SNPs based on their selection coefficient

and their clinical terms (whether they have this specific term or not). Fisher’s exact tests are then performed for

these 2x2 contingency tables. ∗ for padj
v corrected for multiple comparison (Holm–Bonferroni correction) lower than

the risk α = 0.05. SNPs predicted with D0 are statistically associated to clinical terms such as Likely Pathogenic and

Pathogenic.

3.2 Terms associated with beneficial back-mutations B0

Table S5: Terms associated with beneficial back-mutations B0

SNP clinical ontology nObserved nExpected Odds ratio pv pv−adjusted

Benign 319 261.7 1.219 0.002 0.009∗

Likely benign 263 222.7 1.181 0.012 0.049∗

Risk factor 5 7.847 0.637 0.879 0.879
Likely pathogenic 7 4.552 1.538 0.227 0.682
Pathogenic 16 12.9 1.241 0.268 0.682

In humans, non-synonymous SNPs in the test group (B0) are contrasted to SNPs in the control group (N0). For each

clinical term, a 2x2 contingency tables is built by counting the number of SNPs based on their selection coefficient

and their clinical terms (whether they have this specific term or not). Fisher’s exact tests are then performed for these

2x2 contingency tables. ∗ for padj
v corrected for multiple comparison (Holm–Bonferroni correction) lower than the risk

α = 0.05. Beneficial back-mutations are associated with clinical terms such as Benign and Likely Benign.
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4 Correlation with diversity

4.1 Phylogenetic Generalized Linear Model

Because a correlation must account for phylogenetic relationship and non-independence of samples, we fitted a Phy-

logenetic Generalized Linear Model (PGLM) in R with the package caper[6], with multi-furcation of the different

populations inside each species. The mammalian tree imported from TimeTree[7] and pruned to the species used in

this study. Multifurcations of the different populations are placed at the same divergence time as the species.

( ( Equus : 7 6 , ( ( IRBT: 3 . 5 5 9 1 2 ,UGBT: 3 . 5 5 9 1 2 ) 1 99 3 : 18 . 0 66 5 , ( (IROA: 5 . 3 3 0 7 4 ,IROO: 5 . 3 3 0 7 4 , ISGC

: 5 . 3 3 0 7 4 ,IROV: 5 . 3 3 0 7 4 ,MOOA: 5 . 3 3 0 7 4 ) 2219 : 2 . 32334 , (IRCA: 3 . 9 6 0 8 7 ,IRCH: 3 . 9 6 0 8 7 ,AUCH

: 3 . 9 6 0 8 7 ,FRCH: 3 . 9 6 0 8 7 ,ITCH: 3 . 9 6 0 8 7 ,MOCH: 3 . 9 6 0 8 7 ) 2201 :3 . 69321) 2218 :13 . 9716 )

2262 :54 . 3744 ) 2405 : 18 , ( (AFR: 5 . 5 9 3 3 3 ,AMR: 5 . 5 9 3 3 3 ,EAS: 5 . 5 9 3 3 3 ,EUR: 5 . 5 9 3 3 3 ,SAS

: 5 . 5 9 3 3 3 ) 8 4 5 4 : 2 2 . 4 2 , ( Barbados : 2 . 6 9 2 0 4 ,CAR: 2 . 6 9 2 0 4 , Eth iop ia : 2 . 6 9 2 0 4 , Gambia : 2 . 6 9 2 0 4 ,

Kenya : 2 . 6 9 2 0 4 , Nevis : 2 . 6 9 2 0 4 ,SK: 2 . 6 9 2 0 4 ,SA: 2 . 6 9 2 0 4 , Zambia : 2 . 6 9 2 0 4 ) 8449 : 26 . 128 )

8800 : 65 . 18 ) ;

Seaview    PGLS.tree    Mon Oct  9 17:23:55 2023

Equus
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UGBT

IROA

IROO

ISGC

IROV

MOOA
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IRCH
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FRCH

ITCH

MOCH

AFR

AMR

EAS

EUR

SAS

Barbados

CAR

Ethiopia

Gambia

Kenya

Nevis

SK

SA

Zambia

1e+01

Then, for each population, the proportion of deleterious (P[D]), nearly-neutral (P[N ]) and of beneficial (P[B])

mutations estimated at the population-genetic scale is shown as function of Ne. r2 and p-value are obtained from the

PGLM model.
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4.1.1 Proportion of deleterious mutations (D)

Figure S1: Proportion of deleterious mutations (D)
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• Ne is the estimated effective population size.

• P[D] (eq. 15) is the probability for a mutation to be deleterious. These mutations have a selection coefficient at

the population-scale lower than -1.

• P[D | D0] (eq. 12) is the probability for a mutation to be deleterious at the population scale, given it is predicted

to be a deleterious at the phylogenetic scale.

We can see that higher effective population size (Ne) is typically accompanied by a higher proportion of effectively

deleterious mutations at the population scale (P[D]). This trend is also confirmed when we restricted the analysis

to class of mutations that are supposedly deleterious at the phylogenetic scale (D0). This result is qualitatively in

accordance with the nearly-neutral theory of evolution which argues that very slightly deleterious mutations are more

efficiently purified in large populations.
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4.1.2 Proportion of nearly-neutral mutations (N )

Figure S2: Proportion of nearly-neutral mutations (N )
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• Ne is the estimated effective population size.

• P[N ] (eq. 15) is the probability for a mutation to be nearly-neutral. These mutations have a selection coefficient

at the population-scale between -1 and 1.

• P[N | N0] (eq. 12) is the probability for a mutation to be nearly-neutral at the population scale, given it is

predicted to be a nearly-neutral at the phylogenetic scale.

We confirmed that higher effective population size (Ne) is typically accompanied by a smaller proportion of neutral

mutations at the population scale (P[N ] in the range 0.06-0.18). This result is more pronounced (P[N | N0] in

the range 0.36-0.73) when we restricted the analysis to class of mutations that are supposedly nearly-neutral at the

phylogenetic scale (N0). This result suggests that populations with higher diversity (e.g. Bos or Ovis) are more likely to

discriminate whether mutations are beneficial or deleterious. Alternatively stated, mutations in populations with low

diversity (e.g. Homo) are effectively nearly-neutral and behave as would a neutral mutation. This result is qualitatively

in accordance with the nearly-neutral theory of evolution which argues that mutations are less efficiently selected for

in small populations.
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4.1.3 Proportion of beneficial mutations (B)

Figure S3: Proportion of beneficial mutations (B)
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• Ne is the estimated effective population size.

• P[B] (eq. 15) is the probability for a mutation to be beneficial. These mutations have a selection coefficient at

the population-scale larger than 1.

• P[B | B0] (eq. 12) is the probability for a mutation to be beneficial at the population scale, given it is predicted

to be a beneficial back-mutation at the phylogenetic scale (the precision).

Higher effective population size (Ne) is accompanied by a smaller proportion of beneficial mutations at the population

scale (P[B]). This trend is also confirmed when we restricted the analysis to class of mutations that are supposedly

beneficial back-mutations at the phylogenetic scale (B0). This result is much more difficult to interpret. The fraction

of beneficial back mutations is supposed to depend on long term demographic history, which is not directly accessible.

If the long term effective population size is relatively similar to the short term one, we expect little opportunity

for beneficial back-mutations. And thus, counter-intuitively we expect a diminution of positively selected mutations.

However, we can see that the proportion of beneficial back-mutations among advantageous one does not decrease with

Ne. This means that somehow adaptive mutations also decrease with Ne for a reason we fail to explain.
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5 Probabilities of beneficial back-mutations among all beneficial ones

(P[B0 | B])

Table S6: Probability of beneficial back-mutations among all beneficial ones (P[B0 | B]).

Population Species Ne P[B0] P[B] P[B0]
P[B] P[B | B0] P[B0 | B]

Equus c. Equus caballus 7.5 × 104 0.012 0.015 0.827 0.648 0.536
Iran Bos taurus 5.6 × 104 0.011 0.039 0.279 0.873 0.243
Uganda Bos taurus 1.3 × 105 0.011 0.015 0.720 0.576 0.415
Australia Capra hircus 1.7 × 105 0.011 0.023 0.480 0.368 0.177
France Capra hircus 1.9 × 105 0.011 0.022 0.515 0.368 0.190
Iran (C. aegagrus) Capra hircus 1.9 × 105 0.011 0.025 0.448 0.368 0.165
Iran Capra hircus 2.3 × 105 0.011 0.021 0.525 0.368 0.193
Italy Capra hircus 1.9 × 105 0.011 0.017 0.660 0.368 0.243
Morocco Capra hircus 2.2 × 105 0.011 0.017 0.667 0.368 0.245
Iran Ovis aries 3.8 × 105 0.012 0.006 1.984 0.205 0.407
Iran (O. orientalis) Ovis aries 4.5 × 105 0.011 0.012 0.983 0.193 0.190
Iran (O. vignei) Ovis aries 3.7 × 105 0.012 0.020 0.579 0.190 0.110
Various Ovis aries 4.1 × 105 0.011 0.012 0.967 0.229 0.222
Morocco Ovis aries 4 × 105 0.012 0.005 2.435 0.211 0.514
Barbados Chlorocebus sabaeus 1.1 × 105 0.009 0.021 0.452 0.648 0.293
Central Afr. Rep. Chlorocebus sabaeus 1.7 × 105 0.009 0.018 0.515 0.535 0.275
Ethiopia Chlorocebus sabaeus 1.4 × 105 0.009 0.021 0.444 0.552 0.245
Gambia Chlorocebus sabaeus 1.4 × 105 0.009 0.007 1.423 0.577 0.821
Kenya Chlorocebus sabaeus 1.5 × 105 0.009 0.022 0.437 0.588 0.257
Nevis Chlorocebus sabaeus 1 × 105 0.009 0.016 0.597 0.599 0.358
South Africa Chlorocebus sabaeus 1.8 × 105 0.009 0.016 0.594 0.574 0.341
Saint Kitts Chlorocebus sabaeus 1.2 × 105 0.009 0.017 0.563 0.598 0.336
Zambia Chlorocebus sabaeus 1.7 × 105 0.009 0.022 0.427 0.585 0.250
African Homo sapiens 5.6 × 104 0.010 0.020 0.484 0.721 0.349
Admixed American Homo sapiens 4.5 × 104 0.010 0.019 0.500 0.690 0.345
East Asian Homo sapiens 4 × 104 0.010 0.027 0.362 0.688 0.249
European Homo sapiens 4.2 × 104 0.010 0.027 0.361 0.688 0.248
South Asian Homo sapiens 4.4 × 104 0.010 0.030 0.324 0.691 0.224

• Ne is the estimated effective population size.

• P[B0] (eq. 5) is the probability for a new mutation to be a beneficial back-mutation. These mutations have a

selection coefficient predicted at the phylogenetic-scale larger than 1, thus toward a more fit amino-acid.

• P[B] (eq. 15) is the probability for a mutation to be beneficial. These mutations have a selection coefficient at

the population-scale larger than 1.

• P[B | B0] (eq. 12) is the probability for a mutation to be beneficial at the population scale, given it is predicted

to be a beneficial back-mutation at the phylogenetic scale (the precision).

• P[B0 | B] (eq. 14) is the probability for a mutation to a beneficial back-mutations, given it is beneficial at the

population scale (the recall). This probability is obtained using Bayes’ formula.
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6 Excluding genes under adaptation

Table S7: P[B0 | B] for each population when excluding or not genes under adaptation.
Population Species Control Case
Equus c. Equus caballus 0.536 0.880
Iran Bos taurus 0.243 0.249
Uganda Bos taurus 0.415 0.429
Australia Capra hircus 0.177 0.190
France Capra hircus 0.190 0.201
Iran (C. aegagrus) Capra hircus 0.165 0.169
Iran Capra hircus 0.193 0.176
Italy Capra hircus 0.243 0.261
Morocco Capra hircus 0.245 0.283
Iran Ovis aries 0.407 0.454
Iran (O. orientalis) Ovis aries 0.190 0.207
Iran (O. vignei) Ovis aries 0.110 0.135
Various Ovis aries 0.222 0.246
Morocco Ovis aries 0.514 0.627
Barbados Chlorocebus sabaeus 0.293 0.325
Central Afr. Rep. Chlorocebus sabaeus 0.275 0.273
Ethiopia Chlorocebus sabaeus 0.245 0.242
Gambia Chlorocebus sabaeus 0.821 0.873
Kenya Chlorocebus sabaeus 0.257 0.254
Nevis Chlorocebus sabaeus 0.358 0.395
South Africa Chlorocebus sabaeus 0.341 0.375
Saint Kitts Chlorocebus sabaeus 0.336 0.355
Zambia Chlorocebus sabaeus 0.250 0.263
African Homo sapiens 0.349 0.363
Admixed American Homo sapiens 0.345 0.312
East Asian Homo sapiens 0.249 0.233
European Homo sapiens 0.248 0.211
South Asian Homo sapiens 0.224 0.218

Genes under adaptation retrieved from [8]. Comparison of P[B0 | B] for the whole genome (control) and when exclud-

ing genes under adaptation (case). The non-parametric Wilcoxon signed-rank test tests the null hypothesis that the

distribution of the differences (case versus control) is symmetric about zero. Applied to the paired samples (case and

control), Wilcoxon signed-rank test results in s = 80 with p-value = 0.002. for one-sided test (case higher than control).

The proportion of beneficial back-mutations (P[B0 | B]) is higher when excluding genes under adaptation, consistent

with our expectation that genes with uniformly conserved functions should fit better the back-mutation equilibrium

model.
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7 Replicability across populations

The proportion of deleterious (P[D]), nearly-neutral (P[N ]) and of beneficial (P[B]) mutations estimated at the

population-genetic scale across the different populations is shown for each class of selection (x ∈ {D0,N0,B0}).

Figure S4: Estimation of selection at the population scale for D0 mutations
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Figure S5: Estimation of selection at the population scale for N0 mutations
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Figure S6: Estimation of selection at the population scale for B0 mutations
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8 Including divergence data for the estimation of S

8.1 Including divergence in polyDFE

Divergence data (number of substitutions per site) can also be included into polyDFE to estimate the DFE. For the

class of a given class of selection coefficient (x ∈ {D0,N0,B0}), the number of substitutions has already been computed

and is given by D (x) (see eq. 6), and the number of sites is given by L (x) (see eq. 4). Otherwise, the procedure is the

same as described section Scaled selection coefficients (S) in a population-based method.

8.2 Probabilities of beneficial back-mutations

Table S8: Probability of beneficial back-mutations among all beneficial ones - including divergence.

Population Species Ne P[B0] P[B] P[B0]
P[B] P[B | B0] P[B0 | B]

Equus c. Equus caballus 7.5 × 104 0.012 0.057 0.213 0.498 0.106
Iran Bos taurus 5.6 × 104 0.011 0.006 1.860 0.368 0.684
Uganda Bos taurus 1.3 × 105 0.011 0.012 0.900 0.307 0.276
Australia Capra hircus 1.7 × 105 0.011 0.007 1.651 0.178 0.294
France Capra hircus 1.9 × 105 0.011 0.007 1.614 0.183 0.295
Iran (C. aegagrus) Capra hircus 1.9 × 105 0.011 0.012 0.923 0.177 0.163
Iran Capra hircus 2.3 × 105 0.011 0.008 1.483 0.184 0.273
Italy Capra hircus 1.9 × 105 0.011 0.007 1.686 0.178 0.299
Morocco Capra hircus 2.2 × 105 0.011 0.006 1.892 0.184 0.349
Iran Ovis aries 3.8 × 105 0.012 0.010 1.132 0.189 0.214
Iran (O. orientalis) Ovis aries 4.5 × 105 0.011 0.011 1.012 0.213 0.216
Iran (O. vignei) Ovis aries 3.7 × 105 0.012 0.021 0.561 0.186 0.105
Various Ovis aries 4.1 × 105 0.011 0.011 1.069 0.215 0.229
Morocco Ovis aries 4 × 105 0.012 0.012 0.973 0.217 0.211
Barbados Chlorocebus sabaeus 1.1 × 105 0.009 0.004 2.120 0.341 0.723
Central Afr. Rep. Chlorocebus sabaeus 1.7 × 105 0.009 0.013 0.720 0.368 0.265
Ethiopia Chlorocebus sabaeus 1.4 × 105 0.009 0.007 1.352 0.368 0.498
Gambia Chlorocebus sabaeus 1.4 × 105 0.009 0.010 0.956 0.368 0.352
Kenya Chlorocebus sabaeus 1.5 × 105 0.009 0.013 0.727 0.368 0.268
Nevis Chlorocebus sabaeus 1 × 105 0.009 0.004 2.133 0.368 0.784
South Africa Chlorocebus sabaeus 1.8 × 105 0.009 0.011 0.874 0.368 0.322
Saint Kitts Chlorocebus sabaeus 1.2 × 105 0.009 0.005 1.905 0.368 0.701
Zambia Chlorocebus sabaeus 1.7 × 105 0.009 0.014 0.698 0.368 0.257
African Homo sapiens 5.6 × 104 0.010 0.013 0.726 0.437 0.317
Admixed American Homo sapiens 4.5 × 104 0.010 0.011 0.886 0.429 0.380
East Asian Homo sapiens 4 × 104 0.010 0.008 1.213 0.426 0.517
European Homo sapiens 4.1 × 104 0.010 0.009 1.104 0.422 0.466
South Asian Homo sapiens 4.4 × 104 0.010 0.009 1.016 0.426 0.433

• Ne is the estimated effective population size.

• P[B0] (eq. 5) is the probability for a new mutation a beneficial back-mutation. These mutations have a selection

coefficient predicted at the phylogenetic-scale larger than 1, thus toward a more fit amino-acid.

• P[B] (eq. 15) is the probability for a mutation to be beneficial. These mutations have a selection coefficient at

the population-scale larger than 1.

• P[B | B0] (eq. 12) is the probability for a mutation to be beneficial at the population scale, given it is predicted

to be a beneficial back-mutation at the phylogenetic scale (the precision).

• P[B0 | B] (eq. 14) is the probability for a mutation to a beneficial back-mutations, given it is beneficial (the

recall). This probability is obtained using Bayes’ formula.
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8.3 Precision and recall

Table S9: Precision and recall - including divergence

Deleterious mutations
D := S < −1

D0 := S0 < −1

Nearly-neutral mutations
N := −1 < S < 1

N 0 := −1 < S0 < 1

Beneficial mutations
B := S > 1

B0 := S0 > 1

Population Species Ne
Precision

P[D | D0]

Recall

P[D0 | D]

Precision

P[N | N 0]

Recall

P[N 0 | N ]

Precision

P[B | B0]

Recall

P[B0 | B]

Equus c. Equus caballus 7.5 × 104 0.937 0.955 0.111 0.192 0.498 0.106
Iran Bos taurus 5.6 × 104 0.935 0.970 0.565 0.356 0.368 0.684
Uganda Bos taurus 1.3 × 105 0.951 0.967 0.516 0.422 0.307 0.276
Australia Capra hircus 1.7 × 105 0.952 0.970 0.598 0.452 0.178 0.294
France Capra hircus 1.9 × 105 0.951 0.969 0.574 0.433 0.183 0.295
Iran (C. aegagrus) Capra hircus 1.9 × 105 0.957 0.966 0.515 0.460 0.177 0.163
Iran Capra hircus 2.3 × 105 0.951 0.967 0.542 0.422 0.184 0.273
Italy Capra hircus 1.9 × 105 0.951 0.969 0.582 0.436 0.178 0.299
Morocco Capra hircus 2.2 × 105 0.949 0.968 0.556 0.412 0.184 0.349
Iran Ovis aries 3.8 × 105 0.963 0.962 0.421 0.424 0.189 0.214
Iran (O. orientalis) Ovis aries 4.5 × 105 0.968 0.961 0.413 0.460 0.213 0.216
Iran (O. vignei) Ovis aries 3.7 × 105 0.972 0.959 0.360 0.528 0.186 0.105
Various Ovis aries 4.1 × 105 0.966 0.961 0.430 0.454 0.215 0.229
Morocco Ovis aries 4 × 105 0.966 0.958 0.372 0.416 0.217 0.211
Barbados Chlorocebus sabaeus 1.1 × 105 0.940 0.976 0.654 0.409 0.341 0.723
Central Afr. Rep. Chlorocebus sabaeus 1.7 × 105 0.950 0.971 0.526 0.421 0.368 0.265
Ethiopia Chlorocebus sabaeus 1.4 × 105 0.942 0.974 0.609 0.402 0.368 0.498
Gambia Chlorocebus sabaeus 1.4 × 105 0.950 0.974 0.611 0.452 0.368 0.352
Kenya Chlorocebus sabaeus 1.5 × 105 0.950 0.972 0.545 0.434 0.368 0.268
Nevis Chlorocebus sabaeus 1 × 105 0.940 0.977 0.668 0.412 0.368 0.784
South Africa Chlorocebus sabaeus 1.8 × 105 0.947 0.972 0.550 0.411 0.368 0.322
Saint Kitts Chlorocebus sabaeus 1.2 × 105 0.940 0.976 0.646 0.407 0.368 0.701
Zambia Chlorocebus sabaeus 1.7 × 105 0.950 0.971 0.527 0.426 0.368 0.257
African Homo sapiens 5.6 × 104 0.911 0.980 0.666 0.341 0.437 0.317
Admixed American Homo sapiens 4.5 × 104 0.902 0.976 0.580 0.284 0.429 0.380
East Asian Homo sapiens 4 × 104 0.904 0.984 0.744 0.341 0.426 0.517
European Homo sapiens 4.1 × 104 0.906 0.984 0.737 0.344 0.422 0.466
South Asian Homo sapiens 4.4 × 104 0.907 0.984 0.737 0.349 0.426 0.433

• Ne is the estimated effective population size.

• Precision is the estimation of the selection coefficient at population scale (S) given that S0 is known.

• Recall is the estimation of S0 given selection coefficient at the population scale (S) is known.

• Recall for beneficial mutations (P[B0 | B]) is thus the proportion of beneficial back-mutations among all beneficial

mutations.

Altogether, comparing this table to tables 1 and S3, we acknowledge that the exact proportion of beneficial back-

mutations among all beneficial ones is different whether we included or not substitutions in the terminal lineage for the

estimation of S. However, we can still see that beneficial back-mutations are positively selected compared to neutral

and deleterious ones, and this result is not sensitive to inclusion of substitutions in the terminal lineage.
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8.4 Excluding genes under adaptation

Table S10: P[B0 | B] for each population when excluding or not genes under adaptation - including divergence.
Population Species Control Case
Equus c. Equus caballus 0.106 0.106
Iran Bos taurus 0.684 0.755
Uganda Bos taurus 0.276 0.310
Australia Capra hircus 0.294 0.319
France Capra hircus 0.295 0.325
Iran (C. aegagrus) Capra hircus 0.163 0.174
Iran Capra hircus 0.273 0.299
Italy Capra hircus 0.299 0.321
Morocco Capra hircus 0.349 0.419
Iran Ovis aries 0.214 0.241
Iran (O. orientalis) Ovis aries 0.216 0.213
Iran (O. vignei) Ovis aries 0.105 0.089
Various Ovis aries 0.229 0.196
Morocco Ovis aries 0.211 0.206
Barbados Chlorocebus sabaeus 0.723 0.833
Central Afr. Rep. Chlorocebus sabaeus 0.265 0.285
Ethiopia Chlorocebus sabaeus 0.498 0.547
Gambia Chlorocebus sabaeus 0.352 0.571
Kenya Chlorocebus sabaeus 0.268 0.265
Nevis Chlorocebus sabaeus 0.784 0.892
South Africa Chlorocebus sabaeus 0.322 0.307
Saint Kitts Chlorocebus sabaeus 0.701 0.825
Zambia Chlorocebus sabaeus 0.257 0.271
African Homo sapiens 0.317 0.278
Admixed American Homo sapiens 0.380 0.363
East Asian Homo sapiens 0.517 0.499
European Homo sapiens 0.466 0.456
South Asian Homo sapiens 0.433 0.304

Genes under adaptation retrieved from [8]. Comparison of P[B0 | B] while including divergence for the whole genome

(control) and when excluding genes under adaptation (case). The non-parametric Wilcoxon signed-rank test tests the

null hypothesis that the distribution of the differences (case versus control) is symmetric about zero. Applied to the

paired samples (case and control), Wilcoxon signed-rank test results in s = 120 with p-value = 0.027 for one-sided

test (case higher than control). The proportion of beneficial back-mutations (P[B0 | B]) is higher when excluding genes

under adaptation, consistent with our expectation that genes with uniformly conserved functions should fit better the

back-mutation equilibrium model.
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9 Discrete distribution of S at the population scale

9.1 polyDFE model D (discrete distribution)

Additionally to including divergence, with also tested our prediction with polyDFE model D instead of model C. In

polyDFE model D, the DFE of non-synonymous mutations is given as a discrete DFE of K categories (instead of a

continuous distribution in model C), where the selection coefficients of each category i (1 ≤ i ≤ K) are fixed parameters

Si, and each value Si has a probability pi (estimated), with
∑K

i=1 pi = 1. We used K = 6 with S1 = −500, S2 = −4,

S3 = −1, S4 = 0, S5 = 1, S6 = 4.

For each class of selection x, the parameters pi (i ∈ {1 ≤ i ≤ 6}) were used to compute P[D | x], P[N | x], and P[B | x]

as:

P[D | x] = P[S < −1 | x] = p1 + p2 (S.15)

P[N | x] = P[−1 < S < 1 | x] = p3 + p4 + p5, (S.16)

P[B | x] = P[S > 1 | x] = p6. (S.17)

9.2 Probabilities of beneficial back-mutations

Table S11: Probability of beneficial back-mutations among all beneficial ones - model D.

Population Species Ne P[B0] P[B] P[B0]
P[B] P[B | B0] P[B0 | B]

Equus c. Equus caballus 7.5 × 104 0.012 0.006 2.050 0.163 0.334
Iran Bos taurus 5.6 × 104 0.011 0.005 2.125 0.133 0.283
Uganda Bos taurus 1.3 × 105 0.011 0.010 1.139 0.140 0.159
Australia Capra hircus 1.7 × 105 0.011 0.002 5.637 0.151 0.850
France Capra hircus 1.9 × 105 0.011 0.002 6.117 0.154 0.940
Iran (C. aegagrus) Capra hircus 1.9 × 105 0.011 0.002 5.842 0.156 0.911
Iran Capra hircus 2.3 × 105 0.011 0.002 6.400 0.147 0.943
Italy Capra hircus 1.9 × 105 0.011 0.002 5.793 0.155 0.895
Morocco Capra hircus 2.2 × 105 0.011 0.003 4.192 0.150 0.627
Iran Ovis aries 3.8 × 105 0.012 0.020 0.584 0.154 0.090
Iran (O. orientalis) Ovis aries 4.5 × 105 0.011 0.021 0.535 0.148 0.079
Iran (O. vignei) Ovis aries 3.7 × 105 0.012 0.020 0.568 0.151 0.086
Various Ovis aries 4.1 × 105 0.011 0.021 0.553 0.152 0.084
Morocco Ovis aries 4 × 105 0.012 0.022 0.529 0.153 0.081
Barbados Chlorocebus sabaeus 1.1 × 105 0.009 0.002 5.152 0.170 0.877
Central Afr. Rep. Chlorocebus sabaeus 1.7 × 105 0.009 0.007 1.266 0.157 0.199
Ethiopia Chlorocebus sabaeus 1.4 × 105 0.009 0.002 3.979 0.161 0.640
Gambia Chlorocebus sabaeus 1.4 × 105 0.009 0.008 1.201 0.159 0.191
Kenya Chlorocebus sabaeus 1.5 × 105 0.009 0.003 2.801 0.165 0.461
Nevis Chlorocebus sabaeus 1 × 105 0.009 0.002 5.361 0.169 0.908
South Africa Chlorocebus sabaeus 1.8 × 105 0.009 0.005 1.912 0.154 0.294
Saint Kitts Chlorocebus sabaeus 1.2 × 105 0.009 0.002 4.561 0.165 0.753
Zambia Chlorocebus sabaeus 1.7 × 105 0.009 0.004 2.661 0.153 0.406
African Homo sapiens 5.6 × 104 0.010 0.010 0.997 0.154 0.154
Admixed American Homo sapiens 4.5 × 104 0.010 0.008 1.206 0.158 0.190
East Asian Homo sapiens 4 × 104 0.010 0.007 1.455 0.163 0.237
European Homo sapiens 4.2 × 104 0.010 0.007 1.316 0.167 0.219
South Asian Homo sapiens 4.4 × 104 0.010 0.007 1.340 0.164 0.219

• Ne is the estimated effective population size.

• P[B0] (eq. 5) is the probability for a new mutation a beneficial back-mutation. These mutations have a selection

coefficient predicted at the phylogenetic-scale larger than 1, thus toward a more fit amino-acid.

22
210



• P[B] (eq. 15) is the probability for a mutation to be beneficial. These mutations have a selection coefficient at

the population-scale larger than 1.

• P[B | B0] (eq. 12) is the probability for a mutation to be beneficial at the population scale, given it is predicted

to be a beneficial back-mutation at the phylogenetic scale (the precision).

• P[B0 | B] (eq. 14) is the probability for a mutation to a beneficial back-mutations, given it is beneficial (the

recall). This probability is obtained using Bayes’ formula.
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9.3 Precision and recall

Table S12: Precision and recall - model D

Deleterious mutations
D := S < −1

D0 := S0 < −1

Nearly-neutral mutations
N := −1 < S < 1

N 0 := −1 < S0 < 1

Beneficial mutations
B := S > 1

B0 := S0 > 1

Population Species Ne
Precision

P[D | D0]

Recall

P[D0 | D]

Precision

P[N | N 0]

Recall

P[N 0 | N ]

Precision

P[B | B0]

Recall

P[B0 | B]

Equus c. Equus caballus 7.5 × 104 0.911 0.974 0.645 0.319 0.163 0.334
Iran Bos taurus 5.6 × 104 0.895 0.973 0.639 0.288 0.133 0.283
Uganda Bos taurus 1.3 × 105 0.951 0.974 0.664 0.492 0.140 0.159
Australia Capra hircus 1.7 × 105 0.912 0.984 0.834 0.386 0.151 0.850
France Capra hircus 1.9 × 105 0.912 0.983 0.819 0.381 0.154 0.940
Iran (C. aegagrus) Capra hircus 1.9 × 105 0.928 0.980 0.767 0.408 0.156 0.911
Iran Capra hircus 2.3 × 105 0.955 0.969 0.616 0.459 0.147 0.943
Italy Capra hircus 1.9 × 105 0.911 0.983 0.822 0.379 0.155 0.895
Morocco Capra hircus 2.2 × 105 0.950 0.976 0.706 0.468 0.150 0.627
Iran Ovis aries 3.8 × 105 0.983 0.958 0.421 0.796 0.154 0.090
Iran (O. orientalis) Ovis aries 4.5 × 105 0.982 0.961 0.448 0.806 0.148 0.079
Iran (O. vignei) Ovis aries 3.7 × 105 0.974 0.963 0.480 0.685 0.151 0.086
Various Ovis aries 4.1 × 105 0.982 0.964 0.500 0.822 0.152 0.084
Morocco Ovis aries 4 × 105 0.983 0.958 0.387 0.782 0.153 0.081
Barbados Chlorocebus sabaeus 1.1 × 105 0.895 0.987 0.860 0.351 0.170 0.877
Central Afr. Rep. Chlorocebus sabaeus 1.7 × 105 0.925 0.974 0.653 0.373 0.157 0.199
Ethiopia Chlorocebus sabaeus 1.4 × 105 0.892 0.980 0.763 0.320 0.161 0.640
Gambia Chlorocebus sabaeus 1.4 × 105 0.939 0.982 0.770 0.469 0.159 0.191
Kenya Chlorocebus sabaeus 1.5 × 105 0.916 0.976 0.680 0.345 0.165 0.461
Nevis Chlorocebus sabaeus 1 × 105 0.895 0.989 0.884 0.358 0.169 0.908
South Africa Chlorocebus sabaeus 1.8 × 105 0.930 0.971 0.604 0.361 0.154 0.294
Saint Kitts Chlorocebus sabaeus 1.2 × 105 0.898 0.986 0.839 0.353 0.165 0.753
Zambia Chlorocebus sabaeus 1.7 × 105 0.912 0.975 0.676 0.335 0.153 0.406
African Homo sapiens 5.6 × 104 0.945 0.976 0.627 0.431 0.154 0.154
Admixed American Homo sapiens 4.5 × 104 0.936 0.977 0.641 0.397 0.158 0.190
East Asian Homo sapiens 4 × 104 0.943 0.977 0.648 0.422 0.163 0.237
European Homo sapiens 4.2 × 104 0.945 0.977 0.644 0.429 0.167 0.219
South Asian Homo sapiens 4.4 × 104 0.945 0.977 0.644 0.430 0.164 0.219

• Ne is the estimated effective population size.

• Precision is the estimation of the selection coefficient at population scale (S) given that S0 is known.

• Recall is the estimation of S0 given selection coefficient at the population scale (S) is known.

• Recall for beneficial mutations (P[B0 | B]) is thus the proportion of beneficial back-mutations among all beneficial

mutations.

Altogether, comparing this table other estimations, we acknowledge that the exact proportion of beneficial back-

mutations among all beneficial ones is dependent on the model used to estimate the DFE. However, we can still see

that beneficial back-mutations are positively selected compared to neutral and deleterious ones, and this result is not

sensitive to the underlying DFE at the population scale.
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Figure S1: Distribution of fitness effects of new mutations at equilibrium separately for WS (red) and SW (blue)

mutations. For each fitness landscape, the relative fitnesses were shuffled among amino-acids. Equilibrium frequencies

were computed with B = 0. From top to bottom: 2000 sites randomly sampled from the mammalian fitness landscapes,

the concatenate of the DMS fitness landscapes (1389 sites), the fitness landscape of the influenza protein NP (498 sites),

the influenza protein HA (564 sites), the S.cervisae protein Gal4 (64 sites) and the E.coli protein β-lactamase (263

sites).
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Figure S2: Distribution of fitness effects of new substitutions separately for WS (red) and SW (blue) substitutions.

Equilibrium frequencies were computed for the concatenated DMS fitness landscape, with B = 0 (top left) and B = 2

(top right and bottom). The substitution rate from the equilibrium sequence was subsequently computed with B = 0

(top left), B = 2 (top right), B = 3, (bottom left), and B = 1 (bottom right). The top panels therefore represent

substitution rates at equilibrium, while the bottom panels represent substitution rates out of equilibrium. From top

to bottom: 2000 sites randomly sampled from the mammalian fitness landscapes, the concatenate of the DMS fitness

landscapes (1389 sites), the fitness landscape of the influenza protein NP (498 sites), the influenza protein HA (564

sites), the S.cervisae protein Gal4 (64 sites) and the E.coli protein β-lactamase (263 sites).
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Figure S3: Proportion of the substitutions (Psub) contributed by WS deleterious (bright red), SW deleterious (bright

blue), WS beneficial (light red) ans SW beneficial (light blue) mutations as a function of the population-scaled gBGC

coefficient under the concatenated DMS fitness landscape in three scenarios: Equilibrium frequencies are computed

with B, and substitutions from this equilibrium sequence are computed with 0.7 × B (A), B (B) and 1.3 × B (C).

From top to bottom: 2000 sites randomly sampled from the mammalian fitness landscapes, the fitness landscape of

the influenza protein NP (498 sites), the influenza protein HA (564 sites), the S.cervisae protein Gal4 (64 sites) and

the E.coli protein β-lactamase (263 sites).
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Figure S4: Relative fitness (f) of sequences as a function of the B they are evolving under (black dots). Red arrows

correspond to the fitness evolution of the sequences after a decrease of B by 30% (left panels), or after an increase of B

by 30% (right panels). From top to bottom: 2000 sites randomly sampled from the mammalian fitness landscapes, the

fitness landscape of the influenza protein NP (498 sites), the influenza protein HA (564 sites), the S.cervisae protein

Gal4 (64 sites) and the E.coli protein β-lactamase (263 sites).

4
217



0 2 4 6 8 10
B

2

4

6

d
N

1e 8
From B 0 (hotspot death)

From 0 B (hotspot birth)

From B B (equilibrium)

0 2 4 6 8 10
B

0.00

0.25

0.50

0.75

1.00

d
S

1e 6

0 2 4 6 8 10
B

0.05

0.10

0.15

0.20

0.25

d
N

/d
S

0 2 4 6 8 10
B

0.2

0.4

0.6

0.8

1.0

d
N

1e 7

0 2 4 6 8 10
B

0.00

0.25

0.50

0.75

1.00

d
S

1e 6

0 2 4 6 8 10
B

0.1

0.2

0.3

d
N

/d
S

0 2 4 6 8 10
B

0.00

0.25

0.50

0.75

1.00

1.25

d
N

1e 7

0 2 4 6 8 10
B

0

2

4

6

8

d
S

1e 7

0 2 4 6 8 10
B

0.1

0.2

0.3

0.4
d

N
/d

S

A1

A2 A3

B1 B2 B3

C1 C2 C3

NP

HA

Figure S5: dN (A), dS (B), and dN/dS (C) as a function of the population scaled gBGC coefficient B in three scenar-

ios: Equilibrium codon frequencies are computed without gBGC, and substitutions subsequently accumulate under a

population-scaled gBGC coefficient of B (orange line), mimicking the birth of a recombination hotspot. Equilibrium

codon frequencies are computed under a population-scaled gBGC coefficient of B, and substitutions subsequently accu-

mulate without gBGC (orange line), mimicking the death of a recombination hotspot. And finally, equilibrium codon

frequencies are computed under a population-scaled gBGC coefficient of B, and substitutions subsequently accumulate

at equilibrium, under B (green line). From top to bottom: the fitness landscape of the influenza protein NP (498

sites), the influenza protein HA (564 sites) and the S.cervisae protein Gal4 (64 sites).
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