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Résumé:
L’intelligence artificielle (IA) a révolutionné la recherche

en vision par ordinateur il y a une décennie. Depuis lors, les
algorithmes d’IA ont démontré une pléthore d’études remar-
quables et d’approches à la pointe de l’état de l’art pour de
nombreuses applications, notamment l’analyse d’imagerie
médicale. L’objectif de cette thèse est d’explorer les ré-
centes avancées en apprentissage automatique, en met-
tant l’accent sur les approches d’apprentissage profond, afin
de concevoir des algorithmes pour le diagnostic basé sur
l’imagerie médicale. En particulier, des méthodologies inno-
vantes exploitant des techniques d’auto-supervision et des
approches multimodales sont développées pour générer des
prédicteurs robustes capables d’associer les caractéristiques
de l’imagerie à la progression du patient. Ces méthodolo-
gies sont employées pour une application clinique spéci-
fique, le suivi de patients ayant subi une transplantation
rénale.

La transplantation rénale apparait comme la solution
la plus efficace pour l’insuffisance rénale en phase termi-
nale. Cependant, plusieurs mécanismes, dont l’ischémie,
l’hyperméthylation, le rejet aigu, la fibrose ou les lésions
parenchymateuses des donneurs, peuvent entraîner des lé-
sions rénales et affecter la survie du greffon. À ce jour, la
prise en charge clinique des bénéficiaires de la transplan-
tation repose principalement sur des biopsies percutanées
de l’organe répétées, entraînant de l’inconfort, des coûts
accrus et un risque significatif de complications hémorrag-
iques. Étant donné que la vascularisation des tissus ou
l’infiltration des cellules inflammatoires peuvent induire des
signaux spécifiques en imagerie par résonance magnétique
(IRM) ou en échographie, nous émettons l’hypothèse que
la transplantation rénale constitue une source pertinente de
données pour les études d’imagerie.

Tout d’abord, nous concevons des outils de détection
et de segmentation des reins transplantés basés sur une ap-
proche d’apprentissage profond non supervisée, exploitant
la différence de rehaussement des greffons dans différentes
séquences IRM. Cette étape cruciale permet le calcul de
caractéristiques radiomiques prédéfinies dans le greffon et
permet d’appliquer une technique de base pour extraire
des biomarqueurs robustes à partir des données d’imagerie
médicale. Ensuite, nous proposons une approche pour
apprendre directement à extraire des caractéristiques per-
tinentes à partir des données d’IRM de greffons rénaux
en utilisant des méthodologies d’apprentissage contrastif.
Nous explorons la pertinence de la représentation apprise
pour la prédiction de la fonction rénale à partir des examens
d’imagerie longitudinaux en utilisant une architecture de
transformer adaptée à la gestion des examens manquants.
Nous démontrons également le potentiel de nos représen-
tations d’imagerie apprises pour prédire la survie du greffon
à partir des examens précoces d’IRM post-transplantation.
Enfin, nous explorons des approches multimodales pour in-
tégrer davantage les informations cliniques et biologiques
dans l’apprentissage de nos représentations d’image en ex-
ploitant l’expressivité des données textuelles avec les ré-
centes avancées en traitement automatique du langage na-
turel et en utilisant une technique d’apprentissage contrastif
multivues.

Nos expériences mettent en évidence la pertinence de
la prise en compte des données d’imagerie longitudinales
pour extraire des représentations et des informations per-
tinentes en vue du suivi des transplantations et, par con-
séquent, dans l’étude des mécanismes de complications et
de dysfonctionnements chroniques après la transplantation,
ouvrant la voie à des recherches futures dans ce domaine.



Title: Representation Learning of Multimodal and Longitudinal data for Renal Transplantation monitoring
Keywords: deep learning, self-supervised learning, multimodal learning, longitudinal data, medical imaging, renal trans-
plantation.

Abstract:
A decade ago, the field of computer vision was trans-

formed by the advent of Artificial Intelligence (AI). AI al-
gorithms have since made significant strides in various ap-
plications, with particular success in medical imaging anal-
ysis. This thesis explores recent advancements in machine
learning, with a specific focus on leveraging deep learn-
ing techniques to develop algorithms for diagnosing medical
conditions based on imaging data. The methodologies in-
troduced in this research utilize self-supervision techniques
and multimodal approaches, aiming to create robust pre-
dictive models that connect imaging features with patient
progress. This work is tailored to address a specific clinical
need: the monitoring of renal transplant recipients.

Renal transplantation has emerged as a highly effective
treatment for end-stage renal disease. However, various
mechanisms, including ischemia, hypermethylation, acute
rejection, fibrosis, or donor-related parenchymal lesions,
can contribute to kidney injury and affect transplant out-
comes. Presently, the clinical management of transplant
recipients relies heavily on recurrent percutaneous biopsies,
which come with drawbacks such as patient discomfort, in-
creased costs, and the risk of hemorrhagic complications.
Given that specific Magnetic Resonance Imaging or ultra-
sound signals can be induced by tissue vascularization and
inflammatory cell infiltration, the hypothesis is that kidney
transplant data represents a valuable resource for imaging
studies.

Our research begins by developing tools for the detec-

tion and segmentation of renal transplants using an un-
supervised deep learning method. These tools capitalize
on differences in transplant enhancement across multiple
MRI sequences, enabling the computation of imaging ra-
diomics features and serving as a baseline for extracting
robust imaging biomarkers. Subsequently, an approach
that employs contrastive learning methods to extract per-
tinent features from renal transplant MRI data directly is
presented. The utility of these learned representations is
explored in forecasting renal transplant function, particu-
larly through longitudinal imaging follow-up examinations.
Additionally, attention-based architectures are explored to
handle missing data effectively. This study also underscores
the potential of these imaging representations in predicting
transplant survival using early MRI examinations. Finally,
a multimodal approach is investigated to integrate clinical
and biological information into the image representations.
This is achieved by incorporating textual data and lever-
aging advancements in Large Language Models alongside
multiview contrastive learning.

The experimental findings emphasize the relevance of
considering longitudinal imaging data for meaningful rep-
resentations and insights into transplant monitoring. This
approach proves valuable in understanding complex com-
plications and chronic dysfunction mechanisms following
transplantation. It paves the way for future research in this
domain, both from the methodological and clinical point of
view.
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Résumé en français
L’intelligence artificielle (IA) a révolutionné la recherche en vision par ordinateur il y a une décennie. Depuis
lors, les algorithmes d’IA ont démontré une pléthore d’études remarquables et d’approches à la pointe de
l’état de l’art pour de nombreuses applications, notamment l’analyse d’imagerie médicale. L’objectif de cette
thèse est d’explorer les récentes avancées en apprentissage automatique, en mettant l’accent sur les approches
d’apprentissage profond, afin de concevoir des algorithmes pour le diagnostic basé sur l’imagerie médicale.
En particulier, des méthodologies innovantes exploitant des techniques d’auto-supervision et des approches
multimodales sont développées pour générer des prédicteurs robustes capables d’associer les caractéristiques
de l’imagerie à la progression du patient. Ces méthodologies sont employées pour une application clinique
spécifique, le suivi de patients ayant subi une transplantation rénale.

La transplantation rénale apparaît comme la solution la plus efficace pour l’insuffisance rénale en phase
terminale. Cependant, plusieurs mécanismes, dont l’ischémie, l’hyperméthylation, le rejet aigu, la fibrose
ou les lésions parenchymateuses des donneurs, peuvent entraîner des lésions rénales et affecter la survie du
greffon. À ce jour, la prise en charge clinique des bénéficiaires de la transplantation repose principalement
sur des biopsies percutanées de l’organe répétées, entraînant de l’inconfort, des coûts accrus et un risque
significatif de complications hémorragiques. Étant donné que la vascularisation des tissus ou l’infiltration des
cellules inflammatoires peuvent induire des signaux spécifiques en imagerie par résonance magnétique (IRM)
ou en échographie, nous émettons l’hypothèse que la transplantation rénale constitue une source pertinente
de données pour les études d’imagerie. L’organisation de cette thèse est la suivante.

Dans un premier chapitre, nous commençons par présenter les motivations méthodologiques de cette
thèse, en passant rapidement en revue certains prérequis en apprentissage automatique, ainsi qu’un bref
historique sur l’apprentissage profond, puis en nous concentrant sur les problématiques récentes et les orienta-
tions de recherche qui marquent la littérature actuelle sur l’apprentissage profond. Ensuite, nous introduisons
le contexte médical de cette thèse : le suivi de patients ayant subi une transplantation rénale, notamment par
l’imagerie médicale. En troisième lieu, nous présentons la cohorte de données utilisée dans cette thèse afin de
saisir les objectifs et les défis de notre travail. Enfin, nous introduisons l’organisation des prochains chapitres
en présentant les objectifs et les contributions de cette thèse.

Le second chapitre établit les tâches fondamentales et les méthodologies de base qui sous-tendent cette
thèse. Tout d’abord, nous présentons un aperçu des études et des modèles de pointe sur les données de type
variables cliniques et biologiques dans le contexte de la transplantation rénale. De plus, nous proposons des
expérimentations préliminaires illustratives utilisant notre ensemble de données. Ensuite, nous nous plongeons
dans notre première contribution, qui comprend la détection automatique et la segmentation des greffons ré-
naux dans les données d’IRM. Ces tâches sont essentielles à la progression de notre recherche. Enfin, nous
introduisons le concept de radiomique, qui implique l’ingénierie des caractéristiques radiologiques et sert de
base pour la découverte et l’analyse de biomarqueurs à partir de méthodes d’imagerie computationnelle.
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Dans un troisième chapitre, nous étudions l’utilisation d’approches d’apprentissage contrastif pour appren-
dre des représentations significatives des données d’IRM de contraste des transplants rénaux. Notre approche
vise à incorporer des informations cliniques dans la représentation apprise des images. Ensuite, nous pro-
posons une nouvelle architecture basée sur les transformers adaptée pour traiter les données manquantes dans
la tâche complexe de prédiction de la créatinine sérique 2 ans après la transplantation en utilisant des examens
d’imagerie de suivi. Une architecture d’encodeur transformer permet d’utiliser les données séquentielles de
suivi pour prédire la fonction de la transplantation rénale et modéliser les relations longitudinales, en pro-
posant une méthode innovante pour gérer les examens manquants. Dans une étude plus orientée cliniquement,
nous explorons davantage la capacité de nos représentations apprises pour la prédiction de la survie du greffon.

Dans un quatrième chapitre, nous présentons MEDIMP (MEDical IMages with clinical Prompts), une
approche innovante visant à apprendre des représentations pertinentes à partir de données d’IRM de con-
traste des greffons en vue de la prédiction de la fonction du greffon dans le contexte de la surveillance des
transplantations rénales. Cette approche offre une manière élégante d’incorporer des informations cliniques
ou biologiques dans le processus d’apprentissage de l’extraction de caractéristiques des données d’imagerie
médicale. Nous avons conçu des ”prompts” clinicobiologiques pour exploiter les données textuelles et des
encodeurs NLP puissants en utilisant une approche d’alignement multimodal des représentations avec de
l’apprentissage contrastif. Nous démontrons la pertinence de l’approche pour la prédiction de la fonction des
transplantations rénales.

Dans un dernier chapitre de discussion, nous commençons par mettre en évidence les principales contri-
butions de cette thèse. Ensuite, nous nous plongeons dans une discussion sur des perspectives pertinentes
qui ont émergé de notre travail et sur des directions prometteuses pour nos futurs projets de recherche, en
mettant l’accent sur l’apprentissage de représentations pour l’analyse d’images médicales, le potentiel des
modèles fondamentaux en imagerie médicale, les nouveaux outils d’intelligence artificielle pour la surveillance
des transplantations rénales, et deux sujets pertinents en IA qui n’ont pas été abordés dans notre travail.
Enfin, nous proposons une conclusion sur l’ensemble de la thèse.

Pour conclure ce résumé, nos expériences mettent en évidence la pertinence de la prise en compte des
données d’imagerie longitudinales pour extraire des représentations et des informations pertinentes en vue du
suivi des transplantations et, par conséquent, dans l’étude des mécanismes de complications et de dysfonc-
tionnements chroniques après la transplantation, ouvrant la voie à des recherches futures dans ce domaine.







Contents
List of Figures xi

List of Tables xiii

Notations and conventions xv

1 Introduction 1
1.1 Methodological motivations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2 Medical context for this thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
1.3 Dataset presentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
1.4 Objectives & Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2 Classical methods & baselines 39
2.1 Classical data-driven methods for medical tabular data . . . . . . . . . . . . . . . . . . . . . 43
2.2 Image-based segmentation of kidney transplant . . . . . . . . . . . . . . . . . . . . . . . . . 47
2.3 Design of radiomics signature for kidney transplant . . . . . . . . . . . . . . . . . . . . . . . 56

3 Learning meaningful representations of renal transplant DCE MRI data 61
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
3.2 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
3.3 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
3.4 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
3.5 Kidney function forecasting experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
3.6 Survival analysis experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
3.7 Discussion & Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4 Leveraging LLMs advances for multimodal representations 85
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
4.2 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
4.3 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
4.4 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
4.5 Experiments & Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
4.6 Discussion & Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

5 Discussion 105
5.1 Main contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
5.2 Perspectives & Future directions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
5.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

Bibliography I

ix





List of Figures
1.1 Chapter 1 cover image . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Overview a classical machine learning pipeline. . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3 Brief history of Deep Learning timeline. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.4 Model overview of ResNet18 CNN and the Vision Transformer (ViT). . . . . . . . . . . . . . 11
1.5 Overview of self-supervised learning (SSL) techniques categories. . . . . . . . . . . . . . . . . 13
1.6 Architecture of the transformer. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
1.7 Summary of CLIP approach. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
1.8 Cross-attention mechanism example. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
1.9 Overview of two multimodal approaches in Medical Imaging Analysis. . . . . . . . . . . . . . 21
1.10 Renal transplantation statistics in France. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
1.11 Clinical study flowchart. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
1.12 Biological data examples. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
1.13 Histopathological images results of transplant biopsies examples. . . . . . . . . . . . . . . . . 29
1.14 MRI data slice examples of available modalities. . . . . . . . . . . . . . . . . . . . . . . . . . 30
1.15 US data examples of renal transplants. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.1 Chapter 2 cover image . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
2.2 Correlation matrix visualization of general clinical variables. . . . . . . . . . . . . . . . . . . . 44
2.3 Radar charts on clinical data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
2.4 Overview of the proposed method for the automatic segmentation of kidney graft using mul-

timodal MR Imaging. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
2.5 Region of interest example on the DCE MRI sequence. . . . . . . . . . . . . . . . . . . . . . 50
2.6 Semantic segmentation maps obtained through the iterative process of our unsupervised al-

gorithm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
2.7 Evaluation of the different components of the proposed method using different evaluation

metrics on the validation set. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
2.8 One testing subject depicting one slice in axial view and the segmentation results. . . . . . . . 54
2.9 Overview of a radiomics approach for renal transplant ultrasound imaging. . . . . . . . . . . . 57

3.1 Chapter 3 cover image . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
3.2 Overview of the proposed method. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
3.3 Contrastive learning objective explanation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
3.4 Curriculum learning on the weakly-supervised task example. . . . . . . . . . . . . . . . . . . . 69
3.5 (A) Training and (B) Validation curves for our contrastive learning scheme based on GFR

variable with and without curriculum learning. . . . . . . . . . . . . . . . . . . . . . . . . . . 71
3.6 Feature visualization of the PCA decomposition of the last layer of the contrastive training

using the DCE MRI follow-ups. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
3.7 Pipeline for generating our CL-based features and the predefined radiomics features. . . . . . 76
3.8 Heatmaps visualization pipeline. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
3.9 Boxplots of the evaluation of different CL-based features from different examination times-

tamps and MRI modalities available in our main cohort. . . . . . . . . . . . . . . . . . . . . . 78
3.10 Kaplan-Meier curves for the two groups obtained by the unsupervised clustering of the selected

CL-based features by the survival Cox model. . . . . . . . . . . . . . . . . . . . . . . . . . . 79
3.11 Heatmaps on the region of interest input to our CL-based model for different patients’ examples. 79

4.1 Chapter 4 cover image . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
4.2 Overview of our method MEDIMP – Medical Images with clinical Prompts. . . . . . . . . . . 91
4.3 t-SNE visualizations of the features of the last layer of MEDIMP image encoder using the

DCE MRI exams. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

5.1 Chapter 5 cover image . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

xi





List of Tables
1.1 Patient characteristics and clinical attributes. . . . . . . . . . . . . . . . . . . . . . . . . . . 27
1.2 Missing data in the DCE MRI follow-up examinations. . . . . . . . . . . . . . . . . . . . . . 33

2.1 Transplantation failure prediction with classical ML algorithms from clinical variables. . . . . . 46
2.2 Quantitative evaluation of the proposed method and other methods. . . . . . . . . . . . . . . 54
2.3 Evaluation of the predefined radiomics features to recover variables linked to graft survival. . . 58

3.1 Quantitative evaluation of different methods. . . . . . . . . . . . . . . . . . . . . . . . . . . 74
3.2 Quantitative evaluation of different strategies for missing data. . . . . . . . . . . . . . . . . . 75
3.3 Quantitative evaluation for an increasing number of missing data for our proposed method

and other imputation strategies. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
3.4 Concordance index (C-index in %) scores on evaluating our CL-based features to predict graft

survival at five years. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.1 Comparison of MEDIMP vs SOTA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
4.2 Cross-validation results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
4.3 Quantitative evaluation of the proposed method against other text generation methods. . . . 99
4.4 Ablation results on the way of freezing the text encoder. . . . . . . . . . . . . . . . . . . . . 101

xiii





Notations and conventions

Abbreviations
AI Artificial Intelligence
CNN Convolutional Neural Network
CV Computer Vision
DL Deep Learning
GPU Graphical Processing Unit
LLM Large Language Model
LSTM Long Short Term Memory
MedIA Medical Imaging Analysis
ML Machine Learning
MLP Multi-Layer Perceptron
NLP Natural Language Processing
SSL Self-Supervised Learning

Medical
CT Computed Tomography
GFR Glomerular Filtration Rate
MRI Magnetic Resonance Imaging
US Ultrasound
sCreat Serum creatinine

Metrics
AUC Area Under the Receiver Operating Characteristic Curve (AUC ROC)
B.Acc Balanced Accuracy
DSC Dice Score Coefficient
F1 F1 score
HD95 Hausdorff Distance at percentile 95%
PKVD Percentage of Kidney Volume Difference
Prec Precision
Rec Recall
std Standard deviation

xv





Chapter 1

Introduction

Contents
1.1 Methodological motivations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.1.1 Machine learning prerequisites . . . . . . . . . . . . . . . . . . . . . . . 5
1.1.2 The deep learning paradigm . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.1.3 Self-supervision in computer vision . . . . . . . . . . . . . . . . . . . . . 13
1.1.4 The rise of foundation models . . . . . . . . . . . . . . . . . . . . . . . 15
1.1.5 Integrating multimodal learning . . . . . . . . . . . . . . . . . . . . . . . 18
1.1.6 Deep learning for medical imaging . . . . . . . . . . . . . . . . . . . . . 19

1.2 Medical context for this thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
1.2.1 Renal transplantation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
1.2.2 The role of medical imaging . . . . . . . . . . . . . . . . . . . . . . . . 24

1.3 Dataset presentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
1.3.1 Patients cohort and clinical data . . . . . . . . . . . . . . . . . . . . . . 25
1.3.2 Medical imaging data . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
1.3.3 Translating dataset’s limitations to relevant research challenges for data-

driven methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
1.4 Objectives & Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

1.4.1 Objectives of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
1.4.2 Main contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
1.4.3 Scientific production and professional activities . . . . . . . . . . . . . . 36

1





3

Prompt1: ”A scene of an introduction to deep learning course in a university’s amphitheater with a blackboard
and a professor in an old photographic style.”

Summary
In this chapter, we first introduce the methodological motivations to this thesis, going through a rapid overview
of machine learning prerequisites and the deep learning trend, then focusing on the recent problematic and
research directions that mark today’s deep learning literature. Second, we introduce the medical context of
this thesis, in which methodological contributions were designed for a specific application: medical imaging
monitoring in renal transplantation. Third, we present the dataset of interest of this thesis in order to grasp
the objectives and challenges of our work. Finally, we introduce the organization of the next chapters by
presenting the objectives and contributions of this thesis.

1A PhD thesis in deep learning in 2023 barely discussing generative networks can appear regrettable. So to give a
glimpse of their recent advances and capabilities, a cover for each chapter is generated using Stable Diffusion XL, one
of the most successful applications of image generation models (along with Midjourney).

https://stability.ai/stable-diffusion
https://www.midjourney.com/home/
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1.1 Methodological motivations

1.1.1 Machine learning prerequisites

In this section, we introduce the core concepts that are inherent to building Machine Learning (ML) models
and that compose most of the methodologies presented in this thesis. ML is a field of Computer Science that
consists of developing mathematical and statistical algorithms to solve diverse tasks by optimizing models’
parameters using observations, i.e. data. Tasks usually fall into three groups: classification, where models
predict the class (category, label) of data samples; regression, where models predict a continuous value vari-
able; and clustering, where models group samples without labels’ annotations into clusters according to a
certain similarity concept. ML models are trained to solve these tasks by learning, through an algorithmic or
optimization process, from observations available in a dataset. When datasets include ground truth annota-
tion to perform the task (e.g. for classification or regression), we use supervised learning. On the contrary,
when no labels are available, we use unsupervised learning (e.g. for clustering).

Figure 1.2: Overview a classical machine learning pipeline. The main steps of a machine learning model
training and evaluation are presented. Different choices for performing each of these steps could be selected
and are detailed in this section.

ML pipelines consist of several sequential stages, depending on the specific problem and its complexity.
The main components usually are data collection, data preprocessing, feature engineering, feature selection,
model selection, hyperparameter tuning, and model evaluation and validation (Figure 1.2). In the next
paragraphs, we present the most relevant stages closely aligned with our research.

Feature engineering. This first step constitutes a crucial process in transforming raw data into features
(variables) that accurately depict the underlying problem [Zheng, 2018]. In essence, it involves the application
of domain knowledge to derive analytical representations from raw data, preparing them for utilization in ML
pipelines. Feature engineering plays a pivotal role in determining the optimal representation of sample data for
effective problem-solving. Effective feature engineering addresses dimensionality and data sparsity issues and
contributes to model generalization and robustness. This holds particular significance as the success of artificial
intelligence or ML projects often hinges on the quality of data representation. Feature engineering relies on
a set of well-defined procedures and methods, the selection of which depends on the specific characteristics
of the data. In determining the appropriate procedures, proficiency comes through experience and practical
application in a given context. Key steps in the feature engineering process usually include:

• Data Exploration: Understand the characteristics and distribution of the raw data.
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• Encoding Categorical Variables: Convert categorical variables into numerical format for model compat-
ibility;

• Scaling and Normalization: Ensure that numerical features are on a similar scale to prevent certain
features from dominating the learning process.

• Creating Interaction Terms: Capture relationships between variables by creating new features based on
their interactions;

• Feature Transformation: Apply mathematical transformations to make data more suitable for modeling,
e.g. using logarithmic transformation for variables with skewed distributions;

• Domain-Specific feature engineering: Leverage domain knowledge to create more meaningful features
for the specific problem. For example, for time series analysis, features based on the spectral analysis
of signals are often essential. In Chapter 2, we notably introduce the basis of feature engineering for
medical imaging data.

Feature selection. One crucial stage is the feature selection procedure [Kotu, 2015b]. Feature selection
is the process of choosing a subset of relevant features to improve model performance and reduce complex-
ity. Moreover, the selected features also provide crucial information on the task, as well as an enhanced
interpretability of the model. These points become extremely relevant for biomedical applications. Common
feature selection methods include:

• Filter Methods: These methods select features based on statistical measures like correlation [Pearson,
1895], chi-squared tests [Pearson, 1900], or mutual information [Kraskov, 2004];

• Wrapper Methods [Guyon, 2002]: Wrapper methods use a specific ML model to evaluate feature
subsets and select the best-performing features. Common techniques include forward selection and
backward elimination;

• Embedded Methods: Some ML algorithms have built-in feature selection mechanisms. For example,
Lasso Regression [Tibshirani, 1996] performs feature selection as it penalizes the absolute values of
feature coefficients;

• Dimensionality Reduction: Techniques like Principal Component Analysis (PCA) [Hotelling, 1933]
and Singular Value Decomposition (SVD) reduce feature dimensionality while preserving as much
information as possible.
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Model selection. We denote ”classical machine learning models”, common statistical algorithms used
for learning tasks, where data are available and we want to build a model to make predictions on new,
unseen data. A non-exhaustive list of those models, focusing on the ones that are usually chosen for medical
applications, include:

• Linear Regression [Stanton, 2001]: Used for regression tasks, it models the relationship between input
features and a continuous target variable by fitting a linear equation;

• Logistic Regression [Cramer, 2002]: For classification tasks, it estimates the probability that a given
input belongs to a particular class;

• Decision Trees [Breiman, 1984]: These hierarchical structures make decisions by splitting data based
on feature values, leading to a tree-like structure;

• Random Forest [Breiman, 2001]: An ensemble method that combines multiple decision trees to improve
predictive accuracy and reduce overfitting;

• Support Vector Machines (SVM) [Cortes, 1995]: Used for both classification and regression, SVMs
aim to find a hyperplane that best separates data points;

• K-Nearest Neighbors (KNN) [Cover, 1967]: A simple algorithm that classifies data points based on the
majority class among their k-nearest neighbors in feature space;

• Naive Bayes [Hand, 2001]: A probabilistic classifier based on Bayes’ theorem with the strong (naive)
assumption of conditional independence between every pair of features given the value of the class
variable.

Ensemble models. Ensemble predictions and ensemble models [Kotu, 2015a] are powerful techniques in
ML that involve combining the predictions of multiple base models. Benefits are many-fold by improving: (i)
overall predictive accuracy, ensemble methods often outperform individual base models by reducing overfitting
and bias; (ii) robustness, ensembles are less sensitive to noise and outliers in the data; (iii) generalization,
they tend to have better generalization to unseen data; (iv) interpretability, ensemble models can provide
insights into model uncertainty and feature importance. Ensemble methods start with a set of base models,
also known as weak learners or base classifiers/regressors. These base models can be of different types or
variations of the same algorithm trained on different subsets or with different parameters. Then the predictions
of base models are combined in some way to produce a single final prediction. This aggregation can be done
through various techniques, such as voting, averaging, or weighted averaging. Examples of existing models
integrating this ensemble approach are Random Forest (an ensemble of decision trees) and Adaboost, where
the output of the learning algorithms (weak learners) is combined into a weighted sum that represents the
final output of the boosted classifier.
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Evaluation. Model validation is an essential part of ML, whether to select the best model or to assess the
performance of a model [Varoquaux, 2023]. Models performances should solely be evaluated on a separated
test set, usually split from the whole data set available beforehand. Nevertheless, the remaining train set,
used to learn the model’s parameters, can also be split in two to obtain a validation set. Split sizes usually
correspond to 70-10-20% for the train-validation-test sets. The splitting process is often crucial for small-
sized datasets and deeply influences the evaluation. In this context, the stratification of class labels is
mandatory, ensuring a balanced distribution of class labels in each split. More recently, discussions surrounding
potential biases and fairness in datasets underscore the importance of also considering demographic variables
stratification in population datasets. The validation set is often fundamental for monitoring the behavior
and the quality of the model’s training, optimizing the approach’s hyperparameters, or performing feature
selection. To go one step further, cross-validation is a technique used to assess the performance of ML models
and mitigate issues like overfitting. It consists of dividing the training set into multiple subsets and iteratively
training and validating the model on different partitions. Common cross-validation techniques include:

• K-Fold Cross-Validation: The dataset is divided into K subsets (folds). The model is trained on K-1
folds and evaluated on the remaining fold. This process is repeated K times, with each fold serving as
the validation set once;

• Stratified K-Fold Cross-Validation: Similar to K-fold, but it ensures that each fold maintains the same
class distribution as the original dataset, which is crucial for imbalanced datasets;

• Leave-One-Out Cross-Validation (LOOCV): In LOOCV, each data point is treated as a validation set
once while the rest of the data is used for training.

While these notions are non-exhaustive to fully understand ML, we introduced some key concepts to
building ML pipelines, and more particularly the ones at the basis of the presented and proposed methodologies
in this thesis.

1.1.2 The deep learning paradigm

Deep Learning (DL) emerges as a branch of ML algorithms, using models denoted as (deep) neural networks
and primarily based on the succession of linear layers and activation functions to provide non-linearity and
thus a great expression capability through specific optimization processes. First, we briefly introduce DL
history through the main contributions (Figure 1.3) that led to the DL breakthrough near 2012, when those
approaches started demonstrating state-of-the-art results on several computer vision tasks. Then, we present
more precisely recent DL innovations, focusing on directions that ground and motivate this thesis’s work.
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Brief history of deep learning

First neural network models were inspired by the neural network architecture of the human brain [McCul-
loch, 1943]. Later, Rosenblatt [Rosenblatt, 1958] introduced the basis of Deep Learning architecture: the
Perceptron with three layers: input layer, hidden layer, and output layer, now referred to as Multi-Layer Per-
ceptron (MLP) for models with several hidden layers. The first MLP trained by stochastic gradient descent
was proposed by Amari [Amari, 1967] to classify non-linearly separable pattern classes. Based on convolution
operations instead of linear ones and tailored for vision tasks, the first Convolutional Neural Network (CNN)
model trained by backpropagation was introduced by LeCun et al. [LeCun, 1989] and designed to recognize
handwritten ZIP code digits.

The DL breakthrough was made possible by the technical innovations and mass-market development
of Graphical Processing Units (GPUs). Those highly parallel computing devices were first developed for
computer graphics and image processing and then repurposed for calculations involving embarrassingly parallel
problems such as deep neural networks’ optimization. Thus, the first CNNs to achieve state-of-the-art results
in pattern recognition tasks and win different competitions were proposed in 2012, with models such as
DanNet [Cireşan, 2012] or AlexNet [Krizhevsky, 2012]. Following those works, DL innovations multiplied in
the architecture of models, and strategies to train them, following an exponential increase in both their size
and the quantity of data used to train them. Numerous successful applications were designed for various
technical fields including Computer Vision (CV), speech recognition, Natural Language Processing (NLP),
machine translation, bioinformatics, drug design, Medical Image Analysis (MedIA), environmental sciences,
etc. Next, our methodological introduction will focus on CV and MedIA’s recent approaches.

Figure 1.3: Brief history of Deep Learning timeline. A: Neural network example from [McCulloch, 1943],
B: Organization of the perception from [Rosenblatt, 1958], C: LeNet-5 CNN model overview from [LeCun,
1989], D: AlexNet model overview from [Krizhevsky, 2012].
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Family of approaches & models

Starting from 2012, the use of deep learning models to solve numerous tasks multiplied. This section intro-
duces the main concepts related to training such models. We present the families of models, the learning
paradigm spectrum from supervised to unsupervised learning, models’ architectures, and the diversity of
downstream tasks. A focus is made on the recent concepts that motivated and ground this thesis, while
some other notions, yet fundamental in today’s DL literature (e.g. generative models, see last perspectives
Section 5.2.4), are only hastily mentioned.

Discriminative vs. generative models. Deep learning models can be separated into two main families:
discriminative models vs. generative models. The first were designed to separate data points into different
classes by learning a decision boundary. More formally, such models learn, by optimizing their parameters, the
conditional probability distribution of labels knowing the input (observations, variables, features). Usually,
discriminative models are composed of an encoder and a classifier trained end-to-end to perform the desired
task. The encoder, also called feature extractor, processes the input to extract a meaningful manifold from
the input data, relevant to the task so that the classifier can easily map this representation of the data to
labels. This concept of extracting ”meaningful features” is crucial as this thesis focuses on producing relevant
representations of data, seeking specific characteristics, such as expressiveness, robustness for generalization,
or being agnostic to the downstream task. The second family of models was designed to generate new data
points by learning probability distributions of the data. Although generative models played an important
role in the development of deep learning approaches, notably with Variational Autoencoders (VAEs) [Kingma,
2014a], Generative Adversarial Networks (GANs) [Goodfellow, 2014], and more recently diffusion models [Sohl-
Dickstein, 2015; Song, 2019; Ho, 2020], this thesis mainly explored methodologies based on discriminative
models (see Chapter 5 for a discussion on perspectives from generative modeling in medical image analysis).

Learning paradigms. Several learning paradigms were explored to train those models from data. Between
the dominant approaches of supervised and unsupervised learning, different research directions have been
explored to form a spectrum of methodologies, notably inspired by real data issues. On the one hand, semi-
supervised learning investigates methods that use data in which only a part contains labels or annotations. This
set of approaches is explored in scenarios where vast unlabeled data are available, but providing annotations
is time-consuming and expensive. On the other hand, weakly-supervised learning explores approaches using
noisy, restricted, or inaccurate sources to label data, which are often simpler to supply than hand-labeled
data. More recently, self-supervised learning (SSL) has been investigated in CV to produce descriptive and
meaningful representations of the training data by defining a pretext or proxy task based on unlabeled inputs.
A focus on SSL origins and techniques is presented in Section 1.1.3.
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(a) ResNet18. A: Overall ResNet architecture. B: Residual Blocks (2 in each layer for ResNet18).

(b) Vision Transformer (ViT). A sequence of flattened 2D patches obtained from image inputs is fed to a
transformer encoder. Image from Alexey Dosovitskiy et al. “An Image is Worth 16x16 Words: Transformers
for Image Recognition at Scale”. In: ICLR. Curran Associates, Inc., 2020.

Figure 1.4: Model overview of ResNet18 CNN and the Vision Transformer (ViT).

Models’ architectures. Models’ architectures also drove and evolved with DL innovations. The main
categories are the following:

• MLPs. The basic DL classifier is a succession of linear (or dense) layers and activation functions,
constituting a block also known as MLP. The activation function provides non-linearity and expres-
siveness to the models. Usual activation functions are sigmoid, hyperbolic tangent, rectified linear
unit (ReLU) [Nair, 2010], leaky ReLU [Maas, 2013], parametric ReLU (PReLU) [He, 2015b]. The
expressive power of MLPs, or ability to approximate functions, was studied under certain conditions
of depth (number of linear layers) [Barron, 1994; Cybenko, 1989; Funahashi, 1989; Hornik, 1989] or
width (dimension’s size of the linear layers) [Lu, 2017]. The universal approximation theorem states
that depth-2 networks with suitable activation functions can approximate any continuous function on a
compact domain to any desired accuracy. Nevertheless, these models are fundamental as they are often
used as building blocks. For example, linear probing consists in adding a linear layer, as a classifier, to
any feature extractor model in order to evaluate its performance on one or several downstream tasks,
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freezing or not (i.e. fine-tuning) the feature extractor model parameters. Linear layers, as well as
MLPs, also demonstrated usefulness as projection heads, to further embed the feature space and apply
some objective function (see Section 1.1.3).

• CNNs. For CV, CNNs rapidly became state-of-the-art architectures thanks to their ability and efficiency
to extract coherent features from images. The core module of CNNs is the convolutional layer, which
applies a parameterized convolution filter to all the input elements. For images, the basic structure
combines a series of 2D convolutional, activation function, and max pooling layers to play the role of the
feature extractor, followed by fully connected layers, acting as MLP, to perform the classification task,
with models such as GoogLeNet [Szegedy, 2014] or the VGG (Visual Geometry Group) family [Simonyan,
2015]. However, these models encounter optimization challenges, specifically experiencing issues like
vanishing gradients when delving into deeper architectures. ResNet family [He, 2015a] addresses this
issue with residual connections, a particular type of skip connections that combine the signal with a
sum and usually skip a few layers (described in Figure 1.4a). On top of that, ResNeXt [Xie, 2016] adds
a multi-branch architecture by repeating a building block that aggregates a set of transformations, and
DenseNets [Huang, 2016] connects each layer to every other layer in a feed-forward fashion, allowing
even deeper architectures. EfficientNets [Tan, 2019] family provides CNN models with better scaling,
offering reduced parameters’ number while maintaining performances.

• Sequential models. Another family of architecture is sequential models, primitively designed to process
time series data and improve performances on time series analysis and forecasting tasks, especially when
dealing with complex and nonlinear time series patterns. Also known as recurrent neural networks
(RNNs) [Rumelhart, 1987], common architectures are Long Short-Term Memory (LSTM) [Hochreiter,
1997] networks and Gated Recurrent Unit (GRU) [Cho, 2014]. They are based on cell and gate
mechanisms to keep temporal information and provide a memory component. Nevertheless, such models
suffer from backpropagation optimization issues (vanishing or exploding gradients) [Pascanu, 2013] and
are able only to model short-term dependencies [Karpathy, 2016]. Natural Language Processing research
led to a breakthrough architecture that successfully incorporated the attention mechanism to model
sequential dependencies: the Transformer [Vaswani, 2017].

• Transformers. The Transformer is part of the sequential models group, but it disrupted DL architec-
tures and deserved a separate presentation. The transformer is based on a noteworthy utilization of
the attention mechanism, namely the scaled dot product attention, in a succession of highly expressive
layers capable of modeling complex sequential dependencies (detailed in Section 1.1.4, Figure 1.6).
Indeed, a successful application of the Transformer architecture to CV was proposed by Dosovitskiy
et al. [Dosovitskiy, 2020]. The Vision Transformer (ViT) is given images as an input by making a
sequence of flattened 2D patches to a transformer encoder as depicted in Figure 1.4b. In recent
years, ViT architectures have shown better scalability and the ability to learn richer features from big
amounts of data [Zhai, 2022]. ViT advances investigated knowledge distillation techniques on tokens
with DeiT [Touvron, 2020], using hierarchical feature maps in the ViT with Swin Transformers [Liu,
2021], or decoupling the input source of data with latent tokens and cross-attention mechanism with
the Perceiver [Jaegle, 2021].
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Downstream tasks. Deep Learning applications are very wide and even by restricting ourselves to CV
tasks, a non-exhaustive list includes: image classification, object recognition, semantic segmentation, pose
estimation, image denoising, image super-resolution, and image synthesis. Focusing on the tasks tackled in
our studies, image classification is the simplest strategy for extracting semantics from an image and consists of
predicting a class from a predefined number of classes, given an input image. Object recognition or detection
adds to classification the task of providing the position of the object of interest, usually formalized as the
four coordinates of a rectangular bounding box. The finest-grain prediction task for image understanding
is semantic segmentation, i.e. predicting for each pixel the class of the object to which it belongs. In
some specific contexts of having one class of interest, it can be formulated in binary pixel-level classification
with foreground and background classes. For all these tasks, performance can usually be improved with
data augmentation techniques [Yaeger, 1996; Simard, 2003; Shorten, 2019]. Common data augmentation
techniques include modifying the training samples with hand-designed random transformations that do not
change the semantic content of the image, such as cropping, scaling, mirroring, or color changes.

1.1.3 Self-supervision in computer vision

Figure 1.5: Overview of self-supervised learning (SSL) techniques categories. A: Deep Metric Learn-
ing category: encourage the representations’ similarity between transformed versions of an input; B: Self-
distillation category: two different views of the same sample are fed to two encoders, and a predictor maps
those two views together by distilling the knowledge of one encoder to the other; C: Canonical correlation
analysis: infer relationships in the data by analyzing cross-covariance in the batch’s samples; D: Masked Image
Modeling: mask out portions of an image and teaching a model to inpaint them.
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Learning representations of images

Limited by the availability of labeled data in the supervised learning approaches, self-supervised learning (SSL)
methods were primitively designed to learn robust representations from vast unlabeled data [Chen, 2020a;
Misra, 2019]. The idea of SSL in CV originates from the development of several methods. Some examples
of such tasks include information restoration using colorization [Zhang, 2016], temporal relationships in
video [Wang, 2015b], or spatial context in images [Doersch, 2015]. SSL demonstrated particular usefulness in
applications such as medicine where labels are costly or the specific task can not be known a priori. Moreover,
studies investigated the potential superior robustness of SSL representations to adversarial examples, label
corruption, or input perturbations [Hendrycks, 2019; Goyal, 2022]. In practice, learned representations are
obtained by the training of a feature extractor encoder and evaluated on different downstream tasks using a
simple linear or MLP model, with or without fine-tuning the pretrained model (frozen vs. fine-tuned).

The different approaches in self-supervised learning

In recent years, SSL has been a field demonstrating growing interest, notably thanks to the availability of
large datasets and high-memory GPUs, in addition to the formerly mentioned benefits. To present the main
contributions to SSL techniques, approaches can be grouped into four categories [Balestriero, 2023]. An
overview of those methods is presented in Figure 1.5.

Deep Metric Learning. The first methods were designed to encourage the representations’ similarity
between transformed versions of an input (Figure 1.5.A). The principle was applied to a learning objective
with the idea of a contrastive loss and was referred to as Deep Metric Learning (DML). DML trains a
model to predict whether two inputs are from the same class (or not) by making their representation close
(or far from each other). Notable DML approaches are SimCLR [Chen, 2020a] where positive pairs are
built from data augmentations of the same input and negative samples are other samples in the batch.
MeanSHIFT [Koohpayegani, 2021] simply "shift" the embedding of each image to be close to the "mean"
of the neighbors of its augmentation. Supervised Contrastive Learning [Khosla, 2020] introduced the use of
labels to bag the positive and negative groups on top of SimCLR using an external annotation on the data.

Self-distillation. The second category gathers Self-distillation approaches (Figure 1.5.B), where two dif-
ferent views of the same sample are fed to two encoders, and a predictor maps those two views together.
A collapse mode [Jing, 2022] can happen by predicting a constant for all inputs, in which all representation
vectors cluster at a single point. To prevent collapse, a common approach consists of updating one encoder’s
weights with a running average of the other encoder’s weights. BYOL (Bootstrap Your Own Latent) [Grill,
2020] first introduced self-distillation using image transformations to produce different views of the same
image. The online or student network predicts the output and is trained using gradient descent while the
target or teacher network produces the target and is updated with an exponential moving average (EMA)
update of the student’s weights. SimSIAM [Chen, 2020b] replaced the BYOL moving average encoder with
a stop-gradient, demonstrating that EMA was not necessary to avoid collapse although leading to a small
boost in performance. To avoid sensitivity to the batch size, DINO [Caron, 2021] added a centering of the
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output of the student network using a running mean and proposed to discretize the representations by means
of a softmax in order to act as an online clustering mechanism from the last layer. Authors also demonstrated
that using more than two views, as well as, global and local views, benefits the overall training.

Canonical Correlation Analysis. Third, canonical correlation analysis approaches (Figure 1.5.C) aim
to infer relationships in the data by analyzing cross-covariance in the batch’s samples. Instead of comparing
embeddings directly as in DML, SWAV (Swapping Assignments between multiple Views) [Caron, 2020] si-
multaneously clusters the data while enforcing consistency between cluster assignments produced for different
views. BarlovTwins [Zbontar, 2021] proposed an objective function that naturally avoids collapse and mea-
sures the cross-correlation matrix between the outputs of the two encoders fed with different views of a sample,
and making it as close to the identity matrix as possible. VICReg [Bardes, 2021] approach introduced three
objectives based on co-variance matrices of representations from two views. Regularizing the variance along
each dimension of the representation prevents collapse, the invariance ensures two views are encoded similarly,
and the co-variance encourages different dimensions of the representation to capture different features.

Masked Image Modeling. Finally, the Masked Image Modeling (MIM) approaches (Figure 1.5.D) are
based on the idea of masking out portions of an image and teaching a model to inpaint them, translating
the success of Masked Language Modeling (MLM) in Natural Language Processing (NLP) [Devlin, 2018].
The first successful application appeared with BeiT [Bao, 2021] casting the masked token classification task
to a regression task to retrieve the masked parts of images. Simplified versions were proposed by directly
reconstructing masked image patches rather than discrete image tokens extracted from an encoder with the
MAE (masked autoencoders) [He, 2021] and SimMIM [Xie, 2021b] methods.

1.1.4 The rise of foundation models

Recent advances in natural language processing

Although our work focuses on imaging data, recent deep learning breakthroughs in Natural Language Pro-
cessing (NLP) influenced CV learning techniques as we have seen in Section 1.1.3 and this trend appears to be
gaining momentum. Starting from the breakthrough of the transformer [Vaswani, 2017], first introduced for
NLP tasks, the architecture, including a specific attention mechanism (explained in Figure 1.6), rapidly be-
came the basis of all state-of-the-art models for most of the downstream tasks [Tunstall, 2022]. NLP tasks are
very diverse, working on both the syntactic and semantic analysis of textual data, a non-exhaustive list being
translation, question answering, summarization, and sentiment analysis. Masked Language Model approaches,
introduced with the BERT [Devlin, 2018] model, and autoregressive modeling such as in XLNet [Yang, 2019],
turned into the key manner to train transformers.
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Figure 1.6: Architecture and core modules of the transformer. A: The transformer architecture is
composed of N layers of self-attention blocks in the encoder (left) that take as input embeddings added
to positional encoding and similarly N layers in the decoder (right), which in addition performs multi-head
attention over the output of the encoder. B: Instead of performing a single attention function, the queries,
keys, and values are linearly projected h (number of heads) times to perform the attention function in parallel.
C: This attention mechanism computes the dot products of the query with all keys, divides each by scaling
factor, and applies a softmax function to obtain the weights on the values. Images A, B, and C from Ashish
Vaswani et al. “Attention Is All You Need”. In: NeurIPS. Curran Associates, Inc., 2017.

Large language models

While increasing the amount of large-scale data scrapped from the web and computing resources to train
billion-parameter models, performances kept enhancing. Scaling models’ size introduced the phenomenon of
emerging properties [Wei, 2022a], where larger models (approximately 10+ billion parameters) demonstrated
abilities that cannot be predicted simply by extrapolating the performance of smaller models. Notable mod-
els are GPT-3 [Brown, 2020], Claude (Anthropic), ChatGPT [OpenAI, 2023], Lambda [Thoppilan, 2022],
LLaMa [Touvron, 2023a]. The optimal model size was investigated by [Hoffmann, 2022], denoted as Chin-
chilla Scaling Law. Recent research aims at having similarly powerful models with reduced size, such as
Falcon [Penedo, 2023]. Apart from scalability and model training engineering innovations, the development
of those models introduced several important concepts and new methodologies. Model alignment consists of
creating agents or models that behave in accordance with what humans want [Kenton, 2021]. The notion of
prompting was also introduced as the different ways to input data into those models at training or inference
to improve performance. One key idea is the chain-of-though methodology, where showing steps of reasoning
to perform a task to the model improves its ability to solve the task. The ”best model” race has just begun
with recent models such as PaLM2 [Anil, 2023], Llama 2 [Touvron, 2023b] and impressive numbers such
as Falcon-180B, a 180 billion parameters causal decoder-only model and trained on 3,500 billions tokens

https://www.anthropic.com/
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of RefinedWeb enhanced with curated corpora. One can note that those models tend to be open-sourced,
notably on the Hugging Face platform.

Foundation models in computer vision

NLP advances influenced recent CV research in two main ways. First incorporating textual data knowledge
and NLP models’ capabilities to guide and help the training of CV models, denoted as Vision-Language Mod-
eling (VLM). Radford et al. [Radford, 2021] used multimodal contrastive learning on 400 million image-text
pairs from the web to obtain the CLIP model (overview of the approach described in Figure 1.7), demonstrat-
ing competitive performances over 30 different computer datasets and numerous tasks such as OCR, action
recognition in videos, and many types of fine-grained object classification. ALIGN [Jia, 2021] model scaled
up CLIP methodology to leverage a noisy dataset of over one billion image and altered text pairs. Alayrac
et al. [Alayrac, 2022] introduced Flamingo, a family of VLM with the ability to ingest images or videos and
adapt to novel tasks using only a handful of annotated examples. This research often relies on initiatives to
curate large and high-quality datasets such as the LAION project [Schuhmann, 2021], which recently released
a 5 billion CLIP-filtered image-text pairs dataset.

Moreover, by trying to reach similar emerging capabilities for imaging tasks, the so-called foundation
models aim at learning generic representations rather than specialized embeddings to solve one specific task.
An attempt to produce all-purpose visual features was explored with the DINOv2 [Oquab, 2023] model using
a diversity of self-supervised techniques and large-scale data curated from diverse sources. To foster research
into foundation models for CV, the Segment Anything Model (SAM) [Kirillov, 2023] was trained using an
efficient model in a data collection loop, and by building the largest segmentation dataset to date, with over
1 billion masks on 11M licensed and privacy respecting images.

Figure 1.7: Summary of CLIP approach. Image and text pairs are given as inputs to their respective image
and text encoder, and a multimodal contrastive objective enforces the similarity of the pairs’ representations
by batch. Image from Alec Radford et al. “Learning Transferable Visual Models From Natural Language
Supervision”. In: ICML. JMLR, 2021.

https://huggingface.co/
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1.1.5 Integrating multimodal learning

Challenges with multimodal models

Multimodal deep learning combines the strengths of different modalities to create a more complete repre-
sentation of the data, leading to better performance on various downstream tasks. In general, multimodal
architectures consist of three parts: unimodal encoders to represent individual modalities, a fusion network
that combines the features extracted from each input modality, and a classifier that accepts the fused data
and makes predictions.

Multimodal deep learning aims to solve several core challenges that are active areas of research:

• Representation: feature extraction from heterogeneous data in a way that exploits their synergies is
crucial. Moreover, fully exploiting the complementarity of different modalities and not paying attention
to redundant information is essential;

• Fusion: the task of joining information from two or more modalities to perform a prediction task.
Several techniques have been investigated, namely late fusion by combining the outputs of separate
unimodal models, and early fusion by concatenating or merging the raw data. And more recently,
cross-modal attention by leveraging attention mechanisms to weigh modalities dynamically (explained
in Figure 1.8);

• Alignment: the task of identifying direct relationships between different modalities. Current research
in multimodal learning aims to create modality-invariant representations. So when different modalities
refer to a similar semantic concept, their representations must be similar/close together in the latent
space;

• Translation: the act of mapping one modality to another. The main idea is how one modality (e.g.,
textual modality) can be translated to another (e.g., visual modalities) while retaining the semantic
meaning;

• Co-learning: transferring knowledge learned from one or more modalities to tasks involving other
modalities. It becomes especially crucial in scenarios with low-resource target tasks or noisy modalities.

Multimodal models have gained attention with the rise of robust text encoders, as we have seen in the
previous section. This approach has enabled significant progress for specific tasks, including visual question
answering [Chen, 2022b], text-to-image generation [Ramesh, 2021; Rombach, 2022], and natural language for
visual reasoning [Wang, 2023a]. Nevertheless, textual data is not the only type that can bring information to
learn better representations of images. Multimodal models are impactful for applications such as autonomous
vehicles where models must combine multiple sensor data (image, LiDAR, GPS) for safe navigation. Naturally,
the healthcare domain is another significant application of multimodality, where patient data is built from
various sources (clinical records, biological, imaging), and integrating tools that are able to gather all this
information is crucial, e.g. for disease diagnosis.
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Figure 1.8: Cross-attention mechanism example. Multimodal cross-attention is performed by using the
scaled dot product attention mechanism from embedding a first modality A (here audio) to the key K and
values V, and a second modality B (here EEG) to the queries Q. Image from Siqi Cai et al. “Auditory Attention
Detection via Cross-Modal Attention”. In: Frontiers in Neuroscience 15 (July 2021).

1.1.6 Deep learning for medical imaging

Challenges and perspectives

DL in MedIA can appear as a straightforward translation and application of recent CV approaches, but several
impactful works show the relevance of this field, such as the U-net [Ronneberger, 2015] architecture, the basis
of most of the state-of-the-art studies for segmentation tasks in CV or more recently multimodal contrastive
learning to learn robust representations from text-image pairs [Zhang, 2020], prior to the prominent CLIP
model [Radford, 2021].

Moreover, the particularities of MedIA data make this domain a flourishing field for innovative method-
ologies. First, although the mathematical formulation of tasks is similar (classification, detection, segmen-
tation), the objectives (e.g., diagnosis, prognosis, treatment response analysis) go beyond image semantic
understanding, with complex biological and medical underlying phenomena. This is, for example, the promise
of ”radiomics”, computational imaging features discussed in Section 2.3. Second, medical data suffers from
several limitations as it is often rare, and expensive to acquire, with a limited amount of samples and labels
available, as annotations require medical experts’ knowledge and are time-consuming. Those limitations make
it a perfect candidate to develop innovative methodologies in un/weakly/semi-supervised learning. MedIA
data are commonly more voluminous, with bigger-sized images (histopathology data), volumetric images
such as Computed Tomography (CT) or Magnetic Resonance Imaging (MRI), and sometimes also longitudi-
nal (follow-up exams). Third, translation to the medical domain makes highly sensitive applications. Thus
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considerations about model calibration [Liu, 2022; Larrazabal, 2023; Murugesan, 2023], and uncertainty esti-
mation of predictions [Belharbi, 2022; Van Waerebeke, 2022] are crucial research directions. Fourth, solving
medical-related tasks is not only about achieving state-of-the-art results. Indeed model decision understand-
ing is essential to apprehend our models’ ability to solve the desired task, e.g. using and exploring advanced
explanability approaches with visual explanations of model predictions [Springenberg, 2015; Selvaraju, 2017;
Chattopadhyay, 2018]. Finally, recent studies have shown that AI models can systematically and unfairly
be biased against certain populations (e.g. sex, skin color) in multiple scenarios [Zou, 2018] and that Me-
dIA systems make no exception [Ricci Lara, 2022]. Fairness regarding access to healthcare is essential and
investigating strategies to mitigate these biases is crucial.

Self-supervised learning in medical imaging

Having the benefit of learning robust representations from unlabeled data, SSL techniques instantly fit medical
applications [Krishnan, 2022]. In MedIA, Azizi et al. [Azizi, 2021] demonstrated that self-supervised learning
on ImageNet, followed by additional self-supervised learning on unlabeled domain-specific medical images
significantly improves the accuracy of medical image classifiers. Authors also introduced a novel Multi-
Instance Contrastive Learning (MICLe) method that uses multiple images of the underlying pathology per
patient case, when available, to construct more informative positive pairs for self-supervised learning. Boyd
et al. [Boyd, 2021] proposed a generative framework that learns representations of histopathology images’
tiles being trained to expand their visual field. This self-supervision proxy task enabled to produce meaningful
representations used for different clinical endpoints. Xie et al. [Xie, 2021a] proposed a method to benefit
from a wealth of 2D image datasets like chest X-rays as compensation for the lack of 3D data, aiming to
build a universal medical self-supervised representation learning framework called UniMiSS. The embedded
patches were converted into a sequence regardless of their original dimensions, and the model was trained
using self-distillation.

(a) Multimodal Co-Attention Transformer (MCAT) presents a multimodal scheme to combine gigapixel size
images with genetic information. Image from Richard J. Chen et al. “Multimodal Co-Attention Transformer
for Survival Prediction in Gigapixel Whole Slide Images”. In: ICCV. IEEE, Inc., 2021, pp. 3995–4005.
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(b) Multimodal Contrastive Learning with Tabular and Imaging Data. Image from Paul Hager et al. “Best
of Both Worlds: Multimodal Contrastive Learning with Tabular and Imaging Data”. In: CVPR. IEEE, Inc.,
2023.

Figure 1.9: Overview of two multimodal approaches in Medical Imaging Analysis.

Multimodality in healthcare

Multimodal deep learning models have significant potential in healthcare. Producing various sources of data
is inherent to clinical medicine, such as medical images, electronic health records (EHRs), text-based clinical
notes, sensor data, and patient demographics. Straightforward applications are abundant: disease diagno-
sis and prediction, medical imaging analysis, automatically obtained clinical notes and EHRs, personalized
medicine, and drug discovery. Those models also constitute an attempt to mimic the multimodal nature of
clinical expert decision-making. Concerning the MedIA field, one can distinguish models with multiple sources
of imaging data and models considering another source of data. Indeed, medical imaging itself consists of
several modalities such as X-rays, CT, MRI, and Ultrasound (US). The information that captures each imag-
ing system is different and analyzing several at the same time is challenging. In brain MRI data, several
MRI sequences as input to models have been exhaustively studied to perform brain tumor segmentation,
notably with the BraTS challenge [Menze, 2015; Bakas, 2018]. For multi-imaging modalities models, one
main challenge is registration [Baheti, 2021; Weitz, 2023], i.e. ensuring that data are geometrically aligned.
Zhang et al. [Zhang, 2020] introduced one of the first text-image models using multimodal contrastive learn-
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ing from Chest X-rays images and radiology reports data. Chen et al. [Chen, 2021] proposed Multimodal
Co-Attention Transformer (MCAT, overview in Figure 1.9a) to merge whole slide images and genomic data
using cross-attention. Hager et al. [Hager, 2023] proposed a multimodal contrastive learning approach to
input two-channel medical imaging and clinical (structural) data (overview in Figure 1.9b).

Foundation models in healthcare

In the medical domain, Med-PalM[Singhal, 2023a] was the first AI system to surpass the pass mark on USA
Medical License Exam (USMLE) style questions and Med-PaLM 2 [Singhal, 2023b] demonstrated a 19%
increase on USMLE style questions and investigated the capability of LLMs to encode clinical knowledge.
For specific applications, RETFound [Zhou, 2023] is a foundation model that learns generalizable representa-
tions from 1.6 million unlabelled retinal images and provides a basis for label-efficient model adaptation for
disease detection tasks. OpenPath [Huang, 2023] is a large dataset of 208414 pathology images paired with
natural language descriptions from medical Twitter, which was used to pretrain a powerful visual–language
foundation model for pathology image analysis. Similarly, CONCH (CONtrastive learning from Captions
for Histopathology) [Lu, 2023] is a visual-language foundation model developed using diverse sources of
histopathology images and biomedical text (1.17 million image-caption pairs) and evaluated on a suite of 13
diverse benchmarks, achieving state-of-the-art performance on histology image classification, segmentation,
captioning, text-to-image, and image-to-text retrieval. For more general purposes, Moor et al. [Moor, 2023]
developed through self-supervision on large and diverse datasets, generalist medical AI models (GMAI) to
interpret different combinations of medical modalities, including data from imaging, electronic health records,
laboratory results, genomics, graphs, or medical text. Models produced expressive outputs such as free-text
explanations, spoken recommendations, or image annotations that demonstrate advanced medical reasoning
abilities. Similarly, Med-PaLM Multimodal (Med-PaLM M) [Tu, 2023] is a large multimodal generative model
that flexibly encodes and interprets biomedical data, including clinical language, imaging, and genomics with
the same set of model weights.

Transitioning from these remarkable advancements in foundation healthcare models, exploring their prac-
tical implications in clinical settings is imperative. From diagnostic assistance to personalized treatment
recommendations, the integration of advanced AI technologies holds the promise of revolutionizing health-
care practices. In the following section, we delve into the medical context of this thesis: monitoring renal
transplantation.
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1.2 Medical context for this thesis

Figure 1.10: Renal transplantation statistics in France. Left scheme from CHUV. Statistics from Inserm,
Haute Autorité de Santé (HAS), and Agence de la Biomédecine.

1.2.1 Renal transplantation

Renal transplantation, also known as kidney transplantation, is a surgical procedure where a healthy kidney
is transplanted into a person with kidney failure or end-stage renal disease (ESRD). ESRD is characterized
by an irreversible decline in kidney function and is due to various causes, including diabetes, hypertension,
chronic glomerulonephritis, and polycystic kidney disease. The renal replacement therapy procedure offers
a new lease on life to individuals whose kidneys are no longer functioning effectively [Suthanthiran, 1994].
The two main donor sources are a living donor – a healthy person, usually a family member or close friend,
who donates one of their kidneys, and a deceased donor – a kidney is obtained from a deceased individual
(cadaveric donor) who has previously consented to organ donation. Both the donor and recipient undergo
extensive medical and psychological evaluations to ensure compatibility. Compatibility is determined based
on blood type, tissue matching, and other factors to reduce the risk of rejection. The renal transplantation
surgery typically lasts 3-4 hours. The donor’s kidney is removed, and the recipient’s damaged kidney(s) may
or may not be removed, depending on the situation. The transplanted kidney is placed in the lower abdomen
and connected to the recipient’s blood vessels and bladder. Post-transplant medications are principally im-
munosuppressive drugs, that are prescribed to prevent the recipient’s immune system from rejecting the new
kidney. Figure 1.10 reports some general renal transplantation statistics in France.

Patients require close monitoring and follow-up care to ensure the success of the transplant. Regular blood
tests and check-ups are necessary to detect and manage any potential complications. Various complications
can arise in renal transplants, including urologic disorders, vascular complications, and immunologic adverse
effects. Medical imaging plays a crucial role, and various imaging techniques have been explored for monitoring
renal transplants [Sharfuddin, 2014]. Clinicians can access several imaging modalities, such as ultrasonography
(US), nuclear medicine studies, CT, and MRI. However, these examinations primarily provide clinicians with
relevant information concerning the current status of the graft and the gold-standard method to specify
and investigate graft status is needle biopsy, an invasive surgical operation. Moreover, a risk of chronic

https://www.chuv.ch/fr/transplantation/cto-home/patients-et-familles/rein/loperation
https://www.inserm.fr/dossier/insuffisance-renale/
https://www.has-sante.fr/jcms/c_2576220/fr/greffe-renale-assurer-un-acces-equitable-a-la-liste-d-attente
https://rams.agence-biomedecine.fr/greffe-renale
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dysfunction of the transplanted kidney remains, which can result in the loss of the graft or, ultimately, the
patient’s death [Hariharan, 2021].

1.2.2 The role of medical imaging

Modern radiology in the era of artificial intelligence

In Section 1.1.6, we have introduced the methodological challenges and perspectives of Deep Learning in
Medical Imaging from our computer scientist point of view. Now, let us try to discuss the implications of
Artificial Intelligence (AI) from a radiologist, or clinician view. AI algorithms have shown tremendous potential
in various medical applications, especially imaging, due to their ability to extract relevant information from
medical data. The key aspects of modern radiology in the AI era are the following:

• Automated image interpretation: Computer-aided detection (CAD) and computer-aided diagnosis
(CADx) systems help radiologists detect abnormalities and provide diagnostic insights;

• Faster diagnosis and treatment: AI-powered software can process images in a fraction of the time it
takes for a human radiologist. This acceleration in diagnosis enables quicker initiation of treatment
and improved patient outcomes, especially in critical conditions;

• Image enhancement and reconstruction: algorithms can enhance the quality of medical images by
reducing noise, improving resolution, and enhancing contrast. This can be especially beneficial in cases
where image quality is suboptimal due to patient movement or limited imaging capabilities;

• Predictive analytics: AI can analyze vast amounts of patient data and images to predict disease pro-
gression, treatment response, and potential complications;

• Workflow optimization: AI-driven tools can help radiologists manage their workflow more efficiently by
prioritizing critical cases and automating routine tasks;

• Personalized medicine: AI enables the customization of treatment plans based on a patient’s unique
characteristics and response to therapy, also denoted as precision medicine and essential in fields such
as oncology;

• Quality assurance: AI can assist in quality control by identifying discrepancies or anomalies in medical
images and flagging them for review;

• Data integration: AI facilitates the integration of radiology data with electronic health records (EHRs)
and other clinical data sources, providing a comprehensive view of the patient’s health.

More specifically, we can observe how AI is pouring into impactful clinical studies. Esteva et al. [Esteva, 2017]
were among the first to propose an artificial intelligence system (based on CNNs) capable of performing a
medical imaging analysis task with a level of competence comparable to medical experts, on the application of
the classifying skin cancer. Sun et al. [Sun, 2018] demonstrated that automatically extracted features using a
radiomics approach in CT images could be robust biomarkers for assessing tumor-infiltrating CD8 cells from
RNA-seq genomic data. Sammut et al. [Sammut, 2021] collected clinical, digital pathology, genomic and
transcriptomic profiles of pre-treatment biopsies of breast tumors to build a ML predictor of breast cancer
therapy response.
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Medical imaging in renal transplantation monitoring

Kidney transplant dysfunction is primarily indicated by a rising serum creatinine level, decreasing urine out-
put, and pain and tenderness over the graft, but often it is clinically asymptomatic and presents only with an
isolated increase in serum creatinine. In opposition to solid biopsy, most imaging techniques are non-invasive
and thus appear as highly desired tools, used and needed by the transplant community. Imaging modali-
ties enable radiology experts to primarily evaluate functional information such as transplant perfusion with
gadolinium-based DCE MRI [Loubeyre, 1996] or the resistance index (RI) value [Ghonge, 2021] to diagnose
transplant renal artery stenosis.

Nevertheless, computational imaging algorithms, and more particularly AI-based ones, offer the potential
to provide models that go one step further, providing tools to retrieve structural or molecular information or
to discover new biomarkers. Becker et al. [Becker, 2020], in their review on AI in nephropathology, anticipate
the gradual integration of such technologies into routine diagnostics and research. Furthermore, Yang et al.
[Yang, 2016] recently proposed a deep-learning-based approach to detect and quantify pathological lesions in
post-transplant biopsies, showcasing its superior ability to predict post-transplant graft loss. This approach
holds potential applications in prevention, risk stratification, and monitoring tools. Lastly, Yoo et al. [Yoo,
2023] presented an automatic decision-support system that assigns kidney allograft diagnoses, extending
the international Banff classification system [Roufosse, 2018] and enabling to improve risk stratification of
long-term allograft outcomes.

1.3 Dataset presentation

In this section, we describe our main private dataset. For this thesis, a unique dataset has been collected
and used, as no other publicly available dataset exists for this task. At the same time, we will present the
main aspects of this specific application so that the reader can grasp the particularities and challenges of this
application that will be at stake in the next chapters.

1.3.1 Patients cohort and clinical data

Patients’ cohort

The data cohort used in this thesis is based on the clinical trial Imag-NCT, which underwent review and
approval by the Institutional Review Board and waived the requirement for obtaining patients’ consent. The
private dataset corresponds to the reference ID-RCB 2012-A01070-43 and is registered on ClinicalTrials.gov
under the identifier NCT02201537. 136 patients subject to renal transplantation between 2013 and 2015 at
Necker Hospital and Georges-Pompidou European Hospital (HEGP) were eligible. Inclusion, non-inclusion, and
exclusion criteria are presented in Figure 1.11. The follow-up lasted up to July 2019, or until the withdrawal
from the study (e.g. will of the patient), the transplantation failure (return to dialysis), or the patient’s death.

https://clinicaltrials.gov/study/NCT02201537
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Figure 1.11: Clinical study flowchart. A: Our main data cohort of 135 patients subject to renal transplan-
tation from 2013 to 2015 was obtained from Imag-NCT study. Systematic follow-up MRI, US, and biopsy
examinations were performed on day 15 (D15), day 30 (D30), month 3 (M3), and month 12 (M12). B: A
validation set was obtained from routine first-month MRI examinations from 48 kidney transplant recipients
from 2011 to 2019 to further validate results.

The data collected corresponds to clinical variables, such as demographics, transplant allocation, surgery
complication, and post-transplantation complication variables. Moreover, resulting from blood or urinary
tests, biological variables (serum creatinine, urinary creatinine, and proteinurias) were collected regularly from
a few days before the transplantation to the last follow-up. And the core of our interest, several medical
imaging examinations were performed at specific timestamps, as well as a transplant biopsy, having the Banff
classification variables.

To further validate some of our results during the thesis, a validation set of 138 was extracted from
the Necker Hospital data system (PACS) from routine MRI examinations (Figure 1.11 right) up to one
year and two months post-transplantation to match our main cohort examinations’ timestamps range. The
patients part of the Imag-NCT cohort were excluded. The validation cohort underwent review and approval
by the Institutional Review Board (CRM-2308-367). Only a few patients had several examinations (for the
longitudinal analysis) and to evaluate our tasks, available serum creatinine levels, complication events, and
status of the graft 5 years post-transplantation were also collected. To form a sub-group of 48 early exams,
the examinations with a date bigger than thirty days post-transplantation were also excluded in a second
phase.

https://clinicaltrials.gov/study/NCT02201537
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Clinical attributes

Clinical variables collected in the study were divided into two groups. Clinicobiological variables correspond
to demographics, inclusion, non-inclusion criteria, transplant allocation (e.g. donor’s age, transplant incom-
patibility), transplant surgery (e.g. cold ischemic time, surgery complications), and unclamping biopsy vari-
ables [Wang, 2015a]. Progress variables correspond to complication events that occurred post-transplantation
(e.g. acute rejection, stenosis). Table 1.1 reports information and statistics of some of these variables in our
main cohort and in the supplementary validation set, curated in a second phase. The transplant incompatibil-
ity variable summarizes (integral values from 0 to 6) the factors that may hinder the successful transplantation
of a transplanted kidney into the recipient’s body. These factors can lead to an immune response against
the transplanted organ, potentially resulting in rejection. The cold ischemic time corresponds to the period
of time when the organ is preserved in a hypothermic state prior to transplantation into the recipient; an
acceptable cold ischemic time for renal transplantation is less than 20 hours (1200 minutes).

Table 1.1: Patient characteristics and clinical attributes.

Variable Main cohort
(mean ± std or counts)

Validation set
(mean ± std or counts)

Sex Male: 82; Female: 46 Male: 30; Female: 18
Age at transplantation
(Years (y)) 51 ± 14 54 ± 13

Heigh (Meters (cm)) 169 ± 9 170 ± 11
Weight (Kilogram (kg)) 72 ± 16 72 ± 14
BMI (kg.m-2) 25 ± 5 25 ± 4
Previous transplants 0: 99; 1: 22; 2: 4; 3: 2 0: 40; 1: 7; 2: 1
Transplant type Alive donor: 33; Cadaveric: 95 Alive donor: 11; Cadaveric: 37
Transplant side Right: 101; Left: 27 Right: 28; Left: 20

Initial nephropathy

Glomerulopathy: 23
Diabetes: 10

Cystic / hereditary /
congenital disease: 38

Secondary glomerulopathy: 8
Hypertension: 9

Interstitial nephropathy: 3
Other: 11

Unknown cause: 26

Glomerulopathy: 12
Diabetes: 2

Cystic / hereditary /
congenital disease: 11

Hypertension: 6
Interstitial nephropathy: 5

Unknown cause: 12

Transplant incompatibility
(0-6)

0: 9; 1: 2; 2: 9; 3: 26;
4: 38; 5: 26; 6: 18

0: 3; 1: 3; 2: 9; 3: 8;
4: 10; 5: 9; 6: 6

Donor’s age (Years (y)) 54 ± 15 55 ± 14
Cold ischemic time
(Minutes (min)) 1068 ± 637 927 ± 667

Surgery complications No: 115; Yes: 13 No: 20; Yes: 28
BMI: Body Mass Index; std: standard deviation. Statistics with missing data
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Biological data

In clinical practice, creatinine [Kasiske, 1989; First, 2003] and proteinuria [Cherukuri, 2010; Ponticelli, 2012]
levels are used as primary indicator of renal function, measuring wastes kidneys are supposed to filter, and
easily accessible as they result from blood (serum creatinine) or urinary (urinary creatinine, proteinuria) tests.
Figure 1.12 presents serum creatinine, urinary creatinine, and proteinuria levels for different patients. Using
the creatinine level with age, gender, and other factors, clinicians compute an estimation of the glomerular
filtration rate (eGFR). There are different equations for estimating GFR, with the Modification of Diet in
Renal Disease (MDRD) [Levey, 1999] and the Chronic Kidney Disease Epidemiology Collaboration (CKD-
EPI) [Levey, 2009] equations being commonly used. The glomerular filtration rate (GFR) is a measure of
the rate at which the glomeruli in the kidneys filter waste and excess substances from the blood to form
urine. The glomeruli are tiny structures within the kidneys responsible for this vital function. Increasing and
unstable variations are the two main criteria for monitoring these biological levels. Nevertheless, creatinine or
eGFR is considered a late biomarker, as well as a renal biopsy is often needed to investigate the reason for its
fluctuation. Peaks and high fluctuations correspond to complication events occurring in the transplant, such
as acute rejection events, and have to be carefully monitored in order to rapidly adapt the patient’s treatment
or complete further investigations (usually renal biopsy).

Figure 1.12: Biological data examples. Plot examples of the serum creatinine (sCreatinine in µmol.L−1,
line 1), urinary creatinine (uCtreatine in mmol.L−1, line 2), and proteinurinas (in g.L−1, line 3) for two
patients with (left) and without (right) transplantation failure event.
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1.3.2 Medical imaging data

Follow-up examinations

The goal of this thesis is to better integrate medical imaging data into the analysis of the follow-up of
the patients, aiming to explore its capability to bring information toward renal transplantation monitoring
and events. The medical imaging examinations are already integrated into the clinical flow to detect and
monitor specific events. In this clinical study, examinations were systematic and obtained at specific follow-up
timestamps post-transplantation, namely fifteen days (D15), thirteen days (D30), three months (M3), and
twelve months (M12) post-transplantation. At each follow-up, patients underwent MRI, US examinations,
and renal biopsy. In clinical practice, renal biopsy is the gold standard method to make a diagnosis on
complication events of transplants [Serón, 2007]. The extracted tissues are analyzed by microscope to obtain
histopathological images (examples in Figure 1.13). Nephropathology experts analyze these images using the
Banff classification scores [Roufosse, 2018] to further make a diagnosis on the state of the transplant. In our
study, only these classification variables were collected as results of the systematic biopsies. However, this
surgical procedure is invasive and thus is not favorable as it is time-consuming, expensive, and frequently
causes injurious events such as bleeding or inflections.

Figure 1.13: Histopathological images results of transplant biopsies examples. Solid renal biopsies are
performed to extract transplant tissue samples. Then nephropathology experts analyse those microscopic
images and provide the Banff lesion scores (0-3 value). Sample examples are provided for A: lesion score
t (tubulitis), B: lesion score v (intimal arteritis), and C: lesion score ptc (peritubular capillaritis). Images
from Candice Roufosse et al. “A 2018 Reference Guide to the Banff Classification of Renal Allograft Pathol-
ogy”. In: Transplantation 102.11 (Nov. 2018), pp. 1795–1814.
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MRI modalities

For the monitoring of kidney transplants, several MRI sequences are investigated. In this study, three se-
quences were acquired, namely Dynamic-Contrast Enhanced (DCE), Diffusion-weighted (DW), and Blood
Oxygenation Level Dependent (BOLD). The two first are used in routine examinations while the third is rare
in the context of renal transplantation. Examples of images for each sequence are shown in Figure 1.14).

Figure 1.14: MRI data slice examples of available modalities.. A: Axial DCE MRI without injection (T1
acquisition); B: Axial DCE MRI at arterial time; C: Axial DCE MRI at tubular time; D: Axial T2 acquisition;
E: Axial Diffusion MRI; F: Coronal BOLD MRI.

DCE MRI is a dynamic sequence and includes time-series acquisition while the contrast agent flows
into the organ. Clinicians usually adopt a gadolinium chelate that is not nephrotoxic. However, in cases of
GFR< 30ml.min−1 per 1.73m2, gadolinium-based contrast agents cannot be used because of their risk of
causing nephrogenic systemic fibrosis. Two main times are noted by radiology technologists: the arterial time
where the arterial part of the kidney is enhanced, and the tubular time where the whole organ is enhanced.
DCE MRI allows for the assessment of blood flow within the transplanted kidney. This is crucial in monitor-
ing the immediate post-transplant period to ensure that the newly transplanted kidney is receiving adequate
blood supply. Poor blood flow can be a sign of complications such as vascular issues or acute rejection. DCE
MRI can also help in the early detection of complications such as acute rejection, renal artery stenosis, and
vascular thrombosis.
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Diffusion-weighted MRI is obtained by varying the b-value (acquisition parameters) to modify the molec-
ular diffusion in tissues (generally water). In renal tissues, this movement, known as diffusion, is sensitive
to the microstructural integrity of the renal parenchyma. By assessing diffusion characteristics, DW MRI
can help evaluate renal function and detect changes in the renal tissue, such as injury or disease. Moreover,
DW MRI can be particularly sensitive to early ischemic injury and cellular damage, which are common in
the early post-transplant period. It can aid in the early detection of complications such as acute rejection or
ischemia-reperfusion injury, allowing for prompt intervention.

BOLD MRI is based on the different magnetic properties of hemoglobin, in its oxygenated and deoxy-
genated form. Thus, BOLD MRI can assess the oxygenation levels in the renal tissue. This is particularly
important because adequate oxygen supply is crucial for the normal functioning of the transplanted kidney.
BOLD MRI could detect changes in renal oxygenation at an early stage, potentially allowing for the early
identification of complications. For example, a decrease in oxygenation levels can be an early sign of ischemia-
reperfusion injury or acute rejection, allowing for timely intervention to protect the transplanted kidney.

The dataset used for this thesis has been mainly aquired by an MR450w GEM machine (General Electric
Healthcare, Chicago, IL) was used to acquire a 1.5T MRI scan. The standardized protocol included an axial
gradient-echo T1-weighted sequence, reconstructed as in-phase, out-of-phase, water, and fat-suppression im-
ages before and after an intravenous bolus of 0.1mmol.kg−1 (0.5mmol.mL−1) of gadoteric acid (Dotarem®,
Guerbet, Villepinte, France) at a rate of 2mL.s−1, followed by a 25mL saline flush; and axial and coronal,
fat-suppressed, T2-weighted, diffusion-weighted (DW) sequences with b-values of 0, 400, and 1200s.mm2;
and Blood oxygenation level-dependent (BOLD) sequences.

Ultrasound modality

Ultrasound imaging (or sonography, denoted as US) is commonly used in the setting of renal transplantation.
This technology allows its use at numerous times post-transplantation: in the first few hours or days post-
transplantation, in routine surveillance, and notably when there is a need for evaluation of graft dysfunction.
Ultrasound is convenient, rapid, and relatively cheap. US is performed in real-time, provides multi-planar
views, is non-invasive, and does not involve ionizing radiation, nor does it need iodinated contrast, thus
avoiding the further risk of contrast nephropathy.

US evaluation of the renal allograft requires the use of B-mode, Color Doppler and spectral Doppler
technologies [Baxter, 2001]. B-mode ultrasound provides a morphologic evaluation, while color and spectral
Doppler assesses blood flow. Newer applications such as Contrast-Enhanced Ultrasound (CEUS) [Schwenger,
2006; Chung, 2014; Kazmierski, 2020] and Shear Wave Elastography (SWE) [Grenier, 2012; Grenier, 2013]
are being investigated in the renal transplant setting. On the one hand, CEUS provides a useful technique for
improved quantitative analysis of kidney allograft perfusion, early prediction of chronic allograft nephropathy,
and loss of graft function. On the other hand, SWE helps in the evaluation of renal fibrosis, which can occur in
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response to various factors, including chronic kidney disease and transplant rejection. This technique provides
a quantitative measurement of tissue stiffness, aiding in the assessment of graft health. One can also note
that ultrasound imaging is frequently used to guide renal biopsies, especially when performing percutaneous
(through the skin) kidney biopsies. Ultrasound guidance ensures that the biopsy needle is accurately placed
within the kidney, increasing the safety and precision of the procedure. Images examples are presented in
Figure 1.15.

Figure 1.15: US data examples of renal transplants.. A: US B-mode image; B, C, D, E: Successive frames
of CEUS video.

1.3.3 Translating dataset’s limitations to relevant research challenges for
data-driven methods

This section provides a succinct overview of the limitations inherent in medical applications and datasets,
as elaborated in Section 1.1.6. These limitations, particularly pertinent to the specific issue addressed in
this thesis (outlined in Section 1.3), have significantly influenced the trajectory of our research directions.
Consequently, these challenges have driven the formulation of innovative methodologies tailored to effectively
address and overcome those challenges.

A limited amount of imbalanced data

Our primary dataset comprises a modest number of 136 patients, a quantity that falls significantly short of
the ideal data volume required for ML algorithms, a challenge exacerbated when considering specific sub-
groups, such as the 108 patients with at least one MRI available. This circumstance presents a substantial
challenge when adopting the conventional supervised learning framework, where the dataset consists of a
mere 108 pairs of inputs (e.g., MRI volumes) and labels (e.g., transplantation outcomes). This challenge is
particularly pronounced in the context of deep learning techniques, which typically demand substantial volumes
of data for optimal performance. Furthermore, the dataset, being derived from real-world clinical records,
exhibits significant class imbalance, a characteristic that is especially prevalent in the context of systematic
examinations, resulting in a preponderance of cases with favorable outcomes. Nevertheless, the incorporation
of prior information holds substantial value, as detailed in subsequent sections, offering insights into how
we can enrich the feature learning process. It is worth noting that when considering the Dynamic Contrast-
Enhanced (DCE) MRI examinations solely, these data include time series acquisitions featuring between five
and nine MRI volumes per examination, thereby supplementing our dataset with additional information for
our learning algorithms.
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Longitudinal analysis

One noteworthy and critical aspect of our dataset is the inclusion of follow-up examinations, a form of
longitudinal data. This component offers valuable opportunities to enhance our data modeling capabilities
by incorporating the temporal dimension, allowing us to monitor the progression of data and underlying
biomedical events. Longitudinal data plays a pivotal role in medical applications due to its relevance in
capturing the evolving nature of pathologies. It serves as a key element in the decision-making process for
medical professionals and is an essential input for predictive analyses. The analysis of longitudinal imaging data
has been extensively explored in fields like neuroimaging [Couronné, 2021; Ren, 2022; Ouyang, 2022a; Ouyang,
2022b], aiding in the understanding of diverse pathology trajectories inter- and intra-patients. Moreover,
recent developments in self-supervised approaches have shown promise in utilizing longitudinal data for further
investigation [Zhao, 2021; Ouyang, 2021].

Missing data

While not explicitly addressed in the dataset description, our dataset is notably affected by a substantial
amount of missing data, particularly concerning the imaging data, as detailed in Table 1.2 for the Dynamic
Contrast-Enhanced (DCE) MRI examinations. This is especially prevalent in the medical imaging segment,
where patients may have missed follow-up appointments for various reasons. Effectively managing missing
data is of utmost importance, particularly in real-world data scenarios, such as those encountered in medical
applications. Data imputation methods offer solutions for filling in these gaps using statistical or generative
techniques. For unidimensional data like clinical variables (e.g., demographic or comorbidity variables), con-
ventional statistical approaches may suffice. However, when dealing with high-dimensional data, such as 3D
MRI (e.g., 512 × 512 × 88 vectors), employing simple interpolation techniques or generative models to create
synthetic data from learned representations becomes notably critical.

Table 1.2: Missing data in the DCE MRI follow-up examinations. We summarize the counts of available
DCE MRI examinations for the different follow-up examinations (D15, D30, M3, and M12), and the patients
having n+ examinations (n = 2, 3, 4) available (Exam(s)). Our main cohort includes 136 patients and the
missing value is calculated in percentage relative to the number of patients having at least one DCE MRI
examination available (108).

Exam(s) D15 D30 M3 M12 2+ Exams 3+ Exams 4 Exams
Total Number 71 79 89 87 70 63 44

Missing (%) 34 27 18 19 35 42 59

D15: day fifteen, D30: day thirteen, M3: month three, M12: month twelve.
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Multimodal learning

Our dataset encompasses a variety of data sources, primarily comprising three distinct modalities: structural
or tabular data (clinical variables), temporal series (biological data), and imaging data (MRI and ultrasound).
Many research efforts have explored the potential of addressing different tasks (such as detection and predic-
tion) separately for each modality to gain a deeper understanding of the unique insights they offer. However,
recent research trends aim to introduce models or methodologies capable of effectively handling diverse
modalities as inputs. This presents a host of challenges, as each data source contributes varying amounts
of information. The integration of multiple data modalities is of paramount importance in the context of
renal transplantation monitoring. By combining clinical, biological, and imaging data, we can gain a more
holistic understanding of a patient’s health and treatment outcomes. Challenges arise in the harmonization
of multimodal data due to differences in data dimensions, scales, and information content. For example,
merging a 512 × 512 × 88 vector representing an MRI volume with a clinical feature vector containing several
variables requires careful consideration and advanced techniques. In the medical imaging domain, several
sub-modalities can be distinguished, such as MRI vs. ultrasound, Dynamic Contrast-Enhanced (DCE) MRI
vs. Diffusion-Weighted (DW) MRI, each providing unique insights into the transplanted kidney’s health.
Recent research in multimodal learning is introducing innovative techniques, including attention mechanisms,
data fusion strategies, and transfer learning approaches. These methods are enabling researchers to harness
the combined power of different data modalities, resulting in more comprehensive and accurate insights and
demonstrating high promise for the complex dynamics of renal transplantation.

1.4 Objectives & Contributions

1.4.1 Objectives of the thesis

This thesis focuses on developing and designing novel deep learning methodologies for renal transplantation
monitoring. On the methodological component, we investigate approaches based on un- and self-supervised
learning to tackle and make the most of the scarcity of our data to learn meaningful and robust represen-
tations. On the renal transplantation application component, the objective is to demonstrate the potential
of the imaging data to hold comprehensive and predictive information regarding the complex biological and
medical phenomenon at stake when monitoring renal transplants. In particular,

• Chapter 2 aims to provide the key baselines when dealing with clinical and medical imaging data
focusing on classical machine learning algorithms. The baselines developed focus on establishing a
radiomics-based approach, using a variety of machine learning algorithms.

• Chapter 3 addresses the issue of learning meaningful representations of medical imaging data when
having a low number of observations (i.e. patients). This chapter also provides a tailored method
to incorporate clinical knowledge to guide the learning of the images’ representations and to handle
missing follow-up examinations.
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• Chapter 4 intends to go one step further to integrate structural clinical variables in multimodal repre-
sentations. To this end, we propose an elegant way to input this part of the data with medical prompts
by leveraging the recent advances in Natural Language Processing with Large Language Models.

• Chapter 5 initially summarizes the primary contributions of this thesis, followed by a discussion of
compelling research avenues uncovered by our work and potential directions for future research projects.
The chapter concludes with a comprehensive synthesis of the thesis.

1.4.2 Main contributions

Each chapter of this thesis provides distinct original contributions to demonstrate the relevance of data-driven
approaches in medical imaging analysis for renal transplantation monitoring and to set the path for future
research in this area. The main contributions are the following.

In Chapter 2, we establish the foundational tasks and baseline methodologies that ground this thesis.
First, we provide an overview of state-of-the-art studies and models pretraining to clinical and biological data
types in the context of renal transplantation. Additionally, we offer illustrative preliminary experiments uti-
lizing our dataset. Subsequently, we delve into our contributions, which include the automatic detection and
segmentation of renal transplants within MRI data, published in [Milecki, 2021a]. These tasks are integral to
the progression of our research. Lastly, we introduce the concept of radiomics, which involves the engineering
of radiological features and serves as the foundation for computational imaging biomarkers.

In Chapter 3, we study the use of contrastive learning approaches to learn meaningful representations of
renal transplants DCE MRI data. Our approach aims at incorporating clinical information into the learned
representation. Then, we propose a novel transformer-based architecture tailored to deal with missing data
for the challenging task of serum creatinine prediction 2 years post-transplantation using follow-up imaging
modalities. A transformer encoder architecture enables to input the sequential features data per follow-up
in order to forecast the renal transplant function and model longitudinal relationships, including a custom
method to handle missing exams. In a more clinically oriented study, we further investigate the capacity of
the learned representations for graft survival prediction. This work has been published in [Milecki, 2022c;
Milecki, 2022a] and a clinical article that is under submission.

In Chapter 4, we introduce MEDIMP (MEDical IMages with clinical Prompts), an approach to learn
powerful manifolds of renal transplant DCE MRI data toward transplant function forecasting in the context
of renal transplantation monitoring. This approach provides an elegant way to incorporate clinical or bio-
logical information into the learning process of feature extraction of medical imaging data. We designed
clinicobiological prompts to leverage textual data and powerful NLP encoders using multimodal alignment of
representations with contrastive learning. We demonstrate the relevance of the approach for renal transplant
function forecasting. This work has been published in [Milecki, 2023a].
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1.4.3 Scientific production and professional activities

Conference papers
• Leo Milecki, Sylvain Bodard, Jean Michel Correas, Marc Olivier Timsit, and Maria Vakalopoulou. “3D

unsupervised kidney graft segmentation based on deep learning and multi-sequence mri”. In: ISBI.
vol. 2021-April. IEEE Computer Society, Apr. 2021, pp. 1781–1785.

• Leo Milecki, Vicky Kalogeiton, Sylvain Bodard, Dany Anglicheau, Jean Michel Correas, Marc Olivier
Timsit, and Maria Vakalopoulou. “Contrastive Masked Transformers for Forecasting Renal Transplant
Function”. In: MICCAI. vol. 13437 LNCS. Springer, 2022, pp. 244–254.

• Leo Milecki, Vicky Kalogeiton, Sylvain Bodard, Dany Anglicheau, Jean-Michel Correas, Marc-Olivier
Timsit, and Maria Vakalopoulou. “MEDIMP: 3D Medical Images with clinical Prompts from limited
tabular data for renal transplantation”. In: MIDL. PMLR, Apr. 2023.

In submission
• Leo Milecki, Sylvain Bodard, Vicky Kalogeiton, Florence Poinard, Anne-Marie Tissier, Idris Boud-

habhay, Jean-Michel Correas, Dany Anglicheau, Maria Vakalopoulou, and Marc-Olivier Timsit ”Renal
transplant survival prediction from unsupervised deep learning-based radiomics on early DCE MRI”,
under submission to Kidney International journal as Technical Notes format.

Absracts
• Leo Milecki, Vicky Kalogeiton, Sylvain Bodard, Dany Anglicheau, Jean-Michel Correas, Marc-Olivier

Timsit, and Maria Vakalopoulou. “Constrative Learning for Kidney Transplant Analysis using MRI data
and Deep Convolutional Networks”. In: MIDL Short Paper Track. 2022.

Professional activities
• Research visit of three months (Sep-Dec 2022) at Provost Ultrasound Lab, Polytechnique Montréal,

Montréal, Canada. Prospecting the potential of our US data with an expert team in ultrasound imaging,
and more particularly contrast-enhanced.

• Teacher assistant for ”Introduction to Deep Learning” Course (Fall 2020 & 2021), Master MVA
(Mathématiques, Vision, Apprentissage), ENS Paris-Saclay and CentraleSupelec, ”Foundation of Deep
Learning” Course (Fall 2021) Master DSBA (Data Sciences & Business Analytics), CentraleSupelec, and
”Foundation of Deep Learning” Course (Fall 2023) Master IA (Intelligence Artificielle), CentraleSupelec.

• Project Supervision for AI Hub undergraduate students of CentraleSupelec with Hopia (Spring 2021)
on AI for hospital beds management and with Aura (Spring 2022) on benchmarking ML algorithms for
epilepsy crisis detection.

• Reviewer for conferences: 2024 WACV, 2023 MICCAI (Honorable Mention), 2023 ICCV, 2022 MICCAI
(Honorable Mention - Top 9%), and journals: Medical Image Analysis, Computer Vision and Image
Understanding, Computers in Biology and Medicine.

• Student volunteer for ICCV 2023 in Paris.

https://provostlab.polymtl.ca/en/
https://hopia.eu/fr/
https://en.aura.healthcare/
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Training courses

• Participation in AI4Health Winter Workshop 2021 (including a poster presentation).

• Lectures and Training on Fundamentals of Accelerated Computing with CUDA Python by NVIDIA
Deep Learning Institute Team.

• Scientific English by the Academic Writing Center of CentraleSupelec.

• Scientific integrity in research professions, Fun MOOC by Bordeaux University.
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Prompt1: ”A computer vision segmentation map of a medical imaging system in a surrealist style.”

Summary
This chapter establishes the foundational tasks and baseline methodologies that ground this thesis. First, we
provide an overview of state-of-the-art studies and models pretraining to clinical and biological data types
in the context of renal transplantation. Additionally, we offer illustrative preliminary experiments utilizing
our dataset. Subsequently, we delve into our contributions, which include the automatic detection and
segmentation of renal transplants within MRI data, published in [Milecki, 2021a]. These tasks are integral to
the progression of our research. Lastly, we introduce the concept of radiomics, which involves the engineering
of radiological features and serves as the foundation for computational imaging biomarkers.

1Generated using Stable Diffusion XL.

https://stability.ai/stable-diffusion
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2.1 Classical data-driven methods for medical tabular data

2.1.1 Clinically relevant tools

While considered ”classical” in the machine learning community, the models discussed in Section 1.1.1 have
seen relatively recent widespread adoption and remain relatively uncommon in clinical studies aimed at com-
prehending renal transplantation phenomena and mechanisms. These studies often lean on two primary types
of models: linear/logistic regression and survival analysis models, such as the Cox model [Cox, 1972] and
Kaplan-Meier curves [Kaplan, 1958]. Survival analysis encompasses a suite of statistical tools designed to
analyze the anticipated time until a specific event occurs, be it complications like acute rejection, the onset
of chronic dysfunction, or the ultimate occurrence of transplantation failure in renal transplantation cases.
A recent study [Truchot, 2023] advises caution against the blind adoption of machine learning algorithms,
highlighting lower predictive and calibration results than classical statistical approaches in modeling transplant
failure using donor, recipient, and transplant-related parameters.

Several studies [Moore, 2011; Shabir, 2014; Gonzales, 2016] investigated the ability of different variables
to predict graft survival. Individual variables, such as estimated glomerular filtration rate (eGFR) [Kaplan,
2003; He, 2009], proteinuria [Naesens, 2016], or histology [Yilmaz, 2003] failed to produce clinically relevant
performances. Moreover, efforts at developing prognostic systems in renal transplantation have been hampered
by small sample sizes, the absence of proper validation, limited phenotypic details, and the failure to include
key prognostic factors that affect allograft outcomes (e.g., donor-derived factors, or disease recurrence). The
recent iBOX [Loupy, 2019] model demonstrated the most complete and comprehensive study, validated on
large international cohorts. Specifically, the study drew upon a derivation cohort comprising 4000 kidney
recipients from four French centers. Additionally, validation cohorts incorporated data from 2129 kidney
recipients across three European centers and 1428 recipients from three North American centers. This
collective dataset was instrumental in the identification of eight key prognostic factors spanning functional,
histological, and immunological domains. These factors were then combined into a risk prediction score,
which exhibited robust confirmation in the validation cohorts across both European (C-index 0.81) and U.S.
(0.80) settings.

2.1.2 Experiments on clinical data

A first dive into this thesis was to analyze the predictive power of the available clinical variables to detect
or forecast events, such as transplant failure, at the scale of having a low number of patients and more
particularly positive events2. Nevertheless, those preliminary experiments enabled us to better apprehend the
medical context, the challenges related to our data, and to drive our research directions and objectives.

2In practice, only these data were available during the beginning of the project and the imaging data curation arrived
in a second phase (mainly due to COVID19 restrictions).
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Data analysis and visualization

The first task we tackled was to analyze the data regarding the ”transplantation failure” event. Transplantation
failure was defined as a return to dialysis. From a machine learning point of view, it can be addressed as
a binary classification task. Among the 126 patients for whom a substantial portion of clinical variables
were available, 14 individuals experienced transplantation failure. We performed a first analysis to highlight
the relationships between these clinically relevant attributes and the occurrence of transplantation failure.
In particular, the correlation of the attributes is presented in Figure 2.2 using Pearson correlation analysis.
Notably, our data analysis revealed that the post-transplantation complication count exhibits the strongest
correlation with the incidence of transplantation failure. Furthermore, our examination uncovered noteworthy
statistical associations within the dataset. For instance, we observed a correlation between the year of birth and
the number of previous transplantations, suggesting that older individuals are more likely to have undergone
prior transplant procedures. Additionally, we identified a relationship between the type of transplant and the
duration of cold ischemic time. In particular, the cold ischemic time, signifying the delay before the transplant’s
reperfusion during the transplantation surgery, tends to be longer for organs from deceased donors compared
to those from living donors. This correlation visualization provided valuable insights into the interplay between
clinical variables and transplantation outcomes, offering a foundation for further analysis and understanding
of renal transplantation dynamics.

Figure 2.2: Correlation matrix visualization of general clinical variables. Pearson correlation between
each variable was computed and outputs a value in [−1, 1]. The darker the red color is, the more correlated
the two variables are.

In Figure 2.3a, we observed radar plots of the mean and standard deviation (std) values of those variables
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when separating the patients into two groups according to the transplantation failure annotation. Figure 2.3b
corresponds to the same radar plot for the complications during the surgery variables. Complications are
clearly more important for the group of patients who had transplantation failure. Whereas for other clinical
variables, the difference between the two groups did not appear indicative.

(a) General clinical variables. (b) Transplantation surgery complication variables.

Figure 2.3: Radar charts on clinical data. Visualization of some general clinical variables statistics (mean
± std) separated into two groups of patients, having transplantation failure (Trans. failure) or not.

Data-driven methods for clinical data

After the comprehensive analysis of our available clinicobiological attributes, our objective was to assess the
performance of classical machine learning algorithms in predicting transplantation failure. To achieve this, we
designed a structured pipeline consisting of several key steps, each carefully tailored to maximize predictive
accuracy:

• Data Split: We partitioned the dataset into training and testing subsets, with an equitable distribution
of 50% and stratified regarding the transplantation failure label.

• Model Selection: We considered a range of machine learning models, including Random Forest, Decision
Tree, Lasso, Linear Support Vector Machine (SVM), Radial Basis Function (RBF) SVM, Adaboost,
and Gaussian Naive Bayes.

• Hyperparameter Specification: For each selected model, we defined a set of hyperparameters and
identified those that warranted fine-tuning.

• Wide Parameter Grid: A broad parameter grid was formulated, encompassing the hyperparameters
selected for optimization.

• Randomized Grid Search: Employing a randomized grid search methodology, we executed a 4-fold
stratified cross-validation process on the training subset, utilizing 10% of the total grid size.
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• Analysis of Results: To identify the optimal hyperparameters, we examined the outcomes of the ran-
domized grid search. This involved constructing box plots to visualize the validation scores against
parameter values on the grid.

• Narrow Parameter Grid: Focusing on the best hyperparameters determined in the previous step, we
established a more constrained parameter grid.

• Full Grid Search: A comprehensive grid search was performed through 4-fold stratified cross-validation,
using the narrowed parameter grid.

• Evaluation: Ultimately, we evaluated the model’s performance on both the training and testing sets.

Table 2.1: Transplantation failure prediction with classical ML algorithms from clinical variables. The
”Select.” column indicates how the best model hyperparameters were chosen, either by selecting the model
with the best cross-validation F1 score (”Highest”) or by employing an ensembling method that considered
models performing above the median cross-validation F1 score (”Median”). Bold, Underlined indicates the
top 1, 2 performing combinations, respectively.

Model Select. Train Test
B.Acc Rec Prec F1 B.Acc Rec Prec F1

Random Forest Highest 87.5 75.0 100 85.7 68.8 41.7 71.4 52.6
Median 100 100 100 100 69.3 44.4 57.1 50.0

Decision Tree Highest 66.8 35.7 83.3 50.0 63.4 31.2 71.4 43.5
Median 55.1 14.3 83.3 24.4 50.3 11.6 71.4 20.0

Lasso Highest 61.0 26.1 75.0 38.7 61.9 26.7 80.0 40.0
Median 54.1 15.6 62.5 25.0 52.3 13.3 40.0 20.0

Linear SVM Highest 71.7 45.5 83.3 58.8 53.2 16.7 28.6 21.1
Median 71.7 45.5 83.3 58.8 53.2 16.7 28.6 21.1

RBF SVM Highest 92.9 85.7 100 92.3 88.5 0 0 0
Median 10.0 10.0 100 18.2 11.5 11.5 100 20.6

Adaboost Highest 100 100 100 100 67.7 42.9 42.9 42.9
Median 100 100 100 100 72.2 50.0 57.1 53.3

G. Naives Bayes Highest 68.8 37.5 100 54.6 60.1 23.1 85.7 36.4
Median 68.6 42.9 50.0 46.2 59.7 28.6 28.6 28.6

Table 2.1 presents a summary of the training and testing scores obtained in our analysis. In the ”Select.”
column, we indicate how the best model hyperparameters were chosen, either by selecting the model with
the best cross-validation F1 score (”Highest”) or by employing an ensembling method that considered models
performing above the median cross-validation F1 score (”Median”). It is notable that many of these machine
learning models exhibit a tendency to overfit, evident from the substantial discrepancy between the near-
perfect training scores and the test scores. Notably, the RBF SVM model (line 10) exemplifies this behavior
most prominently. This behavior is largely attributed to the limited number of training samples available.
Among the models, the Adaboost and Random Forest algorithms appear to yield the most promising results
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on the test set, achieving balanced accuracies of 72.2% and 68.8%, respectively, as well as F1 scores of 53.3%
and 52.6%, respectively. The selection procedure for hyperparameters favored ”Median” for the Adaboost
model, while ”Highest” proved to be the optimal choice for other models. Despite our persistent efforts to
construct a robust machine learning pipeline aimed at mitigating these challenges, the test results fell short
of achieving the desired level of satisfaction.

To conclude this first section focusing on classical ML algorithms applied to clinical and biological variables,
while this portion of our dataset did not reveal clinically significant patterns, it did provide valuable insights
into the renal transplantation context and fostered productive discussions with our medical colleagues. In a
subsequent phase, we meticulously curated the imaging data within our dataset, and the following section
will present the outcomes of our preliminary efforts in this domain. To provide new information and enhance
the clinical attributes, characteristics from the medical images are needed to be extracted from the data. To
this end, we need algorithms for the accurate localization of the transplants in the images. This includes our
initial contribution to object detection and segmentation of renal transplants in Dynamic Contrast-Enhanced
(DCE) MRI data.

2.2 Image-based segmentation of kidney transplant

2.2.1 Introduction & Related work

Segmentation of organs or other structures such as vessels or cells in biomedical imaging is often an important
first step or even a prerequisite to analyzing medical volumes. They are essential to describe and monitor
shapes, and volume characteristics [Lee, 2011] or are further used in more complex pipelines, as in radiomics
analysis [Rizzo, 2018] and precision medicine. In recent years, automatic segmentation in biomedical images
has been subject to extensive research, with deep learning-based techniques holding state-of-the-art perfor-
mances in various applications and modalities, including Magnetic Resonance Imaging (MRI) [Lundervold,
2019]. However, one of the main limitations of common deep learning supervised approaches is the need for
expensive and time-consuming annotations.

Extracting information and analyzing biomedical data is not very trivial due to the very high dimension-
ality and complexity. Moreover, one more limitation that needs to be addressed when it comes to these
types of data is the absence or a limited number of annotations that are usually available. This is one of the
main challenges that need to be tackled when it comes to machine learning and deep learning approaches.
Nowadays, unsupervised approaches investigate methods that are able to generate models without the need
for annotations. In particular, concerning unsupervised kidney segmentation, image-based methods have
been proposed to obtain a segmentation through an image processing pipeline using tools such as threshold-
ing [Sandmair, 2016] or morphological operators [Li, 2016; Yu, 2012]. Some other methods propose clustering
frameworks based on K-means [Yang, 2016] or on wavelet-based clustering [Li, 2012]. Deformable models
were also designed in level-set methods [Abdulahi, 2015] or exploiting active contours [Yu, 2013]. Advanced
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deformable boundary methods are also explored in [Shehata, 2018] with however the use of training samples
for parts of their formulations. Applications of unsupervised deep learning to segmentation focused mainly
on generative models.

Figure 2.4: Overview of the proposed method for the automatic segmentation of kidney graft using
multimodal MR Imaging. T2 MRI volumes are aligned to the DCE MRI volumes. The Region of Interest
(RoI) is obtained from the DCE MRI using thresholding and morphological operations and applied to the T2
MRI. The predicted segmentation map is obtained from our unsupervised semantic segmentation algorithm,
taking as input both modalities and optimized to reach a tolerance criteria ϵ from two constraints. Finally,
expert annotations enable us to evaluate our results using the dice score (DSC), Hausdorff distance at 95
percentile (HD95), and the percentage of kidney volume difference (PKVD).

This work proposes an unsupervised method for the segmentation of kidney grafts from Dynamic Contrast-
Enhanced (DCE) and T2 sequences obtained 12 months after the transplantation. Our method consists of a
two-step procedure that is summarised in Figure 2.4. First, we propose an unsupervised method to detect the
kidney region using thresholding techniques and morphological operators. The second step corresponds to the
pixel-wise segmentation of the kidney graft. Our method is based on [Kim, 2020] extending the formulation
to 3D to explore all the available information from the MRI modalities. Moreover, it proposes a multimodal
formulation where multiple MRI sequences are integrated towards a robust kidney graft segmentation tool.
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2.2.2 Methodology

Selection of the region of interest

The first step of the proposed method is the automatic detection of possible areas of interest. This step is
essential to reduce the search space and boost the performance of the unsupervised segmentation technique
eliminating the number of false positives. The detection of the region of interest is based on a relatively
simple pipeline taking full advantage of the contrast-enhanced MRI. In particular, a thresholding operation
is first applied to the entire DCE volume highlighting the highest intensities of the volume corresponding
to regions that depict the graft kidney and blood vessels. In the pixels’ volume histogram, the threshold is
obtained as the abscissa of maximum intensities. After the volume thresholding, morphological operations are
applied to remove artifacts and fill holes in the detected regions. The morphological step consists of a binary
closing followed by a binary opening. For both operations, spheres of radius 5 and 4 have been chosen as
structural elements, respectively. Connected component analysis has been used in the thresholded volume. A
bounding box indicating the highest volume component was selected as the region of interest (see Figure 2.5)
and further processed. The same area is also indicated in the T2 sequence. Areas of interest ranged for
Nx × Ny × Nz ∈ [125, 173] × [118, 199] × [49, 75].

Unsupervised segmentation model

The proposed unsupervised segmentation model then processes the bounding boxes of various sizes contain-
ing the region of interest. Our method is based on differentiable feature clustering [Kim, 2020]. A simple
straight-forward 3D convolutional neural network (CNN) is used to extract features and optimize two loss
functions without any need for ground truth annotations. The first loss is designed to refine and extract
relevant features, and the second is to favor smoothness on the obtained labels. The first loss will be defined
as similarity and the second as continuity loss.

Let us denote X ∈ R2×Nx×Ny×Nz the regions of interest extracted from the T2 and DCE sequences.
Our unsupervised method is based on a 3D feature extractor CNN denoted as h(., θ), where θ ∈ Θ defines its
trainable parameters. The p-dimensional feature vector obtained by the CNN is denoted as Y = h(X, θ) ∈
Rp×Nx×Ny×Nz . From this feature vector, we can propose a mapping strategy defined by a function g to
obtain class labels for each of the voxels of the volume C = g(Y ) ∈ ZNx×Ny×Nz . Two different loss functions
are defined for the optimization of the method,

Lsim(Y, C) =
Nx×Ny×Nz∑

i=1

p∑
j=1

−δ(j − ci) ln(yj,i) (2.1)

where Y = {yj,i}j∈[1,p],i∈[1,Nx×Ny×Nz ] and C = {cj,i}j∈[1,p],i∈[1,Nx×Ny×Nz ] and δ is the kronecker
function. This loss corresponds to the cross entropy between the network output and class labels used as
intermediate targets that are obtained by an argmax operation.



50 Chapter 2. Classical methods & baselines

Figure 2.5: Region of interest example on the DCE MRI sequence. The MRI volume is displayed slice
by slice in axial view. The obtained region of interest is formalized by the red bounding box.

Lcont(Y ) =
Nx−1∑
k=1

Ny−1∑
l=1

Nz−1∑
m=1

∥yk+1,l,m − yk,l,m∥1 + ∥yk,l+1,m − yk,l,m∥1 + ∥yk,l,m+1 − yk,l,m∥1 (2.2)

where yk,l,m corresponds to the p-dimensional feature vector of the voxel at (k, l, m). This loss aims to
enforce spatial smoothness on the obtained segmentation masks.

Finally, the overall optimization is achieved by,

L = Lsim(Y, C) + λLcont(Y ) (2.3)

where λ is a weight that balances the contribution of each component to the final optimization.
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The network parameters are optimized iteratively until the absolute difference of loss between two suc-
cessive iterations is lower than a predefined value ϵ. Using this criterion, the number of classes obtained can
be superior to 2 as the non-kidney elements can rarely be assigned in one class. Using the final predicted
clustering, the kidney class can easily be obtained by selecting the first connected component class.

Implementation details

In this study, we first applied bias field correction to all the MRI images as a preprocessing step. The num-
ber of iterations was set to 2 and the number of fitting levels to 8, enabling the enhancement of peaks in
volumes’ histograms and, more particularly, contrast-enhanced regions. Moreover, even if the two sequences
(DCE and T2) correspond to the same follow-up exam, they were acquired a few minutes apart, introducing
misalignments. To address this issue and project properly one sequence to the other, we used an unsupervised
deformable registration method [Ferrante, 2017]. The DCE modality has been used as the target, and the
T2 has been warped to it, using a variety of similarity metrics, including normalized cross-correlation, mean
square error, and mutual information.

Our 3D CNN architecture consists of N convolutional blocks with p channels. Each block consists of a
3D convolution layer with a kernel size of 3 × 3 × 3 and stride 1, followed by a ReLU activation and a 3D
batch normalization layer. The two different sequences were concatenated channel-wise and were given into
the network. The choice to include as stacked channels the two sequences – early fusion – has been made
and tested over middle (classification level fusion) or late fusion (decision level fusion) strategies [Fang, 2020].

Concerning the other parameters of our network, we set λ = 5 and ϵ = 0.005. Our CNN model was
trained using classic stochastic gradient descent with a momentum set to 0.9 and a learning rate of 0.01.
The overall optimization of a single volume needed approximately 1 minute on a GeForce GTX 1080 TI GPU
(11.2 Go).

2.2.3 Data

The dataset used in this study corresponds to a total of 32 patients subject to a kidney transplant. All the
MRIs were obtained 12 months after the transplantation. Our dataset consists of 2 different MRI sequences,
namely T2 and DCE. DCE volumes being 512×512×[64−88] included spacing ranging from 0.78×0.78×1.9
to 0.94 × 0.94 × 2.5 and T2 volumes being 512 × 512 × [25 − 36] from 0.70 × 0.70 × 5.0 to 0.98 × 0.98 × 6.0.
For the optimization of the network’s hyperparameters, 3 patients were used, while all the rest (29 patients)
were used for the evaluation of the proposed method. The 3 patients were selected as a sample of low,
medium, and high segmentation difficulty volumes from preliminary studies. Pixel-wise kidney annotation was
performed by a medical expert (a board-certified radiologist), by tracing the kidney boundaries using the DCE
MRI in sagittal view. The annotation was available in every 2 or 3 slices, resulting in 945 annotated slices.
We obtained the 3D annotation by interpolating the obtained manual annotations per subject to assess the
method’s performance.
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2.2.4 Experiments & Results

Figure 2.6: Semantic segmentation maps obtained through the iterative process of our unsupervised
algorithm. Our approach was applied to the selected region of interest. We plot the segmentation maps
obtained every five iterations for one slice from one MRI volume and colors correspond to all the detected
labels.

We evaluated the graft kidney’s segmentation accuracy using five metrics commonly used to assess
biomedical segmentation tasks. First, the mean dice coefficient (DSC) metric is used to indicate the simi-
larity between the manual annotation and prediction. Secondly, we used the mean of Hausdorff distance at
percentile 95% (HD95) to measure how far two surfaces are from each other. Finally, the mean percentage
of kidney volume difference (PKVD), precision (Prec), and recall (Rec) between our predictions and the
annotations were used to evaluate different methods’ performance. We visualize in Figure 2.6 the semantic
segmentation maps obtained on a region of interest example through the iterative process of our unsupervised
learning algorithm.

Starting with the evaluation of the proposed method, an ablation study benchmarking the influence of the
parameter λ and the 3D CNN architecture has been performed for both 1 sequence (DCE) and 2 sequences
(DCE & T2) models (Figure 2.7). Starting with the influence of λ, we used grid search and benchmark
values in {0.01, 0.1, 1, 5, 10, 25, 50, 100}. The λ parameter shows the influence of the Lcont in the overall
optimization. The superiority of the 2 sequence model seems to be indicated with the best performances to
be found in [1,25]. Moreover, for the 1 sequence model, the variations are less monotone, and the selection
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of an optimum value is more difficult.
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Figure 2.7: Evaluation of the different components of the proposed method using different evaluation
metrics on the validation set. The first column indicates the influence of λ and the second column indicates
the influence of the used architecture for different numbers of channels and layers.

Moreover, we analyzed the impact of the network’s architecture in depth (number of convolutional blocks)
and width (number of channels in each block) to extract relevant features. We evaluated these parameters
(N convolutional blocks, p number of channel per block) in the set of {(2,30), (2,50), (3,30), (3,50), (4,30),
(4,50), (5,20)}. The specific parameters seem to not really influence each model’s performance, with again
the 2 sequences one reporting more stable performance for all the experiments. Overall, the (2,50) configu-
ration seems to report more stable performance, with less variance, on the validation set. This indicates that
a relatively simple architecture is enough to address our problem.



54 Chapter 2. Classical methods & baselines

Table 2.2: Quantitative evaluation of the proposed method and other methods reporting: dice coeffi-
cient (DSC), Hausdorff distance at percentile 95% (HD95), percentage of kidney volume difference (PKVD),
precision and recall. Bold, Underlined indicates the top 1, 2 performing combinations, respectively.

DSC (%) HD95 (mm) PKVD (%) Prec (%) Rec (%)Method Mean Std Mean Std Mean Std Mean Std Mean Std

Otsu Thresholding 71.04 10.97 6.55 0.65 84.71 57.34 57.07 13.03 97.53 0.91
Watershed 84.06 23.30 5.75 0.42 16.35 23.99 89.25 23.91 80.05 23.18
Proposed 2D (DCE only) 69.09 20.34 7.22 1.67 51.30 65.00 74.57 25.77 69.79 20.48
Proposed (DCE only) 86.48 4.01 5.92 0.42 11.08 10.13 83.93 8.32 89.97 3.67
Proposed 2D (DCE & T2) 75.75 10.80 6.39 1.11 32.81 41.56 81.65 14.24 81.65 14.66
Proposed (DCE & T2) 89.81 3.17 5.82 0.41 5.88 5.74 91.00 5.18 88.20 5.82

Figure 2.8: One testing subject depicting one slice in axial view and the segmentation results as
overlay for each of the evaluated methods (in blue) and the annotation from the expert (in green): A: DCE,
B: Warped T2, C: Otsu thresholding, D: watershed-based method, E: Proposed (DCE), F: Proposed (DCE
& T2).

To highlight our method’s soundness, we compare it with other commonly used unsupervised methods
in the literature and its 2D implementation [Kim, 2020]. In particular, our results were evaluated against
the kidney graft segmentations obtained by Otsu thresholding [Bindu, 2012] and watershed 3D [Yu, 2012]
methods that are commonly used for unsupervised segmentation in a variety of studies.

The obtained results are summarised in Table 2.2 presenting the mean and standard deviation (std) of each
score on the whole test set. Even if additional postprocessing methods are presented in the literature [Will,
2014; Yu, 2012] in our study, we did not perform any additional postprocessing in any of the exploit methods.
The lowest performance in terms of all the metrics is reported by the Otsu thresholding, which reaches a
mean precision of 57.07±3.03%, highlighting the high number of false positives. Watershed seems to perform
better, reporting a mean DSC of 84.06% with, however, a high standard deviation. The proposed method
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performs better in all the cases. Using only the DCE MRI as input, we obtain better (in terms of mean val-
ues) and more stable (in terms of std) performance than the previous two methods. The performance of the
proposed method is further increased with the integration of the T2 sequence. The 2-sequence model reports
3% higher DSC than the model that uses only one sequence. The method’s superiority is also indicated by
the higher numbers of mean precision that increases from 83.93 ± 8.32% for the DCE to 91.00 ± 5.18% for
the DCE & T2 models. Even if the two models report similar mean HD95, the DCE & T2 model’s impact
is further indicated by the significantly lower mean PKVD metric. Finally, our experiments indicated that
the 2D [Kim, 2020] implementation is not performing well, highlighting the need for 3D formulations for this
problem.

In Figure 2.8, we present some qualitative analysis of the obtained segmentation masks. One can observe
that the accurate detection of the kidney between structures – essentially between the kidney and its irrigating
vessels – is very challenging for unsupervised methods. However, the proposed formulation is able to separate
the kidney graft from the different structures and provide an accurate segmentation.

2.2.5 Discussion & Conclusion

In this work, we proposed a 3D deep learning-based unsupervised kidney segmentation framework using multi-
modal MRI. Our framework consists of two losses, one that optimizes the cross-entropy between the predicted
labels and the labels of clusters, while the second one is enforcing spatial continuity, producing smooth seg-
mentation maps. Our 3D formulation works better than other commonly used unsupervised methods in the
literature, including its 2D implementation [Kim, 2020].

Our experiments indicated that integrating more than one MRI sequence could significantly help remove
detected structures close to the kidney graft, such as vessels irrigating the contrast agent. Our proposed
method limitations include the number of hyperparameters that need to be defined, which are the same in all
the deep learning-based frameworks, and a lack of prior kidney information. Our quantitative results indicate
that our tool could help clinical practice provide fast and robust monitoring of kidney grafts. In the future,
we would like to investigate the impact of additional loss functions that could integrate more shape-specific
information. Moreover, we plan to investigate our segmentation framework’s adaptation to the analysis of
follow-up exams for patients subject to transplantation toward potential rejection.
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2.3 Design of radiomics signature for kidney transplant

2.3.1 Identifying biomarkers from imaging data

”Omics” domains correspond to biomedical fields that generate big data, such as genomics, proteomics, or
metablomics. Medical Imaging has been used increasingly and so its quantitative analysis by means of ad-
vanced, and sometimes nonintuitive mathematical tools, constituting the radiomics approaches. The concept
of radiomics was primitively broadly applied in the field of oncology. The assumptions of radiomics presume
that biomedical images contain information on disease-specific processes that are imperceptible by the human
eye [Mannil, 2018]. Thus, such a quantitative approach could unveil information that is not accessible through
traditional visual inspection, even by radiology experts.

More precisely, radiomics is based on a key concept of machine learning approaches: feature engineering,
designing features from prior knowledge of the data, and reducing its dimensionality. The goal is to analyze
with statistical or more advanced machine learning tools the influence (correlation, power of prediction) of
these features on some endpoints, such as diagnosis, drug treatment, or prognosis. The features correspond
to the extraction of the spatial distribution of signal intensities, pixel interrelationships, shapes, and textures.
Using predefined formulas, radiomics address also the issue of overcoming the subjective nature of image
interpretation, and the variability in radiology experts’ knowledge and training.

Van Griethuysen et al. [Van Griethuysen, 2017] introduced pyradiomics, an open-source Python package
for the extraction of radiomics features from medical imaging and hence aimed at establishing a reference
standard for radiomic analysis by providing a tested and maintained open-source platform for easy and repro-
ducible radiomic features extraction. Authors divided features in classes: First Order Statistics, Shape-based
(3D), Shape-based (2D), Gray Level Co-occurrence Matrix (GLCM), Gray Level Run Length Matrix (GLRLM),
Gray Level Size Zone Matrix (GLSZM), Neigbouring Gray Tone Difference Matrix (NGTDM), and Gray Level
Dependence Matrix (GLDM). This work constitutes our main baseline for extracting predefined radiomic fea-
tures from our medical imaging data. It is important to note that the radiomics term was also extended to
more advanced AI methodologies where the feature extraction process is part of the learning of the model,
e.g. by using deep neural network encoders, which we will explore in the next chapters.

https://pyradiomics.readthedocs.io/
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Figure 2.9: Overview of a radiomics approach for renal transplant ultrasound imaging. Image from Ricky
Hu et al. “Prediction of Kidney Transplant Function with Machine Learning from Computational Ultrasound
Features”. In: MICCAI Workshop ASMUS. vol. 13565 LNCS. Springer, 2022, pp. 34–43.

2.3.2 Radiomics for renal transplantation

Renal transplantation imaging datasets are rare and often contain limited samples, but the promises of
such approaches rapidly seduced transplant experts. Indeed phenomena at stake when having transplant
complications are wide and such an approach could bring a more comprehensive understanding of transplant
status or even investigate its ability to predict complex events such as chronic dysfunction and ultimately the
transplantation failure [Lim, 2023]. Several studies have investigated the analysis of MRI data to discover new
biomarkers to detect acute rejection events early post-transplantation [Shehata, 2016; Shehata, 2020]. More
recently, ultrasound imaging radiomic features demonstrated promising results to evaluate kidney function
post-transplantation [Hu, 2022; Zhu, 2022]. Authors developed a prediction model utilizing machine learning
algorithms and computational image features to predict a decline in estimated glomerular filtration rate
(eGFR) using 819 transplant patients. A multi-stage pipeline was built to first automatically segment the
cortex, medulla, and central echo complex from ultrasound. Imaging features (104 total) related to shape,
intensity statistics, texture, and ultrasound speckle were computed. A random forest classifier was trained to
predict 5-year eGFR decline from the feature set (Figure 2.9).



58 Chapter 2. Classical methods & baselines

Relation of imaging features with clinical attributes

While conducting our first experiments on DL feature extractors to encode renal transplant MRI data, we
investigated the use of the predefined radiomics features by Van Griethuysen et al. [Van Griethuysen, 2017] as
baseline and comparison features. As we have seen in Section 2.1.2, directly aiming at predicting transplan-
tation failure in a fully supervised setup is challenging. As alternative tasks to better apprehend the capacity
of expressiveness of computational imaging features, we decided, along with our medical collaborators, to at-
tempt to predict clinical and biological variables known to be linked to graft survival, as described in Chapter 1.
Specifically, the GFR, the donor’s age, the transplant incompatibility, the number of previous transplants, and
the cold ischemic time variables were considered. The task was built by fixing a threshold on these variables
to perform binary classification. To compare to simple deep learning-based generated features, we used the
common transfer learning technique, consisting of using a pretrained model (here with a ResNet18 model
pretrained on ImageNet and duplicating its weights to 3D) to exploit its representations, features denoted as
Transfer Learning-based (TL-based).

Table 2.3: Evaluation of the predefined radiomics features to recover variables linked to graft survival.
We investigate the ability of predefined radiomics features vs. TL-based features (Transfer Learning-based
features from ResNet18 pretrained on ImageNet) to predict clinical variables linked to graft survival. The
variables are the M12 Glomerular Filtration Rate (GFR, < 45 mL.min−1), the Donor’s Age (< 65years), the
transplant incompatibility (Trans. Inc., < 3), number of previous transplant (Prev. Trans., > 1), and the
cold ischemic time (C. Ischem. T., < 20hours). In the Target var. column, we show the number of positive
examples (npos) in the test set of 20 patients. Bold indicates the top 1 performing features for each target
variable.

Features Target var. B.Acc Prec Recc F1 AUC

Radiomics M12 GFR (12) 68.6 ± 7.7 73.5 ± 4.8 84.9±8.6 78.7±6.5 76.6±1.1
TL-based M12 GFR (12) 72.9±5.9 80.0±7.1 75.0 ± 0.0 77.3 ± 3.2 73.3 ± 0.5

Radiomics Donor’s Age (6) 53.9 ± 1.8 37.8±3.1 33.3±0.0 35.4±1.4 66.2±2.4
TL-based Donor’s Age (6) 55.6±12.5 30.3 ± 23.4 27.8 ± 28.3 27.9 ± 25.4 59.1 ± 5.5

Radiomics Trans. Inc. (13) 50.0 ± 0.0 65.0 ± 0.0 100±0.0 78.8±0.0 48.8 ± 0.0
TL-based Trans. Inc. (13) 51.8±3.4 66.1±1.9 84.6 ± 0.0 74.2 ± 1.2 64.5±12.1

Radiomics Prev. Trans. (3) 55.2 ± 1.5 21.7 ± 2.4 33.3 ± 0.0 26.2 ± 1.7 39.6 ± 3.0
TL-based Prev. Trans. (3) 62.8±0.0 22.2±0.0 66.7±0.0 33.3±0.0 58.8±1.6

Radiomics C. Ischem. T. (7) 42.1 ± 5.9 33.8 ± 6.4 47.6±13.5 39.4 ± 9.1 26.7 ± 1.8
TL-based C. Ischem. T. (7) 63.6±3.0 80.6±14.2 33.3 ± 6.7 46.3±6.1 64.5±3.7

These preliminary experiments were conducted utilizing a dataset comprising the 87 M12 DCE MRI ex-
aminations. The predefined radiomics features were precomputed through the application of the pyradiomics
Python package on the transplants from the DCE MRI volumes, specifically at the tubular time point. The
segmentation maps, derived from the algorithm described in the preceding section, enabled the computation
of these predefined radiomics features. The proposed unimodal approach was adopted when the T2 sequence
was unavailable for a subset of examinations. A test set comprising 20 patients was partitioned, with the
remaining set allocated for training and validation purposes. Subsequently, a Random Forest classifier was

https://pyradiomics.readthedocs.io/
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trained, and hyperparameter tuning was accomplished through 3-fold cross-validation. The hyperparameters
yielding the best mean validation F1 score were selected for evaluating the model on the test set. Moreover,
the identical pipeline was applied to the features acquired through transfer learning, involving inference from
a pre-trained ResNet18 on ImageNet, focusing on the region of interest around the transplants within the
DCE MRI at the tubular time. The weights of the ResNet18 model were duplicated to a 3D configuration in
the depth dimension.

Table 2.3 provides a comprehensive summary of the outcomes derived from the evaluation on the test set
comprising 20 patients. Given the relatively limited size of our dataset, necessitating the division of a compar-
atively small test set to facilitate effective ML model training, it is essential to acknowledge the potential for
strong variability in the scores, as evidenced by high standard deviation values. Despite these considerations,
a notable observation emerges in the context of M12 Glomerular Filtration Rate (GFR), a crucial biological
indicator of kidney function, wherein both sets of features demonstrate comparable performance levels. In
contrast, the prediction of transplant incompatibility (Trans. Inc.) exhibits a discernible imbalance between
the two main metrics, F1 score and ROC AUC, and between the two sets of features. On the other hand, for
other variables (Donor’s age, number of previous transplants, and cold ischemic time) these approaches ex-
hibit relatively poor performance, characterized by low F1 scores and ROC AUC values hovering around 60%.
The interpretability of these results is correspondingly diminished in comparison to the M12 GFR predictions.

To conclude, this chapter has introduced baseline ML-based methodologies, underscored by the incorpora-
tion of key concepts such as radiomics features, which collectively constitute an appropriate set of comparison
methods. We also presented a study on the localization of a region of interest around kidney transplants and
the generation of a segmentation map of the organ. This segmentation is crucial for computing predefined
radiomics features, and the localization holds significance in reducing the dimensionality of our data while
retaining pertinent information regarding the transplants by selecting a region of interest. These preliminary
experiments serve as a foundational step toward our desired contributions. Specifically, this thesis hypothe-
sizes that learning representations directly from raw MRI data, employing modern deep learning-based feature
extractor approaches, can capture more comprehensive, expressive, and robust information for renal transplant
monitoring. Subsequent chapters will expound upon the incorporation of clinical attributes into our imaging
representations, leveraging this pertinent information to guide and enhance our learning pipelines.
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Prompt1: ”A scientific drawing of a mathematical model for medical data, including a kidney-shaped object
in the foreground.”

Summary
In this chapter, we study the use of contrastive learning approaches to learn meaningful representations of
renal transplants DCE MRI data. Our approach aims at incorporating clinical information into the learned
representation. Then, we propose a novel transformer-based architecture tailored to deal with missing data
for the challenging task of serum creatinine prediction 2 years post-transplantation using follow-up imaging
modalities. A transformer encoder architecture enables to input the sequential features data per follow-up
in order to forecast the renal transplant function and model longitudinal relationships, including a custom
method to handle missing exams. In a more clinically oriented study, we further investigate the capacity of
the learned representations for graft survival prediction. This work has been published in [Milecki, 2022c;
Milecki, 2022a] and a clinical article that is under submission.

1Generated using Stable Diffusion XL.

https://stability.ai/stable-diffusion
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3.1 Introduction

As we have in the introduction Chapter 1, renal transplantation appears as the most effective solution for end-
stage renal disease and highly improves patients’ quality of life, mainly by avoiding periodic dialysis [Suthanthi-
ran, 1994]. However, a substantial risk of transplant chronic dysfunction or rejection persists and may lead
to graft loss or ultimately the patient death [Hariharan, 2021]. The genesis of such events takes place in
heterogeneous causes, complex phenomena, and results from a gradual decrease in kidney function. In clinical
practice, the primary indicator of kidney function is based on blood tests and urine sampling (serum creati-
nine, creatinine clearance). However, when results are irregular, the gold standard method is needle biopsy,
an invasive surgical operation. Thus, the need for a non-invasive alternative that could provide valuable
information on transplant function post-transplantation through time is crucial.

Medical imaging plays a significant role in renal transplantation. Beyond the respective limitations of the
several imaging modalities, such as the necessity of radiations or the intrinsic trade-off on resolution, to our
knowledge, there are no studies focusing on monitoring the evolution of kidney grafts using imaging data. On
the other hand, the recent transformer models [Vaswani, 2017] offer new directions in processing sequential
data. Moreover, recent advances in self-supervised learning [Taleb, 2020] enable the training of powerful deep
learning representations with a limited amount of data. Renal transplantation datasets usually belong to this
case, making the use of such methods the way to move forward. Our study is among the first that explore
such methods for renal transplantation, solving challenging clinical questions.

In this work, we propose a method to forecast renal transplant function through serum creatinine predic-
tion from follow-up exams of Dynamic Contrast-Enhanced (DCE) MRI data post-transplantation. The main
contributions of this work are twofold. First, we propose the use of contrastive schemes, generating infor-
mative manifolds of DCE MRI exams of patients undergoing renal transplantation. Different self-supervised
and weakly-supervised clinical pertinent tasks are explored to generate relevant features using the cosine
similarity. Secondly, we introduce a transformer-based architecture for forecasting serum creatinine score,
while proposing a tailored method to deal with missing data. In particular, our method uses a key mask
tensor that highlights the missing data and does not take them into account for the training of the sequential
architecture. Such a design is very robust with respect to the position and number of missing data, while it
provides better performance than other popular data imputation strategies. To the best of our knowledge,
our study is among the first that propose a novel, robust, and clinically relevant framework for forecasting
serum creatinine directly from imaging data.

This chapter is organized as follows: we first introduce related work in Section 3.2, with a focus on
medical imaging in transplantation and approaches to deal with missing data. In Section 3.3, we present
our methodology on self-supervised contrastive learning for renal transplantation. Then we describe the data
used in this work in Section 3.4 and the implemented experiments and obtained results to demonstrate the
soundness of our proposed approach in Section 3.5. Subsequently, Section 3.6 introduces a clinical study built
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from the previously presented models to investigate graft survival analysis from the learned representations of
the imaging data. Section 3.7 provides a discussion and conclusion to this work.

3.2 Related work

3.2.1 Medical imaging in renal transplantation

Several medical imaging approaches investigated the diagnosis of renal transplant dysfunction. In [Sharfud-
din, 2014], diverse imaging modalities have been investigated to assess renal transplant functions in several
studies. Moreover, we used in section 2.2 multiple Magnetic Resonance Imaging (MRI) modalities for the
unsupervised kidney graft segmentation. Recent studies focused on detecting specific events such as renal
fibrosis [Orlacchio, 2014] or acute rejection [Khalifa, 2013]. In [Shehata, 2020], multimodal MRI and clinical
data are explored to assess renal allograft status at the time of the different exams. Most of those approaches
seek to, indirectly through related events or directly through complex automated systems, non-invasively
retrieve structural, functional, and molecular information to diagnose chronic kidney disease [Alnazer, 2021].

3.2.2 Dealing with missing data

When it comes to real clinical settings, a limited amount and missing data is one of the most important
issues during data curation. Handling of missing data has been thoroughly studied by data imputation meth-
ods, which mainly propose approaches to fill the missing data as a pre-processing step to some downstream
task [Mackinnon, 2010]. Beyond simple statistical approaches such as sampling the mean or median of
available data, methods can be categorized into two groups: discriminative and generative approaches. The
former is mainly developed for structural data (discrete or continuous) with methods such as structured
prediction [Keshavan, 2009]. On the other hand, generative approaches include expectation-maximization
algorithms [García-Laencina, 2010] or deep learning models such as Generative Adversarial Imputation Nets
(GAIN) [Yoon, 2018]. Those latest approaches showed very good performance for medical image tasks, as
proposed in [Dalca, 2019; Xia, 2021]. However, the training of such models usually is subjective to a large
amount of data that are not available all the time [Kazeminia, 2020], especially in a clinical setting.

Considering the use of the transformer models, the attention mechanism showed promising results in
missing data imputation for structural [Wu, 2020] and trajectory data [Becker, 2021; Giuliari, 2020]. In
particular, the attention mask was used to investigate the robustness of a vanilla encoder-decoder transformer
and a Bidirectional Transformer (BERT) model [Devlin, 2018] while missing 1 to 6 point’s coordinates out
of 32 for forecasting the people trajectories. Among all these methods, our method is the first to handle
in an efficient and robust way missing data with high dimensionality, tested on sequences with long-time
dependencies.
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3.3 Methodology

Figure 3.2: Overview of the proposed method. Different contrastive schemes are used to represent the
different MRIs. These features are used to train a sequential model coupled with a key mask tensor to mark
the missing data.

In this study, we focus on the prediction of serum creatinine from imaging data and in particular DCE MRI,
exploring both anatomical and functional information. An overview of our method is presented in Figure 3.2.

3.3.1 Contrastive learning for renal transplantation

In this work, we propose two contrastive learning schemes to explore meaningful data representations: (a) a
self-supervised scheme, where we learn meaningful features by solving the proxy task of determining if two
MRI volumes belong to the same patient, and (b) a weakly-supervised scheme, where we discriminate samples
based on the differences in the value of various clinical variables.

Let us denote (v1, v2) ∈ (RNx×Ny×Nz )2 a pair of MRI regions of interest. Each stream i = 1, 2 consists of
a ResNet model to extract a latent representation from the MRI volumes, which takes vi as input and outputs
features zi ∈ RDf , with Df = 512 for ResNet18. Then, a feature embedding head associates these features
with the underlying task. This is modeled by a linear layer or a Multi-Layer Perceptron (MLP) mapping the
features to (z′

1, z′
2) ∈ RDfe , with Dfe = 256.
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Self-supervised pretraining

Our first strategy relies on a self-supervised task at the patient level, i.e., we train a model to distinguish
if a pair of volumes comes from the same patient or not. Pj = {v ∈ RNx×Ny×Nz |v from patient j} for
j ∈ [[1, Np]], where Np denotes the number of patients, the set of available volumes from MRI series for each
exam and patient. Then, our proxy task is to discriminate pairs by knowing if they belong or not to the same
patient, i.e., y = 1 if ∃j (v1, v2) ∈ (Pj)2; else y = 0.

Weakly-supervised various clinical pretraining

Our second strategy discriminates samples based on the difference of certain clinical variable’s value, i.e.,
y = 1 if ∥Var(v1) − Var(v2)∥ < θ; else y = 0, where V ar(·) is a clinicobiological variable and θ a clinically
relevant threshold. The clinicobiological variables are suggested by nephrology experts to encode clinical
priors and information, as they are significantly linked to graft survival [Loupy, 2019]. In this study, we
investigate three variables: (1) the transplant incompatibility, (2) the age of the transplant’s donor, and (3)
the Glomerular Filtration Rate (GFR) value.

Training loss

From the embedded features (z′
1, z′

2), the optimization is done by the following cosine embedding loss:

CosEmbLoss(z′
1, z′

2, y) =

{
1 − cos(z′

1, z′
2), if y = 1,

max(0, cos(z′
1, z′

2) − m), if y = 0,
(3.1)

where cos refers to the cosine similarity and m a margin scalar between −1 and 1. This loss enforces the
model to build relevant features that adequately express the kidney transplant imaging and define the way to
create strategies to label y each pair (see Figure 3.3).

Figure 3.3: Contrastive learning objective explanation. Our pretraining phase is based on a two stream
approach. Pairs of MRI volumes, labeled y = 0, 1, are fed to a Deep CNN and an embedding head to produce
features. According to the label y, our CosEmbLoss enforces the paired features to be near or far using the
cosine similarity distance, as depicted in 2D with the angles between the normalized feature vectors.
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Training scheme and curriculum learning

Since the dimensionality of our data is very high and the tasks we investigate are very challenging, we apply
curriculum learning to facilitate the training process. In particular, for the self-supervised task at the patient
level, pairs from the same exam of each patient are enabled in the beginning until half of the training, while
they are discarded in the second half.

For the weakly-supervised task based on clinicobiological variables, the perplexity of the task is determined
by the thresholds θ. More specifically, the training labels are adjusted every ei epochs following the rule:
y = 1 if |Var(v1) − Var(v2)| < θi,1; y = 0 if |Var(v1) − Var(v2)| > θi,2; else discard the pair (v1, v2), where
θi,1, θi,2 are set in the image of V ar(·) satisfying ∀i (1) θi,1 ≤ θi,2; (2) θi+1,1 ≤ θi,1; and (3) θi,2 ≤ θi+1,2.
Our loss enforces the feature pairs to be near or far in the feature embedding space, depending on the label
y. The condition (1) enables to form a grey area between the two cases, while the conditions (2) and (3)
strengthen the constraint through epochs on the difference of value V ar(·) between the two pairs to be
correctly arranged (examples in Figure 3.4).

Figure 3.4: Curriculum learning on the weakly-supervised task example. In this example, the procedure
to set the pairs’ labels from the variable Var(.) is less restrictive in the first phase of training (A: first ten
epochs) than in the second phase (B: next ten epochs) where the grey area reduces and the weakly-supervised
task becomes more challenging.

3.3.2 Sequential model architecture handling missing data

Our forecasting model takes as input T = 4 features z ∈ RDf corresponding to the different follow-ups and
relies on a transformer encoder architecture [Vaswani, 2017]. First, these features are mapped to embeddings
of size Dmodel using a linear layer, while a special classification token (CLS) is aggregated in the first position
to generate an embedded sequence. Then, the core of the transformer encoder architecture stacks N layers
on top of learned positional embeddings added to the embedded sequences. Each layer is first composed of a
multi-head self-attention sub-layer, which consists of h heads running in parallel. Each head is based on the
scaled dot-product attention. Then, a position-wise fully connected feed-forward sub-layer applies an MLP
of hidden dimension Dmodel to each position separately and identically. Finally, to perform the classification
task, the CLS token output is fed to a linear layer.
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Strategy for missing data

Our proposed strategy to deal with missing data is applied to the scaled dot product operation, the core of
each multi-head self-attention sub-layer. For simplicity, we consider here a sub-layer with one head, h = 1.
The operation takes as input the query Q, key K and value V , which are linear projections of the embedded
sequences, with dk, dk and dv dimensions, respectively and performs Attention(Q, K, V ) = softmax( (QKt)√

dk

)V .

In this work, we build a key mask tensor mk ∈ RT based on the availability of exams for each patient so
that zero attention is given to missing data both during the training and inference times, i.e. ∀t ∈ [[1, T ]]
mk[t] = −∞ if exam t is available else 0. Thus, our mask cancels the attention on missing exams by
Attention(Q, K, V ) = softmax( (QKt)√

dk

+ Mk)V where Mk = [[mkmk...mk]] ∈ RT ×dk . For h > 1, keys,
values, and queries are linearly projected h times with different, learned linear projections, concatenated, and
once again projected after the scaled-dot product.

3.3.3 Implementation details

Starting with the contrastive learning, we used data augmentation with horizontal flipping and random affine
transformation with a 0.5 probability, as well as random Gaussian blur (σ ∈ [0, 0.5]) and random Gaussian
noise (σ ∈ [0, 0.05]), using TorchIO python library [Pérez-García, 2021]. Having approximately a set of pairs
of

(
V
2

)
= V (V −1)

2 , where V is the number of available volumes, we proposed to fix the training set size to
Vt = 5000. We decided to fix the number of positive samples, as well as its balance to 25%, and to randomly
sample every epoch the remaining from the negative samples.

Concerning the optimization of our models, a 10% dropout has been used for the linear layers of both
the contrastive and sequential models. For the contrastive model, the Stochastic Gradient Descent optimizer
with a momentum equal to 0.9 was used with a starting learning rate of 10−2 following a cosine schedule and
preceded by a linear warm-up of 5 epochs. The batch size was set to 20 and the model trained for 60 epochs
on 4 NVIDIA Tesla V100 GPU using Pytorch [Paszke, 2019]. For the transformer, a binary cross-entropy
loss (BCE) was used when binarizing the serum creatinine value using a threshold of 110µmol.L−1, specified
by nephrology experts, as a clinically relevant value to assess normal/abnormal renal transplant function
at a specific time point. Adam optimizer [Kingma, 2014b] was used with a starting learning rate of 10−4

following the same learning rate scheduler. The batch size was set to 32 and the model was trained for 30
epochs on 1 NVIDIA Tesla V100 GPU. The architecture’s hyperparameters were set by grid search and 10-fold
cross-validation, providing N = 2, h = 2, Dmodel = 768.
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3.4 Data
Our study was approved by the Institutional Review Board, which waived the need for patients’ consent.
The data cohort corresponds to study reference ID-RCB: 2012-A01070-43 and ClinicalTrials.gov identifier:
NCT02201537. All the data used in this study were anonymized. Overall, our imaging data are based on
the DCE MRI series collected from 89 subjects at 4 follow-up exams which took place approximately 15
days (D15), 30 days (D30), 3 months (M3), and 12 months (M12) after the transplant surgery, resulting in
respectively 68, 75, 87, and 83 available scans at each follow-up.

The MRI volumes sized 512 × 512 × [64 − 88] voxels included spacing ranging in [0.78 − 0.94] × [0.78 −
0.94] × [1.9 − 2.5] mm. All volumes were cropped around the transplant using the automatic selection of
the region of interest presented in section 2.2 in order to reduce dimensionality while no information about
the transplant is discarded. Intensity normalization was executed to each volume independently by applying
standard normalization, clipping values to [−5, 5], and rescaling linearly to [0, 1].

As a primary indicator of the kidney function assessment, all patients were subject to blood tests regularly
a few days before the transplantation to several years after, to measure the serum creatinine level in µmol.L−1.
The serum creatinine target prediction value is calculated as the mean over an interval of two months before
and after the prediction date, 2-year post-transplantation (M24).

3.5 Kidney function forecasting experiments

Figure 3.5: (A) Training and (B) Validation curves for our contrastive learning scheme based on GFR
variable with and without curriculum learning. No-cur. stands for no curriculum learning at training.
Overall, the curriculum learning contributes to lower training and validation losses and helps the training
process.
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3.5.1 Training strategy with curriculum learning

In Figure 3.5, we plot the training and validation loss curves of our contrastive learning pretraining scheme
using the GFR variable. We demonstrate the relevance of using curriculum learning (in blue) in our contrastive
objective as we obtain significantly lower training and validation losses at the end of the training. When we
update the threshold on the GFR difference to set positive and negative pairs, we observe peaks at epochs 20
and 40 on the training loss when the contrastive objective becomes more complex. The validation loss was
calculated on the same set (the most complex one) during the whole training. We clearly see the validation
loss stabilizing after epoch 40 when the objective of the validation set matches the one of the training set.

Figure 3.6: Feature visualization of the PCA decomposition of the last layer of the contrastive training
using the DCE MRI follow-ups. Our contrastive tasks, including (A) identifying exams of the same patient,
(B) transplant incompatibility (Tran. incomp.), (C) donor’s age, and (D) GFR variables. Colormap is set by
the GFR value for each follow-up, < 60 mL.min−1 corresponds to abnormal kidney function. With stars, we
indicate the real data, and with circles the augmented ones. Overall, the Donor’s Age and the GFR trainings
seem to provide better representations with respect to the GFR.
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3.5.2 Feature visualization of the contrastive pretraining

We visualize the representations of DCE MRI from the trained image encoder using PCA decomposition.
Figure 3.6 shows the different reduced feature spaces obtained by the models trained using the different
clinicobiological variables. Colormap is set by the GFR value obtained at the corresponding MRI follow-
up exam and is used as an indicator of renal function (< 60 mL.min−1 corresponds to abnormal kidney
function). We evaluate the clustering of the imaging features toward their renal function evaluation ability,
adding augmented images to check the tendency better. We observe that the (C) Donor’s Age and (D)
GFR pretrainings seem to provide the best representations toward kidney function evaluation. While the (B)
Trans. incomp. and the unsupervised (A) Patient pretrainings only demonstrate some group patterns with
less visible clusters.

3.5.3 Renal function forecasting

To evaluate the performance of our proposed method and compare it with other strategies for the forecasting
of serum creatinine, four evaluation metrics are used: recall, precision, F1 score, and the area under the
receiver operating characteristic curve (ROC AUC). A testing set of 20 patients is separated from the train
set and used to validate the performance of our models. We perform a 10-fold cross-validation (CV) on the
train set (69 patients) and report the mean (standard deviation) scores in % for each fold. During CV, the
model reaching the minimum loss is saved, and an ensemble approach is used to make the final prediction on
the test set from models, that reach more than 50% ROC AUC out of the 10 folds.

We compare our sequential model to an LSTM model, which is a commonly used architecture for sequen-
tial data, and which architecture was set using the same approach as our main model, resulting in 2 LSTM
cells and a hidden size of 768. Additional sets of feature representations were used to compare the signifi-
cance of our approach. First simple statistics from the serum creatinine captured from the available blood
test results between each follow-up (number of points, mean, median, standard deviation, minimum, maxi-
mum) are calculated and used as input to the models. Second, a set of predefined radiomics features [Van
Griethuysen, 2017] is obtained from the segmentation of the kidney transplant following the unsupervised
method presented in section 2.2. Finally, we investigate generating MRI features from SimCLR [Chen, 2020a]
contrastive scheme, while we report the performance of different transfer-learning approaches, pretrained on
ImageNet [Deng, 2010] by duplicating the weights to 3D, Kinetics [Smaira, 2020], and medical image datasets
MedicalNet [Chen, 2019].

Quantitative results for all the methods are reported in Table 3.1. Our proposed approach outperforms the
rest of the methods for the test. Both LSTMs and transformers architectures report good performances, with
only a few models reporting performance lower than 60% on every metric. Interestingly, our method outper-
forms the sCreat model which models directly the serum creatinine level. Moreover, our GFR contrastive-based
features report the best performance among all the other features for both LSTMs and transformer formu-
lations. Limitations appear as our model seems to misclassify cases where the patient’s serum creatinine is
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stable and close to the used threshold, during the first two years post-transplantation.

Table 3.1: Quantitative evaluation of different methods. Our contrastive tasks, including: self-supervised
on identifying exams of the same patient (patient), weakly-supervised on transplant incompatibility (Tran.
inc.), donor’s age and GFR variables vs comparison methods: serum creatinine (sCreat), predefined ra-
diomics features, pretrainings on imagenet, kinetics, medicalnet, and another self-supervised contrastive loss
(SimCLR). We report precision (Prec), recall (Rec), F1 score, and ROC AUC (AUC) for both LSTM and
Transfomer methods. Overall, the GFR with Transformers reports the highest metrics for the test set. Bold
indicates the best-performing methods.

Method Features Validation Test
Prec Rec F1 AUC Prec Rec F1 AUC

LSTM

sCreat 80.5(12.3) 62.9(21.0) 71.1(13.8) 80.4(22.4) 83.3 76.9 80.0 83.5
Radiomics 86.2(14.9) 73.5(15.5) 77.3(8.2) 80.7(16.0) 90.9 76.9 83.3 84.6
Imagenet 85.5(15.0) 68.0(17.7) 74.0(12.8) 91.0(10.8) 90.9 76.9 83.3 81.3
Kinetics 90.7(9.4) 74.0(21.5) 78.5(11.3) 91.4(8.5) 92.3 92.3 92.3 85.7
MedicalNet 86.5(13.9) 78.5(21.2) 79.8(13.2) 82.7(18.8) 57.1 61.5 59.3 41.8
SimCLR 79.8(15.9) 86.5(24.1) 80.9(17.2) 91.8(13.7) 72.2 100.0 83.9 64.8
Patient 83.5(15.7) 68.0(21.0) 73.7(18.0) 84.2(16.3) 90.9 76.9 83.3 81.3
Tran. inc. 81.0(29.1) 56.0(25.5) 63.8(24.9) 82.9(14.1) 75.0 46.2 57.1 68.1
Donor’s age 79.4(15.5) 87.5(13.7) 81.8(10.3) 81.6(13.8) 84.6 84.6 84.6 90.1
GFR 82.8(9.6) 95.5(9.1) 88.3(7.7) 88.3(13.1) 86.7 100.0 92.9 98.9

Transformer

sCreat 79.0(28.7) 60.2(31.1) 65.4(29.3) 71.6(24.2) 81.3 100.0 89.7 86.8
Radiomics 81.3(15.7) 66.0(28.6) 69.1(20.2) 65.3(30.5) 90.9 76.9 83.3 91.2
Imagenet 58.4(22.4) 76.5(34.8) 65.8(27.5) 45.5(21.6) 65.0 100.0 78.8 58.2
Kinetics 53.2(35.8) 66.0(44.8) 58.3(38.9) 64.0(19.7) 65.0 100.0 78.8 83.5
MedicalNet 65.5(27.9) 58.0(33.2) 58.3(28.3) 64.8(19.6) 75.0 46.2 57.1 50.6
SimCLR 58.9(30.9) 75.5(38.7) 65.6(33.2) 64.8(23.5) 68.4 100.0 81.3 72.5
Patient 84.3(15.8) 73.0(21.6) 74.8(14.8) 58.2(32.3) 90.9 76.9 83.3 83.5
Tran. inc. 73.2(27.9) 62.0(23.0) 66.2(23.7) 68.3(16.1) 88.9 61.5 72.7 72.5
Donor’s age 79.1(17.3) 73.0(26.6) 71.9(18.4) 49.7(30.8) 91.7 84.6 88.0 89.0
GFR 86.3(20.9) 71.5(22.7) 77.4(20.6) 79.7(20.7) 92.9 100.0 96.3 98.9

3.5.4 Ablation study for missing data strategies

The proposed key mask padding approach for handling missing data is specific to the attention mechanism,
hence the transformer model. Thus, we investigate 3 other missing data strategies applicable to both the
transformer and LSTM model: (1) filling with zeros strategy (None), (2) filling with the nearest available
exam (N.A.), and (3) taking the mean for intermediate exams and fill for first and last (M.+N.A.). Results
presented in Table 3.2 are obtained with the best-performing imaging features (proposed using the GFR value).

Our proposed approach to handling missing data reports the best precision, recall, and F1 score and
the second-best ROC AUC on the test set. Overall, the different strategies report better performance on
transformer-based architectures than the LSTM ones indicating the interest in using such models for this
task. Moreover, the M.+N.A. strategy reports a lower precision rate for both LSTM and our sequential
model, affirming the difficulty of interpolating imaging features. Both None and N.A. strategies appear to
report competitive results, lower however than our proposed.
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Table 3.2: Quantitative evaluation of different strategies for missing data. With none we denote the
filling with zero strategy, N.A. the filling with the nearest neighbor exam, and with M.+N.A. the filling with
the mean and nearest neighbor exam. Bold indicates the top-performing combination.

Method Strategy Validation Test
Prec Rec F1 AUC Prec. Rec F1 AUC

LSTM
None 80.5(11.5) 81.0(14.3) 80.0(9.6) 73.6(16.9) 86.7 100.0 92.9 98.9
N.A. 82.8(9.6) 95.5(9.1) 88.3(7.7) 88.3(13.1) 86.7 100.0 92.9 98.9
M.+N.A. 81.1(10.8) 93.5(10.0) 86.1(6.8) 84.2(11.0) 81.3 100.0 89.6 96.7

Transformer

None 86.2(12.9) 78.5(23.2) 79.7(18.2) 71.5(25.3) 92.3 92.3 92.3 98.9
N.A. 88.8(20.6) 75.5(21.5) 81.3(20.8) 80.5(22.2) 92.3 92.3 92.3 96.7
M.+N.A. 90.5(12.3) 73.5(17.3) 80.0(12.7) 80.0(18.3) 76.5 100.0 86.7 100.0
Proposed 86.3(20.9) 71.5(22.7) 77.4(20.6) 79.7(20.7) 92.9 100.0 96.3 98.9

3.5.5 Increasing the number of missing data

To further analyze the relevance of our approach to the missing data strategy, we artificially increased the
proportion of missing exams in two setups: first both in the train and test set, and second only in the train
set. 23% corresponds to the inherent missing data proportion in our training dataset. We compare to the
strategies of filling with zeros (None) and filling with the nearest available exam strategy (N.A.). In Table 3.3,
we observe a lower decrease in both F1 and ROC AUC metrics in both setups and that our proposed approach
of handling missing exams with an attention mechanism demonstrates better robustness.

Table 3.3: Quantitative evaluation for an increasing number of missing data for our proposed method
and other imputation strategies. 23% corresponds to the inherent missing data in our training dataset.
With none, we denote the filling with zero strategy, N.A. the filling with the nearest neighbor. We report F1
score and ROC AUC. The first five columns correspond to the percentage of missing values on both training
and test, with the last five for only the training set while the test set has 25% missing data. Overall, our
method reports better robustness than the other two commonly used strategies for both experiments.

Strategy Missing data 23% 30% 40% 50% 60% 23% 30% 40% 50% 60%
Metric in train & test set in train set

None F1 92.3 92.3 92.3 85.7 81.8 92.3 88.0 88.0 87.0 87.0
ROC AUC 98.9 95.6 97.8 82.4 90.1 98.9 97.8 96.7 98.9 96.7

N.A F1 92.3 91.7 87.0 88.9 85.7 92.3 96.0 91.7 86.7 86.7
ROC AUC 96.7 98.9 96.7 91.2 91.2 96.7 95.6 98.9 97.8 96.7

Proposed F1 96.3 91.7 88.0 92.3 89.7 96.3 91.7 96.0 92.3 92.3
ROC AUC 98.9 98.9 97.8 95.6 93.4 98.9 100.0 96.7 97.8 96.7
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3.6 Survival analysis experiments
In a second phase, we investigated further use of the models developed previously in a more clinically relevant
oriented context. This section introduces a clinical study, built on top of the contrastive learning models
presented in this chapter, that aims at investigating the ability of the produced deep learning-based features of
renal transplants to predict graft survival. In this study, we hypothesized that imaging of the entire allograft,
particularly using MRI, can capture comprehensive information about potential insults. Consequently, we
proposed an innovative approach suggesting that early dynamic contrast-enhanced (DCE) MRI examinations
of renal transplants can offer pertinent information for predicting graft survival.

3.6.1 Survival analysis from imaging features

Figure 3.7: Pipeline for generating our CL-based features and the predefined radiomics features. In
our main cohort, all the DCE MRI time series are available and the one at tubular time is used to select the
region of interest around the kidney and applied to the other volumes of the same examination. All these
volumes build our training set for our contrastive learning models. The tubular time volume is again used
to generate the features. In the validation set, only the tubular time is available and the same processing is
applied. Comparisons with the predefined radiomics features are obtained from the segmentation masks on
the transplant as described in 2.

We denote CL-based (Contrastive Learning-based) features the generated imaging features from our CNN
models pretrained using contrastive learning (see Figure 3.7). For this study, we curated a separated validation
set, as explained in Section 1.3 and Figure 1.11. After generating our CL-based features features at inference
from our model, the survival analysis of transplant failure event was performed using classical penalized Cox
models [Cox, 1972] and Kaplan-Meier curves [Kaplan, 1958]. The survival analysis was performed in a classical
statistical learning pipeline: preprocessing (standard normalization of the features), hyperparameter tuning
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(regularization parameters) and feature selection using 3-fold cross-validation on the main cohort, and testing
in the validation set. To obtain two groups of patients from our CL-based features, we used the k-nearest
neighbors [Cover, 1967] unsupervised clustering algorithm. Then we analyzed the statistical significance of
those two groups regarding transplantation failure event using Kaplan-Meier curves and the logrank test.

Figure 3.8: Heatmaps visualization pipeline. The similarity between the complete set of features and the
ones selected by the survival model was used to compute the Grad-CAMS [Selvaraju, 2017] activations of our
model. The activation map was then superposed to the corresponding input MRI volume.

To further demonstrate the clinical relevance of our CL-based model, we visualized heatmaps of the
activation of our model from the image input using explainability in AI approaches [Selvaraju, 2017]. For
each MRI volume, we used the cosine similarity between the initial feature vector and the selected feature
vector (zero-ing the non-selected ones) to monitor the gradient activation maps in the model at different
layers. Figure 3.8 presents an overview of the approach to obtain those heatmaps.

3.6.2 CL-based features results

Predictive capability of our CL-based features

Preliminary extensive experiments on our main cohort (Figure 3.9) led us to further design this study to-
ward the DCE MRI modality at early-stage post-transplantation. The predictive capability of our CL-based
features is presented in Table 3.4. The concordance index (C-index) scores were obtained through 3-fold
cross-validation on the training set and testing on the validation set. Baseline comparisons were made with
the predefined radiomics features [Van Griethuysen, 2017] extracted using segmentation masks on the grafts,
both with and without pre-transplant clinical attributes.

Our CL-based features demonstrated superior performance compared to clinical attributes (listed in Sec-
tion 1.3.1) and the predefined radiomics features, achieving a C-index of 72.7% in the validation set. Ad-
ditionally, we investigated the combination of our CL-based features with clinical attributes and found that
their concatenation (line 5) marginally improved the results, yielding a C-index of 73.5%. This comparison
suggests that our features hold complementary predictive information to those clinical attributes.
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Figure 3.9: Boxplots of the evaluation of different CL-based features from different examination
timestamps and MRI modalities available in our main cohort. Results on the main cohort for the different
timestamps (D15. D30, M3, and M12) and MRI modalities (DCE, DW, and BOLD) represented as boxplots.
We report the mean 3-fold cross-validation C-index in percentage (%) on the main cohort.

Table 3.4: Concordance index (C-index in %) scores on evaluating our CL-based features to predict
graft survival at five years. We report the mean ± std on 3-fold cross-validation on the train set and a test
score on the validation set.

Features 3-fold CV train set
(mean ± std in %)

Validation set
(in %)

Clinical attributes 69.4 ± 17.8 66.5
Predefined radiomics features 65.4 ± 1.6 55.5
Predefined radiomics features + Clin. att. 76.9 ± 11.0 61.7
Our CL-based features 84.6 ± 13.1 72.7
Our CL-based features + Clin. att. 86.1 ± 8.6 73.5

CV=Cross-Validation; Clin. att.=Clinical attributes.

Unsupervised stratification of transplants’ outcome

Unsupervised stratification of transplant outcomes was performed using our CL-based features and unsuper-
vised clustering methods. The patients were divided into two groups based on this stratification. Figure 3.10
illustrates the obtained stratification regarding graft survival outcomes using Kaplan-Meier curves.

We observed significant stratification of patients concerning transplant survival events in both the training
set used for training the CL-based model and the validation set. The p-values associated with these stratifi-
cations were 0.057 and 0.029, respectively. These results demonstrate the potential capability of our model
to discriminate between different pathological trajectories effectively.
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Figure 3.10: Kaplan-Meier curves for the two groups obtained by the unsupervised clustering of the
selected CL-based features by the survival Cox model. (A) is obtained on the main cohort (N=71) and
(B) on the validation set (N=48). Colors correspond to the two groups obtained in a unsupervised manner.

Visual explanation from the CL-based model

Figure 3.11: Heatmaps on the region of interest input to our CL-based model for different patients’
examples. For each patient A, B, C, D, and E, we show two transversal slices of the MRI region of interest
(left) and its superposition with our model activations map to obtain the CL-based model heatmap (right).
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Explanability in AI approaches enabled us to visualize the activations of our CL-based model from the
selected most predictive features through heatmaps on the corresponding MRI input (Figure 3.8). Figure 3.11
presents five examples of kidney recipient MRI exams, including 3 having transplantation failure (patients A,
D, and E) and two not (B, C). These cases illustrate the ability of the automated imaging analysis to capture
perfusion abnormalities and differentiate cortical (B), medullar phenomenon (C, D), or both (A). Patient A
presented with severe transplant pyelonephritis and humoral rejection requiring intravenous immunoglobulin
during one year post-transplant. Patient B had polar artery thrombosis with cortical infarct. Patient C
underwent humoral rejection with a transplant biopsy revealing V3 vascular lesions without interstitial fibrosis
and tubular atrophy (IF/TA) lesions. Patient D received a kidney from an ABO-incompatible living donor
with early severe thrombotic microangiopathy. Lastly, patient E illustrates a limit of our model with an intense
heatmap outside the transplant (saccular male aneurysm dilation).

3.7 Discussion & Conclusion

3.7.1 Novel methodologies for renal function forecasting

This chapter proposes a novel transformer-based architecture tailored to deal with missing data for the chal-
lenging task of serum creatinine prediction 2 years post-transplantation using imaging modalities. First, we
show the significant use of contrastive learning schemes for this task. Our trained representations outperform
common transfer learning and contrastive approaches. Then, a transformer encoder architecture enables to
input the sequential features data per follow-up in order to forecast the renal transplant function, including
a custom method to handle missing data. Our strategy performs better than other commonly used data
imputation techniques.

The proposed approach attempts to demonstrate the relevance of using recent methodologies, such as
contrastive learning schemes and transformer-based models, to learn meaningful representations of renal
transplant data to forecast kidney function and better apprehend transplant complications, and ultimately
transplantation failure. However several limitations must be addressed. First, although the longitudinal and
dynamic dimensions of our MRI data enabled us to provide enough samples to successfully train such deep
neural networks, our dataset contains a relatively small number of distinct patients. The separated test set
remains relatively small and our results provide a proof of concept of the relevance of such an approach
for renal transplantation applications. Second, the longitudinal information on the follow-up exams is used
only in the second stage of the model. Several studies have investigated pretraining approaches of imaging
data to incorporate longitudinal information [Couronné, 2021; Ren, 2022; Ouyang, 2022a] and assimilating
this temporal information sooner in our model could be desirable. Finally, our proposed contrastive learning
scheme could incorporate the information of only one clinicobiological variable at a time. Thus we obtained
several models and evaluated their ability to provide meaningful representations for kidney function forecasting
downstream tasks separately. Providing further investigations on which variable provides the most relevant
features for the imaging data is essential, but a model that would be able to incorporate all those relevant
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variables at the same time would be crucial.

Nevertheless, we designed an approach that successfully learn meaningful representations of renal trans-
plants DCE MRI and a tailored downstream architecture to model longitudinal dependencies and handle
missing data. Our promising results encourage the use of medical imaging over time to assist clinical practice
for fast and robust monitoring of kidney transplants.

3.7.2 Deep learning-based imaging features into the clinic

After focusing on novel methodologies for renal function forecasting, we investigated a clinically relevant
approach based on CL-based (Contrastive Learning-based) features to extract pertinent information from
renal transplant DCE MRI examinations toward graft survival. Our model was trained using unsupervised
contrastive learning to obtain meaningful renal transplant MRI data representations. We demonstrated that
these learned CL-based features hold valuable information for 5-year graft survival analysis. We showed the
potential prediction capacity of our CL-based features from medical imaging, obtaining a 72.7% C-index and
their ability to stratify patients regarding this crucial event (p=0.0288). Additionally, our model enabled us
to retrieve explainability directly in the images, highlighting the promising clinical relevance of the approach
and its potential to stratify patients based on graft survival.

Computer-aided diagnosis tools have been investigated to assess renal transplants’ current status [Shehata,
2020]. At the same time, our study seeks to go one step further and suggests that early MRI examinations
contain comprehensive information that can be used to predict overall graft survival. These results hold a
promising direction for future research to predict complex events such as chronic dysfunction better. At the
same time, recent DL approaches provide powerful tools for extracting this information from such complex
and high-dimensional data, and such cutting-edge learning algorithms offer rising successful applications in
Medical Imaging [Krishnan, 2022].

However, it is important to note that this study serves as a primary proof of concept, and several limitations
must be addressed. Firstly, the validation was performed on MRIs from standard diagnostic procedures, which
may introduce bias compared to systematic examinations in the main cohort. Although this inclusion potential
bias, consistent results on regular exams demonstrate the robustness of the learned features. Furthermore,
it highlights the value of healthy transplants and the diversity of pathological paths in the learning process.
Secondly, to validate our approach’s robustness and generalization capability, it is necessary to include larger
patient cohorts and data from different sites and hospitals. This study reveals our most relevant findings
from a longitudinal, multimodal retrospective cohort of medical imaging data from 108 patients who received
a renal transplant. Nevertheless, systematic medical imaging examination data for multiple modalities (or
multiple MRI sequences) and longitudinally are scarce.

After further demonstrating the predictive quality of DL-based features, the next crucial step is to de-
termine how to incorporate this relevant information into clinical practice. The development of multimodal
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models capable of handling multiple sources of information would benefit the potential results. Indeed, models
that could integrate all the available information (clinical, biopsy, imaging) or combine existing models, such
as the ones for nephropathological data [Yi, 2022; Yoo, 2023] or the iBOX [Loupy, 2019] model from clinical
data, would highly benefit the clinic. Moreover, while we were able to provide clinically relevant interpretations
of the activations heatmaps from our DL-based model, it is essential to address the issue of interpretability.
Future clinical tools should not solely rely on results; better explainability is crucial. Collaborative efforts
between medical doctors and engineers are necessary to shed light on the capability of such models, which
can sometimes be perceived as black boxes. A recent study [Truchot, 2023] warns against the blind adoption
of machine learning algorithms, highlighting lower predictive and calibration results than classical statistical
approaches in modeling transplant failure using donor, recipient, and transplant-related parameters. Finally,
medical imaging techniques to monitor the kidney are evolving [Alnazer, 2021], and other advancing modal-
ities, such as Ultrasound Localization Microscopy [Bodard, 2023], could provide valuable data to apply DL
methodologies to overall graft survival.

To conclude, we designed in this study a novel DL-based methodology to extract pertinent imaging
features from early MRI examinations of renal transplants. Our promising results demonstrated the relevance
of such approaches to predict graft survival in future research.
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Prompt1: ”A scene of a discussion between an Artificial Intelligence Large Language Model and a medical
imaging system in a futuristic style.”

Summary
In this chapter, we introduce MEDIMP (MEDical IMages with clinical Prompts), an approach to learn
powerful manifolds of renal transplant DCE MRI data toward transplant function forecasting in the context
of renal transplantation monitoring. This approach provides an elegant way to incorporate clinical or bio-
logical information into the learning process of feature extraction of medical imaging data. We designed
clinicobiological prompts to leverage textual data and powerful NLP encoders using multimodal alignment of
representations with contrastive learning. We demonstrate the relevance of the approach for renal transplant
function forecasting. This work has been published in [Milecki, 2023a].

1Generated using Stable Diffusion XL.

https://stability.ai/stable-diffusion
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4.1 Introduction
End-stage renal disease is characterized by an irremediable reduction in kidney function, and renal replacement
therapy is required to save the patient’s life. Being more cost-effective than long-term dialysis and highly
improving quality of life, renal transplantation emerges as the most effective solution [Suthanthiran, 1994].
However, a substantial risk of transplant chronic dysfunction persists and may lead to graft loss or patient
death [Hariharan, 2021]. In clinical practice, the graft health status is primarily indicated by calculating the
glomerular filtration rate (GFR) from the creatinine level resulting from blood tests. Medical imaging plays
a substantial role in further examinations, and diverse imaging modalities have been investigated to monitor
renal transplants [Sharfuddin, 2014].

In this work, we introduce MEDIMP (MEDical IMages with clinical Prompts). This method learns
relevant DCE MRI representations of renal transplants using contrastive learning from pairs of 3D images
and clinicobiological prompts. The learned manifold enabled us to outperform state-of-the-art methods in
the challenging task of kidney function prediction 2, 3, and 4 years post-transplantation from 4 DCE MRI
follow-up exams. Our contributions are:

(i) We propose a semi-automatic medical prompt generation from tabular data; to the best of our knowl-
edge, this is the first work to propose such an approach for augmenting medical textual data;

(ii) We extend existing approaches that combine text and imaging data by integrating 3D medical inputs
and fine-tuning strategies; our approach allows using pretrained NLP models on a limited amount of
textual data.

This chapter is split into five sections. First, we present related work on learning representations of
medical imaging, multimodal approaches, and vision language modeling in Section 4.2. Then, in Section 4.3,
we present our methodology based on two main components: contrastive learning from joint image-text pairs
and medical prompts from structural clinicobiological data. We briefly describe the data used in this work in
Section 4.4. In Section 4.5, we detail the set of experiments and achieve results to demonstrate the relevance
of the proposed approach. Section 4.6 concludes and brings discussion on the limitations and perspectives of
this work.

4.2 Related work

4.2.1 Learning representation of medical imaging

Learning powerful representations of medical imaging is of utmost importance, given the usual small size and
limited annotations available. In such a setting, learning is performed in two stages. In the first stage, different
self-supervised or weakly-supervised learning methods [Taleb, 2020; Krishnan, 2022] are used on the available
imaging datasets, applying different types of learning, such as contrastive or adversarial learning [Sowrirajan,
2020; Azizi, 2021; Boyd, 2021]. Such representations are then frozen or fine-tuned for different downstream
tasks, for which the amount of information is insufficient for fully supervised learning. Such pretrainings
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could provide better representations and outperform ImageNet pretrained networks when applied to medical
imaging. However, they may produce suboptimal representations for the downstream tasks that merely capture
spurious correlations [Arjovsky, 2019]. More particularly, for renal transplantation, we proposed in section 3.3
weakly-supervised tasks from clinical information to learn rich representations of Dynamic Contrast-Enhanced
Magnetic Resonance Imaging (DCE MRI) using a single continuous attribute, confirming that combining
imaging and clinical data leads to powerful biomarkers for prognosis.

4.2.2 Multimodal approaches

Proposing the best multimodal framework to integrate all the available sources of information successfully
is of utmost importance in the medical field, where the amount of annotated data is very limited, with
possibly also missing attributes. Going beyond simple concatenation of multimodal variables, Sahasrabudhe
et al. [Sahasrabudhe, 2021] propose using a mixture-of-experts model to learn the contribution of each
provided modality for the diagnosis of lymphocytosis. The method outperformed other single-modal and
naive multimodal methods. Moreover, Chen et al. [Chen, 2021] proposed the use of a multimodal co-attention
transformer for the combination of whole slide imaging and genomic information.

4.2.3 Vision-language models

Recent advances in Natural Language Processing (NLP) make textual data a potent candidate for designing
weakly-supervised tasks to train computer vision models. Multiview contrastive learning [Bachman, 2019]
has been investigated to take advantage of jointly training an image and text encoder [Zhang, 2020; Rad-
ford, 2021; Jia, 2021; Müller, 2021]. For natural images, Radford et al. [Radford, 2021] produced robust
representations using 400 million (image, text) pairs, reporting competitive results on several downstream
tasks on unseen datasets compared to fully supervised baselines. Zhang et al. [Zhang, 2020] used chest
X-rays and pathology descriptions from radiology experts’ diagnoses. Müller et al. [Müller, 2021] extended
this joint image-text representation learning for localized tasks like semantic segmentation or object detec-
tion. All these studies consider 2D images and the medical ones used the MIMIC-CXR database, the largest
dataset containing paired medical images and radiology reports. However, such data curation is arduous and
highly time-consuming for medical experts. Moreover, such reports mainly contain information about the
corresponding imaging exam and do not focus on other comorbidities.

Therefore, we propose to go one more step forward by generating representations using paired imaging
and clinicobiological attributes in a relevant clinical setup with limited data. We explore recent NLP advances
in Large Language Models (LLMs). In particular, ChatGPT [OpenAI, 2023], a 175B parameters model, offers
a powerful tool to produce textual data. Specifically, textual data allow advantages as opposed to tabular
data for medical applications:

1. Contextual information: Textual data contains rich contextual information, helping to understand the
underlying patterns in the data better;
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2. Better representation: text can provide a more expressive representation of the information contained
in the data, leading to improved performances as our model better captures the complexities of the
clinicobiological data;

3. Transferability and Interpretability: text is often more transferable across domains than tabular data.
Moreover, text is more interpretable by humans, which is valuable for validating and understanding the
decisions made by the proposed method.

4.3 Methodology

Figure 4.2: Overview of our method MEDIMP – Medical Images with clinical Prompts.
1. Medical prompts are generated from clinicobiological data using predefined templates of sentences, given
as inputs to Large Language Models to produce augmented text data. 2. The medical prompts are used to
learn multimodal representations of renal transplants DCE MRI using contrastive learning from image-text
pairs.

Our multimodal representations are based on contrastive learning, coupling imaging, and text embeddings.
Our text relies on attributes that are easily accessible, widely used in clinical practice, and supplementary to
imaging data. Our goal is to use the learned manifold of renal transplant DCE MRI for the prognosis of
the transplant or patient status after 2, 3, and 4 years post-transplantation. An overview of the method is
presented in Figure 4.2.
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4.3.1 Contrastive learning from joint text-image pairs

The first component of MEDIMP is pretraining an image encoder EI, and a text encoder ET, following a
contrastive learning scheme using image-text pairs. Let us denote (xi, xt) ∈ RB×Nx×Ny×Nz ×RB×T a batch
of B corresponding pairs of an 3D MRI volume xib and a tokenized text xtb for b ∈ [[1, B]]. Both encoders
transform xi and xt, in fi = EI(xi) and ft = ET(xt) respectively, to a batch of D dimensional embeddings.
Both encoders are jointly trained to maximize the cosine similarity between the B pairs of image and text
embeddings by optimizing the two following losses:

Li→t =
B∑

b=1

− log ecos(fib,ftb)/τ∑B

k=1 ecos(fib,ftk)/τ
, (4.1)

where cos(·, ·) is the cosine similarity function and τ ∈ R+ a learned temperature parameter. Such loss was
first proposed as the InfoNCE loss [Oord, 2018] to maximize a lower bound on mutual information and is
widely used in recent uni-modal contrastive learning frameworks [Chen, 2020a]. Li→t enforces the image
embeddings to align to the text embeddings and is, therefore, asymmetric. Similarly, we define Lt→i:

Lt→i =
B∑

b=1

− log ecos(ftb,fib)/τ∑B

k=1 ecos(ftb,fik)/τ
. (4.2)

The total loss is obtained by averaging Eq.4.1 and Eq.4.2, denoted as Lcontrastive:

Lcontrastive = Li→t + Lt→i

2 (4.3)

Lcontrastive learns a multimodal feature space by jointly optimizing EI and ET to maximize the cosine
similarity of the embeddings fi and ft between the B true pairs per batch and minimizing the cosine similarity
of the B2 − B false pairs.

4.3.2 Medical prompts from structural clinicobiological data

To exploit image-text pairing with contrastive learning, as well as the expression and encoding capability
of recent NLP model advances, such as LLMs [Brown, 2020; OpenAI, 2023; Radford, 2021]. We propose a
framework to generate textual data from structural clinicobiological data that describe variables used in clinical
practice and linked to graft survival. The process is displayed on the left side of Figure 4.2. First, medical
experts guided us to set thresholds to categorize continuous variables into text labels such as “low”, “high”,
“stable”, and “unstable” and to produce one template sentence per variable of interest, e.g., “the GFR of the
patient is very low at the first-year follow-up exam”. However, templates offer only one way of expressing the
information of the variables. Indeed, the richness of language vocabulary can provide a variety of descriptions
for the same information, such as “During the first-year follow-up visit, the transplant patient’s GFR is found
to be very low.”, or “The transplant patient’s GFR is assessed as very low at the date follow-up examination.”,
thus generating descriptive text to train the proposed contrastive scheme. This richness was leveraged by
recent advances in LLMs at training; hence, they offer robust NLP tools. Specifically, we use the dialogue



4.3. Methodology 93

LLM ChatGPT [OpenAI, 2023] to produce N = 10 textual data augmentations for each template sentence.
All generated prompts are reported. The main conversation with the dialogue LLM ChatGPT [OpenAI, 2023]
to generate our medical prompts was the following:

• Input 1: “I want to find synonyms or text augmentations of full sentences in the context renal trans-
plantation. Are you familiar with these concepts ?”

Output 1: “Yes, I am familiar with the concept of finding synonyms or text augmentations of full sen-
tences, also known as text augmentation or data augmentation. This is a technique used to artificially
increase the size and diversity of a dataset by applying various natural language processing (NLP)
techniques such as synonym replacement, random insertion, deletion, and substitution of words. In the
context of renal transplantation, it could be used to expand the number of examples of medical reports
or other texts related to renal transplantation by generating similar but slightly different versions of the
original text.”

• Input 2: “The full sentence template is “The age of the donor is {age}. The glomerular filtration rate
(GFR) of the patient is {gfr} at {date} follow-up exam. And the creatinine levels variation were {adj}”
where {age}, {gfr}, {date}, {adj} can be changed by me but not by you, do you understand ?”

Output 2: “Yes, I understand. You have provided a sentence template with placeholders for age,
glomerular filtration rate (GFR), date, and an adjective that can be changed by you. And you are
looking for text augmentation to generate similar but slightly different versions of the original text
with the help of natural language processing(NLP) techniques such as synonym replacement, random
insertion, deletion, and substitution of words.”

• Input 3: “Provide full sentence synonyms of the sentences I provided, you are allowed to give more
context information and not especially respect the exact number of sentences.”

Output 3: “Here are some examples of synonyms or text augmentations of the sentence template you
provided:

1. "The age of the kidney donor is {age}. The patient’s glomerular filtration rate was measured to
be {gfr} at the {date} follow-up appointment. The creatinine levels showed {adj} variation.”

2. "The individual who provided the kidney for transplant was {age} years old. The recipient’s GFR
was determined to be {gfr} during the {date} check-up. Creatinine levels fluctuated {adj}.”

3. "At the time of transplant, the donor was {age} years of age. The patient’s GFR was evaluated
as {gfr} at the {date} follow-up examination. Creatinine levels demonstrated {adj} changes.”

4. "The age of the individual who donated the kidney was {age}. The GFR of the transplant
recipient was {gfr} at the {date} examination. There were {adj} variations in creatinine levels.”

5. "The kidney donor was {age} years old. The GFR of the transplant patient was measured as
{gfr} at the {date} follow-up visit. The creatinine levels showed {adj} fluctuations."

6. "The donor’s age was {age} at the time of transplant. The patient’s glomerular filtration rate
was found to be {gfr} during the {date} appointment. Creatinine levels were {adj}.”
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Please note that the sentences are not exact synonyms, but variations that convey similar information,
and that it’s possible to generate a lot more variations by changing the words, phrases or structures of
the sentences.”

• Input 4: “Give ten more synonym examples of the provided sentence and you can generate more
variations as you proposed.”

Output 4: “Sure, here are ten more examples of text augmentations of the sentence template you
provided:

1. “The kidney donor was {age} years of age. The patient’s GFR was found to be {gfr} at the
{date} check-up. Creatinine levels displayed {adj} fluctuations.”

2. “At the time of transplant, the age of the kidney donor was {age}. The patient’s glomerular
filtration rate was {gfr} at the {date} follow-up. Creatinine levels varied {adj}.”

3. “The individual who provided the kidney for transplant was {age} years old. The GFR of the
recipient was determined to be {gfr} during the {date} examination. There were {adj} changes
in creatinine levels.”

4. “The age of the kidney donor was {age}. The GFR of the transplant recipient was {gfr} at the
{date} follow-up visit. Creatinine levels fluctuated {adj}.”

5. “The individual who donated the kidney was {age} years of age. The patient’s glomerular filtration
rate was measured as {gfr} at the {date} check-up. The creatinine levels demonstrated {adj}
variations.”

6. “At the time of transplant, the donor’s age was {age}. The GFR of the patient was evaluated as
{gfr} during the {date} follow-up. The creatinine levels showed {adj} fluctuations.”

7. “The kidney donor was {age} years old at the time of transplant. The patient’s glomerular
filtration rate was {gfr} at the {date} examination. Creatinine levels varied {adj}.”

8. “The individual who provided the kidney for transplant was {age} years of age. The recipient’s
GFR was determined to be {gfr} at the {date} follow-up appointment. The creatinine levels
displayed {adj} changes.”

9. “At the time of transplant, the age of the kidney donor was {age}. The GFR of the transplant
patient was {gfr} during the {date} check-up. Creatinine levels fluctuated {adj}.”

10. “The individual who donated the kidney was {age} years old. The glomerular filtration rate of
the transplant recipient was {gfr} at the {date} examination. The creatinine levels showed {adj}
variation.”

Please note that the above sentences are not exact synonyms, but variations that convey similar
information, and that there are many more variations that can be generated by changing the words,
phrases or structures of the sentences.”
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4.3.3 Implementation details

The image encoder followed a 3D ResNet50 architecture initialized with CLIP [Radford, 2021] weights, a model
pretrained on 400 million (image, text) pairs collected from the internet. We extended the attention-based
pooling layer of CLIP to 3D and duplicated the weights to 3D in depth to match our data dimension. For the
text encoder, we used the BERT [Devlin, 2018] architecture initialized with the Bio+Clinical BERT [Alsentzer,
2019] model pretrained on the MIMIC clinical notes [Johnson, 2016]. The first 11 layers of Bio+Clinical BERT
were frozen, fine-tuning the last layer of the transformer with our contrastive task. Section 4.5.4 summarises
the ablation of fine-tuning more layers for our task. The temperature parameter τ was initialized to 0.07,
incorporated into the model as a learnable parameter, and clipped to prevent scaling the logits by more than
100, following the recommendations of CLIP training. In our experiments, we use the Adam [Kingma, 2014b]
optimizer with decoupled weight decay regularization [Loshchilov, 2017] of 0.02 with a starting learning rate
of 5e−5 following a cosine schedule and preceded by a linear warm-up of 40 epochs. The batch size was
set to 88 and the model trained for 200 epochs with mixed-precision on 4 NVIDIA Tesla V100 GPU using
Pytorch [Paszke, 2019].

For the image data, we used data augmentation with the sequential application with each a 0.5 probability
of horizontal flipping, random affine transformation, random Gaussian blur (σ ∈ [0, 0.5]), random Gaussian
noise (σ ∈ [0, 0.05]), random contrast perturbation (log γ ∈ [−0.3, 0.3]) using TorchIO python library [Pérez-
García, 2021].

4.4 Data
Our study was approved by the Institutional Review Board, which waived the need for patients’ consent.
The data cohort corresponds to study reference ID-RCB: 2012-A01070-43 and ClinicalTrials.gov identifier:
NCT02201537. The data used in this study are anonymized. Our imaging data are based on DCE MRI
series collected from 105 subjects (split as 72/5 training/validation, and 28 test). Each subject underwent up
to 4 follow-up exams, taking place approximately 15 days, 30 days, 3 months, and 1 year post-transplantation.

The DCE MRI volumes sized 512 × 512 × [64 − 88] voxels included spacing ranging in [0.78 − 0.94] ×
[0.78 − 0.94] × [1.9 − 2.5] mm. All volumes were cropped around the transplant using the automatic and
unsupervised method for selecting the region of interest and reducing dimensionality presented in section 2.2.
Intensity normalization was executed to each volume independently by applying standard normalization, clip-
ping values to [−5, 5], and rescaling linearly to [0, 1].

To provide the clinicobiological data used to generate text annotations and the endpoints, all 77 patients
in the train set were regularly subjected to blood tests before the transplantation and several years after to
measure the serum creatinine (Creat) level in µmol.L−1. The donor’s age variable and the GFR value at
each follow-up exam were also collected. For the 28 test subjects, these clinicobiological attributes were not
accessible during this study. As a result of blood tests, Creat is a primary indicator of kidney function used in
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clinical practice. The binary classification downstream task is obtained when binarizing the Creat value using
a threshold of 110 µmol.L−1 at different prediction dates. The Creat target prediction value is calculated as
the mean over three months before and after the prediction dates.

4.5 Experiments & Results

4.5.1 Learned representations visualization

First, we visualize the representations of DCE MRI from the trained image encoder using t-SNE decompo-
sition [Maaten, 2008]. Figure 4.3 shows the different reduced feature spaces obtained by the model trained
on all available clinicobiological variables (ncl = 4), projected specifically and adding colormaps for each
attribute. We evaluate the clustering of the imaging features toward the clinicobiological information covered
by our weak text annotations, adding augmented images to check the tendency better. While the continu-
ous variables were categorized and transformed to medical prompts, MEDIMP image encoder demonstrates
relevant representations towards (B) the GFR and (C) the Creat. The t-SNE decomposition does not reveal
favorable representations regarding (D) Donor’s Age. On the contrary, the obtained feature space serves well
the (A) Exam date information, where we retrieve better clustered very early exams (D15, red) and late exams
(M12, blue) due to their respective distance to the transplantation surgery.

4.5.2 Renal function forecasting

Downstream task and metrics

We evaluate MEDIMP on the downstream task of serum creatinine (Creat) prediction from the imaging
features of 4 follow-up exams using a light transformer architecture tailored for missing follow-up exams,
presented in section 3.5. Following the authors’ evaluation, 10-fold cross-validation was performed on the
training set, and results for the main models are summarised in Section 4.5.2. To make the task more
challenging, we evaluate the performance of the representations at 2, 3, and 4 years post-transplantation and
also report the mean over the three predictions for the 28 test subjects. The two evaluation metrics used
were the F1 score and the area under the receiver operating characteristic curve (AUC).

Ablation

First, we ablate all information used in our method MEDIMP by adding different combinations of the clin-
icobiological measurements in the medical prompts, i.e., the glomerular filtration rate (GFR) at the exam
date, the timestamp of the patient’s exam (Exam), the creatinine levels variation from the previous exam
(Creat), and the age of the donor (D.A.). We report the results in the bottom part of Table 4.1 (MEDIMP).
We observe that the best mean scores over the three predictions are obtained using all the available medical
prompts (last row). Moreover, the AUC decreases over the prediction date, showing the increasing prognosis
difficulty with time. Using only the GFR prompts (row 8), AUC scores are just above random, indicating the
need for more descriptive text.



4.5. Experiments & Results 97

Figure 4.3: t-SNE visualizations of the features of the last layer of MEDIMP image encoder using the
DCE MRI exams. Colormaps are set by the 4 variables of interest value used for the medical prompts: (1)
Exam (exam date), (2) GFR (mL.min−1), (3) Creat (µmol.L−1), and (4) donor’s age (year). Stars symbol
display the real data while circles the augmented (aug) data. D15, D30, M3, and M12 are the four exam
timestamps.

Comparison to the state of the art

Table 4.1 reports the results when comparing the proposed MEDIMP with our previous work for this task
presented in section 3.5, denoted as CosEmbLoss (row 2 & 3). Note that the main model of CosEmbLoss
uses only GFR information. Hence, it is directly comparable to MEDIMP when using only GFR (8th row).
These experiments reveal that smaller and more compact models, such as the CosEmbLoss perform better
than big models when the text information is not very rich. However, when more variables are integrated, our
proposed methods outperform the CosEmbLoss. For a fair comparison, we also compare MEDIMP to several
baselines with the same level of information. In particular, we evaluate against four baselines, denoted as
the CosEmbLoss++, where we gradually add the same level of information as in MEDIMP. In practice, we
optimize the same two-stream approach by averaging several cosine embedding losses based on the number
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Table 4.1: Comparison of MEDIMP vs SOTA. We evaluate the performance at 2,3,4 years post-
transplantation and report the mean. Ablations in weak annotations from either the comparison CosEmbLoss
pretaining or our proposed generated textual data are denoted as GFR (GFR at exam), Exam (which follow-
up), Creat (creatinine variations from the previous exam), and D.A. (the donor’s age). We report F1 score
(F1), and ROC AUC (AUC). Bold, Underlined indicates the top 1, 2 performing combinations, respectively.

Weak annotations 2 years 3 years 4 years MeanMethod GFR Exam Creat D.A. AUC F1 AUC F1 AUC F1 AUC F1

CLIP weights 62.6 73.7 52.5 78.1 51.3 54.6 55.5 68.8

CosEmbLoss ✓ 76.2 86.4 77.8 70.6 67.0 77.3 73.6 78.1
CosEmbLoss ✓ 75.5 81.1 75.6 68.8 66.1 78.1 72.4 76.0
CosEmbLoss++ ✓ ✓ 84.4 88.9 82.5 86.4 73.9 85.7 80.3 87.0
CosEmbLoss++ ✓ ✓ 81.6 87.8 71.3 85.1 71.3 90.2 74.7 87.7
CosEmbLoss++ ✓ ✓ ✓ 78.2 87.0 75.0 83.3 74.8 87.0 76.0 85.8
CosEmbLoss++ ✓ ✓ ✓ ✓ 75.5 85.7 62.0 69.8 63.5 80.9 67.0 78.8

MEDIMP ✓ 56.5 83.3 51.9 79.1 49.6 90.2 52.6 84.2
MEDIMP ✓ ✓ 81.0 89.4 81.9 80.0 74.8 84.4 79.2 84.6
MEDIMP ✓ ✓ ✓ 76.9 73.2 86.3 85.7 74.8 90.2 79.3 83.0
MEDIMP ✓ ✓ ✓ 72.8 86.4 71.9 81.0 71.3 71.8 72.0 79.7
MEDIMP ✓ ✓ ✓ ✓ 85.0 89.4 84.4 83.7 75.7 90.2 81.7 87.8

of variables of interest incorporated. We report these results in rows 4-7 of Table 4.1. We observe that
CosEmbLoss++ achieves its best performance when using a combination of 2 variables. The best mean AUC
is 80.3% with GFR and D.A., and the best F1 is 87.7% with GFR and Creat, which are lower than the best
MEDIMP performances. Note, the Exam information was only added to one CosEmbLoss++ combination
(7th row) as this variable is less adapted to CosEmbLoss approach. Nevertheless, combining the 3 variables
of interest with CosEmbLoss++ lowers the performance to 76.0% AUC and 85.8% F1 in Mean. Overall,
MEDIMP with all medical prompts results in the best predictions at 2 and 4 years post-transplantation.

Cross-validation results

We evaluated our representations on the downstream task of kidney function prediction 2 years post-transplantation
presented in section 3.5. We performed the task on two more prediction dates, namely 3 and 4 years post-
transplantation, to better highlight the significance of our proposed approach. Nevertheless, following the
evaluation of section 3.5.3, we also performed 10-fold cross-validation on the training set. We report below
in Table 4.2 those cross-validation results (ROC AUC, F1 as mean ± standard deviation) for our validation
set, for the best combination (denoted with ⋆) of CosEmbLoss presented in section 3.3.1, CosEmbLoss++,
and our proposed MEDIMP, for the three different tasks. While demonstrating similar cross-validation results
over the mean of the three prediction tasks, MEDIMP enables lower variation in the validation sets.
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Table 4.2: Cross-validation results. We report F1 score (F1), and ROC AUC (AUC) as mean ± standard
deviation for the best combinations of CosEmbLoss, CosEmbLoss++ and our proposed MEDIMP, denoted
with ⋆.

Method 2 years 3 years
Validation set AUC F1 AUC F1
CosEmbLoss⋆ 93.3 ± 12.0 86.4 ± 12.2 81.7 ± 15.9 74.4 ± 23.3
CosEmbLoss++⋆ 91.7 ± 14.6 88.8 ± 10.4 84.1 ± 14.3 71.4 ± 20.5
MEDIMP⋆ 89.3 ± 11.4 80.1 ± 11.8 87.5 ± 4.1 81.7 ± 6.5

Method 4 years Mean
Validation set AUC F1 AUC F1
CosEmbLoss⋆ 84.5 ± 16.5 64.6 ± 26.9 86.5 ± 14.8 75.1 ± 20.8
CosEmbLoss++⋆ 83.3 ± 13.9 69.1 ± 27.3 86.4 ± 14.3 76.4 ± 19.4
MEDIMP⋆ 81.4 ± 13.9 71.9 ± 29.6 86.1 ± 9.1 77.9 ± 16.0

4.5.3 Medical prompt generation

To demonstrate the relevance of the proposed approach for medical prompt generation, we compare our
main model with two other approaches that produce text information. The first one is noted as “Manual”
and comprises all the templates indicated by the medical experts, corresponding to only one sentence per
variable of interest. Note that this is the base of our proposed medical prompting without using the prompt
expansion method described in Section 4.3.2. The second one uses an existing NLP model, T5 [Raffel, 2020],
to produce sentences from structural data. For a fair comparison, we train the T5 model on the WebNLG
2020 data [Gardent, 2017] and infer it on our data to generate text, denoted as “T5 WebNLG”. The results
are summarized in Table 4.3, highlighting the superiority of our method. The “T5 WebNLG” approach offers
a competitive F1 for all the predictions, although the AUC is the lowest except for the 2 years prediction.
We show in Section 4.5.3 examples of generated texts from these three approaches. “Manual” approach
lacks diversity in the text data, and therefore the training process of our proposed approach without text
augmentations is more challenging.

Table 4.3: Quantitative evaluation of the proposed method against other text generation methods.
All medical prompts were used. We report F1 score (F1), and ROC AUC (AUC). Bold, Underlined indicates
the top 1, 2 performing combinations, respectively.

2 years 3 years 4 years MeanMethod AUC F1 AUC F1 AUC F1 AUC F1
MEDIMP 85.0 89.4 84.4 83.7 75.7 90.2 81.7 87.8
Manual 74.2 76.2 80.6 62.1 80.0 76.9 78.3 71.7
T5 WebNLG 74.8 85.7 78.8 83.3 74.8 85.7 76.1 84.9



100 Chapter 4. Leveraging LLMs advances for multimodal representations

Textual data generation

We compare the proposed approach for medical prompt generation with two other approaches that produce
text annotations. The first one is noted as “Manual” and comprises all the templates indicated by the
medical experts, corresponding to only one sentence per variable of interest. Note that this is the base of our
proposed medical prompting without using the LLM augmentation method. The second one uses an existing
NLP model, T5 [Raffel, 2020], to produce sentences from structural data. We train the T5 model on the
WebNLG 2020 data [Gardent, 2017] and infer it on our data to generate text, denoted as “T5 WebNLG”.
We observe that the “Manual” approach lacks diversity in the textual data, as no text augmentations are
performed for this straightforward process. “T5 WebNLG” offers more variability in words used, but the
structure of the sentences remains similar and straightforward. Moreover, some incorrect generations occur,
e.g., “The age of the donor” is replaced by “The age of the patient”. Such errors introduce anomalies in the
data, a highly sensitive issue in such a medical context.

• “Manual” – from one sentence template:
“The age of the donor is low. The glomerular filtration rate (GFR) of the patient is high at one month
follow-up exam. And the creatinine levels variation were stable.”;

• “T5 WebNLG” – pretraining a model to generate textual data from structural data:

- correct generation example: “The age of the donor is high. The glomerular filtration rate is
medium. The creatinine levels of a patient are unstable.”;

- incorrect generation example: “The age of the patient was low. The glomerular filtration rate of
GFR is an extrem low rate. The creatinine levels of a patient are unstable.”

• MEDIMP: see Section 4.3.2.

4.5.4 Freezing the text encoder

For the text encoder, we used the BERT [Devlin, 2018] architecture initialized with the Bio+Clinical BERT [Alsentzer,
2019] model pretrained on the MIMIC clinical notes. BERT is based on the transformer [Vaswani, 2017] ar-
chitecture and comprises 12 transformer blocks. Our main models were obtained by freezing the first 11 layers
of the Bio+Clinical BERT model, fine-tuning only the last layer of the transformer with our contrastive task.

Benefiting from a dataset of 400 million (image, text) pairs collected from the internet, Radford et al.
[Radford, 2021] trained both their image and text encoder from scratch. While we used the same initialization
as Zhang et al. [Zhang, 2020], they froze their text encoder’s first half (6 layers). In recent NLP work, Lu et al.
[Lu, 2021] suggested only finetuning normalization layers (LN) in the transformer blocks, without finetuning
the self-attention and feedforward layers of the residual blocks. Table 4.4 reports the ablation results using
this latest strategy, denoted as not LN, and gradually freezing the 6, 9, and 11 first layers of the text encoder.
The ablation was evaluated using two sets of weak annotations from our proposed method, first, the GFR
and date, denoted as MEDIMP A, and second, the GFR, Exam, and Donor’s Age, denoted as MEDIMP B.
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We observe that freezing the first 11 layers gives us the best performances, which is the strategy we used for
our approach.

Table 4.4: Ablation results on the way of freezing the text encoder. We report F1 score (F1), and ROC
AUC (AUC). Bold, Underlined indicates the top 1, 2 performing combinations, respectively.

2 years 3 years 4 years MeanMethod Freezing ET AUC F1 AUC F1 AUC F1 AUC F1
MEDIMP A First 11 81.1 89.4 81.9 80.0 74.8 84.4 79.2 84.6
MEDIMP A First 9 74.8 75.7 81.9 81.0 76.5 68.6 77.7 75.1
MEDIMP A First 6 74.2 74.4 70.0 82.1 83.5 68.6 75.9 75.0
MEDIMP A not LN 73.5 70.6 77.5 80.0 73.0 71.8 74.7 74.1
MEDIMP B First 11 76.9 73.2 86.3 85.7 74.8 90.2 79.3 83.0
MEDIMP B First 9 83.7 64.5 78.1 82.9 75.7 64.7 79.2 70.7
MEDIMP B First 6 75.5 70.6 84.4 80.0 84.4 82.9 81.4 77.8
MEDIMP B not LN 66.7 81.0 79.4 80.9 60.9 85.7 69.0 82.5

4.6 Discussion & Conclusion

Our experiments have shown improvements in the representation learning capabilities of deep image encoders
for renal transplantation MRI compared to the previous state-of-the-art approach for the specific application
of renal transplant function forecasting. MEDIMP aimed at enhancing representation learning approaches
using external data, leveraging the power of deep NLP models, such as LLMs, and introducing a novel pro-
cess to incorporate relevant clinicobiological medical information. We deem that such an approach crossing
modalities in medical research would highly improve the capacity to understand complex biological and med-
ical phenomena.

However, some limitations of our framework remain to be analyzed. (1) First, although limited data is
part of the challenges of this study, supplementary test data would indubitably support validating our method.
To our knowledge, no public medical imaging dataset offers simultaneously longitudinal imaging, biological,
as well as clinical data for each patient for prognosis at different times. Nevertheless, our proposed framework
could be easily translated to similar datasets having imaging data and any type of tabular data. (2) Second,
this work constitutes a first attempt to generate medical prompts as text information from a few clinicobio-
logical variables of interest, which are crucial to apprehend complex medical concepts. Thus, we would seek
to extend this work to exploit more variables to guide the training of the image encoders. Using our proposed
framework this can be easily implemented since only a few templates will need to be defined to automatically
generate text augmentations. (3) Finally, the study of the development and comprehension of LLMs is recent.
We expect such NLP models to increase the emphasis on using textual data. However, the main drawback of
these models is their reliability, in the sense that inaccurate generation might be challenging to detect. In this
work, we use ChatGPT to enable relevant and robust text augmentations. No information from the sensitive
medical data was leaked into the prompts, which is an essential process in the medical domain. One could
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think of several ways to further use such models as powerful tools, for instance, through prompt engineering
tuned for medical cases.

We have introduced MEDIMP, an approach to learn powerful manifolds of renal transplant DCE MRI
data toward transplant function forecasting in the context of renal transplantation monitoring. This approach
provides an elegant way to incorporate clinical or biological information into the learning process of feature
extraction of medical imaging data. The presented representation learning strategy enabled us to outperform
the state of the art in the challenging task of creatinine prediction. These promising results advocate using
textual data from emerging LLMs to assist in training robust medical imaging models.
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Prompt1: ”A wild discussion between scientists (including women) at an international conference with coffee
mugs in cartoon style.”

Summary
In this chapter, we start by outlining the main contributions of this thesis. We then delve into a discussion
of compelling perspectives that have emerged from our work and exciting future directions in forthcoming
research projects, with a focus on representation learning for medical image analysis, the potential of foun-
dation models in medical imaging, AI frameworks for renal transplantation monitoring, and two relevant AI
topics not covered in our work. Lastly, we provide a concluding perspective on the entire thesis.

1Generated using Stable Diffusion XL.

https://stability.ai/stable-diffusion
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5.1 Main contributions
In this thesis, we investigated different methodologies to advocate the use of AI algorithms in the monitoring
of renal transplantation, to better detect or predict transplant complications, risk of chronic dysfunction, and
ultimately graft failure. We built our research on the recent development of deep learning-based represen-
tation learning and un-/weakly-/self-supervised frameworks. We worked with multiple medical data sources,
focusing on the medical imaging modalities.

Chapter 2 introduced the baseline methodologies to develop machine learning models for renal transplantation-
related tasks from clinical, biological, and imaging data. We investigated these classical approaches and
observed their limitations with limited data. To compute predefined radiomics from medical imaging data,
we designed an unsupervised and deep-learning based algorithm to automatically detect and segment renal
transplants from MRI data. We investigated the use of multi-sequence MRI, notably with the DCE and
T2 sequences, to alleviate the difference in enhancement of the organ in the scans in order to perform the
task. Our quantitative results indicate that our tool could help clinical practice to provide fast and robust
monitoring of kidney grafts.

In Chapter 3, we provided medical-specific pretrainings to learn meaningful representations of our renal
transplant DCE MRI data. These pretrainings leverage contrastive learning objectives based on clinical vari-
ables linked to graft survival to guide the training of our deep CNNs encoders. We demonstrated the relevance
of our generated features by designing a renal function forecasting downstream task from the imaging follow-
up examinations. Our approach introduced the use of transformer architecture to model time dependencies
and allowed us to handle missing examinations to perform the prediction. In a second phase, we studied the
relevance of our imaging encoders, providing AI-based radiomics, for different MRI sequences and different
timestamp follow-ups, and their capability to predict overall graft survival at five years, notably from early
DCE MRI examinations. Our promising results encourage the use of medical imaging over time to assist
clinical practice for fast and robust monitoring of kidney transplants.

In Chapter 4, we investigated multimodal contrastive learning to incorporate clinical and biological struc-
tural data into the learning of renal transplant MRI representations by leveraging the expressiveness of textual
data, notably with the recent success of Natural Language Processing innovations. We designed medical
clinical prompts from the emerging LLMs to constitute image-text pairs. Moreover, we provided tailored
multimodal methodologies to handle limited tabular data and 3D medical imaging data, notably with transfer
learning and fine-tuning techniques. Our encouraging findings advocate using textual data from emerging
LLMs to assist in training robust medical imaging models.
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5.2 Perspectives & Future directions

This thesis presented distinct and original contributions to the field of deep learning and representation learn-
ing with un-/weakly-/self-supervised techniques applied to renal transplantation monitoring. Each chapter
incorporated a discussion including limitations and perspectives for each of our distinct studies. Nevertheless,
beyond the respective limitations of the proposed methodologies, we would like to provide broader perspectives
and appealing future directions in the domains of deep learning for medical image analysis that we explored
(more or less) during the thesis.

5.2.1 Representation learning for medical image analysis

First, we developed innovative deep learning methodologies that were experimented only on our specific renal
transplantation application and dataset. Although some aspects of the proposed approaches were tailored for
the renal transplantation context, such as using specific clinical and biological variables to incorporate clinical
knowledge guidance to the learning of our imaging representations, we deem that our proposed approaches
can easily be adapted to other applications, using other imaging modalities and other clinical variables of in-
terest specific to the task. In forthcoming research endeavors, we plan to expand our multimodal methodology
to multimodal imaging by incorporating both MRI and US modalities. Our exploration aims to discern the
advantages derived from both modalities through multiview contrastive learning, evaluating their respective
contributions to the task of forecasting renal transplant function. Additionally, we are implementing late
fusion modules based on self-attention in the scenario of missing examinations. These modules facilitate the
combination of features from distinct modalities, yielding unified embeddings agnostic to modality variations.
Analogous to the architecture introduced in Chapter 3 for handling longitudinal dependencies, our fusion
module captures cross-modal dependencies while accommodating the absence of certain modalities during
both training and testing phases. In this context, we are experimenting with knowledge distillation techniques
to establish a teacher-student framework. The teacher model is exclusively exposed to input pairs without
missing modalities, and it imparts knowledge to the student model, which is trained utilizing inputs featuring
missing modalities. This methodology holds promise for diverse applications and various modalities, such as
detecting alterations of consciousness in fighter jet pilots based on video and biological signals data.

Moreover, recent studies have highlighted a limitation in the classical supervised learning setup, where
models are directly optimized from input-label pairs. This limitation affects the expressiveness of their internal
representations. The emergence of self-supervised approaches, which design proxy tasks based on prior data
knowledge or the desired task, has shown significant promise and success in mitigating this issue. A notable
example of this shift is the Alphafold project [Jumper, 2021], a collaborative effort involving experts from
various disciplines, including biology, computer science, and engineering. This project developed a powerful
AI model grounded in the principles of physics and biological mechanisms to predict protein structures.
It illustrates the potential of incorporating prior knowledge about data or tasks as a valuable guide for
representation learning techniques. Such prior knowledge can take various forms, including expertise in
specific fields like medicine and biology, physics-based principles, or longitudinal data. Incorporating this
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information into AI models not only enhances their performance but also offers insights into the underlying
mechanisms and phenomena, potentially exceeding the capabilities of human comprehension. Following this
direction, our objective is to enhance the integration of medical follow-up mechanisms to refine the modeling
of longitudinal imaging data. This refinement would enable a more accurate representation and inference of
trajectories associated with transplants, facilitating comprehensive analyses of inter and intra-patient statistics
concerning these trajectories. A specific focus on the examination of our longitudinal imaging data in the
context of complications events and adjustments in drug treatments holds significant potential for clinical
applications.

5.2.2 Developing foundation models for medical imaging

In our previous chapter, we introduced an innovative approach that involves integrating structural data into
medical imaging models using Large Language Models (LLMs). This strategy harnesses the power of textual
data and leverages state-of-the-art NLP encoders, including large transformer models like BERT, which have
been trained on extensive collections of clinical and biological notes. We anticipate a growing role for LLMs in
the realm of medical imaging, as they offer robust tools that can be seamlessly integrated into AI frameworks.
Our research utilized a limited set of clinical variables to generate prompts and textual data augmentations.
Expanding the diversity and richness of prompts derived from LLMs could potentially enhance our training
processes and the quality of our learned representations. Furthermore, our evaluation of the pretrained image
encoder was primarily focused on the renal function forecasting task. Future investigations could explore
additional downstream tasks, such as text or image retrieval, to further underscore the value of multimodal
approaches. Regarding the modeling and architecture aspects, we established a strong baseline by training
one encoder per modality using multiview contrastive learning. Future work involves potential architectural
enhancements, such as integrating cross-attention mechanisms to better capture complex cross-modal re-
lationships or directly incorporating prompt mechanisms into our optimization loop. Recent studies have
introduced appealing methodologies for adapting existing foundation models, including the use of adapter
modules [Wu, 2023] in the Segment Anything Model [Kirillov, 2023] and the exploration of medical and
clinical knowledge within existing LLMs [Singhal, 2023a]. Moreover, the literature on LLMs continues to
introduce novel innovations for training our models. Techniques like prompt tuning [Lester, 2021] and the
chain of thoughts [Wei, 2022b] approach have shown promise in optimizing LLM performance. Additionally,
this research contributes to a deeper understanding of transformer architecture at a larger scale, with emerg-
ing technical advancements such as rotary positional embeddings [Su, 2021] and flash attention [Dao, 2022],
which hold the potential to enhance our methodologies.

Another potential avenue of exploration involves the development of dedicated foundation models tailored
specifically for medical imaging, rather than relying on foundation models from other domains (primarily NLP
and CV) and employing transfer learning or fine-tuning strategies. In this case, the primary challenge revolves
around data scarcity. Given the diversity, intricacy, and specificity of medical applications, an essential
consideration is whether it is realistic to expect a single, all-encompassing model to perform exceptionally
across a wide range of medical tasks and organs. Recent studies in the field of medical imaging have started
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to address this issue by initially focusing on specialized applications. These endeavors have given rise to
foundation models for applications such as histopathology whole slide images [Chen, 2022a] and endoscopic
videos [Wang, 2023b]. A future direction for our work would be to design a foundation imaging model for
renal transplant status monitoring and prediction. The next section describes the challenges and potential
directions to tackle this appealing direction.

5.2.3 Next AI tools for renal transplant monitoring

Our studies advocate the potential of AI algorithms as robust tools for the analysis of medical imaging data
in the context of apprehending complications in renal transplants, forecasting kidney function, and overall
graft survival. However, it is imperative to acknowledge the limitations imposed by the scale of our cohorts,
which originate from a single hospital. A critical direction for improvement lies in collaborating across mul-
tiple sources of data from various sites and distinct research groups. Such collaboration holds the promise
of bolstering the credibility of our findings. Incorporating data from diverse populations, utilizing different
imaging devices, and, potentially, accommodating various acquisition protocols would serve the dual purpose
of mitigating biases in our research and analysis and illustrating the resilience and adaptability of the models
we employ. This collaborative approach would be invaluable in advancing the field of medical imaging analysis
and demonstrating its utility in clinical settings.

While our research has been primarily centered on the analysis of imaging data and the extraction of
pertinent information, we have also made efforts to integrate clinical and biological information within the
proposed frameworks. However, renal transplantation monitoring is inherently multidisciplinary, encompassing
nephrology, urology, radiology, and potentially a range of other medical specialties, each tailored to individual
patient needs. In the pursuit of precision (or personalized) medicine, the development of models capable of
processing multiple modalities to aid in diagnosis and prognosis holds significant promise for clinical practi-
tioners. The integration of multimodality and the fusion of diverse data sources are paramount to effectively
emulate the multi-disciplinary nature of medical decision-making. In the context of AI frameworks, the on-
going challenges lie in the intricacies of curating complex multimodal datasets and, equally importantly, in
designing approaches that can manage and interpret this wealth of information in a balanced and compre-
hensible manner. These efforts are instrumental in realizing the potential of multimodality for our clinical
application.

Finally, in addition to addressing potential biases and enhancing robustness through data, there is a
pressing need to focus on improving the robustness and generalizability of our models and methodologies.
In our initial Chapter 1, we introduced several approaches aimed at producing better-calibrated models and
elucidated methodologies for model explainability. One notable example is the utilization of deep network
model activations to provide predictions, coupled with heatmap visualization (as demonstrated in Chapter 3).
The development of such techniques is crucial in the context of medical applications. Furthermore, the
work presented in this thesis, encompassing ongoing research and experimentation, primarily revolved around
methodological innovations. Beyond those we have employed, a plethora of other tools, particularly statistical
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ones, are readily available to facilitate more comprehensive analyses of the results obtained. Leveraging these
tools opens up the possibility of addressing clinically relevant questions and ensuring the applicability and
integrity of the proposed models from a clinical point of view.

5.2.4 Going beyond this thesis

Beyond the valuable contributions of this thesis, some of its limitations stem from unexplored directions. The
focus of this thesis has revolved around recent deep learning-based methodologies in the realm of medical
image analysis, encompassing areas such as representation learning, self-supervision, and contrastive learning.
It also delved into aspects of multimodality, the interpretability of deep networks, sequential data modeling,
and the fusion of vision and language models. While our community is actively exploring numerous other re-
search directions, we would like to highlight two specific prospects that hold both excitement and significance
in contemporary literature. These prospects not only offer exciting directions for further exploration but also
underscore pertinent issues in the context of medical applications.

The first area of interest pertains to generative modeling, particularly the recent advances in diffusion
models. These models have their roots in the concept of learning to reverse a noising or diffusion pro-
cess [Sohl-Dickstein, 2015; Song, 2019; Ho, 2020], offering a novel paradigm for learning data distributions
and generating new data points. Diffusion models have demonstrated state-of-the-art capabilities in con-
tent generation, particularly in computer vision tasks, and have even played a role in crafting the visually
appealing chapter covers within this thesis. Much like the competition for superior Large Language Models
(LLMs), innovation in diffusion models is progressing rapidly, with novel approaches aimed at enhancing the
generation process [Dhariwal, 2021; Ho, 2020] and providing editing tools for both existing and generated
images [Hertz, 2022; Brooks, 2023]. In the realm of medical imaging, a growing body of recent studies
highlights the relevance of such models across a range of tasks, including artifact restoration and image de-
noising [He, 2023; Shen, 2023], image acquisition and reconstruction [Pan, 2023; Han, 2023], medical image
synthesis [Jiang, 2023; Peng, 2023], and certification of segmentation models [Laousy, 2023]. However, given
the complexity of the data and the intricate phenomena at stake in medical imaging applications, the applica-
tion of generative models for clinical purposes must be approached with caution. These generative approaches
give rise to critical considerations for clinical practice. Following this direction in our work, diffusion models
present a promising avenue for modeling longitudinal data, particularly in addressing challenges related to
varying sequence lengths and missing data. This potential has been explored in a recent study by Yoon et al.
[Yoon, 2023], which focused on a 3D longitudinal cardiac MRI dataset.

The second critical domain of consideration involves fairness, privacy, ethics, social responsibility, and
transparency within AI frameworks. A notable study has shed light on the systemic biases that can influence
AI models, resulting in unfair discrimination against certain demographic groups (e.g., based on sex or skin
color) across various scenarios [Zou, 2018], including machine translation and image classification. The field
of medical image analysis is no exception to this challenge, with issues such as sex imbalance observed in
medical imaging datasets [Ricci Lara, 2022]. The origins of biased systems can be traced to three key factors:
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the data used for model training, design choices made in model development, and the individuals responsible
for creating these systems. Ensuring fairness in healthcare access is paramount, and exploring strategies to
mitigate those biases is imperative. The aforementioned studies and a vast body of literature offer valuable
solutions to address bias and promote the development of more equitable algorithms. While it may seem
demanding to incorporate these solutions, along with other principles such as calibration and explainability,
into our research methodologies, a simple initial step is to consistently report the demographic characteristics
of the data used in our studies. Privacy is another critical facet of consideration, as discussed by Kaissis et al.
[Kaissis, 2020] in the context of machine learning algorithms for medical imaging. Medical data are inherently
sensitive, and ensuring the security of systems deployed in clinical settings is essential.

5.3 Conclusion
In this thesis, we provided novel deep learning approaches to tackle several challenges in medical image analysis
in the context of renal transplantation monitoring. Our methodologies focused on innovative and medical-
oriented representation learning techniques to obtain pertinent manifolds of our data and provide relevant
information for different downstream tasks for renal transplantation. We hypothesized kidney transplants to
be a significant source of data for imaging investigations. Our studies, focusing on innovative methodological
contributions, demonstrated the relevance of imaging data for renal transplant function forecasting and graft
survival prediction. Having the chance to pursue this multi-disciplinary research with active medical and
computer scientists collaborators, our projects led to original publications in top-tier international conferences.
Although our private dataset provided numerous stimulating aspects, such as various imaging modalities,
availability of clinical attributes, and longitudinal examinations, to pursue challenging research and tackle
clinically relevant investigations, the limited number of observations (patients) and no access to external
site validation sets hinder the potential impact of our results. Nevertheless, our research supports a strong
proof of concept for such approaches and advocates the use of cutting-edge deep learning methodologies
for medical image analysis. We aspire to set the path for future research directions from collaborating in
a multi-disciplinary environment with clinicians, computer scientists, and engineers toward more expressive,
robust, and generalizable features and information extractor models for medical applications and ultimately
improved patient care.
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Titre: Apprentissage de représentations de données multimodales et longitudinales pour le suivi de la transplantation
rénale
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Résumé vulgarisé:

La transplantation rénale est une procédure vitale pour les patients atteints d’insuffisance rénale en phase termi-
nale, mais son succès à long terme repose sur le suivi continue du rein transplanté. Cette thèse explore l’intégration
d’algorithmes d’intelligence artificielle (IA) dans ce suivi, en particulier dans l’analyse des données d’imagerie médicale,
afin d’améliorer l’efficacité et la précision du diagnostic des complications, des phénomènes de rejet et de l’évaluatation
de la fonction du greffon. L’étude englobe le développement de nouvelles méthodologies d’apprentissage profond et
d’apprentissage auto-supervisé. En combinant des techniques d’IA avancées avec l’imagerie médicale, cette recherche
contribue à la détection précoce des problèmes post-transplantations, ainsi qu’à l’avancement du domaine de la trans-
plantation rénale. Nos conclusions soutiennent la pertinence de l’intégration de l’IA dans la pratique clinique, au bénéfice
des patients et des experts médicaux.

Title: Representation Learning of Multimodal and Longitudinal data for Renal Transplantation monitoring
Keywords: deep learning, self-supervised learning, multimodal learning, longitudinal data, medical imaging, renal trans-
plantation.
Popularized abstract:

Renal transplantation is a life-saving procedure for patients with end-stage renal disease, but its long-term success
relies on continuous monitoring of the transplanted kidney’s health. This thesis explores the integration of artificial
intelligence (AI) algorithms into renal transplantation monitoring, particularly in the analysis of medical imaging data.
Leveraging the power of AI, this thesis aims to enhance the efficiency and accuracy of diagnosing complications, rejection,
and graft function. The study encompasses the development of novel deep learning methodologies to analyze medical
images, focusing on MRI scans. By fusing advanced AI techniques with medical imaging, this research contributes to
the early detection of issues, improving patient outcomes, and ultimately advancing the field of renal transplantation.
Our findings support the relevance of integrating AI and medical imaging into clinical practice to benefit patients and
medical experts.
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