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Abstract

High transmission endemic areas pose a substantial challenge to falciparum malaria
management and elimination due to the vast reservoir of chronic asymptomatic
infections that sustain transmission. P. falciparum ’s worldwide burden is now
concentrated only in fifteen high transmission endemic countries, primarily in
Sub-Saharan Africa. Hidden reservoirs of chronic asymptomatic infections are
attributed not only to the high transmission rates in endemic regions, but also from
non sterile specific immunity to P. falciparum that exhibits antigenic variation, which is
facilitated by several multi-copy gene families.

In the case of falciparum malaria infections, the most studied multigene family
responsible for mediating antigenic variation, is known as var and it encodes
Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1), which is the
major target of host immunity during the blood stage infection and has been linked to
protection against severe disease and parasite clearance. Each parasite genome
contains about 60 copies of var genes that undergo mutually exclusive expression. In
highly endemic areas, each parasite isolate will typically contains a unique set of var
gene sequences. This diversity in the number of antigenic variants mounts to huge
pressure on the hosts’ immune system and enables the parasite to establish long
infections as hosts might not have encountered most of the variants from the
repertoire during previous infections. However, the frequency of var switching and
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the immunogenicity of each expressed PfEMP1 remain unclear.

In this thesis, we aimed to exploit theoretical approaches to gain insights into the
switching rates of var variants in different environments: within the host and
subsequently in vitro after infection. To this end, we took advantage of a Controlled
Human Malaria Infection (CHMI) study with 19 adult African volunteers in The
Gambia to gain insight into the effect of naturally acquired immunity on the
expressed var gene repertoire during early phase of an infection. Our results revealed
a significant association between the diversity of var expression, as measured by
entropy, and infection outcomes.

Individuals with low immunity exhibited higher var entropy profiles, increased
parasitemia, and reduced recognition of PfEMP1 domains compared to those with
high immunity. Furthermore, we quantified the probability of var gene switching in
vitro and turnover in vivo for the first time. This allowed us to estimate both intrinsic
switching and negative-selection effects, indicating rapid turnover/switching
probabilities of 69% - 97% and 7% - 57% per generation, in vivo and in vitro,
respectively. Var (PfEMP1) expression triggered time-dependent humoral immune
responses in low immunity individuals. Surprisingly, many PfEMP1 domains failed
to elicit an antibody response. Our study suggests that intrinsic var switching serves
to reset and maintain a diverse var repertoire. The high var switching rates, along
with potentially weak PfEMP1 immunogenicity, appear to confer advantages for
parasite survival during CHMI.

In the second part of the thesis, antigenic variation in malaria is then mathematically
and numerically investigated in more detail using a model accounting for antigenic
diversity to explore parasite persistence under the effects of host immunity. To this
end, we derived inspiration from an existing viral antigenic variation framework, and
characterise the infection both analyticallly and numerically, given some mild
constraints.

We analytically and numerically showed the effects on antigenic variation on
elongation of infection, and the dependence on the variant pool, which revealed that
infection length is a linear correlate of the number of variants present in a population.
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Using stochastic implementation of a theoretical model, we also show that at the early
stages of infection, antigenic variants can be equally likely to occur, and can sustain
the pressure mounted by the immune system even with switching rates incorporated
using the deterministic analogue of Markov Processes. Switching rates of the order
10−1 were found to be sufficient for successfully establishing infection, under a
constant immune response. Analytically, we provide stability criteria for the existence
of stable solutions of the parasite population subjected to switching. On analysing the
deterministic model with switching rates originating from a generator process, we
found that the infection was characterised by overlapping peaks corresponding to
multiple variants, and decreased in amplitude over time.
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Résumé

Les zones d’endémie à transmission élevée posent un défi substantiel à la gestion et à
l’élimination du paludisme à Plasmodium falciparum en raison du vaste réservoir
d’infections chroniques asymptomatiques. La plupart des zones d’endémie à
transmission élevée se situent en Afrique subsaharienne. Le réservoir d’infections
chroniques asymptomatiques est attribué non seulement aux taux élevés de
transmission dans les régions endémiques, mais aussi à l’immunité spécifique non
stérile à P. falciparum qui présente une variation antigénique, facilitée par plusieurs
familles de gènes multicopies.

Dans le cas des infections palustres à P. falciparum, la famille de gènes responsable
de la variation antigénique est connue sous le nom de textit{var}, codant pour
PfEMP1, qui est la cible principale de l’immunité de l’hôte lors de l’infection à stade
sanguin et a été liée à la protection contre les formes graves de la maladie. Chaque
génome parasitaire contient environ 6̃0 copies de gènes var qui subissent une
expression mutuellement exclusive. Dans les zones fortement endémiques, chaque
isolat parasitaire contiendra généralement un ensemble unique de séquences de
gènes var. Cette diversité dans le nombre de variants antigéniques exerce une énorme
pression sur le système immunitaire de l’hôte et permet au parasite d’établir de
longues infections car l’hôte pourrait ne pas avoir rencontré la plupart des variants du
répertoire lors d’infections précédentes. Cependant, la fréquence de la commutation
des gènes var et l’immunogénicité de chaque PfEMP1 exprimée restent incertaines.



Résumé 5

Dans cette thèse, nous avons cherché à exploiter des approches théoriques pour
comprendre les taux de commutation des variants var dans différents environnements
: à l’intérieur de l’hôte et ensuite var après l’infection. À cette fin, nous avons tiré parti
d’une étude d’infection palustre contrôlée chez l’homme avec 19 volontaires adultes
africains en Gambie pour comprendre l’effet de l’immunité naturellement acquise sur
le répertoire génétique var exprimé au cours des premières phases d’une infection.
Nos résultats ont révélé une association significative entre la diversité de l’expression
des gènes var, mesurée par l’entropie, et les résultats de l’infection. Les individus à
faible immunité présentaient des profils d’entropie var plus élevés, une parasitémie
accrue et une reconnaissance réduite des domaines PfEMP1 par rapport à ceux avec
une forte immunité. De plus, nous avons quantifié pour la première fois la probabilité
de commutation des gènes var in vitro et le renouvellement in vivo. Cela nous a
permis d’estimer à la fois les effets de commutation intrinsèque et de sélection
négative, indiquant des probabilités rapides de renouvellement/commutation de 69
% à 97 % et de 7 % à 57 % par génération, in vivo et in vitro, respectivement.
L’expression de var (PfEMP1) a déclenché des réponses immunitaires humorales
chez les individus à faible immunité. De manière surprenante, de nombreux
domaines PfEMP1 n’ont pas réussi à susciter de réponse anticorps. Notre étude
suggère que la commutation intrinsèque des gènes var sert à réinitialiser et à
maintenir un répertoire var diversifié. Les taux élevés de commutation des var, ainsi
que l’immunogénicité potentiellement faible de PfEMP1, semblent conférer des
avantages à la survie du parasite lors de l’infection palustre contrôlée chez l’homme.

Dans la deuxième partie de la thèse, la variation antigénique dans le paludisme est
ensuite examinée de manière plus détaillée sur le plan mathématique et numérique à
l’aide d’un modèle tenant compte de la diversité antigénique pour explorer la
persistance du parasite sous l’effet de l’immunité de l’hôte. À cette fin, nous nous
sommes inspirés d’un cadre existant de variation antigénique virale et caractérisons
l’infection à la fois de manière analytique et numérique, en tenant compte de certaines
contraintes.

Nous avons montré analytiquement et numériquement les effets de la variation
antigénique sur l’allongement de l’infection, ainsi que la dépendance vis-à-vis du
pool de variants, ce qui a révélé que la durée de l’infection est une corrélation linéaire
du nombre de variants présents dans une population. En utilisant une mise en œuvre
stochastique d’un modèle théorique, nous avons également montré qu’aux premiers
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6 Résumé

stades de l’infection, les variants antigéniques peuvent être tout aussi susceptibles de
se produire et peuvent maintenir la pression exercée par le système immunitaire
même avec l’incorporation de taux de commutation utilisant l’analogie déterministe
des processus de Markov. Des taux de commutation de l’ordre de 10−1 se sont révélés
suffisants pour établir avec succès une infection, sous une réponse immunitaire
constante. Analytiquement, nous fournissons des critères de stabilité pour l’existence
de solutions stables de la population parasitaire soumise à la commutation. En
analysant le modèle déterministe avec des taux de commutation provenant d’un
processus générateur, nous avons constaté que l’infection était caractérisée par des
pics chevauchants correspondant à plusieurs variants, et diminuait en amplitude au
fil du temps.
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CHAPTER1

Introduction

1.1 Biological motivation

Mammalian hosts often function as reservoirs for various organisms and provide an
environment conducive to the survival, replication, and transmission of several
infectious agents. One of the deadliest microorganisms that cause acute as well as
chronic infections in humans is the protozoan apicomplexan parasite of the genus
Plasmodium that causes malaria. The single-celled pathogen propagates itself in a
complicated, multi-stage life cycle with quite a range of hosts, ranging from insects to
vertebrates, including mice, birds, non-human primates, and humans. [Paul et al.,
2003; Schuster, 2002]. There are several species of Plasmodium that affect humans,
namely: P. falciparum, P. vivax, P. ovale wallickeri, P. ovale curtisi, P. malariae [Mayxay
et al., 2004; Antinori et al., 2012] and sometimes P. knowlesi [Ahmed and Cox-Singh,
2015; Singh and Daneshvar, 2013; Cox-Singh and Singh, 2008] that accounts for most
of the zoonotic malaria infections in humans.

Out of all Plasmodium species affecting humans, P. falciparum is the deadliest and most
prevalent [Snow et al., 2017]. Approximately 80 % of the worldwide incidence of
malaria is concentrated in 15 countries, predominantly situated in Sub-Saharan



8 Chapter 1. Introduction

Africa, with India being the exception. Severe malaria caused by P. falciparum is also
the primary cause of half a million malaria deaths that occur each year [World Health
Organization et al., 2023]. P. falciparum infections also exist in the absence of clinical
symptoms and are frequently described as asymptomatic or afebrile [Galatas et al.,
2018]. However, they are as much of a public health concern in Sub-Saharan Africa as
clinical infections, as they are often chronic and serve as parasite reservoirs for
transmission.

Figure 1.1: World Population at risk of Malaria: The map represents the overall risk
of malaria in different regions across the world, as updated in 2021. Modified from the
World Malaria Report, 2023 [World Health Organization et al., 2023].
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1.1.1 Clinical presentation of malaria and diagnosis

In human hosts, the clinical symptoms of malaria are linked to the asexual blood
stages of the parasite’s life cycle. First infections with falciparum irrespective of host
age, are usually symptomatic and occur with a wide range of clinical symptoms such
as cyclic fever, chills, diarrhea, and vomiting [Oakley et al., 2011; Hafalla et al., 2011;
Bartoloni and Zammarchi, 2012]. Fever waves typically characteristic of clinical
malaria are linked to the bursting of red blood cells during the parasite’s
intraerythrocytic cycle. Around 0.5% of all cases of mild infections escalate to severe
malaria, which is marked by the presentation of anemia, acute renal failure, coma and
even death [Bartoloni and Zammarchi, 2012].

Even though malaria infections can present a wide range of symptoms, diagnosing
malaria clinically is challenging because of the non-specificity of the symptoms.
Malaria symptoms can often considerably overlap with other common and
potentially severe illnesses, such as viral or bacterial infections and different febrile
diseases. Upon presentation of symptoms, malaria diagnosis is most commonly made
using a variety of techniques. These include microscopic diagnosis by staining thin
and thick peripheral blood smears [Ngasala et al., 2008], which is the most traditional
and widely used method for diagnosis. Other concentration techniques include the
quantitative buffy coat method [Tangpukdee et al., 2009], rapid diagnostic tests, and
more sensitive molecular diagnostic methods like PCR [Holland and Kiechle, 2005].

1.1.2 P falciparum life cycle

A malaria infection with falciparum in humans is initiated when sporozoites are
injected by an infected female Anopheles mosquito during a blood meal [Ezema
et al., 2023]. Mature sporozoites enter the bloodstream and pass through it until they
reach the liver after the initial inoculation within 20–30 minutes, beginning the
pre-erythrocytic stage of the parasite life cycle. The sporozoites cross several
hepatocytes before finally invading one of these cells. While in the liver, the parasite
divides and develops into a schizont containing thousands of merozoites, in a process
known as exoerythrocytic schizogony, with no clinical manifestation. The schizonts
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Sporozoites Merozoites 
in liver cells

Ring form

Trophozoites

Schizont

Asexual 
reproduction
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Infection
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Merozoites 
released

Red blood 
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Figure 1.2: P. falciparum life cycle in the human host Image adapted from Biorender’s
disease mechanisms library [BioRender, n.d.], content from [Meibalan and Marti,
2017]

burst open within a span of 5 to 15 days (typically 7 days), releasing approximately
10,000 to 30,000 merozoites. The asexual erythrocytic cycle commences with
merozoites penetrating red blood cells (RBCs). Initially, the merozoite, cloaked with
merozoite surface protein (MSP-1), adheres to a RBC. Subsequently, it adjusts its
position, anchoring itself to the RBC via its apical end, facilitated by apical membrane
antigen 1 (AMA-1). As invasion progresses, a distinct membrane invagination,
known as the parasitophorous vacuole, forms, eventually encapsulating the parasite
within the erythrocyte. The infected red blood cell (iRBC) is subject to massive
modifications induced by the developing parasite, that stiffen the RBC. Multiple
cycles of DNA replication occur and, after about 48hours, newly generated
merozoites burst and infect more erythrocytes. Some parasites at this stage
differentiate into male and female gametocytes, a necessary step for transmission
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[White et al., 2013; Maier et al., 2019].
During a mosquito bite, late-stage gametocytes enter the mosquito blood meal.

Once in the mosquito’s midgut, male gametocytes exflagellate to produce eight motile
gametes. The fertilisation of a female gamete results in an ookinete, with the first
stages of meiosis beginning immediately. The motile ookinete migrates from the
lumen of the midgut to the basal lamina, where it forms an oocyst. A large amount of
replication occurs to produce about 2000–8000 haploid nuclei. The oocyst then bursts,
releasing sporozoites that migrate to the mosquito salivary gland, ready to re-initiate
yet another transmission cycle.

1.1.3 Malaria pathogenesis

Fatality resulting from malaria is broadly attributed to the parasite’s ability to alter
the surface of infected red blood cells (iRBCs), inducing adhesion to the
microvasculature. This unique trait enables the parasite to spend over half of its
asexual life sequestered within microvessels, thereby evading circulation. This
sequestration is a hallmark of falciparum malaria compared to other malaria types
[Craig et al., 2012]. The adhesion of iRBCs can occur with diverse cellular
components such as endothelial cells, platelets, and uninfected red blood cells
[Fairhurst and Wellems, 2006; Kraemer and Smith, 2006; Smith et al., 2013].

While "hidden" within an infected red blood cell (iRBC) during the first 20 hours
(called the ring stage), at the trophozoite stage, the parasite exposes itself to host
immunity by exporting antigens to the iRBC’s surface. P. falciparum ’s cytoadherence
and sequestration are understood to be evolutionary responses that hinder the splenic
transit of infected erythrocytes, allowing parasites to avoid filtration and elimination
from the bloodstream [Sherman et al., 2003].

Among the severe forms of the disease, cerebral malaria coupled with high parasitic
loads stands out due to iRBC sequestration in the brain’s microvasculature [Aikawa,
1988; MacPherson et al., 1985], disrupting the blood-brain barrier eventually leading
to brain hypoxia, coma, and even death. In spite of several decades of research, little is
known about the etiology of CM or the reason why some individuals are predisposed
to the condition [Dunst et al., 2017]. It is still unknown if sequestration of red blood
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cells (iRBCs) infected with P. falciparum is directly or exclusively responsible for the
clinical condition, despite the fact that it is correlated with severe disease. This
process of sequestration is facilitated by parasite-variant surface antigens (VSA)
displayed on the iRBC membrane [Wahlgren et al., 2017; Kyes et al., 2001; Urban and
Roberts, 2002; Deitsch and Hviid, 2004]. These surface antigens are also the major
targets of host immunity [Chattopadhyay et al., 2003; Chan et al., 2012].

In the case of P. falciparum , multiple families of VSAs have been identified, with the
multicopy gene families var being the most extensively studied (Table1.1.3, see also
next section) whereas little is known about the rif and stevor genes, and other
subtelomeric multigene families are only theoretically described [Wahlgren et al.,
2017]. The manifestation of cerebral malaria is associated with the expression of a
subset of proteins encoded by the var genes that bind to the endothelial protein C
receptor (EPCR) and to a lesser extent intercellular adhesion molecule 1 (ICAM-1)
[Jensen et al., 2004, 2020; Avril et al., 2012; Claessens et al., 2012]. The proteins
encoded by rif and stevor families are also potentially involved in immune evasion
mechanisms (see Table 1.1.3).

Table 1.1: Multigene families encoding variant surface antigens in P. falciparum.
Modified and adapted from [Wahlgren et al., 2017]

.

var rif stevor

Protein Encoded PfEMP1 RIFIN STEVOR

Approximate
Copy Number

60 150 30

Chromosomal
Location

Subtelomeric &
internal clusters

Subtelomeric &
internal clusters

Subtelomeric &
internal clusters

Function Cytoadherence,
Immune evasion

Immune evasion Rosetting
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1.2 Immunity to Malaria

Casualties related to malaria predominantly occur children under the age of five,
irrespective of the intensity of transmission, making P. falciparum the major cause of
child mortality caused by infectious diseases worldwide [Schumacher and Spinelli,
2012; Stone et al., 2015; Khagayi et al., 2019; Snow et al., 2004]. Additionally, the peak

Figure 1.3: Relation between age and malaria severity in an area of moderate
transmission intensity. With repeated exposure, protection is acquired, first against
severe malaria, then against illness with malaria, and, much more slowly, against
microscopy-detectable parasitemia. Figure taken directly from [White et al., 2013]

age of clinical malaria incidence lowers as transmission intensity increases. In
contrast, in endemic areas with lower transmission, clinical malaria is observed in
both adults and children and is evenly distributed across age [Postels and Birbeck,
2013]. These age-related patterns of severity highlight the importance of
understanding the processes underlying naturally acquired immunity to
malaria[Carneiro et al., 2010; Okiro et al., 2009; Cowman et al., 2016].
In areas with high transmission, adults develop clinical immunity due to continuous
exposure Barua et al. [2019], Dodoo et al. [2001], Barry and Hansen [2016], Gonzales
et al. [2020], Bousema et al. [2006], which is associated with a decrease in the
incidence of severe symptoms in these areas. During the initial few months after
birth, infants are shielded from severe malaria by maternal IgGs specific to VSAs
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[Staalsoe et al., 2004]. However, until the age of five years, children are at high risk of
severe complications. Over time, individuals gradually develop clinical immunity to
the parasite, typically experiencing uncomplicated malaria [McGregor, 1974] or even
remaining asymptomatic throughout the infection. In fact, despite the heavy burden
of malaria, the majority of all P. falciparum infections in highly endemic countries are
asymptomatic [Galatas et al., 2016]. Nevertheless, the immune responses against P.
falciparum antigens dwindle in the absence of exposure.

1.2.1 Malaria immunity against sporozoite stages

Sporozoites injected through the bite of an infected Anopheles mosquito leave the
dermis, then use their gliding motility to reach the liver within an hour. However,
some sporozoites deviate into lymph nodes instead of blood vessels, where dendritic
cells (DCs) engulf them, priming CD8+ T cells to counter liver stage parasite
infection [Hassert et al., 2023]. The parasite-triggered host immune response will
elicit antibodies that may neutralize proteins crucial for hepatocyte entry, facilitate
opsonic phagocytosis, and instigate Natural Killer T-cells to mediate parasite lysis.
The primary antigen target on sporozoites, conferring immunity, has been identified
as circumsporozoite protein (CSP). This antigen is the basis of the only
WHO-approved vaccine against malaria. However, the current very high prevalence
of P. falciparum asymptomatic blood-stage infection in endemic countries indicates
that even repeated exposure to infectious mosquito bites is insufficient to elicit a
sterile immunity against sporozoites [Hassert et al., 2023].

1.2.2 Malaria immunity against intra-erythrocytic stages

During the erythrocytic stage of malaria infection, the host immune system launches
a robust response driven by the release of inflammatory cytokines upon detecting the
invading parasite [Ezema et al., 2023]. IFNγ emerges as a significant cytokine elicited
in response to asexual iRBC, fueling phagocytic activity by dendritic cells (DCs) and
monocytes, thereby enhancing antigen presentation and cytokine secretion. Key
inflammatory cytokines include TNF α and IL-12, which trigger the production of
reactive oxygen and nitrogen species by macrophages to eliminate the parasite.
Subsequently, IL-10 secretion counterbalances the initial pro-inflammatory response,
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contributing to immune regulation. To summarize a complex cell-mediated response
(reviewed in [Butler et al., 2013]), Neutrophils, arriving early at the site of infection,
deploy reactive oxygen species and neutrophil extracellular traps to ensnare the
parasite. The adaptive immune response starts with DCs presenting antigens and
releasing inflammatory cytokines. NK cells and macrophages are first activated
through cytokines stimulation and play a role in the defense against erythrocytic
stage infection. This ongoing interplay underscores the complex dynamics in malaria
pathogenesis and immune evasion strategies employed by the parasite. Of particular
interest, it was recently shown that Rifin, the largest family of VSA, binds to leucocyte
immunoglobulin-like receptor B1 (LILRB1) and inhibits the activation of LILRB1-
expressing immune cells [Saito et al., 2017].

1.2.3 Malaria immunity: humoral response and naturally acquired
immunity tomalaria

Millions of people who are consistently exposed to P. falciparum infection develop
naturally acquired immunity (NAI) to falciparum malaria, preventing severe sickness
and death. Until now, there has been no clear understanding of the rate at which
immunity is acquired in endemic regions. The importance of acquired immunity to
malaria was demonstrated as early as the 1960s, when the passive transfer of purified
immunoglobulin G (IgG) from malaria immune individuals reduced parasitaemia in
non-immune children by 99% within four days [Cohen et al., 1961] highlighting the
importance of antibodies in symptomatic malaria protection. Further research
revealed that these purified IgG inhibited parasite growth in vitro [Cohen et al., 1969].

In endemic areas, after the age of peak clinical infection, the number of clinical
malaria attacks each year falls considerably, as does the risk of death. Severe illness is
quite infrequent after adolescence, but mild clinical episodes are still common, and
the cumulative incidence of parasitemia can even reach 100% in some
cases[Owusu-Agyei et al., 2001]. However, it is hypothesised that clinical
(anti-disease) and anti-parasite immunity develop at separate rates. For example,
clinical cases of malaria appear to arise primarily in people who emigrate from
malaria-endemic areas and are not re-exposed for at least 3-5 years [Struik and Riley,
2004]
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Epidemiological observations in endemic populations have also previously revealed
that naturally acquired immunity to malarial disease takes years of repeated exposure
to Plasmodium and is often age-related Aponte et al. [2007], Baird et al. [1991] and
tends to be antigen-specific [Akpogheneta et al., 2008; Bull et al., 1998; Hviid, 2005].
Field investigations have shown that P. falciparum specific antibodies are inefficiently
developed and short-lived, especially in children [Cavanagh et al., 1998, 2004;
Kinyanjui et al., 2004]. It has also been shown that children and young adults in areas
with high seasonal transmission experience delayed formation of memory B cells
specific to P. falciparum , despite repeated parasite infection [Weiss et al., 2010].
Research in lower transmission settings also indicates that it is the breadth of
circulating B memory cells against P. falciparum , and not the magnitude that is
associated with age [Nogaro et al., 2011], hinting that acquired malarial immunity
might indeed be defective. Although antigenic polymorphism is likely to contribute
to the relatively slower development of protective immunity, there is also strong
evidence that malaria infection modifies the host immune response [Hviid and
Jensen, 2015]. In contrast, in areas with stable transmission more stable IgG responses
towards P. falciparum are associated with increasing age [Akpogheneta et al., 2008;
Wipasa et al., 2010]. Additionally, B cell memory in young infants appears to be
protective [Jahnmatz et al., 2022], develops and maintains throughout time, even in
the absence of ongoing infection [Ndungu et al., 2012].

Antibodies interact with merozoites, inducing complement-mediated lysis and
opsonic phagocytosis, which prevents their invasion of erythrocytes. Additionally,
they bind to the surface of infected erythrocytes, triggering complement activation
and facilitating phagocytosis by circulating monocytes and macrophages.
Furthermore, these antibodies impede infected erythrocyte sequestration by binding
to cytoadhesion molecules involved in rosetting or adhesion. The primary target of
these antibodies is the PfEMP1 surface protein, making them key targets of naturally
acquired immunity [Chan et al., 2014, 2012; Travassos et al., 2018]. The critical role of
anti-parasitic antibodies is prominently illustrated in placental malaria. Pregnant
women in endemic areas are particularly at risk of developing placental malaria
[Dorman and Shulman, 2000] , involving iRBC sequestration in the placenta, which
can result in infant mortality due to low birth weight [Uneke, 2007; Sharma and
Shukla, 2017]. The cytoadherence is mediated by an unusually semi-conserved
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1.3. Antigenic Variation in P. falciparum 17

PfEMP1, named VAR2CSA, that binds to Chondroitin Sulfate A (CSA), a
glycosaminoglycan in the placenta. Consequently, pregnant women are particularly
susceptible to placental malaria due to their lack of prior exposure to VAR2CSA.
Then, with successive pregnancies and P. falciparum infections, women progressively
develop antibodies against VAR2CSA and an effective adaptive response [Mahamar
et al., 2023]. A VAR2CSA-derived placental malaria is currently being tested [Gamain
et al., 2021].

1.3 Antigenic Variation in P. falciparum

Over the course of evolution, mammals have developed sophisticated immune
systems to combat pathogens. This has driven infectious agents to co-evolve and
respond with complex mechanisms to invade the hosts’ immune systems. To achieve
this, infectious organisms deploy various strategies to prolong their survival within
the host. One of the most well-characterised strategies to ensure this is antigenic
variation. The strategy involves changes in the variant surface molecules presented to
the host, reducing the pathogen’s clearance and establishing long-term infection
within the host. Some antigenic variation systems involve the activation and silencing
of genes that encode molecules that interact with the infected host’s immune system.
This mechanism is called phase variation and regulates the expression of genes in an
"on-off" manner[Van Der Woude and Bäumler, 2004].

In the case of more complex pathogens, antigenic variation is mediated by
hypervariable, multicopy gene families, and each copy only encodes a unique surface
protein. Each gene can be silenced or activated during the infection, but there is a
tight mechanism of regulation that ensures that only one of these genes is expressed
at a given time, leading to mutually exclusive expression [Deitsch et al., 2009].
Multiple protozoan parasite species including Trypanosoma brucei, Babesia bovis,
Giardia lamblia and P. falciparum exhibit programmed antigenic variation through
regulated expression of hypervariable genes, depicted in Figure 1.6. The adaptive
immune system of an infected host usually selects against the initial surface antigen,
which is not longer effective on the subsequent variants, and hence the infection
persists. Viruses also exhibit antigenic variation, but it is achieved by either fast
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accumulation of mutations so that initial immune responses are rendered useless, or
through recombination of antigens of multiple infecting genotypes [Barbour and
Restrepo, 2000].

Figure 1.4: Waves of parasitemia observed during a single P. falciparum infection,
characterized by recurrent peaks. Image source: [Miller et al., 1994].

The earliest evidence of antigenic variation in Plasmodium species came through
observations of recurring infections in non-human hosts [Cox, 1959; Brown et al.,
1966]. Eventually, antigenic variation in P. falciparum infections in human hosts was
first described in 1994, wherein within a single infection, recurrent peaks and troughs
of parasitemia were observed [Miller et al., 1994; Pasloske and Howard, 1994], Figure
1.4.

1.3.1 PfEMP1 Structure & Diversity

PfEMP1 proteins, encoded by the var multi-gene family, play a crucial role in this
mechanism in P. falciparum [Baruch et al., 1995]. The var gene family is present in all
species within the Laverania subgenus of Plasmodium [Larremore et al., 2015; Otto
et al., 2019]. Laverania species primarily infect African great apes, with P. falciparum
being the only species capable of infecting humans. During an infection with P.
falciparum , at the parasite’s ring stage , only one var is transcribed, resulting in a
single PfEMP1 variant appearing on the parasite’s surface in the trophozoite or
schizont stage [Scherf et al., 1998] (see section below). However, it has been shown
recently that the expression of var genes is not restricted to the intra-erythrocytic
stages, it also occurs during the mosquito stages and PfEMP1 are displayed on the
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surface of sporozoites [Gómez-Díaz et al., 2017; Zanghì et al., 2018]. PfEMP1 in this
stage has been suggested to play a role in hepatocyte invasion [Zanghì et al., 2018].

P. falciparum genomes include around 60 var genes with two exons that encode
PfEMP1 proteins [Scherf et al., 1998; Chen et al., 1998]. Within and between
repertoires, PfEMP1s exhibit significant levels of diversity. The first exon of var gene
is the longest and encodes extracellular domains, starting with a NTS domain ( 60
amino acids). Then the typical PfEMP1 is made up of 2-10 Duffy-binding-like (DBL)
and cysteine-rich interdomain regions (CIDRs) domains. The DBL and CIDR
domains are organized into seven α, β,γ,δ,ϵ, x and three α, β,γ primary sequence
classes, respectively, with numerous subdivisions. The exon I encodes the short
transmembrane domain and exon II encodes the acidic intracellular terminal segment
(ATS) [Bull and Abdi, 2016]. The DBL-CIDR combination in a particular type of
PfEMP1 protein exists non-randomly, ordered as specific sequences known as domain
cassettes [Rask et al., 2010].

Figure 1.5: PfEMP1 structure: PfEMP1 proteins comprise several domains: N-terminal
segment (NTS), DBL, CIDR, transmembrane (TM), and acidic terminal segment
(ATS). Figure taken directly from [Mackenzie et al., 2022].

Although var genes are substantially sequentially diverse, they can be classified
into groups A (10 variants in the 3D7 Pf strain), B (22 variants), C (13 variants), and
E based on a conserved upstream (Ups) flanking sequence, chromosomal position,
and orientation [Kraemer and Smith, 2003], Figure 1.5. Group A (UpsA) genes are
located near the subtelomeres, Group B includes both subtelomeric and within
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internal clusters, Group C genes are solely within these internal clusters. Group E is a
special case, with 1 or 2 copies of var2csa, with their expression associated with
placental malaria (see above) and putatively a coordinator role in the var
transcription switching process [Zhang et al., 2022]. Additionally, var genes undergo
more frequent mitotic recombination than the rest of the parasite genome to maintain
antigenic diversity [Taylor et al., 2000; Bopp et al., 2013; Freitas-Junior et al., 2000].

1.3.2 Mutually Exclusive Expression of the var Family

PfEMP1

Figure 1.6: Antigenic Variation in P. falciparum : A) There is only one var expressed per
infected cell at the ring stages. Within a population of parasites, a number of variants
can be expressed, & B) the var gene variants undergo transcriptional switching, which
leads to recrudescence because acquisition of specific antibodies is hypothesized to
clear parasites expressing a certain variant until the next variant expands in the
population. C) In addition, var genes can recombine and give rise to ’chimeric’ var
genes. Figure modified and adapted from [Nyarko and Claessens, 2021].

In addition to already-existing sequence diversity across parasite populations,
mutually exclusive expression, and recombination to diversify, PfEMP1 variants also
exhibit transcriptional switching over time, changing expression from one cycle to the
next. Although the mechanism of transcriptional switches in var genes is unknown,
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current understanding suggests that var genes differ in activation and transition rates
based on their chromosomal location as well as Ups type [Guizetti and Scherf, 2013].
Understanding how infections persist over time and how parasites infect partially
immune hosts requires identifying these factors and their correlations. Most
investigations on var gene switching dynamics have focused on parasite cultures, as
the distribution of PfEMP1 variants in vivo is influenced by host variables and
immunological pressure, in addition to antigenic variation. The first study to
document switching of PfEMP1 proteins [Roberts et al., 1992] discovered that an
initially isogenic clone rapidly switched to different antigenic types.

This selective expression is mediated by mechanisms involving epigenetic
regulation, as well as specific DNA fragments and RNA transcripts that activate or
silence the var gene [Deitsch and Dzikowski, 2017]. Histone markers are differentially
enriched in different flanking regions. The majority of var genes are suppressed in a
heterochromatin environment marked by histone 3 lysine 9 trimethylation
(H3K9me3), which is bound by heterochromatin protein 1 (HP1) [Lopez-Rubio et al.,
2009]. The active var gene lacks H3K9me3 and has a euchromatic structure with
promoter enrichment of H2A.Z and H2B.Z, as well as histone acetylations such as
H3K9ac and H3K27ac [Tang et al., 2020]. Transcriptionally active genes exhibit di-
and trimethylation of histone H3K4, while silent genes exhibit trimethylation of H3K9
and H3K36 [Chookajorn et al., 2007; Lopez-Rubio et al., 2007; Flueck et al., 2009]
Jiang et al. [2013]. A recent study has shown var2csa as an important node for
maintaining the var switching network in vitro [Zhang et al., 2022]. Several factors
contribute to the default silencing of var genes, but no specific regulator of mutually
exclusive activation or switching factors has been identified [Dzikowski et al., 2006].

1.4 Controlled HumanMalaria Infection Studies

In the early 1900s, deliberate malaria infection through inoculation with infected
blood was employed as a treatment (malariatherapy) for neurosyphilis in Europe and
the United States [Chernin, 1984; Austin et al., 1992; Snounou and Pérignon, 2013]
before the advent of Penicillin. Later, In the 1990s, it was also tested as a potential
therapy for HIV infection which is rather disputed [Nierengarten, 2003]. The utility
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of Controlled Human Malaria Infection (CHMI) studies as a method for evaluating
prospective antimalarial medications was identified as early as the 1940s, when they
were used to examine antimalarial efficacy in healthy, non-immune males via
Plasmodium -infected blood or mosquitoes. Nowadays, CHMI studies a
well-controlled and safe framework to conduct in vivo assessments of the efficacy of
malaria [Abuelazm et al., 2024] vaccines. They are carried out through sporozoite
inoculation via mosquito bite or by injecting sporozoites or Plasmodium -infected RBC
directly. Based on specific criteria in each CHMI study, antimalarials are administered
upon the diagnosis of infection. Infections are routinely treated at a preset
blood-stage parasite density (measured by PCR) or when individuals test positive by
microscopy.

Previously, only the NF54 isolate of P. falciparum was routinely used for CHMI
studies. The NF54 isolate was obtained from a Dutch patient who lived near Schiphol
Airport in Amsterdam and had never left the country. This airport malaria case was
most likely caused by an infected mosquito imported from Africa. 3D7 was then
cloned from NF54. Now, other genetically and geographically different strains, such
as 7G8 from Brazil, NF166.C8 from Guinea, and NF135.C10 from Cambodia, have
become accessible for heterologous CHMI studies. These strains reflect their
geographic origin and vary in genome structure and immunogenic potential. In 1984,
7G8 was cloned from the IMTM22 isolate and chosen for its capacity to produce
microgametes, exflagellate, and infect Anopheles freeborni, resulting in oocysts and
sporozoite formation that can be used for CHMI challenges. Table 1.2 highlights a
non-exhaustive list of recent CHMI studies that examine host-pathogen interactions.
For a better understanding of infection outcomes in these studies, semi-immune
individuals were sometimes classified into ’controllers’ and ’non-controllers’,
depending on their ability to control the induced CHMI infection. Amongst these
studies, of particular interest is a study by Wichers-Misterek et al just reported the
first CHMI study to analyse var gene transcription from a non-NF54/3D7 strain,
specifically the 7G8 clone[Wichers-Misterek et al., 2023].
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Table 1.2: Summary of CHMI Studies evaluating host-pathogen interactions

Study Immune Status Inoculation Method Study Site Detection
Method

[Wang et al.,
2009]

Naïve (n=1) Mosquito bite Nijmegen qPCR

[Bachmann
et al., 2016]

Naïve (n=18) Intradermal Sporozoite
Injection (PfPZ=2500)
(n=3), Intravenous
Sporozoite Injection
(IV) (PfPZ=800)
(n=5), Intravenous
Sporozoite Injection (IV)
(PfPZ=3200) (n=9)

Tübingen/
Barcelona

Thick
Blood
Smear

[Bachmann
et al., 2019]

Naïve (n=18),
Non-Controllers
(n=6),
Controllers
(n=5), Clearers
(n=6)

Intradermal Sporozoite
Injection (PfPZ=2500)
(n=3), Intravenous
Sporozoite Injection (IV)
(PfPZ=3200) (n=15)

Gabon qPCR &
or Thick
Blood
Smear

[Hoo et al.,
2019]

Naïve (n=13) Intradermal Sporozoite
Injection (PfPZ=2500)
(n=3), Intravenous
Sporozoite Injection
(IV) (PfPZ=800)
(n=3), Intravenous
Sporozoite Injection (IV)
(PfPZ=3200) (n=7)

Tübingen Thick
Blood
Smear

[Achan et al.,
2020]

Non-Controllers
(n=16),
Controllers
(n=2)

Intravenous Sporozoite
Injection (IV)
(PfPZ=3200) (n=15)

Gambia qPCR
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Study Immune Status Inoculation Method Study Site Detection
Method

[Milne et al.,
2021]

Naïve (n=19) Mosquito bite (n=5),
Blood Challenge (No. of
parasites=690) (n=14)

London Thick
Blood
Smear
and/or
qPCR

[Pickford
et al., 2021],
followup from
a previous
CHMI study

Naive (n=4) Intravenous Sporozoite
Injection (IV)
(PfPZ=3200) (n=3),
Intra-muscular Injection
(IM) (PfPZ=2500)
(n=1)

Barcelona Thick
Blood
Smear

[Wichers-
Misterek et al.,
2023]

Naïve(n=11),
enrolled in
PfSPZ-CVac and
PfSPZ Vaccine
Trials

Intravenous Sporozoite
Injection (IV)
(PfPZ=800) (n=2),
Intravenous Sporozoite
Injection (IV)
(PfPZ=1600) (n=1),
Intravenous Sporozoite
Injection (IV)
(PfPZ=3200) (n=8)
with 7G8 Pf strain

Tübingen Thick
Blood
Smear
and/or
qPCR

Changes in the expression of VSAs play a significant part in the adaptation
process of parasites, affecting their antigenic and functional features. However, we
have still not been able to fully characterise expression of these genes in human
circulation and its impact on transmission phases. To probe into this particular aspect
of the parasites’ virulence, CHMI studies serve as excellent tools to fully trace an
infection with malaria. Using CHMI data, significant differences in the transcription
of VSAs, especially var genes have been found to be associated with infection outcome
in naive and semi-immune individuals. Previous studies have found that parasites
transcribe a wide range of genes in naive hosts, with group B variants being the most
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commonly expressed and no significant changes between volunteers with similar
immune-status [Bachmann et al., 2016, 2019; Milne et al., 2021]. The CHMI study
with the 7G8 clone also reported broad activation of mainly B-type subtelomeric
located var genes, however, surprisingly, a single UpsC var gene dominated the var
transcription repertoire both in vitro and in vivo. To what extent 7G8 is representative
of other P. falciparum strains is unclear, but this important result highlights the need to
replicate findings on multiple strains [Wichers-Misterek et al., 2023]. In addition to
parasite related characteristics, CHMIs have proven useful in understanding the
host-intrinsic factors controlling var expression and turnover as the volunteers are
often infected with the genetically identical parasites. Moreover, time series data from
CHMI infections provide the unique opportunity to model var switching rates in vivo ,
which has only been theoretically described before using in vitro experimental
datasets [Recker et al., 2011; Noble and Recker, 2012; Horrocks et al., 2004].

1.5 Mathematical Modelling of Malaria

The mathematical modelling of infectious diseases traces its origins to 1766, with
Daniel Bernoulli’s study of smallpox in England. In this study, Bernoulli constructed
a mathematical model to assess the mortality caused by smallpox in England, which
accounted for one in every fourteen deaths during that period. The model
demonstrated that immunisation against the virus would enhance life expectancy at
birth by around three years. The model was later improved by incorporating
parameters that were age-dependent.

However, mathematical approaches to understanding infections were not developed
rigorously until 1911, when Ronald Ross established the field of contemporary
mathematical epidemiology. In this seminal work, Ross addressed the mechanistic a
priori modelling technique employing a set of equations to simulate the discrete-time
dynamics of malaria through mosquito-borne disease transmission [Smith et al.,
2012]. Since this breakthrough, mathematical modelling approaches have
consistently improved our understanding of transmission, epidemiology, ecology,
evolution and host-parasite interactions pertaining to infectious diseases. In recent
times, it has made even more sense to investigate realistic infectious disease models to
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predict and control outbreaks and minimise disease burden due to epidemics [Ciotti
et al., 2020].
To serve this purpose, mathematical models of infectious diseases focus on both
within-host dynamics that are significant to our understanding of the biology of the
disease and between-host models that have impact on our understanding of
infectious diseases at the population level [Enderle, 2012; Brauer, 2008; Sattenspiel,
1990; Sattenspiel and Lloyd, 2009].

1.5.1 Within-Host Modelling Approaches

Despite substantial work, modelling to understand the within-host dynamics of
malaria infections has received far less attention from modellers than viral diseases.
Most mathematical models for studying intra-host dynamics with the human host
incorporate recovery rates from infectious compartments as constants, which can
undermine the importance of including factors such as heterogeneity in symptomatic
period and discrete latency. One of the most widely used modelling approaches to
infectious disease dynamics is Ordinary Differential Equations (ODEs) [Ciupe and
Heffernan, 2017]. Depending on the context and the infection being studied, the basic
model of pathogen dynamics includes certain fundamental aspects of disease
dynamics in the host. These include and are not limited to, the cells that the pathogen
infects, the existence of the pathogen in the host (i.e., which organs of the body
pathogen targets), the time-scale of the infection of the host, i.e., persistent or acute
infections, the pathogen’s life-cycle and its interactions with the immune system. In
the case of malaria, qualitatively, within-host models are similar to the viral dynamics
model, and the latter has been also extensively documented and well-studied
theoretically. These similarities make it lucrative to study the two systems
theoretically for mathematical modelling and bring new insights to malaria research.
The standard framework of within-host models of HIV and malaria infections within
the host are depicted in Figure 1.7 [Khoury et al., 2018].
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Figure 1.7: Model schematic and mathematical formulation depicting similarities
between viral and parasitic infection dynamics. Figure modified from: [Khoury et al.,
2018]

Model A:

dT
dt

= λ − dTT − βVT (1.1)
dI
dt

= βTV − δI (1.2)
dV
dt

= pI − cV (1.3)

Model B:

dU
dt

= Λ − µU − βUP (1.4)
dP
dt

= βUP − αP (1.5)
dM
dt

= rαP − dM (1.6)

Model A) represents the typical form of HIV infection ODE model [Perelson,
2002]. Target CD4+ T cells (T) are generated at rate λ and perish at the natural death
rate (dT). T cell infection is determined by the availability of T cells, the amount of
free virus (V), and the infectivity (β). Infected cells (I) are lost at rate δ. Similarly, the
conventional model of Plasmodium infection (Model B) describes the dynamics of
uninfected red blood cells (RBCs) U, infected red blood cells (iRBCs) P, and
merozoites M. Uninfected RBCs are generated at a rate Λ and destroyed at a rate µ.
When a merozoite infects an RBC, it produces infected RBCs at a rate dependent on
the availability of uninfected RBCs, merozoites, and infectivity, denoted by β. infected
RBCs rupture at a rate of α, resulting in r merozoites. Merozoites are also lost at a rate
d. [Anderson et al., 1989]
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Even though these two mathematical models are very similar (Figure 1.7), the key
difference in the model formulation stems from the fact that while viral production of
HIV is directly proportional to the infected cell number, because viral replication does
not cause cell mortality. However, the production of merozoites during the blood
stages is strictly dependent on the rupture of mature merozoites (Figure 1.7). This
inconsistency was first highlighted by [Saul, 1998], highlighting that defining the
quantity of merozoites produced per infected cell as r resulted in a significant
overestimation of the growth rate of infected cells. Even though the model accurately
captures the idea that r merozoites are formed at the end of a iRBC’s life cycle, it does
not describe the differences in lifespans of iRBCs. This complexity has been
addressed in mathematical falciparum growth models by modelling merozoite
production proportionally to infected iRBCs. Additionally, ODE based models also
fail to capture the 2̃ day parasite life-cycle (asexual stage) within the human host,
which results in the release of merozoites and leads to the periodic fevers in the host.
Despite the complications with modelling the P. falciparum blood-stage life-cycle, we
can still infer infection characteristics, like the growth rate. The falciparum growth rate
in vivo is considered analogous to the growth rate of a viral infection, i.e exponentially
growth per time, in the case of falciparum this growth rate is modelled as the Parasite
Multiplication Rate (PMR), per cycle, which is estimated as the fold-increase in the
number of parasites per 48h cycle.

The PMR, which measures the growth rate of the parasite population within its host,
serves as a proxy to link parasite dynamics to clinical outcomes [Kingston et al., 2017;
Chotivanich et al., 2000]. The PMR in vivo can be treated as a within-host analogue of
the reproduction number R0 at a population scale [Chotivanich et al., 2000; Wockner
et al., 2020]. The PMR can be incorporated as a parameter to evaluate disease severity
and within-host dynamics of parasite growth under selection [Gnangnon et al., 2021;
Georgiadou et al., 2019]. The PMR in early infection in previously unexposed people
has been estimated to range between 8 and 17 for P. falciparum [Dietz et al., 2006;
Wockner et al., 2020; Douglas et al., 2013]. Mathematically, the PMR corresponds to
the average number of progeny produced by a single iRBC, therefore it takes into
account the likelihood that some iRBCs will not survive to produce merozoites and
that not all merozoites produced will successfully infect RBCs.
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1.5.2 Modelling Antigenic Variation

Antigenic variation exhibited by malaria parasites is subject to the action of immune
pressure, and the parasite population in early stages of infection should be able to not
expose its entire repertoire, yet develop enough diversity to escape the immune
pressure to sustain long term infections. Mathematical models of antigenic variation
were applied to Trypanosoma brucei, another protozoan parasite that exhibits antigenic
variation facilitate immune escape [Turner, 1997]. The first models incorporating
antigenic variation found that infection growth rates alone did not result in the
ordered development of antigenic variants in infections. An alternate model that
involved the brief expression of two antigens per pathogen and differential
vulnerability to immune responses was proposed early on [Agur et al., 1989]. While
this model mimicked ordered expression, it lacked experimental evidence of the
same. It was eventually shown that intrinsic gene activation rates, not the previously
active gene, can explain the ordered antigenic variation observed during acute T.
brucei infection [Lythgoe et al., 2007; Gjini et al., 2010]. Antigenic variation at later
stages in trypanosome infections is sustained by generation of variants by DNA
rearrangement in addition to switching. In the case of falciparum infections its hard to
envision a var gene switching network capable of ensuring the sequential dominance
of 60 PfEMP1 variants during an infection, especially in endemic regions where hosts
can have immunity against some variants from the var pool. The persistence of
chronic infections in malaria has also been attributed to antigenic variation [Nyarko
and Claessens, 2021]. Different mathematical studies have investigated the outcomes
of antigenic variation - estimation of switching rates, bias and order of switching, but
it is imperative to note that antigenic variation generated by these models relies on the
number of variants expressed at the beginning of infection, and chronic infections are
favoured if this number is restricted.

However, it has been shown that in chronic infections, during the low-transmission
season in endemic areas, there exist antibodies against a variety of surface antigens
[Collins et al., 2022; Rono et al., 2013]. Even after accounting for differences in
exposure, this association holds true, suggesting that antibodies expressed during
asymptomatic infections could be cross-reactive and short-lived Warimwe et al.
[2013]. Stochastic discrete models, including differential growth rates , have been
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used to simulate chronic P. falciparum infections with clinically relevant dynamics
[Paget-McNicol et al., 2002; Molineaux et al., 2001]. The model developed by
[Molineaux et al., 2001] was the first model to distinguish between different types of
immune responses to infection into three components: innate, variant specific, and
cross-reactive adaptive response. Alternatively, [Recker et al., 2004] proposed a
deterministic ODE based model that incorporated each PfEMP1 as a combination of a
single major epitope that causes a long-lasting immune response, and several minor
epitopes that cause temporary, cross-reactive responses. The authors successfully
replicated their findings using only these assumptions . In the presence of
cross-reactive immune responses, some variants are suppressed and cannot provoke
a variant-specific immune response for clearance. Later, with the decline in
cross-reactive immunity leads to proliferation by variants that were previously
suppressed.

Figure 1.8: Multiple Epitope Model: The mathematical model incorporates multiple
minor variants (shared) and one major variant (unique) per antigenic variant in each
parasite.
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Figure 1.9: Infection dynamics in the model proposed by [Recker et al., 2004]: A)
Different antigenic variants appear sequentially during the course of infection, and
previously expressed variants can re-appear owing to waning cross-reactive responses
during a single infection. B) The cross reactive responses are triggered by minor
epitopes and decline due to lack of exposure once a variant has been expressed (solid
lines). The specific immune response (dotted line) once activated, does not decay for
each expressed variant during the infection. Figure directly sourced from [Recker et al.,
2004].

Although this model managed to recreate long term infection dynamics (Figure
1.9), the model was unable to replicate early infection dynamics because it is limited
by the time required to stimulate cross-reactive immune responses. The authors had
proposed that antigenic variation contributes to the initial conditions by expressing a
distribution of variants in the early stages of infection. There are several discrete
intra-host models that incorporate antigenic variation in malaria and are described in
Table 1.3. Eventually, in a computational model with cross-immunity, it was
demonstrated that the optimal antigenic switching network comprised of "source"
antigenic variants (nodes) that could converge to "sink" variants in the parasite
population [Recker et al., 2011] and this could explain the presumably ordered
expression of var variants in a chronic infection. Additionally, several studies have
attempted to resolve in vitro switching rates and therefore postulating the switching
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rates of var genes in vivo .
The first study to estimate switching rates in vitro [Roberts et al., 1992], predicted a

switching rate of 2.4% which has been consistently quoted. This estimate was based
on an exponentiated decay model and other models estimating switching in vitro have
followed the same method with varying results [Peters et al., 2002, 2007]. Using in
vitro time series data that it was also shown that var genes located in central sections
of chromosomes have considerably lower "off" rates compared to those in
subtelomeric loci [Frank et al., 2007] and the sharp drop in transcription of Group A
genes in laboratory cultures of P. falciparum can be explained using these observations
[Gatton and Cheng, 2004; Peters et al., 2002]. These studies were aimed at mainly
estimating the rates at which var genes are turned "off" in a clonal population, and
hence take into consideration only the expressed genes, and not the general
architecture of the var gene network.

Several other models have demonstrated that higher switching rates might not be
sustainable for the parasite’s persistence in the human host, as exposure of the var
repertoire would risk immune selection rapidly Childs and Buckee [2015], Eckhoff
[2012] and are described in Table 1.3. The idea of structured switching network in
vitro was further developed using time series data [Noble and Recker, 2012], which
implied that in vitro , var genes switch in a network structure defined by a
"single-many-single" structure, with several transient var genes being expressed.
Recently, an experimental study further elaborated that the conserved var gene,
var2csa, might be a transient var gene necessary to sustain the switching network
Zhang et al. [2022]. In their in vitro experiments, the authors found that inhibiting the
expression of var2csa disrupted the switching network, emphasising the importance
of transient nodes for facilitating intrinsic switching. It has since been demonstrated
that the switching in vitro follows a structured pattern, highlighted in eqn 1.7, where
vi is a given variant transcript at given time t with a parameter that described the
switch bias (probability) from one variant i to j modelled by β ji and an independent
"off" rate per gene, wi. This model’s main advantage over others is the inclusion of
off-rates independently to switching-probabilities between genes.

vt
i = (1 − ωi)vt−1

i + ∑
j

ωjβ jivt−1
j (1.7)
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In addition to switching mediated antigenic variation, it has also been demonstrated
that infections with multiple strains lead to an extended duration of infection, even if
the infections are initiated around the same time period [Rek et al., 2022; Nassir et al.,
2005]. Deterministic models can also give rise to heterogeneity in duration of
infection length, peak parasitemia etc. owing to small pertubations. In one such
model described in [Childs and Buckee, 2015], gi is the growth rate for a particular
variant i, and I, ΓVS,ΓCR are the effective innate, variant-specific, and cross-reactive
immune responses and M is the general adaptive response (eqn 1.8). Recombination
within the var gene repertoire of P. falciparum has a severe effect on strain diversity
and the process of acquiring immunity against clinical malaria. The model described
by [Childs and Buckee, 2015] attempts to capture the effect of recombination on
infection persistence under immune pressure.

pi(t + 1) = gi(t + 1)I(t + 1)ΓVSi(t + 1)ΓCRi(t + 1)M(t + 1) (1.8)

Some of the mechanistic within hosts models described in 1.3 are validated on data
from the retrospective analysis by [Collins and Jeffery, 1999] which provides detailed
descriptions of the malaria therapy dataset that consists of parasitaemia and fever
records. In this dataset, patients with no history of malaria infection were tested in
laboratories in Columbia, South Carolina and Milledgeville, Georgia (n=318).
Patients were infected with one of three parasite strains (McLendon, Santée-Cooper,
or El Limon) either intravenous injection of parasitised blood, or bites from infected
mosquitoes or sporozoite injection.
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Study Biological
Assumption

Conclusion Mathematical Model Data Used

[Roberts
et al., 1992]

Antigenic
phenotypes
switch in
vitro in the
absence of
selection
pressure,
assuming
equal
growth
rates for all
variants

The switching rate
observed is around
2.4% per generation.

The switching rate was
estimated using the
closed-form solution
of the discrete ODE for
the two-state model,

roff = 1 − (Pn)
1/n

Horrocks
et al. [2004]

Three
States of
var genes
- active,
activable,
or silenced.

Variable on rates
were detected
for different var
variants. O f f rates
≥ 1%, On rates
ranged between
0.025% and 0.25%.

A two-state model
was used to monitor
transcriptional levels of
each gene:

pon = ron · (1 − ron)n · n

, where pon is the
probability of being
on after n cycles.
Similarly, the off rate
was estimatedusing the
closed-form solution
of the discrete ODE for
the two-state model,

roff = 1 − (Pn)
1/n
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Study Biological
Assumption

Conclusion Mathematical Model Data Used

[Gatton
and Cheng,
2004]

Slow & fast
switching
variants

Parasite replication
in-vivo is influenced
by switching and
immune response

Discrete Probabilistic
Model

Malariatherapy
Dataset
(n=90)

[Recker
et al., 2004]

No
switching

Transient cross
reactive immunity
can mediate
antigenic variation

ODEs for within-host
dynamics

Recker et al,
2011 Recker
et al. [2011]

Switching
with bias

Non-random,
structured
switching pattern
demonstrated by var
transcripts in-vitro

Time-discrete
Markov chain with
weights vi,c(t + 1) =

(1 − ωi)vi,c(t) +

∑n
j ̸=i ωjβji)vj,c(t)∀i ∈

{1,2,3 . . . n}

Noble and
Recker
[2012]

Structured
switching
for each
clonal
population.
The model
does not
discuss
switching
rates, but
develops
the
network
structure

Same as Buckee and
Recker, 2011 Recker
et al. [2011]

Time-discrete
Markov chain with
weights, vi,c(t + 1) =

(1 − ωi)vi,c(t) +

∑n
j ̸=i ωjβji)vj,c(t)∀i ∈

{1,2,3 . . . n}
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Study Biological
Assumption

Conclusion Mathematical Model Data Used

Eckhoff
[2012]

Switching
and
Selection

Shared adaptive
immunity and
low switching rate
extend infection
lengths

Time-discrete
processes for
parasite population,
Immune responses as
continuous variables.
Antigenic switch is
modelled as: Nn+i,n =

Poisson(KantigenNn),1≤
i ≤ nantigenicswitch

Malariatherapy
Dataset

Childs and
Buckee
[2015]

Switching
and
Selection

Cross immunity
interferes with
the development
of variant-
specific immunity,
promoting
proliferation when
CR response wanes

Time-discrete
deterministic model
with stochastic
parameters, antigenic
switch is modelled as
gi(t + 1) ∝ ωiβ ji pj(t) ,
where ω is the inherent
tendency to switch
and the matrix β

describes the switching
probabilities. This
formulation is the same
as [Recker et al., 2011]

Malariatherapy
Dataset

Pilosof
et al. [2019]

Neutral
Evolution
and
Immune
Selection

Selection imposed
by immunity
maintains
repertoires with
similar properties

Analysis of temporal
networks to detect
communities by
simulating Agent-
Based Models
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Study Biological
Assumption

Conclusion Mathematical Model Data Used

He and
Pascual
[2021]

Switching
and
Selection

Beyond an antigenic
threshold, many
var variants can
mutually exist in the
population

Agent-based
simulations to establish
a threshold for
diversity, antigenic
variation produced
through recombination

Table 1.3: Review of differentmethods to incorporate antigenic variation inwithin-host
and in vitromodels

It has also been demonstrated that models that incorporate transcriptional
switching of var variants have tested the possibility of switching alone as a driver of
antigenic diversity and reveal that the mechanism alone is not sufficient to produce
chronic infections, as all PfEMP1 variants will eventually appear during the duration
of infection Childs and Buckee [2015].

Hence, it is significant for mechanistic models to include not only parasite intrinsic
factors but also host-intrinsic variation, specifically arising from heterogeneity in
immune responses, which has been repeatedly highlighted with the availability of
data from recent studies [Milne et al., 2021; Pickford et al., 2021; Bachmann et al.,
2019]. Additionally, the role of antigenic switching rate in shaping the infection
duration and investigating the effect of innate immune response in limiting
gametocyte success in mosquitoes is still unclear. Most mathematical models that
capture chronic infection and variation, have relied heavily on exploiting a limited
subset of var variants, however, from CHMI studies, even in individuals from
endemic area, experimental evidence suggests that most variants are expressed at the
beginning of the infection [Bachmann et al., 2016].
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1.6 Thesis Objectives

This thesis dissertation is organised in two parts; the first concerns evaluating
antigenic variation on a ’short’ time scale in a malaria infection. In the second part, we
use theoretical models to investigate antigenic variation at a longer time scale which
has implications in chronic infections.

• In the first part of this thesis (Chapter 02), we characterise host-pathogen
interactions during a Controlled Human Malaria Infection (CHMI). This study
was carried out in semi-immune individuals from The Gambia.

We use data related to both the host (immune responses against falciparum
antigens) from semi-immune individuals and tried to characterise the
dynamics of var gene expression and corresponding specific antibody levels
against various PfEMP1 domains. The main aims of this project were to
estimate the switching rates of var genes in vivo and comparing them to in vitro
rates of switching between different groups of var genes. By incorporating two
deterministic approximations of markov models, we differentiate between
different environments for parasite growth. We also contrasted the var
expression data with infection markers and the corresponding specific
immune response dynamics during a single infection. This part of my
dissertation work has already been submitted to medarxiv. In this project, I
was involved in formal analysis, visualisation and modelling of the data. I also
wrote the first draft of the manuscript for this work.

• In the second project (Chapter 03), we adapted a mathematical model of viral
antigenic variation to malaria to understand the impact of host immunity on
parasite survival in the long term. We study the qualitative behaviour of a
mathematical antigenic variation model and establish conditions for peak
formation and recurrence analytically. The basic framework used for this
model was first used for inferring the dynamics of chronic HIV infections, but
with some modified assumptions, it can be adapted to understand malaria
infection dynamics as well. We characterise the infection dynamics using a
deterministic approach first, beginning with a model with multiple variants
present at the start of the infection, we mathematically characterised the
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appearance of peaks and formulate necessary conditions. The model includes
the variant specific responses and the shared cross-reactive responses
separately, and we describe their dynamics both qualitatively and numerically
over time. Further, we propose a deterministic ODE model that incorporates
switching that we investigate theoretically first, and then study the model
numerically using a stochastic implementation using the Gillespie Algorithm
to infer the models’ short term dynamics. Finally, we study the long-term
behaviour of the model using a Random ODE based approach.
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Abstract

Plasmodium falciparum is believed to escape immunity via antigenic variation, mediated in part
by 60 var genes. These genes undergo mutually exclusive expression and encode the PfEMP1 surface
antigen. The frequency of var switching and the immunogenicity of each expressed PfEMP1 remain
unclear. To this end, we carried out a Controlled Human Malaria Infection (CHMI) study with 19 adult
African volunteers in The Gambia to gain insight into the effect of naturally acquired immunity on the
expressed var gene repertoire during early phase of an infection. Our findings demonstrated a strong
correlation between the diversity of var expression, quantified through entropy, and infection outcome.
Low-immunity individuals were characterised by high var entropy profiles, higher parasitaemia, and
lower sero-recognised PfEMP1 domains compared to high-immunity individuals. For the first time we
recorded the probability of var gene switching in vitro and of turnover in vivo, enabling us to estimate
both intrinsic switching and negative-selection effects. These processes are rapid, resulting in estimated
turnover/switching probabilities of 69% - 97% and 7% - 57% per generation, in vivo and in vitro, respec-
tively. Var (PfEMP1) expression triggered time-dependent humoral immune responses in low immunity
individuals. Unexpectedly, many PfEMP1 domains did not elicit an antibody response. We conclude
that the role of intrinsic var switching is to reset and maintain a diverse var repertoire. The high var
switching rates, and possibly weak PfEMP1 immunogenicity, benefit parasite survival during the CHMI.

1 Introduction
While all human-infecting Plasmodium species invade, grow and replicate within erythrocytes, P. falciparum
is distinct in its ability to modify the surface of infected cells.These changes impact erythrocytes’ cytoadhesive
properties, with late-pigmented trophozoite and schizont stages sequestering within the microvasculature.
Sequestration is essential for the avoidance of splenic clearance of late-stage infected red blood cells (iRBC),
but can result in microvascular obstruction and the release of pro-inflammatory cytokines, which are key fea-
tures of malaria pathogenesis [63]. Of the parasite Variant Surface Antigens (VSA), Plasmodium falciparum
Erythrocyte Membrane Protein 1 (PfEMP1) is the major ligand binding to human endothelial receptors.
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PfEMP1 is encoded by a family of ∼60 var genes that undergo mutually exclusive expression; meaning, a
single type of var gene is expressed at each cycle (with peak transcription at 16 hours post invasion). Each
P. falciparum isolate typically contains a unique set of 60 var sequences, making the worldwide pool of
var gene sequences virtually infinite [7]. Despite this mind-boggling polymorphism, var genes are classified
into four main sub-families, named Group A, B, C and E, based on their upstream sequence (Ups) and
some conserved motifs [47]. Almost all PfEMP1s have a head structure composed of an N-terminal sequence
(NTS), followed by a total of four to nine Duffy binding-like (DBL) and cysteine-rich interdomain region
(CIDR) domains, and a semi-conserved intra-cellular acidic terminal sequence (ATS) domain. Crucially, this
nomenclature has been repeatedly associated with malaria pathogenesis [65]. In younger children and in
cerebral malaria cases, parasites tend to express group A var genes; more specifically, PfEMP1s containing
a CIDR1α domain that mediates binding the brain endothelial receptor EPCR. Conversely, Group B and
group C PfEMP1 are expressed in uncomplicated malaria cases and bind to endothelial cell receptor CD36.
The best-characterised PfEMP1 variant expression and infection prognosis is pregnancy-associated malaria,
where var2csa (group E) binds chondroitin sulfate A (CSA) in the placenta, leading to the sequestration
of infected red blood cells in placental blood vessels [37, 62]. Other polymorphic VSA include rif (∼180
copies), with a role in dampening anti-malarial immunity [52], and stevor (∼30 copies), which are key for
iRBC stiffness [39]. Owing to their extracellular exposure, cytoadherent molecules on the surface of infected
erythrocytes are also the primary antigenic targets of the immune system, eliciting variant-specific antibody
responses. Although anti-RIFIN [22] and anti-STEVOR [40] antibodies have been shown to be functional
for promoting immune effector mechanisms, PfEMP1 is thought to be the main target of both total and
functional anti-VSA antibodies [12]. Antibodies against group A PfEMP1s are quickly acquired in life and
show moderate level of strain-transcending cross-reactivity 21, likely providing protection against the most
severe forms of malaria. On the other hand, immunity against Group B and C PfEMP1 takes years, if ever,
to develop. Theoretical modeling and experimental data predicts immune acquisition against PfEMP1 vari-
ants likely leads to sequential and/or homogeneous var expression - a phenomenon postulated to maintain
infection chronicity by restricting the number of PfEMP1 variants due to partially cross-reactive and short-
lived epitope-specific antibodies [49, 67, 23]. Consequently, in malaria-endemic regions, older children and
adults with partially acquired immunity are frequently asymptomatic, i.e. individuals often carry parasite
loads without exhibiting symptoms of malaria [35, 19, 13]. P. falciparum parasites have thus evolved unique
mechanisms of regulating the expression of adhesive surface protein variants to evade the host’s adaptive
immunity [17, 18]. The proportions of parasites expressing different var genes in a population can change
through two mechanisms; intrinsic switching and turnover as a result of selection. Intrinsic switching is the
probabilistic change of the expressed gene from one intraerythrocytic cycle to the next [63, 54]. In vivo,
in addition to intrinsic switching, parasites expressing specific PfEMP1 can be recognized and eliminated
by the host immune system. Both mechanisms contribute to the turnover rate, describing how frequently
the repertoire of expressed var genes change. Low switching and turnover rates are thought to promote
prolonged infections by preventing the depletion of the entire gene repertoire [14]. However, as discussed
in [14], even the lowest in vitro rates estimated from [27] are not capable of explaining very long infections
such as chronic malaria. Moreover, it is conceivable that rapid, as opposed to slow switching, provides an
advantage for parasites, enabling them to evade recognition by the host immune system during the early
stages of an infection. Here, we revisit these concepts and perform an investigation of switching under in
vitro and turnover under in vivo conditions using a Controlled Human Malaria Infections (CHMI) study.

CHMI studies in which human volunteers are infected with P. falciparum sporozoites or intra-erythrocytic
stages, using the NF54/3D7 clone have highlighted the inherent differences in expression of various var genes,
with group B being predominantly expressed at the early stages of infection, group A to a lesser extent and
group C almost entirely absent [4, 3, 38, 26]. Here, we examined var gene transcription at multiple timepoints
in vivo and in vitro in a CHMI study carried out with semi-immune individuals in The Gambia, using the
NF54/3D7 parasite clone. We measured the intrinsic var gene switching rate from in vitro culture, while
from in vivo timepoints we estimated the turnover rate, defined as the result of switching and immune
selection. We observed that the breadth of serological responses against 3D7 var/PfEMP1 domains affected
the pattern of var expression at different time points in the CHMI. Exposed individuals with better ability
to control infection in endemic regions had a broader breadth of response against 3D7 PfEMP1 domains,
and had a distinct var expression pattern compared to individuals that were unsuccessful at controlling the
infection. Conversely, in non-controller individuals, var expression amplified the breadth of response against
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3D7 var/PfEMP1 domains, while controllers exhibit a comparatively stable response.

Figure 1: Characteristics of the CHMI for monitoring var expression and immune response: A) 19 semi-
immune adult males were selected based on their pre-existing antibody levels against six P. falciparum
antigens and classified as either sero-high (red) or sero-low (blue) [1]. All volunteers were infected with 3200
sporozoites (NF54/3D7 strain) on the same day and monitored for symptoms of malaria and parasitaemia,
var gene expression and immune response against PfEMP1 protein domains. Venous blood samples were
collected for var gene expression at one or two timepoints during the infection; on day 14 post inoculation
and day of treatment/termination of study for "long" infections, or only on day of treatment in case an
individual was treated before day 14 (short). The immune responses to PfEMP1 and other P. falciparum
antigens were measured before, during (once or twice, depending on whether the individual was treated
before or after day 14) and 2 to 3 weeks after the CHMI. Created with BioRender.com. B) Parasitaemia
by qPCR vs days post inoculation, stratified as sero-high (red) or sero-low (blue). C) Parasite doubling
time (time to double the parasitaemia) across the groups of volunteers; classified here as sero-high (red) and
sero-low (blue). DVI - direct venous inoculation.
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Volunteer Immune Response before CHMI Latency
(days) Entropy Generation Time

(days)
Peak parasitaemia

(Pf\ml)

CH001 sero-high 16.00 1.95 1.30 476
CH002 sero-high 10.45 3.00 0.38 1961
CH003 sero-high 9.38 2.64 0.30 5187
CH004 sero-high 11.37 1.60 0.46 10910
CH008 sero-high 9.57 2.89 0.37 12645
CH009 sero-high 9.48 3.58 0.34 14300
CH010 sero-high 7.30 2.64 0.48 15400
CH011 sero-low 9.38 3.30 0.32 21360
CH012 sero-low 10.20 4.00 0.32 22880
CH013 sero-low 6.39 3.85 0.41 27430
CH014 sero-low 6.57 3.50 0.41 27980
CH015 sero-low 6.81 3.40 0.43 71264
CH016 sero-low 6.40 3.85 0.44 84475
CH017 sero-low 9.21 4.06 0.34 100595
CH018 sero-low 5.61 3.22 0.60 148950
CH019 sero-low 8.94 3.69 0.38 168700
CH020 sero-low 8.69 4.01 0.32 205850

Table 1: Parasitaemia characteristics for CHMI volunteers: Different parameters stratified by volunteer
immune status before the start of the infection (sero-low or sero-high). The relationships between these
parameters are highlighted in Figure 1. The latency period is defined as number of days until there is
detectable parasitaemia. The generation time is the average time taken to double the parasite density. One
sero-high individual (CH006) remained negative for the infection throughout the study, while another one
(CH007) never reached a parasitaemia sufficient for transcriptome analysis.

2 Results

2.1 Pre-existing immunity determines infection outcome
As previously described, 19 semi-immune adult males living in The Gambia were selected for their antibody
levels against six P. falciparum antigens and classified as sero-high or sero-low [1]. All volunteers were
inoculated with sporozoites (NF54/3D7 strain) by direct venous inoculation (DVI) and treated with anti-
malarials once parasitaemia was detectable by microscopy or at the onset of symptoms. The infection
outcome differed significantly in the two groups. Sero-low individuals had more symptoms (mean = 4.10,
sd = 2.07) than sero-high individuals (mean = 5, std = 0.48) with symptoms occurring in both categories
approximately 4-5 days after being positive for parasitaemia by PCR [1]. The peak parasitaemia before
treatment in individuals classified as sero-low was significantly higher than the sero-high individuals (Mann
Whitney U-Test; p = 0.01). In addition to the parasitaemia peak and clinical symptoms, we also compared
the parasite growth rates across volunteers and the pre-patent period (Figure 1, Table 1), defined here as
latency. Only two individuals had a long latency period (CH004 = 11 days, CH001 = 16 days), with one
of them having an exponential rise in parasite growth rate post latency (CH004). The peak parasitaemia
was lowest in the individual with highest latency period and lowest parasite growth rate (CH001). As
in [3], we further used the differences in growth rate to classify the individuals as non-controllers (n=17)
and controllers (n=2). The "Controllers" were defined as individuals with the longest latency and smallest
parasite multiplication rate. Both individuals classified as controllers (CH001 and CH004) were sero-high
(Figure 1 and Table 1).
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2.2 VSAs are the main differentially expressed genes between sero-high and
sero-low individuals:

To understand how identical parasites adapt to different hosts, we performed a low input, whole transcriptome
analysis of parasites recovered from ten volunteers on the day of treatment. Gene expression and subsequent
differential expression analyses are highly influenced by the age and developmental stage of parasites [59].
Thus, we first estimated parasite ages from sequencing reads by calculating the maximum likelihood estimate
against data from an in vitro time-course experiment [33]. Parasites were ∼ 7.6 hours post invasion (hpi)
(95% CI; 6.67 – 9.35) (Figure S1 A & Supplementary file S1), with no significant disparity between the ages
of sero-low and sero-high parasites (p=0.28; Student t-test) (Figure S1 B).
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Figure 2: Whole transcriptome expression analysis: A) Differential expression analysis between sero-high
and sero-low volunteers. Blue and red represent down and up-regulated genes, respectively. VSAs (var and
rif ) are labeled with gene IDs. B) Heat map of the log2 FPKM of the top 50 differentially expressed genes in
a pairwise comparison. Var genes are in bold. Scale bar represent log2 fold change values. C) Bland-Altman
plot of var expression by RT-qPCR and RNA sequencing.

Applying a log2 fold change of > 2 (more than 4 fold difference) and Benjamini-Hochberg adjusted p value
< 0.01 as cuttoff, 144 P. falciparum genes were differentially expressed, of which 103 were down-regulated
and 41 up-regulated in sero-high compared to sero-low. Among these, genes coding for proteins with cell-cell
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adhesion predicted function were the most prominent, including 8 var genes (Figure 2 A, Supplementary
file S2). Due to the nature of clonally variant gene transcription, a pooled analysis might not effectively
capture VSAs expressed in a limited number of isolates. Consequently, we undertook pairwise comparisons
of all isolates to detect genes displaying differential expression among individuals (Supplementary file S3).
Genes were then ranked based on their frequency of appearance in these pairwise comparisons. Remarkably,
the top 50 most differentially expressed genes exhibited a notable enrichment of var (8 out of the 61 var
genes were present in the top 50) (Figure 2B). These observations indicated that the most variably expressed
genes among individual volunteers were members of the var family. Other Variant Surface Antigens (VSAs)
including stevor (∼30 members) and rifin (∼180 members), were poorly detected (Figure S2), likely due to
their transcription peaking later in the intra-erythrocytic life cycle [31, 43, 68, 45]. The exception was the
rifin PF3D7_0401600, which was detected in almost all samples (Supplementary Figure S2B, Supplementary
file S4), and was also the major expressed rifin in a CHMI study with naive volunteers [38]. In contrast,
var genes were robustly detected in all samples. To validate the accuracy of our var gene observations, we
measured var expression in each volunteer by RT-qPCR and compared outcomes of both methods. A Bland-
Altman plot comprising 610 observations (61 var genes in 10 volunteers) showed high c oncordance, with
only 15 observations falling outside the 95% confidence interval (Figure 2C). Based on these observations,
we focused our attention on var gene expression within hosts of varying immunity and the corresponding
humoral immune responses.

6 Page 46



Figure 3: Var expression landscape across two CHMIs. A) A heatmap of var gene relative expression
proportion at the first time point when expression data was available for an individual ; includes data from
the current CHMI and from Gabon (at the day of peak infection). The relative expression of each gene
is scaled with the total amount of var expression, quantified by RT-qPCR and ranges from low to high
(0-40%) . The bottom of the heatmap is annotated by the entropy of expression, representing the amount
and diversity of var genes in each sample. Top annotation is based on immunity and geographical region
of origin. All volunteers across different timepoints were hierarchically clustered using an average-linkage
method. Distinct clusters formed based on immunity, but not necessarily location. Non-controllers (blue)
developed symptoms and patent parasitaemia faster than controllers (red) and expressed a high diversity of
var genes during the CHMI, independent of the geographical region of origin of the volunteers. B) Entropy
of var expression: violin plots for the Shannon diversity index of var expression across the two categories
of volunteers (sero-high; red & sero-low ; blue) whenever the expression data was first available in each
volunteer . In the Gambian cohort, the expression entropy was lowest for the two controllers: CH001 and
CH004.
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2.3 Var gene expression pattern is shaped by host-immunity:
To assess the impact of selection due to pre-existing immunity on var expression repertoire, var gene expres-
sion was analysed in all individuals by RT-qPCR. This was either done at day 14 post-inoculation and/or
on the day of treatment. Comparison of total var quantity from RT-qPCR data showed higher var tran-
script levels in sero-low individuals (Mann-Whitney U-test, p-value <0.001). Hierarchically clustering of
pooled volunteers from the current study and a previous one in Gabon [3], based on their var expression
patterns alone showed distinct separation of controllers (CH001 & CH004 from The Gambian CHMI and
L1.023, L1.26, L1.010, L.018, L1.028 from the CHMI in Gabon [3]) from non-controllers (Figure 3A). To
estimate var gene heterogeneity, we compared the diversity of var repertoires across sero-high and sero-low
groups by computing the Shannon entropy, a measure encompassing both diversity and relative abundance.
Significantly higher entropies were observed for sero-low individuals (Mann-Whitney U-Statistic, p-value =
0.0002); indicating a larger breadth of var expression, in contrast to sero-high isolates that exhibited a more
restricted repertoire of transcribed var genes (Figure 3B). This difference in diversity was also negatively
associated with other markers of infection progression including latency (Spearmann Rank Correlation, r =
-0.55, p = 0.02) and parasite doubling time (Spearmann Rank Correlation, r= -0.53, p =0.02).
In summary, the distinct (restricted) var gene expression pattern in controllers could be a proxy for a slow
growing P. falciparum infection, possibly resulting from selection against specific PfEMP1s.

2.4 In vitro var gene switching sustains a steady state with elevated entropy
We aimed to estimate the intrinsic var gene switching rate in vitro, in the absence of immune selection. Out
of the original pool of volunteers (n=19), ten blood isolates drawn from seven volunteers were cultured in
vitro for 50 to 100 daysseveral cycles to investigate the impact of a lack of host-immunity on var expression
patterns. Five isolates (CH001-D28, CH002-D14 CH002-D15.8 CH004-D14 & CH004-D20.3) belonged to the
sero-high, while five isolates (CH012-D14, CH012-D16.3, CH014-D12.3, CH016-D12.3 & CH020-D14)1 were
from the sero-low category. For each isolate in culture, we analysed var transcription profiles by RT-qPCR
at 3 to 8 time points for up to 100 days (Figure S3). Isolates derived from sero-low individuals all converged
to near-identical var gene expression pattern within 20 days in culture, with all Pearson correlation values
above 0.80 (Figure S4). In contrast, sero-high isolates did not demonstrate any uniform expression pattern
even after 50 days of culture, with Pearson values ranging from 0.20 to 0.95.

To rigorously assess the hypothesis that the host immunity level may have a lasting impact on var gene
expression in vitro, we integrated data analysis with mathematical modeling.

First, the multi-dimensional traces from the ten timeseries were projected onto a 3D space using PCA.
We divided the time points in three categories: early (0-6 days), intermediate (20 ≤ 50 days), and late
(50-100 days). The projected point clouds from different categories show that the var gene global dynamics
is quantitatively different for samples from sero-low and sero-high volunteers (Figure 4). For samples derived
from sero-low volunteers, var gene transcription profiles are more spread at early time points than late time
points (Figure 4A), shown quantitatively by using the convex hull of the PCA projected points (Figure 4C).
This suggests that after a fast transient phase, the var gene transcription profile reaches a steady state;
an observation which is similar for all isolates. This can also be seen in Figure 4E where the transcription
profiles of all late timepoint samples are compared without projection. Sero-high volunteer samples showed
a different trend: the variability of the transcription programs starts from smaller values, but not all samples
reached a steady state (the final variability is not close to zero) (Figure 4B,D,F). The similarity of the late
time var gene expression profiles in different samples was also tested to be higher for Sero-low compared to
Sero-high volunteer samples by using an AUC criterion (Figure S5). Nevertheless, when utilizing entropy
as a metric to assess the diversity of var gene expression within a particular profile, we observed that all
samples exhibited a consistent trend of monotonic entropy increase with the highest entropy being reached
in the steady state (Figure 4I). Moreover, the primary distinction between sero-low and sero-high samples
appears to be the initial transcription profile, which exhibits higher entropy in the former as opposed to the
latter.

1the first and second part of the sample symbol indicates the volunteer and the the day after infection when the isolate was
drawn, respectively
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Figure 4: In vitro dynamics of var gene transcription from 10 isolates by RT-qPCR . A,B) distribution
of early (0 to 6 days, red), intermediate (20<50 days, green) and late (50 to 100 days, blue) time samples
projected on the 3 first PCA components (36.45 % of the total variance) . C,D) volume of the convex hull of
the samples projected on the same 3D space was used as a proxy for the variability of the var transcription
programs. E,F) probabilities of expression of different var genes for all late time samples. G,H) probabilities
of expression of different groups of var genes for all late time samples. I) in vitro evolution of var gene
expression entropy. J) estimated in vitro switching rates. The error bars are uncertainty intervals
obtained using the multiple random start points method with an overflow factor f = 1.2 (see Methods).
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Secondly, we performed a more accurate analysis of the var gene transcription dynamics using a math-
ematical model. In the absence of host immunity, the in vitro dynamics is not influenced by selection, but
results only from intrinsic switching of the var gene system. Under this hypothesis, the var gene dynamics
can be modelled as a continuous time, four-state Markov chain (see Methods and Materials). The four-states
Markov chain model fits well to the data of all the samples (Figure S7). As observed in the first analysis of
the data, the theoretical steady state of the inferred Markov chain has high entropy, where many var genes
are significantly expressed. Sero-high samples require more time to reach steady state due to distinct initial
data compared to the steady state, while sero-low samples have initial states with higher entropy closer to
the steady state. The fitted values of the transition rates are represented in the Figure S6. The C and BC
switching rates are similar to turnover transition rates in vivo, while those for A and B are much smaller
than the respective in vivo rates (Figure 4J). Altogether, our data indicate that immune selection within
sero-high individuals may still impact the var gene transcription profile in vitro after 25 generations.

2.5 Very high In vivo var gene renewal rates in vivo

To evaluate var transcript profile changes in vivo, we compared the expression levels in individuals with two
available timepoints, ranging from day 14 to day 20. We then computed the theoretical limits of probability
to stop expressing a certain gene, given its expression at the first time point (the turnover probability of
that gene). As expected, the turnover probability increased with time between day 14 post-infection and the
day of peak infection (Figure 5 A). For the individual with the highest time gap between two time points
(CH004), all genes expressed on day 14 were undetectable after three life cycles (6 days).

We further computed the instantaneous transition rates per unit time (days−1) during the CHMI, defined
as turnover probability per unit time. On comparing the var transition rates per day across different var
groups, groups A, C and E (var2csa) had the highest transition rates. (Figure 5 B). The median transition
rates were higher than 1 per day in all three groups, which correspond to transition probabilities higher than
86% per cycle. These high in vivo transition rates may arise from a combination of the inherent switching
rate and the potential selection pressure acting against parasites that express particular PfEMP1 variants.
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Figure 5: Quantifying change in var expression during an infection: A) Finite time turnover probability
comparison across different durations indicated that genes expressed at day 14 were no longer detectable
by the end of the infection in most volunteers. Each dot is the probability of turnover for a var gene in one
individual. The lower bounds for turnover probability for each var gene in each volunteer are pooled based
on the interval between day 14 and treatment time point. This turnover probability is ordered between day
14 and day 20 post-infection. The median of the turnover probability is highest on day 20 (black dashed
line). B) The instantaneous turnover rates were calculated for each gene at each time point. The turnover
rates for various genes are shown per group pooled by volunteers and time points, ordered by the medians
of lower bounds on the turnover rate , in increasing order from left to right. Based on our data, group A var
genes had the higher turnover rates ∼ 1.78 per day as compared to 0.59 per day for group B var genes.
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2.6 Immune responses against VSAs differ significantly between sero-high and
sero-low individuals:

Figure 6: Serorecognition of domains from 3D7 antigens and tetanus across all volunteers. Each column
is a time point for a particular volunteer during the infection (top annotation). The sero-high and sero-low
individuals have been annotated in red and blue, respectively. The malaria naive individuals are grouped
on the left (labelled and annotated in green). Each row corresponds to a 3D7 domain, grouped based on
the host receptors they bind to [? ] . The fluorescence intensity is scaled for each domain in increasing
order (from yellow to red).
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Figure 7: Significant increase of serorecognised 3D7 PfEMP1 domains post-CHMI in sero-low individuals.
A) Sero-positivity throughout time in CHMI participants (top panel): The scatterplot showing the number
of extracellular 3D7 PfEMP1 domains that were sero-recognized at different timepoints during the CHMI
across the two groups, sero-high (red) and sero-low (blue). For each volunteer, the treatment timepoint
is considered the peak of infection. B) Relative feature importance score to predict infection outcome:
Bar-plot of the relative contribution of each domain sub-type to classify individuals into ’sero-high’ and
’sero-low’ categories throughout the CHMI calculated using a random-forest classifier.

We evaluated the antibody levels against different antigenic domains corresponding to PfEMP1s and other
antigens by exploiting recombinant protein microarray data. Serological responses to a total of 213 falciparum
PfEMP1 domains (159 from 3D7, 54 from three other strains) and 18 other recombinant antigenic proteins
(MSP1, CSP, AMA1, RIFIN and STEVOR) were analysed for each volunteer at several timepoints: before
the injection (day 0), during the infection (range: day 13-28) and about 2-3 weeks after treatment (day 35)
(Figure 6). At day 0, antibodies against non-PfEMP1 surface antigens were associated with the latency
period (AMA1: r= 0.80, p < 0.01 & MSP1: r = 0.48, p < 0.01 and the peak parasitaemia (AMA1: r=
-0.80 , p < 0.01, MSP1: r= -0.59,p < 0.01) using Spearmann Rank Correlation. These results confirmed
previous data from the same CHMI study [1]. We also found that the boost in antibody responses to non-3D7
PfEMP1 domains was correlated with boost in domains associated with 3D7 PfEMP1 domains, (Spearman
Correlation >0.9, p-value <0.01), suggesting cross-reactivity across different falciparum strains. Anti-CSP
antibodies were associated with Latency (r = 0.52, p = 0.03 ) but not Peak-parasitaemia before treatment
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(r = -0.27,p =0.3). Moreover, based on the breadth of response at the beginning of the CHMI, sero-high
individuals had sero-recognition of a significantly higher number of 3D7 PfEMP1 domains in comparison
to sero-low individuals before (Mann-Whitney U-Test, p < 0.01) and after the infection (Mann-Whitney
U-Test, p < 0.01) (Figure 7 A). When examining the change in the number of recognized domains before
and after the CHMI study, no significant induced response was observed in the sero-high group (Mann-
Whitney U-Test, p < 0.01) (Figure 7A). This is in sharp contrast with the breadth of antibody levels
in sero-low individuals, that more than doubled after the infection (mean number of recognized domains
pre-infection ∼11, ±6; post-infection ∼28, ±12, Mann-Whitney U-Test= 17.0, p < 0.01). Additionally,
we employed a random forest model to predict the subgroup to which the volunteers were linked using
microarray data related to PfEMP1 domain responses. Using this model, the subgroups were re-confirmed
with a predictive accuracy of 98% (Figure 7B). Feature scores of the model revealed that the most important
domains for predicting infection outcome were either DBL-CIDR di-domains, ATS domains or CIDRα-
binding domains, with CIDRα-binding domains being the sub-domains that are linked to severe symptoms
of falciparum infection. The sero-recognition breadth within each individual was negatively correlated with
infection markers in vivo, i.e. latency (Spearmann Correlation: 0.67,p < 0.01) and the peak parasitaemia
(Spearmann Correlation: -0.68,p < 0.01) (Figure S8). In sero-low individuals, no correlation was found
between increase in number of sero-recognized domains and infection characteristics including PMR, latency
and peak parasitaemia , indicating that the gain in new antibodies was not sufficient in controlling the
infection.

2.7 Var expression is moderately associated with pre-existing specific immune
response:

To investigate the interplay between pre-existing specific immune responses and PfEMP1 expression, we
examined our primary hypothesis that the presence of antibodies targeting specific PfEMP1 domains would
impose a selective pressure against infected red blood cells (iRBCs) expressing the corresponding var gene
during the asexual blood stage. Overall, we observed a moderate association between the breadth of PfEMP1
domain recognition prior to challenge and the Shannon entropy of var gene expression during CHMI (day 12-
20) (Spearman Rank Correlation = -0.52, p < 0.05). This suggests that the diversity of var gene expression
may be constrained by the breadth of immune responses directed against PfEMP1 domains.

To make inter-PfEMP1 responses throughout the CHMI comparable, we used a discretized method to
evaluate both the fluoroscence intensity values for antibody levels per domain and the expression levels
of the var transcripts (described in Methods and Materials) based on quantiles per domain (for immune
response data) and per gene (expression data). On comparing the intensity of recognition at the start of
infection to var gene expression, we observed a moderate association during the CHMI (Figure 8). This
relationship was strongest for var groups ’B\C’,’A’ and ’B’, indicating that some PfEMP1 expression could
have been inhibited by existing specific immune response. However the antibody intensity against PfEMP1s
corresponding to the intermediate group ’B/A’ and ’var2csa’ was not significantly associated with reduction
in expression during the CHMI.
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Figure 8: Anti-correlation between pre-existing PfEMP1 antibodies on day 0 and var expression during the
CHMI: The correlation between existing antibody levels at day 0 and the var expression during the infection
was calculated across all volunteers for each PfEMP1. Each bar represents the median of the anti-correlation
for a group and each point corresponds to a PfEMP1. A PfEMP1 was considered sero-recognised in an
individual if at least one of its domains showed antibody signal on the array. For quantifying var expression,
we used the average expression for each var gene if data from two time points was available for a volunteer.

2.8 The increase in antibody levels is not necessarily dependent on the intensity
of PfEMP1 expression during the CHMI.

In order to examine the hypothesis that the overall intensity of PfEMP1, specifically the quantity of PfEMP1
expressed at a particular time point within an individual, initiates antibody production, we contrasted
the discrete intensity levels at which various var genes were expressed during CHMI with the quantity of
antibodies acquired against the corresponding PfEMP1. On evaluating the correlation between these two
variables, we observed no evident of association in antibody development towards genes expressed at high
intensity when compared group-wise for all var groups (Figure 9). These results indicate that the gain
in antibody levels is not necessarily dependent on the intensity with which a particular gene was expressed
during the infection. The possibility of a protein array artefact is low, as, overall, percent of all 3D7 PfEMP1
domains subsequently used for analyses were serorecognised at least once by a plasma sample, validating
these recombinant domains as antigens. In summary, our data open up the hypothesis that some PFEMP1s
do not necessarily elicit an antibody response.
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Figure 9: Correlation between expression intensity of PfEMP1s and antibody acquisition at day 35: For
each PfEMP1 for which antibody data as well as corresponding var gene expression data was available, we
calculated the change in antibody levels between the day of the treatment and day 35 of the CHMI and
contrasted it against the var expression levels across all volunteers. In case two time points were available,
the average was used to calculate the expression. The plot shows the correlation for each var across all
individuals.

3 Discussion
Controlled Human Malaria Infection (CHMI) studies are useful not only for evaluating drug efficacy and
vaccine development but also for understanding pathogenesis of Plasmodium within the human host and its
interactions with the immune system in real time [55]. Leveraging clinical and experimental data from CHMI
studies, our aim was to document the heterogeneity in host responses and compare infection characteristics
that transcend different geographical regions.

Individuals selected for their previous malarial exposure showed diverse infection outcome and var ex-
pression heterogeneity, consistent with previous findings in Gabon [3]. In our study, the whole transcriptome
sequencing approach underscores var genes as the primary cause of transcriptome heterogeneity among iso-
lates. Despite the geographical distance between Gabon and The Gambia, there is a consistent var gene
expression pattern linked to pre-existing immunity against malaria. The observed similarity suggested an
immune response that selectively targeted certain PfEMP1 variants in individuals classified as “controllers”.
These individuals, characterized by low entropy profiles featuring limited expressed genes, exhibited longer
latency periods, lower parasitaemia levels before treatment, and demonstrated recognition of a wide array
of PfEMP1 domains prior to the infection challenge. On the other hand, individuals classified as “non-
controllers”, who had high entropy profiles and a wide range of expressed genes, showed elevated parasitaemia
levels, shorter infection delays, and limited recognition of PfEMP1 domains. This is reminiscent of the ro-
dent malaria model, in which P. chabaudi parasites express a very limited number of pir genes in chronic
infections [10]. Antigenic variation, encompassing intrinsic switching of the PfEMP1 proteins that a parasite
displays at the red blood cell surface, is regarded as a prominent survival strategy employed by P. falci-
parum during its blood cycle. This process has been extensively studied in vitro [27, 48, 70]. Nevertheless,
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antigenic variation is also contingent on the host-pathogen interaction, triggered both by intrinsic switching
and by elimination of variants through the immune system’s negative selection process. Negative-selection
eliminates variants and is therefore detrimental to the parasite survival, whereas intrinsic switching replaces
one variant with another and maintains the expression diversity of the antigens. Here, from 9 volunteers,
two blood isolate timepoints were available, providing a rare opportunity to quantify the turnover rates of
var genes in vivo. Turnover probabilities rapidly increased over time. For instance, in the volunteer that
was able to control the infection until the end of the CHMI without turning symptomatic, we found that
the initial repertoire of var genes had completely changed after three cycles (between day 14 and 20). Given
the short interval between timepoints, this shows that the var turnover during an infection is much higher
than reported previously [42, 20]. Our mathematical estimates based on a Markov chain model lead to
turnover probability estimates with group averages between 69% and 97% per generation (corresponding to
instantaneous rates from 0.59 to 1.78 per day, see Figure 5B), likely as a result of a combination of intrinsic
switching and immune selection. Additionally, group A var had the highest rates of transition in vivo, a
phenomena previously observed in vitro [43].

To get an accurate estimate of switching events and rates in the absence of immunity, we modelled the
var transcripts coming from the CHMI volunteers in vitro for several cycles in culture. In our study setting,
although smaller than in vivo values, intrinsic switching rates were found higher than reported elsewhere
[51, 27]. In vitro transition (switching) probabilities for var genes B and A (7% and 44% per generation,
respectively) are over two-fold lower than in vivo turnover, whereas the in vitro values for var C and BC (57%
and 49% per generation, respectively) are close to in vivo values. These large, per group values, do not exclude
that some rarely transcribed var genes have low transition rates, even within fast groups. Furthermore, var
expression profiles evolved in vitro towards a steady-state distribution marked by a significant increase in
entropy and many expressed var genes. The steady state distribution in both sub-groups comprised as major
constituents var groups B and C, that is compatible with previous findings 43. In the sero-low groups, the
parasite populations reached the corresponding steady state relatively quickly, within fewer than 10 cycles.
Remarkably, for sero-high individuals, the parasite cultures took longer to converge to the steady state, with
some samples retaining memory of the initial state even after 50 days in culture. We therefore hypothesize
that epigenetic imprinting on parasite populations from hosts with robust immune responses led to a var
gene repertoire significantly divergent from the in vitro steady state. However, given that the switching
rates were found to be similar, the disparities in time to reach a steady state can be primarily attributed to
differences in the expression profiles between the two groups at the peak of infection.

We propose that in all sero-low individuals expressing multiple var genes, the in vivo var distribution
closely mirrors the in vitro steady state. This is consistent with the hypothesis that var gene expression is
reset during mosquito and/or hepatic stage passage [4]. We also hypothesize that a similar state is initially
present but is rapidly lost through negative selection in sero-high individuals. This state is reached by
parasite intrinsic var gene switching as part of a “bet-hedging” strategy in a hostile environment. In all
individuals, the observed distribution at later in vivo time points evolve to a less diverse repertoire through
negative selection. Several studies highlight that the initial probabilities of expression of different variants
at the onset of blood stage infection are consistent across multiple CHMI studies with limited stochasticity
between individuals [4, 26]. : Similarly, broad group B var expression was observed in a CHMI study with
the 7G8 clone, although in this instance, a group C var was the most dominantly expressed in all volunteers
[69][45, 69]. The in-vivo reduction in diversity of repertoires is much stronger and more rapid in sero-high
individuals that are thus more effective in delaying the infection.

The most common approach to study naturally acquired immunity involves incubating antibodies from
semi-immune individuals against parasite recombinant proteins derived from the 3D7 strain [12, 46]. How-
ever, to test antibody sero-recognition against the PfEMP1 family, these assays must rely on some level of
cross-reactivity, due to the extremely high var gene sequence polymorphism. Here, we circumvented this
limitation with a 3D7-based protein array and plasma samples from 3D7-infected individuals, allowing us
to determine the precise antibody-acquisition against each PfEMP1 variant. The sero-low/sero-high group-
ing made from Luminex assay [1] was validated with MSP1, CSP and AMA1 on our protein array. As
expected, these sero-high individuals also sero-recognised a significantly larger proportion of PfEMP1 do-
mains. These pre-existing antibodies decreased the likelihood of reaching the treatment threshold for the
infection. The diversity in recognition, coupled with cross-reactivity against VSAs can be considered crucial
to prevent symptomatic infections [11, 30, 24] for controlling malaria infections. Our results re-confirm that
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anti-PfEMP1 immunity is a marker for infection outcome and severity of malaria infection [66, 8], and that
certain PfEMP1 subsets have been linked to shield against severe symptoms of the disease [58, 60, 2, 41].
We also found that the pre-existing specific PfEMP1 antibody levels were at least moderately negatively
associated with the expression of var genes during the infection, and this stems from acquired immunity to
previous malarial infections. The negative correlation was most pronounced for group B and A PfEMP1,
which constitute the var gene repertoire in early stages of infection.

Although blood-stage infections were artificially shortened by anti-malarial drugs, the breadth of antibody
levels against PfEMP1 domains drastically increased by day 35 in sero-low individuals. Among the notable
increases in antibodies was against the PfEMP1 domain ATS, located inside the red blood cell. This finding
has been consistently demonstrated [61, 46], establishing ATS, the only conserved PfEMP1 domain, as a
marker of exposure rather than protection. We did not identify a direct correlation between the var genes
detected during the infection and the antibody-acquisition by day 35. Merozoites emerge from the liver
around day 6, thus the var gene expression over the first 3 cycles is unknown, but they could have led
to acquisition of novel antibodies observed post-infection. The observation that many highly expressed var
genes at peak parasitaemia did not trigger an antibody response is intriguing. As each recombinant domain
on the array has been serorecognised at least once by one plasma sample, a technical issue with the domain
confirmation on the array is unlikely. Hence w We hypothesize that certain PfEMP1 domains are poorly
immunogenic. While it is evident that PfEMP1s generally induce a robust immune response, in fact most
antibodies targeting surface antigens are against PfEMP1 [12]. However, whether surface expression of a
PfEMP1 automatically generates a new antibody had not been previously explored. We argue that P.
falciparum has evolved not only an extremely polymorphic gene family but also protein domains that are
relatively weakly immunogenic. This evolutionary pressure does not apply to the intracellular ATS domain,
explaining its higher immunogenicity.

In summary, our findings corroborate the following scenario: The driving force behind maintaining a
high-entropy repertoire of PfEMP1 variants is the intrinsic var gene switching. The establishment of a high-
entropy repertoire occurs through resetting during mosquito and liver passage. This bet-hedging strategy
proves to be effective when the parasites are confronted with a less diverse immune response. The high entropy
repertoire is maintained by intrinsic switching in sero-low individuals, but does not survive negative-selection
in sero-high individuals. However, some PfEMP1 domains are only poorly immunogenic and can persist. As
such, poor immunogenicity combined with bet-hedging insures the parasite survival during CHMI. Intrinsic
var gene switching is responsible for the reset and maintenance of a diverse var repertoire. Its high rates
represent a challenge for the immune system during CHMI, because of the limited immunogenicity and
duration of the infection. In the case of prolonged infections, such rapid rates of exhaustion of the repertoire
could be a disadvantage for the parasite, which then has to depend on alternative mechanisms to generate
variability such as recombination [64, 16, 15]. Interestingly, parasites submitted to high negative selection in
sero-high individuals tend to express more stable variants and recover much slower, the high entropy steady
state. This again could work in favor of the host/immune system and contribute to establishing a dynamic
asymptomatic equilibrium during extended infections.

4 Methods and Materials

4.1 Epidemiological study design and sample collection
The epidemiological data used in this study was obtained from a previously published, non-randomized
clinical trial in the Gambia (low transmission intensity) carried out by the Medical Research Council Unit
The Gambia (MRCG) [1]. Briefly, participants aged between 18-35 years were recruited for this study and
were screened for various hematological and biochemical abnormalities. Previous malaria exposure in these
participants before DVI (Direct Venous Inoculation) was approximated using the LUMINEX platform by
comparing responses against 6 malaria antigens (AMA-1, MSP1.19, GLURP.R2, GEXP18, Etramp5, Rh2)
known to be markers of malaria exposure. Based on these responses, the volunteers were classified into two
groups, sero-high and sero-low [1]. All volunteers received PfSPZ Challenge (3.2 × 103 PfSPZ in 0.5 mL,
NF54/3D7 strain from Sanaria) by direct venous inoculation. Venous blood samples were collected the day
before the inoculation (Day 0), once or twice between day 11 to 28, and at at day 35. All volunteers were
treated with artemether-lumefantrine once thick blood smears were positive with P. falciparum.
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4.2 Parasite enrichment and sorting
Infected venous erythrocytes frozen in glycerolyte were thawed and immediately treated with Streptolysin O
(SLO) from Streptococcus pyogens (Sigma) as previously described [28, 9], with few modifications. Briefly,
lyophilized SLO was reconstituted at 25U/µL stock concentrations, activated at room temperature for 15
minutes with 1M dithiothreitol (DTT) and used at a final activity of 1U/µL. Cells were lysed at room
temperature for 6 minutes and reaction quenched with 5% PBS-BSA. Cell pellets were resolved on 60%
Percoll gradient to remove cell debris, by centrifugation at 2500 x g for 3 minutes. Pellets were washed twice
with PBS and stained with 500µL of 1:2000 dilutions of Vybrant DyeCycle Green Stain (Thermo Fisher) for
30 minutes at 37oC. Where possible, 100 infected erythrocytes were sorted in triplicates with a BD FACSAria
flow cytometer (BD Biosciences) into wells containing lysis buffer of 2µL 0.8% Triton-X100, 1µL of 10mM
dNTP mix (Thermo Fisher), 0.1µL of 20U/µL RNase Inhibitor (SUPERase•In™; Thermo Fisher), 0.1µL of
100µM non-anchored oligo dT (IDT) [50], 0.4µL of 50% polyethylene glycol (PEG8000) (Sigma) and 0.4µL
nuclease-free water. Plates were snap-frozen on dry ice and stored at -80oC until use.

4.3 Whole transcriptome amplification with SMARTseq2
Complementary DNA (cDNA) were synthesized from sorted cells with a modified version of the SMARTseq2
protocol which has been optimized for Plasmodium [50], with few modifications. Briefly, a molecular crowding
step [5] was included to improve library yield by adding 5% polyethylene glycol (PEG8000) (Sigma) to the
lysis buffer [25]. Additionally, the SmartScribe (Clontech) reverse transcriptase was substituted with the
better performing Maxima H (Thermo Fisher) at the cDNA synthesis step [5, 25, 72]. Frozen plates were
thawed and incubated at 72oC for 5 minutes. cDNA synthesis master mix with final concentrations of 1X
Maxima H RT buffer, 10µM TSO (Qiagen), 5U SUPERase•In RNase Inhibitor, 25U Maxima H enzyme,
and nuclease-free water in 6µL volumes were added to each well. The cDNA was synthesized at 42oC for
90 minutes, followed by 10 cycles of 2 minutes at 50oC and 2 minutes at 42oC, and deactivation at 85oC
for 5 minutes. cDNA was then amplified at 26 cycles with the KAPA HiFi HotStart ReadyMix PCR Kit
(KAPA Biosystems), using the following conditions: denaturation at 98oC for 3 minutes, cycling steps of
denaturing at 98oC for 20 seconds, annealing at 67oC for 15 seconds, extension at 72oC for 6 minutes, and
final extension at 72oC for 5 minutes. PCR products were cleaned with 1X AMPure XP beads (Beckman
Coulter), and eluted with 20µL of nuclease-free water. cDNA quantity and quality were assessed with Qubit
dsDNA HS Assay (Invitrogen) and Agilent High Sensitivity DNA Assay (Agilent), on a Qubit 4 fluorometer
and Agilent 2100 Bioanalyzer, respectively.

4.4 Whole transcriptome sequencing and data analysis
Amplified whole transcriptomes were sequenced by BGI genomics (Hong Kong). Paired-end fastQ files were
aligned with HISAT2 (default alignment parameters) [29] and bam files made with SAMtools [34]. The
SummarizeOverlaps feature of the GenomicAlignments package [32] was used to count reads against the P.
falciparum 3D7 reference genome (version 3.0) and DESeq2 [36] used for differential expression analysis in
R.

4.5 Parasite culturing
Cryopreserved parasites were thawed with NaCl solution [56], and parasites cultured in RPMI-1640 (sigma)
supplemented with 25mM HEPES, 2mM L-glutamine, 0.5% Albumax II (sigma) and 50µg/L gentamicin
(sigma). Parasites were cultured in 10mL volumes at 2% haematocrit in a blood gas environment of 90%
N2, 5% CO2 and 5% oxygen. Parasites were harvested for RNA extraction at respective timepoints after
synchronization with 5% D-sorbitol.

4.6 RNA extraction from samples stored in RNAprotect and cultured isolates
Total RNA was extracted by the phenol-chloroform extraction method with TRIzol reagent. For in vivo
samples stored in RNAprotect Cell Reagent (Qiagen), five volumes of TRIzol reagent (Ambion) was added
for homogenisation. For in vitro samples, 1mL of TRIzol was added to 200µL erythrocyte pellets and
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homogenised. One-fifth TRIzol volumes of chloroform (Sigma-Aldrich) were added, and phase-separated by
centrifuged at 16,000xg for 15 minutes at 4oC. RNA was precipitated from the aqueous phase with ice-cold
isopropanol and 15µg of glycogen (GlycoBlue™ Coprecipitant; Invitrogen) for 2 hours or overnight at 4oC.
After centrifugation at 16,000xg for 30 minutes (at 4oC), the precipitated RNA pellets were washed with
75% ethanol, air-dried at room temperature and solubilized in 87.5µL of DEPC-treated water (Invitrogen).
Residual genomic DNA was subsequently removed by in-solution digestion with 7U of RNase-free DNase
I (Qiagen). The RNA was then cleaned up by a second phenol-chloroform extraction step, and finally
solubilized in 15µL DEPC-treated water. Absence of genomic DNA was determined by 35 cycles of RT-
qPCR, using the skeleton binding protein 1 (SBP1 ) as target gene. If Ct values were less than 32, DNase
digestion and re-extraction was repeated. The RNA was either used immediately or stored at -80oC.

4.7 Estimation of primer efficiency
Primers used for 3D7 var gene expression analysis were selected from previous studies [53, 3]. All primers were
synthesized by Eurofins Genomics at 0.01 µmole with HPSF purification. P. falciparum 3D7 genomic DNA
was serially diluted over 5-log concentrations and applied in a qPCR assay to determine primer amplification
efficiency, using the SensiFAST™ SYBR No-Rox kit (Bioline) and primers at 300nM concentration. PCR
was run with a LightCycler® 480 System (Roche). A two-step PCR was applied, with initial denaturation
at 95oC for 3 minutes, followed by 40 cycles of annealing and extension at 62oC ramping at 4.8o C/s. A
melting curve step was included to ascertain the specificity of the primers. Only primers with efficiencies
between 1.8 and 2.2 were used for further analyses.

4.8 Real time (RT)-qPCR
cDNA was synthesized with the PrimeScript™ RT reagent Kit (Takara) using a combination of random hex-
amers (100µM) and oligo dT (50µM) primers in 20µL reaction volumes. cDNA was used in qPCR for the
quantification of var genes in each sample. RT-qPCR assays were run with the SensiFAST™ SYBR No-Rox
kit (Bioline) and primers at 300nM concentration on a LightCycler® 480 System (Roche). A two-step PCR
was used, with initial denaturation at 95oC for 3 minutes followed by 40 cycles of annealing and extension at
62oC with 4.8oC/s ramp. Each assay included a 2.5µg genomic DNA positive control and no template (water)
negative control. A melting curve step was included to ascertain the specificity of the primers. Four Plas-
modium genes; SBP1 (PF3D7_0501300), fructose-bisphosphate aldolase (PF3D7_1444800), arginyl-tRNA
synthetase (PF3D7_1218600) and seryl tRNA synthetase (PF3D7_0717700) were included as housekeeping
genes (references). Normalisation and calibration were done as previously described [3]. In brief, SBP1
was used as the normalizer while 2.5ng genomic DNA was used for calibration. Relative quantification was
calculated using 2−∆∆CT taking into consideration the individual primer amplification efficiencies [44].

4.9 Estimating infection characteristics:
For comparing infection progression in-terms of growth rate, we calculated the PMR using a piece-wise
log-linear model with latency as an additional parameter, given by:

y(t) =

{
0 , t ≤ d
yd exp[m(t− d)] , t > d

where d is the latency period, i.e. the time during which parasitaemia is undetectable, and m is the intrinsic
growth rate of the parasite in each individual, y is the measured parasitaemia level, and yd is a small
undetectable parasitaemia value. In the model we approximate to zero the undetectable parasitaemia during
latency and consider that after latency the parasitaemia grows exponentially.

4.10 Estimating var gene expression changes:
var gene expression probabilities were estimated as frequencies, i.e. ratios of the number of specific reads to
the total number of reads. All probabilities less than a cut-off of 2% of the total var expression were considered
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as vanishing. Because each parasite expresses only one var gene at a time, the expression probability of a
gene also represents the proportion of parasites expressing that gene.

To quantify the heterogeneity of the population of parasites in terms of quantity and type of var genes,
we used the above expression probabilities to compute a Shannon diversity index as follows:

S = −
∑

Pi ̸=0

Pi log(Pi),

where Pi represents the probability that the var gene i is expressed.
To model the change in var gene expression across time we considered a two state, continuous time 2

Markov chain described by the diagram:

ON OFF

P−

P+

The two possible states for each variant are "ON" and "OFF" and P+ and P− are the probabilities of
transition from one state to the other. The state "ON" means that the variant is expressed in a given
parasite. The ’OFF’ state corresponds to both events in which the parasite has switched away to expressing
another gene, as well as the parasite expressing the same gene was recognized and eliminated by the host
immune system.

The probabilities of a gene being expressed at various times t+∆t and at t are related by the following
expression:

PON
t+∆t = PON

t (1− P−(∆t)) + POFF
t P+(∆t) (1)

where P−(∆t), P+(∆t) are the finite time transition probabilities from OFF to ON and from ON to OFF,
respectively. Using Eq.1, we can find bounds for the finite time transition probabilities P−(∆t) and P+(∆t).
The probability bounds for P− can be given as:

max(0,
PON
t − PON

t+∆t

PON
t

) ≤ P−(∆t) ≤ min(
1− PON

t+∆t

PON
t

, 1). (2)

Similarly, the finite time transition probability from OFF to ON state satisfies:

max(0,
PON
t+∆t − PON

t

1− PON
t

) ≤ P+(∆t) ≤ min(
PON
t+∆t

1− PON
t

, 1). (3)

The finite time transition probabilities thus calculated depend on the time interval ∆t. To quantify the
transition probabilities independently of the time interval, we estimate the instantaneous transition rate
(per unit time) p− from ON to OFF, for each gene. Neglecting switching to events, instantaneous transition
rate is related to the finite-time transition probability, as described by the formula:

P−(∆t) = 1− exp(−p−∆t). (4)

The finite time transition probability along a time ∆t equal to the generation time Tg is equivalent to
the rates derived previously in [27], using the discrete difference equations. Indeed, let us suppose that the
gene only changes from ON to OFF. Then, the changes of the proportion of parasites expressing a variant
Pt over successive generations, starting with a monoclonal population P0 = 1 to represent the experimental
conditions from [27], are described as:

Pt+1 = Pt − roffPt, (5)

where roff = 1− P 1/n
n . (6)

2Even if one parasite switches the variant only at discrete times, multiples of the generation time, a continuous-time model
is appropriate for modeling a population of non-synchronized parasites.
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Comparing Eq. (1) with P+ = 0 to Eq. (5) we find the equivalence between P−(Tg) and the discrete model
rate roff:

roff = P−(Tg) = 1− exp(−p−Tg). (7)

To summarize, in this paper we use both instantaneous transition rates (measured in d−1) and finite time
transition probabilities (measured in % per generation) to estimate rates of changes of var gene expression.
The above definitions are general and apply to both in vivo turnover and to in vitro switching, even if the
mechanisms of gene population change are different. The definition of rates used in previous works [27],
based on discrete Markov chains models and concerning in-vitro switching, is the same as our definition of
finite time transition probabilities.

4.11 Modeling in vitro data
The analysed data consists of ten time series with up to six time points. The time series is multi-dimensional,
as for each time point one has the probability of expression of each of the 61 var genes.

First, the high-dimensional traces were projected onto a 3D space using Principal Component Analysis.
This can be modelled as a continuous time, four-state Markov chain. The number of states in the model

is obtained by using the following principles: i) each state corresponds to genes from the same group, ii) var
gene groups such as E and BA have very low probabilities at late times for all sero-low samples and most
sero-high samples (see Figure 4 g,h) and are therefore excluded from the analysis.

The var genes dynamics is described by a continuous time, four-state Markov chain model. The master
equation for this model reads:

dp

dt
= Qp, p(0) = p0, (8)

where p(t) = (p1(t), p2(t), p3(t), p4(t))
T and p0 are the time dependent and initial (t = 0) probabilities of

the four states (in order, var gene groups A, B, C, BC), respectively, Q is the adjoint transition-rate matrix
(also named adjoint infinitesimal generator matrix), satisfying Qii = −∑

j ̸=i Qji (zero sum columnwise).
In this model, each state is a group of var genes. The element Qji, j ̸= i represents the instantaneous

transition rate from a state i to the state j. The instantaneous transition rates are estimated by optimisation
and correspond to the minimum of the objective function

O(Q) =
4∑

i=1

nk∑

j=1

10∑

k=1

|(pi(tjk;Q)− pobsi (tjk)|2, (9)

where pi(tij ;Q) are solutions of (8) with initial conditions p0 = pobs(0) and pobsi (tjk) are measured expression
probabilities; the index 1 ≤ k ≤ 10 designates the sample and nk ≤ 6 is the number of time points for the
sample k.

The instantaneous rates to switch away from each state are given by

q1 = −Q11 = Q21 +Q31 +Q41,

q2 = −Q22 = Q12 +Q32 +Q42,

q3 = −Q33 = Q13 +Q23 +Q43,

q4 = −Q44 = Q14 +Q24 +Q34. (10)

The finite time, per generation, probabilities to switch away can be computed from the diagonal elements of
the matrix exp(TgQ), where Tg is the generation time, namely

Q1 = 1− [exp(TgQ)]11,

Q2 = 1− [exp(TgQ)]22,

Q3 = 1− [exp(TgQ)]33,

Q4 = 1− [exp(TgQ)]44, (11)

where exp(∗) represents the matrix exponential.
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The inter-individual similarity of the large time var gene transcription profiles was tested using an AUC
criterion. For an arbitrarily chosen late time sample the var genes were sorted in decreasing order of their
expression values. Then a normalized rank was assigned to each var gene representing the rank in the
particular sample divided by the total number of var genes. For all genes that have ranks smaller than a
given one and for all samples, we computed the fraction of common genes that is the proportion of highly
expressed var genes that are common to all late time samples. The AUC index was defined as the area
comprised between the diagonal (fraction of common genes = normalized rank) and the fraction of common
genes vs. normalised rank curve, low AUC meaning large similarity.

4.12 Protein microarray
We developed a custom microarray featuring extensive coverage of the PfEMP1 domains in the reference
genome 3D7 as previously described [60] as well as 79 protein fragments from PfEMP1s from the IT4, HB3,
and DD2 reference strains, as well as PfEMP1s sequenced from field isolates. PfEMP1 fragments were
typically expressed as consecutive constitutive domains [47], as we have previously done with the reference
genome 3D7 [60]. Intracellular acidic terminal segments (ATS) of PfEMP1s were expressed as stand-alone
fragments. The microarray also included additional antigen malaria proteins, including the 3D7 variants of
apical membrane antigen 1, circumsporozoite protein, and merozoite surface protein-1. Three concentrations
of tetanus toxin were also included as positive controls. Construction of microarrays has been previously
described elsewhere [? 57, 6]. The microarray was probed with plasma from study participants as previously
described and then scanned [71]. Fluorescence intensity was defined as the raw signal intensity corrected by
global median scaling for no-DNA negative controls.

4.13 Protein microarray data analysis
All statistical analyses were carried out in python version 3.9. MFI-bkg values smaller than or equal to zero,
were replaced with the average value of blank responses (in this case with a value of 2 so that the log2FC
value can be computed) and log-transformed. Sero-recognition threshold for all domains was determined
by the median + 2 S.D. response levels in naive North-American individuals (n=10). Each domain on the
array corresponds to a domain represented on the PfEMP1 protein encoded by the var genes. The random
forest regressors and classifiers to predict relationships between immune response and infection outcome
were implemented using scikit-learn 1.1.2. For data validation, we used responses against Tetanus antigens
as control across naive and semi-immune individuals. The classification of the volunteers for immune response
was retained as per the method described in the Epidemiological study design, based on another study, and
later re-confirmed by several of our analyses. A PfEMP1 was considered recognised in an individual even
if only one domain corresponding to the protein was recognised (in the event of multiple domains present
per protein). The prediction of volunteer sub-groups was carried out based on immune responses using a
random-forest classifier with Bootstrapping and Grid-Search to obtain optimal parameters for prediction of
volunteers and a feature importance score was calculated to distinguish domain types useful in prediction
the outcome of infection. We also calculated the change in breadth of response; as a cumulative total of
domains recognised at different time-points in an individual, as well as the fold change in responses to each
antigenic domain, between the first and the last time-point during the study.

4.14 Var expression and anti-PfEMP1 antibodies
A discretization method was used to compare inter-PfEMP1 responses throughout the CHMI. In this method,
we converted the quantitative Fluorescence Intensity values per PfEMP1 to discrete values across all indi-
viduals, using quantile based classification. To discretize the domains, we used the following scheme: For
each domain, we had a distribution of data points from samples defined as: x1, x2, x3, . . . , xn, where n is
the number of individual samples per PfEMP1. We discretized the dataset into k + 1 bins using quantiles,
where the quantiles are represented by q1, q2, . . . , qk. First, the quantile values q1, q2, . . . , qk were calculated
based on the chosen number of categories. These quantiles divide the data into k+1 intervals. Then each
data point xi was assigned to a specific interval based on its value. For instance, if xi falls in the interval
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(qj−1, qj ], it is assigned to the j-th bin. Mathematically, this function can be represented as:

qcut(x, q) =





k if x > qk,

k − 1 if qk−1 < x ≤ qk,
...
1 if q1 < x ≤ q2,

0 if x ≤ q1,

where x is a data point from the dataset, q = (q1, q2, . . . , qk), k is the number of quantiles.
We then grouped domains based on the PfEMP1 that they correspond to, and to each PfEMP1 group

we associate the maximum domain response. Finally, only the PfEMP1s for which there was data available
for both qPCR expression as well immune response were selected for the analysis.
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Supplementary figures

Figure S1: Developmental age of parasites by maximum likelihood estimated based on the captured tran-
scriptomes in vivo. (A) All isolates were estimated to be ring-stages. (B) No significant difference between
sero-low and sero-high derived isolates.

Figure S2: In vivo expression levels of variant surface antigens (VSA) from bulk RNA-seq.:Heatmap shows
Log2FPKM values in each isolate. (A) stevor genes., (B) rif genes. (C) var genes.
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Figure S3: In vitro var expression landscape across time for ten isolates derived from sero-low and sero-high
individuals. The heatmap is hierarchically clustered for relative expression of var genes at timepoints 6, 20
and 50 days in vitro after the in vivo infection timepoint. For CH020 (sero-low individual) there was an
additional timepoint at 100 days post in vivo. Relative expression of each gene is shown from low to high,
between 0% (yellow) to 30% (red). Var genes were grouped based on upstream sequence as A, B, C,E or
intermediate groups B/A and B/C. Individuals were clustered based on expression and stratified by infection
outcome.
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Figure S4: Pearson correlation between the var expression times series of A) sero-high individuals during in
vitro culture and B) sero-low individuals. The color gradient is ordered from red (least) to green (highest).
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Figure S5: AUC method for testing the similarity of var genes distribution in all late time samples in vitro.
The normalised rank represent the rank divided by total number of var genes after sorting them with respect
to expression value in decreasing order. The fraction of common genes is the proportion of var genes that
have ranks smaller than a given one in all late time samples. The diagonal represents the perfect similarity.
The AUC index is defined as the area comprised between the diagonal and the curve, lower AUC meaning
larger similarity.
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Figure S6: Transition graph and instantaneous switching rates of the four states var genes model resulting
from fitting the model to the in vitro data. The gene groups E and BA where not included in this model
because they reach rapidly very low steady state probabilities (see Figure 4 g,h).

Figure S7: Fitting the four-state model to the in vitro expression data. Dotted lines are the model predictions.
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Figure S8: Pre-infection breadth of immune response and parasite growth dynamics. A) Spearmann Rank
correlation between the number of 3D7 PfEMP1 domains recognized by the host at the beginning of the
infection and the latency period (days until patent parasitaemia). B) Sero-recognition at day 0 and peak of
parasitaemia: The log-peak of parasitaemia (Pf/ml) correlation with respect to the number of sero-recognized
domains at the start of infection in an individual. C) Spearmann Correlation plot for parasite multiplication
rate vs breadth of sero-recognition in each individual.
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CHAPTER3

Mathematical Models of Antigenic Variation

As discussed earlier in Section 1.5, mathematical models in malaria encompass
different fields in biology and epidemiology, including but not limited to ecology,
evolution, and genetics of both the host and the parasite. To address these diverse
questions, multiple types of mathematical models have been developed. Models
incorporating population genetics investigate the parasite’s evolution and
transmission in a complicated environment characterized by variable host immunity,
host death, medication availability, and mosquito availability [Mandal et al., 2011].
Additionally modelling approaches have been explored to understand malaria
biology, including individual-based models[Smith et al., 2018] and habitat-modelling
of transmission [Kulkarni et al., 2010; Gu and Novak, 2005].

The exact switching mechanisms exhibited by P. falciparum parasites expressing
different antigenic variants are not completely described. Additionally, the effect of
selection pressure on the transcriptional switching is also not fully quantified. Earlier
models of P. falciparum within-host dynamics incorporating switching mechanisms
allow the transcription of a number of variants in the parasite population at the earlier
stages. Cross-reactive immune responses, suggested as a mechanism necessary for
chronic infections and included explicitly in [Gatton et al., 2003; Childs and Buckee,
2015; Eckhoff, 2012] does not permit chronic infections [Camponovo et al., 2021].
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However, contrary to the assumptions of existing models, parasites may express a
large range of variants during the initial blood stage, as has been shown in data from
CHMI studies [Bachmann et al., 2016, 2019; Milne et al., 2021]. Other recent models,
such as those by [Challenger et al., 2017] have tried to simplify this caveat by not
focusing on variant specific sub-populations, modelling only the overall parasitemia.
Models by [McKenzie and Bossert, 2005; Gurarie et al., 2012; Recker et al., 2004] also
offer simpler alternatives without delving into variant-switching mechanisms. Even
though these models exhibit persistence of parasite populations under simplified
conditions, host-pathogen interactions in long term falciparum infections are
biologically poorly understood to validate the accuracy of most theoretical models.

To understand the role of immune responses in shaping malaria infections, evaluation
of immunological markers at baseline and their correlation with the time to infection
makes it feasible to pinpoint that acquired immunity is critical for protecting against
malaria, but it is challenging to ascertain whether measured responses actually
mediate protection or are merely markers of prior exposure, given that most immune
responses to malaria increase with age and cumulative exposure to malaria antigens
anyway[Sarr et al., 2007; Tongren et al., 2006]. Therefore, mathematical approaches
that incorporate host-pathogen interactions have proven useful to understand
infection dynamics to distinguish between different mechanisms that sustain
infections.
In the early models of mathematical modelling of immunity to malaria, proposed by
[Aron and May, 1982], maintenance of acquired immunity in response to repeated
exposure was defined as the rate of reversion, γ, which is defined as the average
duration for which immunity lasts, assuming that immunity can only last up to a few
years (incorporated as τ if repeated exposure does not occur), in a completely
susceptible population experiencing a rate of h infections per year. Mathematically,
the rate of reversion was defined a monotonically decreasing function given by:
γ(h) = he−hτ

1−e−hτ

The rate of loss of immunity thus defined, as proposed by Aron, decayed faster in the
absence of exposure. Incorporating exposure dependent immunity functions thus
paved for understanding immuno-epidemiology of malaria infection in regions of
varying transmission. However, to design strategies to combat malaria, we need to
better understand host-pathogen dynamics and this involves understanding
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mechanisms that shape the parasite population in chronic infections. Since
within-host data pertaining to ’naive’ or ’non-naive’ individuals is critically limited,
malaria research has benefited from mathematical modelling. In this chapter, we
emphasize one such class of mathematical models that captures events within an
individual host: "within host" models that take into account the parasite’s interaction
with the host’s immune system [Dietz et al., 2006; Childs and Buckee, 2015; Recker
et al., 2004; Camponovo et al., 2021].

We include switching mechanisms to an ODE based model because continuous
models have the advantage of being studied analytically. Theoretical models and in
vitro data [Horrocks et al., 2004; Recker et al., 2011; Noble and Recker, 2012; Noble
et al., 2013] indicate that differences in the rate at which the parasite switches the
expressed vargenes or differences in the growth rates of parasites expressing different
var genes [Molineaux et al., 2001] are the primary processes by which the parasite
avoids diminishing its var repertoire early in the infection. However, unlike other
species that exploit antigenic variation to elude the immune system, P. falciparum has
a smaller var gene repertoire per haploid genome. Because the number of asexual
parasites at the height of a primary acute infection is extremely high (in the order of
many billions), even low switching rates would result in the immune system seeing
all variations early in an infection. To address this caveat, malaria models have
investigated the role of a transient cross-reactive response against variants at the
blood stage [Recker et al., 2004; Klein et al., 2014] and we incorporate the same
approach in our model.

The model that is analysed mathematically in the following sections, originally
proposed by [Nowak and May, 2000] and currently adapted to malaria accounts for
antigenic variation in the parasite population. Additionally, the model also describes
the production of immune responses directed against (i) antigens unique to
particular parasite variations (variant specific) and (ii) antigens shared by all parasite
variants (cross-reactive). Model analysis allows us to assess the relative impact of
variant-specific and cross-reactive immune responses in parasite control in
long-lasting infections.

In the case of chronic malaria infections in endemic regions, specific and
cross-reactive responses differ by targeting unique or shared epitopes on the infected
cell’s surface, and this phenomenon coupled with antigenic variation exhibited by the
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parasite add to the complexity of modelling the within- host dynamics. Although the
mathematical model was initially used to understand viral infection exhibiting
antigenic variation, it can be easily adapted to study malaria and its development, as
described in the following sections.

3.1 Nowak’s Model of Antigenic Variation

In the 1990’s Nowak proposed a mathematical theory for the progression of HIV
infection as an evolutionary process. The basic idea of this theory was that the virus
evolution during individual infections enables the virus to escape the immune system
response. This process was called antigenic variation. A basic model of antigenic
variation was built using the following assumptions:

(i) the virus is recognized by the immune response.

(ii) the virus can mutate during the course of infection producing variants.

(iii) the presence of each variant induces a specific immune response that recognizes
and eliminates the specific variant .

(iv) viruses induce also a cross-reactive immune response that recognize and
eliminate a large variety of viruses with shared epitopes.

This model is generic enough to be applied to any pathogen undergoing antigenic
variation. In our case we apply it to malaria parasites and correct parameter
assumptions based on literature. In our case, we adapt the cross-reactive response as
a shared adaptive response which captures the effects of cross-reactivity between
specific variants implicitly like in the model[Molineaux et al., 2001].

The basic model is described by a a set of ordinary differential equations (ODEs)
Nowak and May [2000]. The ODE variables are the antigenic variants used to define
the system of a parasite population interactingwith the immune systemduring a single
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infection, aswell as the intensities of the specific and cross-reactive immune responses:

v̇i = vi(r − pxi − qz) (3.1)
ẋi = avi (3.2)
ż = k∑

i
vi − bz, (3.3)

for all i ∈ [1, N].

The following interpretation elements are provided for the understanding of the
system of ODEs:

• The first set of equations (3.1), represent the rate of change of the variable vi

over time, where vi is the number of parasites of the variant i in the
population. r is the growth rate, considered even for each variant; the parasites
are under selective pressure due to elimination by the specific and
cross-reactive immune responses, xi and z, which are moderated by the rate
constants p and q, respectively.

• The second set of equations (3.2) represent the dynamics of the specific
response against each unique variant, which is directly proportional to the
amount of parasites expressing the variant vi. Like in the original Nowak’s
model, we assume that the specific response to a unique variant has infinite
memory, which means that these equations contain no degradation terms.

• The third equation (3.3) represents the dynamics of the cross-reactive
response z, influenced by the collective presence of all vi, and also
experiencing a natural decay. The term k ∑i vi represents the cumulative effect
of all variants vi, while bz represents the natural decay of z. In other models,
the cross-reactive immune response, z, has been modelled by including only
the number of minor epitopes shared amongst variants. For simplicity, we
assume that the cross-reactive response acts on all variants equally.

• N is the number of var genes.
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In this system, we assume that both xi and z are absent at t = 0, i.e. there is no immune
response at the beginning of infection and both specific and cross-reactive immune
responses are triggered by the parasite growth in the host.

v i

vi(t)

vi

x i

xi(t)

xi

Time

z

z(t)

z

Figure 3.1: General Solution for the time series of the parasite (vi) and host specific (xi
and cross-reactive (z) immune responses, for a given antigent variant i

3.1.1 Matched asymptotic solutions of the model with
non-overlapping parasitemia peaks

The model is a system of 2N + 1 ODEs, among which N are non-linear. The system is
not integrable and it is not possible to obtain analytic solutions. However, under
certain approximations, it is possible to compute solutions analytically. By
experimenting with the model, we notice that solutions present peaks when the
parasite population increases while expressing a single gene i (Figure 3.1); successive
peaks can express different genes and co-expression of two or more different genes by
the same population is possible (peaks can overlap). In order to obtain analytic
solutions, we consider first that peaks are well separated and that the overlap can be
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neglected.

Although this condition is appropriate for antigenic variation in HIV [Lipsitch
and O’Hagan, 2007] and also Trypanosoma brucei infections [Horn, 2014], the
simplified model does not handle all the intricacies of the Plasmodium falciparum
infection that involves parasites expressing many different variants. We will release
this constraint in the models that will be studied numerically in the next sections.

We will use matched asymptotic expansions [Holmes, 2012; Lagerstrom, 2013] to
describe solutions with non-overlapping peaks. The principle of this method is to
consider that the solution has several parts, called inner or boundary layers, where
parasitemia and the intensities of immune responses change quickly and other parts,
called outer layers, where these variables change slowly. Continuity conditions
(Prandl’s matching principle) allow the matching of boundary layer and outer
solutions. When boundary layers are in between outer solutions the fast variation of
the boundary layer fast variables results in a jump of the solution from one outer layer
to another.

In order to justify this approachwe start by rescaling the variables andparameters of
themodel. Let us define the new variables and parameters x̃i = xi/a, z̃ = z/k, ṽi = vi/r,
t̄ = rt, p̃ = pa/r, q̃ = qK/r, ϵ = b/r. Using these variables and parameters the system
of ODEs reads:

dṽi

dt̄
= ṽi(1 − p̃x̃i − q̃z̃),

dx̃i

dt̄
= ṽi,

dz̃
dt̄

=
N

∑
i=1

ṽi − ϵz̃,

for all i ∈ [1, N]. (3.4)

We consider that the parameter ϵ is small, which means that the memory of the
cross-reactive immune response is large compared to the parasite generation time.

Under this assumption we look for the inner layer solution as an expansion in
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powers of ϵ: 


ṽ

x̃

z̃




in

=




ṽ0

x̃0

z̃0




in

+ ϵ




ṽ1

x̃1

z̃1




in

+ . . . (3.5)

Inserting (3.5) in (3.4) we find that the lowest (zero-th) order in ϵ term in the solution
has to satisfy the inner layer equation:

dṽi

dt̄
= ṽi(1 − p̃x̃i − q̃z̃),

dx̃i

dt̄
= ṽi,

dz̃
dt̄

=
N

∑
i=1

ṽi,

for all i ∈ [1, N]. (3.6)

Under the assumption that each inner layer involves a single antigen (ṽj = 0 for all
j ̸= i), this reads

dṽi

dt̄
= ṽi(1 − p̃x̃i − q̃z̃),

dx̃i

dt̄
= ṽi,

dz̃
dt̄

= ṽi,

(3.7)

Changing the time variable to τ = ϵt̄ (slow time) in (3.4) we obtain

ϵ
dṽi

dτ
= ṽi(1 − p̃x̃i − q̃z̃),

ϵ
dx̃i

dτ
= ṽi,

ϵ
dz̃
dτ

=
N

∑
i=1

ṽi − ϵz̃,

for all i ∈ [1, N]. (3.8)
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The outer solution is a solution of (3.8) expressed as an expansion in powers of ϵ.



ṽ

x̃

z̃




out

=




ṽ0

x̃0

z̃0




out

+ ϵ




ṽ1

x̃1

z̃1




out

+ . . . (3.9)

Inserting (3.9) in (3.8) we find that the lowest order (zero-th order) term of the outer
solution should verify the outer equation:

ṽi = 0,
dx̃i

dτ
= 0,

dz̃
dτ

= −z̃,

for all i ∈ [1, N]. (3.10)

Solution of the inner layer equation

Let us first show (3.7) has two first integrals, i.e. it is an integrable system.
Indeed, substraction of the last two equations of (3.7) leads to

d (x̃i − z̃)
dt̄

= 0 =⇒ x̃i − z̃ = const. (3.11)

In other words, x̃i − z̃ is a linear first integral, indicating that the projection of orbits
on the plane (x̃i, z̃) are lines.

Using (3.7) we find that

d
[
ṽi +

(1− p̃xi−q̃z̃)2

2( p̃+q̃)

]

dt̄
= 0 =⇒ ṽi +

(1 − p̃xi − q̃z̃)2

2( p̃ + q̃)
= const. (3.12)

In other words, ṽi +
(1− p̃xi−q̃z̃)2

2( p̃+q̃) is a quadratic first integral indicating that the projection
of orbits on the plane (x̃i, ṽi) are parabolas (see Figure 3.2).

We can use the two first integrals to eliminate the variables z̃ and ṽi and write a
reduced ODE for the variable x̃i. However, it is instructive to do it stepwise, and
eliminate first z̃.
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Using (3.11) we find that
z̃ = x̃i + z̃− − x̃−i , (3.13)

where x̃−i = limt̄→−∞ x̃i, z̃− = limt̄→−∞ z̃.

Substituting in the first two equations of (3.7) we obtain

dṽi

dt̄
= ṽi(r′ − ( p̃ + q̃)x̃i),

dx̃i

dt̄
= ṽi, (3.14)

where r′ = 1 + q̃(x̃−i − z̃−).

Analysis of the Reduced 2-D System

The reduced model described by (3.14) is well known. It is the same as the reduced
SIRmodel obtained from the compartmental epidemiologicalmodel SIR [Kermack and
McKendrick, 1927] after elimination of the S variable using the conservation law S +

I + R = const.. Like the SIR model, our 2D reduced model (3.14) has a phase portrait
with parabolic orbits (Figure 3.2). Indeed, from (3.12) and utilizing limt̄→∞ ṽi = 0 we
find that all orbits of the dynamical system are parabolas defined by the equation

ṽi +
(r′ − ( p̃ + q̃)xi)

2

2( p̃ + q̃)
=

(r′ − ( p̃ + q̃)x−i )
2

2( p̃ + q̃)
. (3.15)
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-3 -2 -1 1 2 3
vi

2

4

6

8

xi

Figure 3.2: The trajectories of both ṽi and
x̃i are highlighted by the vector field and
the x and y nullclines (red) are given by the
solutions dx̃i

dt̄ = 0 & dṽi
dt̄ = 0 respectively.

The reduced form of the system
can be visualized using a phase-
portrait of the variant in which ṽi
and the corresponding immune
response x̃i are represented over
time. The steady states of the
reduced system are degenerate,
corresponding to vanishing
parasitemia ṽi = 0. The steady
states

ṽi = 0, x̃i > r′/( p̃ + q̃),

situated at the right of the vertical
ṽi− nullcline are stable, whereas
the steady states

ṽi = 0, x̃i < r′/( p̃ + q̃),

situated at the left of the
vertical ṽi− nullcline are
unstable. Typically, an orbit
goes from x̃−i < r′/( p̃ + q̃) to
2r′/( p̃ + q̃) − x̃−i > r′/( p̃ + q̃)
corresponding to corresponding
to to t̄ = −∞ and t̄ = ∞,
respectively. There is a
parasitemia peak at x̃i = r′/( p̃+ q̃)

where ṽi =
(r′−( p̃+q̃)x−i )2

2( p̃+q̃) (see
(3.15)).

Computing the inner layer solution

Using the first integral (3.12) we can now reduce the system to only one ODE:

dx̃i

dt̄
=

(r′ − ( p̃ + q̃)x−i )
2

2( p̃ + q̃)
− (r′ − ( p̃ + q̃)xi)

2

2( p̃ + q̃)
. (3.16)

(3.16) is integrable by separation of variables.
Considering that the time origin is the parasitemia peak of the variant i, from (3.16)
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it follows ∫ x̃i

r′/( p̃+q̃)

dx
(r′−( p̃+q̃)x−i )2

2( p̃+q̃) − (r′−( p̃+q̃)x)2

2( p̃+q̃)

= t̄. (3.17)

In order to compute (3.17) we define y = ( p̃+q̃)x−r′

r′−( p̃+q̃)x−i
that satisfies

−1 < y < 1, for all x ∈ (x−i ,2r′ − x−i ).

From (3.17) it follows that
∫ y(x̃−i )

0

dy
1 − y2 = log

1 + y(x̃−i )
1 − y(x̃−i )

= (r′ − ( p̃ + q̃)x−i )t̄,

and finally

x̃i(t̄) =
r′ + (r′ − ( p̃ + q̃)x̃−i )

p̃ + q̃
=

r′

p̃ + q̃
+

[
r′

p̃ + q̃
− x−i

]
1 − exp

[
(r′ − ( p̃ + q̃)x−i )t̄

]

1 + exp
[
(r′ − ( p̃ + q̃)x−i )t̄

]

(3.18)
Using (3.15) we find

ṽi(t̄) =
(r′ − ( p̃ + q̃)x−i )

2

2( p̃ + q̃)
− (r′ − ( p̃ + q̃)x̃i(t̄))2

2( p̃ + q̃)
. (3.19)

Let us introduce a new function µi(t̄) = 1 − p̃x̃i(t̄) − q̃z̃(t̄) and consider the
following

Condition 1. µi(−∞) = 1 − p̃x̃−i − q̃z̃− > 0.

The following property summarizes the behavior of the inner layer solution

Proposition 2. The inner layer problem has solutions (ṽi(t̄), x̃i(t̄), z̃(t̄)) defined for −∞ <

t̄ < ∞. If the Condition 1 is satisfied, then the solutions of the model behave in the following
way:

i) the specific immune response against variant i, x̃i, increases from x̃i(−∞) = x̃−i to x̃i(∞) =

x̃−i + 2
p̃+q̃ (1 − q̃z̃− − p̃x̃−i ),

ii) the cross reactive immune response increases from z̃(−∞) = z̃− to z̃(∞) = z̃− + 2
p̃+q̃ (1−

q̃z̃− − p̃x̃−i ),
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iii) µi decreases from µi(−∞) = 1 − p̃x̃−i − q̃z̃− > 0 to µi(∞) = −µi(−∞),

iv) the parasitemia ṽi has a peak at t̄ = 0 ṽ(0) = (1−q̃z̃−− p̃x̃−i )2

2( p̃+q̃) , and vanishes when t̄ →±∞.

Proof. i) Condition 1 implies that x̃i = x̃−i , z̃ = z̃−, ṽi = 0 is an unstable steady state and
the infection peak can develop from any arbitrary neighborhood of this state. Therefore
this state is the α-limit of the trajectory (see also (3.1.1)). The ω-limit of the trajectory
is the second solution of the equation (3.15) with ṽi = 0, i.e.

r′ − ( p̃ + q̃)x̃+i
2( p̃ + q̃)

= −r′ − ( p̃ + q̃)x̃−i
2( p̃ + q̃)

,

where x̃+i = limt̄→∞ x̃i(t̄). It follows that

x̃i(∞) = x̃−i +
2

p̃ + q̃
(1 − q̃z̃− − p̃x̃−i ).

ii) Using (3.1.1) it follows that

z̃(−∞) = z̃+ = x̃+i + z̃− − x̃−i = z̃− +
2

p̃ + q̃
(1 − q̃z̃− − p̃x̃−i ).

iii) Using the definition

µi(t̄) = 1 − p̃x̃i(t̄)− q̃z̃(t̄),

and the two previous results it follows

µi(∞) = 1 − p̃x̃+i − q̃z̃+ = −(1 − p̃x̃−i − q̃z̃−) = −µi(−∞).

iv) Here we only need to compute the parasitemia at the peak, i.e. when dṽi
ddt̄ = 0,

which means
x̃i(0) =

r′

p̃ + q̃
.

Using the conservation law (3.15) we find

ṽi(0) =
(r′ − ( p̃ + q̃)x̃−i )

2

2( p̃ + q̃)
− (r′ − ( p̃ + q̃)x̃i(0))2

2( p̃ + q̃)
=

(1 − q̃z̃− − p̃x̃−i )
2

2( p̃ + q̃)
.
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Solution of the outer layer equation

The solution of the outer later equation is straightforward from (3.10). It reads

ṽi = vout
i (0), (3.20)

x̃i = xout
i (0), (3.21)

z̃ = z̃out(0)exp(−τ), (3.22)

Matching condition

In the matched asymptotic expansion method, the inner and outer solutions should
match. We use here Prandl’s condition [Lagerstrom, 2013] that reads




ṽ(∞)

x̃(∞)

z̃(∞)




in

=




ṽ(0)

x̃(0)

z̃(0)




out

(3.23)

At the zero-th order in ϵ this leads to

vout
i (0) = 0,

xout
i (0) = x̃−i +

2
p̃ + q̃

(1 − q̃z̃− − p̃x̃−i ),

z̃out(0) = z̃− +
2

p̃ + q̃
(1 − q̃z̃− − p̃x̃−i ). (3.24)

3.1.2 Multiple peak solutions

The arguments from the preceding section work also when there are multiple peaks
of infection. An assumption of the model is that each peak corresponds to the
development of a different variant i. Supposing that there are N variants i ∈ {1, . . . N}
we denote by i1, i2, . . . , in, . . . τ1,τ2, . . . ,τn, . . . the variant and the time of maximum
parasitemia for successive peaks. Here in ∈ {1,2, . . . , N} but variants can repeat in the
series.
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In order to analyze solutions we consider that each peak has short duration and
represents an inner layer, whereas between successive inner layers there are outer
layers. Inner and outer solutions are computed like in the preceding sections.

Let us denote by z̃−n , z̃+n the values of the inner layer solution at times t̄ →−∞ and
t̄ → ∞, respectively. Similarly µ−

n , µ+
n = −µ−

n are values of µ at t̄ → −∞ and t̄ → ∞,
respectively. Finally, x̃i

n is the value of x̃i in the n-th inner layer at t̄ →−∞.
Equivalently, we have the one-sided limits

lim
τ→τ+

n

x̃i(τ) = x̃i
n+1, lim

τ→τ−
n

x̃i(τ) = x̃i
n, (3.25)

lim
τ→τ+

n

z̃(τ) = z̃+n , lim
τ→τ−

n

z̃(τ) = z̃−n , (3.26)

lim
τ→τ+

n

µ(τ) = −µn, lim
τ→τ−

n

µ(τ) = µn. (3.27)

Between two subsequent peaks, the outer solution can be expressed as:

ṽi(τ) = 0,

x̃i(τ) = x̃i
n

z̃(τ) = z̃+n−1 exp(τ − τn−1)

for τn−1 < τ ≤ τn (3.28)

From one peak to another, one has the following recursion

x̃i
n+1 = x̃i

n +
2

p̃ + q̃
(1 − q̃z̃−n − p̃xi

n), (3.29)

x̃j
n+1 = x̃j

n, for all j ̸= i, (3.30)

z̃+n = z̃−n +
2

p̃ + q̃
(1 − q̃z̃−n − p̃xi

n), (3.31)

provided the antigen i developed at the n-th peak.
In otherwords, the parasites expressing the antigen i have developed and have been

cleared during the peak n by inducing equal increases of the rescaled specific and cross-
reactive immune responses.

Equation (3.28) shows that the specific immune response remains constant between
peaks, whereas the cross-reactive immune response decreases exponentially from one
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peak to another. In particular, one has

z̃−n = z̃+n−1 exp(τn − τn−1). (3.32)

In order to write a recursion for z̃−n let us notice that the cross-reactive immune
response before peak satisfies two conditions.

The first condition follows from Condition 1. The peak can occur only if the
Condition 1 is fulfilled, which for the n + 1-th peak reads

µi
n+1 > 0.

The following identity is straightforward

µi
n+1 =

q̃ − p̃
p̃ + q̃

µi
n + q̃(z̃−n − z̃−n+1)), (3.33)

and leads to the following peak development condition

z̃−n+1 < z̃−n +
q̃ − p̃
p̃ + q̃

(1 − p̃x̃i
n − q̃z−n ). (3.34)

Immediately after the peak of the variant i the quantity µi
n is negative and therefore

there is a latency period during which no new peak of the antigen i can occur. During
this latency period the cross-reactive immune response has to decrease sufficiently
enough to make µi

n positive again.
Because of the exponential decrease (3.32), the cross-reactive response also satisfies

z̃−n+1 < z̃+n = z̃−n +
2

p̃ + q̃
(1 − q̃z̃−n − p̃xi

n) (3.35)

z−n+1 satisfying (3.34) and (3.35) belongs to an interval

z−n+1 ∈ (0,min(z̃−n +
2

p̃ + q̃
(1 − q̃z̃−n − p̃xi

n), z̃
−
n +

q̃ − p̃
p̃ + q̃

(1 − p̃x̃i
n − q̃z−n ))) (3.36)

Although the precise position can be computed using higher order terms in the
matched asymptotic expansion, the region that should be investigated correspond to
parasitemia close to zero, in which case the deterministic model fails and one has to
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consider stochastic effects. For the sake of simplicity, we modify the model to account
for some stochasticity and simply assume that the next peak occur for any z−n+1

distributed uniformly in the interval (3.36). More precisely we consider the following
modelling assumption

Assumption 3. z−n+1 ∼ U(0,min(z̃−n + 2
p̃+q̃ (1− q̃z̃−n − p̃xi

n), z̃−n + q̃− p̃
p̃+q̃ (1− p̃x̃i

n − q̃z−n ))),
where U stands for the uniform continuous distribution.

Multiple peaks in the absence of antigenic variation

Let us consider that the parasite can express only one antigen i. In this case the
parasite can infect the host at multiple times because the specific response is not
sufficient for eliminating the parasite and the cross-reactive response ensures
protection for a finite time. This leads to multiple peak solutions. However, the
amplitude of the peaks becomes lower and eventually vanishes after a number of
peaks. In order to prove this property mathematically we consider the following
recursion model:

x̃i
n+1 = x̃i

n +
2

p̃ + q̃
(1 − q̃z̃−n − p̃xi

n), (3.37)

z−n+1 ∼ U(0, z̃−n +
q̃ − p̃
p̃ + q̃

(1 − p̃x̃i
n − q̃z−n )). (3.38)

Indeed, in this case the min in Assumption 3 is always the second term because 2
p̃+q̃ >

q̃− p̃
p̃+q̃ .

From the Proposition 2 the peak amplitudes in this model are

ṽmax
n =

(µi
n)

2

2( p̃ + q̃)

We can prove the following

Proposition 4. Suppose that q̃ > p̃ which means that the cross-reactive response is more
effective than the specific response. Then, for almost all trajectories we have:

i) limn→∞ x̃i
n = 1,

ii) limn→∞ z̃−n = 0,
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iii) limn→∞ ṽmax
n = 0.

For the proof we need a Lemma.

Lemma 1. For all 0 < ζ < 1 and series un,vn satisfying

un+1 = un + (1 − ζ)(1 − un − vn), (3.39)
vn+1 ∼ U(0,vn + ζ(1 − un − vn)), (3.40)

where U denotes the uniform continuous distribution (independent on un and vn) we have

i) limn→∞ un = 1, almost surely,

ii) limn→∞ vn = 0, almost surely.

Proof of the Lemma 1. Let us define wn = 1 − un. It follows that

wn+1 = ζwn + (1 − ζ)vn,

vn+1 ∼ U(0, (1 − ζ)vn + ζwn)).

We find that 


E
[
w2

n+1
]

E
[
v2

n+1
]

E[wn+1vn+1]




= A




E
[
w2

n
]

E
[
v2

n
]

E[wnvn]




,

where A is the following matrix

A =




ζ2 (1 − ζ)2 2ζ(1 − ζ)

1
3 ζ2 1

3(1 − ζ)2 2
3 ζ(1 − ζ)

1
2 ζ2 1

2(1 − ζ)2 ζ(1 − ζ)




A has two eigenvalues equal to zero and the non-zero eigenvalue is smaller than one,
λg =

ζ2+ζ+1
3 < 1.

It follows that
E
[
w2

n + v2
n + wnvn

]
≤ Cλn−1

g ,
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and
∑
n≥1

E
[
w2

n + v2
n + wnvn

]
< ∞.

As wn, vn are positive variables we also have

∑
n≥1

E
[
w2

n + v2
n

]
< ∞,

which means that limn→∞ wn = limn→∞ vn = 0 almost surely.

Remark 5. The Lemma holds if the uniform continuous distribution is replaced by any
continuous distribution with the same support. The proof in this more general case
follows the same lines.

Proof of the Proposition 4. The proof of the proposition is now straightforward. It is
enough to identify un, vn, ζ with x̃i

n, z̃−n , q̃− p̃
q̃+ p̃ , respectively.

Multiple peaks in the presence of antigenic variation

In order to compute the peaks of parasites expressing different antigens, we consider
the following modelling assumptions:

Assumption 6. At each step n the variant in is drawn uniformly from the set
{1,2, . . . , N} independently on the history.

With this assumption the model reads

in+1 ∼ U{1,2, . . . , N}, (3.41)
x̃in

n+1 = x̃in
n +

2
p̃ + q̃

(1 − q̃z̃−n − p̃xin
n ), (3.42)

x̃j
n+1 = x̃j

n, for all j ̸= in, (3.43)

z−n+1 ∼ U(0,min(z̃−n +
2

p̃ + q̃
(1 − q̃z̃−n − p̃xin

n ), z̃
−
n +

q̃ − p̃
p̃ + q̃

(1 − p̃x̃in
n − q̃z−n ))),(3.44)

where the discrete and continuous uniform distributions are independent among
themselves and with respect to the past (x̃i

≤n, z−≤n).
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Proposition 7. Suppose that q̃ > p̃ which means that the cross-reactive response is more
effective than the specific response. Then, for almost all trajectories of the model described by
(3.41) we have:

i) limn→∞ x̃i
n = 1, for all i ∈ {1,2, . . . , N},

ii) limn→∞ z̃−n = 0,

iii) limn→∞ ṽmax
n = 0, where vmax

n represents the maximal parasitemia at peak n.

We define the extinction time as the time needed to have peaks below a small
fraction of the maximal amplitude (the amplitude of the first peak). In order to
compute this time and compare it across different situations (various numbers of
antigens) we need the time between successive peaks. This result from the relation

z̃−n+1 = z̃+n exp(τn+1 − τn) = (z̃−n +
2

p̃ + q̃
(1 − q̃z̃−n − p̃xin

n ))exp(−τn+1 + τn),

that leads to

τn =
n−1

∑
k=1

log
z̃−k + 2

p̃+q̃ (1 − q̃z̃−k − p̃xik
k )

z̃−k+1
. (3.45)

We have simulated the model described by (3.41) for several values of the
parameters N and q̃− p̃

q̃+ p̃ . The result is illustrated in Figure 3.3. Comparing Figure 3.3 a)
and b) we realize that, even if the infection extincts after some number of peaks, the
extinction time is much larger in the case of many antigens compared to the case
when there is only one antigen.

Antigenic variation definitely extends the duration of infection. This is shown in
Figure 3.3c where the persistence time scales linearly with the number of antigens and
in Figure 3.3 a & b where the infection length is elongated by the number of variants.
Furthermore, the persistence time is also strongly influenced by the parameter q̃− p̃

q̃+ p̃
representing the differential relative importance of cross-reactive and specific immune
response. The extinction time can be very large for many antigens and for a cross-
reactive response more efficient (in terms of building-up, recognizing and eliminating
parasites) than the specific response. Given that the time τ is measured in units 1/b
(lifetime of cross-reactive response) the extinction time also scales proportionally with
the lifetime of the cross-reactive response.
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Figure 3.3: Nowak’s model. a) one variant b) ten variant c) dependence of the
mean infection duration on the model’s parameters. The duration of the infection
(persistence time) was defined as the time after which the peak parasitemia drops
to 1% of the maximum value. Although the infection ultimately disappears, the
persistence time can be very long. Here time is represented by the re-scaled variable τ
whose units are b−1 i.e. lifetime of the cross-reactive immune response.
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3.2 Deterministic Antigenic Variation Model with
Switching

To represent the effect of variant switching on parasite heterogeneity we build on
previous mathematical models [McQueen et al., 2013; Eckhoff, 2012; Recker et al.,
2011; Klein et al., 2014; Childs and Buckee, 2015]. We made the assumption that
within a single infection, P. falciparum parasites can switch the variant surface antigens
(PfEMP1) that they exhibit to the immune system [Deitsch and Dzikowski, 2017].
The decision to switch from a variant to another takes place at the end of the cell
cycle: a parasite can give rise of offspring expressing a different var gene. Although
the switching is probabilistic we adopt here a deterministic approach, consisting in
writing ODEs for evolution of the numbers of parasites of different types. The
deterministic can be justified rigorously using the law of large numbers for Markov
processes (see next section). Here we modify Nowak’s models introduced in the
previous section by adding switching terms. In the modified model the population of
parasites expressing different genes gi,1 ≤ i ≤ N, follows the differential equations:

dgi

dt
= gi(α(1 − ∑

j ̸=i
Pij)− βixi − qz) + α∑

j ̸=i
Pjigj, (3.46)

where i denotes the antigenic variant gi, α is the intrinsic growth rate of the parasite,
Pij is the transition that parasites switch from expressing gene group i to gene group
j, βi is the rate at which the specific immune response xi acts on gene group i and is
proportional to the density of parasites expressing that group, and qz is the
cross-reactive naturally acquired immunity that acts on all parasites expressing
different variants of the var family. The specific immune response to each PfEMP1 is
described by the following differential equation:

dxi

dt
= γigi − cxi, (3.47)

where γi is the rate at which the immune system acquires immunity to gene group i.
The specific responses corresponding to each variant gradually declines over timewith
the rate c in the absence of consistent exposure [Staalsoe et al., 2001]. The cross-reactive
immune response z is accumulated as a result of exposure to all gene groups, and its
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rate of accumulation is described by the following differential equation:

dz
dt

= µ
N

∑
i=1

gi − pz (3.48)

where µ is the rate at which the immune system acquires cross-reactive immunity,
proportional to the total density of parasites expressing any gene group, and p is the
rate at which the cross-reactive immunity declines naturally.

In order to study the Eqs. (3.46), (3.47), (3.48), we use a singular perturbations
method. We consider that the characteristic times of immunity decay are much larger
than the characteristic times of development of the infection.

Let us consider the following rescaled variables ḡi = gi/α, t̄ = tα, x̄i = xi/γi, z̄ = z/µ,
ϵ1 = p/α, ϵ2 = c/p, β̄i = βi, q̄ = qµ/α. In these variables the equations describing the
model read:

dḡi

dt̄
= ḡi((1 − ∑

j ̸=i
Pij)− β̄i x̄i − q̄z̄) + ∑

j ̸=i
Pji ḡj,

dx̄i

dt̄
= ḡi − ϵ1ϵ2x̄i,

dz̄
dt̄

=
N

∑
i=1

ḡi − ϵ1z̄. (3.49)

When ϵ1, ϵ2 are small parameters, we have a three time scales singular perturbation
problem. ḡi are the fast time scale variables, q̄ is a slow variable and x̄i are slower
variables. Geometric singular perturbation theory applies to this situation [Cardin and
Teixeira, 2017]. The fast dynamics is obtained by setting ϵ1 = ϵ2 = 0 in (3.49):

dḡi

dt̄
= ḡi((1 − ∑

j ̸=i
Pij)− β̄i x̄i − q̄z̄) + ∑

j ̸=i
Pji ḡj, (3.50)

dx̄i

dt̄
= ḡi, (3.51)

dz̄
dt̄

=
N

∑
i=1

ḡi. (3.52)

The fast equations (3.50), (3.51), (3.52) describe the development of the infection.
Like in the Section 3.1, the fast equations have a steady state ḡi = 0 which develops
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into an infection peak, provided that this state is unstable. As the steady state ḡi = 0 is
degenerate in the directions x̄i and z̄, we test the instability condition with respect to
the normal directions ḡi (in terms of geometric singular perturbation theory, this
boils down to ensuring that ḡi = 0 approximates a normally hyperbolic attractive
invariant manifold of (3.49), see [Fenichel, 1979; Cardin and Teixeira, 2017]).

Let J be the Jacobian matrix of the system (3.50) with respect to the variables ḡi,
computed at the steady state ḡi = 0. The instability condition means that all the
eigenvalues of J are in the right complex half-plane, or equivalently, that all
eigenvalues of −J are in the left complex half-plane, i.e. −J is a stable matrix. In order
to find the stability conditions for −J, we apply the Routh-Hurwitz theory that we
recall here.

Let p(λ) = det(−J − λI) be the characteristic polynomial of −J. Then, the
eigenvalues of the −J are computed by solving p(λ) = 0, which is equivalent to
solving the polynomial equation

a0λn + a1λn−1 + . . . an−1λ + an = 0,

where a0 = 1 (the l.h.s. of the equation is the characteristic polynomial of−J multiplied
by 1 or −1, if n is even or odd, respectively).

The Hurwitz matrix a (n,n) matrix obtained in the following way:

• the first row contains the coefficients with odd indices,

• in each column the next element is a coefficient of index lowered by one with
respect to the predecessor,

• all coefficients of indices smaller than 0 or larger than n are considered zero.
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H =




a1 a3 a5 . . . 0 0 0

a0 a2 a4 . . . 0 0 0

0 a1 a3 . . . 0 0 0

0 a0 a2 . . . 0 0 0

0 0 a1
. . . an 0 0

0 0 a0
. . . an−1 0 0

... ... ... . . . an−2 an 0

... ... ... . . . an−3 an−1 0

0 0 0 . . . an−4 an−2 an




The following result, due toHurwitz, is well established [DeJesus andKaufman, 1987]:

Proposition 8. −J is stable (i.e. all its roots have negative real parts) if and only if all the
leading principal minors of the Hurwitz matrix are positive and the minors∆k(p) are called the
Hurwitz determinants.

∆1 = |a1| = a1 > 0,

∆2 =

∣∣∣∣∣∣∣

a1 a3

a0 a2

∣∣∣∣∣∣∣
= a1a2 − a0a3 > 0,

∆3 =

∣∣∣∣∣∣∣∣∣∣∣

a1 a3 a5

a0 a2 a4

0 a1 a3

∣∣∣∣∣∣∣∣∣∣∣

= a3∆2 − a1(a1a4 − a0a5) > 0,

... (3.53)
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In the case when n = 3 (three variants model) the Jacobian matrix is:

J =




1 − P12 − P13 − β̄1x̄1 − q̄z̄ P21 P31

P12 1 − P21 − P23 − β̄2x̄2 − q̄z̄ P32

P13 P23 1 − P31 − P32 − β̄3x̄3 − q̄z̄




The eigenvalues of −J satisfy the polynomial equation

λ3 + a1λ2 + a2λ + a3 = 0,
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where

a1 = 3 − P13 − P21 − P23 − P31 − P32 − P12 − β̄1x̄1 − β̄2x̄2 − β̄3x̄3 − 3q̄z̄, (3.54)
a2 = 3q̄2z̄2 − 2P13 − 2P21 − 2P23 − 2P31 − 2P32 − 2P12 + P13P21 + P12P23 + P13P23 +

+P12P31 + P12P32 + P13P32 + P21P31 + P21P32 + P23P31 − 2b̄1x̄1 − 2b̄2x̄2 − 2b̄3x̄3 −
−6q̄z̄ + b̄2P12x̄2 + b̄2P13x̄2 + b̄3P12x̄3 + b̄3P13x̄3 + b̄1P21x̄1 + b̄1P23x̄1 +

+b̄3P21x̄3 + b̄3P23x̄3 + b̄1P31x̄1 + b̄1P32x̄1 + b̄2P31x̄2 + b̄2P32x̄2 + 2P12q̄z̄ +

+2P13q̄z̄ + 2P21q̄z̄ + 2P23q̄z̄ + 2P31q̄z̄ + 2P32q̄z̄ + b̄1b̄2x̄1x̄2 + b̄1b̄3x̄1x̄3 +

+b̄2b̄3x̄2x̄3 + 2b̄1q̄x̄1z̄ + 2b̄2q̄x̄2z̄ + 2b̄3q̄x̄3z̄ + 3, (3.55)
a3 = 3q̄2z̄2 − P13 − P21 − P23 − P31 − P32 − P12 − q̄3z̄3 + P13P21 + P12P23 + P13P23 +

+P12P31 + P12P32 + P13P32 + P21P31 + P21P32 + P23P31 − b̄1x̄1 −
−b̄2x̄2 − b̄3x̄3 − 3q̄z̄ − P12q̄2z̄2 − P13q̄2z̄2 − P21q̄2z̄2 − P23q̄2z̄2 − P31q̄2z̄2 − P32q̄2z̄2 +

+b̄2P12x̄2 + b̄2P13x̄2 + b̄3P12x̄3 + b̄3P13x̄3 + b̄1P21x̄1 + b̄1P23x̄1 + b̄3P21x̄3 + b̄3P23x̄3 +

+b̄1P31x̄1 + b̄1P32x̄1 + b̄2P31x̄2 + b̄2P32x̄2 + 2P12q̄z̄ +

+2P13q̄z̄ + 2P21q̄z̄ + 2P23q̄z̄ + 2P31q̄z̄ +

+2P32q̄z̄ − b̄3P13P21x̄3 − b̄3P12P23x̄3 − b̄3P13P23x̄3 −
−b̄2P12P31x̄2 − b̄2P12P32x̄2 − b̄2P13P32x̄2 −
−b̄1P21P31x̄1 − b̄1P21P32x̄1 − b̄1P23P31x̄1 + b̄1b̄2x̄1x̄2 + b̄1b̄3x̄1x̄3 + b̄2b̄3x̄2x̄3 −
−P13P21q̄z̄ − P12P23q̄z̄ − P13P23q̄z̄ − P12P31q̄z̄ − P12P32q̄z̄ −
−P13P32q̄z̄ − P21P31q̄z̄ − P21P32q̄z̄ −
−P23P31q̄z̄ + 2b̄1q̄x̄1z̄ + 2b̄2q̄x̄2z̄ + 2b̄3q̄x̄3z̄ − b̄1q̄2x̄1z̄2 − b̄2q̄2x̄2z̄2 −
−b̄3q̄2x̄3z̄2 − b̄2b̄3P12x̄2x̄3 −
−b̄2b̄3P13x̄2x̄3 − b̄1b̄3P21x̄1x̄3 − b̄1b̄3P23x̄1x̄3 −
−b̄1b̄2P31x̄1x̄2 − b̄1b̄2P32x̄1x̄2 − b̄2P12q̄x̄2z̄ −
−b̄2P13q̄x̄2z̄ − b̄3P12q̄x̄3z̄ −
−b̄3P13q̄x̄3z̄ − b̄1P21q̄x̄1z̄ − b̄1P23q̄x̄1z̄ − b̄3P21q̄x̄3z̄ − b̄3P23q̄x̄3z̄ − b̄1P31q̄x̄1z̄ −
−b̄1P32q̄x̄1z̄ − b̄2P31q̄x̄2z̄ − b̄2P32q̄x̄2z̄ − b̄1b̄2b̄3x̄1x̄2x̄3 −
−b̄1b̄2q̄x̄1x̄2z̄ − b̄1b̄3q̄x̄1x̄3z̄ − b̄2b̄3q̄x̄2x̄3z̄ + 1. (3.56)
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The Hurwitz matrix of −J reads

H =




a1 a3 0

1 a2 0

0 1 a3




and the stability conditions are a1 > 0, a1a2 − a3 > 0, a3 > 0, a2 > 0 (the last condition
follows from the first three).

In the absence of switching, i.e. when Pij = 0 for all i ̸= j the above conditions read:

a3 = −(b̄1x̄1 + q̄z̄ − 1)(b̄2x̄2 + q̄z̄ − 1)(b̄3x̄3 + q̄z̄ − 1) > 0 (3.57)
1
3

a1 = 1 − 1
3
(b̄2x̄2 + b̄3x̄3 + b̄1x̄1)− q̄z̄ > 0 (3.58)

a1a2 − a3

8
= −

[
b̄1x̄1 + b̄2x̄2

2
+ q̄z̄ − 1

][
b̄1x̄1 + b̄3x̄3

2
+ q̄z̄ − 1

]

[
b̄2x̄2 + b̄3x̄3

2
+ q̄z̄ − 1

]
> 0 (3.59)

Conditions (3.57),(3.59),(3.58) are valid, and an infection peak can develop, if the
cross-reactive and specific immune responses z̄ and x̄i, 1 ≤ i ≤ 3 are not strong. If these
immune responses are too strong, a peak may not develop, and one must wait the
time needed for these responses to decay (assuming that the memory of at least some
immune response is finite).

Condition (3.57) means that the infection can develop if there are not enough
specific and cross-reactive antibodies to prevent development of parasites of type 1,
or 2, or 3, independently. Condition (3.59) means that the infection can develop if
there are not enough antibodies to prevent development of parasites of any two types
simultaneously. Finally, condition (3.58) means that the infection can develop if there
are not enough antibodies to prevent development of parasites of the three types
simultaneously.

Using (3.54) we find that with switching, the Condition (3.58) for developing three
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variant peaks changes to

a1(z̄, x̄1, x̄2, x̄3) = 1 − P12 + P13 + P21 + P23 + P31 + P32

3
− b̄2x̄2 + b̄3x̄3 + b̄1x̄1

3
− q̄z̄ > 0.

(3.60)

The two other expressions (3.55), (3.56) involved in the Routh-Hurwitz conditions
are extremely intricate and can not be simplified even using state-of-the-art computer
algebra packages. However, the investigation of Equation (3.54) suggests us a heuristic
to simplify these expressions by substracting variants of (3.57) and (3.59), modified to
include mean switching parameters, and simplifying the remaining expressions.

By using this method, we find that the Condition (3.57) for developing simple
variant peaks is changed by the switching to

a3(z̄, x̄1, x̄2, x̄3) = − (P12 + P13 + b̄1x̄1 + q̄z̄ − 1)

(P21 + P23 + b̄2x̄2 + q̄z̄ − 1)(P31 + P32 + b̄3x̄3 + q̄z̄ − 1)+

+ b̄3x̄3P12P21 + b̄2x̄2P13P31 + b̄1x̄1P23P32

+ (q̄z̄ − 1)(P12P21 + P13P31 + P23P32)+

+ (P12 + P13)(P21 + P23)(P31 + P32) > 0. (3.61)

Contrary to a1(z̄, x̄1, x̄2, x̄3) that is linear, a3(z̄, x̄1, x̄2, x̄3) is a cubic polynomial in z̄. This
leads to more intricate conditions for the development of an infection peak. Let z1 ≤
z2 ≤ z3 be the ordered, possibly coinciding, real roots of a3 considered as polynomial
in z̄. Because the coefficient of z̄3 is negative with and without switching, conditions
(3.56), (3.61) for single variant peak development read

z̄ < z1, or z2 < z̄ < z3.

Finally, the condition (3.59) for developing double variants peaks is changed by the

Page 105



106 Chapter 3. Mathematical Models of Antigenic Variation

switching to

∆(z̄, x̄1, x̄2, x̄3) =
a1a2 − a3

8
= −

[
P12 + P13 + P21 + P23

2
+

b̄1x̄1 + b̄2x̄2

2
+ q̄z̄ − 1

]

×
[

P12 + P13 + P31 + P32

2
+

b̄1x̄1 + b̄3x̄3

2
+ q̄z̄ − 1

]

×
[

P21 + P23 + P31 + P32

2
+

b̄2x̄2 + b̄3x̄3

2
+ q̄z̄ − 1

]

+
1
8

[
b̄1x̄1(P12P21 + P13P31)

+ b̄2x̄2(P12P21 + P23P32) + b̄3x̄3(P13P31 + P23P32)+

+ (2(q̄z̄ − 1) + P12 + P13 + P21 + P23 + P31 + P32)

(P12P21 + P13P31 + P23P32)

− P12P21P31 − P12P21P32−
P13P21P31 − P12P23P32 − P13P23P31−
− P13P23P32 − P12P23P31 − P13P21P32

]
> 0 (3.62)

Again, the condition involves ∆, a cubic polynomial in z̄ and reads

z̄ < z1, or z2 < z̄ < z3,

where zi, 1 ≤ i ≤ 3 are the real roots of ∆ considered as a polynomial in z̄.

Eqs. 3.60,3.61,3.62 suggest that infection peaks are separated by larger periods in
the presence of switching.

The Routh-Hurwitz approach can be utilized for models with arbitrary number
of variants. The difficulty for larger numbers of variants comes from finding sets of
solutions defined by conjunctions of high degree, multivariate polynomial constraints
(semi-algebraic sets). If there are eigenvalues with zero real part, then further analysis
is needed.
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3.3 Stochastic Model with Switching and Constant
Immune Response during Early Stages of Infection

Figure 3.4: Model Schema for the three-state model for groups of variants. The
parasites in each class can replicate without switching, at a rate α(1−∑j ̸=i Pij)ni, where
the second factor is the probability not to not switch to other states. A parasite in class
i is removed (selected against) at a rate γi, and divides and transitions to a different
state j with a propensity αPij.

The deterministic model introduced in the previous section provides conditions for
the development of infection peaks presented as intervals on the values of the
immune response. However, as we have already mentioned in the Section 3.1.2, the
evolution of the parasitemia is governed by stochastic effects at low numbers of
parasites. Therefore, a model that can cope accurately with both very low and high
parasitemia and predict correctly peak development must be stochastic in nature. We
therefore used a Markov jump process (Continuous-Time Markov chain) [Ethier and
Kurtz, 2009; Crudu et al., 2012, 2009] to model the stochastic effects and the Gillespie
Algorithm Gillespie [1977] to simulate this process. In order to reduce the complexity
of the simulation, the number of variants was reduced by lumping several genes into
M classes that are analogous to groups of variants with shared characteristics.
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The state of the Markov jump process is defined by the numbers of parasites
expressing genes from each class (n1,n2, . . . ,nM) and M =3 [Gillespie, 1977]. Each
jump (also named elementary reaction) modifies the state of the process by changing
the numbers of parasites in each class. Figure 3.4 shows the elementary reactions of
the model. Each elementary reaction corresponds to one of the biological processes:
proliferation without switching, proliferation with switching, or negative selection.
The model is also characterized by the reaction propensities [Gillespie, 1977], defined
as the mean number of reactions per unit time (see Table 3.1).

The stochastic model and the deterministic models introduced in the previous section
are tightly related. Using the law of large numbers for Markov processes [Kurtz, 1970;
RADULESCU et al., 2007; Crudu et al., 2009, 2012] one can show that solutions of the
stochastic model converge to solutions of the ODEs (3.46) when the numbers of
parasites are very big. In the paper of Kurtz [Kurtz, 1970], the convergence is in
probability (weak law of large numbers). However, with some restrictions on the
initial data, one can get the almost convergence (strong law of large numbers, see
[Kotelenez, 1986]).

Note that in the stochastic model studied in this section the propensity coefficient γi

of the negative selection is considered constant in time. This means that both the
specific and cross-reactive immune responses are considered constant. This condition
can be lifted by considering that γi = pxi(t) − qz(t), where xi(t) and z(t) are
time-dependent specific and cross-reactive immune responses, respectively. As
described in Nowak’s model, xi(t) and z(t) should follow ODEs. This more general
model (not studied here) would be a piecewise-deterministic Markov process
(PDMP) [Crudu et al., 2012, 2009; Davis, 1984]. For large parasites numbers, the
PDMP solutions converge to solutions of the complete deterministic model of the
previous section, namely Eqs. 3.46, 3.47,3.48.
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Process State(t = t) State(t = t + 1) Propensity

Proliferation without Switching ni,nj ni + 1,nj α(1 − ∑j ̸=i Pij)ni

Negative selection ni,nj ni − 1,nj γini

Proliferation with Switching ni,nj ni,nj + 1 αPijni

Table 3.1: Markov Jump Processes describing the stochastic antigenic variation model
and Propensities for stochastic simulation.

Algorithm 1 Gillespie Algorithm for Stochastic Simulation
Define state and rate constants c for antigenic variants
Define stoichiometry matrix smatrix
Define maximum simulation time tmax
Initialize time list time and append 0
Initialize empty lists: waiting_times, state_trace
Append initial state to state_trace
Set t = 0
while t < tmax do

Generate two random numbers r1,r2 uniformly between 0 and 1
Calculate propensities a with propensities(c, state)
Calculate cumulative sum of a as acum
Calculate total propensity a0 = acum[−1]
Set told = t
Update time t = t + (1/a0)× log(1/r1)
Append t to time
Append t − told to waiting_times
Determinewhich reactionwill fire: use the index of the first element of acum larger

than r2 × a0.
Update state with the corresponding change from smatrix
Append updated state to state_trace

end while
return time, state_trace

The Gillespie algorithm corresponding to the reactions described by Table 3.1 was
simulated using the Algorithm 1. We considered threemain groups of var variants that
the parasites were partitioned into, and we used the set of parameters in the Table 3.2
for the model simulation.
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Table 3.2: Simulation Parameters for each antigenic group

Parameter Group 1 Group 2 Group 3

Growth Rate, α 8.5 per cycle 8.5 per cycle 8.5 per cycle
Removal rate, γ 7 per cycle 0.6 per cycle 0.6 per cycle
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Figure 3.5: a) Stochastic realisations of the three-state model represented by figure 3.4.
Parasitemia density time series are shown for early stages of infection using stochastic
simulations: Groups G1 (pink), G2 (green) and G3 (blue) represent antigenic group
variants and are proxies for parasite survival. Note: Pijs correspond to transition
rates arising from a generator matrix Q of the CTMC, which was simulated using a
random-uniform distribution. b) The occupancy probabilities of parasites in the three
antigenic groups across time. The shaded region represents the confidence interval of
the occupancy probabilities, obtained from the variance.

Based on our simulations results shown in Figure 3.5, during early stages of the
infection, the high growth rate and switching can sustain parasites in all groups, even
if the removal rate is very high.
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3.4 RandomODE Switching Model

In this subsection, instead of considering fixed switching parameters, we consider
that they are elements of a random matrix. This allows us to study ensembles of
parasites by taking into account the natural variability of intrinsic switching
parameters. Furthermore, in order to simplify the model simulation, we consider that
the parasite numbers are large enough and are limited by the availability of red blood
cells in the body. Therefore the deterministic limit can be applied on the system for
each set of parameters. According to the deterministic limit (law of large numbers for
Markov jump processes, see Kurtz [1970]; Crudu et al. [2009, 2012]).

To understand the influence of various types of intrinsic transition properties on
the system, we analysed the system with the following types of transition matrices
satisfying the following properties:

1. Diagonal elements: The diagonal elements of the transition rate matrix are
always negative and equal to the sum of the transition rates out of that state,
i.e., qii = −∑j ̸=i qij.

2. Off-diagonal elements: The off-diagonal elements of the transition rate matrix
are always non-negative, i.e., qij ≥ 0 for i ̸= j.

3. Row sums: The row sums of the transition rate matrix are always zero, i.e.,
∑j qij = 0 for all i

3.4.1 Case I: Model Without Switching

We describe the case where we solve the system where there is no switching; in this
case, the system becomes identical to the model of antigenic variation mentioned
above. We retrieved the same system, introduced switching as mentioned above, and
then proceeded to use a random-uniform switching scheme across all antigenic
variants. The model in fig 3.6 was generated using the parameter values defined in
table 3.3.
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Algorithm 2 Continuous-Time Markov Chain based Switching Matrix to simulate for
the model described in section3.2

Define the number of states n
Initialize transition rate matrix Q with zeros of size n × n
for i = 0 to n − 1 do

for j = 0 to n − 1 do
if i ̸= j then

Assign random value to Q[i][j], scaled by 1 × 10−3

end if
end for

end for
for i = 0 to n − 1 do

Q[i][i] = −∑j ̸=i Q[i][j]
end for
update parameters
Define time span tspan
Solve the initial value problem (IVP) Eqns3.46, 3.47,3.48

Parameter Value Description
βi = β 1 × 10−4 Selection by Specific Response
γi = γ 1 × 10−4 Induction of Specific Response

µ 1 × 10−4 Induction of cross-reactive response
q 1 × 10−4 Selection by cross-reactive response
α 8.5 Intrinsic growth rate of parasites
p 0.1 Specific response decay
c 0.01 Cross-reactive response decay

Table 3.3: The parameters used to simulate the deterministic model described by Eqns
3.46, 3.47, 3.48
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3.4.2 Case II: Uniform random transitionmatrix

1. The initial population parasite composition at time t = 0 is described by a
random uniform distribution such that each vi is equally likely to occur at the
initial time, such that vi ∈ [100,900], [Recker et al., 2004].

2. initial specific and cross-reactive responses are considered zero, i.e. there is no
selection at the beginning.
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Figure 3.6: a) Variant specific parasitemia levels and specific immune response under
random-uniform switching (top) and specific immune responses against (n=60)
variants over time for the model described by Eqns 3.46, 3.47, and 3.48. Parameter
values as described in table 3.3 and b)The time-series of different var variants in the
population of parasites, initiated as a uniformly distributed population of all variants,
subjected to specific and general immune responses without switching.
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Figure 3.7: Entropy values from different simulated infections at the end of the
infection. Infections simulated for the number of variants N ∈ [1,60]. All other
parameter values are fixed as the table 3.3.

In the case when random switching is incorporated into the model, the peaks of
parasitemia overlap across time, with multiple variants co-existing in the population
at all times. Eventually, the antigenic variants exist at steady levels throughout the
infection, without peak recurrence. This probably happens due to the continuous
production of variants due to random switching across time Figure3.4.2. Random
switching is also associated with entropy fixation that depends on the number of
variants in the Figure3.7.

3.5 Discussion

Mathematical models of antigenic variation in malaria have provided thorough
descriptions of parasite reproduction dynamics and immunological responses. To
better understand the host’s response, we considered a model which included both
the variant specific and cross-reactive immune response mounted against parasites.
Parasite dynamics with proliferation, negative selection, and var genes switching were
modelled using both stochastic and deterministic approaches. The general structure
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of the model proposed in this chapter can be implemented to a wide variety of
settings. We incorporate antigenic variation exhibited by PfEMP1 in our hypotheses,
however there exist other families of Variant Surface Antigens in falciparum that can
be potentially responsible for shaping parasitemia dynamics as seen in asymptomatic
infections from endemic regions. Based on our mathematical analyses, we were able
to precisely quantify the periods between recrudescence associated with different
PfEMP1 variants and characterise their amplitude, overlap with other variant peaks.

The theoretical results obtained in the section 3.1 are general, and can be
implemented with modification to a variety of pathogens exhibiting antigenic
variation within the host. On analysing the system described by the antigenic
variation model, we find that the state trajectories can be completely described as a set
of parabolas, similar to the SIR model for a constant population size. In the case of
SIR models, the phase solutions characterise the peaks and troughs of individuals in
susceptible and infected compartments, with implications in epidemiology. In our
case, the solutions help in characterising the peaks of parasitemia in the chronic
infections, for the first time.

We first characterised the system for a single antigenic variant vi, whose
population exhibited oscillations with dampening, but on the introduction of
multiple variants in the parasite population, we observed infection prolongation,
with multiple peaks of parasitemia. In the case of the cross-reactive response being
more effective than the specific response, we proved that in the long-term, its only the
specific response xi that persists after the end of chronic infection. In the presence of
the multiple variants subjected to the immune system, and the immune responses
characterised by the variant and cross-reactive response shared across all antigenic
variants, interestingly we found that the infection is ultimately cleared, but was the
length of infection correlated linearly with the number of variants present in our
system. The role of cross-reactive responses in maintaining long term infections has
been highlighted in other studies [Recker et al., 2004; Childs and Buckee, 2015; Klein
et al., 2014] with varying assumptions, but we are able to analyse infection dynamics
with minimal assumptions about the host-parasite dynamics.

The implications of the cross-reactive response being effective in reducing infection
length have been discussed in [Childs and Buckee, 2015], and the authors suggest
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that there should be an ideal window for co-infection, because parasites expressing a
large number of shared variants will be cleared by cross-reactive arm of the immune
response, whereas distinct antigens will proliferate too soon and will elicit a strong
specific response, affecting the duration of persistence of both types of variants. For
multiple variants in a system, we are also able to define the inter-peak dynamics for
the parasites expressing a variant i, the specific immune responses against the
variants xi, and the cross-reactive response z. In the case of the parasite
sub-populations pertaining to variants, we find that the parasites are ultimately
cleared before the next peak appears. Additionally, between two successive peaks, the
cross-reactive responses also decline exponentially. Based on these properties, we
established the condition for establishing a peak. Negative-selection eliminates
variants and is therefore detrimental to the parasite survival, whereas intrinsic
switching replaces one variant by another and maintains the expression diversity of
the antigens, but at the same time increases repertoire exposure to the hosts’ immune
system. To address thee biological questions, we incorporated switching across
variants in the model that we then analysed theoretically.

Switching was studied using three types of models: a stochastic model defined as a
Markov jump process, a deterministic ODE model and a random ODE model. The
deterministic ODE allowed us to obtain analytic conditions for the development of
infection peaks. These conditions are presented as intervals in the levels of total
(specific and cross-reactive) immune response. Because peaks develop starting with
low parasitemia numbers, the peak developement is distributed stochastically within
these deterministic bounds and the precise quantitative framework for the infection
dynamics is provided by the stochastic model. The stochastic model was studied by
numerical simulations using the Gillespie algorithm. These simulations allowed us to
understand the dynamics of the system at the development of infection peaks,
because this stage is characterised by initiation with a small number of molecules. We
have considered a three-variant system, assuming that the three classes of parasites
being simulated belonged to antigenic variants with shared properties (in this case,
analogous to var groups). To reduce computational complexity, we assumed that the
classes of parasites were under constant selection, and not a specific or cross-reactive
response, analogous to an innate response. We found that the parasite populations in
all groups were sustained at the end of ten cycles, and under slow switching rates, we
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found that the parasite groups were equally likely to exist throughout the duration of
infection. This theoretical setup is analogous to a CHMI challenge in individuals with
low or no immunity against PfEMP1 antigens, where in a number of variants are
initially present and continue to be expressed for the short duration the challenge
lasts for.

Finally, we have used a random ODE model to look for robust properties of the
deterministic dynamics. In the random ODE model, the dynamics is deterministic,
but the switching rates are chosen randomly. This allows to test properties that are
common to an ensemble of models, rather than testing individual models. We
simulated the ODE model with switching deterministically, incorporating,
cross-reactive and specific responses parasite antigens, for many random switching
parameters. We found that if the switch rates are chosen from a random uniform
distribution, the peaks of parasitemia are composed of many different variants. Our
results indicated that, overall, the number and distribution of variants in the
population eventually becomes stable over time. The entropy of this distribution, the
number and diversity of variants, are reduced with respect to the initial values due to
the immune response of the host.
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CHAPTER4

Conclusions and Perspectives

Our analyses based on CHMI data from The Gambia revealed that following infection
challenge with sporozoites from NF54/3D7, individuals originating from the same
geographical region could have diverse infection outcomes and var expression
pattern during the CHMI. This distinct pattern of var gene expression was also
highlighted in a previous study carried out in Gabon [Bachmann et al., 2019] where
the var expression pattern with a limited number of var genes expressed later in the
infection was associated with higher overall immune response, indicating the role of
immune selection initially. Following a similar classification of individuals, we found
that individuals that were classified as ‘controllers’ in both studies clustered together
on performing hierarchical clustering on var gene expression data from RT-qPCR.

To quantify the heterogeneity, we exploited Shannon Entropy as a measure of the var
parasite populations in each individual as a marker for parasite population diversity.
We found considerable differences across sub-groups of individuals, indicating that
the var expression diversity in infections with 3D7 is conserved, independent of
geographical origin of the hosts, but is host immunity dependent [Warimwe et al.,
2009, 2013; Bachmann et al., 2019].
Individuals classified as ‘controllers’ in the current study also presented longer
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lasting infections, lower parasitemia before treatment and recognized a diverse range
of PfEMP1 domains prior to infection challenge, indicating that pre-existing
responses against PfEMP1 aid in controlling the infection in semi-immune
individuals. It is remarkable that, although volunteers from Gabon and The Gambia
had likely never been infected with a P. falciparum strain genetically similar to 3D7, the
parasite exhibited a similar var gene expression pattern correlated with malaria
immunity.

In addition to characterizing the var gene expression pattern in the CHMI
participants, our goal was to analyze the turnover dynamics of expressed var genes.
To achieve this, we exploited the limits of a theoretical model to compute the turnover
probability for each gene in an individual, provided it was expressed initially. On
comparing these in vivo turnover probabilities across different individuals, we found
that the probabilities to switch away were extremely high, up to 100% in some genes
expressed initially.
On analysing the data for change in var turnover in the CHMI volunteers, we found
that the probability to transition away from the genes that were expressed initially
increased rapidly with time. In the volunteer that was able to control the infection
until the end of the CHMI without turning symptomatic, we found that the initial
repertoire of var genes had completely transitioned away after three cycles post day
14, when the var expression was first recorded. Given the short interval between
points in our time series, we suggest that the var turnover during an infection is much
higher than reported previously [Peters et al., 2002].

Our estimates based on a two-state Markov model lead to transition probability
estimates with group averages between 80% and 90% per day. To the best of our
knowledge, this is the first study to quantify the probability in change of var
expression in real time in a CHMI study. Additionally, we also found that group A var
genes had the highest rates of transition in vivo , suggesting a strong influence of the
immune system on the turnover during infection.
Since the changes in var expression are heavily influenced by the immune system in
vivo , we wanted to get an accurate estimate of switching events and rates in the
absence of immunity. Therefore, we measured the var transcripts coming from the
CHMI volunteers in vitro for several cycles in culture, to explore the contrasts with in
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vivo data. Our results showed that var expression profiles evolve towards a
steady-state distribution characterized by significant entropy and many expressed var
genes. In the sero-low group, the time to attain the steady state is reduced, and the
final distribution displays diminished inter-individual variability. We also found that
the steady state distribution in both sub-groups were comprised of the var groups B
and C.
The parasite populations in the sero-low groups had reached the corresponding steady
state relatively soon, in nearly 10 cycles. Moreover, our estimated in vitro transition
rates are compatible with the frequencies of different var genes groups in the attractor
(steady state). For sero-high individuals, the parasite cultures took longer to converge
to the steady state and some samples still preserve the memory of the initial state after
50 days in culture. Given that the theoretical model was calibrated using the same
switching rates for both subgroups, the differences in time to steady state are mainly
explained by disparity in the initial expression profiles during the CHMI. Therefore,
we hypothesize that epigenetic imprinting on the parasite populations coming from
hosts with stronger immune responses favored a repertoire of var genes very different
from the in vitro steady state. In sero-high hosts, only a few var genes survive the
negative selection of the immune system and the multiplicity of steady state gene
expression is difficult to recover. Therefore, we argue that in all sero-low individuals
with multiple var genes expressed, the var distribution is very similar to the in vitro
steady state. The parasite uses the diverse repertoire as ‘bet-hedging’ strategy in a
hostile environment and then the distribution observed at later timepoints in vivo
evolves by negative selection [Bachmann et al., 2019; Pickford et al., 2021]

Furthermore, to highlight the role of immune repertoire in shaping the var
expression patterns, we analysed the immune responses against PfEMP1 from 3D7 as
well as multiple other strains of falciparum. In this study, the antibody levels against
PfEMP1 domains were significantly enriched in sero-low individuals following the
expression of a diverse set of var variants. Additionally, we found that the presence of
broad range of pre-existing anti-VSA antibodies is associated with a lower likelihood
of reaching the treatment threshold for the infection caused by sporozoites from the
NF54 isolate. The diversity in recognition, coupled with cross-reactivity against VSAs
can be considered crucial to prevent symptomatic infections [Chan et al., 2019;
Kimingi et al., 2022; Gupta et al., 1999] for controlling malaria infections.
Our results re-confirm that anti-PfEMP1 immunity is a marker for infection outcome
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and severity of malaria infection Warimwe et al., 2009; Barry et al., 2011 and that
certain PfEMP1 subsets have been linked to shield against severe symptoms of the
disease [Tessema et al., 2019; Travassos et al., 2018; Avril et al., 2012; Nunes-Silva
et al., 2015].
We also found that the specific PfEMP1 antibody levels were at least moderately
negatively associated with the expression of var genes during the infection, and this
stems from acquired immunity to previous malarial infections. The negative
correlation was highest for group B and A PfEMP1, which are the var groups that
constitute the repertoires of var genes in early stages of infection, indicating that the
immune system may not be able to acquire antibodies to rarely expressed genes, for
example group C genes.
On pooling the PfEMP1 domain data with the clinical data from the study, we also
established correlation between the antibody levels and clinical outcomes of infection
using machine learning. We showed the diversity and strength of antibody responses
against domain sub-groups associated with severe outcomes (CIDR α1 domains that
bind to EPCR-binding receptors) Kimingi et al., 2022; Tessema et al., 2019;
Obeng-Adjei et al., 2020.

Previously, several studies have exploited 3D7 recombinant domains to assess the
increase in antibody levels following a falciparum infection [Travassos et al., 2018], but
our current study is the first to assess the 3D7 specific gain in anti-PfEMP1 antibodies
because the CHMI was carried out with the same strain. Interestingly, the highest
gain in antibodies was against the internal PfEMP1 domain ATS, indicating that this
increase in antibody levels can be attributed to several domains being markers of
exposure and not protection, as recently shown in [Kimingi et al., 2022]. In our data,
gain in specific antibodies against PfEMP1 did not always correspond to their prior
expression in the CHMI, which can be attributed to our lack of knowledge of the
earliest expressed var genes, right after coming out of the liver. Alternatively, this may
indicate cross-reactivity between different PfEMP1 antigens.

Despite finding a negative association between the intensity of existing specific
immune response and var expression during the CHMI, we did not find a positive
effect of var expression on specific anti-PfEMP1 responses. We found a lack of
correlation between expression of var genes during the CHMI and the subsequent
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increase in anti-PfEMP1 antibodies on day35, hinting that the expressed var genes did
not trigger specific antibody production as opposed to ATS domains. Multiple
hypotheses can explain why transcribed var genes do not elicit an antibody response
2 to 3 weeks later. First, we are making the assumption that the var transcript detected
is systematically translated and exported to the infected red blood cell surface.
Second, we assume that antibodies generated in vivo against PfEMP1 in its natural
conformation will recognise the exact same epitopes from recombinant domains
spotted on an array. These arrays have been previously validated with hundreds of
plasma samples, mainly fromMali. However to the best of our knowledge this is their
first use with CHMI-derived plasma, and, importantly, from volunteers infected with
the same 3D7 strain that the arrays were based on. For our analyses, we excluded
domains which were not detected by any volunteer in any sample. Thirdly, we are
opening up a new hypothesis, that some PfEMP1 domains do not always elicit an
antibody response despite their surface localisation. It is conceivable that evolution
selects for PfEMP1 sequences that poorly immunogenic. This selective pressure only
applies to surface exposed domains; this would explain why the intracellular ATS
domain elicits such a strong antibody response, because there is no selection against
it. To further test this hypothesis, future arrays should contain more polymorphic
surface antigens (Surfins, EBA, RH, etc) to quantify immunogenicity level of each
protein family. Another area to explore is predicting immunogenicity from peptite
sequences, which is being developed from epitope databases using machine learning
algorithm [Bravi et al., 2023]. As expected, we found that the antibody gain in
PfEMP1 antibodies against ATS domains was strain transcendental immunological
responses.

To better understand the host’s response, we considered a mathematical model
which included both the variant specific and cross-reactive immune response
mounted against parasites. Parasite dynamics with proliferation, negative selection,
and var genes switching were modelled using both stochastic and deterministic
approaches.

Our theoretical results show that persistent infection with parasite recrudescence
requires complex and dynamic interactions of the malaria parasite and the human
immune system. In practice, our model can define when and how parasitemia peaks
form in chronic malaria infections. Var gene switching creates phenotypic
heterogeneity in the parasite population that the immune system responds to. Our
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results showed that the switching patterns that sustain parasitemia are non-random,
with variants being more heterogeneous early in the infection, then converging to
fewer variants in long-term infection.
We suggest that the diversity in the antigenic pool explains this heterogeneity and
chronic parasitaemia patterns and that extinction times depend on the number of
antigenic choices available to the parasite. Furthermore, we show that the persistence
time for each parasite population is a parameterised function of the specific and
cross-reactive responses. Based on our analytical findings and simulation results, we
proved that antigenic variation linearly depends on the number of variants present in
a population and leads to extension of infection length. The stochastic
implementation of our model shows that infections started with similar parasite and
host attributes show diverse behaviour at the earliest stages, which is lost over time as
the parasite population grows.

4.1 Future extensions

In the following sections, we also consider a few potential future extensions of this
dissertation work, which can enhance the understanding of experimental data
originating from malaria infections.

Turnover Rate Estimation

Wemake point estimates of turnover probabilities of var gene expression in in vivo and
in vitro settings; however, to obtain summary statistics and infer more about that the
parameters as shown in [Recker et al., 2011; Noble and Recker, 2012] with in vitro data,
realistically we would need several more time points to compute statistics on in vivo
transition parameters.

Model Validation

There are several future directions that can be adopted for the modelling approach
described in this thesis. Our current approach has yet not been tested on data coming
from patients, even though we qualitatively obtain results pertaining to parasite
population dynamics that are known to occur in asymptomatic infections. To this
end, there are no ’gold-standard’ datasets to test our approach on. In literature, both
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more and less complex models than ours that have been conceptualised and tested on
the malariatherapy dataset analysed by [Collins and Jeffery, 1999].

A recent thorough review of these modelling approaches revealed that
[Camponovo et al., 2021] that the malariatherapy dataset does not represent a typical
chronic infection timeline because patients were likely malaria naive. The dataset
does not include immune response data or information about parasite gene
expression. In this regard, we might have be able to address some of these concerns
as we now have var gene expression as well parasite kinetics from asymptomatic
individuals sampled monthly in The Gambia [Collins et al., 2022] and in preparation.

Cross-Reactive Immune Response and var expression

An interesting extension of the work on immune responses against PfEMP1 domains
is the identification of effect of cross-reactive responses in CHMI studies. Provided
that some 3D7 PfEMP1 sequences are more similar than others, the variant level
cross-reactive responses to PfEMP1 proteins that are sequentially similar should
correlate. These antibodies should then be able to inhibit the expression of variants
that are similar to each other.

Testing the hypothesis: weak immunogenicity

In our analyses of CHMI data, we found that the correlation between new antibodies
formed against expressed var genes was poor for most expressed variants two-three
weeks post-infection. Ideally, we expect hosts to acquired antibodies against variants
that are expressed during an infection, to suppress the growth of parasites expressing
these variants on re-encounter. Since this pattern was consistent in two groups of
volunteers, we hypothesised that possibly PfEMP1 proteins are potentially weakly
immunogenic and do not provoke specific immune responses as an additional
mechanism of escape. As a potential follow up study, seroreactivity from the chronic
infection cohort from The Gambia [Collins et al., 2022] can be checked, as the var
gene transcription profile at monthly timepoint is already characterised in 10
individuals. However, each individual being infected with a different P. falciparum
’strain’, it would require developing a specific array for each infection, with
recombinant domains from all 60 unique var genes.
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