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Morphogenesis and Growth of Soft Biological tissues
Morphogenèse et croissance des tissus biologiques mous

par Anna DAI

Résumé

Les tissus et organes biologiques possèdent une multiplicité de structures et de morphologies qui

sont intimement liées à leurs conditions environnementales et à leurs fonctions. Leur organisation, leur

forme et leur évolution sont profondément influencées par la régulation mécanique au cours de leur crois-

sance et de leur développement. Pour clarifier ce processus complexe, les outils mathématiques aident

à reconstruire l’ensemble du processus de croissance et de développement en analysant des modèles

physiques impliquant la géométrie, la croissance, la déformation active, les propriétés des matériaux et

les facteurs environnementaux. Cette thèse se focalise sur la matière molle active biologique dans deux

cas : la croissance des feuilles naturelles et la transformation de la forme des embryons de C. elegans. La

formation et l’évolution de la morphologie sous le couplage force-croissance et le mécanisme d’interac-

tion entre l’information biologique et la mécanique sont élucidés grâce au développement d’un modèle

théorique d’élasticité continue, combiné à l’analyse de données expérimentales et à la simulation par

éléments finis.

Mots-clés

Morphogenèse, morphoélasticité, biomécanique, réseau actif, croissance des feuilles, représentation

conforme, embryogenèse de C. elegans

Abstract

Biological tissues and organs possess a multiplicity of structures and morphologies that are intima-

tely linked to their environmental conditions and functions. Their organization, shapes and evolution

are profoundly influenced by mechanical regulation during their growth and development. To clarify

this complex process, mathematical tools help to reconstruct the entire growth and development process

by analyzing physical models involving geometry, growth, active deformation, material properties, and

environmental factors. This thesis focuses on the biological active soft matter in two cases : the growth

of natural leaves and the shape transformation of C. elegans embryos. The formation and evolution of

morphology under force-growth coupling and the mechanism of how biological information interacts

with mechanics, are elucidated through the development of a continuous elasticity theoretical model,

combined with the analysis of experimental data and FEM simulation.
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Morphogenesis, morphoelasticity, biomechanics, active network, leaf growth, conformal mapping,

C. elegans embryogenesis
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Introduction

Biologically active soft matter converts external or stored energy into its own kinetic energy, causing

itself to move or deform, and is the most important type of material that makes up living systems.

From macroscopic flocks of birds, fish and bees to swimming bacterial communities, migrating cell

monolayers and the internal skeleton of cells, all are active substances. As a result of the interactions

between the basic units that make up active matter, and between these active units and the environmental

medium, the whole system exhibits a rich dynamical behavior. Scientists have been exploring their

behavior and believe that it must follow a particular pattern.

Active soft matter in biological systems self-organizes to form rich mechanical morphologies and

biochemical patches that reflect the evolution of non-equilibrium systems from disordered to ordered

structures over a wide range of spatial and temporal scales. From the formation of spiral and stel-

late clusters of active actin networks at the subcellular scale [1] to the formation of epithelial folds in

tissues and organs such as the chicken embryonic gut [2], which shows the diverse mechanical self-

organizational morphology of living systems. Such patterns and phenomena have attracted scientists

from a wide range of disciplines, including chemistry, physics, mechanics and mathematics, they fol-

low the biological findings and study the network of processes and all the influences that constitute the

phenomenon of morphogenesis, with the ultimate aim of identifying, quantifying and theorizing the

mechanisms that give rise to these structures and forms.

The original idea of mechanical forces influencing morphogenesis is not traceable for us, but the

modern concept, which is built on the relationship between mathematics and biology, was first proposed

by Darcy Wentworth Thompson in his book “On Growth and Form”, published in 1917. Subsequently,

in 1952, Turing proposed a model in which two morphogenetic elements with different diffusion co-

efficients - an activator and an inhibitor, respectively - undergo reactive diffusion to form a spatially

self-organized patchwork. This model ignored the mechanics. Taken together, these two perspectives

believe that physicochemical mechanisms, in close conjunction with biological factors, are involved in

the emergence of universal structures in biological objects and can explain the morphological evolution

and bio-chemical patchiness of biological developmental processes. To date, a large body of theoret-

ical and experimental work has supported this, including the researchs of leaves, petals, algae, blades

of grass, skin, birthmarks, melanomas, biofilms, arteries, etc. It is now well-established that the phe-

nomenon of morphogenesis is clearly an interdisciplinary issue.

The study of active soft matter in living systems can help to reveal the mechanisms of complex

morphological self-organization generation in embryonic development and to understand the complex

dynamics of the evolution of living systems. With this in mind, the aim of this thesis is to elucidate

9
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the coupling between growth and stress and their morphogenetic processes through theoretical models

developed for two different research objects.

Presentation of the thesis

The aim of this thesis is to develop theoretical models for biologically active soft substances and to

compare and analyze these models with the results of experimental and simulation simulations. Before

discussing the work on the two different topics of this thesis, the phenomena of growth and morphogen-

esis as well as the background and current state of research are first presented in chapter 1, including

some of the underlying concepts and theories used in the subsequent work.

First, in chapter 2, we investigate the morphological evolution of 2-dimensional stress-free growth.

Based on two different theoretical derivations, one of which continues the previous definition of the basis

[3] but removes the constraints from the derivation process. The second and more simplified approach is

to define the initial and final configurations by means of complex functions, to obtain the morphological

evolution from an energy minimization perspective, and we have concluded that 2-dimensional stress-

free growth follows a conformal or quasi-conformal mapping. This conclusion is verified in the growth

of planar natural leaves.

In chapter 3, we investigate the early elongation of C. elegans embryos under the influence of acto-

myosin, providing a brief background on its biology and understanding the mode of acto-myosin activity.

Then finite element simulation work was carried out and compared the results of previous theoretical

studies by our group [4]. To further investigate complete elongation in the C. elegans embryo, we

simplified the model by treating the epidermis as the same matter and considering the muscle structure.

In addition, we simulated actin activity at this stage based on a kinetic model of myosin recruitment.

As a continuation of the early elongation problem in chapter 3, the main focus in chapter 4 is on late

elongation resulting from the combined action of muscle and actin. We present a coupled bio-mechanical

analysis model that illustrates the actual structure of worm biology. The model translates biochemical

stimuli into driving forces and describes in detail all the deformations that occur during elongation. As

the periodic contraction of the muscle is able to accumulate elastic energy, this energy is transferred to

the circumferential actin network, which then allows the embryo to increase in length. Remarkably, we

have also assessed for the first time the non-negligible rotation based on muscle activity and the viscous

torque generated by the interstitial fluid within the egg.

The C. elegans study is an example of a closely collaborative study with an experimental team

(Prof. Michel Labouesse and his group) whose ability to compare the results of theoretical modeling

and experimental data provides a better understanding of physical phenomena in living organisms.



Chapter 1

Morphogenesis and elasticity of biological

tissues

1.1 Research background

1.1.1 Basic understanding of the growth

Growth, one of the most fundamental and crucial biological activities, describes the process by which

the mass of biological organs and tissues changes over time, resulting in a variety of forms as volumes

shift and morphologies evolve. This intricate process involves a multitude of complex physiochemical

reactions. At the microscopic scale, these reactions include protein production, cell division, and dif-

ferentiation, all of which are controlled by a mix of internal and external factors, including the genetic

code, nutrition, physical and chemical environments, and biological stimuli. At the macroscopic scale,

the production of these proteins, cell division, and differentiation further determine morphogenesis, de-

velopment, maintenance, disease, and aging [5, 6]. While normal and benign growth enables organisms

to thrive and achieve their full potential, malignant growth such as cancer, aneurysm, or inflammation

can impede essential biological functions and even be fatal [7, 8, 9, 10]. However, the mechanisms

behind genetic transformation, cell differentiation and migration, and adaptive growth and remodeling

remain challenging enigma in biology today. Fully understanding how organisms regulate their shape

and function through growth and remodeling remains a daunting task.

By taking into account how the body changes during development, either by changing its volume

and material properties or by rearranging the relative position of material points, three main growth

processes can be distinguished [6]:

• Growth: Growth can be conceptually defined as the increase in mass or, by extension, as the

characterization of a decrease in mass. Increases in mass can occur while maintaining constant

density, such as in the context of soft tissue growth, or while maintaining constant volume, as seen

in the formation of osteophytes.

• Remodeling: It mainly refers to the evolution of material properties such as stiffness, fiber orien-

tation, fiber strength, etc., but the mass does not change. These remodeling processes are due to

11



12 CHAPTER 1. MORPHOGENESIS AND ELASTICITY OF BIOLOGICAL TISSUES

changes in the microstructure that determine the overall behavior of the tissue. It is well known

that during the aging process, tissues may become stiffer or softer [11, 12].

• Morphogenesis: During the early embryonic stage, new tissues and organs undergo development.

In this process, the main reorganization and differentiation of cells occur following cell division,

where only one material element is reorganized. For this process to take place, it is crucial that

the adhesions between the different components are weak enough to enable their separation and

subsequent reattachment.

1.1.2 Modelling of growth

The growth can be broadly classified into three types according to the location of the growth: tip

growth, surface growth, or volume growth.

Tip growth

Tip growth describes the growth process that occurs in a small area at the tip of a filamentous struc-

ture. It is a polarised form of growth in living cells and results in a cellular form with an elongated

cylindrical shape with a rounded tip where the growth activity takes place. It is the main growth mech-

anism used by many microbial and plant systems, such as fungal hyphae, which extend continuously

at their extreme apices [13, 14, 15, 16, 17, 18], as shown in Fig.1.1 (a)-(d) Another example is the

growth of root hairs and pollen tubes, whose volume develops almost in a single direction or is mainly

one-dimensional, which can also be considered as tip growth [19, 20, 21], as shown in Fig.1.1 (e)-(f).

In these organisms, a small active growth zone exists at and near the tip, where new material is

constantly being added. For small organisms such as filamentous bacteria, the newly added material

is transported to the tip by diffusion processes, whereas for larger organisms such as fungi and pollen

tubes, complex internal structures are required for propagation.

The main questions in mechanics are to understand the interaction of the tip with its environment

and to determine how its morphology, internal stresses, and their evolution during development. How

the structure changes according to different methods of material addition. These questions it related to

the deposition of new materials on the cell surface and the mechanical deformation caused by the turgor

pressure of the cell [19].

Surface growth

Surface growth, also known as cumulative growth, can be used to denote the proliferation or removal

of material from the external or internal surfaces of a tissue. For instance, deposition occurs in hard

tissues when new material is added to the existing boundaries of bodies. It is a typical growth mechanism

for teeth, corals, horns, nails, antlers, shells, bones, tree trunks, etc [6, 22, 23, 24, 25, 26, 27]. In some

cases, such as nails and horns, the surface where growth occurs is fixed relative to the main structure

of the animal (e.g. the skeleton). In other cases, growth occurs on external surfaces, such as shells

and antlers, so that as growth proceeds, the form, and position of the growing surface itself change in
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Figure 1.1 – (a) Time lapsed sequence of hyphal growth of Streptomyces coelicolor. Each image is 150

sec apart (the bar is 1µm) [18]. (b) Mycelial growth of S. coelicolor on solid agar medium [17]. (c)

The Spitzenkörper of Scterotium rolfsii. Note the dense aggregate of apical vesicles and microvesicles

surrounding a fibrillar, vesiclefree core, Bar: 0.5µm [16]. (d) Tip growing hypha of Saprolegnia ferax

with numerous subapical branches [15]. (e) Tip growth in root hairs. Above: Time-lapse images of an

elongating root hair of Medicago truncatula. Images were taken every 10 minutes. Below: Close-up of

the growing tip [19]. (f) Above: Immunofluorescence label of Solanum chacoense pollen tube for pectins

with a low degree of methyl-esterification using monoclonal antibody JIM5. Label intensity is stronger at

the shank of the tube than at the apex (located at the left). Bar: 10µm µm. Below: Immunofluorescence

label of Solanum chacoense pollen tube for pectins with a high degree of methyl-esterification using

monoclonal antibody JIM7. Label intensity is higher at the apex (located at the left) [20].

space relative to the main structure of the animal. Fig.1.2(a)-(f) shows some examples of surface growth

obtained by numerical calculations that well mimic the surface growth of actual biological structures.

In mathematical modeling, the growth process can be captured by a growth velocity vector which

can be normal to the growth surface, for example in mathematical and numerical simulations of bone

remodeling it is generally assumed that surface growth can be described by a normal velocity vector to
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Figure 1.2 – (a) Simulation image of the growth of the crown of a tooth (incisor). [25]. (b) Simulation

image of a model of a bivalve leaf [25]. (c) Simulation of an ammonite [26]. Biological structures and

its simulation image: (d)a Turitella seashell, (e) Antelope horns, and a (f) Nipponite shell [27]. (g)

Create surfaces from the initially generated curves [27].

the growth surface [28, 29]. While this may be sufficient for circular structures, in the case of some sharp

angles the growth velocity must be considered to be at an angle to the growth surface. This is already

known from anatomical and developmental studies, where generated cells and new tissue tend to be at

an angle to the normal of the growth surface. Since surface growth is a continuously forming process,

obtaining a mapping of the reference configuration to the current configuration is challenging. Moulton

et al. [27] developed a mathematical framework to model the kinematics of surface growth of objects

that can evolve a curve by evolving in space. Growth is determined by the growth velocity vector field at

each point on the generating curve. Each point on the generating curve has a local orthogonal basis and

the velocity field is given in the direction of the local coordinates by which such objects can eventually

be generated by evolving this curve, the schematic image as shown in Fig.1.2 (g). In summary, in

modeling, it is first necessary to understand the interactions between the soft material parts of biological

tissue and the added hard material and then to derive their corresponding accretion law.

Volume growth

Volumetric growth, also known as bulk and interstitial growth, is a process that describes the change

in local volume elements in the body over time. This process leads to incompatibility and generates

residual stresses. Tip and surface growth, mentioned earlier, is where new material is added to a specific
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surface or area and eventually produces changes at its boundaries. Volumetric growth, on the other

hand, occurs as the interstitial growth of local volume elements. It is a very common mode of growth

in biology, such as the volumetric changes and morphological evolution of blood vessels, muscles, solid

tumors, and hearts [30, 31, 32, 33, 34, 35], some examples are shown in Fig.1.3.

Figure 1.3 – (a) Development of the chick limb bud between four and seven days of incubation. The solid

black regions represent definitive cartilage; striped areas represent early cartilage [36]. (b) Experiments

of localized, growth-induced wrinkling in porcine airways [33]. (c) photographs of the initial and final

shape of the tumor. [34].

In volumetric growth, local volume elements may not remain isotropic during growth and we need

a tensor description of the deformation. The process of volume growth assigns a tensor, the growth

tensor G, at each point in the body, describing the change in a local volume element. From a continuum

mechanics perspective, it is assumed that local differential growth and/or overall inhomogeneous growth

will lead to incompatibility [37], and this is also seen as a source of residual stress. Physically, incompat-

ibilities may lead to overlapping objects or the creation of gaps, hence the need for elastic deformation

to keep all pieces of materials continuous with each other after growth [38], this will also be explained

in detail later.

As mentioned above, a body goes from its initial state to its final state when it is due to the growth

or elastic response of the material, mostly a combination of these two processes. But in the case of soft

tissue, it is possible to produce deformation by applying a load. So, if we know the form of a body after

natural growth, but if it is subjected to different loads during growth, how will its form change [39]?

This is still a problem that haunts physicists and biologists alike.
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1.1.3 The relationship between the mechanics and growth

D’Arcy Thompson proposed the idea that mechanical forces affect morphogenesis in the book "On

Growth and Form", first published in 1917 [40]. Usually from a biological point of view, growth is

controlled and regulated by genes, with different genes controlling different cells and their activities

such as cell division, proliferation, and expansion, determining their growth information and the shape

of the body. However, the importance of mechanical stress during the growth and development of living

organisms has been demonstrated, and it couples with genetic and also biochemical signals to determine

their final shape.

The effects of mechanical stress on the morphology of biological tissue can be observed in daily

life. For example, increased training for a specific limb in athletes clearly promotes muscle growth

in the corresponding region; facial expressions will result in wrinkles form[41], while ’rhytidectomy’

eliminate wrinkles and flatten the face; astronauts lose bone mass during space flight due to the effects

of reduced gravity [42]; wearing excessively high heels for a long time can lead to the skeletal of foot

deformities [43]. There are similar examples in plants, such as specially shaped fruits obtained through

fixed-shape moulds, and trees becoming shorter and thicker in windy places [44].

Mechanical stress can also have an effect at the cellular level, cells can undergo both passive re-

sponses to mechanical signals from the external environment, such as deformation and displacement,

and active responses, such as the generation of force-sensitive biochemical signals in the cell membrane

or cytoplasm. This forms a force-chemo-biotic feedback loop, whereby mechanical signals can stimu-

late biochemical signaling pathways, and biochemical signals can alter the ability of cells to generate,

transduce and receive mechanical signals. Many life processes, such as cell migration, cell polarisation,

cell differentiation, wound healing and tissue regeneration, rely on the perception and transduction of

force-chemical signals over long periods of time and on a spatial scale. It is well known that cells sense

and respond to complex mechanistic signals throughout their life cycle.

As described above, we have known that growth is under the influence of stress, and indeed that

growth also can lead to the stresses generated. Most of the biological tissues in different locations grow

at different rates due to the coupling of mechanical, chemical and biological factors. Such differential

growth can lead to the generation of internal residual stresses, even in the absence of external loading

[45]. Residual stress is widely present in biological tissues such as ripe fruits, tree trunks, blood vessels,

or tumors and is thought to have a crucial influence on basic biological activities [46, 47, 48, 49], and we

can observe the presence of residual stress in living organisms by cutting in different directions (opening

angle method), as shown in the Fig.1.4 (a)-(c).

As the body grows and residual stresses increase, internal, surface or structural instability may occur

at an amount of the growth. Morphological instability then forms new stable patterns, which are signifi-

cant for life because some normal biological activities and basic functions strongly depend on patterns.

For example, the wrinkles found in the intestine are useful for digestion [55], while folds in the brain

cortex are associated with cognitive development [56]. Some patterns may also reflect pathological

information; for example, abnormally wrinkled airways are a sign of asthmatic bronchi, and frequent

morphological changes in tumors point to a pre-metastatic state [57]. Some of the instability patterns

are shown in Fig.1.4 (d)-(f).
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Figure 1.4 – (a) Demonstration by the opening angle of a scallion ring after cutting along the axial

direction [50]. (b) Cutting an axial slab of fresh carrot along the dashed lines reveals that the outer

layers (1 and 4) were almost stress-free whilst the core layers (2 and 3) were subjected to large inho-

mogeneous axial and radial residual stresses [51]. (c) Influence of the number and direction of cuts to

release residual stress in a duck liver [50]. (d) Evolution of wrinkling topography in excessive dehydra-

tion of deformed passion fruit [52]. (e) Representative wrinkled morphology of fingertips with different

immersed times [53]. (f)) The surface is relatively smooth in the fetus period yet, it folds into a pattern

with bumps and grooves during growth [54].

Here, it is important to mention the concept of ’Homeostasis’, derived from the Greek words meaning

’same’ and ’steady’. Homeostasis refers to the ability of the organism or system to maintain internal

stability and equilibrium in response to changes in the external environment. It is a fundamental concept

in biology and is essential for the proper functioning and survival of living organisms. The study of

homeostasis has a rich history, spanning centuries. The concept of maintaining internal balance can be

traced back to ancient Greek and Roman philosophers who recognized the importance of balance in the

human body. One of the earliest recorded references to balance was by the Greek physician Hippocrates,

often referred to as the ’father of medicine’. He introduced the concept of ’physis’ (nature) and the ability

of the human body to maintain a balance between the four humors - blood, phlegm, yellow bile and

black bile [58]. The French physiologist Claude Bernard described the concept of regulating the internal

environment in 1849, while the term homeostasis was coined by the physician Walter Bradford Cannon
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in 1930 [59, 60]. His book “The Wisdom of the Body” [60], described how the human body maintains

steady levels of temperature and other vital conditions such as water, salt, sugar, protein, fat, calcium

and oxygen levels in the blood. Similar processes dynamically maintain the homeostatic conditions of

the earth’s environment. In 1932, the British physiologist Joseph Barcroft was the first to suggest that

the higher function of the brain requires the most stable internal environment. Thus, in Barcroft’s view,

homeostasis is not only organized by the brain, but also at the service of the brain [61]. Homeostasis

is an almost exclusively biological term, concerning the constancy of the internal environment in which

the cells of the body live and survive [59, 60, 62].

In homeostasis, various physiological processes work together to regulate and maintain internal con-

ditions within a certain range, regardless of external fluctuations. These internal conditions include

body temperature, pH level, blood pressure, heart rate, fluid balance, and nutrient levels, among others.

The process of homeostasis involves continuously monitoring the internal environment with specialized

sensors, such as receptors or chemoreceptors, which detect changes in various parameters. When a

deviation from the optimal range is detected, the body initiates a series of responses to restore equi-

librium and bring the conditions back to normal. Homeostatic mechanisms involve negative feedback

loops, where the response counteracts the initial change and brings the system back to its set point.

For example, if body temperature increases, the body responds by initiating mechanisms like sweating

and vasodilation to cool down and restore the normal temperature [63, 64]. Various organ systems in

the body play a role in maintaining homeostasis. The nervous and endocrine systems, in particular,

are crucial in coordinating and regulating the responses required to maintain internal balance. Overall,

homeostasis is a vital process that ensures the stability and functionality of living organisms, allowing

them to survive and adapt to changes in their environment.

1.2 Current status of research

The variety of morphological changes exhibited by living systems has always attracted the attention

of scientists alike [40, 65]. The active soft matter of biological systems, such as organs and tissues,

evolves morphologically for two main reasons: firstly, it can produce active force and active deformation,

which leads to self-driven and self-organized morphological evolution; secondly, growth and remodeling

lead to an increase or decrease in the matter, which results in a self-organized morphology. Depending

on the system being studied, the active deformation and the growth model determine whether a discrete

particle model or a continuous medium model is used. The discrete particle model usually is used for the

study of cells, but the biological tissues or organs, the continuous medium model is better. This paper

focuses on the continuous medium model.

Continuous medium models of active soft matter in living systems include active fluid models

[66, 67] and active solid models [68]. These models can in turn be classified according to the geomet-

rical configuration and material properties of the tissues under study. For two-dimensional structures

commonly found in biological tissues, such as thin films and thin-shell structures, researchers have de-

veloped active fluid film models [67, 69], active Helfrich film models [70, 71] and active solid thin-shell

models [72, 73]; for three-dimensional biological tissues, there are deformation gradient multiplicative

decomposition models analogous to those used to describe plastic deformation of elastomers [74], active
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colloid model [75], etc. There are various physical models to describe active deformation processes in

continuous media active substances, three common approaches are described here. The first is to de-

compose the stress σ of the material into a passive stress σp and the introduction of an active stress σa

that

σ = σp + σa. (1.1)

This active stress can depend on physical quantities such as the concentration of local biochemical

signals, the orientation of active fibers or the order parameter of active polar fibers [72, 75, 76]. For bio-

logical thin plates or thin shell structures, such as cell cortices and epithelial cell monolayers, researchers

often introduce assumptions or set up spatiotemporally inhomogeneous distributions of surface tension

as active stresses based on experimental results. A second approach is to add an energy term related to

the concentration of biochemical signals to the free energy of the passive material. This model is often

used to study membrane protein distribution and membrane morphology evolution, for example, mor-

phology evolution due to protein distribution on vesicle membranes [71] and morphology formation in

red blood cells [77]. A third approach is to decompose deformation into active and passive deformation.

For three-dimensional large deformation problems, a multiplicative decomposition of the deformation

gradient tensor F can be performed,

F = Fe · Fa, (1.2)

where Fe and Fa represent the passive elastic deformation part and the active deformation part of the

material, respectively. For the common thin plate and shell structures in biological systems, the strain

is small but the overall displacement can be large, i.e. small deformation and large rotation problems,

when the additive decomposition of the deformation tensor can be used,

E = Ee + Ea, (1.3)

where Ee and Ea represent the passive elastic deformation part and the active deformation part of the

material, respectively.

Continuous medium models describing the growth of active substances have been mentioned in the

previous section and include apical growth models, surface growth models and bulk growth models. In

order to better understand the subsequent work in this thesis, in this section we first explain the basic

theoretical approach to growth modeling. We then summarise some theoretical and simulation studies

for various morphologies of different biological tissues during the growth.

1.2.1 The kinematics of growth

The kinematics of growth involves the precise tracking of spatial and temporal changes, including

the expansion and relative deformation of various points within a body. In three-dimensional space, we

consider as body B occupying a specific region within the spatial domain E . Following deformation,

body B transforms into B, now occupying a distinct region within space. Describing the motion of each

body point from its original position to its present state, we employ a vector mapping function −→χ . By
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examining derivatives of this mapping in space and time, we extract the relative motion of neighboring

points. Moreover, this mapping enables us to define fundamental quantities such as strain and stretch.

The concept of the configuration

We define a configuration for body B, denoting the positions of all points within it as the vector X⃗ .

Subsequently, we introduce χ⃗, a mapping that allows us to relate the points of body B to their respective

deformed positions x⃗ within B.

B → B,

X⃗ → χ⃗
(
X⃗
)
.

(1.4)

Figure 1.5 – The schematic of the deformation.

We also can write this relation:

B = χ⃗ (B) or x⃗ = χ⃗
(
X⃗
)
, X⃗ ∈ B. (1.5)

Prior to undergoing a deformation process, body B is in an initial (reference) configuration, compris-

ing a collection of material points occupying a specific region in space denoted as B0, and for simplicity,

we assume the initial configuration is the stress-free state. It is important to note that the initial (refer-

ence) configuration remains unaffected by time. However, as the body moves or undergoes deformation,

this set of points can vary with time t, resulting in a configuration denoted as BC , representing the state

of B at a given time t. Therefore, we have the following relationships:

x⃗ = χ⃗
(
X⃗, t

)
, ∀X⃗ ∈ B0, (1.6)

The mapping χ⃗ is assumed to be uniquely invertible:

X⃗ = χ⃗−1 (x⃗, t) , ∀x⃗ ∈ BC , (1.7)

with inverse mapping denoted by χ⃗−1. For a given time t, the inverse mapping Eq.1.7 carries the points
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located at the configuration BC to the points at the reference configuration B0.

The deformation gradient

In order to analyze a deformation locally (in the neighborhood of a material point), it is necessary to

characterize the deformation of an infinitesimal line element dX⃗ within the body B. To accomplish this,

let us differentiate Eq. (1.5). In Cartesian coordinates, the resulting expression is as follows:

dxi =
∂xi

∂Xj

dXj = FijdXi, (1.8)

where we apply the Einstein notation on repeated indices, the Latin indices belong to the set {1, 2, 3}.

The geometric deformation tensor F has been introduced here:

dx⃗ = FdX⃗, F =
∂x

∂X
. (1.9)

Deformation of the volume

When a body undergoes deformation, it can change the relative sizes of its material elements. Let

us consider an infinitesimal volume element formed by three non-coplanar line elements, namely dX⃗1,

dX⃗2, and dX⃗3, located at point X⃗ within B0. The volume dV of this infinitesimal element can be

expressed as follows:

dV = det
(
dX⃗1, dX⃗2, dX⃗3

)
. (1.10)

In the current configuration, the corresponding volume element dv is given by:

dv = det (dx⃗1, dx⃗2, dx⃗3) . (1.11)

and the process is shown in Fig.1.6,

Figure 1.6 – Transformation of volumes, dV is an infinitesimal volume element, the new volume after

deformed dv = JdV .
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According to the Eq.(1.9), we can therefore rewrite Eq.(1.11) as follows:

dv = detFdV = JFdV. (1.12)

where JF = detF, it means the local volume change, i.e. the ratio of a volume element of the current

configuration to that of the reference configuration. If the volume does not change locally during the

deformation:

JF ≡ detF = 1, (1.13)

If the Eq.(1.13) is satisfied, all deformations of X⃗ in B0 are isochoric.

Deformation of the surface

By considering a material area element that is normal to a given vector N⃗ , we define an area element.

Referring to the equation in Ref. [78], the transformation of the surface integral can be described:

∫

∂B0

n⃗da =

∫

∂B0

JFF
−T N⃗dA (1.14)

where n⃗ and N⃗ are outward unit normals, dA and da are the area elements at a given point as shown in

Fig.1.7. An infinitesimal element of area defined in the initial (reference) configuration by a normal N⃗

and surface area dA is transformed into another element of the area in the current configuration defined

by a vector n⃗ with area da and related to the reference one by Nanson’s formula:

Figure 1.7 – Transformation of areas. An infinitesimal area is transformed according to Nanson’s for-

mula during the deformation.

da = JFF
−T · dA, n⃗da = JFF

−T · N⃗dA. (1.15)
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Deformation Tensors

George Green introduced a deformation tensor, which is known as the right Cauchy–Green defor-

mation tensor or Green’s deformation tensor [79]:

C = FTF. (1.16)

Physically, the right Cauchy-Green tensor provides the square of the local change in distances re-

sulting from deformation:

dx⃗2 = dX⃗ ·C · dX⃗ (1.17)

Reversing the order of multiplication in the formula for the right Green-Cauchy deformation tensor

leads to the left Cauchy-Green deformation tensor which is defined as:

B = FFT. (1.18)

The left Cauchy-Green deformation tensor is often called the Finger deformation tensor [79, 80].

Finite strain Tensor

In the initial (reference) configuration, if the distance of two points is:

√
dX2 =

√
dXidXi, (1.19)

after the deformation, the distance change to the

√
dx2 =

√
dxidxi. (1.20)

In terms of the tensor F, we can write :

dx2 = FijFikdXjdXk = CjkdXjdXk. (1.21)

where tensor C is right Cauchy-Green deformation tensor. It is symmetric and positive definite. Now,

the variation of the square of a length element is :

dx2 − dX2 = (Cjk − δjk) dXjdXk = 2EjkdXjdXk, (1.22)

where E is the Green strain tensor, also called the Green-Lagrangian strain tensor or Green-St-Venant

strain tensor, E = 1
2
(C− I). A material element is deformed if and only if E ̸= 0. Since this tensor is

associated with the reference configuration, it is called the Lagrangian strain tensor.
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Multiplicative decomposition

As discussed in the previous section (Section 1.1), the growth process involves two factors: growth

itself and elastic stress. Residual stresses in biological materials are directly linked to the internal mate-

rial reorganization caused by growth. Even in the absence of external loads, changes in size or relative

position of different elements within the body can generate stresses. Thus, the theory of elastic growth

posits that the overall deformation results from a combination of growth-induced deformations and elas-

tic deformations required to preserve the body’s integrity.

The concept is based on the early contributions of several scientific groups [81]. It was first discussed

by Flory [82] in a study of polymer swelling and was also mentioned by Kröner in the context of

elasticity problems [83, 84, 85] and later generalized by Lee [86]. In the research field of biological

tissues, it was the seminal work of Rodriguez et al. [38] that proposed multiplicative decomposition as

a central concept in biomechanics, and then this approach was widely used[87, 88, 89, 90]. The method

is based on three key points:

• There is an initial (reference) state without stress.

• The geometric deformation tensor admits a multiplicative decomposition into a growth tensor G

and an elastic tensor A:

F = AG. (1.23)

• The response of the material depends on total deformation (F), but the elastic energy is only

related to the elastic part (A).

Consider an initial body without any geometric or physical constraints. And suppose that this body

undergoes spatially homogeneous growth. In this scenario, a deformation (Eq.(1.5)) describes the tran-

sition from the initial state to the current state, without any cavitation or overlap occurring during this

process. As a result, no elastic accommodation is required, and A = I, where I denotes the identity.

However, it should be noted that this situation, where A and G can be directly expressed as gradients

of deformation, is atypical but possible. Generally, neither A nor G can be directly represented as gra-

dients of any deformation. Consequently, the "virtual state" BG induced by the transformation G is

not a physically achievable configuration of the body B. Nonetheless, there is a conceptual procedure

to obtain the BG state. By progressively slicing the body B into an infinite number of infinitesimal

pieces, the internal constraints can be theoretically relaxed. The shape of each sliced element defines

the local deformation gradient G. Therefore, the virtual state BG is often described as a collection of

configurations.

1.2.2 Balance laws

Now, we have established a comprehensive description of the deformation of a body. Initially, a

mapping χ⃗ is defined, followed by the deformation gradient F, which captures information about the

relative deformations of the body, including local changes in volume, area, and stretch. These primary

quantities serve as the basis for defining secondary quantities, such as the left and right Cauchy-Green

tensors, B and C, which provide information about the strain developed during deformation. With a
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Figure 1.8 – Schematic representation of the Multiplicative decomposition. The system, initially in a

stress-free configuration BR, is first transformed into the virtual state BG, which maybe contains holes

and overlaps. In the second step, the integrity of the BG state is recovered by an elastic process, resulting

in the stressed BC configuration.

complete kinematic description of the body, we can define physical fields at each point and utilize fun-

damental laws of physics to establish local equations connecting these fields. The equilibrium equations

in continuum mechanics are derived by considering the balance of physical quantities, including mass,

linear momentum, angular momentum, and energy. Here, we will specifically focus on the conservation

of energy.

It is important to note that this approach is based on the Minimum Potential Energy (MPE) principle,

also known as the variational method. According to this principle, among the set of kinematically

possible deformations that satisfy only the boundary conditions of the displacement field, the observed

deformations are those that minimize the potential energy. In other words, the actual deformations

correspond to the ones that minimize the potential energy.

Elastic energy

The elastic process represented by the tensor A in Fig.1.8 is considered as a reversible process at

temperature T , with the existence of a elastic energy E . As mentioned earlier, this energy is assumed to

depend only on the elastic component A of the decomposition in Eq.(1.23). Hence, it is a function of

the deformation field x⃗, expressed as:

E = E (x⃗) ≡
∫

BG

W(A)dVG (1.24)
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where dVG is an infinitesimal volume element of the virtual state BG, and the integral is taken over

the region BG. The quantity W corresponds to the elastic energy density [91, 92]. The definition

in Eq.(1.24) implies that the energy is independent of the deformation process. Materials that satisfy

this approximation are referred to as hyperelastic or Green’s elastic materials, which do not include all

viscoelastic or plastic effects.

The tensor A represents a local measure of deformation that depends on the choice of the observer.

To obtain an expression for invariant energy under coordinate changes, an accurate approach is to use

a local measure of deformation that is independent of the observer’s choice, unlike the tensor A. The

right Cauchy-Green strain tensor C = FTF is symmetric and positive definite. Its eigenvalues, also

known as principal stretches, denoted as λ1
2, λ2

2, and λ3
2, are real and strictly positive. Alternatively, it

is common in the literature to define the elastic energy density W in terms of the principal invariants I1,

I2, and I3 of the tensor C. These invariants are defined as:

I1 = Tr (C) = λ1
2 + λ2

2 + λ3
2, (1.25)

I2 =
1

2

(
Tr(C)2 − (TrC)2

)
= λ1λ2 + λ2λ3 + λ1λ3, (1.26)

I3 = detC = λ1
2λ2

2λ3
2. (1.27)

If the material exhibits a preferred direction, indicated by a vector −→m, such as in the case of fiber-

reinforced materials, additional invariants are introduced based on the tensors m⃗⊗ m⃗ and C [93, 94, 95,

96, 97].

If the system is internally constrained, as in the case of incompressible materials, we have the condi-

tion C(A) = 0. To incorporate this constraint, we introduce a Lagrange multiplier p into the definition

in Eq.(1.24), resulting in a modified function:

E [x⃗, p] ≡
∫

BG

W (A) dVG −
∫

BG

p C (A) dVG. (1.28)

Note the explicit dependence of the functional E on p, which also needs to consider in the variational

procedure.

Hyperelastic materials or models possess several distinctive characteristics:

• 1: They can withstand significant elastic (recoverable) deformations, often up to 10 times the

applied strain;

• 2: Hyperelastic materials can be compressible or incompressible. For living systems, it is usually

considered incompressible, meaning their volume does not change significantly under deforma-

tion;

• 3: The constitutive relationship of hyperelastic materials may exhibit a high degree of nonlinearity,

meaning that the relationship is not linear.
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Due to their similarity to biological tissues in terms of these properties, hyperelastic materials are

widely used in various biomechanical problems. One of the simplest hyperelastic models is the Neo-

Hookean model, proposed by Ronald Rivlin [98] in 1948. This model is expressed as:

W = C1 (I1 − 3) , (1.29)

where C1 is a material constant, which is half the value of the shear modulus. Although Neo-Hookean

is not very accurate in predicting large strain deformation, it is simple and has strong applicability for

small and medium strains.

The Mooney-Rivlin model is named after the combined surnames of two physicists, M. Mooney and

R. S. Rivlin, they established the essence of the Mooney-Rivlin hyperelastic model[98, 99], the form is:

W = C1 (I1 − 3) + C2 (I2 − 3) (1.30)

where C1 and C2 are determined material constants.

A notable and widely used hyperelastic model is the Ogden model, developed by Raymond Ogden

[100]. This model is highly versatile and applicable to various materials, including rubber, polymers,

and biological tissues. One of its distinctive features in the theoretical formulation is the use of principal

stretches as independent variables, instead of the strain tensor invariants. The expression of the Ogden

model is given by:

W =
N∑

p=1

µp

αp

(λ1
αp + λ2

αp + λ3
αp − 3) (1.31)

where N , µp and αp are material constants. For particular values of material constants the Ogden model

will reduce to either the Neo-Hookean material (N = 1, αi = 2) or the Mooney-Rivlin material

(N = 2, α1 = 2, α2 = −2 , with the constraint condition λ1λ2λ3 = 1).

In addition to the models mentioned above, there are also common models such as Fung [101],

Gent[102], etc.

Equilibrium equations and variational method

To derive the equilibrium equation, we can rewrite Eq.(1.28) as an integral over the reference (initial)

configuration BR. Based on Eq.(1.12), the infinitesimal volume elements of the reference configuration

BR and the virtual state BG are related by dVG = JGdVR, where JG = detG. Consequently, we can

express the elastic energy equation as follows:

E [x⃗, p] =

∫

BG

JG {W (A)− p C (A)} dVR, (1.32)
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according the Eq.(1.23), so we can reads:

E [x⃗, p] =

∫

BG

JG
{
W
(
FG−1

)
− p C

(
FG−1

)}
dVR (1.33)

The principle of virtual work states that, during an isothermal deformation process, the infinitesimal

change δE = E [x⃗+ δx⃗, p+ δp] − E [x⃗, p] of the elastic energy is equal to the work of the mechanical

forces applied to the system. It is generally assumed that there are volume forces, denoted B⃗, and surface

forces, denoted T⃗ . Under these conditions, the principle of virtual work is written:

δE =

∫

BR

B⃗ · δx⃗dVR +

∫

∂BR

T⃗ · δx⃗dAR, (1.34)

where dAR is an infinitesimal element of the surface ∂BR. The energy E is a function of the fields x⃗

and p, we develop the variation δE in terms of the variations δx⃗ and δp:

δE =

∫

BR

JG

{(
G−1∂W

∂A
− pG−1 ∂C

∂A

)
δF−C (A) δp

}
dVR. (1.35)

Generally, if A = BC, and any scalar function F of the tensor A have this relation:

∂F (A)

∂B
= C

∂F (A)

∂A
. (1.36)

We now insert Eq.(1.36) into Eq.(1.35) and integrate by parts to obtain:

∫

BG

JGC (A) δpdVR −
∫

BR

(
DivS+

−→
B
)
· δx⃗dVR −

∫

∂BR

(
T⃗ + STN⃗

)
· δx⃗dAR = 0, (1.37)

where the nominal stress tensor has been defined:

S = JGG
−1∂W

∂A
− JGpG

−1 ∂C

∂A
. (1.38)

The tensor S is known as the first Piola-Kirchhoff tensor. Eq.(1.37) represents the potential energy

balance equation in variational form. To obtain the differential form, we consider arbitrary infinitesimal

variations dx⃗ in Eq.(1.37) while satisfying the boundary conditions. By canceling out the terms, we

obtain the following expression:

DivS+ B⃗ = 0

C (A) = 0

}
in BR, (1.39)

ST N⃗ = T⃗ on ∂BR. (1.40)

In the case where the system is subject to hydrostatic pressure P , the tension at the edge
−→
T is given
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by the formula:

T⃗ = −JFPF−T N⃗ (1.41)

Once the equilibrium equations have been established in their Lagrangian form, expressed in the

coordinates of the reference configuration, they can be transformed into the Eulerian form using the

current coordinates. To do so, we introduce the Cauchy tensor T, which describes the stress field in the

current configuration.

T = JF
−1FS = JA

−1A
∂W
∂A

− JA
−1pA

∂C

∂A
(1.42)

where JF = detF and JA = detA. The Eulerian form referred by Eq.(1.39)-Eq.(1.40) is:

DivT+ b⃗ = 0

C (A) = 0

}
in BC , (1.43)

TN⃗ = t⃗ on ∂BC , (1.44)

where b⃗ and t⃗ are respectively the volume and surface forces in the current configuration BC and n⃗

denotes the unit vector, directed outwards and normal to the surface ∂BC . The operators Div and div

denote the divergence of a tensor in the reference and current coordinates, respectively.

Finally, we can mention the existence of the second Piola-Kirchhoff tensor, which is a Lagrangian

measure of the stress field.

σ = SF−T = JFF
−1TF−T . (1.45)

In conclusion, the Cauchy stress represents the force exerted on a deformed area in the deformed

configuration. The First Piola-Kirchhoff stress represents the force exerted on an undeformed area in the

deformed configuration. The Second Piola-Kirchhoff stress mapped to undeformed configuration on the

undeformed area. The more detailed explanations can be found in Ref.[92].

The incompressible material

If the material is incompressible, by virtue of Eq.(1.13), we have the following scalar relationship:

JA = detA = 1. (1.46)



30 CHAPTER 1. MORPHOGENESIS AND ELASTICITY OF BIOLOGICAL TISSUES

Thus we have the:

JF = detF = detG ≡ JG. (1.47)

Using the relationship in the Ref.[92]:

∂ detA

∂A
= (detA)A−1, (1.48)

we obtain the following relations for the Nominal stress tensor (The nominal stress is the transpose of

the first Piola-Kirchhoff stress) and the Cauchy tensor respectively:

S = JGG
−1∂W

∂A
− JGpF

−1, (1.49)

T = A
∂W
∂A

− pI. (1.50)

Furthermore, it is worth noting that the invariant I3, which is defined as the determinant of the right

Cauchy-Green elastic deformation tensor, is always equal to 1. As a result, the energy density usually

can be expressed only in terms of the invariants I1 and I2. This explains why the term I3 is not present

in common forms of energy functions, such as those shown in Eq.(1.29) and Eq.(1.30). In general,

it is traditional to separate the isochoric (volume-preserving) part from the compressible part in the

expression of the energy density function.

1.2.3 Mechanical morphology of biological tissues

In nature, plants exhibit a range of forms in different developmental stages and living conditions,

such as sunlight, humidity, and temperature. Recent investigations have focused on various characteris-

tics, including the growth of flowers [103, 104], plant leaves [105, 106, 107, 108], and specific types of

unicellular green algae [109, 110]. Martine Ben Amar et al. [111] utilized the principle of minimizing

the bending energies of both petals and veins to construct the shapes of sympetalous bell-shaped flow-

ers with constant Gaussian curvature, successfully predicting their global shape. Fan Xu et al. [112]

observed that lotus leaves floating on water typically experience short wavelength edge wrinkling that

decays toward the center, while leaves growing above water morph into a global bending cone shape

with long rippled waves near the edge. They developed mathematical models to account for the inho-

mogeneous differential growth of floating and free-standing leaves, accurately predicting the formation

and evolution of their morphology. Different species of mushrooms also exhibit a range of morpholo-

gies. Xiaoyi Chen et al. [113] recently discovered that Amanita muscaria and Mycena chlorophos grow

similarly, with their caps rapidly expanding outward and then turning upwards. However, only the latter

develops a central depression in the cap. They used mathematical modeling to uncover the interplay

between physics and biology that drives the emergence of these distinct morphologies. Figure (1.9)

showcases some natural forms and their corresponding simulation results.
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Figure 1.9 – (a) Above: A surfinia (Paris) and An Angel’s trumpet (brugmansia) (Morocco). Below:

their simulation images [111]. (b) Morphological comparison of different types of lotus leaves. Left:

A floating lotus leaf grows with short waves along the edge (the wavy edge is highlighted by red color

in experiments). Medium and right: suspended lotus leaves morph into long-wavelength ripples [112].

(c) Above: The cap morphological development of the mushroom Amanita muscaria. Below: Simula-

tion images of different parameters. (d) Above: The cap morphological development of the mushroom

Mycena chlorophos. Below: Simulation images of different parameters [113].

The organs and tissues of animals also exhibit a diverse range of morphologies, which are closely

linked to their functions. Researchers have conducted numerous studies on various objects in this con-

text. For example, investigations have focused on the morphogenesis of the brain cortex [54, 114, 115,

116, 117], the patterns of fingerprints [118, 119], the surface of the oesophageal mucosa [33], and the

intestinal pattern [2, 120, 121, 122, 123].

For instance, Bo Li et al. developed a biomechanical model to investigate the relationship between

mucosal morphogenesis and volume growth in physiological and pathological contexts. Through theo-

retical analysis and numerical simulations, they revealed the key features of mucosal crumpling in the

spherical gastric sinus [33]. Another study by Du Y. et al. [51] proposed a modified augmented theory

to determine growth-induced residual stresses and pattern evolution in stratified arteries. They applied

their approach to aging bilayered human aortae, considering experimentally determined residual stress

distributions and quantifying their effect. These studies highlight the importance of understanding the

morphology and function of organs and tissues in biological and medical research, providing valuable

insights into their development and behavior.
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Figure 1.10 – (a) Left: Zig-zag patterning by the previllus ridges in the jejunum turkey embryos, courtesy

of D. Bohórquez. Right: Analytical prediction results [2] (b) Color online Diagrams of the critical

wrinkling patterns: Left: axisymmetric pattern and Right: a possible symmetric breaking of the mucosal

surface (mucosal thickness Hm/C and the modulus ratio µm/µs) [124]. (c) Simulated images of aged

bilayer human aorta under different parameters [51].

1.2.4 Applications and implications

Understanding the relationship between growth and mechanics is also of considerable importance for

medical research, such as tumor treatment [125, 126, 127, 128, 129], and wound recovery [130, 131].

Giulio Lucci et al. [129] proposed a mathematical multiphase model, which allows for evaluating the

impact of the growing tumor mass on the surrounding healthy tissue, quantifying the displacements,

deformations, and stresses induced by its proliferation. Wu and Ben Amar [131] explored a growth

model in the finite elasticity of a bilayer surrounding a circular wound, only the interior one being pro-

liferative and contractile. They further discussed the occurrence of irregular wound geometry generated

by stresses and show quantitatively that it is the result of a combination of stiffness, and wound size,

ultimately weakened by actin cables.

Geometrically frustrated solids with non-Euclidean reference metrics are gaining significance in

technological applications due to their ability to acquire incompatible target configurations through the

surface accretion of masses. Zurlo et al. [132, 133, 134] proposed a theory of inelastic surface growth,

in which the reference configuration is incompatible and exists only in non-Euclidean space, resulting in

inevitable residual stresses during the growth process of a three-dimensional surface. This novel model

of inelastic surface growth not only provides a comprehensive understanding of residual stresses and

history dependence but also establishes a critical link between morphology and mechanics. Moreover,

the proposed model can be used to guide advanced technologies such as 3D printing [132] and bionic

4D printing [135], as illustrated in Figure 1.11.

In addition, the research of biological soft tissues has great practical applications, such as soft

robotics for specific functions, additive manufacturing, etc.
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Figure 1.11 – Simulated image of a 4D print of a biomimetic structure. (a) A native calla lily. (b)

Mathematically generated model of the flower. (c) A well-defined curvature of the flower. (d) Print path.

(e) The geometry of the flower on swelling. (f) Same gradients of curvature as the predicted model. The

nozzle size is 410µm (scale bars, 5mm) [135].

1.3 Discussions

In summary, the morphological evolution of biological tissues regulated by mechanical stress during

growth is of great significance in biological systems. In recent years, this research field has gradually

attracted the attention of researchers, and more and more of them have explored the law of its mechan-

ical behavior, physical mechanism and related applications from the aspects of experiment, theory and

simulation. These studies contribute to a deep understanding of related life processes from the molecular

scale to the tissue scale and provide new ideas for disease diagnosis and treatment. However, due to the

complexity and changeability of organisms and their environments, accurately predicting and capturing

the behavior of biological tissues becomes a formidable challenge. Consequently, there is a pressing and

essential requirement to tackle and unravel the numerous persisting unresolved complexities within this

field of study. Therefore, this thesis mainly aims at the growth and morphogenesis process of biological

tissues, combining continuum mechanics and biomathematics methods, through theoretical analysis and

numerical simulations, to study several key issues of its morphology formation, which provide a new

physical understanding of various physiological processes.

The foundational growth theories introduced in this chapter will find application in the subsequent

chapters of this thesis, where two distinct studies will be explored. The first study pertains to the ex-
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amination of the conformational evolution of stress-free growth in planar leaves. Notably, despite the

intricate internal structure of planar leaves, it is remarkable that they undergo growth without generating

any elastic stresses. The second study focuses on the elongation of the C. elegans embryo. While experi-

mental techniques have contributed to characterizing the complete elongation process and the influential

factors such as acto-myosin and muscle networks, there remains a need to investigate the underlying

mechanisms of elongation and deformation through theoretical studies.



Part I

The study of the morphology of leaves during

growth

In this part, we investigate morphological transformations in two-dimensional

stress-free growth, and the methodology and analysis can be extended to other

similar biological organs or tissues. Our idea origins from recent studies [3] and

the intuition of D’arcy Thompson [40], which is to find the regularity of shape

transformation during stress-free growth. Then, we obtain the conclusion that

stress-free growth follows a conformal mapping by the energy minimization

principle. Finally, the main characteristics of some natural plant leaves are

recovered by our method, which also elucidates the physical mechanisms that

generate the complex morphology of two-dimensional soft tissues. In addition,

we have made preliminary explorations of extending this method to study leaves

with buckling morphology.
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Chapter 2

Stress-Free growth of 2-D samples: application

to leaves

This chapter focuses on the morphological evolution problem of 2D stress-free growth, and is taken

mainly from the paper co-authored with Martine Ben Amar in Ref. [136] (Appendix A). The research

background and current state are detailed in section 2.1, then the follow-up research and applications are

presented in section 2.2 and 2.3, and the conclusion in section 2.3.

2.1 2D stress-free growth based on circular geometry

As we mentioned in the chapter 1, most studies in growth theory are based on multiplicative de-

composition [38], i.e. the system is initially in a stress-free configuration and is first transformed into

a virtual state containing holes and overlaps. In the second step, the integrity of the virtual state is re-

stored by an elastic process that eventually leads to the current configuration. Recently, Hui-Hui Dai and

his colleagues [3] have proposed that the change of geometric shape is only induced by the volumetric

growth G without the generation of elastic stresses during the growth process. However, their solution

was limited the growth geometry to circular shapes, and we have undertaken the problem more in-depth

to solve more complex geometry.

Xiaoyi Chen et al. [3] suppose that the growth metric M = GTG = U2 has eigenvalues (µ1
2, µ2

2)

(µ1, µ2 > 0) and associated orthonormal eigenvectors (p1,p2). Then the growth tensor G has the polar

decomposition [92, 137]:

G = QU = µ1q
1 ⊗ p1 + µ2q

2 ⊗ p2 (2.1)

where q1 = Qp1 and q2 = Qp2 and Q is a rotation tensor. For the purpose of analysis, they chose

the appropriate orthogonal curvilinear coordinates (Θ1,Θ2) in the initial configuration R0 such that

the cotravariant base vectors {g1,g2} have the same directions as {p1,p2}, i.e., pi = gi

|gi|
, i = 1, 2,

gi · gj = δij , and gj =
∂X
∂Θj

, j = 1, 2. X is the position vector in R0 and {g1,g2} are the covariant base

vectors under the system (Θ1,Θ2). For the virtual state Rg, the base vectors are chosen to be {q1,q2}.

37
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From the above equations, the growth tensor can be rewritten as:

G = λ1q
1 ⊗ g1 + λ2q

2 ⊗ g2, λi = µi/
∣∣gi
∣∣ , i = 1, 2 (2.2)

Figure 2.1 – The decomposition of the deformation gradient F = AG. R0 is the initial configuration

with the initial position vector X, Rg is the virtual stress-free state and Rt is the current configuration

with the current position vector x. The orthogonal base vectors {g1,g2}, {q1,q2} and {e1, e2} in three

different configuration. [3]

The local orthogonal (rotation) tensor A can be expressed in the form of:

A = cosαe1 ⊗ q1 + sinαe1 ⊗ q2 − sinαe2 ⊗ q1 + cosαe2 ⊗ q2 (2.3)

where {e1, e2} are the rectangular base vectors in the current configuration Rt, and the position vector

is x = xe1 + ye2. So, the deformation gradient tensor takes the form:

F = λ1 cosαe1 ⊗ g1 + λ2 sinαe1 ⊗ g2 − λ1 sinαe2 ⊗ g1 + λ2 cosαe2 ⊗ g2 (2.4)

And the deformation gradient tensor can be expressed as another form by definition:

F =
∂x

∂X
=

∂x

∂Θj
⊗ gj =

∂x

∂Θ1
e1 ⊗ g1 +

∂y

∂Θ1
e2 ⊗ g1 +

∂x

∂Θ2
e1 ⊗ g2 +

∂y

∂Θ2
e2 ⊗ g2 (2.5)

Comparing the two forms of F, they obtained the governing equations for solving (x, y):

∂x

∂Θ1

= λ1 cosα,
∂x

∂Θ2

= λ2 sinα,
∂y

∂Θ1

= −λ1 sinα,
∂y

∂Θ2

= λ2 cosα. (2.6)

Assuming that (x, y) are C2-smooth:

∂2x

∂Θ1∂Θ2

=
∂2x

∂Θ2∂Θ1

,
∂2y

∂Θ1∂Θ2

=
∂2y

∂Θ2∂Θ1

(2.7)

Then, applying Eq.(2.5) in the above equation:

cosα
∂λ1

∂Θ2

+ sinα

(
−λ1

∂α

∂Θ2

)
= cosα

(
λ2

∂α

∂Θ1

)
+ sinα

∂λ2

∂Θ1

,

cosα

(
λ1

∂α

∂Θ2

)
+ sinα

∂λ1

∂Θ2

= cosα

(
− ∂λ2

∂Θ1

)
+ sinα

(
λ2

∂α

∂Θ1

)
,

(2.8)
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the above equations are equivalent to

λ2
∂α

∂Θ1

=
∂λ1

∂Θ2

, −λ1
∂α

∂Θ2

=
∂λ2

∂Θ1

. (2.9)

Eq.(2.9) provides the governing equations for solving α. Further, they assume that α is also C2-smooth:

∂2α

∂Θ1∂Θ2

=
∂2α

∂Θ2∂Θ1

, (2.10)

then get the one of constraints:

∂

∂Θ1

(
− 1

λ1

∂λ2

∂Θ1

)
=

∂

∂Θ2

(
− 1

λ2

∂λ1

∂Θ2

)
, (2.11)

another constraint is:

∂λ1

∂Θ2

̸= 0 or
∂λ2

∂Θ1

̸= 0, (2.12)

which is the restriction on λ1 and λ2.

After a series of assumptions, this system is solved analytically and a family of growth functions

with three parameters are obtained,

α = α (Θ1) =

∫
f1 (Θ1) dΘ1 + α0, (2.13)

and

x =

(∫
λ2 (Θ2) dΘ2 + d0

)
sinα (Θ1) + C1,

y =

(∫
λ2 (Θ2) dΘ2 + d0

)
cosα (Θ1) + C2.

(2.14)

where the function f1 is arbitrary function of Θ1, and α0, d0, C1 and C2 are constants.

Finally, five biological patterns were mimicked by varying the initial configurations and these three

parameters. These morphologies are analogous to five biological patterns, such as the growth patterns

of ferns, walnut shells, the skulls of the infant (simplified to 2D), stems of some bean plants, and water

lily leaves. Partial real images or photos and mathematical images are shown in Fig.2.2.

2.2 Stress-free growth by conformal mapping

The study of Xiaoyi Chen et al. [3] on the morphological evolution of two-dimensional stress-

free growth is presented in section 2.1, their derivation is rather technical, but if the Eq.(2.14) was be
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Figure 2.2 – (a) Growth of a fern (see the red dot part). Left: Initial geometry of a fern. Right: Current

configuration of the fern after growth. (b) Simulation of the straightening of the fern (red dot parts).

Left: Initial geometry of the spiral strip. The red curve represents the spiral with η = η0 and the dashed

line shows Θ = Θ1. Right: Current configuration of the circular strip after the spiral strip spreads out.

(c) The growth patterns of two species of bean plants. From left to right, a species with a natural hollow

stem is prevented from hollowing after the addition of uniconazole. (d) Growth patterns with varying

inner radius: The anti-hollowing process. (e)The open angle on the leaf of the water lily. (f) The growth

pattern mimics the open angle of the water lily leaf.

simplified, we can obtain:

(x− C1)
2 + (y − C1)

2 =

(∫
λ2 (Θ2) dΘ2 + d0

)2

. (2.15)

So, it is worth noting that their examples are based on initial circular geometry, and their examples

(Fig.2.2) can also prove this conclusion.

Based on such result, we have intuited that the morphology of 2D stress-free growth should not be

limited to circular geometries. When they solved the governing equations, we found that one of the
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constraints is the assumption that λ only depends on Θ2 and independently of Θ1, it seems rigorous that

may limit the final solution. Here, we have conducted an in-depth study to overcome this restriction and

apply stress-free growth to a wider spectrum of the pattern biological tissues.

2.2.1 The original theoretical model

Let us reconsider the constraint equations, Eq. (2.11) and Eq. (2.12), we are no longer assume that

λ only depends on Θ2. We establish the following definition:

λ1 = λ2 = λ (Θ1,Θ2) , (2.16)

so, the Eq.(2.11) will be:

∂

∂Θ1

(
1

λ

∂λ

∂Θ1

)
+

∂

∂Θ2

(
1

λ

∂λ

∂Θ2

)
= 0, (2.17)

then, we obtain:

∂2 log (λ)

∂Θ1
2 +

∂2 log (λ)

∂Θ2
2 = 0, (2.18)

log (λ) = F (Θ) + F
(
Θ
)
, (2.19)

where log (λ) is the real part of an holomorphic function of Θ = Θ1 + iΘ2, the F is a priori an arbitrary

function and the notation F means the complex conjugate of F .

According to the governing equation for α (Eq.(2.9)), we can get:

∂α

∂Θ1

=
∂ log (λ)

∂Θ2

and
∂α

∂Θ2

=
∂ log (λ)

∂Θ1

, (2.20)

we can combine into a unique equation of Θ = Θ1 + iΘ2:

∂α

∂Θ1

− i
∂α

∂Θ2

= i

(
∂ log (λ)

∂Θ1

− i
∂ log (λ)

∂Θ2

)
. (2.21)

Since the general relation:

∂

∂Θ1

− i
∂

∂Θ2

= 2
∂

∂Θ
, (2.22)

we can get:

2
∂α

∂Θ
= 2i

∂ log (λ)

∂Θ
⇒ α = i

[
F (Θ) + F

(
Θ
)]

+G
(
Θ
)
, (2.23)
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If we want α is a real value, then we define G
(
Θ
)
= −2iF

(
Θ
)
,

α = i
[
F (Θ)− F

(
Θ
)]

. (2.24)

Defining z = x+ iy and refer to governing equations Eq.(2.6) for x and y that we transform into:

∂z

∂Θ1

= λ (cosα− i sinα) = λe−iα,
∂z

∂Θ2

= iλ (cosα− i sinα) = iλe−iα, (2.25)

Combining above two equations and replacing α and λ, we get:

∂z

∂Θ
= λe−iα = eF (Θ)+F(Θ)eF (Θ)−F(Θ) ⇒ z = x+ iy =

∫ Θ

0

e2F (u)du. (2.26)

We deduce F (Θ) being given by:

F (Θ) =
1

2
log

(
dz

dΘ

)
(2.27)

So the λ can be obtained by:

λ =

√
dz

dΘ

dz

dΘ
. (2.28)

Assuming that a possible shape as z = z (Θ), and solutions of x, y are obtained. Then, we can

recover the value of λ, growth eigenvalues µ1 and µ2 and geometric gradient of the deformation. This

result suggests that once we can find that the morphology of biological tissue before and after growth

can be represented by Z (Θ) and z (Θ) respectively, i.e. a conformal mapping, and validated by some

techniques, we can prove that is stress-free growth. This derivation process is followed by the method

in the paper by Xiaoyi Chen et al. [3].

The concept of the conformal mapping

A conformal mapping also called a conformal map, conformal transformation, angle-preserving

transformation, or biholomorphic map, is a transformation w = f (z) = f (x+ iy) that preserves local

angles. Conformal mapping is extremely important in complex analysis, as well as in many areas of

physics and engineering.

D’Arcy Thompson was a Scottish biologist who is the author of the book "On Growth and Form"

[40]. In this book, he proposes that mathematical transformations perhaps can explain the morphology

of macroscopic living species, as illustrated in Fig.2.3. This proposal provides the direction and ideas

for our research.
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Figure 2.3 – Morphological transformations of different organisms: (a) Fish, (b) Insect, (c) Human face.

2.2.2 Minimizing the elastic energy by conformal growth

In the previous analysis, we found that if morphological changes follow conformal mappings during

the growth, this process does not give rise to any stresses. Apart from deriving it using methods based

on the general definitions, we arrived at the same conclusion by the definition of the complex plane.

Furthermore, this conclusion was validated using flattened leaves.

We assume that the initial configuration is given by:

Z = X + iY = F1 (Ξ) = F1 (µ+ iη) so Ξ = µ+ iη, (2.29)

where i2 = −1, F1 represents the mapping between cartesian coordinates and curvilinear coordinates of

the interior of the leaf, µ and η are conformal coordinates. Then, we get the following Cauchy relations:

∂µ

∂X
=

∂η

∂Y
and

∂µ

∂Y
= − ∂η

∂X
. (2.30)

In morpho-elasticity, growth is represented by a tensor G, we assume the tensor G is diagonal and

reads:

G =

[
1

p(µ,η)
g (µ, η) 0

0 p (µ, η) g (µ, η)

]
, (2.31)

where p (µ, η) is the growth anisotropy coefficient, so our case reflects both isotropic and anisotropic

growth, and detG = g(µ, η)2 is the volumetric growth at the time of observation. When the subject

grows, we assume that the displacement of each point is given by the following mapping F2 such that:

z = F2 (k (µ) + il (η)) , (2.32)

where z represents the new coordinates (x, y). This mapping is not conformal but it gives for x and y
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the relationship with the initial shape configuration such as:

{
x = 1

2

[
F2 (k (µ) + il (η)) + F2 (k (µ)− il (η))

]

y = 1
2i

[
F2 (k (µ) + il (η))− F2 (k (µ)− il (η))

] . (2.33)

According to the main hypothesis of the morpho-elasticity theory, see Eq.(1.23) in Chapter1, the

geometric gradient of deformation F and the elastic gradient of deformation tensor A are related by :

F = AG [38]. Written in these conformal coordinates, these tensors become:

F =
1

|∂ΞF1|

[
∂x
∂µ

∂x
∂η

∂y

∂µ

∂y

∂η

]
, (2.34)

and

A =
1

|∂ΞF1|

[
p

g
∂x
∂µ

1
pg

∂x
∂η

p

g

∂y

∂µ
1
pg

∂y

∂η

]
. (2.35)

The first physical constraint concerns the incompressibility of the sample, detA = 1, which imposes:

∂x

∂µ

∂y

∂η
− ∂x

∂η

∂y

∂µ
= g2|∂ΞF1|2. (2.36)

In addition, stress-free configuration requires the cancellation of the first invariant,

I1 = Tr (C)− 2 = 0, (2.37)

where C is right Cauchy tensor, C = ATA, then we derive:

p2
(
∂x

∂µ

)2

+ p2
(
∂y

∂µ

)2

+
1

p2

(
∂x

∂η

)2

+
1

p2

(
∂y

∂η

)2

= 2g2|∂ΞF1|2 = 2

(
∂x

∂µ

∂y

∂η
− ∂x

∂η

∂y

∂µ

)
. (2.38)

A simple reorganization of Eq.(2.38) leads to:

(
p
∂x

∂µ
− 1

p

∂y

∂η

)2

+

(
p
∂y

∂µ
+

1

p

∂x

∂η

)2

= 0, (2.39)

so we get:

p
∂x

∂µ
− 1

p

∂y

∂η
= 0 and p

∂y

∂µ
+

1

p

∂x

∂η
= 0. (2.40)

If p = 1 (isotropic growth), Eq.(2.40) recovers the Cauchy relations and implies that F2 is an holomor-

phic function. If p ̸= 1, an anisotropic growth process may also generate a stress free configuration. The
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coefficient of anisotropy for a description ruled by F2 (see Eq.(2.33)) is obtained with:

∂x

∂µ
= k′ (µ)

F2
′ + F2

′

2
,

∂x

∂η
= l′ (η) i

F2
′ − F2

′

2
,

∂y

∂µ
= k′ (µ)

F2
′ − F2

′

2i
,

∂y

∂η
= l′ (η) i

F2
′ + F2

′

2
,

(2.41)

where the symbol prime (′) means the first derivative with respect to the natural variable as defined in

Eq.(2.33). So introducing the values of the partial derivatives given by Eq.(2.41) into Eq.(2.40) gives:

p2 =
l′ (η)

k′ (µ)
. (2.42)

We demonstrate that conformal(isotropic growth) or quasi-conformal(anisotropic growth) mappings

have the advantage to eliminate the elastic stresses independently of the elastic material properties,

among all mappings possible for the shape evolution of a 2D elastic sample.

2.3 Results and Applications

Our theoretical findings establish a connection between stress-free growth in two dimensions and

conformal mapping. To further substantiate our conclusions, it is crucial to carefully select appropriate

research subjects. A study conducted by K. Alim et al. was brought to our attention, they used the

particle image velocity algorithm to measure the local displacement field of petunia and tobacco leaves

during a period of time, which is rather consistent with their prediction results through conformal map-

ping, as shown in Fig.2.4. All of their data sets have very high scores of more than 92% correlation,

ranging up to 97% for the top specimen. This experiment also measures the growth field, although the

comparison with the conformal field is not as accurate as the displacement field, the findings of this

research still show that the idea that the growth within the leaf blade follows conformal mapping is not

baseless.

2.3.1 Simple experimental validation

In reality, the fact that the leaf is stress-free is rather astonishing since the leaf structure is complex

see Fig.2.5. In particular, it "at least" contains two layers (epidermal and extracellular matrix). Examples

of bilayer structures in mammal organs or tissues, such as our skin, the imaginal discs of wings, and the

interior of the gray matter of the brain, residual stress that existed inside have been proved by many

studies.

We conducted a simple cutting experiment, where mature and young leaves were cut in different

positions and directions. This method of detecting internal stresses is very common, as shown in Fig.

1.4 (a)-(c) in Chapter 1, and it is also applicable to smaller scale like C. elegans embryos, which Vuong-

Brender et al. cut using the laser to obtain internal stresses [138]. Our experiments were all done when

the leaves were freshly removed from the plants to ensure their viability. After cutting, we did not
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Figure 2.4 – (a) Petunia leaf before undergoing 12h growth. (b) Tobacco leaf before undergoing 12h

growth. (c), (d) particle image velocity algorithm. (e), (f) displacement fields calculated by conformal

mapping.

observe any opening angle, that is, there is no stress inside the planar leaf, which may be due to the

complex internal structure of the leaf, the stress eliminated during growth. The experimental results are

shown in Fig.2.6.

So, fresh planar leaves are good examples for our study, because they have no elastic stress inside,

and almost no weight, and their shape can be easily represented by holomorphic functions. We recovered

the growth process of several leaf species along with their main characteristics, including leaf tips,

borders, and veins, even for the fenestration process in the Monstera leaf. For more details please refer

to the paper [136] and its supplementary (Appendix A).

2.4 buckling leaves

In the previous sections, we recovered the stress-free growth of some leaves by means of conformal

mapping. It is worth noting that the leaves we have studied are relatively flat leaves, but there are some
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Figure 2.5 – Cross section of a leaf

Figure 2.6 – Internal stress measurement experiment of leaves (opening angle experiment): (a) mature

Monstera leaf, (b) young Monstera leaf.

leaves that exist in nature that are in the crumpling or buckling state, which we will explore in this

section.

The form of the undulating leaf blade is easily reminiscent of the morphological instability men-
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tioned in Chapter 1, as shown in Fig.1.4 (d)-(f). The difference between the examples we have displayed

before is that the undulating leaves are a thin layer. In recent years, researchers also have used the

growth of thin layers to explain the diversity of shapes observed in nature, such as grass blades [108],

algae [109] and mucosal epithelium [2], Drosophila tissues [139], Please see the Fig. 2.7.

Figure 2.7 – (a) Left: picture of a grass blade, courtesy of J.Dumais. Right side: representation of

several destabilized Euler columns [108]. (b) Left: An xz cross section demonstrates the shape of an

initially curved wing imaginal disc under the effect of a localized metalloprotease expression (in the

red color region). Right: Cuts of the imaginal wing for the different FEM simulations with defect. The

colors reflect the stiffness: red for the basal ECM, blue for the upper membrane and the cell layer, and

cyan for the zone of the cell layer around the defect. Imaginal wing and defect with local change in

stiffness in the cell layer [139, 140].

2.4.1 Theoretical research basis

Firstly, it is necessary to introduce the Föppl–von Kármán equations, named after August Föppl

and Theodore von Kármán, are a set of nonlinear partial differential equations describing the large

deflections of thin flat plates. Martine Ben Amar and her colleagues [108, 109] based their work on the

basic growth theory of finite elasticity and then introduced a hyperelastic thin plate subjected to loads

and growth. The dimensionality of the problem was reduced by appropriate assumptions and the results

show that growth is a source of mean and Gaussian curvature. The resulting equations were found to

be an extension of the well-known FvK model, a powerful theory of buckling instability. This theory

has been used to now to understand the growth of various flat structures of plants or epidermal tissues in

biological systems [112], including all the studies mentioned in Fig.2.7.

Based on previous studies of stress-free growth, we consider that leaves with buckling morphology

undergo two processes during the growth process, as shown in Fig.2.8. The leaves complete the first

stage of growth without elastic stress and their deformation follows a conformal mapping, where forming

their contours and main characteristics. And then, under the influence of growth and elastic stress, the
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undulating morphological features appear.

Figure 2.8 – Initial configuration B0 undergo stress-free growth arrive at configuration B1, it becomes

final configuration B2 under the influence of subsequent growth and elastic stress.

2.4.2 Some examples

According to our idea, we have initially mimicked the buckling morphology on three different leaves,

which is rather in agreement with their natural state, as shown in Fig.2.9.

Figure 2.9 – (a)(d)(g) correspond to the natural leaf, (b)(e)(h) is the top view of the corresponding

mimicked leaf blades, and (g)(e)(h) is the 3-dimentional mimicked leaf blades.
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2.5 Discussion and conclusion

In this chapter, we first indicate that a conformal or quasi-conformal mapping between two planar

configurations is generated by stress-free growth. This conclusion was then verified on naturally grow-

ing leaves such as the Jujube leaf, Redbud leaf, Robinia pseudoacacia leaf. We used conformal mapping

to reconstruct the main characteristics of plant leaves such as tips (convex or concave or pointed), undu-

lating borders and veins. Moreover, the process that generates the complex morphology of plant leaves

are elucidated, such as the fenestration process in Monstera leaves. Our approach extracts information

not only on cell proliferation, which is usually restricted to nutrient penetration but also on biological

complexity such as tissue remodeling [141]. This formalism allows the accumulation of growth to be

assessed in an isotropic or anisotropic case, combined with the mathematical images of leaf veins to

establish a relationship with nutrient content.

The theoretical approach developed in this chapter can be extended to the study of morphogenesis

in other curved complex structures, such as leaves with buckling morphology. We have a preliminary

idea for this part of the work, but two problems still remain, one is how to extend the Fvk equations

to the complex plane, and another is to obtain the biological reasons for the buckling morphology of

the leaves in order to introduce growth and stress/strain correctly into the model. Furthermore, the

findings of this study reveal a new pattern of stress-free growth of biological tissues, the study of the

morphological evolution of stress-free growth can be applied not only to the growth of leaves but also to

the morphogenesis of other biological tissues. Understanding the growth patterns of biological tissues

can provide insights into the design of new bionic soft devices for growth and development.



Part II

An investigation into the embryonic elongation

of C. elegans

The work of this part is dedicated to the modeling of the elongation in C. elegans

embryos before hatching. The elongation is made possible via two active

networks: the acto-myosin and the muscular network. A full understanding of

the role of these muscles is highly significant considering that they are similar to

any skeletal muscles of vertebrates. It has been experimentally shown that

muscle activities play a crucial role in late elongation, but the intrinsic

mechanism continues to puzzle scientists. Indeed, muscles are known to be

contractile motors, and it is hard to imagine that a periodic bending due to their

contractions performed successively on the left and right can lead to an

elongation greater than 200%. We propose an analytical model based on the

actual structure of worm biology. This model can recover all the deformations

that occur during elongation including bending, twisting, and rotation and it also

explains that acto-myosin and muscle contraction leads to a full elongation.
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Chapter 3

Actomyosin contractions and early elongation

In this chapter, we focus on the early elongation of the C.elegans embryo, which is induced by the

contractile forces generated by the actomyosin network. We will briefly introduce the background of

its biological and mechanical research in section 3.1, and the simulation work is based on the previous

theoretical modeling and results [4] in section 3.2. A new theoretical model is then presented in section

3.3, and during the early elongation, myosin activity is estimated by a dynamical model in section 3.4.

The last section 3.5 is the conclusion and discussion.

3.1 Introduction

Over the past few decades, researchers have conducted many studies on complex biological tissues

that are all subject to mechanical forces during embryonic development, such as the skin, the brain, and

the interior of organs. But, smaller scales make it more difficult to identify and quantify the effects of

mechanical stresses added to cellular processes (including division and migration) and tissue organiza-

tion. For instance, distinct molecular motors, such as myosin II, which is connected to actin filaments

and is most abundant during epithelial cell morphogenesis [142] and cell motility [143, 144, 145], may

generate stresses independent of growth. The spatial localization and dynamic behavior of Myosin II

have been shown to have a significant impact on the morphogenetic process [146] in both Drosophila

[147, 148, 149, 150] and C. elegans embryo [4, 151, 152].

The embryonic elongation of C. elegans represents an attractive model of how matter can reorganize

without experiencing a mass increase before eclosion. The embryo elongates along the anterior/posterior

axis by four times [153] after the ventral enclosure, taking around 240 minutes to change from a lima-

bean shape to an elongated worm shape. The short lifetime of the egg before hatching and its trans-

parency make this system an ideal system for studying the forces that exist in the cortical epithelium or

its vicinity. But unlike the embryonic development of Drosophila and Zebrafish, just a conspicuous epi-

dermal elongation drives the entire morphogenetic process of C. elegans. There is neither cell migration

nor division nor a discernible change in embryonic volume [151, 154]. There are two experimentally

discovered driving mechanisms for the elongation, actomyosin contractility in epidermal seam cells,

which appears to last throughout the entire elongation process, and muscular activity beneath the epider-
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Figure 3.1 – (a) Overview of C.elegans embryonic elongation. Three epidermal cell types are found
around the circumference: dorsal, ventral and lateral. (b) Schemes showing a C.elegans cross-section
of the embryo. Small yellow arrows in the left image indicate the contraction force that occurred in the
seam cell. Four muscle bands underneath the epidermis and actin bundles surround the outer epidermis.

mis, which begins after the 1.7 ∼ 1.8-fold stage. So, depending on the activation of muscle activity, the

elongation process of C. elegans might be divided into two stages: early elongation and late elongation,

Fig.3.1(A) displays the entire process [138].

3.1.1 Actomyosin activity

Myosin II is an ATP-dependent motor that uses actin as a substrate for bundle contraction and a

range of cellular motility, and is generally composed of two heavy chains, two regulatory light chains,

and two essential light chains [138, 155]. In C.elegans, the two heavy chains are named nmy-1 and

nmy-2; the regulatory light chain and the essential light chain are named mlc-4 and mlc-5 respectively

[152, 156]. The mechanical motility of myosin is the result of conformational changes in the globular

domain. First, ATP-bound myosin binds to actin, and then the hydrolysis of ATP releases phosphate

and causes a conformational change in the globular domain. The heavy chain replaces actin in this

process. Finally, the replacement of ADP with ATP restores the initial conformation of the globular

domain, leading to a renewed interaction between myosin and actin [157]. Myosin begins to walk on

actin filaments by binding and rebinding. The binding of these myosin and actin filaments is known as

the actomyosin network. Most of the tension or compression generated by actomyosin is responsible

for the changes in epithelial morphology that occur during development. The mechanical properties of

actomyosin depend on the activity of myosin, the structure of the network, etc. [158, 159, 160].



3.2. NUMERICAL SIMULATION FOR EARLY ELONGATION 55

During morphogenesis, the actin network can drive changes in tissue morphology. In C.elegans

fertilized eggs, the gradient in actin contractility drives large-scale cortical tension in the viscous cortex

to generate anisotropic cortical flow to ensure effective polarization of C.elegans fertilized eggs [161].

In turn, this cortical flow causes actin filaments to align to form a furrow [162].

3.1.2 Early elongation of C.elegans induced by actomyosin contraction

Early elongation is the stage that occurs between the lima bean and 2-fold phases. During this

stage, the epidermis starts to change shape, they shorten itself along the dorsal/ventral (D/V) direction

and lengthen itself along the anterior/posterior (A/P) direction. Genetic and pharmaceutical research

have demonstrated that actomyosin contractions are essential for early elongation [151, 163, 164, 165].

Treatment with actin polymerization inhibitor cytochalasin D prevents early elongation [151]. It is not

difficult to distinguish between the two stages, since the muscle participation makes the embryo rather

motile impeding any physical experiments such as laser ablation. However, the early elongation stage

of the worm is rather static and this experiment can be performed and achieved during this period [138].

So, during the early elongation phase, researchers [138] obtained some experimental data on the length

and circumference of the C.elegans in relation to the internal stresses. Our group investigated the role

of the actomyosin network in the seam cells during the early elongation of C. elegans previously [4].

Based on the geometry of a hollow cylinder composed of four parts (seam and dorsal/ventral cells), a

model involving the pre-stress responsible for the enclosure, the passive stress, and the active compres-

sive ortho-radial stress due to acto-myosin network in the seam cells, quantitatively predict the early

elongation (∼ 70% of the initial length).

3.2 Numerical simulation for early elongation

As previously alluded to, our group has undertaken a comprehensive examination of the early elon-

gation stage of C.elegans through rigorous theoretical investigations as reported in [4]. Specifically, we

proposed an innovative model of actively elongating material, which takes the shape of a hollow cylin-

der and incorporates pre-stress and passive stresses in a non-linear elasticity framework. Also in this

model we consider the C.elegans epidermis as consisting of dorsal, ventral and seam cells. By integrat-

ing experimental data from laser ablation experiments, we were able to derive the relationship between

the active stresses generated by actin-myosin and C.elegans elongation, thus providing valuable insights

into the underlying mechanics of this fundamental biological process.

To verify the correctness of this relationship, we used finite element software (Comsol) to realize

the early elongation process of the C.elegans under the same conditions and to obtain the relationship

between active stress and elongation. We built a hollow cylinder model and divided it into four parts,

two seam cell parts, and two D/V parts, as shown in Fig.3.2. All size and material parameters are the

same with the previous research [4], the outer radius is 10µm, the inner radius is 8µm, and the height

is 10µm. The material chosen is hyperelastic and incompressible, and the energy function is defined by

Eq.(4) of Ref. [4]. We assumed the unit of shear modulus as the value of the seam cell modulus, and the

Dorsal/Ventral cell part as 1.44.
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Figure 3.2 – Geometric model of C.elegans, Dorsal/Ventral parts are shown in grey, and seam cells parts
are shown in blue.

Next, in order to fix the model and prevent rigid body displacements and rotations, we need to impose

boundary conditions. We constrain the displacements in the z, y and x directions at the locations of the

blue lines in Fig.3.3 (a), (b) and (c) respectively.

Figure 3.3 – Boundary conditions (The blue line shows the constraint position).
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Then, we apply the active stress to the model σ = ζ Diag (0, 1,−1), ζ range from 0.1 to 1, which is

in accordance with the active stress in the previous publications [4]. The deformation image is shown in

Fig.3.4.

Figure 3.4 – Deformation image: active stress (a) ζ = 0.1, (b) ζ = 0.31, (c) ζ = 0.61, (d) ζ = 0.91.

The relationship between the applied active stress and elongation was extracted from the software

and compared with the results obtained in the theoretical study, as shown in Fig.3.5, and they have a

good agreement.

Figure 3.5 – The relationship between elongation fold and active stress. (a) Simulation data is taken
from maximum elongation, (b) Simulation data is taken from medium elongation.
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3.3 Theoretical model for early elongation

Experimental measurements of the early elongation stages enable the evaluation of the embryo’s

diameter, as well as its active or passive stress in relation to elongation fold [4, 138]. While this initial

stage has been extensively examined in previous studies, we chose to revisit it in the context of our

geometry, aiming to provide a simpler model for studying the late elongation of C. elegans embryo.

During the late elongation phase, it becomes necessary to consider the influence of muscles. The addition

of muscles not only increases the complexity of the internal geometry but also imposes complex dynamic

deformations on the model. As a result, the differences between seam cell parts and D/V parts are

disregarded in our model.

At the end of early elongation, the embryo undergoes a pre-strain, which we describe in our model as

G0. Geometry and mechanical information are shown in Figure 3.6(a). Here, we need to first accurately

determine G0 with the help of the experimental data [4, 138]. The finite deformation gradient:

F0 =




r′(R) 0 0

0 r(R)/R 0

0 0 λ


 , (3.1)

where r(R) is the radius after early elongation. G0 represents the circumferential strain exerted by actin

during the early elongation and is a slowly varying function of time,

G0 =




1 0 0

0 g0 0

0 0 1


 , (3.2)

where 0 < g0 < 1 in the actin layer, and g0 = 1 in the part without actin budles. The real structure

as shown in Fig.3.6(a), is divided into three distinct sections: the outer layer is the actin cortex, the

thin ring where actin bundles concentrate and work, located within a radius range between R2
′ and

R3, the middle layer (R2 < R < R2
′), which is the epidermis but without actin; and the inner part

(0 < R < R2), where the muscle is located, along with some internal organs, tissues, and fluids. As

the muscle is not active during the early elongation phase and exists only as a structure, to simplify

the calculation, we converted the four muscle parts into thin layers attached to the epidermis in equal

proportions to ensure the continuity of the model, and divide our model into four parts, see Fig.3.6(b).

The actin layer (R2
′ < R < R3), epidermis layer (R2 < R < R2

′) and muscle layer (R1
′ < R < R2)

are considered as incompressible materials, and the inner part (0 < R < R1
′) is compressible. The

parameters required for the calculation are shown in the table 3.1.
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Table 3.1 – Parameters adopted in this work

Geometry parameters
Normalized radius1 R1=0.7 R2=0.8 R′

2=0.96 R3=1

The location of muscles2 θ1 =
2
3
π

θ2 =
5
6
π

θ3 =
7
6
π

θ4 =
4
3
π

θ5 =
5
3
π

θ6 =
11
6
π

θ7 =
1
6
π

θ8 =
1
3
π

Material parameters
(Shear modulus)3

Actin part µa = 5
Epidermis part µe = 1

Muscles µm = 100
Soft inner part µi = 1/200

1 The radius are extracted or deduced by the Ref.[4, 166].
2 The location and size of muscles are deduced by the Ref.[166, 167].
3 The units of the shear modulus are the KPa and is scaled by the epidermis one. It gives for the muscle, a

value consistent with the muscle shear modulus proposed in [168].

The Neo-Hookean energy function is used for the incompressible parts:

W = µ

[
1

2

(
Tr
(
FeFe

T
)
− 3
)
− p (detFe − 1)

]
, (3.3)

According to the Euler-Lagrange equations, we can obtain the radius of the actin layer (ra), epidermis

layer (re) and muscle layer (rm):

ra =

√
g0R2 + A

λ
, re =

√
R2 + E

λ
, rm =

√
R2 +M

λ
. (3.4)

where A, E and M are constant, and the Lagrange multiplier p in the actin, epidermis and muscle layer

reads:

pa =
− log (R) + 1

2
g0

2
(
− A

A+g0R2 + log (A+ g0R
2)
)

g0λ
+ Ca, (3.5)

pe = −
E

E+R2 + 2 log (R)− log (E +R2)

2λ
+ Ce, (3.6)

pm = −
M

M+R2 + 2 log (R)− log (M +R2)

2λ
+ Cm. (3.7)

For the compressible part, we take the energy function form [169]:

W =
µ

2

(
Tr
(
FeFe

T
)
− 3 + κ(detFe − 1)2

)
(3.8)

where κ is a material constant. The radius of the inner part:

ri =
aR√
λ

(3.9)
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Figure 3.6 – (a) The schematic of early elongation and the cross-section of C. elegans. In the cross-
section, the black circled part is the actin region (R2

′ < R < R3, with shear modulus µa), and the blue
part is the epidermis layer (R2 < R < R2

′, shear modulus µe). The central or inner part (0 < R < R2)
has a shear modulus µi, except the muscles which are stiffer. (b) Cross-sectional simplified model with
four scattered muscle sections simplified to thin layers (R1

′ = 0.768).

where a is a constant.

By considering the boundary condition σrr = 0 on the outer border R = 1:

σarr(R = 1) = µa

[(
∂ra (1)

∂R

)2

− pa (1)

]
= 0 (3.10)

the continuity of the radius:

ra (R2
′) = re (R2

′) , re (R2) = rm (R2) , rm (R1
′) = ri (R1

′) , (3.11)

and the continuity of the radial stresses σrr in R2
′ and R2 :

µa

[(
∂ra (R2

′)

∂R

)2

− pa (R2
′)

]
= µe

[(
∂re (R2

′)

∂R

)2

− pe (R2
′)

]
, (3.12)
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µe

[(
∂re (R2)

∂R

)2

− pe (R2)

]
= µm

[(
∂rm (R2)

∂R

)2

− pm (R2)

]
. (3.13)

We can obtain expressions for constants E, M , Ca, Ce and Cm from the above equations.

We substitute all size, material parameters and κ = 100, λ = 1.8 into the last condition σmrr (R1
′) =

σirr (R1
′):

µm

[(
∂rm (R1

′)

∂R

)2

− pm (R1
′)

]
= µiσirr (R1

′) , (3.14)

where σirr:

σirr =
2

detFe

(
(detFe)

2 ∂W

∂(detFe)
2 +

∂W

∂
(
tr(FeFe

T )
)ri′(R)2

)
. (3.15)

and we obtain the relationship between the constant A and g0.

Finally, by prescribing a zero traction in average condition on the top of the cylinder, noticeably, the

muscle part was considered inextensible, so no stress on the top:

∫ 1

R2
′

σazzrara
′dR +

∫ R2
′

R2

σezzrere
′dR +

∫ R1
′

0

σizzriri
′dR, (3.16)

where:

σazz = λ2 − pa, σezz = λ2 − pe, (3.17)

σizz =
2

detFe

(
(detFe)

2 ∂W

∂(detFe)
2 +

∂W

∂
(
tr(FeFe

T )
)λ2

)
, (3.18)

all solutions g0 = 0.88, A = 0.08 and ra(1) = 0.73 can be determined. We can then obtain the radius

and elongation fold of the model at different g0 in the same way, as illustrated in Fig.3.7, the results of

our model and the experimental data are in good agreement [4, 138]. This demonstrates the consistency

of the geometric and elastic modeling together with the choice of a pre-strain represented by G0 which

gives a good prediction of the early elongation.

3.4 Estimation of myosin activity

From the first stage elongation represented by the brown dots and the brown dashed line in Fig.3.7

we can extract the time evolution of the contractile pre-strain g0(ti) derived from our elastic model.

To explain quantitatively g0(t), we suggest a phenomenological dynamical approach for the population
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Figure 3.7 – Predictions of normalized embryo radius evolution during early elongation by the pre-strain
model compared with experimental data from [138]. For the model, please refer the Eq.(3.4).

of active myosin motors. This equation takes into account the competition between the recruitment of

new myosin proteins from the epidermis cytoskeleton necessary to extend more the embryo and the

debonding of these myosins from the actin cables, which is damped by the compressive radial stress. It

reads:

dXg(t)

dt
=
(
p1 − p2Xg(t)e

−p3Xg(t)
) tv
tp

(3.19)

with Xg = 1 − g0(t), p1 is the ratio between the free available myosin population and the attached

ones divided by the time of recruitment (given in minutes), while p2 is the inverse of the debonding

time of the myosin motors from the cable: p2 = 6 min−1. The time required for non-muscle myosin

detachment is estimated to be τ0 = 10s for free acto-myosin filaments. If the actin filament is submitted

to external loading perpendicular to its axis, the detachment can be helped or on the contrary inhibited,

see [170], page 169-170. In the present case, the stresses acting in the radial direction of an actin bundle

are compressive and thus will delay the detachment. This energy has to be compared to the energy of

detachment of all myosin motors from the bundle. The corresponding elastic energy associated with the

radial deformation for an actin cable of length la of radius rb = 0.05µm (estimated from [166]) and

shear modulus µa = 5 KPa is given by 1/2µa(1 − g0(t))πlar
2
b = 210−11la J . This result must be

compared to the individual energy of detachment times the number of myosin motors on a cable. This

number is uneasy to fix but estimation is given by the length of the cable la divided by the distance

between 2 anchoring sites of myosin which is about 5nm while the attachment energy per motor is

about 6kbT . These indications are for skeletal muscle myosins [170] and have to be taken with caution.

Nevertheless, the order of magnitude of the debonding energy for a collection of myosin heads from

actin cable can be estimated to be order of 4.8la10−12J . Then the ratio between both quantities is of

order 4(1 − g0(t)) which explains that the time-scale of debonding for a cable in compressive stress in
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the orthogonal direction of its axis is then:

τdeb = τ0e
p3(1−g0(t)) (3.20)

where p3 is a positive constant of order one which cannot be predicted exactly. This time scale justifies

the exponential correction in Eq.(3.19).

The debonding time increases (or decreases) when the actin cable is in radial compressive (or tensile)

stress, see Eq.(3.20). τv is the visco-elastic time estimated from laser ablation fracture operated in the

epidermis [171]: tv = 6s and τp is the time required for the activation of the myosin motors tp = 1200s

[170]. This equation is similar to the model derived by Serra et al. [172] for the viscous stress occurring

in gastrulation.

Notice that only p1 and p3 must be obtained by comparison of g0(t) deduced from Eq.(3.19) with the

values deduced from our elastic model. The result of Eq.(3.19) with p1 = 0.6 and p3 = 0.75 are shown

in Fig.3.8 with a rather good agreement.

Figure 3.8 – Comparison of elastic and dynamical model results. Blue dots: extraction of the parameter
g0(t) from Eq.(3.14) and Eq.(3.16). Blue dash line, refer to the Eq.(3.19).

3.5 Conclusion and discussion

The elongation process in the early stages of the nematode is caused by circumferential contractions

caused by the acto-myosin network. We have previously studied early elongation in C. elegans embryos

characterized by an inner cylinder [4] surrounded by epithelial cells located in a cortical position. The

cortex consists of three distinct cell types - seam cells, dorsal cells and ventral cells - which exhibit a

unique cytoskeletal organization and actin network configuration. Of these, only the seam cells possess

an active myosin motor that functions in the positive radial direction to contract the circumferential body,
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thereby triggering the early elongation process. We have recovered this process by means of COMSOL

software and obtained good agreement with the theoretical results.

During the late elongation phase, it is crucial to consider the influence of muscles. To mitigate the

effects of increasingly complex structures, we propose a novel elastic theoretical model for calculating

pre-strain induced by acto-myosin contraction. In this model, we no longer differentiate between the

three distinct cells of the epidermis; instead, we treat them as homogeneous matter, and the effect of in-

active muscle structure is also taken into account. The final results also agree well with the experimental

data. The study of this model is the basis for our study of C.elegans late elongation, which will be dis-

cussed in the next chapter. In addition, we present a model for the recruitment of active myosin motors

under force, which estimates the activity of the early actomyosin network through a kinetic model of

the phenomenon. The proposed model can be extended to biological tissues and organs where myosin

controls growth and development.



Chapter 4

Muscle contractions and late elongation

The chapter focuses on muscle activity leading to late elongation. It begins with a brief background

discussion in section 4.1, followed by a detailed description of the theoretical model and its deformation

under active dynamics in section 4.2. Sections 4.3 and 4.4 explain the principles of energy conver-

sion leading to elongation and the generation of frictional dissipation. Finally, section 4.5 presents the

conclusion and discussion.

4.1 Introduction

Muscle is found in most animals, including the simple invertebrate C. elegans. Muscle fibers consist

of myofibrils, which contain mainly actin filaments and myosin. Muscle fibers produce contraction,

which may change their own length or shape, or maintain their shape to resist extrinsic tension. Typi-

cally, its active deformation is dominated by contraction. They play a very crucial role in the develop-

ment of the C. elegans embryo. When it elongates to the 1.8-fold stage, the muscles under the dorsal and

ventral epidermis begin to contract and relax, which leads to an active embryo. Although the contractil-

ity of acto-myosin is still present, it is believed to play a secondary role in elongation, whereas the role of

muscle activity is essential to embryonic late elongation. BD Williams and RH Waterston demonstrated

that mutants with muscle defects (Pat mutant [163]) are unable to complete the elongation process even

though the acto-myosin network is functioning properly [166]. Fig.3.1(b) shows the schematic image of

C. elegans body [173] with four rows of muscles, two of which are underneath the dorsal epidermis and

the other two are under the ventral epidermis.

As observed in vivo, C. elegans exhibits systematic rotations accompanying each contraction [174],

and deformations such as bending and twisting. Eventually, the C. elegans embryo will complete an

elongation from 1.8-fold to 4-fold. We can imagine that once the muscle is activated on one side, it can

only contract, and then the contraction forces will be transmitted to the epidermis on this side. So one

can wonder how an elongation can occur since striated muscles can only perform cycles of contraction

and relaxation, their action will tend to reduce the length of the embryo. Therefore, it is necessary to

understand how the embryo elongates during each contraction and how the muscle contractions couple

to the acto-myosin activity. This work aims to answer this paradox within the framework of finite elas-
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ticity without invoking cell plasticity and stochasticity which cannot be considered as driving forces.

In addition, several important issues at this stage remain unsettled. First of all, we may also observe a

torsion of the embryo but if the muscle activity suggests a bending, it cannot explain alone a substantial

torsion. Secondly, a small deviation of the muscle axis [167] is responsible for a series of rotations, how

to relate these rotations to the muscle activation [174]. Since any measurement on a motile embryo at

this scale is difficult, it is meaningful to explore the mechanism of late elongation theoretically. Further-

more, muscle contraction is crucial in both biological development and activities and has been studied

extensively by researchers [175, 176], but how it works at small scales remains a challenge.

Using a finite elasticity model and assuming the embryonic body shape is cylindrical, we can evaluate

the geometric bending deformation and the energy released during each muscular contraction on one

side since after each contraction, the muscles have time to relax and then muscles on the opposite side

undergo a new contraction. This cyclic process leads to a tiny elongation of the cylinder along its

symmetry axis at each contraction. Each of them is correlated with the rotational movements of the

embryo [174]. By repeating these pairs of contractions more than two hundred times, a cumulative

extension is achieved. In the case of muscle activation, the worm becomes deformed and is unable to

avoid friction with the egg shell, which also can be evaluated by the model. Furthermore, the mechanical

model explains the existence of a torque operating at the position of the head or tail by the coupling

of muscle contraction with the ortho-radial acto-myosin forces. Finally, the small deviation between

the muscles and the central axis experimentally detected [167] induces cyclic rotations and possibly

torsion leading to fluid viscous flow inside the egg. Quantifying all these processes allows evaluating

the physical quantities of the embryo such as the shear modulus of each component, the osmolarity of

the interstitial fluid and the active forces exerted by the acto-myosin network and the muscles which are

sparsely known in the embryonic stages.

4.2 Theoretical model for late elongation

For the above-mentioned unresolved problems, we propose a simple mechanical model, which ac-

counts for the dynamical deformations of a layered soft cylinder, and enables us to make accurate quan-

titative predictions about the activities of the actomyosin and muscle networks of the embryo.

4.2.1 Filamentary model

The early elongation of C. elegans embryo was previously discussed in the last Chapter 3. We con-

tinue to use the cylindrical model and treat the epidermis in the same way with effective activity localized

along the circumference, supported by four muscles distributed beneath the epidermis. Muscles play no

role in the early elongation stage so were not considered previously [4, 138]. After this period of ap-

proximately 80% increase in length, muscles parallel to the main axis and actin bundles organized along

the circumference will collaborate to facilitate further elongation. Table 4.1 provides the size parameters

of C. elegans which will be introduced hereafter.
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Table 4.1 – Adopted real size parameters of the C. elegans [4, 138]
Initial 1.8-fold

Radius 11.1µm 8.2µm
Length 50µm 90µm

We focus on the overall deformation of a full cylinder or a thin rod, having a length L greater than the

radius R and a central vertical axis along the Z direction. Contrary to previous works [4, 177], here we

decide to simplify the geometrical aspect because of the mechanical complexity. The biological activity

induced by the acto-myosin network and muscles is represented by active strains, and the global shape is

the result of the coupling between elastic and active strains, modulated by dissipation. Active strains are

generated through non-mechanical processes (e.g., biochemical processes): myosin motors and striated

muscles receive their energy from ATP hydrolysis, which is converted to mechanical contractions of

fibers.

This framework of the theoretical model has been presented in a series of articles by A. Goriely

and collaborators [178, 179, 180, 181, 182]. As one imagines, it is far from triviality and most of the

literature on this subject concerns either full cylinders or cylindrical shells in torsion around the axis of

symmetry, the case of bending is more overlooked. However, the geometry of the muscles in C. elegans

leads automatically to a bending process that cannot be discarded. We take advantage of these previous

works and apply the methodology to our model.

Deformation gradient

We consider the muscles and the actin bundles of the C. elegans embryo as filamentary structures.

When they are activated, these fibers will generate internal stresses that will create bending and torsion

of the entire structure. We define the initial configuration B0 with material points (X, Y, Z), and the

mapping function χ (X) which links the initial configuration B0 to the current configuration B. Herein,

we concentrate on the overall deformation, so the model can be simplified to a single filament in space

with its centerline being r (Z), as shown in Fig.4.1(a), from which, a local director basis can be defined:

(d1 (Z) ,d2 (Z) ,d3 (Z)). The axial extension ζ is obtained by r′ (Z) = ζd3, where ′ denotes the

derivative with respect to the material coordinate Z. From the director basis, the Darboux curvature

vector reads:

u = u1d1 + u2d2 + u3d3. (4.1)

So, this vector gives the evolution of the director basis along the filamentary line as:

di
′ (Z) = ζu× di, (4.2)

The geometric mapping χ is then:

χ (X) = r (Z) +
3∑

i=1

εai (εR,Θ, Z)di (Z), (4.3)
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where the ai represents the deformation in each direction of the section with ai (0, 0, Z) = 0 so that

the Z-axis maps to the centerline r (Z). The small quantity ε is the ratio between the radius R and the

length L of the cylinder.

Figure 4.1 – (a) Cylindrical structure in the reference configuration (left) with a vertical central axis and
its deformation in the current configuration (right). The deformed configuration is fully parameterized by
the centerline r (Z) (resulting from the distortion of the central axis) and the deformation of each cross-
section [181]. (b) Schematic representation of the body shape of the C. elegans embryo with the cortical
epidermis and the four muscles. The fibers are embedded in the cortex. The blue part representing
the epidermis shows the outer distribution of the actin organized into horizontal hoop bundles when the
muscles are not activated. The yellow part includes the vertical red muscles, represented by axial fibers.

The geometric deformation gradient is [183]

F = Gradχ = FeG (4.4)

where G represents the active strain generated by the fibers: the actomyosin or the muscles, and Fe

is the elastic strain tensor. Notice that this relationship also applies to growing materials and G in this

case means the local amount of growth. However, in this period of elongation and more generally in the

whole egg lifespan there is no nutrient and there is no growth.

Activation is naturally expressed as a map from the cylindrical coordinates (εR,Θ, Z) of the refer-

ence configuration to the cylindrical coordinates (r, θ, z):

G = (1+ εG1 (X))G0 = Gijei ⊗ ej, i ∈ {r, θ, z} , j ∈ {R,Θ, Z} (4.5)

where (er, eθ, ez) and (eR, eΘ, eZ) are the unit vectors in the current and reference configuration respec-

tively. If we only focus on the late elongation, the pre-strain is not taken into account, G0 = I. But, if we

consider the whole elongation process, the elongation induced by myosin during early elongation can

not be ignored, where G0 refers to the pre-strain of the early elongation period and G1 is the muscle-

actomyosin supplementary active strain in the late period. Actin is distributed in a circular pattern in

the outer epidermis, see Fig.4.1(b), so the finite strain G0 is defined as G0 = Diag (1, g0(t), 1), where

0 < g0 < 1 is the time-dependent decreasing eigenvalue, operating in the actin zone, and is equal to
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unity g0 = 1 in the other parts. We will discuss two cases without pre-strain and pre-strain after.

Taking ζ = 1 + εξ, the deformation gradient follows the description of Eq.(4.3) :F = Fijdi ⊗ ej,

where i ∈ {1, 2, 3} , and j labels the reference coordinates {R,Θ, Z} finally reads:

F =




a1R
1
R
a1Θ ε (1 + εξ) (u2a3 − u3a1 sin a2)

a1a2R
a1
R
a2Θ ε (1 + εξ) (u3a1 cos a2 − u1a3)

a3R
1
R
a3Θ (1 + εξ) (1 + ε (u1a1 sin a2 − u2a1 cos a2))


 . (4.6)

When considering a filamentary structure with different fiber directions m, these directions are spec-

ified by two angles α and β, as outlined in [169]:

m = sinα sin βeR + sinα cos βeΘ + cosαeZ, α, β ∈ [−π/2, π/2] . (4.7)

where α and β lie in the range [−π/2, π/2]. For muscle fibers, αm = 0 and βm = 0, whereas for

hoop fibers of the actin network, αa = π/2 and βa = 0. When all fiber orientations are included, the

incremental strain G1 in cylindrical coordinates is related to the amplitude of the active strain g and

the orientation angles: α, and β. Considering all the different orientations of fiber cases, the active

filamentary tensor in cylindrical coordinates is:

G1 = gi




sin2αsin2β sin2α sin β cos β sinα cosα sin β

sin2α sin β cos β sin2αcos2β sinα cosα cos β

sinα cosα sin β sinα cosα cos β cos2α


 (4.8)

where gi represents the activity (gm for the muscles and ga for acto-myosin), and since both are contrac-

tile, their incremental activities are negative.

The energy density

To relate the deformations to the active forces induced by muscles and the acto-myosin network, we

assume that the cylindrical body is a hyperelastic material with strain-energy density W = W (Fe). The

material is assumed incompressible. The total energy of the system is

W =

∫

B0

W (Fe) dXdY dZ, (4.9)

where Fe = FG−1, which can be written as:

W =

∫

B0

V (FG−1,G) dXdY dZ, V = W
(
FG−1

)
− p(J − 1). (4.10)

where J = detFe, p is a Lagrange multiplier which ensures the incompressibility of the sample, a

physical property assumed in living matter. And we use the Neo-Hookean energy function:

W (Fe) =
µ

2

(
tr
(
FeFe

T
)
− 3
)
, (4.11)
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The problem now is to minimize the energy over each section for a given active force. In cylindrical

coordinates, the energy functional can be written

W = ε2
∫ L

0

dZ

∫

S

V (FG−1,G)R dR dΘ (4.12)

The auxiliary strain-energy density can be obtained by expanding the inner variables ai, pi and the

potential V as:

a = a(0) + εa(1) + ε2a(2) +O
(
ε3
)
, (4.13)

p = p(0) + εp(1) + ε2p(2) +O
(
ε3
)
, (4.14)

V (Fe,G) = V0 + εV1 + ε2V2 +O
(
ε3
)
. (4.15)

For each cross-section, the associated Euler-Lagrange equations take the following form:

∂

∂R

∂ViR

∂a
(k)
jR

+
1

R

∂ViR

∂a
(k)
jR

+
∂

∂Θ

∂ViR

∂a
(k)
jΘ

− ∂ViR

∂a
(k)
j

= 0, j = 1, 2, 3, k = 0, 1, (4.16)

in association with boundary conditions at each order k = 0, 1 on the outer radius Ri:

∂ViR

∂a
(k)
jR

∣∣∣∣∣
R=Ri

= 0, j = 1, 2, 3. (4.17)

Deformation of the model initially free of stress

Firstly, we ignored the influence induced by early elongation, and take G0 = I. We solve these equa-

tions order by order and consider incompressibility. To lowest order, the solution of the Euler–Lagrange

equations is obviously given by a(0) = (R,Θ, 0), and p(0) = 1 so there is no deformation. It is easy to

know the zero and first order energy vanish. At order O (ε2) of the elastic energy, the solution for the

active strain components are:

a
(1)
1 = −R

2
ξ − R2

8
(u1 sinΘ− u2 cosΘ) + f1 (R) , (4.18)

a
(1)
2 =

5R

8
(u1 cosΘ + u2 sinΘ) + f2 (R) , (4.19)

a
(1)
3 = ξ, (4.20)
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Figure 4.2 – The C. elegans model undergoes muscle contraction (incremental strain) in the absence of
initial stress to generate curvature. r(R) is the radius after early elongation, all values can be obtained
by Eq.(3.4).

p(1) = f3 (R) . (4.21)

where f1,2,3 are functions related to the active stress R.

With the solutions for the active strains a(0) and a(1), the energy takes the form:

E = ε4
∫ L

0

dZ

∫

S

V2

(
a(0), a(1); u1, u2, u3, ξ

)
RdR dΘ +O

(
ε5
)
, (4.22)

and after integration

E =
1

2

∫ L

0

K0(ζ − ζ̂)2 +K1(u1 − û1)
2 +K2(u1 − û2)

2 +K3(u3 − û3)
2 dZ. (4.23)

After calculations, the second order energy density takes the form:

V2R = A1ξ + A2ξ
2 +B1u1 +B2u1

2 + C1u2 + C2u2
2 +D1u3 +D2u3

2 + E1, (4.24)

where Ai, Bi, Ci, Di and E1 are function of R and Θ. Comparing with the energy of an extensible elastic

rod [184, 185, 186, 187, 188], we recognize the classic extensional K0, bending K1, K2 and torsional
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stiffness K3 coefficients:

K0 =

∫

SK

A2dRdΘ, K1 =

∫

SK

B2dRdΘ, K2 =

∫

SK

C2dRdΘ, K3 =

∫

SK

D2dRdΘ, (4.25)

where A2, B2, C2 and D2 are related to the shear modulus µ, so for a uniform material with no variations

of shear modulus, SK represents the cross-section of the cylinder. But if not, we need to divide different

regions to perform the integration.

We now focus on the intrinsic extension and curvatures of the cylindrical object induced by the

active strains, this requires the competition of the active forces with the stiffness of the cylindrical bar

following the relationships,

ζ̂ = 1−H0/K0, û1 = −H1/K1, û2 = H2/K2, û3 = −H3/K3, (4.26)

where the expression of Hi:

H0 =
1

2

∫

SH

A1dRdΘ, H1 =
1

2

∫

SH

B1dRdΘ,

H2 =
1

2

∫

SH

C1dRdΘ, H3 =
1

2

∫

SH

D1dRdΘ.

(4.27)

where A1, B1, C1 and D1 are related to the shear modulus µ, the fiber angles α and β, and the activation

g. So, the integration region SH is divided into the different parts of the embryo which all contribute to

the deformation. All calculation detail in APPENDICES 4.A.

Finally, we can obtain the second energy form with Eq.(4.24). The stiffness and curvatures are found

by integrating over the cross-section. The intrinsic extension and curvature are

ζ̂ = 1− H0

K0

, û1 = −H1

K1

, û2 =
H2

K2

, û3 = −H3

K3

. (4.28)

where Ki and Hi are calculated by Eq.(4.25) and Eq.(4.27). All calculation detail in APPENDICES 4.B.

To calculate the intrinsic Frenet curvature and torsion, we use the following equation:

κ̂ =
√

û2
1 + û2

2 and τ̂ =
û3

ζ̂
. (4.29)

For the case of activated left side muscles, we can calculate intrinsic extension and curvatures by

Eq.(4.28):

û1m = 0, û3m = 0, (4.30)

so the intrinsic Frenet curvature and torsion Eq.(4.29):

κ̂m = û2m, τ̂m = 0. (4.31)
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Then, for the activated actin case, we can calculate intrinsic extension and curvatures by Eq.(4.28):

û1a = 0, û2a = 0, (4.32)

and the intrinsic Frenet curvature and torsion Eq.(4.29):

κ̂a = 0, τ̂a =
û3a

ζ̂a
. (4.33)

From these results, it can be seen that the curvature of the deformation is controlled only by muscle

activation, while torsion is controlled only by actin activation.

Late elongation model based on the pre-strained configuration

Our model can consider an initial without strain/stress state, the case is displayed above. But indeed,

the late elongation model needs to account for the effect of pre-strain induced by acto-myosin contrac-

tions in the first period. We consider the complex case of combining incremental strain due to muscle

contraction and finite strain due to acto-myosin contraction at 1.8-fold to assess the effects of coupling

muscle and actomyosin networks. The finite strain G0 can map the initial stress-free state B0 to a state

B1. After in the residually stressed B1, we impose an incremental strain field G1, which represents the

internal muscle contraction and maps the body to B2. The whole process is shown in Fig.4.3. So, the

deformation gradient can be expressed as: F = FeG1G0 [189].

Figure 4.3 – The C. elegans model undergoes muscle contraction (incremental strain) in the absence of
initial stress to generate curvature.
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The deformation gradient becomes:

F =




a1R
1
R
a1Θ λε (1 + εξ) (u2a3 − u3a1 sin a2)

a1a2R
a1
R
a2Θ λε (1 + εξ) (u3a1 cos a2 − u1a3)

a3R
1
R
a3Θ λ (1 + εξ) (1 + ε (u1a1 sin a2 − u2a1 cos a2))


 , (4.34)

where λ is the axial extension due to the pre-strain. G1 is given by Eq.(4.8), and we can know that

g0 = 0.88 when the muscle starts to contract which is the end of the early elongation, see Section 3.3.

To simplify the calculation, we write g0 in the form of 1 + εc (ε ≈ 0.2, c ≈ −0.6). Here, we

still use the Neo-Hookean energy function and expand the energy order by order as the Jacobian J =

det(Fe). At the lowest order, the incompressibility imposes the deformation: a(0) = (r (R) ,Θ, 0) and

the Euler-Lagrange equation gives the Lagrange parameter P ′
0(R) which finally read:

r′ (R) =
R

λr (R)
, (4.35)

P0
′ (R) = 0, (4.36)

and the boundary condition σrr(R = 1) = 0 gives the value of P0(R) = 1/λ. At O (ε), the Euler-

Lagrange equations are again automatically satisfied, and at O (ε2), the crucial question is to get the

correct expression for a(1)i and p(1). Based on the previous subsection, the following form is intuited:

a
(1)
1 = −1

2
r (R) ξ + q1r(R)2 (u1 sinΘ− u2 cosΘ) + h1 (R) (4.37)

a
(1)
2 = q2r (R) (u1 cosΘ + u2 sinΘ) + h2 (R) (4.38)

a
(1)
3 = λξ (4.39)

p(1) = h3 (R) (4.40)

As before, the Euler-Lagrange equations and incompressibility condition give the two constants:

q1 =
1

8

(
−2 + λ3

)
, q2 =

1

8

(
2 + 3λ3

)
(4.41)

and h1, h2, h3 are function of R.

After the solutions for the active strains a(0) and a(1) are obtained, the curvature and torsion of the

model is calculated in the same way as in the case of without pre-strain case.
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4.2.2 Shape of the embryo under muscles and acto-myosin contraction

Based on the model that we derived in the previous section 4.2.1, we specifically consider the case

of C. elegans activities and obtain their deformation. The regulation of the muscle contraction in C.

elegans detected experimentally [174] indicates a cyclic process, where two muscles contract on one

side of the embryo quite simultaneously and then stop, while on the opposite side, the two muscles start

their contractions, the time interval between contractions is approximately 40 seconds [174]. Let us

consider first that only muscles are active (see the schematic Fig.4.4(a) for the structure, then (b) and (c)

for the bending). In this case, due to the geometry, only a bending deformation occurs on the left for

active muscles localized on the left and then on the right for the symmetric muscles on the right.

Figure 4.4 – (a) Schematic diagram of C. elegans muscle fibers and its cross section, and it does not
show the actin fibers. Four muscle bands exist in the yellow layer. But, the yellow region is not an
actual tissue layer and it is simply to define the position of muscles. (b) Deformation diagram, when
left side muscles M1(θ1 ≤ θ0 ≤ θ2) and M2(θ3 ≤ θ0 ≤ θ4). (c) Deformation diagram, when right side
muscles M3(θ5 ≤ θ0 ≤ θ6) and M4(θ7 ≤ θ0 ≤ θ8). (d) Schematic diagram of C. elegans actin fibers
and cross-section. (e) Once the muscle is activated, the actin fiber orientation changes from the ’loop’
to the ’slope’, which results in torque. (f) Schematic diagram of torsional and bending deformation.
(d) Schematic diagram of C. elegans actin fibers and cross-section. (e) Once the muscle is activated,
the actin fiber orientation changes from the ’loop’ to the ’slope’, which result in torque. (f) Schematic
diagram of torsional and bending deformation.

To be more quantitative, we assume that the left side muscles are activated during a short period with
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an active constant strain value gm in the region M1 and M2, as shown in Fig.4.4(a)-(b); if the muscles

are perfectly vertical, αm = βm = 0 in the initial configuration. In fact, the two muscles on the same

side are not always fully in phase and one may present of small delay. For simplification, we assume

they are perfectly synchronous. During the full initial period where muscles are not activated, the actin

fibers are distributed in a horizontal loop on the outer surface of the epidermis, but once the muscle starts

to contract, the acto-myosin network will be re-orientated [166]. The fibers will be then distributed in

a sloping pattern causing eventually the twisting of the embryo, see the schematic diagram shown in

Fig.4.4(d)-(f). When this region is activated with a constant strain value, ga, the angle of the actin fibers

will change following the amplitude of the bending by the muscle contraction. In this situation, the angle

of the actin fibers may change from αa ∈
[
0, π

2

]
but βa is not modified and βa = 0.

Throughout the entire process, the muscle and acto-myosin activities are assumed to work almost

simultaneously. Our modeling allows us to evaluate the bending and torsion generated independently by

muscles and actin bundles, culminating in a complete deformation under coupling. We then discuss the

deformation with and without pre-strain separately.

Without pre-strain case

Firstly, we consider the initial without the pre-strain case and calculate the curvature and torsion

by Eq.(4.29) and parameters in Table.3.1. Fig.4.5(a)-(b) show that the curvature of the model rises as

muscle activation increases and the torsion is not simply related to the activation amplitude of the actin

but follows the angle αa change, reaching a maximum at approximately π/4.

Figure 4.5 – Without pre-strain: (a) Curvature is plotted as a function of muscle activation. (b) Torsion
is plotted as a function of the actin activation and angle of actin fibers.

Then, we show some deformation images of the model at different values of muscle activation gm

and acto-myosin activation ga in Fig.4.6-Fig.4.8. These images demonstrate that our model can achieve

different states of bending and torsional deformation.
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Figure 4.6 – Deformation images at different muscle activation (ga = −0.01, αa = π/3): (a) gm =
−0.005, (b) gm = −0.01, (c) gm = −0.015.

Figure 4.7 – Deformation images at different muscle activation (ga = −0.25, αa = π/3): (a) gm =
−0.005, (b) gm = −0.01, (c) gm = −0.015.

Pre-strain case

To obtain an accurate depiction of the C. elegans deformation during the late elongation stage, it is

imperative to account for the pre-strain of the early elongation phase. By employing Eq.(4.29) and the

parameters specified in Table.3.1, we calculated the curvature and torsion of the worm and observed that

the regulatory trends remained consistent with those observed in the absence of pre-strain. However,

the magnitude of the bending and twisting values were notably different, as demonstrated in Fig.4.9.

Specifically, we found that the absence of pre-strain led to greater bending and twisting for the same

level of activation (ga, gm). This observation can be attributed to the fact that the model is constrained

to maintain an elongated state in the presence of pre-strain, making it more resistant to deformation,
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Figure 4.8 – Deformation images at different muscle activation (ga = −0.5, αa = π/3): (a) gm =
−0.005, (b) gm = −0.01, (c) gm = −0.015.

including bending and twisting.

Figure 4.9 – The presence of pre-strain: (a) Curvature is plotted as a function of muscle activation. (b)
Torsion is plotted as a function of the actin activation and angle of actin fibers.

To provide further evidence of the impact of the pre-strain on the deformation of the C. elegans

model, we present a series of images in Figs.4.10-4.12. Notably, Fig.4.12(c) depicts a significant twisting

deformation, which is closely similar to deformations observed in the DIC-optic video screenshot of C.

elegans embryos captured at a temperature of 200C (Fig.4.13). However, it is important to mention

that significant torsional deformations are not consistently present. Other factors, such as the lack of

symmetry in the muscle axis, can also contribute to torsion, which we will discuss in detail later.

The outcomes of our study prove that pre-strain has a great influence on the deformation of the

C. elegans model during the late elongation phase (after the muscle has been activated). This finding

emphasizes the need to account for pre-strain while delving into the underlying mechanisms of late
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Figure 4.10 – Deformation images at different muscle activation (ga = −0.01, αa = π/3): (a) gm =
−0.01, (b) gm = −0.05, (c) gm = −0.1.

Figure 4.11 – Deformation images at different muscle activation (ga = −0.5, αa = π/3): (a) gm =
−0.01, (b) gm = −0.05, (c) gm = −0.1.

elongation. Consequently, in the subsequent sections, we exclusively consider the pre-strain scenario.

Active matter similar to C. elegans can often be found in biological systems, from animals to plants

as illustrated in Fig.4.14(a)-(c), they have a structure that generates internal stress/strain when growing

or activity. Combining anatomy and measurement techniques, we can transform the mechanics of the

body under study into a soft sample submitted to localized internal active stresses or localized internal

active strains and then deduce its overall deformation mechanisms, some examples are presented in

Fig.4.14(d)-(f).
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Figure 4.12 – Deformation images at different muscle activation (ga = −1, αa = π/3): (a) gm = −0.01,
(b) gm = −0.05, (c) gm = −0.1.

Figure 4.13 – The graphs were captured from the Hymanlab and website:
https://www.youtube.com/watch?v=M2ApXHhYbaw.

4.3 Energy transformation and Elongation

During the late elongation process, the four internal muscle bands cyclically contract in pairs [163,

174]. Each contraction of a pair increases the energy of the system under investigation, which is then

rapidly released to the body. This energy exchange causes the torsion-bending energy to convert into

elongation energy, leading to a length increase during the relaxation phase, as depicted in Fig.4.15. With

all deformations obtained, Eq.(4.67) in Appendix4.C can be used to calculate the accumulated energy Wc

produced by both the muscles and the acto-myosin activities during a contraction. Subsequently, when

the muscles on one side relax, the worm body reverts to its original shape but with a tiny elongation

corresponding to the transferred elastic energy. This new state involves the actin network adopting a

’loop’ configuration with a strain of εga1 once relaxation is complete. If all accumulated energy from

the bending-torsion deformation goes towards elongating the worm body, the accumulated energy Wc

and energy Wr following muscle relaxation are equivalent. The activation of actin fibers ga1 after muscle

relaxation can be calculated and determined by our model.
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Figure 4.14 – (a) Bending of a Giraffe neck. (b) Torsion of an Elephant trunk. (c) Plant vine twisting.
(d) to (f) Deformation configuration under different activations obtained by our simulations for bending
and torsion of large rods, twisting and torsion of thin rods.

Figure 4.15 – Schematic diagram of energy conversion.

Once the first stage is well characterized, we can quantify the total energy resulting from both mus-

cles and acto-myosin after each contraction. Then, we used our model to predict elongation in the wild-

type C. elegans, unc-112(RNAi) mutant and spc-1(RNAi) pak-1(tm403) mutant and further compared

the results with experimental observations. The length of the wild type elongates from approximately

90 µm to 210 µm during the muscle-activated phase [166], the phase lasts about 140 minutes, and the
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average time interval between two contractions is about 40 seconds [174], so the number of contractions

can be estimated to be around 210 times. Unfortunately, due to the difficulty of realizing quantitative

experiments on an embryo always in agitation in the egg shell between bending, torsion, and rotations

around its central axis, one can hypothesize several scenarios: at each step i between state Ai,0 to Ai,1

and then Ai,2, the whole mechanical muscle-myosin energy is transferred to the elongated step Ai,2,

leading to a small δζi.

Considering the experimental results shown in Fig.4.16(b), we determine the optimal values for

the activation parameters: gm = −0.15 and ga = −0.01 assuming that all the accumulated energy

during muscle activation is transferred to elongation(Wr = Wc). The elementary elongation δζi will be

gradually increased with time, which is shown as the black line in Fig.4.16(a). At the beginning, δζi is

about 0.5µm, but at the end of this process, δζi is about 1.5µm, indicating that the worm will elongate up

to 290µm. The result is significantly higher than our actual size 210µm. When the elongation proceeds,

we assume a transfer of energy between bending-torsion-contraction and elongation but it may be not

fully effective, which means a significant part of the energy is lost. From the experimental data, we

evaluate that the energy loss gradually increases, from full conversion at the beginning to only 40% of

the accumulated energy used for elongation at the end of the process (Wr = 0.4Wc). It induces for δζi
a first increase and then a decrease, which is shown as the blue line in Fig.4.16(a) and is responsible

for the slowdown around 200 mins. This option, which may be not the only possible one, leads to the

estimated elongation having a good agreement with experimental data (see the blue-dashed curve in

Fig.4.16(b)). Indeed it is possible that the C. elegans elongation requires other transformations which

will cost energy. As the embryo gradually elongates, energy dissipation and the biomechanical energy

required to reorganize the actin bundles may be two factors that contribute to the increased energy loss

that underlies the hypothesis.

Figure 4.16 – (a) The elongation for each contraction varies with time. Black line: all energy converted
to the elongation, blue line: partial energy converted to the elongation. The activation: gm = −0.15,
ga = −0.01. (b) The model predicted results agree well with the experimental data of wild-type and
different mutant C. elegans embryos [166]. The activation of wild type model (blue dashed line): gm =
−0.15, ga = −0.01. The activation of unc-112(RNAi) (brown dashed line): gm = 0, ga = 0. In the
pre-stretch failure case (green dashed line), λ will decrease from 1.8.

Moreover, it was reported in [190] that the knockdown of unc-112(RNAi), known for impairing
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muscle contractions, results in the arrest of elongation of embryos at the twofold stage, indicating that

muscles have no activation, gm = 0 in our model, and no accumulated energy can be converted into

elongation. Another mutation concerning the embryos consisting of mutant cells with pak-1(tm403),

known to regulate the activity of myosin motors leads to a retraction of the embryo, so the pre-stretch

caused by myosin will not be maintained and will decrease. These aforementioned findings are fully

consistent with a variety of experimental observations and are shown in Fig.4.16(b). More calculation

details in Appendix4.C.

4.4 Embryo rotations and dissipation

The main manifestation of the muscle activity, independently of the elongation, is probably the

constant rotations of the embryo despite its confinement in the egg. This can be explained by a small

angular deviation of the muscle sarcomeres from the central axis due to their attachment to the inner

boundary of the cell epidermis, the so-called "dense bodies" [167]. Since they cross the horizontal

plane at approximately ±45◦ and the deviation βm from the vertical axis is estimated to be about 6◦

each active muscle on the left (or on the right) contributes to the torque via a geometrical factor about

ag = sin(6π/180) cos(π/4). Then a simple estimation of the muscle activity in terms of torque reads

Λm ∼ µmπR
3smpmag(εgm), (4.42)

where sm is the surface of the muscle pair on the left (or right) compared to the section of the cylinder:

sm = 0.025 and pm is the distance of the muscles from the central axis of the embryo: pm = 0.75 while

gm = 0.15 according to the analysis of the elongation. So the muscles on one side contribute to a torque

Λm along the axis of symmetry given by Λm = 4.657µmπR
3 · 10−5.

Let us consider now the dissipative torque, assuming that the dynamics of rotation is stopped by

friction after one bending event. Two cases can be considered: either the dissipation comes from viscous

flow or from the rubbing of the embryo when it folds. The fluid dissipation results from the rotations

in the interstitial fluid inside and along the egg shell. The interstitial fluid, of viscosity η contains a

significant amount of sugar and other molecules which are required for embryo survival and then is more

viscous than water [191]. However, values for sucrose or sorbitol at the concentration of 1 mole/liter

indicates a viscosity of order a few times the viscosity of water, which is 1 mPas. For example at 0.9

mole/liter and temperature of 20◦, an aqueous solution with sorbitol has a viscosity of 1.6 mPas, which

can be extrapolated to η = 1.9 mPas at 1.2 mole/liter [192]. The estimation given by an embryo located

in the middle of the egg-shell, gives a weaker viscous torque once evaluated by

Λv = 4πηΩeLR
2
(
R2

egg/(R
2
egg −R2)

)
, (4.43)

according to a classical result reported by Landau et al. [193, 194]. It has to be mentioned that this esti-

mation assumes that the two cylinders: the egg shell and the embryo have the same axis of symmetry and

concerns the beginning of the muscle activity where the radius is about 8.2µm, the length is 90µm,the

radius of the shell about Regg = 15µm and the length Legg = 54µm, see Fig.4.13. The angular velocity

Ωe is more difficult to evaluate but it is about 90◦ per two seconds deduced from videos. When the em-
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bryo approaches the egg shell, the friction increases, and two eccentric cylinders of different radii have

to be considered with the two axes of symmetry separated by a distance d. The hydrodynamic study in

this case is far from being trivial, and seems to have been initiated first by Zhukoski [195] who suggested

the use of bipolar coordinates for the mathematical treatment. Many following contributions established

with different simplified assumptions have been published after and the study was fully revisited by

Ballal and Rivlin [196]. Here we focus on the limit of a small gap δ between the rotating body-shape

and the egg and by considering an asymptotic analysis at small δ of the general result derived in [196].

Thus, the viscous torque reads

Λ̃v = 2
√
2πηΩeLcR

2
egg

√
Regg/δ

√
(Regg − d)/d. (4.44)

Lc is the zone of contact with the egg and d = Regg−δ−R. This approach is an approximation since the

embryo has more of a torus shape than a cylinder [174] but the evaluation of the dissipation is satisfactory

for δ = 0.5µm,Ωe ∼ π/4 s−1 and µ = 105Pa. Coming back to the first model of dissipation with the

same data, the ratio between the dissipative viscous torque and the active one gives: Λv/Λm = 0.02,

which is obviously unsatisfactory. Finally, the dissipative energy Ediss during one bending event leading

to an angle of π/2 is Ediss = 1/2Λm × (π/2)2 which represents 4% of the muscle elastic energy during

the bending so at the beginning of the muscle activity (Appendix4.C, Eq (4.69)), the dissipation exits but

is negligible. At the very end of the process, this ratio becomes 60% but as yet mentioned our estimation

for the dissipation becomes very approximate, increases a lot due to the embryo confinement, and does

not involve the numerous biochemistry steps necessary to reorganize the active network: acto-myosin

and muscles.

4.5 Discussion and conclusion

Since the discovery of the muscle activity before the egg hatch of the C. elegans embryo, it has be-

come critical to explain the role of mechanical forces generated by muscle contraction on the behavioral

and functional aspects of the epidermis. We provide a mechanical model in which the C. elegans is

simplified as a cylinder, and the muscle bands and actin that drive its elongation are modeled as active

structures in a realistic position. We determine the fiber orientation using experimental observations and

then calculate the deformation by tensorial analysis involving the strains generated by the active com-

ponents. Although a special focus is made on late elongation, its quantitative treatment cannot avoid

the influence of the first stage of elongation due to the acto-myosin network, which is responsible for

a pre-strain of the embryo. In a finite elasticity formalism, the deformations induced by muscles in a

second step are coupled to the level of strains of the initial elongation period. For that, we need to revisit

the theory of the acto-myosin contraction and previous results [4, 138, 177] to unify the full treatment.

We discuss the early elongation induced by pre-strain in the chapter 3.

The elongation process of C. elegans during the late period is much more complex than the early

elongation stage which is caused only by actin contraction. During the late elongation, the worm is

distorted by the combined action of muscle and acto-myosin, resulting in an energy-accumulating pro-

cess. Bending deformation is a phenomenon resulting from unilateral muscular contraction, and during
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the late elongation, significant torsional deformation is observed, indicating that the bending process

induces a reorientation of the actin fibers. It is worth noting that the embryo is always rotating in tan-

dem with the muscle activity making difficult any experimental measurements. However, our model

can predict that if the muscles are not perfectly vertical, torque exits that causes rotation and eventually

torsion. The accumulated energy is then partly turned into energy for the ongoing action of actin, allow-

ing the embryo to elongate when the muscle relaxes. Both sides of the C. elegans muscles contract in

a sequential cycle, repeating the energy conversion process, and eventually completing the elongation

process. However, the energy exchange between bending and elongation is limited, among other factors,

by the viscous dissipation induced by rotation, which is also evaluated in this study. Not investigated

in detail here is the necessary re-organization of the active networks (acto-myosin and muscles) due to

this tremendous shape transformation of the embryo. In parallel to elongation, the cuticle is built around

the body [197]. This very thin and stiff membrane ensures protection and locomotion post-hatching.

Clearly, these processes will perturb muscle activity. These two aspects which intervene in the final

stage of the worm confinement play a very important role at the frontier across scales between genetics,

biochemistry and mechanics. The architecture of the work in Part II is illustrated in Fig.4.17.

Figure 4.17 – Architecture of the program. The program reflects the framework of research. On the one
hand, the proposed model explains the early and late elongation of the C. elegans, on the other hand, the
early myosin activity is estimated, the deformations (bending, twisting, rotation) happening in the late
period is recovered, and the estimation of energy dissipated during muscle activity is achieved.

Finally, the framework presented here not only provides a theoretical explanation for embryonic

elongation in C. elegans, it can also be used to model other biological behaviors, such as plant tropism

[180] and elongated elephant trunk [198, 199] and bending. Our ideas could potentially be used in

the emerging field of soft robotics, like octopus legs-inspired robots [200, 201, 202], which is soft and

its deformation induced by muscles activation. We can reliably predict deformation by knowing the

position of activation and the magnitude of forces in the model. Furthermore, residual stresses can be

incorporated into our model to fulfill design objectives.
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APPENDICES

Appendix 4.A Modelling details of without pre-strain case

The first order solutions of the theory with the pre-strain case, f1,2,3 (R) are related to activation g

and fiber angles α and β:

f1 (R) =
gR

2
, (4.45)

f2 (R) = glog (R) sin2α sin (2β) , (4.46)

f3 (R) = 2gµlog (R) sin2α sin (2β) . (4.47)

The coefficients for determining stiffness:

A2 =
9µR

8
, (4.48)

B2 =
81

128
µR3sin2Θ, (4.49)

C2 =
81

128
µR3cos2Θ, (4.50)

D2 =
µR3

2
. (4.51)

The coefficients for determining deformation:

A1 = −1

8
gµR

[
4 + 5 cos (2α) + 2 cos (2β) (−1 + 2 log (R)) sin2α

]
, (4.52)

B1 = − 1

16
gµR2

[
10 + 17 cos (2α) + 2 cos (2β) (−1 + 14 log (R)) sin2α

]
sinΘ, (4.53)

C1 =
1

16
gµR2

[
10 + 17 cos (2α) + 2 cos (2β) (−1 + 14 log (R)) sin2α

]
cosΘ, (4.54)
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D1 = −gµR2 cos β sin (2α) . (4.55)

Appendix 4.B Modelling details of with pre-strain case

The first order solutions of the theory with the pre-strain case, h1,2,3 (R) are related to activation g

and fiber angles α and β:

h1 (R) =
R (c+ g)

2
√
λ

, (4.56)

h2 (R) = g log (R) sin2α sin (2β) , (4.57)

h3 (R) =
2µlog (R)

[
c+ g cos (2β) sin2α

]

λ
. (4.58)

The coefficients for determining stiffness:

A2 = (0.278 + 1.689µ)R, (4.59)

B2 = 1.294R3 [−0.405 + 2.389µ+ (−0.176 + µ) cos (2Θ)] , (4.60)

C2 = −1.294R3 [0.405− 2.389µ+ (−0.176 + µ) cos (2Θ)] , (4.61)

D2 = 0.9µR3. (4.62)

The coefficients for determining deformation:

A1 = µR
[
0.417c− 0.139g − 6.48gcos2α− 0.556c log (R)

+g
(
0.556cos2β − 0.556 cos (2β) log (R)

)
sin2α

]
,

(4.63)
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B1 = R2
{
g (−0.828 + 4.830µ) cos β log (R) sin2α sin β cosΘ + 0.198c sinΘ

+
[
0.198g + 0.910cµ+ 1.307gµ− 4.830gµcos2α− 1.225cµ log (R)

+gµ
(
−0.397cos2β − 1.225 cos (2β) log (R)

)
sin2α

]
sinΘ

}
,

(4.64)

C1 = R2
{
g (−0.828 + 4.830µ) cos β log (R) sin2α sin β sinΘ − 0.198c cosΘ

+
[
−0.198g − 0.910cµ− 1.307gµ+ 4.830gµcos2α + 1.225cµ log (R)

+gµ
(
0.397cos2β + 1.225 cos (2β) log (R)

)
sin2α

]
cosΘ

}
,

(4.65)

D1 = −gµR2 cos β sin (2α) . (4.66)

Appendix 4.C Energy transformation calculations

To obtain the elongation δζi after each muscle contraction, we need to calculate the energy, and the

total energy takes the following form:

E = ε2
∫ L

0

dZ

∫

S

(
V0 + εV1 + ε2V2

)
R dR dΘ +O

(
ε5
)

(4.67)

where the integration region S is related to each part of the cylinder with a different shear modulus µ,

so the model must be divided into 3 different parts for integration.

The final part of the energy conversion per unit volume is then:

E′ =
∫

S

(
εV1 + ε2V2

)
R dR dΘ (4.68)

where V1 is not the whole first order energy, we only consider the energy induced by activation of acto-

myosin ga and muscles gm. After obtaining solutions a(0),a(1) and deformations from Eq.(4.35)-(4.40),

the accumulated energy during the contractile period Wc that we define is:

Wc =

∫

S

(
εV1 + ε2V2

)
R dR dΘ

= ε (−10.70ga − 7.73gm) + ε2
[
(−3.31 + 26.75ga) ga + 11.95gm

2
]
.

(4.69)

When the muscles are relaxed and only acto-myosin is activated, the total increase of volumetric energy

Wr is then:

Wr =

∫

S

(
εV1 + ε2V2

)
R dR dΘ

= −0.41εga1 + ε2 (−5.19 + 6.96ga1) ga1.

(4.70)

By calculating energy conversion, we obtain ga1 = −0.66 at the beginning of the late elongation phase,
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Fig.4.16(a)-(b) shows the elongation for each contraction and total elongation varies with time.
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Chapter 5

Conclusions and perspectives

The central focus of this chapter is to summarize and discuss all the work of this thesis, while also

providing a concise outlook on the research implications and directions for future investigation.

Conclusion

In Chapter 1, our primary focus lies in elucidating the background of our study, encompassing the

current research landscape as well as the theoretical underpinnings. Subsequently, our thesis consists of

two parts work, with the first part, i.e., Chapter 2, devoted to a comprehensive exploration of stress-free

growth. Based on the principle of energy minimization, we have rigorously demonstrated theoretically

that a conformal or quasi-conformal mapping between two planar configurations can eliminate the ef-

fect of elastic stress on soft tissue growth. Darcy Thompson hypothesized over a century ago that the

morphological evolution of organisms correlates with the evolution of shape, and our conclusions make

the first connection between morphological change and shape transformation in stress-free growth and

are verified by naturally growing planar leaves. The second part is devoted to studying a model of the

elongation process in C. elegans embryos before hatching. Chapter 3 focuses on the early elongation of

the C. elegans under the influence of acto-myosin and is the basis for the study of the late elongation

stages. Chapter 4 continues the study in Chapter 3 and focuses on the role of muscle activity in late

elongation. We present a coupled bio-mechanical analytical model that considers the actual structure

of worm biology. The model translates biochemical stimuli into driving forces and describes in detail

all the deformations that occur during elongation. It also explains that actin contraction leads to partial

elongation (80%), followed by successive bending events accompanied by twisting and rotation due to

periodic contraction of the muscle. Each event accumulates elastic energy that is transferred to the cir-

cumferential actin network, which then causes the embryo to increase in length. Our model shows good

agreement with experimental results for both wild-type and mutants. We demonstrate that the balance

of energy encompasses the entire elongation process and dissipation and retains the remaining energy,

which could explain the actin reorganization induced by this very important elongation process. Notably,

for the first time, the non-negligible rotation based on muscle activity and the viscous torque generated

by the interstitial fluid inside the egg shell was evaluated.

91
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Personal thoughts

This thesis investigates the development of two biological species, one of them is a plant and the

other is an animal, and the scales differ greatly. However, both studies are based on the same basic

theory and both are dedicated to the study of how stress or growth of biological tissues acts to influence

their morphological development and changes.

The study of morphological changes in stress-free growth of 2D dimensional organisms was initiated

by extending the theoretical derivation proposed by Xiaoyi Chen et al. [3]. Although the derivation

process was initially complicated, we still continued to explore its application after obtaining the desired

conclusion. Eventually, after a long time, we discovered that the same conclusion could be reached

through a simpler derivation. This realization led us to understand that if a conclusion is correct, there

must be more than one way to prove it. This approach allows us to use different methods to verify the

results, while also finding the most concise way to prove them. Simple theoretical derivations not only

make the research easier to understand and use, but also have profound implications for its application.

The second point I realize is that when attempting to establish a relationship between the morphology

of biological tissues and mathematical functions, intuition and experience play a crucial role. In our re-

search on stress-free growth of leaves [136], we did not explained in detail how we arrived at the correct

function to recover the contours of leaves and their main characteristic, as it was not a straightforward

task. Fortunately, Martine possessed significant experience, particularly with Hele-Shaw bubbles. With

the aid of many previous research [203, 204, 205, 206, 207, 208, 209], we eventually accomplished the

task by continuously attempting to determine the appropriate parameters. Notably, the coincidence of

using the analytical solution to a classic hydrodynamics problem to understand the fenestration process

of the Monstera leaf is a remarkable natural phenomenon.

Finally, working with biologists is very interesting and challenging. Despite their extensive experi-

ence, experimental results are often difficult to control. This uncontrolled nature can often make theo-

retical work difficult to carry out. Nonetheless, it is necessary to work together, as the experience and

intuition of the theoretician can often provide ideas for conducting experiments, and the experimental

results can validate the theory. This is where the second part of our work comes in.

Perspectives

While this thesis has made progress in advancing our understanding of the two-dimensional stress-

free growth of leaves, there remain several directions for future research. One such area pertains to

leaves exhibiting buckling morphology, which demands further exploration and refinement of the Föppl-

vonKármán theory. Specifically, we plan to extend this theory to the complex plane to more accurately

model stress-free growth followed by buckling under stress. Additionally, the crumpling phenomenon

of dead leaves during autumn draws our attention, further research will be carried out afterward.

In this thesis, the study of the growth and development of organisms such as C. elegans focus on

their morphogenesis as a result of the driving forces generated by biological signals. In fact, during their

growth and development, organisms achieve growth through the absorption of nutrients or other factors
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that enable an increase in biochemical energy, while these active substances can sense the surrounding

mechanical and biochemical environment, gradually adjusting the temporal and spatial distribution of

growth and releasing biochemical signals that produce active deformations capable of adapting to envi-

ronmental changes. This true state of activity and the fundamental characteristics of growth are required

to consider how stress and biochemical signals interact. Therefore, it is necessary to experimentally

track the spatial and temporal distribution patterns of biochemical and mechanical signals and to build

a theoretical model of mechanical-chemical-growth coupling. This research will help to understand the

relevant life processes at different scales and provide new ideas for disease diagnosis and treatment. The

research results can deepen the understanding of important physiological processes such as embryonic

development, tissue/organ growth and wound healing, and further provide new possible avenues for

quantitative research and clinical prevention and treatment of related diseases such as tumors.
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During morphogenesis, the shape of living species results from growth, stress relaxation, and

remodeling. When the growth does not generate any stress, the body shape only reflects the growth

density. In two dimensions, we show that stress free configurations are simply determined by the time

evolution of a conformal mapping which concerns not only the boundary but also the displacement field

during an arbitrary period of time inside the sample. Fresh planar leaves are good examples for our study:

they have no elastic stress, almost no weight, and their shape can be easily represented by holomorphic

functions. The growth factor, isotropic or anisotropic, is related to the metrics between the initial and

current conformal maps. By adjusting the mathematical shape function, main characteristics such as tips

(convex or concave or sharp-pointed), undulating borders, and veins can be mathematically recovered,

which are in good agreement with observations. It is worth mentioning that this flexible method allows us

to study complex morphologies of growing leaves such as the fenestration process in Monstera deliciosa,
and can also shed light on many other 2D biological patterns.

DOI: 10.1103/PhysRevLett.129.218101

During morphogenesis or embryogenesis, biological

species grow very slowly, often creating important shape

transformations at the origin of elastic stresses. In recent

years, the theoretical framework of finite elasticity with

multiplicative decomposition [1–3] was employed to

understand and mimic these shape transformations; for

instance, the development of leaves or flowers [4–6], the

morphological instabilities of human organs in fetal life,

including the brain cortex [7], the fingerprints [8,9], the

oesophagus mucosa [10], and the intestine villi [11–13].

For slender soft bodies with initially a rather symmetric

shape, the growth may change drastically their aspect with

curling and buckling [10,14,15], and these instabilities

perfectly illustrate the successive bifurcation steps induced

by the relative volume increase G. Thin bilayers exhibit

zigzag instabilities [12,16–18] in the same way as fluids in

Rayleigh-Bénard convection [19,20] or localized solitonic

patterns in the presence of defects [21]. However, due to the

complexity of finite elasticity, most of the theoretical works

describe simple highly symmetric bodies, such as thin

plates or shells, with the space-independent parameter G,
which grows slowly with time. The elastic stresses are in

the order of μV0ðG − 1Þ, μ being the shear modulus and V0

the initial volume: this estimate causes a significant

increase of energy in the soft material if the stress relaxation

and the shape remodeling are inhibited by the boundaries

[3], but it may not coincide with true situations.

Recently Chen et al. [22,23] have proposed that the

change of geometric shape is only induced by the volu-

metric growth GðtÞ without the generation of elastic

stresses. This strategy implies the definition of a mapping

that connects the initial position of points to their current

position at time t, and then GðtÞ is determined by imposing

a zero-stress condition. Their derivation is rather technical

and their examples are based on initial circular geometry.

Nevertheless, they derive a variety of stress-free mathemati-

cal geometries that mimic different biological patterns.

With the same objective but limiting ourselves to two-

dimensional thin samples of arbitrary initial and final

shapes, like fresh leaves, we propose a general formalism

based on conformal mapping techniques. Indeed, regular

planar close curves ∂Ω limiting a domainΩ can be related to

the unit circle by a holomorphic function according to the

Riemann theorem. This function also associates the points

insideΩ to the Riemann disc, and it gives a way to construct

the geometric deformation field during the growth process.

Then the shape will evolve from Cartesian coordinates to a

rectangular curvilinear system of coordinates. D’Arcy

Thompson [24] made the hypothesis that these coordinates

represent the velocity of shaping. Although conformal

mapping is not explicitly mentioned in his original work,

the pictures drawn in Ref. [24] concerning the growth and

evolution between neighbor species strongly suggest such a

hypothesis. The idea behind conformal mapping for grow-

ing leaves was revisited more recently [25] and also tested

experimentally. For example, Alim et al. [26] predict the
local displacement field of petunia and tobacco leaves

through a conformal mapping, which is rather consistent

with their experimental results.

The aim of this Letter is to prove that conformal

mappings can recover the shape of leaves without generat-

ing elastic stress and can determine the growth laws,
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independently of the nonlinear elasticity model. Herein,

different shapes of common leaves are selected, with a

special focus on the Monstera deliciosa family.

The formalism.—We consider a 2D formalism where the

leaf thickness remains constant during the growth without

deformation in the thickness direction. Growth is a very

slow process so that the deformations adjust immediately to

the growth. The initial leaf shape is represented by Ω0 and

the material points by X, the current shape at time t
becomes Ωt with the current point coordinates x. The

geometric deformation gradient is the second order tensor

defined by: F ¼ ∂x=∂X, and F ¼ FeG, where G is the

growth and Fe the elastic tensor [1]. The right Cauchy

tensorC only depends on Fe and is given byC ¼ FT
eFe [2].

Using the curvilinear coordinates of the initial configura-

tion with Z ¼ X þ iY ¼ F1ðΞÞ ¼ F1ðμþ iηÞ, we choose z
for the current configuration, such as z ¼ xþ iy ¼
F2½kðμÞ þ ilðηÞ� where conformal mapping is preserved

only if kðμÞ ¼ μ and lðηÞ ¼ η. F2ðμþ iηÞ is determined by

the outer leaf shape ∂Ωt which corresponds to μ ¼ μ0 ¼
kðμ0Þ at the time t of observation. Introducing kðμÞ and lðηÞ
for z simply broadens the ensemble of mappings between

the two domain boundaries F1 and F2.

Local growth rate of living tissues can be inhomogeneous

(dependent on the coordinates μ and η) and anisotropic,

which explains the tensorial mathematical representation of

G. To respect the leaf geometry, this tensor G must be

diagonal: G ¼ diag½gðμ; ηÞ=pðμ; ηÞ; pðμ; ηÞgðμ; ηÞ�, where
pðμ; ηÞ is the growth anisotropy coefficient, and gðμ; ηÞ2 is
the local volumetric growth at time t. For simplicity, we

suppress the μ, η, and t dependence in p and g functions.

Then the elastic tensor becomes

Fe ¼
1
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If p ¼ 1, the growth is isotropic, and Eq. (3) recovers the

Cauchy relations implying that the current configuration z
is an holomorphic function. If p ≠ 1,the growth is aniso-

tropic and p2 ¼ l0ðηÞ=k0ðμÞ. The derivation can be found in
the Supplemental Material [27], Sec. I. In finite elasticity,

the elastic strain depends on invariants (invariant under a

rotation) traditionally called I1, I2, and I3 [28,29], also

eventually on pseudoinvariants I4 and I5 for transversely

isotropic fibrous materials [30]. All these invariants are

functions of the right Cauchy tensor C which is reduced to

the unity tensor. So as long as Eq. (3) is satisfied, the

growth process will generate no stress, even in the case of

anisotropic growth.

As a conclusion, for 2D materials, it exists an infinite

space of stress-free conformal maps associated to a growth

tensor satisfying simultaneously Eqs. (2) and (3).

Incompressibility is not mandatory since material com-

pressibility is controlled by I3 that is equal to unity in our

case. In the following, we focus on fresh leaves which are

extremely diverse in nature with quasiplanar shapes

independently of the connection to the branch. The vein

size depends on the species, most of them have a central

prominent and rigid vein with a network of weaker lateral

veins [31]. Having its own characteristics, each species

requires an adaptation of our model to recover its shapes,

which is perfectly doable with holomorphic functions.

In particular, when very rigid veins appear, a partition

following the big veins may be necessary and the modeling

should be applied piece by piece. Hereafter, we focus on

botanic traits, such as the tip, the margin, and the existence

of internal holes. The knowledge of the initial and current

shape contours specifies both functions F1 and F2 and also

the growth density g. However, despite the mathematical

proofs of existence of such functions, their precise deter-

mination remains a challenge in practice requiring to solve

a rather difficult inverse problem [32–35], and the accuracy

of numerical methods depends strongly on the complexity

of the domain geometry. Therefore, our choice will consist

of summing a restricted number of hyperbolic cosine

functions −iΣkbkðtÞS
k with S ¼ cosh ½aðμþ iηÞ�, the coef-

ficient bk being obtained by simple fitting of the contour.

In practice, 3 modes k were sufficient to mimic a variety of

leaf shapes during their growth. The schematic diagram is

shown in Fig. 1.

Tips and margins of leaves.—Tips play a major role in

physical growth processes in various fields such as dendritic

growth [36], viscous fingering [37], fractures [38–40], and

filamentary organisms [41]. Tips are often considered as

being responsible for not only the growth dynamics but also

the stability of the global shape. However, leaves [42] exhibit

almost all kinds of shapes at the tip such as sharp pointed,

convex, or concave, see Figs. 2(a)–2(c), the last case being

much less common. Also, leaf margins are rather diverse,

being either smooth such as lily leaves or undulated such as

apple leaves. All these morphologies can be recovered with

our formalism based on the expansion in powers of S, by
fixing the central vein at μ ¼ 0 and the outer contour at

μ ¼ μ0. The coefficient a characterizes the plant species and

the parameters bk at initial and final time t are adjusted to the
observed contours, then generating both functions F1 andF2
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(see Supplemental Material [27], Sec. SII). Nevertheless, tips

with a central dip or undulating margins require an additive

correction Sc ¼ −icðtÞSedðtÞðμþiη−0.6Þ to our expansion. The

period and the amplitude of oscillations are easily controlled

by cðtÞ and dðtÞ, respectively, see Fig. 3, where we focus on
the margins of the Jujube and the White Sapote leaves. For
the Robinia shown in Fig. 2(f), the term Sc plays two roles,

i.e., controlling tip and margin. Once the shape of the leaves

is obtained with enough accuracy, the volumetric growth can

be evaluated using Eq. (2). In particular, in Figs. 2(d)–2(f),

color variation from dark green (weak growth amount) to

light green or yellow indicates the heterogeneity of the

growth intensity, less pronounced for the most rounded leaf

[Fig. 2(e)].

Blade perforation.—Surprisingly, the initiation and

evolution of holes in leaves also called fenestration is a

rather rare event across the plant world, and it mostly

happens in the family of Monstera deliciosa, commonly

used as a decorative vine. The blade perforation remains

difficult to interpret in terms of adaptive function to its

natural environment, that consists in tropical forests, and

different hypotheses have been considered such as water

uptake or sun flecks [43]. There are some biological

evidences that the blade perforation is generated by a

regulated program of cell death [44] and in this case, we

must take the hole distribution as a matter of fact occurring

in rather big leaves (more than 10 cm): physics and

mechanics cannot explain or justify their existence and

distribution. Indeed, even in the same vine, the leaves have

no symmetry: some present holes on both sides of the

central veins, some only on one side, and the number of

holes per leaf is highly variable. Most of the time, the

perforation is not visible and happens when the leaf is still

inside the sheath of an old one, see Supplemental Material

[27]. The emergence of a hole in a mature leaf is a rare

event but not impossible, in this case the central zone of the

domain between two lateral veins becomes thinner and

thinner in the middle, and ultimately one hole appears. The

typical timescale for this event is about 1 month.

FIG. 2. Natural leaves: (a) Jujube leaf with sharp tip and

oscillatory border. (b) Redbud leaf with rounded tip and smooth

border. (c) Robinia pseudoacacia leaf with concave tip and

smooth border. Mathematical images: (d)–(f) simulated by shape

function (see Supplemental Material [27], Sec. SII). Level of

green colors shows the local growth density in different regions,

lighter color indicating more growth intensity. Jujube leaf [(a) and
(d)] grows more at the tip while the top and bottom of Robinia
pseudoacacia leaf [(c) and (f)] have a weak level of growth.

Redbud leaf [(b) and (e)] shows a relatively uniform growth in the

entire area, except near the petiole.

FIG. 1. Schematic diagram: (a) μ and η are the curvilinear

coordinates, μ ¼ μ0 corresponds to a green curve and η ¼ η0 to a

blue curve. (b) Parameters bk0 depend on the leaf contour at

t ¼ 0, (F1). (c) Parameters bkðtÞ are determined by the contour at

time t, (F2).

FIG. 3. Different leaf borders, shape function of all contours:

z ¼ −ib1Sþ Sc, where μ0 ¼ 0.6, a ¼ 2 and b1 ¼ 2. (a)–(c):

Boundary shapes changing with decreasing values of αðtÞ
and βðtÞ. (d) Jujube leaves showing similar edges with (c).

(e)–(g) Boundary shapes evolving with only decreasing values

of αðtÞ. (h) White Sapote leaves show similar edges as (g).
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We have noticed the similarity of hole shapes with

viscous fingers or bubbles in Hele-Shaw cells [45,46].

From the viewpoint of modeling, they have in common to

be generated with conformal fields, of course due to

totally different physical reasons. The studies more

connected to our Letter concern series of steady bubbles

of velocity U traveling periodically in an infinite linear

Hele-Shaw cell. When surface tension is neglected, their

shapes are defined by 2 (for symmetric and centered

bubbles, [47]) or 7 parameters (for non symmetric bub-

bles, [48–50]), each of them allowing a time-dependent

adjustment. The periodic flow field is Laplacian, satisfies

the imposed boundary conditions on the two sides of a

rectangle which corresponds to one period of the flow and

is limited by the parallel horizontal walls of the exper-

imental cell. Such a rectangle can be easily mapped to a

domain enclosed by two lateral veins (defined by η), the

central vein and the outer contour. At the bubble boundary,

the pressure vanishes, which is also relevant to the

elastic fenestration problem without stress. Calling ζ

the Riemann unit disc coordinates, zb the position of an

arbitrary point in the flow, Burgess and Tanveer establish

the following relation [47]:

dzb

dζ
¼

Kð2=U þ Að1þ ζ2ÞÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðζ2 − β2Þðζ2 − α2Þð1 − α2ζ2Þð1 − β2ζ2Þ
p ; ð4Þ

where K and A are constants determined by the three

parameters U, α, and β; they are responsible for the length

and width of the hole through Eq. (4). The transformation

process and themapping functions are displayed in Fig. 4(b).

The leaf shape functions are fully determined at two different

times of their evolution and are shown in Fig. 4(a), in which

the maximum growth rate G is predicted near the petiole

while the tip corresponds to a minimal growth. These

solutions have symmetric holes (for-aft, up-down) and

centered in the middle, but in reality holes may appear closer

to the edge where they broaden, see Fig. 4(c). In this case,

they lose the for-aft symmetry and display finger shapes, the

previous approach [47] ceases to be valid and more complex

shape functions involving 8 parameters are required [48–50];

see Supplemental Material [27]. The mapping process

between the bubble and the hole is the same for the

symmetric or asymmetric case, see Figs. 4(b) and 4(d). In

addition, a peculiar variety of Monstera exhibits a finger

facing a small hole which reminds us of viscous fingering

experiments inHele-Shawcells [51–54]. Figure 4(e) displays

FIG. 4. (a) On left, natural Monstera deliciosa leaf with holes located either at the center (on top right) or connected to the border. On

the same level on top, initial and current state of a mathematical leaf with one hole, located at the center in a chosen area. (b) A rectangle

including a hole on left mapped into a specific curvilinear rectangle with boundaries defined by μ and η. The selected conformal

mapping is a solution of the periodic Darcy flow with periodic and symmetric bubbles. Selection of constant k and c2 are made in

relation with (a). (c) Natural Monstera leaf with “fingerslike” shape holes. The initial and current state of a mathematical leaf with

asymmetrical hole. (d) Conformal mapping generating an asymmetric bubble. The hole is closer to the outer boundary. (e) Natural

MexicoMonstera leaf with holes and fingers and the initial and current state of mathematical leaf with two holes. (f) Anisotropic growth

of the mathematical leaves with two holes, the functions kðμÞ and lðηÞ are detailed in [49], notice the changes of vein position between

(e) and (f).
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an example of such leaves, comparing to our mathematical

shapes at two different times. To sum up, our formalism

applies to any kind of planar leaves. The shape complexity

may require elaborated mapping functions that can be

found either in the literature or in classical specialized books

[55–57]. Numerical methods have also been established

[33,34,58]. The amount of growth, isotropic or anisotropic, is

obtained as displayed in Fig. 4 and in Supplemental

Material [27].

Leaf vein.—Veins provide structure and support to leaves

while also playing a vital role in transporting water and

nutrients to the leaf blade. The region closer to the major

vein may have access to more nutrients, which will be evenly

transmitted into lateral veins with a nutrient content equiv-

alent in each location [31]. Such unequal nutrient distribu-

tion is responsible for an anisotropic growth process

represented in Ref. [59]. It further leads to a change of

the leaf vein locations and consequently of the hole shape, as

shown by the comparison of Figs. 4(f) and 4(e). Besides, in

the anisotropic case, the growth rateG is more homogeneous

across the whole leaf, except near the petiole and the tip.

Conclusion.—Among all mappings possible for the shape

evolution of a 2D elastic sample, we demonstrate that

conformal or quasiconformal mappings have the advantage

to eliminate the elastic stresses independently of the elastic

material properties. Contrary to other cases studied recently

[3,5,6], leaves without exterior loading and growing in a

quiet environment sustain this approach. In this Letter, we

exploit the hypothesis of conformal mapping [24–26] on

plant leaves, recovering the boundary and further obtaining

the displacement field which establishes the growth kin-

ematics. Our method extracts information not only on the

cell proliferation which is often restricted to the nutrient

penetration but also on the biological complexity, such as

tissue remodeling [43]. This formalism allows us to evaluate

the growth accumulation in case of isotropy or anisotropy.

Veins can also be simulated and their relationship with

nutrient contents can be established. Understanding the

stress-free morphological evolution induced by growth is

not limited to the morphogenesis of leaves or other bio-

logical tissues, but can also shed light on the design of new

biomimetic soft devices.

The authors acknowledge the support of ANR (Agence

Nationale de la Recherche) under the contract MecaTiss

(ANR-17-CE30-0007) and the contract EpiMorph (ANR-

2018-CE13-0008). A. D. acknowledges the support of the

CSC (China Scholarship Council), file No. 201906250173.

*
Corresponding author.

benamar@phys.ens.fr

[1] E. K. Rodriguez, A. Hoger, and A. D. McCulloch, Stress-

dependent finite growth in soft elastic tissues, J. Biomech.

27, 455 (1994).

[2] A. Goriely, The Mathematics and Mechanics of Biological
Growth (Springer, New York, 2017), Vol. 45.

[3] D. Ambrosi, M. Ben Amar, C. J. Cyron, A. DeSimone, A.

Goriely, J. D. Humphrey, and E. Kuhl, Growth and remod-

elling of living tissues: Perspectives, challenges and oppor-

tunities, J. R. Soc. Interface 16, 20190233 (2019).

[4] M. Ben Amar, M. M. Müller, and M. Trejo, Petal shapes of

sympetalous flowers: the interplay between growth, geom-

etry and elasticity, New J. Phys. 14, 085014 (2012).

[5] F. Xu, C. Fu, and Y. Yang, Water Affects Morphogenesis of

Growing Aquatic Plant Leaves, Phys. Rev. Lett. 124,

038003 (2020).

[6] D. E. Moulton, H. Oliveri, and A. Goriely, Multiscale

integration of environmental stimuli in plant tropism pro-

duces complex behaviors, Proc. Natl. Acad. Sci. U.S.A.

117, 32226 (2020).

[7] T. Tallinen, J. Y. Chung, F. Rousseau, N. Girard, J. Lefèvre,
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I. STRESS-FREE GROWTH

We assume that the initial shape of the leaf is given by:

Z = F1 (Ξ) = F1 (µ+ iη) so Ξ = µ+ iη and G1 = F−1
1 (1)

where i2 = −1, F1 represents the mapping between cartesian coordinates and curvilinear coordinates of the interior of the leaf,
µ and η are conformal coordinates and µ = µ0 gives the initial outer shape. Here, we restrict to leaf shapes simply described
by a enough regular contour. We will explain later domains with holes which must be treated with appropriate methods [1–3].
Knowing the outer boundary, it is always possible to define the function F1 from the boundary, which is not always an easy task
and this mapping is unique, for regular contour. To take the inverse of an holomorphic function F1 is always doable formally
and gives G1 also an holomorphic function. As a consequence, we get the following Cauchy relations:

∂µ

∂X
=

∂η

∂Y
and

∂µ

∂Y
= − ∂η

∂X
(2)

In morpho-elasticity, growth is represented by a tensor G which is inhomogeneous most of the time (that means space dependent)
and also anisotropic. We assume that the growth respects the leaf geometry so the tensor G is diagonal and reads:

G =

[
1

p(µ,η)g (µ, η) 0

0 p (µ, η) g (µ, η)

]
(3)

where p (µ, η) is the growth anisotropy coefficient and Det(G) = g(µ, η)
2 is the volumetric growth at the time of observation.

When the leaf grows, we assume that the displacement of each point is given by the following mapping F2 such that:

z = F2 (k (µ) + il (η)) (4)

where z represents the new coordinates (x, y). This mapping is not conformal but it gives for x and y the relationship with the
initial shape configuration such as:

{
x = 1

2

[
F2 (k (µ) + il (η)) + F2 (k (µ)− il (η))

]

y = 1
2i

[
F2 (k (µ) + il (η))− F2 (k (µ)− il (η))

] (5)

According to the main hypothesis of the morpho-elasticity theory, the geometric gradient of deformation F and the elastic
gradient of deformation tensor Fe are related by : F = FeG [4]. Written in these conformal coordinates, these tensors
become:

F =
1

|∂ΞF1|

[
∂x
∂µ

∂x
∂η

∂y
∂µ

∂y
∂η

]
and Fe =

1

|∂ΞF1|

[
p
g
∂x
∂µ

1
pg

∂x
∂η

p
g
∂y
∂µ

1
pg

∂y
∂η

]
(6)

The first physical constraint concerns the incompressibility of the sample which imposes:

Det(Fe) = 1 ⇐⇒ ∂x

∂µ

∂y

∂η
− ∂x

∂η

∂y

∂µ
= g2|∂ΞF1|2 (7)

In addition, a stress-free configuration imposes I1 = Tr
(
Fe

T
Fe

)
− 2 = 0 and we derive:

p2
(
∂x

∂µ

)2

+ p2
(
∂y

∂µ

)2

+
1

p2

(
∂x

∂η

)2

+
1

p2

(
∂y

∂η

)2

= 2g2|∂ΞF1|2 = 2

(
∂x

∂µ

∂y

∂η
− ∂x

∂η

∂y

∂µ

)
(8)

A simple reorganization of Eq.(8) leads to:
(
p
∂x

∂µ
− 1

p

∂y

∂η

)2

+

(
p
∂y

∂µ
+

1

p

∂x

∂η

)2

= 0 (9)



2

so we get:

p
∂x

∂µ
− 1

p

∂y

∂η
= 0 and p

∂y

∂µ
+

1

p

∂x

∂η
= 0 (10)

If p = 1 (isotropic growth), Eq.(10) recovers the Cauchy relations and implies that F2 is an holomorphic function. If p ̸= 1, an
anisotropic growth process may also generate a stress free configuration. The coefficient of anisotropy for a description ruled by
F2 (see Eq.(5)) is obtained with:

∂x

∂µ
= k′ (µ)

F2
′ + F2

′

2
,

∂x

∂η
= l′ (η) i

F2
′ − F2

′

2
,

∂y

∂µ
= k′ (µ)

F2
′ − F2

′

2i
,

∂y

∂η
= l′ (η) i

F2
′ + F2

′

2
(11)

For simplicity, we do not detail the variable of each function and the symbol prime (′) means the first derivative with respect to
the natural variable as defined in Eq.(5). So introducing the values of the partial derivatives given by Eq.(11) into Eq.(10) gives:

p2 =
l′ (η)

k′ (µ)
(12)

II. COMPLEX REPRESENTATIONS OF LEAVES

In the main text, four different types of leaves are simulated, showing different properties. Knowing their outer border, their
respective shape functions are derived from the hyperbolic function S = cosh (a(µ+ iη)), eventually with a correction Sc. We
consider 2 different times. The first one called the initial time or time t=0 corresponds to the situation where the leaf is yet
planar and its shape characteristics rather well defined, the second time concerns the situation where obviously the surface of
the leaf has increased and perhaps some new features concerning eventually the tip or the margin appear. Due to the growth, the
coefficients between the two configurations will evolve in time and will reveal the observed shapes of mature leaves at time t. In
the cases considered in the main manuscript, we have firstly found the contour function of the Jujube leaf, which is similar to an
oval, with sharp tips and jagged edges, and it reads:

z = −i
(
b1(t)S + b2(t)S

2 + b3(t)S
3 + c (t) ed(t)(µ+iη−0.6)S

)
(13)

Redbud leaf resembles an inverted heart shape, with rounded tip and smooth border:

z = −i
(
b1(t)S + b2(t)S

2
)

(14)

Robinia pseudoacacia leaf has a concave tip and smooth border suggesting:

z = −i
(
b1(t)S + b2 (t)S

2 + c (t) ed(t)(µ+iη−0.6)S
)

(15)

Monstera leaf is the same as Redbud leaf, their petiole is concave, but the overall leaf is slightly longer, narrower and the tip is
more pronouced:

z = −i
(
b1(t)S − b2 (t)S

2 + 0.1(Log (S − S0))
1.09
)

(16)

where S0 = cosh (a (µv + Iηv)), (µv, ηv) being located at the vertex coordinate of the function z = −i
(
b1(t)S − b2 (t)S

2
)
. a

is a constant, and bk (t), c(t) and d(t) are functions of t. Except for the Monstera, the data are obtained by simple guess in Table
SI . For the Monstera leaf, the data between two time intervals of 14 days are derived by fit of the outer contour at time t = 0, t1
(leave 1) and t2 (leave 2). In the following, we restrict first on the Redbud case, then on the Monstera case.

III. DETERMINATION OF THE GROWTH CHARACTERISTICS

In this section, we detail the method to reach the growth parameters as g(µ, η) and p(µ, η) for the Redbud leaf. From Eq.(14),
we choose the initial representation as :

X = −b10 sin (aη) sinh (aµ)− 2b20 cos (aη) cosh (aµ) sin (aη) sinh (aµ)

Y = b10 cos (aη) cosh (aµ) + b20{cos (aη) cosh (aµ)}2 − b20{sin (aη) sinh (aµ)}2
(17)
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Leaf Name µ0 a b10 b1 (t) b20 b2 (t) b30 b3 (t) c0 c(t) d0 d(t)
Jujube Leaf 0.51 1 0.8 1 0.55 0.6 0.16 0.16 2.42 6.58 60 70
Redbud Leaf 1 1.1 -0.62 -0.7 -0.5 -0.22 - - - - - -

Robinia pseudoacacia leaf 0.7 1 1.5 1.75 0.28 0.3 - - 0.11 0.09 3 3
Monstera leaf 1 0.8 1.2 1.7 1.8 0.58 0.6 - - - - - -
Monstera leaf 2 0.8 1.2 1.8 1.9 0.6 0.63 - - - - - -

TABLE.S I. Parameters of leaf functions at initial time and at time t. For Monstera, two times of observation are listed.independently of t = 0.

and the current representation as:

x = −b1(t) sin (aη) sinh (aµ)− 2b2(t) cos (aη) cosh (aµ) sin (aη) sinh (aµ)

y = b1(t) cos (aη) cosh (aµ) + b2(t){cos (aη) cosh (aµ)}2 − b2(t){sin (aη) sinh (aµ)}2
(18)

The volumetric growth density parameter g(µ, η)2, for isotropic growth has been established in Eq.(2) of the main text, and is
displayed in Fig.(2) and Fig.(4) of the main text, with green colors of variable intensity according to the values of g2. Once we
fix the initial configuration at time t = 0 with the same representation (which is not mandatory), we get the following volumetric
growth rate:

g2 =
b1(t)

2
+ 2b2(t)

2
cos (2aη) + 4b1(t)b2(t) cos (aη) cosh (aµ) + 2b2(t)

2
cosh (2aµ)

b10
2 + 2b220 cos (2aη) + 4b10b20 cos cos (aη) cosh (aµ) + 2b20

2 cosh (2aµ)
(19)

The same method can be applied for finding the growth rate which determines the stress-free pattern for the other leaves. All
the parameters of leaf functions are shown in Table SI. Fig.(2) of the main text shows three kinds of leaves: Jujube, Redbud and
Robinia pseudoacacia leaf. In Fig.(4) (a)(c)(e) devoted to Monstera, the initial state leaf uses the parameters of the Monstera leaf
1 to calculate the growth. Current state leaf and Fig.(4) (f) use the parameters of the Monstera leaf 2.

To illustrate the method for anisotropic growth, we define k(µ) = µ and l(η) = (2π)−2e
(η2

−1)

(2π)2 + η− 0.1 according to Eq.(3)
of the main manuscript, defining the current configuration:

z = ib1(t) cosh [a (µ+ il (η))] + ib2(t)cosh
2 [a (µ+ il (η))] (20)

According to Eq.(12), the anisotropic coefficient p is given by p2 = 1 + (8π4)−1ηe
η2

(2π)2
−1

, and the volumetric growth rate
becomes:

g2 =
l′ (η) {cos (2al (η))− cosh (2aµ)}

{
b1(t)

2
+ 2b2(t)

2
(cos (2al (η)) + cosh (2aµ)) + 4b1(t)b2(t) cos (al (η)) cosh (aµ)

}

{cos(2aη)− cosh(2aµ)} {b210 + 2b220 cos(2aη) + 4b10b20 cos(aη) cosh(aµ) + 2b220 cosh(2aµ)}
(21)

where the parameters are the same as the ones for the isotropic growth. The mathematical leaves are shown in Fig.(S1) and we
can observe that the position of the leaf veins has changed with the growth anisotropy. So growth anisotropy gives a way to
modify the position of the lateral veins if their positions change between the two times of observation.

IV. HELE-SHAW BUBBLES VERSUS HOLES IN MONSTERA

The Monstera leaf fenestration requires specific tools for its representation. Our strategy consists in isolating the area where
the hole is located maintaining the original whole shape given by Eq.(16). We look for a conformal mapping which involves the
domain between the central axis, two consecutive veins and the outer frontier of the leaf defined by µ0 = 0.8. The strategy is
obvious if a complex mapping is known for a complex potential function defined in a stripe with one or two holes. The potential
flow representing a bubble or a finger travelling in a linear Hele-Shaw cell can be a good candidate. Indeed, the hydrodynamic
flow being governed by the Darcy law with incompressibility leads to a Laplacian pressure field, the shape bubble appearing as
a line of zero-pressure. The classical work of a unique finger [5] or bubble [6] in the linear infinite channel geometry has been
solved by Saffman and Taylor a long time ago, and the more recent extension to a periodic set of bubbles has been discovered
later, giving a way to solve a major difficulty: the domain of interest in our case has a finite length and we must link this domain
to a unique period of the stationary flow.
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Fig.S 1. (a) Current outer contour corresponding to µ0 = 1 of the isotropic growth. Veins of constant value η = η0. (b)Volumetric isotropic
growth coefficient in green colors. Intensity varies between 1.05 and 1.35. (c) Current outer contour corresponding to µ0 = 1 of the anisotropic

growth. Veins of constant value η = η0. For anisotropic growth p2 = 1 + (8π4)−1ηe
η2

(2π)2
−1

. Comparing to the (a), the position of veins
changed. (d) Volumetric anisotropic growth coefficient in green colors. Intensity varies between 1 and 1.2. (e) Displacement of the velocity
field visualized with arrows.

A. Symmetric hole

We first focus on the symmetric hole/bubble located in the middle of the domain. D. Burgess and S. Tanveer [7] have derived
a three-parameter family of exact solutions defined in the unit half-disc, see Fig.(S2)(a)-(b). We select this conformal mapping
zb(ζ) determined by:

dz

dζ
= KF (ζ)

(
2/U +A+Aζ2

)
with F (ζ) =

1√
(ζ2 − β2)(ζ2 − α2)(1− α2ζ2)(1− β2ζ2)

(22)

where zb(ζ) = u+ iv, and (u, v) are the coordinates in the physical plane of the Hele-shaw cell moving with a bubble with the
velocity U . α, β and U are the 3 degrees of freedom, while the constants K and A are determined via α, β and U :

fn (α, β) =

∫ β

α

tnF (t)dt;n = 0, 2, K =
U − 1

f0 − f2
, and A =

1

f0 + f2

(
f0 − f2
U − 1

− 2f0
U

)
(23)

These parameters are within the following ranges: 1 < U < ∞, 0 < α < β < 1, K > 0 and −1/U < A < ∞.
As shown in Fig.(S2)(a) and (b) similar to the Fig.(2) in the Ref.[7], six points from A to E represent the one-to-one corre-

spondence points before and after the mapping. We divide them into four parts, line segment CD, EF, DE and half bubble AB,
and then we use Eq.[22] for piecewise integration to obtain the Fig.(S2)(b), which shows a half-bubble in the rectangle. It is
worth noting that in the integration we need to specify the length L and width of the rectangle. The width is constant in this
mapping and equal to 1, L is determined by:

gn(α, β) =

∫ α

−α

t2F (t)dt;n = 0, 2 and K[(2/U +A)g0 +Ag2] = L (24)

By means of the symmetry in Fig.(S2)(b), a complete bubble is obtained, and an additive conformal mapping is required for the
transformation of the bubble into a hole located between two lateral curved veins. By letting α = 0.79, β = 0.808, U = 3 for
Fig.(S2)(c) and α = 0.9, β = 0.935, U = 3.5 for Fig.(S2)(d), the original hole shape at two different times (green figures) are
obtained. Then the transformation can be achieved by a simple linear relationship, µ = ku + m1 and η = kv + m2, where
constants k = π/16, m1 = 0 and m2 = π/16, two cases are obtained with holes in different areas, and their details are shown
in Fig.(S2)(c)-(d).
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Fig.S 2. In (a) the flow region in the ζ plane, in (b) the physical zb plane from [7]

. In (c) and (d) original and transformed holes at time t = 0 and time t in a growing leaf.

B. Asymmetrical hole/bubble

Noticing that, in the Monstera deliciosa, the shape of holes looks like more a viscous finger issued from the outer boundary,
we consider now a process where the left-right symmetry is not preserved. Such solutions and extension of the previous case [7]
have been explicited in different works by G. Vasconcelos and his collaborators [8, 9] and D. Crowdy [10, 11], and following
the formulation developed in Ref. [8], see also Fig.(S3)(a)-(b), the function zb(ζ) reads:

zb (ζ) = − 1

U

[
W (ζ)− W̃ (ζ)

]
(25)

where W (ζ) and W̃ (ζ) are defined by :

W (ζ) = K

∫ ζ

ζ0

P
(
q2 ζ

β1
, q
)
P
(
q2 ζ

β3
, q
)

√∏4
k=1 P

(
ζ
αk

, q
) dζ and W̃ (ζ) = K̃

∫ ζ

α4

P
(
q2 ζ

β2
, q
)
P
(
q2 ζ

β4
, q
)

√∏4
k=1 P

(
ζ
αk

, q
) dζ (26)

the constants K and K̃ being given by:

K−1 =
1

w (U − V )

∫ θ4

θ3

P
(
q2 eiθ

β1
, q
)
P
(
q2 eiθ

β3
, q
)

√∏4
k=1 P

(
ei(θ−θk), q

) eiθdθ and K̃−1 = − 1

wV

∫ θ4

θ3

P
(
q2 eiθ

β2
, q
)
P
(
q2 eiθ

β4
, q
)

√∏4
k=1 P

(
ei(θ−θk), q

) eiθdθ (27)

The angle θi satisfies the following sequence such that 0 < θ1 < θ2 < θ3 < θ4 ≤ 2π, θk = arg (αk), see Fig. (S3)(a). The
function P (ζ, q) is related to the first Jacobi Theta function Θ1 (ζ, q):

P (ζ, q) = − ie−τ/2

Cq1/4
Θ1 (iτ/2, q) (28)

where τ = − log (ζ), and C is a positive constant which will not appear in the following. α and β must satisfy some relationships
as:

α1α2α3α4 = 1 (29)

β1β3 = q2, β3 = β1 (30)
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Fig.S 3. In (a) the flow region in the ζ plane, in (b) zb plane. In (c) and (d), original and transformed hole at time t = 0 and t in the zb plane.
(e)(f) Original and transformed holes at t = 0 and t in a growing leaf.

β2β4 = −q2, β4 = −β2 (31)

The imposed up and down symmetry of the bubbles (but not left and right symmetry) causes additional relations on αi:

α2 = −α1

α4 = −α3
(32)

Then, for such solution, there are eight parameters to determine the final position and the bubble shape, the velocity U , V
θ1, θ3, β1, β2, q and a in the calculation. For simplicity, we always define θ3 = π, β1 = π/2, V = 1, so θ4 = 0 (2π) and
β3 = 3π/2 (−π/2). Now, the bubble is obtained by five parameters θ1, β2, q and a, U . These parameters are within the
following range: 0 < θ1 < π/2, 0 < β2 < π, 0 < q < 1 and 0 < w < +∞, 1 < U < +∞.

As before, a conformal mapping is required for the transformation of the bubble into a hole located between two lateral veins.
By assuming θ1 = 1.547, β2 = 0.35, q = 0.4, w = 1, U = 4.5 and θ1 = 1.41, β2 = 0.505, q = 0.68, w = 1, U = 4.5, the
original hole shape in two different states are obtained (see Fig.(S3)(c) and (d)). The transformation can be also achieved by the
simple linear relationship, µ = −uπ/(8a) + m1 and η = −vπ/(8a) + m2. For the process in Fig.(S3)(c), the constants are
m1 = 4/5 and m2 = 3/4, and for the process in Fig.(S3)(d), m1 = 4/5 and m2 = 3π/4.

For the two hole examples, we still use the asymmetric bubble function to obtain a small bubble close to the left border and
then get a finger-shaped bubble near the right border. The image of the finger-shaped bubble is shifted to the left by the length
L, which is the length of the small bubble cell. We treat it as a whole and map it between two lateral veins. For the initial state
as shown in Fig.(S3)(e), we define θ1 = 1.24, β2 = 0.26, q = 0.3, w = 1.2, U = 2 to get the small bubble, and θ1 = 0.82,
β2 = 1.5, q = 0.6, w = 1.2, U = 4.5 to get the finger-shaped bubble. Current state is shown in Fig.(S3)(f), we define θ1 = 1.22,
β2 = 0.32, q = 0.4, w = 1.2, U = 2 to get the small bubble, and θ1 = 0.674, β2 = 1.3, q = 0.66, w = 1.2, U = 4.5 to get
the finger-shaped bubble. Linear transformation is the same as before, µ = −uπ/(8w) + m1 and η = −vπ/(8w) + m2, the
constants being m1 = 0 and m2 = 5π/8 for both processes.
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Fig.S 4. Monstera leaf in early stages.

V. IMAGES OF YOUNG MONSTERA

In the main text, we mentioned the young Monstera leaves are inside a sheath, and they will expand over time, as shown in
Fig.(S4). It takes about one month for the young leaf to get planar (which may be our initial time), but after, growth will continue
during years.
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