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INTRODUCTION

In recent years, the field of Artificial intelligence (AI), and specifically Machine learning
(ML), has undergone remarkable evolution, demonstrating impressive achievements across
various domains. Nevertheless, as the range of applications expands, a significant challenge
remains: continual adaptation. This thesis centers on the field of incremental learning,
revolving around the development of intelligent systems capable of performing complex
tasks while continually adapting to new challenges and data. This introduction will first
offer an overview of the context as well as the scope of our thesis, followed by a presentation
of our main research contributions.

Context

Naval Group. This thesis is performed in the context of a Cifre PhD sponsored by
Naval Group. Naval Group, formerly known as DCNS (Direction des Constructions Navales),
is a major French defense and naval engineering company. The company designs, builds,
and maintains submarines, surface ships, and associated systems and infrastructure. It is
known for its expertise in naval architecture, shipbuilding, and marine engineering.

Industrial Motivation. Naval Group’s interest in incremental learning lies in its ap-
plication to boat recognition. Many ships nowadays use on-board cameras for marine
surveillance and Naval Group develops automatic systems that classify any boat captured
by the cameras. Current systems, however, as will be explained in more details later on,
are not adaptable at all and need to be trained with an overwhelming amount of data
before being deployed. Understanding incremental learning is the first step towards mak-
ing fully adaptable models able to be trained on the fly, and adapt themselves even after
being deployed.

Class-incremental learning. Often referred to as continual learning or even lifelong
learning, incremental learning constitutes a research domain focused on training machine
learning models able to adapt to evolving data and tasks as they emerge over time.
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Introduction

Class-incremental learning, a prominent sub-field within incremental learning, specifically
addresses the challenge of training image classification models to handle the continuous
addition of new classes or categories via the addition of new data. However, current
state-of-the-art machine learning systems for image classification are primarily static;
they require initial training to recognize specific categories of images before they can
effectively classify them. Consequently, when faced with new data and categories, as is
the case in class-incremental learning, these systems necessitate retraining on the new
images to adapt. Furthermore, training them solely on this new data leads to a drastic
loss of performances on the previous classes which is a famous problem of incremental
learning known as "catastrophic forgetting" [1], [2].

Contributions

The classification models studied in this thesis employ feature extraction techniques
to discern crucial patterns in images for classification purposes. This thesis is organized
to first analyse catastrophic forgetting and its influence on these extracted features, and
explore strategies to mitigate its effects. On this basis, the contribution of this thesis
consists in developing new approaches that improve upon the state-of-the-art and which
are distributed in specific chapters as follows :

— Chapter 2 : Experimental analysis of the open challenges faced by in-
cremental methods
The first year of this thesis was dedicated to extensive experimentation on catas-
trophic forgetting and its impact on the features extracted by the model, and on
the different incremental methods used to alleviate its effects. These experiments
revealed a defect in the features extracted by the models trained incrementally and
laid the foundations for the methods developed in the sequel of this thesis.

— Chapter 3 : Joint incremental and contrastive learning
Attempting to solve the feature issues highlighted by our previous experimenta-
tion, a new approach is introduced for training models jointly with contrastive and
incremental methods. In this chapter, the presented approach makes use of con-
trastive losses to improve the features extracted by the network while relying on
the incremental knowledge distillation loss to alleviate catastrophic forgetting at a
classifier level. This work led to the following publication :

1. Ferdinand Quentin, Clement Benoit, Oliveau Quentin, Le Chenadec Gilles, and
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Introduction

Papadakis Panagiotis (2022). "Attenuating catastrophic forgetting by joint con-
trastive and incremental learning". In the 3rd Workshop on Continual Learning
in Computer Vision. Workshop of the Conference on Computer Vision and
Pattern Recognition 2022 (CVPR).

— Chapter 4 : FECIL : Feature Expansion and enhanced Compression for
Incremental Learning
By combining the emerging concept of dynamic networks and an improved model
compression method that we developed, we proposed a method for extracting better
incremental features than our contrastive-based method while also incurring lower
computational overhead. This work is being finalized for an article submission in
parallel with the redaction of the manuscript.

13





Chapter 1

RELATED WORKS

In this chapter, we will begin by providing a detailed description of state-of-the-art ma-
chine learning methods for image classification. Following that, a comprehensive overview
of the class-incremental learning problem and its challenges when applied to these spe-
cific image classification systems will be presented. Lastly, an in-depth explanation of the
state-of-the-art techniques used to alleviate catastrophic forgetting in the class incremen-
tal learning setting under consideration in this thesis will be provided.

1.1 Machine learning for image classification

This thesis revolves around two main themes, machine learning and more specifically
Incremental learning (IL) and image classification.

Machine learning encompasses various approaches, each tailored to distinct learning
scenarios. For this thesis and image classification problems in general, supervised learning
is the preferred solution due to the large amount of labeled data easily obtainable leading
to high performance of models trained this way. Supervised learning is a well-established
paradigm where models are trained on labeled datasets, meaning the input data is paired
with corresponding true output labels. The goal is to learn a mapping function that can
make predictions or classifications on new, unseen data accurately. Generalization capabil-
ity is a critical aspect of supervised learning as it determines a model’s ability to perform
well on unseen or new data, which is essential for practical applications. Models that
exhibit strong generalization can make accurate predictions or classifications beyond the
training data they were exposed to. This capability ensures that the model can effectively
handle real-world scenarios and adapt to various conditions.

While traditional machine learning models, such as decision trees or linear regres-
sion, may still be suitable for simple tasks and situations with limited data, neural net-
works have become the go-to choice when dealing with complex, large-scale, and high-
dimensional data. In fact, neural networks and particularly deep neural networks, have
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Chapter 1 – Related works

gained significant popularity in recent years due to their remarkable capacity for general-
ization. They excel at learning complex and hierarchical patterns in data, making them
well-suited for tasks involving unstructured or high-dimensional data, such as images,
text, and speech. Their superior generalization capability, coupled with advancements
in training techniques and network architectures, has positioned them as the dominant
approach in supervised learning.

1.1.1 Artificial neural networks

Artificial neurons are the fundamental building blocks of artificial neural networks.
Inspired by their biological counterparts, these computational units receive input signals,
compute a weighted sum of the inputs and output an activation value. Mathematically,
they operate by computing the sum of the dot product between inputs and a weight vector,
and add a bias term to this sum. This activation of the neuron is then passed through
a non-linear activation function to produce the final output of the neuron. The choice
of activation function can vary and introduces non-linearity into the neuron’s output,
allowing it to model complex relationships in the data.

Figure 1.1 illustrates the operation of an artificial neuron. Considering m inputs
{xi}mi=1, the neuron’s weights {ωi}mi=1, the bias term b, and an activation function f(·)
the equation of a neuron’s output is the following :

y = f(
m∑
i=1

(xi · ωi) + b) (1.1)

Artificial neural networks represent interconnected layers of these artificial neurons.
These layers are often referred to as dense or fully connected layers where each neuron
is linked to each neuron of the previous layer. Simple neural networks are generally or-
ganized in an input layer, followed by one or more "hidden" layers, until the final output
layer. Information flows through these layers, with each layer’s neurons transforming and
processing the data. Due to the non-linear activation function of each neuron, chaining
them together layer after layer allows to model increasingly complex functions. This func-
tion, which the neural network models, is entirely defined by the weights {ωi}mi=1 used by
each neuron. For image classification problems this function ideally takes either specific
features extracted beforehand or directly all pixels of an image as input and outputs the
correct label of the input image.

Initially, the favored approach to extract meaningful features for classification involved

16



1.1. Machine learning for image classification
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Weights

Figure 1.1 – Schema illustrating each component of an artificial neuron.

utilizing specific algorithms depending on the problem and features needed. However, with
the emergence of deep learning and the advent of convolutional neural networks, a notable
shift has occurred towards working directly with all of the image pixels.

1.1.2 Convolutional neural networks

As illustrated in figure 1.3, Convolutional neural networks (CNNs) are deep neural
networks with many layers and weights that are specifically designed to deal with images.
They employ convolutional layers that apply filters to extract local patterns and features
from the input data, capturing spatial hierarchies. This features are then input into a
classification head, or classifier, which consists of a standard neural network, usually of
one or two layers. This classification head then outputs one value called an output logit
for each considered classes representing the CNN’s prediction about the input image’s
probability of belonging to each class.

Specifically, convolution layers apply a convolution operation to their inputs with a
specific kernel composed of the layer’s weights before introducing non-linearity via an
activation function. This convolution operation amounts to cutting the input in small
portions and computing the weighted sum of inputs with a specific filter, the convolution
kernel, to this small image (see figure 1.2). Depending on the size and weights of the
convolution kernel and activation function used, different features will be extracted from
the input. In most CNN architectures many kernels are used per layers to extract different
features from this small portion of the image that are then passed to the kernels of the
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next layer. This process results in features initially quite abstract, representing horizontal
and vertical edges in the input for example, that become more and more complex and
end up extracting the presence of eyes and other discriminative features.

INPUTS

CONVOLUTION
KERNEL

CONVOLUTION
LAYER

22 93 2

44 29 90

90 12 44

95 66 5

54 69 39

89 47 56

17 70 37

44 1 57

5 13 6

51 183

56 73

164 105

101 125

18 127

57 7

MAX POOLING
LAYER

183

73

164

125

127

57

Figure 1.2 – schema representing the operation of convolution and pooling layers. Here the convolution
kernel is of size 2x2 with a stride 1x1, and the pooling layer represented is a 2x1 maximum pooling layer.

Convolution layers, however, increase the dimensionality of the input, which can in-
crease significantly the feature extraction computation time, therefore many CNN include
pooling layers after each block of convolution layers. As illustrated in figure 1.2, pooling
layers downsample the inputs by moving a convolution filter across them, and taking the
maximum value (max pooling) or the average (average pooling) of small portions of the
input. For example, in figure 1.2 the represented maximum pooling layer employs a filter
of size 2 to cut in half the number of dimensions of the convolution layer outputs.

Convolution+Relu
Pooling

Convolution+Relu
Pooling

Batch of images
 and labels

ClassifierFeature extractor

Dense layer

Labeled Data

Boat

Output
logits

Figure 1.3 – Schema of a convolutional neural network. Multiple convolution and pooling layers extract
features from the input images, these features are then fed into a fully connected layer that will output
the final prediction of the model.
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1.1. Machine learning for image classification

1.1.3 Supervised learning

For image classification tasks, deep convolutional neural networks are typically trained
in a supervised way. Supervised learning consists in training a neural network with a la-
beled dataset where the label of each instance corresponds to the ground truth supervision
that is used for training. A neural network can be considered as a function Φθ : X 7→ Y
defined by its weights θ that maps an input space X into an output Y .

Considering an image classification problem with C different categories and a labeled
dataset D = {(xi, yi)Ni=1}, where N is the total amount of data, xi a 3-dimensional matrix
of values within [0, 255] corresponding to the pixels of an RGB image and yi ∈ [0, C[ its
corresponding class label, the weights θ of the neural network are then optimized so that
Φθ predicts the correct label for each image of the dataset.

In order to predict the correct labels, the neural network is designed to take a 3D
matrix X as input and output a vector z ∈ RC containing output logits corresponding to
each of the C classes considered. Then a softmax activation function is applied to z in
order to ensure each output represents the probability of the input image of belonging to
a class :

pj = ezj∑C
k=1 e

zk
(1.2)

with zj the output logit j of the neural network and pj the corresponding probability of
the input image of belonging to the class j. The prediction of the neural network ŷ is then
the class with the highest probability :

ŷ = argmax
j

(pj)

Finally, the labels y are transformed into one-hot vectors (vectors of size C filled with
0 and with a 1 at the position y) and the weights of the CNN are optimized via the
minimization of the following categorical cross entropy loss function :

L(ŷ, y) = −
C∑
c=1

yc log(ŷc) (1.3)

This loss function measures the disagreement between the network’s prediction and the
ground truth label. Therefore, the goal of the supervised training process is to find the
optimal set of weights θ∗ that minimizes the loss over the training dataset D :
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θ∗ = argmin
θ

 1
|D|

∑
(x,y)∈D

L(Φθ(x), y)


There are usually millions of parameters in CNNs, resulting in an optimization prob-

lem with millions of dimensions. Due to the vast number of dimensions, exact solutions
cannot be derived analytically and global optimization methods are too time-consuming
to find the global optimum. Consequently, an iterative algorithm known as the mini-
batch stochastic gradient descent (SGD) is employed to efficiently locate a satisfactory
local optimum:

Algorithm 1 Pseudo-code of the SGD optimisation process
Require: dataset D = {(xi, yi)Ni=1}
Require: model Φθ with trainable parameters θ
Require: learning rate η, batch size B, max number of epochs E
Require: loss function L

for epochs in [1, E] do
X, Y = {(xi, yi)B

i=1} ← sample a minibatch of size B in D
Forward: ŷ ← Φθ(X)
Compute loss: L ← L(ŷ, Y )
Backward:

Compute gradients: δ ← ∇θL
Update parameters: θ ← θ − ηδ

end for

This algorithm first realizes a "forward" pass of the neural network, a small batch of
data is input to the first layer of neural network, it then goes through all the layers and
the disagreement between the output and the ground truth labels is measured via the loss
function. Then a "backward" pass is done where the gradient of the loss with respect to
the weights of each layer of the neural network is computed.

This gradient is computed using the backpropagation algorithm first discovered in 1976
by S. Linnainmaa [3], and then first applied to neural networks in 1986 by Rumelhart et
al. [4], and to deep CNNs by Lecun et al. in 1989 [5]. This algorithm computes gradients
relative to each weight by accumulating and back-propagating errors from last layers to
first layers of the neural network.

These gradients give the direction in which to update the network’s weights in order
to minimize the loss, and the SGD algorithm then makes use of a learning rate η in order
to control the size of the step taken towards the minimum of the loss.
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1.2. Incremental learning

1.2 Incremental learning

As explained in previous sections, researchers have obtained state-of-the-art results
with supervised learning and CNNs on a wide variety of tasks such as object recognition,
image segmentation, natural language processing, up to sound classification. These CNNs
even achieve or surpass human performances on many learning tasks [6]–[8], however
one big drawback compared to the human brain faculty still remains, namely, the lack
of adaptability. Indeed, humans learn continually, constantly adding knowledge to what
they already know, whereas CNNs are trained once, then deployed and therefore will not
change overtime even if the real world data changes. For example, a CNN trained to
recognize someone’s face might be very effective just after training, however, a few years
later the person’s face would have changed so much that the model would have much
worse performances.

The main issue stems from the fact that these models are designed to be static, they
are trained to perform well on one task and are then deployed to perform this particular
task. Therefore, if we wish to add knowledge on top of already acquired knowledge, or
accomodate a change in the real world data distribution, the model would have to be
retrained from scratch using all previously seen data in addition to the newly encountered
data.

Data

Train Model once

Deploy Model once

New
Data

Train continually

Deploy continually

Conventional ML Continual ML

Figure 1.4 – Difference between classical machine learning and continual/incremental learning. Classical
machine learning is considered static whereas continual learning revolves around constantly adapting
models to newly acquired data.
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Unlike traditional machine learning, the field known as incremental learning, continual
learning, or lifelong learning (as discussed by Thrun et al. in [9]), focuses on creating
models and training methods that excel at quickly adapting to new tasks and data. As
illustrated in figure 1.4, the core idea resides in developing models with the ability to
adapt to new data across an infinite range of incremental tasks.

Traditional machine learning models would necessitate retraining with all prior data in
addition to the new data for adaptation, a cumbersome and resource-intensive approach.
In contrast, continual learning methods concentrate solely on the new data, making them
highly efficient and practical, especially in scenarios with limited computational resources
and time constraints.

Incremental learning is the central field of study of this thesis and more specifically
its application to image classification. The usual consideration for this application is that
the model is trained on τ different tasks incrementally. Each incremental task requires an
incremental training step t ∈ [0, τ [, where the step t = 0 is the initial training step and
each subsequent incremental task consists in training the model on a classification task of
Ct = Cold +Cnew classes. During each incremental step, the goal is then to accommodate
the Cnew new classes with minimal forgetting of the Cold previous classes.

1.2.1 Challenges of class incremental learning

The straightforward solution for adapting image classification models to new data and
classes would be to retrain them with all seen data whenever new data appears which
corresponds to a conventional supervised training step and therefore optimal performance
on all classes. However, this method presents a notable drawback: with each update, the
dataset would continuously expand, resulting in longer training times and increased data
storage demands. Eventually, these issues could render training impractical. Consequently,
the core challenge in incremental learning lies in the ability to adapt models using only the
newly acquired data. While updating models by training them exclusively on new data
addresses storage and training time concerns, it also introduces the primary challenge of
incremental learning: catastrophic forgetting.

As its name suggests, catastrophic forgetting represents an extreme drop of perfor-
mance on the classes learned in previous incremental steps when doing a new training
step. This issue arises because, as explained in section 1.1.3, all the weights of the model
are optimized to minimize the classification loss on the dataset. Indeed, since only the new
data is used for training, the previous classes are not represented in the dataset, therefore
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the weights are optimized for performance only on the new classes. Since all the weights
are updated, a weight drift happens as shown in Figure 1.5 which causes the weights that
were important for previous classes to change, resulting in catastrophic forgetting.

Figure 1.5 – schema representing the catastrophic forgetting happening in neural networks during
incremental learning. The decision boundary changes to separate the new classes but does not separate
the previous classes anymore.

While catastrophic forgetting may arguably be considered the main challenge of incre-
mental learning, many other issues arise with different methods used to alleviate it. We
therefore define some important properties of incremental learning algorithms and will
refer to them when comparing different methods:

Memory overhead: Incremental learning techniques often require storing information
from previous tasks in memory during the learning process, so as to prevent forgetting.
This can include storing previous data and models, as well as features or statistics about
previous tasks. However, this can result in a significant memory overhead for the learning
algorithm, which can become a problem as the number of incremental tasks grows. There-
fore, it is important to minimize the memory overhead of incremental learning algorithms
to ensure their relevance and scalability in handling a large number of tasks.

Training time overload: During incremental learning, complex training procedures
are often added to prevent forgetting, which can increase the forward and backward
computation time of the stochastic gradient descent algorithm (see algorithm 1) or add

23



Chapter 1 – Related works

more training steps for each incremental task. This can result in a significant increase in
training time, which can become a problem as the number of incremental tasks grows.
While a minor increase in training time may not be an issue, a significant increase can
lead to intractable training times for a large number of incremental tasks. Therefore, it is
important to minimize the increase in training time during incremental learning to ensure
its scalability and practicality in handling a high number of incremental tasks.

Plasticity and stability: The plasticity-stability trade-off is a fundamental challenge
of continual learning which refers to the ability of a neural network to adapt to new tasks
while retaining previously learned knowledge. On one hand, plasticity refers to the ability
to learn and incorporate new information, which is crucial for successful continual learn-
ing. On the other hand, stability is the ability to maintain previously learned information
without interference from new learning, which is essential for avoiding catastrophic for-
getting. The challenge is to find the right balance between these two competing factors,
as too much plasticity can lead to overfitting to new tasks and forgetting of previous
knowledge, while too much stability can lead to underfitting and difficulty in learning
new tasks. Therefore, the plasticity-stability trade-off problem is a crucial consideration
in designing effective continual learning algorithms.

Average incremental accuracy and forgetting: When training neural networks in
a supervised manner, the accuracy obtained at the end of the training step is usually
used for performance comparison. However, in order to consider the plasticity-stability
trade-off explained above, metrics known as forgetting and average incremental accuracy
are mainly used to compare performance in incremental studies [10]–[14]. The average
incremental accuracy consists in computing the standard test accuracy of the network on
all seen classes at the end of each incremental step and averaging them. While conceptually
simple, this incremental accuracy is convenient for measuring the plasticity-stability trade-
off. In fact, a model only stable would reach high accuracy only in the first incremental
step while a model with too much plasticity would reach high performance only in the
last incremental step, which in both cases leads to poor average accuracy.

For a more precise evaluation of the stability of the model, forgetting measures are
sometimes used and computed in the following ways :

Considering an incremental step t, a previous incremental task k < t, and ak,t the test
accuracy obtained on the new classes of task k after the incremental training step t, the
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forgetting measure [15] of task k after incremental step t is computed in the following
way:

fkt = max
l∈{1,...,t−1}

(ak,l − ak,t), ∀k < t (1.4)

This equation gives a triangular matrix of forgetting measures for each task k < t

and each incremental step t, therefore, it is usually summarized in one measure after each
incremental step t, either the initial task forgetting f 0

t or the average task forgetting Ft:

Ft = 1
t− 1

t−1∑
k=1

fkt (1.5)

Compared to f 0
t , Ft is a better indicator of the overall forgetting happening during

each incremental step, however it’s computation is based on the maximal accuracy ob-
tained for each incremental tasks, which is biased towards stability. Indeed, an incremental
method allowing very little plasticity would reach very poor maximal accuracy on new
classes which would inherently allow for very little forgetting of these classes while an-
other method learning new tasks much better would have much more to forget. For this
reason the initial task forgetting f 0

t is sometimes preferred [15] because the initial task is
the only one that is trained using standard supervised training which ensures any incre-
mental method would reach a similar maximum accuracy for the same task which allows
a much more precise measure of forgetting.

1.2.2 The class incremental setting

In this thesis, we focus on continual learning applied to image classification problems.
As this topic remains very challenging (see section 1.2.1), many different simplifications
and settings have been proposed to study the problem:

Online and Offline IL are two different approaches to continual learning. On one hand,
online incremental learning trains a model continuously as new data becomes available
over time. Data from any class can be seen at any time and the model has to learn by
seeing each data only once. This approach is the most difficult form of continual learning
and shares challenges with the field of few-shot learning where the challenge is to train
models with few samples. Offline incremental learning, on the other hand, involves training
a model on a fixed dataset during multiple incremental steps. During each incremental

25



Chapter 1 – Related works

step the model is trained on a different training task with a new dataset containing all
the available data about C new classes. After each step, the model is expected to classify
correctly both new and previous classes and is then used as a starting point for the next
step.

For this thesis the choice was made to focus on the offline setting as it is the most com-
monly studied setting and allows us to study specifically catastrophic forgetting without
having to also take few-shot learning issues into account.

No memory vs memory. A commonly employed technique to address forgetting in
continual learning is the use of "rehearsal memory". In Section 1.3.1, we will provide a
detailed explanation, but in essence, it involves storing samples from previous incremental
steps in a fixed size memory and utilizing them during subsequent incremental steps. This
memory is then added to the incremental dataset during training which incurs memory
and training time overheads. Although avoiding the use of this memory is preferable, it is
considered a much more challenging setting, and hence, many works on continual learning
rely on it to alleviate forgetting.

In this thesis, this rehearsal memory is used ans studied because while it induces a
small computational overhead it also allows incremental methods to reach much higher
performances.

Single-head and Multi-head refer to different evaluation settings and are also some-
times called class incremental learning and task incremental learning. In the single-head
setting, using one classification head, the model is required to classify correctly images
from all seen classes without distinctions. In the multi-head setting, the model uses one
classification head per incremental task and uses a task identifier for each test image to
choose the correct classification head to classify it.

This multi-head setting is much simpler because the model is not required to discrim-
inate between classes seen in different tasks and simply uses the task identifier instead
at test time. In real world applications however, this task identifier is rarely obtainable,
which is why we chose to study exclusively the single-head setting in this thesis.

1.2.3 Problem formulation

To summarise the class incremental setting considered in this thesis, a convolutional
neural network is trained on T classification tasks sequentially. For each task t, a dataset
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Dnew containing all the available data (Xt,Yt) about Ct new classes is acquired, where
Xt is a set of images and Yt the ground truth labels associated. Let us denote Φt

θ(·) the
model whose parameters θ are getting optimized during the incremental learning step t,
and L the loss function used for the optimisation. If we consider the task t then the goal
of the incremental learning process is to minimize the empirical risk of all seen tasks given
access to data from previous tasks limited to the samples stored in the small rehearsal
memory Mt (see section 1.3.1) and total access to data (Xt,Yt) from current task t:

1
T

T∑
t=1
L(Φt

θ(X̃t); Ỹt) (1.6)

Therefore, the goal is find the optimum θ so that the cost function L is minimized,
using Dt = Dnew +Mt = {X̃t, Ỹt}.

The baseline method for supervised learning of a classification task is to minimize the
cross-entropy loss over the dataset with respect to the model parameters, but the quality
of a model trained with cross-entropy loss is highly dependent on how well the dataset
represents the real world distribution for the task. Therefore, if access to previous data is
limited the performance of the model on the previous tasks will quickly degrade, and this
is where the main problem of incremental learning, catastrophic forgetting, occurs.
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1.3 Incremental learning state-of-the-art

The methods used to mitigate catastrophic forgetting in class-incremental learning can
be divided into three categories. In the subsequent section, we discuss the first approach,
often referred to as data rehearsal, where data from previous classes is rehearsed while
learning new ones. We then elaborate on how regularization terms are incorporated into
the training loss to mitigate forgetting, and further delve into the solutions that have been
proposed to address the inherent imbalance of incremental training datasets.

1.3.1 Rehearsal

Rehearsal based methods constitute one of the first lines of works that emerged to ad-
dress catastrophic forgetting. The basic premise of these methods stems from a straight-
forward observation: the lack of data from previous classes when learning new classes is
the root cause of catastrophic forgetting. To mitigate this issue, rehearsal-based methods
aim to retain some data during each incremental steps in order to replay them in later
incremental steps.

The performance of these methods is heavily dependent on the quantity of data stored
while the upper performance bound is the performance of joint training on all seen data.
However, in order for these methods to remain applicable to a theoretical infinite number
of incremental tasks, the memory used to store previous data has to be considered of fixed
size. Since the size of this memory is fixed, and usually rather small to avoid memory and
training time overhead, one of the challenges of this area of research is to make sure the
most representative samples are stored for each class.

There are two main types of rehearsal, the first one often referred to as data rehearsal,
consists in storing real samples seen in earlier incremental steps either in image or com-
pressed feature vector form and replaying them during subsequent steps. The second one,
on the other hand, is called pseudo-rehearsal and revolves around using generative models
to generate previous classes’ data without storing large amounts of previous data. Indeed,
storing real images can be costly in terms of memory overhead especially for high resolu-
tion images, and replaying them artificially increases the incremental dataset size which
induces a training time overhead. Therefore pseudo-rehearsal based methods have been
proposed involving storing only a generative model able to generate pseudo-images or
feature vectors of previous classes to reduce memory overhead.
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Data rehearsal

As introduced earlier, rehearsal of previous classes’ data should remain limited in
order to maintain the method’s scalability across a large number of incremental steps and
classes. While early works [16], [17] considered fixing the number of samples per class in
the memory, the majority of algorithms have since adopted the approach initially proposed
by [10], which involves setting a fixed total memory size. This approach offers two key
advantages: firstly, it ensures that the memory size remains constant as incremental steps
increase, making the method highly scalable for numerous classes and steps. Secondly, in
the early incremental stages when the model has not encountered many classes yet, much
more samples can be stored. Indeed, the memory can be entirely filled until new classes
are encountered and some of these stored exemplars must be replaced by with new ones
from subsequent classes.

Given the fixed memory size, storing all previous samples is not possible. Instead, a
selection process is required to retain only the most representative samples. The choice of
this sampling strategy significantly impacts the effectiveness of data rehearsal, yet over
the years, only a limited number of distinct methods have been put forth in this regard:

Random selection. It is the simplest sampling strategy and consists in randomly sam-
pling K samples from the total amount of N images available for each new class Ct during
each incremental step.

Distance-based sampling. In their algorithm Rwalk [15], the authors considered sam-
ples closer to decision boundaries of each class as the most representative ones. Therefore,
considering a sample (xi, yi), they proposed using the corresponding output logit as a
pseudo-distance to the decision boundary:

d(xi) = oyi = ϕ(xi)⊤wyi

with ϕ the model’s feature extractor and wyi the weights of the last fully connected layer
for the class yi. They then considered sampling exemplars xi based on a probability q(xi)
proportional to 1

d(xi) in order to sample more exemplars with small distances for each
class.
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Entropy-based sampling. Another strategy proposed by the same authors [15] was to
instead store in memory the samples for which the model is the most uncertain about. The
uncertainty of samples was measured using the entropy of the output softmax distribution
and the higher the entropy the more likely the sample would be sampled.

Herding selection. In iCarL [10] authors took another approach and instead proposed
to keep in memory samples based on the class mean feature vector. For each class a set of
selected exemplars is constructed iteratively so that adding the selected exemplar to the
set of already selected ones minimize the distance between the set mean feature vector
and the real mean feature vector of the class (see algorithm 2).

Interestingly, the simple random selection has been shown in several studies [15], [18]
to outperform both the distance and entropy based methods. Indeed, random selection
demonstrated performances very similar to the best performing method : herding selec-
tion, while being a lot less computationally intensive. Herding selection, however, is more
suitable for very long-term incremental learning, where there are many classes and only
one example per class can be stored in a fixed memory size. In this case, herding guar-
antees that the stored example is the most representative one because it is the closest to
the mean of the class.

Algorithm 2 Herding sampling strategy
Require: image set X = {x1, ..., xn} of class y
Require: feature extractor of the current incremental model : ϕ()
Require: number of exemplars to sample m for class y
µ← 1

n

∑n
i=1 ϕ(xi) ▷ compute the class mean feature vector

for k = 1,...,m do
sk ← argmin

x∈X
||µ− 1

k
[ϕ(x) + ∑k−1

j=1 ϕ(sj)]|| ▷ choose the exemplar that keeps
the set mean the closest to the
real mean

X ← X \ {sk} ▷ Remove selected sample to avoid duplicates
end for
S ← {s1, ..., sm}
Output: Set of selected exemplars S for the class y
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While random and herding selection are now considered as baselines sampling methods,
some other improvements have been proposed to enhance the rehearsal memory.

Rehearsal improvements

Storing real images for rehearsal during an incremental learning process induces a
memory footprint that can be expensive storage-wise for some applications, therefore
another line of works [19], [20] focuses on reducing the amount of storage needed to store
previous data. One way to do so is to avoid storing images, and store previous data
in feature vector form instead. Feature vectors are intermediate representations of the
initial images on which are based the predictions of the network, they therefore contain
all the discriminative information of real images while containing considerably less values.
In fact, storing images in feature vector form would reduce considerably the amount
of storage needed per sample, thus allowing much more data to be stored, resulting in
improved rehearsal performances. An important limitation of these works is that in order
for the features stored to remain relevant in later incremental steps, the feature extractor
of the model has to be frozen during the entire incremental process. Since the feature
extractor is frozen during the incremental steps, the performances of these methods is
highly dependant on the quality of the initial feature extractor training [19].

Conversely, in their work "Mnemonics training", Liu et al. [21] proposed to store images
in the rehearsal memory, make the stored exemplars optimizable and optimize them to
minimize forgetting. Indeed, they propose a "bilevel" optimization scheme consisting of
two training steps, a model-level and an exemplar-level optimisation step. Considering
an incremental step t, in the first model-level optimisation step they perform the regular
training step of a baseline incremental algorithm to train the model Φt

θ(·). Then, they add
a secondary optimisation step where Φt

θ(·) is frozen and optimize the rehearsal exemplars
stored to minimize the cross-entropy loss of the model on the current incremental dataset.

While adding a lot of complexity to the chosen baseline incremental algorithm, they
showed experimentally that their method outperformed the classic random and herding
sampling strategies when added to multiple incremental methods. They also analysed the
classes’ clusters in the feature space of the model and showed that their approach sampled
exemplars mostly located on the boundaries between clusters. This finding is particularly
noteworthy as it contradicts the conventional idea that exemplars closer to the mean of
the class are more representative, idea on which the herding sampling strategy is based.
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Pseudo-rehearsal

Pseudo-rehearsal methods follow the same objective than feature-based approaches as
they both focus on improving the number of samples used for rehearsal. Pseudo-rehearsal
methods avoid storing data and instead train and store generative models with the aim of
being able to generate as many and varied synthetic samples as needed during incremental
steps. This type of approaches typically require storing and training large generative
models which, similarly to data rehearsal, induces a memory and training time overhead.
However their advantage resides in their ability to generate much more samples and more
diverse ones than with data rehearsal. Considering a perfect generator, able to generate
an unlimited amount of diverse images from all previous classes, would not only improve
rehearsal quantity and quality, but also solve the imbalance issue faced by incremental
methods that we describe in more details in section 1.3.3.

Many works therefore emerged from this concept, experimenting with different gen-
erative models such as autoencoders [22], Generative Adversarial Networks (GaNs) [23],
[24] [25], and class conditional GaNs [26]. These generative methods all require a complex
training procedure that usually involves training a generator and a discriminator network
simultaneously and remain limited by the quality of the current state-of-the-art models
in this domain that still produce images far from perfect. Moreover, in an incremental
setting the generator has to be trained incrementally aswell, which implies that it is sub-
ject to catastrophic forgetting [27] exactly like the classification model which adds to the
difficulty of producing correct samples to replay in later incremental steps. While these
pseudo-rehearsal methods typically reduce the memory overhead of rehearsal, and im-
prove the quantity and diversity of the rehearsed data, the performances remain limited
due the rapid degradation of generated images’ quality with the incremental steps.

While pseudo-rehearsal is better in terms of rehearsal quantity, data rehearsal is su-
perior in terms of rehearsal quality, therefore combinations of both have been studied [28]
to benefit from the advantages of each strategy while limiting their drawbacks. In fact, it
was shown by Solinas et al. [28] that combining real and synthesized samples coming from
a reduced rehearsal memory and a generative model leads to improved performances and
reduced forgetting.

The approaches outlined in this section aim to mitigate forgetting by simply replaying
information about past classes during incremental steps, in the subsequent sections we
will describe other effective techniques have been proposed based on entirely different
principles. Specifically, we will describe regularization-based methods that modify and add
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terms to the loss function optimized during incremental steps. These adjustments allow
a better control of the training process that helps mitigating catastrophic forgetting.
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1.3.2 Regularizations

Regularization is a technique used in machine learning used to control the training
process that works by adding terms to the loss function so that the optimization process
tends to move weights to a favorable optimum. L2 regularization, for example, is generally
used when training deep CNNs to reduce the overfitting which occurs when a model
becomes too complex and fits too closely to the training data, leading to poor performance
on testing data. The L2 regularization, also known as weight decay, adds a constraint to
the weights in the form:

L2(θ) = ||θ||2

with ||x|| =
√
x2

1 + ...+ x2
n being the Euclidean norm, which adds a penalty based on

the amplitude of the weights of the model. This L2 term is then added to the loss being
minimized during the optimization process which will lead to an optimum with weights
much closer to zero, which has been shown to reduce overfitting.

In incremental learning these methods are not used to reduce overfitting but instead
to prevent forgetting of previous knowledge by forcing the model’s weights and biases to
retain the important information about past tasks when learning new ones. Two differ-
ent categories of regularization-based methods are used in incremental learning, in the
following sections we will describe both of them.

The first one is often referred to as weight drift regularization and regroups approaches
that aim at reducing the weight drift explained in 1.2.1. These approaches consider that
the most important weights for past tasks should change as little as possible when the
model is trained on new tasks in order to alleviate forgetting.

While these approaches have demonstrated impressive results in alleviating forgetting
they have been shown to hinder the plasticity of models trained incrementally which has
led to another type of regularization-based methods called knowledge distillation. This
knowledge distillation allows better plasticity of the model by not constraining weights
directly but only the output distribution of the models.

Weight drift regularizations

The main reasoning behind weight drift regularizations is that many sets of locally
optimal θt will result in the same performance when optimizing the model on the new task
t [29]. Therefore, it is likely that one of them lies close to the optimal set of parameters
from the last task θt−1. Consequently, restricting changes on the weights important for
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previous tasks performance when learning new tasks will lead the optimization towards
a set of parameters θt optimal for the new task while being close to θt−1 and therefore
minimizing forgetting.

Preventing important weights from previous tasks from drifting while allowing the
others to move towards the new optimum, however, requires some metric on which to base
the decision. The classical approach for this metric consists in assigning an importance
value to each weight and prevent each weight’s drift based on this importance value. Many
different approaches [15], [29]–[32] have been proposed for computing this importance
value, and most of them introduce a regularization term of the following form:

Lreg(θt) = 1
2

|θt−1|∑
i=1

Ii(θit−1 − θit)2 (1.7)

where t represents the current incremental task, θit the weight i of the network trained
during the current incremental step, |θt| the total number of weights of the network, and
Ii the importance value of the weight i for the previous task.

This regularization loss therefore adds a penalty to the loss for each weight of the
model proportional to the importance for the past task and the amount of drift from the
optimal value found during previous task θit−1. Thus, the more important the weight is
for the previous task the less it will be allowed to drift during the optimization process.

Many approaches have been introduced to approximate Ii, the importance of each
weight θi in the previous incremental task. [29], [30] proposed to view the CNN training
from a probabilistic perspective and relate the importance value to the diagonal of the
Fisher information matrix. The Fisher information measures the amount of information
that a random variable X conveys about the parameters of the distribution that models
X. The intuition behind this method was that all the information about previous tasks
must be contained in the posterior distribution p(θt−1|Dt−1). Therefore, using a Laplace
approximation allows to approximate this distribution as a Gaussian distribution centered
on θt−1 and thus to capture the amount of information each θit−1 carries about the previous
task with the Fisher information matrix.

In contrast to the above mentioned works, [15], [31] proposed to approximate each
weight importance Ii by computing the amount each weight contributed to the reduction
of the loss during each incremental step. This was done by keeping track of a running
sum of gradients during the optimization process and obtained relatively similar results
to the Fisher information approaches. Therefore in RWalk [15], Chaudhry et al. proposed
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to combine both approaches and use the sum of the Fisher based importance and opti-
mization based importance as the final weight importance values for their method and
managed to outperform all other weight drift regularization methods.

In the RWalk study [15], the authors not only introduce a new weight drift regular-
ization approach, but also put forward a set of metrics to evaluate the forgetting and the
intransigence of incremental methods. These metrics are respectively linked to the plas-
ticity and stability discussed in section 1.2.1. The results of their study demonstrate that
weight drift regularization methods are effective in mitigating forgetting while allowing
plasticity in the multi-head setting. In the more realistic single-head setting, however,
they showed that these methods perform relatively well in handling forgetting but con-
straint the model’s plasticity by preventing some weights to change when learning new
incremental tasks.

Knowledge distillation methods

In order to maintain model plasticity while avoiding forgetting during incremental
learning, a different type of regularization has been proposed, inspired by the knowledge
distillation process used in the field of transfer learning.

The concept of knowledge distillation was first introduced by Bucila et al. [33] and
subsequently generalized by Hinton et al. for use in transfer learning [34]. The aim was
to compress the knowledge from an ensemble of neural networks, which are known to be
cumbersome but perform better than a single model, into a simpler and more computa-
tionally efficient model. More generally, the objective was to be able to train a "teacher"
model of high complexity to achieve best possible performance and then compress it into
a smaller "student" model much easier to deploy and use.

In their work, Hinton et al. consider an ensemble of multiple convolutional neural
networks as one big teacher network and distill the knowledge from this teacher network
into a single student network by comparing the output probability distributions obtained
on a transfer dataset. During the training of the student, images are fed to both the student
and the teacher model, and a distillation loss term is added to the usual classification
loss. This distillation loss will be minimal if both models produce the same probability
distribution and will add a penalty depending on how diverging both distributions are.

Specifically, considering a classification problem with data about n classes, a teacher
model ΦT already trained for maximal performance on these classes and a student model
ΦS in which we want to compress the teacher model’s knowledge. Both neural networks
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have output logits zi, ..., zn for all classes and the output class probabilities are obtained
using the softmax activation function :

pi = ezi∑n
k=1 e

zk
(1.8)

For the distillation loss, Hinton et al. showed that because of the teacher’s expected
high performance, given an image x with label y, the output probability distribution
{pi}ni=1 would be very similar to the target one-hot vector and therefore does not con-
tain much information about the teacher knowledge. Instead, they proposed to compare
softened probability distributions :

qi = ezi/τ∑n
k=1 e

zk/τ
(1.9)

with τ the temperature hyper-parameter used to soften output probability distributions.
The final knowledge distillation loss is then the Kullback-Leibler divergence between both
model’s soften probability distributions :

LKD = KL(qT ||qS) (1.10)

where KL(P ||Q) = ∑
x∈X P (x)log(P (x)

Q(x)) is the Kullback-Leibler divergence, measures the
difference or relative discrepancy between two probability distributions. Moreover, since
the teacher model is frozen during training of the student, qT log(qT ) is a constant that is
not relevant for the minimization of the loss and therefore the loss can be reduced to :

LKD =
∑
x∈X

qT (x)log(q
T (x)
qS(x) )

⇔ LKD =
∑
x∈X

qT (x)log(qT (x))− qT (x)log(qS(x))

⇔ LKD = −
∑
x∈X

qT (x)log(qS(x))
(1.11)

This knowledge distillation loss is then added as a regularization term to the classi-
cal categorical cross-entropy classification loss (equation 1.3) when training the student
model.

The use of knowledge distillation in incremental learning has been first proposed by
Li et al. [11] in their algorithm LwF. They proposed to use the model from the previous
incremental step Φt−1

θ as the teacher model when training the current model Φt
θ in order
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to prevent forgetting. Indeed, from an incremental point of view, the model Φt−1
θ is an

expert about the old classes therefore using it as a teacher transfers important knowledge
about past classes into the model learning new ones and thus prevents forgetting.

Specifically, considering Ct = Ct−1 + Cnew classes, Φt−1
θ and Φt

θ respectively have Ct−1

and Ct outputs, therefore in order to properly compare the same probability distributions
only the Ct−1 outputs of Φt

θ are considered for the knowledge distillation loss :

LKD = −
∑
x∈X

Ct−1∑
c=1

qt−1
c log(qtc) (1.12)

with qt−1
c = ez

t−1
c /τ∑Ct−1

k=1 e
zt−1
k

/τ
and qtc = ez

t
c/τ∑Ct

k=1 e
zt
k
/τ

the softmax output probabilities of Φt
θ(x)

and Φt−1
θ (x) softened by an hyperparameter τ .

Many knowledge distillation improvements have been proposed in the literature since
its first application to incremental learning. First of all, based on the observation that the
training loss is composed of one term for learning new classes and one for remembering
old ones, Wu et al. [12] proposed to weight them using an adaptive weighting based on
the number of old and new classes during each incremental step :

L = λLKD + (1− λ)LCE (1.13)

with LCE the categorical cross entropy classification loss described in equation 1.3, and
λ = Ct−1

Ct the weighting coefficient for the distillation loss. Using this adaptive weighting
favors learning new classes during the start of the incremental training, and then focus
more on not forgetting old classes during later incremental steps when there are a lot
more old classes than new ones. This adaptive weighting was shown in many works [12],
[35] to allow the incremental model to reach a higher average incremental accuracy and
therefore a better trade-off between plasticity and stability overall during the incremental
training.

Several studies also examined the importance of the transfer dataset used for the
distillation [10], [36] and showed that better knowledge will be distilled from the teacher if
the dataset used for the distillation resembles the dataset on which the teacher was trained
[36]. This result led researchers to start using knowledge distillation in combination with
the rehearsal memory [10] described in section 1.3.1. Indeed, since the rehearsal memory
is added to the incremental dataset during each incremental step, the final dataset used
for the distillation contains some images on which the teacher model was trained, which
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allows the distillation loss to capture better knowledge about past classes.
Following the same objective of extracting better knowledge from the teacher model,

other improvements have been proposed based on the distillation loss itself. Instead of
comparing models output probability vectors, some works proposed replacing the LKD
loss with other distillation terms based on more informative parts of the neural networks
[16], [37]–[39]. Several works introduced different distillation losses comparing features
extracted by both models [16], [37] and showed that it allowed the distillation loss to
extract better knowledge from the teacher.

Finally, a third line of works rose along with the concepts of knowledge distillation
and rehearsal memory to alleviate forgetting even more. As will be further explained in
the next section, these works focus on the imbalance inherent to incremental datasets
and attempt to reduce the classification bias that it causes in the last layer of the neural
network.
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1.3.3 Task recency bias correction

Another line of research tackles a different problem of incremental learning which is
the problem of dealing with an imbalanced dataset. Indeed, when adapting the model
with all the new classes data and either none or a few samples stored in rehearsal memory
for old classes, the resulting dataset is heavily imbalanced in favor of new classes. This
imbalance issue is indirectly related to catastrophic forgetting, as training on imbalanced
datasets has been found to favor classes with the most available data [40].

In incremental learning, the bias towards new classes due to the imbalanced dataset
is often referred to as a "new classes’ bias". After each incremental step, the new classes
become old classes for the next incremental step, resulting in a number of old classes
increasing over time while the memory allocated to store their samples remains fixed.
This issue leads to an incremental dataset that becomes more and more biased towards
new classes which, when considering multiple incremental steps in succession, causes a
"task recency" bias, where the learning process becomes more biased towards the most
recently learned classes.

Class imbalance is a well-known issue in deep learning, as many datasets in computer
vision [41], medical diagnosis [42], fraud detection [43], and other applications are typically
imbalanced, and researchers have been actively exploring solutions to this problem [40].
In incremental learning, this imbalance has been shown in various studies [16], [18], [35]
to lead to a prediction bias in the classification layer of the model. Specifically, in the final
layer of the CNN, the weights corresponding to the new classes tend to have much larger
norms than those corresponding to the old ones. This effect can be seen in Figure 1.6.

As can be seen in equation 1.14, the classification layer computes the dot product
between the extracted feature vector and a weight vector for each class to obtain outputs
that are then converted to probabilities using a softmax function as in equation 1.8:

pi(x) = exp(θTi · ϕ(x) + bi)∑
j exp(θTj · ϕ(x) + bj)

(1.14)

with pi(x) being the probability of belonging to the class i for the image x, ϕ(x) the
feature vector extracted by the CNN, θi and bi the weights and biases of the classification
layer. Therefore, the fact that these weights are larger means that overall the outputs,
and therefore the activations, of the neural network will be stronger for new classes than
for previous classes, effectively introducing a bias in the probability distributions created
by the neural network leading to a prediction bias towards new classes.

40



1.3. Incremental learning state-of-the-art

Figure 1.6 – Figure borrowed from the survey [18] showing class specific weights norm in the classifi-
cation layer of the neural network after training on the CIFAR-100 dataset for 5 incremental steps of 20
classes/step. Weights have been sorted and colored by incremental training steps for better visibility.

In order to reduce this bias, two main lines of work are explored. The first one studies
the use of different classifiers less prone to bias to avoid using the biased classification layer
of the neural network at test time. The second one consists in using different methods
to modify the learnt weights after each incremental steps in order to alleviate this bias
without losing the discriminative information learnt.

Classifier changes

This approach was first introduced by Rebuffi et al. in their algorithm iCarL [10]
where they proposed to discard the biased classification layer at test time and instead
use a non parametric classification scheme that they call Nearest exemplar mean (NEM)
classification. They make use of a rehearsal memory during incremental steps and propose
to compute at the end of each incremental step the mean feature vector µc of all trainset
exemplars for each class c. Then they suggest to classify each test image based on the
closest mean feature vector:
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y∗ = argmin
c=1,...,Ct

||ϕ(x)− µc|| (1.15)

This classification process directly classify samples x based on feature vectors ϕ(x)
and therefore does not use the biased classification layer of the model. Many approaches
demonstrated its efficacy in incremental learning despite its simplicity [10], [44], however,
this classifier is not completely unbiased as it computes mean feature vectors of each class
based on all samples available in the incremental training dataset and therefore makes a
better approximation of the mean for new classes than old ones.

Some other approaches have also been proposed to normalize the classification layer to
reach the higher performance that the parameterized classifiers offers while retaining the
unbiasedness of the NEM classifier [16], [39]. These approaches considered normalizing
the last layer of the model with a cosine normalization [45] which normalizes both the
feature vectors and the weight vectors before computing the dot product :

pi(x) = exp[η(θ⊤
i · ϕ(x))]∑

j exp[η(θ⊤
j · ϕ(x))]

(1.16)

where v = v
||v|| represents L2-normalized vectors, and η is an added learnable parameter to

control the peakedness of the softmax distribution that is necessary because both θi and
ϕ(x) have unit norm, therefore the range of θ⊤

i ·ϕ(x) is restricted to [−1, 1]. The comparison
between NEM and this cosine similarity done in [16] revealed that this classifier was not
only effective in reducing the task recency bias in the classification layer but also superior
to NEM in terms of performances.

Post training correction

An alternative approach that has been proposed to reduce the task recency bias issue
is to add a post training bias correction step after each incremental task. To this end,
in End-to-End Incremental Learning (EtEIL) [17] Castro et al. proposed to add a small
finetuning step on a balanced subset of the available data at the end of each incremental
step. Essentially, at the end incremental steps they proposed to undersample the new
classes data and use this subset of new data together with the rehearsal memory to create
a balanced dataset that they then used to finetune only the classification layer with a
small learning rate. While this approach adds another training step to each incremental
steps it has been shown to be quite effective in removing bias and is still being used in
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very recent incremental studies [46].

Another simple and very similar approach to prevent the task recency bias was pro-
posed in [12] by Wu et al. in the algorithm they called BiC (incremental Bias Correction).
In this algorithm designed specifically for large scale datasets, they propose to add another
small training step similarly to EtEIL, but instead of retraining the entire classification
layer, consider only learning parameters of a linear transformation of the output logits to
compensate for the task recency bias. Indeed, during incremental steps 10% of the data
is transferred into a small validation set that is then used during the bias correction step
to train α and β that constitute the parameters of the bias correction layer :

qk =

ok 1 ≤ k ≤ Ct−1

αok + β Ct−1 + 1 ≤ k ≤ Ct
(1.17)

where ok represents the output logit for the class k obtained after the dot product of the
classification layer and before the softmax activation, Ct−1 is the number of old classes,
and Ct the number of new classes. This simple linear rescaling of new classes output logits
has shown to be very effective in reducing the classification bias [12] while being faster
and easier to optimize than the EtEIL method due to the reduced number of parameters
trained.

Different approaches have been proposed since then to remove the added training step
needed for this bias correction step [13], [14], [35]. The most noticeable improvement has
been the weight alignment proposed by Zhao et al. [35], they consider not just rescaling
the output logits to make new classes outputs and previous classes outputs comparable
but instead rescale directly the weights of the classification layer themselves. Specifically,
with a classifier Ht containing weights vectors Wc for c ∈ [1, Ct] with Cold old classes:

Ht = {W1, . . . ,WCt} = (Wold,Wnew)

Wold = {W1, . . . ,WCold}

Wnew = {WCold+1, . . . ,WCt}

They compute the norm of the weights vectors of each class Nc in the classifier and
rescale the weights of new classes based on the mean norm of old Nold and new classes
Nnew :
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N = {N1, . . . ,NCt} = {||W1||, . . . , ||WCt ||}

Nold = {N1, . . . ,NCold}

Nnew = {NCold+1, . . . ,NCt}

γ = Nold
Nnew

Finally, the weights of new classes are rescaled with this γ parameter :

Ŵnew = γ ·Wnew (1.18)

Modifying the weights of all new classes with the same rescaling parameter γ ensures the
relative magnitude of new classes weights and therefore the discriminative information
between each new class is retained. Furthermore, this rescaling aligns the norms of old
and new classes weights which removes the bias due to the new classes weights being
larger (figure 1.6). Despite its simplicity this approach was shown to outperform both
EtEIL [17] and BiC [12] bias correction methods while also requiring much less computa-
tion overhead [35].
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1.4 Conclusion

In this chapter we first provided the necessary background information for under-
standing the operation of convolutional neural networks and how they are used in the
context of class-incremental learning. Following that, we detailed the most notable com-
ponents that recent state-of-the-art algorithms use to alleviate catastrophic forgetting in
class-incremental learning. We showed that most of the algorithms effective in alleviating
catastrophic forgetting rely on three main components : data rehearsal, training loss reg-
ularization, and task recency bias correction. Many methods have been proposed over the
years to improve various aspects of these components, but the most notable approaches
could be summarized in the algorithm 3 used as a baseline for our work.

In this algorithm that we also visually illustrate in figure 1.7, a simple rehearsal mem-
ory with herding sampling is employed to store and replay the most representative exem-
plars of previous classes during each incremental steps. Furthermore, a knowledge distil-
lation term is added to the training loss to prevent forgetting and the weight alignment
approach introduced in equation 1.18 is used at the end of each incremental step to re-
move the bias from the classifier. This algorithm that we used as a baseline for our works
represents a simplified version of the one described in [35] which was the state-of-the-art
algorithm obtaining the best performances in 2020 when we first started our thesis study.

Algorithm 3 Pseudo-code of the baseline incremental method
Require: T the number of incremental steps
Require: Φ0

θ model composed of a feature extractor ϕ(·) and a classifier H(·)
M0 ← ∅ ▷ initialise rehearsal memory
for t=1,...,T do

Require: Dnew the dataset containing the new data
Φt
θ ← Φt−1

θ ▷ Initialize the new model without the previ-
ous model

Dt ← {Mt−1,Dnew} ▷ add the memory to the new dataset
L ← λLKD + (1− λ)LCE ▷ combine standard cross entropy and knowl-

edge distillation with adaptive weighting
Φt
θ ←SGD(L,Φt

θ,Φt−1
θ ) ▷ use the SGD algorithm to train the model

(see algorithm 1)
Mt ←Herding(Dnew, ϕ) ▷ use the herding sampling strategy to update

the rehearsal memory
H ←Wa(H) ▷ remove bias from the classifier with the

weight alignment method from section 1.3.3
end for
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Figure 1.7 – Illustration of the baseline incremental algorithm used in our study. In the initial training
step only the classification loss is used to train the model while the following training step adds the
rehearsal memory to the dataset and a knowledge distillation term to the training loss. The weight
alignment method is also further used after each incremental step to remove the bias from the classification
layer.



Chapter 2

EXPERIMENTATION ON THE OPEN

CHALLENGES FACED BY INCREMENTAL

METHODS

In this chapter we will present the different problems directly related to catastrophic
forgetting that we managed to observe during the first year of the thesis. Neural networks
are often considered as a black box, they are composed of many neurons that are linked
together with different weights which, if set properly, allow neural networks to model any
function. As explained in the previous chapter, the general outcome of a neural network
can be controlled by training it with a specific loss function, however explaining how it
operates inside of this black box is not trivial. For example, for our specific subject, catas-
trophic forgetting can be observed easily in the output logits and probabilities of networks
trained incrementally, however explaining how it happens, which neuron is forgetting or
which part of the network contains information about specific classes is very challenging.

In order to comprehend the mechanisms behind catastrophic forgetting, we started by
analysing separately different state-of-the-art components of incremental algorithms. In
section 2.1 we start by describing the general setup used for all the experiments that we
will describe in this chapter. We then presents in section 2.2 the visualisation of the feature
space and experiments done on the feature extractor part of the neural network. Finally,
in sections 2.3 and 2.4 we studied the rehearsal memory and distillation components used
by state-of-the-art incremental methods and experimented with ways of improving them.

The experiments and results presented in this chapter were conducted on a singular
dataset and backbone and may not translate totally to other incremental settings. The idea
was to explore many different directions of research and choose one particularly interesting
to study in details during the remainder of the thesis instead of doing a thorough analysis
of a specific component on different incremental settings and datasets. This is the reason
why these results were not published but are still presented here as an integral part of
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the research done during this thesis.

2.1 General experimental setup

In this section we will describe the general experimental setup used for the experiments
described in this chapter. Many experiments were realized to understand how the different
components of successful incremental algorithms effectively alleviate forgetting and find
ways to improve them. These experiments were done on the algorithm 3 that makes use of
the 3 state-of-the-art components of incremental methods to alleviate forgetting, namely
the rehearsal memory, knowledge distillation, and task recency bias correction (see section
1.3.3).

More specifically, for the rehearsal memory our algorithm samples representative ex-
emplars with the herding sampling approach explained in section 1.3.1 and we further
compare its impact to other sampling methods in section 2.3. For the knowledge distilla-
tion component we implemented the standard knowledge distillation loss LKD (equation
1.12), combined it to the classification loss using adaptive weighting as in equation 1.13,
and compared it to a feature-based distillation method that we describe in the section 2.4.
Finally for the last component, the task recency bias correction, all the state-of-the-art
approaches have effects only on the classification layer of the model (see section 1.3.3).
Since the focus of this thesis is on the features extracted during incremental learning,
we implemented the simplest approach called Weight alignment (equation 1.18) that also
attains the highest performances according to Zhao et al. [35]. Instead of experimenting
with the bias correction at a classifier level, however, we visualize and analyse thoroughly
the internal representation of the model trained incrementally in section 2.2 in order to
observe if a similar bias appears in the features of the model.

Furthermore, following standard incremental learning practice [10], [12], [35], our ex-
periments were carried out on the CIFAR-100 dataset and with the 32-layer ResNet [8]
backbone neural network architecture. This dataset comprises 500 training and 100 val-
idation images per class, encompassing a total of 100 classes. The images are in RGB
format and measure 32 by 32 pixels, depicting diverse objects like boats, fruits, furniture,
alongside animals such as fishes, insects, and mammals. The choice of this dataset was
motivated by its relatively low amount of data with a high number of varied classes that
allowed fast incremental trainings adding multiple classes incrementally up to the final
100 classes contained in the dataset. For all of the experiments, following the most stan-
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dard procedure [10], [12], [35], this dataset was separated in 10 incremental training steps
adding all the available training data for 10 classes during each step.

Finally, the training hyper-parameters used were determined experimentally to maxi-
mize performances. Specifically, we used the SGD optimizer with a momentum of 0.9, a
weight decay of 0.0005 and use a batch size of 128. We trained our models for 200 epochs,
with a learning rate starting at 0.1 and divided by ten after 100, 150, and 180 epochs. The
data augmentation applied to training images consists in random cropping, horizontal flip
and normalization. Following standard practice [10], [12], [35], the temperature parameter
τ was set to 2 in LKD (see equation 1.12) and the total size of the rehearsal memory was
set to 2000 images. The herding sampling strategy was used to choose samples to store
in memory and the memory was filled entirely during each incremental step.

2.2 Analysis of the feature space

While catastrophic forgetting has been shown multiple times [18], [35] to affect the
classifier part of the model during incremental learning by introducing a classification bias
towards new classes, few studies analyse the features extracted by incremental models and
the effect of catastrophic forgetting on them.

In this section, we will present the methods used during this thesis to visualize the
features used by the last layer, the classification layer, to categorize all classes. These
features correspond to the outputs of the penultimate layer, however, visualizing them is
difficult because there are too many of them. In fact, in incremental learning, the neural
networks generally used in most studies [10], [12], [35] are the 32 and 18 layers ResNet
networks [8], that make use respectively of 64 and 128 features.

In order to analyse what is happening in this highly dimensional space during incre-
mental learning we first considered specifically the clusters formed by each class. Many
incremental studies assume that these clusters are Gaussian, for example the herding
strategy explained in section 1.3.1 considers that representative samples that should be
stored in memory are the ones whose feature vector is closest to the mean, therefore
implying that clusters are Gaussian and that the mean represents the cluster well.

Due to the high dimensionality of the feature space, proving that these clusters are
Gaussian is not possible. We first considered different state-of-the-art statistical tests
such as Shapiro-Wilk, Kolmogorov-Smirnov, Pearson, and skewness and kurtosis analysis
but quickly realized that the high number of dimensions made it impossible to conclude
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anything from the results. Instead of proving that the clusters were Gaussians, we then
considered visualizing specific properties of these clusters using normalized features ex-
tracted from all training images. Specifically, after each incremental step, the normalized
features are computed with :

f = { ϕ(x)
||ϕ(x)|| ,∀x ∈ Dtot} (2.1)

with Dtot the dataset containing all the data about all seen classes and ϕ the feature
extractor trained during the incremental step. These features were then used for the
visualization of specific properties of the clusters, namely, the representativity of the
mean, and the intra and inter-class distances and a general two dimension visualisation
of their evolution during incremental steps.

2.2.1 Mean representativity visualisation

For incremental learning, one of the most interesting aspect of the feature space corre-
sponds to the representativity of each cluster’s mean. In fact, this mean feature vector for
each class is used in many incremental methods, for example to choose the best samples
to store in memory or even to classify with the NME classification scheme explained in
section 1.3.3. All these methods assume that the clusters of the feature space are Gaussian-
like and that most of the samples from each class lie close to their mean, but this is not
necessarily the case. In order to assess how representative of the class the mean is for each
cluster, we propose a visualization based on the k-nearest neighbors algorithm.

Specifically, after each incremental training step we considered all seen classes’ mean
feature vectors, used the k-nearest neighbor algorithm to classify the K nearest neighbors
of each mean and measured the accuracy for each class mean. The CIFAR-100 dataset used
for our experiments contains 500 training images for each class, therefore this K number
was set to 500 in order to visualize this accuracy as a percentage of all the training data.

Using the general experimental setup presented in section 2.1 we visualize the means
representativity at the start, middle and end of the incremental training and compare
them to those of a non incremental training of all classes in figure 2.1. This non incremen-
tal training was a simple training done on the same dataset, with the same model and
hyperparameters but without incremental steps, training all the classes at once using all
the available data for each class.

First of all, looking at figure 2.1d, we can see that for a classical training of 100 classes
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(a) mean representativity percentage after the
first incremental step.

(b) mean representativity percentage after the
fifth incremental step.

(c) mean representativity percentage after the last
incremental step.

(d) mean representativity percentage of a non in-
cremental training.

Figure 2.1 – Visualisation of each class mean representativity during incremental learning and non
incremental learning. For each class mean feature vector, the 500 nearest neighbors were used to visualise
the representativity of the mean as a percentage of good classification of those neighbors.

around 70-80% of the neighbors of each class mean feature vectors belong to the same
class. This result is reasonable, as the CIFAR-100 dataset is considered a relatively easy
dataset for standard deep learning techniques, and is therefore well clustered when the
model is not trained incrementally.

Furthermore we can see in figure 2.1a that at the start of the incremental training
process the means are even more representative of the clusters, with 99-100% for all
classes. This is due to the fact that only 10 classes are trained during the first incremental
step which combined with the relative simplicity of the dataset leads to training accuracies
of almost 100% and to a feature space where all training data points are well clustered
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around their mean. After some incremental steps however, catastrophic forgetting happens
and we can see in figures 2.1b and 2.1c that the representativity of the means severely
drops to around 40% in average at the end of the incremental training. This demonstrates
the fact that the loss of information due to catastrophic forgetting impacts the feature
space and makes data points that were initially close to their mean feature vector drift
to be closer to other classes’ mean feature. This could be caused by two problems, either
clusters becoming less and less separated to the point where they end up on top of each
other, or clusters becoming more and more spread out, or both at the same time.

In order to answer this question, we describe in the next section another experiment
realized during this thesis to visualize the clusters inter-class and intra-class distances
during training of an incremental model.

2.2.2 Inter-class distances and intra-class variance

The preceding visualisation established that catastrophic forgetting impacts negatively
the feature space by making each clusters’ mean value less and less informative of the
global class features. The reason why that happens, however, was not fully answered,
therefore another experiment was done to analyse these clusters in more details and
characterize them better. Ideally, the clusters should be as separated and compact as
possible in order for the classification head to be able to correctly classify each class
easily. We therefore propose to estimate and visualize both the inter-class and intra-class
distances between and within clusters the following way :

Dinter(Ci, Cj) = ||E[fCi ]− E[fCj ]|| (2.2)

Dintra(Ci) = E[(fCi − E[fCi ])(fCi − E[fCi ])T ]

Dintra(Ci) = Var[fCi ] (2.3)

where fCi represents all the extracted features f of a specific class Ci, Dinter the estimator
of inter-class distances, and Dintra the estimator of intra-class distances. Essentially, Dinter

corresponds to the Euclidean distance between two cluster mean feature vector, and is
bounded by 2 because the feature vectors are normalized (see eq. 2.1).

Figures 2.2 and 2.3 show the results obtained respectively for the inter-class and intra-
class distances. In a similar fashion than the last experiment on mean representativity,
a comparison is done between these distances within the feature space obtained with a
non incremental training, and after the first, fifth and last step of an incremental training
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(a) Heatmap of inter-class distances after the first
incremental step.

(b) Heatmap of inter-class distances after the fifth
incremental step.

(c) Heatmap of inter-class distances after the last
incremental step.

(d) Heatmap of inter-class distances of a non in-
cremental training.

Figure 2.2 – Heatmap representations of inter-class distances computed with the euclidean distance
between each cluster’s mean feature vector. As the feature vectors are normalized to have a unit norm,
the heatmap is bounded by 2.

using the general setup described in section 2.1.
Looking at figure 2.2d, we can see that when trained in a traditional manner the

model extracts features that do not maximize cluster separation yet separates evenly
every cluster. Moreover, figure 2.3d establishes that the clusters formed have very low
variance of around 3e−6, which illustrates the ideal feature space that contains compact
clusters evenly separated.

During incremental learning, however, as can be seen in figures 2.2a, 2.2b, and 2.2c,
the clusters are not evenly separated at all. In fact, interestingly the less separated clusters
are the new classes clusters while the past classes’ clusters seem well separated. This is
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(a) Histogram of class feature variances after the
first incremental step.

(b) Histogram of class feature variances after the
fifth incremental step.

(c) Histogram of class feature variances after the
last incremental step.

(d) Histogram of class feature variances of a non
incremental training.

Figure 2.3 – Histogram visualisation of clusters’ variance evolution over the course of the incremental
training.

interesting because catastrophic forgetting is supposed to have a negative impact on past
classes but not on new ones.

This result combined with the higher variances of past classes that can be observed
in figures 2.3a, 2.3b, and 2.3c illustrates that catastrophic does not make past classes’
clusters less separated, but rather more and more spread out. In fact, we believe that
rehearsal learning and knowledge distillation are responsible for the high separation of
cluster mean feature vectors, however the lack of variability of training data for past
classes induces a loss of information at the edges of the clusters, leading to clusters very
spread out at the end of the incremental training.
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Moreover, in figure 2.3 while the variance of new classes is lower than the one of past
classes, it is still around 3e−5 which is 10 times higher than the variance obtained with
the non incremental training. This demonstrates that catastrophic forgetting also makes
it more difficult to separate and compact new classes clusters, which is probably caused
by the loss of information on past classes.

In order to validate these results and visualize better the evolution of the global struc-
ture of the feature space during an incremental training, we further present in the follow-
ing section the visualizations obtained using a popular dimensionality reduction method
called T-SNE.

2.2.3 T-SNE visualisation

Finally, in order to better visualize the global structure of the feature space and ob-
serve which clusters are closer than others we used the t-Distributed Stochastic Neighbor
Embedding (T-SNE) technique[47]. This T-SNE is a dimensionality reduction method
that allows to visualize high-dimensional data in lower dimensions. Contrarily to tradi-
tional dimensionality reduction methods like the Principal Component Analysis (PCA),
however, the T-SNE is non deterministic and gives different results with different random
initialization. This leads to 2D visualisations that cannot be used to obtain quantitative
results on the structure of the feature space, nevertheless, the T-SNE focuses on retaining
the similarities between samples which experimentally led to better qualitative results
than using a PCA.

In a similar fashion than previous visualisation experiments, we run both the general
incremental training algorithm and a non incremental training with the same parameters
on the CIFAR-100 dataset. After each incremental training step, we then extract f the set
of features obtained with all the available data about the classes learned and compute the
2D T-SNE visualisation of the feature space. Figure 2.4 shows the visualisation obtained
with the incremental method after the first, the fifth, and the last incremental step and
compares it to the one obtained with a non incremental training. In the T-SNE computed
during the incremental training, the new classes’ clusters are shown in orange whereas
the old classes’s clusters are in blue.

As can be seen in this figure, after the first incremental training step of 10 classes,
each data point seem to belong to a well defined cluster and all 10 clusters seem clearly
separated from the others. In the following incremental steps, however, we can see that the
feature space progressively becomes more and more cluttered, with clusters less separated
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(a) T-SNE of the feature space after the first in-
cremental step.

(b) T-SNE of the feature space after the fifth in-
cremental step.

(c) T-SNE of the feature space after the last in-
cremental step.

(d) T-SNE of the feature space obtained with non
incremental learning.

Figure 2.4 – Visualisation of the general structure of the feature space during incremental learning
using a T-SNE. Samples from new classes are shown in orange while samples from previous classes are
in blue.

and some points a lot more scattered.
This loss of information becomes even more apparent when comparing the last in-

cremental T-SNE to the non incremental one where we can see for the same number of
classes that the clusters are much more separated and recognizable. Only a few samples
seem a bit scattered, while when trained incrementally almost the entirety of the points
look very dispersed and the clusters are difficult to notice, which demonstrate the effect
of catastrophic forgetting on the features.

Interestingly, when looking at the orange data points representing the new classes
learned, we can see that the loss of information happens also on new classes clusters for
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which all the available data was used during the last training step. We believe this is due
to the loss of information about past classes that makes it harder to separate new classes
from past classes and hinders clustering of new classes.

2.2.4 Conclusion

In this section we described the different experiments and visualisations done during
this thesis to analyse the evolution of the feature space during incremental learning. We
first proposed a visualization of the clusters mean representativity, we then further char-
acterized the feature space by visualizing the distances within and between clusters and
finally used a dimensionality reduction method to further visualize the global structure
of the feature space qualitatively.

We compared and visualized the feature space of an incremental model to the one of
a model trained in a conventional manner. The experiments done demonstrated a general
loss of information over the incremental training steps. The initially well clustered feature
space becomes more and more cluttered because clusters become very spread out and
therefore not very separated from each other, which leads to sub-optimal performances of
the classifier.

Moreover, this general loss of information due to catastrophic forgetting was shown

Figure 2.5 – Accuracy obtained on the new classes before and after weight alignment
during each incremental step.
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to not only impact past classes but also new classes. Since all data is available at train
time for the new classes, we believe this effect is caused by the loss of information about
past classes that clutters the feature space and prevents good clustering of new classes.
Interestingly, as shown in figure 2.5, this impact on new classes is not observed on the
classifier outputs during training but appears clearly after the bias is removed from the
classifier with the weight alignment part of the algorithm.

2.3 Exemplar selection based on features

The next component used by most incremental methods that we studied is the re-
hearsal memory. This memory was introduced first in the paper iCarL [10] and allowed
its authors to surpass the previous state-of-the-art performances (attained by the method
LwF [11]) by over 20% of accuracy on the CIFAR-100 dataset at the end of 10 incremental
steps with 10 classes per step. This huge performance improvement was obtained using
the herding sampling strategy described in section 1.3.1 to choose adequate samples to
store in memory after each incremental step, however since then very few works [15], [18]
studied other exemplar selection strategies.

As explained in section 1.3.1 the herding sampling strategy is based on the mean
feature vector of the class and performs better than other opposite strategies that focus
on boundaries between class. This makes sense because the memory size remains fixed
which means eventually only 1 sample per class will be stored in memory and the mean
of the class is better suited in this case. However we believe that when more samples per
class are available, sampling only exemplars close to the mean is suboptimal. In order to
verify this hypothesis, we experimented with other sampling strategies that would store
the closest sample to the mean but also allow more varied exemplars to be stored when
more space is available.

Specifically, we compared the following 4 different sampling methods :

Herding sampling. The standard state-of-the-art method sampling mostly exem-
plars close to the class mean.

Random sampling. The most basic sampling strategy that samples exemplars uni-
formly at random.

Mahalanobis herding sampling. A variation of the herding strategy that uses the
mahalanobis distance instead of the euclidean distance for sampling. This has the
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(a) Original data following a random 2d gaus-
sian distribution (b) Subset obtained with herding sampling

(c) Subset obtained with mahalanobis herding (d) Subset obtained with variance herding

Figure 2.6 – Visualisation of different sampling methods on artificial data following a 2d
gaussian distribution. Original data points are represented in blue and sampled ones in
red, confidence ellipses show the area included within 3 standard deviation of the clusters’
means.

effect of accounting for the cluster orientation when choosing closest exemplars to
the mean.

Variance herding sampling. A variation of the herding strategy that samples ex-
emplars so that the subset of choosen exemplars best represent the mean and
variance of the class instead of only the mean as the usual herding strategy does.

Figure 2.6 shows the effect of each variant of the herding sampling strategy proposed
on artificial data coming from a 2D gaussian distribution. 500 data points where randomly
generated and a subset of 200 data points was sampled with each herding sampling variant
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methods to properly analyse their effects.
As can be seen in that figure, the herding method samples a subset of exemplars that

are close to the mean therefore the cluster around the data sampled does not preserve
the variance of the original data. The mahalanobis herding method on the other hand,
preserves the orientation and the mean of the cluster but does not maintain the original
variance of the data. Finally, the variance herding method samples some points close to
the mean and some at the edges of the cluster to conserve also the overall variation of the
original data.

2.3.1 Experiment

Like the preceding experiments outlined in this chapter, the exemplar selection exper-
iments were conducted using the CIFAR-100 dataset, separated in 10 incremental steps of
10 classes each. The employed setup involved the ResNet-32 model and a rehearsal mem-
ory containing 2000 samples. We executed a conventional incremental algorithm that
incorporated rehearsal memory, knowledge distillation, and utilized the WA bias removal
technique. In these experiments, we substituted the herding sampling strategy used in
the rehearsal memory with each of the four methods detailed above and compared the
incremental accuracies obtained with the same incremental class ordering.

Accuracies
Last Average

Random 50.06 64.75
Herding 50.49 64.49

Mahalanobis herding 50.19 64.71
Variance herding 50.40 64.4

Table 2.1 – Accuracies obtained on the dataset CIFAR-100 separated in 10 incremental
steps with four different sampling methods. The accuracy obtained at the end of the last
incremental step and in average over all 10 incremental steps are reported. Each accuracy
reported represents the average of 3 different random class orders but with the same
random seed for each method.

Specifically, table 2.1 shows the average incremental accuracy and the accuracy ob-
tained after the last incremental step with the different samplers. As can be seen in this
table none of the methods notably enhance the performance. This suggests that, while
the rehearsal memory effectively mitigates the issue of catastrophic forgetting, the impact
of the sampling method employed is rather limited. This outcome could be attributed
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to two distinct factors. The first factor is the fact that stochastic data augmentations
are applied during training, which randomly alter each selected image to enhance the
training data variability. As a result, the need for selecting optimal exemplars becomes
less crucial. The second factor mitigating the significance of the sampling method is that
with each incremental step, the underlying features change to accommodate new classes.
Consequently, samples positioned close to the mean feature before an incremental step
might undergo drastic transformations, ending up significantly distant from it after the
incremental step has been taken.

2.4 Feature distillation

Knowledge distillation has been shown in many incremental study to be very effec-
tive in alleviating catastrophic forgetting [10]–[12], [17], [35]. As explained in detail in
section 1.3.2, the knowledge distillation loss operates by forcing the softened output past
classes probabilities of the model to stay similar to those of the model from the previous
incremental step.

In transfer learning where the concept of knowledge distillation originates, however,
recent state-of-the-art methods demonstrated even better performances using outputs of
intermediate layers instead of output probabilities [48]–[52]. In fact, these works revealed
that higher-level information could be extracted and transferred from features and outputs
of intermediate layers. Moreover, it was established in transfer learning that this infor-
mation extracted from intermediate layers was complementary with the one extracted
by output probabilities and that using both a feature based and the original knowledge
distillation loss resulted in improved performances [50].

Some works in incremental learning made use of attention or feature based distillations
[16], [38], [39], however none of them really compared the feature based distillation to
its output probability based counterpart. For this reason, experimentations to compare
both types of distillations were realised during this thesis to understand each distillation
strengths and weaknesses in the context of incremental learning.

2.4.1 Experiments

For these experiments the traditional incremental knowledge distillation LKD (see
equation 1.12) was compared to the similarity-preserving loss [49] that was shown to
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perform well on many different architectures of WideResNet, very similar architectures
to the ResNet ones used in most incremental studies.

Specifically, given a training mini-batch X = {(xi, yi)Ni=1}, we define the activation
map produced by the CNN at a layer l as A(l) ∈ RN×c×h×w, with N the batch size, and
c, h, w respectively the output channels, height and width of the layer. The similarity-
preserving loss first flattens the activation maps A(l) into the 2D matrices Q(l) ∈ RN×chw

and then computes the pairwise similarity matrices G(l)
T and G(l)

S , with T being the teacher
model and S the student :

G̃
(l)
T = Q

(l)
T ·Q

(l)⊤
T

G
(l)
T [i,:] =

G̃
(l)
T [i,:]

||G̃(l)
T [i,:]||2

(2.4)

Where G(l)
T and G(l)

S are N ×N matrices where G(l)[i, j] can intuitively be seen as the
similarity between the activation map produced by layer l for the input images xi and
xj. Therefore, the similarity-preserving loss penalises differences between G(l)

T and G(l)
S to

encourage the student model to have activation maps that produce the same similarities
between pairs of images than the teacher :

LSP (GT , GS) = 1
N2

∑
l∈I
||G(l)

T −G
(l)
S ||2F (2.5)

Where I represents the set of layers l at the end of each convolution blocks in the
teacher and student models, and || · ||F is the frobenius norm.

As explained in section 2.1, the experiments were realized on the CIFAR-100 dataset
with the ResNet-32 model. This model contains 4 blocks of convolution layers that each
extract less and less abstract features until the last layer of the last block that extracts
the final features used for prediction by the classification layer. The last layer of each of
those 4 blocks of convolutions was thus used in the equation 2.5 to encourage the current
incremental model Φt

θ to retain similar activation maps than the model Φt−1
θ from the

previous incremental step.
In order to compare the benefits of feature distillations like this similarity-preserving

one over the standard knowledge distillation, two different experiments were conducted.
For the first experiment, most of the incremental components of our standard algo-

rithm were removed in order to compare the quantity of information about past classes

62



2.4. Feature distillation

retained by both losses without any exterior influence. Specifically, two ResNet-32 mod-
els were considered, the first one ΦT

θ (·) was trained on 50 out of the 100 classes of the
CIFAR-100 dataset with the standard cross-entropy classification loss. The training of the
second model ΦS

θ (·), however, was done on the remaining of the dataset combined with
a rehearsal memory of 2000 samples of the 50 initial classes and only with a distillation
loss using ΦT

θ (·) as the teacher. This setup allows us to observe how much information
about the first 50 classes is transferred with different knowledge distillation losses using
the standard incremental dataset.

Results are shown in table 2.2, since the similarity-preserving loss does not train the
classifier part of the model, we report the NEM accuracy (equation 1.15) along with the
standard top-1 accuracy for all models. This NEM accuracy is obtained by classifying
samples directly from the feature vectors in an unparameterized way, and is therefore
useful to compare performance even when the classification layer of the model is not
trained.

Losses ΦT
θ Acc ΦT

θ NEM Acc ΦS
θ Acc ΦS

θ NEM Acc
LKD

76.28 75.77
72.78 62.54

LSP - 62.24
LKD + LSP 74.66 63.6

Table 2.2 – Comparison of the quantity of information transferred with different distil-
lation losses. We report both the NEM and standard top-1 accuracy on the 50 initial
classes. The similarity-preserving loss does not train the classification layer of the model,
therefore only the NEM accuracy could be reported for ΦS

θ trained with LSP .

First of all, the NEM accuracy reached by the student model ΦS
θ (·) is around 10%

lower than the standard accuracy when trained with any loss. This is the case because
we train the student in an incremental setting with a rehearsal memory of 2000 samples.
Since ΦT

θ was trained on 50 classes the rehearsal memory contains 40 samples per classes
instead of the original 500 images that the dataset contains for each class. For those 50
classes, the NEM classifier therefore estimates the mean feature vector of each class with
only 40 samples which leads to those lower NEM accuracies.

Interestingly, the NEM accuracy reached by ΦS
θ with the similarity-preserving loss

is not significantly higher than the one reached with standard knowledge distillation.
In fact, they both reach around the same accuracy which is different from the results
obtained by the original paper [49] where the similarity-preserving loss reaches slightly
higher accuracy. This difference could be explained by the fact that our ResNet-32 model
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contains less intermediary features than their WideResNet architectures which leads to
slightly less informative vectors used by the distillation loss.

The most interesting result, however, resides in the performance of the combined
LKD + LSP loss. Indeed, both the NEM accuracy and standard top-1 accuracy are sig-
nificantly higher which demonstrates the benefits of feature based distillations. Training
with any of the two losses alone gives similar performance but training with both at the
same time allows for improved student accuracy. This observation showcases that feature-
based distillations extract different knowledge that is complementary to the knowledge
transferred to the student via the standard knowledge distillation. Moreover, this accu-
racy improvement is observed both at a classification and feature level as can be seen
respectively from the standard and NEM accuracies.

Following this experiment we compared the losses in a more realistic incremental set-
ting where the objective is not only to remember past classes but also adapt to new ones.
For the second experiment, a regular incremental training was carried out on the CIFAR-
100 dataset with our setup making use of rehearsal memory, knowledge distillation and
weight alignment as explained in section 2.1. Only one incremental step was however con-
sidered in order to observe better the difference of accuracy between old and new classes.
Specifically, our incremental model was first trained on 50 classes regularly, and then
both the classification and distillation losses were used to train the model to remember
the 50 first classes while learning the new 50 classes. In a similar fashion than for the last
experiment, the incremental loss was replaced with each of the following losses :

1. L = LCE

2. L = LCE + LKD

3. L = LCE + LSP

4. L = LCE + LKD + LSP

The results obtained for this experiment are shown in table 2.3. As can be seen in this
table, the knowledge distillation loss greatly reduce forgetting of previous classes which
leads to an improvement of over 7% of accuracy overall compared to the training with
only a classification loss. Moreover, the similarity-preserving loss demonstrates an even
greater impact on forgetting, reducing it by almost 20% compared to the baseline training
without distillation. Furthermore, when both distillations are used for training, the same
observation than for the previous experiment can be made, the distillation losses benefit
from each other, leading to even more forgetting reduction.
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Losses Initial Accuracy Incremental Accuracy
Past classes Acc New classes Acc Overall Acc

LCE
76.14

47.36 67.38 57.37
LCE + LKD 59.06 68.34 63.69
LCE + LSP 67.3 50.22 58.76
LCE + LKD + LSP 69.84 54.62 62.23

Table 2.3 – Comparison between similarity-preserving and standard knowledge distilla-
tion during an incremental training of 50 initial classes with 50 more classes added in 1
incremental step. The top-1 accuracy on both the 50 first classes, the 50 new classes and
all 100 classes are reported for all methods.

When the similarity-preserving loss is added for training, however, the adaptation
to new classes is also greatly reduced, leading to an overall worse plasticity-stability
trade-off than when using the standard knowledge distillation. Indeed, the knowledge
distillation keeps only the outputs of past classes similar to the previous model outputs
(see equation 1.12), whereas the similarity-preserving loss keeps all intermediate feature
vectors similar to those of the previous model. In fact, this illustrates the main advantage
of the standard knowledge distillation over feature-based ones in incremental learning.
When dealing with the output probability vectors, the distillation can be applied only
on past classes knowledge very easily by only considering the past classes outputs before
computing the probabilities via the softmax function. With feature-based distillation,
however, this is not possible because all images are treated similarly for feature extraction
and no components of the feature vectors contain only information about past classes.

This issue leads the standard knowledge distillation loss to have a much better plasticity-
stability trade-off, however, we investigate in the next chapter the use of a contrastive
feature-based distillation that makes use of several components to reduce its constraints
on new classes to ensure better feature adaptation.

2.5 Conclusion

The work described in this chapter covers the most interesting results obtained during
the first year of this thesis. In this chapter many experiments were presented on multiple
components of a baseline incremental algorithm.

Specifically, the experiments conducted on the feature space of a convolutional neural
network trained incrementally revealed a big impact of catastrophic forgetting on the
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classes clusters. The initially well separated and compact clusters become very spread out
after a few incremental steps, causing them to end up on top of each other which makes
it impossible for the classification layer of the neural network to correctly classify classes.

Interestingly, experiments done on the rehearsal memory part of the incremental algo-
rithm revealed that the sampling method used to choose which images should be stored
during the whole incremental process did not have much impact on the performances.
However, experiments done on the knowledge distillation loss used to alleviate forget-
ting during incremental steps revealed that feature-based knowledge distillations and the
standard probability-based one transfer different informations and can be combined for
an even greater impact on forgetting. Feature-based knowledge distillation, however, also
displayed a negative impact on feature adaptation to new classes that needs to be ad-
dressed to attain a better plasticity-stability trade-off than when using only the standard
knowledge distillation.

The observation of the feature space becoming cluttered and the beneficial impact of
feature-based knowledge distillation were the foundation of the work that will be presented
next. In fact, by leveraging contrastive learning concepts, we present in the following
chapter our joint contrastive and incremental algorithm that focuses on reducing the
feature space clutteredness and adds a contrastive feature-based distillation term to the
training loss.
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Chapter 3

JOINT INCREMENTAL AND CONTRASTIVE

LEARNING

3.1 Introduction

In this chapter, an approach we published in 2022 will be presented. This approach
builds upon the recent state-of-the-art of incremental learning by incorporating contrastive
methods to further mitigate catastrophic forgetting.

Traditional state-of-the-art class incremental methods have focused on three main
concepts to alleviate forgetting, namely data rehearsal (section 1.3.1, task recency bias
correction (section 1.3.3) and knowledge distillation (section 1.3.2). Rehearsal-based meth-
ods generate or store a small portion of data from previous tasks and add them to the
current task training data [10], [12], [21] in order to keep information about previous tasks
in the dataset. As none or only a few samples from past tasks are stored and rehearsed,
the dataset used for training is heavily imbalanced which leads to a score magnitude bias
in the output of the last fully connected layer of the neural network towards most recent
tasks; bias that some works attempt to minimize [12], [18], [35]. Finally, knowledge distil-
lation approaches are regularisation-based methods that add a term to the loss function
in order to transfer knowledge of the previous tasks towards the model being trained for
the current task [10], [16], [38], [39], [53].

These methods have seen a lot of success over the years and have been proven quite
effective in alleviating forgetting in many works but only operate at a classifier level.
However, as highlighted in chapter 2, catastrophic forgetting also causes a global loss of
information in the feature space, or representation space, of the convolutional network.
This loss of information is directly observable in terms of clusters separation and com-
pactness (see section 2.2). In fact, clusters become very scattered during the incremental
process, leading to an entangled feature space without a clear separation of each class
which hinders the capability of the classifier.
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An emerging trend of representation learning called contrastive learning [54], [55] has
recently been shown to improve the discriminativeness of model’s representations in both
the unsupervised and supervised learning setting [54], [56]. An analogy between con-
trastive and incremental learning is thus drawn in this chapter to improve the discrimi-
nativeness of the model’s representation during incremental steps.

Specifically, the presented approach trains jointly the feature extractor and classifi-
cation components of the model, via both contrastive and incremental learning. On the
one hand, contrastive learning is employed to learn a more discriminative representation
for new classes while avoiding the forgetting of discriminative information of the previous
representation for old classes. On the other hand, state-of-the-art incremental methods
train an unbiased classifier that also adapts to new classes without forgetting previous
ones.

3.2 Background information

In this section, an overview of contrastive methods and how they operate will first be
given. Subsequently, the section explores previous studies that have integrated contrastive
methods into incremental learning similarly to our proposed approach.

3.2.1 Unsupervised contrastive learning

Initially introduced for unsupervised learning in SimCLR [54], contrastive methods
have been shown to learn discriminative representations in unsupervised and supervised
scenarios [56]. Conceptually, the idea is that similar images should have similar feature
vectors in the representation of the model, therefore pushing similar samples together
while pushing dissimilar ones apart ensures the discriminativeness of the feature space
learnt this way.

Traditional machine learning employs minibatch training, where minibatches of images
are randomly sampled from the dataset and fed to the model in order to compute the loss
gradients and update the model’s parameters. In SimCLR, data augmentation is used to
create two views of each image of the minibatch, by rotating it or changing the colors for
example. These two views of the same sample are then considered as a "positive pair", a
pair of images that should have similar feature vectors, and views of two different samples
constitute a "negative pair", images that should have dissimilar feature vectors (see image
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3.1). A contrastive loss is then employed to pull the feature vectors of positive examples
together while pushing negative ones apart in a self-supervised fashion.

CNN CNN CNN

Negative pair Positive pair

Representation vector Representation vector Representation vector 

Maximize similarityMinimize similarity

Figure 3.1 – Conceptual schema of contrastive learning. Contrastive methods consider that similar
images should have very similar features, therefore they pull positive pairs closer in the representation
space while pushing negative pairs apart, resulting in a disentangled feature space.

Specifically, considering a minibatch {xi}Ni=1 of N unlabeled samples, two augmented
views {x̃i}Ni=1 are generated to obtain an augmented minibatch {x̃i}2N

i=1. All samples from
this augmented minibatch are then fed into the feature extractor of the model ϕ(·) to
obtain representation vectors {zi}2N

i=1, and a contrastive loss function is computed for each
pair of positive vectors (zi, zj) :

ℓi,j = − log exp(sim(zi, zj)/τ)∑2N
k=1 1k ̸=i exp(sim(zi, zk)/τ)

L = 1
2N

N∑
i=1

N∑
j=1

ℓ(i, j) (3.1)

With τ a temperature scalar hyper-parameter and sim(zi, zj) = z⊤
i ·zj

||zi||||zj || the dot product
between L2 normalized feature vectors. This dot product between normalized vectors
sim(zi, zj) ∈ [−1, 1] is mathematically equivalent to the cosine similarity between two
vectors which measures the angular similarity of vectors. Two parallel feature vectors will
have a cosine similarity of 1 and two orthogonal ones will have a cosine similarity of 0.

Therefore, considering the vector of similarities between a representation vector zi and
all other ones in the augmented batch; this loss measures the softmax probability of two
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images being a positive pair based on their similarity and corresponds to the temperature-
softened categorical cross entropy of this measure. Intuitively the minimization of this
loss can be seen as optimizing the feature extractor ϕ(·) to maximize the cosine similarity
between positive pairs of images and minimize the similarity between negative ones.

Furthermore, in their work SimCLR [54], Chen et al. showed that the performances
of such contrastive methods rely mostly on three factors, that are now standard practice
in most contrastive learning methods [50], [56], [57].

The first one resides in the data augmentation involved in the generation of positive
pairs. Strong data augmentations such as intense color alterations, typically detrimental
to supervised learning due to excessive data distortion have been discovered to actually
benefit contrastive learning. Moreover, the combination of random crop and color distor-
tions was found to outperform most other data augmentations, and in other studies [56]
even more complex ones like autoaugment [58], mixup [59] and cutmix [60].

The second useful component for contrastive methods is a nonlinear projection head,
usually a simple multi-layer perceptron with one hidden layer and a ReLU activation
function that projects the model’s features onto a contrastive space during the training
process and is then discarded after training. Specifically, considering a model with a
feature extractor ϕ(·), the projection head gθ()̇ and an image x from the dataset, the
representation vectors z used for the contrastive loss are obtained in the following way:

z = gθ(ϕ(x))

with θ the parameters of the projection head that are trained with the contrastive loss at
the same time as the model’s parameters. The data augmentations used to generate the
images imply that z is trained to be invariant to those transformations. Thus important
information for the classification, like the color or orientation of objects, would be lost
without this projection layer. Indeed, it was shown that this projection allows z to become
invariant to the data transformations in order to minimize the contrastive loss while
the real features f = ϕ(x) retain the necessary information used for the downstream
classification task.

Finally, the last factor shown to improve capabilities of contrastive methods resides
in an increased batch size. In fact, contrarily to supervised learning where smaller batch
sizes typically perform better [61], during contrastive learning, bigger batch sizes provide
more negative samples for the contrastive loss which favours its convergence and results
in a better optimum.
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3.2.2 Supervised contrastive learning

While contrastive learning was initially proposed for unsupervised or semi-supervised
problems, it has since then been adapted to supervised scenarios by Khosla et al. [56].
Conceptually, as illustrated in Figure 3.2, their approach involves using labels to push
together not only an image and its artificially generated positive view, but also all the
other samples with the same label within the minibatch.

Figure 3.2 – Schema taken from [56] comparing self-supervised and supervised contrastive learning.
Considering an anchor image, the self-supervised contrastive loss contrasts one generated positive view
against a set of negatives consisting of the entire remainder of the minibatch. The supervised contrastive
loss, on the other hand, considers all samples that share the same label as positive views.

Specifically, considering an augmented minibatch I, they proposed a generalisation of
the contrastive loss to an arbitrary number of positives with the following loss :

LSupCon =
∑
i∈I

−1
|Pi|

∑
j∈Pi

log( exp(zi · zj/τ)∑
k∈I
k ̸=i

exp(zi · zk/τ)) (3.2)

where Pi the subset of the minibatch I containing all the positives of sample i, i.e. all the
samples and augmented samples of the same label, τ is a temperature hyperparameter,
and all zi are normalized representation vectors obtained with the projection head.

This supervised contrastive loss was shown to learn more discriminative representa-
tions with better generalisation capabilities than ones learned with conventional cross-
entropy. Moreover, in incremental learning it has been shown to learn representations
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that contain general knowledge useful for the classification of unseen classes which is
particularly beneficial to transfer to upcoming incremental steps [57].

3.2.3 Contrastive distillation

In the field of transfer learning, while standard knowledge distillation compares output
probability distributions to transfer knowledge from a teacher to a student model, recent
works showed that richer knowledge can be transferred from the features of the models [38],
[39], [48]. Based on this observation numerous contrastive learning methods have been
developed to transfer knowledge from models representations. One approach introduced
in CRD [50] and improved in WCoRD [52] was to consider the representation of the
teacher and the student as two different view of the same image and use the contrastive
loss to maximize mutual information between both representations.

While this approach demonstrated impressive performances against the state-of-the-
art of transfer learning methods [50], other contrastive approaches have been proposed
recently based on a different concept. Indeed, in SEED [51] and SSKD [62], instead of us-
ing the teacher as a contrastive view of the image, they propose to generate a contrastive
view with data augmentation and then compare pairwise similarities between the repre-
sentation of the teacher and student. Conceptually, they propose to compute for both the
teacher and the student model, the distribution of pairwise similarities in the augmented
minibatch similarly to unsupervised contrastive methods like SimCLR [54] :

Ai,j = exp(zi · zj/τ)∑2N
k=1 1k ̸=i exp(zi · zk/τ)

Each line of this matrix A contains a probability distribution representing the similar-
ity between an image i and all other images j, therefore similarly to standard knowledge
distillation the Kullback-Leibler divergence loss can be used to transfer knowledge from
the teacher to the student:

L =
∑
pi∈A

KL(pTi ||pSi )

With pTi and pSi the distributions extracted respectively from the teacher and the student
model. This objective does not constraint directly features of the student to be similar to
those from the teacher. It instead constraints the similarities between images produced in
both feature spaces, which allows more plasticity in the student model while still captur-
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ing important structural knowledge from the teacher feature space. This type of feature
similarity distillation demonstrated impressive performances especially for transferring
knowledge between different teacher and student network architectures [49], [51], [62].

3.2.4 Contrastive incremental learning

The idea of applying contrastive learning methods to incremental learning in order to
improve the feature space of incremental models has been explored in very few works. In
Supervised Contrastive Replay [44], Mai et al. proposed a contrastive method for online
incremental learning (a different setting than the one studied in this thesis, see section
1.2.2). They paired contrastive learning with the NEM classifier from iCarL [10] (see
section 1.3.3) in order to remove the need of a classification layer entirely.

In the offline incremental setting, contrastive methods were studied in the Co2L pa-
per [57]. In this work the author learn representations via contrastive learning with an
asymmetric supervised contrastive loss that only pulls together samples of new classes
during each incremental steps, and retain knowledge about old classes with a contrastive
distillation similar to the one employed in SEED [51]. Their method demonstrated great
improvements in the feature space of the network, however since they employed only con-
trastive learning to learn representations they had to add another training step to each
incremental step to learn a classifier on top of the contrastively learnt representation.

Overall, contrastive methods demonstrated impressive performance both in terms of
learning discriminative representations and retaining them via knowledge distillation, but
lack impact on the classification layer of the model, while incremental methods work at
a classifier level and lack impact on the representation of the model. This is why we
propose a new method that jointly trains the feature extractor and classification layer in
a contrastive incremental setup.
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Figure 3.3 – Pipeline of the proposed approach. During each incremental step, images are sampled in
minibatches from the incremental dataset containing new data and rehearsal data in order to compute
the four losses LCE , Lcon, LD, and LDcon used in eq. 3.4.

3.3 Proposed method

In this section, our approach for joint contrastive and incremental learning will be
presented. For this algorithm, the standard state-of-the-art incremental methods are em-
ployed to alleviate forgetting at a classifier level, while contrastive classification and dis-
tillation losses are leveraged to learn and retain a discriminative feature space during
incremental steps.

3.3.1 Overview

Like many state-of-the-art methods for incremental learning [10], [12], [35], we employ
rehearsal-based training with the cross-entropy loss LCE (see equation 3.5) to learn new
classes during each incremental step and the distillation loss LD (see equation 3.6) to
preserve knowledge about previously learnt classes. The usual baseline incremental loss
used in most studies is :

L = (1− λ)LCE + λLD (3.3)

with λ set to Cold
Cnew+Cold

[12], [35], Cold representing the number of past classes and Cnew

the number of new classes.
This loss, however, only operates at a classifier level. We therefore propose the addition

of a contrastive version of both the classification and distillation loss, operating at a
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feature level, in order to improve the representation of new classes as well as preserve the
discriminative features learnt in previous tasks. We consequently introduce the following
training loss function:

L = (1− λ)(LCE + Lcon
2 ) + λ(LD + LDcon

2 ) (3.4)

with Lcon being a contrastive loss that we describe in section 3.3.3, responsible for learning
better representations for new classes, and LDcon the contrastive distillation loss described
in section 3.3.4 for preserving the representation of past classes. During each incremental
step we then optimize the parameters of the model in order to minimize the loss function
described in equation (3.4) over the incremental dataset containing the data from new
classes and the rehearsal memory. The overall pipeline of our framework is shown in Figure
3.3 and explained in detail in the following subsections.

3.3.2 Incremental learning baseline

In this section we will describe the incremental learning scheme using knowledge distil-
lation and data rehearsal on which is based our method. Let us consider the classification
task at incremental step t with Ct classes comprising Cnew new classes and Cold past
classes, the task dataset Dt = {(xi, yi)Ni=1} contains all the available data about the Cnew
classes and only the rehearsal samples stored about the previous Cold classes. The model
parameters θ are initialized with the values obtained at the previous incremental step,
and Cnew new randomly initialized output nodes are added for the new classes. We then
train the model with the standard cross entropy loss LCE to learn new classes and with
the knowledge distillation loss LD to alleviate forgetting of the previous classes :

LCE(x, y) =
Ct∑
c=1
−yc log(pc(x)) (3.5)

LD(x) =
Cold∑
c=1
−qt−1

c (x) log(qtc(x)) (3.6)

where pc(x) is the output softmax probability for the cth class, qtc(x) = eoc(x)/τ∑Cold
i=1 eoi(x)/τ is the

softened softmax probability obtained from output node oc of the model, qt−1
c (x) is the

same softened softmax probability but obtained from the outputs of the model from task
t− 1, and τ is a temperature parameter.
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Furthermore, following each incremental learning step we adopt the weight aligning
bias correction method introduced in [35] (see section 1.3.3) that proved to be very effective
in removing the classification layer bias while requiring negligible computation time.

3.3.3 Contrastive features separation

In order to learn good representations for new classes with contrastive learning, we use
a setup similar to CO2L [57]. First, when a batch of N samples {(xi, yi)}N1 is drawn from
the dataset we use heavy data augmentation to generate 2 augmentations {(x̂i, yi)}2N

1

of each image. Then, considering the augmented minibatch {(x̃i, yi)}3N
1 , we extract the

features ϕi = φtϑ(x̃i). Following [50], [51], [57], [62], a projection map Γtψ parameterized by
ψ is used to project features onto a d-dimensional unit hypersphere : z̃i = Γtψ(ϕi)

∥Γt
ψ

(ϕi)∥ , and the
parameters ψ are optimized together with the model parameters to minimize our overall
loss described in eq. 3.4. Finally, the contrastive features z̃i of the augmented batch are
used to minimize the asymmetric supervised contrastive loss introduced in [57] :

Lcon =
∑
i∈S

−1
|Pi|

∑
j∈Pi

log( exp(z̃i · z̃j/τ)∑
k∈I
k ̸=i

exp(z̃i · z̃k/τ)) (3.7)

where I is the augmented minibatch, S is the subset of I containing only samples of new
classes, Pi the subset of S containing the positives of sample i, i.e. all the samples and
augmented samples of the same label, and τ is a temperature hyperparameter.

Since z̃i and z̃j represent the projection of the features onto a d-dimensional unit
hypersphere, the dot product is equivalent to a cosine similarity. Therefore, this loss can
be seen as maximizing similarity between new classes samples and their positives while
minimizing similarity with negatives. Thus "pulling" together new classes samples and
their positives in the representation while "pushing" away all other samples.

3.3.4 Contrastive features distillation

Using the asymmetric supervised contrastive loss allows the model to learn better
representations for new classes but not for past classes. In order to preserve the good rep-
resentation learnt previously for those classes we introduce a new supervised contrastive
distillation loss inspired from [62]. The general goal of this loss is to allow the represen-
tation of the model to change to extract discriminative features for new classes but to
ensure the new features produce the same similarities between rehearsal samples than the
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previous features. This way the representation is allowed to adapt to new classes but the
underlying information about past classes is preserved.

Since the model Φt−1
θ from the previous incremental step has not been trained on

data about the new classes, the representation obtained for the {(xi, yi)}yi∈Cnew is not
necessarily a very discriminative one. We therefore ignore samples from new classes when
computing this distillation loss in order to focus on preserving similarities between repre-
sentations of samples kept in the rehearsal memory.

Similarly to the loss Lcon described in the previous section, using {(xi, yi), yi ∈ Cold}
and {(x̂i, yi), yi ∈ Cold}, we compute zti , and ẑti , but also zt−1

i and ẑt−1
i , to obtain the

contrastive representation produced by Φt
θ and Φt−1

θ for each image of past classes from
the minibatch and the augmented versions of these images. We then compute the pairwise
similarities between zi and ẑi for each model and organize them into matrices Bt and Bt−1

with :

Bt
i,j =

zti · ẑtj
τ

(3.8)

where Bt
i,j contains the similarity between the contrastive representation of Φt

θ for xi and
x̂j, and τ is another temperature hyperparameter. We then apply softmax to each row
of the matrices Bt and Bt−1 to obtain probability distributions, and in analogy to the
distillation process described in eq. 3.6, we minimise the divergence between those two
probability matrices :

LDcon = −τ 2 ∑
i,j

Bt−1
i,j log(Bt

i,j) (3.9)

Overall, this loss allows the representation of the model to adapt to new classes but
ensures that the representation of samples from previous incremental steps produce the
same similarities than in the representation of the previous model.

3.4 Experiments

In the following sections we will describe the details of our algorithm and the general
incremental setup we used, compare our algorithm to other state-of-the-art methods and
conduct ablation studies to validate the effectiveness of our method.
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3.4.1 Experimental setup

We evaluate our algorithm and other methods on two datasets that are widely used in
incremental learning [10], [12], [35], Cifar-100 and ImageNet-100. Cifar-100 [63] contains
32 × 32 pixel color images of 100 classes, with 500 images per class for training and 100
images per class for validation. ImageNet-100 on the other hand contains images of 64
× 64 pixels and represents a subset of 100 random classes from the ImageNet ILSVRC
2012 [7] dataset containing 1000 classes. Imagenet-100 contains 500 images per class for
training and 50 images per class for validation.

We employed PyTorch in our implementation and following [10], [12], [35] we chose
the 32-layer Resnet model for Cifar-100 dataset and 18-layer Resnet [8] for ImageNet-100.
We used the optimizer SGD with a momentum of 0.9, a batch size of 128, and a weight
decay of 0.0002. We trained our models for 250 epochs during each incremental step, the
learning rate starts at 0.1 and is divided by ten after 150, 180, and 210 epochs. The data
augmentation applied to training images consists in random cropping, horizontal flip and
normalization. The temperature parameter τ was set to 2 in LD and 0.2 for the contrastive
losses Lcon and LDcon. Moreover, for the contrastive losses we create 2 images with the
same data augmentation than the initial image with the addition of color jitter and random
color dropping similarly to [57]. Following other contrastive learning methods [62] we use
a 2-layer MLP to project features onto the contrastive unit hypersphere. We separate
each dataset in 10 incremental steps, starting initial learning with 10 classes and adding
10 classes per step. Following [10] we use a rehearsal memory of 2000 images and use the
herding sampling strategy.

3.4.2 Comparison to other methods

We compare our method to several other rehearsal based competitive incremental
learning algorithms :

Incremental Classifier And Representation Learning (iCarL). [10] This algo-
rithm uses a nearest-exemplar-mean (NEM) classifier to remove new classes bias during
evaluation time, trains the model using a binary cross-entropy based classification and
distillation loss, and uses data rehearsal with the herding selection strategy.

Maintaining Discrimination and Fairness in Class Incremental Learning
(MDFCIL). [35] This method differentiates itself from iCarL by using the conventional
cross-entropy for the classification and distillation losses and adding the weight alignment
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Cifar-100 ImageNet-100
last Acc avg Acc last Acc avg Acc

Finetuning 8.81 ±0.38% 18.76 ±0.14% 8.66 ±0.28% 17.58 ±0.43%

iCarL_CNN 39.47 ±0.75% 54.78 ±1.24% 40.65 ±1.17% 53.58 ±1.66%

iCarL_NEM 47.80 ±0.73% 59.51 ±1.28% 47.82 ±1.07% 57.83 ±1.60%

CO2L 32.15 ±0.18% 47.27 ±0.10% 33.51 ±0.20% 50.01 ±1.03%

MDFCIL 50.43 ±0.71% 62.02 ±2.14% 46.29 ±1.84% 56.08 ±1.75%

Ours 50.81 ±0.59% 64.13 ±0.52% 47.64 ±1.32% 59.13 ±1.59%

Joint Training 69.39 ±0.26% 67.24 ±0.78%

Table 3.1 – Class incremental learning performance on Cifar-100 and ImageNet-100 with
10 incremental steps and 10 classes added per step. The top-1 average accuracy over all the
incremental steps as well as the accuracy after the last one are reported. For each method
we report the mean over 10 runs with random class orderings for fair comparison. For the
method iCarL we report performances using the model classification layer (iCarL_CNN)
and using their nearest exemplar mean classifier (iCarL_NEM).

step that we used in our algorithm after each incremental training step to remove bias
from the classification layer of the model.

Contrastive Continual Learning (CO2L). [57] This method trains a feature ex-
tractor using contrastive versions of the classification and distillation losses used in in-
cremental learning. Compared to the contrastive losses used in our method the main
difference is the equation of their contrastive distillation loss and its computation on all
samples from the minibatches instead of just samples coming from the rehearsal memory.
Since their method trains only a feature extractor they further add a second training step
to train a classifier with the conventional cross-entropy.

Finetuning. Finetuning represents the lower bound of performance achievable in
incremental learning. Finetuning is a simple training setup with only the conventional
cross entropy applied to finetune the model with each incremental dataset and no other
incremental learning parts.

Joint-training. Joint-training in the other hand represents the upper bound of perfor-
mances. It corresponds to training a model from scratch with conventional cross-entropy
during each incremental steps with the total dataset containing all data about new and
past classes.

For thorough comparison of our method to state-of-the-art ones we run each algo-
rithm 10 times on the two datasets considered, each method with the same 10 random
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class orderings. For fair comparison, we use the same models for each algorithms, so 32-
layer Resnet for the dataset Cifar-100 and 18-layer Resnet for the dataset Imagenet-100.
Performances of contrastive methods are positively correlated with large batch sizes [50],
[54], but it is not the case for incremental methods. Therefore we run all algorithms with
a batch size of 128 on both datasets for an unbiased comparison and coherence with other
incremental non-contrastive studies. We report in table 3.1 the top-1 accuracy obtained
after the last incremental step and the average incremental accuracy over all incremental
steps, ignoring the accuracy of the initial non-incremental learning step. We further pro-
vide in figure 3.4 the accuracy of each method on Cifar-100 as a function of the number
of classes seen during the incremental process.

As can be seen in table 3.1 and in figure 3.4 our method slightly surpass all other meth-
ods on both datasets, verifying our idea that contrastive methods can be used together
with current state-of-the-art incremental methods to improve the representation of the
model which in turn improves downstream classification accuracy. Besides, we can also
observe on the figure 3.4 that the performances of the other contrastive learning method
CO2L are quite low on Cifar-100 which can be explained by the batch size used relatively
low for the dataset compared to usual contrastive learning batch sizes. However, since our
method uses contrastive losses jointly with incremental losses we can see that it is much
more robust to small batch sizes.

3.4.3 Ablation study

In order to validate the effectiveness of our method we performed the following ablation
studies :

— Ablation A. Ablation of LDcon. We remove the contrastive distillation loss from
the optimization process to evaluate the impact of this new distillation.

— Ablation B. Ablation of all contrastive losses. Removing only Lcon would also
impact LDcon because Γt−1

ψ would not have been trained by Lcon during the previous
incremental step. Therefore we instead perform an ablation of both Lcon and LDcon
to see the added benefit of contrastive losses and compare to ablation A to see the
added benefit of individual contrastive losses.

— Ablation C. Ablation of non-contrastive losses. In order to observe the impact of
the incremental losses we perform an ablation of LCE and LD and keep only Lcon
and LDcon.

For a more straightforward comparison and since the focus of this ablation study is to
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Figure 3.4 – Evolution of the accuracy as a function of the number of classes learnt incrementally. The
mean performance obtained on Cifar-100 over 10 training trials with random class orderings is shown,
excluding standard deviations for clarity.

evaluate the impact of each part of our method and not to evaluate differences between
datasets, we compared performances only on the dataset CIFAR-100. We can see that the
performances of our method in table 3.1 and 3.2 are similar but not exactly the same, this
is the case because of different class orderings, therefore for fair comparison we used the
same random class orderings for each ablation. We report in table 3.2 the top-1 average
incremental accuracy obtained with the model classifier and with the nearest exemplar
mean (NEM) classifier from [10].

The NEM classifier allows us to evaluate the representations of models without being
impacted by the classification layer. This classifier first computes the mean feature vector
of each class using the incremental training set and the rehearsal memory after each incre-
mental step. Then, at test time, images are classified to the closest mean vector, therefore
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classifying images directly within the feature space without the use of the classification
layer or any other parameters. Since all incremental losses are removed in ablation C, the
classification layer of the model is not trained at all, therefore we make use of the NEM
classifier to compare its performances to the other ablations.

Top-1 accuracy Top-1 NEM accuracy
Full method 63.91 ±0.96% 63.10 ±1.10%

Ablation A 63.33 ±1.18% 62.71 ±1.28%

Ablation B 62.65 ±1.32% 61.39 ±1.18%

Ablation C - 58.51 ±1.05%

Table 3.2 – Ablation study done on CIFAR-100 with 10 incremental steps. We report the
top-1 average incremental accuracy and NEM accuracy. Each method was run 10 times
with random class orders but with the same ones for each ablation for fair comparison.
Ablation C does not train a classification layer therefore top-1 accuracy can not reported
and NEM accuracy is used instead to compare performances.

By comparing the full method and ablation C in table 3.2, we can clearly see that
adding incremental losses to the contrastive ones improves the method. Indeed, in ab-
lation C the top-1 accuracy is not provided because contrastive losses only train the
representation of the neural network and not the classifier. This is the most straightfor-
ward benefit of using them with incremental losses, the classifier is trained jointly with
the representation. Moreover, comparing NEM accuracies we can see that incremental
losses also improve the representation of the model which is mainly due to LD that can
extract knowledge about past classes from images of new classes where LDcon uses only
the rehearsal memory to extract knowledge about past classes.

On the other hand, comparing ablations A and B to the full method shows that
incremental losses also benefit from contrastive ones as the addition of each contrastive loss
slightly improves accuracies. Indeed, in ablation A where only Lcon is added compared to
ablation B, the accuracies are slightly higher which can be explained by the representation
of new classes during each incremental step that is improved. And the same observation
can be done when comparing the full method to ablation A, the addition of LDcon further
improves the representation of the model by alleviating catastrophic of the features from
previous classes therefore improving accuracy.

Overall, the ablation results show that the removal of the incremental and contrastive
losses both decrease performances, therefore validating our hypothesis that both the stan-
dard distillation and the contrastive distillation alleviate forgetting and that the model
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benefits from using both. Performance gains from contrastive losses however remain mod-
erate, we therefore believe it would be interesting for subsequent works to increase overall
importance of contrastive losses compared to incremental ones during training and vali-
date the method on large scale datasets.

3.5 Conclusion

In this chapter we described the state-of-the-art of contrastive learning and its appli-
cations to incremental learning. We showed that contrastive learning methods work at a
feature level to learn more discriminative representations, and that knowledge distillation
based contrastive approaches where especially effective in transferring those representa-
tions.

We therefore proposed a new incremental method based on contrastive learning that
we published in the continual learning workshop of the Computer Vision and Pattern
Recognition Conference (CVPR 2022). This method jointly trains the classifier and fea-
ture space of the model respectively with incremental and contrastive methods to improve
the feature space of the model. More specifically, we proposed improving the discrimina-
tiveness of new classes’ features with a contrastive supervised classification loss while
preventing forgetting of this discriminative information with a contrastive knowledge dis-
tillation loss. Using those losses together with the classical incremental equivalents that
work at a classifier level allowed us to make sure catastrophic forgetting is alleviated both
in the classifier and in the feature extractor during the entire incremental training.

We demonstrated the effectiveness of our method by comparing it against state-of-
the-art incremental methods and outperformed all of them on two baseline datasets.
While this method improves the average incremental accuracy by around 2%, it requires
generating 2 contrastive views for each image of the training mini-batches which induces
a non negligible training time and Graphics processing unit (GPU) memory overhead.
For the small datasets on which we tested this method this overhead was not a problem
however when we started studying the very large Imagenet-1000 dataset this overhead
became an issue. For these reasons we will present in the next chapter a new approach
completely different we developed during the third year of the thesis while making sure
it could remain applicable to large datasets.
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Chapter 4

FECIL : FEATURE EXPANSION AND

ENHANCED COMPRESSION FOR

INCREMENTAL LEARNING

This chapter presents the concluding contribution of the thesis, on the basis of the pre-
vious findings and insights gained. In particular, while our approach based on contrastive
methods demonstrated quite effective at improving the feature space, it also introduced a
GPU memory overhead that prevented us from testing it on larger datasets. We therefore
took a closer look at an emerging trend of incremental learning based on dynamic models.

Dynamic models have attained impressive performances in incremental learning, man-
aging to reach better plasticity-stability trade-offs than classical methods at the cost of an
increasing number of parameters. One particular method called Dynamically Expandable
Representations (DER) [46] stands out in this field, as it demonstrated impressive feature
quality outperforming the previous state-of-the-art by a large margin.

In the following sections 4.1 and 4.2, the operation of dynamic models and the way by
which they attain better plasticity-stability trade-offs is first described in detail, followed
by an explanation of our approach that uses a dynamic network to improve the quality
of the feature space and compresses it to avoid the increasing number of parameters over
the incremental steps.

4.1 Background

Conceptually very different from the traditional methods used to alleviate forgetting
presented in the chapter 1, the use of dynamic neural network architectures has recently
gained popularity for incremental learning. This rise of popularity arrived with the pub-
lication of the Dynamically Expendable Representation (DER) algorithm [46], that at-
tained a much better optimum in terms of features quality than previous state-of-the-art
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methods.
In the following sections we thus provide a small background on dynamic networks and

the mixup procedure that we both leverage in our method FECIL that will be explained
in the remaining of this chapter.

4.1.1 Dynamic architectures

An emerging concept in incremental learning advocates the use of dynamic models so
as to attain better trade-offs between learning of new classes and retaining information
from past classes [46].

The underlying idea is that in order to prevent forgetting of previous information,
different neurons should be used for each incremental task. Initial approaches took ad-
vantage of the fact that neural networks are generally largely over-parameterized [64] and
proposed choosing different neuronal paths through the model [65] or different subsets of
the model [64] to use during each task. These approaches demonstrated a crucial attribute
of dynamic models for incremental learning : their immunity to catastrophic forgetting.
In fact, as each incremental task employs a distinct set of parameters, the parameters
associated with prior tasks remain entirely unchanged. Thus, by definition, catastrophic
forgetting does not occur.

While catastrophic forgetting is prevented, many challenges of incremental learning
remain, such as the task recency bias explained in section 1.3.3, and inter-task confusions.
In fact, deep models trained with supervision learn to differentiate each class from all
others represented in the dataset. Therefore, even with no forgetting, since the incremental
dataset contains mostly samples of new classes, learning to differentiate new classes from
past classes is not trivial and leads to inter-task confusions compared to joint training
on the full dataset. In addition, many challenges arise around the sparsity of models
trained this way [64] which refers to training networks where a significant number of
connections or weights are set to zero. Indeed, these approaches are inherently bounded by
the network capacity, which can be quickly attained just after a few incremental learning
steps. Therefore by promoting sparsity, researchers aim to improve the efficiency of models
to increase the longevity of those dynamic models in incremental learning scenarios.

Towards overcoming this network capacity limitation, recent works explored the ad-
dition of new neurons incrementally to accommodate new classes [46], [66]–[68]. Freezing
previous feature extractors and adding entirely new ones incrementally has indeed been
shown to not only prevent features forgetting by keeping previously trained neurons but
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also allow positive forward transfer from previous tasks to new ones [69]. This forward
transfer therefore leads to faster training and better performances for new tasks at the
cost of a number of parameters rapidly increasing with the incremental steps due to the
addition of new feature extractors.

Indeed, adding new parameters for each incremental task alleviates the network ca-
pacity problem of earlier methods but raises parameter growth issues. The main solution
explored in several works [46], [64], [66], [70] to these issues revolves around the concept
of neural network pruning and sparsity losses.

Next incremental task

Addition of new neurons

pruning

Figure 4.1 – Conceptual schema of dynamic architectures and neural pruning. During incremental steps
new neurons are added to an existing model Φt, producing a bigger model Φt+1

big and least used neurons
are then pruned to reduce the size of this new model.

Conceptually, these approaches propose training models with a sparsity loss added to
the classification loss to learn models with many parameters very close to zero and then
prune these unused weights. Doing so during the initial and each incremental training step
allows these algorithms to use as little weights as possible to accommodate new classes,
effectively reducing the size of the model and mitigating the parameter growth issue.

Specifically, for each convolutional layer l with an input feature map fl representing
the output of the previous layer, these approaches generally consider trainable channel-
level masks ml ∈ [0, 1]cl , where mi

l ∈ [0, 1] and cl is the number of channels of fl. They
then propose to modulate the input of each convolutional layer of the model with the
following equation [46], [70] :

f ′
l = fl ⊙ml
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where ⊙ represents the channel-level multiplication, and a sigmoid is used as a gating
function to ensure the values of ml stay in the range [0, 1].

Then the addition of a sparsity loss similar to the l2 loss introduced in section 1.3.2
encourages the parameters of these masks to be close to zero during the training process.
Finally, after training, these masks are binarized and the channels corresponding to the
zero values of the masks are pruned from the network, leading to a network with a reduced
number of parameters. While these pruning methods effectively reduce the number of
parameters, they impact the performance of models and their size still increases with
each incremental task. Some works therefore required many hyper-parameters carefully
set depending on the dataset and model architecture used to obtain an acceptable number
of parameters with minimal performance drop [46], while others avoided using hyper-
parameters [66] but had less control on the parameter growth which leads to generally
better performance but bigger model sizes than the static architecture counterparts.

Some other strategies have been explored, e.g. the authors of DyTox [71] used a trans-
former architecture allowing a very reduced parameter growth and removed entirely the
need for a pruning mechanism. However, transformers require a lot of data to train on
and still struggle to reach CNNs image classification performances in incremental learning
problems where data from previous classes is very limited [71].

Relatedly, we propose a two stage training approach where we first expand the repre-
sentation like dynamic architectures [46], [66], [67] and then we use knowledge distillation
to compress the dynamic architecture back to its original size. We also introduce a new
rehearsal mixup procedure to improve the distillation of previous classes and show that
it can be added to most state-of-the-art distillation based incremental methods to greatly
improve their performance. This two-stage procedure and improved distillation allows our
method to attain dynamic model performance at the benefit of keeping the model size
fixed over the series of incremental tasks.

4.1.2 Data Mixup

During the process of incremental learning, past class samples are stored in a small
rehearsal memory of fixed size, therefore learning the most out of each sample is crucial.
To this end, data augmentations are generally used to improve the variability of train-
ing samples, thus improving the downstream models generalisation capability. This is the
reason why we investigate the use of a variant of the Mixup [72] data augmentation in
our algorithm and demonstrate its effectiveness experimentally. The Mixup augmenta-
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tion proved to be very effective in improving generalisation capability of models and, in
particular, was shown to improve the separability of classes in the feature space of models.

As illustrated in figure 4.2, Mixup replaces the training samples by linear interpolations
between two samples to train the model more towards the boundaries between classes,
therefore improving separability of classes in the feature space. Specifically, considering a
mini-batch {xi, yi}Ni=0, the Mixup augmentation creates artificial training samples in the
following way :

x̃ = λxi + (1− λ)xj
ỹ = λyi + (1− λ)yj (4.1)

where (xi, yi) and (xj, yj) are two random samples from the current training mini-batch
and λ ∈ [0, 1] is an interpolation random variable sampled from a beta distribution λ ∼
Beta(α, α). This α hyper-parameter controls the overall strength of the interpolation. For
example α = 1 changes the distribution to a uniform distribution thus giving the same
probability for all λ interpolations between xi and xj, whereas α = .1 would give a much
higher probability of λ being sampled close to 0 and 1.

Figure 4.2 – Effect of the mixup data augmentation. During training, images and their associated label
are artificially generated using linear interpolations between pairs of samples of each mini-batch.

This simple data augmentation operation has been shown to improve generalization
capability of models at negligible computational cost which has led to many applications
and improvements proposed over the years [60], [73], [74].

Moreover, in their work DyTox [71], Douillard et al. trained a vision transformer
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incrementally and showed that the addition of Mixup not only improved the performances
of their transformer, but also reduced the forgetting of the model. Indeed, while their core
transformer based method barely reached the latest dynamic CNN incremental method,
the addition of the Mixup training procedure allowed them to convincingly surpass all
other incremental approaches.

For our algorithm, we propose to build upon this work and use a variant of Mixup
that we call “rehearsal mixup” that samples one image from the incremental dataset
and the second image from the rehearsal memory to specifically train the model more at
the boundaries between new and old classes to reduce inter-task confusions and further
alleviate forgetting.

90



4.2. Method

4.2 Method

In this section, our new method for class incremental learning called Feature Expansion
and enhanced Compression for Incremental Learning (FECIL) will be presented. This
approach is based on a dynamic model that first expands its feature space to accommodate
new classes and then compresses it back to its original size to completely avoid the growing
number of parameters issue faced by other dynamic model methods.

Each incremental step is split into two training phases. The first one is the expansion
phase where we expand the network by adding a new feature extractor and weights for
the new classes in the classification layer before updating the model’s parameters on the
new data task. Upon freezing of the resulting dynamic network we then use knowledge
distillation to transfer its knowledge (both the features extractor and the classifier) to a
compressed network that will then be used for the next incremental step. A schema repre-
senting the overall pipeline is shown in Figure 4.3 while the details of the aforementioned
two stages are explained in sections 4.2.1 and 4.2.2 respectively.

4.2.1 Dynamic feature expansion

This phase bears similarities with the one introduced in DER [46]. At incremental task
t, like DER, we create the dynamic model Φt

big that expands the previous feature space
with a new feature extractor φtnew to accommodate new classes. Unlike DER, however,
our dynamic model doesn’t require all previous extractors but only two, φtnew and φt−1

because of the compression step we will detail in section 4.2.2. Both the previous and new
feature extractors are then fed into a new classifier Ht

big with Ct (the total number of old
and new categories) outputs.

More specifically, given an input image from the incremental dataset x ∈ Dt, the
feature vector ϕ of the model becomes the concatenation of both feature extractor outputs:

ϕ = {φt−1
frozen(x), φtnew(x)}

In order to avoid forgetting of past classes, the previous feature extractor φt−1 is
frozen during the entire training process. The feature vector ϕ is then fed into the dense
classification layer Ht

big and softmax is applied to the output logits of this classifier to
make the prediction for each class:
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Figure 4.3 – Pipeline of the proposed approach. Each incremental step consists of two training phases,
first the expansion phase where we dynamically expand Φt−1 to learn new classes, and then the second
phase where we compress the expanded model Φt

big back to its original state with minimal performance
drop using our rehearsal mixup distillation mechanism.

pHt
big

(y|x) = Softmax(Ht
big(x))

In order to reuse the previously learned classification parameters, the weights of the
new classifier Ht

big corresponding to the old features are initiated with the weights of
Ht−1. On the other hand, in order to allow positive forward transfer between incremental
tasks, the newly generated weights of φtnew are initialized with φt−1, the previously learned
feature extractor.

Classifier training. When training this model we have two different objectives, the
first being to train the classifier Ht

big to classify both past and new classes. This is done
by minimizing the cross entropy loss on the incremental dataset Dt:

LHt
big

= − 1
B

B∑
i=1

log(pHt
big

(y = yi|xi))

where B is size of the batch of images sampled from Dt, xi is one image of the batch and
yi is its label.
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Representation learning. The second objective is to train the new feature extractor to
discriminate new classes from each other and past classes but refrain from discriminating
between past classes. Indeed, since the previous feature extractor is kept and frozen,
the discriminative features about past classes are already learned. Learning features to
discriminate between past classes in the new feature extractor would further overfit to
the memory data and would negatively impact performances as shown in [46].

To enforce the model to learn discriminative features for new classes we employ the
auxiliary classifier Ht

a introduced in DER. The features from φtnew are fed into Ht
a made

with Cnew + 1 outputs in order to classify all new classes and treat all past classes as one
category. Initialized randomly, this classifier is then trained with a cross-entropy loss LHt

a
:

LHt
a

= − 1
B

B∑
i=1

log(pHt
a
(y = ỹi|xi))

where xi is an image and ỹi is the modified one-hot target vector of size Cnew + 1.

Our total loss for the expansion training phase therefore becomes the following linear
combination of the previously explained losses:

L = LHt
big

+ LHt
a

Finally, upon the completion of the expansion training phaseHt
a is discarded and a bias

correction method is used to remove the bias towards new classes from Ht
big. In fact, the

weight alignment method introduced in WA [35] is employed to remove the classification
bias induced by the imbalance of the dataset in favor of the new classes.

This weight alignment method is described in details in section 1.3.3 but in short the
norms Nold and Nnew are derived from each weight vectors of Ht

big corresponding to new
and past classes. The average past and new classes’ weights norm is then used to compute
the rebalancing coefficient γ = Nold

Nnew
. And finally, all new classes weights are multiplied

by this coefficient which reduces them to make them comparable to past classes weights
in terms of norm leading to a reduction of the classification bias.

This weight alignment method is adopted at the end of the expansion step in order to
make sure the bias is not transferred to the final model Φt during the following compression
step, its impact is further investigated in section 4.3.4.
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4.2.2 Rehearsal mixup compression

Upon the completion of the feature expansion phase, we obtain the model Φt
big that is

bigger than the initial model because of the two feature extractors. Therefore we propose
the addition of a compression step that restores the model back to its original size so that
after each incremental step the size of the learned model remains the same.

In order to compress our model Φt
big we first initialize a model Φt composed of one

feature extractor φt and a classifier Ht. We initialize this model with Φt−1 and train it on
the incremental dataset with the following loss:

L = ηLHt + (1− η)LD

where η is a balancing weight, LHt is the standard cross entropy loss computed on the
outputs of Ht, and LD is a knowledge distillation loss using all the output logits of Ht

big

as targets :

LD(x) =
Ct∑
c=1
−q

Ht
big

c (x) log(qHt

c (x))

with qHt

c (x) = eoc(x)/τ∑Ct

i=1 e
oi(x)/τ

the softened softmax probability obtained from output node oc

of the model, τ a temperature hyper-parameter, and q
Ht
big

c (x) the same softened softmax
probability but obtained from the outputs of the big model Φt

big.
Due to the imbalance of the incremental dataset, however, it was empirically observed

that such a compression scheme performs better for new rather than past classes, leading
to a catastrophic forgetting of previous classes. We therefore devised a new method called
rehearsal mixup to improve the distillation of past classes.

Rehearsal mixup. Mixup [59] is a data augmentation strategy that was originally
proposed to improve neural network generalization by learning better boundaries be-
tween classes. Mixup generates virtual training samples by doing random interpolations
between images of each sampled minibatches. In incremental learning, however, since the
incremental dataset contains mostly new classes, this has the effect of training mostly at
the boundaries between new classes which further increases performances on the majority
classes.

In order to solve the issue of new classes being distilled better than past classes we
propose to use a variant of this mixup strategy that we call "rehearsal mixup". In contrast
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to the conventional mixup method, we propose to mix images of the incremental dataset
minibatches with images randomly sampled from the memory. Doing so forces each train-
ing sample to be an interpolation between an image of the new incremental dataset Dt

and an image of the memoryMt. This allows the compressed model to train more at the
boundaries between past and new classes, while also effectively reducing the bias towards
new classes inherent to the imbalanced incremental dataset. In order to further reduce
this bias we also employ the weight alignment method explained in section 4.2.1 on the
compressed model after the compression phase.
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4.3 Experiments

This section provides extensive evaluation of our approach within two datasets that
are widely used in class incremental learning, namely, CIFAR-100 and ImageNet-1000. We
first compare the performance of our method against several state-of-the-art algorithms
(see section 4.3.2) using a fixed size model as well as against DER without pruning [46],
the method that attains the best performances by storing and making use of all previous
feature extractors during incremental learning. Furthermore, in section 4.3.4, we conduct
an ablation study so as to assess the contribution of each component of our method.
Finally, we juxtapose the performance of several well known state-of-the-art distillation-
based methods with and without the addition of our rehearsal mixup approach.

4.3.1 Experimental setup and implementation details

Datasets and protocols. The CIFAR-100 dataset [63] is composed of 32x32 pixels
color images representing 100 classes with 500 training images and 100 evaluation images
for each class. The ImageNet-1000 dataset [7] on the other hand is a large scale dataset
with 1.2 million training images and 50,000 validation images of 1000 different categories.
Following the standard practice [10], [12], [35], for CIFAR-100 we train on all 100 classes in
5 and 10 incremental steps of 20 and 10 classes respectively with a fixed rehearsal memory
size of 2000 samples while for ImageNet-1000 we split all 1000 classes in 10 incremental
steps of 100 classes and keep a rehearsal memory of 20000 samples.

Implementation details. Our method is implemented in PyTorch, following [10], [12],
[35] we chose the 32-layer Resnet backbone architecture for CIFAR-100 dataset and 18-
layer Resnet [8] for ImageNet-1000. We used the SGD optimizer with a momentum of
0.9, a weight decay of 0.0005 and use a batch size of 128 for CIFAR-100 and 256 for
ImageNet-1000. We trained our models for 200 epochs, with a learning rate starting at
0.1 and gradually decaying to 0 with a cosine annealing schedule. The data augmentation
applied to training images consists in random cropping, horizontal flip, AutoAugment [58]
and normalization. For the compression phase we set τ to 4 and η to 0.1 according to
other non-incremental compression methods [34], and the beta distribution parameter α
used by mixup to 0.8.
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5 steps 10 stepsMethods #Params Avg Last #Params Avg Last
Joint Training 0.47 - 72.96 0.47 - 72.96
iCaRL 0.47 62.48 49.40 0.47 56.33 39.35
BiC 0.47 66.25 53.08 0.47 61.9 46.59
WA 0.47 68.43 54.01 0.47 65.78 49.94
DER 2.3 72.39 64.01 4.7 71.54 61.49
Ours (FECIL) 0.47 73.56 63.61 0.47 73.29 60.09

Table 4.1 – Results on CIFAR-100 averaged over three different class orders. “Avg” and
“Last” respectively represent the average accuracy during the entire incremental training
and the accuracy obtained after the last incremental training step. “#Params” corre-
sponds to the number of parameters used by the model at the end of the incremental
training (in millions). We denote by “Joint training” the upper bound of performance
obtained with a non-incremental training on the whole dataset.

4.3.2 Comparison with other methods

In order to properly evaluate the effectiveness of our compression phase we compare
our method to DER without pruning [46], which is a dynamic model method that stores
each feature extractor during the incremental steps and makes predictions using the con-
catenated output of all of them. Furthermore, we evaluate the effectiveness of our method
by comparing it to other state-of-the-art methods that keep the model size fixed: iCaRL
[10], BiC [12] and WA [35].

Tables 4.1 and 4.2 respectively summarize the results obtained on CIFAR-100 and
ImageNet-1000. Firstly, we can see that DER consistently outperforms the fixed-size
model methods by a large margin, demonstrating the better stability-plasticity trade-
off of dynamic models that we presented in section 4.1.1. However, DER adds parameters
to the model during each incremental steps so the number of parameters used at the end
of the incremental training is very high compared to other methods. On the other hand,
our method manages to reach DER performance and even surpass it in average accuracy
on both CIFAR-100 and Imagenet-1000 while keeping the model size fixed by compressing
it after each incremental step.

More specifically, compared to DER we can observe that in all benchmarks our method
reaches higher average accuracies but around 1-2% lower accuracies at the last incremental
step, while using 10 times less parameters. This result must, however, be tempered because
while our method does indeed prevent the size of the model from growing with each
incremental step like DER, it does use an expansion training step that temporarily doubles
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ImageNet-1000 10 steps
top-1 top-5Methods #Params

Avg Last Avg Last
Joint Training 11.2 - 69.73 - 89.08
iCaRL 11.2 38.4 22.7 63.7 44.0
BiC 11.2 62.73 50.1 83.80 72.70
WA 11.2 65.67 55.60 86.21 77.80
DER 112.2 68.84 60.16 88.17 82.86
Ours (FECIL) 11.2 69.02 58.40 89.12 81.72

Table 4.2 – Results on ImageNet-1000. The dataset was separated in 10 incremental steps
of 100 classes to learn and we report the average and last top-1 and top-5 accuracy
obtained. DER results are imported directly from [46].

the feature space and therefore doubles the number of parameters.
Furthermore, figure 4.4 shows the detail of the evolution of performances during the

entire training process on the CIFAR-100 10 steps benchmark. This figure demonstrates an
interesting point about our method, namely, that our compressed model exhibits slightly
better performance than our dynamic model in the first incremental steps. This can be
explained by our rehearsal-mixup procedure that we employ during the compression step
that not only helps compressing past classes’ information better but also improves the
classification loss that we use together with the distillation loss. In fact, the performances
of the compressed model only starts to be inferior to the dynamic model in the last few
incremental steps due to information loss during compression resulting from the lack of
past class data. This indicates that our rehearsal mixup based compression effectively
manages to compress the model with minimal performance loss.

4.3.3 Qualitative comparison

In order to further demonstrate the effectiveness of our rehearsal mixup compression
step we compare qualitatively the features of different classes in the internal representa-
tion of the model trained with different incremental methods. Specifically, we compare
the feature space obtained with our FECIL approach, with the state-of-the-art fixed ar-
chitecture method WA [35] and with DER without pruning, the dynamic model approach
that stores and uses all incremental feature extractors.

In order to observe qualitatively the feature space of models we employ the T-SNE
visualisation method introduced in 2.2. This T-SNE represents a non-linear 2D projection
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Figure 4.4 – Performance evolution on the CIFAR-100 10 steps benchmark. The mean of 3 runs is
represented for each method, each with the same class orders and the top-1 accuracy (%) is reported
after learning each task. Fecil_dyn represents the performance attained by our dynamic model before
the compression step.

of the feature vectors obtained for all the training data of 10 classes each shown in a
different color.

We show in figure 4.5 the features extracted at the same point during incremental
learning for the 3 considered approaches on the CIFAR-100 10 steps benchmark. In this
figure, the effect of catastrophic forgetting can be seen in the features extracted by WA,
animals and plants are starting to get forgotten and the clusters related to those classes
are becoming very spread out and not clearly separated. In the T-SNE obtained with
DER, however, while not being very compact, these clusters are still well separated, which
showcases the improved plasticity-stability trade-off of methods such as DER relying on
dynamic models. Finally, in the T-SNE obtained with our method, the effectiveness of
our rehearsal mixup compression step can be directly observed. Indeed, we can see a clear
improvement in cluster separation compared to WA, the other fixed size model approach.
In fact, we can see that the clusters are very close to DER in terms of quality of separation
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Figure 4.5 – 2D T-SNE visualisation of features extracted for 10 classes after the third incremental
step on the CIFAR-100 10 steps benchmark. A qualitative comparison of those features when training
with WA, DER, and FECIL is provided.

while making use of only one feature extractor.

4.3.4 Ablation study

We further evaluate our method and the contribution of each specific component by
conducting an exhaustive ablation study on the 10 step CIFAR-100 benchmark. Specifi-
cally, we evaluate the contributions of the autoAugment[58] and mixup[59] data augmen-
tations as well as compare the standard mixup procedure to our rehearsal-mixup.

We report the average incremental accuracy as well as the accuracy after the last
incremental step for all ablations in table 4.3. We denote by “Hbig Wa” the ablation
of the weight alignment component introduced in 4.2.1 that we use on the classifier of
the dynamic model before the compression step. Furthermore we denote with “Mixup”
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and “R-Mixup” respectively the standard mixup augmentation and our rehearsal mixup
procedure.
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64.08 46.68
✓ 67.17 51.26
✓ ✓ 70.79 56.26
✓ ✓ 68.27 53.5
✓ ✓ 69.74 55.35
✓ ✓ ✓ 70.31 56.14

Full ✓ ✓ ✓ 73.29 60.09

Table 4.3 – Ablation of different key components of our method. The average incremental
accuracy as well as the accuracy after the last incremental step are reported for each
ablation. All experiments were done on the CIFAR-100 dataset separated in 10 incremental
steps each adding new 10 classes.

As can be seen with the ablation of Hbig Wa, removing the bias from the dynamic
model prior to compression greatly improves the performance of the compressed model.
Indeed, this result makes sense since we use a knowledge distillation loss that compares
classifier outputs to compress the dynamic model, therefore removing the bias before the
compression avoids transferring it to the compressed model.

Moreover, comparing our full method with the ablation of the different data aug-
mentations shows that significant improvements of almost 9% accuracy after the last
incremental step are obtained with their addition. These data augmentations techniques
are fairly inexpensive for the training of incremental models, yet lead to the most gains
in our method, suggesting that the usual data augmentations used by most incremental
studies are not sufficient in incremental learning where data from previous classes are
scarce.

Furthermore, these ablation studies show that the classical mixup augmentation and
autoAugment lead to similar gains and autoAugment is even superior by a small margin,
but most importantly that they do not benefit from each other. Indeed, with autoAugment
and Mixup alone the average incremental accuracy is respectively 70.79% and 68.27%
and with both data augmentations the accuracy stays around 70%. This can be explained
by the fact that both augmentations have the same effect of improving variability of
the incremental dataset, which is composed mostly of new classes data, and therefore
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both augmentations impact more new classes than past classes. This leads to both data
augmentations improving mostly the training of new classes which gets overshadowed by
the forgetting of past classes occurring during incremental steps.

However, with the addition of our rehearsal-mixup strategy, we can observe completely
different results. While the standard mixup procedure was previously shown to reduce for-
getting [71], we can see that our rehearsal-mixup increases the last accuracy obtained with
mixup from 53.5% to 55.35% demonstrating that specifically targeting decision bound-
aries between new and past classes is more beneficial and prevents forgetting even more.
Moreover, we can notice that unlike standard mixup, rehearsal-mixup and autoAugment
are complementary. In fact, they greatly benefit from each other, as separately they each
improve the average accuracy by about 3% but when used together the accuracy goes up
by more than 6%, from 67.17% to 73.29%.

We further investigate the effectiveness of rehearsal-mixup in the following section
where we add it to several well known knowledge distillation based incremental methods
to showcase its ability to improve distillation and prevent forgetting.

4.3.5 Mixup rehearsal added to other methods

Based on the aforementioned observations and as an additional test of our approach, we
investigated the addition of our data augmentations rehearsal mixup and AutoAugment to
other well known state-of-the-art methods. The purpose of our rehearsal mixup method is
to improve the distillation of our compression step by focusing on the boundaries between
new and old classes to reduce forgetting. For this reason, we chose three distillation based
state-of-the-art methods to conduct this experiment. We evaluate the addition of each
data augmentation on the CIFAR-100 10 steps benchmark and report both the average
and last incremental accuracy obtained in table 4.4.

As can be seen in this table, despite having trivial cost both in terms of training time
and memory needed, the addition of both of these components greatly benefits all of the
tested methods. The standard practice [10] for state-of-the-art incremental methods has
been to use only random crop and random horizontal flip data augmentations, following
the classical training procedure for ResNet models [8]. However, we believe that in the
incremental learning setup where data about past classes only comes from a small fixed
size rehearsal memory, more data augmentations should be used so as to alleviate the
forgetting of previous classes. The addition of AutoAugment improves the accuracy of all
tested methods by over 3% by simply adding many different augmentations like rotations
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Base + R-mixup + R-mixup
+AutoAugMethods Avg Last Avg Last Avg Last

iCaRL 56.33 39.35 59.11 41.08 60.23 43.41
BiC 61.90 46.59 64.72 50.26 67.41 51.63
WA 65.78 49.94 67.43 51.49 69.51 53.68
Ours 66.93 49.51 70.79 56.26 73.29 60.09

Table 4.4 – Addition to other distillation based methods. R-mixup and AutoAug re-
spectively represent the addition of rehearsal mixup and AutoAugment to each of the
algorithms.

and color changes to increase training data variability, which demonstrates that the usual
augmentations may be insufficient for incremental training.

Finally, we observe for all algorithms very similar gains from rehearsal-mixup and
AutoAugment as for our method, showcasing once more that rehearsal-mixup and Au-
toAugment have complementary effects that help learn new classes better as well as reduce
forgetting of previous classes.

4.4 Conclusion

In this chapter, we described FECIL, a novel two-stage training procedure that we
developed for class incremental learning during the third year of the thesis. Our method
first proceeds by expanding the features of the model in order to accommodate new classes
without forgetting past ones; It then compresses it back to its original size in order to keep
the model size fixed over the course of the entire incremental training process. Specifically,
we introduce a rehearsal-mixup procedure in order to compress past classes’ information
well even with limited available data.

We have conducted comprehensive experiments to evaluate our method, against both
fixed-size model and dynamic model methods that add parameters over the incremental
steps to attain a better plasticity-stability tradeoff at the cost of a growing number of
parameters. Our results demonstrated that our method attains the highest performance
among dynamic models while keeping the size of the model fixed by compressing it after
each incremental step. More specifically, we showed that the data augmentations autoAug-
ment and rehearsal-mixup have complementary effects that allow our model to learn new
classes better as well as reduce forgetting of past ones.

103



Chapter 4 – FECIL

Finally, we demonstrated that our rehearsal mixup procedure can be plugged into other
knowledge distillation based state-of-the-art methods to reduce forgetting and improve
their average incremental accuracy by about 3% at negligible extra cost.
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CONCLUSION

In this final chapter of our thesis the findings and contributions of our research will
be summarized, discussed and some directions for future work will be outlined.

4.5 General discussion

In this thesis entitled "Mitigating catastrophic forgetting via feature transfer and
knowledge consolidation for deep class-incremental learning", intensive studies were re-
alized on the features extracted and used by neural networks trained incrementally.

Experiments described in chapter 2 shed light on the massive negative impact of
catastrophic forgetting on the feature space created by convolutional neural networks
which hinders the downstream classification performances. Based on these observations,
in chapter3, a joint contrastive and incremental method was proposed to specifically target
catastrophic forgetting at a feature level as well as improve the general representation of
the model. Finally, in the chapter 4, we investigate how the emerging concept of dynamic
neural networks can be leveraged to further improve the features extracted incrementally,
while also significantly reducing the computation overhead compared to our previous
method.

4.6 Directions for future Works

The performances of incremental methods are getting closer and closer to those of
standard joint training of all classes, however, a gap still remains. While the root cause
of this performance gap is catastrophic forgetting, many different components of incre-
mental methods could still be improved in order to alleviate forgetting even more. In
the following paragraphs we propose some improvements for our methods as well as some
general directions for future work that we believe could lead to new successful incremental
approaches in the coming years.
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Distillation improvements. Numerous studies, including our own, have highlighted
the effectiveness of knowledge distillation in mitigating catastrophic forgetting. In our re-
search on contrastive learning, we found that incorporating a feature-based distillation loss
can enhance the overall quality of distillation and significantly decrease forgetting. More-
over, we observed that even simpler data augmentation techniques, such as our rehearsal
mixup method, can effectively improve the quality of the standard probability-based dis-
tillation. This suggests that combining contrastive distillation or other upcoming state-
of-the-art feature-based knowledge distillation methods with our rehearsal-mixup based
data-augmentation could improve distillation even further.

incremental contrastive learning. successful contrastive-based incremental approaches
have already surfaced in recent literature [44], [57], [75], showcasing the promise of con-
trastive techniques for incremental learning. Contrastive methods are known to be par-
ticularly effective for learning discriminative representations in unsupervised and semi-
supervised contexts, and these settings bear substantial resemblances to the incremental
learning scenario. For instance, semi-supervised learning frequently deals with imbalanced
datasets, often featuring a surplus of unlabeled data in comparison to labeled instances,
mirroring the distribution of data in incremental datasets. Furthermore, incremental train-
ing requires training with limited data about past classes, a challenge analogous to the
scarcity of labels encountered in semi-supervised and unsupervised learning. These paral-
lels strongly indicate that integrating contrastive methods into incremental learning could
be a highly promising direction for further research exploration.

Incremental architectures. The concept of dynamic architectures designed for con-
tinual learning have gained popularity recently, particularly due to DER’s pioneering work
[46], which demonstrated a superior trade-off between adaptability and stability compared
to existing state-of-the-art methods. This superior performance of dynamic architectures
came at a cost in terms of parameter growth, that an emerging line of research focuses
on solving. Some approaches have been proposed based on vision transformers-based in-
cremental models [76], [77] that were shown to not only significantly reduce this growth
but also learn class-agnostic features that revealed particularly useful for continual learn-
ing [71], [78]. Similarly, various methods like the one presented in chapter 4 have been
introduced to compress models after each incremental step to avoid parameter growth
with minimal performance drop [67], [79]. These approaches require an added compres-
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sion training step, however, a very interesting future improvement could be made by
compressing the model while it is adapting to new classes in order to remove this added
compression step and reduce training time overhead.

Generative replay. With the advances of transformer-based architectures and partic-
ularly masked auto-encoders [77], the line of research about generative replay also seems
particularly prone to great developments in the coming years. Indeed, a few years ago the
performances of generative models represented the bottleneck of generative replay meth-
ods that struggled to reach standard rehearsal performances, however a recent method
based on masked autoencoders (MAEs) demonstrated impressive performances with par-
tial generative replay [78]. There masked autoencoder architecture displayed better per-
formances than concurrent standard rehearsal state-of-the-art methods by storing only
small patches of pixels instead of full images allowing them to store much more exemplars
per class for the same storage cost.

107





BIBLIOGRAPHY

[1] M. McCloskey and N. J. Cohen, « Catastrophic interference in connectionist net-
works: the sequential learning problem », in Psychology of Learning and Motivation,
G. H. Bower, Ed., vol. 24, Academic Press, Jan. 1, 1989, pp. 109–165.

[2] R. M. French, « Catastrophic forgetting in connectionist networks », Trends in Cog-
nitive Sciences, vol. 3, 4, pp. 128–135, Apr. 1, 1999, Publisher: Elsevier.

[3] S. Linnainmaa, « Taylor expansion of the accumulated rounding error », BIT, vol. 16,
2, pp. 146–160, Jun. 1976.

[4] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, « Learning representations by
back-propagating errors », Nature, vol. 323, 6088, pp. 533–536, Oct. 1986, Number:
6088 Publisher: Nature Publishing Group.

[5] Y. LeCun, B. Boser, J. Denker, et al., « Handwritten digit recognition with a back-
propagation network », in Advances in Neural Information Processing Systems,
vol. 2, Morgan-Kaufmann, 1989.

[6] D. Silver, T. Hubert, J. Schrittwieser, et al., « A general reinforcement learning algo-
rithm that masters chess, shogi, and go through self-play », Science, vol. 362, 6419,
pp. 1140–1144, Dec. 7, 2018, Publisher: American Association for the Advancement
of Science Section: Report.

[7] O. Russakovsky, J. Deng, H. Su, et al., « ImageNet large scale visual recognition
challenge », Int J Comput Vis, vol. 115, 3, pp. 211–252, Dec. 1, 2015.

[8] K. He, X. Zhang, S. Ren, and J. Sun, « Deep residual learning for image recogni-
tion », arXiv:1512.03385 [cs], Dec. 10, 2015. arXiv: 1512.03385.

[9] S. Thrun and L. Pratt, Learning to Learn. Springer Science & Business Media,
Dec. 6, 2012, 346 pp., Google-Books-ID: X_jpBwAAQBAJ.

[10] S.-A. Rebuffi, A. Kolesnikov, G. Sperl, and C. H. Lampert, « iCaRL: incremental
classifier and representation learning », presented at the Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, 2017, pp. 2001–2010.

109

https://arxiv.org/abs/1512.03385


[11] Z. Li and D. Hoiem, « Learning without forgetting », IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 40, 12, pp. 2935–2947, Dec. 2018.

[12] Y. Wu, Y. Chen, L. Wang, et al., « Large scale incremental learning », presented at
the Proceedings of the IEEE Conference on Computer Vision and Pattern Recog-
nition, 2019, pp. 374–382.

[13] E. Belouadah and A. Popescu, « IL2m: class incremental learning with dual mem-
ory », presented at the Proceedings of the IEEE International Conference on Com-
puter Vision, 2019, pp. 583–592.

[14] E. Belouadah and A. Popescu, « ScaIL: classifier weights scaling for class incremen-
tal learning », presented at the The IEEE Winter Conference on Applications of
Computer Vision, 2020, pp. 1266–1275.

[15] A. Chaudhry, P. K. Dokania, T. Ajanthan, and P. H. S. Torr, « Riemannian walk
for incremental learning: understanding forgetting and intransigence », presented at
the Proceedings of the European Conference on Computer Vision (ECCV), 2018,
pp. 532–547.

[16] S. Hou, X. Pan, C. C. Loy, Z. Wang, and D. Lin, « Learning a unified classifier
incrementally via rebalancing », presented at the Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, 2019, pp. 831–839.

[17] F. M. Castro, M. J. Marin-Jimenez, N. Guil, C. Schmid, and K. Alahari, « End-to-
end incremental learning », presented at the Proceedings of the European Confer-
ence on Computer Vision (ECCV), 2018, pp. 233–248.

[18] M. Masana, X. Liu, B. Twardowski, M. Menta, A. D. Bagdanov, and J. van de Wei-
jer, « Class-incremental learning: survey and performance evaluation », arXiv:2010.15277
[cs], Oct. 28, 2020.

[19] E. Belouadah and A. Popescu, « Deesil: deep-shallow incremental learning. », in
Proceedings of the European Conference on Computer Vision (ECCV) Workshops,
2018.

[20] G. Boukli Hacene, V. Gripon, N. Farrugia, M. Arzel, and M. Jezequel, « Transfer
incremental learning using data augmentation », Applied Sciences, vol. 8, 12, p. 2512,
Dec. 2018.

110



[21] Y. Liu, Y. Su, A.-A. Liu, B. Schiele, and Q. Sun, « Mnemonics training: multi-
class incremental learning without forgetting », presented at the Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020,
pp. 12 245–12 254.

[22] R. Kemker and C. Kanan, « FearNet: brain-inspired model for incremental learn-
ing », arXiv:1711.10563 [cs], Feb. 23, 2018. arXiv: 1711.10563.

[23] H. Shin, J. K. Lee, J. Kim, and J. Kim, « Continual learning with deep generative
replay », arXiv:1705.08690 [cs], Dec. 11, 2017. arXiv: 1705.08690.

[24] Y. Wu, Y. Chen, L. Wang, et al., « Incremental classifier learning with generative
adversarial networks », arXiv:1802.00853 [cs], Feb. 2, 2018. arXiv: 1802.00853.

[25] X. Liu, C. Wu, M. Menta, et al., « Generative feature replay for class-incremental
learning », presented at the Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition Workshops, 2020, pp. 226–227.

[26] Y. Xiang, Y. Fu, P. Ji, and H. Huang, « Incremental learning using conditional
adversarial networks », presented at the Proceedings of the IEEE/CVF International
Conference on Computer Vision, 2019, pp. 6619–6628.

[27] M. Zhai, L. Chen, F. Tung, J. He, M. Nawhal, and G. Mori, « Lifelong GAN:
continual learning for conditional image generation », presented at the Proceedings
of the IEEE/CVF International Conference on Computer Vision, 2019, pp. 2759–
2768.

[28] M. Solinas, S. Rousset, R. Cohendet, et al., « Beneficial effect of combined replay for
continual learning: » in Proceedings of the 13th International Conference on Agents
and Artificial Intelligence, 2021, pp. 205–217.

[29] J. Kirkpatrick, R. Pascanu, N. Rabinowitz, et al., « Overcoming catastrophic for-
getting in neural networks », PNAS, vol. 114, 13, pp. 3521–3526, Mar. 28, 2017,
Publisher: National Academy of Sciences Section: Biological Sciences.

[30] X. Liu, M. Masana, L. Herranz, J. Van de Weijer, A. M. López, and A. D. Bag-
danov, « Rotate your networks: better weight consolidation and less catastrophic
forgetting », in 2018 24th International Conference on Pattern Recognition (ICPR),
Aug. 2018, pp. 2262–2268.

111

https://arxiv.org/abs/1711.10563
https://arxiv.org/abs/1705.08690
https://arxiv.org/abs/1802.00853


[31] F. Zenke, B. Poole, and S. Ganguli, « Continual learning through synaptic in-
telligence », in International Conference on Machine Learning, ISSN: 2640-3498,
PMLR, Jul. 17, 2017, pp. 3987–3995.

[32] R. Aljundi, F. Babiloni, M. Elhoseiny, M. Rohrbach, and T. Tuytelaars, « Memory
aware synapses: learning what (not) to forget », presented at the Proceedings of the
European Conference on Computer Vision (ECCV), 2018, pp. 139–154.
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Titre : réduction de l’oubli catastrophique à l’aide de méthodes de distillation et de transfert de
caractéristiques pour l’apprentissage incremental profond

Mot clés : apprentissage incrémental, oubli catastrophique, distillation de connaissances, ré-

seau de neurone convolutif, apprentissage supervisé

Résumé : Les méthodes d’apprentissage
profond actuelles sont conçues de manière
statique, avec un certain nombre de classes à
reconnaître connu et prédéfini à l’avance. L’ap-
prentissage incrémental, en revanche, étu-
die le scénario plus réaliste dans lequel cer-
taines classes inconnues peuvent arriver au
fur et à mesure et le modèle doit s’adapter
et apprendre à reconnaître ces nouvelles ca-
tégories. Malheureusement, les réseaux neu-
ronaux profonds entrainés de cette manière
souffrent d’un oubli catastrophique, provo-
quant une dégradation significative des per-
formances sur les classes précédemment ren-
contrées.

Diverses méthodes ont été explorées pour
atténuer ce problème en rectifiant la couche
de classification des modèles incrémentaux.
Cependant, un aspect tout aussi important ré-
side dans la dégradation de la qualité des
caractéristiques que le modèle extrait des

images. Cette thèse se concentre spécifique-
ment sur l’exploration de diverses approches
visant à améliorer leur pouvoir discriminant,
facilitant ainsi l’adaptation à de nouvelles
classes tout en préservant les caractéristiques
discriminatives des classes précédentes lors
de l’entraînement incrémental.

Plus précisément, deux méthodes ont été
proposées et rigoureusement évaluées, attei-
gnant des performances comparables où su-
périeures à l’état de l’art. La première ap-
proche présentée explore l’utilisation de mé-
thodes contrastives pendant l’apprentissage
incrémental afin d’améliorer les caractéris-
tiques extraites par le modèle, tandis que la
seconde utilise une stratégies d’expansion et
de compression de la partie responsable de
l’extraction des caractéristiques dans le ré-
seau de neurone afin de réduire significative-
ment l’oubli.



Title: Mitigating catastrophic forgetting via feature transfer and knowledge consolidation for
deep class-incremental learning

Keywords: incremental learning, catastrophic forgetting, knowledge distillation, convolutional

neural network, supervised learning

Abstract: Deep learning methods are de-
signed for closed-set recognition, where a
predefined set of known classes is as-
sumed. However, in real-world scenarios,
open-set recognition is more realistic, allow-
ing for the possibility of encountering un-
known or novel classes during testing. Class-
incremental learning specifically addresses
this problem by focusing on continuously im-
proving models through the incorporation of
new categories over time. Unfortunately, deep
neural networks trained in this manner suffer
from catastrophic forgetting, resulting in signif-
icant performance degradation on previously
encountered classes.

While various methods have been ex-
plored to alleviate this issue by rectifying the
classification layer of deep incremental mod-
els, an equally important aspect resides in the

degradation of feature quality, which can im-
pede downstream classification performance.
This thesis specifically focuses on investigat-
ing diverse approaches to enhance feature
quality, facilitating adaptation to new classes
while preserving discriminative features for
past classes during incremental training.

Specifically two methods have been pro-
posed and rigorously evaluated on widely es-
tablished benchmarks, attaining performances
either comparable or superior to the state-of-
the-art . The first approach presented inves-
tigates the use of contrastive methods dur-
ing incremental learning in order to improve
the features extracted by incremental models
while the second one uses an expansion and
compression scheme to greatly reduce the for-
getting happening at a feature level.
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