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Deciphering the Brain’s Visual Language: Natural Image
Reconstruction using Deep Generative Models from fMRI
Signals

Abstract
The great minds of humanity were always curious about the nature of mind,

brain, and consciousness. Through physical and thought experiments, they tried
to tackle challenging questions about visual perception. As neuroimaging tech-
niques were developed, neural encoding and decoding techniques provided pro-
found understanding about how we process visual information. Advancements
in Artificial Intelligence and Deep Learning areas have also influenced neurosci-
entific research. With the emergence of deep generative models like Variational
Autoencoders (VAE), Generative Adversarial Networks (GAN) and Latent Diffu-
sion Models (LDM), researchers also used these models in neural decoding tasks
such as visual reconstruction of perceived stimuli from neuroimaging data.

The current thesis provides two frameworks in the above-mentioned area of
reconstructing perceived stimuli from neuroimaging data, particularly fMRI data,
using deep generative models. These frameworks focus on different aspects of
the visual reconstruction task than their predecessors, and hence they may bring
valuable outcomes for the studies that will follow. The first study of the thesis
(described in Chapter 2) utilizes a particular generative model called IC-GAN
to capture both semantic and realistic aspects of the visual reconstruction. The
second study (mentioned in Chapter 3) brings new perspective on visual recon-
struction by fusing decoded information from different modalities (e.g. text and
image) using recent latent diffusion models. These studies become state-of-the-
art in their benchmarks by exhibiting high-fidelity reconstructions of different
attributes of the stimuli.

In both of our studies, we propose region-of-interest (ROI) analyses to under-
stand the functional properties of specific visual regions using our neural decoding
models. Statistical relations between ROIs and decoded latent features show that
while early visual areas carry more information about low-level features (which fo-
cus on layout and orientation of objects), higher visual areas are more informative
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about high-level semantic features. We also observed that generated ROI-optimal
images, using these visual reconstruction frameworks, are able to capture func-
tional selectivity properties of the ROIs that have been examined in many prior
studies in neuroscientific research.

Our thesis attempts to bring valuable insights for future studies in neural de-
coding, visual reconstruction, and neuroscientific exploration using deep learning
models by providing the results of two visual reconstruction frameworks and ROI
analyses. The findings and contributions of the thesis may help researchers work-
ing in cognitive neuroscience and have implications for brain-computer-interface
applications.
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Résumé en Français
Les grands esprits de l’humanité ont toujours été curieux de la nature de

l’esprit, du cerveau et de la conscience. Par le biais d’expériences physiques et
mentales, ils ont tenté de répondre à des questions difficiles sur la perception vi-
suelle. Avec le développement des techniques de neuro-imagerie, les techniques
de codage et de décodage neuronaux ont permis de mieux comprendre la manière
dont nous traitons les informations visuelles. Les progrès réalisés dans les do-
maines de l’intelligence artificielle et de l’apprentissage profond ont également
influencé la recherche en neuroscience. Avec l’émergence de modèles génératifs
profonds tels que les autoencodeurs variationnels (VAE), les réseaux adversariaux
génératifs (GAN) et les modèles de diffusion latente (LDM), les chercheurs ont
également utilisé ces modèles dans des tâches de décodage neuronal telles que la
reconstruction visuelle des stimuli perçus à partir de données de neuro-imagerie.

La présente thèse fournit deux bases théoriques dans le domaine de la recon-
struction des stimuli perçus à partir de données de neuro-imagerie, en partic-
ulier les données IRMf, en utilisant des modèles génératifs profonds. Ces bases
théoriques se concentrent sur des aspects différents de la tâche de reconstruction
visuelle que leurs prédécesseurs, et donc ils peuvent apporter des résultats pré-
cieux pour les études qui suivront. La première étude dans la thèse (décrite au
chapitre 2) utilise un modèle génératif particulier appelé IC-GAN pour capturer
les aspects sémantiques et réalistes de la reconstruction visuelle. La seconde étude
(décrite au chapitre 3) apporte une nouvelle perspective sur la reconstruction vi-
suelle en fusionnant les informations décodées à partir de différentes modalités
(par exemple, le texte et l’image) en utilisant des modèles de diffusion latente
récents. Ces études sont à la pointe de la technologie dans leurs domaines de
référence en présentant des reconstructions très fidèles des différents attributs des
stimuli.

Dans nos deux études, nous proposons des analyses de régions d’intérêt (ROI)
pour comprendre les propriétés fonctionnelles de régions visuelles spécifiques en
utilisant nos modèles de décodage neuronal. Les relations statistiques entre les
régions d’intérêt et les caractéristiques latentes décodées montrent que les zones
visuelles précoces contiennent plus d’informations sur les caractéristiques de bas
niveau (qui se concentrent sur la disposition et l’orientation des objets), tandis
que les zones visuelles supérieures sont plus informatives sur les caractéristiques
sémantiques de haut niveau. Nous avons également observé que les images opti-
males de ROI générées à l’aide de nos techniques de reconstruction visuelle sont
capables de capturer les propriétés de sélectivité fonctionnelle des ROI qui ont été
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examinées dans de nombreuses études antérieures dans le domaine de la recherche
neuroscientifique.

Notre thèse tente d’apporter des informations précieuses pour les études fu-
tures sur le décodage neuronal, la reconstruction visuelle et l’exploration neurosci-
entifique à l’aide de modèles d’apprentissage profond en fournissant les résultats
de deux bases théoriques de reconstruction visuelle et d’analyses de ROI. Les ré-
sultats et les contributions de la thèse peuvent aider les chercheurs travaillant
dans le domaine des neurosciences cognitives et avoir des implications pour les
applications d’interface cerveau-ordinateur.
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Chapter 1

Introduction

Understanding how the brain works, why we have conscious perception, and

how we see and think are some of the most challenging questions in the field of cog-

nitive neuroscience. Researchers have begun to use various techniques, including

noninvasive neuroimaging methods like fMRI and EEG, to accelerate research in

this area. Recently, advanced deep learning models have enabled the detection of

patterns in brain signals with unprecedented complexity. This has led to the pos-

sibility of ’reading minds’ and has opened up new opportunities for neuroscience

research in the areas of neural decoding and visual reconstruction. This thesis

presents methods for reconstructing and combining high-level (semantic) and low-

level (shape and layout) features from fMRI patterns using deep generative mod-

els, following the development of visual reconstruction with deep learning models.

The first chapter provides relevant background information for our main studies

from various perspectives. First, we provide a brief history of mind, conscious-

ness, and vision. We then review the neuroscientific foundations of vision, various

neuroimaging techniques, and early studies on neural decoding and visual recon-
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struction. Next, we briefly introduce deep learning models and deep generative

models. Finally, we show how deep learning is used in neuroscience studies and

visual reconstruction. This thesis presents two studies conducted and published

throughout the PhD in Chapters 2 and 3. Chapter 2 proposes a natural image

reconstruction framework that utilizes an Instance-Conditioned GAN model to

perform accurate semantic reconstruction while preserving low-level details from

fMRI patterns on the Generic Object Decoding dataset. Chapter 3 presents the

’Brain-Diffuser’ framework, a two-stage scene reconstruction approach that em-

ploys latent diffusion models to reconstruct high-complexity images from fMRI

signals on the Natural Scenes Dataset. Chapter 4 provides an extended discus-

sion of the studies presented in Chapters 2 and 3. Later, we discuss practical

applications and ethical implications of our study and neural decoding research

in general, and conclude with a summary and closing thoughts.

1.1 Brief History of Mind, Consciousness, and Vision

Why is there something rather than nothing? - Gottfried Wilhelm

Leibniz133

One of the most intriguing questions in the universe is why there

is something rather than nothing. This fundamental question has guided

ontology, the philosophical study of being, for centuries. An equally interesting

question is why there are minds in this universe that began to exist and expand

13.7 billion years ago from quantum fluctuations88, capable of asking ’Why is
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Figure 1.1: A drawing of Descartes’ theory of perception. According to the theory, objects are
perceived through the eyes and transmitted to the pineal gland, which communicates with the
immaterial intellect. Signals are then sent to the muscles to move the arm (Figure from Descartes
1664)50.

there something rather than nothing?’

The existence of minds has fascinated the brilliant minds throughout history.

Philosophers and scientists have studied and discussed the human mind, brain,

and consciousness for centuries, yet many puzzling questions remain. Numerous

prominent philosophers have delved deeply into the nature of the mind. Plato’s

concept of the human mind is connected to the idea of the soul. He believed that

the human soul consists of three distinct parts: the rational, the emotional, and

the appetitive. Plato believed that the rational part is immortal and capable of

comprehending the eternal Forms or Ideas141. Plato’s depiction of the realm of
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forms as separate from the physical material world laid the foundation for West-

ern dualism200. Aristotle, however, believed that the soul is the form of the body

and does not exist independently. He also believed that the intellect consisted of

something immaterial in nature. Therefore, his view was not purely materialis-

tic200. Through the works of Thomas Aquinas, the idea of different substances

for the mind and body continued to influence the Western Christian tradition200.

Descartes is known to be one of the most prominent proponents of dualism in

the late Western philosophical tradition (his drawing of his perceptual theory pic-

tured in Figure 1.1). However, some scholars argue that substances were not the

central focus of Descartes’ philosophy of mind. Instead, they suggest that his

aim was to explain the process of mind-body interaction through the scientific

method37. Leaving aside the controversial opinions about Descartes’ thoughts

on the mind, as research in psychology and neuroscience advanced, the concept

of dualism became less prevalent among scholars in these fields. Nevertheless,

it is known that some prominent philosophers and scientists have defended the

idea of dualism on the basis of the authenticity of mental properties, such as the

philosopher of science Sir Karl Popper, the Nobel Prize-winning neurobiologist Sir

John Eccles, the Oxford philosopher of science and religion Richard Swinburne180.

During the 20th century, various theories and concepts emerged regarding the na-

ture of the mind and consciousness. Freud’s psychoanalytic theory, for example,

examined the impact of unconscious processes on behavior and mental states69.

Behaviorists, including James Watson and B.F. Skinner, attempted to explain all

behavior through conditioning, without reference to thoughts or feelings251,221. In
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contrast to dualism, materialism (or physicalism) is the central idea arguing that

everything about the mind can be explained in terms of physical processes and

mental states emerge from (or identical to) brain activity. Throughout history,

many philosophers have advocated for materialism. Ancient Greek philosophers

Democritus and Epicurus are known for their views on materialism. In mod-

ern times, materialistic views can be observed in the works of Thomas Hobbes,

Julien de La Mettrie, and d’Holbach222. Contemporary proponents of materialism

include Daniel Dennett and David Armstrong for reductive materialism49,5 and

Richard Rorty, Paul Churchland, and Patricia Churchland for eliminative mate-

rialism191,34. David Chalmers argued against materialism because it could not

account for qualia, or subjective experience28. He introduced the ’easy’ and ’hard’

problems of consciousness. The ’easy’ problems can be solved by explaining under-

lying cognitive functions, behaviors, or mechanisms. On the other hand, the ’hard’

problem of consciousness is fundamentally different. It refers to the challenge of

explaining why and how subjective experiences arise from physical processes in the

brain27. Hilary Putnam introduced the concept of functionalism, which empha-

sizes the function of the cognitive system rather than its internal constitution182.

Although Putnam later argued against functionalism219, it still influenced many

scholars, such as Daniel Dennett and David Marr, and accommodated the pos-

sibility of artificial intelligence having a mind due to its emphasis on multiple

realizability. While studies on high-level cognition and behavior have progressed

through psychology and cognitive science, there has also been progress in neuro-

science describing interactions at the physical and neuronal levels. Researchers
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Figure 1.2: Structure of Global Workspace. Information is integrated and broadcasted throughout
the system (Figure from Dehaene et al. 1998 )47.

have explored ways to bring these cognitive, behavioral, and neuroscientific studies

together through different theories35. We began to observe studies and theories on

cognition, behaviour and consciousness that are more neuroscientifically plausible

such as Neural Correlates of Conscioussness41, Global Workspace Theory7 (later

developed as Neuronal Global Workspace Theory47, illustrated in Figure 1.2), In-

tegrated Information Theory238. Human vision and perception have always been

central to behavioral, cognitive, and neuroscientific studies and have played a

pioneering role in the study of the senses.

Although we have discussed the historical journey of mind and consciousness
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above, we will now highlight some of the key historical milestones in the research

of vision and perception. While philosophers such as Plato, Aristotle, and Empe-

docles provided varying explanations about vision, the first mathematical expla-

nation of vision was observed in Euclid’s Book of Optics (Optica)139]. Following

Euclid’s work, the most notable studies in these fields include Ptolemy’s Optics

and Galen’s research on visual anatomy in the second century102. These philoso-

phers and scientists advocated for the theory of extramission, which suggests that

light is emitted from the eyes to objects, rather than from objects to the eyes

(intromission). The only exception is Aristotle, who made statements in favor of

both theories, although he is better known as one of the first advocates of the

intromission theory of vision223. Vision and the eye were important topics in Is-

lamic medieval medicine and philosophy. Al-Kindi, one of the most influential

philosophers of the era, studied vision and advocated for the extramission the-

ory of vision. However, objections against extramission theories were first raised

in the studies of Rhazes (Abu Bakr Muhammad ibn Zakariya al-Razi)139. Avi-

cenna (Ibn Sina) and Averroes (lbn Rushd) also studied Aristotelian vision and

supported the intromission theory of vision139. Alhazen’s Book of Optics (Kitāb

al-Manāẓir) is considered one of the most influential works of the era, in which he

synthesized experimental observations and mathematics to describe vision more

systematically than any previous work102 (his drawing of human eye shown in

Figure 1.3). Along with the studies of Kepler, Alhazen’s work has continued to

be influential until contemporary researches in vision. It is important to note that

vision involves more than just optics and the emission of light.
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Figure 1.3: A drawing of the structure of the human eye, including the optic chiasm by Alhazen in
the Book of Optics (Kitāb al-Manāẓir). Adapted from Daneshfard et al. 201443,106
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Vision and sight may seem like simple tasks for humans, but in reality, our

perception is not a direct reflection of the outside world. Rather, it is the mental

representations of the stimuli that we see that shape our perception. Alhazen was

aware that there is an unconscious inference process in our visual perception, and

the brain concludes more than the available sense data offers215. Hermann von

Helmholtz coined the term ’unconscious inference’ to describe how human vision

functions by inferring the best interpretation based on sensory data, as explained

in his book ’Physiological Optics’46. Similar studies in neuroscience and vision

in the nineteenth and twentieth centuries demonstrated how our nervous system

represents the external world. Our brain recreates the representation of the world

outside as our perception of the world, and it is not directly given to us46. Even

prior to the study of the neuroscience of perception, Immanuel Kant pointed out

that our perception of the world is a subjective interpretation that is formed by our

own cognition, rather than a direct reflection of reality115. Neuroscientific research

on consciousness and perception has shown that vision is a complex process with

various aspects. For instance, brain lesions in different areas can affect vision and

perception in diverse ways. For example, it can result in visual agnosia, a condition

in which the patient is unable to recognize objects, or other types of agnosia, such

as prosopagnosia, which is the inability to recognize faces207. Another example is

blindsight, where patients are able to respond to visual stimuli beyond chance level

despite lacking conscious perception due to lesions in the striate cortex35. Another

interesting case is neglect, which is a deficit in visual consciousness where patients

become unaware of things in their left perceptual field after damage, resulting
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Figure 1.4: Copy drawings of neglect patients from neurophyschological tests showing the loss of
left perceptual field due to missing parts of the objects (Figure from Husain 2008)105.

in the loss of half of their phenomenal space. In neuropsychological tests, they

draw a half copy of the presented objects199 (illustrated in Figure 1.4). These

cases of different deficits in visual consciousness demonstrate that the brain has

a binding mechanism that integrates various aspects of visual perception. This

mechanism is still being discussed among neuroscientists, cognitive scientists, and

philosophers of mind66.

1.2 How Do We See?: Neuroscience of Vision

We will begin by discussing the neuroscience of vision, which plays a crucial

role in our perception. The process of seeing begins with our eyes, which are an

extension of our central nervous system that faces outward. Light reflected from

objects in the outside world passes through the cornea and lens before reaching

the photoreceptors in the retina. These photoreceptors are made up of cells known
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as rods and cones. Rod cells are more effective for vision in low light conditions,

while cone cells are responsible for detecting details and colors. The three types of

cone cells respond to wavelengths in the blue, green, and red regions of the color

spectrum. The retina contains more rod cells than cone cells, with cone cells being

concentrated in the central foveal region. The optic nerve connects the ganglion

cells to the brain, transmitting the signals produced by the photoreceptors when

they are stimulated by light55. Information processing begins at this stage of

vision. Humans have approximately 100 million photoreceptors and 1 million

ganglion cells, indicating compression in the early stages153. The signals from the

optic nerves reach the primary visual cortex (V1) by passing through the optic

chiasm and then the lateral geniculate nucleus (LGN) in the thalamus via optic

radiation74 (shown in Figure 1.5).

Ganglion cells have receptive fields, meaning they respond to stimulation in

specific areas or are selective for certain stimulus locations87. For instance, a gan-

glion cell may respond to light in the lower left corner of the visual field. These

receptive fields are composed of two regions: center and surround. Some cells are

stimulated by light from the center, while others are stimulated by light from the

surround130,8. The stimulation relies on the contrast between the center and sur-

round, making the border regions with a sudden change in light more apparent.

This center-surround receptive field structure is preserved in the LGN. Moving

from the LGN to the primary visual cortex, the structure combines multiple con-

trast information from the LGN. The primary visual cortex has two cell types:

simple cells and complex cells114. Hubel and Wiesel discovered that simple cells
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Figure 1.5: Visual pathway from eye to visual cortex (Figure from Hannula et al. 2005)84.
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Figure 1.6: The stimulus condition on the left is designed to evoke M-shaped brain activity in fMRI
response, as demonstrated on the right (Figure adapted from Polimeni et al. 2010)179.

are stimulated by edges of a certain orientation, while complex cells have a more

abstract stimulation structure104. Complex cells can respond to edges over a large

area, regardless of the exact location of the stimulus.

Both V1 and LGN exhibit retinotopic characteristics. The light entering the

retina follows a topographic structure that corresponds to the patterns of activity

in these areas13. The retinotopic map structure can be observed when a stimulus

is applied through the retina and the signals in these regions are examined. Due

to the cross-connection that occurs prior to transmission to the primary visual

cortex, the right part of our visual field is formed in V1 of the left hemisphere

and the left part of our visual field is formed in V1 of the right hemisphere13.

However, the order in which light enters the retina is preserved which indicates

the retinotopy in these regions (An example of retinotopic structure in V1 shown

in Figure 1.6).

Various features, including ocular dominance, orientation selectivity, retino-
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topy, color, and spatial frequency, are already beginning to be processed in V1177.

Moving hierarchically through visual cortex, we observe V2, V3, and V4. V2 is

involved in more complex shape analysis than V1. Approaching V3, the visual

system is divided into two paths, dorsal and ventral. In this region, angle and ori-

entation are analyzed. In the region known as V3a, information about movement

and direction is processed177. In the V4 region, distinctions are made based on

colors and shapes259,258. In the literature, the ventral and dorsal visual processing

pathways are commonly referred to as the ’what’ and ’where’ pathways. Some

argue that the dorsal pathway encodes action-related information and should be

labeled as the ’how’ pathway instead of the ’where’ pathway177. The ventral path-

way originates from the visual cortex and extends to the inferior temporal cortex.

It plays a major role in object categorization. The dorsal pathway originates from

the visual cortex and extends to the posterior parietal cortex. It is responsible for

processing information related to the object’s location13.

The regions involved in visual processing are not limited to V1-V4. As we ad-

vance through the visual pathway, we encounter specialized regions that process

various visual features or are selective to different categories, such as scenes, faces,

bodies, hands, words, numerals, and tools173. The identification of these special-

ized functions emerged with lesion studies and was later supported by neuroimag-

ing techniques. For instance, the Lateral Occipital Complex (LOC) is crucial in

recognizing objects. Lesions in this area can cause agnosia, which is the inability to

recognize objects. The neurons in this area show stronger activation in response to

images of objects than to scrambled controls. Additionally, these neurons exhibit
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long response latencies, spatially clustered shape selectivity, large and bilateral

receptive fields, and 3D-structure selectivity78,45. The Colour Centre (CC) region,

located within V4, is responsible for color processing and lesions in this region can

cause achromatopsia, a form of color blindness142,9. The Visual Medial Temporal

(MT) area, also known as V5, is composed of neurons that are sensitive to move-

ment. If this region is damaged, patients may experience akinetopsia, a motion

blindness disorder that impairs their ability to perceive motion3,17. The Fusiform

Face Area (FFA) is responsible for detecting and identifying faces. Studies using

fMRI have shown that the FFA responds more strongly to face stimuli than to

non-face stimuli. Lesions in the FFA can result in prosopagnosia, the inability to

recognize faces116,77. The Parahippocampal Place Area (PPA) is a brain region

that encodes information about the layout of local space and responds strongly

to scenes with spatial layout62,94. Damage to the PPA can can cause memory

issues with topographical information and difficulties with navigating unfamiliar

environments61. The Extrastriate Body Area (EBA) is a body-selective region

located in the lateral occipitotemporal cortex that responds strongly to images

of human bodies and body parts in comparison with other classes of stimuli56.

It also contributes to planning goal-directed actions264. The Visual Word Form

Area (VWFA) is a specialized region located in the left occipitotemporal sulcus

that plays a crucial role in the recognition of written words147. It is connected to

the language system, specifically Wernicke’s area, and is specialized for processing

real words lexically230. As mentioned above, certain areas of the visual system

show functional sensitivity, and studies have shown that even individual neurons
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Figure 1.7: Neuroimaging methods (EEG, MEG, fMRI, ECoG, LFP, Optical Imaging and Spikes)
are presented according to their properties on spatial resolution, temporal resolution and invasiveness
(Figure from Thakor 2012)236.

can be selective for particular concepts. Quiroga et al. conducted a study on single-

cell recordings of neurons in the human medial temporal lobe (MTL). The study

found that certain neurons had an invariant representation of specific concepts,

places (such as the Sydney Opera), or persons (such as Jennifer Aniston or Halle

Berry). These neurons were activated even when the images of the same concept

were shown with different viewing angles and luminance, and even when presented

as text184. This study indicates that the brain contains detailed representations

of objects and concepts. The question is how to approach these representations,

which is where neuroimaging techniques and neural decoding come into play.
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1.3 Neuroimaging

Until the twentieth century, there was no way to record brain activity. Al-

though researchers could learn about the anatomical structure of the brain from

dead brains, acquiring signals from a living brain was a challenge35. The develop-

ment of functional neuroimaging methods has made it possible to detect signals

from brain activity. Various neuroimaging methods with distinct properties mea-

sure different aspects of brain activity. Firstly, invasive neuroimaging methods,

such as single-cell recording and ECoG, can be mentioned. Single-cell recording

measures action potentials produced by individual neurons through an electrode

placed on a neuronal membrane via surgical operation74. Electrocorticography

(ECoG) is another invasive method for studying the human brain. This method

is useful for studying brain activity at a larger scale. ECoG electrodes are larger

than single-cell recording electrodes and measure the activity of a population of

neurons. The signal is clear and has a sufficient spatial and temporal resolution for

many tasks, with minimal noise or distortion74. However, non-invasive methods

such as EEG, MEG, PET, fMRI, and fNIRS are preferred over invasive methods

like single-cell recording and ECoG due to their lower cost and risk19. Similar

to ECoG, Electroencephalography (EEG) measures electrical potential. However,

electrodes are placed non-invasively on the scalp instead227. EEG signals are

weaker than ECoG signals, but they offer the advantage of acquiring high tempo-

ral resolution signals without the need for surgery. It is possible to obtain data on

how a particular task affects brain activity. The response signals of movements
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or external stimuli in these tasks are called event-related potentials (ERP)152.

Magnetoencephalography (MEG) is a technique similar to EEG. However, MEG

measures the magnetic fields produced by the brain’s electrical activity. Unlike

EEG, which is distorted by the skull and scalp’s effects on electrical activity, MEG

signals are better preserved and easier to localize151. One downside of MEG is

its higher cost compared to EEG. Both EEG and MEG measure neural activity

through electrical potentials and magnetic fields, while PET, fNIRS, and fMRI

measure metabolic changes caused by brain activity134. Positron Emission To-

mography (PET) is a medical imaging technique that detects radioactive-labeled

compounds to indicate brain activity134. Functional near-infrared spectroscopy

(fNIRS) measures brain activity by using near-infrared light to measure oxygen

levels175. Although it is portable and affordable, its spatial resolution does not

match that of PET and fMRI. Functional Magnetic Resonance Imaging (fMRI) is

a commonly used method because it does not require the use of radioactive trac-

ers and it has a high-spatial resolution. fMRI detects changes in blood flow and

oxygen levels caused by brain activity through the magnetic field of the scanner44.

This thesis focuses on datasets recorded using the fMRI neuroimaging technique.

Therefore, we will provide a brief explanation.

Seiji Ogawa and his colleagues invented functional magnetic resonance imag-

ing (fMRI), a non-invasive method that visualizes whole-brain activity without

the need for injections164. When a population of neurons increases its activity,

blood flow to the veins near those neurons increases within seconds, providing

the necessary oxygen and glucose. Importantly, there is a difference between oxy-
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genated and deoxygenated hemoglobin, the latter being paramagnetic and acting

as a small magnet44. fMRI detects small distortions caused by deoxygenated

hemoglobin and measures the ratio of oxygenated to deoxygenated hemoglobin

in the blood. This ratio is referred to as blood-oxygen-level-dependent (BOLD)

signals. BOLD responses are an indirect measure of neuronal activity since they

appear and peak seconds after neuronal activity. While the temporal resolution of

fMRI is lower than that of EEG, the spatial resolution is superior134 (illustrated

in Figure 1.7). fMRI is an ideal choice for measuring brain activity for visual tasks

such as visual decoding and reconstruction due to its high spatial resolution, suffi-

cient temporal resolution (with an adjusted experiment design), and non-invasive

nature.

1.4 Early Studies in Neural Decoding and Visual Reconstruction

In principle, you can decode any kind of thought that is occurring in

the brain at any point in time…. you can think about this like writing a

dictionary. If you were, say, an anthropologist, and you went to a new

island where people spoke a language that you had never heard before,

you might slowly create a dictionary by pointing at a tree and saying

the word “tree,” and then the person in the other language would say

what that tree was in their language, and over time you could build

up a sort of a dictionary to translate between your language and this

other foreign language. And we essentially play the same game in

neuroscience - Jack Gallant178
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Nancy Kanwisher and her colleagues’ discovery of selective regions for different

objects in the temporal lobe raised questions for some researchers, including Isabel

Gauthier. Gauthier disagreed with the strong claims about the localization of face

perception and conducted experiments that led her to believe that FFA was not

a ’face area’ but an ’expertise area.’ This area is engaged whenever people see ob-

jects that they have a lot of expertise in. However, Kanwisher and her colleagues

were not convinced. They criticized Gauthier’s experiments and interpretation178.

To put an end to these debates, James Haxby employed a different method to

understand the relationship between brain regions and object categories. Prior

to this, researchers had been focusing on the amount of activation in a particu-

lar region in one condition compared to another. Haxby designed the decoding

framework, which uses a model to predict which object has been shown based on

an fMRI pattern. As a result of his initial study, he asserted that the representa-

tions of faces and objects in the ventral temporal cortex were widely distributed

and overlapping90. In a subsequent study, Spiridon and Kanwisher challenged

some of Haxby’s claims and demonstrated that category-selective regions, such

as FFA and PPA, lacked sufficient information to accurately distinguish between

two non-preferred stimuli226. O’Toole and Haxby later came to a similar conclu-

sion, stating that the regions preferred for faces and houses may not be enough to

classify non-preferred objects168. Reddy and Kanwisher revised their initial claim

after discovering that it is possible to differentiate between two non-preferred ob-

jects, such as shoes and cars, by analyzing the signals in FFA and PPA using

support vector machines, despite their weakness194. However, these results do not
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Figure 1.8: A simple visual explanation of neural decoding. During the training phase, voxel
patterns are recorded for two types of stimuli: shoes and cats. In the test phase, the type of stimulus
is predicted based solely on the voxel pattern. (Figure from Smith 2013)224.

affect modularity or category selectivity in the mentioned regions. It is important

to note that finding weak signals to discriminate between two non-specialized cat-

egories does not necessarily mean that the region is not specialized in a particular

category. For instance, a neural network trained solely on facial images can still

provide features to differentiate between shoes and cars, but its specialization is

in facial perception166. Although debates and controversies continued regarding

the representation of categories in the brain, whether it is distributed or modular,

one of the key outcomes has been the invention of neural decoding.

Neural decoding is a method in which a model predicts information about

the stimuli, such as category, orientation, and color, from brain signals obtained

through neuroimaging methods (simple description presented in Figure 1.8). Its

inverse, neural encoding, involves predicting neural activity based on given stimuli.

The thesis will primarily focus on decoding, specifically reconstructing images from

fMRI signals. Early decoding studies were based on Haxby’s analysis of neural
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response patterns, which involved distributed representations of categories in the

brain, also known as multivariate pattern analysis (MVPA)89. Cox and Savoy

developed a support vector machine (SVM) model to predict the class of various

objects, such as birds, chairs, horses, and teapots, from fMRI signals40. Hanson

et al. reanalyzed the object recognition data from Haxby et al. (2001) using

feed-forward neural networks.86. Carlson et al. and O’Toole et al. both utilized

linear discriminant analysis on the same data23,168. Ken Norman conducted one

of the earliest research reviews in this field with James Haxby. They referred

to these analyses as Multi-voxel pattern analysis initially, but later changed it

to multivariate pattern analysis (MVPA)163. In early studies of visual decoding,

researchers decoded various properties of visual stimuli. Two studies, one by

Haynes and Rees and the other by Kamitani and Tong, focused on decoding edge

orientation from oriented and masked gratings91,113 (depicted in Figure 1.9).

Thirion et al. attempted to reconstruct whole stimuli using retinotopic struc-

tures of visual areas instead of decoding a particular aspect of stimuli. They were

able to reconstruct simple shapes from brain signals237. Later on, Miyawaki et

al. reconstructed simple geometric and alphabetic shapes using multiscale local

image decoders154 (presented in Figure 1.10). Following the success in visually

decoding and reconstructing basic shapes, researchers at the Gallant Lab have

taken on the challenge of working with natural images. In their first study, Kay

et al. used models to estimate receptive fields for voxels and deployed them to

identify test images from a set of candidates.119 (showed in Figure 1.11). Nase-

laris et al. created a reconstruction model using the structural and semantic
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Figure 1.9: Decoding of edge orientation from oriented gratings. Top: Decoding the orientation
of the presented gratings. Bottom: Decoding the orientation of the imagined gratings. The model
predicts the orientation of the gratings (solid black line) with its corresponding uncertainty (Figure
from Neuromatch Conference 2022)38,113.

Figure 1.10: Reconstruction examples of simple geometric and alphabetic shapes from Miyawaki
et al.154.Top: Test images that are presented to the subjects while the fMRI signals are being
recorded. Bottom: The reconstructed images that were decoded from the fMRI signals of the
subjects. (Adapted from Miyawaki et al. 2008)154.
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information of stimuli images within a Bayesian framework, based on the same

data used in the previous study158.Nishimoto et al. established a model to recon-

struct natural movies using a Bayesian approach, taking the task complexity even

further than static image reconstruction161. Researchers have even gone beyond

decoding presented stimuli and established models for decoding mental images

when participants are awake195 or asleep101. Although the initial visual decoding

and reconstruction results appeared promising, certain bottlenecks prevented the

reconstruction quality from advancing beyond a certain point. One of these bot-

tlenecks is the inadequate representation of stimuli caused by hand-crafted feature

extractors or priors. To mitigate this problem, researchers have begun to use fea-

tures extracted from deep learning models, which provide richer representations

capable of representing complex stimuli at different levels of hierarchy.

1.5 Introduction to Deep Learning

The origins of Deep Learning (DL) and Deep Neural Networks (DNN) can be

traced back to the early stages of computational neuroscience and artificial intel-

ligence research. The milestones of the connectionist AI paradigm and machine

learning, as opposed to symbolic AI, can be seen as a prequel to deep learning.

These works include numerous studies and models, beginning with the McCulloch-

Pitts neuron model148, Hebbian Learning93, Perceptrons204, Backpropagation253,

Hopfield Networks99, Boltzmann Machines97, Multilayer Perceptrons205, Support

Vector Machines39, Long Short Term Memory Networks98, LeNet132, Deep Belief

Networks96, and others. Although the connectionist AI paradigm has been around
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Figure 1.11: Image identification stage of Kay et al.119 The first step involves recording fMRI
responses. In the second step, brain activity predictions are obtained using receptive field models
(neural encoding). Finally, the closest image is selected based on the distance in brain activity
response (Adapted from Kay et al. 2008)119.
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Figure 1.12: The structure of the AlexNet model consists of convolutional, maxpooling, and dense
layers. The model is divided into two pathways, which accelerates model training on two GPUs.
(Figure from Krizhevsky et al. 2012)129.

for eight decades, it was not always the main paradigm of AI. Other approaches,

such as symbolic AI, were more popular during certain periods in the history of

AI. Despite its achievements in important tasks, such as playing chess, planning,

and scheduling, symbolic AI was not sufficient for tasks that were relatively easy

for humans, such as object recognition. Machine learning models such as support

vector machines, multilayer perceptrons, or LeNet-like convolutional neural net-

works (CNNs) have been used for these tasks. However, their performance did

not match that of humans either.

After collecting large datasets such as ImageNet-1M, improving computation

with the development of graphical processing units, and designing better mod-

els, AlexNet started the era of deep learning in 2012 by winning the ImageNet

Large Scale Visual Recognition Challenge (ILSVRC), where it significantly out-

performed the second-place competitor, reducing the top-5 error from 26% to

15.3%129. AlexNet is a deep CNN model with 60 million parameters. It consists

of 8 layers, including 5 convolutional layers and 3 fully connected layers (the struc-
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ture of AlexNet is shown in Figure 1.12). This model was purposely designed for

GPU training, allowing parallel processing and reducing training time - a crit-

ical factor when working with millions of images. Following AlexNet’s ground-

breaking performance, several CNN models with deeper architectures, more pa-

rameters, and improved designs have emerged. These models have consistently

demonstrated better performance on the ILSVRC challenge, including VGG220,

GoogLeNet232, and the first model to pass 100 layers which is ResNet (with 101

and 152 layer variations)92. With the success of image classification, researchers

have developed CNNs for various tasks, including image detection (e.g. Faster-

RCNN197, YOLO196) and segmentation (e.g. DeconvNet162, U-Net203).

Deep learning models have shown promising results in computer vision tasks,

particularly discriminative ones as we mentioned above. Researchers began de-

signing image generation models, including Variational Autoencoders (VAE)122,

Generative Adversarial Networks (GAN)75, and Auto-regressive models242. VAE

is considered the first generative model of the deep learning era. It is relatively easy

to train compared to other generative models. However, its performance is limited,

often resulting in blurry and unrealistic image generation. While GANs were popu-

lar for their sharp and realistic generations, they have been prone to problems such

as mode collapse, which researchers have tried to mitigate through various studies.

Although autoregressive models were developed later, they have not gained popu-

larity due to their high computational requirements and slow processing. Various

architectures have been developed following the initial models, such as β-VAE95,

VD-VAE32, VQ-VAE243 for Variational Autoencoders; Deep Convolutional GAN
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(DCGAN)186, Wasserstein GAN4, Relativistic GAN111, Pix2Pix108, CycleGAN262

for Generative Adversarial Networks; PixelRNN242 and PixelCNN241 for Autore-

gressive Models.

While deep learning models have shown impressive performance in computer

vision tasks, natural language processing (NLP) has not progressed as rapidly in

AI research until 2018. The development of transformer models can be considered

a significant milestone, as they have revolutionized the field of NLP and have

become the foundation for many discriminative and generative models, includ-

ing CLIP and GPT246. Models such as Bidirectional Encoder Representations

from Transformers (BERT)51 and Generative Pretrained Transformers (GPT)187

demonstrated exceptional performance in NLP tasks, including text classification

and generation. Later, the transformer architecture has also been applied to

computer vision, as seen in models like Vision Transformer (ViT)54 and DeiT239.

Meanwhile, researchers were searching for a variety of techniques to get the mod-

els to learn useful features without requiring too much supervision. Contrastive

learning techniques have become popular for this purpose. They have been used

not only for unimodal models but also for multimodal models that include both

text and image modalities. One such model is the Contrastive Language-Image

Pretraining (CLIP) model, which processes text and image inputs through two

different backbones until they are reduced to a latent representation of the same

dimension. In this hidden space, the model compares two latent variables from

text and images and is trained using a contrastive loss185.

Meanwhile, the use of Generative Adversarial Networks (GANs) in image
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Figure 1.13: Structure of a simple Deep Neural Network with two hidden layers (Figure from
Stanford University CS231n Course 2017)240.

generation research had become saturated. However, models such as Vector

Quantized Variational Autoencoder (VQVAE)243,193, Vector Quantized GAN (VQ-

GAN)63, and DALL-E190 demonstrated the potential to generate images with

greater flexibility without compromising realism. Later, diffusion models have be-

come the latest invention in generative models and are used for image generation

(described in section 1.5.3). Diffusion was a groundbreaking technique, but its

application to image space can be costly due to its high dimensionality225. As an

alternative, researchers have developed latent diffusion models (LDMs) that apply

diffusion to latent space. An example of LDMs is the Stable Diffusion model202.

After reviewing the brief history of AI, we can now delve into the basics of deep

learning models.
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1.5.1 Deep Neural Networks

Deep Neural Networks (DNNs) are artificial neural networks that consist of

multiple layers. They are designed to model complex patterns in data by process-

ing them through these layers. The input layer of a DNN receives input samples

and passes them to the next layer. Hidden layers, located between the input

and output layers, process inputs from previous layers using similar operations

(illustrated in Figure 1.13). The output layer is the final layer. These inputs are

multiplied by a weight matrix, summed, and then a nonlinearity function, such as

a sigmoid or rectified linear unit (ReLU), is applied160. The output layer predicts

the target value and compares it to the actual target value using a loss function,

such as mean squared error for regression tasks or cross-entropy for classification

tasks. After calculating the loss, the network’s performance can be improved by

adjusting the weights using an algorithm called backpropagation. Backpropaga-

tion calculates the gradient of the loss function with respect to the network’s

weights and optimizes them using optimization techniques such as stochastic gra-

dient descent (SGD)160.

1.5.2 Convolutional Neural Networks

Convolutional Neural Networks (CNNs) are a type of neural network designed

specifically for processing data with a grid-like topology, such as images (which

can be represented as a 2D grid of pixels)117. The input layer receives images with

height, width, and channels instead of a 1D vector. The convolution layer is the

core building block of CNNs, utilizing the spatial neighborhood. It applies a filter
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to the input, with each filter being spatially small but having the same number of

channels as the input. The filter slides around the input and produces a feature

map from the responses117. This operation extracts features from the input image.

Activation functions, also known as nonlinearity, are applied in a similar manner

to those used in DNNs. In addition to the convolution layer, a CNN architecture

may include various types of layers, such as the pooling layer, which reduces

spatial size by using max or average operations, the normalization layer, which

stabilizes learning by normalizing input statistics (e.g., Batch Normalization)107,

or the dropout layer, which prevents overfitting by randomly deactivating some of

the units in the network during the training phase228. CNNs are typically utilized

for data with 2D structures and neighborhood information. This is because they

reduce the number of trainable parameters compared to DNNs, which have dense

connections in every layer. Additionally, CNNs are less prone to overfitting due

to the reduced effect of the curse of dimensionality260.

1.5.3 Deep Generative Models

As mentioned above in the brief history of deep learning, data can be generated

using deep generative models such as VAEs, GANs, auto-regressive models, and

latent diffusion models (LDM). Our studies also involved variations of these mod-

els, including Instance-Conditioned GAN (IC-GAN), Very Deep VAE (VDVAE),

and Versatile Diffusion (VD) models. This section provides technical details of

these models.

Variational Autoencoders (VAEs) are a type of autoencoder that use a prob-
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Figure 1.14: Structure of VDVAE. It consists of many hierarchical latent variables used to generate
images from latent values (Figure from Child 2020)32.

abilistic mapping for the latent space122. Unlike traditional autoencoders, which

map the input directly onto a latent vector, VAEs map the input data into Gaus-

sian distributions with means and variances68. The architecture of VAE consists

of two main parts: the encoder and the decoder. The encoder part takes an in-

put x and computes the parameters of the latent distribution qφ(z|x), where φ

presents the parameters of the encoder neural network21. The decoder compo-

nent attempts to reconstruct the input data pθ(x|z) using the latent samples z,

with θ representing the parameters of the decoder neural network21. To compute

backpropagation for VAE training, the reparameterization trick is used. This in-

volves sampling from a standard normal distribution and then shifting the samples

based on their mean and variance165. The loss function for VAEs is the sum of

the reconstruction loss, which measures the difference between the predicted and

actual samples, and the Kullback-Leibler (KL) divergence between the learned
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distribution and the prior distribution, which is typically a normal distribution21.

Chapter 3 presents a study that utilized a type of VAE known as Very Deep VAE

(VDVAE). VDVAE is a model with multiple hierarchical latent variables33 (shown

in Figure 1.14). We explain the details of the model in section 3.2.3.2.

min
G

LG = E
z∼pz(z)[log(1 − D(G(z)))] (1.1)

max
D

LD = E
x∼pdata(x)[logD(x)] + E

z∼pz(z)[log(1 − D(G(z)))] (1.2)

In 2014, Ian Goodfellow and his colleagues introduced Generative Adversarial

Networks (GANs), and they’ve become increasingly popular75. The GAN is a

generative model composed of two networks: the generator and the discriminator.

The generator produces new data instances from a random noise input, aiming

to generate data that is similar to the real data obtained from the dataset and

mimic its distribution22. The discriminator assesses data instances from both the

generator and the dataset, attempting to differentiate between real data from the

dataset and fake data generated by the generator. The discriminator adjusts its

weights based on its errors in predicting the authenticity of both the real and gen-

erated data, while the generator adjusts its weights based on the discriminator’s

responses22.After a certain amount of training, the generator’s output becomes

indistinguishable from real data. The generator G attempts to reduce the probabil-

ity of the discriminator classifying its outputs as fake, as shown in Equation 1.175.

The discriminator D aims to maximize the probability of predicting real and fake
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Figure 1.15: Structure of BigGAN model at the top. The model receives latent z and class variable
to generate images. Examples of latent interpolation for BigGAN model at the bottom. The first row
demonstrates the effect of the z variable on rotation through latent interpolation. The second row
shows that the pose remains the same as the image category changes, demonstrated through latent
interpolation of the class variable. (Adapted from Brock et al. 2018 , and Voynov and Babenko
2020)18,247.
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Figure 1.16: Representation of the latent diffusion model. The model applies diffusion iteratively
to the data, transforming it into noise. Then, denoising is applied using neural network models to
generate images that are similar to the original data. (Figure from Rombach et al. 2022)202.

data correctly, as shown in Equation 1.275. Traditional GANs generate data only

from noise sampled from an unconditional distribution. In contrast, conditional

GANs receive additional input, such as class or map, to produce more specific

or controlled generation68. For instance, GANs trained on the ImageNet dataset

are typically trained conditionally and receive category labels as inputs. The Big-

GAN model was one of the initial models trained in this manner (illustrated in

Figure 1.15)18. BigGAN was designed to generate high-resolution images. The

IC-GAN model, which was used in the first study (Chapter 2), is a successor of

BigGAN. In this model, conditioning is achieved through instance vectors instead

of category labels26 (more details in section 2.2.3.1).

Latent Diffusion Models (LDMs) are generative models that iteratively re-

fine data to generate high-fidelity samples from a noise sample202 (represented in

Figure 1.16). LDM generates samples from a dataset by transforming a noise sam-

ple from a normal distribution (Gaussian noise). Unlike naive diffusion models,
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LDMs encode high-dimensional data, such as images, into a lower-dimensional

latent space using an encoder. The diffusion process applied in the latent space

consists of two operations: forward diffusion and reverse diffusion or denoising.

Forward diffusion is the process of gradually adding noise to the data until only

the noise remains202. Reverse diffusion is the process of gradually removing noise

through denoising, which is an operation learned by the model202. The model

learns how to denoise by predicting the added noise in each forward diffusion step.

When generating new samples, the LDMs apply reverse diffusion by predicting the

added noise for a certain number of steps and subtracting it from the latent vari-

able for each step6. LDMs have become popular due to their success in generating

high-quality samples that match the dataset distribution. This success has been

demonstrated in text-to-image generation models such as Stable Diffusion. The

Versatile Diffusion model used in the second study (Chapter 3) is a variation of

the stable diffusion model with multimodal inputs and pathways, including both

images and text255 (more details in section 3.2.3.3).

1.6 Using Deep Learning for Neuroscience Studies

As stated in section 1.5, deep learning models have their roots in computational

neuroscience models, and many neural network models draw inspiration from neu-

roscience. Despite criticism from some researchers regarding the neuro-inspired

connectionist paradigm and suggestions for a more engineering approach112, or

symbolic approach145, neuroscience and AI research continue to collaborate. Neu-

roscientific insights are used to establish robust models, while AI models are
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Figure 1.17: Yamins et al. shows higher layers of a CNN model (which was trained on an object
recognition task) are capable of predicting neural recording from V4 and IT (Adapted from Yamins
et al. 2014)256.
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employed for neural decoding, brain imaging analysis, and behavioral analysis.

Following the success of AlexNet in the ImageNet object recognition competi-

tion, cognitive computational neuroscience researchers began analyzing the rep-

resentational similarities and differences between deep learning models and the

brain. Mathematical models for low-level visual processing had already been es-

tablished103,1, but until the advent of deep learning models, there were no models

that adequately captured high-level features. DNNs have demonstrated hierar-

chical feature learning when trained for specific tasks, such as object recognition.

Early analyses have shown that DNNs can predict neural activity in mid-visual

areas like V4256,82 (presented in Figure 1.17). Similar analyses are also conducted

for the inferior temporal (IT) cortex, which is recognized for its high-level visual

processing120. The analysis of visual cortical activity prediction (encoding) is

repeated for different types of neuroimaging data, including electrophysiology20,

fMRI60,252,59, MEG36 and EEG76. Contrary to the prediction of cortical activ-

ity, deep neural networks (DNNs) are also utilized to provide feature spaces for

decoding certain aspects of visual stimuli, such as category, or even the stimuli

themselves, such as visual reconstruction252,100. Our research focuses on the use of

AI and deep learning in neuroscience, specifically for neural decoding and visual

reconstruction.

1.7 Visual Reconstruction using Deep Learning

Researchers started using deep generative models to reconstruct images from

fMRI signals after witnessing the representational modeling capabilities of DNNs

49



Figure 1.18: General approach for visual reconstruction using deep learning methods. The method
involves presenting images to subjects while recording their brain activity via fMRI. A decoder model
is then trained using these fMRI-image pairs, and test reconstructions are generated using fMRI
activity in the test set (Figure from Rakhimberdina et al. 2021)188.

for neuroscience. Although the details of approaches may vary depending on the

methods used, the general approach for visual reconstruction using deep learning

models is shown in Figure 1.18. Du et al. conducted one of the earliest studies

in this area. They utilized various deep learning models, such as deep canonically

correlated autoencoders, deconvolutional neural networks, and deep generative

multiview models, to reconstruct geometric shapes, alphabet letters, handwritten

digits, and characters from fMRI activity patterns57. Researchers have shifted

their focus towards reconstructing more natural images, such as faces, by utilizing

deep generative models that have been trained on face images83,245,42 (presented in

Figure 1.19). Subsequently, researchers began collecting fMRI datasets of natural

images, which are discussed below. These images are more complex and contain

various categories, such as those found in the ImageNet48 and COCO138 datasets.
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Figure 1.19: Face reconstruction results of VAE-GAN model and PCA (baseline) (Adapted from
VanRullen and Reddy 2019)245.

1.7.1 Natural Image-fMRI Datasets

Publicly available fMRI datasets are essential for advancing neural decoding

research. They enable scientists worldwide to collaboratively study the functional

organization of the brain and assess the performance of methods through bench-

marking. The main studies of the thesis utilized two public fMRI datasets. Chap-

ter 2 presents the study that used the Generic Object Decoding dataset prepared

by Kamitani Lab. This dataset includes fMRI recordings of 5 subjects while im-

ages from the ImageNet dataset are presented. In Chapter 3 of the thesis, we

utilized the Natural Scenes Dataset, which was prepared under the supervision of

Kendrick Kay and Thomas Naselaris. The dataset includes fMRI recordings of 8

subjects who were presented with images from the COCO dataset. We used data

from the 4 subjects who completed all sessions.

The Generic Object Decoding (GOD) dataset contains 1200 images from 150

object categories in the training set (8 images per category) and 50 images from
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Figure 1.20: Demonstration of Generic Object Decoding dataset, where subjects are instructed
to press a button whenever they see the same stimuli consecutively (one-back test) during the
presentation experiment (Adapted from Horikawa et al. 2017100).

50 object categories in the test set. The categories in the training and test sets

are distinct from each other, and all images are retrieved from the ImageNet

dataset100. During the study, fMRI data were collected from five subjects while

they viewed a series of images in a 3 Tesla scanner. Each stimulus image was

presented for 9 seconds, flashed at 2 Hz, and displayed at 12x12° of visual angle.

A fixation point was located at the center of the images (presented in Figure 1.20).

Subjects performed a one-back test by pressing a button when they saw an im-

age twice in a row. This helped them focus their attention. During the testing

phase, each image was repeated 35 times, whereas during the training phase, each

image was presented only once. In addition to image presentation sessions, GOD

also included retinotopy and localizer experiments to extract regions of interest

(ROIs). Retinotopic regions, including V1, V2, V3, and V4, were identified for

each subject through retinotopy experiments. Additionally, regions such as the

Lateral Occipital Complex (LOC), Fusiform Face Area (FFA), and Parahippocam-

pal Place Area (PPA) were extracted for each subject using functional localizer
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Figure 1.21: Demonstration of stimuli presentation experiment in Natural Scenes Dataset. (Adapted
from Allen et al. 20222).

experiments.

The Natural Scenes Dataset (NSD) is a large-scale dataset collected using a

7 Tesla fMRI scanner for 8 subjects over the course of a year, across 30-40 ses-

sions2. The training dataset consists of 8,859 images, while the test set has 982

images for each subject from the COCO dataset. Unlike GOD, the training set

images are unique to each subject, while the test set images are shared among all

subjects. Only four out of eight subjects completed all sessions (sub1, sub2, sub5,

and sub7). The participants viewed stimulus images for 3 seconds each, with a

1-second interval between them. The images were displayed at a visual angle of

8.4x8.4° and were preceded by a central fixation point. All images were shown

up to three times, resulting in 24,980 training trials and 2,770 fMRI trials for the

test set. During the sessions, participants are asked if they have seen the stimulus

images before, a task designed to help them maintain their attention (demon-
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strated in Figure 1.21). Prior to the planned 40 sessions of image presentation,

participants are gathered for population receptive field (pRF) and functional lo-

calization (fLoc) experiments. These experiments are used to rank participants in

terms of performance and to extract ROIs. pRF experiments define regions in vi-

sual areas based on hierarchy (V1, V2, V3, and hV4) and eccentricity (0°<e<0.5°,

0.5°<e<1°, 1°<e<2°, 2°<e<4°, and 4°<e, where “e” represents eccentricity) for

each subject. fLoc experiments are conducted to define category-selective areas

such as Face-ROI (OFA, FFA-1, FFA-2, mTL-faces and aTL-faces), Word-ROI

(OWFA, VWFA-1, VWFA-2, mfs-words and mTL-words), Place-ROI (OPA, PPA

and RSC) and Body-ROI (EBA, FBA-1, FBA-2 and mTL-bodies) for each subject.

Preprocessing included temporal interpolation for slice time correction and spa-

tial interpolation for head motion and spatial distortion correction. The authors

employed a generalized linear model (GLM) to obtain approximate single-trial

beta weights. They also incorporated a hemodynamic response function and ap-

plied additional procedures such as GLMDenoise and ridge regression. For our

study, we used preprocessed fMRI signals masked with NSDGeneral ROI, manu-

ally drawn on fsaverage and covering voxels responsive to the NSD experiment in

the posterior cortex, with a resolution of 1.8 mm.

1.7.2 Natural Image Reconstruction Models using Deep Learning

The Kamitani Lab prepared two datasets that have become benchmarks for

natural image reconstruction: the Generic Object Decoding (GOD) dataset100 (de-

scribed above) and the Deep Image Reconstruction (DIR) dataset217 (shown in
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Figure 1.22: Reconstructed images from natural image reconstruction models for the Deep Image
Reconstruction (DIR) dataset (left) and the Generic Object Decoding (GOD) dataset (right) prior
to our first study, the IC-GAN model. The models for the DIR dataset, on the left, are from Shen et
al.217, Shen et al.217, Shen et al.216, Beliy et al.14, and Fang et al.64 respectively. The models for
the GOD dataset, on the right, are from Seeliger et al.214, Beliy et al.14, Mozafari et al.155, Ren et
al.198, and Gaziv et al.73 respectively. (Adapted from Rakhimberdina et al. 2021)188.

Figure 1.23). Both datasets use the same set of images from the ImageNet dataset.

However, the number of subjects and fMRI repetitions per image differs between

the datasets. Some studies also utilized the Visual Imaging 1 (vim-1) dataset,

which contains grayscale natural images with a circular mask119. Seeliger et al.

used the Deep Convolutional GAN (DCGAN) model to reconstruct images from

fMRI patterns for the vim-1 and GOD datasets, as well as a dataset consisting

of handwritten characters214. St-Yves and Naselaris trained a conditional energy-

based GAN (EBGAN) to reconstruct images from the vim-1 dataset229. Shen et al.

took a different approach and iteratively optimized the reconstructed image with

a deep generative network utilizing the decoded VGG-19 features217. Later, an ad-

versarial loss component was added to the model, making it capable of end-to-end

training216. Beliy et al. developed an Encoder-Decoder model to train between

stimuli images and fMRI activity. They also employed a self-supervised approach
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by stacking the encoder and decoder back-to-back and training the network with

an additional cycle consistency loss262 to mitigate the problem of scarce labeled

data14. In a follow-up study, Gaziv et al. introduced an additional loss component

utilizing perceptual similarity loss261, which was calculated based on the extracted

features from reconstructed and ground truth images73. Qiao et al. introduced

a Bayesian Visual Reconstruction Model based on BigGAN (GAN-BVRM) to

reconstruct images from the vim-1 dataset183. Fang et al. developed a new frame-

work in which they decoded shape and semantic representations separately from

various visual areas and then combined them using GAN64. Ren et al. designed

a dual VAE-GAN network framework for visual reconstruction. The framework

uses visually-guided cognitive representation and adversarial learning to bridge

the domain gap between fMRI signals and visual images. This is achieved by

gradually distilling knowledge between encoders198. Prior to our IC-GAN study,

the aforementioned models were able to capture certain aspects of the stimuli,

such as position and layout. However, they were unable to generate images that

accurately depict high-level features and appear realistic, with the exception of

Mozafari et al.155 (presented in Figure 1.22).

Mozafari et al. used the BigBiGAN model (an unconditional BigGAN with

an encoder) to reconstruct images in the GOD dataset as semantically more sim-

ilar to groundtruth images, shifting the focus of visual reconstruction to a more

semantic-oriented approach155. The approach by Mozafari et al. was an inspira-

tion for our Instance-Conditioned GAN (IC-GAN) approach, where we developed

a reconstruction framework that produces images that are semantically similar
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Figure 1.23: The reconstruction framework proposed by Shen et al. The image is optimized by
a deep generator network using error signals obtained from decoded features of fMRI activity. The
ground truth images and reconstructions of four test samples, which are presented below (Adapted
from Shen et al 2019)217.
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to the ground truthwhile retaining some of the low-level structure170. These ap-

proaches influenced later studies, such as those by Ferrante et al.65 and Chen et

al.31.

Deep generative models have shown significant improvement in reconstruct-

ing both the semantic and shape aspects of images from the GOD and DIR

datasets. However, it is important to note that these datasets consist of single-

object-centered images, specifically ImageNet images with one category of object

at the center. Therefore, the next challenge is to reconstruct complex scenes with

multiple objects and actions. The Natural Scenes Dataset (NSD) was curated by

Allen et al. from COCO images. During the viewing of these images, fMRI signals

were recorded from 8 subjects2. After this dataset was made public, researchers

studying visual reconstruction began using it as the new benchmark. Lin et al.

were the first to use NSD for visual reconstruction. They utilized a framework

that adapted an unconditional model (StyleGAN2) for text-to-image generation,

called Lafite137. They used CLIP text embeddings of image captions instead of

extracted image features due to the model’s design. Gu et al. were inspired by

our IC-GAN paper and employed the IC-GAN model, which allowed for the uti-

lization of image features. They used a surface-based convolutional network to

process fMRI signals for reconstructing images of the NSD dataset80. Takagi et al.

conducted the first study utilizing the Stable Diffusion model. However, similar to

Lin et al., they only incorporated text embeddings of the CLIP model for semantic

conditioning234. After these studies, we developed the two-stage Brain-Diffuser

framework, using the VDVAE model for low-level features and initial image recon-
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struction, and the Versatile Diffusion model, a multimodal model that uses both

image and text features from the CLIP model, for high-level features and final

image reconstruction. Brain-Diffuser outperformed all previous models in both

high-level and low-level metrics171.

1.8 Outline of the Thesis:

The thesis presents two methods for reconstructing and combining high-level

(semantic) and low-level (shape and layout) features from fMRI patterns to achieve

high-fidelity reconstructions using deep generative models.

In Chapter 2, we propose a natural image reconstruction framework using an

Instance-Conditioned GAN model that performs accurate semantic reconstruction

and preserves low-level details from fMRI patterns on the Generic Object Decoding

dataset.

In Chapter 3, we introduce the ’Brain-Diffuser’ framework, a two-stage scene

reconstruction method that uses latent diffusion models to reconstruct high-complexity

images from fMRI signals on the Natural Scenes Dataset.

In Chapter 4, we first extend our discussion for the studies in Chapters 2

and 3. Later, practical applications and ethical implications of our study and

neural decoding research in general are then discussed, followed by a summary

and closing thoughts.
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Chapter 2

Reconstruction of perceived images

from fMRI patterns and semantic brain

exploration using instance-conditioned

GANs

This chapter proposes a framework that utilizes the IC-GAN model for per-

ceived image reconstruction. Reconstruction results and qualitative metrics for

the Generic Object Decoding dataset are presented. The semantic information

encoded in several brain regions provided with the dataset is also analyzed.

2.1 Prologue to the main article :

In this section, I will briefly introduce the story behind the project. During

my bachelors studies at Istanbul Technical University, I explored studies related

to deep learning and neuroscience. I was particularly intrigued by the studies on
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reconstructing stimuli from brain signals. The first studies I encountered were

’Deep Image Reconstruction from Human Brain Activity’ by Kamitani Lab, ’Re-

constructing Faces from fMRI Patterns Using Deep Generative Neural Networks’

by Rufin VanRullen and Leila Reddy, and ’Generative Adversarial Networks for

Reconstructing Natural Images from Brain Activity’ by Van Gerven Lab. All of

these studies were remarkable and demonstrated the possibility of reconstruct-

ing images with high fidelity using deep learning models. In the last semester

of my bachelor’s degree, I worked on visual image reconstruction from fMRI sig-

nals as my graduation project. Due to the limited expertise in fMRI processing

in our Artificial Intelligence and Computer Vision Lab, I kept the project sim-

ple. I worked on the ”BRAINS” dataset published by Schoenmakers et al.211 and

devised simple convolutional autoencoder and GAN models to reconstruct hand-

written letters. The project was successful, but it did not satisfy my desire to

create better reconstruction frameworks for natural images. At the end of the

semester, I did not consider applying to universities abroad for a master’s degree.

Instead, I continued my studies in computer vision and deep learning at Istanbul

Technical University to improve my skills in AI and deep learning. During the

final year of my master’s program, I developed a keen interest in natural image

reconstruction. Pursuing this field required me to study abroad. I expressed my

enthusiasm for the topic and my desire to work with Rufin during my PhD in an

email. Rufin responded promptly with a positive reply. My PhD journey began

during the COVID-19 pandemic, which forced me to work remotely for my studies.

During my first year, I designed and experimented with various models for natural
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image reconstruction. Despite obtaining many promising results, I was unable to

find a suitable candidate for a state-of-the-art model. In my second year, I was

finally able to go to Toulouse and begin working in the lab. While there, I had the

opportunity to meet with many students and researchers, which greatly motivated

my studies. During my exploration and experimentation with various models, I

came across the Instance-Conditioned GAN model. Upon reviewing its generation

framework and results, I recognized its potential as a state-of-the-art candidate for

natural image reconstruction. When we began this study, visual reconstruction

studies typically focused on reconstructing shape and layout information resulting

in silhouettes. However, Mozafari et al.’s BigBiGAN approach, which still had lim-

itations, was an exception. With the IC-GAN approach, we wanted to integrate

semantic information and low-level information to generate realistic images, as

opposed to non-realistic silhouettes. The following article presents the results of

these studies.

2.2 Main article :

2.2.1 Abstract

Reconstructing perceived natural images from fMRI signals is one of the most

engaging topics of neural decoding research. Prior studies had success in recon-

structing either the low-level image features or the semantic/high-level aspects,

but rarely both. In this study, we utilized an Instance-Conditioned GAN (IC-

GAN) model to reconstruct images from fMRI patterns with both accurate se-

mantic attributes and preserved low-level details. The IC-GAN model takes as
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input a 119-dim noise vector and a 2048-dim instance feature vector extracted

from a target image via a self-supervised learning model (SwAV ResNet-50); these

instance features act as a conditioning for IC-GAN image generation, while the

noise vector introduces variability between samples. We trained ridge regression

models to predict instance features, noise vectors, and dense vectors (the output

of the first dense layer of the IC-GAN generator) of stimuli from corresponding

fMRI patterns. Then, we used the IC-GAN generator to reconstruct novel test

images based on these fMRI-predicted variables. The generated images presented

state-of-the-art results in terms of capturing the semantic attributes of the original

test images while remaining relatively faithful to low-level image details. Finally,

we use the learned regression model and the IC-GAN generator to systematically

explore and visualize the semantic features that maximally drive each of several

regions-of-interest in the human brain.

2.2.2 Introduction

Understanding the brain and cognition has always been one of the fundamen-

tal research areas of science. One of the ways researchers approach this task is

by establishing neural encoding and decoding methods. New ways to decode in-

formation from brain signals have emerged with recent developments in modeling

and computation.

In vision research, many studies have used statistical methods and machine

learning to decode specific information like position237 or orientation113,91, to clas-

sify image categories90,40, to retrieve the closest images from a candidate set119,
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or even to reconstruct images with low-complexity like basic shapes and struc-

tures154.

With the emergence of deep learning, and in particular advanced deep gen-

erative models, reconstructing more complex images like handwritten digits211,

faces245, and natural scenes217 has become possible. These deep generative models

include variational auto-encoders (VAEs), generative adversarial networks (GANs),

and many variants and hybrids of both. Although many studies have used these

models, they typically managed to reconstruct either low-level or high-level fea-

tures of the images, but rarely both at the same time.

Here, we propose a method to reconstruct natural images from fMRI acti-

vation patterns with both accurate semantic attributes and relatively preserved

low-level details, using an Instance-Conditioned GAN (IC-GAN) – a recent gen-

erative model26 inspired by the success of self-supervised feature learning110. In

our framework, we first extract latent representations for a set of training images

(see Figure 2.1): high-level attributes of the images, called “instance features” in

IC-GAN, are computed with a single forward pass through the SwAV ResNet-50

model; lower-level aspects of the image (e.g. reflecting the size, position or orien-

tation of an object, details of the background, etc.) are obtained via a two-stage

optimization of the IC-GAN “noise” and “dense” latent vectors (inspired by the

method of Pividori et al.176). Next, we train three ridge regression models to

predict these latent image representations from the corresponding fMRI patterns,

recorded while human subjects viewed the same training images (Figure 2.2, Step

1). Finally, for each image in the test set, we predict the instance feature, noise
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vector, and dense vector from fMRI data (using the previously learned regression

models), and then reconstruct an estimate of the image using IC-GAN’s generator

(Figure 2.2, Step 2 and 3). The code of this paper can be found in the official

GitHub repository∗.

Our method establishes a new state-of-the-art performance for capturing the

semantic attributes of the images, while preserving a reasonable amount of low-

level details. We present both qualitative and quantitative results, and a compar-

ison with previous methods to support our claims. We also take advantage of our

brain-based image reconstruction system to explore and visualize the semantic

image attributes encoded in various brain regions-of-interest (ROIs), and discuss

how these findings align with neuroscientific evidence.

2.2.3 Materials and Methods

2.2.3.1 Instance-Conditioned GAN

We utilized an Instance-Conditioned GAN (IC-GAN) model, pretrained for

natural image generation on the ImageNet dataset48. IC-GAN can be considered

as a generic framework rather than a single model, because it can be applied to dif-

ferent GAN backbones, e.g. StyleGAN118 or BigGAN18. In the usual conditional

GAN setting150, class labels are provided along with noise vectors sampled from a

normal distribution to generate images. Images belonging to that specific class are

labeled as “real”, and generated images from the generator are labeled as “fake”.

Both the generator and discriminator are trained with these images and labels in
∗https://github.com/ozcelikfu/IC-GAN_fMRI_Reconstruction
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Step 1 - Compute instance features h for training images

Ytr

SwAV htr

Step 2 - Optimize noise vector z for training images

htr

zi⟳
IC-GAN

Embed

Dense

Ŷz
Ytr

Loss

Step 3 - Optimize dense vector d for training images

htr

ztr

di⟳

IC-GAN
Embed

Ŷd
Ytr

Loss

Figure 2.1: Extraction of the latent variables (htr, ztr and dtr) for each training image (Ytr). Step
1: Instance features of training images (htr) are extracted using SwAV ResNet-50. This 2048-dim
instance feature vector (htr) captures the semantic attributes of the image. Step 2: In addition to
the instance feature vector, the IC-GAN also requires a noise vector (zi) as input, which encodes
lower-level properties of the image (e.g., pose, orientation, background etc.). While providing htr
obtained from Step 1 to the IC-GAN’s generator, we optimize the noise vector (zi) to generate the
closest image (Ŷz) to the groundtruth image (Ytr). The resulting optimized noise vector is ztr. Step
3: To further improve image reconstruction so as to better match the more detailed spatial structure
of the training image, we apply another optimization stage, in which we optimize the dense layer
vectors of IC-GAN itself. To achieve, this, we pass the first 17 dimensions of ztr to the dense layer
of the IC-GAN’s generator and obtain initial dense vectors (d0). While keeping both htr and the
remaining 102 dimensions of ztr fixed, we optimize the dense vector di to generate the closest image
(Ŷd) to the groundtruth image (Ytr). dtr is the resulting optimized dense vector.
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an adversarial learning framework. In the instance-conditional setting, instead of

giving a class label, instance features that capture the semantic attributes of a

given image are extracted (via a pre-trained feature extractor) and provided to

the generator as conditioning, alongside a sampled noise vector. For training, IC-

GAN selects k images in the neighborhood of the conditioning image (according

to the feature extractor); these images are labeled as real, while generated images

are considered as fake images to train both the generator and discriminator.

For the instance feature extraction, IC-GAN models use the SwAV (Swapping

Assignments between Views) architecture24 with a ResNet-5092 backbone. SwAV

is a self-supervised learning model which means that it does not require hand-

crafted labels from humans. Similar to contrastive learning methods110, SwAV

minimizes the distance in feature space between representations of two trans-

formed images (coming from the same original image).

It is possible to train the IC-GAN framework with different feature extractors,

as long as they provide rich feature representations. However, using features from

self-supervised learning models (e.g., SwAV) is better suited to the problem of

neural decoding and natural image reconstruction. Indeed, many recent studies

show that representations gathered from self-supervised learning models present

more similarity to brain representations than other learning methods125,263.

The specific IC-GAN model we used here relies on a BigGAN18 architecture

with 7 layers. It generates 256 × 256 × 3 images from a 2048-dim (dimensional)

instance feature vector extracted from SwAV ResNet-50 and a 119-dim noise vector

sampled from a normal distribution. The 2048-dim instance features are given to
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an embedding layer and thus reduced to 512-dim embedded vectors. The 119-

dim noise vector, which encodes lower-level properties of the image (e.g. pose,

size, orientation of the object), is split into seven hierarchical levels, each with

17 dimensions. The first 17-dim level is directly given to the first dense layer of

the IC-GAN generator. The remaining six hierarchical levels are concatenated

with the embedded instance vector to be fed to the generator in each of the six

BigGAN residual blocks.

Overall, the purpose of IC-GAN is to generate, from one conditioning image,

new and diverse image instances that share semantic attributes (as captured by

SwAV instance features), but differ in low-level properties (e.g. object position,

size, orientation, background details). The diversity of low-level properties is deter-

mined by randomly sampled “noise” vectors (and by the “dense” vectors directly

derived from them). However, for the purpose of fMRI-based image reconstruc-

tion, both high-level and low-level properties must be specified. Therefore, rather

than randomly sampling noise vectors, we computed a specific noise vector (and

the associated dense vector) for each training image in the dataset, as detailed

below.

2.2.3.2 Extracting Latent Variables from Training Stimuli

We illustrate the computation of latent variables in Figure 2.1. We first ex-

tracted a 2048-dim instance feature vector for each training image in our dataset

(see dataset details below) by presenting it to a SwAV ResNet-50 feature extrac-

tor. We then provided these instance features to the IC-GAN generator, and
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optimized the 119-dim noise vector for the same image using the covariance ma-

trix adaptation evolution strategy (CMA-ES)85. We used this method because

we empirically observed that global optimization strategies worked better than

local optimization strategies (like gradient-based methods) for the noise vector.

The loss function for this optimization was the distance between the generated

image and the original training image in Layer−4 of SwAV ResNet-50; this repre-

sentation level, hierarchically lower than the instance feature level, encodes more

spatially structured information.

Finally, to further match the more detailed spatial structure of the original im-

age, we applied one more optimization stage. Inspired by the two-stage inversion

method of Pividori et al.176, we provided the first 17 dimensions of the previ-

ously optimized noise vector to the first dense layer of the IC-GAN, resulting in a

1536× 4× 4-dim dense vector. While the instance features and the remaining 102

dimensions of the noise vector were kept fixed, we optimized these dense vectors

with the RMSProp optimizer. For this second-stage optimization, the previous

loss (SwAV ResNet-50 Layer−4 feature distance) was combined with a Learned

Perceptual Image Patch Similarity (LPIPS)261 loss gathered from a pretrained

VGG16 model220 and a pixel (MSE) loss from 64 × 64 resized images.

2.2.3.3 Generic Object Decoding Dataset

In this study, we used previously published fMRI recordings of five human

subjects presented with images from the ImageNet dataset100. The dataset con-

tains training and testing image perception sessions where subjects looked at 1200
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training samples drawn from 150 categories (8 samples each) and 50 testing sam-

ples chosen from 50 categories (1 sample each), respectively. Training and testing

categories were chosen independently and were non-overlapping. Each training

image was presented only once, while testing images were repeated 35 times dur-

ing the whole experiment. All fMRI runs followed a similar design: fixation (33s),

50 image presentations (9s per image flashing at 2Hz), fixation (6s). Moreover,

subjects were also asked to perform a one-back task by pressing a button whenever

the same image was presented two times in a row (five such events occurred per

run).

The fMRI data were pre-processed for each subject by three-dimensional mo-

tion correction followed by coregistration to the high-resolution anatomical image.

Then, the brain representation of each image was calculated by averaging the

percent signal change values of each voxel over the 9-s presentation window. Ad-

ditionally, the dataset provides functional regions of interest (ROIs) that cover the

entire visual cortex, including V1-V4, the fusiform face area (FFA), parahippocam-

pal place area (PPA), and lateral occipital complex (LOC). The pre-processed data

is available to download at brainliner.jp†.

2.2.3.4 fMRI Decoding and Image Reconstruction

Details of fMRI decoding and image reconstruction are depicted in Figure 2.2.

The procedure involves two separate stages for training and testing the brain

decoding system of each subject.
†http://brainliner.jp/data/brainliner/Generic_Object_Decoding
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Test
Image

IC-GAN
Rec Sub1 Sub2 Sub3 Sub4 Sub5

Figure 2.3: fMRI Reconstructions by the IC-GAN model for all subjects. The first column is the
groundtruth test image, whereas the second column is the reconstructed image by IC-GAN using
extracted latent variables. The following five columns demonstrate the equivalent reconstructions
using fMRI-decoded latent variables for each subject. fMRI reconstructions are generally consistent
with the groundtruth images in terms of semantic attributes, while they preserve the low-level details
to a certain degree.
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First, we trained three separate ridge regression models to predict the latent

variables (instance features; noise vectors; dense vectors) for each of the 1200

training images based on the corresponding fMRI patterns. Since both the fMRI

data and the latent variables are high-dimensional, we applied L2 regularization

on the regression weights during training.

At test time, we averaged the 35 repetitions of fMRI signals corresponding

to each test stimulus. Next, we used the previously trained regression models to

predict the instance features, noise vectors, and dense vectors from these averaged

fMRI signals. Finally, we used these predicted latent variables to generate image

reconstructions using the IC-GAN generator.

2.2.4 Results and Analyses

2.2.4.1 Image Reconstruction Results

Examples of image reconstructions produced by our method are displayed in

Figure 2.3. First of all, it is important to examine IC-GAN reconstructions (second

column) based on the optimized “ground-truth” latent vectors (derived as detailed

in Figure 2.1): we can see that IC-GAN can successfully reconstruct the semantic

attributes of the test images; however, it often misses some visual details, like

parts of the vehicle (third row), liquid in the glass (fifth row), or the precise text

in the gravestone (eighth row). These reconstructions help us understand how

the IC-GAN generator would behave if we perfectly decoded latent variables from

fMRI patterns, i.e. they serve as an upper bound on the expected reconstruction

quality.
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When we inspect actual fMRI reconstructions for the five subjects (third to

seventh columns), our first observation is that reconstructions look like natural

images. Furthermore, they are consistent across subjects. Again, these reconstruc-

tions capture some of the semantic attributes, while also missing specific aspects

of the test images. For example, the system generates images of horned animals

for the goat image (second row), but their species are not clearly identifiable. For

the token image (fifth row), round objects are reconstructed, but not with the

right texture. For the gravestone image (last row), similar square-shaped objects

with text and symbols are generated, but most of them would not qualify as a

gravestone. Overall, our method appears to reconstruct semantic attributes with

slight but significant variations in details.

How does it compare to previously proposed methods? In Figure 2.4, we

present image reconstructions using alternative methods proposed in five other

studies, together with our results for comparison‡. From these reconstructions,

we can see that many methods capture low-level details rather than high-level

ones; as a result, many of the reconstructions do not look natural. A notable

exception is the study of Mozafari et al., based on the BigBiGAN architecture155,

in which reconstructions often capture high-level properties and are more nat-

uralistic. Even this method, however, does not correctly reconstruct semantic

details for some of the images; furthermore, it misses many of the low-level de-

tails. Among the other studies, Ren et al.198 succeed in reconstructing colors and

textures better than other methods, while Gaziv et al.73 give sharper object edges.
‡We selected these seven images because it was the only common set of reconstruction exem-

plars presented across all of the considered studies.
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Test
Image

IC-GAN
Rec

IC-GAN
(Ours)

Shen
et al.

Beliy
et al.

Gaziv
et al.

Mozafari
et al.

Ren
et al.

Figure 2.4: Comparison of fMRI reconstructions for several methods. The first column is the
groundtruth image, the second column is the reconstructed image with IC-GAN using extracted
latent variables. Columns three to eight present fMRI reconstructions from IC-GAN (Ours), Shen
et al.217, Beliy et al.14, Gaziv et al.73, Mozafari et al.155, and Ren et al.198, respectively. fMRI
reconstructions by the IC-GAN method demonstrate more naturalistic-looking images with accurate
semantic attributes, while preserving some low-level details (e.g. object position, size or orientation).
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Our method generates realistic-looking image reconstructions with appropriate

semantic features, while preserving the low-level aspects to a certain degree.

Table 2.1: Quantitative comparison of image reconstructions. For each measure, the best value is
in bold. (For Pix-Comp/SSIM, higher is better; for Inception/CLIP distance, lower is better)

Method
Similarity Measure

Low-Level High-Level
Pix-Comp ↑ SSIM ↑ Inception ↓ CLIP ↓

Shen et al.217 79.7% 0.582 0.829 0.358
Beliy et al.14 85.3% 0.597 0.865 0.424
Gaziv et al.73 91.5% 0.601 0.841 0.387
Ren et al.198 87.3% 0.588 0.847 0.383
Mozafari et al.155 54.3% 0.450 0.818 0.352
IC-GAN (Random) 64.1% 0.467 0.761 0.328
IC-GAN (Noise) 66.5% 0.489 0.744 0.320
IC-GAN (Dense) 67.2% 0.491 0.742 0.330

These qualitative observations are supported by the quantitative comparison

of methods in Table 2.1, according to both low-level measures of image qual-

ity (Pix-Comp, SSIM) and higher-level “semantic” measures (Inception or CLIP

distance). Pix-Comp is a 2-way comparison of pixel-wise correlation measures

computed over the whole test set. We used the results reported by authors in

their respective papers, except for Gaziv et al.73, who did not report Pix-Comp:

we re-computed it over the reconstructed images provided in their supplemen-

tary material. All other metrics (SSIM250, Inception-V3233 distance, and CLIP

ViT-B/32185 distance), were computed over the seven common image reconstruc-

tions presented in Figure 2.4. Our own results are presented for three different

versions of IC-GAN decoding, using different combinations of the three brain

regression models in Figure 2.2, to evaluate the effects of each regressor on per-
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formance. First, the IC-GAN (Random) version uses brain-decoded instance fea-

tures together with randomly sampled noise vectors from a normal distribution.

Second, the IC-GAN (Noise) version combines brain-decoded instance features

with brain-decoded noise vectors, without using the brain-decoded dense vectors

(instead, the output of the first dense layer is used directly). Finally, IC-GAN

(Dense) is the complete framework described in Figure 2.2, which uses all the

brain-decoded latent variables (thus overriding the dense vector with its brain-

decoded version). The table indicates that most other methods yield better results

than IC-GAN on the low-level measures (Pix-Comp, SSIM), except for Mozafari

et al155; like ours, that study was aimed at matching higher-level “semantic” as-

pects of the input images. Importantly, IC-GAN outperforms the Mozafari et al

method for both low-level measures. For the high-level measures (Inception and

CLIP Distances), IC-GAN demonstrates state-of-the-art performance, surpassing

all methods–including Mozafari et al.–by a significant margin.

The comparison of the 3 versions of our IC-GAN method reveals that the inclu-

sion of both the brain-decoded noise vector (IC-GAN Noise) and the brain-decoded

dense vector (IC-GAN Dense) helps improve the model’s ability to capture low-

level details. Still, the full model remains inferior to many previous methods

in this respect. Regarding high-level semantic attributes, while the full method

IC-GAN (Dense) is superior to IC-GAN (Noise) for the Inception distance, the

opposite is true for the CLIP distance. This could be because Inception features

include more spatially structured information than CLIP features; indeed, the

function of dense vectors in our method is precisely to capture the image spatial
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structure that is less explicitly encoded in the noise vectors.

2.2.4.2 Semantic Analysis of Visual Encoding in Brain ROIs

Our brain decoding model, relying on the latent space(s) of the IC-GAN net-

work, can reconstruct the high-level content of perceived images better than all

prior methods, while retaining more low-level details than at least some of these

methods. From a neuroscience viewpoint, can this brain decoding model also help

us understand the neural coding of visual information in the brain? Here, we

use our model to explore and directly visualize the types of information that are

preferentially represented in various brain regions-of-interest (ROIs).

The fMRI dataset counts seven distinct ROIs across visual cortex for each

subject–in hierarchical order: V1, V2, V3, V4, LOC (Lateral Occipital Complex),

FFA (Fusiform Face Area) and PPA (Parahippocampal Place Area). First, we ask

whether each region carries more information about high-level latent features–

as captured by the model’s instance features–or about low-level properties–as

captured by the model’s dense vector (note that similar results, not shown here,

were obtained for the noise vector instead of the dense vector). To answer this

question, for each brain voxel we compared the L1 norm of the model’s ridge

regression weights for the instance features vs. dense vectors (Figure 2.5). As

expected, lower brain regions (V1-V3) were more informative about the dense

vector, while higher brain regions (V4, LOC, FFA, PPA) carried more information

about instance features.

Next, we use our brain decoding model to visualize the “optimal” stimulus
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Figure 2.5: Mapping of instance features vs. dense vectors over brain regions. (a) Difference
between the percentiles of the regression weights (L1 norm) for the instance features vs. the dense
vector, averaged over voxels in each ROI. Positive values indicate relatively higher weight for instance
features compared to the dense vector, and vice versa. Error bars represent standard error of the
mean across 5 subjects. Horizontal bars at the top indicate statistical significance of the comparison
between ROIs at the two endpoints, with Welch’s t-test (p < 0.008, Bonferroni correction for six
multiple comparisons) (b) Voxel-by-voxel maps (left: axial; right: sagittal) of the difference between
the percentiles of the regression weights (L1 norm) for the instance features (red) vs. the dense vector
(blue), averaged over the 5 subjects. Dense vector weights are higher in early visual cortex (occipital
regions), while instance feature weights are larger in higher visual cortex (temporal regions).
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Figure 2.6: Generated images from synthetic fMRI patterns constructed by activating all voxels in
a specific brain region-of-interest (ROI), and none outside of the ROI. The rows represent various
brain regions: V1, V2, V3, V4, LOC, FFA, and PPA. The first column is generated after averaging
the brain-predicted latent variables for all five subjects. The following columns are for individual
subjects.
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for each brain region. Instead of using fMRI patterns recorded from subjects,

we synthesized seven patterns, one for each ROI, with a value of 1 for all voxels

inside the ROI and 0 outside. We provided these synthetic patterns to the three

trained ridge regression models to obtain predicted latent variables (as described

in Figure 2.2). To mitigate the scaling problem, we normalized instance features

to have unit norms. We then passed the predicted latent variables through the

IC-GAN generator to generate images.

Previously, Gu et al.81 synthesized optimal images for different ROIs using a

BigGAN generator and a feature extractor. They iteratively optimized the latent

variables of the generator in such a way that predicted fMRI patterns (obtained

via the feature extractor) maximized activation in a specific ROI. In contrast,

our method involves a single pass through our image reconstruction pipeline, and

does not require iterative optimization of the latent variables. Figure 2.6 presents

the generated images from each subject (second to sixth columns), together with

reconstructions using averaged latent variables across all five subjects (first col-

umn).

In lower visual cortex (V1-V2), basic textures (foliage, trees, stones) are pro-

duced rather than (or in addition to) identifiable objects. The textures emphasize

the periphery of the visual field, in line with the fact that V1-V2 have small re-

ceptive fields that can be positioned at high visual eccentricity. For V3 and V4,

the generated textures present more regularity than V1 and V2, and we begin

to see visuals close to objects with multiple parts, including text-like symbols,

notably in V4. LOC is known for its selectivity to object shapes; when maxi-
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mizing this region’s response, IC-GAN generates complete objects at the center

of the image, rather than extended textures. At this stage, the visual periphery

appears empty or blurry, in contrast with the crisp peripheral textures produced

for V1-V2. In FFA, a high-level region known for its selectivity to face images,

IC-GAN generates human and animal faces. The presence of animal faces is not

unexpected, since the ImageNet dataset (on which IC-GAN was trained) contains

many more animal images than human images. Some previous experimental and

computational work81,16 also suggests that fusiform regions may show a prefer-

ential response to animals, and particularly dogs. Nonetheless, the model still

generates human face images for two of the subjects. The last ROI from the

higher visual cortex is PPA, known for its selectivity to environmental scenes like

indoor and outdoor places. IC-GAN also generates indoor and outdoor places

when the voxels of this region are activated. Some of the images have an object in

the center of the scene; this might be caused by the training of the IC-GAN model

on ImageNet–an object-centered dataset. It is worth noting that PPA-optimized

images produce more details in the visual periphery than FFA-optimized images;

this is compatible with the known difference in preferential eccentricity between

the two regions135. Overall, the outcomes of this analysis are consistent with find-

ings from the neuroscience literature, indicating that our IC-GAN-based model

learned to appropriately decode visual feature selectivity in the brain. Most im-

portantly, the method allows us to directly visualize this selectivity, rather than

inferring it from extended experiments.
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2.2.5 Discussion

In this paper, we presented a framework for natural image reconstruction

from fMRI patterns using the IC-GAN model, pretrained on ImageNet. First, we

extracted instance features, noise vectors, and dense vectors from training images,

and trained ridge regression models from fMRI patterns to these latent variables.

With these regression models, we decoded latent variables from the test fMRI

patterns, and finally reconstructed images with the IC-GAN generator.

Many previous studies implemented fMRI reconstruction frameworks with

deep generative models. However, these models were able to reconstruct either

low-level or high-level features of the images. Our method demonstrated state-of-

the-art performance on reconstructing semantic (high-level) attributes of the im-

ages, both qualitatively and quantitatively, while generating naturalistic-looking

images. Meanwhile, compared to other semantically oriented models (e.g. Moza-

fari et al.155, an approach based on BigBiGAN), it was able to maintain more

low-level details. Furthermore, we could use our fMRI-based image reconstruc-

tion model to visualize images decoded from synthetic fMRI patterns, designed

to maximize activations in specific brain ROIs. The results of this analysis were

aligned with the existing neuroscience literature, opening a range of possibilities

for future brain exploration and visualization techniques.

We acknowledge that there is still room for improving our model, especially in

terms of better reproducing low-level details. This may be achieved in future work

by improving our optimization of the noise and dense vectors, or by pairing IC-

GAN with other generative networks more focused on low-level image properties.
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2.3 Epilogue to the main article:

In this chapter, we used the IC-GAN model to create a framework for natural

image reconstruction. The framework demonstrated state-of-the-art performance

both quantitatively and qualitatively, particularly for high-level attributes. We

also developed a semantic analysis method to explore the semantic information in

specific brain regions using visualization methods.

After completing the article, we submitted it to the International Joint Con-

ference on Neural Networks 2022. It was accepted as an oral presentation, and

I presented it in Padua, Italy at the IEEE World Congress on Computational

Intelligence 2022 on behalf of our team.
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Chapter 3

BrainDiffuser: Natural scene recon-

struction from fMRI signals using gen-

erative latent diffusion

This chapter presents the second study of the thesis. The study establishes a

two-stage framework, involving Very Deep VAE and Versatile Diffusion models, to

reconstruct natural scenes from fMRI signals. As in the first study, the semantic

information in certain regions of the brain involved in the visual task is analyzed.

3.1 Prologue to the main article :

Following the success of our IC-GAN reconstruction paper, it has gained recog-

nition among researchers in this field and has received numerous citations in a

short amount of time. During the submission process of that paper, the Natu-

ral Scenes Dataset (NSD) was publicly released. This dataset’s vast amount of

images and fMRI trial samples has drawn the attention of those studying neural
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decoding. The dataset used in this study was more complex, involving multi-

subject complex scenes, compared to the single-object-oriented images used in

the first study. Initial reconstruction experiments were conducted on the dataset

using the IC-GAN approach before any reconstruction papers were published on

NSD. Although the reconstructions were not very similar to the original images,

they demonstrated that NSD was suitable not only for neural decoding analyses

but also for scene reconstruction. Therefore, in my third year, when I returned

to Toulouse from vacation, I began working on image reconstruction using NSD.

Meanwhile, text-to-image generation models and latent diffusion models were be-

coming increasingly popular due to their impressive results. It was anticipated

that these models would be useful for reconstructing complex scenes. The first

paper on NSD reconstruction was ’Mind Reader: Reconstructing complex images

from brain activities’, which utilized a Style-GAN backbone for text-to-image

generation. During our initial experiments with the reconstruction of NSD scenes

using Stable Diffusion models, we encountered the preprint ’High-resolution im-

age reconstruction with latent diffusion models from human brain activity.’ These

studies demonstrated that generative models utilizing text modalities produced

semantically satisfactory results for scene reconstruction. However, we concluded

that a model utilizing semantic information from both images and text captions

was necessary. In the following weeks, Xu et al. released the Versatile Diffusion

model255 and we conducted our initial experiments with it. We found that the re-

sults were semantically superior and more realistic than those of previous models.

We believed that our layout information could be improved by utilizing a model
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that effectively incorporates low-level information. Therefore, we employed the

Very Deep VAE architecture, which we had previously found to perform well in

low-level reconstruction, as a prior stage to Versatile Diffusion. After obtaining

state-of-the-art results for both semantic and low-level reconstruction, we also

conducted semantic ROI analyses similar to those in the IC-GAN paper. The

following article presents the results of these studies.

3.2 Main article :

3.2.1 Abstract

In neural decoding research, one of the most intriguing topics is the reconstruc-

tion of perceived natural images based on fMRI signals. Previous studies have suc-

ceeded in re-creating different aspects of the visuals, such as low-level properties

(shape, texture, layout) or high-level features (category of objects, descriptive se-

mantics of scenes) but have typically failed to reconstruct these properties together

for complex scene images. Generative AI has recently made a leap forward with

latent diffusion models capable of generating high-complexity images. Here, we in-

vestigate how to take advantage of this innovative technology for brain decoding.

We present a two-stage scene reconstruction framework called “Brain-Diffuser”.

In the first stage, starting from fMRI signals, we reconstruct images that capture

low-level properties and overall layout using a VDVAE (Very Deep Variational Au-

toencoder) model. In the second stage, we use the image-to-image framework of a

latent diffusion model (Versatile Diffusion) conditioned on predicted multimodal

(text and visual) features, to generate final reconstructed images. On the publicly
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available Natural Scenes Dataset benchmark, our method outperforms previous

models both qualitatively and quantitatively. When applied to synthetic fMRI

patterns generated from individual ROI (region-of-interest) masks, our trained

model creates compelling “ROI-optimal” scenes consistent with neuroscientific

knowledge. Thus, the proposed methodology can have an impact on both applied

(e.g. brain-computer interface) and fundamental neuroscience.

3.2.2 Introduction

Establishing neural encoding and decoding techniques is one way for researchers

to discover how the brain and cognition work. Recent developments in modeling

and computation have opened up new ways of decoding information from brain

signals. Numerous studies in the field of vision research have employed statisti-

cal techniques and machine learning to decode specific information from fMRI

(functional Magnetic Resonance Imaging) neural activity, such as position237 or

orientation113,91, to predict categories of images90,40, to match exemplar images

from a candidate set119, and to reconstruct images with low levels of complexity,

such as simple shapes and structures154.

In recent years, following the success in the development of deep learning

models, many studies utilized deep generative models to reconstruct entire im-

ages. These deep generative models included Variational Autoencoders (VAE),

Generative Adversarial Networks (GAN), and recently Latent Diffusion Models

(LDM). Most of these studies used existing deep generative models, pretrained

on large-scale data, and then learned a mapping (with simple regression or more
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advanced neural network architectures) to reconstruct the corresponding latent

variables from the brain signals. This general method was used to reconstruct im-

ages with different levels of complexity such as faces245,42, single-object-centered

images217, and more complex scenes2,137.

Most of the earlier works on natural scene reconstruction studied either the

Generic Object Decoding100 or the Deep Image Reconstruction217 datasets cu-

rated by the Kamitani Lab. These datasets consist of 1200 training and 50 testing

images from the ImageNet48 dataset and they differ in the number of fMRI repeti-

tions for training and testing images. One of the pioneer studies in this area is by

Shen et al.217 who optimized input images using a deep generator network with

a loss function provided by fMRI-decoded CNN features. Beliy et al.14 utilized

supervised training with {fMRI, stimulus} pairs, alongside an additional consis-

tency loss for unsupervised training with test fMRI data and additional image

data. Building on this, Gaziv et al.73 further improved the method by incorpo-

rating a perceptual loss on reconstructed images, resulting in sharper reconstruc-

tions. Mozafari et al.155 introduced a reconstruction model based on BigBiGAN

that focused on semantics. Ren et al.198 devised a dual VAE-GAN model with a

three-stage learning strategy that incorporates adversarial learning and knowledge

distillation. Ozcelik et al.170 employed the Instance-Conditioned GAN model to

generate reconstructions focused on accurate semantics (by extracting semantic

information with the SwAV model) and pose information (with latent optimiza-

tion). Chen et al.31 utilized a sparse masked brain modeling on large-scale fMRI

data and then trained a double-conditioned diffusion model for visual decoding.
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Recently, Allen et al. curated another dataset for visual encoding and decod-

ing studies called Natural Scenes Dataset2. For this dataset, 8 subjects viewed

thousands of images from the COCO138 dataset. COCO images contain multi-

ple objects and they are more complex in nature compared to ImageNet images.

Because of the number, diversity, and complexity of images included, the NSD

dataset—although very recent—is becoming the de facto benchmark for fMRI-

based natural scene reconstruction. Thus, it is the dataset that we chose for the

present work. There are already three studies that reconstructed images from this

dataset, and we can use them as baselines against which to compare our model’s

performance. The first one is by Lin et al.137, who utilized the Lafite framework

that adapts the StyleGAN2 model for text-to-image generation. Takagi et al.234

devised a method based on Stable Diffusion, using captions for the semantic infor-

mation and latent variables from images for the low-level information. Gu et al.80

improved upon Ozcelik et al.’s170 IC-GAN framework, by establishing a surface-

based convolutional network to process fMRI data instead of using vectorized

data in the regression models; they also trained an encoder network to predict

pose information, instead of performing latent optimization.

The above studies have fostered advances in reconstructing images with high

fidelity, especially in the case of object-centered images (i.e., ImageNet images

from the Kamitani dataset). Yet, reconstructing scenes with multiple objects and

complex semantic descriptions (i.e., COCO images from the NSD dataset) remains

a challenge. Given the remarkable recent success of latent diffusion models202 in

generative AI applications such as text-to-image generation202,189,159,209,255, we rea-
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soned that brain decoding studies could also take advantage of such models. Thus,

we propose here a visual reconstruction framework called ”Brain-Diffuser”, relying

on the powerful generation capabilities of Versatile Diffusion255, a model condi-

tioned on both vision and language representations acquired from the pretrained

CLIP185 model.

Our framework consists of two stages. The first stage, illustrated in Figure 3.1,

generates a low-level reconstruction of images (akin to an “initial guess”) using a

Very Deep Variational Autoencoder (VDVAE)33. We generate these reconstruc-

tions by training a regression model to associate fMRI signals to the corresponding

latent variables of VDVAE for the same training images. In the second stage, il-

lustrated in Figure 3.2, we train two additional regression models: one from fMRI

patterns to CLIP-Vision features (extracted by feeding the corresponding images

to the CLIP model); and the other one from fMRI patterns to CLIP-Text features

(collected by providing to the CLIP model the captions of the corresponding im-

ages). Finally, we use the multimodal dual-guidance as well as the image-to-image

abilities of the pretrained Versatile Diffusion (VD) model to generate the final re-

constructions for test images. Using our trained regression models, for each test

fMRI pattern we obtain an “initial guess” image (stage 1, VDVAE reconstruc-

tion) used by VD’s image-to-image pipeline, as well as predicted CLIP-Vision and

CLIP-Text feature vectors (stage 2), jointly used for conditioning VD’s diffusion

process. We used VDVAE, CLIP, and Versatile Diffusion with their pretrained

weights, and did not apply any finetuning. We only trained regression models

that transform fMRI patterns to latent variables of the models.
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We demonstrate below that the resulting scene images reconstructed by the

Brain-Diffuser model are highly naturalistic and retain the overall layout and se-

mantic information of the groundtruth images while showing only minor variations

in finer details. Compared to earlier models that exhibited proficiency in capturing

certain features of groundtruth images, Brain-Diffuser demonstrates qualitatively

and quantitatively superior performance in terms of both high-level and low-level

metrics, thus establishing itself as state-of-the-art.

3.2.3 Materials and Methods

3.2.3.1 Dataset

We used the publicly available Natural Scenes Dataset (NSD), a large-scale

7T fMRI dataset2. The NSD was collected from 8 subjects viewing images from

the COCO138 dataset. Each image was viewed for 3 seconds, while subjects were

engaged in a continuous recognition task (reporting whether they had seen the

image at any previous point in the experiment). For our study, we used the 4

subjects (sub1, sub2, sub5, sub7) who completed all trials. The training set that

we used thus contained 8859 images and 24980 fMRI trials (up to 3 repetitions

for each image), and 982 images and 2770 fMRI trials for the test set. We aver-

aged fMRI trials for the images that had multiple repetitions. We also used the

corresponding captions from the COCO dataset. Test images are common for all

subjects, while training images are different. We used the provided single-trial

beta weights, obtained using generalized linear models with fitted hemodynamic

response functions and additional GLMDenoise and ridge regression procedures
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(‘betas_fithrf_GLMdenoise_RR’). We masked preprocessed fMRI signals using

the provided NSDGeneral ROI (Region-of-Interest) mask in 1.8 mm resolution.

The ROI consists of [15724, 14278, 13039, 12682] voxels for the 4 subjects respec-

tively, and includes many visual areas from the early visual cortex to higher visual

areas. For further details on this dataset and the corresponding fMRI preprocess-

ing steps, we refer the reader to the initial paper describing the Natural Scenes

Dataset2.

3.2.3.2 Low-Level Reconstruction of Images using VDVAE (first

stage)

A Variational Auto-Encoder (VAE)122 is a generative model trained to cap-

ture an input distribution (such as an image dataset) via a low-dimensional latent

space, constrained to follow a particular prior distribution (e.g. Gaussian). When

the input dataset takes on a more complex distribution, training a Variational Au-

toencoder (VAE) can be challenging. Indeed, prior work has found that datasets

consisting of natural scene images require many latent variables with complex dis-

tributions for which a simple VAE would not suffice; this is why the Very Deep

Variational Autoencoder (VDVAE) was introduced33. The VDVAE is a hierar-

chical VAE model, with several layers of conditionally dependent latent variables,

each layer adding different details from coarse to fine when transitioning from top

to bottom. The hierarchical dependence can be seen in equations (3.1) and (3.2),

where z indicates latent representations, x is the input variable, qφ represents the

approximate posterior distribution that is learned when training the encoder, and

93



Figure 3.1: Reconstruction of Images via VDVAE (first stage). Training Stage (left). Latent
variables (ztrain) are extracted and concatenated for the first 31 layers of the hierarchy by passing
training images (Ytrain) into the pretrained VDVAE Encoder. A ridge regression model (Regressor)
is trained between fMRI patterns (Xtrain) and corresponding latent variables (ztrain). Testing Stage
(right). Test fMRI data (Xtest) are passed through the trained Regressor to obtain predicted latent
variables (ẑtest). These predicted latent variables are fed to the pretrained VDVAE Decoder to get the
low-level reconstruction (Ŷlow) of the test images (Ytest), which will serve as a sort of “initial guess”
for the second stage. Note that all VDVAE layers (encoder and decoder blocks) are pretrained and
frozen, only the brain-to-latent regression layer (blue box) is trained.

pθ represents the prior distribution that is learned when training the decoder. The

latent variable z0 is at the top of the hierarchy with the smallest dimension (low

resolution, with coarse details) and zN is at the bottom of the hierarchy with the

largest dimension (high resolution, with fine details). Equation (3.1) shows that

the latent variables at the bottom of the hierarchy are dependent on those who

are at the top (and on the input x). When there is no input (x), it is still pos-

sible to generate samples using the prior distribution described in equation (3.2).

This hierarchical structure helps the VDVAE learn sufficiently expressive latent
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variables to represent complex distributions like natural scene images.

qφ(z | x) = qφ (z0 | x) qφ (z1 | z0, x) . . . qφ (zN | z<N, x) (3.1)

pθ(z) = pθ (z0) pθ (z1 | z0) . . . pθ (zN | z<N) (3.2)

For our study, we used the model provided in33, trained on a 64×64 resolution

ImageNet dataset, and consisting of 75 layers; we only utilized the latent variables

from the first 31 layers for the sake of size in regression, since we observed that

adding further layers did not make much difference in the reconstruction results

(at test time, the latent variables from the remaining layers are sampled according

to the prior distribution given in equation (2)).

In the training stage, we fed images to the encoder part of the VDVAE to

extract latent variables for each training image (as described in Figure 3.1). We

concatenated the latent variables from the 31 layers, which resulted in 91168-

dim vectors. Then, we trained a ridge regression model between fMRI training

patterns and these concatenated vectors. In the testing stage, we provided test

fMRI patterns to the trained regression model and thus predicted latent values

for each test image. Then, we fed those latent values to the decoder part of the

VDVAE and obtained reconstructed images (64 × 64 pixels) from the VDVAE.

These low-level reconstructions served as an “initial guess” for the diffusion model

(second stage).
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3.2.3.3 Final Reconstruction of Images using Versatile Diffusion

(second stage)

Although the VDVAE was helpful to reconstruct the layout of the image, it

is not sufficient for the high-level features, nor does it produce fully naturalistic

pictures. For that, we use the Versatile Diffusion255 model in the second stage

of our reconstruction framework. Versatile Diffusion is a recently proposed latent

diffusion model (LDM)202.

LDMs have become highly popular after their success in high-resolution text-

to-image generation. In order to train an LDM, first an autoencoder (with encoder

E(.) and decoder D(.)) is trained on a large-scale image dataset to learn a com-

pressed representation of images x0, i.e. a latent space z0 = E(x0). Then, the

forward diffusion process is applied to these latent variables z0 by adding Gaus-

sian noise in successive timesteps (described in equation (3.3), where t represents

the timestep, ᾱt indicates a coefficient derived from the standard deviation of the

Gaussian noise, and ε represents the Gaussian noise). The reverse diffusion pro-

cess is learned via a neural network (Denoising U-Net in the original paper) to

predict and remove noise from the noisy latent so as to retrieve the original latent

variables. This is done by minimizing the loss function in equation (3.4), where

ε is the true Gaussian noise, εθ(.) represents the neural network being trained

to predict the noise, zt is the latent variable, t is the timestep, and τθ(y) is the

conditioning input for the U-Net. After the reverse diffusion process, the denoised

latent variables are passed through the trained decoder D(.) to generate the im-

ages. The critical part of this process is that it is possible to condition this reverse
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Figure 3.2: Final Reconstruction of Images via Versatile Diffusion (second stage). Training Stage:
CLIP-Vision features (cim) are extracted by feeding training images (Yim) to the pretrained CLIP model.
CLIP-Text features (ctx) are extracted by providing the corresponding captions (Ytx) to the pretrained
CLIP Model. Two different ridge regression models (Regressors) are trained to learn the mapping
between these features and fMRI patterns (Xtrain). Testing Stage: Predicted CLIP-Vision (̂cim) and
CLIP-Text (̂ctx) features are computed by giving test fMRI patterns (Xtest) to the trained regression
models. In the image-to-image pipeline of the latent diffusion model, VDVAE reconstructions of test
images (the “initial guess” Ŷlow from the first stage) are passed through the AutoKL Encoder of the
pretrained Versatile Diffusion model, and the obtained latent vectors undergo 37 steps of the forward
diffusion process (noise addition). The resulting noisy latent vectors are used to initialize the reverse
diffusion process, which is also guided by predicted CLIP-Vision (̂cim) and CLIP-Text (̂ctx) features
jointly in a dual-guided framework. At last, the resulting denoised latent vector is passed through
the AutoKL Decoder to generate the final reconstructed image (Ŷtest). Note that all CLIP (vision
and text encoders) and Versatile Diffusion layers (AutoKL encoder and decoder, forward and reverse
diffusion blocks) are pretrained and frozen, only the brain-to-latent regression layers (blue boxes) are
trained.
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diffusion process on different representations (e.g text captions, images, semantic

maps). This conditioning process is done by merging conditions (τθ(y)) in the

cross-attention block of the Denoising U-Net.

zt =
√
ᾱtz0 +

√
1 − ᾱtε (3.3)

LLDM = Et,z0,ε,y

[

∥ε − εθ (zt, t, τθ(y))∥2
]

(3.4)

The Versatile Diffusion model (see Figure 3.2) is a latent diffusion model with

different pathways which allow us to condition the generation process on both

text and image features to guide the reverse diffusion process. It is possible to

provide CLIP-Vision, CLIP-Text, or both features as conditions in the reverse

diffusion process. It is also possible to initialize the reverse diffusion with latent

variables obtained from a particular image, rather than from a purely random

distribution–this is the image-to-image pipeline that we will use to take advantage

of our “initial guess” image from stage 1. The Versatile Diffusion model that we

utilized in our framework was trained on the Laion2B-en212 dataset with 512 ×

512 resolution images and corresponding captions. CLIP (Contrastive Language-

Image Pre-training)185 is a multimodal model designed to assist in different tasks

that involve natural language processing and computer vision. It is trained in

a contrastive learning approach, where features gathered from images vs. text

captions are projected onto separate latent spaces of identical dimensions: CLIP-

V refers to the latent space for images and CLIP-T for captions. Similarity scores

(e.g. cosine similarity) of the latent space projections for matching images and
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captions are optimized throughout training. CLIP is widely used as a feature

extractor, due to its high representational capabilities. The CLIP network used

in Versatile Diffusion is based on the transformer architecture (ViT-L/14) and

pretrained on a large-scale contrastive task.

In stage 2, we thus train two regression models, the first one between fMRI pat-

terns and CLIP-Vision features (with 257×768-dim extracted from the correspond-

ing images where the first vector with 768-dim represents the category-related em-

bedding and the remaining 256 embeddings represent the patches acquired from

the images) and the second one between fMRI patterns and CLIP-Text features

(77× 768-dim extracted from the COCO captions associated with the correspond-

ing images where the 77 embeddings correspond to the number of tokens given

to the model as inputs). At testing time, we use the image-to-image pipeline of

the latent diffusion model. First, we encode the image reconstructed with the

VDVAE model (stage 1) with the AutoKL Encoder (after upsampling the image

from 64 × 64 to 512 × 512) and add noise to the latent vector for 37 steps of

forward diffusion (corresponding to 75% of the 50 steps of full diffusion, which is

a commonly used value in the image-to-image pipeline of LDMs.). In this image-

to-image pipeline, it is necessary to first add some amount of noise to the latent

values using forward diffusion, since LDMs generate images via denoising using

reverse diffusion (without noise on the image, the reverse diffusion step would

end up with no change). Then, we feed this noisy latent as initialization to the

diffusion model and denoise it for 37 steps while conditioning with the predicted

CLIP-Vision and CLIP-Text features (stage 2). In every step of reverse diffusion,
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we use CLIP-Vision and CLIP-Text jointly in the double-guided diffusion pipeline

of Versatile Diffusion, where the cross-attention matrices for both conditions are

mixed through linear interpolation (with CLIP-Vision having a relative strength

of 0.6 and CLIP-Text of 0.4). The diffusion result is passed through the AutoKL

Decoder to produce our final 512 × 512 pixel reconstruction.

3.2.3.4 Code availability

The code for our project, including scripts to train regression models, pre-

trained weights, and scripts to produce reconstructions for test images and for

ROI-based synthetic patterns, is publicly available at github.com/ozcelikfu/brain-

diffuser.

3.2.4 Results and Analyses

3.2.4.1 Image reconstruction examples

We present examples of reconstructions from our model in Figure 3.3. While

we present the results of each individual subject in different columns, we also

added results gathered by averaging the latent variables predicted by all subjects.

In general, we see that reconstructed images capture most of the layout and se-

mantics of the groundtruth images, while there remain differences in pixel-level

details. For instance, looking specifically at the first four images on the left, we see

that the reconstructed pose (3D orientation) of the plane (first image) is correct

for every subject although there are some differences in the details of the plane

and also in the texture of the background. Nonetheless, the fact that a commercial
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Figure 3.3: Examples of fMRI Reconstructions from our Brain-Diffuser model. The first column is
the groundtruth image (Test Image). The second column is generated by averaging the predicted
latent variables over all 4 subjects seeing the same picture (Sub Avg). The remaining columns are
for each individual subject (Sub1, Sub2, Sub5, Sub7)

plane on a runway, facing to the right on a blue sky background was reconstructed

in all instances is not a trivial feat. For the second example, all reconstructed im-

ages display a group of people, although layouts tend to differ. Still, a person in

a wheelchair is visible in the bottom right corner for three of the four subjects.

For the third image, the model reconstructed a highway with road signs correctly,

although the orientation of the road is different for some of the subjects, and the

details of the signs are not entirely matched. On the fourth sample, all recon-

structed images show a single person facing left and holding an object in their

hand, as in the groundtruth image. The person’s details (gender, age, clothing)

are different across subjects, e.g. with glasses only reconstructed for subject 1 and

in the average across subjects. Reconstructed image contrast also differs from
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the ground truth. Similar conclusions can be generalized to most images of the

test set: while never passing for a picture-perfect copy, with visible differences in

especially color and contrast (due to inherent limitations of the Versatile Diffusion

model in this respect), the reconstructed images are always naturalistic (that is,

as much as diffusion models can generate) and plausible alternate renditions of

the ground truth. Some of the remaining errors and differences may be caused by

inherent limitations of the LDMs instead of unsuccessful predictions made by the

fMRI-latent mapping model, as it is known that (current) diffusion models can

generate unrealistic images in some occasions (e.g. unusual numbers of eyes on

faces, fingers in hands.)

Figure 3.4: Failure cases of fMRI Reconstructions from our Brain-Diffuser model. The first column
is the groundtruth image (Test Image). The remaining columns are for each individual subject (Sub1,
Sub2, Sub5, Sub7)

We also present some examples of reconstruction failures from our model in

Figure 3.4. In these examples, we see that our model can fail due to different

reasons. In the first example, although Brain-diffuser reconstructs oval objects
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around the center, the complex texture of the background seems to interfere with

the object, which is not reconstructed as a clock. For the second example, the

reconstructions show sea in the background, although there is no sea in the ground-

truth image. On the fourth sample, the teddy bear occluding the kid’s face seems

to confuse the model, as it generates human faces in the reconstructions. For

the sixth example, Brain-Diffuser reconstructs a kid instead of a monkey. These

examples highlight the fact that Brain-Diffuser can fail on occasion, due to di-

verse reasons like complex stimuli, object occlusions, or confusing one object with

another.

3.2.4.2 Comparison with state of the art

How do these findings compare to the state of the art? We contrast the

qualitative results of our model with three other existing models in Figures 3.5 and

3.6. Lin et al.137 was the first study that used the NSD dataset for reconstruction.

They are similar to our model in terms of utilizing both image and text features as

conditions, but they used a StyleGAN2 model instead of an LDM. Takagi et al.234

is the only other study (in addition to ours) to use a latent diffusion model for

reconstructing images from the NSD dataset. Finally, Gu et al.80 used an Instance-

Conditioned GAN model trained on ImageNet. In Figure 3.5, we compared our

results with previous studies for the same set of images as in Figure 3.3. Since

Lin et al. used a different train-test split for their model, we used a replication

of their model on the same train-test split as ours. Takagi et al. and Gu et al.

shared generated images from their models with us for comparison. From these
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Figure 3.5: Comparison of fMRI Reconstructions for different models on a common set of test images.
The first column is the groundtruth image (Test Image). The second column shows reconstructions
of our method (Brain-Diffuser). The third column reconstructions are generated by replicating Lin
et al.’s method using the code and instructions given by the authors. The fourth and fifth columns
are reconstruction results from Takagi et al. and Gu et al. respectively, which were shared by the
original authors.

reconstructions, we can see that all methods capture high-level information to

a degree, but not all of them are equally good at utilizing this information for

image reconstruction. For instance, in the first image with a plane, Brain-Diffuser

reconstructed a plane image that looks more similar to the ground-truth image

and has a more realistic structure compared to Lin et al. and Gu et al. (and there

is no recognizable plane in the reconstruction of Takagi et al.). In the fourth

image with a man with glasses, the face is barely recognizable for Lin et al., the

reconstruction by Gu et al. does not contain arms or glasses, while Takagi et al.
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Figure 3.6: Comparison of fMRI Reconstructions for different models on images presented in the
papers of the previous methods. Since the presented test images in all methods were different, we
did comparisons separately for each model. On the left (first 3 columns), we present the comparison
of our model with Lin et al. together with groundtruth test images. On the center (columns 4-6),
we present the comparison of our model with Takagi et al. together with groundtruth test images.
On the right (last 3 columns), we present the comparison of our model with Gu et al. together with
groundtruth test images.

reconstruct an unnatural rendition of a face and arms; in contrast, Brain-Diffuser

exhibits a more natural-looking reconstruction and also manages to reconstruct

the glasses.
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In Figure 2.4, we compare our method against the same three baselines, but

using image reconstructions that were reported by the original authors in their

papers, which might be more representative of each method’s performance. Al-

though Lin et al. seems to be performing better than the other two prior models,

in some instances the quality of their reconstructions still lags behind ours. For

instance, in the second image, the details of the truck are better represented in

our model, while for the third image, the shape of the toilet is better represented

in Lin et al. In the fourth image, the color of the clothes is presented more ac-

curately in our model, as well as the fact that the person is holding an item; the

person’s face also looks more realistic compared to Lin et al. On the other hand,

the color and location of the pizza in the sixth image appear more aligned with

the ground-truth image for Lin et al. Although Takagi et al. generates easily

recognizable silhouettes, they do not seem to perform as well as our model in any

qualitative aspect including low-level details, semantics, or naturalness. Finally,

when we compare our results to Gu et al., we can see that, although both appear

good at reconstructing images with similar semantics, structural aspects are less

well represented in their reconstructed images (e.g. unrealistic warped shapes for

the train, bus, and building). In contrast, the shape and texture details of our

model are more realistic. Since their model has a BigGAN backbone, with few pa-

rameters to encode the entire layout of the image (including the object’s class, its

pose, size, and location), and since it is trained on a single-object-centric dataset

(ImageNet), the model seems to be limited in reconstructing complex scenes with

multiple objects. On the other hand, since LDMs include a spatially organized
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map of features, it is more convenient for them to represent multiple objects; as

an example, we see one train in the third image although there are two trains in

the groundtruth image, and in the reconstructed image from our model.
Table 3.1: Quantitative Analysis of fMRI Reconstructions. For each measure, the best value is in
bold. (For PixCorr, SSIM, AlexNet(2), AlexNet(5), Inception and CLIP metrics, higher is better. For
EffNet-B and SwAV distances, lower is better. This is indicated by the arrow pointing up or down,
respectively)

Method
Quantitative Measures

Low-Level
PixCorr ↑ SSIM ↑ AlexNet(2) ↑ AlexNet(5) ↑

Lin et al.137 − − − −
Takagi et al.234 − − 83.0% 83.0%

Gu et al.80
.150 .325 − −

Brain-Diffuser (Ours) .254 .356 94.2% 96.2%

High-Level
Inception ↑ CLIP ↑ EffNet-B ↓ SwAV ↓

Lin et al.137 78.2% − − −
Takagi et al.234 76.0% 77.0% − −
Gu et al.80 − − .862 .465
Brain-Diffuser (Ours) 87.2% 91.5% .775 .423

3.2.4.3 Quantitative Results

To make the comparison with other models more quantitative, we present the

results of 8 different image quality metrics in Table 3.1. PixCorr is the pixel-level

correlation of reconstructed and groundtruth images. SSIM250 is the structural

similarity index metric. AlexNet(2) and AlexNet(5) are the 2-way comparisons

of the second and fifth layers of AlexNet129, respectively. Inception is the 2-way

comparison of the last pooling layer of InceptionV3233. CLIP is the 2-way com-

parison of the output layer of the CLIP-Vision185 model. EffNet-B and SwAV are

distance metrics gathered from EfficientNet-B1235 and SwAV-ResNet5024 models,
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respectively. The first four can be considered as low-level metrics, while the last

four reflect higher-level properties. For PixCorr and SSIM metrics, we downsam-

pled generated images from 512 × 512 resolution to 425 × 425 resolution (i.e. the

resolution of groundtruth images in NSD dataset). For the rest of the measures,

generated images are preprocessed according to the input properties of each net-

work. Note that not all measures are available for each previous model (depending

on what they chose to report). However, each model has at least one point of com-

parison with ours. Our quantitative comparisons with Takagi et al. and Gu et

al. are made according to the exact same test set, i.e., the 982 images that are

common for all 4 subjects. Lin et al., on the other hand, reported their results on

only Subject 1 and with a custom train-test set split. However, when measuring

our model’s image quality on the same train-test split as Lin et al, we observed

nearly identical results (Inception Score of 87.0%, compared to 78.2% for Lin et

al). Our model is the best-performing model by a decent margin for all of the

quantitative metrics. Overall, these results show that our model can be considered

state-of-the-art for both low-level and high-level quantitative measures.

3.2.4.4 Ablation Studies

In order to reveal the contribution of each component of Brain-Diffuser, we per-

formed an ablation study (with fMRI data of Sub1), and report both quantitative

(Table 3.2) and qualitative (Figure 3.7) results. The quantitative results are given

in Table 3.2. Our first ablation (Only-VDVAE) considers the results from stage-1

reconstruction only (Figure 3.1) without stage-2 reconstruction (Figure 3.2). This
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Table 3.2: Quantitative comparisons of test fMRI reconstructions of Sub1 with various ablations
of the full model. For each measure, the best value is in bold. (For PixCorr, SSIM, AlexNet(2),
AlexNet(5), Inception, and CLIP metrics, higher is better. For EffNet-B and SwAV distances, lower
is better. This is indicated by the arrow pointing up or down, respectively)

Method
Quantitative Measures

Low-Level
PixCorr ↑ SSIM ↑ AlexNet(2) ↑ AlexNet(5) ↑

Only-VDVAE .358 .437 97.7% 97.6%

Brain-Diffuser w/o VDVAE .143 .302 85.6% 93.0%

Brain-Diffuser w/o CLIP-Text .279 .333 95.6% 97.0%

Brain-Diffuser w/o CLIP-Vision .327 .433 93.9% 94.1%
Brain-Diffuser .305 .367 96.7% 97.4%

High-Level
Inception ↑ CLIP ↑ EffNet-B ↓ SwAV ↓

Only-VDVAE 77.0% 71.1% .906 .581
Brain-Diffuser w/o VDVAE 87.3% 92.6% .775 .414
Brain-Diffuser w/o CLIP-Text 87.9% 91.2% .796 .436
Brain-Diffuser w/o CLIP-Vision 84.7% 84.5% .821 .509
Brain-Diffuser 87.8% 92.5% .768 .415

Only-VDVAE model provides the best results for all low-level measures, but the

worst (by a large margin) for all high-level measures. This pattern of results is

expected since the VDVAE reconstruction relies on low-level information without

a contribution of semantic information from stage-2. By contrast, Brain-Diffuser

without the VDVAE component (i.e., stage-2 reconstruction but with random

initialization of the autoKL latent vector) performs worst on low-level measures

(by a large margin), while it is among the best in high-level measures. This is

also reasonable since this ablated model generates the reconstructions from only

high-level features obtained from CLIP-Text and CLIP-Vision models and does

not have much information about low-level information such as layout. Together,

these results indicate that the VDVAE “initial guess” (stage-1) is necessary but
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not sufficient for optimal reconstruction. This is evident in the results from the

full Brain-Diffuser model (last row in Table 3.2), where the contribution from

VDVAE (stage 1) brings strong improvements in low-level measures, with near-

optimal high-level features. In another ablation, we evaluate Brain-Diffuser with-

out CLIP-Text. Compared to the full model, there is a sizeable decrement in

both low-level and high-level measures, except Inception. While the contribution

of CLIP-Text to the reconstruction of high-level semantic features is expected, its

improvement of low-level measures is more surprising but could be explained by

semantic information related to the image layout itself, such as the number or

orientation of objects (see examples in Figure 3.7). Finally, Brain-Diffuser with-

out CLIP-Vision, surprisingly, retains high performance on the low-level PixCorr

and SSIM measures (lower than Only-VDVAE, but higher than the full model);

we assume that this could be due to insufficient diffusion steps (as discussed fur-

ther below), preventing the reconstruction from deviating from the VDVAE initial

guess. For all other measures (including low-level AlexNet measures), removing

CLIP-Vision guidance severely impairs the performance of Brain-Diffuser. Over-

all, when jointly considering low-level and high-level measures, these quantitative

results show that the full Brain-Diffuser model is better than any other variation

or ablation.

We also present qualitative results in Figure 3.7 with the same set of images

presented in Figure 3.3 of the main manuscript. Reconstructions from the Only-

VDVAE model (i.e., stage-1 without stage-2) match the low-level details (e.g.

shapes, layouts) of the groundtruth images, but they look like vague silhouettes
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Figure 3.7: Examples of fMRI test reconstructions from Sub1 with various ablations of the full model.
The first column is the groundtruth image (Test Image). The second column shows reconstructions
from the full Brain-Diffuser model with all of its components. The third column is for reconstructions
of the Only-VDVAE model. The remaining columns are for Brain-Diffuser with one of its components
excluded, in order: without VDVAE, without CLIP-Text, and without CLIP-Vision.

rather than natural images. In contrast, Brain-Diffuser without VDVAE gener-

ates images that match high-level properties (semantics) of groundtruth images

but lack positional information about the objects and their layout. This is partic-

ularly clear for the fourth image in the right part of the figure, where the layout

of the street and buildings is properly captured by VDVAE (and thus, also by

the full model), but is lacking in the VDVAE ablation. The images generated by

Brain-Diffuser without CLIP-Text appear very close to those from the full model

but with some notable differences. One example is the ski image (Row 5 on the

right part of the figure), where the full model generates a single person (as in

the groundtruth) while the model without CLIP-Text generates two people. An-
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other example is the plane image (Row 1 on the left part of the figure ) where the

model without CLIP-Text does not produce an image with the correctly positioned

plane. Finally, reconstructions from Brain-Diffuser without CLIP-Vision appear

quite blurry, and somehow in between the Only-VDVAE and the full model recon-

structions. This could be an indication that forward and reverse diffusion steps

were not sufficient for this model. Still, increasing the number of diffusion steps

may not be a good solution since that would cause the model to lose low-level

information provided by VDVAE. Overall, these qualitative examples corroborate

the quantitative findings in Table 3.2 and make it clear that the Brain-Diffuser

model represents the optimal compromise for both low-level details and high-level

semantic features.

3.2.4.5 Which brain regions are used?

In order to understand the relationship between brain regions and the various

components of our model (VDVAE, CLIP-Vision, CLIP-Text), we performed a

region-of-interest (ROI) analysis of the regression weights. We used 4 visual ROIs

derived from population receptive field (pRF) experiments, and 4 ROIs derived

from functional localization (fLoc) experiments. All experiments were provided

along with the NSD dataset by the original authors. These ROIs are as follows

(region names following the terminology adopted in Allen et al.2): V1 is the

concatenation of V1 ventral (V1v) and V1 dorsal (V1d), and similarly for V2

and V3; V4 is the human V4 (hV4); the Face-ROI consists of the union of OFA,

FFA-1, FFA-2, mTL-faces, and aTL-faces; Word-ROI consists of OWFA, VWFA-
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are more informative about the VDVAE features, while category-specific higher

brain regions (Words, Faces, Bodies, Places) carry more information about CLIP

features. Another important observation is that the differences between CLIP-

V and VDVAE are in the same direction, but much weaker than the differences

between CLIP-T and VDVAE. This may indicate that although the Versatile

Diffusion model uses CLIP-V features for high-level guidance, these features still

contain more information about low-level properties than CLIP-T features.

3.2.4.6 ROI-optimal stimuli

Beyond brain decoding, we show here that our method can also be used to

help understand the functional properties of specific regions-of-interest (ROIs)

in the brain. Although we know from early studies in the neuroscience liter-

ature103,79,174,71,244,116,62,90,167 what sort of visual properties would best activate

neurons in each brain region, there are only a few studies10,192,81,170,156 which

attempted to directly visualize an “optimal” stimulus for a given brain region.

Our method can easily be adapted for this purpose. We define ”ROI-optimal” as

images that would activate a certain ROI maximally while not activating other

ROIs (or just activating them minimally). We analyzed the same 8 ROIs (V1,

V2, V3, V4, Face-ROI, Word-ROI, Place-ROI, and Body-ROI) that we discussed

in the previous section. We used the intersection of these regions with NSDGen-

eral (the one we used for training our decoding system), each time creating a

synthetic fMRI pattern where the ROI was active (signal set to 1) and the rest

of the brain inactive (signal set to 0). From this synthetic pattern, our system
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Figure 3.9: Images reconstructed from synthetic fMRI patterns created by activating specific regions-
of-interests (ROIs). The first 4 rows present individual subjects: Sub1, Sub2, Sub5, and Sub7. The
last row is generated by averaging the latent vectors predicted from all 4 subjects. The columns
present ROIs: First four are ROIs from the visual cortex (V1-V4) gathered by population receptive
field experiments, and the last four are ROIs that are specified with functional localization exper-
iments (Face-ROI, Word-ROI, Place-ROI, Body-ROI). Since our synthetic fMRI patterns produce
distribution shifts in the latent variables, which in turn can affect the contrast of the reconstructed
images, histogram stretching and equalization are applied on color histograms of generated images
for visualization purposes.

could then generate predicted latent variables, and directly reconstruct an equiv-

alent visual scene, corresponding to the “ROI-optimal” image. Surprisingly, this

simple and deterministic approach, inspired by the analysis in Ozcelik et al170,

still gives plausible results. Since the synthetic fMRI patterns can be considered

out-of-distribution (because there are no similar patterns in the training set), we

re-normalized the generated latent variables to give them a similar euclidean norm

to the training samples. This procedure helped the diffusion model to generate
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meaningful images that are shown in Figure 3.9.

Upon inspecting the generated “ROI-optimal” images for visual ROIs, we see

that V1 produces high-contrast scenes with very detailed textures extending to the

visual periphery, such as trees and foliage in a park with numerous small human

or animal figures. V2 is similar (especially for Sub1 and Sub5, which also display

humans in a luxuriant garden environment), but with slightly broader elements

and less peripheral detail (e.g. trays filled with various foods in Sub2, Sub7, and

in the subject-average). Continuing along the same trend, V3 and V4 produce

larger objects compared to the earlier regions, with repeating patterns and global

structure. V4 especially generates colorful, high-contrast objects resembling toys

on a bright background.

The ROI-optimal images for functionally defined high-level ROIs are even

easier to interpret, as they tend to coincide with each region’s known category

preference. For instance, the model generated multiple face images for the Face-

ROI, including humans and sometimes even animal faces (e.g. dogs in Sub5 and

in the subject-average). For the Word-ROI, the model generated characters and

pseudo-words on objects or signs (except for Sub7). Architecturally plausible

indoor scene layouts were produced for the Place-ROI. Finally, for the Body-ROI,

the reconstructed images show both human and animal body parts like arms and

legs engaged in active behavior like sports or running.

In another exploratory experiment aiming to understand the effects of combin-

ing ROIs, we repeated the analysis of Figure 3.9, this time using combinations of

activations for different ROIs (Figure 3.10). In the first column where we activated
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Figure 3.10: Images reconstructed from synthetic fMRI patterns created by activating combinations
of different regions-of-interests (ROIs). The first 4 rows present individual subjects: Sub1, Sub2,
Sub5, and Sub7. The last row is generated by averaging the latent vectors predicted from all 4
subjects. The columns present different combinations of ROIs: The first column is where all four
regions in the visual cortex are activated at once (V1, V2, V3, and V4). The remaining columns
are combinations of activations of these visual ROIs with one of the functional ROIs: Face-ROI,
Word-ROI, Place-ROI, and Body-ROI, respectively.
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all the low-level visual regions together (V1-V4), we see scrambled and regular pat-

terns in different parts of the images as well as some identifiable objects for some

of the subjects—but there are no apparent objects that are commonly identifi-

able across all subjects. In the next columns, we combined activations across

all low-level visual regions (V1-V4) and one of the functionally defined high-level

ROIs. In the second column where we combined the visual regions (V1-V4) with

Face-ROI, we see human and animal faces in all images, although some scrambled

high-contrast patterns also continue to exist in different parts of images. In the

third column where we combined the visual regions with Word-ROI, letter-like

patterns or pseudo-words can be seen in the upper part of the image for subject

1 and middle and lower regions for subject 5, but they are less visible than in

the analysis of Figure 3.9. In the fourth column where we combined the visual

regions with Place-ROI, the model generates architectural interior and exterior

parts, and the scrambled patterns cease to exist for these images. Finally, in the

fifth and last column where we combined the visual regions with Body-ROI, we see

vaguely identifiable human and animal body parts like arms and legs. This proof-

of-concept experiment reveals what happens when we combine the activations of

different regions instead of activating one ROI in isolation. Although there are

visual differences between generated images from Figure 3.10 and Figure 3.9, we

continue to observe similar semantic relationships between the functional ROIs

and the corresponding images.

While these results mainly confirm decades of converging knowledge from the

neuroscience literature on neuronal selectivity in the ventral visual pathway, this
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Figure 3.11: Images reconstructed from synthetic fMRI patterns created by activating regions-of-
interests (ROIs) in the visual cortex with different eccentricities. The first 4 rows present individual
subjects: Sub1, Sub2, Sub5, and Sub7. The last row is generated by averaging the latent vectors
predicted from all 4 subjects. The columns present concentric regions with increasing eccentricity
coverage (0°<e<0.5°, 0.5°<e<1°, 1°<e<2°, 2°<e<4°, and 4°<e, where “e” stands for eccentricity).
Histogram stretching and equalization is applied for visualization purposes.

method allowed us to directly visualize functional properties in vivid detail and

high-resolution images. Furthermore, the technique introduced here could easily
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be extended to study retinotopic or eccentricity-based cortical organization. As

a proof of concept, we also applied our ROI analysis to visual regions defined

by different eccentricity preferences. Similar to hierarchical regions in the vi-

sual cortex (V1, V2, V3, and hV4) these eccentricity-based regions (0°<e<0.5°,

0.5°<e<1°, 1°<e<2°, 2°<e<4° and 4°<e, where e stands for “eccentricity”) were

also extracted by population receptive field (pRF) experiments. These regions

thus reflect the eccentricity preference of the retinotopic cortex, where degrees

close to 0° indicate central vision (closer to the fovea) and higher degrees indi-

cate peripheral vision. The corresponding results are shown in Figure 3.11. It is

difficult to see a clear pattern for eccentricities between 0° and 0.5° (0°<e<0.5°),

as the corresponding portion of the image might be too small to be considered

meaningful for the model. A noticeable aspect, however, is that all images for

that ROI have detailed and high-contrast objects in the center (though there are

also objects in the periphery). For eccentricities between 0.5° and 1° (0.5°<e<1°),

and between 1° and 2° (1°<e<2°), we begin to see larger objects (e.g. humans,

animals, blobs) at the center of the images. When we reach eccentricities between

2 and 4° (2°<e<4°) and beyond (4°<e), we start to see these objects (or animals,

humans, and blobs) move towards the periphery, while the center of the images

is mostly empty. These results highlight two important findings: first, the latent

representations used by Brain-Diffuser (combining latent features from VDVAE,

CLIP-Vision, and CLIP-Text) are precise enough to convey information about

the spatial localization of objects in the image; second, we see that Brain-Diffuser

managed to learn the eccentricity-based retinotopic organization of the cortex
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from these representations.

3.2.5 Discussion

In this study, we designed a two-stage framework (Brain-Diffuser) that re-

constructs images from fMRI patterns using generative models based on latent

diffusion. In the first stage, we used the VDVAE model to generate “initial guess”

reconstructions focusing on low-level details. Then in the second stage, we used

the image-to-image pipeline of the Versatile Diffusion model, starting from this

initial guess, to generate final reconstructions via diffusion, guided by both pre-

dicted CLIP-Vision and CLIP-Text features. As we relied on pre-trained and

publicly available models for image generation (VDVAE, Versatile Diffusion) and

multimodal feature extraction (CLIP), our method only required training ridge re-

gression models from multivoxel brain activity to the relevant model latent spaces

(Figures 3.1 and 3.2).

We analyzed the results both qualitatively (Figure 3.3) and quantitatively (Ta-

ble 3.1) We observed that reconstructed scene images generated by Brain-Diffuser,

although not perfectly identical to groundtruth images, preserve most of the lay-

out and semantic information. They also appear more naturalistic compared to

reconstructions from earlier studies (Figure 2.4). When evaluated quantitatively,

we saw that Brain-Diffuser outperforms previous models in both high-level and

low-level metrics. After advancing the state-of-the-art in image generation appli-

cations202,189,159,209,255, it appears that latent diffusion models can also be used to

improve the state-of-the-art in fMRI-based image reconstruction.
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Although latent diffusion models are very recent202, we noted at least two

competing studies that used LDMs for fMRI-based image reconstruction. Chen

et al.31 proposed MinD-Vis, a method based on an LDM conditioned on image

category labels (rather than text captions) to reconstruct images from the Kami-

tani dataset. As mentioned above, this is a less challenging, single-object-centered

dataset; thus, their results cannot be directly compared with ours, obtained using

the richer and more complex NSD dataset. Takagi et al.234, on the other hand,

used NSD and were thus included in our quantitative comparisons. There are

multiple possible reasons why our model performed better than theirs, on both

low-level and high-level metrics. Beyond the use of distinct pretrained LDMs

(Stable Diffusion202 for Takagi et al. vs. Versatile Diffusion255 in our study), our

framework contains several improvements such as the use of VDVAE reconstruc-

tions for low-level details (Figure 3.1) and the dual conditioning on CLIP-Vision

and CLIP-Text features (Figure 3.2), which together resulted in better qualitative

and quantitative results.

There are several ways in which this work may be pursued in the future. First

of all, it will be important to test and validate our method on other image-fMRI

datasets. As deep generative models will likely continue to improve at a breakneck

pace, it is probable that there will soon come models better suited for complex

scene reconstruction from fMRI signals. Of course, among a pool of many gen-

erative models, it may not be a trivial task to select the most appropriate ones

and to experiment on them, and adapt them for brain decoding and image recon-

struction. If future generative models reach a ceiling in their ability to linearly
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explain brain activity, we may need to look for better alternatives than just doing

ridge regression between fMRI patterns and latent variables. These alternatives

(non-linear regressions, deep hierarchical networks), however, may require larger

training datasets to learn the correspondence between fMRI patterns and visual

features than ridge regression. It is possible that our reconstructions would ben-

efit from including larger brain regions (or even the whole-brain) in our analysis.

However, this is not guaranteed due to the possibility of overfitting in the presence

of high-dimensional inputs. Also, expanding the region of fMRI inputs would dra-

matically raise the computational cost (in time and/or memory) of the training

process of regression models. This is why the NSDGeneral ROI appears as an ideal

compromise used in most studies (including ours). Using a common ROI also facil-

itates comparisons between studies. In the future, we may also see more accurate

movie reconstruction studies that process temporal patterns together with spatial

ones on movie-fMRI datasets249,131. Besides improving the reconstruction quality,

future work could also design novel experiments and analyses on the NSD dataset

using generative models. For instance, in this study, we have shown that we can

use generative models to reveal the “optimal” stimulus for anatomically, function-

ally, or retinotopically-defined ROIs, by analyzing the reconstructions of synthetic

fMRI patterns created from the corresponding ROI masks. This approach could

easily be extended to probe less well-known regions of the visual cortex, to help

settle theoretical arguments about distinct sub-regions of (e.g.) the face process-

ing network, or to render images for arbitrary combinations of ROIs (e.g., what

image would optimally activate V1, V4, and the face-ROI, but not V2 or the Body-
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ROI; see also Figure 3.10). Important advances in this direction were made using

an iterative optimization method by Gu et al (2022)81 Directly passing synthetic

fMRI patterns to the image reconstruction pipeline, however, is computationally

advantageous, which may prove important when there are numerous combina-

tions of sub-regions to be tried. Similar “virtual experiments” in this framework

could help us address outstanding questions in neuroscience, and understand the

organization of sensory and semantic knowledge in the brain.

3.2.6 Acknowledgements

This work was funded by the Agence Nationale de la Recherche ANR grants

AI-REPS ANR-18-CE37-0007-01 and ANITI ANR-19-PI3A-0004. We thank Yu

Takagi and Zijin Gu for sharing their test results with us and also we thank Alex

Nguyen, Paul Scotti, and MedARC team for helping acquire the replicated results

of the Mind-Reader study.

3.3 Epilogue to the main article:

In this chapter, we presented a two-stage reconstruction framework for recon-

structing stimuli images in the Natural Scenes Dataset from fMRI patterns. In

the first stage, we used the Very Deep VAE model for layout reconstruction, and

in the second stage, we utilized the Versatile Diffusion model for the final re-

construction. The model’s reconstruction results match the ground-truth images

at both the low-level and semantic level while exhibiting realistic views. The

model performed at a state-of-the-art level both qualitatively and quantitatively.

124



We conducted experiments to analyze the information captured by the model in

terms of ROIs using regression weight percentile analysis and ROI-optimal stimuli

visualization.

This work was accepted for publication in the Nature Scientific Reports journal

after multiple revision cycles and was published in 2023.
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Chapter 4

Discussions

This thesis presents frameworks for improving the performance of natural im-

age and scene reconstruction by rethinking the problem and experimenting to find

suitable generative models. The studies demonstrate better results in semantic

and layout aspects of image reconstruction.

The implications of this development are significant. Before discussing those,

let us elaborate on the main chapters’ discussions.

4.1 Extended Discussion on Chapter 2

The work presented in Chapter 2 aimed at implementing a natural image re-

construction framework for the Generic Object Decoding dataset (fMRI recordings

for single-object oriented images from the ImageNet dataset) using the Instance-

Conditioned Generative Adversarial Network (IC-GAN) model. Prior studies fo-

cused on reconstructing low-level image features from fMRI data (except Mozafari

et al.155). Our focus shifted to achieving a better trade-off between high-level and

low-level features of reconstructed images, with the goal of increasing realism. We
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demonstrated this achievement by presenting both qualitative and quantitative

results. Our study concluded that it is possible to establish better frameworks

for maintaining a well-balanced reconstruction of semantic and layout properties.

These results influenced many studies that followed ours, such as Ferrante et al.65,

Chen et al.31, Gu et al.80, and Chen et al.29.

We retained the regression models that had decent performance in decoding

semantic and low-level features of brain signals. This allowed us to explore the

information contained in these signals and the voxels in different brain regions at a

finer level. Our findings are consistent with the neuroscience literature, which we

briefly mentioned in Chapter 1, regarding the visual feature selectivity of ROIs.

4.1.1 Representational Power of Self-Supervised Learning and Prototype-

Level Contrastive Learning

We should also emphasize on the representation power of the latent space of

IC-GAN model. The success of the IC-GAN reconstruction model in Generic Ob-

ject Decoding is not coincidental, particularly for high-level attributes. IC-GAN

utilizes Swapping Assignments Between Views (SwAV)24 model for instance con-

ditioning, which mainly affects the semantic properties. The output of the SwAV

model (referred to as instance features in Chapter 2) provides a powerful repre-

sentation due to its training process. Unlike most contrastive learning methods,

SwAV discriminates between clusters of images instead of individual images and

learns prototype vectors assigned to these clusters.

The advantages of prototype-level contrastive learning approach are well ex-
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Figure 4.1: Comparison of T-SNE visualization of the unspervised learned representation embedding
spaces of an instance-level contrastive learning model (MoCo) and prototype-level contrastive learning
model (PCL) over 40 ImageNet categories (Figure from Li et al. 2020)136.
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Figure 4.2: Dataset of images of inanimate objects that were used as stimuli for recording fMRI
activity in Konkle and Alvarez’s study125(Adapted from Konkle and Alvarez 2022)125.

plained in a concurrent study to SwAV called Prototypical Contrastive Learning

(PCL)136. Instance-level contrastive learning considers two samples as a negative

pair only if they are from different images. This approach affects the represen-

tational properties of the embedding space, as some samples are pushed apart

despite having similar semantic information. In prototype-level contrastive learn-

ing, samples with shared semantics converge around the prototype vectors, cre-

ating clusters for those shared semantic attributes. (An example is showed in

Figure 4.1). Thus, prototype-level contrastive learning approaches outperform

instance-based methods in terms of encoding semantic structures.

Recent studies conducted by Talia Konkle’s lab have provided valuable insights

into the relationship between the brain’s representations and contrastive learning

methods. One study showed that contrastive learning models, including SwAV

ResNet-50, performed similarly to category-supervised models (ResNet-50 and

AlexNet trained on ImageNet) in predicting fMRI activity for 72 inanimate object
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images125. This result supports the idea that contrastive learning models may have

more representational power than category-supervised learning counterparts. It

is important to note that the evaluation on predicting fMRI activity for only 72

samples with simple object stimuli, without including the background as shown

in Figure 4.2, may not be representative for a task such as reconstructing visual

features of ImageNet images. In a sequential study, it was demonstrated that

self-supervised learning models, such as SimCLR30 (a contrastive learning model)

and Barlow Twins257 (a different self-supervised learning method showing similar

results as SwAV in many tasks), performed slightly better (but with statistical

significance) than category-supervised models in predicting brain activity for the

Natural Scenes Dataset126.

In another study, it was observed that category selectivity for faces, bod-

ies, scenes, and visually presented words is present in the higher layers of self-

supervised learning models. This phenomenon has also been observed in the

brain in several studies, as discussed in Chapter 1. Lesioning these category-

selective units causes deficits in predicting the relevant categories181 (depicted in

Figure 4.3). Although these results do not clearly prove the superiority of self-

supervised learning models or contrastive learning models over category-supervised

learning models in terms of having a more brain-like structure, they demonstrate

why semantically accurate reconstructions of IC-GAN are not a coincidence. How-

ever, it may be possible to find a more suitable representational space using dif-

ferent models and training methods in the future. It is important to note that the

ImageNet dataset is not representative of human-level categorization in terms of
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Figure 4.3: The effects of lesioning the units of a Convolutional Neural Network that was trained
on a self-supervised learning regime. The figure presents examples of selective lesions in four main
categories: face, body, scene, and words. The change in average accuracy for the ImageNet validation
set’s top-5 accuracy is presented below. (Adapted from Prince et al. 2023)181.
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Figure 4.4: Image reconstruction results of Shen et al.217 on Generic Object Decoding Dataset
for 5 subjects (left) and Deep Image Reconstruction Dataset for 3 subjects (right) (Adapted from
Supplementary of Shen et al. 2019)217.

granularity, as it includes 90 breeds of dogs as class categories among 1000 classes.

4.1.2 Confusion of Generic Object Decoding and Deep Image Re-

construction Datasets

During our studies on IC-GAN decoding, we observed a confusion made by the

visual reconstruction studies. Some studies, such as Beliy et al.14, Ren et al.198,

and Mozafari et al.155, compared their model’s results on the GOD dataset to the

results of Shen et al.217 on the DIR dataset. Both datasets had the same training

and test stimuli, except for the artificial shapes and letters included in DIR. How-

ever, the studies differed in the number of subjects and fMRI repetitions. GOD

has 5 subjects, while DIR has 3 subjects. In terms of fMRI repetitions, GOD has 1

repetition for training images and 35 repetitions for test images, whereas DIR has

5 repetitions for training images and 24 repetitions for test images. Although some
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may not consider these differences vital, it is not standard practice to compare

reconstruction results of these two datasets. The results appear similar in quality

(as shown in Figure 4.4) but it is unclear how this will affect quantitative compar-

isons. Therefore, we believe that researchers working on visual reconstruction of

GOD and DIR datasets should be aware of this issue.

4.2 Extended Discussion on Chapter 3

In Chapter 3, our objective was to develop a natural image reconstruction

method that achieves high-fidelity reconstructions in terms of both low-level and

high-level features, as we did in Chapter 2. However, this task was more challeng-

ing due to the complexity of the dataset, which consisted of natural scenes with

multiple objects. To address this issue, we devised a two-stage scene reconstruction

framework. The initial stage of the model, which utilized the Very Deep Varia-

tional Autoencoder, focused on reconstructing the low-level features and layouts

of the stimuli. The second stage of the model, which utilized Versatile Diffusion,

generated the final reconstruction by refining the initial reconstructions obtained

from VDVAE using textual and visual features extracted with the CLIP model.

Our goal was accomplished by demonstrating superior reconstruction quality com-

pared to previous studies, both qualitatively and quantitatively. These findings

have also influenced subsequent studies, such as Scotti et al.213, Kneeland et al.123,

Liu et al.140, Meng et al.149, Xia et al.254, Benchetrit et al.15, and Sun et al.231.
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Figure 4.5: Image reconstruction results of Takagi et al.234, Ozcelik et al.171, and Shen et al.217 on
Natural Scenes Dataset (top), Deep Image Reconstruction Dataset (middle) and Artificial Shapes
Dataset (bottom) (Adapted from Shirakawa et al. 2023)218.
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4.2.1 Response To Shirakawa’s Criticisms on NSD Reconstruction

Ken Shirakawa, a PhD student from Kamitani Lab, criticized two studies on

visual reconstruction of Natural Scenes Dataset,218, including Takagi et al.234 and

our Brain-Diffuser171. The main criticism is that while these methods have demon-

strated high performance on NSD, they are not as competitive on the Deep Image

Reconstruction (DIR) dataset, indicating that they may not be generalizable to

other visual reconstruction datasets, in contrast to Shen et al.217. Meanwhile,

the authors criticize not only the reconstruction methods but also the structure

of NSD. They argue that NSD lacks semantic diversity and that the categories

between the train and test sets are not distinct, unlike the DIR dataset, which

has no overlapping categories between the train and test sets.

It is evident that Shen et al.217 continue to perform poorly across different

datasets, while Takagi et al.234 and Ozcelik et al.’s171 performance is not as strong

on other datasets as it is on NSD (presented in Figure 4.5). However, although

it generalizes to all datasets, Shen et al.’s method captures different properties

compared to ours. Their reconstructions resemble silhouettes and mainly utilize

retinotopic information from early visual regions to capture low-level attributes,

while our method aims to combine both high-level and low-level attributes for a

full reconstruction. Diffusion-based models may underperform for several reasons.

One reason is the semantic differences between the train and test images, which

can affect models that capture semantic attributes but not those that do not (e.g.,

Shen et al.). It is important to note that semantic distinctness between train and

test sets is not a necessary requirement for devising a neural decoding and visual
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reconstruction task. Referring to this lack of distinctness as a ’semantic leak’ may

not be entirely accurate as it does not necessarily have a negative impact on the

task. It is acceptable to have similar categories for both the train and test sets if

the goal is to analyze semantic information using neural decoding and visual re-

construction methods. However, this may not be the only reason, as the IC-GAN

framework performed well on the Generic Object Decoding dataset, which has

the same category structures as DIR except for Artificial Shapes, despite having

distinct categories for the train and test sets. Latent diffusion models are better

at reconstructing complex scenes than previous models because of their ability

to represent space in the latent dimension. The reconstruction performance and

ability to capture semantic information from the ground truth also depend on con-

dition features, such as CLIP features. Observing that IC-GAN performs well on

the GOD dataset while Brain-Diffuser does not perform as well on DIR suggests

that the difference may be caused by the relationship between the condition fea-

tures and the datasets. The current use of CLIP may not be ideal for representing

DIR images due to the high-dimensional and sparse representation space of CLIP,

which may not be able to learn decent representations from a small training set.

The dimensionality of IC-GAN SWaV features (2048-dim) is significantly differ-

ent from that of non-projected CLIP features (257x768-dim), which may explain

why IC-GAN performs well on the GOD dataset. We could suggest to experiment

with a latent diffusion model trained with SWaV features to determine its effec-

tiveness in reconstructing DIR and GOD datasets. It is also worth noting that

Brain-Diffuser does not suffer from overfitting or memorization problems. This is
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evident from ROI analyses, which show that it learns regression weights that are

semantically meaningful.

4.3 General Discussion

This section will cover general topics related to the thesis. Chapters 2 and 3

present two main studies that use ridge regression for fMRI decoding and binary

masks for generating ROI-preferred stimuli. Both of the studies focus on recon-

structing both low-level and high-level attributes of the stimuli. The following

discussion describes the motivations for the chosen methods and alternatives.

4.3.1 Using Ridge Regression for fMRI Decoding

In both studies, ridge regression was used, which is linear regression with L2

regularization. This approach is justified for several reasons. Firstly, the predic-

tivity analysis256 and representational similarity analysis120,128, along with other

studies exploring the correspondences between brain and deep neural network rep-

resentations, briefly mentioned in section 1.6, suggest that the representations in

the brain and deep neural networks are similar to each other due to hierarchical

processing in both modalities. It is important to note that this similarity is not

due to chance, but rather a result of the hierarchical structure of both systems.

Therefore, linear models can accurately capture these relationships without the

need for additional complexity introduced by nonlinearity when translating from

one to the other. Also, there are practical reasons for using Ridge regression over

non-linear regression. It is simpler and easier to interpret. When analyzing the
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relationship between DNN features and brain activity, simplicity is valuable. The

informative value of the features in terms of brain ROIs was analyzed using per-

centile analyses, which was possible due to the linear regression model. Another

practical advantage of ridge regression is its ease of optimization compared to non-

linear alternatives. Full-batch optimization was performed in both of our studies,

which is theoretically helpful in finding a global minimum in the loss landscape

of linear regression. Better optimization also means that it is less computation-

ally demanding and requires fewer resources than non-linear methods. Ridge

regression models are known to be less prone to overfitting, particularly when the

amount of available data is limited. This is often the case in fMRI studies due

to the cost and complexity of data collection. Finally, in our initial experiments,

we did not observe a significant increase in performance when using non-linear

regression models compared to linear models, despite encountering difficulties in

optimization. Therefore, it is reasonable to choose linear regression as the simpler

explanation, following the principle of Occam’s Razor. The ridge regression mod-

els developed in both studies successfully captured attributes of the stimuli from

the fMRI patterns.

Still, Scotti et al.213 suggested that additional operations could be performed

when translating fMRI patterns into DNN features. They used both non-linear

multilayer perceptron (MLP) and diffusion to align fMRI patterns and DNN fea-

tures. This alignment can be observed in a reduced dimension, as shown in Fig-

ure 4.6. Meanwhile, it can be observed that the models with only MLP backbone

or MLP with projector do not perform better than Brain-Diffuser, but only com-

138



Figure 4.6: Example reconstruction for ablation models from Scotti et al.213 above, presenting
groundtruth images, nonlinear regression (MLP) reconstructions, MLP + projection reconstructions,
and MLP + diffusion prior reconstructions respectively. Below, UMAP plots illustrating the increasing
alignments between CLIP Image and predicted features, including MLP backbone, MLP projector
and Diffusion prior respectively (Adapted from Scotti et al. 2023)213.
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pete with it when the diffusion prior is added. Therefore, the diffusion prior

operation may have some effects beyond those of regression models (linear or non-

linear). It is unclear whether the issue of disjoint embeddings is unique to CLIP

features or if it applies to the features of different DNNs. This problem has only

been studied in relation to CLIP features in Ramesh et al., where the diffusion

prior was first introduced189.

4.3.2 Using Binary Masks for Generating ROI-preferred Stimuli

For both of our studies, we made the decision to use binary masks to generate

ROI-preferred stimuli in the semantic analysis sections. This method was chosen

for several reasons. Firstly, it is easy to implement, as the only requirement is to

create synthetic binary fMRI patterns with respect to the ROIs. The rest of the

procedure is the same as for image reconstruction, where the fMRI patterns are

passed to the reconstruction models. Secondly, the process is a single-pass, making

it faster than iterative optimization alternatives like the NeuroGen framework81

(depicted in Figure 4.7). While fast processing may not be critical for studying

large ROIs, it is highly advantageous for studying semantics at a finer scale, such

as voxels or clusters of voxels. It is evident that our method is capable of capturing

semantic information despite its simplicity.
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Figure 4.7: Illustration of NeuroGen framework (above). The NeuroGen framework produces images
that prioritize regions of interest (ROIs) by optimizing the BigGAN-deep model through iterative
processes using loss signals obtained from the Deepnet feature-weighted receptive (fwRF) encoding
model. The following synthetic images were generated by NeuroGen, with each row representing a
different ROI, namely FFA, EBA, and PPA (Adapted from Gu et al. 2022)81.
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4.3.3 Why Do Semantic Similarity and Natural Appearance Mat-

ter for Visual Reconstruction?

In both of our works, we aimed to create reconstructions that resemble the

ground truth images in terms of both low-level (layout and position) and high-level

(semantic) information, while maintaining a natural appearance. Our motivation

for this goal came from our understanding of how visual processing occurs in the

brain, as well as our study of the latent spaces of generative models. The brain

processes visual features hierarchically, including both low-level and high-level

features. Therefore, it is sensible to design frameworks for neural decoding that

incorporate information from different hierarchies. A model that solely focuses

on low-level features would not utilize all the information available on visual pro-

cessing in the brain. Natural appearance of the images are also important when

we are talking about natural image reconstruction. The natural appearance of

reconstructed images is a key attribute when comparing their distribution to that

of stimulus images. It is reasonable to assume that reconstructed images, which

look like silhouettes of perceived images, would not be in the same distribution

as the stimulus images. However, as the images become more natural-looking

while retaining layout and semantic attributes, they move closer to the original

distribution of the stimuli.
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4.4 Comments on Following Studies and Future Directions

In this section, we will discuss some concurrent or subsequent studies that

explore topics relevant to ours. Visual scene reconstruction models are still be-

ing developed and are becoming more accurate in terms of different properties

with new research213,123,254. In addition to improving reconstruction performance,

neural encoding and decoding models are adopted for different purposes on the

Natural Scenes dataset.

In both Chapter 2 and 3, we emphasized the potential of visual reconstruction

models, as well as neural encoding and decoding models in general, for neuro-

scientific exploration. We demonstrated proof-of-concept results with semantic

analyses in both studies. Since NSD became publicly available, several studies

have been conducted in this area.

Several studies have explored the general computational modeling properties

of neural networks using NSD. Wang et al. demonstrated that a multimodal

CLIP model (ResNet50 backbone) trained jointly was more effective in predict-

ing responses in high-level visual brain regions compared to ResNet50 trained

only with ImageNet images or BERT trained only with text data248. This re-

sult may explain why LDM models that use CLIP features are effective in recon-

structing NSD images. Finzi et al. investigated the emergence of visual streams

using various types of deep neural networks with different training objectives

and constraints. The computational models used were multi-task-trained models,

as well as supervised and self-supervised models trained with local spatial con-
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Figure 4.8: BrainDiVE framework generating an image from the fMRI activity of scene-selective
regions (RSC, PPA, and OPA) (Figure from Luo et al. 2024)143.

straints, which are referred to as Topographic Deep Artificial Neural Networks.

The study demonstrated that self-supervised TDANN models outperformed multi-

task-trained models in capturing the brain’s spatial segregation and functional

organization67.

Jain et al.109 and Khosla et al.121 used neural network models on the Natural

Scenes Dataset to discover category-selective areas for food in the human visual

cortex in a hypothesis-free manner. In their initial experiments, these studies used

statistical methods instead of neural network models. However, they later con-

ducted further analyses using the features gathered from neural network models,

specifically CLIP. Additionally, some studies directly employed neural networks

to explore cortex selectivity. Sarch et al. established the Brain Dissection method,

drawing inspiration from the works of David Bau, including Network Dissection11

and GAN Dissection12. The authors extracted voxel-specific feature maps from

convolutional neural networks to analyze the spatial correspondence between vox-
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els and various spatial properties, such as depth, surface normals, curvature, and

shading210. While Brain Dissection uses encoding approach for their analyses,

Brain Diffusion for Visual Exploration (BrainDiVE)143 and Semantic Captioning

using Brain Alignments(BrainSCUBA)144 studies use decoding methods to explore

the selectivity of the regions. BrainDiVE utilizes latent diffusion models to gener-

ate images with brain activation guidance, similar to our Brain-Diffuser method

(depicted in Figure 4.8). They show the broad category-selective networks found

in previous studies, including faces, places, bodies, words, and food. They also

provide detailed analyses within specific regions of interest (ROIs), such as sepa-

rate clusters for indoor and outdoor scenes (although not entirely exclusive).143.

In contrast to the image generation technique of BrainDiVE, BrainSCUBA uses

text generation to create voxel-wise semantic captions that describe the seman-

tic selectivity of the voxels144. Although these studies present results on cortical

selectivity exploration using fMRI data via neural network decoding, we believe

that this area is not fully utilized and that more studies may be conducted in the

future.

A potential area of future study is the reconstruction of visual thought using

imagery data. Mental imagery is defined as representations of sensory information

without a direct external stimulus by Pearson et al172. Meanwhile, Kosslyn et al.

referred to visual mental imagery as ”seeing” in the absence of the appropriate

immediate sensory input127. Mental imagery is not solely based on introspective

reports. In fact, neuroimaging methods allow for the observation of neural repre-

sentations of mental imagery157. Although Chapter 1 presents studies on mental
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imagery195,100,124, applying visual reconstruction models and semantic exploration

techniques to imagery data can reveal differences between imagery and visual per-

ception53. This approach can also help examine the diversity of vividness between

subjects70, and the role of ROIs in mental imagery in more detail52. Therefore, we

can develop these decoding techniques to be more robust in decoding imagery data

by focusing on this information. Although the Natural Scenes Dataset contains

imagery data, this portion of the data has not yet been made publicly available.

4.5 Practical Applications and Ethical Implications

Due to recent advancements in neural decoding research, real-world applica-

tions of brain-computer interfaces (BCIs) have become possible. BCIs are frame-

works that enable direct communication between the brain and external devices72.

BCI systems are typically maintained by acquiring signals through either inva-

sive (e.g. intracortical electrodes and ECoG) or non-invasive (e.g. EEG, fNIRS,

MEG, and fMRI) neuroimaging techniques. The choice of neuroimaging tech-

nique depends on the requirements of the BCI application. There are numerous

clinical and non-clinical applications of EEG-based BCI due to its mobility and

non-invasiveness. For instance, motor and stroke rehabilitation applications utilize

motor imagery and execution tasks for clinical cases208. Examples of non-clinical

applications of BCI include controlling robots, playing video games, and oper-

ating quadcopters, among others208. Some clinical applications require invasive

methods, such as electrocorticography (ECoG), for more robust signal acquisition.

For instance, a study on speech decoding was conducted on a patient with mo-
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tor disorders, such as amyotrophic lateral sclerosis (ALS), using high-resolution

ECoG neural recording58. This study can lead to the development of high-quality

neural speech prostheses. Although fMRI is not a commonly used method due to

its immobility, expense, and low temporal resolution, it is still utilized for certain

clinical cases. For instance, it can be used to obtain responses from patients with

disorders of consciousness, such as minimally conscious state, vegetative state,

or locked-in syndrome201,169. It has been observed that some patients who meet

the criteria for being in a vegetative state were able to perform two imagery tasks.

During the study, participants exhibited significant activity in the Supplementary

Motor Area (SMA) when asked to imagine playing tennis. Similarly, the Parahip-

pocampal Place Area was activated when participants were instructed to imagine

walking around their house169. As previously mentioned, fMRI-based neural de-

coding and visual reconstruction are best suited for investigating the fine-grained

functional organization and neural coding of brain regions, which is necessary for

developing more robust and precise BCI applications.

Although BCI applications can be useful, the ability to decode finer informa-

tion from brain signals raises ethical questions about potential misuse and viola-

tion of mental privacy. Decoding neural processes and thoughts with precision

may violate mental privacy, as depicted in dystopian scenarios like George Orwell’s

”Nineteen Eighty-Four”206, or in films and TV shows such as ”Minority Report”

and ”Black Mirror”. The legal implications of using neuroscientific techniques for

tasks such as lie detection, predicting criminal behavior, and rehabilitating crim-

inals are explored in the field of neurolaw25. As AI and Neuroscience continue
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to develop rapidly, it is important to discuss the ethical concerns surrounding

the reliability of neural decoding techniques for critical applications, as well as

issues of justice, safety, and privacy. It is also important to raise awareness about

potential misuses while avoiding alarmism and conspiracy theories146.

4.6 Conclusion

This thesis presents two frameworks for visual image reconstruction from fMRI

activity using deep generative models. The frameworks focus on different aspects

of visual reconstruction compared to their predecessors, such as semantic coher-

ence and realism. They exhibit superior results compared to other methods, both

qualitatively and quantitatively. In addition to their ability to reconstruct stim-

uli, these frameworks have demonstrated their usefulness for neuroscientific ex-

ploration through region-of-interest analyses. The contributions of this thesis to

the field of neural decoding and visual reconstruction may provide guidance for

researchers working in cognitive neuroscience and brain-computer interfaces.

4.7 Closing Thoughts

I would like to conclude with a few remarks. Jack Gallant compared neural

decoding to building a dictionary for a foreign language, in this case the language

of the brain (quoted in Section 1.4). This analogy is particularly relevant to early

studies of neural decoding. However, the use of deep learning models for this task

alters the analogy slightly. We see a glimpse of the brain’s language by examining

fMRI patterns, although this is an indirect method that uses blood oxygenation.
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Additionally, a language can be found in the latent variables of deep generative

models, which are low-dimensional representations of the data. It is possible to

translate between these representations by encoding and decoding using regres-

sion models. Both the language of the brain and the language of deep generative

models can be alien to the human eye. Fortunately, the generator component of

deep generative models transforms latent variables into images that are compre-

hensible to humans. Why is this wonderful? As humans, our ability to interpret

the language of the brain is limited by its complexity. When inspecting fMRI data,

humans can easily distinguish basic concepts such as animate versus inanimate

or face versus non-face but challenges arise with more specific features. However,

deep learning models do not have this limitation. They excel at recognizing pat-

terns when given enough data. Therefore, they offer an opportunity to analyze

the language of the brain in greater detail than was previously possible.

149



Chapter 5

Summary in French

5.0.1 Chapitre 1 : Introduction

L’esprit humain a été un sujet de fascination pour les philosophes et les sci-

entifiques tout au long de l’histoire. Platon et Aristote ont présenté des points

de vue divergents sur l’âme et l’esprit, Platon soutenant le dualisme et Aristote

suggérant que l’âme est la forme du corps141. Cette perspective dualiste a in-

fluencé la pensée occidentale, notamment les travaux de Thomas d’Aquin et de

Descartes200. Bien que le dualisme de Descartes ait été débattu, les progrès de

la psychologie et des neurosciences ont entraîné un déclin de la popularité du du-

alisme37. Au 20e siècle, diverses théories sur l’esprit et la conscience ont vu le

jour. La théorie psychanalytique de Freud met l’accent sur les processus incon-

scients69, tandis que les behavioristes comme Watson et Skinner se concentrent

sur le conditionnement sans référence aux états mentaux251,221. Le matérialisme,

qui explique l’esprit par des processus physiques, a gagné du terrain, avec des

partisans anciens comme Démocrite et modernes comme Dennett et les Church-
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lands222,49,191,34. David Chalmers a critiqué le matérialisme en introduisant les

problèmes ”faciles” et ”difficiles” de la conscience28. Le fonctionnalisme, intro-

duit par Hilary Putnam, a mis l’accent sur les fonctions cognitives plutôt que sur

la constitution interne et a influencé la recherche sur l’intelligence artificielle182.

Les neurosciences se sont de plus en plus intégrées aux sciences cognitives, donnant

naissance à des théories telles que les corrélats neuronaux de la conscience41, la

théorie de l’espace de travail global7 et la théorie de l’information intégrée238. Les

études sur la perception humaine ont été au cœur de ces efforts interdisciplinaires.

La vision et la vue peuvent sembler simples, mais notre perception est façonnée par

des représentations mentales plutôt que par un reflet direct du monde extérieur.

Alhazen a reconnu le rôle de l’inférence inconsciente dans la perception visuelle215,

un concept qui a été défini plus tard par Hermann von Helmholtz pour décrire

la manière dont le cerveau interprète les données sensorielles46. Les recherches

neuroscientifiques menées aux XIXe et XXe siècles ont démontré que notre sys-

tème nerveux construit des représentations du monde extérieur, ce qui confirme

l’idée d’Emmanuel Kant selon laquelle la perception est subjective115. Différents

aspects de la vision sont affectés par les lésions cérébrales, ce qui entraîne des

pathologies telles que l’agnosie visuelle (incapacité à reconnaître des objets), la

prosopagnosie (incapacité à reconnaître des visages) et la vision aveugle (réponse

à des stimuli visuels sans perception consciente)207,35. Un autre trouble, la nég-

ligence, se traduit par la méconnaissance d’un côté du champ visuel à la suite

d’une lésion cérébrale199. Ces cas mettent en évidence le mécanisme de liaison

du cerveau, qui intègre différents aspects de la perception visuelle, un sujet qui
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fait encore l’objet de discussions entre neuroscientifiques, scientifiques cognitifs et

philosophes66.

La vision commence lorsque la lumière pénètre dans l’œil, traverse la cornée

et le cristallin et atteint les photorécepteurs de la rétine (bâtonnets pour la faible

luminosité, cônes pour la couleur). Les signaux émis par les photorécepteurs sont

transmis au cerveau par le nerf optique, plus précisément au cortex visuel pri-

maire (V1) par l’intermédiaire du chiasma optique et du noyau géniculé latéral

(LGN)55. Les cellules ganglionnaires de la rétine réagissent à des motifs lumineux

spécifiques, en mettant l’accent sur les contrastes. Cette structure est maintenue

dans le LGN et V1. V1 contient des cellules simples et complexes qui répon-

dent respectivement à l’orientation des bords et aux motifs abstraits. Le V1 et le

LGN préservent l’ordre spatial des stimuli visuels grâce à la cartographie rétino-

topique74. Le traitement visuel passe par V2, V3 (angles, mouvements) et V4

(couleurs, formes). Le système se divise en deux parties : la voie dorsale (”où/-

comment”), qui traite les informations relatives à la localisation et à l’action, et la

voie ventrale (”quoi”), cruciale pour la catégorisation des objets177. Le traitement

visuel implique des régions cérébrales spécialisées au-delà de V1-V4. Le complexe

occipital latéral (LOC) reconnaît les objets, les lésions entraînant une agnosie78.

Le Centre des couleurs (CC) traite les couleurs ; les lésions de cette région entraî-

nent l’achromatopsie142,9. L’aire temporale médiane visuelle (MT/V5) détecte les

mouvements, les lésions provoquant l’akinétopsie3,17. L’aire fusiforme des visages

(FFA) identifie les visages et des lésions entraînent une prosopagnosie116,77. L’aire

parahippocampique des lieux (PPA) encode les dispositions spatiales, ce qui af-
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fecte la navigation en cas de lésion62,94. L’aire extrastriée du corps (EBA) réagit

aux images du corps et aide à la planification de l’action56. L’aire visuelle de la

forme des mots (VWFA) reconnaît les mots écrits et est liée au traitement du

langage147. Les études sur les lésions et la neuro-imagerie ont révélé ces fonctions,

montrant des représentations détaillées d’objets et de concepts dans le cerveau.

Jusqu’au XXe siècle, il était impossible d’enregistrer l’activité cérébrale, car les

chercheurs ne pouvaient étudier que la structure anatomique des cerveaux morts35.

Le développement des méthodes de neuro-imagerie fonctionnelle a changé la donne,

en permettant la détection de signaux provenant de cerveaux vivants. Les méth-

odes invasives telles que l’enregistrement monocellulaire et l’électrocorticographie

(ECoG) mesurent l’activité cérébrale en plaçant des électrodes directement sur

le cerveau, ce qui permet d’obtenir une résolution spatiale et temporelle élevée74.

Toutefois, les méthodes non invasives telles que l’EEG, la MEG, la TEP, l’IRMf et

la fNIRS sont préférées en raison de leur risque et de leur coût moindres19. L’EEG

et le MEG mesurent respectivement l’activité électrique et magnétique du cerveau,

tandis que le PET, le fNIRS et l’IRMf mesurent les changements métaboliques134.

L’IRMf, développée par Seiji Ogawa et ses collègues, est particulièrement remar-

quable pour sa haute résolution spatiale et sa nature non invasive, ce qui la rend

idéale pour les tâches visuelles164. Elle mesure l’activité cérébrale par le biais

des signaux BOLD (blood-oxygen-level-dependent), qui sont des mesures indi-

rectes de l’activité neuronale basées sur le rapport entre l’hémoglobine oxygénée

et l’hémoglobine désoxygénée dans le sang44. Bien que la résolution temporelle

de l’IRMf soit inférieure à celle de l’EEG, sa résolution spatiale supérieure la rend
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précieuse pour les études sur l’activité cérébrale134.

La découverte par Nancy Kanwisher et ses collègues de régions sélectives dans

le lobe temporal pour différents objets a suscité des débats sur la localisation

des fonctions cérébrales. Isabel Gauthier a remis en question l’idée que la zone

fusiforme du visage (FFA) était une ”zone du visage”, proposant qu’il s’agisse

plutôt d’une ”zone d’expertise”178. James Haxby a présenté une méthode de

décodage, suggérant que les représentations des visages et des objets dans le cortex

temporal ventral sont distribuées et se chevauchent90. Malgré certaines remises

en question des affirmations de Haxby, d’autres études utilisant des techniques

telles que les machines à vecteurs de support ont montré que les régions sélectives

par catégorie pouvaient différencier les objets non préférés, mais pas parfaitement.

Cela a conduit au développement du décodage neuronal, une méthode permettant

de prédire des informations sur des stimuli à partir de signaux cérébraux. Les

premières études ont utilisé l’analyse multivariée des formes (MVPA) pour décoder

les propriétés des stimuli visuels89. Les chercheurs ont réussi à reconstruire des

formes simples et des images naturelles à partir de signaux IRMf154, ce qui a

conduit à des modèles capables de décoder des images mentales195. Le décodage

visuel initial s’est avéré prometteur mais a rencontré des limites, ce qui a incité à

utiliser des modèles d’apprentissage profond pour obtenir des représentations plus

riches et améliorer la qualité de la reconstruction.

Les origines de l’apprentissage profond (DL) et des réseaux neuronaux profonds

(DNN) remontent aux premières recherches en neurosciences computationnelles

et en IA. Les principales étapes de l’IA connexionniste et de l’apprentissage au-
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tomatique comprennent le modèle de neurones McCulloch-Pitts148, l’apprentissage

hébbien93, les perceptrons204, la rétropropagation253, les réseaux Hopfield99, les

machines de Boltzmann97 et les perceptrons multicouches205. Malgré ces progrès,

l’IA symbolique a dominé certaines périodes en raison de son succès dans des

tâches telles que les échecs et la planification. Cependant, elle s’est heurtée à des

difficultés dans des tâches telles que la reconnaissance d’objets, pour lesquelles

des modèles d’apprentissage automatique tels que les machines à vecteurs de

support et les réseaux neuronaux convolutifs (CNN) ont été utilisés, mais sont

restés en deçà des performances humaines. La percée s’est produite en 2012 avec

AlexNet, un CNN profond qui a surpassé de manière spectaculaire les modèles

précédents dans le défi ImageNet, déclenchant ainsi la révolution de l’apprentissage

profond129. Les modèles suivants, tels que VGG220, GoogLeNet232 et ResNet92,

ont continué à améliorer les performances dans diverses tâches, notamment la clas-

sification, la détection et la segmentation d’images. Les modèles génératifs tels

que les autoencodeurs variationnels (VAE)122, les réseaux adversariaux génératifs

(GAN)75 et les modèles autorégressifs ont suivi242, chacun présentant des forces

et des limites uniques. Le développement de modèles Transformers a révolutionné

le traitement du langage naturel (NLP) et a ensuite eu un impact sur la vision

par ordinateur246. Des techniques telles que l’apprentissage contrastif ont permis

d’améliorer encore les capacités des modèles185. Les innovations récentes com-

prennent les modèles de diffusion et les modèles de diffusion latente, illustrés par

le modèle de diffusion stable, qui permettent une génération d’images efficace et

de haute qualité202. Cet historique ouvre la voie à l’exploration des principes
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fondamentaux des modèles d’apprentissage profond.

Les réseaux neuronaux profonds (RNP) se composent de plusieurs couches qui

modélisent des modèles de données complexes. La couche d’entrée reçoit les don-

nées, qui sont traitées par les couches cachées à l’aide de matrices de poids et de

fonctions de non-linéarité telles que ReLU. La couche de sortie prédit les valeurs

cibles et les performances du réseau sont optimisées à l’aide de la rétropropaga-

tion et d’algorithmes tels que la descente stochastique de gradient (SGD)160. Les

réseaux neuronaux convolutifs (CNN), conçus pour les données en grille telles

que les images, utilisent des couches de convolution pour extraire les caractéris-

tiques et des couches de mise en commun pour réduire la taille spatiale, en évitant

l’ajustement excessif et en gérant les paramètres de manière efficace117. Les mod-

èles génératifs profonds, y compris les autoencodeurs variationnels (VAE) et les

réseaux adversariaux génératifs (GAN), génèrent des données en apprenant les dis-

tributions sous-jacentes68. Les VAE utilisent des projections probabilistes pour les

espaces latents, tandis que les GAN se composent d’un générateur et d’un discrim-

inateur qui se font concurrence pour produire des données réalistes. Les modèles

de diffusion latente (LDM) affinent itérativement les données à partir du bruit

pour générer des échantillons de haute fidélité202. Ces modèles ont été améliorés

par les progrès de l’apprentissage profond, ce qui a conduit à des applications

dans la classification d’images, la détection d’objets et la génération de texte à

partir d’images. Des modèles récents tels que la diffusion stable et la diffusion

polyvalente démontrent l’intégration d’entrées et de voies multimodales, reflétant

l’évolution et l’impact de l’apprentissage profond sur diverses tâches d’intelligence
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artificielle.

Les modèles d’apprentissage profond, enracinés dans les neurosciences compu-

tationnelles, s’inspirent des neurosciences malgré certaines critiques préconisant

des approches plus techniques112 ou symboliques145. La collaboration entre les

neurosciences et la recherche en IA se poursuit, les connaissances neuroscien-

tifiques contribuant au développement de modèles d’IA robustes et les modèles

d’IA étant utilisés pour le décodage neuronal, l’analyse de l’imagerie cérébrale

et l’analyse comportementale. À la suite du succès d’AlexNet dans la recon-

naissance d’objets, les chercheurs ont commencé à explorer les similitudes en-

tre les modèles d’apprentissage profond et les fonctions cérébrales, en particulier

dans l’apprentissage des caractéristiques de haut niveau. Les réseaux neuronaux

profonds (RNP) ont montré leur capacité à prédire l’activité neuronale dans les

zones visuelles moyennes comme V4 et le cortex temporal inférieur (IT), respon-

sable du traitement visuel de haut niveau256,82. Ces analyses ont été réalisées

à l’aide de diverses données de neuro-imagerie, notamment l’électrophysiologie20,

l’IRMf60,252,59, la MEG36 et l’EEG76. Les DNN sont également utilisés pour dé-

coder les caractéristiques des stimuli visuels et reconstruire les images252,100. Notre

recherche se concentre sur l’exploitation de l’IA et de l’apprentissage profond pour

le décodage neuronal et la reconstruction visuelle en neurosciences.

Les chercheurs ont commencé à utiliser des modèles génératifs profonds pour

reconstruire des images à partir de signaux IRMf, en tirant parti des capacités

de représentation des DNN en neurosciences. Les premières études de Du et al.

ont utilisé divers modèles pour reconstruire des formes, des lettres et des chiffres
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à partir de modèles d’IRMf57. L’attention s’est ensuite portée sur des images

plus naturelles, telles que les visages. Des ensembles de données IRMf accessibles

au public, comme l’ensemble de données Generic Object Decoding (GOD)100 et

l’ensemble de données Natural Scenes Dataset (NSD)2, ont facilité cette recherche.

L’ensemble de données GOD comprend des images provenant de l’ensemble de

données ImageNet, tandis que l’ensemble de données NSD comprend des images

provenant de l’ensemble de données COCO, avec des enregistrements de plusieurs

sujets. Plusieurs modèles ont été développés pour la reconstruction d’images à par-

tir de signaux IRMf, notamment DCGAN214, EBGAN229 et BigBiGAN155. Nous

avons développé le décodage IC-GAN (Instance-Conditioned GAN) (chapitre 2)

et Brain-Diffuser (chapitre 3) pour capturer les caractéristiques sémantiques et de

bas niveau des images dans ces ensembles de données.

5.0.2 Chapitre 2 : Décodage GAN conditionné par instance

La reconstruction d’images naturelles perçues à partir de signaux IRMf est

l’un des sujets les plus intéressants de la recherche sur le décodage neuronal. Les

études antérieures ont réussi à reconstruire soit les caractéristiques de bas niveau

de l’image, soit les aspects sémantiques/de haut niveau, mais rarement les deux.

Dans le deuxième chapitre, nous avons utilisé un modèle GAN conditionné par

instance (IC-GAN) pour reconstruire des images à partir de modèles IRMf avec

des attributs sémantiques précis et des détails de bas niveau préservés. Le mod-

èle IC-GAN prend en entrée un vecteur de bruit de 119 dim et un vecteur de

caractéristiques d’instance de 2048 dim extrait d’une image cible via un modèle
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d’apprentissage auto-supervisé (SwAV ResNet-50) ; ces caractéristiques d’instance

agissent comme un conditionnement pour la génération d’images IC-GAN, tandis

que le vecteur de bruit introduit de la variabilité entre les échantillons. Nous avons

formé des modèles de régression ridge pour prédire les caractéristiques d’instance,

les vecteurs de bruit et les vecteurs denses (la sortie de la première couche dense

du générateur IC-GAN) des stimuli à partir des modèles IRMf correspondants.

Nous avons ensuite utilisé le générateur IC-GAN pour reconstruire de nouvelles

images de test basées sur ces variables prédites par l’IRMf. Les images générées

ont présenté des résultats de pointe en termes de capture des attributs sémantiques

des images de test originales tout en restant relativement fidèles aux détails de

bas niveau de l’image. Enfin, nous utilisons le modèle de régression appris et le

générateur IC-GAN pour explorer et visualiser systématiquement les caractéris-

tiques sémantiques qui stimulent au maximum chacune des régions d’intérêt du

cerveau humain.

Nous avons utilisé un modèle GAN conditionné par instance (IC-GAN)26, pré-

entraîné sur l’ensemble de données ImageNet, pour la génération d’images na-

turelles48. IC-GAN est flexible et peut être appliqué à différents GAN backbones,

tels que StyleGAN118 ou BigGAN18. Contrairement aux GAN traditionnels, qui

utilisent des étiquettes de classe pour le conditionnement, IC-GAN utilise des car-

actéristiques d’instance extraites d’un extracteur de caractéristiques pré-entraîné,

tel que SwAV avec un backbone ResNet-5024. Ces caractéristiques d’instance,

ainsi qu’un vecteur de bruit, sont utilisés pour conditionner le générateur. Le

modèle IC-GAN que nous avons utilisé repose sur une architecture BigGAN à
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7 couches, générant des images de taille 256x256x3 18. Pendant l’entraînement,

nous avons optimisé le vecteur de bruit pour chaque image en utilisant la stratégie

d’évolution de l’adaptation de la matrice de covariance (CMA-ES)85, dans le but

de faire correspondre l’image générée à l’image originale en termes de structure

spatiale et d’attributs sémantiques. Pour la reconstruction d’images basée sur

l’IRMf, nous avons entraîné des modèles de régression ridge pour prédire les vari-

ables latentes (caractéristiques d’instance, vecteurs de bruit et vecteurs denses) à

partir des modèles d’IRMf. Ces variables prédites ont ensuite été utilisées pour

générer des reconstructions d’images avec le générateur IC-GAN, capturant à la

fois les propriétés de haut niveau et de bas niveau des images originales.

Les reconstructions d’images de notre méthode démontrent que IC-GAN peut

capturer efficacement les attributs sémantiques des images testées, bien qu’il

manque souvent certains détails visuels. Les reconstructions basées sur des vecteurs

latents optimisés révèlent le potentiel d’IC-GAN si les variables latentes sont par-

faitement décodées à partir des modèles IRMf. Notamment, le BigBiGAN de

Mozafari et al. capture mieux les propriétés de haut niveau mais manque encore

certains détails155. Notre méthode équilibre le réalisme et la précision sémantique,

comme le confirment les comparaisons quantitatives. IC-GAN dépasse les autres

méthodes dans les mesures sémantiques de haut niveau (Inception et distances

CLIP) et correspond aux mesures de bas niveau (Pix-Comp, SSIM) en utilisant des

variables latentes décodées par le cerveau. Le modèle IC-GAN complet améliore

la capture des détails de bas niveau mais reste légèrement inférieur à certaines

méthodes précédentes, tout en conservant une reconstruction sémantique de haut
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niveau supérieure.

Notre modèle de décodage cérébral, qui utilise l’espace latent du réseau IC-

GAN, permet de reconstruire le contenu de haut niveau des images perçues mieux

que les méthodes précédentes, tout en conservant plus de détails de bas niveau que

d’autres. Du point de vue des neurosciences, ce modèle nous aide à comprendre

le codage neuronal de l’information visuelle. En comparant la norme L1 des poids

de régression ridge pour les caractéristiques d’instance par rapport aux vecteurs

denses dans sept régions d’intérêt du cerveau (ROI), nous avons constaté que les

régions cérébrales inférieures (V1-V3) étaient plus informatives sur les vecteurs

denses, tandis que les régions supérieures (V4, LOC, FFA, PPA) contenaient plus

d’informations sur les caractéristiques d’instance.

Nous avons également visualisé le stimulus ”optimal” pour chaque région du

cerveau en synthétisant des modèles IRMf et en les faisant passer par nos modèles

de régression entraînés pour prédire les variables latentes, qui ont ensuite été util-

isées pour générer des images avec le générateur IC-GAN. Cette approche diffère

des méthodes précédentes en évitant l’optimisation itérative. Les images générées

pour le cortex visuel inférieur (V1-V2) présentaient des textures de base, tandis

que les régions supérieures (V4, LOC, FFA, PPA) produisaient des images plus

structurées, des objets et des visages, s’alignant sur les sélectivités connues. Par

exemple, la FFA produisait des visages humains et animaux, et la PPA des scènes

détaillées. Ces résultats, conformes à la littérature neuroscientifique, montrent

que notre modèle peut visualiser directement la sélectivité des caractéristiques vi-

suelles dans le cerveau, améliorant ainsi notre compréhension du codage neuronal.
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Dans le deuxième chapitre, nous avons présenté une méthode pour la recon-

struction d’images naturelles à partir de modèles d’IRMf en utilisant le mod-

èle IC-GAN, pré-entraîné sur ImageNet. Nous avons extrait des caractéristiques

d’instance, des vecteurs de bruit et des vecteurs denses à partir d’images d’entraînement

et nous avons entraîné des modèles de régression de crête pour prédire ces vari-

ables latentes à partir de modèles d’IRMf. À l’aide de ces modèles, nous avons

décodé des variables latentes à partir de modèles IRMf de test et reconstruit des

images à l’aide du générateur IC-GAN. Notre méthode a démontré une perfor-

mance de pointe dans la reconstruction des attributs sémantiques de haut niveau

des images, à la fois qualitativement et quantitativement, tout en conservant plus

de détails de bas niveau par rapport à d’autres modèles sémantiquement orientés

comme l’approche BigBiGAN de Mozafari et al. En outre, nous avons utilisé notre

modèle pour visualiser des images décodées à partir de modèles IRMf synthétiques

conçus pour maximiser les activations dans des régions cérébrales spécifiques, avec

des résultats cohérents avec la littérature neuroscientifique existante. Cette méth-

ode ouvre de nouvelles possibilités pour l’exploration du cerveau et les techniques

de visualisation.

5.0.3 Chapitre 3 : Diffuseur Cérébral (Brain-diffuser)

Les études précédentes ont réussi à recréer différents aspects des images, tels

que les propriétés de bas niveau (forme, texture, disposition) ou les caractéristiques

de haut niveau (catégorie d’objets, sémantique descriptive des scènes), mais n’ont

généralement pas réussi à reconstruire l’ensemble de ces propriétés pour des im-
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ages de scènes complexes. L’IA générative a récemment fait un bond en avant avec

des modèles de diffusion latente capables de générer des images très complexes.

Dans le troisième chapitre, nous étudions comment tirer parti de cette technologie

innovante pour le décodage du cerveau. Nous présentons une méthode de recon-

struction de scène en deux étapes appelée ”Brain-Diffuser”. Dans la première

étape, à partir des signaux IRMf, nous reconstruisons des images qui capturent

les propriétés de bas niveau et la disposition générale à l’aide d’un modèle VDVAE

(Very Deep Variational Autoencoder). Dans un deuxième temps, nous utilisons la

méthode image à image d’un modèle de diffusion latent (Versatile Diffusion) condi-

tionné par des caractéristiques multimodales prédites (textuelles et visuelles), afin

de générer des images reconstruites finales. Sur l’ensemble de données de scènes

naturelles (NSD) accessibles au public, notre méthode est plus performante que

les modèles précédents, tant sur le plan qualitatif que quantitatif. Lorsqu’il est ap-

pliqué à des modèles synthétiques d’IRMf générés à partir de masques ROI (région

d’intérêt) individuels, notre modèle entraîné crée des scènes ”ROI-optimales” con-

vaincantes, conformes aux connaissances neuroscientifiques. Ainsi, la méthodolo-

gie proposée peut avoir un impact sur les neurosciences appliquées (par exemple,

l’interface cerveau-ordinateur) et fondamentales.

Nous avons utilisé le Natural Scenes Dataset (NSD), un ensemble de données

IRMf 7T à grande échelle2, impliquant 8 sujets regardant des images COCO138.

Chaque image a été visionnée pendant 3 secondes et les sujets ont effectué une

tâche de reconnaissance. Notre étude s’est concentrée sur les 4 sujets qui ont

effectué tous les essais, ce qui a donné 8859 images d’entraînement et 24980 essais
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IRMf, et 982 images de test et 2770 essais IRMf. Les signaux IRMf prétraités ont

été masqués à l’aide du masque ROI NSDGeneral2.

Pour la reconstruction des images, nous avons utilisé une méthode comprenant

deux étapes. Au cours de la première étape, nous avons utilisé un auto-codeur

variationnel (VDVAE)33 pour extraire des variables latentes de bas niveau et avons

entraîné un modèle de régression ridge pour prédire ces variables à partir des

signaux d’IRMf. Cette reconstruction initiale a fourni une disposition des images

mais manquait de caractéristiques de haut niveau.

Dans un deuxième temps, nous avons utilisé le modèle Versatile Diffusion255,

un modèle de diffusion latent conditionné par les caractéristiques du texte et

de l’image. Nous avons formé deux modèles de régression pour prédire les car-

actéristiques CLIP-Vision et CLIP-Texte à partir des modèles IRMf. En util-

isant le pipeline image-image, nous avons encodé la reconstruction initiale de la

VAE, ajouté du bruit, et l’avons débruitée en utilisant les caractéristiques CLIP

prédites185. Ce processus a produit des images finales naturelles à haute résolu-

tion, combinant efficacement les caractéristiques de bas niveau et de haut niveau

pour une reconstruction précise de l’image à partir des données IRMf.

Les reconstructions de notre modèle capturent la plupart des attributs séman-

tiques et de disposition des images originales, bien que les détails au niveau des

pixels varient. Par exemple, l’avion reconstruit conserve la pose et l’arrière-plan

corrects, tandis que les personnes et les objets sont reconnus de manière cohérente,

malgré quelques différences dans les détails et les textures. Ces résultats indiquent

la capacité de notre modèle à générer des rendus naturels ressemblant aux images

164



de référence.

Nous mettons également en évidence certains échecs de reconstruction où des

stimuli complexes, des occlusions ou des confusions d’objets ont conduit à des

imprécisions. Notre modèle est comparé à trois autres modèles (Lin et al.137,

Takagi et al.234, et Gu et al.80) en utilisant l’ensemble de données NSD. Bien

que tous les modèles capturent des informations de haut niveau dans une certaine

mesure, notre modèle préserve mieux les détails de bas niveau et la sémantique

de haut niveau. Par exemple, nos reconstructions de plans et de visages sont plus

réalistes et plus détaillées que celles des autres modèles.

D’un point de vue quantitatif, notre modèle est plus performant que d’autres

sur les métriques de bas niveau (PixCorr, SSIM) et de haut niveau (Inception,

CLIP). Une étude d’ablation révèle que la combinaison de VDVAE (étape 1) avec

le modèle Brain-Diffuser complet (étape 2) optimise l’équilibre entre les détails de

bas niveau et les caractéristiques sémantiques de haut niveau. La suppression de

composants tels que CLIP-Text ou CLIP-Vision réduit les performances, ce qui

confirme leur importance dans le processus de reconstruction. Dans l’ensemble,

notre modèle Brain-Diffuser offre un meilleur compromis pour une reconstruction

d’image détaillée et sémantiquement précise.

Pour comprendre la relation entre les régions cérébrales et les composantes de

notre modèle (VDVAE, CLIP-Vision, CLIP-Text), nous avons effectué une analyse

des régions d’intérêt (ROI) en utilisant 4 ROI visuelles provenant d’expériences sur

les champs récepteurs de la population (pRF) et 4 ROI provenant d’expériences

sur la localisation fonctionnelle (fLoc). Nous avons calculé la force des poids
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de régression pour les caractéristiques CLIP et VDVAE pour chaque voxel dans

ces régions, montrant que les régions visuelles précoces (V1-V4) sont plus informa-

tives sur les caractéristiques VDVAE, tandis que les régions cérébrales supérieures

(Mots, Visages, Corps, Lieux) portent plus d’informations sur les caractéristiques

CLIP.

Nous avons également utilisé notre modèle pour visualiser les stimuli ”opti-

maux” pour des régions cérébrales spécifiques en générant des schémas IRMf syn-

thétiques avec des zones d’intérêt activées. Cela nous a permis de créer des images

qui activent au maximum certaines régions du cerveau. Pour les premières régions

visuelles, nous avons observé des scènes très contrastées avec des textures détail-

lées, tandis que les régions de niveau supérieur ont généré des images spécifiques

à une catégorie, telles que des visages pour la ROI Visage et des scènes d’intérieur

pour la ROI Lieu. Ces résultats s’alignent sur la littérature neuroscientifique con-

nue, confirmant que notre méthode peut visualiser de manière convaincante les

propriétés fonctionnelles des régions cérébrales.

En outre, nous avons exploré l’organisation rétinotopique en analysant les ré-

gions visuelles basées sur l’excentricité. Nos résultats montrent que Brain-Diffuser

peut transmettre la localisation spatiale des objets dans les images et a appris

l’organisation rétinotopique du cortex basée sur l’excentricité, les régions de la

vision centrale générant des objets détaillés au centre et les régions de la vision

périphérique générant des objets vers les bords. Cela démontre la précision et la

robustesse des représentations latentes de notre modèle.

Dans le troisième chapitre, nous avons développé une méthode à deux étapes
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(Brain-Diffuser) pour reconstruire des images à partir de modèles IRMf en utilisant

des modèles génératifs basés sur la diffusion latente. Dans la première étape, nous

avons utilisé le modèle VDVAE pour la reconstruction initiale des détails de bas

niveau. Dans un deuxième temps, nous avons utilisé le modèle Versatile Diffusion,

en utilisant les caractéristiques CLIP-Vision et CLIP-Text prédites pour affiner les

reconstructions initiales. Cette approche a nécessité l’apprentissage de modèles

de régression ridge pour cartographier l’activité cérébrale dans les espaces latents

pertinents.

Nos résultats, analysés à la fois qualitativement et quantitativement, montrent

que Brain-Diffuser préserve la plupart des informations sémantiques et de mise

en page des images originales, générant des images plus naturalistes par rapport

aux études précédentes. D’un point de vue quantitatif, Brain-Diffuser surpasse

les modèles antérieurs dans les métriques de bas niveau et de haut niveau. Notre

méthode, qui utilise des modèles de diffusion latente, établit un nouvel état de

l’art dans la reconstruction d’images basée sur l’IRMf, offrant des améliorations

par rapport à d’autres approches récentes telles que celles de Chen et al. et Takagi

et al.

5.0.4 Chapitre 4 Discussion

Les travaux futurs de cette thèse pourraient consister à tester notre méthode

sur d’autres ensembles de données d’image-IRM et à explorer de nouveaux modèles

génératifs profonds. Au fur et à mesure que les modèles génératifs s’améliorent, la

sélection des modèles les plus appropriés pour le décodage du cerveau sera cruciale.
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En outre, l’inclusion de régions cérébrales plus vastes ou l’analyse du cerveau en-

tier pourraient améliorer les reconstructions, mais pourraient augmenter les coûts

de calcul. Les études futures pourraient également se concentrer sur la reconstruc-

tion de films à l’aide de modèles temporels249,131, ainsi que sur la conception de

nouvelles expériences pour sonder des régions cérébrales moins connues ou pour

créer des stimuli optimaux pour des zones cérébrales spécifiques. Cette approche

pourrait faire progresser notre compréhension de l’organisation sensorielle et sé-

mantique du cerveau, en fournissant de nouvelles informations sur le traitement

et la représentation neuronaux.

Les recherches futures pourraient se concentrer sur la reconstruction des pen-

sées visuelles à l’aide des données d’imagerie. L’imagerie mentale, la représen-

tation d’informations sensorielles sans stimuli externes, peut être observée par

neuro-imagerie172. L’application de modèles de reconstruction visuelle aux don-

nées d’imagerie pourrait révéler des différences entre l’imagerie et la perception

visuelle, explorer la diversité de la vivacité entre les sujets et examiner le rôle

des ROI dans l’imagerie mentale. Bien que le jeu de données NSD contienne des

données d’imagerie, elles ne sont pas encore accessibles au public.

Les progrès récents en matière de décodage neuronal ont rendu possibles les

applications réelles des interfaces cerveau-ordinateur (ICO)72. Ces interfaces per-

mettent une communication directe entre le cerveau et des dispositifs externes

en utilisant des techniques de neuroimagerie invasives (électrodes intracorticales,

ECoG) ou non invasives (EEG, fNIRS, MEG, IRMf), choisies en fonction des

exigences de l’application. Les BCI basés sur l’EEG sont populaires pour leur mo-
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bilité et leur caractère non invasif. Ils sont utilisés dans la rééducation motrice et la

réadaptation après un accident vasculaire cérébral, dans le contrôle des robots208,

dans les jeux vidéo et dans le pilotage de quadricoptères. Les méthodes invasives

comme l’ECoG sont utilisées pour l’acquisition de signaux robustes dans des ap-

plications cliniques, telles que les prothèses vocales neurales de haute qualité pour

les patients atteints de SLA58. L’IRMf, malgré ses limites, est utilisée dans des cas

cliniques comme l’évaluation des réponses chez les patients souffrant de troubles

de la conscience. Ces techniques permettent d’étudier l’organisation fonctionnelle

et le codage neuronal des régions du cerveau, ce qui améliore les applications des

ICO.

Toutefois, la capacité de décoder des informations très fines soulève des ques-

tions éthiques sur la protection de la vie privée. Un décodage neuronal précis

pourrait conduire à des abus, comme le montrent des scénarios dystopiques tels

que ”Nineteen Eighty-Four” d’Orwell, ”Minority Report” et ”Black Mirror”206.

Les implications juridiques dans le domaine du droit neurologique comprennent

des questions telles que la détection du mensonge, la prédiction du comportement

criminel et la réadaptation des criminels25. À mesure que l’IA et les neurosciences

progressent, il est essentiel de répondre aux préoccupations éthiques concernant

la fiabilité du décodage neuronal pour les applications critiques, et de garantir la

justice, la sécurité et la vie privée, tout en évitant l’alarmisme et les théories du

complot146.

Cette thèse présente deux méthodes pour la reconstruction d’images visuelles

à partir de l’activité IRMf en utilisant des modèles génératifs profonds. Les méth-
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odes se concentrent sur différents aspects de la reconstruction visuelle par rapport

à leurs prédécesseurs, tels que la cohérence sémantique et le réalisme. Ils présen-

tent des résultats supérieurs à ceux d’autres méthodes, tant sur le plan qualitatif

que quantitatif. En plus de leur capacité à reconstruire les stimuli, ces méth-

odes ont démontré leur utilité pour l’exploration neuroscientifique par le biais

d’analyses de régions d’intérêt. Les contributions de cette thèse au domaine du

décodage neuronal et de la reconstruction visuelle peuvent guider les chercheurs

travaillant dans le domaine des neurosciences cognitives et des interfaces cerveau-

ordinateur.
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