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Abstract

Distributed computing frameworks are an inevitable part of current telecom-
munication technologies. They enable service providers to process computation-
intensive tasks and to communicate huge amounts of information between
servers or end-users via shared networking and storage resources. Many of
the prevalent applications can be found in wireless sensor networks, online
multi-player games, virtual reality, distributed database management sys-
tems, distributed learning algorithms for training large models (such as large
language models and federate learning) and parallel computing. This thesis
explores multi-user linearly-decomposable distributed computation, where N
servers help compute the desired functions (jobs) of K users, and where each
desired function can be written as a linear combination of up to L (generally
non-linear) subtasks (or subfunctions). Each server computes some of the
subtasks, communicates a function of its computed outputs to some of the
users, and then each user collects its received data to recover its desired
function. Our first study explores the computation and communication costs
relationship. For a coefficient matrix F representing the linearly decomposable
form of the set of requested functions, our problem becomes equivalent to the
open problem of sparse matrix factorization F = DE over any mathematical
field, where a sparse communication matrix D and computing matrix E imply
reduced communication and computation costs respectively. In this thesis, we
present our research by modelling the processed databases by the servers and
transmitted signals as elements in some arbitrary finite field or the real num-
bers domain. In the finite field approach, we established a novel relationship
between our distributed computing problem, matrix factorization, syndrome
decoding and covering codes. To reduce the computation cost per subfunction

— Which is the maximum number of servers that a subfunction is assigned to
it, across all the subfunctions — the above D is drawn from covering codes
or from a here-introduced class of so-called ‘partial covering’ codes, whose
study here yields reduced computation cost per subfunction. To then reduce
the cumulative communication cost — The overall transmitted signals by
each server — these coding-theoretic properties are explored in the regime
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vi Abstract

of codes that have low-density parity check matrices. The thesis reveals —
first for the commonly used one-shot scenario — that in the limit of large
N , the optimal normalized computation cost per subfunciton γf ∈ (0, 1) is in
the range γf ∈ (H−1

q ( logq(L)
N

), H−1
q (K/N)) — where Hq is the q-ary entropy

function — and that this can be achieved with normalized communication cost
that vanishes as

√︂
logq(N)/N . The above reveals an unbounded coding gain

over the uncoded scenario, as well as reveals the role of a certain functional
rate logq(L)/N and functional capacity Hq(γ) of the system. We also explore
the multi-shot scenario, for which we derive bounds on the computation cost
per subfunction.

In another effort we aim at reducing the total number of subfunction
computations across the servers (cumulative computational cost), as well as
the worst-case load which can be a measure of computational delay. Our
contribution consists of novel bounds on the two computing costs, where these
bounds are linked to the covering and packing radius of classical codes.

One of our findings is that in certain cases, our distributed computing
problem is treated optimally when F is decomposed into a parity check matrix
D of a perfect code, and a matrix E which has columns as the coset leaders
of this same code.

In the real numbers domain, we reformulate the real-valued distributed
computing problem into a matrix factorization problem and then into a ba-
sic sparse recovery problem, where sparsity implies computational savings.
Building on this, we first give a simple probabilistic scheme for subfunction
assignment, which allows us to upper bound the optimal normalized cumu-
lative computation cost — the overall number of subfunction computations
that are done by all of the servers — as γc ≤ K

N
that a generally intractable ℓ0-

minimization would give. To bypass the intractability of such optimal scheme,
we show that if these optimal schemes enjoy γc ≤ −r K

N
W −1

−1 (− 2K
eNr

) (where
W−1(·) is the Lambert function and r calibrates the communication between
servers and users), then they can be derived using a tractable Basis Pursuit
ℓ1-minimization. This newly revealed connection opens up the possibility of
designing practical distributed computing algorithms by employing tools and
methods from compressed sensing.

This thesis also introduces a new framework called tessellated distributed
computing, where the aim is for each user to receive their function outputs,
allowing for reduced error ϵ, reduced computing cost (γ; the fraction of sub-
functions each server must compute), and reduced communication cost (δ;
the fraction of users each server must connect to). For any given set of K
requested functions — which again is here represented by a coefficient matrix
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F ∈ RK×L — our problem is made equivalent to the open problem of sparse
matrix factorization that seeks — for a given parameter T , representing the
number of shots for each server — to minimize 1

KL
∥F − DE∥2

F overall δ-spars
and γ-sparse matrices E ∈ RNT ×L and D ∈ RK×NT . With these matrices
respectively defining which servers compute each subfunction, and which users
connect to each server, we here design our E, D by designing tessellated-based
and SVD-based fixed support matrix factorization methods that first split F
into properly sized and carefully positioned submatrices, which we approxi-
mate and then decompose into properly designed submatrices of D and E.
For the zero-error case and under basic dimensionality assumptions, the thesis
reveals achievable computation-vs-communication corner points (γ, δ) which,
for various cases, are proven optimal over a very large class of D, E using a
novel tessellations-based converse. Subsequently, for large N , and under basic
statistical assumptions on F, the average achievable error ϵ is concisely ex-
pressed using the incomplete first moment of the standard Marchenko-Pastur
distribution, where this performance is shown to be optimal over a large
class of D and E. In the end, the work also reveals that the overall achieved
gains over baseline methods are unbounded. In summary, this thesis explores
the fundamental limits of multi-user linearly-decomposable distributed com-
puting in various domains and various conceptions of communication and
computation costs.

One notable aspect is that we treat an extremely broad setting of functions
and do so in a promising multi-user setting. Interestingly, we here present
never-before-seen connections between distributed computing, coding theory,
perfect codes, compressive sensing and tessellation theory, as well as large
matrix analysis. As we discuss, there is a rich class of problems that emerges
from these connection. We hope that these new directions and connections are
useful in the development of the very challenging area of multi-user distributed
computing.
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Notations

N Natural numbers
R Real numbers
GF(q) Finite Field of size q where q is a power of a prime

number
F An arbitrary Finite Field
A Matrix
[A, B] Indicates the horizontal concatenation of two matrices

A, B
A(i, j) The element of matrix A in i-th Row and j-th column
A(i, :) Row vector representing the i-th row of matrix A
A(:, j) Column vector representing the j-th column of matrix

A
a Column vector a
a⊺ A vertical vector and transpose of a
I Set I
A(I, J ) Submatrix of A comprised of elements where their row

indices are in I and their column indices are in J
ω(X) The number of nonzero elements of some matrix X
ω(x) The number of nonzero elements of some vector x
C ⊆ Fn Represents a code
d(x, C) The Hamming distance of x ∈ Fn, to the nearest code-

word in C ⊆ Fn

ρ, ρ(C) The normalized covering radii(of code C ⊆ Fn) in Chap-
ter 2

C(k, n) Linear code of dimension (the message length) k or with
codeword length n

CH Linear code whose Parity-Check matrix is H
HC Matrix that serves as the parity-check matrix of a specific

linear code C
[C1, C2] The code resulting from direct product of C1 and C2
< x, C1 > A code whose basis is the union of x ∈ Fn with the basis

of C1
Vq(n, ρ) The volume of a Hamming ball in Fn of radius ρn
Hq(x) For 0 ≤ x ≤ 1 − 1

q
, x ∈ R, represents the q-ary entropy

function which is equal to x logq(q − 1) − x logq(x) − (1 −
x) logq(1 − x) H(x).

H(x) is H2(x).
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supp(x) The support of some vector x ∈ Fn or x ∈ Rn, which is
the set of indices of non-zero elements.

ϵ(n) An expression which, in the limit of large n, vanishes to
zero

∥.∥0 L0 norm operator, represents the number of non-zero
elements of a factor or matrix defined in the real domain

⊗ Kronecker Product Operator
vec(X) The vectorization of X matrix
A∗ Conjugate of A in the complex domain
AS A matrix that consists of only the columns of A indexed

in S
Im×m An m × m identity matrix.
I(X , Y) A matrix that all of its elements are zero except the

elements, I(i, j), i ∈ X , j ∈ Y
Supp(A) A binary matrix from {0, 1}m×n representing the loca-

tions of non-zero elements of A
∨ Logical "or"
∧ Logical "and"
¬ Logical "negation"
I ∪ J Defined for two binary matrices I, J ∈ {0, 1}m×n, having

the property (I ∩ J)(i, j) = I(i, j) ∨ J(i, j)
I ∩ J Defined for two binary matrices I, J ∈ {0, 1}m×n, having

the property (I ∩ J)(i, j) = I(i, j) ∧ J(i, j)
I′ Defined for a binary matrix I ∈ {0, 1}m×n, having the

property I′(i, j) = ¬I(i, j)
I\J Defined for two binary matrices I, J ∈ {0, 1}m×n and is

equal to I ∩ ¬J
1n An all-one n dimensional column vector in real numbers
0m An all-zero m dimensional column vector
⊙ Hadamard product operation
∥A∥F The Frobenius norm of the matrix A which is equal to√︂∑︁m

i=1
∑︁n

j=1 A2(i, j).
⌈x⌉, ⌊x⌋ The ceiling and floor function of a real number x
mod(a, b) For two numbers a, b ∈ N is the remainder of division of

a by b.
ΦMP,λ(t, r) The incomplete first moment of the Marchenko–Pastur

distribution with ration λ which can also be described as∫︁ t
r xfMP,λ(x)dx, where fMP,λ(x) is the probability density

function of a Marchenko-Pasture distribution
a|b For two natural numbers a, b, it means that a divide b
a ∤ b For two natural numbers a, b, it means that a does not

divide b





Chapter 1

Introduction

As continuous data streams become more prevalent, the limitations of in-
dividual computing nodes in handling large-scale computation tasks are
increasingly apparent. In recent years, distributed computing has emerged
as a preferred solution due to its multitude of advantages over centralized
computing. Distributed computing involves a collaborative network of com-
puting nodes working together as a unified system to tackle computation
tasks, utilizing shared networking and storage resources [1].

Primarily, distributed computing offers enhanced reliability and fault
tolerance, ensuring seamless operation even in the face of node failures.
Additionally, it boasts accelerated computation speed by distributing the
workload across multiple nodes. Furthermore, it exhibits inherent scalability,
facilitating the effortless addition of computing nodes as required. Moreover,
distributed computing proves cost-effective, leveraging economical hardware
for computing nodes. This approach finds widespread adoption in cloud
computing and other emerging services.

Given these advantages, distributed computing finds diverse applications
in various real-world scenarios. These include telecommunication networks
(such as telephone networks and wireless sensor networks), network applica-
tions (such as World Wide Web networks, massively multiplayer online games,
virtual reality communities, distributed database management systems, and
network file systems), real-time process control (including aircraft control sys-
tems), and parallel computation (such as cluster computing, grid computing,
and computer graphics)[2]–[4].

Let’s examine one of the most prevalent distributed computation frame-
works, known as MapReduce [5]. MapReduce serves as a software framework
and programming model designed to process computation tasks across ex-
tensive datasets utilizing a multitude of computing nodes, also known as
workers. These computing nodes are often grouped into clusters. Typically,

1
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the computation task is divided into three distinct phases: the "Map" phase,
"Shuffle" phase, and "Reduce" phase. During the Map phase, a master node
partitions the computation task into numerous subtasks and assigns them
to the computing nodes. These nodes then execute the subtasks based on
allocated Map functions, yielding intermediate results. Subsequently, the
intermediate results undergo exchange among the computing nodes, a process
referred to as "data shuffling," occurring in the Shuffle phase. Finally, in
the Reduce phase, the computing nodes utilize these results to compute
the outcome in a distributed manner, employing their designated Reduce
functions.

In this distributed computing framework, we face two primary challenges.
Firstly, computing nodes must exchange numerous intermediate results over
the network to calculate the final result. This leads to significantly increased
communication overheads. This problem also degrades the performance
of distributed computing applications such as Self-Join, Terasort [6], and
Orchestra [7] and other Distributed Machine Learning frameworks [8]. For
instance, in the Hadoop cluster [9] at Facebook, the data shuffling phase
typically consumes 33% of the overall job execution time. Similarly, when
running TeraSort and Self-Join applications on a heterogeneous Amazon
EC2 cluster, approximately 65% and 70% of the overall job execution time,
respectively, is spent on the Shuffle phase [10]. The communication bottleneck
is particularly pronounced in training convolutional neural networks (CNNs),
such as Resnet-50 [11] and AlexNet [12], which involve updating millions of
model parameters. Secondly, distributed computing involves a large number of
computing nodes with varying computing and networking resources, resulting
in straggler nodes that unintentionally run slower than others. These stragglers
increase the overall time required to complete computing tasks. Traditional
approaches like work exchange and naive replication have been used to mitigate
straggler effects, but they either introduce redundancy or require coordination
among nodes, increasing communication costs and computational load. This
underscores the need for novel techniques to effectively address straggler
effects and communication load in distributed computing.

Coding theoretic techniques, such as low-density parity-check (LDPC)
coding, have been extensively used in WiFi and cellular systems to counter-
act channel noise and impairments. They have also found applications in
distributed storage systems and cache networks to reduce storage costs and
network traffic [13]–[15]. These techniques introduce redundancy in messages
or signals before transmission, allowing receivers to correct errors caused by
channel noise. Recently, coding theoretic techniques have been recognized as
promising solutions for overcoming challenges in distributed computing. For
instance, they can encode the Map tasks of computing nodes to enable the
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master to recover the final result from partially finished nodes, mitigating
straggler effects [16], [17]. Additionally, coding theoretic techniques facilitate
coding opportunities across intermediate results of distributed computation
tasks, reducing communication load by minimizing the number and size of
data transmissions among computing nodes [18]. The amalgamation of coding
techniques and distributed computing is termed coded distributed computing
(CDC). Beyond reducing communication load and mitigating straggler effects,
the CDC offers fault tolerance, privacy preservation, and improved security in
distributed computing, garnering significant attention. For a detailed survey,
we refer the reader to [19] and [20].

Ever since the groundbreaking studies on employing coding techniques
in distributed computing [18], [21], numerous schemes for coded distributed
computing have been introduced to tackle various tasks in machine learning
applications. In this thesis, we begin our analysis by focusing on one of
the basic and abstract models of distributed computing, introduced in [22].
This framework, although simplified, generalized many distributed computing
frameworks such as:

• The distributed gradient coding problem examined in [23], [24], [25].

• The distributed linear transform problem analyzed in [26].

• In the scenarios of distributed matrix-vector multiplication explored
in [27]–[29], distributed matrix-matrix multiplication discussed in [30]–
[36], and distributed multivariate polynomial computation examined
in [37], where coded assignments are allowed. This means that each
worker can receive linear combinations of all input datasets. In contrast,
the problem under consideration in this paper involves uncoded data
assignments, meaning each worker is only capable of computing functions
based on the datasets assigned to it.

In Section1.1, we elaborate more on the single user distributed linearly-
separable introduced in [22] and discuss their method of analysis and its
advantages and disadvantages concerning the practical concerns. Then, in
Section 1.2, we present the multi-user linearly-decomposable (separable)
distributed computing problem, inspired by [22], and finally, we summarize
the contributions of this thesis in Section 1.2. In Section 1.2, each contribution
will be accompanied by a reference to the corresponding chapter and section,
where detailed formulations and proofs are presented.
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1.1 Single-User Distributed Linearly-Separable
Computation

As mentioned earlier, distributed computation systems partition computa-
tional tasks into multiple subtasks, which are then allocated to distributed
workers. This approach significantly reduces computing time by leveraging
parallel computing methods, enabling the processing of large-scale data. How-
ever, while large-scale distributed computing holds promise for achieving
remarkable accuracy and insights into complex phenomena, it also presents
technical challenges. Firstly, the presence of stragglers, where certain workers
experience extended processing times or fail to return completed subtasks,
introduces undesirable and unpredictable latency. Secondly, the transfer of
data and computed results between the user orchestrating the task and the
workers poses another bottleneck, especially when communication bandwidth
is limited. To address these challenges, coding techniques have been integrated
into distributed computing algorithms. These techniques aim to enhance
tolerance to stragglers and reduce communication costs between the user and
workers.

In [22], a user aims to compute a linearly separable function f (such
as linear Mapreduce, Fourier transform, convolution, etc.) on L datasets
(D1, . . . , DL), which can be written as

f(D1, . . . , DL) = g
(︂
f1(D1), . . . , fL(DL)

)︂
= g(W1, . . . , WL).

Wl = fl(Dl) for all l ∈ {1, . . . , L} is the outcome of the component function
fl(·) applied to dataset Dl, and it is represented as a string of M symbols
on an appropriate sufficiently large alphabet. For example, Wl can be the
intermediate value in linear MapReduce, an input signal in Fourier Transform,
etc. In fact, g(·) is a linear map defined by Kc linear combinations of the
messages W1, . . . , WL with uniform i.i.d. coefficients over some large enough
finite field; i.e., g(W1, . . . , WL) can be seen as the matrix product FW, where
F is the coefficient matrix and W = [W1; . . . ; WL]. In particular, this model
is chosen to capture the following applications

• As matrix multiplication is one of the key building blocks underlying
many data analytics, machine learning algorithms and engineering
problems, the considered model also has potential applications in those
areas, where f1, . . . , fL represent the pretreatment of the datasets.

• Each dataset Dl where l ∈ {1, . . . , L} represents a raw dataset and
needs to be processed through some filters, where Wl represents the
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filtered dataset of Dl. For the sake of linear transforms (e.g., wavelet
transform, discrete Fourier transform), we need to compute multiple
linear combinations of the filtered datasets, which can be expressed as
g(W1, . . . , WL).

• For another example, D1, . . . , DL are the L “input channels” of a Con-
volutional Neural Networks (CNN) stage. Each input channel Dl where
l ∈ {1, . . . , L} is filtered individually by a convolution operation yielding
Wl. Then the convolutions are linearly mixed by the coefficients of
g(W1, . . . , WL) producing Kc new layers in the feature space.

• if F represents a MIMO precoding matrix, the considered model can
also be used in the MIMO systems.

The distributed computation scenario involves computing f(D1, . . . , DL)
in a distributed manner by a group of N workers. Each dataset is assigned
uncoded to a subset of workers, with the number of datasets assigned to each
worker not exceeding Γ, referred to as the computation cost. It’s assumed
that the complexity of computing the messages from the datasets is much
higher than computing the desired linear combinations of the messages. The
computation cost is denoted by Γ. Each worker computes and sends coded
messages in terms of the datasets assigned to it, such that from the answers of
any Nr workers, the user can recover the task function with high probability.
Given (L, N, Nr, Kc, D), the master node aims to find the optimal distributed
computing scheme with data assignment, computing, and decoding phases,
minimizing the communication cost (i.e., the number of downloaded symbols
by the user, normalized by D).

Two examples presented in [22] illustrate the formulated distributed sce-
nario in Fig. 1.1 where Kc = 1 and Kc = 2, respectively. In both examples,
L = N = 3, Nr = 2, and the number of datasets assigned to each worker is
Γ = 2. The characteristic of number GF(q) (the field that the alphabet is
designed) is assumed to be larger than 3.

The detailed comparison between the considered distributed linearly sepa-
rable computation problem and each of the related existing works is provided
in Section II-B of [22].

In that paper, the author formulates the problem of distributed computa-
tion for linearly separable functions, focusing on scenarios where N divides L
and the computation cost is minimized, specifically Γ = L

N
(N − Nr + 1). The

key contributions outlined in that paper are as follows:

• An information-theoretic converse bound on the minimum communica-
tion cost is introduced, inspired by the converse bound utilized in the
coded caching problem with uncoded cache placement.
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Worker 1 Worker 2 Worker 3

After receiving any two: 

sends 𝑊1/2 +𝑊2 sends 𝑊2 −𝑊3 sends 𝑊1/2 +𝑊3

𝐷1
𝐷2

𝐷2
𝐷3

𝐷3
𝐷1

𝑊1 +𝑊2 +𝑊3

Master

(a) Lc = 1.

Master

After receiving any two: 

sends 2𝑊1 +𝑊2 sends 𝑊2 + 2𝑊3 sends −𝑊1 +𝑊3

𝑊1 +𝑊2 +𝑊3;
𝑊1 + 2𝑊2 + 3𝑊3.

𝐷1
𝐷2

𝐷2
𝐷3

𝐷3
𝐷1

Worker 1 Worker 2 Worker 3

(b) Lc = 2.

Figure 1.1: Distributed linearly separable computation with L = N = 3 and
Nr = 2. The number of datasets assigned to each worker is Γ = 2 (adapted from
[22]). In our terminology, master refers to the user and worker nodes are servers.
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• Leveraging the cyclic assignment method, a widely adopted approach in
existing literature addressing distributed gradient coding problems, such
as [23], [38], a novel distributed computing scheme based on linear space
intersection is proposed. The decodability of this scheme is established
through the Schwartz-Zippel Lemma.

• The paper demonstrates that the achievable scheme is optimal compared
to the proposed converse bound under the conditions when N = L,
or L ∈

{︃
1, . . . ,

⌈︃
L

( N
N−Nr+1)

⌉︃}︃
, or Kc ∈

{︂
L
N

Nr, . . . , L
}︂
. Additionally, the

paper establishes that the achievable scheme is optimal when considering
the constraint of the cyclic assignment across all system parameters.

• An interesting observation stemming from the derived optimality results
is highlighted in that paper: when K = Nr, for any Kc ∈ {1, . . . , Nr},
the optimal communication cost consistently remains Nr. Consequently,
by adopting the same communication cost as the optimal gradient coding
scheme proposed in [23] for the distributed gradient coding problem
(which aligns with the case Kc = 1 in our problem), the proposed scheme
enables the master to recover any additional Nr − 1 linear combinations
with uniformly i.i.d. coefficients over GF(q) with high probability.

Finally, various extensions of the single-user linearly separable distributed
computation problem and its related problems have been investigated in
[39]–[42], from different aspects and but similar approaches. In the next
section, we elaborate on the multi-user linearly-decomposable distributed
computing, which not only extends the single-user aspects of the problem but
also generalizes the computation and communication costs and the assign-
ment phase where the master node is not required to assign the datasets or
subfunctions cyclically.

1.2 Multi-User Linearly-Decomposable Dis-
tributed Computing

As mentioned earlier linearly-decomposable (separable) functions appear in
several classes of problems such as in training large-scale machine learning
algorithms and deep neural networks with massive data [8], where indeed both
computation and communication costs are crucial [43], [44]. To first charac-
terize the communication and computation relationship between multi-user,
multi-server computation of linearly-decomposable functions, we modelled
a setting that consists of a master node that manages N server nodes that



8 1.2. Multi-User Linearly-Decomposable Distributed Computing

must contribute in a distributed manner to the computation of the desired
functions of K different users. Under the linearly-decomposable assumption
(cf. [22]), we consider that user k ∈ {1, 2, . . . , K} demands a function Fk(.)
that can be decomposed as

Fk(.) =
L∑︂

ℓ=1
fk,ℓfℓ(.) =

L∑︂
ℓ=1

fk,ℓWℓ

where in the above, Wℓ = fℓ(.) denotes the computed output of a subfunction
and where fk,ℓ are the combining coefficients which belong, together with
the entries of Wℓ, in some field. This modeling nicely captures linearly
separable functions where each Fk(.), taking L subfunction as input, can
be written as a linear combination of L univariate subfunctions. In this
thesis, these subfunctions need not be univariate. Also, note that the setting
nicely includes the case where each Fk itself is a linear combination of some
linearly separable functions, i.e., where Fk can itself be written as Fk(.) =∑︁L

ℓ=1
∑︁M

i=1 fk,ℓ,ifℓ,i(.) = ∑︁L
ℓ=1

∑︁M
i=1 fk,ℓ,iWℓ,i, corresponding to some set of basis

subfunctions fℓ,i(.). Upon notification of the users’ requests — where these
requests are jointly described by the K × L matrix F that contains the
different coefficients fk,ℓ — the master instructs the servers to compute some
of the subfunctions fℓ(.). Each server may compute a different number of
functions. Upon completing its computations, each server communicates
linear combinations of its locally computed outputs (files) to carefully selected
subsets of users. Each user can then only linearly combine what it receives
from the servers that have been transmitted to it, and the goal is to guarantee
that each user can recover its desired function. The problem is completed
when every user k retrieves its desired Fk(.).

We note that there is a clear differentiation between the server nodes
that are asked to compute hard (generally non-linear) component functions
(subfunctions), and the users that can only linearly combine their received
outputs. Generating the so-called output files Wℓ = fℓ(.), ℓ ∈ {1, 2, . . . , L},
can be the result of a computationally intensive task that may for example
relate to training a deep learning model on a dataset, or it can relate to the
distributed gradient coding problem [23]–[25], [38], the distributed linear-
transform computation problem [26], [45], or even the distributed matrix
multiplication and the distributed multivariate polynomial computation prob-
lems [18], [27]–[29], [31]–[33], [35], [36], [46], Mapreduce with linear reduce
function [47] and naturally, the problems that are included in the single-user
linearly-separable scenario.

ϵ ≜
E

KL
, γ ≜

Γ
L

, δ ≜
∆
K

. (1.1)



Chapter 1. Introduction 9

...

Master Node

Server Nodes

Users

...

... ...... ...

...

Figure 1.2: The K-user, N -server, T -shot Multi-User
Linearly-Decomposable Distributed Computing Setting. Each server n
computes the subfunctions in Sn = {fin,1(.), fin,2(.), . . . , fin,|Sn|(.)} and

communicates to K different users in Tn,t.
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In this thesis, we analyzed the problem by working on two mathematical
"fields". The first is the finite field, as it is much more common in the infor-
mation theory community to model many networked information systems in
a finite field such as what has been done in [17], [22]. But also many systems
are investigated in real field domain, such as [48]–[51]. In this thesis, we also
investigated this problem in the real domain which will indeed constitute a
substantial deviation from the finite field case. The focus on the real (or com-
plex) domain is essential due to the impracticality of computing a real-valued
problem over a finite field (after discretization). This is primarily because
discretization can result in significant precision costs and accuracy reductions.
Moreover, finite field computations are notably slower than floating-point
operations [52]. Therefore, we will analyze real-valued functions over L
real-valued datasets (or equivalently, with L component/basis subfunctions),
alongside N computing servers and K users, each requesting their function.

Then, once we have agreed on the system model, we begin our mathe-
matical abstraction deduction procedures. We will formulate the problem in
Chapters 2, 4 and 5, for both single-shot and multi-shot cases. In both finite
and real-valued fields, we observe that the problem formulation reduces to a
matrix factorization problem when one wants to approximate a demand (jobs)
matrix F ∈ FK×L by the multiplication of two communication D ∈ FK×N

matrix and computing matrix matrices E ∈ FN×L. The approximation error
has to be zero in the finite field scenario. We have discovered, in any multi-
user linearly-decomposable problem that the more sparse D matrix, one can
achieve a feasible scheme with less communication cost and symmetrically,
the more sparse E matrix, the less computation cost can be achieved.

To characterize the fundamental limits of any multi-user linearly-decomposable
problem, in Chapter 2, we tackled this matrix-factorization problem by first
focusing on reducing the computation cost (per subfunction), defined as the
maximum number of servers that a subfunction has been assigned to. We inter-
estingly, discover that if we re-write the problem as F(:, ℓ) = DE(:, ℓ), ℓ ∈ [L],
we can view the problem as a syndrome decoding algorithm by noting the
similarities, then we prove that the maximum number of non-zero elements in
each column of E, which is related to the computation cost, can be bounded
by the covering radius of CD, which represents a linear code that its parity-
check matrix is D. Via this intuition, we will introduce a new type of code
called partial-covering codes and show their existence (both constructively
and statistically) which is crucial for any scheme that intends to be optimal
from the computation cost, perspective. Moreover, via an algebraic converse,
we characterize a converse bound for the computation cost. Then by proving
the existence of the Low-Density Parity-Check of partial covering codes, we
have been able to offer an achievable scheme with reduced computation and



Chapter 1. Introduction 11

communication costs. At the same time, the computation cost can be opti-
mal under some additional assumptions on L number of subfunctions and F
matrix. The same method was applied to the multi-shot case and parallel
results in terms of computation and communication costs have been achieved.

In Chapter 3, we begin with the same problem formulation but, we
mainly focus on the computational delay, defined as the maximum number
of subfunctions assigned to a server and the cumulative computational cost,
defined as the total number of computations done by all of the servers, which
can be lower and upper-bounded as a function of packing radius and packing
density of CH. We interestingly see that if D be a parity-check matrix of a
perfect code, the computational delay and computation cost are optimal for
a generic case of the problem.

Our method in Chapter 4, completely deviates from Chapters 2 and 3,
since the requested functions and each component function, is defined on real
fields, thus the computation and communication matrices have to be defined
in real numbers. By rearranging the problem, to a vectorized equivalent of the
matrix multiplication, we related the multi-user linearly-separable problem
to the compressed sensing literature and offered two solutions to construct a
scheme with reduced cumulative computation cost1.

In Chapters 5 and 6, we elaborate on a new method called Tesselated Dis-
tributed Computing which is based on a recently, discovered approach of [53]
to tackle the problem of Fixed-Support Matrix Factorization. In the above
chapters, our method towards real-valued multi-user linearly-decomposable
distributed computing is to reduce both computational delay and the commu-
nication cost per server2 —which is defined as the number of transmissions
from a server to the users— simultaneously by partitioning F submatrices
and then performing complete-SVD for the lossless case or truncated SVD, for
the case. This approach in Chapter 5, results in characterizing an achievable
scheme and converse bound on users per server (will be referred to as rate R)
in terms of computation and computation cost, which are optimal in general
cases has been derived, which results to the characterization of a feasibility
region for general valued K, N, L and computation and communication cost.
In the case investigated in Chapter 6, we will offer an achievable scheme with
an optimal average error by accumulating the approximation error of each
sub-matrix (Tile) and assuming some basic statistical assumptions on the
demand matrix F 3, we used the Marchenko–Pastur law, to characterize the
overall average reconstruction error of our problem.

1which is the total number of computations done by all of the servers.
2The maximum number of transmissions per server.
3For instance we have assumed that the element of F, are i.i.d distributed with zero-mean

and unit variance.
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In Chapter 7, we thoroughly examine and conclude, providing further
elaboration on future prospects and open problems.

1.3 Main Contributions
The main contributions of this thesis is as follows:

• Connection to the problem of matrix factorization into sparse compo-
nents or sparse matrix factorization: First, when exploring our dis-
tributed computing problem, one can see that the lossless feasibility
conditions that ensure that each user recovers its desired function,
constitute a (preferably sparse) matrix factorization problem of the
form

DE = F

where the problem is over some field F, and where any potential sparsity
of D and E translates to savings in communication and computation
costs respectively. One can find a similar problem when analysing the
lossy version of this problem, which can be translated to the optimisation
problem, as follows

Minimize ∥DE − F∥F (1.2)
subject to ∥D∥0/KN ≤ δ, ∥E∥0/NL ≤ γ (1.3)

where δ, γ ∈ (0, 1], are normalized communication and computation
costs of the system. F is given and D and E are variables that have to
be achieved by an optimization algorithm (Chapter 2, Chapter 5).

• Connection to coding theory and syndrome decoding: On the way to
resolve this problem in a manner that yields non-trivial sparse factors,
we notice that — if for example, we were to fix the above matrix D, and
associate this to the parity-check matrix of some linear code — then for
each column Eℓ of E and associated column Fℓ of F, the corresponding
equation D · Eℓ = Fℓ would tells us that the desired sparse Eℓ can be
the lowest-weight coset leader whose syndrome is equal to Fℓ. Hence,
under this analogy, the columns of E are associated to error vectors,
the columns of F to the corresponding syndromes, and D is assigned
the role of a parity-check matrix (Chapter 2).

• Connection to covering codes and the new class of partial covering codes:
The above connection with syndromes, in turn brings about the concept
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of covering codes that refer to codes with good covering properties,
which in turn entail low weight Eℓ, which is what we need. In (error-
control) coding theory though — which generally considers that any
error vector is possible — such covering codes consider a full space
of possible syndromes, i.e., consider the case where any appropriately-
dimensioned vector can indeed be a syndrome. To account for the fact
that F corresponds to a restricted set of syndromes (only those that
correspond to the columns of our F), we here consider a new class of
partial covering codes, the analysis of which is part of this work. This
connection is articulated through the following theorem in Chapter 2.
Theorem 1: For the setting of distributed-computing with K users, N
servers, and L subfunctions, a solution to the linearly separable function
computation problem DE = F with normalized computation cost per
subfunction 4 γf exists if and only if D is the parity check matrix to a
(γf , X )-partial covering code CD for some existing set

X ⊃ XF,D ≜ {x ∈ FN |Dx = F(:, ℓ), for some ℓ ∈ [L]}.

With such D in place, each E(:, ℓ) is the output of the minimum-distance
syndrome decoder of CD for syndrome F(:, ℓ).

• Characterizing a bound on the optimal computation cost: The contribu-
tion is summarized via the following Theorem in Chapter 2:
Theorem 2: For the setting of distributed-computing of linearly-
decomposable functions, with K users, N servers and any number of L
subfunctions, the optimal computation cost per subfunction is bounded
as

γf ∈ (H−1
q (

logq(L)
N

), H−1
q (K

N
)).

where K/N and logq(L)/N are fixed and N goes to infinity.

• Connection with codes having low-density parity-check matrices: The
above effort yields a sparse E. Our effort is concluded when the afore-
mentioned exploration of covering codes and partial covering codes
(which yielded a sparse E), is extended to involve analysis of codes with
a sparse D as well. As the result of this abstract connection we have
managed to bound the optimal computation and communication cost
as follows in Chapter 2:

4which the maximum number of a subfunction assigned to all server. The notion will
be defined precisely in Chapter 2.
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Theorem 3: For the setting of distributed-computing of linearly-
decomposable functions, with K users, N servers and L subfunctions,
the optimal computation cost per subfunction is bounded as

γf ∈ (H−1
q (

logq(L)
N

), H−1
q (K

N
))

and for any achievable computation cost γf ≤ min{
√

5−1
2 , 1 − 1

q
}, then

the corresponding achievable communication cost takes the form

δc
.=

√︂
logq(N)

N
. (1.4)

where K/N and logq(L)/N are fixed and N goes to infinity.

• Extending the one-shot scenario: Our framework allows us to address
but also extend the one-shot scenario which is the scenario of choice in
various works (see for example [22]) and which, in our case, asks that
each server can send only one linear combination to one set of users.
We extend this model to the practical and realistic scenario where, for a
fixed subset of subfunctions/files {f(.)} computed locally at each server,
the server can communicate linear combinations to various sets of users
(Chapter 2, Chapter 6 and Chapter 5). As a result of this extension, we
managed to prove:
Theorem 4: For the setting of distributed-computing of linearly-
decomposable functions, with K users, N servers, L sub-functions
and T shots, the optimal computation cost per subfunciton γf is upper
bounded by

γf ≤ TH−1
q ( K

NT
).

where K/NT and T is fixed and N goes to infinity.

• Connection with perfect codes, packing radius, and packing density: To
the best of our understanding, this is the first time that perfect codes
(and the closely related quasi-perfect codes) have been associated with
distributed computing and the equivalent problem of matrix factoriza-
tion. We derived novel bounds on the cumulative computational cost5

Γ as well as on the computational delay6 Λ of a multi-user linearly-
decomposable system to capture the importance of the packing density

5Which is defined as the total number of subfunctions being processed by all the servers
(cf. chapter 2).

6which is the maximum number of subfunctions being processed by a server.
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as well as the packing and covering radius of a code whose parity-check
matrix is our communication-and-computing matrix D (Chapter 3).
The most important results are summarized as follows,
Theorem 6: The optimal computational delay Λ of the (K, N) multi-
user linearly decomposable problem implemented based on the decom-
position DE = F, is bounded as

Λ ≤ min{L,
τ∑︂

i=1

(︄
N − 1
i − 1

)︄
(q − 1)i + (1 − µτ )qK}

where τ and µτ are respectively the packing radius and the corresponding
packing density of CD.
Theorem 7: The optimal cumulative computation cost Γ of the (K, N)
multi-user linearly decomposable problem implemented based on the
decomposition DE = F, is bounded as

Γ ≤ min{NL,
τ∑︂

i=1

(︄
N

i

)︄
(q − 1)ii + (1 − µτ )qKρ}

where τ, ρ and µτ are respectively the packing radius, covering radius,
and packing density of CD.
Proposition 4: The optimal computational delay Λ and cumulative
computation cost Γ of the (K, N) multi-user linearly decomposable
problem with maximal basis, are lower bounded as

Λ ≥
τ∑︂

i=1

(︄
N − 1
i − 1

)︄
(q − 1)i, Γ ≥

τ∑︂
i=1

(︄
N

i

)︄
(q − 1)ii

where τ is the packing radius of CD. Regarding optimality, we have the
following proposition.
Proposition 5: The optimal computational costs Λ and Γ for the cases
(K, N) for which a perfect code exists, take the form

Λ =
τ∑︂

i=1

(︄
N − 1
i − 1

)︄
(q − 1)i, Γ =

τ∑︂
i=1

(︄
N

i

)︄
(q − 1)ii

where τ is the packing radius of the used perfect code CD.

• Connection with compressed sensing and utilizing its techniques to bound
the normalized cumulative computation cost: In this thesis for the first
time, we established a connection between distributed computing and
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compressed sensing. We proved that there exists an achievable scheme
whose normalized cumulative computational cost is bounded above as
γc ≤ K

N
. This is a probabilistic scheme, where D is chosen from the

Gaussian ensemble, and where the corresponding sparsity of E is the
outcome of a randomized process. Then we propose ℓ0-minimization,
which takes as input D and F to yield a sparse E. This minimization
though is generally intractable, and for this reason, we draw from the rich
literature of compressed sensing to suggest a more practical approach
where we show (Theorem 8) that as long as there exists a scheme
whose computational cost is bounded by γc ≤ −r K

N
W −1

−1 (− 2K
eNr

) (where
W−1(·) is the Lambert function and r is a parameter that calibrates
the communication between servers and users) we can in fact employ
a tractable basis pursuit ℓ1-minimization to derive such scheme. The
important results which can be found in Chapter 4, are as follows:
Proposition 7 For the multi-user linearly-decomposable distributed
computing problem, with K users, N servers and L datasets, employing
a random Gaussian matrix D, guarantees that with probability 1, there
exists a scheme with bounded normalized cumulative computation cost
γc ≤ K/N , which serves as an upper bound the ℓ0-minimal cost.
Theorem 8 For the multi-user linearly-decomposable distributed com-
puting problem, with K users, N servers and L datasets, if a scheme
exists with a (κ, β) sub-Gaussian random matrix D (cf. Lemma 13) for
which ℓ0-minimisation would yield

γc ≤ −1
r

K

N
W −1

−1 (− 2K

erN
), 0 ≤ K/N ≤ 12(2β + κ)/κ2,

where W−1 is the first branch Lambert function. Then the corresponding
(and unique) E can be found via basis pursuit ℓ1-minimization with
probability at least 1 − 2e− KL

r , where r = 12(4β + 2κ)/κ2.

• Connection to the problem of Fixed-Support Matrix Factorization and
Tessellation Theory: Recently, the work in [53] explored the problem
of Fixed Support (sparse) Matrix Factorization (FSMF) which intends
to approximate a matrix, with two or more factors having a fixed
support, priory. We showed that our problem can be translated to a
variant of the Fixed-Support Matrix Factorization problem where some
families of supports of the factor matrices, relate to some valid solutions
with a certain computational delay and communication cost per server.
Coming up with a novel approach, we saw that our problem was related
to the tessellation theory that concerns covering a rectangular region
with shifts and translation of smaller rectangles (Chapter 5).
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• Characterizing the lossless capacity of tessellated distributed computing:
We first consider the case where each user has to and after employing
an achievable scheme using novel concepts and algorithms introduced
in [53] and a converse using combinatorial tilling arguments [54]. A
general lower and upper bound on the number of optimal servers has
been characterized via the following theorem in Chapter 5:
Theorem 9 The Optimal Achievable rate of a lossless K, N, T, Γ, ∆
distributed computing setting takes the form C = K/Nopt, where

⌈min(∆, Γ)
T

⌉⌊K

∆ ⌋⌊L

Γ⌋ + ⌈min(mod(K, ∆), Γ)
T

⌉⌊L

Γ⌋

+ ⌈min( mod (L, Γ), ∆)
T

⌉⌊K

∆ ⌋ + ⌈min( mod (K, ∆), mod (L, Γ))
T

⌉

≥ Nopt

≥ KL

T max(Γ, ∆) .

The achievable scheme’s performance is optimal, for the general single-
shot case where (Γ ≥ ∆ & Γ|L & T |∆) or (∆ ≥ Γ & ∆|K & T |Γ) which
is composed of all the cases where Γ|L & ∆|K & T | min(∆, Γ), also the
case where T ≥ min(∆, Γ) while for the broad case where δ−1, γ−1 ∈ N,
the system capacity takes the form⎧⎨⎩T max(ζ, γ), if T | L min(ζ, γ)

Lζγ, if T > L min(ζ, γ).

revealing that for the first case, the optimal communication-vs-computation
points (γ, δ), are ( K

NT
, T

K
) and ( T

N
, L

NT
), while for the other case the

tradeoff takes the form
γδ = 1

N
.

• Characterizing the minimum value of error with given conditions on
the computation and communication cost in a statistical setting: Subse-
quently, for the lossy case, we will consider the large-N scaling regime
with an average error guarantee ϵ, averaged over matrices F and over
the subfunctions’ outputs. Employing a similar achievable scheme as
in the error-free case, paired with a standard truncated-SVD low-rank
approximation approach, and under the assumption that the elements
of F and the output of subfunctions are i.i.d with zero mean and unit
variance, we can bound the average optimal error by the expression

ΦMP,λ(t, r) ≜
∫︂ t

r
xfMP,λ(x)dx
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where ΦMP,λ(t, r) is the incomplete first moment of the standard Marchenko-
Pastur distribution with parameters λ = δK

γL
= ∆

Γ , r = (1 −
√

λ)2, where
t is the solution to FMP,λ(t) = 1−T γN

K
, and where FMP,λ(.), fMP,λ(.) are

the CDF and PDF of the same distribution. The scheme that provides
the above bound, employs tiles after consideration that the size and
shape of the tiles, alters the statistics of the SVD approximations of the
parts of the matrices that each tile corresponds to. As it turns out, this
scheme and the above performance, is optimal over all choices of D and
E whose supports I, J are disjoint and similar in size (Chapter 6).



Chapter 2

Multi-User
Linearly-Decomposable in
Finite Fields

2.1 Introduction
As has been mentioned in Chapter 1, distributed computing plays an ever-
increasing role in speeding up non-linear and computationally hard computing
tasks. As the complexity of these tasks increases, research seeks novel par-
allel processing techniques to efficiently offload computations to groups of
distributed servers, under various frameworks such as MapReduce [5] and
Spark [55]. Distributed computing naturally entails several challenges that
involve accuracy [56]–[58], scalability [49], [59]–[62], privacy and security [48],
[63]–[74], as well as latency and straggler mitigation [18], [22], [24], [32], [33],
[36], [75], [76].

This aforementioned effort to efficiently distribute computation load across
multiple servers, is intimately intertwined with the concept of communication
complexity which refers to the amount of communication required to solve a
computation problem when the desired task is distributed among two or more
parties [77]. This celebrated computation-vs-communication relationship has
been studied in a variety of different forms and scenarios [8], [21], [32], [45],
[46], [75], [78]–[84] for various types of problems.

Preliminary description of setting This same relationship between
computation and communication costs, is the topic of interest in this chapter
for the very broad and practical setting of multi-user, multi-server computation
of linearly-decomposable functions. In particular, our setting here considers

19
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a master node that manages N server nodes that must contribute in a
distributed manner to the computation of the desired functions of K different
users. Under the linearly-decomposable assumption (cf. [22]), we consider
that user k ∈ {1, 2, . . . , K} demands a function Fk(.) that each such requested
function takes the basic form

Fk(.) =
L∑︂

ℓ=1
fk,ℓfℓ(.) =

L∑︂
ℓ=1

fk,ℓWℓ (2.1)

where in the above, Wℓ = fℓ(.) denotes the computed output of a subfunction,
and where fk,ℓ are the combining coefficients which belong, together with the
entries of Wℓ, in some finite field1. Upon notification of the users’ requests

— where these requests are jointly described by the K × L matrix F that
contains the different coefficients fk,ℓ — the master instructs the servers to
compute some of the subfunctions fℓ(.). Each server may naturally compute a
different number of functions. Upon completing its computations, each server
communicates linear combinations of its locally computed outputs (files) to
carefully selected subsets of users. Each user can then only linearly combine
what it receives from the servers that have transmitted to it, and the goal is
for each user to recover its desired function. The problem is completed when
every user k retrieves its desired Fk(.).

We note that there is a clear differentiation between the server nodes
that are asked to compute hard (generally non-linear) component functions
(subfunctions), and the users that can only linearly combine their received
outputs. Generating the so-called output files Wℓ = fℓ(.), ℓ ∈ {1, 2, . . . , L},
can be the result of a computationally intensive task that may for example
relate to training a deep learning model on a subfunction, or it can relate
to the distributed gradient coding problem [23]–[25], [38], the distributed
linear-transform computation problem [26], [45], or even the distributed ma-
trix multiplication and the distributed multivariate polynomial computation
problems [18], [27]–[29], [31]–[33], [35], [36], [46].

Brief summary of the basic ingredients of the problem Our setting
brings to the fore the following crucial questions.

• How many and which servers must compute each subfunction fℓ(.)?

1The setting nicely includes the case where each Fk itself is a linear combination of
some linearly separable functions, i.e., where Fk can itself be written as Fk(D1, . . . , DL) =∑︁L

ℓ=1
∑︁M

i=1 fk,ℓ,ifℓ,i(.) =
∑︁L

ℓ=1
∑︁M

i=1 fk,ℓ,iWℓ,i, corresponding to some set of basis subfunc-
tions fℓ,i(.). For simplicity we will henceforth refer to the model in (2.1).
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– This decision defines the computation cost: the more the servers
that compute a subfunction, the higher the computation cost.
The extreme centralized scenario where each active server would
compute all L sub-functions, would imply a maximal computation
cost, but a minimal communication cost, equal to (as we can see)
one transmission received per user. The other extreme scenario
(for the case of L = N) would imply a minimal computation cost
of 1 subfunction per server, but a maximal communication cost of
N shots received per user.

• What linear combinations of its computed outputs must each server
generate?

– These linear combination coefficients in question, define an N × L
matrix E that describes which servers compute each subfunction,
and how each server combines its computed outputs in order to
transmit them. This matrix must be designed in consideration of
the requested functions, which are themselves described by the
aforementioned K × L matrix F.

– The number of non-zero elements in E reflects the computation
cost on the collective of servers.

• What fraction of the servers must each user get data from, and from
which servers?

– This defines the communication cost. The more data each user
gets, the higher the cost.

• How must each user combine (linearly decode) the computed outputs
arriving from the servers?

– This step is determined by a K × N communication and decoding
matrix D that must be carefully designed. The number of non-
zero elements of D reflects our communication cost. Having a
non-sparse D, implies the need to activate a substantial fraction
of the existing communication links.

• How sparse can D and E be so that each user recovers their desired
function?

– This defines the overall costs of computation and communica-
tion. As one might expect, the larger the number L of possible
subfuntions, the higher the worst-case costs. Having a larger L
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allows the computing service to provide more refined computations,
conceivably though at a higher cost.

To answer these questions, we take a novel approach that employs coding
theory. The general idea behind our approach is described as follows.

Brief summary of the new connection to sparse matrix factorization
and covering codes

• Connection to the problem of matrix factorization into sparse compo-
nents: First, when exploring our distributed computing problem, one
can see that the feasibility conditions that ensure that each user recov-
ers its desired function, constitute in fact a (preferably sparse) matrix
factorization problem of the form

DE = F (2.2)

where the problem is over some q-sized finite field F, and where any
potential sparsity of D and E translates to savings in communication
and computation costs respectively.

• Connection to coding theory and syndrome decoding: To then resolve
this problem in a manner that yields non-trivial sparse factors, we
notice that — if for example, we were to fix the above matrix D, and
associate this to the parity-check matrix of some linear code — then for
each column Eℓ of E and associated column Fℓ of F, the corresponding
equation D · Eℓ = Fℓ would tells us that the desired sparse Eℓ can be
the lowest-weight coset leader whose syndrome is equal to Fℓ. Hence,
under this analogy, the columns of E are associated to error vectors,
the columns of F to the corresponding syndromes, and D is assigned
the role of a parity check matrix, and the question is of which code?

• Connection to covering codes and the new class of partial covering codes:
The above connection with syndromes, in turn brings about the concept
of covering codes that refer to codes with good covering properties,
which in turn entail low weight Eℓ, which is what we need. In (error-
control) coding theory though — which generally considers that any
error vector is possible — such covering codes consider a full space
of possible syndromes, i.e. consider the case where any appropriately-
dimensioned vector can indeed be a syndrome. To account for the fact
that F corresponds to a restricted set of syndromes (only those that
correspond to the columns of our F), we here consider a new class of
partial covering codes, the analysis of which is part of this chapter.
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• Connection with codes having low-density parity-check matrices: The
above effort yields a sparse E. Our effort is concluded when the afore-
mentioned exploration of covering codes and partial covering codes
(which yielded a sparse E), is extended to involve analysis of codes with
a sparse D as well.

• Extending the one-shot scenario: Our framework allows us to address
but also extend the one-shot scenario which is the scenario of choice in
various works (see for example [22]) and which, in our case, asks that
each server can send only one linear combination to one set of users.
We extend this model to the practical and realistic scenario where, for
a fixed subset of subfunctions/files {fℓ(.)} computed locally at each
server, the server can communicate linear combinations to various sets
of users.

Highlights of contributions Our focus is on establishing the normalized
computation2 cost γf = 1

N
max

l∈{1,...,L}
ω(E(:, l)), and the normalized cumulative

communication cost ∆c = ω(D)/KN . In our setting, γf ∈ (0, 1] represents
the maximum fraction of all servers that must compute any one subfunction,
while δc ∈ (0, 1] represents the average fraction of servers that each user gets
data from, which in turn simply implies an average number of ∆c = δcN
‘symbols’ received by each user.

We first consider the one-shot case. We proceed to highlight some of the
derived results, whose exact statement can be found in the following sections.

• Theorem 1 makes the connection between coding theory and our dis-
tributed computing problem, by showing that a (γf , δc)-feasible dis-
tributed computing scheme exists if and only if the decoding matrix D
has a degree of sparsity δc and is the parity check matrix of an N -length
code C ⊂ FN over a field F where this code has minimum normalized
distance from each vector {x ∈ FN |Dx = F(:, ℓ), ℓ ∈ {1, . . . , L}} that
is at most γfN . This brings to the fore the concept of covering and
partial covering codes, where covering codes are codes that guarantee
a minimum distance to each vector of the entire vector space, while
partial covering codes must guarantee a minimum distance to only a
specific subset of the entire space. Establishing the properties of such
codes is key to our problem.

2Both communication and computation costs will be defined in more detail later on.
Also, in the following, ω(·) represents the well-known Hamming weight of the argument
vector or matrix.
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• Theorem 2 shows that in the limit of large N , the optimal computation
cost per server is in the range γf ∈ (H−1

q ( logq(L)
N

), H−1
q (K/N)), where Hq

is the entropy function over our field of size q. This theorem reveals the
role of what one might refer to as the functional rate Rf = logq(L)/N .
The higher this rate, the more ‘involved’ is the space of functions we can
compute. In this sense — given that, from the above, logq(L)

N
≤ Hq(γf )

— the expression Hq(γf ) plays the role of an upper bound on what one
might call the functional capacity of the system.

• Extending the famous covering codes theorem of Blinovskii from [85],
we established our bounds on partial covering codes to the setting
of codes with low density parity check matrices, revealing that any
aforementioned achievable computation cost γf , can be achieved with
normalized cumulative communication cost that vanishes3 as δc

.=√︂
logq(N)/N . This latter cost will be unboundedly lower than in the

uncoded approach of resource-sharing between the two extreme regimes
discussed previously in the introduction (See Figure 2.4 in Section 2.4.4).
As a consequence, we can talk of an unbounded coding gain in our
distributed computing problem.

• We also consider the multi-shot scenario where, for the same fixed subset
of subtasks/files {fℓ(.)} computed locally at each server, now the server
can communicate different linear combinations to different sets of users.
This ability offers a certain degree of refinement that the single-shot
scenario may lack. This is exploited, and Theorem 4 reveals a range
of parameters for which the multi-shot approach provides computation
savings over the single-shot scenario. Interestingly, these computational
savings are shown to be unbounded.

2.2 System Model
We consider the multi-user linearly-decomposable distributed computation
setting (cf. Fig. 2.1), which consists of K users/clients, N active (non-idle)
servers, and a master node that coordinates servers and users. A main
characteristic of this setting is that the tasks performed at the servers, sub-
stantially outweigh in computation cost of the linear operations performed at
the different users. Another defining characteristic is that the cost of having
the servers communicate to the users is indeed non-trivial. We consider the

3We will henceforth use .= to denote asymptotic optimality. This will be clarified later
on.
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setting where each server can use T consecutive time slots to communicate
different messages to different subsets of users, where in particular, during
time-slot (shot) t ∈ [T ], server n communicates to some arbitrary user-set
Tn,t ⊂ [K], via a dedicated broadcast channel.

In our setting, each user asks for a (generally non-linear) function from
a space of linearly separable functions, where each such function can takes
several subfunctions as input. Each desired function can be decomposed into
a different linear combination of individual (again generally non-linear, and
computationally hard) sub-functions fℓ(.). Consequently the demanded func-
tion Fk(.) of each user k ∈ [K], and it takes the general linearly-decomposable
form

Fk(.) ≜ fk,1f1(.) + fk,2f2(.) + . . . + fk,LfL(.), (2.3)
= fk,1W1 + fk,2W2 + . . . + fk,LWL, k ∈ [K] (2.4)

where, as previously discussed, Wℓ = fℓ(.) ∈ F, ℓ ∈ [L] is a so-called ‘file’
output, and fk,ℓ ∈ F, k ∈ [K], ℓ ∈ [L] are the linear combination coefficients.
As also mentioned before, Fk itself can be a linear combination of some
linearly separable functions.

2.2.1 Phases
The model involves three phases, with the first being the demand phase,
then the assignment and computation phase, and then the transmission and
decoding phase. In the demand phase, each user k ∈ [K] sends the information
of its desired function Fk(.) to the master node, who then deduces the linearly-
decomposable decomposition of this function according to (2.4). Then based
on these K desired functions, during the assignment and computation phase,
the master assigns some of the subfunctions to each server, who then proceeds
to compute these and produce the corresponding files Wℓ = fℓ(.). In particular,
each subfunction fℓ(.) will be assigned to the servers belonging to some
carefully chosen server-set Wℓ ⊂ [N ].

During the transmission phase, each server n ∈ [N ] broadcasts during time
slots t = 1, 2, . . . , T , different linear combinations of the locally computed
output files, to different subsets of users Tn,t. In particular, during time slot
t, each server n transmits

zn,t ≜
∑︂

ℓ∈[L]
en,ℓ,tWℓ, n ∈ [N ], t ∈ [T ] (2.5)

where the so-called encoding coefficients en,ℓ,t ∈ F are determined by the
master. Finally during the decoding part, each user k linearly combines the
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received signals as follows

F ′
k ≜

∑︂
n∈[N ],t∈[T ]

dk,n,tzn,t (2.6)

for some decoding coefficients dk,n,t ∈ F, n ∈ [N ], t ∈ [T ], determined again
by the master node. Naturally dk,n,t = 0, ∀k /∈ Tn,t. Decoding is successful
when F ′

k = Fk for all k ∈ [K].

2.2.2 Computation and Communication Costs
Remembering that |Wℓ| indicates the number of servers that compute a
subfunction Wℓ = fℓ(.), ℓ ∈ [L], our normalized per subfunction computation
cost metric takes the form

γf ≜
max
ℓ∈[L]

|Wℓ|

N
(2.7)

and represents the maximum fraction of all servers that must compute any
subfunction.

We defined the computational cost as (7) to have an emphasis on the
number of replication of various subfunction computation over the servers.
Note that the best possible conceivable parallelization is for the case where
only one subfunction is assigned to every active server. In this case, we
have γf = 1/N and we observe that there is no replication for any of the
subfunctions and the system is fully parallelized. On the other hand in the
extreme case, there is a scheme where each server has to store all of the
subfunctions, in this particular case, the master node copied each subfunction
N times, so we have the full replication and γf = 1. Note that since we did
not impose any assumption on the computational power of each server nor the
computational complexity of computing each sub-function, we can not define
the computation cost as the maximum number of subfunctions assigned to a
server which is also not the case for many applications. Other variants of the
computation cost will be analyzed in the incoming chapters.

We also formally define the normalized cumulative communication cost as

δc ≜
∑︁T

t=1
∑︁N

n=1 |Tn,t|
KN

(2.8)

to represent the average fraction of servers that each user gets data from4,5.
4We here clarify that our setting implies that any link can be exploited, and our metric

simply captures how many of these links are engaged when communicating. Reducing the
communication cost implies activating fewer of these links, leaving the rest to be used for
other responsibilities of the computing network.

5The observant reader may notice the computational cost being a worst-case cost, unlike
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Server Nodes ...

Users ...

Master Node

...

Figure 2.1: The figure represents the K-user, N -server, linearly separable
computation setting. In this problem after each user informs the master of

its desired function Fk(.), each component subfunction Wℓ = fℓ(.) is
computed at each server in Wℓ ⊂ [N ]. During slot t, each server n broadcasts
a linear combination zn,t (of the locally available computed files) to all users

in Tn,t. This combination is defined by the coefficients en,ℓ,t. Finally, to
decode, each user k ∈ [K] linearly combines (based on decoding vectors dk)
all the received signals from all the slots and servers it has received from.

Decoding must produce for each user its desired function Fk(.).
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Hence in our setting,

∆c ≜ δcN (2.9)

represents the average number of transmitted ‘symbols’ received by each user.
We wish to provide schemes that correctly compute the desired functions, at
reduced computation and communication costs.

2.3 Problem Formulation: One-Shot Setting
In this single-shot setting of T = 1, we will remove the use of the index t.
Thus the transmitted value from (2.5) will take the form

zn =
∑︂

ℓ∈[L]
en,ℓWℓ, n ∈ [N ] (2.10)

where en,ℓ ∈ F will denote the corresponding encoding coefficients, and where
each such transmitted value at server n will now be destined for the users in set
Tn. Similarly, the decoding value at each user k (cf. (2.6)) will take the form
F ′

k ≜
∑︁

n∈[N ] dk,nzn, where now dk,n, n ∈ [N ], are the decoding coefficients.
The desired functions Fk(.) (cf. (2.4)), their linear decomposition coefficients
fk,ℓ (cf. (2.4)), and the decoded functions F ′

k(.) in (2.6), remain as previously
described. With the above in place, we will use

f ≜ [F1, F2, . . . , FK ]⊺ (2.11)
fk ≜ [fk,1, fk,2, . . . , fk,L]⊺, k ∈ [K] (2.12)
w ≜ [W1, W2, . . . , WL]⊺ (2.13)

where f represents the vector of the output demanded functions (cf. (2.4)), fk

the vector of function coefficients for user k (cf. (2.4)), and w the vector of
output files. We also have

en ≜ [en,1, en,2, . . . , en,L]⊺, n ∈ [N ] (2.14)
z ≜ [z1, z2, . . . , zN ]⊺ (2.15)

respectively representing the encoding vector at server n, and the overall
transmitted vector across all the servers (cf. (2.10)). Furthermore, we have

dk ≜ [dk,1, dk,2, . . . , dk,N ]⊺, k ∈ [K] (2.16)

the communication cost which refers to the average case. This choice is essential in making
the connection to coding theory. This same choice though has an advantage; it allows us
to better capture the effect of having some subfunctions that are much harder to compute
than others.
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f ′ ≜ [F ′
1, F ′

2, . . . , F ′
K ]⊺ (2.17)

respectively representing the decoding vector at user k, and the vector of the
decoded functions across all the users. In addition, we have

F ≜ [f1, f2, . . . , fK ]⊺ ∈ FK×L (2.18)
E ≜ [e1, e2, . . . , eN ]⊺ ∈ FN×L (2.19)
D ≜ [d1, d2, . . . , dK ]⊺ ∈ FK×N (2.20)

where F represents the K × L matrix of all function coefficients across all the
users, where E represents the N × L computing and encoding matrix across
all the servers, and where D represents the K × N decoding matrix across all
the users.

Directly from (2.4), we have that

f = [f1, f2, . . . , fK ]⊺w (2.21)

and from (2.5) we have the overall transmitted vector taking the form

z = [e1, e2, . . . , eN ]⊺w = Ew. (2.22)

Furthermore, directly from (2.6) we have that

F ′
k = d⊺

kz (2.23)

and thus we have

f ′ = [d1, d2, . . . , dK ]⊺z = Dz. (2.24)

Recall that we must guarantee that

f ′ = f . (2.25)

After substituting (2.21), (2.22) and (2.24) into (2.25), we see that the above
feasibility condition in (2.25) is satisfied iff

DEw = Fw. (2.26)

For this to hold for any w, we must thus guarantee

DE = F. (2.27)

At this point, since Wℓ = sup(E(:, {ℓ})⊺), and since |Wℓ| = ω(E(:, {ℓ})), we
have that

max
ℓ∈[L]

ω(E(:, ℓ)) = max
ℓ∈[L]

|Wℓ| (2.28)
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which simply tells us that our computation cost γf from (2.7) takes the form

γf = 1
N

max
ℓ∈[L]

ω(E(:, ℓ)). (2.29)

Similarly, directly from (2.6) and (2.9), we see that

δc = ω(D)
KN

(2.30)

which simply says (cf. (2.9)) that

∆c = ω(D)
K

. (2.31)

It is now clear that decomposing F into the product of two relatively sparse
matrices D and E, implies reduced communication and computation costs
respectively.

We here provide a simple example to help clarify the setting and the
notation.

2.3.1 Simple Example
As illustrated in Figure 2.2, we consider the example of a system with a
master node, N = 8 servers, K = 4 users, L = 6 subfunctions, and a field of
size q = 7.

Let us assume that the users ask for the following functions:

F1 = 2f1(D1) + 4f2(D2) + 4f3(D3) + 5f4(D4) + 5f5(D5) = f⊺1 w, (2.32)
F2 = 3f1(D1) + 4f2(D2) + 5f3(D3) + 2f4(D4) + 6f5(D5) (2.33)

+ 6f6(D6) = f⊺2 w, (2.34)
F3 = 2f1(D1) + 4f2(D2) + 6f3(D3) + 5f4(D4) + 2f5(D5) = f⊺3 w, (2.35)
F4 = 3f1(D1) + 5f2(D2) + 2f4(D4) + 3f5(D5) + f6(D6) = f⊺4 w (2.36)

where Fk, fk, k ∈ [4], and w, are respectively defined in (2.4), (2.13) and
(2.12). Consequently from (2.18), our function matrix takes the form

F =

⎡⎢⎢⎢⎣
2 4 4 5 5 0
3 4 5 2 6 6
2 4 6 5 2 0
3 5 0 2 3 1

⎤⎥⎥⎥⎦ . (2.37)
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Server Nodes

Users

Master Node

...

Figure 2.2: Multi-user distributed computing setting with 8 servers, 4 users,
and 6 subfunctions.

In the assignment phase, the master allocates the computation of f1(D1),
f2(D2), . . . , f6(D6) to the 8 servers according to

W1 = {1, 2, 3, 5, 8}, W2 = {1, 2, 3, 4, 6, 7}, (2.38)
W3 = {1, 2, 3}, W4 = {1, 4, 5, 7} (2.39)
W5 = {1, 2, 4, 5, 6, 8}, W6 = {3, 4, 5, 6, 7, 8} (2.40)

so that for example subfunction f3(D3) is assigned to servers {1, 2, 3}, while
we can also see that for example server 2 has to compute W1 = f1(.), W2 =
f2(), W3 = f3(), and W5 = f5(.). A quick inspection shows that the normalized
computation cost (cf. (2.7)) is equal to

γf =
max
ℓ∈[6]

|Wℓ|

8 = 6/8. (2.41)

After computing their designated output files, each server n transmits zn as
follows

z1 = 2W1 + 6W2 + 3W3 + W4 + 2W5, (2.42)
z2 = 4W1 + 5W2 + 2W3 + 3W5, (2.43)
z3 = W1 + 2W2 + W3 + 2W6, (2.44)
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z4 = W2 + 2W4 + 4W5 + W6, (2.45)
z5 = 2W1 + W4 + 3W5 + 2W6, (2.46)
z6 = 2W2 + 5W5 + 3W6 (2.47)
z7 = W2 + 2W4 + 4W6, (2.48)
z8 = 2W1 + 4W5 + 5W6 (2.49)

corresponding to a computing and encoding matrix (cf. (2.22)) of the form

E =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2 6 3 1 2 0
4 5 2 0 3 0
1 2 1 0 0 2
0 1 0 2 4 1
2 0 0 1 3 2
0 2 0 0 5 3
0 1 0 2 0 4
2 0 0 0 4 5

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (2.50)

We can quickly verify (cf. (2.41)) that indeed max
ℓ∈[6]

ω(E(:, ℓ))/8 = 6/8 = γf .
Subsequently, the master asks each server n to send its generated zn to

its designated receiving users, where for each server, these user-sets are:
T1 = {2, 4}, T2 = {1, 3}, T3 = {3, 4}, T4 = {1, 2, 3, 4}, (2.51)

T5 = {1, 2, 3, 4}, T6 = {1, 2}, T7 = {1, 4}, T8 = {4} (2.52)
so now, for example, server 2 will broadcast z2 to users 1 and 3. A quick
inspection also shows that users 1 and 4 will receive 5 different symbols,
whereas users 2 and 3 will receive 4 symbols each. The above corresponds to
a normalized cumulative communication cost (cf. (2.9)) equal to

δc =
∑︁8

n=1 |Tn|
4 · 8 = (5 + 4 + 4 + 6)/32 = 19/32 (2.53)

corresponding to an average of ∆c = 19
4 symbols received per user.

To decode, each user k ∈ [4] computes the linear combination F ′
k as

F ′
1 = 2z2 + 3z4 + 4z5 + 2z6 + z7,

F ′
2 = 4z1 + 2z4 + z5 + 3z6,

F ′
3 = 4z2 + 5z3 + 2z4 + z5,

F ′
4 = 4z1 + 2z3 + z4 + 2z5 + 4z7 + 5z8

(2.54)

adhering to a decoding matrix of the form

D =

⎡⎢⎢⎢⎣
0 2 0 3 4 2 1 0
4 0 0 2 1 3 0 0
0 4 5 2 1 0 0 0
4 0 2 1 2 0 4 5

⎤⎥⎥⎥⎦ . (2.55)
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A quick verification6 reveals the correctness of decoding, and that indeed
F ′

k = Fk for all k = 1, 2, 3, 4. For example, for the first user, we see that
F ′

1 = 2z2+3z4+4z5+2z6+z7 = 2(4W1+5W2+2W3+3W5)+3(W2+2W4+4W5+
W6)+4(2W1 +W4 +3W5 +2W6)+2(2W2 +5W5 +3W6)+(W2 +2W4 +4W6) =
2W1 + 4W2 + 4W3 + 5W4 + 5W5 + 0W6 which indeed matches F1. In this
example, each user recovers their desired function, with a corresponding
normalized per subfunction computation cost γf = 3/4 and a normalized
cumulative communication cost δc = 19/32. This has just been an example to
illustrate the setting. The effort to find a solution with reduced computation
and communication costs, follows in the subsequent section.

2.4 Computation and Communication Costs
for the Single-Shot Setting

In this section we present the results for the one-shot setting. We first rigor-
ously establish the bridge between our problem, coding theory, covering and
partial covering codes. The main results — focusing first on the computational
aspects — are presented in Section 2.4.2 which derives bounds on the optimal
computation cost in the large N setting. With these results in place, the
subsequent Section 2.4.3 extends our consideration to the communication
cost as well. Finally, Section 2.4.4 offers some intuition on the results of this
current section.

We briefly recall (cf. [86]) that an n-length code C ⊂ Fn is called a
ρ-covering code if it satisfies

d(x, C) ≤ ρn, ∀x ∈ Fn (2.56)

for some ρ ∈ (0, 1) which is referred to as the normalized covering radius.

2.4.1 Establishing a Relationship to Covering Codes
and Partial Covering Codes

We will first seek to decompose F into F = DE under a constrained com-
putation cost γf which will generally imply a sparsity constraint on E. For
Eℓ ≜ E(:, ℓ) and Fℓ ≜ F(:, ℓ) denoting the ℓth column of E and F respectively,
we can rewrite our decomposition as

DEℓ = Fℓ, ∀ℓ ∈ [L]. (2.57)
6Let us recall that each decoded symbol takes the form F ′

k = d⊺
kz where d⊺

k is the kth
row of D, and where z = [z1 z2 · · · zN ]T .
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As suggested before, if we viewed D ∈ FK×N as a parity check matrix HC = D
of a code C ⊂ FN , then we could view Eℓ ∈ FN as an arbitrary error pattern,
and Fℓ ∈ FK as the corresponding syndrome. Since we wish to sparsify Eℓ,
we are interested in having Eℓ be the minimum-weight coset leader whose
syndrome is Fℓ. This is simply the output of the minimum-distance syndrome
decoder7. To get a first handle on the weights of Eℓ, we can refer to the
theory of covering codes which bounds the weights of coset leaders, where
these weights are bounded by the code’s covering radius ρ(C)N , for some
normalized radius ρ(C) ∈ (0, 1). Since the covering radius ρN upper bounds
the weights of the coset leaders8, it upper bounds our computation cost. A
covering radius γfN would reflect our computation constraint γf .

To capture some of the coding-theoretic properties, we will transition to
the traditional coding-theoretic notation which speaks of an n-length code
C ⊂ Fn of rate k/n, where for us n = N and k = N − K. The parity check
matrix HC ∈ F(n−k)×n will generally be associated to our decoding matrix
D ∈ FK×N , the received (or error) vectors x ∈ Fn will be associated to the
encoding vectors Eℓ ∈ FN , and its syndrome sx ∈ Fn−k (or just s, depending
on the occasion) will be associated to Fℓ ∈ FK . Please recall that when we
write CD (or CH), we will refer to the code whose parity check matrix is D
(or H).

As a first step, we extend the concept of covering codes to the following
class.

Definition 1. For some ρ ∈ (0, 1], we say that a set X ⊆ Fn is ρ-covered by
a code C ⊆ Fn iff

d(x, C) ≤ ρn, ∀x ∈ X (2.58)

in which case we say that C is a (ρ, X )-partial covering code.

Naturally when X = Fn, such a (ρ, X )-partial covering code is simply the
traditional covering code. We are now able to link partial covering codes to
our distributed computing problem.

Theorem 1. For the setting of distributed-computing with K users, N servers
and L subfunctions, a solution to the linearly separable function computation
problem DE = F with normalized per subfunction computation cost γf exists

7Naturally our viewing D as a parity check matrix, does not limit the scope of options
in choosing D. Similarly, associating Eℓ the role of an error pattern, or a minimum-weight
coset leader, is again not a limiting association.

8Let us recall (cf. [87]) that the preferred coset leaders are the minimum-weight vectors
in each row of the standard array.
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if and only if D is the parity check matrix to a (γf , X )-partial covering code
CD for some existing set

X ⊃ XF,D ≜ {x ∈ FN |Dx = F(:, ℓ), for some ℓ ∈ [L]}. (2.59)

With such D in place, each E(:, ℓ) is the output of the minimum-distance
syndrome decoder of CD for syndrome F(:, ℓ)9.

Proof. To first prove that the computation constraint γf = ρ indeed requires
D to correspond to a partial covering code that covers X , let us assume
that D does not have this property, and that there exists an x ∈ X such
that d(x, CD) > ρn. Let cmin be the closest codeword to x in the sense that
d(x, cmin) = d(x, CD). Now let emin = x − cmin, and note, directly from the
above assumption, that ω(emin) > ρn. Naturally Dx = D(emin + cmin) =
Demin by virtue of the fact that D is the parity check matrix of CD. Since
x ∈ X , we know that ∃ ℓ ∈ [L] such that Dx = F(:, ℓ), which directly
means that ∃ ℓ ∈ [L] such that Demin = F(:, ℓ). This emin is the coset leader
associated to syndrome F(:, ℓ).

Since though DE = F, we also have that DE(:, ℓ) = F(:, ℓ). Since E(:, ℓ)
and emin are in the same coset (of the same syndrome F(:, ℓ)), and since emin
is the minimum-weight coset leader, we can conclude that ω(E(:, ℓ)) ≥ emin.
Thus the assumption that ω(emin) > ρn implies that ω(E(:, ℓ)) > ρn which
contradicts the computation-cost requirement that ω(E(:, ℓ)) ≤ ρn from (2.29).
Thus if D does not correspond to a partial covering code (with ρ = γf ) that
covers XF,D, the complexity constraint is violated.

On the other hand, recalling that CD is a partial covering code for X ,
we get that for any x ∈ X then d(x, CD) ≤ ρn. For the same x ∈ X , let
cmin be again its closest codeword, and let emin = x − cmin, where again
by definition of the partial covering code, ω(emin) ≤ ρn. Since, like before,
Demin = F(:, ℓ) for some ℓ ∈ [L], then we simply set E(:, ℓ) = emin whose
weight is indeed sufficiently low to guarantee the computation constraint. We
recall that for each F(:, ℓ), this coset leader E(:, ℓ) = emin can be found by
using the minimum-distance syndrome decoder.

Intuitively, a smaller X could potentially — depending on X and the code
— be covered in the presence of a smaller covering radius. Now that we have
established the connection with partial covering codes, we proceed to present
computation bounds. The following result, as well as all subsequent results,
assumes large N .

9Definition of XF,D also can be expressed as x ∈ XF,D ⇐⇒ ∃ℓ ∈ [L] : Dx = F(:, ℓ)
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2.4.2 Bounds on the Optimal Computation Cost
The following theorem bounds the optimal computation cost of the multi-user
linearly-decomposable computation setting.

Theorem 2. For the setting of distributed-computing of linearly-decomposable
functions, with K users, N servers and any number of L subfunctions, the
optimal computation cost is bounded as

γf ∈ (H−1
q (

logq(L)
N

), H−1
q (K

N
)). (2.60)

where K/N and logq(L)/N are fixed and N goes to infinity.

Proof. The proof of the converse (lower bound in (2.60)) employs sphere-
covering arguments, and can be found in Appendix 2.8. The proof of achiev-
ability follows from covering- and partial covering-code arguments, and can
be found in Appendix 2.9.

Remark 1. The two bounds meet when L = qK .

Theorem 2 suggests a range of computation costs. In the next corollary, we
will describe the conditions under which a reduced normalized per subfunction
computation cost, strictly inside this range, can be achieved. This reduced
cost will relate to (our ability to choose) a set X ⊂ FN . As we will see, a
smaller X will imply a smaller γf . To understand the connection between our
problem and this set X , and thus to better understand the following theorem
whose proof will be presented in Appendix 2.10, we provide the following
sketch of some crucial elements in the proof of Theorem 2. In particular,
we will here sketch an algorithm that iterates in order to converge to the
aforementioned X , and then to the corresponding decoding matrix D, that
will eventually provide reduced normalized complexity γf . Before describing
the algorithm, it is worth noting that a crucial ingredient can be found in
Lemma 1 (see Appendix 2.11), which modifies the approach in [88] in order
for us to design — for any set X ′ ∈ FN — a (ρ, X ′)-partial covering code for
some ρ = H−1

q (K
N

− (1 − logq(|X ′|)
N

).
With this in place, the algorithm starts by picking an initial set X0 ∈

FN , |X0| = LqN−K , and then applies Lemma 1 to construct a (ρ0, X0)-partial
covering code, C0, where ρ0 = H−1

q (K
N

− (1 − logq(|X0|)
N

). With this code C0 in
place, we create — as a function of C0 — the set XF,D,0 as defined in (2.59)
where D = HC0 , and then we check if X0 ⊇ XF,D,0. If so, then the algorithm
terminates, else it goes to the next iteration which starts by picking a new
larger set X1 ∈ FN , |X1| = LqN−K + 1, then uses Lemma 1 to create a new
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(ρ1, X1)-partial covering code for ρ1 = H−1
q (K

N
− (1 − logq(|X1|)

N
), and then

compares if X1 ⊇ XF,D,1. This procedure terminates during some round m
where this terminating round is the first round for which the chosen set Xm

(now of cardinality |Xm| = LqN−K + m) and the corresponding (ρm, Xm)-
partial covering code with ρm = H−1

q (K
N

− (1 − logq(|Xm|)
N

), yield Xm ⊇ XF,D,m.
In the following corollary, the mentioned X refers to the terminating10

Xm, and the decoding matrix D will be the parity-check matrix of the
aforementioned (ρm, Xm)-partial covering code that covers the terminating
X = Xm, while the normalized per subfunction computation cost in the
theorem will take the form γf = ρ = ρm.

With the above in place, the following speaks of a set X that is ρN -covered
by a code CD that generates — as described in (2.59) — its set XF,D.

Corollary 1. In the multi-user linearly separable computing problem DE = F,
if there exists a set

X ⊃ XF,D ≜ {x ∈ FN |Dx = F(:, ℓ), for some ℓ ∈ [L]}

that is ρN-covered by a code CD for ρ = H−1
q (K

N
− (1 − logq(|X |)

N
)), then the

computation cost

γf = H−1
q (K

N
− (1 −

logq(|X |)
N

))

is achievable. If X = XF,D, then γf = H−1
q ( logq(L)

N
) is achievable and optimal.

Proof. The proof can be found in Appendix 2.10.

As suggested before, the above reflects that covering a smaller X could
entail a smaller covering radius and thus a smaller computation cost.

2.4.3 Jointly Considering Computation and Communi-
cation Costs

The following theorem combines computation and communication consid-
erations. Theorem 3 builds on Theorem 1, where now we recall that any
chosen decoding matrix D will automatically yield a normalized cumulative
communication cost δc = ω(D)

KN
corresponding to ∆c = δcN = ω(D)

K
. The

following bounds this communication cost.
10Note that in the worst case this termination will happen when Xm = FN , in which

case the output code will be a covering code.
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Theorem 3. For the setting of distributed-computing of linearly-decomposable
functions, with K users, N servers and L subfunctions, the optimal computa-
tion cost is bounded as

γf ∈ (H−1
q (

logq(L)
N

), H−1
q (K

N
)) (2.61)

and for any achievable computation cost γf ≤ min{
√

5−1
2 , 1 − 1

q
}, then the

corresponding achievable communication cost takes the form

δc
.=

√︂
logq(N)

N
. (2.62)

where K/N and logq(L)/N are fixed and N goes to infinity.

Proof. The proof can be found in Appendix 2.12.

We here offer a quick sketch of the proof of the above theorem. The
proof first employs a modified version of the famous result by Blinovskii
in [85] which proved that, as n goes to infinity, almost all random linear codes
C(k, n) are covering codes, as long as the normalized covering radius satisfies
ρ ≥ H−1

q (n−k
n

). This modification of Blinovskii’s theorem is presented in
Theorem 5, whose proof is found in Appendix 2.12. With this modification
in place, we prove that almost all (k, n) random linear codes with

ρ = H−1
q (

logq(|X |) − k

n
) (2.63)

are (ρ, X )-partial covering codes, each for their own set X ∈ Fn. This is again
in Theorem 5. With this theorem in place, we then employ a concatenation
argument (which can be found in the proof of Theorem 3 in Appendix 2.12),
to build a sparse parity-check matrix H of a partial covering code, which —
by virtue of the connection made in Theorem 1 — allows us to complete the
proof of Theorem 3.

To show that sparse parity check codes can indeed offer reduced computa-
tion costs, we had to show that sparse codes can indeed offer good partial
covering properties. To do that, we followed some of the steps described
below. In particular, we designed an algorithm that begins with constructing
a sparse parity check code that can cover, for a given radius ρ0, a minimum
necessary cardinality set X0, where this minimum cardinality of |X0| = LqN−K

is imposed on us by F. The parity-check matrix of this first code is H0. Then
following the steps in the proof of Theorem 1, we set D = H0 and check
if X0 ⊇ XF,D holds. If it indeed holds, the algorithm outputs D and X0,
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and the corresponding cost is γf = ρ0, where this ρ value is derived from
(2.63) by setting X = X0. Otherwise the algorithm constructs another sparse
partial covering code with a new parity check matrix H1, now covering a
set X1 with cardinality |X1| = LqN−K + 1, and then checks again the same
inclusion condition as above. The procedure continues until it terminates,
with some covered set Xm of cardinality |Xm| = LqN−K + m. As before,
reaching Xm = FN will terminate the algorithm (if it has not terminated
before that). In the proposition below, the set X is exactly our terminating
set Xm we referred to above.

Proposition 1. After adopting the achievable scheme proposed in The-
orem 3 together with adopting the corresponding conditions on ρ, δc and
its corresponding D that was designed as a function of F, then if there
exists a subset X ⊇ XF,D, X ⊆ FN , that is ρN-covered by CD for some
ρ = H−1

q (K
N

− (1 − logq(|X |)
N

)), we can conclude that the computation cost
γf = H−1

q (K
N

− (1 − logq(|X |)
N

)) is achievable. If X = XF,D, then the computa-
tion cost converges to the optimal H−1

q ( logq(L)
N

). The above remains in place
for any D which yields communication cost no less than ∆c = O(

√︂
logq(N)).

Proof. The proof can be found in Appendix 2.14.

2.4.4 Discussing the Results of the Current Section
Theorem 3 reveals that the optimal computation cost lies in the region
γf ∈ (H−1

q ( logq(L)
N

), H−1
q (K

N
)), and that this cost can be achieved with com-

munication cost that vanishes as δc
.=
√︂

logq(N)/N . To get a better sense of
the improvements that come from our coded approach, let us compare this
to the uncoded case. Looking at Figure 2.3, this uncoded performance is
described by (the line connecting) point 1 and point 2. Point 1, located at
(γf = 1/N, δc = 1), corresponds to the fully parallelized scenario where each
server must compute just one subfunction11, but which in turn implies that
each server must communicate to all K users. This scenario corresponds to
the decomposition DI = F where we maximally12 sparsify E by setting it
equal to E = IN×N .

11Due to the single-shot assumption, this corresponds to having N(q − 1) = L. This
matches the converse — in our large N setting — because after writing L = N(q − 1) =(︁

N
1
)︁
(q − 1) ≃ qNHq(1/N) = qNHq(γf ), we see that H−1

q ( logq(L)
N ) = γf = 1

N .
12Note that the stated δc = 1 accounts for the worst-case scenario where F contains no

zero elements.
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...

...

Server Nodes

...

Users ...

Master Node

Point Point

... ...

Figure 2.3: (Left. Fully parallelized): Uncoded scheme for point 1
corresponding to (γf = 1/N, δc = 1). Each of the N(q − 1) = L servers,
computes one subfunction, but must send to all K users. (Right. Fully

centralized): Uncoded scheme for point 2 corresponding to
(γf = 1, δc = 1/K). K activated servers, each computing L subfunctions, and

each transmitting to a single user.

On the other hand, point 2, located at (γf = 1, δc = 1/N), corresponds to
the fully centralized scenario where each of the K activated servers13 is asked
to compute all L subfunctions, but where now each server need only transmit
to a single user. Point 5 is a trivial converse.

From Theorem 3, we now know that point 3 at (γf = H−1
q (K

N
), δc

.=√︂
logq(N))/N) is a guaranteed achievable point, and so is any point inside

the triangle defined by points 1, 2, 3. Any point inside the region defined by
points 1, 4, 2, 3, is conditionally achievable in accordance to Theorem 1, and
in particular in accordance to Corollary 1. The converse also tells us that
no point to the left of point 4, i.e., no point with γf < H−1

q ( logq(L)
N

), can be
achieved. Finally, the points inside the triangle defined by corner points 5, 2, 4
could conceivably be achievable under additional techniques that manage to
further increase the sparsity of D.

13This number of activated users is again a consequence of the single-shot assumption.
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Unbounded
by

Figure 2.4: The figure summarizes the results of Theorem 3. Recall that
while N is asymptotically large, both K/N and logq(L)/N are fixed.

2.5 Distributed Computing of Linearly-Decomposable
Functions with Multi-Shot Communica-
tions (T > 1)

In this section we present our results for the multi-shot setting where each
server is able to broadcast T consecutive transmissions to T potentially
different subsets of users. This is mainly motivated by the fact that having
T > 1, naturally allows us to employ fewer servers, but it is also motivated —
as we will discuss later on — by an additional coding flexibility and refinement
that multiple transmissions can provide. We briefly note that we assume as
before that K and N are sufficiently large.

2.5.1 Problem Formulation
The notation of the parameters that characterize the system will now generally
follow directly from Section 2.3, sometimes after clarifying the corresponding
time-slot t of interest. For example, as before we will have

f ≜ [F1, F2, . . . , FK ]⊺, (2.64)
fk ≜ [fk,1, fk,2, . . . , fk,L]⊺, k ∈ [K], (2.65)
w ≜ [W1, W2, . . . , WL]⊺, (2.66)
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f ′ ≜ [F ′
1, F ′

2, . . . , F ′
K ]⊺, (2.67)

F ≜ [f1, f2, . . . , fK ]⊺. (2.68)

On the other hand, the notation for the encoding coefficients and the corre-
sponding transmitted symbols during slot t, will now take the slightly modified
form

en,t ≜ [en,1,t, en,2,t, . . . , en,L,t]⊺, n ∈ [N ], t ∈ [T ], (2.69)
zt ≜ [z1,t, z2,t, . . . , zN,t]⊺, t ∈ [T ], (2.70)
z ≜ [z⊺

1, z⊺
2, . . . , z⊺

T ]⊺ (2.71)

with the corresponding modified

Et ≜ [e1,t, e2,t, . . . , eN,t]⊺, t ∈ [T ] (2.72)

while the corresponding decoding coefficients will now take the form

dk,t ≜ [dk,1,t, dk,2,t, . . . , dk,N,t]⊺, k ∈ [K], t ∈ [T ], (2.73)
dk ≜ [d⊺

k,1, d⊺
k,2, . . . , d⊺

k,T ]⊺, k ∈ [K]. (2.74)

We note that the decoding coefficients are decided as a function of all received
signals throughout all T transmissions.

As before, (cf. (2.4)), we have that

f = [f1, f2, . . . , fK ]⊺w (2.75)

and now we use

zt = Etw = [e1,t, e2,t, . . . , eN,t]⊺w (2.76)

to denote the t-th slot transmission vector across all servers. The set of all
transmissions now takes the form

z = Ew (2.77)

where now the computing and encoding matrix takes the form

E ≜ [E⊺
1, E⊺

2, . . . , E⊺
T ]⊺ ∈ FNT ×L. (2.78)

Upon decoding, each user k generates

F ′
k = dT

k z (2.79)
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and the cumulative set of all decoded elements across the users takes the form

f ′ = [d1, d2, . . . , dK ]⊺z. (2.80)

Now we note that our decoding matrix

D ≜ [d1, d2, . . . , dK ]⊺ ∈ FK×NT (2.81)

is of dimension K × NT . Naturally, correct decoding requires

f = f ′ (2.82)

and after substituting (2.75), (2.76), (2.80) into (2.82), we can conclude as
before that computing succeeds if and only if

DE = F. (2.83)

The problem remains similar to the one in the single-shot scenario, except that
now our communication and decoding matrix D ∈ FK×NT and computing and
encoding matrix E ∈ FNT ×L are bigger14 and can have a certain restrictive
structure.

Again similar to before, each server n ∈ [N ] is asked to compute all the
subfunctions in ∪T

t=1 sup(en,t), and thus equivalently the set of servers Wℓ

that must compute subfunction fℓ(.), takes the form

Wℓ = ∪T
t=1 sup(E([(t − 1)N + 1 : tN ], {ℓ})⊺), ∀ℓ ∈ [L], ∀t ∈ [T ]. (2.84)

The following theorem provides an achievable upper bound on the com-
putation cost γf of our distributed computing setting for the multi-shot
scenario.

Theorem 4. For the setting of distributed-computing of linearly-decomposable
functions, with K users, N servers, L sub-functions and T shots, the optimal
computation cost γf is upper bounded by

γf ≤ TH−1
q ( K

NT
). (2.85)

where K/NT and T is fixed and N goes to infinity.

Proof. We first note that, directly from (2.84) and the union bound, we have
that

max
ℓ∈[L]

ω(E(:, ℓ)) ≥ max
ℓ∈[L]

|Wℓ| (2.86)

14The size of F ∈ FK×L remains the same, and thus again we have L ≤ qK .
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and thus our normalized per subfunction computation cost will be upper
bounded as

γf ≤ max
ℓ∈[L]

ω(E(:, ℓ))/N.

To bound max
ℓ∈[L]

ω(E(:, ℓ)), we apply covering code arguments as in the single-
shot case, after though accounting for the dimensionality change from having
larger matrices. In particular, this means that now the corresponding covering
code C(n, k) will have n = NT and again K = n − k (now we only ask
that NT ≥ K). To account for this increase in n, we note that while the
computation cost must still be normalized by the same number of servers
N , when considering our covering code15, we must consider a radius γf

T
n =

γf

T
NT = γfN to guarantee our computation constraint. In other words, the

ρ-covering codes that will guarantee the computation constraint, will be for
ρ = γf/T . Consequently, combined with the aforementioned union bound,
we now see that ρT serves as an achievable upper bound on γf . The rest
follows directly from the proof of the corresponding theorem in the single-shot
scenario.

Remark 2. Note the here we use the same asymptotic achievable sphere-
covering bound used for the single-shot setting which required fixation of
K/N while N to be sufficiently large, here we just instead require fixation of
K/NT and T while at the same time N has to be sufficiently large. Therefore
K in both setting also has to be sufficiently large.

The following two propositions help us make sense of the computational
effect of having T > 1.

Proposition 2. In the distributed computing setting of interest in the limit
of large T , the normalized per subfunction computation cost γf vanishes to
zero.

Proof. The proof is direct once we prove that for any fixed c, then

lim
T →∞

TH−1
q (c/T ) = 0. (2.87)

This property will be proved in Appendix 2.16.1.

In a system with an unchanged number of users and servers, the above
reveals the notable (unbounded) computational advantage of allowing a

15Let us quickly recall that in the previous single-shot scenario, a covering code with
covering radius ρn = ρN implied a computation cost of γf N = ρN and thus a normalized
per subfunction computation cost of γf = ρ.
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large number T of distinct transmissions per server. This advantage of the
multi-shot approach must be seen in light of the fact that in the single-shot
approach, the computation cost γf was always bounded below by a fixed
γf ≥ H−1

q ( logq(L)
N

), irrespective of the communication cost. Consequently we
can deduce that the computational gains that we see in the regime of larger T ,
are — at least partly — a result of the increased refinement in transmission
that a larger T allows, and it should not be solely attributed to an increased
communication cost.

The following proposition discusses the non-asymptotic computational
effect of increasing T beyond 1. Recall that our results hold for sufficiently
large K and N .

Proposition 3. For q = 2, then γf monotonically decreases in T , while for
q > 2 then γf monotonically decreases in T after any T ≥ ⌈ K

NH−1
q (1/q)⌉.

Proof. The proof is based on the fact that the derivative of f = TH−1
q (c/T ), 0 ≤

c/T ≤ 1 − 1/q, with respect to T , satisfies

∂f

∂T
= Hq(f/T )

logq

(︂
f/T

1−f/T
(q − 1)

)︂ + f/T. (2.88)

This is proved in Appendix 2.16.2. From the above, and after observing that
∂f
∂T

≤ 0 where 0 ≤ H−1
q (K/NT ) = f/T ≤ 1/q, we can conclude that since

0 ≤ H−1
q (K/NT ) = f/T ≤ 1/2 = 1 − 1/q, then for q = 2, increasing T

always strictly reduces γf . On the other hand, when q > 2, this reduction
happens — as we see above — when T ≥ ⌈T0⌉ for some real T0 for which
Hq(K/NT0) = 1/q.

2.6 Conclusions
In this chapter we have introduced a new multi-user distributed-computation
setting for computing from the broad class of linearly-decomposable functions.

Our work revealed the link between distributed computing and the problem
of factorizing a ‘functions’ matrix F into a product of two preferably sparse
matrices, these being the computing and encoding matrix E and the decoding
matrix D. The work then made the new connection to the area of covering
codes, revealing for the first time the importance of these codes in distributed
computing problems, as well as in sparse matrix factorization over finite fields.
Furthermore, this chapter here brought to the fore the concept of partial
covering codes, and the need for codes that cover well smaller subsets of
the ambient vector space. For this new class of codes — which constitute a
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generalization of covering codes — we have provided some extensions and
generalizations of well-studied results in the literature.

Our two metrics — γf , representing the maximum fraction of all servers
that must compute any subfunction, and δc, representing the average fraction
of servers that each user gets data from — capture the computation and
communication costs, which are often at the very core of distributed computing
problems. The observant reader might notice that the creation of E entails a
complexity equal to that of syndrome decoding. Our results hold unchanged
when we consider — as suggested before — that the computational cost of
evaluating the various subfunctions, far exceeds all other costs. What the
results reveal is that in the large N regime, the optimal computation cost lies
in the region γf ∈ (H−1

q ( logq(L)
N

), H−1
q (K

N
)), and that this entails the use of a

vanishingly small fraction δc
.=
√︂

logq(N)/N of all communication resources.
What we show is that our coded approach yields unbounded gains over the
uncoded scenario, in the sense that the ratio δcun (γf )

δc(γf ) between the uncoded
and coded communication costs, is unbounded.

We have also studied the multi-shot setting, where we have explored the
gains over the single-shot approach. What we now know is that the gains
from increasing T , are unbounded (and strictly increasing) in the regime of
large T , whereas in the regime of finite T , the gains are strictly increasing
after some threshold value of T . We are thus able to conclude, as suggested
before, that computation reductions due to larger T , are — at least partly —
a result of the increased refinement in transmission that a larger T allows,
and that these gains should not be interpreted as being purely the result of
an increased communication load.

Our work naturally relates partly to the recent results in [22] that consid-
ered the single-user linearly-separable distributed computing scenario, where
a single user may request multiple linearly-separable functions. In this setting
in [22], as well as in the extended works in [42] and [89], a key ingredient is
the presence of straggling servers, while another key ingredient is that the
subfunction-assignment is fixed and oblivious of the actual functions requested
by the user. In this context, the coefficients of the functions are assumed to be
distributed uniformly and i.i.d, and the decodability is probabilistic. There is
also an interesting connection (cf. [90], [91]) between compressed sensing and
coding theory. Naturally this connection entails no link to covering codes, as
the problem of compressed sensing relates to decodability and is very different
from the existence problem that we are faced with.

As suggested above, our setting can apply to a broad range of ‘well-behaved’
functions, and thus can enjoy several use cases, some of which are suggested
in our introduction (see also [22] for additional motivation of the linearly
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separable function computation problem). When considering problems over
the real numbers, we may consider a very large q. An additional new scenario
that our work can extend is the so-called hierarchical or tree-like scenario
introduced in [80], [92] whose purpose is to ameliorate bandwidth limitations
and straggler effects in distributed gradient coding [18]. In this hierarchical
setting, each user16 is connected to a group of servers in a hierarchical manner17

that allows for a hierarchical aggregation of the sub-gradients. Our approach
can extend the hierarchical model by allowing the users to connect to any
subset of servers, as well as by allowing them to deviate from the single-shot
assumption. Finally as one might expect, our analysis also applies to the
transposed computing problem corresponding to E⊺D⊺ = F⊺, on that case
the provided bound will be on the communication cost per user where K
the number of users has to be significantly larger than L, the number of files
while L/N (the ratio between the number of files and servers) remains fixed
since in the above case E⊺ would be seen as the parity-check matrix of a
partial covering code, not D. We can see that this scenario investigates a
less practical scenario where K, the number of users is much bigger than the
number of sub-functions.

Also as a suggestion for future work towards a more practical setting, we
can conceive of a setting where the size of the transmitted signals sent by
different servers zn, n ∈ [N ], in the single shot scenario differs from each
other. More precisely, in this chapter we assumed that the output of each
sub-function, so-called file-output fℓ(.) is just a member of GF(q) (Cf. (2.4))
so that the model captures the most general and simple instance of the
multi-user linearly separable distributed computing problem, because of that
we see the transmitted signals zn, n ∈ [N ] can be any member of GF(q) since
the signal is just a linear combination of the files and mathematically zn can
also be any element of GF(q), therefore in this system model, there is no
difference between any of the transmitted signals and the communication cost
is simply the total number of activated links.

If we are to analyse the system model where there might exist two trans-
mitted signals z1 and z2, with two different sizes then we have to also define
a probability measure on each of the output files. For instance, we might
investigate the case where W1 has a non-uniform distribution, or apriori the
master knows that W1 ̸= 0 while other files have a uniform distribution. In
this case, if the master node allocated D1 to the server 1 but not to the
server 2, then z1 consists of W1 and other files and z2 does not contain W1

16In [80], these users are referred to as master nodes.
17In particular, each user computes a linearly separable function based on its locally

available data, and then sends this to the ‘Aggregator’ that finally computes the gradient.
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in their linear decomposition, then z1 has a non-uniform distributed while
z2 has a uniform distribution, which makes H(z1) < H(z2), where H is an
entropy defined on random variables z1 and z2. We see that this results in an
interesting problem where the communication cost also has to be dependent
on the output files distribution, which might be dependent on some kind of
weighed sparsity criteria of both D and E.

Another further worthwhile path to investigate this problem is to extend
the results to the case where the output files, decoding and encoding proce-
dures has real value which is more applicable for the at hand computational
distributed systems. In fact, as we mention above in this chapter we have
established a bridge between multi-user linearly separable distributed com-
puting and decoding of linear codes. On the other hand, we now have the
enriched literature of compressed sensing, initiated by [93] entitled "Decoding
by Linear Programming" which describes a scenario where a decoder receives
a real valued noisy signal and its desire is to decode a message, the exact
same intention in the error-correcting literature. Therefore one can readily
use the results in the compressed sensing literature to drive and explore the
same fundamental limits driven in this chapter for the real-valued version of
this problem.

Additional considerations that involve stragglers, channel unevenness
or computational heterogeneity, are all interesting research directions. In
the next Chapters, on the basis of a similar problem formulation, we will
investigate the same problem from the lens of perfect codes and its impact
on the computation and communication costs concepts of the system. In
Chapters 4, 5 and 6, we will investigate the real-valued variant of this problem
and in the last chapter we will discuss its results and implications.
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Figure 2.5: Map of lemmas, theorems and appendices.

2.7 Appendices

2.8 Proof of Converse in Theorem 2
To prove the converse in (2.60), we modify the sphere-covering bound for
the case of partial covering codes. We wish to show that for a set X that
satisfies X ⊆ Fn

q , |X | = qkL, k ∈ N, a (ρ, X )-partial covering code C(k, n) has
to satisfy

logq(L) ≤ logq(Vq(n, ρ)). (2.89)

This is easy to show because having qk codewords directly means that the
maximum number of points they can jointly ρn-cover is equal to qkVq(n, ρ).
This in turn implies that

Lqk ≤ Vq(n, ρ)qk (2.90)
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which yields (2.89) after taking the logarithm on both sides of the inequality.
Now letting the above X be the X found in Theorem 1, we note that if

|X | = Lqk then X = XF . Then by substituting N = n, K = n − k, we see
that logq(L) ≤ logq(Vq(N, ρ)). Since qNHq(ρ)−o(N) ≤ Vq(N, ρ) ≤ qNHq(ρ), we
can conclude that logq(L) ≤ NHq(ρ) and thus that H−1

q ( logq(L)
N

) ≤ ρ, which
concludes the proof.

2.9 Proof of Achievability in Theorem 2
Directly from [88], we know that there exists at least one ρ-covering code
CX (k, n) that satisfies

n − k ≥ logq(Vq(n, ρ)) − 2 log2(n) + logq(n) − O(1). (2.91)

Then applying Theorem 1 with D = HC, N = n, K = n − k and X = Fn,
allows us to conclude that there exists a feasible scheme for the distributed
computing problem, with computation cost γf = ρ, that satisfies

K/N ≥ logq(Vq(N, ρ))/N − 2 log2(N)/N + logq(N)/N − O(1)/N. (2.92)

Combining this with the fact that qNHq(ρ)−o(N) ≤ Vq(N, ρ) ≤ qNHq(ρ), yields

K/N ≥ Hq(ρ) − ϵ(N) (2.93)

which tells us that ρ ≤ H−1
q (K/N + ϵ(N)), which in turn proves the result in

the limit of large N .

2.10 Proof of Corollary 1
We first start with the following lemma which proves the existence of a (ρ, X )-
partial covering linear code C, for a properly-sized set X ⊆ Fn that encloses
Bq(0, ρ). Before proceeding with the lemma, we note that the lemma is an
outcome of involving a linear greedy algorithm. Let us also briefly recall from
Theorem 2 and its proof in Appendix 2.8, that logq(L) ≤ logq(Vq(n, ρ)).

Lemma 1. Let X ⊆ Fn
q be a set of size |X | = L′qk that satisfies X ⊇ Bq(0, ρ).

Then as long as

logq(L′) ≥ logq(Vq(n, ρ)) − 2 log2(n) + logq(n) − O(1) (2.94)

there exists a (ρ, X )-partial covering code.
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Proof. The proof is found in Appendix 2.11.

With this lemma in place, let us define Am ≜ {X ⊆ Fn | |X | = m, X ⊇
Bq(0, ρ)} to be the family of all subsets of Fn which have cardinality m and
which enclose Bq(0, ρ). Consider the following algorithm.

1. Assign m = LqN−K .

2. For each X in Am, find a (ρ, X )-partial covering code CX via (the
algorithm corresponding to) Lemma 1.

3. For each X in Am, set D = HCX , and create XF,D = {x ∈ FN |Dx = F(:
, ℓ), for some ℓ ∈ [L]}.

4. If there exists an X in Am, for which X ⊆ XF,D, then output this X
and its corresponding D = HCX from the above step.

5. If there exists no X in Am for which X ⊆ XF,D, then increase m by one
and go back to step 2.

Let us continue now by supposing that the scheme terminates, outputting
D and X at the fourth step, before m reaches m = qN . Lemma 1, which
guarantees (cf. (2.94)) that

logq(|X |q−k) ≥ logq(Vq(n, ρ)) − 2 log2(n) + logq(n) − O(1) (2.95)

also guarantees that

logq(|X |)−(N − K)
N

(2.96)

≥ logq(Vq(N, ρ))/N − 2 log2(N)/N + logq(N)/N − O(1)/N (2.97)

where this last inequality holds after setting N = n, K = n − k, and after we
divide both sides of (2.95) by N , and then apply Theorem 1 after recalling
that X is indeed ρn-covered by CD. Applying that qNHq(ρ)−o(N) ≤ Vq(N, ρ) ≤
qNHq(ρ) into (2.96), gives

(K

N
− 1 +

logq(|X |)
N

) ≥ Hq(ρ) − ϵ(N) (2.98)

telling us that the algorithm yields a scheme with computation cost18

γf = ρ ≤ H−1
q (K/N − 1 + logq(|X |/N) + ϵ(N)) (2.99)

18Here it is worth elaborating on a fine point regarding our metric. As the reader may
recall, γf describes the fraction of active (non-idle) servers that compute any subfunction.
Then the observant reader may wonder if our proposed scheme indeed activates all existing
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which matches the stated result in the regime of large N . Note that when
X = XF,D, then naturally |X | = LqN−K which, directly from (2.99), yields
γf = ρ = H−1

q (logq(L)/N + ϵ(N)). At the other extreme, when the algorithm
terminates at the very end when X = FN , then the corresponding code will
be the standard ρ-covering code (see Appendix 2.9), and the computation
cost will correspond to γf = H−1

q (K/N).

2.11 Proof of Lemma 1
We here start by employing the recursive construction approach of Cohen
and Frankl in [88]. This recursive approach builds an (n, j + 1) code Cj+1
from a previous (n, j) code Cj, by carefully adding a vector x on the basis of
Cj, so that now the new basis span is bigger. Our aim will be to recursively
construct ever bigger codes that cover an ever increasing portion of our set
X .

Let us start by setting C0 = {0}. Let us then make the assumption that
the aforementioned integer L′ in Lemma 1, takes the form

L′ = qn−k′ (2.100)

for some real k′ ≥ k. Let Q(C) denote the set of points in X that are not
ρn-covered by C, and let

q(C) ≜ |Q(C)|
qn+k−k′ (2.101)

where naturally

|Q(C0)| = qn+k−k′ − Vq(n, ρ) (2.102)

servers. This corresponds to having a scheme with an E matrix that has no all-zero rows.
In the (rare) degenerate scenario where a row of E may contain only zeros, then our derived
computation cost γf would — by definition — have to be recalculated (to account for
having idle servers) and would be higher than stated here. To account for this degenerate
case, we add a small step in our algorithm which reduces the recorded computation cost
by guaranteeing that all servers are active. This step simply says that if a row in E
contains only zeros, then this row is substituted by an arbitrary non-zero row (let’s say,
the first row) of E, except that, if that (first) row contains a non-zero element in the
position ℓmax = arg max ω(E(:, ℓ)), then this element is substituted by a zero. Then the
two servers (the first server and the previously idle server) will split their communication
load, except that the server corresponding to the originally all-zero row, will not send any
linear combination that involves wℓmax . This small modification guarantees that whatever
γf we declare here as being achievable, is indeed achievable even in degenerate scenarios.
Finally, this degenerate scenario does not affect the algebraic converse.
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and

q(C0) = 1 − Vq(n, ρ)q−(n+k−k′). (2.103)

To proceed, we need the following lemma from [88].

Lemma 2 ([88]). Let Y ⊆ Fn, Z ⊂ Fn, and consider Y +x = {y+x : y ∈ Y}
for some x ∈ F. Then

E(|(Y + x) ∩ Z|) = q−n|Y||Z| (2.104)

where the average is taken, with uniform probability, over all x ∈ Fn.

Now, we develop the proof in two parts.

1. Binary Case: The proof for q = 2 where k = k′ (corresponding to the
singular case of maximal L = 2K) has been presented in [94] and [88] in
two different ways. We will modify the latter approach to establish our
claim for any k′ ≥ k (which will allow us to also handle L values that
are smaller than 2K). First let us easily deduce from Lemma 2 that
there exists an x ∈ Fn for which |(Y + x) ∩ Z| ≤ |Y||Z|

qn . Now let us set
Y = Z = Q(Cj), and let us append a vector x to the generator matrix
of Cj to create Cj+1, where x is chosen to minimize |Q(Cj+1)|. Now we
can directly verify that

|Q(Cj+1)| = |Q(Cj) ∩ Q(Cj + x)| = |Q(Cj) ∩ (Q(Cj) + x)| (2.105)
≤ |Q(Cj)|2/2n (2.106)

which implies that

q(Cj+1) ≤ q(Cj)22k−k′ ≤ q(Cj)2 (2.107)

where the latter inequality holds because k′ ≥ k. Combining (2.103)
and (2.107), gives

q(Ck) ≤ q(C0)2k ≤ (1 − Vq(n, ρ)2−(n−k′+k))2k (2.108)

where the latter inequality again holds due to the fact that k′ ≥ k. Now
let us continue this recursion until k is such that

2k = ⌈(n − k′ + k)2(n−k′+k) ln(2)/V2(n, ρ)⌉ (2.109)

in which case — given that (1 − 1
x
)x ≤ e−1, ∀x ≥ 1 — we get that

q(Ck) < 2−(n+k−k′) (2.110)
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which automatically yields that Q(Ck) = 0. This, again with the choice
of k in (2.109), tells us that for a set X that satisfies Bq(0, ρ) ⊆ X ⊆
Fn

q , |X | = Lqk, then indeed there exists a (ρ, X )-partial covering code
C(n, k) satisfying

0 ≤ logq(L/Vq(n, ρ)) (2.111)
+ 2 log2(logq(|X |)) − logq(logq(|X |)) + O(1). (2.112)

This conclusion can be considered as a tighter version of Lemma 1. After
a few very basic algebraic manipulations we get the proof of Lemma 1,
for the binary case of q = 2.

2. Non-Binary Case: Considering first an arbitrary Z ⊂ Fn, we have
that

E(1 − (q−n+k′−k|(Z + x) ∪ Z|)) (2.113)
= E(1 − q−n+k′−k((|(Z + x)| + |Z|) − |(Z + x) ∩ Z|)) (2.114)
= E(1 − 2q−n+k′−k|Z| + q−n+k′−k|(Z + x) ∩ Z|) (2.115)

(a)=1 − 2q−n+k′−k|Z| + q−2n+k′−k|Z|2 (2.116)
(b)
≤1 − 2q−(n−k′+k)|Z| + q−2(n−k′+k)|Z|2 (2.117)

=(1 − |Z|
q(n−k′+k) )2 (2.118)

where (a) is directly from Lemma 2, and where (b) holds since k′ ≥ k.
Similarly to the binary case, we begin with C0 = {0}, and again
recursively extend as

Cj+1 =< Cj; x > (2.119)

where x is chosen so that |Z| is maximized. We do so, after again
setting Z = Q(Cj).
At this point, from (2.118) we have that

q(Cj+1) ≤ q(Cj)2. (2.120)

We now consider the following lemma from [88].

Lemma 3. ([88, Lemma 2]) For any fixed Z ⊆ X ⊂ Fn where
|Z|q−(n−k′+k) = ϵ < (q(n − k′ + k))−1, then

Ex∈Fn(1 − q−(n−k′+k)| ∪α∈Fq Z + αx|) ≤ (1 − ϵ)q(1−(2(n−k′+k))−1).
(2.121)
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Continuing from Z = X ∩ (∪c∈Cj
Bq(c, ρ)), where

|Z| <
1
n

q(n−k′+k−1), q(Cj+1) ≤ q(Cj)q(1−(2(n−k′+k)−1))

we have that

q(Cj+1) ≤ (1 − qn−k′+kVq(n, ρ))(q(1−(2(n−k′+k))−1))j (2.122)
≤ (1 − qn+k−k′

Vq(n, ρ))e−0.5qj (2.123)

since (1 − (2(n − k′ + k))−1) ≥ (1 − (2(n − k′ + k))−1)n−k′+k−1 ≥ e−0.5.
For

j1 ≜ arg min
j

{q(Cj) ≤ 1 − (q(n + k − k′))−1} (2.124)

we see that

j1 ≤ n − logq(qk′−kVq(n, ρ)) − logq(n + k − k′) + O(1) (2.125)

where the inequality holds by first observing that Lemma 3 yields

1 − (q(n − k′ + k))−1 ≤ q(Cj) ≤ (1 − q(n−k′+k)Vq(n,ρ))qj1−1e−1/2 (2.126)

and then by comparing the upper and lower bounds in (2.126).
We now have an (n, j1) code C and we have (2.120). We are now looking
for the minimum number j2 of generators x that have to be appended
to the generator of C in order to get a (n, j1 + j2) code with q(Cj1+j2) ≤
q−(n−k′+k). We note that q(Cj1) ≤ 1− (q(n−k′ +k))−1, so by (2.126) we
only need to ensure that (1 − (q(n − k′ + k))−1)2j2 ≤ q−(n−k′+k), which
can be achieved by using

j2 = 2 log2(n − k′ + k) + O(1). (2.127)

Hence for k = j1 + j2, there indeed exist (n, k) codes with normalized
covering radius no bigger than ρ. Applying (2.125), (2.127), (2.100),
and the fact that |X | = Lqk, proves (2.94) and thus proves Lemma 1.

2.12 Proof of Theorem 3
We quickly note that the converse (lower bound on γf) holds directly from
the converse arguments in Theorem 2.

Let us start with the following definition.
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Definition 2. Let ρ ∈ (0, 1 − 1
q
], and let τ ∈ (0, 1]. A code C ⊆ Fn is

said to be a (ρ, τ)-partial covering code if there exists a set X ⊆ Fn, with
1
n

logq(|X |) = 1 − τ , that is ρ-covered by C.

We now present a theorem that extends the famous Theorem of Blinovskii
in [85], which proved that almost all linear codes satisfy the sphere-covering
bound. We recall that Ck,n denotes the ensemble of all linear codes generated
by all possible k × n matrices in Fk×n.

Theorem 5. Let ρ ∈ (0, 1 − 1
q
]. Then there exists an infinite sequence kn

that satisfies

kn

n
≤ 1 − τ − Hq(ρ) + O(n−1 logq(n)) (2.128)

for τ ∈ [0, 1 − Hq(ρ) − k
n
] so that the fraction of codes Cn ∈ Ckn,n that are

(ρ, τ)-partial covering, tends to 1 as n grows to infinity. Thus in the limit of
large n, almost all codes of rate less than 1 − τ − H(ρ) will be (ρ, τ)-partial
covering.

Proof. The proof can be found in Appendix 2.13.

Now let us design such covering codes. In the following we will consider the
set of codes in Ckn,n that are (ρ, τ)-partial covering, for the claimed sequence
kn of Theorem 5, and for some real τ . We will also consider g(n) to be the
fraction of such (ρ, τ)-partial covering codes among all codes in Ckn,n. The
scheme design is defined by the following steps.

1. Assign m = L.

2. Set τ = K−logq(m)
N

.

3. Noticing that the value

mn ≜ g(n)qknn (2.129)

serves as a lower bound on the number of (ρ, τ)-partial covering codes
in the ensemble Ckn,n, we now create B ≜ {C1, C2, . . . , Cmn} to be the
set of the first mn such codes.
Now let

Dn ≜

⎡⎢⎢⎢⎢⎣
HC1

HC2
. . .

HCmn

⎤⎥⎥⎥⎥⎦ (2.130)
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and accordingly set K = mn(n − kn), and N = mnn.
Now design CWn = [C1, C2, . . . , Cmn ], and then create the set

XF,D ≜ {x ∈ FN |Dx = F(:, ℓ), for some ℓ ∈ [L]}. (2.131)

Then create the set

X ≜ {x = [x1, x2, . . . , xmn ] | xi ∈ Xi} (2.132)

where Xi, i ∈ [mn], is the set of all n-length vectors that are ρn-covered
by Ci. Then note that

|Xi| ≥ qn(1−τ), ∀i ∈ [mn] (2.133)

because of Definition 2. We now note that for any x ∈ X , it is the case
that

d(x, C)/N =
mn∑︂
i=1

d(xi, Ci)/N ≤
mn∑︂
i=1

ρn

mnn
=

mn∑︂
i=1

ρ
1

mn

= ρ (2.134)

which means that CDn is also a (ρ, X )-partial covering code. Now if
X ⊉ XF,D, then m has to be increased by one, and the procedure starts
again from Step 2.

4. Let us define k′
n ≜ n − kn. From (2.128), we know that

k′
n

n
≥ τ + Hq(ρ) − O(n−1 logq(n)). (2.135)

We now see that R ≜ K
N

= k′
n

n
since K = k′

nmn, N = nmn. Thus,
directly from the above, we have that

K/N = R = Hq(ρ) + τ − ϵ(N). (2.136)

We note that as n (and thus N) goes to infinity, the term O(n−1 logq(n))
vanishes, and thus from the above we have that

ρ = H−1
q (

logq(m)
N

+ ϵ(N)). (2.137)

We also have that

ω(Dn)
K

(a)
≤ mnnk′

n

mnk′
n

= n (2.138)
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where (a) holds since ω(Dn) = mnknn is the maximum number of
nonzero elements that D can have, due to the block-diagonal design.
After taking the logarithm on both sides of the above, and since N =
mnn and kn = (1 − R)n, and after considering (2.129), we have that

logq(n) + n2(1 − R) + logq(g(n)) = logq(N) (2.139)

and thus we have that n2(1 − R) ≤ logq(N) and n ≤
√︃

logq(N)
(1−R) . Combin-

ing this with (2.138) and Theorem 1, we have that

∆c ≤

⌜⃓⃓⎷ logq(N)
(1 − R) (2.140)

where, as mentioned before, R is constant.

We can also see that the above design terminates, since reaching m = qK

implies that τ = 0. Then we will have Xi = Fn since |Xi| = qn from
Definition 2. Therefore from (2.132), we will have that X = FN = Fmnn,
which means that CDn(N, N − K) is a ρ-covering code, and that X ⊇ XF,D,
and thus the scheme would terminate at Step 4 with γf = ρ = H−1

q (K
N

+ ϵ(N))
from (2.137), and with communication cost as shown in (2.140).

2.13 Proof of Theorem 5
Before offering the formal proof, we provide a quick sketch of the proof to
help the reader place the different steps in context.

First we consider the ensemble19 of codes Ck∗,n, and we prove that with
a consistent enumeration of codewords, each nonzero point in Fn has the
same chance to be a codeword of a certain index, as we move across the code
ensemble.

Second, we pick a code C ∈ Ck∗,n at random, and fix it. Then, based on
this code, and for a specific choice of τ (to be described later on), we introduce
a random so-called ‘covered set’ XC of size 2n(1−τ) that includes code C.

Then we will see that every point in Fn\B(0, ρ) has an equal probability
— as we go through the choices of C ∈ Ck∗,n — of belonging to this subset.
To analyze the ρ-coverage of points inside XC, we derive P(ci = x|x ∈ XC),
where ci describes the codeword indexed by a fixed i, as we move across the
codes (and the corresponding generator matrices) in the ensemble.

19The details about the choice of k∗ will be described later on.
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Toward showing that XC is covered by C, we first note that B(0, ρ) is
covered since 0 ∈ C. To prove that the remaining part, XC\B(0, ρ), is also
covered by C, we prove that if codes in the ensemble are sufficiently large,
then there is, for almost all codes C, a large number (polynomial in n) of
codewords that covers each specific point in x ∈ XC. With this in place, we
will be able to conclude that almost all codes come close to being (ρ, τ)-partial
covering.

Finally, we utilize a linear greedy algorithm and successive appending of a
very small number of ⌊logq n(1 − τ)⌋ carefully selected vectors (cf. Lemma 2)
to each of these almost (ρ, τ)-partial covering codes, to render them fully
(ρ, τ)-partial covering codes.

We proceed with the formal proof.
Let k∗ ≜ k − ⌈logq(n(1 − τ))⌉, k, n ∈ N, 0 ≤ τ ≤ 1 and let Ck∗,n be the

ensemble of codes generated by k∗ × n generator matrices whose elements are
chosen randomly and independently with probability 1

q
from Fq. Naturally,

any fixed non-zero linear combination of rows of the generator matrix, will
generate — as we move across the ensemble of generator matrices — all
possible qn vectors in Fn. The zero codeword corresponds to the void linear
combination of rows, and is present in all generated codes. Also let us assume
a consistent enumeration of the codewords, in the sense that a word’s index
is defined by the linear combination of rows of the generator matrix, that
generate that codeword, in each code. For example, the word indexed by 5,
will vary in value across the different codes, but it will always be defined as
the output of a specific (the fifth) linear combination of the corresponding
generator matrix. The first codeword in all codes will be the zero word. We
proceed with the following lemma.

Lemma 4. For any fixed i ∈ [2 : 2k∗ ], and for any fixed x ∈ Fn, then

P(ci = x) = q−n (2.141)

where the probability is over all codes C ∈ Ck∗,n.

Proof. The proof is presented in Appendix 2.15.1.

Let us set τ ∈ [0, 1 − Hq(ρ) − k∗/n], and let us note that for sufficiently20

large n, we can guarantee that

qn(1−τ) ≥ Vq(n, ρ) + qk∗
. (2.142)

20We quickly remind the reader that our results here will hold for sufficiently large n.
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Let us now go over the ensemble of codes C ∈ Ck∗,n, and for each code, let
us create the covered set XC such that

|XC| = qn(1−τ) (2.143)
C ∪ B(0, ρ) ⊆ XC ⊆ Fn. (2.144)

We can see that (2.142) is a necessary condition for the above to happen. The
procedure for designing XC, simply starts by taking the union C ∪ B(0, ρ),
and then proceeds by appending on this union, a sufficiently large number of
vectors, chosen uniformly and independently at random from Fn\C ∪ B(0, ρ).
The following lemma simply says that every point x ∈ Fn\B(0, ρ) has an
equal probability — as we go through the choices of C ∈ Ck∗,n — of belonging
to this subset XC.

Lemma 5. For any fixed x ∈ Fn, then

P(x ∈ XC) =
⎧⎨⎩1 ω(x) ≤ ρn

qn(1−τ)−V (ρ,n)
qn−V (ρ,n) ω(x) > ρn.

(2.145)

Proof. The proof is presented in Appendix 2.15.2.

With the above lemma in place, we will now calculate the following
conditional probability. The following asks us to first pick and fix a vector
x ∈ Fn, and then pick an index i ∈ [1 : 2k∗ ]. Recall — from the above
discussion on the consistent enumeration of codewords — that this index will
define a codeword ci, which changes as we go across all the codes C in the
ensemble Ck∗,n. The following conditional probability is again calculated over
the code ensemble.

Lemma 6. Pick any vector x ∈ Fn and any index i ∈ [1 : 2k∗ ]. Then

P(ci = x|x ∈ XC) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
0 i = 1, x ̸= 0
1 i = 1, x = 0
q−(n) i ∈ [2 : K∗], x ̸= 0, ω(x) ≤ ρn

q−n(1−τ)ζ(n) i ∈ [2 : K∗] and ω(x) > ρn

(2.146)

where the term ζ(n) converges to 1 as n approaches to infinity.

Proof. The proof is presented in Appendix 2.15.3.

Let us now discuss the coverage of any vector x ∈ XC, as we go along
the ensemble C ∈ Ck∗,n. First of all, it is clear that any x ∈ B(0, ρ) is both
ρ-covered by the code C (because 0 ∈ C) as well as is included in XC (because
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x ∈ B(0, ρ) ⊂ XC). Thus for each code C ∈ Ck∗,n, for the purposes of the
current proof, we can focus on the set

X ′
C ≜ XC\B(0, ρ). (2.147)

For every x ∈ X ′
C, let us define the random variable ηx,i which takes the

value 1 if ci ρn-covers x, and which takes the value 0 otherwise. Thus

ηx ≜
2k∗∑︂
i=1

ηx,i (2.148)

describes the number of codewords that cover x ∈ X ′
C. For any fixed x ∈ Fn,

the following lemma describes the conditional average ηx, where again the
average is taken over the code ensemble.

Lemma 7. For any fixed x ∈ Fn, then

E(ηx|x ∈ X ′
C) = |{0} ∩ B(x, ρ)| × 1 (2.149)

+ (qk∗ − 1)[|(B(0, ρ)\{0}) ∩ B(x, ρ)|q−n (2.150)
+ |B(x, ρ)\B(0, ρ)|q−n(1−τ)ζ(n)] (2.151)

where again ζ(n) → 1 as n increases.

Proof. The proof is in Appendix 2.15.4, and it involves an extension of
Blinovskii’s Theorem [85], from evaluating E(ηx) to evaluating the conditional
E(ηx|x ∈ X ′

C).

Before proceeding, we need the following lemma which is an extension
of a related lemma found in [85]. The following considers as before the set
X ′

C ≜ XC\B(0, ρ), and considers again the variance and expectation, over the
aforementioned code ensemble.

Lemma 8. For any fixed x ∈ Fn, then

V ar(ηx|x ∈ X ′
C)

E(ηx|x ∈ X ′
C)q2 ≤ 1. (2.152)

Proof. The proof is presented in Appendix 2.15.5.

Combining (2.152) with Chebyshev’s inequality, gives

P(|ηx − E(ηx|x ∈ X ′
C)| > qϵ+1

√︂
E(ηx|x ∈ X ′

C)
⃓⃓⃓⃓
x ∈ X ′

C) (2.153)

<
V ar(ηx|x ∈ X ′

C)
q2ϵ+2E(ηx|x ∈ X ′

C) ≤ q−2ϵ. (2.154)
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Our aim is to show that, for any x ∈ X ′
C, — under some conditions on k∗ and

ϵ — ηx will be, with high probability, bigger than 0 which in turn implies
that any x ∈ X ′

C will, with high probability, be covered by C. To see this,
we continue from (2.154). We first see from (2.151) that E(ηx|x ∈ X ′

C) > 0.
Hence whenever we have ηx > E(ηx|x ∈ X ′

C), we also have that ηx > 0. Let
us now focus on the remaining scenario where ηx ≤ E(ηx|x ∈ X ′

C). In this
case, from (2.154), we have that

P
(︂
ηx ≥ E(ηx|x ∈ X ′

C) − qϵ+1
√︂
E(ηx | x ∈ X ′

C)
⃓⃓⃓
x ∈ X ′

C)) ≥ 1 − q−2ϵ. (2.155)

We also have that

P
(︂
ηx > 0 | x ∈ X ′

C

)︂
(2.156)

≥ P
(︂
ηx ≥ E(ηx|x ∈ X ′

C) − qϵ+1
√︂
E(ηx | x ∈ X ′

C) | x ∈ X ′
C

)︂
(2.157)

under the assumption that

β(ϵ) ≜ E(ηx|x ∈ X ′
C) − qϵ+1

√︂
E(ηx|x ∈ X ′

C) > 0. (2.158)

This assumption will be guaranteed — as we will see later on — by a proper
choice of k∗ and ϵ.

Now combining (2.155) with (2.157), we will show that

P
(︂
ηx ≥ E(ηx|x ∈ X ′

C) − qϵ+1
√︂
E(ηx | x ∈ X ′

C) | x ∈ X ′
C

)︂
→ 1 (2.159)

as n grows to infinity.
To guarantee that β(ϵ) > 0, we must guarantee that

E(ηx|x ∈ X ′
C) > q2ϵ+2. (2.160)

To do this, given Lemma 7, we must prove that

|{0} ∩ B(x, ρ)| × 1 + (qk∗ − 1)[|(B(0, ρ)\{0}) ∩ B(x, ρ)|q−n (2.161)
+ |B(x, ρ)\B(0, ρ)|q−n(1−τ)ζ(n)] > q2ϵ+2 (2.162)

again for some properly chosen k∗ and ϵ. The following applies toward this
effort.

Lemma 9. For any C ∈ Ck∗,n, any x ∈ X ′
C, and any ρ ∈ (0, min{1−1/q,

√
5−1
2 }],

then

|B(x, ρ)\B(0, ρ)| > qnHq(ρ)−o(n). (2.163)
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Proof. The proof is in Appendix 2.16.

We now combine (2.151) and (2.163) to get

E(ηx|x ∈ X ′
C) > (qk∗ − 1)qnHq(ρ)−o(n)−n(1−τ)ζ(n) (2.164)

and we also choose k∗, ϵ, to guarantee (cf. (2.160)) that the inequality

(qk∗ − 1)qnHq(ρ)−o(n)−n(1−τ)ζ(n) ≥ q2ϵ+2 (2.165)

holds for large n. Thus with (2.164) and (2.165) in place — something that
will indeed be validated by the end of the proof (cf. (2.187)) — we can
guarantee (2.160). Thus we know that

P(ηx < nα
⃓⃓⃓
x ∈ X ′

C) < q−2ϵ. (2.166)

Following the approach in [85], we consider points in X ′
C that are called

‘partial-remote points’, which are the points that are ρn-covered by fewer
than nα, α > 1 codewords. Now let Q0(X ′

C) ⊂ X ′
C be the set of partial remote

points in X ′
C, and let

q0(X ′
C) ≜ |Q0(X ′

C)|
qn(1−τ) − Vq(n, ρ) . (2.167)

Now applying (2.166), gives∑︂
x∈X ′

C

P(ηx < nα
⃓⃓⃓
x ∈ X ′

C) ≤ (qn(1−τ) − Vq(n, ρ))q−2ϵ (2.168)

and thus we see that∑︂
x∈X ′

C

P(ηx < nα
⃓⃓⃓
x ∈ X ′

C) (a)=
∑︂

x∈X ′
C

E[1(ηx < nα
⃓⃓⃓
x ∈ X ′

C)] (2.169)

(b)= E[
∑︂

x∈X ′
C

1(ηx < nα
⃓⃓⃓
x ∈ X ′

C)] (2.170)

(c)= E[|Q0(X ′
C)|] (2.171)

where now the expectation in (a) is over the codes in the ensemble Ck∗,n,
where (b) results from interchanging the expectation with the summation,
and where (c) is by definition of Q0.

Now combining (2.167), (2.168) and (2.171), we have

E(q0) ≤ q−2ϵ (2.172)
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which bounds the average (over the code ensemble) number of partial-remote
points in X ′

C. Then Markov’s inequality directly tells us that

P(q0 > qϵE(q0)) < q−ϵ (2.173)

which means that the expression q0 ≤ qϵE(q0) holds for a proportion greater
than 1 − q−ϵ of all codes.

Now, in the footsteps of [86], we apply a procedure that successively
appends cosets to an initial code C ′ ∈ Ck∗,n that belongs in this above family
of codes that indeed satisfies q0 ≤ qϵE(q0). Let us quickly remember that the
optimal successive appending linear greedy method resulting from Lemma 2
and enclosed in Appendix 2.11, allowed us to prove (2.114)–(2.118) which
yielded

q(Cj+1) ≤ q(Cj)2 (2.174)

where Cj+1 =< Cj; x >, and where q(Cj) represented the number of remote
points of the code Cj, normalized by qn(1−τ) − Vq(n, ρ).

With the above in mind, let us now set this first initializing code C0 to
be equal to C0 = C ′, where C ′ is one of the aforementioned ‘good’ codes that
satisfy

q0 ≤ qϵE(q0). (2.175)

Then we will design C1 =< C0; x > where x is a guaranteed-to-exist vector
(cf. (2.174)) that increases the span of C0.

Now we calculate the same quantity we calculated in (2.167), but we do
so for X ′

C1 . In other words, we calculate

q1(X ′
C1) ≜

|Q0(X ′
C1)|

qn(1−τ) − Vq(n, ρ) (2.176)

where similar to before, now q1 represents the average normalized remote
points of the code C1 with respect to its associated XC1 . We can now see that
directly from (2.174), we have that

E(q1) ≤ q2
0 (2.177)

where the above average is taken over all C1 codes, meaning over all codes that
can take the role of our aforementioned C1, going over all possible initializing
codes C0 = C ′, and over all possible base-expanding vectors x. Now we apply
again Markov’s inequality, this time over the expanded codes C1, to get

P(q1 > qλE(q1)) < q−λ, λ ∈ R (2.178)
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which tells us — as before — that the proportion of codes C1 that satisfy

q1 ≤ qλ−2ϵ (2.179)

is at least 1 − q−λ. This proportion of codes that achieve (2.179), is over all
generated C1 that were built over all ‘good’ C0 = C ′ that already satisfied
(2.175). Thus we now know (cf. (2.173)) that the proportion of codes C1 —
among all codes in the entire ensemble Ck∗+1,n — that satisfy (2.179), is equal
to (1 − q−ϵ)(1 − q−λ).

We now go from our step 1, to an arbitrary step i, and following the same
logic as before, we conclude that the proportion of codes Ci — where this
proportion is among all codes in the entire ensemble Ck∗+i,n — that satisfy

qi < q−2i(ϵ−λ)−λ (2.180)

is equal to (1 − q−ϵ)(1 − q−λ)i.
Now let us go to some step m which will allow us to terminate. We explain

when will this termination happen. Consider, for this step i = m, as before,
the quantity

qm(X ′
Cm

) ≜ |Q0(X ′
Cm

)|
qn(1−τ) − Vq(n, ρ) (2.181)

where similar to before, now qm represents the average normalized remote
points of the code Cm with respect to its associated XCm . We want the
corresponding Qm (cf. (2.167)) to be empty. This will be guaranteed when
m is such that

qm < q−n(1−τ) (2.182)

where the above guarantee can be provided given that the cardinality of a set
is a non-negative integer.

This will be achieved by setting m = ⌈log2(n(1 − τ))⌉ and λ = ϵ − 1. This
can be indeed verified by considering (2.180) after setting i = m, λ = ϵ − 1.
In conclusion, the proportion of ‘good’ codes (among the entire ensemble)
designed at this stage m, is no less than

(1 − q−ϵ)(1 − q−ϵ+1)⌈log2 n(1−τ)⌉ (2.183)

and for each such code C, every point x ∈ XC will be ρn-covered by at least
nα codewords of that same code.

With the above in place, let us return to (2.158) where we wish to guarantee
that β(ϵ) > 0. Toward this, let us consider (2.183) and in this equation, let
us set ϵ = 2 logq log2(n(1 − τ)).
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Let us now prove that there exists an α > 1 such that

E(ηx|x ∈ X ′
C) ≥ (n(1 − τ))α = (qk∗ − 1)qnHq(ρ)−o(n)q−(n−nτ). (2.184)

This can be readily shown (cf. (2.164)) by noting that, for large n, then the
expression

∃ α > 1 : (n − nτ)α = (qk∗ − 1)qnHq(ρ)−o(n)q−(n−nτ) (2.185)

holds. With (2.184) in place, we take the logarithm on both sides of the
above, and after dividing by n, we get

k∗

n
= 1 − τ − Hq(ρ) +

α logq(n − nτ) + o(n)
n

. (2.186)

Let us now recall that we had conditionally accepted (2.165), by saying
that (2.165) holds for some properly chosen ϵ and k∗. We will use the
aforementioned ϵ = 2 logq log2(n(1 − τ)) and the k∗ from (2.186). Let us
apply these values in the LHS of (2.165), and note, after employing (2.185),
that for these values in place, it holds that

(qk∗ − 1)qnHq(ρ)−o(n)−n(1−τ)ζ(n) = (n − nτ)αζ(n).

Let us now note that for sufficiently large n then

(n − nτ)αζ(n) ≥ q2 log2(n(1 − τ))4 (2.187)

simply because the RHS is logarithmic in n. At the same time though, we
also note that q2 log2(n(1−τ))4 = q2(2 logq(log2(n(1−τ))))+2 and then, by applying
the chosen ϵ, we get that q2 log2(n(1 − τ))4 = q2ϵ+2. Thus we now know that
(n − nτ)αζ(n) ≥ q2ϵ+2 which, after applying (2.187), gives that

(qk∗ − 1)qnHq(ρ)−o(n)−n(1−τ)ζ(n) ≥ q2ϵ+2

which is exactly (2.165). Thus (2.165) is validated, and consequently, directly,
we can also guarantee (2.160), which in turn guarantees β(ϵ) ≥ 0, which in
turn proves that (2.157) indeed holds.

Following the logic immediately before (2.157), and with (2.157) now in
place, we can conclude that for any x ∈ X ′

C, — given our chosen k∗ and ϵ —
ηx will be, with high probability, bigger than 0 which in turn implies that
any x ∈ X ′

C will, with high probability, be covered by C. As it can be seen,
the proportion of partial-covering codes (2.183) approaches 1, as n increases.

The only thing that remains now to be verified is the rate kn/n of these
codes, which was declared in the theorem to be as in (2.128). To verify that
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indeed this is our rate, we recall that we have started with a code from Ck∗,n

and that we have performed the appending procedure m times, where we
chose m = log2(n−nτ). This means that the current message length becomes

kn = k∗ + log2(n(1 − τ)).

Now directly adding m/n on both sides of the equation in (2.186), we have
that

kn

n
= k∗ + log2(n − nτ)

n
(2.188)

= 1 − τ − H(ρ) + (α + 1) log2(n − nτ) + o(n)
n

(2.189)

which simply says that kn

n
≤ 1 − τ − Hq(ρ) + O(n−1 logq(n)) as in (2.128).

This concludes the proof of the theorem.

2.14 Proof of Proposition 1
Referring to the proof of Theorem 3 in Appendix 2.12, let us suppose that
L ≤ m < qK and that X ⊇ XF,D. From (2.132) we see that

|X | (a)= Πmn
i=1|Xi| (2.190)

(b)
≥ qnmn(1−τ) (2.191)
(c)= qN(1−τ) (2.192)

where (a) comes from the definition of X (cf. (2.132)), where (b) holds due to
(2.133), and where (c) holds since N = nmn. Then from (2.136) and (2.192),
we can conclude that

ρ = H−1
q (K

N
− τ + ϵ(N)) (2.193)

≤ H−1
q (K

N
− (1 −

logq(|X |)
N

) + ϵ(N)). (2.194)

Setting m = L gives ρ = H−1
q ( logq(L)

N
+ϵ(N)) (cf. (2.137)). The communication

cost is as described in (2.140).

2.15 Various Proofs

2.15.1 Proof of Lemma 4
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For a fixed index i ̸= 0, there is a fixed information vector di ∈ Fk∗\0 that
generates — as we move across the generator matrices G in the ensemble of
codes Ck,n — the codewords ci that take the form

ci = diG =
n∑︂

j=1
di(j, 1)G(j, :). (2.195)

Given that the elements of G ∈ Fk∗×n are chosen uniformly and independently
at random from F, directly implies that the same holds for the elements of
ci, since in the above linear combination, the elements of di are fixed, and
naturally because the operations are over a finite field.

2.15.2 Proof of Lemma 5
We can first see that whenever ω(x) ≤ ρn, then (2.145) automatically holds
simply because such x must belong in B(0, ρ) which in turn is a subset of XC.

Let us now consider the case of ω(x) > ρn, x ∈ Fn. Let us also recall
the element selection process21 that was described right underneath equa-
tion (2.144). Let S ⊂ Fn be the set of all vectors x that are not codewords
but are selected randomly in the aforementioned process. At this point, we
can see that

P(x ∈ XC) = P(x ∈ C) + P(x /∈ C)P(x ∈ S | x /∈ C) (2.196)

where C is the code that has been chosen uniformly at random from Ck∗,n.
Consider a vector y ∈ Fn with ω(y) ≥ ρn. We clearly see that P(x ∈ C) =
P(y ∈ C), and we also see that P(x ∈ S | x /∈ C) = P(y ∈ S | y /∈ C) as a
direct outcome of the aforementioned vector selection process, and of the fact
that ω(x) > ρn, ω(y) > ρn, which yields

P(x ∈ XC) = P(y ∈ XC). (2.197)

Now let us note that∑︂
y∈Fn\B(0,ρ)

P(y ∈ XC) =
∑︂

y∈Fn\B(0,ρ)
E[1(y ∈ XC)] (2.198)

(a)= E[
∑︂

y∈Fn\B(0,ρ)
1(y ∈ XC)] (2.199)

21We recall that the procedure for designing XC, simply starts by taking the union
C ∪B(0, ρ), and then appending on this union, a sufficiently large number of vectors, chosen
uniformly and independently at random from Fn\(C ∪ B(0, ρ)).
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(b)= E[qn(1−τ) − Vq(n, ρ)] = qn(1−τ) − Vq(n, ρ) (2.200)

where the average is over the codes in the ensemble Ck∗,n and over the
randomness in constructing XC once C ∈ Ck∗,n is picked. In the above, (a)
follows by interchanging summation and expectation, and (b) holds since
for every occurrence of C ∈ Ck∗,n, there exist qn(1−τ) − Vq(n, ρ) elements of
F\B(0, ρ) that are in XC. Finally, (2.197) and (2.200) jointly imply that

(qn − Vq(n, ρ))P(x ∈ XC) (2.201)
=

∑︂
y∈Fn\B(0,ρ)

P(y ∈ XC) = qn(1−τ) − Vq(n, ρ) (2.202)

which completes the proof.

2.15.3 Proof of Lemma 6
For any i ̸= 1 and x ∈ Fn, x ̸= 0, then

P[ci = x|x ∈ XC]P[x ∈ XC] (2.203)
(a)= P[[ci = x] ∩ [x ∈ XC]] (2.204)
(b)= P[[ci = x] ∩ [ci ∈ XC]] (2.205)
(c)= P[ci = x] (2.206)
(d)= q−n (2.207)

where (a) is directly from the definition of conditional probability [95], (b) is
true since the LHS requirement that x = ci is maintained in the RHS, (c) is
true since C ⊂ XC, and (d) is from (2.141) in Lemma 4.

Thus for i ̸= 1 and x ̸= 0, we have that

P(ci = x|x ∈ XC) = q−n(1−τ) 1 − q−nV (ρ, n)
1 − q−(n−nτ)V (ρ, n) (2.208)

= q−(n−nτ)ζ(n), i ∈ [2 : K∗], ω(x) > ρn (2.209)

and the proof is concluded by noting that in the limit of large n, the expression

ζ(n) ≜ 1 − q−nV (ρ, n)
1 − q−(n−nτ)V (ρ, n)

converges to 1.
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2.15.4 Proof of Lemma 7
From the definition in (2.148), let us recall that

ηx ≜
qk∗∑︂
i=1

ηx,i (2.210)

describes the number of codewords that cover x ∈ X ′
C. Consider a Hamming

ball of radius ρ centered around x ∈ X ′
C.

• Considering (2.146), we know that if |{0} ∩ B(x, ρ)| = 1, then with
probability one, 0 covers x. Hence now the assumption that x ∈ X ′

C,
contradicts the above, and thus we can conclude that |{0}∩B(x, ρ)| = 0.

• Now consider some vector x′ in (B(0, ρ)\{0}) ∩ B(x, ρ), i.e., some vector
that covers our aforementioned x ∈ X ′

C. We are interested in the
probability P(ci = x′|x′ ∈ X ′

C) which is the probability that x′ is equal
to ci, for our fixed i, i ̸= 1. From (2.146), we know that this probability
is equal to q−n. Now going over all qk∗ − 1 codewords of interest, we
can conclude that our current case of interest, contributes to the sum
ηx, by an amount equal to (qk∗ − 1)[|(B(0, ρ)\{0}) ∩ B(x, ρ)|q−n.

• Now let us consider the dominant case where x′ in B(x, ρ)\B(0, ρ). In
this case, directly from (2.146), the aforementioned probability P(ci =
x′|x′ ∈ X ′

C) takes the form q−n(1−τ)ζ(n), and thus — similarly to above
— yields a contribution to the sum ηx by an amount equal to

(qk∗ − 1)[|B(x, ρ)\B(0, ρ)|q−n(1−τ)ζ(n).

2.15.5 Proof of Lemma 8
We prove the lemma in two steps.

In the first step, after defining η ≜ E(ηx,i|x ∈ X ′
C) and η(2) ≜ E(ηx,iηx,j|x ∈

X ′
C) for any i, j ∈ [qk∗ ], we can see that

V ar(ηx|x ∈ XC) ≤ (qk∗ − 1)(q − 1)η(1 − q − 2
q − 1η) (2.211)

since

V ar(ηx|x ∈ XC) = E((
qk∗∑︂
i=1

ηx,i)2|x ∈ X ′
C) − E2(

qk∗∑︂
i=1

ηx,i|x ∈ X ′
C) (2.212)
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= E(
qk∗∑︂
i=1

η2
x,i +

qk∗∑︂
p.i=1,i ̸=p

ηx,iηx,p|x ∈ X ′
C) (2.213)

− E2(
qk∗∑︂
i=1

ηx,i|x ∈ X ′
C) (2.214)

=
qk∗∑︂
i=1

E(ηx,i|x ∈ X ′
C) (2.215)

+
qk∗∑︂

p,i=1,i ̸=p

E(ηx,iηx,p|x ∈ X ′
C) − E2(

qk∗∑︂
i=1

ηx,i|x ∈ X ′
C) (2.216)

= qk∗
η + qk∗(qk∗ − 1)η(2) (2.217)

− q2k∗
η. (2.218)

Combining now the above with (2.211), allows us to modify the main claim
as

qk∗
η + qk∗(qk∗ − 1)η(2) − q2k∗

η − (qk∗ − 1)(q − 1)η(1 − q − 2
q − 1η) ≤ 0 (2.219)

so we now need to prove (2.219). To prove this, we focus on the LHS and
show that

qk∗
η + qk∗(qk∗ − 1)η(2) − q2k∗

η − (qk∗ − 1)(q − 1)η(1 − q − 2
q − 1η) (2.220)

(a)
≤ qk∗

η + qk∗(qk∗ − 1)η2 − q2k∗
η − (qk∗ − 1)(q − 1)η(1 − q − 2

q − 1)η (2.221)

(b)
≤ −(qk∗+1 − 2qk∗ − q + 1)η + (qk∗+1 − 3qk∗ − q + 2)η2 (2.222)
(c)
≤ 0 (2.223)

where (a) holds because η(2) ≤ η2, (b) follows after simple rearranging of
terms, and (c) holds because 0 ≤ η ≤ 1 and because qk∗+1 − 2qk∗ − q + 1 >
qk∗+1 − 3qk∗ − q + 2 for any qk∗ ≥ 1.

In the second step, we will prove that

(qk∗ − 1)(q − 1)η(1 − q−2
q−1η)

E(ηx|x ∈ X ′
C)q2 ≤ 1. (2.224)

To see this, we note that

(qk∗ − 1)(q − 1)η(1 − q−2
q−1η)

E(ηx|x ∈ X ′
C)q2

(a)=
(qk∗ − 1)(q − 1)(1 − q−2

q−1η)
qk∗q2 (2.225)
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(b)= (qk∗ − 1
qk∗ )(q − 1

q2 )(1 − q − 2
q − 1η) (2.226)

(c)
≤ 1 (2.227)

where (a) holds because E(ηx) = ∑︁qk∗

i=1 E(ηx,i) = qk∗
η, where (b) holds by

rearranging terms, and where (c) holds because each multiplicative element
in the RHS of (b) is non-negative and less than 1.

Now combining the two steps by bringing together (2.211) with (2.224),
yields the desired (2.152).

2.16 Proof of Lemma 9
Let us define

I(ω(x),ρ) ≜ |B(x, ρ) ∩ B(0, ρ)| (2.228)

and let us note that

ρn = arg max
ω(x):x∈XC\B(0,ρ)

|I(ω(x),ρ)| (2.229)

since the distance between x ∈ XC\B(0, ρ) and 0 is minimized when ω(x) = ρn.
We also know that

|B(x, ρ)\B(0, ρ)| = V ol(n, ρ) − |I(ρ, ρ)|. (2.230)

Let us focus on the case where q = 2 and 0 ≤ ρ ≤ 1
2 , where from [96] we have

that

|I(ρ, ρ)| =
⌊ nρ

2 ⌋∑︂
i=0

i∑︂
j=0

(︄
nρ

i

)︄(︄
n − nρ

j

)︄
+

nρ∑︂
i=⌊ nρ

2 ⌋+1

nρ−i∑︂
j=0

(︄
nρ

i

)︄(︄
n − nρ

j

)︄
. (2.231)

We know that nρ ≤ n − nρ and that

Vq(n, ρ) =
ρn∑︂
i=0

(︄
n

i

)︄
=

⌊ nρ
2 ⌋∑︂

i=0

nρ−i∑︂
j=0

(︄
nρ

i

)︄(︄
n − nρ

j

)︄
(2.232)

+
nρ∑︂

i=⌊ nρ
2 ⌋+1

nρ−i∑︂
j=0

(︄
nρ

i

)︄(︄
n − nρ

j

)︄
(2.233)

and thus after substituting (2.231) and (2.233) into (2.230), we conclude that

|B(x, ρ)\B(0, ρ)| =
⌊ nρ

2 ⌋∑︂
i=0

nρ−i∑︂
j=i+1

(︄
nρ

i

)︄(︄
n − nρ

j

)︄
. (2.234)
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Now considering that 0 < ρ ≤ 1
2 , we have(︄

n

nρ

)︄
=

⌊ nρ
2 ⌋∑︂

i=0

(︄
nρ

i

)︄(︄
n − nρ

nρ − i

)︄
+

nρ∑︂
i=⌊ nρ

2 ⌋+1

(︄
nρ

i

)︄(︄
n − nρ

nρ − i

)︄
(2.235)

=
⌊ nρ

2 ⌋∑︂
i=0

(︄
nρ

i

)︄(︄
n − nρ

nρ − i

)︄
+

nρ∑︂
i=⌊ nρ

2 ⌋+1

(︄
nρ

nρ − i

)︄(︄
n − nρ

nρ − i

)︄
(2.236)

=
⌊ nρ

2 ⌋∑︂
i=0

(︄
nρ

i

)︄(︄
n − nρ

nρ − i

)︄
+

nρ−⌊ nρ
2 ⌋−1∑︂

i=0

(︄
nρ

i

)︄(︄
n − nρ

i

)︄
. (2.237)

Now let us note that

|B(x, ρ)\B(0, ρ)| (a)=
⌊ nρ

2 ⌋∑︂
i=0

nρ−i∑︂
j=i+1

(︄
nρ

i

)︄(︄
n − nρ

j

)︄
(2.238)

(b)=
⌊ nρ

2 ⌋∑︂
i=0

nρ−i−1∑︂
j=i+2

(︄
nρ

i

)︄(︄
n − nρ

j

)︄
(2.239)

+
⌊ nρ

2 ⌋∑︂
i=0

(︄
nρ

i

)︄(︄
n − nρ

nρ − i

)︄
(q − 1)nρ (2.240)

+
⌊ nρ

2 ⌋−1[⌊ nρ
2 ⌋= nρ

2 ]∑︂
i=0

(︄
nρ

i

)︄(︄
n − nρ

i + 1

)︄
(2.241)

(c)
≥

⌊ nρ
2 ⌋∑︂

i=0

(︄
nρ

i

)︄(︄
n − nρ

nρ − i

)︄
+

nρ−⌊ nρ
2 ⌋−1∑︂

i=0

(︄
nρ

i

)︄(︄
n − nρ

i

)︄
(2.242)

(d)=
(︄

n

nρ

)︄
(e)
≥ 2nH(ρ)−o(n) (2.243)

where (a) holds from (2.234), (b) follows after expanding the inner summation,
(c) holds because the first summation of the RHS in (b) is non-negative, the
second summation is present on the RHS of (c) after considering that q = 2,
and because the third summation of the RHS in (b) is present on the RHS of
(c) after considering Lemma 11 found in Appendix 2.16.4. Furthermore (d)
follows from (2.237), and (e) follows from the Stirling inequality that applies
because 0 < ρ ≤ 1

2 . The proof is concluded for the binary case of q = 2.
Let us now consider the more involved case of q > 2. For this we will need

the following lemma, whose proof is found in Appendix 2.16.3.
Lemma 10. For I(ω(x),ρ) ≜ |B(x, ρ) ∩ B(0, ρ)| (cf. (2.228)), then

|I(ρ, ρ)| =
∑︂

i+j=ρn, i≤j

(︄
n − ρn

i

)︄(︄
ρn

j

)︄
(q − 1)ρn + θ(q) (2.244)
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where we can guarantee that θ(q) ≤ Vq(n, ρ − 1/n).
Proof. See Appendix 2.16.3.

With this lemma in place, we now note that

|B(x, ρ)\B(0, ρ)| (a)= Vq(n, ρ) − |I(ρ, ρ)| (2.245)
(b)= Vq(n, ρ − 1/n) +

(︄
n − ρn

ρn

)︄
(2.246)

−
∑︂

i+j=ρn, i≤j

(︄
n − ρn

i

)︄(︄
ρn

j

)︄
(q − 1)ρn − θ(q) (2.247)

(c)
≥

∑︂
i+j=ρn, i>j

(︄
n − ρn

i

)︄(︄
ρn

j

)︄
(q − 1)ρn (2.248)

(d)=
⌊ ρn

2 ⌋−1∑︂
j=min{0,2ρn−n}

(︄
n − ρn

ρn − j

)︄(︄
ρn

j

)︄
(q − 1)ρn (2.249)

where (a) follows from a basic set cardinality rule, (b) follows from (2.244),
(c) follows from Lemma (10) which tells us that θ(q) ≤ Vq(n, ρ − 1/n), and
from the fact that

(︂
n−ρn

ρn

)︂
= ∑︁

i+j=ρn

(︂
n−ρn

i

)︂(︂
ρn
j

)︂
(q − 1)ρn, and (d) holds since

j ≥ 0 and at the same time i ≤ n − ρn which gives j ≥ 2ρn − n.
Now from Stirling’s bound, we know that for any j ∈ [min{0, 2ρn −

n}, ⌊ρn
2 ⌋ − 1], the following holds(︄
n − ρn

ρn − j

)︄(︄
ρn

j

)︄
≥
√︄

n − ρn

8(ρn − j)(n − 2ρn + j)2nH((ρn−j)/(n−ρn)) (2.250)

×
√︄

ρn

8(j)(ρn − j)2nH(j/ρn) (2.251)

= 2n[H((ρn−j)/ρn)+H((ρn−j)/(n−ρn))]−o(n). (2.252)

After defining

κ ≜
ρn − j

ρn
(2.253)

the exponent in (2.252) takes the form

n[H(κ) + H(κ ρ

1 − ρ
)] − o(n). (2.254)

With this exponent in place, let us consider a large n and let us assume
without loss of generality22 that nρ2 ∈ N. For the case where 0 < ρ ≤ 1

2 , let
22This assumption, along with the assumption that nρ is an integer, has no impact on

the result, because any non-integer residual will vanish in importance as n increases.
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us set j such that j = nρ2 ≤ ⌊nρ
2 ⌋ − 1, in which case we get κ = 1 − ρ. On

the other hand, for the case where 1
2 < ρ ≤ −1/2 +

√
5/2, let us set j such

that 2ρn − n ≤ j = nρ(1 − ρ) ≤ ⌊nρ
2 ⌋ − 1, in which case κ = ρ. In each case,

κ is plugged in (2.254), and after utilizing (2.252), we see that
⌊ ρn

2 ⌋−1∑︂
j=min{0,2ρn−n}

(︄
n − ρn

ρn − j

)︄(︄
ρn

j

)︄
(q − 1)ρn ≥ qnHq(ρ)−o(n) (2.255)

which holds for the range 0 < ρ ≤ −1/2 +
√

5/2 which is the union of the
above two regions in ρ.

2.16.1 Proof of Proposition 2
For h(x) ≜ −x logq(x), we know that

h(x) ≤ Hq(x), 0 ≤ x ≤ 1 − 1/q (2.256)

and thus that

H−1
q (x) ≤ h−1(x). (2.257)

We also know that if y = x ln(x), then x = eW (y) where W (.) is the Lambert
function. Also note that since h(x) = − logq(e)x ln(x), we have that

h−1(x) = eW (− ln(q)x). (2.258)

Furthermore, for c > 0 being a positive real number, we have that

lim
T →∞

TeW (−c/T ) (a)= lim
T →∞

eW (−c/T )

1/T
(2.259)

(b)= lim
T →∞

eW (−c/T ) 1
−c/T +eW (−c/T ) cT −2

−T −2 (2.260)

(c)= lim
T →∞

ceW (−c/T )

c/T − eW (−c/T ) (2.261)

(d)= lim
T →∞

cTeW (−c/T )

c − TeW (−c/T ) (2.262)

(e)= limT →∞ cTeW (−c/T )

limT →∞ c − TeW (−c/T ) (2.263)

where (a), (c) and (d) follow by basic algebraic rearranging, (b) follows from
L’Hopital’s rule, and (e) follows from the Algebraic Limit Theorem. The
above implies that

lim
T →∞

TeW (−c/T ) = 0 (2.264)
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which allows us to conclude that

lim
T →∞

TH−1
q ((c/T )

(a)
≤ lim

T →∞
Th−1(c/T ) (2.265)

(b)
≤ lim

T →∞
TeW (− ln(q)c/T ) (2.266)

(c)= 0 (2.267)

where (a) follows from (2.257), (b) from (2.258), and (c) from (2.264). Thus
the proof is concluded.

2.16.2 Proof of Proposition 3
Starting from

c/T = Hq(f/T ) (2.268)

we take the derivative with respect to T on both sides, to get

c = logq(
f/T

1 − f/T
(q − 1))( ∂f

∂T
T − f). (2.269)

After applying (2.268) into (2.269), and after some basic algebraic rearranging,
the proof is concluded.

2.16.3 Proof of Lemma 10
Let us consider two vectors a, b ∈ Fn, where ω(a) = ρn and where b ∈
B(0, ρ) ∩ B(a, ρ). Let

B ≜ {b(i), ∈ [n] : a(i) = 0 & b(i) ̸= 0} (2.270)
C ≜ {b(i), ∈ [n] : a(i) ̸= 0 & b(i) = a(i)} (2.271)

and let x ≜ |B|, y ≜ |C|. Let bj, j ∈ [x] denote the jth element of B, and let
cj, j ∈ [y] denote the jth element of C. Note that ordering does not matter.
Let aj, j ∈ [ρn] be the non-zero elements of a, and without loss of generality,
let

a = [0, . . . , 0, a1, a2, . . . , ay, . . . , aρn] (2.272)

as well as let

b = [b1, b2, . . . , bx, 0, 0, . . . , 0, c1, c2, . . . , cy, 0, . . . , 0]. (2.273)
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Since ω(b) ≤ ρn and d(a, b) ≤ ρn, we have that

x + y ≤ ρn (2.274)
x ≤ y (2.275)

and we have that for any fixed pair (x, y) ∈ [ρn]2, there are
(︂

n−ρn
x

)︂(︂
ρn
y

)︂
(q −

1)x+y such points (that satisfy that given (x, y)) in B(0, ρ)∩B(a, ρ). Therefore,
accumulating over all (x, y) for which x + y = ρn, the overall intersection
gains cardinality |B(0, ρ) ∩ B(a, ρ)| = ∑︁

i+j=ρn, i≤j

(︂
n−ρn

i

)︂(︂
ρn
j

)︂
(q − 1)ρn, while

when x + y < ρn — due to (2.275) — this same accumulated intersection has
at most Vq(n, ρ − 1/n) points. This concludes the proof.

2.16.4 Statement and Proof of Lemma 11
Lemma 11. If 0 < ρ ≤ 1/2 and ρn ∈ N, then

⌊ nρ
2 ⌋−1[⌊ nρ

2 ⌋= nρ
2 ]∑︂

i=0

(︄
nρ

i

)︄(︄
n − nρ

i + 1

)︄
≥

nρ−⌊ nρ
2 ⌋−1∑︂

i=0

(︄
nρ

i

)︄(︄
n − nρ

i

)︄
. (2.276)

Proof. We solve the problem by considering the following cases.
Case 1: (2 | ρn). We note that if 2|ρn, then ⌊nρ

2 ⌋ = nρ
2 , which gives

nρ
2 −1∑︂
i=0

(︄
nρ

i

)︄(︄
n − nρ

i + 1

)︄
≥

nρ
2 −1∑︂
i=0

(︄
nρ

i

)︄(︄
n − nρ

i

)︄
. (2.277)

Since 0 < ρ ≤ 1
2 , we have that i + 1 ≤ (n − nρ)/2, ∀i ∈ [0 : nρ/2 − 1], which

gives (︄
n − nρ

i + 1

)︄
≥
(︄

n − nρ

i

)︄
(2.278)

to conclude the proof for this case.
Case 2: (2 ∤ ρn). Here we note that having 2 ∤ ρn, implies ⌊nρ

2 ⌋ = nρ
2 − 0.5

which gives
nρ
2 −0.5∑︂
i=0

(︄
nρ

i

)︄(︄
n − nρ

i + 1

)︄
≥

nρ
2 −0.5∑︂
i=0

(︄
nρ

i

)︄(︄
n − nρ

i

)︄
. (2.279)

For this case, we consider the following two subcases.
Case 2a: (n is odd). We first note that if n is an odd number, then

n − nρ is an even number. Also since ρn ∈ N, 0 < ρ < 1/2 and nρ ≤ n−1
2 ,
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then 2(nρ
2 + 0.5) ≤ n − nρ. Thus as before we can say that ∀i ∈ [0 :

nρ/2 − 0.5], i + 1 ≤ (n − nρ)/2, which gives(︄
n − nρ

i + 1

)︄
≥
(︄

n − nρ

i

)︄
(2.280)

which in turn concludes the proof for this case.
Case 2b: (n is even). If n is even then n−nρ is odd, and thus we can again

say that having 0 < ρ ≤ 1/2 gives i+1 ≤ (n−nρ+1)/2, ∀i ∈ [0 : nρ/2−0.5],
which gives (︄

n − nρ

i + 1

)︄
≥
(︄

n − nρ

i

)︄
(2.281)

which in turn completes the proof for this final case also.



Chapter 3

Perfect Codes for Multi-User
Linearly-Decomposable

3.1 Introduction

Motivated by need to efficiently parallelize multiple computational tasks,
which entails a master node that acts as a total trusted authority in managing
N server nodes, serving K users that each demand their function to be
computed. Under the linearly-decomposable assumption, where each function
is a linear combination of L basis subfunctions, it was shown in Chapter 2 that
the multi-user distributed computing problem is mathematically equivalent
to a sparse matrix factorization problem of the form F = DE, where F ∈
GF(q)K×L describes the linear coefficients of the demands of the users, where
the so-called computation and encoding matrix E ∈ GF(q)N×L describes
which subfunctions each server evaluates and how each server combines the
subfunctions’ outputs, while the so-called communication and decoding matrix
D ∈ GF(q)K×N describes the server-to-user activated connectivity and the
manner with which each user combines its received data.

This chapter studies the above scenario by jointly considering both the
cumulative computational cost across the servers, as well as (under a unifor-
mity assumption in the computational delay of evaluating each subfunction)
the worst-case computational load which, as we will discuss later, captures
the concept of computational delay. Our main contribution is to connect
the above two metrics of our distributed computing problem, to the coding-
theoretic concepts of the covering radius and the packing radius respectively.
Then, in terms of the construction of schemes that efficiently resolve our
distributed computing problem, our work provides a never-before-seen con-
nection between distributed computing and the powerful structure of perfect

79
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codes. Deviating from the approach of Chapter 2 which uses covering codes
to reduce the computation cost in asymptotic settings, we here show how
perfect codes — which optimize both the covering radius and packing density
of codes — yield an improved solution to our distributed computing problem,
both in terms of cumulative as well as worst-case costs, and do so for finite
dimensions. To the best of our understanding, this is the first time that perfect
codes (and the closely related quasi-perfect codes) have been associated with
distributed computing and the equivalent problem of matrix factorization.
The derived novel bounds on the cumulative computational cost as well as
on the computational delay of a multi-user linearly-decomposable system
capture the importance of the packing density as well as the packing and
covering radius (defined in [97]) of a code whose parity-check matrix is our
communication-and-computing matrix D. Section 3.2 introduces the system
model, Section 3.3 formulates the problem, Section 3.4 presents the main
results, and finally, Section 3.5 concludes.

3.2 System Model
We consider the same system Model as of Chapter 2 and the same problem
formulation. But the cost definitions are different and more realistic, as
follows

3.2.1 Cumulative Computation Cost and Computa-
tional Delay

Recalling that |Wn| indicates the number of subfunctions that server n
computes, we consider the Cumulative Computation Cost to take the form

Γc ≜
N∑︂

n=1
|Wn| (3.1)

representing the cumulative number of sub-function computations across all
servers.

Furthermore, assuming that the jobs at each server are computed se-
quentially — and under a uniformity assumption that evaluating each file
Wl, l ∈ [L] from the subfunction fl(.) requires a normalized unit of time — we
may consider a server’s computational delay Tn = |Wn| and thus, under some
basic synchronization assumptions, we may consider an overall computational
delay that takes the form

Λ ≜ max
n∈[N ]

|Wn|. (3.2)
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We wish to provide schemes that correctly compute the desired functions,
with reduced costs Γ and Λ.

3.3 Problem Formulation: One-Shot Setting
The problem formulation is similar to Chapter 2’s one-shot setting problem
formulation, to reach the equation:

DE = F. (3.3)

At this point, we note that Wn = supp(E(n, :)) and |Wn| = ω(E(n, :)),
which gives

Λ = max
n∈[N ]

|Wn| = max
n∈[N ]

ω(E(n, :)) (3.4)

revealing how the computational delay Λ of our system is captured by the
maximum number of non-zero elements of any row of E. This is one of the
two sparsity constraints that interest us. The other sparsity constraint can
be seen by recalling that |Wn| = ω(E(n, :)) which gives

Γ =
N∑︂

n=1
|Wn| = ω(E) (3.5)

representing the total number of non-zero elements of E, and which relates
naturally to the cumulative computational cost across all servers. Thus, being
able to decompose F as F = DE where E corresponds to a reduced Λ and Γ,
allows us indeed to reduce the two computation costs. To do this, we will
turn to perfect codes, as well as to quasi-perfect codes.

Note that whenever we say the multi-user linearly-decomposable is im-
plemented based on the decomposition DE = F, it means that based on the
dimensionality K, N , we pick a code and choose its parity-check matrix as
our D, and then perform a syndrome decoding algorithm by regarding each
column of F as a syndrome and each column of E as its corresponding error
vector.

Before doing so, let us here provide a simple example to help clarify the
setting and the notation.

3.3.1 Example
We consider the example of a system with a master node, N = 11 servers,
K = 5 users, L = 12 subfunctions, and a field of size q = 3. In our example,
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the jobs are defined (cf. (2.18)) by a demand matrix that here takes the form

F =

⎡⎢⎢⎢⎢⎢⎢⎣
2 1 1 1 1 1 1 1 2 1 2 0
1 0 0 2 2 2 0 1 1 1 0 1
1 2 1 0 1 0 2 1 2 0 1 1
0 2 0 2 0 1 2 1 0 1 2 1
0 0 0 1 1 2 2 0 1 1 1 2

⎤⎥⎥⎥⎥⎥⎥⎦ .

In the computation and encoding phase, the master allocates the computa-
tion of the different subfunctions f1(.), f2(.), . . . , f12(.) across the 11 servers
according to

S1 = {1, 8, 10}, S2 = {2, 6}, S3 = {5, 9},

S4 = {4}, S5 = {7, 11}, S6 = {1, 6, 12}, S7 = {3},

S8 = {2}, S9 = {3, 10}, S10 = {7, 12}, S11 = {5, 8}

forcing the two costs to be Γ = ∑︁N
n=1 |Wn| = 21 and Λ = maxn∈[N ] |Wn| = 3.

After computing their designated output files, each server n transmits zn

corresponding to a computation and encoding matrix (cf. (2.22)) which here
takes the value

E =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2 0 0 0 0 0 0 1 0 1 0 0
0 1 0 0 0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0 2 0 0 0
0 0 0 2 0 0 0 0 0 0 0 0
0 0 0 0 0 0 2 0 0 0 1 0
1 0 0 0 0 2 0 0 0 0 0 2
0 0 1 0 0 0 0 0 0 0 0 0
0 2 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 2 0 0
0 0 0 0 0 0 1 0 0 0 0 2
0 0 0 0 2 0 0 2 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
and which indeed abides by the constraint max

n∈[N ]
ω(E(n, :)) = Λ = 3 (cf. (3.4))

and the constraint ω(E) = Γ = 21 (cf. (3.5)).
Subsequently, the master asks each server n to send its generated zn to

its designated receiving users, where for each server these user-sets are

T1 = {1, 2, . . . , 5}, T2 = {1, 2, . . . , 4},

T3 = {1, 2, 3, 5}, T4 = {1, 2, 4, 5},

T5 = {1, 3, 4, 5}, T6 = {2, 3, 4, 5}, T7 = {1}, T8 = {2},
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T9 = {3}, T10 = {4}, T11 = {5}

which simply says that, for example, server 2 will broadcast z2 to users
1, 2, 3, 4. Subsequently, the decoding procedure is executed, adhering to a
decoding matrix which takes the value

D =

⎡⎢⎢⎢⎢⎢⎢⎣
1 1 1 2 2 0 1 0 0 0 0
1 1 2 1 0 2 0 1 0 0 0
1 2 1 0 1 2 0 0 1 0 0
1 2 0 1 2 1 0 0 0 1 0
1 0 2 2 1 1 0 0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎦ . (3.6)

In the next section, we will show that the decoding matrix D, is drawn from
a class of perfect codes whose properties — as we show below — allow for an
improved performance.

3.4 Main Results
We proceed with the main results of our work.

Theorem 6. The optimal computational delay Λ of the (K, N) multi-user
linearly decomposable problem implemented based on the decomposition DE =
F, is bounded as

Λ ≤ min{L,
τ∑︂

i=1

(︄
N − 1
i − 1

)︄
(q − 1)i + (1 − µτ )qK} (3.7)

where τ and µτ are respectively the packing radius and the corresponding
packing density of CD.

Proof. Let us rewrite (3.3) as

DE(:, l) = F(:, l), ∀l ∈ [L] (3.8)

and let us note that given a certain D, we ask that for every column F(:
, l) ∈ FK , the resulting E(:, l) has a reduced number of non-zero elements. To
achieve this, after regarding D to be a parity-check matrix of a linear code,
we employ a syndrome decoder, rendering the ‘error pattern’ E(:, l) to be a
coset leader associated to syndrome F(:, l). Now let’s define the following set

S ≜ {l : ω(E(:, l)) ≤ τ} (3.9)

which represents the syndromes F(:, l) for which the weight of their associated
coset leader is below the packing radius τ . From the basic error-correcting



84 3.4. Main Results

argument, we know that all the error patterns having no more than than
τ non-zero elements are indeed present in S, and thus we have that |S| ≤∑︁τ

i=1

(︂
N
i

)︂
(q − 1)i. Let us now focus on a row subvector E(n, S), and let us

count the number of its non-zero elements. Since we know that for all l ∈ S
it is indeed the case that ω(E(:, l)) ≤ τ , and since the collection of all such
columns E(:, l) contains all possible error patterns of weight up to τ , we can
conclude that

ω(E(n, S)) ≤
τ∑︂

i=1

(︄
N − 1
i − 1

)︄
(q − 1)i, ∀n ∈ [N ] (3.10)

because i) each element E(n, l) ̸= 0, l ∈ S can take any one of (q − 1) possible
values, because ii) such a column vector E(:, l) (where again l ∈ S) has at most
τ such non-zero elements, and because iii) there exist at most

(︂
N−1
i−1

)︂
(q − 1)i−1

vectors E(:, l) ̸= 0, l ∈ S whose nth entry E(n, l) is non-zero and whose total
weight is i ≤ τ . Summing across all i = 1, 2, ..., τ yields the first term in our
bound in (3.10). To conclude the proof, we proceed to count the number
of syndromes (columns F(:, l) of F) whose coset leaders (referring to the
corresponding column E(:, l) of E) have weight strictly bigger than τ . To do
so, we first note that the number of points that are not covered by the ball
B(c, τ), c ∈ CD, is (1 − µτ )qN . Recalling that each coset corresponds to qN−K

points (vectors) in GF(q)N , we can conclude that the number of cosets in
question is (1 − µτ )qK . These are the cosets corresponding to syndromes with
indices from S ′ ≜ {l : ω(E(:, l)) > τ}. Thus, for the worst-case scenario of
interest, we can consider that for all l for which ω(E(:, l)) > τ , it is the case
that we will encounter a non-zero E(n, l) for any n ∈ [N ], which is reflected
in the addition of the second term (1 − µτ )qK in our bound. Naturally, L is
a trivial upper bound on Λ. This concludes the proof of the theorem.

We now proceed with the second result, this time regarding the cumulative
computation cost.

Theorem 7. The optimal cumulative computation cost Γc of the (K, N) multi-
user linearly decomposable problem implemented based on the decomposition
DE = F, is bounded as

Γc ≤ min{NL,
τ∑︂

i=1

(︄
N

i

)︄
(q − 1)ii + (1 − µτ )qKρ} (3.11)

where τ, ρ and µτ are respectively the packing radius, covering radius, and
packing density of CD.
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Proof. The proof follows the steps of the proof of Theorem 6, up until the
definition in (3.9), where similarly we now know that all the error patterns
having no more than τ non-zero elements are present in the set of all possible
F(:, l), l ∈ S, and thus we know that the sum of the Hamming weights of the
coset leaders corresponding to the syndromes F(:, l), l ∈ S, takes the form∑︁τ

i=1

(︂
N
i

)︂
i(q − 1)i which matches the first term of our bound. Regarding the

second term, we know that for any l /∈ S, the number of non-zero elements in
E(:, l) is — by definition of the covering radius — no greater than ρ. We also
see, following the ball arguments in the proof of the previous theorem, that
the set S ′ ≜ {l : ω(E(:, l)) > τ} has size |S ′| = (1 − µτ )qK . Hence, we can
now conclude that the sum of the weights of the coset leaders of the vectors
(seen as syndromes) in S ′, is upper bounded by ρ|S ′|.

3.4.1 The Connection to Perfect and Quasi-Perfect
Codes

At this point, we note that the above bound on Γc is reduced when the
covering radius ρ is reduced, while the bound on Λ is reduced when, for any
given τ , the packing density µτ is increased. For this reason we are looking
for codes (whose parity check matrix will be used as the decoding matrix D)
that indeed minimize ρ and increase µτ for a fixed τ . This special and rare
property sought in CD is indeed attributed to the well-known class of perfect
codes [97].

It is though known (cf. [98]) that there exist few such perfect codes, for
a few select dimensions. Thus, for other dimensions, we will resort to the
use of quasi-perfect codes which indeed ensure a similar performance, by
guaranteeing optimal ρ and near-optimal µτ . We elaborate on this later on.

Remark 3. Looking back to our previous example corresponding to N =
11, K = 5, L = 12 and q = 3, the distributed computing solutions employed
an E matrix that resulted from an optimal syndrome decoding process of a
code whose parity check matrix D is indeed that of a ternary Golay code,
which is a known perfect code.

3.4.2 The Special Case of Maximal Basis Set
We here consider also the case where L = qK . This particular case of having
a maximum number of basis subfunctions presents interesting advantages. In
essence, under the same assumptions as before, we are now able to set the
decoding matrix D once, well before the desired functions are declared. This
allows us to have a fixed network connectivity, where — under the assumption
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of knowing in advance K, N — we can fix D, and we can then account for each
F simply by altering E. For this setting, we have the following propositions.

Proposition 4. The optimal computational delay Λ and cumulative compu-
tation cost Γc of the (K, N) multi-user linearly decomposable problem with
maximal basis, are lower bounded as

Λ ≥
τ∑︂

i=1

(︄
N − 1
i − 1

)︄
(q − 1)i, Γc ≥

τ∑︂
i=1

(︄
N

i

)︄
(q − 1)ii (3.12)

where τ is the packing radius of CD.

Proof. Regarding the bound on Λ, we follow all the steps of the proof in
Theorem 6, with the only differences being firstly that the used inequality
|S| ≤ ∑︁τ

i=1

(︂
N
i

)︂
(q − 1)i is now automatically forced into an equality, and

secondly that we consider, by choice, a lower bound |S ′| ≥ 0. Exactly the
same approach applies for the bound on Γc.

Regarding optimality, we have the following proposition.

Proposition 5. The optimal computational costs Λ and Γc for the cases
(K, N) for which a perfect code exists, take the form

Λ =
τ∑︂

i=1

(︄
N − 1
i − 1

)︄
(q − 1)i, Γc =

τ∑︂
i=1

(︄
N

i

)︄
(q − 1)ii (3.13)

where τ is the packing radius of the used perfect code CD.

Proof. For the case where (K, N) accepts a perfect code, we know (cf. [97])
that µτ = 1 for which the upper bounds in (3.7) and (3.11) match the
corresponding upper bounds in (3.12).

We also have the following proposition for a much broader range of
dimensionalities.

Proposition 6. For all cases (K, N) for which there exists a quasi-perfect
code CD, the optimal performance is upper bounded as Λ <

∑︁τ
i=1

(︂
N−1
i−1

)︂
(q −

1)i +
(︂

N
τ+1

)︂
(q − 1)τ+1 and Γc <

∑︁τ+1
i=1

(︂
N
i

)︂
(q − 1)ii, where τ is the packing

radius of the corresponding quasi-perfect code CD.

Proof. The proof is direct by noting that quasi-perfect codes have µτ >
1 −

(︂
N

τ+1

)︂
(q − 1)τ+1q−K and τ = ρ − 1 [97].

Remark 4. Given the non-existence results in [98], it is in fact not difficult
to show that quasi-perfect codes minimize the gaps between the upper bounds
in (3.7) and (3.11) and the corresponding lower bounds in (3.12).
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3.5 Conclusion
We have explored the computational cost of the multi-user distributed comput-
ing setting of linearly decomposable functions, which nicely captures various
problems such as the distributed gradient coding problem [23], the distributed
linear transform problem [26], the distributed matrix multiplication problem,
and the distributed multivariate polynomial computation problems [33], [36],
among others. The work established various upper and lower bounds on the
computational delay Λ and the cumulative computation cost Γc ∈ [0, NL],
and revealed new connections to the packing and covering capabilities of
codes thus revealing for the first time powerful connections with the class of
perfect codes.





Chapter 4

Real-Valued Multi-User
Linearly-Decomposable
Distributed Computing

4.1 Introduction
Focusing on functions over finite fields, Chapter 2 proposed the Multi-User
Linearly-Decomposable Distributed-Computing framework, which allows for
distributed computation of functions that adhere to the very broad linearly
separable format, which in turn captures various classes of linear and non-
linear functions of practical interest1. Such functions have the form

F (.) =
∑︂L

l=1 flgl(.)

Wl = gl(.) are the computed outputs of basis subfunctions gl(.), and fl are
scalar coefficients. In the multi-user (K users and N servers) setting where
each user asks for its own function, the work in Chapter 2 and Chapter 3
transformed the distributed computing problem into a simple (preferably
sparse) matrix factorization problem over finite fields, and then proceeded to
make the direct connection between distributed computing, matrix factoriza-
tion, and multiple coding-theoretic approaches. In particular, for a K × L
demand matrix F where each row describes the coefficients that define the
function requested by a user, the problem was transformed into the factoriza-
tion problem F = DE, where D and E are the communication & decoding
and computing & encoding matrices respectively. E dictated which server
should compute which subfunction and then how each server should combine

1For more information on this, please see [99], [100].
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the computed outputs before transmitting, while the K × N decoding matrix
D dictated which user should each server communicate to and how each user
should combine the various received signals. Then, a solution was proposed
that derived from the powerful class of covering codes, and from a new class
of so-called partial covering codes. In particular, the parity-check matrix from
such codes played the role of D, while then, after considering the columns
of F as syndromes, the columns of E were identified as the coset leaders
with minimum weight, thus guaranteeing the sparsest E and thus the least
computational cost. For example, when D is derived from the basic class
of covering codes over a q-ary field, then the corresponding normalized per
subfunction computational cost γc ∈ [0, 1] — describing the fraction of all
subfunctions each server had to compute — took the form γc = H−1

q (K/N)
where H−1

q (·) is the functional inverse of the entropy function.

We are here though interested in computing functions directly over the
reals, which will indeed constitute a substantial deviation from the finite
field case. This emphasis on the real (or complex) domain is necessitated
by the fact that computing a real-valued problem over a finite field (after
discretization) may not be as practical as computing it directly over the reals,
mainly because discretization may entail large precision costs and accuracy
losses, as well as because finite field computations are notoriously slower than
floating point operations. For that, we will consider real-valued functions
over L real-valued subfunctions (or equivalently, with L component/basis
subfunctions), and N computing servers and K users each demanding their
own function. As we are now working in the field of real numbers, the coding
theoretic approach in chapters 2 and 3 does not directly apply, and thus a
new approach is required.

Here, our approach is based on establishing, for the first time, a connection
between distributed computing and compressed sensing. As a first step, we
show (Proposition 7) that there exists an achievable scheme whose normalized
cumulative computational cost is bounded above as γc ≤ K

N
. This is a

probabilistic scheme, where D is chosen from the Gaussian ensemble, and
where the corresponding sparsity of E is the outcome of a randomized process.
Then we propose ℓ0-minimization, which takes as input D and F to yield
a sparse E. This minimization though is generally intractable, and for this
reason, we draw from the rich literature of compressed sensing to suggest a
more practical approach where we show (Theorem 8) that as long as there
exists a scheme whose computational cost is bounded by γc ≤ −r K

N
W −1

−1 (− 2K
eNr

)
(where W−1(·) is the Lambert function and r is a parameter that calibrates the
communication between servers and users) we can in fact employ a tractable
basis pursuit ℓ1-minimization to derive such scheme.
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4.2 System Model and Problem Formulation
We consider the multi-user linearly-decomposable distributed computation
setting, which consists of K users/clients, N active servers, and a master
node that coordinates servers and users. The tasks performed on each server
may entail substantial computational complexity as well as time constraints.
We consider a setting where each server n can communicate in a single shot
(a single time-slot) to some arbitrary user-set Tn ⊂ [K], via a dedicated
broadcast channel.

In our setting, each user asks for a (generally non-linear) function from
a space of linearly-decomposable functions and is of the form of a linear
combination of individual subfunctions gl(.) ∈ R. Thus, the function Fk(.) ∈
R, demanded by user k ∈ [K], is a real-valued function of the form

Fk(.) ≜ fk,1g1(.) . . . + fk,LgL(.) (4.1)
= fk,1W1 + . . . + fk,LWL (4.2)

where Wl = gl(.) ∈ R, l ∈ [L] is a so-called ‘file’ output, and fk,l ∈ R, k ∈
[K], l ∈ [L] are the linear combination coefficients that define each desired
function.

4.2.1 Phases of the Process
The model involves three phases, with the first being the demand phase, the
second being the assignment and computation phase, and the final one the
transmission and decoding phase. In the demand phase, each user k ∈ [K]
requests Fk(·) from the master node, who then deduces the decomposition as
in (4.2). Then, based on these K desired functions, during the assignment and
computation phase, the master assigns some of the subfunctions to each server
n, which then proceeds to compute these and produce the corresponding files
Wl = fl(.) for all the subfunctions fl(.), l ∈ Wn it is responsible for.

During the transmission phase, each server n ∈ [N ] broadcasts
zn ≜

∑︂
l∈[L]

en,lWl, n ∈ [N ] (4.3)

in a single shot its own linear combination of the locally computed output
files, and does so to its own particular subset of users Tn. The above is defined
by the so-called encoding coefficients en,l ∈ R which are determined by the
master.

Finally, during the decoding phase, each user k linearly combines the
received signals as follows

F ′
k ≜

∑︂
n∈[N ]

dk,nzn (4.4)
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for some decoding coefficients dk,n ∈ R, n ∈ [N ], determined again by the
master node. Naturally dk,n = 0, ∀k /∈ Tn. In the end, we say the exact
decoding is successful when F ′

k = Fk for all k ∈ [K].

4.2.2 Problem Formulation
Similarly to the finite field case, also here, to formulate the problem we use f ≜
[F1, F2, . . . , FK ]⊺, fk ≜ [fk,1, fk,2, . . . , fk,L]⊺, k ∈ [K], w ≜ [W1, W2, . . . , WL]⊺
where f represents the vector of the demanded functions outputs (cf. (4.2)),
fk the vector of function coefficients for user k (cf. (4.2)), and w the vec-
tor of output files combined over all subfunctions. We also have en ≜
[en,1, en,2, . . . , en,L]⊺, n ∈ [N ]z ≜ [z1, z2, . . . , zN ]⊺, respectively representing
the encoding vector at server n, and the overall transmitted vector across all
the servers (cf. (4.3)). Furthermore, we have dk ≜ [dk,1, dk,2, . . . , dk,N ]⊺, k ∈
[K]f ′ ≜ [F ′

1, F ′
2, . . . , F ′

K ]⊺
respectively representing the decoding vector at user k, and the vec-

tor of the decoded functions across all the users. In addition, we have F ≜
[f1, f2, . . . , fK ]⊺ ∈ RK×L, E ≜ [e1, e2, . . . , eN ]⊺ ∈ RN×L, D ≜ [d1, d2, . . . , dK ]⊺ ∈
RK×N

where F represents the K × L so-called jobs matrix of all function co-
efficients across all the users, where E represents the N × L computing
and encoding matrix across all servers, and where D represents the K × N
communication and decoding matrix across all the users.

Directly from (4.2), we have that

f = [f1, f2, . . . , fK ]⊺w (4.5)

and from (4.3) we have the overall transmitted vector taking the form

z = [e1, e2, . . . , eN ]⊺w = Ew. (4.6)

Furthermore, directly from (4.4) we have that

F ′
k = dT

k z (4.7)

and thus we have

f ′ = [d1, d2, . . . , dK ]⊺z = Dz. (4.8)

Recall that we must guarantee

f ′ = f . (4.9)
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After substituting (4.5), (4.6) and (4.8) into (4.9), we see that the above
feasibility condition in (4.9) is satisfied if and only if

DEw = Fw. (4.10)

For this to hold for any w, we must thus have

DE = F. (4.11)

Note that throughout the whole paper, we assume that K ≤ N .

4.2.3 Computational Cost
Recalling quickly that each server n computes the subfunctions whose index
are in Wn, and since Wn = supp(E(n, :)), then the normalized cumulative
computation cost in our case naturally takes the form

γc ≜
∑︁N

n=1 |Wn|
NL

= ∥E∥0
NL

. (4.12)

As one can see, γc simply describes the average fraction of subfunctions that
must be computed by each server, which is also the fraction of non-zero
elements in E. It is now clear that decomposing F into the product of two
matrices D and sparse E, implies reduced cumulative computation cost which
results in reduced delay. In particular, the fewer number of nonzero elements
in a row of E means less delay in finishing up a task for a server.

4.3 Results
In this section, we first give a basic probabilistic scheme for subtask assignment,
based on employing a Gaussian2 random matrix D, where the scheme employs
a simple zero-forcing approach that solves a determined linear system. Albeit
basic, this will allow us to upper bound the optimal normalized cumulative
computation cost — which a generally intractable ℓ0-minimization would give

— as γc ≤ K
N

.

Proposition 7. For the multi-user linearly-decomposable distributed com-
puting problem, with K users, N servers and L subfunctions, employing a
random Gaussian D, guarantees that with probability 1, there exists a scheme
with bounded normalized cumulative computation cost γc ≤ K/N , which serves
as an upper bound the ℓ0-minimal cost.

2This implies that each entry of D is independently and identically picked from a
Gaussian distribution.
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Proof. From (4.11), we have that F(:, l) = DE(:, l), F(:, l) ∈ RK×1, ∀l ∈ [L]
where for each l, in the context of the ℓ0-minimization in (4.15), we have
y = F(:, l), D = A and E(:, l) = z, where again we have an underdetermined
system of equations.

Consider choosing L arbitrary random subsets Sl ⊂ [N ], l ∈ [L] where
|Sl| = K. Now for each l ∈ [L], we focus on the l − th column E([N ], l) of E
and set the elements E([N ]\Sl, l) = 0, i.e., from column l, only the elements in-
dexed by Sl remain non-zero. Now since F(:, l) = D([K], [N ]\Sl)E([N ]\Sl, l)+
D([K], Sl)E(Sl, l), we get F(:, l) = D([K], Sl)E(Sl, l), which is a determined
system of equations that allows us to determine E(Sl, l). In the above,
D([K], Sl) is the corresponding K × K submatrix of D. Given the above,
each such D([K], Sl) is a K × K Gaussian sub-matrix, which is naturally
nonsingular with probability one. Thus, the determined system of equations
always has a unique solution for E(Sl, l), ∀l ∈ [L], therefore the scheme works
for all F(:, l), l ∈ [L]. This scheme guarantees that ∥E(:, l)∥0 ≤ K, then
∥E∥0 ≤ KL, and thus guarantees that γc ≤ K

N
. Better performance can be

achieved by employing ℓ0-minimization as in (4.15).

As we will discuss in Section 4.4, ℓ0-minimization is known to be NP-
hard [101], hence intractable. To offer a practical solution, the following
theorem utilizes results from compressed sensing to describe a range of
practical solutions, which now use ℓ1-minimisation in order to find — as we
will clarify later on — sparse (and unique) computing and encoding matrices
E.

Theorem 8. For the multi-user linearly-decomposable distributed computing
problem, with K users, N servers and L subfunctions, if a scheme exists
with a (κ, β) sub-Gaussian random matrix D (cf. Lemma 13) for which
ℓ0-minimisation would yield

γc ≤ −1
r

K

N
W −1

−1 (− 2K

erN
), 0 ≤ K/N ≤ 12(2β + κ)/κ2, (4.13)

then the corresponding (and unique) E can be found via basis pursuit ℓ1-
minimization with probability at least 1 − 2e− KL

r , where r = 12(4β + 2κ)/κ2.

Proof. The proof is provided in the following section, which starts with a
brief primer on compressed sensing.

4.4 Proof of Theorem 8
Before proceeding with the proof, we quickly describe some basic properties
of compressed sensing.
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4.4.1 Brief Primer on Compressed sensing
We provide here a brief introduction of the compressed sensing results [101]–
[108], which will be employed in our distributed computing problem. We will
utilize notation common to the compressed sensing literature, and the link to
the computing parameters will be clarified in the next subsection.

As described in [105], compressed sensing seeks to recover a sparse vector
x ∈ Rp from a few underdetermined linear measurements of the form:

y = Ax ∈ Rm (4.14)

where A ∈ Rm×p, m, p ∈ N is the so-called measurement matrix, and
y = [y1, ..., ym]⊺ is the measurement vector. In our case, as we will see later
on, y will be associated to our computing and encoding matrix E, then A to
the communication and decoding matrix D, and x will be associated to the
jobs matrix F. The general approach is to recover the sparsest solution via a
basic but computationally intractable ℓ0-minimization that takes the form

min
z∈Rp

∥z∥0 :=
p∑︂

i=1
1|zi|̸=0 subject to y = Az (4.15)

where 1|zi|̸=0 denotes the indicator function. This same optimization will lead
to the sparsest solution for E and thus will yield the smallest possible γc. To
the best of our knowledge, there are no results that enables us to bound the
weight of this sparsest solution, and for that we will use a basic constructive
approach to bound γc.

The NP-hard nature of the optimization problem in (4.15) has led to
the consideration of an ℓ1-norm minimization approach, also known as basis
pursuit, which is considered as the closest convex tractable alternative for
(4.15), and which is given by

min
z∈Rp

∥z∥1 :=
p∑︂

i=1
|zi| (4.16)

s.t. y = Az. (4.17)

It is well established in compressed sensing that the estimate ˆ︁x ∈ Rp obtained
by solving (4.16), achieves the desired unique solution x as long as some
conditions are satisfied3. These conditions are closely related to certain
properties of the measurement matrix, with one such condition being the
well known restricted isometry property (RIP) [93], which dictates how well

3For our computing problem. these will be conditions in the form of an upper bound
on γc.
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ℓ1-norm optimization algorithms, such as basis pursuit [109], can perform.
This is captured in the following result, found in [101, Theorem 6.2], which is
reproduced here.
Lemma 12. For a matrix A ∈ Rm×p and for

δs(A) ≜ max
S⊂[p],|S|≤s

∥A∗
SAS − Im×m∥2

2→2 (4.18)

being the sth restricted isometry constant, and if δ2s(A) < 1
3 , then every

s-sparse vector x ∈ Rp is the unique solution of

minimize
z∈Rp

∥z∥1 subject to Az = Ax. (4.19)

In particular, the above Lemma shows that having a measurement vector
y ∈ Rm, where we know apriori that it is a result of a linear system Ax, x ∈
Rp, m ≤ p, induced by a unique and s-sparse vector x if δ2s(A) < 1

3 , then
via having a ℓ1-minimizer, we can find z as a solution to Az, which it has
minimum ∥z∥1, then the above Lemma guarantees that the solution of this
minimization is equal to x. The above lemma shows that having δ2s(A) < 1/3
is sufficient to guarantee the exact recovery of all unique s-sparse vectors via
ℓ1-minimization. It basically states that if A behaves relatively similar to
orthonormal matrices when operating on sparse vectors, then ℓ1-minimization
will act as an ℓ0-minimization.

In our problem here, it is important that we pick D such that A abides
by the above property. The following two results tell us directly how to do
that. The first, below, is directly adapted from [101, Theorem 9.2].
Lemma 13. Let A ∈ Rm×p be an i.i.d. (zero mean, unit variance) sub-
Gaussian random matrix with parameters β and κ such that

P(|Ai,j| ≥ t) ≤ βe−κt2
, ∀t > 0. (4.20)

Then, δ2s( A√
m

) ≤ δ is satisfied with probability at least 1 − 2e− δ2m
2c for any δ

such that

m ≥ 2cδ−2s ln(ep

2s
) (4.21)

where

c = 2(4β + 2k)
3k2 . (4.22)

Combining Lemma 13 and Lemma 12 after setting δ = 1/3, implies that
the uniform recovery of all s-sparse vectors is possible with high probability
via the ℓ1-minimization in (4.16) as long as the number of measurements
satisfies m ≥ (12(4β + 2κ)/κ2)s ln( ep

2s
) .
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4.4.2 The Exact Description of Proof of Theorem 8
Directly from (4.11), we have

vec(F) = (D⊗IL×L) × vec(E), (4.23)

which matches the compressed sensing setting y = Ax in (4.14) when consid-
ering y = vec(F), A = D⊗IL×L, and x = vec(E), where now m = KL and
p = NL.

Furthermore, let us also note that directly from [110], we have

δs(D ⊗ IL×L) ≤ δs(D). (4.24)

With the elements of D being chosen independently from a zero-mean,
unit-variance sub-Gaussian distribution with parameters β, κ (cf. (4.20)), we
can now employ Lemma 12 and (4.24), together with Lemma 13 after setting
δ2s < δ = 1/3, to conclude that the exact recovery threshold for a unique E
matrix via ℓ1-minimization driven by basis pursuit, takes the form

KL ≥ r ∥E∥0 ln( eNL

2r ∥E∥0
) (4.25)

where r = 12(4β + 2κ)/κ2. Then after normalizing both sides by NL and
applying (4.12), we get

K

N
≥ rγc ln( e

2rγc

). (4.26)

Let us now define f(x) ≜ −r−1xW −1
−1 (−2x

e
) and evaluate it on the both sides

of (4.26), at x1 = K/N and x2 = rγc ln( e
2rγc

) since f(x) is a monotonically
increasing function on 0 ≤ x ≤ r/2 and r/2 ≥ x1 ≥ x2 ≥ 0, we have f(x1) ≥
f(x2), in the view of the fact that its inverse4 function is f−1(x) = rx ln( e

2rx
),

we can retrieve the claim.

4.5 Discussion and Conclusion
In the context of our distributed computing problem, it is interesting to
observe some of the similarities that exist between the real case (which
employed compressed sensing techniques) and the finite-field case in chapter 2,

4To see this, for g(x) ≜ rx ln( e
2rx ) and f(x) ≜ −r−1xW −1

−1 (−2x/e), we see that
g−1(x) = f(x) simply because f(g(x)) = −r−1g(x)W −1

−1 (− 2g(x)
e ) = −x ln( e

2rx )W −1
−1 =

−x ln(e/2rx)W −1
−1 ( 2rx

e ln(2rx/e)) = −x ln(e/2rx)/ ln(2rx/e) = x.



98 4.5. Discussion and Conclusion

which employed the structure of covering codes whose covering radius was a
measure of the sparsity of the solution for E. For example, in the extreme
case of L = qK , the work in chapter 2 revealed5 the optimal normalized
computational cost to be of the form of γc ≃ H−1

q (K/N), which almost
matches γc ≃ K/N in the limit of large q, derived in this paper.

It is also worth noting that our result in Theorem 8 automatically accepts
an additional uniqueness property — on the sparsest solution x in (4.14) —
which is in fact not needed in our distributed computing problem. It would
be interesting to explore further improvements in the computational costs,
upon the removal of this uniqueness condition. Finally, one can imagine that
further improvements in the distributed computing problem could also benefit
from the deep connections revealed in [105] between compressed sensing and
error correction.

5Over a q-ary alphabet, Hq(x) denotes the entropy function, which takes the form
Hq(x) ≜ x logq(q − 1) − x logq(x) − (1 − x) logq(1 − x) for all 0 < x < 1 − 1/q.



Chapter 5

Lossless Tessellated Distributed
Computing

5.1 introduction

As signified in the previous chapters, the celebrated computation-vs-communication
relationship stands at the very core of distributed computing as a fundamental
principle with profound ramifications. This principle appears as a limiting
factor in a variety of distributed computing scenarios [8], [21], [45], [46], [75],
[78]–[84], [111] where indeed communication and computation are often the
two intertwined bottlenecks that most heavily define the overall performance.

Another important factor pertains to computational accuracy and the
ability to recover desired functions with reduced error or distortion. There is
indeed a variety of techniques dedicated to increasing accuracy (cf. [56]–[58],
[112]–[126]), such as for example the sketching technique [113], [116], [126]
which utilized a randomized linear algebraic approach to compute an approxi-
mation of the multiplication of two massive matrices (often by approximating
input matrices by multiplying them with a random matrix having certain
properties), as well as successive approximation coding techniques (cf. [121])
which can tradeoff accuracy and speed, allowing for better approximations
and increased accuracy over time.

This triptych between accuracy, communication costs and computation
costs, lies at the center of distributed computing. We here explore this triptych
for a pertinent setting of multi-user distributed computing.
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5.1.1 Multi-User Linearly-Decomposable Distributed
Computing

We focus on the very broad and arguably practical setting of multi-user
distributed computation of linearly-decomposable real functions, which cap-
tures several classes of computing problems that include distributed gradient
coding problems [23]–[25], [38], the distributed linear-transform computation
problem [26], [45], the distributed matrix multiplication or the distributed
multivariate polynomial computation problems [18], [27]–[29], [31]–[33], [35],
[36], [46], as well as the distributed computing problem of training large-scale
machine learning algorithms and deep neural networks with massive data [8].
These constitute a broad collection of problems where both computation and
communication costs are crucial [43], [44].

Our setting, as depicted in Fig. 5.1, initially considers a master node that
coordinates, in three phases, a set of N distributed servers that compute
functions requested by the K users. During the initial demand phase, each
user k ∈ {1, 2, . . . , K} independently requests the computed output of a
single real function Fk(.). Under the real-valued1 linear decomposability
assumption2, these functions take the basic form

Fk(.) =
L∑︂

ℓ=1
fk,ℓfℓ(.) =

L∑︂
ℓ=1

fk,ℓWℓ (5.1)

where fℓ(·) denotes a (basis or component) subfunction, where fk,ℓ denotes a
real-valued combining coefficient, and where Wℓ = fℓ(x), x ∈ D, denotes the
real-valued output file of fℓ(·) for an input x from any domain set D.

Subsequently, during the computing phase, the master assigns to each
server n ∈ [N ], a set of subfunctions Sn ⊆ [L] to compute locally3 in order to
generate the corresponding Wℓ, and then during the communication phase,
server n forms signals

zn,t ≜
∑︂

ℓ∈[L]
en,ℓ,tWℓ, n ∈ [N ], t ∈ [T ] (5.2)

1The real-valued exposition entails a variety of advantages over finite-field ap-
proaches [22], [42], [89], [127], such as accuracy advantages stemming from using real-valued
fixed point data representations, as well as advantages regarding computation overflows,
quantization errors and scalability barriers [48]–[50].

2This naturally incorporates linearly separable functions (see for example [22]) where
each Fk(.), taking L subfunctions as input, can be written as a linear combination of L
univariate subfunctions. In our work, these subfunctions need not be univariate.

3We will interchangeably use Sn to describe sets of indices (of subfunctions), as well as
the subfunctions themselves.
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as dictated by the encoding coefficients en,ℓ,t ∈ R, n ∈ [N ], t ∈ [T ], ℓ ∈ [L],
and proceeds to transmit zn,t during time-slot t = 1, 2, . . . , T to a subset of
users Tn,t ⊆ [K], via a dedicated error-free broadcast channel. Finally, during
the decoding part of the last phase, each user k linearly combines its received
signals to get

F ′
k ≜

∑︂
n∈[N ],t∈[T ]

dk,n,tzn,t (5.3)

as dictated by the decoding coefficients dk,n,t ∈ R, n ∈ [N ], t ∈ [T ], k ∈ [K].
Naturally dk,n,t = 0, ∀k /∈ Tn,t, simply because user k ∈ [K] does not receive
any symbol from server n ∈ [N ] during time t ∈ [T ]. Note that both
encoding and decoding coefficients are determined by the master node after
the demand phase, and thus are dependent on the functions requested, but
remain independent of the instance of the input to the requested functions.

In case of error, we consider

E =
K∑︂

k=1
|F ′

k − Fk|2, E ∈ R, ∀k ∈ [K] (5.4)

to be the Euclidean distortion during function retrieval. For Tn = ∪T
t=1Tn,t,

we consider the computation and communication costs

Γ ≜ max
n∈[N ]

|Sn|, ∆ ≜ max
n∈[N ]

|Tn| (5.5)

respectively representing the maximum number of subfunctions to be locally
computed at any server4, and the number of users that a server can com-
municate to. After normalization, we here consider the normalized costs

ϵ ≜
E

KL
, γ ≜

Γ
L

, δ ≜
∆
K

. (5.6)

The three parameters are bounded5 between 0 and 1.
4Our focus directly on the cost of computing the component subfunctions fℓ(·) stems

from the point of view that these functions typically capture computationally intensive
(and generally non-linear) tasks which would dominate, in terms of load, the remaining
easier linear manipulations at the servers and users during encoding and decoding.

5In brief, γ is the fraction of subfunctions that must be computed locally, and δ is the
fraction of available links to be activated. Having γ = 1 corresponds to the centralized
scenario of having to locally calculate all subfunctions, while δ = 1 matches an extreme
parallelized scenario that activates all available communication links. We will discuss later
in Section 6.1 the justification of having ϵ ≤ 1.
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...

Master Node

Server Nodes

Users

...

... ...... ...

...

Figure 5.1: The K-user, N -server, T -shot setting. Each server n computes
the subfunctions in Sn = {fin,1(.), fin,2(.), . . . , fin,|Sn|(.)} and communicates

to users in Tn,t, under computational constraint |Sn| ≤ Γ ≤ L and
communication constraint |Tn| ≤ ∆ ≤ K, yielding a system with normalized

constraints γ = Γ
L

, δ = ∆
K

and with an error constraint ϵ = E
KL

, where
γ, δ, ϵ ∈ [0, 1].
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Another two parameters of interest are

ζ ≜
∆
L

, κ ≜
K

L
(5.7)

where ζ normalizes the number of activated communication links by the
number of subfunctions, while κ reflects the dimensionality (‘fatness’) of
matrix F and thus will define the statistical behavior of the singular values
of F which will be crucial in the lossy case where we allow for function
reconstruction error.

In a system defined by K, N and L, our goal is to find schemes that can
recover any set of desired functions, with the best possible decoding refinement
ϵ, and the smallest possible computation and communication loads γ, δ. To
do so, we must carefully decide which subfunctions each server computes, and
which combinations of computed outputs each server sends to which users.
Having to serve many users with fewer servers naturally places a burden on
the system (suggesting higher γ, δ, ϵ), bringing to the fore the concept of the
system rate

R ≜
K

N
(5.8)

and the corresponding system capacity C representing the supremum of all
rates.

5.1.2 Connection to Sparse Matrix Factorization, and
Related Works

Toward analysing our distributed computing problem, we can see from (2.1)
that the desired functions are fully represented by a matrix F ∈ RK×L of
the aforementioned coefficients fk,ℓ. With F in place, we must decide on
the computation-assignment and communication (encoding and decoding)
protocol. As we have seen in [127], [128], for the error-free case of ϵ = 0,
this task is equivalent — directly from (5.2),(5.3) and (5.4) — to solving a
(sparse) matrix factorization problem of the form

DE = F (5.9)

where, as we will specify later on, the NT × L computing matrix E holds
the coefficients en,ℓ,t from (5.2), while the K × NT communication matrix
D holds the decoding coefficients dk,n,t from (5.3). As one can suspect, a
sparser E reflects a lower γ and a sparser D a lower δ, at the cost though of a
potentially higher ϵ. Focusing on functions over finite fields, the work in [127],
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after making the connection between distributed computing and the above
factorization problem, employed from coding theory the class of covering
codes and a new class of partial covering codes, in order to derive bounds on
the optimal communication and computation costs for the error-free case. In
brief, by choosing D to be the sparse parity-check matrix of a (shown to exist)
sparse partial covering code, each column of E was subsequently produced
to be the coset leader from syndrome decoding (with the syndrome being)
the corresponding column6 of F. This allowed for reduced communication
and computation costs, where for example in the single shot scenario with
a q-ary finite field, the (somewhat different from here) normalized optimal
computation cost γ ∈ (0, 1] was bounded as a function of the q-ary entropy
function Hq to be in the range γ ∈ [H−1

q ( logq(L)
N

), H−1
q (K

N
)].

A first exposition of the real-valued variant of our computing problem,
again for the error-free case of ϵ = 0, can be found in [129], which refor-
mulated the equivalent sparse matrix factorization problem DE = F into
the well-known compressed sensing problem Ax = y which seeks to effi-
ciently identify unique sparse solutions to an under-determined system of
equations7. This reformulation allowed for conditional bounds on γ of the
form γ ≤ −1

r
K
N

W −1
1 (−2K

erN
), where though these bounds8 remained loose and

conditional, for two main reasons. The first reason stems from the fact that
the focus of the compressed sensing machinery is mainly on the search ef-
ficiency and uniqueness of the sparse solutions, rather than on the level of
sparsity itself9. The second reason is that, while in our computing setting our
communication matrix D must be a function of F, compressed sensing places
its focus on designing A in a manner that is oblivious to the instance of y
(which corresponds to our F). These mismatches are part of what our work

6Thus for example, the first column of E is the coset leader to the coset corresponding
to the syndrome described by the first column of F and by the code whose parity check
matrix is D.

7This reformulation identifies the observed vector y with the vectorized F, the sparse
solution x with the vectorized E, and the alphabet matrix A with the Kronecker product
of the communication matrix D with an identity matrix.

8Here W1(.) is the first branch of the Lambert function, while r calibrates the statistical
distribution of D.

9Search efficiency and uniqueness are not fundamental to our distributed computing
problem. For example, what a compressed sensing exposition of our problem effectively
shows is that, under the assumption that the sparsest solution for E has sparsity-level not
more than the above γ = − 1

r
K
N W −1

1 ( −2K
erN ), and under the additional assumption that this

solution is unique, then — with high probability, in the limit of large N — there is an
l1-minimization approach that will efficiently find this sparsest unique solution. For us,
the efficiency of identifying E is of secondary importance, and the possibility of having
another equally sparse E is not an issue.
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here addresses, allowing us to directly explore the fundamental principles of
our computing problem.

5.1.3 New Connection Between Distributed Comput-
ing, Fixed Support Matrix Factorization, and
Tessellations

As we will see almost directly from (5.2), (5.3) and (5.4), (5.9), and also from
Lemma 23, solving our distributed computing problem will be equivalent to
solving the approximate matrix factorization problem

Ê = min
D,E

∥DE − F∥2
F (5.10)

under dimensionality constraints posed by K, NT, L, and under sparsity
constraints on D and E posed by δ and γ respectively. These sparsity
constraints will be described in detail later on.

This problem encompasses the problem of compressed sensing, and it
is known to be NP hard [130]. In general, finding the optimal solution
(D̂, Ê) = arg min

D,E
∥DE − F∥2

F to (5.10), under the aforementioned dimension-

ality and sparsity constraints, requires an infeasible coverage of the entire
space of solutions. Otherwise, establishing optimality of an algorithmic so-
lution, generally requires establishing uniqueness of that solution, which is
challenging [131], [132]. Furthermore, to date, little is known in terms of
clear guarantees on the optimal error performance Ê , for any given F and any
given dimensionality and sparsity constraints on D, E.

Recently, the work in [53] explored the problem of Fixed Support (sparse)
Matrix Factorization (FSMF), which — under the equivalent dimensionality
and sparsity constraints of the unbounded problem of (5.10) — seeks to find

ÊI,J = min
D,E

∥DE − F∥2
F (5.11)

Subject to: supp(D) ⊆ I, supp(E) ⊆ J

where I ⊆ [K] × [NT ] and J ⊆ [NT ] × [L] respectively define the support
constraint supp(D) and supp(E) of D and E, where such support constraint
entails that D(i, j) = 0, ∀(i, j) /∈ I and E(i, j) = 0, ∀(i, j) /∈ J . FSMF
remains a broad10 and challenging problem, partly because, as argued in [53],

10For connections between the FSMF problem with Low-rank matrix approximation
[133], LU decomposition[134], Butterfly structure and fast transforms[135], Hierarchical
H−matrices [136] and matrix completion [137], the reader may read [53].
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it does not directly accept the existing algorithms from the unconstrained
problem in (5.10).

After showing that ill-conditioned supports may lead certain algorithms
[53] to converge to local minima (referred to as ‘spurious local valleys’), the
same work in [53] revealed that for some specific I, J , some algorithms can
provably converge to the corresponding ÊI,J which is shown to be unique
but, clearly, optimal only within the space of D, E defined by the specific
support I, J . The work in [53] placed some of its focus on a particular class
of “disjoint" supports, corresponding to the class of those supports I, J that
(as we will clarify later on) map onto disjoint regions of F. The finding in [53]
is that such “disjoint" I, J render (5.11) tractable.

Naturally, depending on I, J , even such optimal “support-limited" solu-
tions in (5.11) can have unbounded gaps ÊI,J − Ê to the global optimal Ê
from (5.10), as we simply do not know how badly the performance deteriorates
by limiting the search within the specific fixed-support set of matrices.

In summary, to date, in terms of explicit solutions to the matrix factoriza-
tion problem in (5.10), little is known in terms of designing good supports,
while in terms of optimality guarantees, these are restricted to within the spe-
cific problem in (5.11) where the search is for a given specific support. To date,
little is known about explicitly characterizing a desired error performance Ê
under any desired sparsity constraints.

Our contribution to the sparse matrix factorization problem We
begin by clarifying that the progress that we have made in this domain
is limited to the sparse matrix factorization problem where the sparsity
constraints are on the columns of D and the rows of E. To be clear, we are
placing a constraint that no column of D has a fraction of non-zero elements
that exceeds δ, and no row of E has a fraction of non-zero elements that
exceeds γ. With this in place, in terms of designs, for the lossless case of
ϵ = 0, our contribution is to identify supports that are optimal over a very
large class of D, E, and to explicitly identify the conditional optimal (D̂, Ê)
of the problem in (5.10) restricted to the aforementioned very large class of
D, E. Under our constraints, these are the sparsest supports that guarantee
lossless reconstruction of any F. On the other hand, when E > 0, we can
identify — under some additional uniformity assumptions — the best possible
support among all conceivable disjoint supports, in that no other disjoint
support can be sparser. Hence, in terms of achievable schemes for D, E, our
contribution is to first make the connection between the approach in [53] and
the combinatorics analysis of tiling [54] which guarantees that our schemes
satisfy a crucial covering condition, and to then explicitly design easy to
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represent SVD-based schemes for D, E for any F.
In terms of guarantees on performance, and under our disjoint assumption,

we provide clear expressions on the minimum possible sparsity γ, δ that
guarantees an ϵ = 0. Now for the lossy case of ϵ > 0, we are providing
upper bounds on the optimal ϵ under any given sparsity constraint (or
equivalently, lower bounds on the sparsity and dimensionality constraints, for
any given ϵ > 0). These bounds on the optimal ϵ are provided after we employ
the asymptotic setting of scaling K, N, L, after we accept some uniformity
assumptions on the weights of the supports of D and E (reflecting a uniformity
on the load of the servers), and they are provided in the stochastic sense
by averaging over the ensemble of possible F, under some basic statistical
assumptions. These, to the best of our knowledge, are the first explicit
characterizations that identify or bound the optimal performance of the
sparse matrix factorization problem, again under our assumptions.

Our ability to handle the stochastic problem, particularly benefits from
being able to reduce the overall factorization problem into a sequence of
combinatorially-designed11, SVD-resolved low-rank matrix approximation
problems ([53]), whose simplicity opens up to the benefits from existing
powerful results from random matrix theory [138]. This same problem of
using tessellations to allow for matrix decomposition with statistically good
approximations, is a very interesting problem because as we will see, the
shape of the tiles affects the goodness of the approximation that each tile
offers to particular parts of the matrix F. This is an interesting connection
which, to the best of our knowledge, appears here for the first time.

Summary of our contributions on the problem of multi-user dis-
tributed computing of linearly-decomposable functions Having made
the connection between matrix factorization and distributed computing, we
here identify the FSMF problem to be key in the resolution of our real-valued
multi-user distributed computing problem, for which we provide the following
results.

We first consider the lossless case of E = 0, and after we design an
achievable scheme using novel concepts and algorithms introduced in [53] and
a converse using combinatorial tiling arguments [54], Theorem 9 establishes
the exact system capacity C = K

Nopt
where

Nopt = min(∆, Γ)
T

⌊K

∆ ⌋⌊L

Γ⌋ +
min(mod(K, ∆), ⌊L

Γ ⌋)
T

⌊L

Γ⌋ (5.12)

11As we note here, the approach of [53] is a special case of tiling [54], focusing on disjoint
tiles.
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+
min(mod(L, Γ), ⌊K

∆ ⌋)
T

⌊K

∆ ⌋ + min(mod(K, ∆), mod(L, Γ))
T

(5.13)

where this exact optimality is established for the case of T ≥ min(∆, Γ) as
well as the case of ∆ ≥ Γ, ∆|K, T |Γ as well as the case of Γ ≥ ∆, Γ|K, T |∆, or
∆|K, Γ|L, T |min(∆, Γ). For the remaining cases (corresponding to a subset
of the cases where T < min(∆, Γ)), our achievable scheme is shown to suffer
from only a constant gap to the optimal. In terms of design, many of the
above cases are of particular interest because the tessellation patterns that
we must construct, must accommodate for tiles of various sizes and shapes.
In terms of insight, we can highlight for example the simplified case of (5.40),
which applies to the relatively broad setting of δ−1, γ−1 ∈ N (corresponding
to having ∆|K, Γ|L), where the capacity now takes the insightful form

C =
⎧⎨⎩T max(ζ, γ), if T | L min(ζ, γ)

Lζγ, if T > Lmin(ζ, γ)
(5.14)

revealing that for the first case, the optimal communication-vs-computation
points (γ, δ), are ( K

NT
, T

K
) and ( T

N
, L

NT
), while for the other case the tradeoff

takes the form
γδ = 1

N
.

5.1.4 Chapter Organization
The rest of the chapter is organized as follows. Section 5.2 formulates the
system model for the setting of multi-user distributed computing of linearly-
decomposable functions. Section 5.3 addresses the error-free case, providing
schemes and converses that lead to Theorem 9. Subsequently, Section 6.1
addresses the lossy-computation case in the asymptotic setting, providing
schemes and converses that lead to Theorem 10. In Section 5.4, we discuss
some of the results, before proceeding with various appendix sections that
host some of our proofs as well as a small primer on matrix approximation.

5.2 Problem Formulation
We here describe in detail the main parameters of our model, making the clear
link between our distributed computing problem and sparse matrix factoriza-
tion, defining matrices D, E, F and the various metrics, rigorously making the
link between the distributed computing problem and the factorization in (5.9)
(see also (5.32)) for the error-free case, as well as rigorously presenting the
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equivalence of our lossy distributed computing problem to the approximate
matrix factorization problem corresponding to (5.10). Let us consider

f ≜ [F1, F2, . . . , FK ]⊺ ∈ RK , (5.15)
fk ≜ [fk,1, fk,2, . . . , fk,L]⊺ ∈ RL, k ∈ [K], (5.16)
w ≜ [W1, W2, . . . , WL]⊺ ∈ RL (5.17)

where f represents the vector of desired function outputs Fk from (5.1),
where fk represents the vector of function coefficients fk,ℓ from (5.1) for the
function requested by user k, and where w denotes the vector of output files
Wℓ = fℓ(·) again from (5.1). Then recalling the encoding coefficients en,ℓ,t

and transmitted signals zn,t from (5.2), as well as the decoding coefficients
dk,n,t and decoded functions F ′

k from (5.3), we have

en,t ≜ [en,1,t, en,2,t, . . . , en,L,t]⊺ ∈ RL, n ∈ [N ], t ∈ [T ], (5.18)
zn ≜ [zn,1, zn,2, . . . , zn,T ]⊺ ∈ RT , n ∈ [N ], (5.19)
En ≜ [en,1, en,2, . . . , en,T ]⊺ ∈ RT ×L, n ∈ [N ], (5.20)

dk,n ≜ [dk,n,1, dk,n,2, . . . , dk,n,T ]⊺ ∈ RT , k ∈ [K], n ∈ [N ], (5.21)
dk ≜ [d⊺

k,1, d⊺
k,2, . . . , d⊺

k,N ]⊺ ∈ RN×T , k ∈ [K] (5.22)

and thus from (5.15), the output vector taking the form

f = [f1, f2, . . . , fK ]⊺w (5.23)

as well as the transmitted vector by server n taking the form

zn = Enw = [en,1, en,2, . . . , en,T ]⊺w. (5.24)

This allows us to form the matrices

F ≜ [f1, f2, . . . , fK ]⊺ ∈ RK×L, (5.25)
E ≜ [E⊺

1, E⊺
2, . . . , E⊺

N ]⊺ ∈ RNT ×L, (5.26)
D ≜ [d1, d2, . . . , dK ]⊺ ∈ RK×NT (5.27)

where F represents the K × L matrix of all function coefficients across all the
users, where E represents the aforementioned NT ×L computing and encoding
matrix capturing the computing and linear-encoding tasks of servers in each
shot, and where D represents the K ×NT communication and decoding matrix
capturing the communication protocol and the linear decoding task done
by each user. Thus, we clarify here, that all presented results, schemes and
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converses, assume our multi-user linearly-decomposable distributed computing
problem, and assume, in their entirety, linear encoding at the servers, and
decoding at the receivers.

To see the transition to the matrix factorization problem, we first note
that from (5.2) and (5.23) we have that the overall transmitted vector z ≜
[z⊺

1, z⊺
2, . . . , z⊺

N ]⊺ ∈ RN×T takes the form

z = [E⊺
1, E⊺

2, . . . , E⊺
N ]⊺w = Ew (5.28)

and then that given the decoding from (5.3), each retrieved function takes
the form

F ′
k = d⊺

kz (5.29)

thus resulting in the vector of all retrieved functions taking the form f ′ =
[d1, d2, . . . , dK ]⊺z. Our aim is to minimize the recovery error

E ≜ ∥f ′ − f∥2 (5.30)

solving the following problem

minimize
f ′

∥f ′ − f∥2 = minimize
D,E

∥DEw − Fw∥2 = minimize
D,E

∥(DE − F)w∥2.

(5.31)

Directly from the above, we see that for the error-free case of E = 0,
resolving our distributed computing problem requires that F be decomposed
as

F = DE (5.32)

as seen in (5.9).
For the lossy case, directly from upcoming Lemma 23, and under the

assumption of the independence of w from D, E, F, as well as from the fact
that D, E are deterministic functions of F, and from the fact that the elements
of w are i.i.d with unit variance, we have that

ϵ ≜
E F,w{E}

KL
= E F,w{∥(DE − F)w∥2

2}
KL

= EF{∥DE − F∥2
F }

KL
(5.33)

which holds for any scheme that deterministically derives D, E. This brings
to the fore the aforementioned (cf. (5.10)) minimization Ê = min

D,E
∥DE − F∥2

F ,
and our aim will be to bound

ϵ̂ ≜
E F,w{min

D,E
∥DE − F∥2

F }

KL
(5.34)
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which matches the function reconstruction error

ϵ̂ =
E F,w{min

D,E

∑︁K
k=1 |Fk − F

′
k|2}

KL
. (5.35)

In terms of the corresponding connection to the sparsity of D and E, we
recall from (5.5) our metrics Γ ≜ maxn∈[N ] |Sn| and ∆ ≜ maxn∈[N ] |Tn|, which
directly from (5.22)–(5.24) and from (5.25)–(5.27), imply that

max
n∈[N ]

| ∪T
t=1 supp(D(:, (n − 1)T + t))| ≤ ∆ (5.36)

and that

max
n∈[N ]

| ∪T
t=1 supp(E((n − 1)T + t, :))| ≤ Γ (5.37)

and thus we see how the normalized costs δ = ∆
K

, γ = Γ
L

from (5.6) form the
upper bound on the fraction of non-zero elements of the columns of D and
rows of E, respectively.

Finally, from (5.8) we recall the system rate R = K
N

, the corresponding
system capacity C representing the supremum of all rates for error-free
function reconstruction, and the two parameters of interest ζ = ∆

L
and κ = K

L
.

Some additional definitions and assumptions on the stochastic aspects of
our problem, will be described in Section 6.1.

5.3 Lossless Distributed Computing of Linearly-
Decomposable Functions

We proceed with the main results for the error-free (lossless) case. We recall
the distributed computing setting, which involves K users, N servers, T
communication slots, computational and communication costs Γ ≤ L, ∆ ≤ K
respectively, normalized costs γ, δ ∈ [0, 1], a communication-related parameter
ζ = ∆

L
, and a system capacity corresponding to the maximum ratio K/N that

achieves lossless reconstruction of the functions. We first present the result
without any restriction on the dimensions, while we recall that the optimality
requires that each submatrix of F be fullrank, which is a condition that is
readily justified in our real-function setting of interest here. We apply a soft
assumption on the dimensionality, to offer crisp expressions. All the results
hold under the assumption that NT ≥ L and NT ≥ K. The following main
result will hold under the basic disjoint support assumption on the matrices
D, E, where this assumption will be clarified in Definition 3 right after the
theorem. The proofs will follow from an achievable scheme and a converse
that will be presented later on.
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Theorem 9. The optimal achievable rate of the lossless K, N, T, Γ, ∆ dis-
tributed computing setting takes the form C = K/Nopt, where

⌈min(∆, Γ)
T

⌉⌊K

∆ ⌋⌊L

Γ⌋ + ⌈min(mod(K, ∆), Γ)
T

⌉⌊L

Γ⌋

+ ⌈min(mod(L, Γ), ∆)
T

⌉⌊K

∆ ⌋ + ⌈min(mod(K, ∆), mod(L, Γ))
T

⌉ (5.38)

≥ Nopt ≥ KL

T max(Γ, ∆) (5.39)

and the bounds exactly meet (and thus the achievable scheme is exactly op-
timal) for T ≥ min(∆, Γ) as well as for ∆ ≥ Γ, ∆|K, T |Γ as well as for
Γ ≥ ∆, Γ|K, T |∆. Else the achievable capacity is within a constant gap
from the optimal. Finally, when δ−1, γ−1 ∈ N (corresponding to the case of
∆|K, Γ|L, T |min(∆, Γ)), the capacity takes the form

C =
⎧⎨⎩T max(ζ, γ), if T | L min(ζ, γ),

Lζγ, if T > Lmin(ζ, γ).
(5.40)

Proof. The proof can be found in the appendix Section 5.7 which describes
the achievability of the corresponding decomposition DE = F, and how this
is translated to our distributed computing setting with the corresponding
communication and computation cost constraints. The converse can be found
in the appendix Section 5.8, and so is the proof of exact optimality and order
optimality of the achievable scheme.

The above assumption on optimality is clarified in the following definition.
Definition 3. [Disjoint Support Assumption] We say that two matrices
D ∈ RK×NT , E ∈ RNT ×L, accept the disjoint support assumption if and only
if for any two columns D(:, i), D(:, i′), i, i′ ∈ [NT ] of D and the respective
two rows E(i, :), E(i′, :) of E, then supp(D(:, i)E(i, :)) = supp(D(:, i′)E(i′, :))
or supp(D(:, i)E(i, :)) ∩ supp(D(:, i′), E(i′, :)) = ∅.

Let us introduce an illustrative example that pertains to the simpler
single-shot scenario.
Example 1. Let us see a basic example of a multi-user linearly-decomposable
problem. Here, we have N servers tasked with computing functions for K = 6
users. These functions are linear combinations of L = 10 subfunctions. We
will focus on the simplified scenario with T = 1 (single-shot communication)12.

12In the single shot scenario, a server broadcasts a single linear combination of the output
files to its connected users. For T > 1, a server can broadcast multiple linear combinations
of the output files, not necessarily to the same set of users. The communication cost ∆
measures the union of all the activated links throughout the T shots.



Chapter 5. Lossless Tessellated Distributed Computing 113

Our budget allows for a maximum of ∆ = 3 communication links per server,
equivalent to δ = ∆

K
= 3

6 , and a per-server computational cost of Γ = 5 (as
defined in equation (5.5)) computed subfunctions, corresponding to γ = Γ

L
=

5
10 . With this in place, we seek the minimum number of servers needed to
guarantee lossless reconstruction (E = 0) of the desired functions at the users,
and for this we draw from (5.40) to conclude that we need N = 12 servers. To
tackle this challenge of reconstruction, we need to construct two key matrices
based on F:

1. The (NT × L) = (12 × 10) computing-and-encoding matrix E, which
specifies which subfunctions each server computes. Each row of E should
have at most Γ = 5 non-zero elements.

2. The (K × NT ) = (6 × 12) communication-and-decoding matrix D,
which determines where each server communicates to and how each user
collects data from different servers. Each column of D should have at
most ∆ = 3 non-zero elements.

These matrices originate from the decomposition F = DE. Recalling from
equation (5.25) that the matrix F representing the requested functions, is of
size K × L = 6 × 10, and considering Γ = 5, which corresponds to γ = 1/2,
the solution is as follows:

1. Initially we partition F into K
∆

L
Γ = 2 · 2 = 4 disjoint 3 × 5 submatrices,

which we will call ‘tiles’, Sj ∈ R∆×Γ = R3×5, where j ranges from 1 to
4, as illustrated in Figure 5.2.

2. Then using the standard matrix decomposition form (see later on
in (5.46)), we SVD-decompose each Sj into Sj = LjRj, where Lj ∈
R3×3, Rj ∈ R3×5 for all j ∈ [4], noting that such full decomposition is
possible since the maximum rank of each Sj is min(∆, Γ) = 3.

3. Then we construct D ∈ R6×12 and E ∈ R12×10 by tiling them with Lj

and Rj respectively, in the manner clearly illustrated in Figure 5.2.
Thus, for example, the upper left 3 × 3 submatrix of D is equal to L1,
the 3 × 3 tile to the right of that is zero, while the lower left corner of
E is equal to R4.

The above example offers a glimpse, albeit partly illustrative, of the
general principle behind creating our achievable scheme. In brief, for the
simpler case corresponding to (5.40), we begin by splitting our K × L matrix
F, into γ−1δ−1 submatrices of size ∆ × Γ, and we SVD-decompose (using
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Figure 5.2: Corresponding to Example 1, this figure illustrates the
partitioning of F into 4 tiles of size (∆ × Γ) = (3 × 5), and then the sparse
tiling of D and E with tiles Lj and Rj respectively, resulting in the full tiling
of F = DE which is covered by the four Sj = LjRj, j ∈ [4] (see Figure 5.2),
guaranteeing sparsity δ = γ = 1

2 for D and E respectively, thus satisfying the
per-server communication and computing constraints, while yielding lossless

reconstruction of the functions.
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the matrix decomposition form) each submatrix into the Lj, j ∈ [4] part that
becomes a tile of D, and into the Rj, j ∈ [4] part to becomes a tile of E.
The tile-placement must respect the sparsity constraints from Γ, ∆ and must
yield DE = F. Regarding the required number of servers, a quick rule of
thumb (at least for the case of T = 1) is that N is simply the number of
submatrices, multiplied with the rank of each submatrix13. In our example,
we had 4 submatrices, each of rank 3, thus we employed 12 servers, which
later turns out to be optimal.

On the other hand, once we reduce the computation and communication
capabilities of each server, more servers may be required. This is illustrated
in the following example.

Example 2. For the same setting as in Example 1, again for K = 6, L =
10, T = 1, and again for ∆ = 3 (corresponding to δ = 1

2), if we wish to
substantially reduce the load on each server to only having to compute Γ = 2
subfunctions (corresponding now to γ = 1

5), then the minimum number of
servers N is now 20, and the corresponding tessellation pattern is presented
in Figure 5.3, where we see 10 submatrices of rank 2.

At the same time, some reductions in γ, δ may come for free. As it turns
out, there can be multiple tessellation patterns resulting in the same value
of N , but depending on the size and placement of the tiles, such patterns
could correspond to different Γ and ∆. To illustrate, consider the following
example.

Example 3. In a lossless computing setting similar to that in Example 1,
we consider again N = 12 servers, K = 6 users, L = 10 subfunctions and
T = 1. As in Example 1, we maintain a computational cost of Γ = 5, but
now we see that the tessellation pattern in Figure 5.4 allows for a reduced
∆ = 2 corresponding to δ = 1/3.

Such reductions in the communication and computation costs can continue,
up to a point, and then again more servers may be required to provide
lossless function reconstruction, as suggested by Example 2. The following
corollary addresses this aspect, by providing the optimal communication-vs-
computation tradeoff for a broad setting. We recall our usual conditions that
NT ≥ L and NT ≥ K.

Corollary 2. In the (K, N, T, γ, δ) lossless distributed computing setting with
δ−1, γ−1 ∈ N, the optimal communication-vs-computation relationship takes

13Having a larger T augments the span of the transmitted signals, thus allowing for
fewer required servers.
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Figure 5.3: A problem setting with the same K = 6, L = 10, ∆ = 3 and
E = 0 as the Example 5.2, but a smaller computation cost Γ = 2

corresponding to γ = 1/5. The number of servers used now for zero-error
function recovery increases from 12 to 20.
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Figure 5.4: Pertaining to Example 3 with K = 6, L = 10, T = 1, Γ = 5 and
an optimal number of N = 12 servers, the new tessellation pattern allows for

a reduced ∆ = 2 reflecting a reduction from δ = 1/2 to δ = 1/3.

the form

γδ = 1
N

, for T > Lmin(ζ, γ) (5.41)

whereas when T | L min(ζ, γ), the (γ, δ) operating points

( K

NT
,

T

K
) and (T

L
,

L

NT
) (5.42)

are again optimal.

Proof. The proof is direct from (5.40).

The results of the above corollary are illustrated in Figure 5.5.

Corollary 3. For the case where T < max(∆, Γ), the achievable rate R in
(5.38) is at most a multiplicative factor of 8 from the optimal.

Proof. The proof can be found in the Appendix 5.8.



1185.3. Lossless Distributed Computing of Linearly-Decomposable Functions

Figure 5.5: On the right we see the optimal performance for
T ≥ min(∆, Γ), which contrasts the blue achievable region with the red
provably non-achievable region. On the left, we illustrate for the simple

single-shot case, the two optimal points (γ = K
N

, δ = 1
K

) and (γ = 1
L

, δ = L
N

),
which are compared to the operating points A = (γ = 1, δ = 1/K) and

B = (γ = 1/L, δ = 1) of two conceivable baseline schemes. Point A = ( 1
L

, 1)
is that of a baseline fully-centralized scheme where servers n ∈ [K] are

assigned all subfunctions (the rest are assigned no functions), while point
B = (1, 1

K
) corresponds to a fully-parallelized baseline scheme where each

server only computes one subfunction output and sends it, by necessity, to all
users. The two points correspond to the trivial decompositions

F = [IK 0(K,K−N)] · [F⊺ 0(L,N−K)]⊺ and F = [F 0(K,N−L)] · [IL 0(L,N−L)]
respectively.



Chapter 5. Lossless Tessellated Distributed Computing 119

5.4 Conclusion
In this Chapter, we investigated the fundamental limits of multi-user dis-
tributed computing of real-valued linearly-decomposable functions. In ad-
dressing this problem, we have made clear connections to the problem of fixed
support matrix factorization, tessellation their via various examplesy. We
characterized the error-free system capacity C = K

Nopt
in Theorem 9 revealed

the minimal computational and communication resources γ, δ, N required
to accommodate a certain number of users and subfunctions. The same
result yields a simple relationship between computational complexity and
communication load, as this is described in Corollary 2, and the results are
proven optimal over some broad schemes. The lossy variant of this problem in
a statistical setting will be investigated in the next chapter. For future work,
one can imagine cases where the servers have unbalanced computational and
communication capabilities.

5.5 Appendices

5.6 Concepts Relating to the Design of the
Schemes

Before describing our schemes and converses, we present in this section some
basic properties and definitions that will be useful later on.

We recall that our goal will be to design the communication matrix D
and the computing matrix E that yield DE = F (or DE ≈ F, depending on
our case), under fixed N, T , and under a constraint of at most ∆ non-zero
elements in any column of D and at most Γ non-zero elements in any row of
E. To do so, we will need some basic concepts and definitions relating to the
approach14 in [53].

Definition 4. Given two support constraints I ∈ {0, 1}K×NT and J ∈
{0, 1}NT ×L of two matrices D ∈ RK×NT and E ∈ RNT ×L respectively, then
for any n ∈ [NT ], we refer to Sn(I, J) ≜ I(:, n)J(n, :) ∈ RK×L as the nth
rank-one contribution support15 of DE [53].

14We quickly recall that for a matrix A, then A(:, n) represents its nth column, A(n, :)
its nth row, supp(A) the binary matrix indicating the support of A, while for a vector
a, then supp(a) represents the set of indices of a with non-zero elements. Also, when we
refer to a support constraint, this will be in the form of a binary matrix that indicates the
support (the position of the allowed non-zero elements) of a matrix of interest.

15We have naturally assumed that I(:, n) and J(n, :) each have at least one non-zero
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We note that when the supports are implied, we may shorten Sn(I, J) to
just Sn. This will relate to the support of DE. On this, we have the following
lemma.
Lemma 14. For I ≜ supp(D) and J ≜ supp(E), then

∪N
n=1Sn(I, J) ⊇ supp(DE). (5.43)

Proof. The above follows from Definition 4, from having ∪N
n=1Sn(I, J) =

∪N
n=1I(:, n)J(n, :), and from the fact that DE = ∑︁NT

n=1 D(:, n)E(n, :).

We also need the following definition.
Definition 5. For I = supp(D) ∈ {0, 1}K×NT and J = supp(E) ∈ {0, 1}NT ×L,
the equivalence classes of rank-one supports are defined by the equivalence
relation i ∼ j on [NT ] which holds if and only if Si = Sj . This relation allows
us to define C to be the set of all equivalence classes [53].

The above splits the columns of D (and correspondingly the rows of E)
such that the equivalence i ∼ j holds if and only if I(:, i)J(i, :) = I(:, j)J(j, :).
Definition 6. For two supports I ∈ {0, 1}K×NT , J ∈ {0, 1}NT ×L of D and
E respectively, and for C being the collection of equivalence classes as in
Definition 5, then each class P ∈ C will have a representative support which
we will denote as SP .
Definition 7. For a representative support SP of a class P ∈ C (as in
Definition 6), and for some n ∈ P , we define cP ≜ I(:, n) (resp. rP ≜ J(n, :))
to be the corresponding component column (resp. component row) of SP ,
and we define CP ≜ supp(cP) ⊂ [K] to be the set of indices of the non-zero
elements in cP , while we define RP ≜ supp(rP) ⊂ [L] to be the set of indices
of the non-zero elements in rP .
Remark 5. As we will see later on, the non-zero part of SP will define the
position and size of tile16 P of DE. Furthermore, the non-zero part of I(:, P)
and the non-zero part of J(P , :) will define the so-called tiles of D and E
respectively17, and they will naturally map onto tile P of DE. Also note that
a tile P (which corresponds to the representative contribution support SP ,
i.e., which corresponds to the entire class P) should not be confused with the
rank-one contribution support Sn. A tile may entail multiple (specifically |P|
such) rank-one contribution supports.
element.

16Note that Sn = SP for any n ∈ P.
17To help the reader with the notation, we remind here that I(:, P) simply refers to the

columns of I labeled by the elements inside set P. Similarly, J(P, :) corresponds to the
rows of J indexed by P.
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Figure 5.6: The figure on the left illustrates the support constraints I and
J on D and E respectively. The constraints I(:, 1) and J(1. :) on the columns
and rows of D and E respectively are colored green, I(:, 2) and J(2. :) are

colored cyan and I(:, 3) and J(3. :) are colored red. The product of a column
with a row of the same color, yields the corresponding rank-one contribution
support Sn(I, J), n = 1, 2, 3, as described in Definition 4, and as illustrated

on the right side of the figure.

We proceed with further definitions.

Definition 8. For every subset C ′ ⊆ C of equivalence classes, we define the
union of the representative supports SC′ ≜ ∪P∈C′SP to be — as defined in
Section 5.1.4 — the point-wise logical OR of the corresponding SP .

In the above, SC′ is simply the area of the product matrix DE covered by
all the tiles P in C ′. Furthermore we have the following definition.

Definition 9 ([53]). The maximum rank of a representative support of class
P ∈ C takes the form

rP ≜ min(|CP |, |RP |). (5.44)

As one can readily see, when I = supp(D) and J = supp(E), then the
part of matrix DE covered by tile SP , can have rank which is at most rP .

Remark 6. While in mathematics, tiling a matrix (or a surface area) cor-
responds to finding a way to ‘cover’ this matrix with tiles of specific sizes,
here our task is somewhat different. Here our goal is to cover a product
matrix (DE in this case) with tiles that are the result of a product of properly
placed tiles of D and of E, where these last tiles must adhere to the sparsity
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Figure 5.7: This figure illustrates three different rank-one contribution
supports S1, S2, S3, where the first two fall into the same equivalence class

SP1 = S1 = S2, while SP2 = S3.

constraints of D and E. Furthermore, the size of the non-zero part of each Sn,
n ∈ P , together with the number of such equivalent elements in P , will jointly
determine the degree of the approximation of the corresponding submatrix of
F.

Before proceeding with the scheme, we here also give a very brief reminder
on the basic concepts regarding SVD decompositions.

5.6.1 Brief Primer on Matrix Approximation
For an m × n matrix A, for some k ≤ min{m, n}, the rank-k approximation
of A takes the form18

Am×n ≃ Bm×kCk×n (5.45)

where Bm×k and Ck×n are two full rank matrices of dimension m × k and
k × n respectively. Such decomposition allows us to represent A with at most
k(m + n) elements, which can be substantially fewer than the mn elements
required to represent A.

18In the following, when needed we will be using matrix-subscripts to denote the dimen-
sionality of matrices. For example, we will be using Bm×k to emphasize that matrix B has
dimensionality m × k.
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As we will further recall below, matrices can be represented by employing
SVD decomposition. For a rank-r matrix Am×n, this SVD takes the form

A = Um×rSr×rV⊺
r×n =

[︂
u1, u2, . . . , ur

]︂
⎡⎢⎢⎢⎢⎣
σ1 0

σ2
. . .

0 σr

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣
v⊺

1
v⊺

2
...

v⊺
r

⎤⎥⎥⎥⎥⎦ =
r∑︂

i=1
σiuiv

⊺
i

(5.46)

where U and V are orthogonal matrices, where S is diagonal with entries
σ1 ≥ σ2 ≥ . . . ≥ σr ≥ 0 being the singular values in descending order, where
u1, u2, . . . , ur are the columns of Um×r, and where v⊺

1, v⊺
2, . . . , v⊺

r are the rows
of Vn×r.

Subsequently, the optimal rank-k approximation matrix Ak, k < r of A,
takes the form

Ak = Um×k(Sk)k×kV⊺
k×n =

k∑︂
i=1

σiuiv
⊺
i = Um×kU⊺

k×mA (5.47)

= (
k∑︂

i=1
uiu

⊺
i )A = AVn×kV⊺

k×n = A(
k∑︂

i=1
viv⊺

i ) (5.48)

where (Sk)k×k = diag(σ1, σ2, . . . , σk), Um×k = [u1, u2, . . . , uk] and V⊺
k×n =

[v⊺
1, v⊺

2, . . . , v⊺
k]. This approximation, also referred to as the truncated SVD

approximation, is simply the projection of A onto the space spanned by the
strongest k singular vectors of A. Directly from the well-known Eckart-Young
Theorem [133], this approximation is optimal, as it guarantees ∥A − B∥F ≥
∥A − Ak∥F =

√︂
σ2

k+1 + . . . + σ2
r for any rank-k matrix B.

With the above in place, we proceed to describe the scheme for the lossless
case.

5.7 Scheme for Lossless Reconstruction (Achiev-
ability Proof of Theorem 9)

We recall that we wish to design the decomposition DE = F, for fixed
N, K, T, ∆, Γ, that will guarantee the reconstruction of all requested function
outputs, with each of the N servers locally calculating up to Γ subfunctions,
and each engaging in communication with at most ∆ users over the entirety
of T broadcast shots.

In what follows, we will explain the tile design, elaborating on the posi-
tioning of these tiles in D and E, as well as defining how these tiles are filled
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as a function of the SVD decomposition of carefully selected submatrices of
F. This is done both for the single-shot as well as the multi-shot scenarios.
Our design naturally abides by the number of servers available. In particular,
the position and size of the tiles of D and E will be crucial, because they will
determine the rank of corresponding submatrices of DE, where in particular
the sum of these ranks must be bounded by NT . Before proceeding with
the scheme, we also note that we have Examples 4 and 5 that illustrate the
design of our scheme for the more challenging case of ∆ ∤ K, Γ ∤ L, T = 1 as
well as of ∆|K, Γ|L, T > 1.

5.7.1 Construction of D, E

The construction will involve the following steps: a) Sizing and positioning
the tiles of D, E and DE, b) Filling the non-zero tiles in DE as a function of
F, and finally c) Filling the tiles in D and E. We elaborate on these steps
below.

First step: Sizing and positioning the tiles of D, E and of DE We
first partition the set of equivalent classes C (cf. Definition 5) into the following
subsets of equivalence classes

C1 ≜ {Pi,j | cPi,j
= [0⊺

(i−1)∆, 1⊺
∆, 0⊺

K−i∆]⊺, rPi,j
= [0⊺

(j−1)Γ, 1⊺
Γ, 0⊺

L−jΓ], (5.49)

(i, j) ∈ [⌊K

∆ ⌋] × [⌊L

Γ⌋]}, (5.50)

C2 ≜ {Pi,∗ | cPi,∗ = [0⊺
(i−1)∆, 1⊺

∆, 0⊺
K−i∆]⊺, (5.51)

rPi,∗ = [0⊺
L−mod(L,Γ), 1⊺

mod(L,Γ)], i ∈ [⌊K

∆ ⌋]}, (5.52)

C3 ≜ {P∗,j | cP∗,j
= [0⊺

K−mod(K,∆), 1⊺
mod(K,∆)]⊺, (5.53)

rP∗,j
= [0⊺

(j−1)Γ, 1⊺
Γ, 0⊺

L−jΓ], j ∈ [⌊L

Γ⌋]}, (5.54)

C4 ≜ {P | cP = [0⊺
K−mod(K,∆), 1⊺

mod(K,∆)]⊺, (5.55)
r⊺P = [0⊺

L−mod(L,Γ), 1⊺
mod(L,Γ)]} (5.56)

where cPi,j
, cPi,∗ , cP∗,j

, cP are the corresponding component columns (as de-
fined in Definition 6) of C1, C2, C3, C4 respectively. Similarly rPi,j

, rPi,∗ , rP∗,j
, rP

are the corresponding component rows, from the same definition. These de-
scribe the exact position and size of each tile of D, of E, and thus automatically
of each tile of DE.
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We now note that the number of classes in each subset Ci, i = 1, 2, 3, 4, is
equal to

|C1| = ⌊K

∆ ⌋⌊L

Γ⌋, |C2| = ⌊K

∆ ⌋, |C3| = ⌊L

Γ⌋, |C4| = 1 (5.57)

while we also note from (5.44) and Definition 9, that the maximum rank of
each representative support (i.e. of each tile of DE) takes the form

rP =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
min(∆, Γ), P ∈ C1,

min(mod(K, ∆), Γ), P ∈ C2,

min(mod(L, Γ), ∆), P ∈ C3,

min(mod(K, ∆), mod(L, Γ)), P ∈ C4.

(5.58)

The above information will be essential in enumerating our equivalence classes
and associating each such class to a collection of servers.

Second step: Filling the non-zero tiles in DE as a function of F
Recall that we have a tile SP(RP , CP) corresponding to the non-zero elements
of SP . This tile is now empty, in the sense that the non-zero entries are all
equal to 1. To fill this tile, we consider

FP ≜ (F ⊙ SP)(RP , CP), ∀P ∈ ∪4
i=1Ci (5.59)

where this filled tile, in our current lossless case, is simply the submatrix of
F at the position defined by the non-zero elements of SP . The schematic
illustration in Figure 5.8 of Example 4, may help clarify the above.

Third step: Filling the tiles in D and E We now SVD-decompose each
FP , as

FP = DPEP (5.60)

where DP ∈ R|RP |×rP , EP ∈ RrP ×|CP |. Going back to (5.46), our matrices
FP , DP , EP are associated to A, U · S and V respectively, and all correspond
to complete SVD decompositions. For a visual representation of this second
step, we provide Figure 5.8 of Example 4.

Let us now enumerate our classes (i.e., our tiles) as follows

∪4
i=1Ci = {P1, P2, . . . , Pm}, m ∈ N. (5.61)

Now let us position each tile of D as follows

RPj
, [

j−1∑︂
i=1

T ⌈rPi

T
⌉ + 1 :

j∑︂
i=1

T ⌈rPi

T
⌉], ∀Pj ∈ ∪4

i=1Ci (5.62)
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and each tile of E as follows

[
j−1∑︂
i=1

T ⌈rPi

T
⌉ + 1 :

j∑︂
i=1

T ⌈rPi

T
⌉], CPj

, ∀Pj ∈ ∪4
i=1Ci (5.63)

where the above describes the indices of columns and rows where each tile
resides.

At this point, we note that for the single shot case of T = 1, the above
yields

D(RPj
, [

j−1∑︂
i=1

rPi
+ 1,

j∑︂
i=1

rPi
]) = DPj

(5.64)

and

E([
j−1∑︂
i=1

rPi
+ 1,

j∑︂
i=1

rPi
], CPj

) = EPj
(5.65)

while naturally the remaining non-assigned elements of D and E are zero.
This step can also be visualized in Figure 5.8 which illustrates this step as it
applies to Example 4.

We recall from Section 2.3 (cf. (2.78), (2.81)), that each server n ∈ [N ]
corresponds to a column and row index of D and E respectively. To make
the connection between N and the parameters employed in our scheme, let
us recall our tiles P ∈ ∪i∈[4]Ci and the corresponding DP as seen in (5.60),
and let us recall, as described in (5.64), that all such DP occupy ∑︁m

i=1 rPi

columns in total. Combining this information with the value of rP in (5.58),
yields that

N =
∑︂
i∈[4]

∑︂
P∈Ci

rP |Ci| = min(∆, Γ)⌊K

∆ ⌋⌊L

Γ⌋ (5.66)

+ min(mod(K, ∆), Γ)⌊L

Γ⌋

+ min(mod(L, Γ), ∆)⌊K

∆ ⌋ (5.67)

+ min(mod(K, ∆), mod(L, Γ)) (5.68)

which proves Theorem 9 for the case of T = 1. An additional clarifying
illustration for the single shot case can be found in Example 4.

For the case of T > 1, the difference is in the third step, where we now
replace (5.64) and (5.65), where by accounting for (5.63), we see that the tiles
of D and E respectively take the form

DPj
= D(RPj

, [
j−1∑︂
i=1

T ⌈rPi

T
⌉ + 1 :

j∑︂
i=1

T ⌈rPi

T
⌉]) (5.69)
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and

EPj
= E([

j−1∑︂
i=1

T ⌈rPi

T
⌉ + 1 :

j∑︂
i=1

T ⌈rPi

T
⌉], CPj

). (5.70)

One aspect in our design that distinguishes the multi-shot from single-shot
case, regards the association of tiles to servers. An additional level of complex-
ity here has to do with what one might describe as an “accumulation of rank"
at the different servers. As we have realized, there is an association between
tiles and servers. In the case of T = 1, a single tile Pi of rank rPi

, could be
associated with rPi

servers, each contributing to a single rank. If the number
of servers associated with a tile reached the rank of that tile, then that tile
could be decomposed in a lossless manner. Now though, as one can imagine,
having multiple shots (corresponding to T > 1) can allow a single server to
span more than one dimension, i.e., to contribute to more than one rank inside
that tile. For arbitrary T and rPi

though, one can imagine the possibility of
having underutilized servers. Imagine for example a tile with rank rPi

, which
could fully utilize ⌊ rPi

T
⌋ servers, leaving the tile with an accumulated rank that

is mod(rPi
, T ) smaller than its desired rPi

, and leaving us also with a server
that is underutilized (in terms of accumulating rank) in the decomposition
of the particular tile. One might consider as a remedy, the possibility of
associating the underutilized server with an additional tile. This though, runs
the risk of violating the communication and computation constraints, simply
because this additional (second) tile of DE may correspond to a tile of D
and E, whose union with the aforementioned (first) tile of D or E associated
to this same underutilized server, may have a number of non-zero elements
that exceeds the number allowed by the communication and computation
constraints. The scheme that we present accounts for this, and provably
maintains a small and bounded under-utilization of our servers compared to
the optimal case.

With this in mind, we associate ⌈ rP
T

⌉ servers to each equivalence class
where, continuing as before, we can evaluate rP using (5.58) for any P ∈
Cj, j ∈ [4]. This yields automatically

N = ⌈min(∆, Γ)
T

⌉⌊K

∆ ⌋⌊L

Γ⌋ + ⌈min(mod(K, ∆), Γ)
T

⌉⌊L

Γ⌋

+ ⌈min(mod(L, Γ), ∆)
T

⌉⌊K

∆ ⌋ + ⌈min(mod(K, ∆), mod(L, Γ))
T

⌉. (5.71)

To complete the achievability proof of Theorem 9, we proceed to evaluate
(5.40), which gives our capacity to be

C0
(a)= K

N

(b)= ∆Γ
⌈min(∆,Γ)

T
⌉L

(c)=
⎧⎨⎩(T/L)(∆Γ/min(∆, Γ)), if T | min(∆, Γ),

(∆Γ)/L, if T > min(∆, Γ)
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where (a) follows by definition, (b) follows from Theorem 9, and (c) follows
after basic algebraic manipulations where we see that if T |min(∆, Γ) then
⌈min(∆,Γ)

T
⌉ = min(∆,Γ)

T
, while if T > min(∆, Γ) then ⌈min(∆,Γ)

T
⌉ = 1. The proof

is then completed directly after applying (1.1) and (5.7) to evaluate the RHS
of the last equality.

5.7.2 Examples
We now present two small examples, first for the single-shot and then for
the multi-shot case, which can help us better understand the concepts of
representative supports (tiles), and the tessellation pattern that yields D and
E.

Example 4. Consider a single-shot scenario with K = 7 users, L = 11
subfunctions (thus corresponding to a demand matrix F ∈ R7×11), under the
constraint ∆ = 3 and Γ = 5. Let us go through the design steps described
above.

• First step — Sizing and positioning the tiles of D, E and of DE: The
positions of the tiles are derived according to (5.50)–(5.56), yielding the
corresponding tessellation pattern illustrated in Figure 5.8. As we can
see, the pattern entails four tile families C1, C2, C3, C4, of respective sizes
3×5, 3×1, 1×5 and 1×1. Each family has the following number of tiles
|C1| = ⌊K

∆ ⌋⌊L
Γ ⌋ = 2 × 2 = 4, |C2| = ⌊K

∆ ⌋ = 2, |C3| = ⌊L
Γ ⌋ = 2, |C4| = 1,

and the tiles have a maximum rank (cf. Definition 9) equal to rP = 3
for P ∈ C1, and rP = 1 for the rest. Figure 5.8 also illustrates how
the designed tessellation pattern successfully covers F, which — in the
lossless case — is a necessary condition.

• Second step — Filling the non-zero tiles in DE: The master node
extracts the submatrices corresponding to each of the tiles as described
in (5.59), and we have now matrices FP = (F ⊙ SP)(RP , CP), which
tell us how the tiles of F are filled.

• Third step — Filling the tiles in D and E: In this final step, the master
node proceeds to perform complete SVD decompositions for all matrices
FP above, where each SVD decomposition takes the form FP = DPEP ,
thus yielding all DP and EP , ∀P ∈ C, as described in (5.60). Note
that there are four different types of SVD decompositions, depending
on whether P comes from C1, C2, C3 or C4. These filled tiles are placed
inside D and E respectively (as illustrated in Figure 5.9), in accordance
to the positioning steps in (5.69) and (5.70).
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text

Figure 5.8: Corresponding to Example 4, the figure on the left represents
in black the families of the equivalent classes (cf. (5.50)–(5.56)). The 9

equivalent classes (right) cover the entire F.
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Figure 5.9: Creating our communication and computing matrices D, E and
applying the coordinates given in (5.62)–(5.65).
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At this point, we calculate the number of used servers (cf. (4)) to be
N = 3 × 4 + 1 + 1 × 2 + 1 × 2 = 17.

We proceed with an additional example, now for the multi-shot case.

Example 5. We consider the same setting as in Example 1, with K = 6 users,
L = 10 subfunctions, a communication cost ∆ = 3 and a computation cost of
Γ = 5, but where now we consider each server to be able to communicate to
T = 2 different sets of users, in two respective shots (one shot to one group
of users, and another one to a potentially different group of users). Let us go
through the steps described in our section above.

• First step — Sizing and positioning the tiles of D, E and of DE: The
sizes and locations of the tiles of D, E and DE, are described by the
tessellation pattern given directly from (5.50)–(5.56), as also illustrated
on the left side of Figure 5.2. This pattern, in our simpler case here,
entails tiles only from C1, where we find a total of |C1| = ⌊K

∆ ⌋⌊L
Γ ⌋ =

2 × 2 = 4 tiles, each of size 3 × 5, and each of maximum rank rP = 3
(cf. Definition 9). We again note that the pattern successfully covers F.

• Second step — Filling the non-zero tiles in DE: Exactly as in the
single-shot case, again here the master node extracts the submatrices
corresponding to each of the tiles as described in (5.59). This yields all
the FP which are simply the filled tiles of F.

• Third step — Placing the filled cropped tiles DP and EP in D and
E: Finally, the master SVD decomposes each FP as FP = DPEP ,
which provides the required DP and EP , ∀P ∈ C, as described in
(5.60). Finally, these tiles are placed in D and E respectively, in direct
accordance to the coordinates described in (5.62)–(5.65). This last part
is illustrated in Figure 5.10.

For this setting, applying directly (5.71) tells us that we need N = 8 servers.
We also observe that while the tiles of F remain the same as in the correspond-
ing single shot case of Example1 (as also illustrated in Fig 5.2), indeed our
tiles of D and E change19, as illustrated in Figure 5.10. The same figure also

19We note here that if we had forced N down to N = 6 as in Example 1 (corresponding
to the tiling in Figure 5.2), then some servers would violate the communication and
computation cost constraints. For example, server 2 would have been forced to support
a communication cost of 6 (6 links to different users), since the union of supports of the
third and fourth column of D would have size 6. Similarly the corresponding E would
entail a computation cost of 10 (10 subfunctions locally calculated), since the size of the
union of the supports of the third and the fourth columns of E would have been 10.
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Figure 5.10: Corresponding to Example 5, this figure illustrates the tiling
of D and E respectively with DP ∈ R3×3 and EP ∈ R3×5, for

P ∈ {P1, P2, P3, P4}. Guaranteeing
DPEP = FP ∈ R3×5, ∀P ∈ {P1, P2, P3, P4}, in turn guarantees lossless

function reconstruction. We can see that the union of the supports of T = 2
consecutive columns of D includes at most ∆ = 3 non-zero elements thus
guaranteeing the communication constraint. We also see that the union of

the supports of T = 2 consecutive rows of E includes at most Γ = 5 non-zero
elements thus guaranteeing the computation constraint.

illustrates how each two consecutive columns of D and two consecutive rows of
E, correspond to a server. Note that although the rank of each tile is at most
rP = 3, the number of servers associated with each tile is ⌈ rP

T
⌉ = ⌈3

2⌉ = 2.
This reflects the fact that the second shot of the even-numbered servers
remains unused, to avoid having a server be associated to two tiles, and thus
to avoid violating the computation and communication constraints.
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5.8 Appendix:Proof of The Converse for The-
orem 9

The converse that we provide here will prove that the scheme for the single shot
case is exactly optimal when Γ ≥ ∆, Γ|L, T |∆ or ∆ ≥ Γ, ∆|K, T |Γ and also
the scheme for the multi-shot case is optimal when T ≥ min(∆, Γ). We begin
with three lemmas that will be useful later on. First, Lemma 15 will state
the necessity of having a one-to-one correspondence between each rank-one
contribution support20 and each server, then Lemma 16 will state the necessity
of having a tessellation pattern that covers the whole area of F, and then
Lemma 17 will elaborate more on size limits of each tile as a consequence of
the communication and computation constraints. Lemma 18 then establishes
the conceptual equivalence between Definition 3 and disjoint tiles. Lemma 19,
lower bounds the number of tiles is each equivalence class by the number of
subtiles (cf. Definition 19) corresponding to a tile. Subsequently, Lemma 20,
gives the necessary number of subtiles, so that a covering scheme can be
constructed, then via combining the last two of the aforementioned lemmas,
we give a lower bound on the number of rank-one contribution supports for
any covering scheme with proper sizes, and then using Lemma 15, we finalize
our converse by giving a lower-bound on the number of servers.

When focusing on the general case of T > 1 in Section 5.8.2, we will
substitute Lemma 15 with Lemma 21 to eventually show how each server’s
transmission (to one set of users) must correspond to a rank-one contribution
support. Then using the same argument as in the single-shot case, we lower
bound the necessary number of servers by the number KL

T max(Γ,∆) . Then the
lower bound is further tightened for the cases where T ≥ min(∆, Γ), since
then each tile corresponds to one server which will enable us, using Lemma 22,
to obtain a new lower bound of ⌈K

∆ ⌉⌈L
Γ ⌉, which matches the value obtained

by the achievable scheme.

5.8.1 Converse for The Single-Shot Case of T = 1
Before presenting the lemmas, let us recall that rank-one contribution supports
were defined in Definition 4, that representative supports (i.e. tiles) were
defined in Definition 6, as well as let us recall from the same definition that
the collection of all classes is represented by C.

The following lemma, while stating the obvious, will be useful in associating
the number of servers to the number of rank-one contribution supports.

20Recall that the nth rank-one contribution support takes the form Sn(I, J) = I(:, n)J(n, :
).
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Lemma 15. For any D, E with respective supports I = supp(D) ∈ {0, 1}K×N

and J = supp(E) ∈ {0, 1}N×L, there exists a one-to-one mapping between
the server indices n ∈ [N ] and rank-one contribution supports Sn(I, J).

Proof. The proof is direct by first recalling Definition 4 which, for any n ∈ [N ],
says that Sn(I, J) = I(:, n)J(n, :), and then by recalling from (2.14),(2.16),(2.78)
and (2.81) that, in the single-shot setting, each server n ∈ N corresponds to
the nth column of D (itself corresponding to I(:, n)) and the nth row of E
(corresponding to J(n, :)).

We proceed with the next lemma, which simply says that every element
of F must belong to at least one representative support (tile).

Lemma 16. In any lossless function reconstruction scheme corresponding
to DE = F, for each (i, j) ∈ [K] × [L], there exists a class ∃P ∈ C such that
(i, j) ∈ RP × CP .

Proof. The lemma aims to prove that there exists no element F(i, j) of
F that has not been mapped to a tile FP . We will prove that for each
(i, j) ∈ [K] × [L] then ∃P ∈ C : (i, j) ∈ RP × CP and we will do so by
contradiction. Let us thus assume that there exists (i, j) ∈ [K] × [L] such
that ∄P ∈ C : (i, j) ∈ RP × CP , which would in turn imply — directly from
(5.64), (5.65) — that DE(i, j) = 0 as well as would imply the aforementioned
fact that the non-assigned (by the process in (5.64), (5.65)) elements of D
and E, are zero. Now we see that

∥(DE − F)w∥2
2 = ∥

K∑︂
k=1

(DE − F)(k, :)w∥2
2

=
K∑︂

k=1,k ̸=i

L∑︂
ℓ=1,ℓ ̸=j

[(DE − F)(k, ℓ)w(ℓ)]2 + (DE − F)2(i, j)w2(j)

+ 2(DE − F)(i, j)w(j)
K∑︂

k=1,k ̸=i

L∑︂
ℓ=1,ℓ ̸=j

(DE − F)(k, ℓ)w(ℓ)

=
K∑︂

k=1,k ̸=i

L∑︂
ℓ=1,ℓ ̸=j

[(DE − F)(ℓ, k)w(ℓ)]2

+ F2(i, j)w2(j) − 2F(i, j)w(j)
K∑︂

k=1,k ̸=i

L∑︂
ℓ=1,ℓ ̸=j

(DE − F)(ℓ, k)w(ℓ).

(5.72)

Let us now recall that lossless function reconstruction implies that ∥(DE −
F)w∥2

2 = 0 for all F ∈ RK×L and all w ∈ RL. Under the special case of
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w(ℓ) = 0, ∀ℓ ∈ [L]\{j} and w(j)F(i, j) ̸= 0, we see — directly from (5.72)
— that ∥(DE − F)w∥2

2 = F2(i, j)w2(j) ̸= 0, which contradicts the lossless
assumption, thus concluding the proof of the lemma.

The next lemma now limits the sizes of each tile.

Lemma 17. For any feasible scheme yielding DE = F, then each representa-
tive support P ∈ C satisfies

0 < ∥SP(k, :)∥0 ≤ Γ, ∀k ∈ RP , 0 < ∥SP(:, l)∥0 ≤ ∆, ∀l ∈ CP (5.73)

which means that each SP can have at most Γ non-zero elements in each row
and ∆ non-zero elements in each column.

Proof. We first recall from Definition 4 that supp(D) = I, supp(E) = J. We
also recall that maxn∈[N ] |∪T

t=1supp(D(:, (n−1)T +t))| ≤ ∆ and maxn∈[N ] |∪T
t=1

supp(E((n − 1)T + t, :))| ≤ Γ (cf. (5.36),(5.37)) must hold for any feasible
scheme. Hence for all n ∈ [NT ], we have that ∥I(:, n)∥0 ≤ ∆, ∥J(n, :)∥0 ≤ Γ,
and consequently since Sn = I(:, n)J(n, :) (cf. Definition 4), we must have
that ∥Sn(k, :)∥0 ≤ Γ, ∀k ∈ [K] , ∥Sn(:, l)∥0 ≤ ∆, ∀l ∈ [L] ∀n ∈ [N ]. Then from
Definition 6, we see that for all P ∈ C, there exists an n ∈ [N ] such that
Sn = SP . Note that the lower bound follows from Definition 7 where RP , CP
are defined.

Continuing with the main proof, in order to relate the notion of tiles to the
rank-one contribution supports, we need first to define the notion of sub-tiles,
where each entry of a sub-tile is a matrix coordinate. We also recall that
RP and CP are respectively the row and column indices of tile P, as given
in Definition 7, as well as note that we here regard RP and CP as arbitrarily
ordered sets.

Definition 10. For each tile P, the set of (at most) ∆ horizontal sub-tiles
takes the form

HP,hP ≜ {(RP(hP), j)|j ∈ CP , hP ∈ [∆]} (5.74)

while the set of (at most) Γ vertical sub-tiles takes the form

VP,vP ≜ {(i, CP(vP))|i ∈ RP , vP ∈ [Γ]}. (5.75)

In the above, RP(hP) represents the hP-th element of RP , and similarly
CP(vP) represents the vP-th element of CP . We also note (cf. Lemma 17)
that each horizontal (resp. vertical) sub-tile can have at most Γ (resp. ∆)
elements. We also need the following function definition.
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Definition 11. For G being the power set of all horizontal and vertical sub-
tiles {HP,hP , VP,vP }P∈C,hP ∈[∆],vP ∈[Γ], we define the function Φ(.) : {0, 1}K×L →
G as

Φ(SP) ≜
⎧⎨⎩{HP,hP |hP ∈ [∆]}, if |RP | ≤ |CP |,

{VP,vP |vP ∈ [Γ]}, if |RP | > |CP |.
(5.76)

We now proceed to bound the number of rank-one contribution supports,
and we do so under our previously stated assumption of disjoint supports
(cf. Definition 3), which is equivalent to disjoint tiles assumptions via the
following Lemma,
Lemma 18. For two matrices D, E, the representative supports {SPi

}m
i=1 of

DE are disjoint (i.e., SPi
∩ SPj

= 0, j ̸= i) if and only if D and E accept the
disjoint support assumption of Definition 3.
Proof. Assuming that D ∈ RK×NT , E ∈ RNT ×L abide by the disjoint sup-
port assumption from Definition 3, then for all i, i′ ∈ [NT ], we have that
either Supp(D(:, i)E(i, :)) = Supp(D(:, i′)E(i′, :)) or that Supp(D(:, i)E(i, :
)) ∩ Supp(D(:, i′)E(i′, :)) = ∅. This in turn implies that for I = Supp(D) ∈
{0, 1}K×NT , J = Supp(E) ∈ {0, 1}NT ×L, then either I(:, i)J(i, :) = I(:, j)J(j, :)
or I(:, i)J(i, :) ∩ I(:, j)J(j, :) = 0K×L, which in turn yields the assumption in
Definition 5 of disjoint representative support equivalence classes.

In reverse, if DE accepts the disjoint representative support assumption,
and if C = {P1, . . . , Pm} is the collection of the equivalence classes, then
∀P , P ′ ∈ C, CP = CP ′ or CP ∩ CP ′ = ∅ and similarly ∀P , P ′ ∈ C, RP = RP ′

or RP ∩ RP ′ = ∅, which in turn implies that ∀i, i′ ∈ [NT ] then supp(D(:
, i)) = supp(D(:, i′)) or supp(D(:, i)) ∩ supp(D(:, i′)) = ∅, as well implies that
∀i, i′ ∈ [NT ] then supp(E(i, :)) = supp(E(i′, :)) or supp(E(i, :)) ∩ supp(E(i′, :
)) = ∅. Consequently, if supp(D(:, i)) = supp(D(:, i′)) and supp(E(i, :)) =
supp(E(i, :)) both hold, then supp(D(:, i)E(i, :)) = supp(D(:, i′)E(i′, :)) or
other wise supp(D(:, i)E(i, :)) ∩ supp(D(:, i′)E(i′, :)) = ∅, which in turn yields
the assumption in Definition 3 that D and E satisfy the disjoint support
assumption.

We proceed with the next lemma.
Lemma 19. In any lossless function reconstruction scheme corresponding to
DE = F, the number of rank-one contribution supports |P| in each class P ,
satisfies |P| ≥ |Φ(SP)|.
Proof. Recall from Definition 3 and Lemma 18 that in the context of lossless
schemes, each representative support is disjoint. Then we can see that

|P| ≥ min(min(|RP |, |P|), min(|CP |, |P|)) (5.77)
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(a)= min(rank(DP), rank(EP))
(b)
≥ rank(FP) (c)= min(|RP |, |CP |) = rP

(5.78)
where (a) follows from Definition 3 and Lemma 18 which tells us that in the
context of lossless schemes then each representative support is disjoint which
in turn tells us that (5.60) applies in which case we have D(RP , P) = DP and
E(P , CP) = EP . Subsequently (b) follows from the fact that DPEP = FP , (c)
follows from the dimensionality of FP , and the last equality holds from the
definition of rP .

We now proceed with a lemma that lower bounds the minimum number
of horizontal or vertical sub-tiles needed21 to cover F ∈ RK×L.
Lemma 20. For any single-shot lossless function reconstruction scheme,
and for the corresponding DE = F decomposition, the minimum number of
sub-tiles needed to cover F is at least KL

max(∆,Γ) .
Proof. Suppose first that Γ ≥ ∆ and consider a scheme that covers the entire
F, with m1 horizontal sub-tiles and m2 vertical sub-tiles. We wish to show that
m1+m2 ≥ KL

max(∆,Γ) . To see this, we first note that since there is no intersection
between each of the tiles (cf. Definition 3 and Lemma 18), and since there is
no intersection between each sub-tile inside a tile (Definition 11), then we can
conclude that for any P , P ′ ∈ C and any S ∈ Φ(SP), S ′ ∈ Φ(SP ′), we must
have S ∩ S ′ = ∅. This in turn implies that the sub-tiles can now cover at most
m1Γ+m2∆ elements of F, which in turn means that m1Γ+m2∆ ≥ KL, which
means that KL

Γ − m2
∆
Γ ≤ m1, which means that KL

Γ + (1 − ∆
Γ )m2 ≤ m1 + m2.

Since ∆
Γ ≤ 1, we have that KL

Γ ≤ KL
Γ + (1 − ∆

Γ )m2, which directly tells us
that m1 + m2 ≥ KL

Γ . This concludes the proof for the case of Γ ≥ ∆. The
same process follows directly also for the case of Γ ≤ ∆, thus concluding the
proof.

At this point we can combine our results. We know from Definitions 10,11
and from Lemma 20 that ∑︁P∈C |Φ(SP)| > KL

max(Γ,∆)) , while we know from
Lemma 11 that ∑︁P∈C |P| ≥ ∑︁

P∈C |Φ(SP)|. Now by recalling that ∑︁P∈C |P|
is the number of rank-one contribution supports, and by recalling from
Lemma 15 that each rank-one contribution support corresponds to a server
in any lossless scheme, we can use the lower bound on the number of sub-tiles
in Lemma 20 as a lower bound on the number of servers, allowing us to thus
conclude that Nopt ≥ KL

max(∆,Γ) , thus concluding the proof of our converse for
the single-shot case.

21To “cover" in this context means that every element of F has to be in at least one
representative support.
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5.8.2 The General Multi-Shot Case of T > 1
We begin with our first lemma for this case.

Lemma 21. To guarantee lossless function reconstruction with constraints
∆, Γ, any T -shot scheme with computation and communication matrices
D, E, must associate each server transmission (shot) to a unique rank-one
contribution support Sn(I, J), n ∈ [NT ], where I ∈ {0, 1}K×NT and J ∈
{0, 1}NT ×L are the support constraints of D and E respectively as in Definition
4.

Proof. The proof follows directly the proof steps of Lemma 15, after noting
that in our current multi-shot setting, each column of D and row of E
correspond to a single transmission by a unique server.

We use Lemma 21 to recall that NT is equal to the number of rank-one
contribution supports. Then we apply the same proof steps found at the last
paragraph of Appendix 5.8.1 to see that the number of rank-one contribution
supports is no less than KL

max(Γ,∆) , which in turn implies that N ≥ KL
T max(∆,Γ) .

This holds for all T . The following lemma will allow us to provide a tighter
bound, for the case of T ≥ min(∆, Γ). After proving the following lemma,
we will complete the proof of the converse for the multi-shot case. In the
following, we recall that the term “cover" in our context means that every
element of F has to be in at least one representative support.

Lemma 22. For lossless function reconstruction, the corresponding DE = F
decomposition needs at least ⌈K

∆ ⌉⌈L
Γ ⌉ representative supports (tiles) to cover

the entire matrix F ∈ RK×L.

Proof. Let us first recall from Lemma 16 that (the tiles corresponding to)
any lossless optimal scheme must cover F. Let C be the collection of classes
of an optimal scheme, and let I = Supp(D), J = Supp(E) and Supp(F) =
Supp(DE) = IJ.

Let us first consider the simplest instance where ∆|K, Γ|L, in which case
we first note that F has a total of KL elements, and that each tile can cover
at most ∆Γ elements of F (cf. Lemma 17), which in turn means that the
minimum number of disjoint covering tiles is simply KL

∆Γ (cf. Lemma 3), which
then completes the proof of the lemma for this instance. Subsequently, for
the case of ∆ ∤ K, Γ|L, we first split the rows of F into an upper part R1 with
K1 = ⌊K

∆ ⌋∆ rows, and a lower part R2 with K2 = mod(K, ∆) = K −K1 rows.
Here R1 and R2 are the corresponding row indices. Using the argument from
the previous case of ∆|K, Γ|L, we can see that the upper part F(R1, :) needs
at least ⌊K

∆ ⌋L
Γ tiles to complete covering. For the lower submatrix F(R2, :),
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we know that having ⌊K
∆ ⌋L

Γ tiles is not enough since we would only be able
to cover K1L = ⌊K

∆ ⌋∆L elements, thus leaving L uncovered elements in each
row in R2. Since each tile can cover at most Γ elements in each column (cf.
Lemma 17), there has to be at least L

Γ additional tiles to cover all of F, which
implies a total of ⌊K

∆ ⌋L
Γ + L

Γ = ⌈K
∆ ⌉L

Γ tiles, which proves our claim for the case
of ∆ ∤ K, Γ|L. The third case of ∆|K, Γ ∤ L is similar.

We now consider the more involved, general case of K = q1∆ + r1, L =
q2Γ + r2, where q1, q2, r1, r2 ∈ N∪ {0}, 0 < r1 ≤ ∆, 0 < r2 ≤ Γ. We first recall
from Lemma 17 that each tile P ∈ C can cover at most Γ elements of a row
of F, which in turn implies that ∥SP(k, :) ∩ Supp(F)(k′, :)∥0 ≤ Γ, ∀k, k′ ∈
[N ], ∀P ∈ C. Similarly, we also know that each tile can cover up to ∆ elements
in one column of F, which in turn implies that ∥SP(:, ℓ) ∩ Supp(F)(:, ℓ′)∥0 ≤
∆, ∀ℓ, ℓ′ ∈ [L], ∀P ∈ C.

We will employ a two-dimensional version of the pigeon-hole principle. In
reference to this principle, our “pigeon" here will correspond to an element of
F, a “hole" will correspond to a tile, while now also each row and column of a
tile (which corresponds to a horizontal and vertical sub-tile (cf.Definition 10))
will correspond to a ‘sub-hole’. Let us recall from Definition 10 that each
tile consists of ∆ horizontal sub-tiles, and then recall from Lemma 17 that
each such horizontal sub-tile (sub-hole) has up to Γ elements22. Similarly
we recall that each tile consists of Γ vertical sub-tiles, each having at most
∆ elements. For any scheme whose corresponding D, E satisfy the disjoint
support assumption (Definition 3 and Lemma 18), we now define a mapping
function ΞD,E : [K] × [L] → C × Ch × Cv, where C, Ch, Cv are respectively
the set of all tiles, horizontal sub-tiles, and vertical sub-tiles involved in the
scheme. This function is here defined to take the form

ΞD,E((i, j)) ≜ {(P , hP , vP)}, (i, j) ∈ [K] × [L] (5.79)

where the input (i, j) is the location of the element in F, and where the
output consists of the tile P that covers (i, j), and the corresponding sub-tile
index hP ∈ [∆] of the horizontal sub-tile that covers (i, j), as well as sub-tile
index vP ∈ [Γ] of the vertical sub-tile again covering (i, j). For ease of reading,
we recall here from Definition 10 that horizontal and vertical sub-tiles are
defined as

HP,hP = {(RP(hP), j)|j ∈ CP} (5.80)
VP,vP = {(i, CP(vP))|i ∈ RP} (5.81)

where RP and CP , are defined in Definition 7. We also recall that we regard
RP and CP as ordered sets, with an arbitrary order, where RP(hP) is the

22Recall that a tile, and by extension, a sub-tile, is a set of indices.
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hP-th element of RP and where similarly CP(vP) is the vP-th element of CP .
Now we claim that

∀i ∈ [K] : |{P|ΞD,E(i, j) = {(P , hP , vP), j ∈ [L]}| ≥ q2 + 1 (5.82)

which says that the intersection of each row of F with any specific tile, is
at least q2 + 1. This is obvious because if this intersection was less than
q2 + 1 then — as a consequence of the pigeon-hole principle, where again each
element of F(i, :) is our “pigeon" and each horizontal sub-tile as a sub-hole —
there would exist at least one sub-hole covering at least P1 elements, where

P1 = ⌈ L

q2
⌉ = ⌈q2Γ + r2

q2
⌉ = Γ + 1 (5.83)

which would though contradict Lemma 17 which guarantees that there can
exist no tile covering more than Γ elements in a row, which simply translates
to having no horizontal sub-tile with more than Γ elements.

With (5.82) in place, we now conclude that23 in each row, at least q2 + 1
horizontal sub-tiles reside. Recall that by Lemma 17, each horizontal sub-tile
in a tile can cover at most Γ elements. Note also that by Definition 10, for
any given row of F, we cannot encounter two or more sub-tiles from the same
tile (they must be from different tiles). In this context, for any given row i of
F, let (i, 1), (i, 2), · · · , (i, ui) be the indices of the corresponding horizontal
sub-tiles that reside in that row, from left to right. Recall from (5.82) that
ui ≥ q2 + 1.

We proceed to provide a similar enumeration, now though for vertical
sub-tiles.

We first note from Lemma 17 that each column of F can intersect at most
∆ horizontal sub-tiles. Similar to before, we can also see that

∀j ∈ [L] : |{P|ΞD,E(i, j) = {(P , hP , vP)}, i ∈ [K]}| ≥ q1 + 1 (5.84)

which says that the intersection of each column of F with any specific tile,
entails at least q1 +1 tiles, because if this intersection was less than q1 +1 then

— as a consequence of the pigeon-hole principle, where now each horizontal
sub-tile is our “pigeon" and each tile is a hole — there would exist at least
one sub-hole covering at least P2 elements, where

P2 = ⌈K

q1
⌉ = ⌈q1∆ + r1

q1
⌉ = ∆ + 1 (5.85)

23For the case where q2 = 0, Lemma 16 simply guarantees that each row has to be at
least in one tile.



Chapter 5. Lossless Tessellated Distributed Computing 141

which though would contradict Lemma 17 which now guarantees that there
can exist no tile covering more than ∆ elements in a column, which now
simply translates to having no vertical sub-tile intersecting with more than
Γ horizontal sub-tiles. We can now conclude that24 each row of F intersects
with at least q2 +1 tiles. After recalling from Definition 10 that two horizontal
sub-tiles of the same tile have the same beginning and end25, we can conclude
that two horizontal sub-tiles (i′, j′) and (i′′, j′′) (where j′ ̸= j′′), cannot be
found in the same tile, because their respective column indices differ by at
least one element. We will now only consider the parts of F that correspond
to horizontal sub-tiles with indices restricted to the set [K] × [q2 + 1]. Note
that this “pruning" is in line with our effort to lower bound the number of
required tiles for covering F. We proceed by combining the fact that each
column of F intersects with at least q1 + 1 tiles (cf. (5.84)), together with the
aforementioned fact that the column coordinates of two horizontal sub-tiles
of the same tile are identical. Thus we can finally adopt the tile indexing
(1, ĵ), (2, ĵ), . . . , (vĵ, ĵ) for all ĵ ∈ [q2 + 1]. The fact that this indexing applies
to any conceivable covering tessellation scheme, allows us to conclude that any
covering scheme must entail at least ∑︁q2+1

ĵ=1 vĵ tiles. Noting now from (5.82),
we have that vĵ ≥ q1 + 1, ∀ĵ ∈ [q2 + 1]. This fact allows us to conclude that
there must exist at least (q1 + 1)(q2 + 1) tiles, which completes the proof
after recalling that K = q1∆ + r1, L = q2Γ + r2 which in turn says that
q1 = ⌈K

∆ ⌉, q2 = ⌈L
Γ ⌉.

With the above lemma in place, focusing again on the particular case of
T ≥ min(∆, Γ), we can now tighten the bound on N , from N ≥ KL

T max(∆,Γ) to
N ≥ ⌈K

∆ ⌉⌈L
Γ ⌉. We see this by first noting that in our case of T ≥ min(∆, Γ)

each tile corresponds to a server, and then by combining this with Lemma 21
which additionally tells us that each server corresponds to T distinct rank-
one contribution supports. Furthermore, we also know from Definition 20
and Lemma 19 that min(∆, Γ) = rP = |Φ(SP)|. Finally, from the fact
that no server can be associated with two different tiles26, and directly from
Definition 11, we can conclude that the optimal number of servers will be the
minimum number of covering tiles, which was shown Lemma 22 to be equal
to ⌈K

∆ ⌉⌈L
Γ ⌉. This concludes the proof that N ≥ ⌈K

∆ ⌉⌈L
Γ ⌉ for T ≥ min(∆, Γ).

This concludes the converse for the multi-shot case.
24For the case where q1 = 0. Lemma 16 simply guarantees that each column has to be

at least in one tile.
25More rigorously, we can rephrase the above by saying ‘after recalling from Definition 10

that ∀hP , h′
P ∈ [∆] : {j|(i, j) ∈ HP,hP } = {j|(i, j) ∈ HP,h′

P
}’.

26This was shown in appendix Section 5.7.1, to be a necessary condition for guaranteeing
the Γ and ∆ constraints.



142 5.8. Appendix:Proof of The Converse for Theorem 9

5.8.3 Proof of Corollary 3
Our aim here is to show that for T < min(∆, Γ), then the achievable N (and
thus the achievable rate) in (5.38) is at most a multiplicative factor of 8 from
the corresponding converse expression in (5.39). The proof can be derived
from the following sequence of expressions

Nupper

NLower
≤ (min(∆, Γ)/T + 1)(KL/(∆Γ) + L/Γ + K/∆) + min(∆, Γ)/T )

KL/(T max(Γ, ∆))

= 1 + T max(∆, Γ)
∆Γ + T max(∆, Γ)min(∆, Γ)

TKΓ

+ T max(Γ, ∆)L
KLΓ + T max(∆, Γ)min(∆, Γ)

T∆L
+ T max(∆, Γ)

L∆

+ T max(∆, Γ)min(∆, Γ)
TKL

+ T max(∆, Γ)
KL

≤ 1 + 4 T

min(∆, Γ) + δ + γ + δγ < 8

where the final answer results by noting that T < min(∆, Γ), ∆ ≤ K, Γ ≤ L.



Chapter 6

Lossy Tessellated Distributed
Computing

6.1 Introduction

Another important factor of Tesselated Distributed Computing introduced
in Chapter 5 pertains to computational accuracy and the ability to recover
desired functions with reduced error or distortion. There is indeed a variety
of techniques dedicated to increasing accuracy (cf. [56]–[58], [112]–[126]), such
as for example the sketching technique [113], [116], [126] which utilized a
randomized linear algebraic approach to compute an approximation of the
multiplication of two massive matrices (often by approximating input matrices
by multiplying them with a random matrix having certain properties), as
well as successive approximation coding techniques (cf. [121]) which can
tradeoff accuracy and speed, allowing for better approximations and increased
accuracy over time.

In this chapter we investigate this triptych between accuracy and commu-
nication and computation costs, lies at the center of distributed computing.
We here explore this triptych using as building blocks various tools such as
truncated SVD (singular value decomposition), tessellations, and low-rank
matrix approximation techniques[139].

We now examine the scenario of lossy function reconstruction, where
it is possible for the reconstruction error to surpass zero. Our primary
goal is to constrain and quantify the error that occurs when the available
system resources, represented by γ, δ, N , are insufficient for achieving lossless
reconstruction. There are instances where certain levels of reconstruction
error can be accepted, prompting us to explore the potential benefits and
savings associated with tolerating such error.

143
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Let us recall that our aim is to approach, under the available γ, δ, N, T,
the minimum (cf. (5.34),(5.35))

ϵ̂ = 1
KL

E F,w{min
D,E

K∑︂
k=1

|Fk − F
′

k|2} = 1
KL

E F,w{min
D,E

∥DE − F∥2
F }

which means that our distributed computing challenge ultimately reduces to
the problem of sparse matrix factorization, as seen below

min
D,E

∥DE − F∥2
F . (6.1)

Solving this problem optimally has been a persistent challenge, often
resisting a straightforward characterization of the most efficient performance.
Consequently, we will turn to scaling asymptotically with parameters of
interest that grow with N , as well as adopt a statistical approach. Instead of
offering guarantees for each individual matrix F, we will provide assurances
across the ensemble of matrices F under certain basic assumptions. Adopting
the specific vector-wise metrics of sparsity γ, δ, our aim will be to bound the
average optimal error ϵ̂ = 1

KL
E

F,w
{min

D,E
∥DE − F∥2

F }, under the assumptions
that the entries of w from (2.13) and of F, are i.i.d with zero mean and unit
variance.

We proceed directly with the main result. We recall that ΦMP,λ(t, r), FMP,λ(.)
and fMP,λ(.) are respectively the incomplete first moment, the CDF and PDF
of the standard Marchenko-Pastur distribution. We also recall that we operate
under the assumption that NT ≥ L, NT ≥ K.

Theorem 10. In the limit of large N and constant δ, γ, κ, R, the average
optimal reconstruction error is bounded as

ϵ̂ ≤ ΦMP,λ(t, r) =
∫︂ t

r
xfMP,λ(x)dx (6.2)

where λ = δK
γL

= ∆
Γ , r = (1 −

√
λ)2, and where t is the solution to FMP,λ(t) =

1 − T γN
K

. Furthermore, the bound is tight and the corresponding performance
is optimal under the assumption that D and E satisfy the disjoint support
assumption (cf. Definition 3).

Proof. The achievable part of the proof is based on the general scheme
described in the appendix Section 6.3, while the statistical aspect reflects
the properties of the Marchenko–Pastur distribution law, as described in
the appendix Section 6.3. The converse utilizes basic arguments from tilling
literature, conditioned to the requirement of having to cover all of F, as
described in the appendix Section 6.3.
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Figure 6.1: A problem setting with the same
K = 6, L = 10, ∆ = 3\δ = 1/2, Γ = 2\γ = 1/5, N = 10 and E = ∑︁10

i=1 σ2
2,i,

where σ2,i as the second singular value of Si in decreasing order (the least
singular value). In this setting LiRi is the best rank-1 approximation to the

submatrix Si given by the famous truncated SVD described in
Subsection 5.6.1. Compared to the Example 5.2 and figure 5.3 settings, here
the Computation cost Γ = 2\γ = 1/5 and less number of the required servers
N = 10. The price paid to have this reduction in the number of servers is

our tolerance for error in the recovery of the functions.
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Definition 12. [Disjoint Balanced Support Assumption] We say that two ma-
trices D ∈ RK×NT , E ∈ RNT ×L accept the disjoint balanced support assump-
tion if an only if they accept the disjoint support assumption (cf. Definition 3)
and additionally it holds that ∥D(:, i)∥0 = ∥D(:, j)∥0, ∥E(i, :)∥0 = ∥E(j, :)∥0,
∀i, j ∈ [NT ].

The uniformity assumption reflects a uniformity in the computational and
communication capabilities across the servers.

Let us provide a small example of the scheme.

Example 6. We consider a multi-user distributed computing scenario which,
as in Example 1, entails K = 6 users, T = 1 shots, L = 10 subfunctions, and a
per-server computation and communication cost defined by Γ = 5 and ∆ = 3
respectively. The difference is that now the system only benefits from N = 4
servers. Recall from Example 1 that KL

∆Γ min(∆, Γ) = 12 was the minimum
number of servers (of the same computation and communication capabilities
Γ, ∆) required to yield error-free reconstruction. Now, with a reduced N = 4,
we expect to have erroneous reconstruction.

We describe how to construct D ∈ R6×4 and E ∈ R4×10, after receiving F.
Useful in this description will be Figure 6.2, which illustrates the tessellation
pattern used to tile each non-zero submatrix of D and E with Lj and Rj

respectively.
The scheme entails three main steps.

1. In the first step, we partition F into 4 submatrices F1, F2, F3, F4 of size
3 × 5, as shown in Figure 5.2. We will approximate these respectively
by submatrices S1, S2, S3, S4, such that S1 will approximate the upper
left 3 × 5 submatrix, S2 the lower right 3 × 5 submatrix, and so on.

2. As a second step, to create each Sj , we start by SVD-decomposing each
submatrix Fj. As there are only 4 servers and four submatrices, we
remove the two less dominant singular directions of each decomposition,
preserving only each dominant singular direction. Based on this rank-1
SVD approximation (see Section 5.6.1 for more details), each Sj takes
the form Sj = LjRj where now these dominant directions Lj ∈ R3×1

and Rj ∈ R1×5, j ∈ [4], will serve as the tiles of our designed D and E
respectively.

3. In the final third step, we decide where to place the tiles Lj, Rj in D
and E respectively. To do this, we employ the tessellation pattern in
Figure 6.2. For example L1 and L4 are respectively the upper left and
lower right 3 × 1 vectors in D, while R1 and R4 are respectively the
upper left and lower left 1 × 5 vectors in E.
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Figure 6.2: Corresponding to Example 6, this figure illustrates the
tessellation pattern used to design D and E for a system with K = 6 users,
T = 1 shots, L = 10 subfunctions, Γ = 5 and ∆ = 3, but with only N = 4
servers. The reduced number of servers forces SVD-based approximations

which entail lossy function reconstruction.

To verify that the communication and computational costs at each server
are not violated, we simply note that each column of D only has ∆ = 3
non-zero elements, and each row of E only has Γ = 5 non-zero elements.
Finally, the overall approximation error for F takes the form

4∑︂
j=1

∥Fj − LjRj∥2 =
4∑︂

j=1

√︂
σ2

2,j + σ2
3,j (6.3)

where σi,j, i ∈ [3], j ∈ [4] are the singular values of Fj in descending order.

Remark 7. The above gives an example of the employed scheme for designing
D and E, and the expression in (6.3) gives an example of the corresponding
error performance. The scheme is described for any dimension in Section 6.1,
and the expression is simple and it takes the form

EF =
n∑︂

j=1
∥Fj − LjRj∥2 =

n∑︂
j=1

√︂
σ2

q+1,j + σ2
q+2,j + · · · (6.4)

where n describes the number of submatrices that we have divided F into, and
where q simply represents the truncation depth of the SVD, where we keep only
the q most dominant dimensions of each submatrix Fj . In terms of guarantees,
we clarify as follows. As is probably clear, an exact (non-truncated) SVD
approach applies to the error free scenario of EF = 0, for which we have indeed
proven optimality under the assumption of full rank F, where our optimality
results tell us that EF = 0 is reached with the least amount of resources, in
terms of γ, δ, N , compared to any other conceivable scheme. In the error
free case, the scheme is exactly optimal for any full-rank F. On the other
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hand, for the lossy case, we note that while the scheme applies and can be
used for the finite dimensional case, we also recall that in terms of evaluating
statistics in closed form and for providing optimality guarantees, we needed
to revert to the asymptotic and stochastic setting, for which the scheme (and
the corresponding averaging E[EF] of (6.4), as rigorously described in (6.1))
is optimal under the assumption of disjoint supports. On the other hand,
for the non-asymptotic and non-stochastic lossy regime (where guarantees
are required for any specific finite-dimensional full-rank F), we clarify that
the general expression in (6.4) (seen more rigorously in (6.16)), offers a valid
upper bound (directly from (5.34)) on the optimal error of our distributed
computing problem, under an assumption of normalized outputs ∥w∥2 = 1.
Finally, in the asymptotic but non-stochastic setting (where indeed ∥w∥2 = 1
is guaranteed with high probability, under commonly employed assumptions),
the above general evaluation in (6.4) serves as an upper bound on the optimal
error in the distributed computing problem, for any specific full-rank large F,
where naturally the bound holds irrespective of whether we accept or not the
disjoint support assumption.

6.2 Discussion and Conclusion
In this chapter, we have investigated the lossy tesselated distributed computing.
For this case, being presented with the challenging problem of approximate
matrix factorization, we employed asymptotics and a stochastic metric, that
allowed us to provide for the first time a clear bound on the optimal normalized
reconstruction error as a function of the communication and computational
resources. This bound is in fact tight under the assumption of disjoint
supports, and the simple schemes that achieve this bound employ basic tilling
techniques, together with truncated SVD decompositions1.

In this work, we investigated the fundamental limits of multi-user dis-
tributed computing of real-valued linearly-decomposable functions. In ad-
dressing this problem, we have made clear connections to the problem of fixed
support matrix factorization, tessellation theory, as well as have established
an interesting connection between the problem of distributed computing, and
the statistical properties of large matrices. Under a basic disjoint support
assumption, the error-free system capacity C = K

Nopt
in Theorem 9 revealed

the optimal computational and communication resources γ, δ, N required to
1The derived solutions in Theorem 9 and Theorem 10 entail at most ⌈ K

∆ ⌉⌈ L
Γ ⌉

SVD decompositions, and a corresponding additional (unaccounted for) complexity of
⌈ K

∆ ⌉⌈ L
Γ ⌉O(∆Γ2) = O(KLΓ) = O(KL2). We believe that such complexity may often be

dwarfed by the cost of evaluating the L subfunctions that may often be non-linear.
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Figure 6.3: The y-axis represents the conditionally optimal average error ϵ
derived in Theorem 10 for δ = 0.4, γ = 0.3, κ = 1 and T = 1. The x-axis

describes the ratio of the operating rate to the error-free or lossless system
capacity, i.e. describes how many times higher is the system rate from the

error-free system capacity.

accommodate a certain number of users and subfunctions. The same result
yields a simple relationship between computational complexity and communi-
cation load, as this is described in Corollary 2. The derived performance is
proven optimal over a sizeable class of schemes.

For the lossy case, after transitioning to the equivalent problem of approx-
imate matrix factorization, we employed asymptotics and a stochastic metric,
allowing us to provide a clear bound on the optimal normalized reconstruction
error as a function of the matrix sparsity as it reflects our communication and
computational resources. This bound is in fact tight under the assumption
of uniform and disjoint supports, and it is an outcome of our schemes that
employ tiling techniques, together with truncated SVD decompositions2.

One of the interesting outcomes of the work is an analytical handle on
how we can tradeoff our system rate (corresponding to our server resources or
the clients we serve) with the function reconstruction error. Figure 6.3 offers
some understanding on how lossy reconstruction is affected by having either
too few servers or too many users. Starting from a lossless scenario where the
operating ratio K/N matches the error-free system capacity (corresponding to
the value of 1 on the x-axis), we see how the error increases as we either add
more users or as we remove servers. For example, when the ratio R/C between

2The derived solutions in Theorem 9 and Theorem 10 entail at most ⌈ K
∆ ⌉⌈ L

Γ ⌉
SVD decompositions, and a corresponding additional (unaccounted for) complexity of
⌈ K

∆ ⌉⌈ L
Γ ⌉O(∆Γ2) = O(KLΓ) = O(KL2). The proposed approach operates under the as-

sumption that such costs are small compared to the costs of evaluating the L subfunctions
that may often be non-linear.



150 6.2. Discussion and Conclusion

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

R: The Operating Rate of The System

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

: 
T

h
e

 A
ve

ra
g
e

 N
o
rm

a
liz

e
d

 E
rr

o
r

Specification: =0.2, =0.2, =1, T =1

Figure 6.4: The y-axis plots ϵ from Theorem 10 for δ = 0.2, γ = 0.2, κ = 1
and T = 1, while the x-axis represents the rate K/N .

the operating rate and the error-free capacity, is around 2 (after doubling
the users or halving the servers) then we expect an error corresponding to
ϵ = 0.15. On the other hand, if we could accept ϵ = 0.3, then — compared to
the error-free scenario — we could triple the number of users or equivalently
reduce our servers to about one third.

Similarly Figure 6.4, for the same setting, plots the error as a function
of the operating rate (unnormalized), for a slightly different setting where
now δ = 0.2, γ = 0.2, κ = 1, T = 1. In this scenario, where the error-free
capacity is merely C0 = 0.2 (cf. (5.40)), an aggressive increase in the rate
to R = 2 (2 times more users than servers, and 10 = R

C0
times more users

than in the error-free case) yields a generally unmanageable ϵ = 0.68, etc.
Finally, Figure 6.5 reflects the effect of the per-server computation resources
γ, the per-server communication resources δ, the effect of T and the effect
of η (cf. (5.7)) where a higher η implies more communication resources per
subfunction.

One interesting outcome of our work is that substantial computational
and communication savings can be harvested with only a modest cost in
function reconstruction error. This has to do with the nature of the singular
value distribution of larger matrices (corresponding to many users and many
basis subfunctions). Due to this nature, in principle, removing computational
resources will indeed introduce error, but will do so in a manner that is initially
slow. Such error power is initially proportional to the smallest singular value
of a large F, and then with more computational/communication savings, it
becomes proportional to the sum of the few smallest singular values, and so on.
Due to the statistical nature of larger matrices, this error accumulates slowly,
thus considerable computational savings can be obtained, with a relatively
modest function reconstruction error (See Figure 6.6).
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Figure 6.5: Plotting the error-effect of δ, γ, η, T (Theorem 10) in various
settings. The y axis corresponds to ϵ (cf. (5.34)).
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Figure 6.6: The y-axis represents the conditionally optimal average error ϵ
derived in Theorem 10 for δ = 0.4, γ = 0.3, κ = 1 and T = 1. The x-axis

describes the number of active servers over the number of optimal serves in
the lossless scheme.
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For future work, we can consider various related scenarios such as the
scenario where some subfunctions contribute more to the overall function
than other subfunctions do. Another interesting direction could involve a
pre-defined and fixed communication topology, which would then entail a
support of D that is fixed and independent of F, or similarly a scenario
where each server can only compute a predefined subset of subfunctions, now
bringing to the fore a support of E that is again fixed and independent of F.

6.3 Appendix: Proof of The achievability and
converse of Theorem 10

The proof incorporates an achievable and a converse argument. We first prove
the following lemma used in (5.33), corresponding to the average normalized
error3 ϵ = E F,w{E}

KL
of any scheme with communication matrix D and computing

matrix E. Recall that in our asymptotic setting, the parameter N scales to
infinity, while the calibrating ratios δ, γ, κ, R remain constant. We also note
that T here is a non-scaling constant, while we also recall that the elements
of w are i.i.d, independent of D, E, F, and have unit variance. We proceed
with the first lemma:

Lemma 23. In the limit of large N , the average normalized error ϵ = E F,w{E}
KL

of any lossy function reconstruction scheme corresponding to DE = F, under
the assumptions of Theorem 10, takes the form

ϵ = EF{∥DE − F∥2
F }

KL
. (6.5)

Proof. The proof starts with the definition of the average error from (5.33)
where we defined this error to be ϵ

EF{∥DE−F∥2
F }

KL
, then the following sequence

of steps hold

ϵ = E F,w{[(DE − F)w]⊺[(DE − F)w]}
KL

(6.6)

= E F,w{w⊺(DE − F)⊺(DE − F)w}
KL

(a)= E F,w{tr(w⊺(DE − F)⊺(DE − F)w)}
KL

(6.7)

(b)= E F,w{tr((DE − F)⊺(DE − F)ww⊺)}
KL

3We recall from (5.4) our instantaneous error E =
∑︁K

k=1 |F ′
k − Fk|2, E ∈ R, ∀k ∈ [K].
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(c)= tr(E F,w{(DE − F)⊺(DE − F)ww⊺})
KL

(6.8)

(d)= tr(E F{(DE − F)⊺(DE − F)}Ew{ww⊺})
KL

(e)= tr(E F{(DE − F)⊺(DE − F)})
KL

(6.9)

(f)= E F{tr((DE − F)⊺(DE − F))}
KL

(6.10)

(g)= EF{∥DE − F∥2
F }

KL
(6.11)

where (a) holds since the trace argument is a scalar, (b) and (c) follow from
the cyclic property of the trace operation and its linearity, (d) holds since
w and F are independent, (e) holds since Ew{ww⊺} = IL, (f) follows from
the interchangeability of the trace and expectation operations, and (g) holds
since tr(A⊺A) = ∑︁I

i=1
∑︁J

j=1 A(i, j)2 = ∥A∥2
F , ∀A ∈ RI×J .

In the following, we provide the achievability part of the proof, where
we present in this appendix, the lossy variant of the scheme of Theorem 9,
while in this appendix we also derive the average of the normalized error.
For the error analysis, in Lemma 24 (see also Remark 8) we adapt the well
known Marchenko–Pastur Theorem to our setting, to then yield the proof of
Lemma 25 that tells us how the approximation error corresponding to each tile
is defined by the truncated first moment of the Marchenko–Pastur distribution.
Subsequently, in Lemma 26, we describe the total error ∥DE − F∥2

F as
the sum of errors for each tile, reflecting the nature of our tile assignment
from Theorem 9. The last step combines Lemmas 25 and 26 to derive
the corresponding upper bound on the normalized error. Note that all the
definitions in appendix 5.6 apply to our setting.

6.3.1 Scheme Design
Similar to Section 5.7.1 of this appendix, the construction of D, E will involve
the steps of: a) sizing and positioning the tiles of D, of E, and of DE, b)
filling the non-zero tiles in DE as a function of F, and c) filling the tiles
in D and E. Crucial to our lossy-variant of our scheme, will be the rank
αrP ∈ N of each tile P, where this rank will be defined by the desired error
performance as we will see in this appendix. We proceed with the description
of the steps.

Sizing and positioning the tiles of D, of E, and of DE Our first
step applies the corresponding step in the achievable scheme of the appendix
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Section 5.7.1, to the current setting of C2 = C3 = C4 = ∅, where this latter
equality follows after noting that — in terms of the derived performance —
∆|K, Γ|L and T |min(∆, Γ) hold directly in our current setting of constant T
and scaling ∆ and Γ.

Filling the non-zero tiles in DE as a function of F We here first
approximate each FP (cf. (5.59)) by a low-rank matrix Fα

P , whose rank does
not exceed αrP , for some auxiliary variable α ∈ R, 0 < α ≤ 1, αrP ∈ N 4. To
obtain the desired

Fα
P ≜ argmin

A
{∥A − FP∥F , : rank(A) ≤ αrP} (6.12)

we employ the well-known Echart-Young Theorem [139] to get

Fα
P = Dα

PEα
P (6.13)

where DP ∈ R|RP |×αrP , EP ∈ RαrP ×|CP | are the results of the truncated SVD
algorithm5. Naturally, since C2, C3, C4 = ∅, we have that |RP | = ∆, |CP | = Γ
(cf.(5.58)).

Filling the tiles in D and E In this last step, after considering C1 =
{P1, P2, . . . , Pm}, then for each j ∈ [m], we set

D(RPj
, [

j−1∑︂
i=1

αrPi
+ 1,

j∑︂
i=1

αrPi
]) = DPj

(6.14)

and

E([
j−1∑︂
i=1

αrPi
+ 1,

j∑︂
i=1

αrPi
], CPj

) = EPj
(6.15)

while the remaining non-assigned elements of D and E remain equal to zero.

4As we will see soon, the choice of α here will determine the degree of the approximation
of FP . As we will elaborate later on, this parameter will take the form α = T max(∆,Γ)

R ,
while guaranteeing that the rank αrP is an integer. Note that since ∆|K, Γ|L, then
rP = min(∆, Γ) (cf. (5.58)) which naturally scales with ∆ and Γ.

5In particular, Fα
P , Dα

P and Eα are respectively associated to Ak, US and V in (5.47)
of appendix Section 5.6.
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6.3.2 Normalized Error Analysis of the Designed Scheme
We proceed to evaluate in Lemma 25 the approximation error for each tile as a
function of the truncated first moment of the Marchenko–Pastur distribution,
and then to show in Lemma 26 that for our scheme, the total approximation
error ∥DE − F∥2

F , for each instance of the problem, is equal to the sum of
the approximation errors, where the sum is over all tiles. The proof for the
achievability part of the error analysis is completed by properly combining
the two aforementioned lemmas.

Directly from the Echart-Young Theorem, the truncated SVD solution
yields the optimal approximation error for each tile, which takes the form

∥Fα
P − FP∥F = ∥Dα

PEα
P − FP∥F =

⌜⃓⃓⎷ rP∑︂
i=αrP +1

σ2
i (FP) (6.16)

where σi(FP), i ∈ [rP ] are the singular values of FP (cf. (5.59)), in decreasing
order.

Let us now recall that for each P ∈ C1, then FP ∈ R∆×Γ is a random
matrix of i.i.d elements having zero mean and σ̄ variance. Let λ1(YP) ≤
λ2(YP) ≤ . . . ≤ λ∆(YP) be the ordered eigenvalues of the symmetric matrix

YP ≜
1
ΓFPF⊺

P (6.17)

and consider

µ∆(x) = 1
∆#{λj(YP) ≤ x} (6.18)

which will be associated below to the CDF FMP,λ = µ∆(x) of the Marchenko-
Pastur distribution.

The following describes the well known Marchenko-Pastur law ([140]) as
applied to our setting.

Lemma 24. [Marchenko-Pastur Law] Consider a random matrix FP ∈ R∆×Γ

having i.i.d elements with zero mean and variance σ̄. Let λ1(YP) ≤ λ2(YP) ≤
. . . ≤ λ∆(YP) be the ordered eigenvalues of YP = 1

ΓFPF⊺
P . Let ∆, Γ → ∞,

and let ∆
Γ → λ for some λ > 0. Then µ∆ (cf. (6.18)) converges in distribution

to

µ∆(x) =
⎧⎨⎩(1 − 1

λ
)1(0≤x) + v(x), if λ > 1,

v(x), if 0 < λ ≤ 1
(6.19)
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where v(x) is such that

d(v(x)) = 1
2πσ̄2

√︂
(λ+ − x)(x − λ−)

λx
1x∈[λ−,λ+]dx (6.20)

for any point x ∈ R. This in turn means that the PDF of the Marchenko-
Pastur distribution takes the form

fMP,λ(x) = 1
2πσ̄2

√︂
(λ+ − x)(x − λ−)

λx
1x∈[λ−,λ+] + 1(1<λ)(1 − 1

λ
)δ(x) (6.21)

where λ± ≜ σ2(1 ±
√

λ)2.

Remark 8. With the same notation as in Lemma 24, the CDF’s explicit
form is

FMP,λ(x) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

λ−1
λ

1x∈[0,λ−) +
(︂

λ−1
2λ

+ FMP(x)
)︂
1x∈[λ−,λ+) + 1x∈[λ+,+∞),

if λ > 1,
FMP(x)1x∈[λ−,λ+) + 1[λ+,∞),

if 0 ≤ λ ≤ 1,

FMP(x) = 1
2πλ

(︃
πλ + σ−2

√︂
(λ+ − x)(x − λ−)

− (1 + λ)arctan(r(x)2 − 1
2r(x) ) + (1 − λ)arctan( λ−r(x)2 − λ+

2σ2(1 − λ)r(x))
)︃

where r(x) =
√︄

λ+ − x

x − λ−
.

Now utilizing Lemma 24, we provide an expression for the error contributed
by any tile P ∈ C1. The following lemma holds under the same assumptions
as in Theorem 10 and Lemma 24.

Lemma 25. The average error attributed to each tile P , described in (6.16),
takes the form

E F{∥Fα
P − FP∥2

F } = Γ∆
∫︂ F −1

MP,λ
(1−(min(∆,Γ)/∆)α)

(1−
√

λ)2
xfMP,λ(x) dx. (6.22)

Proof. Addressing first the case where ∆ ≤ Γ, we see that

E F{∥Fα
P − FP∥2

F } (a)= E F{
(1−α)rP∑︂

i=1
σ2

i+αrP
(FP)}

= ΓE F{
(1−α)rP∑︂

i=1

σ2
i+αrP

(FP)
Γ }
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(b)= ΓE F{
∫︂ +∞

−∞

(1−α)rP∑︂
i=1

δ(x −
σ2

i+αrP
(FP)

Γ ) xdx}

(c)= ΓE F{
(1−α)rP∑︂

i=1

∫︂ +∞

−∞
δ(x −

σ2
i+αrP

(FP)
Γ ) xdx}

(d)= ΓE F{
(1−α)rP∑︂

i=1

∫︂ +∞

−∞
lim

δx→0

1(x < σ2
i+αrP

(FP)/Γ ≤ x + δx)
δx

xdx}

(e)= Γ
(1−α)rP∑︂

i=1

∫︂ +∞

−∞
lim

δx→0
E F{

1(σ2
i+αrP

(FP)/Γ ≤ x + δx)
δx

−
1(σ2

i+αrP
(FP)/Γ ≤ x)
δx

} xdx

(f)= Γ∆
∫︂ F −1

MP,λ
(1−α)

−∞
lim

δx→0

FMP (x + δx) − FMP,λ(x)
δx

xdx

(g)= Γ∆
∫︂ F −1

MP,λ
(1−α)

(1−
√

λ)2
xfMP,λ(x) dx

where (a) holds because of (6.16), (b) is true because of the continuous
delta Dirac function properties, (c) follows from the linearity of both the
summation and integral operators, while (d) and (e) follow from the fact
that d(1(x − σ2

i+αrP
/Γ))/dx = limδx→0

1(σ2
i+αrP

(FP )/Γ≤x+δx)−1(σ2
i+αrP

(FP )/Γ≤x)
δx

.
Then, to show (f), we first note that 1

∆#{λj(YP) = σ2
j (FP )

Γ ≤ x, j ∈ [rP ]} →
FMP,λ(x) as ∆, Γ scale to infinity. Now, again in (f), to understand the change
of limits in the integral, we note that given that rP = ∆ ≤ Γ, we seek to find
an x′ such that (1 − α)rP = (1 − α)∆ = ∆FMP (x′), which will allow x′ to be
the upper integration limit6 of the integral in the RHS of equality (f), yielding∑︁(1−α)rP

i=1 1(σ2
i+αrP

(FP)/Γ ≤ x) = ∑︁rP
i=1 1(σ2

i (FP)/Γ ≤ x) = ∆FMP,λ(x) since
x ≤ x′

1 = F −1
MP (1 − α), thus yielding (f). Finally (g) is simply the result of

the relationship between CDF and PDF, after considering the support of the
Marchenko-Pastur distribution.

For the case where ∆ > Γ, we have that

E F{∥Fα
P − FP∥2

F } (a)= E F{
(1−α)rP∑︂

i=1
σ2

i+αrP
(FP)}

= ΓE F{
(1−α)rP∑︂

i=1

σ2
i+αrP

(FP)
Γ }

6In essence, this step simply says that the first (1 − α)rP eigenvalues (corresponding to
the summation) correspond to the eigenvalues accounted for by F −1

MP (1 − α).
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(b)= ΓE F{
∫︂ +∞

−∞

(1−α)rP∑︂
i=1

δ(x −
σ2

i+αrP
(FP)

Γ ) xdx}

(c)= ΓE F{
(1−α)rP∑︂

i=1

∫︂ +∞

−∞
δ(x −

σ2
i+αrP

(FP)
Γ ) xdx}

(d)= ΓE F{
(1−α)rP∑︂

i=1

∫︂ +∞

−∞
lim

δx→0

1(x < σ2
i+αrP

(FP)/Γ ≤ x + δx)
δx

xdx}

(e)= Γ
(1−α)rP∑︂

i=1

∫︂ +∞

−∞
lim

δx→0
E F{

1(σ2
i+αrP

(FP)/Γ ≤ x + δx)
δx

−
1(σ2

i+αrP
(FP)/Γ ≤ x)
δx

} xdx

(f)= Γ∆
∫︂ F −1

MP,λ
((Γ/∆)(1−α)+(1− Γ

∆ ))

−∞

lim
δx→0

FMP (x + δx) − FMP,λ(x)
δx

xdx

(g)= Γ∆
∫︂ F −1

MP,λ
(1−α Γ

∆ )

(1−
√

λ)2
xfMP,λ(x) dx

where firstly (a) through (e) and (g) follow as in the first case of ∆ ≤ Γ.
Then, regarding (f), we first note that 1

∆#{λj(YP) = σ2
j (FP )

Γ ≤ x, j ∈ [rP ]} →
FMP,λ(x) as ∆, Γ scale to infinity. We also note that rP = Γ < ∆. Thus, if we
find an x′ such that (1−α)rP = (1−α)Γ+(1− Γ

∆)∆ = ∆FMP (x′), then x′ can
act as the upper limit of integration, thus yielding ∑︁(1−α)rP

i=1 1(σ2
i+αrP

(FP)/Γ ≤
x) = ∑︁rP

i=1 1(σ2
i (FP)/Γ ≤ x) = FMP,λ(x) because, as before, in the integration

we have that x ≤ x′
1 = F −1

MP ( Γ
∆(1 − α) + (1 − Γ

∆)). In essence, the change in
the upper integration limit in (f) here (as compared to the same integration
limit found the previous case of ∆ ≤ Γ) accounts for the fact that the first
∆ − Γ eigenvalues are now zero. This proves (f) and the entire lemma.

We proceed with an additional lemma that bounds the approximation
error of the design described in (6.14) and (6.15).

Lemma 26. The D and E design in (6.14) and (6.15), guarantees that

∥DE − F∥F =
⌜⃓⃓⎷ ∑︂

P∈C1

∥Fα
P − FP∥2

F . (6.23)

Proof. We first note that for

U ≜ DE − F (6.24)
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then following (6.14) and (6.15), we see that

U(RP , CP) = Dα
PEα

P − FP = Fα
P − FP (6.25)

where FP is defined in (5.59). Now we note that

∥U∥F =

⌜⃓⃓⃓
⎷ (K,L)∑︂

(k,l)=(1,1)
U2(k, l) (a)=

√︄∑︂
P∈C1

∑︂
(i,j)∈RP ×CP

U2(i, j) (6.26)

(b)=
√︄∑︂

P∈C1

∥U(RP , CP)∥2
F (6.27)

(c)=
√︄∑︂

P∈C1

∥Fα
P − FP∥2

F (6.28)

where (a) follows from the fact that the representative supports P ∈ C1
partition matrix F ∈ RK×L7, (b) follows from the definition of the Frobenius
norm, while (c) follows as a direct consequence of (6.25). Combining (6.24)
and (6.26) proves the lemma.

We can now prove the theorem. For the case where ∆ ≤ Γ, we have

ϵ
(a)= E F{∥DE − F∥2

F } 1
KL

(6.29)
(b)= E F{

∑︂
P∈C1

∥Fα
P − FP∥2

F } 1
KL

(6.30)

(c)=
∑︂

P∈C1

E F{∥Fα
P − FP∥2

F } 1
KL

(6.31)

(d)= K

∆
L

ΓE F{∥Fα
P − FP∥2

F } 1
KL

(6.32)

(e)=
∫︂ F −1

MP,λ
(1−α)

(1−
√

λ)2
xfMP,λ(x) dx (6.33)

(f)=
∫︂ F −1

MP,λ
(1−T γ

R
)

(1−
√︂

δκ
γ

)2
xfMP,λ(x) dx (6.34)

where (a) follows from (6.5), (b) follows from (6.23), (c) results from the
interchangeability of the statistical mean and the summation, (d) is true since
the number of representative supports in C1 is K

∆
L
Γ , (e) results from (6.22),

and (f) results from the fact that α = T γ
R

, which follows from the fact that
rP = min(∆, Γ) = ∆ and from the fact that NT = αmin(∆, Γ)K

∆
L
Γ = αKL

Γ

7It means that the tiles are disjoint and cover the whole matrix F.
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(cf. (6.13),(6.14),(6.15)), which in turn says that R = K
N

= T Γ
αL

= T γ
α
. The

proof of (f) is concluded by noting that λ = ∆
Γ = δκ

γ
(cf. (5.7)).

Similarly, for the case of ∆ > Γ, we have

ϵ
(a′)= K

∆
L

ΓE F{∥Fα
P − FP∥2

F } 1
KL

(6.35)

(b′)=
∫︂ F −1

MP,λ
(1−Γ/∆α)

(1−
√

λ)2
xfMP,λ(x) dx (6.36)

(c′)=
∫︂ F −1

MP,λ
(1−T γ

R
)

(1−
√︂

δκ
γ

)2
xfMP,λ(x) dx (6.37)

where (a′) follows from equalities (a), (b), (c), (d) corresponding to the above
case of ∆ ≤ Γ, where (b′) results from (6.22), and where (c′) results after
substituting γ/κδ = Γ/∆, α = T κδ

R
, which follows after noting that rP =

min(∆, Γ) = Γ and that NT = αmin(∆, Γ)KL
∆Γ = αKL

∆ (cf. (6.13),(6.14),(6.15)),
which in turn says that R = T ∆

αL
= T κδ

α
. The proof of (f) and of the en-

tire lemma is concluded after recalling our asymptotic setting and also that
T |min(∆, Γ) and that λ = δκ

γ
(cf. (5.7))..

6.3.3 Converse and Proof of Optimality
We will here provide a converse on the average normalized error. The converse
will then allow us to show that under the disjoint balanced support assumption
of Definition 12, the scheme proposed in this appendix is asymptotically
optimal. First, Lemma 27 will offer a lower bound on the approximation
error attributed to each tile, and then Lemma 28 proves that any scheme
satisfying Definition 12, has to have disjoint and tiles with the same |RP |
and |CP |. Subsequently, Lemma 29 will establish the covering requirement
for any optimal scheme. Combining the above will then yield the proof.

Our goal is to prove that in the limit of large N and constant δ, γ, κ, R,
and under the disjoint balanced support assumption, the average optimal
reconstruction error is bounded as

ϵ̂ ≥ ΦMP,λ(t, r) =
∫︂ t

r
xfMP,λ(x)dx (6.38)

where λ = δK
γL

= ∆
Γ , r = (1 −

√
λ)2, and where t is the solution to FMP,λ(t) =

1 − T γN
K

. To achieve this, we begin with the following lemmas.

Lemma 27. Consider approximating any F by a product DE with limited
∆, Γ, and consider a disjoint set of m tiles C = {Pi}m

i=1 (corresponding to
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an arbitrary set of disjoint submatrices {FPi
}m

i=1 of F) each allocated αirPi

contribution supports where αirPi
∈ N, αi ∈ R, αi ≤ 1. Then

m∑︂
i=1

rPi∑︂
j=(1−αi)rPi

+1
σ2

j (FPi
) ≤ ∥DE − F∥2

F (6.39)

where σj(FPi
), j ∈ [rPi

], i ∈ [m] are the singular values of each FPi
, in

descending order.

Proof. The above can be seen by noting that

m∑︂
i=1

rPi∑︂
j=(1−αi)rPi

+1
σ2

j (FPi
)

(a)
≤

m∑︂
i=1

∥DPi
EPi

− FPi
∥2

F (6.40)

(b)
≤ ∥DE − F∥2

F (6.41)

where, for DPi
EPi

being a rank-αrPi
approximation of FPi

, then (a) follows
directly from the Eckart-Young Theorem that guarantees that ∑︁rPi

j=(1−αi)rPi
+1

σ2
j (FPi

) ≤ ∥DPi
EPi

− FPi
∥2

F , while (b) follows after considering (5.59), after
considering that the representative supports are disjoint, that the rank of
DPi

EPi
is αirPi

, and after considering that parts of F may remain uncovered
by the tiles.

We proceed with the next lemma.

Lemma 28. For two matrices D, E, the representative supports {SPi
}m

i=1
of DE are disjoint (i.e., SPi

∩ SPj
= 0, j ̸= i) and |RPi

| = |RPj
|, CPi

| =
|CPj

| ∀i, j ∈ [m] if and only if D and E accept the disjoint balanced support
assumption of Definition 12.

Proof. The proof follows from the same proof of Lemma 3, after additionally
now noting that for any class Pi ∈ C then |RPi

| = ∥I(:, i)∥0 for some i ∈ [NT ],
and after noting that due to the disjoint balanced support assumption of
Definition 12 we have that ∥D(:, i)∥0 = ∥Supp(D(:, i))∥0 = ∥D(:, j)∥0 =
∥Supp(D(:, j))∥0, ∀i ≠ j, i, j ∈ [NT ], which in turn implies that |RPi

| =
|RPj

|, ∀i, j ∈ [m]. Similar considerations to RP , also apply when focusing on
CP .

We also have the following lemma.

Lemma 29. In the limit of large N and fixed R, K
L

, and under the assumption
of demand matrices F ∈ RK×L drawn with i.i.d entries having zero mean and
unit variance, then any optimal scheme that satisfies the disjoint balanced



162 6.3. Appendix: Proof of The achievability and converse of Theorem 10

support assumption of Definition 12 having fixed |RPi
|

K
,

|CPj
|

L
, ∀Pi ∈ C =

{P1, P2, . . . , Pm}, must guarantee that the union of all representative supports
covers F.

Proof. We prove this by contradiction. Suppose that there exists an optimal
scheme whose union of representative supports (union of tiles) does not
cover F. Since the scheme satisfies Definition 12, by Lemma 18, we can let
|RPi

| = |RPj
| = X, ∀i, j ∈ [m] and |CPi

| = |CPj
| = Y, ∀i, j ∈ [m]. We also see

due to the fact that the scheme does not cover F, then

[K] × [L]\ ∪P∈C RP × CP ̸= ∅. (6.42)

Furthermore we see that

[K] × [L]\ ∪P∈C RP × CP (6.43)
= ∩P∈C([K] × [L]\RP × CP) (6.44)
= ∩P∈C((([K]\RP) × [L]) ∪ ([K] × [L]\CP)) (6.45)
= ∪A⊆C((([K]\ ∪i∈A RPi

) × [L]) ∩ ([K] × [L]\ ∪i∈(C\A) CPI
)) (6.46)

= ∪A⊆C([K]\ ∪i∈A RPi
× [L]\ ∪i∈(C\A) CPi

) ̸= ∅ (6.47)

and thus there exists a subset A ⊆ C such that [K]\ ∪i∈A RPi
× [L]\ ∪i∈(C\A)

CPi
̸= ∅, which in turn says that [K]\ ∪i∈A RPi

̸= ∅ and [L]\ ∪i∈(C\A) CPi
̸= ∅.

Since |[K]\∪i∈A RPi
| = K −|∪i∈A RPi

|, then from Definition 12 and Lemma 3,
we see that either RPi

= RPj
, ∀i, j ∈ A or that RPi

∩RPj
= ∅, ∀i ̸= j, i, j ∈ A.

We also recall that |RPi
| = X, ∀i ∈ [m], and thus that X divides | ∪i∈A RPi

|.
Since also X divides K, we can see that X divides |[K]\ ∪i∈A RPi

|. A similar
argument can be made to show that Y divides |[L]\ ∪i∈(C\A) CPi

|.
Now, to show that this assumption results in a contradiction, we construct

another scheme for the same set of parameters and analyse its performance.
We first recall that NT = ∑︁m

i=1 rank(Fα
P) = ∑︁m

i=1 αirPi
, i.e., that the sum

of the ranks of the matrices Fα
P (cf. (6.16)) across P ∈ C is equal to NT .

Assuming, without loss of generality, that X ≤ Y , yields rP = X, ∀P ∈ C
which in turn yields

NT =
m∑︂

i=1
αirPi

=
m∑︂

i=1
αiX. (6.48)

Now, consider another scheme with the same positioning of tiles, though
now an additional tile Pm+1, with a set of row indices RPm+1 ⊆ ∪i∈ARPi

, |RP | =
X and column indices CPm+1 ⊆ [L]\∪i∈(C\A)CPi

, |CPm+1| = Y . Let the now addi-
tionally introduced tiles be placed inside the previously “uncovered" area of the
previous scheme, which means that RPm+1 ×CPm+1 ⊆ [K]× [L]\∪P∈C RP ×CP .
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Let us now choose β < α1, βrP1 ∈ N and then let FP1 be now estimated by a
matrix Fα1−β

P1 of rank (α1 − β)X (rather than by matrix Fα1
P1 of rank α1X.).

We now recall that the error of the first tile of the optimal scheme is

∥Fα1
P1 − FP1∥F =

(1−α1)rP∑︂
i=1

σ2
i+α1rP

(FP) (6.49)

which we know to be optimal from the Eckart-Young Theorem. Now we see
that the error corresponding to the first tile, for the new scheme — which
again employs the optimal truncated SVD method — takes the form

∥Fα1−β
P1 − FP1∥F =

(1−α1+β)rP∑︂
i=1

σ2
i+(α1−β)rP

(FP). (6.50)

For the same new scheme, the last used FPm+1 is being approximated by
matrix Fβ

Pm+1 , which has rank βrPm+1 = βX, yielding a last-tile error of the
form

∥Fβ
Pm+1 − FPm+1∥F =

(1−β)rP∑︂
i=1

σ2
i+βrP

(FP). (6.51)

We also note that both the original and the new scheme incur NT = (α1 −
β)rP1 +∑︁m

i=2 αirPi
+ βrPm+1 = ((α1 − β) +∑︁m

i=2 αi + β)X = ∑︁m
i=1 αiX which

comes from (6.48).
Now we can see that the average normalized error of the scheme can be

thus expressed as

ϵopt = EF {∑︁(1−α1)X
i=1 σi+α1X(FPi

)}
KL

+ ϵ{2,...,m} (6.52)

+
EF{∑︁(i,j)∈[K]×[L]\∪P∈CRP ×CP F(i, j)2}

KL
(6.53)

where the first fraction describes the error due to the first tile (cf. (6.49)), the
second term ϵ{2,...,m} is the average normalized error of the second to last tiles,
while the last term represents the Frobenius norm for the part of the matrix
that represents the “hole" left uncovered. Then the average normalized error
of the constructed scheme can be expressed as

ϵc = EF {∑︁(1−α1+β)X
i=1 σi+(α1−β)X(FPi

)}
KL

+ ϵ{2,...,m}

+
EF{∑︁(i,j)∈[K]×[L]\∪P∈CRP ×CP F(i, j)2 −∑︁βX

i=1 σi(FPm+1)}
KL

(6.54)
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where the first term corresponds to the first tile (cf. (6.50)), the second term
ϵ{2,...,m} is again the average normalized error corresponding to the second
to mth tiles, while the last error term is attributed to tile m + 1 and to
the still uncovered area. This last expression is simplified after considering
the summation of the average Frobenious norm of the uncovered area that
yields error EF{∑︁(i,j)∈[K]×[L]\∪P∈CRP ×CP F(i, j)2 − ∥FPm+1∥F}, as well as after
considering that the error EF{∥Fβ

Pm+1−FPm+1∥F } of the (m+1)th tile takes the
form in (6.51), and finally after noting that ∥Fβ

Pm+1 − FPm+1∥F − ∥FPm+1∥F =
−∑︁βX

i=1 σi(FPm+1). Thus we can conclude that the normalized error attributed
to tile m + 1 and to the still uncovered area, takes the form of the numerator
of (6.54).

Thus we can now see that

ϵopt − ϵc = XY

KL
(−

∫︂ F −1
MP,λ

(1−α1+β)

F −1
MP,λ

(1−α1)
xfMP,λ(x) dx (6.55)

+
∫︂ F −1

MP,λ
(1)

F −1
MP,λ

(1−β)
xfMP,λ(x) dx), λ = X

Y
(6.56)

which follows after considering (6.53), (6.54), as well as after following the
corresponding steps found in the proof of Lemma 25. We can now also note
that

d

dt

∫︂ F −1
MP,λ

(t)

F −1
MP,λ

(t−β)
xfMP,λ(x) dx

= 1
fMP,λ(F −1

MP,λ(t))
F −1

MP,λ(t)fMP,λ(F −1
MP,λ(t))

− 1
fMP,λ(F −1

MP,λ(t − β))
F −1

MP,λ(t − β)fMP,λ(F −1
MP,λ(t − β))

= F −1
MP,λ(t) − F −1

MP,λ(t − β) > 0

where the last inequality is due to the fact that F −1
MP,λ(t) is a strictly monotoni-

cally increasing function of t, which means that the function
∫︁ F −1

MP,λ
(t)

F −1
MP,λ

(t−β) xfMP,λ(x)dx

for all β ≤ t ≤ 1 is a strictly monotonically increasing function of t, which
now yields

∫︁ F −1
MP,λ

(1)
F −1

MP,λ
(1−β) xfMP,λ(x) dx >

∫︁ F −1
MP,λ

(1−α1+β)
F −1

MP,λ
(1−α1) xfMP,λ(x) dx, and thus

— after considering (6.56) — yields ϵopt − ϵc > 0, which contradicts our initial
optimality assumption. By showing that there can always be a scheme that
offers strictly lower error than the best scheme that fails to fully cover F, we
prove that optimal schemes must cover F.
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Continuing with our main proof, we recall that F is a K × L real random
matrix whose entries are i.i.d with zero mean and unit variance. In this
context, and in the limit of large N , we recall Lemma 18 and Definition 12,
and after seeing that |RP | = X, |CP | = Y, ∀P ∈ C, we first consider the case
of X ≤ Y , where we have r = X

Y
and ∑︁m

i=1 αiX = NT , and proceed to see
that

EF{
m∑︂

i=1

rPi∑︂
j=(1−αi)rPi

+1
σ2

j (FPi
)}

(a)= Y EF

{︃∑︁m
i=1

∑︁αiX
j=1 σ2

j+(1−αi)X(FPi
)

Y

}︃
(b)= Y EF

{︃ m∑︂
i=1

αiX∑︂
j=1

∫︂ ∞

−∞
δ(x −

σ2
j+(1−αi)X(FPi

)
Y

)xdx
}︃

(c)= Y EF

{︃ m∑︂
i=1

αiX∑︂
j=1

∫︂ ∞

−∞
(1/δx)1(

σ2
j+(1−αi)X(FPi

)
Y

≤ x + δx)

− 1(
σ2

j+(1−αi)X(FPi
)

Y
≤ x)xdx

}︃
(d)= Y

m∑︂
i=1

EF

{︃ αiX∑︂
j=1

∫︂ ∞

−∞
(1/δx)1(

σ2
j+(1−αi)X(FPi

)
Y

≤ x + δx)

− 1(
σ2

j+(1−αi)X(FPi
)

Y
≤ x)xdx

}︃
(e)= Y X

m∑︂
i=1

∫︂ F −1
MP,λ

(1−αi)

(1−
√

r)2
(1/δx)[FMP (x + δx) − FMP,λ(x)]xdx

(f)= Y X
m∑︂

i=1

∫︂ F −1
MP,λ

(1−αi)

(1−
√

r)2
fMP (x)xdx

(g)
≥ Y Xm

∫︂ F −1
MP,λ

(1− NT
mX

)

(1−
√

r)2
fMP (x)xdx

(h)= KL
∫︂ F −1

MP,λ
(1− NT Y

KL
)

(1−
√

r)2
fMP (x)xdx

(i)
≥ KL

∫︂ F −1
MP,λ

(1− NT Γ
KL

)

(1−
√

∆
Γ )2

fMP (x)xdx

where (a) follows since Y is a constant, (b) follows from basic properties of the
delta Dirac function, (c) follows from the fact that the delta Dirac function is
a derivative of the step function, (d) follows from the fact that expectation
and sum are interchangeable functions, (e) follows from the same reasoning
that allowed equality (f) for the case ∆ ≤ Γ of the proof of Lemma 25, and (f)
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here follows from the fact that fMP is the derivative of FMP . Furthermore, (g)
follows by first setting g(αi) ≜

∫︁ F −1
MP,λ

(1−αi)
(1−

√
r)2 fMP (x), and then by recalling that∑︁m

i=1 αi = NT
X

, and subsequently by noting that g(αi) is a monotonic decreas-
ing convex function of αi, ∀0 ≤ αi ≤ 1, which in turn implies that its Lagrange
optimizer function will be L(α1, α2, . . . , αm) = Y

∑︁m
i=1 g(αi)−λ(∑︁m

i=1 αi− NT
X

),
where to ensure ∂L

∂αi
= 0, ∀i ∈ [m] we have ∂g(αi)

∂αi
= F −1

MP,λ(1 − NT
mX

) = λ, ∀αi,
which in turn means that α1 = α2 = . . . = αm = α which, combined with
the optimization constraints, yields that α = NT

mX
. Then (h) results by noting

that m = KL
XY

, which itself holds since, by Lemma 29, we have that for
any asymptotic scheme with bounded normalized error, the representative
supports or tiles must cover the whole matrix F. Finally (i) follows from
the fact that X ≤ ∆, Y ≤ Γ and after seeing that the derivative of the
RHS side of (h) with respect X is KL

X
((−2(1 −

√︂
X
Y

))( 1
Y

)(−1
2)X

Y

−1/2
fMP ((1 −√︂

X/Y )2)(1−
√︂

X
Y

)2)− KL
X2

∫︁ F −1
MP (1− NT

KL
Y )

(1−
√

X
Y

)2
xfMP,λ(x)dx, as well as by noting that

since fMP ((1 −
√︂

X/Y )2) = 0, the derivative of the RHS side of (h) is always
negative, which in turn means that the RHS side of (h) is a monotonically
decreasing function of X which in turn yields that X = ∆ gives the optimal
solution. This is then combined with the fact that the derivative of the RHS
side of (h) with respect regarding Y is −NT

KL
1

fMP (F −1(1− NT Y
KL

))F
−1
MP,λ(1 − NT Y

KL
)

fMP (F −1
MP,λ(1 − NT Y

KL
))−2(1−

√︂
X
Y

)(−1
2)(X

Y
)−1/2XY −2 = −NT

KL
F −1

MP (1−NT Y
KL

)−
(1 −

√︂
X/Y )(X

Y
)−1/2XY −2. Finally, since X ≤ Y , this derivative is also nega-

tive, which in turn means that Y = Γ, with the same reasoning as the case
where X = ∆. This proves that

EF{∥DE − F∥2
F } ≥ KL

∫︂ F −1
MP,λ

(1−T γ
R

)

(1−
√︂

δκ
γ

)2
xfMP,λ(x) dx (6.57)

for the case of X ≤ Y . As a result, this proves the lower bound in (6.38),
and thus the entire lower bound (converse) of Theorem 10, over all schemes
for which |RP | ≥ |CP |, ∀P ∈ C.

Now for the case of Y ≤ X, similarly we have r = X
Y

, and now with∑︁m
i=1 αiY = NT , we see that

EF{
m∑︂

i=1

rPi∑︂
j=(1−αi)rPi

+1
σ2

j (FPi
)}

(a,b,c,d)= Y
m∑︂

i=1
EF

{︃ αiY∑︂
j=1

∫︂ ∞

−∞
(1/δx)1(

σ2
j+(1−αi)X(FPi

)
Y

≤ x + δx)
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− 1(
σ2

j+(1−αi)X(FPi
)

Y
≤ x)xdx

}︃
(e)= Y X

m∑︂
i=1

∫︂ F −1
MP,λ

(1− Y
X

αi)

(1−
√

r)2
(1/δx)[FMP (x + δx) − FMP,λ(x)]xdx

(f)= Y X
m∑︂

i=1

∫︂ F −1
MP,λ

(1− Y
X

αi)

(1−
√

r)2
fMP (x)xdx

(g)
≥ Y Xm

∫︂ F −1
MP,λ

(1− NT
mX

)

(1−
√

r)2
fMP (x)xdx

(h)= KL
∫︂ F −1

MP,λ
(1− NT Y

KL
))

(1−
√

r)2
fMP (x)xdx

(i)
≥ KL

∫︂ F −1
MP,λ

(1− NT Γ
KL

)

(1−
√

∆
Γ )2

fMP (x)xdx

where the first equality is proven the same way as the equalities (a, b, c, d) in
the previous case of X ≤ Y , and where here (e) is proven similar to equality
(f) of the case ∆ > Γ in the proof of Lemma 25. Furthermore, here, (f)
follows from the fact that fMP is the derivative of FMP . To establish (g),
we first consider g(αi) ≜

∫︁ F −1
MP,λ

(1−αi)
(1−

√
r)2 xfMP (x)dx subject to ∑︁m

i=1 αi = NT
Y

,
and then note that g(αi) is a monotonic decreasing convex function of αi, in
the range αi ∈ R, thus allowing us to conclude that its Lagrange optimizer
function will be L(α1, α2, . . . , αm) = Y

∑︁m
i=1 g(αi) − λ(∑︁m

i=1 αi − NT
Y

) where
to ensure ∂L

∂αi
= 0, ∀i ∈ [m], we have ∂g(αi)

∂αi
= F −1

MP,λ(1 − NT
m

) = λ, ∀αi, which
means that α1 = α2 = . . . = αm = α, which is then combined with the
optimization constraints to yield that α = NT

mY
. Subsequently, (h) results

after noting that m = KL
XY

after recalling Lemma 29 which tells us that for
any asymptotic scheme with normalized error, the representative supports
must cover the entire F. Finally, (i) follows directly as inequality (i) of the
case of X ≤ Y . As a result, this proves the lower bound in (6.38), and thus
the entire lower bound (converse) of Theorem 10, over all schemes for which
|RP | ≤ |CP |, ∀P ∈ C.





Chapter 7

Conclusion, Open Problems and
Future Works

In this thesis, we have introduced a new multi-user distributed-computation
setting for computing from the broad class of linearly-decomposable functions
from modeling the setting on real numbers and natural numbers. Our research
unveiled the relation between distributed computing and the challenge of
decomposing a ’functions’ matrix F into two ideally sparse matrices: the
encoding matrix E and the decoding matrix D. Furthermore, we established
a novel connection to covering codes, highlighting their significance in dis-
tributed computing quandaries and sparse matrix factorization within finite
fields. Additionally, this thesis introduced the notion of partial covering
codes and emphasized the necessity for codes proficient in covering smaller
subsets of the overarching vector space. Expanding upon this new category
of codes, which serves as an extension of covering codes, we presented sev-
eral enhancements and broader implications of established findings in the
literature

Furthermore, our investigation delved into the multi-shot setting, after
we thoroughly examined the advantages of the single-shot approach. Our
analysis happens on both real numbers and finite field scenarios, revealing that
the benefits derived from augmenting T exhibit an unbounded and strictly
increasing gain in the realm of large T . Conversely, within the domain of
finite T , these benefits exhibit a strictly increasing pattern beyond a certain
threshold value of T . Consequently, we can infer, as previously suggested,
that the reductions in computation attributable to larger T stem, at least
partially, from the heightened precision in transmission facilitated by a larger
T , rather than solely from an increased communication cost. Also, in the real
numbers scenarios of lossy tessellated distributed computing, we observed
a decrease in the normalized reconstruction error as a consequence of the
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increase in the number of shots (cf. Figure 6.5).
Our introduced normalized computation metrics consist of, the computa-

tion cost per server constraint γf introduced in Chapter 2, representing the
normalized maximum fraction of all servers that must compute any subfunc-
tion, γc = Γc

NL
introduced in Chapters 3 and 4, representing the normalized

number of cumulative computation costs done by all the servers overall sub-
functions and γ = Λ

L
= Γ

L
, introduced and used in Chapters 3, 5 and 6,

representing the maximum number of subfunctions assigned to a server and
modelling the delay of the synchronous distributed system, has the following
relationships:

γc ≤ γf (7.1)
γc ≤ γ (7.2)

note that in Theorem 2, we proved that γf ≤ H−1
q (K

N
) in the single-shot

setting, where the formulation has been done in finite fields. Using (7.2), we
see that Γc

NL
, defined in Chapter 3, can also be upper bounded by H−1

q (K
N

).
Note that if q is sufficiently large, we have that H−1

q (K
N

) ≃ K
N

, therefore we
have γf , γc ≤ K

N
. On the other hand, using a completely different approach

in Chapter 4, in Proposition 7, we derived that γc ≤ K
N

, also via another
distinct approach in Chapter 5, Theorem 9, we have that C = γ when ζ < γ,
which means that K

Nopt
= γ. It is not obvious why this observation occurred

and what logic is behind it. Why the results in the finite field modelling
coincided with the results in the real field approaches when the size of the
field q approached infinity? The answer to this question may pave the way
for researchers in the field to be able to transform any result in the finite field
into the real numbers field.

In terms of communication cost, we have introduced two new metrics the
first one is δc, representing the average fraction of servers that each user gets
data from, and δ, representing the maximum number of transmissions from a
server to the other users. The same relation as of (7.2), holds for the defined
communication costs δc ≤ δ.

Furthermore, our setting can also apply to a broad range of ‘well-behaved’
functions and thus can enjoy several use cases, some of which are suggested
in our introduction (see also [22] for additional motivation of the linearly
separable function computation problem).

Our work naturally relates to the recent results in [22] that considered
the single-user linearly-separable distributed computing scenario, where a
single user may request multiple linearly-separable functions. In this setting
in [22], as well as in the extended works in [42] and [89], a key ingredient is
the presence of straggling servers, while another key ingredient is that the
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subfunction-assignment is fixed and oblivious of the actual functions requested
by the user.

Our analysis also applies to the transposed computing problem corre-
sponding to E⊺D⊺ = F⊺. In that scenario, there will be a dual analysis by
replacing the computation and communication cost concepts, with each other
in each of the Chapters and swapping the K, the number of users with L the
number of subfiles. One direction for future investigations would to be delve
more into the results of this dual of the problem.

This thesis also established various upper and lower bounds on the com-
putational delay Γ and the cumulative computation cost Γc ∈ [0, NL], and
revealed new connections to the packing and covering capabilities of codes
thus revealing for the first time powerful connections with the class of perfect
codes.

Also, relating our distributed computing to compressed sensing and driv-
ing new results in terms of cumulative computation cost, shows us how a
compressed sensing approach and mathematical single-processing techniques
can be useful in characterizing the fundamental limits of multi-user distributed
systems. One of the approaches was to look at the problem from the perspec-
tive of the fixed-support matrix factorization problem raised from the sparse
matrix decomposition literature, which leads to the results of the Tesselated
Distributed Computing, described in Chapters 5 and 6.

The introduction of tesselated distributed computing, discussed in both
Chapters 5 and 6, marks a significant stride in linking the multi-user linearly-
decomposable problem with various realms, including sparse matrix fac-
torization, fixed-support matrix factorization, tiling literature, distributed
computing challenges, and the statistical landscape of large matrices. In
tackling the lossy scenario, which presents the intricate problem of approxi-
mate matrix factorization, our approach harnessed asymptotic methods and
stochastic metrics. These tools allowed us to delineate, for the first time, a
precise boundary on the optimal normalized reconstruction error vis-à-vis com-
munication and computational resources. Remarkably, this boundary holds
firm under the assumption of disjoint supports, with straightforward schemes
achieving this pinnacle through elemental tilling techniques in conjunction
with truncated SVD decompositions.

7.1 Future Works and Open Problems
As suggested above, our setting can apply to a broad range of ‘well-behaved’
functions and thus can enjoy several use cases and theoretical expansion. We
can name and describe the following direction as the possible future works as
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follows:

• Hierarchical Scenarios: An additional new direction that our work
can extend is the so-called hierarchical or tree-like scenario introduced
in [80], [92] whose purpose is to ameliorate bandwidth limitations and
straggler effects in distributed gradient coding [18]. In this hierarchical
setting, each user1 is connected to a group of servers in a hierarchical
manner. In particular, each user computes a linearly separable function
based on its locally available data and then sends this to the ‘Aggregator’
that finally computes the gradient. that allows for a hierarchical aggre-
gation of the sub-gradients. Our approach can extend the hierarchical
model by allowing the users to connect to any subset of servers, as well
as by allowing them to deviate from the single-shot assumption.

• Transpose Variant: Our analysis also applies to the transposed
computing problem corresponding to E⊺D⊺ = F⊺, on that case the
provided bound will be on the communication cost per user where K
the number of users has to be significantly larger than L, the number
of files while L/N (the ratio between the number of files and servers)
remains fixed since in the above case E⊺ would be seen as the parity-
check matrix of a partial covering code, not D. We can see that this
scenario investigates a less practical scenario where K, the number of
users is much bigger than the number of subfunctions.

• Different Entropy for Transmitted Symbols: we can conceive
of a setting where the size of the transmitted signals sent by different
servers zn, n ∈ [N ], in the single shot scenario differs from each other.
More precisely, in this chapter we assumed that the output of each
subfunction, so-called file-output fℓ(.) is just a member of GF(q) (Cf.
(2.4)) so that the model captures the most general and simple instance
of the multi-user linearly separable distributed computing problem,
because of that we see the transmitted signals zn, n ∈ [N ] can be
any member of GF(q) since the signal is just a linear combination
of the files and mathematically zn can also be any element of GF(q),
therefore in this system model, there is no difference between any of
the transmitted signals and the communication cost is simply the total
number of activated links. If we were to analyse the system model
where there might exist two transmitted signals z1 and z2, with two
different sizes then we have to also define a probability measure on each
of the output files. For instance, we might investigate the case where

1In [80], these users are referred to as master nodes.
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W1 has a non-uniform distribution, or apriori the master knows that
W1 ̸= 0 while other files have a uniform distribution. In this case, if the
master node allocated D1 to the server 1 but not to the server 2, then
z1 consists of W1 and other files and z2 does not contain W1 in their
linear decomposition, then z1 has a non-uniform distributed while z2
has a uniform distribution, which makes H(z1) < H(z2), where H is an
entropy defined on random variables z1 and z2. We see that this results
in an interesting problem where the communication cost also has to be
dependent on the output files distribution, which might be dependent
on some kind of weighed sparsity criteria of both D and E.

• Achieving a Partial Covering Code for a Specific Set of Syn-
dromes: An interesting open problem is to design an algorithm so that
for a given set of syndromes S = {s1, s2, . . . , sL} where s ∈ GF(q)n−k,
design an optimal partial covering code C(k, n), which means to design
a code that covers the points in X = {x|HCx = s, s ∈ S} with partial
covering radius ρX ≃ H−1

q ( logq(L)
n

).

• Partial Perfect Codes: As one may inspect, the code construction of
Theorems 6 and7 in Chapter 3, is only optimal for the computational
delay and cumulative computation cost, where L = qK and F columns
are all different, which is regarded a the syndromes of a perfect code.
What will be the result when F does not include all the possible variants
of syndromes?

• Eliminate The Uniqueness Assumption Property of The Spars-
est Solution in The Compressed Sensing Literature Recall that
result in Theorem 8 automatically accepts an additional uniqueness
property — on the sparsest solution x in (4.14) — which is in fact not
needed in our distributed computing problem. It would be interesting
to explore further improvements in the computational costs, upon the
removal of this uniqueness condition. One can imagine that further
improvements in the distributed computing problem could also benefit
from the deep connections revealed in [105] between compressed sensing
and error correction.

• Approximation Theory: For future work, we can consider the sce-
nario where the various subfunctions contribute more to the reconstruc-
tion of the overall function than other subfunctions do. This can connect
the problem to the approximation theory.

• Predefined Communication Topology or Computation Assign-
ment of Subfunctions Another interesting direction could involve
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a pre-defined and fixed communication topology corresponding to a
support of D that is fixed and independent of F, or similarly a scenario
where each server can only compute a predefined subset of subfunctions,
itself corresponding to a support of E that is fixed and independent of
F.

• Optimally of The Lossless Tessellated Distributed Computing:
Another important direction is to prove optimality of the presented tessel-
lated distributed computing scheme concerning all K, L, N, T, ∆, Γ ∈ N,
or to offer another optimal scheme.

• Analysis of Access Complexity: Consider the evolution of research
surrounding distributed storage systems, in addition to the optimization
of repair bandwidth or storage within such systems, there’s a growing
concern over access complexity, as the time required to upload data
can become a bottleneck. The exploration of optimal-access MDS
codes began with [142], while a similar concept was introduced in [143]
with locally repairable codes to minimize the number of nodes needing
access. A trade-off between access complexity and storage amount
was suggested for PIR in [144]. In the problem of multi-user linearly
separable distributed computing, one might imagine the case where each
server, is required to have some chunks of a big dataset being stored
on the server. This requires the master node to access and upload a
subset of datasets in the assignment phase. For example, if subfunctions
1, 2 and 4 are assigned to some servers, then the master node has to
access 3 times server number 1 to upload the datasets while if datasets
number 1, 2 and number 3, 4 are always jointly being uploaded by the
master node, then the access complexity reduces to 2, since the master
node in one access uploads datasets 1, 2 and in another access uploads
datasets 3,4. In the problem formulation of our problem in Chapter 2,
one might imagine modelling the access complexity via introducing the
new concept of generalized covering radius [145] into the problem.

• Quantum Version of The Multi-User Linearly Separable Dis-
tributed Computing: Recently, the capacity of classical summation
over a quantum MAC with arbitrarily distributed inputs and entan-
glements [146], has been investigated and discovered. The problem
investigates a setting where a user is interested in receiving a summa-
tion of messages that are distributed arbitrarily across a number of
servers. There are some independent entangled quantum systems that
are distributed arbitrarily between servers. The communication capacity
of the system is derived in [146] using N-sum box abstraction of [147].
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One might imagine a similar setting, where each message is an output
of some subfunction, where each subfunction’s computation requires a
substantial computational resource. Investigating the computation and
communication trade-off of such a setting is an interesting direction for
future investigations.

• Utility of Dense Codes and Expander Codes: In Chapter 3, we
have established an upper bound on the computational delay Λ and
the cumulative computation cost Γ based on the packing radius and
packing density of the codes (cf. Theorem 6 and Theorem 7). One
future direction is to tighten the proposed upper bounds by employing
dense codes. The codes that have good parking radius and high parking
density. One of the important instances of these codes is Expander
codes introduced in [148] which enjoys having a Low-density parity-check
matrix. This would also translate to having less communication cost
in our setting when its parity-check matrix is utilized as the decoding
matrix D in the proposed scheme. It would be an interesting direction
to investigate the communication and computation cost trade-off when
Expander codes are being employed.

• other: Additional considerations that involve stragglers, channel un-
evenness or computational non-heterogeneity of the servers, are all
interesting research directions.
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