N
N

N

HAL

open science

Multi-User Linearly-Decomposable Distributed
Computing
Ali Khalesi

» To cite this version:

Ali Khalesi. Multi-User Linearly-Decomposable Distributed Computing. Signal and Image Processing.
Sorbonne Université, 2024. English. NNT: 2024SORUS146 . tel-04703659

HAL Id: tel-04703659
https://theses.hal.science/tel-04703659v1

Submitted on 20 Sep 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://theses.hal.science/tel-04703659v1
https://hal.archives-ouvertes.fr

Q SORBONNE E—
b UNIVERSITE EURECOM

Multi-User Linearly-Decomposable
Distributed Computing

Dissertation
submitted to

Sorbonne Université

in partial fulfillment of the requirements for the degree of
Doctor of Philosophy

Author:
Ali Khalesi

Jury President/Reviewer Prof. Micheéle Wigger Télécom Paris, FR
Examiner/Reviewer Prof. Sundar Rajan Indian Institute of Science, IN
Ezxaminer Prof. Giuseppe Caire Technical University of Berlin, DE
Examiner Prof. Derya Malak EURECOM, FR

Ezraminer Prof. Daniela Tuninetti University of Illinois Chicago, US
Examiner Prof. Konstantin Avrachenkov INRIA Sophia Antipolis, FR

Thesis Advisor Prof. Petros Elia EURECOM, FR

The research has been conducted in the Communication Systems Departement
at EURECOM (Sophia Antipolis, FR) from January 2020 to June 2024.

Manuscript compiled with pdf XTEX on September 2, 2024.

Dedication

To the ones who were honest, truthful and loyal to me.
To my friends and my family.

iii

It is the part of an uneducated
person to blame others where he
himself fares ill; to blame himself
is the part of one whose
education has begun; to blame
neither another nor his own self
is the part of one whose
education is already complete.
Only the educated are free.

Epictetus

Abstract

Distributed computing frameworks are an inevitable part of current telecom-
munication technologies. They enable service providers to process computation-
intensive tasks and to communicate huge amounts of information between
servers or end-users via shared networking and storage resources. Many of
the prevalent applications can be found in wireless sensor networks, online
multi-player games, virtual reality, distributed database management sys-
tems, distributed learning algorithms for training large models (such as large
language models and federate learning) and parallel computing. This thesis
explores multi-user linearly-decomposable distributed computation, where N
servers help compute the desired functions (jobs) of K users, and where each
desired function can be written as a linear combination of up to L (generally
non-linear) subtasks (or subfunctions). Each server computes some of the
subtasks, communicates a function of its computed outputs to some of the
users, and then each user collects its received data to recover its desired
function. Our first study explores the computation and communication costs
relationship. For a coefficient matrix F representing the linearly decomposable
form of the set of requested functions, our problem becomes equivalent to the
open problem of sparse matrix factorization F = DE over any mathematical
field, where a sparse communication matrix D and computing matrix E imply
reduced communication and computation costs respectively. In this thesis, we
present our research by modelling the processed databases by the servers and
transmitted signals as elements in some arbitrary finite field or the real num-
bers domain. In the finite field approach, we established a novel relationship
between our distributed computing problem, matrix factorization, syndrome
decoding and covering codes. To reduce the computation cost per subfunction
— Which is the maximum number of servers that a subfunction is assigned to
it, across all the subfunctions — the above D is drawn from covering codes
or from a here-introduced class of so-called ‘partial covering’ codes, whose
study here yields reduced computation cost per subfunction. To then reduce
the cumulative communication cost — The overall transmitted signals by
each server — these coding-theoretic properties are explored in the regime

vi Abstract

of codes that have low-density parity check matrices. The thesis reveals —
first for the commonly used one-shot scenario — that in the limit of large
N, the optimal normalized computation cost per subfunciton v; € (0,1) is in
the range v; € (H;l(logfv(m), H,'(K/N)) — where H, is the g-ary entropy
function — and that this can be achieved with normalized communication cost
that vanishes as |/log,(IV)/N. The above reveals an unbounded coding gain

over the uncoded scenario, as well as reveals the role of a certain functional
rate log,(L)/N and functional capacity H,(7) of the system. We also explore
the multi-shot scenario, for which we derive bounds on the computation cost
per subfunction.

In another effort we aim at reducing the total number of subfunction
computations across the servers (cumulative computational cost), as well as
the worst-case load which can be a measure of computational delay. Our
contribution consists of novel bounds on the two computing costs, where these
bounds are linked to the covering and packing radius of classical codes.

One of our findings is that in certain cases, our distributed computing
problem is treated optimally when F' is decomposed into a parity check matrix
D of a perfect code, and a matrix E which has columns as the coset leaders
of this same code.

In the real numbers domain, we reformulate the real-valued distributed
computing problem into a matrix factorization problem and then into a ba-
sic sparse recovery problem, where sparsity implies computational savings.
Building on this, we first give a simple probabilistic scheme for subfunction
assignment, which allows us to upper bound the optimal normalized cumu-
lative computation cost — the overall number of subfunction computations
that are done by all of the servers — as 7, < % that a generally intractable £,-
minimization would give. To bypass the intractability of such optimal scheme,
we show that if these optimal schemes enjoy 7. < —r&X W (—25) (where
W_1(-) is the Lambert function and r calibrates the communication between
servers and users), then they can be derived using a tractable Basis Pursuit
¢1-minimization. This newly revealed connection opens up the possibility of
designing practical distributed computing algorithms by employing tools and
methods from compressed sensing.

This thesis also introduces a new framework called tessellated distributed
computing, where the aim is for each user to receive their function outputs,
allowing for reduced error €, reduced computing cost (y; the fraction of sub-
functions each server must compute), and reduced communication cost (J;
the fraction of users each server must connect to). For any given set of K
requested functions — which again is here represented by a coefficient matrix

Abstract vii

F € RE*E — our problem is made equivalent to the open problem of sparse
matrix factorization that seeks — for a given parameter T, representing the
number of shots for each server — to minimize 5 ||F — DE||3, overall d-spars
and 7-sparse matrices E € RVT*Z and D € REXNT | With these matrices
respectively defining which servers compute each subfunction, and which users
connect to each server, we here design our E, D by designing tessellated-based
and SVD-based fixed support matrix factorization methods that first split F
into properly sized and carefully positioned submatrices, which we approxi-
mate and then decompose into properly designed submatrices of D and E.
For the zero-error case and under basic dimensionality assumptions, the thesis
reveals achievable computation-vs-communication corner points (y,d) which,
for various cases, are proven optimal over a very large class of D, E using a
novel tessellations-based converse. Subsequently, for large N, and under basic
statistical assumptions on F, the average achievable error € is concisely ex-
pressed using the incomplete first moment of the standard Marchenko-Pastur
distribution, where this performance is shown to be optimal over a large
class of D and E. In the end, the work also reveals that the overall achieved
gains over baseline methods are unbounded. In summary, this thesis explores
the fundamental limits of multi-user linearly-decomposable distributed com-
puting in various domains and various conceptions of communication and
computation costs.

One notable aspect is that we treat an extremely broad setting of functions
and do so in a promising multi-user setting. Interestingly, we here present
never-before-seen connections between distributed computing, coding theory,
perfect codes, compressive sensing and tessellation theory, as well as large
matrix analysis. As we discuss, there is a rich class of problems that emerges
from these connection. We hope that these new directions and connections are
useful in the development of the very challenging area of multi-user distributed
computing.

Acknowledgements

At this pinnacle of my academic journey, I find it imperative to express my
deepest gratitude to all those whose support, guidance, and encouragement
have been instrumental in the completion of this thesis. Foremost among
them, I am profoundly grateful to my supervisor, Professor Petros Elia, whose
invaluable insight, constructive feedback, and unwavering encouragement have
shaped this work from its inception to its conclusion. Without his expertise
and dedication, the realization of this thesis would not have been possible.

[am also indebted to the jury members for their insightful critiques, precise
questions, and invaluable feedback. In particular, I extend my heartfelt thanks
to the two reviewers, Pr. Michele Wigger and Pr. Sundar Rajan, for their
time, dedication, and rigorous evaluation of this thesis. I would also like to
express my sincere appreciation to Pr. Giuseppe Caire, Pr. Derya Malak, Pr.
Daniela Tuninetti, and Pr. Konstantin Avrachenkov, who served as evaluators
and jury members. [am especially thankful to Pr. Caire for his encouraging
perspective on the thesis and his profound comments on the compressed
sensing component.

At this significant juncture, I must also acknowledge those individuals
who have profoundly shaped both my character and my academic journey
from the very beginning. I owe a deep debt of gratitude to my middle school
physics teacher, Dr. Ebadollah Naderi, whose early encouragement to pursue
a path in research unveiled my potential in mathematics and physics. His
guidance was foundational in shaping my future endeavors, and I sincerely
hope he remains in good health and high spirits, wherever he may be.

My undergraduate years were further enriched under the supervision of
Dr. Bahare Akhbari and through the teachings of Pr. Mahmoud Ahmadian
Attari in channel coding course. Their profound understanding of information
theory and coding theory, coupled with their masterful exposition of these
subjects, galvanized my decision to specialize in this field. It was their recom-
mendation that led me to pursue my Master’s degree under the mentorship
of two distinguished professors at Sharif University. In particular, I had the
privilege of working with Pr. Mahtab Mirmohseni and Pr. Mohammad Ali

ix

X Acknowledgements

Maddah-Ali, two of the most astute and knowledgeable academics I have
encountered. I am deeply grateful to them for laying the groundwork of my
research methodologies and strategies and for their rigorous expectations,
which ultimately prepared me for further academic pursuits. This founda-
tional experience paved the way for my acceptance at Sorbonne University,
one of the world’s most venerable and esteemed institutions, where I was
fortunate to continue my studies under the mentorship of Pr. Elia, a profound
lover of mathematics and an exemplary teacher.

I am particularly grateful to my friend and colleague, Sajad Daei, and
to Pr. Marios Kountouris for their instrumental role in introducing me
to the concept of compressed sensing. Additionally, I extend my sincere
thanks to my colleagues at EURECOM, Ahmad Tanha and Reza Deylam
Salehi, for their unwavering support throughout my doctoral journey. Special
acknowledgement is due to my best friend, Mohammad Saeed Masiha, a
true connoisseur of mathematics and a brilliant thinker, for the countless
intellectually stimulating discussions that greatly enriched my PhD experience.

I am also deeply appreciative of my long-standing friends in my home
country—Amirhossein Afshar, Mohammad Zolfaghari, Mostafa Parsapour,
and Alireza Dehghani—whose friendship has spanned over 15 years. Their
virtual presence during my PhD defense and their shared joy in my success
have meant more to me than words can convey.

Moreover, I would like to extend my heartfelt gratitude to my colleagues
and staff at the EURECOM Institute, particularly the former and current
directors, Ulrich Finger and David Gesbert, for their relentless commitment
to maintaining EURECOM as a premier institution for both fundamental and
applied research. I deeply appreciate their efforts to ensure the well-being of
all staff during the COVID-19 pandemic and beyond, as well as their provision
of an environment conducive to cutting-edge research.

Lastly, I am profoundly grateful to my family for their unwavering support,
patience, and love throughout this academic endeavor. Their belief in me has
been my greatest source of motivation and strength.

Nice, September 02, 2024 Ali Khalesi

Contents

X1

Abstract \
Acknowledgements ix
List of Figures xviii
Notations xviii
1 Introduction 1
1.1 Single-User Distributed Linearly-Separable Computation . . . 4
1.2 Multi-User Linearly-Decomposable Distributed Computing . . 7
1.3 Main Contributions 12
2 Multi-User Linearly-Decomposable in Finite Fields 19
2.1 Introduction 19
2.2 System Model 24
221 Phases 25
2.2.2 Computation and Communication Costs 26
2.3 Problem Formulation: One-Shot Setting 28
2.3.1 Simple Exampleo 30

2.4 Computation and Communication Costs for the Single-Shot
Setting 33

2.4.1 Establishing a Relationship to Covering Codes and
Partial Covering Codes 33
2.4.2 Bounds on the Optimal Computation Cost 36

2.4.3 Jointly Considering Computation and Communication
Costs 37
2.4.4 Discussing the Results of the Current Section 39

2.5 Distributed Computing of Linearly-Decomposable Functions
with Multi-Shot Communications (7">1) 41
2.5.1 Problem Formulation 41

xii Contents
2.6 Conclusions 45
2.7 Appendices 49
2.8 Proof of Converse in Theorem 2 49
2.9 Proof of Achievability in Theorem 2 50
2.10 Proof of Corollary 1. 50
2.11 Proof of Lemma 1. 52
2.12 Proof of Theorem 3 55
2.13 Proof of Theorem 5 58
2.14 Proof of Proposition 1 67
2.15 Various Proofs 67

2.15.1 Proof of Lemma 4. 67
2.15.2 Proof of Lemma 68
2.15.3 Proof of Lemma 6. 69
2.15.4 Proof of Lemma 7. 70
2.15.5 Proof of Lemma 8. 70
2.16 Proof of Lemma 9. 72
2.16.1 Proof of Proposition 2 75
2.16.2 Proof of Proposition 3 76
2.16.3 Proof of Lemma 10 76
2.16.4 Statement and Proof of Lemma 11 77

3 Perfect Codes for Multi-User Linearly-Decomposable 79
3.1 Introduction 79
3.2 System Model 80

3.2.1 Cumulative Computation Cost and Computational Delay 80
3.3 Problem Formulation: One-Shot Setting 81
331 Example 81
3.4 Main Results o 83
3.4.1 The Connection to Perfect and Quasi-Perfect Codes . . 85
3.4.2 The Special Case of Maximal Basis Set 85
3.5 Conclusion 87

4 Real-Valued Multi-User Linearly-Decomposable Distributed
Computing 89
4.1 Introduction 89
4.2 System Model and Problem Formulation 91

4.2.1 Phases of the Process 91
4.2.2 Problem Formulation 92
4.2.3 Computational Cost 93
4.3 Results. 93
4.4 Proof of Theorem 8 94

Contents xiii

4.4.1 Brief Primer on Compressed sensing 95
4.4.2 The Exact Description of Proof of Theorem 8 97
4.5 Discussion and Conclusion 97
5 Lossless Tessellated Distributed Computing 99
5.1 introduction 99
5.1.1 Multi-User Linearly-Decomposable Distributed Com-
puting 100
5.1.2 Connection to Sparse Matrix Factorization, and Related
Works 103
5.1.3 New Connection Between Distributed Computing, Fixed
Support Matrix Factorization, and Tessellations 105
5.1.4 Chapter Organization. 108
5.2 Problem Formulation 108
5.3 Lossless Distributed Computing of Linearly-Decomposable
Functions 111
54 Conclusion 119
55 Appendices 119
5.6 Concepts Relating to the Design of the Schemes 119
5.6.1 Brief Primer on Matrix Approximation 122
5.7 Scheme for Lossless Reconstruction (Achievability Proof of
Theorem 9) 123
5.7.1 Constructionof D, E 124
572 Examples L 128
5.8 Appendix:Proof of The Converse for Theorem 9 133
5.8.1 Converse for The Single-Shot Case of T =1 133
5.8.2 The General Multi-Shot Case of T">1 138
5.8.3 Proof of Corollary 3 142
6 Lossy Tessellated Distributed Computing 143
6.1 Introduction 143
6.2 Discussion and Conclusion 148
6.3 Appendix: Proof of The achievability and converse of Theorem
10 . 152
6.3.1 Scheme Design 153
6.3.2 Normalized Error Analysis of the Designed Scheme . . 155
6.3.3 Converse and Proof of Optimality 160
7 Conclusion, Open Problems and Future Works 169

7.1 Future Works and Open Problems 171

List of Figures

1.1

1.2

2.1

2.2

2.3

Distributed linearly separable computation with L = N = 3 and
N, = 2. The number of datasets assigned to each worker is I' = 2
(adapted from [22]). In our terminology, master refers to the user
and worker nodes are servers. 6

The K-user, N-server, T-shot Multi-User Linearly-Decomposable
Distributed Computing Setting. Each server n computes the
subfunctions in S, = {fi, ,(.), fi,.(.),- -+ fi, s, (-)} and com-
municates to K different usersin 7,,. 9

The figure represents the K-user, N-server, linearly separable
computation setting. In this problem after each user informs
the master of its desired function Fj(.), each component sub-
function Wy = fy(.) is computed at each server in W, C [N].
During slot ¢, each server n broadcasts a linear combination
znt (of the locally available computed files) to all users in 7, ;.
This combination is defined by the coefficients e,, »;. Finally, to
decode, each user k € [K] linearly combines (based on decoding
vectors dy) all the received signals from all the slots and servers
it has received from. Decoding must produce for each user its
desired function Fj(.).o 27

Multi-user distributed computing setting with 8 servers, 4 users,
and 6 subfunctions.o 31

(Left. Fully parallelized): Uncoded scheme for point 1 corre-
sponding to (y; = 1/N,d. = 1). Each of the N(¢ — 1) = L
servers, computes one subfunction, but must send to all K
users. (Right. Fully centralized): Uncoded scheme for point
2 corresponding to (v; = 1,0, = 1/K). K activated servers,
each computing L subfunctions, and each transmitting to a
single user. 40

XV

xvi

List of Figures

24

2.5

5.1

5.2

5.3

5.4

9.5

The figure summarizes the results of Theorem 3. Recall that
while IV is asymptotically large, both K/N and log,(L)/N are

The K-user, N-server, T-shot setting. Each server n computes
the subfunctions in S, = {fi,,(.), fi..(),---, fi, s, ()} and
communicates to users in 7, under computational constraint
|S;,| < T' < L and communication constraint |7,| < A < K,
yielding a system with normalized constraints v = %, 0=
and with an error constraint ¢ = %, where 7, d, € € [0, 1].
Corresponding to Example 1, this figure illustrates the parti-
tioning of F into 4 tiles of size (A x I') = (3 x 5), and then
the sparse tiling of D and E with tiles L; and R, respectively,
resulting in the full tiling of F = DE which is covered by the
four S; = L;R;,j € [4] (see Figure 5.2), guaranteeing spar-
sity 6 = v = % for D and E respectively, thus satisfying the
per-server communication and computing constraints, while
yielding lossless reconstruction of the functions.
A problem setting with the same K =6,L =10, A = 3 and
£ = 0 as the Example 5.2, but a smaller computation cost
I’ = 2 corresponding to v = 1/5. The number of servers used
now for zero-error function recovery increases from 12 to 20.
Pertaining to Example 3 with K = 6,L = 10,7 = 1,I' =5
and an optimal number of N = 12 servers, the new tessellation
pattern allows for a reduced A = 2 reflecting a reduction from
0=1/2tod0=1/3.
On the right we see the optimal performance for 7" > min(A, I'),
which contrasts the blue achievable region with the red provably
non-achievable region. On the left, we illustrate for the simple
single-shot case, the two optimal points (y = %, 0= %) and
(v = %, 0= %), which are compared to the operating points
A=(y=16d=1/K)and B= (y=1/L,6 = 1) of two con-
ceivable baseline schemes. Point A = (£, 1) is that of a baseline
fully-centralized scheme where servers n € [K| are assigned all
subfunctions (the rest are assigned no functions), while point
B = (1, %) corresponds to a fully-parallelized baseline scheme
where each server only computes one subfunction output and
sends it, by necessity, to all users. The two points correspond to
the trivial decompositions F = [Ix O x—n)] - [FT O.v—x)]T
and F = [F O n-1)] - (I, O n_p] respectively.

A
K

. 102

. 116

List of Figures xvii

2.6

2.7

2.8

2.9

5.10

6.1

The figure on the left illustrates the support constraints I and
J on D and E respectively. The constraints I(:, 1) and J(1. :)
on the columns and rows of D and E respectively are colored
green, I(:,2) and J(2. :) are colored cyan and I(:,3) and J(3. :)
are colored red. The product of a column with a row of the
same color, yields the corresponding rank-one contribution
support S, (I,J),n = 1,2, 3, as described in Definition 4, and
as illustrated on the right side of the figure. 121

This figure illustrates three different rank-one contribution
supports S1,S,,S3, where the first two fall into the same
equivalence class Sp, = S; = So, while Sp, =S;. 122

Corresponding to Example 4, the figure on the left represents
in black the families of the equivalent classes (cf. (5.50)-(5.56)).

The 9 equivalent classes (right) cover the entire F. 129
Creating our communication and computing matrices D, E
and applying the coordinates given in (5.62)—(5.65). 130
Corresponding to Example 5, this figure illustrates the tiling

of D and E respectively with Dp € R3*3 and Ep € R3*?, for
P € {P, P, P, P,}. Guaranteeing DpEp = Fp € R¥® VP €
{P, Py, P3, P,}, in turn guarantees lossless function reconstruc-
tion. We can see that the union of the supports of T" = 2
consecutive columns of D includes at most A = 3 non-zero
elements thus guaranteeing the communication constraint. We
also see that the union of the supports of T = 2 consecutive
rows of E includes at most I' = 5 non-zero elements thus
guaranteeing the computation constraint. 132

A problem setting with the same K =6, L =10, A =3\ =
1/2,0 = 2\y = 1/5,N = 10 and & = ;2 03, where 03,
as the second singular value of S; in decreasing order (the
least singular value). In this setting L;R,; is the best rank-
1 approximation to the submatrix S; given by the famous
truncated SVD described in Subsection 5.6.1. Compared to
the Example 5.2 and figure 5.3 settings, here the Computation
cost I' = 2\y = 1/5 and less number of the required servers
N = 10. The price paid to have this reduction in the number of
servers is our tolerance for error in the recovery of the functions. 145

xviii

List of Figures

6.2

6.3

6.4

6.5

6.6

Corresponding to Example 6, this figure illustrates the tessella-
tion pattern used to design D and E for a system with K = 6
users, T' = 1 shots, L = 10 subfunctions, I' = 5 and A = 3,
but with only N = 4 servers. The reduced number of servers
forces SVD-based approximations which entail lossy function
reconstruction.
The y-axis represents the conditionally optimal average error €
derived in Theorem 10 for 6 = 0.4,y =03,k =1 and T = 1.
The z-axis describes the ratio of the operating rate to the error-
free or lossless system capacity, i.e. describes how many times
higher is the system rate from the error-free system capacity. .
The y-axis plots € from Theorem 10 for 6 = 0.2,y =02,k =1
and T" = 1, while the z-axis represents the rate K/N.
Plotting the error-effect of d,+,n, T (Theorem 10) in various
settings. The y axis corresponds to € (cf. (5.34))..
The y-axis represents the conditionally optimal average error e
derived in Theorem 10 for 6 = 0.4,y =03,k =1 and T = 1.
The z-axis describes the number of active servers over the

number of optimal serves in the lossless scheme.

151

Xix

XX

Notations

Notations

[Cla CQ]
<x,C; >

Va(n, p)
Hq(5(7>

Natural numbers

Real numbers

Finite Field of size ¢ where ¢ is a power of a prime
number

An arbitrary Finite Field

Matrix

Indicates the horizontal concatenation of two matrices
A B

The element of matrix A in i-th Row and j-th column
Row vector representing the i-th row of matrix A
Column vector representing the j-th column of matrix
A

Column vector a

A vertical vector and transpose of a

Set [

Submatrix of A comprised of elements where their row
indices are in Z and their column indices are in J

The number of nonzero elements of some matrix X
The number of nonzero elements of some vector x
Represents a code

The Hamming distance of x € F", to the nearest code-
word in C C F"

The normalized covering radii(of code C C F") in Chap-
ter 2

Linear code of dimension (the message length) k or with
codeword length n

Linear code whose Parity-Check matrix is H

Matrix that serves as the parity-check matrix of a specific
linear code C

The code resulting from direct product of C; and Cs

A code whose basis is the union of x € F" with the basis
of Cl

The volume of a Hamming ball in F” of radius pn
For0<x<1-— %, x € R, represents the g-ary entropy
function which is equal to zlog,(¢—1) — xlog,(x) — (1 —
r)log,(1 —) H(z).

is Hy(x).

Notations

poel

supp(x)
€(n)
-1l

@
vec(X)
A*

As

Ime

I, D)

Supp(A)

1UJ
INnJ

I/

alb
athb

The support of some vector x € F" or x € R", which is
the set of indices of non-zero elements.

An expression which, in the limit of large n, vanishes to
Zero

Lo norm operator, represents the number of non-zero
elements of a factor or matrix defined in the real domain
Kronecker Product Operator

The vectorization of X matrix

Conjugate of A in the complex domain

A matrix that consists of only the columns of A indexed
in$S

An m x m identity matrix.

A matrix that all of its elements are zero except the
elements, [(i,7),i € X,j € Y

A binary matrix from {0, 1}™*" representing the loca-
tions of non-zero elements of A

Logical "or"

Logical "and"

Logical "negation"

Defined for two binary matrices I, J € {0, 1}™*", having
the property (INJ)(i,7) = 1(4,5) V J(4,)

Defined for two binary matrices I, J € {0,1}™*", having
the property (INJ)(7,75) =1(z,7) AN J(4,5)

Defined for a binary matrix I € {0, 1}™*" having the
property I'(4, j) = —=I(i, j)

Defined for two binary matrices I, J € {0,1}"*" and is
equal to IN—-J

An all-one n dimensional column vector in real numbers
An all-zero m dimensional column vector

Hadamard product operation

The Frobenius norm of the matrix A which is equal to
VI i A2,).

The ceiling and floor function of a real number z

For two numbers a,b € N is the remainder of division of
a by b.

The incomplete first moment of the Marchenko—Pastur
distribution with ration A which can also be described as
f: z fupa(x)dz, where fyp a(2) is the probability density
function of a Marchenko-Pasture distribution

For two natural numbers a, b, it means that a divide b

For two natural numbers a, b, it means that a does not
divide b

Chapter 1

Introduction

As continuous data streams become more prevalent, the limitations of in-
dividual computing nodes in handling large-scale computation tasks are
increasingly apparent. In recent years, distributed computing has emerged
as a preferred solution due to its multitude of advantages over centralized
computing. Distributed computing involves a collaborative network of com-
puting nodes working together as a unified system to tackle computation
tasks, utilizing shared networking and storage resources [1].

Primarily, distributed computing offers enhanced reliability and fault
tolerance, ensuring seamless operation even in the face of node failures.
Additionally, it boasts accelerated computation speed by distributing the
workload across multiple nodes. Furthermore, it exhibits inherent scalability,
facilitating the effortless addition of computing nodes as required. Moreover,
distributed computing proves cost-effective, leveraging economical hardware
for computing nodes. This approach finds widespread adoption in cloud
computing and other emerging services.

Given these advantages, distributed computing finds diverse applications
in various real-world scenarios. These include telecommunication networks
(such as telephone networks and wireless sensor networks), network applica-
tions (such as World Wide Web networks, massively multiplayer online games,
virtual reality communities, distributed database management systems, and
network file systems), real-time process control (including aircraft control sys-
tems), and parallel computation (such as cluster computing, grid computing,
and computer graphics)[2]-[4].

Let’s examine one of the most prevalent distributed computation frame-
works, known as MapReduce [5]. MapReduce serves as a software framework
and programming model designed to process computation tasks across ex-
tensive datasets utilizing a multitude of computing nodes, also known as
workers. These computing nodes are often grouped into clusters. Typically,

the computation task is divided into three distinct phases: the "Map" phase,
"Shuffle" phase, and "Reduce" phase. During the Map phase, a master node
partitions the computation task into numerous subtasks and assigns them
to the computing nodes. These nodes then execute the subtasks based on
allocated Map functions, yielding intermediate results. Subsequently, the
intermediate results undergo exchange among the computing nodes, a process
referred to as "data shuffling," occurring in the Shuffie phase. Finally, in
the Reduce phase, the computing nodes utilize these results to compute
the outcome in a distributed manner, employing their designated Reduce
functions.

In this distributed computing framework, we face two primary challenges.
Firstly, computing nodes must exchange numerous intermediate results over
the network to calculate the final result. This leads to significantly increased
communication overheads. This problem also degrades the performance
of distributed computing applications such as Self-Join, Terasort [6], and
Orchestra [7] and other Distributed Machine Learning frameworks [8]. For
instance, in the Hadoop cluster [9] at Facebook, the data shuffling phase
typically consumes 33% of the overall job execution time. Similarly, when
running TeraSort and Self-Join applications on a heterogeneous Amazon
EC2 cluster, approximately 65% and 70% of the overall job execution time,
respectively, is spent on the Shuffle phase [10]. The communication bottleneck
is particularly pronounced in training convolutional neural networks (CNNs),
such as Resnet-50 [11] and AlexNet [12], which involve updating millions of
model parameters. Secondly, distributed computing involves a large number of
computing nodes with varying computing and networking resources, resulting
in straggler nodes that unintentionally run slower than others. These stragglers
increase the overall time required to complete computing tasks. Traditional
approaches like work exchange and naive replication have been used to mitigate
straggler effects, but they either introduce redundancy or require coordination
among nodes, increasing communication costs and computational load. This
underscores the need for novel techniques to effectively address straggler
effects and communication load in distributed computing.

Coding theoretic techniques, such as low-density parity-check (LDPC)
coding, have been extensively used in WiFi and cellular systems to counter-
act channel noise and impairments. They have also found applications in
distributed storage systems and cache networks to reduce storage costs and
network traffic [13]-[15]. These techniques introduce redundancy in messages
or signals before transmission, allowing receivers to correct errors caused by
channel noise. Recently, coding theoretic techniques have been recognized as
promising solutions for overcoming challenges in distributed computing. For
instance, they can encode the Map tasks of computing nodes to enable the

Chapter 1. Introduction 3

master to recover the final result from partially finished nodes, mitigating
straggler effects [16], [17]. Additionally, coding theoretic techniques facilitate
coding opportunities across intermediate results of distributed computation
tasks, reducing communication load by minimizing the number and size of
data transmissions among computing nodes [18]. The amalgamation of coding
techniques and distributed computing is termed coded distributed computing
(CDC). Beyond reducing communication load and mitigating straggler effects,
the CDC offers fault tolerance, privacy preservation, and improved security in
distributed computing, garnering significant attention. For a detailed survey,
we refer the reader to [19] and [20].

Ever since the groundbreaking studies on employing coding techniques
in distributed computing [18], [21], numerous schemes for coded distributed
computing have been introduced to tackle various tasks in machine learning
applications. In this thesis, we begin our analysis by focusing on one of
the basic and abstract models of distributed computing, introduced in [22].
This framework, although simplified, generalized many distributed computing
frameworks such as:

 The distributed gradient coding problem examined in [23], [24], [25].
o The distributed linear transform problem analyzed in [26].

e In the scenarios of distributed matrix-vector multiplication explored
in [27]-[29], distributed matrix-matrix multiplication discussed in [30]-
[36], and distributed multivariate polynomial computation examined
in [37], where coded assignments are allowed. This means that each
worker can receive linear combinations of all input datasets. In contrast,
the problem under consideration in this paper involves uncoded data
assignments, meaning each worker is only capable of computing functions
based on the datasets assigned to it.

In Sectionl.1, we elaborate more on the single user distributed linearly-
separable introduced in [22] and discuss their method of analysis and its
advantages and disadvantages concerning the practical concerns. Then, in
Section 1.2, we present the multi-user linearly-decomposable (separable)
distributed computing problem, inspired by [22], and finally, we summarize
the contributions of this thesis in Section 1.2. In Section 1.2, each contribution
will be accompanied by a reference to the corresponding chapter and section,
where detailed formulations and proofs are presented.

4 1.1. Single-User Distributed Linearly-Separable Computation

1.1 Single-User Distributed Linearly-Separable
Computation

As mentioned earlier, distributed computation systems partition computa-
tional tasks into multiple subtasks, which are then allocated to distributed
workers. This approach significantly reduces computing time by leveraging
parallel computing methods, enabling the processing of large-scale data. How-
ever, while large-scale distributed computing holds promise for achieving
remarkable accuracy and insights into complex phenomena, it also presents
technical challenges. Firstly, the presence of stragglers, where certain workers
experience extended processing times or fail to return completed subtasks,
introduces undesirable and unpredictable latency. Secondly, the transfer of
data and computed results between the user orchestrating the task and the
workers poses another bottleneck, especially when communication bandwidth
is limited. To address these challenges, coding techniques have been integrated
into distributed computing algorithms. These techniques aim to enhance
tolerance to stragglers and reduce communication costs between the user and
workers.

In [22], a user aims to compute a linearly separable function f (such
as linear Mapreduce, Fourier transform, convolution, etc.) on L datasets
(D1, ..., Dr), which can be written as

f(Dy,...,Dp) = g(fi(Dy), ..., fu(Dr)) = g(Wi,...,Wy).

W, = fi(Dy) for all € {1,..., L} is the outcome of the component function
fi(+) applied to dataset D;, and it is represented as a string of M symbols
on an appropriate sufficiently large alphabet. For example, W, can be the
intermediate value in linear MapReduce, an input signal in Fourier Transform,
etc. In fact, g(+) is a linear map defined by K. linear combinations of the
messages Wy, ..., W with uniform i.i.d. coefficients over some large enough
finite field; i.e., (W73, ..., W) can be seen as the matrix product FW, where
F is the coefficient matrix and W = [Wy;...; W,]. In particular, this model
is chosen to capture the following applications

o As matrix multiplication is one of the key building blocks underlying
many data analytics, machine learning algorithms and engineering
problems, the considered model also has potential applications in those
areas, where fi,..., fr represent the pretreatment of the datasets.

« Fach dataset D; where [€ {1,...,L} represents a raw dataset and
needs to be processed through some filters, where W, represents the

Chapter 1. Introduction)

filtered dataset of D;. For the sake of linear transforms (e.g., wavelet
transform, discrete Fourier transform), we need to compute multiple
linear combinations of the filtered datasets, which can be expressed as
g(Wl, o eey WL)

o For another example, Dy,..., Dy are the L “input channels” of a Con-
volutional Neural Networks (CNN) stage. Each input channel D; where
[€{1,..., L} is filtered individually by a convolution operation yielding
W,. Then the convolutions are linearly mixed by the coefficients of
g(W1,..., W) producing K. new layers in the feature space.

o if F represents a MIMO precoding matrix, the considered model can
also be used in the MIMO systems.

The distributed computation scenario involves computing f(Ds,..., Dy)
in a distributed manner by a group of N workers. Each dataset is assigned
uncoded to a subset of workers, with the number of datasets assigned to each
worker not exceeding I, referred to as the computation cost. It’s assumed
that the complexity of computing the messages from the datasets is much
higher than computing the desired linear combinations of the messages. The
computation cost is denoted by I'. Each worker computes and sends coded
messages in terms of the datasets assigned to it, such that from the answers of
any N, workers, the user can recover the task function with high probability.
Given (L, N, N,, K., D), the master node aims to find the optimal distributed
computing scheme with data assignment, computing, and decoding phases,
minimizing the communication cost (i.e., the number of downloaded symbols
by the user, normalized by D).

Two examples presented in [22] illustrate the formulated distributed sce-
nario in Fig. 1.1 where K. = 1 and K. = 2, respectively. In both examples,
L =N =3,N, =2, and the number of datasets assigned to each worker is
[' = 2. The characteristic of number GF(q) (the field that the alphabet is
designed) is assumed to be larger than 3.

The detailed comparison between the considered distributed linearly sepa-
rable computation problem and each of the related existing works is provided
in Section II-B of [22].

In that paper, the author formulates the problem of distributed computa-
tion for linearly separable functions, focusing on scenarios where N divides L
and the computation cost is minimized, specifically I' = %(N — N, +1). The
key contributions outlined in that paper are as follows:

e An information-theoretic converse bound on the minimum communica-
tion cost is introduced, inspired by the converse bound utilized in the
coded caching problem with uncoded cache placement.

6 1.1. Single-User Distributed Linearly-Separable Computation

Worker 1 Worker 2 Worker 3
Dy D, D
D, Dy Dy

sends W, /2+ W, sendsW, —W; sends W;/2 + W,

Master

After receiving any two:

Wi+ W, +W;
(a) L. = 1.
Worker 1 Worker 2 Worker 3
Dy D, D3
D, Ds Dy

sends 2W; + W, sends W, + 2W5; sends —W; + W;

Master

After receiving any two:
Wl + Wz + W3;
Wi + 2W, + 3Ws.

(b) Le = 2.

Figure 1.1: Distributed linearly separable computation with L = N = 3 and
N, = 2. The number of datasets assigned to each worker is I' = 2 (adapted from
[22]). In our terminology, master refers to the user and worker nodes are servers.

Chapter 1. Introduction 7

o Leveraging the cyclic assignment method, a widely adopted approach in
existing literature addressing distributed gradient coding problems, such
as [23], [38], a novel distributed computing scheme based on linear space
intersection is proposed. The decodability of this scheme is established
through the Schwartz-Zippel Lemma.

o The paper demonstrates that the achievable scheme is optimal compared
to the proposed converse bound under the conditions when N = L,
or L € {1, ey hfv)w }, or K, € {%NT, e ,L}. Additionally, the

N—Np+1
paper establishes that the achievable scheme is optimal when considering

the constraint of the cyclic assignment across all system parameters.

o An interesting observation stemming from the derived optimality results
is highlighted in that paper: when K = N,., for any K. € {1,..., N, },
the optimal communication cost consistently remains N,. Consequently,
by adopting the same communication cost as the optimal gradient coding
scheme proposed in [23] for the distributed gradient coding problem
(which aligns with the case K. = 1 in our problem), the proposed scheme
enables the master to recover any additional /N, — 1 linear combinations
with uniformly i.i.d. coefficients over GF(q) with high probability.

Finally, various extensions of the single-user linearly separable distributed
computation problem and its related problems have been investigated in
[39]-[42], from different aspects and but similar approaches. In the next
section, we elaborate on the multi-user linearly-decomposable distributed
computing, which not only extends the single-user aspects of the problem but
also generalizes the computation and communication costs and the assign-
ment phase where the master node is not required to assign the datasets or
subfunctions cyclically.

1.2 Multi-User Linearly-Decomposable Dis-
tributed Computing

As mentioned earlier linearly-decomposable (separable) functions appear in
several classes of problems such as in training large-scale machine learning
algorithms and deep neural networks with massive data [8], where indeed both
computation and communication costs are crucial [43], [44]. To first charac-
terize the communication and computation relationship between multi-user,
multi-server computation of linearly-decomposable functions, we modelled
a setting that consists of a master node that manages N server nodes that

8 1.2. Multi-User Linearly-Decomposable Distributed Computing

must contribute in a distributed manner to the computation of the desired
functions of K different users. Under the linearly-decomposable assumption
(cf. [22]), we consider that user k € {1,2,..., K} demands a function Fj(.)
that can be decomposed as

L L
Fe() =" feafe() =" fuaWe
= =1

where in the above, W, = fy(.) denotes the computed output of a subfunction
and where f;, are the combining coefficients which belong, together with
the entries of W, in some field. This modeling nicely captures linearly
separable functions where each Fy(.), taking L subfunction as input, can
be written as a linear combination of L wunivariate subfunctions. In this
thesis, these subfunctions need not be univariate. Also, note that the setting
nicely includes the case where each Fj, itself is a linear combination of some
linearly separable functions, i.e., where Fj can itself be written as Fi(.) =
Z£:1 Zij\il frwifei(l) = 25:1 Ziﬂil f.0iWii, corresponding to some set of basis
subfunctions fy;(.). Upon notification of the users’ requests — where these
requests are jointly described by the K x L matrix F that contains the
different coefficients f, — the master instructs the servers to compute some
of the subfunctions f,(.). Each server may compute a different number of
functions. Upon completing its computations, each server communicates
linear combinations of its locally computed outputs (files) to carefully selected
subsets of users. Each user can then only linearly combine what it receives
from the servers that have been transmitted to it, and the goal is to guarantee
that each user can recover its desired function. The problem is completed
when every user k retrieves its desired Fj(.).

We note that there is a clear differentiation between the server nodes
that are asked to compute hard (generally non-linear) component functions
(subfunctions), and the users that can only linearly combine their received
outputs. Generating the so-called output files W, = f,(.),¢ € {1,2,..., L},
can be the result of a computationally intensive task that may for example
relate to training a deep learning model on a dataset, or it can relate to the
distributed gradient coding problem [23]-[25], [38], the distributed linear-
transform computation problem [26], [45], or even the distributed matrix
multiplication and the distributed multivariate polynomial computation prob-
lems [18], [27]-[29], [31]-[33], [35], [36], [46], Mapreduce with linear reduce
function [47] and naturally, the problems that are included in the single-user
linearly-separable scenario.

s ¢ 5

(1.1)

€

[
= 1>

Chapter 1. Introduction

f1()

Master Node f 2(.)

fi()

Server Nodes 51 52 \ SN-1 SN
fil,l(') fi2,1 () fiN—l,l(') fiN,l ()
fin, () fir, () fivin() fino()

fiys, () fips, () fivasn ()| | finsy ()

Users

Figure 1.2: The K-user, N-server, T-shot Multi-User
Linearly-Decomposable Distributed Computing Setting. Each server n
computes the subfunctions in S, = {fi,,(.), fi..(.), -, fi, s, ()} and

communicates to K different users in 7, ;.

10 1.2. Multi-User Linearly-Decomposable Distributed Computing

In this thesis, we analyzed the problem by working on two mathematical
"fields". The first is the finite field, as it is much more common in the infor-
mation theory community to model many networked information systems in
a finite field such as what has been done in [17], [22]. But also many systems
are investigated in real field domain, such as [48]-[51]. In this thesis, we also
investigated this problem in the real domain which will indeed constitute a
substantial deviation from the finite field case. The focus on the real (or com-
plex) domain is essential due to the impracticality of computing a real-valued
problem over a finite field (after discretization). This is primarily because
discretization can result in significant precision costs and accuracy reductions.
Moreover, finite field computations are notably slower than floating-point
operations [52]. Therefore, we will analyze real-valued functions over L
real-valued datasets (or equivalently, with L component /basis subfunctions),
alongside N computing servers and K users, each requesting their function.

Then, once we have agreed on the system model, we begin our mathe-
matical abstraction deduction procedures. We will formulate the problem in
Chapters 2, 4 and 5, for both single-shot and multi-shot cases. In both finite
and real-valued fields, we observe that the problem formulation reduces to a
matrix factorization problem when one wants to approximate a demand (jobs)
matrix F € FX*L by the multiplication of two communication D € FE*N
matrix and computing matrix matrices E € FN*L, The approximation error
has to be zero in the finite field scenario. We have discovered, in any multi-
user linearly-decomposable problem that the more sparse D matrix, one can
achieve a feasible scheme with less communication cost and symmetrically,
the more sparse E matrix, the less computation cost can be achieved.

To characterize the fundamental limits of any multi-user linearly-decomposable
problem, in Chapter 2, we tackled this matrix-factorization problem by first
focusing on reducing the computation cost (per subfunction), defined as the
maximum number of servers that a subfunction has been assigned to. We inter-
estingly, discover that if we re-write the problem as F(:,¢) = DE(:, (), ¢ € [L],
we can view the problem as a syndrome decoding algorithm by noting the
similarities, then we prove that the maximum number of non-zero elements in
each column of E, which is related to the computation cost, can be bounded
by the covering radius of Cp, which represents a linear code that its parity-
check matrix is D. Via this intuition, we will introduce a new type of code
called partial-covering codes and show their existence (both constructively
and statistically) which is crucial for any scheme that intends to be optimal
from the computation cost, perspective. Moreover, via an algebraic converse,
we characterize a converse bound for the computation cost. Then by proving
the existence of the Low-Density Parity-Check of partial covering codes, we
have been able to offer an achievable scheme with reduced computation and

Chapter 1. Introduction 11

communication costs. At the same time, the computation cost can be opti-
mal under some additional assumptions on L number of subfunctions and F
matrix. The same method was applied to the multi-shot case and parallel
results in terms of computation and communication costs have been achieved.

In Chapter 3, we begin with the same problem formulation but, we
mainly focus on the computational delay, defined as the maximum number
of subfunctions assigned to a server and the cumulative computational cost,
defined as the total number of computations done by all of the servers, which
can be lower and upper-bounded as a function of packing radius and packing
density of Cy. We interestingly see that if D be a parity-check matrix of a
perfect code, the computational delay and computation cost are optimal for
a generic case of the problem.

Our method in Chapter 4, completely deviates from Chapters 2 and 3,
since the requested functions and each component function, is defined on real
fields, thus the computation and communication matrices have to be defined
in real numbers. By rearranging the problem, to a vectorized equivalent of the
matrix multiplication, we related the multi-user linearly-separable problem
to the compressed sensing literature and offered two solutions to construct a
scheme with reduced cumulative computation cost!.

In Chapters 5 and 6, we elaborate on a new method called Tesselated Dis-
tributed Computing which is based on a recently, discovered approach of [53]
to tackle the problem of Fixed-Support Matrix Factorization. In the above
chapters, our method towards real-valued multi-user linearly-decomposable
distributed computing is to reduce both computational delay and the commu-
nication cost per server? —which is defined as the number of transmissions
from a server to the users— simultaneously by partitioning F submatrices
and then performing complete-SVD for the lossless case or truncated SVD, for
the case. This approach in Chapter 5, results in characterizing an achievable
scheme and converse bound on users per server (will be referred to as rate R)
in terms of computation and computation cost, which are optimal in general
cases has been derived, which results to the characterization of a feasibility
region for general valued K, N, L and computation and communication cost.
In the case investigated in Chapter 6, we will offer an achievable scheme with
an optimal average error by accumulating the approximation error of each
sub-matrix (Tile) and assuming some basic statistical assumptions on the
demand matrix F 3, we used the Marchenko—Pastur law, to characterize the
overall average reconstruction error of our problem.

Lwhich is the total number of computations done by all of the servers.

2The maximum number of transmissions per server.

3For instance we have assumed that the element of F, are 4.4.d distributed with zero-mean
and unit variance.

12 1.3. Main Contributions

In Chapter 7, we thoroughly examine and conclude, providing further
elaboration on future prospects and open problems.

1.3 Main Contributions

The main contributions of this thesis is as follows:

o Connection to the problem of matriz factorization into sparse compo-
nents or sparse matrix factorization: First, when exploring our dis-
tributed computing problem, one can see that the lossless feasibility
conditions that ensure that each user recovers its desired function,
constitute a (preferably sparse) matrix factorization problem of the
form

DE=F

where the problem is over some field IF, and where any potential sparsity
of D and E translates to savings in communication and computation
costs respectively. One can find a similar problem when analysing the
lossy version of this problem, which can be translated to the optimisation
problem, as follows

Minimize |[DE — F|r
subject to ||D|lo/KN <6, ||E|lo/NL <~

where 6,7 € (0, 1], are normalized communication and computation
costs of the system. F is given and D and E are variables that have to
be achieved by an optimization algorithm (Chapter 2, Chapter 5).

o Connection to coding theory and syndrome decoding: On the way to
resolve this problem in a manner that yields non-trivial sparse factors,
we notice that — if for example, we were to fix the above matrix D, and
associate this to the parity-check matrix of some linear code — then for
each column E; of E and associated column F, of F, the corresponding
equation D - E, = F, would tells us that the desired sparse E, can be
the lowest-weight coset leader whose syndrome is equal to F,. Hence,
under this analogy, the columns of E are associated to error vectors,
the columns of F' to the corresponding syndromes, and D is assigned
the role of a parity-check matrix (Chapter 2).

o Connection to covering codes and the new class of partial covering codes:
The above connection with syndromes, in turn brings about the concept

Chapter 1. Introduction 13

of covering codes that refer to codes with good covering properties,
which in turn entail low weight E,, which is what we need. In (error-
control) coding theory though — which generally considers that any
error vector is possible — such covering codes consider a full space
of possible syndromes, i.e., consider the case where any appropriately-
dimensioned vector can indeed be a syndrome. To account for the fact
that F' corresponds to a restricted set of syndromes (only those that
correspond to the columns of our F), we here consider a new class of
partial covering codes, the analysis of which is part of this work. This
connection is articulated through the following theorem in Chapter 2.

Theorem 1: For the setting of distributed-computing with K users, N
servers, and L subfunctions, a solution to the linearly separable function
computation problem DE = F with normalized computation cost per
subfunction * 7, exists if and only if D is the parity check matrix to a
(v, X)-partial covering code Cp for some existing set

X D Xpp = {x € FV|Dx = F(:,{), for some ¢ € [L]}.

With such D in place, each E(:, £) is the output of the minimum-distance
syndrome decoder of Cp for syndrome F(:, £).

o Characterizing a bound on the optimal computation cost: The contribu-
tion is summarized via the following Theorem in Chapter 2:

Theorem 2: For the setting of distributed-computing of linearly-
decomposable functions, with K users, IV servers and any number of L
subfunctions, the optimal computation cost per subfunction is bounded
as

e ())

where K/N and log,(L)/N are fixed and N goes to infinity.

o Connection with codes having low-density parity-check matrices: The
above effort yields a sparse E. Our effort is concluded when the afore-
mentioned exploration of covering codes and partial covering codes
(which yielded a sparse E), is extended to involve analysis of codes with
a sparse D as well. As the result of this abstract connection we have
managed to bound the optimal computation and communication cost
as follows in Chapter 2:

4which the maximum number of a subfunction assigned to all server. The notion will
be defined precisely in Chapter 2.

14 1.3. Main Contributions

Theorem 3: For the setting of distributed-computing of linearly-
decomposable functions, with K users, N servers and L subfunctions,
the optimal computation cost per subfunction is bounded as

€ g (5 o)

and for any achievable computation cost vy < min{ \/52_1, 1— %}, then

the corresponding achievable communication cost takes the form

' logq(N)
0 = — (1.4)

where K/N and log,(L)/N are fixed and N goes to infinity.

o FEzxtending the one-shot scenario: Our framework allows us to address
but also extend the one-shot scenario which is the scenario of choice in
various works (see for example [22]) and which, in our case, asks that
each server can send only one linear combination to one set of users.
We extend this model to the practical and realistic scenario where, for a
fixed subset of subfunctions/files { f(.)} computed locally at each server,
the server can communicate linear combinations to various sets of users
(Chapter 2, Chapter 6 and Chapter 5). As a result of this extension, we
managed to prove:

Theorem 4: For the setting of distributed-computing of linearly-
decomposable functions, with K users, N servers, L sub-functions
and 7" shots, the optimal computation cost per subfunciton v; is upper
bounded by

<TH'(—).

where K/NT and T is fixed and N goes to infinity.

o Connection with perfect codes, packing radius, and packing density: To
the best of our understanding, this is the first time that perfect codes
(and the closely related quasi-perfect codes) have been associated with
distributed computing and the equivalent problem of matrix factoriza-
tion. We derived novel bounds on the cumulative computational cost®
' as well as on the computational delay® A of a multi-user linearly-
decomposable system to capture the importance of the packing density

SWhich is defined as the total number of subfunctions being processed by all the servers
(cf. chapter 2).
6which is the maximum number of subfunctions being processed by a server.

Chapter 1. Introduction 15

as well as the packing and covering radius of a code whose parity-check
matrix is our communication-and-computing matrix D (Chapter 3).
The most important results are summarized as follows,

Theorem 6: The optimal computational delay A of the (K, N) multi-
user linearly decomposable problem implemented based on the decom-
position DE = F, is bounded as

A< min{L,i (7:;) (g—1)"+ (1 — pr)g"™}

where 7 and p, are respectively the packing radius and the corresponding
packing density of Cp.

Theorem 7: The optimal cumulative computation cost I' of the (K, N)
multi-user linearly decomposable problem implemented based on the
decomposition DE = F, is bounded as

I' <min{NL, XT: (7) (¢ = 1%+ (1= pr)g" p}

i=1
where 7, p and p, are respectively the packing radius, covering radius,
and packing density of Cp.

Proposition 4: The optimal computational delay A and cumulative
computation cost I' of the (K, N) multi-user linearly decomposable
problem with maximal basis, are lower bounded as

(o g (e

where 7 is the packing radius of Cp. Regarding optimality, we have the
following proposition.

Proposition 5: The optimal computational costs A and I" for the cases
(K, N) for which a perfect code exists, take the form

T (N -1
i1
where 7 is the packing radius of the used perfect code Cp.

o Connection with compressed sensing and utilizing its techniques to bound
the normalized cumulative computation cost: In this thesis for the first
time, we established a connection between distributed computing and

16

1.3. Main Contributions

compressed sensing. We proved that there exists an achievable scheme
whose normalized cumulative computational cost is bounded above as
Ve < % This is a probabilistic scheme, where D is chosen from the
Gaussian ensemble, and where the corresponding sparsity of E is the
outcome of a randomized process. Then we propose {y-minimization,
which takes as input D and F to yield a sparse E. This minimization
though is generally intractable, and for this reason, we draw from the rich
literature of compressed sensing to suggest a more practical approach
where we show (Theorem 8) that as long as there exists a scheme
whose computational cost is bounded by 7. < —rEW (=25) (where
W_1() is the Lambert function and r is a parameter that calibrates
the communication between servers and users) we can in fact employ
a tractable basis pursuit /;-minimization to derive such scheme. The
important results which can be found in Chapter 4, are as follows:

Proposition 7 For the multi-user linearly-decomposable distributed
computing problem, with K users, N servers and L datasets, employing
a random Gaussian matrix D, guarantees that with probability 1, there
exists a scheme with bounded normalized cumulative computation cost
v < K/N, which serves as an upper bound the fy-minimal cost.

Theorem 8 For the multi-user linearly-decomposable distributed com-
puting problem, with K users, N servers and L datasets, if a scheme
exists with a (k, 5) sub-Gaussian random matrix D (cf. Lemma 13) for
which fp-minimisation would yield

1K, 2K

< -
e = rNWfl(erN

where W_ is the first branch Lambert function. Then the corresponding

(and unique) E can be found via basis pursuit ¢;-minimization with
KL

probability at least 1 — 2e~"+ , where r = 12(48 + 2x) /K>

), 0< K/N <12(28+ k)/K?,

Connection to the problem of Fixed-Support Matrixz Factorization and
Tessellation Theory: Recently, the work in [53] explored the problem
of Fized Support (sparse) Matriz Factorization (FSMF) which intends
to approximate a matrix, with two or more factors having a fixed
support, priory. We showed that our problem can be translated to a
variant of the Fixed-Support Matrix Factorization problem where some
families of supports of the factor matrices, relate to some valid solutions
with a certain computational delay and communication cost per server.
Coming up with a novel approach, we saw that our problem was related
to the tessellation theory that concerns covering a rectangular region
with shifts and translation of smaller rectangles (Chapter 5).

Chapter 1. Introduction 17

o Characterizing the lossless capacity of tessellated distributed computing:
We first consider the case where each user has to and after employing
an achievable scheme using novel concepts and algorithms introduced
in [53] and a converse using combinatorial tilling arguments [54]. A
general lower and upper bound on the number of optimal servers has
been characterized via the following theorem in Chapter 5:

Theorem 9 The Optimal Achievable rate of a lossless K, N,T,T", A
distributed computing setting takes the form C' = K /N, where

(min(TA, 1“)w Li(J LﬁJ N (min(mod;K, A), F)] ijj

N (min(mo;{ (L,F),A)1 LZ(J n (min(mod (K, ?), mod (L, F))1
> Nopt

S KL

— Tmax(T',A)’

The achievable scheme’s performance is optimal, for the general single-
shot case where (I' > A& T|L & T|A) or (A>T & A|K & T|I") which
is composed of all the cases where I'|L & A|K & T'|min(A,T"), also the
case where T' > min(A, ') while for the broad case where =1,y € N,
the system capacity takes the form

Tmax((,v), if T|L min((,)
L, if > Lmin((,7).

revealing that for the first case, the optimal communication-vs-computation

points (7,4), are (25, %) and (%, %), while for the other case the
tradeoff takes the form)
§=—.
TN

o Characterizing the minimum value of error with given conditions on
the computation and communication cost in a statistical setting: Subse-
quently, for the lossy case, we will consider the large-V scaling regime
with an average error guarantee €, averaged over matrices F and over
the subfunctions’ outputs. Employing a similar achievable scheme as
in the error-free case, paired with a standard truncated-SVD low-rank
approximation approach, and under the assumption that the elements
of F and the output of subfunctions are i.7.d with zero mean and unit
variance, we can bound the average optimal error by the expression

¢
Qyp (2, 7) é/ fup o (7)d

18

1.3. Main Contributions

where ®yp y (¢, 7) is the incomplete first moment of the standard Marchenko-

Pastur distribution with parameters A = %{ = %, r = (1—+/\)?, where

t is the solution to Fypa(t) = 1—T%, and where Fip(.), fupa(.) are
the CDF and PDF of the same distribution. The scheme that provides
the above bound, employs tiles after consideration that the size and
shape of the tiles, alters the statistics of the SVD approximations of the
parts of the matrices that each tile corresponds to. As it turns out, this
scheme and the above performance, is optimal over all choices of D and
E whose supports Z, J are disjoint and similar in size (Chapter 6).

Chapter 2

Multi-User
Linearly-Decomposable in
Finite Fields

2.1 Introduction

As has been mentioned in Chapter 1, distributed computing plays an ever-
increasing role in speeding up non-linear and computationally hard computing
tasks. As the complexity of these tasks increases, research seeks novel par-
allel processing techniques to efficiently offload computations to groups of
distributed servers, under various frameworks such as MapReduce [5] and
Spark [55]. Distributed computing naturally entails several challenges that
involve accuracy [56]—-[58], scalability [49], [59]-[62], privacy and security [48],
[63]-[74], as well as latency and straggler mitigation [18], [22], [24], [32], [33],
[36], [75], [76].

This aforementioned effort to efficiently distribute computation load across
multiple servers, is intimately intertwined with the concept of communication
complexity which refers to the amount of communication required to solve a
computation problem when the desired task is distributed among two or more
parties [77]. This celebrated computation-vs-communication relationship has
been studied in a variety of different forms and scenarios [8], [21], [32], [45],
[46], [75], [78]-[84] for various types of problems.

Preliminary description of setting This same relationship between
computation and communication costs, is the topic of interest in this chapter
for the very broad and practical setting of multi-user, multi-server computation
of linearly-decomposable functions. In particular, our setting here considers

19

20 2.1. Introduction

a master node that manages N server nodes that must contribute in a
distributed manner to the computation of the desired functions of K different
users. Under the linearly-decomposable assumption (cf. [22]), we consider
that user k € {1,2,..., K} demands a function Fj(.) that each such requested
function takes the basic form

Fe() =" foafe() =" fuaWe (2.1)
=1 =1

where in the above, W, = f,(.) denotes the computed output of a subfunction,
and where fj ¢ are the combining coefficients which belong, together with the
entries of Wy, in some finite field'. Upon notification of the users’ requests
— where these requests are jointly described by the K x L matrix F that
contains the different coefficients fi, — the master instructs the servers to
compute some of the subfunctions fy(.). Each server may naturally compute a
different number of functions. Upon completing its computations, each server
communicates linear combinations of its locally computed outputs (files) to
carefully selected subsets of users. Each user can then only linearly combine
what it receives from the servers that have transmitted to it, and the goal is
for each user to recover its desired function. The problem is completed when
every user k retrieves its desired Fj(.).

We note that there is a clear differentiation between the server nodes
that are asked to compute hard (generally non-linear) component functions
(subfunctions), and the users that can only linearly combine their received
outputs. Generating the so-called output files W, = f,(.),¢ € {1,2,...,L},
can be the result of a computationally intensive task that may for example
relate to training a deep learning model on a subfunction, or it can relate
to the distributed gradient coding problem [23]-[25], [38], the distributed
linear-transform computation problem [26], [45], or even the distributed ma-
trix multiplication and the distributed multivariate polynomial computation

problems [18], [27]-[29], [31]-[33], [35], [36], [46].

Brief summary of the basic ingredients of the problem Our setting
brings to the fore the following crucial questions.

« How many and which servers must compute each subfunction f(.)?

IThe setting nicely includes the case where cach F), itself is a lincar combination of
some linearly separable functions, i.e., where F}, can itself be written as Fi(D1,...,Dy) =
Zle vail frifei(l) = ZeL=1 Zf\il fr.0,iWe i, corresponding to some set of basis subfunc-
tions f;(.). For simplicity we will henceforth refer to the model in (2.1).

Chapter 2. Multi-User Linearly-Decomposable in Finite Fields 21

— This decision defines the computation cost: the more the servers
that compute a subfunction, the higher the computation cost.
The extreme centralized scenario where each active server would
compute all L sub-functions, would imply a maximal computation
cost, but a minimal communication cost, equal to (as we can see)
one transmission received per user. The other extreme scenario
(for the case of L = N) would imply a minimal computation cost
of 1 subfunction per server, but a maximal communication cost of
N shots received per user.

o What linear combinations of its computed outputs must each server
generate?

— These linear combination coefficients in question, define an N x L
matrix E that describes which servers compute each subfunction,
and how each server combines its computed outputs in order to
transmit them. This matrix must be designed in consideration of
the requested functions, which are themselves described by the
aforementioned K x L matrix F.

— The number of non-zero elements in E reflects the computation
cost on the collective of servers.

o What fraction of the servers must each user get data from, and from
which servers?

— This defines the communication cost. The more data each user
gets, the higher the cost.

« How must each user combine (linearly decode) the computed outputs
arriving from the servers?

— This step is determined by a K x N communication and decoding
matrix D that must be carefully designed. The number of non-
zero elements of D reflects our communication cost. Having a
non-sparse D, implies the need to activate a substantial fraction
of the existing communication links.

e How sparse can D and E be so that each user recovers their desired
function?

— This defines the overall costs of computation and communica-
tion. As one might expect, the larger the number L of possible
subfuntions, the higher the worst-case costs. Having a larger L

22 2.1. Introduction

allows the computing service to provide more refined computations,
conceivably though at a higher cost.

To answer these questions, we take a novel approach that employs coding
theory. The general idea behind our approach is described as follows.

Brief summary of the new connection to sparse matrix factorization
and covering codes

o Connection to the problem of matrix factorization into sparse compo-
nents: First, when exploring our distributed computing problem, one
can see that the feasibility conditions that ensure that each user recov-
ers its desired function, constitute in fact a (preferably sparse) matrix
factorization problem of the form

DE=F (2.2)

where the problem is over some ¢-sized finite field F, and where any
potential sparsity of D and E translates to savings in communication
and computation costs respectively.

o Connection to coding theory and syndrome decoding: To then resolve
this problem in a manner that yields non-trivial sparse factors, we
notice that — if for example, we were to fix the above matrix D, and
associate this to the parity-check matrix of some linear code — then for
each column E, of E and associated column F, of F, the corresponding
equation D - E; = F, would tells us that the desired sparse E, can be
the lowest-weight coset leader whose syndrome is equal to F,. Hence,
under this analogy, the columns of E are associated to error vectors,
the columns of F to the corresponding syndromes, and D is assigned
the role of a parity check matrix, and the question is of which code?

o Connection to covering codes and the new class of partial covering codes:
The above connection with syndromes, in turn brings about the concept
of covering codes that refer to codes with good covering properties,
which in turn entail low weight E,, which is what we need. In (error-
control) coding theory though — which generally considers that any
error vector is possible — such covering codes consider a full space
of possible syndromes, i.e. consider the case where any appropriately-
dimensioned vector can indeed be a syndrome. To account for the fact
that F corresponds to a restricted set of syndromes (only those that
correspond to the columns of our F), we here consider a new class of
partial covering codes, the analysis of which is part of this chapter.

Chapter 2. Multi-User Linearly-Decomposable in Finite Fields 23

o Connection with codes having low-density parity-check matrices: The
above effort yields a sparse E. Our effort is concluded when the afore-
mentioned exploration of covering codes and partial covering codes
(which yielded a sparse E), is extended to involve analysis of codes with
a sparse D as well.

o Faxtending the one-shot scenario: Our framework allows us to address
but also extend the one-shot scenario which is the scenario of choice in
various works (see for example [22]) and which, in our case, asks that
each server can send only one linear combination to one set of users.
We extend this model to the practical and realistic scenario where, for
a fixed subset of subfunctions/files {fy(.)} computed locally at each
server, the server can communicate linear combinations to various sets
of users.

Highlights of contributions Our focus is on establishing the normalized

computation? cost v, = %l ?laXL} w(E(:, 1)), and the normalized cumulative
e{l,,

communication cost A, = w(D)/KN. In our setting, v € (0, 1] represents
the maximum fraction of all servers that must compute any one subfunction,
while d. € (0, 1] represents the average fraction of servers that each user gets
data from, which in turn simply implies an average number of A, = §.N
‘symbols’ received by each user.

We first consider the one-shot case. We proceed to highlight some of the
derived results, whose exact statement can be found in the following sections.

e Theorem 1 makes the connection between coding theory and our dis-
tributed computing problem, by showing that a (v, d.)-feasible dis-
tributed computing scheme exists if and only if the decoding matrix D
has a degree of sparsity J. and is the parity check matrix of an /N-length
code C C FV over a field F where this code has minimum normalized
distance from each vector {x € F¥|Dx = F(:,¢),¢ € {1,...,L}} that
is at most yN. This brings to the fore the concept of covering and
partial covering codes, where covering codes are codes that guarantee
a minimum distance to each vector of the entire vector space, while
partial covering codes must guarantee a minimum distance to only a
specific subset of the entire space. Establishing the properties of such
codes is key to our problem.

2Both communication and computation costs will be defined in more detail later on.
Also, in the following, w(-) represents the well-known Hamming weight of the argument
vector or matrix.

24 2.2. System Model

o Theorem 2 shows that in the limit of large /N, the optimal computation
cost per server is in the range v, € (H;l(%), H,'(K/N)), where H,
is the entropy function over our field of size q. This theorem reveals the
role of what one might refer to as the functional rate Ry =log,(L)/N.
The higher this rate, the more ‘involved’ is the space of functions we can
compute. In this sense — given that, from the above, % < Hy(vy)

— the expression H,(vs) plays the role of an upper bound on what one

might call the functional capacity of the system.

» Extending the famous covering codes theorem of Blinovskii from [85],
we established our bounds on partial covering codes to the setting
of codes with low density parity check matrices, revealing that any
aforementioned achievable computation cost 7y, can be achieved with
normalized cumulative communication cost that vanishes® as §. =
y10g,(N)/N. This latter cost will be unboundedly lower than in the
uncoded approach of resource-sharing between the two extreme regimes
discussed previously in the introduction (See Figure 2.4 in Section 2.4.4).
As a consequence, we can talk of an unbounded coding gain in our
distributed computing problem.

o We also consider the multi-shot scenario where, for the same fixed subset
of subtasks/files { f¢(.)} computed locally at each server, now the server
can communicate different linear combinations to different sets of users.
This ability offers a certain degree of refinement that the single-shot
scenario may lack. This is exploited, and Theorem 4 reveals a range
of parameters for which the multi-shot approach provides computation
savings over the single-shot scenario. Interestingly, these computational
savings are shown to be unbounded.

2.2 System Model

We consider the multi-user linearly-decomposable distributed computation
setting (cf. Fig. 2.1), which consists of K users/clients, N active (non-idle)
servers, and a master node that coordinates servers and users. A main
characteristic of this setting is that the tasks performed at the servers, sub-
stantially outweigh in computation cost of the linear operations performed at
the different users. Another defining characteristic is that the cost of having
the servers communicate to the users is indeed non-trivial. We consider the

3We will henceforth use = to denote asymptotic optimality. This will be clarified later
on.

Chapter 2. Multi-User Linearly-Decomposable in Finite Fields 25

setting where each server can use T consecutive time slots to communicate
different messages to different subsets of users, where in particular, during
time-slot (shot) ¢ € [T], server n communicates to some arbitrary user-set
Tot C [K], via a dedicated broadcast channel.

In our setting, each user asks for a (generally non-linear) function from
a space of linearly separable functions, where each such function can takes
several subfunctions as input. Each desired function can be decomposed into
a different linear combination of individual (again generally non-linear, and
computationally hard) sub-functions fy(.). Consequently the demanded func-
tion F(.) of each user k € [K], and it takes the general linearly-decomposable
form

Fo() = fonf1() + fegfo() + oo+ ferfo(), (2.3)
:fk,lwl+fk,2W2+-.-+fk,LWL, ke [K] (2.4)

where, as previously discussed, W, = f,(.) € F, £ € [L] is a so-called ‘file’
output, and fx, € F, k € [K], ¢ € [L] are the linear combination coefficients.
As also mentioned before, F}, itself can be a linear combination of some
linearly separable functions.

2.2.1 Phases

The model involves three phases, with the first being the demand phase,
then the assignment and computation phase, and then the transmission and
decoding phase. In the demand phase, each user k € [K] sends the information
of its desired function Fy(.) to the master node, who then deduces the linearly-
decomposable decomposition of this function according to (2.4). Then based
on these K desired functions, during the assignment and computation phase,
the master assigns some of the subfunctions to each server, who then proceeds
to compute these and produce the corresponding files W, = f,(.). In particular,
each subfunction f,(.) will be assigned to the servers belonging to some
carefully chosen server-set W, C [N].

During the transmission phase, each server n € [N] broadcasts during time
slots t = 1,2,...,T, different linear combinations of the locally computed
output files, to different subsets of users 7, ;. In particular, during time slot
t, each server n transmits

Znt = Z en,f,twfa ne [N]7t € [T] (25)
Le[L]

where the so-called encoding coefficients e, o; € [are determined by the
master. Finally during the decoding part, each user k linearly combines the

26 2.2. System Model

received signals as follows

F,é = Z it 2nt (2.6)

ne[N),te[T)

for some decoding coefficients dj ., € F,n € [N],t € [T], determined again
by the master node. Naturally dg,: = 0,Vk ¢ T,.. Decoding is successful
when F] = F}, for all k € [K].

2.2.2 Computation and Communication Costs

Remembering that [W| indicates the number of servers that compute a
subfunction Wy = f,(.), ¢ € [L], our normalized per subfunction computation
cost metric takes the form

max|W,|
N Le[L]

Vs N
and represents the maximum fraction of all servers that must compute any
subfunction.

We defined the computational cost as (7) to have an emphasis on the
number of replication of various subfunction computation over the servers.
Note that the best possible conceivable parallelization is for the case where
only one subfunction is assigned to every active server. In this case, we
have 7y = 1/N and we observe that there is no replication for any of the
subfunctions and the system is fully parallelized. On the other hand in the
extreme case, there is a scheme where each server has to store all of the
subfunctions, in this particular case, the master node copied each subfunction
N times, so we have the full replication and 7; = 1. Note that since we did
not impose any assumption on the computational power of each server nor the
computational complexity of computing each sub-function, we can not define
the computation cost as the maximum number of subfunctions assigned to a
server which is also not the case for many applications. Other variants of the
computation cost will be analyzed in the incoming chapters.

We also formally define the normalized cumulative communication cost as

5 A Zthl Zivzl |7;L,t
¢ KN
5

to represent the average fraction of servers that each user gets data from*?°.

(2.7)

(2.8)

4We here clarify that our setting implies that any link can be exploited, and our metric
simply captures how many of these links are engaged when communicating. Reducing the
communication cost implies activating fewer of these links, leaving the rest to be used for
other responsibilities of the computing network.

5The observant reader may notice the computational cost being a worst-case cost, unlike

Chapter 2. Multi-User Linearly-Decomposable in Finite Fields 27

Master Node
f1()
fa()
fi()
Server Nodes

Users

Figure 2.1: The figure represents the K-user, N-server, linearly separable
computation setting. In this problem after each user informs the master of
its desired function Fj(.), each component subfunction W, = f,(.) is
computed at each server in W, C [N]. During slot ¢, each server n broadcasts
a linear combination z,, (of the locally available computed files) to all users
in 7, This combination is defined by the coefficients e,, ;;. Finally, to
decode, each user k € [K] linearly combines (based on decoding vectors dy)
all the received signals from all the slots and servers it has received from.
Decoding must produce for each user its desired function Fj(.).

28 2.3. Problem Formulation: One-Shot Setting

Hence in our setting,
A, 2 5.N (2.9)

represents the average number of transmitted ‘symbols’ received by each user.
We wish to provide schemes that correctly compute the desired functions, at
reduced computation and communication costs.

2.3 Problem Formulation: One-Shot Setting

In this single-shot setting of T' = 1, we will remove the use of the index t.
Thus the transmitted value from (2.5) will take the form

Zn = Z en Wy, n € [N] (2.10)
Le[L]

where e, , € F will denote the corresponding encoding coefficients, and where
each such transmitted value at server n will now be destined for the users in set
T,. Similarly, the decoding value at each user k (cf. (2.6)) will take the form
F, = >ne[N] dknzn, Where now dy.,,n € [N], are the decoding coefficients.
The desired functions F(.) (cf. (2.4)), their linear decomposition coefficients
fre (cf. (2.4)), and the decoded functions Fj(.) in (2.6), remain as previously
described. With the above in place, we will use

fé[FlvFQa"wFK]T (211)
fr £ [fens foos s forlT, k€ [K] (2.12)
w (W, Wy, ..., WL]T (2.13)

where f represents the vector of the output demanded functions (cf. (2.4)), f;
the vector of function coefficients for user k (cf. (2.4)), and w the vector of
output files. We also have

€n = [en,bem?a cee >en,L}T7 ne [N] (214)

z = [21,20,...,25]7 (2.15)

respectively representing the encoding vector at server n, and the overall
transmitted vector across all the servers (cf. (2.10)). Furthermore, we have

di £ [di1,dio, .. diN]Ts k € [K] (2.16)

the communication cost which refers to the average case. This choice is essential in making
the connection to coding theory. This same choice though has an advantage; it allows us
to better capture the effect of having some subfunctions that are much harder to compute
than others.

Chapter 2. Multi-User Linearly-Decomposable in Finite Fields 29

' 2 [F,Fy, ..., Fp| (2.17)

respectively representing the decoding vector at user k, and the vector of the
decoded functions across all the users. In addition, we have

F 2 [f,f,,... f]T € FF*L (2.18)
E £ [e,e,,...,ey]T € FV*E (2.19)
D £ [d;,dy,...,dg]T € FFXN (2.20)

where F represents the K x L matrix of all function coefficients across all the
users, where E represents the N X L computing and encoding matriz across
all the servers, and where D represents the K X N decoding matriz across all
the users.

Directly from (2.4), we have that

f=1[f,6, ... fx]™W (2.21)
and from (2.5) we have the overall transmitted vector taking the form
z=[e],es,...,en]Tw =Ew. (2.22)
Furthermore, directly from (2.6) we have that
F,=d]z (2.23)
and thus we have
f'=[d;,dy,...,dg|"z = Dz. (2.24)
Recall that we must guarantee that
f'=f. (2.25)

After substituting (2.21), (2.22) and (2.24) into (2.25), we see that the above
feasibility condition in (2.25) is satisfied iff

DEw = Fw. (2.26)
For this to hold for any w, we must thus guarantee
DE =F. (2.27)

At this point, since W, = sup(E(:, {¢})7), and since [W,| = w(E(:, {¢})), we
have that

max w(E(;,) = max | (2.28)

30 2.3. Problem Formulation: One-Shot Setting

which simply tells us that our computation cost v, from (2.7) takes the form

1
V= Ngg%w(E(-,f))- (2.29)

Similarly, directly from (2.6) and (2.9), we see that

w(D)
0 = ——F 2.
KN (2:30)
which simply says (cf. (2.9)) that
w(D)
A, = A2 2.31

It is now clear that decomposing F into the product of two relatively sparse
matrices D and E, implies reduced communication and computation costs
respectively.

We here provide a simple example to help clarify the setting and the
notation.

2.3.1 Simple Example

As illustrated in Figure 2.2, we consider the example of a system with a
master node, N = 8 servers, K = 4 users, L. = 6 subfunctions, and a field of
size ¢ = 7.

Let us assume that the users ask for the following functions:

Fy = 2f1(D1) +4f2(D2) +4f3(D3) + 5f4(Da) + 5f5(Ds) = fiw, (2.32)
Fy = 3f1(D1) +4f2(D2) + 5f3(D3) + 2f4(Da) + 6f5(Ds) (2.33)

+6f6(Dg) = f]w, (2.34)
Fy =2f1(D1) +4f2(D2) + 6f3(D3) + 5f1(Da) + 2f5(Ds) = fiw, (2.35)
Fy = 3f1(D1) +5f2(D2) + 2f4(Dy) + 3f5(Ds) + fo(Ds) = fiw (2.36)

where Fy,f,, k € [4], and w, are respectively defined in (2.4), (2.13) and
(2.12). Consequently from (2.18), our function matrix takes the form

(2.37)

W DN W N
[
O O O =
N O DN Ot
W DN O Ot
_ o O O

Chapter 2. Multi-User Linearly-Decomposable in Finite Fields 31

Master Node
f1()
fa()
Server Nodes .
fe()
1 2 3 4 5 6 7 8
z Z3 Zy Zs Zg Zy Zg

d, dy ds d,

Figure 2.2: Multi-user distributed computing setting with 8 servers, 4 users,
and 6 subfunctions.

In the assignment phase, the master allocates the computation of fi(D;),
fa(D2), ..., fs(Dg) to the 8 servers according to

Wi ={1,2,3,5,8}, W, = {1,2,3,4,6,7}, (2.38)
Ws = {1,2,3}, Wy = {1,4,5,7} (2.39)
Ws = {1,2,4,5,6,8}, Wy = {3,4,5,6,7,8} (2.40)

so that for example subfunction f3(Dj) is assigned to servers {1, 2, 3}, while
we can also see that for example server 2 has to compute Wy = fi(.), W =
f2(), W3 = f3(), and W5 = f5(.). A quick inspection shows that the normalized
computation cost (cf. (2.7)) is equal to

max|W,|

Le(6]

v =g =6/8. (2.41)

After computing their designated output files, each server n transmits z, as
follows

21 = 2W1 + 6W2 + 3W3 + W4 + 2W5, (242)
Z9 = 4W1 + 5W2 + 2W3 + 3W5, (243)
z3 = Wh + 2Wo + W3 + 2W, (244)

32 2.3. Problem Formulation: One-Shot Setting

24 = W2 -+ 2W4 + 4W5 + WG, (245)
5 — 2W1 + W4 + 3W5 + 2W6, (246)
26 — 2W2 + 5W5 + 3W6 (247)
Zr = W2 + 2W4 + 4:W6, (248)
8 = 2W1 + 4W5 + 5W6 (249)
corresponding to a computing and encoding matrix (cf. (2.22)) of the form
(2 6 31 2 0]
4 52 0 30
1 2100 2
010241
E= 2001 3 2 (2.50)
020053
010 20 4
2000 4 5]

We can quickly verify (cf. (2.41)) that indeed rgle[mg]c w(E(:,0))/8 =6/8 = .
€

Subsequently, the master asks each server n to send its generated z, to
its designated receiving users, where for each server, these user-sets are:

T = {2,4}, T, = {1,3}, T; = {3,4}, T, = {1,2,3,4}, (2.51)
7?): {1727374}7 76:{1’2}7717:{174}77;3: {4} (2'52)

so now, for example, server 2 will broadcast 25 to users 1 and 3. A quick
inspection also shows that users 1 and 4 will receive 5 different symbols,
whereas users 2 and 3 will receive 4 symbols each. The above corresponds to
a normalized cumulative communication cost (cf. (2.9)) equal to
net [Tl
corresponding to an average of A, = % symbols received per user.
To decode, each user k € [4] computes the linear combination Fj, as

F| = 220 + 324 + 425 + 226 + 27,

le = 421+2Z4+Z5+3Z6,

Fé = 422 + 523 + 224 + zs, (254)

Féi: 421+223+Z4+2Z5+4Z7+528

adhering to a decoding matrix of the form
02034210
4 00 21300
D_04521OOO (2.55)

4 0212045

Chapter 2. Multi-User Linearly-Decomposable in Finite Fields 33

A quick verification® reveals the correctness of decoding, and that indeed
F| = Fy for all £ = 1,2,3,4. For example, for the first user, we see that
Fll = 222+3Z4+4Z5+226+Z7 = 2(4W1+5W2+2W3+3W5)+3(W2+2W4+4W5+
We)+4(2W1 + W+ 3W5+2Ws) +2(2Wo + 5W5 +3Ws) + (W +2W, +4Ws) =
2W1 + 4Wy + 4W5 + 5Wy + 5W5 4+ 0Wg which indeed matches Fy. In this
example, each user recovers their desired function, with a corresponding
normalized per subfunction computation cost 7y = 3/4 and a normalized
cumulative communication cost d. = 19/32. This has just been an example to
illustrate the setting. The effort to find a solution with reduced computation
and communication costs, follows in the subsequent section.

2.4 Computation and Communication Costs
for the Single-Shot Setting

In this section we present the results for the one-shot setting. We first rigor-
ously establish the bridge between our problem, coding theory, covering and
partial covering codes. The main results — focusing first on the computational
aspects — are presented in Section 2.4.2 which derives bounds on the optimal
computation cost in the large N setting. With these results in place, the
subsequent Section 2.4.3 extends our consideration to the communication
cost as well. Finally, Section 2.4.4 offers some intuition on the results of this
current section.

We briefly recall (cf. [86]) that an n-length code C C F™ is called a
p-covering code if it satisfies

d(x,C) < pn, ¥x € F" (2.56)

for some p € (0,1) which is referred to as the normalized covering radius.

2.4.1 Establishing a Relationship to Covering Codes
and Partial Covering Codes

We will first seek to decompose F into F = DE under a constrained com-

putation cost vy which will generally imply a sparsity constraint on E. For

E, 2 E(;,/) and F, = F(:, () denoting the fth column of E and F respectively,
we can rewrite our decomposition as

6Let us recall that each decoded symbol takes the form F| = d]z where d] is the kth
row of D, and where z = [21 2o --- 2n]|T.

34 2.4. Computation and Communication Costs for the Single-Shot Setting

As suggested before, if we viewed D € FX*¥ as a parity check matrix He = D
of a code C C F¥, then we could view E, € FV as an arbitrary error pattern,
and F, € FX as the corresponding syndrome. Since we wish to sparsify E,,
we are interested in having E, be the minimum-weight coset leader whose
syndrome is Fy. This is simply the output of the minimum-distance syndrome
decoder”. To get a first handle on the weights of E;, we can refer to the
theory of covering codes which bounds the weights of coset leaders, where
these weights are bounded by the code’s covering radius p(C)N, for some
normalized radius p(C) € (0,1). Since the covering radius p/N upper bounds
the weights of the coset leaders®, it upper bounds our computation cost. A
covering radius ;N would reflect our computation constraint ;.

To capture some of the coding-theoretic properties, we will transition to
the traditional coding-theoretic notation which speaks of an n-length code
C C F" of rate k/n, where for us n = N and k = N — K. The parity check
matrix He € F"*)*" will generally be associated to our decoding matrix
D € FEXN the received (or error) vectors x € F* will be associated to the
encoding vectors E, € FY, and its syndrome s, € F*~* (or just s, depending
on the occasion) will be associated to F, € FX. Please recall that when we
write Cp (or Cg), we will refer to the code whose parity check matrix is D
(or H).

As a first step, we extend the concept of covering codes to the following
class.

Definition 1. For some p € (0, 1], we say that a set X C F" is p-covered by
a code C C F" iff

d(x,C) < pn, Vx € X (2.58)
in which case we say that C is a (p, X)-partial covering code.

Naturally when X = F", such a (p, X')-partial covering code is simply the
traditional covering code. We are now able to link partial covering codes to
our distributed computing problem.

Theorem 1. For the setting of distributed-computing with K users, N servers
and L subfunctions, a solution to the linearly separable function computation
problem DE = F with normalized per subfunction computation cost y; exists

"Naturally our viewing D as a parity check matrix, does not limit the scope of options
in choosing D. Similarly, associating E, the role of an error pattern, or a minimum-weight
coset leader, is again not a limiting association.

8Let us recall (cf. [87]) that the preferred coset leaders are the minimum-weight vectors
in each row of the standard array.

Chapter 2. Multi-User Linearly-Decomposable in Finite Fields 35

if and only if D is the parity check matriz to a (¢, X)-partial covering code
Cp for some existing set

X D Xpp = {x € FVDx = F(:,(), for some { € [L]}. (2.59)

With such D in place, each E(:,{) is the output of the minimum-distance

syndrome decoder of Cp for syndrome F(:, ().

Proof. To first prove that the computation constraint v = p indeed requires
D to correspond to a partial covering code that covers X, let us assume
that D does not have this property, and that there exists an x € X such
that d(x,Cp) > pn. Let cyin be the closest codeword to x in the sense that
d(X, Cpin) = d(x,Cp). Now let eyin = X — Cmin, and note, directly from the
above assumption, that w(emyi,) > pn. Naturally Dx = D(enin + Cmin) =
De,,in by virtue of the fact that D is the parity check matrix of Cp. Since
x € X, we know that 3¢ € [L] such that Dx = F(:, /), which directly
means that 3¢ € [L] such that Dey, = F(:,¢). This ey, is the coset leader
associated to syndrome F(:,¢).

Since though DE = F, we also have that DE(:,¢) = F(:,¢). Since E(:, ()
and e, are in the same coset (of the same syndrome F(:, ¢)), and since ep,
is the minimum-weight coset leader, we can conclude that w(E(:, £)) > empn.
Thus the assumption that w(emy,) > pn implies that w(E(:,¢)) > pn which
contradicts the computation-cost requirement that w(E(:, £)) < pn from (2.29).
Thus if D does not correspond to a partial covering code (with p = 7¢) that
covers Xg p, the complexity constraint is violated.

On the other hand, recalling that Cp is a partial covering code for X,
we get that for any x € X then d(x,Cp) < pn. For the same x € X, let
Cnin De again its closest codeword, and let ey, = X — cnin, Where again
by definition of the partial covering code, w(enn) < pn. Since, like before,
Denin = F(:,¢) for some ¢ € [L], then we simply set E(:,¢) = e, whose
weight is indeed sufficiently low to guarantee the computation constraint. We
recall that for each F(:,), this coset leader E(:,¢) = ey, can be found by
using the minimum-distance syndrome decoder. [

Intuitively, a smaller X could potentially — depending on X and the code
— be covered in the presence of a smaller covering radius. Now that we have
established the connection with partial covering codes, we proceed to present
computation bounds. The following result, as well as all subsequent results,
assumes large N.

9Definition of Xp p also can be expressed as x € Xpp < I € [L]: Dx = F(:,¢)

36 2.4. Computation and Communication Costs for the Single-Shot Setting

2.4.2 Bounds on the Optimal Computation Cost

The following theorem bounds the optimal computation cost of the multi-user
linearly-decomposable computation setting.

Theorem 2. For the setting of distributed-computing of linearly-decomposable
functions, with K users, N servers and any number of L subfunctions, the
optimal computation cost is bounded as

e g () g K (2:60)

where K /N and log,(L)/N are fized and N goes to infinity.

Proof. The proof of the converse (lower bound in (2.60)) employs sphere-
covering arguments, and can be found in Appendix 2.8. The proof of achiev-
ability follows from covering- and partial covering-code arguments, and can
be found in Appendix 2.9. O]

Remark 1. The two bounds meet when L = ¢.

Theorem 2 suggests a range of computation costs. In the next corollary, we
will describe the conditions under which a reduced normalized per subfunction
computation cost, strictly inside this range, can be achieved. This reduced
cost will relate to (our ability to choose) a set X C FN. As we will see, a
smaller X will imply a smaller ;. To understand the connection between our
problem and this set X', and thus to better understand the following theorem
whose proof will be presented in Appendix 2.10, we provide the following
sketch of some crucial elements in the proof of Theorem 2. In particular,
we will here sketch an algorithm that iterates in order to converge to the
aforementioned X, and then to the corresponding decoding matrix D, that
will eventually provide reduced normalized complexity ~;. Before describing
the algorithm, it is worth noting that a crucial ingredient can be found in
Lemma 1 (see Appendix 2.11), which modifies the approach in [88] in order
for us to design — for any set X’ € F¥ — a (p, X’)-partial covering code for

some p— HA(— (1 - 252
With this in place, the algorithm starts by picking an initial set Ay €

FN,|X| = LgV %, and then applies Lemma 1 to construct a (pg, Xp)-partial

covering code, Co, where py = H, ' (% — (1 — W) With this code Cy in
place, we create — as a function of Cy — the set Xpp g as defined in (2.59)
where D = He¢,, and then we check if Xy O Xp po. If so, then the algorithm
terminates, else it goes to the next iteration which starts by picking a new

larger set X} € FN, |X)| = L¢™ ¥ + 1, then uses Lemma 1 to create a new

Chapter 2. Multi-User Linearly-Decomposable in Finite Fields 37

(p1, X1)-partial covering code for py = H ' (5 — (1 — %), and then
compares it X O Xpp . This procedure terminates during some round m
where this terminating round is the first round for which the chosen set A,

(now of cardinality |X,,| = Lg% + m) and the corresponding (p,,, Xm)-
partial covering code with p,,, = H (% — (1 — W), yield X, O Xp D m-

In the following corollary, the mentioned X refers to the terminating®®
X,,, and the decoding matrix D will be the parity-check matrix of the
aforementioned (p,,, X,,)-partial covering code that covers the terminating
X = A, while the normalized per subfunction computation cost in the
theorem will take the form vy = p = pp,.

With the above in place, the following speaks of a set X’ that is p/N-covered

by a code Cp that generates — as described in (2.59) — its set AF p.

Corollary 1. In the multi-user linearly separable computing problem DE = F,
if there exists a set

XD Xpp = {x € FY|Dx = F(:,{), for some { € [L]}

that is pN-covered by a code Cp for p = H; ' (5% — (1 — loquSX\)»’ then the
computation cost
o K log, (| X])
= i — -)

is achievable. If X = Xpp, then vy = H;l(%) is achievable and optimal.

Proof. The proof can be found in Appendix 2.10. O]

As suggested before, the above reflects that covering a smaller X could
entail a smaller covering radius and thus a smaller computation cost.

2.4.3 Jointly Considering Computation and Communi-
cation Costs

The following theorem combines computation and communication consid-
erations. Theorem 3 builds on Theorem 1, where now we recall that any

chosen decoding matrix D will automatically yield a normalized cumulative
communication cost 0, = % corresponding to A, = 6.N = %. The

following bounds this communication cost.

ONote that in the worst case this termination will happen when X, = FV, in which
case the output code will be a covering code.

38 2.4. Computation and Communication Costs for the Single-Shot Setting

Theorem 3. For the setting of distributed-computing of linearly-decomposable
functions, with K users, N servers and L subfunctions, the optimal computa-
tion cost is bounded as

log, (L) K

-1 -1

1 € (H (L) 7 () (2.61)
and for any achievable computation cost vy < min{ ‘/?’2_1, — %}, then the

corresponding achievable communication cost takes the form

. logq(N)
6= Y (2.62)

where K/N and log,(L)/N are fized and N goes to infinity.
Proof. The proof can be found in Appendix 2.12. n

We here offer a quick sketch of the proof of the above theorem. The
proof first employs a modified version of the famous result by Blinovskii
in [85] which proved that, as n goes to infinity, almost all random linear codes
C(k,n) are covering codes, as long as the normalized covering radius satisfies
p > H '(2=£). This modification of Blinovskii’s theorem is presented in
Theorem 5, whose proof is found in Appendix 2.12. With this modification
in place, we prove that almost all (k,n) random linear codes with

log, (|]) — &

n

= H

q

) (2.63)

are (p, X)-partial covering codes, each for their own set X € F". This is again
in Theorem 5. With this theorem in place, we then employ a concatenation
argument (which can be found in the proof of Theorem 3 in Appendix 2.12),
to build a sparse parity-check matrix H of a partial covering code, which —
by virtue of the connection made in Theorem 1 — allows us to complete the
proof of Theorem 3.

To show that sparse parity check codes can indeed offer reduced computa-
tion costs, we had to show that sparse codes can indeed offer good partial
covering properties. To do that, we followed some of the steps described
below. In particular, we designed an algorithm that begins with constructing
a sparse parity check code that can cover, for a given radius py, a minimum
necessary cardinality set X, where this minimum cardinality of |X,| = Lg"V %
is imposed on us by F. The parity-check matrix of this first code is Hy. Then
following the steps in the proof of Theorem 1, we set D = Hj and check
it Xy O Xpp holds. If it indeed holds, the algorithm outputs D and Aj,

Chapter 2. Multi-User Linearly-Decomposable in Finite Fields 39

and the corresponding cost is 75 = pg, where this p value is derived from
(2.63) by setting X = Aj. Otherwise the algorithm constructs another sparse
partial covering code with a new parity check matrix H;, now covering a
set X; with cardinality |X;] = Lg™~® + 1, and then checks again the same
inclusion condition as above. The procedure continues until it terminates,
with some covered set X,, of cardinality |X,,| = Lg% 4+ m. As before,
reaching X,, = FV will terminate the algorithm (if it has not terminated
before that). In the proposition below, the set X is exactly our terminating
set X, we referred to above.

Proposition 1. After adopting the achievable scheme proposed in The-
orem 3 together with adopting the corresponding conditions on p,d. and
its corresponding D that was designed as a function of ¥, then if there
exists a subset X O Xpp, X C FN, that is pN-covered by Cp for some

p=H? % —(1- %)), we can conclude that the computation cost

vy =H (K —(1- %)) is achievable. If X = Xp p, then the computa-

N
tion cost converges to the optimal H;l(logj'\,(L)). The above remains in place

for any D which yields communication cost no less than A. = O(4/log,(IN)).

Proof. The proof can be found in Appendix 2.14. O

2.4.4 Discussing the Results of the Current Section

Theorem 3 reveals that the optimal computation cost lies in the region

vy € (H;l(logqu(L)), H;'(%)), and that this cost can be achieved with com-

munication cost that vanishes as ¢, = /log,(N)/N. To get a better sense of
the improvements that come from our coded approach, let us compare this
to the uncoded case. Looking at Figure 2.3, this uncoded performance is
described by (the line connecting) point 1 and point 2. Point 1, located at
(v =1/N,é. = 1), corresponds to the fully parallelized scenario where each
server must compute just one subfunction!!, but which in turn implies that
each server must communicate to all K users. This scenario corresponds to
the decomposition DI = F where we maximally'? sparsify E by setting it
equal to E = Iy«n.

"Due to the single-shot assumption, this corresponds to having N(¢ — 1) = L. This
matches the converse — in our large N setting — because after writing L = N(¢g— 1) =
_1/log, (L
(M) (g —1) = ¢VHa/N) = gNHO5) e see that H 1(0qu()) ==+
12Note that the stated §. = 1 accounts for the worst-case scenario where F contains no
zero elements.

40 2.4. Computation and Communication Costs for the Single-Shot Setting

Point A Point B
Master Node f1(-) f1(~)
f2() f2()
Server Nodes fL(~) f;(-)
D, D, Dy Dy, Dy,
Users 1 /K/ 1 ven K

Figure 2.3: (Left. Fully parallelized): Uncoded scheme for point 1
corresponding to (yf = 1/N,d. = 1). Each of the N(¢ — 1) = L servers,
computes one subfunction, but must send to all K users. (Right. Fully

centralized): Uncoded scheme for point 2 corresponding to
(vf =1,6. = 1/K). K activated servers, each computing L subfunctions, and
each transmitting to a single user.

On the other hand, point 2, located at (yf = 1,6, = 1/N), corresponds to
the fully centralized scenario where each of the K activated servers'? is asked
to compute all L subfunctions, but where now each server need only transmit
to a single user. Point 5 is a trivial converse.

From Theorem 3, we now know that point 3 at (y; = H;l(%)ﬁc =

\/10g,(N))/N) is a guaranteed achievable point, and so is any point inside
the triangle defined by points 1,2,3. Any point inside the region defined by
points 1,4, 2,3, is conditionally achievable in accordance to Theorem 1, and
in particular in accordance to Corollary 1. The converse also tells us that
no point to the left of point 4, i.e., no point with v, < H;l(log]qv(m), can be
achieved. Finally, the points inside the triangle defined by corner points 5, 2, 4
could conceivably be achievable under additional techniques that manage to

further increase the sparsity of D.

13This number of activated users is again a consequence of the single-shot assumption.

Chapter 2. Multi-User Linearly-Decomposable in Finite Fields 41

o
1 ¢-9--9l
Unbounded
by N
O(y/log,N/NJp - ¥--gmaec - -2
1/N $---- i .
1 : 1
H,;l(logq(L)/N) H;'(K/N) 1 y

Figure 2.4: The figure summarizes the results of Theorem 3. Recall that
while N is asymptotically large, both K/N and log,(L)/N are fixed.

2.5 Distributed Computing of Linearly-Decomposable
Functions with Multi-Shot Communica-
tions (7" > 1)

In this section we present our results for the multi-shot setting where each
server is able to broadcast T consecutive transmissions to T" potentially
different subsets of users. This is mainly motivated by the fact that having
T > 1, naturally allows us to employ fewer servers, but it is also motivated —
as we will discuss later on — by an additional coding flexibility and refinement
that multiple transmissions can provide. We briefly note that we assume as
before that K and N are sufficiently large.

2.5.1 Problem Formulation

The notation of the parameters that characterize the system will now generally
follow directly from Section 2.3, sometimes after clarifying the corresponding
time-slot ¢ of interest. For example, as before we will have

f2[F,F, ... Fg|T, (2.64)

£ = [frrs oz forl™s k€ [K], (2.65)
Wé [WDWZJ"‘?WL]T’ (266)

2.5. Distributed Computing of Linearly-Decomposable Functions with

42 Multi-Shot Communications (T' > 1)
' 2 [F,Fy, ... F], (2.67)
F = [f,f,... f]" (2.68)

On the other hand, the notation for the encoding coefficients and the corre-
sponding transmitted symbols during slot ¢, will now take the slightly modified
form

€nt = [€n1t:€n2ity---renrt), n €[N, teT], (2.69)
Zy é [zl,ty 227t7 s 7ZN,t]T7 te [TL (270)
z = [z],2,...,2}]" (2.71)

with the corresponding modified
Et é [eLt, egyt, Ce ,eNyt]T, t e [T] (272)
while the corresponding decoding coefficients will now take the form

dis = [drass dpois - - denaT, k € [K],t € [T), (2.73)
dy = [dz,ladz,Qv'“udz,T]Tv k€ [K] (274)

We note that the decoding coefficients are decided as a function of all received
signals throughout all 7" transmissions.
As before, (cf. (2.4)), we have that

f= [fl, fQ, ce ,fK]TW (275)
and now we use
zZ; = EtW = [el?t, €2¢, ... ,eN,t]Tw (276)

to denote the ¢-th slot transmission vector across all servers. The set of all
transmissions now takes the form

z = Ew (2.77)
where now the computing and encoding matrix takes the form
E 2 [E],El ... ElT € FNT*E, (2.78)
Upon decoding, each user k generates

Fl=diz (2.79)

Chapter 2. Multi-User Linearly-Decomposable in Finite Fields 43

and the cumulative set of all decoded elements across the users takes the form
f'=[dy,dy,...,dk|"z. (2.80)
Now we note that our decoding matrix
D = [dy,dy,...,dg]T € FFNT (2.81)
is of dimension K x NT'. Naturally, correct decoding requires
f=1 (2.82)

and after substituting (2.75), (2.76), (2.80) into (2.82), we can conclude as
before that computing succeeds if and only if

DE =F. (2.83)

The problem remains similar to the one in the single-shot scenario, except that
now our communication and decoding matrix D € FAX*NT and computing and
encoding matrix E € FNT*L are bigger'® and can have a certain restrictive
structure.

Again similar to before, each server n € [N] is asked to compute all the
subfunctions in UL, sup(e,;), and thus equivalently the set of servers W
that must compute subfunction f(.), takes the form

We = UL sup(E([(t = 1)N + 1 : tN], {¢)T), VL € [L], Vt € [T]. (2.84)

The following theorem provides an achievable upper bound on the com-
putation cost v of our distributed computing setting for the multi-shot
scenario.

Theorem 4. For the setting of distributed-computing of linearly-decomposable
functions, with K users, N servers, L sub-functions and T shots, the optimal
computation cost ys is upper bounded by

K
<TH '(—).
v <TH, (NT)

where K/NT and T is fized and N goes to infinity.

(2.85)

Proof. We first note that, directly from (2.84) and the union bound, we have
that

E(:. () > 2.86
Igg[ﬁw((s,))_rgg?gfIWA (2.86)

4The size of F € FX*% remains the same, and thus again we have L < ¢%.

2.5. Distributed Computing of Linearly-Decomposable Functions with
44 Multi-Shot Communications (T' > 1)

and thus our normalized per subfunction computation cost will be upper
bounded as
< ma E(:,¢))/N.
v < maxw(E(, 0)/
To bound {)ﬂé&)}(w(E(:,¢)), we apply covering code arguments as in the single-
€

shot case, after though accounting for the dimensionality change from having
larger matrices. In particular, this means that now the corresponding covering
code C(n,k) will have n = NT and again K = n — k (now we only ask
that NT' > K). To account for this increase in n, we note that while the
computation cost must still be normalized by the same number of servers
N, when considering our covering code'®, we must consider a radius #n =
%N T = v¢N to guarantee our computation constraint. In other words, the
p-covering codes that will guarantee the computation constraint, will be for
p = vy/T. Consequently, combined with the aforementioned union bound,
we now see that pT' serves as an achievable upper bound on ;. The rest
follows directly from the proof of the corresponding theorem in the single-shot
scenario. O

Remark 2. Note the here we use the same asymptotic achievable sphere-
covering bound used for the single-shot setting which required fixation of
K/N while N to be sufficiently large, here we just instead require fixation of
K/NT and T while at the same time N has to be sufficiently large. Therefore
K in both setting also has to be sufficiently large.

The following two propositions help us make sense of the computational
effect of having 7" > 1.

Proposition 2. In the distributed computing setting of interest in the limit
of large T, the normalized per subfunction computation cost vy vanishes to
zero.

Proof. The proof is direct once we prove that for any fixed ¢, then

. —1 .
jlggoTHq (¢/T) = 0. (2.87)
This property will be proved in Appendix 2.16.1. O

In a system with an unchanged number of users and servers, the above
reveals the notable (unbounded) computational advantage of allowing a

15Let us quickly recall that in the previous single-shot scenario, a covering code with
covering radius pn = pN implied a computation cost of y¢N = pN and thus a normalized
per subfunction computation cost of vy = p.

Chapter 2. Multi-User Linearly-Decomposable in Finite Fields 45

large number T of distinct transmissions per server. This advantage of the
multi-shot approach must be seen in light of the fact that in the single-shot
approach, the computation cost vy was always bounded below by a fixed

v > Hy 1(%), irrespective of the communication cost. Consequently we
can deduce that the computational gains that we see in the regime of larger T,
are — at least partly — a result of the increased refinement in transmission
that a larger 7' allows, and it should not be solely attributed to an increased
communication cost.

The following proposition discusses the non-asymptotic computational
effect of increasing 7" beyond 1. Recall that our results hold for sufficiently
large K and N.

Proposition 3. For ¢ = 2, then vy monotonically decreases in T, while for

q > 2 then s monotonically decreases in T after any T > []\/H*(l/q)—l
q

Proof. The proof is based on the fact that the derivative of f = TH_"'(c/T),0 <
¢/T <1—1/q, with respect to T, satisfies

of _ H(J/T) T 2.8%
oT log, (1{§:;T (q — 1)) i ()

This is proved in Appendix 2.16.2. From the above, and after observing that
% < 0 where 0 < H,'(K/NT) = f/T < 1/q, we can conclude that since
0 < H'(K/NT) = f/T < 1/2 =1-1/q, then for ¢ = 2, increasing T
always strictly reduces ;. On the other hand, when ¢ > 2, this reduction
happens — as we see above — when T' > [Tg] for some real Ty for which
Hy(K/NTy) = 1/q. u

2.6 Conclusions

In this chapter we have introduced a new multi-user distributed-computation
setting for computing from the broad class of linearly-decomposable functions.

Our work revealed the link between distributed computing and the problem
of factorizing a ‘functions’ matrix F into a product of two preferably sparse
matrices, these being the computing and encoding matrix E and the decoding
matrix D. The work then made the new connection to the area of covering
codes, revealing for the first time the importance of these codes in distributed
computing problems, as well as in sparse matrix factorization over finite fields.
Furthermore, this chapter here brought to the fore the concept of partial
covering codes, and the need for codes that cover well smaller subsets of
the ambient vector space. For this new class of codes — which constitute a

46 2.6. Conclusions

generalization of covering codes — we have provided some extensions and
generalizations of well-studied results in the literature.

Our two metrics — ¢, representing the maximum fraction of all servers
that must compute any subfunction, and J., representing the average fraction
of servers that each user gets data from — capture the computation and
communication costs, which are often at the very core of distributed computing
problems. The observant reader might notice that the creation of E entails a
complexity equal to that of syndrome decoding. Our results hold unchanged
when we consider — as suggested before — that the computational cost of
evaluating the various subfunctions, far exceeds all other costs. What the
results reveal is that in the large N regime, the optimal computation cost lies

in the region 7y € (Hq_l(%), H;' (X)), and that this entails the use of a

vanishingly small fraction é. = /log,(N)/N of all communication resources.
What we show is that our coded approach yields unbounded gains over the

uncoded scenario, in the sense that the ratio %53) between the uncoded

and coded communication costs, is unbounded.

We have also studied the multi-shot setting, where we have explored the
gains over the single-shot approach. What we now know is that the gains
from increasing T, are unbounded (and strictly increasing) in the regime of
large T', whereas in the regime of finite 7', the gains are strictly increasing
after some threshold value of T'. We are thus able to conclude, as suggested
before, that computation reductions due to larger T', are — at least partly —
a result of the increased refinement in transmission that a larger 7" allows,
and that these gains should not be interpreted as being purely the result of
an increased communication load.

Our work naturally relates partly to the recent results in [22] that consid-
ered the single-user linearly-separable distributed computing scenario, where
a single user may request multiple linearly-separable functions. In this setting
in [22], as well as in the extended works in [42] and [89], a key ingredient is
the presence of straggling servers, while another key ingredient is that the
subfunction-assignment is fixed and oblivious of the actual functions requested
by the user. In this context, the coefficients of the functions are assumed to be
distributed uniformly and 4.i.d, and the decodability is probabilistic. There is
also an interesting connection (cf. [90], [91]) between compressed sensing and
coding theory. Naturally this connection entails no link to covering codes, as
the problem of compressed sensing relates to decodability and is very different
from the existence problem that we are faced with.

As suggested above, our setting can apply to a broad range of ‘well-behaved’
functions, and thus can enjoy several use cases, some of which are suggested
in our introduction (see also [22] for additional motivation of the linearly

Chapter 2. Multi-User Linearly-Decomposable in Finite Fields 47

separable function computation problem). When considering problems over
the real numbers, we may consider a very large ¢q. An additional new scenario
that our work can extend is the so-called hierarchical or tree-like scenario
introduced in [80], [92] whose purpose is to ameliorate bandwidth limitations
and straggler effects in distributed gradient coding [18]. In this hierarchical
setting, each user'® is connected to a group of servers in a hierarchical manner'?
that allows for a hierarchical aggregation of the sub-gradients. Our approach
can extend the hierarchical model by allowing the users to connect to any
subset of servers, as well as by allowing them to deviate from the single-shot
assumption. Finally as one might expect, our analysis also applies to the
transposed computing problem corresponding to ETDT = FT, on that case
the provided bound will be on the communication cost per user where K
the number of users has to be significantly larger than L, the number of files
while L/N (the ratio between the number of files and servers) remains fixed
since in the above case ET would be seen as the parity-check matrix of a
partial covering code, not D. We can see that this scenario investigates a
less practical scenario where K, the number of users is much bigger than the
number of sub-functions.

Also as a suggestion for future work towards a more practical setting, we
can conceive of a setting where the size of the transmitted signals sent by
different servers z,, n € [N], in the single shot scenario differs from each
other. More precisely, in this chapter we assumed that the output of each
sub-function, so-called file-output f,(.) is just a member of GF(q) (Cf. (2.4))
so that the model captures the most general and simple instance of the
multi-user linearly separable distributed computing problem, because of that
we see the transmitted signals z,,, n € [IN] can be any member of GF(q) since
the signal is just a linear combination of the files and mathematically z, can
also be any element of GF(q), therefore in this system model, there is no
difference between any of the transmitted signals and the communication cost
is simply the total number of activated links.

If we are to analyse the system model where there might exist two trans-
mitted signals z; and z,, with two different sizes then we have to also define
a probability measure on each of the output files. For instance, we might
investigate the case where W; has a non-uniform distribution, or apriori the
master knows that W # 0 while other files have a uniform distribution. In
this case, if the master node allocated D; to the server 1 but not to the
server 2, then z; consists of W; and other files and z, does not contain W;

1611 [80], these users are referred to as master nodes.
ITIn particular, each user computes a linearly separable function based on its locally
available data, and then sends this to the ‘Aggregator’ that finally computes the gradient.

48 2.6. Conclusions

in their linear decomposition, then z; has a non-uniform distributed while
zo has a uniform distribution, which makes H(z,) < H(zz), where H is an
entropy defined on random variables z; and z;. We see that this results in an
interesting problem where the communication cost also has to be dependent
on the output files distribution, which might be dependent on some kind of
weighed sparsity criteria of both D and E.

Another further worthwhile path to investigate this problem is to extend
the results to the case where the output files, decoding and encoding proce-
dures has real value which is more applicable for the at hand computational
distributed systems. In fact, as we mention above in this chapter we have
established a bridge between multi-user linearly separable distributed com-
puting and decoding of linear codes. On the other hand, we now have the
enriched literature of compressed sensing, initiated by [93] entitled "Decoding
by Linear Programming" which describes a scenario where a decoder receives
a real valued noisy signal and its desire is to decode a message, the exact
same intention in the error-correcting literature. Therefore one can readily
use the results in the compressed sensing literature to drive and explore the
same fundamental limits driven in this chapter for the real-valued version of
this problem.

Additional considerations that involve stragglers, channel unevenness
or computational heterogeneity, are all interesting research directions. In
the next Chapters, on the basis of a similar problem formulation, we will
investigate the same problem from the lens of perfect codes and its impact
on the computation and communication costs concepts of the system. In
Chapters 4, 5 and 6, we will investigate the real-valued variant of this problem
and in the last chapter we will discuss its results and implications.

Chapter 2. Multi-User Linearly-Decomposable in Finite Fields 49

Achievability SPrO¥edIL b endix A

Theorem 2 —>InCIUdes {

is proved in
—_—

Converse Appendix B

is proved in) includes is proved in)
Corollary1 — AppendixC —> Lemmal —= AppendixD

is proved in) includes is proved in]
Theorem3 —> AppendixE —> Theorem5 —> AppendixF

is proved in
Proposition 1 —> Appendix G

Lemmas4,...,8 . . Appendix HA, ... HE
Theorem 6 &{ is proved in {

Lemma 9 Appendix |

o is proved in)
Proposition 2 — = Appendix LA

. is proved in .
Proposition 3 — = Appendix |.B

is proved in .
Lemma 10,11 — = Appendix I.C,I.D

Figure 2.5: Map of lemmas, theorems and appendices.

2.7 Appendices

2.8 Proof of Converse in Theorem 2

To prove the converse in (2.60), we modify the sphere-covering bound for
the case of partial covering codes. We wish to show that for a set X’ that
satisfies ¥ C F, |X| = ¢"L, k € N, a (p, X)-partial covering code C(k, n) has
to satisfy

log, (L) < log,(Vy(n, p)). (2.89)

This is easy to show because having ¢* codewords directly means that the
maximum number of points they can jointly pn-cover is equal to ¢*V,(n, p).
This in turn implies that

Lg* < Vy(n, p)¢* (2.90)

50 2.9. Proof of Achievability in Theorem 2

which yields (2.89) after taking the logarithm on both sides of the inequality.

Now letting the above X be the X found in Theorem 1, we note that if
|X| = Lg* then X = Xr. Then by substituting N = n, K = n — k, we see
that log,(L) < log,(V;(N,p)). Since ¢"Ha=MN) <V (N, p) < ¢VHa?) | we

can conclude that log,(L) < NH,(p) and thus that H;l(%) < p, which
concludes the proof. O

2.9 Proof of Achievability in Theorem 2

Directly from [88], we know that there exists at least one p-covering code
Cx(k,n) that satisfies

n—k >log, (Vy(n, p)) — 2logy(n) + log,(n) — O(1). (2.91)

Then applying Theorem 1 with D = He, N =n, K =n —k and X = F",
allows us to conclude that there exists a feasible scheme for the distributed
computing problem, with computation cost v; = p, that satisfies

K/N 2 log,(Vy(N, p))/N — 2logy(N)/N +log,(N)/N — O(1)/N. (2.92)
Combining this with the fact that ¢VHa(P)=o(N) < V(N p) < ¢VHalP)| yields
K/N > Hy(p) - (V) 293)

which tells us that p < H'(K/N + ¢(N)), which in turn proves the result in
the limit of large N. m

2.10 Proof of Corollary 1

We first start with the following lemma which proves the existence of a (p, X)-
partial covering linear code C, for a properly-sized set X C F" that encloses
B, (0, p). Before proceeding with the lemma, we note that the lemma is an
outcome of involving a linear greedy algorithm. Let us also briefly recall from
Theorem 2 and its proof in Appendix 2.8, that log, (L) < log,(V,(n, p)).

Lemma 1. Let X C F}! be a set of size |X'| = L'q* that satisfies X 2 B,(0, p).
Then as long as

log, (L) > log,(Vy(n, p)) — 2logy(n) +log,(n) — O(1) (2.94)

there exists a (p, X')-partial covering code.

Chapter 2. Multi-User Linearly-Decomposable in Finite Fields 51

Proof. The proof is found in Appendix 2.11. [

With this lemma in place, let us define A, = {X CF" | |X| =m, X D
B,(0,p)} to be the family of all subsets of F* which have cardinality m and
which enclose B,(0, p). Consider the following algorithm.

1. Assign m = Lg"V K,

2. For each X in A,,, find a (p, X)-partial covering code Cy via (the
algorithm corresponding to) Lemma 1.

3. For each X in A,,, set D = He,,, and create Xpp = {x € FN|Dx = F(:
,0), for some ¢ € [L]}.

4. If there exists an X' in A,,, for which & C AF p, then output this X
and its corresponding D = H¢,, from the above step.

5. If there exists no X" in A,, for which X C A p, then increase m by one
and go back to step 2.

Let us continue now by supposing that the scheme terminates, outputting
D and X at the fourth step, before m reaches m = ¢"¥. Lemma 1, which
guarantees (cf. (2.94)) that

log,(|X|g™*) > log,(V(n, p)) — 2log,(n) + log,(n) — O(1) (2.95)
also guarantees that

log, (|X])—(N — K)
¥ (2.96)

> log, (Vo(N, p))/N — 2logy(N)/N +log,(N)/N — O(1)/N (2.97)

where this last inequality holds after setting N = n, K = n — k, and after we
divide both sides of (2.95) by N, and then apply Theorem 1 after recalling
that X is indeed pn-covered by Cp. Applying that ¢VHa(P)=e(N) < V(N p) <
qVHa) into (2.96), gives

K log, (]X])

(= —1+

N N) 2 Halp) —e(N) (2.98)

telling us that the algorithm yields a scheme with computation cost'®

Yy = p < Hy (/N — 1+ log,(|X|/N) + €(N)) (2.99)

8Here it is worth elaborating on a fine point regarding our metric. As the reader may
recall, v describes the fraction of active (non-idle) servers that compute any subfunction.
Then the observant reader may wonder if our proposed scheme indeed activates all existing

52 2.11. Proof of Lemma 1

which matches the stated result in the regime of large N. Note that when
X = Xpp, then naturally |X| = Lg% which, directly from (2.99), yields
vy =p=H;'(log,(L)/N +€(N)). At the other extreme, when the algorithm
terminates at the very end when X = F”, then the corresponding code will
be the standard p-covering code (see Appendix 2.9), and the computation
cost will correspond to vy = H, ' (K/N). O

2.11 Proof of Lemma 1

We here start by employing the recursive construction approach of Cohen
and Frankl in [88]. This recursive approach builds an (n,j + 1) code Cj1y
from a previous (n, j) code C;, by carefully adding a vector x on the basis of
Cj, so that now the new basis span is bigger. Our aim will be to recursively
construct ever bigger codes that cover an ever increasing portion of our set
X.

Let us start by setting Cp = {0}. Let us then make the assumption that
the aforementioned integer L’ in Lemma 1, takes the form

/

L =q* (2.100)

for some real k' > k. Let Q(C) denote the set of points in X' that are not
pn-covered by C, and let

C
q(C) = m (2.101)
where naturally
Q(Co) = ¢ = V,(n, p) (2.102)

servers. This corresponds to having a scheme with an E matrix that has no all-zero rows.
In the (rare) degenerate scenario where a row of E may contain only zeros, then our derived
computation cost yf would — by definition — have to be recalculated (to account for
having idle servers) and would be higher than stated here. To account for this degenerate
case, we add a small step in our algorithm which reduces the recorded computation cost
by guaranteeing that all servers are active. This step simply says that if a row in E
contains only zeros, then this row is substituted by an arbitrary non-zero row (let’s say,
the first row) of E, except that, if that (first) row contains a non-zero element in the
position fy,,x = argmax w(E(:, ¢)), then this element is substituted by a zero. Then the
two servers (the first server and the previously idle server) will split their communication
load, except that the server corresponding to the originally all-zero row, will not send any
linear combination that involves wy,, . . This small modification guarantees that whatever
vf we declare here as being achievable, is indeed achievable even in degenerate scenarios.
Finally, this degenerate scenario does not affect the algebraic converse.

Chapter 2. Multi-User Linearly-Decomposable in Finite Fields 53

and
q(Co) = 1 = Vy(n, p)g~ "+, (2.103)
To proceed, we need the following lemma from [88].

Lemma 2 ([88]). Let Y CF", Z C F”, and consider Y+x ={y+x:y € V}
for some x € F. Then

E((Y+x) N Z]) = ¢"[Y]|2] (2.104)
where the average is taken, with uniform probability, over all x € F".
Now, we develop the proof in two parts.

1. Binary Case: The proof for ¢ = 2 where k = k" (corresponding to the
singular case of maximal L = 2%) has been presented in [94] and [88] in
two different ways. We will modify the latter approach to establish our
claim for any & > k (which will allow us to also handle L values that
are smaller than 2X). First let us easily deduce from Lemma 2 that
there exists an x € F" for which |(Y +x)N Z| < %. Now let us set
Y =Z =(Q(C,), and let us append a vector x to the generator matrix
of C; to create Cj11, where x is chosen to minimize |Q(C;41)|. Now we
can directly verify that

1Q(Ci1)| = 1Q(C;) N Q(C; +x)| =[Q(C;) N(Q(C)) +x)| (2.105)
<1Q(C)) /2" (2.106)

which implies that
q(Ci41) < q(Cj)*2F 7 < q(C;)? (2.107)

where the latter inequality holds because ¥ > k. Combining (2.103)
and (2.107), gives

9(Cr) < q(Co)* < (1 =V (n, p)2~(n=F+h)2" (2.108)

where the latter inequality again holds due to the fact that &’ > k. Now
let us continue this recursion until k£ is such that

28 = [(n — k' + k)207F 0 1n(2) /Va(n, p)] (2.109)
in which case — given that (1 —1)” <e !, Vo >1 — we get that

q(Cp) < 2~ (nHh=k) (2.110)

o4

2.11. Proof of Lemma 1

which automatically yields that Q(Cy) = 0. This, again with the choice
of k in (2.109), tells us that for a set X' that satisfies B,(0,p) C X C
F?, |X| = Lq*, then indeed there exists a (p, X')-partial covering code
C(n, k) satisfying

0 < log,(L/Vq(n, p)) (2.111)
+ 2logy (log, (|X])) — log,(log, (|X1)) + O(1). (2.112)
This conclusion can be considered as a tighter version of Lemma 1. After

a few very basic algebraic manipulations we get the proof of Lemma 1,
for the binary case of ¢ = 2.

. Non-Binary Case: Considering first an arbitrary Z C F", we have

that

E(1 - (¢ (2 +x) U Z])) (2.113)

=E(1—¢ "™ M((Z+x)[+|2) - [(Z+x)nZ)) (2114)
W ggmHk=k| 2| 4 g2tk k| z|2 (2.116)
®) . —(n—K'+k) —2(n—k'+k) 2
<1-2g 1Z]+q 12| (2.117)

2]l

=(1- m) (2.118)

where (a) is directly from Lemma 2, and where (b) holds since k' > k.
Similarly to the binary case, we begin with C; = {0}, and again
recursively extend as

Cj+1 =< Cj;X > (2119)

where x is chosen so that |Z| is maximized. We do so, after again
setting Z = Q(C;).

At this point, from (2.118) we have that
4(Cj1) < a(Cy)*. (2.120)
We now consider the following lemma from [88].

Lemma 3. ([88, Lemma 2]) For any fixed Z C X C F” where
|Z|qg~ (K +R) = ¢ < (q(n — K 4+ k))7!, then

Exern (1 — ¢~)| Uper, Z + ax|) < (1 —)70~ Rn=F+R)™H),
(2.121)

Chapter 2. Multi-User Linearly-Decomposable in Finite Fields 55

Continuing from Z = X N (Ueee, By (c, p)), where
1 o .
2] < ﬁq(” FHED D q(Chan) < q(Cy)rm BRI

we have that
0(Cre1) < (1= gV, n,)00 BRI (2129)
< (1= @V, (n, p)) (2.123)

since (1 — (2(n — K + k)™ > (1 — (2(n — K + k)" 1) FHh-1 > 705,
For

j1 £ arg mln{q() <1—(¢ln+Fk—)~} (2.124)

we see that
J1<n— logq(qk/_qu(n, p)) —log,(n+k — k) 4+ O(1) (2.125)
where the inequality holds by first observing that Lemma 3 yields
L= (qln— K + k)" < (Gy) < (1 — g HHMatmayei =t (9 19)

and then by comparing the upper and lower bounds in (2.126).

We now have an (n, j;) code C and we have (2.120). We are now looking
for the minimum number j, of generators x that have to be appended
to the generator of C in order to get a (n, j1 + j2) code with ¢(Cj,+;,) <
q~ 7K +k)We note that ¢(Cj,) < 1—(g(n—k +k))™", so by (2.126) we
only need to ensure that (1 — (g(n — k' + k))~1)?? < ¢~¥+%) which
can be achieved by using

J2 = 2logy(n — k' + k) + O(1). (2.127)

Hence for k = j; + jo, there indeed exist (n, k) codes with normalized
covering radius no bigger than p. Applying (2.125), (2.127), (2.100),
and the fact that |X| = Lg¢*, proves (2.94) and thus proves Lemma 1.

]

2.12 Proof of Theorem 3

We quickly note that the converse (lower bound on 7;) holds directly from
the converse arguments in Theorem 2.
Let us start with the following definition.

56 2.12. Proof of Theorem 3

Definition 2. Let p € (0,1 — %], and let 7 € (0,1]. A code C C F" is
said to be a (p, 7)-partial covering code if there exists a set X C F", with
Llog,(|X|) = 1 — 7, that is p-covered by C.

We now present a theorem that extends the famous Theorem of Blinovskii
in [85], which proved that almost all linear codes satisfy the sphere-covering
bound. We recall that Cy,, denotes the ensemble of all linear codes generated
by all possible k x n matrices in F**".

Theorem 5. Let p € (0,1 — %] Then there exists an infinite sequence k,
that satisfies

ks,

— <1—7 = Hy(p) + O(n""'log,(n)) (2.128)

n
for 7 € [0,1 — Hy(p) — %] so that the fraction of codes C,, € Cy,, that are
(p, T)-partial covering, tends to 1 as n grows to infinity. Thus in the limit of
large n, almost all codes of rate less than 1 — 1 — H(p) will be (p, T)-partial
COVETINg.

Proof. The proof can be found in Appendix 2.13. m

Now let us design such covering codes. In the following we will consider the
set of codes in Cy,, ,, that are (p, 7)-partial covering, for the claimed sequence
k., of Theorem 5, and for some real 7. We will also consider g(n) to be the
fraction of such (p, 7)-partial covering codes among all codes in Cy,, ,,. The
scheme design is defined by the following steps.

1. Assign m = L.

K —log,(m)

2. Set T = ~

3. Noticing that the value

my = g(n)g™" (2.129)
serves as a lower bound on the number of (p, 7)-partial covering codes
in the ensemble Cy, ,,, we now create B = {C1,Cs,...,Cp, } to be the
set of the first m,, such codes.

Now let
He,
H
D, 2 “ (2.130)

Chapter 2. Multi-User Linearly-Decomposable in Finite Fields o7

and accordingly set K = m,(n —k,), and N = m,n.

Now design Cyp,, = [C1,Ca, .. .,Cp,], and then create the set
Xpp = {x € F¥|Dx = F(:, (), for some ¢ € [L]}. (2.131)
Then create the set
X2 {x=[x,X2,...,Xm,] | Xi €&} (2.132)

where &}, € [m,], is the set of all n-length vectors that are pn-covered
by C;. Then note that

x| > ") Vi € [my) (2.133)
because of Definition 2. We now note that for any x € X, it is the case
that

Mn mn pn mn 1
d(x,C)/N = Zd(xz-,Ci)/N < Z = Zp— =p (2.134)
i=1 i=1 Mt = M

which means that Cp, is also a (p, X)-partial covering code. Now if
X 2 Xpp, then m has to be increased by one, and the procedure starts
again from Step 2.

4. Let us define k!, = n — k,. From (2.128), we know that

k! _
o > 7+ Hy(p) — O(n~ " log,(n)). (2.135)
We now see that R £ % = % since K = kl'm,, N = nm,. Thus,

directly from the above, we have that
K/N=R=H,p)+71—€(N). (2.136)

We note that as n (and thus N) goes to infinity, the term O(n~"log,(n))
vanishes, and thus from the above we have that

_y log,(m)
= H,\(}’V +€(N)). (2.137)
We also have that
(a) !
w(Dn) @ manky, _ (2.138)

58 2.13. Proof of Theorem 5

where (a) holds since w(D,,) = m,k,n is the maximum number of
nonzero elements that D can have, due to the block-diagonal design.

After taking the logarithm on both sides of the above, and since N =
m,n and k, = (1 — R)n, and after considering (2.129), we have that

log,(n) + n*(1 - R) + log,(g(n)) = log,(N) (2.139)

and thus we have that n*(1 — R) < log,(N) and n < l(()fq_(g). Combin-
ing this with (2.138) and Theorem 1, we have that

logq(N)
‘TN (1-R)

(2.140)

where, as mentioned before, R is constant.

We can also see that the above design terminates, since reaching m = ¢
implies that 7 = 0. Then we will have X; = F” since |&;| = ¢" from
Definition 2. Therefore from (2.132), we will have that X = FYN = Fm»"
which means that Cp, (N, N — K) is a p-covering code, and that X O Xf p,
and thus the scheme would terminate at Step 4 with v, = p = H;l(% +¢e(N))
from (2.137), and with communication cost as shown in (2.140). O

2.13 Proof of Theorem 5

Before offering the formal proof, we provide a quick sketch of the proof to
help the reader place the different steps in context.

First we consider the ensemble!® of codes C+,, and we prove that with
a consistent enumeration of