
HAL Id: tel-04703663
https://theses.hal.science/tel-04703663v1

Submitted on 20 Sep 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Vocal audio effects : tuning, vocoders, interaction
Daniel Hernán Molina Villota

To cite this version:
Daniel Hernán Molina Villota. Vocal audio effects : tuning, vocoders, interaction. Signal and Image
Processing. Sorbonne Université, 2024. English. �NNT : 2024SORUS166�. �tel-04703663�

https://theses.hal.science/tel-04703663v1
https://hal.archives-ouvertes.fr


Sorbonne Université
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Nicolas OBIN Examinateur
HDR, Ircam - Sorbonne Université
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This thesis explores how digital audio effects (DAFx), particularly pitch cor-
rection (PC), shape the voice in modern music. A taxonomic study thoroughly
investigated the behind-the-scenes of vocal production in contemporary music.
The goal was to find what makes effects such as PC, vocoders, and Autotune
interesting and how they might be enhanced. The Dynamic Pitch Warping
(DPW) method was revisited, proposed for vocal PC, and compared with
Antares Autotune (ATA). Subsequently, a psycho-acoustic study of the PC
methods was conducted, first by comparing four different vocoders and then
the two PC methods. The study showed that each system imparts a unique
coloration to the voice and provides directions for future improvements of the
PC methods. Finally, the sound description of the vocoder for tuning and the
interactive use of effects through real-time gestural control were examined.

Cette thèse s’intéresse à la manière dont les effets audio numériques, en par-
ticulier la correction de l’intonation (CI), façonnent la voix dans la musique
moderne. À travers une étude taxonomique, les coulisses de la production
vocale ont été dévoilées. L’objectif a été d’analyser ce qui rend intéressants
des effets tels que la CI, le vocodeur et l’Autotune, et comment les améliorer.
La méthode Dynamic Pitch Warping (DPW) a été revisitée, proposée pour la
CI vocale et comparée à Autotune Antares (ATA). Par la suite, une analyse
psychoacoustique a été menée, d’abord, entre différents vocodeurs, puis entre
différentes méthodes de CI. L’étude a montré que chaque système donne une
coloration particulière à la voix et fournit des pistes pour le développement
futur de la CI. Enfin, la description sonore du vocodeur pour le tuning et
l’utilisation interactive des effets par le contrôle gestuel en temps réel ont été
examinées.
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“And the stars will show where the waters flow,
where the gardens grow.”

— Roxette 1999.
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Abstract
This research focuses on the study of pitch correction, one of the most widely
used digital vocal audio effects in modern music. The study aims to gain a
deeper understanding of the perceptual coloration of this effect and to gather
insights into potential improvements for pitch correction algorithms. The pitch
correction method Dynamic Pitch Warping (DPW) is revisited with a focus
on its vocal application and psycho-acoustical evaluation.

A perceptual taxonomic analysis of vocal digital audio effects is proposed,
incorporating technical and contemporary musical examples. This percep-
tual taxonomy positions pitch correction as an effect that modifies pitch and
vocal quality. Despite the widespread use of this effect, no descriptive and
comparative scientific foundations exist outside of patents. Consequently, a
compendium of technical-musical terms has been developed to distinguish the
types of signals to be corrected and the relevant cases for study. As perspec-
tive, prototypes are proposed for the interactive use of vocal effects, capturing
hand movements through wireless sensors.

A pitch correction system consists of three components: a pitch tracker, a
pitch correction method, and a vocoder or vocal warper. Originally, Dynamic
Pitch Warping (DPW) was a graphical pitch correction method designed for
tablets. It has since been revisited and adapted for use in vocal correction.
This method has been validated using theoretical pitch curves, accompanied
by sound samples, and compared to Autotune Antares (ATA), the reference
method in the field.

The vocoder plays a crucial role in implementing a given transposition
or pitch curve. To psycho-acoustically study the coloration introduced by
pitch correction, it is necessary to analyze both the effect of the vocoder and
that of the pitch correction method. This study was approached through a
psycho-acoustic comparative evaluation divided into two parts: (i) the vocoder
techniques and (ii) the pitch correction methods. The psycho-acoustic eval-
uation of the vocoder aims to provide insights into the coloration produced
by four systems (World, Circe, Retune, ATA). The evaluation of pitch correc-
tion methods seeks to determine whether perceptual differences exist between
DPW and ATA. By comparing these two evaluations, insights can be gained
into the relative contribution of coloration from pitch correction versus that
from the vocoder, as well as potential avenues for developing new techniques
of autotune effects. As perspective, a sonorous description of the vocoder is
proposed, with an emphasis on its use for tuning.

Finally, a discussion on the integration of our work regarding the taxonomy
of effects, pitch correction, and the psychoacoustic evaluation of this effect is
presented. Within this discussion, perspectives for new research lines in the
short and medium term are proposed.
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Résumé
Cette recherche se concentre sur l’étude de la correction de l’intonation, l’un des
effets audio numériques vocaux les plus utilisés dans la musique moderne. On
vise à en savoir plus sur la coloration de cet effet d’un point de vue perceptif et à
obtenir des indications sur ce qui pourrait rendre la modification de l’intonation
plus intéressante à l’avenir. Pour mener cette étude, la méthode de correction
par déformation mélodique dynamique, en anglais Dynamic Pitch Warping
(DPW), est revisitée de manière intégrale, en incluant son application vocale
et son évaluation psychoacoustique.

Une analyse taxonomique des effets numériques sur la voix a été proposée
sur la base de la perception sonore, avec des exemples techniques et musi-
caux actuels. Cette taxonomie perceptive permet de placer la correction de
l’intonation comme un effet qui modifie à la fois la hauteur et la qualité vo-
cale. Malgré l’utilisation massive de cet effet, il n’existe pas de base scien-
tifique descriptive ni comparative sur ce type d’effet en dehors des brevets.
Par conséquent, on a développé un compendium de termes technico-musicaux
pour distinguer les types de signaux à corriger et les cas d’intérêt à étudier. En
perspective, on propose des prototypes pour l’utilisation interactive des effets
vocaux, qui capturent les mouvements des mains grâce à des capteurs sans fil.

Un système de correction de l’intonation est composé de trois éléments : un
suiveur de la courbe de hauteur, une méthode de correction de l’intonation, et
un vocodeur ou système de transformation vocale. DPW est une méthode de
correction de l’intonation graphique pour tablette. On l’a revisitée et adaptée
pour son utilisation en correction vocale. Cette méthode a été validée par
des courbes de hauteur théoriques (avec un support sonore) et comparée à
Autotune Antares (ATA), qui est la méthode de référence.

Le vocodeur est très important, car il met en place une transposition donnée
ou une courbe de hauteur. Ainsi, pour étudier la coloration psychoacous-
tique de la correction de l’intonation, il est nécessaire d’analyser l’effet du
vocodeur et l’effet de la méthode de correction. On a abordé cette étude à
travers une évaluation psychoacoustique divisée en deux étapes : la comparai-
son des techniques de vocodeur et la comparaison des méthodes de correction
de l’intonation. La première est censée informer sur la coloration de quatre
systèmes (World, Circe, Retune, ATA). La deuxième vise à déterminer s’il ex-
iste des différences perceptives entre DPW et ATA. En comparant les deux
évaluations, on peut obtenir des indices sur le poids de la coloration due à la
correction de la hauteur et celui dû au vocodeur. Par conséquent, on peut
indiquer comment procéder pour le développement de nouveaux effets de type
autotune plus intéressants. En perspective, on propose une description sonore
du vocodeur en mettant l’accent sur son utilisation pour le tuning.

Enfin, une discussion sur l’intégration de notre travail concernant la tax-
onomie des effets, la correction de l’intonation et l’évaluation psychoacoustique
de cet effet est présentée. Dans cette discussion, nous proposons également des
perspectives pour de nouvelles lignes de recherche à court et moyen terme.
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Introduction

It is an honor to present the culmination of this research thesis, entitled: “Dig-
ital Vocal Effects: Tuning, Vocoding, and Interaction.” The main objective of
this work has been to explore the various realms and nuances of vocal modifica-
tion, particularly focusing on pitch correction methods and the vocoder. This
research has been conducted from a transdisciplinary perspective, encompass-
ing topics such as signal processing, experimental psychoacoustics, interactive
interface control, and the use of digital effects in the music industry.

The first chapter aims to attain a general understanding of vocal effects and
their musical application. A taxonomy of digital effects applied to the voice
has been developed from a perceptual perspective, establishing a glossary of
effects and examples of usage. Additionally, concepts such as preserving vocal
quality are proposed, emphasizing the contemporary importance of modular
effects usage, pitch modification, vocoder as a vocal modification algorithm,
and autotuning. Vocal effects are increasingly being incorporated into music
more creatively, akin to the historical utilization of guitar pedals. The transver-
sal study proposed here can lead to the development of new technically and
musically interesting vocal effects.

Although autotune has existed for over 25 years, there is a notable absence
of a technical-musical glossary related to vocal pitch correction. That is likely
due to the predominance of patents (such as Antares Autotune, Melodyne,
and Retune, among others) rather than freely accessible and open studies on
the subject. Therefore, this second chapter begins with the proposition of a
compendium of terms and concepts related to pitch correction, aiming to define
the types of pitch modification and the fundamental cases that are interesting
both musically and technically (in music production). This glossary highlights
potential improvements in pitch correction methods.

Chapter two also revisits the Dynamic Pitch Correction (DPW) method;
DPW was initially developed as a graphical pitch correction method by [Per-
rotin and D’Alessandro, 2016]. This method has been adapted for use on
vocal samples as an alternative autotuning method. A comparative study is
conducted between our method and the reference standard (Antares Autotune,
abbreviated ATA). This study is based on theoretical pitch curves, revealing
substantial differences in pitch management. The analysis indicates that DPW
differs from the reference method (Antares Autotune). Nevertheless, such a
difference is subtle and does not precisely correspond to the bibliographic in-
formation. This finding underscores the need to re-formulate the comparison
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between both methods and psycho-acoustic verification through a subjective
test, which is addressed later. The need to psycho-acoustically compare pitch
adjustment methods also involves a perceptual study of the coloring generated
by the vocoder in pitch correction. The vocoder is a primary component of
the pitch correction algorithms (composed of a pitch tracker, a pitch corrector,
and a vocoder).

The process of vocal modification, whether for transposition or correction,
necessitates the imposition of a pitch (tuning) or a pitch adjustment value
and the use of a vocoder to effectuate such modification. Different vocoders
can be employed for this purpose; each one imparts its own un-characterized
coloration. Chapter three conducts a psycho-acoustical evaluation using three
pitch correction scenarios (original pitch, extreme tuning, and soft tuning)
and four systems (world, Circe, retune, and ATA). This study enables the
comparison of each vocoder’s transparency for the re-synthesis of the given
pitch contour curve; in other words, the coloration of the vocoder through the
different tuning cases can be evaluated by comparing them. The coloration
evaluation is directly related to the timbre change and the singer’s vocal quality
modification when using each vocoder. Additional conclusions can be drawn
regarding how the panel responds to the different tasks. For example, do
musicians perceive the difference more easily? Are there consistent results
through the different tuning cases and subdivisions?

The development of Chapter 3 also allowed us to consolidate a protocol
evaluation structure, which was transferred to the subjective psycho-acoustic
comparison of pitch correction methods (ATA and DPW ) presented in Chapter
4. Such a study treats three tuning scenarios among five experiments (Tasks).
The results give insights into the cases where the difference between ATA
and DPW is more significant and musically interesting and where it is not.
Additional conclusions can be drawn regarding how perceptually close the
samples are to the original audio and how the auditor’s panel subdivisions
behave statistically. Both psycho-acoustical evaluation tests (vocoders and
pitch correction methods) help to analyze if autotuning coloration depends
more on the vocoder or the pitch correction method and give insight into
future developments related to pitch correction methods.

Chapter Five is a compendium of research perspectives and conclusions.
Section one concerns the sonorous description of the vocoder based on its
tuning use, avoiding addressing parameters related to other perceptive char-
acteristics different from pitch modification. Four principal parameters to de-
scribe the vocoder quality are defined. Perspectives on the psycho-acoustic
evaluation of these parameters are proposed. Section two explores real-time
motion-controlled interactive effects. The interactive use of vocal effects is rel-
evant for disseminating new technologies and developing a new digital lutherie.
Some prototypes are presented among with insights for their future psychoa-
coustical evaluation. The final section addresses the research contributions
summary and conclusions, integrating all the work, from development to the
results, demonstrating how the chapters are interconnected. Perspectives on
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the advancement of each topic are addressed, as well as guidelines for future
research.

I hope this thesis serves as a valuable contribution to the world of tuning
vocals, offering a fresh and comprehensive view of vocal effects, pitch correc-
tion, and vocoder’s coloration and giving exciting perspectives for research on
this fascinating topic.
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Chapter 1

Perceptual DAFx Taxonomy
and Vocal Transformation

The musical creative process is inherently linked to artistic expression, con-
necting with the social environment in all its aspects. Indeed, the creative
process varies according to the musical genre (orchestra, acoustic music, street
rap, experimental music). Modern music, distinctive in its creative process,
enables contemporary musicians to utilize Digital Audio Effects (DAFx) from
their home studios. Consequently, DAFx play a crucial role in contemporary
music, not only for their use in the creative process, but also because they
contribute to the sonorous identity the artist wishes to convey. DAFx are
employed to impart texture, intentionality, and poetic meaning to the musical
message. The imminent use and widespread vocal effects underscore the need
for various technical-musical supports.

This chapter corresponds to a review of vocal digital audio effects, showcas-
ing the creative possibilities offered by vocal modification and the importance
it holds in music today. There is a call for a taxonomic study on vocal ef-
fects from a perceptual standpoint, distinguishing it from other taxonomies
not focused on voice. Also, this chapter highlights the significance that vocal
transformation, autotuning, and vocoder (as a vocal transformer) have gained
as stylistic and interpretative elements and why delving deeper into the study
of these effects is interesting.

1.1 Historical Context
The 20th and 21st centuries have witnessed unprecedented technological ad-
vancements that have shaped and redefined music profoundly [Wilmering et al.,
2020]. This metamorphosis has influenced not only sound generation and
lutherie but has revolutionized musical creation, diffusion, staging, and cat-
alyzed the emergence of new musical genres and styles.

At the heart of this revolution lie digital tools designed to generate and ma-
nipulate sounds. These tools allow artists to explore vast sonorous landscapes
and craft auditory experiences with a distinct message and intention. These
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tools not only enable the creation of new sounds but have also successfully
replicated natural acoustic phenomena digitally, such as reverberation and the
distortion of electromechanical signals.

Artificial reverberation, for instance, was a key 20th-century innovation,
patented by the Radio Corporation of America (RCA). Its adoption in classical
music recordings of the 1920s marked a turning point in the perception of
recorded sound. Concurrently, avant-garde artists like Stefan Wolpe challenged
conventions by introducing revolutionary sound manipulations in their Dada
performances using phonographs.

Bell Laboratories, with their electromechanical delay developed in 1939,
and groundbreaking artists like Les Paul, with guitar effects like chorus, echo,
and flanger, opened the gateway to an era dominated by electric and elec-
tronic sound. This era reached its zenith in the 1960s and 1970s with the
popularization of electric and electronic effects.

During the 1960s, Schaeffer provided a theoretical and analytical perspec-
tive on the world of sound, defining and exploring concepts that would form
the backbone of contemporary musical techniques [Schaeffer, 1966]. These the-
oretical and practical explorations paved the way for unprecedented musical
experimentation, bolstered by the democratization of computer technology and
the development of powerful tools like the Digital Audio Workstation (DAW)
[Wilmering et al., 2020]. The 4X synthesizer, developed by IRCAM, stands as
a notable example of these advancements, laying the groundwork for revolu-
tionary platforms like Pure Data and MAX/MSP [Boulez and Gerzso, 1998].

The 1990s became a breeding ground for innovative Digital Signal Process-
ing (DSP) developments. This era marked a confluence of disciplines, including
acoustic physics, computer science, and music. Tools emerged that could repli-
cate and expand natural acoustic phenomena, broadening compositional and
performative possibilities for artists.

The vocoder is the latest advancement in terms of vocal transformation, in
which the concepts of transform, filtering, sampling, and convolution converge.
Its origin dates back to 1930 by Bell Labs with the aim of vocal compression;
however, it was not until the 1960s that it was musically used and popularized
by artists like Kraftwerk, Pink Floyd, and Giorgio Moroder. Its use exploded
after 1999 with the implementation of autotune by Cher and bands like Daft
Punk. Today, the vocoder is in full swing, much like guitar pedals were at one
point. With digital technology, it is now more accessible and versatile than
ever. Producers use it not only to give that characteristic robotic tone to voices
but also to merge instruments and voices, create harmonies, and add textures
and depth to mixes. The vocoder has evolved from being a communication
tool to an essential and versatile musical instrument that continues to evolve.

At the zenith of this development, Autotune ANTARES emerged in 1998,
quickly becoming an iconic tool in contemporary music production. Despite its
initial imperfections, it found its place at the heart of pop music (with tracks
like Cher’s “Believe”) and other genres like rap and hyperpop. The impact of
Autotune is undeniable, even leading it to be recognized in the industry with
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awards like the Grammy given to Hildebrand in 2023.
Today, DAFx play a starring role in contemporary music, with advanced

tools like adaptive effects leading the forefront [Verfaille and Arfib, 2002].
These effects, which evolve based on the relationship between sound and ges-
ture, present a world of possibilities yet to be explored. In this rich and diverse
musical landscape, it is essential to establish study and application frameworks
for vocal effects, constantly seeking to enrich and improve the sonorous capac-
ities and qualities that nourish the musical experience.

1.2 Review of the DAFx Technical Classifica-
tion and its Vocal Use

The human voice is the most important musical instrument. There are vast
regions of our brains that help to control and perceive sounds. Even people
who have no musical training can perform imitations and vocal features[Cook,
1999]. Voice changes depending on our feelings, technical features, and train-
ing. Voice effects involve aspects such as dynamic, time, space, and timber.
As with any other instrument, voice can be modified by the player (singer
in this case) in numerous ways. However, unlike any other instrument, the
voice system is part of our body and involves complex brain processes. In that
way, interactive DAFx for singing can help to understand the generation and
perception of sound better.

To introduce the use of Digital Audio Effects (DAFx) for voice, we consider
the singer’s vocal quality features and how some of those features are mod-
eled or modified through signal processing algorithms. Vocal quality is a very
complex term that, according to[Garnier et al., 2007] [Garnier, 2007], can be
considered an evaluative judgment, adequately described as a set of acoustic,
perceptual, and semantic properties of a voice. It gives cues to the singer’s
vocal quality, state, and intentions.

The voice is characterized by several resonant peaks in the spectrum called
formants, whose positions and intensities crucially determine the unique qual-
ity of different vowel sounds. Various methods exist to modify formants. One
common technique is the use of band filters, which can modify the voice spec-
trum by amplifying or attenuating certain frequency bands, and thus the for-
mants. We must mention the source-filter model of speech production. In
this model, the source (the vocal folds’ vibration waveform or the turbulence
caused by a constriction) is modeled by an excitation signal (an impulse train
for the voiced component, or a random signal for the unvoiced component).
Its spectrum is obtained by filtering the signal with the source filter, and the
effect of the vocal tract shape and lips is also modeled as filters. Linear pre-
dictive coding (LPC) is a source-filter-based method often used by linguists
as a formant extraction tool and is appropriate for modeling vowels that are
periodic, except for nasalized vowels. In this model, a source signal passes
through a synthesis filter that represents the spectral envelope [Zölzer, 2011].
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A spectral envelope is “a curve in the frequency-amplitude plane, derived from
the Fourier magnitude spectrum” [Schwarz and Rodet, 1999].

The importance of these studies in understanding the perception of vocal
features cannot be overstated. By examining how technical attributes of the
voice are perceived, researchers gain insights into how modifications affect
listener interpretation, similarly to studies of vocal quality [Henrich Bernardoni
et al., 2008] [Garnier et al., 2005]. For instance, synthesis and re-synthesis
using these techniques can enhance musical creation. Musicians often seek to
play with unnatural changes to the voice, as we will see by referencing many
modern uses of digital effects on voice.

What we would like to point out is that a technical review of digital audio
effects is helpful to understand the techniques but is not yet linked to the
characteristics of vocal quality. Such a study is not undertaken in this thesis,
but we would like to introduce the use of digital effects for voice in modern
music and how autotuning is integrated within such use.

1.2.1 The Technical Classification
All stakeholders involved in modern music creation (engineers, composers, per-
formers, producers) utilize digital equipment and tools. Their language and
understanding of these tools may differ depending on their role in the creative
process. Establishing a framework to study this language can enhance collab-
oration between artists and developers, aiding in developing new interactive
tools. These tools might be digital musical instruments, stemming from an
interface and a sound generation engine [Perrotin and D’Alessandro, 2016], or
DAFx, originating from an interface and a sound transformation engine. DAFx
emulate effects from acoustic, electric, and electronic sources, and their various
combinations. They are crucial in crafting sonorous environments. Verfaille
conducted a taxonomic study on DAFx [Verfaille et al., 2006a], suggesting an
interdisciplinary classification that bridges understanding between artists and
engineers. While his proposition is insightful from a musicological and research
perspective, it may be intricate to apply in a studio session.

Various methods exist to analyze vocal DAFx taxonomically. Effects can
be analog or digital. Within the analog domain, we find mechanical effects like
reverberation and electromechanical ones, such as guitar pedals or changes in
vinyl playback speed [Verfaille et al., 2006b]. Digital effects replicate analog
ones, like reverberation, but also include purely digital effects, such as distor-
tion or changes in vocal formants. Considering those existing general reviews
on digital effects, we will focus exclusively on vocal effects. As we will elab-
orate, the perceptual approach is most suitable given its practicality in the
creative process.

An initial classification of DAFx is based on the digital signal processing
(DSP) technique, organizing effects by their implementation method, like fil-
tering or delays. Subcategories can be formed based on the application domain
and processing method. While this approach highlights technical similarities,
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it might be too complex for a diverse audience in a varied creative context.
A second classification revolves around how the performer modifies the effect
during a performance: whether the control is constant or variable, modifiable
by wave generators (LFO), adaptive to the signal, or through gestural control.
A third classification focuses on vocal perception, entailing modifications in
melody, dynamics, timing, and vocal timbre.

1.2.2 Main Techniques

There are two main techniques to deal with Vocal Effects: the time domain
techniques and the frequency domain techniques. The vocal effects in the
time domain offer a broad range of manipulations for the voice. Time-shuffle
[Geslin, 1998] rearranges the order of words or phrases, while Delay-Line
introduces echoes or repetitions, with notable effects [Dattoro, 1997] such as
the Chorus and Flanger. Various filters allow for the modification of vocal
timbre, adjusting its frequency characteristics. Techniques SOLA [Roucos
and Wilgus, 1985] [Makhoul and El-Jaroudi, 1986] and PSOLA [Moulines and
Charpentier, 1990] are essential for altering the rhythm and pitch of the voice,
allowing for subtle or dramatic changes. LPC is used to transform voices and
is particularly useful for preserving formants or doing cross-synthesis [Keiler
et al., 2001] [Moorer, 1979a]. On the other hand, Resampling tailors the
voice to different pitches while preserving its natural character. Within the
Gain category [Verfaille et al., 2006a], we find a variety of modulations for
the amplitude of the voice [Zölzer, 2011], from the Tremolo to dynamic tools
like the Compressor. When applied appropriately, these effects can enhance
or completely transform a vocal recording.

Vocal effects in the frequency domain (FD) offer a variety of techniques
specifically designed to transform and enhance vocal characteristics. These are
primarily categorized [Verfaille et al., 2006a] as Inverse Fast Fourier transform
IFFT and Oscillations Bank. Within IFFT , techniques are differenti-
ated based on their use of phase correction. They are identified as either the
Phase Wrapping Technique or the Phase Unwrapping Technique [De Götzen
et al., 2001]. Under the Phase Warping Technique, the Time-Scaling [Zölzer,
2011] stands out, adapting vocal duration with variations such as Adaptive-
Time-Scaling [Verfaille et al., 2006c] with or without temporal synchronization.
The Time Domain-Resampling utilizes LPC [Makhoul and El-Jaroudi, 1986]
to modify vocal pitch while maintaining or altering timbral characteristics.
Moreover, Cross-Synthesis combines spectral attributes from different sounds.

In the context of the Phase Unwrapping Technique, effects such as Robo-
tization [Zölzer, 2011] can modify or harmonize voices for mechanical effects.
Whisperization [Zölzer, 2011] transforms regular voices into whispers. Trans-
formations targeting the spectral envelope are provided, as are adjustments
in the amplitude spectrum and techniques like Time-Shuffle with SE Modif
that merge temporal and spectral modifications. Lastly, Osc. Bank intro-
duces methods such [Verfaille, 2003] as Spectral Ring Modulation [Kameoka
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and Kuriyagawa, 1969] and Spectral Tremolo [Hoffman and Cook, 2008] to
achieve distinctive vocal modulations.

Beyond Verfaille’s study, artificial intelligence (AI) emerges as a revolution-
ary category that has driven advancements in vocal synthesis and transforma-
tion [Roche, 2016] [Martinez Ramı́rez, 2020]. What has been observed is an
adaptation of deep learning techniques [Peeters and Richard, 2021], intitially
designed for images, applied to information blocks in the frequency domain
and, to a lesser extent, in the temporal domain. In the musical field, deep
learning has been primarily employed for music information retrieval, such
as melody extraction, source separation, instrument recognition, and tempo
estimation. However, its application for sound synthesis and transformation
is still in its beginnings. Autoencoder-based models have been used, which
process data in the frequency domain and encode them into a latent space,
subsequently decoding them. Likewise, models based on Generative Adver-
sarial Networks (GAN) have been explored for sound synthesis [Engel et al.,
2019] [Donahue et al., 2019], yielding promising outcomes.

The technical overview of the taxonomy of vocal effects is depicted in Fig-
ure 1.1, this is an analogy to the technical classification proposed of DAFx
[Verfaille et al., 2006a]. While the chart does not detail every effect, variations
can be identified, such as low-pass or high-pass filters in filtering, vocoders in
PSOLA techniques, and band equalizers in gain effects. Two main observa-
tions can be made: firstly, different techniques can achieve the same sound
effect, and secondly, varied techniques can influence the same perceptual as-
pect. For instance, filtering can be done using a digital filter, band filter, or
delay-line, while pitch changes can be attained through resampling or tech-
niques like PSOLA. Although the techniques are not equivalent, they impact
the same perceptual element. However, this does not imply that other percep-
tual elements remain unaffected. For example, in the case of autotune, while
the primary adjustment is to the pitch, the timbre is also altered.

1.2.3 Time-Frequency Vocoding Technique
The vocoder plays a pivotal role in facilitating vocal transformation while
maintaining the inherent human qualities and distinctive timbre characteristic
of individual voices. This section provides a brief overview of the primary
vocoding techniques (not the musical instrument for cross-synthesis). A more
detailed exploration of signal processing, time-frequency representations, and
the signal reconstruction process using the vocoder is presented in Appendix
A.

Among the various vocoding techniques, there is recurrent discussion sur-
rounding time-frequency representations, which delineate the temporal evo-
lution of a signal’s frequency spectrum. These representations serve as a
fundamental basis for vocal reconstruction. This process entails an analy-
sis/synthesis schema known as the phase vocoder, which constitutes one of
the vocoding techniques. The phase vocoder adheres to the structure out-
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Figure 1.1: Analogy of the Technical Classification Proposed by Verfaille [Ver-
faille et al., 2006a], Applied to Vocal DAFx

lined in Figure 1.2, detailed further in Appendix A. Within the phase vocoder
framework, an input signal, x(n), undergoes windowing with a window of size
N , generating a continuum of windowed segments. The Fast Fourier Trans-
form (FFT) is computed for each successive segment, yielding a time-varying
spectrum | X(n, k) | ejφ(n,k) where k = 0, 1, .., N . This spectrum can be ma-
nipulated for vocal modification purposes and reconstructed to retrieve the
vocal signal. Reconstruction is accomplished using the Inverse FFT (IFFT),
employing a window and overlapping segments, as illustrated in Figure 1.2

Figure 1.2: Time-frequency processing of the phase vocoder [Zölzer, 2011]

Another fundamental term in vocoding techniques is the spectral enve-
lope. This envelope is extracted from time-frequency representations and is
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closely related to the model of the vocal system. The spectral envelope is a
smoothed version of the spectrum that disregards the spectral line structure
while preserving the general shape of the spectrum. The problem of vocal
signal reconstruction is based on extracting the spectral envelope through a
model of the vocal system. In this model, vocal production originates from the
vocal cords acting as the excitation source, while the mouth and nose act as
a resonant or antiresonant system. This model of the vocal system is referred
to as an excitation-resonance model, also known as the source-filter model in
the literature.

The implementation of the source-filter model can be achieved through
three techniques, referred to as vocoding techniques. The first technique is
known as the channel vocoder. It utilizes parallel bandpass filters and calcu-
lates the RMS value for each band. This process enables the estimation of
the spectral envelope, as illustrated in Figure 1.3. The greater the number of
channels (or filters), the more points of the spectral envelope are computed.
The bank of filters can be modeled using either a linear or a logarithmic scale.
The method depicted in Figure 1.3 is based on the time domain; however, it is
feasible to obtain the spectral envelope in the time-frequency representation as
well. In the frequency domain, a channel can be perceived as the summation of
elementary energies of each bin weighted by the envelope of this channel filter.
The resulting amplitude would then be the square root of these energies.

Figure 1.3: Channel Vocoder Technique, based on [Zölzer, 2011]. The RMS
values correspond to the output of each band. The sum of all these signals
generates the final output.

The second technique employed is Linear Prediction Coding (LPC), which
directly stems from the source-filter model, as illustrated in Figure 1.4. In this
model, the filter characterizes resonances with just poles, forming an all-pole
filter that effectively matches the spectral content of a given sound. The es-
timation of such a filter A(z) involves approximating the input signal x(n) as
a linear combination of its past samples, aided by a Finite Impulse Response
(FIR) filter P (z). This process entails configuring the prediction error filter,
also referred to as the inverse filter A(z), and subsequently generating the pre-
diction error signal ẽ(n), which represents the disparity between the predicted
signal denoted by x̂(n) and the actual input signal. For synthesis purposes,
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the notation ẽ(n) is adopted, wherein this signal serves as an excitation sig-
nal. Synthesis is achieved through the inverse of the analysis filter H(z) = 1

A(z) ,
known as the LPC filter, which embodies the spectral model of the input signal
x(n). The primary methods for obtaining the synthesis filter coefficients filter
include the autocorrelation method [Makhoul, 1975], the covariance method
[Orfanidis, 1990], and the Burg algorithm [Makhoul, 1977]. LPC is particu-
larly effective for speech applications due to its ability to model both the vocal
tract and the source, where the source typically comprises pulses and noise.
The periodicity observed in voiced sounds determines the pitch, while unvoiced
sounds exhibit a noise-like excitation pattern.

Figure 1.4: Linear Prediction Coding Technique [Zölzer, 2011]

The third technique is cepstrum, which involves smoothing the logarithm
of the FFT spectrum to separate its slow-varying part (the spectral envelope)
from its fast-varying part (the source signal), as illustrated in Figure 1.5. In
this technique, we consider the signal y(n) can be separated in a source signal
x(n) and the response to the impulse h(n). The signal y(n) is first passed
through a window and its FFT is computed. Subsequently, the logarithm of
the obtained spectrum, denoted as Ŷ (k) = log Y (k)+jφy(k), is taken, followed
by an inverse FFT operation, resulting in the complex cepstrum ŷ(n). The
real cepstrum can be obtained by performing the IFFT of the real part of
Ŷ (k) = log|Y (k)|, denoted as c(n), which is also equal to ŷ(n)+ŷ(−n)

2 . The
cepstrum is then passed through a low-pass window and subjected to an FFT
operation, yielding a smoothed version of the spectrum Y (k) in dB scale, which
is considered the spectral envelope and denoted as Ch(k). The complementary
high-pass filter can be applied to compute the source envelope, denoted as
Cx(k), through FFT. To retrieve the reconstruction e(n) of the source signal
x(n) one can utilize the expression eCx(k) = |X(k)| along with the initial phase
of the signal eiφy(k). Subsequently, e(n) can be obtained by applying the inverse
fast Fourier transform IFFT[X(k)iφx(k)].

The importance of this review lies in the existence of various vocoding
techniques primarily used to modify sound descriptors such as time, melody,
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Figure 1.5: Cepstrum technique pour source-filter method [Zölzer, 2011]

and timbre. Perceptually, these changes can vary in their impact on vocal
quality and perception, leading listeners to prioritize one sound descriptor
over others. Consequently, the technical classification of vocal effects may lose
significance from a vocal musical standpoint. Hence, it is crucial to undertake
a perceptual taxonomic study that encompasses not only DAFX modification
and the vocoder capacities to modify vocal quality but also the modular nature
of contemporary music production.

1.2.4 Limits of the technical classification

In creative environments where modularity and fusion of techniques can lead
to similar sounds, its perception becomes vitally important. When integrating
various techniques and interfaces simultaneously, two fundamental perspec-
tives emerge. The first highlights the ability to expand the range of vocal
effects through innovative modular combinations. The second emphasizes how
musicians perceive and interpret such sound, not just as an effect but as a
unique and specific musical expression. While this modular vision broadens
horizons, it also challenges traditional taxonomic classifications, which tend to
focus on specific techniques.

Taxonomy, as Verfaille well articulates in his work, can adopt different
lenses: from the technological nature of the effect (analog or digital), through
its complexity, to the type of control employed, whether constant or variable.
The latter, for example, can be adaptive, responding to a specific control
signal or guided by a low-frequency oscillator. Faced with this multiplicity, the
pressing need to value sound transformation beyond mere techniques stands
out, placing sound perception at the core of our reflection.

In line with Verfaille’s perspectives, it is clear that a classification based on
perception is more coherent and relevant, especially when different approaches
— whether analog, DPS, or AI — lead to similar auditory outcomes. We must
add the modularity of effects within a processing chain and the complexities
introduced by interactive control. Therefore, it is essential that our classifi-
cation centers on vocal perception, which is the true heart of our auditory
experience as we will see in 1.3.
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1.3 Proposal for a Perception-Based Taxon-
omy of Vocal DAFx

An introduction to vocal effects has been conducted by Coralie Vincent in the
chapter of the book “La voix Chantée” titled “From Antipop to Autotune”. In
her chapter, she explores different types of vocal sound effects, describing them
generally without delving into the taxonomic classification of these effects, the
modular approach, and the uses of the vocoder. We will expand on Vincent
and Verfaille’s work by applying it to the vocal context, taking into account
current capabilities in music production.

Within the expansive musical landscape, a composer can explore and ma-
nipulate sound using various tools that modify vocal quality in numerous ways.
These transformations may aim to enhance vocal qualities, emphasize certain
voice characteristics, or introduce a specific texture or timbre with a distinct
musical intention. Such actions play a pivotal role in crafting the musical nar-
rative throughout the piece. The sonorous landscape that emerges from this
composition is shaped by a series of vocal interventions which, regardless of
the technique employed, are determined by the composer. Our aspiration is
to provide a conceptual framework that helps understand the artistic goals
underlying these sonorous transformations.

In the vastness of the sound universe, modifiable perceptual properties
encompass acousmatic descriptors such as melody, dynamics, temporal and
spatial aspects, and timbre. Such descriptors will be examined in this section.
Under the melody category, there are alterations affecting the melody itself,
the tone, and the harmonic and inharmonic components. Regarding dynam-
ics, it considers the dynamic range, nuances, phrasing, and accents. Temporal
aspects address duration and tempo. Spatiality refers to the size and location
of the sound source, its movement in space, and the environment or setting
where the sound propagates. Spatialization tools become essential in composi-
tion and performance, adding greater depth and meaning to human gestures.
Timbre relates to vocal characteristics that distinguish an individual, such as
age, emotion, vocal range, roughness, brightness, and vocal effort. As high-
lighted by Wilson and Fazenda [Wilson and Fazenda, 2013]: “Timbre can be
adapted towards other nuances and, in this way, be steered to provide har-
monic spectra, with the aim of better integrating the sound within a specific
tonal context.” Hence, we now seek to define a taxonomy of digital vocal effects
from a sonorous perception standpoint, outlining uses and applications that
are understandable to the composer, the engineer, and the listening audience.
While it is possible to define a taxonomy in this way, it is important that effects
are classified based on their primary objective. For instance, a robotization
effect primarily affects the quality of the sound source, that is, its timbre. Of
course, it involves changes in dynamics and tone, but its primary goal is the
change in timbre.

In this section, our focus is on presenting concisely our perceptual classifi-
cation of vocal effects with a technica summarized revision and audio support

15



example. Vocal effects could be divided into five primary types:

1. Effects on dynamics

2. Temporal modification effects

3. Spatial effects

4. Effects for pitch changes

5. Effects for timbre changes

The first four cases are effects that do not intentionally impact timbre; any
resulting timbral alterations are a byproduct of the technique used. Regarding
timbre effects, a special division is proposed:

1. Effects that preserve vocal quality

2. Effects that can distort vocal quality

3. Effects that change vocal quality

The resume of our classification can be found in Figure 1.6

1.4 Effects on Dynamics
Dynamics in music, and particularly in this case (voice), refers to the dynamic
range or the variation in sound intensity over time. This variation in intensity
is essential for giving character to a performance. Amplitude changes within
the voice can be subtle or pronounced. When we talk about a small dynamic
range, we refer to minor fluctuations in the audio signal over a short period
of time. These subtle variations can be related to vocal techniques such as
vibrato or slight nuances in intonation. On the other hand, large modulations
refer to more noticeable changes in intensity, which can unfold over both short
time spans (like an accented note) and long ones (like a gradual crescendo).

Several tools and techniques are used to manage or modify the dynamic
range in post-production or recording. Linear effects, such as amplification
and normalization, are used to adjust the overall level of a recording. On
the other hand, adaptive effects respond to the changing characteristics of the
audio signal, adjusting the dynamics as needed. Non-linear effects, in turn, can
introduce more complex variations in the signal, like distortion or saturation,
which can affect the perception of dynamics depending on the specific nature
of the alteration applied.
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Figure 1.6: Perceptual classification of Vocal DAFx

1.4.1 Amplification and Compression Effects
Amplification involves adjusting the amplitude of the samples x[i] by mul-
tiplying them by a specific factor. The primary purpose of amplification is to
adjust the recording level that might not align with other elements in the mix;
for instance, if the vocal track sounds too loud or soft. This technique can
enhance the presence of a vocal recording within a mix. Amplification in its
simplest form can be expressed as:

y(n) = 10 A
20x(n) (1.1)

Where A is the amplification factor. It is essential to be cautious when
amplifying to avoid clipping or saturation, which could distort the sound; sat-
uration itself can be considered as a timbral effect.

Normalization adjusts the maximum level of a recording to the desired
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value while preserving its dynamic range. This technique is crucial when bal-
ancing vocal recordings that might be uneven in volume, especially before
applying compression. it is essential to approach normalization with caution;
pushing it to the extreme can lead to saturation and, consequently, signal
distortion. Normalization is applied to a signal whose maximum level is 0dB.
It is performed in deferred time. The maximum level of the signal is calculated,
and then, sample by sample, it is divided by the maximum, as follows:

y(n) = x(n)
maxn |x(n)| (1.2)

The Expander is a non-linear treatment that increases the dynamics of
the signal, attenuating low-level sounds without affecting high-level ones. The
signal level controls the expander: if it is high, the expander maintains unit
gain, but if it is low (below an adjustable threshold), it reduces the gain. A
noise gate is a version that silences sounds below said threshold. The ap-
plication of the expander is to reduce noise in parts of the recording when
no instrument is being played. Typically, they are used in conjunction with
compressors. Compressors are used to raise the level above a threshold,
thereby compressing the dynamic range of the sound, hence their name. The
subsequent use of an expander allows to restore the dynamics of the sample.
Generally, expanders are used after filters to prevent amplifying noise gener-
ated by them, but before echo or reverb effects to prevent the replication of
noise or abrupt cuts of these types of effects.

Figure 1.7: Schema for the expander/compressor classic technique and the
sidechain technique, adapted from [Zölzer, 2011] and [Verfaille, 2003]

In Figure 1.7, the standard scheme of a compression or expansion system
can be seen. The signal level is obtained concerning to a reference, and then
it is defined whether the gain is 1 or varies according to the input value. A
signal can be utilized to autonomously to manage another signal, enriching
the auditory mix in a musical project to generate a unified, “full” auditory
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experience. Techniques such as sidechain compression can be applied, where
the music volume automatically lowers upon detecting vocals, thereby ensuring
apparent prominence of vital elements within the mix.

The utilization of amplification and compression effects is highly beneficial
for providing body, dynamics, and capturing the listener’s attention, which
accounts for their popularity from the late 1990s to the early 2000s. Applying
such effects is commonplace in the vocal effects chain, akin to using equalizers
and filters. Butch Vig, a founding member of the band Garbage and producer
of significant albums such as Nirvana’s “Nevermind” (1991) and Foo Fighters’s
“Wasting Light” (2011), which are characterized by typical compression for
their respective eras, provides a tutorial on YouTube 1. This tutorial shows
the application of filters and the compressor in the song “Blood for Puppies”
[Garbage, 2012]. This instance illustrates the moderate use of compression in
alternative rock, yet its application is systematic; for instance, the utilization
of the Teletronix LA2A compressor can be observed in divergent genres, for
example, in “StoneMilker” [Björk, 2015] 2 (avant-garde), and also in the album
1989 by Taylor Swift (north-american pop) 3.

While the album “Wasting Light” has faced criticism for its high compres-
sion, it is widely regarded as a rock album and received the Grammy Award for
Best Rock Album. The application of the compressor is exemplified in songs
such as “White Limo” [Foo Fighters, 2011] from the 00:23 mark onwards. The
heightened use of compression in the 2000s, known as the “Loudness War,” is
not necessarily detrimental. Examples of elevated compression usage without
compromising dynamics can be found in “bad guy” [Billie Eilish, 2019] from
the 00:16 timemark.

1.4.2 Modulation
There are several types of amplitude modulation, the most simple of which
is tremolo. Tremolo periodically modulates the signal’s volume, creating a
“pulse” or “beat” sensation in the voice. This amplitude modulation occurs at
a specified rate and depth, where “rate” refers to the frequency of the modu-
lation and “depth” indicates its intensity. This effect introduces an additional
rhythmic dimension to the vocal sound. The general form for a tremolo is
given by:

y(n) = [1 + αm(n)] · x(n) (1.3)

Where y(n) and x(n) are the input and output, α is the quantity of mod-
ulation to apply (depth of modulation), and the internal frequency of m(n) is
the rate of tremolo.

1https://www.youtube.com/watch?v=YmBA4syh1dA
2https://www.soundonsound.com/techniques/inside-track-bjorks-vulnicura
3https://www.billboard.com/music/music-news/taylor-swift-1989-louder-acdc-back-in-

black-6538870/
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Another is the ring modulator , which produces synthetic or “metalized”
tones, then considered a timbral effect. It is widely used to create robotic
voices and sound effects in electronic music and science fiction. It takes two
input signals, commonly referred to as the “carrier” and “modulating” signals,
and multiplies them to generate an output:

y(n) = x(n) ·m(n) (1.4)

A sonorous example of ring modulation in soft and hard configurations
can be check in: https://www.youtube.com/shorts/t9Z2GELc-hw. Tremolo
modulation effects are extensively explored in tracks such as “xanny” [Billie
Eilish, 2019] from the segment at 00:36-00:50, “bad guy” [Billie Eilish, 2019] at
00:56, “ilomilo” [Billie Eilish, 2019] at 00:48-00:57 and in a 2023 remix of the
1998 song “Frozen” [Madonna and Sickick, 2021] in time segments 0:19-0:23,
0:54-0:58. Ring modulation could be the effect used in “CUUUUuuuuuute”
[Rosaĺıa, 2022] from the segment at 01:02-1:05.

1.5 Time perception effects

Before diving into the second classification category, we will tackle a delicate
topic. Similarly to classification by technique, a single effect, from a percep-
tual viewpoint, can impact several descriptors upon which we are basing our
classification. For example, an effect that is fundamentally temporal can influ-
ence tone perception since these two variables are intrinsically linked in signal
terms. Nonetheless, each effect has a primary musical purpose, and it is this
purpose that allows us to categorize it appropriately.

1.5.1 Time Stretching

1.5.1.1 Variable Speed Replay

Time, one of the critical sound corpus descriptors, is crucial for the voice
which is recorded on a timeline. The signal, sampled at a specific frequency, is
defined by this line, and altering the playback frequency modifies the temporal
perception of the sample. If, for example, it is played back at half the sampling
frequency, the reproduction will take twice as long. And, since any finite
signal can be decomposed into sinusoids, each will also take twice as long to
play back, thereby halving its frequency and consequently sounding an octave
lower. This technique is called resampling, and this type of temporal stretching
results in modifying other descriptive parameters of the voice, such as pitch
and formants, as well as of the signal that holds the vocal recording, such as
duration.
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1.5.1.2 PSOLA

Temporal stretching, while preserving the formants and pitch, is more complex
than it may seem at first glance. Although sonorously, it may appear simpler
to someone unfamiliar with the technique, in reality, the temporal stretching
method is quite complicated and is performed in the time domain using the
PSOLA method. This technique involves taking sound segments that coincide
with the glottal pulses, as it is shown in figure 1.8, and performing a syn-
chronous overlap-add between the segments, adding a segment that replicates
a glottal pulse, and then the ends of the grain segments are alined by super-
position. PSOLA allows temporal stretching while preserving both pitch and
formants.

Figure 1.8: Diagram of the Psola Method, adapted from [Zölzer, 2011] and
[Verfaille, 2003]

1.5.1.3 Phase Vocoder Approach

The time-stretching effect is achieved through phase vocoder techniques, using
either the sum of sinusoids or the sliding FFT approach. Both methods require
considering a phase condition, as outlined in equation A.35. This effect neces-
sitates a reconstruction synthesis grid distinct from the analysis grid, and for
simplicity, we consider here the case of integer hop size Ra and Rs. The core
technique follows the sum of sinusoids approach, maintaining magnitude un-
changed while adjusting the phase to preserve instantaneous frequency. This
implies that the change in instantaneous frequency is determined by:
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∆ψ(k) = Rs

Ra

∆φ (1.5)

that means that for the synthesis segment that have a change of phase
equal to ∆φ, each sample have a phase increment equal to:

dψ(k) = ∆φ
Ra

, (1.6)

For the output samples of the re-synthesis, we use:

ψ̃k(n+ 1) = ψ̃k(n) + dψk, (1.7)

and the sum of signals is given by:

y(n) =
k=0∑
N/2

Ak(n)cos(ψ̃k(n)) (1.8)

As previously mentioned, the sliding window (block-by-block approach) can
also be employed for time-stretching. Output phase values calculation must
adhere to the same condition as the sum of sinusoids approach, determining
the unwrapped phase with a factor of Rs

Ra
. It is imperative to consider specific

details: the window size should equal the length of the analysis FFT hop
size (Ra) and a submultiple of the synthesis IFFT (Rs). Notably, the sliding
window implementation is faster than the sum of the sinusoids approach.

It is necessary to apply a circular shift (multiplying by (−1)k) (The devel-
oped version is in the Appendix A.1, equations A.20 and A.26). Therefore, we
do a zero-padded synthesis window, preferably truncated Gaussian windows,
is recommended. This window should ensure correct re-synthesis for a ratio
Rs

Ra
= 1 corresponding to a no-time-stretching case.
A significant challenge with this approach is the unresolved phase unwrap-

ping between different bins, which may vary from window to window. This
issue, known as the dispersion of phase, is addressed by the proposed solu-
tion from [Laroche and Dolson, 1999] under the term “phase-locked vocoder.”
Assuming the processed sound comprises quasi-sinusoidal components, we can
approximate the spectrum as the sum of these components. During time-
stretching, phases must propagate accordingly, involving a constant phase ro-
tation for each sinusoid, affecting all the spectral bins. In

1.5.1.4 Examples

The effects of time can exert a significant influence on vocal quality, thus
qualifying as a timbral effect under appropriate circumstances. An example
of varied tape playing can be observed in “Tomorrow Never Knows” [Beatles,
1966] at timemark 00:56-01:04, and at 1:26 with an experimental vocal timbral-
time effect. Two additional examples of variable tape play are evident in “Third
Stone From the Sun” [Jimi Hendrix, 1967] and “Habits (Stay High) - Hippie
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Sabotage Remix” [Tove Lo, 2014], where vocals throughout the entire songs
are accelerated, leading to the loss of formants.

Conversely, the utilization of recent time-stretching devices is notable in
“Levitating (The Blessed Madonna Remix)” [Dua Lipa et al., 2020], where the
vocal samples of Dua Lipa and Madonna are accelerated while still retaining
their vocal identities. Another example of time stretching, including autotune
and EQ-compressing chain, can be observed in “Ain’t Me” [Kygo and Selena
Gomez, 2017] at the timestamp 0:57-1:07, containing the phrase “the the the
bowery, the the whiskey neat, grateful, I’m so, grateful,” which is a refrain
part of the song.

1.5.2 Temporal Inversion
The time inversion effect, also known as “reversed audio,” involves playing
recordings backward, resulting in a distinct and often ethereal sound while
maintaining the original frequency and timbre. Utilized across both analog
and digital platforms, this effect can create enigmatic voices and conceal mes-
sages, offering listeners a surreal auditory experience. Although explored in
various media such as music, film, and advertising, it has also stirred contro-
versy due to alleged subliminal messages, particularly within the realm of rock
music. Artists and studios in the 1950s and 1960s, employing tape manipu-
lation, delved into time inversion in audio to craft novel soundscapes. This
technique is notably showcased in “Tomorrow Never Knows”[Beatles, 1966],
where certain vowels were reversed during the chorus. Another more recent
example can be found in “Tenochtitlan” [Mon Laferte, 2023] at the timestamp
3:47-3:51, featuring the phrase “Maria Madre de” reversed.

1.5.3 Granulation
The granular synthesis, originating from perceptibly “indivisible” audio seg-
ments, represents a form of controlled alteration of timbre and vocal charac-
teristics. Alone or combined with other effects, it can become a highly useful
experimental tool. A simple example of granulation involves generating seg-
ments that follow the expression:

gk(i) = x(i+ ik)wk(i) (1.9)

Where i = 0, .., Lk−1 represents the length of the audio segments. wk

represents a window with fade-in and fade-out. Longer grains may preserve
more timbral content, while shorter ones may resemble pulses. Filtering or
other effects can also be mixed before or after granulation to achieve more
varied results.

Regarding vocal granulation, a prominent exemplar is Björk [Björk, 2004].
She achieves a heightened level of intricacy in her album “Medúlla” (2004),
which comprises entirely vocal tracks and vocal effects. This approach is par-
ticularly evident in songs such as “The Pleasure Is All Mine” at timestamps
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0:09-0:33, 1:02-1:10, and 1:13. Additionally, another more recent example is
“Mycelia” [Björk, 2022], with timestamps at 0:13, 0:23, and 0:37, or in “claws”
[Charli XCX, 2020a] at 2:18-2:29 in hyperpop music genre, openly explored in
her album “how i’m feeling now” [Charli XCX, 2020a].

1.6 Spatial Effects
The spatial perception of sound, similar to that of vision, illustrates how we
localize and process information across distinct cognitive levels and it is called
auditory perspective. Factors such as intensity, spectrum, and timbral defini-
tion play crucial roles in this perception [Chowning, 1999], varying depending
on the location and acoustic characteristics of the environment. Space per-
ception can be modified though directionality modification, reverberation and
adding spacial cues [Politis et al., 2012].

1.6.1 Amplitude Panning
Amplitude panning is a virtual source positioning technique primarily based
on loudness control. It involves applying gain to the signal sent to each loud-
speaker to create a virtual position from the listener’s perspective. The output
of the gi = 0, 1, ..., N speaker can be written:

xi(t) = gix(t) (1.10)
Where the gain factors gi must to be normalized as ∑ g2

i = 1. Various
methods can be employed for amplitude panning. The most straightforward
type of panning is the stereo panning. If two speakers and a listener form a
triangular configuration where the listener is placed at the same distance from
the two speakers. The standard two-channel stereophonic setup, popularized
in the late 1950s, consists of two loudspeakers in front of the listener, often
deviating from the shown 60-degree separation as shown in Figure 1.9, it was
initially proposed by Clément Arder in 1881 [Henrich Bernardoni, 2014].

Despite variations in domestic or car audio setups, two-channel reproduc-
tion is preferred over monophonic configuration, it gives more richness to the
music recording. Although panning was initially developed for loudspeakers
configurations, it can also be utilized for headphones. The aim is to achieve
a perception of movement or positioning of the sound source in the auditory
space. The advantage of an headphones system is that the signals for each ear
are isolated, thus avoiding losses due to phase differences of the signals upon
entering the ear.

Some examples of songs with the use of vocal panning are as follows: “I
Wanna Sex You Up” [Color Me Badd, 1991], where throughout the song, a
vocal loop moves from one extreme to the other. In the track “Forbidden Love”
[Madonna, 2005], at time marks 0:23-0:35, there is an echo that additionally
employs panning, alternating from side to side, similarly in the segments 0:45-
0:50. In the song “As Heaven is Wide” [Garbage, 1995], at time stamps 2:09,
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Figure 1.9: Configuration of loudspeakers in stereo, adapted from [Zölzer, 2011]
and [Verfaille, 2003]

2:13, 2:17, 2:20, a phrase “I Wish” oscillates from side to side and repeats four
times, also at 2:52 and 3:33. In the track “Who Is It” [Björk, 2004], from
0:00-0:21, there is a set of stereo-arranged tracks; then, from 0:32 onwards,
the vocal tracks have a well-differentiated and fixed stereo arrangement that
allows for cohesive localization of the sources.

1.6.2 Echo (Delay)
An echo is an acoustic phenomenon that occurs when sound reflects off one or
more surfaces and returns to the place of origin after a perceptible period of
time, typically at least 50ms. This phenomenon is commonly observed in open
and mountainous areas or enclosed spaces, provided that the distance to the
walls allows the reflected sound to maintain a sufficient level for perception.
Musically, echo can be utilized to enhance the depth and spaciousness of sound.
In its simplest form, the echo algorithm creates one or several replicas of the
input sound, each with attenuation and a time delay, as shown in figure 1.10
(left side). More complex systems may employ a feedback system wherein
the repetitions are attenuated with each cycle, as figure 1.10 (right side), and
the input level also decreases when the sound ends. Thus the echo becomes
inaudible when its level is comparable to the ambient noise level.

Examples of echo can be discerned in musical compositions such as “For-
bidden Love” [Madonna, 2005], where echoes are notable at time intervals
0:23-0:35, employing panning techniques that alternate from one stereo chan-
nel to another, similarly observable in segments from 0:45 to 0:50. Addition-
ally, in “Human Being” [Robyn and Zhala, 2018], echoes are evident at marks
0.30, 0.38, 1:06, 1:13, and 1:21, among others, emphasizing specific words like
“being” and “body.” Another illustrative instance is found in “Neon Lights”
[Loreen, 2022], where echoes and automated panning are synchronized with
the singer, who strategically utilizes them to enhance harmonies at 0:29, 0:41,
0:51, 1:39, 1:45, 1:57, and various other points. A live rendition of this song,
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Figure 1.10: The simplest case of delay-echo. Right: Echo with feedback.
Adapted from [Zölzer, 2011] and [Verfaille, 2003].

accessible via the following link 4, showcases a more pronounced utilization of
echo and reverb effects, particularly noticeable at marks such as 2:39 and 3:42.

1.6.3 Reverberation
Reverberation and room acoustics are the first phenomena that humans used to
express and transform sound, for example, historical public performances were
perceived in a different way depending on the place and its acoustic properties
[Bouty and Sabine, 1901]. Reverberation results from reflections of sound on
the surfaces of an enclosed room. This phenomenon acts like a filter/coloring
effect influenced by the room itself and it differs from an echo. Reverbera-
tion involves fast, multiple reflections that are close in time, while an echo has
distinctive reflections that are well delayed in time and clearly distinguishable
from the original sound. Moreover, reverberation reflections are so close in
time that they are perceived as an ensemble, contributing to the perception of
space, including the characteristics of the materials (environment) in the room.
Reverberation is a robust perceptual cue that allows the identification of the
properties of room surfaces (absorptive, reflective, diffusive) and can be di-
vided into three components: direct sound, primary reflections (short echoes),
and secondary reflections (later ones). There are three principal perceptual
attributes of reverberation:

Reverberation modeling has four principal approaches: delay lines, sets of
all-pass filters/comb filters, networks of delay lines with feedback, and con-
volution with a room’s impulse response. The use of delay lines and filters,
prominent in the 80s, was pioneered by Schroeder and Logan and extended by
Chowning. The recursive comb filters and delay-based allpass filters for the in-
expensive simulation of echoes were introduced by Schroeder at Bell Labs. The
Schroeder allpass filter based on the recursive delay line is shown in Figures
1.11 and 1.11 [Zölzer, 2011] [Schroeder, 1962]:

xout[n] = −gxin[n] + xin[n−m] + g[n−m] (1.11)

4https://www.youtube.com/watch?v=advvAPiYQRw
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Figure 1.11: An all-pass Schroeder filter mixes the direct undelayed sound and
the feedback delayed sound, where A(z) corresponds to a delay and g to a gain.
The use of these filters in cascade allows for an aperiodic echo response and
increases echo density. Adapted from [Zölzer, 2011] [Verfaille, 2003] [Moorer,
1979b]

In the seventies, Michael Gerzon expanded the allpass filter to a multi-input
multi-output structure, increasing the complexity of the impulse response.
Later, Moorer incorporated additional elements such as other allpass filters,
parallel comb filters, gains, and lowpass filters. Finally, in 1985, Julius Smith
introduced digital waveguide networks based on:

x(n) = x(n−m) + gy(n−m) (1.12)
Where the m-samples delay is replaced by several delays in parallel mi and

the feedback gain is replaced by a matrix G, as shown in Figure 1.12.

Figure 1.12: Delay Network Reverb, adapted from [Zölzer, 2011] and [Verfaille,
2003]

Reverberation can also be studied about the room’s geometry, for which
two main modeling approaches can be employed. Wave-based methods aim to
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numerically solve wave equations using finite element and boundary element
methods,. Ray-based methods, assuming a particle-like behavior similar to
light, focusing on finding trajectories through image-source methods and ray
tracing. This thesis will not address such models as they are quite extensive.
We merely mention them to highlight their significance. However, for our per-
ceptual taxonomic purpose, the key point is that any reverberation technique
helps simulate speaking or singing within a space with certain reverberation
characteristics, and that this serves a specific musical or stylistic intention.

In general, reverb, alongside compression and delay effects, plays a pivotal
role in shaping the sonorous characteristics of vocal tracks 5 even for vocal
song like “Rolling in The Deep” [Adele, 2011]. To elucidate this concept, we
have elected to showcase instances where intensive reverb is utilized for artistic
effect. In the track “Tattoo” [Loreen, 2023], by Loreen, a pronounced reverb
effect coupled with a subtle echo is consistently integrated throughout the
composition. This effect is particularly discernible at the conclusion of each
phrase within the refrain and recurs in various sections of the song, notably
following the 1:06 mark. Furthermore, it is noteworthy that the release of the
reverb is modulated through automation, heightening its impact on certain
input levels of the vocal track after 2:10.

Another artist known for stylistically employing reverb is Lana Del Rey,
notably in tracks such as “Summertime Sadness” [Lana Del Rey, 2012b], where
reverb envelops the entirety of the vocal performance, contributing significantly
to the overall atmosphere of the song, same as “Doin’ Time” [Lana Del Rey,
2012a]. Mon Laferte also utilizes reverb to create transitions in her album
“Autopoietica”, particularly evident in the song “NO+SAD” [Mon Laferte,
2023] from the 2:08 mark until the end. The use of reverb in that segment
contrasts completely not only in musical style but also in spatial perception
with the first part of the track. Other examples can be tracks such as “Team”
and “Royals” [Lorde, 2013].

1.6.4 Binaural audio and 3D audio
Humans employ various mechanisms to analyze the position and direction of
a sound source. Sound signals originating from different points in space reach
each human ear canal differently based on the source’s direction. This discrep-
ancy is approximately described by head-related transfer functions (HRTFs),
influenced by factors like arrival time at each ear position, skull-induced shad-
owing (relevant for freq > 2kHz, and filtering. HRTFs also depend on the
relative distance to each ear and involve a more intricate neuronal learning
process. There are mechanisms such as interaural time difference (ITD) and
interaural level difference (ILD) that enable listeners to interpret the angle
between the sound source and the median plane. Head movements also affect
binaural signals, favoring the ear closer to the source. The combination of
these mechanisms allows humans to perceive the spatial position and details

5https://www.soundonsound.com/techniques/tom-elmhirst-recording-adele-rolling-deep
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of sound sources.
The binaural effect is achieved through precise binaural recordings or the

use of head-related transfer functions (HRTF). Binaural recordings are made
with the help of a mannequin with a structure similar to a person’s ear canal.
The results of binaural audio allow for a very efficient simulation of reality,
with limitations such as physiological differences among individuals and a lack
of dynamics (sound variation when moving the head).

Binaural perception depends on distance to the source, orientation (βplane),
and elevation (βelevation) as shown in Figure 1.13 (on the left). The reconstruc-
tion of a binaural audio system with a stereophonic loudspeaker configuration
can be seen on the right side. Some advanced 3D and binaural commercial au-
dio tools are Ircam Spat6 and Panoramix 7. Examples of Dolby Atmos (based
on filters) can be listened in Apple Music; in the section for spatial audio,
audio is only compatible with AirPods or suggested by Apple devices.

Figure 1.13: Distance, orientation and elevation perception, and binaural audio
reconstruction. On the left, the subject is located at the origin, and a sound
source is positioned at an arbitrary distance r in space. The position of the
source is defined by the distance r, the orientation in the plane βplane, and the
elevation above the planeβelevation. On the right is a binaural stereo system for
a virtual source position sonorous reconstruction. It uses two signals, L and R,
which pass through four filters representing the ear’s responses to the signals
directed to each ear from either the L or R side. The diagram also includes
the speaker setup and the person’s positioning. Adapted from [Zölzer, 2011]
and [Verfaille, 2003]

6https://forum.ircam.fr/projects/detail/spat/
7https://forum.ircam.fr/projects/detail/panoramix/
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1.7 Effects for Pitch Changes

The melody can be considered in its more simple form as is the succession
of musical sounds [Apel, 1969] [Rehding and Rings, 2020] [Hijleh, 2012]. A
melody can helps to express a musical idea, regardless of tonality, microtonal-
ity, tuning, or the poetic explanation cause they vary according the musical
style. The melody of a composition contains various components, such as tem-
poral, timbral, and dynamic elements. Pitch contour combined with silences
(Rythm) define the melody.

Pitch refers to the perceived height of a sound and is related to the fre-
quency of the sound wave. Pitch helps us identify sounds as high or low,
facilitating the recognition of a melody when played by two different instru-
ments or singers. It is also related to age and gender; for example, a child will
generally sing higher than a woman, and a woman, in turn, will sing higher
than a man (generally). According to [Hallam et al., 2016] and [Hijleh, 2012]
we can conceptualize pitch patterns in a vertical dimension as harmony, and
horizontal dimension as melody.

1.7.1 Pitch-shifting and Transposition

When a vocalist aims to transition to a higher pitch, the necessity for altering
the tonal register is compounded by concurrent shifts in timbre, complicating
the transposition process. In addition to timbre changes, there are relation-
ships among the so-called formants of the voice. These formants manifest as
peaks or maxima within the spectrum, with their respective positions influ-
encing phoneme perception. Therefore, this transposition should stretch the
spectrum, preserving the resonances of the formants. Here, we will discuss
some methods for pitch-shifting.

The general method for creating pitch changes is called pitch-shifting. To
achieve this, each frequency must be multiplied by a transposition factor.
Pitch-shifting can be done in various ways; for example, one can resample
a time-stretched signal and then return it to its initial duration. However,
there are solutions that allow more direct calculations of the output signal.

1.7.1.1 Delay Line Modulation

Delay Line Modulation is a time-segment technique where the signal is divided
into small chunks (small buffers of audio) that are reproduced faster or slower
to produce higher or lower pitches. There are two delay lines that generates
audio chunks (small buffers) using sawtooth-type function. To produce a con-
tinuous signal output, two chunks are read simultaneously with a time delay
equal to one half of the cross-fade block length (two half are equal to 1). A
cross-fade is made from one chunk to the other at each end of a chunk. The
algorithm is shown in Figure 1.14.
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Figure 1.14: Delay-Line Modulation based pitch-shifter, adapted from [Zölzer,
2011]

1.7.1.2 Filter Bank - Phase Vocoder

According to the vocoder techniques discussed earlier and taking the refer-
ence [Zölzer, 2011], we start from the equations already established for time
stretching. Taking these equations, we calculate the phase increment from:

dφ(k) = ∆φ(k)/Ra (1.13)

Then, we multiply the phase increment by the transpose factor tf so:

dψ(k) = tf∆φ(k)/Ra (1.14)

and add it to the previous phase to obtain:

ψ̃k(n+ 1) = ψ̃k(n) + dψk, (1.15)

ψ̃k(n+ 1) = ψ̃k(n) + tf∆φ(k)/Ra, (1.16)

Finally, we calculate the sum of sinusoids in the same way as in time-
stretching. When the transpose factor is greater than one, we keep only the
frequencies that satisfy the Nyquist theorem, i.e., taking N/tf frequency bins.

1.7.1.3 Pitch-shifting Preserving Formants

The problem of formants is significant, as it can lead to intelligibility issues
such as the “Donald Duck effect”. The general approach involves calculating
the spectral envelope of the sound (using techniques like cepstrum or linear
predictive coding LPC), performing transposition (with methods like phase
vocoder or additive model), and then correcting the peaks based on the original
spectral envelope [Verfaille, 2003].

The frequency domain pitch shifting technique is based on a formant shift
prior to the reconstruction of time-stretched grains, as shown in Figure 1.15.
First, the log values of both the input and interpolated input signals’ FFT are
calculated. Next, the difference between these two generates a spectral correc-
tion factor, which is transformed to the cepstrum domain, low-pass weighted,
and transformed back to the frequency domain. Then the correction is applied
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to the time-stretched grain FFT, and finally, the grains are resampled and
added.

Figure 1.15: Example of pitch-shifting preserving formants

The general idea is to perform a source-filter separation and enforce the
spectral envelope during reconstruction. This can also be achieved through
two other techniques known as cepstrum and Linear Predictive Coding.

1.7.1.4 Examples

The use of modulation can be found in the track “Anything Could Happen”
[Ellie Goulding, 2012] throughout the entire song and is audible at 0:12 and
0:23, according to 8. Modulation can be achieved through devices prior to the
vocoder, such as the Talkbox, where the signal is modulated by an instrument,
as seen in “Digital Love”, [Daft Punk, 1997], the segment 1:03-1:34 which is
repeated over all the song.

Pitch shifting with formant loss as a stylistic hallmark can be found in some
musical pieces such as “Gorgeous,” [Taylor Swift, 2017] in segments 0:57 and
2:03. Additionally, some opt to use only formant deformation, as in “Team”
[Lorde, 2013], from time 0:20 to 0:35. While pitch shifting is typically used
as support in precise segments of songs, there are some tracks like “Good
Love” that are entirely performed using pitch shifting without formant loss,
or like “Te Juro Que Volveré,”[Mon Laferte, 2023] which is performed using
pitch shifting with formant loss, and is even performed live with the same
arrangement and without autotune 9, indicating that it is simply a stylistic
choice. Other examples of pitch shifting with formant preservation include
“Set Me Free,”[Robyn & la bagatelle magique, 2015], which uses a higher note
for the segment 0:34-1:02 and a lower one for the segment 1:04-1:18. However,
pitch correction is also used to provide greater support to the vocal sample, as
in “Apeshit” [The Carters (Beyoncé, Jay-Z), 2018], especially in segment 0:47-
0:52 10, or systematically putting in stereo two tracks pitch-shifter in “What
About Now” 11 [Bon Jovi, 2013].

8https://www.soundonsound.com/people/mix-review-46
9https://www.youtube.com/watch?v=A90nnXICJlA

10https://www.soundonsound.com/techniques/inside-track-beyonce-and-jay-z-apeshit
11https://www.soundonsound.com/techniques/inside-track-bon-jovis-what-about-now
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1.7.2 Harmonization
Harmonization is an effect that can be applied with the help of transposition; it
is possible to create a layer of harmonization as long as the pitch-shifting effect
has adequate quality. In other words, through harmonization, a vocal layer is
created with a defined transposition that follows the melodic progression of the
original vocal. The presence of an additional vocal layer can create harmonies
that enrich the audio. Therefore, if used in conjunction with a filter and
multiple transpositions, more body can be given to the vocal sample, creating
a choir-like effect or simply enhancing its presence. Examples can be “What
About Now” [Bon Jovi, 2013], or in segments of “Cruel Summer”[Taylor Swift,
2019] using several layers of vocals and vocoded voices, especially in 1:06-1:08,
1:27-1-33 among others moments, in Me! in the segment 0:00-0:02 [Taylor
Swift, 2019], or in “The Contorsionist” [Melanie Martinez, 2023a] in the second
vocal layer at time marks: 0:39-0:50 or 1:04-1:08.

1.8 Effects for Percetive Timbral Changes
The spectrum of an instrument changes as the loudness changes, and the same
occurs for voice. This happened because the force applied and its distribution
to active the different modes of vibration change for louder sounds. However,
it has been shown that listeners perceive loudness with a preference for spectral
cues above acoustical intensity [Chowning, 1999].

So, all effects applied to a sound signal will affect its spectrum somehow;
however, the degree of coloration will vary depending on the effect. Here
lies a fundamental difference between the specificity of a vocal signal and an
instrumental or other type of signal. A vocal signal has a rich prosodic content,
for which our brain is trained to analyze. In other words, we can identify subtle
changes much more efficiently than spectral changes or colorations in other
non-vocal or instrumental sounds. Effects that may be interesting in musical
production can be destructive to the voice. Therefore, the classification of what
we propose as vocal spectral effects differs from traditional classifications of
such effects.

We consider as spectral effects all those that aim to introduce coloration
into the vocal signal. We classify them into three types: those that preserve
vocal quality, those that destroy vocal quality, and those that change vocal
quality. Consider that this classification is not about a side effect due to
another effect with a different goal (dynamics, tone, time, space), but the main
objective is to change spectral content. This classification can be summarized
as it follows:

1. Effects that Preserve Vocal Quality: These effects subtly add coloration
while maintaining the actual voice recognizable. These types of effects
enhance the vocal sample within the musical mix. The use of these
effects is often contextual and depends on the specific musical style in
which they are employed.
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2. Effects that Distort Vocal Quality: These effects apply strong coloration
while keeping the original voice slightly recognizable. Some effects de-
pend on parameters; if used in an “extreme” configuration, they end up
distorting the vocal quality. These extreme configurations are included
within this category.

3. Effects that Change Vocal Quality: These effects significantly alter the
signal to the extent that the quality of the original voice is lost. This
can include changes in size, vocal range, or other vocal qualities.

The dividing line between these effects lies in their intentional use; for
example, a “whisperization” effect can be used to add a hint of whisper to
the voice or to entirely remove vocal timbre. A “pitch-shifting” effect with
formant preservation can be used to transpose within a small range or to move
two octaves. While the technique is the same, the intentional use—determined
by the configuration parameters—defines whether the effect is being applied
to preserve, distort, or completely change the vocal qualities.

1.8.1 Effects that preserve vocal quality
This category includes effects specifically designed to enhance the spectral
content of the vocal signal intentionally. The aim is to make adjustments
that improve quality without significantly altering vocal quality, as well as
the prosody and linguistic content of the voice. Within this category, effects
that produce coloration as a side effect are not considered. This includes
coloration resulting from specific characteristics of reverberation or the spectral
modification induced by compression, which may impact different frequency
bands.

The vocal audio signal has many details and characteristics that shape
the vocal quality of the person singing. Audio effects, particularly those in
the frequency and time-frequency domain, must allow for the preservation of
vocal quality. This means avoiding distortions such as phasiness or the “Donald
Duck” effect.

The category of effects that preserve vocal quality is based on subtle changes
that maintain the prosodic-linguistic content as well as the primary qualities
of the voice. For example with effects specifically designed to intentionally
enhance the vocal signal’s spectral content. This application is subjective and
depends on the musical context. For instance, one may desire a vintage-style
filter for the voice or want it to stand out above the instrumentation.

Within the spectral modification effects, there are various types of filters,
such as low-pass, band-pass, high-pass, and notch filters, including different
techniques for their implementation. This category also encompasses equaliza-
tion effects, which involve various techniques such as parametric equalization,
dynamic equalization, and equalization, among others.

One example of the use of formants modification and harmonization with
the device SoundToys Little Alterboy is the song “Don’t Start Now” [Dua Lipa,
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2020] 12. Billie Eilish also uses this Device in the previous referenced songs in
this chapter. All the examples of compression, reverb, and modulation noted
before also apply to this category when the vocal quality is preserved.

1.8.1.1 Filters

Filtering effects are very common for both instrumentals and vocals, as they
are used to add a certain coloration to sound samples and enhance the cohe-
sion of the musical composition. It is most common to use filtering effects to
pass certain parts of the spectrum. As their name suggests, low-pass, high-
pass, and band-pass effects allow the passage of specific spectrum regions and
are typically parametrizable with elements such as quality factor and cutoff
frequency. On the other hand, notch filters can attenuate a narrow band of
frequencies, making them helpful in correcting unwanted resonances or inter-
ference. The use of filters serves as the foundation for parametric equalization,
signal degradation (like telephonic line using a bandpass filter) and phasing
effect.

Filters have an electric origin, and their digital pairs are intended to follow
a similar transfer function. For example, for the given digital state variable
filter in Figure 1.16, the corresponding transfer function is given by:

H(z) = r2

1 + (r2 − q − 1)z−1 + qz−2 (1.17)

In this filter, xn(m) is the input and yn(m) is the output. H(z) is the
transfer function that depends on the values of r = F1 and q = 1 − F1Q1,
where F1 and Q1 are the tuning parameters of the filter. H(z) represents the
delay line version of three parallel analog filters: high-pass, band-pass, and
low-pass.

Figure 1.16: Digital state variable filter, adapted from [Dutilleux, 1998]. The
digital version of the analog state variable filter containing three filters: high-
pass, band-pass, and low-pass. The transfer function is given by H(z) =

r2

1+(r2−q−1)z−1+qz−2 where r = F1 and q = 1 − F1Q1, which depend on the
tuning parameters F1 and Q1.

12https://www.soundonsound.com/techniques/inside-track-dua-lipa-dont-start-now
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1.8.1.2 Equalizers

Unlike filters, which attenuate the spectrum concerning a cutoff frequency,
equalizers shape the spectrum by enhancing certain frequency bands. They are
typically constructed as a sequence of shelving and peak filters. The shelving
filters boost or cut the bands with a cutoff frequency and a gain, and they
have the form described by:

Hs(z) = 1 + H0

2 [1 + −As(z)] (1.18)

Where the sign +/− works for a low-pass and high-pass filter respectively,
And from [Zölzer and Boltze, 1995] [Zölzer, 2008]:

As(z) = z−1 + aB/C

1 + aB/C
−1 (1.19)

Where the variables aB and aC refer to boost and cut respectively and
depend on the cut-off frequency. The peak filters, in addition to using a cutoff
frequency and a gain G, also employ a bandwidth fb and are given by the
transfer function:

Hp(z) = 1 + H0

2 [1 − +Ap(z)] (1.20)

Where:

Ap(z) = −c+ (d− dc)z−1 + z−2

1 + (d− dc)z−1 − cz−2 (1.21)

Where −/+ denotes band-pass and band-reject operations. Parameters d
and c are related to the band and the cut-off frequency. Peak filters offer nearly
independent control of their control parameters. When used in conjunction
with shelving filters, they are useful for creating equalizers with a structure as
Figure 1.17.

Figure 1.17: Equalizer based in shelving and peak filters, adapted from [Zölzer,
2011]
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1.8.2 Effects that can distort the vocal quality

In this section, we address effects whose main objective is to distort the vocal
sample in an extreme manner or even destroy its vocal quality. That is to
say, there is a deliberate intention to apply distortion that makes it impossible
to recognize the vocal quality of the person singing or speaking. The goal is
also to make the signal lose its prosodic content to the extent that we cannot
determine if it is a person speaking. Vocal distortion finds its utility, especially
in experimental electronic music, and presents numerous approaches. However,
in this section, we will first focus on some effects that have been intentionally
developed to create distortion, where distortion is not an occasional side effect
but a central goal.

1.8.2.1 Time varying filters

Variable time filters are filters that either use direct control over the parameters
controlling the filter or an oscillator that automatically controls the filter. For
example, flanging is an effect that uses a variable delay added to the input
signal. The delay is periodically varying as d(n) = D

2 (1 − cos(2πFdn)), with D
between 0 and 10 ms and Fd around 1 Hz. The output of the delay is added
to the input signal, resulting in a periodic shape H(ω) transfer function, as
shown in Figure 1.18.

Figure 1.18: Time varying filters - flanger, adapted from [Strange, 1983]. Based
in time varying delay generates a variable transfer function.

Phasing (phase shifting) is another time-varying effect achieved by passing
the signal through a narrow notch filter (Band Reject Filter) and combining
a portion of the signal with the direct sound. The time variation occurs in
the notch filter, which is controlled by a low-frequency oscillator (LFO). The
phases are combined so that cancellations or enhancements occur. A typical
realization of this effect is shown in Figure 1.19, where the notch filters can be
controlled independently.

For example a phaser is used in Music [Madonna, 2000] in the segment
0:14-0:30 with lost of vocal quality, and variable lost of quality in the segment
0:56-1:04.
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Figure 1.19: Time varying filters - phaser, adapted from [Zölzer, 2011] and
[Strange, 1983]. Multiple notch filter controlled by LFO generates the phase
shifting effect.

1.8.2.2 Distorsion and Overdrive

Distortion effects made their appearance in the 1940s with different techniques
for capturing and amplifying acoustic and electric guitars. Distortion began
as a flaw in amplification processes, which turned out to be musically useful,
becoming an essential part of rock and influencing music immensely to this
day. The exploitation of these distortion effects occurred when attempts were
made to use them to create higher harmonics. There are mainly three terms
known: overdrive, distortion, and fuzz. These effects can be applied to vocal
samples, leading to a rapid degradation of the voice. An example of digital
treatment for this kind of effect is given by [Zölzer, 2011].

f(x) =


2x for 0 ≤ x < 1/3
3−(2−3x)2

3 for 1/3 ≤ x ≤ 2/3
1 for 2/3 < x ≤ 1

(1.22)

Through the piecewise-defined function, symmetric soft clipping is included
at the edges, which also generates compression simultaneously on the edges.
When a logarithmic scale is applied to this function, a linear response can be
observed along with compression at the upper end. This effect is known as
overdrive.

Overdrive is used in “Rolling in the Deep” [Adele, 2011] 13 without losing
vocal quality, so this example shows how the preset is fundamental and can be
used to distort or, on the contrary, to improve vocals, as in this case.

1.8.2.3 Reusing other effects for distortion

Effects, such as those discussed earlier for perceptually addressing dynamics,
space, time, and timbre, have been carefully developed to generate those spe-
cific changes and avoid introducing distortion. In these effects, distortion can
be considered an undesirable side effect. In other words, the goal is always
to keep these effects as clean as possible. However, the parametrization that
allows for filtering, equalization, and reverb can sometimes introduce distor-
tion. This distortion may be quite pronounced, so these types of effects, even

13https://www.soundonsound.com/techniques/tom-elmhirst-recording-adele-rolling-deep
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though distortion is not their initial purpose, can be used for vocal distortion.
Now, we can consider these effects, with their timbre-shaping capability, within
this category, as long as their aim is the alteration of timbre and a highly de-
structive coloration of the initial vocal qualities. In this context, distortion,
while a side effect of the technique, becomes the primary intended usage, and
the effects of equalization or reverb become less noticeable secondary effects.
For example, the song “Sorry” [Madonna, 2005] uses vocoders, variable equal-
ization automated with a pitchshifter, and some kind of over drive over the
segment repeating “sorry” in the segment 2:56-3:26, while other vocal layers
played simultaneously with other effects of presets. Time-stretching, formants
deformation, and pitch-shifting are also effects that can be used with a distor-
tion purpose, as we showed before.

1.8.3 Effects that change vocal quality
As we have seen, effects can be used to modify signal properties such as dy-
namics, space, and time in a way that preserves vocal quality. It is also possible
to intentionally modify the timbre with the help of various types of filters or
equalizers. On the other end, there is the destructive use of vocal quality, in
which these same effects are employed either to partially or entirely destroy
the prosodic content and/or vocal quality of the person singing. In between
these two extremes are effects that allow intentional modification of the vocal
quality and/or prosodic content of the person singing. Below, we will provide
examples of these types of effects.

1.8.3.1 Robotization with vocoder

Robotization is a signal processing technique based on the structure of a phase
vocoder. In this effect, the phases are set to zero before the audio reconstruc-
tion. This means that, for a given grain of length Lw, the phases would be set
to zero for each FFT before the reconstruction. It is as if each cosine making
up the FFT had the same phase. With all components in phase, there would
be a peak in the center of the Lw segment in the time domain, much like a
cosine function over time. When combining all the grains, the resulting sound
will be a robotic voice with a pitch equal to fs/Nw, where fs is the sampling
frequency, and Nw is the window length. The larger the audio grains, the more
secondary peaks there will be, and the greater the influence of the initial pitch
of the voice.

Some examples of this kind of effect are: “Harder, Better, Faster, Stronger”
[Daft Punk, 2001] from time mark 1:45, “Got to Work it Out” [Robyn &
la bagatelle magique, 2015] at time marks 0:21:023, 0:28-0:38 and all over
the song, and Sorry [Madonna, 2005] at time mark 0:24-0:47. In “Death”
[Melanie Martinez, 2023b] in the segment 2:01-2:21, or in “Monster” [Lady
Gaga, 2009] at different levels for each phrase of the chorus in the segment
1:05-1-35, different pitch and different gender too.

39



1.8.3.2 Timbre Scaling

This category includes effects specifically designed to intentionally enhance the
spectral content of the vocal signal. Audio effects, in general, make changes
without deeply altering vocal quality and prosody; such an approach to col-
oration is not considered here. An example of timbre scaling is formant modifi-
cation [Verfaille, 2003], it used in the song “Diablo” [Rosaĺıa, 2022] in 0:22-0:42
with some autotune, with the same configuration over other parts of the song
and mixing with the regular voice of Rosalia. In “Te Juro Que Volveré” [Mon
Laferte, 2023] formant modification is done without using autotune, as a stylis-
tic choice. In “Bury a Friend” [Billie Eilish, 2019], in the segment 1:12-1:26, a
harmonization layer is done with original vocals and formants modified vocals.
Or in “Frozen” [Madonna and Sickick, 2021] in segments 0:14-0:18, 0:23-0:26,
0:31-0:44 among others time marks.

1.8.3.3 Gender Change

The voice of a man and a woman is situated in different frequency ranges, and
the gender change in the voice is possible through signal processing, which
can be carried out in various stages. The first stage will involve performing
a transposition with pitch shifting while preserving formants. On the other
hand, it should be considered that formants (especially the first one) vary as
the fundamental frequency evolves; this can be modeled with a shift of the
spectral envelope after transposition. For instance, if transitioning from a
male to a female voice, this would be done above frequencies of 100 Hz up
to 500 Hz, linearly shifting from 0 to 50 Hz. To transition from a female
to a male voice, the reverse shift is performed in the same range. The shift
depends on the fundamental, making it adaptive. One example can be of
gender change is “Good Love” by Prince which is done through a pitch shifting
technique preserving formants [Prince, 1998]; other examples can be “Te Juro
Que Volveré” [Mon Laferte, 2023] and “Bury a Friend” [Billie Eilish, 2019] in
the segment 1:12-1:26.

1.8.4 Other perceptual possibilities
There are various techniques to modify the voice. Although the vocoder orig-
inated as a tool for telecommunications, it has evolved into an instrument for
vocal analysis and resynthesis. Numerous transformation tools have emerged,
perceived as part of perfecting the vocoder. From our perspective, it is crucial
to musically understand what can be achieved with the perceptual effect of
these diverse techniques.

For example, pitch-shifting without formants yields more striking percep-
tual results than pitch-shifting with formants. While we acknowledge that
the technique behind the latter is more complex and provides a higher-quality
result (for perfection purposes), the change is less noticeable from a percep-
tual standpoint. Additionally, countless techniques allow the modification of
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perceptual characteristics of vocal timbre, such as breathiness, vocal fry, and
softness, among others.

Thus, it is possible to change the gender, age, and timbre of a person’s
voice and, consequently, their vocal quality. These techniques also enable
the alteration of other parameters linked to timbre, such as the person’s size,
intentionality, emotional expression, etc.

1.9 Tuning - Discussion
The melodic progressions in singing are composed of a succession of tones
executed through a vocal technique that manages attacks and adjustments of
dynamics and timbre. In this context, effects that affect the pitch entail, in
most cases, modifications in the perceived execution of vocal technique.

Effects like autotune rely on forcing certain melodic curves onto the signal,
notably to make it follow a melodic line more faithfully to a given tonality.
There is also the possibility of manually forcing a well-established curve, as
with Melodyne. These types of tools involve a more complex pitch change
than a simple constant transposition on an audio file; we will refer to this as
dynamic transposition or dynamic pitch modification.

Pitch correction as an effect is systematically used in modern music, pri-
marily driven by tools like Autotune. However, the pitch correction as an
algorithm modifying the pitch curve has changed minimally since the release
of Autotune. Therefore, it is interesting to explore how new pitch correction
algorithms can be developed and under what premises they could be designed.
The next chapter proposes a compendium of terms and case studies, introduc-
ing a novel pitch correction method.

Autotuning does not necessarily cause a loss of vocal quality, but it affects0
coloration depending on the amount of correction and the transposition, poten-
tially leading to extreme distortion. This kind of effect was popularized thanks
to Cher in 1998 with the song “Believe” [Cher, 1998] and took the name “Cher-
effect” for more than one decade. Autotune is now one of the most essential
vocal effects in the DAFx vocal chain in music, with various preset variations
and applications. Melodyne is also a pitch modification device used to auto-
tune manually and off-line melodies. The use of pitch correction and pitch
modification techniques with Autotune is widespread. They are included in
the mainstream hit songs of various genres such as: “I’m Sprung” by T-Pain
[T-Pain, 2005], “One More Time” [Daft Punk, 2000], “Somebody That I used
to Know” [Gotye, 2011]14, “What Do You Mean” [Justin Bieber, 2015] [The
Chainsmokers, 2016]15, “I Took A Pill in Ibiza” [Mike Posner, 2015]16. Un-
doubtedly, Autotune has aided these songs in achieving interesting and more
robust harmonies, and in being appreciated both for intentional use seeking

14https://www.soundonsound.com/techniques/mixing-gotyes-somebody-used-know-
francois-tetaz

15https://www.soundonsound.com/techniques/inside-track-justin-bieber-purpose
16https://www.soundonsound.com/techniques/inside-track-mike-posner-took-pill-ibiza
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extreme correction transitions, as well as for coloration purposes in a makeup
Autotune, that is, with a gentle correction without extreme transitions.

The vocoder, regardless of the type of technique used (time domain, phase
vocoder, channel vocoder, artificial intelligence), is employed on techniques
such as autotune or melodyne for pitch transpositions leading to secondary
changes in vocal timbre. This raises the question of to what extent these
vocoder reconstruction techniques imply a change in vocal quality. In other
words, does the vocoder, as a processing technique, add an inherent coloration
to the signal?... Furthermore, beyond these potential changes in vocal quality,
the question arises of whether the possible coloration of the vocoder carries
more or less weight than the melodic changes that can be imposed on the
vocoder. The use of vocoder layers and Autotune can be observed in songs such
as “Instant Crush” [Daft Punk, 2013], where several vocoders and autotune
are consistently present throughout the entire song. Is it the coloration (or
possible change in vocal quality) due to the transposition? Or is it due to
the inherent modeling of the vocoder? And... Can effects such as autotune
be considered just pitch effects? Or also timbral effects? We will implicitly
explore these questions in this thesis, particularly in chapters 3 and 4.
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Chapter 2

Pitch and Tuning Adjustment
Methods

As discussed in the previous chapter, pitch transposition produces perceptible
changes that can be musically intriguing. This could be one of the reasons
why effects such as Autotune and the use of the vocoder as an instrument
have gained popularity over the years. In just two and a half decades, genres
like hyperpop have emerged, and the utilization of the vocoder and Autotune
has extended across numerous musical genres globally, including more regional
genres and various languages. The stylistic interest in this effect is undeniable,
and its widespread use signifies a general appreciation for tonal and timbral
transformations by both artists and the audience.

The central issue of this chapter revolves around pitch correction and ways
to enhance it. While several important references and patents related to this
topic exist, there are no references that allow the classification of the problem
conceptually and establish a connection with musical usage patterns and po-
tential artist applications. The standardization of the autotuning concept in
the musical realm overlooks nuances within its conceptual usage. This compli-
cates proposing innovations to the pitch correction problem. Nevertheless, we
have developed simple and beneficial concepts from a cross-disciplinary per-
spective—applicable to engineers, musicologists, and musicians alike. These
concepts help us to clarify the problem and to propose new solutions.

Furthermore, in this section, we will explore using a graphical method
for pitch correction. The development of this proposal will help us identify
different types of usage and pitch corrections and understand the improvements
that our method brings to the table.

2.1 Proposal for Terminology
Pitch transposition and correction may seem like simple terms, but there is
no precise definition for these terms within the autotuning topic. This section
proposes an accurate terminology for pitch transposition and pitch correction
and its types. This terminology is essential for understanding the following
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sections of this thesis, but it is also crucial for future autotuning studies.

2.1.1 Pitch Transposition
As observed, the pitch transposition issues encompass various challenges, in-
cluding the preservation of instantaneous frequency, formant preservation, and
timbre preservation. These issues are crucial in assessing a pitch transposition
method for functionality. Once a functional pitch transposition method is
available, we then explore potential applications. As implied by its name, the
objective is to carry out a transposition, which can be accomplished in several
manners.

The types of pitch transposition can be seen in Figure 2.1. There are two
reasons for distinguishing between types of transposition. The first is that
depending on the vocal transformation algorithm or vocoder, the input value
given to the system is usually the transposition value. There are very few
devices that allow the desired pitch value to be entered at the output. The
second reason is that the quality evaluation to which vocoders are subjected
includes only tests with constant transposition. What happens is that when
the transposition is variable, there is a remaining coloration in the audio that
is not present when the transposition is constant.

Figure 2.1: Pitch Transposition Cases.

Figure 2.2: Pitch transposition possibilities: a) constant transposition, b) Vari-
able transposition can follow any arbitrary curve imposed over the original au-
dio signal. c) Tuning is a special case of transposition, but it requires that the
imposed melody lies in a well-defined scale and has a well-defined sequence. A
particular case could be, for example, a flat note.

In constant transposition, the entire signal is transposed by a constant
number of semitones (and/or microtones), as shown in Figure 2.2 a). For a
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given melody, a correction τ is uniformly applied to the entire audio. However,
constant transposition is not always desired. Variable transposition throughout
the sample involves imposing an arbitrary pitch curve τi, as illustrated in
Figure 2.2 b). This is the case with systems like Melodyne™[Neubacker, 2011],
which can use the curve to improve intonation. A special case of variable
transposition is autotuning, which requires that the imposed melody be in a
given scale and have a precise sequence. A particular case could be the use
of extreme autotuning with a single active note, as shown in Figure 2.2 c).
There, the transposition for each note is different: τ1 ̸= τ2 ̸= τi. This example
aligns with the use of Antares Autotune™(ATA) [Hildebrand, 1998] with a
single note active and in an extreme configuration.

Transposition is performed using a vocoder-like re-synthesis technique. This
process generates an output signal with the desired pitch and requires an ad-
justment factor. The adjustment factor represents the rate of change needed
for the fundamental frequency. In the case of a constant transposition, the fac-
tor can be derived from the desired transposition value in semitones and the
input fundamental frequency; from there, we can easily obtain the expected
frequency and then the adjustment factor. The expected output frequency
is calculated with the help of conversion between semitones and frequency.
Consequently, the adjustment factor is determined as the division between the
input and output frequencies. Sound examples of pitch transposition for con-
stant transition can be found in “Te Juro Que Volveré” [Mon Laferte, 2023],
which is performed using pitch shifting with formant loss and without auto-
tune, or in “Set Me Free” [Robyn & la bagatelle magique, 2015], which employs
a higher note for the segment 0:34-1:02 and a lower one for the segment 1:04-
1:18.

For variable transposition, the adjustment factor must be applied point
by point, representing the relationship between the input frequency and the
expected output frequency, which is calculated. In both cases, knowledge of
the output frequency is required, regardless of whether obtaining such a value
is more or less direct, and the input frequency, which is determined using a
pitch tracker. This way, the transposition process follows the scheme depicted
in Figure 2.3. The pitch warping process involves applying an adjustment
factor to a given signal for resynthesis, resulting in another signal with the
expected pitch.

A blend of variable transposition and autotuning (with Autotune Antares)
can be heard in “Starboy” [The Weeknd, 2016] (constant throughout the entire
song) or in “Memories” [Maroon 5, 2019], probably using Melodyne, a software
to impose a given pitch curve. Strong transition can be seen in examples like
“Instant Crush” [Daft Punk, 2013] or in rap songs like “Headlines” [Drake,
2011], where jumps can be heard in segments like 1:24 in the word “know”.
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Figure 2.3: Pitch Transposition Schema. It consists of three stages: pitch
tracking, which is the technique that identifies the frequency corresponding to
the melody of the signal; transposition control, which is the amount of semi-
tones to transpose; and the vocal transformation algorithm, which is generally
a vocoder.

2.1.2 Pitch Correction
When addressing the transposition of a vocal signal, the concepts of expected
pitch and adjustment factor naturally emerge. The process by which the
expected pitch is obtained can be arbitrary, meaning without a corrective
harmonic goal. However, it can also be leveraged to achieve an intonation-
improved pitch. In this case, we refer to this stage as pitch correction. We
define pitch correction as a specific case of variable transposition to improve
intonation. The algorithm is based on the scheme in figure 2.3, where the
pitch expected calculation is replaced by the pitch correction algorithm shown
in 2.4.

Figure 2.4: Pitch Correction Schema. This schema is similar to the pitch
transition schema. The key difference is that pitch correction allows for a
variable transposition for improving intonation.

A pitch correction system aims to generate a pitch curve better tuned
within the tonal scale, for example, using a MIDI scale. This means pitch
values (in semitones ST) are closer to integer values. To achieve this, we can
employ mathematical algorithms that depend on a control parameter, enabling
control over the deformation introduced to the pitch signal. In cases where
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these algorithms rely on the signal’s history as well as the control parameter,
it must be referred as adaptive control.

Figure 2.5: Pitch correction cases placed within pitch transposition. Paramet-
ric depends on parameters given by the user. Adaptive depends also in the
pitch signal

The diagram (Figure 2.5) allows us to place pitch correction within the
possibilities of pitch transposition, which can be classified as either constant
or variable. In the case of variable transposition, it can be arbitrary or cor-
rective (pitch correction). Pitch correction can be performed using paramet-
ric algorithms such as ATA or adaptive methods that employ adaptive func-
tions. These adaptive functions are present in instruments like Cantor Digitalis
[Feugère et al., 2017] [Feugère, 2013] [Perrotin and D’Alessandro, 2016], Con-
tinum Fingerboard [Haken, 2009] [Haken et al., 1998], TouchKeys [McPherson
et al., 2013], and Seaboard [Lamb and Robertson, 2011]. The adaptive func-
tions change according to the note’s position in the scale. The algorithm used
in Cantor Digitalis is particularly interesting. It is called Dynamic Pitch Warp-
ing [Perrotin and D’Alessandro, 2016], and we aim to study it in this doctoral
thesis.

Melodyne™and ATA are cases of arbitrary and automatic pitch correc-
tion, respectively. In Melodyne™[Neubacker, 2011], a pitch curve is gener-
ated graphically (and assisted) and superimposed onto the audio sample. In
ATA, the difference from a considered correct frequency (in semitones) is cal-
culated, and the required difference is proportionally applied with the help of a
smoothing filter (step 48 of the patent [Hildebrand, 1998]). Examples of auto-
tuned songs with a improvement on correction purpose are “Happy” [Pharrell
Williams, 2013] (with Melodyne) 1, “Memories” [Maroon 5, 2019] (probably
ATA or melodyne) and Firework (Using a similar tool in Nuendo) 2.

2.2 Autotuning Review
In this research, we will consider the ATA method as a reference; therefore,
we will study it in detail in this section. Antares Auto-Tune™ (ATA) is a
vocal effect that emerged in 1998, and shortly after its release, gained massive
popularity, primarily attributed to Cher’s song “Believe” [Cher, 1998]. This

1https://www.soundonsound.com/techniques/inside-track-pharrell-williams-happy
2https://www.soundonsound.com/techniques/sandy-vee-recording-katy-perrys-firework
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track reached number one in thirty countries, garnered over 25 accolades, and
received multiple platinum certifications. However, beyond this singular song,
ATA has had a profound impact on the music industry. The use of ATA grew
exponentially over the years, becoming a global phenomenon.

The widespread popularity of the name “autotune” was initially caused
by its extreme use, characterized by strong and distorted transitions between
notes. However, the increased usage can be attributed to the parameterization
capabilities of ATA. ATA allows for smooth automated parameterized use,
enabling much smoother and minimal transitions if the parameters are chosen
wisely. Later, a manual use was added, which meant the possibility of creating
pitch curves manually, as we can do in Melodyne. Also, over time, the real-
time response and overall quality of the device were improved. Thus, its use
as a vocal enhancer to correct off-key notes significantly contributed to its
widespread adoption.

As a result, ATA became a benchmark for vocal effects and is currently
one of the most well-known and widely used effects. Determining when a song
does not incorporate ATA or a similar effect is challenging. Its systematic
use extends across most popular music genres worldwide, with some genres,
such as pop and rap, embracing it. It is worth noting that musical genres like
hyperpop have emerged, based on vocoders and autotuning, much like what
happened in the past with rock music and the electric guitar. Furthermore,
even today, ATA is used in genres that traditionally were less interested in
using it, such as more acoustic and organic music (both for pitch improvement
and for its extreme use). Without a doubt, nowadays, vocoder-type effects like
ATA play an immense role in music.

Songs like “Starboy” [The Weeknd, 2016] maintain a consistent “soft” use
of autotune throughout the entire song. Others like “Cardigan” [Taylor Swift,
2020] generate doubt; abrupt transition are evidenced at 2:17 and 2:08, even
in a live session [Taylor Swift, 2020] at 2:54 and 3:05, nevertheless we can-
not claim these particular abrupt transitions are due to Autotune Antares. It
is important to note that autotune is not necessarily detrimental as part of
the vocal chain, as singers must approach the note in live performances to
avoid excessive transitions. It helps to enhance vocal consistency and pres-
ence across multiple layers of stereo and vocoded vocals. Furthermore, singers
must be capable of reaching or approximating the correct notes sufficiently to
properly replicate the song’s studio version, as demonstrated in performances
of “Believe” and “Cardigan”, where live vocals are well replicated in live. The
same applies to constant transposition on non-autotuned vocals, as seen in “Te
Juro Que Volveré” [Mon Laferte, 2023]. If the performer cannot hit the correct
notes to trigger the transition at the right moment, then vocal effects cannot
be replicated exactly as in the studio.

Although the use of Autotune can be continuous and aimed at enhancing
the performance of the vocal track, this effect can also serve a stylistic purpose.
This is evident in the work of singers with inherently strong voices such as Cher
(in Believe [Cher, 1998]), Rosaĺıa and Mon Laferte. Some examples include
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“De Aqúı No Sales” [Rosaĺıa, 2018], particularly at 0:06 and 1:12-1:45, in “Di
Mi Nombre” [Rosaĺıa, 2018] at 0:57-1:12 contrasting with untreated vocals, in
“Como Un G” [Rosaĺıa, 2022] from 3:05 onwards contrasting with the vocals
at the beginning, in “Obra de Dios” [Mon Laferte, 2024] at 0:18-0:25 without
Autotune between 0:24-0:29 and then with Autotune from 0:38 onwards, with
the bridge being without Autotune, in “Casta Diva” [Mon Laferte, 2023] where
vocals in parts like 3:01-3:28 contrast with 3:43-4:05, or in “NDA” in 0:57-1:18
[Billie Eilish, 2021]. Other artist have explored full use of autotune, in rap
or in new genres based in extreme use of effects like hyperpop, an example is
the album “how i’m feeling now” by Charli XCX [Charli XCX, 2020a], where
autotune is explored in all the tracks with layers of vocoders, grains, autotune
and distorsion, this album must be listened integrally. In these examples, the
ATA effect is explored from different approches: improving vocals, intentional
harmonies, or experimentally like it was done several decades ago with guitar
amplification.

2.2.1 ATA - Pitch Tracking
Antares Autotune (ATA) is a digital audio effect developed by Harold Hilde-
brand, which is based on an algorithm for pitch correction. Hildebrand is
the primary author and co-author of several patents related to geophysical
exploration and the handling of digital signals for music. In fact, it can be
assumed that the development of ATA is encompassed within several of his
patents. ATA became commercially available in 1997. Being a pitch correc-
tion algorithm, it fullfill the structure shown in Figure 2.4. Pitch correction
faces three problems, detailed at varying levels in Hildebrand’s patents: pitch
tracking, the pitch correction algorithm, and pitch warping. One of his more
detailed patents is titled “Pitch detection and intonation correction appara-
tus and method” [Hildebrand, 1998]. In this document, Hildebrand primarily
describes the mathematical foundations of his pitch tracking algorithm, but
provides minor details about the pitch correction algorithms and the pitch
warping vocoder.

As the author claims, pitch detection is virtually instantaneous and oc-
curs before the sound has enough amplitude to be heard. To perform this, a
sequence of data (signal) xj with a repetition period L is used. The autocor-
relation of a periodic signal is also periodic, so its value at n=L (if the period
is L) is the same as its value at zero. This means that the autocorrelation
of any signal could be compared with given reference values to estimate the
fundamental frequency; such calculation is computationally expensive. Nev-
ertheless, the patent describes that the computational cost can be reduced in
several ways. As the analysis window changes over time, because the signal
varies in real time, the autocorrelation can be written:

Φi,L(n) =
i∑

j=i−L−1
xjxj−n (2.1)
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And two functions Ei(L) and Hi(L) are defined, in such a way that Ei(L)
is the cumulative energy of Hi(L) over two periods 2L, with j = 0, 1, 2, ..., i:

Ei(L) = Φi,2L(0) =
2L∑

j=0
x2

j (2.2)

Hi(L) = Φi,L(L) =
L∑

j=0
xjxj−L (2.3)

The author indicates that the equations can be manipulated to obtain an
inequality:

Ei(L) − 2Hi(L) <= epsEi(L) (2.4)
Remember that L is the period of the signal. This means that several

values of L can satisfy equation 2.4 for several given eps values, meaning there
are several “candidates”. The smallest eps value is the one that minimizes
the relationship 2.4. The detection operation mode works by down-sampling
eight times (details of the reasons for this value are not given) to obtain a first
value of L, which reduces the computational cost. Additionally, once an L that
minimizes the “eps” equation is found, some verifications are performed before
launching calculations within the neighborhood of L at full sampling.

2.2.2 ATA - Pitch Correction
Once pitch tracking has been performed, pitch correction is carried out, corre-
sponding to step 67 of the patent. The difference between the actual pitch and
the expected pitch (the integer part of the pitch in the MIDI scale) provides
the correction factor. This correction factor is passed through a smoother fil-
ter that depends on a variable called Decay, which ranges from 0 to 1. For
Decay=0, the correction is immediate, while for Decay=1, the correction takes
400ms. The user interface in ATA (as shown in Figure 2.6) allows control of
pitch correction through two parameters, Flex Tune and Retune Speed. Re-
tune Speed controls the Decay variable, and Flex Tune serves as a threshold for
correction. This means that if the pitch curve is over given value of Flex Tune
in the neighborhood of a note, then the pitch curve is corrected. The larger the
Flextune value (maximum = 100), the less modification is applied. If Flextune
is set to zero, all points of the pitch curve are corrected. In the ATA manual,
it is quoted verbatim as follows: Retune Speed allows one to “set the rate at
which the input audio is moved to target pitches,” while increasing Flex Tune
is used “to allow more pitch deviation, usually for expressive purposes.”

2.2.3 ATA - Pitch Warping
The pitch warping process in ATA is very similar to the PSOLA process. Al-
though Hildebrand has publicly denied using that algorithm, the technique is
very similar to the OLA technique (predecessor of PSOLA). It is described in
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Figure 2.6: ATA interface, protected by copyright ©. We can appretiate the
retune-speed and flextune parameters control.

steps 46 to 50 and involves changing the playback rate according to the adjust-
ment factor. If it is greater than one, it accelerates, so a cycle is continuously
stored in memory that can be repeated when the rate needs to be increased
(going sharper). Conversely, the excess cycle is deleted (going flatter).

2.2.4 ATA - Additional Patents
One of the issues not addressed in the main patent is how to guarantee a good
resolution in low frequencies. It is discussed in another patent titled “Method
and Apparatus for Digital Filtering of Audio Signals” [Hildebrand, 1996]. It is
a high-definition and low-frequency fidelity equalization method. The method
is based on frequency warping, which involves mapping the z-domain (of the
z-transform). This domain is transformed through a mathematical process
into another domain called warp-Z, which complies with certain equivalences
with the z-domain and follows the filter laws that apply initially. This domain
change allows high definition in low frequencies and low definition in high
frequencies. On the one hand, the presumed use of this filter would improve
the sound response through equalization, attenuating unwanted components
of the spectrum, so it could be applicable during the pitch warping. On the
other hand, this algorithm is compatible with the calculation of L (in the pitch
tracking), which presumably could be used to achieve greater definition in the
range of interest in low frecuencies.

Furthermore, there is a third patent titled “Virtual Tuning of a String
Instrument” from 2012 that uses the information present in [Hildebrand, 2014],
where the term “adjustment factor” is coined, as used by us in the previous
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subsections.
The set of capabilities of ATA allowed its expansion in the music industry.

However, possibly due to being patented, there have been very few advances
in the science behind ATA, and the fact that it is patented has hindered the
advancements that could have occurred. Some of the questions that could
have been studied further are: If different pitch correction algorithms are used,
what characteristics should such techniques have? What occurs musically if
they are adaptive, meaning they depend on the present and past of the signal?
What would be obtained musically, and what would be useful musically and
technically (sound engineer approach)?

2.3 Autotuning Musical Analysis
In this section, we will briefly examine the changes implemented by Antares
Autotune, as the primary effect of autotuning, exploring signal waveform, spec-
trum, pitch and formants. We take an audio file (realrt-yvesmontand) and
apply extreme and minimal correction presets. We observe that the changes
in the signal waveform are almost non-existent, and latence for ATA Artist
(the actual real-time module) is 3 ms, as shown in figure 2.7.

Figure 2.7: Signal shape is mostly preserved for the most transparent case and
latence is equalt to 7.4 ms using ATA with extreme correction

Regarding the formants, as depicted in Figure 2.8, it can be observed that
the transparent configuration (Retune Speed = 400ms, Flextune = 0) (center)
of ATA preserves the formants of the original version (left). In contrast, the
extreme correction (Retune Speed = 0, Flextune = 0) (right) introduces a con-
sistent distortion across all formants. It can be noted that the variation of each
formant is greater when the extreme correction is applied (at the beginning of
a note when the singer is farther from the corrected note), and then decreases
as the original pitch approaches the corrected pitch notes (when the singer is
closer to the correct note).
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Figure 2.8: Original sound vs autotuning. Three cases are presented using a
standard window on Praat (10 ms): original sound (left), sound treated with
the most transparent configuration of ATA (center), and sound treated with an
extreme autotuning configuration (right). We observe that the signal shape is
preserved for both non-transforming and extreme-autotuning configurations.
In the transparent case, F0 and formants are preserved. In the extreme tuning
case, F0 is warped to have sharp transitions. As this new curve is imposed,
formants are increasingly modified with more correction (F0 - int(F0)), result-
ing in variations in the formants for each note.

Regarding the transitions, according to Figure 2.9, it can be seen that in
the most transparent configuration (center), all regions of the spectrum are
well preserved relative to the original sound (left). Concerning the extreme
correction (right), it can be observed that the extreme correction affects all
harmonics. Furthermore, there is dispersion of f0 in all harmonics during the
transition. We define f0-dispersion as the loss of the f0 value in the neighbor-
hood of a given time mark, so f0 candidates are no longer concentrated in given
values but smeared over all the frequencies, exhibiting as vertical segments at
the time mark.

2.4 Pitch correction on non-vocal applications
Although pitch correction is primarily known thanks to ATA and Melodyne,
there are other types of applications that use pitch correction algorithms. In
fact, Hildebrand himself has a patent that employs the same algorithm for
pitch correction in the electric guitar [Hildebrand, 2014]. But beyond that
algorithm, there are others that are more innovative and interesting, being
applied to human-computer interfaces to improve the response of transducers
and the experience of playing digital instruments. These interfaces are mostly
known as New Interfaces for Musical Expression (NIME), which have their own
field of study and exploration, addressing issues such as the level of difficulty
and learning with use, the capacity for exploration and control, among others
[Orio et al., 2001]. Pitch correction methods applied to NIME are designed to
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Figure 2.9: Original sound vs autotuning. The same three cases are presented
using a larger window (100ms): original sound (left), sound treated with the
most transparent configuration of ATA (center), and sound treated with an
extreme autotuning configuration (right). No differences are observed for the
non-transforming case. However, for the extreme-autotuning configuration, we
can observe how the sharp transitions between generat a dispersion over F0
during the transition.

enhance the musical experience on those digital instruments with a physical
interface.

Cantor Digitalis [Feugère et al., 2017] [Feugère, 2013] [Perrotin and D’Alessandro,
2016] is a digital instrument developed by the Lutherie-Acoustique-Musique
group at the Institut Jean Le Rond D’Alembert; it is a vocal synthesizer that
uses a graphical interface for a Wacom tablet. The data obtained on the tablet
is corrected based on stability conditions and control parameters (set by the
user) that modify the speed of the imposed correction. Additionally, the cor-
rection method employs an adaptive function, which is innovative compared to
the other methods mentioned in this manuscript. This is particularly relevant
because, unlike the other methods, it allows a transition based on the stability
of the note and a variable transition time.

In the following section, we will address what was acclaimed as an inno-
vation in pitch correction methods by its authors [Perrotin and D’Alessandro,
2016], the Dynamic Pitch Warping method, an algorithm for graphical correc-
tion of pitch. The novelty of this method lies in its three control variables,
instead of the two (retune speed and flex tune) used in ATA. The use of sys-
tems like DPW can provide insights into the creation of new autotune-like
effects.
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2.5 Dynamic Warping Function for Pitch Cor-
rection

The pitch correction method based on its graphical position in a table, Dy-
namic Pitch Warping (DPW) [Perrotin and D’Alessandro, 2016], was de-
veloped to improve the intonation of the vocal synthesizer Cantor Digitalis
[Feugère et al., 2017]. The name might be confusing because it contains the
term “Pitch Warping,” which generally refers to the process of vocal transfor-
mation (time-based techniques like ATA, time-frequency techniques like the
vocoder WORLD, or others). From now on, we will use only the abbreviation
DPW; however, we recommend renaming the method to Dynamic Warping
Function for Pitch Correction.

Now we provide a general explanation before going into detailed explana-
tions of the method. The method follows the same pitch transition format
explained in Figure 2.4. We assume we have a pitch tracker that provides a
pitch signal and a vocoder to impose the expected pitch. The DPW method
acts over the pitch signal, it first checks if the pitch signal is stable. The
stability condition is that the pitch remains within a specific interval during
a critical time, as shown in Figure 2.10 a). If the condition is fulfilled, then
a correction is applied progressively, as shown in Figure 2.10 b). The pitch
curve varies, contouring a melody, so the adaptive function warps the curve to
ensure the initial and final points are in-tune notes (in MIDI scale, integers),
as shown in Figure 2.10 c). The stability condition and the transition time are
set by the user. However, the DPW function depends on the pitch curve and
is calculated at the place where the note was considered stable.

Figure 2.10: Schema for the purposes of DPW. The DPW function involves
a stability condition, a correction, and a warping for convergence on in-tune
notes

2.5.1 Review of the DPW adaptive function
The correction with DPW [Perrotin and D’Alessandro, 2016] was applied ini-
tially to the position data from a Wacom tablet; this data is tracked (in mi-
crotonal midi scale) in MAX to synthesize a voice with the corresponding
fundamental frequency. The position data is calibrated and mapped within
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a linear scale of semitones in the chromatic scale across a range of several
octaves.

Intonation correction is applied to an f0 (pitch) signal obtained from a pitch
tracker (a topic we will discuss later). This out-of-tune f0 curve, denoted as
x, is the input to the DPW system. DPW improves x by adjusting it within
a MIDI scale, where the numbers represent the correct notes.

First, let us consider that we are in the neighborhood of any note; for
simplicity, we will take a relative position of 0 to denote any note in the
MIDI space. The next and previous notes will be δ and −δ, respectively, as
shown in Figure 2.11, where δ separates the tuned notes. In the MIDI scale,
δ = 1, meaning the next and previous notes are one semitone above and below,
respectively. Let x be the input and y(x) the output. We trace an arc that
goes from −δ to δ, passing through a given point (the out-of-tune intentional
note) placed in the neighborhood of 0. The curvature of the arc is γ. This is
the adaptive function described by [Perrotin and D’Alessandro, 2016] in Figure
2.11.

Figure 2.11: The arc of curvature for the dynamic pitch correction method,
took from [Perrotin and D’Alessandro, 2016]

The correction is applied only if a stability condition is met, ensuring that
only intentionally sung notes are corrected. A value of x is considered genuinely
intentional if it remains within a microtonal interval (Id) for a given period
(critical time Tc), as shown in the pink interval in Figure 2.12. The correction
is triggered by modifying the curvature γ of the adaptive function, changing it
from a straight line to a curve that passes through the considered stable point,
during a transition time Tt, as shown in the blue interval in Figure 2.12. Once
the adaptive function is achieved, it ensures convergence to tuned notes by
moving up or down the MIDI scale, as shown in the green interval in Figure
2.12.

Now, we will perform the mathematical calculation. According to [Per-
rotin and D’Alessandro, 2016], such an curvature arc x = g(y) would have a
curvature γ and could be written as :
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Figure 2.12: Illustration of the dynamics of DPW. The input f0 curve (green
curve), x, is stable within a detection interval Id during the critical time Tc

(pink region). The correction is triggered during the transition time Tt (blue
region). The input f0 can vary continuously during the transition time. It stays
there (grey region time interval) until it moves to reach the next semitone
(integer) on the pitch scale (black curve) where input and output converge
(green region).

g(y) = Aeγ(y+B)+C (2.5)

The limit condition can be rewritten: g(±δ) = ±δ, so we obtain a system
of equations that leads to:

C = −δ
(
1 + 2

e2γδ

)
(2.6)

A = 2δ eγ(δ−B)

e2γδ−1 (2.7)

When replaced in 2.5, this makes the dependence on B disappear. If the
input is in the neighborhood of an in-tune value (integer), then it is considered
tuned, and the output should be equal to the input, that is, x = g(y) = y. In
that way, the discontinuity for γ is avoided and we write:

g(y) =
{
δ
[
2 eγ(δ+y)−1

e2γδ−1 − 1
]
si γ ̸= 0

y si γ = 0
(2.8)

Let us remember that x = g(y) is the input as a function of the output y;
therefore, the DPW function will be the inverse function of g(y), denoted as
yE(x):
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yE(x) =
{

1/γ
[
log
[
(e2γ − 1)(x

δ
+ 1)1

2 + 1]
]

− δ si γ ̸= 0
x si γ = 0

(2.9)

The purpose is that once applied, the function yE makes the output is in
tune for an out-of-tune input. In our scale where 0 represents the in-tune note,
this means that yE(x0, γ0) = 0, so:

γo

[
log
[
(e2γo − 1)(xo

δ
+ 1

]]
)1

2 + 1] − δ = 0 (2.10)

xo = δ
[
2 e

γoδ − 1
e2γoδ − 1 − 1

]
(2.11)

Doing a change of variable u = eγoδ:

xo = δ
[
2 u− 1
u2 − 1 − 1

]
(2.12)

That we can write as a second order system, and solve it:

xo

δ
u2 − 2u+ (1 − xo

δ
) = 0 then u = δ ± xo

δ + xo

(2.13)

But for this part of the equation γo ̸= 0 always, and so u = eγoδ ̸= 1. Then,
the only solution possible is u = δ−xo

δ+xo
. Using again u = eγoδ, we obtain γo:

γo = 1
δ
log
(
δ − xo

δ + xo

)
(2.14)

Where δ is the value that separates the tuned notes, this means that δ = 1
for pitch in the midi scale. γo is the value of γ that makes an output yE in tune
for a given input x out-of-tune, so γ can be considered the factor of correction.
The value of γ can be calculated each time that the pitch stays in one interval
(Id) during a critical time (tc). The value of γ is calculated from the inverse
function, that is:

γ = 1
δ
log
(δ − xo

δ + xo

)
(2.15)

With the value from 2.15, the output can be calculated through yE, gen-
erating a tuned output. When the input moves to the previous or next note
(±δ), it perfectly converges to an integer value (tuned note), satisfying the
boundary condition.

Once the correction is triggered, the value of γ varies, changing from a
straight line to a curve defined by yE during a transition time Tt at constant
time steps. In the case of MAX, these time steps correspond to the inverse of
the control rate of MAX, which is 1 ms.

Finally, we outline a summary of the key concepts to consider for DPW:
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• The adaptive function is always localized with respect to a any reference
note that corresponds to zero in our mathematical calculation.

• Only stable notes (within an interval Id for more than the Tc interval)
activate the correction algorithm.

• The transition between an out-of-tune note and a tuned one is done by
modifying the γ value during the transition time interval (tt) in constant
time steps.

• We didn’t mention before, but if no correction is needed, the input passes
directly to the output, so DPW remains unnoticed.

2.5.2 Differences between DPW and ATA

The parameterization of the pitch correction method differs between ATA and
DPW. While in both cases, it depends on triggering conditions, the transition
to a tuned note, and the potential deformation of the curve, the ways of exe-
cuting such actions are different in these two methods. ATA’s patents do not
mention the triggering method; however, by checking ATA’s online documen-
tation, it is found that triggering is done with a proximity condition to the
tuned note (integer number in the semitone scale). If the input note is within
a specific microtonal interval, called flextune, correction is initiated; otherwise,
nothing is done. In the case of DPW, triggering is based on a stability condi-
tion. If a note is within a certain detection interval Id for a time interval tc,
then correction is initiated.

The correction in ATA is done by modifying the adjustment factor with
a smoother filter that transitions for the desired duration. In DPW, the cor-
rection is made by varying the value of γ at regular steps within the imposed
time interval. While in ATA, only the adjustment factor is added, in DPW,
the pitch change is passed through the adaptive DPW function, yE, which
warps, the pitch transitioning it to the next note (whether higher or lower), a
tuned note is encountered.

2.6 Proposal for Defining Pitch Correction Cases

While the use of autotuning is widespread, and it is undeniable that almost
any modern production includes it in vocals, there is no, whether due to ap-
preciative reasons or questions about its use, a musical-technical language that
tells us the type of autotuning we are using. Defining concepts related to the
uses of autotuning will allow us to open the door to more varied and even more
musically interesting uses.
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2.6.1 Extreme Case
When using an autotuning-type effect, two main objectives can be pursued:
either one wants to hear the distortion, or, on the contrary, vocal deficiencies
are to be masked to improve the melody’s tuning. The use that exploits the
distortion generated by the “instantaneous” transition will henceforth be re-
ferred to as extreme autotuning. This configuration refers to parameterization
with a minimum transition time possible, whether by the software used as it
is schematized in Figure 2.13. The goal of this type of configuration is to hear
the distortion. In fact, its definition already opens up new questions about
where to place autotuning within our perceptual characterization of vocal ef-
fects. That is, does vocal quality get affected by the melody or by vocoder
technique—a question that will be explored in Chapter 3.

Figure 2.13: Schema for extreme correction

2.6.2 Transparent Case - Expressive Correction
The other type of use is when one aims to improve tuning. In this case, the goal
is to enhance the singer’s tuning without necessarily hearing the distortions
caused by melodic deformation or the vocoder. This type of use is called trans-
parent autotuning. In this case, the same question arises: iIs the pitch-warping
technique (vocoder type) affecting vocal quality, or is it just not enough for the
autotuning effect to be classified as an effect that changes vocal quality? we
will explore this question in chapter 3. Transparent autotuning does not have
a defined configuration; it depends on what the user is looking for. However,
it can be said that it depends mainly on the transition time.

Now, what is expected to be done in the transparent case? The goal is to
correct the note without hearing distortions. However, this depends on the
input pitch signal. Therefore, we have gone for the most general classifica-
tion possible. Basically, we find three types of melodies that we have defined
as: staircases, vibratos, and free-paths (for example a glissando). They are
schematized in Figure 2.14, where we illustrate the out-of-tune input and the
expected improved in-tune output.

We can describe them as it follows:

• Staircases are intentional notes that are stable over time and clearly
define a melody in a song. These notes can be more or less in tune
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Figure 2.14: Schema for transparent correction cases: staircases, vibratos, and
free-paths (for example a glissando). Input in black, and expected improve-
ment in blue

(sharper or flatter than an integer semitone), and the goal of transparent
correction will be to position them in the correct tuned notes (integer
value).

• Vibrato is a common ornament in Western classical music [D’Alessandro
and Castellengo, 1994], and it can be defined as a periodic modulation of
f0 [Sundberg, 1994]. It typically occurs within intervals smaller than two
semitones and at frequencies below 5.5 Hz. Since a periodic signal can
be seen as a sum of sinusoids, we can use the vibrato category to include
any pitch oscillation type, completing a full period covering all possible
vibratos. Vibratos can be centered on an out-of-tune note, so our goal
with a pitch correction is to shift the vibrato and align it to make it
centered on a correct note. [Seashore, 1931] quoted: “a good vibrato
is a pulsation of pitch, usually accompanied by synchronous pulsations
of loudness and timbre, of such extent and rate as to give a pleasing
flexibility, tenderness, and richness to the tone.”

• Free-paths refer to free patterns that may be present as longer ornamen-
tation in the transition between notes or may correspond to a glissando
that is part of the melody and should pass without significant modifica-
tion.

If the transparent correction is capable to deal with these cases with just
one configuration, then we can refer to it like expressive correction.

2.7 Testing over pitch signals
In this section, we will go through different pitch correction scenarios. For
this purpose, we will use pitch signals to test both ATA and DPW methods
and make the differences between the two methods visible. Initially, we aim to
illustrate the distinctions between the methods using the most straightforward
case: correction for constant note out of tune with a constant pitch shift. After,
we will cover several cases for extreme and transparent correction with ATA,
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and extreme and expressive correction with DPW, varying the corresponding
parameters to each method.

We have utilized pitch capture through a linear scale using a Wacom tablet
compatible with the Cantor Digitalis digital instrument. Thus, we have inter-
nally modified the information flow of Cantor Digitalis, making the synthesizer
receive a direct pitch signal from the tablet in the semitone scale, without go-
ing through the correction process included in the original version of Cantor
Digitalis. In this way, a detuned voice is synthesized as is its shown in Figure
2.15.

Figure 2.15: Generating sounds

This signal can be analyzed in Praat, and it is possible, as explained in
Chapter 3, to generate a file with pitch information in various formats from
Praat 3. Praat has already been the subject of study among other pitch trackers
[Babacan et al., 2013], such study shows that Praat is very precise.

To use Praat, we apply the function “Analyse Periodicity/Pitch” over
an audio file, it generates the main pitch curve, including all f0 candidates.
Then, we use the function “Analyse/Down to PitchTier” to generate a Praat
file with the most suitable f0 candidates at specific time marks and we save
this PitchTier file. Next, in a Python script, using the “interp1d” function of
the “scipy.interpolate” package, we interpolate the PitchTier’s time scale to
match the actual audio’s time scale. As a result, we generate a pitch signal in
WAV format with the same time scale as the actual audio file.

Figure 2.16: Tracking pitch from an audio file to generate a pitch .wav file

To use ATA, we first import the audio file into a digital audio workstation
(DAW) such as Ableton or Reaper, where we implement ATA with a custom

3https://www.fon.hum.uva.nl/praat/
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configuration and save the autotuned audio file. Next, we use Praat to perform
a pitch analysis on the autotuned file, as shown in Figure 2.16, and we save
the PitchTier file.

The ATA documentation hints at how the pitch tracking and vocal trans-
formation are performed, but there is very little information about how the
pitch correction is carried out. Extreme correction is the only use case explic-
itly described in the patent: the transition time is zero, making the output
pitch correspond to the integer part of the input pitch. The parameter flextune
is not mentioned in the patents, and we do not have access to the ATA source
code. Therefore, the path shown in Figure 2.16 is the most practical and pre-
cise way to obtain information about the resulting pitch correction when using
ATA (the only limitation being the analysis window length, which is 10 ms in
Praat).

To use DPW, We take the pitch signal file (from praat) and implement
the DPW correction in MAX, thus obtaining an output pitch file. Then, we
use the World 4 5 [Morise et al., 2016] [Morise, 2016] [Morise, 2015] vocoder to
generate the output audio (Figure 2.17).

We can compare the DPW-corrected pitch obtained in MAX with the pitch
analyzed again by Praat over the World DPW-corrected audio. There is no
difference, which verifies that Praat is precise and does not distort the pitch
values.

Figure 2.17: Imposing a given pitch on an audio file

2.7.1 DPW full implementation and issues comparing
ATA and DPW

We have summarized the process to go directly to the testing phase, but such
a process is not as straightforward to deduce. Here, we outline the challenge
related to (i) implementing a pitch correction method and (ii) the comparison
between pitch correction methods.

2.7.1.1 DPW real-time implementation

For real-time implementation, a pitch-tracker and a vocoder in real-time are
required. The limitation lies in the precision and speed required. DPW is
implemented by adapting the existing MAX code for Cantor Digitalis. DPW

4https://github.com/mmorise/World
5https://www.isc.meiji.ac.jp/ mmorise/world/english/
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Figure 2.18: Real-time implementation of DPW

is isolated from the base software and adapted to a loop with the pitch-tracker
and the vocoder, as shown in Figure 2.18.

Real-time implementation of DPW faces several issues:

1. In MAX, pitch trackers and vocoders are black boxes. We need to try all
the available systems mixed between them. We used the following four
pitch trackers: yin∼ [de Cheveigné and Kawahara, 2002] 6, vb.pitch∼
[Bohm, 2022] 7, sigmund∼ 8, and fzero∼ 9 [Zbyszynski et al., 2013]; and
the following seven vocoders: pitchshift∼ 10, freqshift∼ 11, fbinshift∼
12, gizmo∼ 13, hilbert∼ 14, psych∼ 15, supervp.trans∼ 16, and retune∼
17[Bernsee and Gökdag, 2016]. This results in 28 different possible com-
binations of pitch tracker + DPW + vocoder. Considering that each
“black box” works differently and receives different types of data, this
process is very time-consuming.

2. Pitch tracking in the MAX architecture is not “instantaneous” as in ATA.
We can improve latency, but we lost rapidly quality. Only the fzero pitch
tracker can work with latency values below 1024 samples, but it results
in poor quality. The latency problem keeps us from having a high-quality
real-time implementation.

3. Vocoding in the MAX is not as simple. On the one hand, latency varies
according to the device used. In fact, for each combination of pitch
tacker+vocoder, we have to receive pitch and audio signals differently

6https://forum.ircam.fr/projects/detail/max-sound-box/
7https://vboehm.net/downloads
8https://github.com/v7b1/sigmund 64bit-version/releases
9https://docs.cycling74.com/max8/refpages/fzero∼

10https://docs.cycling74.com/max8/refpages/pitchshift∼
11https://docs.cycling74.com/max8/refpages/freqshift∼
12https://docs.cycling74.com/max8/refpages/fbinshift∼
13https://docs.cycling74.com/max8/refpages/gizmo∼
14https://docs.cycling74.com/max8/refpages/hilbert∼
15https://ismm.ircam.fr/maxmsp-externals/
16https://forum.ircam.fr/projects/detail/supervp-for-max/
17https://docs.cycling74.com/max8/refpages/retune∼
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(adjustment factor, rate between input/output pitch, difference in semi-
tones, difference in Hertz); even some cases, the pitch signal must be
delayed. On the other hand, some vocoders are slow or unresponsive
to a variable transposition and we cannot know it without testing them
because MAX does not provide full scientific support. Again, to en-
sure the problem lies with the vocoder, all the possible combinations
(pitch tracker+vocoder) were done, so this part of the thesis took a lot
of time. We hypothesized that some can have some kind of smoothing
filter because they are slow-responsive even for the extreme correction
pitch signal.

In the end, we did not succeed in developing a high-quality real-time imple-
mentation. However, we provided a online implementation that applies the
DPW correction over a signal with a 2048-sample delay. This means it is not
possible to use in real time, but at least it works online. This implementation
uses the most accurate pitch tracker of the ones tested: fzero∼ (set with @on-
setamp 0.0001 and @onsetpitch 0.001) and retune∼ which does not present dis-
continuities nor octave jumps. The best result was obtained with the vocoder
retune∼ a Max MSP object based on ZTX software (Precision Time Stretch-
ing and Pitch Shifting) [Bernsee and Gökdag, 2016] a patented method as
ANTARES, whose implementation requires 1024 samples. Although this real-
time MAX implementation shows that the DPW method works in real-time,
faster and more efficient pitch trackers and vocoders, like those of ATA, would
be needed to implement a real-time DPW system suitable for live singing.

2.7.1.2 DPW non-real-time implementation

Also, we worked in a non real-time implementation; for this purpose, we used
various vocoders: world, Circe, retune . A wrapper for each vocoder was
treated to implement the DPW corrected pitch file. The better quality was ob-
tained with the vocoder World, so all the examples in this chapter have sound
support generated using World [Morise et al., 2016] [Morise, 2016] [Morise,
2015] as shown previously in figure 2.17.

2.7.1.3 Issues comparing ATA and DPW

Comparing ATA and DPW is not straightforward because ATA’s pitch track-
ing and ATA-pitch warping methods cannot be used isolately. The related
documentation (patents and manuals) is insufficient for replicating ATA. Only
the extreme correction case is replicable, as explained in detail in [Hildebrand,
1998]; this case happens when the time transition equals zero, making the
output equal to the integer part of the input. This problem has been solved
partially using the high-quality pitch tracker: praat. Nevertheless, a sonorous
comparison using the ATA-pitch warper with both ATA and DPW pitch cor-
rection methods is impossible. Only this is possible when using an alternative
high-quality vocoder compatible with variable transposition, such as World.
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2.7.2 Constant out-of-tune note with constant pitch shift
With these tests, we will be able to observe several differences between the
ATA and DPW methods. We use an out-of-tune note with a constant pitch
shift for this test. Both DPW and ATA allow correcting the signal within a
transition time. In the case of ATA, it is referred to as the retune speed, and
in the case of DPW, it is denoted as tt, but for practical purposes, they are
very similar. The difference lies in the fact that DPW has a critical time, tc, to
assess the stability of the signal, so the correction is not triggered until after
the time tc has elapsed.

For our example, we use a constant and out-of-tune input signal with a
constant pitch shift of 0.15 ST, as shown in Figure 2.19, where the green
line represents the input, and the red and blue lines represent the corrections
with ATA and DPW, respectively. The choice of these colors will continue
throughout this subsection. The value of retune speed (for ATA) and tt (for
DPW) is the same and is set to 0.5 s. DPW is configured with Id = 0.1 ST
and Tc = 0.5 s. The transition time and critical time values have been chosen
large for visibility purposes. Critical time stands out as the primary distinction
between the two methods. Although it introduces a triggering delay in DPW,
we observe comparable outcomes for both corrections following that initial
trigger.

Figure 2.19: DPW correction (blue curve) and ATA correction (red curve) of
a constant input pitch (green curve). The difference between both methods in
this case is due to the DPW’s critical time (different from zero).

2.7.3 Extreme correction with zero transition time pa-
rameter

As mentioned before, extreme correction is the configuration with an instan-
taneous transition, where the transition time must be the minimum allowed
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by the algorithm. To achieve this, we need to set the configuration to a retune
speed = 0 and a tt = 0.001s, which are the minimum values allowed in ATA
and DPW, respectively. Regarding triggering, in ATA, we choose the extreme
value of flextune = 0 so that all notes are corrected. In DPW, the parameters
are a critical time equal to tc = 0 with a interval of detection Id = 0.01, so the
correction is triggered for any note, regardless of its stability. This configura-
tion makes the two methods virtually equivalent. Two test signals are chosen
for this test: the first one is a glissando, and the second is a melody taken
from [Perrotin and D’Alessandro, 2016]. We can see the results in Figure 2.20
and 2.21. The fo-signal treated with DPW is drawn in blue, the one treated
with ATA is in red, and the original is in green.

Figure 2.20: Extreme correction for a glissando. By choosing the minimal
critical time in DPW, we can achieve an extreme DPW correction (blue) that
closely resembles the extreme ATA correction (red).

2.7.4 Transparent and Expressive Correction

In the following sections, we will compare the parameters between ATA and
DPW to understand how it is possible to achieve transparent correction in both
cases and determine whether achieving expressive correction is feasible. We
use the term “expressive correction” to denote that oscillatory ornaments and
the free path are transposed and preserved while staircase notes are corrected.
The idea is to explore the parameters that control activation, transition, and
pitch curve deformation both individually and in combination. This will help
us understand the changes generated in the test signal of Figure 2.21, as it
contains the three basic types of vocal pitch signals (staircases, vibrato-like
ornaments and freepath). Our goal is to identify optimal configurations with
both methods and then compare these configurations to determine which one
is better.
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Figure 2.21: Extreme correction for an expressive melody. The expressive
melody contains staircase notes, vibrato, and free-path notes, helping to show
how extreme correction functions in various scenarios with both DPW (blue)
and ATA (red) systems.

2.7.5 Pitch Correction with ATA

ATA comprises two parameters that control its pitch correction algorithm:
retune speed and flextune. As we have mentioned, in principle, retune speed
should be equivalent to the transition time tt of DPW. We will apply different
values of retune speed to observe how the performance of pitch correction
changes on the test signal. The retune speed values we use are 0, 15, 50,
100, and 200 ms. The correction results can be observed in Figure 2.22 and
following the given order from up to down.

When examining the correction for staircase notes, it becomes apparent
that the optimal settings are 50 and 100 ms. For values of 0 and 15 ms, the
correction is too fast, resulting in the loss of the original transition shape, while
for 200 ms, it is too slow.

Regarding small vibratos, it is evident that these are eliminated in config-
urations with values of 15 ms and 0 ms, while they are preserved for values of
50 ms, 100 ms, and 200 ms. For large vibratos, it can be observed that they
are not treated correctly in any case, presumably because they depart from
the neighborhood of integer values. For values of 0 and 15 ms, the vibratos
are shifted towards the two integer values, causing the vibrato to widen. Since
the perceived frequency of the vibrato is the median between the notes, what
is perceived is a note halfway between the two semitones 50 and 51. In other
cases (50, 100, 200 ms), it can be seen that the correction trigger is slightly
different, but the vibrato fails to be adequately corrected.

For the free path part, the best result is obtained with 200 ms; otherwise,
a gradual transition from extreme correction to a smoother correction can be
observed, ranging from 0 to 200 ms. This is a proof of the trade-off between
free-paths preservation and overall correction with the retune speed parameter.
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Figure 2.22: Correction using different values of retune speed on ATA: RS =
0, 15, 50, 100, and 200 ms (from top to bottom). This parameter acts as a
smoother of the curve.

Now, we will analyze a broader scenario examining the functionality of the
flextune parameter. In the first case, we keep the retune speed value constant
and equal to zero, varying the flextune value between zero and 40, as shown
in the results in Figure 2.23. The results are depicted in red for flextune
= 0 and violet for flextune = 40. As observed, the flextune parameter allows
for movement within the range defined by its value, in this case (+20,−20)
cents. This results in preserving smaller ornaments, those within the range
of (+20,−20) cents relative to any given integer note. Flextune significantly
enhances the preservation of the expressive gesture.
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Figure 2.23: Correction with ATA, at zero retune speed and varying flextune:
0 cents (red) and 40 cents (violet). Notes within the flextune threshold are not
corrected, so the larger the flextune value, the less precise the correction.

Figure 2.24: Correction with ATA, at retune speed equal to 15 ms and varying
flextune: 0 (red) and 30 cents (violet)). Notes within the flextune threshold are
not corrected, so the larger the flextune value, the less precise the correction.

In the upcoming example, we employ a non-zero retune speed value of 15ms
along with flextune values of zero (depicted in red) and 30 cents (depicted in vi-
olet), as illustrated in Figure 2.24. As observed, akin to the previous example,
ornaments smaller than the flex-tune range (+15,−15) cents can be retained
in the output. In this regard, we can observe how the previous case (flex-
tune = 40 and retune speed = 0) exhibits greater preservation of the gesture
than this case, showing that flextune improves ornamentation preservation and
correlates with less reactivity.

Now, we proceed to test a bigger retune speed than the precedent two
cases, set at 50 ms; and flextune set at 30 and 60. As illustrated in Figure
2.25, the larger flextune value results in reduced reactivity, and consequently,
the vibrato remains uncorrected. At the same time the free-path is better
preserved. On the other hand, the smaller retune speed in the given range
shows more precision correcting ornamentation and more rapidity correcting
staircases but is worse for the free-path because it gets more distorted. This is
proof of the trade-off between free-paths preservation and vibrato correction
precision with the flextune parameter.

Also, we examine the implications of varying retune speed while keeping
flextune parameter fixed. We use a moderate flextune = 40, and vary retune
speed = 0, 50, 100, 200 ms. The corresponding outcomes are depicted in Figure
2.26. For the given value of flextune, it can be observed that, in general, there
is a better ornaments preservation compared to when this parameter is not
used. However, the trade-off between the preservation of free paths and overall
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Figure 2.25: Correction with ATA, at retune speed equal to 50 ms and varying
flextune: 30 (red) and 60 cents (violet)). Correction with ATA, at retune speed
equal to 15 ms and varying flextune

Figure 2.26: Correction using different values of retune speed on ATA, RS=
0, 50, 100, 200 ms (up to down) for the same flextune value (40 cents).

correction with the retune speed parameter still persists. In extreme cases, for
retune speed = 0, it can be noted that the free path is lost, while for retune
speed = 200, the correction on the staircase notes is excessively slow, resulting
in more than half of the duration of each note being perceived as undefined.
Visually, the best overall results are achieved for a retune speed = 50.

71



2.7.6 Pitch Correction with DPW
We have already seen in section 2.4.1 how the critical parameter tc works, so
for our first test, we use the transition time parameter tt, varying it between
100, 200, 400 ms for a tc = 100. This gives us the results shown in Figure 2.27.
As can be observed, varying the parameter tt allows us to smooth the pitch
correction, in the same way, the retune speed parameter does. However, it can
already be appreciated that both small and large vibratos are well preserved
and centered in 50. For DPW, the trade-off of the tt parameter lies between
the free path and the staircase notes (vibratos are preserved sufficiently well),
whereas for ATA, the trade-off was between the free path and overall correction.

Figure 2.27: Correction using different values of transition time in DPW (from
up to down: 100,200,400 ms), for the same critical time (100 ms)

Additionally, we conducted an experiment using a larger critical time of
250 ms (optimal according to [Perrotin and D’Alessandro, 2016]). We kept the
critical time fixed while varying the transition time between 25 ms and 200
ms, yielding the results shown in Figure 2.7. As observed, the critical time
acts as a trigger for the correction because the correction does not start until
the critical time has passed. The transition time acts as a smoother, similar to
how retune speed functions for ATA. Furthermore, the critical time parameter
adds an ornament at the beginning of each note step in the staircase region.
The slope is controlled by the transition time, as depicted in Figure 2.7; thus,
a smaller transition time results in a fast change, while a larger transition time
results in a slower pitch variation.
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Figure 2.28: Correction using different values of Tt in DPW (from up to down:
25,200 ms), for the same Tc (250 ms)

Figure 2.29: Correction using different values of Tc in DPW (from up to down:
100,150,250 ms), for the same Tt (50 ms)

Now we use a smaller transition time tt = 50 ms while varying the critical
time parameter tc = 100, 150, 250 ms. The results are shown in Figure 2.29.
We can see that the ornamentation due to the critical time changes significantly
with different critical time values. However, the slope depends on the transition
time, so it remains the same in all three cases. Additionally, the critical time
parameter allows for the correction of vibrato sections, making it a valuable
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tool for preserving vibrato ornaments. The configuration that achieves the best
trade-off between the different parts of the expressive melody is tc = 250 ms
and tt = 50 ms. From these results, we can now define optimal configurations
for ATA and DPW for theoretical pitch curves and proceed to compare these
configurations as done in Section 2.7.7.

Visualizing the changes due to the transition time and critical time vari-
ables is not straightforward. Therefore, we have created 3D examples to help
understand how these variables work, showcasing the most practical cases. Re-
garding the transition time variable, we vary it while keeping the critical time
constant at ct = 100 ms. This variation generates the surface shown in Figure
2.30, where the free-path region (between 10 and 15 seconds) can be visual-
ized. It can be seen that for small tt values, there is significant distortion. As
the tt value increases, the transition becomes slower, resulting in a smoother
curve. We can examine the staircase notes part. As shown in Figure 2.31, just
after the correction is triggered, there is a transition to the correct pitch; the
tt value controls the slope. As the tt value increases, the slope becomes less
steep. Finally, we can view the surface from a frontal cut in Figure 2.32, which
allows us to confirm our observations for the staircase and free-path regions
and to see that vibrato preservation is maintained while varying the transition
time.

Figure 2.30: Effect of varying transition time tt with a fixed critical time
ct = 100 ms with DPW. In the free-path region (between 10 and 15 seconds),
smaller tt values result in significant distortion. As tt increases, the transition
becomes slower, leading to a smoother curve.

Now we will vary the critical time while keeping the transition time constant
at tt = 50 ms. To begin, let us examine Figure 2.33. This graph shows the
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Figure 2.31: Effect of varying transition time tt with a fixed critical time
ct = 100 ms with DPW in the staircase notes part. The scope after releasing
each correction changes according to the transition time values.

Figure 2.32: Frontal view of the surface generated by varying transition time
for fixed critical time ct = 100 with DPW. While there is not much change
in the vibrato region, the staircase and free-path regions exhibit the changes
mentioned above
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Figure 2.33: Correction of the free-path using DPW as tc varies from 50 ms
to 250 ms, with tt = 50 ms. The changes in the pitch curve are discontinuous
when tc is varied. The free-path is better preserved for larger values of tc due
to the pitch curve in the free path not being stable enough to trigger a new γ

Figure 2.34: Correction of the staircase notes using DPW as tc varies from 50
ms to 250 ms, with tt = 50 ms. Similar to the free-path region, discontinuous
changes are observed. The critical time creates a lobe at the beginning of each
step, and the size of this lobe increases as tc increases.
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correction of the free-path as tc varies from 50 ms to 250 ms. The pitch curve
changes when tc is varied are discontinuous, unlike when tt is varied, which
results in gradual changes as seen in Figure 2.30. In Figure 2.33, it is also
evident that the free-path is better preserved for larger values of tc. This is
because the the free path pitch curve is not sufficiently stable to trigger a
correction, and therefore, the gamma calculation is not updated but remains
constant from the last region that triggered a correction.

Next, let us look at the graph corresponding to the staircase notes (Figure
2.34). Similar to the free-path region, a discontinuous change is observed here
as well. Additionally, it can be seen that the critical time creates a lobe at the
beginning of each step, and the size of this lobe increases as tc increases.

Finally, examining the frontal view (Figure 2.35) and posterior view (Figure
2.36 with time scale inversed), it can be verified that the highest number of
jumps and positioning errors of the vibrato occur at low tc values, while for
higher tc values, the vibrato correction varies less with tc.

Figure 2.35: Frontal view of vibrato positioning errors using DPW as tc varies,
with tt = 50 ms.

Remember that the parameter Id represents the detection intervals, defined
in code 2.11, where this parameter specifies a constant grid size that divides
the pitch axis but is not evaluated on the pitch curve itself. Reducing Id to a
smaller value will result in a stability condition that is difficult to satisfy, thus
decreasing the likelihood of note correction. Conversely, selecting a larger Id

will result in less precise correction, as it will be triggered depending on the
grid position and the note’s neighborhood. Varying Id causes the correction
shape to vary discontinuously and spontaneously, making it impossible to use
the detection interval value to control the correction. The impact of varying
Id can be observed from various perspectives in the following graphs: lateral
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Figure 2.36: Posterior view of vibrato positioning errors using DPW as tc
varies, with tt = 50 ms.

(Figure 2.37), frontal and posterior(both in figure 2.38), where we have set the
values of tc and tt as recommended by 2.11 and then varied the parameter Id

using the reference code.

Figure 2.37: Lateral view when varying Id with constant tc and tt.
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Figure 2.38: Frontal (left) and Posterior (right, with inversed time scale) view
when varying Id with constant tc, tt

2.7.7 Comparison between ATA and DPW
The optimal configurations for ATA (retune speed = 100 and flextune = 40)
and DPW (tc = 200 ms, tt = 50 ms, Id = 0.1 ST) are shown in Figure 2.39,
along with the error concerning the ideal signal that should be achievable. It is
evident that, in ATA, simultaneously achieving optimal correction for vibrato
and free path is not possible. The optimal result is a moderate configuration
of ATA that performs both tasks reasonably well. In the case of DPW, it can
be observed that the trade-off lies between the distortion in the free path and
the total treatment time of the staircases. Conversely, vibratos are effectively
corrected. Next, we will estimate the error that these configurations present
concerning the ideal signal that should be obtained with them according to
Figure 2.39.

We can quantify the disparity between two curves using different metrics
and have introduced two here. Firstly, the Mean Squared Error (MSE) gauges
sensitivity to quadratic errors by computing the difference of squares. This
method assigns more significance to larger errors, offering a measure of variance
between the curves. Secondly, the Mean Absolute Error (MAE) provides an
average measure of the magnitude difference between the curves. In contrast
to MSE, MAE does not magnify larger errors. We express these concepts using
the following equations:

Mean of MSE = 1
N

N∑
j=1

(
1
nj

nj∑
i=1

(yij − ŷij)2
)

(2.16)

Mean of MAE = 1
N

N∑
j=1

(
1
nj

nj∑
i=1

|yij − ŷij|
)

(2.17)

Where N represents the number of samples, nj is equal to 1, because there
is always a comparison of one curve with the reference, j represents the curve
to compare (ATA or DPW), yij are the values of the original curve j, and ŷij

are the values of the comparison curve j.
Our example serves to illustrate three types of pitch modification. The

initial segment in the 0 < t < 5 time range exhibits a signal resembling a stair-
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Figure 2.39: Correction for the same Tt (50 ms) using flextune at 40 cents for
ATA and Tc at 200 ms for DPW and the difference with the ideal signal.

case between notes 48, 49, and 50. The subsequent segment in the time range
of 5 < t < 10 represents the correction of a poorly intonated frequency modu-
lation akin to the human vibrato. The final part depicts a gentle trajectory of
the fo that should not be corrected; the free path signifies the scenario where
the singer does not intend to produce any specific note. Each of these segments
needs to be compared to the desired pitch curve, which varies for each region.
For instance, the desired signal for the staircase segment is a staircase itself.
In the vibratory segment, the ideal pitch would be the same vibration but
well-centered. As for the third segment, the original signal serves as the ideal
pitch; here, the goal is not correction but preservation. These assumptions are
depicted in Figure 2.16, and the MSE calculation is performed point by point.
The mean over each region is summarized in Table 2.1. As previously men-
tioned, DPW demonstrates superior correction of vibratos while preserving
the free path of the note. In contrast, ATA performs better for the staircase
segment but sacrifices more regarding vibrato and free path components.

It is important to clarify that all comparisons focus on pitch correction
curves. The sound implementation of DPW involves adding pitch tracking
and pitch warping methods that differ from those of ATA. However, despite
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Table 2.1: MSE and MAE between input and corrected f0 for the different
regions

MSE MAE
Region DPW ATA DPW ATA

1 0.0146 0.0146 0.0747 0.0914
2 0.0415 0.0642 0.1304 0.2103
3 0.0539 0.0280 0.2015 0.1463

these limitations, it is crucial to emphasize the valuable insights obtained from
this comparison, providing a nuanced understanding of the distinct strengths
and weaknesses inherent in each method.

2.8 Summary
Through our research, we studied the DPW algorithm for audio pitch correc-
tion. It is possible to control and trigger a pitch correction thanks to three
degrees of freedom that preserve low-amplitude vibratos and ornaments in the
neighborhood of the target note. We have also shown how the pitch correc-
tion methods are composed of two stages (triggering and warping) and how
modifying the control parameters can lead to equivalent configurations for dif-
ferent systems. We have identified a scenario where ATA and DPW exhibit
similarity: extreme correction. Moreover, we have identified three types of cor-
rection: staircases, vibratos, and free paths, and have illustrated that DPW
performs better for vibratos and free paths while also being adequate for stair-
case correction. DPW also exhibits a different trade-off between its parameters
compared to ATA, also it provides a better response for ornamentation.

We have developed an audio support that includes the DPW and ATA
methods use over the testing signals from figures 2.22 to 2.39. DPW compared
to ATA presents a smoother pitch trajectory transition towards the nearest
notes on a defined scale, minimizing distortion of melodic ornaments between
the notes. However, it is important to note that the vocoder used in our
application may not provide the same level of quality, precision, and accuracy
as the ATA vocoder; and that we cannot replicate pitch tracking and warping
of ATA vst.

A comprehensive perceptual evaluation of the two systems in a formal
setting later in this manuscript. This evaluation aims to assess the perceptual
salience of the pitch effects introduced by the DPW method and their potential
musical relevance.
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Chapter 3

Vocoders and Tuning

The vocal production techniques can involve many digital audio effects (DAFx),
of which the vast majority are not designed specifically for the voice, even
though they are used for it. The voice is the richest musical instrument in
terms of style and technique. However, it is also the most difficult to study.
This difficulty is due to the number of timbral subtleties that a phonatory sys-
tem prototype must be capable of reproducing. Those subtleties can change
for different people, even for the same person of different ages. The vocoder as
effect is widely expanded today in studio and live performances techniques in
an extensive range of possible configurations. The term vocoder describes the
numerous vocal transformation and reconstruction techniques, an elemental
component of vocal research. It is mainly used in music but is also relevant for
other fields such as health, communication, and computer-machine interaction.

The vocoder as a tool for vocal signal reconstruction is closely related to
pitch correction. We must use a vocal transformation algorithm such as a
vocoder to impose a pitch curve or a pitch transposition over a signal. Our
research is interested in studying the pitch correction perception. Indeed, a
characterization of the vocoder’s sonorous perception is needed before per-
ceptually studying the pitch correction methods. Such characterization can
be done through a psycho-acoustical evaluation considering specific vocoders
and particular cases of pitch correction for a given pitch correction algorithm
(ATA as the primary reference of pitch correction). In this chapter, we will
address the basics of the vocoder study. Therefore, we will prepare a sound
library implementing specific vocoders and use cases (presets, such as extreme
autotuning or transparent autotuning). Then, we select samples and explain
how to integrate them into a vocoder perceptual evaluation. The results of the
psychoacoustical assessment will allow us to define the weight of the vocoder’s
contribution to the vocal signal coloration when the signal has been tuned.
Then, in the next chapter, we will be able to study how to characterize different
pitch correction methods (ATA or DPW) and their corresponding contribution
to the vocal signal coloration.
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3.1 Vocoder Evolution Context

Nowadays, the term vocoder agglomerates the numerous vocal transformation
techniques for high-quality modification of natural vocal sounds. Among them,
we can mention the spectral techniques such as the channel vocoder, the time
domain techniques such as PSOLA, the phase vocoder, the source-models, and
the use of neural networks.

Initially, the term comes from channel vocoder, which used a contraction
of “voice coder” [Dudley, 1937] [Dudley, 1939] [Flanagan and Golden, 1966]
[Moulines and Laroche, 1995]. The channel vocoder breaks down the spectrum
into sections called subbands, which are analyzed and manipulated through
parametric data, resulting in a sound transformation [Cook, 1998]. Later,
other techniques appeared to make it suitable for musical application; the
phase vocoder was first described by Flanagan in 1966 [Flanagan and Golden,
1966]. The phase vocoder [De Götzen et al., 2001] [Dolson, 1986] [Moulines and
Laroche, 1995] calculates and maintains both instantaneous magnitude and
phase using the Fast Discrete Fourier Transform. However, using the source-
filter model and the parametric modeling of the source has been fundamental
for vocal reconstruction when performing tasks beyond simple time stretching.
In the following section, we mention some of the main improvements of the
vocoder and vocal models.

One of the inherent vocoder sonorous artifacts is phasiness. It appears
when slowing down a sound; it makes it muffled, reverberant and/or moving
away from the microphone. Phasiness is due to the loss of coherence be-
tween the phases across the bins of the Short-Term Fourier Transform STFT
over time, so phases must be regularly reset in order to keep them coherent
[Moinet and Dutoit, 2011]. Phasiness in the vocoder is not immediately ap-
parent but takes a few frames to become noticeable. Particularly for speech,
the phasiness effect sounds strangely reverberant or with a lack of presence of
the speaker. This problem comes from the unpredictable relationship of the
attacks with previous frames of the signals. The PVSOLA (Phase-Vocoder
with Synchronized OverLap-Add) is a method intended to improve the pres-
ence of phasiness. Roebel has treated it [Roebel, 2003] on the level of spectral
bins by reinitializing the phase spectrum.

Various other sonorous artifacts of the phase vocoder that are present in
several of its implementations. We can mention frequency smearing, reverber-
ation [Favreau, 2001], and transient softening [Roebel, 2003]. Some researchers
focus on improving naturalness by addressing transient irregularities [Loscos
and Bonada, 2004] and vocal pulses[Bonada, 2004]. Much vocoder research
focuses on naturalness, principally treating transient irregularities [Loscos and
Bonada, 2004] and vocal pulses [Bonada, 2004]. For example, there are im-
provements in the growl phonation based on a time-domain pitch-synchronous
overlap-add (TD-PSOLA) [Bonada, 2004] that controls pitch by the frame
reading speed and distance between pulses.

This research approach also allows for modeling vocal disorders. Vocal dis-

84



orders, intentional or not, are related to irregularities in the excitation glottal
pulse in time (jitter) and amplitude (shimmer). They affect the subharmonics
spectrum and vary over time.

The vocal timbre can be modified or improved by scaling, warping, and
equalizing the estimated spectral amplitude of each vocal pulse. Phase vocoder
improvements like the pre-warping function for frequencies [Roebel and Rodet,
2005] [Roebel, 2010] help to rebuild the signal without requiring pitch mark.
The standard implementation of the phase vocoder uses instantaneous fre-
quency estimation and phase unwrapping. One disadvantage of the STFT
is its rigid time-frequency resolution trade-off and its constant absolute fre-
quency resolution. Another improvement is the constant-Q transform (CQT)
[Schörkhuber et al., 2012] to create a multi-resolution frequency scale that
eases the detection of harmonic structures and reduces interference in lower-
frequency areas.

There are applications well documented as the ones of IRCAM, for both
non-real-time (SuperVP) 1 and for real-time (TRAX) 2 3, which can transform
gender, age, vocal quality, etc, rather than trying to attain a specific target
voice, as noted by Farner [Lanchantin et al., 2011]. These applications have
improvements to deal with the transients [Roebel, 2003], waveform preserva-
tion [Roebel, 2010], spectral-envelope estimation [Roebel and Rodet, 2005],
and dynamic voicing with spectral-peak triage. Concerning vocal parameters,
the major enhancement outside of those already discussed is the parametriza-
tion of vocal tension by the parameter Rd, which characterizes the slope of the
glottal spectrum [Lanchantin et al., 2011]. Voice quality (breathy, harsh voice)
can be transformed via the Rd parameter; glottal closure instants marks allow
for adding jitter (e.g. creaky voice). YIN [de Cheveigné and Kawahara, 2002]
is a robust f0-estimator used to define the voice-unvoiced regions and a base
for several devices developed at IRCAM (34), including SuperVP and TRAX.

3.1.1 Vocal Research Approach
The voice is not only defined by its natural pitch range but also by its timbre,
which is influenced by physiological and phonatory factors. Timbre, concern-
ing the identity and qualities of a sound, has been the subject of numerous
musicological studies aiming to define and characterize sound events [Schaeffer,
1966]. In the realm of voice, terms such as dark, bright, soft, rich, noisy, pure,
rough, etc., are commonly employed by musiciens as shown in [Garnier et al.,
2007]. Determining the gender and age of an individual can provide insights
into their voice characteristics [Lanchantin et al., 2011], for example, age plays
a significant role in the frequency range of the vocal folds (pitch measured
as f0), the spectral distribution of the glottal source (measured as spectral

1https://forum.ircam.fr/media/uploads/software/SuperVP20for20Max/supervp-for-
max.pdf

2https://www.flux.audio/project/ircam-trax/
3http://anasynth.ircam.fr/home/category/logiciel-associ%C3%A9/supervp-trax
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tilt), and the vocal tract acoustics (formants and anti-formants). Younger
voices generally have a smaller vocal tract. In contrast, aged voices exhibit
characteristics such as decreased intensity, breathiness, relatively high pitch
(primarily in men), lower flexibility, and perhaps trembling [Lanchantin et al.,
2011, Klatt and Klatt, 1990]. However, beyond these general trends, each
person may have a distinct vocal timbre at different ages.

Voice classification by genre, age, and vocal range often prompts the use
of additional sound descriptors, as mentioned earlier. This is because vocal
modes and styles contribute to the diversity of voice characteristics. For in-
stance, whispering involves the separation of vocal folds; spectrally, it is similar
to a speaking voice at high frequencies but differs at low frequencies. From
other hand, roughness can result from various pathologies, but not only, it
can be modulated also in healthy voices and may combine with other char-
acteristics such as hoarseness or creakiness. Mathematically, roughness refers
to variations in the fundamental frequency and period amplitude (jitter and
shimmer) [Loscos and Bonada, 2004]. Standard techniques for reproduction
include source-filter model-generated aperiodicities in the time domain, sta-
tistical models, or the use of vocoders. The technique introduced by Loscos
[Loscos and Bonada, 2004] involves adding sub-harmonics in the frequency
domain with a phase-locked vocoder. The growl effect, a vocal technique in-
volving simultaneous vibrations of the vocal folds and supra-glottal structures
of the larynx, produces sub-harmonics. The growl algorithm adds these sub-
harmonics to the original voice spectrum to emulate growl phonation, using
magnitude-phase patterns from real growl recordings.

As shown constantly through the vocoder research, and particularly by Abe
et al.[Abe et al., 2008], the phase vocoder distorts not only the harmonic part
of the spectrum but also the inharmonic part, making timbral analysis chal-
lenging from a musical point of view. The non-parametric modification of the
spectrum hinders analyzing timbral features as explicit parameters or sound
descriptors. Moreover, decomposing audio signals into perceptually meaning-
ful modulable components is desirable [Disch and Edler, 2010] for developing
new effects and efficient audio compression. Artifacts and secondary effects are
not necessarily to be avoided. A proper approach could make them controllable
so we could enrich the musical creation environment with those defaults.

Within the research on vocal perception, we cannot be left out of the work of
Michelle Castellengo [Castellengo, 2014], who, through her research, has found
that it is “illusory” to see an “absolute” description of sonorous qualities in
the singing voice. Because the descriptors only have a sense when organized
by type of voice and singing style. Nevertheless, she mentions that it is pos-
sible to develop a transversal vocabulary that allows communication between
physiologists, musicians, and researchers, as did in [Henrich Bernardoni et al.,
2008]. So, it is possible to have some voice descriptors that illustrate some of
the vocal characteristics. These descriptors with a more semantic purpose can
be used to identify modelable and controllable parameters over the vocoding
technologies. Searching for a detailed and complete description of the sound of
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the vocoder is complex. This path is even more complicated if we consider that
the vocoder technology advances to a transparent system capable of modifying
the inner human vocal descriptors. As it happens with the guitar amplifica-
tion, the musical use of the vocoder is founded through the sonorous defaults
(the unique artificial sound produced by each vocoder). These artifacts are
the ones that have applications in music and that are captivating both mu-
sicians and audiences. Then, we could look at these particularities through
different vocoders and release a first trace about what defines the coloration
of a vocoder and if it has similarities with other musical events on voice or
instruments.

3.1.2 Vocoder relation with voice and pitch
As we have seen, the vocoder has involved two evolution lines, the improvement
of vocal transformation and the parametric control of vocal characteristics. (S.
Farner in [36]). This for sure has enormous impacts, notably for aid devices
for vocal disabilities, compression, reconstruction of signal data in communi-
cation, and music applications. However, this research line contrasts with the
contemporaneous musical use of the vocoder. Such an approach dismisses the
use of the vocoder as a musical effect profiting from its artifacts for a musi-
cal application that is today the principal musical interest of the vocoder in
music. Facts on modern popular music can support this premise. An enor-
mous quantity of musical pieces contains backing vocals with vocoded vocal
layers and autotuned voices. This is a typical course of action on mastering
and production that seems systematic in both studio and live productions. It
seems that vocoders are often employed more for their sonorous defaults than
for their similarity with a real voice; for example, the robotic-artificial sound is
sought with a musical purpose. Some artists, in fact, refer to vocoders as “just
one more tint” of their own voices color (translated from spanish) 4 5, so we
could check effectively for that coloration inherent to the vocoding technique.

Apart from the parameterized descriptors of voice and the vocoder col-
oration, let us remember that pitch transformation is one of the foundations of
the vocoder application. Pitch is the first element appreciable concerning vocal
perception, and it can give the listener and idea of the singer’s age, genre, size,
etc. These elements define the melody and the expression. This means f0 in
singing not only carries the melody but also the singer’s expression. Moreover,
F0 conveys the singer’s identity, the musical style, and the emotion required
by a musical interpretation. In speech, the f0 carries essential information such
as mood, intent, and identity. The modification of f0 can result in changing
or obfuscating the speaker’s gender, as mentioned in the previous subsection.

It is fundamental to understand further than the research advances on the
vocoder as a technique of speech transformation, there is a musical use. The
musical use is based on giving the musicians new coloration to their voices.

4https://youtu.be/8xGgFmoLRAE?si=NonuPIQQ7Ftp9cAv&t=1587
5Rosalia interview about the production of her album Motomami
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They can keep their identity and the vocal intention of their vocal performance
using the vocoder as a layer to improve some aspects technically and use them
musically as the pedals for the guitars.

The musical use of the vocoder in modern music began with artists like Daft
Punk, Cher, and T-Pain, as previously mentioned, this usage has evolved over
the years, becoming systematic across all musical genres. Initially, with auto-
tune in rap and trip-hop, for example, with Drake, Future, Kanye West, and
Post Malone, and more recently with hyperpop. While the coloring provided
by the vocoder and autotune is reproducible live in terms of sound, it is not
in terms of performance, as specific autotune transitions cannot be replicated
exactly live.

Live applications has been explored by Taylor Swift, Dua Lipa and Loreen,
who use the effects as supports aiming to deliver a consistent performance with
studio versions; in fact, vocoder is part of the chain of effects today as seen
in several sources online 6 7 . Meanwhile, artists and producers experimenting
vocal effects have emerged such as Sophie, Arca, Raye, Mon Laferte, Rosaĺıa,
and Charli XCX.

An example of vocal production with layered vocals can be seen in the video
provided by Charlie Puth 8, where he explains how to use Antares Autotune
software to create vocoded or pitch-shifted vocal layers. This approach is
evident in musical pieces like “Made You Look”, where variable segments are
used to give body and chorus to the song 9, in “Delicate” [Taylor Swift, 2017]
in segments like 0:00-0:19. Moreover, exploratory effects can be appreciated
in tracks like “c2.0” [Charli XCX, 2020b], or in “Black Mascara” at 0:00-0:32
[Raye, 2024], but with several layers throughout the song, creating a complete
atmosphere with vocal replicas of the vocalist. Additionally, we recall many
more examples have been provided in the preceding sections regarding timbre
modification and autotune.

3.2 Review of Vocoders Techniques

The comparison between vocoding algorithms is extensive, requiring access to
different vocoding systems and methodologies of use, which may vary with
each algorithm. These methodologies must adapt and be reactive enough to
make pitch changes. Given the multitude of usable vocoders, we have narrowed
down our search to 4 vocoders: Retune, which is a frequency-time technique;
ATA, which is a temporal technique; and Circe and World, both of which are
artificial intelligence-based approaches.

6https://www.soundonsound.com/techniques/inside-track-dua-lipa-dont-start-now
7https://www.youtube.com/watch?v=7Y6aFCS8evg&t=416s
8https://www.youtube.com/watch?v=Ja emre9Wwc
9https://www.soundonsound.com/techniques/inside-track-meghan-trainor-made-you-
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3.2.1 Autotune Antares
Autotune Antares (ATA) is a software developed by H. Hildebrand that em-
ploys time domain techniques and advanced filtering techniques with high reso-
lution at low frequencies. The details of Autotune have already been addressed
in the previous chapter of this thesis, including details of Hildebrand’s patents
so we don’t need to provide additional information here.

3.2.2 World
World is an open-source vocoder developed to improve the sound quality and
processing speed of real-time speech applications. According to the developer,
a comparative evaluation regarding conventional systems shows that World
provides better sound quality for natural speech, is over ten times faster than
conventional systems, and is suitable for real-time processing. In Figure 1, the
adapted information provided by Morise in his paper [Morise et al., 2016] is
illustrated. The World’s processing relies on the three following processes:

The first step involves multiple low-pass filtering at different cutoff fre-
quencies. For each output, fundamental frequency candidates are estimated.
Over two complete cycles, the signal consisting solely of the fundamental com-
ponent should exhibit the same positive zero-crossing, negative zero-crossing,
and peak-to-peak interval values. Therefore, these values’ standard deviation
is considered as the fiability parameter for each F0 candidate, with the average
being the F0 candidate. The candidate with the highest fiability is selected.

The second step involves calculating the spectral envelope with Cheap-
Trick [Morise, 2015], using the original signal and the fundamental frequency.
Traditionally, the spectral envelope is computed using Cepstrum and linear
predictive coding, which suffers from temporal position dependence issues.
CheapTrick is a method for computing the spectral envelope based on the
synchronous pitch analysis idea, with a lifting function to smooth the logarith-
mic power spectrum (cepstrum) that effectively removes the time-dependent
component and parameterizes it in terms of two values that the authors have
studied and optimally determined.

The third process involves estimating aperiodicity using the D4C method
(Definitive Decomposition Derived Dirt-Cheap) [Morise, 2016]. The algorithm
begins with the group delay, describing it as a function of the spectrum and
its derivative. The time-dependent spectrum is written as a sum of compo-
nents for each band, and a parameter C is introduced into the time-dependent
component. This parameter corresponds to a temporal shift. When calculat-
ing aperiodicity, the term C is used to eliminate the temporal dependence of
aperiodicity.

The synthesis is performed based on Figure 3.1. Essentially, the signal is
considered to be composed of a train of pulses and a noise signal, which allows
for defining a spectral envelope and aperiodicity. In World, the output signal
can be seen as a function that can be calculated from the aperiodicity and
spectral envelope values obtained from the original signal, by applying a new
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fundamental frequency.

Figure 3.1: Schema of the World vocoder process

3.2.3 Circe - Neural Vocoder
The Crazy IRcam neural auto-encoder 10 [Bous, 2023] for voiCE is a neu-
ral vocoder that allows for pitch transposition and time stretching. Neural
vocoders employ various approaches, such as signal pitch and energy, utilizing
the mel-spectrogram as a parametric space, and models of acoustic dependen-
cies in the source-filter model. The source-filter model enables the parametriza-
tion of a vocal signal through the source frequency (glottal source signal) and
the noise excitation signal. These properties are not actually independent.
Deep learning methods such as WaveNet can generate the glottal source and
noise excitation interdependently, as described in [Bous, 2023]; however, these
processes are slow and can only be used for a specific voice. Through their
work, Bous demonstrates how the use of the mel-spectrogram preserves the
spectral dependency concerning fundamental frequency and noise. The mel-
spectrogram, due to its frequency axis, is more efficient than other methods
and serves as part of their parametric space combined with the use of pitch.

The voice transformation with the CIRCE neural vocoder consists of two
components. The first one is the bottleneck autoencoder [Bous and Roebel,
2022], which allows for pitch extraction from the original mel-spectrogram and
the generation of a latent code from the mel-spectrogram and the fundamental
frequency. Additionally, the autoencoder also serves to estimate the scaling
factor (voice volume of the sample), thus ensuring good sound quality in the
output. Bous also verified the bottleneck size to obtain the best possible
results. The second component is the mel-spectrogram inverter, the Multi-
Band Excited WaveNet (MBExWN), which allows for obtaining raw audio
from a modified mel-spectrogram [Roebel and Bous, 2022].

The CIRCE vocoder is based on the scheme shown in Figure 3.2. In this
algorithm, the mel-spectrogram calculation is performed first, followed by the
estimation of the pitch corresponding to that mel-spectrogram using the au-
toencoder. Together, the mel-spectrogram and the pitch are used to create
the latent code also with the help of the autoencoder. A new pitch value is

10https://forum.ircam.fr/projects/detail/circe/
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defined by the user to perform resynthesis (pitch transposition) using a de-
coder that generates a new mel-spectrogram. The new mel-spectrogram is
then transformed into raw audio using a mel-inverter.

Figure 3.2: Schema of the Circe vocoder process

3.2.4 Retune
Retune is a vocoder based on time-frequency techniques, which is available in
MAX MSP. The manufacturer of this technique is Zynaptiq GmbH (Hannover,
Germany). On their website, Retune is referenced as utilizing a technique
called ZTX, which enables time stretching, pitch shifting, formant shifting, and
pitch correction. The only documentation found regarding these aspects is a
patent concerning the employed vocoder method [Bernsee and Gökdag, 2016].
The technique in its main structure resembles the time-frequency approach for
vocoder deduction but includes several peculiarities.

The general structure of the system is described in Figure 6 of the patent
and steps 602 to 620, and the equations are described in columns 6 to 18. The
first step involves selecting an audio grain and computing the discrete Fourier
transform, obtaining the magnitude and phase components. With these com-
ponents, a time-frequency representation is constructed. This time-frequency
representation undergoes smoothing, which has a coupling effect between seg-
ments of the time-frequency representation, increasing the presence of artifacts
in adjacent grains. The time-frequency matrix plus smoothing is called Cross-
Frequency Phase Coupling (CFPC). Additionally, the CFPC is made depen-
dent on a smoothing parameter, which is parameterizable and helps to better
define according to the location in the time-frequency space; for example, it
allows for better resolution at low frequencies. Additionally, smoothing aids in
mitigating the effects of the uncertainty principle. Consequently, the resulting
representation is called a reduced uncertainty transform representation.

The resulting time-frequency representation is then passed back to the
time domain using an Inverse Discrete Fourier Transform, resulting in audio
identical to the original. The significance of the method lies in the fact that the
resulting time-frequency representation can be modified (step 614). However,
despite being mentioned in claims 5, 9, and 11, no further details are provided
regarding such modifications.
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The methods used for retune are applicable on the commercial versions
of ZTX software, the objects retune, pitchshift, freqshift on MAX, and the
commercial retuning devices on Digital Performer and MOTU software.

3.3 Cases
To evaluate the sound of the mentioned vocoders, it is necessary to understand
what is possible and useful from a preliminary approach. As mentioned ear-
lier, the description of the voice is complex and varies according to the musical
style. Therefore, the differentiation between vocoders should be based on what
is intrinsic to a vocoding process and not on descriptors for which a particular
vocoding technique may eventually be used. A counterexample would be the
simulation of the hoarse effect by a vocoder; in principle, that is not the gen-
eral use of a vocoder. Such a descriptor would only be comparable if several
vocoders were compared, all used to simulate a hoarse effect on the voice. The
comparison must be based on a parameter present in all vocoding techniques.
The melody is the sound element more important when vocoding, so we can
take a melodic approach.

The vocoder has two approaches: musical and scientific. The musical ap-
proach is highly influenced by the melody imposed on the output voice af-
ter vocal reconstruction, which is evidenced by both: the use of the channel
vocoder and the use of autotuning systems. The scientific process seeks to re-
synthesize the signal in the most natural way possible preserving the original
melody.

3.3.1 Natural pitch resynthesis
The primary characteristic fulfilled by a vocoder is resynthesis; just in the
previous example, if a vocoder algorithm serves to create a hoarse voice, in
principle, that algorithm should also serve to perform resynthesis or bypass.
Vocoder techniques have very diverse foundations. Resynthesis and/or bypass
are interesting evaluation cases, as they allow the analysis of the coloration
intrinsic to the vocoding technique. Moreover, it can help us understand which
techniques are more prone to color the signal through resynthesis. The main
parameter of vocal melody is pitch; therefore, resynthesis can be controlled by
preserving the melody and, thus, by imposing the original pitch curve on the
audio file using various vocoders.

3.3.2 Extreme autotuning (Integer-part) pitch re-synthesis
The use of the vocoder is closely linked to the perception of melody, which is a
primary goal in any vocoder technique. The target pitch can be the same as the
original in the case of resynthesis, or it can be different when employing pitch
correction techniques or when using the vocoder as a musical instrument, as
is the case with the musical channel vocoder. This leads to countless possible
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ways of modifying the target pitch. Target pitches for the vocoder are akin to
singing styles for the voice. Given a melody, be it the style in the case of the
voice or the target pitch curve for the vocoder, they would provide a different
impression of the same melody.

The most general melodic case for target pitch is the integer part of the sig-
nal in semitones, i.e., autotuned pitch in the chromatic scale. This is applicable
to both autotuning techniques and musical channel vocoders. Additionally, it
is equally applicable to any melody; that is, it does not create dissonances
that could introduce additional coloration but rather affects any melodic line
similarly by using a chromatic scale.

3.3.3 Soft autotuning
Exploring other scenarios is useful for comparing how a pitch curve modifica-
tion is executed in different vocoders and for seeing if there is a predominance
between melody and vocoder for cases other than resynthesis and extreme au-
totuning. This type of application is valuable as it represents the primary use
in studio vocal correction applications, aiming to enhance tuning without the
autotuning transient effect.

3.4 Sound Catalog Generation
The next subsections outline the steps for generating the files used to compare
vocoders. It involves pitch tracking stages, choosing a target pitch depending
on the two study cases (natural or whole-tone), and pitch warping (vocoders).

3.4.1 Pitch Tracking
The pitch tracking stage has been explored using various Max objects, such
as yin , fzero , vb.pitch, and sigmund , as well as the vocoder world software.
However, the pitch tracking results obtained with Praat software are signifi-
cantly superior. Unlike the other tools, Praat does not exhibit discontinuities
or octave errors, which are common issues with the other objects used. Addi-
tionally, Praat allows testing melodic curves with test sounds, making it easier
to adjust values that differ from the reference in the PichTier files or even to
eliminate values taken in error. This feature gives preference to pitch data
obtained with Praat. Furthermore, these data can be processed in Python to
generate pitch curves in the same time scale as the original audio file.

The f0 curve generated by Praat may not have the same time scale as the
audio file. To align the time scales, we perform a resampling by interpolation
using Python. Also, Praat extracts f0 using a Hertz scale, so we converted
them to MIDI data. We utilized the wave package to obtain the time array of
the audio signal and the path package to read the PitchTier file generated by
Praat. This file was reshaped to form two arrays - one for the time and another
for f0. Praat requires a delay of 40ms to obtain f0 within an interval of time,
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so we subtracted this time from the time array. We then obtained three arrays
to work with: the time frames of the original audio, the time array of the
PitchTier file, and the fo array of the PitchTier file. To interpolate between
these arrays, we use the numpy.interpolation method. This function performs
a linear interpolation between the gaps and a constant interpolation on the
borders, yielding the same fo curve as the one obtained using PitchTier on
Praat but framed on a time scale identical to the original audio. We can then
use this information on Max/MSP by writing the fo tracking over a wave file.

The pitch tracking is carried out in the following way The audio file is taken
and processed through Praat, where it is verified that there are no pitch errors.
Subsequently, a Praat-type pitch file is generated. This file can be read as text
in Python, allowing for a Hz to semitone scale conversion. The Praat file is
used in conjunction with the original sound file to generate a WAV output
file containing pitch information on the same time scale as the audio file. In
Python, it is also possible to calculate the integer part of the pitch curve, thus
generating the pitch file in WAV format for the autotuning case. From now
on, we will refer to these files as f0-wav, f0-natural, or f0-autotuned files.

As result, we have f0 files on MIDI and Hz scales, coded on a 0-1 scale. We
can use python to have the Hz or MIDI versions of fo and use it conveniently
according to re-synthesis protocol. As we will see the information required
for the different vocoders is not always the same. The wav 0-1 decoding will
always be the same, but the scaling part will differ. For the MIDI files, we
multiply by 128. Furthermore, for Hz files, we use the equivalent Hz scale of
midi (0 cents to 12800 cents) with the expr object on Max/MSP.

Figure 3.3: Pitch-Tracking procedure

3.4.2 Resynthesis

Resynthesis is done by imposing the pitch curve or the transposition value
on the different audio files. Next, we will describe the process that must be
carried out with each of the vocoders used to reproduce the resynthesis cases
with the natural pitch and resynthesis cases with the autotuned pitch.
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3.4.2.1 Resynthesis with Retune

The correction with retune is done through a patch that allows retrieving the
pitch curve and imposing it on the audio file in real-time, but with a latency
of 1024 samples at a sample rate of 44.1 KHz. To achieve this, two buffers are
available where the audio and F0 WAV files are placed and then read in parallel
(in MAX) and sent to the retune object. The retune object is designed to
receive transposition values as an adjustment factor, but it can also receive
the pitch curve through an alternative mode.

3.4.2.2 Resynthesis with World

The vocoder World, similar to Retune, operates with transposition values in
Hz. To use it, we receive the expected frequency and then internally instruct
it on how to calculate the difference between the current frequency and the
frequency we wish to impose. Subsequently, we perform a detailed time-scale
re-synthesis to obtain retuned output audio with the given pitch.

3.4.2.3 Resynthesis with Circe

This vocoder is installable on Mac and comes with a visual interface. It allows
us to perform constant transpositions by adjusting parameters and dynamic
transpositions using a WAV file containing pitch information. The pitch file
should have information on a scale from 0 to 1 under the MIDI semitone
protocol, preserving microtones. To use Circe, the original audio file is loaded,
followed by the pitch file. The transposition is then generated, and a retuned
audio file with the desired pitch is saved.

3.4.2.4 Resynthesis with ATA

The re-synthesis with ATA cannot be used with the pitch file obtained from
Praat, as ATA does not allow the use of information from an external pitch
tracker. Therefore, we are compelled to compare the audio tracks with the files
modified by ATA for two configurations that represent our use cases. One, the
mildest possible, with retune − speed = 400 and flex − tune = 100, and
another extreme with retune − speed = 0 and flextune = 0. The gentle
configuration will exhibit a sound very similar to the natural sound, while
the extreme configuration (autotuning),according to the information from the
patent, corresponds to calculating int(pitch) and forcing it into the output.

3.4.2.5 Re-synthesis for soft-ATA-autotuning

The final case study utilizes a pitch-modified curve with ATA, for which a
specific smooth value of retune − speed = 50 is chosen, and an audio file is
generated. Pitch tracking is then performed on this file using Praat, resulting
in a .Wav file. This file is taken through each of the previous protocols to
generate a replica of the ATA correction with the other vocoders.
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3.4.3 Summary of audio files
Here, we present a description of the main files of the sound corpus. The
purpose of using these audio files is to check how using different vocoders
affects the general perception of the sound. The library is composed of 7
original files summarized in table 3.1. The samples come from the PhD thesis
of [Henrich Bernardoni, 2001] and the projects VOQUAL [D’Alessandro, 2003]
and CHANTER (Chant numérique avec contrôle temps Réel) [Feugère et al.,
2016].

Table 3.1: Catalog of Original Samples

Genre Style File (.wav) abbv. name

Male Intervals real3Maleintervals a
Male Phrase on Legatto real19Malevoicelegatto b

Female Legatto and Virtuoso real23Femalelegattovirtuoso c
Male Belting realJF-mem-6-a-male2 d

Female Belting realLP-mem-6-a-fem2 e
Female Pop Style realms-celinedion f
Male Variété Française realrt-yvesmontand g

The samples have been treated with the previous explanations to impose
three pitch curves: original pitch (fo), extreme pitch correction (int(fo)), and
a soft correction (through ATA and tracked with praat). The systems used,
and cases are summarized in Table 3.2.

Table 3.2: Systems Used and Correction Cases
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Sample
a ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
b ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
c ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
d ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
e ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
f ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
g ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

The samples have been created to be used in a psycho-acoustical compar-
ison we conducted; such a test will be explained in the next section. The
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samples have been cut into 16 files, which duration and content (staircase,
vibratos, free-path) are summarized in table 3.3. The following section will
explain how these samples are integrated into the psycho-acoustic test.

Table 3.3: Samples for the Psychoacoustic Test of the Vocoder (abbreviated
as v)

Content Content
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Sample Duration Sample Duration
[ms] [ms]

va part 1 ✓ 2000 ve part 1 ✓ ✓ ✓ 3000
va part 2 ✓ ✓ 2000 ve part 3 ✓ ✓ ✓ 5124
vb part 1 ✓ ✓ 2937 ve part 4 ✓ ✓ ✓ 4500
vb part 2 ✓ ✓ 4500 vf part 2 ✓ ✓ ✓ 3625
vc part 1 ✓ ✓ ✓ 3171 vf part 3 ✓ ✓ ✓ 3000
vc part 2 ✓ ✓ 2500 vg part 4 ✓ ✓ ✓ 2500
vc part 3 ✓ ✓ 3500 vg part 1 ✓ ✓ 4250
vd part 2 ✓ ✓ 4750 vg part 2 ✓ ✓ ✓ 8250

3.5 Subjective Evaluation of Vocoder for pitch
tuning

The primary psychoacoustic attributes, such as intensity, pitch, duration, and
timbre, play an essential role in auditory organization. Pitch orders sounds
from the lowest to the highest, contributing to the definition of melody in
conjunction with rhythm. Vocal transformation through the vocoder predom-
inantly involves melody. Depending on the use case, it is necessary to decide
between introducing a change or preserving the existing melodic line, leading
to perceptible alterations in the signal. Our objective is to observe how the
use of different vocoders influences the variation of such sonorous changes ac-
cording to the technique, as well as to analyze the preponderance or absence
of it when imposing extreme melodic alterations.

The comparison of vocoders through sound evaluation should be carried out
using a subjective psychoacoustic test, also known as an affective test. The col-
oration produced by each vocoder can have varying effects on the sound, and
due to this variability, it does not make it a parameter (perceptible attribute)
easily quantifiable. This characteristic leads to our test being a subjective
assessment rather than a perceptual testing. However, since it involves com-
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paring multiple vocoders simultaneously, a multi-stimulus technique must be
employed. Typically, such comparative evaluations are conducted using a in-
tegrative tests like MUSHRA [ITU-R-BS.1534-3, 2015] (Multiple Stimuli with
Hidden Reference and Anchor); nevertheless, this test is designed to compare
(in terms of quality or preference) a single original sound with a reference and
its degraded versions. On the one hand, using a reference without any sound
treatments outright prevents the evaluation of resynthesis when the imposed
pitch differs from the original pitch. This type of test, as its standard version,
would only allow the comparison of a vocoder with respect to the reference
sound, meaning that multiple pairs of vocoders cannot be compared. This
limitation, present in integrative tests like MUSHRA, is mitigated in discrim-
inative methods [Zacharov et al., 2018].

Discriminative methods such as pairwise comparison, the ABX method,
n-forced comparison, allow, with certain levels of complexity and precision,
discrimination solely between pairs of sounds. In other words, we can compare
vocoded sound with vocoded sound, even with an imposed pitch different from
the original. However, using this type of test involves a pairwise testing ap-
proach, making the differences between vocoders more challenging to identify
and requiring extended testing times for a small number of sound examples
[Zacharov et al., 2018]. Considering the number of vocoder and cases of tuning,
this approach is not practical.

One of the additional challenges in test design is linked to the type of
question; it is crucial that the formulation be as straightforward as possible. In
this regard, the discriminative and multiple sense (MUSHRA) of the test must
be considered, which is compatible with the DFC (Difference from Control)
test, in which the MUSHRA reference is called the “control”, which is not
necessarily a sound without treatments but rather a reference sound. We will
continue to refer to our test as “subjective” instead of incorrectly using the
term MUSHRA [ITU-R-BS.1534-3, 2015, ITU-R-BS.1116-3, 2015], as it is not
a proper MUSHRA test. The discriminative question for our subjective DFC
test would be: “Please evaluate the degree of similarity between the reference
and the different conditions on the scale”, as shown in Figure 3.4. The choice
of reference and comparables (vocoded sounds) will influence the objective of
each test, as detailed below in each of the stages that comprise our test. The
package used for the DFC test was webMUSHRA as referenced in [Schoeffler
et al., 2018].

3.6 Tasks
There are 4 different tasks, each containing 16 questions. Throughout all
64 questions in the test, the same query is consistently posed. Participants
are asked to provide a score indicating the level of similarity between the
comparables and the reference. The questions are fully randomized, and each
task serves a distinct purpose. For simplicity, the same question is employed,
but the hypotheses and potential conclusions differ for each task, as outlined
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Figure 3.4: Example training trial question. The reference is on the left, and
five comparable sounds are presented in random order, including four vocoder-
processed versions and one hidden reference. The listener must classify the
level of similarity between the sounds.

below.

3.6.1 Task A: Original pitch re-synthesis with each vocoder
compared to the Original sound

In the first task (TA), a comparison is made between the original sound and
the resynthesized sounds by forcing the pitch of the original sound file using the
four available vocoders. In other words, it involves resynthesis with dynamic
pitch, following the protocols defined in the preceding section. The question
about similarity provides information about the transparency of the vocod-
ing process with each device. That is, it determines whether each technique
is transparent or if, on the contrary, we can perceive an intrinsic coloration
(timbre) due to vocoding, given that the melody remains the same. Addition-
ally, we can characterize this difference to classify the vocoders from the most
transparent to the least transparent for resynthesis with dynamic pitch.

3.6.2 Task B: Extreme autotuning with each vocoder
compared to original sound

In the second task (TB), the reference remains the natural, unmodified sound,
but the comparables are sounds resynthesized with automatically adjusted
pitch (autotuned pitch). The question of similarity in this case revolves around
the preservation of vocal quality after a drastic pitch modification with each
vocoder. In other words, it will be investigated whether the vocoders are
capable and to what extent they can preserve the timbre. Additionally, it
will be examined whether there is consistency for all values within the same
vocoder or, conversely, if the response is arbitrary.
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3.6.3 Task C: Extreme autotuning with each vocoder
compared to Extreme autotuning with ATA

The third task (TC) also relates to extreme autotuning; in this case, the refer-
ence is the sound with extreme autotuning using ATA, and the comparables are
the resynthesized sounds with extreme autotuning curves using the vocoders
World, Retune, and Circe. The objective of the comparison in this task is
to determine if we can distinguish between the different vocoders under this
melody. The hypotheses will then confirm the predominance or lack thereof of
the melody over the vocal timbre generated by the vocoder.

3.6.4 Task D: Soft autotuning with each vocoder
compared to Soft autotuning with ATA

In the fourth task (TD), the question of melodic predominance versus vocoder
is addressed with a gentle vocal correction using ATA. An autotuned file with a
smooth value of retune− speed = 50 is taken, and that pitch curve is imposed
on the original audio file using the other vocoders. In this task, the question
has the same meaning as in the third task.

3.7 Test preparation
The design of the subjective test is carried out using the MUSHRA interface,
with elements previously defined for the hybrid ranking and discrimination
test, including:

• Objectives: Distributed in four previously described tasks, each with
specific objectives

• Stimuli: Audio files vocoded generated by the 4 vocoders (systems to
tets) for task.

• Interface and Data Collection: Utilization of the MUSHRA interface and
data collection in CSV format provided by MUSHRA tools.

3.8 Audio Support
The audio support for the comparison of the vocoders consists of 16 samples.
These samples are edited with vocoders and autotuning cases according to
Table 3.4 for tasks A,B,C and D.

3.8.1 Subject Panel
The scope of subjects involved in psychoacoustic analysis typically undergoes
limitations. Within the framework of our experiment, a cohort comprising
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Table 3.4: Audio Support for Comparison of Vocoders Test

Comparable ATA World Circe Retune
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va part 1 A A B,C D A B,C D A B,C D A B,C D
va part 2 A A B,C D A B,C D A B,C D A B,C D
vb part 1 A A B,C D A B,C D A B,C D A B,C D
vb part 2 A A B,C D A B,C D A B,C D A B,C D
vc part 1 A A B,C D A B,C D A B,C D A B,C D
vc part 2 A A B,C D A B,C D A B,C D A B,C D
vc part 3 A A B,C D A B,C D A B,C D A B,C D
vd part 2 A A B,C D A B,C D A B,C D A B,C D
ve part 1 A A B,C D A B,C D A B,C D A B,C D
ve part 3 A A B,C D A B,C D A B,C D A B,C D
ve part 4 A A B,C D A B,C D A B,C D A B,C D
vf part 2 A A B,C D A B,C D A B,C D A B,C D
vf part 3 A A B,C D A B,C D A B,C D A B,C D
vf part 4 A A B,C D A B,C D A B,C D A B,C D
vg part 1 A A B,C D A B,C D A B,C D A B,C D
vg part 2 A A B,C D A B,C D A B,C D A B,C D

21 subjects has been employed, meticulously divided between individuals pos-
sessing musical proficiency and those lacking such aptitude. As substantiated
by prior studies (cf. [ITU-R-BS.1534-3, 2015]; [ITU-R-BS.1116-3, 2015]), a
sample size of 20 subjects suffices for the particular evaluative paradigm un-
dertaken in this study.

3.8.2 Test Contents
In each task, four vocoders (audio systems as delineated in [ITU-R-BS.1534-3,
2015]) are juxtaposed for comparison. According to the guidelines stipulated
in reference [ITU-R-BS.1534-3, 2015], the requisite number of samples should
exceed 1.5 times the count of systems under evaluation. Consequently, con-
sidering six samples as prescribed, which substantially meets this criterion, we
have opted to incorporate 16 samples per task.

The assessment protocol encompasses four distinct tasks, with each task
comprising 16 queries. Within each query, participants are tasked with dis-
cerning the degree of similarity between the reference stimulus and the com-
parable stimuli (vocoders). Consequently, each vocoder is subjected to evalu-
ation across 16 discrete sound instances per participant, thereby resulting in
a cumulative tally of 320 scores per vocoder. This methodological approach,
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characterized by a diverse array of examples, serves to engender test variance
while mitigating the likelihood of participant fatigue. Furthermore, the ran-
domization of the four tasks is enacted to ensure a diversified presentation
format.

3.8.3 Data Treatment
The data is gathered in CSV (Comma-Separated Values) format, encapsulated
within a file that delineates identifiers corresponding to each test subject, de-
scriptors denoting the type of comparables, subjective assessments assigned
by the participants to each comparable, classifications pertaining to the type
of auditory stimuli, and comprehensive timestamps detailing the duration of
each stage throughout the test process. Subsequent statistical scrutiny of
the amassed dataset is conducted employing the R programming language, in
accordance with the statistical power analysis guidelines elucidated in [ITU-
R-BS.1534-3, 2015] and [Rogers, 2017].

Incorrectly rejecting a true null hypothesis is called a Type I error [Rogers,
2017]. The proportion of decisions in which a Type I error is made is called the
significance level and denoted by α. Within the MUSHRA [ITU-R-BS.1534-3,
2015] standart it equals 0.05, according to [Rogers, 2017] such value implies
that “when the null hypothesis is true, then we correctly decide in favor of the
null hypothesis 19 out of 20 times, and incorrectly reject the null hypothesis 1
out of 20 times.”

A Type II error occurs when a false null hypothesis is not rejected [Rogers,
2017]. The proportion of decisions in which a Type II error is made is controlled
at a predetermined level β (also called error rate). Conventionaly β = 0.20,
such value means that when the null hypothesis is incorrect, it is retained
incorrectly in one out of five tests. The statistical power of the test is defined
as 1−β, which is the probability of correctly rejecting the null hypothesis when
it is false and the alternative hypothesis is true. For β = 0.20, the statistical
power is 80%.

3.8.4 Room and sound
The experimental procedures are conducted within the confines of recording
studio room 519, at the Institut Jean le Rond d’Alembert. An operational
framework is established utilizing a laptop operating on macOS Big Sur (ver-
sion 11.7), serving as the medium for test administration. Access to the test
interface is facilitated through a dedicated website hosted in the Institut Jean
le Rond d’Alembert servers. Data acquisition transpires upon the conclusion
of each test segment, with each segment typically extending over a duration
of approximately 20 minutes. Participants are furnished with Sennheiser HD
205 over-ear headphones to facilitate auditory perception during the assess-
ment process. Before initiating each test session, a examination of volume
levels and equipment functionality is conducted to ensure optimal testing con-
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ditions.

3.8.5 Planning
The test consists of four parts, each lasting 20 minutes, and is organized in a
single session. Participants are summoned to the Jean Le Rond d’Alembert
institute and are grouped into musicians and non-musicians. All tests are
conducted over a one month, with planning done directly with participants.
Participants were required to be well-rested before the test, and the test was
compensated with a 40-euro Amazon gift card. Thomas Lucas, LAM engineer,
organized planning and payment. He also collaborated in cutting some of the
audio samples and verifying the HTML code.

3.9 Test procedure summary
On the day of the test, participants are summoned to the designated room, pro-
vided with the agreed-upon materials. The session begun with a presentation
summarizing the test, as it follows :

• The term vocoder technically refers to a software device designed for
transparent voice encoding, transmission, and natural transformation,
and which can be used in musical applications, especially for pitch auto-
tuning.

• The purpose of this work is to establish a benchmark that facilitates the
musical discussion about the vocoder, seeking to understand the perceptual
impact of the vocoder and melodic modification and determine whether
we can truly speak of a “vocal quality” of the vocoder. In this test, we
present an audio repository that supports the comparison between differ-
ent vocoders in cases of resynthesis, subtle and extreme vocal tuning.

• The test is divided into four segments, each lasting approximately 20
minutes. For every segment, you will be asked to assess the degree of
similarity between a reference and various conditions. Following each
segment, you will need to complete an information sheet, ensuring that
you include the same id at the end of each section.

Subsequently, participants were asked to read and sign a document allowing
the retrieval of their response results and certain anonymous data (such as age
and musical knowledge). This form was used for both: the vocoder test and
the pitch correction methods test (next chapter of this thesis). The document
also outlined the option to withdraw from the test at any time if they wish to
do so, ans it is presented in appendix C.

Once the explanation is concluded, participants are provided with a par-
ticipant id that they need to enter at the end of each test part to save their
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data. Before initiating the test, participants are asked to set a comfortable
volume with a sound sample from the catalog played through the website. An
example question is posed to familiarize participants with the test format and
ensure their understanding, as Figure 3.4. To end, participants enter some
information about themselves in anonymity format (age, musical experience,
etc) as shown also in appendix C.

After this, participants are allowed to proceed with the test. Once the
16 questions of the first part are completed (approximately 20 minutes), the
participant sees a page where they enter their participant ID, then data is
automatically saved on the server. They then move on to the second part
of the test, which also lasts approximately 20 minutes. Upon completion,
participants are asked how they have experienced the test so far, and if desired,
they can take a longer break of up to 30 minutes. Subsequently, the participant
continues with the third pard, a 5-minute break (if desired), and the fourth
part. Finally, an interview is conducted to gather more details about the test.

3.9.1 Summary of tasks for vocoders comparison
The table 3.5 presents a detailed summary of the various aspects addressed in
the psychoacoustic test, including the description of the references and com-
parables used, as well as the specific objectives of each task. Through this
arrangement, the aim is to provide a comprehensive understanding of the con-
trolled variables and parameters assessed at each stage of the study. In addi-
tion to the primary objectives of each task, the table also highlights additional
conclusions that can be drawn from the collected data, further enriching the
interpretation and utility of the results obtained. For the statistical analyses,
the ANOVA and post-hoc Tukey HSD (honestly significant difference) pro-
tocols are used, with the null hypothesis being equality and the alternative
hypothesis being the difference.

3.10 Results
The results of the subjective psychoacoustic test we conducted are based on the
analysis of the CSV files generated by the WebMushra package. These data
have been collected to allow the retrieval of all available data, including the
tasks performed, the subjects (anonymous but identifiable by code), the audio
samples under study, the comparables, and the scores given to each comparable
sample. Once this data was obtained (in random), it was organized by task,
corresponding to the previously defined organization (A,B,C,D). Subsequently,
the means and standard deviations of the scores given to each comparable sam-
ple for each task were calculated. This calculation was performed considering
all subjects and audio samples used in the study. The results obtained are
presented clearly and concisely elaborating tables and graphs detailed in this
section for each task. Furthermore, the possibility of conducting intra-task
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Task Reference Melody(F0) Comparable Melody(F0)

A Natural fo = foriginal

ATA
Circe
World
Retune

fnatural

Comparing identity/timbre of the original with the re-synthesized
voice

B Natural fo

ATA
Circe
World
Retune

int(fo)

Comparing identity/timbre of the original with the autotuned
(with several vocoders) voice. Aiming to determine whether the
original vocal timbre persists after extreme autotuning.

C ATA fata,extreme = int(fo)
Circe
World
Retune

int(fo)

Comparing extreme autotuning between ATA and other vocoders.
Similarity suggests that the melody dominates perceptually.
Dissimilarity suggests the vocoding technique perceptually
prevails over the imposed melody. Additional: assessing similarity
between World and ATA for later use as a replica for pitch
correction methods subjective evaluation

D ATA fata−soft

Circe
World
Retune

fata−soft,praat

Comparing soft autotuning between ATA and other vocoders.
Similarity suggests that the melody dominates perceptually.
Dissimilarity suggests the vocoding technique perceptually
prevails over the imposed melody. Additional: assessing similarity
between World and ATA for later use as a replica for pitch
correction methods subjective evaluation

Table 3.5: Summary of tasks for vocoders comparisson
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and inter-task analyses will be highlighted for a deeper understanding of the
collected data.

3.10.1 Task A: Original pitch resynthesis with each vocoder
compared to Original sound

For Task A, we compared re-synthesis using various vocoders to the original
sound (reference). Original pitch re-synthesis involves imposing the original
pitch onto the audio. In the case of ATA, we selected the preset to make
it operate transparently. Our aim with this test is to understand how each
vocoder technique affects vocal timbre, given that we expect the same melody
in the re-synthesized audio. The predominant difference would primarily arise
from the coloration introduced by each vocoder.

The obtained data were processed in R. We conducted an analysis of vari-
ance (ANOVA), calculated the means for the groups (i.e., the comparables),
and performed a post-hoc analysis Tukey’s HSD test. The ANOVA was per-
formed using the aov() function, and the results are shown in Table 3.6. Be-
fore explaining the significance of these results, we first define the number of
groups (the comparables). This task has five groups: one natural sound and
four vocoded sounds. Secondly, ANOVA is conducted under a null hypothesis
(denoted as H0), which states that all means of the different groups are sta-
tistically equal. An ANOVA table (like Table 3.6) distinguishes between two
rows: one for the groups, which refers to the variations between the compara-
ble groups, and the other, Residuals, which relates to the variations within all
observations (i.e., within the groups).

Table 3.6: ANOVA for Task A - before excluding subjects deemed unsuitable

Df Sum Sq Mean Sq F value Pr(>F)

Vocoder 4 610861 152715 576.6 < 2e− 16
Residuals 1675 443644 265

The first variable observed is Df, which stands for Degrees of Freedom.
For the groups, it equals the number of groups minus one (the reference), so
it equals 4. For residuals (within the groups), Df equals the total number of
observations minus the number of groups, which in this case is 1675.

Next, we have the Sum of Squares (Sum Sq). For Groups, it indicates the
variance between groups and is equal to ∑ni(Ȳi−Ȳ )2, the sum of the variances
of each group i with respect to the overall mean, where ni is the number of
observations in group i, Ȳi is the mean of group i, and Ȳ is the overall mean.
Sum Sq for Residuals indicates the variance within each group and is equal
to ∑∑(Yij − Ȳi)2, the sum of the variances with respect to the mean of each
group, where Yij is the observation j in group i and Ȳi is the mean of group i.

The Mean Square (Mean Sq) is calculated by dividing the sum of squares
by the degrees of freedom, SumSq/Df . The F-value is calculated as the ratio
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of the Groups Mean Sq divided by the Residuals Mean Sq. A small p-value,
less than 0.05, indicates that the observed differences between the groups of
vocoders are highly statistically significant, meaning the null hypothesis is
rejected. The limitation of ANOVA is that it does not indicate which groups
are different.
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Figure 3.5: Results for Task A - before (left) and after (right) excluding sub-
jects deemed unsuitable. Labels 1 to 5 indicate: Reference (Original Sound)
and ATA, Circe, Retune and World Resynthesis

Table 3.7: Means and Tukey HSD post-hoc resume analysis for Task A:
Original pitch resynthesis with each vocoder compared to the original sound.

Comparable Mean SD Classification Diff. to Ref.
0-Ref (original) 96,6 6,1 Identical
1-ATA 96,3 6,6 Identical -0,3 *
2-Circe 44,7 25,6 Slightly Similar -51,9
3-Retune 85,9 15,2 Similar -10,7
4-World 81,0 18,8 Similar -15,7
p-value < 0.001 by ANOVA and Tukey HSD post-hoc
Except for (*) p-value = 0.9989

We now proceed to the analysis of Table 3.6. The between-group variance
is high (for the row groups, Sum Sq equals 610861 and Mean Sq equals 152715),
indicating that the differences between the groups of vocoders are significant.
On the other hand, the within-group variance (for the row residuals, Mean
Sq equals 265) also reflects that the average variability within the groups is
high. The F-value (576.6) shows that the variance between the groups is much
greater than the variance within the groups. Finally, the extremely low p-
value (< 2e − 16) indicates that the observed differences between the groups
of vocoders are highly statistically significant.

We did graphic with the means, as shown in Figure 3.5. The means corre-
spond to the mean values obtained for each vocoder, displayed in Table 3.7. A
note with the Tukey’s HSD test p-values is provided at the bottom of the table.
Tukey’s HSD (Honestly Significant Difference) test is a post-hoc analysis used
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to find means that are significantly different from each other. This analysis is
also performed in R using the function TukeyHSD() and summarized in Table
3.8.

Table 3.8: Tukey HSD Analysis for Task A - full panel

Comparison Difference Lower Upper p-value

ATA-Ref −0.3 −3.8 3.1 0.9989
Circe-Ref −51.9 −55.3 −48.5 <0.0001
Retune-Ref −10.7 −14.1 −7.3 <0.0001
World-Ref −15.7 −19.1 −12.2 <0.0001
Circe-ATA −51.6 −55.0 −48.1 <0.0001
Retune-ATA −10.4 −13.8 −6.9 <0.0001
World-ATA −15.3 −18.8 −11.9 <0.0001
Retune-Circe 41.2 37.8 44.6 <0.0001
World-Circe 36.2 32.8 39.7 <0.0001
World-Retune −5.0 −8.4 −1.6 0.0007

The table 3.8 shows the difference between group means (comparables),
the lower and upper limits of that difference within a 95% confidence level,
and the adjusted p-value for the pairwise comparison. If the p-value is less
than the significance level (0.05), the difference between the means of the two
groups (in the pair) is considered statistically significant. In our case, Tukey’s
HSD indicates a statistically significant difference between all pairs except the
pair ATA-Ref (p-value = 0.9989), meaning there is no statistically significant
difference found for this pair.

The obtained data can be graphically represented by histograms per trial
and per subject, as shown in Figure 3.6. The complete graphics are shown in
Appendix C.2. There are no indications of trials or subjects with results diver-
gent from the other trials and subjects. However, considering the guidelines of
MUSHRA [Schoeffler et al., 2018], two subjects have been removed from the
panel for a more precise analysis. The ANOVA tables and Tukey’s HSD test
for the panel, excluding the outlier subjects, are included in Appendix C.2.
This appendix contains all the histograms per subject (Figures C.1 and C.2)
and per trial (Figures C.3 and C.4) and Tukey’s HSD test (Table C.3) whose
summary appears as note in Table 3.7.

A graphical representation of the results is presented in Figure 3.5, showing
means, standard deviations, and data distributions before and after excluding
outlier subjects (two subjects). The statistical analysis excluding the two sub-
jects is shown in Appendix C.2: ANOVA in Table C.4 and Tukey’s HSD test
in Table C.5. Additionally, analyses for non-musicians (ANOVA in Table C.6,
Tukey’s HSD test in Table C.7) and musicians (ANOVA in Table C.8, Tukey’s
HSD test in Table C.9) were conducted. The corresponding graphics showing
means, standard deviations, and data distributions are shown in Figure 3.7.

108



Figure 3.6: Histograms per trial for Task A - only trials 1 to 4, as illustrative
example, full histograms can be found in Appendix C.2
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Figure 3.7: Results for Task A - Non-Musicians (left) and Musicians (right).
Labels 1 to 5 indicate: Reference (Original Sound) and ATA, Circe, Retune
and World Resynthesis

The primary observation is the panel’s adeptness in discerning statistical
discrepancies, as evidenced by ANOVA (see Table 3.6). Regarding means,
the panel effectively identifies the reference, which yields the highest score.
Nevertheless, ATA emerges as statistically the most transparent option for
resynthesis. As per the Tukey Honest Significant Difference (HSD) analysis
(see Table 3.7), ATA demonstrates statistical indistinguishability from the
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original sound (reference). Noteworthy is the fact that ATA, functioning within
the temporal domain, maintains spectral content integrity, thus precluding
coloration introduction. This assertion is substantiated through statistical
analyses conducted across musician and non-musician cohorts, as well as upon
exclusion of unsuitable subjects. It is pertinent to highlight that not only are
mean values retained but also the shape of the data distribution, ensuring the
preservation of statistical similarities and differences across these groups.

The second observation pertains to the discernible coloration exhibited by
alternative techniques such as Circe, Retune, and World, as demonstrated by
Tukey’s HSD analysis and distributions shapes. This phenomenon is likely
attributed to modifications in spectral content inherent to these techniques.
Notably, Retune and World mean values manifest similar deviations from the
original sound, then we can verified it exist a statistical similarity for the pair
Retune-World because p value is equal to 0.0007. The Circe vocoder, how-
ever, introduces distinctive coloration, positioning it as notably dissimilar in
mean values and statistically from the original sound. Despite this discrepancy
not being previously documented by its authors, it is plausible that the Circe
vocoder’s testing solely for constant transposition, without consideration of dy-
namic transposition— the mechanism employed herein to impose the original
pitch—could underlie this observation.

Statistically, upon the removal of unsuitable subjects, no significant dif-
ferences are observed in terms of means and distributions. Upon division of
the panel between musicians (or professionals in the field) and non-musicians,
it is evident that the shapes and relative positions are generally preserved,
except for the retune vocoder. Musicians generally tend to rate differences
lower, thereby resulting in overall lower values across all comparables. The
data distribution shape remains similar for both musicians and non-musicians
groups. Notably, as previously mentioned, the Retune vocoder exhibits a dif-
ference, being rated higher by the non-musician group, who may be less adept
at discerning differences compared to the musician group.

The specific shape of the data in indistinguishable comparables, such as
ATA and the natural sound, remains consistent. This shape is consistently
observed when the subject perceives a comparable as highly similar to the
reference across all tasks. The distributions of the reference and ATA show
some lobes, which could be attributed to subjects rating them in a certain
way, or to one or several trials inducing ratings in the ranges where these lobes
occur. However, upon scrutinizing the histograms of trials and subjects in
detail, no such issues are observed. It may be more closely associated with
the type of scale utilized. Notably, the scale employed is partially discretized
through the use of a MUSHRA standard double scale.
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3.10.2 Task B: Extreme autotuning with each vocoder
compared to original sound

For Task B, we have compared autotuning realized by each vocoder to the
original sound (reference). Auto-tuning is achieved through re-synthesis by
imposing a pitch equal to the integer part of the original pitch (in the semitone
scale). Our aim with this test is to understand how each vocoder technique
affects vocal timbre when autotuning is performed. The difference arises from
the coloration introduced by each vocoder and autotuning. The results corre-
sponding to the mean values obtained for each vocoder are displayed in Table
3.10, where the identified differences have also been classified. The obtained
data can be graphically represented, as shown in Figure 3.8 and analyzed by
ANOVA (Table 3.9) and Tukey’s HSD test (Summarized in Table C.10). The
statistical support can be found in Appendix C.3 and includes: histograms per
subjects (Figures C.5 and C.6) and per trials (Figures C.7 and C.8).

Table 3.9: ANOVA for Task B - before excluding subjects deemed unsuitable

Df Sum Sq Mean Sq F value Pr(>F)

Vocoder 4 584859 146215 346.7 < 2e− 16
Residuals 1465 617916 422

Table 3.10: Tukey HSD post-hoc analysis for Task B:
Extreme autotuning with each vocoder compared to the original sound.

Comparable Mean SD Classification Diff. to Ref. Diff. to TA
0-Ref (original) 97,0 6,1 Identical 0,3
1-ATA 55,3 23,2 Slightly Similar -41,7
2-Circe 38,1 23,6 Dissimilar -58,8 -17,2
3-Retune 72,7 21,1 Similar -24,3 -16,8
4-World 54,9 22,9 Slightly Similar -42,0 -0,4*
p-value < 0.001 by ANOVA and Tukey HSD post-hoc
Except for (*) ATA-World pair p-value = 0.9997

Another graphical representation of the results can be found in Figure
3.8 showcasing means, standard deviations and distributions of data before
(left) and after(right) excluding two subjects considered unsuitable according
to MUSHRA [Schoeffler et al., 2018]. Statistical suppor after removing unsuit-
able subjects is in Appendix C.3. It includes: ANOVA (Table C.11), Tukey’s
HSD Test (Table C.12). Also we divided the panel in two groups: musicians
and non-musicians giving the results showcased in 3.9, the statistical supports
can be found in Appendix C.3: for non-musicians in tables C.13 (ANOVA)
and C.14(Tukey’s HSD test) and for musicians in tables C.15(ANOVA) and
C.16) (Tukey’s HSD test).
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Figure 3.8: Results for Task B - before (left) and after (right) excluding sub-
jects deemed unsuitable. Labels 1 to 5 indicate: Reference (Original Sound)
and ATA, Circe, Retune and World extreme-tuning
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Figure 3.9: Results for Task B - Non-Musicians (left) and Musicians (right).
Labels 1 to 5 indicate: Reference (Original Sound) and ATA, Circe, Retune
and World extreme-autotuning

Thanks to ANOVA, we can say that there are statistically significant dif-
ferences between the groups of comparables (p-value) and that the differences
between groups are more important than those within groups (F-value). Re-
garding the mean values, the first observation is that the original sound (the
reference) has a mean value similar to the mean value obtained in Task A
(despite the different contexts of Tasks A and B). On the other hand, the data
distribution of the reference compared to itself, as we will see, is the same in
all tasks regardless of whether it is a natural or autotuned sound. This dis-
tribution shape may be due to a perceptual phenomenon of similarity and the
type of MUSHRA scale used. After an analysis of the mean values and the
Tukey HSD analysis, all the pairs of p-values are less than 0.001 except for
the ATA-World pair; this means there is no statistically significant difference
between ATA and World when both compared to the original sound. And that
for all other pairs, there is a statistically significant difference.

Additionally, cuando se comparan los task A y B. tal como se muestra en
la figura 3.10, it is observed that for the reference, the data dispersion is lower,
which is because there is a clear difference between the natural sound and the
self-tuned sound. Consequently, it is more likely that subjects will classify the
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natural sound closer to 100 among the comparable sounds. Note the remaining
comparables (Circe, Retune, and Word) not only exhibit statistical differences
but also display more pronounced disparities in mean ratings compared to Task
A, as depicted in Figure 3.10. This phenomenon concerning coloration can be
interpreted as indicative of greater coloration and may stem from two primary
reasons. Firstly, there is the melody imposed by the autotuning process, which
adjusts all notes to whole semitones. Secondly, there is the vocoder technique
and its interpretation and management of pitch data for resynthesis. The most
significant degradation in terms of means is observed with Circe, transitioning
from being considered slightly similar to being clearly perceived as different.
Retune, however, demonstrates minor pitch alterations compared to the other
vocoders, potentially due to a slower interpretation of the pitch curve.
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Figure 3.10: Task A and B mean values. In Blue: Task A (Original pitch
resynthesis with each vocoder compared to Original sound). In green: Task B
(Extreme autotuning with each vocoder compared to original sound)

In terms of means, ATA and World deviate by a similar amount from the
original sound, as observed in Figures 3.5 3.8. When backed by statistical
support using the post-hoc analysis of Tukey HSD in the summary table 3.10
and in annex C.10, it is found that these two systems for autotuning are
statistically indistinguishable. This also provides insights into the relevance of
autotuned melody in the perception of these two systems.

If we observe the degradation due to vocoding in Task A, and the degra-
dation due to autotuning in Task B with respect to vocoding for the ATA
and Word vocoders, we find that the degradation due to autotuning is greater
(figure 3.10). Of course, this degradation is not the same with all vocoders
as each system operates differently, but it undoubtedly shows a significant
contribution perceptually speaking.

According to the post-hoc statistical analysis, all other possible combina-
tions are significantly different. Additionally, no relevant differences are ob-
served in the distributions after excluding unfit subjects. When the panel is
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divided between musicians (or professionals in the field) and non-musicians,
it can be observed that in general, the forms and relative positions are pre-
served. As additional annotations, it can be mentioned that musicians rate
CIRCE slightly lower, possibly because they rate the difference lower than
non-musicians do. Also, musicians rate ATA slightly higher, probably because
they are more familiar with its sound. Finally, it is worth noting that the par-
ticular shape of the data distribution obtained for the reference is similar to
that obtained in Task A; this shape may be due to the scale and a perceptual
effect when the comparator is very similar to the reference stimulus, which was
not previously mentioned and is systematic in the reference in all tasks.

3.10.3 Task C: Extreme autotuning with each vocoder
compared to Extreme autotuning with ATA

For Task C, we compared how each vocoder performs autotuning in relation to
the reference autotuning done by ATA. Autotuning is achieved by resynthesiz-
ing the original pitch, imposing a pitch equal to the integer part in a semitone
scale. In ATA, this process is accomplished by configuring retunespeed = 0.
Our objective is to understand how each vocoder technique uniquely affects
the coloration of autotuning. The difference in coloration arises from both the
intrinsic characteristics of each vocoder and the autotuning pitch curve.

We want to understand how people perceive extreme autotuning, i.e., if
they perceptually prioritize the extreme melody (the pitch curve of extreme
autotuning) or the vocoder used. Suppose no statistically significant difference
is found (p-value ¿ 0.95) as the melody is the only commonality between the
groups; we can consider that melody perceptually dominates extreme auto-
tuning, which would happen. If a statistically significant difference is found
(p-value ¡ 0.05), as the vocoder is the only difference between the groups, we
can consider the vocoder perceptually dominates extreme autotuning. The
current reference method for autotuning is ATA, which is why we use it as a
reference.

The results, presented in Table 3.14, display the mean values for each
vocoder, along with the identified differences. Furthermore, the data can be
visually represented, as shown in Figure 3.11, and the statistical support can
be found in Appendix C.4.

Table 3.11: ANOVA for Task C - before excluding subj. deemed unsuitable

Df Sum Sq Mean Sq F value Pr(>F)

Vocoder 3 351753 117251 334.5 < 2e− 16
Residuals 1172 410807 351

The histograms have been calculated per subjects (Figures C.9 and C.10)
and per trials (Figures C.11 and C.12). The statistical analysis includes
ANOVA (Table 3.11) and Tukey’s HSD test (Table C.17).
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Table 3.12: Tukey HSD post-hoc analysis for Task C:
Extreme autotuning with each vocoder compared to ATA extreme autotuning

Comparable Mean SD Classification Diff. to Ref.
1-Ref (ATA) 95,2 7,9 Identical
2-Circe 49,0 25,3 Slightly Similar -46,3
3-Retune 76,6 20,4 Similar -18,6
4-World 85,9 16,7 Similar -9,4
p-value < 0.001 by ANOVA and Tukey HSD post-hoc

A graphical representation of the results can be found in Figure 3.11, show-
casing means, standard deviations and distributions of data. Furthermore,
we’ve conducted these analyses under various conditions:

1. After removing unsuitable subjects (ANOVA in Table C.18, Tukey’s HSD
in Table C.19, graphical representation in Figure 3.11)

2. Non-musicians (ANOVA in Table C.20, Tukey’s HSD in Table C.21,
graphical representation in Figure 3.12)

3. Musicians (ANOVA in Table C.22, Tukey’s HSD in Table C.23, graphical
representation in Figure 3.12)
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Figure 3.11: Results for Task C - before (left) and after (right) excluding
subjects deemed unsuitable. Labels 1 to 4 indicate: ATA, Circe, Retune and
World extreme-autotuning

The first observation indicates that in this extreme autotuning experiment,
subjects statistically exhibit similarity in terms of the relative placement of the
means compared to Task A (considering now that there is no original sound).
This similarity can be attributed to the fact that in both Task A and Task C,
the pitch curve condition of the comparables is the same within each task. Our
observation is supported by the ATA scoring values, which are 95.2 ± 7.9 and
96.6 ± 6.1 for Tasks C and A, respectively. Additionally, the shape of the ATA
data distribution is statistically similar to that observed in Task A, suggesting
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Figure 3.12: Results for Task B - Non-Musicians (left) and Musicians (right).
Labels 1 to 4 indicate: ATA, Circe, Retune and World extreme-autotuning

again that it may be due to the scale and a perceptual phenomenon for very
similar vocal samples, regardless of whether they are natural or vocoded.

The second observation is that statistically revealed by Tukey HSD post-
hoc analysis, there is a significant difference between the vocoders (CIRCE,
TEUNE, and WORLD) regarding ATA for the entire panel, but also excluding
subjects and dividing the panel into groups of musicians and non-musicians.
On the other hand, Task C differs from what is observed in Task A, as in terms
of means, the positions of Retune and World are reversed. This suggests
that different pitch scenarios (resynthesis and extreme autotuning) lead to
discrepancies between vocoding processes, possibly because systems interpret
pitch curves differently. If that is the case, then we can say that Retune is
slower to perform a transposition and that in Task A, the proximity is due to
its slowness in processing rather than the fidelity of the transposition. On the
other hand, Circe has a difference in means and distribution shape similar to
ATA, which is similar to that obtained in Task A.

The third observation highlights that the WORLD vocoder is the vocoder
closest to ATA in terms of means. The last observation is that the shape and
relative positions of the comparable ratings are consistent when dividing the
panel into various groups. Once again, it is observed that lower ratings given
by musicians result in lower means and an elongation of the data distribution,
similar to the cases of Tasks A and B.

3.10.4 Task D: Soft autotuning with each vocoder com-
pared to Soft autotuning with ATA

For Task D, we compare how each vocoder performs soft-autotuning com-
pared to the reference autotuning done by ATA. Soft-autotuning is achieved
by resynthesizing the original sound, imposing the soft-autotig curve recov-
ered from ATA using Praat. In ATA, this process is carried out by configuring
retune − speed = 50. Our goal is to understand how each vocoder technique
uniquely affects the coloration of autotuning. The difference in coloration
arises from both the inherent characteristics of each vocoder and the autotun-
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ing process itself. The results presented in Table 3.12 show the mean values
for each vocoder, along with the identified differences. Additionally, the data
can be visually represented, as shown in Figure 3.13.

Table 3.13: ANOVA for Task D - before excluding subjects deemed unsuitable

Df Sum Sq Mean Sq F value Pr(>F)

Vocoder 3 496532 165511 503.3 < 2e− 16
Residuals 1340 440680 329

Table 3.14: Tukey HSD post-hoc analysis for Task D: Soft autotuning with
each vocoder compared to Soft autotuning with ATA

Comparable Mean SD Classification Diff. to Ref.
1-Ref (ATA) 96,9 5,7 Identical
2-Circe 45,0 25,5 Slightly Similar -51,9
3-Retune* 82,3 17,9 Similar -14,6
4-World* 82,7 17,5 Similar -14,3
p-value < 0.001 by ANOVA and Tukey HSD post-hoc. Except:
(*) World vs Retune have a means diff. of 0.3, p-value = 0.9937 (full panel),
and not significant for non-musicians and musicians

The histograms have been calculated per subjects (Figures C.13 and C.14)
and per trials (Figures C.15 and C.16). The statistical analysis includes
ANOVA (Table 3.13) and Tukey’s HSD test (Table C.24).

A graphical representation of the results can be found in Figure 3.13, show-
casing means, standard deviations and distributions of data. Furthermore,
we’ve conducted these analyses under various conditions:

1. After removing unsuitable subjects (ANOVA in Table C.25, Tukey’s HSD
in Table C.26, graphical representation in Figure 3.13)

2. Non-musicians (ANOVA in Table C.27, Tukey’s HSD in Table C.28,
graphical representation in Figure 3.14)

3. Musicians (ANOVA in Table C.29, Tukey’s HSD in Table C.30, graphical
representation in Figure 3.14)

It is evident that Retune and World closely approximate ATA in terms of
rating; however, this proximity in rating does not translate into statistical sim-
ilarity for the full panel, as indicated in Appendix 3.14 and C.5. Despite their
close mean values, they remain statistically distinct for the full panel. Con-
cerning the similarity between Retune and World, it is noteworthy that they
appear statistically indistinguishable when considering the entire panel or ex-
cluding certain subjects. However, upon dividing the panel between musicians
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and non-musicians, no definitive conclusion can be drawn regarding their sig-
nificant similarity or difference. Additionally, the relative positions of Retune
and World, while similar, become inverted for the two groups. Conversely,
Circe consistently exhibits a significant statistical difference and disparity in
mean values across all panel groups.

There are three important considerations to note related to the task done
until now:

1. In Task A, the closest re-synthesis to the original sound (apart from
ATA) is achieved by Retune (-10.7 compared to the reference), followed
by World (-15.7 compared to the reference).

2. In Task B (extreme autotuning), both World and ATA are equally dis-
tant from the original sound, and are indistinguishable with a confidence
interval greater than 95%.

3. In Task C, extreme autotuning with World is the closest to ATA, followed
by Retune.

Based on these observations, it can be concluded that overall, the World
vocoder exhibits slightly higher similarity to ATA compared to Retune across
the four tasks. Therefore, World may prove to be a more suitable option for
evaluating pitch changes, such as in the psychoacoustic evaluation of pitch
correction methods.

Finally, it is important to consider that the reference audio consistently
maintains the same systematic shape across all four tasks, regardless of the
pitch condition or vocoder. The distribution of the reference always presents
a kind of lobes. We cannot assert that the reason is the MUSHRA scale. Nev-
ertheless, remember that the MUSHRA scale is semi-discretized (Figure 3.4),
meaning there may be cognitively preferred points within the “identical” and
“similar” intervals that subjects use, or the lobes may be due to a perceptual
phenomenon and different levels of subjects’ discriminative ability. Although
this question did not exist before, it is interesting to propose it as it is not
possible to answer it with the current data.

3.11 Participants Interviews and Feedback
During and following each trial, interviews were conducted with the respective
participants. These interviews were open-ended and centered around the test
in its entirety. For instance, participants were queried about their overall im-
pressions and comprehension of the questions, to which all subjects responded
affirmatively. Regarding attentiveness throughout the trial, it was observed
that individuals who had previously engaged in similar tests encountered no
significant impediments. At the same time, first-time participants exhibited
some fatigue, albeit mentioning their endeavor to perform to the best of their
ability.
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Figure 3.13: Results for Task D - before (left) and after (right) excluding
subjects deemed unsuitable. Labels 1 to 4 indicate: ATA, Circe, Retune and
World soft-autotuning
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Figure 3.14: Results for Task D - Non-Musicians (left) and Musicians (right).
Labels 1 to 4 indicate: ATA, Circe, Retune and World soft-autotuning

Regarding the ease or difficulty encountered in specific cases, there was
a disparity in the type of samples that were perceived as easier. For some
participants, it was easier to identify differences in stimuli with consonants,
while for others, it was easier when the sound had fewer consonants. These
observations were equally varied among both musicians and non-musicians.
This may be attributed to perceptual scanning strategies, which could be of
the COD (comparison over distance) type or through skimming. This confirms
that the panel is diverse and that no particular type of sample is favored.

3.12 Conclusions
Completing this vocoder psycho-acoustic study allows us to corroborate some
ideas we initially held as experimenters while challenging others that turned
out slightly differently than expected. Below, we summarize the main points
derived from compiling the results obtained from each task:

• The perception of the reference remains consistent across different con-
texts and comparables (Tasks A, B, C, D).
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• ATA is identified as transparent in the softest possible configuration
(Task A), statistically indistinguishable from the original sound.

• World and Retune exhibit similarities with the original audio in pitch
resynthesis (Task A), but a statistically significant difference prevails.

• Extreme autotuning with ATA and World equally deviates from the orig-
inal audio (Task B), and they are statistically indistinguishable from each
other.

• Extreme autotuning with World is the closest to ATA (Task C) concern-
ing the mean values, but a statistically significant difference exist.

• Soft autotuning with World and Retune closely resembles that of ATA
(Task D), and they are statistically indistinguishable from each other.

• World exhibits a slightly superior resemblance to ATA regarding mean
values compared to Retune.

Now we will discuss the implications of some of these results in more detail.
Firstly, the fact that the perception of the reference remains consistent across
different contexts and comparisons (Tasks A, B, C, D) indicates that the shape
and mean value of the distribution are very similar, regardless of whether the
reference is a natural or vocoded sound. This result suggests the existence of
a vocal difference perception threshold, as the obtained value never reaches
100%. In future studies, it would be helpful to investigate this perception
threshold with minimal sound variations and a larger number of vocoders to
confirm that it is indeed a perceptual phenomenon. Additionally, it would be
interesting to apply this approach beyond pitch, exploring other vocal char-
acteristics. Such experiments could determine if this perceptual phenomenon
varies more or less within the vocal context than the perception of pure tones
or levels. Other vocal characteristics could include roughness, breathiness, etc.

ATA is identified as transparent in the softest possible configuration (Task
A), statistically indistinguishable from the original sound. This result indi-
cates that the vocoding quality of ATA is unmatched and that none of the
other systems we used reach that level of quality. Additionally, tests with vari-
able transpositions should be included to verify the sound quality of a vocoder,
not just constant transpositions. This proposition is relevant for the vocoder’s
quality evaluation, as the systems studied have undergone quality tests with
constant transposition, but variable transposition presents new challenges re-
garding realism and quality. Such a kind of test would also reveal that specific
timbral characteristics only become evident when using variable transpositions
instead of constant ones. These results suggest that any autotune preset will
vary depending on the vocal transformation system used, as autotune itself
involves variable transposition.

World and Retune exhibit similarities to the original audio in pitch resyn-
thesis (Task A), but a statistically significant difference prevails. Initially,
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we thought we could use one of these two vocoders as a replica of ATA to
evaluate ATA’s pitch correction relative to DPW, but no. This result means
that the sound differences, which cannot be determined by individual listeners
(the experimenter, the supervisor, the assistant), can be identified through a
psychoacoustic test. Moreover, this comparison is helpful because we wanted
to determine which of the two systems could eventually be used to replicate
ATA, a closed system. Since ATA is indistinguishable from natural sound in
Task A, we see that Retune and World cannot be used as replicas of ATA for
resynthesis.

Extreme autotuning with ATA and World deviates equally from the original
audio (Task B) and are statistically indistinguishable. Unlike the previous
case, this shows that for the specific case of extreme autotuning, World could
potentially be used as a replica of ATA (when compared to the natural sound,
there is no difference). However, a specific comparative verification between
ATA and World is necessary. For this, we can use Tasks C and D, but in the
future, we could also go further, for example, with an ABX study comparing
only ATA and World.

Extreme autotuning with World is the closest to ATA (Task C) concerning
the mean values, but a statistically significant difference exists. This means
that, although no difference is perceived when compared to the natural sound,
World and ATA are perceived as different when compared to each other. There-
fore, the idea of using World as a replica to evaluate ATA’s pitch correction
method in isolation is ruled out.

Soft autotuning with World and Retune closely resembles that of ATA
(Task D), and they are statistically indistinguishable from each other. Similar
to the previous case, this result allows us to rule out the idea of using World
as a replica of ATA to evaluate ATA’s pitch correction method in isolation.

World exhibits a slightly superior resemblance to ATA regarding mean
values compared to Retune. This result means that if we have ATA’s correction
curve (tracked with Praat), we can compare ATA and DPW methods almost
in isolation, at least to estimate the difference. Given the context, in which we
already have a comparison of ATA against World in several cases, this would
give us an idea of whether there is any additional coloration due to the pitch
correction method (ATA or DPW).

With the previous clarifications, we can proceed to the Subjective Evalu-
ation of Pitch Correction Methods, where we will compare the implemented
ATA and DPW methods. We will use a copy of ATA with World, which,
although not serving as a replica, can provide indications of whether the col-
oration due to the pitch correction method is similar in the cases already
studied in tasks A, B, C, and D. This will help us determine if there is an
additional impact due to pitch correction or if the coloration is primarily due
to the vocoder.
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Chapter 4

Subjective Evaluation of Pitch
Correction Methods

In this chapter, we conduct a discriminative-based protocol comparison be-
tween ATA and DPW pitch correction methods. The psycho-acoustical eval-
uation test proposed here employs a similar interface and set of questions to
the vocoders’ comparative test. We have two methods to study: ATA and
DPW. As for the vocoder evaluation, we also use a DFC test; the advantage of
the DFC test over purely discriminating tests lies in its ability to analyze the
statistical behavior of the panel across different scenarios. DFC not only helps
ascertain whether samples are distinguishable for each task but also helps to
identify differences and their consistency across various vocoders or configura-
tions of pitch correction methods in different tasks.

Ideally, pitch tracking and vocoder variables should remain constant, with
only the pitch correction algorithm varying. However, maintaining such con-
sistency is unfeasible due to ATA’s closed software nature. Thus, we propose
two approaches. Firstly, a portion of the comparisons utilizes ATA’s complete
protocol, including its pitch tracker, pitch correction method, and “vocoder”.
In comparison, DPW is treated as a separate protocol, using Praat as the
pitch tracker and World as the vocoder. Secondly, the remaining comparisons
utilize a non-exact replica of ATA, employing World as the vocoder and im-
posing the tone curve from an ATA-corrected audio file, where the tone curve
was extracted using Praat and Python. These comparisons allow us to draw
conclusions regarding the vocoder-induced coloration and melodic effects, their
prevalence across various cases, such as soft and extreme correction, and the
perception of differences between the two methods.

4.1 Tasks
Each task comprises 19 questions, totaling 95 questions (trials) across all five
tasks. Participants are prompted with a similarity question identical to that
in the vocoder DFC test, wherein they rate the level of resemblance between
the stimuli (comparables) and the reference using the provided interface. The
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questions within each task are fully randomized, and the sequence of tasks is
also randomized. Further elaboration on each task is provided below.

4.1.1 Task 1: extreme pitch correction
ATA+ATA compared to DPW+World

In the first task, we compare, for a given source sound, audio files autotuned
with ATA using extreme pitch correction (as the reference) versus audio files
vocoded with World using DPW extreme pitch correction (as the comparable).
This entails comparing the full protocol utilizing DPW (vocoding with World)
with the ATA protocol. We hypothesize that extreme cases of both pitch
correction methods are very similar. This would imply that both methods
achieve the extreme retuning effect in a closer manner, thus preserving the
stylistic properties of autotune. To verify this, we would check whether the
extreme correction yields a similar outcome to that obtained in Task C of
the vocoder’s comparative test, which compared autotuning across different
vocoders.

4.1.2 Task 2: extreme pitch correction
ATA+World compared to DPW+World

In the second task, we compare sounds vocoded with World using both pitch
correction methods (ATA and DPW) in extreme configuration. The origi-
nal pitch is obtained through Praat and adjusted using the ATA and DPW
algorithms. According to patent [Hildebrand, 1998], the ATA algorithm is
equivalent to the integer part of the value obtained on the semitone scale (for
retune − speed = 0). This implies that the only virtual difference between
the files is the tone correction method employed (DPW and ATA as reference)
to obtain the imposed pitch curve. Our hypothesis is that the extreme cases
are very similar, which could be interpreted as both methods achieving the
extreme correction effect in the same manner.

4.1.3 Task 3: soft pitch correction
ATA+ATA compared to DPW+World

In the same manner as conducted in Task 1, in the third task, we compare
the complete protocols of ATA (reference) and DPW. For this task, we employ
a soft correction. The ATA protocol consists of its own pitch tracker, pitch
correction algorithm, and vocoder. The DPW protocol comprises tracking
with Praat, pitch correction with DPW, and vocoding with World. Through
this test, we aim to ascertain whether subjects perceive differences between
the methods for soft correction.
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4.1.4 Task 4: soft pitch correction
ATA+World compared to DPW+World

The fourth scenario involves comparing soft versions of the audio vocoded
with both pitch correction methods using the same vocoder, as done in T2.
Therefore, we compare the audio softly autotuned with ATA (as reference)
with the audio vocoded with World for a soft DPW pitch correction. The
audio corresponding to ATA is obtained by recovering the pitch from a file
treated with the actual ATA protocol using Praat and then resynthesizing it
with World. Task 4 is exploratory, similar to the third task, where we aim to
determine whether subjects can perceive a difference or not.

4.1.5 Task 5: Source audio compared to Soft pitch cor-
rections

The final task entails discriminating between the authentic sound (reference)
and the subtle corrections applied with ATA and DPW. This will involve
employing three comparisons:

1. The full ATA protocol;

2. A replication of ATA utilizing World as a vocoder, by imposing the
pitch curve of a file treated with the authentic ATA protocol for subtle
correction; and

3. DPW applied over the pitch curve of the original file using World as a
vocoder.

Our objective here is to ascertain whether subjects establish an association
based on the sound scores according to the vocoder (associating those utilizing
World) or based on the melody (associating those with ATA). Moreover, the
variance in assessment will enable us to determine if there is a discernible
distinction between the comparables.

4.1.6 Summary of tasks for pitch correction methods
comparison

The table 3.5 presents a detailed summary of the various aspects addressed in
the psychoacoustic test, including the description of the references and com-
parables used, as well as the specific objectives of each task. Through this
arrangement, the aim is to provide a comprehensive understanding of the con-
trolled variables and parameters assessed at each stage of the study. In addi-
tion to the primary objectives of each task, the table also highlights additional
conclusions that can be drawn from the collected data, further enriching the
interpretation and utility of the results obtained. For the statistical analy-
ses, the ANOVA and post-hoc Tukey HSD protocol are used, with the null
hypothesis being equality and the alternative hypothesis being the difference.
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Task Reference Melody(F0) Comparable Melody(F0)

1 ATA fextreme,ata World fextreme,dpw

Comparing pitch correction for extreme correction between ATA
and world+DPW protocols

2 World int(fnat) ≈extreme,ata World fextreme,dpw

Comparing pitch correction for extreme correction keeping the
same vocoder: world

3 ATA fsoft,ata World fsoft,dpw

Comparing pitch correction for soft correction between ATA and
world+DPW protocols

4 World fsoft,ata World fsoft,dpw

Comparing pitch correction for soft pitch correction keeping the
same vocoder: world. Praat is used to track fsoft,ata, world is used
to re-synthetize the original audio with fsoft,ata.

5 Natural fnatural

World

ATA

fsoft,dpw

fsoft,ata

fsoft,ata

Comparing original sound with soft pitch correction for several
cases. Purpose is check possible timbral difference due to pitch
correction method.

Table 4.1: Summary of tasks for pitch correction methods comparison

4.2 Test preparation

The design of the subjective test is carried out in the same path as the vocoder
test: using the MUSHRA interface, with elements previously defined for the
hybrid ranking and discrimination test, including:

• Objectives and Hypotheses: Distributed in the five previously described
tasks, each with specific objectives and hypotheses.

• Stimuli: Audio files vocoded generated by the two pitch correction meth-
ods for 3 cases: extreme correction, soft correction, correction vs. natural
sound.

• Interface and Data Collection: Utilization of the MUSHRA interface and
data collection in CSV format provided by MUSHRA tools.

126



4.3 Audio Support
The audio support for the comparison of the pitch correction methods con-
sists of 19 samples. These samples are edited with vocoders and pitch cases
according to Table 3.4 for tasks 1,2,3,4 and 5.

Table 4.2: Audio Support for the Pitch Correction Comparison Psycho-
Acoustical Test (abbreviated as p)

Method ATA DPW
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Abbv. Audio File Name

pa part1: part1-real3Maleintervals 1 3,5 2 4,5 1,2 3,4,5 5
pa part2: part2-real3Maleintervals 1 3,5 2 4,5 1,2 3,4,5 5
pb part1: part1-real19Malevoicelegatto 1 3,5 2 4,5 1,2 3,4,5 5
pb part2: part2-real19Malevoicelegatto 1 3,5 2 4,5 1,2 3,4,5 5
pc part1: part1-real23Femalelegattovirtuoso 1 3,5 2 4,5 1,2 3,4,5 5
pc part2: part2-real23Femalelegattovirtuoso 1 3,5 2 4,5 1,2 3,4,5 5
pc part3: part3-real23Femalelegattovirtuoso 1 3,5 2 4,5 1,2 3,4,5 5
pd part1: part1-realJF-mem-6-a-male2 1 3,5 2 4,5 1,2 3,4,5 5
pd part2: part2-realJF-mem-6-a-male2 1 3,5 2 4,5 1,2 3,4,5 5
pe part1: part1-realLP-mem-6-a-fem2 1 3,5 2 4,5 1,2 3,4,5 5
pe part2: part2-realLP-mem-6-a-fem2 1 3,5 2 4,5 1,2 3,4,5 5
pe part3: part3-realLP-mem-6-a-fem2 1 3,5 2 4,5 1,2 3,4,5 5
pe part4: part4-realLP-mem-6-a-fem2 1 3,5 2 4,5 1,2 3,4,5 5
pf part1: part1-realms-celinedion 1 3,5 2 4,5 1,2 3,4,5 5
pf part2: part2-realms-celinedion 1 3,5 2 4,5 1,2 3,4,5 5
pf part3: part3-realms-celinedion 1 3,5 2 4,5 1,2 3,4,5 5
pf part4: part4-realms-celinedion 1 3,5 2 4,5 1,2 3,4,5 5
pg part1: part1-realrt-yvesmontand 1 3,5 2 4,5 1,2 3,4,5 5
pg part2: part2-realrt-yvesmontand 1 3,5 2 4,5 1,2 3,4,5 5

The content of the samples can be described according to the types: stair-
case, vibratos and free-path, as shown in Figure 1.4.3.

4.3.1 Subject Panel
The number of subjects in the psycho-acoustic analysis is generally limited. In
our experiment, we used the same panel for the vocoders comparison test: 20
subjects divided between musicians and non-musicians.
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Table 4.3: Content of the Samples for the Pitch Correction Comparison
Psycho-Acoustical Test

Content Content
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Sample Duration Sample Duration
[ms] [ms]

pa part 1 ✓ 2397 pe part 1 ✓ ✓ ✓ 2995
pa part 2 ✓ ✓ 2397 pe part 2 ✓ ✓ ✓ 4193
pb part 1 ✓ ✓ 2995 pe part 3 ✓ ✓ ✓ 4792
pb part 2 ✓ ✓ 4792 pf part 4 ✓ ✓ ✓ 4193
pc part 1 ✓ ✓ ✓ 3294 pf part 1 ✓ ✓ ✓ 3594
pc part 2 ✓ ✓ 2397 pg part 2 ✓ ✓ ✓ 3294
pc part 3 ✓ ✓ 3594 pg part 3 ✓ ✓ ✓ 3145
pd part 1 ✓ ✓ 3145 pg part 4 ✓ ✓ 2396
pd part 2 ✓ ✓ 4792 pg part 1 ✓ ✓ 4193

pg part 2 ✓ ✓ ✓ 7188

4.3.2 Test Contents
The test consists of five tasks, each with its respective hypotheses. Each task
includes 19 questions, and in each question, subjects are asked to determine the
level of similarity between the reference and the comparables (vocoders). This
means that each pitch correction method is evaluated with 19 different sound
examples by each subject, totaling 380 scores related to each pitch correction
method case. This diversity of examples ensures test variability and prevents
fatigue effects.

4.3.3 Data Treatment
Data is collected in CSV format as in the vocoder comparison test, in a file that
includes identifiers for each test subject, identifiers for the type of comparable,
values assigned by the subject to each comparable, the type of sound example,
and the total time for each stage of the test. As in the vocoder comparison
test, statistical data analysis is performed using R.

4.3.4 Room and sound
The setup closely follows the procedures used in the vocoder comparison test.
To conduct the test, a dedicated recording studio room (room 519) at the
Institut Jean le Rond d’Alembert has been used. The tests are administered
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using a MacBook running macOS Big Sur (11.7). Participants access the test
through a website hosted on the Institut Jean le Rond d’Alembert server. Test
data is recorded at the end of each 20-minute test segment. Sennheiser HD
205 over-ear headphones are provided for participants, and a pre-test check
ensures optimal volume and equipment functionality.

4.3.5 Planning
The procedure mirrors that of the vocoder comparison test. The test com-
prises five parts, each lasting 15 minutes, conducted in a single one hour and
half session. Participants, grouped into musicians and non-musicians, are sum-
moned to the Jean Le Rond d’Alembert Institute. The testing period spans
one month, with scheduling coordinated directly with participants. Rested
participants are compensated with a 40-euro Amazon gift card for their par-
ticipation.

4.4 Test procedure
In preparation for the test, individuals are called to the allocated room fur-
nished with the predetermined materials. The session commences with an
introductory presentation outlining the test in a similar way to the test for the
vocoder comparison. The presentation contains the following information:

• Pitch correction algorithms are widely utilized in contemporary music
production. Initially designed to discreetly rectify a singer’s off-key notes,
some artists now employ them as a deliberate effect. To maintain the
“naturalness” of the voice throughout these alterations, vocoders are needed
into these algorithms. The objective of this test is to assess the impact
on coloration caused by the vocoder and the pitch correction algorithms.

• The test is divided into five segments, each lasting approximately 20 min-
utes. For every segment, you will be asked to assess the degree of similar-
ity between a reference and various conditions. Following each segment,
you will need to complete an information sheet, ensuring that you include
the same ID at the end of each section.

The comparison between the vocoder and pitch correction methods was
conducted jointly. Therefore, participant consent and data collection were
carried out only once using the formats outlined in the preceding chapter.
First, it appears a volume adjustment window, followed by an illustrative
question, as done in the vocoder test (Figure 3.4). Then, participants proceed
to complete the 19 questions of the task, which lasts around 15 minutes. Upon
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completion, participants enter their participant ID on a page, and data is
automatically saved on the server. They then progress to another task, which
also lasts approximately 15 minutes. Following this, if desired, they can take
a more extended break of up to 30 minutes. Subsequently, the participant
continues with three other tasks, and at the end, an interview is conducted to
obtain further insights into the test experience.

4.4.1 Results

4.4.2 Task 1: extreme pitch correction
ATA+ATA compared to DPW+World

In this section, we present the results obtained for Task 1. Histograms have
been calculated per subject (Figure C.17) and per trial (Figures C.18 and
C.19), allowing for the examination of consistent results across subjects and
trials. The result are presented in Figure 4.1, showcasing means and standard
deviations, as well as data distributions. And four subdivisions of the panel
have been studied, the results for each group are presented as follows:

1. Entire panel, before removing two unsuitable subjects (ANOVA in Ta-
ble 4.4, Tukey’s HSD in Table (Table C.32), graphical representation in
Figure 4.1)

2. After removing two unsuitable subjects (ANOVA in Table C.33, Tukey’s
HSD in Table C.34, graphical representation in Figure 4.1)

3. Non-musicians (ANOVA in Table C.35, Tukey’s HSD in Table C.36,
graphical representation in Figure 4.2)

4. Musicians (ANOVA in Table C.37, Tukey’s HSD in Table C.38, graphical
representation in Figure 4.2)

Table 4.4: ANOVA for Task 1 - before excluding subj. deemed unsuitable

Df Sum Sq Mean Sq F value Pr(>F)
Method 1 18761 18761 92.72 < 2e− 16
Residuals 758 153374 202

Our hypothesis posited that the extreme cases of both pitch correction
methods would exhibit high similarity. The observed difference in mean scores
in the results is less than 10% of the score obtained by the reference, suggesting
a minor discrepancy. However, this outcome does not elucidate whether this
difference stems from the vocoder or the correction method, as both vary for
the two comparable elements of Task 1. Statistically, as evidenced in Appendix
C.7, it is apparent that the distributions are disparate, and the null hypothesis
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Table 4.5: Tukey HSD post-hoc analysis for Task 1:
Extreme correction, ATA+ATA compared to DPW+World

Task 1
Comparable Mean SD Classification Diff. to Ref.
DPW extreme + World 86,2 18,5 Very similar -9,9
Ref. ATA extreme + ATA 96,2 7,9 Identical
p-value < 0.001 by ANOVA and Tukey HSD post-hoc
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Figure 4.1: Results for Task 1 - before (left) and after (right) excluding subjects
deemed unsuitable. Extreme correction for ATA+ATA (1) and DPW+World
(2)
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Figure 4.2: Results for Task 1 - Non-Musicians (left) and Musicians (right).
Extreme correction for ATA+ATA (1) and DPW+World (2)

of equality is rejected. This indicates that despite the proximity in terms of
rating, the panel subjects are capable of distinguishing between them.

Another noteworthy observation arises from comparing the results of the
vocoder comparison for the re-synthesis case (Task A) with those obtained
here. It becomes apparent that the mean values obtained for ATA and World
vocoders demonstrate a comparable magnitude of difference, both in the cases
of re-synthesis and extreme autotuning. However, it is crucial to emphasize
that this difference is statistically significant. This suggests that the observed
disparity may be attributed more to the vocoding process rather than the
specific pitch correction method employed for this task.
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Last aspect worth considering is the shape of the control stimulus lobe
(the same reference), which can be reexamined. It is observed that the data
distribution shapes are preserved for both non-musicians and musicians, albeit
slightly more dispersed in musicians. This discrepancy in dispersion may be
attributed to factors elucidated in the previous chapter tasks.

4.4.3 Task 2: extreme pitch correction
ATA+World compared to DPW+World

In this section, we present the results for Task 2. The results, including means,
standard deviations, and data distributions, are shown in Figure 4.3. His-
tograms have been calculated per subject (Figure C.20) and per trial (Figures
C.21 and C.22), and four panel subdivisions are presented as follows:

1. Entire panel, before removing two unsuitable subjects (ANOVA in Table
4.6, Tukey’s HSD in Table C.39, graphical representation in Figure 4.3)

2. After removing two unsuitable subjects (ANOVA in Table C.40, Tukey’s
HSD in Table C.41, graphical representation in Figure 4.3)

3. Non-musicians (ANOVA in Table C.42, Tukey’s HSD in Table C.43,
graphical representation in Figure 4.4)

4. Musicians (ANOVA in Table C.44, Tukey’s HSD in Table C.45, graphical
representation in Figure 4.4)

Table 4.6: ANOVA for Task 2 - before excluding subj. deemed unsuitable

Df Sum Sq Mean Sq F value Pr(>F)
Method 1 12192 12192 79.91 < 2e− 16
Residuals 758 115655 153
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Table 4.7: Tukey HSD post-hoc analysis for Task 2:
Extreme correction, ATA+World compared to DPW+World

Comparable Mean SD Classification Diff. to Ref.
DPW extreme + World 87,8 15,5 Similar -8,0
Ref. ATA extreme + World 95,8 8,0 Identical
p-value < 0.001 by ANOVA and Tukey HSD post-hoc
Except for asterisk (*) cases.

The resemblance between the results of Task 1 and the present study is
remarkable. In terms of means, both protocols (ATA extreme + World and
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Figure 4.3: Results for Task 2 - before (left) and after (right) excluding subjects
deemed unsuitable. Extreme correction for ATA+World (1) and DPW+World
(2)
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Figure 4.4: Results for Task 2 - Non-Musicians (left) and Musicians (right).
Extreme correction for ATA+World (1) and DPW+World (2)

DPW extreme + World) exhibit a high degree of similarity. There is a slight
remaining discrepancy (approximately 3), which is likely attributed to the
pitch correction method rather than the vocoder.

Statistically and based on Appendix C.8, it can be observed that the dis-
tributions are different and the null hypothesis of equality is rejected despite
the mean values being very similar. So, although there is a sound proximity
in terms of scoring, the difference is discernible. It can be verified that the
distribution shape for the reference stimulus is similar to the cases seen previ-
ously. The shapes of the distributions for both comparables remain consistent
for both non-musicians and musicians, even when removing subjects. In other
words, there is a small but consistent difference between the data. This dif-
ference is attributed to the pitch correction method, given that the vocoder
remains the same.

4.4.4 Task 3: soft pitch correction
ATA+ATA compared to DPW+World

In this section, we present the results for Task 3. The results, including means,
standard deviations, and data distributions, are shown in Figure 4.5. His-
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tograms have been calculated per subject (Figure C.23) and per trial (Figures
C.24 and C.25), and four panel subdivisions are presented as follows:

1. Entire panel, before removing two unsuitable subjects (ANOVA in Table
4.8, Tukey’s HSD in Table C.46, graphical representation in Figure 4.5)

2. After removing two unsuitable subjects (ANOVA in Table C.47, Tukey’s
HSD in Table C.48, graphical representation in Figure 4.5)

3. Non-musicians (ANOVA in Table C.49, Tukey’s HSD in Table C.50,
graphical representation in Figure 4.6)

4. Musicians (ANOVA in Table C.51, Tukey’s HSD in Table C.52, graphical
representation in Figure 4.6)

Table 4.8: ANOVA for Task 3 - before excluding subj. deemed unsuitable

Df Sum Sq Mean Sq F value Pr(>F)
Method 1 22172 22172 130.6 < 2e− 16
Residuals 758 128674 170

Table 4.9: Tukey HSD post-hoc analysis for Task 3:
Soft correction, ATA+ATA compared to DPW+World

Comparable Mean SD Classification Diff. to Ref.
DPW soft + World 86,3 16,8 Similar -10,8
Ref. ATA soft + ATA 97,1 7,4 Identical
p-value < 0.001 by ANOVA and Tukey HSD post-hoc
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Figure 4.5: Results for Task 3 - before (left) and after (right) excluding subjects
deemed unsuitable. Soft correction for ATA+ATA (1) and DPW+World (2)

Following the same methodology as in Task 1, in the third task, we compare
the complete protocols of ATA (reference) and DPW+World for smooth cor-
rection. Similar to the findings in Task 1 for extreme correction and Task A for
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Figure 4.6: Results for Task 3 - Non-Musicians (left) and Musicians (right).
Soft correction for ATA+ATA (1) and DPW+World (2)

resynthesis, a comparable difference in means is observed. Consequently, it can
be inferred that the World vocoder introduces a consistent type of coloration
across extreme autotuning (Task 1), soft correction (Task 3), and resynthesis
(Task A). The discerned difference primarily stems from the vocoder; thus, no
definitive conclusion regarding the coloration attributable to the pitch correc-
tion method can be drawn.

As per Appendix C.9, statistically, a significant difference akin to that in
Task 1 is observed, likely attributed to the vocoder. Upon removing subjects
from the panel, there is reduced dispersion. oreover, dividing the panel be-
tween musicians and non-musicians shows that the lobes are more similar and
closer to 100 for non-musicians. In contrast, for musicians, the lobes are more
dispersed, and the difference in shape is more pronounced.

4.4.5 Task 4: soft pitch correction
ATA+World compared to DPW+World

In this section, we present the results for Task 4. The results, including means,
standard deviations, and data distributions, are shown in Figure 4.7. His-
tograms have been calculated per subject (Figure C.26) and per trial (Figures
C.27 and C.28), and four panel subdivisions are presented as follows:

1. Entire panel, before removing two unsuitable subjects (ANOVA in Table
4.10, Tukey’s HSD in Table C.53, graphical representation in Figure 4.7)

2. After removing two unsuitable subjects (ANOVA in Table C.54, Tukey’s
HSD in Table C.55, graphical representation in Figure 4.7)

3. Non-musicians (ANOVA in Table C.56, Tukey’s HSD in Table C.57,
graphical representation in Figure 4.8)

4. Musicians (ANOVA in Table C.58, Tukey’s HSD in Table C.59, graphical
representation in Figure 4.8)
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Table 4.10: ANOVA for Task 4 - before excluding subj. deemed unsuitable

Df Sum Sq Mean Sq F value Pr(>F)
Method 1 354 354.4 4.425 0.0357
Residuals 758 60711 80.1

Table 4.11: Tukey HSD post-hoc analysis for Task 4:
Soft correction, ATA+World compared to DPW+World

Comparable Mean SD Classification Diff. to Ref.
DPW soft + World 95,3 9,9 Similar 1,4
Ref. ATA soft + World 96,6 7,8 Identical
By ANOVA and Tukey HSD post-hoc. p-value equal to 0.0357 (full panel),
= 0.0067 (excl. subj.), 0.0067 (musicians) and 0.2730 (non-musicians)
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Figure 4.7: Results for Task 4 - before (left) and after (right) excluding subjects
deemed unsuitable. Soft correction for ATA+World (1) and DPW+World (2)
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Figure 4.8: Results for Task 4 - Non-Musicians (left) and Musicians (right).
Soft correction for ATA+World (1) and DPW+World (2)

In the fourth task, comparisons are made between smooth corrections us-
ing ATA and DPW with the same WORLD vocoder. Although the means
indicate a high similarity between both cases, analyzing the statistical support
of the entire panel confirms that there is a statistically significant difference.
This leads us to conclude that smooth correction generates perceptible differ-
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ences, even when they are very small, even when the data distributions are
also similar. As shown in Table 4.11 and Appendix C.10, after removing in-
adequate subjects from the panel, the p-value changes slightly but remains
within the confidence interval. The same occurs when dividing the panel be-
tween musicians and non-musicians, although in this case, the p-value falls
outside the confidence interval, which prevents us from reaching a definitive
conclusion. For the musician group, a p-value of 0.09 is obtained and for the
non-musician group, 0.14, indicating that non-musicians are less capable of
perceiving such subtleties in the difference than musicians. Nevertheless, the
similarity between the data distributions for all four groups (complete panel,
subjects excluded, musicians, and non-musicians) is noteworthy. Further study
is required, which will be conducted with Task 5.

Note also that this did not occur in Task 2 regarding extreme pitch cor-
rection; the differences were statistically more robust in that task. We can
therefore conclude that the differences in pitch correction methods are more
perceptible in extreme correction than in mild correction. This is a significant
conclusion, as according to [Perrotin and D’Alessandro, 2016] and the initial
proposal of this thesis, the difference should have been found in soft correction,
not necessarily in extreme correction. In other words, we have demonstrated
the exact opposite. DPW cannot really provide a better expressive correction
than ATA because, as seen in Chapter Three, the third degree of freedom is
useless. Moreover, according to the results presented in this chapter, the use
of other degrees of freedom in DPW is also not helpful, as the results do not
show a statistically significant difference compared to ATA in the case of soft
autotuning, which was the interesting aspect when this thesis was proposed.

4.4.6 Task 5: Source audio compared to Soft pitch cor-
rections

Task 5 is a support to Task 1. For this task, several graphs and statistical
calculations have also been done. The statistical analysis for the entire panel
includes ANOVA (Table 4.12) and Post hoc tests using the Tukey HSD method
(Table C.60). A graphical representation of the results for the full panel can
be found in Figure 4.9, showcasing means and standard deviations, as well as
data distributions. Additionally, histograms have been calculated per subject
(Figures C.29 and C.30) and per trial (Figures C.31, C.32 and C.33), allowing
for the examination of consistent results across subjects and trials. 4our panel
subdivisions are presented as follows:

Table 4.12: ANOVA for Task 5 - before excluding subj. deemed unsuitable

Df Sum Sq Mean Sq F value Pr(>F)
Method 3 56866 18955 93 <2e-16
Residuals 1516 308974 204
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Table 4.13: Tukey HSD post-hoc analysis for Task 5: Source audio compared
to Soft Corrections with ATA (+ATA and +World) and DPW (+World)

Comparable Mean SD Classification Diff.
to Ref.

Diff. to
ATA soft + World

ATA soft + ATA 96,8 7,8 Identical -0.3* 12.2
DPW soft + World 84,8 18,9 Similar -12,2 0.3**
ATA soft + World 84,5 18,7 Similar -12,5
Ref. original 97,0 6,7 Identical 12.5
p-value < 0.001 by ANOVA and Tukey HSD post-hoc. Except for
(*) p-value = 0.9950 and (**) p-value = 0.9940

1. Entire panel, before removing two unsuitable subjects (ANOVA in Table
4.12, Tukey’s HSD in Table C.60, graphical representation in Figure 4.9)

2. After removing two unsuitable subjects (ANOVA in Table C.61, Tukey’s
HSD in Table C.62, graphical representation in Figure 4.9)

3. Non-musicians (ANOVA in Table C.63, Tukey’s HSD in Table C.64,
graphical representation in Figure 4.10)

4. Musicians (ANOVA in Table C.65, Tukey’s HSD in Table C.66, graphical
representation in Figure 4.10)
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Figure 4.9: Results for Task 5 - before (left) and after (right) excluding subjects
deemed unsuitable. Resynthesis (1) and Soft correction for: ATA+ATA(1),
ATA+World (1) and DPW+World (2)

Initially, concerning means, the shape of data distribution, and statistical
significance, it is noteworthy that the World vocoder consistently introduces
a similar coloration across all comparisons conducted thus far (tasks A, B, C,
D, 1, 2, 3). This aspect is reconfirmed herein, as samples utilizing the World
vocoder (despite featuring different pitch curves) are scored almost identically,
and the data distributions are also similar to those observed in previous tasks.

According to the data in Appendix C.11, summarized in Table 4.13, it can
be concluded that when using the original sound as a reference, the ATA and
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Figure 4.10: Results for Task 5 - Non-Musicians (left) and Musicians (right).
Re-synthesis (1) and Soft correction for: ATA+ATA(1), ATA+World (1) and
DPW+World (2)

DPW pitch correction methods using the World vocoder for mild correction
are statistically indistinguishable with a confidence interval greater than 95%.
Additionally, it can be observed that ATA’s soft correction is indistinguishable
from the original sound with a confidence interval higher than 95%. These
findings are consistent across the panel, whether some subjects are removed or
when the panel is divided between musicians and non-musicians.

We conclude that a predominance of coloration is attributable to the vocoder
over the pitch correction method’s coloration. Furthermore, it is verified that
the coloration resulting from the pitch correction method for a soft case, as
partially evidenced in Task 4, is very small compared to the vocoder-induced
coloration.

4.5 Participants Interviews and Feedback
The test was divided into five parts; the participants were allowed to take
breaks between each part. They were asked about their well-being, under-
standing, and any difficulties they encountered. Each stage lasted approxi-
mately 15 minutes. Participants were also asked for their overall assessment of
the test, and responses varied. Some found the overall perception to be more
challenging, while others stated that focusing on fewer samples made it easier.
However, it was unanimously agreed that differences were subtler and, there-
fore, harder to detect than in the first test. According to the results obtained,
participants demonstrated a very similar performance to that of the vocoder
test, both in terms of reference assessment and data deviation.

4.6 Conclusions
After conducting the analyses about the psycho-acoustic of the pitch correction
methods, certain overarching conclusions can be drawn. Below, we summarize
the main points derived from compiling the results obtained from each task:
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• The World vocoder introduces consistent coloration from different per-
spectives: extreme autotuning (Task 1), gentle correction (as per Task 3),
and resynthesis (Task A). This premise is corroborated in Task 5, where
participants group the World vocoder audio samples and rate them with
very similar scores.

• According to Task 2, there is a small difference in means for extreme
pitch correction between the ATA and DPW pitch correction methods;
statistically, a difference can be observed.

• The observed disparity between the full ATA protocol and the DPW+World
protocol (Task 3) is primarily attributed to the vocoder rather than the
pitch correction algorithm.

• Contrasting results from task 2 to tasks 4 and 5, it can be seen that,
although small, the coloration due to the pitch correction method exists
but is more noticeable for extreme correction than for soft correction.

The World vocoder introduces consistent coloration from different perspec-
tives. Such coloration is similar not only in extreme autotuning (Task 1) and
gentle correction (as per Task 3) but also in pitch resynthesis (Task A). This
premise is corroborated in Task 5, where participants group the World vocoder
audio samples and rate them with similar scores. This conclusion is signifi-
cant, as it means that the coloration provided by the World vocoder remains
constant despite the different pitches imposed in each task, representing dif-
ferent scenarios. This result indicates that it is valid to discuss the colouration
induced by a vocoder and that, although small, it will be statistically man-
ifested. Furthermore, this means that performing autotuning (transparent,
gentle, or extreme) with the World vocoder is not the same as doing it with
ATA. The complete autotuning system (tracking+correction+vocoding) will
vary according to the vocoder used. Therefore, we could have various auto-
tuner options by changing the vocoder, much like the variety found with pedals
or microphones in their respective sound contexts.

According to Task 2, there is a slight difference in the means for extreme
pitch correction between the ATA and DPW pitch correction methods; sta-
tistically, a difference can be observed. This result means that although the
visual differences for extreme correction are minimal, they are perceptible. The
transitions in extreme correction occur at the note’s attack, and since the at-
tack is not necessarily stable in terms of pitch and we are more sensitive to the
attack, we can perceive the slight sonorous differences in that region more eas-
ily. Therefore, differences in extreme correction that are almost indiscernible
visually are perceptible sonorously.

The observed disparity between the full ATA protocol and the DPW+World
protocol (Task 3) is primarily attributed to the vocoder rather than the pitch
correction algorithm. The following facts support this proposition: (i) When
using the World vocoder for both pitch correction methods (ATA and DPW)
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(Task 4), the stimuli are perceived very similarly, with differences only notice-
able to musicians, indicating that ATA and DPW have a minimal sonorous
difference. (ii) In Task 5, it is verified that the difference is indeed due to
the vocoder. Participants group assign the same mean value and distribu-
tion to the samples using the World vocoder, despite different pitch correction
methods; moreover, both (World+DPW and World+ATA) are statistically in-
distinguishable from each other when compared to the full ATA treatment and
the original sound. This result implies that the samples are perceived differ-
ently even with the same pitch correction method because the vocoder differs.
Thus, pitch correction methods become secondary when a soft correction is
compared with the original sound as a reference. So, the vocoder’s coloration
prevails over the pitch correction method’s coloration. Therefore, regardless of
the vocoder used, we can generate new autotune variants simply by changing
the vocal transformation method.

Contrasting the results of Task 2 with Tasks 4 and 5, it can be observed
that, although small, the coloration due to the pitch correction method exists
but is more noticeable for extreme correction than for soft correction. We
are comparing pitch correction methods: in Task 2 (extreme correction), the
same vocoder is used, and the difference is small but statistically significant
with a p-value ¡ 0.001 for all divisions of the panel of auditors. In Task 4 (soft
correction), the difference is not statistically significant for non-musicians but is
significant for other cases, although the p-values are higher than those obtained
in Task 2. From this, the difference between ATA and DPW is more difficult to
perceive for soft than extreme correction. Furthermore, as mentioned earlier, in
Task 5, vocoders are grouped, but not the correction methods, confirming that
the difference between correction methods is secondary and that the coloration
due to correction methods is more important for extreme correction. Based on
this result, developing pitch correction systems focusing on the attack is more
interesting, as we are perceptibly more sensitive to that region. If we want
to innovate in autotune, the most interesting region to work on would be the
attack.

The main conclusions drawn from the two tests can be summarized as
follows:

1. The coloration produced by the vocoder is dominant (Tasks A, B, C, and
D) and can be affected more by extreme pitch correction (Tasks B and
C) than by soft pitch correction. This conclusion implies that if we are
interested in developing new autotuning systems, we can discover new
sounds by first working with different vocoders and then innovating the
extreme correction method; work on soft correction is secondary in terms
of sonorous perception.

2. ATA is the most transparent vocoder in soft correction and pitch resyn-
thesis, which is statistically indistinguishable from the original sound.
This conclusion implies that, unlike the others, the ATA vocoder does
not vary with the variable transposition over which it actually operates.
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So, ATA is unbeatable in terms of quality. However, it also indicates the
need to evaluate vocoders not only by constant transposition but also by
variable transposition, which is not currently a standard method for as-
sessing vocoder quality because it more pertinently reveals the coloration
of each vocoder.

3. Although pitch correction (ATA or DPW) contributes to coloration and
there is a statistically significant difference between these methods, the
predominant influence in terms of coloration comes from the vocoder it-
self (Task 5). The results show that there is coloration due to the pitch
correction methods. However, this is minor, to the point that listeners
group the sounds of the World vocoder (despite the different correction
methods) together, and ATA (soft correction) and the natural sound to-
gether. While improvements in soft correction can be made, they are
more difficult to perceive and challenging to manage (in terms of de-
veloping a correction algorithm) than extreme correction improvements
could be made.

4. The coloration associated with the pitch correction method is more no-
ticeable in extreme autotuning than in soft autotuning (Tasks 1 and 2
versus 3 and 4). This conclusion is significant as it defines the most
musically interesting path. Artists are often interested in creating new
sound textures, hence their interest in autotune. Therefore, knowing
that pitchcorrection methods and vocoders are more easily distinguish-
able in extreme correction than in soft correction, we can say that the
most musically interesting approach would be to innovate pitch correc-
tion methods for extreme correction.

5. Using a vocoder like World facilitates the comparison of correction meth-
ods, allowing for a similar approach to the test presented here to eval-
uate other tone correction methods different from ATA and DPW. The
fact that the World vocoder has consistent coloration under different ex-
perimental perspectives (tasks) allows us to evidence that, although we
cannot use it as a replica, it does allow us to estimate to some extent if
the coloration of any other varied parameter (in our study, only pitch)
adds some coloration to the sound.
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Chapter 5

Perspectives and Conclusions

This chapter is composed of three parts that integrate the research perspectives
and the conclusions of our work. Regarding the perspectives, we have explored
two topics. One of which is the sonorous description of the vocoder. We
explored this topic motivated by the relevance of the vocoder as a transforming
element of vocal quality, but above all because it is a primary element used
to perform autotuning. The sonorous description seeks to give a guideline to
propose a concept of vocoder quality analogous to vocal quality applicable to
the vocoder used for tuning. At the end of the first section, there is a discussion
on the perspectives of psycho-acoustical research on this topic.

The second section refers to interactive effects and their use for voice. This
topic is based on developing new effects using hand gestures. Initially mo-
tivated by the desire to make a new interactive DPW, it was enriched by
proposing other effect prototypes. The possibilities for future research on this
topic are also discussed.

Finally, the contributions and conclusions of this thesis are addressed. This
doctoral project contributes conceptually, algorithmically, and psychoacousti-
cally to the topic of vocal audio effects (tuning, vocoders, and interaction).
These contributions can be described in four subsections:

• The taxonomy of vocal effects

• The pitch correction methods

• Vocoders and their psycho-acoustical evaluation

• Psycho-acoustical Evaluation of pitch correction methods

5.1 Sonorous Description of the Vocoder
This section will examine the vocoder as a vocal effect from a transdisciplinary
perspective. Our aim is to define a musically and technically applicable vo-
cabulary (sonorous descriptors). From this foundation, we aim to demonstrate
that the vocoder can be understood as an effect with its own distinct musical

143



identity (quality) derived from its sonorous descriptors. This approach can
offer guidelines that serve as a roadmap for the vocoder’s future development
as a musical effect. As outlined in previous sections of Chapter 3, scientific and
musical approaches to vocoder use differ. This divergence has implications for
how the vocoder is perceived as an effect—specifically, what we can or cannot
identify as its sonorous descriptors—and necessitates narrowing the discussion
to the tuning of the vocoder’s application.

The voice is an extremely complex instrument that has been modeled
through the source-filter, which according to [Doval et al., 2003] “is made of a
non-linear volume velocity source, which represents the glottal signal, a time-
varying linear filter, associated to the vocal tract, and a radiation component,
which relates the volume velocity at the lips to the radiated pressure in the far
acoustic field”. Such definition is compatible with the vocal generation concept
and the description of the source-filter model given by [Henrich Bernardoni,
2015] (page 21 - section 1.1, page 23 sections 1.2 and 1.2.1) and the review of
the model in [Ardaillon, 2017] PhD thesis.

From a musical perspective, vocal effects add a coloration to the vocal
timbre, and artists seek this coloration as a musical ornament with which
they can experiment and interpret in a unique way. Therefore, this aspect
of coloration is of musical interest. The modification of timbre may be more
evident depending on the technique used and can be analyzed through signal
re-synthesis with the original pitch. In addition, the case of autotuning (integer
part pitch) involves imposing given pitch curve on the vocal signal with a
vocoder, it acts as an automatic gesture (within some harmonic rules) and
and highlights other possibilities not visible in the original pitch re-synthesis.

5.1.1 Signal shape

Below, we will provide a qualitative description of elements to consider from a
qualitative perspective regarding the changes evidenced by vocoder use. The
most notable descriptor is latency, which is present in both cases of resyn-
thesis with the original pitch and extreme autotuning pitch. After generating
the output files, it can be observed that each vocoder exhibits latency, with
retune having the highest latency and ATA having the lowest. Another evident
changes that can occur are signal shape alterations. It is interesting to note,
for instance, that while ATA for resynthesis or even for extreme autotuning
preserves the waveform well at large scale but also zooming, inversely CIRCE,
in both resynthesis and autotuning cases generates a visually different signal
with several modulations along with pitch changes. Such changes are likely
internally related to the logic of its algorithm. These examples can be seen in
Figure 5.1. However, since many algorithms can generate waveform changes,
we do not consider these changes as vocoder descriptors.
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Figure 5.1: Signal shape differences for a audio segment on original file, ATA
(extreme autotuning case), CIRCE (transparent case). While ATA preserve
signal shape even for the case of extreme autotuning, CIRCE modify compel-
tely the signal for the resynthesis of original pitch case

5.1.2 Fidelity to the imposed dynamic pitch
The fidelity to the imposed dynamic pitch is perceptually verifiable, es-
pecially in the case of resynthesis with the original pitch. However, it has con-
sequences for dynamic-melodic modifications when the pitch curve has been
subjected to correction or modification methods such as ATA or DPW. Even
the discretization present on the extreme autotuning differs between vocoders,
as can be seen in Figure 5.2. Extreme autotuning can be helpful in exploring
whether the loss (or preservation) of vocal quality. A parameter derived from
the f0 modification is f0-spreading. When f0-spreading is high, the main
note and all its harmonics spread, meaning that the perception of the f0 is
less precise. In our sound catalog, f0-spreading is visible at several degrees
for all vocoders, it is more evidently seen for extreme autotuning and it an
be observed as grey vertical regions on the spectrogramme as it is shown in
Figure comparing a source file with an extreme autotuning world re-synthesis.

5.1.3 Harmonic and non-harmonic changes
The spectral content can change drastically between vocoders because of the
vocoder’s own processing, as can be seen in Figure 5.3. The changes induced
by the vocoder can affect the vocal timbre to varying degrees, prompting us to
consider two descriptors for this purpose: harmonic coloration and inharmonic
coloration.

Harmonic coloration considers both the amplification and/or modifica-
tion of sub-harmonics and/or upper harmonics. Vocoder systems influence the
output pitch, leading to changes in harmony that become evident due to such
alterations. Additionally, amplified or degraded harmonics or replicas of them,
may become audible, as is sometimes the case with the Retune vocoder. When
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Figure 5.2: The fidelity to the imposed pitch is different for each vocoder as it
is evident for the extreme autotuning case

Figure 5.3: Spectral slice differences at time = 10s between the original sound
and ATA re-synthesis in the case of extreme autotuning. Applying autotuning
alters the spectral content; even though ATA is a high-fidelity system, changes
in the spectral slice still occur because of the extreme autotuning.

vocoding and particularly when autotuning is applied, F0 and all harmonics
are shifted, which modifies the spectral content and its variation over time.
Additionally, autotuning can affect the intensity of the harmonics or the spec-
tral background, as seen in the case of Circe, as visible in 5.4 for the spectral
noise and the upper spectral content.

Moreover, the abrupt transition between notes generates an F0 dispersion
in the neighborhood of the transition instant. As shown in the violet strips in
figure 5.5, a blurry vertical gray line can be observed on the right side at the
location of the transition due to autotuning f0-dispersion.

Harmonic coloration also encompass formant modifications, which are
crucial as they relate to vowel articulation. Certain techniques are more or
less transparent for formants, such as ATA and World when subjected to
dynamic transpositions, as shown inf Figure 5.6. CIRCE is a vocoder that
has already undergone quality verification for constant transposition values.
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Figure 5.4: In orange, the difference in harmonics and spectral contact for
upper frequencies. In red the variation of fundamental F0 in the cases: original,
re-synthesis with CIRCE and autotuning extreme with ATA and the spectral
noise variation.

Figure 5.5: Spectrogram of the source file and extreme autotuning resynthesis
compared for f0-spreading; the slices correspond to the moment of the sharp
transition in extreme autotuning.

However, when subjected to dynamic transposition (extreme autotuning and
original pitch), it is not transparent for formants. Thus, formant modifica-
tions provide another means of checking vocoder transparency, revealing an
implicitly untreated difference between types of transposition and treatment
through vocoders.

The other descriptive parameter we can utilize is inharmonic deforma-
tion, which involves residual noise in both the low and high-frequency regions
of the spectrum, visible in 5.4. Furthermore, this descriptor significantly im-
pacts the presence of noise around silences. A particularly visible example is
the Circe vocoder, which erases all content during silent parts at the beggining
and at the end of the audio samples.
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Figure 5.6: Formants modification for different techniques of vocoding and the
corresponding deformation in formants, from Praat

5.1.4 Perspectives

The vocoder has evolved in two main directions: improving vocal transfor-
mation and parametric control of vocal characteristics. While the vocoder’s
artifacts are the more appreciable and applicable musically in modern music
(for example, backing vocals with vocoded layers and autotuned voices ), the
human voice can be defined by its pitch range and timbre, which can be char-
acterized by descriptors like dark, bright, soft, or noisy. The characteristics
of the vocal sound, and also the vocal modes and styles, such as whispering,
breathiness, and roughness [Loscos and Bonada, 2004], can be modeled and
simulated using various vocoding techniques. Such research aims to improve
the realism of vocal corrections with the vocoder, benefiting vocal disabilities,
compression, communication, and music applications. However, the contem-
porary musical use of the vocoder often seeks its robotic and artificial sound as
an intentional effect. The point we look to state is that musical use focuses on
the scientific “defaults” and not on the perfection of the vocal transformation.

We propose four principal descriptors. The first one is related to signal
shape changes as the modulations in amplitude and extreme changes seen in
CIRCE, and almost nonexistent for ATA. The second is the fidelity to the
f0-transitions, which we describe as a characteristic of the vocoder technique.
This descriptor includes the f0-dispersion, which can produce more or less
precise and realistic sound and is principally visible in autotuning. Still, it can
also be present for the re-synthesis (affecting the weight of each harmonic). The
third is harmonic coloration, which refers to sub-harmonic and upper-harmonic
amplification. It can lead to a cleaner sound or add backing up or down
voice (in the case of retune, it is sometimes audible). The fourth descriptor is
inharmonic coloration, which concerns the amplification or coloration of parts
where there is no vocal or instrumental sound signal, such as the more silent
parts of the recording or the background noise. For example, the vocoder Circe
shows a particular difference here compared to the other systems. It converts

148



background noise into complete silence and improves spectral noise, making it
less present in the output audio file.

Beyond the significance of the sound descriptors, the work developed in
this section allows us to understand that it is possible to develop a sound
description of the vocoder separate from the vocal description of the voice in
which the vocoder is used. Additionally, by combining this proposition with
the results of the psycho-acoustic evaluation, we can explore new research
paths. For example, we can define whether the proposed sound descriptors
are perceptible by a panel of experts. Such a psycho-acoustic study could first
identify if expert listeners perceive differences in the descriptors for different
levels of sound treatment (ranging from soft to extreme correction), thereby
contributing to developing new vocal effects different from those we already
know. It could also help us link the technical terms used for the proposed
sound descriptors with terms from the singing lexicon, providing guidelines for
musical creation within a richer and more elaborated purposes.

Furthermore, this approach to the sound description of the vocoder for
autotuning helps establish guidelines for the comprehensive description of the
vocoder. For example, what happens when formants or breathing are mod-
ified? Do unique coloration artifacts from these processes appear? If that
were eventually the case, would such coloration artifacts be useful for improv-
ing qualitative evaluations of the vocoder? Recall that this thesis has shown
that using variable transposition is interesting for evaluating vocoder quality.
Hence, the question arises: Would such artifacts from varying parameters other
than pitch improve the qualitative evaluation of the vocoder? These questions
open new research paths and could lead to a new era of vocal effects, intro-
ducing new lexical terms related to vocal effects and new ways to evaluate the
quality of vocoding systems.

5.2 Exploration of Interactive Effects Using
Motion Sensors

This section adds to the contemporary relevance of gestural control of interac-
tive vocal effects. This mode of control is an intriguing component within the
transformative process in modern music creation, and facilitating the diffusion
of new technologies in what has been called the new digital lutherie. From an
exploratory perspective, we are just beginning the examination of devices use-
ful for capturing hand movements and presenting prototypes designed for the
application of vocal effects. Even this section is at an early stage, we have de-
veloped a system that uses a sensor to track arm movements in the production
of vocal effects. Through modular sound processing techniques, we have be-
gun to capture and analyze users’ body movements to create interactive vocal
effects in real time. This approach allows us to tap into the creative potential
of vocal effects, thus contributing to what could be called an augmented sound
reality in the vocal domain.
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5.2.1 A Brief Review of the State of the Art
As its name indicates, creating interactive effects through gestural control
is based on the connection between movement and the modification of an
audio effect. This concept closely aligns with the mapping definition given
by [Rovan et al., 1997]. Our research focuses on explicit mapping [Hunt and
Wanderley, 2002] and one-to-one strategies [Wanderley, 2001]. One-to-one
strategies directly connect the gesture to the control variable, making them
more comprehensible for the user and easier to implement, as described by
Verfaille [Verfaille et al., 2006b]. The expressive power and consistency of direct
relationships between gesture and sound effect are perceptibly limited [Rovan
et al., 1997], but they have a tangible significance in the sound result. The
advantage of explicit mapping is that it directly connects movement to sound,
making it efficient and expressive. Therefore, we have decided to use explicit
mapping with a one-to-one strategy. It should be noted that implicit mapping
is an alternative approach that requires intermediate models to encode complex
behaviour in the gestural interface. This approach has not been studied due
to the organization of this thesis project.

It is also important to mention other techniques. For instance, authors like
[Bowler et al., 1990] use point-based mapping, where tracking a finite set of
points ensures the continuity of the mapping and, consequently, the desired
gesture or sound effect. The limitation of point-based methods is that each
preset must be specified manually rather than through continuous movements
[Françoise, 2015]. However, the idea of creating a mental map of the gesture
is important for calibrating a system based on explicit mapping and for the
user to perform a geometric gesture linked to the sound, even if not all ges-
ture variables are used (e.g., in the reverberation effect we address later), it
allows for observing the parameter variations given by the sensor used and
mapping it according to the established gesture, defining a reference and limit
values. As stated by [Arfib et al., 2002] the transformation of related-to-
gesture-perception parameters into related-to-sound-perception parameters is
called the second mapping level.

Additionally, we want to mention other relevant works in this field, as the
last two decades have been crucial for developing interactive instruments and
effects. Technologies like Kinect or the phone have been adapted to protocols
such as OSC and thus are musically usable on platforms like MAX. Also,
there have been many conceptual advances. As some researchers mention
[Godøy and Leman, 2009] [Delle Monache et al., 2018], understanding sound
imagery helps reinforce action-sound relationships, which are fundamental for
associating objects, actions, movement, and sound. Projects like MO have
articulated this knowledge. Modular Musical Objects [Bevilacqua et al., 2013]
[Rasamimanana et al., 2011] [Schnell et al., 2011] are based on devices with a
variety of sensors such as accelerometers, gyroscopes, and piezo sensors. MO
use machine learning models such as Hidden Markov Models [Bevilacqua et al.,
2013], which enable the generation of sound textures (grain, shaking, sounding
surface, and throwing a ball) linked to gestures. Machine learning models are
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also helpful in addressing the problem of movement coarticulation [Bevilacqua
et al., 2016], analogous to vocal coarticulation, meaning that the significance
of a gesture depends on the context, especially in music. Coarticulation is one
of the limitations of explicit mapping effects.

We want to highlight one of the key works in gestural control through
movement. MI.MU gloves [Mitchell et al., 2012] [Mitchell and Heap, 2011], a
project that results from the collaboration between Tom Mitchell and Imogen
Heap. Initially presented as Sound Grasp [Mitchell and Heap, 2011], it is a
gestural interface for live music performance using body movement and manual
gestures with a glove. The gloves allowed manipulation of digital musical
processes and created a direct connection between gesture and sound outcome
through the use of finger flexion and abduction and Kinect.

Additionally, they required a neural network for their operation . This
project was presented at TED Global 2011 and is available on YouTube under
the title “Sculpting music with Mi.Mu gloves - Imogen Heap - TEDxCERN”.

Finally, we emphasize that although this subsection addresses some proto-
types based on explicit mapping, we are aware of its limitations. Nevertheless,
we have sought to mitigate these limitations by establishing references for max-
imum and minimum values according to the gestures and effects used. Our
objective is purely exploratory, and we have attempted to work with interac-
tive autotuning, as it is interesting to apply it in different contexts of use, in
this case, an interactive environment.

5.2.2 Gestural Control Devices
To investigate the musicality of the voice from an interactive control perspec-
tive, it is essential to recognize that, like any other sound, the voice has a
spatial and morphological mental representation. This representation signifi-
cantly contributes to sound perception through descriptors such as dynamics,
space, time, and pitch. Therefore, a first step in exploring gestural control
involves directing toward modifying these descriptors. Our objective is to es-
tablish a relationship between the performed gestures and the events of sound
descriptor modification. This task naturally requires the utilization of effective
real-time motion-tracking methods.

In our research group, we have conducted various studies focusing on gestu-
ral control within the realm of New Interfaces for Musical Expression (NIME).
For instance, we have explored the use of handwriting gestures in projects
such as Cantor Digitalis [Feugère et al., 2017], as well as the employment of
the theremin and manual triggering in T-Voks [Xiao et al., 2019], and rhythm
control through movement in Mono-Replay [Lucas et al., 2021].

Our approach has centered on the interactive control of modular digital vo-
cal effects using the singer’s own movement. This approach has been proposed
due to its potential practicality within musical performance, allowing the lead
singer or chorister to modify their voice through their own gestures. We have
utilized motion tracking systems to achieve this interactive control, precisely
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two Hot Hand devices and the BITalino R-IoT module. Next, we will proceed
to explain the functioning of these devices.

5.2.2.1 Hot Hand

The Hot Hand USB is a device manufactured by Source Audio. It is a small
wireless motion and tilt sensing ring in two axes, as shown in Figure 5.7. This
device connects to a USB receiver via Bluetooth. It does not require drivers and
appears as a MIDI device on the computer. The data obtained by the ring can
be tracked in real-time from a DAW or from a dedicated monitoring application
provided by the manufacturer. Additionally, this application allows filtering
the signal to obtain a smoother output. It is a device designed specifically
for dynamic control of musical effects. This device is highly useful due to its
ease of connection and tracking and it operates within a range of 5 meters.
However, its limitations include longer distances, and the lack of information
about the orientation of the person wearing it, as shown in Figure 5.8.

Figure 5.7: Elevation and rotation tracking with HotHand and Bitalino Ri-ot
devices

Figure 5.8: Orientation tracking with Bitalino Ri-ot device but not with Hot-
Hand device

5.2.2.2 Bitalino

The BITalino R-IoT module, developed by IRCAM, is an Inertial Measurement
Unit (IMU) designed to capture motion wirelessly with low latency and high
data speed, connected to a computer via WiFi. This unit allow to capture
of body motion, including inclination, rotation, and orientation. It has fewer
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limitations than the Hot Hand, as it operates within the WiFi router range
and allows for elevation, rotation, and orientation capture in three axes, as
show in figures 5.7 and 5.8. However, its drawback lies in being an open
unit. Thus, we have made wristbands to carry the sensor. The BITalino R-
IoT module incorporates a 9-axis sensor (LSM9DS1), which includes a 3-axis
accelerometer, a 3-axis gyroscope, and a 3-axis magnetometer. This allows
for obtaining absolute orientation in space, providing precise motion tracking
capabilities. By leveraging this technology, users can interact with their voice,
as we will see later, by mapping the movements of their hands to control digital
vocal effects.

5.2.2.3 Tracking

Data tracking is performed through two different protocols:

• The HotHand device connects via Bluetooth to a USB port, and then,
with the dedicated application Source Audio Hot Hand, data can be
received, filtered, and sent to MAX, as shown in Figure 5.9.

• To track the BITalino R-IoT device, we used the MAX BITalino pack-
ages and the configuration provided by IRCAM. The device is configured
to connect via a router through Wi-Fi. The router is connected to the
computer either through LAN or Wi-Fi. On the computer, data is re-
ceived directly into the MAX object packet from IRCAM dedicated to
connecting with the BITalino R-IoT device, as shown in 5.10.

With these two protocols, we can effectively capture hand movements and
orientation, which is essential for interactive control of vocal effects.

Figure 5.9: Tracking data from Hot Hand device

5.2.2.4 Mapping

The hand’s elevation, rotation, and orientation can be obtained through the
information from the sensors acquired in MAX. Although the sensors have a
full range for each variable, in reality, the user will have a limited range for
each of them. While some full-hand movements are possible, they may not be
well-suited for optimal live execution. Therefore, it is necessary to consider the
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Figure 5.10: Tracking data from Bitalino Ri-ot device

constraints that the user would eventually encounter. As depicted in Figures
5.11, 5.12, and 5.13, elevation, rotation, and orientation, respectively, have
their own limitations. Thus, a part of the mapping process involves identifying
these constraints and adjusting the operating range according to the individual
using the device. This constraint within the data range assists in filtering and
controlling the captured data, thereby avoiding erroneous interpretations of
gestures.

Figure 5.11: Elevation limitation

5.2.3 Pitch and Spatial Perception Exploration
We will now focus on exploring vocal modification through two sound descrip-
tors: pitch and spatialization. Our objective is to propose an immersive per-
formance and listening experience where physical movement directly influences
the perception of the source’s pitch and the surrounding sound space.

Pitch exploration has been approached through two methods. Firstly, har-
monization involves creating multiple vocal layers composed of copies of the
original signal transposed in real-time. The number of semitones transposed is
controlled according to orientation, and the transition time of transposition is
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Figure 5.12: Rotation Limitation

Figure 5.13: Orientation limitation

adjusted based on inclination. The transition time of transposition is the time
to transpose given number of semitones, making a line from 0 to the number of
semitones. This effect, known as vocal layer harmonization, influences pitch,
harmony, and vocal presence. The second technique addressed is interactive
retuning. While the term autotuning has been extensively discussed in this
manuscript, we differentiate its employment here by utilizing a real-time ver-
sion of the DPW algorithm with the audio signal and the Retune vocoder.
Interactive control is achieved by relating movement to the transition time
parameter.

Spatial sound exploration has been conducted in two ways. Firstly, by
altering the position of the source through panning, and secondly, by modifying
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the environment where the source is situated through reverberation. In the
case of panning, hand orientation is directly related to panning. Regarding
reverberation, we dynamically adjust the virtual room size and cutoff frequency
according to the user’s movement.

5.2.4 Interactive tuning
In this manuscript, we have thoroughly explored the autotune effect, a widely
used tool for melodic modification, particularly in vocals, systematically ap-
plied in music production. This effect can range from extreme settings that
result in noticeable pitch changes to more subtle and transparent configura-
tions. Among the available tools for autotuning, Antares Autotune stands out
as a widely disseminated and utilized system. However, we have developed our
own tuner using the objects available in MAX.

For our interactive proposal, we have developed a patch in MAX utilizing
fzero as a pitch tracker, DPW as a pitch correction method, and retune as a
pitch modulator, as depicted in Figure 5.14. Mapping is achieved by estimat-
ing the rate of elevation changes, with values assigned to the transition time
parameter; such values are restricted by hand movement. The estimation of
elevation velocity is performed with a 100 ms window and is given by xf −xi

0.1 ,
where xf is the real-time elevation value and xi is the elevation value with a
100 ms delay. Auto-tuning is only performed when the hand is in constant
motion cause it depends on the elevation velocity. If the hand does not move,
then autotuning is not performed.

Figure 5.14: Interactive Tuning Schema. The sensor detects hand movement
and receives it in Max. However, the actual range of hand movement is smaller
than the range of values handled by the sensor. Therefore, the movement range
limits must be restricted (using zmap function in Max). Next, the velocity is
estimated over a 100 ms window and smoothed with a 100 ms filter. This
signal is used to control the transition time of DPW.

5.2.5 Interactive Pitch-shifted Vocal Layer
In vocal compositions, whether in the realm of classical lyrical music or con-
temporary music, the use of vocal layers is fundamental. In modern music,
employing layers of voice is of significant importance, often involving resynthe-
sized, transposed, filtered, or vocoded voices. Harmonization with vocal layer
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can be achieved with pitch shifts that directly produce the harmonization. The
idea is to control the pitch shift through gestures, determining the number of
semitones upward or downward desired in the vocal layer. This modification is
essential and closely linked to musical concordance, both in performance and
contextual terms. Consequently, harmony and dissonance can manifest and
acquire musical significance depending on the context. The decision on this
matter lies with the composer. Our goal is to provide possibilities through
gestural control.

We have developed a mapping for the rotation of the user’s hand, allowing
rotation range limits to be incorporated. This mapping assigns hand rotation
to real values ranging from 0 to 12 semitones. The calibration process for the
device is as follows: First, the user agrees on a comfortable hand position,
which is taken as the reference. Then, the user moves their hand to define
the upper and lower limits. To handle asymmetry, the range is divided: the
portion below zero is processed with one gain value, and the portion above
zero with another gain value. This process is not continuous, but it is simply
a prototype.

System activation occurs through elevation when it falls within a specific
range, delimited according to the user. A faster or slower transition between
the original audio and the transposition occurs depending on the inclination
value. Transposition is carried out using DPW and a Warper based on Re-
tune. In summary, the operation is straightforward: hand rotation controls
the semitones to transpose, while elevation controls activation and transition
speed. A flowchart of the implementation is shown in the Figure 5.15.

Figure 5.15: Pitch-shifted vocal layer by hand control. The movement range
limits are calibrated for the individual user; both hand elevation and rotation
can be used. Asymmetry is managed by applying one gain below zero and
another gain above zero.
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5.2.6 Interactive Reverb
Evolution has endowed our ears with the ability to discern localization, envi-
ronment, and texture through reverberation. This phenomenon, characterized
by sound reflected within a space, is fundamental in acoustics and has been
implemented since the earliest days of music. Reverberation varies depend-
ing on materials and dimensions, and its spectral response can change due to
the geometry and acoustic enhancements of the design. The study of rever-
beration addresses various aspects, such as sound intelligibility, segregation of
sound sources, spatial localization, and auditory distance perception. In sound
engineering, audio effects are utilized to alter the spatial perception of sound.
Reverberation is the primary audio effect and is crucial for both performers
and listeners, influencing musical expression and the perception of sonic space.

The implementation of reverberation through hand gestures is based on the
observation that people naturally use hand gestures while speaking and singing
[Fulford and Gingsborg, 2013]. These gestures can convey the breadth of space
and location in time and space. It has been found that musicians, including
the visually impaired, use gestures to communicate during performances. The
hand position is directly related to the spatial position of the voice, so broad
gestures indicate an expansive performance, while gestures closer to the body
indicate a more intimate performance. To control the reverberation, we have
relied on a simple gesture: the proximity to the hand and the projection of
hand movement, as shown in Figure 5.19. These two positions are considered
the minimum and maximum limit positions of reverberation. Mapping is done
with rotation within a range of approximately 45 degrees, adjustable according
to the individual using the effect. A flowchart of the implementation is shown
in the figure 5.16.

Figure 5.16: Interactive reverb schema

5.2.7 Interactive Panning
Interactive panning has been implemented based on hand rotation for the
HotHand sensor (due to the inability to obtain orientation) and orientation for
the BITalino R-IoT sensor. In the case of rotation, the user’s range of use and
the center, when the user desires equal balance in the left and right speakers,
are defined. The mapped data is then sent to a MAX panning module. For
the BiTalino device, the user is asked to indicate the positions of the speakers
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and the center, which delineate the range of use. Orientation is mapped in
this case, and the delimited data is also sent to a MAX panning module. A
flowchart of the implementation is shown in the Figure 5.17.

Figure 5.17: Interactive panning schema

5.2.8 Prototypes
The mentioned effects have been explored experimentally using the HotHand
device. In the left side of Figure 5.18, we can see blurred image to identify the
movement when doing interactive tuning. In the right side of 5.18 we can see
the initial and final positions for vocal layer harmonization.

Figure 5.18: Left: Fast moving for controlling tuning by elevation tracking
with Hot Hand. Right: Hand rotation to control harmonization with Hot
Hand

Interactive reverb was achieved using the initial and final positions shown
in Figure 5.19.

Panning has been implemented using both the HotHand device and BiTal-
ino Ri-ot. The positions utilized for rotation mapping with the HotHand device
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Figure 5.19: Rotation controlling reverb with HotHand

Figure 5.20: Orientation using Bitalino Ri-ot device, descriptive example

can be seen in Figure 5.18, while the positions for orientation can be observed
in Figure 5.20.

Interactive tuning was worked with elevation by fast movement, so we do
not show a picture of it here, but we provide a video support. The video
support includes the following examples:

• Interactive harmonization by vocal layers

• Interactive Autotune

• Interactive Reverb

• Interactive Panning

Additionally, there is a supporting video of the article presented at the
International Symposium on Computer Music Multidisciplinary Research.

5.2.9 Perspectives
The primary focus of this section has been exploratory, aiming to design proto-
types amenable to musical exploration. Our contribution was incorporated into
the demonstration presented at the CMMR2023 conference, the 16th edition of
the International Symposium on Computer Music Multidisciplinary Research.
In this demonstration, we utilized the musical proposal of G. Locqueville and
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T.Lucas interpreting the Beatles, in collaboration with other approaches re-
lated to gesture use from our research group.

It is noteworthy that prior research has evidenced significant variability in
listeners’ preferences regarding sound and gesture characteristics, influenced
by their criteria, such as preference for speakers’ sound color. The inherently
subjective nature of timbre appreciation reflects the diversity of musical genres,
vocal types, and arrangements that may appeal to some individuals but not to
others. This variability also extends to the realm of digital audio effects and
gesture usage.

The creative process involved in the experience presented within the frame-
work of the International Conference on Multidisciplinary Research in Com-
puter Music (CMMR) revealed a significant disparity in the qualitative appre-
ciation of comfort and applicability of manual gestures among device users. It
is emphasized that such characteristics vary depending on the individual using
the prototype and their preferences and specific usage goals. Therefore, they
are not necessarily negative. A thorough and dedicated study is still needed
to determine which gesture is indeed most convenient for each effect and how
to optimize its musical use.

In our experience, there was an initial vision of the effects. However, a
technical-creative process became necessary when confronted with the per-
formers due to the discrepancy between the initial proposal and the execution
preferences. Only through constant and fluid discussion was it possible to
agree on the best way to map the gestures and effects. During the gesture
selection process, it was observed that these varied slightly depending on the
person using them. For example, the hand’s rotation or the arm’s movement
from side to side differs from person to person. These variations are not nec-
essarily due to the person’s size but rather to how each individual comfortably
executes the gesture. Therefore, discussing the comfort and feasibility of the
gestures employed became important.

Although this is not about formal subjective evaluations but a creative pro-
cess, this process itself shows that there are important variables to consider in
developing interactive effects. These variables can include the desired gesture
according to the performer’s sound imagery of the effect they want to use and
the intentionality (for example, performing a pitch shifting by speed or ori-
entation). The variation of these gestures from person to person can be due
to physiological factors, such as the individual’s size, but also to the manner,
personality, and precision with which the gesture is executed. Additionally, it
is crucial to consider comfort, i.e., how the gesture is articulated, when, and for
how long. Finally, reproducibility must be considered: if the gesture is com-
fortable, well-calibrated, and musically meaningful, it should be reproducible
by the same person at different times without recalibration.

From our creative experience in this work, we have identified that these
issues could be studied and addressed in depth. Without undermining the
work done, we consider explicit mapping an interesting creative solution but
is not consistent enough (as other authors mention) to be practically applied
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in the musical field without a computer musician. In the future, it would
be beneficial to experiment with real-time, low-latency gesture recognition
techniques combined with explicit mapping.

5.3 Conclusions and Contributions
Through this research work, we have contributed to the modern use of autotun-
ing as a vocal effect. We have comprehensively addressed the pitch correction
topic and studied the vocoder and autotuning basics while managing the fu-
ture research lines that may emerge from our findings. We conducted a varied
theoretical review that includes vocal effects preceding the vocoder, not neces-
sarily from a mathematical perspective but from a musical standpoint, given
their use in vocal use. This approach has allowed us to position the vocoder
within the taxonomy of effects and propose a perceptual classification.

Additionally, we have established a use framework for the pitch modifica-
tion, clarifying concepts that, although frequently used in vocoders and auto-
tuning systems, are not well-defined or theoretically established. This lexicon
enabled us to approach the subject appropriately when conducting a psychoa-
coustic evaluation. Moreover, this lexicon holds potential for future, more
in-depth research and the design of new autotuning systems that are more
musically engaging.

The psychoacoustic evaluation of both the coloration produced by the
vocoder and that caused by pitch correction methods allows us to define better
how innovation in such algorithms is possible and understand the differences
and similarities between ATA and DPW systems. Finally, the work related
to the sonorous description of the vocoder and the development of interactive
effect prototypes opens the door to expanding the field of autotuning study
from a multidisciplinary perspective, integrating disciplines such as signal pro-
cessing, psychoacoustics, and musicology.

5.3.1 Taxonomy of Vocal Effects
The taxonomic study aims to place the vocoder within the realm of sound
effects, with a particular focus on a taxonomy of vocal effects. This classifi-
cation allows us to address the subtleties of vocal use while avoiding tedious
details that are more relevant to the general taxonomy of effects proposed by
Verfaille. Not all effects are applicable to the voice, and not all effects carry the
same level of importance in vocal applications. Hence, developing a specific
taxonomy for vocal effects is convenient and practical.

The taxonomic study also takes into account the perceptual nature of audio
effects. The effects applied to vocal tracks are categorized into pitch, space,
time, and timbre (vocal quality). The concept of timbre is more complex in
this vocal taxonomy than in the general taxonomy of effects, as it encompasses
the preservation, modification, or destruction of vocal quality.
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Preservation refers to making subtle modifications to vocal characteristics
without losing the original vocal quality of the singer. Modification involves
completely altering the vocal quality, making the singer sound like a different
person or entity. Finally, the destruction of vocal quality refers to effects that
partially or entirely disrupt the original vocal quality.

The primary types of effects have been exemplified through their usage in
modern popular music, their primary using domain. In the future, a more
in-depth study of the techniques used for each type of effect would be of great
interest from a musicological perspective. Additionally, we have introduced
the concept of modularity in audio effects, where effects chains are generated,
resulting in the perceptual dominance of one particular effect.

Autotuning is an effect that encompasses both pitch and timbre. This
effect introduces a coloration due to the imposition of a specific pitch con-
tour. Through psychoacoustic study, we have explored which factor carries
more weight in this coloration: the vocoder or the method of pitch contour
correction.

The deliverable of this section is a comprehensive perceptual taxonomy
that takes into account:

• The emphasis on effects used in vocal tracks.

• A perceptual standpoint related to the vocal quality.

• A sound support based on popular musical recordings.

The classification comprises five main categories of vocal effects: dynamic,
temporal, spatial, melodic, and timbral. Furthermore, a special division has
been established for timbral effects, subdivided into those that preserve, dis-
tort, or transform vocal identity. Additionally, it has been emphasized:

• The modularity when applying effects and the importance of their prac-
tical utility over the underlying algorithm.

• The relevance of the vocoder and melody in tuning, raising questions
about their impact on vocal identity and importance on musical appli-
cation with a musical support reference.

The taxonomic classification we have developed has allowed us not only to
achieve immediate results but also to consolidate the application of interactive
digital effects in a more structured manner compared to previous projects. New
prototypes of interactive effects were designed directly in Ableton using Max
mapping, and a demo presentation was successfully showcased at the 16th
International Symposium on Computer Music Multidisciplinary Research in
Japan.

It is plausible to advance much further based on the established taxon-
omy. The first step would be to consolidate the classification of effects from a
psycho-acoustical perspective. Through a psycho-acoustic evaluation, modular
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effects could be analyzed through several processes. The first process would
involve classifying modular effects using samples created by researchers. Such
classification would include the five categories outlined in our taxonomy (dy-
namics, pitch, space, time, timbre/vocal quality). As a result, we would have
an initial indication of whether listeners can identify the various effects in the
audio samples.

Additionally, samples of popular music with musicological support could
be used to determine which effect of the vocal chain effects listeners perceive
first, allowing for a comparison between the intended musical effect and what
listeners actually hear. Finally, it could be interesting to configure the vocal
effect chains with variable presets to study if there is any perceptual threshold
where one effect predominates over others. A study of this magnitude would
require considerable time and a specialized panel to conduct, and it could be
a medium-term research proposal.

Another research perspective could be a musicological study that examines
the different musical objectives of the vocal effects from a stylistic point of view
according to musical genres. This study should consider the purpose of the
musical message that the producer intends to convey, taking into account the
musical genre and the listener’s perception. Such a study would be valuable
as a snapshot of current music and vocal production.

Also a deliverable related to the interactive effects has been developed.
Hand movements related to elevation, rotation, and orientation have been
utilized, and prototypes of the following effects have been created:

• Interactive tuning

• Interactive harmonization by vocal layer

• Interactive reverb

• Interactive panning

Regarding interactive effects, there are promising prospects in the area of
gesture control. It could be interesting to explore further by employing ges-
ture recognition techniques and combining sensors with camera-based motion
recognition methods. Psychoacoustically, we could study how to improve the
use of gestures and how they relate to the sound image and musical practice.

5.3.2 The Pitch Correction Methods
Through the study of Dynamic Pitch Correction, we have clarified and con-
solidated a framework for studying not only the DPW method but also the
tuning or pitch correction concept in its entirety. Despite the variety of cor-
rective methods available and the widespread use of effects such as ATA and
Melodyne, there is no comprehensive theoretical framework for the study of
tuning. We have worked to establish these foundations, including:
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• Types of pitch transposition (constant and variable).

• Purposes of pitch correction (tracking, tuning, warping).

• Uses of pitch transposition and autotuning in musical recordings.

• Types of correction (extreme, transparent, expressive).

These elements have been fundamental in determining what differentiates
DPW from ATA, and they can be extended to any pitch correction method.
Not only that, but we can now define what is sought in a pitch correction
method, and we have made corrections to previous works where there were
inaccuracies regarding ATA’s capabilities. Surprisingly, ATA does not differ
significantly from DPW in terms of the algorithmic outcomes it generates.
Additionally, DPW has several limitations due to how its parameters have
been designed. Today, we can assert that the primary difference lies in the
trade-off between the staircase effect and the freeform section and that both
methods successfully recover the expressive component of the signal (DPW
does it more symmetrically).

The study of pitch correction that has been conducted provides us with
a theoretical basis for algorithmically analyzing pitch correction methods and
proves useful for conducting the psychoacoustic evaluation of these methods.
The definitions of baseline cases and presets serve as a foundation for designing
the psychoacoustic tests in Chapters 4 and 5, aimed at exploring the coloration
in tuning caused by the vocoder and the pitch correction method.

The perspective on this topic is well-defined: it is necessary to develop new
pitch correction methods that truly improve upon existing methods and do
not have such pronounced limitations regarding parameter variation. We rec-
ommended using platforms other than Max that allow for more effective signal
processing and are more compatible with development processes. Therefore,
New pitch correction methods must address, first, the trade-off between stair-
case and free-path effects, and second, they must manage the vibrato compo-
nent as effectively as ATA or DPW.

5.3.3 Vocoders and their psycho-acoustical evaluation
The psychoacoustic study is an immediate application of the theoretical frame-
work for pitch correction methods that we have developed and, indirectly, of
the vocal effects taxonomy of vocal effects. The taxonomy allows us to place
the vocoder in a privileged position as a vocal effect capable of varying timbre
and thus altering vocal quality. Our study of the vocoder has allowed us to
identify the intersection between the scientific study of the vocoder and its
musical application. These two approaches differ significantly: while scien-
tists strive to continuously improve vocal transformation and to search for a
complete parameterization, musicians focus on modifying vocal quality. Addi-
tionally, we have emphasized the importance of studying the vocoder as a key
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component of pitch correction, as imposing a specific pitch curve (or a given
transposition) requires a vocal transformation algorithm, such as the vocoder.

Musically, both the vocoder and autotune saw a significant rise in usage
during the same period and are now essential elements in the production of
Anglo-American popular music and international genres like hyperpop. The
vocoder is used to enhance vocal presence, create vocal layers to improve tex-
ture, modify formants, alter vocal quality, and perform tuning.

We have conducted a subjective psychoacoustic evaluation to compare the
sound of four systems: ATA, World, Circe, and Retune. Using these systems,
we created a sound catalog and prepared short samples for a psychoacoustic
evaluation. The cases examined included original pitch, extreme correction,
and soft correction. Four comparisons were studied: comparisons between
original pitch cases, comparisons with extreme autotuned cases using the orig-
inal sound as the reference, extreme autotuned cases using extreme autotune
with ATA as the reference, and soft correction cases. The main conclusions
drawn can be summarized as follows:

• The perception of the reference remains consistent no matter the case
(resynthesis or extreme autotuning).

• ATA is identified as transparent in the softest possible configuration
(Task A) for “re-synthesis”.

• Extreme autotuning with ATA and World equally deviates from the orig-
inal audio (Task B).

• Extreme autotuning with World is the closest to ATA (Task C), but there
exists a coloration difference, which is evidenced by statistics results.

• Soft autotuning with World and Retune closely resembles that of ATA
(Task D) in mean values, but statistically, there is a difference in relation
to ATA. For the full panel, World and Retune are equal between them;
nevertheless, when dividing the panel into musicians and non-musicians,
it is not possible to conclude about the similarity between Retune and
World.

• World shows a slightly superior response to Retune in terms of its simi-
larity to ATA, considering Tasks A, B, C, and D.

The main result is that the vocoder plays a vital role in the coloration that
occurs during pitch correction, regardless of the type of pitch correction ap-
plied. Even with the most transparent vocoder, some coloration is still present.
The study also shows that musicians are more sensitive to detecting differences.
The immediate consequence of this research is that it serves as a reference for
the psychoacoustic study of pitch correction, specifically to determine whether
pitch correction methods are more perceptibly distinguishable from each other
than vocoders. Such a study, in return, would help to identify whether the
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primary contributor to the coloration in autotune is the vocoder or the pitch
correction method itself.

An indirect perspective of our study on the vocoder has been the develop-
ment of a sonorous description of the vocoder for autotuning, which we have
undertaken in this chapter. This approach allows us to establish a framework
for defining a vocoder quality analogous to vocal quality, with specific sonorous
descriptors for autotuning:

• Signal shape.

• Fidelity to the imposed dynamic pitch and f0-spreading.

• Harmonic coloration (in the harmonic content of the signal).

• Non-harmonic changes (transients and noise).

As mentioned earlier in this chapter, a medium-term research perspective
for the vocoder could focus on the psychoacoustic study of the defined sonorous
descriptors to assess whether they are perceptually effective and technically
feasible and how they could be measured. Additionally, we could explore
processes other than tuning by adopting a scientific structure similar to the
one used here. For instance, if a vocoder is used to add roughness to the voice,
and a study on roughness in the vocoder would be desirable, we would begin by
identifying perceptual sound descriptors of vocal roughness. Subsequently, we
would evaluate different vocoders and levels of any auditory vocal descriptor
to compare vocoders, following a psychoacoustic comparative protocol similar
to the one we have developed

5.3.4 Psycho-acoustical Evaluation of pitch correction
methods

Furthermore, we have conducted a subjective psychoacoustic evaluation to
compare the pitch correction methods ATA and DPW under various condi-
tions. The objective was to determine if the methods are perceived differently
and to investigate the prominence of the vocoder or the imposed melody in
terms of vocal identity and using full ATA protocol and an ATA replica (us-
ing the World vocoder). The main conclusions drawn can be summarized as
follows:

• The World vocoder introduces a consistent coloration in all cases.

• According to Task 2, there is an insignificant difference in means for
extreme pitch correction between the ATA and DPW pitch correction
methods. However, they are statistically different.

• The observed disparity between the full-ATA protocol and the DPW+World
protocol (Task 3), according to statistical results, can be primarily at-
tributed to the vocoder rather than the pitch correction algorithm. With
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similar results as Task 1, the shape of the distributions is resembling while
the only similarity between both tasks are the vocoders of the reference
and the comparable stimuli.

• When employing the world vocoder for both ATA and DPW correc-
tion methods (Task 4), they are perceived as virtually indistinguishable
by means, but the difference is less evident statistically because we get
higher p-values (still in the interval of confidence for the full panel, but
not for divided in musicians and non-musicians panels)

• Contrasting results from task 2 to tasks 4 and 5, it can be seen that,
although small, the coloration due to the pitch correction method is
more noticeable for extreme correction than for soft correction. In task
5, in particular, it is not anymore possible to differentiate pitch correction
methods when using World, when the reference is part of the comparable
stimulis.

The main conclusions drawn from the two tests can be summarized as
follows:

• The coloring produced by the vocoder dominates (Tasks A, B, C, and
D) but may be influenced by the extreme pitch case (Tasks B and C) as
each vocoder can interpret the pitch curve slightly differently.

• Each vocoder has a consistent coloration over tasks A, B, C and D.
ATA stands out as the most transparent vocoder in soft correction and
resynthesis.

• Although pitch correction methods (ATA or DPW) contribute to color-
ing, the predominant influence comes from the vocoder itself.

• The coloring associated with the pitch correction method is more notice-
able in the case of extreme autotuning than in soft autotuning

• There is a scale effect and likely a perceptual effect when the comparable
stimulus is identical to the reference, which systematically repeats in all
the results.

The study has two main conclusions. The first conclusion is that the
vocoder coloration is more relevant than the pitch correction method col-
oration. The weight of the vocoder’s coloration happens because the vocoder
interprets and forces a given pitch curve in the audio sample. If new fast
enough real-time pitch trackers and vocoders appear, we can have many au-
totuning textures depending on the vocoder employed. The second conclusion
is that pitch correction methods can be differentiated more easily by extreme
correction than by soft correction, and that is very important because it gives
us clues for creating new vocal effects. We perceptually privilege the transient,
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so everything that happens with extreme pitch transitions will be perceptually
stimulating and, therefore, musically useful.

On the other hand, the soft correction does not allow us to differentiate
DPW from ATA easily. So, the improvement proposed by the authors of
DPW is not really perceptible. It would be necessary to make another type
of evaluation that considers a tuning reference to see if there is a difference
concerning intonation rather than coloration.

As a final point, we emphasize that the structure and protocol of the subjec-
tive psychoacoustic evaluation method for comparing isolated pitch correction
methods with the World Vocoder can be a basis for comparing other methods
and tuning conditions in the future.
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Appendix A

Signal Processing and Vocoding

A signal can be decomposed and represented in terms of its partials. These
partials outline a spectral content which, in turn, can be visualized as an
ordered series of frequency bands, each with different amplitudes that reflect
the spectral weight within that specific band. In their early days, filters,
whether infinite or finite, emerged with the purpose of modifying the spectral
content of electrical signals. It was this transformation power that eventually
led to their adaptation in the musical field, being initially implemented in
electric guitars and later in synthesizers.

In filter design, it is crucial to analyze the signal flow. This analysis not
only provides insights about the stability of a filter but also allows determining
its response in the frequency domain. From this, the quality and precision with
which a filter operates is derived. Parametric filters, on the other hand, are
composed of key elements such as gain, cutoff frequency, bandwidth, and the
Q factor, among others. This configuration provides a more detailed control of
the filter’s response. Additionally, by allowing the temporal variation of these
parameters, what we know as time-varying filters emerge. A clear example
of this category, widely popular in genres like rock and funk, is the wah-wah
filter.

The digital age has also revolutionized the world of signals, promoting the
emergence of digital filters. These began as simulations of acoustic and electric
effects, but over time, they evolved into a fusion of traditional techniques with
innovations inherent to digital electronics.

To work with digital audio effects, we must understand how to generate a
signal acoustically (physically), the algorithms, and their musical applications.
A musical signal must be captured (through an Analog to Digital Converter
ADC); transformed (digital filters or effects), and reconstructed (through a
Digital to Analog Converter DAC). This transformation is done by accom-
plishing Nyquist theorem. A signal can be processed sample by sample (dis-
crete time domain) or in block processing (through a digital FFT). The FFT
window or buffer is continuously wide and fed. The equation of the FFT is
given by A.1:
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X(k) = DFT [x(n)] =
N−1∑
n=0

x(n)e−j2πnk/N k = 0, 1, ..., N − 1 (A.1)

The coefficients of each one of the FFT can be expressed as complex or as
a magnitude a phase as following:

| X(k) |=
√

(X2
R(k) +X2

i )1/2 k = 0, 1, ..., N − 1 (A.2)

ϕ = arctan
Xi(k)
XR(k) k = 0, 1, ..., N − 1 (A.3)

And the anti-transform is given by:

X(k) = IDFT [X(k)] =
N−1∑
n=0

X(k)ej2πnk/N k = 0, 1, ..., N − 1 (A.4)

In MAX MSP we usually work with a FFT of 1024 points. If we are inter-
ested in analyzing a reduced number of samples, for example 64, we can add
zeros to compute the FFT [Zölzer, 2011]. For a linear time-invariant digital
system, the relations intrinsic to that system are based on impulses, convolu-
tions, and algorithm of signal flow. Convolution is a mathematical process in
the time domain that, when analyzed in the Z-transform domain, corresponds
to multiplication. This operation allows us to simulate the interaction between
a sound and the frequency response of a room, incorporating a dimension of
spatiality based on the modeling of that room. This technique is essential for
creating soundscapes and environments in contemporary music. On the other
hand, the Z-transform is fundamental for filter design and signal transforma-
tion. The transfer function of a digital system can be expressed through the
Z-transform, and it allows to work with a discrete time given by the digital
systems. The Z transform applied to a signal x(n) is given by:

X(z) =
∞∑

n=−∞
x(n)z−n =

∞∑
n=−∞

x(n)e−jωn with ω = 2πf/fs (A.5)

Applied to the impulse response, and considering a linear system, the out-
put is related to the input trough the Z-transform:

Y (z) = H(z) ·X(z) (A.6)
The sonic impact achieved through the use of filters solidified their position

as essential tools in modifying a wide range of musical instruments. In the case
of the voice, they have been used in creating spatial effects, noise reduction,
and vocal distortions. This underscores the fact that filters are the cornerstone
in sound modification.
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A.1 Phase Vocoder
The fundamental idea of the phase vocoder [Portnoff, 1976] is to be able to
reconstruct a signal from the short-time Fourier transform (STFT). To do this,
several analogies are made of the problem of deconstructing the vocal signal
and its subsequent reconstruction, which we will see later in this section. Let
x(n) be the input signal; its Short-Time Fourier Transform (STFT) is written:

Xr(n) =
∞∑

r=−∞
x(r)h(n− r)W−rk

N = |Xr(n)| · eφ(n,k) (A.7)

For k = 0, 1, . . . , N − 1, where WN = e
−2πi

N , Xk(n) is derived at each time
sample n by weighting x(r) with the window function h(n−r) and subsequently
computing the Fourier transform of the resultant sequence. It is pertinent to
note that the form of h(n) can be constrained in such a manner that we can
recover x(n) from Xk(n) as follows:

x(n) = 1
N

N−1∑
k=0

Xk(n)W nk
N (A.8)

The idea is that the window can be thought of as the sum of N bandpass
filters {hk(n)} for each frequency band k, as:

hk(n) = 1
N
h(n)W nk

N (A.9)

Hk(n) = H(eΩ−Ωk) (A.10)

Where Ωk = 2π
N
k. For k = 0, 1, . . . , N − 1 bands. Following the path, the

signal can be reconstructed by adding together the N responses produced by
these filters, as shown in Figure A.1. the individual response of each hk(n)
filter is given by the convolution:

yk(n) =
∞∑

r=−∞
x(r)hk(n− r) = 1

N
W nk

N Xk(n) (A.11)

The output of the filter-bank would be the sum of the individual response
of each k-filter as follows:

y(n) =
N−1∑
k=0

yk(n) = 1
N

N−1∑
k=0

W nk
N Xk(n) (A.12)

This procedure of each filter can be summarize as it is shown in figure A.2.

A.1.1 Short-Time Analysis
La expresion A.11 debe poder ser calculable, para ello cambiaremos la forma de
la expresion usando algunos cambios de variable, primero haaremos s = r − n
lo cual permite obtener:
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Figure A.1: Filter-Bank analogy for the STFT, adapted from [Portnoff, 1976]

Figure A.2: K-filter analogy, adapted from [Portnoff, 1976]

Xk(n) = W−nk
N

∞∑
s=−∞

x(n+ s)h(−s)W−sk
N (A.13)

If the domain is divided into segments of size N , then there are two indices.
One indexm = 0, 1, . . . , N−1 traverses each segment internally, while the other
index l = −∞, . . . ,−1, 0, 1, . . . ,∞ advances to the next segment. Using the
variable substitution s = lN +m, we can write:

Xk(n) = W−nk
N

N−1∑
m=0

x̃m(n)W−mk
N (A.14)

Where, for a fixed n, the sequence x̃m(n) is given by:

x̃m(n) =
∞∑

s=−∞
x(n+ lN +m)h(−lN −m) (A.15)

The DFT of x̃m(n) would be computed using the following expression:

X̃k(n) =
N−1∑
m=0

x̃m(n)W−mk
N = (A.16)

Thus, the expression A.14 can be written as:

Xk(n) = W−nk
N X̃k(n) (A.17)

If the traversal of r in equation A.11 is redistributed with the variable
change r = lN +m as was done previously with the variable s, we obtain:
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Xr(n) =
N−1∑
m=0

∞∑
l=∞

x(n+(l−l′)N+(m−n))h(−(l−l′)N−(m−n))W−mk
N (A.18)

Returning to equation A.15, if we compute x̃((m−n))N
(n), where ((i))N sym-

bolizes the last residue of i/N , that is, ((m− n))N = m− n− l′N , we obtain:

x̃((m−n))N
(n) =

∞∑
l=∞

x(n+ (l− l′)N + (m−n))h(−(l− l′)N − (m−n)) (A.19)

For a circular shift of n samples in m, which is the term inside equation
A.18, such that:

Xr(n) =
N−1∑
m=0

x̃((m−n))N
(m)W−mk

N (A.20)

Which can be written as:

Xr(n) =
N−1∑
m=0

x(m)W−mk
N (A.21)

Where xm(n) = x̃((m−n))N
(m).

A.1.2 Analysis/Synthesis Framework
If the STFT is sampled every Ra time samples using window ha, also referred
to as being decimated by factor Ra, and if s is the temporal index of this
decimation, the resulting expression is:

Xk(sRa) =
∞∑

m=−∞
x(m)ha(sRa −m)Wmk

N (A.22)

Figure A.3: Generation of X̃k(sRa) and its equivalent, adapted from [Portnoff,
1976]

By reusing equations A.7 through A.21, a new system of equations can be
generated, which can be understood with the scheme in figure A.3.
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Xk(sRa) = W sRak
N X̃k(sRa) (A.23)

X̃k(sRa) =
M−1∑
m=0

x̃m(sRa)W−mk
N (A.24)

X̃k(sRa) =
M−1∑
m=0

xm(sRa)W−mk
N (A.25)

xm(sRa) = x̃((m−sRa))N
(sRa) (A.26)

If the window used is a symmetric zero-phase FIR and is chosen such that
its origin aligns with the center of the block of size M , then the rotation would
be equivalent to M/2. Thus, the term W−mK

N becomes equal to ej2π(M/2)M =
(−1)k. By reusing equations A.7 through A.21, a new system of equations can
be generated, which can be understood with the scheme in figure A.4.

Figure A.4: Generation of X̃k(sRa) in equivalent schema, adapted from [Port-
noff, 1976]

Let us consider, then, that a similar scheme can be generated for the synthe-
sis or reconstruction of a signal y(n) from a set Ỹk(sR′) that has the structure
of X̃k(sRa). According to [Portnoff, 1980], under these conditions, we can
write:

y(n) =
∞∑

s=−∞
f(n− sR′) 1

M

M−1∑
k=0

Yk(sR′)W nk
N (A.27)

Where f(n) is a window that has the same characteristics as h(n). Note
that the second summation has the form of the inverse transform of Yk(sR′):

yn(sR′) = 1
N

M−1∑
k=0

Yk(sR′) (A.28)

Then:

y(n) =
∞∑

s=−∞
f(n− sR′)yn(sR′) (A.29)

Similarly to the analysis stage, Ỹk(sR′) can be defined such that:
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Ỹk(sR′) = W s
MR

′kỸk(sR′) (A.30)

And analogously to the circular shifting of the analysis, it is possible to
derive the following set of equations:

ỹn(sR′) = y((n+sR′))M
(sR′) (A.31)

yn(sR′) = ỹ((n−sR′))M
(sR′) (A.32)

y(n) =
∞∑

s=−∞
f(n− sR′)ỹ((n−sR′))M

(sR′) (A.33)

Based on this system of equations, it is possible to construct a complete
scheme to obtain the spectral content of the STFT of an audio segment and
reconstruct it as shown in figure A.5.

Figure A.5: Complete schema of analysis/synthesis, adapted from [Portnoff,
1976]

Each windowed segment of audio represents an audio grain; the grains
obtained after resynthesis are overlapped and summed as we do for some time
strechting techniques as PSOLA, in section 1.5.1.2.

A.2 Frequency-Time Implementation Funda-
mentals

The FFT applied over a windowed audio signal segment, allows calculating
magnitudes and phases content of that segments. When we use a sliding-in-
time window in time, it can be employed to modify the signal in interesting
ways modifying its spectral content. The implementation of the FFT generates
a so-called time-frequency representation according to the following scheme.
At a given point in the time domain, a sliding window corresponds to it,
the FFT is calculated for that window. The resulting matrix with the FFT
calculation generates magnitude values for each frequency index k. The suc-
cessive generation, for each sliding window, of such sequences of magnitudes
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Figure A.6: Schema of frequency-time representation, adapted from [Zölzer,
2011]

distributed across the k indices forms the time-frequency representation, as
shown in fig. A.6.

Sound reconstruction is possible if some conditions are accomplished, for
example: the sum of overlapping windows equals unity and use of the algorithm
should allow the transform of an impulse to have zero phase. Since the FFT
starts from the left side, this is achieved with circular shifting that swaps the
first and second parts of the buffer, as shown earlier. In the time domain, this
is equivalent to (−1)k. This is achieved by applying circular shifting, and in
this way, the FFT becomes equivalent to a bank of filters with zero-phase filters
as we explained precedently. Each horizontal line can be regarded as a filtered
version of the signal for the corresponding coefficient in each frequency band. If
the hop size is greater than one, interpolation must be performed between the
magnitude and phase values under certain instantaneous frequency conditions,
which we will mention shortly.

The other way to perform the reconstruction is through the use of small
grains in the time-frequency representation called gaborets. Gaborets have an
exponential windowed shape defined by gΩk

(n) = e−Ωkngα(n), which is based
on the Gabor transform, a Fourier transform that uses a Gaussian window
gα(n) = 1√

2πα
e− n2

2α , with α < 0. The reconstruction is done from the following
equation:

y(n) =
∞∑

s=−∞

N−1∑
k=0

Y (sRs, k)f(n− sRs)W−nk
N (A.34)

which is equivalent to performing windowing plus an FFT/IFFT and an-
other windowing. The interconnection between different frames in the time-
frequency representation requires careful reconstruction, as any change or er-
ror will have consequences on the sound reconstruction. This is where phase
changes become important; reconstruction must preserve the same instanta-
neous frequency, which is nothing more than the phase change over time for
each frequency band, as mentioned in the filter bank approximation in the
previous paragraph. To reconstruct the phase properly, the phase difference
between successive frames must be preserved (or, in other words, there must
be an equivalence of instantaneous frequency):
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∆φ((s+ 1)Ra) = ΩkRa + princarg
[∼
φ((s+ 1)Ra) − ∼

φ(sRa) − ΩkRa

]
(A.35)

Where ∼
φ is the phase of Xk(sRa).
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Appendix B

DPW and ATA Audio Support
for Chapter 2

In this section, we provide a summary of the auditory support for Chapter 2.
The original audio file was created using Cantor Digitalis software, based on
the article by [Perrotin and D’Alessandro, 2016]. We performed an autotune
process on the audio file using the ATA device, with various configurations as
shown in Table B.1. Subsequently, we retrieved the obtained pitch curve and
then resynthesized the audio using the World vocoder. For DPW samples,
we directly retrieved the pitch curve from the stylus, modified it using the
DPW algorithm in MATLAB, and then conducted a resynthesis in World.
The summary of file names and their correspondence with Chapter 3 figures
is shown in Table B.1.
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Table B.1: Description of Audio Support for Chapter 2

Figure Method TT FT CT File Name
3.15 ATA 00 FIG3.15-ATA-TT00.wav
3.15 ATA 15 FIG3.15-ATA-TT15.wav
3.15 ATA 50 FIG3.15-ATA-TT50.wav
3.15 ATA 100 FIG3.15-ATA-TT100.wav
3.15 ATA 200 FIG3.15-ATA-TT200.wav
3.16 ATA 00 00 FIG3.16-ATA-TT00-FT00.wav
3.16 ATA 00 40 FIG3.16-ATA-TT00-FT40.wav
3.17 ATA 15 00 FIG3.17-ATA-TT15-FT00.wav
3.17 ATA 15 30 FIG3.17-ATA-TT15-FT30.wav
3.18 ATA 50 30 FIG3.18-ATA-TT50-FT30.wav
3.18 ATA 50 60 FIG3.18-ATA-TT50-FT60.wav
3.19 ATA 00 40 FIG3.19-ATA-TT00-FT40.wav
3.19 ATA 50 40 FIG3.19-ATA-TT50-FT40.wav
3.19 ATA 100 40 FIG3.19-ATA-TT100-FT40.wav
3.19 ATA 200 40 FIG3.19-ATA-TT200-FT40.wav
3.20 DPW 100 100 FIG3.20-DPW-TT100-CT100.wav
3.20 DPW 200 100 FIG3.20-DPW-TT200-CT100.wav
3.20 DPW 400 100 FIG3.20-DPW-TT400-CT100.wav
3.21 DPW 025 250 FIG3.21-DPW-TT025-CT250.wav
3.21 DPW 200 250 FIG3.21-DPW-TT200-CT250.wav
3.22 DPW 050 100 FIG3.22-DPW-TT050-CT100.wav
3.22 DPW 050 150 FIG3.22-DPW-TT050-CT150.wav
3.22 DPW 050 250 FIG3.22-DPW-TT050-CT250.wav
3.23 ATA 50 40 FIG3.23-ATA-TT50-FT40.wav
3.23 DPW 050 250 FIG3.23-DPW-TT050-CT250.wav
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Appendix C

Pyscho-Acoustical Test Support

Now will provide a comprehensive summary of the psychoacoustic test addi-
tional supporting elements. The following document was digitally signed by
each participant.

• I certify the acceptance of my participation in the research study:

– Vocoder Transparency Test
– Pitch Correction Methods Comparison Test

• Under the responsibility of Christophe d’Alessandro. This experiment
will be conducted by Daniel Molina Villota and Thomas Lucas. The
experiment will take place at Institut Jean Le Rond d’Alembert in Paris.

• We inform you that:

– Your participation is completely voluntary, and you are completely
free to stop participating at any time without notice.

– By participating in this experience, you agree that your performance
will be recorded, and you acknowledge having been informed of the
nature of the recording. This data will be used without being linked
to your identity, anonymously as part of a statistical analysis. No
personal data will be disclosed or published as part of the research.

– You will be compensated with 2*30€ as an Amazon gift card for
your participation, except in the event of you not completing the
experiment.

– By giving consent to this form, you certify that you have read and
understood the above information, and you agree to volunteer in the
study.

Also, some information was asked to the participants as follows:
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• Please complete the form.

• Test-Id

• Age

• Date

• Hearing problems

• Do you have experience in critical listening? How much? (None, Begin-
ner, Intermediate, Expert)

• How many listening tests have you already participated in?

• Do you have a musical practice? If yes, which one?

• What is your musical practice level? (Beginner, Intermediate, Expert)

The psychoacoustic evaluation was executed utilizing a webMUSHRA-based
website. The respective code was authored by Daniel Molina and Thomas
Lucas and is accessible via the Lutherie-Acoustique-Musique (LAM) website,
categorized into three sections for consent, vocoder evaluation, and pitch cor-
rection methods evaluation.

• Consent:
http://vocodertest.lam.jussieu.fr/?config=test-consent-v2.yaml

• Test Vocoder (i-ii-iii-iv):
http://vocodertest.lam.jussieu.fr/?config=test-partA-v2.yaml
http://vocodertest.lam.jussieu.fr/?config=test-partB-v2.yaml
http://vocodertest.lam.jussieu.fr/?config=test-partC-v2.yaml
http://vocodertest.lam.jussieu.fr/?config=test-partD-v2.yaml

• Test Pitch Correction Methods (12345):
http://vocodertest.lam.jussieu.fr/?config=test-suite-1-v2.yaml
http://vocodertest.lam.jussieu.fr/?config=test-suite-2-v2.yaml
http://vocodertest.lam.jussieu.fr/?config=test-suite-3-v2.yaml
http://vocodertest.lam.jussieu.fr/?config=test-suite-4-v2.yaml
http://vocodertest.lam.jussieu.fr/?config=test-suite-5-v2.yaml

Below is the summary of subjects who participated in the test. Each subject
was assigned a participant code. All subjects participated in both the test for
vocoder comparison and the test for correction method comparison. Mixed
versions of the tasks were developed to randomize the tests content (roman
numerals), in the specified order, check table C.1:
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Table C.1: Subjects and tests order

Subj. Vocoder ATA vs DPW Subj. Vocoder ATA vs DPW
A01 ii-iii-iv-i 51423 L12 iv-i-ii-iii 31542
B02 iv-iii-i-ii 51432 M13 iv-iii-ii-i 31425
C03 iv-i-ii-iii 51243 N14 iv-iii-i-ii 31542
D04 i-iv-ii-iii 52314 O15 iii-i-ii-iv 25431
E05 ii-i-iii-iv 15432 P16 i-iii-iv-ii 15432
F06 iii-ii-iv-i 14325 R18 ii-i-iii-iv -
G07 iii-i-iv-ii 12345 S19 i-ii-iv-iii 15432
H08 iii-i-ii-iv 24153 T20 iv-ii-iii-i 42531
I09 i-ii-iv-iii 24315 U21 iii-i-ii-iv 24531
J10 ii-i-iii-iv 25431 W23 iii-i-iv-ii 43251
K11 ii-iii-i-iv 24315

C.1 Classification Performance for the Vocoder
Comparison - Tasks A, B, C and D

A performance calculation has been conducted according to the recommenda-
tions of the MUSHRA test, wherein the percentage of trials where the reference
is rated below 90 is calculated. According to MUSHRA recommendations,
subjects with a percentage higher than 15% in all tasks are considered un-
suitable and are removed from the data. Nevertheless, such subjects do not
negatively impact our results, as their contributions exhibit data distributions
(histograms) consistent with ratings provided by good subjects. In these distri-
butions, the most similar samples display similar mean scores and distribution
shapes, and the different ones also maintain distribution shapes and mean
values. The results of performance can be observed in the table C.2.

C.2 Statistical Support for Task A
This section includes:

1. Histograms per subjects (Figures C.1 and C.2)

2. Histograms per trials (Figures C.3 and C.4).

The statistical analysis includes the complete calculations for the Task A
analysis, encompassing the following cases:

1. Full panel: Post-hoc Tukey HSD multi-comparison (Table C.3).

2. Removing unsuitable subjects:

• ANOVA results are summarized in Table C.4
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Table C.2: Classification Performance (Tasks A, B, C, D)

Subj. % Incorrect by Task Subj. % Incorrect by Task
A B C D A B C D

A01 25.0 0.0 42.9 12.5 L12 0.0 0.0 0.0 0.0
B02 43.8 50.0 78.6 56.2 M13 6.3 0.0 0.0 0.0
C03 6.3 7.1 0.0 0.0 N14 25.0 28.6 28.6 18.8
D04 6.3 0.0 0.0 6.2 O15 43.8 21.4 35.7 31.2
E05 0.0 7.1 7.1 6.2 P16 6.3 7.1 21.4 6.2
F06 12.5 0.0 0.0 0.0 R18 12.5 21.4 21.4 12.5
G07 37.5 28.6 42.9 50.0 S19 0.0 14.3 0.0 0.0
H08 18.8 50.0 64.3 18.8 T20 6.3 0.0 7.1 0.0
I09 0.0 0.0 14.3 0.0 U21 0.0 0.0 0.0 0.0
J10 0.0 0.0 0.0 0.0 W23 12.5 0.0 14.3 18.8
K11 0.0 7.1 7.1 12.5

• Post-hoc Tukey HSD multi-comparison summarized in Table C.5

3. Non-musicians:

• ANOVA results are summarized in Table C.6
• Post-hoc Tukey HSD multi-comparison summarized in Table C.7

4. Musicians:

• ANOVA results are summarized in Table C.8
• Post-hoc Tukey HSD multi-comparison summarized in Table C.9
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C.2.1 Histograms per subjects for Task A

Figure C.1: Histograms per subject for Task A - part 1
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Figure C.2: Histograms per subject for Task A - part 2
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C.2.2 Histograms per trials for Task A

Figure C.3: Histograms per trial for Task A - part 1
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Figure C.4: Histograms per trial for Task A - part 2
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C.2.3 ANOVA and Tukey HSD for Task A

Table C.3: Tukey HSD for Task A - before excluding subj. deemed unsuitable

Comparison Difference Lower Upper p-value

ATA-Ref −0.3 −3.8 3.1 0.9989
Circe-Ref −51.9 −55.3 −48.5 <0.0001
Retune-Ref −10.7 −14.1 −7.3 <0.0001
World-Ref −15.7 −19.1 −12.2 <0.0001
Circe-ATA −51.6 −55.0 −48.1 <0.0001
Retune-ATA −10.4 −13.8 −6.9 <0.0001
World-ATA −15.3 −18.8 −11.9 <0.0001
Retune-Circe 41.2 37.8 44.6 <0.0001
World-Circe 36.2 32.8 39.7 <0.0001
World-Retune −5.0 −8.4 −1.6 0.0007

Table C.4: ANOVA for Task A - after excluding subj. deemed unsuitable

Df Sum Sq Mean Sq F value Pr(>F)

Vocoder 4 488158 122040 458.1 < 2e− 16
Residuals 1275 339662 266

Table C.5: Tukey HSD for Task A - after excluding subj. deemed unsuitable

Comparison Difference Lower Upper p-value

ATA-Ref −0.5 −4.4 3.5 0.9975
Circe-Ref −53.2 −57.1 −49.3 <0.0001
Retune-Ref −10.9 −14.8 −7.0 <0.0001
World-Ref −16.1 −20.0 −12.1 <0.0001
Circe-ATA −52.7 −56.7 −48.8 <0.0001
Retune-ATA −10.4 −14.4 −6.5 <0.0001
World-ATA −15.6 −19.6 −11.7 <0.0001
Retune-Circe 42.3 38.4 46.2 <0.0001
World-Circe 37.1 33.2 41.1 <0.0001
World-Retune −5.2 −9.1 −1.2 0.0031
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Table C.6: ANOVA for Task A (Non-Musicians)

Df Sum Sq Mean Sq F value Pr(>F)

Vocoder 4 164544 41136 177.7 < 2e− 16
Residuals 635 147008 232

Table C.7: Tukey HSD for Task A (Non-Musicians)

Comparison Difference Lower Upper p-value

ATA-Ref −1.2 −6.4 4.0 0.9718
Circe-Ref −43.7 −48.9 −38.5 <0.0001
Retune-Ref −7.0 −12.2 −1.8 0.0025
World-Ref −12.1 −17.3 −6.9 <0.0001
Circe-ATA −42.5 −47.7 −37.3 <0.0001
Retune-ATA −5.8 −11.0 −0.6 0.0205
World-ATA −10.9 −16.1 −5.7 <0.0001
Retune-Circe 36.7 31.5 41.9 <0.0001
World-Circe 31.6 26.4 36.8 <0.0001
World-Retune −5.1 −10.3 0.1 0.0571

Table C.8: ANOVA for Task A (Musicians)

Df Sum Sq Mean Sq F value Pr(>F)

Vocoder 4 457091 114273 429.7 < 2e− 16
Residuals 1035 275217 266

Table C.9: Tukey HSD for Task A (Musicians)

Comparison Difference Lower Upper p-value

ATA vs. Ref 0.2 −4.2 4.6 0.9990
Circe vs. Ref −57.0 −61.3 −52.6 <0.0001
Retune vs. Ref −13.0 −17.3 −8.6 <0.0001
World vs. Ref −17.9 −22.2 −13.5 <0.0001
Circe vs. ATA −57.2 −61.5 −52.8 <0.0001
Retune vs. ATA −13.2 −17.5 −8.8 <0.0001
World vs. ATA −18.1 −22.4 −13.7 <0.0001
Retune vs. Circe 44.0 39.6 48.4 <0.0001
World vs. Circe 39.1 34.7 43.5 <0.0001
World vs. Retune −4.9 −9.3 −0.5 0.0190
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C.3 Statistical Support for Task B
This section includes:

1. Histograms per subjects (Figures C.5 and C.6)

2. Histograms per trials (Figures C.7 and C.8).

The statistical analysis includes the complete calculations for the Task B
analysis, encompassing the following cases:

1. Full panel: Post-hoc Tukey HSD multi-comparison (Table C.10).

2. Removing unsuitable subjects:

• ANOVA results are summarized in Table C.11
• Post-hoc Tukey HSD multi-comparison summarized in Table C.12

3. Non-musicians:

• ANOVA results are summarized in Table C.13
• Post-hoc Tukey HSD multi-comparison summarized in Table C.14

4. Musicians:

• ANOVA results are summarized in Table C.15
• Post-hoc Tukey HSD multi-comparison summarized in Table C.16
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C.3.1 Histograms per subjects for Task B

Figure C.5: Histograms per subject for Task B - part 1
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Figure C.6: Histograms per subject for Task B - part 2
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C.3.2 Histograms per trials for Task B

Figure C.7: Histograms per trial for Task B - part 1
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Figure C.8: Histograms per trial for Task B - part 2
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C.3.3 ANOVA and Tukey HSD for Task B

Table C.10: Tukey HSD for Task B - before excluding subj. deemed unsuitable

Comparison Difference Lower Upper p-value

ATA-Ref −41.7 −46.3 −37.1 <0.0001
Circe-Ref −58.8 −63.5 −54.2 <0.0001
Retune-Ref −24.3 −28.9 −19.7 <0.0001
World-Ref −42.0 −46.7 −37.4 <0.0001
Circe-ATA −17.1 −21.8 −12.5 <0.0001
Retune-ATA 17.4 12.8 22.0 <0.0001
World-ATA −0.3 −5.0 4.3 0.9997
Retune-Circe 34.6 29.9 39.2 <0.0001
World-Circe 16.8 12.2 21.4 <0.0001
World-Retune −17.7 −22.4 −13.1 <0.0001

Table C.11: ANOVA for Task B - after excluding subj. deemed unsuitable

Df Sum Sq Mean Sq F value Pr(>F)

Vocoder 4 464517 116129 260.3 < 2e− 16
Residuals 1115 497469 446

Table C.12: Tukey HSD for Task B - after excluding subj. deemed unsuitable

Comparison Difference Lower Upper p-value

ATA-Ref −42.7 −48.1 −37.2 <0.0001
Circe-Ref −59.9 −65.3 −54.4 <0.0001
Retune-Ref −25.2 −30.6 −19.7 <0.0001
World-Ref −43.8 −49.3 −38.4 <0.0001
Circe-ATA −17.2 −22.6 −11.7 <0.0001
Retune-ATA 17.5 12.1 23.0 <0.0001
World-ATA −1.2 −6.6 4.3 0.9784
Retune-Circe 34.7 29.3 40.2 <0.0001
World-Circe 16.0 10.6 21.5 <0.0001
World-Retune −18.7 −24.1 −13.2 <0.0001
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Table C.13: ANOVA for Task B (Non-Musicians)

Df Sum Sq Mean Sq F value Pr(>F)

Vocoder 4 195534 48884 119.3 < 2e− 16
Residuals 555 227478 410

Table C.14: Tukey HSD for Task B (Non-Musicians)

Comparison Difference Lower Upper p-value

ATA-Ref −45.2 −52.6 −37.8 <0.0001
Circe-Ref −51.9 −59.3 −44.5 <0.0001
Retune-Ref −22.8 −30.2 −15.4 <0.0001
World-Ref −40.1 −47.5 −32.7 <0.0001
Circe-ATA −6.7 −14.1 0.7 0.0993
Retune-ATA 22.4 15.0 29.8 <0.0001
World-ATA 5.2 −2.2 12.6 0.3127
Retune-Circe 29.1 21.7 36.5 <0.0001
World-Circe 11.8 4.4 19.3 0.0001
World-Retune −17.3 −24.7 −9.9 <0.0001

Table C.15: ANOVA for Task B (Musicians)

Df Sum Sq Mean Sq F value Pr(>F)

Vocoder 4 399680 99920 238.1 < 2e− 16
Residuals 905 379865 420

Table C.16: Tukey HSD for Task B (Musicians)

Comparison Difference Lower Upper p-value

ATA vs. Ref −39.5 −45.4 −33.7 <0.0001
Circe vs. Ref −63.1 −69.0 −57.2 <0.0001
Retune vs. Ref −25.2 −31.1 −19.3 <0.0001
World vs. Ref −43.2 −49.1 −37.4 <0.0001
Circe vs. ATA −23.6 −29.5 −17.7 <0.0001
Retune vs. ATA 14.3 8.4 20.2 <0.0001
World vs. ATA −3.7 −9.6 2.2 0.4180
Retune vs. Circe 37.9 32.0 43.8 <0.0001
World vs. Circe 19.9 14.0 25.7 <0.0001
World vs. Retune −18.0 −23.9 −12.1 <0.0001
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C.4 Statistical Support for Task C
This section includes:

1. Histograms per subjects (Figures C.9 and C.10)

2. Histograms per trials (Figures C.11 and C.12).

The statistical analysis includes the complete calculations for the Task C
analysis, encompassing the following cases:

1. Full panel: Post-hoc Tukey HSD multi-comparison (Table C.17).

2. Removing unsuitable subjects:

• ANOVA results are summarized in Table C.18
• Post-hoc Tukey HSD multi-comparison summarized in Table C.19

3. Non-musicians:

• ANOVA results are summarized in Table C.20
• Post-hoc Tukey HSD multi-comparison summarized in Table C.21

4. Musicians:

• ANOVA results are summarized in Table C.22
• Post-hoc Tukey HSD multi-comparison summarized in Table C.23
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C.4.1 Histograms per subjects for Task C

Figure C.9: Histograms per subject for Task C - part 1
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Figure C.10: Histograms per subject for Task C - part 2
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C.4.2 Histograms per trials for Task C

Figure C.11: Histograms per trial for Task C - part 1
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Figure C.12: Histograms per trial for Task C - part 2
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Table C.17: Tukey HSD or Task C - before excluding subj. deemed unsuitable

Comparison Difference Lower Upper p-value

Circe-Ref -46.262 -50.235 -42.289 < 0.0001
Retune-Ref -18.619 -22.592 -14.646 < 0.0001
World-Ref -9.364 -13.337 -5.391 < 0.0001
Retune-Circe 27.643 23.670 31.616 < 0.0001
World-Circe 36.898 32.925 40.871 < 0.0001
World-Retune 9.255 5.282 13.228 < 0.0001

Table C.18: ANOVA for Task C - after excluding subj. deemed unsuitable

Df Sum Sq Mean Sq F value Pr(>F)

Vocoder 3 280392 93464 269.7 < 2e− 16
Residuals 892 309130 347

Table C.19: Tukey HSD for Task C - after excluding subj. deemed unsuitable

Comparison Difference Lower Upper p-value

Circe-Ref −47.7 −52.3 −43.2 <0.0001
Retune-Ref −19.5 −24.0 −15.0 <0.0001
World-Ref −10.9 −15.4 −6.3 <0.0001
Retune-Circe 28.3 23.7 32.8 <0.0001
World-Circe 36.9 32.3 41.4 <0.0001
World-Retune 8.6 4.1 13.1 <0.0001
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Table C.20: ANOVA for Task C (Non-Musicians)

Df Sum Sq Mean Sq F value Pr(>F)

Vocoder 3 88662 29554 83.25 < 2e− 16
Residuals 444 157612 355

Table C.21: Tukey HSD for Task C (Non-Musicians)

Comparison Difference Lower Upper p-value

Circe-Ref −37.9 −44.4 −31.5 <0.0001
Retune-Ref −18.5 −25.0 −12.0 <0.0001
World-Ref −9.1 −15.5 −2.6 0.0020
Retune-Circe 19.4 12.9 25.9 <0.0001
World-Circe 28.9 22.4 35.4 <0.0001
World-Retune 9.5 3.0 15.9 0.0011

Table C.22: ANOVA for Task C (Musicians)

Df Sum Sq Mean Sq F value Pr(>F)

Vocoder 3 272170 90723 271 < 2e− 16
Residuals 724 242418 335

Table C.23: Tukey HSD for Task C (Musicians)

Comparison Difference Lower Upper p-value

Circe vs. Ref −51.4 −56.3 −46.4 <0.0001
Retune vs. Ref −18.7 −23.6 −13.7 <0.0001
World vs. Ref −9.6 −14.5 −4.6 <0.0001
Retune vs. Circe 32.7 27.8 37.6 <0.0001
World vs. Circe 41.8 36.9 46.8 <0.0001
World vs. Retune 9.1 4.2 14.1 <0.0001
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C.5 Statistical Support for Task D
This section includes:

1. Histograms per subjects (Figures C.13 and C.14)

2. Histograms per trials (Figures C.15 and C.16).

The statistical analysis includes the complete calculations for the Task D
analysis, encompassing the following cases:

1. Full panel: Post-hoc Tukey HSD multi-comparison (Table C.24).

2. Removing unsuitable subjects:

• ANOVA results are summarized in Table C.25
• Post-hoc Tukey HSD multi-comparison summarized in Table C.26

3. Non-musicians:

• ANOVA results are summarized in Table C.27
• Post-hoc Tukey HSD multi-comparison summarized in Table C.28

4. Musicians:

• ANOVA results are summarized in Table C.29
• Post-hoc Tukey HSD multi-comparison summarized in Table C.30

In this modified version, all occurrences of ”C” have been replaced with ”D”
in the labels and references.
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C.5.1 Histograms per subjects for Task D

Figure C.13: Histograms per subject for Task D - part 1
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Figure C.14: Histograms per subject for Task D - part 2
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C.5.2 Histograms per trials for Task D

Figure C.15: Histograms per trial for Task D - part 1
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Figure C.16: Histograms per trial for Task D - part 2
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C.5.3 ANOVA and Tukey HSD for Task D

Table C.24: Tukey HSD for Task D - before excluding subj. deemed unsuitable

Comparison Difference Lower Upper p-value

Circe-Ref -51.878 -55.477 -48.279 < 0.0001
Retune-Ref -14.631 -18.230 -11.032 < 0.0001
World-Ref -14.265 -17.864 -10.666 < 0.0001
Retune-Circe 37.247 33.648 40.846 < 0.0001
World-Circe 37.613 34.014 41.212 < 0.0001
World-Retune 0.366 -3.233 3.965 0.9937

Table C.25: ANOVA for Task D - after excluding subj. deemed unsuitable

Df Sum Sq Mean Sq F value Pr(>F)

Vocoder 3 384535 128178 381.9 < 2e− 16
Residuals 1020 342362 336

Table C.26: Tukey HSD for Task D - after excluding subj. deemed unsuitable

Comparison Difference Lower Upper p-value

Circe-Ref −52.5 −56.6 −48.3 <0.0001
Retune-Ref −14.9 −19.1 −10.7 <0.0001
World-Ref −15.2 −19.4 −11.0 <0.0001
Retune-Circe 37.6 33.4 41.7 <0.0001
World-Circe 37.3 33.1 41.4 <0.0001
World-Retune −0.3 −4.5 3.9 0.9976
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Table C.27: ANOVA for Task D (Non-Musicians)

Df Sum Sq Mean Sq F value Pr(>F)

Vocoder 3 133984 44661 166.1 < 2e− 16
Residuals 508 136589 269

Table C.28: Tukey HSD for Task D (Non-Musicians)

Comparison Difference Lower Upper p-value

Circe-Ref −42.9 −48.2 −37.6 <0.0001
Retune-Ref −8.7 −14.0 −3.4 0.0001
World-Ref −12.0 −17.3 −6.7 <0.0001
Retune-Circe 34.2 28.9 39.4 <0.0001
World-Circe 30.8 25.6 36.1 <0.0001
World-Retune −3.3 −8.6 2.0 0.3704

Table C.29: ANOVA for Task D (Musicians)

Df Sum Sq Mean Sq F value Pr(>F)

Vocoder 3 372379 124126 366.7 < 2e− 16
Residuals 828 280238 338

Table C.30: Tukey HSD for Task D (Musicians)

Comparison Difference Lower Upper p-value

Circe vs. Ref −57.4 −62.1 −52.8 <0.0001
Retune vs. Ref −18.3 −22.9 −13.6 <0.0001
World vs. Ref −15.6 −20.3 −11.0 <0.0001
Retune vs. Circe 39.1 34.5 43.8 <0.0001
World vs. Circe 41.8 37.1 46.4 <0.0001
World vs. Retune 2.6 −2.0 7.3 0.4640
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C.6 Classification Performance for Pitch Cor-
rections Methods - Tasks 1, 2, 3, 4, 5

A performance calculation has been conducted according to the recommenda-
tions of the MUSHRA test, wherein the percentage of trials where the reference
is rated below 90 is calculated. According to MUSHRA recommendations,
subjects with a percentage higher than 15% in all tasks are considered un-
suitable and are removed from the data. Nevertheless, such subjects do not
negatively impact our results, as their contributions exhibit data distributions
(histograms) consistent with ratings provided by good subjects. In these distri-
butions, the most similar samples display similar mean scores and distribution
shapes, and the different ones also maintain distribution shapes and mean
values. The results of performance can be observed in the table C.31.

Table C.31: Classification Performance (Tasks 1, 2, 3, 4, 5)

Subject % Incorrect Ref. Classification
Task 1 Task 2 Task 3 Task 4 Task 5

A01 5.3 0.0 0.0 15.8 10.5
B02 21.1 5.3 15.8 15.8 57.9
C03 0.0 0.0 0.0 0.0 0.0
D04 0.0 0.0 0.0 0.0 0.0
E05 0.0 0.0 0.0 0.0 0.0
F06 0.0 0.0 0.0 0.0 0.0
G07 10.5 15.8 0.0 0.0 10.5
H08 5.3 15.8 0.0 5.3 21.1
I09 10.5 10.5 0.0 0.0 10.5
J10 0.0 0.0 0.0 0.0 0.0
K11 26.3 47.4 5.3 15.8 0.0
L12 0.0 5.3 0.0 10.5 0.0
M13 10.5 0.0 0.0 0.0 0.0
N14 0.0 0.0 0.0 0.0 0.0
O15 100.0 84.2 100.0 100.0 100.0
P16 5.3 0.0 0.0 0.0 5.3
R18 NaN NaN NaN NaN NaN
S19 0.0 5.3 0.0 21.1 5.3
T20 10.5 21.1 10.5 5.3 15.8
U21 0.0 10.5 0.0 5.3 0.0
W23 31.6 31.6 26.3 15.8 0.0
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C.7 Statistical Support for Task 1
This section includes:

1. Histograms per subjects (Figure C.17)

2. Histograms per trials (Figures C.18 and C.19).

The statistical analysis includes the complete calculations for the Task 1
analysis, encompassing the following cases:

1. Full panel: Post-hoc Tukey HSD multi-comparison (Table C.32).

2. Removing unsuitable subjects:

• ANOVA results are summarized in Table C.33
• Post-hoc Tukey HSD multi-comparison summarized in Table C.34

3. Non-musicians:

• ANOVA results are summarized in Table C.35
• Post-hoc Tukey HSD multi-comparison summarized in Table C.36

4. Musicians:

• ANOVA results are summarized in Table C.37
• Post-hoc Tukey HSD multi-comparison summarized in Table C.38
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C.7.1 Histograms per subjects for Task 1

Figure C.17: Histograms per subject for Task 1
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C.7.2 Histograms per trials for Task 1

Figure C.18: Histograms per trial for Task 1 - part 1
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Figure C.19: Histograms per trial for Task 1 - part 2
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C.7.3 ANOVA and Tukey HSD for Task 1

Table C.32: Tukey HSD for Task 1 - before excluding subj. deemed unsuitable

Comparison Difference Lower Upper p-value
DPW extreme + World
vs. Ref. ATA extreme + ATA 9.9 7.9 12.0 <0.0001

Table C.33: ANOVA for Task 1 - after excluding subj. deemed unsuitable

Df Sum Sq Mean Sq F value Pr(>F)

Methode 1 14265 14265 96.96 < 2e− 16
Residuals 606 89155 147

Table C.34: Tukey HSD for Task 1 - after excluding subj. deemed unsuitable

Comparison Difference Lower Upper p-value

DPW extreme + World
vs. Ref. ATA extreme + ATA −9.7 −11.6 −7.8 <0.0001
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Table C.35: ANOVA for Task 1 (Non-Musicians)

Df Sum Sq Mean Sq F value Pr(>F)

Method 1 2166 2165.7 27.51 3.21e− 07
Residuals 264 20783 78.7

Table C.36: Tukey HSD for Task 1 (Non-Musicians)

Comparison Difference Lower Upper p-value

DPW extreme + World
vs. Ref. ATA extreme + ATA −5.7 −7.8 −3.6 <0.0001

Table C.37: ANOVA for Task 1 (Musicians)

Df Sum Sq Mean Sq F value Pr(>F)

Method 1 18426 18426 70.62 4.69e− 16
Residuals 492 128368 261

Table C.38: Tukey HSD for Task 1 (Musicians)

Comparison Difference Lower Upper p-value

DPW extreme + World
vs. Ref. ATA extreme + ATA −12.2 −15.1 −9.4 <0.0001
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C.8 Statistical Support for Task 2
This section includes:

1. Histograms per subjects (Figure C.20)

2. Histograms per trials (Figures C.21 and C.22).

The statistical analysis includes the complete calculations for the Task 2
analysis, encompassing the following cases:

1. Full panel: Post-hoc Tukey HSD multi-comparison (Table C.39).

2. Removing unsuitable subjects:

• ANOVA results are summarized in Table C.40
• Post-hoc Tukey HSD multi-comparison summarized in Table C.41

3. Non-musicians:

• ANOVA results are summarized in Table C.42
• Post-hoc Tukey HSD multi-comparison summarized in Table C.43

4. Musicians:

• ANOVA results are summarized in Table C.44
• Post-hoc Tukey HSD multi-comparison summarized in Table C.45
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C.8.1 Histograms per subjects for Task 2

Figure C.20: Histograms per subject for Task 2
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C.8.2 Histograms per trials for Task 2

Figure C.21: Histograms per trial for Task 2 - part 1
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Figure C.22: Histograms per trial for Task 2 - part 2
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C.8.3 ANOVA and Tukey HSD for Task 2

Table C.39: Tukey HSD for Task 2 - before excluding subj. deemed unsuitable

Comparison Difference Lower Upper p-value
DPW extreme + World
vs. Ref. ATA extreme + World 8.0 6.3 9.8 <0.0001

Table C.40: ANOVA for Task 2 - after excluding subj. deemed unsuitable

Df Sum Sq Mean Sq F value Pr(>F)

Methode 1 6429 6429 106.3 < 2e− 16
Residuals 606 36649 60

Table C.41: Tukey HSD for Task 2- after excluding subj. deemed unsuitable

Comparison Difference Lower Upper p-value

DPW extreme + World
vs. Ref. ATA extreme + World −6.5 −7.7 −5.3 <0.0001
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Table C.42: ANOVA for Task 2 (Non-Musicians)

Df Sum Sq Mean Sq F value Pr(>F)

Method 1 3973 3973 43.8 2.02e− 10
Residuals 264 23946 91

Table C.43: Tukey HSD for Task 2 (Non-Musicians)

Comparison Difference Lower Upper p-value

DPW extreme + World
vs. Ref. ATA extreme + World −7.7 −10.0 −5.4 <0.0001

Table C.44: ANOVA for Task 2 (Musicians)

Df Sum Sq Mean Sq F value Pr(>F)

Method 1 8227 8227 44.14 8.11e− 11
Residuals 492 91700 186

Table C.45: Tukey HSD for Task 2 (Musicians)

Comparison Difference Lower Upper p-value

DPW extreme + World
vs. Ref. ATA extreme + World −8.2 −10.6 −5.7 <0.0001
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C.9 Statistical Support for Task 3
This section includes:

1. Histograms per subjects (Figure C.23)

2. Histograms per trials (Figures C.24 and C.25).

The statistical analysis includes the complete calculations for the Task 3
analysis, encompassing the following cases:

1. Full panel: Post-hoc Tukey HSD multi-comparison (Table C.46).

2. Removing unsuitable subjects:

• ANOVA results are summarized in Table C.47
• Post-hoc Tukey HSD multi-comparison summarized in Table C.48

3. Non-musicians:

• ANOVA results are summarized in Table C.49
• Post-hoc Tukey HSD multi-comparison summarized in Table C.50

4. Musicians:

• ANOVA results are summarized in Table C.51
• Post-hoc Tukey HSD multi-comparison summarized in Table C.52
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C.9.1 Histograms per subjects for Task 3

Figure C.23: Histograms per subject for Task 3
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C.9.2 Histograms per trials for Task 3

Figure C.24: Histograms per trial for Task 3 - part 1
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Figure C.25: Histograms per trial for Task 3 - part 2
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C.9.3 ANOVA and Tukey HSD for Task 3

Table C.46: Tukey HSD for Task 3 - before excluding subj. deemed unsuitable

Comparison Difference Lower Upper p-value
DPW soft + World
vs. Ref. ATA soft + ATA 10.8 8.9 12.7 <0.0001

Table C.47: ANOVA for Task 3 - after excluding subj. deemed unsuitable

Df Sum Sq Mean Sq F value Pr(>F)

Methode 1 21732 21732 172.3 < 2e− 16
Residuals 606 76419 126

Table C.48: Tukey HSD for Task 3 - after excluding subj. deemed unsuitable

Comparison Difference Lower Upper p-value

DPW soft + World
vs. Ref. ATA soft + ATA −12.0 −13.7 −10.2 <0.0001
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Table C.49: ANOVA for Task 3 (Non-Musicians)

Df Sum Sq Mean Sq F value Pr(>F)

Method 1 2154 2154 53.88 2.64e− 12
Residuals 264 10557 40

Table C.50: Tukey HSD for Task 3 (Non-Musicians)

Comparison Difference Lower Upper p-value

DPW soft + World
vs. Ref. ATA soft + ATA −5.7 −7.2 −4.2 <0.0001

Table C.51: ANOVA for Task 3 (Musicians)

Df Sum Sq Mean Sq F value Pr(>F)

Method 1 22690 22690 98.6 < 2e− 16
Residuals 492 113226 230

Table C.52: Tukey HSD for Task 3 (Musicians)

Comparison Difference Lower Upper p-value

DPW soft + World
vs. Ref. ATA soft + ATA −13.6 −16.2 −10.9 <0.0001
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C.10 Statistical Support for Task 4
This section includes:

1. Histograms per subjects (Figure C.26)

2. Histograms per trials (Figures C.27 and C.28).

The statistical analysis includes the complete calculations for the Task 4
analysis, encompassing the following cases:

1. Full panel: Post-hoc Tukey HSD multi-comparison (Table C.53).

2. Removing unsuitable subjects:

• ANOVA results are summarized in Table C.54
• Post-hoc Tukey HSD multi-comparison summarized in Table C.55

3. Non-musicians:

• ANOVA results are summarized in Table C.56
• Post-hoc Tukey HSD multi-comparison summarized in Table C.57

4. Musicians:

• ANOVA results are summarized in Table C.58
• Post-hoc Tukey HSD multi-comparison summarized in Table C.59
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C.10.1 Histograms per subjects for Task 4

Figure C.26: Histograms per subject for Task 4
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C.10.2 Histograms per trials for Task 4

Figure C.27: Histograms per trial for Task 4 - part 1
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Figure C.28: Histograms per trial for Task 4 - part 2
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C.10.3 ANOVA and Tukey HSD for Task 4

Table C.53: Tukey HSD for Task 4 - before excluding subj. deemed unsuitable

Comparison Difference Lower Upper p-value
DPW soft + World
vs. Ref. ATA soft + World 1.4 0.1 2.6 0.0357

Table C.54: ANOVA for Task 4 - after excluding subj. deemed unsuitable

Df Sum Sq Mean Sq F value Pr(>F)

Methode 1 114 113.76 7.393 0.00673
Residuals 606 9325 15.39

Table C.55: Tukey HSD for Task 4 - after excluding subj. deemed unsuitable

Comparison Difference Lower Upper p-value

DPW soft + World
vs. Ref. ATA soft + World −0.9 −1.5 −0.2 0.0067
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Table C.56: ANOVA for Task 4 (No Musicians)

Df Sum Sq Mean Sq F value Pr(>F)

Method 1 65 64.52 2.186 0.14
Residuals 264 7790 29.51

Table C.57: Tukey HSD for Task 4 (No Musicians)

Comparison Difference Lower Upper p-value

DPW soft + World
vs. Ref. ATA soft + World −1.0 −2.3 0.3 0.1404

Table C.58: ANOVA for Task 4 (Musicians)

Df Sum Sq Mean Sq F value Pr(>F)

Method 1 305 304.7 2.837 0.0928
Residuals 492 52858 107.4

Table C.59: Tukey HSD for Task 4 (Musicians)

Comparison Difference Lower Upper p-value

DPW soft + World
vs. Ref. ATA soft + World −1.6 −3.4 0.3 0.0930
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C.11 Statistical Support for Task 5
This section includes:

1. Histograms per subjects (Figures C.29 and C.30)

2. Histograms per trials (Figures C.31 and C.32).

The statistical analysis includes the complete calculations for the Task 5
analysis, encompassing the following cases:

1. Full panel: Post-hoc Tukey HSD multi-comparison (Table C.60).

2. Removing unsuitable subjects:

• ANOVA results are summarized in Table C.61
• Post-hoc Tukey HSD multi-comparison summarized in Table C.62

3. Non-musicians:

• ANOVA results are summarized in Table C.63
• Post-hoc Tukey HSD multi-comparison summarized in Table C.64

4. Musicians:

• ANOVA results are summarized in Table C.65
• Post-hoc Tukey HSD multi-comparison summarized in Table C.66
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C.11.1 Histograms per subjects for Task 5

Figure C.29: Histograms per subject for Task 5 - part 1
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Figure C.30: Histograms per subject for Task 5 - part 2
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C.11.2 Histograms per trials for Task 5

Figure C.31: Histograms per trial for Task 5 - part 1
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Figure C.32: Histograms per trial for Task 5 - part 2
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Figure C.33: Histograms per trial for Task 5 - part 3
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C.11.3 ANOVA and Tukey HSD for Task 5

Table C.60: Tukey HSD for Task 5 - before excluding subj. deemed unsuitable

Comparison Diff. Lower Upper p-value
ATA soft + ATA vs Ref. original −0.3 −2.9 2.4 0.9950
DPW soft + World vs Ref. original −12.2 −14.9 −9.6 <0.0001
ATA soft + World vs Ref. original −12.5 −15.2 −9.8 <0.0001
DPW soft + World vs ATA soft + ATA −12.0 −14.6 −9.3 <0.0001
ATA soft + World vs ATA soft + ATA −12.2 −14.9 −9.6 <0.0001
ATA soft + World vs DPW soft + World −0.3 −2.9 2.4 0.9940

Table C.61: ANOVA for Task 5 - after excluding subjects deemed unsuitable

Df Sum Sq Mean Sq F value Pr(>F)

Method 3 51661 17220 97.22 <2e-16
Residuals 1212 214674 177

Table C.62: Tukey HSD for Task 5 - after excluding subj. deemed unsuitable

Comparison Diff. Lower Upper p-value

ATA soft + ATA vs Ref. original −0.2 −3.0 2.6 0.9980
DPW soft + World vs Ref. original −12.9 −15.7 −10.1 <0.0001
ATA soft + World vs Ref. original −13.4 −16.1 −10.6 <0.0001
DPW soft + World vs ATA soft + ATA −12.7 −15.5 −9.9 <0.0001
ATA soft + World vs ATA soft + ATA −13.2 −15.9 −10.4 <0.0001
ATA soft + World vs DPW soft + World −0.5 −3.2 2.3 0.9740
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Table C.63: ANOVA for Task 5 (Non-Musicians)

Df Sum Sq Mean Sq F value Pr(>F)

Method 3 7116 2372.0 29.6 < 2e− 16
Residuals 528 42308 80.1

Table C.64: Tukey HSD for Task 5 (Non-Musicians)

Comparison Diff. Lower Upper p-value

ATA soft + ATA vs. Ref. original 0.1 −2.8 2.9 0.9990
DPW soft + World vs. Ref. original −7.1 −10.0 −4.3 <0.0001
ATA soft + World vs. Ref. original −7.4 −10.2 −4.6 <0.0001
DPW soft + World vs. ATA soft + ATA −7.2 −10.0 −4.4 <0.0001
ATA soft + World vs. ATA soft + ATA −7.5 −10.3 −4.7 <0.0001
ATA soft + World vs. DPW soft + World −0.3 −3.1 2.6 0.9950

Table C.65: ANOVA for Task 5 (Musicians)

Df Sum Sq Mean Sq F value Pr(>F)

Method 3 54710 18237 70.11 < 2e− 16 ***
Residuals 984 255959 260

Table C.66: Tukey HSD for Task 5 (Musicians)

Comparison Diff. Lower Upper p-value

ATA soft + ATA vs. Ref. original −0.4 −4.2 3.3 0.9910
DPW soft + World vs. Ref. original −15.0 −18.7 −11.2 <0.0001
ATA soft + World vs. Ref. original −15.2 −19.0 −11.5 <0.0001
DPW soft + World vs. ATA soft + ATA −14.5 −18.3 −10.8 <0.0001
ATA soft + World vs. ATA soft + ATA −14.8 −18.5 −11.1 <0.0001
ATA soft + World vs. DPW soft + World −0.3 −4.0 3.5 0.9980
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Appendix D

Paper: Dynamic pitch warping
for expressive vocal retuning

Daniel Hernan Molina Villota, Christophe d’Alessandro, Olivier Perrotin. Dy-
namic pitch warping for expressive vocal retuning. 26th International Con-
ference on Digital Audio Effects (DAFx23), Sep 2023, Copenhagen, Denmark.
pp.118-125. hal-04256554f.

A sound support is contained in a folder, file names correspond to number
of figures and configurations.
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ABSTRACT

This work introduces the use of the Dynamic Pitch Warping (DPW)
method for automatic pitch correction of singing voice audio sig-
nals. DPW is designed to dynamically tune any pitch trajectory
to a predefined scale while preserving its expressive ornamenta-
tion. DPW has three degrees of freedom to modify the funda-
mental frequency (f0) signal: detection interval, critical time, and
transition time. Together, these parameters allow us to define a
pitch velocity condition that triggers an adaptive correction of the
pitch trajectory (pitch warping). We compared our approach to
Antares Autotune (the most commonly used software brand, ab-
breviated as ATA in this article). The pitch correction in ATA has
two degrees of freedom: a triggering threshold (flextune) and the
transition time (retune speed). The pitch trajectories that we com-
pare were extracted from autotuned-in-ATA audio signals, and the
DPW algorithm implemented over the f0 of the input audio tracks.
We studied specifically pitch correction for three typical situations
of f0 curves: staircase, vibrato, free-path. We measured the prox-
imity of the corrected pitch trajectories to the original ones for each
case obtaining that the DPW pitch correction method is better to
preserve vibrato while keeping the f0 free path. In contrast, ATA
is more effective in generating staircase curves, but fails for not-
small vibratos and free-path curves. We have also implemented an
off-line automatic picth tuner using DPW.

1. INTRODUCTION

Pitch correction (or automatic pitch tuning) is nowadays one of
the most commonly used digital audio effects for vocal music. Ini-
tially known as the "Cher" effect, the audible distortion produced
by sharp pitch transition in retuned singing became appreciated
on its own in popular electronic music. The sharp transition is a
case of use where all minor expressive singing variations are flat-
tened. Noticeable gliding appears often in the transitions between
notes. The success of Autotune in the music industry has sparked
much discussion and debate. Some argue that it is a tool that helps
artists achieve a perfect pitch singing, while others criticise its use
as it can lead to a loss of natural expression and emotion in the
music. Despite this, Autotune has become a staple in modern mu-
sic production and is used in various genres such as pop, hip-hop,
and electronic music [1]. Although it is a common practice to use

Copyright: © 2023 Daniel Hernan Molina Villota et al. This is an open-access arti-

cle distributed under the terms of the Creative Commons Attribution 4.0 International

License, which permits unrestricted use, distribution, adaptation, and reproduction in

any medium, provided the original author and source are credited.

DAFx effects which involve perceptual features such as [2] melody
(pitch), source (timbre, [3]), or space [4],pitch correction is one of
the most commonly used. I became a stylistic signature for many
popular music genre.

Antares Autotune (ATA)1 is a digital audio effect developed by
H. Hildebrand in 1997 [5] and its enduring popularity has spanned
over 25 years. ATA uses an autocorrelation method that was ini-
tially developed for seismic imaging, with the help of short-time
Fourier transform. Although the initial purpose of ATA was not to
enrich the voice with a new vocoder-like audio effect but to cor-
rect out-of-tune melodies, the unique electronic texture produced
has been embraced in popular music and has even become a hall-
mark of specific musical styles, often employed systematically.
ATA offers two use cases: one the one hand pitch correction is
used for better rendering of out of tune singing and on the other
hand the distortion effect occurring extreme correction situations
is appreciated on its own. The need for melodic correction also ap-
peared in digital music instruments (DMI) [6, 7, 8, 9]. These DMIs
use interfaces with particular features that involve learnability, ex-
plorability, and controllability [10]. A new pitch tuning correction,
Dynamic Pitch Warping (DPW) [11], has been developed for per-
formative vocal synthesis in Cantor Digitalis [8] where the funda-
mental frequency (pitch) is controlled in real-time with the help
of a stylus on a graphic tablet. Pitch correction helps for singing
accurate notes. However, it is very important to preserve small ex-
pressive ornaments like vibrato [12] without flattening the notes to
preserve naturalness.

The purpose of this paper is to study the DPW pitch correction
method. This method was designed to preserve expressive varia-
tions like vibrato while adjusting the main shape of the f0 curve
to a predefined scale. We identify three cases of particular inter-
est: abrupt pitch transitions (staircase notes), notes with vibrato
and free path curves that should not be corrected. The results of
this paper allow us to open perspectives for developing dynamic
and singer-controlled vocal digital audio effects that are able to
preserve expressive ornaments in real-time. Section 2 presents a
review of the pitch correction method studied (ATA and DPW).
Section 3 compares DPW and ATA on typical pitch patterns. Sec-
tion 4 presents the off-line implementation of DPW for audio sig-
nals.

2. PITCH CORRECTION SYSTEMS

An audio pitch correction system contains three parts: a pitch de-
tection algorithm (PDA), a pitch correction algorithm, and finally

1https://www.antarestech.com/ last checked: 6 April 2023
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a pitch warping modification (vocoder). The present paper aims to
apply DPW as a pitch correction algorithm for vocal speech into-
nation. DPW offers three control parameters when other correc-
tion methods have one or two parameters. DPW uses an adaptive
function, the term "adaptive" is related to the adaptive digital au-
dio effects (aDAFx) that are recent solutions designed to respond
to changes in the input signal and adjust specific audio parameters
accordingly to it, thanks to specific denominated adaptive func-
tions. These kind of effects are more dynamic and responsive that
the traditional DAFx, some examples of aDAFx being the com-
pressor, the expander and the limiter (auto-adaptive on loudness).

Along this line, several DMIs have introduced the use of pitch
correction methods to improve the expressivity of musical user in-
terfaces. That is the case for devices such as the Continuum Fin-
gerboard [6, 7]2, the Seaboard[13]3, Garageband4, TouchKeys[14],
and Cantor Digitalis [8]5. The latter is particularly interesting since
it uses a Dynamic Pitch Warping method to correct the continuous
position of the pitch controller relative to a pitch scale. The cor-
responding adaptive warping function proposed by Perrotin and
d’Alessandro [11] attracts real pitch values towards integer values,
using a MIDI scale. The integer values are tuned notes. DPW is
based on a pitch velocity condition expressed as the pitch stabil-
ity within a pitch interval during a critical time threshold before
triggering the automatic correction. We will review the warping
methods applied in ATA and DPW in the following two subsec-
tions.

2.1. Autotune Antares

Autotune was developed by H. Hildebrand using techniques origi-
nally developed for mapping the Earth’s subsurface and is consid-
ered a time-domain vocoder that modifies the signal both on the
frequency and time domain using a short-time Fourier transform
with a window function to frame the inner transform. Autotune is
a full pitch correction system including the three steps described
above: pitch detection, pitch correction and pitch modification.
We present in this section the pitch correction method. For this
purpose, the sung notes are shifted to the closest note in a prede-
fined scale, and the transition is carried out over a duration equal
to a transition time (named "retune speed" on ATA). Autotune also
includes the flextune parameter, which acts as a threshold for the
correction and represents the size of the neighborhood of a note in
which a pitch correction can be triggered.

Due to lack of detail in the patent [5], the ATA algorithm
can only be reproduced for an extreme correction case, meaning
a value 0 on the Decay parameter in the patent of ATA (internal
parameter of the code, and related to the retune speed parameter).
This case corresponds to force the input trajectory to match integer
MIDI values, i.e., the target notes. For the non-zero Decay cases
we cannot reproduce the algorithm as the patent doesn’t describe
exactly the configuration of the smoothing step. To treat cases with
non-zero transition time we will apply the ATA VST on audio sig-
nals and then extract the retuned f0 to study correction actually
carried on.

2https://www.hakenaudio.com/
continuum-fingerboard last checked: 25 may 2023

3https://www.roli.com last checked: 25 may 2023
4https://www.apple.com/mac/garageband/ last checked:

25 may 2023
5http://www.lam.jussieu.fr/cantordigitalis/ last

checked: 25 may 2023

2.2. Dynamic Pitch Warping

Figure 1: The arc of curvature for the dynamic pitch correction
method, took from [11]

DPW is a real-time pitch correction method developed by Per-
rotin and d’Alessandro for Cantor Digitalis. Although it was orig-
inally designed to correct a driven by stylus pitch on a graphic
tablet, we aim to use DPW for vocal correction. DPW relies on
pitch velocity (speed) to trigger an adaptive correction that mod-
ifies the input f0 curve gradually, enabling the output f0 to con-
verge to the nearest semitone on the MIDI scale. When pitch ve-
locity falls below a threshold, DPW smoothly shifts subsequent
f0 values to converge to a tuned semitone, while preserving some
expressive motion of the original f0 value. The adaptive function
remains static when the pitch velocity condition is not met, allow-
ing intended notes to be corrected while retaining expressiveness
and preserving all dynamics for non-corrected notes. To review
the method, we first analyze the isolated adaptive function, as seen
in Figure 1 that maps the input f0 (x axis) to the output f0 (y
axis). On both axes, zero represents the closest target (ideal) pitch,
and �� and +� correspond to the previous and next notes on the
discrete target pitch scale, respectively. While it works on any ar-
bitrary scale, � = 1 when working with semitones. For input pitch
x01, the closest target note is zero. Therefore, at the time the cor-
rection is triggered, the corresponding adaptive function that is ini-
tially diagonal will smoothly shift towards the lowest arc-shaped
curve, to eventually map the input f0 to the pitch target (zero) as
output f0. The adaptive function then becomes static until it is
newly triggered. To avoid introducing a constant shift on the full
pitch range, the adaptive function is arc-shaped so that if the input
moves from the x01 value to the neighbour notes on the pitch scale
(�� or +�), the output f0 will continuously reach �� or +�. If
those boundaries are reached, the adaptive function goes back to a
linear mapping between input and output, until it is triggered again
for a new input.

The adaptive function is derived from the analytic definition
of an arc. To ease formulation, the inverse function is first defined:

x(y) = Ae�(y+B)
+ C (1)

where the parameters A, B, C and � can be calculated from the
boundary conditions, i.e., the arc must satisfy x(±�) = ±�. If we
use this condition, we can write A and C in terms of �, �, and B
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as follows:

C = ��

✓
1 +

2

e2�� � 1

◆
, A = 2�

e�(��B)

e2�� � 1
(2)

Replacing these values in the original equation 1, we find that
the dependency on B disappears. Furthermore, the function is not
defined for � = 0, but it corresponds to an absence of correction,
i.e., the mapping is linear. So the function of the arc curvature can
be written as:

x(y) =

(
�
⇥
2
e�(�+y)

�1
e2���1

� 1
⇤

if � 6= 0

y if � = 0
(3)

The adaptive warping function is defined as the inverse of 3:

y(x) =

⇢
1/�
⇥
log
⇥
(e2�� � 1)(

x
� + 1)

1
2
+ 1]

⇤
� � if � 6= 0

x if � = 0

(4)
Where � is the factor of correction, y is the output pitch after the
correction, and x is the input pitch. When the correction is trig-
gered (at that moment x = xo) , the value of � = �0 can be calcu-
lated from the input value x0 to ensure that y(x0) = 0 following
the equation:

�0 =
1

�
log

✓
� � x0

� + x0

◆
(5)

The DPW has two stages that can be seen on Figure 2. One is
the triggering part and the other is the warping stage. For the cor-
rection to be triggered, the pitch trajectory has to be stable enough,
i.e., it has to stay within an interval of detection (ID) during a crit-
ical time (Tc) [11]. If these conditions are met, we can calculate
the curvature �0 given the input pitch at triggering time (x0 in the
definition, f0 for us). To ensure a smooth transition, � is linearly
interpolated from 0 (linear mapping) to �0. This transition spans
a time interval denominated transition time (Tt). When the tran-
sition is completed, the input pitch has converged to the closest
integer notes on the midi scale. This transition is carried out simi-
larly to the static case of ATA, not over the frequency but over the
� value, then f0 (input) is warped with the adaptive function.

Figure 2: Illustration of the dynamics of DPW. The input f0 (green
curve) is stable in a detection interval ID during the critical time
Tc (pink region). The correction is triggered during the transition
time Tt (blue region). The input f0 can vary continuously during
the transition time, until it reaches the next semitone on the pitch
scale (integer, black).

3. CASE STUDIES OF PITCH CORRECTION

In this section, we compare both ATA and DPW methods. Firstly,
we want to show the difference between the methods through a
simple case. We take as example a constant flat note (C]) with
a pitch shift of 0.15 semitone (ST), and we use both methods to
correct it. In Figure 3, we see a DPW correction (blue) triggered
with the following parameters: ID = 0.1 ST, Tc = 0.5 s, and
Tt = 0.5 s. The ATA correction (red) has a retune speed equal
to Tt. We have chosen a non-zero value for Tc to show the inclu-
sion of the new parameter. The critical time is the main difference
between both methods. While it introduces a triggering delay in
DPW, we find similar results for both corrections once after that
trigger.

Figure 3: DPW correction (blue curve) and ATA correction (red
curve) of a constant input pitch (green curve).

3.1. Extreme correction with zero transition time parameter

We denominate extreme correction to a full discretization of the
input pitch trajectory. To check the extreme correction, we chose
two typical examples: the first one is a glissando, and the second
is a melody taken from [15]. After trying some configurations, we
have found a combination of parameters that provides similar re-
sults with both methods. For DPW, we have chosen the parameters
Tc = 0 s, ID = 0.01 ST, and T = 0.001 s (the minimal value).
For ATA we choose just the zero retune speed the minimal value),
that as described in the patent generates discrete notes (integers on
ST scale). We can see the results in Figure 4 and 5. The fo-signal
treated with DPW is in blue, and the one treated with ATA is in red
and the original is in green.

3.2. Expressive Correction with ATA

One of the most important artifacts of vocal expression is vibrato.
Expressive Correction is the term we use here to refer to a fast
transition within pitch correction that correspond to oscillatory or-
naments, particularly vibrato. As we will see, a vibrato with a
small amplitude can be shifted around the target pitch with DPW,
while it is not well centered under the ATA correction. The expres-
sive correction requires a non-zero transition time parameter. We
don’t have access to the full implementation of the transition time
parameter in ATA (also referred to as the Decay parameter in the
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Figure 4: Extreme correction for a glissando

Figure 5: Extreme correction for an expressive melody

patent), so we cannot reproduce the exact expected pitch correc-
tion of ATA. Therefore, the most effective way to fully understand
how the ATA pitch correction algorithm works is to utilize the ATA
VST plugin to retune voice samples and extract the corrected f0
from the resulting audio using Praat software 6. This curves are
compared with the DPW correction. To generate the input audio
samples, we use Cantor Digitalis (CaD), which is a continuous
pitch input synthesizer. CaD takes the trajectory of a wacom sty-
lus, the it generates f0 and synthesizes a vocal sound. We modified
its code to have purposely not-intonated sounds related to the orig-
inal stylus trajectory. Audio examples can be found in soundcloud
7. The non-intonated audio samples can be corrected with ATA
vist but also with an off-line DPW implementation that we explain
later in section 4. Now we proceed to the comparison of both both
pitch correction methods.

The simplest case of correction is a shifted note with vibrato.
Small vibratos can be effectively corrected with ATA using a re-
tune speed of 50ms. For sustained notes, ATA performs very well
and there is no difference with DPW, so we do not present this
example here. The difference arises when we have a signal that
contains flat notes, free paths, and vibratos. Therefore, it is impor-
tant to demonstrate how a correction can be performed with ATA
using different values of the retune speed parameter, refer to Fig-

6https://www.fon.hum.uva.nl/praat/
7https://on.soundcloud.com/b5NDp last checked: 25 may

2023

Figure 6: Correction using different values of retune speed on ATA,
RS= 0, 15, 50, 100, 200 ms (up to down)

ure 6. Going up to down we use a retune speed parameter from
0, 15, 50, 100 and 200 ms. The correction is effective at 50ms for
the vibrato, but the pitch trajectory after the 12-second mark be-
comes lost and flattened. Only with a retune speed parameter set
to 200ms is it possible to preserve some of the pitch trajectory, but
at that configuration, the vibrato is not corrected.

Now we will examine the functionality of the ATA flextune pa-
rameter. For a more general case, let’s now observe what happens
when we vary the retune speed while maintaining a specific value
for flextune. We have done a configuration with zero retune speed
and two values of flextune: zero (red) and 40 cents (violet), fig-
ure 7. As we can see, the flextune parameter allows for movement
within the range defined by the flextune value after the correction,
resulting in the production of smaller ornaments at the output.

In the following example, we will use a non zero value of re-
tune speed, 15ms, and flextune values of zero (red) and 30 cents
(violet), as shown in figure 8. As we can see, like the previous
example, some ornaments smaller than the flextune value can be
preserved at the output.

Now, we present a study with a transition time of 50ms and
flextune values of 30 and 60 cents. As we can see in figure 9, a
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Figure 7: Correction with ATA, at zero retune speed and flextune:
0 (red) and 40 cents (violet))

Figure 8: Correction with ATA, at retune speed equal to 15 ms and
flextune: 0 (red) and 30 cents (violet))

larger value for flextune results in a lack of reactivity. This means
the vibrato is not corrected but the path after time equal to 12 s is
better preserved than in the other cases. In other words when the
notes are well corrected, the general path may be more or less lost
depending on the parameters.

Figure 9: Correction with ATA, at retune speed equal to 50 ms and
flextune: 30 (red) and 60 cents (violet))

Finally, we show what happens when varying the retune speed
for the same flextune parameter. We have chosen a moderate flex-
tune value of 40 cents, while the retune speed varies as follows:
50ms, 100ms, and 200ms. The result can be seen in figure 10.
There is always a trade-off between preservation of the main path
(free path) and vibrato correction. This means that ATA better pre-
serves the vibrato, but regions such as the one after 12 seconds
become staircase-like, resulting in the loss of the original pitch
trajectory. In the other hand, parameter values that preserve the
shape in that zone, does not correct the vibrato. As we can see
in figure 10, the vibrato is not corrected for a retune speed higher
than 50ms. On the other hand, when we use flextune at 40 cents
and keep zero retune speed (figure 8) the vibrato is corrected but
the path after time 12 s is flattened.

3.3. Expressive Correction with DPW

We will show several examples variations of the DPW parame-
ter: critical time and transition time. For the first example, we do
choose 100 ms as Tc, then we vary Tt, giving the results in figure

Figure 10: Correction using different values of retune speed on
ATA, RS= 0, 50, 100, 200 ms (up to down) for the same flextune
value (40 cents)

11. As we can see, varying Tt parameter allow us to "smooth" the
pitch correction.

Also we have done a correction using a larger critical time
equal to 250 ms (optimal according to [11]). It gives the results
in figure 12. As we see, the critical time acts as trigger of the
correction and the transition time acts as a smoother. The critical
time (as parameter) adds an ornament at the beginning of each
note step in the staircase region and the transition time modifies
the shape of the ornament.

Finally, we have performed a correction using the same tran-
sition time (50 ms) while varying the critical time parameter (100
ms, 150 ms, 250 ms). It gives the results in figure 13. As we
can see the critical time parameter acts like a trigger for the pitch
correction algorithm and the transition time acts as the smoother.

Now we can compare the best configuration for each method.
In the case of ATA, it is not possible to achieve good vibrato cor-
rection and good preservation of the free path simultaneously. There-
fore, we preferred a moderate configuration that performs reason-
ably well for both purposes. A suitable ATA configuration is a
retune speed of 100 ms and flextune of 40 cents (figure 13). For
DPW the most suitable correction is done by choosing the critical
time as 200 ms (DPW) and then we can choose for example a tran-
sition time equal to 50 ms (figure 10) . For simplicity we have put
these two cases in the figure 14). This shows that DPW performs
a better correction: Firstly the vibrato is well centered in DPW
correction while not in ATA; and secondly the DPW preserve bet-
ter the fo-path after time 12 s, while ATA flatten it. In contrast,
ATA seems visually better in the segment before 5 s while DPW
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Figure 11: Correction using different values of transition time in
DPW (from up to down: 100,200,400 ms), for the same critical
time (100 ms)

Figure 12: Correction using different values of Tt in DPW (from
up to down: 25,200 ms), for the same Tc (250 ms)

present an more visible expressive ornament. In the subsequent
subsection, we will showcase the measurements that are directly
linked to the aforementioned observations, as we will see DPW is
closer to the original fo curve for all the regions.

3.4. Comparison through MSE and MAE

The difference between two curves can be measured in various
ways, here we presented two. Firstly, the Mean Squared Error
(MSE) that measures the sensitivity to quadratic errors; it is calcu-
lated through the difference of squares, which gives larger errors
a greater impact on the overall result. MSE also provides a mea-
sure of variance between the curves. Secondly, the Mean Absolute
Error (MAE) that provides a measure of the average difference in
magnitude between the curves, unlike MSE, MAE does not am-
plify larger errors. We use the follwoing equations:

Figure 13: Correction using different values of Tc in DPW (from
up to down: 100,150,250 ms), for the same Tt (50 ms)

Figure 14: Correction for the same Tt (50 ms) using flextune at 40
cents for ATA and Tc at 200 ms for DPW and the corresponding
MSE.
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Where N represents the number of samples, nj is equal to 1,
cause there always a comparison of one curve with the reference, j
represents the curve to compare (ATA or DPW), yij are the values
of the original curve j, and ŷij are the values of the comparison
curve j.

Our example is helpful to highlight three types of pitch mod-
ification. The first part in 0 < t < 5 where signal is like a
staircase between the notes 48,49 and 50. The second part in
5 < t < 0represents the correction of a poorly intonated frequency
modulation, similar to the human vibrato. And the third part is a
soft path of a fo trajectory that should not be corrected, the free
path represents the case where the singer do not have the intention
to play any specific note. Each part must be compared to the desir-
able pitch curve, which is different for each region. For example
for the staircase part, the desired signal is a staircase. For the vi-
bratory part the ideal pitch would be the same vibration but well
centered. And for the third part, the original signal would be the
ideal pitch, rather than a correction we want to preserve it. These
assumptions are illustrated on figure 6, the calculation of MSE is
done point by point. The mean over each region is reported in Ta-
ble 1. As it is shown and mentioned before, DPW perform better
correction of vibratos while preserving the free path of the note,
and ATA is better for the staircase part while losing more of the
vibrato and free path parts.

Table 1: MSE and MAE between input and corrected f0 for the
different regions

MSE MAE
Region DPW ATA DPW ATA

1 0.0146 0.0146 0.0747 0.0914
2 0.0415 0.0642 0.1304 0.2103
3 0.0539 0.0280 0.2015 0.1463

Please note that all the comparison are focused on the pitch
correction curves. For DPW we use the pitch correction method
that is different than the full algorithm audio. The implementation
of the vocoder, described in section 4, is a complex process and
the vocoder we have use in making the audio DPW tracks is not
as advanced as the vocoder of ATA. As a result, some impreci-
sion may be present in the generated f0 paths for the DPW audio
examples. Despite these limitations, it is worth highlighting the
valuable insights gained from this comparison, which shed light
on the respective strengths and weaknesses of each method.

4. IMPLEMENTATION OF AN OFF-LINE AUDIO PITCH
CORRECTION

This section talks about the off-line implementation of DPW. DPW
works in an analogous way to Cantor Digitalis. However, instead
of an incoming f0 given by a table, we use an f0 value obtained
from a pitch tracker on a pre-recorded vocal audio track. The
general structure for a autotune system is conformed by: a pitch
tracker, a pitch correction algorithm, and a pitch warping algo-
rithm (vocoder). DPW can follow a similar approach using a pitch
tracker to acquire f0.

4.1. Development of the off-line retuner

We developed a methodology for off-line vocal retuning using
the DPW method; this process requires obtaining F0 data and a

Figure 15: Configuration of the offline retuner

transparent vocoder as shown in 15. For pitch tracking, we uti-
lized Praat8 (software to analyze audio prosody), the To PitchTier
method allows us to obtain F0 curves for the original audios within
a Praat file sampled at Praat time intervals. We did a Python code
(with package wave) to extract the file’s relevant data and to cre-
ate arrays for time and f0 information; the arrays were re-sampled
at the original audio files sampling rate. The pathlib package was
employed to process multiple sound library files simultaneously,
resulting in a library of the original audios and the f0 files. The
Max/MSP environment was used to process the f0 information (on
Semi tones and Hz) and write retuned audio files using the different
vocoders (retune⇠, freqshift⇠, pitchshift⇠, supervp⇠, etc). Our
goal was to identify the most transparent vocoder that generated
a voice signal closest to the input F0, using the original f0 data,
the retune⇠ object was selected as the most transparent modifi-
cation for the entire library; this ensured that the vocoder avoided
introducing sound artifacts that could affect the perception of qual-
ity and retuning. However, the overall quality of the presented
vocoder, retune⇠, is not as precise and good as the ATA vocoder.
Therefore, the resulting audio tracks using retune⇠ may not be as
good as those using the ATA vocoder. Therefore, we dispose of an
alternative option, with an wrapper of the World [16]vocoder, pro-
vided by the research engineers of Lutherie-Acoustique-Musique
Group, the audio obtained with World is done through a non-real-
time transposition through python. The resulting audio has a bet-
ter quality than the MAX implementation. The sound library for
DPW correction using both vocoders can listen on the soundcloud
playlist noted in section 3.2.

5. CONCLUSIONS

Through our research, we studied DPW algorithm for audio pitch
correction. It is possible to control and trigger a pitch correction
thanks to three degrees of freedom that preserves low-amplitude
vibratos and ornaments in the neighborhood of the target note. We
have also shown how the pitch correction methods are composed
of two stages (triggering and warping), and how the modification
of the control parameters can lead to equivalent configurations for
different systems. We have identified a scenario where ATA and
DPW exhibit similarity: extreme correction. Moreover, we have
identified three types of correction: staircases, vibratos, and free
paths, and have illustrated that DPW performs better for vibratos
and free paths, while also being adequate for staircase correction.
DPW also exhibits less trade-off between its parameters compared
to ATA.

In addition, we have developed an audio application that in-
cludes the DPW method. Compared to ATA, its control parameters
allow for a smooth pitch trajectory transition towards the nearest

8https://www.fon.hum.uva.nl/praat/
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notes on a defined scale, minimizing distortion of melodic orna-
ments between the notes. However, it is important to note that
the vocoder used in our application (retune⇠) may not provide the
same level of quality, precision and accuracy as the ATA vocoder.

We plan to undertake a comprehensive perceptual evaluation
of the two systems in a formal setting. This evaluation aims to
assess the perceptual salience of the pitch effects introduced by
the DPW method, as well as their potential musical relevance.
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Appendix E

Paper: Comparing vocoders for
automatic vocal tuning

Daniel Hernan Molina-Villota, Christophe d’Alessandro. Comparing vocoders
for automatic vocal tuning. Proc. of 16th International Symposium on Com-
puter Music Multidisciplinary Research, Nov 2023, Tokyo (JP), Japan. pp.756-
759, ff10.5281/zenodo.10115215ff. hal-04283705f

A demo of the subjective test was prepared for this presentation using the
following website:

http://chorus-digitalis.lam.jussieu.fr/vocoder-comparison-cmmr.html

A poster is also included after the article.
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Comparing vocoders for automatic vocal tuning

D. H. Molina Villota1 and C. D’Alessandro1 ?

Institut Jean Le Rond d’Alembert
Equipe Lutheries-Acoustique-Musique

Sorbonne Université - Centre National de la Recherche Scientifique
Paris, France

daniel.molina villota@sorbonne-universite.fr

Abstract. We present a compendium of sounds and analyses that support a com-
prehensive approach to the musical use of the vocoder in automatic vocal tuning
correction. Vocoder design has primarily focused on refining the vocoder as a
realistic vocal transformer. However, its application within modern music em-
phasizes its unique sonic identity, adding distinctive coloration to the performer’s
voice. In this demo, we propose a benchmark that encompasses the vocoder’s
key elements. The vocoder is considered and analyzed as an audio effect playing
an important role in vocal composition, in an approach similar to the study of
musical instruments.

Keywords: Vocoder Benchmark Voice Transformation

1 Introduction

The term “vocoder” [1] has two meanings: it can either refer to (i) a software device for
transparent voice coding, transmission and natural transformation, or to (ii) a musical
device for cross-synthesis and pitch flattening. In this paper, we address the first defini-
tion, keeping in mind that this technology may also be used in musical applications, in
particular for auto-tuning.

The aim of this work is to establish a parametric benchmark that will facilitate
technical discussion of the vocoder, particularly in the case of automatic vocal tuning
and audio distortion. In establishing such a benchmark, one should be wary of judging
vocoders based on the same criteria as natural voice, whose sound description is ex-
tremely challenging [3]. In this demo, we present an audio and graphics repository that
supports our benchmark, which can help define the vocoder identity.

2 The Benchmark

Currently, there are no studies that merge musicological and technical approaches to
describe the vocoder as a vocal coloring instrument. Acoustically, the vocoder can be
? This Research is funded by National Research Agency: Analysis and Transformation of

Singing Style ANR19CE380001 & GEsture and PEdagogy of inTOnation ANR19CE280018
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seen as just one more of the many parts that compose the vocal apparatus. The vocoder
has its own characteristics and identity which are inherent to its technique. We propose
a benchmark that precisely frames the unique characteristics of the vocoder as a vocal
coloring instrument. The modern music repertoire evidences two main uses: the distor-
tion due to the technique itself (re-synthesizing with the original F0) and the re-pitching
technique (like Autotune).

Methodology: We started with a sample sound which was passed through the Antares
autotune software. We framed the two main use cases (presets): one with extreme cor-
rection that merely quantizes pitch, and another “transparent” preset that modifies nei-
ther pitch nor any other characteristic. The resulting audio files were analyzed with
Praat and shaped with Python, generating an f0.wav file as shown in Figure 1. This
file, along with the original sound file, was then processed through various vocoders to
obtain the sounds with extreme correction and the desired transparent modification.
The samples used come from previous studies at our lab. They can be heard in an online
library along with the vocoded tracks(https://on.soundcloud.com/1d7mx).

We have used the following vocoders: Circe is based on deep learning [4]. The
encoder generates a latent code for selected features, and the decoder transforms it back
for a given f0 using a bottleneck technique [5]. Retune [7] uses frequency and time
domain methods such as the Reduced Heisenberg Uncertainty Transform and the Cross-
Frequency Phase Coupling . It is used in ZTX, MAX, Digital Performer, and MOTU.
Autotune Antares (Abbreviated as ATA) [6] serves as an intonation corrector. It is the
most commonly used vocoder in contemporary music. World [8] is a vocoder based on
a custom spectral representation that generates high-quality audio and fast processing .
The benchmark descriptors proposal is summarized in table .

2.1 Descriptors of the benchmark

In this section, we summarize some examples of the benchmark. First, we can identify
some descriptors independently of the preset used (transparency or extreme retuning).
Latency is the first appreciable descriptor: retune has the largest latency and ATA the
smallest latency. In addition, vocoding involves changes in spectrum, formants and f0-
spreading. For those, the transparent preset allows to test the technique alone, avoiding
the f0-jumps collateral effect. If the spectrum and signal shape remain unchanged, the
vocoder can be considered “distortion-free”; ATA and World exhibit this character-
istic. Regarding formants, World tends to deepen them and Circe/retune to distort
them. Although Circe is known for performing constant transposition well: it generates
a tremolo aligned to vibrato when using the transparent preset, we also include this
effect as descriptor. Concerning harmony, vocoders can present increasing harmonic
differences (World) or residual noise (Retune); we include these changes as descrip-
tors as well. As discussed later, they also appear with the extreme retuning preset.

The extreme retuning preset also involves latency, changes in signal shape, spectrum
and formants. ATA and World show good preservation of the signal shape despite the
pitch jumps. The extreme retuning preset causes discrete pitch steps; the transitory parts
generate spectral changes which manifest as vertical lines on the spectrogram. Those
are related to local f0-spreading (or f0-loss), which deteriorates pitch perception and
vocoder realism on a global scale. On the other hand, f0-spreading adds a particular
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Fig. 1. Flow diagram for the methodology for vocoding with two presets: transparent and extreme
retuning (f0 discrete curve).

Fig. 2. Green block (Signal Shape): Changes are observed for 2 vocoders. Autotune extreme
correction case shows minimal changes while Circe transparent case exhibits significant shape
variations. Yellow block (Formants): World shows notable deepening in formant variation and
CIRCE exhibits substantial formant alterations. Blue block: (spectral slices): f0-spreading at a
given time for original audio and ATA extreme retuning. Black block (spectral changes): In the
CIRCE re-synthesis case, upper harmonics appear spread (shown in red), while lower harmonic
content seems more prominent in relation to noise (shown in sky blue). In the World retuning
case, vertical lines (purple) correspond spectral content spreading at each f0-steps. The audio
sample used for all the examples is “real3maleintervals.wav”.

Fig. 3. F0-Path for extreme retuning using (left to right): Autotune, CIRCE, Retune and World.
Autotune and World reach exact pitch values more accurately than the others. Retune presents a
bigger latency than the other ones.
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color due the transient (inherent to the technique) and it contributes to the unique tim-
bre of each vocoder. Each vocoding technique affects harmonics and timbre differently,
giving rise to the harmonic coloration and amplification descriptors. Circe and Re-
tune are visible examples that alter the harmonic content. Similarly, we observe the
inharmonic coloration descriptor, which involves residual noise in the low and high-
frequency regions of the spectrum. It is notably present in the retune extreme retuning
case. Inharmonic coloration affects the presence of noise notably around silences. A
summary of the parameters can be seen in Figure 2 and Table 1.

Table 1. Benchmark
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3 Discusion

Vocoders can introduce changes in timbre properties, like coloration (filter-like action)
or discrete pitch variation, while preserving articulation and prosodic content. Our demo
provides an audio and visual comparison of the auditory changes introduced by the use
of various vocoders. This comparison has been carried out in a systematic way, yielding
the benchmark summarized in table 1. Such a benchmark could serve as basis to develop
a shared language for technicians and musicians to describe a vocoder’s identity.
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Daniel Molina Villota, Christophe d’Alessandro

Comparing vocoders for automatic vocal tuning  

We present a compendium of sounds and analyses that support a comprehensive approach to the 
musical use of the vocoder in automatic vocal tuning correction. Vocoder design has primarily focused on 
refining the vocoder as a realistic vocal transformer. However, its application within modern music 
emphasizes its unique sonic identity, adding distinctive coloration to the performer's voice. In this demo, 
we propose a benchmark that encompasses the vocoder's key elements. There are 4 vocoders studied 
here: Autotune, Circe, Retune and World. 

This is a research funded by ANR GEPETO, ANR ARS.
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Appendix F

Paper: A Singing Toolkit:
Gestural Control of Voice
Synthesis

Daniel Hernan Molina-Villota, Christophe d’Alessandro, Grégoire Locqueville,
Thomas Lucas. A Singing Toolkit: Gestural Control of Voice Synthesis, Voice
Samples and Live Voice. Proc. of 16th International Symposium on Computer
Music Multidisciplinary Research, Nov 2023, Tokyo (JP), Japan. pp.704-707,
ff10.5281/zenodo.10115215ff. ffhal-04283703f

A demo was prepared with the included devices, a prerecorded performance
was shown in a video. The corresponding video file is included in the video
library.
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A Singing Toolkit: Gestural Control of Voice Synthesis,
Voice Samples and Live Voice.

D. H. Molina Villota, C. D’Alessandro, G. Locqueville, and T. Lucas ?

Institut Jean Le Rond d’Alembert
Equipe Lutheries-Acoustique-Musique

Sorbonne Université - Centre National de la Recherche Scientifique
Paris, France

daniel.molina villota@sorbonne-universite.fr

Abstract. The Singing Toolkit demo presents three approaches to real-time ges-
tural control of voice : control of vocal synthesis using the Cantor Digitalis instru-
ments; syllabic re-sequencing and modification of pre-recorded vocal tracks with
the Voks instrument; control of real-time vocal performances, using DAFx and
inertial devices. These three approaches exemplify the potential of gesture-based
control to enhance vocal performances, expand the creative possibilities in vocal
music production, and open up new avenues for expressive control and artistic
exploration.

Keywords: Gestural Control of Voice, IMU, Theremin, Voks, Chironomic, Ges-
ture, Cantor Digitalis

1 Introduction

The Singing Toolkit demonstrates our recent work in three directions for real-time ges-
ture control and modification of voice signals. The first instrument, Cantor Digitalis, is
a formant synthesizer using bimanual (chironomic) gestures for melodic and forman-
tic control with the help of graphic tablet. The second instrument, Voks, allows for
syllabic resequencing using tapping gestures and chironomic control of intonation and
voice quality. The third approach is real-time voice transformation through gesture-
controlled vocal effects using the IMU RiOT-Bitalino inertial measurement units (an
Ircam and Bitalino joint project).

? This Research is funded by ANR National Research Agency: Analysis and Transformation of
Singing Style ANR-19-CE38-0001 & Gepeto: GEsture and PEdagogy of inTOnation ANR-
19-CE28-0018

This work is licensed under a Creative Commons Attribution 4.0 International Li-
cense (CC BY 4.0).
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2 Cantor Digitalis : Chironomic control of synthesized voice

Cantor Digitalis 1 is a vowel and semi-vowel singing instrument controlled by chi-
ronomic gestures [2]. It translates manual gestures into formant synthesis parameters
based on the linear model speech production [1], allowing musicians to control the
pitch, vocal effort, and vowel of a synthetic voice in real time. The primary gesture
interface used for controlling Cantor Digitalis is the Wacom graphic tablet. Writing or
drawing gestures by the preferred hand are controlling pitch and vocal effort, while the
other hand control the vowel space using a 2D (2 formants) surface, as shown in Figure
1a.

The pen’s low latency (5 ms) makes sound produced by Cantor Digitalis seem to
exhibit a direct causality similar to that of acoustic instruments. A visual cue is also
printed on the tablet to enhance usability. The graphic tablet has proven effective for
controlling voice intonation and singing with Cantor Digitalis. Cantor Digitalis can
also be controlled with other continuous interfaces, e.g. the Roli Seaboard RISE Multi-
dimensional Polyphonic Expression interface (MPE) [6]. In this case, pitch is controlled
using a chromatic keyboard, and vocal effort is controlled by pressure on the touch sur-
face. MPE allows for continuous transitions between notes and pressure levels. Cantor
Digitalis [7] [3] won the first prize in the Margaret Guthman Musical Instrument Com-
petition (2015). Cantor Digitalis is limited to vowels or vocalic sounds, to the exclusion
of most consonants.

3 Voks: Syllabic sequencing of a prerecorded voice

The Voks singing instrument [4] makes it possible to control any voice utterance, in-
cluding consonants. As it appeared impossible to control each individual articulatory
parameter in real time, the syllable is chosen as rhythmic control unit. In practice, the
user first loads a sample recording of the desired text being uttered, together with a
syllabic annotation of said recording. The loaded sample needs not have any particu-
lar rhythm or melody. Then, during the performance, the system resequences the loaded
sample, with a rhythm, pitch and vocal quality controlled in real time by the performer’s
manual gestures.

Syllabic sequencing: Syllabic rhythm control is performed using a cyclic tapping
gesture. Several interfaces can capture such gesture data, including buttons, keys, pads,
and pressure sensors. Upon tapping/pressing or releasing one’s finger on the interface,
a one-time signal is sent to the system, triggering advancement of a virtual playhead to
the next frame timestamp.

Other gestures: In addition to rhythm sequencing, other parameters are to be con-
trolled by the performer: pitch, vocal effort, vocal tract stretching factor. Some of those
parameters are common to Cantor Digitalis, although they are not implemented in the
same way — in Cantor, synthesis parameters are controlled directly, whereas in Voks,
a prerecorded sample is modified in real time based on control values.

Following Cantor Digitalis, the graphic tablet and MPE interfaces are used to con-
trol pitch and vocal effort in Voks. In addition, the theremin has been used as a control

1 https://github.com/CantorDigitalis
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(a) A Wacom graphic tablet. (b) Theremin and pressure sensor

Fig. 1: Two interfaces that can be used for gestural control of vocal synthesis. (a) The
Wacom tablet has been used with Cantor Digitalis (pen and finger) and Voks (pen only)
(b) The theremin and pressure sensor have been used to control Voks.

interface, with one antenna controlling pitch and the other controlling vocal effort, and
an added pressure sensor placed in between the thumb and index of the performer for
rhythm control. T-Voks (i.e. Voks played by a Theremin and a rhythm control button)
won second place in the 2022 Guthman musical instrument competition.

4 Gesture Control of Digital Audio Effects with IMU

The third tool in the Singing Workshop is interactive real-time gestural control of digital
audio effects (DAFx) for voice. The the BITalino R-IoT (abbreviated as R-IoT)[5] is
chosen because of its lightness and powerfullness. It is a 9-axis digital IMU sensor
(LSM9DS1) that provides absolute orientation in space with low latency over the OSC
protocol. The data flow follows the structure indicated in Figure 2. First, R-IoT data is
carried to the computer by a router through wifi. Then, data from R-IoT (orientation,
quaternions, and acceleration) is received in MAX using the dedicated Bitalino object
and Mubu package (by IRCAM). For each DAFx, a selection of parameters, mapping,
limit conditions, and appropriate scaling must be made. The data is then sent from
Max to the TouchOSC object in Ableton Live using the OSC protocol. There, another
mapping is performed to assign those OSC values to different controls in the effects
used.

Now we will describe briefly some effects that have been implemented. We have
mapped hand rotation to panning: visually, the performer can make an opening ges-
ture, which allows capturing an appropriate range of orientation values for the axis of
rotation. Body limitations help define the scaling limits in MAX so that the movement
adequately covers the maximum, minimum, and center of stereo panning. Figure 3 a) il-
lustrates this gesture simply. The second effect is an overdrive effect. Within the specific
musical piece for which it has been developed, this effect involves distortion applied to
all vocal tracks, which gradually increases towards the end of the song. The backward
movement of the hand, as shown in Figure 3 b), relates to the incremental distortion by
tilting the arm. Finally, another performer triggers a delay effect momentarily using the
same gesture. In this case, the sudden movement launches the delay effect based on the
speed of the motion, making the control of the delay much more efficient than with a
traditional knob. This movement can be seen in Figure 3 c).

Proc. of the 16th International Symposium on CMMR, Tokyo, Japan, Nov. 13-17, 2023

706



Fig. 2: Flow diagram for Interactive Vocal DAFx with R-devices using MAX and Able-
ton LIVE.

Fig. 3: Schema for the configuration of a) Panning, b)distorsion, c) delay using the R-
IoT devices.

5 The Demo

The Singing Workshop the demo consists of a room with the three devices set up, each
with its corresponding interfaces and computers. Additionally, there will a poster and
three assessors who will explain how the three devices work using musical pieces as
examples, within there are also included some tracks of the Chorus Digitalis project,
including Cantor Digitalis, Voks and real voices.
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ratoire de Mécanique et d’Acoustique, Apr 2022, Marseille, France. ffhal03848052f

271



16ème Congrès Français d’Acoustique 11-15 Avril 2022, Marseille

This study presents the application of Pitch Warping and Tuning (PWT) method to correct pitch from audio signals
on real time. PWT use the dynamic pitch warping (DPW) method over fo of an incoming audio signal. Through
a pitch velocity condition, the correction is released and adapted to the constantly changing pitch values, in that
way the curve of pitch is continuously adapted to the entry. At the end fo a soft curve on real time is generated
and the audio from incoming signal is forced to follow this curve. Several tests have been done using sinusoidal
signals and singing voice audio on real time, these results show a significant difference with the traditional pitch
correction systems. Our proposal shows a soft variation of pitch that is released over a pitch’s velocity condition
with an adaptive continuous modification

1 Introduction
Nous menons un projet d’étude systématique des effets

audionumériques appliqués au style vocal. Dans ce cadre,
il nous a semblé important de travailler sur les effets
d’intonation. Le propos est de rendre ces effets dynamiques,
sous le contrôle du chanteur, pour qu’il puisse changer
au cours de la performance les paramètres des effets. De
façon analogue au guitariste électrique, qui utilise depuis
longtemps des effets audionumériques dynamiques, le
chanteur pourrait ainsi changer le son de sa voix ou son
style mélodique et s’emparer ainsi de nouveaux moyens
d’expression.

La correction de justesse occupe une place de choix
parmi les effets audio-numériques appliqués à la voix.
Le succès considérable d’AutoTune de la société Antares
(abrégée ATA dans cet article) ne se dément pas depuis plus
de 25 ans. De façon inattendue, les artefacts sonores générés
par des changements brutaux d’intonation ont très vite
attiré l’attention des musiciens de façon positive. En effet, la
qualité électronique particulière obtenue a été appréciée dans
les musiques populaires, au point de devenir une marque
de style musical, et d’être utilisée de façon quasiment
systématique. L’effet change en effet la dynamique et
l’identité de l’instrument vocal, permettant des transitions de
notes beaucoup plus rapides que celles de la voix naturelle.
Ces transitions vocales rapides donne un peu à la voix le
caractère d’un instrument trous de jeu comme la flûte ou
le saxophone, voire d’un instrument à clavier. Comme la
rapidité des transitions viole les lois de la physique de la
production vocale, le son prend une coloration électronique.
ATA modifie l’intonation à l’aide d’un vocodeur, sans
prendre en compte les variations naturelles du conduit vocal.
Ces transitions rapides s’accompagnent alors de transitoires
spectraux, qui sont devenus une signature acoustique de
la méthode. Ainsi, ATA conçue au départ comme une
méthode transparente du point de vue sonore, a acquis par
ses artefacts le statut d’effet audionumérique bien identifié.

Dans cet article une nouvelle méthode pour la correction
d’intonation vocale, Dynamic Pitch Warping, ou déformation
mélodique dynamique (abrégée DPW dans cet article), qui
peut fonctionner en temps-réel, est proposée. Cette méthode
est l’adaptation à la voix d’une méthode de correction
de trajectoire chironomique pour la synthèse vocale
performative [3]. Après la présentation de la méthode DPW,
les questions d’analyse de la fréquence de voisement et de
modification par un vocodeur de l’intonation sont étudiées.
Une évaluation comparative avec Autotune est ensuite

proposée. Les perspectives ouvertes pour le développement
d’effets audionumériques vocaux dynamiques et contrôlés
par le chanteurs sont évoquées.

2 Méthodes de correction mélodique

2.1 Correction mélodique ATA
ATA est une méthode audionumérique de correction

mélodique, destinée au début, aux traitements de studio.
Cette méthode a été développée par H. Hildebrand et
brevetée [10] par Antares Audio Technologies en 1997 sous
le nom d’Autotune.

ATA est aujourd’hui utilisé de façon massive dans
l’industrie musicale. Lors de son apparition le principal
défaut d’ATA a été la transition prononcée entre les
notes. Mais ce défaut a été aussi la raison de son succès.
L’utilisation comme correction transparente, en temps différé
(studio), est presque systématique dans les productions
commerciales [11]. L’exploitation des distorsions d’ATA a
trouvé un "niche" dans des genres comme le rap, l’hyperpop
et la musique électronique. ATA possède au départ une seul
paramètre de contrôle : retune speed qui défini le temps
de transition jusqu’à la note correcte visée. Le logiciel
actuellement commercialisé possède un second paramètre
de contrôle, flex tune, qui est l’intervalle en Cents MIDI dont
la fréquence fondamentale peut s’écarter sans déclencher la
correction. En plus de ces deux paramètres principaux, le
logiciel offre plusieurs paramètres pour changer la qualité
sonore. On peut par exemple choisir différentes échelles
musicales ou changer la tonalité (mineur, majeur), conserver
les variations subtiles de hauteur dans les notes longues
et stables avec humanize, désactiver la modification des
formants (formants) et modifier le modèle du conduit vocal,
modifier la fréquence de référence pour l’ échelle musical
(transpose,detune), et ajouter du vibrato (réglable) aux notes
tenues (vibrato). Pour l’analyse de fréquence fondamentale,
plusieurs type de voix sont proposées, ce qui facilite les
calculs en spécifiant l’ambitus moyen et en évitant ainsi les
erreurs d’octave.

ATA n’est pas le seul correcteur de hauteur. D’autres
dispositifs pour la modification de hauteur, avec des
fonctionnalités similaires sont par exemple des dispositifs
numériques comme metaTune, WavesTune et Ztx, et
des dispositifs électroniques comme Model BOSS Vocal
Performer, Boss VE-20, TC Helicon, Tascam TA-1VP et
Roland VT-4. Mais les méthodes de correction de hauteur
ne s’appliquent pas qu’aux effets vocaux. On trouve des

1



16ème Congrès Français d’Acoustique 11-15 Avril 2022, Marseille

méthodes de corrections également dans les instruments
musicaux numériques. Dans ce cas, la correction améliore la
précision de la capture du geste et la facilité de jeu musical
pour les utilisateurs. Parmi ces instruments musicaux on
peut citer [15] Continuum Fingerboard2 [16], Seaboard3
[17], Garageband, TouchKeys et Cantor Digitalis. Le Cantor
Digitalis [2] comprend une méthode de correction de hauteur
du tracé obtenue par interface tactile. Cette méthode [3] est
basée sur une fonction de déformation dynamique dénommé
Dynamic Pitch Warping.

Dans cet article la méthode DPW est mise en œuvre non
pour corriger une trajectoire graphique, mais la courbe de
hauteur d’un signal vocal d’entrée.

2.2 Méthode de correction DWP
La fonction proposé par DPW est nommé fonction

élastique [4]. Cette méthode possède trois degrés de liberté,
l’intervalle de détection, le temps critique, et le temps de
transition. L’intervalle de détection et temps critiques se
combinent pour calculer la condition indirecte de vitesse
mélodique, qui détermine l’activation de la correction.
La vitesse mélodique permet de définir un seuil de temps
critique de détection dans un intervalle de détection. Cela
permet d’inférer si la note est assez stable,intentionnelle,
et donc mérite d’être corrigée. Si la variation mélodique
est trop rapide, la note n’est pas stable et il ne faut pas
déclencher de correction. L’avantage des trois degrés de
liberté est de permettre la préservation des variations
mélodiques expressives, comme le vibrato, en ne corrigeant
pas systématiquement la hauteur.

Dans la version initiale de DPW, les problèmes
pratiques de détection et de modification de la fréquence
fondamentale ne se posent pas : l’entrée donne exactement
la fréquence fondamentale mesurée sur le capteur, et ensuite
le synthétiseur vocal la calcule directement.

3 Système de correction mélodique

3.1 Architecture
Le système de correction mélodique utilisant la fonction

DPW travaille de la façon suivante. L’interprète chante ;
on capture le signal sonore et on calcule la fréquence
fondamentale. Si la hauteur reste stable dedans un intervalle
dans le voisinage d’une note (intervalle de détection, I)
pendant un seuil temporel (temps critique, tc), le système
déclenche la correction. Cette condition peut être traduite
comme une condition de vitesse, cela signifie que les
changements rapides de notes tels que les trajectoires
naturelles de la voix ne vont pas être corrigés et que
seulement les notes stables vont être corrigées. La correction
est faite de manière douce pendant une période de transition
et de façon adaptative, ainsi les notes suivantes seront aussi
accordées grâce à la fonction élastique.

La figure 1 montre la fonction de notes étendues utilisée
dans certaines méthodes de correction et la fonction élastique
développée par Perrotin et D’Alessandro. Le zéro représente

FIGURE 1 – Méthode pour la correction de hauteur [3]

FIGURE 2 – Schéma du DPW

le point de l’échelle musicale de référence. � = 1 représente
une différence d’un degré (un demi-ton le plus souvent)
avec la note suivante et précédente. On utilise les conditions
limites y(±�) = ±�. et le fonction élastique suit :

g(y) = Ae�(y+B)+C (1)

Pour calculer la solution, C est remplacée dans g(y) et
on efface ainsi la dépendance en B. Avec y(±�) = ±� on
obtienne :

yE(x) =

8
><
>:

1
�

⇥
log

⇥
(e2� � 1)(x

� + 1) 1
2

+1]
⇤
� �, if � 6= 0

x, if � = 0
(2)

x est la hauteur d’entrée et yE est la hauteur de sortie. Il
ne doit pas y avoir correction pour les valeurs entières, donc
yE(xo, �o) = 0, et on peut obtenir la courbure :

� =
1

�
log

�� � xo

� + xo

�
(3)

Pour fzero donné, la valeur de � est déduite a partir
de. La sortie est accordée seulement si la hauteur d’entrée
est stable. Quand l’entrée prend les valeurs xinteger ± 1,
on a y(±�) = ±�. Quand la correction est désactivée, �
revient graduellement à 0, et peut s’activer encore dès que la
condition de vitesse est remplie de nouveau. Un schéma du
fonctionnement est donné figure 2.

2



16ème Congrès Français d’Acoustique 11-15 Avril 2022, Marseille

3.2 Adaptation a la voix
3.2.1 Analyse de la fréquence fondamentale d’entrée

Le premier pas pour adapter la méthode à la voix, est
d’obtenir la courbe fzero d’entrée. Pour cela les méthodes
suivantes ont été testées : yin [14], vb.pitch (V. Bohm),
sigmund and fzero [8]. Les meilleurs résultats sont
obtenus avec l’objet fzero, avec la configuration suivante :
@onsetamp 0.0001 @onsetpitch 0.001, les seuils de
détection d’amplitude et de hauteur. La sortie (fzero) est
ensuite dirigée vers le patch de correction DPW qu’on a
crée. Les paramètres contrôlables dan ce patch sont les
suivants :

• Fzero,
• Temps de detection tc,
• Temps de transition
• Liste de notes activées/désactivées

Une fois obtenue la courbe de fzero, elles est passée
dans le filtre des notes activées. Dans le patch assigné a
ce filtre, on localise fzero dans une octave. Dans l’octave
on connaît les notes activées ou désactivées. Si fzero est
dans un intervalle activé, il passe a la sortie du filtre. Sinon
on calcule la note activée la plus proche et on obtient le
valeur extrême de l’intervalle en restant dans le voisinage
d’une note activée. Quand la fréquence évolue entre régions
activées en passant par des régions désactivées, on utilise
les valeurs extrêmes des régions désactivées, cela permet
d’utiliser uniquement les régions activées et de contrôler
la vitesse de transition entre les zones interdites. Ce temps
de transition entre notes désactivées peut être considéré
comme un 4ème degré de liberté. L’utilisation d’un objet
gate permet de bloquer le passage de fzero quand on est sur
les zones interdites. Dans les régions activées fzero passe
directement à la sortie.

Le filtre de notes activées et désactivées est important car
il permet de contrôler l’échelle mélodique de l’interprète.
La différence avec ATA provient des degrés de liberté.
ATA propose seulement le contrôle du temps de transition,
identique pour les intervalles activés et désactivés, alors
qu’avec DPW on a le temps de détection, le temps de
transition, les intervalles de détection et le temps de
transition entre notes interdites.

3.2.2 Correction de l’intonation par DPW

La condition pour déclencher la correction est basée
intrinsèquement sur l’idée de stabilité. Seulement les notes
d’une durée supérieure à tc et comprises dans un intervalle
I déclencheront la correction de l’algorithme. Toutes les
autres entrées sont interprétées comme des trajectoires
de hauteur naturelle et ne seront pas corrigées. Comment
noté précédemment, la fonction élastique fait que la sortie
et l’entrée convergent dans les extrêmes vers les valeurs
entières. Si aucune correction n’est nécessaire (la condition
de déclenchement n’est pas remplie), alors l’entrée passe
directement à la sortie.

Pour la mise en ouvre de la méthode DPW, nous avons
besoin des paramètres des 3 degrés de liberté plus le temps
de transition pour les notes désactivées. Avec l’intervalle de
détection, nous divisons l’échelle musicale en micro-tons de
0,1 demi-tons (ST). Cela signifie que l’intervalle (�,��) est
découpé en tranches de 0.1 ST. Si la hauteur d’entrée reste
dans l’une des sections de micro-tons pendant le temps de
détection, la correction est déclenchée pendant le temps de
transition. Le résultat est une courbe de hauteur déformée où
les notes suffisamment stables sont corrigées. L’autre dégré
de liberté est le temps transition (tt) est comparable a retune
speed. On peut considérer aussi un quatrième degré de liberté
qui es le temps de transition entre notes désactivées.

3.2.3 Resynthèse de l’intonation modifiée

Une fois la courbe mélodique corrigée calculée, il
faut utiliser un vocodeur pour la resynthèse du signal
correspondant. Le premier vocodeur a été breveté par Homer
Dudley aux Bell Labs en 1935 pour reconstruire une voix
à l’aide d’un algorithme d’analyse-synthèse, il avait été
créé pour réduire la bande passante d’un signal vocal v(t)
pour les télécommunications, mais finalement appliqué et
la musique et au bandes son de films [11]. Aujourd’hui de
nombreux types de vocodeurs existent : channel vocoder qui
utilise la somme pondéré des filtres passe-bande, le LPC qui
utilise un filtre IIR, et le cepstrum qui utilise une convolution
circulaire d’un filtre FIR. [13]

FIGURE 3 – Courbe intonative avec vibrato (noir) et sa
version corrigée avec DPW (bleu).

Les vocodeurs testés pour notre système utilisent les
objets suivants : pitchshift , freqshift , psych , supervp.trans ,
fbinshift, transposer, hilbert, gizmo et retune. Tous sauf
retune reçoivent en entrée la valeur en midicents à
transposer. On ne peut généralement pas accéder à la
détection de seuil de cette entrée, et les objets ne sont
pas assez réactifs. Avec supervp et gizmo, la réponse est
meilleure mais n’est pas assez précise pour notre objectif.
Le meilleur résultat a été obtenu avec retune un objet Max
MSP basé sur zynaptiq ztx (Precision Time Stretching and
Pitch Shifting) [12] une méthode brevetée, comme ATA.
L’objet retune est un vocodeur qui sert de base pour les
vocodeurs natifs d’Ableton tels que mono vocoder, poly
vocoder et autotuna. Cet objet peut recevoir une entrée
(signal) pour forcer le pas de sortie souhaité. Nous utilisons
cette possibilité pour déformer la hauteur de sortie avec
notre correction. Actuellement notre système ne dispose pas
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des fonctions supplémentaire d’ATA telles que la sélection
du type de voix, vibrato et humanisation.

4 Exemples de corrections et évaluation
comparative

L’évaluation de la méthode est conduite en deux
temps. Dans une premier temps, il s’agit d’analyser le
comportement de la méthode, et ainsi de vérifier si elle
répond à nos attentes. Dans un deuxième temps, la nouvelle
méthodes est comparée à ATA dans divers cas de correction,
afin de mettre en évidence les différences entre les deux
méthodes et les avantages possibles de la nouvelle méthode.

Pour la phase d’évaluation initiale, les sons de référence
sont généré par un synthétiseur vocal performatif, le Cantor
Digitalis [2]. Ce système permet un contrôle chironomique
très précis de l’intonation, et donc d’obtenir des sons vocaux
de synthèse avec davantage de précision et de justesse que
la voix naturelle [1]. L’objectif est de vérifier la réactivité
de la méthode et son comportement pour des situation
de transitions de notes et d’ornement. Les cas typique du
vibrato, du glissando et du portamento sont étudiés.

4.1 Vibrato
Le vibrato est un ornement musical courant, qui est

perçu de façon complexe [9]. C’est une modulation de
fréquence (mais aussi d’intensité et de timbre) d’une
amplitude de l’ordre de quelques dizaines de Cents, et avec
des fréquences inférieures de 4 à 6 Hz environ. Le vibrato
ajoute de l’expression, de l’emphase, de la variété de timbre,
renforce la présence des chanteurs [7]. La figure 3 montre
une correction de hauteur qui préserve le vibrato. Pour un
exemple similaire, dans le cas d’ATA sans les nouvelles
caractéristiques, le vibrato est entièrement supprimé, et la
hauteur corrigée saute d’un demi-ton à l’autre, en fonction
de la vitesse de correction. Ici, le vibrato est assez rapide, et
son apmlitude de l’ordre de 25 Cents en valeur absolue. Avec
le DPW, l’intonation moyenne est correctement modifiée,
mais le vibrato est bien conservé, ce qui est un des buts de la
méthode. Cependant, lorsque l’intonation est trop proche de
la note (demi-ton) supérieure, la correction "accroche" cette
note. Pour préserver le vibrato, il faut donc soigneusement
régler les paramètres de la méthode. L’exploitation musicale
de cette source d’artefact reste à explorer.

4.2 Glissando
Les glissando, même s’il sont rarement employés

musicalement, sont très utiles pour analyser le comportement
des méthode de correction d’intonation. Les glissando sont
réalisés avec le Cantor Digitalis, sur une octave, avec
une pente plus ou moins rapides. L’objectif du test est de
vérifier si le système réagit correctement. la figure 4 montre
les résultats pour différentes réglages des paramètres de
correction et différentes pentes de glissando. Pour l’image
du haut, la pente est de 3 demi-tons/s. La correction est
conforme aux attentes, avec la transformation du glissando

FIGURE 4 – De haut en le bas : Glissando sans vibrato de
C3 a C4 pendant 4000ms. Glissando lent avec vibrato de C3
a C4. Glissando rapide avec vibrato de C3 a C4. Glissando
lent avec vibrato de C3 a C4 avec une correction instantanée

en escalier mélodique, qui suit l’échelle des demi-tons, tout
en préservant par ailleurs les micro-variations mélodiques.
Notre correction apporte donc une certaine variabilité au
son.

Des variation de vélocité du glissando, en présence de
vibrato, sont analysées sur les deux images centrales. Dans
ces exemples, la vitesse de déclenchement de la correction
en fonction de la vitesse de variation mélodique permet de
préserver la pente du glissando, tout en corrigeant le début
et la fin des notes. Il est important de mentionner que la
correction mélodique n’est pas immédiate ici. Le but de ces
deux exemples est de vérifier que le glissando corrigé suit
assez bien la forme initiale, mais avec une correction dans
les notes extrêmes du son.

L’image du bas de la Figure 4 montre l’effet d’une
correction instantanée de hauteur (c’est-à-dire avec un temps
de détection et un temps de détection nuls). Le résultat est
un escalier mélodique, avec des marches quasiment plates
et des contremarches quasiment verticales. Ce résultat est
très similaire à celui attendu avec ATA pour un temps de
transition nul. La partie plate initiale du son est corrigée
vers la note la plus proche, ensuite l’allure du glissando est
conservée, mais en escalier, puis, la partie finale du son est
corrigée. Dans cet exemple, il y a moins de variation de
hauteur à l’intérieur d’une note stable, à cause du temps de
détection utilisé qui est de 0.
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4.3 Portamento
La figure 5 montre l’analyse dans le cas du portamento,

ou transition "portée" entre deux notes.

FIGURE 5 – En haut : DPW (15ms de détection et
3Oms de transition) (bleu) et ATA (45ms)(rouge) pour un
portamento rapide. En bas : DPW (15ms de détection et
3Oms de transition) (bleu) and ATA (45ms)(rouge) pour un
portamento plus lent.

Les résultat sont donnés sur la figure 5. La méthode
donne une bonne correction, meilleure pour le portamento
plus lent. Dans les deux cas la forme générale de la transition
est conservée, et il y a une correction moyenne de hauteur
qui préserve le vibrato pour les notes satbles avant et après
la transition. Les images du bas montrent le même type de
correction avec Autotune.

Nous pouvons observer quelques différences dues à
un meilleur contrôle du grain de correction avec notre
méthode. Pour une correction avec une contante de 45ms
ATA ne corrige presque pas, alors que notre méthode
apporte quelques modifications. Elle est plus rapide dans
la correction qu’ATA. Notre méthode permet un meilleur
contrôle du grain de correction comme on le voit sur la
figure.

La figure 6 montre l’effet des variations de paramètres
dans notre méthode. Un glissando est corrigé selon trois
conditions différentes (temps de détection 7 ms, temps
de transition 15ms, temps de détection 15 ms, temps
de transition 15ms,temps de détection 30 ms, temps de
transition 60ms) en magenta, bleu et marron respectivement,
l’échantillon original est en noir. Comme nous pouvons le
voir (et l’entendre) la modification devient moins audible,
plus douce pour des temps de détection et de transition plus
longs.

L’échelle mélodique de correction peut être spécifiée
à volonté. Dans ce cadre, nous avons fait un test avec une
échelle mélodique chromatique pour laquelle certaines

FIGURE 6 – Correction par DPW avec 3 réglages différents.

FIGURE 7 – Test avec la moitie des notes désactivées

FIGURE 8 – Test avec un son réel corrige avec DPW (bleu)
et Antares (rouge)

notes sont interdites ou désactivées (notes désactivées
= 1, 3, 5, 7, 9, 11 ; notes activées = 0, 2, 4, 6, 8, 10) avec un
temps de détection de 7 ms et un temps de transition de
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15ms. Le résultat est porté sur la partie gauche de la figure 7.
La partie droite montre le résultat d’ATA pour un temps de
21 ms. Cette dernière correction semble de meilleure qualité.

Finalement une chanson est analysée avec notre méthode
et ATA dans la figure 8. La correction est plus claire avec
notre méthode pour une configuration de 45 ms de durée
(15 ms pour le temps de déclenchement et 30 ms pour le
temps de transition). Il faut remarquer que notre méthode
n’est actuellement pass plus rapide qu’ATA, mais ne pose
pas de problèmes de rendu sonore.

5 Discussion
Le premier objectif de cette recherche était l’application

à la voix chantée, et en temps réel d’un nouvel algotithme
de correction de hauteur, qui avait été développé pour la
correction de cibles sur une tablette graphique. Nous avons
ainsi montré que l’algorithme DPW, en lui adjoignant
une détection de fréquence fondamentale en entrée et le
vocodeur ZTX en sortie peut s’appliquer à la voix en temps
réel. Il est ainsi possible d’ajouter des degrés de liberté
pour le contrôle de l’effet. De plus le logiciel est ouvert,
et donne des résultats sonores comparables à ceux d’ATA
pour le temps réel. Les paramètres de contrôle permettent
de ne corriger que les changement de note sur l’échelle et
non les ornements mélodiques entre les notes. Le vocodeur
lui même semble introduire des imprécision, et il sera
nécessaire de travailler encore cet aspect. Ces imprécisions
qui apparaissent visuellement sur les tracés semblent avoir
peu d’effet auditif. Le fait d’avoir des contrôles différents
introduit des artefacts différents, dont l’exploitation musicale
doit être étudiée.

L’utilisation d’un contrôle dynamique de l’effet de
correction est un de nos objectifs. Nous avons démontré que
le système fonctionne de manière robuste. Notons que le
système est ouvert, via MAX MSP. Ainsi la méthode peut
s’appliquer dans divers systèmes ou modules d’effet.

L’utilisation de nouveaux paramètres permet de nouvelles
possibilités pour la création et la performance musicale. Pour
la suite du travail, une évaluation perceptive formelle doit
être menée. L’étude de différents vocodeurs et des artefacts
qui en résultent doit également être conduite. En effet les
variation de timbre résultant des modifications des transitions
naturelles sont de la plus haute importance pour la perception
de l’effet sonore et pour son utilisation artistique.

Remerciements
Cette recherche a bénéficié d’un financement à travers

les projets de l’Agence Nationale de la Recherche ARS :
Analysis and Transformation of Singing Style (ANR-
19-CE38-0001) et Gepeto : GEsture and PEdagogy of
inTOnation (ANR-19-CE28-0018).

Références
[1] C. d’Alessandro, L. Feugere, S. Le Beux, O. Perrotin,

A. Rilliard, Drawing melodies : Evaluation of chironomic
singing synthesis, JASA 135 (6) (2014) 3601–3612.

[2] L. Feugère, C. d’Alessandro, B. Doval, O. Perrotin, Cantor
digitalis : chironomic parametric synthesis of singing,
EURASIP Journal on Audio, Speech, and Music Processing
2017 (1) 2.

[3] O. Perrotin, C. D’Alessandro, Target Acquisition vs
Expressive Motion : Dynamic Pitch Warping for Intonation
Correction, ACM Transactions on Computer Human
Interaction 23, 1-21 (2016).

[4] O. Perrotin, Chanter avec les mains : interfaces chironomiques
pour les instruments de musique numériques Thèse de
doctorat Informatique, U.Paris Saclay, Ch4, 93-123 (2015).

[5] V. Verfaille, M. Wanderley, P. Depalle, Mapping Strategies
for Gesturaland Adaptive Control of Digital Audio Effects,
Journal of New Music Research 35-1, 71-93 (2006).

[6] V. Verfaille, C. Guastavino, C. Traube, An interdisciplinary
approach to audio effect classification, Proceedings 9th
International Conference on DAFx, 106–113 (2006)

[7] L. Regnier, PhD Thesis - Localization, Characterization and
Recognition of Singing Voices, Université Pierre et Marie
Curie - Paris VI, Paris (2012).

[8] M. Zbyszynski, D. Zicarelli, R. Collecchia,
fzero Fundamental estimation for Max 6 International
Computer Music Conference, Perth, Australia (2013).

[9] C. D’Alessandro, M. Castellengo, The pitch of short-duration
vibrato tones, Journal of the Acoustical Society of America,
93(3) 1617-1630(1994)

[10] H. Hildebrand, Autotune Antares Patent, Pitch detection and
intonation correction apparatus and method, Auburn Audio
Technologies, CA, (1998)

[11] C. Vincent, De l’antipop à l’Autotune, La voix chantée, N.
Henrich, Boeck solal Ch 8 123-137(2014)

[12] S. Bernsee, D. Gökdag, ZTX Patent - Frequency transform
extension methods to solve characteristics in the space-time
domain, Zynaptiq Gmbh, (2015)

[13] U. Zôlzer, DAFX : Digital Audio Effects, Wiley, 315 (2002)

[14] A. de Cheveigné, H. YIN, A fundamental frequency estimator
for speech and music, J. Acoust Soc Am, 1917-1930 (2002)

[15] Vincent Goudard, Hugues Genevois et Lionel Feugre : On
the playing of monodic pitch in digital music instruments.
In Anastasia Georgaki et Giorgos Kouroupetroglou, diteurs :
Proceedings of the International Computer Music Conference
(ICMC), pages 1418–1425, Athens, Greece, September 2014.
National and Kapodistrian University of Athens.

[16] Lippold Haken : Position correction for an electronic musical
instrument, novembre 17 2009. US Patent 7,619,156.

[17] Roland Lamb et Andrew N. Robertson : Seabord : a new piano
keyboardrelated interface combining discrete and continuous
control. In Proceedings of the International Conference on
New Interfaces for Musical Expression (NIME), NIME ’11,
pages 503–506, Oslo, Norway, May 30 - June 1 2011.

[18] IRCAM, SuperVP-TRaX, http ://forumnet.ircam.
fr/373.html?L=1.

6



278



Bibliography

[Abe et al., 2008] Abe, T., Nakamura, Y., Kawahara, H., and Shikano, K.
(2008). Analysis-and-manipulation approach to pitch and duration of mu-
sical instrument sounds without distorting timbral characteristics. In Pro-
ceedings of the 11th International Conference on Digital Audio Effects, pages
1–8, Espoo, Finland.

[Apel, 1969] Apel, W. (1969). Harvard Dictionary of Music. Belknap Press of
Harvard University Press, Cambridge, Massachusetts, 2nd edition.

[Ardaillon, 2017] Ardaillon, L. (2017). Synthesis and expressive transforma-
tion of singing voice. PhD thesis, Université Pierre et Marie Curie - Paris
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