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RESUME ETENDU EN FRANCAIS

Etant donnée la nature dynamique du trafic, nous étudions la variante du probleme
de dimensionnement robuste de réseaux qui consiste a déterminer la capacité a réserver
sur chaque lien d’un réseau de telle sorte que chaque demande appartenant a un polytope
donné puisse étre routée. L objectif est soit de minimiser la congestion soit un cofit
linéaire.

Dans le chapitre 2, nous étudierons 1’approximabilité de la variante avec un routage
fractionnaire et dynamique (i.e., le routage peut dépendre du scénario actuel de la de-
mande) dans des graphes non dirigés. En utilisant le théoreme PCP et une réduction
bien choisie, nous prouverons tout d’abord que le probleme de minimisation de la con-
gestion ne peut étre approché en dessous d’aucun facteur constant. Ensuite, en utilisant
la conjecture ETH, nous prouverons une borne inférieure de {2(logn/loglogn) sur
I’approximabilité de ce probleme. Cela implique que le célebre taux d’approximation
O(logn) de Ricke est presque optimal. En utilisant la méthode de la relaxation La-
grangienne, nous obtiendrons une nouvelle preuve de cette borne. Une conséquence
importante de cette réduction basée sur la relaxation Lagrangienne est que les résultats
d’inapproximabilité prouvés pour le probléme de minimisation de la congestion peu-
vent étre transférés au probleme de réservation de capacité avec un colt linéaire. En
particulier, cela nous permet de répondre a une question ouverte de Chekuri (2007).
Cela nous permet également de d’obtenir une nouvelle preuve d’un résultat de Goyal
et al (2009) montrant que la solution optimale pour le probleme de cofit linéaire avec
un routage statique peut étre (2(logn) plus chere qu’une solution avec un routage dy-
namique. Nous étudierons ensuite la complexité du probleme lorsque les chemins sont
donnés en entrée du probleme. Nous montrerons en particulier que si seulement deux
chemins sont donnés en entrée, alors le probleme reste tout de méme difficile a ap-
procher en dessous d’une certaine (petite) constante.

Dans le chapitre 3, nous porterons notre attention sur la variante avec un graphe
dirigé. Nous montrerons qu’une solution avec un routage statique optimal donne une
O(Vk) = O(n)-approximation du routage dynamique optimal, ol k est le nombre de
commodités et n le nombre de noeuds. Cela améliore une borne prouvée précédemment
par Hajiaghayi et al. (2005) et coincide, a un facteur constant pres, avec la borne
inférieure de Q(n) prouvée par Ene et al. (2016) et la borne inférieure de Q(v/k)
prouvée par Azar et al. (2003). Enfin nous étudierons une généralisation du probléme
ol la demande de chaque commodité ne peut étre routée que sur un sous ensemble

< ce. particulier, nous montrerons que ce probleme ne peut étre
.
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pour tout e > 0 ) saufsi NP C SUBEXP (resp. NP C QP).

Dans le chapitre 4 nous étudierons plusieurs reformulations du probleme de dimen-
sionnement robuste de réseaux permettant d’améliorer la méthode de routage affine.
Nous montrerons tout d’abord que la formulation par noeud-arc peut étre moins restric-
tive que la formulation par arc-chemin. Nous fournirons également une formulation
naturelle équivalente a la formulation par noeud-arc. Nous étudierons ensuite plusieurs
formulations basées sur des relaxations des contraintes de conservation de flot. Enfin,
nous étudierons des formulations basées sur des agrégations de commodité par source
ou par destination. Comme attendu, cela permet de réduire la taille de la formulation
et donc d’améliorer les temps de résolution. Un résultat plus surprenant encore est que
cela peut aussi permettre d’améliorer la qualité de la solution. Pour chacune de ces
formulations, nous présenterons des exemples simples montrant que ces formulations
peuvent améliorer la qualité de la solution. Nous présenterons également des résultats
expérimentaux montrant que chacune de ces formulations permet d’améliorer la qualité
de la solution sur des instances réalistes.

Enfin dans le chapitre 5 nous proposerons une stratégie intermédiaire entre 1’approche
statique et 1’approche dynamique pour s’approcher encore plus dynamique tout en
contrOlant la complexité. Il s’agira d’une approche qu’on pourrait qualifier de multi-
statique. L’idée sera de proposer de choisir un ensemble de faces du polytope représentant
I’ensemble d’incertitude de telle maniere que 1’union des ces faces contienne tous les
points extrémes non-dominés de cet ensemble. Ensuite, un routage statique serait en-
visagé pour chacune de ces faces. Nous verrons que cette approche est modulaire
puisque, d’une part, en prenant comme faces les points extrémes, on obtient 1’approche
dynamique, et d’autre part, si on prend comme face 1’intégralité du polytope, on obtient
I’approche statique. Nous proposerons quelques mécanismes pour générer les faces
d’une maniere itérative afin de baisser les colits en évitant 1’explosion combinatoire
correspondant au cas dynamique. Deux polytopes seront plus particulicrement étudiés,

le polytope du type budget et le polytope du type hose.

Mots Clés: Optimisation robuste, Dimensionnement de réseaux, Approximation, Inap-

proximabilité.
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ABSTRACT

Given the dynamic nature of traffic, we investigate the robust network design prob-
lem where we have to determine the capacity to reserve on each link so that each de-
mand vector belonging to a polyhedral set can be routed. The objective is either to
minimize congestion or a linear cost. When routing is assumed to be fractional and
dynamic (i.e., dependent on the current traffic vector), we first prove that the robust
network design problem with minimum congestion cannot be approximated within any

constant factor, settling an open question by Chekuri (2007). Then, using the ETH con-

logn

Tog 1Ogn) lower bound for the approximability of this problem. We

jecture, we get a €)(
next focus on the variant in which the underlying graph is directed. We prove that an
O(Vk) = O(n)-approximation can be obtained by solving the problem under static
routing, where £ is the number of commodities and n is the number of nodes. We show
that a natural generalization of the problem cannot be approximated within a ratio of
ksioe® for some constant ¢ (resp. 2°¢" % for any € > 0) unless NP C SUBEXP
(resp. NP C QP).

Affine routing can be used to obtain better solutions also with polynomial-time al-
gorithms. It consists in restricting the routing to depend on the demands in an affine
way. We first show that a node-arc formulation is less conservative than an arc-path
formulation. We also provide a natural cycle-based formulation that is shown to be
equivalent to the node-arc formulation. To further reduce the solution’s cost, several
new formulations are proposed. They are based on the relaxation of flow conservation
constraints. The obtained formulations have been further improved through aggrega-
tion. As might be expected, aggregation allows us to reduce the size of formulations. A
more striking result is that aggregation reduces the solution’s cost. We finally propose
an intermediate strategy between static and dynamic routing that can be seen as a new
variant of multi-static routing. We consider some faces of the uncertainty set whose
union contains all non-dominated extreme points of the polytope. Then a static routing

is considered for each of these faces.

Keywords: Robust Optimization, Network Design, Approximation, Inapproximability.
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CHAPTER 1

Introduction

Network optimization [Wang et al. (2008), Luna (2006)] plays a crucial role for telecom-
munication operators allowing them to carefully invest in their infrastructure, i.e. re-
ducing capital expenditures. As Internet traffic is ever increasing, the network capacity
needs to be expanded through careful investments every year or even half-year.

Beyond traditional carrier networks that build and maintain their own physical in-
frastructure, Over-The-Top (OTT) operators are also building wide area overlay net-
works to obtain worldwide, long-haul and cost effective services. These companies are
renting and reselling bulk capacity from transit operators and Internet eXchange Points
(IXP). For instance, SD-WAN (Software-Defined Wide Area Networks) operators build
high-performance and low cost WANs (Wide Area Networks) for enterprises based on
Software-Defined Networking [Michel and Keller (2017)] technologies by efficiently
mixing expensive private lines with low cost Internet access. Other OTT such as cloud
service providers or online platforms (e.g., video streaming, social networks) are leas-
ing a mixture of connectivity services to interconnect central and regional data centers.
In all cases, network connectivity, whether leased or owned, has a cost and needs to be
carefully designed to optimize profits.

In this thesis, we consider the robust network design problem to efficiently size
telecommunication networks and optimize the use of resources. This problem consists
in routing traffic demands between different pairs of sources and destinations of a net-
work while taking into account the uncertainty on the traffic. We consider two variants
of the problem. The first kind consists in choosing the capacities on the edges so that
all envisioned traffic matrices can be routed. This can model the problem of buying
and installing physical equipment or of renting virtual capacity to a network service
provider. Several capacity models can be considered. For example, we can choose be-
tween a discrete set of capacities with different costs. In this case, it can be modeled
using a piece-wise constant objective function. It has been for instance used by Face-
book [Ahuja et al. (2021)] for the planning of their backbone network between data
centers. In this thesis, we focus on a simpler variant where we minimize a linear cost of

the chosen capacities. Algorithms for this simple problem can be used as subroutine to



solve more complex problems.

The other variant of the robust network design problem consists in minimizing the
congestion in the network. This is motivated by the fact that highly congested net-
works have poorer performance in terms of latency. Several objective functions can be
considered. For example, queuing theory can be used to give an approximation of the la-
tency/serving time as a function of the load of the network equipment [Ben-Ameur and
Ouorou (2006), Hijazi et al. (2013)]. Here we focus on the simple variant of minimizing
the maximum congestion over all edges. A similar approach has been for instance used,
also by Facebook [Kumar et al. (2018)], for the engineering of traffic.

Due to the diversity of applications generating traffic and the inherent difficulty in
predicting user behaviours and traffic variations over time, it is difficult in practice to
obtain an accurate estimation of traffic in advance.

Another source of uncertainty can come from possible failures of network equip-
ments. If the traffic is underestimated when planning capacity, the performance of the
network from high congestion induces losses and latency. Another use case is private
networks [Duffield et al. (1999)] for enterprise services where a company buy connec-
tivity between several offices and the headquarter. The capacity is bought using an
access bandwidth (i.e. we only know upper bounds on the traffic that can be sent and
received for each node). In this case, the goal for the network operator is to ensure that
most or all traffic realization can be sent through a VPN (Virtual Private Network). The
exact traffic scenarios are difficult to anticipate.

A naive solution to cope with uncertainty on traffic is to overestimate it. However,
this can lead to high costs by using more network equipments. Finer models that directly
take into account the uncertainty can provide the best of both world: having a low cost
and, at the same time, an efficient network.

In the rest of this chapter we first review some general techniques to model uncer-
tainty. Then we formally present the main robust network design problem on which
the thesis focuses. We provide further details on problem variants with flow restric-
tions and different types of polyhedral traffic demands. We explain the relationships
between some variants of robust network design and we present some of the main rout-
ing strategies that can be seen as an intermediate between fully-dynamic routing and
static routing. We review the main theoretical results related to robust network design
and we briefly present other robust network optimization problems of interest. Finally,

the main contributions of the thesis are summarized.

1.1  Optimizing under uncertainty

We will now describe some possible solutions to directly integrate demand uncertainty

into our models. One classical method to model uncertainties is stochastic optimization



introduced by [Dantzig (1955)], see [Infanger (1992)] for a comprehensive overview.
This could be applied to our problem by considering several demand scenarios with an
assigned probability and then by minimizing the average cost over those scenarios, for
example the congestion. This type of approach has two main drawbacks, the first one
is that obtaining precise estimation on the distribution of the demand can be challeng-
ing, the second one is that the size of the model increases with the number of scenarios
considered and it can quickly lead to intractable models. Another alternative is to use
chance constrained optimization introduced in [Charnes et al. (1958)] see [Prékopa
(2013)] for an extensive review. Constraints (for example the edge capacity constraint
in our context) are here required to be satisfied only with some specific probability.
Solving a chance constrained optimization problem directly poses many challenges:
the problem is not easy to solve, and the feasibility region of such problem is usually
non-convex. To overcome those computational difficulties, approximations are often
used to solve chance constrained problems. One of the methods to approximately solve
chance constrained problem is robust optimization introduced in [Soyster (1973)]. In
robust optimization the coefficients of the constraints can take any value inside a given
uncertainty set and the goal is to find a solution that is feasible for any possible re-
alisation of the coefficients. [Ben-Tal and Nemirovski (2000)] study the probabilistic
guarantees on constraint violations that can be derived from robust optimization. They
show that under some conditions related to the distribution of the coefficients, using an
ellipsoidal uncertainty provides a robust solution satisfying the constraints with some
prescribed high probability. In a similar vein, [Bertsimas and Sim (2004)] introduce the
budget uncertainty set. They show that, under some assumptions on the distribution of
coefficients of a constraint, the budget uncertainty set leads to solution that is feasible
with high probability.

A more general way to model uncertainty is distributional robust optimization where
instead of considering a single probability distribution on the coefficients of the objec-
tive function and constraints an ambiguity set is considered. [Scarf (1958)] first intro-
duced this approach for the news vendor problem. See [Rahimian and Mehrotra (2022)]
for a survey on distributional robust optimization. Distributional robust optimization
can be seen as generalized stochastic optimization and chance constrained optimization
by taking the ambiguity set to contain only a single probability measure. It can also
be seen as a generalization of robust optimization by taking the ambiguity set to be all
distributions with support in a given set.

In this thesis we will model demand uncertainty using robust optimization. We
will consider that the set of possible demand scenarios is a polytope. The polyhedral
set appears naturally, for example a known upper bound on the sum of some demands

leads straightforwardly to a linear constraint. Other families can also be considered, for



example, ellipsoids or more general convex sets. We then impose that the set of edge
capacities is feasible for all possible demand scenarios for the linear cost problem. In
one of the problem variants, we minimise the worst case congestion over all demand

scenarios.

1.2 Robust network design problems

We will now introduce some notations and precisely define several variants of the net-
work design problem, see [Ben-Ameur et al. (2012), Chekuri (2007)] for surveys on
related problems and the lecture notes of [Olver (2018)]. All the problems that we will
consider have as input a graph G = (V, E) (either directed or undirected). A set of
commodities H, where each commodity has a source s(h) and destination node t(h)
in the graph GG. The decision we must take is how to route the demand. This is spec-
ified by giving for each commodity & € H and demand scenario d € D a flow vector
x5 (d) € RE of value 1 between the source s(h) and the destination of the commodity

h, i.e., a vector satisfying the following flow conservation constraints:

1, if v =s(h)
S ane(d) = D ape(d) = -1, ifv=t(h)

e€d i (v) e€d_(v) 0 otherwise

Vhe H,veV,deD (1.1a)

The flow sent on edge e for commodity / in a demand scenario d € D is then
fn(d) := dpzp(d).

If the routing can be adapted freely to each demand scenario we call it dynamic rout-
ing. On the opposite side we have static routing where we must choose, independently
of the demand scenario d € D a flow z;, of value 1 for each commodity. Some inter-
mediate solutions can also be considered between those two extremes. We will present
some of them in Section 1.6. The routing is called fractional if the flow can use several
paths without particular restrictions. In Section 1.3 we will present several variants of
the problem with some restrictions on the flow.

Given a routing f, let u € R be the vector whose components u, are the maxi-

mum flow that is sent (i.e. capacity used) on edge e, i.e., u, = rgapx > fre(d). We
€D hen
will consider two objective functions depending on u. The first one is the linear cost

objective where we have as input a cost A\, > 0 for each edge e € E and the goal is

to minimize obj(u) = ) Acu.. The other objective function that we will consider is
eclk
the congestion where we have as input the capacity c. > 0 of each edge e € F and the

goal is to minimize obj(u) = max e Depending on if the routing is static or dynamic
ec €
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Fig. 1.1 Example of a robust network design instance

and if the objective function is the linear cost or the congestion cost, we have 4 differ-
ent variants of the problem. We will note those problems 0bj,q,ivity- frac Where obj can
be lin for the linear cost objective or cong for the congestion objective. The keyword
adaptivity can be sta for a static routing or dyn for a dynamic routing. Other variants of
the robust routing problem can be obtained by considering some restrictions on the flow
used to route the demands of the commodities (some of them are presented in Section
1.3). For brevity and because we will mostly consider unrestricted fractional routing,
we will also use 0bj,gypiviey O denote 0bj,,ivity-frae 1f 1t clear from the context that we
are considering (unrestricted) fractional routing. We note U(D) the set of capacities u
such that all demand scenarios in D can be routed without exceeding the capacities.

For illustration we represented in Figure 1.1 a simple example of an instance for the
robust network design with 4 nodes s, u, v, t, 4 edges ey, es, €3, e4 and H composed of
3 commodities hq, ho, h3. The sources of the 3 commodities are all equal to s and the
destination of commodity h; (resp. hs, h3) is u (resp. v, t). We consider the following
demand polytope D:

dp, +dp, =1 (1.2a)
dp, = 1. (1.2b)

We consider the congestion problem on this instance with capacities ¢, of 1 for all
edges. The demand of commodities i, (resp. hy) can only be routed using the edge e;
(resp. es) because it’s the only path from note s to node u (resp. v) in this graph. The
congestion cannot be less than 1 because the edge e; of capacity 1 must at least carry
the demand of commodity h; in the scenario where dj,, = 1. Under dynamic routing,
a solution with congestion of 1 can be obtained by routing 1 — dj,, of the demand of
commodity h3 on the path (e1,e3) and 1 — dj, unit of flow on the path (e, e4). On
the other hand, under a static routing, the congestion must be at least 1.5. This can be
seen by observing that this contains some symmetry: if we exchange u (resp. ey, e3 hq)

with v (resp. es, e4 ho) we obtain an equivalent instance. This implies that there is an



optimal solution that also contains some symmetries: the flow of commodity ~3 must be
split equally between path (eq, e3), and path (es, e4) (if there is an optimal solution that
sends strictly more than z > 0.5 unit of flow of commodity A3 on the path (ey, e3) then
by symmetry there is also an optimal solution that sends x unite of flow of commodity
hs on path (es, e4), we can then take the average of those solutions).

In summary, we present below a linear programming model for the dynamic routing
variant. We will have one variable z. ,(d) foreach e € E, h € H,d € D. Equivalently,

we can also see x. , as a function from the demand uncertainty set D to R .

min obj(u)
1, ifv=s(h)
Z The(d) — Z xhe(d) =< -1, ifv==t(h)

e€dy(v) e€d—(v) 0 otherwise

Vhe HveV (1.3a)
> dnne(d) <ue, Vee E,deD (1.3b)
heH
2he(d) >0, VYee E,YheH,deD (1.3¢)

We can also model the problem in terms of variables f, .(d) (this will be more
appropriate to use in the affine routing and multipolar routing cases). However, when
we consider a static routing, it will be with respect to formulation (1.3).

The static routing problem can then be formulated as follows:

min obj(u)

1, ifv=s(h)

Yo wne— Y. ane=< 1, ifv=t(h)

e€d(v) e€d—(v) 0 otherwise

Vhe H,veV,deD (1.4a)
> dprpe <ue, Ve€ E,deD (1.4b)
heH
zpe >0, Vee E,YheH,deD. (1.4¢)

Observe that z;, . does not depend on d.



As summary, we will give below the abbreviations for the different problems:

Routing —
Objectivel Static Dynamic

Linear cost | ling, lingy,

Congestion | cong, cong,,

Both the linear cost and congestion problems under static routing variants can be
solved in polynomial-time, see [Ben-Ameur and Kerivin (2005)] and Appendix A. On
the other hand, as we will see in Section 1.7, those two variants in general become
theoretically difficult to solve under dynamic routing. Nonetheless, some methods have
been devised to obtain exact solutions [Mattia (2013), Zeng and Zhao (2013), Ayoub
and Poss (2016)]. If the capacities are required to be integer the problem becomes more
complicated to solve, in this case finding some valide inequalities can help alleviate
those difficulties, see [Koster et al. (2013), Raack et al. (2011)].

In the remaining of the manuscript, we refer to the static/dynamic gap (or ra-

tio) for the congestion (resp. linear cost) problem as the value cong,,/ congg,, (resp.

ling, /lingyy).

1.3 Variants with flow restrictions

We now present some additional variants of the problems. Where we have some con-
straints on the flow of each commodity. Let A}, be the polytope of flow vectors from
s(h) to t(h) of value 1. Suppose that we have as input a subset X owed C X, of
allowed flow. And we consider the routing problems with the additional constraints
zp(d) € Xpllewed . We consider this quite abstract model because it allows us to cap-
ture several interesting routing problems and some of the results we have proved on the
static/dynamic gap also apply for this more general problem.

This generalised model allows us to model, among others, the single path routing,

path restricted routing, K-splittable routing. We will present below those problems.

1.3.1 Routing over a single path

In the single routing problem, each commodity must be routed over a single path i.e.
we must have z,(d) = 1, for some s(h) — t(h) path, where 1, is the vector of R

whose components are 1 for the edges that are in the path and 0 otherwise. We denote



this problem as obj, g,yivity-sing- Although single path routing usually leads to higher cost
solution, it is preferred in practice as all the traffic of an origin-destination flow can be
sent in a single tunnel, with MPLS protocol for instance [Paolucci et al. (2013)].

This problem can be modeled as a restricted flow problem by taking X}, to be the
discrete set {1,|p a path from s(h) to t(h)}.

1.3.2 Routing over a given set of paths

In this section we present the path restricted routing problem where demands can only
be routed over a set of paths and some of its applications in practice. Although this
problem has not been much studied from a theoretical perspective it can have several
practical applications, see for example the B4 [Jain et al. (2013)] controller from Google
that routes inter-data center traffic over a set of private network connections. Later in
this thesis, we will prove several results concerning this problem. In the path restricted
routing problem we suppose that we are given as input for each commodity h € H a set
of allowed path P,,. And the routing is constrained to be on those paths. Suppose that a
commodity has some delay constraint [, and each edge e € E has a delay /.. Then we

can define Py, as the set of paths with end-to-end delay less than [}, i.e.

Pn={pan (s(h),t(h)) — path | > 1. <1}

ecp

This problem can also be used to model other constraints on the paths such as prece-
dence constraints where a node v; must be visited before a node v,. This can be useful
for network function chaining [Bhamare et al. (2016)].

These problems can be solved either by preselecting heuristically a small set of
paths satisfying those constraints or by generating the paths on the fly in a column
generation procedure using a constrained shortest path sub-problem. This can be done
quite straightforwardly in the static routing but it can be more tricky in other variants.

We present below a model for this problem.

min obj(u)

> Y dwangld) <u., VecE,deD (1.5a)
heH pePy,|poe

> apy(d) =1, VheH,deD (1.5b)
PEPH
zhp(d) >0, YheH,VpePydeD (1.5¢)

This problem can be seen as a problem with flow restrictions by taking



allowed o
() — convye, 1,

where 1, is the vector in R* equals to 1 on the edge in the path p and 0 otherwise.

1.3.3 Edge restricted routing

The edge restricted routing variant consists in adding the constraint stating that each
commodity can only be routed over a given subset of allowed edges £, C E. These
restrictions seem to be quite natural to ensure quality of service requirements such as

delay constraints. We will investigate the approximability of this problem in Chapter 3.

1.3.4 K-splittable routing

In the K-splittable routing the flow of each commodity must be on at most K paths,
useful for load balancing for example. This problem can be modeled as a network

design problem with flow restrictions by taking &}, to be the non-convex set

K K
{Z a;1,,|Vi, K > i >1:p; apath from s(h) to t(h), Zai =1}
i=1

=1

Notice that the set of path {p;|K’ > i > 1} here is not given but must be chosen.
When the number of paths K > 2, an intermediate strategy between the static routing
and dynamic routing, called semi-oblivious routing, has been considered in the liter-
ature [Hajiaghayi, Kleinberg and Leighton (2007)]. In this approach, the set of paths
must be valid for all possible demand scenarios d. The split ratio is then adapted dynam-
ically to each realisation of the demand scenario d. This problem can have applications

in telecommunication networks to adjust load balancing over a stable set of paths.

1.3.5 Tree routing

Another restriction that has been considered in the literature is that the routing of com-
modities must be on a single tree. This can be useful for multicast routing [Lim and
Kim (2000)], generally used to stream multimedia content or in conferencing applica-

tions. Formally, this corresponds to adding the constraint sup( Y x(d)) € trees(G),
heH

where sup(z) for a vector z € R¥ denotes the set of edges e € E such that z. > 0 and
trees(G) denotes the set of subset of edges in G that forms a tree. Unlike other flow
restrictions previously introduced in this section, the tree routing restriction involves
coupling constraints between the routing of the different commodities. This distinction

will be important in Chapter 2. We will denote this problem by 0bj,g.pivity-tree-



1.4 Review of traffic uncertainty sets

Several uncertainty sets for traffic demands have been considered for this problem in
the literature. The robust network design problem under general polyhedral uncertainty

has first been considered in [Ben-Ameur and Kerivin (2003)].

1.4.1 Budget model

A classical uncertainty set in the robust optimization community is the budget polytope
introduced in [Bertsimas and Sim (2004)] for the general robust optimization problem.
If for each commodity h € H we have a minimum and a maximum demand value d?jm,
d7*** and if not all the demands can (or are likely to) be close to their maximum value
dy** at the same time, the traffic demand can be modeled using the budget polytope.
This polytope is defined using a parameter I that considers the set of demands d € R*

such that dj, = d"™ + z,(d*® — d*™) and Y 2, <T.
hen

1.4.2 Hose model

The other uncertainty sets presented in the remaining of Section 1.4 have been intro-
duced in the telecommunication community, independently from the robust optimiza-
tion community.

The hose model polytope has been introduced in [Duffield et al. (1999), Gupta et al.
(2001)]. This polytope is defined as follows: for each node v of the graph we are given
a maximum traffic input m® and a maximum traffic output m?“*. The demand polytope

D is defined as the set of vectors d € R satisfying the constraints >  dj, < m2¥
h|s(h)=v
and > d, <m!"forall nodesv € V.
hlt(h)=v
The capped hose model, introduced by [Fréchette et al. (2014)], is a natural ex-

tension of the hose model. Additionally to the maximum traffic input m® and traffic
output mg“t of each node, there is also a maximum demand value d;'** for each indi-
vidual commodity h. A special case of this more general polytope, called the masked

hose model [Bosman and Olver (2017)], considers that d;*** are either 0 or oo.

1.4.3 Set of all routable demands

The polytope containing all possible demand vectors has been introduced by [Azar et al.
(2003)] in the context of oblivious routing which consists in finding a fixed routing with
a good worst case competitive ratio between the congestion obtained from this fixed
routing and the optimal routing for any demand vector (without specific constraints
other than positivity). It has been proved by [Ricke (2002)], that there always exists

a routing having a polylogarithmic competitive ratio. However it was still an open
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Fig. 1.2 From undirected instance to directed instances.

question if such routing could be found in polynomial-time. In [Azar et al. (2003)]
it has been proved that finding an optimal oblivious routing is equivalent to finding
a static routing minimizing the congestion over the polytope containing all possible
demand vectors that can be routed through the network (routing is here dynamic). This

in turn leads to a proof that such routing could be found in polynomial-time.

1.5 Known relationships between problem variants

Let us now present some established relationships between different problems: routing

in directed vs undirected graphs, minimizing either a linear cost or the congestion.

1.5.1 From undirected graphs to directed graphs

An instance with an undirected graph can be modeled using a directed graph instance.
This can be done by removing each edge e between two nodes u, v, adding two new
nodes wy, w, and adding 5 directed edges: for instance in the example of Figure 1.2 we
add edges from u to ws, from ws to wy, from w; to u and v, from v and v to wy and we
put the same capacity (or cost) for the edge from ws to w; that was on the edge e. As we
will see, results about the static/dynamic gap provide evidences that an instance with a
directed graph cannot be modeled by an undirected graph instance, at least without an

exponential increase of the size of the instance.

1.5.2 Node-capacited and edge-capacited instances in directed graphs

While only edge-capacitated networks are considered in this thesis, other variants such
as node-capacitated networks can also be studied. However, a node-capacitated instance
can be transformed into an edge-capacitated instance and vice-versa.

We will first describe how an instance with capacities on the nodes can be repre-
sented by an instance with capacities on the edges. This can be done by replacing each

node v by two nodes v; and vy and adding an edge (v;, v2) whose capacity is the same
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Fig. 1.4 From node-capacited to edge-capacited instances.

as the capacity of node v. Each edge that had v as destination (resp. as source) will
have vy (resp. v9) as destination (resp. as source) in the new graph (see Figure 1.3).
Conversely, an edge-capacitated instance can be simulated by a node-capacitated
instance. This can be done by replacing each edge e with source v and destination u by
one node w with the same capacity than the removed edge and by adding two edges,

one from v to w and one from w to u (see Figure 1.3).

1.5.3 From congestion to linear cost

We will now introduce a result from [Goyal et al. (2009)] which states that if the
static/dynamic gap is less than or equal to « for the congestion problem, then the same

applies to the linear cost problem.

Proposition 1.5.1. [Goyal et al. (2009)] : Assume that for a given graph G, a set of
commodities H, a demand polytope D and some o > 1 we have cong,,, < « cong,,, for

any vector c € Rf. Then ling, < « ling,, for any cost vector \ € Rf (for the instance
given by the data G, H,D, \).

Proof. Given a cost vector \, let cj;yn € Rf be the reservation vector (i.e., u) obtained

when the linear cost is minimized under dynamic routing. For the capacity vector cjy,
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we clearly have cong,, < 1 and congy,, < « cong,, < ca. Therefore, o ¢, is
a feasible reservation vector for the ling, problem and its cost is « times the cost of

&
Ciyn- []

A consequence of Proposition 1.5.1 is that if we know an upper bound on the
static/dynamic gap for the congestion problem on a certain class of instances then this
result can be transferred to the linear cost problem. In the other direction, if a lower
bound can be found on the static/dynamic gap for the linear cost problem from some
classes of instances (i.e., some instances achieving a certain bound can be found), then
this implies that there is also a lower bound on the static/dynamic gap for the linear cost

problem.

1.6 Intermediate strategies between static and dynamic routing

There are at least two reasons to consider routing strategies that are intermediate be-
tween the static and dynamic routing. The first one is to obtain a routing that gives a
better solution than the static one (in terms of cost) while being easier to solve than the
dynamic routing problem. In this class of methods that achieve such trade off, one can
at least consider the following strategies: affine routing, multi-static routing, multipolar
routing. Second, static routing is easier to implement in practice while dynamic routing

requires a continuous adaptation of routing.

1.6.1 Affine routing

The affine routing method has been presented in [Ouorou and Vial (2007)] to approxi-
mately compute ling,,, for the path restricted problem variant. It consists in restraining
the dynamic path flow fﬁ;)(d) to depend affinely on the demand scenario d € D. The
decision variables are now the coefficients xZ:p for b’ € H U {0}, and the dynamic path
flow is fﬁ;(d) = > dh/a:ﬁ:p. This problem can be modeled as the following single

heM
stage robust optimization problem:

min obj(u)

Z Z (w,?h + Z xZ:hdh’> <u, VeeFE, deD (1.6a)

heH peph:pge h'eH

Z (@;h + Z x’;jhdh,> = d, Vh € H,d €D (1.6b)

pePh heH

W+ > ahdy >0, VheH,pePhdeD (1.6¢)
h'eH
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Affine routing has also been used in [Poss and Raack (2013)] to solve the (unre-
stricted flow) lingy,, problem. It consists in restraining the dynamic edge flow f[f:e(d)
to depend affinely on the demand scenario d € D. The decision variables are now the

coefficients x/!', for b’ € # U {0}, and the dynamic edge flow is " (d) = 3. dpa]...
WeH
This problem can then be modeled as the following single stage robust optimization

problem:

min obj(u)

> dp, ifv=s(h)

> (332,6 + ) xZ:edhf> - ¥ (w%,e + 5 2l dy —dp, ifv=t(h)
e€dy (v) h'eH e€d_(v) h'eH 0 otherwise
Vhe H,veV,deD (1.7a)
> <x9L,e + Y wﬁjedh) <u., VecE,deD (1.7b)
heH h'eH
e+ > ap.dy >0, VeeENYheH,deD (1.7¢)
e

The obtained problems are of polynomial size. We will see in Appendix A how this
kind of problems can be solved given a demand polytope D described by inequalities,
either by reformulating it as a compact linear program or by using a cutting plane pro-
cedure. Affine routing can then be seen as an approximation of dynamic routing that

can be computed in polynomial-time.

1.6.2 Multipolar routing

In this subsection we present the multipolar robust routing approach, introduced in [Ben-
Ameur and Zotkiewicz (2013a)] for the robust routing problem and later generalized
for more general robust optimization problems in [Ben-Ameur et al. (2018a)]. Sup-
pose that we have a finite set of points W = {w!, w?, ..., w™!} called poles such that
D C conv(W). Consider the following set:

A={AeRY> A\ =15t XweD}

Note that a demand vector d € D can potentially be written in several ways. For each

A € A there is a corresponding demand vector d(A\) = > A"w. It consist in having a
wew
variable 7}/ foreach h € H,e € E'and w € W. We impose that f,(\) = > A"z}
heM
is a flow of value dj,(\) from s(h) to t(h). Note that the vectors z}’ them-self are not

required to be flow vectors, are not necessarily non-negative and they do not need to

respect flow conservation constraints. This can be modeled as a single stage robust
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optimization problem (where A is the uncertainty set) as follows. It can be shown that
this approach is equivalent to affine routing by choosing ¥V such that conv(W) is a
simplex containing D. It can also be shown that this approach is equivalent to dynamic
routing by taking W to be the set of extreme points of D. This problem can be modeled

as a single stage robust optimization problem.

min obj(u)

> (Z wa}i’,e> <wu., VeeE,\A€A (1.82)

heH \wew
ST Awy, ifv=s(h)

weWw
> (Z waﬁe> -y (Z waﬁe> = — 3 Ny, ifv=t(h)

e€dt(v) \wew e€é_(v) \wew wew
0 otherwise
Vhe HveV,AeA (1.8b)
> X9y, >0, Vec E\VheH, A€ A (1.8¢)

wew

1.6.3 Multi-static routing

The multi-static routing method has been introduced in [Ben-Ameur (2007)]. It has
also been independently studied in [Bertsimas and Caramanis (2010)]. The multi-
static approach has been further studied in [Ben-Ameur and Zotkiewicz (2011)]. It
consists in covering the polytope D by polyhedral subsets D; for « € I, i.e., such
that D C |J D;. This is typically done by cutting the polytope D with an hyperplane
{d e R%| EI: apd, = b} in two pieces Dy, D, defined by:

heH

Dy ={d € RY|D andy > b}
heH

Dy = {d € R¥|> and, < b}
heH

The covering polytopes can be recursively decomposed to obtain smaller polyhe-
dra subsets D;. An approach to iteratively partition the covering polytopes has been
independently proposed in [Bertsimas and Dunning (2016)] and in [Postek and Hertog
(2016)] for general multistage robust optimization problem, where at each iteration the
multi-static model is solved for the current partition and then the partition is refined
using information about the current multi-static solution. [Silva et al. (2018)] applied
this method for the single path routing problem and for the fractional routing problem,

both with given paths. They also introduced several improvements of the method.
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Given such decomposition of the polytope the approach consists in choosing a po-
tentially different routing x* for each polyhedra subset D;. This approach always gives
a solution that is at least as good as the one provided by the static approach. This can
be seen by taking all routings ' to be equal to the optimal static routing z°?".

This problem can be written as a single stage robust optimization problem as fol-

lows:

min obj(u)

1, if v =s(h)

Z xﬁe— Z :c;“e: -1, ifv=t(h)

€l (v) e€d—(v) 0 otherwise

VheHveV,ieZ deD; (1.9a)
> dpth, <u., VecE,icIdeD; (1.9b)
heH
th.>0, Vec EVheH,ic€I,deD; (1.9¢)

1.7 Known theoretical results on complexity and approximability

We first present results related to the variants where no specific restrictions on the flows
are considered. Then, we focus on single path routing and semi-oblivious routing.
Finally, we consider the case of hose polytopes. The reviewed results are mainly related
to the static/dynamic gap, the complexity and the inapproximability of the dynamic

routing problem.

1.7.1 Fractional routing

We first present the results for undirected graphs. It has been proved that computing
lingy, 18 coNP-hard in undirected graphs by [Chekuri et al. (2007)]. This also implies
that computing cong,, is coNP-hard. Those results have been proved for the hose
model. A result attributed to A. Gupta (see [Chekuri et al. (2007)]) is that there is an
upper bound of O(logn) on the static/dynamic gap where n is the number of nodes of
the graph (i.e. ling, = O(logn)ling,). Since ling, can be computed in polynomial-time,
this also give an O(log n) approximation for lingy,. Notice that the bound given by static
routing cannot provide a better bound than O(log n) since a lower bound of Q2(log n) is
achieved by static routing for planar graphs [Maggs et al. (1997), Bartal and Leonardi
(1999)] and [Goyal et al. (2009)] has shown that the gap ﬁﬁ;ﬁ is Q(logn).

In the case of directed graphs, computing ling,, is also coNP-hard [Gupta et al.
(2001)]. Notice that the coNP-hardness in the undirected case directly implies coNP-

hardness in the directed case. When congestion is minimized, [Azar et al. (2003)] has
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shown that the gap between static fractional routing and dynamic fractional routing
can be Q(v/k) while [Hajiaghayi, Kleinberg, Riicke and Leighton (2007)] proves that
the gap is upper-bounded by O(\/Eni logn). Since the instance provided in [Azar
et al. (2003)] contains vertices with large degree, [Hajiaghayi, Kleinberg, Ricke and
Leighton (2007)] studied the version where the degree is less than some constant and
all commodities have the same sink. An instance with a 2(1/n) gap was then provided
in [Hajiaghayi, Kleinberg, Ricke and Leighton (2007)], while the upper bound becomes
O(y/nlogn). [Hajiaghayi, Kleinberg, Ricke and Leighton (2007)] considered also the
case of symmetric demands (in that paper, symmetry means that for any two nodes u
and v, the demand from w to v is equal to the demand from v to «) and shows that the
upper bound of the static to dynamic ratio becomes O(v/klog®?n). A general Q(n)
lower bound was later proposed in [Ene et al. (2016)]. They also introduced the notion
of balance for directed graphs. A weighted directed graph is a-balanced if for every
subset S C V/, the total weight of edges going from S to V'\ S is within a factor « of

the total weight of edges directed from V'\ S to S. Using this new parameter, they show

log® n

that for single source instances an upper bound of O (a2
oglogn

) holds for the competitive
ratio of static routing.

In undirected node-capacited instances, [Hajiaghayi, Kleinberg, Réicke and Leighton
(2007)] have shown that the static/dynamic gap can be at most O(y/nlogn) for single

. 3 .
source instances and O(y/n log? n) in the general case.

1.7.2 Other variants with flow restrictions

The single path robust routing problem has mainly been studied in undirected graphs.
We present below those results. The O(logn) approximation, attributed to A. Gupta
(see [Chekuri (2007), Goyal et al. (2009)] for a more detailed presentation), related to
the linear cost under dynamic fractional routing problem is achieved by a routing on a
(fixed) single tree. In particular, this shows that the ratios between the dynamic and the

static solutions under fractional routing (llllnr‘“ﬂ) and between single path and fractional
lmsta sing

lingg,

imation for static single path routmg ling, ging. On the other hand [Olver and Shep-

routing under the static model (-——= ) is in O(log n) and provides an O(log n) approx-
herd (2014)] show that the static single path problem cannot be approximated within
a Q(logi~“n) ratio unless NP ¢ ZPTIME(nro°s(™)  As noticed in [Goyal et al.
(2009)], this implies (assuming this complexity conjecture) that the gap ;IES‘Z?‘E is in
Q(log4 “n).

Focusing on the semi-oblivious routing problem in undirected graphs, it has been
shown in [Hajiaghayi, Kleinberg and Leighton (2007)] that the gap between the dy-

namic fractional routing and a dynamic fractional routing restricted to a polynomial

number of paths can be Q(log’i o)
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1.7.3 Results for the hose model

For the linear cost objective function and undirected graphs, an extensively studied
polyhedron is the symmetric hose model. The demand vector is here not oriented (i.e,
there is no distinction between a demand from 7 to 7 and a demand from ; to i), and
uncertainty is defined by considering an upper-bound limit b; for the sum of demands re-
lated to node 7. A 2-approximation has been found for the dynamic fractional case [Fin-
gerhut et al. (1997), Gupta et al. (2001)] based on tree routing (where we route through
a static tree that should be found) showing that llllnnd;—"’e; < 2. It has been conjectured
that this solution resulted in an optimal solution for the static single path routing. This
question has been open for some time and has become known as the VPN conjecture. It
was finally answered by the affirmative in [Goyal et al. (2013)]. The asymmetric hose
polytope was also considered in many papers. An approximation algorithm is proposed
to compute ling,.sine Within a ratio of 3.39 [Eisenbrand et al. (2007)] (or more precisely
2 plus the best approximation ratio for the Steiner tree problem). If D is a balanced
asymmetric hose polytope, i.e., > b9 = > |, b where bl (resp. b3“) is the
upper bound for the traffic entering into (resp. going out of) v, then the best approxi-
mation factor becomes 2, see [Eisenbrand et al. (2007)]. Moreover, if we assume that
bout = bé”, then ling, sne 18 €asy to compute and we get that ling,.yee = ling,.sing [Olver
(2010)]. In other words, there is some similarity with the case where D is a symmetric
hose polytope.

It has been shown [Bosman and Olver (2017)] in that the masked hose model can be
solved in polynomial-time when the underling graph is a cycle and when it is a tree of
bounded degree. They have also shown that when the graph is a tree of bounded degree,
a 2a-approximation can be obtained, where « is the approximation ratio for the Steiner

tree problem without any bound on the degree of the tree.

1.8 Related problems

In this section, we present tightly related problems to the robust network design prob-

lems considered in this thesis.

1.8.1 Other variants on robust network design

Robust network design is a rich research area where many variants have been stud-
ied. Beyond flow restrictions and the uncertainty on traffic as presented earlier, others
variants have been considered. We will present some of them in the following.
[Bertsimas and Sim (2003)] consider a robust minimum cost flow problem where
the demand is fixed but the cost is uncertain. This problem takes as input an undirected

graph, two source and destination nodes s, t, a demand value d that needs to be sent and
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a polytope A of possible edge cost vectors. Let us denote X to be the set of s — ¢ flows
of value d. The goal is to find a flow minimising min,cx maxyecp A‘z. They show that
this problem can be solved by solving n + 1 nominal flow problems min,cx Az (with
deterministic costs vectors \).

[Lemaréchal et al. (2010)] consider a tightly related robust network design problem
where a maximum budget b is given on the costs of the capacities and the goal is to
minimize a weighted sum of the unroutable demands for a given 7 € R’j. Formally the

problem can be written as follows:

= min max min d, —d,)" 1.10
K= etih) 96D a'epw) = mh(dn = dy) (1.10)

where U (b) is the set of capacities of total cost less than the budget b, i.e. the set

of u € RY satisfying > Acue < band D(u) is the set of demand vectors that can be
eckE
routed over capacities u. Solutions to this problem are interesting for the robust network

design problem ling,,, for at least two reasons. The first one is that if we can find an
oracle solving Problem (1.10), we can use it to solve our lingy, using a dichotomic
search. The second reason is that the inner max-min problem of (1.10) can be seen as a
way to check if a capacity vector u is enough to route all demands inside the polytope
D. This can be used in a cutting plane procedure to compute a solution for the lingy,
problem.

They proposed two procedures, one to compute a lower bound using an ingenious
procedure to iteratively construct an inner approximation of the demand polyhedron D
and another procedure to compute an upper bound on p based on inverting the inner
min-max problem and other smart ideas. Later [Ouorou (2013)] investigated the prob-
lem from a dual perspective: given an upper bound 1z on the maximum traffic rejection
they seek a capacity vector assignment. This problem can also be seen as a generalisa-
tion of the lingy, problem that we consider in this thesis. Based on the affinely adjustable
robust counterpart method and other idea borrowed from earlier work they propose four

tractable procedures to approximately solve this problem.

1.8.2 Two-stage adaptive optimization

At first sight it might be possible to cast Problem (1.3) as a two-stage adaptive robust
optimization problem of the form (1.11). [Bertsimas and Goyal (2012)] presented the

following general model:
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min cx + max dy(b)

beu
Az + By(b) >b Vbel (1.11a)
2,y(b) > 0 (1.11b)

where the set i/ C R is the uncertainty set supposed to be compact, convex and
full dimensional, variables € R are the first stage variables, y(b) € R’ are the
second stage variables ny,n, € N, A € R7""™ B € R™™ ¢ e R}, d € R

When the coefficients of the matrix A are positive, [Bertsimas and Goyal (2012)]
have shown that the optimal affine solution cannot be worse than O(/m ) times the cost
of the optimal dynamic solution.

While it is not trivial to cast the robust network design problem as a two-stage
adaptive robust optimization problem, the ideas of [Bertsimas and Goyal (2012)] will
be adapted in Chapter 3.

1.9 Thesis contributions

As previously mentioned, the thesis is dedicated to the design of robust networks where
the general objective is to propose a routing strategy that can adapt to uncertainty.
Since the dynamic routing strategy is generally difficult to compute and to imple-
ment, we would like to approximate it using routing strategies that can be computed in
polynomial-time. Hence, we should first study the approximability/inapproximability
of dynamic routing. Then, we study new affine and multi-static routing strategies that
can approximate dynamic routing in a reasonable way. The contributions of the thesis

are therefore mainly on approximability and algorithmic approaches.

1.9.1 Inapproximability results in the undirected case

Chapter 2 is dedicated to dynamic routing in undirected graphs. The main contributions

are new inapproximability results.

* We first prove that the robust network design problem with minimum congestion
cannot be approximated within any constant factor. The reduction is based on
the PCP theorem and some connections with the Gap-3-SAT problem [Arora and
Barak (2009)]. The same reduction also allows to show inapproximability within
Q(log %) where A is the maximum degree in the graph and 7 is the number of

vertices.

* Using the ETH conjecture [Impagliazzo and Paturi (2001), Impagliazzo et al.

(2001)], we prove a Q(lolg%m) lower bound for the approximability of the ro-
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bust network design problem with minimum congestion. This implies that the
well-known O(logn) approximation ratio that can be obtained using the result
in [Récke (2008)] is tight.

* We show that any a-approximation algorithm for the robust network design prob-
lem with linear costs directly leads to an a-approximation for the problem with
minimum congestion. The proof is based on Lagrange relaxation. We obtain that
robust network design with minimum congestion can be approximated within

O(logn). This was already proved in [Ricke (2008)] in a different way.

* An important consequence of the Lagrange-based reduction and our inapprox-
imability results is that the robust network design problem with linear reservation
cost cannot be approximated within any constant ratio. This answers a long-

standing open question stated in [Chekuri (2007)].

* Another consequence is a new proof for the existence of instances for which
the optimal static solution can be €2(logn) more expensive than a solution based
on dynamic routing, when a linear cost is minimized. This was already proved
in [Goyal et al. (2009)] in a different way.

* We show that even if only two given paths are allowed for each commodity, there
is a constant k£ such that the robust network design problem with minimum con-

gestion or linear costs cannot be approximated within .

1.9.2 Approximability and inapproximability results in the directed case

Chapter 3 is dedicated to dynamic routing in directed graphs. The main contributions

are a new approximation factor and some inapproximability results.

* We prove that compared to dynamic routing, when static routing is considered,
congestion is multiplied by a factor less than or equal to v/8k where k is the
number of commodities. This implies that the gap between static routing and dy-
namic routing for the congestion minimization problem is O(v/k) = O(n) where
n is the number of nodes. The best-known previous bound is O(\/Eni logn) and
was given by [Hajiaghayi, Kleinberg, Riacke and Leighton (2007)]. The same
/8 bound applies to the linear reservation cost problem. The new upper bound
matches the Q(v/k) lower bound of [Azar et al. (2003)] and the (n) lower bound
of [Ene et al. (2016)].

* We introduce a more general version of the two robust network design problems
(related to congestion and linear cost) by considering some flow restrictions (each

commodity h can only be routed through edges inside a given subset F},). The
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upper bound v/8k = O(n) is still valid and the static versions of the problems can
still be solved in polynomial-time. We show some strong inapproximability re-
sults for this problem. More precisely, we prove that unless NP C SUBEXP,
neither minimum dynamic congestion nor optimal linear cost can be approxi-
mated within a ratio of kslosh (resp. niegiosn ) for some constant c. Making use
of a weaker assumption, we get that unless NP C () P, there is no approximation
within a factor of 216" ¥ (resp. 2°¢' “™) for any ¢ > 0. This result improves
logn

the Q(w) inapproximability bound of we proved for the undirected case that

also applies to the directed one.

1.9.3 Affine routing

In Chapter 4 we study the affine routing method and propose several strengthening of

the original scheme. The main contributions are given below.

* We study the relationship between the original affine routing formulations [Ouorou
and Vial (2007), Poss and Raack (2013)], namely the node-arc and the arc-path
formulations. We show that the node-arc formulation can strictly dominate the
arc-path formulation. We also derive a natural cycle-based formulation equiva-

lent to the node-arc formulation but that uses less variables and constraints.

* We introduce two ways of relaxing the flow conservation constraints in the node-
arc formulation. We prove that this leads to feasible solutions and then we see

that they can both strictly dominate the standard node-arc formulation.

* We propose a cut based formulation as an improved solution over both relaxed-
flow conservation formulations. However we show that, unless P = NP, it

cannot be solved in polynomial-time.

* We combine the two relaxed-flow conservation formulations using an extended
graph. We prove that this formulation dominates both relaxations and that it can

be solved in polynomial-time.

* To drastically reduce the size of models and consequently the solving times, we
present variants of the formulations based on the aggregation of different flows
having the same source and/or sink in the node-arc formulation. Moreover, we

show that this can also improve the cost of the solutions.

* We numerically test the different formulations that can be solved with polynomial-
time algorithms after a reformulation using a classical duality-based method. We
compare the solutions and execution times for two polyhedrons, two topologies

and two objective functions.
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1.9.4 Multi-static routing

In Chapter 5 we introduce a new multi-static approach. The contributions are summa-

rized as follows.

* Instead of covering the whole polytope D by polyhedral subsets, we only need
that the convex hull of some polyhedral subsets cover the polytope. This leads
to a natural choice of polyhedral subsets consisting of faces of the polytope. A

static routing is then considered for each subset.

* One possibility to use our new multi-static approach is to take all faces of the
polytope D having some dimension. We show that in some cases we only need a

tiny fraction of the faces to cover the polytope D by their convex hulls.

* We numerically tested our new approach.
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CHAPTER 2

Robust network design problem in undirected graphs

In this chapter we present our theoretical study of some variants of the robust network
design problem in undirected graphs under a general polyhedral set given as input. As
mentioned in Chapter 1, polynomial-time algorithms to compute optimal static routing
(with respect to either congestion or linear reservation cost) have been proposed [Ap-
plegate and Cohen (2003), Azar et al. (2003), Ben-Ameur and Kerivin (2003, 2005)]
based on either duality or cutting-plane algorithms. Additionally it is known from a
result attributed to A. Gupta (c.f. [Chekuri (2007)]) that the optimal solution of [ing,
cannot be worse than O(log n) times the cost of the optimal solution of lingy,. It was
also known that this problem is N P-hard in directed graphs [Gupta et al. (2001)] and
in undirected graphs [Chekuri et al. (2007)]. Despite the consequent amount of results
related to robust routing, there was still a wide gap between between the best approxi-
mation algorithm and inapproximability lower bounds for the dynamic routing variants.

Some of the open questions that had some interest for the scientific community (see,
e.g. [Chekuri (2007)]) are recalled below.

* Is it possible to obtain a better approximation ratio than O(logn)?
* Is it possible to obtain a constant approximation?
* Isitpossible to obtain a polynomial-time approximation scheme for this problem?

In this chapter we will provide some insights on the approximability of the dynamic
routing variants of robust network design. More specifically, we will prove the follow-

ing results:

* Unless P = NP, cong,, cannot be approximated in polynomial-time within any

constant factor.

* Unless the ETH conjecture is false, there is a lower bound of Q(logn/loglogn)

on the approximability of cong,,,.

* Given an oracle that computes an « approximate solution for lingyy, it is also pos-

sible to compute an « approximate for cong,,, by making a polynomial number
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of calls to the oracle and in polynomial-time. This implies that the inapproxima-

bility results we proved for cong,, also applies to lingy,

Those results settle the approximability status of cong, , and lingy, up to a lower
order factor. We also conducted a theoretical study of the path restricted problem (1.3.2)
under dynamic routing for which no complexity results where known previously. If one
path per commodity is given then the dynamic routing problem can be trivially solved
in polynomial time. Therefore, one may wonder whether the problem is still easy to

solve when the number of possible paths is lower than some constant. In other words:

* Isit possible to a find polynomial-time algorithm for this problem when the num-

ber of possible (and given) paths is less than or equal to a constant?
However, the following result we proved answers this question by the negative:

* Even if the number of paths per commodity is at most 2 (i.e., |Py| < 2), there
is a constant ¢ > 1 under which this problem cannot be approximated (unless
P=NP).

2.1 Inapproximability under some constant factor ¢ > 1

In Lemma 2.1.1, we will prove that it is NP-hard to distinguish between instances where
congy,,(D) is less than or equal to 1 and those where the cut congestion cong,,, (D) is
greater than or equal to 1 + p for some constant p > 0.

Given a 3-SAT instance ¢, val(p) denotes the maximum proportion of clauses that
can be simultaneously satisfied (thus ¢ is satisfiable when val(p) = 1 ). We will con-
sider polytopes D that can be expressed through linear constraints and auxiliary vari-
ables &, i.e., D = {d € R"|Ad + B¢ < b} where A and B are matrices of polynomial
size (the maximum of the number of columns and the number of rows is polynomially
bounded). Notice that it is important to consider polytopes that can be easily described
(otherwise the difficulty of solving cong,,, would be a consequence of the difficulty of

describing the polytope).

Lemma 2.1.1. For 0 < p < 1, there is a polynomial-time reduction from a 3-SAT

instance ¢ to an instance T = (G, ¢, H, D) of cong,,,,:
* Ifval(p) < 1 — pthen cong,,(T) <1
* If ¢ is satisfiable then cong,,, (T) > cong,,(Z) > 1+ p.

Furthermore,

> >

V(G)], [E(G)

all O(m) where m is the number of clauses of .

H| and the size of the matrices A and B defining D are
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Proof. Given a 3-SAT instance ¢ with m clauses, we build an instance of cong,, as
follows. We consider two nodes: a source s and a destination t. Then, for each i =
1,...,m we create a path form s to ¢ containing three directed edges e; ; of capacity
1 for j = 1,2, 3 corresponding to the ¢« — th clause of ¢. For each: = 1,...,m and
Jj = 1,2,3, H contains a commodity h; ; with the same source and destination as edge
e; ;. We also add a commodity h,; from s to t. The polytope D is defined as follows.
We set dy,, = p - m. For each literal [ (i.e. a variable or its negation) of the 3-SAT
instance o we add an auxiliary variable &;. Intuitively & = 1 will correspond to setting
the literal [ to true. For each variable v, we add the constraint &, + -, = 1 in addition
to non-negativity constraints , > 0 and -, > 0. Foreach: =1,...,mand j = 1,2, 3,
we consider the constraint dj, ; = &, . where [; ; is the literal appearing in the i — th
clause in the j — th position. Observe that the size of D is O(m). The number of nodes,
edges and commodities are also O(m).

Consider first the case val(¢) < 1 — p. The set of extreme points of D is such
that the ¢ variables take their values in {0, 1}. The maximum dynamic congestion is
attained for a demand vector of this form. Let d be such a demand vector and consider
the corresponding solution of the 3-SAT instance . We route all demands dy,, ; on ¢, ;.
dp,

equal to 0 and therefore one unit of flow of the commodity %, can be routed on the

If for some 7 = 1, ..., m the ¢ — th clause is false, then the demands dj, dp, , are

i,10 Yhi2o

path (e; 1, €;2, €; 3) with congestion less than or equal to 1. Since val(¢) < 1 — p, there
are at least m - p such indices 1 (i.e., false clauses) and therefore the demand dj,, , can
be routed with a congestion less than or equal to 1.

We now consider the case where ¢ is satisfiable. Let d be the demand vector cor-
responding to a truth assignment satisfying ¢. For each i = 1,...,m, let j(i) be the
position of a literal set to true in the ¢ — th clause. Therefore we have dj,, ,, = 1 for all
i =1,...,m. Consider the cut C' = {e; j;;y|i = 1,...,m}. C intersects the paths related
to the m demands dy, ,,, of value 1 in addition to demand dj,, of value m - p. The
total capacity of this cut is m while the sum of demands belonging to C'is m + m - p.

Therefore the congestion of this cut is % =14p. ]

2.2 Inapproximability in undirected graphs

Theorem 2.2.1. Unless P = N P, the minimum congestion problem cannot be approx-
imated with a polynomial-time algorithm within any constant factor even if D is given
by {d : Ad + B1 < b} whose size is polynomial bounded by |V (G)]|.

This theorem will be an immediate consequence of NP hardness of the gap-3SAT

problem and Lemma 2.2.1
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Fig. 2.1 G| and GG,

Lemma 2.2.1. For every r € N there is a polynomial-time mapping from a 3-SAT

instance to an instance I, = (G, ¢,, H,, D,.) such that:
* val(p) < p = cong,,,(I,) < 1L

* val(p) =1 = congy,,(Z,) > 1+r(1 - p)

V(@) [E(G)

all O(m<"), for some constant c, where m is the number of clauses of .

Furthermore, H| and the size of the matrices A and B defining D are

> >

Proof. For r = 1 we take the instance I; = (G4, 1, Hi, D1) constructed in Lemma
2.1.1, in this instance we define two special nodes s; := s and ¢; := s (see the proof of
Lemma 2.1.1). For r > 2, having constructed I,y = (G,_1, ¢,_1H,_1, D,_1) with two
special nodes denoted s,_1, t,_1, we recursively build an instance I, = (G, ¢, H,, D,.)
as follows. We construct the graph G,., by taking the graph GG; and replacing each edge
by a copy of the graph G,_; denoted by G:i 1- Each copy G:,Z , contains a node s,_;
that is identified with s(e; ;) and a node ¢,_; identified with ¢(e; ;) (see Figure 2.1). All
commodities related to Gfi 1 (belonging to H,_1) are also considered as commodities
of H,. Let us use d*/ € R*—1 to denote the related demand vector. .. also contains a
non-negative commodity A, constrained by dj,, < m’"(1—p). Thus |H,| = 1+ 3m x
|H 1]

We are going to build an uncertainty set D, as a coordinate projection of a higher-
dimensional polyhedron =,, involving demand variables in addition to auxiliary non-
negative variables ; related to literals, and also auxiliary variables Mﬁ | related to Gfi 1
and the description of H,_;. We gradually explain the construction. For each variable
v of the 3-SAT formula ¢ we add the constraint §, + -, = 1. And fore; ; € E(Gy),

we impose the following constraint:
d” € &, Doy :={&,,do|do € Dr1} (2.1)

Let us explain how this can be expressed with linear constraints. Without loss of
generality we can suppose that D,_; is given as D,_; = {d : A,_1d + B,_1¢,_1 <

b,_1} and this representation includes (among others) non-negativity constraints of all
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variables in addition to the upper bound constraints d, < d;'** where d};'** = max dp,.
€Dy

Then by writing A, _1d"’/ + B, 19" < &, b._;, we can ensure that §, . = 0 implies
d“ = 0 (because of the upper bound constraints), while &, > 0 leads to ﬁd” €
D, 1. In particular when §;, . = 0, from outside, the whole subgraph corresponding to
Gfﬁ | acts like a single edge of capacity m” L.

We observe that all extreme points of =, are such that { € {0,1} forl € L. To
verify that, we first recall that constraints (2.1) are equivalent to d*/ € &, ; Dr—1 (in this
way, the vectors wfi , can be ignored).

Second, let £, be the set of literals appearing in positive form. We observe that

variables & for [ € L, are pairwise independent. Only variables d*/ such that ei-

ther I;; = [ or l;; = —l depend on & since d*/ € &D,_; in the first case and

d" € (1 — &)D,_; in the second case. This immediately implies that given some ar-

bitrary real vectors ¢; ; and f, minimizing 3 gl ;A" + Y fi& is equivalent
i=1,.,m;j=123 leLy

to minimizing > & | fi+ >, min ¢/, dY — Y min g¢/;d” | subject
leLy i,j:ls, ;=1 47 €Dr—1 i,jil; =1 @7 E€Dr 1

to 0 < & < 1. Itis then clear that there is an optimal solution such that &; values will
be either 0 or 1. Since this holds for an arbitrary linear objective function, we get the

wanted result about extreme points.

Let us now show that val(p) < p = cong,,,(Z,) < 1. Assume that val(p) < p.
We prove by induction that the congestion of Z, is 1. Suppose that this is true for some
r—1.1f¢&,, =&,, = &,, = 0 for some 7, a flow of value "' can be routed between
s, and ¢, by sending a flow of value 1 on each edge of G;ﬂ , for 5 = 1,2,3. Since
val(yp) < p, there are necessarily at least m(1 — p) such 4, thus we can send the whole
demand m”~'m(1 — p) = m"(1 — p) this way. For the indices i, j such that §;, . = 1, by
the induction hypothesis (cong,,,,(Z,—1) < 1), the demands inside G’ | can be routed
without sending more than one unit of flow on each edge of G,” ;.

Since ¢ is satisfiable, there is a truth assignment represented by ¢ variables (the
auxiliary variables) such that for each i = 1,...,m there is a j(i) such that §;, = 1.
By considering the graph G:i (f ) and using the induction hypothesis, we can build a cut
6(C!_,) separating the node s(e; ;;)) and ¢(e; ;(;)) and containing m”~' edges. We also
build a demand vector d*7() € D,_; such that the sum of demands traversing the cut
is greater than or equal to m" (1 + (r — 1)(1 — p)) (still possible by induction). By
taking the union of these m disjoint cuts we get a cut 0(C,.) that is separating s, and ¢,
having the required number of edges. A demand vector d can be built by combining the
vectors d*/() and the demand d},,, taken equal to m" (1 — p). Since the demand from s,
to ¢, is also traversing the cut, the total demand through §(C,.) is greater than or equal

tom”(1—p)+mm™ Y1+ (r—1)(1—p)=m"(1+7r(1l—p)).
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Notice that to show that all traffic vectors of D, can be routed with congestion 1,
we considered demand vectors corresponding with {0, 1} £ variables. The result shown
above about extreme points is useful here since it allows us to say that each extreme
point of D, can be routed with congestion less than or equal to 1 implying that each

demand vector inside D, can also be routed with congestion less than or equal to 1.

Let us now show that val(p) = 1 = cong(Z,) > 1+ r(1 — p). We are going
to use induction to build a cut §(C,.) where C, is set of vertices of V' (G,) containing s,
and not containing ¢,. The number of edges of the cut will be m" and each edge has a
capacity equal to 1. We also show the existence of a demand vector d € D, such that
the sum of the demands traversing the cut is greater than or equal to m” (1 + (1 — p)).
This would show that there is at least one edge that carries at least 1 + (1 — p) units of

flow.
O

Lemma 2.2.1 can be further exploited in different ways since there are many possi-
ble connections between the value 1+ 7 (1 — p) and the characteristics of the undirected
graph built in the proof of the lemma. Observe, for example, that by a simple induction
we get that the number of vertices |V (G,)| = 2 + 2m( ) L leading to |V(G,)| ~
2 x 3""'m" (when m goes to infinity). We also have A(G, ) equal to m” where A(.) de-
notes the maximum degree in the graph. Consequently, log( ‘VEG”' ) ~ rlog 3+log2/3.
Then by taking any constant & such that k£ x log 3 < (1 — p) where p is the constant in
the PCP Theorem we get a lower bound on the approximability ratio. This is stated in

the following corollary.

Corollary 2.2.1. Under conditions of Theorem 2.2.1, for any constant ¢ < %, it is not

possible to approximate the minimum congestion problem in polynomial-time within a

ratio of clog Agg;‘

221 A Q(lol;ﬁj ) approximability lower bound

To get an approximability lower bound, we will use the well-known ETH conjecture

that is recalled below.

Conjecture 2.2.1 (Exponential Time Hypothesis). [Impagliazzo and Paturi (2001), Im-
pagliazzo et al. (2001)] There is a constant § such that no algorithm can solve 3-SAT

instances in time O(2°™), where m is the number of clauses.
Let us use n to denote the number of vertices of the graph.

Theorem 2.2.2. Under Conjecture 2.2.1, no polynomial-time algorithm can solve the

logn )

minimum congestion problem with the approximation ratio Q(log log7 )"
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Proof. The combination of PCP Theorem and ETH Conjecture 2.2.1 implies that dis-
tinguishing between 3-SAT instances such that val(y) < p and val(p) = 1 cannot be
done in time O(2™") for some constant 3 > 0 (a slightly better bound is O (2m/'0&" ™)
for some constant ¢, but this will not help us to improve the lower bound of Theorem
2.2.2).

Suppose that there is an algorithm that solves the minimum congestion problem
with an approximation factor «(n) and a running time O(n®) for some constant c;.
Given a 3-SAT instance and a function  : N — N we can construct a minimum con-
gestion instance Z,(,,) as in Lemma 2.2.1 in time O(me"(™) and where the number
of vertices of the instance is m”(™. Then by running the approximation algorithm for

minimum congestion we get a total time of O(m®"(™) where c3 = max{cy, c;}. Thus

mbB
c3logm

by choosing r(m) = we get an algorithm that runs in time O(2™). And if the
approximation factor a(n) is small enough, that is if a(m"™) < 1 + (1 — p)r(m) for
a big enough m, we get an algorithm solving Gap-3-SAT and thus contradicting Con-

jecture 2.2.1. This is the case for ¢4

losn_ for some constant ¢;. To see this, we can
loglogn

observe that: ;
L+(1=p)r(m) _ HO-P) Fhogm

r(m) - B
a(m ) ¢4 B logfmiclgg c3

~ 5(102”). By taking ¢y < (1 — p) we get the wanted

inapproximability result. ]

2.3 From minimum congestion to linear cost

In this section we are going to prove that given an oracle that computes [ingy, within
an approximation factor of oz we can construct an « approximate solution for cong,,
problem. A consequence of this result is that inapproximability results for cong,,, can

be directly transfered to [in4yy.

Proposition 2.3.1. Let 7' = (G, \,’H, D) and assume that ling,(Z") < o ling,(Z') for
some a > 1 and for any cost vector X € Rt Then cong,,(I) < a cong,,(T) where
T = (G,c,H,D) for any capacity vector ¢ € Rf. Moreover, any [-approximation

(B = 1) for lingy, leads to a 3-approximation for cong .

Given any A > 0, the robust network design problem with linear costs is simply the
following

min M u. (2.2)
uelU (D)

Where U(D) C RE is the set of capacity vectors such that all demand in D can be
(dynamically) routed without exceeding the capacities.

Assume that there exists a number o > 1 such that Problem (2.2) can be solved in
polynomial-time within an approximation ratio . More precisely, we have a polynomial-

time oracle that takes as input a non-negative linear cost A € RF(®) and outputs a
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u®(X\) € U(D) such that NTu(N\) < ATu®?()\) < a Tu()\) where u()\) € U(D) is the
optimal solution of (2.2).

Recall that the congestion problem is given by

ue < c.f3,Ve € E(G)
uel(D)

where § and u are optimization variables.
Let us consider a Lagrange relaxation of (2.3) by dualizing the capacity constraints

and using A for the dual multipliers. The dual problem is then given by max min [+
A>0 B,uclU(D)

> een(@) Ae(te — Bee) (where 3 is an optimization variable). If A is chosen such

> Aece # 1, then the value of the inner minimum would be —oc. Thus in an opti-

mal solution, we will always have »_ A.c. = 1. The problem is then equivalent to:

A>0

2 Aece= EEE(G > Aece=1
e€cE(G) ecE(G)

i Aetle = Mu(N). 2.4
Since U(D) is polyhedral and all constraints and the objective function are linear,
there is no duality gap between (2.3) and (2.4).

Observe that (2.4) can be expressed as follows:

glggﬁ (2.52)

B< Y A, Yu € U(D) (2.5b)
e€E(G)

1= ) \c (2.5¢)
e€E(G)

We are going to approximately solve (2.5) using a cutting-plane algorithm where in-
equalities (2.5b) are iteratively added by using the a-approximation oracle. Let (/5', \')
be a potential solution of (2.5), we can run the a-approximation of robust network de-

sign problem (2.2) with the cost vector \’ to geta solution u®(\'). If 3’ > >~ ALuf(\)
ecE(Q)
we return the inequality 5 < > A.u%()\'), otherwise the algorithm stops and returns
e€E(G)
(B, N). We know from the separation-optimization equivalence theorem [Grotschel

et al. (1988)] that (2.5) can be solved by making a polynomial number of calls to the
separation oracle leading a globally polynomial-time algorithm. Notice that this hap-

pens if the separation oracle is exact. In our case, the oracle is only an approximate one,
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implying that the cutting plane algorithm might be prematurely interrupted before ob-
taining the true optimum of (2.5). Observe however that this implies that the computing
time is polynomially bounded. Let ( 8, 5\) be the solution returned by the cutting-plane
algorithm. Let (5*, \*) be the true optimal solution of (2.5). The next lemma states that

the returned solution is an a-approximation of the optimal solution.

Lemma 2.3.1. The cutting-plane algorithm computes in polynomial-time a solution i
satisfying:
B*<B<ap (2.6)

Proof. Observe that 5* = )\*Tu()\*). Moreover, since (2.5) is equivalent to (2.4), we
get that A*Tu(\*) = B* > ATw()\). From the approximation factor of the oracle, one
can write that A\Tu®(\) < aATu()\). Using the fact that no inequalities can be added
for (3, ), we get that 3 < ATwu()). Finally, since (5*, \*) is feasible for (2.5), we
obviously have B> B Combining the 4 previous inequalities leads to (2.6). [

The above lemma has many consequences.

Theorem 2.3.1. Unless P = N P, the robust network design problem with linear costs
cannot be approximated in polynomial-time within any constant ratio. Unless the ETH
conjecture is false, the robust network design problem with linear costs cannot be ap-

proximated within Q(lolgol%).

Proof. The result is an immediate consequence of Theorems 2.2.1, 2.2.2 and Lemma
2.3.1. O

The theorem above answers a long-standing open question of [Chekuri (2007)]. All
other inapproximability results proved for the congestion problem directly hold for the
robust network design problem with linear cost.

Another important consequence is that the congestion problem can be approxi-
mated within O(logn). This result was already proved in [Ricke (2008)] using other
techniques. In our case, the result is an immediate consequence of the O(logn)-
approximation algorithm for the robust network design problem with linear cost pro-
vided by [Gupta (2004), Gupta and Konemann (2011)] and fully described in [Chekuri
(2007), Goyal et al. (2009)].

Theorem 2.3.2. [Riicke (2008)] Congestion can be approximated within O(logn).

Notice that Theorem 2.2.2 tells us that the ratio O(log n) is tight.
Starting from the results of [Maggs et al. (1997), Bartal and Leonardi (1999)] show-

ing the existence of instances for which the ratio (7% is Q(logn), one can also use
dyn
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the reduction above to prove, differently from [Goyal et al. (2009)], the existence of

instances for which the ratio g is Q(log n) where a linear cost is minimized.
yn
Theorem 2.3.3. [Goyal et al. (2009)] There are instances for which lll’r’f—;’“ is Q(logn).
Iyn

Proof. Similarly to ¢(D) defined when dynamic routing is considered, let U, (D) be
the set of capacity vectors for which there exists a static fractional routing satisfying
all demand vectors of D. Uy, (D) is obviously a polyhedral set. The mathematical
programs (2.3), (2.4) and (2.5) can be considered in the same way: we only have to
replace U(D) by Uy, (D). All results stated above about the equivalence of (2.3), (2.4)
and (2.5) still hold in the static case. Consider an instance from [Maggs et al. (1997),
Bartal and Leonardi (1999)] for which % is Q(logn). cong,,, is computed from
(2.5). Then there is at least one vector A** > 0 and one vector u*® € Uy, (D) such that
CONg, = D ocpiey Ao ug and 3 ) Adce = 1. This implies that u** is an optimal
solution of the linear problem where we minimize ) E(G) A3y, under the condition
u € Uy (D). We consequently have cong,, = ling, for the considered instance.

Let u’ € U(D) be an optimal solution minimizing the linear cost } . o) A¢*ue under

dynamic routing. In other words, lingy, = >

e E(G) A/ when the coefficients of the

objective function are A*®. Moreover, we know from (2.5) that cong,,, is obtained by

maximizing through A, implying that cong,,, > Y e B(G) Ayl = lingy,. Using that

=& jg O(logn), we get that 111‘:77” is Q(logn) for the same instance where the linear
yn

conggy,
objective function is defined through \*2. ]

Although we consider only undirected graphs in this section, proposition 2.3.1 can

be proved also for directed graphs by the same proof without modifications.

2.4 Inapproximability with restrictions on a set of given paths

In this section we consider the path restricted problem presented in the introduction
1.3.2 where for each commodity h € H we are given a set of path P, going from s(h)
to t(h) in input. And the flow of the commodity must be routed along only those paths.

First, observe that in the proof of Lemma 2.1.1, the minimum congestion instances
built there are such that some commodities can be routed along many paths. For exam-
ple, in graph G; (Figure 2.1), commodity h, (between s and ¢) can use up to m paths.
Second, consider an instance of the minimum congestion problem where only one path
is given for each commodity. Then computing the minimum congestion is easy since

we only have to compute max > dj, where H, denotes the set of commodities routed
€L hene

through e. The congestion is just given by max -+ max dp,.
& & J & yeeE(G) Ce deD hGZHe h

Combining these two observations, one can wonder whether the difficulty of the

congestion problem is simply due to the number of possible paths that can be used by
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Fig. 2.2 The graph G’ related to the proof of Theorem 2.4.1

each commodity. We will show that the problem is still difficult even if each commodity

can be routed along at most two fixed given paths.

Theorem 2.4.1. Unless P = NP, for some constant ¢ > 1, minimum congestion
cannot be approximated within a ratio c even if each commodity can be routed along at

most two given paths.

Proof. The proof is a simple modification of the proof of Lemma 2.1.1). We are going
to slightly modify graph GG in such a way that at most 2 paths are allowed for each
commodity. Given a 3-SAT formula ¢ with m clauses, we construct G', H', D’ as fol-
lows. We first create two nodes s; and ¢; and an edge e, between s; and t; of capacity
mp (p is the constant in PCP theorem). Then for each clause index + = 1,...,m, as
in Lemma 2.1.1, we create 3 consecutive edges ¢; ; (j = 1,2,3) and a commodity h; ;
between s(e; ;) and t(e; ;) that is allowed to be routed only through the path using edge
e; j. We also add one edge between s(e; ;) and s; and one edge connecting t; and ¢(e; 3)
of infinite capacity and a commodity h;, between s(e; 1) and t(e;3) with a demand
dn,, = 1. h;p is allowed to be routed only through the path P; containing the edges
(€i1, €9, €:3) and the path going through s, ey and ¢; (see Figure 2.2). We consider
auxiliary variables ; for each literal I. We add constraints §; + & = 1 and dj, ; = &, ;.

If val(p) < p there are at least m(1 — p) commodities h; o that can be routed on
the paths P; and the remaining mp can be routed on the edge ey. This implies that each
extreme point of D’ can be routed with congestion < 1. Notice that the observation
made in the proof of Lemma 2.1.1 about extreme points is still valid here: extreme
points correspond to 0 — 1 values of the variables &;.

If val(p) = 1, then there is a cut and a demand vector d (corresponding to the truth
assignment satisfying () such that the capacity of the cut is mp + m and the demand

that needs to cross the cut is 2m. There is consequently at least one edge of congestion

2m
(1+p)m

_ 2 . 2
greater than or equal to = T By taking ¢ < T, We get the wanted result. [

Finally, observe that the result above can also be stated for the linear cost case using

again the Lagrange based reduction of the previous section.
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Corollary 2.4.1. Unless P = NP, for some positive constant k, robust network design
with linear costs is difficult to approximate within a ratio k even if each commodity can

be routed along at most two given paths.
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CHAPTER 3

Robust network design problem in directed graphs

In the previous chapter we have seen some results related to inapproximability of the ro-
bust network design problem in undirected graphs. In this chapter, we consider directed
graphs. We first consider the static/dynamic gap. As already mentioned in Chapter 1,
an upper bound of O(v/kn'/*logn) from [Hajiaghayi, Kleinberg, Ricke and Leighton
(2007)] has been proven for the static to dynamic gap. On the other hand, a lower bound
of Q(\/E) [Azar et al. (2003)] and [Ene et al. (2016)] is also known. The main question

we are focusing in this chapter is the following.
* Is it possible to improve the upper or the lower bound on the static/dynamic gap?

To answer the question, we first tried to obtain an improved upper bound by exhibit-
ing simple classes of demand polytopes where the static routing solution is as good as
an optimal dynamic routing solution. Then we approximate an arbitrary demand poly-
tope by those simpler polytope. We found two classes of polytopes having this property:
down monotone boxes and down monotone simplices. We can obtain an upper bound
of k on the static/dynamic gap by approximating the demand polytope by a box or by
a simplex. The class of demand polytopes with the worst approximation by a simplex
are the boxes and conversely the polytopes with the worst approximation by a boxes are
the simplex. This suggested that by using the best of those two bounds we might obtain
an improved upper bound on the static/dynamic gap. In the special case of demand
polytopes that remain invariant by permutation of the commodities this strategy leads
to a proof that the static/dynamic gap can be at most v/k. However, as we will see, this
strategy does not permit to obtain an upper bound better than g in general.

Nonetheless, the insights and intermediate results gained during this first attempt
proved to be crucial ingredients for proof of the O(\/E) upper bound for the general
case. The next step to improve the upper bound was to reinterpret a result of [Bertsimas
and Goyal (2013)] in geometric terms. This result can be reformulated as follows: “An
arbitrary down monotone polytope D can be approximated by a product of a box and
a simplex within a factor of O(v/k) where k is the dimension of the polytope”. Using
this result we were able to prove that the congestion of an optimal solution under static

routing cannot worse than O(\/E) times the congestion under a dynamic routing. This
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upper bound on the static dynamic gap can also be proved in the same way for the
variants of the problem with flow restrictions presented in Chapter 1 in Section 1.3
(except for the tree routing restriction).

In the second part of the chapter, we investigate the approximability status of the
edge restricted problem presented in Section 1.3.3. Since this problem can be seen
as a generalization of the robust network design problem without flow restriction, the
Q(loglog n/logn) lower bound proved in the previous chapter also holds for this prob-
lem. On the other hand the best approximation factor for this problem is the O(\/E)
that we will prove in this section. Despite those results, there were still a wide gap
between those two bounds. To obtain better inapproximability lower bounds, we will
introduce a product between edge restricted instances. This will allow us to prove inap-
proximability results for this edge restricted problem, specifically we are going to prove

the following.

e Unless NP C QP (resp. NP C SUBFEXP) this problem cannot be approxi-
mated within a factor better than Q(2'°8' %) for any e > 0 (resp. Q(k®eler ) for

some ¢ > 0).

3.1 Preliminaries

In this section, we recall the formal definitions of the robust network design problems
considered in this chapter. The notation introduced in Chapter 1 is used.

Remember that an instance Z of the congestion minimization problem is denoted
by Z = (G,¢,H,D), while cong(z,d) still denotes the maximum congestion over

all links e € E, i.e. cong(z,d) = max > ”Thc—ed’ Two problems can be consid-
el pen
ered depending on whether the routing can be adapted to each demand vector d in

D or if only one fixed routing x € X can be used. The dynamic congestion is for-
mally defined as: cong,,,(Z) = max gél)l(l cong(x,d). In the second case, the rout-
ing is said to be static (or oblivious). This static congestion is formally defined as:
cong,(Z) = gél)l(l max cong(x,d). When clear from the context, we might use notation
cong,,, (D) and cong, (D) to insist on the dependency on D when all other parameters
of the instance Z are fixed.

In the same way, the robust linear reservation problem is defined where a positive
cost vector (A.)ecp is given, and we aim to reserve a capacity u. > 0 on each link e

such that ) Aot is minimized and ) @ .d), < u, holds for any demand vector d.
heH
An instance can then be denoted by (G, A\, H, D). We also have two variants depending

on routing. The optimal cost is then denoted by lingy,(Z) (or lingy, (D)) and ling,(Z) (or
linga(D)).

37



For concise notation, the four variants of the robust optimization problems consid-
ered in this chapter will simply be denoted by lin,, lingy,, congg, and cong, .

All previous definitions still make sense even when D is not a polytope. However,
the next lemma tells us that the optimal objective value does not increase when the
uncertainty set S is replaced by its convex-hull (this lemma can be considered as a

folklore result that is implicitly used in many robust optimization papers).

Lemma 3.1.1. Ler S C R be a compact set. Then cong,,(S) = cong,, (conv(S)),
congy,,(S) = cong,, (conv(8S)), ling,(S) = ling, (conv(S)), and lingy,(S) = lingy,(conv(S)).

Proof. Since S C conv(S), we have cong, (S) < cong, (conv(S)) and cong,,(S) <
cong,y,(conv(S)). The same holds for the robust linear cost problem. Moreover,
given a static routing solution = and the corresponding reservation vector u, we have

> xpedn < u, for any d € S. Consider any point d’ of conv(S) written as d' =
heH

Y odes ad (ag > 0,3 . aq = 1). By multiplying the previous inequalities by oy

and summing them all, we get that ) x, .dj < u. implying that = and u are feasible.
heH
Therefore, we have ling,(S) = ling, (conv(S)). The proof can be easily extended to the

dynamic routing version and to the congestion objective function. O]

Let us now focus on the connection between the congestion problem and the linear
cost problem.

We know from from [Goyal et al. (2009)] (Proposition 1.5.1) that if the static to
dynamic ratio is less than or equal to o for the congestion problem, then the same
applies to the robust linear reservation problem.

A converse result is presented in Chapter 2 (Proposition 2.3.1). While the proof in
Chapter 2 (and [Al-Najjar et al. (2021)]) was given in the context of undirected graphs,
it can be repeated verbatim for the directed case.

To close this section, let us recall some notation and assumptions that will be used
in the rest of the chapter. The uncertainty set (i.e., the set of demand vectors) D is
assumed to be polyhedral and down monotone (i.e., if d € D, then d’ € D for any
0 < d < d). Let d™**(D) be the vector representing the maximum commodity values
(i.e., dj"**(D) = maxgep dp). We will naturally assume that d;"** > 0 for any h € H
since otherwise the commodity can just be ignored. When the polytope D is clear from
the context, we just write d™*" (instead of d™**(D)).

Let I, J be some set of indices. For a vector v € R’*/ and i € I we denote by v;,.
the vector w € R’ defined by w; = v; ;. Given aset X € R/ and A > 0, we denote by
AX the set {\z|xr € X}.
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3.2 Gap between static and dynamic routing strategies

We are going to prove Theorem 3.2.1 stating that compared to dynamic routing, when
static routing is considered, congestion is multiplied by a factor less than or equal to
/8k. This result improves the upper bound O(v/kn'/*log n) from [Hajiaghayi, Klein-
berg, Ricke and Leighton (2007)]. It implies that the gap between static and dynamic
congestion is O(v/k) = O(n). By combining Proposition 1.5.1 with Theorem 3.2.1,
we also obtain similar results for the minimization of a linear reservation cost, i.e., that
ling, (D) < V/8k.lingy, (D).

Theorem 3.2.1. cong,,, (D) < v/8k.cong,, (D). Therefore 018, D) — O (n).

congg, (D) —

To derive an upper bound for the ratio cong, (D) /cong,,, (D), our strategy first con-
sists in approximating the uncertainty set either by a box or a simplex where cong, (D) =
cong,, (D). While this method yields an O(k) upper bound, we obtain further improve-
ment by partitioning the set of commodities into two sets 41, 5 and considering a box
approximation for D; and a simplex approximation for D,, where D; and D, are re-
spectively the projections of D on R*t and R*2,

To prove Theorem 3.2.1, we first present some preliminary lemmas.

Lemma 3.2.1 states that if the uncertainty set D can be well approximated by another
set D’ for which cong, (D’) = cong,,(D’), then cong, (D) gives a good approxima-

tion of cong,, (D).

Lemma 3.2.1. Let D and D' be two compact subsets of R? and oo € R, such that
D' C D C oD’ and cong,,,(D') = cong,,(D'). Then cong,, (D) < a - cong,,, (D).

Proof. The proof of this lemma relies on two simple facts. The first one is that if we
scale the demand values by a factor «, then the congestion (either static or dynamic)
is also scaled by the same factor . The second fact is that cong,,, and cong, are
increasing in D. In other words, if D; and D, are two subsets of R’j such that D, C D,,
then cong,,(D1) < cong,,(Ds) and cong, (D1) < congg,(D2). Combining the two

facts, we can write the following:
cong, (D) < cong,, (aD') = a-cong, (D) = a-cong,,, (D) < a-congy,,(D) (3.1)

]

We now provide in Lemmas 3.2.2 and 3.2.3 two classes of polytopes, based on box
and simplex sets, for which cong, (D) = congg, (D).

For a vector d™** € R, let B(d™**) be the box set defined by {d € R?| 0 < d <
dmam}.

Lemma 3.2.2. Let D = B(d"*") for some d™** € R¥. Then cong,, (D) = cong, (D).
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Fig. 3.1 Approximation using boxes and simplices: example of a 2-dimensional demand
polytope D.

Proof. For a routing z € X and a demand vector d € D, we have cong(z,d) <
cong(z, d™**). Since d™** € D, it implies that max cong(x,d) = cong(x, d™**). Mini-
mizing both sides of the equality over x € X, we get that cong,,, (D) = Igél}(l cong(x, d™*).
We can also write that 1;%1? cong(z,d) < grgé cong(x, d™*"). Taking the maximum over
all d € D leads to congy, (D) = maxmincong(z,d) < gél/g cong(x,d™**). Since

deD zEX
d™** € D, the previous inequality becomes cong,, (D) = mi)rcl cong(x, d™*). O
xe

For a vector d € R¥, let A(d) be the simplex set whose vertices are the zero vector
and the k vectors de;, where e;, denotes the vector in Rf with a component of 1 for
commodity & and 0 otherwise. Formally, we have A(d) = conv ({dye,|h € D} U {0}).

Lemma 3.2.3. Let D = A(d™*) where d™*" € R¥. Then cong,,, (D) = cong,,, (D).

Proof. Assume that congdyn(D) has been computed and consider the obtained dynamic
routing. The extreme points of D are the demand vectors {d"*“e,|h € H} U {0}.
For each demand vector d}"*“e;,, we consider the flow z;,  representing its routing. Let
us build a static routing z just by routing each commodity % in accordance to z;, . By
construction, taking the extreme points of D, we have cong,,, ({d"**ep,|h € H}U{0}) =
cong,y, ({dy*“en|h € H}U{0}). By considering the convex-hulls and applying Lemma
3.1.1, we get that cong,,,, (D) = cong, (D). O

Let oy (D) = max > dfﬁ’éz (remember that d}"** = maxgep dy). It is then clear
€D hen h

that A(d™**) C D C ay(D)A(d™**). Consider the box B(d™**) and let a(D) be

the smallest factor « such that d™** /o belongs to D. In other words, ay(D) represents

the best approximation ratio that can be obtained through boxes. We obviously have

@B (d™**) C D C B(d™**). Figure 3.1 illustrates the approximations by boxes and
simplices for a 2-dimensional demand polytope D.
Since $B(d™*) C A(d™*) C D C B(d™*™), (D) is always less than or equal to

k. And by definition, o (D) is also less than or equal to k.
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It is easy to check that the upper bound k is reached since oy (B(d™**)) = k
and as(A(d™**)) = k. In other words, using box and simplex approximations with
the approach above, we cannot expect to prove a better upper bound for the ratio
cong, (D) /cong,,, (D) for arbitrary uncertainty sets.

A more refined strategy is to take the best of the two bounds a1 (D), as(D). The
next proposition states that a better bound is obtained if D is permutation-invariant (i.e.,

by permuting the components of any vector d of D we always get a vector inside D).

Proposition 3.2.1. If D is permutation-invariant then min{a; (D), a3(D)} < Vk.

dp
d;bnax .

Proof. Let d* be the demand maximizing max »
deD heH
dper = dp** for all h,h’ € H and d* can be chosen such that d; = dj, for all

* *

Since D is permutation-invariant,

d d
h,W € H. Consequently, we have oy (D) < kzz2%. Moreover, since 3 B(d™*) C
ho ho

dmaz *

D C B(d™**) we also have a(D) < —2—. Therefore, using notation x = —z%, we get
ho ho

that min{o, (D), a2(P)} < min{kz, 2} and x is such that 0 < z < 1. To conclude,

observe that max min{kz, 1} = V/k. O
0<z<1 r

One can wonder whether a general O(\/E) bound can be obtained by trying to find
a better upper bound for min{a; (D), as(D)}. The following example, on a specific
polytope D, shows that this is not possible. Let D be the product of a box B(d') of
dimension %/2 and a simplex A(d?) of the same dimension. Using the remark above
we know that a; (B(d')) = k/2 and ap(A(d?)) = k/2 implying that a; (D) > k/2 and
as(D) > k/2.

To overcome this difficulty, we are going to partition the set of commodities  into
two well-chosen subsets 7, and 5, then we approximate D; (resp. D,) defined as
the projection of D on R* (resp. R*2) using a simplex (resp. a box). The algorithm
used to partition the set of commodities is an adaptation of an algorithm of [Bertsimas
and Goyal (2012)] proposed in a different context. We will also slightly improve the
analysis of this algorithm (v/8k instead of 3v/k).

Let us start with Lemma 3.2.4 where we show how an approximation of cong,, in

D can be obtained from cong, using the approximations related to D; and Ds.

Lemma 3.2.4. Let H,, Hs be a partition of H and D, Dy be the projection of D on R*
and R™2. Suppose that for some o1, iy > 1 we have cong,, (D;) < alcongdyn(Dl) and

congsta(DQ) < Oé2congdyn(p2>’ then COl’lgSm(D) < (al + aQ)Congd)'n<D)'

Proof. We first show that we have cong, (D) < congg,(D;) + congg,(Ds). Let us
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denote &) (resp. X>) as the set of routing for the commodities in H; (resp. Hs) .

congy,(D) = minmaxcong(z, )

<min max cong(x,d") + cong(z,d?)
z€X dleDy,d?eDs

— : dl d2
e, R, cOnEn ) + gy cong(ea, &)

= min max cong(x1,d") + min max cong(zs, d?)
r1€X1 dleD, T2EX2 d2eDo

= Congsta(Dl) + Congsta(DQ)

We now prove the lemma: cong, (D) < congy,(D;)+congy,(D2) < ajcong,, (Dy) +
azcongy, (D2) < (a1 + ag)congy, (D). O

Let us now present Algorithm 1 that can be seen as a direct adaptation of the par-
titioning algorithm of [Bertsimas and Goyal (2012)] (Algorithm A, Figure 1) for our
dynamic routing problem. It has initially been introduced for the analysis of affine poli-
cies in a class of two-stage adaptive linear optimization problems. The main idea of
Algorithm 1 is to partition the set of commodities into two sets H; and H, and to pro-

duce a vector # € R* such that max > d,‘f% <k (i.e., ay(Dy) < vk for y > 0)
€D per, h
and 3, > d;'** for any h € H,. The returned vector (3 is built as a sum of at most Z

points of D where Z is the number of iterations of the algorithm. Since the vector %B
belongs to D, we deduce that as(Dy) < Z. We will show in Lemma 3.2.5 that 7 is
less than or equal to 2‘/7E leading to ap(Ds) < 2\/7E. Notice that ~y is equal to 1 in the
original algorithm of [Bertsimas and Goyal (2012)]. Let us describe more precisely the
different steps of Algorithm 1. At iteration i, H%, H denote the current partitions of
commodities while D¢, D} denote the projections of D on R*i and R*. A vector ' is
also defined and used to update H¢, H5. We start with H) = H, H3 = () and b° = 0.

If a1(D?) > vvk then we consider a traffic vector u' maximizing ) A
heHi™!

otherwise a partition is returned. The vector u* is then used to update b* (lines 5-7).

Observe that only the components related to commodities inside H} ™' are updated while

the others do not change. This means that the returned vector 5 = . u’ (line 19) is
1<i<Z

such that 3 > b7. The sets ! and H} are updated by moving each commodity i €
Hi ™ to Hy if b, > d"e® (lines 8-15). Notice that we always have H; C H*. Itis then
clear that when the algorithm stops, the obtained partition satisfies what is announced
above. The only fact that remains to be proved is that the number of iterations Z is
bounded by 2‘/7E.

Lemma 3.2.5. For any v > 0, the commodity set H can be partitioned in two subsets
H, Hy such that ay(Dy) < Wk and ay(Dsy) < %E where D1, Do are the projections
of D on R*t and R,
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Algorithm 1 Commodity partitioning algorithm (adapted from [Bertsimas and Goyal
(2012)])

1: Initialize i < 0, HY < H, H + 0,0° + 0
2: while o, (D}) > vvk do
3t it1

. _dn_

4 u' € arg rcrlleagh %: T

5: forallheH do

. o Ut ifheHT
' h bl 1 otherwise
: end for

g8 forallh € H!'do

9: if b}, > d"** then

10: Hi «— H\{h}

11: Hi «— HE U {h}

12: else

13: Hy — HH HE +— HE?

14: end if

15:  end for

16: end while
17: Z <+ 1, 7‘[1 FH%,%Q Fsz
18: B+ > u

1<i<Z

2f This can be done by slightly modifying

Proof. We only have to prove that Z <
the proof of Lemma 10 of [Bertsimas and Goyal (2012)].

We first argue that b7 < 2d7*® forall h € H. For h € H, leti(h) be the last iteration
number when i € H:. Therefore we have b ~' < dmaz. Also ui®) < dma= leading

to b;l(h) < QdZLaac. Now for ¢ > Z(h) we have bf = b}l = b;l( 1mply1ng that, hz;[ dzlay <
S

i—1 i—1 i
2k. Alternatively, > dm‘” =) z i d;ﬁm Z > d:nb(m: Z > i >

heH heH i= i=1heH i=1 hEHiil h

Z W'k = Z~yVk. Therefore we have that Zy\/k < > dm(w < 2k which implies that

heH
Z < % Since f is the sum of Z points in D, we have B(Eﬁ) C D. Moreover, the
projection 32 of 3 on R*2 satisfies Dy C B(/3?) and thus a(Dy) < %E O

To prove Theorem 3.2.1, we only have to take v = v/2, use Lemma 3.2.5, and then
invoke Lemma 3.2.4 to conclude. Using k = O(n?), we get that the ratio % is O(n).
Observe that when there are no coupling constraints between the routing of the
network commodities, then the O(\/E) upper bound on the static/dynamic gap is still

valid.
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3.3 Inapproximability for the problem with edge restrictions

Let us consider a more general variant of the robust congestion problem where each
commodity can only be routed on a subset of allowed edges £, C FE. These restric-
tions seem to be quite natural to ensure quality of service requirements such as delay
constraints. Observe first that cong, can still be computed in polynomial-time for this
variant.

Notice that the O(\/E) upper bound on the static/dynamic gap proved in the previous
section applies for this new variant.

The Q(IO;%) inapproximability bound shown for the undirected case [Al-Najjar
etal. (2021)] (under ETH assumption) still applies to the directed case (with and without
flow restrictions). It is however quite far from the O(\/E) approximation ratio deduced
from Section 3.2. We will prove stronger inapproximability results for the generalisa-
tion of cong,,,, with flow restrictions under some classical complexity conjectures.

A standard way to prove this kind of results is to first prove that the problem is
inapproximable under some constant and then to amplify this constant, see for exam-
ple [Haviv and Regev (2007)].

Let us first introduce some additional notations. Taking into account the flow re-
strictions and given a subset of edges C' C F, let Ho C H be the set commodities such
that each valid path related to any commodity 2 € H¢ intersects C'. Even if C' is not
necessarily a cut in the standard sense of graph theory, C'is called a cut in what follows.

Given a demand vector d € DandacutC, > dn/ > c.,is obviously a lower bound
heHco ecC
of cong,,, (D). The maximum over all demand vectors d € D and all cuts C of the ratio

> dn/ > c.is called cut congestion and denoted by cong, (D). We also use Ey to
heHe ecC

denote the set of all flow restrictions: E3 = (Ej,)ne. An instance of cong,,, with flow
restrictions is then defined by (G, ¢, H, D, Ey,).

In Lemma 2.1.1, we proved that it is NP-hard to distinguish between instances where
cong,,, (D) is less than or equal to 1 and those where the cut congestion cong,, (D) is
greater than or equal to 1 + p for some constant p > 0.

In Lemma 3.3.1, we will show that given two instances of this problem, it is possible
to build some kind of product instance whose dynamic congestion is less than or equal
to the product of the dynamic congestion of the two instances and the cut congestion
is greater than or equal to the product of the cut congestion of the two initial instances.
Finally, by repetitively using the product of Lemma 3.3.1 on the instance of Lemma

2.1.1, we can amplify the gap leading to some strong inapproximability results.

Lemma 3.3.1. Given two instances of cong,,,, with flow restrictions 1, = (G1,¢1,H1, Dy, Eyy,)
and Ly = (G, co, Ha, Dy, Eqy, ), we can build a new instance T = Ty xZy, = (G, ¢, H, D, Ey,;)
such that:
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(d) E@yp,): the set of edges allowed for commodity
(¢) G2, Ha (h', 1)

Fig. 3.2 Illustration of the construction of the product instance.

¢ CoNng gy (I) < CoNng gy (Il) * CONG 4y (IQ)
* cong ., (I) > cong ., (Il ) 1 CONng .y (IQ ) .

Furthermore, we have |E(G)| = |E(G1)|- (|E(G2)|+2|V(G2)|), [V(G)| = |[V(Gy)|+
(V(G2)| - |E(G1)], |H| = |Ha| - |Hz| and the size of D is less than or equal to the
product of the sizes of D, and Ds.

Proof. Lemma 3.3.1

Let Z; = (G1,c1, H1, D1, Ex,) and Zy = (Go, ¢2, Ha, Ds, E3,,) be two instances of
cong,,, with edge restrictions. We denote by G, the graph obtained from G5 by adding
two nodes s(Gz) and t(G3) to G, an edge from s(Gz) to each node of Gy having
an infinite capacity (i.e., |V (G3)| edges), and an edge from each node of G to t(Gs)
V(Gs)| edges). We build a graph G by replacing
each edge e of GG by a copy of G, while identifying the node s(e) (resp. t(e)) with

having also an infinite capacity (i.e.,

the node s(G2) (resp. t(G3)). Figure 3.2 illustrates the construction of the product
instance. We denote by (ej, e2) the edge e in G corresponding to the copy of G
related to e; € F(G4). The capacity of the edge (eq, e5) is the product of the capacity
of edges ey and €3: C(e; e5) = Cley * Coe,-

We create a set of commodities H in G by taking H = H; X H, and assuming that
s(h1, hy) = sp, and t(hy, he) = tp, for (hy, hy) € H. We also assume that edges of
type (s(G2) = s(e),v) can only be used by a commodity (hy, hs) € H if s(hy) = v.
Similarly, edges of type (v,t(G2) = t(e)) can only be used by (hq, he) if t(he) = v.
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In other words, when a commodity (hy, hy) is routed through the copy of G related to
an edge e € E(G), then it should enter from s(hs) and leave at t(hs) (cf. Figure 3.2).
Other edge restrictions are added by considering the restrictions related to Z; and Z,.
If i’ € H, is not allowed to use edge ¢/ € E(G,), then all commodities (1, hy) are
not allowed to be routed through the €’ copy of G,. Moreover, if eo € E(G3) does not
belong to Ej, for some hy € Ho, then for each e; € E(G4) and each hy € Hy, (eq, es)
cannot be used to route commodity (hq, hs).

We define D as the set of vectors d € ]Ri“ *H2 quch that there is a vector d! € Dy
satisfying dj,, . € d,l“DQ for all hy € H;. The constraint dj,, . € d}HDQ can be enforced
with linear inequalities as follows. Suppose that Dy = {d?> € R™2|Ayd? + By¢ < by}
for some matrices Ay, Bo. We also assume that this description contains the constraints
d%z / d?mm‘” < 1 for all hy € H in addition to the non-negativity constraints of demand
values dj, . Then we can write the constraint dy,, . € d; D as Aydy, +Bs&’'—dj, by < 0.
Indeed, dj = 0 implies dj,, = 0 while for d, > 0 we have Aady,, .+ Bot' —dj, by <0
if and only if dp, / d}n € D,. Polytope D is then defined by constraints Asdy,  +
By&" — dj by < 0 for each hy € H; in addition to A;d* + B;§ < by. Observe that
a subscript h; is added to express the fact that the auxiliary variables ¢ depend on
hy € H;. Notice also that the size of the matrices defining D is less than or equal to the
product of the sizes of the matrices defining D; and D-.

We will now prove that cong,,(Z) < cong,,(Z1) - congy,(Z2). Let d be a vector
in D and let d* € D; be a vector such that dp,,. € d,l”Dg. For h; in H;, we define
&M € Dy by d = dd— if ) # 0and @™ = 0if d}) = 0. We clearly have
iy = djy, - forall hy € Hy, hy € Ho.

Let 2!, 2% be the optimal routing schemes for d* € R7 and d>" € R*2 for h; € H,;.
To route commodity (hq, hy), we consider the following multi-commodity flow in G

2,h1

defined by Z(n, hy) (e1,e2) = Thy e, T The total flow on the edge (e, €2) is then given

ho,e2"
by:

1 g2.h _ 1,1 2,h1,.2,h1

Z dhldhg m(h17h2)7(€1,62) - Z dh1xh1,61 Z dhz th,EQ

(h1,h2)EH1xHa hi1€eH ho€H1
1 1
S Z dhlxh1,€1congdyn(:z:2>c2€2
h1€H1

< Congdyn(zl) ’ Congdyn(IQ) " Cley " C2ey

= Congdyn(Il) ’ Congdyn(IQ) ’ 0(61762)'

Since this holds for any edge (ej, e5) of G (the other edges of G have an infinite capac-
ity), we deduce that cong, (Z) < cong,y,(Z1) - cong,y, (Zs).
Let us now show that cong, (Z) > cong,,(Z;) - cong,(Z3). Let C; (resp. C3) be a

cut of G (resp. (G3) achieving the maximal congestion cong_,(Z;) (resp. cong,,(Z2)),
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and let d' € D; (resp. d*> € D,) be a demand vector for which the maximal cut
congestion is obtained. In other words, we have > d; / > c., = cong,,(Z;) and

hi€He, e1€Cy
Z dizzg/ Z 682 = Congcut(IQ)'

hi€He, e2€Csy
Observe that the set of edges C'; x (5 is a cut of G that is intersecting all demands of

He, X He,. Notice that the flow restrictions that have been considered are crucial here
to guarantee the previous fact. Let d € R be the demand defined by d, 5,) = d}, -d;,
Since d* € D; and d? € D,, we also have d € D. The congestion on the cut C; x Cs is

given by: 1 .
d(hy hy) > dy, > dr,
(hl,hg)e’Hcl XHey . h1€Hcy ho€Hcy
C(e1.e2) X e 2 C2ey
(e1,e2)€C1 xCo e1€Cy eg€Cy

= cong, (Il) -cong,, (IQ) :

This clearly implies that cong_,,(Z) > cong,(Z,) - cong,,(Z>).
U

Combining the previous lemma with lemma 2.1.1, one can amplify the gap as fol-

lows.

Lemma 3.3.2. For some 0 < p < 1 and each r € N, each 3-SAT instance p can
be mapped to an instance I" = (G",c",H", D", E},) of COngy, with flow restrictions
where D" = {d € R*""|A"d + B¢ < 0"} such that:

* Ifval(p) <1 — pthen cong,,(1") <1

o If  is satisfiable then cong,,(I") > (1 + p)".

E(GM),

the size of the matrices A" and B" defining D" are all less than or equal to (0m)" where

Furthermore, there exists a positive constant 0 such that |V (G")|, | and

m is the number of clauses of ¢.

Proof. Let Z! be the instance defined in Lemma 2.1.1. We recursively build Z" as the
product of Z"~! and Z*. Using notation of Lemma 3.3.1, we take Z; = 7", 7, = 7"
and " = T = I, x T,. Using what is already known about the size of the instance Z* of
Lemma 2.1.1 and the results of Lemma 3.3.1, a simple induction proves the existence
of a constant # such that (#m)" is an upper bound of the number of vertices, number
of edges, number of commodities and the size of the matrices defining the polytope
Dr. []

By making use of some standard complexity assumptions, inapproxiambility resuls

can be directly deduced from the previous lemma.

Proposition 3.3.1. Unless NP C S U BEXP, CONgay with flow restrictions cannot be

approximated within a factor of oz iz logk (resp. nloglogn logn ) for some constant ¢
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Proof. SUBEX P is the class of problems that can be solved in 2" time for all € > 0.
Therefore, if NP ¢ SUBFE X P then there is a constant ¢, > 0 such that no algorithm
can solve the Gap-3-SAT problem in time O(2™") where m is the number of clauses
of the 3-SAT instance.

mel

Let e, < ¢ andletr(m) = == The size of the instance 7" is polynomial in m" (™).

Therefore if we run a polynomial approximation algorithm on the instance Z"("™), the
m©l

running time will be me (™) for some constant ¢;. Furthermore, m©" (™) = piogm —

2e1mt < 9m for big enough m.

The number of commodities % in the instance Z"(™ is bounded by (6m)" (™). We

mcl

1
logm implying that m > alog<: k for some constant

consequently have log k£ < log(6m)

a and big enough m.
The gap between the congestion of the instances Z"™ corresponding to a 3-SAT
instance for which val(¢) < 1 — p and those for which val(p) = 1 is:

al logk

(1 4 p)r(m) > (1 _i_p)r(alog% k) _ (1 + p)%logulogk > km for some constant

Hence, if a polynomial-time algorithm could solve cong,,, with flow restrictions

within an approximation ratio of O(klog?ogk ), we could use it to solve the Gap-3-SAT
problem in O(2™") time. The same proof applies if parameter n (the number of ver-

tices) is considered instead of k. O

A slightly weaker inapproximability result is obtained using a weaker complexity
assumption, that NP # QP where QP is the class of problems solvable in quasi-
polynomial time, i.e. in time O(n'°¢°™ for some constant ¢ and where n is the size of

the instance.

Proposition 3.3.2. Unless NP C QP, cong,, with flow restrictions cannot be approx-

imated within a factor of 2°8' ¥ (resp. 2'°6'"") for any € > 0.

Proof. Letus take r(m) = log® (m) for an arbitrary constant ¢;. If we run a polynomial-
time algorithm on instance the instance Z"™), we get an algorithm running in quasi-
polynomial time. The number of commodities k is bounded by (#m)"™). Thus log k <

12 m for big enough m and therefore m > exp(logﬁ k).

log™ mlog m < log
The gap between the congestion of the instances Z"(™) corresponding to 3-SAT

instances such that val(y) < 1 — p and those such that val(y) = 1 is:

1
A2 k)

(1) > (14 p)res
(1 s
> (1 +p)10g1_5k
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for any € > 0 if we take c; such that clcjrz > 1 —e. The (1 + p) term can be replaced by
2 by observing that glog! "k _ o((1+4 p)los' %) for any ¢ < e. The same proof applies

if parameter 7 is considered instead of k. []

Using the last part of Proposition 2.3.1, all inapproximability results stated for the

congestion problem cong,, are also valid for lingyy.
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CHAPTER 4

Affine routing for the robust network design problem

In this chapter we study the affine routing method both for the non restricted flow prob-
lem and the problem with a given set of paths. The motivations of the work are the
following. Both for the static and for dynamic routing problems, several equivalent for-
mulations are possible such as node-arc formulations and arc-path formulations. One
might ask whether this still holds when affine decision rules are applied. Another goal
might be to try to improve these formulations without losing the polynomial-time solv-

ability aspects of affine formulations.

* When affine routing is considered, is there an equivalence between node-arc for-

mulations and arc-path formulations?

* Is it possible to get stronger affine formulations that can still be solved in polyno-

mial time?

Instead of requiring that the flow conservation constraints are strictly satisfied, we
will consider a relaxed flow conservation formulation by allowing some flows to be
created on intermediary nodes but requiring that at least the needed amount of flow is
sent at the source. Alternatively, we can also allow some flows to be lost at intermediary
nodes but we require that at least the needed amount of flow arrives at the destination.
We can also wonder what is the relationship between the edge formulation and the path
formulation where all paths between each source and destination are allowed. Other
formulations can be also be obtained by aggregating several commodities by sources
and/or destinations.

In this chapter we systematically study those variants of affine routing formulations.
We provide toy examples showing that when an affine routing is considered each of
those variants can (quite surprisingly) strictly improve the cost of the solution. We also
numerically test those variants on realistic network instances. We observed that even
in this case, relaxed formulations can provide an improvement of the solution. We also
show that relaxed flow conservation variants are equivalent to adding fictive edges in
the graph for each commodity. This allows us to derive a formulation that is even better

than relaxed flow conservation variants.
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4.1 Possible affine formulations

We start by recalling some standard node-arc formulations that we will improve later
in Section 4.2. Then we recall an arc-path formulation that might be more practical
when paths can be enumerated easily and we show that it can be strictly dominated by
node-arc formulations. Finally, we close this section by proposing a natural cycle-based
formulation that is equivalent to node-arc formulations but with slightly less variables

and constraints.

4.1.1 Initial node-arc formulation

Let’s consider a directed graph G = (V, E) representing a communication network.
The traffic is characterized by a set of commodities h € H associated to different
node pairs. For a given commodity h, the traffic originates at s(h) and ends at ¢(h).
As introduced in [Poss and Raack (2013)], for each demand scenario, the flow f, .(d)
related to commodity h and edge e € F, is restricted to affinely depend on the demand
vector d. It represents the capacity reservation in the robust network design problem.

This flow fy(d) is of the form fy o(d) = 2 .+ > @l .dj where coefficients =, , and
h'eH
$Z/e are subject to optimization.

The affine routing with congestion minimization can be then modeled as follows:

minm

> dh, ifv= S(h)

> (af%,e + 3 :cZ:edhf> -y (m%,e + 5 2l dy —dp, ifv=t(h)
e€d4 (v) heH e€s_(v) WeH 0 otherwise
Vhe H,veV,d e D (4.1a)
> <x2,e + > ijedh,> <cem, Vec€ E,deD (4.1b)
heH h'eH
e+ D ahody >0, Ve EVheH,deD (4.1¢)
h'eH

Constraints (4.1a) are standard flow conservation constraints, while (4.1b) express
capacity limitation. Finally, constraints (4.1c) impose positivity on capacity reserva-
tions. 6_(v) and e € 0, (v) respectively denote incoming and outgoing edges from
node v € V. Notice that the flow conservation constraint related to v = ¢(h) can be
skipped since it can be obtained by summing the constraints related to the other vertices.

D 1is supposed to be fully dimensional (it contains a ball). This assumption is
not really restrictive since, in practice, one should not expect that there is any linear
equation satisfied by all demands vectors. Moreover, if the assumption is not satisfied,

. . . / .
then one can eliminate some of the coefficients z""*". For example, if we always have
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dp = Y aprdye then there is clearly no need to consider any dependency on ' im-

plying that coefficients 2"

are useless. Under this hypothesis, two affine functions
ai,ap are equal over D (i.e. a;1(d) = ay(d),Vd € D), if and only if, a; = as (i.e.
all coefficients of the affine functions ai, as are equal). Using this fact, as proposed
in [Poss and Raack (2013)], we can replace the flow conservation constraints (4.1a) by

the following equivalent reformulation:

1, ifv=s(h)andh =1
> Z af,=¢ —1, ifv=t(h)andh =N (4.2)

e€d+(v) e€o-(v) 0  otherwise (including i/ = 0)
The obtained formulation proposed by [Poss and Raack (2013)] is given below.

minm
1, ifv=s(h)and h = 1/

> Z af, =4 —1, ifv=t(h)andh=h

e€dy (v) e€di_ 0 otherwise
Vhe H,W e HU{0},veV (4.3a)
> (x?w + > xﬁedh,) <cem, Ve€ E,deD (4.3b)
heH h'eH
e+ > ap.dy >0, VYec€ EheM,deD (4.3¢)
h'eH

As will be recalled in Section 4.6, when some linear constraints with uncertain co-
efficients need to be considered, we can handle uncertainty either by using constraint
generation or by duality-based reformulation techniques. This should be done for each
constraint. The main advantage of (4.3) is that the uncertainty appearing in the flow
conservation constraints (4.1a) is already handled using (4.2). However, the other con-
straints (4.1b) and (4.1c¢) still need to be treated using the techniques briefly recalled in

Section 4.6 and used for the numerical evaluation.

4.1.2 Arc-path formulation

Another natural formulation is the one obtained by considering path variables. This
might lead to solution methods that are easier to implement in communication networks
when only a small number of paths is used for each commodity or the total number of
paths that could be handled by each router/node is limited. As proposed in [Ouorou and
Vial (2007)], the flow on each path affinely depends on the demand vector d. This leads
to the following model where P}, is a set of (possibly all) paths from s(h) to t(h).

52



minm

Z Z (x,?,h + Z x,’;fhdh/> <ecm, VecE,deD (4.4a)

heH pEPy:pe WeH
Z <x27h + Z x;l:hdh’> = dp, Vh e H,d €D (4.4b)
PEP}, h'eH

xg,h T Z xﬁ:hdh' >0, Vhe H,p € Py, deD (4.4¢)

heH

Observe that constraints (4.4c) impose the non-negativity of the flow on each path.
Notice that when there is no uncertainty (i.e, when D contains only one demand vector),
then (4.1) and (4.4) are equivalent when P;, contains all possible paths. One might
wonder whether this still holds for any D. Each solution of (4.4) can obviously be
transformed into a feasible solution of (4.1) and (4.3). However, the following example

shows that (4.4) can be strictly dominated by (4.1) even if all paths are considered.

Fig. 4.1 An example with five commodities: h; with i« = 1,2, 3,4 having the same
source and sink than edges e;, and hs; from source node s to sink node ¢. In this example
we show that formulation (4.1) is strictly better than formulation (4.4).

Proposition 4.1.1. Formulation (4.1) is less conservative than formulation (4.4).

Proof. In the example of Figure 4.1, there is a demand h; (resp. ho, h3, and hy) having
the same source and sink than edge e; (resp. e, e3, and e4) and a demand h; having
the node s as a source and the node ¢ as sink. The demand polyhedron D is defined as
the set of d € R® satisfying the equations dj,, + dy, = 1,dp, + dp, = 1 and dj,, = 1 in
addition to non-negativity constraints. The capacity of each edge is equal to 1.

This demand polyhedron can be routed with model (4.1) without exceeding one
unit of flow on each edge. This can be seen by considering the following solution:
Jries(d) = dn; s frge(d) =1—=dp, Vi=1,...,4and fi, ., (d) =0Vi,j =1,...,4,i # j.
By taking m = 1, all capacity constraints and flow conservation constraints of (4.1) are
satisfied.
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Now we are going to show that a solution to model (4.4) necessarily uses strictly
more than one unit of flow on at least one edge. By contradiction, suppose that there
exists a solution of (4.4) such that m = 1. First observe that given the equalities defining
the demand polyhedron D, it is sufficient that the affine flow function depends on the
demand’s values dj, and dj,. Let p; denote the path that uses edges e; and es, while p,
contains edges e; and e4, p3 includes edges e; and e3 and p4 goes through edges e, and
e4. Since the total flow that uses edge e; must be less than 1 and the demand /; must

necessarily use edge e; for i = 1, ..., 4 we have the following inequalities:

L—dp, 2 frgpi(d) + frspo(d) (4.5a)
dny 2> fryps(d) + frspa(d) (4.5b)
L —dpy > frop () + frops(d) (4.5¢)
dhy 2 [hspe(d) + frgp(d) (4.5d)

By summing inequalities (4.5), we get2 > 2Xx 37 fi;,(d). Since 37 fi;p,(d) =
dpn, = 1, all inequalities (4.5) should be equalitzi;’.mlglemember that fO;:(alz;éif path p;, we
have fy,p,(d) = 2§ + )t
vector d where dy, = dy, = 0, weget: 1 =af  +ap 0=ua) +a) 1=

0 _ .0
P37 hs,ps Lhs,pa*

Now using the fact that fj,, ,,(d) > 0 (still for the same demand vector), we get that

: 0 0 0
all variables xp_ ., . xp . T .

A —— 1,m257pi =0,Vi =2,3,4.

hs.p1
Furthermore, by considering the positivity constraint (4.4c) for path p, and the de-

dp, + xﬁpi dp,. Writing the four equalities above for the

0 0 _ .0 0 RN 0 _
Tho oy + Tpo pyy 0 = @, + @y, . This implies that z, = =

and x%s »,are non-negative. This obviously leads to

mand vector where dj,, = 1 and dj,, = 0, we can deduce that fy, ,(d) = z}_, +
xZ;pQ = xz;m > 0. Writing equality (4.5a) leads to —1 = IZ;,pl —i—x%m. Combination
with the previous inequality implies that xﬁéml < —1. Similarly, by considering the
demand vector where d;,, = 1 and d;,, = 0, the positivity constraint related to path p;
and equality(4.5¢c) lead to ng o < —1. Let us now consider the case where d;, = 1
and dj,, = 1. The positivity of f ,, (d) is equivalent to z_ + IZ;pl + xZ;m >0
implying that xZ; ot :chg = —1. This is clearly not possible since xZ; o < —land
h3

Ty < —1, and it ends the proof. ]

4.1.3 Elementary cycle-based formulation

We have seen that the arc-path formulation can be sometimes strictly dominated by the
node-arc formulation. The main reason for that is the positivity constraint imposed for
each path and each d € D. Then, if one tries to relax these positivity constraints and
replace them by constraints saying that the total flow on each directed edge is non-

negative (i.e, f5.(d) > 0 for each h, e and d), then we will get a new formulation where
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circulations appear. However, an easy way to present the new formulation is proposed
below starting from formulation (4.3).

Let us first recall a basic result [Gondran et al. (1984)] about circulation decomposi-
tion as a sum of elementary circulations through elementary cycles. We fix a spanning
tree 7" of the graph GG (supposed to be connected). For each e € E(G)\E(T), there is a
unique elementary cycle o in 7" U {e}. We note Y, this circulation that has a value of 1
on the edges oriented in the same direction than edge e, -1 in the other direction and 0
on the edges outside 0. We denote by (7') the set of cycles. It is well-known [Gondran

et al. (1984)] that every circulation ¢ can be (uniquely) written as: ¢ = > x,%, for
some scalars z, € R. 7

Let us now go back to constraints (4.3a). For each commodity h, let p" be any
arbitrary fixed undirected path connecting s(h) and ¢(h) in 7" and let x,» be the flow
of value 1 on p” and zero elsewhere (the value of the flow on each edge is either 1 or
—1 depending on the direction of the edge). Since :1:2 — X,p» 18 a circulation, :EZ can

. /. . .
be written as: x} = x,» + Y. . X,. Furthermore, for h # K, 2} is a circulation

cex(T)
and thus it can be written as 2 = Y ]’ x,. We then obtain the new model
ceX(T)
(4.6) by substituting z , in model (4.1) by x,n .+ Y. 2} ,Xo. and replacing wzle by
cex(T)
Z xZ7UX0',€'
cex(T)
minm
DS (x% oXoe+ O xZ,ngedh') + > Xphodn | <cem, Vee E,deD
heH \ ooe ’ WeH phoe
> (x?L oXoet 2 :L“Z/ngyedh/) + > Xphedn >0, Vee ElheH,deD
LEL ’ WeH phoe

af, €R, VoeX(T),heM,heHU{0}
(4.6)

Observe that since the number of elementary cycles |X(7")| is equal to the cyclo-
matic number |E| — |V| + 1, the number of z variables in (4.6) is equal to (|| + 1) x
|H|x (|E|—|V|+1) whereas formulation (4.3) has |H| x (|H|+1) x | E| variables (there
are also variables related to duality to take into account uncertainty as will be recalled
in Section 4.6 but their number is the same in both formulations). Then Formulation
(4.6) has around |#H|? x |V| less variables than formulation (4.3). Formulation (4.6) has
also around |H|? x |V| less constraints then formulation (4.3) due to constraints (4.3a).
Formulation (4.6) is obviously equivalent to formulations (4.3) and (4.1) since it was

obtained from (4.3) using the decomposition result.

55



4.2 Relaxing the flow conservation constraints

In this section, we present some improvements of the node-arc formulation (4.1) de-
scribed in Section 4.1, by relaxing the flow conservation constraints (4.1a). Such im-
provements permit to further reduce the congestion and minimize the gap with the solu-
tion given by the dynamic routing. The standard formulation (4.1) might be denoted by

F— (“="means that we have equalities in constraints (4.1a)). Let /. be the formulation

obtained from (4.1) by replacing (4.1a) by the following inequalities.

>dp, ifv=s(h)
. o 47
ee%:@ Sheld 6652 In { >0 ifv+s(h),t(h) “.7)

Notice that by summing all inequalities (for some h) we get that > fj,.(d) —
e€dy(v)
> fre(d) < —dj for v = t(h). Since the quantities f,.(d) no longer satisfy flow
e€d_(v)
conservation constraints, we have no more the notion of flow. However, we can inter-

pret fj,.(d) as being the amount of resources that is reserved for commodity / on edge
e when the demand scenario d is considered. We will prove that for each demand vector
d, it is possible to route each commodity h without exceeding the capacity f, .(d) of

edge e. We will then say that F, is valid.
Proposition 4.2.1. F is valid.

Proof. Consider any commodity 2 € H and any cut 6, (C') separating s(h) and t(h) (so
C CV,s(h) € Candt(h) ¢ C). By summing all constraints (4.7) for vertices inside
C, we get

D fueld Z Fre) =" D fueld Z fre(d) | = dh.

ecd (C) ecd_ veC \ e€dy(v) ecé—

Using the positivity constraint on capacities fy, .(d), we deduce that > f,.(d) >
ecd (C)
dy,. Since this holds for any separating cut, it is possible by the maximum-flow minimum

cut theorem to send from s(h) to t(h) a flow of value dj, using the capacities fj, .(d).
O O

Since F is obtained from F_ by relaxing some constraints, the congestion m com-
puted by F is less than or equal to the congestion given by F_. One might wonder
whether there is any gain by considering /., instead of F_. The example given below

positively answers the question.

Proposition 4.2.2. Formulation F is less conservative than formulation F_.
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Fig. 4.2 An example with three commodities: h; with ¢ = 1, 2 having the same source
and sink than edges e;, and hs from source node s to sink node ¢. In this example we
show that F is strictly better than formulation F_.

Proof. Figure 4.2 illustrates a simple graph with two commodities 7, ;—; 2 having the
same source and sink than edges e; ;-1 2. There is an additional commodity A3 having
node s as source and node ¢ as sink. All edges have a capacity equal to 1. The poly-
hedron D is defined as the set of d € R? satisfying the two inequalities dj,, + dp, <
1 and dj, < 1 in addition to non-negativity constraints.

First, observe that the solution given by f, ., (d) = 1 — dp,, fryen(d) = dpys
Jrrer(d) = dnys fryeo(d) =0, fryeo(d) = dpyy frye (d) = 0, satisfies the constraints of
F.. Consequently, m = 1 is the optimal congestion found by F..

Let us now show that any solution of F_ should necessarily use more than one unit
of flow on at least one edge. By contradiction, let’s assume that there exists a solution
of F_ such that m = 1. First, observe that if the demand for a commodity, let say hs,
is equal to zero then the flow for this commodity must also be 0 in model (4.1) (i.e.,
F—). This is due to the fact that we are dealing here with flows and there are no directed
cycles in the graph. Consequently, for each edge e € E we have fj,, .(0) = 2739 = 0.
Considering the demand vector 1;, where d;, = 1 and the two other demands are 0, we
get that fy, o(15,) = ), + z)!, = 0leading to 2} , = 0. Similarly, by considering
the demand vector 1,,, we prove that xZie = 0. Combining the previous facts leads to
Jhae(d) = aj}}z;edhjg'

Let us consider the demand vector 1, + 15, (dy, = 1, dp, = 0, dp, = 1). Then
fehl1 (15, +1,,) = 1 since the only path to route the demand £, is through e;. Moreover,
the assumption m = 1 implies that fy, ¢, (1n, +14,)+ fay.e, (Ln, +11,) < 1. Combining
the two propositions leads to f, ., (15, + 15,) < 0. Using the positivity constraint, we
simply get fp, e, (1s, + 1p,) = 0. Using the fact that fj, ., (d) = szz,eldhw we finally
deduce that xZ;q = 0.

Using a similar argument, we can get that feh;(]l hy + Lny) = xZ;hd = (. Hence, all

coefficients related to commodity hs are zero which is nonsense. [

Another way to relax the flow conservation constraints consists in replacing (4.1a)
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by the following inequalities:

B < —dp, ifv=1t(h)
eE%v) fh’e(d) 6652(1)) fh’E(d) { S 0 lfU 7& S(h), t(h) (48)

The obtained formulation can then be called F_ formulation which is completely sym-
metrical to /. The validity of /_ can be shown in almost the same way (the proof
of Proposition 4.2.1 can be modified by summing inequalities (4.8) through all vertices
belonging to V' \ C). Proposition 4.2.2 also holds for F_ (the same example provided
in the proof can still be used). While both F_ and F, dominate F_, they are not

comparable (for some instances F_ provides better results than F, and vice-versa).

4.3 A cut-based formulation

To show the validity of either /. or F_, we just proved that every cut separating the
source and the sink of a commodity has enough capacity to carry the demand. This
suggests the advantage of proposing a formulation based on cuts. More precisely, for
each commodity » € H and each cut §, (C) separating s(h) and t(h) (C C V, s(h) € C
and t(h) ¢ C) we require that

> fueld) = dy. 4.9)

The cut formulation denoted by F_,; is then obtained from (4.1) by replacing flow
conservation constraints (4.1a) by (4.9). F.,; is obviously valid.

Since solutions of F; and J_ satisfy the constraints of F,;, the solution provided
by F..: 1s at least as good as those of either F, or F_. We provide below an example

showing that F.,; can dominate F, and F_.

Proposition 4.3.1. Formulation F.,; is less conservative than F, and F_.

Fig. 4.3 An example with five commodities: h; with ¢« = 1,2, 3,4 having the same
source and sink than edges e;, and h; from source node v to sink node vg. In this
example we show that F_,; is strictly better than F and F_.
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Proof. (sketch) Consider the graph of Figure 4.3. It contains 6 directed edges each of
capacity 1: e; = vjvg, €5 = VU3, €] = Vuy, €, = v3vy, €3 = VsV and e4 = V4.
5 commodities have to be carried through the network: h;,7 = 1,2,3,4 having the
same source and sink than edges e;, and h5 from source node v5 to sink node vg. The
polyhedral uncertainty set D is defined by constraints: dp, + dp, < 1, dp, + dp, < 1
and dj, + dj,, < 1 in addition to non-negativity constraints. By solving either F_ or
F_, we get the following solution: fy,; ., (d) = 3 — d% + d’%, Thsen(d) = d% + d%,
Frsses(d) = frs,es(d) = 5 + 2dy, while the assignment related to the other commodities
is obvious since only one path is available for each of them. The congestion m related to
this solution is m = %. The fact that there is no solution of either F or F_ with m < %
was numerically checked by solving the problems using the algorithms of Section 4.6.

On the other hand, the optimal solution of F.,; has a congestion m = 1 since we
can consider the following solution: fy; ., (d) = fuse(d) = 1 — dn,s frse.(d) =
fhsep(d) = 1 — dp, and fp; o.(d) = fi;e,(d) = dp,. To show the validity of the
solution, observe that a cut separating v5 and vg contains either es or ey4. Its capacity is
obviously greater than or equal to dj,. Moreover, a separating cut containing neither e
nor e, will necessarily contain either e; or ¢} and either e, or e),. The capacity of the

cut will then be at least 2 — dy, — dp, > 1 > dp,. O

Let us now study the complexity of F.,;. If the number of separating cuts in the
graph is polynomial (in fact one should only consider those not included in larger cuts),
then F,; can still be solved using standard robust optimization techniques (See Section

4.6). However, we will show that solving F,; is unfortunately NP-hard.

hk,2

Fig. 4.4 An example with 3k+1 commodities: h; ; withi = 1,....k,j = 1,2, 3 having
the same source and sink than edges e¢; ;, and hg, from source node s to sink node ¢. In
this example we prove that it is NP-hard to solve F_,;.

Proposition 4.3.2. It is NP-hard to solve F.,;.

Proof. We are going to propose a reduction from the 3-SAT problem. Let us consider a

3-SAT formula ¢ with & clauses and r variables. We note £ = {ly,...,l.,~ly,..., 0.}
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the set of the literals appearing in formula ¢ and [; ; the literal appearing in the ¢-th
clause C; at the j-th position for s = 1, ...,k and j = 1,2, 3. We create a polyhedron =
by adding for each literal [ € £ a non-negative variable & and forp = 1, ..., 7, we add
the constraint &, + &, = 1.

We build as follows a graph G, a set of commodities A and a polyhedral uncertainty
set D. Foreach: = 1,...,k, 7 = 1,2,3 we add 3 consecutive directed edges e; ; (see
Figure 4.4) and 3 commodities h; ; with s(h; ;) = s(e;;) and t(h; ;) = t(e;;), and
dp,, < &, ;. We impose that all nodes s(e;1) (resp. t(e;3)) fori = 1, ..., k are equal to
a single node noted s (resp. t) (see Figure 4.4). We consider an additional commodity
hs: from s to t whose value satisfies dj,, < 1. The uncertainty polyhedron D is then
obtained by projecting = on the space of dj, variables. Finally, the capacity c. of each
edge e is here equal to 1 (¢, = 1).

Let us now prove that the optimal objective value of F.,, is m = 1 if and only if
the 3-SAT formula ¢ is not satisfiable. If ¢ is satisfiable, then there is a demand vector
(induced by the truth assignment) such that for each path between s and ¢ (there is one
path corresponding to each clause), at least one commodity whose endpoints are on the
path is equal to 1 (a commodity corresponding to a true literal). This implies that all
paths are blocked and thus m > 1 since one has to route commodity hg; through the
network. If ¢ is not satisfiable, then for each extreme point of D, there is at least one
free path to route the demand dj,_,. In other words, each extreme demand vector of D
can be routed through the network. Since each demand vector d inside D can be written
as a convex combination of the extreme points of D, d can also be routed through the
network without requiring more then one unit of capacity on each edge. It is then clear
that the solution defined by m = 1 and fy,, ., ,(d) = 1 — dy,, is feasible for F.,;. The

optimal congestion is hence equal to 1. ]

Notice that the separation problem related to the polyhedron D introduced in the
proof above (i.e., given some vector d, check whether d belongs to D or provide a
cut separating d from D) can obviously be solved in polynomial-time [Grotschel et al.
(2012)]. Otherwise the NP-hardness of solving F.,; would be a direct consequence of
the difficulty of the separation problem related to D.

We know from proposition 4.3.1 that F.,; can be strictly better than F, and F_.
We just proved that F.,; is NP-hard to solve. We also recalled in Section 1 that the
robust network design problem is NP-hard. This is called dynamic routing in several
papers where there are no restrictions related to the choice of f, .(d) which can be
any function of d that allows the routing of each commodity. One can then wonder
whether there is any difference between F,; and the dynamic routing formulation. The
following proposition answers this question.

For sake of completeness we provide a possible formulation F,,, related to dynamic

60



routing.

minm
> fneld)>dp,Vde D, heH,C CV,s(h)eV t(h) ¢V
6€5+(0)
(4.10)
S fre(d) <cem, Ve€ E,d€D
heH

fMd) >0, VYee E,heH,deD

The difference between F.,; and Fg,, lies in the affine form of fj, .(d) that is imposed

only for F_,;.

Proposition 4.3.3. F,,, is strictly better than F,; on some instances.

\\\ h3 e

‘f
-
-
N -~ h
S 6

Fig. 4.5 An example with six commodities: h; with¢ = 1,2, 3, 4 having the same source
and sink than edges e;, h5 from source node v; to sink node vs, and hg from source node
vy to sink node vs. In this example we prove that F,, is strictly better than F,;.

Proof. Let us consider again the example of Figure 4.5 containing 6 vertices and the 7
directed edges: e; = v1v, €3 = VU3, €3 = V4Us5, €4 = UsU3, €5 = V4lg, €5 = V1Ug and
er = vgvs, of capacity 1 each. It also contains 6 commodities (see Figure 4.5): h; with
1 = 1,2, 3,4 having the same source and sink than edges e;, hs from source node v; to
sink node v3, and hg from source node v, to sink node v3. The uncertainty set D is here
defined by the constraints: dp, +dp, < 1,dp, +dp, < 1,dp, +dp, <1, dp, +dp, <1,
dp, < 1and dp, < 1in addition to non-negativity constraints.

To show that the optimal congestion provided by Fg,, is equal to 1 we only have
to prove that each extreme point of D can be routed without using more than 1 unit of
capacity. It is clear that the more constraining scenarios are those where dj, = dp,, = 1.
We also either have d,, = d, = 1 and dy, = dp, = 0 ordy, = dp, = 0 and

dps = dp, = 1. By symmetry, we can just focus on the first case (dj,, = dp, = 1, dp, =
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dn, = 1 and dy, = dp, = 0) where one can clearly route commodity hs; completely
through the path containing e; and e; while hg is routed through e3 and e4. In other
words, m = 1 for formulation (4.10).

Let us now prove by contradiction that the congestion obtained by F.,; is strictly
greater than 1. Assume it to be equal to 1. Observe that when either d,, = 1 or
dp, = 1, commodity h; is necessarily routed through e;. This implies that fy,, .. (1, +
Ln, + 1ng) = frser(Lpg + Ly + 1pg) = frger(Lny + Ly + L, + 1) = 1, where
15, denotes the demand vector where all demands are equal to 0 while d;,, = 1. Since
fh5,e7( ) J7h5 e7+xh5 e7dh1 +x2§,e7dh2 +x2§,e7dh3+ng,e7dh4 +x2:,e7dh5 +$Z§,e7dhs’ the
previous equalities imply that x}g;m = 0 and $Z§,e7 = (. Observe that when either dj,
or dp, is equal to 1 and demand dj,, = 1 then commodity /7 is fully routed through e;
which requires that h; does not use e7. Consequently, we have fy, o, (1p, + 15, +1p,) =
Ths 67(]lh4 + 1y, + Ling) = frger(Lng + Lp, + 1, + 1p,) = 0. These equalities lead
to xhs ., = 0 and ngﬂ = 0. From fp, o, (1p, + 1p, + L, + 1p,) = 0, we get that
:1:25 et %5 e, = 0, while fy,_ .. (1p, + 1p, + 1p, + 14,) = 1 leads to the contradictory
equality xh e T xh o = L. [

4.4 Extended graph formulation

We have seen that formulations F_ and F; can be strictly tighter than F_ (i.e., closer to

Fayn)- The difference between F_ and F lies in the sign of the terms Y f, .(d) —
e€dt(v)
Yo fre(d) forv € V \ {s(h),t(h)} required to be negative for F_ and positive for
e€d_(v)
F. Our first trial to improve both F_ and F led to formulation F.,;. However, F.,;

is generally NP-hard to solve. We would like to propose a stronger formulation that is
still easy to solve, where the features of F_ and /., are combined in some way.

We propose the following. For each commodity h € H, and for each vertex v €
V\ {s(h),t(h)}, we add to G the two directed edges t(h)v and vs(h). We also add
an edge directed from ¢(h) to s(h). For each commodity h, an s(h)t(h) flow f" is
considered in the extended graph. Notice that the extra edges we added ¢(h)v, vs(h)
and t(h)s(h) can only be used by commodity h. Flow conservation constraints can be

expressed as follows.

Frwsi (@) + D faeld) = fasmp(d) = Y fue(d) = 0if v # s(h), t(h) (4.11)

e€dt(v) e€d_(v)

> fueld) - Z fhusm()—dh. (4.12)

e€d (s(h)) veV\{s(h

Notice that 0, (v) and §_(v) contain only edges belonging to G.
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For sake of completeness, we give below the new formulation F.

minm

Z <x2,6 + Z xz:edh/> - Z (-’17276 + Z ijedh/> = 0

e€dt (v)U{vs(h)} h'eH e€d_ (v)U{t(h)v} h'eH

Vh e H,v e V\ {s(h),t(h)},d e D (4.13a)
Z (1’276 + Z xzjedh'> - Z (x?m;s(h) + Z xz:vs(h)dh'> = dp

ecd i (s(h)) heH veV\{s(h)} heH

VYh € H,d € D

> (;c‘,i,e + ) :chedh,) <cem, VYee E,deD (4.13b)

heH h'eH

e+ > ap.dy >0, VYdeD,heH.eeEU{th)s(h)} U\ smacny {vs(h), t(h)v}

h'eH

(4.13c)

Observe that there are no explicit capacity limitations for the edges not belonging to
E (the added edges of type vs(h) and t(h)v). However, non-negativity is required for
the flow on these edges.

Itis easy to see that 7, (resp. F_) is a special case of F since the term Y fj, .(d)—
e€d4 (v)

Yo fne(d) (esp. D> fre(d) — > fre(d)) is positive in F (resp. F_) and

e€d_(v) e€d_(v) e€dy (v)
can be seen as the flow going through an additional edge ¢(h)v (resp. vs(h)). In other

words, by considering only edges of type ¢(h)v (resp. vs(h)) and solving F we get F,
(resp. F_).
Let us now prove that F is valid.

Proposition 4.4.1. F is valid.

Proof. For each commodity . € H and for each d € D the solution induced by F is a
s(h)t(h) flow in the extended graph of value d;,. Consequently, each cut of the extended
graph that separates s(h) and £(h) has necessarily a capacity greater than or equal to dj,.
Observe however that additional edges of type t(h)v, vs(h) and t(h)s(h) do not belong
to any separating cut. This means that any separating cut in the extended graph contains
only edges from the original graph. We can thus deduce that any separating cut in G has
a capacity greater than or equal to d;,. By the maximum-flow minimum-cut theorem,
it is then possible to route commodity h using the capacities f;.(d) on the edges of
G. []

We give below an example showing that F can be strictly better than both F_ and
Fi.

Proposition 4.4.2. F is less conservative than F_ and F,.
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Proof. (sketch)

We will consider again the example of Figure 4.3. We have seen that the congestion
obtained by both F_ and F is equal to %. We give here a feasible solution of F for
which the congestion is only 1.25. We only have to determine the assignments related

to hs. Consider the solution defined by:
* fhser(d) = fuger (d) = 0.5+ 0.25dp, — 0.5dp,,
* fhgseo(d) = frser (d) = 0.25dp; + 0.5dn,, frses(d) = 0.25 + 0.75d),,
* fhea(d) =0.540.5dp, — 0.25dh,, frsvees(d) = 0.25 — 0.25d,, — 0.25d},,
* fhswgws (d) = 0.25dh,, frsvee = 0.25 — 0.25d),,,

while fj,. .(d) = 0 for all other edges. Observe that flow conservation constraints
are satisfied in the extended graph. The three last edges mentioned above (i.e., vgvs,
v4v5 and vgv1) do not belong to G (they are of type vs(h) and t(h)v). The fact that
they appear in the solution means that > fr.(d) — > fn.(d) will be always

e€dy (v) ecd_(v)
positive for v = v; and negative for v = v, (this is to say that this solution is neither

feasible for F_ nor for F, ). Observe also that the total capacity used on e, is given by
Jns.er(d) + dp, = 0.5 4 0.25dp,, + 0.5d,, < 1.25. Similarly, the capacity used on ey
is equal to 0.25dy,, + 0.5dp,, + dp, = 0.25dp,, + 0.5(dp, + dp,) + 0.5dp, < 1.25 (since
dp, + dp, < 1). One can check that the same holds for edges ¢} and e},. The positivity
of the terms fj,, .(d) is also easy to check for each edge e using the definition of D. []

Since F.,: is the best formulation that one can get when f;, .(d) is assumed to be
affine and is generally NP-hard to solve while F can be solved in polynomial-time,
there are cases where F is strictly dominated by F.,,. This is shown by the example
used above (Figure 4.3) for which we already proved in proposition 4.3.1 that F,; leads
to a congestion equal to 1 while F gives a congestion equal to 1.25.

To close this section, we would like to add that formulations (4.3) and (4.6) that
were proposed as an alternative to formulation (4.1) (i.e., F~), can also be expressed
in the context of the extended graph. To write the cycle-based formulation (4.6), we
only have to take into account the fact that the set of cycles will here depend on the
commodities (since for each commodity & we added some edges that can only be used

by this commodity).

4.5 Aggregation

One standard way to solve classical linear multi-commodity problems in a more effi-
cient way consists in aggregating commodities either by source or by sink [Ahuja et al.

(1993)]. Let us then try to do the same in the context of polyhedral uncertainty and
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affine decision rules.

4.5.1 Aggregation for F_

Let S C V and T C V be two subsets such that for each h € H we either have
s(h) € Sort(h) € T. All commodities having s as a source (s € S) will be aggregated
and considered as one commodity having a source s and several sinks. Similarly, all
commodities having ¢ as a sink (¢ € T') are aggregated into one commodity having sev-
eral sources and one sink ¢. It may happen that s(h) € S and ¢(h) € T simultaneously
occur, then we arbitrarily decide whether h is aggregated by source or by sink. For each
s € S (resp. t € T), let us use H, (resp. H?') to denote the set of commodities having
s (resp. t) as a source (resp. sink) and aggregated by source (resp. sink). For any
h € H, it will be more convenient here to use dhs(h)t(h) to denote the demand value of
the commodity (there is no ambiguity since we can assume that there are no demands
having exactly the same source and the same sink).

We also define for each s € S the set T'(s) = {v : h € H,,v = t(h)} to denote the
set of vertices v such that there is a commodity aggregated by source s and having v as
a sink. Similarly, fort € T, let S(t) = {v: h € H',v = s(h)}.

Applying this aggregation for F_ leads to the following aggregated formulation
Fagg-

minm
/ ’ *dhw lf’U S T S
3 <x s xgedh) s < Ly xgﬁedh) _ { 0T
e€dy (v) h'eH e€d_(v) WeH otherwise
Vse S,veV\{s},deD (4.14a)
’ ’ dhv ifv S S t
5 <x s x;;edh,> oy <x .S x;gedh,> _ { 0 €500
e€d4(v) h'eH ecd_(v) heH otherwise
VteT,veV\{t},deD (4.14b)
> <w0 + Y w?fedhf> +>° (x?,e +> xﬁ;dh/> <com, YecE,deD (4.14c)
ses h'eH teT =
2.+ Y aldy >0,V
sedw 20, Vee E,s€S5,deD (4.14d)
heM
o+ Y alidy >0, Vec EteT,deD (4.14¢)
=

Observe that all variables (except m) are either indexed by a source s or a sink £.
The number of variables is almost proportional to |S| + |7'|. Then to minimize the
number of variables, one has to minimize |S| 4 |T'| which can obviously be done by

computing a minimum vertex cover in a bipartite graph (the demand graph) and is equal
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to the cardinality of a maximum matching (by Konig’s theorem) [Giinliik (2002)].

The validity of F,4, is a direct consequence of the validity of aggregation when
there is no uncertainty.

It is also obvious that any solution of F_ can be used to build a solution for F,
having the same congestion. For each s € S (resp. ¢ € T'), we only have to sum the
variables related to commodities belonging to H, (resp. H') to get those related to s
(resp. t).

We know that when there is no uncertainty, /_ and F,,, are equivalent. One may
wonder whether they are equivalent when polyhedral uncertainty is considered. The

next proposition states that F,,, dominates F_.

Proposition 4.5.1. Formulation F,y, is less conservative than formulation F_.

Fig. 4.6 An example with four commodities: h; with ¢ = 1, 2 having the same source
and sink than edges e;, h3 from source node v; to sink node vs, and h4 from source node
v; to sink node vg. In this example we prove that formulation F, is strictly better than
formulation F_.

Proof. Let us consider the graph of Figure 4.6 containing 6 edges of capacity 1 each.
There are 4 commodities: h; with ¢ = 1, 2 having the same source and sink than edges
e;, hs from source node v; to sink node vs, and h4 from source node v; to sink node vg.

The polyhedron D is defined as the set of demands d € R% satisfying the two
equations dp, + dp, = 1 and dj, + dp, = 1. Due to the equalities defining D, we can
assume without generality loss that there is affine dependence on only dj,, and dj,.

First, let us consider formulation F,,, with only source aggregation. We will then
aggregate commodities i3 and hy. Consider the solution of F,,, defined by: f,, ., (d) =
Fores(d) = L—diy, forea(d) = forer(d) = dnys fures(d) = diy and fo, o (d) = 1~ d,.
Variables related to the two other sources v, and vs are fixed in an obvious way. This
solution allows a congestion equal to 1.

Let us now assume that there is a feasible solution of F_ with congestion equal to 1.
W, 2 .

Let f be such a solution. For each edge ¢, we have fy, .(d) = z))_ + ;!
Since the graph is acyclic and f},, is a positive flow, if the demand for a commodity hs
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is zero then the flow for this commodity must also be zero in model (4.1). Then when d
is the demand vector where dj,, = dj,, = 0, we should have fj,, .(d) = 0 implying that
2y, . = 0 for each edge e. Similarly, when d is such that dj,, = 0 and d;, = 1 we also
have f, .(d) = 0 leading to xl,:;e = 0.

Let us now focus on edge e;. When dj,, = dp, = 1, e; already carries commodity
hi whose value is here equal to 1. Then there are no more resources that can be used
by commodity hs implying that f, ., (d) < 0. Using the positivity constraint we can
deduce that f, ., (d) = 0 when d;, = dj, = 1. Thus, ng’el = 0. In other words,
frs.e (d) = 0 for any d implying that commodity hs is never routed through e;. It
is then fully routed through e,. This is of course not possible without violating the

capacity constraint of e, since commodity /s is already routed through e,. ]

According to Proposition 4.5.1 it should be understood that aggregation is not only
interesting for accelerating problem solving (as is the case for problems without uncer-
tainty), but it also leads to better solutions since we are getting closer to Fg,,. In fact, by
aggregating commodities and solving F,,, the capacities reserved for each aggregated
commodity is affine while the capacities used by each individual commodity making up

the aggregated one are not necessarily affine in d.

4.5.2 Sink aggregation for F

Since F; dominates F_, it would be interesting to perform some kind of aggregation
to be able to solve larger problems and further reduce congestion.

We consider the aggregated formulation F, 4, given below where only sink aggre-
gation is possible (so S = ()). Observe also that equality constraints (4.14b) are replaced
by inequalities (4.15a).

minm
/ ’ dhv ifv e S(t)
S (ot X atit) = 5 (shor X o) 2 f e 0
e€dq(v) heH e€6_ (v) heH otherwise
VteT,ve V\{t}),deD (4.15a)
> (x?,e + x,’{i;dh/> <cem, Ye€ E,deD (4.15b)
teT h'eH
oo+ Y afedy >0, YeeEteT,deD (4.15¢)
h'eH

The validity of F,,, is less obvious than the validity of F,4,, and it is demonstrated

hereafter.

Proposition 4.5.2. F,,,. is valid.
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Proof. Consider any feasible solution f of F4,. Let us select any traffic vector d € D
and any sink ¢ € 7. For each vertex v € V' \ {t} we add to G the edge tv of infinite
capacity. Let us also add to G a “virtual” node s, and an edge from s; to each vertex
v € S(t) of capacity dp,,. Then, starting from f.(d) = 20+ Y a}'".d for each edge

heH
e € I, f; can be extended to a positive flow from s; to ¢ by taking

> Jreld) = X field) ifv e V\S(t)
ft t’u(d) _ e€dy (v) e€d_(v)
7 52( )ft,e(d) - 52( )ft,e(d) - dh'ut ifve S(t)

and fis,,(d) = dp,, forv € S(t). We are then sending a flow of value 3, ;) dp,, from
s¢ to t. Directed cycles can be cancelled in a standard way by decreasing flow on the
edges of each directed cycle. We can therefore assume that the set of edges for which
fte(d) > 0 does not contain any directed cycle. Since the flow on the “virtual” edges
sy is exactly equal to dy,,,, the s;t-flow induces |S(¢)| simultaneous positive flows, each
from a vertex v € S(t) to ¢ and of value exactly equal to dj,,. Each vt-flow (v € S(t))
uses only original edges of GG. This clearly implies that it is possible to simultaneously
route the demand dj,,, for each v € S(t). Since this holds for any ¢t € T" and any d € D,

the validity of the formulation is proved. [

One can easily modify the example of Figure 4.6 to show that F,,, strictly domi-
nates F. Itis also easy to see that F,,, dominates JF,,, when only sink aggregation
is considered to build F,,, (i.e., when |S| = 0).

Finally, we should mention that source aggregation cannot be used in combination
with F even if there is no uncertainty. Consider, for example, a graph having 4 ver-
tices, s, v, t; and t, and 2 edges st; and vt, having some capacity. Assume that we
have two commodities h; and h4 of value 1 each from s to ¢; and from s to t,. Observe
that there is even no path from s to ¢, so the network design problem has no solution.
However, by taking f,.., = 1 and f; &, = 2, we can ensure that all constraints related
to the aggregated commodity will be satisfied (the flow entering ¢, is greater than 1, the
flow going out of v is greater than what is going into v, the flow reaching ¢, is greater
than 1, and we even have that what comes out of s is greater than the sum of the two

demands).

4.5.3 Source aggregation for F_

Aggregation can also be considered in combination with /_. However, only source
aggregation can be used. The obtained formulation denoted by F,,,— would be the
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following.

minm
’ ’ —dhw lfU S T S
DI D SR il AR o) I e
e€di (v) h'eH ecd_(v) heH otherwise
Vse S,veV\{s},deD (4.16a)
> (fco + > w?,'edh/) <c¢em, Vee E,deD (4.16b)
ses heH
2.+ Y alldy >0, VecE,s€S,deD (4.16¢)
=

The proof of validity of F,,,_ is very similar to the proof of validity of F,,,;. One
can also build examples where F,,,_ strictly dominates F_. It is also easy to see that
Fagg— dominates F,,, when only source aggregation is considered to build F,4, (i.e.,
when |T'| = 0).

Finally, we would like to mention that aggregation can also be considered in the
context of formulation F.,;. However, since solving F.,; is NP-hard and aggregation
would not change the theoretical complexity, we are not going to study this kind of

aggregation.

4.6 Solution Methods and Numerical Evaluation

Figure 4.7 summarizes the main domination relations between the models introduced
or recalled in the chapter. However, a numerical evaluation is needed to quantify the
difference in terms of performance between these variants.

In this section, we begin by presenting the two types of uncertainty sets considered
in the evaluations. For the sake of completeness, we briefly recall in Section 4.6.2
standard duality-based methods to solve the introduced formulations. Data instances
considered for evaluation are described in Section 4.6.3 and, finally, we present all the

results in Section 4.6.4.

4.6.1 Uncertainty sets

For the numerical evaluation, we consider two different uncertainty sets. We first use the
Budget uncertainty of [Bertsimas and Sim (2003)] (recalled in Chapter 1) and defined
as follows.

D={deR":dy=d,+2"dy, Y 2, <T,0<z <1VheMH} (4.17)
heH
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Fig. 4.7 Domination relations between the models introduced or recalled in the chapter.

where d" is the nominal demand for commodity h, dy, is the maximum possible devia-
tion from dj, and I is a parameter that specifies a limit (the budget) on the deviations
of all demands at the same time with respect to the nominal values.

Second, we consider the All Routable Demands uncertainty set [Azar et al. (2003)]
which contains all demand vectors that can be routed through a given network where
capacities are fixed and routing can be adapted to each demand vector (See Chapter 1
for more details).

The two uncertainty sets introduced above are easy to handle (i.e., the separation

problem related to each set can be solved in polynomial-time).

4.6.2 Problem solving methods

The models introduced in this chapter involve constraints that must be satisfied for all
traffic vectors d € D.

When D is a polytope having a polynomial-number of extreme points, some formu-
lations such as Fg,,, can be solved by considering the constraints related to each extreme
point. However, for most of polytopes considered in literature (such as those described
above), the number of extreme points is not polynomial. Then there are mainly two
methods to handle constraints involving d: either cutting-plane algorithms where traffic
vectors are generated in iterative way [Ben-Ameur and Kerivin (2003)] or duality-based
approaches [Ben-Tal et al. (2009)]. While the cutting-plane approach can be applied for
any tractable polytope (i.e., for which separation is polynomial), the second approach
is recommended when the polyhedral set can be described using a limited number of
variables and constraints [Ben-Ameur et al. (2012), Ben-Tal et al. (2009)].

We are then going to use duality-based approaches to solve the problems introduced
in the chapter. Duality allows to obtain equivalent compact linear programs of the
original problems [Ben-Tal et al. (2009)]. In the following we will describe, as an

example, how this is done for model (4.3) and the Budget uncertainty set D described in
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(4.17). The same method can be (quite) straightforwardly applied to the other models.
The numerical results that we will present later in the section are obtained using this
method.

For each edge e, constraint (4.3b) (recall that this latter is given as:
Z (ﬁye + Z x’g:edh/> <cem
heH =
is satisfied for all traffic vectors d € D if and only if the constraint
0 n
rlglezg( (xhve + Z mhzedh/> S Cen
heH =

is satisfied. Thus by writing the polyhedron D in a more explicit form we obtain that a
given solution (z,m) of (4.3) satisfies this constraint if and only if the solution of the
following linear program gives a capacity reservation/congestion value that is less than

CeM.

max Z <x2,e - Z p (dy + zh/jh,)>

heH h'eH
» o M<T (4.18a)
h'eH
0<2M<1 Vh € H (4.18b)

By linear programming duality theory, model (4.18) has an optimal solution of value
less than c.m if and only if the following dual linear program has a feasible solution of

value less than ¢,m.

win ) ( tD %Zlﬁh) Hhmet )

heH h'eH h'eH
Te+pl >dy Y VR € H
heH
p >0,m,>0 Vh' € H

where 7, and //g' are the dual variables corresponding to constraints (4.18a) and (4.18b),

respectively.
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We can thus replace each constraint (4.3b) by the following inequalities.

Z <x276 + Z xZ:eah/) +I'me + Z ,u’;l < cem

heH heH heH

Te + Mgl > Czh’ Z ,];‘Z:e Vh € H
heH

pt >0, >0 Vh e H

Constraints (4.3c) can also be dualized in a very similar way.

Finally, we should mention that in formulations F—, F., F_, Fugg+, Fagg—» Fagg
and F the flow conservation constraints are handled as done in (4.3). For example, to
solve F,, by adding virtual edges of type ¢(h)v, we recover again equalities in the flow
conservation constraints that should be satisfied for each d € D. These equalities are
then replaced by a set of equalities that is similar to (4.3a).

The static routing a approach (noted as F,; in the result tables) consists in choosing
a fixed routing for all demand scenarios (i.e., fj(d) = xé‘o for any d € D). Itis
described in [Ben-Ameur and Kerivin (2003), Azar et al. (2003)]. Here we solve this
problem with the same duality-based techniques.

Further details about the solution methods are provided in Appendix A.

4.6.3 Network instances

We consider Abilene and Geant, two publicly available directed network topologies
taken from the SNDIib [Orlowski et al. (2007)] library and commonly used in the net-
working community for numerical evaluations. The former is of medium size (12 nodes
and 30 links) while the latter is of larger size (24 nodes and 72 links). The arc capacities
are those present in the SNDIib instances.

We compare the affine routing and static routing formulations considering the min-
imization of two classical objective functions: 1) the Maximum Link Utilization (de-
noted as MLU which is nothing but the optimal value of m) and 2) a linear reservation
cost (denoted as Linear). The M LU is expressed as max.cp = wWhere c, is the capacity
of edge e and . is the reserved capacity on such edge. While the Linear objective is ex-
pressed as ) . At Where ) are scalars corresponding to the unit cost of underlying
resources.

To generate different sets of commodities on each instance with an increasing num-
ber of demands, we begin with the set H, consisting of all the possible commodities
between sources and destinations. We generate a subset H; C H, by selecting com-
modities from H, with a uniform probability distribution. We re-iterate this process
until H,; is of the size we desire. Next, we build a subset 5 of H; with the same pro-

cedure to get a smaller set of demands. Successively, we obtain a sequence of demand
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sets of decreasing size that are successively included in each other.

For each topology and each objective function we also consider the two uncertainty
sets, Budget and All Routable Demands. The parameters for the Budget polyhedra are
set as follow: d' = d" = min ce for all commodity h € H and I' = \/m .

eceE

4.6.4 Numerical results

We first analyze the solutions from the different formulations. Then, we compare solu-
tion times and model sizes.

We compare static routing (denoted as Static) with affine routing formulations that
can be categorized into 5 groups: (1) those based on the relaxation of flow conserva-
tion constraints (F_ and JF) of affine routing (F-), (2) the one based on aggregation
(Fagg), (3) those using a mix of the two former (F,4,— and F,444), (4) the one using
the elementary cycle formulation (F.,q), and (5) the one using the extended graph
formulation (F).

In our implementation, we used the CPLEX solver version 12.6.3 on servers having
four Intel Xeon E5-4627 v2 3.3 GHz CPU cores and 512GB of memory. In all our
computations, CPLEX is configured without a time limit and the default optimality

gap. We used Julia to model problems and interface with the solver.

4.6.4.1 Comparison of objective values

We present two series of tables, Tables 4.1 and 4.2, with the solution of all formulations
on Abilene and Geant, respectively. For each topology, we consider the two polyhe-
drons and the two objective functions described above.

For each case, the table is organized as follows. The second row gives the number of
demands (or commodities) |# | ranging from 10 to 30 demands for the instances related
to Budget polyhedra (4.17), and from 5 to 15 for the more computationally expensive
All Routable Demands polyhedra, except for Geant and the MLU objective (Table 4.2d)
where the instances with 15 demands become prohibitively expensive to compute. The
subsequent rows report the value of objective function at the optimum for all affine
routing variants presented in this chapter: F_, F_, F, Fug9, Fagg—> Fagg+» Feycle> and
F. We also give the cost of static routing solution F,;. The last row contains the gap
between the original affine routing formulation F_ and F denoted by Best Gap (BG)

—OFS};:OFf where OFr_ and OF5 are the costs of the

in the tables and computed as
solutions of F_ and F.

First of all, as expected, we can see that, in almost all the tables, all the variants of
affine routing exhibit better solutions compared to the static routing, especially when
the number of demands is large (this was also observed in [Poss and Raack (2013)]).

Also, the solution given by F_ is, on one hand, almost always strictly dominated by the

73



solution obtained by F. The solution given by F seems to be the best one with respect
to all the other variants of affine routing and static routing in all the considered scenarios
(e.g. see Tables 4.2a and 4.2¢ at the 30 commodities column). We also observe that the
solution of F;, and F_ can give strictly better solutions than F_ (e.g. see Table 4.2d)
Furthermore, observe that the solutions of F,g,, Fogg+, and Fog,— can give slightly
strictly better solutions than F_, F,, and F_ respectively (see, for example, Table 4.2a
with 30 commodities for F_ and ., and Table 4.2¢ with 30 commodities for F_).
Let us now look more closely at solutions from the different formulations and in
particular compare F_, the original affine formulation, and F. For instance, for Abi-
lene with MLU and All Routable Demands we obtain a percentage gap up to 9.914 %
between F_ and F, and up to 10.538 % between F,;o; and F. Similarly, for Geant, we
have the same trend, with slightly lower percentage gaps (up to 4.458 % and 5.259 %).
In practice the objective function can have a different structure and higher gaps may
be observed. For instance, a step cost function (often approximated with a piece-wise

linear function) can be used to model the investment in additional unitary physical re-

sources.
Table 4.1 Solutions on scenarios with Abilene topology.
(a) Budget, Linear objective. (b) All Routable Demands, Linear objective.
Nb demands Nb demands
10 15 20 25 30 5 10 15
Fstat | 440 | 69.87 | 9047 | 1150 | 14191 Fotat | 210 30.5 355
Fe 440 | 69.18 | 89.68 | 1120 | 13457 Fo 21.0 305 355
Foyele | 440 | 69.18 | 89.68 | 112.0 | 13457 Feyete | 210 30.5 355
Fr 440 | 69.08 | 89.68 | 1120 | 134.57 Fr 21.0 30.5 355
F- 440 | 6893 | 89.68 | 1120 | 13457 F_ 21.0 305 355
F 440 | 6763 | 8797 | 1080 | 129.82 F 21.0 29.6 34.43
Fagg | 440 | 69.18 | 89.68 | 1120 | 134.57 Fagg | 210 30.5 355
Faggt+ | 440 | 69.08 | 89.6 1120 | 134.57 Fagg+ | 210 305 355
Fagg— | 440 | 6893 | 89.68 | 1120 | 13457 Fagg— | 210 30.5 355
BG | 00% | 224% | 191% | 357% | 353 % BG | 00% | 2951% | 3.014%
(¢) Budget, MLU objective. (d) All Routable Demands, MLU objective.
Nb demands Nb demands
10 15 20 25 30 5 10 15
Fstat | 30 | 4936 | 6236 | 65 | 7.739 Fstat 13 1.424 1491
Fe 30 | 4936 | 6236 | 65 | 7.739 Fo 1.291 1.42 1.486
Feyele | 30 | 4936 | 6236 | 65 | 7.739 Foyete | 1291 1.42 1.486
Fi 30 | 4936 | 6236 | 65 | 7.739 Fy 1.245 1.39 1.452
F- 30 | 4936 | 6236 | 65 | 7.739 F- 1.24 1.381 1.448
F 30 | 4936 | 6236 | 65 | 7.739 F 1.163 1312 1.38
Fagg 30 | 4936 | 6236 | 65 | 7.739 Fagg 1.291 1.42 1.486
Fagg+ | 30 | 4936 | 6236 | 65 | 7.739 Faggr | 1244 1.379 1.446
Fagg— | 30 | 4936 | 6236 | 65 | 7.739 Fagg— 1.24 1.38 1.447
BG | 00% | 00% | 00% | 00% | 0.0% BG | 9914% | 7592% | 7.137%

4.6.4.2 Comparison of model sizes and solving times

We now present two series of tables displaying the solving times and the model sizes. In

the first series (Table 4.3) we compare the two polyhedron on the Abilene topology with
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Table 4.2 Solutions on scenarios with Geant topology.

(a) Budget, Linear objective. (b) All Routable Demands, Linear objective.
Nb demands Nb demands
10 15 20 25 30 5 10 15

Fistat 480 | 71.87 94.0 1180 | 13148 Fotat | 330 52.0 63.0

Fe 4707 | 7025 | 9247 | 1140 | 12775 F- 33.0 52.0 63.0
Feyele | 4707 | 7025 | 9247 | 1140 | 12775 Feyete | 33.0 52.0 63.0

Fu 4701 | 7004 | 9247 | 1140 | 1275 Fi 33.0 52.0 63.0

F_ 4696 | 69.83 | 91.96 | 113.71 | 127.39 F_ 33.0 51.0 63.0

F 4694 | 692 | 90.83 | 11053 | 123.22 F 33.0 | 5052 62.5
Fagg | 4707 | 7025 | 9247 | 1140 | 127.75 Fagg | 330 52.0 63.0
Fagot+ | 4694 | 6978 | 9196 | 1135 | 126.99 Fagg+ | 330 51.0 63.0
Fagg— | 4694 | 69.46 | 9179 | 1135 | 127.04 Faga— | 330 50.5 62.5

BG | 029% | 1.49% | 1.78% | 3.05% | 3.55% BG | 00% | 2.846% | 0.79%

(¢) Budget, MLU objective. (d) All Routable Demands,MLU obijective.
Nb demands Nb demands
10 15 20 25 30 5 10

Ftat 1.621 | 2311 | 3.174 | 3252 | 3.836 Fstat 1154 1312

Fe 1515 | 2218 | 2.868 | 3.0 3.427 F- 1.133 1.301
Feyele | 1515 | 2218 | 2.868 | 3.0 3.427 Feyete | 1133 1.301

Fy 1505 | 2218 | 2.868 | 3.0 3.422 Fi 1.091 1.282

F_ 1515 | 2218 | 2.868 | 3.0 3.427 F_ 1111 1.285

F 1505 | 2218 | 2.868 | 3.0 3.422 F 1.091 1.243
Fagg 1515 | 2218 | 2.868 | 3.0 3.422 Fage 1.133 1.301
Fagg+ | 1505 | 2218 | 2.868 | 3.0 3.422 Fagg+ | 1.091 1.282
Fagg— | 1515 | 2218 | 2.868 | 3.0 3.422 Fagg— | 1111 1.285

BG | 0621% | 0.0% | 00% | 0.0% | 0.165% BG | 3.743% | 4418 %

the MLU objective. And in the second series (Table 4.4) we compare both topologies
with the All Routable Demands polyhedron and the Linear objective. The solving times
are in seconds. For the size of models, we display for each formulation the number of
columns (i.e. variables), denoted as #col, and the number of rows (i.e., constraints),
denoted as #row.

We can observe that, in general, the computation time for the scenarios with All
Routable Demands (Table 4.3b) can be several hundred times longer than with Budget
(Table 4.3a). This can be explained by the fact that the All Routable Demands poly-
hedron leads to a larger model size in terms of number of variables and constraints.
Observe, for example, that the model related to F with All Routable Demands poly-
hedron and 15 demands on the Abilene topology has five times more variables and six
times more constraints than the model with the Budget polyhedron (Tables 4.3c and
4.3d).

We further observe that increasing the number of demands greatly increases the
required solving time for the affine variants without aggregation (e.g. F—, F_, F,,
Feyeler and F). The aggregation technique for the affine routing that we introduced (e.g.
Faggs Fagg—» Fagg+) permits to alleviate this drawback for big enough commodity set
size (Tables 4.3a and 4.3c). This is somewhat explained by the fact that the number of x
variables varies quadratically with the number of demands in the non-aggegated model

while it is linear with the number of demands in the aggregated models.
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Let us now focus on a given scenario, for instance, Abilene with Budget and the
Linear objective (Table 4.1a) to compare the solving times. It can be observed that F,
the routing scheme based on the extended graph formulation, takes the longest time to
compute the optimal solution with respect to all the other approaches when varying the
demand in the range [5-30]. This is indeed expected since the formulation of F is more
complex: for each commodity i, we added to the original graph G directed edges from
the sink of h (i.e., t(h)) to each node v € V of G, from each node v to the source of h
(i.e., s(h)), and from t(h) to s(h). The complexity of this approach naturally increases
with the number of demands and number of nodes. However, as mentioned above, F

shows the best solutions among other formulations.

Table 4.3 Scenarios with Abilene topology and MLU objective: Impact of the polyhe-
dron on the solving time.

(a) Budget, Solving times (s). (b) All Routable Demands, Solving times (s).
Nb demands Nb demands
10 15 20 25 30 5 10 15
Fstat <l|<1l|<1l|<1l|K1 Fstat <1] <1 1
F= <1 1 5 12 29 Fo 6 447 | 2929
Feyele | <1 3 5 41 76 Feyele 9 170 | 2421
Fy <1 2 7 23 89 Fi 9 415 | 5284
F_ 1 2 7 20 37 F_ 9 402 | 3806
F <1 3 12 30 61 F 29 | 1136 | 11405
Fagg | <1 | <1 2 4 6 Fagg 6 132 590
Fagg+ | <1 | <1 2 5 6 Fagg+ 8 340 | 2342
Fagg— | <1 1 2 4 6 Fagg— 6 189 | 2127
(¢) Budget, Size of the models. (d) All Routable Demands, Size of the models.
Nb demands Nb demands
10 15 20 25 30 5 10 15
Fstat | #col 961 1411 1861 | 2311 2761 Fstar | 5251 8701 12151
#row | 770 1125 1480 | 1835 2190 9415 | 18770 | 28125
Fo #col | 6931 | 14881 | 25831 | 39781 | 56731 F_ 16201 | 49501 | 100801
#row | 4950 | 10560 | 18270 | 28080 | 39990 28440 | 103950 | 226560
Feyele | #eol | 5721 | 12241 | 21211 | 32631 | 46501 Feyele | 15871 | 48291 98161
#row | 3630 | 7680 | 13230 | 20280 | 28830 28080 | 102630 | 223680
Fr #col | 9791 | 21121 | 36751 | 56681 | 80911 Fr 22116 | 69131 | 141946
#row | 6380 | 13680 | 23730 | 36530 | 52080 38580 | 144380 | 317430
F_ #col | 9791 | 21121 | 36751 | 56681 | 80911 F_ 22116 | 69131 | 141946
#row | 6380 | 13680 | 23730 | 36530 | 52080 38580 | 144380 | 317430
F #eol | 14851 | 32161 | 56071 | 86581 | 123691 F 27841 | 88381 | 182521
#row | 7590 | 16320 | 28350 | 43680 | 62310 47160 | 178590 | 394320
Fagg | #col | 4201 | 9121 | 15751 | 19501 | 23251 Fagg | 16201 | 44971 | 75481
#row | 3036 | 6384 | 10962 | 13572 | 16182 28410 | 94389 | 169696
Fagg+ | #col | 8251 | 17761 | 30871 | 38221 | 45571 Fagg+ | 22741 | 64843 | 109669
#row | 3828 | 8112 | 13986 | 17316 | 20646 37770 | 127977 | 231208
Fagg— | #eol | 9571 | 17761 | 28351 | 35101 | 41851 Fagg— | 18703 | 51367 | 90793
#ow | 4411 8112 | 12873 | 15938 | 19003 31152 | 101611 | 191712

Table 4.4 shows the impact of the topology on the problem size and the solving time.
The problems related to Geant topology clearly have larger size than those related to
Abilene and require much more time to be solved. While the number of nodes and edges
is twice bigger in Geant compared to Abilene, the number of variables and constraints

for models can be between five and seven times larger.
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Table 4.4 Scenarios with Linear objective and All Routable Demands polyhedrons:
Impact of the topology on the solving time.

(a) Abilene, Solving time (s). (b) Geant, Solving times (s).
Nb demands Nb demands
5 10 15 5 10 15

Fstat | <1 | <1 | <1 Fstat | 0271 | 0536 1.34

F- <1| 17 122 F- 13.57 | 406.57 | 3094.01
Feyele | <1 ] 19 213 Feyele | 185 | 34056 | 3339.84
Fi 1 33 495 Fi 33.05 | 1628.02 | 111559

F_ 1 32 606 F_ 49.87 | 222021 | 12307.3
F 2 457 | 3292 F 85.24 | 7480.31 | 53291.0

Fagg | <1 | 14 60 Fagg | 12.07 | 26531 | 787.58

Faggt 1 30 272 Fagg+ | 180 | 1030.97 | 4561.98
Fagg— | <1 | 27 145 Fagg— | 5859 | 819.89 | 6972.41
(c¢) Abilene, Size of the models. (d) Geant, Size of the models.

Nb demands Nb demands

5 10 15 5 10 15

Fstat | #col 5281 8731 12181 Fstat 25921 41401 56881
#row | 9415 18770 | 28125 52809 | 105474 | 158139
F_ #col | 16231 | 49531 | 100831 F_ 78697 | 231337 | 463177
#row | 28440 | 103950 | 226560 158772 | 581372 | 1267872
Feyele | #eol | 15901 | 48321 98191 Feyele | 18067 | 229027 | 458137
#row | 28080 | 102630 | 223680 158112 | 578952 | 1262592
Fi #ool | 22146 | 69161 | 141976 Fi 09742 | 298727 | 602212
#row | 38580 | 144380 | 317430 200862 | 749502 | 1645992
F_ #eol | 22146 | 69161 | 141976 F_ 99742 | 298727 | 602212
#row | 38580 | 144380 | 317430 200862 | 749502 | 1645992
F #eol | 27871 | 88411 | 182551 F 119872 | 363187 | 735202
#row | 47160 | 178590 | 394320 241122 | 910322 | 2007672
Fagg | #col | 16231 | 45001 75511 Fagg 52345 | 189145 | 289081
#row | 28410 | 94389 | 169696 105786 | 475536 | 792144
Fagg+ | #col | 22771 | 64873 | 109699 Fagg+ | 65611 | 246521 | 378379
#row | 37770 | 127977 | 231208 129942 | 604192 | 1009152
Fagg— | #eol | 18733 | 51397 | 90823 Fagg— | 100807 | 246521 | 495193
#row | 31152 | 101611 | 191712 199002 | 604192 | 1319232

4.7 Conclusion

We have presented variants of the original affine routing formulation to further improve
the solutions of the robust network design problem. We proposed a formulation F, .
based on cycle decomposition that is equivalent to the initial node-arc formulation F_ of
[Poss and Raack (2013)]. We also proved that a formulation based on paths is dominated
by F_. Then two main ideas have been proposed: relaxation of flow conservation
constraints and aggregation. The first idea led to /_ and . that have been combined
into a stronger formulation F by considering an extended graph. All these formulations
are less conservative than F/_. The second idea allowed us to build new formulations
Faggr Fagg+ and F,q, that are respectively dominating formulations F_, F and F_.
The striking fact is that aggregation simultaneously reduces the size of formulations
as well as the solution’s cost. Furthermore, we have proposed a cut-based formulation
F.t that improves over formulation F but is generally NP-hard to solve. Finally, we
illustrated our results with a numerical evaluation on two popular network topologies,

two objective functions and two polyhedrons.
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Despite the efficiency of the new proposed formulations, several challenges remain.
To solve larger size problems and reduce solution’s cost, it would be nice to find some
way to combine aggregation with the extended-graph-based formulation 7. Combin-
ing the uncertainty partitioning techniques (i.e., [Ben-Ameur (2007), Al Najjar et al.
(2019), Ben-Ameur and Zotkiewicz (2011)]) recalled in introduction with some of the

formulations introduced in the chapter would be another challenge.
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CHAPTER 5

A new multi-static routing approach

A multi-static approach has been proposed in [Ben-Ameur (2007)] where the uncer-
tainty set is partitioned using some linear inequalities and routing is restricted to be
static over each partition.

On the other hand, using the fact that each point of a compact convex set can be
written as a convex combination of extreme points, one can see the dynamic approach
as a multi-static approach where a routing is imposed for each extreme point of the
uncertainty set.

One might ask the following question.

* Is it possible to generalize the multi-static framework in a natural way to obtain a

strategy enclosing dynamic, static and multi-static approaches ?

A first attempt to achieve this was the multipolar approach of [Ben-Ameur and
Zotkiewicz (2013b), Ben-Ameur et al. (2018b)] (recalled in Chapter 1). We are go-
ing to propose a different approach.

We propose a strategy where several subpolytopes contained in the uncertainty set
(and more precisely faces) and containing all non-dominated extreme points of this
set are defined. A static routing is considered for each subset. We show how these
subpolytopes can be found for at least two popular uncertainty sets: the budget polytope
and the hose polytope. We describe the approach and some preliminary numerical

results in the following sections.

5.1 Decomposition of the uncertainty set

Assume that D = {d € R* : a;d < b;,Vi € I} where I is a finite set. We also assume
that D is bounded. For J C I,let Dy = {d € D : a;d = b;,Vi € J}. If D; # ), then it
is a face of D. Let us consider subsets of I denoted by J1, Js, ..., J,. such that each non-
dominated extreme point of D belongs to at least one D, for [ € {1,...,7}. Recall that
a non-dominated point d of D is a point such that the only vector d > d belonging to
Dis d = d. It is well-known that we only have to ensure that all non-dominated traffic
vectors can be routed. Since such a non-dominated vector is a convex combination of
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non-dominated extreme points of D, it is then sufficient to route such extreme points.
This can be achieved by considering a static routing for each D ;. The problem can then
be modeled as follows:

min E AelUe

eclE

ul < u, Vie{l,..r}ecE (5.1a)

> dy < ul Ve e E,l€{l,..,r},d € Dy,

heH
(5.1b)
1, ifv=s(h)
Sooaho— > ah.=1 —1, ifv=t(h) Vhe H,veV,le{l,.,rt (5.1c)
e€d4(v) e€d—(v) 0 otherwise

0<aj, <1 Yec E.heH,le{l,...r}

(5.1d)

where s(h) (resp. t(h)) denotes the source (resp. sink) of commodity A, and ¢ (v)
(resp. 6_(v)) is the set of edges outgoing of (resp. ingoing to) v. Variables u! represent
the capacity required on link e to route demands inside D,,, while xﬁ%e denotes the
fraction of commodity A that is routed through e when the static routing related to D,
is considered. Constraints (5.1a) and (5.1b) ensure that capacities are sufficient to route
traffic, while (5.1c¢) are classical flow-conservation constraints.

Observe that in the classical multi-static approach, the uncertainty set is partitioned
and a static routing is considered for each subset. In the new proposal, we only require
\U,—, D, to contain the set of non-dominated extreme points implying that conv(J,_, D)
contains all non-dominated vectors of D.

Observe that since each extreme point is defined by a set of equations among the
inequalities defining D, the proposed approach can theoretically reach the dynamic
routing approach. However, as the number of extreme points can be exponential, the
approach would not be practical. Our challenge is then to find a better decomposition
defined by J leading to a good approximate of the optimal dynamic solution in a rea-

sonable computing time.
Generation of the faces D,

We will now describe a method to generate the sets Dj,. Suppose that there is a
subset of inequalities a;d < b; for ¢ € Iy C I such that for all non-dominated ex-
treme points d*** of D at most I" inequalities can be non-active at the same time (i.e.,
[{i € Ipla;d®* < b;}| < T'). We partition the set Iy into I'+1 subsets Ji, ..., Jry1. In the

numerical experiment we conducted we arbitrarily constructed the partition composed
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of sets of approximately the same size. A non-dominated extreme points d®** of D is
necessarily contained in one of the D,. Otherwise we would have an ¢; in each J; such
that a;,d*** < b;, and thus I" + 1 such indices and this would contradict the hypothesis
that |{i € Ip|a;d** < b;}| < I'. Consider, for example, the budget polytope defined
by dj, = djy + En(dy, — dp), 0 <& < 1,and ), 4 & < T where dj, (resp. dp) is a
non-negative lower (resp. upper) bound of d;, and I represents an uncertainty budget.
In this case, one can use constraints —d;, < —dj, to generate the faces Dj,.

The same approach can also be applied for the hose polytope defined by constraints
D hetes(m—y n < 0(v) and 37, g, dn < 07(v) where b7(v) and b7 (v) are
positive constants, in addition to non-negativity constraints. Since at most 2|V'| con-
straints related to incoming and outgoing traffic would be active, at most 2|V'| non-
negativity constraints would be non-active. Therefore, non-negativity constraints d; >
0 can be used to get the sets D,.

The approach can be iteratively applied for sets D,. Instead of considering a static
routing for D ,, one can consider a decomposition covering the non-dominated extreme
points of D ,. This will generally improve the solution quality at the expense of a larger
model to solve. In the following, two types of strategies are considered to iteratively

build the subsets .J;, a non-selective strategy and some selective ones.
Non-selective Strategy

First, the set [ is arbitrarily partitioned into I' 4+ 1 subsets. Then, for each poly-
tope D, with [ € {1,...,1 4 I'}, the procedure is repeated replacing I, by I \ J; and
D by Dy,. Since each non-dominated extreme point of D, is also a non-dominated
extreme point of D, the property |{i € Ip|a;d*" < b;}| < T is still satisfied for each
extreme point d°** which allows application of the decomposition process. By doing so
the number of sets of D, increases (almost multiplied by I' + 1) and the size of the sets
J; increases as well (since more inequalities are turned to equations). One can continue
iterating until the number of D, reaches some fixed value to keep computational com-
plexity under control. Notice that the number of distinct sets D ;, that can be obtained is
bounded by ( Dol ) = ( |fol ) Once the decomposition is obtained, we have to solve

[To|-T—1 r+1
Problem (5.1) to get u, values.

Selective Strategies
Instead of systematically decomposing each D, we select the sets that will be

further decomposed based on ), _, 7.u! where 7! is the dual variable related to con-

straint (5.1a). More specifically, two selective strategies will be considered. In the first
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one, all polytopes D Jl for which > > ( are decomposed, while only the set

eckE ee

maximizing ) ! is considered in the second strategy. In fact, when constraint

eeE TelUe
(5.1a) is relaxed in a Lagrangian way using 7' multipliers, the objective function be-

comes Zl ZeeE ﬂ-é(ule - Ue) + ZeeE /\eue = ZeGE Ue()\e - Zl ) + Zl ZeeE e e
From Lagrange theory, we have to solve max min,, ;.1 Seepte(Ae — Yoy mh) +
> 12 ecr Tt To get a finite minimum, we should have A\, — >, 7. = 0 and the ob-

jective function to minimize becomes ) _, It is then natural to select subsets

ecE e e
Dy, for which °,_, wlul is large and to try to decompose them in order to reduce the

objective value.
Numerical solution for problem (5.1)

Problem (5.1) can be seen as a robust network design problem. It can be solved us-
ing a standard dualization approach where constraint (5.1b) is integrated through duality

(see, e.g., Appendix A).

5.2 Some preliminary numerical experiments

We first evaluated our methods on the Abilene topology using a set of 15 randomly cho-
sen demands. We used the budget polytope with dj, = 1 and dy, = 2forall h € H and
I' = 4. In Figure 5.1 we plotted the objective function (vertical axis) and the solving
time in seconds (horizontal axis) for several levels of decomposition (sets D). Af-
ter the first decomposition all 3 methods give the same solution with a cost of 68.873
in less than 1 second. This solution already outperforms the static routing solution of
cost 69.87 and the affine solution of cost 69.18 (solved in 2 seconds). After additional
steps, the 3 multi-static approaches further reduce the solution cost. As observed in
Figure 5.1, the non-selective approach seems to dominate both selective approaches for
numbers of decomposition steps requiring less than 50 seconds. However after 50 sec-
onds the relationship between the 3 methods is reversed. Selective methods provide
better solutions than the non-selective one while using less computing time. We also
considered the Geant topology with 15 demands and the same budget polytope as be-
fore. Results are also shown on the right part of Figure 5.1. In this case, the cost of the
optimal static solution is 71.87 while the best solution cost for affine routing is 70.25.
Almost the same conclusions can be drawn from simulations related to Geant topol-
ogy. While we have shown that our new multi-static approach can improve the solution
over static and affine routing, further simulations should be performed to better evaluate
the multi-static strategies introduced in this chapter and confirm the observations made
above. One might also consider more sophisticated strategies (e.g., affine strategy) for

each face to get better solutions.
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Fig. 5.1 Comparison of the 3 strategies on Abilene (top) and Geant (bottom).
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CHAPTER 6

Conclusion and perspectives

6.1 Summary of contributions

Given the dynamic nature of traffic, we investigate the robust network design problem
where we have to determine the capacity to reserve on each link so that each demand
vector belonging to a polyhedral set can be routed. The objective is either to minimize

congestion or a linear cost.

Chapter 2. When routing is assumed to be fractional and dynamic (i.e., dependent
on the current traffic vector), we first prove that the robust network design problem with

minimum congestion cannot be approximated within any constant factor. Then, using

logn
loglogn

the ETH conjecture, we get a €)( ) lower bound for the approximability of this
problem. This implies that the well-known O(logn) approximation ratio established
by Ricke in 2008 is tight up to a lower order factor. Using Lagrange relaxation, we
obtain a new proof of the O(logn) approximation. An important consequence of the
Lagrange-based reduction and our inapproximability results is that the robust network
design problem with linear reservation cost cannot be approximated within any constant
ratio. This answers a long-standing open question of Chekuri (2007). We also give an-
other proof of the result of Goyal et al. (2009) stating that the optimal linear cost under
static routing can be (logn) more expensive than the cost obtained under dynamic
routing. Finally, we show that even if only two given paths are allowed for each com-
modity, the robust network design problem with minimum congestion or linear cost is

hard to approximate within some constant.

Chapter 3. We focus on the variant in which the underlying graph is directed. We
prove that an O(v/k) = O(n)-approximation can be obtained by solving the problem
under static routing, where k is the number of commodities and n is the number of
nodes. This improves previous results of Hajiaghayi et al. [SODA’2005] and matches
the Q(n) lower bound of Ene et al. [STOC’2016] and the (/%) lower bound of Azar et
al. [STOC’2003]. Finally, we introduce a slightly more general problem version where

some flow restrictions can be added. We show that it cannot be approximated within a
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ratio of kwsloss (resp. nloe g7 ) for some constant c. Making use of a weaker complexity
assumption, we prove that there is no approximation within a factor of glog! ~“k (resp.
215"~ n) for any € > (.

Chapter 4. While a common heuristic for the robust network design problem is to
compute, in polynomial-time, an optimal static routing, affine routing can be used to
obtain better solutions also with polynomial-time algorithms. It consists in restricting
the routing to depend on the demands in an affine way. We first show that a node-arc
formulation is less conservative than an arc-path formulation. We also provide a natu-
ral cycle-based formulation that is shown to be equivalent to the node-arc formulation.
To further reduce the solution’s cost, several new formulations are proposed. They are
based on the relaxation of flow conservation constraints. The obtained formulations
have been further improved through aggregation. As might be expected, aggregation
allows us to reduce the size of formulations. A more striking result is that aggregation

reduces the solution’s cost. Finally, some numerical experiments are presented.

Chapter 5. We finally propose an intermediate strategy between static and dynamic
routing that can be seen as a new variant of multi-static routing. We consider some
faces of the uncertainty set whose union contains all non-dominated extreme points of
the polytope. A static routing is then assumed for each face. We show how these faces
can be found for at least two popular uncertainty sets: the budget polytope and the hose

polytope. Some preliminary numerical results are also provided..

6.2 Thesis outlook

A first perspective is to study the approximability of the dynamic routing problem for

special cases. This can include the following restrictions of the problem:
* Some special polytopes (Hose, Budget).
* Single source problem (i.e. all commodity have the same source).

* Single path routing. Most of known general results related to static single path
routing consider undirected graphs and linear cost objective function. An O(log(n))
approximation is known (due to Gupta) and an Q(logi*e n) lower bound has been
proven by Olver and Shepherd (2014). It might be interesting to try to prove some

bounds in other cases (congestion and/or directed graphs).

A second line of work is related to the derivation of better bounds using:

* The affine routing method either in its first version proposed by Poss and Raack
(2013), Ouorou and Vial (2007) or in one of its strengthened forms of Chapter 4.
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* A result of Barvinok (2014) stating that a down-monotone convex body can be
approximated with a factor of ev/k (for any ¢ > 0) by a polytope D’ having a
polynomial number of non dominated extreme points. In this case, it may be
possible to construct such polytope in polynomial-time. A better polytope ap-
proximation than the one presented in Chapter 3 might then be deduced. Suppose
that we are given a demand polytope D,D’ C R’ such that D' C D C oD’
for some o > 1. Then computing lingy, frec(’D’) provides an a approxima-
tion of lingyn frac(D). Furthermore if D’ contains a polynomial number of non
dominated extreme points then lin4y,, frq.(aD’) can be computed in polynomial-
time. This can potentially provide a way to improve upon the v/8k approximation

obtained from static routing (Chapter 3).

Finally, further investigations are needed to study the performance of the new multi-
static approach in Chapter 5. This can be done not only for robust network design but

also in the context of other multi-stage robust optimization problems.
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Appendix A

A modular approach for solving robust design problems

We present in this appendix a general solving approach we implemented for several
routing strategies: static routing, several variants of affine routing, the new multi-static
approach we presented and potentially others. The goal is to handle several demand
polytopes such as the hose model, budget, all routable demands and potentially others.
A straightforward implementation would be to explicitly write by hand the compact
reformulation of the model and implement a cutting plane procedure for each routing
method and each demand polytope. However, this solution is not practical. We now
describe below an alternative approach, more modular, where an abstract representa-
tion, independent of the demand polytope, of a the robust optimization problem is first
constructed. And then we implemented two procedures that take as input a representa-
tion of a demand polytope and of the robust robust problem. The first one solves the
robust optimization problem using a cutting plane algorithm and the second procedure
automatically constructs a compact reformulation by dualization of the problem. This
design choice is inspired by how the robust optimization library presented in Dunning
(2016), Chapter 6, is structured.

Consider the following quite general single stage robust optimization problem:

min E Ci%;

icl
bi(d,x) <0, Viel,deD; (A.1a)
ay(z) <0, Vi'el (A.1b)
;>0 jeJ (A.lc)

Where b; are bi-affine functions in d and =z, i.e., functions given as:

bi(d, ) = ap(z) + Z dpani(x)

heH

and ay, ; are affine functions in z i.e., functions of the form:
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ani(x) = ap, + > a}

jeJ

and a;, are affine functions in x i.e., functions of the form:

di(x) =df + ) dj
jeJ

Constraints (A.1b) are deterministic constraints i.e. constraints that does not in-
volve the uncertainty on demands d. Those constraints can represent flow conservation
constrains in the static routing problem for example. Constraints (A.la) are uncertain
constraints, i.e., constraints that do depend on the uncertainty on demands d. Those
constraints can represent capacity constraints in the static routing problem for example
or the flow conservation constraints in the affine routing model.

The variables of this model are x; for j in J for some indices set J. In our case
the variables x; will be the routing variables zj . in the static routing problem, the
coefficient of the affine flow function lee in the affine routing problem or the routing
variables x%,e for different subpolytope D; in the multi-static approach. Other variables
also related to reservations u.. The polytopes D; can be all equal in the case of static

routing and affine routing. They can be different for multi-static.

A.1 Abstract representation of a robust optimization problem

We represent the single stage robust optimization problem, independently of the uncer-

tainty sets D; as follows:

* A classical linear program composed of only the deterministic constraints (A.1b)
1.e., the following linear program:

min E CiT;

i€l
al,(x) <0, Vi'el (A.2a)
x>0 (A.2b)

* An array composed of objects representing the bi-affine expressions b;(d, x). We
internally represented a bi-affine expression as a dictionary with entries in the set
{0} UH. The value in the dictionary for the entry h for h € {0} UH is the affine
expression ay, ;(x) where x is an array composed of the variables in model (A.2).

If a key h is not in the dictionary this means that a;, ;(z) = 0.
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A.2 Demand polytope representation

A demand polytope D; is represented as follows:

* A linear program:

max 0
Ad+ By <0, (A.3a)
y >0, (A.3b)

* An array composed of the variables d;, of model (A.3). To be able to know which

variable corresponds to each commodity h.

A.2.1 Cutting plane procedure

We will now describe a cutting plane procedure that takes as input an abstract represen-
tation of a robust optimization problem and the representation of a demand polytope D;
for each 7 € I. It outputs a feasible solution x to Problem (A.1). This can be done by

iteratively doing the following steps:

* Solve linear program (A.2) and query the optimal solution z°?* to the current

model.

* For each i € I check if one of the constraint b;(d, z°7*) < 0 is violated by some

d € D; and solve the linear problem (Iinigl > dpapi(x°") and query the optimal
€Di hen

solution d°P*. If ag ;(z°?*) + > d" ap ;(z°"*) > 0 add the following constraint to
heH
the linear program (A.2).

CLOJ(.T) + Z dzptam(:z:) < 0
heH

* Stop if none of the constraints b;(d, z°?*) < 0 are violated.

A.3 Automatic compact reformulation procedure

We will now describe a compact reformulation procedure that take as input an abstract
representation of a robust optimization problem and the representation of a demand
polytope D, for each ¢ € I. It outputs a new linear program having the same optimal
solution = than Problem (A.1).

The constraint b;(d, z) < 0,Vd € D is equivalent to

. = X ; <
max bi(d,z) = ap(x) + Icrlleazg(};{dhah”@) <0
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We note A; (resp B;) the [-th column of the matrix A (resp. B) defining the polytope
D.

The problem max > dpap(x) can be written as the following linear program (if
€L heH
we consider z fixed):

HcllzX Z dhah Z([E)

heH
Ayd+ By < g, (A.da)
d,y >0, (A.4b)

By duality this linear program is equivalent to:

min oy

AN <api(x), YheH (A.52)
BY)\, <0, VYheH (A.5b)
N>0, VieN:1<I<dim(y) (A.5¢)

Therefore the constraint Iax b;(d, z) < 0 1is equivalent to the following linear pro-
€

gramming constraints (linear in \; and x):

CLO’Z‘(ZE) + gt/\z- S 0

AN < api(z), YheH (A.6a)
BM)\ <0, VIeN:1<I<dim(y) (A.6b)
Ai >0 (A.60)

The compact reformulation procedure works as follows:

e Foreach: € I, add a vector of variable )\; of dimension the number of constraints
in Model (A.3). Add the following Constraints (A.6) to Model (A.2). Recall that

api(x) are affine expressions in the « variables of Model (A.2).

The compact reformulation procedure returns the following linear program:
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min E CiT;

el
ay(z) <0, Vi'el
aoi(z) + "N\ <0 Viel
AN < api(z), VheH,iel
BYA; <0, VieN:1<I<dim(y),iel
\i>0, Viel
x>0

(A.7a)

(A.7b)
(A.7¢c)
(A.7d)
(A.7e)

A vector z is an optimal solution to Model (A.7) if, and only if, it is also an optimal

solution of Model (A.1).
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Résumé : Etant donnée la nature dynamique du
trafic, nous étudions la variante du probleme de di-
mensionnement robuste de réseaux qui consiste a
déterminer la capacité a réserver sur chaque lien d’'un
réseau de telle sorte que chaque demande apparte-
nant a un polytope donné puisse étre routée. Lob-
jectif est soit de minimiser la congestion soit un codt
linéaire. Nous étudions tout d’abord I'approximabilité
de la variante avec un routage fractionnaire et dyna-
mique dans des graphes non dirigés. Nous prouvons
tout d’abord que, sauf si P = NP le probleme de
minimisation de la congestion ne peut étre approché
en dessous d’aucun facteur constant répondant ainsi
a une gquestion ouverte de Chekuri (2007). Ensuite,
en utilisant la conjecture ETH, nous prouverons une
borne inférieure de Q(logn/ loglogn) sur I'approxima-
bilité de ce probléeme. Nous portons ensuite notre at-
tention sur la variante avec un graphe dirigé. Nous
montrons qu’une solution avec un routage statique
optimal donne une O(vk) = O(n)-approximation
du routage dynamique optimal, ou k est le nombre
de commodités et n le nombre de noeuds. Nous
montrons ensuite qu’une généralisation naturelle du
probleme ne peut étre approché en dessous d’un fac-

Titre : Optimisation Robuste pour la Conception de Réseaux

Mots clés : optimisation robuste adaptative, complexité, approximation, routage, conception de réseaux

teur de kTeioz* pour une certaine constante ¢ (resp.
2les" "k pour tout € > 0) sauf si NP C SUBEXP
(resp. NP C @QP). Nous étudions également plu-
sieurs reformulations du probleme de dimension-
nement robuste de réseaux permettant d’améliorer
la méthode de routage affine. Nous montrons tout
d’abord que la formulation par noeud-arc peut étre
moins restrictive que la formulation par arc-chemin.
Nous fournissons également une formulation natu-
relle équivalente a la formulation par noeud-arc. Nous
étudions ensuite plusieurs formulations basées sur
des relaxations des contraintes de conservation de
flot. Ensuite, nous étudions des formulations basées
sur des agrégations de commodité par source ou par
destination. Enfin nous proposons une stratégie in-
termédiaire entre I'approche statique et I'approche dy-
namique pour s’approcher encore plus du dynamique
tout en contrélant la complexité. Il s’agit d’'une ap-
proche qu’on pourrait qualifier de multi-statique. Lidée
est de choisir un ensemble de faces du polytope
représentant I'ensemble d’incertitude de telle maniere
que l'union des ces faces contienne tous les points
extrémes non-dominés de cet ensemble. Un routage
statique est considéré pour chacune de ces faces.

Title : Robust Optimization for Network Design

Abstract : Given the dynamic nature of traffic, we
investigate the robust network design problem where
we have to determine the capacity to reserve on each
link so that each demand vector belonging to a poly-
hedral set can be routed. The objective is either to
minimize congestion or a linear cost. When routing
is assumed to be fractional and dynamic (i.e., de-
pendent on the current traffic vector), we first prove
that the robust network design problem with mini-
mum congestion cannot be approximated within any
constant factor, settling an open question by Che-
kuri (2007). Then, using the ETH conjecture, we get
a Q(lolg“ign) lower bound for the approximability of
this problem. We next focus on the variant in which
the underlying graph is directed. We prove that an
O(Vk) = O(n)-approximation can be obtained by sol-
ving the problem under static routing, where & is the
number of commodities and n is the number of nodes.
We show that a natural generalization of the problem
cannot be approximated within a ratio of k®eiozs for
some constant ¢ (resp. 218" ¥ for any ¢ > 0) un-

Keywords : adjustable robust optimization, complexity, approximation, routing, network design

less NP C SUBEXP (resp. NP C QP). Affine
routing can be used to obtain better solutions also
with polynomial-time algorithms. It consists in restric-
ting the routing to depend on the demands in an af-
fine way. We first show that a node-arc formulation
is less conservative than an arc-path formulation. We
also provide a natural cycle-based formulation that is
shown to be equivalent to the node-arc formulation.
To further reduce the solution’s cost, several new for-
mulations are proposed. They are based on the re-
laxation of flow conservation constraints. The obtai-
ned formulations have been further improved through
aggregation. As might be expected, aggregation al-
lows us to reduce the size of formulations. A more stri-
king result is that aggregation reduces the solution’s
cost. We finally propose an intermediate strategy bet-
ween static and dynamic routing that can be seen as a
new variant of multi-static routing. We consider some
faces of the uncertainty set whose union contains all
non-dominated extreme points of the polytope. Then
a static routing is considered for each of these faces.

Institut Polytechnique de Paris
91120 Palaiseau, France
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