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Spécialité de doctorat : Mathématiques et informatique
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RESUME ETENDU EN FRANCAIS

Étant donnée la nature dynamique du trafic, nous étudions la variante du problème

de dimensionnement robuste de réseaux qui consiste à déterminer la capacité à réserver

sur chaque lien d’un réseau de telle sorte que chaque demande appartenant à un polytope

donné puisse être routée. L’objectif est soit de minimiser la congestion soit un coût

linéaire.

Dans le chapitre 2, nous étudierons l’approximabilité de la variante avec un routage

fractionnaire et dynamique (i.e., le routage peut dépendre du scénario actuel de la de-

mande) dans des graphes non dirigés. En utilisant le théorème PCP et une réduction

bien choisie, nous prouverons tout d’abord que le problème de minimisation de la con-

gestion ne peut être approché en dessous d’aucun facteur constant. Ensuite, en utilisant

la conjecture ETH, nous prouverons une borne inférieure de Ω(log n/ log log n) sur

l’approximabilité de ce problème. Cela implique que le célèbre taux d’approximation

O(log n) de Räcke est presque optimal. En utilisant la méthode de la relaxation La-

grangienne, nous obtiendrons une nouvelle preuve de cette borne. Une conséquence

importante de cette réduction basée sur la relaxation Lagrangienne est que les résultats

d’inapproximabilité prouvés pour le problème de minimisation de la congestion peu-

vent être transférés au problème de réservation de capacité avec un coût linéaire. En

particulier, cela nous permet de répondre a une question ouverte de Chekuri (2007).

Cela nous permet également de d’obtenir une nouvelle preuve d’un résultat de Goyal

et al (2009) montrant que la solution optimale pour le problème de coût linéaire avec

un routage statique peut être Ω(log n) plus chère qu’une solution avec un routage dy-

namique. Nous étudierons ensuite la complexité du problème lorsque les chemins sont

donnés en entrée du problème. Nous montrerons en particulier que si seulement deux

chemins sont donnés en entrée, alors le problème reste tout de même difficile à ap-

procher en dessous d’une certaine (petite) constante.

Dans le chapitre 3, nous porterons notre attention sur la variante avec un graphe

dirigé. Nous montrerons qu’une solution avec un routage statique optimal donne une

O(
√
k) = O(n)-approximation du routage dynamique optimal, où k est le nombre de

commodités et n le nombre de noeuds. Cela améliore une borne prouvée précédemment

par Hajiaghayi et al. (2005) et coı̈ncide, à un facteur constant près, avec la borne

inférieure de Ω(n) prouvée par Ene et al. (2016) et la borne inférieure de Ω(
√
k)

prouvée par Azar et al. (2003). Enfin nous étudierons une généralisation du problème

où la demande de chaque commodité ne peut être routée que sur un sous ensemble

d’arcs donnés en entrée. En particulier, nous montrerons que ce problème ne peut être

approché en dessous d’un facteur de k
c

log log k pour une certaine constante c (resp. 2log
1−ϵ k
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pour tout ϵ > 0 ) sauf si NP ⊆ SUBEXP (resp. NP ⊆ QP ).

Dans le chapitre 4 nous étudierons plusieurs reformulations du problème de dimen-

sionnement robuste de réseaux permettant d’améliorer la méthode de routage affine.

Nous montrerons tout d’abord que la formulation par noeud-arc peut être moins restric-

tive que la formulation par arc-chemin. Nous fournirons également une formulation

naturelle équivalente a la formulation par noeud-arc. Nous étudierons ensuite plusieurs

formulations basées sur des relaxations des contraintes de conservation de flot. Enfin,

nous étudierons des formulations basées sur des agrégations de commodité par source

ou par destination. Comme attendu, cela permet de réduire la taille de la formulation

et donc d’améliorer les temps de résolution. Un résultat plus surprenant encore est que

cela peut aussi permettre d’améliorer la qualité de la solution. Pour chacune de ces

formulations, nous présenterons des exemples simples montrant que ces formulations

peuvent améliorer la qualité de la solution. Nous présenterons également des résultats

expérimentaux montrant que chacune de ces formulations permet d’améliorer la qualité

de la solution sur des instances réalistes.

Enfin dans le chapitre 5 nous proposerons une stratégie intermédiaire entre l’approche

statique et l’approche dynamique pour s’approcher encore plus dynamique tout en

contrôlant la complexité. Il s’agira d’une approche qu’on pourrait qualifier de multi-

statique. L’idée sera de proposer de choisir un ensemble de faces du polytope représentant

l’ensemble d’incertitude de telle manière que l’union des ces faces contienne tous les

points extrêmes non-dominés de cet ensemble. Ensuite, un routage statique serait en-

visagé pour chacune de ces faces. Nous verrons que cette approche est modulaire

puisque, d’une part, en prenant comme faces les points extrêmes, on obtient l’approche

dynamique, et d’autre part, si on prend comme face l’intégralité du polytope, on obtient

l’approche statique. Nous proposerons quelques mécanismes pour générer les faces

d’une manière itérative afin de baisser les coûts en évitant l’explosion combinatoire

correspondant au cas dynamique. Deux polytopes seront plus particulièrement étudiés,

le polytope du type budget et le polytope du type hose.

Mots Clés: Optimisation robuste, Dimensionnement de réseaux, Approximation, Inap-

proximabilité.
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ABSTRACT

Given the dynamic nature of traffic, we investigate the robust network design prob-

lem where we have to determine the capacity to reserve on each link so that each de-

mand vector belonging to a polyhedral set can be routed. The objective is either to

minimize congestion or a linear cost. When routing is assumed to be fractional and

dynamic (i.e., dependent on the current traffic vector), we first prove that the robust

network design problem with minimum congestion cannot be approximated within any

constant factor, settling an open question by Chekuri (2007). Then, using the ETH con-

jecture, we get a Ω( logn
log logn

) lower bound for the approximability of this problem. We

next focus on the variant in which the underlying graph is directed. We prove that an

O(
√
k) = O(n)-approximation can be obtained by solving the problem under static

routing, where k is the number of commodities and n is the number of nodes. We show

that a natural generalization of the problem cannot be approximated within a ratio of

k
c

log log k for some constant c (resp. 2log
1−ϵ k for any ϵ > 0) unless NP ⊆ SUBEXP

(resp. NP ⊆ QP ).

Affine routing can be used to obtain better solutions also with polynomial-time al-

gorithms. It consists in restricting the routing to depend on the demands in an affine

way. We first show that a node-arc formulation is less conservative than an arc-path

formulation. We also provide a natural cycle-based formulation that is shown to be

equivalent to the node-arc formulation. To further reduce the solution’s cost, several

new formulations are proposed. They are based on the relaxation of flow conservation

constraints. The obtained formulations have been further improved through aggrega-

tion. As might be expected, aggregation allows us to reduce the size of formulations. A

more striking result is that aggregation reduces the solution’s cost. We finally propose

an intermediate strategy between static and dynamic routing that can be seen as a new

variant of multi-static routing. We consider some faces of the uncertainty set whose

union contains all non-dominated extreme points of the polytope. Then a static routing

is considered for each of these faces.

Keywords: Robust Optimization, Network Design, Approximation, Inapproximability.
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CHAPTER 1

Introduction

Network optimization [Wang et al. (2008), Luna (2006)] plays a crucial role for telecom-

munication operators allowing them to carefully invest in their infrastructure, i.e. re-

ducing capital expenditures. As Internet traffic is ever increasing, the network capacity

needs to be expanded through careful investments every year or even half-year.

Beyond traditional carrier networks that build and maintain their own physical in-

frastructure, Over-The-Top (OTT) operators are also building wide area overlay net-

works to obtain worldwide, long-haul and cost effective services. These companies are

renting and reselling bulk capacity from transit operators and Internet eXchange Points

(IXP). For instance, SD-WAN (Software-Defined Wide Area Networks) operators build

high-performance and low cost WANs (Wide Area Networks) for enterprises based on

Software-Defined Networking [Michel and Keller (2017)] technologies by efficiently

mixing expensive private lines with low cost Internet access. Other OTT such as cloud

service providers or online platforms (e.g., video streaming, social networks) are leas-

ing a mixture of connectivity services to interconnect central and regional data centers.

In all cases, network connectivity, whether leased or owned, has a cost and needs to be

carefully designed to optimize profits.

In this thesis, we consider the robust network design problem to efficiently size

telecommunication networks and optimize the use of resources. This problem consists

in routing traffic demands between different pairs of sources and destinations of a net-

work while taking into account the uncertainty on the traffic. We consider two variants

of the problem. The first kind consists in choosing the capacities on the edges so that

all envisioned traffic matrices can be routed. This can model the problem of buying

and installing physical equipment or of renting virtual capacity to a network service

provider. Several capacity models can be considered. For example, we can choose be-

tween a discrete set of capacities with different costs. In this case, it can be modeled

using a piece-wise constant objective function. It has been for instance used by Face-

book [Ahuja et al. (2021)] for the planning of their backbone network between data

centers. In this thesis, we focus on a simpler variant where we minimize a linear cost of

the chosen capacities. Algorithms for this simple problem can be used as subroutine to

1



solve more complex problems.

The other variant of the robust network design problem consists in minimizing the

congestion in the network. This is motivated by the fact that highly congested net-

works have poorer performance in terms of latency. Several objective functions can be

considered. For example, queuing theory can be used to give an approximation of the la-

tency/serving time as a function of the load of the network equipment [Ben-Ameur and

Ouorou (2006), Hijazi et al. (2013)]. Here we focus on the simple variant of minimizing

the maximum congestion over all edges. A similar approach has been for instance used,

also by Facebook [Kumar et al. (2018)], for the engineering of traffic.

Due to the diversity of applications generating traffic and the inherent difficulty in

predicting user behaviours and traffic variations over time, it is difficult in practice to

obtain an accurate estimation of traffic in advance.

Another source of uncertainty can come from possible failures of network equip-

ments. If the traffic is underestimated when planning capacity, the performance of the

network from high congestion induces losses and latency. Another use case is private

networks [Duffield et al. (1999)] for enterprise services where a company buy connec-

tivity between several offices and the headquarter. The capacity is bought using an

access bandwidth (i.e. we only know upper bounds on the traffic that can be sent and

received for each node). In this case, the goal for the network operator is to ensure that

most or all traffic realization can be sent through a VPN (Virtual Private Network). The

exact traffic scenarios are difficult to anticipate.

A naive solution to cope with uncertainty on traffic is to overestimate it. However,

this can lead to high costs by using more network equipments. Finer models that directly

take into account the uncertainty can provide the best of both world: having a low cost

and, at the same time, an efficient network.

In the rest of this chapter we first review some general techniques to model uncer-

tainty. Then we formally present the main robust network design problem on which

the thesis focuses. We provide further details on problem variants with flow restric-

tions and different types of polyhedral traffic demands. We explain the relationships

between some variants of robust network design and we present some of the main rout-

ing strategies that can be seen as an intermediate between fully-dynamic routing and

static routing. We review the main theoretical results related to robust network design

and we briefly present other robust network optimization problems of interest. Finally,

the main contributions of the thesis are summarized.

1.1 Optimizing under uncertainty

We will now describe some possible solutions to directly integrate demand uncertainty

into our models. One classical method to model uncertainties is stochastic optimization

2



introduced by [Dantzig (1955)], see [Infanger (1992)] for a comprehensive overview.

This could be applied to our problem by considering several demand scenarios with an

assigned probability and then by minimizing the average cost over those scenarios, for

example the congestion. This type of approach has two main drawbacks, the first one

is that obtaining precise estimation on the distribution of the demand can be challeng-

ing, the second one is that the size of the model increases with the number of scenarios

considered and it can quickly lead to intractable models. Another alternative is to use

chance constrained optimization introduced in [Charnes et al. (1958)] see [Prékopa

(2013)] for an extensive review. Constraints (for example the edge capacity constraint

in our context) are here required to be satisfied only with some specific probability.

Solving a chance constrained optimization problem directly poses many challenges:

the problem is not easy to solve, and the feasibility region of such problem is usually

non-convex. To overcome those computational difficulties, approximations are often

used to solve chance constrained problems. One of the methods to approximately solve

chance constrained problem is robust optimization introduced in [Soyster (1973)]. In

robust optimization the coefficients of the constraints can take any value inside a given

uncertainty set and the goal is to find a solution that is feasible for any possible re-

alisation of the coefficients. [Ben-Tal and Nemirovski (2000)] study the probabilistic

guarantees on constraint violations that can be derived from robust optimization. They

show that under some conditions related to the distribution of the coefficients, using an

ellipsoidal uncertainty provides a robust solution satisfying the constraints with some

prescribed high probability. In a similar vein, [Bertsimas and Sim (2004)] introduce the

budget uncertainty set. They show that, under some assumptions on the distribution of

coefficients of a constraint, the budget uncertainty set leads to solution that is feasible

with high probability.

A more general way to model uncertainty is distributional robust optimization where

instead of considering a single probability distribution on the coefficients of the objec-

tive function and constraints an ambiguity set is considered. [Scarf (1958)] first intro-

duced this approach for the news vendor problem. See [Rahimian and Mehrotra (2022)]

for a survey on distributional robust optimization. Distributional robust optimization

can be seen as generalized stochastic optimization and chance constrained optimization

by taking the ambiguity set to contain only a single probability measure. It can also

be seen as a generalization of robust optimization by taking the ambiguity set to be all

distributions with support in a given set.

In this thesis we will model demand uncertainty using robust optimization. We

will consider that the set of possible demand scenarios is a polytope. The polyhedral

set appears naturally, for example a known upper bound on the sum of some demands

leads straightforwardly to a linear constraint. Other families can also be considered, for

3



example, ellipsoids or more general convex sets. We then impose that the set of edge

capacities is feasible for all possible demand scenarios for the linear cost problem. In

one of the problem variants, we minimise the worst case congestion over all demand

scenarios.

1.2 Robust network design problems

We will now introduce some notations and precisely define several variants of the net-

work design problem, see [Ben-Ameur et al. (2012), Chekuri (2007)] for surveys on

related problems and the lecture notes of [Olver (2018)]. All the problems that we will

consider have as input a graph G = (V,E) (either directed or undirected). A set of

commodities H, where each commodity has a source s(h) and destination node t(h)

in the graph G. The decision we must take is how to route the demand. This is spec-

ified by giving for each commodity h ∈ H and demand scenario d ∈ D a flow vector

xh(d) ∈ RE of value 1 between the source s(h) and the destination of the commodity

h, i.e., a vector satisfying the following flow conservation constraints:

∑
e∈δ+(v)

xh,e(d)−
∑

e∈δ−(v)

xh,e(d) =


1, if v = s(h)

−1, if v = t(h)

0 otherwise

∀h ∈ H, v ∈ V, d ∈ D (1.1a)

The flow sent on edge e for commodity h in a demand scenario d ∈ D is then

fh(d) := dhxh(d).

If the routing can be adapted freely to each demand scenario we call it dynamic rout-

ing. On the opposite side we have static routing where we must choose, independently

of the demand scenario d ∈ D a flow xh of value 1 for each commodity. Some inter-

mediate solutions can also be considered between those two extremes. We will present

some of them in Section 1.6. The routing is called fractional if the flow can use several

paths without particular restrictions. In Section 1.3 we will present several variants of

the problem with some restrictions on the flow.

Given a routing f , let u ∈ RE be the vector whose components ue are the maxi-

mum flow that is sent (i.e. capacity used) on edge e, i.e., ue = max
d∈D

∑
h∈H

fh,e(d). We

will consider two objective functions depending on u. The first one is the linear cost

objective where we have as input a cost λe ≥ 0 for each edge e ∈ E and the goal is

to minimize obj(u) =
∑
e∈E

λeue. The other objective function that we will consider is

the congestion where we have as input the capacity ce ≥ 0 of each edge e ∈ E and the

goal is to minimize obj(u) = max
e∈E

ue

ce
. Depending on if the routing is static or dynamic
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Fig. 1.1 Example of a robust network design instance

and if the objective function is the linear cost or the congestion cost, we have 4 differ-

ent variants of the problem. We will note those problems objadaptivity- frac where obj can

be lin for the linear cost objective or cong for the congestion objective. The keyword

adaptivity can be sta for a static routing or dyn for a dynamic routing. Other variants of

the robust routing problem can be obtained by considering some restrictions on the flow

used to route the demands of the commodities (some of them are presented in Section

1.3). For brevity and because we will mostly consider unrestricted fractional routing,

we will also use objadaptivity to denote objadaptivity-frac if it clear from the context that we

are considering (unrestricted) fractional routing. We note U(D) the set of capacities u

such that all demand scenarios in D can be routed without exceeding the capacities.
For illustration we represented in Figure 1.1 a simple example of an instance for the

robust network design with 4 nodes s, u, v, t, 4 edges e1, e2, e3, e4 and H composed of
3 commodities h1, h2, h3. The sources of the 3 commodities are all equal to s and the
destination of commodity h1 (resp. h2, h3) is u (resp. v, t). We consider the following
demand polytope D:

dh1 + dh2 = 1 (1.2a)

dh3 = 1. (1.2b)

We consider the congestion problem on this instance with capacities ce of 1 for all

edges. The demand of commodities h1 (resp. h2) can only be routed using the edge e1
(resp. e2) because it’s the only path from note s to node u (resp. v) in this graph. The

congestion cannot be less than 1 because the edge e1 of capacity 1 must at least carry

the demand of commodity h1 in the scenario where dh1 = 1. Under dynamic routing,

a solution with congestion of 1 can be obtained by routing 1 − dh1 of the demand of

commodity h3 on the path (e1, e3) and 1 − dh2 unit of flow on the path (e2, e4). On

the other hand, under a static routing, the congestion must be at least 1.5. This can be

seen by observing that this contains some symmetry: if we exchange u (resp. e1, e3 h1)

with v (resp. e2, e4 h2) we obtain an equivalent instance. This implies that there is an
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optimal solution that also contains some symmetries: the flow of commodity h3 must be

split equally between path (e1, e3), and path (e2, e4) (if there is an optimal solution that

sends strictly more than x > 0.5 unit of flow of commodity h3 on the path (e1, e3) then

by symmetry there is also an optimal solution that sends x unite of flow of commodity

h3 on path (e2, e4), we can then take the average of those solutions).

In summary, we present below a linear programming model for the dynamic routing

variant. We will have one variable xe,h(d) for each e ∈ E, h ∈ H, d ∈ D. Equivalently,

we can also see xe,h as a function from the demand uncertainty set D to R+.

min obj(u)

∑
e∈δ+(v)

xh,e(d)−
∑

e∈δ−(v)

xh,e(d) =


1, if v = s(h)

−1, if v = t(h)

0 otherwise

∀h ∈ H, v ∈ V (1.3a)∑
h∈H

dhxh,e(d) ≤ ue, ∀e ∈ E, d ∈ D (1.3b)

xh,e(d) ≥ 0, ∀e ∈ E,∀h ∈ H, d ∈ D (1.3c)

We can also model the problem in terms of variables fh,e(d) (this will be more

appropriate to use in the affine routing and multipolar routing cases). However, when

we consider a static routing, it will be with respect to formulation (1.3).
The static routing problem can then be formulated as follows:

min obj(u)

∑
e∈δ+(v)

xh,e −
∑

e∈δ−(v)

xh,e =


1, if v = s(h)

−1, if v = t(h)

0 otherwise

∀h ∈ H, v ∈ V, d ∈ D (1.4a)∑
h∈H

dhxh,e ≤ ue, ∀e ∈ E, d ∈ D (1.4b)

xh,e ≥ 0, ∀e ∈ E,∀h ∈ H, d ∈ D. (1.4c)

Observe that xh,e does not depend on d.
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As summary, we will give below the abbreviations for the different problems:

Routing→
Objective

y Static Dynamic

Linear cost linsta lindyn

Congestion congsta congdyn

Both the linear cost and congestion problems under static routing variants can be

solved in polynomial-time, see [Ben-Ameur and Kerivin (2005)] and Appendix A. On

the other hand, as we will see in Section 1.7, those two variants in general become

theoretically difficult to solve under dynamic routing. Nonetheless, some methods have

been devised to obtain exact solutions [Mattia (2013), Zeng and Zhao (2013), Ayoub

and Poss (2016)]. If the capacities are required to be integer the problem becomes more

complicated to solve, in this case finding some valide inequalities can help alleviate

those difficulties, see [Koster et al. (2013), Raack et al. (2011)].

In the remaining of the manuscript, we refer to the static/dynamic gap (or ra-

tio) for the congestion (resp. linear cost) problem as the value congsta/congdyn (resp.

linsta/lindyn).

1.3 Variants with flow restrictions

We now present some additional variants of the problems. Where we have some con-

straints on the flow of each commodity. Let Xh be the polytope of flow vectors from

s(h) to t(h) of value 1. Suppose that we have as input a subset X allowed
h ⊆ Xh of

allowed flow. And we consider the routing problems with the additional constraints

xh(d) ∈ X allowed
h . We consider this quite abstract model because it allows us to cap-

ture several interesting routing problems and some of the results we have proved on the

static/dynamic gap also apply for this more general problem.

This generalised model allows us to model, among others, the single path routing,

path restricted routing, K-splittable routing. We will present below those problems.

1.3.1 Routing over a single path

In the single routing problem, each commodity must be routed over a single path i.e.

we must have xh(d) = 1p for some s(h) − t(h) path, where 1p is the vector of RE

whose components are 1 for the edges that are in the path and 0 otherwise. We denote
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this problem as objadaptivity-sing. Although single path routing usually leads to higher cost

solution, it is preferred in practice as all the traffic of an origin-destination flow can be

sent in a single tunnel, with MPLS protocol for instance [Paolucci et al. (2013)].

This problem can be modeled as a restricted flow problem by taking Xh to be the

discrete set {1p|p a path from s(h) to t(h)}.

1.3.2 Routing over a given set of paths

In this section we present the path restricted routing problem where demands can only

be routed over a set of paths and some of its applications in practice. Although this

problem has not been much studied from a theoretical perspective it can have several

practical applications, see for example the B4 [Jain et al. (2013)] controller from Google

that routes inter-data center traffic over a set of private network connections. Later in

this thesis, we will prove several results concerning this problem. In the path restricted

routing problem we suppose that we are given as input for each commodity h ∈ H a set

of allowed path Ph. And the routing is constrained to be on those paths. Suppose that a

commodity has some delay constraint lh and each edge e ∈ E has a delay le. Then we

can define Ph as the set of paths with end-to-end delay less than lh i.e.

Ph = {p an (s(h), t(h))− path |
∑
e∈p

le ≤ lh}

This problem can also be used to model other constraints on the paths such as prece-

dence constraints where a node v1 must be visited before a node v2. This can be useful

for network function chaining [Bhamare et al. (2016)].

These problems can be solved either by preselecting heuristically a small set of

paths satisfying those constraints or by generating the paths on the fly in a column

generation procedure using a constrained shortest path sub-problem. This can be done

quite straightforwardly in the static routing but it can be more tricky in other variants.

We present below a model for this problem.

min obj(u)∑
h∈H

∑
p∈Ph|p∋e

dhxh,p(d) ≤ ue, ∀e ∈ E, d ∈ D (1.5a)

∑
p∈Ph

xh,p(d) ≥ 1, ∀h ∈ H, d ∈ D (1.5b)

xh,p(d) ≥ 0, ∀h ∈ H, ∀p ∈ Ph, d ∈ D (1.5c)

This problem can be seen as a problem with flow restrictions by taking
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X allowed
h (dh) = convp∈Ph

1p

where 1p is the vector in RH equals to 1 on the edge in the path p and 0 otherwise.

1.3.3 Edge restricted routing

The edge restricted routing variant consists in adding the constraint stating that each

commodity can only be routed over a given subset of allowed edges Eh ⊆ E. These

restrictions seem to be quite natural to ensure quality of service requirements such as

delay constraints. We will investigate the approximability of this problem in Chapter 3.

1.3.4 K-splittable routing

In the K-splittable routing the flow of each commodity must be on at most K paths,

useful for load balancing for example. This problem can be modeled as a network

design problem with flow restrictions by taking Xh to be the non-convex set

{
K∑
i=1

αi1pi |∀i,K ≥ i ≥ 1 : pi a path from s(h) to t(h),
K∑
i=1

αi = 1}

.

Notice that the set of path {pi|K ≥ i ≥ 1} here is not given but must be chosen.

When the number of paths K ≥ 2, an intermediate strategy between the static routing

and dynamic routing, called semi-oblivious routing, has been considered in the liter-

ature [Hajiaghayi, Kleinberg and Leighton (2007)]. In this approach, the set of paths

must be valid for all possible demand scenarios d. The split ratio is then adapted dynam-

ically to each realisation of the demand scenario d. This problem can have applications

in telecommunication networks to adjust load balancing over a stable set of paths.

1.3.5 Tree routing

Another restriction that has been considered in the literature is that the routing of com-

modities must be on a single tree. This can be useful for multicast routing [Lim and

Kim (2000)], generally used to stream multimedia content or in conferencing applica-

tions. Formally, this corresponds to adding the constraint sup(
∑
h∈H

xh(d)) ∈ trees(G),

where sup(x) for a vector x ∈ RE
+ denotes the set of edges e ∈ E such that xe > 0 and

trees(G) denotes the set of subset of edges in G that forms a tree. Unlike other flow

restrictions previously introduced in this section, the tree routing restriction involves

coupling constraints between the routing of the different commodities. This distinction

will be important in Chapter 2. We will denote this problem by objadaptivity-tree.
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1.4 Review of traffic uncertainty sets

Several uncertainty sets for traffic demands have been considered for this problem in

the literature. The robust network design problem under general polyhedral uncertainty

has first been considered in [Ben-Ameur and Kerivin (2003)].

1.4.1 Budget model

A classical uncertainty set in the robust optimization community is the budget polytope

introduced in [Bertsimas and Sim (2004)] for the general robust optimization problem.

If for each commodity h ∈ H we have a minimum and a maximum demand value dmin
h ,

dmax
h and if not all the demands can (or are likely to) be close to their maximum value

dmax
h at the same time, the traffic demand can be modeled using the budget polytope.

This polytope is defined using a parameter Γ that considers the set of demands d ∈ RH

such that dh = dmin
h + zh(d

max
h − dmin

h ) and
∑
h∈H

zh ≤ Γ.

1.4.2 Hose model

The other uncertainty sets presented in the remaining of Section 1.4 have been intro-

duced in the telecommunication community, independently from the robust optimiza-

tion community.

The hose model polytope has been introduced in [Duffield et al. (1999), Gupta et al.

(2001)]. This polytope is defined as follows: for each node v of the graph we are given

a maximum traffic input min
v and a maximum traffic output mout

v . The demand polytope

D is defined as the set of vectors d ∈ RH satisfying the constraints
∑

h|s(h)=v

dh ≤ mout
v

and
∑

h|t(h)=v

dh ≤ min
v for all nodes v ∈ V .

The capped hose model, introduced by [Fréchette et al. (2014)], is a natural ex-

tension of the hose model. Additionally to the maximum traffic input min
v and traffic

output mout
v of each node, there is also a maximum demand value dmax

h for each indi-

vidual commodity h. A special case of this more general polytope, called the masked

hose model [Bosman and Olver (2017)], considers that dmax
h are either 0 or∞.

1.4.3 Set of all routable demands

The polytope containing all possible demand vectors has been introduced by [Azar et al.

(2003)] in the context of oblivious routing which consists in finding a fixed routing with

a good worst case competitive ratio between the congestion obtained from this fixed

routing and the optimal routing for any demand vector (without specific constraints

other than positivity). It has been proved by [Räcke (2002)], that there always exists

a routing having a polylogarithmic competitive ratio. However it was still an open
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Fig. 1.2 From undirected instance to directed instances.

question if such routing could be found in polynomial-time. In [Azar et al. (2003)]

it has been proved that finding an optimal oblivious routing is equivalent to finding

a static routing minimizing the congestion over the polytope containing all possible

demand vectors that can be routed through the network (routing is here dynamic). This

in turn leads to a proof that such routing could be found in polynomial-time.

1.5 Known relationships between problem variants

Let us now present some established relationships between different problems: routing

in directed vs undirected graphs, minimizing either a linear cost or the congestion.

1.5.1 From undirected graphs to directed graphs

An instance with an undirected graph can be modeled using a directed graph instance.

This can be done by removing each edge e between two nodes u, v, adding two new

nodes w1, w2 and adding 5 directed edges: for instance in the example of Figure 1.2 we

add edges from u to w2, from w2 to w1, from w1 to u and v, from u and v to w2 and we

put the same capacity (or cost) for the edge from w2 to w1 that was on the edge e. As we

will see, results about the static/dynamic gap provide evidences that an instance with a

directed graph cannot be modeled by an undirected graph instance, at least without an

exponential increase of the size of the instance.

1.5.2 Node-capacited and edge-capacited instances in directed graphs

While only edge-capacitated networks are considered in this thesis, other variants such

as node-capacitated networks can also be studied. However, a node-capacitated instance

can be transformed into an edge-capacitated instance and vice-versa.

We will first describe how an instance with capacities on the nodes can be repre-

sented by an instance with capacities on the edges. This can be done by replacing each

node v by two nodes v1 and v2 and adding an edge (v1, v2) whose capacity is the same

11



Fig. 1.3 From node-capacited to edge-capacited instances.

Fig. 1.4 From node-capacited to edge-capacited instances.

as the capacity of node v. Each edge that had v as destination (resp. as source) will

have v1 (resp. v2) as destination (resp. as source) in the new graph (see Figure 1.3).

Conversely, an edge-capacitated instance can be simulated by a node-capacitated

instance. This can be done by replacing each edge e with source v and destination u by

one node w with the same capacity than the removed edge and by adding two edges,

one from v to w and one from w to u (see Figure 1.3).

1.5.3 From congestion to linear cost

We will now introduce a result from [Goyal et al. (2009)] which states that if the

static/dynamic gap is less than or equal to α for the congestion problem, then the same

applies to the linear cost problem.

Proposition 1.5.1. [Goyal et al. (2009)] : Assume that for a given graph G, a set of

commoditiesH, a demand polytopeD and some α > 1 we have congsta ≤ α congdyn for

any vector c ∈ RE
+. Then linsta ≤ α lindyn for any cost vector λ ∈ RE

+ (for the instance

given by the data G,H,D, λ).

Proof. Given a cost vector λ, let c∗dyn ∈ RE
+ be the reservation vector (i.e., u) obtained

when the linear cost is minimized under dynamic routing. For the capacity vector c∗dyn
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we clearly have congdyn ≤ 1 and congsta ≤ α congdyn ≤ α. Therefore, α c∗dyn is

a feasible reservation vector for the linsta problem and its cost is α times the cost of

c∗dyn.

A consequence of Proposition 1.5.1 is that if we know an upper bound on the

static/dynamic gap for the congestion problem on a certain class of instances then this

result can be transferred to the linear cost problem. In the other direction, if a lower

bound can be found on the static/dynamic gap for the linear cost problem from some

classes of instances (i.e., some instances achieving a certain bound can be found), then

this implies that there is also a lower bound on the static/dynamic gap for the linear cost

problem.

1.6 Intermediate strategies between static and dynamic routing

There are at least two reasons to consider routing strategies that are intermediate be-

tween the static and dynamic routing. The first one is to obtain a routing that gives a

better solution than the static one (in terms of cost) while being easier to solve than the

dynamic routing problem. In this class of methods that achieve such trade off, one can

at least consider the following strategies: affine routing, multi-static routing, multipolar

routing. Second, static routing is easier to implement in practice while dynamic routing

requires a continuous adaptation of routing.

1.6.1 Affine routing

The affine routing method has been presented in [Ouorou and Vial (2007)] to approxi-

mately compute lindyn for the path restricted problem variant. It consists in restraining

the dynamic path flow fh′

h,p(d) to depend affinely on the demand scenario d ∈ D. The

decision variables are now the coefficients xh′

h,p for h′ ∈ H∪ {0}, and the dynamic path

flow is fh′

h,p(d) =
∑
h′∈H

dh′xh
′

h,p. This problem can be modeled as the following single

stage robust optimization problem:

min obj(u)∑
h∈H

∑
p∈Ph:p∋e

(
x0p,h +

∑
h′∈H

xh
′

p,hdh′

)
≤ ue, ∀e ∈ E, d ∈ D (1.6a)

∑
p∈Ph

(
x0p,h +

∑
h′∈H

xh
′

p,hdh′

)
= dh, ∀h ∈ H, d ∈ D (1.6b)

x0p,h +
∑
h′∈H

xh
′

p,hdh′ ≥ 0, ∀h ∈ H, p ∈ Ph, d ∈ D (1.6c)
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Affine routing has also been used in [Poss and Raack (2013)] to solve the (unre-

stricted flow) lindyn problem. It consists in restraining the dynamic edge flow fh′

h,e(d)

to depend affinely on the demand scenario d ∈ D. The decision variables are now the

coefficients xh′

h,e for h′ ∈ H ∪ {0}, and the dynamic edge flow is fh′

h,e(d) =
∑
h′∈H

dh′xh
′

h,e.

This problem can then be modeled as the following single stage robust optimization

problem:

min obj(u)

∑
e∈δ+(v)

(
x0h,e +

∑
h′∈H

xh
′

h,edh′

)
−

∑
e∈δ−(v)

(
x0h,e +

∑
h′∈H

xh
′

h,edh′

)
=


dh, if v = s(h)

−dh, if v = t(h)

0 otherwise

∀h ∈ H, v ∈ V, d ∈ D (1.7a)∑
h∈H

(
x0h,e +

∑
h′∈H

xh
′

h,edh′

)
≤ ue, ∀e ∈ E, d ∈ D (1.7b)

x0h,e +
∑
h′∈H

xh
′

h,edh′ ≥ 0, ∀e ∈ E,∀h ∈ H, d ∈ D (1.7c)

The obtained problems are of polynomial size. We will see in Appendix A how this

kind of problems can be solved given a demand polytope D described by inequalities,

either by reformulating it as a compact linear program or by using a cutting plane pro-

cedure. Affine routing can then be seen as an approximation of dynamic routing that

can be computed in polynomial-time.

1.6.2 Multipolar routing

In this subsection we present the multipolar robust routing approach, introduced in [Ben-

Ameur and Żotkiewicz (2013a)] for the robust routing problem and later generalized

for more general robust optimization problems in [Ben-Ameur et al. (2018a)]. Sup-

pose that we have a finite set of pointsW = {w1, w2, ..., w|W|} called poles such that

D ⊆ conv(W). Consider the following set:

Λ := {λ ∈ RW
+ |
∑

λw = 1, s.t.
∑

λww ∈ D}

Note that a demand vector d ∈ D can potentially be written in several ways. For each

λ ∈ Λ there is a corresponding demand vector d(λ) =
∑

w∈W
λww. It consist in having a

variable xwh,e for each h ∈ H, e ∈ E and w ∈ W . We impose that fh(λ) =
∑
h∈H

λwxwh

is a flow of value dh(λ) from s(h) to t(h). Note that the vectors xwh them-self are not

required to be flow vectors, are not necessarily non-negative and they do not need to

respect flow conservation constraints. This can be modeled as a single stage robust
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optimization problem (where Λ is the uncertainty set) as follows. It can be shown that

this approach is equivalent to affine routing by choosing W such that conv(W) is a

simplex containing D. It can also be shown that this approach is equivalent to dynamic

routing by takingW to be the set of extreme points ofD. This problem can be modeled

as a single stage robust optimization problem.

min obj(u)∑
h∈H

(∑
w∈W

λwxwh,e

)
≤ ue, ∀e ∈ E, λ ∈ Λ (1.8a)

∑
e∈δ+(v)

(∑
w∈W

λwxwh,e

)
−

∑
e∈δ−(v)

(∑
w∈W

λwxwh,e

)
=


∑

w∈W
λwwh, if v = s(h)

−
∑

w∈W
λwwh, if v = t(h)

0 otherwise

∀h ∈ H, v ∈ V, λ ∈ Λ (1.8b)∑
w∈W

λwxwh,e ≥ 0, ∀e ∈ E,∀h ∈ H, λ ∈ Λ (1.8c)

1.6.3 Multi-static routing

The multi-static routing method has been introduced in [Ben-Ameur (2007)]. It has

also been independently studied in [Bertsimas and Caramanis (2010)]. The multi-

static approach has been further studied in [Ben-Ameur and Żotkiewicz (2011)]. It

consists in covering the polytope D by polyhedral subsets Di for i ∈ I , i.e., such

that D ⊆
⋃
i∈I
Di. This is typically done by cutting the polytope D with an hyperplane

{d ∈ RH
+ |
∑
h∈H

ahdh = b} in two pieces D1, D2 defined by:

D1 = {d ∈ RH
+ |
∑
h∈H

ahdh ≥ b}

D2 = {d ∈ RH
+ |
∑
h∈H

ahdh ≤ b}

The covering polytopes can be recursively decomposed to obtain smaller polyhe-

dra subsets Di. An approach to iteratively partition the covering polytopes has been

independently proposed in [Bertsimas and Dunning (2016)] and in [Postek and Hertog

(2016)] for general multistage robust optimization problem, where at each iteration the

multi-static model is solved for the current partition and then the partition is refined

using information about the current multi-static solution. [Silva et al. (2018)] applied

this method for the single path routing problem and for the fractional routing problem,

both with given paths. They also introduced several improvements of the method.
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Given such decomposition of the polytope the approach consists in choosing a po-

tentially different routing xi for each polyhedra subset Di. This approach always gives

a solution that is at least as good as the one provided by the static approach. This can

be seen by taking all routings xi to be equal to the optimal static routing xopt.

This problem can be written as a single stage robust optimization problem as fol-

lows:

min obj(u)

∑
e∈δ+(v)

xih,e −
∑

e∈δ−(v)

xih,e =


1, if v = s(h)

−1, if v = t(h)

0 otherwise

∀h ∈ H, v ∈ V, i ∈ I, d ∈ Di (1.9a)∑
h∈H

dhx
i
h,e ≤ ue, ∀e ∈ E, i ∈ I, d ∈ Di (1.9b)

xih,e ≥ 0, ∀e ∈ E,∀h ∈ H, i ∈ I, d ∈ Di (1.9c)

1.7 Known theoretical results on complexity and approximability

We first present results related to the variants where no specific restrictions on the flows

are considered. Then, we focus on single path routing and semi-oblivious routing.

Finally, we consider the case of hose polytopes. The reviewed results are mainly related

to the static/dynamic gap, the complexity and the inapproximability of the dynamic

routing problem.

1.7.1 Fractional routing

We first present the results for undirected graphs. It has been proved that computing

lindyn is coNP-hard in undirected graphs by [Chekuri et al. (2007)]. This also implies

that computing congdyn is coNP-hard. Those results have been proved for the hose

model. A result attributed to A. Gupta (see [Chekuri et al. (2007)]) is that there is an

upper bound of O(log n) on the static/dynamic gap where n is the number of nodes of

the graph (i.e. linsta = O(log n)lindyn). Since linsta can be computed in polynomial-time,

this also give anO(log n) approximation for lindyn. Notice that the bound given by static

routing cannot provide a better bound than O(log n) since a lower bound of Ω(log n) is

achieved by static routing for planar graphs [Maggs et al. (1997), Bartal and Leonardi

(1999)] and [Goyal et al. (2009)] has shown that the gap linsta-frac
lindyn-frac

is Ω(log n).

In the case of directed graphs, computing lindyn is also coNP-hard [Gupta et al.

(2001)]. Notice that the coNP-hardness in the undirected case directly implies coNP-

hardness in the directed case. When congestion is minimized, [Azar et al. (2003)] has
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shown that the gap between static fractional routing and dynamic fractional routing

can be Ω(
√
k) while [Hajiaghayi, Kleinberg, Räcke and Leighton (2007)] proves that

the gap is upper-bounded by O(
√
kn

1
4 log n). Since the instance provided in [Azar

et al. (2003)] contains vertices with large degree, [Hajiaghayi, Kleinberg, Räcke and

Leighton (2007)] studied the version where the degree is less than some constant and

all commodities have the same sink. An instance with a Ω(
√
n) gap was then provided

in [Hajiaghayi, Kleinberg, Räcke and Leighton (2007)], while the upper bound becomes

O(
√
n log n). [Hajiaghayi, Kleinberg, Räcke and Leighton (2007)] considered also the

case of symmetric demands (in that paper, symmetry means that for any two nodes u

and v, the demand from u to v is equal to the demand from v to u) and shows that the

upper bound of the static to dynamic ratio becomes O(
√
k log5/2 n). A general Ω(n)

lower bound was later proposed in [Ene et al. (2016)]. They also introduced the notion

of balance for directed graphs. A weighted directed graph is α-balanced if for every

subset S ⊆ V , the total weight of edges going from S to V \S is within a factor α of

the total weight of edges directed from V \S to S. Using this new parameter, they show

that for single source instances an upper bound ofO(α log3 n
log logn

) holds for the competitive

ratio of static routing.

In undirected node-capacited instances, [Hajiaghayi, Kleinberg, Räcke and Leighton

(2007)] have shown that the static/dynamic gap can be at most O(
√
n log n) for single

source instances and O(
√
n log

3
2 n) in the general case.

1.7.2 Other variants with flow restrictions

The single path robust routing problem has mainly been studied in undirected graphs.

We present below those results. The O(log n) approximation, attributed to A. Gupta

(see [Chekuri (2007), Goyal et al. (2009)] for a more detailed presentation), related to

the linear cost under dynamic fractional routing problem is achieved by a routing on a

(fixed) single tree. In particular, this shows that the ratios between the dynamic and the

static solutions under fractional routing ( linsta-frac
lindyn-frac

) and between single path and fractional

routing under the static model ( linsta-sing

linsta-frac
) is in O(log n) and provides an O(log n) approx-

imation for static single path routing linsta-sing. On the other hand [Olver and Shep-

herd (2014)] show that the static single path problem cannot be approximated within

a Ω(log
1
4
−ϵ n) ratio unless NP ̸⊂ ZPTIME(npolylog(n)). As noticed in [Goyal et al.

(2009)], this implies (assuming this complexity conjecture) that the gap linsta-sing

linsta-frac
is in

Ω(log
1
4
−ϵ n).

Focusing on the semi-oblivious routing problem in undirected graphs, it has been

shown in [Hajiaghayi, Kleinberg and Leighton (2007)] that the gap between the dy-

namic fractional routing and a dynamic fractional routing restricted to a polynomial

number of paths can be Ω( logn
log logn

).
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1.7.3 Results for the hose model

For the linear cost objective function and undirected graphs, an extensively studied

polyhedron is the symmetric hose model. The demand vector is here not oriented (i.e,

there is no distinction between a demand from i to j and a demand from j to i), and

uncertainty is defined by considering an upper-bound limit bi for the sum of demands re-

lated to node i. A 2-approximation has been found for the dynamic fractional case [Fin-

gerhut et al. (1997), Gupta et al. (2001)] based on tree routing (where we route through

a static tree that should be found) showing that linsta-tree
lindyn-frac

≤ 2. It has been conjectured

that this solution resulted in an optimal solution for the static single path routing. This

question has been open for some time and has become known as the VPN conjecture. It

was finally answered by the affirmative in [Goyal et al. (2013)]. The asymmetric hose

polytope was also considered in many papers. An approximation algorithm is proposed

to compute linsta-sing within a ratio of 3.39 [Eisenbrand et al. (2007)] (or more precisely

2 plus the best approximation ratio for the Steiner tree problem). If D is a balanced

asymmetric hose polytope, i.e.,
∑

v∈V b
out
v =

∑
v∈V b

in
v where binv (resp. boutv ) is the

upper bound for the traffic entering into (resp. going out of) v, then the best approxi-

mation factor becomes 2, see [Eisenbrand et al. (2007)]. Moreover, if we assume that

boutv = binb , then linsta-sing is easy to compute and we get that linsta-tree = linsta-sing [Olver

(2010)]. In other words, there is some similarity with the case where D is a symmetric

hose polytope.

It has been shown [Bosman and Olver (2017)] in that the masked hose model can be

solved in polynomial-time when the underling graph is a cycle and when it is a tree of

bounded degree. They have also shown that when the graph is a tree of bounded degree,

a 2α-approximation can be obtained, where α is the approximation ratio for the Steiner

tree problem without any bound on the degree of the tree.

1.8 Related problems

In this section, we present tightly related problems to the robust network design prob-

lems considered in this thesis.

1.8.1 Other variants on robust network design

Robust network design is a rich research area where many variants have been stud-

ied. Beyond flow restrictions and the uncertainty on traffic as presented earlier, others

variants have been considered. We will present some of them in the following.

[Bertsimas and Sim (2003)] consider a robust minimum cost flow problem where

the demand is fixed but the cost is uncertain. This problem takes as input an undirected

graph, two source and destination nodes s, t, a demand value d that needs to be sent and
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a polytope Λ of possible edge cost vectors. Let us denote X to be the set of s− t flows

of value d. The goal is to find a flow minimising minx∈X maxλ∈Λ λ
tx. They show that

this problem can be solved by solving n + 1 nominal flow problems minx∈X λ
tx (with

deterministic costs vectors λ).

[Lemaréchal et al. (2010)] consider a tightly related robust network design problem

where a maximum budget b is given on the costs of the capacities and the goal is to

minimize a weighted sum of the unroutable demands for a given π ∈ RH
+ . Formally the

problem can be written as follows:

µ = min
u∈U(b)

max
d∈D

min
d′∈D(u)

∑
h∈H

πh(dh − d′h)+ (1.10)

where U(b) is the set of capacities of total cost less than the budget b, i.e. the set

of u ∈ RE
+ satisfying

∑
e∈E

λeue ≤ b and D(u) is the set of demand vectors that can be

routed over capacities u. Solutions to this problem are interesting for the robust network

design problem lindyn for at least two reasons. The first one is that if we can find an

oracle solving Problem (1.10), we can use it to solve our lindyn using a dichotomic

search. The second reason is that the inner max-min problem of (1.10) can be seen as a

way to check if a capacity vector u is enough to route all demands inside the polytope

D. This can be used in a cutting plane procedure to compute a solution for the lindyn

problem.

They proposed two procedures, one to compute a lower bound using an ingenious

procedure to iteratively construct an inner approximation of the demand polyhedron D
and another procedure to compute an upper bound on µ based on inverting the inner

min-max problem and other smart ideas. Later [Ouorou (2013)] investigated the prob-

lem from a dual perspective: given an upper bound µ on the maximum traffic rejection

they seek a capacity vector assignment. This problem can also be seen as a generalisa-

tion of the lindyn problem that we consider in this thesis. Based on the affinely adjustable

robust counterpart method and other idea borrowed from earlier work they propose four

tractable procedures to approximately solve this problem.

1.8.2 Two-stage adaptive optimization

At first sight it might be possible to cast Problem (1.3) as a two-stage adaptive robust

optimization problem of the form (1.11). [Bertsimas and Goyal (2012)] presented the

following general model:
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min cx+max
b∈U

dy(b)

Ax+By(b) ≥ b ∀b ∈ U (1.11a)

x, y(b) ≥ 0 (1.11b)

where the set U ⊆ Rm
+ is the uncertainty set supposed to be compact, convex and

full dimensional, variables x ∈ Rn1
+ are the first stage variables, y(b) ∈ Rn2

+ are the

second stage variables n1, n2 ∈ N, A ∈ Rm×n1
+ , B ∈ Rm×n1 , c ∈ Rn1

+ , d ∈ Rn2
+ .

When the coefficients of the matrix A are positive, [Bertsimas and Goyal (2012)]

have shown that the optimal affine solution cannot be worse than O(
√
m) times the cost

of the optimal dynamic solution.

While it is not trivial to cast the robust network design problem as a two-stage

adaptive robust optimization problem, the ideas of [Bertsimas and Goyal (2012)] will

be adapted in Chapter 3.

1.9 Thesis contributions

As previously mentioned, the thesis is dedicated to the design of robust networks where

the general objective is to propose a routing strategy that can adapt to uncertainty.

Since the dynamic routing strategy is generally difficult to compute and to imple-

ment, we would like to approximate it using routing strategies that can be computed in

polynomial-time. Hence, we should first study the approximability/inapproximability

of dynamic routing. Then, we study new affine and multi-static routing strategies that

can approximate dynamic routing in a reasonable way. The contributions of the thesis

are therefore mainly on approximability and algorithmic approaches.

1.9.1 Inapproximability results in the undirected case

Chapter 2 is dedicated to dynamic routing in undirected graphs. The main contributions

are new inapproximability results.

• We first prove that the robust network design problem with minimum congestion

cannot be approximated within any constant factor. The reduction is based on

the PCP theorem and some connections with the Gap-3-SAT problem [Arora and

Barak (2009)]. The same reduction also allows to show inapproximability within

Ω(log n
∆
) where ∆ is the maximum degree in the graph and n is the number of

vertices.

• Using the ETH conjecture [Impagliazzo and Paturi (2001), Impagliazzo et al.

(2001)], we prove a Ω( logn
log logn

) lower bound for the approximability of the ro-
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bust network design problem with minimum congestion. This implies that the

well-known O(log n) approximation ratio that can be obtained using the result

in [Räcke (2008)] is tight.

• We show that any α-approximation algorithm for the robust network design prob-

lem with linear costs directly leads to an α-approximation for the problem with

minimum congestion. The proof is based on Lagrange relaxation. We obtain that

robust network design with minimum congestion can be approximated within

O(log n). This was already proved in [Räcke (2008)] in a different way.

• An important consequence of the Lagrange-based reduction and our inapprox-

imability results is that the robust network design problem with linear reservation

cost cannot be approximated within any constant ratio. This answers a long-

standing open question stated in [Chekuri (2007)].

• Another consequence is a new proof for the existence of instances for which

the optimal static solution can be Ω(log n) more expensive than a solution based

on dynamic routing, when a linear cost is minimized. This was already proved

in [Goyal et al. (2009)] in a different way.

• We show that even if only two given paths are allowed for each commodity, there

is a constant k such that the robust network design problem with minimum con-

gestion or linear costs cannot be approximated within k.

1.9.2 Approximability and inapproximability results in the directed case

Chapter 3 is dedicated to dynamic routing in directed graphs. The main contributions

are a new approximation factor and some inapproximability results.

• We prove that compared to dynamic routing, when static routing is considered,

congestion is multiplied by a factor less than or equal to
√
8k where k is the

number of commodities. This implies that the gap between static routing and dy-

namic routing for the congestion minimization problem is O(
√
k) = O(n) where

n is the number of nodes. The best-known previous bound is O(
√
kn

1
4 log n) and

was given by [Hajiaghayi, Kleinberg, Räcke and Leighton (2007)]. The same√
8k bound applies to the linear reservation cost problem. The new upper bound

matches the Ω(
√
k) lower bound of [Azar et al. (2003)] and the Ω(n) lower bound

of [Ene et al. (2016)].

• We introduce a more general version of the two robust network design problems

(related to congestion and linear cost) by considering some flow restrictions (each

commodity h can only be routed through edges inside a given subset Eh). The
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upper bound
√
8k = O(n) is still valid and the static versions of the problems can

still be solved in polynomial-time. We show some strong inapproximability re-

sults for this problem. More precisely, we prove that unless NP ⊆ SUBEXP ,

neither minimum dynamic congestion nor optimal linear cost can be approxi-

mated within a ratio of k
c

log log k (resp. n
c

log logn ) for some constant c. Making use

of a weaker assumption, we get that unlessNP ⊆ QP , there is no approximation

within a factor of 2log
1−ϵ k (resp. 2log

1−ϵ n) for any ϵ > 0. This result improves

the Ω( logn
log logn

) inapproximability bound of we proved for the undirected case that

also applies to the directed one.

1.9.3 Affine routing

In Chapter 4 we study the affine routing method and propose several strengthening of

the original scheme. The main contributions are given below.

• We study the relationship between the original affine routing formulations [Ouorou

and Vial (2007), Poss and Raack (2013)], namely the node-arc and the arc-path

formulations. We show that the node-arc formulation can strictly dominate the

arc-path formulation. We also derive a natural cycle-based formulation equiva-

lent to the node-arc formulation but that uses less variables and constraints.

• We introduce two ways of relaxing the flow conservation constraints in the node-

arc formulation. We prove that this leads to feasible solutions and then we see

that they can both strictly dominate the standard node-arc formulation.

• We propose a cut based formulation as an improved solution over both relaxed-

flow conservation formulations. However we show that, unless P = NP , it

cannot be solved in polynomial-time.

• We combine the two relaxed-flow conservation formulations using an extended

graph. We prove that this formulation dominates both relaxations and that it can

be solved in polynomial-time.

• To drastically reduce the size of models and consequently the solving times, we

present variants of the formulations based on the aggregation of different flows

having the same source and/or sink in the node-arc formulation. Moreover, we

show that this can also improve the cost of the solutions.

• We numerically test the different formulations that can be solved with polynomial-

time algorithms after a reformulation using a classical duality-based method. We

compare the solutions and execution times for two polyhedrons, two topologies

and two objective functions.
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1.9.4 Multi-static routing

In Chapter 5 we introduce a new multi-static approach. The contributions are summa-

rized as follows.

• Instead of covering the whole polytope D by polyhedral subsets, we only need

that the convex hull of some polyhedral subsets cover the polytope. This leads

to a natural choice of polyhedral subsets consisting of faces of the polytope. A

static routing is then considered for each subset.

• One possibility to use our new multi-static approach is to take all faces of the

polytope D having some dimension. We show that in some cases we only need a

tiny fraction of the faces to cover the polytope D by their convex hulls.

• We numerically tested our new approach.
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CHAPTER 2

Robust network design problem in undirected graphs

In this chapter we present our theoretical study of some variants of the robust network

design problem in undirected graphs under a general polyhedral set given as input. As

mentioned in Chapter 1, polynomial-time algorithms to compute optimal static routing

(with respect to either congestion or linear reservation cost) have been proposed [Ap-

plegate and Cohen (2003), Azar et al. (2003), Ben-Ameur and Kerivin (2003, 2005)]

based on either duality or cutting-plane algorithms. Additionally it is known from a

result attributed to A. Gupta (c.f. [Chekuri (2007)]) that the optimal solution of linsta

cannot be worse than O(log n) times the cost of the optimal solution of lindyn. It was

also known that this problem is NP -hard in directed graphs [Gupta et al. (2001)] and

in undirected graphs [Chekuri et al. (2007)]. Despite the consequent amount of results

related to robust routing, there was still a wide gap between between the best approxi-

mation algorithm and inapproximability lower bounds for the dynamic routing variants.

Some of the open questions that had some interest for the scientific community (see,

e.g. [Chekuri (2007)]) are recalled below.

• Is it possible to obtain a better approximation ratio than O(log n)?

• Is it possible to obtain a constant approximation?

• Is it possible to obtain a polynomial-time approximation scheme for this problem?

In this chapter we will provide some insights on the approximability of the dynamic

routing variants of robust network design. More specifically, we will prove the follow-

ing results:

• Unless P = NP , congdyn cannot be approximated in polynomial-time within any

constant factor.

• Unless the ETH conjecture is false, there is a lower bound of Ω(log n/ log log n)

on the approximability of congdyn.

• Given an oracle that computes an α approximate solution for lindyn, it is also pos-

sible to compute an α approximate for congdyn by making a polynomial number
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of calls to the oracle and in polynomial-time. This implies that the inapproxima-

bility results we proved for congdyn also applies to lindyn

Those results settle the approximability status of congdyn and lindyn up to a lower

order factor. We also conducted a theoretical study of the path restricted problem (1.3.2)

under dynamic routing for which no complexity results where known previously. If one

path per commodity is given then the dynamic routing problem can be trivially solved

in polynomial time. Therefore, one may wonder whether the problem is still easy to

solve when the number of possible paths is lower than some constant. In other words:

• Is it possible to a find polynomial-time algorithm for this problem when the num-

ber of possible (and given) paths is less than or equal to a constant?

However, the following result we proved answers this question by the negative:

• Even if the number of paths per commodity is at most 2 (i.e., |Ph| ≤ 2), there

is a constant c > 1 under which this problem cannot be approximated (unless

P = NP ).

2.1 Inapproximability under some constant factor c > 1

In Lemma 2.1.1, we will prove that it is NP-hard to distinguish between instances where

congdyn(D) is less than or equal to 1 and those where the cut congestion congcut(D) is

greater than or equal to 1 + ρ for some constant ρ > 0.

Given a 3-SAT instance φ, val(φ) denotes the maximum proportion of clauses that

can be simultaneously satisfied (thus φ is satisfiable when val(φ) = 1 ). We will con-

sider polytopes D that can be expressed through linear constraints and auxiliary vari-

ables ξ, i.e., D = {d ∈ RH|Ad + Bξ ≤ b} where A and B are matrices of polynomial

size (the maximum of the number of columns and the number of rows is polynomially

bounded). Notice that it is important to consider polytopes that can be easily described

(otherwise the difficulty of solving congdyn would be a consequence of the difficulty of

describing the polytope).

Lemma 2.1.1. For 0 < ρ < 1, there is a polynomial-time reduction from a 3-SAT

instance φ to an instance I = (G, c,H,D) of congdyn:

• If val(φ) ≤ 1− ρ then congdyn(I) ≤ 1

• If φ is satisfiable then congdyn(I) ≥ congcut(I) ≥ 1 + ρ.

Furthermore, |V (G)|, |E(G)|, |H| and the size of the matrices A and B defining D are

all O(m) where m is the number of clauses of φ.
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Proof. Given a 3-SAT instance φ with m clauses, we build an instance of congdyn as

follows. We consider two nodes: a source s and a destination t. Then, for each i =

1, ...,m we create a path form s to t containing three directed edges ei,j of capacity

1 for j = 1, 2, 3 corresponding to the i − th clause of φ. For each i = 1, ...,m and

j = 1, 2, 3, H contains a commodity hi,j with the same source and destination as edge

ei,j . We also add a commodity hs,t from s to t. The polytope D is defined as follows.

We set dhs,t = ρ · m. For each literal l (i.e. a variable or its negation) of the 3-SAT

instance φ we add an auxiliary variable ξl. Intuitively ξl = 1 will correspond to setting

the literal l to true. For each variable v, we add the constraint ξv + ξ¬v = 1 in addition

to non-negativity constraints ξv ≥ 0 and ξ¬v ≥ 0. For each i = 1, ...,m and j = 1, 2, 3,

we consider the constraint dhi,j
= ξli,j where li,j is the literal appearing in the i − th

clause in the j− th position. Observe that the size ofD is O(m). The number of nodes,

edges and commodities are also O(m).

Consider first the case val(φ) ≤ 1 − ρ. The set of extreme points of D is such

that the ξl variables take their values in {0, 1}. The maximum dynamic congestion is

attained for a demand vector of this form. Let d be such a demand vector and consider

the corresponding solution of the 3-SAT instance φ. We route all demands dhi,j
on ei,j .

If for some i = 1, ...,m the i− th clause is false, then the demands dhi,1
, dhi,2

, dhi,3
are

equal to 0 and therefore one unit of flow of the commodity hs,t can be routed on the

path (ei,1, ei,2, ei,3) with congestion less than or equal to 1. Since val(φ) ≤ 1− ρ, there

are at least m · ρ such indices i (i.e., false clauses) and therefore the demand dhs,t can

be routed with a congestion less than or equal to 1.

We now consider the case where φ is satisfiable. Let d be the demand vector cor-

responding to a truth assignment satisfying φ. For each i = 1, ...,m, let j(i) be the

position of a literal set to true in the i− th clause. Therefore we have dhi,j(i)
= 1 for all

i = 1, ...,m. Consider the cut C = {ei,j(i)|i = 1, ...,m}. C intersects the paths related

to the m demands dhi,j(i)
of value 1 in addition to demand dhs,t of value m · ρ. The

total capacity of this cut is m while the sum of demands belonging to C is m +m · ρ.

Therefore the congestion of this cut is m+m·ρ
m

= 1 + ρ.

2.2 Inapproximability in undirected graphs

Theorem 2.2.1. Unless P = NP , the minimum congestion problem cannot be approx-

imated with a polynomial-time algorithm within any constant factor even if D is given

by {d : Ad+Bψ ≤ b} whose size is polynomial bounded by |V (G)|.

This theorem will be an immediate consequence of NP hardness of the gap-3SAT

problem and Lemma 2.2.1
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Fig. 2.1 G1 and G2

Lemma 2.2.1. For every r ∈ N there is a polynomial-time mapping from a 3-SAT

instance to an instance Ir = (Gr, cr,Hr,Dr) such that:

• val(φ) < ρ =⇒ congdyn(Ir) ≤ 1.

• val(φ) = 1 =⇒ congdyn(Ir) ≥ 1 + r(1− ρ)

Furthermore, |V (G)|, |E(G)|, |H| and the size of the matrices A and B defining D are

all O(mcr), for some constant c, where m is the number of clauses of φ.

Proof. For r = 1 we take the instance I1 = (G1, c1,H1,D1) constructed in Lemma

2.1.1, in this instance we define two special nodes s1 := s and t1 := s (see the proof of

Lemma 2.1.1). For r ≥ 2, having constructed Ir−1 = (Gr−1, cr−1Hr−1,Dr−1) with two

special nodes denoted sr−1, tr−1, we recursively build an instance Ir = (Gr, cr,Hr,Dr)

as follows. We construct the graph Gr, by taking the graph G1 and replacing each edge

by a copy of the graph Gr−1 denoted by Gi,j
r−1. Each copy Gi,j

r−1 contains a node sr−1

that is identified with s(ei,j) and a node tr−1 identified with t(ei,j) (see Figure 2.1). All

commodities related to Gi,j
r−1 (belonging to Hr−1) are also considered as commodities

of Hr. Let us use di,j ∈ RHr−1 to denote the related demand vector. Hr also contains a

non-negative commodity h0,r constrained by dh0,r ≤ mr(1−ρ). Thus |Hr| = 1+3m×
|Hr−1|.

We are going to build an uncertainty set Dr as a coordinate projection of a higher-

dimensional polyhedron Ξr, involving demand variables in addition to auxiliary non-

negative variables ξl related to literals, and also auxiliary variables ψi,j
r−1 related to Gi,j

r−1

and the description of Hr−1. We gradually explain the construction. For each variable

v of the 3-SAT formula φ we add the constraint ξv + ξ¬v = 1. And for ei,j ∈ E(G1),

we impose the following constraint:

di,j ∈ ξli,jDr−1 := {ξlijd0|d0 ∈ Dr−1} (2.1)

Let us explain how this can be expressed with linear constraints. Without loss of

generality we can suppose that Dr−1 is given as Dr−1 = {d : Ar−1d + Br−1ψr−1 ≤
br−1} and this representation includes (among others) non-negativity constraints of all
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variables in addition to the upper bound constraints dh ≤ dmax
h where dmax

h = max
d∈Dr−1

dh.

Then by writing Ar−1d
i,j + Br−1ψ

i,j ≤ ξli,jbr−1, we can ensure that ξli,j = 0 implies

di,j = 0 (because of the upper bound constraints), while ξli,j > 0 leads to 1
ξli,j

di,j ∈
Dr−1. In particular when ξli,j = 0, from outside, the whole subgraph corresponding to

Gi,j
r−1 acts like a single edge of capacity mr−1.

We observe that all extreme points of Ξr are such that ξl ∈ {0, 1} for l ∈ L. To

verify that, we first recall that constraints (2.1) are equivalent to di,j ∈ ξli,jDr−1 (in this

way, the vectors ψi,j
r−1 can be ignored).

Second, let L+ be the set of literals appearing in positive form. We observe that

variables ξl for l ∈ L+ are pairwise independent. Only variables di,j such that ei-

ther li,j = l or li,j = ¬l depend on ξl since di,j ∈ ξlDr−1 in the first case and

di,j ∈ (1 − ξl)Dr−1 in the second case. This immediately implies that given some ar-

bitrary real vectors qi,j and f , minimizing
∑

i=1,..,m;j=1,2,3

qTi,jd
i,j +

∑
l∈L+

flξl is equivalent

to minimizing
∑
l∈L+

ξl

(
fl +

∑
i,j:li,j=l

min
di,j∈Dr−1

qTi,jd
i,j −

∑
i,j:li,j=¬l

min
di,j∈Dr−1

qTi,jd
i,j

)
subject

to 0 ≤ ξl ≤ 1. It is then clear that there is an optimal solution such that ξl values will

be either 0 or 1. Since this holds for an arbitrary linear objective function, we get the

wanted result about extreme points.

Let us now show that val(φ) < ρ =⇒ congdyn(Ir) ≤ 1. Assume that val(φ) < ρ.

We prove by induction that the congestion of Ir is 1. Suppose that this is true for some

r − 1. If ξli,1 = ξli,2 = ξli,3 = 0 for some i, a flow of value mr−1 can be routed between

sr and tr by sending a flow of value 1 on each edge of Gi,j
r−1 for j = 1, 2, 3. Since

val(φ) < ρ, there are necessarily at least m(1− ρ) such i, thus we can send the whole

demand mr−1m(1−ρ) = mr(1−ρ) this way. For the indices i, j such that ξli,j = 1, by

the induction hypothesis (congdyn(Ir−1) ≤ 1), the demands inside Gi,j
r−1 can be routed

without sending more than one unit of flow on each edge of Gi,j
r−1.

Since φ is satisfiable, there is a truth assignment represented by ξ variables (the

auxiliary variables) such that for each i = 1, ...,m there is a j(i) such that ξli,j(i) = 1.

By considering the graph Gi,j(i)
r−1 and using the induction hypothesis, we can build a cut

δ(Ci
r−1) separating the node s(ei,j(i)) and t(ei,j(i)) and containing mr−1 edges. We also

build a demand vector di,j(i) ∈ Dr−1 such that the sum of demands traversing the cut

is greater than or equal to mr−1(1 + (r − 1)(1 − ρ)) (still possible by induction). By

taking the union of these m disjoint cuts we get a cut δ(Cr) that is separating sr and tr
having the required number of edges. A demand vector d can be built by combining the

vectors di,j(i) and the demand dh0,r taken equal to mr(1−ρ). Since the demand from sr

to tr is also traversing the cut, the total demand through δ(Cr) is greater than or equal

to mr(1− ρ) +m.mr−1(1 + (r − 1)(1− ρ)) = mr(1 + r(1− ρ)).
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Notice that to show that all traffic vectors of Dr can be routed with congestion 1,

we considered demand vectors corresponding with {0, 1} ξ variables. The result shown

above about extreme points is useful here since it allows us to say that each extreme

point of Dr can be routed with congestion less than or equal to 1 implying that each

demand vector inside Dr can also be routed with congestion less than or equal to 1.

Let us now show that val(φ) = 1 =⇒ cong(Ir) ≥ 1 + r(1 − ρ). We are going

to use induction to build a cut δ(Cr) where Cr is set of vertices of V (Gr) containing sr
and not containing tr. The number of edges of the cut will be mr and each edge has a

capacity equal to 1. We also show the existence of a demand vector d ∈ Dr such that

the sum of the demands traversing the cut is greater than or equal to mr(1 + r(1− ρ)).
This would show that there is at least one edge that carries at least 1+ r(1− ρ) units of

flow.

Lemma 2.2.1 can be further exploited in different ways since there are many possi-

ble connections between the value 1+ r(1−ρ) and the characteristics of the undirected

graph built in the proof of the lemma. Observe, for example, that by a simple induction

we get that the number of vertices |V (Gr)| = 2 + 2m (3m)r−1
3m−1

leading to |V (Gr)| ≃
2×3r−1mr (when m goes to infinity). We also have ∆(Gr) equal to mr where ∆(.) de-

notes the maximum degree in the graph. Consequently, log( |V (Gr)|
∆(Gr)

) ≃ r log 3+log 2/3.

Then by taking any constant k such that k × log 3 < (1− ρ) where ρ is the constant in

the PCP Theorem we get a lower bound on the approximability ratio. This is stated in

the following corollary.

Corollary 2.2.1. Under conditions of Theorem 2.2.1, for any constant c < 1−ρ
log 3

, it is not

possible to approximate the minimum congestion problem in polynomial-time within a

ratio of c log |V (G)|
∆(G)

.

2.2.1 A Ω( logn
log logn

) approximability lower bound

To get an approximability lower bound, we will use the well-known ETH conjecture

that is recalled below.

Conjecture 2.2.1 (Exponential Time Hypothesis). [Impagliazzo and Paturi (2001), Im-

pagliazzo et al. (2001)] There is a constant δ such that no algorithm can solve 3-SAT

instances in time O(2δm), where m is the number of clauses.

Let us use n to denote the number of vertices of the graph.

Theorem 2.2.2. Under Conjecture 2.2.1, no polynomial-time algorithm can solve the

minimum congestion problem with the approximation ratio Ω( logn
log logn

).
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Proof. The combination of PCP Theorem and ETH Conjecture 2.2.1 implies that dis-

tinguishing between 3-SAT instances such that val(φ) < ρ and val(φ) = 1 cannot be

done in time O(2mβ
) for some constant β > 0 (a slightly better bound is O(2m/logc m)

for some constant c, but this will not help us to improve the lower bound of Theorem

2.2.2).

Suppose that there is an algorithm that solves the minimum congestion problem

with an approximation factor α(n) and a running time O(nc1) for some constant c1.

Given a 3-SAT instance and a function r : N −→ N we can construct a minimum con-

gestion instance Ir(m) as in Lemma 2.2.1 in time O(mc2r(m)) and where the number

of vertices of the instance is mr(m). Then by running the approximation algorithm for

minimum congestion we get a total time of O(mc3r(m)) where c3 = max{c1, c2}. Thus

by choosing r(m) = mβ

c3 logm
we get an algorithm that runs in time O(2mβ

). And if the

approximation factor α(n) is small enough, that is if α(mr(m)) < 1 + (1 − ρ)r(m) for

a big enough m, we get an algorithm solving Gap-3-SAT and thus contradicting Con-

jecture 2.2.1. This is the case for c4 logn
log logn

for some constant c4. To see this, we can

observe that:
1+(1−ρ)r(m)

α(mr(m))
=

1+(1−ρ) mβ

c3 logm

c4
mβ/c3

β logm−log c3

≃ β(1−ρ)
c4

. By taking c4 < β(1− ρ) we get the wanted

inapproximability result.

2.3 From minimum congestion to linear cost

In this section we are going to prove that given an oracle that computes lindyn within

an approximation factor of α we can construct an α approximate solution for congdyn

problem. A consequence of this result is that inapproximability results for congdyn can

be directly transfered to lindyn.

Proposition 2.3.1. Let I ′ = (G, λ,H,D) and assume that linsta(I ′) ≤ α lindyn(I ′) for

some α ≥ 1 and for any cost vector λ ∈ RH
+ . Then congsta(I) ≤ α congdyn(I) where

I = (G, c,H,D) for any capacity vector c ∈ RH
+ . Moreover, any β-approximation

(β ≥ 1) for lindyn leads to a β-approximation for congdyn.

Given any λ ≥ 0, the robust network design problem with linear costs is simply the

following

min
u∈U(D)

λTu. (2.2)

Where U(D) ⊆ RE
+ is the set of capacity vectors such that all demand in D can be

(dynamically) routed without exceeding the capacities.

Assume that there exists a number α ≥ 1 such that Problem (2.2) can be solved in

polynomial-time within an approximation ratio α. More precisely, we have a polynomial-

time oracle that takes as input a non-negative linear cost λ ∈ RE(G) and outputs a
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uap(λ) ∈ U(D) such that λTu(λ) ≤ λTuap(λ) ≤ αλTu(λ) where u(λ) ∈ U(D) is the

optimal solution of (2.2).

Recall that the congestion problem is given by

min
β,u

β (2.3)

ue ≤ ceβ, ∀e ∈ E(G)

u ∈ U(D)

where β and u are optimization variables.

Let us consider a Lagrange relaxation of (2.3) by dualizing the capacity constraints

and using λ for the dual multipliers. The dual problem is then given by max
λ≥0

min
β,u∈U(D)

β+∑
e∈E(G) λe(ue − βce) (where β is an optimization variable). If λ is chosen such∑

e

λece ̸= 1, then the value of the inner minimum would be −∞. Thus in an opti-

mal solution, we will always have
∑
e

λece = 1. The problem is then equivalent to:

max
λ≥0∑

e∈E(G)
λece=1

min
u∈U(D)

∑
e∈E(G)

λeue = max
λ≥0∑

e∈E(G)
λece=1

λTu(λ). (2.4)

Since U(D) is polyhedral and all constraints and the objective function are linear,

there is no duality gap between (2.3) and (2.4).

Observe that (2.4) can be expressed as follows:

max
β,λ≥0

β (2.5a)

β ≤
∑

e∈E(G)

λeue,∀u ∈ U(D) (2.5b)

1 =
∑

e∈E(G)

λece (2.5c)

We are going to approximately solve (2.5) using a cutting-plane algorithm where in-

equalities (2.5b) are iteratively added by using the α-approximation oracle. Let (β′, λ′)

be a potential solution of (2.5), we can run the α-approximation of robust network de-

sign problem (2.2) with the cost vector λ′ to get a solution uap(λ′). If β′ >
∑

e∈E(G)

λ′eu
ap
e (λ′)

we return the inequality β ≤
∑

e∈E(G)

λeu
ap
e (λ′), otherwise the algorithm stops and returns

(β′, λ′). We know from the separation-optimization equivalence theorem [Grötschel

et al. (1988)] that (2.5) can be solved by making a polynomial number of calls to the

separation oracle leading a globally polynomial-time algorithm. Notice that this hap-

pens if the separation oracle is exact. In our case, the oracle is only an approximate one,
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implying that the cutting plane algorithm might be prematurely interrupted before ob-

taining the true optimum of (2.5). Observe however that this implies that the computing

time is polynomially bounded. Let (β̃, λ̃) be the solution returned by the cutting-plane

algorithm. Let (β∗, λ∗) be the true optimal solution of (2.5). The next lemma states that

the returned solution is an α-approximation of the optimal solution.

Lemma 2.3.1. The cutting-plane algorithm computes in polynomial-time a solution β̃

satisfying:

β∗ ≤ β̃ ≤ αβ∗. (2.6)

Proof. Observe that β∗ = λ∗Tu(λ∗). Moreover, since (2.5) is equivalent to (2.4), we

get that λ∗Tu(λ∗) = β∗ ≥ λ̃Tu(λ̃). From the approximation factor of the oracle, one

can write that λ̃Tuap(λ̃) ≤ αλ̃Tu(λ̃). Using the fact that no inequalities can be added

for (β̃, λ̃), we get that β̃ ≤ λ̃Tuap(λ̃). Finally, since (β∗, λ∗) is feasible for (2.5), we

obviously have β̃ ≥ β∗. Combining the 4 previous inequalities leads to (2.6).

The above lemma has many consequences.

Theorem 2.3.1. Unless P = NP , the robust network design problem with linear costs

cannot be approximated in polynomial-time within any constant ratio. Unless the ETH

conjecture is false, the robust network design problem with linear costs cannot be ap-

proximated within Ω( logn
log logn

).

Proof. The result is an immediate consequence of Theorems 2.2.1, 2.2.2 and Lemma

2.3.1.

The theorem above answers a long-standing open question of [Chekuri (2007)]. All

other inapproximability results proved for the congestion problem directly hold for the

robust network design problem with linear cost.

Another important consequence is that the congestion problem can be approxi-

mated within O(log n). This result was already proved in [Räcke (2008)] using other

techniques. In our case, the result is an immediate consequence of the O(log n)-

approximation algorithm for the robust network design problem with linear cost pro-

vided by [Gupta (2004), Gupta and Könemann (2011)] and fully described in [Chekuri

(2007), Goyal et al. (2009)].

Theorem 2.3.2. [Räcke (2008)] Congestion can be approximated within O(log n).

Notice that Theorem 2.2.2 tells us that the ratio O(log n) is tight.

Starting from the results of [Maggs et al. (1997), Bartal and Leonardi (1999)] show-

ing the existence of instances for which the ratio congsta
congdyn

is Ω(log n), one can also use
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the reduction above to prove, differently from [Goyal et al. (2009)], the existence of

instances for which the ratio linsta
lindyn

is Ω(log n) where a linear cost is minimized.

Theorem 2.3.3. [Goyal et al. (2009)] There are instances for which linsta
lindyn

is Ω(log n).

Proof. Similarly to U(D) defined when dynamic routing is considered, let Usta(D) be

the set of capacity vectors for which there exists a static fractional routing satisfying

all demand vectors of D. Usta(D) is obviously a polyhedral set. The mathematical

programs (2.3), (2.4) and (2.5) can be considered in the same way: we only have to

replace U(D) by Usta(D). All results stated above about the equivalence of (2.3), (2.4)

and (2.5) still hold in the static case. Consider an instance from [Maggs et al. (1997),

Bartal and Leonardi (1999)] for which congsta
congdyn

is Ω(log n). congsta is computed from

(2.5). Then there is at least one vector λsta ≥ 0 and one vector usta ∈ Usta(D) such that

congsta =
∑

e∈E(G) λ
sta
e usta

e and
∑

e∈E(G) λ
sta
e ce = 1. This implies that usta is an optimal

solution of the linear problem where we minimize
∑

e∈E(G) λ
sta
e ue under the condition

u ∈ Usta(D). We consequently have congsta = linsta for the considered instance.

Let u′ ∈ U(D) be an optimal solution minimizing the linear cost
∑

e∈E(G) λ
sta
e ue under

dynamic routing. In other words, lindyn =
∑

e∈E(G) λ
sta
e u

′
e when the coefficients of the

objective function are λsta. Moreover, we know from (2.5) that congdyn is obtained by

maximizing through λ, implying that congdyn ≥
∑

e∈E(G) λ
sta
e u

′
e = lindyn. Using that

congsta
congdyn

is Ω(log n), we get that linsta
lindyn

is Ω(log n) for the same instance where the linear

objective function is defined through λsta.

Although we consider only undirected graphs in this section, proposition 2.3.1 can

be proved also for directed graphs by the same proof without modifications.

2.4 Inapproximability with restrictions on a set of given paths

In this section we consider the path restricted problem presented in the introduction

1.3.2 where for each commodity h ∈ H we are given a set of path Ph going from s(h)

to t(h) in input. And the flow of the commodity must be routed along only those paths.

First, observe that in the proof of Lemma 2.1.1, the minimum congestion instances

built there are such that some commodities can be routed along many paths. For exam-

ple, in graph G1 (Figure 2.1), commodity h0 (between s and t) can use up to m paths.

Second, consider an instance of the minimum congestion problem where only one path

is given for each commodity. Then computing the minimum congestion is easy since

we only have to compute max
d∈D

∑
h∈He

dh whereHe denotes the set of commodities routed

through e. The congestion is just given by max
e∈E(G)

1
ce
max
d∈D

∑
h∈He

dh.

Combining these two observations, one can wonder whether the difficulty of the

congestion problem is simply due to the number of possible paths that can be used by
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Fig. 2.2 The graph G′ related to the proof of Theorem 2.4.1

each commodity. We will show that the problem is still difficult even if each commodity

can be routed along at most two fixed given paths.

Theorem 2.4.1. Unless P = NP , for some constant c > 1, minimum congestion

cannot be approximated within a ratio c even if each commodity can be routed along at

most two given paths.

Proof. The proof is a simple modification of the proof of Lemma 2.1.1). We are going

to slightly modify graph G in such a way that at most 2 paths are allowed for each

commodity. Given a 3-SAT formula φ with m clauses, we construct G′,H′,D′ as fol-

lows. We first create two nodes s1 and t1 and an edge e0 between s1 and t1 of capacity

mρ (ρ is the constant in PCP theorem). Then for each clause index i = 1, ...,m, as

in Lemma 2.1.1, we create 3 consecutive edges ei,j (j = 1, 2, 3) and a commodity hi,j
between s(ei,j) and t(ei,j) that is allowed to be routed only through the path using edge

ei,j . We also add one edge between s(ei,1) and s1 and one edge connecting t1 and t(ei,3)

of infinite capacity and a commodity hi,0 between s(ei,1) and t(ei,3) with a demand

dhi,0
= 1. hi,0 is allowed to be routed only through the path Pi containing the edges

(ei,1, ei,2, ei,3) and the path going through s1, e0 and t1 (see Figure 2.2). We consider

auxiliary variables ξl for each literal l. We add constraints ξl + ξ¬l = 1 and dhi,j
= ξli,j .

If val(φ) < ρ there are at least m(1 − ρ) commodities hi,0 that can be routed on

the paths Pi and the remaining mρ can be routed on the edge e0. This implies that each

extreme point of D′ can be routed with congestion ≤ 1. Notice that the observation

made in the proof of Lemma 2.1.1 about extreme points is still valid here: extreme

points correspond to 0− 1 values of the variables ξl.

If val(φ) = 1, then there is a cut and a demand vector d (corresponding to the truth

assignment satisfying φ) such that the capacity of the cut is mρ + m and the demand

that needs to cross the cut is 2m. There is consequently at least one edge of congestion

greater than or equal to 2m
(1+ρ)m

= 2
1+ρ

. By taking c < 2
1+ρ

we get the wanted result.

Finally, observe that the result above can also be stated for the linear cost case using

again the Lagrange based reduction of the previous section.
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Corollary 2.4.1. Unless P = NP, for some positive constant k, robust network design

with linear costs is difficult to approximate within a ratio k even if each commodity can

be routed along at most two given paths.
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CHAPTER 3

Robust network design problem in directed graphs

In the previous chapter we have seen some results related to inapproximability of the ro-

bust network design problem in undirected graphs. In this chapter, we consider directed

graphs. We first consider the static/dynamic gap. As already mentioned in Chapter 1,

an upper bound of O(
√
kn1/4 log n) from [Hajiaghayi, Kleinberg, Räcke and Leighton

(2007)] has been proven for the static to dynamic gap. On the other hand, a lower bound

of Ω(
√
k) [Azar et al. (2003)] and [Ene et al. (2016)] is also known. The main question

we are focusing in this chapter is the following.

• Is it possible to improve the upper or the lower bound on the static/dynamic gap?

To answer the question, we first tried to obtain an improved upper bound by exhibit-

ing simple classes of demand polytopes where the static routing solution is as good as

an optimal dynamic routing solution. Then we approximate an arbitrary demand poly-

tope by those simpler polytope. We found two classes of polytopes having this property:

down monotone boxes and down monotone simplices. We can obtain an upper bound

of k on the static/dynamic gap by approximating the demand polytope by a box or by

a simplex. The class of demand polytopes with the worst approximation by a simplex

are the boxes and conversely the polytopes with the worst approximation by a boxes are

the simplex. This suggested that by using the best of those two bounds we might obtain

an improved upper bound on the static/dynamic gap. In the special case of demand

polytopes that remain invariant by permutation of the commodities this strategy leads

to a proof that the static/dynamic gap can be at most
√
k. However, as we will see, this

strategy does not permit to obtain an upper bound better than k
2

in general.

Nonetheless, the insights and intermediate results gained during this first attempt

proved to be crucial ingredients for proof of the O(
√
k) upper bound for the general

case. The next step to improve the upper bound was to reinterpret a result of [Bertsimas

and Goyal (2013)] in geometric terms. This result can be reformulated as follows: “An

arbitrary down monotone polytope D can be approximated by a product of a box and

a simplex within a factor of O(
√
k) where k is the dimension of the polytope”. Using

this result we were able to prove that the congestion of an optimal solution under static

routing cannot worse than O(
√
k) times the congestion under a dynamic routing. This
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upper bound on the static dynamic gap can also be proved in the same way for the

variants of the problem with flow restrictions presented in Chapter 1 in Section 1.3

(except for the tree routing restriction).

In the second part of the chapter, we investigate the approximability status of the

edge restricted problem presented in Section 1.3.3. Since this problem can be seen

as a generalization of the robust network design problem without flow restriction, the

Ω(log log n/ log n) lower bound proved in the previous chapter also holds for this prob-

lem. On the other hand the best approximation factor for this problem is the O(
√
k)

that we will prove in this section. Despite those results, there were still a wide gap

between those two bounds. To obtain better inapproximability lower bounds, we will

introduce a product between edge restricted instances. This will allow us to prove inap-

proximability results for this edge restricted problem, specifically we are going to prove

the following.

• Unless NP ⊆ QP (resp. NP ⊆ SUBEXP ) this problem cannot be approxi-

mated within a factor better than Ω(2log
1−ϵ k) for any ϵ > 0 (resp. Ω(k

c′
log log k ) for

some c′ > 0).

3.1 Preliminaries

In this section, we recall the formal definitions of the robust network design problems

considered in this chapter. The notation introduced in Chapter 1 is used.

Remember that an instance I of the congestion minimization problem is denoted

by I = (G, c,H,D), while cong(x, d) still denotes the maximum congestion over

all links e ∈ E, i.e. cong(x, d) = max
e∈E

∑
h∈H

xh,edh
ce

. Two problems can be consid-

ered depending on whether the routing can be adapted to each demand vector d in

D or if only one fixed routing x ∈ X can be used. The dynamic congestion is for-

mally defined as: congdyn(I) = max
d∈D

min
x∈X

cong(x, d). In the second case, the rout-

ing is said to be static (or oblivious). This static congestion is formally defined as:

congsta(I) = min
x∈X

max
d∈D

cong(x, d). When clear from the context, we might use notation

congdyn(D) and congsta(D) to insist on the dependency on D when all other parameters

of the instance I are fixed.

In the same way, the robust linear reservation problem is defined where a positive

cost vector (λe)e∈E is given, and we aim to reserve a capacity ue ≥ 0 on each link e

such that
∑

e∈E λeue is minimized and
∑
h∈H

xh,edh ≤ ue holds for any demand vector d.

An instance can then be denoted by (G, λ,H,D). We also have two variants depending

on routing. The optimal cost is then denoted by lindyn(I) (or lindyn(D)) and linsta(I) (or

linsta(D)).
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For concise notation, the four variants of the robust optimization problems consid-

ered in this chapter will simply be denoted by linsta, lindyn, congsta and congdyn.

All previous definitions still make sense even when D is not a polytope. However,

the next lemma tells us that the optimal objective value does not increase when the

uncertainty set S is replaced by its convex-hull (this lemma can be considered as a

folklore result that is implicitly used in many robust optimization papers).

Lemma 3.1.1. Let S ⊂ RH
+ be a compact set. Then congsta(S) = congsta (conv(S)),

congdyn(S) = congdyn(conv(S)), linsta(S) = linsta (conv(S)), and lindyn(S) = lindyn(conv(S)).

Proof. Since S ⊆ conv(S), we have congsta(S) ≤ congsta (conv(S)) and congdyn(S) ≤
congdyn(conv(S)). The same holds for the robust linear cost problem. Moreover,

given a static routing solution x and the corresponding reservation vector u, we have∑
h∈H

xh,edh ≤ ue for any d ∈ S. Consider any point d′ of conv(S) written as d′ =∑
d∈S αdd (αd ≥ 0,

∑
d∈S αd = 1). By multiplying the previous inequalities by αd

and summing them all, we get that
∑
h∈H

xh,ed
′
h ≤ ue implying that x and u are feasible.

Therefore, we have linsta(S) = linsta (conv(S)). The proof can be easily extended to the

dynamic routing version and to the congestion objective function.

Let us now focus on the connection between the congestion problem and the linear

cost problem.

We know from from [Goyal et al. (2009)] (Proposition 1.5.1) that if the static to

dynamic ratio is less than or equal to α for the congestion problem, then the same

applies to the robust linear reservation problem.

A converse result is presented in Chapter 2 (Proposition 2.3.1). While the proof in

Chapter 2 (and [Al-Najjar et al. (2021)]) was given in the context of undirected graphs,

it can be repeated verbatim for the directed case.

To close this section, let us recall some notation and assumptions that will be used

in the rest of the chapter. The uncertainty set (i.e., the set of demand vectors) D is

assumed to be polyhedral and down monotone (i.e., if d ∈ D, then d′ ∈ D for any

0 ≤ d′ ≤ d). Let dmax(D) be the vector representing the maximum commodity values

(i.e., dmax
h (D) = maxd∈D dh). We will naturally assume that dmax

h > 0 for any h ∈ H
since otherwise the commodity can just be ignored. When the polytope D is clear from

the context, we just write dmax (instead of dmax(D)).
Let I, J be some set of indices. For a vector v ∈ RI×J and i ∈ I we denote by vi,.

the vector w ∈ RJ defined by wj = vi,j . Given a set X ∈ RI and λ ≥ 0, we denote by

λX the set {λx|x ∈ X}.
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3.2 Gap between static and dynamic routing strategies

We are going to prove Theorem 3.2.1 stating that compared to dynamic routing, when

static routing is considered, congestion is multiplied by a factor less than or equal to√
8k. This result improves the upper bound O(

√
kn1/4 log n) from [Hajiaghayi, Klein-

berg, Räcke and Leighton (2007)]. It implies that the gap between static and dynamic

congestion is O(
√
k) = O(n). By combining Proposition 1.5.1 with Theorem 3.2.1,

we also obtain similar results for the minimization of a linear reservation cost, i.e., that

linsta(D) ≤
√
8k.lindyn(D).

Theorem 3.2.1. congsta(D) ≤
√
8k.congdyn(D). Therefore congsta(D)

congdyn(D)
= O(n).

To derive an upper bound for the ratio congsta(D)/congdyn(D), our strategy first con-

sists in approximating the uncertainty set either by a box or a simplex where congsta(D) =
congdyn(D). While this method yields anO(k) upper bound, we obtain further improve-

ment by partitioning the set of commodities into two setsH1,H2 and considering a box

approximation for D1 and a simplex approximation for D2, where D1 and D2 are re-

spectively the projections of D on RH1 and RH2 .

To prove Theorem 3.2.1, we first present some preliminary lemmas.

Lemma 3.2.1 states that if the uncertainty setD can be well approximated by another

set D′ for which congsta(D′) = congdyn(D′), then congsta(D) gives a good approxima-

tion of congdyn(D).

Lemma 3.2.1. Let D and D′ be two compact subsets of RH
+ and α ∈ R+ such that

D′ ⊆ D ⊆ αD′ and congsta(D′) = congdyn(D′). Then congsta(D) ≤ α · congdyn(D).

Proof. The proof of this lemma relies on two simple facts. The first one is that if we

scale the demand values by a factor α, then the congestion (either static or dynamic)

is also scaled by the same factor α. The second fact is that congdyn and congsta are

increasing inD. In other words, ifD1 andD2 are two subsets of RH
+ such thatD1 ⊆ D2,

then congdyn(D1) ≤ congdyn(D2) and congsta(D1) ≤ congsta(D2). Combining the two

facts, we can write the following:

congsta(D) ≤ congsta(αD′) = α ·congsta(D′) = α ·congdyn(D′) ≤ α ·congdyn(D) (3.1)

We now provide in Lemmas 3.2.2 and 3.2.3 two classes of polytopes, based on box

and simplex sets, for which congsta(D) = congdyn(D).
For a vector dmax ∈ RH

+ , let B(dmax) be the box set defined by {d ∈ RH| 0 ≤ d ≤
dmax}.

Lemma 3.2.2. LetD = B(dmax) for some dmax ∈ RH
+ . Then congdyn(D) = congsta(D).
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Fig. 3.1 Approximation using boxes and simplices: example of a 2-dimensional demand
polytope D.

Proof. For a routing x ∈ X and a demand vector d ∈ D, we have cong(x, d) ≤
cong(x, dmax). Since dmax ∈ D, it implies that max

d∈D
cong(x, d) = cong(x, dmax). Mini-

mizing both sides of the equality over x ∈ X , we get that congsta(D) = min
x∈X

cong(x, dmax).

We can also write that min
x∈X

cong(x, d) ≤ min
x∈X

cong(x, dmax). Taking the maximum over

all d ∈ D leads to congdyn(D) = max
d∈D

min
x∈X

cong(x, d) ≤ min
x∈X

cong(x, dmax). Since

dmax ∈ D, the previous inequality becomes congdyn(D) = min
x∈X

cong(x, dmax).

For a vector d ∈ RH
+ , let ∆(d) be the simplex set whose vertices are the zero vector

and the k vectors dheh where eh denotes the vector in RH
+ with a component of 1 for

commodity h and 0 otherwise. Formally, we have ∆(d) = conv ({dheh|h ∈ D} ∪ {0}).

Lemma 3.2.3. Let D = ∆(dmax) where dmax ∈ RH
+ . Then congdyn(D) = congsta(D).

Proof. Assume that congdyn(D) has been computed and consider the obtained dynamic

routing. The extreme points of D are the demand vectors {dmax
h eh|h ∈ H} ∪ {0}.

For each demand vector dmax
h eh, we consider the flow xh,. representing its routing. Let

us build a static routing x just by routing each commodity h in accordance to xh,.. By

construction, taking the extreme points ofD, we have congsta({dmax
h eh|h ∈ H}∪{0}) =

congdyn({dmax
h eh|h ∈ H}∪{0}). By considering the convex-hulls and applying Lemma

3.1.1, we get that congdyn(D) = congsta(D).

Let α1(D) = max
d∈D

∑
h∈H

dh
dmax
h

(remember that dmax
h = maxd∈D dh). It is then clear

that ∆(dmax) ⊆ D ⊆ α1(D)∆(dmax). Consider the box B(dmax) and let α2(D) be

the smallest factor α such that dmax/α belongs to D. In other words, α2(D) represents

the best approximation ratio that can be obtained through boxes. We obviously have
1

α2(D)
B(dmax) ⊆ D ⊆ B(dmax). Figure 3.1 illustrates the approximations by boxes and

simplices for a 2-dimensional demand polytope D.

Since 1
k
B(dmax) ⊆ ∆(dmax) ⊆ D ⊆ B(dmax), α2(D) is always less than or equal to

k. And by definition, α1(D) is also less than or equal to k.
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It is easy to check that the upper bound k is reached since α1(B(dmax)) = k

and α2(∆(dmax)) = k. In other words, using box and simplex approximations with

the approach above, we cannot expect to prove a better upper bound for the ratio

congsta(D)/congdyn(D) for arbitrary uncertainty sets.

A more refined strategy is to take the best of the two bounds α1(D), α2(D). The

next proposition states that a better bound is obtained ifD is permutation-invariant (i.e.,

by permuting the components of any vector d of D we always get a vector inside D).

Proposition 3.2.1. If D is permutation-invariant then min{α1(D), α2(D)} ≤
√
k.

Proof. Let d∗ be the demand maximizing max
d∈D

∑
h∈H

dh
dmax
h

. SinceD is permutation-invariant,

dmax
h = dmax

h′ for all h, h′ ∈ H and d∗ can be chosen such that d∗h = d∗h′ for all

h, h′ ∈ H. Consequently, we have α1(D) ≤ k
d∗h0
dmax
h0

. Moreover, since
d∗h0
dmax
h0

B(dmax) ⊆

D ⊆ B(dmax) we also have α2(D) ≤
dmax
h0

d∗h0
. Therefore, using notation x =

d∗h0
dmax
h0

, we get

that min{α1(D), α2(D)} ≤ min{kx, 1
x
} and x is such that 0 ≤ x ≤ 1. To conclude,

observe that max
0≤x≤1

min{kx, 1
x
} =
√
k.

One can wonder whether a general O(
√
k) bound can be obtained by trying to find

a better upper bound for min{α1(D), α2(D)}. The following example, on a specific

polytope D, shows that this is not possible. Let D be the product of a box B(d1) of

dimension k/2 and a simplex ∆(d2) of the same dimension. Using the remark above

we know that α1(B(d1)) = k/2 and α2(∆(d2)) = k/2 implying that α1(D) ≥ k/2 and

α2(D) ≥ k/2.

To overcome this difficulty, we are going to partition the set of commoditiesH into

two well-chosen subsets H1 and H2, then we approximate D1 (resp. D2) defined as

the projection of D on RH1 (resp. RH2) using a simplex (resp. a box). The algorithm

used to partition the set of commodities is an adaptation of an algorithm of [Bertsimas

and Goyal (2012)] proposed in a different context. We will also slightly improve the

analysis of this algorithm (
√
8k instead of 3

√
k).

Let us start with Lemma 3.2.4 where we show how an approximation of congdyn in

D can be obtained from congsta using the approximations related to D1 and D2.

Lemma 3.2.4. LetH1,H2 be a partition ofH andD1,D2 be the projection ofD on RH1

and RH2 . Suppose that for some α1, α2 ≥ 1 we have congsta(D1) ≤ α1congdyn(D1) and

congsta(D2) ≤ α2congdyn(D2), then congsta(D) ≤ (α1 + α2)congdyn(D).

Proof. We first show that we have congsta(D) ≤ congsta(D1) + congsta(D2). Let us
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denote X1 (resp. X2) as the set of routing for the commodities inH1 (resp. H2) .

congsta(D) = min
x∈X

max
d∈D

cong(x, d)

≤ min
x∈X

max
d1∈D1,d2∈D2

cong(x, d1) + cong(x, d2)

= min
x1∈X1,x2∈X2

(max
d1∈D1

cong(x1, d1) + max
d2∈D2

cong(x2, d2))

= min
x1∈X1

max
d1∈D1

cong(x1, d1) + min
x2∈X2

max
d2∈D2

cong(x2, d2)

= congsta(D1) + congsta(D2)

We now prove the lemma: congsta(D) ≤ congsta(D1)+congsta(D2) ≤ α1congdyn(D1)+

α2congdyn(D2) ≤ (α1 + α2)congdyn(D).

Let us now present Algorithm 1 that can be seen as a direct adaptation of the par-

titioning algorithm of [Bertsimas and Goyal (2012)] (Algorithm A, Figure 1) for our

dynamic routing problem. It has initially been introduced for the analysis of affine poli-

cies in a class of two-stage adaptive linear optimization problems. The main idea of

Algorithm 1 is to partition the set of commodities into two sets H1 and H2 and to pro-

duce a vector β ∈ RH
+ such that max

d∈D

∑
h∈H1

dh
dmax
h
≤ γ
√
k (i.e., α1(D1) ≤ γ

√
k for γ > 0)

and βh ≥ dmax
h for any h ∈ H2. The returned vector β is built as a sum of at most Z

points of D where Z is the number of iterations of the algorithm. Since the vector 1
Z
β

belongs to D, we deduce that α2(D2) ≤ Z. We will show in Lemma 3.2.5 that Z is

less than or equal to 2
√
k
γ

leading to α2(D2) ≤ 2
√
k
γ

. Notice that γ is equal to 1 in the

original algorithm of [Bertsimas and Goyal (2012)]. Let us describe more precisely the

different steps of Algorithm 1. At iteration i, Hi
1,Hi

2 denote the current partitions of

commodities while Di
1,Di

2 denote the projections of D on RHi
1 and RHi

2 . A vector bi is

also defined and used to updateHi
1,Hi

2. We start withH0
1 = H,H0

2 = ∅ and b0 = 0.

If α1(Di
1) > γ

√
k then we consider a traffic vector ui maximizing

∑
h∈Hi−1

1

dh
dmax
h

,

otherwise a partition is returned. The vector ui is then used to update bi (lines 5-7).

Observe that only the components related to commodities insideHi−1
1 are updated while

the others do not change. This means that the returned vector β =
∑

1≤i≤Z

ui (line 19) is

such that β ≥ bZ . The sets Hi
1 and Hi

2 are updated by moving each commodity h ∈
Hi−1

1 toHi
2 if bih ≥ dmax

h (lines 8-15). Notice that we always haveHi
1 ⊆ Hi−1

1 . It is then

clear that when the algorithm stops, the obtained partition satisfies what is announced

above. The only fact that remains to be proved is that the number of iterations Z is

bounded by 2
√
k
γ

.

Lemma 3.2.5. For any γ > 0, the commodity set H can be partitioned in two subsets

H1,H2 such that α1(D1) ≤ γ
√
k and α2(D2) ≤ 2

√
k

γ
where D1,D2 are the projections

of D on RH1 and RH2 .
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Algorithm 1 Commodity partitioning algorithm (adapted from [Bertsimas and Goyal
(2012)])

1: Initialize i← 0,H0
1 ← H,H0

2 ← ∅, b0 ← 0
2: while α1(Di

1) > γ
√
k do

3: i← i+ 1
4: ui ∈ argmax

d∈D

∑
h∈Hi−1

1

dh
dmax
h

5: for all h ∈ H do
6: bih =

{
bi−1
h + uih if h ∈ Hi−1

1

bi−1
h otherwise

7: end for
8: for all h ∈ Hi−1

1 do
9: if bih ≥ dmax

h then
10: Hi

1 ← Hi−1
1 \{h}

11: Hi
2 ← Hi−1

2 ∪ {h}
12: else
13: Hi

1 ← Hi−1
1 ,Hi

2 ← Hi−1
2

14: end if
15: end for
16: end while
17: Z ← i,H1 ← HZ

1 ,H2 ← HZ
2

18: β ←
∑

1≤i≤Z

ui

Proof. We only have to prove that Z ≤ 2
√
k

γ
. This can be done by slightly modifying

the proof of Lemma 10 of [Bertsimas and Goyal (2012)].

We first argue that bZh ≤ 2dmax
h for all h ∈ H. For h ∈ H, let i(h) be the last iteration

number when h ∈ Hi
1. Therefore we have bi(h)−1

h ≤ dmax
h . Also ui(h) ≤ dmax

h leading

to bi(h)h ≤ 2dmax
h . Now for i ≥ i(h) we have bZh = bih = b

i(h)
h implying that,

∑
h∈H

bZh
dmax
h
≤

2k. Alternatively,
∑
h∈H

bZh
dmax
h

=
∑
h∈H

Z∑
i=1

bih−bi−1
h

dmax
h

=
Z∑
i=1

∑
h∈H

bih−bi−1
h

dmax
h

=
Z∑
i=1

∑
h∈Hi−1

1

ui
h

dmax
h
≥

Z∑
i=1

γ
√
k = Zγ

√
k. Therefore we have that Zγ

√
k ≤

∑
h∈H

bZh
dmax
h
≤ 2k which implies that

Z ≤ 2
√
k

γ
. Since β is the sum of Z points in D, we have B( 1

Z
β) ⊆ D. Moreover, the

projection β2 of β on RH2 satisfies D2 ⊆ B(β2) and thus α2(D2) ≤ 2
√
k

γ
.

To prove Theorem 3.2.1, we only have to take γ =
√
2, use Lemma 3.2.5, and then

invoke Lemma 3.2.4 to conclude. Using k = O(n2), we get that the ratio congsta
congdyn

isO(n).

Observe that when there are no coupling constraints between the routing of the

network commodities, then the O(
√
k) upper bound on the static/dynamic gap is still

valid.
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3.3 Inapproximability for the problem with edge restrictions

Let us consider a more general variant of the robust congestion problem where each

commodity can only be routed on a subset of allowed edges Eh ⊆ E. These restric-

tions seem to be quite natural to ensure quality of service requirements such as delay

constraints. Observe first that congsta can still be computed in polynomial-time for this

variant.

Notice that theO(
√
k) upper bound on the static/dynamic gap proved in the previous

section applies for this new variant.

The Ω( logn
log logn

) inapproximability bound shown for the undirected case [Al-Najjar

et al. (2021)] (under ETH assumption) still applies to the directed case (with and without

flow restrictions). It is however quite far from the O(
√
k) approximation ratio deduced

from Section 3.2. We will prove stronger inapproximability results for the generalisa-

tion of congdyn with flow restrictions under some classical complexity conjectures.

A standard way to prove this kind of results is to first prove that the problem is

inapproximable under some constant and then to amplify this constant, see for exam-

ple [Haviv and Regev (2007)].

Let us first introduce some additional notations. Taking into account the flow re-

strictions and given a subset of edges C ⊆ E, letHC ⊆ H be the set commodities such

that each valid path related to any commodity h ∈ HC intersects C. Even if C is not

necessarily a cut in the standard sense of graph theory, C is called a cut in what follows.

Given a demand vector d ∈ D and a cut C,
∑

h∈HC

dh/
∑
e∈C

ce, is obviously a lower bound

of congdyn(D). The maximum over all demand vectors d ∈ D and all cuts C of the ratio∑
h∈HC

dh/
∑
e∈C

ce is called cut congestion and denoted by congcut(D). We also use EH to

denote the set of all flow restrictions: EH = (Eh)h∈H. An instance of congdyn with flow

restrictions is then defined by (G, c,H,D, EH).

In Lemma 2.1.1, we proved that it is NP-hard to distinguish between instances where

congdyn(D) is less than or equal to 1 and those where the cut congestion congcut(D) is

greater than or equal to 1 + ρ for some constant ρ > 0.

In Lemma 3.3.1, we will show that given two instances of this problem, it is possible

to build some kind of product instance whose dynamic congestion is less than or equal

to the product of the dynamic congestion of the two instances and the cut congestion

is greater than or equal to the product of the cut congestion of the two initial instances.

Finally, by repetitively using the product of Lemma 3.3.1 on the instance of Lemma

2.1.1, we can amplify the gap leading to some strong inapproximability results.

Lemma 3.3.1. Given two instances of congdyn with flow restrictions I1 = (G1, c1,H1,D1, EH1)

and I2 = (G2, c2,H2,D2, EH2), we can build a new instance I = I1×I2 = (G, c,H,D, EH)

such that:
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(d) E(h′,h1): the set of edges allowed for commodity
(h′, h1)

Fig. 3.2 Illustration of the construction of the product instance.

• congdyn(I) ≤ congdyn(I1) · congdyn(I2)

• congcut(I) ≥ congcut(I1) · congcut(I2).

Furthermore, we have |E(G)| = |E(G1)| · (|E(G2)|+2|V (G2)|), |V (G)| = |V (G1)|+
|V (G2)| · |E(G1)|, |H| = |H1| · |H2| and the size of D is less than or equal to the

product of the sizes of D1 and D2.

Proof. Lemma 3.3.1

Let I1 = (G1, c1,H1,D1, EH1) and I2 = (G2, c2,H2,D2, EH2) be two instances of

congdyn with edge restrictions. We denote by G′
2 the graph obtained from G2 by adding

two nodes s(G2) and t(G2) to G2, an edge from s(G2) to each node of G2 having

an infinite capacity (i.e., |V (G2)| edges), and an edge from each node of G2 to t(G2)

having also an infinite capacity (i.e., |V (G2)| edges). We build a graph G by replacing

each edge e of G1 by a copy of G′
2 while identifying the node s(e) (resp. t(e)) with

the node s(G2) (resp. t(G2)). Figure 3.2 illustrates the construction of the product

instance. We denote by (e1, e2) the edge e2 in G′
2 corresponding to the copy of G′

2

related to e1 ∈ E(G1). The capacity of the edge (e1, e2) is the product of the capacity

of edges e1 and e2: c(e1,e2) = c1e1 · c2e2 .

We create a set of commoditiesH in G by takingH = H1 ×H2 and assuming that

s(h1, h2) = sh1 and t(h1, h2) = th1 for (h1, h2) ∈ H. We also assume that edges of

type (s(G2) = s(e), v) can only be used by a commodity (h1, h2) ∈ H if s(h2) = v.

Similarly, edges of type (v, t(G2) = t(e)) can only be used by (h1, h2) if t(h2) = v.

45



In other words, when a commodity (h1, h2) is routed through the copy of G2 related to

an edge e ∈ E(G1), then it should enter from s(h2) and leave at t(h2) (cf. Figure 3.2).

Other edge restrictions are added by considering the restrictions related to I1 and I2.
If h′ ∈ H1 is not allowed to use edge e′ ∈ E(G1), then all commodities (h′, h2) are

not allowed to be routed through the e′ copy of G′
2. Moreover, if e2 ∈ E(G2) does not

belong to Eh2 for some h2 ∈ H2, then for each e1 ∈ E(G1) and each h1 ∈ H1, (e1, e2)

cannot be used to route commodity (h1, h2).

We define D as the set of vectors d ∈ RH1×H2
+ such that there is a vector d1 ∈ D1

satisfying dh1,. ∈ d1h1
D2 for all h1 ∈ H1. The constraint dh1,. ∈ d1h1

D2 can be enforced

with linear inequalities as follows. Suppose that D2 = {d2 ∈ RH2|A2d
2 + B2ξ ≤ b2}

for some matrices A2, B2. We also assume that this description contains the constraints

d2h2
/d2max

h2
≤ 1 for all h2 ∈ H2 in addition to the non-negativity constraints of demand

values d2h2
. Then we can write the constraint dh1,. ∈ d1h1

D2 asA2dh1,.+B2ξ
′−d1h1

b2 ≤ 0.

Indeed, d1h1
= 0 implies dh1,. = 0 while for d1h1

> 0 we have A2dh1,.+B2ξ
′−d1h1

b2 ≤ 0

if and only if dh1,./d
1
h1
∈ D2. Polytope D is then defined by constraints A2dh1,. +

B2ξ
h1 − d1h1

b2 ≤ 0 for each h1 ∈ H1 in addition to A1d
1 + B1ξ ≤ b1. Observe that

a subscript h1 is added to express the fact that the auxiliary variables ξh1 depend on

h1 ∈ H1. Notice also that the size of the matrices defining D is less than or equal to the

product of the sizes of the matrices defining D1 and D2.

We will now prove that congdyn(I) ≤ congdyn(I1) · congdyn(I2). Let d be a vector

in D and let d1 ∈ D1 be a vector such that dh1,. ∈ d1h1
D2. For h1 in H1, we define

d2,h1 ∈ D2 by d2,h1

h2
=

dh1h2
d1h1

if d1h1
̸= 0 and d2,h1 = 0 if d1h1

= 0. We clearly have

dh1,h2 = d1h1
· d2,h1

h2
for all h1 ∈ H1, h2 ∈ H2.

Let x1, x2,h1 be the optimal routing schemes for d1 ∈ RH1 and d2,h1 ∈ RH2 for h1 ∈ H1.

To route commodity (h1, h2), we consider the following multi-commodity flow in G

defined by x(h1,h2),(e1,e2) = x1h1,e1
x2,h1

h2,e2
. The total flow on the edge (e1, e2) is then given

by: ∑
(h1,h2)∈H1×H2

d1h1
d2,h1

h2
x(h1,h2),(e1,e2) =

∑
h1∈H1

d1h1
x1h1,e1

∑
h2∈H1

d2,h1

h2
x2,h1

h2,e2

≤
∑

h1∈H1

d1h1
x1h1,e1

congdyn(I2)c2e2

≤ congdyn(I1) · congdyn(I2) · c1e1 · c2e2
= congdyn(I1) · congdyn(I2) · c(e1,e2).

Since this holds for any edge (e1, e2) of G (the other edges of G have an infinite capac-

ity), we deduce that congdyn(I) ≤ congdyn(I1) · congdyn(I2).
Let us now show that congcut(I) ≥ congcut(I1) · congcut(I2). Let C1 (resp. C2) be a

cut of G1 (resp. G2) achieving the maximal congestion congcut(I1) (resp. congcut(I2)),
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and let d1 ∈ D1 (resp. d2 ∈ D2) be a demand vector for which the maximal cut

congestion is obtained. In other words, we have
∑

h1∈HC1

d1h1
/
∑

e1∈C1

ce1 = congcut(I1) and∑
h1∈HC2

d2h2
/
∑

e2∈C2

ce2 = congcut(I2).

Observe that the set of edges C1 × C2 is a cut of G that is intersecting all demands of

HC1 ×HC2 . Notice that the flow restrictions that have been considered are crucial here

to guarantee the previous fact. Let d ∈ RH be the demand defined by d(h1,h2) = d1h1
·d2h2

.

Since d1 ∈ D1 and d2 ∈ D2, we also have d ∈ D. The congestion on the cut C1 ×C2 is

given by: ∑
(h1,h2)∈HC1

×HC2

d(h1,h2)∑
(e1,e2)∈C1×C2

c(e1,e2)
=

∑
h1∈HC1

d1h1∑
e1∈C1

c1e1
·

∑
h2∈HC2

d2h2∑
e2∈C2

c2e2

= congcut(I1) · congcut(I2).

This clearly implies that congcut(I) ≥ congcut(I1) · congcut(I2).

Combining the previous lemma with lemma 2.1.1, one can amplify the gap as fol-

lows.

Lemma 3.3.2. For some 0 < ρ < 1 and each r ∈ N, each 3-SAT instance φ can

be mapped to an instance Ir = (Gr, cr,Hr,Dr, Er
H) of congdyn with flow restrictions

where Dr = {d ∈ RHr |Ard+Brξ ≤ br} such that:

• If val(φ) ≤ 1− ρ then congdyn(Ir) ≤ 1

• If φ is satisfiable then congcut(Ir) ≥ (1 + ρ)r.

Furthermore, there exists a positive constant θ such that |V (Gr)|, |E(Gr)|, |Hr| and

the size of the matrices Ar andBr definingDr are all less than or equal to (θm)r where

m is the number of clauses of φ.

Proof. Let I1 be the instance defined in Lemma 2.1.1. We recursively build Ir as the

product of Ir−1 and I1. Using notation of Lemma 3.3.1, we take I1 = Ir−1, I2 = I1

and Ir = I = I1×I2. Using what is already known about the size of the instance I1 of

Lemma 2.1.1 and the results of Lemma 3.3.1, a simple induction proves the existence

of a constant θ such that (θm)r is an upper bound of the number of vertices, number

of edges, number of commodities and the size of the matrices defining the polytope

Dr.

By making use of some standard complexity assumptions, inapproxiambility resuls

can be directly deduced from the previous lemma.

Proposition 3.3.1. Unless NP ⊆ SUBEXP , congdyn with flow restrictions cannot be

approximated within a factor of k
c′

log log k (resp. n
c′

log logn ) for some constant c′.
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Proof. SUBEXP is the class of problems that can be solved in 2n
ϵ time for all ϵ > 0.

Therefore, if NP ̸⊆ SUBEXP then there is a constant ϵ0 > 0 such that no algorithm

can solve the Gap-3-SAT problem in time O(2mϵ0 ) where m is the number of clauses

of the 3-SAT instance.

Let ϵ1 < ϵ0 and let r(m) = mϵ1

logm
. The size of the instance Ir(m) is polynomial in mr(m).

Therefore if we run a polynomial approximation algorithm on the instance Ir(m), the

running time will be mc1r(m) for some constant c1. Furthermore, mc1r(m) = mc1
mϵ1
logm =

2c1m
ϵ1 < 2m

ϵ0 for big enough m.

The number of commodities k in the instance Ir(m) is bounded by (θm)r(m). We

consequently have log k ≤ log(θm) mϵ1

logm
implying thatm > a log

1
ϵ1 k for some constant

a and big enough m.

The gap between the congestion of the instances Ir(m) corresponding to a 3-SAT

instance for which val(φ) < 1− ρ and those for which val(φ) = 1 is:

(1 + ρ)r(m) > (1 + ρ)r(a log
1
ϵ1 k) = (1 + ρ)

aϵ1 log k
1
ϵ1

log a log k > k
c′

log log k for some constant

c’.

Hence, if a polynomial-time algorithm could solve congdyn with flow restrictions

within an approximation ratio of O(k
c′

log log k ), we could use it to solve the Gap-3-SAT

problem in O(2mϵ0 ) time. The same proof applies if parameter n (the number of ver-

tices) is considered instead of k.

A slightly weaker inapproximability result is obtained using a weaker complexity

assumption, that NP ̸= QP where QP is the class of problems solvable in quasi-

polynomial time, i.e. in time O(nlogc n) for some constant c and where n is the size of

the instance.

Proposition 3.3.2. Unless NP ⊆ QP , congdyn with flow restrictions cannot be approx-

imated within a factor of 2log
1−ϵ k (resp. 2log

1−ϵ n) for any ϵ > 0.

Proof. Let us take r(m) = logc1(m) for an arbitrary constant c1. If we run a polynomial-

time algorithm on instance the instance Ir(m), we get an algorithm running in quasi-

polynomial time. The number of commodities k is bounded by (θm)r(m). Thus log k ≤
logc1 m log θm < logc1+2m for big enough m and therefore m > exp(log

1
c1+2 k).

The gap between the congestion of the instances Ir(m) corresponding to 3-SAT

instances such that val(φ) < 1− ρ and those such that val(φ) = 1 is:

(1 + ρ)r(m) > (1 + ρ)r(log
1

c1+2 k))

= (1 + ρ)log
c1

c1+2 k

> (1 + ρ)log
1−ϵ k
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for any ϵ > 0 if we take c1 such that c1
c1+2

> 1− ϵ. The (1 + ρ) term can be replaced by

2 by observing that 2log
1−ϵ′ k = o((1 + ρ)log

1−ϵ k) for any ϵ′ < ϵ. The same proof applies

if parameter n is considered instead of k.

Using the last part of Proposition 2.3.1, all inapproximability results stated for the

congestion problem congdyn are also valid for lindyn.
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CHAPTER 4

Affine routing for the robust network design problem

In this chapter we study the affine routing method both for the non restricted flow prob-

lem and the problem with a given set of paths. The motivations of the work are the

following. Both for the static and for dynamic routing problems, several equivalent for-

mulations are possible such as node-arc formulations and arc-path formulations. One

might ask whether this still holds when affine decision rules are applied. Another goal

might be to try to improve these formulations without losing the polynomial-time solv-

ability aspects of affine formulations.

• When affine routing is considered, is there an equivalence between node-arc for-

mulations and arc-path formulations?

• Is it possible to get stronger affine formulations that can still be solved in polyno-

mial time?

Instead of requiring that the flow conservation constraints are strictly satisfied, we

will consider a relaxed flow conservation formulation by allowing some flows to be

created on intermediary nodes but requiring that at least the needed amount of flow is

sent at the source. Alternatively, we can also allow some flows to be lost at intermediary

nodes but we require that at least the needed amount of flow arrives at the destination.

We can also wonder what is the relationship between the edge formulation and the path

formulation where all paths between each source and destination are allowed. Other

formulations can be also be obtained by aggregating several commodities by sources

and/or destinations.

In this chapter we systematically study those variants of affine routing formulations.

We provide toy examples showing that when an affine routing is considered each of

those variants can (quite surprisingly) strictly improve the cost of the solution. We also

numerically test those variants on realistic network instances. We observed that even

in this case, relaxed formulations can provide an improvement of the solution. We also

show that relaxed flow conservation variants are equivalent to adding fictive edges in

the graph for each commodity. This allows us to derive a formulation that is even better

than relaxed flow conservation variants.
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4.1 Possible affine formulations

We start by recalling some standard node-arc formulations that we will improve later

in Section 4.2. Then we recall an arc-path formulation that might be more practical

when paths can be enumerated easily and we show that it can be strictly dominated by

node-arc formulations. Finally, we close this section by proposing a natural cycle-based

formulation that is equivalent to node-arc formulations but with slightly less variables

and constraints.

4.1.1 Initial node-arc formulation

Let’s consider a directed graph G = (V,E) representing a communication network.

The traffic is characterized by a set of commodities h ∈ H associated to different

node pairs. For a given commodity h, the traffic originates at s(h) and ends at t(h).

As introduced in [Poss and Raack (2013)], for each demand scenario, the flow fh,e(d)

related to commodity h and edge e ∈ E, is restricted to affinely depend on the demand

vector d. It represents the capacity reservation in the robust network design problem.

This flow fh,e(d) is of the form fh,e(d) = x0h,e+
∑
h′∈H

xh
′

h,edh′ where coefficients x0h,e and

xh
′

h,e are subject to optimization.
The affine routing with congestion minimization can be then modeled as follows:

minm

∑
e∈δ+(v)

(
x0h,e +

∑
h′∈H

xh
′

h,edh′

)
−

∑
e∈δ−(v)

(
x0h,e +

∑
h′∈H

xh
′

h,edh′

)
=


dh, if v = s(h)

−dh, if v = t(h)

0 otherwise

∀h ∈ H, v ∈ V, d ∈ D (4.1a)∑
h∈H

(
x0h,e +

∑
h′∈H

xh
′

h,edh′

)
≤ cem, ∀e ∈ E, d ∈ D (4.1b)

x0h,e +
∑
h′∈H

xh
′

h,edh′ ≥ 0, ∀e ∈ E,∀h ∈ H, d ∈ D (4.1c)

Constraints (4.1a) are standard flow conservation constraints, while (4.1b) express

capacity limitation. Finally, constraints (4.1c) impose positivity on capacity reserva-

tions. δ−(v) and e ∈ δ+(v) respectively denote incoming and outgoing edges from

node v ∈ V . Notice that the flow conservation constraint related to v = t(h) can be

skipped since it can be obtained by summing the constraints related to the other vertices.

D is supposed to be fully dimensional (it contains a ball). This assumption is

not really restrictive since, in practice, one should not expect that there is any linear

equation satisfied by all demands vectors. Moreover, if the assumption is not satisfied,

then one can eliminate some of the coefficients xhh′
e . For example, if we always have
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dh′ =
∑

h′′ αh′′dh′′ then there is clearly no need to consider any dependency on h′ im-

plying that coefficients xhh′
e are useless. Under this hypothesis, two affine functions

a1, a2 are equal over D (i.e. a1(d) = a2(d),∀d ∈ D), if and only if, a1 = a2 (i.e.

all coefficients of the affine functions a1, a2 are equal). Using this fact, as proposed

in [Poss and Raack (2013)], we can replace the flow conservation constraints (4.1a) by

the following equivalent reformulation:

∑
e∈δ+(v)

xh
′

h,e −
∑

e∈δ−(v)

xh
′

h,e =


1, if v = s(h) and h = h′

−1, if v = t(h) and h = h′

0 otherwise (including h′ = 0)

(4.2)

The obtained formulation proposed by [Poss and Raack (2013)] is given below.

minm

∑
e∈δ+(v)

xh
′

h,e −
∑

e∈δ−(v)

xh
′

h,e =


1, if v = s(h) and h = h′

−1, if v = t(h) and h = h′

0 otherwise

∀h ∈ H, h′ ∈ H ∪ {0}, v ∈ V (4.3a)∑
h∈H

(
x0h,e +

∑
h′∈H

xh
′

h,edh′

)
≤ cem, ∀e ∈ E, d ∈ D (4.3b)

x0h,e +
∑
h′∈H

xh
′

h,edh′ ≥ 0, ∀e ∈ E, h ∈ H, d ∈ D (4.3c)

As will be recalled in Section 4.6, when some linear constraints with uncertain co-

efficients need to be considered, we can handle uncertainty either by using constraint

generation or by duality-based reformulation techniques. This should be done for each

constraint. The main advantage of (4.3) is that the uncertainty appearing in the flow

conservation constraints (4.1a) is already handled using (4.2). However, the other con-

straints (4.1b) and (4.1c) still need to be treated using the techniques briefly recalled in

Section 4.6 and used for the numerical evaluation.

4.1.2 Arc-path formulation

Another natural formulation is the one obtained by considering path variables. This

might lead to solution methods that are easier to implement in communication networks

when only a small number of paths is used for each commodity or the total number of

paths that could be handled by each router/node is limited. As proposed in [Ouorou and

Vial (2007)], the flow on each path affinely depends on the demand vector d. This leads

to the following model where Ph is a set of (possibly all) paths from s(h) to t(h).
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minm∑
h∈H

∑
p∈Ph:p∋e

(
x0p,h +

∑
h′∈H

xh
′

p,hdh′

)
≤ cem, ∀e ∈ E, d ∈ D (4.4a)

∑
p∈Ph

(
x0p,h +

∑
h′∈H

xh
′

p,hdh′

)
= dh, ∀h ∈ H, d ∈ D (4.4b)

x0p,h +
∑
h′∈H

xh
′

p,hdh′ ≥ 0, ∀h ∈ H, p ∈ Ph, d ∈ D (4.4c)

Observe that constraints (4.4c) impose the non-negativity of the flow on each path.

Notice that when there is no uncertainty (i.e, whenD contains only one demand vector),

then (4.1) and (4.4) are equivalent when Ph contains all possible paths. One might

wonder whether this still holds for any D. Each solution of (4.4) can obviously be

transformed into a feasible solution of (4.1) and (4.3). However, the following example

shows that (4.4) can be strictly dominated by (4.1) even if all paths are considered.

𝑒1

𝑒2

ℎ1
ℎ2

𝑒3

𝑒4

ℎ3
ℎ4s

t

ℎ5

Fig. 4.1 An example with five commodities: hi with i = 1, 2, 3, 4 having the same
source and sink than edges ei, and h5 from source node s to sink node t. In this example
we show that formulation (4.1) is strictly better than formulation (4.4).

Proposition 4.1.1. Formulation (4.1) is less conservative than formulation (4.4).

Proof. In the example of Figure 4.1, there is a demand h1 (resp. h2, h3, and h4) having

the same source and sink than edge e1 (resp. e2, e3, and e4) and a demand h5 having

the node s as a source and the node t as sink. The demand polyhedron D is defined as

the set of d ∈ R5 satisfying the equations dh1 + dh2 = 1, dh3 + dh4 = 1 and dh5 = 1 in

addition to non-negativity constraints. The capacity of each edge is equal to 1.

This demand polyhedron can be routed with model (4.1) without exceeding one

unit of flow on each edge. This can be seen by considering the following solution:

fhi,ei(d) = dhi
, fh5,ei(d) = 1−dhi

∀i = 1, ..., 4 and fhi,ej(d) = 0 ∀i, j = 1, ..., 4, i ̸= j.

By taking m = 1, all capacity constraints and flow conservation constraints of (4.1) are

satisfied.
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Now we are going to show that a solution to model (4.4) necessarily uses strictly

more than one unit of flow on at least one edge. By contradiction, suppose that there

exists a solution of (4.4) such thatm = 1. First observe that given the equalities defining

the demand polyhedron D, it is sufficient that the affine flow function depends on the

demand’s values dh1 and dh3 . Let p1 denote the path that uses edges e1 and e3, while p2
contains edges e1 and e4, p3 includes edges e2 and e3 and p4 goes through edges e2 and

e4. Since the total flow that uses edge ei must be less than 1 and the demand hi must

necessarily use edge ei for i = 1, ..., 4 we have the following inequalities:

1− dh1 ≥ fh5,p1(d) + fh5,p2(d) (4.5a)

dh1 ≥ fh5,p3(d) + fh5,p4(d) (4.5b)

1− dh3 ≥ fh5,p1(d) + fh5,p3(d) (4.5c)

dh3 ≥ fh5,p2(d) + fh5,p4(d) (4.5d)

By summing inequalities (4.5), we get 2 ≥ 2×
∑

i=1,...,4

fh5,pi(d). Since
∑

i=1,...,4

fh5,pi(d) =

dh5 = 1, all inequalities (4.5) should be equalities. Remember that for each path pi, we

have fh5,pi(d) = x0h5,pi
+ xh1

h5,pi
dh1 + xh3

h5pi
dh3 . Writing the four equalities above for the

vector d where dh1 = dh3 = 0, we get: 1 = x0h5,p1
+ x0h5,p2

, 0 = x0h5,p3
+ x0h5,p4

, 1 =

x0h5,p1
+ x0h5,p3

, 0 = x0h5,p2
+ x0h5,p4

. This implies that x0h5,p2
= x0h5,p3

= −x0h5,p4
.

Now using the fact that fh5,pi(d) ≥ 0 (still for the same demand vector), we get that

all variables x0h5,p1
, x0h5,p2

, x0h5,p3
and x0h5,p4

are non-negative. This obviously leads to

x0h5,p1
= 1, x0h5,pi

= 0,∀i = 2, 3, 4.

Furthermore, by considering the positivity constraint (4.4c) for path p2 and the de-

mand vector where dh1 = 1 and dh3 = 0 , we can deduce that fh5,p2(d) = x0h5,p2
+

xh1
h5,p2

= xh1
h5,p2
≥ 0. Writing equality (4.5a) leads to−1 = xh1

h5,p1
+xh1

h5,p2
. Combination

with the previous inequality implies that xh1
h5,p1

≤ −1. Similarly, by considering the

demand vector where dh3 = 1 and dh1 = 0 , the positivity constraint related to path p3
and equality(4.5c) lead to xh3

h5,p1
≤ −1. Let us now consider the case where dh3 = 1

and dh1 = 1. The positivity of fh5,p1(d) is equivalent to x0h5,p1
+ xh1

h5,p1
+ xh3

h5,p1
≥ 0

implying that xh1
h5,p1

+ xh3
h5,p1

≥ −1. This is clearly not possible since xh1
h5,p1

≤ −1 and

xh3
h5,p1
≤ −1, and it ends the proof.

4.1.3 Elementary cycle-based formulation

We have seen that the arc-path formulation can be sometimes strictly dominated by the

node-arc formulation. The main reason for that is the positivity constraint imposed for

each path and each d ∈ D. Then, if one tries to relax these positivity constraints and

replace them by constraints saying that the total flow on each directed edge is non-

negative (i.e, fh,e(d) ≥ 0 for each h, e and d), then we will get a new formulation where
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circulations appear. However, an easy way to present the new formulation is proposed

below starting from formulation (4.3).

Let us first recall a basic result [Gondran et al. (1984)] about circulation decomposi-

tion as a sum of elementary circulations through elementary cycles. We fix a spanning

tree T of the graph G (supposed to be connected). For each e ∈ E(G)\E(T ), there is a

unique elementary cycle σ in T ∪ {e}. We note χσ this circulation that has a value of 1

on the edges oriented in the same direction than edge e, -1 in the other direction and 0

on the edges outside σ. We denote by Σ(T ) the set of cycles. It is well-known [Gondran

et al. (1984)] that every circulation ϕ can be (uniquely) written as: ϕ =
∑

σ∈Σ(T )

xσχσ for

some scalars xσ ∈ R.

Let us now go back to constraints (4.3a). For each commodity h, let ph be any

arbitrary fixed undirected path connecting s(h) and t(h) in T and let χph be the flow

of value 1 on ph and zero elsewhere (the value of the flow on each edge is either 1 or

−1 depending on the direction of the edge). Since xhh,. − χph is a circulation, xhh,. can

be written as: xhh,. = χph +
∑

σ∈Σ(T )

xhhσχσ. Furthermore, for h ̸= h′, xh′

h,. is a circulation

and thus it can be written as xh′

h,. =
∑

σ∈Σ(T )

xh
′

h,σχσ. We then obtain the new model

(4.6) by substituting xhh,e in model (4.1) by χph,e +
∑

σ∈Σ(T )

xhh,σχσ,e and replacing xh′

h,e by∑
σ∈Σ(T )

xh
′

h,σχσ,e.

minm∑
h∈H

(∑
σ∋e

(
x0h,σχσ,e +

∑
h′∈H

xh
′

h,σχσ,edh′

)
+
∑
ph∋e

χph,edh

)
≤ cem, ∀e ∈ E, d ∈ D

∑
σ∋e

(
x0h,σχσ,e +

∑
h′∈H

xh
′

h,σχσ,edh′

)
+
∑
ph∋e

χph,edh ≥ 0, ∀e ∈ E, h ∈ H, d ∈ D

xh
′

h,σ ∈ R, ∀σ ∈ Σ(T ), h ∈ H, h′ ∈ H ∪ {0}
(4.6)

Observe that since the number of elementary cycles |Σ(T )| is equal to the cyclo-

matic number |E| − |V |+ 1, the number of x variables in (4.6) is equal to (|H|+ 1)×
|H|×(|E|−|V |+1) whereas formulation (4.3) has |H|×(|H|+1)×|E| variables (there

are also variables related to duality to take into account uncertainty as will be recalled

in Section 4.6 but their number is the same in both formulations). Then Formulation

(4.6) has around |H|2×|V | less variables than formulation (4.3). Formulation (4.6) has

also around |H|2 × |V | less constraints then formulation (4.3) due to constraints (4.3a).

Formulation (4.6) is obviously equivalent to formulations (4.3) and (4.1) since it was

obtained from (4.3) using the decomposition result.
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4.2 Relaxing the flow conservation constraints

In this section, we present some improvements of the node-arc formulation (4.1) de-

scribed in Section 4.1, by relaxing the flow conservation constraints (4.1a). Such im-

provements permit to further reduce the congestion and minimize the gap with the solu-

tion given by the dynamic routing. The standard formulation (4.1) might be denoted by

F= (“=” means that we have equalities in constraints (4.1a)). LetF+ be the formulation

obtained from (4.1) by replacing (4.1a) by the following inequalities.

∑
e∈δ+(v)

fh,e(d)−
∑

e∈δ−(v)

fh,e(d)

{
≥ dh, if v = s(h)

≥ 0 if v ̸= s(h), t(h)
(4.7)

Notice that by summing all inequalities (for some h) we get that
∑

e∈δ+(v)

fh,e(d) −∑
e∈δ−(v)

fh,e(d) ≤ −dh for v = t(h). Since the quantities fh,e(d) no longer satisfy flow

conservation constraints, we have no more the notion of flow. However, we can inter-

pret fh,e(d) as being the amount of resources that is reserved for commodity h on edge

e when the demand scenario d is considered. We will prove that for each demand vector

d, it is possible to route each commodity h without exceeding the capacity fh,e(d) of

edge e. We will then say that F+ is valid.

Proposition 4.2.1. F+ is valid.

Proof. Consider any commodity h ∈ H and any cut δ+(C) separating s(h) and t(h) (so

C ⊂ V , s(h) ∈ C and t(h) /∈ C). By summing all constraints (4.7) for vertices inside

C, we get

∑
e∈δ+(C)

fh,e(d)−
∑

e∈δ−(C)

fh,e(d) =
∑
v∈C

 ∑
e∈δ+(v)

fh,e(d)−
∑

e∈δ−(v)

fh,e(d)

 ≥ dh.

Using the positivity constraint on capacities fh,e(d), we deduce that
∑

e∈δ+(C)

fh,e(d) ≥

dh. Since this holds for any separating cut, it is possible by the maximum-flow minimum-

cut theorem to send from s(h) to t(h) a flow of value dh using the capacities fh,e(d).

Since F+ is obtained from F= by relaxing some constraints, the congestion m com-

puted by F+ is less than or equal to the congestion given by F=. One might wonder

whether there is any gain by considering F+ instead of F=. The example given below

positively answers the question.

Proposition 4.2.2. Formulation F+ is less conservative than formulation F=.
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𝑒1

𝑒2

ℎ1
ℎ2

s t

ℎ3

Fig. 4.2 An example with three commodities: hi with i = 1, 2 having the same source
and sink than edges ei, and h3 from source node s to sink node t. In this example we
show that F+ is strictly better than formulation F=.

Proof. Figure 4.2 illustrates a simple graph with two commodities hi,i=1,2 having the

same source and sink than edges ei,i=1,2. There is an additional commodity h3 having

node s as source and node t as sink. All edges have a capacity equal to 1. The poly-

hedron D is defined as the set of d ∈ R3
+ satisfying the two inequalities dh1 + dh2 ≤

1 and dh3 ≤ 1 in addition to non-negativity constraints.

First, observe that the solution given by fh3,e1(d) = 1 − dh1 , fh3,e2(d) = dh1 ,

fh1,e1(d) = dh1 , fh1,e2(d) = 0, fh2,e2(d) = dh2 , fh2,e1(d) = 0, satisfies the constraints of

F+. Consequently, m = 1 is the optimal congestion found by F+.

Let us now show that any solution of F= should necessarily use more than one unit

of flow on at least one edge. By contradiction, let’s assume that there exists a solution

of F= such that m = 1. First, observe that if the demand for a commodity, let say h3,

is equal to zero then the flow for this commodity must also be 0 in model (4.1) (i.e.,

F=). This is due to the fact that we are dealing here with flows and there are no directed

cycles in the graph. Consequently, for each edge e ∈ E we have fh3,e(0) = xh30
e = 0.

Considering the demand vector 1h1 where dh1 = 1 and the two other demands are 0, we

get that fh3,e(1h1) = x0h3,e
+ xh1

h3e
= 0 leading to xh1

h3,e
= 0. Similarly, by considering

the demand vector 1h2 , we prove that xh2
h3,e

= 0. Combining the previous facts leads to

fh3,e(d) = xh3
h3,e

dh3 .

Let us consider the demand vector 1h1 + 1h3 (dh1 = 1, dh2 = 0, dh3 = 1). Then

fh1
e1
(1h1 +1h3) = 1 since the only path to route the demand h1 is through e1. Moreover,

the assumptionm = 1 implies that fh3,e1(1h1+1h3)+fh1,e1(1h1+1h3) ≤ 1. Combining

the two propositions leads to fh3,e1(1h1 + 1h3) ≤ 0. Using the positivity constraint, we

simply get fh3,e1(1h1 + 1h3) = 0. Using the fact that fh3,e1(d) = xh3
h3,e1

dh3 , we finally

deduce that xh3
h3,e1

= 0.

Using a similar argument, we can get that fh3
e2
(1h2 + 1h3) = xh3h3

e2
= 0. Hence, all

coefficients related to commodity h3 are zero which is nonsense.

Another way to relax the flow conservation constraints consists in replacing (4.1a)
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by the following inequalities:

∑
e∈δ+(v)

fh,e(d)−
∑

e∈δ−(v)

fh,e(d)

{
≤ −dh, if v = t(h)

≤ 0 if v ̸= s(h), t(h)
(4.8)

The obtained formulation can then be called F− formulation which is completely sym-

metrical to F+. The validity of F− can be shown in almost the same way (the proof

of Proposition 4.2.1 can be modified by summing inequalities (4.8) through all vertices

belonging to V \ C). Proposition 4.2.2 also holds for F− (the same example provided

in the proof can still be used). While both F− and F+ dominate F=, they are not

comparable (for some instances F− provides better results than F+ and vice-versa).

4.3 A cut-based formulation

To show the validity of either F+ or F−, we just proved that every cut separating the

source and the sink of a commodity has enough capacity to carry the demand. This

suggests the advantage of proposing a formulation based on cuts. More precisely, for

each commodity h ∈ H and each cut δ+(C) separating s(h) and t(h) (C ⊂ V , s(h) ∈ C
and t(h) /∈ C) we require that ∑

e∈δ+(C)

fh,e(d) ≥ dh. (4.9)

The cut formulation denoted by Fcut is then obtained from (4.1) by replacing flow

conservation constraints (4.1a) by (4.9). Fcut is obviously valid.

Since solutions of F+ and F− satisfy the constraints of Fcut, the solution provided

by Fcut is at least as good as those of either F+ or F−. We provide below an example

showing that Fcut can dominate F+ and F−.

Proposition 4.3.1. Formulation Fcut is less conservative than F+ and F−.

𝑣1

𝑣2

𝑣3

𝑣4𝑣5
𝑣6

𝑒1

𝑒2

𝑒3
𝑒4ℎ1

ℎ2ℎ3
ℎ4

ℎ5

𝑒1′

𝑒2’

Fig. 4.3 An example with five commodities: hi with i = 1, 2, 3, 4 having the same
source and sink than edges ei, and h5 from source node v5 to sink node v6. In this
example we show that Fcut is strictly better than F+ and F−.
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Proof. (sketch) Consider the graph of Figure 4.3. It contains 6 directed edges each of

capacity 1: e1 = v1v2, e2 = v1v3, e′1 = v2v4, e′2 = v3v4, e3 = v5v1 and e4 = v4v6.

5 commodities have to be carried through the network: hi, i = 1, 2, 3, 4 having the

same source and sink than edges ei, and h5 from source node v5 to sink node v6. The

polyhedral uncertainty set D is defined by constraints: dh1 + dh2 ≤ 1, dh3 + dh5 ≤ 1

and dh4 + dh5 ≤ 1 in addition to non-negativity constraints. By solving either F+ or

F−, we get the following solution: fh5,e1(d) =
1
3
− dh1

3
+

dh5
3

, fh5,e2(d) =
dh1
3

+
dh5
3

,

fh5,e3(d) = fh5,e4(d) =
1
3
+ 2

3
dh5 while the assignment related to the other commodities

is obvious since only one path is available for each of them. The congestionm related to

this solution is m = 4
3
. The fact that there is no solution of either F+ or F− with m < 4

3

was numerically checked by solving the problems using the algorithms of Section 4.6.

On the other hand, the optimal solution of Fcut has a congestion m = 1 since we

can consider the following solution: fh5,e1(d) = fh5,e′1
(d) = 1 − dh1 , fh5,e2(d) =

fh5,e′2
(d) = 1 − dh2 and fh5,e3(d) = fh5,e4(d) = dh5 . To show the validity of the

solution, observe that a cut separating v5 and v6 contains either e3 or e4. Its capacity is

obviously greater than or equal to dh5 . Moreover, a separating cut containing neither e3
nor e4 will necessarily contain either e1 or e′1 and either e2 or e′2. The capacity of the

cut will then be at least 2− dh1 − dh2 ≥ 1 ≥ dh5 .

Let us now study the complexity of Fcut. If the number of separating cuts in the

graph is polynomial (in fact one should only consider those not included in larger cuts),

then Fcut can still be solved using standard robust optimization techniques (See Section

4.6). However, we will show that solving Fcut is unfortunately NP-hard.

𝑠 𝑡

𝑒1,1

𝑒1,2

𝑒1,3

𝑒𝑖,3𝑒𝑖,2𝑒𝑖,1

𝑒𝑘,1

ℎ𝑘,2

𝑒𝑘,3

ℎ1,1

ℎ1,2

ℎ1,3

ℎ𝑖,3ℎ𝑖,2

𝑒𝑘,2

ℎ𝑘,1 ℎ𝑘,3

ℎ𝑖,1

ℎ𝑠𝑡

Fig. 4.4 An example with 3k+1 commodities: hi,j with i = 1, ..., k, j = 1, 2, 3 having
the same source and sink than edges ei,j , and hst from source node s to sink node t. In
this example we prove that it is NP-hard to solve Fcut.

Proposition 4.3.2. It is NP-hard to solve Fcut.

Proof. We are going to propose a reduction from the 3-SAT problem. Let us consider a

3-SAT formula φwith k clauses and r variables. We note L = {l1, . . . , lr,¬l1, . . . ,¬lr}
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the set of the literals appearing in formula φ and li,j the literal appearing in the i-th

clause Ci at the j-th position for i = 1, ..., k and j = 1, 2, 3. We create a polyhedron Ξ

by adding for each literal l ∈ L a non-negative variable ξl and for p = 1, ..., r, we add

the constraint ξlp + ξ¬lp = 1.

We build as follows a graphG, a set of commoditiesH and a polyhedral uncertainty

set D. For each i = 1, ..., k, j = 1, 2, 3 we add 3 consecutive directed edges ei,j (see

Figure 4.4) and 3 commodities hi,j with s(hi,j) = s(ei,j) and t(hi,j) = t(ei,j), and

dhi,j
≤ ξli,j . We impose that all nodes s(ei,1) (resp. t(ei,3)) for i = 1, ..., k are equal to

a single node noted s (resp. t) (see Figure 4.4). We consider an additional commodity

hst from s to t whose value satisfies dhst ≤ 1. The uncertainty polyhedron D is then

obtained by projecting Ξ on the space of dh variables. Finally, the capacity ce of each

edge e is here equal to 1 (ce = 1).

Let us now prove that the optimal objective value of Fcut is m = 1 if and only if

the 3-SAT formula φ is not satisfiable. If φ is satisfiable, then there is a demand vector

(induced by the truth assignment) such that for each path between s and t (there is one

path corresponding to each clause), at least one commodity whose endpoints are on the

path is equal to 1 (a commodity corresponding to a true literal). This implies that all

paths are blocked and thus m > 1 since one has to route commodity hst through the

network. If φ is not satisfiable, then for each extreme point of D, there is at least one

free path to route the demand dhst . In other words, each extreme demand vector of D
can be routed through the network. Since each demand vector d insideD can be written

as a convex combination of the extreme points of D, d can also be routed through the

network without requiring more then one unit of capacity on each edge. It is then clear

that the solution defined by m = 1 and fhst,ei,j(d) = 1 − dhi,j
is feasible for Fcut. The

optimal congestion is hence equal to 1.

Notice that the separation problem related to the polyhedron D introduced in the

proof above (i.e., given some vector d, check whether d belongs to D or provide a

cut separating d from D) can obviously be solved in polynomial-time [Grötschel et al.

(2012)]. Otherwise the NP-hardness of solving Fcut would be a direct consequence of

the difficulty of the separation problem related to D.

We know from proposition 4.3.1 that Fcut can be strictly better than F+ and F−.

We just proved that Fcut is NP-hard to solve. We also recalled in Section 1 that the

robust network design problem is NP-hard. This is called dynamic routing in several

papers where there are no restrictions related to the choice of fh,e(d) which can be

any function of d that allows the routing of each commodity. One can then wonder

whether there is any difference between Fcut and the dynamic routing formulation. The

following proposition answers this question.

For sake of completeness we provide a possible formulation Fdyn related to dynamic

60



routing.

minm∑
e∈δ+(C)

fh,e(d) ≥ dh,∀d ∈ D, h ∈ H, C ⊂ V, s(h) ∈ V, t(h) /∈ V∑
h∈H

fh,e(d) ≤ cem, ∀e ∈ E, d ∈ D

fh
e (d) ≥ 0, ∀e ∈ E, h ∈ H, d ∈ D

(4.10)

The difference between Fcut and Fdyn lies in the affine form of fh,e(d) that is imposed

only for Fcut.

Proposition 4.3.3. Fdyn is strictly better than Fcut on some instances.
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𝑣5

𝑣3

𝑒2

𝑒4

𝑣1

𝑣4

𝑣6
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𝑒3

𝑒7

𝑒5

𝑒6
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ℎ3

ℎ4

ℎ6
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Fig. 4.5 An example with six commodities: hi with i = 1, 2, 3, 4 having the same source
and sink than edges ei, h5 from source node v1 to sink node v3, and h6 from source node
v4 to sink node v3. In this example we prove that Fdyn is strictly better than Fcut.

Proof. Let us consider again the example of Figure 4.5 containing 6 vertices and the 7

directed edges: e1 = v1v2, e2 = v2v3, e3 = v4v5, e4 = v5v3, e6 = v4v6, e5 = v1v6 and

e7 = v6v3, of capacity 1 each. It also contains 6 commodities (see Figure 4.5): hi with

i = 1, 2, 3, 4 having the same source and sink than edges ei, h5 from source node v1 to

sink node v3, and h6 from source node v4 to sink node v3. The uncertainty set D is here

defined by the constraints: dh1 + dh3 ≤ 1, dh1 + dh4 ≤ 1, dh2 + dh3 ≤ 1, dh2 + dh4 ≤ 1,

dh5 ≤ 1 and dh6 ≤ 1 in addition to non-negativity constraints.

To show that the optimal congestion provided by Fdyn is equal to 1 we only have

to prove that each extreme point of D can be routed without using more than 1 unit of

capacity. It is clear that the more constraining scenarios are those where dh5 = dh6 = 1.

We also either have dh1 = dh2 = 1 and dh3 = dh4 = 0 or dh1 = dh2 = 0 and

dh3 = dh4 = 1. By symmetry, we can just focus on the first case (dh5 = dh6 = 1, dh1 =
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dh2 = 1 and dh3 = dh4 = 0) where one can clearly route commodity h5 completely

through the path containing e5 and e7 while h6 is routed through e3 and e4. In other

words, m = 1 for formulation (4.10).

Let us now prove by contradiction that the congestion obtained by Fcut is strictly

greater than 1. Assume it to be equal to 1. Observe that when either dh1 = 1 or

dh2 = 1, commodity h5 is necessarily routed through e7. This implies that fh5,e7(1h1 +

1h5 + 1h6) = fh5,e7(1h2 + 1h5 + 1h6) = fh5,e7(1h1 + 1h2 + 1h5 + 1h6) = 1, where

1hi
denotes the demand vector where all demands are equal to 0 while dhi

= 1. Since

fh5,e7(d) = x0h5,e7
+xh1

h5,e7
dh1+x

h2
h5,e7

dh2+x
h3
h5,e7

dh3+x
h4
h5,e7

dh4+x
h5
h5,e7

dh5+x
h6
h5,e7

dh6 , the

previous equalities imply that xh1
h5,e7

= 0 and xh2
h5,e7

= 0. Observe that when either dh3

or dh4 is equal to 1 and demand dh6 = 1 then commodity h6 is fully routed through e7
which requires that h5 does not use e7. Consequently, we have fh5,e7(1h3+1h5+1h6) =

fh5,e7(1h4 + 1h5 + 1h6) = fh5,e7(1h3 + 1h4 + 1h5 + 1h6) = 0. These equalities lead

to xh3
h5,e7

= 0 and xh4
h5,e7

= 0. From fh5,e7(1h3 + 1h4 + 1h5 + 1h6) = 0, we get that

xh5
h5,e7

+ xh6
h5,e7

= 0, while fh5,e7(1h1 + 1h2 + 1h5 + 1h6) = 1 leads to the contradictory

equality xh5
h5,e7

+ xh6
h5,e7

= 1.

4.4 Extended graph formulation

We have seen that formulationsF− andF+ can be strictly tighter thanF= (i.e., closer to

Fdyn). The difference between F− and F+ lies in the sign of the terms
∑

e∈δ+(v)

fh,e(d)−∑
e∈δ−(v)

fh,e(d) for v ∈ V \ {s(h), t(h)} required to be negative for F− and positive for

F+. Our first trial to improve both F− and F+ led to formulation Fcut. However, Fcut

is generally NP-hard to solve. We would like to propose a stronger formulation that is

still easy to solve, where the features of F− and F+ are combined in some way.

We propose the following. For each commodity h ∈ H, and for each vertex v ∈
V \ {s(h), t(h)}, we add to G the two directed edges t(h)v and vs(h). We also add

an edge directed from t(h) to s(h). For each commodity h, an s(h)t(h) flow fh is

considered in the extended graph. Notice that the extra edges we added t(h)v, vs(h)

and t(h)s(h) can only be used by commodity h. Flow conservation constraints can be

expressed as follows.

fh,vs(h)(d) +
∑

e∈δ+(v)

fh,e(d)− fh,t(h)v(d)−
∑

e∈δ−(v)

fh,e(d) = 0 if v ̸= s(h), t(h) (4.11)

∑
e∈δ+(s(h))

fh,e(d)−
∑

v∈V \{s(h)}

fh,vs(h)(d) = dh. (4.12)

Notice that δ+(v) and δ−(v) contain only edges belonging to G.
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For sake of completeness, we give below the new formulation F .

minm∑
e∈δ+(v)∪{vs(h)}

(
x0h,e +

∑
h′∈H

xh
′

h,edh′

)
−

∑
e∈δ−(v)∪{t(h)v}

(
x0h,e +

∑
h′∈H

xh
′

h,edh′

)
= 0

∀h ∈ H, v ∈ V \ {s(h), t(h)}, d ∈ D (4.13a)∑
e∈δ+(s(h))

(
x0h,e +

∑
h′∈H

xh
′

h,edh′

)
−

∑
v∈V \{s(h)}

(
x0h,vs(h) +

∑
h′∈H

xh
′

h,vs(h)dh′

)
= dh

∀h ∈ H, d ∈ D∑
h∈H

(
x0h,e +

∑
h′∈H

xh
′

h,edh′

)
≤ cem, ∀e ∈ E, d ∈ D (4.13b)

x0h,e +
∑
h′∈H

xh
′

h,edh′ ≥ 0, ∀d ∈ D, h ∈ H, e ∈ E ∪ {t(h)s(h)} ∪v∈V \{s(h),t(h)} {vs(h), t(h)v}

(4.13c)

Observe that there are no explicit capacity limitations for the edges not belonging to

E (the added edges of type vs(h) and t(h)v). However, non-negativity is required for

the flow on these edges.

It is easy to see thatF+ (resp. F−) is a special case ofF since the term
∑

e∈δ+(v)

fh,e(d)−∑
e∈δ−(v)

fh,e(d) (resp.
∑

e∈δ−(v)

fh,e(d) −
∑

e∈δ+(v)

fh,e(d)) is positive in F+ (resp. F−) and

can be seen as the flow going through an additional edge t(h)v (resp. vs(h)). In other

words, by considering only edges of type t(h)v (resp. vs(h)) and solving F we get F+

(resp. F−) .

Let us now prove that F is valid.

Proposition 4.4.1. F is valid.

Proof. For each commodity h ∈ H and for each d ∈ D the solution induced by F is a

s(h)t(h) flow in the extended graph of value dh. Consequently, each cut of the extended

graph that separates s(h) and t(h) has necessarily a capacity greater than or equal to dh.

Observe however that additional edges of type t(h)v, vs(h) and t(h)s(h) do not belong

to any separating cut. This means that any separating cut in the extended graph contains

only edges from the original graph. We can thus deduce that any separating cut inG has

a capacity greater than or equal to dh. By the maximum-flow minimum-cut theorem,

it is then possible to route commodity h using the capacities fh,e(d) on the edges of

G.

We give below an example showing that F can be strictly better than both F− and

F+.

Proposition 4.4.2. F is less conservative than F− and F+.
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Proof. (sketch)

We will consider again the example of Figure 4.3. We have seen that the congestion

obtained by both F− and F+ is equal to 4
3
. We give here a feasible solution of F for

which the congestion is only 1.25. We only have to determine the assignments related

to h5. Consider the solution defined by:

• fh5,e1(d) = fh5,e′1
(d) = 0.5 + 0.25dh5 − 0.5dh1 ,

• fh5,e2(d) = fh5,e′2
(d) = 0.25dh5 + 0.5dh1 , fh5,e3(d) = 0.25 + 0.75dh5 ,

• fh5,e4(d) = 0.5 + 0.5dh5 − 0.25dh4 , fh5,v6v5(d) = 0.25− 0.25dh5 − 0.25dh4 ,

• fh5,v4v5(d) = 0.25dh4 , fh5,v6v1 = 0.25− 0.25dh5 ,

while fh5,e(d) = 0 for all other edges. Observe that flow conservation constraints

are satisfied in the extended graph. The three last edges mentioned above (i.e., v6v5,

v4v5 and v6v1) do not belong to G (they are of type vs(h) and t(h)v). The fact that

they appear in the solution means that
∑

e∈δ+(v)

fh,e(d) −
∑

e∈δ−(v)

fh,e(d) will be always

positive for v = v1 and negative for v = v4 (this is to say that this solution is neither

feasible for F− nor for F+). Observe also that the total capacity used on e1 is given by

fh5,e1(d) + dh1 = 0.5 + 0.25dh5 + 0.5dh1 ≤ 1.25. Similarly, the capacity used on e2
is equal to 0.25dh5 + 0.5dh1 + dh2 = 0.25dh5 + 0.5(dh1 + dh2) + 0.5dh2 ≤ 1.25 (since

dh1 + dh2 ≤ 1). One can check that the same holds for edges e′1 and e′2. The positivity

of the terms fh5,e(d) is also easy to check for each edge e using the definition of D.

Since Fcut is the best formulation that one can get when fh,e(d) is assumed to be

affine and is generally NP-hard to solve while F can be solved in polynomial-time,

there are cases where F is strictly dominated by Fcut. This is shown by the example

used above (Figure 4.3) for which we already proved in proposition 4.3.1 thatFcut leads

to a congestion equal to 1 while F gives a congestion equal to 1.25.

To close this section, we would like to add that formulations (4.3) and (4.6) that

were proposed as an alternative to formulation (4.1) (i.e., F=), can also be expressed

in the context of the extended graph. To write the cycle-based formulation (4.6), we

only have to take into account the fact that the set of cycles will here depend on the

commodities (since for each commodity h we added some edges that can only be used

by this commodity).

4.5 Aggregation

One standard way to solve classical linear multi-commodity problems in a more effi-

cient way consists in aggregating commodities either by source or by sink [Ahuja et al.

(1993)]. Let us then try to do the same in the context of polyhedral uncertainty and
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affine decision rules.

4.5.1 Aggregation for F=

Let S ⊂ V and T ⊂ V be two subsets such that for each h ∈ H we either have

s(h) ∈ S or t(h) ∈ T . All commodities having s as a source (s ∈ S) will be aggregated

and considered as one commodity having a source s and several sinks. Similarly, all

commodities having t as a sink (t ∈ T ) are aggregated into one commodity having sev-

eral sources and one sink t. It may happen that s(h) ∈ S and t(h) ∈ T simultaneously

occur, then we arbitrarily decide whether h is aggregated by source or by sink. For each

s ∈ S (resp. t ∈ T ), let us use Hs (resp. Ht) to denote the set of commodities having

s (resp. t) as a source (resp. sink) and aggregated by source (resp. sink). For any

h ∈ H, it will be more convenient here to use dhs(h)t(h)
to denote the demand value of

the commodity (there is no ambiguity since we can assume that there are no demands

having exactly the same source and the same sink).

We also define for each s ∈ S the set T (s) = {v : h ∈ Hs, v = t(h)} to denote the

set of vertices v such that there is a commodity aggregated by source s and having v as

a sink. Similarly, for t ∈ T , let S(t) = {v : h ∈ Ht, v = s(h)}.
Applying this aggregation for F= leads to the following aggregated formulation

Fagg.

minm∑
e∈δ+(v)

(
x0s,e +

∑
h′∈H

xh
′

s,edh′

)
−

∑
e∈δ−(v)

(
x0s,e +

∑
h′∈H

xh
′

s,edh′

)
=

{
−dhsv if v ∈ T (s)

0 otherwise

∀s ∈ S, v ∈ V \ {s}, d ∈ D (4.14a)∑
e∈δ+(v)

(
x0t,e +

∑
h′∈H

xh
′

t,edh′

)
−

∑
e∈δ−(v)

(
x0t,e +

∑
h′∈H

xh
′

t,edh′

)
=

{
dhvt if v ∈ S(t)

0 otherwise

∀t ∈ T, v ∈ V \ {t}, d ∈ D (4.14b)∑
s∈S

(
x0s,e +

∑
h′∈H

xh
′

s,edh′

)
+
∑
t∈T

(
x0t,e +

∑
h′∈H

xh
′

t,edh′

)
≤ cem, ∀e ∈ E, d ∈ D (4.14c)

x0s,e +
∑
h′∈H

xh
′

s,edh′ ≥ 0, ∀e ∈ E, s ∈ S, d ∈ D (4.14d)

x0t,e +
∑
h′∈H

xh
′

t,edh′ ≥ 0, ∀e ∈ E, t ∈ T, d ∈ D (4.14e)

Observe that all variables (except m) are either indexed by a source s or a sink t.

The number of variables is almost proportional to |S| + |T |. Then to minimize the

number of variables, one has to minimize |S| + |T | which can obviously be done by

computing a minimum vertex cover in a bipartite graph (the demand graph) and is equal
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to the cardinality of a maximum matching (by Konig’s theorem) [Günlük (2002)].

The validity of Fagg is a direct consequence of the validity of aggregation when

there is no uncertainty.

It is also obvious that any solution of F= can be used to build a solution for Fagg

having the same congestion. For each s ∈ S (resp. t ∈ T ), we only have to sum the

variables related to commodities belonging to Hs (resp. Ht) to get those related to s

(resp. t).

We know that when there is no uncertainty, F= and Fagg are equivalent. One may

wonder whether they are equivalent when polyhedral uncertainty is considered. The

next proposition states that Fagg dominates F=.

Proposition 4.5.1. Formulation Fagg is less conservative than formulation F=.
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ℎ2
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Fig. 4.6 An example with four commodities: hi with i = 1, 2 having the same source
and sink than edges ei, h3 from source node v1 to sink node v5, and h4 from source node
v1 to sink node v6. In this example we prove that formulation Fagg is strictly better than
formulation F=.

Proof. Let us consider the graph of Figure 4.6 containing 6 edges of capacity 1 each.

There are 4 commodities: hi with i = 1, 2 having the same source and sink than edges

ei, h3 from source node v1 to sink node v5, and h4 from source node v1 to sink node v6.

The polyhedron D is defined as the set of demands d ∈ R4
+ satisfying the two

equations dh1 + dh2 = 1 and dh3 + dh4 = 1. Due to the equalities defining D, we can

assume without generality loss that there is affine dependence on only dh1 and dh3 .

First, let us consider formulation Fagg with only source aggregation. We will then

aggregate commodities h3 and h4. Consider the solution ofFagg defined by: fv1,e1(d) =

fv1,e3(d) = 1−dh1 , fv1,e2(d) = fv1,e4(d) = dh1 , fv1,e5(d) = dh3 and fv1,e6(d) = 1−dh3 .

Variables related to the two other sources v2 and v3 are fixed in an obvious way. This

solution allows a congestion equal to 1.

Let us now assume that there is a feasible solution of F= with congestion equal to 1.

Let f be such a solution. For each edge e, we have fh3,e(d) = x0h3,e
+xh1

h3,e
dh1+x

h3
h3,e

dh3 .

Since the graph is acyclic and fh3 is a positive flow, if the demand for a commodity h3
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is zero then the flow for this commodity must also be zero in model (4.1). Then when d

is the demand vector where dh3 = dh1 = 0, we should have fh3,e(d) = 0 implying that

x0h3,e
= 0 for each edge e. Similarly, when d is such that dh3 = 0 and dh1 = 1 we also

have fh3,e(d) = 0 leading to xh1
h3,e

= 0.

Let us now focus on edge e1. When dh1 = dh3 = 1, e1 already carries commodity

h1 whose value is here equal to 1. Then there are no more resources that can be used

by commodity h3 implying that fh3,e1(d) ≤ 0. Using the positivity constraint we can

deduce that fh3,e1(d) = 0 when dh1 = dh3 = 1. Thus, xh3
h3,e1

= 0. In other words,

fh3,e1(d) = 0 for any d implying that commodity h3 is never routed through e1. It

is then fully routed through e2. This is of course not possible without violating the

capacity constraint of e2 since commodity h2 is already routed through e2.

According to Proposition 4.5.1 it should be understood that aggregation is not only

interesting for accelerating problem solving (as is the case for problems without uncer-

tainty), but it also leads to better solutions since we are getting closer toFdyn. In fact, by

aggregating commodities and solving Fagg, the capacities reserved for each aggregated

commodity is affine while the capacities used by each individual commodity making up

the aggregated one are not necessarily affine in d.

4.5.2 Sink aggregation for F+

Since F+ dominates F=, it would be interesting to perform some kind of aggregation

to be able to solve larger problems and further reduce congestion.

We consider the aggregated formulation Fagg+ given below where only sink aggre-

gation is possible (so S = ∅). Observe also that equality constraints (4.14b) are replaced

by inequalities (4.15a).

minm∑
e∈δ+(v)

(
x0t,e +

∑
h′∈H

xh
′

t,edh′

)
−

∑
e∈δ−(v)

(
x0t,e +

∑
h′∈H

xh
′

t,edh′

)
≥

{
dhvt if v ∈ S(t)

0 otherwise

∀t ∈ T, v ∈ V \ {t}, d ∈ D (4.15a)∑
t∈T

(
x0t,e +

∑
h′∈H

xh
′

t,edh′

)
≤ cem, ∀e ∈ E, d ∈ D (4.15b)

x0t,e +
∑
h′∈H

xh
′

t,edh′ ≥ 0, ∀e ∈ E, t ∈ T, d ∈ D (4.15c)

The validity of Fagg+ is less obvious than the validity of Fagg, and it is demonstrated

hereafter.

Proposition 4.5.2. Fagg+ is valid.
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Proof. Consider any feasible solution f of Fagg+. Let us select any traffic vector d ∈ D
and any sink t ∈ T . For each vertex v ∈ V \ {t} we add to G the edge tv of infinite

capacity. Let us also add to G a “virtual” node st and an edge from st to each vertex

v ∈ S(t) of capacity dhvt . Then, starting from ft,e(d) = x0t,e+
∑
h′∈H

xh
′

t,edh′ for each edge

e ∈ E, ft,. can be extended to a positive flow from st to t by taking

ft,tv(d) =


∑

e∈δ+(v)

ft,e(d)−
∑

e∈δ−(v)

ft,e(d) if v ∈ V \ S(t)∑
e∈δ+(v)

ft,e(d)−
∑

e∈δ−(v)

ft,e(d)− dhvt if v ∈ S(t)

and ft,stv(d) = dhvt for v ∈ S(t). We are then sending a flow of value
∑

v∈S(t) dhvt from

st to t. Directed cycles can be cancelled in a standard way by decreasing flow on the

edges of each directed cycle. We can therefore assume that the set of edges for which

ft,e(d) > 0 does not contain any directed cycle. Since the flow on the “virtual” edges

stv is exactly equal to dhvt , the stt-flow induces |S(t)| simultaneous positive flows, each

from a vertex v ∈ S(t) to t and of value exactly equal to dhvt . Each vt-flow (v ∈ S(t))
uses only original edges of G. This clearly implies that it is possible to simultaneously

route the demand dhvt for each v ∈ S(t). Since this holds for any t ∈ T and any d ∈ D,

the validity of the formulation is proved.

One can easily modify the example of Figure 4.6 to show that Fagg+ strictly domi-

nates F+. It is also easy to see that Fagg+ dominates Fagg when only sink aggregation

is considered to build Fagg (i.e., when |S| = 0).

Finally, we should mention that source aggregation cannot be used in combination

with F+ even if there is no uncertainty. Consider, for example, a graph having 4 ver-

tices, s, v, t1 and t2 and 2 edges st1 and vt2 having some capacity. Assume that we

have two commodities h1 and h2 of value 1 each from s to t1 and from s to t2. Observe

that there is even no path from s to t2 so the network design problem has no solution.

However, by taking fs,vt2 = 1 and fs,st1 = 2, we can ensure that all constraints related

to the aggregated commodity will be satisfied (the flow entering t1 is greater than 1, the

flow going out of v is greater than what is going into v, the flow reaching t2 is greater

than 1, and we even have that what comes out of s is greater than the sum of the two

demands).

4.5.3 Source aggregation for F−

Aggregation can also be considered in combination with F−. However, only source
aggregation can be used. The obtained formulation denoted by Fagg− would be the

68



following.

minm∑
e∈δ+(v)

(
x0s,e +

∑
h′∈H

xh
′

s,edh′

)
−

∑
e∈δ−(v)

(
x0s,e +

∑
h′∈H

xh
′

s,edh′

)
≤

{
−dhsv if v ∈ T (s)

0 otherwise

∀s ∈ S, v ∈ V \ {s}, d ∈ D (4.16a)∑
s∈S

(
x0s,e +

∑
h′∈H

xh
′

s,edh′

)
≤ cem, ∀e ∈ E, d ∈ D (4.16b)

x0s,e +
∑
h′∈H

xh
′

s,edh′ ≥ 0, ∀e ∈ E, s ∈ S, d ∈ D (4.16c)

The proof of validity of Fagg− is very similar to the proof of validity of Fagg+. One

can also build examples where Fagg− strictly dominates F−. It is also easy to see that

Fagg− dominates Fagg when only source aggregation is considered to build Fagg (i.e.,

when |T | = 0).

Finally, we would like to mention that aggregation can also be considered in the

context of formulation Fcut. However, since solving Fcut is NP-hard and aggregation

would not change the theoretical complexity, we are not going to study this kind of

aggregation.

4.6 Solution Methods and Numerical Evaluation

Figure 4.7 summarizes the main domination relations between the models introduced

or recalled in the chapter. However, a numerical evaluation is needed to quantify the

difference in terms of performance between these variants.

In this section, we begin by presenting the two types of uncertainty sets considered

in the evaluations. For the sake of completeness, we briefly recall in Section 4.6.2

standard duality-based methods to solve the introduced formulations. Data instances

considered for evaluation are described in Section 4.6.3 and, finally, we present all the

results in Section 4.6.4.

4.6.1 Uncertainty sets

For the numerical evaluation, we consider two different uncertainty sets. We first use the

Budget uncertainty of [Bertsimas and Sim (2003)] (recalled in Chapter 1) and defined

as follows.

D = {d ∈ RH : dh = dh + zhd̂h,
∑
h∈H

zh ≤ Γ, 0 ≤ zh ≤ 1,∀h ∈ H} (4.17)

69



Fig. 4.7 Domination relations between the models introduced or recalled in the chapter.

where d
h

is the nominal demand for commodity h, d̂h is the maximum possible devia-

tion from dh, and Γ is a parameter that specifies a limit (the budget) on the deviations

of all demands at the same time with respect to the nominal values.

Second, we consider the All Routable Demands uncertainty set [Azar et al. (2003)]

which contains all demand vectors that can be routed through a given network where

capacities are fixed and routing can be adapted to each demand vector (See Chapter 1

for more details).

The two uncertainty sets introduced above are easy to handle (i.e., the separation

problem related to each set can be solved in polynomial-time).

4.6.2 Problem solving methods

The models introduced in this chapter involve constraints that must be satisfied for all

traffic vectors d ∈ D.

WhenD is a polytope having a polynomial-number of extreme points, some formu-

lations such asFdyn can be solved by considering the constraints related to each extreme

point. However, for most of polytopes considered in literature (such as those described

above), the number of extreme points is not polynomial. Then there are mainly two

methods to handle constraints involving d: either cutting-plane algorithms where traffic

vectors are generated in iterative way [Ben-Ameur and Kerivin (2003)] or duality-based

approaches [Ben-Tal et al. (2009)]. While the cutting-plane approach can be applied for

any tractable polytope (i.e., for which separation is polynomial), the second approach

is recommended when the polyhedral set can be described using a limited number of

variables and constraints [Ben-Ameur et al. (2012), Ben-Tal et al. (2009)].

We are then going to use duality-based approaches to solve the problems introduced

in the chapter. Duality allows to obtain equivalent compact linear programs of the

original problems [Ben-Tal et al. (2009)]. In the following we will describe, as an

example, how this is done for model (4.3) and the Budget uncertainty setD described in
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(4.17). The same method can be (quite) straightforwardly applied to the other models.

The numerical results that we will present later in the section are obtained using this

method.

For each edge e, constraint (4.3b) (recall that this latter is given as:

∑
h∈H

(
x0h,e +

∑
h′∈H

xh
′

h,edh′

)
≤ cem

is satisfied for all traffic vectors d ∈ D if and only if the constraint

max
d∈D

∑
h∈H

(
x0h,e +

∑
h′∈H

xh
′

h,edh′

)
≤ cem

is satisfied. Thus by writing the polyhedron D in a more explicit form we obtain that a

given solution (x,m) of (4.3) satisfies this constraint if and only if the solution of the

following linear program gives a capacity reservation/congestion value that is less than

cem.

max
z

∑
h∈H

(
x0h,e +

∑
h′∈H

xh
′

h,e(dh′ + zh
′
d̂h′)

)
∑
h′∈H

zh
′ ≤ Γ (4.18a)

0 ≤ zh
′ ≤ 1 ∀h′ ∈ H (4.18b)

By linear programming duality theory, model (4.18) has an optimal solution of value

less than cem if and only if the following dual linear program has a feasible solution of

value less than cem.

min
π,µ

∑
h∈H

(
x0h,e +

∑
h′∈H

xh
′

h,edh′

)
+ Γπe +

∑
h′∈H

µh′

e

πe + µh′

e ≥ d̂h′

∑
h∈H

xh
′

h,e ∀h′ ∈ H

µh′

e ≥ 0, πe ≥ 0 ∀h′ ∈ H

where πe and µh′
e are the dual variables corresponding to constraints (4.18a) and (4.18b),

respectively.
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We can thus replace each constraint (4.3b) by the following inequalities.

∑
h∈H

(
x0h,e +

∑
h′∈H

xh
′

h,edh′

)
+ Γπe +

∑
h′∈H

µh′

e ≤ cem

πe + µh′

e ≥ d̂h′

∑
h∈H

xh
′

h,e ∀h′ ∈ H

µh′

e ≥ 0, πe ≥ 0 ∀h′ ∈ H

Constraints (4.3c) can also be dualized in a very similar way.

Finally, we should mention that in formulations F=, F+, F−, Fagg+, Fagg−, Fagg

and F the flow conservation constraints are handled as done in (4.3). For example, to

solve F+, by adding virtual edges of type t(h)v, we recover again equalities in the flow

conservation constraints that should be satisfied for each d ∈ D. These equalities are

then replaced by a set of equalities that is similar to (4.3a).

The static routing a approach (noted asFstat in the result tables) consists in choosing

a fixed routing for all demand scenarios (i.e., fh,e(d) = xh0e for any d ∈ D). It is

described in [Ben-Ameur and Kerivin (2003), Azar et al. (2003)]. Here we solve this

problem with the same duality-based techniques.

Further details about the solution methods are provided in Appendix A.

4.6.3 Network instances

We consider Abilene and Geant, two publicly available directed network topologies

taken from the SNDlib [Orlowski et al. (2007)] library and commonly used in the net-

working community for numerical evaluations. The former is of medium size (12 nodes

and 30 links) while the latter is of larger size (24 nodes and 72 links). The arc capacities

are those present in the SNDlib instances.

We compare the affine routing and static routing formulations considering the min-

imization of two classical objective functions: 1) the Maximum Link Utilization (de-

noted as MLU which is nothing but the optimal value of m) and 2) a linear reservation

cost (denoted as Linear). The MLU is expressed as maxe∈E
ue

ce
where ce is the capacity

of edge e and ue is the reserved capacity on such edge. While the Linear objective is ex-

pressed as
∑

e∈E λeue where λe are scalars corresponding to the unit cost of underlying

resources.

To generate different sets of commodities on each instance with an increasing num-

ber of demands, we begin with the set H0 consisting of all the possible commodities

between sources and destinations. We generate a subset H1 ⊆ H0 by selecting com-

modities from H0 with a uniform probability distribution. We re-iterate this process

until H1 is of the size we desire. Next, we build a subset H2 of H1 with the same pro-

cedure to get a smaller set of demands. Successively, we obtain a sequence of demand
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sets of decreasing size that are successively included in each other.

For each topology and each objective function we also consider the two uncertainty

sets, Budget and All Routable Demands. The parameters for the Budget polyhedra are

set as follow: d
h
= d̂h = min

e∈E
ce for all commodity h ∈ H and Γ =

√
|H|.

4.6.4 Numerical results

We first analyze the solutions from the different formulations. Then, we compare solu-

tion times and model sizes.

We compare static routing (denoted as Static) with affine routing formulations that

can be categorized into 5 groups: (1) those based on the relaxation of flow conserva-

tion constraints (F− and F+) of affine routing (F=), (2) the one based on aggregation

(Fagg), (3) those using a mix of the two former (Fagg− and Fagg+), (4) the one using

the elementary cycle formulation (Fcycle), and (5) the one using the extended graph

formulation (F).

In our implementation, we used the CPLEX solver version 12.6.3 on servers having

four Intel Xeon E5-4627 v2 3.3 GHz CPU cores and 512GB of memory. In all our

computations, CPLEX is configured without a time limit and the default optimality

gap. We used Julia to model problems and interface with the solver.

4.6.4.1 Comparison of objective values

We present two series of tables, Tables 4.1 and 4.2, with the solution of all formulations

on Abilene and Geant, respectively. For each topology, we consider the two polyhe-

drons and the two objective functions described above.

For each case, the table is organized as follows. The second row gives the number of

demands (or commodities) |H| ranging from 10 to 30 demands for the instances related

to Budget polyhedra (4.17), and from 5 to 15 for the more computationally expensive

All Routable Demands polyhedra, except for Geant and the MLU objective (Table 4.2d)

where the instances with 15 demands become prohibitively expensive to compute. The

subsequent rows report the value of objective function at the optimum for all affine

routing variants presented in this chapter: F=, F−, F+, Fagg, Fagg−, Fagg+, Fcycle, and

F . We also give the cost of static routing solution Fstat. The last row contains the gap

between the original affine routing formulation F= and F denoted by Best Gap (BG)

in the tables and computed as OFF=−OFF
OFF=

where OFF= and OFF are the costs of the

solutions of F= and F .

First of all, as expected, we can see that, in almost all the tables, all the variants of

affine routing exhibit better solutions compared to the static routing, especially when

the number of demands is large (this was also observed in [Poss and Raack (2013)]).

Also, the solution given by F= is, on one hand, almost always strictly dominated by the
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solution obtained by F . The solution given by F seems to be the best one with respect

to all the other variants of affine routing and static routing in all the considered scenarios

(e.g. see Tables 4.2a and 4.2c at the 30 commodities column). We also observe that the

solution of F+, and F− can give strictly better solutions than F= (e.g. see Table 4.2d)

Furthermore, observe that the solutions of Fagg, Fagg+, and Fagg− can give slightly

strictly better solutions than F=, F+, and F− respectively (see, for example, Table 4.2a

with 30 commodities for F− and F+, and Table 4.2c with 30 commodities for F=).

Let us now look more closely at solutions from the different formulations and in

particular compare F=, the original affine formulation, and F . For instance, for Abi-

lene with MLU and All Routable Demands we obtain a percentage gap up to 9.914 %

between F= and F , and up to 10.538 % between Fstat and F . Similarly, for Geant, we

have the same trend, with slightly lower percentage gaps (up to 4.458 % and 5.259 %).

In practice the objective function can have a different structure and higher gaps may

be observed. For instance, a step cost function (often approximated with a piece-wise

linear function) can be used to model the investment in additional unitary physical re-

sources.

Table 4.1 Solutions on scenarios with Abilene topology.

(a) Budget, Linear objective.

Nb demands
10 15 20 25 30

Fstat 44.0 69.87 90.47 115.0 141.91
F= 44.0 69.18 89.68 112.0 134.57

Fcycle 44.0 69.18 89.68 112.0 134.57
F+ 44.0 69.08 89.68 112.0 134.57
F− 44.0 68.93 89.68 112.0 134.57
F 44.0 67.63 87.97 108.0 129.82

Fagg 44.0 69.18 89.68 112.0 134.57
Fagg+ 44.0 69.08 89.6 112.0 134.57
Fagg− 44.0 68.93 89.68 112.0 134.57

BG 0.0 % 2.24 % 1.91 % 3.57 % 3.53 %

(b) All Routable Demands, Linear objective.

Nb demands
5 10 15

Fstat 21.0 30.5 35.5
F= 21.0 30.5 35.5

Fcycle 21.0 30.5 35.5
F+ 21.0 30.5 35.5
F− 21.0 30.5 35.5
F 21.0 29.6 34.43

Fagg 21.0 30.5 35.5
Fagg+ 21.0 30.5 35.5
Fagg− 21.0 30.5 35.5

BG 0.0 % 2.951 % 3.014 %

(c) Budget, MLU objective.

Nb demands
10 15 20 25 30

Fstat 3.0 4.936 6.236 6.5 7.739
F= 3.0 4.936 6.236 6.5 7.739

Fcycle 3.0 4.936 6.236 6.5 7.739
F+ 3.0 4.936 6.236 6.5 7.739
F− 3.0 4.936 6.236 6.5 7.739
F 3.0 4.936 6.236 6.5 7.739

Fagg 3.0 4.936 6.236 6.5 7.739
Fagg+ 3.0 4.936 6.236 6.5 7.739
Fagg− 3.0 4.936 6.236 6.5 7.739

BG 0.0 % 0.0 % 0.0 % 0.0 % 0.0 %

(d) All Routable Demands, MLU objective.

Nb demands
5 10 15

Fstat 1.3 1.424 1.491
F= 1.291 1.42 1.486

Fcycle 1.291 1.42 1.486
F+ 1.245 1.39 1.452
F− 1.24 1.381 1.448
F 1.163 1.312 1.38

Fagg 1.291 1.42 1.486
Fagg+ 1.244 1.379 1.446
Fagg− 1.24 1.38 1.447

BG 9.914 % 7.592 % 7.137 %

4.6.4.2 Comparison of model sizes and solving times

We now present two series of tables displaying the solving times and the model sizes. In

the first series (Table 4.3) we compare the two polyhedron on the Abilene topology with
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Table 4.2 Solutions on scenarios with Geant topology.

(a) Budget, Linear objective.

Nb demands
10 15 20 25 30

Fstat 48.0 71.87 94.0 118.0 131.48
F= 47.07 70.25 92.47 114.0 127.75

Fcycle 47.07 70.25 92.47 114.0 127.75
F+ 47.01 70.04 92.47 114.0 127.5
F− 46.96 69.83 91.96 113.71 127.39
F 46.94 69.2 90.83 110.53 123.22

Fagg 47.07 70.25 92.47 114.0 127.75
Fagg+ 46.94 69.78 91.96 113.5 126.99
Fagg− 46.94 69.46 91.79 113.5 127.04

BG 0.29 % 1.49 % 1.78 % 3.05 % 3.55 %

(b) All Routable Demands, Linear objective.

Nb demands
5 10 15

Fstat 33.0 52.0 63.0
F= 33.0 52.0 63.0

Fcycle 33.0 52.0 63.0
F+ 33.0 52.0 63.0
F− 33.0 51.0 63.0
F 33.0 50.52 62.5

Fagg 33.0 52.0 63.0
Fagg+ 33.0 51.0 63.0
Fagg− 33.0 50.5 62.5

BG 0.0 % 2.846 % 0.79 %

(c) Budget, MLU objective.

Nb demands
10 15 20 25 30

Fstat 1.621 2.311 3.174 3.252 3.836
F= 1.515 2.218 2.868 3.0 3.427

Fcycle 1.515 2.218 2.868 3.0 3.427
F+ 1.505 2.218 2.868 3.0 3.422
F− 1.515 2.218 2.868 3.0 3.427
F 1.505 2.218 2.868 3.0 3.422

Fagg 1.515 2.218 2.868 3.0 3.422
Fagg+ 1.505 2.218 2.868 3.0 3.422
Fagg− 1.515 2.218 2.868 3.0 3.422

BG 0.621 % 0.0 % 0.0 % 0.0 % 0.165 %

(d) All Routable Demands,MLU objective.

Nb demands
5 10

Fstat 1.154 1.312
F= 1.133 1.301

Fcycle 1.133 1.301
F+ 1.091 1.282
F− 1.111 1.285
F 1.091 1.243

Fagg 1.133 1.301
Fagg+ 1.091 1.282
Fagg− 1.111 1.285

BG 3.743 % 4.418 %

the MLU objective. And in the second series (Table 4.4) we compare both topologies

with the All Routable Demands polyhedron and the Linear objective. The solving times

are in seconds. For the size of models, we display for each formulation the number of

columns (i.e. variables), denoted as #col, and the number of rows (i.e., constraints),

denoted as #row.

We can observe that, in general, the computation time for the scenarios with All

Routable Demands (Table 4.3b) can be several hundred times longer than with Budget

(Table 4.3a). This can be explained by the fact that the All Routable Demands poly-

hedron leads to a larger model size in terms of number of variables and constraints.

Observe, for example, that the model related to F with All Routable Demands poly-

hedron and 15 demands on the Abilene topology has five times more variables and six

times more constraints than the model with the Budget polyhedron (Tables 4.3c and

4.3d).

We further observe that increasing the number of demands greatly increases the

required solving time for the affine variants without aggregation (e.g. F=, F−, F+,

Fcycle, and F). The aggregation technique for the affine routing that we introduced (e.g.

Fagg, Fagg−, Fagg+) permits to alleviate this drawback for big enough commodity set

size (Tables 4.3a and 4.3c). This is somewhat explained by the fact that the number of x

variables varies quadratically with the number of demands in the non-aggegated model

while it is linear with the number of demands in the aggregated models.
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Let us now focus on a given scenario, for instance, Abilene with Budget and the

Linear objective (Table 4.1a) to compare the solving times. It can be observed that F ,

the routing scheme based on the extended graph formulation, takes the longest time to

compute the optimal solution with respect to all the other approaches when varying the

demand in the range [5-30]. This is indeed expected since the formulation of F is more

complex: for each commodity h, we added to the original graph G directed edges from

the sink of h (i.e., t(h)) to each node v ∈ V of G, from each node v to the source of h

(i.e., s(h)), and from t(h) to s(h). The complexity of this approach naturally increases

with the number of demands and number of nodes. However, as mentioned above, F
shows the best solutions among other formulations.

Table 4.3 Scenarios with Abilene topology and MLU objective: Impact of the polyhe-
dron on the solving time.

(a) Budget, Solving times (s).

Nb demands
10 15 20 25 30

Fstat < 1 < 1 < 1 < 1 < 1
F= < 1 1 5 12 29

Fcycle < 1 3 5 41 76
F+ < 1 2 7 23 89
F− 1 2 7 20 37
F < 1 3 12 30 61

Fagg < 1 < 1 2 4 6
Fagg+ < 1 < 1 2 5 6
Fagg− < 1 1 2 4 6

(b) All Routable Demands, Solving times (s).

Nb demands
5 10 15

Fstat < 1 < 1 1
F= 6 447 2929

Fcycle 9 170 2421
F+ 9 415 5284
F− 9 402 3806
F 29 1136 11405

Fagg 6 132 590
Fagg+ 8 340 2342
Fagg− 6 189 2127

(c) Budget, Size of the models.

Nb demands
10 15 20 25 30

Fstat #col 961 1411 1861 2311 2761
#row 770 1125 1480 1835 2190

F= #col 6931 14881 25831 39781 56731
#row 4950 10560 18270 28080 39990

Fcycle #col 5721 12241 21211 32631 46501
#row 3630 7680 13230 20280 28830

F+ #col 9791 21121 36751 56681 80911
#row 6380 13680 23730 36530 52080

F− #col 9791 21121 36751 56681 80911
#row 6380 13680 23730 36530 52080

F #col 14851 32161 56071 86581 123691
#row 7590 16320 28350 43680 62310

Fagg #col 4291 9121 15751 19501 23251
#row 3036 6384 10962 13572 16182

Fagg+ #col 8251 17761 30871 38221 45571
#row 3828 8112 13986 17316 20646

Fagg− #col 9571 17761 28351 35101 41851
#row 4411 8112 12873 15938 19003

(d) All Routable Demands, Size of the models.

Nb demands
5 10 15

Fstat 5251 8701 12151
9415 18770 28125

F= 16201 49501 100801
28440 103950 226560

Fcycle 15871 48291 98161
28080 102630 223680

F+ 22116 69131 141946
38580 144380 317430

F− 22116 69131 141946
38580 144380 317430

F 27841 88381 182521
47160 178590 394320

Fagg 16201 44971 75481
28410 94389 169696

Fagg+ 22741 64843 109669
37770 127977 231208

Fagg− 18703 51367 90793
31152 101611 191712

Table 4.4 shows the impact of the topology on the problem size and the solving time.

The problems related to Geant topology clearly have larger size than those related to

Abilene and require much more time to be solved. While the number of nodes and edges

is twice bigger in Geant compared to Abilene, the number of variables and constraints

for models can be between five and seven times larger.
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Table 4.4 Scenarios with Linear objective and All Routable Demands polyhedrons:
Impact of the topology on the solving time.

(a) Abilene, Solving time (s).

Nb demands
5 10 15

Fstat < 1 < 1 < 1
F= < 1 17 122

Fcycle < 1 19 213
F+ 1 33 495
F− 1 32 606
F 2 457 3292

Fagg < 1 14 60
Fagg+ 1 30 272
Fagg− < 1 27 145

(b) Geant, Solving times (s).

Nb demands
5 10 15

Fstat 0.271 0.536 1.34
F= 13.57 406.57 3094.01

Fcycle 18.5 340.56 3339.84
F+ 33.05 1628.02 11155.9
F− 49.87 2220.21 12307.3
F 85.24 7480.31 53291.0

Fagg 12.07 265.31 787.58
Fagg+ 18.0 1030.97 4561.98
Fagg− 58.59 819.89 6972.41

(c) Abilene, Size of the models.

Nb demands
5 10 15

Fstat #col 5281 8731 12181
#row 9415 18770 28125

F= #col 16231 49531 100831
#row 28440 103950 226560

Fcycle #col 15901 48321 98191
#row 28080 102630 223680

F+ #col 22146 69161 141976
#row 38580 144380 317430

F− #col 22146 69161 141976
#row 38580 144380 317430

F #col 27871 88411 182551
#row 47160 178590 394320

Fagg #col 16231 45001 75511
#row 28410 94389 169696

Fagg+ #col 22771 64873 109699
#row 37770 127977 231208

Fagg− #col 18733 51397 90823
#row 31152 101611 191712

(d) Geant, Size of the models.

Nb demands
5 10 15

Fstat 25921 41401 56881
52809 105474 158139

F= 78697 231337 463177
158772 581372 1267872

Fcycle 78067 229027 458137
158112 578952 1262592

F+ 99742 298727 602212
200862 749502 1645992

F− 99742 298727 602212
200862 749502 1645992

F 119872 363187 735202
241122 910322 2007672

Fagg 52345 189145 289081
105786 475536 792144

Fagg+ 65611 246521 378379
129942 604192 1009152

Fagg− 100807 246521 495193
199002 604192 1319232

4.7 Conclusion

We have presented variants of the original affine routing formulation to further improve

the solutions of the robust network design problem. We proposed a formulation Fcycle

based on cycle decomposition that is equivalent to the initial node-arc formulationF= of

[Poss and Raack (2013)]. We also proved that a formulation based on paths is dominated

by F=. Then two main ideas have been proposed: relaxation of flow conservation

constraints and aggregation. The first idea led to F− and F+ that have been combined

into a stronger formulation F by considering an extended graph. All these formulations

are less conservative than F=. The second idea allowed us to build new formulations

Fagg, Fagg+ and Fagg− that are respectively dominating formulations F=, F+ and F−.

The striking fact is that aggregation simultaneously reduces the size of formulations

as well as the solution’s cost. Furthermore, we have proposed a cut-based formulation

Fcut that improves over formulation F but is generally NP-hard to solve. Finally, we

illustrated our results with a numerical evaluation on two popular network topologies,

two objective functions and two polyhedrons.
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Despite the efficiency of the new proposed formulations, several challenges remain.

To solve larger size problems and reduce solution’s cost, it would be nice to find some

way to combine aggregation with the extended-graph-based formulation F . Combin-

ing the uncertainty partitioning techniques (i.e., [Ben-Ameur (2007), Al Najjar et al.

(2019), Ben-Ameur and Żotkiewicz (2011)]) recalled in introduction with some of the

formulations introduced in the chapter would be another challenge.
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CHAPTER 5

A new multi-static routing approach

A multi-static approach has been proposed in [Ben-Ameur (2007)] where the uncer-

tainty set is partitioned using some linear inequalities and routing is restricted to be

static over each partition.

On the other hand, using the fact that each point of a compact convex set can be

written as a convex combination of extreme points, one can see the dynamic approach

as a multi-static approach where a routing is imposed for each extreme point of the

uncertainty set.

One might ask the following question.

• Is it possible to generalize the multi-static framework in a natural way to obtain a

strategy enclosing dynamic, static and multi-static approaches ?

A first attempt to achieve this was the multipolar approach of [Ben-Ameur and

Żotkiewicz (2013b), Ben-Ameur et al. (2018b)] (recalled in Chapter 1). We are go-

ing to propose a different approach.

We propose a strategy where several subpolytopes contained in the uncertainty set

(and more precisely faces) and containing all non-dominated extreme points of this

set are defined. A static routing is considered for each subset. We show how these

subpolytopes can be found for at least two popular uncertainty sets: the budget polytope

and the hose polytope. We describe the approach and some preliminary numerical

results in the following sections.

5.1 Decomposition of the uncertainty set

Assume that D = {d ∈ RH : aid ≤ bi, ∀i ∈ I} where I is a finite set. We also assume
that D is bounded. For J ⊂ I , let DJ = {d ∈ D : aid = bi,∀i ∈ J}. If DJ ̸= ∅, then it
is a face of D. Let us consider subsets of I denoted by J1, J2, ..., Jr such that each non-
dominated extreme point of D belongs to at least one DJl for l ∈ {1, ..., r}. Recall that
a non-dominated point d of D is a point such that the only vector d′ ≥ d belonging to
D is d′ = d. It is well-known that we only have to ensure that all non-dominated traffic
vectors can be routed. Since such a non-dominated vector is a convex combination of
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non-dominated extreme points of D, it is then sufficient to route such extreme points.
This can be achieved by considering a static routing for eachDJ . The problem can then
be modeled as follows:

min
∑
e∈E

λeue

ule ≤ ue ∀l ∈ {1, ..., r}, e ∈ E (5.1a)∑
h∈H

xlh,edh ≤ ule ∀e ∈ E, l ∈ {1, ..., r}, d ∈ DJl

(5.1b)

∑
e∈δ+(v)

xlh,e −
∑

e∈δ−(v)

xlh,e =


1, if v = s(h)

−1, if v = t(h)

0 otherwise

∀h ∈ H, v ∈ V, l ∈ {1, ..., r} (5.1c)

0 ≤ xlh,e ≤ 1 ∀e ∈ E, h ∈ H, l ∈ {1, ..., r}
(5.1d)

where s(h) (resp. t(h)) denotes the source (resp. sink) of commodity h, and δ+(v)

(resp. δ−(v)) is the set of edges outgoing of (resp. ingoing to) v. Variables ule represent

the capacity required on link e to route demands inside DJl , while xlh,e denotes the

fraction of commodity h that is routed through e when the static routing related to DJl

is considered. Constraints (5.1a) and (5.1b) ensure that capacities are sufficient to route

traffic, while (5.1c) are classical flow-conservation constraints.

Observe that in the classical multi-static approach, the uncertainty set is partitioned

and a static routing is considered for each subset. In the new proposal, we only require⋃r
l=1DJl to contain the set of non-dominated extreme points implying that conv(

⋃r
l=1DJl)

contains all non-dominated vectors of D.

Observe that since each extreme point is defined by a set of equations among the

inequalities defining D, the proposed approach can theoretically reach the dynamic

routing approach. However, as the number of extreme points can be exponential, the

approach would not be practical. Our challenge is then to find a better decomposition

defined by J leading to a good approximate of the optimal dynamic solution in a rea-

sonable computing time.

Generation of the faces DJl

We will now describe a method to generate the sets DJl . Suppose that there is a

subset of inequalities aid ≤ bi for i ∈ I0 ⊂ I such that for all non-dominated ex-

treme points dext of D at most Γ inequalities can be non-active at the same time (i.e.,

|{i ∈ I0|aidext < bi}| ≤ Γ). We partition the set I0 into Γ+1 subsets J1, ..., JΓ+1. In the

numerical experiment we conducted we arbitrarily constructed the partition composed
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of sets of approximately the same size. A non-dominated extreme points dext of D is

necessarily contained in one of the DJl . Otherwise we would have an il in each Jl such

that aild
ext < bil and thus Γ + 1 such indices and this would contradict the hypothesis

that |{i ∈ I0|aidext < bi}| ≤ Γ. Consider, for example, the budget polytope defined

by dh = dh + ξh(dh − dh), 0 ≤ ξh ≤ 1, and
∑

h∈H ξh ≤ Γ where dh (resp. dh) is a

non-negative lower (resp. upper) bound of dh and Γ represents an uncertainty budget.

In this case, one can use constraints −dh ≤ −dh to generate the faces DJl .

The same approach can also be applied for the hose polytope defined by constraints∑
h∈H:s(h)=v dh ≤ bout(v) and

∑
h∈H:t(h)=v dh ≤ bin(v) where bin(v) and bout(v) are

positive constants, in addition to non-negativity constraints. Since at most 2|V | con-

straints related to incoming and outgoing traffic would be active, at most 2|V | non-

negativity constraints would be non-active. Therefore, non-negativity constraints dh ≥
0 can be used to get the sets DJl .

The approach can be iteratively applied for sets DJl . Instead of considering a static

routing forDJl , one can consider a decomposition covering the non-dominated extreme

points ofDJl . This will generally improve the solution quality at the expense of a larger

model to solve. In the following, two types of strategies are considered to iteratively

build the subsets Jl, a non-selective strategy and some selective ones.

Non-selective Strategy

First, the set I0 is arbitrarily partitioned into Γ + 1 subsets. Then, for each poly-

tope DJl with l ∈ {1, ..., 1 + Γ}, the procedure is repeated replacing I0 by I0 \ Jl and

D by DJl . Since each non-dominated extreme point of DJl is also a non-dominated

extreme point of D, the property |{i ∈ I0|aidext < bi}| ≤ Γ is still satisfied for each

extreme point dext which allows application of the decomposition process. By doing so

the number of sets of DJl increases (almost multiplied by Γ+1) and the size of the sets

Jl increases as well (since more inequalities are turned to equations). One can continue

iterating until the number of DJl reaches some fixed value to keep computational com-

plexity under control. Notice that the number of distinct setsDJl that can be obtained is

bounded by
( |I0|
|I0|−Γ−1

)
=
( |I0|
Γ+1

)
. Once the decomposition is obtained, we have to solve

Problem (5.1) to get ue values.

Selective Strategies

Instead of systematically decomposing each DJl , we select the sets that will be

further decomposed based on
∑

e∈E π
l
eu

l
e where πl

e is the dual variable related to con-

straint (5.1a). More specifically, two selective strategies will be considered. In the first

81



one, all polytopes DJl for which
∑

e∈E π
l
eu

l
e > 0 are decomposed, while only the set

maximizing
∑

e∈E π
l
eu

l
e is considered in the second strategy. In fact, when constraint

(5.1a) is relaxed in a Lagrangian way using πl
e multipliers, the objective function be-

comes
∑

l

∑
e∈E π

l
e(u

l
e − ue) +

∑
e∈E λeue =

∑
e∈E ue(λe −

∑
l π

l
e) +

∑
l

∑
e∈E π

l
eu

l
e.

From Lagrange theory, we have to solve maxπl
e
minue,ul

e,x
l
h,e

∑
e∈E ue(λe −

∑
l π

l
e) +∑

l

∑
e∈E π

l
eu

l
e. To get a finite minimum, we should have λe −

∑
l π

l
e = 0 and the ob-

jective function to minimize becomes
∑

l

∑
e∈E π

l
eu

l
e. It is then natural to select subsets

DJl for which
∑

e∈E π
l
eu

l
e is large and to try to decompose them in order to reduce the

objective value.

Numerical solution for problem (5.1)

Problem (5.1) can be seen as a robust network design problem. It can be solved us-

ing a standard dualization approach where constraint (5.1b) is integrated through duality

(see, e.g., Appendix A).

5.2 Some preliminary numerical experiments

We first evaluated our methods on the Abilene topology using a set of 15 randomly cho-

sen demands. We used the budget polytope with dh = 1 and dh = 2 for all h ∈ H and

Γ = 4. In Figure 5.1 we plotted the objective function (vertical axis) and the solving

time in seconds (horizontal axis) for several levels of decomposition (sets DJl). Af-

ter the first decomposition all 3 methods give the same solution with a cost of 68.873

in less than 1 second. This solution already outperforms the static routing solution of

cost 69.87 and the affine solution of cost 69.18 (solved in 2 seconds). After additional

steps, the 3 multi-static approaches further reduce the solution cost. As observed in

Figure 5.1, the non-selective approach seems to dominate both selective approaches for

numbers of decomposition steps requiring less than 50 seconds. However after 50 sec-

onds the relationship between the 3 methods is reversed. Selective methods provide

better solutions than the non-selective one while using less computing time. We also

considered the Geant topology with 15 demands and the same budget polytope as be-

fore. Results are also shown on the right part of Figure 5.1. In this case, the cost of the

optimal static solution is 71.87 while the best solution cost for affine routing is 70.25.

Almost the same conclusions can be drawn from simulations related to Geant topol-

ogy. While we have shown that our new multi-static approach can improve the solution

over static and affine routing, further simulations should be performed to better evaluate

the multi-static strategies introduced in this chapter and confirm the observations made

above. One might also consider more sophisticated strategies (e.g., affine strategy) for

each face to get better solutions.
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Fig. 5.1 Comparison of the 3 strategies on Abilene (top) and Geant (bottom).

83



CHAPTER 6

Conclusion and perspectives

6.1 Summary of contributions

Given the dynamic nature of traffic, we investigate the robust network design problem

where we have to determine the capacity to reserve on each link so that each demand

vector belonging to a polyhedral set can be routed. The objective is either to minimize

congestion or a linear cost.

Chapter 2. When routing is assumed to be fractional and dynamic (i.e., dependent

on the current traffic vector), we first prove that the robust network design problem with

minimum congestion cannot be approximated within any constant factor. Then, using

the ETH conjecture, we get a Ω( logn
log logn

) lower bound for the approximability of this

problem. This implies that the well-known O(log n) approximation ratio established

by Räcke in 2008 is tight up to a lower order factor. Using Lagrange relaxation, we

obtain a new proof of the O(log n) approximation. An important consequence of the

Lagrange-based reduction and our inapproximability results is that the robust network

design problem with linear reservation cost cannot be approximated within any constant

ratio. This answers a long-standing open question of Chekuri (2007). We also give an-

other proof of the result of Goyal et al. (2009) stating that the optimal linear cost under

static routing can be Ω(log n) more expensive than the cost obtained under dynamic

routing. Finally, we show that even if only two given paths are allowed for each com-

modity, the robust network design problem with minimum congestion or linear cost is

hard to approximate within some constant.

Chapter 3. We focus on the variant in which the underlying graph is directed. We

prove that an O(
√
k) = O(n)-approximation can be obtained by solving the problem

under static routing, where k is the number of commodities and n is the number of

nodes. This improves previous results of Hajiaghayi et al. [SODA’2005] and matches

the Ω(n) lower bound of Ene et al. [STOC’2016] and the Ω(
√
k) lower bound of Azar et

al. [STOC’2003]. Finally, we introduce a slightly more general problem version where

some flow restrictions can be added. We show that it cannot be approximated within a
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ratio of k
c

log log k (resp. n
c

log logn ) for some constant c. Making use of a weaker complexity

assumption, we prove that there is no approximation within a factor of 2log
1−ϵ k (resp.

2log
1−ϵ n) for any ϵ > 0.

Chapter 4. While a common heuristic for the robust network design problem is to

compute, in polynomial-time, an optimal static routing, affine routing can be used to

obtain better solutions also with polynomial-time algorithms. It consists in restricting

the routing to depend on the demands in an affine way. We first show that a node-arc

formulation is less conservative than an arc-path formulation. We also provide a natu-

ral cycle-based formulation that is shown to be equivalent to the node-arc formulation.

To further reduce the solution’s cost, several new formulations are proposed. They are

based on the relaxation of flow conservation constraints. The obtained formulations

have been further improved through aggregation. As might be expected, aggregation

allows us to reduce the size of formulations. A more striking result is that aggregation

reduces the solution’s cost. Finally, some numerical experiments are presented.

Chapter 5. We finally propose an intermediate strategy between static and dynamic

routing that can be seen as a new variant of multi-static routing. We consider some

faces of the uncertainty set whose union contains all non-dominated extreme points of

the polytope. A static routing is then assumed for each face. We show how these faces

can be found for at least two popular uncertainty sets: the budget polytope and the hose

polytope. Some preliminary numerical results are also provided..

6.2 Thesis outlook

A first perspective is to study the approximability of the dynamic routing problem for

special cases. This can include the following restrictions of the problem:

• Some special polytopes (Hose, Budget).

• Single source problem (i.e. all commodity have the same source).

• Single path routing. Most of known general results related to static single path

routing consider undirected graphs and linear cost objective function. AnO(log(n))

approximation is known (due to Gupta) and an Ω(log
1
4
−ϵ n) lower bound has been

proven by Olver and Shepherd (2014). It might be interesting to try to prove some

bounds in other cases (congestion and/or directed graphs).

A second line of work is related to the derivation of better bounds using:

• The affine routing method either in its first version proposed by Poss and Raack

(2013), Ouorou and Vial (2007) or in one of its strengthened forms of Chapter 4.
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• A result of Barvinok (2014) stating that a down-monotone convex body can be

approximated with a factor of ϵ
√
k (for any ϵ > 0) by a polytope D′ having a

polynomial number of non dominated extreme points. In this case, it may be

possible to construct such polytope in polynomial-time. A better polytope ap-

proximation than the one presented in Chapter 3 might then be deduced. Suppose

that we are given a demand polytope D,D′ ⊆ RH
+ such that D′ ⊆ D ⊆ αD′

for some α ≥ 1. Then computing lindyn,frac(αD′) provides an α approxima-

tion of lindyn,frac(D). Furthermore if D′ contains a polynomial number of non

dominated extreme points then lindyn,frac(αD′) can be computed in polynomial-

time. This can potentially provide a way to improve upon the
√
8k approximation

obtained from static routing (Chapter 3).

Finally, further investigations are needed to study the performance of the new multi-

static approach in Chapter 5. This can be done not only for robust network design but

also in the context of other multi-stage robust optimization problems.
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Appendix A

A modular approach for solving robust design problems

We present in this appendix a general solving approach we implemented for several

routing strategies: static routing, several variants of affine routing, the new multi-static

approach we presented and potentially others. The goal is to handle several demand

polytopes such as the hose model, budget, all routable demands and potentially others.

A straightforward implementation would be to explicitly write by hand the compact

reformulation of the model and implement a cutting plane procedure for each routing

method and each demand polytope. However, this solution is not practical. We now

describe below an alternative approach, more modular, where an abstract representa-

tion, independent of the demand polytope, of a the robust optimization problem is first

constructed. And then we implemented two procedures that take as input a representa-

tion of a demand polytope and of the robust robust problem. The first one solves the

robust optimization problem using a cutting plane algorithm and the second procedure

automatically constructs a compact reformulation by dualization of the problem. This

design choice is inspired by how the robust optimization library presented in Dunning

(2016), Chapter 6, is structured.

Consider the following quite general single stage robust optimization problem:

min
∑
i∈I

cixi

bi(d, x) ≤ 0, ∀i ∈ I, d ∈ Di (A.1a)

a′i′(x) ≤ 0, ∀i′ ∈ I ′ (A.1b)

xj ≥ 0 j ∈ J (A.1c)

Where bi are bi-affine functions in d and x, i.e., functions given as:

bi(d, x) = a0,i(x) +
∑
h∈H

dhah,i(x)

and ah,i are affine functions in x i.e., functions of the form:
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ah,i(x) = a0h,i +
∑
j∈J

ajh,ixj

and a′i′ are affine functions in x i.e., functions of the form:

a′i′(x) = a′
0
i +

∑
j∈J

a′
j
h,ixj

Constraints (A.1b) are deterministic constraints i.e. constraints that does not in-

volve the uncertainty on demands d. Those constraints can represent flow conservation

constrains in the static routing problem for example. Constraints (A.1a) are uncertain

constraints, i.e., constraints that do depend on the uncertainty on demands d. Those

constraints can represent capacity constraints in the static routing problem for example

or the flow conservation constraints in the affine routing model.

The variables of this model are xj for j in J for some indices set J . In our case

the variables xj will be the routing variables xh,e in the static routing problem, the

coefficient of the affine flow function xh′

h,e in the affine routing problem or the routing

variables xih,e for different subpolytope Di in the multi-static approach. Other variables

also related to reservations ue. The polytopes Di can be all equal in the case of static

routing and affine routing. They can be different for multi-static.

A.1 Abstract representation of a robust optimization problem

We represent the single stage robust optimization problem, independently of the uncer-

tainty sets Di as follows:

• A classical linear program composed of only the deterministic constraints (A.1b)
i.e., the following linear program:

min
∑
i∈I

cixi

a′i′(x) ≤ 0, ∀i′ ∈ I ′ (A.2a)

x ≥ 0 (A.2b)

• An array composed of objects representing the bi-affine expressions bi(d, x). We

internally represented a bi-affine expression as a dictionary with entries in the set

{0} ∪H. The value in the dictionary for the entry h for h ∈ {0} ∪H is the affine

expression ah,i(x) where x is an array composed of the variables in model (A.2).

If a key h is not in the dictionary this means that ah,i(x) = 0.
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A.2 Demand polytope representation

A demand polytope Di is represented as follows:

• A linear program:

max 0

Ad+By ≤ 0, (A.3a)

y ≥ 0, (A.3b)

• An array composed of the variables dh of model (A.3). To be able to know which

variable corresponds to each commodity h.

A.2.1 Cutting plane procedure

We will now describe a cutting plane procedure that takes as input an abstract represen-

tation of a robust optimization problem and the representation of a demand polytopeDi

for each i ∈ I . It outputs a feasible solution x to Problem (A.1). This can be done by

iteratively doing the following steps:

• Solve linear program (A.2) and query the optimal solution xopt to the current

model.

• For each i ∈ I check if one of the constraint bi(d, xopt) ≤ 0 is violated by some

d ∈ Di and solve the linear problem min
d∈Di

∑
h∈H

dhah,i(x
opt) and query the optimal

solution dopt. If a0,i(xopt)+
∑
h∈H

dopth ah,i(x
opt) > 0 add the following constraint to

the linear program (A.2).

a0,i(x) +
∑
h∈H

dopth ah,i(x) ≤ 0

• Stop if none of the constraints bi(d, xopt) ≤ 0 are violated.

A.3 Automatic compact reformulation procedure

We will now describe a compact reformulation procedure that take as input an abstract

representation of a robust optimization problem and the representation of a demand

polytope Di for each i ∈ I . It outputs a new linear program having the same optimal

solution x than Problem (A.1).

The constraint bi(d, x) ≤ 0, ∀d ∈ D is equivalent to

max
d∈D

bi(d, x) = ah,i(x) + max
d∈D

∑
h∈H

dhah,i(x) ≤ 0
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We noteAl (respBl) the l-th column of the matrixA (resp. B) defining the polytope

D.

The problem max
d∈D

∑
h∈H

dhah,i(x) can be written as the following linear program (if

we consider x fixed):

max
d,y

∑
h∈H

dhah,i(x)

Aid+Biy ≤ g, (A.4a)

d, y ≥ 0, (A.4b)

By duality this linear program is equivalent to:

min
λi

gtλi

Ah,t
i λi ≤ ah,i(x), ∀h ∈ H (A.5a)

Bl,t
i λi ≤ 0, ∀h ∈ H (A.5b)

λi ≥ 0, ∀l ∈ N : 1 ≤ l ≤ dim(y) (A.5c)

Therefore the constraint max
d∈D

bi(d, x) ≤ 0 is equivalent to the following linear pro-

gramming constraints (linear in λi and x):

a0,i(x) + gtλi ≤ 0

Ah,t
i λi ≤ ah,i(x), ∀h ∈ H (A.6a)

Bl,t
i λi ≤ 0, ∀l ∈ N : 1 ≤ l ≤ dim(y) (A.6b)

λi ≥ 0 (A.6c)

The compact reformulation procedure works as follows:

• For each i ∈ I , add a vector of variable λi of dimension the number of constraints

in Model (A.3). Add the following Constraints (A.6) to Model (A.2). Recall that

ah,i(x) are affine expressions in the x variables of Model (A.2).

The compact reformulation procedure returns the following linear program:
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min
∑
i∈I

cixi

a′i′(x) ≤ 0, ∀i′ ∈ I ′ (A.7a)

a0,i(x) + gtλi ≤ 0 ∀i ∈ I

Ah,t
i λi ≤ ah,i(x), ∀h ∈ H, i ∈ I (A.7b)

Bl,t
i λi ≤ 0, ∀l ∈ N : 1 ≤ l ≤ dim(y), i ∈ I (A.7c)

λi ≥ 0, ∀i ∈ I (A.7d)

x ≥ 0 (A.7e)

A vector x is an optimal solution to Model (A.7) if, and only if, it is also an optimal

solution of Model (A.1).
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Titre : Optimisation Robuste pour la Conception de Réseaux

Mots clés : optimisation robuste adaptative, complexité, approximation, routage, conception de réseaux

Résumé : Étant donnée la nature dynamique du
trafic, nous étudions la variante du problème de di-
mensionnement robuste de réseaux qui consiste à
déterminer la capacité à réserver sur chaque lien d’un
réseau de telle sorte que chaque demande apparte-
nant à un polytope donné puisse être routée. L’ob-
jectif est soit de minimiser la congestion soit un coût
linéaire. Nous étudions tout d’abord l’approximabilité
de la variante avec un routage fractionnaire et dyna-
mique dans des graphes non dirigés. Nous prouvons
tout d’abord que, sauf si P = NP le problème de
minimisation de la congestion ne peut être approché
en dessous d’aucun facteur constant répondant ainsi
à une question ouverte de Chekuri (2007). Ensuite,
en utilisant la conjecture ETH, nous prouverons une
borne inférieure de Ω(log n/ log log n) sur l’approxima-
bilité de ce problème. Nous portons ensuite notre at-
tention sur la variante avec un graphe dirigé. Nous
montrons qu’une solution avec un routage statique
optimal donne une O(

√
k) = O(n)-approximation

du routage dynamique optimal, où k est le nombre
de commodités et n le nombre de noeuds. Nous
montrons ensuite qu’une généralisation naturelle du
problème ne peut être approché en dessous d’un fac-

teur de k
c

log log k pour une certaine constante c (resp.
2log

1−ϵ k pour tout ϵ > 0) sauf si NP ⊆ SUBEXP
(resp. NP ⊆ QP ). Nous étudions également plu-
sieurs reformulations du problème de dimension-
nement robuste de réseaux permettant d’améliorer
la méthode de routage affine. Nous montrons tout
d’abord que la formulation par noeud-arc peut être
moins restrictive que la formulation par arc-chemin.
Nous fournissons également une formulation natu-
relle équivalente a la formulation par noeud-arc. Nous
étudions ensuite plusieurs formulations basées sur
des relaxations des contraintes de conservation de
flot. Ensuite, nous étudions des formulations basées
sur des agrégations de commodité par source ou par
destination. Enfin nous proposons une stratégie in-
termédiaire entre l’approche statique et l’approche dy-
namique pour s’approcher encore plus du dynamique
tout en contrôlant la complexité. Il s’agit d’une ap-
proche qu’on pourrait qualifier de multi-statique. L’idée
est de choisir un ensemble de faces du polytope
représentant l’ensemble d’incertitude de telle manière
que l’union des ces faces contienne tous les points
extrêmes non-dominés de cet ensemble. Un routage
statique est considéré pour chacune de ces faces.

Title : Robust Optimization for Network Design

Keywords : adjustable robust optimization, complexity, approximation, routing, network design

Abstract : Given the dynamic nature of traffic, we
investigate the robust network design problem where
we have to determine the capacity to reserve on each
link so that each demand vector belonging to a poly-
hedral set can be routed. The objective is either to
minimize congestion or a linear cost. When routing
is assumed to be fractional and dynamic (i.e., de-
pendent on the current traffic vector), we first prove
that the robust network design problem with mini-
mum congestion cannot be approximated within any
constant factor, settling an open question by Che-
kuri (2007). Then, using the ETH conjecture, we get
a Ω( logn

log logn ) lower bound for the approximability of
this problem. We next focus on the variant in which
the underlying graph is directed. We prove that an
O(

√
k) = O(n)-approximation can be obtained by sol-

ving the problem under static routing, where k is the
number of commodities and n is the number of nodes.
We show that a natural generalization of the problem
cannot be approximated within a ratio of k

c
log log k for

some constant c (resp. 2log
1−ϵ k for any ϵ > 0) un-

less NP ⊆ SUBEXP (resp. NP ⊆ QP ). Affine
routing can be used to obtain better solutions also
with polynomial-time algorithms. It consists in restric-
ting the routing to depend on the demands in an af-
fine way. We first show that a node-arc formulation
is less conservative than an arc-path formulation. We
also provide a natural cycle-based formulation that is
shown to be equivalent to the node-arc formulation.
To further reduce the solution’s cost, several new for-
mulations are proposed. They are based on the re-
laxation of flow conservation constraints. The obtai-
ned formulations have been further improved through
aggregation. As might be expected, aggregation al-
lows us to reduce the size of formulations. A more stri-
king result is that aggregation reduces the solution’s
cost. We finally propose an intermediate strategy bet-
ween static and dynamic routing that can be seen as a
new variant of multi-static routing. We consider some
faces of the uncertainty set whose union contains all
non-dominated extreme points of the polytope. Then
a static routing is considered for each of these faces.
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