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Abstract: One of themost puzzling facts about
quantum theory is that it predicts nonlocal be-
haviors of nature. This naturally leads to ask
whether this property is just an artifact of the
theory, or if such observations could actually
be made. Answering such question led John
S. Bell to develop a framework allowing for
the study of arbitrary theories solely based on
the statistics they predict. As such, quantum
based predictions were utilized to build experi-
ments disqualifying any local theory of nature.

Conversely, studying the statistics obtainable in
such experiments, as well as the set formed by
all quantum statistics, has been shown to cap-
ture someof quantum theory’s core properties.
However, only partial descriptions of this set
have been provided until now. In this thesis, we
delve into the world of this quantum set, study-
ing its geometry through the lens of self-testing,
a method that allows to infer the underlying
physics of a quantumexperimentwhen specific
statistics are achieved.

Titre : L’ensemble des corrélations quantiques: Inégalités de Bell, Caractérisation "boîte noire"
et Géométrie convexe
Mots clés: Informationquantique, Corrélations quantiques, Inégalités deBell, Certification "boîte
noire", Géométrie convexe

Résumé : L’un des faits les plus déroutants de
la théorie quantique est qu’elle prédit des com-
portements non locaux de la nature. Cela con-
duit naturellement à se demander si cette pro-
priété n’est qu’un artéfact de la théorie, ou si
de telles observations peuvent réellement être
faites. La réponse à cette question a conduit
John S. Bell à développer un cadre permettant
d’étudier des théories arbitraires uniquement
sur la base des statistiques qu’elles prédisent.
Ainsi, les prédictions quantiques ont été util-
isées pour construire des expériences disqual-
ifiant toute théorie locale de la nature. Inverse-
ment, il a été démontré que l’étude des statis-

tiques obtenues lors de ces expériences, ainsi
que de l’ensemble de toutes les statistiques
quantiques, permettait de saisir certaines des
propriétés fondamentales de la théorie quan-
tique. Cependant, seules des descriptions par-
tielles de cet ensemble ont été fournies jusqu’à
présent. Dans cette thèse, nous nous plon-
geons dans le monde de cet ensemble de cor-
rélations quantique, en étudiant sa géométrie
à travers le self-testing, une méthode qui per-
met de déduire la physique sous-jacente d’une
expérience quantique lorsque des statistiques
spécifiques sont atteintes.
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Synthèse en français

Contexte et motivations
L’un des aspects les plus fascinants de la théorie quantique est que l’existence d’intrication entre

particules prédit des corrélations qui ne peuvent pas être expliquées par un modèle local impliquant
des variables cachées. Cette propriété frappante, souvent appelée non-localité de Bell [15], a d’abord
été observée comme un artefact des outils mathématiques utilisés pour décrire la mécanique quan-
tique et en particulier la fonction d’onde [1].

À la suite des travaux fondamentaux de John S. Bell [5], il a ensuite été proposé un cadre pour
tester le comportement de la nature et la possibilité qu’elle soit décrite par un modèle local. L’idée
d’une telle expérience de Bell est d’examiner la distribution de probabilité des résultats réalisables
par un certain nombre de parties, compte tenu de certains choix aléatoires d’entrées. En fonction de
la théorie sous-jacente décrivant une telle expérience, on s’attend à pouvoir observer certaines dis-
tributions, tandis que d’autres distributions sont impossibles à réaliser. Cette idée peut être traduite
dans un protocole expérimental en répétant des essais identiques, où dans chacun d’eux un vérifica-
teur alimente les dispositifs non fiables testés avec des entrées de son choix, et enregistre les résul-
tats obtenus. À la fin, le vérificateur est en mesure d’effectuer une analyse statistique des données
pour observer une certaine distribution. Par exemple, l’analyse des distributions observables dans
une expérience de Bell donnée prédit que la valeur maximale d’une fonction linéaire unique de la
distribution de probabilité, appelée expression de Bell CHSH, permet de faire la distinction entre ce
que toutes les théories locales peuvent réaliser et ce que la théorie quantique prédit [9]. Les expéri-
mentateurs ont donc mis tout leur cœur à utiliser la mécanique quantique et ses prédictions pour
observer des distributions incompatibles avec un modèle local [6] et ont maintenant réussi à exclure
ces descriptions de la nature de manière indéniable [7].

Une chose importante à souligner à propos de ces résultats est qu’ils ne dépendent pas de la
validité de la théorie quantique : une expérience de Bell ne valide pas une théorie quantique, elle ne
fait qu’écarter toutes les théories qui n’impliquent que des mesures locales. En pratique, cependant,
les démonstrations expérimentales reposent sur les hypothèses que les entrées sont indépendantes
et que les résultats de chaque partie ne peuvent dépendre des entrées des autres (en pratique, cela
peut être assuré par une séparation space-like et l’hypothèse que l’information ne peut pas voyager
plus vite que la lumière). Les théories qui vérifient ce dernier principe sont appelées non-signaling
et comprennent la formulation moderne de la mécanique quantique. Toute conclusion tirée d’une
expérience de Bell inclut donc une connaissance a priori de ce qui est appelé local et est supposé être
non-signaling. Ces concepts correspondent à des principes physiques indépendants du formalisme
considéré, contrairement à la théorie quantique.

L’un des principaux obstacles à la recherche d’un tel principe sous-jacent à la théorie quantique
pourrait être le fait que nous ne savons toujours pas exactement quelles distributions, selon cette
même théorie, peuvent être obtenue dans une expérience de Bell. L’ensemble de ces distributions,
appelé ensemble quantique, doit encore être caractérisé : en effet, si la théorie prédit des distribu-
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tions à observer, savoir si une distribution observée peut être prédite par la théorie est une question
hautement non triviale. Cependant, des contributions importantes comme celle de Tsirelson [11] ont
montré qu’il était possible de considérer l’ensemble quantique comme un ensemble convexe et donc
de l’étudier d’un point de vue géométrique : on peut étudier sa topologie, décrire ses points extré-
maux oumême trouver l’"équivalent quantique" des inégalités de Bell, ce qui permet de distinguer les
comportements quantiques des comportements non quantiques. Les expériences de type Bell ont
donc été étudiées pour leur capacité à distinguer entre différents formalismes quantiques : il a par ex-
emple été démontré que la théorie quantique réelle prédit un ensemble de distributions strictement
plus petit que la théorie quantique complexe dans les approches basées sur les réseaux [12].

L’un des résultats les plus marquants pour décrire l’ensemble quantique a été la construction
d’une hiérarchie de programmation semi-définie (SDP) par Navascués, Pironio et Acín (NPA), offrant
un outil pour aborder cette question en termes de famille d’ensembles de distribution convergeant
vers l’ensemble quantique depuis l’extérieur [13]. Cependant, cette construction implique des vari-
ables supplémentaires dont les valeurs sont a priori inconnues, et le niveau de la hiérarchie qui doit
être atteint pour fournir une réponse définitive pourrait être supposé infini.

D’autres travaux ontmis en lumière des liens inattendus entre les expériences de Bell et la théorie
quantique. Les violations des inégalités de Bell donnent des indications sur la description formelle
des dispositifs physiques, comme la non-séparabilité de l’état. Les violations maximales de certaines
inégalités de Bell sont même réalisées de manière unique par des états et des mesures spécifiques
du formalisme, jusqu’à certains degrés de liberté locaux. Cette propriété frappante, appelée self-
testing [14], joue un rôle important dans de nombreux protocoles d’information quantique. En effet,
cetteméthode ne requiert aucune hypothèse sur le fonctionnement interne des appareils demesures
et des sources utilisés, et ouvre donc la porte à une gamme de protocoles appelés device-independent,
ou protocoles “boîte-noire”. Cette approche fournit également un aperçu de l’ensemble quantique lui-
même, car le self-test identifie des distributions quantiques extrêmes. Bien que le self-testing ait été
principalement observé en fonction de la violation maximale de certaines inégalités de Bell, d’autres
résultats sont basés sur la connaissance de la distribution de probabilité complète. L’approche du self-
testing s’est avérée capable d’identifier de manière unique non seulement des états maximalement
intriqués mais aussi des états partiellement intriqués, se trouvant dans des espaces de Hilbert de
dimensions arbitraires.

Cette thèse vise à mieux comprendre la relation entre les corrélations quantiques, les inégalités
de Bell et le self-testing. Nos motivations sont doubles. D’une part, comprendre ce que la théorie
quantique peut réaliser dans les expériences de Bell est de la plus haute importance d’un point de vue
fondamental. D’autre part, les corrélations quantiques dans les expériences de type Bell et les tests
automatiques se sont révélés très prometteurs dans les protocoles de traitement de l’information
[15]. Des cas d’utilisation ont été trouvés par la mise en œuvre de systèmes de certification, par
exemple dans les communications sécurisées ou l’informatique quantique déléguée [16, 17]. Avec le
développement rapide de ces technologies, unemeilleure compréhension des principes sous-jacents
est nécessaire pour améliorer la portée, l’efficacité et la praticité de ces mises en œuvre. De manière
plus frappante, de nombreux protocoles utilisant le self-testing reposent en fait sur l’hypothèse que
la physique à l’intérieur de l’expérience est effectivement décrite par la théorie quantique. Il est donc
d’autant plus important de certifier que la théorie quantique est en fait une description complète
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et qu’aucune autre physique plus grande que la physique quantique ne peut briser les preuves de
sécurité.

Organisation du manuscrit
Le premier chapitre de la thèse présente les concepts clés qui sous-tendent la majeure partie du

manuscrit. En particulier, il donne un aperçu clair des notations qui seront utilisées et rappelle les
définitions, notamment, des corrélations quantiques, des inégalités de Bell et du self-testing. Il intro-
duit également quelques notions de géométrie convexe avec lesquelles certains lecteurs pourraient
être moins familiers.

Le deuxième chapitre présente une expérience de Bell menée à Zurich sur deux qubits supracon-
ducteurs à une distance de 30 mètres l’un de l’autre, voir Fig. 1. Cette collaboration avec une équipe
expérimentalemontre comment les concepts théoriques présentés dans le premier chapitre sontmis
en œuvre dans la pratique. Elle met également en évidence les défis pratiques à relever pour réaliser
une certification d’états et de mesures quantiques de manière indépendante des appareils utilisés
(“boîte-noire”). Cette expérience consitue la première fois qu’un self-testing robuste aux erreurs ex-
périementales est conduit de manière complète sur l’état et sur les mesures utilisés, et ce en prenant
en compte les effets dus aux statistiques finies. Cet apport ouvre la voie à l’utilisation du self-testing
comme protocole de certification.

Figure 1: Schéma du montage expérimental mis en place par l’équipe de recherche à l’ETH à Zurich. Les deux qubits supraconducteurs,
situés aux nœuds A et B, sont séparés par un tunnel de 30m de long, refroidi à 15mK, servant à distribuer l’intrication.
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Le troisième chapitre se concentre sur la tâche consistant à dériver des expressions de Bell adap-
tées à la caractérisation de l’état d’une cible et/ou desmesures d’une cible. Le self-testing étant la pierre
angulaire des protocole “boîte-noire”, il apparaît nécessaire de pouvoir caractériser les ressources les
plus adaptés à chaque protocole. Pour ce faire, nous présentons une méthode qui utilise la somme
formelle des carrés (SOS), ainsi que plusieurs exemples d’application. Nous utilisons cette méth-
ode pour dériver de nouvelles inégalités adaptées à l’état à deux qubits maximalement intriqués et
de nouveaux self-tests pour l’état à deux qubits partiellement intriqués, impliquant des paramètres
de mesure plus larges que les résultats précédemment connus. Notons que la méthode que nous
présentons fournit des conditions nécessaires et asymptotiquement suffisantes.

Le quatrième chapitre complète le précédent en présentant comment trouver toutes les expres-
sions de Bell qui sont maximisées par une réalisation donnée. Si l’objectif présenté apparait comme
théorique, il n’en reste pas moins d’intérêt pratique : à protocole (et donc réalisation) donné se pose
la question dumeilleur témoin de certfication pouvant être utilisé. Le choix de ce dernier peut dépen-
dre des bruits ou des contraintes expériemntales propres à chaque expérience. L’approche novatrice
que nous adoptons dans ce chapitre répose sur des outils de géométrie convexe et plus particulière-
ment sur la notion de dualité des ensembles convexes. Après avoir présenté cette approche générale,
nous nous concentrons sur l’étude du point de Tsirelson, distribution ayant joué un rôle historique
dans le domaine de l’information quantique, notemment comme étant le seul qui maximise l’inégalité
CHSH. Nos résultats s’articulent autour de deux axes : du point de vue du self-testing, nous montrons
que ce point peut être caractérisé avec une famille d’inégalités à deux paramètres ; du point de vue
géométrique, notre travail apporte un éclairage nouveau sur la géométrie de l’ensemble quantique
puisque nous prouvons que ce point est anguleux et, dans une projection donnée, se trouve au som-
met d’une pyramide à base octogonale, voir Fig. 2.

Le cinquième et dernier chapitre fournit la première description analytique de l’ensemble quan-
tique dans le scénario de Bell avec deux parties, deux entrées et deux réponses possibles. Cette de-
scription est fournie par une paramétrisation complète des points extrêmes de l’ensemble quantique,
avec une interprétation géométrique claire. Nous montrons en particulier que tous les points exté-
maux dans ce scénario fournissent un self-testing d’une réalisation réelle impliquant un état de deux
qubit et des mesures dans le plan (σz, σx) satisfaisant une condition d’alternance. Ceci fournit tous
les self-tests pour ce scénario. Notre travail repose sur la découverte d’une nouvelle transformation
non linéaire basée sur le steering, qui permet d’exprimer une réalisation impliquant un état partielle-
ment intriqué en termes de quatre sous-réalisations impliquant un étatmaximalement intriqué. Cette
transformation, ainsi que les éléments constituant les preuves des résultats, nous semblent fournir
une base solide pour décrire l’ensemble quantique dans des scénarios de Bell plus complexes.

Demanière générale, cette thèse explore en profondeur la relation entre corrélations quantiques
et self-testing en scénario de Bell. En evisageant le développement de nouvelles applications promet-
teuses à travers des dispositifs innovants et des méthodes de communication avancées, et donc la
croissance rapide des technologies basées sur la mécanique quantique, il devient essentiel de cer-
tifier leur bon fonctionnement. Dans cette optique, le self-testing apparaît comme un outil de pre-
mier choix. Bien que des progrès significatifs aient été accomplis, beaucoup de questions théoriques
restent ouvertes, notamment concernant la description géométrique complète de l’ensemble quan-
tique et sa relation avec son dual. L’étude des corrélations quantiques dans des scénarios élargis et
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Figure 2: Projection tri-dimensionnelle de l’ensemble des correlations locales (en rouge) et de l’ensemble quantique (en rouge et bleu) pour
un scenario de Bell avec deux parties ayant chacun deux entrées et deux réponses possibles. Dans cette projection, le point de Tsirelson,
PT , se trouve au sommet d’une pyramide à base ocotgonale.

l’application de ces résultats à des protocoles quantiques plus robustes sont des pistes importantes
pour les travaux futurs. En somme, cette thèse apporte des outils mathématiques et des idées no-
vatrices pour progresser dans la description de ce que la théorie quantique peut accomplir dans les
scénarios de type Bell, et propose des résultats qui pourront non seulement enrichir la compréhen-
sion fondamentale de la théorie quantique, mais aussi favoriser le développement d’applications pra-
tiques, notamment dans les domaines de la certification et de la sécurité quantique.
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Introduction

Background and motivations
A theoretical physicist is someone who specialize in mathematical model-

ing of physical systems to rationalize our understanding of natural phenom-
ena. Thismodeling can be a two-way road: on one hand, it can be driven by an
observed, yet unexplained, phenomenon, for which a new theory is needed;
on the other hand, a given theory can predict new phenomena, yet to be ob-
served. While the first way could be extremely challenging, the latter may just
simply be impossible. Indeed, predictions from a purely mathematical the-
ory may not have any physicality: the theory and the physics it describes are
two very distinct, yet indivisible, objects, as perfectly summarized by Einstein,
Podolsky and Rosen [1]:

"Any physical consideration of a physical theory must take into account the
distinction between the objective reality, which is independent of any theory, and

the physical concepts with which the theory operates."

When these twodon’tmatch, a question arises: should the theory bemodified
to only account for the objective reality, or should one keep pushing harder
to observe the physical concepts it predicts?

Quantum theory has been, from its faltering steps up to nowadays, an
amazing example of this dilemma. Max Plank himself, a pioneer of the field,
thought of the quanta (from which the name of the theory comes from), in-
troduced to explain black-body radiations, as a purely formal assumption. He
wrote in a letter in 1931 [2]:

"I really did not give it much thought except that no matter what the cost, I must
bring about a positive result."

Quantum theory was born: physicists allowed themselves for heuristic math-
ematical corrections of existing theories to explain physical observations with
unprecedented precision.

With the development of such models to express various phenomena,
such as particle/wave duality of light or diamagnetism, soon came the need
for a unifying theory. With it came a load of new mathematical objects: parti-
cles’ states took the form of wave functions over Hilbert spaces, on whichmea-
surements could be performed. Interestingly, at a 30 years interval, the same
Einstein who proved that Plank’s quanta had an objective reality, disbelieved
some of the physical concepts introduced by this new formalism. Indeed, this
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theory predicted that measurements performed on the wave function could
instantaneously modify the state of a particle across the whole space, thus
leading to a highly nonlocal operation. Again came the intrinsic dilemma of
theoretical physics: does the wave function and the measurement process
have no physicality, or can we observe nonlocal phenomena matching the
theory’s predictions?

These questions raised over the years a debate on whether quantum the-
ory is ontic or epistemic, i.e. whether every element of the theory describes a
physical reality or only observers’ beliefs about the physical state. Regarding
the wave function, Harrigan and Spekkens proposed a mathematical frame-
work for the debate [3], which allowed to prove, under reasonable indepen-
dence assumptions, that the wave function of any quantum theory can be
seen as ontic [4]. Then again, as these results rely on a given mathematical
formulation of the underlying problem, they could be prone to criticism.

Regarding the measurement process, its nature is still under vivid debate,
but its nonlocality has been treated as an independent line of work. Following
the seminal work of John S. Bell [5], it has been later proposed a framework
to test the behavior of nature and the possibility that it could be described by
a local model. The idea of such a Bell experiment is to consider the probability
distribution of outputs achievable by a number of parties, given some ran-
dom choices of inputs. Depending on the underlying theory to describe such
an experiment, one expects to be able to observe some distributions, while
other distributions are impossible to realize. This idea can be translated into
an experimental protocol by repeating identical trials, where in each of them
a verifier feeds the untrusted devices under test with inputs of his choice, and
records the answered outcomes. In the end, the verifier is able to perform a
statistical analysis of the data to observe some distribution. Experimentalists
have therefore put their hearts to use quantum mechanics and its predic-
tion to observe distribution incompatible with a local model [6] and have now
managed to rule out these descriptions of nature in an undeniable fashion
[7].

One important thing to highlight about these results is that they do not de-
pend on the validity of quantum theory. Then again, Bell experiments were
first introduced for the capacity to distinguish between local and nonlocal be-
haviors and have a priori nothing to do with quantum theory, as Froissart
perfectly pointed in 1981 [8]:

"Data violating Bell’s inequalities contradict all locally causal theories, but they
do not either prove or disprove quantum mechanics".

In practice, however, experimental demonstrations rely on the assumptions
that inputs are independent and that information cannot travel faster than
light. Theories verifying this latter principle are called non-signaling and in-
clude the modern formulation of quantummechanics. Any conclusion drawn
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from a Bell-experiment thus includes an a priori knowledge of what is called
local and is assumed non-signaling. These are however easier concepts to
grasp as they correspond to physical principles independent of the formal-
ism. One of the most convincing line of research to argue of quantum theory
as complete has thus been to find a physical principle sufficient to match the
predictions of the quantum formalism. For example, Bell experiments pre-
dict that the maximal value of a single linear function of the probability dis-
tribution, called the CHSH Bell inequality [9], allows distinguishing between
what all local and non-signaling theories can achieve. Quantum theory how-
ever predicts that one can obtain a maximal value strictly between these two
bounds. A convincing refinement of the non-signaling principle, called infor-
mation causality1, has been proven to be sufficient tomatch the upper bound
of quantum theory [10]. Unfortunately, this principle has been foundwanting,
as it allows for other distributions the formalism doesn’t predict.

One of the main obstacle for the search of this underlying principle might
be the fact that we still actually don’t know exactly what distribution quan-
tum theory predicts to be achievable in a Bell experiment. The ensemble
of such distributions, referred to as the quantum set, is yet to be character-
ized: indeed, if the theory predicts distributions to be observed, it is a highly
non-trivial question to known whether an observed distribution can be pre-
dicted by the theory. However, important contributions such as Tsirelson’s
[11] showed that it was possible to consider the quantum set as a convex
ensemble and thus study it from a geometrical perspective: one can study
its topology, describe its extremal points or even find the “quantum equiva-
lent” of Bell inequalities2, allowing to distinguish between quantum and non-
quantum behaviors. Bell-like experiments have therefore been studied for
their ability to distinguish between different quantum formalisms: real quan-
tum theory has been shown to predict a strictly smaller set of distributions
than complex quantum theory in network-based approaches [12].

One of the most prominent results to describe the quantum set has been
the construction of a hierarchy of semi-definite programming by Navascués,
Pironio and Acín (NPA) offering a tool to tackle this question in terms of a fam-
ily of distribution sets converging to the quantum set from the outside [13].
This hierarchy is now a central tool of quantum information science, with an
impact reaching optimization theory. However, this construction involves ad-
ditional variables whose values are a priori unknown, and the level of the hier-

1Formulated as a principle, information causality states: “the information gain that
Bob can reach about a previously unknown to him data set of Alice, by using all his
local resources and m classical bits communicated by Alice, is at most m bits” [10,
p. 1101]

2Just like Bell’s seminal contribution gave his name to Bell inequalities, one could
call there quantum equivalent Tsirelson inequalities, in the memory of Tsirelson’s
seminal work.
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archy which must be reached in order to provide a definitive answer could be
supposedly infinite. It can still be used efficiently at a finite level of relaxation
to ensure that given distributions are not predicted by quantum theory.

Other lines of work have shed light on unexpected links between Bell ex-
periments andquantum theory. Violations of Bell inequalities provide insights
on the formal description of the physical devices, such as non-separability
of the state. Maximal violations of some Bell inequalities are even uniquely
achieved by specific states and measurements of the formalism, up to some
local degrees of freedom. This striking property, called self-testing [14], plays
an important role in many quantum information protocols, but also provides
an insight on the quantum set itself as self-testing identifies extremal quan-
tum distributions. Even though self-testing was mainly observed according to
themaximal violation of some Bell inequalities, other results are based on the
knowledge of the full probability distribution. This method has been shown
to be able to uniquely identify not only maximally entangled states but also
partially entangled ones, lying in Hilbert spaces of arbitrary dimensions.

This thesis aims to better understand the relationship between quantum
correlations, Bell inequalities and self-testing. Our motivations are twofold.
On one hand, understanding what quantum theory can achieve in Bell exper-
iments is of foremost importance from a fundamental point of view: testing
the completeness of quantum theory requires to better understand what is
quantum and what isn’t. On the other, quantum correlations in Bell-like ex-
periments and self-testing have been proven to be very promising in infor-
mation processing protocols [15]. Use cases were found through the imple-
mentation of certification schemes, for example in secure communications
or delegated quantum computing [16, 17]. With the quick development of
such technologies, a better understanding of the underlying principles is nec-
essary to enhance the range, the efficiency and the practicality of such im-
plementations. More strikingly, many protocols utilizing self-testing actually
rely on the assumption that the physics inside the experiment is indeed de-
scribed by quantum theory. This makes it evenmore important to certify that
quantum theory is actually a complete description and that no other larger-
than-quantum physics could break the security proofs.

4



Organization of the manuscript
The first chapter of the thesis introduces the key concepts that underline

most of themanuscript. In particular, it gives a clear overview of the notations
that will be used and recalls the definitions of, most notably, quantum corre-
lations, Bell inequalities and self-testing. It also introduces some notions of
convex geometry with which some reader might be less familiar with.

The second chapter showcases a Bell experiment that was conducted in
Zurich on two superconducting qubits at a distance of 30meters from one an-
other. This collaboration with an experimental team sheds light on how the
theoretical concepts introduced in the first chapter are implemented in prac-
tice. It also highlights the practical challenges to perform device-independent
certification.

The third chapter focuses on the task of deriving Bell expressions that are
suited for the characterization of a target state and/or target measurements.
To do so, we present a method that uses formal Sum of Squares, along with
several examples. We use this method to derive new inequalities tailored to
the maximally entangled two qutrit state and new self-tests for the partially
entangled two qubit state, involving broadermeasurements parameters than
previously known results. Note that the method we present provides neces-
sary conditions for the task and is asymptotically complete.

The fourth chapter complements the previous one as it presents how to
find all Bell expressions that aremaximized by a given realization. After show-
casing our general approach, we focus on the study of the Tsirelson point, the
only one maximizing the CHSH inequality. Our results are divided along two
lines: from a self-testing point of view, we show that this point can be self-
tested with a two parameter family of inequalities; from a geometrical point
of view, our work provides fresh insight on the geometry of the quantum set
as we prove that this point is angulous and, in a given projection, lies on top
of an octagonal based pyramid.

The fifth and final chapter provides the first analytical description of the
quantum set in the Bell scenario with two parties, two inputs and two outputs.
This description is provided by a full parameterization of the extremal point
of the quantum set, with a clear geometrical interpretation. Our work relies
on the discovery of a new non-linear transformation based on steering, that
allows expressing a realization involving a partially entangled states in terms
of four sub-realizations involving a maximally entangled one. This provides
all the self-tests for this scenario.
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I – Definitions, Key concepts and No-
tations

I.1 - Bell nonlocality
I.1.1 . Bell experiment

In his seminal work, John S. Bell introduced a framework to put to a test
the local nature of physics [18]. The idea is to take two parties (that we like
to call Alice and Bob) and put them in two labs. They are then going to play
a game where at each round they are going to be asked a random question,
say x = 0, 1 for Alice and y = 0, 1 for Bob, and will have to give a binary
answer, a ∈ {−1,+1} for Alice and b ∈ {−1,+1} for Bob. If you make them
play a very large number of rounds and record for each round the inputs that
were received, and the outputs that were given, you will be able to infer the
probability to observe specific pairs of answers with respect to the questions
asked. This set of 16 probabilities can be encoded into a vector

~P = {p(ab|xy)}abxy ∈ R16 (I.1)

Note that we did not assume anything about the link that could exist between
Alice and Bob, whether during or before the experiment is played, neither
on how they decide on their answers. For one thing, Alice and Bob could be
on the phone during the experiment! Restricting what Alice and Bob can do,
i.e. imposing constraints on theway the experiment is played, the devices they
have access to or the laws of physics that rule this world, allows for different
probabilities ~P to be observed.

The only thing that one can say about such probabilities is that they are
observed in the physical realm and as such they must be valid probability
distribution, i.e. verify:

positivities: ∀a, b, x, y, p(ab|xy) ≥ 0, (I.2a)

normalization: ∀x, y,
∑
a,b

p(ab|xy) = 1. (I.2b)

Even though we introduced the idea of Bell experiment for only two par-
ties each having two possible inputs and outputs, the idea can be generalized
to an arbitrary number of each of these. Each form a different scenario for
which it will be possible to infer some probability vector that can be achieved
or not among specific assumptions. For the rest of the manuscript, when
dealing with such scenarios, we will denote them as (n,m, k) where n is the
number of parties,m and k are respectively the number of inputs and outputs
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for each party. If nothing is specified, consider that we are in the scenario pre-
sented before, referred to as the CHSH scenario.

I.1.2 . The non-signaling set
A first constraint that can be applied on the two parties is that they are not

able to communicate their inputs with one another. One way to impose this
information principle is to assume that inputs have no physical reality before
they are given to the parties and to trust that the laws of physics do abide to
the principle of special relativity, which states that information cannot travel
faster than the speed of light c. As such, if one puts Alice and Bob sufficiently
far apart, at distance d, and ask them to answer within a short enough time
frame t < d/c, one can ensure that the outcome a of Alice does not depend
on the input y of Bob, and vice versa.

Such an assumption implies operational restrictions on the probabilities
~P that can be observed. Mathematically speaking, itmeans that themarginals
probabilities of each party are well-defined:

∀a, x, p(a|x) :=
∑
b

p(ab|xy) doesn’t depend on y, (I.3a)

∀b, y, p(b|y) :=
∑
a

p(ab|xy) doesn’t depend on x. (I.3b)

When probabilities obey this principle and Eq. (I.2), we say that they are non-
signaling. The set of all such probability vectors, denoted N in the following,
is a first physical set of interest as it encodes a fundamental principle.

Note that when a probability vector is non-signaling, it can be convenient
to introduce new quantities, called correlators, defined in the following way:

correlations: 〈AxBy〉 =
∑
ab

abp(ab|xy), (I.4a)

marginals: 〈Ax〉 =
∑
a

ap(a|x), (I.4b)

〈By〉 =
∑
b

bp(b|y). (I.4c)

Non-signaling and normalization conditions allows for a one to one identifi-
cation between correlators and probabilities. This change of variable allows
to study a vector of correlators that is embedded in R8 only. The positivity
constraints can be translated to inequalities on the correlators as:

∀a, b, 1 + a〈Ax〉+ b〈By〉+ ab〈AxBy〉 ≥ 0. (I.5)

In the following, we will sometimes use a representation of these correlators
in tables, defined by

~P =

〈B0〉 〈B1〉
〈A0〉 〈A0B0〉 〈A0B1〉
〈A1〉 〈A1B0〉 〈A1B1〉

. (I.6)
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I.1.3 . The local set
One thing that Alice and Bob could do before playing the game is that they

would meet up and craft a strategy on how to produce the answers. It could
also be that their labs share a similar painting encoding for a secret message.
To account for all those past events that could have happened before the
experiment between the labs of Alice and Bob, one can consider a variable
λ that is shared between the two. The physical hypothesis of locality, which
state that the physical measurements are local procedures, ensures that the
answers given by each party only depend on their input and their past, and
not on the answer given by the other player. The probabilities should thus
factorize in the following way:

p(ab|xy, λ) = p(a|x, λ)p(b|y, λ). (I.7)

where p(a|x, λ) and p(b|y, λ) are themselves valid probability distributions. To
take into account the fact that the common past of Alice and Bob may not be
deterministic, one can consider that λ is a continuous probability distribution.
Locality therefore allows for any probability vector verifying

p(ab|xy) =

∫
λ
p(a|x, λ)p(b|y, λ)p(λ)dλ (I.8)

and the set of all such vectors is called the local set, denoted L. Conversely,
any vector ~P ∈ R8 for which Eq. (I.8) does not hold is called nonlocal. Note
that every vector in L is also in N .

I.1.4 . The quantum set
If Alice and Bob were to be two physicists, they might have heard about

quantum mechanics and the notion of entanglement. This striking property
implies that measurements performed on a physical state can alter its state
instantaneously. In particular, they could get the idea to share beforehand
some entangled particles and perform measurements on it to predict their
answers. The probabilities that they could obtain by doing so can be predicted
by quantum mechanics and Born’s rule to be:

p(ab|xy) = TrAB((Πa,x ⊗Πb,y)ρAB) (I.9)

where ρAB is the density matrix of the shared state, Πb,y are the local projec-
tive measurements performed by Alice and Bob respectively. As such, they
verify ρAB ≥ 0, Tr(ρAB) = 1, Πa,xΠa′,x = δaa′Πa,x and

∑
a Πa,x = 1A (likewise

for Bob), ensuring that the obtained probability vector is in N .
One very important thing to notice is that Alice and Bob could have local

Hilbert spaces of arbitrary large dimensions. Every vector of probabilities that
admits local Hilbert spaces, a shared state and local measurements such that
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Eq. (I.9) holds is called a quantum point. The set of all such points is the quan-
tum set, denotedQ. It is a set of physical interest, as it encodes for everything
achievable within quantum theory in a Bell experiment.

Note that if they decide to share a separable state, i.e. that the densityma-
trix can be decomposed as ρAB =

∑
i λiρ

(i)
A ⊗ρ

(i)
B (with λi ≥ 0 and

∑
i λi = 1)

then, not so surprisingly, the corresponding probability vector satisfies

p(ab|xy) =
∑
i

λi TrA(Πa,xρ
(i)
A ) TrB(Πb,yρ

(i)
B ) (I.10)

and is thus fully local. The notion of separability in quantummechanics is thus
intrinsically linked with the notion of locality.

Finally, in a scenario with only two outputs per party, it is often useful to
consider the unitary operators

Ax = Π+,x −Π−,x, By = Π+,y −Π−,y (I.11)

which verifyA2
x = B2

y = 1. Indeed, these allow for a simpler expression of the
correlators:

〈AxBy〉 = Tr((Ax ⊗By)ρAB), (I.12a)
〈Ax〉 = Tr(AxρAB), 〈By〉 = Tr(ByρAB). (I.12b)

In the following we will call (ρ,Ax, By) a realization. Every realization gives a
well-determined correlator vector through the above equation.

I.1.5 . Bell expressions
Todistinguish between local andnonlocal correlations, Bell had the idea of

computing inequalities that would be valid for all probability vectors verifying
the hypothesis of local realism. These inequalities take the following form:

~β · ~P ≤ βL (I.13)

where ~β ∈ R16, · is the canonical scalar product of R16 and βL is the maxima
of the left-hand side for all possible vectors ~P ∈ L. As such, any probability
vector ~P verifying ~β · ~P > βL is nonlocal: we say that it violates this Bell in-
equality. In what follows, we will refer to ~β as the Bell expression underlying
the inequality.

The mindful reader will have noticed that we already encountered Bell
inequalities in our preliminary remarks in the formof the positivity constraints
Eq. (I.2a). However, they are not particularly relevant to explore as they are
verified by all non-signaling correlations. As such, no physical model that one
could think of would allow for a violation of these inequalities.

One of the first and most interesting inequality that was proposed to test
the local nature of physics was the CHSH inequality [9]:∑

abxy

ab(−1)xyp(ab|xy) ≤ 2. (I.14)
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which can be reformulated in terms of correlators as

〈A0B0〉+ 〈A1B0〉+ 〈A0B1〉+ 〈A1B1〉 ≤ 2. (I.15)

This inequality allows for non-trivial violations within the framework of quan-
tum mechanics. Indeed, if Alice and Bob share a maximally entangled two
qubit state ∣∣φ+

〉
=

1√
2

(|00〉+ |11〉) (I.16)

and perform measurements

A0 = σz, A1 = σx, (I.17a)

B0 =
σz + σx

2
, B1 =

σz − σx
2

, (I.17b)

they will obtain the following correlators:

~PT =

0 0

0 1√
2

1√
2

0 1√
2
− 1√

2

. (I.18)

As such, this realization gives a Bell violation of 2
√

2. One can prove that this is
the maximal value for any point in Q. Likewise, one can find that there exists
some non-signaling correlators that give violations up to 4. As such, the CHSH
expression gives rise to three different inequalities:

~βCHSH · ~P ≤


2 if ~P ∈ L,
2
√

2 if ~P ∈ Q,
4 if ~P ∈ N .

(I.19)

The largest value that one can reach with quantum theory, here 2
√

2, is called
the Tsirelson bound of the Bell expression, denoted βQ. In general, one can
refer to the quantum inequality ~β · ~P ≤ βQ as the corresponding Tsirelson
inequality. Quite remarkably, note that a single Bell expression is sufficient to
distinguish between the three sets of physical interest and to state that

L  Q  N . (I.20)

I.1.6 . Elements of Convex Geometry
Every single set we have considered so far is convex. For the non-signaling

set, it is because it arises from linear constraints only and those are preserved
by convexity. For the local set, we constructed it as the convex mixture, with
weight λ, of every separable probabilities, see Eq. (I.8). Finally, for the quan-
tum set, convexity arises from the unboundness of the local Hilbert space di-
mensions. Indeed, if one considers two quantum points ~P (1), ~P (2), admitting
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two realizations (ρ(1), A
(1)
x , B

(1)
y ) and (ρ(2), A

(2)
x , B

(2)
y ) on local Hilbert space

L(H(k)
A(B)), then for any p ∈ [0, 1]

ρ = pρ(1)
⊕

(1− p)ρ(2), Ax = A(1)
x

⊕
A(2)
x , By = B(1)

y

⊕
B(2)
y (I.21)

is a valid realization on larger local Hilbert spaces L(H(1)
A(B)

⊕
H(2)
A(B)) whose

correlation vector is ~P = p~P (1) +(1−p)~P (2). As such, convex geometry seems
like a tool of particular interest for the study of these three sets.

One subset of remarkable points of a convex set K ⊂ Rn is the set of
extremal points, denoted Ext(K). Extremal points are ones that cannot be de-
composed as convex mixture of two other distinct points, i.e. ~P ∈ K verifying

∀~P1, ~P2 ∈ K, p ∈ [0, 1], ~P = p~P1 + (1− p)~P2 =⇒ ~P1 = ~P2 = ~P . (I.22)

In finite dimension, convex sets are exactly the convex hull of their extremal
points, i.e. K = Conv(Ext(K)) [19, Corollary 18.5.1]. As such, the knowledge
of the extremal points of a convex set is of foremost importance. For example,
the non-signaling set admits 24 extremal points given by

~PDa,a′,b,b′ =

b b′

a ab ab′

a′ a′b a′b′
, ~PPRε,α,β =

0 0

0 ε εα

0 εβ −εαβ
(I.23)

where ~PDa,a′,b,b′ for a, a′, b, b′ ∈ {−1, 1} are called deterministic points, and
~PPRε,α,β for ε, α, β ∈ {−1, 1} are called PR-boxes. Note that the later don’t admit
any local nor quantum realization. The extremal points of the local set are
also known and consist of the 16 deterministic points. As such, both L and
N admit a finite number of extremal points and are thus polytopes. On the
other hand, Q admits an infinite number of extremal points, which makes it
way harder to characterize.

Another useful tool for the study of convex sets is the notion of duality.
The dual of a convex set K ∈ Rn is defined as

K? = {~β ∈ Rn : ∀~P ∈ K, ~β · ~P ≤ 1}. (I.24)

In terms of nonlocality, the dual encodes the bound of every Bell expression
for a given set of correlators K. For example, ~βCHSH/2 is an element of L?
whereas only ~βCHSH/4 is in N ?. Note that the dual of a convex set is itself
a convex set and is closely related to this original one by the dual closure
(K?)? = K [19, Theorem 14.1]. Interestingly, it has been proven that the local
and non-signaling polytopes are dual to one another in (n, 2, 2)-Bell scenarios,
i.e. L? = N , and that the subset of zero marginal quantum correlators in the
CHSH scenario is its own dual [20]. However, no specific relation between
the sets Q and its dual Q? is known in arbitrary scenarios. Yet, as the latter
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encodes the Tsirelson bound of all Bell expressions, it is equally important to
describe it, as those play a key role in many quantum information protocols.

Finally, the last notion that we will introduce here is a way to distinguish
between two classes of extremal points. The first class is the set of exposed
points, which are the ones that are the unique maximizer of a given Bell ex-
pression, i.e. ~P ∈ K such that:

∃~β ∈ K?, ∀~P ′ ∈ K, ~β · ~P ′ = 1 =⇒ ~P ′ = ~P . (I.25)

Conversely, such expressions, sometimes called exposing hyperplanes, are par-
ticularly interesting because reaching their maximal value identifies a single
correlator vector. On the other hand, extremal points who do not verify the
above property are called non-exposed.

I.2 - Self-testing
I.2.1 . Reaching the Tsirelson bound of CHSH

We already saw that the CHSH expression is a tool of choice to study some
properties of the physical system used in the experiment. For example, if one
assumes that a quantum realization is performed, a CHSH value strictly larger
than 2 ensures that the shared state is non-separable. An even more striking
fact occurs when reaching the Tsirelson bound 2

√
2.

Consider a quantum realization (ρAB, Ax, By)onarbitrary large local Hilbert
spacesHA andHB . Suppose that the corresponding correlator vector ~P , com-
puted using Eq. (I.12), verifies ~βCHSH · ~P = 2

√
2. Then, one can prove the exis-

tence of local unitary maps

UA ∈ L(HA ⊗ C2), UB ∈ L(HB ⊗ C2), (I.26)

which identify a system of local dimension 2 in which the performed realiza-
tion corresponds exactly to the one introduced in Eqs. (I.16) and (I.17), that is:

(UA ⊗ UB)(ρAB ⊗ |00〉〈00|)(UA ⊗ UB)† = τAB ⊗
∣∣φ+
〉〈
φ+
∣∣ , (I.27a)

UA(A0 ⊗ 1C2)U †A = 1HA ⊗ σz, UA(A1 ⊗ 1C2)U †A = 1HA ⊗ σx, (I.27b)

UB(By ⊗ 1C2)U †B = 1HB ⊗
σz + (−1)yσx

2
. (I.27c)

where τAB is an unspecified state ofHA⊗HB (see [14, Section 4]). Therefore,
reaching the Tsirelson bound of the CHSH expression identifies the underly-
ing quantum realization. Furthermore, it uniquely identifies the correlators
obtained by such a realization as for example

Tr((A0 ⊗B0)ρAB) = Tr((A0 ⊗ 1C2)⊗ (B0 ⊗ 1C2)(ρAB ⊗ |00〉〈00|))

= Tr((1HA ⊗ 1HB )τ) Tr

(
(σz ⊗

σz + σx
2

)
∣∣φ+
〉〈
φ+
∣∣) = 1 · 1√

2
.

(I.28)
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Likewise, one can compute that all other correlations are given by 〈AxBy〉 =

(−1)xy/
√

2 and that marginals are 〈Ax〉 = 〈By〉 = 0. Finally, we proved that
the only vector of the quantum set maximally violating the CHSH inequality
is ~PT (see Eq. (I.18)). Geometrically speaking, this point, called the Tsirelson
point, is thus an exposed extremal point of Q and ~βCHSH/2

√
2 is an exposing

functional of this point.

I.2.2 . Device-independent characterization
The characterizationweobtained for themaximal CHSHviolation is unique

only up to some unavoidable degrees of freedom, encoded in τAB and in the
additional subspace C2⊗C2. Let us first explain where these degrees of free-
dom come from. Two different quantum realizations can give similar corre-
lators and in particular the following transformations always allow producing
new realizations yielding the same statistics:

- Local unitary operations:
(ρ,Ax, By) −→ ((UA ⊗ UB)ρ(UA ⊗ UB)†, UAAxU

†
A, UBByU

†
B),

- Unmeasured additional subspaces: (ρ,Ax, By) −→ (ρ⊗τ,Ax⊗1, By⊗1).
The corresponding correlator vector for all these physically different realiza-
tion is unchanged. Without any assumption on the local Hilbert space dimen-
sion nor on the physical devices being used, it is thus impossible to distinguish
between such realizations from the sole knowledge of the correlators. Such
a low assumption framework, often called device-independent [21], will there-
fore only be able to give characterizations up to these degrees of freedom.

The fact that some quantum correlations are only achievable by particular
states or particular sets ofmeasurements was first observed in seminal works
on nonlocality [22, 23]. It was later formalized as self-testing [24], under the
following definition: when a given correlator vector ~P can only be achieved,
up to local unitary operations and unmeasured additional subspaces, by a
unique state and/or measurement, we say that ~P provides a self-test for this
state and/or measurement1. If the correlators certify both the state andmea-
surements, we say that it self-tests the corresponding realization. Self-testing
in this case is a tool of choice for the study of the quantum set as it implies
that ~P is extremal [26]. Like for the CHSH expression, one way to find such
self-test is to find an exposing functional of the quantum set and to prove that
the corresponding Tsirelson bound can only be achieved by a ’unique’ realiza-
tion. Nevertheless, it is not the only way, as some self-testing statement rely
on the full knowledge of the correlators.

Thereby, self-testing appears as promising device-independent tool to char-
acterize physical quantum systems upon minimal assumptions. These are:

1This definition doesn’t take into account the complex conjugation operation,
which was proposed later to extend self-testing in scenarios with three or more par-
ties [25].
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the physical model is described by quantum mechanics; the non-signaling
condition is verified, that is Alice and Bob cannot communicate their inputs
to each other; the probabilities are positive and normalized. This makes self-
testing rather challenging to perform in practice because of two things:

1. It is impossible to discard any round of the experiment. In practice, it
means that Alice and Bob should be able to perform measurements in
each run (and not lose a photon, for example). Often referred to as the
detection loophole, this condition is required because classical models
with post-processing can fake quantum statistics [27].

2. It is required that Alice and Bob cannot have knowledge of the other
party’s input. Often referred to as the locality loophole, this can be im-
posed by assumption of physical isolation or by space-like separation
of the devices (Alice and Bob should perform their measurements in a
short time frame while being at a large distance).

Moreover, every experiment is prone to errors and imperfections. As such,
reaching themaximal CHSH value of 2

√
2 in unfeasible in practice. While some

characterization of the physical state is still possible for lower violations, most
noise-tolerant self-testing protocols known today however impose a CHSH
value strictly above 2.106 [28]. Finally, a large number of Bell test trials is
needed to avoid the conclusion to be affected by finite size effects of the sta-
tistical sample.

Due to all these experimental constraints and even though the theory pre-
sented in this first chapter has been developed for many years, experimental
results along these lines are still very recent. In the following chapter, we
present a work that was done in collaboration with an experimental team in
Zurich, which provides the self-testing of a complete quantum realization for
the first time.
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II – Fromthe theory to theexperiment:
Self-testing in practice

The detection loophole was first closed in a self-testing experiment using
two ions [29] trapped in a single trap. Four-party GHZ states on a single super-
conducting circuit device later also closed this loophole [30]. In all these cases,
the absence of communication between the nodes relied on physical isola-
tion. Self-testing with space-like separation and closing the detection loop-
hole was first obtained in the posteriori analysis presented in Ref. [31] of the
loophole-free Bell test in Ref. [32] using neutral atoms, however only when
taking into account data captured over the course of several months.

Furthermore, only the self-testing of quantum states has been demon-
strated experimentally so far. However, measurements play an important
role in numerous quantum tasks [33]. In fact, their certification through self-
testing, alongside the one of the state, is crucial in the certification of the blind-
ness and verifiability property of delegated quantum computing with entan-
gled provers [17, 34–36].

In this chapter, we present a work conducting a complete self-test of both a
Bell state and pairs of Pauli measurements, in a system of two superconduct-
ing circuit devices remotely connected through a 30-meter-long microwave
quantum link. Our demonstration closes the detection loophole and ensures
the absence of communication between the nodes through space-like sepa-
ration.

This demonstrates the feasibility of utilizing this fundamentally different
verification scheme in a context relevant for building local area networks of
remote superconducting circuit quantum processors, with prospects in secu-
rity and distributed computing. Moreover, enabled by a unique combination
of comparably high Bell inequality violations and high data acquisition rates,
this implementation achieves the targeted goal in a total experiment time of
only about half an hour.

II.1 - Description of the experimental setup
The experimental setup was performed in Zurich and consists of a two-

node system made of two transmon-style superconducting qubits operated
in their individual dilution refrigerators at temperatures of about 15 mK. The
read out of the state of the qubits is performed using microwave pulses on
the nanosecond timescale. The twoqubits are connected through a 30-meter-
long cryogenically cooled microwave quantum channel, a rectangular waveg-
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uide, used for the distribution of entanglement. The space-like separation of
the two qubits at a linear distance of about 30 meters provides a window of
about 100 ns for each trial of the experiment, from the generation of the input
bits x and y to obtaining the measurement outcomes a and b, during which
the exchange of information between the two nodes is precluded by the laws
of special relativity (Fig. II.1). This closes the locality loophole, and in the case
of this experiment ensures that no communication occurs between the nodes
during the test procedure. Detailed description of the experimental setup can
be found in previous works of the Zurich team, see [37, 38].

In each trial of the experiment (Fig. II.1), the entanglement between the
two remote qubits is established by having themexchange a singlemicrowave
photon through the quantum channel [39]. Once the two qubits are entan-
gled, a random choice of measurement bases for each party is determined
by bits provided by trusted random number generators located close to each
node of the untrusted setup [40], to support the assumption ofmeasurement
independence [41]. At each site, the local random bit controls the untrusted
rotation of the qubit in the dilution refrigerator through the conditional ap-
plication of a microwave pulse, which implements the basis choice selection.
Finally, an untrusted single-shot measurement is performed on the two indi-
vidual qubits [42] and the result is recorded in a trusted memory. The result
of all trials are used, which closes the detection loophole.

II.2 - Robust characterization of states and measure-
ments

In the scenario of interest for this work, the aim is to characterize a state
and measurements solely from the CHSH score S = ~βCHSH · ~P , where ~P is the
distribution observed in the experiment. Although in the case S = 2

√
2we do

expect that well-defined qubit measurements are performed on a maximally
entangled two qubit state, we do not presume that the Hilbert space dimen-
sions and the measurement calibration are known and remain unchanged
throughout the experiment. Self-testing defines such a device-independent
characterization.

II.2.1 . Self-testing statement in the ideal case
Let us delve more deeply into self-testing statement within the ideal case

where S = 2
√

2. Considering the characterization of a bipartite state of an
unknowndimension ρAB ∈ L(HA⊗HB), self-testing guarantees the existence
of local extraction (completely positive and trace preserving) maps

ΛA : L(HA)→ L(C2) (II.1)
ΛB : L(HB)→ L(C2) (II.2)
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Figure II.1: Self-testing protocol. The figure displays the space-time configuration of a single trial of the
experiment. The region shaded in magenta corresponds to the untrusted system under test. The individ-
ual steps simultaneously take place on both nodes. The triangular sign marks whether a step takes place
as part of the trusted laboratory or of the untrusted system. Stars and crosses mark the start and stop
events of each trial, and the shaded red and blue regions the forward light cones of the corresponding
start events.
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Figure II.2: Schematic description of a measurement apparatus A of one party in a Bell-experiment with
two inputs and two outputs. Formally speaking, it is a quantum channel with two separated inputs: a clas-
sical bit x, encoding themeasurement choice, and a quantum state ρ, being measured, in an Hilbert space
HA of unknown dimension; and one output, consisting of a classical bit a encoding the measurement
outcome.

which identify a sub-systemof local dimension 2 in amaximally entangled two
qubit state |φ+〉 = 1√

2
(|00〉 + |11〉), that is

(ΛA ⊗ ΛB)[ρAB] =
∣∣φ+
〉〈
φ+
∣∣ . (II.3)

Concerning the characterization of the measurement, Alice’s apparatus A is
described as a device taking as input a state ρA ∈ L(HA) and the measure-
ment setting (a classical value x = {0, 1} in a register labeled by in) and giving
as output the result of the measurement (a classical value a = {−1,+1} in a
register labeled by out), see Fig. II.2. In the ideal setting, self-testing guaran-
tees the existence of an injection map

VA : L(C2)→ L(HA) (II.4)

such that ∀σ ∈ L(C2) and ∀x ∈ {0, 1},

(A ◦ VA)[σ ⊗ |x〉〈x|in] = Ã[σ ⊗ |x〉〈x|in]. (II.5)

The reference apparatus Ã corresponds to a pair of orthogonal Pauli σz and
σx measurements for the setting choice x = 0 and x = 1 respectively, that is

Ã[σ ⊗ |x〉〈x|in] = 〈0|σ |0〉 〈x|0〉in |+1〉〈+1|out + 〈1|σ |1〉 〈x|0〉in |−1〉〈−1|out
+ 〈+|σ |+〉 〈x|1〉in |+1〉〈+1|out + 〈−|σ |−〉 〈x|1〉in |−1〉〈−1|out .

(II.6)

where |±〉 = (|0〉±|1〉)/
√

2. This characterization of the whole device on Alice,
including the input choice, does not only allow one to certify that the action
of operators A0 and A1 takes place in a given subspace, but also that both
measurement basis for input x = 0, 1 are complementary.

In a scenariowhere Alice shares an entangled state and copies of the input
register with a third party, appropriate projections performed by the third
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party cover all possible inputs for Alice. The equality in Eq. (II.5) can thus be
expressed with a single bipartite quantum state and two input registers of the
form ρ+ = |φ+〉〈φ+| ⊗ (|00〉〈00|+ |11〉〈11|)/2, and self-testing guarantees the
existence of the map VA such that

(A ◦ VA)[ρ+] = (Ã)[ρ+] (II.7)

where A ◦ VA and Ã operate on Alice’s inputs only.

II.2.2 . State self-testing in the noisy case
The case S = 2

√
2 that we considered beforehand cannot be realized in

an actual experiment due to unavoidable imperfections. Following Ref. [28],
we characterize the actual state ρAB in a realistic test with S < 2

√
2 by the

best fidelity one can extract with respect to the ideal state |φ+〉

F(ρAB,
∣∣φ+
〉〈
φ+
∣∣) = max

ΛA,ΛB
F ((ΛA ⊗ ΛB)ρAB,

∣∣φ+
〉〈
φ+
∣∣). (II.8)

F is the square of the Uhlmann fidelity: for two density matrices τ and τ ′,
F (τ, τ ′) = Tr(

√
τ1/2τ ′τ1/2)2 which here reduces to the overlap F (τ, τ ′) =

Tr[ττ ′] since one of the two states is pure.
To bound F(ρAB, |φ+〉〈φ+|), we take into account the fact that the state

was used in an experiment leading to a given CHSH score. Interestingly, its
infimum over all states compatible with a CHSH score S, labelled Fs(S), can
be lower bounded by

Fs(S) ≥ 1

2
+

1

2
· S − S∗

2
√

2− S∗
(II.9)

where S∗ = 16+14
√

2
17 ≈ 2.106 [28]. This tells us that for any state used to

obtain a CHSH score of at least S, we can extract a bipartite state with local
maps whose fidelity to the singlet state is higher than the right-hand side of
Ineq. (II.9). This lower bound is plotted in Fig. (II.3).

It is not currently knownwhether this bound is tight. However, it has been
shown that a non-trivial self-testing statement cannot be obtained for any S∗
below ≈ 2.05 [43]. Other self-testing bounds could also yield a higher ex-
tractability than given by Eq. (II.9) by leveraging more information than the
mere CHSH score [44, 45].

II.2.3 . Measurement self-testing in the noisy case
In the spirit of what has been done for state self-testing, we characterize

the actual measurement apparatus in the noisy case S < 2
√

2 by the best
fidelity one can get between (A◦VA)[ρ+] and Ã[ρ+] whenmaximizing over all
injection maps VA, that is

F(A, Ã) = max
VA

F ((A ◦ VA)[ρ+], ρ̃), (II.10)
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Figure II.3: Minimal Bell state fidelity (dark blue) and measurement fidelity (light blue) certifiable with a
given measured CHSH S-value.

where ρ̃ := Ã[ρ+]. The infimum of F(A, Ã) over all instruments compatible
with a CHSH score S is labelled Fm(S). Interestingly, we prove that this value
can be computed exactly and is given by:

Fm(S) =

√
2S + 4

8
. (II.11)

This tells us that for any measurement apparatus A, of arbitrary dimen-
sion, used to obtain a CHSH score at least S, there exists a local injection map
such that it can be used as the ideal pair of Pauli measurements Ã with a
fidelity at least equal to Fm(S). This lower bound is plotted in Fig. (II.3).

The trivial bound for the fidelity is given for S = 2, that isFm(2) = 2
√

2+4
8 ≈

0.854. This value equally corresponds to: the fidelity one can obtain with any
apparatus acting on a qubit space by choosing the proper injection; the fidelity
attainable by apparatuses that can only give rise to local correlators (S ≤ 2);
the best fidelity one can obtain with an apparatus realizing measurements in
only one basis (discarding the classical input bit).

The proof of the bound Eq. (II.11), which can be found in [46, Appendix E],
relies on three main results.

1. It suffices to consider measurement apparatuses with a quantum in-
put Hilbert space of dimension 2. Indeed, in a Bell scenario with two
binary measurements on each party, one can find local bases in which
Alice’s and Bob’s measurements are block diagonal with blocks of size
2 according to Jordan’s lemma. The total CHSH score is the convex mix-
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ture of the CHSH score on each qubit-qubit block, and thus there ex-
ist at least one block giving a CHSH value higher than the overall one.
The freedom on the injection map allows one to inject all the input
σ ∈ L(C2) into this specific block.

2. A measurement apparatus with input Hilbert space of dimension 2 can
be described with a single parameter a: up to a local choice of basis,
Alice’s apparatus performs a σz-measurement for input x = 0 and a
(cos(a)σz + sin(a)σx)-measurement for input x = 1. The fidelity of such
apparatus with respect to the ideal one is given by

F(a) =
1

4

(
2 +
√

2 cos
(a

2

)
+
√

2 sin
(a

2

))
. (II.12)

3. A Bell experiment involving the measurement apparatus A(a) on Al-
ice’s side can only be used to reach CHSH scores up to 2

√
2 sin

(
a
2 + π

4

)
.

Conversely, when reaching a CHSH score S and Alice performs qubits
measurements, the value of the measurement parameter a of Alice’s
apparatus belongs to

a ∈
[
2 arcsin

(
S

2
√

2

)
− π

2
,
3π

2
− 2 arcsin

(
S

2
√

2

)]
. (II.13)

The first point allows one to reduce to the case whereA input state is a qubit.
In this case, it can be described by a single parameter a, which can be re-
stricted according to the S-value using the third point. Since the maximal
fidelity of any A(a) is given by F(a), and this function is symmetric under
a→ π− a and increasing on [0, π/2], the minimal measurement fidelity value
for a CHSH score S is attained at the lowest possible a in [0, π/2]. This can be
computed explicitly and leads to the bound Eq. (II.11).

The certification schemes we just discussed for the shared Bell state and
for the measurement devices provide a mapping between the CHSH S-value
and the certified fidelities. While these formulas are valid for all values of S,
in practice the S-value that characterizes a setup is never known exactly, and
it may even evolve during the course of an experiment. Therefore, a statisti-
cal analysis is needed to assess the S-value that can be supported by a finite
number of experimental samples.

II.3 - Effect of finite size statistics
In order to account for potential parameter fluctuations along the course

of an experiment, we assign a different state fidelity F (i)
S := F(ρ

(i)
AB, |φ+〉〈φ+|)

and measurement fidelity F (i)
M := F(A(i), Ã) to each experimental trial i =

1, . . . , n, where ρ(i)
AB is the measured state and A(i) is the measurement ap-

paratus used by Alice at round i. These fidelities characterize the quality of
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the different parts of the setup at each round. In particular, since the experi-
ment is sequential, i.e. round i occurs after round i−1, these fidelities account
frommemory effects, whereby the behavior of the experiment at round imay
depend on what happened during the previous measurement rounds.

We are interested in bounding the average state and measurement fideli-
ties over the nmeasurement trials

Favg
S =

1

n

n∑
i=1

F (i)
S , Favg

M =
1

n

n∑
i=1

F (i)
M . (II.14)

These fidelities can be understood as the average quality of the setup in terms
of state and measurement during the course of the actual experiment.

As discussed in earlier sections, both the state andmeasurement fidelities
can be bounded from the CHSH value S. Writing S(i) the CHSH score of the
system sampled at round i, the average state fidelity can be bounded as

Favg
S =

1

n

n∑
i=1

F (i)
S

≥ 1

n

n∑
i=1

Fs(S
(i))

≥
(II.9)

1

n

n∑
i=1

1

2
+

1

2
· S

(i) − S∗

2
√

2− S∗

=
1

2
+

1

2
· S

avg − S∗

2
√

2− S∗
,

(II.15)

i.e. directly from the average CHSH value

Savg =
1

n

n∑
i=1

S(i). (II.16)

Likewise, the average measurement fidelity can be bounded as

Favg
M ≥

√
2Savg + 4

8
, (II.17)

using Eq. (II.11). We are thus left with estimating the average CHSH value Savg

in order to bound Favg
S and Favg

M .
In order to account for finite size effects in the estimation of the averageS-

valueSavg, we compute a lower boundSavg
α,n ≤ Savg for all possible realizations

{S(i)}i of n trials with probability at least 1− α, i.e. with the guarantee that

P (Savg
α,n ≤ Savg) ≥ 1− α. (II.18)

This defines a trustful one-sided confidence bound on Savg. Since Eq. (II.15)
and Eq. (II.17) are monotonous in Savg, this confidence bound implies lower
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Figure II.4: Dependence of the minimal certifiable state (a) and measurement (b) fidelities given an ob-
served CHSH score S and the number of experimental trials n in a self-testing experiment.

confidence bounds on the average fidelities Favg
S and Favg

M , each with con-
fidence 1 − α. We calculate the finite-size-corrected S-value (for n trials) by
employing the method of Ref. [47], which provides a tight lower bound on
the average success probability of n Bernoulli trials. Importantly, this method
does not assume that the n trials are independent and identically distributed
(IID). In this context, we introduce the Bell test in the framework of a game.
As described further in Ref. [37], in such a setting the two parties A and B aim
to win as a team. The game consists of n rounds. In each trial, A and B indi-
vidually receive a question, corresponding to a random and uniform input bit
x and y, and they are asked to reply with a response, corresponding to the
measurement outcomes a and b. A and B are said to win a certain round of
the game if x∧y = a

⊕
b, where∧ denotes the logical AND function and

⊕
the

XOR operation. The winning probability for round i is given by pi = (4+Si)/8.
The best possible classical strategy allows A and B to achieve a success prob-
ability of pLHVM

win = 3/4 = 0.75, but a strategy involving shared entanglement
achieves higher values, up to pQM

win = cos2 (π/8) ≈ 0.854.
After all n trials, we calculate the number of times c where A and B won

the game. For α ≤ 1/4, the lower bound on the average winning probability
given n trials and confidence 1− α is calculated as [47]

pavg
α,n =

{
cα/n c ≤ 1

I−1
α (c, n− c+ 1) c ≥ 2

, (II.19)

with the inverse of the regularized incomplete Beta function I−1. The corre-
sponding CHSH S-value is given by

Savg
α,n = 8pavg

α,n − 4. (II.20)

As a result, small sample sizes yield a substantial reduction of the finite-size-
corrected S-value compared to the measured value, and thereby lead to the
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certified fidelities being lower. Figure II.4a) displays this behavior for a set
of measured S-values for the certification of a minimal Bell state fidelity, and
Fig. II.4b) shows the minimal average measurement fidelity. We observe that
finite-size effects substantiallymatter for small sample sizesn� 107, whereas
for n ≥ 107 they become negligible.

II.4 - Experimental Results
In the main experiment, n = 224 ≈ 1.67 ∗ 107 trials at a repetition rate of

50 kHz were run. After each 220 = 1’048’576 trials, the single-shot readout
weights were recalibrated. In total, including software overhead, the exper-
iment took about 40 minutes. Figure II.5 shows the observed CHSH S-value
over the full duration of the protocol. Overall, we recall an average S-value
over the experiment of 2.236, leading to a finite-size corrected S-value of

Sexp = 2.234 (II.21)

at a 99% confidence level.
In a fully device-independent context, we can guarantee an average state

fidelity of at least Favg
S ≥ 58.9% and an average measurement fidelity of

Favg
M ≥ 89.5%, also at a 99% confidence level. The device-independent nature

of the experiment is maintained by considering all trials, which closes the fair-
sampling loophole, and without assuming the trials to be independent and
identically distributed, addressing the memory loophole [27]. Furthermore,
we close the communication loophole by space-like separation.

The presented experiment constitutes the first implementation of a com-
plete self-testing that bounds the quality of a distributed entangled state and
of the measurement apparatuses at the same time. It also forms the first
such implementation with superconducting circuit systems including a clear
separation between the nodes, a technology of high relevance for building
large-scale quantum computing systems.

While being a relevant quantum information processing task on its own,
self-testing is at the heart of other protocols relevant for certifying the security
of quantum networks. Potential applications constitute device-independent
quantum key distribution [16, 48, 49] and conference key agreement [50], or
delegated quantum computing [51]. However, many of these applications in-
volve states and/or measurements that might be different from the ones cer-
tified using the CHSH expression. This emphasizes the need for the derivation
of self-testing correlators for specific target quantum devices. In the following
chapter, we present amethod for the derivation of candidate Bell expressions
for this task.
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Smeasured Savg = 2.236 S* ≈ 2.106 SLHV = 2.000

Figure II.5: Recorded CHSH S-value during the full experiment, i.e. all n = 224 ≈ 16.7 million trials. The
blue curve Smeasured shows the experimental, average S-values of 217 = 131′072 trials each. The dashed
lines represent the averagemeasured S-value Savg of the full dataset, the critical self-testing threshold for
the state S = S∗, and for the measurement (the local bound) SLHV.
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III – Custom Bell expressions from for-
mal Sum of Squares

A number of works provided partial answers to the problem of finding
relevant Bell expressions for the study of specific states by successfully con-
structing ones that are maximized by particular target states. Examples in-
clude Bell expressions maximized by the maximally entangled state of two
qutrits [52–55], and by partially entangled two qubit states [56]. Unfortu-
nately, these approaches rely heavily on the specific structure or symmetry
of the target state and do not generalize easily to arbitrary situations.

Other works managed to obtain Bell expressions suited to generic situa-
tions by focusing on specific applications of nonlocality. However, these ap-
proaches dependon the full probability distributions and rely on theNavascués-
Pironio-Acín (NPA) hierarchy [13, 57] to relate to quantum theory. They have
thusmostly been considered numerically for given choices of measurements,
requiring an a priori guess of themeasurements that should be performed on
the state of interest to obtain correlations on the boundary of the quantum
set.

The study of the self-testing property has also brought a great deal of new
Bell expressions along with their Tsirelson bounds [14]. Note that some self-
testing results are based on the knowledge of the full measurement statistics
rather than solely on the maximal violation of a Bell inequality [24, 58–61].
Whereas self-tests based on full statistics rely on numerous parameters, the
ones based on a single quantity may be easier to use and lead to a wide range
of applications, as in the case of partially entangled states self-tested from the
tilted CHSH expression [59, 60, 62–64]. Constructing simple Tsirelson inequal-
ities is thus relevant even for states already known to be self-testable.

Among the techniques developed for self-testing, sum of squares (SOS)
play an important role [14, 65, 66]. Indeed, significant properties of a Bell ex-
pression such as its Tsirelson bound can be inferred from its sum of squares
decomposition [67]. Sumof squares have also beenused to construct Tsirelson
inequalities from a fixed choice of quantum state andmeasurements [55, 68–
70]. Finally, the self-testing property itself was used to construct Bell expres-
sions, potentially for arbitrary multipartite states [64]. While generic, this last
methods also relies on the usage of a choice of themeasurements. Therefore,
no method for constructing Bell expressions tailored to a specific quantum
state is known that is really generic, analytical and flexible.

Here, we present a systematic method that enables the construction of
Bell expressions for generic target quantum states with the guarantee that
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the state reaches its maximal quantum value. To do so, we introduce a for-
malism based on polynomial algebra that allows to build directly Bell expres-
sions from SOS decompositions. We apply this method to several cases and
discuss the relation of the obtained Tsirelson inequalities to self-testing.

III.1 - Formal polynomials
Let {Xi}i be a set of indeterminates in an associative algebra over a field

K. A formal multivariate polynomial is a linear combination [71]

S =
∑
i

αiMi (III.1)

whereMi are monomials, i.e. products of indeterminates such as X1, X1X2

orX2
1X2X1, weighted by scalars αi ∈ K.
Considering the algebraR induced by the (n,m, k)-Bell scenario, we asso-

ciate to the outcome a of themeasurement x of the party j the indeterminate
X

(j)
a|x. These indeterminates, also called ‘non-commuting variables’, obey the

algebraic rules of

Hermiticity:
(
X

(j)
a|x

)†
= X

(j)
a|x (III.2a)

Orthogonality: X
(j)
a|xX

(j)
a′|x = δa,a′X

(j)
a|x (III.2b)

Normalization:
∑
a

X
(j)
a|x = 1 (III.2c)

Commutation: [X
(j)
a|x, X

(j′)
a′|x′ ] = 0 for j 6= j′. (III.2d)

In this algebra, any monomial Mi can always be written as the product of n
multivariate monomialsM (j)

i involving indeterminates from each party indi-
vidually:

Mi[{X(j)
a|x}] = M

(1)
i [{X(1)

a|x}]...M
(n)
i [{X(n)

a|x }]. (III.3)

When all monomialsM (j)
i in the polynomial S are of degree one, we say

that S is of local degree 1 [72]. To any such polynomial

S =
∑
~a|~x

α~a|~xX
(1)
a|x ...X

(n)
a|x (III.4)

we can associate a Bell expression ~β = {α~a|~x}~a|~x. As such, the value of the Bell
expression on a given realization (|ψ〉 , {Π(j)

a|x}a,x,j) can be computed as

~β · ~P = 〈ψ| Ŝ |ψ〉 (III.5)

where the Bell operator is given by Ŝ = S({Π(j)
a|x}), and corresponds to the

evaluation of the formal polynomialS on the specific choice ofmeasurements.
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This identification is reversible, defining for eachBell expression a correspond-
ing unique formal polynomial. We thus refer to polynomials with local degree
1 as formal Bell polynomials. As an example, the formal CHSH polynomial as-
sociated to the CHSH inequality (defined in Eq. (I.14)) is given by

βCHSH =
∑

a1,a2∈{−1,1}
x1,x2∈{0,1}

a1a2(−1)xyX
(1)
a1|x1X

(2)
a2|x2 . (III.6)

Just like it is sometimes more convenient to parametrize measurements
by the combination of projectors, it is sometimes useful to represent a formal
polynomial in terms of different indeterminates than the ones associatedwith
measurement projection operators. For instance, each measurement x of
party j can be described by the single operator

Y (j)
x =

k−1∑
a=0

wa
kX

(j)
a|x, (III.7)

where wk = exp(2iπ/k), obtained by applying the Fourier transform on all
indeterminates associated with the different outcomes of the measurement.
By construction, the d-th power of Y (j)

x is 1, and all the indeterminates X(j)
a|x

can be expressed as a linear combination of the powers of Y (j)
x . Note that this

requires considering a complex field K when j > 2. The new indeterminates
Y

(j)
x are unitary in the sense that

(
Y

(j)
x

)†
Y

(j)
x = Y

(j)
x

(
Y

(j)
x

)†
= 1. In this new

basis, the CHSH polynomial can be written

βCHSH = A0B0 +A0B1 +A1B0 −A1B1, (III.8)

where we used amore elegant notation for the indeterminatesAx = Y
(0)
x and

By = Y
(1)
y in the bipartite case. Note that the Fourier indeterminates are also

Hermitian A†x = Ax, B
†
x = Bx in the case of binary measurements (d = 2).

Since they provide a description of Bell expressions independently of a
specific quantum implementation, formal polynomials onnon-commuting vari-
ables provide a powerful tool for their analysis. In particular, formal polynomi-
als can be used to compute Tsirelson bounds of Bell expressions, i.e. bounds
on the maximal quantum value achievable that is valid independently of the
quantum state, measurement and Hilbert space dimension.

As an example, it is known that the CHSH polynomial can be written as the
following sum of squares [14, 34, 65, 67]:

2
√

2− βCHSH =
1√
2

[(
A0 −

B0 +B1√
2

)2

+

(
A1 −

B0 −B1√
2

)2
]
. (III.9)

Since the square of a polynomial S†S can only result in a positive contribu-
tion, this directly implies that the maximal value of the corresponding CHSH
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expression achievable upon measurement of any quantum state is limited
to 2
√

2. In other words, polynomial inequalities

β � C (III.10)

on formal Bell polynomials β, where C is a real number, imply a Tsireslon
bound on the corresponding Bell expression: for all possible statistics ~P ob-
tained by quantum mechanics, the associated Bell expression ~β verifies

~β · ~P ≤ C. (III.11)

III.2 - SOS method
Our goal is now to find a consistent method to derive a Bell expression

that is maximized by a realization of interest (|ψ〉 , {Π(k)
a|x}a,x,k), fixed for the

rest of the enunciation of the method. We denote by ~P the correlator vec-
tor corresponding to this realization. Formally speaking, our goal is to find a
vector ~β such that

~β · ~P = βQ (III.12)

where βQ is the maximum quantum value of ~β. Up to re-normalization, one
can always take it to be 1.

For a given candidate ~β, the first thing to ensure is that its quantumbound
is indeed 1. Considering the formal Bell polynomial β associated to ~β, a suffi-
cient condition to have ~β · ~P ≤ 1 for all ~P ∈ Q is that 1−β is a sum of squares
(SOS):

1− β =
∑
i

N †iNi, (III.13)

where Ni are arbitrary formal polynomials. This is known as an SOS relax-
ation [73, 74]. However, the search space of all formal polynomials R is of
infinite dimension. Since an SOS decomposition of the form of Eq. (III.13)
where Ni are restricted to a set subspace T ⊂ R still provides a valid bound,
a common approach to tackle this problem consists in considering operators
Ni within a chosen relaxation level T , such as the set of all polynomials of a
given degree. But even this quickly results in a large problem.

To further reduce the SOS search space, let us use the fact that the corre-
lations ~P should reach the maximal value to identify a relevant subspace of
T in which the operatorsNi should be chosen. If a SOS decomposition of the
form Eq. (III.13) exists, this would imply:

0 =
∑
i

〈ψ| N̂i
†
N̂i |ψ〉 =

∑
i

||N̂i |ψ〉 ||2, (III.14)

where N̂i is the evaluation of Ni on our choice of measurements. Since all
terms on the right-hand side of the above equation are positive, this implies
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that for all i, N̂i |ψ〉 = 0, i.e. that all N̂i are nullifying operators of |ψ〉 [65]. This
condition restricts the operators Ni to

AT = {N ∈ T : N̂ |ψ〉 = 0}. (III.15)

For a finite relaxation T , let’s consider a generating sequence {Ns}s ofAT
and denote by ~N the vector of elements Ns. All elements in AT can thus be
written as ~w · ~N where ~w is a real vector. A valid SOS decomposition in T can
then be written as

1− β =
∑
s

O†sOs = ~N †
∑
s

~w†s ~ws
~N = ~N † ·W · ~N, (III.16)

whereW =
∑

s ~w
†
s ~ws is a positive matrix. We see that the problem of obtain-

ing an SOS decomposition reduces to finding whether there exists a matrix
W such that

1− β = ~N † ·W · ~N, (III.17a)
W � 0. (III.17b)

If such a matrixW can be found, we say it is a certificate of the expression ~β.
However, in all generality, for an arbitrary matrix W � 0, the right-hand

term of Eq. (III.17b) is not equal to a formal polynomial of local degree higher
than 1 and the conditionW � 0 can be hard to parameterize. In order to find a
single solution to the problem, one may consider a finite number of (possibly
parameterized) polynomials Ni ∈ AT . In general for arbitrary polynomials
Ni, the resulting sum of squares will give∑

i

N †iNi = C − β + Γ, (III.18)

where C is a real number, β is a formal Bell polynomial (to which we can
associate a Bell expression), and Γ is some leftover polynomial term of higher
local order. This last term needs to vanish in order to have a valid sum of
squares decomposition. The “condition” of the sum of squares method thus
take the simple form

Γ = 0. (III.19)

and comes down to solving a quadratic system. This leads us to formulate
the following SOS method for the construction of Bell expressions suited for
a specific target state.

1. Choose a set of operators N̂i that are nullifying the target state, i.e. such
that |ψ〉 ∈ ∩i ker(N̂i), and in particular

N̂i |ψ〉 = 0 ∀i. (III.20)
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2. Parameterize measurement bases M̂ (i)
x for each party.

3. Choose a relaxation T and find the elements Ni inside this relaxation
whose evaluation on the measurements M̂ (i)

x correspond to the nulli-
fiers N̂i.

4. Compute the sum of squares Eq. (III.18) on the polynomials Ni.

5. Solve the condition that all terms of local order higher than one van-
ishes

Γ = 0. (III.21)

Note that the promotion of the nullifiers from the operator space to the
formal polynomial algebra performed in Step 3 before computing the sum of
squares is a key ingredient of the SOS method. While the choice space of the
nullifiers N̂i only depends on the target state, this mapping from the oper-
ators N̂i to formal polynomials Ni depends on the choice of measurements
and is not unique. Therefore, one has to choose how to do this lifting oper-
ation: the number of possible different lifts depends on the relaxation T for
the polynomials Ni. As such, one could choose only one polynomial Ni ∈ T
for each N̂i (if there exists one) or all such Ni to compute the SOS. Note that
if the chosen relaxation of polynomials is of local degree 1 (the almost quan-
tum level [57]) and themeasurements are linearly independent for each party
(for instance when dealing with two qubit measurements per party), the cor-
respondence between N̂i and Ni is one-to-one: one can simply express the
nullifiers in terms of the measurement operators M̂ (i)

x and define the cor-
responding formal polynomial by promoting the measurement operators to
indeterminates M̂ (i)

x →M
(i)
x .

We also want to highlight the fact that the sum of square method can be
used to construct expressions tailored to target measurements as well, such
as families of Bell expressions for fixed settings and varying states [75]. For
example, the choice ofmeasurement in Step 2 could be fixed beforehand, and
Step 1 would consist of finding a family of operators N̂i(~θ) inside the algebra
generated by the {M̂ (i)

x } nullifying a parametrized state
∣∣∣ψ(~θ)

〉
.

The SOS method guarantees that no implementation can provide a larger
Bell value than the target one. It is thus a sufficient condition to construct a
Bell expression for a target quantum state: any expression verifying Γ = 0 is
maximized by the considered state. The method relies on a choice of opera-
tors, here nullifiers, and of measurements. Therefore, a candidate that does
not verify the SOS condition Eq. (III.19) for a specific choice of N̂i and M̂ (i)

x is
not automatically ruled out, as it might admit a valid SOS decomposition for
another choice.

It is however known that finding the SOS decomposition of a formal Bell
polynomial [67] is dual to the NPA hierarchy [57], which converges in the limit
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of the hierarchy. This limit corresponds to considering the full space of for-
mal polynomials with no limit on the number of squares nor on the mono-
mial length. Thus, if one considers all possible choices of formal nullifiers for
monomial length n, and completely parametrizes the finite dimensional mea-
surements, the SOS method becomes necessary and sufficient in the asymp-
totic limit n→∞. This means that a Bell expression can be maximized by the
considered state if and only if there exists a choice of measurements and an
asymptotic choice of nullifiers such that Γ = 0. In this sense, the SOS method
is asymptotically complete.

Finally, we remark that the strength of this method is not only to construct
Bell expressions whose Tsirelson bound is reached by the target state. By also
providing their sumof squares decomposition, conditions on the action of the
measurements on the state are also obtained: the operators N̂i nullify the
state for any implementation reaching the quantumbound. This is interesting
as for an arbitrary Bell expression, it is in general hard to find its Tsirelson
bound or its SOS decomposition. Moreover, many proofs of self-testing rely
on the sum of squares decomposition of the Bell expression [14].

III.3 - New Bell expressions for the maximally entan-
gled state of two qutrits

In this section, we apply the SOS method to the case of the maximally
entangled state of two qutrits∣∣ψ3

〉
=
|00〉+ |11〉+ |22〉√

3
. (III.22)

In general, it may be difficult to apply the method on a full parametrization
of the measurement bases for large Hilbert space dimension. But the Bell ex-
pressions provided by the method are maximized by the desired state even
when the measurement bases considered are not fully parametrized. We
thus consider a family of measurements which generalizes the ones first used
in [76] to maximize the CGLMP expression, and then in [55, 77] to self-test the
maximally entangled two qutrits state. Namely, we consider a Bell scenario
where Alice and Bob each have two inputs and three outputs. For x, y ∈ {0, 1}
we choose measurement bases of the form

Π̂a|x = U(ax)F † |a〉〈a|FU(ax)† (III.23a)
Π̂b|y = U(by)F

† |b〉〈b|FU(by)
† (III.23b)

These bases are related to the computational one by the Fourier transform

F =
1√
3

2∑
k,l=0

wkl |k〉〈l| with w = exp(2iπ/3) (III.24)
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followed by a phase rotation with a real parameter θ

U(θ) =

2∑
k=0

wkθ |k〉〈k| . (III.25)

By analogy with the case of formal polynomials in Eq. (III.7), we define the
unitary operators associated to each measurement by

Âx =
2∑

a=0

waΠ̂a|x =

 0 0 w−2ax

wax 0 0
0 wax 0

 , (III.26a)

B̂y =
2∑

b=0

wbΠ̂b|y =

 0 0 w−2by

wby 0 0
0 wby 0

 . (III.26b)

In the case of qutrits these operators verify A†x = A2
x, and any projector Π̂a|x

can be expressed as a linear combination of the identity operator,Ax andA†x,
likewise for Bob.

The first step of the SOS method is to find nullifiers for the target state.
To do so, we exploit the fact that for any unitary operator M̂ the following
identity holds:

M̂ ⊗ M̂∗
∣∣ψ3
〉

=
∣∣ψ3
〉
, (III.27)

where M̂∗ is the complex conjugate of M̂ . Thus, we decide to consider two
nullifying operators of the form

N̂x = 1− Âx ⊗ B̂x, x ∈ {0, 1}, (III.28)

such that the operators Bx verify

B̂x = Â∗x (III.29)

when acting on Alice’s Hilbert space.
The most general way to construct these operators from Bob’s measure-

ment operators is to take

B̂x = cx1+ µ0,xB̂0 + µ1,xB̂1 + ν0,xB̂
2
0 + ν1,xB̂

2
1 . (III.30)

Now, together with equation (III.29), this implies that cx = ν0,x = ν1,x = 0 and{
µ0,xw

b0 + µ1,xw
b1 = w−ax

µ0,xw
−2b0 + µ1,xw

−2b1 = w2ax .
(III.31)

With simple algebra this system of equation solves to
µ0,x =

w2ax − w−ax−3b1

w−2b0 − wb0−3b1

µ1,x =
w2ax − w−ax−3b0

w−2b1 − wb1−3b0
.

(III.32)
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Now that we defined our two nullifiers we need to lift them to the formal
polynomial formalism. We decide to take polynomialsNx = 1−Ax⊗Bx and
compute the sum of squares pN †0N0 + (1− p)N †1N1 for an arbitrary p ∈ (0, 1)

(the limit cases p = 0, 1 where only one nullifier appears would be insufficient
to grant self-testing because several states are in the kernel of the nullifying
operator). When developing the squares we get:

pN †0N0 + (1− p)N †1N1 = C − Ŝ + Γ̂, (III.33)

where C = 2, β is a formal polynomial of local degree 1 and Γ is the leftover
of higher local degree given here by

Γ =
(
pµ?0,0µ1,0 + (1− p)µ?0,1µ1,1

)
B†0B1 + h.c. (III.34)

where h.c. denotes the Hermitian conjugate of the first part. Following the
SOS method, we look for the parameter regime where the leftover term Γ

vanishes. This is the case when

pµ?0,0µ1,0 + (1− p)µ?0,1µ1,1 = 0. (III.35)

This can be written as a condition on the measurements parameters ax, by
and leads to

p sin(π(a0 + b1)) sin(π(a0 + b0)) + (1− p) sin(π(a1 + b1)) sin(π(a1 + b0)) = 0.
(III.36)

We thus obtain a family of Bell expressions, with their Tsirelson bound,
given by:

β = pA0B0 + (1− p)A1B1 + h.c. � 2, (III.37)

whereBx = µ0,xB0+µ1,xB1 and coefficientµy,x are given by equations (III.32).
Here, ax, by and p are free parameters constrained only by Eq. (III.36). Without
loss of generality we can set a0 = 0 and −b0 < −b1, and choose a1,−b0,−b1
in [0, π). Eq. (III.36) then implies the alternating condition −b0 < a1 < −b1 in
analogy with the maximally entangled qubit state [78]. Note that the average
value of β over any state is real, as the Hermitian conjugate (h.c.) part ensures
that β is a Hermitian polynomial.

One expression among the ones we found, for parameters a0 = 0, a1 =

1/2, b0 = 1/4, b1 = 3/4, was already known and has been proven to self-tests
the maximally entangled state of two qutrits along with the associated mea-
surements [55, 77]. It would be interesting to see whether one can generalize
their self-testing argument to the family of Bell expressions we discovered.

37



III.4 - Self-tests for thepartially entangled two-qubit states
III.4.1 . A two-parameter family of self-tests based on three nullifiers

In this section, we look at partially entangled two qubit states

|φθ〉 = cθ |00〉+ sθ |11〉 , (III.38)

where we use the notation cθ = cos(θ), sθ = sin(θ). We consider the following
nullifying operators 

N̂0 = ẐA − ẐB,
N̂1 = X̂A − s2θX̂B − c2θX̂AẐB

N̂2 = 1− s2θX̂AX̂B − c2θẐB

. (III.39)

where ẐA(B) and X̂A(B) denote the Pauli z and x on Alice(Bob) Hilbert space
respectively. We parameterize the measurement operators for Alice and Bob
respectively as {

Â0 = ẐA, Â1 = X̂A,

B̂y = cos(by)ẐB + sin(by)X̂B.
(III.40)

where angles b1 and −b0 might be different. Note that up to relabelling of
measurement incomes and/or outcomes, we can always assume that b1, b0 ∈
[−π/2, π/2] and b1 < b0.

We decide to apply the method at the almost quantum level. As such, we
express the nullifiers in terms of the measurement operators, and promote
them to formal polynomials as follows:

N0 =A0 −
sin(b0)B1 − sin(b1)B0

sin(b0 − b1)
, (III.41a)

N1 =A1 − s2θ
− cos(b0)B1 + cos(b1)B0

sin(b0 − b1)
− c2θA1

sin(b0)B1 − sin(b1)B0

sin(b0 − b1)
,

N2 =1− s2θA1
− cos(b0)B1 + cos(b1)B0

sin(b0 − b1)
− c2θ

sin(b0)B1 − sin(b1)B0

sin(b0 − b1)
.

We consider an SOS of the form N2
0 + (λ1N1 + λ2N2)2 for real parameters

λ1 and λ2. When developing the squares we obtain terms proportional to
the anti-commutator {B1, B0} and to A1{B1, B0} which contribute to Γ. The
conditions Γ = 0 then leads to two equations:

α(λ2
1 + λ2

2) + 2βλ1λ2 = 0, (III.42a)
β(λ2

1 + λ2
2) + 2αλ1λ2 = −sb1sb0 , (III.42b)

with

α = −1

2
s4θsb1+b0 , β = s2

2θcb1cb0 + c2
2θsb1sb0 . (III.43a)
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These two equations admit a solution when Bob’s measurements lie in the
squared region:

[b1 ∈ (−2θ, 0), b0 ∈ (0, 2θ)]. (III.44a)

The sum of square decomposition is then given by:

N2
0 + (λ1N1 + λ2N2)2 = C(θ, b0, b1)− βθ,b0,b1 (III.45)

where:

βθ,b0,b1 =2A0
sb0B1 − sb1B0

sb0−b1

− 4λ1λ2

[
A1 − s2θ

−cb0B1 + cb1B0

sb0−b1
− c2θA1

sb0B1 − sb1B0

sb0−b1

]
+ 2(λ2

1 + λ2
2)

[
s2θA1

−cb0B1 + cb1B0

sb0−b1
+ c2θ

sb0B1 − sb1B0

sb0−b1

]
,

C(θ, b0, b1) = 2(1 + λ2
1 + λ2

2)

(III.46)

and

λ1λ2 = − sb1sb0sb1+b0s4θ

(c2b1 − c4θ)(c2b0 − c4θ)
, (III.47a)

λ2
1 + λ2

2 = −
4s2
b1
s2
b0

(c2
2θ + cot(b1) cot(b0)s2

2θ)

(c2b1 − c4θ)(c2b0 − c4θ)
. (III.47b)

The new candidate Bell expressionswith associated Tsirelson bound are given
by

βθ,b0,b1 � C(θ, b0, b1). (III.48)

These new expressions can be used to self-test the partially entangled state
when Alice performsmeasurements ẐA and X̂A, and Bob performs any mea-
surement in the (ẐB, X̂B)-plane with b0 ∈ (0, 2 ∗ θ), b1 ∈ (−2 ∗ θ, 0). The proof
of the self-test relies on the algebraic relations one can derive from the fact
that every realization reaching the Tsirelson bound of the new Bell expression
satisfies N̂0 |ψ〉 = (λ1N̂1 + λ2N̂2) |ψ〉 = 0.

In the case where Alice’s measurements are given by ẐA and X̂A, the set-
tings given by Eq. (III.44) seem to be the only ones allowing to self-test the
partially-entangled state |φθ〉. Indeed, we verify numerically that any other
choice of measurement settings for Bob results in behaviors that do not lie
on the boundary of the NPA relaxation set at local level ` = 1. For this, we
consider the following optimization

∆ = min
i

max
~P1, ~P2

~P i1 − ~P i2

s.t. ~P j1 = ~P j2 = ~P j , j 6= i

~P1, ~P2 ∈ NPA`

(III.49)
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Figure III.1: Result of the optimization Eq. (III.49) for various choice of measurement angles for Bob. Points
with∆ ≤ 10−11 in yellow are on the boundary of the quantum set. Except when b1 = 0 or b0 = 0, in which
case the behavior admits a probability equal to zero (both Alice and Bob measure in the Ẑ direction), all
points outside the interval Eq. (III.44) belong to the blue region.

Here i runs over all components of the behavior ~P (ab|xy) seen as a vector in
R8 and NPA` stands for the `th level of the NPA hierarchy. The result of this
optimization is zero iff the point is on the boundary of the NPA relaxation.
Fig. III.1 shows the result of this optimization as a function of the parameters
b1, b0 in the case θ = π/8. We see that all statistics outside the considered
region Eq. (III.44) and its symmetric version for B1 ↔ B0 (i.e. b1 > b0) admit a
decomposition.

This analysis does not allow one to conclude whether the limit points on
the border of the square region (for which by = min(2θ, π − 2θ)) can be self-
tested or not. The method gives only unsatisfying candidates with decompo-
sition into a single square. In Chapter V, we provide an answer to this ques-
tion, showing that these points self-test the underlying implementation but
not with a single Bell expression – i.e. they are non-exposed [26, 79].

III.4.2 . Insight on geometrical properties of the quantum set
Themaximal quantum value of the expressions given by Eq. (III.48) enable

us to self-test states and settings for which self-testing was already known to
be possible with other Bell expressions. Indeed, the partially entangled states
|φθ〉 can be self-tested using the so-called tilted CHSH expressions [65, 80]

Iα(θ) = βCHSH + α(θ)A0 �
√

8 + 2α2, (III.50)

where α(θ) = 2/
√

1 + 2 tan2(2θ) for θ ∈ (0, π/4]. The self-tested measure-
ment settings are given by Eq. (III.40) for fixed parameters b0 = −b1 = bθ
verifying tan(bθ) = sin(2θ). Notice that bθ < 2θ and thus the correlator points
achieved with the settings maximally violating the tilted CHSH inequality can
also be self-tested using βθ,bθ,−bθ .

Since these two expressions differ, the correlator point corresponding to

40



Figure III.2: The green area shows the upper bound on the quantum set given by the NPA hierar-
chy at level 1+AB in the slice specified by dir1 and dir2. The directions are specified by dirx =
[〈A0〉, 〈A1〉, 〈B0〉, 〈B1〉, 〈A0B0〉, 〈A1B0〉, 〈A0B1〉, 〈A1B1〉]. The red point is the quantum point achieved
by the tilted CHSH settings for θ = π/8. The orange line correspond to the tilted CHSH inequality at this
point and the blue line correspond to our new inequality. The quantum set cannot go beyond these two
lines.

one tilted CHSH expression can be self-tested using two different Bell ex-
pressions. In fact, it can be self-tested using the maximal quantum value
of any convex combination of the tilted CHSH expression Iα(θ) and the new
Bell expression βθ,bθ,−bθ we presented. Geometrically speaking, it means that
this quantum point admits a one parameter family of exposing hyperplanes
and that the boundary of the quantum set admits nonlocal angulous point,
see Fig. III.2. This led us to look into the set of inequalities that can be satu-
rated by a given point on the border of Q.
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IV – Extremal Tsirelson inequalities
The dual of the quantum set encodes the Tsirelson bounds of all possi-

ble Bell expressions [11, 81]. Describing it is therefore as challenging as find-
ing the quantum bound of an arbitrary Bell expression, but also as impor-
tant, since quantum bounds play a key role in many quantum information re-
sults [10, 14, 82]. The duality perspective already brought insight into the local
and no-signaling sets, which are the two other major sets of interest in Bell-
type experiments. Namely, for Bell scenarios with binary inputs and outputs
it was shown that the local set, describing statistical distributions compatible
with a local hidden variable model, is dual to the no-signaling set, which in-
cludes all behaviors compatible with the principles of special relativity [20]. In
other words, every extremal (or ‘tight’) Bell inequality in this scenario is in one-
to-one correspondence with an extremal point of the no-signaling polytope.

Unlike its local and no-signaling counterparts, the quantum set is not a
polytope and little is known about its dual picture. A first result concerns the
subset of vanishing marginal statistics in the CHSH scenario, corresponding
to a subspace Qc of dimension 4. It was recently shown that this subspace
is self-dual, i.e. Qc ∼= Q∗c [20, 83]. This striking property sets the quantum
set apart from both the local and the no-signaling sets. In fact, the analytical
descriptions ofQc andQ∗c are fully known within this subspace: a first explicit
description of the quantum set in the subspace of vanishing marginals was
provided in [11, 84, 85]; see also [83, 86, 87] for explicit descriptions of its
(isomorphic) dual.

Apart from this strong result for a special case, surprisingly little seems
to be known about the dual quantum set Q∗. Numerical studies suggested,
though, that the Tsirelson point, which is the unique quantum realization
maximally violating the CHSH inequality, may maximize more than one Bell
expression [26]. This may be a key towards understanding whetherQ andQ∗
are being complementary but really different objects.

Here, we study the dual of the quantum set in the full 8-dimensional space
with an approach consisting of finding all Bell expressions maximized by a
given quantum point. Specifically, we determine analytically all elements of
the dual which are related to the Tsirelson point, the unique quantum point
maximally violating the Clauser-Horne-Shimoney-Holt (CHSH) inequality [9].
This allows us to describe for the first time extremal points and a complete
face of the dual quantum set Q∗. In turn, this provides a tight first order de-
scription of the quantum set around this maximally nonlocal point.
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IV.1 - Orthogonal face of points of Q
IV.1.1 . More elements of convex geometry

For all this section, K ⊂ Rn denotes an arbitrary convex set. First, let’s
generalize the notion of extremal points to an arbitrary dimension: a subset
F ⊂ K is a face of K, denoted F �K, iff:

∀y, z ∈ K, λ ∈ (0, 1), λy + (1− λ)z ∈ F =⇒ y, z ∈ F (IV.1)

Note that a face F � K is a convex set. The face dimension of a face F , de-
noted dF , is the affine dimension of F . For example, the subset of local points
reaching a CHSH value of 2 forms a face FC of the local polytope (as a set of
correlations), containing 8 deterministic points, of maximal face dimension 7.
Extremal points of K are exactly the faces of dimension 0.

Given a face F �K, one can then introduce the orthogonal face of F , given
by

F⊥ = {f ∈ K∗ : ∀x ∈ F, f · x = 1}. (IV.2)

The set F⊥ is a face of the convex dual K∗. We call orthogonal dimension of
F , denoted d⊥F , the face dimension of F⊥. To any face F it is thus possible
to associate a unique dimension pair: the couple (dF , d

⊥
F ). In nonlocality, the

orthogonal face encodes the set of all Bell expressionsmaximized by all points
of the face. For example, all local points in FC maximize the CHSH expression
~βCHSH/2 and no other inequality is saturated simultaneously by all those 8
deterministic points: we have F⊥C = {~βCHSH/2} and its dimension pair is (7, 0).
Conversely, one could notice that the CHSH inequality is maximized only by
those eight extremal points and as such identifies the face FC . In that sense,
one can generalize the notion of exposed points to arbitrary faces: we say
that a face F �K is exposed if there exists an element f ∈ F⊥ such that

∀x ∈ K, f · x = 1 =⇒ x ∈ F.

Note that whenever F is exposed, it verifies dF = d⊥
F⊥

. In this case, we refer
to d⊥F as the dual dimension of F that we denote d∗F .

Finally, the study of the orthogonal face F⊥ of any face F � K can be re-
duced to the study of the extremal points ~P ∈ K contained in F . Indeed, any
face is the convex hull of the extremal points it contains: F = Conv(Ext(K)∩F ).
Therefore, one can notice that

F⊥ =
⋂

~P∈Ext(K)∩F

{~P}⊥, (IV.3)

reducing the general analysis of the orthogonal faces to the ones of extremal
points only1.

1This however requires having knowledge of the set of extremal points Ext(K).
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LetK,K′ be two convex sets overRn. We say thatK andK′ are isomorphic
convex sets iff there exists a linear isomorphismU ofRn such thatU(K) = K′.
If two sets are isomorphic, then their duals are isomorphic too. Moreover,
every face of F �K is isomorphic to a face U(F )�K′ of equal dimension pair.
As such, all the notion that we introduced previously are interesting as they
allow for a classification of convex sets through the notion of isomorphism
but also for a classification of the different type of faces of a given set.

To the physical problem of identifying all Bell expressions maximized by
a given set of points, we associated the mathematical idea of computing the
orthogonal face. With it comes the tool that is the dimension pair as it allow
to properly characterize some properties of this set of expressions, indepen-
dently of any linear isomorphic transformation that could be done (including
relabeling of the correlators for example).

IV.1.2 . General approach for deriving orthogonal faces in Bell scenarios
In a Bell scenario, even tough the set of extremal points of the quantumset

is unknown, we know that each admits a quantum realization. Thus, we now
focus on a given realization, independently of whether the corresponding cor-
relator vector is extremal, and aim to compute the set of all Bell expressions
that it can maximize. The state and measurements are fixed, which allows us
to further develop some idea and tools that are generic to this task.

Let’s consider a given realization (|ψ〉 , {Π(j)
a,x}a,x,j) and its associated cor-

relations ~P . For a given choice of measurements we introduce the measure-
ment vector ~M which is the set of all measurements that are physically mea-
sured:

~M = {Π(1)
a1,x1 ...Π

(n)
an,xn}~a,~x. (IV.4)

For any given Bell expression ~β ∈ Q?, one can then construct the Bell operator
associated to this measurement choice as Ŝ = ~β · ~M , which is an hermitian
operator. For any state |ξ〉 of identical local dimensions, the correlations for
the same measurement choice are given by ~P ′ = 〈ξ| ~M |ξ〉 and the value of
the Bell expression on this point is

~β · ~P ′ = 〈ξ| Ŝ |ξ〉 . (IV.5)

As such, if the point ~P is to give the maximal quantum value of ~β, then the
state |ψ〉 must be an eigenstate of Ŝ (of maximal eigenvalue). This implies
that for all vector |ξ〉 orthogonal to |ψ〉, we have

〈
ξ
∣∣∣~S|ψ〉 = λ 〈ξ|ψ〉 = 0. Since

〈ξ| Ŝ |ξ〉 = ~β · 〈ξ| ~M |ψ〉, we obtain:

~β · ~T|ξ〉 = 0 (IV.6)

where we denoted ~T|ξ〉 = 〈ξ| ~M |ψ〉 for any |ξ〉 orthogonal to |ψ〉. Note that not
all orthogonal vectors to |ψ〉 need to be considered but only a finite number
of them constituting a basis of the orthogonal space |ψ〉⊥.
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Suppose now that the measurements can be parameterized as functions
of an arbitrary number m of real parameters Π

(j)
a,x(r1, ..., rm), and that our

measurements of choice correspond to ~r = 0. This is often the case, as for
example one could rotate continuously the angle of the measurement basis.
When this is the case, the correlations can also be expressed locally as a func-
tion ~P (r1, ..., rm). A necessary condition to get a maximal violation is a that
for any small variation of the parameters ri, the value of the Bell expression
should be non-increasing. At first order, this gives

∀i, ~β · ∂
~P

∂ri

∣∣∣∣∣
~r=0

= 0. (IV.7)

Finally, we obtained a set of necessary linear conditions for a Bell expres-
sion ~β to be maximized by our correlations of interest ~P . They can be sum-
marized in the following way:

~β ∈ V ⊥, where V = Vect
〈
{~T|ξ〉| 〈ξ|ψ〉 = 0} ∪ {∂

~P

∂ri
}i

〉
. (IV.8)

Interestingly enough, this proves that the orthogonal face {~P}⊥ is included in
the orthogonal of a particular vector space. This allows to reduce the range
of Bell expressions to a linear subspace, and thus upper bounds the face di-
mension of ~P to dimV . While these conditions do not ensure that the Bell
expressions are globally maximized by ~P , they are way easier to verify than
the quadratic constraints of computing Tsirelson bounds. These conditions
can also be used for solving of optimization problems [26, 79].

Note that we only restricted our analysis to the study of orthogonal faces
of extremal points. However, since any face can be written as the convex hull
of the extremal points it contains, its orthognal face would be the intersection
of the orthogonal faces of these extremal points.

IV.2 - Orthogonal faces in the CHSH scenario
In the CHSH scenario, the search for extremal points of the quantum set

Q can be reduced to correlations admitting a pure state realization on real
Hilbert spaces of local dimension two [88]. This reduces the characterization
of orthogonal faces to knowingwhether such realizations give rise to extremal
correlators (see Chapter V) and studying the orthogonal face of each of these
extremal points. In this section, we look at the latter, by applying the method
of the previous section in three steps: first, we parameterize the set of can-
didate extremal correlators; second, we ask for Bell expressions to verify the
eigenvector conditions (~β · ~T = 0); third, we look for the non-increasing ex-
pressions under small variations of the realization parameters.
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First, candidate extremal correlators admit realizations that can beparam-
eterized, up to local unitaries, with a partially entangled two qubit state and
real unitary measurements as

state: |φθ〉 = cθ |00〉+ sθ |11〉 , θ ∈ [0, π/4], (IV.9a)
measurements: Ax = caxẐA + saxX̂A, ax ∈ [0, 2π), (IV.9b)

By = cby ẐB + sbyX̂B, by ∈ [0, 2π), (IV.9c)

where operators ẐA(B), X̂A(B) denote the Pauli z and x on Alice and Bob re-
spectively. Note that this implementation only gives local probabilities when-
ever θ = 0. Therefore, in all the following, we assume θ > 0. This implemen-
tation gives the following probability distribution:

~Pθ,ax,by =

1 c2θcb0 c2θcb1
c2θca0 caxcby + s2θsaxsbyc2θca1

, θ, ax, by ∈ R (IV.10)

Note that it is not granted that such a point is extremal in the setQ (see Chap-
ter V for a detailed discussion on this topic). We are now looking to describe
the orthogonal face of such a point ~Pθ,ax,by , i.e. the set of all Bell expressions
with quantum bound 1 reached by this realization. In general, all possible
Bell expressions can be parameterized by eight real coefficients ax, by, cxy for
x, y ∈ {0, 1} and be written as:

~β = {a0, a1, b0, b1, c00, c10, c01, c11}. (IV.11)

Second, in this specific case the Bell operator induced by such a Bell ex-
pression and the considered realization Eq. (IV.9) is

Ŝ = p1ZA+p2XA + p3ZB + p4XB

+ p5ZAZB + p6XAXB + p7ZAXB + p8XAZB,
(IV.12)

replacing all unknown measurements Ax, By by their quantum implementa-
tion, andwhere parameters pr are linear combinations of parameters ax, by, cxy.
One can then find three vectors which form a basis of the orthogonal of |φθ〉,
for example |ξ1〉 = −sθ |00〉 + cθ |11〉, |ξ2〉 = |01〉 and |ξ3〉 = |10〉. Together
with Eq. (IV.12), one can compute the vectors ~Ti = 〈ξi| Ŝ |φθ〉 in terms of the
parameters pi. Our analysis show that conditions ~β · ~Ti = 0 allows one to
reduce the range of Bell expressions to the ones for which

Ŝ = 1 +

4∑
k=0

pkN̂k (IV.13)
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where the N̂i forms a basis of nullifiers of |φθ〉 [65]:

N̂0 = ẐA − ẐB,
N̂1 = 1− ẐAẐB,

N̂2 = X̂AẐB + ẐAX̂B −
1− s2θ

c2θ
(X̂A + X̂B),

N̂3 = (1 + s2θ)(X̂A − X̂B)− c2θ(X̂AẐB − ẐAX̂B),

N̂4 = 1− s2θX̂AX̂B − c2θẐB.

(IV.14)

Taking this into account, we can now rewrite our candidate Bell expressions
by inverting the relation Eq. (IV.9), replacing the operators ẐA(B), X̂A(B) by the
measurement operators Âx, B̂y , and one-to-one lifting to formal polynomials.

Notice that since for all i, we have N̂i |φθ〉 = 0 and that we want that the
realization of interest verify 1 = ~β · ~P = 〈φθ| Ŝ |φθ〉, we have an additional
linear constrain

1 + p1 + p4 = 0. (IV.15)

Third, we can now use the fact that small variations around the point of
interest should not increase the value of the Bell expression. Our analysis
shows that it suffices to consider variations of one Alice and one Bob mea-
surement only. This condition gives a set of two linear equations:

0 = ~β ·
∂ ~Pθ,ax,by
∂a0

= ~β ·
∂ ~Pθ,ax,by
∂b0

(IV.16)

which reduce to

−p0c2θsa0sa1 + p1sa0sa1 − (−p3 −
p2

c2θ
)c2θs2θsa0+a1 + p4s

2
2θca0ca1 = 0,

p0c2θsb0sb1 + p1sb0sb1 − (p3 −
p2

c2θ
)c2θs2θsb0+b1 + p4(c2

2θsb0sb1 + s2
2θcb0cb1) = 0.

(IV.17)

The search space for the Bell expressions is thus reduced to the ones param-
eterized by Eq. (IV.13) verifying both Eq. (IV.15) and Eq. (IV.17). One can show
that for every nonlocal cases, this linear system of equation is of rank 3. As
such, the search for Bell expressions maximized by ~Pθ,ax,by can be reduced to
an affine plane of the form:

~β = ~β0 + λ1
~β1 + λ2

~β2 (IV.18)

where λ1, λ2 ∈ R and expressions ~βi verify ~βi · ~Pθ,ax,by = δi0. In particular, this
means that in the CHSH scenario, the orthogonal dimension of every nonlocal
extremal point is upper bounded by 2. This gives an interesting starting point
to study the relationship between Q and Q?.
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IV.3 - Example of the Tsirelson point
We now focus on the specific case of the Tsirelson point. This point (in-

troduced in Eq. (I.18)) is the only one maximally violating the CHSH expres-
sion (reaching the value 2

√
2). In the first chapter we highlighted that it also

self-tests a unique two qubit realization of the form Eq. (IV.9) for parameters
θ = π/4, a0 = 0, a1 = π/2 and by = (−1)yπ/4. In this case, Eq. (IV.15) and
Eq. (IV.17) reduce to: 

1 + p1 + p4 = 0.

p2 = 0,

− p1 + p4 = 0

(IV.19)

The search space for the Bell expressions is thus reduced to

βr0,r1 =
βCHSH

2
√

2
+ r0

(
A0 +A1√

2
−B0

)
+ r1

(
A0 −A1√

2
−B1

)
, (IV.20)

in the formal polynomial formalism, where r0, r1 ∈ R and βCHSH = (A0 +

A1)B0 + (A0 − A1)B1. Further order perturbations can be considered to re-
duce the range of the parameters r0, r1, but it turns out to be more restrictive
at this stage to eliminate parameters based on the local bound of the Bell ex-
pressions. Indeed, any βr0,r1 with a local bound larger than 1 also admits a
quantum value larger than 1 (and hence larger than the value obtained on
~PT ).

IV.3.1 . Local bounds
Since the convex combination of twopolynomialswith a local bound smaller

than one also has a local bound smaller than one, the set of expressions βr0,r1
with a local bound smaller than 1 forms a convex region of the r0, r1 plane.
Furthermore, the local maxima of a Bell expression is reached at one of the
16 extremal points of the local polytope. These points are given by

~Lijkl =

1 i j

k ik jk

l il jl

, i, j, k, l ∈ {−1, 1}. (IV.21)

The convex region of expressions of the form Eq. (IV.20) with a local maxima
smaller than one is thus given by all points (r0, r1) satisfying the conditions
βr0,r1 · ~Lijkl ≤ 1. The intersection of these half planes defines a polytope,
namely a regular octagon, whose eight summit are given by (see Fig. IV.1)

{
(

1− 1√
2

)
Rkπ

4
(1, 0), k ∈ {0, .., 7}}, (IV.22)

where Rπ
4
is the rotation of angle π/4 in the (r0, r1) plane. Any Bell expres-

sion outside this octagon has a local bound larger than 1, and thus is not
maximized by ~PT .
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IV.3.2 . Quantum bounds
Having excluded a range of Bell expressions βr0,r1 from their local bound,

we need to compute the Tsirelson bound of the expressions inside the oc-
tagon. To do so, we use the method introduced in Section III.2. Let us remind
that one needs to find a positive definite matrix W � 0 such that 1 − S =
~N †·W · ~N where ~N is a generating sequence of the set of polynomialswhich re-
alization nullifies the state |φ+〉. One can consider different relaxations levels
T of the algebra of formal polynomials. The first order relaxation T1+A+B =

{1, A0, A1, B0, B1} only gives a certificate for the CHSH expression. The re-
laxation at the almost quantum level [89], T1+A+B+AB = T1 ∪ {AxBy, x, y ∈
{0, 1}} can also be computed numerically and gives a certificate for a disk in
the (r0, r1) plane of center (0, 0) and radius 1

4
√

2
. The next relaxation consid-

ered here is given by

T1+A+B+AB+ABB′ = T1+AB ∪ {AxByBy′ , y 6= y′}. (IV.23)

We can show analytically that a certificate 1 − β(1− 1√
2
,0) = ~N †W3

~N can be
found for the expression of coordinate (r0, r1) = (1 − 1√

2
, 0) at this level of

relaxation:

~N =



A0+A1√
2
−B0

1− A0+A1√
2
B0

B0

(
1− A0−A1√

2
B1

)
A0−A1√

2
−B1

B1

(
1− A0+A1√

2
B0

)
A0+A1√

2
B1 + A0−A1√

2
B0


, W3 =

1

16



√
2 −2s −s

−2s 2s 0

−s 0
√

2
2 0 s

0
√

2s s
s s s

 ,

(IV.24)
where s = 2−

√
2 andW3 � 0. This ensures that the Bell expression

βT =
βCHSH

2
√

2
+

(
1− 1√

2

)(
A0 +A1√

2
−B0

)
(IV.25)

is maximized by the Tsirelson point. Since we already concluded that a larger
value of r0 admits a local value larger than 1, this bound for r1 = 0 is the best
we could have hopped for. One can check that this expression is an extremal
point of Q∗, that it is exposed2, and that it is only maximized by 3 extremal
points of Q: ~PT and two deterministic realizations.

To analyze the rest of the octagon, we make use of some symmetries of
the problem. Both the family of Bell expressions βr0,r1 and the setQ are pre-
served by several discrete symmetries. One of them is described by the fol-
lowing action:

S : (r0, r1)→ Rπ
4
(r0, r1),

{
A0 → −B1, A1 → −B0,

B0 → −A0, B1 → A1.
(IV.26)

2i.e. the quantum set admits a point which only saturates this Tsirelson inequality.
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Figure IV.1: Face of Q∗ in the two-dimensional affine slice defined by βr0,r1 for real parameters r0, r1.
The red point in the middle, the normalized CHSH expression, is non-extremal: it can be decomposed in
terms of the eight summits of the octagon, which are extremal Tsirelson inequalities.

Due to this symmetry, the quantumbound of any Bell expressionwith param-
eters (r0, r1) ∈ R2 can be computed by looking at the bound of the inequality
with parameters rotated by π/4. This ensures that the quantumbounds of the
eight inequalities Sk · βT of polar coordinates (1− 1√

2
, k π4 ) for k ∈ {0, .., 7}

are also one. Therefore, the octagon is exactly the convex region of quantum
bound equal to 1. This completes the characterization of the slice βr0,r1 (see
Fig. IV.1).

Interestingly, the normalized CHSH expression lies in the middle of this
dual face. Therefore, it is not an extremal Tsirelson inequality. In particular,
we can write it as the convex mixture

βCHSH =
1

2

(
βT + S4 · βT

)
. (IV.27)

Note that this description is not unique because βCHSH lies in the middle of a
face of Q∗ of dimension 2.

From the point of view of the quantum set, this means that the Tsirelson
point ~PT is an exposed extremal point ofQwith dimension pair (0, 2), i.e. with
a face dimension of 0 and a dual dimension of 2 . Furthermore, it is exposed
by all the expressions on the inside of the octagon (see Fig. IV.2). In fact, any
Bell expression inside the octagon can be written as a convex combination
of the CHSH expression and an expression βb on the border of the octagon:
β = pβCHSH/2

√
2 + (1 − p)βb, where p ∈ (0, 1]. If a point ~P verifies ~β · ~P = 1,

then it implies ~βCHSH · ~P = 2
√

2 and the self-testing result of βCHSH implies that
~P = ~PT . From the self-testing point of view, this means that any Tsirelson in-
equality inside the octagon self-tests the singlet state |φ+〉 andmeasurements
Eq. (I.17) associated to the Tsirelson point. As far as expressions on the bor-
der of the octagon are concerned, these are also maximized by local points
and as such cannot provide a self-test of the realization.
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Figure IV.2: Three-dimensional projection of the local polytope (in red) and of the quantum set of corre-
lations (red and blue). The only point reaching the z-value of 1 is the Tsirelson realization. This point lies
on top of an octagonal-based pyramid whose eight facets correspond to the Bell expressions Sk · βT for
k = 0, .., 7.
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V – Quantumstatistics in theCHSHsce-
nario

What are the fundamental limits of quantum theory’s probabilistic predic-
tions? Considering this problem already in the 1980s, Tsirelson was the first
to obtain bounds on the quantum set [23, 90]. Several results followed, no-
tably fromLandau andMasanes [84, 85], untilmajor progresswas achievedby
Navascués, Pironio and Acín (NPA) in the form of a hierarchy of semidefinite
programming [13, 57]. Concretely, the hierarchy defines a family of problems
of increasing complexity which approximate better and better the quantum
set from the outside and guarantees convergence as the level of the hierar-
chy goes to infinity. At a fixed hierarchy level, this technique allows deriving
necessary conditions for the quantum set [91], thus excluding that some be-
haviors admit a quantum representation. However, since the NPA technique
can generally not guarantee that specific statistics are quantum, its implica-
tions remain elusive on the boundary of the quantum set.

Recently, fresh insightwas gainedon the quantumset by analytical studies
which showed that it admits flat nonlocal boundaries [26, 79], as well as pointy
nonlocal extremal points [86, 92]. New curved regions of the set’s boundaries
were also identified analytically [93] and several conjectures were formulated
on the boundary of the quantum set [88, 94].

In this chapter, we consider the question of identifying the limits of the
quantum set from the perspective of self-testing [24]. So far, numerous fam-
ilies of states have been shown to be self-testable through some of their be-
haviors [59, 60]. However, only the statistics obtainedwhenmeasuring amax-
imally entangled state in the CHSH scenario have been fully characterized by
self-testing [78]. These behaviors correspond to the boundary of the quantum
set in this scenario with vanishing marginals, which was described earlier by
Tsirelson, Landau and Masanes, see [83].

Here, we obtain all the self-tests in the CHSH scenario. This reveals previ-
ously unknown boundaries of the quantum set. In turn, it allows us to identify
all extremal points and their corresponding quantum realizations, thus pro-
viding a complete description of the quantum set in this minimal scenario.

V.1 - Restriction to a fixed parameter range
Since Q is convex, it is fully described as the convex hull of its extremal

points: Q = Conv(Ext(Q)). The subset of extremal points inQ has beenmany
times restricted using different arguments. First, since the local Hilbert space
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dimensions are not fixed, using Naimark’s dilation theorem, one can always
restrict to realizations involving pure states and unitary measurements. Sec-
ond, using Jordan’s lemma, the search for extremal points can be limited to
realizations of local Hilbert space dimension 2 [95]. Last, more recent results
show that it suffices to consider realizations with real Hilbert spaces [88]. As
such, Ext(Q) ⊂ Q2 where Q2 is included in the set of points which can be
achieved by measuring a partially entangled two qubit state with real unitary
measurements, i.e. realized by:

|φθ〉 = cos θ |00〉+ sin θ |11〉 , (V.1a)
Ax = cos axσz + sin axσx, (V.1b)
By = cos byσz + sin byσx. (V.1c)

This subset of realizations thus stands out as a set of particular interest.
The set Q exhibits intrinsic symmetries due to how it is constructed: it

should be symmetric under relabelling of inputs and/or outputs, and under
exchange of parties. In particular, the nature of a point (extremal or not) is
unchanged by such symmetries. These can be translated to transformations
on the measurements performed by Alice and Bob. For a realization Eq. (V.1)
of a point inQ2, the symmetries ofQ render to involutions on the parameters
ax, by. In particular, one can restrict the analysis of the nature of points inQ2

to the following range of parameters:

θ ∈ [0, π), 0 ≤ a0 ≤ b0 ≤ b1 < π, a0 ≤ a1 < π, (V.2)

Any realization outside this range can be uniquely transformed into a real-
ization in this range, using the symmetries of Q, and the nature of the two
corresponding points will be the same.

Note that whenever the quantum realization involves a separable state,
then the corresponding point lies in the local set. In particular, this is the case
for any point inQ2 involving a state with entanglement parameter θ ∼= 0[π/2].
The extremal points of the local polytope are known and correspond to the
16 deterministic strategies, for which 〈Ax〉 = a, 〈By〉 = b and 〈AxBy〉 = ab,
for a, b ∈ {−1, 1}. Since these are also extremal in the non-signaling poly-
tope and since Q ⊂ N , they are extremal in Q. As such, when considering
qubit realizations, we consider that they are achievedwith an entangled state,
i.e. θ � 0[π/2].

V.2 - Steering of quantum realizations
In order to characterize the realization of local dimension 2, we consider

a non-linear map Tθ : HA → HA which describes the steering of a vector |u〉
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Figure V.1: Action of the steering transformation on a realization involving two measurements for each
party. When the entanglement parameter θ is in (0, π/4) and Alice’s measurements are in the (σz , σx)
upper-plane, the steered realization involves four newmeasurements Ãa

x, with respective angles ãax to σz
in the same plane.

in Alice’s Hilbert space through the state |φθ〉:

Tθ : |u〉 7→
√

2(〈φθ|u〉) |φ+〉
|| 〈φθ|u〉 ||2

, (V.3)

where |φ+〉 :=
∣∣φπ/4〉 is the maximally entangled two qubit state. This trans-

formation correspond to the identity if the initial state is |φ+〉. If the initial state
|u〉 is normalized, then the image vector Tθ(|u〉) also is. One can extend the
action of this steering function to the set of projectors acting on Alice’s Hilbert
space: for any |u〉〈u|, the operator |Tθ(|u〉)〉〈Tθ(|u〉)| is itself a unit projector

However, the action of the steering transformation does not preserve or-
thogonality. As such, it cannot be directly extended to unitarymeasurements.
One way to bypass this issue is to allow one to double the number of mea-
surements on Alice’s side. Indeed, for any unitary measurement Ax on Al-
ice’s Hilbert space, both Πa,x := (1 + aAx)/2, for a ∈ {−1, 1}, are projectors
on which one can apply steering. Even though the image projectors won’t
sum to the identity, one can still define a pair of new unitary measurements
Ãa
x = a(2Tθ[Πa,x] − 1). Note that if the initial measurement has an angle

ax ∈ [0, π)with respect to σz in the (σz, σx)-plane, then themodifiedmeasure-
ment still lie on this plane, but with modified angles ãax ∈ [0, π] with respect to
σz (see Fig. V.1), where:

ãax = 2 arctan
(

tan
(ax

2

)
tan(θ)a

)
. (V.4)

The average value of these new operators on the maximally entangled
state can be expressed as a non-linear transformation of the initial vector of
correlators:

[Ãa
xBy] :=

〈
φ+
∣∣ Ãa

xBy
∣∣φ+
〉

=
〈AxBy〉+ (−1)a〈By〉

1 + (−1)a〈Ax〉
. (V.5)
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As such, upon a non-linear transformation Tθ, the original correlation vector
obtained with a realization of local dimension two can be interpreted as cor-
relators of a quantum point realized by the state |φ+〉, fourmeasurements for
Alice and two for Bob:

〈B0〉 = c2θcb0 〈B1〉 = c2θcb1
〈A0〉 = c2θca0 〈AxBy〉 = caxcby + s2θsaxsby
〈A1〉 = c2θca1

Tθ−→

0 0

0
0

[Ãa
xBy] = cãax−by

0
0

(V.6)
Note that all marginals of this new quantum point are equal to zero as it is the
case whenever measuring a maximally entangled state. Therefore, this new
point can itself be embedded in an eight dimensional space.

Since the new extended statistics (with 4 settings for Alice) are valid quan-
tum statistics, they must satisfy known constraints on the quantum set. In
particular, for each pair (s, t) corresponding to two of Alice’s new measure-
ments (Ãs

0, Ã
t
1), one can use previously known characterizations of the quan-

tum set in the subspace of zeromarginals of the CHSH scenario. For example,
one can use the push-out characterization [83], first introduced by Masanes
[85], to make the following statement:

Proposition 1. - Necessary condition for pure projective realizations of local di-
mension 2.
In the CHSH scenario, any nonlocal quantum point that admits a realization with
local Hilbert spaces of dimension two, a pure state and projective measurements,
verifies the following inequalities, for all s, t ∈ {−1, 1}:

−π ≤ − asin[Ãs
0B0] + asin[Ãt

1B0] + asin[Ãs
0B1] + asin[Ãt

1B1] ≤ π
−π ≤ asin[Ãs

0B0]− asin[Ãt
1B0] + asin[Ãs

0B1] + asin[Ãt
1B1] ≤ π

−π ≤ asin[Ãs
0B0] + asin[Ãt

1B0]− asin[Ãs
0B1] + asin[Ãt

1B1] ≤ π
−π ≤ asin[Ãs

0B0] + asin[Ãt
1B0] + asin[Ãs

0B1]− asin[Ãt
1B1] ≤ π

(V.7)

where for all a, x, y: [Ãa
xBy] =

〈AxBy〉+a〈By〉
1+a〈Ax〉 .

Note that inequalities for (s, t) = (1, 1) are linear combinations of inequal-
ities for (s, t) 6= (1, 1) and as such there are only 24 independent inequalities
in the above. All these inequalities can be obtained considering only one of
them and using intrinsic symmetries of the quantum set of correlations that
are relabelling of inputs and outputs. Moreover, one can write 24 other in-
dependent inequalities by performing the steering transformation on Bob’s
measurements. Finally, in the case where some of Alice’s marginals are equal
to ±1, some of the correlators [Ãa

xBy] are not well-defined. This can however
only happen when θ ≡ 0[π/2] and thus corresponds to local points.
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When the marginals are zero, the inequalities collapse to only 8 convex
inequalities, corresponding to the ones identifying the boundary of the quan-
tum set in this restricted CHSH scenario [85]. However, in all generality, the
inequalities Eq. (V.7) are not preserved by convex combinations are thus can-
not fully describe the set Q. Unlike for the zero marginal case, some quan-
tum points, admitting a non-qubit realization, do not satisfy all of the above
inequalities.

V.3 - Self-testing statement
Self-testing describes the fact that some points in the quantum set of cor-

relations fully identify the underlying realization, that is a state and measure-
ments on both parties, up to local unitary transformations and additional de-
grees of freedom. As such, these correlators provide a device-independent
characterization of physical state and measurements [14]. The self-testing
property is of particular interest in our study, as self-testing correlators are
extremal correlations of the quantum set (see [26, Proposition C.1]). In the
CHSH scenario with zero marginals, all extremal points self-test a realization,
which always involves a maximally entangled state [83] and where Alice’s and
Bob’s angles of measurements “alternate” [78], i.e. when, up to intrinsic sym-
metries ofQ, the measurement parameters verify 0 ≤ a0 ≤ b0 ≤ a1 ≤ b1 ≤ π.
Outside this range, the corresponding points are on the interior of the quan-
tum set [83]. However, we know that other correlations self-test partially en-
tangled states and as such the extremal points of Q do not only correspond
to realization involving a singlet state.

In the zero marginal case, the equality case in the inequalities introduced
in Eq. (V.7) can only be achieved by self-testing correlations, which identify
a singlet state and real unitary measurements [78]. It is thus natural to ask
whether the points saturating some of the above conditions could lead to self-
testing as well. It turns out that saturating a single inequality is not sufficient.
Similarly, one can find non-extremal points saturating two inequalities. How-
ever, whenever three of the conditions are met for different values of (s, t),
the fourth one is also, and in this special case, we show that the resulting
statistics self-test a qubit realization.

Theorem 1. Any nonlocal behavior which satisfies

asin[Ãs
0B0] + asin[Ãt

1B0]− asin[Ãs
0B1] + asin[Ãt

1B1] = π, (V.8)

for all (s, t) ∈ {±1}2, self-tests a quantum realization of local dimension 2.

In particular, all realizations in the range Eq. (V.2) for which the measurement
angles fully alternates, i.e. verify

0 ≤ [ãs0]π ≤ b0 ≤ [ãt1]π ≤ b1 < π (V.9)
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satisfy, up to relabelling, the condition of Theorem 1. As such, these realiza-
tions are self-tested by their associated quantum point, which is therefore ex-
tremal inQ [26]. Note that, conversely, satisfying Eq. (V.8) for all (s, t) ∈ {±1}2
self-tests realizations that fully alternate (up to relabeling).

The proof of Theorem 1, given in [96][Appendix C], strongly relies on the
steering transformation. This time, the nonlinear transformation is used to
map self-testing statements on amaximally entangled state into a self-testing
statement on a partially entangled one. This is made possible by strong ge-
ometrical relations between the vectors Ãa

x |φ+〉 and By |φ+〉 issued from the
steered realization when Eq. (V.8) holds.

Note that the condition of nonlocal behavior implies that the marginals
cannot take the value ±1, which guarantees that the correlators [Ãs

xBy] are
well-defined. Indeed, any vector with a singlemarginal probability equal to±1

would have more than two zeros of probabilities on the same line or column
of the probability table, ensuring that the quantum point is local [79].

V.4 - Non-exposed condition
Theorem 1 identifies many extremal points of the quantum set and pro-

vides self-testings for all qubit partially-entangled states with a large family
of measurement settings. However, it does not say whether points which do
not satisfy the equality case are extremal in Q. In order to address this, we
consider the complementary question of showing that realizations which do
not satisfy the full alternation condition Eq. (V.9) lead to behaviors that are
non-extremal. As a first step in this direction, we prove that in the absence
of full alternation, the statistics are non-exposed in Q, i.e. that they do not
uniquely reach the Tsirelson bound of any Bell expression (see Section I.1.6).
Note that since non-exposed points include both decomposable points and
some extremal points, this result in itself does not allow concluding yet.

Theorem 2. Consider a quantum realization with state |φθ〉 and measurements
satisfying Eq. (V.2). If the following series of inequalities does not hold:

∀s, t, 0 ≤ [ãs0]π < b0 < [ãt1]π < b1 < π, (V.10)

where ãax = 2 atan(tan
(
ax
2

)
tan(θ)a), and [α]π :≡ α[π], then the corresponding

point is non-exposed in Q.

The proof of Theorem 2, presented in [96][Appendix D] is divided into two
main parts. First, we use the method presented in Section IV.1.2 which al-
lows us to restrict the range of expressions that can be maximized by such
realizations to a 3-dimensional vector space. Second, for all remaining Bell
expressions, we identify a local point, different from this initial one, which
gives the same Bell value. This guarantees that the value achieved by this
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quantum point for every Bell expression is also achievable by another point,
and therefore that the point is non-exposed.

Note that the parameter range of ax, by made in the theorem can always
be reached by using the intrinsic symmetries of the quantum set, as discussed
earlier, without changing thenature (non-exposed) of the corresponding points.

Finally, themodified angles ãax introduced in the theoremare, up to output
relabeling, the angles in the real Pauli plane of the modified measurements
obtained trough steering. As such, the theorem states that if the modified
angles of Alice ãax and the angles of Bob by do not alternate, then the corre-
sponding points are non-exposed.

V.5 - Characterization of Ext(Q)
Equipped with Lemmas 1 and 2, let us consider a qubit realization of the

form Eqs. (V.1) and (V.2). If the measurement angles satisfy the alternating
condition Eq. (V.9), then Theorem 1 ensures that the quantum realization is
self-tested and therefore the point is extremal. This shows that the alternat-
ing property Eq. (V.9) is constitutive of these points: no point obtained with
non-alternating settings can be obtained with other, alternating settings. Us-
ing this property together with Theorem 2 ensures that all realizations that
do not verify Eq. (V.9) correspond to points on the interior of the set of non-
exposed points ofQ. However, Straszewicz’s theorem states that all extremal
points are limits of exposed points [19]. This ensures that non-alternating re-
alizations lead to non-extremal points of Q. This can be summarized in the
following theorem.

Theorem 3 (Characterization of Ext(Q)).

1. A nonlocal point in the CHSH scenario is extremal in Q iff

∀ u ∈ {±1}2,
∑
x,y

εxy asin[Ãux
x By] = π (V.11)

for some εxy ∈ {±1} such that
∏
x,y εxy = −1.

2. A quantum realization leads to a nonlocal extremal point iff it can bemapped
by local channels and relabelings to a quantum realization on the entangled
state |φθ〉 with measurements satisfying Eq. (V.2) s.t.

∀(s, t) ∈ {±1}2, 0 ≤ [ãs0]π ≤ b0 ≤ [ãt1]π ≤ b1 < π. (V.12)

Note that the full alternance condition is equivalent whether the steering
transformation is applied on Alice’s measurements (as done here) or on Bob’s
ones. Therefore, exchanging the role of Alice and Bob in conditions Eqs. (V.11)
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and (V.12), withmodified angles b̃by and correlators [AxB̃
b
y ], identifies the same

extremal point.
When the underlying state is |φ+〉, we have ãax = ax for all a, x. As such, the

four conditions Eq. (V.12) collapse to a single one, recovering the alternating
condition of the measurement for the singlet and the extremal points of the
CHSH scenario with zero marginals [83].

Together with the 8 deterministic strategies [15], which are local extremal
points of Q, Theorem 3 gives a complete characterization of the extremal
point of the quantum set in the minimal scenario. This description implies
that all nonlocal extremal points in this scenario self-test a two qubit realiza-
tion.

This theorem gives us a clear geometrical understanding of the realiza-
tions leading to extremal points, as depicted in Fig. V.2. Whenever the initial
measurement settings ax, by do not alternate, then the corresponding point
is not extremal for all possible value of θ. However, whenever the initial mea-
surement settings ax, by alternate, the corresponding point is extremal for an
entanglement parameter in {θmin, π/4}, where θmin correspond to the largest
value of θ for which an equation of the form ãax = by is satisfied, as conjectured
in [88].

Note that the analytical description of the quantum set given by Theo-
rem 3 provides new insight on its geometry. It implies that the 8-dimensional
convex set is generated by a 5-dimensional sub-manifold of extremal points.
Indeed, as discussed above, whenever Alice’s marginals are not zero, three
out of the four equations above are linearly independent. Furthermore, sat-
isfying an equation of the form [Ãa

xBy] = ±1 is equivalent to saturating a
positivity inequality. As such, Theorem 2 ensures that all extremal points of
Q lying on the border of the non-signaling polytope N are non-exposed, an-
swering positively a conjecture made in [79].
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(a) (b)

(c) (d)

Figure V.2: Geometrical representation of the realizations leading to extremal points of the quantum set
in the CHSH scenario. Up to local isometries and relabelings, these realizations correspond to measure-
ments on a partially entangled two qubit state |φθ〉 taking place in the (σz , σx)-plane and verifying the fully
alternating condition Eq. (V.9). If the initial measurement angles alternate, i.e. verify 0 ≤ a0 ≤ b0 ≤ a1 ≤
b1 < π, then the corresponding points are extremal for all entanglement parameters θ in [θmin, π/4],
where the threshold entanglement value is given by θmin = max{θ ≤ π/4 s.t. ãax = by}. As such, for
θ = π/4, pictured in Fig. V.2a, the point is extremal. For θmin < θ < π/4, pictured in Fig. V.2b, the orange
areas and black arrows still alternate, so the point is extremal. For θ = θmin, see Fig. V.2c, the point is
still extremal but non-exposed inQ. Last, for θ < θmin, like in Fig. V.2d, the black arrow of B0 is inside an
orange area: the fully alternating property is broken, and the point admits a decomposition.
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Conclusion and Outlooks
The understanding of nonlocality and its impactful implications now al-

lows for the development of more and more promising applications, through
innovative devices and new possibilities of communications. With the rapid
growth of quantum based technologies, we are faced with the challenge of
certifying their proper working. As we’ve seen in the first chapter, Bell-like ex-
periments in the lab are now at the point where they start to be able to certify
quantum states and measurements in a device-independent way. However,
many things remain to be understood on the theoretical end both to reduce
the experimental requirements andmakeprotocolsmore practical, and to un-
derstand the reach of such certification schemes. Moreover, many of these
protocols rely on the assumption that quantum theory is a valid and complete
description of nature. Our contributions in this thesis evolve mainly around
two lines: finding new Bell expressions together with new self-tests for more
states and more measurements, and describing the set of correlators achiev-
able within quantum theory.

Bell inequalities and self-testing
In this thesis, we considered the problem of constructing Bell expressions

that are tailored to a generic target state in the sense that its maximal admis-
sible quantum value can be achieved by measuring this state. We presented
a solution to this problem in the form of a systematic method applicable to
arbitrary quantum states, which uses a Sum of Squares of formal polynomi-
als to define the coefficient of the Bell expression. In principle, this method
is asymptotically complete, in the sense that every Bell expression with the de-
sired property can be obtained by starting from a complete enough set of
formal nullifiers. When the degree of the nullifiers is bounded, the method
still provides sufficient (but not necessary) conditions for a Bell expression to
be maximally violated by the target state. Therefore, in all cases, the method
constructs Bell expressions with the guarantee that their maximal value is
achieved by the desired state.

In addition to providing a Bell expression with the desired property, a key
feature of the SOS method is that it also grants, by construction, its sum of
squares. This provides a first step towards the self-testing of the quantum
realization. However, clarifying when Bell expressions obtained by the SOS
method exhibit the self-testing property remains an open question. Indeed,
even though SOSdecompositions provide a key ingredient to self-testing, com-
plete self-testing proofs can still require substantial work [77, 97]. Finding con-
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ditions under which the SOS method allows for self-testing could lead to an
asymptotically complete method for self-testing target states. Possible lines
of work could include using recent progress in the formulation of self-testing
inmore operational or algebraic ways [98, 99] or self-testing proofs relying on
representation theory [100, 101]. These new approaches might help to find
necessary conditions for an SOS involving a given set of nullifiers to imply self-
testing.

As highlighted in chapter 2, using the SOS method, we constructed a fam-
ily of Bell inequalities tailored to the maximally entangled two-qutrits state∣∣ψ3
〉

= (|00〉 + |11〉 + |22〉)/
√

3. We also used the method to derive a family
of Bell expressions with 2 real parameters, self-testing the partially entangled
state |φθ〉 = cos θ |00〉 + sin θ |11〉 when Alice performs σz and σx measure-
ments. In turn, this allowed finding new Bell expressions for realizations we
already knew how to self-test. This striking fact seems to be more prevalent
than one could think, as we even proved in chapter 4 that this is the case of
the well-known Tsirelson point. The fact that several Bell expressions can be
used to self-test the same point could help to obtain self-tests that are more
robust to noise. Indeed, given the families of Bell expressions able to self-test
the partially entangled state of two qubits that we discovered with the SOS
method, it is natural to ask which of these is most robust to noise. In fact, it
would be interesting to answer this question both for a fixed set of measure-
ment settings and for arbitrary measurements.

Finally, the constraints imposed by the SOSmethod apply to both the state
and measurements parameters. Therefore, the method can be used to con-
struct inequalities tailored to target measurements as well, such as families
of Bell expressions for fixed settings and varying states [75]. It would be inter-
esting to further investigate the relevance of the SOS method to self-testing
of measurements.

Geometry of the quantum set of correlations
Understanding the set of quantum correlations is of both fundamental

and practical importance. In this thesis, we provided an analytical description
of the quantum set in one of its most popular scenario. Moreover, we proved
that all extremal points in this scenario self-test a two qubit realization. To
obtain these results, we have used a non-linear steering transformation of
the correlations, which appears to capture an intrinsic property of quantum
correlations. This technique offers a promising perspective for the study of
quantum correlations in broader scenarios. One direct generalization would
be to investigate whether the results obtained here can be extended to de-
scribe the set of qubit correlations for two parties, two settings and an arbi-
trary number of measurement settings following steps similar to [102].
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We provided an analytical description of the boundary of the quantum set
in the CHSH scenario through a non-linear function. It will be interesting to
find out whether an analytical boundary of the set can also be expressed for
the quantum set with additional parties, inputs or outputs. For instance, it has
been proven that the boundary of the (2, 5, 3)-Bell scenario requires quantum
systems of arbitrarily large dimension [103].

While this work offers a first analytical insight on the quantum set, much
remains to be done to obtain a full geometrical understanding of this object.
For instance, it remains an open question to determine the level at which the
NPA hierarchy is tight in the CHSH scenario [57]. Our work could provide an
important step towards this line. Another open question concerns an analyt-
ical description of the dual of the quantum set. This set is of foremost impor-
tance for many quantum information protocols, as it encodes the Tsirelson
bounds of all Bell expressions. In chapter 4, we studied the quantum set Q
from a dual perspective. In particular, we derived constructively all the Bell
expressions that the Tsirelson point ~PT maximizes. This provides fresh in-
sight on the geometry of the quantum set. In particular, we show analytically
that ~PT is an extremal point of Q of dual dimension 2 that lies at the top of
a pyramid. This geometrical picture goes against many representations that
were given of this point in other projections. The new Bell expressions found
with the SOS method allowed us to demonstrate that a family of points cor-
responding to the partially entangled states are also angulous points of the
quantum set. This implies that their dual dimension is at least one, and we
proved in chapter 4 it is actually upper bounded by two. It would be interest-
ing to find out whether it is a generic property of exposed extremal quantum
statistics to have a non-zero dual dimension.

Our work also identifies 8 exposed extremal points of Q∗, all of dual di-
mension 2 as well, thus fully describing a face of Q∗ of dimension 2. To our
knowledge, this is the first time that nonlocal extremal points of the quantum
dual are highlighted. Our work also answers an important question about the
relation between Q and Q∗ first raised in [20]. In this work, a linear map was
introduced to prove that L∗ ∼= NS. Since this map sends the extremal point
~PT onto the non-extremal inequality βCHSH/2

√
2, and linear isomorphisms

preserve extremality, this shows that this application cannot be used to map
Q to Q∗. This suggests that the quantum set Q might not be self-dual after
all, and that Q? may have a very different geometry.
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Outlooks
As shown in this thesis, the use of mathematical tools, such as duality,

combined with innovative ideas rooted in quantummechanics, such as steer-
ing, can lead to great progress in the description of what quantum theory can
achieve in Bell scenarios. Yet, in the end, the main conclusion may be that
the study of the quantum correlations in this framework still has a long way
to go. Even thought most of our contributions focus on the CHSH scenario,
we anticipate that the results presented in this thesis will help to improve our
understanding of the quantum set beyond this scenario.

Our analytical description of the set still has a lot of potential applications.
Starting back over 30 years ago, a single Bell inequality, the CHSH one, from
which we gave the name of the corresponding scenario, has been fiercely
studied for numerous applications, from certification of quantum systems to
randomness generation. However, it is now known that the CHSH score, a
single linear function of the correlations, may not always be the best suited
for all these tasks [56]. The certification of partially entangled state as well
as different measurement settings requires new Bell expressions [65]. Also,
one cannot have two bits of shared randomness with a maximal CHSH vio-
lation and only two measurements per party, while tailored Bell expressions
can certify up to two bits with CHSH values arbitrary close to 2 [87]. More
recent works have emphasized that all these applications benefits from the
use of the value of multiple Bell expressions at the same time [45] or even
from the knowledge of the full probability distribution [104, 105]. Our work
provides for the first time a way to consider analytically every possible real-
ization that may lead to a given vector of correlations. As such, our work does
not only have fundamental implications on quantum theory, but also opens
the possibilities for newways of analyzing key quantities underlying quantum
information protocols. These call for further investigation.
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