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Chapter 1

Introduction

Que signifie la mécanique quantique1 ?

La mécanique quantique : 100 ans d’ambiguïté philosophique et de débats sur son inter-
prétation. Une théorie basée sur des mathématiques relativement simples (du moins en
dimension finie), jamais mise en défaut expérimentalement, mais qui déchire la commu-
nauté dès qu’il s’agit de comprendre ce qu’elle dit de l’univers et de ce qui existe. Dès les
travaux pionniers (⇠ 1920 - 1940), une tension métaphysique est repérée, que des physiciens
comme Einstein [54], Bohr [26], Schrödinger [122], Heisenberg [67], Born [30] et bien d’autres
tentent d’éclaircir sans y parvenir réellement. Néanmoins, une interprétation dominante,
aux contours flous et recouvrant des positions complexes et changeantes, semble émerger
: l’interprétation de Copenhague [72]. Insatisfaisante à bien des égards, le pragmatisme
anti-philosophique du célèbre « Shut up and calculate ! » finit alors par s’imposer durant la
deuxième moitié du XXe siècle. Les débats concernant le sens physique de la théorie sont
perçus comme stériles, la théorie fonctionne pour toutes les applications pratiques, et c’est
tout ce qui lui est demandé. Mais quelques audacieux·ses refuseront de se taire.

En 1952, Bohm, développant une idée déjà explorée deux décennies plus tôt par de
Broglie, fonde la mécanique bohmienne [25] : une ré-organisation de la théorie qui semble la
rendre compatible avec une interprétation intuitive ; les particules y redeviennent des entités
concrètes, dotées d’une position et d’une vitesse bien définies à tout instant. En 1964, Bell
démontre son célèbre théorème [18], reposant sur des observations mathématiques simples
mais profondes, aux implications retentissantes : l’interprétation n’est pas seulement une
affaire de choix métaphysique car elle peut aussi être contrainte par certains faits physiques.
En réalisant des expériences bien choisies mettant en jeu le phénomène d’intrication, il est
possible (i) soit de mettre en défaut la mécanique quantique (ii) soit de conclure que l’univers
présente une forme de non-localité fondamentale, avec pour corollaire qu’il est en principe
impossible pour l’esprit humain de bâtir une théorie physique entièrement déterministe (car
alors la non-localité permettrait de communiquer plus vite que la lumière, ce qui induirait
des paradoxes causaux). L’article de Bell passe presque inaperçu pendant 20 ans, cumulant

1Les paragraphes qui suivent constituent un résumé très partiel d’une réalité historique complexe, où
bien d’autres travaux auraient pu être mentionnés.
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à peine quelques dizaines de citations par an.

Parmi les rares qui s’intéressent à ces sujets durant la seconde moitié du XXe siècle, la
recherche prend même parfois une dimension politique, dans un contexte de guerre froide
et idéologique. En URSS, la mécanique bohmienne apparaît bien plus compatible avec le
matérialisme marxiste que l’interprétation de Copenhague, aux saveurs d’idéalisme bourgeois
[106, 93]. La possibilité ouverte par Bell de mettre en défaut expérimentalement la théorie
orthodoxe gagne l’intérêt, dès la fin des années 60, de jeunes socialistes italien·nes en quête de
nouvelles manières de penser la recherche scientifique et la société [11]. Dans les États-Unis
des années 70, alors que la physique dominante connaît une hyper-mathématisation crois-
sante et un conformisme accentué par les coupes budgétaires liées à la guerre du Vietnam,
quelques hippies (selon l’expression de Kaiser [79]) de Berkeley versé·es dans l’esprit New Age
s’intéressent à la non-localité de Bell comme possible pont avec les spiritualités orientales
et leurs expériences psychédéliques. La réalisation concrète de l’expérience proposée par
Bell tient à l’époque de la prouesse technique, freinée d’autant plus par le manque général
d’intérêt et de financements. Ce sont finalement les expériences de Freedman et Clauser en
1972 [60], et surtout celle d’Aspect et son équipe en 1982 [9], qui permettent de trancher :
les prédictions de la mécanique quantique sont confirmées, et par conséquent la non-localité
de Bell est avérée.

Peu à peu, le sujet gagne l’intérêt de la communauté physicienne. Ces recherches de
l’ombre ont préfiguré le domaine naissant de la théorie de l’information quantique, qui connaît
son essor à partir des années 2000, tandis que les approches conventionnelles à la physique
des particules s’essoufflent. Il profite également de l’afflux de financements publics et privés
dans la course à l’ordinateur quantique. Le nombre de citations des articles de Bell [18] et
d’Einstein et al. [54] explosent, au point qu’ils comptent aujourd’hui parmi les articles les
plus cités de l’histoire de la physique. Le prix Nobel 2022 sera décerné à Clauser, Aspect et
Zeilinger « pour [leurs] expériences avec des photons intriqués, établissant les violations des
inégalités de Bell et ouvrant une voie pionnière vers l’informatique quantique », plus de 30
ans après la mort de Bell.

Toutefois, même si les concepts de la théorie de l’information peuvent éclairer la ques-
tion de l’interprétation de la mécanique quantique, le débat divise toujours la communauté,
comme en témoignent les réponses extrêmement divergentes de plusieurs sondages récents
réalisés auprès de physicien·nes ou de philosophes de la physique [120, 125]. Et pour cause, le
problème est particulièrement difficile à délimiter ou même à exprimer clairement. Il prend
des formes variées selon l’interprétation défendue, et la frontière entre fait expérimental et
posture philosophique est loin d’être évidente, comme l’ont montré Bohm et Bell. Dans
cette thèse, nous tenterons d’exposer le plus clairement possible cette énigme que tentent de
résoudre toutes les interprétations, communément désignée problème de la mesure (nous cri-
tiquerons cette expression), mais que nous appellerons le problème ontologique de la physique
quantique.
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Un principe conducteur pour la gravitation quantique

Une autre raison probable du regain d’intérêt pour les questions de fondements est liée à
l’échec de l’unification tant attendue entre la physique des particules (la théorie quantique
des champs, notamment le modèle standard) et la gravitation (la relativité générale), et
surtout la faillite de la théorie des cordes. Une idée de plus en plus partagée aujourd’hui,
en particulier parmi les philosophes de la physique, est l’importance d’éclaircir le problème
ontologique pour être en mesure d’aborder correctement le projet de la gravitation quantique
[41, 3]. Un principe conducteur dans cette quête, qui n’est encore qu’une intuition vague plus
qu’un principe rigoureusement formulé, est la notion de background-independence [115, 92].
Elle tente de prendre au sérieux une leçon essentielle de la relativité générale : la co-émergence
de l’espace-temps et de la matière. C’est en effet l’un des apports majeurs d’Einstein d’avoir
montré que l’espace-temps n’est pas un arrière-plan absolu dans lequel se meuvent les corps,
mais plutôt une entité dynamique qui ne pré-existe pas à la matière, et qui n’a même pas de
sens en l’absence de cette dernière (voir en particulier le fameux hole argument, qu’Einstein
a commenté dans ces termes : « There is no such thing as an empty space » [53]).

Par souci de rigueur terminologique, nous préfèrerons dans cette thèse le qualificatif back-
groundless plutôt que l’usuel background-independent, car ce qui est recherché, c’est bien une
théorie sans aucun arrière-plan, et non simplement indépendante de celui-ci. Sur quoi, dès
lors, fonder ou contraindre cette co-émergence de l’espace-temps et de la matière ? Peut-être
sur la notion de causalité, comme le proposent les approches de type causal sets [28, 50, 132],
intuition soutenue par plusieurs théorèmes de géométrie Lorentzienne [150, 66, 90]. On pour-
rait formuler la difficulté essentielle de la gravitation quantique, raison possible de quatre
décennies de recherches infructueuses, comme suit : comment bâtir une théorie de la matière
quantique (et donc soumise au problème ontologique) sans même disposer d’un espace-temps
préexistant dans laquelle la concevoir ?

La théorie de la décohérence

Au début des années 80, en parallèle de la théorie de l’information quantique, un autre
programme de recherche voit le jour avec la ferme intention de reconsidérer les problèmes
fondamentaux de la mécanique quantique : la théorie de la décohérence. Des premières
intuitions [97, 58, 151] aux articles fondateurs de Zurek [153, 154], le champ se développe
rapidement et devient vite un élément incontournable à la compréhension de la mécanique
quantique, connu au moins dans les grandes lignes par toute la communauté [158]. Une
confirmation importante de la théorie a été permise par les expériences d’Haroche et son
équipe [37], qui lui a valu le prix Nobel en 2012. Vraisemblablement, il s’agit d’une des (de
la ?) plus grandes avancées de la physique fondamentale depuis l’achèvement du modèle
standard au milieu des années 70.

Le but de la théorie de la décohérence est d’expliquer le passage du quantique au classique.
Plus précisément, il s’agit de comprendre pourquoi le phénomène de superposition quantique
— source du problème ontologique — est observé en laboratoire dans certaines expériences
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spécifiques, mais imperceptible à nos échelles ; autrement dit, pourquoi il n’existe pas de
chats de Schrödinger. Un des atouts de la théorie est qu’elle ne nécessite aucun nouveau
postulat, n’ajoute ni n’enlève rien à la mécanique quantique, mais en est une conséquence.
Elle est fondée sur l’idée décisive qu’un système physique, en règle générale, n’est pas isolé,
mais baigne dans un environnement avec lequel il interagit continuellement et s’intrique. Ce
faisant, l’environnement acquiert de l’information sur l’état du système, et la décohérence
(i.e. la suppression des superpositions) est d’autant plus forte que cette information est
complète. C’est pourquoi il est possible de réaliser des expériences d’interférences avec
des photons ou des électrons, mais pas avec des objets macroscopiques. Les premiers, non
chargés, interagissent peu, et les seconds sont assez petits pour ne laisser aucune trace de
leur passage, tandis que la trajectoire d’objets plus imposants est rapidement enregistrée par
les molécules d’air (même dans un vide de laboratoire) ou par les photons ambiants qu’ils
rencontrent [77, Tableau 3.1].

Voici quelques modèles importants de décohérence. Dans [154], un spin (le système) inter-
agit avec un grand nombre d’autres spins (l’environnement) via des constantes de couplages
aléatoires. Un second modèle fait apparaître que les interférences disparaissent d’autant
plus efficacement que les niveaux d’énergie d’interaction entre le système et l’environnement
sont distincts. Intuitivement, plus l’environnement « ressent » la différence entre deux états
possibles du système, plus ces-derniers décohèrent. Dans [78] est notamment estimé le rayon
typique de cohérence d’une particule non-localisée lorsqu’elle interagit avec une autre selon un
potentiel de type coulombien, en fonction du temps et de leur distance. Les auteurs calculent
aussi le taux de localisation d’un système plongé dans un bain thermique de particules (typ-
iquement des photons) qu’il diffuse. Rapidement, son rayon de cohérence devient de l’ordre
de sa longueur d’onde de de Broglie. Le mouvement brownien quantique [38] est un modèle
qui met en jeu un grand nombre d’oscillateurs harmoniques couplés ; l’équation qui gouverne
l’évolution d’un de ces oscillateurs permet d’étudier le niveau de décohérence induit par les
autres [159, §V.B.] et confirme les conclusions des précédents modèles. L’analyse numérique
d’un système quantique chaotique [64] révèle que son comportement dans l’espace des phases
présente d’importantes caractéristiques quantiques lorsqu’il est isolé, mais reproduit précisé-
ment la distribution classique dès qu’une décohérence, même modeste, est imposée. Bien
d’autres modèles existent, souvent adaptés à des contextes plus spécifiques [77, 23, 32, 159].

Plusieurs leçons principales peuvent être tirées de la théorie de la décohérence. Quand
un système est en interaction avec un environnement extérieur, les superpositions quan-
tiques disparaissent exponentiellement vite dans la plupart des situations réalistes. Cette
suppression, cependant, a lieu dans une base particulière de l’espace de Hilbert (i.e. rela-
tivement à une manière de mesurer le système, par exemple en position, en impulsion, en én-
ergie. . . ), nommée pointer basis, qui dépend de la nature de l’interaction avec l’environnement
à travers le phénomène d’einselection (termes introduits par Zurek) [159]. D’un point de
vue philosophique, la décohérence nous apprend que ce qu’est un système n’est pas indépen-
dant de ce que son environnement sait de lui. Ce sont les relations des systèmes entre eux
qui les font exister mutuellement, une conclusion étonnamment backgroundless. Elle donne
aussi le bon cadre pour définir précisément le problème ontologique quantique, qui s’estompe
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après décohérence, raison pour laquelle il semble absent du monde que nous percevons, où
rien n’est jamais isolé. Cependant, comme nous le verrons, elle ne résout pas le problème
ontologique, puisque la décohérence n’est ni absolue, ni irrémédiable, ni même présente au
niveau des systèmes isolés.

Le programme initié avec la théorie de la décohérence paraît avoir porté ses fruits, et cer-
tain·es considèrent qu’il s’agit à présent d’un champ de recherche éteint. Pourtant, il semble
que plusieurs questions cruciales restent en suspens. Premièrement, quels sont les systèmes,
et quels sont les environnements ? Quel coarse-graining de l’espace de Hilbert abstrait du
formalisme quantique correspond au monde que nous expérimentons ? En outre, comment
penser la décohérence lorsqu’aucun environnement extérieur ne peut être envisagé, comme
en cosmologie par exemple, où l’objet d’étude est l’univers dans son ensemble ? Deuxième-
ment, on observe que la matière est en général bien décohérée dans la base de la position ; ce
constat est habituellement expliqué par le fait que les lois de la physique s’écrivent souvent
en termes de variables de position (interactions coulombienne, gravitationnelle, etc. . . ) [119].
Mais n’y a-t-il pas quelque chose de circulaire à invoquer la notion de position avant même
d’avoir une notion stable de celle-ci, puisque les différentes potentialités spatiales n’ont pas
encore été fixées ontologiquement par décohérence ? Le problème devient encore plus sérieux
dans la perspective de construire une théorie quantique backgroundless. Quel rôle est amenée
à jouer la décohérence dans la co-émergence de l’espace-temps et de la matière ?
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Introduction

What does quantum mechanics mean2?

Quantum mechanics: 100 years of philosophical ambiguity and debates on its interpreta-
tion. A theory based on relatively simple mathematics (at least in finite dimension), never
experimentally disproven, but one that divides the community as soon as the question of
what it says about the universe and existence arises. Since the pioneering works (⇠ 1920
- 1940), a metaphysical tension was identified, that physicists such as Einstein [54], Bohr
[26], Schrödinger [122], Heisenberg [67], Born [30] and many others have tried to clarify
without truly succeeding. Nevertheless, a dominant interpretation, with vague contours cov-
ering complex and changing positions, seemed to emerge: the Copenhagen interpretation
[72]. Unsatisfactory in many ways, the anti-philosophical pragmatism of the famous "Shut
up and calculate!" eventually prevailed during the second half of the 20th century. Debates
concerning the physical meaning of the theory were perceived as sterile; the theory worked
for all practical purposes, and that is all it was asked to. But a few bold ones refused to
shut up.

In 1952, Bohm, developing an idea already explored two decades earlier by de Broglie,
founded Bohmian mechanics [25]: a re-organization of the theory that seems to make it
compatible with an intuitive interpretation; particles become concrete entities again, with
well-defined positions and velocities at all times. In 1964, Bell proved his famous theorem
[18], based on simple but deep mathematical observations with tremendous implications:
interpretation is not merely a matter of metaphysical choice since it can also be constrained
by certain physical facts. By conducting well-chosen experiments involving the phenomenon
of entanglement, it is possible (i) either to disprove quantum mechanics (ii) or to conclude
that the universe exhibits a form of fundamental non-locality, with the corollary that it
is in principle impossible for the human mind to build an entirely deterministic physical
theory (since non-locality would then allow faster-than-light communication, inducing causal
paradoxes). Bell’s article went almost unnoticed for 20 years, accumulating barely a few
dozens of citations per year.

Among the few interested in these subjects during the second half of the 20th century,
research sometimes even took on a political dimension, in a cold war context. In the USSR,
Bohmian mechanics appeared much more compatible with Marxist materialism than the

2The following paragraphs are a very incomplete historical summary, in which many other works could
have been mentioned.
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Copenhagen interpretation and its flavors of bourgeois idealism [106, 93]. The possibility
opened by Bell to experimentally disprove the orthodox theory gained interest, from the
late 60s, among young Italian socialists seeking new ways to organize scientific research and
society [11]. In the United States of the 70s, while mainstream physics was undergoing
an increasing hyper-mathematization and conformity accentuated by budget cuts related to
the Vietnam War, some Berkeley hippies (as Kaiser puts it [79]) versed in New Age spirit
were interested in Bell’s non-locality as a possible bridge with Eastern spiritualities and
their psychedelic experiences. The concrete realization of Bell’s proposed experiment was a
technical feat at the time, further hindered by the general lack of interest and funding. It was
finally the experiments of Freedman and Clauser in 1972 [60], and even more those of Aspect
and his team in 1982 [9], which settled the case: the predictions of quantum mechanics were
confirmed and, consequently, Bell’s non-locality was established.

Gradually, the subject gained the interest of the physics community. This pioneering
research have foreshadowed the emerging field of quantum information theory, which began
to flourish in the 2000s, at a time when conventional approaches to particle physics were
losing steam. It also benefited from the influx of public and private funding in the race for the
quantum computer. The number of citations of Bell’s [18] and Einstein et al.’s [54] articles
skyrocketed, so that they are now among the most cited papers in the history of physics. The
2022 Nobel Prize was awarded to Clauser, Aspect, and Zeilinger "for [their] experiments with
entangled photons, establishing the violations of Bell inequalities and pioneering quantum
information science", more than 30 years after Bell’s death.

However, even though the concepts of information theory can shed light on the ques-
tion of the interpretation of quantum mechanics, the debate still divides the community, as
evidenced by the extremely divergent answers of several recent surveys conducted among
physicists and philosophers of physics [120, 125]. One reason is that the problem is partic-
ularly difficult to delimitate or even to express clearly. It takes various forms depending on
the interpretation defended, and the boundary between experimental fact and philosophical
stance is far from obvious, as Bohm and Bell have shown. In this thesis, we shall attempt
to formulate as clearly as possible this puzzle that all interpretations are trying to solve,
usually designated as the measurement problem (we will criticize this expression), but which
we will call the ontological problem of quantum physics.

A guiding principle for quantum gravity

Another probable reason for the renewed interest in quantum foundations is related to the
failure of the long-awaited unification between particle physics (quantum field theory, in
particular the standard model) and gravitation (general relativity), and notably that of string
theory. An increasingly shared idea today, particularly among philosophers of physics, is the
importance of clarifying the ontological problem in order to properly address the project of
quantum gravity [41, 3]. A guiding principle in this quest, which is still more a vague intuition
than a rigorously formulated principle, is the notion of background-independence [115, 92].
Its aim is to draw seriously an essential lesson from general relativity: the co-emergence
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of spacetime and matter. Indeed, one of Einstein’s major contributions was to show that
spacetime is not an absolute background in which bodies move, but rather a dynamic entity
that does not pre-exist to matter, and does not even make sense without it (see particularly
the famous hole argument, which Einstein commented on in these terms: "There is no such
thing as an empty space" [53]).

For the sake of terminological rigour, we will prefer in this thesis the qualifier back-
groundless rather than the usual background-independent, because what is sought is indeed
a theory without any background, not just independent of it. On what, then, to base or
constrain this co-emergence of spacetime and matter? Perhaps on the notion of causality, as
proposed by causal set approaches [28, 50, 132], an intuition supported by several theorems
of Lorentzian geometry [150, 66, 90]. The essential difficulty of quantum gravity, possibly
explaining four decades of unsuccessful research, could be formulated as follows: how to build
a theory of quantum matter (and thus subject to the ontological problem) without even having
a pre-existing space-time in which to conceive it?

The theory of decoherence

In the early 80s, alongside quantum information theory, another research program emerged
with the firm intention of reconsidering the fundamental problems of quantum mechanics: the
theory of decoherence. From the first intuitions [97, 58, 151] to Zurek’s seminal papers [153,
154], the field has developed rapidly and quickly became a crucial element in understanding
quantum mechanics, known at least broadly by the entire community [158]. An important
confirmation of the theory was enabled by the experiments of Haroche and his team [37], for
which he was awarded the Nobel Prize in 2012. It is arguably one of the (if not the) greatest
advances in fundamental physics since the completion of the standard model in the mid-70s.

The goal of the theory of decoherence is to explain the transition from quantum to
classical. More precisely, it aims to understand why the phenomenon of quantum superposi-
tion—the source of the ontological problem—is observed in the laboratory in certain specific
experiments but is imperceptible at our scales; in other words, why Schrödinger’s cats do
not exist. One of the strengths of the theory is that it requires no new postulates, adds or
removes nothing from quantum mechanics, but is a consequence of it. It is based on the
decisive idea that a physical system, in general, is not isolated but bathes in an environment
with which it interacts continuously and becomes entangled. In doing so, the environment
acquires information about the system’s state, and decoherence (i.e. the suppression of su-
perpositions) is stronger as this information becomes complete. This is why it is possible
to conduct interference experiments with photons or electrons, but not with macroscopic
objects. The former, uncharged, interact little, and the seconds are small enough to leave
no trace of their passage, while the trajectory of larger objects is quickly recorded by air
molecules (even in a laboratory vacuum) or by ambient photons they encounter [77, Table
3.1].

Here are some important models of decoherence. In [154], a spin (the system) interacts
with a large number of other spins (the environment) through random coupling constants.
A second model reveals that interferences disappear all the more effeciently as the energy
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interaction levels between the system and the environment are distinct. Intuitively, the more
the environment "feels" the difference between two possible states of the system, the more
these states decohere. In [78], the typical coherence radius of a non-localized particle is
estimated when it interacts with another according to a Coulomb-like potential, depending
on time and their distance. The authors also calculate the localization rate of a system
immersed in a thermal bath of particles (typically photons) it scatters. Quickly, its coherence
radius becomes of the order of its de Broglie wavelength. Quantum Brownian motion [38]
is a model involving a large number of coupled harmonic oscillators; the equation governing
the evolution of one of these oscillators allows to study the level of decoherence induced by
the others [159, §V.B.] and confirms the conclusions of previous models. Numerical analysis
of a chaotic quantum system [64] reveals that its behavior in phase space presents significant
quantum characteristics when isolated, but precisely reproduces the classical distribution as
soon as even modest decoherence is imposed. Many other models exist, often adapted to
more specific contexts [77, 23, 32, 159].

Several main lessons can be drawn from the theory of decoherence. When a system inter-
acts with an external environment, quantum superpositions disappear exponentially fast in
most realistic situations. This suppression, however, occurs in a particular basis of Hilbert
space (i.e. relative to a way of measuring the system, such as in position, momentum, en-
ergy. . . ), called the pointer basis, which depends on the nature of the interaction with the
environment through the phenomenon of einselection (terms introduced by Zurek) [159].
Philosophically, decoherence teaches us that what a system is is not independent of what
its environment knows about it. It is the relationships between systems that make them
mutually exist, an astonishingly backgroundless conclusion. It also provides the right frame-
work to precisely define the quantum ontological problem, which fades after decoherence,
explaining why it seems absent from the world we perceive, where nothing is ever isolated.
However, as we shall see, it does not solve the ontological problem, since decoherence is
neither absolute, nor irremediable, nor even present at the level of isolated systems.

The program initiated with the theory of decoherence seems to have been fruitful, and
some consider that it not an active research field anymore. Yet, it appears that several crucial
questions remain unanswered. First, what are the systems, and what are the environments?
Which coarse-graining of the abstract Hilbert space of the quantum formalism corresponds
to the world we experience? Furthermore, how to think about decoherence when no external
environment can be considered, such as in cosmology, where the object of study is the
universe as a whole? Secondly, it is observed that matter is generally well decohered in
the position basis; this is usually explained by the fact that the laws of physics are often
written in terms of position variables (Coulomb or gravitational interaction, etc.) [119].
But isn’t there something circular in invoking the notion of position before even having a
stable notion of it, since the different spatial potentialities have not yet been ontologically
fixed by decoherence? The problem becomes even more serious in the perspective of building
a backgroundless quantum theory. What is the role of decoherence in the co-emergence of
spacetime and matter?

16



Organization of the thesis

• In order for this thesis to be accessible to mathematicians as well as to physicists
and philosophers, we first recap in Chapter 2 the basic concepts and notations of the
quantum formalism, as well as some common abbreviations.

• In Chapter 3, we present two models designed to feel intuitively the general process
of decoherence and to reveal the mathematical mechanisms that make it so universal.
Contrary to the majority of the already existing models, built to understand deco-
herence in different specific contexts, we try to embrace a more general point of view
without specifying any Hamiltonian. The whole chapter is restricted to the finite di-
mensional case. We start by introducing general quantities and notations to present
as concisely as possible the idea underlying the theory of decoherence (§3.1).

• The first model, developed in §3.2, makes decoherence naturally appear as a geometri-
cal phenomenon between reservoirs of dimensions. We recover in 3.2.2 the well-known
typical decay of the non-diagonal terms of the density matrix in n�

1
2 , with n the di-

mension of the Hilbert space describing the environment. The most important result is
Theorem 3.2.5, proved in §3.2.3, giving estimates for the level of decoherence induced
by a random environment on a system of given sizes. We conclude in §3.2.4 that even
very small environments (of typical size at least NE = ln(NS) with NS the size of the
system) suffice, under (strong) assumptions discussed in §3.2.5. Possible improvements
lead to interesting directions of research, in particular trying to describe the subman-
ifold of physically reasonable states in the Hilbert space, a question that may have
some links with tensor networks theory and the area law for entanglement entropy, as
well as with quantum information theory and quantum Darwinism.

• We propose other ways to quantify decoherence in §3.3, and derive some of their prop-
erties. The proposal of §3.3.2 can be generalized in infinite dimension and is related
to the entanglement entropy. It also gives a physical meaning to the purity of a state,
namely the approximate level of decoherence in most bases, according to Proposition
3.3.2. Section §3.3.3 introduces a distance between orthonormal bases that seems well
adapted to the theory of decoherence, and will turn out to be a crucial tool in §5.2. We
attempt to unify these proposals in §3.3.4, in which we formulate a list of properties
that should satisfy any suitable measure of decoherence.

• The second model is presented in §3.4. It specifically tackles the question of why,
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in a universe where decoherence is ubiquitous, things are not frozen by the quantum
Zeno effect. After some recaps on the Zeno effect and on the previous works about this
topic (§3.4.1), we present a discrete model that formalizes the competition between free
evolution and decoherence (§3.4.2), yielding a criterion for Zeno freezing that depends
on the level of short time decoherence. By testing this criterion on several plausible
classes of functions (§3.4.3), and by assessing the physical situation they represent
(§3.4.4), we conclude that in the most generic case, the system will not be affected by
the Zeno effect. The result and the assumptions are discussed in §3.4.5.

• In Chapter 4, we discuss the ontological problem of quantum physics, often referred
to as the ‘measurement problem’ (although it does not have so much to do with mea-
surements, as we will argue). The reader unfamiliar with the philosophy of quantum
mechanics is invited to read the preliminaries given in the annex A beforehand. Our
aim in this chapter is not to give a solution, but rather to formulate the problem
independently of any interpretation of quantum mechanics, so as to have a common
starting point from which to discuss. We first identify the common root of the puzzle,
determine what decoherence solves and what is still calling for an explanation. We
propose that the notion of observers is best defined in this context as systems granted
with subjectivity, on which the ontological problem is most severe (§4.1). The often
related ‘preferred-basis problem’, which we divide into two distinct sub-problems, is
also discussed in §4.2. We then study how these issues manifest themselves in five of
the most common interpretations of quantum theory, and how they attempt to solve
it: the Copenhagen interpretation (§4.3.1) and the objective collapse models (§4.3.2);
Bohmian mechanics (§4.4); and finally the many-worlds interpretation (§4.5.1) and
relational quantum mechanics (§4.5.2). As shown by Bell, the border between phys-
ical facts (experimental results) and possible interpretations (often deemed a mere
metaphysical choice) can be particularly difficult to draw. In this respect, for all of
these interpretations, we propose concrete experiments (be it thought experiments)
that would allow to falsify them.

• In Chapter 5, a new ingredient is introduced in the discussion: spacetime. In §5.1,
we focus on the apparent incompatibility between quantum mechanics and special
relativity, due to the disappearance of the notion of instantaneity in the latter. This
leads us to investigate, from a logician perspective, the interrelationships between
fundamental properties in relativistic quantum theories. In §5.1.1, two possible sources
of instantaneities in quantum mechanics are exhibited but, in the light of the previous
Chapter 4, we argue that only one of them is a priori problematic. To deal with the
latter, a consistency condition called (C), constraining the statistics of measurements
outcomes in any relativistic quantum theory, is formulated and is shown to be necessary
to prevent faster-than-light-communication and non-covariance. This condition takes
a precise mathematical form, which can be derived under some (generally accepted)
assumption on the unitary evolution operator of two isolated systems (§5.1.2). This
result is known as the no-communication theorem. We extensively retrace the history
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of this topic and compare our treatment with the existing literature in §5.1.3. At this
point, we try to go further than the previous works by embracing a more axiomatic
point of view. Rather than considering it as a theorem, we argue that (C) is the
truly fundamental postulate of relativistic quantum theories because it is required by
special relativity. We then look for the complete logical structure between (C) and
the previously introduced properties, as well as with the locality of physics on one
hand (§5.1.4) and with microcausality and the spin-statistics theorem in the context
of quantum field theory on the other hand (§5.1.5). An important result is Theorem
5.1.4, which gives a new proof of a previously known result. Our study also reveals
unexpectedly that locality and microcausality are actually two redundant hypotheses
of quantum field theory, and provides an original proof of the fact that the Dirac field
can in no sense be measured. Results are summarized in §5.1.6.

• In the last Section §5.2, we build a toy model designed to address the preferred-basis
problem from a backgroundless perspective. This first contribution is still simplistic,
but the long-term aim is to shed light on the link between the shape of the laws of
physics and the emergence of a common preferred basis. The motivations are presented
in §5.2.1 from a wide perspective. The toy model, restricted to the simplest possible
case, is introduced in §5.2.2 and analysed mathematically in §5.2.3. The numerical
simulations are then discussed: much more work is needed to interpret the results,
but this is the first step of a long-term program whose possible next stages are listed
(§5.2.4).

• In the concluding Chapter 6, we summarize our investigations and discuss their impli-
cations for quantum gravity. We finish with several general remarks on the notion of
backgroundless co-emergence.
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Chapter 2

Usual mathematical objects and

notations in physics

Hilbert space Quantum mechanics is a geometrical way to compute probabilities. Physical
states of the system S under study are represented by vectors on the unit-sphere S of some
separable complex Hilbert space H. Most quantum physicists use Dirac’s notations:

• a vector of H is denoted | i and called a ket;

• the corresponding linear form in H⇤ given by Riesz’ theorem is denoted h | and called
a bra;

• the scalar product between | i and |�i is therefore naturally denoted h |�i 2 C and
called a braket;

• finally, the rank-one linear operator mapping |�i to | i is naturally denoted | i h�| 2
L(H).

The set of bounded operators in L(H) is equipped with the usual operator norm:

|||M ||| = sup
k| ik=1

kM | ik.

Born rule and observables Probabilistic events concerning S correspond to subspaces of
H, and the probabilities are computed according to the Born rule. If F ⇢ H is a subspace
and ⇧F its associated orthogonal projector, the probability of the event F when the system
is in state | i is:

P| i(F ) = k⇧F (| i)k2. (2.1)

Consequently, the possible final states of a measurement must be orthogonal (since they
should be mutually incompatible) and form a basis of H (so that, for any initial state, the
probabilities of the final states indeed sum to 1, using Pythagoras’ or Parseval’s theorem). If
moreover one associates, to every final state, the real number corresponding to the physical
outcome displayed by the measurement apparatus, we see that (at least in finite dimension)
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physical observables correspond to Hermitian operators, i.e. diagonalizable in an orthonormal
basis with real eigenvalues. Thus, in quantum mechanics, distinguishability corresponds to
orthogonality, insofar as two states can be discriminated through a measurement with 0
probability of error if and only if they are orthogonal. The Hermitian operator associated
to the physical variable A will be denoted Â and its eigenbasis BÂ. This definition could be
ambiguous, since the eigenbasis may not be unique if the spectrum are degenerate. In this

thesis, whenever the notation BÂ is employed and if the spectrum is degenerate,

the statement must be understood as being true for any eigenbasis of Â. Finally,
we denote B(H) the set of orthonormal bases of H.

Rigged Hilbert space In infinite dimension, it is customary to still identify observables
with Hermitian operators, although the latter are not necessarily diagonalizable in an or-
thonormal basis. In particular, the crucial operators X̂ and P̂ on L2(R3) corresponding to
the position and momentum variables (which are undoubtedly physical observables) can be
built so as to be Hermitian, but they don’t have any bases of eigenvectors (actually, they
have no eigenvectors in L2(R3)). Fortunately, there exist a construction called a rigging of
the Hilbert space, in which H is sandwiched as H ⇢ H ⇢ H⇥ where H⇥ is the dual of H, a
locally convex topological vector subspace of H, endowed with a locally convex topology finer
than the norm topology and such that H is dense in H, allowing to write for any Hermitian
operator Â on H:

8 ,� 2 H, h |Â�i =
Z

spec(Â)

N(x)X

k=1

x h |�x,ki h�|�x,kiµ(dx), (2.2)

where µ is a measure on spec(Â), N(x) is an integer interpreted as the multiplicity x 2
spec(Â) and the |�x,ki 2 H⇥ are called the generalized eigenvectors of Â [61]. This way,
we can formally write Â =

R
spec(Â)

PN(x)
k=1 x |�x,ki h�x,k|µ(dx) and work with this generalized

spectral decomposition. The appropriate choice of H is problem-dependent, but a typical
construction for H = L2(R3) involves the Schwartz space H = S(R3) of rapidly decreasing
functions, and its dual the distribution space H⇥ = S 0(R3).

Entanglement and density matrices When two systems S1 and S2 interact, they are
jointly described by the tensor product H1⌦H2 of their respective Hilbert spaces, equipped
with the canonical extension of the scalar product. If they are in a state of the form | i =
| 1i ⌦ | 2i (a pure tensor), we say that they are in a product state; otherwise, they are
called entangled. It is customary to omit the tensor product symbol whenever the context
is clear, and write for instance | 1i | 2i or even | 1 2i. Now, if we are concerned with
the probabilities of only one of the two systems, we would like to construct the minimal
object, pertaining to H1 only, that contains all the relevant information for S1. The events
we consider are therefore the subspaces of the form F ⌦H2 with F a subspace of H1, and
their associated projectors are the ⇧F ⌦ 12 where 12 is the identity operator on H2. Hence:

P| i(F ⌦H2) = k⇧F ⌦ 12(| i)k2
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= h |⇧F ⌦ 12| i
= tr(| i h | ⇧F ⌦ 12)

= tr(⇢1⇧F ),

where ⇢1 2 L(H1) is the partial trace of the rank-one projector | i h | 2 L(H1 ⌦ H2),
which can be defined on the grounds of the following proposition.

Proposition 2.0.1 (Partial trace). Let H1 and H2 be two finite dimensional Hilbert spaces.
There exists a unique linear map tr2 : L(H1 ⌦H2) �! L(H1) such that:

8⇢1 2 L(H1), 8⇢2 2 L(H2), tr2 (⇢1 ⌦ ⇢2) = tr(⇢2)⇢1.

It satisfies the following property:

8⇢12 2 L(H1 ⌦H2), 8A1 2 L(H1), tr(⇢12 A1 ⌦ 12) = tr(tr2(⇢12)A1). (2.3)

The operator tr2(⇢12) is called the partial trace of ⇢12 with respect to H2.

The result is also true in infinite dimension, provided one replaces the spaces L(H) by
B1(H), the space of trace-class operators in H [10].

Proof. Let (|eii)i and (|fki)k be some bases of H1 and H2, so that (Eij)ij = (|eii hej|)ij
and (Fkl)kl = (|fki hkl|)kl are bases of L(H1) and L(H2) respectively. Using the defining
property given in the proposition, the linear map tr2 is uniquely defined by its image on the
(Eij ⌦ Fkl)ijkl, which form a basis of L(H1 ⌦H2).

To prove the second statement, it is enough by linearity to check it for pure tensors
⇢12 = ⇢1 ⌦ ⇢2. It then simply reads: tr(tr2(⇢1 ⌦ ⇢2)A1) = tr(tr(⇢2)⇢1A1) = tr(⇢2) tr(⇢1A1) =
tr(⇢1A1 ⌦ ⇢2) = tr((⇢1 ⌦ ⇢2)(A1 ⌦ 12)).

A useful characterisation of tr2(⇢12) is the following. In any orthonormal bases (|eii)i and
(|fki)k of H1 and H2, its matrix elements in the (|eii)i basis are:

[tr2(⇢12)]ij = hei| tr2(⇢12)|eji =
X

k

heifk|⇢12|ejfki . (2.4)

From a physical point of view, we see that the probabilities obeyed by an entangled system
may not be given by the Born rule (2.1) applied to some ket | i 2 H1, but the most general
physical state for a quantum system is some operator ⇢1 2 L(H1) called its density matrix,
obtained by tracing over the other systems it may be entangled with. It is the equivalent,
in classical probability theory, of the marginal over S2 of the joint probability law of S1 and
S2. The probabilities are then computed using the generalized Born rule:

P⇢1(F ) = tr(⇢1⇧F ),

which coincides with (2.1) when ⇢1 is a rank-one orthogonal projector | 1i h 1|. In this
latter case, the system is said to be in a pure state, otherwise it is in a mixed state. One
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can show that density matrices must be Hermitian, positive and have trace 1. The set of
such operators over H is denoted S(H).

In finite dimension, they are diagonalizable in an orthonormal basis B⇢ with eigenvalues
interpreted as probabilities (non negative real numbers summing to 1). In particular, the
latter correspond to a Dirac measure when S1 and S2 are not entangled (because ⇢1 is then
a rank-one orthogonal projector), and to a uniform measure when they are in a maximally

entangled state | i = 1
p
n

P
i |eii |fii for some orthonormal bases (|eii)i and (|fki)k of H1

and H2 (in which case ⇢1 = 1
n11). It is then natural to associate to any density matrix an

entropy which quantifies how entangled the system is. Here are two possibilities (among
many others):

Definition 2.0.2 (Entanglement entropies). Let ⇢ 2 S(H). Define the von Neumann

entropy of ⇢ as S(⇢) = � tr(⇢ ln(⇢)) and its linear entropy Slin(⇢) = 1 � tr(⇢2), where
tr(⇢2) is called the purity of ⇢.

Unitary evolution and Schrödinger equation We now want to build some dynamics
in order to know how our systems evolve in time to make predictions. The key ingredient is
the requirement that the laws of physics remain the same over time, which is arguably one of
the most basic defining properties for calling something ‘laws of physics’. Let’s first consider
only pure states. We are therefore looking for a family of maps Ut : H ! H indexed by a
real parameter representing time, mapping any initial state to the final state obtained by
applying the laws of physics during t, such that:

8t, t0, U(t+ t0) = U(t)U(t0).

To keep the probabilities normalized, we also know that the (Ut)t2R must preserve the norm.
Adding the additional postulate that they are linear (or simply that they preserve the scalar
product, as done by Wigner [139]) entails that each Ut 2 U(H) is unitary. If one moreover
makes the physically reasonable assumption that t 7! Ut is (strongly) continuous, then the
(Ut)t2R form a one-parameter Lie group which admits an infinitesimal generator from its
Lie algebra. In this case, it ensures the existence of a Hermitian operator Ĥ such that
8t 2 R, Ut = e�itĤ . Equivalently, the time evolution of a ket | (t)i in quantum mechanics
is governed by the following Schrödinger equation:

i
d | (t)i

dt
= Ĥ | (t)i .

What is the physical meaning of the observable1 Ĥ? Necessarily, this quantity must be
conserved on average, because for a system in state | i, its mean value is hÂi| i = h |Â| i
and satisfies:

dhĤi| (t)i
dt

= h�iĤ | (t)i |Ĥ| (t)i+ h (t)|Ĥ|� iĤ | (t)ii = 0

1Isn’t it a miracle that the Lie algebra of U(H), up to a factor i, is precisely composed of the Hermitian
operators, so that the infinitesimal generator of quantum mechanical time evolution can also make sense as
an observable?
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since Ĥ is Hermitian and using the (anti-)linearity of the complex scalar product. This
was expected due to Noether’s theorem: any symmetry of the theory (here, the invariance
of the laws over time) has an associated conserved quantity (here, the quantity H). From
other areas of physics, it is well-known that the conserved quantity associated to the time
translation symmetry is the energy. Alternatively, this can be taken as the most fundamental
definition of what we call energy. Finally, for a general mixed state ⇢ 2 S(H), the time
evolution (when no interaction with external systems occurs) takes the form ⇢ 7! Ut⇢U

†

t ,
and the Schrödinger equation reads id⇢(t)dt = [Ĥ, ⇢(t)].

Abbreviations

• QM: quantum mechanics

• QFT: quantum field theory

• BM : Bohmian mechanics

• RQM: relational quantum mechanics

• SR : special relativity

• GR : general relativity

• FTL : faster-than-light
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Chapter 3

Two models for the theory of

decoherence

This chapter is a transcription of the published article [128] and of the preprint [129].

3.1 The basics of decoherence

The theory of decoherence sheds light on the reason why quantum interferences disappear
when a system gets entangled with a macroscopic one, for example an electron in a double-
slit experiment that doesn’t interfere anymore when entangled with a detector. According
to Di Biagio and Rovelli [46], the deep difference between classical and quantum is the way
probabilities behave: all classical phenomena satisfy the total probability formula

P(B = y) =
X

x2Im(A)

P(A = x)P(B = y | A = x), (3.1)

thanks to which, even though the actual value of the variable A is not known, one can still
assume that it has a definite value among the possible ones. This, however, is not correct
for quantum systems (the philosophical consequences of this are the topic of Chapter 4).
The diagonal elements of the density matrix (written in the eigenbasis BÂ of the observable
on which the probabilities are conditionned) account for the classical behavior of a system
because they correspond to the terms of the total probability formula, while the non-diagonal
terms are the additional quantum interferences. This is because the probability to obtain an
outcome x while being in state ⇢ is:

tr(⇢ |xi hx|) =
nX

i,j=1

⇢ij hj|xi hx|ii =
nX

i=1

⇢ii|hx|ii|2| {z }
P(i)P(x|i)

+
X

16i<j6n
2Re(⇢ij hj|xi hx|ii)| {z }

interferences

.

Here is the typical situation encountered in decoherence studies. Consider a system
S, described by a Hilbert space HS of dimension d, that interacts with an environment E
described by a space HE of dimension n, and let B = (|ii)16i6d be an orthonormal basis of HS .
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In the sequel, we will say that each |ii corresponds to a possible history or potentiality

of the system (this expression will be given its full meaning in §4.1). Let’s also assume that
B is a conserved basis (an idealization of the concept of pointer basis, often invoked in
the decoherence literature [157]), composed of states of S that remain perfectly unchanged
during the interaction with E . When E is a measurement apparatus for the observable A, the
eigenbasis of Â is clearly a conserved basis; in general, the eigenbasis of any observable such
that Â⌦1 commutes with the interaction Hamiltonian is suitable (but the existence of such
an observable is not guaranteed, unless Ĥint takes the form

P
i ⇧̂

S

i ⌦ ĤE

i , where (⇧̂S

i )16i6d is
a family of commuting orthogonal projectors).

We further suppose that S and E are initially non-entangled, allowing to write | i =⇣Pd
i=1 ci |ii

⌘
⌦|E0i as the initial state before interaction. After a time t, due to its Schrödinger

evolution in the conserved basis, the total state becomes | (t)i =
Pd

i=1 ci |ii⌦|Ei(t)i for some
unit vectors (|Ei(t)i)16i6d. From this expression, the system’s state ⇢S(t) can be obtained
after tracing out the environment according to (2.4). If (|eki)16k6n denotes an orthonormal
basis of HE :

⇢S(t) = trE | (t)i h (t)|

=
nX

k=1

 
dX

i=1

|ci|2|hek|Ei(t)i|2 |ii hi|+
X

16i 6=j6d
cicj hek|Ei(t)i hEj(t)|eki |ii hj|

!

=
dX

i=1

|ci|2
nX

k=1

|hek|Ei(t)i|2

| {z }
=1

|ii hi|+
X

16i 6=j6d
cicj hEj(t)|

⇣ nX

k=1

|eki hek|
| {z }

=1

⌘
|Ei(t)i |ii hj|

=
dX

i=1

|ci|2 |ii hi|+
X

16i 6=j6d
cicj hEj(t)|Ei(t)i |ii hj|

⌘ DB [⇢S(t)] +QB [⇢S(t)] ,

where DB [⇢S(t)] stands for the (time-independent) diagonal part of ⇢S(t) in B (which cor-
responds to the total probability formula), and QB [⇢S(t)] for the remaining non-diagonal
terms (responsible for the quantum interferences between the possible histories). Our main
object of study in the next section will be the following quantity.

Definition 3.1.1. Let ⌘B
�
⇢S(t)

�
= max

i 6=j
|hEi(t)|Ej(t)i|.

Note that this definition actually makes sense in any (potentially non-conserved) or-
thonormal basis. Indeed, in another basis B0 = (|i0i)16i6d of HS , one can still write | (t)i =Pd

i=1 c
0

i(t) |i0i ⌦ |E 0

i(t)i. If the (|E 0

i(t)i)16i6d are only required to be unit vectors, they are
defined up to a phase, but this does not affect the above definition. Most of the time, the
context will be clear, hence we will drop the arguments and simply write ⌘. The reason for
⌘ to be is the following proposition, stating that ⌘ measures how close the system is from
being classical.
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Proposition 3.1.2. We have |||QB [⇢S(t)] ||| 6 ⌘B(t) and for all subspaces F ⇢ HS ,

| tr(⇢S(t)⇧F )| {z }
quantum probability

� tr(DB [⇢S(t)]⇧F )| {z }
classical probability

| 6 dim(F ) ⌘B(t).

In a nutshell: Pquantum = Pclassical +O(⌘).

Proof. For all vectors | i =
P

k ↵k |ki 2 HS of norm 1,

kQB [⇢S(t)] | ik2 =

�����
X

16i 6=j6d
cicj hEj(t)|Ei(t)i↵j |ii

�����

2

=
dX

i=1

|ci|2
���

dX

j=1
j 6=i

cj hEj(t)|Ei(t)i↵j

���
2

6 ⌘(t)2
dX

i=1

|ci|2
 

dX

j=1

|cj||↵j|
!2

6
C.-S.

⌘(t)2
dX

i=1

|ci|2
dX

j=1

|cj|2
dX

k=1

|↵j|2

6 ⌘(t)2,

hence |||QB [⇢S(t)] ||| 6 ⌘(t). Now, if F is a subspace of HS (i.e. a probabilistic event), let
(|⇡ki)k be an orthonormal basis of F and ⇧F the orthogonal projector of F . Then:

tr(⇢S(t)⇧F )� tr(DB [⇢S(t)]⇧F ) = tr(QB [⇢S(t)]⇧F ) =
dim(F )X

k=1

h⇡k|QB [⇢S(t)] ⇡ki

) |tr(⇢S(t)⇧F )� tr(DB [⇢S(t)]⇧F )| 6
dim(F )X

k=1

|||QB [⇢S(t)] ||| 6 dim(F )⌘(t).

In other words, ⌘ bounds the level of quantum interferences, i.e. it estimates how de-
cohered the system is. Notice well that it is only during an interaction between S and E
that decoherence can occur; any future internal evolution U of E lets ⌘ unchanged since
hUEj|UEii = hEj|Eii. Also, a more precise definition for ⌘, as we shall see in §3.3.4, could be
max
i 6=j

|ci||cj||hEi(t)|Ej(t)i|, so that ⇢S being diagonal in a basis becomes equivalent to ⌘ = 0

in this basis. This way ⌘ really quantifies the interferences between possible histories (of
non-zero probability)1.

1This is not true with the definition above, as is clear for example for the trivial interaction | (t)i =Pd
i=1 ci |ii ⌦ |E0i: here ⇢S is diagonal (i.e. no interferences) in any orthonormal basis containing the vectorPd
i=1 ci |ii, while the simpler definition yields ⌘ = 1 in any basis.
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The aim of the theory of decoherence is to explain why ⌘B
�
⇢S(t)

�
rapidly goes to zero in

the conserved basis when n is large, so that the state of the system quickly2 evolves from
⇢S to DB [⇢S ]. As recalled in the introduction, a wide variety of models already explain
this phenomenon for some specific contexts and Hamiltonians. The model we shall build in
the next section aims at grasping the fundamental mathematical reason why decoherence
is so universal and ubiquitous, without specifying any Hamiltonian. This will allow us to
determine the typical size of an environment needed to entail proper decoherence on a system.

3.2 First model: decoherence as a high-dimensional geo-

metrical phenomenon

When no particular assumption is made to specify the type of environment under study,
the only reasonable behavior to assume for |Ei(t)i is that of a Brownian motion on the
sphere Sn = {| i 2 HE | k| ik = 1} ⇢ HE ' Cn ' R2n. It boils down to representing
the environment as a purely random system with no preferred direction of evolution. This
choice will be discussed in §3.2.5. Another bold assumption would be the independence of
the (|Ei(t)i)16i6d; we will dare to make this assumption anyway.

3.2.1 Convergence to the uniform measure
We will first show that the probabilistic law of each |Ei(t)i converges exponentially fast to
the uniform probability measure on Sn. To make things precise, endow Sn with its Borel �-
algebra B and with the canonical Riemannian metric g, which induces the uniform measure
µ that we suppose normalized to a probability measure. Let ⌫t be the law of the random
variable |Ei(t)i, that is ⌫t(B) = P

�
|Ei(t)i 2 B

�
for all B 2 B. Denote �f = 1

p
g@i(

p
ggij@jf)

the Laplacian operator on C1(Sn) which can be extended to L2(Sn), the completion of C1(Sn)
for the scalar product (f, h) =

R
Sn f(x)h(x)dµ. Finally, recall that the total variation norm

of a measure defined on B is given by k�kTV = sup
B2B

|�(B)|.

Proposition 3.2.1. We have k⌫t � µkTV �!
t!+1

0 exponentially fast. Moreover, if T (Sn) =

inf{t > 0 | k⌫t � µkTV 6 1
e} denotes the characteristic time to equilibrium for the Brownian

diffusion on Sn, then T (Sn) ⇠
n!+1

ln(n)
4n .

Proof. We follow the ideas of [117], in which the eigenvalues of � are recalled. Since we
are working on the sphere of real dimension 2n, they take the form �k = �k(k + 2n � 2)
for k 2 N with multiplicity dk = (k+2n�3)!

(2n�2)!k! (2k + 2n� 2). Denote (fk,l) k2N
16l6dk

an orthonormal

Hilbert basis in L2(Sn) of eigenfunctions of �, where fk,l is associated with the eigenvalue
2It is actually very important that the decoherence process (even a measurement) is not instantaneous.

Otherwise, it would be impossible to explain why an unstable nucleus continuously measured by a Geiger
counter is not frozen due to the quantum Zeno effect, see §3.4.
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�k. Note that d0 = 1 and that f0,1 is constant (as any harmonic function on a manifold
without boundary, due to the maximum principle) so it is the density of a uniform measure.
The law ⌫0 of the deterministic variable |Ei(0)i = |E0i corresponds to a Dirac distribution,
which is not strictly speaking in L2(Sn), so we rather consider it as given by a sharply
peaked density (with respect to µ) denoted p0 2 L2(Sn); the latter can be decomposed
in the basis (fk,l)k,l as p0 =

P+1

k=0

Pdk
l=1 ak,lfk,l. The fact that kp0k2L2 =

P+1

k=0

Pdk
l=1|ak,l|2

yields |ak,l| 6 kp0kL2 . Denote also pt the density after a time t, i.e. ⌫t(dx) = pt(x)µ(dx).
The Hille-Yosida theory [147] allows to define the Brownian motion on the sphere as the
Markov semigroup of stochastic kernels generated by �; in particular, this implies pt =
et�p0 =

P+1

k=0 e
�k(k+2n�2)t

Pdk
l=1 ak,lfk,l. Note that a0,1f0,1 is a probability density because

for all k > 1,
R
Sn fk,l =

R
Sn

�fk,l
�k

= 0 due to Stokes’ theorem, thus
R
Sn a0,1f0,1 =

R
Sn a0,1f0,1 +P+1

k=1

Pdk
l=1 ak,l

R
Sn fk,l =

R
Sn p0 = 1. Hence a0,1f0,1 = 1, and therefore:

k⌫t � µkTV =
1

2

Z

Sn
|pt(x)� 1|dµ (classical result on the total variation norm)

6 1

2

+1X

k=1

e�k(k+2n�2)t
dkX

l=1

|ak,l| kfk,lkL1

| {z }
61 (⇤)

6 1

2
kp0kL2

+1X

k=1

e�k(k+2n�2)tdk

where (⇤) relies on Hölder’s inequality kfk,lkL1 6 µ(Sn)1/2kfk,lkL2 = 1. It remains to find a
characteristic time after which the above series is efficiently bounded. The precise argument
can be found in [117], but a first upper bound on T (Sn) can be obtained as follows. Set
uk = e�k(k+2n�2)tdk so that u1 = 2ne�(2n�1)t and:

uk+1

uk
=

k + 2n� 2

k + 1

2k + 2n

2k + 2n� 2
e�(2n�2k�1)t.

If n > 2 and t > tn = ln(2n�1)
2n�1 , then uk+1

uk
6 2n�1

2
2n+2
2n

1
2n�1 6 3

4 , which implies:

k⌫t � µkTV 6
1

2
kp0kL2u1

+1X

k=1

(
3

4
)k 6 3kp0kL2ne�(2n�1)t.

Interestingly enough, the convergence is faster as n increases since the characteristic time to
equilibrium satisfies T (Sn) �!

n!1

0 and the exponential is sharper.

Remark 3.2.2. Physically speaking, there is no reason for the (|Ei(t)i)16i6d to follow the
canonical ‘unit speed’ Brownian motion used in the proof. Coupling constants gi should be
introduced to replace � by gi� for the diffusion of |Ei(t)i. But thanks to the exponential
convergence — all the more efficient that the dimension n is high, which will certainly be the
case for macroscopic environments — the conclusion remains unchanged: the (|Ei(t)i)16i6d
almost immediately follow the uniform law.
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3.2.2 Most vectors of Sn are almost orthogonal
Consequently, we are now interested in the behavior of the scalar products between random
vectors uniformly distributed on the complex n-sphere Sn. The first thing to understand is
that, in high dimension, most pairs of unit vectors are almost orthogonal.

Proposition 3.2.3. Denote by S = hE1|E2i 2 C the random variable where |E1i and |E2i are
two independent uniform random variables on Sn. Then E(S) = 0 and V(S) = E(|S|2) = 1

n .

Proof. Clearly, |E1i and � |E1i have the same law, hence E(S) = E(�S) = 0. What about
its variance? One can rotate the sphere to impose for example |E1i = (1, 0, . . . , 0), and
by independence |E2i still follows a uniform law. Such a uniform law can be achieved by
generating 2n independent normal random variables (Xi)16i62n following N (0, 1), and by

considering the random vector |E2i =

✓
X1+iX2p
X2

1+···+X2
2n

, . . . , X2n�1+iX2np
X2

1+···+X2
2n

◆
. Indeed, for any

continuous function f : Sn ! R (with d�n denoting the measure induced by Lebesgue’s on
Sn):

E[f(|E2i)] =
1

(2⇡)n

Z

R2n

f

 
x1 + ix2p

x2
1 + · · ·+ x2

2n

, . . . ,
x2n�1 + ix2np
x2
1 + · · ·+ x2

2n

!
e�(x2

1+···+x2
2n)/2dx1 . . . dx2n

=
1

(2⇡)n

Z
1

0

Z

Sn
f(u)d�n(u)

�
e�

r2

2 r2n�1dr

= !n

Z

Sn
f(u)d�n(u),

which means that |E2i defined this way follows indeed the uniform law.
In these notations, |S|2 = X2

1+X2
2

X2
1+···+X2

2n
. Since each X2

i follows a �2 law, it is then a clas-
sical lemma to show that |S|2 follows a �1,n�1 distribution, whose mean equals 1

n . For
a more elementary argument, note that, up to relabelling the variables, we have 8k 2
J1, nK, E

⇣
X2

1+X2
2

X2
1+···+X2

2n

⌘
= E

⇣
X2

2k�1+X2
2k

X2
1+···+X2

2n

⌘
and so:

V(S) = E
✓

X2
1 +X2

2

X2
1 + · · ·+X2

2n

◆
=

1

n

nX

k=1

E
✓

X2
2k�1 +X2

2k

X2
1 + · · ·+X2

2n

◆
=

1

n
E(1) = 1

n
.

Alternatively, had we worked on the real sphere ⇢ R2n endowed with the real scalar prod-
uct, the variance would have been 1

2n . This highlights the fact that the real and complex
spheres are indeed isomorphic as topological or differential manifolds, but not as Riemannian
manifolds.

The same result would have been recovered if, instead of picking randomly a pair of
vectors, we had chosen uniformly the unitary evolution operators (U (i)(t))16i6d such that
|Ei(t)i = U (i)(t) |E0i, resulting from the interaction Hamiltonian. Again, if no direction of
evolution is preferred, it is reasonable to consider the law of each U (i)(t) to be given by
the Haar measure dU on the unitary group Un. If moreover they are independent, then
U (i)(t)†U (j)(t) also follows the Haar measure for all i, j so that, using [130, (112)]:
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V
�
hEi(t)|Ej(t)i

�
=

Z

Un

|hE0|UE0i|2dU =
nY

i=2

i� 1

i
=

1

n
.

Therefore, |hEi(t)|Ej(t)i| is, after a very short time, of order
p
V(S) = 1p

dim(HE )
, which

is a well-known estimate already obtained by Zurek in [154]. When d = 2, if E is composed
of NE particles and each of them is described by a p-dimensional Hilbert space, then very
rapidly:

⌘ = |hE1(t)|E2(t)i| ⇠ p�NE/2

which is virtually zero for macroscopic environments, therefore decoherence is guaranteed.
Of course, this is not true anymore if d is large, because there will be so many pairs that some
of them will inevitably become non-negligible, and so will ⌘. We would like to determine
a condition between n and d under which proper decoherence is to be expected. In other
words, what is the minimal size of an environment needed to decohere a given system?

Remark 3.2.4. In fact, the assumption of the existence of a conserved basis made in §3.1
is practical but not really necessary. In another (possibly non-conserved) basis, one can
still decompose | (t)i =

Pd
i=1 c

0

i(t) |i0i ⌦ |E 0

i(t)i. The Brownian character and the indepen-
dence of the (|E 0

i(t)i16i6d in B then suffices to lead to strong decoherence in B. Seeking to
characterize the basis in which decoherence mainly happens, or the so-called ‘pointer basis’,
is an important and challenging aspect of the theory of decoherence. Several criteria have
been proposed [154] [157], but what precedes hints at a novel one (although physically very
impractical): the pointer basis could be defined as the basis in which the (|Ei(t)i)16i6d are
independent, i.e. the eigenbasis of their covariance matrix.

3.2.3 Direct study of ⌘
To answer the above question, we should be more precise and consider directly the random
variable ⌘n,d = max

i 6=j
|hEi|Eji| where the (|Ei)i16i6d are d random vectors uniformly distributed

on the complex n-sphere Sn. In the following, we fix " 2 ]0, 1[ as well as a threshold s 2 [0, 1[
close to 1, and define d",smax(n) = min{d 2 N | P(⌘n,d > ") > s}, so that if d",smax(n) points or
more are placed randomly on Sn, it is very likely (with probability > s) that at least one of
the scalar products will be greater than ".

Theorem 3.2.5. The following asymptotic estimates hold:

1. d",smax(n) ⇠
n!1

p
�2 ln(1� s)

✓
1

1� "2

◆n�1
2

2. ⌘n,d �
q

1� d�
2
n

P
���!

n or d!1

0 , so that we can write informally: ⌘n,d '
p

1� d�
2
n .
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To derive these formulas, we first need the following geometrical lemma.

Lemma 3.2.6. Let An = |Sn| be the area of the complex n-sphere for d�n (induced by
Lebesgue’s measure), C"

n(x) = {u 2 Sn | |hu|xi| > "} the ‘spherical cap’3 centered in x of
parameter ", and A"

n = |C"
n| the area of any spherical cap of parameter ". Then for all n > 1:

A"
n

An
= (1� "2)n�1.

Proof of Lemma. This result can be directly obtained from the fact that, as noticed in the
proof of Proposition 3.2.3, |hE1|E2i|2 follows a �1,n�1 distribution when |E1i and |E2i are
chosen uniformly and independently on Sn. We can then write:

A"
n

An
= P(|hu|xi|2 > "2) =

Z 1

"2

�(n)

�(n� 1)
(1� x)n�2dx =

⇥
(1� x)n�1

⇤1
"2
= (1� "2)n�1.

A more ‘physicist-friendly’ proof can also be given, based on an appropriate choice of co-
ordinates on the n-sphere. Recall that Sn ⇢ Cn ' R2n can be seen as a real manifold of
dimension 2n� 1. Consider the set of coordinates (r, ✓,'1, . . . ,'2n�3) on Sn defined by the
chart

F : [0, 1]⇥ [0, 2⇡[⇥[0,⇡]2n�4 ⇥ [0, 2⇡[ �! Sn
(r, ✓,'1, . . . ,'2n�3) 7�! (x1 + ix2, . . . , x2n�1 + ix2n) ' (x1, . . . , x2n) =

(r cos(✓), r sin(✓),
p
1� r2 cos('1),

p
1� r2 sin('1) cos('2), . . . ,p

1� r2 sin('1) . . . cos('2n�3),
p
1� r2 sin('1) . . . sin('2n�3)).

This amounts to choose the modulus r and the argument ✓ of x1+ ix2, and then describe the
remaining parameters using the standard spherical coordinates on Sn�1, seen as a sphere of
real dimension 2n�3, including a radius factor

p
1� r2. The advantage of these coordinates

is that C"
n(1, 0, . . . , 0) simply corresponds to the set of points for which r > ".

Let’s determine the metric g.

• ~er = @rF (r, ✓,'1, . . . ,'2n�3) = (cos(✓), sin(✓), �r
p
1�r2

[~u]), where [~u] stands for the stan-
dard expression of the spherical coordinates on Sn�1

• ~e✓ = @✓F (r, ✓,'1, . . . ,'2n�3) = (�r sin(✓), r cos(✓), 0, . . . , 0)

• ~e'i = @'iF (r, ✓,'1, . . . ,'2n�3) = (0, 0,
p
1� r2[ ~e'i ]) where [ ~e'i ] stands for the tangent

vector on Sn�1

3We use the quotation marks because, on Sn equipped with its complex scalar product, this set doesn’t
look like a cap as it does in the real case. As stated in Chapter 2, QM is indeed a geometrical way of
calculating probabilities, but the geometry in use is quite different from the intuitive one given by the
familiar real scalar product. It is noteworthy to remark that the universe, through its quantum statistics,
obeys very precisely the geometry of the complex scalar product, and more generally the geometry induced
by its canonical extension on tensor products of Hilbert spaces.
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Obviously, ~er ? ~e✓ and ~e'i ? ~e✓, as well as ~e'i ? ~e'j for i 6= j as is the case in the standard
spherical coordinates. Moreover, since [~u] is radial and [ ~e'i ] tangent to Sn�1, we also have
~er ? ~e'i , therefore g is diagonal in these coordinates. Its components are given by:

• grr = h~er|~eri = 1 + r2

1�r2

• g✓✓ = h~e✓|~e✓i = r2

• g'i'i = (1 � r2)[g'i'i ] with [g] the metric corresponding to the spherical coordinates
on Sn�1.

It is now easy to compute the desired quantity:

A"
n =

Z 1

"

r
1 +

r2

1� r2
dr

Z

[0,2⇡[⇥[0,⇡[2n�4⇥[0,2⇡[

rd✓
p
1� r2

2n�3p
[g]d'1 . . . d'2n�3

= 2⇡An�1

Z 1

"

r(1� r2)n�2dr

=
⇡An�1

n� 1

Z 1

"

2(n� 1)r(1� r2)n�2dr

=
⇡An�1

n� 1
(1� "2)n�1

and, finally,
A"

n

An
=

A"
n

A0
n

= (1� "2)n�1.

We are now ready to prove the theorem.

Proof of Theorem 3.2.5. For this proof, we find some inspiration in [96], but eventually ob-
tain sharper bounds with simpler arguments. Another major reference concerning spherical
caps is [111]. We say that a set of vectors on a sphere are "-separated if all scalar prod-
ucts between any pairs among them are not greater than " in modulus. Denote d�n the
normalized Lebesgue’s measure on Sn, that is d�n = d�n

An
, and consider the following events:

• A : 8k 2 J1, d� 1K, |hEd|Eki| 6 "

• B : (|Eki)16k6d�1 are "�separated

so as to write P(⌘n,d 6 ") = P(A | B)P(B) = P(A\B)
P(B) P(⌘n,d�1 6 "), with:

P(A \ B)

P(B)
=

Z

(Sn)d�1

d�n(x1) . . . d�
n(xd�1)1{x1,...,xd�1 are "-separated}

0

@1�

���
Sd�1

k=1 C
"
n(xk)

���
An

1

A

Z

(Sn)d�1

d�n(x1) . . . d�
n(xd�1)1{x1,...,xd�1 are "-separated}
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= 1� E

0

@

���
Sd�1

k=1 C
"
n(|Eki)

���
An

�����B

1

A .

We need to find bounds on the latter quantity. Obviously, E
 
|Sd�1

k=1 C
"
n(|Eki)|

An

�����B
!
6 (d �

1)A
"
n

An
, corresponding to the case when all the caps are disjoint. For the lower bound, define

the sequence ud = E
✓
|Sd

k=1 C
"
n(|Eki)|

An

◆
, which clearly satisfies ud 6 E

 
|Sd

k=1 C
"
n(|Eki)|

An

�����B
!

,

because conditioning on the vectors being separated can only decrease the overlap between
the different caps. First observe that u1 =

A"
n

An
⌘ ↵, and compute:

ud = ud�1 + E

0

@

���C"
n(|Edi) \

Sd�1
k=1 C

"
n(|Eki)

���
An

1

A

= ud�1 +

Z

(Sn)d
d�n(x1) . . . d�

n(xd)

Z

C"
n(xd)

1
{y/2

Sd�1
k=1 C

"
n(xk)}

d�n(y)

= ud�1 +

Z

(Sn)d�1

d�n(x1) . . . d�
n(xd�1)

Z

Sn

|C"
n(y)|
An

1
{y/2

Sd�1
k=1 C

"
n(xk)}

d�n(y)

= ud�1 +
A"

n

An

Z

(Sn)d�1

d�n(x1) . . . d�
n(xd�1)

0

@1�

���
Sd�1

k=1 C
"
n(xk)

���
An

1

A

= ud�1 +
A"

n

An
(1� ud�1)

= (1� ↵)ud�1 + ↵,

where the main trick was to invert the integrals on xd and on y. This result is actually quite
intuitive: it states that when adding a new cap, only a fraction 1 � ud�1 of it on average
will be outside the previous caps and contribute to the new total area covered by the caps.
Hence ud = 1� (1� ↵)d, and the recurrence relation becomes:

✓
1� (d� 1)

A"
n

An

◆
P(⌘n,d�1 6 ") 6 P(⌘n,d 6 ") 6

✓
1� A"

n

An

◆d�1

P(⌘n,d�1 6 ").

Applying the lemma, we get by induction:

d�1Y

k=1

(1� k(1� "2)n�1) 6 P(⌘n,d 6 ") 6 (1� (1� "2)n�1)
d(d�1)

2 .

Note that the left inequality is valid only as long as d 6
�

1
1�"2

�n�1, but when d is larger
than this critical value, the right hand side becomes very small (of order e�1/2(1�"2)n�1), so
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we may take 0 as a good lower bound in this case. The two bounds are in fact extremely
close to each other, and get closer as n or d goes larger. To quantify this precisely, let’s
denote fn,d(") = (1� (1� "2)n�1)

d(d�1)
2 , gn,d(") =

Qd�1
k=1(1�k(1� "2)n�1), and let’s show that

|fn,d(")� gn,d(")| �!
n or d!1

0. Two cases have to be considered.

• First case: if d > dc ⌘
�

1
1�"2

� 3
5 (n�1), then fn,d(") is small so we can write:

|fn,d(")� gn,d(")| 6 fn,d(") = e
d(d�1)

2 ln(1�(1�"2)n�1)

6 e�
(d�1)2

2 (1�"2)n�1 (since ln(1� x) 6 �x)

6 e
�

1+o(1)

2(1�"2)
n�1
5 (using d > dc)

6 e�
d1/3

2 (1+o(1)),

where 1 + o(1) =
�
d�1
d

�2 �!
n or d!1

1.

• Second case: if d 6 dc, first note that 8k 2 J1, dK, 8x 2 [0, 1
d5/3

[,

1 6 (1� x)k

1� kx
6 1� kx+ k(k�1)

2 x2

1� kx
6 1 +

k(k � 1)

2

x2

(1� x2/5)
.

Therefore,

|ln(fn,d("))� ln(gn,d("))| =

�����

d�1X

k=1

k ln(1� (1� "2)n�1)� ln(1� k(1� "2)n�1)

�����

6
d�1X

k=1

�����ln
 
1 +

k(k � 1)

2

(1� "2)2(n�1)

1� (1� "2)
2
5 (n�1)

!�����
(applying the inequality for

x=(1�"2)n�1)

6 (1� "2)2(n�1)

1� (1� "2)
2
5 (n�1)

d�1X

k=1

k(k � 1)

2
| {z }
= d3

6 �
d2

2 + d
36

d3

6

6 (1� "2)
n�1
5

6(1� (1� "2)
2
5 (n�1))

(using d 6 dc)

6 d�
1
3

6(1� d�
2
3 )
.

Hence:

gn,d(")

fn,d(")
2
h
exp

 
� (1� "2)

n�1
5

6(1� (1� "2)
2
5 (n�1))

!
, 1
i
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) |fn,d(")� gn,d(")| 6
 
1� exp

 
� (1� "2)

n�1
5

6(1� (1� "2)
2
5 (n�1))

!!
fn,d(")

6 (1� "2)
n�1
5

6(1� (1� "2)
2
5 (n�1))

(since 1� e�x 6 x and fn,d(") 6 1)

6 d�
1
3

6(1� d�
2
3 )
.

We have thus shown that the difference between the two bounds fn,d(") and gn,d(") can
be controlled by a quantity that can be expressed solely in terms of either n or d but that
anyway vanishes when either n or d tend to infinity. If we call ⇠ this vanishing term, it is
straightforward to see that:

min{d 2 N | 1� fn,d(") + ⇠ > s} 6 d",smax(n) 6 min{d 2 N | 1� fn,d(") > s}.

Now, setting d� =
jp

�2 ln(1� s+ ⇠)
q

1
(1�")n�1 � 1

k
and using the fact that � 1

x + 1 >
1

ln(1�x) > � 1
x , we get:

d�(d� � 1) 6 d2
�
6 2 ln(1� s+ ⇠)

✓
� 1

(1� "2)n�1
+ 1

◆
6 2 ln(1� s+ ⇠)

ln(1� (1� "2)n�1)

) 1� fn,d�(") + ⇠ 6 s ) d",smax(n) > d�.

Similarly, setting d+ =

⇠p
�2 ln(1�s)

(1�")
n�1
2

⇡
+ 1 yields:

d+(d+ � 1) > (d+ � 1)2 > �2 ln(1� s)

(1� "2)n�1
> 2 ln(1� s)

ln(1� (1� "2)n�1)

) 1� fn,d+(") > s ) d",smax(n) 6 d+.

Thus d",smax(n) ⇠
n!1

p
�2 ln(1� s)

✓
1

1� "2

◆n�1
2

, which is the first part of the theorem.

The intuition concerning the second statement comes from the following observation. We
know that P(⌘n,d 6 ") ' fn,d("), and this function happens to be almost constant equal to
0 in the vicinity of " = 0, almost 1 in the vicinity of " = 1, and to have a very sharp step
between the two; this step sharpens as n or d grows larger. This explains why the mass of
probability is highly peaked around a critical value "c, so that ⌘n,d ' E(⌘n,d) converges to
a deterministic variable when n or d ! 1. This is certainly due to the averaging effect of
considering the maximum of a set of d(d+1)

2 scalar products. The critical value "c satisfies:

(1� (1� "2c)
n�1)

d(d�1)
2 =

1

2
, "c =

q
1� (1� 2�2/d(d�1))1/n�1 '

p
1� d�2/n.

Now, the precise proof of the convergence of ⌘n,d in probability goes as follows. We have
to show that for all � > 0, P

⇣���⌘n,d �
p

1� d�
2
n

��� 6 �
⌘

�!
n or d!1

1. It is equivalent but easier
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to show that for all � > 0, P
⇣p

1� d�
2
n � � 6 ⌘n,d 6

p
1� d�

2
n + �

⌘
�!

n or d!1

1. Taking
fn,d as an approximation for the distribution function of ⌘n,d, we can write:

P
✓
⌘n,d 6

q
1� d�

2
n + �

◆
=
⇣
1�max

�
0, d�2/n � �

�n�1
⌘ d(d�1)

2
+ o(1),

where o(1) stands for a quantity that goes to zero when either n or d goes to infinity (bounded
by ⇠), and where the max appears because if d�2/n 6 �, P

⇣
⌘n,d 6

p
1� d�

2
n + �

⌘
is simply

equal to 1. Clearly, P
⇣
⌘n,d 6

p
1� d�

2
n + �

⌘
�!

n or d!1

1, and similarly, one shows that

P
⇣
⌘n,d 6

p
1� d�

2
n � �

⌘
�!

n or d!1

0, which completes the proof.

After establishing the theorem, we discovered that the formula
p

1� d�
2
n had already

been obtained in [152]. However, this latter work only deals with the maximum of the d
scalar products between say the north pole and a set of d independent random vectors. This
situation is easier to treat, in particular because the d scalar products are then independent
random variables, which is certainly not the case for our d(d+1)

2 scalar products.

3.2.4 Comparison with simulation and consequences
The above expressions actually give very good estimates for d",smax(n) and ⌘n,d, as shown in
Figures 3.1 and 3.2.

(a) " = 0.1 and s = 0.9 (b) " = 0.4 and s = 0.9

Figure 3.1: Simulation vs prediction for d",smax(n)

Theorem 3.2.5 has a strong physical consequence. Indeed, E induces proper decoherence
on S as long as ⌘n,d ⌧ 1, that is when d�2/n is very close to 1, i.e. when d ⌧ en/2. Going
back to physically meaningful quantities, we write as previously n = pNE and d = pNS where
NE and NS stand for the number of particles composing E and S. The condition becomes:
2 ln(p)NS ⌧ pNE or simply:

ln(NS)

ln(p)
⌧ NE .
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(a) n = 10 (b) n = 50

Figure 3.2: Simulation vs prediction for d 7! E(⌘n,d) at fixed n

A more precise condition can be obtained using dmax, because E fails to induce proper
decoherence on S (with high probability s) as soon as d > d",smax(n) for an arbitrary choice of
" close to 0 and s close to 1. This rewrites: ln(p)NS > ln(

p
�2 ln(1� s))+ 1

2 ln
�

1
1�"2

�
pNE '

"2

2 p
NE or simply: ln(NS) & 2 ln(")+ln(p)NE . Thus, for instance, a gas composed of thousands

of particles will lose most of its coherence if it interacts with only a few external particles.
This result is certainly not good news for quantum computing. It is rather surprising that so
many points can be placed randomly on a n-sphere before having the maximum of the scalar
products becoming non-negligible. It is this property that makes decoherence an extremely
efficient high-dimensional geometrical phenomenon.

A way to think of Theorem 3.2.5 is the following: one can find at most n perfectly
orthogonal vectors on Sn, but ⇠ en/2 almost orthogonal vectors. In particular, Sn is a small
reservoir of dimensions to store the information of an ideal measurement, but a much wider
one if one allows for approximate measurements.

3.2.5 Discussing the hypotheses
On the one hand, this result could be seen as a worst case scenario for decoherence, since
realistic Hamiltonians are far from random and actually discriminate even better the differ-
ent possible histories. This is especially true if E is a measurement apparatus for example,
whose Hamiltonian is by construction such that the (|Ei(t)i)16i6d evolve quickly and deter-
ministically towards orthogonal points of the sphere.

On the other hand, pursuing such a high level of generality led us to abstract and un-
physical assumptions. First, realistic dynamics are not isotropic on the n-sphere (some
transitions are more probable than others). Then, the assumption that each |Ei(t)i can
explore indistinctly all the states of HE is very criticizable. As explained in [110]:

‘. . . the set of quantum states that can be reached from a product state with a
polynomial-time evolution of an arbitrary time-dependent quantum Hamiltonian
is an exponentially small fraction of the Hilbert space. This means that the
vast majority of quantum states in a many-body system are unphysical, as they
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cannot be reached in any reasonable time. As a consequence, all physical states
live on a tiny submanifold.’

It would then be more accurate in our model to replace Sn by this submanifold. But
how does it look like geometrically and what is its dimension? If it were a subsphere of Sn

of exponentially smaller dimension, then n should be replaced everywhere by something like
ln(n) in what precedes, so the condition would rather be NS ⌧ NE which is a completely
different conclusion. Some clues to better grasp the submanifold are found in [102, §3.4]:

‘. . . one can prove that low-energy eigenstates of gapped Hamiltonians with
local interactions obey the so-called area-law for the entanglement entropy. This
means that the entanglement entropy of a region of space tends to scale, for large
enough regions, as the size of the boundary of the region and not as the volume.
(. . . ) In other words, low-energy states of realistic Hamiltonians are not just
“any” state in the Hilbert space: they are heavily constrained by locality so that
they must obey the entanglement area-law.’

Another possible way to constrain the set of physically reachable states is given by the
theory of quantum Darwinism [112]:

‘. . . for a randomly selected pure state in the global Hilbert space, an observer
typically cannot learn anything about a system without sampling at least half
of its environment. States that deviate (even by exponentially small amounts)
from this property [which is in general the case for realistic systems] occupy an
exponentially small volume in Hilbert space.’

More work is needed in order to draw precise conclusions taking these physical remarks
into account.

3.3 Alternative measures of decoherence

Because it bounds the depart from the total probability formula, as shown in Proposition
3.1.2, our Definition 3.1.1 was a reasonable choice to quantify decoherence. Here are three
alternative ideas, though.

3.3.1 Fraction of interfering histories
Lemma 3.2.6 allows for another way to quantify decoherence, which could be to ask, for
each possible history |ii in B, what is the fraction F "

B
(⇢S) of the other possible histories with

which it interferes significantly, that is how many indices j are there such that |hEi|Eji| > "?
As remarked in [146], this quantity is simply given by:

F "
B
(⇢S) =

1

d� 1

dX

j=1
j 6=i

hij with hij =

⇢
1 if |Eji 2 C"

n(|Eii)
0 otherwise
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By the law of large numbers, we immediately deduce that F "
B
(⇢S)

a.s.�!
d!1

P(hij = 1) = (1 �
"2)n�1, and we recover once again in this expression that the typical level of decoherence is
" ⇠ 1

p
n .

3.3.2 Expectation of the scalar products
Definition

More interesting, perhaps, could be to measure decoherence using the ‘expectation’ of the
scalar products |hEi|Eji|2 for i 6= j, weighted by their quantum probabilities |ci|2|cj |2P

i 6=j |ci|
2|cj |2

=
|ci|2|cj |2

1�
P

i|ci|
4 . One can therefore define:

Definition 3.3.1. Denote:

⌘̃2
B
(⇢S) =

1

1�
P

i|ci|4
X

i 6=j

|ci|2|cj|2|hEi|Eji|2 =
1

1�
P

i|ci|4

 
tr(⇢2

S
)�

X

i

|ci|4
!
,

with, by convention, ⌘̃2
B
(⇢S) = 1 if

P
i|ci|4 = 1, i.e. if ⇢S = |ii hi| for some i.

As always, decoherence depends on the basis considered. It is clear in the above for-
mula, including a basis-independent (‘covariant’) part tr(⇢2

S
), as well as the term

P
i|ci|4 =

tr
�
DB [⇢S ]

2� which is basis-dependent.

Advantages

Definition 3.3.1 has three advantages.

1. It can naturally be extended to the infinite dimensional case, unlike max
i 6=j

|hEi(t)|Ej(t)i|
(if the scalar products vary continuously, their supremum is necessarily 1). A proposal
for quantifying decoherence in infinite dimension could therefore be:

⌘̃2
B
(⇢S) =

1

1�
R
|cx|4dx

✓
tr(⇢2

S
)�

Z
|cx|4dx

◆
.

2. It links decoherence with the notion of information. Indeed, understanding the mech-
anisms of decoherence suggests the following intuition: the smaller ⌘ or ⌘̃ is, the more
information the environment has stored about the system because the more distin-
guishable (i.e. close to being orthogonal) the (|Ei(t)i)16i6d are; on the other hand,
the smaller ⌘ is, the fewer quantum interferences occur. This motivates the search for
a general relationship between entanglement entropy and the level of classicality of a
system. Such results have already been derived for specific environments [77, (3.76)]
[86] [94]. Here, recalling Definition 2.0.2 for the linear entropy, we can write:

⌘̃2
B
(⇢S) = 1� Slin(⇢S)

Slin(DB [⇢S ])
.
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If the system is initially in a pure state, the quantity Slin(⇢S(t))
Slin(DB[⇢S(t)])

goes from 0 at t = 0

to 1 when t ! +1 in the basis of decoherence. It measures the ratio of entropy (i.e.
of information) that has already been shared with the environment compared to its
final value.

3. It allows to give a physical meaning to the purity of a state: tr(⇢2
S
) can be seen as the

approximate level of decoherence in most bases, according to the following proposition.

Proposition 3.3.2. Let B be a random orthonormal basis of HS , defined as B = (U |eii)16i6d
where (|eii)16i6d is a reference orthonormal basis and U a random unitary following the Haar
measure on U(HS). Then the level of decoherence in B is a random variable satisfying:

E
�
|⌘̃2

B
(⇢S)� tr(⇢2

S
)|
�

�!
d!+1

0.

For the sake of rigour, we do not write ⌘̃2
B
(⇢S)

‘L1
’

���!
d!1

tr(⇢2
S
) because the space HS on

which the randomness is defined changes with d.

Proof. The result is immediate when ⇢S is a pure state, so let’s now assume that ⇢S is not
pure. Let B⇢S = (|eii)16i6d be ⇢S ’s eigenbasis, in which ⇢S =

P
k �k |eki hek| and ⌘̃2

B⇢S
= 0.

Without loss of generality, we can take B⇢S as the reference basis of the proposition, since
the Haar measure is invariant under composition with a fixed unitary. Expressed in B,
the ith diagonal coefficient of ⇢S is: |c0i|2 = hUei|⇢S |Ueii = hUei|

P
k �k |eki hek|Ueii =P

k �k|hei|Ueki|2. As U follows a uniform law on U(HS), so does U |eki on Sd. Define the
following random variables: Xik = |hei|Ueki|2, Yi =

P
k �kXik = |c0i|2, and T =

P
i Y

2
i =P

i|c0i|4.
To prove the proposition, it suffices to show that E(T ) �!

d!+1

0. Indeed, 0 6 T 6
max

k
�k = ⇤, because |c0i|2 =

P
k �k|hei|Ueki|2 6 ⇤kU †eik22 6 ⇤, hence T =

P
i|c0i|4 6

⇤
P

i|c0i|2 6 ⇤. Since ⇤ < 1 (as ⇢S is not pure) and considering that the map x 7! x
1�x is

continuous on [0,⇤], this implies:

E
�
|⌘̃2

B
(⇢S)� tr(⇢2

S
)|
�
=
��tr(⇢2

S
)� 1

��E
✓

T

1� T

◆
�!

d!+1

0.

An efficient way to achieve this is to use the following formula [81, Theorem 34] [70,
Theorem 29.9]: for a = (a1, . . . , ad) such that a1 + · · ·+ ad = m, we have

Z

U(d)

dY

k=1

|u1k|2akdU =
(d� 1)!

(m+ d� 1)!

dY

k=1

ak!,

where dU is the Haar measure on the unitary group in dimension d and uik = hei|Ueki is
the (i, k) coefficient of the unitary matrix U . Of course, one can replace the line index 1
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by any index i, since the Haar measure remains unchanged when composed with a given
permutation matrix. Applied to m = 2 and a = (2, 0 . . . , 0) or a = (1, 1 . . . , 0), we get:

E (XikXil) =

Z

U(HS)

|uik|2|uil|2dU =

8
><

>:

2(d�1)!
(2+d�1)! =

2
d(d+1) if k = l

(d�1)!
(2+d�1)! =

1
d(d+1) if k 6= l

=
1

d(d+ 1)
(�kl + 1).

Thus:

E
�
Y 2
i

�
=

X

16k,l6n
�k�lE (XikXil) =

1

d(d+ 1)

 
nX

k=1

�2
k +

X

16k,l6n
�k�l

!
=

tr(⇢2
S
) + 1

d(d+ 1)
.

Finally:

E (T ) =
dX

i=1

E
�
Y 2
i

�
=

tr(⇢2
S
) + 1

d+ 1
�!

d!+1

0,

which completes the proof.

Here is a more elementary argument which does not rely on the above formula. As
explained in the proof of Proposition 3.2.3, each Xik follows a �1,d�1 distribution, whose
mean and variance are 1

d and Vd =
d�1

d2(d+1) respectively. Then, notice that:

P
 �����

dX

k=1

�kXik �
1

d

����� > "

!
= P

 �����

dX

k=1

�k


Xik �

1

d

������ > "

!
(since the (�k)16k6d sum to 1)

6 P
✓
9k 2 J1, dK :

����Xik �
1

d

���� > "

◆

6
dX

k=1

P
✓����Xik �

1

d

���� > "

◆
,

6 dVd

"2

where we have used Chebyshev’s inequality in the last step. Define the event

Ad =

(
! 2 ⌦ |

�����

dX

k=1

�kXik �
1

d

����� 6
1

d1/3

)

and denote 1Ad
the indicator function of Ad. We can compute:

E
✓����T � 1

d

����

◆
= E

0

@

������

dX

i=1

 
dX

k=1

�kXik

!2

� 1

d

������

1

A
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= E

0

@

������

dX

i=1

2

4
 

dX

k=1

�kXik

!2

� 1

d2

3

5

������

1

A

6
dX

i=1

E

0

@

������

 
dX

k=1

�kXik

!2

� 1

d2

������

1

A

6
dX

i=1

E

0

@

������

 
dX

k=1

�kXik

!2

� 1

d2

������
1Ad

1

A+ E

0

@

������

 
dX

k=1

�kXik

!2

� 1

d2

������
1Ad

1

A .

On Ad, we have
Pd

k=1 �kXik 2 [0, 1
d+

1
d1/3

], an interval on which the map x 7! x2 is 2(1d+
1

d1/3
)-

Lipschitz; on Ad, we know at least that it is 2-Lipschitz. Thus:

E
✓����T � 1

d

����

◆
6

dX

i=1

2

✓
1
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 ����Xik �
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����
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+ 2�kE
 ����Xik �

1

d

����
2
!1/2

P
�
Ad

�1/2

6

2

✓
1

d
+

1

d1/3

◆
V 1/2
d + 2V 1/2

d (dVdd
2/3)1/2

� dX

i=1

dX

k=1

�k

| {z }
=d

(previous result with " = d�1/3 )

�!
d!+1

0 because Vd ⇠
d!+1

1

d2

Finally, E(T ) 6 E
���T � 1

d

���+ 1
d �!

d!+1

0.

Remark 3.3.3. This is actually a strong result. Without having made any assumption on
the particular shape of the Hamiltonian nor on the precise form of the (|Ei(t)i)16i6d, we
are still able to infer, for any subsystem of the universe (provided it is of dimension d �
1), the approximate level of decoherence in most bases. Said differently, when performing
experiments on any (sufficiently large) system, the typical deviation from the total probability
formula will be approximately the most for all observables, and close to tr(⇢2

S
).

One might even suspect a link with the rise of entropy. As time flows, entropy is likely to
increase with our statistical ignorance, therefore ⇢S is expected to get closer to the maximally
entangled state and the purity to 1

d , which goes to 0 as d ! +1. Thus, the total probability
formula tends to be satisfied in all bases because of the rise of our ignorance.
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Case of a purely random environment

In the spirit of Theorem 3.2.5, we would like to assume again the existence of a conserved basis
B with respect to which the (|Eii)16i6d are uniformly distributed unit vectors (for exemple
if their evolution is Brownian in virtue of Proposition 3.2.1), and study the properties of
the random variable ⌘̃2

B
in this case. Its expectation and variance are given by the following

proposition.

Proposition 3.3.4. Let B = (|ii)16i6d be an orthonormal basis of HS , (|Eii)16i6d some inde-
pendent random vectors uniformly distributed on the complex n-sphere Sn, | i =

Pd
i=1 ci |ii⌦

|Eii and ⇢S = trE | i h |. Then:

E
�
⌘̃2
B
(⇢S)

�
=

1

n
and V

�
⌘̃2
B
(⇢S)

�
= 2

(
P

i|ci|4)
2 �

P
i|ci|8

(1�
P

i|ci|4)
2

n� 1

n2(n+ 1)
.

Proof. Note that the (ci)16i6d are now fixed, so that the randomness of ⌘̃2
B

is entirely con-
tained in the (|Eii)16i6d. According to Proposition 3.2.3, each variable Xij = |hEi|Eji|2 for
i 6= j have mean 1

n . Thus ⌘̃2
B

is a weighted mean of random variables of mean 1
n , so E (⌘̃2

B
) = 1

n
as well. To compute the variance:

V
�
⌘̃2
B

�
= E

�
⌘̃4
B

�
� E

�
⌘̃2
B

�2

=
1

(1�
P

i|ci|4)
2

X

i 6=j,k 6=l

|ci|2|cj|2|ck|2|cl|2E (XijXkl)�
1

n2

=
1

(1�
P

i|ci|4)
2

X

i 6=j,k 6=l

|ci|2|cj|2|ck|2|cl|2

E (XijXkl)�

1

n2

�

=
1

(1�
P

i|ci|4)
2

 
2
X

i 6=j

|ci|4|cj|4

E
�
X2

ij

�
� 1

n2

�

+ 4
X

i 6=j
k/2{i,j}

|ci|2|cj|4|ck|2

E (XijXkj)�

1

n2

�

+
X

i 6=j,k 6=l
{i,j}\{k,l}=?

|ci|2|cj|2|ck|2|cl|2

E (XijXkl)�

1

n2

�!
,

where we have split the sum depending on the cardinality of {i, j}\{k, l}. The multiplicative
factors count the different possible pairings (either [i = k and j = l] or [i = l and j = k] for
the first sum, either i = k or i = l or j = k or j = l for the second sum).

Now, whenever {i, j} \ {k, l} = ?, Xij and Xkl are independent, so E (XijXkl) =
E (Xij)E (Xkl) =

1
n2 . Concerning E (XijXkj), by rotational invariance, one can assume with-

out loss of generality that |Eji is the north pole |Ni of Sn, while |Eii and |Eki are independent
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and uniformly distributed. Hence E (XijXkj) = E (|hEi|Ni|2)E (|hEk|Ni|2) = 1
n2 as well. Fi-

nally, using again the formula from [81, Theorem 34] [70, Theorem 29.9], E
�
X2

ij

�
= 2

n(n+1) .
Hence:

V
�
⌘̃2
B

�
=

2

(1�
P

i|ci|4)
2

X

i 6=j

|ci|4|cj|4


2

n(n+ 1)
� 1

n2

�

= 2
(
P

i|ci|4)
2 �

P
i|ci|8

(1�
P

i|ci|4)
2

n� 1

n2(n+ 1)
.

3.3.3 Distance between orthonormal bases
A quantum system is always perfectly decohered in exactly one basis (up to degeneracy):
its eigenbasis. We would like to equip the set B(H) of orthonormal bases of H with an
appropriate distance d, so that it would make sense to quantify the level of decoherence of
⇢S in B as d(B⇢S ,B).

A first naive idea would be to consider d(Bi,Bj) = |||UBi,Bj � 1|||, where UBi,Bj is the
unique unitary mapping Bi to Bj. Before even checking whether it satisfies the triangular
inequality, this quantity is not suitable for our purposes because (i) if the two bases differ
only by a mere relabelling of the vectors, they are physically equivalent (the same observable
is perfectly decohered). Even by setting d(Bi,Bj) = min

�2Sn

|||UBi,B�
j
�1||| where the minimum is

taken over all the permutations in the vectors of Bj, this definition is still not suitable since
(ii) the operator norm |||M ||| being defined as a supremum of kM |xik when |xi spans the
unit sphere, it poorly takes into account the behaviour of M when applied to most vectors
on this sphere. In our case, we may have a large d(Bi,Bj) even though most vectors of Bi

coincide very well with those of Bj.
Arguably, the best distance between orthonormal bases for the theory of decoherence is

the one developed in [22] (in the context of the search for mutually unbiased bases [52]).
It has a deep geometrical meaning, and can be written in the following simple form: if
Bi = (|eii)i and Bj = (|fji)j,

d(Bi,Bj)
2 =

X

i,j

|hei|fji|2
�
1� |hei|fji|2

�
= n�

X

i,j

|hei|fji|4.

It is clear in this expression that the distance is 0 if and only if Bi is just a relabelling of Bj.
One can also show that, in dimension n, the distance lies in [0,

p
n� 1] and is maximal if

and only if the two bases are mutually unbiased (i.e. such that 8i, j, |hei|fji|2 = 1
n), as are

for instance the eigenbases of the spin operators ŜX , ŜY and ŜZ or the eigenbases of X̂ and
P̂ .

We expect that two observables with close eigenbases should almost commute and, con-
versely, that two almost-commuting observables should have close eigenbases. This is true,
according to the following inequalities.
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Proposition 3.3.5. Let Â and B̂ be two Hermitian operators in finite dimension n with
respective spectra (ai)16i6n and (bj)16j6n. Then:

|||[Â, B̂]||| 6
p
n

2
CÂ,B̂ d(BÂ,BB̂),

where CÂ,B̂ = max
i,j

|ai � aj| max
k,l

|bk � bl|. If moreover their spectra are non-degenerate, we
have:

d(BÂ,BB̂) 6
p
2n

cÂ,B̂

|||[Â, B̂]|||,

where cÂ,B̂ = min
i 6=j

|ai � aj| min
k 6=l

|bk � bl|.

To derive these inequalities, we start with a preliminary lemma.

Lemma 3.3.6 (Almost equality in quadratic Jensen’s inequality). Let (xi)16i6n be a col-
lection of n distinct real numbers, and (�i)16i6n 2 Rn

+ be non-negative weights such thatP
i �i = 1. By Jensen’s inequality, we know that

P
i �ix2

i > (
P

i �ixi)2. If the bound is
almost tight, i.e. if

P
i �ix2
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P

i �ixi)2 6 ", then:

X

i
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i 6=j

|xi � xj|2
.

Proof of Lemma. Define �ij = xi � xj 6= 0, and observe that:
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�i�jxj�ij (relabelling the second sum)

=
X
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�i�j�
2
ij.

Now, because all the terms are non-negative,
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�i�j�
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ij 6 " )

X
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�i�j 6
"

min
i 6=j
�2
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)
X

i

�i(1� �i) =
X

i 6=j

�i�j 6
2"

min
i 6=j
�2

ij

.

Proof of Proposition 3.3.5. First inequality. Denote BÂ = (|eii)16i6n and BB̂ = (|fji)16j6n
the eigenbases of Â and B̂ properly associated with the eigenvalues (ai)16i6n and (bj)16j6n, so
that in particular B̂ =

P
j bj |fji hfj|, and let C̃Â,B̂ = max

i,j
|ai�aj| max

k
|bk|. For all k 2 J1, nK,

B̂ |eki =
nX

i=1

hei|B̂eki |eii =
X

16i,j6n
bj hei|fji hfj|eki |eii .

Hence:
���(ÂB̂ � B̂Â) |eki

���
2

=

�����
X

16i,j6n
(ai � ak)bj hei|fji hfj|eki |eii

�����

2

=
nX

i=1
i 6=k

�����(ai � ak)
nX

j=1

bj hei|fji hfj|eki

�����

2

6
nX

i=1
i 6=k

|ai � ak|2
 

nX

j=1

|bj||hei|fji hfj|eki|
!2

6
C.-S.

C̃2
Â,B̂

nX

i=1
i 6=k

nX

j=1

|hei|fji|2|hek|fji|2
nX

l=1

12

6 nC̃2
Â,B̂

nX

j=1

|hek|fji|2
nX

i=1
i 6=k

|hei|fji|2

6 nC̃2
Â,B̂

nX

j=1

|hek|fji|2(1� |hek|fji|2).

Consequently, for all | i =
Pn

k=1 ↵k |eki of norm 1,
���[Â, B̂] | i

���
2

6
nX

k=1

|↵k|2|{z}
61

���[Â, B̂] |eki
���
2

6 nC̃2
Â,B̂

X

16j,k6n
|hek|fji|2(1�|hek|fji|2) = nC̃2

Â,B̂
d(BÂ,BB̂)

2.

Taking the supremum over | i 2 Sn and a square root yields the first inequality with C̃

instead of C and
p
n instead of

p
n
2 . To improve the constant, notice that |||[Â, B̂]||| and

d(BÂ,BB̂) are unchanged if one replaces B̂ by B̂ � �1. Hence, for all � 2 R,

|||[Â, B̂]||| 6
p
n max

i,j
|ai � aj| max

k
|bk � �| d(BÂ,BB̂).

49



The optimal choice of � corresponds to having min spec(B̂ � �1) = �max spec(B̂ � �1), in
which case max

k
|bk � �| = 1

2max
k,l

|bk � bl|, yielding the announced result.

Second inequality. We now suppose that the (ai)16i6n are distincts, as well as the
(bj)16j6n. Based on the computations above, we know that for all k 2 J1, nK,

���(ÂB̂ � B̂Â) |eki
���
2

=
nX

i=1
i 6=k

���(ai � ak) hei|B̂eki
���
2
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���
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6 |||[Â, B̂]|||2
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|ai � aj|2
.

Furthermore, recalling that hek|B̂eki 2 R,
nX
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i 6=k

���hei|B̂eki
���
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���B̂ |eki

���
2

� hek|B̂eki
2
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nX

i=1

bi hek|fii hfi|
!

·
 

nX

j=1

bj |fji hfj|eki
!

�
 

nX

i=1

bi|hfi|eki|2
!2

=
nX

i=1

b2i |hek|fii|2 �
 

nX

i=1

bi|hek|fii|2
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.

From this, the lemma immediately implies that:
nX

i=1

|hek|fii|2(1� |hek|fii|2) 6
2|||[Â, B̂]|||2

c2
Â,B̂

.

Summing over all k and taking a square root yields the second inequality.

3.3.4 Axioms for measures of decoherence
Is there a common feature among all the previous proposals ⌘B(⇢S), F "

B
(⇢S), ⌘̃B(⇢S), d(B⇢S ,B)?

Which properties should a map satisfy in order to be a good measure of decoherence?
This question has been addressed in [15], in which the authors identify a property called

‘monotonicity under incoherent operations’ as the key ingredient. Their perspective is that
of resource theory and quantum technologies4. As will become clear in Chapter 4, our
aim, though, is ontological i.e. to understand what QM tells us about reality. The crucial
property for this purpose, we argue, is to bound the deviation from the total probability
formula (shown in §4.1 to be the root of the ontological problem of quantum physics), as
was done for ⌘ in Proposition 3.1.2.

4As a matter of fact, they quantify quantum coherence, rather than decoherence. In particular, they fix
once and for all a basis in which to quantify coherence, playing the role of the computational basis.
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Definition 3.3.7 (Measure of decoherence). A map

⌘ : S(H)⇥B(H) �! R+

(⇢,B) 7�! ⌘B(⇢)

is called a measure of decoherence if it satisfies the following properties 1 and 2 below.

1. lim
B

d
!B⇢

⌘B(⇢) = ⌘B⇢(⇢) = 0;

2. for all ⇢ 2 S(H) and all subspaces F ⇢ H,

|tr(⇢⇧F )� tr(DB [⇢]⇧F )| 6 dim(F ) ⌘B(⇢);

It is pointless to require ⌘B(⇢) = 0 , B = B⇢ because the direct implication stems from
2. Without the continuity property in B⇢, being a measure of decoherence would be a very
weak statement (any map such that ⌘ > 1 for all B 6= B⇢ would work). Our main result is
the following theorem.

Theorem 3.3.8. Denote B = (|eii)16i6d. The following maps:

• ⌘2 : (⇢,B) 7�! kQB [⇢]k2 =
 
X

i 6=j

|hei|⇢eji|2
!1/2

• ⌘1 : (⇢,B) 7�! d kQB [⇢]k1 = d max
i 6=j

|hei|⇢eji|

• � : (⇢,B) 7�! d(B⇢,B)

are measures of decoherence.

Here, kQB [⇢]kp stands for the p-norm of the non-diagonal elements of ⇢ (seen as a d2-
uple) as written in B. For p = +1, we almost recover ⌘ from §3.1 (actually, the more precise
definition evoked below Proposition 3.1.2, along with a factor d). The case p = 2 corresponds
to ⌘̃ introduced in §3.3.2 (up to a multiplying factor, that was introduced so as to fit better
our probabilistic aims). It is easy to see, however, that F "

B
(⇢S) as defined in §3.3.1 is not a

mesure of decoherence: the fraction of interfering histories may be arbitrarily low while still
having a pair of histories on which the total probability formula completely fails.

Proof. Property 1. Clearly, for p = 2 or p = 1, ⌘p(⇢,B⇢) = 0 since k0kp = 0; and d(B⇢,B⇢) =
0. In addition, diagonalizing ⇢ =

P
k �k |fki hfk| in its eigenbasis B⇢ = (|fki)16k6d yields:

1

d2
⌘1(⇢,B)2 6 ⌘2(⇢,B)2

6
X

i 6=j

�����hei|
 
X

k

�k |fki hfk|
!
|eji

�����

2
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6
Jensen

X

i,k

�k|{z}
2[0,1]

|hei|fki|2
X

j 6=i

|hfk|eji|2

6
X

i,k

|hei|fki|2(1� |hei|fki|2) = d(B⇢,B)2 �!
B

d
!B⇢

0.

Thus property 1 is verified.
Property 2. Since we have just proved that ⌘2 6 �, it suffices to show property 2 for ⌘2

and ⌘1. Repeating the argument of Proposition 3.1.2, property 2 is ensured for ⌘p if we can
show that |||QB [⇢] ||| 6 ⌘p(⇢,B). This is true, because for all vectors | i =

P
k ↵k |eki 2 H

of norm 1,

kQB [⇢] | ik2 =

�����
X

i 6=j

hei|⇢eji↵j |eii

�����

2

=
X

i

���
X

j 6=i

hei|⇢eji↵j

���
2

6
X

i

 
X

j 6=i

|hei|⇢eji||↵j|
!2

6
C.-S.

X

i

X

j 6=i

|hei|⇢eji|2
X

k 6=i

|↵k|2

| {z }
61

6 ⌘2(⇢,B)2.

And similarly:

kQB [⇢] | ik2 6
X

i

X

j 6=i

|hei|⇢eji|2 6
1

d2
⌘1(⇢,B)2

X

i

X

j 6=i

1 6 ⌘1(⇢,B)2.

3.4 Second model: why is the universe not frozen by the

quantum Zeno effect?

3.4.1 The Zeno effect
The Zeno effect typically occurs when a quantum system is repeatedly measured: if the time
interval between two successive measurements tends to 0, the evolution of the system gets
frozen. The main reason is that, in quantum mechanics, the general short time evolution is
quadratic, i.e.:

|h | (t)i|2 = |h |e�iĤt| i|2 = 1� V t2 +O
�
t4
�
,
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where V ⌘ Var| i(Ĥ) = h |Ĥ2| i � h |Ĥ| i2 (we take ~ = 1). Hence, if n projective
measurements along | i are performed during a fixed time interval T , the probability pn
that all the measurements gave the outcome | i is, at leading order:

pn '
 
1� V

✓
T

n

◆2
!n

�!
n!+1

1.

Note that to obtain this limit, one has to neglect the higher order terms, as is usually done in
the standard presentations of the Zeno effect [105, §3] [77, §3.3.1.1]. Rigoursly speaking, this
is an additional assumption, because when developing the expression

⇣
1� V

�
T
n

�2
+O

�
1
n4

�⌘n
,

the number of O
�

1
n4

�
actually depends on n.

In the spirit of the theory of decoherence, one might wish to get rid of the ill-defined
notion of (ideal) projective measurement. Since a measurement is nothing but a particular
case of interaction with an environment that entails strong decoherence of the system in the
measured basis, it is tempting to ask what level of decoherence is required to freeze a system.
For example, a particle in a gas is continuously monitored (⇠ measured) by its neighbors,
yet the gas manifestly has an internal evolution... and so does the universe in general. It is
not obvious a priori whether quantum mechanics actually predicts that the universe is not
frozen.

This question has already been addressed by examining the continuous dynamics of the
pair system - environment for relatively generic Hamiltonian [76]. The Zeno limit is recovered
for strong interaction, and Fermi’s golden rule is recovered in the limit of small interaction.
‘The model shows that the coupling to the environment leads to constant transition rates
which are unaffected by the measurement if the coupling is "coarse enough" to discriminate
only between macroscopic properties. This may in turn be used to define what qualifies
a property as macroscopic: it must be robust against monitoring by the environment’ [77,
§3.3.2.1]. Similarly, the master equation for the motion of a mass point under continuous
measurement indicates that the latter is not slowed down because the Ehrenfest theorems
are still valid. ‘This may be understood as a consequence of the fact that, for a continuous
degree of freedom, any measurement with finite resolution necessarily is too coarse to invoke
the Zeno effect’ [77, §3.3.1.1].

Another interesting model is that of [59, §8.3 and §8.4]. As mentioned in note 2, it may
at first sight seem puzzling that an unstable nucleus continuously measured by a Geiger
counter can actually decay. Indeed, if the measurement is treated as an ideal projective
one, the nucleus should continuously be projected onto a non-decayed state. But as soon as
the decoherence process is not supposed immediate anymore (even as short as 10�16s, see
equation (8.45) in [59]), the deviation from the expected exponential decay is shown to be
negligible.

Although these models are already convincing, our aim is to give a new contribution to
this topic of understanding why the vast majority of physics is not affected by the quantum
Zeno effect, the latter being detectable only in some very specific experimental setups. Our
model also formalizes the competition between free evolution (no information leaking to the
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rest of the world) and decoherence (interaction with the environment), but differs from the
previous ones in two respects: its mathematical structure is discrete and it does not assume
anything about the form of the Hamiltonian, so as to be as universal as possible. The use
of a discrete framework is consistent with the approach adopted in a lot of mathematical
studies on the quantum Zeno effect (see [95] and references therein).

3.4.2 The model: free evolution vs. decoherence
Having in mind the fact that continuous degrees of freedom are less prone to the Zeno effect
(recall the previous quote from [77]), in order to explain why the universe is not frozen, it
may suffice to check it on a two-level system. Our system of interest will therefore be a qbit,
initially in the state |0i and monitored by an environment producing partial decoherence
in the basis (|0i , |1i). We consider a fixed time interval T , divided into n phases of length
� = T

n dominated by the free evolution. This evolution takes the general form:
8
<

:

U� |0i = c0=(�) |0i+ c1
6=(�) |1i

U� |1i = c0
6=(�) |0i+ c1=(�) |1i ,

where the coefficients satisfy |c0=(�)|2 = |c1=(�)|2 = 1�V �2+O (�4) and |c0
6=(�)|2 = |c1

6=(�)|2 =
V �2 +O (�4) (in the sequel, we will drop the argument � whenever the context is clear). As
recalled in the introduction, to stick to the standard derivations of the Zeno effect, we need to
neglect all the higher order terms, so that we actually suppose |c0=(�)|2 = |c1=(�)|2 = 1� V �2

and |c0
6=(�)|2 = |c1

6=(�)|2 = V �2.
After the ith phase of free evolution, the system meets some neighboring environment E i,

initially in the state |E i
init

i, and gets immediately entangled according to:
8
<

:

|0i �! |0i |E i
0i

|1i �! |1i |E i
1i ,

where |hE i
0|E i

1i| ⌘ ⌘i quantifies the level of decoherence induced by E i, i.e. how well the envi-
ronment has recorded the system’s state (recall from 3.1 that ⌘i = 1 means no decoherence,
⌘i = 0 perfect decoherence). See Figure 3.1.

T

δ = T/n
…f f f fd d d

Figure 3.3: Alternating steps of free evolution (f) and decoherence (d)

From now on, we suppose that ⌘i ⌘ ⌘ does not depend on i (taken as a mean level of
decoherence), which amounts to assuming that the strength of the interaction is more or less
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constant over time. Finally, we also suppose that each environment E i is distinct from the
others and non-entangled at the time it encounters the system.

Recalling that T = n�, the relevant quantity to compute is the probability pn that, at
the end of the time interval T , the system is still found in its initial state |0i and that all
the successive environments have recorded 0.

Proposition 3.4.1. Neglecting all the higher order terms, we can write:

pn ' 1� 2
hn
2
+ (n� 1)⌘ + (n� 2)⌘2 + · · ·+ ⌘n�1

i
V �2.

Proof. The cases n = 1 or 2 are easy to treat. Indeed, the successive iterations go as follows
(f stands for the free evolution and d for the decoherence step):

|0i ⌘ | 0i
f c0= |0i+ c1

6= |1i
d c0= |0i |E1

0 i+ c1
6= |1i |E1

1 i ⌘ | 1i

f c0=

h
c0= |0i+ c1

6= |1i
i
|E1

0 i+ c1
6=

h
c0
6= |0i+ c1= |1i

i
|E1

1 i

= |0i
h
c0=c

0
= |E1

0 i+ c0
6=c

1
6= |E1

1 i
i
+ |1i

h
c1
6=c

0
= |E1

0 i+ c1=c
1
6= |E1

1 i
i

d |0i
h
c0=c

0
= |E1

0 i+ c0
6=c

1
6= |E1

1 i
i
|E2

0 i+ |1i
h
c1
6=c

0
= |E1

0 i+ c1=c
1
6= |E1

1 i
i
|E2

1 i ⌘ | 2i .

The (| ni)n2N seem to live in different Hilbert spaces only because we omit to write all the
environments (E i)i>n+1 with which the system is not entangled yet. Consequently, neglecting
all the higher order terms yields:

• p1 =
��h0E1

0 | 1i
��2 = |c0=|2 = 1� V �2

• p2 =
��h0E1

0E2
0 | 2i

��2

=
��c02= + c0

6=c
1
6= hE1

0 |E1
1 i
��2

= (1� V �2)2 + ⌘2(V �2)2 + 2<
⇣
c0=

2
c0
6=c

1
6= hE1

0 |E1
1 i
⌘

' 1� 2(1 + ⌘)V �2.

The last step is not obvious and comes from the following argument. A priori, the quan-
tity <

⇣
c0=

2
c0
6=c

1
6= hE1

0 |E1
1 i
⌘

lies in [�⌘V �2, ⌘V �2] up to a O (�4), but the coefficients of the
matrix U� are not unrelated. Using the general parametrization of a 2 ⇥ 2 unitary matrix,

U� =

✓
c0= c0

6=

c1
6= c1=

◆
can be written

✓
a b

�ei'b ei'a

◆
. Moreover, for small � (this approxima-

tion may be rough for the case n = 2 but gets better as n increases), U� ! 1 hence
det(U�) = ei' ! 1 and a ! 1. We also expect hE1

0 |E1
1 i to be close to the real number 1 (in-

finitesimal decoherence). Combining all this, c0=
2
c0
6=c

1
6= hE1

0 |E1
1 i = �ei'a2|b|2 hE1

0 |E1
1 i is close to
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be a real negative number, therefore its real part is approximately the opposite of its modulus.

In general, pn = |h0E1
0 . . . En

0 | ni|2 is the square modulus of a sum of terms of the form

zb↵ = cb1↵1
. . . cbn↵n

hE1
0 |E1

b1i . . . hE
n
0 |En

bni ,

where ↵ = ↵1 . . .↵n and b = b1 . . . bn are words on the alphabets {=, 6=} and {0, 1} respec-
tively. The word b is entirely deduced from ↵1 . . .↵i according to:

b0 = 0 ; bi =

⇢
bi�1 if ↵i is = (state preserved)
bi�1 + 1 mod 2 if ↵i is 6= (state flipped),

with the additional requirement that bn = 0 (system finally measured in state |0i), so that
↵ actually contains an even number of 6=. Note that only the indices i such that bi = 1
contribute non-trivially in the product of brackets, since hE i

0|E i
0i = 1.

We now use the fact that |
P

k zk|
2 =

P
k |zk|

2 +
P

k<l 2<(zkzl) for all complex numbers
(zk)k. In our case, the leading term is clearly |z0...0=...=|2 = |c0=

n|2 = (1 � V �2)n ' 1 � nV �2,
while all the other square moduli are of order �4 or less because they contain at least two
factors |cbi

6=|2 = V �2. Furthermore, repeating the above argument, the real parts can be
approximately replaced by their opposite moduli (and this approximation is better as n
gets larger). Therefore, only the cross-products of the form 2<(c0=

n ⇥ zb↵), where ↵ contains
exactly two 6=, contribute at order �2. The power of ⌘ that appears in this cross-product
(i.e. the number of non-trivial brackets hE i

0|E i
1i) is the number of indices i such that bi = 1,

that is the number of steps elapsed between the two 6=. For instance, if the two 6= happen
at the ith and jth step, the contribution is:

2<(c0=
n ⇥ c0=

i�1
c1
6=c

1
=
j�i�1

c0
6=c

0
=
n�j�1 hE i

0|E i
1i . . . hE

j�1
0 |E j�1

1 i)
'2|c1

6=c
0
6= hE i

0|E i
1i . . . hE

j�1
0 |E j�1

1 i|
'2⌘j�iV �2.

There are obviously n�k words ↵ with exactly two 6= separated by k steps, corresponding to
the n�k possible choices for i, whose contribution is 2⌘kV �2. Finally, the general expression
for pn when neglecting all the higher order terms is:

pn =
��h0E1

0 . . . En
0 | ni

��2 ' 1� 2
hn
2
+ (n� 1)⌘ + (n� 2)⌘2 + · · ·+ ⌘n�1

i
V �2.

We can check the consistency of this result on two particular cases:

• if ⌘ = 1, no decoherence occurs, so we recover the free evolution case during a time
interval n� instead of �, i.e. Pn = 1� V (n�)2;

• if ⌘ = 0, a perfect decoherence means that the environment acts as an ideal measuring
device, so we recover the Zeno case recalled in the introduction, that is pn = 1�nV �2 '
(1� V �2)n.
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Now, a Zeno effect will freeze the system in the limit of large n if and only if pn �!
n!+1

1,

that is (using � = T
n ) if (n�1)⌘+(n�2)⌘2+···+⌘n�1

n2 �!
n!+1

0. After some algebra, this expression
can be simplified and leads to the following criterion:

Zeno effect () n⌘(1� ⌘) + ⌘(⌘n � 1)

n2(1� ⌘)2
�!

n!+1

0

We immediately note that if ⌘ 2 [0, 1[ is a constant independent of n, the criterion is
satisfied. This is natural because, as the duration of each free evolution phase goes to 0, a
constant (even weak) decoherence is applied infinitely many times, so the system freezes.

From now on, we will suppose that the level of decoherence depends on n, with ⌘n �!
n!+1

1.
A global factor ⌘ can thus be dropped in the above criterion. Our task in the following sec-
tions will be (i) to check the criterion on some common classes of functions ⌘n (section
§3.4.3) (ii) to estimate the level of decoherence really encountered in physical situations
(section §3.4.4).

Remark 3.4.2. How finely should the time interval be divided so that the quadratic approxi-
mation be valid? Let’s forget for a moment that our system is finite dimensional and consider
the Hamiltonian of a free particle P̂ 2

2m , starting from the initial state | i (p) =
q

�
p
⇡~e

�
p2�2

2~2

centred around x = 0 and p = 0, and compute:

Var| i(Ĥ) =
1

4m2

h
h |P̂ 4| i � h |P̂ 2| i2

i

=
1

4m2

"Z +1

�1

p4
�p
⇡~e

�
p2�2

~2 dp�
✓Z +1

�1

p2
�p
⇡~e

�
p2�2

~2 dp

◆2
#

=
~4

8m2�4

Hence the quadratic approximation is valid for times shorter than tc =
~p

Var| i(Ĥ)
= 2

p
2m�2

~ .

Taking for instance m = 10�26kg and � = 10�10m, we get tc = 4.10�13s. This is way shorter
than the mean free time of a particle in a gas in standard conditions, which is of order 10�10s.
So it seems at first sight that the decoherence steps could in practice be too separated in
time for the quadratic approximation to be valid all along the free evolution step. However,
decoherence doesn’t need any actual interaction to take place (a ‘null measurement’ is still a
measurement [83]). The fact that all the other surrounding particles do not interact with the
particle of interest is still a gain of information for the environment, which suffices to suppress
coherence with other possible histories in which they would have interacted. In this case,
information is continually leaking to the environment, so it seems legitimate to divide the
time interval T as finely as desired so that the quadratic approximation become valid, and
the resulting behaviour is then determined by the intensity of infinitesimal decoherence only.

57



The philosophy of this argument is not specific to the infinite dimensional case, and may be
applied to our two-level system. It relies, however, on the already mentionned assumption
that the strength of the interaction is more or less constant over time. This will be discussed
in Section §3.4.5.

3.4.3 Analytic study of the criterion

Whenever (n(1 � ⌘n))n2N admits a limit in R+ ⌘ R+ [ {+1}, the following lemma allows
to check immediately the criterion of the previous Section.

Lemma 3.4.3. Suppose n(1� ⌘n) �!
n!+1

↵ 2 R+. Then

n(1� ⌘n) + ⌘nn � 1

n2(1� ⌘n)2
�!

n!+1

8
>>>><

>>>>:

1
2 if ↵ = 0

0 if ↵ = +1

1
↵ + e�↵

�1
↵2 otherwise.

Proof. Let un ⌘ n(1�⌘n). If un �!
n!+1

+1, since ⌘nn�1 is bounded, the result is immediate.

If 0 < ↵ < +1, notice that ⌘nn = en ln(1�un
n ) �!

n!+1

e�↵, and rewrite:

n(1� ⌘n) + ⌘nn � 1

n2(1� ⌘n)2
=

1

un
+

⌘nn � 1

u2
n

�!
n!+1

1

↵
+

e�↵ � 1

↵2
.

Finally, if ↵ = 0:

⌘nn = en ln(1�un
n ) = e�un�u2

n/2n+O(u3
n/n

2)

= 1� un �
u2
n

2n
+O

✓
u3
n

n2

◆
+

1

2


�un �

u2
n

2n
+O

✓
u3
n

n2

◆�2
+O(u3

n)

= 1� un +
u2
n

2
+O

✓
u2
n

n

◆
.

Consequently, n(1�⌘n)+⌘nn�1
n2(1�⌘n)2

=
u2
n/2+O(u2

n/n)
u2
n

�!
n!+1

1
2 .

Two natural candidates for the level of short-time decoherence are ⌘n = 1 � ↵
n� and

⌘n = 1 � ↵e��n for ↵, � > 0. These cases can be treated by the lemma, and the different
possible situations are summarized in the following table.

58



⌘n Regime lim
n!+1

pn

1 Free evolution 1� V T 2

Constant 2 [0, 1[ Zeno effect 1
1� ↵

n� with � 2]0, 1[ Zeno effect 1
1� ↵

n� with � > 1 Free evolution 1� V T 2

1� ↵
n Intermediate 1� 2(

1

↵
+

e�↵ � 1

↵2
)

| {z }
�!

↵!+1
0 : Zeno effect

�!
↵!0

1 : free evolution

V T 2

1� ↵e��n Free evolution 1� V T 2

3.4.4 Physical considerations concerning ⌘n

1. As previously remarked, the constant case corresponds either to the absence of decoher-
ence (⌘ = 1) or to infinite decoherence (⌘ 2 [0, 1[): these are not physically expected,
except in some particular experimental setups (perfectly isolated systems for the first,
experiments specifically designed to probe the Zeno effect for the second).

2. For now, we have not yet introduced any duration for the decoherence step, which
was considered immediate. Let’s at present assume that the time evolution can be
divided into alternating steps dominated by either the free Hamiltonian, or by the
interaction Hamiltonian. The time of interaction between the system and each envi-
ronment E i, governed by ĤSEi of variance Var(ĤSEi) ⌘ V i

int
⌘ Vint (constant strength

of interaction), is still taken proportional to T
n , say equal to cT

n . This is a new as-
sumption we make: that the time increments of both steps scale as 1

n , and that
the two phases can be considered on an equal footing, means that the two Hamil-
tonians are of relatively comparable strength. Then the quadratic approximation re-
called in the introduction can be applied to the whole {system + environment}. Thus
|hE i

init
|E i

0i|2 = |h0E i
init

|0E i
0i|2 ' 1 � Vint

�
cT
n

�2. Since moreover hE i
init

|E i
0i is close to the

real number 1 (infinitesimal decoherence), <(hE i
init

|E i
0i) ' |hE i

init
|E i

0i| ' 1 � 1
2Vint

�
cT
n

�2

is quadratic in time, and similarly for <(hE i
init

|E i
1i). This will also be the case for

⌘n = |hE i
0|E i

1i|, because:

q
2� 2|hE i

0|E i
1i| '

q
2� 2<(hE i

0|E i
1i) = k|E i

0i � |E i
1ik

6 k|E i
init

i � |E i
0ik+ k|E i

init
i � |E i

1ik

=
q

2� 2<(hE i
init

|E i
0i) +

q
2� 2<(hE i

init
|E i

1i)

' 2
p

Vint

cT

n
,
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hence ⌘n = |hE i
0|E i

1i| & 1�2Vint

�
cT
n

�2 is also at least quadratic. Said differently, because
quantum mechanical short time evolutions are always quadratic, and this is true also
for the environment’s evolution, infinitesimal steps of decoherence induced on a system
by its surrounding environment are likely to be of the form ⌘n = 1 � ↵

n� with � & 2.
This could constitute a universal reason why the universe is not frozen by the quantum
Zeno effect.

An example of such an interaction is the following. Consider that the system is a qbit
in the state |0i+|1i

p
2

, and the environment is a particle initially centered around x = 0

with momentum p0, that is | 0,p0i = 1pp
⇡�
eip0xe�

x2

2�2 2 L2(R). The system’s state is

recorded in the (|0i , |1i) basis due to the interaction ĤSE = v�̂z ⌦ P̂ so that, after
some time � / 1

n : 8
<

:

|0i | 0,p0i �! |0i | v�,p0i

|1i | 0,p0i �! |1i | �v�,p0i ,
Here,

⌘n = |h v�,p0 | �v�,p0i| =
����
e2ip0v�p

⇡�

Z

R
e�

x2+(v�)2

�2 dx

���� = e�
(v�)2

�2 ' 1� v2

�2
�2,

so this interaction induces indeed a short time quadratic decoherence as long as the
increment of time satisfies � ⌧ v

� .

3. What if the assumption of comparable strengths of the Hamiltonians fails, for instance
if the free evolution term is negligible compared to the coupling with the environment?
This amounts to taking c or Vint �! +1, hence to lift the quadratic approximation for
the interaction Hamiltonian. A possibility then is to consider that |E i

0(t)i and |E i
1(t)i

follow two independent Brownian motions starting in |E i
init

i on the sphere of all possible
states in HEi during the duration � of the decoherence step. If the latter exceeds the
typical time of diffusion on the sphere, we recover the case of a constant ⌘ 2 [0, 1[
(infinite decoherence, case n°1 above) with ⌘ ⇠ 1p

dim(HEi )
as shown in 3.2.2. If it is

shorter than the diffusion time (but still longer than the quadratic regime), |E i
0(�)i

lies in the vicinity of |E i
init

i on the sphere, which is approximately a ball. It is well
known that the typical length of diffusion goes as k|E i

init
i � |E i

0(�)ik ' D
p
�, which

implies |hE i
init

|E i
0(�)i| '

q
1� (D

p
�)2 ' 1 � D2

2 �. If � is still taken / 1
n , we are now

in the intermediate regime studied above, with � = 1 and ↵ / D2. This corresponds
to situations where the system’s evolution is slowed down because of its monitoring by
the environment. In the limit of strong interaction, the diffusion constant D will go to
infinity and we recover the Zeno effect, whereas a weak interaction tends to the free
evolution case.
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3.4.5 Discussion
We have presented a model designed to check whether quantum mechanics indeed predicts
that the universe should evolve. To remain as universal as possible, no specific form of
Hamiltonian was assumed. It allowed to determine the level of decoherence (induced by a
surrounding environment) needed to freeze a two-level quantum system, arguably the kind
of system the most prone to the Zeno effect. We have found that if, during a time interval
T
n , the environment distinguishes between the two states according to |hE i

0|E i
1i| ' 1� ↵

n� with
� > 1, then free evolution wins over decoherence and the system is not frozen. In the most
generic case, because quantum mechanical short time evolutions are always quadratic (and
this is true for the system as well as for the pair {system + environment}), we find � & 2,
hence the universe is indeed not frozen.

The main weaknesses of the model, leading to possible improvements, are the following.

• Is the discrete setup legitimate? A succession of infinitesimal steps is not necessarily
the same as a joint continuous evolution.

• What happens if the coupling with the environment is not supposed roughly constant
anymore? Mathematically, this means that the ⌘i are not equal, and the infinitesimal
decoherence rate (i.e. the flow of information) at time t could be modelled in the limit
n �! +1 as a continuous quantity 1 � d⌘(t). It is natural to ask for the set of such
functions which entail a Zeno freezing. Besides, the durations of the steps could also
be non-constant (like following a Poisson process, as done in [82]).

• Assuming the environments E i distinct and non-entangled is a very unphysical assump-
tion. In some cases, previous entanglement among the environments can dramatically
change the efficiency of decoherence. As an example, take an environment composed
of two qbits called E1 and E2 initially maximally entangled; the system interacts with
E1 then with E2 via a C-NOT gate:

1p
2
(|0i+ |1i)

| {z }
S

⌦ 1p
2
(|00i+ |11i)

| {z }
E1+E2

�!
C�NOTSE1

1

2
(|000i+ |011i+ |110i+ |101i)
| {z }

⇢S=

0

@
1
2 0
0 1

2

1

A : S is perfectly decohered

�!
C�NOTSE2

1

2
(|000i+ |011i+ |111i+ |100i)

=
1p
2
(|0i+ |1i)⌦ 1p

2
(|00i+ |11i).

| {z }

⇢S=

0

@
1
2

1
2

1
2

1
2

1

A : coherence has revived
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Chapter 4

The ontological problem of quantum

physics

QM has puzzled everyone since the 1920s. The so-called measurement problem, sometimes
deemed one of the greatest mysteries of modern physics, has been much debated by some,
much repressed by others. The theory of decoherence has certainly provided an important
step towards its elucidation, but has not ended the debates — quite the contrary. Which
questions does decoherence solve, and what is still calling for an explanation? Why has
the issue been called the ‘measurement problem’? Has it really something to do with con-
sciousness and, if not, why has the latter so often been invoked (see [138] for a historical
recap)?

One difficulty is that the problem takes very different forms depending on the interpre-
tation of QM embraced. For this reason, it somehow lacks a precise accepted definition, a
starting point from which to discuss. Furthermore, the way it was historically addressed in
the first half of the 20th century has strongly crystallized the paradigms and the language at
our disposal to think about it, at a time when we hadn’t developed the theory of decoherence
yet. In this chapter, we propose to give a fresh look on the topic by identifying the common
root of the puzzle in the light of the theory of decoherence, and only then to study how it
manifests itself in five of the most famous interpretations of QM: how they propose to solve
it and which new difficulties arise. This way can they be better compared. The price to pay
may somehow be a feeling of anachronism, since for instance the Copenhagen interpretation
was obviously not designed to answer the problem in the way we will formulate it.

At first glance, it may be tempting to believe in a sharp distinction between a physical
theory and its interpretation. The former would be a mathematical structure which ob-
jectively predicts empirical facts, while the latter would consist in a presentation of those
mathematics, and a linguistic structure to speak about them, which can be chosen accord-
ing to different non-objective criteria (e.g. raising clear pictures in mind, being as little
counter-intuitive as possible. . . ), so that two competing interpretations could not be experi-
mentally distinguished. Because of this prejudice, the measurement problem has often been
considered as unsolvable, or even useless. However, as shown by Bell, the border between
what is empirically constrained and what is really a metaphysical choice may be surprisingly
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difficult to draw, and clarifying it can have deep philosophical consequences on the nature of
the universe we live in. In this respect, we will also propose, for each analysed interpretation
of QM, some experimental protocols that could falsify them.

Lastly, the problem is not a mathematical one. Although we tried to remain as clear
as possible, the mathematician or physicist reader unfamiliar with the philosophy of QM
must be warned that they might find some parts of this chapter difficult to read. Some
philosophical preliminaries can be found in the annex A.

4.1 Blurring the border between ontology and epistemol-

ogy

QM is a geometrical way of computing probabilities, in which the total probability formula
does not hold. The fact that probabilities do not fundamentally obey (3.1) in our universe is
an experimental datum (just think of the double-slit experiment). This apparently harmless
observation entails a huge conceptual difficulty, because the total probability formula is at
the core of our most intuitive notion of an objective world. As already stated in §3.1, (3.1) is
necessary for us to consider that, even though the actual value of a variable is not known, it
still has a definite value among the possible ones. Said differently, it guarantees that we can
build an ontology distinct from epistemology, supporting the picture of an objective world
independent of what is known about it. In the sequel, such an ontology will be called an
easy ontology. The ontological problem of quantum physics is the absence of easy ontology
for QM.

Indeed, the statistics of a quantum system in a state ⇢ satisfy the total probability formula
only when conditioning on an observable whose eigenbasis corresponds to ⇢’s eigenbasis B⇢.
It is the basis in which the system is perfectly decohered or, equivalently, the basis about
which the rest of the universe has stored complete information (recall item 2. in §3.3.2).
In B⇢, the possible histories are easy to tell because they don’t influence each other, as is
expected when only one of them did effectively happen. With respect to any other basis,
though, the system can not easily be thought of as being in one definite state, at least not in
the way we are used to do: all potentialities seem to contribute to the statistics of subsequent
experiments1, as if they were superposed.

The total probability formula is ubiquitous in the discussions on the interpretation of QM,
although often unnoticed. The very definition of a hidden variable could be an unknown
quantity � 2 ⇤ having probability distribution µ(d�), with respect to which any quantum
observable A can be conditioned so as to satisfy the total probability formula:

P(A) =
Z

⇤

P(A|�)µ(d�),

1QM has first been formulated in terms of non-commuting operators in a Hilbert space possibly because it
offers the simplest probabilistic structure violating (3.1). Feynman’s sum-over-histories approach is another
natural candidate of a probabilistic framework in which all potentialities contribute.
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where P(A|�) = �(A = f(�)) is a Dirac distribution (or is at least less indeterministic than
P(A = a)), meaning that � can be thought of as an objective property of the system con-
taining information about the values taken by the observables. This is already present in
Bell’s seminal papers [18, equation (2)] [19, equation (12)], as well as in the more modern
formulation of Bell’s theorem in terms of causal models [144, equation (13)]. The assump-
tion of ‘macroscopic realism’ used to derive the Leggett-Garg inequalities also translates
mathematically as a total probability formula [87, equation (1)]. Finally, the much debated
hypothesis of ‘absoluteness of observed events’, at the core of the local friendliness no-go
theorem [29] (see §4.5.2), is (among other things) the assumption a probability distribution
satisfying a total probability formula when conditioning on observed events.

As Zurek states:

‘I strongly suspect that the ultimate message of quantum theory is that the
separation between what exists and what is known to exist – between the epis-
temic and the ontic – must be abolished.’ [161]

This idea has been further developed by many philosophers.

‘In his Dioptrique, Descartes absorbed even the eye itself into his mechanistic
account of nature; “[the eye] is no longer the end of the visual process, merely
an arbitrary point of reference, an unprivileged station in the natural process”.
This conceptual “detachment” of the physical process of image formation from
the concept of seeing, and the abandonment of the latter in the new theories of
optics, illustrates the [easy ontology] that lies at the heart of what was eventually
to become known as classical physics, the classical physics that presupposes, as we
discussed above, that nature is to be framed within a globally Boolean structure,
and through this conceives of nature as something that exists in a particular
way independently of how we interact with it. What quantum mechanics shows
us is that as enormously useful as this strategy has been, and continues to be
in non-fundamental physics, it eventually brings us to a point beyond which the
usefulness of pursuing it diminishes. To make this worldview work for elementary
phenomena we need to twist and contort nature, and hide, as if behind a curtain,
the parts of it that are responsible for troubling the worldview. In hindsight it
was inevitable, we maintain, that the classical worldview should eventually have
found a limit to its usefulness.’ [75]

We routinely experience the validity of the total probability formula (and thereby the
legitimacy of an easy ontology), to such an extent that no human ever had any reason to
doubt of its universality before the first quantum experiments were conducted. Decoherence
is sufficient to explain why. Indeed, the way we get information about a system S is via
physical interactions, which are governed by the same laws of physics as the interactions S
has with its environment. Therefore, the bases in which we are mainly able to measure S are
rightly the same as those continuously best recorded by its environment, that are the bases
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such that ⌘B ' 0. Said differently, we only distinguish between potentialities of a system
that have already been rendered ontologically easy by the rest of the world.

Despite this, non-decohered quantum systems still need an ontology, albeit an uneasy one.
Besides, decoherence is guaranteed in only one basis (up to degeneracy) hence, according to
unitary QM, even a macroscopic system largely deviates from (3.1) in most bases. When
conditioning the latter’s statistics on a non-decohered observable, all potentialities interfere,
even all those which presumably did not happen.

Now, many aspects of QM are not even testable at our scales, because we can neither
perfectly isolate a large system, nor apply any unitary evolution we wish, nor prepare a precise
macroscopic state (not to mention many copies of the same state), and we have access to a
very small number of coarse measurements. Still today, we are able to detect a depart from
(3.1) only on systems composed of few particles. So at this point, the philosophical problem
is not immediately clear. For: do things happen for a particle? Does it have a point of
view? Does it have facts? If not, there might simply not be any ontological problem for it.
Yes, one can not assume that an unknown variable of the particle always has definite value
among the possible ones, but is it so serious if nothing really happens for it?

However, the problem becomes absolutely unavoidable as soon as a human observer
(or possibly a cat) is included in the quantum system (we are then limited to thought
experiments), as famously captured by the Wigner’s friend experiment [140] recalled in A.2.
For the friend has necessarily experienced something, and only one thing. It is a fact for
her, so how can the total probability formula possibly fail, even if Wigner does not know
which outcome she has experienced? There is a conflict between the necessary unicity of a
subjective experience [7], and the multiplicity of potentialities which all seem to have some
kind of reality in contributing to the statistics of future experiments. This is the reason why
the role of consciousness has so often been questioned in QM.

Because the ontological problem appears most severe on observers, defined as systems
granted with subjectivity, QM urges us to specify which systems are to be considered as such.
Crucially, it must be emphasized that this is not a scientific question, but a philosophical one.
The domain of applicability of science is matter, that is everything that can be objectively
measured and quantified. But there are no measurement apparatuses, nor even units of
measurement, for subjective experiences. In [140], Wigner claimed that ‘my friend [should
have] the same types of impressions and sensations as I’, and the question of which systems
are we friendly with is becoming more and more pressing, especially in the context of the
local friendliness no-go theorem [29]. It has been proposed that a human-level artificial
intelligence (AI) running on a quantum computer could constitute a good candidate for a
friend [141], based on the metaphysical assumption that ‘If a system displays independent
cognitive ability at least on par with my own, then (...) any thought they communicate is as
real as any communicable thought of my own’. However, one might argue that a computer
running such an AI should not be so fundamentally different, subjectively speaking, from
the same computer running any other equally complex algorithm. If so, succeeding a Turing
test might not be such a relevant criterion to assess the subjective experience of a system.

To summarize this section, the main question raised by the ontological problem of quantum
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physics is: what happens?

4.2 The preferred-basis problem

Often related to our discussion is the observation that, although the Hilbert space appears
to be an intrinsic object independent of any particular choice of coordinates, some bases
stand out. This issue is generally referred to as the preferred-basis problem. However, this
expression is sometimes used to designate problems of different nature. We propose to divide
them into two categories; only the second one seems to be directly linked to the ontological
problem of QM. The precise nature of the link between the two remains to be explored.

1. The objective preferred-basis problem: as mentioned above, the shape of the laws
of physics turns out to favour some bases over the others with regard to decoherence
and to the redundancy of information [160, 31]. These ‘pointer bases’ certainly have
something to do with the eigenbasis BX̂ of the position operator, because the laws
of physics usually involve position variables, hence environments (including observers)
accurately feel variations in position and record them [155, 5.] [119, III.E.2.]. Ex-
changing a few photons may suffice to roughly localize an object, explaining why it
is so hard to build an interferometric experiment with macromolecules (the record to
date involving oligoporphyrins, ⇠ 2,000 atoms [57] [80]). For the very same reason
the salient information we have about the world is also strongly linked with position,
hence the observables of interest for us (‘is the cat dead or alive?’, ‘is my friend at
home?’. . . ) comply very well with (3.1)2. But how to properly characterize the com-
mon preferred-basis of decoherence (constraining the observables compatible with an
easy ontology) using less vague arguments? Importantly, how to do this in a back-
groundless manner, i.e. without relying on a pre-existing notion of space and position
operator? Alternatively, could the preferred-basis selected by the shape of the laws of
physics, first considered abstractly, be in turn used to define a backgroundless notion
of position? This is the topic of Section §5.2.

2This is a deep remark, but one should be very careful with its philosophical implications. I reckon
that it would not be correct to state that the human body and mind (and presumably all living beings on
Earth) evolved so as to develop perceptions strongly based on the notion of space and position because this
evolutionary path allowed them to benefit from an easy and stable ontology entailed by decoherence on this
preferred observable. Indeed, there was no ‘notion of space and position’ before something developed it, and
even less any ‘laws of physics involving position variables’, since such laws only belong to the worlds of those
sensitive beings whose minds are already appropriately shaped. I would be surprised to meet an alien, but
I would not be surprised if it has absolutely nothing like a ‘notion of space and position’ even though its
body, if it is made of matter, will certainly be perceived by us as obeying the laws of physics. This alien
would probably not survive long on Earth, but maybe on its planet there is no heredity and therefore no
Darwinian evolution; maybe an easy ontology, or the very notion of facts, don’t confer there any kind of
advantage; maybe what we would deem to be its death would not be a relevant event in its world. If ever it
has something like a physics, I would strive to understand it. When talking about the world from outside
the earthly point of view, there is really nothing that can be expected. The earthly minds and bodies on
one side, their perceived outer world and its laws on the other side, co-evolved backgroundlessly; it would
be misleading but appreciably poetic to say that they emerged out of the amorphous void.
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2. The subjective preferred-basis problem: decoherence alone can not suffice to
characterize which one is the right basis corresponding to what has been subjec-
tively experienced. When Wigner’s friend measures the spin along z and gets in
the state | i = 1

p
2
(|"z F"zi+ |#z F#zi), it is required that |F"zi and |F#zi repre-

sent distinguishable states of perception, therefore hF"z |F#zi = 0 (spin perfectly de-
cohered by F along z) [36]. Yet, one can rewrite, for any other direction u, | i =
1
p
2
(|"u F"ui+ |#u F#ui), with |F"ui and |F#ui some linear combinations of |F"zi and

|F#zi still satisfying hF"u |F#ui = 03 (spin perfectly decohered by F along any axis).
So QM ‘has nothing to say about which observable(s) of the system is (are) being
recorded, via the formation of quantum correlations, by the apparatus (...) in obvi-
ous contrast to our experience of the workings of measuring devices that seem to be
“designed” to measure certain quantities’ [119]. Should we add, then, an additional
ingredient to the Hilbert space, like a set of ‘truly experienced states’, in which all
observers having subjective experiences lie? Or is it just again linked with the position
basis BX̂? Indeed, in our example, |F"zi and |F#zi seem to be (to a good approxi-
mation) position eigenvectors, whereas all the other |F"ui are spatial superpositions,
and this could characterize the z axis. In the subsequent sections, we will see how the
different interpretations of QM tackle this problem.

The two problems are not unrelated, though, for truly experienced states must (at least
approximately) belong to the objective preferred-basis. Otherwise, decoherence would sig-
nificantly alter the state of an observer after she has experienced something, hence the total
probability formula fails when conditioning on what she has observed, and the ontological
problem reappears.

4.3 Collapse-realist interpretations

4.3.1 The Copenhagen interpretation

The Copenhagen interpretation is a vague but widespread expression, hiding a plurality of
stances on QM with a complex history [72]. We choose to present it as follows. It relies on
a radical distinction between a world of inert matter that can display quantum properties
vs. a world containing observers having subjectivities and absolute facts. In addition, the
Schrödinger equation is not universally valid, due to an operation called ‘collapse’ of the
quantum state which must be applied every time an observer acquires some new knowledge
about a quantum system (this process being called a ‘measurement’). Actually, this operation
is extremely natural: in any probabilistic model, an update of the probabilities is expected

3The reason is that the two possible histories are equiprobable, so that the density matrix is a scalar
matrix which is diagonal in any basis. Note that the problem arise rightly because of this degeneracy: in
general, if all probabilities are distinct (which is a quite reasonable assumption in practice), there is only one
basis such that hF"u |F#ui = 0, which has to coincide with the subjectively experienced basis.
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when one obtains information about which potentiality effectively happened 4 5. But in
a theory in which ontology is not independent of epistemology, this leads to inextricable
complications because all potentialities contribute to the statistics, so suppressing some of
them by applying the collapse has very ontological flavour compared to the usual epistemic
update in classical probability.

Answer to the ontological problem

In a way, the Copenhagen interpretation is the most economical answer to the ontological
problem that one can think of. As explained in §4.1, the issue with the violation of (3.1)
appears most clearly only when entities granted with subjective experiences are included in
the quantum system. Therefore, it suffices to deny any subjectivity to matter to alleviate
the problem. When really an observer comes into play, whom can not be denied well-definite
experiences, the probabilistic update is naturally applied to suppress all the histories which
did not happen for her. And this is precisely what is needed to ensure that the statistics
of any subsequent experiment performed by Wigner on his friend comply with (3.1) when
conditioned on the observable ‘what has the friend experienced?’.

Answer to the subjective preferred-basis problem

By definition, the collapse occurs in the subjectively experienced basis each time something
happens, so there is no need to precise explicitly the set of truly experienced states in the
Hilbert space, as long as one merely supposes its existence, nor to invoke any link with BX̂ .

Difficulties

The main weakness is of course that the moment when a collapse should occur is ill-defined.
Which systems are to be considered as observers with subjectivities, needing a collapse to
enforce (3.1)? The latter may well be a natural ingredient of any probabilistic theory, but
it normally has a purely epistemic meaning within an easy ontology. In our case, at which
point exactly does ontology begins to be independent of epistemology? When do non-realized
potentialities cease to contribute to statistics?

The historical primacy of the Copenhagen interpretation, the fact that its most obvious
weakness lies in collapse, and that the latter was associated with the notion of measurement
(physicists do come across a deep ontological problem every other day. . . ) is the reason why

4As a trivial example, suppose for instance that you ask your computer to choose uniformly a number
x1 in {0; 1}, and then to choose uniformly a second number x2 in {0; 1} if x1 = 0, or to choose uniformly x2

in {2; 3} if x1 = 0. If you don’t look at the result for x1, you predict x2 to follow a uniform law in {0; 1; 2; 3},
but if you know the outcome for x1, you obviously update your probabilities.

5The same observation was made in [34]. It was referred to as the ‘small measurement problem’ and,
precisely, not considered as a problem: ‘Not only quantum mechanics, but every probabilistic theory in which
probabilities are taken to be irreducible “must have” the small measurement problem. (...) The lack of the
small measurement problem in the probabilistic theories would contradict the very idea of having irreducible
probabilities’.
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the issue has been deemed the ‘measurement problem’, although it doesn’t have so much
to do with measurements, and despite decoherence having taught us that, mathematically
speaking, a measurement is nothing but a particular case of entanglement.

There is at least one other difficulty with this interpretation. Even when denying any
subjectivity to most of the matter composing the universe, one can argue that an ontological
problem remains. This is the stance adopted by all those who refused to shut up and
stubbornly demanded through which slit has the electron passed. The long-standing primacy
of the Copenhagen interpretation tells a lot about Western dominant ontology, in particular
its concept of Nature as studied by Descola [44]. The naturalist ontology, a specificity of this
civilization throughout human history, relies on a neat distinction between an objective and
inert Nature on one side, and the human culture on the other side, sole realm of subjectivities
(perhaps also including cats). Only thanks to naturalism could so many physicists not see
any problem that this bump of inert matter be in superposition.

Falsifying experiments

The distinctive physical process added by this interpretation to unitary QM is the collapse6.
The latter is barely falsifiable even in principle for it is not rigorously defined. At least,
one can say that the interpretation predicts that if Wigner could measure the spin-friend
system along B = (| i , |�i , . . . ) =

⇣
1
p
2
(|"z F"zi+ |#z F#zi) , 1

p
2
(|"z F"zi � |#z F#zi) , . . .

⌘
,

he would obtain either | i or |�i with probability 1
2 , and not | i with certainty as predicted

by unitary QM. This kind of measurements, performed on observers in a basis which does
not contain the subjectively experienced states, is generally called a supermeasurement.

Some more realistic experiments have been performed, like the Hall et al. experiment [65],
which has tested whether the conscious experience of an outcome is necessary to produce a
collapse, and whether it can be used to communicate (expectedly, the result was negative).

4.3.2 Collapse models

Collapse models are the heirs of the Copenhagen interpretation: their aim is to properly
define which deviation from the Schrödinger equation could lead to the collapse. The first
model was proposed in 1986 by Ghirardi, Rimini, and Weber [63]. Roughly, the idea is
to stipulate that random spontaneous micro-collapses occur all the time in any quantum
system in the position basis so that, due to an amplification mechanism scaling with the
number of particles, the effect on macroscopic systems is in practice indistinguishable from
the Copenhagen collapse [14].

6Some Copenhagen advocates consider that the collapse is not a physical process. We present it as such,
however, because if one sticks to the textbook formulation of QM, the collapse indeed affects the quantum
state and the statistics of subsequent experiments.
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Answer to the ontological problem

The answer is the same as the Copenhagen one. The ontological problem is not considered
as regards particles, while systems which are known for sure to have subjective experiences
are macroscopic enough to get (almost) fully collapsed. Since collapse models merely focus
on giving a proper definition of the collapse, it seems that they still rely on a radical dis-
tinction between inert matter and subjective observers. It would be tempting to smooth
this distinction, by postulating that the ability of physical systems to experience facts is
gradually increasing with the intensity of the collapse (hence with their size). However, is
it satisfactory to assert things like: ‘the system has mildly experienced one potentiality over
the others, therefore all possible histories can mildly interfere’? Can the apparently binary
opposition between factual vs. non-factual on one side, and the smoothly varying intensity
of the collapse on the other side, be reconciled?

Answer to the subjective preferred-basis problem

The preferred-basis is explicitly BX̂ , so that truly experienced states must be (almost) eigen-
vectors of X̂.

Difficulties

No collapse model have yet been made compatible with SR, despite numerous attempts
[49, 134, 17]. The reason is that Bell’s non-locality forces the collapse mechanism to also bear
some non-local features. Thanks to stochasticity, it can respect the no-FTL-communication
constraint, but it still needs a preferred-reference frame to ground a notion of instantaneity
and in which to write down the collapse equation. Lorenz-covariant formulations could been
imagined, but without a radical change of paradigm they seem doomed to technical problems
such as instability of the vacuum [99, 6.2.].

In addition, there are several suspicious facts to be remarked about collapse models. (i)
Since the Copenhagen collapse is a naturally expected epistemic update to be found in any
probabilistic theory, isn’t it strange to design a whole new fundamental process responsible for
it? (ii) In some sense, in the Copenhagen interpretation, the collapse is used with parsimony,
only when the presence of observers inevitably require it. But collapse models introduce the
collapse everywhere, so that it competes with (experimentally confirmed) decoherence. What
can well be the status of decoherence in a collapse model, apart from a curious redundant
phenomenon which also happens to destroy very efficiently the quantum interferences?7 (iii)
Since the collapse is never perfect, superpositions always remain in BX̂ , although practically
undetectable. How to interpret these?

7It is instructive to observe that the master equations describing the spatial decoherence of objects by
random scattering and the GRW collapse model are the same [77, §3.1.2.4.].
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Falsifying experiments

Of course, any experiment falsifying the Copenhagen collapse would also falsify collapse
models, but contrary to the former, the latter can be probed in realistic setups. Current
experimental tests involve interferometry, cold atoms, optomechanical systems, X-ray detec-
tion, bulk heating, comparisons with cosmological observations. . . None of these have found
any empirical signature of the collapse yet. Consequently, large portions of the set of possible
parameters have already been ruled out [39].

Moreover, because of their incompatibility with SR, they fail to reproduce the results of
many experiments involving QFT. According to Wallace, this includes ‘many of the most
iconic successes of quantum mechanics [like] the quantitative account of Rayleigh scattering
that explains the color of the sky’ [136].

Collapse models also predict that coherence revival is altered at some point, and becomes
impossible for macroscopic objects. Therefore, entangling a particle with a large number of
others would affect its statistics after reversing the operation. Schematically, if the number
of particles is huge, we propose the following protocol, in which |0i and |1i do not necessarily
denote spin states, but could also stand for a position degree of freedom, and |+i = 1

p
2
(|0i+

|1i).

|+i ⌦ |
n particlesz }| {
0 . . . 0 i

|0 . . . 0i or |1 . . . 1i1
p
2
(|0 . . . 0i+ |1 . . . 1i)

|00 . . . 0i or |10 . . . 0i|+i ⌦ |0 . . . 0i
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+
�
= 1

2P
�
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�
= 1

(C �NOT )n in collapse models(C �NOT )n in unitary QM

(C �NOT )�n(C �NOT )�n

In practice, with fewer particles, even a partial collapse would lead to small but potentially
detectable deviations from P

�
+
�
= 1.

Finally, one may look for experimental situations in which the collapse would interfere
with decoherence. For example, if the Hamiltonian of a system specifically entails decoher-
ence in a basis B different from BX̂ (for instance in the energy or momentum basis), the
presumed collapse in BX̂ would compete with it and maintain some coherence in B. It would
be interesting to estimate quantitatively whether such effect can in principle be empirically
detectable.
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4.4 Bohmian mechanics

BM is the ultimate attempt to save easy ontology in quantum physics. It was proposed
in 1952 by Bohm [25], pursuing an idea already explored by de Broglie two decades earlier
[42]. They remarked that particles could be assigned well-defined positions and velocities
after all. Provided their velocities follow the probability current defined by the wavefunction
(i.e. the Schrödinger-evolving quantum state written in BX̂) instead of being given by
classical mechanics, the probabilities predicted by QM are recovered. In this framework, the
wavefunction can be thought of as a physically real field just as Maxwell’s electromagnetic
field.

Answer to the ontological problem

At first sight, BM appears as the best possible solution to the ontological problem, because
it restores easy ontology. The reason why (3.1) fails in general is that the wavefunction is
a wave, therefore it does not have a position but instead spans the entire space. Although
the electron passed through exactly one slit, the wavefunction did not, hence the probability
currents emerging from both slits influence the subsequent path of the electron. If there is
no ontological problem even at the level of particules, there is definitely none at larger scales
either.

Answer to the subjective preferred-basis problem

Quoting Bell (probably the most famous Bohmian advocate), BM relies on the crucial claim
that ‘in physics the only observations we must consider are position observations, if only the
positions of instrument pointers. It is a great merit of the de Broglie-Bohm picture to force
us to consider this fact. If you make axioms, rather than definitions and theorems, about the
"measurement" of anything else, then you commit redundancy and risk inconsistency’ [20].
The Hilbert space’s objects should therefore exclusively be studied in BX̂ ; any other basis is
physically meaningless. Truly experienced states are just spatial configurations of particles
(certainly as in classical physics, although the question is not even raised in this context),
whose trajectories are guided by the wavefunction. Notably, a particle has no degrees of
freedom other than position; the spin is accounted for simply by treating the wavefunction
as a multicomponent field.

Difficulties

For the same reason as for collapse models, BM hasn’t yet been made compatible with SR.
In fact, the Bohmian formulation of QM is perhaps the best way to illustrate Bell’s non-
locality. When two particles are entangled, their trajectories are dictated by their common
wavefunction in L2(R3)⌦L2(R3), so the probability current depends on two space variables.
The current guiding one particle involves the actual position of the other, no matter how
faraway. Thus, a preferred-reference frame is required [51] in which to apply the guiding
equation. Concerning FTL-communication, it is again prevented by randomness, although
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now an epistemic one (contrary to collapse-models): humans can not perfectly know initial
conditions for particles. This claim can be justified based on arguments such as Heisenberg’s
microscope (measuring involves interaction with the system, hence perturbs it), but these
fail to explain why uncertainties precisely follow the distribution given by QM [33]. A
undesirable supplementary axiom is therefore needed, referred to as the ‘quantum equilibrium
hypothesis’.

Even more serious, the appealing trajectories of BM may not be as realistic as they seem
[55]. In particular, a ‘detector in an interferometer (...) can become excited even when the
electron passes along the other arm of the interferometer’ [45], while the detector through
which the electron actually passes remains unexcited. Consequently, Bohmian trajectories
do not actually represent the set of all positions where the particle would have be found, had
one measured. What can they well mean, then? Besides, does the very notion of physics
still makes sense if we can not trust our measurement devices? If BM indeed saves an easy
ontology in the way we defined this term, it is still far from an intuitive one.

It is certainly a great merit of BM to throw away the vast majority of physically mean-
ingless bases in H. But what about BP̂ , the momentum basis? Is it really impossible to
directly measure a velocity?

Falsifying experiments

Wallace’s above argument is also directed to BM, which does not give good predictions as
soon as QFT is needed.

We now propose another idea to test BM, based on an attempt to directly measure
velocities. Consider Helling’s simple model [68] of two free particles in a box, prepared in an
entangled state that is an energy eigenstate and such that the wavefunction is real. Since
the formula for the probability current ~j = ~

mIm
�
 r 

�
involves an imaginary part, it is

in this case identically 0, hence the Bohmian velocities also vanish. After performing the
measurement corresponding to the question ‘is particle 1 on the right side of the box?’, the
wavefunction is no longer real, so the Bohmian velocities are non-zero. Helling concludes that
‘If one could observe velocities [of two entangled particles], this would violate No Signalling:
by observing the velocity of particle 2, one would know if a measurement has been performed
on particle 1.’ Now, if particle 2 is an excited atom about to emit a photon with well-defined
frequency, measuring its Doppler shift would yield information particle 2’s velocity, wouldn’t
it? If so, this experiment either falsify BM or the no-signalling constraint.

4.5 Unitary QM interpretations

4.5.1 Many-worlds interpretation

The many-worlds interpretation of QM originated in the late 1950s from the works of Everett
[56]. The idea is to fully embrace unitary QM with no additional structure. The theory of
decoherence, although it was developed much later, helps a lot in clarifying the interpre-
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tation [118]. Ontologically, there is nothing but the quantum state, a magma of histories
continuously mixing.

Answer to the ontological problem

Humans, particles, or any other systems are treated on an equal footing. The reason why all
potentialities interfere in the statistics of quantum experiments is because they all happen
in some world8. When these potentialities are decohered, each specific fact concerning the
system is a fact relative to an environment having recorded it [35] (which may be, for
instance, an observer having experienced it). When coherence revives (like when the which-
way information of an electron is erased, or when Wigner performs a supermeasurement on
his friend), different branches previously split by decoherence are recombined, hence facts
have a finite lifetime. At our scales, though, coherence never revives in practice because
information quickly spreads into the environment where it remains recorded for long, thereby
explaining why the collapse does not lead to wrong predictions for all practical purposes9.

Answer to the subjective preferred-basis problem

If the many-worlds interpretation adresses very efficiently the ontological problem, it faces a
thornier subjective preferred-basis problem than the previous ones. Indeed, choosing a basis
B of the Hilbert space amounts to choosing a particular way to tell the possible histories,
and if ⌘ is a measure of decoherence, the value of ⌘B quantifies to what extent these histories
are split. Claiming that all potentialities happen exempts us to worry about the non-realized
ones, but there is still an infinity of inequivalent ways to decompose the quantum state into a
list of potentialities. Which one corresponds to what is experienced? For sure, it has to be a
basis in which the observed system is perfectly decohered, because |F"zi and |F#zi represent
distinguishable states of perception and must be orthogonal. Hence, decoherence is assigned
an enormous ontological task, that of defining what truly happens in the universe.

However, as explained in 4.2, when probabilities are degenerate, it seems difficult not to
rely on the additional axiom that experienced states (approximately) belong to BX̂ in order
to characterize them. But this is surely an undesirable additional ingredient to QM for a
many-worlds advocate. . .

Difficulties

The most severe issue with this interpretation, already noticed by Everett [13], concerns the
meaning of the probabilities in QM. If all potentialities happen, what does it mean to assign

8Commonplace expressions such as ‘the particle is both here and there’, often informally used in intro-
ductory presentations of QM in the (by default) context of the Copenhagen interpretation reveal that, at
the level of inert matter, the Copenhagen interpretation may tacitly rely on an unspecified, many-worlds-like
ontology.

9In particular, following a measurement, a condition for the collapse to ultimately lead to wrong predic-
tions is that nothing in the universe should remember the outcome (otherwise ⌘ remains 0). . . but in this
case the person who made the prediction is not here anymore willing to check it!
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them probabilities? More precisely, Adlam has best formulated this as a problem of empirical
confirmation: if one believes in the many-worlds interpretation, then no experimental result
could be used to confirm or falsify QM, because we never learn anything except about the
world we are in [1].

Two other weaknesses are the subjective preferred-basis problem mentioned above, and
the difficulty to make sense of the unicity of the subjective experience: if all histories happen,
why do I feel only one of them?

Falsifying experiments

Because it adds nothing to QM, an experiment falsifies the many-world interpretation if and
only if it falsifies QM. Any empirical deviation from the predictions of QM, in particular any
positive result to the previously described experiments (for example, confirming the existence
of an objective collapse) would do so.

4.5.2 Relational quantum mechanics
RQM was first proposed by Rovelli in 1996 [114], as an attempt to stick to unitary QM
without postulating a plethora of worlds, which may seem very real in a interferometry
experiment, but so ghostly and unscientific after decoherence. In RQM, no observable has
a value in itself, but only relative to something else. Something happens every time an
interaction takes place. The quantum state is the mathematical object encoding the relations
(or correlations) between systems: the variable A of S1 can be said in a definite state relative
to S2 when the latter stores the information about A, that is when S2 has perfectly decohered
S1 in the BÂ basis. Here again, facts are relative and have a finite lifetime.

RQM requires a linguistic effort: it is meaningless to speak about the state of the spin,
but one can speak of its state relative to the friend. Until Wigner enters the lab, the spin
has no definite state relative to Wigner. Similarly, it is meaningless to ask through which
slit electron has passed if it has not interacted with anything on its path.

Answer to the ontological problem

Whenever someone detects a violation of (3.1), by definition the conditioning was made on
an observable whose value is not a fact for anyone (otherwise it would be decohered). This is
not permitted, though, for conditioning means distinguishing between possible states. . . but
states relative to what? If a system’s observable is not correlated with any other, it is normal
that it can not be assumed to be in a definite state.

Answer to the subjective preferred-basis problem

Like the many-worlds interpretation, RQM takes the stance of relying solely on the mathe-
matical formalism to ground a notion of observers and facts, via correlations between systems
in the quantum state. But, again, things are not so simple because decoherence alone can not
sufficiently characterize what truly happens in the universe, at least not in the presence of
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degeneracy. Moreover, in the case of low-dimensional systems, this definition is at odds with
our intuitive notion of subjectivity. A qbit can indeed decohere another one with respect to
any basis, but it can at most have two distinguishable (orthogonal) states of perception [36],
so at most one observable of the observed qbit can be associated with states of the observing
qbit having experienced a definite value for this observable.

Difficulties

A major motivation for RQM is to avoid the pitfall of having multiple potentialities all
realized in parallel, responsible for the problem of probabilities in the many-worlds inter-
pretation. In RQM, when something happens relative to S, it leads to a unique fact for S.
What could this mean, then, that the friend is in an indefinite state relative to Wigner when,
in fact, she has experienced something (and only one)?

This problem can be made clearer in the light of the distinction proposed by Adlam in
[4] between intrinsic condition and relative state, two different notions usually designated
by the same word ‘state’. The intrinsic condition stands for any objective description of a
system which, in the case of an observer, determines her subjective experiences. The relative
state is a mathematical object encoding the statistics of experiments that can performed on
a system at some time (deemed relative because it describes the dynamics of its interaction
with another system measuring it). Adlam argues:

‘it’s not obvious what meaning claims about [the friend] being in an indefinite
intrinsic condition "relative to [Wigner]" are supposed to have. (...) If there are
"copies" of [the friend] in some other kind of condition in versions of reality
defined relative to other observers, and those copies are in some sense physically
real, why are those copies not also having conscious experiences of the different
measurement outcomes occurring in those versions of reality? (...) Similarly, it’s
not straightforward to make sense of the claim that reality is composed entirely of
interaction states without any intrinsic conditions at all, for interaction states are
nothing more than sets of possibilities for future interactions, and it’s certainly
controversial to suggest that there could be a reality containing nothing other
than possibilities. And it must be emphasized that all the relevant empirical
content in this situation is already contained in the assertion that [the friend]
has interaction state | i relative to [Wigner] - further statements about what
[the friend] has or has not seen relative to [Wigner] tell us nothing additional
about what either [the friend] or [Wigner] will experience. So [in an approach
with only one outcome per observer] this statement about [the friend] having
a condition relative to [Wigner] which is different from her actual experiences
seems to float free from reality, describing nothing but experiences that nobody
can possibly have’. [4]

Another serious issue, which actually threatens any interpretation based on unitary QM
only that denies the existence of observer-independent intrinsic conditions (as standard RQM
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does), is that it does not allow for intersubjectivity (all macroscopic observers are not guar-
anteed to observe the same outcome), therefore it can not be scientifically confirmed or
falsified [2].

Finally, RQM is subject to an infinite regress of relativisations, making it difficult to
picture how anything can happen at all, and challenging the philosophical notion of relativism
RQM is generally understood to be based on [113].

Falsifying experiments

The statement made above for the many-worlds interpretation works also for RQM. Let’s
also mention another type of (thought) experiments. In the spirit of Bell’s theorem, which
constrains the possible hidden-variable theories if QM is universally valid, some authors have
recently proposed experimental protocols that would either show a failure of QM, or con-
strain its admissible interpretations [121]. Unfortunately, these experiments generally involve
supermeasurements, so they will almost certainly never be realized in practice. Bong et al.
[29], for instance, show that if QM is universally valid, at least one of the three following prop-
erties must fail: (i) locality (ii) no superdeterminism (iii) absoluteness of observed events.
Condition (i) is a no-FTL-communication constraint; (ii) ensures that Wigner’s choice of
measurement can be assumed independent of what the friend has experienced (no retro-
causality); (iii) states that exactly one potentiality effectively happens, and that Wigner
and his friend can communicate their experiences so as to share information. This no-go
theorem is often taken as a clue that any viable interpretation which accepts the universal
validity of QM, and in which only one potentiality is realized, must display some kind of
radical relativism, because non-locality and superdeterminism are generally considered as
very undesirable properties.
Remark 4.5.1 (RQM + CPL). Being one of the most recent proposals for interpreting QM
(also maybe one of the most philosophically demanding), and due to the renewed interest
for quantum foundations, RQM is nourished by numerous critics that help clarifying it
[108, 36, 47, 85].

Adlam and Rovelli’s latest proposal [5], called RQM + CPL, is a substantial amendment
to RQM in which an observer is now granted an intrinsic condition, along with an additional
axiom (CPL for ‘cross-perspective links’) ensuring that observers can reach intersubjective
agreement. In RQM + CPL, the potentiality experienced by the friend is an observer-
independent information, not relative to Wigner, and the latter can have in principle access
to it. In brief, RQM + CPL satisfies the aforementioned property of absoluteness of observed
events.

This modification of RQM solves the three issues above (how can a unique subjective
experience be relative to anything; the problem of scientific confirmation; the infinite regres-
sion of relativizations). In virtue of Bong et al.’s theorem, however, it can not satisfy both
conditions (i) and (ii). Adlam shows that RQM + CPL actually violates (ii), hence features
some kind of retrocausality, but in a way that does not entail any causal paradoxes, and
which is best pictured as a network of events determined in an ‘all-at-once’ manner [4]. This
is certainly a promising route to the solution of the ontological problem of QM.
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Chapter 5

Quantum spacetime

Section §5.1 is a transcription of the submitted preprint [127].

5.1 Is QM compatible with special relativity?

The aim of this section is to clarify and present rigorously a lot of well-known, but sometimes
poorly presented, facts about relativistic quantum theories. Most results are not new, but
the perspective is. In so doing, unexpected questions and conclusions will emerge, as well as
a better understanding of the interrelationships between the fundamental properties of these
theories.

Standard QFT textbooks usually focus on constructing the quantum fields and the dy-
namics in the Fock space, but are rarely concerned with issues relative to measurements, as
though it were a purely non-relativistic topic. More generally, most of them don’t check the
compatibility of QM with the disappearance of the notion of instantaneity in SR, and there
have been surprisingly few works addressing this problem until the 2000s, when quantum
information theory entered the game.

5.1.1 The conditions (C) and (MC)

There are two different sources of instantaneity in QM that could cause troubles when trying
to build a relativistic quantum theory. When two subsystems are entangled, they must be
considered as a whole1, therefore:

• any physical evolution (for instance a measurement) performed on the first instanta-
neously affects the whole state no matter how far the other part may be,

1It has been experimentally confirmed that non-local correlations are satisfied (almost) immediately: in
[148], the authors present an incredibly precise experimental test which has allowed them to ‘set a lower
bound on the speed on quantum information to 107c, i.e. seven orders of magnitude larger than the speed
of light.’
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• according to the standard Copenhagen interpretation (§4.3.1), any measurement per-
formed on the first entails a collapse of the whole state, which is generally presented
as an instantaneous update.

However, in view of the apparently unavoidable difficulties encountered by objective-
collapse interpretations in the relativistic context, their absence of empirical confirmation,
and recalling that the collapse is a naturally expected epistemic ingredient of any probabilistic
theory (§4.3), the second item may not be problematic. The epistemic update of an observer
having acquired new information has no reason to be constrained by the speed of light. As
Bell wrote [21]: ‘When the Queen dies in London (may it long be delayed) the Prince of
Wales, lecturing on modern architecture in Australia, becomes instantaneously King’, from
the Queen and her entourage’s point of view. On the other hand, what has to be constrained
by SR are the physically predictable effects, so that no experiment conducted on the King
can determine FTL whether the Queen is alive. For this to be prevented in QM despite
the non-locality of the entanglement phenomenon, the following consistency condition must
hold:

(C) For all quantum systems composed of two entangled subsystems, any physical evolution
of the first must leave invariant the statistical results of any measurement on the second,
if the two are spacelike separated.

In the sequel, we will also consider the following more specific consistency condition
(dealing only with measurements), that will subsequently be referred to as the condition
(MC), because it is easier to manipulate mathematically and will turn out to be equivalent
to (C):

(MC) For all quantum systems composed of two entangled subsystems, any ideal projective
measurement of the first must leave invariant the statistical results of any measurement
on the second, if the two measurements are spacelike separated.

The letter (C) may stand for ‘consistency condition’, but also ‘causality’ and ‘covariance’,
which are two different things. Indeed, if (MC) were not satisfied (a fortiori (C)), the theory
would face two types of inconsistencies:

• Non-covariance — Consider two entangled quantum systems that violate the condition
(MC). Then there exists an experimental protocol concerning the second system that
yields different statistical results depending on whether a certain measurement has been
performed on the first system or not, such that the two measurements are spacelike
separated. Thus one can find a reference frame in which the measurement on the first
system happens before the other measurement, and another reference frame in which
it happens after. Consequently, the statistical predictions of the theory depend on the
reference frame.
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• Causal paradoxes — Consider a reference frame in which Alice and Bob are apart,
motionless, and share N entangled pairs that violate the condition (MC) as well as
two synchronized clocks. At t = 0, Alice performs the suitable measurement on each of
the N subsystems if she wants to communicate the bit 0, or does nothing if she wants
to communicate the bit 1. At t = 0+, Bob performs the corresponding measurement
on each of the subsystems in his possession: the statistical distribution he obtains
allows him to distinguish whether Alice has sent the bit 0 or 1, with an error margin
arbitrarily small when N goes larger. It is well known that such FTL communications
can induce causal loops like in the grandfather paradox.

The condition (MC) can be given a precise mathematical formulation. Let S1 + S2 be
two entangled systems described by a Hilbert space H1 ⌦ H2, prepared in a state ⇢. Let
also Â (resp. B̂) be an observable of H1 (resp. H2), and write its spectral decomposition
Â =

P
x2spec(Â) x⇧

(1)
x (resp. B̂ =

P
y2spec(B̂) y⇧

(2)
y ) where the ⇧(1)

x (resp. ⇧(2)
y ) are the spectral

projectors of the observable. If the operators are not compact, this remains possible in the
rigged Hilbert space formalism presented in Chapter 2. When an ideal measurement of A
is performed on S1, the whole state evolves to

P
x2spec(Â)(⇧

(1)
x ⌦ 12)⇢(⇧

(1)
x ⌦ 12) (perfect

decoherence in the eigenbasis of Â). In this section, we will suppose for simplicity that
the pair S1 + S2 evolves after this interaction according to a unitary operator U (stronger
conditions could be formulated for non-isolated pairs, but at least this weaker condition must
hold). Since the state of S2, obtained by tracing over S1, fully encodes the probabilities of
any measurement on S2, the invariance of the statistics of S2 at a spacelike separated distance
from the measurement on S1 (as in Fig. 5.1) is expressed by:

Mathematical formulation of (MC)

(MC) 8⇢, 8U, 8Â, tr1
⇣P

x2spec(Â) U(⇧(1)
x ⌦ 12)⇢(⇧

(1)
x ⌦ 12)U †

⌘
= tr1(U⇢U †).

Or, equivalently, due to the property (2.0.1) of the partial trace:

8⇢, 8U, 8Â,8B̂, 8y0 2 specB̂,
X

x2spec(Â)

tr
�
U(⇧(1)

x ⌦ 12)⇢(⇧
(1)
x ⌦ 12)U

†(11 ⌦ ⇧(2)
y0 )
�
= tr

�
U⇢U †(11 ⌦ ⇧(2)

y0 )
�
.

(5.1)

Concerning (C), the most general physical evolution that S1 may undergo is a unitary
V in H1 ⌦ HE (possibly non-trivial only on H1), where E stands for any external third
system. It is not restrictive to consider them initially non-entangled, hence in an initial state
⇢ ⌦ ⇢E 2 S(H1 ⌦H2) ⌦ S(HE), up to integrating some initial entanglement in the unitary
V . Afterwards, S1 +S2 evolves, as previously, according to a unitary U in H1 ⌦H2. For the
theory to be consistent, whether V has been applied or not must not modify the statistics
of S2 at a spacelike separated distance (as in Fig. 5.1), hence the following condition:
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Measurement of
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Figure 5.1: Spacelike measurements

Mathematical formulation of (C)

(C) 8⇢, 8⇢E , 8U, 8V, tr1
⇣
U trE

h
(V ⌦ 12)(⇢E ⌦ ⇢)(V † ⌦ 12)

i
U †

⌘
= tr1

�
U⇢U †

�
.

Or, equivalently, due to the property (2.0.1) of the partial trace:

8⇢, 8⇢E ,8U, 8V, 8B̂, 8y0 2 specB̂,

tr
⇣
U trE

h
(V ⌦ 12)(⇢E ⌦ ⇢)(V † ⌦ 12)

i
U †(11 ⌦ ⇧(2)

y0 )
⌘
= tr

�
U⇢U †(11 ⌦ ⇧(2)

y0 )
�
.

Clearly, when E is a measurement apparatus that causes perfect and immediate decoher-
ence of S1 in the eigenbasis of Â, then trE

⇥
(V ⌦ 12)(⇢E ⌦ ⇢)(V † ⌦ 12)

⇤
=
P

x2spec(Â)(⇧
(1)
x ⌦

12)⇢(⇧
(1)
x ⌦ 12) (recall that perfect decoherence in a given basis amounts, by definition, to

extracting the diagonal part of the density matrix in this basis) and we recover the previous
condition (MC). Therefore (C) implies (MC). As noticed in [16], it is equivalent to check
(C) or (MC) only on initial states of the form ⇢ = ⇢1 ⌦ ⇢2 (product states).

Remark 5.1.1. on the unavoidable probabilistic nature of QM. In the literal for-
mulations of (C) and (MC) given above, we have highlighted the fact that these conditions
only constrain the statistical results of measurements. This is because SR only imposes the
covariance of what is predictable by a given theory; and QM, being a probabilistic theory,
only predicts the statistics. Similarly, the ability to transmit information depends on the
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best theory available to the communicators. If they can’t do better than probabilistic pre-
dictions, Alice has to be able to modify the statistical results of a repeated experiment on
Bob’s side in order to send him a bit.

Alternatively, if they had a deterministic (hidden-variable) theory superseding QM, only
one run could suffice. Such a theory should then be constrained by a stronger version of (C)
where the word ‘statistical’ is removed. But this is precisely forbidden by Bell’s theorem
[18] which implies that such a theory would necessarily display non-local features [98]. See
the aforementionned [68] for a simple analytic example of non-locality in BM compared to
the standard QM treatment, where it is made clear that no probabilistic knowledge other
than the one given by the quantum state is compatible with SR. Quantum entanglement
seemed spooky to Einstein because of the conviction that nothing in the physical universe
could in principle be unpredictable, i.e. inaccessible to human physics2, but it is actually
the contrary: in a world where entanglement exists, QM is the only non-spooky theory!
This remark proves that we will never be able to build a deterministic theory supplanting
QM (at least not without a radical change in our physicists’ paradigms). This is also why
the terms added to the Schrödinger equation in collapse models have to be be stochastic,
‘because otherwise [they] would allow for FTL communication’ [14], and why BM, despite
being a hidden-variable theory reproducing QM’s results, does not add any predictive power
(remind §4.3.2 and §4.4).

There is another completely different reason why our physics will never be fully deter-
ministic: the impossibility to access perfect initial conditions. First, of course, because the
precision of our measurement apparatuses is limited. Second, even more importantly, be-
cause of the universal principle that measuring a system requires to interact with it, and
thereby perturbs it. Recall that this is how Heisenberg initially justified his inequality before
it became a theorem. Most people agree that the theorem formulation is much stronger but,
in some sense, it is the contrary: the theorem is implied by the postulates of QM, whereas
the principle is valid independently of the theory. In fact, Bohmian advocates rely precisely
on this principle to justify the irreducible probabilistic nature of their theory.

Why, then, doesn’t this principle affect classical physics? Until the 19th century, we
hadn’t empirical access to systems whose typical action is of order ~, for which a measurement
necessarily perturbs the initial condition significantly, hence where indeterminism is present
from the start. Of course, for larger systems, negligible initial uncertainties may propagate
in time and stretch dramatically. But for systems like the solar system for instance, the
uncertainty on the initial condition we have (much larger than ~!) remains for sufficiently long
under the precision of our measurement apparatus, and is therefore practically undetectable.
Moreover, when dealing with very chaotic systems (i.e. with large Lyapunov exponents, like
in statistical physics) or composed of particles subject to a notable uncertainty (like photons
in optics and electromagnetism), we usually restrict ourselves to well-chosen observables that
become practically deterministic thanks to the law of large numbers. However, rigorously

2This metaphysical stance is exemplified in his famous ‘God does not play dice’. Note how positivist
this remark is: it is not that God necessarily plays dice, but only that the human mind may not be able to
access better than statistically the way God plays.
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speaking, all chaotic systems amplify exponentially the initial quantum uncertainties so that
their trajectories become in principle unpredictable after some time proportional to log(~)
[162, 156].

One last word about the largely debated question of whether the brain has quantum
properties or should be treated as a classical system [133]. Maybe this is after all of little
philosophical interest compared to the question of knowing whether the brain can be consid-
ered as predictable: given the most precise initial conditions we can hope for a brain, how
long will the indeterminacy remain negligible?

5.1.2 (F) implies (C)

Let’s now check that the condition (C) (a fortiori (MC)) is indeed satisfied in any rela-
tivistic quantum theory provided it satisfies the following factorization property (F), usually
accepted in QM:

(F) For all pairs of isolated systems3 S1 and S2, the unitary evolution operator of S1 + S2

takes the factorized form U = U1 ⌦ U2.

Proposition 5.1.2. (F) implies (C).

Proof. Let’s keep the notations introduced in §5.1.1. It is clear that the systems are isolated
between the two measurements, since they are spacelike separated; therefore, assuming (F),
we may write U = U1 ⌦ U2 and:
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U trE

h
(V ⌦ 12)(⇢E ⌦ ⇢)(V † ⌦ 12)

i
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= tr
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= tr
⇣
⇢E ⌦ (⇢U †
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y0 U2)

⌘

= tr
�
U⇢U †(11 ⌦ ⇧(2)

y0 )
�

where we have used the fact that tr(⇢E) = 1 in the last step, and the property (2.0.1) of the
partial trace in the third step. Thus (F) implies (C).

3We say that two systems are isolated if no particles of S1 and S2 can meet each other. The possibility to
write U as U1 ⌦U2 is sometimes taken as a definition for being isolated, or we could have replaced ‘isolated’
by ‘spacelike separated’ in all this Section §5.1.1, but our choice will become clear when discussing locality
in §5.1.4. Of course, the main difficulty with our definition is that the concept of particle is ill-defined. In
particular, Unruh [135] has showed that the very presence of a particle is frame-dependent. Also, should we
consider virtual particles? How to include gravitational interactions in our treatment?
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We have therefore established that any relativistic quantum theory which satisfies (F) is
consistent with an instantaneous effect of physical interactions on an entangled state, even
though the notion of instantaneity is frame-dependent. Different observers with different
knowledge may write different states for the entangled pair, but they agree on the statistics.
What precedes proves that an entangled pair cannot be used to convey information in QM,
a result known as the no-communication theorem.

Remark 5.1.3. In §5.1.1, we have motivated the importance of (C) by the fact that two
kinds of inconsistencies appear if it were not satisfied. The computation given in 5.1.2
suffices to exclude the second kind (FTL-communication), but lacks an additional argument
to get rid of the first kind (non-covariance). Indeed, it has assumed the choice of a fixed
reference frame, in which the time evolutions of the systems between the instants t1i, t1f
and t2 (corresponding to the beginning and the end of the evolution undergone by S1 and
the measurement performed on S2 respectively) are given by unitary operators Vt1i,t1f and
Ut1f ,t2 that we have simply denoted V and U . In another reference frame, however, neither
the temporal axis nor the unitary operators are conserved. Even the possible outcomes of
the measurements may undergo a Lorenz transformation, if they correspond to the position
or momentum observable for example. The invariance of the statistics between two reference
frames R and R0 may be written more precisely as follows (one assumes for simplicity
t1i = t1f = t1 > t2, with t2 < t1 in R and denote t0 an earlier time at which the two
entangled systems were separated):
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The first line is simply the covariance of the theory in the absence of measurements: we
suppose it already established. The only case to examine involves the changes of reference
frames that reverse the temporal order of t1 and t2. In particular, since the only potential
discontinuity occur when the sign of t2 � t1 flips, it suffices to write the second line above in
the limit ", "0 ! 0 of an infinitesimal change of frame with t2 = t1 � " and t02 = t01 + "0. In
that case, U (R0)

t0a,t
0
b
! U (R)

ta,tb for all instants ta and tb. Moreover, if y0 is a position or momentum
variable, y00 ! y0 and the two are related by a (bijective) Lorentz transformation that does
not change the multiplicity of the eigenvalues, which ensures the continuity of the spectral
projectors. The condition to verify reads:
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(R)
t0,t1 , this is nothing but the condition (C) that has been proved

applied to U (R)
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t0,t1 instead of ⇢.
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5.1.3 Previous works

The above verification of (C) is straightforward but essential to establish the compatibility
between QM and SR. Of course, some previous works have already investigated these topics,
although remarkably few. Bloch (1967) [24] pointed out some apparent inconsistencies and
new intuitions, notably: ‘it appears that either causality or Lorentz covariance of wavefunc-
tions must be sacrificed’. In reply, Hellwig and Kraus (1970) [69] published a paper in which
they clarified Bloch’s ideas, checked a simple version (MC) (equation (6)) based on an as-
sumption called locality (commutation of projectors associated to spacelike measurements),
and then proposed that the effects of measurements should be implemented along the past
light cone so that their description becomes covariant. A general proof of (MC), presented
as a no-communication theorem, was detailed by Ghirardi, Rimini and Weber (1980) in [62].
The following year, Aharonov and Albert (1981) [6] explained how non-local measurements
can actually be implemented based on local interactions only. As a consequence, they claim
that ‘the proposal that the reduction be taken to occur covariantly along the backward light
cone (. . . ) or along any hypersurface other than t = 0 will fail’ (although we must confess
that we didn’t understand their argument), and that ‘the covariance of relativistic quantum
theories (. . . ) resides exclusively in the experimental probabilities, and not in the underlying
quantum states. The states themselves make sense only within a given frame’. In a long
footnote, Malament (1996) [91] actually proved the logical equivalence between a simple
version of (MC) and the fact that spacelike measurements projectors commute, embracing
a more logician perspective than his predecessors. Surprisingly enough, all these works were
concerned with (MC), which is after all a very artificial statement compared to (C). The
reason may be that these studies were sparkled by foundational considerations on the wave-
function collapse and on the measurement problem; in addition, the theory of decoherence
was still in its infancy, so that a measurement was less easily understood as a mere particular
case of entangling interaction.

Then came the quantum information era. Beckman, Gottesman, Nielsen and Preskill’s
article (2001) [16] was a milestone: the two systems were now called Alice and Bob’s parts,
the evolution operators were renamed quantum operations, and a distinction between oper-
ations which are causal (not allowing communication) and localizable (realizable with local
unitaries) was introduced. As explained in the introduction, the authors’ aim was to con-
tribute to the long-standing problem of characterizing the set of observables in QFT, plagued
by several issues such as Sorkin’s impossible measurements [126] already pointed out by Dirac
[48]. The fact that (F) implies (C) is clearly stated from the beginning and the converse is
also proved in finite dimension (Theorem 7), but they go well beyond and their framework
is more general than ours since it allows for an ancilla system that can be sent between
Alice to Bob. In particular, they solved a problem raised in [6] concerning the realizable
non-local measurements. Schumacher and Westmoreland (2005) [123] exhibited three ways
of expressing locality (Locality (III) being very similar to (C)), and showed their mathe-
matical equivalence. Many works followed, and the condition (C) is now well-known in the
quantum information literature (although the major reference in the domain [101] does not
mention it), especially for those working on causal decomposition [88] and quantum causal
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models [12]. Nonetheless, these works are not necessarily widespread among other research
communities.

In the context of QFT, Polo-Gómez, Garay and Martín-Martínez (2022) [109] proved
the condition (C) (equation (29)) based on the microcausality hypothesis, used to derive a
relation not very different from (F) (equation (28)). They also argued that a collapse à la
Copenhagen cannot be compatible with SR unless one accepts to define as many quantum
states as there are observers, and that the update occurs along the future light cone. Contrary
to the latter and in accordance with [6], we consider that, as soon as the collapse is understood
as an epistemic update, hence the quantum state as observer-dependent (in particular, frame-
dependent), it is pointless and even awkward to ask for frame-independent updates. Why
would a given observer in her reference frame wait some time before using all the information
she has, or before taking into account the evolution she knows has happened on S1 to write
down the whole state of S1 + S2?

None of these works, however, have completely pursued the logician point of view that
we now propose to explore in the sequel.

5.1.4 Locality
(L’) implies (L) and (F)

In §5.1.2, we have seen that (F) ensures a theory to be consistent with SR. The property (F)
is directly linked to a fundamental principle of physics, namely the locality hypothesis (L)
which states the absence of interactions at a distance:

(L) Two localized particles can interact4 at a given time only if they are located at the same
point in space.

In QFT, this hypothesis has a more specific formulation:

(L’) The interaction Hamiltonian of any system can be written in the form Ĥint(t) =R
R3 Ĥint(~x, t)d3~x where Ĥint is a field of operators defined on the whole spacetime.

Why is (L’) called a locality hypothesis? Suppose one wants to compute the coefficient
S↵� of the S-matrix, where |↵i is the state composed of two particles localized in ~x1 and ~x2,
i.e.

|↵i =
Z

d3~p1
(2⇡)3/2

e�i~p1·~x1a†(~p1)

Z
d3~p2

(2⇡)3/2
e�i~p2·~x2b†(~p2) |0i .

Under (L’), the Born approximation reads: S↵� = �i
R
d4xµ h↵|Ĥint(xµ)|�i. Furthermore,

even without specifying Ĥint(xµ), one knows by covariance that the latter can only be built
4Again, as in note 3, this term can be confusing. One can think of possible interactions as allowed vertices

in Feynman diagrams, but what about the gravitational interaction? If the latter is to be backgroundless,
then there is no pre-existing spacetime in which to define a notion of locality...
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from the different quantum fields of the theory, and that if an interaction is possible it
necessarily contains two quantum fields of the type of the particles of the state |↵i, and so
includes at least an expression of the form

R
d3~p

(2⇡)3/2
e�ipµxµ

u(~p)a†(~p)
R

d3~p0

(2⇡)3/2
e�ip0µx

µ
v(~p0)b†(~p0)

where u and v are objects that depend on the nature of the quantum fields. Using the
(anti-)commutation relation for the operators a and b, one finds:

h↵|Ĥint(x
µ)|�i =

ZZ
d3~p1d

3~p2[. . .]e
i~p1·~x1ei~p2·~x2e�i(p1+p2)µxµ / �(3)(~x�~x1)�

(3)(~x�~x2) / �(3)(~x1�~x2).

This means that two localized particles can interact at a given time only if they are
located at the same point in space, namely (L). The electromagnetic force between two
charged particles, for example, is an interaction ‘at a distance’ only because (virtual) photons
are exchanged between them. Furthermore, under (L), two isolated5 systems S1 and S2 can
not interact, therefore the total Hamiltonian reads H = H1 ⌦ 12 + 11 ⌦H2 with H1 and H2

the internal Hamiltonians of S1 and S2. Therefore, the unitary evolution operator of S1+S2

is U = eitH = eitH1 ⌦ eitH2 = U1 ⌦ U2. We have just shown that (L’) implies (L) which

implies (F).

(F) implies (L) and justifies (L’)

Conversely, suppose that (F) is true. Then, if S1 and S2 are two isolated systems, the total
Hamiltonian of S1 + S2 reads:

Ĥ =
1

i

dU

dt
=

1

i

dU1 ⌦ U2

dt

���
t=0

=
1

i

dU1

dt

���
t=0

⌦12+11⌦
1

i

dU2

dt

���
t=0

= Ĥ1⌦12+11⌦Ĥ2 ) Ĥint = 0.

In particular, if S1 and S2 are two particles localized at different points in space (hence
isolated, recall note 3), they do not interact. Hence (F) implies (L). Now, it is natural to
imagine (this is not a proof!) that in a theory satisfying (L), the interaction Hamiltonian
of an arbitrary system should be composed of a combination of local operators of the formR
D
Ĥint(~x, t) where D is an integration domain a priori unknown. However, to preserve the

translation invariance of the laws of physics, D must be the whole space R3. Thus (L)

justifies the locality hypothesis in QFT (L’).

(MC) implies (F)

We need our theories to satisfy (C). In §5.1.2, we have shown that (F) ) (C) and remarked
that (F) is generally postulated in QM. But, unlike (F), (C) is a consistency condition directly
required by physical considerations, so it seems after all more natural to postulate the latter.
One can then try to determine the set of unitaries compatible with (C), which would yield a
constraint on any unitary evolution operator associated to a bipartite system S1+S2 with S1

and S2 spacelike separated. It turns out that the more restrictive condition (MC) suffices to
5Recall that we defined ‘isolated’ as the fact that no particles of S1 and S2 meet each other.
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deduce (F), as shown in the following theorem. The same result was already proved in [16,
Theorem 7] using a completely different argument, also restricted to the finite dimensional
case.

Theorem 5.1.4 ((MC) ) (F)). Let U(t) be the unitary evolution operator, expressed in a
fixed reference frame R, of a quantum system S1 + S2 composed of two isolated subsystems
S1 and S2 of finite dimension, described in a consistent relativistic quantum theory. Then
there exist two unitary operators U1(t) and U2(t) such that:

U(t) = U1(t)⌦ U2(t)

Proof. The two subsystems being isolated, it is possible to divide the temporal axis of R
into small time intervals such that S1 and S2 are spacelike separated6 during any of these
time intervals. On each interval, the theory satisfies (in particular) the condition (MC) by
consistency, and it suffices to show there the factorization result. From now on, for the sake
of clarity, we will not write the parameter t which plays no role in the proof anymore. Let’s
denote H1 and H2 the Hilbert spaces associated with S1 and S2, and assume that they are
finite dimensional with n1 = dim(H1) and n2 = dim(H2). One can write U in the following
generic form:

U =
X

i
16k,l6n2

↵iklTi ⌦ |ki hl| (5.2)

with (|ki hl|)16k,l6n2 the canonical basis of L(H2) associated with an orthonormal basis
(|ki)16k6n2 , and (Ti)i a basis of L(H1). When replacing U in the expression (5.1) for the
condition (MC), one gets for all Hermitian operators Â and B̂ of H1 and H2 and for all
y0 2 spec(B̂):

8⇢, tr

 
⇢
X

i,k,l
j,k0,l0

h X

x2spec(Â)

⇧(1)
x T †

j Ti⇧
(1)
x � T †

j Ti

i
⌦ ↵ikl↵jk0l0 |l0i hk0|⇧(2)

y0 |ki hl|
!

= 0

)
X

i,k,l
j,k0,l0

h X

x2spec(Â)

⇧(1)
x T †

j Ti⇧
(1)
x � T †

j Ti

i
⌦ ↵ikl↵jk0l0 |l0i hk0|⇧(2)

y0 |ki hl| = 0.

Note that B̂ may be chosen arbitrarily, and in particular ⇧(2)
y0 . For any pair {k1, k2} ⇢

J1, n2K and µ, ⌫ 2 C such that |µ|2 + |⌫|2 = 1, one can define ⇧(2)
y0 to be the projector on the

vector µ |k1i+ ⌫ |k2i, that is |µ|2 |k1i hk1|+µ⌫ |k1i hk2|+µ⌫ |k2i hk1|+ |⌫|2 |k2i hk2|. Inserting
into the previous equation divides it in four sums:

6Meaning that every point of the spacetime region spanned by S1 is spacelike separated to every point
of the spacetime region spanned by S2.
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8k1, k2,
X

i,l
j,l0

h X

x2spec(Â)

⇧(1)
x T †

j Ti⇧
(1)
x � T †

j Ti

i

⌦
h
|µ|2↵ik1l↵jk1l0 + µ⌫↵ik2l↵jk1l0 + µ⌫↵ik1l↵jk2l0 + |⌫|2↵ik2l↵jk2l0

i
|l0i hl| = 0.

The particular cases µ = 1, ⌫ = 0 or µ = 0, ⌫ = 1 imply that the first and fourth terms
actually always vanish. Setting µ = ⌫ = 1

p
2

or µ = 1
p
2
, ⌫ = i

p
2

leads to:

8
>>>>><

>>>>>:

X

i,l
j,l0

h X

x2spec(Â)

⇧(1)
x T †

j Ti⇧
(1)
x � T †

j Ti

i
⌦
h1
2
↵ik2l↵jk1l0 +

1

2
↵ik1l↵jk2l0

i
|l0i hl| = 0

X

i,l
j,l0

h X

x2spec(Â)

⇧(1)
x T †

j Ti⇧
(1)
x � T †

j Ti

i
⌦
h
� i

2
↵ik2l↵jk1l0 +

i

2
↵ik1l↵jk2l0

i
|l0i hl| = 0

and taking appropriate linear combinations of these shows that the second and third terms
vanish as well. Therefore:

8k, k0,
X

i,l
j,l0

↵ikl↵jk0l0

h X

x2spec(Â)

⇧(1)
x T †

j Ti⇧
(1)
x � T †

j Ti

i
⌦ |l0i hl| = 0

) 8k, k0, l, l0,
X

i,j

↵ikl↵jk0l0

h X

x2spec(Â)

⇧(1)
x T †

j Ti⇧
(1)
x � T †

j Ti

i
= 0

because (|l0i hl|)16l,l06n2 is a basis of L(H2). This being true for all Hermitian operators Â,
the operator

P
i,j ↵ikl↵jk0l0 T

†

j Ti = (
P

i ↵ik0l0Ti)†(
P

i ↵iklTi) is diagonal in every orthonormal
bases of H1, so it is a dilation:

8k, k0, l, l0, 9�kk0ll0 2 C : (
X

i

↵ik0l0Ti)
†(
X

i

↵iklTi) = �kk0ll01.

Now, there exist k0 and l0 such that �k0k0l0l0 6= 0. Otherwise, for all k and l we would haveP
i ↵iklTi = 0 (since L(H2) is a C⇤-algebra satisfying kX†Xk = kXk2 for all X 2 L(H2)),

and by linear independence of the (Ti)i this would imply that all the ↵ikl vanish i.e. U = 0,
which is not possible.

At present, pick any pair of indices k, l.

• If �kk0ll0 6= 0, by unicity of the inverse in finite dimension, we have 1
�kk0ll0

P
i ↵iklTi =

1
�k0k0l0l0

P
i ↵ik0l0Ti and since the (Ti)i are linearly independent: ↵ikl =

�kk0ll0
�k0k0l0l0

↵ik0l0 .

• If �kk0ll0 = 0, since
P

i ↵ik0l0Ti is invertible, we deduce that
P

i ↵iklTi = 0, hence
↵ikl = 0 for all i.

90



In any case:
8k, l, 9�kl 2 C : 8i, ↵ikl = �kl ↵ik0l0 .

It is now possible to factorize:

U =
X

i
16k,l6n2

�kl↵ik0l0Ti ⌦ |ki hl| =
 
X

i

↵ik0l0Ti

!
⌦
 
X

16k,l6n2

�kl |ki hl|
!

= U1 ⌦ U2

where one can identify U1 and U2 with the evolution operators of S1 and S2, which are
necessarily unitary since U = U1 ⌦ U2 is.

A consequence of this theorem is that (F), (C) and (MC) imply themselves circularly,
therefore (F), (C) and (MC) are logically equivalent. Another unexpected corollary is
the following: while (C) and (MC) do not seem a priori to be symmetrical with respect to
S1 and S2, their equivalence to (F) implies such a symmetry. Said differently, S1 does not
allow to communicate to S2 if and only if the converse is true.

5.1.5 Microcausality
In addition to the locality hypothesis, another deep postulate of QFT is the microcausality
hypothesis (M).

(M) For all quantum fields � and spacelike intervals x� y, [�(x),�†(y)]± = 0 where [ , ]±
stands for an anti-commutator or a commutator depending on the fermionic or bosonic na-
ture of �.

Usually, standard QFT textbooks justify this hypothesis by invoking, for once, the con-
cept of measurement [107, p.28] [74, p.106] [149, p.121], but they generally make do with
the affirmation that two spacelike measurements must be independent, without more expla-
nations. Not only is the argument too vague, but it is hard to see how the relation could
differ according to the fermionic or bosonic nature of the field. Weinberg, on the other hand,
makes an interesting remark:

‘The condition [(M)] is often described as a causality condition, because if
x � y is spacelike then no signal can reach y from x, so that a measurement of
� at point x should not be able to interfere with a measurement of � or �† at
point y. Such considerations of causality are plausible for the electromagnetic
field, any one of whose components may be measured at a given spacetime point,
as shown in a classic paper of Bohr and Rosenfeld [27]. However, we will be
dealing here with fields like the Dirac field of the electron that do not seem in
any sense measurable. The point of view taken here is that [(M)] is needed for
the Lorentz invariance of the S-matrix, without any ancillary assumptions about
measurability or causality.’ [137, p.198]
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As Weinberg notes himself, microcausality is only a sufficient condition for the invariance of
the S-matrix:

‘Theories of this class [satisfying (M)] are not the only ones that are Lorentz
invariant, but the most general Lorentz invariant theories are not very different.
In particular, there is always a commutation condition something like [(M)] that
needs to be satisfied. This condition has no counterpart for non-relativistic sys-
tems, for which time-ordering is always Galilean-invariant. It is this condition
that makes the combination of Lorentz invariance and QM so restrictive.’ [137,
p.145]

However, Weinberg’s argument strongly relies on the use of normal-ordered fields. Ar-
guably, this writing is only a computation convenience without physical meaning. Its main
purpose is to get rid of the infinite constants that appear in certain computations, by making
finite all the matrix elements of the operators manipulated. This operation is justified when
the divergences have no influence in the considered context. Alternatively, the prediction of
the Casimir effect or the Lamb shift by the vacuum energy is only possible without normal-
ordering (one substantially uses the fact that h0|�2|0i 6= 0 for a non-ordered �, see [74,
p.111]). It seems that a stronger argument is needed to justify the microcausality hypothesis
(M). Note that (M) is especially crucial to prove the famous spin-statistics theorem (S):

(S) Scalar and vector fields correspond to bosons, while Dirac fields correspond to fermions.

Here is how most QFT textbooks proceed to establish (S). Since we don’t know the result
yet, we have to compute both commutators and anti-commutators. A short calculation first
shows that when � is a Dirac field, we have:

[�(x),�†(y)]± = �+(x� y)⌥�+(y � x) (5.3)

depending on � describing fermions or bosons, i.e. [a(~p), a†(~p0)]± = �(3)(~p � ~p0), and where
�+(x) =

R
d3p

(2⇡)32p0
eipµx

µ is shown to be a Lorenz invariant quantity. Likewise, when � is a
scalar or a vector field:

[�(x),�†(y)]± = �+(x� y)±�+(y � x) (5.4)

depending on � describing fermions or bosons. It is quite easy to see that when x � y is
spacelike, �+(x � y) � �+(y � x) = 0, while �+(x � y) + �+(y � x) is not identically
zero [137, p.202]. All these remarks, in addition to (M), imply (S). Not the reverse: these
computations generally don’t justify (M) but only the fermionic or bosonic nature of a field,
whereas one can intuitively feel that they contain much more information.

We now present a simultaneous proof of the microcausality hypothesis and the spin-
statistics theorem that relies only on the consistency of the theory and on the above (anti-
)commutators computations.
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Theorem 5.1.5 ((MC) ) (M) and (S)). Let � be a quantum field. Then, for all spacelike
intervals x� y, [�(x),�†(y)]± = 0 where [ , ]± stands for an anti-commutator or a commu-
tator depending on � being a Dirac field (and in that case it describes a fermion) or a scalar
or vector field (and in that case it describes a boson).

Proof. Let’s first suppose that � is effectively a measurable field, in other words �(x) is
Hermitian for all x. As stated by Weinberg in the previous quote, it is for example the
case for the electromagnetic field that describes the photon. One can write its spectral
decomposition �(x) =

P
�2spec �(x) �⇧

(x)
� if �(x) is compact, or use in general the generalized

spectral decomposition (2.2) of the rigged Hilbert space formalism. For the sake of clarity,
we still denote the decomposition as in the compact case. Contrary to the previous sections,
there is now only one Hilbert space, the Fock space HFock, and the system’s state is given
by a density matrix ⇢ 2 S(HFock). For all spacelike intervals x� y, a measurement of �(x)
doesn’t affect the statistics of a measurement of �(y) if and only if the following condition,
variant of (MC), is satisfied:

8⇢, 8µ 2 spec �(y), tr

 ⇣ X

�2spec �(x)

⇧(x)
� ⇢⇧(x)

�

⌘
⇧(y)

µ

!
= tr(⇢⇧(y)

µ )

where we implicitly moved to a reference frame R in which x0 = y0, so as to avoid to
introduce the (non-covariant) unitary evolution operators7. It yields:

8⇢, 8µ 2 spec �(y), tr

 
⇢
⇣ X

�2spec �(x)

⇧(x)
� ⇧

(y)
µ ⇧

(x)
� � ⇧(y)

µ

⌘!
= 0

) 8µ 2 spec �(y),
X

�2spec �(x)

⇧(x)
� ⇧

(y)
µ ⇧

(x)
� = ⇧(y)

µ

)
X

�2spec �(x)

⇧(x)
� �(y)⇧

(x)
� = �(y).

Thus, �(y) is (block) diagonal in the eigenbasis of �(x), so they are codiagonalizable
and [�(x),�(y)] = 0. This relation a priori holds in the frame R, but when applying the
appropriate representation of the Lorenz group under which � transforms, one sees that
�(x) and �(y) commute in all reference frames.

If now � is not supposed to be Hermitian anymore, we still know that ��† is. Applying
what precedes to ��† instead of �, we obtain that for all x�y spacelike, [�(x)�†(x),�(y)�†(y)] =
0. Moreover, as � is not Hermitian, one shows as usual that for all x and y, [�(x),�(y)] =

7We are aware that there still doesn’t exist a proper and consensual mathematical framework for the
implementation of measurements in QFT [43]). This is probably why the same computation leads to oddities
if one doesn’t move to the special reference frame R beforehand. Still, we reckon that this simple reasoning
actually captures something of physical interest.
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[�†(x),�†(y)] = 0 8. But on the other hand, it is also possible to compute the commu-
tator [�(x)�†(x),�(y)�†(y)] using the commutation relations (5.3) and (5.4). Suppose for
instance that � is a Dirac field. Since we don’t know yet if it is a boson or a fermion, let’s
distinguish the possible cases:

• if the particle described by � is a fermion, we have (5.3) with the upper signs. Then:

�(x)�†(x)�(y)| {z }
=��(y)�†(x)
��+(x�y)
+�+(y�x)

�†(y) = ��(x)�(y)�†(x)�†(y) +
⇣
�+(y � x)��+(x� y)

⌘
�(x)�†(y)

= ��(y)�(x)�†(y)| {z }
=��†(y)�(x)
+�+(x�y)
��+(y�x)

�†(x) +
⇣
�+(y � x)��+(x� y)

⌘
�(x)�†(y)

= �(y)�†(y)�(x)�†(x)

+
⇣
�+(y � x)��+(x� y)| {z }

=0 if x�y spacelike

⌘
(�(y)�†(x) + �(x)�†(y)),

• if the particle described by � is a boson, we have (5.3) with the lower signs. Then

�(x)�†(x)�(y)| {z }
=�(y)�†(x)
��+(x�y)
��+(y�x)

�†(y) = �(x)�(y)�†(x)�†(y)�
⇣
�+(x� y) +�+(y � x)

⌘
�(x)�†(y)

= �(y)�(x)�†(y)| {z }
=�†(y)�(x)
+�+(x�y)
+�+(y�x)

�†(x)�
⇣
�+(x� y) +�+(y � x)

⌘
�(x)�†(y)

= �(y)�†(y)�(x)�†(x)

+
⇣
�+(x� y) +�+(y � x)| {z }

non-identically zero if x�y spacelike

⌘
(�(y)�†(x)� �(x)�†(y)).

As a consequence, one recovers the commutation relation [�(x)�†(x),�(y)�†(y)] = 0
imposed by the condition (MC) if, and only if, � is a fermionic field and in this case, the
relation (5.3) implies that {�(x),�†(y)} = 0 for all spacelike intervals x�y. These are indeed
the statements (M) and (S). When � is a scalar or vector field, the proof is similar.

8This is because the only commutators that can appear between a creation and an annihilation operator
are [a(~p), ac†(~p0)] or [ac(~p), a†(~p0)] (with the label c standing for the antiparticle) which are zero if a(~p) 6= a(~p)c.
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Remark 5.1.6. Note that this proof makes use, as usually in physics, of the identification
between the notion of observable in the mathematical sense (Hermitian operator) and in
the physical sense (quantity measurable by a concrete experimental protocol). However,
the second is far more restrictive, since in practice we can only measure a few very specific
observables. Rigorously speaking, only the physical notion of observable is constrained by
(MC), since the latter must ensure the absence of inconsistencies between actual measure-
ments. Therefore, in the above proof, although ��† is Hermitian, one could question the
legitimacy of imposing it (MC). Of course, any mathematical observable could be in prin-
ciple measured by applying a suitable unitary evolution to the system that would map its
eigenbasis to the eigenbasis of a physically measurable observable. But is it satisfactory to
rely on the idea that all unitary evolutions are a priori feasible, even though we will never
be able to implement them? Nonetheless, it is still possible to adapt the proof by replacing
��† by an undoubtedly physical observable, such that a function of the components of T̂µ⌫

or even the charge Q̂, that one can express in terms of �. For example, for a Dirac field,
T̂ µ
µ = m�†�0�, would allow a quite similar proof.

What precedes has an unexpected consequence, expressed in the corollary below.

Corollary 5.1.7. A fermionic field is not measurable.

Proof. In the previous proof, we have seen that if a field is an observable (i.e. � = �†),
then the condition (MC) implies that for all x � y spacelike, [�(x),�(y)] = 0. But if � is
a fermionic field, it also satisfies {�(x),�(y)} = 0. Adding these two relations yields for
all x � y spacelike, �(x)�(y) = 0, which is too strong a constraint for a quantum field. In
particular, �(x)�(y) |0i is the state containing two localized particles at x and y; in any case
it is a non-zero vector of the Fock space9.

5.1.6 Summary

The starting point of this section was the apparent incompatibility between SR and two kinds
of instantaneities that seem to appear in QM. By the time it was historically developed, quan-
tum theory was not built to integrate SR, so that it is always surprising to contemplate their
‘peaceful coexistence’ (expression coined by Shimony [124]). Exploring this coexistence led
us to investigate the logical interrelationships between fundamental properties in relativistic
QM. They are summarized in the following diagram:

9This result is not new, and can also be derived, for instance, by the fact that the equation � = �† is
neither covariant nor independent of the representation of the gamma matrices [104], so it can’t be linked to
a physically meaningful property such as being measurable. But it is interesting to see that it can be directly
derived from considerations about measurements. Again, our argument relies on the widespread identification
between the notions of mathematical and physical observable. Here, � may indeed be Hermitian, but is it
a physically measurable quantity subject to the condition (MC)?
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(L’) (L) (F) (C) (MC)
(M)

(S)

SR

where the dotted arrow stands for ‘justifies’ rather than ‘implies’. The implication (M) )
(MC) is not proved in this paper but in the aforementioned [109]. Let’s emphasize again
that (C) (a fortiori (MC)) is not an arbitrary postulate but a mere consistency criterion that
must be valid for any relativistic quantum theory: it ‘costs nothing’ to be assumed because
it stems from the constraints of SR. Surprisingly, it becomes obvious on this diagram that
the two fundamental postulates (L’) and (M) of QFT are actually redundant, since locality
implies microcausality.

5.2 A toy model: how the shape of the laws of physics

promote a backgroundless preferred-basis

5.2.1 Motivation and preliminaries
In §4.2, we have explained how the eigenbasis BX̂ of the position operator seems to be a
preferred-basis for decoherence, especially when the systems considered grow in size, con-
straining the observables compatible with an easy ontology. The explanation usually given
in the decoherence literature is that the laws of physics, and therefore the interaction Hamil-
tonians, often involve position variables [155, 5.] [119, III.E.2.]. But in view of building
a backgroundless quantum theory, one may wish to better understand which properties of
the Hamiltonian are required to see the emergence of a decoherence basis, common to all
systems, in the full abstract Hilbert space. The hope, in the end, is to be able to identify
it to a position basis, thereby defining a backgroundless notion of position, or at least some
backgroundless common structure linked to spacetime properties.

Here is a proposal to formalize this. Our starting point will be a total Hilbert space of
the form Htot = ⌦N

i=1H, where all copies of H stand for the same type of degree of freedom,
but relative to different systems (e.g. particles)10. For any total state | i 2 Htot, one can
compute the density matrix ⇢i = trJ1,NK\{i}(| i h |) of the ith system obtained by tracing out
all the other ones. This state is perfectly decohered by the others in the eigenbasis Bi of ⇢i.
The question becomes: at some given instant, what can be said about the set

{| i 2 Htot | the Bi’s are ‘close’ to each other}
10Of course, this factorization of the Hilbert space relates to one of the great unsolved questions of the

theory of decoherence: what are the systems in QM? As Zurek writes: ‘the problem of measurement cannot
be stated without a recognition of the existence of systems. Therefore, our appeal to the same assumption
for its resolution is no sin. However, a compelling explanation of what are the systems — how to define
them given, say, the overall Hamiltonian in some suitably large Hilbert space — would be undoubtedly most
useful.’
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and what is required in the form of the Hamiltonian governing the evolution of | i to
remain in this set? Determining this is perhaps reminiscent of the question, raised in §3.2.5,
of grasping the set of reachable (or physically reasonable) states.

One difficulty immediately arises. How to give some meaning to the Bi being close to each
other? Indeed, if the H’s are really considered abstractly, nothing allows to relate Bi and Bj

and claim, for instance, that Bi and Bj are (or are not) the same basis. As an example, von
Neumann has indeed proved that all the possible realizations of a separable Hilbert space
equipped with two operators such that [X̂, P̂ ] = i~1 are unitarily equivalent. But when
several particles are considered, we actually assume the existence of a common background
space R3 and tacitly endow the Hilbert space L2(R3)⌦L2(R3) with some additional structure,
so as to say that |xi1 and |xi2 represent the same point in space. The problem is already
present when considering finite dimensional spaces of spin, where we must be able to say
that |"xi1 and |"xi2 are oriented along the same axis in the physical space (see [34, footnotes
7 and 8]). This issue of a required additional background structure in the Hilbert space of
QM may be a direction of inquiry in the search of a backgroundless quantum theory. For
now, however, we will do as always, and assume tacitly that our blocks H’s are synchronized
so that they can be compared.

This way, we can naturally use the distance d(Bi,Bj) between orthonormal bases, previ-
ously introduced in §3.3.3, in order to give a meaning to Bi being close to Bj. Notably, the
map B : | i 7! (B1, . . . ,BN) is well behaved with respect to this distance.

Proposition 5.2.1. Suppose that Htot is finite dimensional. Let U = {| i 2 Htot | 8i 2
J1, NK, ⇢i has a non-degenerate spectrum} an open dense subset of Htot on which the map

B : U �! B(H)N

| i 7�! (B1, . . . ,BN)

is unambiguously defined. B is continuous on U for the topology induced by d.

Proof. We have U = \N
i=1Ui, where Ui = {| i 2 Htot | ⇢i has a non-degenerate spectrum}.

In short, each Ui is an open dense subset because it is defined by an algebraic equation in
the coefficients of | i 2 Htot (the discriminant of the characteristic polynomial of ⇢i must
not vanish). Therefore, U is open dense as well.

Let (| ni)n2N a sequence of vectors such that | ni �!
n!+1

| i. By continuity of the partial
trace, each ⇢i,n = trJ1,NK\{i}(| ni h n|) converges to ⇢i when n ! +1, hence [⇢i, ⇢i,n] �!

n!+1

0.
Indeed, |||⇢i⇢i,n�⇢i,n⇢i||| = |||[⇢i(⇢i,n�⇢i)� (⇢i,n�⇢i)⇢i||| 6 2|||⇢i||||||⇢i,n�⇢i||| �!

n!+1

0. Finally,
using the second inequality of Proposition 3.3.5, d(Bi,B⇢i,n) �!

n!+1

0.

5.2.2 Description of the model
We are now in position to build the model. We will modestly restrict ourselves to N = 2
(only two blocks in Htot i.e. two interacting particles) and consider the simplest possible

97



case H = C2, so that the model is analytically solvable. Consider a Hamiltonian of the form:

Ĥ =
⇣
↵ŜX + �ŜY

⌘
⌦ ŜZ ,

for some positive constants ↵ and � to be modulated later. The spin operators don’t have
to really represent a spin; they are actually taken as a toy model for any set of conjugate
operators on some abstract degree of freedom (although, for the sake of clarity, we will still
use the spin and particles vocabulary). Denote Bx, By, and Bz their respective eigenbases.

Our aim is to observe the competition between two decohering processes. The effect of
the part weighted by ↵ is to rotate particle 2 along the z axis clockwise or counterclockwise
depending on the spin of particle 1 along x being " or #. Qualitatively, particle 2 registers
the x-spin of particle 1, entailing decoherence of the latter in Bx. The part weighted by �
has a similar effect in By. For some generic initial state of the pair, we will compute the
evolving state | (t)i, then the first particle’s density matrix ⇢1(t) and its eigenbasis B1(t),
and finally the distances d(B1(t),Bx), d(B1(t),By) and d(B1(t),Bz), in order to check how
far particle 1 is to be decohered in the x, y and z bases. The main question we would like to
elucidate is how the values of ↵ and � (the strength of the recording of SX and SY , standing
for ‘the form of the laws of physics’) influence B1(t). In particular, we would expect to have
B1(t) �!

↵/�!+1

Bx and B1(t) �!
↵/�!0

By.

5.2.3 Analytic resolution
The model is simple enough to derive an analytic expression for ⇢1(t). By default, |"i and |#i
stand for the eigenvectors of ŜZ . A subscript is added to denote an eigenvector of another
spin operator, for instance |"ix = 1

p
2
(|"i + |#i). The factors ~

2 can be absorbed in ↵ and �,
so that ŜX , ŜY and ŜZ are nothing but the Pauli matrices. It seems reasonable to start from
an initial product state, which we suppose of the form | (0)i = (c" |"i+ c# |#i)⌦ |"ix. This
choice is generic in particle 1 (the particle of interest), whereas we are not really concerned
for now with the influence of the initial state of particle 2 (the recording particle), as long
as the latter is not |"i or |#i, in which case not entanglement ever occur.
Proposition 5.2.2. Starting from an initial state of the form | (0)i = (c" |"i+c# |#i)⌦|"ix,
particle 1’s state at time t is given by:

⇢1(t) =

0

@
1
2 [1� (|c#|2 � |c"|2) cos (2⌦t)] 1

↵+i� [<(z) + i=(z) cos (2⌦t)]

1
↵+i� [<(z)� i=(z) cos (2⌦t)] 1

2 [1 + (|c#|2 � |c"|2) cos (2⌦t)]

1

A

where ⌦ =
p

↵2 + �2 and z = c#c"(↵ + i�).

Proof. Let’s first diagonalize Ĥ. In the (|"i , |#i) basis, ↵ŜX + �ŜY =

✓
0 ↵� i�

↵ + i� 0

◆
,

whose eigenvectors are

|E1i =
1p
2

✓
�⌦
↵+i�

1

◆
and |E2i =

1p
2

✓ ⌦
↵+i�

1

◆
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associated to the eigenvalues E1 = �⌦ and E2 = ⌦. The initial state takes the form:

| (0)i = (c" |"i+ c# |#i)⌦ |"ix = (�1 |E1i+ �2 |E2i)⌦
1p
2
(|"i+ |#i),

where the coefficients in the new basis are given by �1 = 1
p
2

�
�↵+i�

⌦ c" + c#
�

and �2 =
1
p
2

�
↵+i�
⌦ c" + c#

�
. The Hamiltonian is diagonal in the (|E1 "i , |E1 #i , |E2 "i , |E2 #i) basis,

in which the time evolution is simply:

| (t)i = �1p
2
ei⌦t |E1 "i+

�1p
2
e�i⌦t |E1 #i+

�2p
2
e�i⌦t |E2 "i+

�2p
2
ei⌦t |E2 #i

=
⌦

↵ + i�

✓
��1

2
ei⌦t +

�2

2
e�i⌦t

◆
|""i+

✓
�1

2
ei⌦t +

�2

2
e�i⌦t

◆
|#"i

+
⌦

↵ + i�

✓
��1

2
e�i⌦t +

�2

2
ei⌦t
◆
|"#i+

✓
�1

2
e�i⌦t +

�2

2
ei⌦t
◆
|##i .

Now, to compute the partial trace of this state with respect to particle 2, we use the
fact that if |�i = a |""i + b |#"i + c |"#i + d |##i for some a, b, c, d 2 C, then tr2(|�i h�|) =✓
|a|2 + |c|2 ab+ cd
ab+ cd |b|2 + |d|2

◆
, which can be seen from the computation made in 3.1. Here, in

brief,

|a|2 + |c|2 =
����
��1

2
ei⌦t +

�2

2
e�i⌦t

����
2

+

����
��1

2
e�i⌦t +

�2

2
ei⌦t
����
2

=
1

2

�
|�1|2 + |�2|2 � �1�2 cos(2⌦t)� �1�2 cos(2⌦t)

�

=
1

2
�<(�1�2) cos(2⌦t)

=
1

2

⇥
1�

�
|c#|2 � |c"|2

�
cos(2⌦t)

⇤

yields the first component of ⇢1(t). Similarly,

ab+ cd =
⌦

4(↵ + i�)

�
��1e

i⌦t + �2e
�i⌦t

� �
�1e

�i⌦t + �2e
i⌦t
�

+
⌦

4(↵ + i�)

�
��1e

�i⌦t + �2e
i⌦t
� �

�1e
i⌦t + �2e

�i⌦t
�

=
⌦

2(↵ + i�)

⇥
|�2|2 � |�1|2 � 2i=(�1�2) cos(2⌦t)

⇤

=
1

↵ + i�
[<(c#c"(↵ + i�)) + i=(c#c"(↵ + i�)) cos (2⌦t)] .

The two remaining components are deduced from the fact that ⇢1(t) is Hermitian and have
trace 1.
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5.2.4 Numerical simulation and discussion
It would be extremely tedious to write down exact expressions for B1(t), not to mention its
distances to Bx, By, and Bz, but they can easily be computed numerically. Here are the
behaviours for different values of c" and c# as well as, more importantly, of ↵ and �.

The case ↵ = � = 1

Let’s first check how the choice of the initial state influences the results. It turns out that
if c" or c# equals 0, B1(t) = Bz for all t (which was not obvious a priori), and that the
simulation is very unstable for |c"| = |c#| = 1

p
2

(certainly due to the non-continuity of the
eigenvectors with respect to the coefficients of a matrix near some critical points). Keeping
away from these extreme cases, here are a few examples (figure 5.2). Obviously, we observe
a periodic behaviour. The period is not ⇡

⌦ (as would suggest Proposition 5.2.2) but ⇡
2⌦ ,

certainly because the cosine contribute only through its square in the final result.

The case ↵
� or �

↵ ! +1

At present, let’s keep � = 1 and increase ↵. As hoped, decoherence seems to prefer Bx when
the coupling in x increases. But even a small initial phase can alter this process. Sometimes,
Bx is not even preferred (figure 5.3). The conclusions are the same when � ! +1 while
↵ = 1.

Discussion

Clearly, more work is needed to understand the mechanisms at stake. However, a first glance
at the simulations lead us to the formulate the following conjecture:

Conjecture 5.2.3. For any orthonormal basis B,

d(B,Bx)
2 + d(B,By)

2 + d(B,Bz)
2 = 2.

Although the model is still simplistic, simple extensions could considerably enhance its
relevance. There are two main directions to explore:

• Periodicity is a major weakness. It is unavoidable in dimension 2 with Pauli matrices
because the latter are traceless, hence the two frequencies are the same (|E1| = |E2|).
Already in dimension 3 the problem would disappear. Considering an infinite dimen-
sional space would be even more interesting physically. Indeed, the problem with spin
operators is that the recording particle rotates clockwise or counterclockwise depending
on the state of the other, but it soon arrives back in its initial angle so the recording
quickly erases itself.

• Our initial motivation was to study the conditions of emergence of common preferred-
basis. So far, we have only considered the basis B1(t) of the first particle. The next
step is to compare B1(t) and B2(t) and, more generally, all the (Bi(t))16i6N for N
interacting systems.
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Figure 5.2: Distances to Bx, By, and Bz for ↵ = � = 1 and different values of the initial
state.

More difficult long-term goals include, among others:

• how to also recover the parameter t in a backgroundless manner?

• Which principle(s) should characterize the Hamiltonian in Htot? Since we standardly
use spacetime to define locality (as done in §5.1.4), could a backgroundless formulation
of locality allow to operationally reconstruct spacetime? See for instance [8] for an
abstract theorem linking causality, unitarity and locality.
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Figure 5.3: Distances to Bx, By, and Bz for different initial states, � = 1 and ↵ ! +1.
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Chapter 6

Conclusion

The aim of this thesis was to better understand the features of quantum theory that makes
quantum gravity so hard to reach. How come Einstein was able to formulate a backgroundless
theory of classical matter as soon as 1915, while no one has been able to do so for quantum
matter in more than a century?

Einstein’s theories of relativity are deemed relativistic because lengths and durations are
relative to the observer. GR is in some sense even more relativistic — as opposed to absolute
— than SR because it is a backgroundless theory in which spacetime is not independent of
what happens, but co-emerges with matter. However, there is still some kind of residual
absoluteness in GR. Mind that Einstein’s principle of relativity is the requirement of the
invariance of the laws of physics in all admissible reference frames: shouldn’t it rather be
called the principle of absoluteness? Indeed, the idea behind the use of differential geometry
is that all physically meaningful geometrical objects (proper times, light cones, metric and
tensor fields, curvature, spacetime itself. . . ) are intrinsic. They ‘are there’, common to ev-
eryone, independently of how particular observers relate to it and label spacetime events by
means of coordinates1. Under some additional assumptions, the Einstein-Hilbert action is
then the only acceptable functional build from intrinsic quantities only; therefore, the mat-
ter side of Einstein’s equation has to be an intrinsic geometrical object too. Said differently
GR presupposes an easy ontology for the energy-momentum observable, as we defined this
term in Chapter 4, but we have rightly shown that there can’t be such an ontology for this
quantity in QM, unless T̂µ,⌫ is perfectly decohered2.

A good understanding of the theory of decoherence is a crucial step to grasp the ontolog-
ical problem of quantum physics. In Chapter 3, we have presented the main mathematical
patterns of decoherence. Two models were designed to feel intuitively the general processes
at stake with a high level of generality, in particular this was achieved without specifying

1Provided there is at least some matter there, cf. the hole argument mentioned in the introduction.
2Another major challenge for quantum gravity is the following: when coherence revives in BX̂ , i.e. when

several well-localized possible histories are decohered and then interfere again, how to stick together the
different spacetimes associated to these potentialities? How to say that the event x in possible spacetime 1
corresponds to the event x

0 in possible spacetime 2?
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any Hamiltonian. The main lesson of the first model (§3.2) is that decoherence is a high-
dimensional geometrical phenomenon between reservoir of dimensions, whose efficiency stems
from the fact that exponentially many points can be placed randomly on a n-sphere before
having the maximum of the scalar products becoming non-negligible. The second model
(§3.4) gave a quite universal reason why QM indeed predicts that the universe should not be
frozen by the Zeno effect. Namely, since quantum systems’ short time evolutions are always
quadratic, and this being true for the pair system + environment as well, infinitesimal steps
of decoherence induced on a system by its surrounding environment are likely to be of the
form ⌘n = 1 � ↵

n� with � & 2, which we have shown not to entail any Zeno freezing. An
important lesson of the Zeno effect is that things are able to evolve because they are inter-
mittently isolated3. More precisely, there is a competition between free evolution (typically
governed by P̂ ) striving to escape decoherence in BX̂ induced by the interaction with the
rest of the universe (which typically acquires information about X̂). Different candidates to
quantify decoherence were then proposed and studied (§3.3); they all satisfy the key property
of bounding the deviation from the total probability formula (Definition 3.3.4).

The (empirical) fact that our universe does not fundamentally obey the total probability
formula is the root of the ontological problem raised by quantum physics, the so-called
‘measurement problem’. In Chapter 4, we have characterized it as the impossibility to build
an easy ontology for quantum systems, that is an ontology independent of epistemology, in
which variables can be assumed to have a definite value among the possible ones, even when
unknown. In QM, indeed, all potentialities seem to contribute to the statistics of subsequent
experiments, except when the conditioning is made on a decohered observable. The theory
of decoherence is sufficient to explain why we almost never experience any deviation from the
total probability formula: the way we get information about a system is governed by the same
laws of physics as the interactions it has with its environment, hence we only distinguish
between potentialities that have already been rendered ontologically easy by the rest of
the world. However, QM still needs an ontology, albeit an uneasy one. Facts, observers,
consciousness. . . are notions often encountered in the debates on the interpretation of QM.
Our investigation has shown how they enter the discussion; in particular, we have argued
that observers are best defined as systems granted with subjectivity, because the ontological
problem is most severe and unavoidable on the latter. After giving a precise formulation of
the preferred-basis problem (§4.2), we then moved on to study how five of the most famous
interpretations of QM attempt to solve these issues (§4.3 to §4.5). We believe that this
novel approach (defining first the problem in an interpretation-independent way) might be
a valuable way to grasp what is really at stake with each of these interpretations, in order
to better compare them. According to Rovelli [116], just as nearly 150 years passed between
Copernicus’s De Revolutionibus and Newton’s Principia, during which ‘the old picture of
reality was reshaped in depth (...) we are [again] in the middle of an unfinished scientific
revolution’, waiting in particular for science to incorporate the philosophical lessons of QM

3Paradoxically, it is also because a system interacts with an environment that it experiences change and
time. Indeed, its free Hamiltonian Ĥ = �̂mc

2 ' mc
21+ P̂ 2

2m becomes in its proper reference frame Ĥ = mc
21,

yielding no evolution.
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and to overcome its attachements to easy ontology.
Equipped with a precise formulation of the ontological problem of QM in the light of the

theory of decoherence, Chapter 5 could at last introduce the last character of this thesis:
spacetime. A first topic of investigation, although not immediately related to the ontologi-
cal problem, was the apparent incompatibility between QM and SR and their surprisingly
‘peaceful coexistence’. Adopting a logicist point of view has led us to derive several logi-
cal interrelationships between fundamental properties in relativistic QM, namely: the no-
signalling/covariance constraint (and its restriction to the particular case of ideal measure-
ments), the factorization property of the unitary evolution operator, locality, microcausality
and the spin-statistics theorem (§5.1). Finally, we have presented a general idea for the quest
of a backgroundless quantum theory. It actually turns the objective preferred-basis problem
defined in §4.2 into a force. The aim is to determine what is required, in the shape of the
laws of physics, to see the emergence of a common decoherence basis. Our hope, in the end,
is to be able to identify it to a position basis, thereby defining a backgroundless notion of
position, or at least some backgroundless common structure linked to spacetime properties.
These ideas were illustrated by a toy model, for now simplistic, but whose further extensions
will considerably enhance its relevance (§5.2). An essential ingredient in this program is the
distance between orthonormal bases introduced in §3.3.3: this mathematical tool may be a
step towards the (still mysterious) geometrical description of what takes place inside a tensor
product of Hilbert spaces.

We close this thesis with some general considerations on the notion of backgroundless co-
emergence. Many philosophers were opposed to Newton’s absolute space and time. Among
them, Leibniz, who wrote in a letter to Clarke in 1716:

‘I have many demonstrations, to confute the fancy of those who take space to
be a substance, or at least an absolute being. (...) I say then, that if space was an
absolute being, there would something happen, for which it would be impossible
there would be a sufficient reason. Which is against my axiom. And I prove
it thus. Space is something absolutely uniform; and, without the things placed
in it, one point of space does not absolutely differ in any respect whatsoever
from another point of space. Now from hence it follows, (supposing space to
be something in itself, besides the order of bodies among themselves,) that it
is impossible there would be a reason, why God, preserving the same situations
of bodies among themselves, would have placed them in space after one certain
particular manner, and not otherwise; why everything was not placed the quite
contrary way, for instance, by changing East into West. But if space is nothing
else, but that order or relation; and is nothing at all without bodies, but the
possibility of placing them; then those two states, the one such as it now is,
the other supposed to be the quite contrary way, would not at all differ from
one another. Their difference therefore is only to be found in our chimerical
supposition of the reality of space in itself. But in truth the one would exactly be
the same thing as the other, they being absolutely indiscernible; and consequently
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there is no room to enquire after a reason of the preference of the one to the other.’
[40, p.57-59]

Another famous opponent of the absoluteness of spacetime is Mach, whose works were
a great source of inspiration for Einstein. Interestingly, Newton’s and Mach’s conceptions
of spacetime are empirically distinguishable in principle (although the experiment is clearly
not realizable in practice) [73]. Suppose you have a bucket of water at rest. Now, move the
entire universe around (!) except the bucket. According to Newton, whatever happens to
the rest of the universe does not change the fact that the bucket is still at rest (or in uniform
translation) with respect to the absolute spacetime, so the surface of the water remains flat.
But according to Mach and his generalized law of inertia defined with respect to the center
of mass of the universe [89, Chapter II, Section VI], the surface of water would curve. It
seems that our best current physical theories predict no such effect and therefore still have
a quite Newtonian flavour.

Apart from GR, what other cases of backgroundless co-creation do we have, from which
to gain some inspiration? What mechanisms can mutually constrain several things enough
to give them a shape without any pre-established form? Here is a non-detailed and non-
exhaustive list of examples.

• In physics, one can think of the Page-Wooters mechanism to define backgroundless
times [103, 145];

• there is also mutual decoherence between all systems in the universe, in particular the
objective preferred-basis mentioned in §4.2, backgroundlessly defining the observables
compatible with an easy ontology;

• as argued in note 2 from Chapter 4, there have been a co-evolution between the modes
of perception and the laws of physics. The same is true for the laws of mathematics
or logic: life on Earth has evolved so as to grasp regularities that did not pre-exist
independently of these beings.

• Darwinian evolution, in general, provides numerous examples of backgroundless co-
evolution paths between species: it is meaningless to talk about the genetic evolution
of a single species independently of its environment, and its selected mutations influence
in turn the environment’s own evolution;

• philosophy of ecology often invites us to think in terms of dynamically retroacting
ecosystems. See Naess’ Gestalt ontology [100], or the concept of earthly in the work of
Latour [84] and his criticism of the ‘view from nowhere’ in science;

• anarchy is a backgroundless political organization without a State or a Constitution:
decisions and rules continuously emerge from the collective discussions and are always
subject to change.
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• Bouddhist and Taoist canonical texts emphasize that each dualism is actually a back-
groundless co-creation from the human intellect: a notion of good cannot exist without
a notion of bad, nothing is long if nothing is short, just as the left defines the right
and vice-versa;

• language co-emerges with the world: the former is a network of meanings supposed to
fit the latter, which in turn shapes our very experience of it [143];

• finally, if there is no absolute self, gender (or in general any qualia associated with
a person) emerges backgroundlessly at the interaction between two or more persons,
possibly at the scale of a whole society, or even of humanity.

Is there something common to all of these examples?
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Appendix A

Some philosophical notions

Here is some background intended to make Chapter 4 more accessible to readers unfamiliar
with the philosophy of QM.

A.1 Ontology and epistemology

The terms ‘ontology’ and ‘epistemology’ come from the Greek words on and epistēmē, which
can be respectively translated as ‘being’ (or ‘that which is’) and ‘knowledge’ (or ‘understand-
ing’). According to the Stanford Encyclopedia of Philosophy: ‘we have at least two parts to
the overall philosophical project of ontology, on our preliminary understanding of it: first,
say what there is, what exists, what the stuff of reality is made out of, secondly, say what
the most general features and relations of these things are’ [71]. One could propose that the
aim of ontology is to give some meaning to the verb ‘to exist’ by including it into a proper
language game [142].

On the other hand, epistemology lies at the interface between reality and its knowers.
‘In different parts of its extensive history, different facets of epistemology have attracted
attention. Plato’s epistemology was an attempt to understand what it was to know, and
how knowledge (unlike mere true opinion) is good for the knower. Locke’s epistemology was
an attempt to understand the operations of human understanding, Kant’s epistemology was
an attempt to understand the conditions of the possibility of human understanding, and
Russell’s epistemology was an attempt to understand how modern science could be justified
by appeal to sensory experience. (...) In all these cases, epistemology seeks to understand
one or another kind of cognitive success ’ [131].

A major topic in the philosophy of QM is to determine whether the quantum state is of
ontological or epistemic nature. Is it something that should be granted existence, that ‘is
there’ independently of what anyone knows or think, as is often done for particles or fields in
classical physics? Or is it a mathematical tool advantageously used by a physicist, reflecting
what she knows about the system, as is the case for a classical probability distribution?
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A.2 The Wigner’s friend thought experiment

In 1961, Wigner proposed the now famous Wigner’s friend thought experiment [140], which
turns out to be crucial when discussing the ontological problem of QM. The setup goes as
follows. A quantum system S, say a spin 1

2 , is initially prepared in the state 1
p
2
(|"zi+ |#zi),

where |"zi and |#zi denote the eigenvectors of the spin operator along the z-axis ŜZ . In the
lab, Wigner’s friend F has at her disposal a measurement device for the observable ŜZ . In
addition, this lab is supposed to be perfectly isolated from the rest of the universe. Wigner
stands outside, and wishes to make predictions about the system S + F (the measurement
apparatus, as well as any other constituant of the lab distinct from S, is included in F).

In Chapter 4, we will sometimes call unitary QM, instead of simply QM, the usual
quantum theory that we have summarized in Chapter 2 in which states always evolve uni-
tarily according to the Schrödinger equation. This way, we emphasize that we consider the
theory without adding any additional postulate or yet-to-be-confirmed physical phenomenon
(e.g. no collapse, no guiding field), assuming that the theory is valid at all scales.

For Wigner applying unitary QM, after the friend has measured the spin, the content of
the lab is in a state | i = 1

p
2
(|"z F"zi+ |#z F#zi). The key feature of the thought experiment

is that the quantum system modelled by Wigner contains an observer. This is exactly the
situation in which the ontological problem of QM appears most clearly, as we shall see in
§4.1.
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Résumé : L’objectif de cette thèse est de
mieux comprendre les caractéristiques de la
matière quantique qui rendent la gravitation
quantique si difficile à atteindre. Dans le Cha-
pitre 3, nous présentons deux modèles gé-
néraux de décohérence, sans spécifier au-
cun Hamiltonien. Le premier modèle fait ap-
paraître naturellement la décohérence comme
un phénomène géométrique entre deux ré-
servoirs de dimensions. Le second modèle
tente d’expliquer pourquoi, dans un univers où
la décohérence est omniprésente, la matière
n’est pas figée par l’effet Zénon quantique. Le
Chapitre 4 est consacré au problème onto-
logique de la physique quantique, communé-

ment appelé « problème de la mesure ». Notre
objectif n’est pas d’en fournir une solution,
mais plutôt de formuler le problème indépen-
damment de toute interprétation de la méca-
nique quantique, à la lumière de la théorie de
la décohérence. Dans le Chapitre 5, un nou-
vel ingrédient est introduit dans la discussion :
l’espace-temps. Après avoir éclairci l’incom-
patibilité apparente entre la mécanique quan-
tique et la relativité restreinte, nous présen-
tons un programme de recherche et un mo-
dèle jouet en vue de définir une notion back-
groundless de position au sein du formalisme
quantique.

Title: The ontological problem of quantum physics and the emergence of a backgroundless
spacetime in the light of the theory of decoherence
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independence

Abstract: The aim of this thesis is to better un-
derstand the features of quantum matter that
makes quantum gravity so hard to reach. In
Chapter 3, we present two general models of
decoherence, without specifying any Hamilto-
nian. The first one makes decoherence nat-
urally appear as a geometrical phenomenon
between reservoirs of dimensions. The sec-
ond one specifically tackles the question of
why, in a universe where decoherence is ubiq-
uitous, things are not frozen by the quantum
Zeno effect. In Chapter 4, we discuss the on-
tological problem of quantum physics, usually

referred to as the ‘measurement problem’. Our
aim in this chapter is not to give a solution, but
rather to formulate the problem independently
of any interpretation of quantum mechanics,
in the light of the theory of decoherence. In
Chapter 5, a new ingredient is introduced in
the discussion: spacetime. After investigating
the apparent incompatibility between quantum
mechanics and special relativity, we present a
program of research and a toy model designed
to build a backgroundless notion of position
within the quantum formalism.
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